Solutions Manual

Power
 ElECTRONICS

CIRCUITS, DEVICES,
 AND APPLICATIONS

THIRD EDITION

Muhammad H. Rashid

PEARSON
Prentice
Hall

Upper Saddle River, New Jersey 07458

CHAPTER 2

POWER SEMICONDUCTOR DIODES AND CIRCUITS

Problem 2-1

$t_{r r}=5 \mu \mathrm{~s}$ and $\mathrm{di} / \mathrm{dt}=80 \mathrm{~A} / \mu \mathrm{s}$
(a) From Eq. $(2-10)$,
$Q_{R R}=0.5(\mathrm{di} / \mathrm{dt}) \mathrm{t}_{\mathrm{rr}}{ }^{2}=0.5 \times 80 \times 5^{2} \times 10^{-6}=1000 \mu \mathrm{C}$
(b) From Eq. (2-11),

$$
I_{R R}=\sqrt{2 Q_{R R} \frac{d i}{d t}}=\sqrt{2 \times 1000 \times 80}=400 \mathrm{~A}
$$

Problem 2-2

$\mathrm{V}_{\mathrm{T}}=25.8 \mathrm{mV}, \mathrm{V}_{\mathrm{D} 1}=1.0 \mathrm{~V}$ at $\mathrm{I}_{\mathrm{D} 1}=50 \mathrm{~A}$, and $\mathrm{V}_{\mathrm{D} 2}=1.5 \mathrm{~V}$ at $\mathrm{I}_{\mathrm{D} 2}=600 \mathrm{~A}$ Taking natural (base e) logarithm on both sides of Eq. (2-3),

$$
\operatorname{In} I_{D}=\operatorname{In} I_{S}+\frac{v_{D}}{\eta V_{T}}
$$

which, after simplification, gives the diode voltage V_{D} as

$$
v_{D}=\eta V_{T} \operatorname{In}\left(\frac{I_{D}}{I_{S}}\right)
$$

If $I_{D 1}$ is the diode current corresponding to diode voltage $V_{D 1}$, we get

$$
V_{D 1}=\eta V_{T} \operatorname{In}\left(\frac{I_{D 1}}{I_{S}}\right)
$$

Similarly, if $\mathrm{V}_{\mathrm{D} 2}$ is the diode voltage corresponding to the diode current $\mathrm{I}_{\mathrm{D} 2}$, we get

$$
V_{D 2}=\eta V_{T} \operatorname{In}\left(\frac{I_{D 2}}{I_{S}}\right)
$$

Therefore, the difference in diode voltages can be expressed by

$$
V_{D 2}-V_{D 1}=\eta V_{T} \operatorname{In}\left(\frac{I_{D 2}}{I_{S}}\right)-\eta V_{T} \operatorname{In}\left(\frac{I_{D 1}}{I_{S}}\right)=\eta V_{T} \operatorname{In}\left(\frac{I_{D 2}}{I_{D 1}}\right)
$$

(a) For $\mathrm{V}_{\mathrm{D} 2}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D} 1}=1.0 \mathrm{~V}, \mathrm{I}_{\mathrm{D} 2}=600 \mathrm{~A}$, and $\mathrm{I}_{\mathrm{D} 1}=50 \mathrm{~A}$,
$1.5-1.0=\eta \times 0.0258 \times \operatorname{In}\left(\frac{600}{50}\right)$, which give $\eta=7.799$
(b) For $\mathrm{V}_{\mathrm{D} 1}=1.0 \mathrm{~V}, \mathrm{I}_{\mathrm{D} 1}=50 \mathrm{~A}$, and $\eta=7.999$
$1.0=7.799 \times 0.0258 \operatorname{In}\left(\frac{50}{I_{S}}\right)$, which gives $I_{S}=0.347 \mathrm{~A}$.

Problem 2-3
$V_{D 1}=V_{D 2}=2000 \mathrm{~V}, R_{1}=100 \mathrm{k} \Omega$
(a) From Fig. P2-3, the leakage current are: $\mathrm{I}_{\mathrm{S} 1}=17 \mathrm{~mA}$ and $\mathrm{I}_{\mathrm{S} 2}=25 \mathrm{~mA}$
$I_{R 1}=V_{D 1} / R_{1}=2000 / 100000=20 \mathrm{~mA}$
(b) From Eq. (2-12), $\mathrm{I}_{\mathrm{S} 1}+\mathrm{I}_{\mathrm{R} 1}=\mathrm{I}_{\mathrm{S} 2}+\mathrm{I}_{\mathrm{R} 2}$
or $17+20=25+\mathrm{I}_{\mathrm{R} 2}$, or $\mathrm{I}_{\mathrm{R} 2}=12 \mathrm{~mA}$
$\mathrm{R}_{2}=2000 / 12 \mathrm{~mA}=166.67 \mathrm{k} \Omega$

Problem 2-4

For $\mathrm{V}_{\mathrm{D}}=1.5 \mathrm{~V}$, Fig. P2-3 gives $\mathrm{I}_{\mathrm{D} 1}=140 \mathrm{~A}$ and $\mathrm{I}_{\mathrm{D} 2}=50 \mathrm{~A}$

Problem 2-5

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{T}}=200 \mathrm{~A}, \mathrm{~V}=2.5 \\
& \mathrm{I}_{1}=\mathrm{I}_{2}, \mathrm{I}_{1}=\mathrm{I}_{\mathrm{T}} / 2=200 / 2=100 \mathrm{~A}
\end{aligned}
$$

For $\mathrm{I}_{1}=100 \mathrm{~A}$, Fig. $\mathrm{P} 2-3$ yields $\mathrm{V}_{\mathrm{D} 1}=1.1 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{D} 2}=1.95 \mathrm{~V}$
$v=V_{D 1}+I_{1} R_{1}$ Or $2.5=1.1+100 R_{1}$ or $R_{1}=14 \mathrm{~m} \Omega$
$v=V_{D 2}+I_{2} R_{2}$ Or $2.5=1.95+100 R_{2}$ or $R_{2}=5.5 \mathrm{~m} \Omega$
$\mathrm{R}_{1}=\mathrm{R}_{2}=10 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{s}}=5 \mathrm{kV}, \mathrm{I}_{\mathrm{s} 1}=25 \mathrm{~mA}, \mathrm{I}_{\mathrm{s} 2}=40 \mathrm{~mA}$
From Eq. (2-12), $I_{S 1}+I_{R 1}=I_{S 2}+I_{R 2}$
or $I_{S 1}+V_{D 1} / R_{1}=I_{S 2}+V_{D 2} / R_{2}$
$25 \times 10^{-3}+V_{D 1} / 10000=40 \times 10^{-3}+V_{D 2} / 10000$
$V_{D 1}+V_{D 2}=V_{S}=5000$
Solving for $V_{D 1}$ and $V_{D 2}$ gives $V_{D 1}=2575 \mathrm{~V}$ and $V_{D 2}=2425 \mathrm{~V}$

Problem 2-7

$\mathrm{t}_{1}=100 \mu \mathrm{~s}, \mathrm{t}_{2}=300 \mu \mathrm{~s}, \mathrm{t}_{3}=500 \mu \mathrm{~s}, \mathrm{f}=250 \mathrm{~Hz}, \mathrm{f}_{\mathrm{s}}=250 \mathrm{~Hz}, \mathrm{I}_{\mathrm{m}}=500 \mathrm{~A}$ and $I_{a}=200 \mathrm{~A}$
(a) The average current is $\mathrm{I}_{\mathrm{av}}=2 \mathrm{I}_{\mathrm{m}} \mathrm{ft}_{1} / \pi-\mathrm{I}_{\mathrm{a}}\left(\mathrm{t}_{3}-\mathrm{t}_{2}\right) \mathrm{f}=7.96-10=-2.04$
A.
(b) For sine wave, $I_{r 1}=I_{m} \sqrt{f_{1} / 2}=55.9 \mathrm{~A}$ and for a rectangular negative . wave, $I_{r 2}=I_{a} \sqrt{f\left(t_{3}-t_{2}\right)}=44.72 \mathrm{~A}$

The rms current is $I_{r m s}=\sqrt{55.92^{2}+44.722^{2}}=71.59 \mathrm{~A}$
(c) The peak current varies from 500 A to -200 A.

Problem 2-8

$\mathrm{t}_{1}=100 \mu \mathrm{~s}, \mathrm{t}_{2}=200 \mu \mathrm{~s}, \mathrm{t}_{3}=400 \mu \mathrm{~s}, \mathrm{t}_{4}=800 \mu \mathrm{~s}, \mathrm{f}=250 \mathrm{~Hz}, \mathrm{I}_{\mathrm{a}}=150 \mathrm{~A}, \mathrm{I}_{\mathrm{b}}$
$=100 \mathrm{~A}$ and $\mathrm{I}_{\mathrm{p}}=300 \mathrm{~A}$
(a) The average current is
$\mathrm{I}_{\mathrm{av}}=\mathrm{I}_{\mathrm{a}} \mathrm{ft}_{3}+\mathrm{I}_{\mathrm{b}} \mathrm{f}\left(\mathrm{t}_{5}-\mathrm{t}_{4}\right)+2\left(\mathrm{I}_{\mathrm{p}}-\mathrm{I}_{\mathrm{a}}\right) \mathrm{f}\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right) / \pi=15+5+2.387=22.387 \mathrm{~A}$.
(b) $I_{r 1}=\left(I_{p}-I_{a}\right) \sqrt{f\left(t_{2}-t_{1}\right) / 2}=16.77 \mathrm{~A}$,

$$
I_{r 2}=I_{a} \sqrt{f t_{3}}=47.43 \mathrm{~A} \text { and } I_{r 3}=I_{b} \sqrt{f\left(t_{5}-t_{4}\right)}=22.36 \mathrm{~A}
$$

The rms current is $I_{r m s}=\sqrt{\left(16.772^{2}+47.432^{2}+22.362^{2}\right)}=55.05 \mathrm{~A}$

Problem 2-9
$\mathrm{R}=22 \Omega, \mathrm{C}=10 \mu \mathrm{~F}, \mathrm{~V}_{\mathrm{o}}=220 \mathrm{~V}$

$$
0=v_{R}+v_{C}=v_{R}+\frac{1}{C} \int i d t+v_{C}(t=0)
$$

With initial condition: $\mathrm{v}_{\mathrm{c}}(\mathrm{t}=0)=-\mathrm{V}_{\mathrm{o}}$, the current is

$$
i(t)=\frac{V_{o}}{R} e^{-t / R C}
$$

The capacitor voltage is

$$
v_{C}(t)=-R i=-V_{o} e^{-t / R C}=-220 e^{-t \times 10^{6} / 220}
$$

(b) The energy dissipated is

$$
W=0.5 C V_{0}^{2}=0.5 \times 10 \times 10-6 \times 220 \times 220=0.242 \mathrm{~J} .
$$

Problem 2-10

$\mathrm{R}=10 \Omega, \mathrm{~L}=5 \mathrm{mH}, \mathrm{Vs}=220 \mathrm{~V}, \mathrm{I}_{1}=10 \mathrm{~A}$
The switch current is described by

$$
V_{S}=L \frac{d i}{d t}+R i
$$

With initial condition: $\mathrm{i}(\mathrm{t}=0)=\mathrm{I}_{1}$,

$$
i(t)=\frac{V_{S}}{R}\left(1-e^{-t R / L}\right)+I_{1} e^{-t R / L}=22-12 e^{-2000 t} \mathrm{~A}
$$

Problem 2-11

$$
V_{S}=L \frac{d i}{d t}+\frac{1}{C} \int i d t+v_{C}(t=0)
$$

With initial condition: $\mathrm{i}(\mathrm{t}=0)=\mathrm{I}_{\mathrm{o}}$ and $\mathrm{v}_{\mathrm{c}}(\mathrm{t}=0)=0$, we get

$$
i(t)=I_{o} \cos \left(\omega_{o} t\right)+V_{S} \sqrt{\frac{C}{L}} \sin \left(\omega_{o} t\right)
$$

The capacitor voltage is

$$
\begin{aligned}
& v_{C}(t)=\frac{1}{C} \int i d t=I o \sqrt{\frac{L}{C}} \sin \left(\omega_{o} t\right)-V_{S} \cos \left(\omega_{o} t\right)+V_{S} \\
& \text { where } \omega_{o}=1 / \sqrt{C L}
\end{aligned}
$$

Problem 2-12

Fig. p2-12a:
(a) $\mathrm{Ldi} / \mathrm{dt}$ or $\mathrm{i}(\mathrm{t})=\mathrm{V}_{\mathrm{s}} \mathrm{t} / \mathrm{L}$
(b) $\mathrm{di} / \mathrm{dt}=\mathrm{V}_{\mathrm{s}} / \mathrm{L}$;
(d) $\mathrm{di} / \mathrm{dt}($ at $t=0)=\mathrm{V}_{\mathrm{s}} / \mathrm{L}$.

Fig. $\mathrm{p} 2-12 \mathrm{~b}$:
(a) $\frac{1}{C} \int i d t+R i=V_{S}-V_{o}$ or $\quad i(t)=\frac{V_{s}-V_{o}}{R} e^{-t / R C}$
(b) $\frac{d i}{d t}=\frac{V_{S}-V_{o}}{R^{2} C} e^{-t / R C}$
(d) At t $=0, \mathrm{di} / \mathrm{dt}=\left(\mathrm{V}_{\mathrm{s}}-\mathrm{V}_{\mathrm{o}}\right) /\left(\mathrm{R}^{2} \mathrm{C}\right)$

Fig. p2-12c:
(a) $L \frac{d i}{d t}+R i=V_{S}$ or $i(t)=\frac{V_{S}}{R} e^{-t R / L}$
(b) $\frac{d i}{d t}=-\frac{V_{S}}{L} e^{-t R / L}$
(d) At $t=0, d i / d t=V_{s} / L$

Fig. p2-12d:

(a) $\quad V_{S}=L \frac{d i}{d t}+\frac{1}{C} \int i d t+v_{C}(t=0)$

With initial condition: $\mathrm{i}(\mathrm{t}=0)=0$ and $\mathrm{v}_{\mathrm{c}}(\mathrm{t}=0)=\mathrm{V}_{\mathrm{o}}$,

$$
\begin{aligned}
& i(t)=\left(V_{S}-V_{o}\right) \sqrt{\frac{C}{L}} \sin \left(\omega_{o} t\right)=I_{p} \sin \left(\omega_{o} t\right) \\
& \text { where } \omega_{o}=1 / \sqrt{L C}
\end{aligned}
$$

(b) $\frac{d i}{d t}=\frac{V_{S}-V_{o}}{L} \cos \left(\omega_{o} t\right)$
(d) At t $=0, \mathrm{di} / \mathrm{dt}=\left(\mathrm{V}_{\mathrm{s}}-\mathrm{V}_{\mathrm{o}}\right) / \mathrm{L}$

Fig. p2-12e:

At $\mathrm{t}=0$, the inductor behaves as an open circuit and a capacitor behaves as a short circuit. Inductor L_{1} limits the initial di/dt only. Thus, the initial di/dt is $\mathrm{di} / \mathrm{dt}=\mathrm{V}_{\mathrm{s}} / \mathrm{L}_{1}=\mathrm{V}_{\mathrm{s}} / 20 \mu \mathrm{H}=\mathrm{V}_{\mathrm{s}} / 20 \mathrm{~A} / \mu \mathrm{s}$

Problem 2-13

$\mathrm{V}_{\mathrm{s}}=220 \mathrm{~V}, \mathrm{~L}=5 \mathrm{mH}, \mathrm{C}=10 \mu \mathrm{~F}, \mathrm{R}=22 \Omega$ and $\mathrm{V}_{\mathrm{o}}=50 \mathrm{~V}$
(a) From Eq. $(2-40), \alpha=22 \times 10^{3} /(2 \times 5)=2200$

From Eq. $(2-41), \omega_{0}=1 / \sqrt{ }(\mathrm{LC})=4472 \mathrm{rad} / \mathrm{s}$

$$
\omega_{r}=\sqrt{4472^{2}-2200^{2}}=3893 \mathrm{rad} / \mathrm{s}
$$

Since $\alpha<\omega_{0}$, it is an under-damped case and the solution is of the for

$$
i(t)=e^{-\alpha t}\left[A_{1} \cos \left(\omega_{r} t\right)+A_{2} \sin \left(\omega_{r} t\right)\right]
$$

At $\mathrm{t}=0, \mathrm{i}(\mathrm{t}=0)=0$ and this gives $\mathrm{A}_{1}=0$.

$$
i(t)=e^{-\alpha t} A_{2} \sin \left(\omega_{r} t\right)
$$

$$
\begin{aligned}
& \frac{d i}{d t}=\omega_{r} \cos \left(\omega_{r} t\right) A_{2} e^{-\alpha t}-\alpha \sin \left(\omega_{r} t\right) A_{2} e^{-\alpha t} \\
& \left.\frac{d i}{d t}\right|_{t=0}=\omega_{r} A_{2}=\frac{V_{S}}{L}
\end{aligned}
$$

or $\quad A_{2}=V_{s} /\left(\omega_{r} L\right)=220 \times 1000 /(3893 \times 5)=11.3$
The final expression for current $\mathrm{i}(\mathrm{t})$ is
$i(t)=11.3 \times \sin (3893 t) e^{-2200 t} \mathrm{~A}$
(b) The conduction time is

$$
\omega_{r} t_{1}=\pi \text { or } t_{1}=\pi / 3893=807 \mu \mathrm{~s}
$$

(c) The sketch for $i(t)$ is shown.

Problem 2-14

$V_{s}=200 \mathrm{~V}, L_{m}=150 \mu \mathrm{H}, \mathrm{N}_{1}=10, \mathrm{~N}_{2}=200$ and $\mathrm{t}_{1}=100 \mu \mathrm{~s}$
The turns ratio is $a=N_{2} / N_{1}=200 / 10=20$
(a) From Eq. (2-52) the reverse voltage of diode,

$$
v_{D}=200 \times(1+20)=4620 \mathrm{~V}
$$

(b) From Eq. $(2-55)$ the peak value of primary current,

$$
\mathrm{I}_{0}=220 \times 100 / 150=146.7 \mathrm{~A}
$$

(c) The peak value of secondary current Io' $=\mathrm{Io} / \mathrm{a}=146.7 / 20=7.3 \mathrm{~A}$
(d) From Eq. $(2-58)$ the conduction time of diode,

$$
\mathrm{t} 2=20 \times 100=2000 \mu \mathrm{~s} .
$$

(e) The energy supplied by the source

$$
W=\int_{0}^{t_{1}} v i d t=\int_{0}^{t_{1}} V_{S} \frac{V_{S}}{L_{m}} t d t=\frac{1}{2} \frac{V_{S}^{2}}{L_{m}} t_{1}^{2}
$$

From Eq. $(2-55), \mathrm{W}=0.5 \mathrm{~L}_{\mathrm{m}} \mathrm{I}_{0}{ }^{2}=0.5 \times 150 \times 10-6 \times 146.72=1.614 \mathrm{~J}$

Problem 2-15

(a) $i_{c}=i_{d}+I_{m}$
$v_{C}=\frac{1}{C} \int i_{C} d t+v_{C}(t=0)=-L \frac{d i_{d}}{d t}=-L \frac{d i_{C}}{d t}$
With initial condition: $\left.i_{c} t=0\right)=I_{m}$ and $v_{c}(t=0)=-V_{s}$,
$i(t)=V_{S} \sqrt{\frac{C}{L}} \sin \left(\omega_{o} t\right)+I_{m} \cos \left(\omega_{o} t\right)$
where $\omega_{o}=1 / \sqrt{L C}$
$v_{C}(t)=\frac{1}{C} \int_{0} i_{C}(t) d t=I_{m} \sqrt{\frac{L}{C}} \sin \left(\omega_{o} t\right)-V_{S} \cos \left(\omega_{o} t\right)$
$i_{d}(t)=V_{s} \sqrt{\frac{C}{L}} \sin \left(\omega_{o} t\right)+I_{m} \cos \left(\omega_{o} t\right)-I_{m}$
(b) For $\mathrm{i}_{\mathrm{d}}\left(\mathrm{t}=\mathrm{t}_{1}\right)=0$
$i_{d}\left(t=t_{1}\right)=V_{s} \sqrt{\frac{C}{L}} \sin \left(\omega_{o} t_{1}\right)+I_{m} \cos \left(\omega_{o} t_{1}\right)-I_{m}=0$
or $\quad \cos (\alpha) \sin \left(\omega_{o} t_{1}\right)+\sin (\alpha) \cos \left(\omega_{o} t_{1}\right)=\frac{1}{\sqrt{1+x^{2}}}$
or $\quad \sin \left(\omega_{o} t_{1}+\alpha\right)=\frac{1}{\sqrt{1+x^{2}}}$
which gives the time t_{1}

$$
\begin{aligned}
& \omega_{o} t_{1}=\sin ^{-1}\left[\frac{1}{\sqrt{1+x^{2}}}\right]-\alpha=\sin ^{-1}\left[\frac{1}{\sqrt{1+x^{2}}}\right]-\tan ^{-1}\left(\frac{1}{x}\right) \\
& \text { where } x=\frac{V_{S}}{I_{m}} \sqrt{\frac{C}{L}}
\end{aligned}
$$

(c) For $\mathrm{v}_{\mathrm{c}}\left(\mathrm{t}=\mathrm{t}_{\mathrm{q}}\right)=0$

$$
v_{C}(t)=I_{m} \sqrt{\frac{L}{C}} \sin \left(\omega_{o} t\right)-V_{S} \cos \left(\omega_{o} t\right)=0
$$

or $\quad t_{q}=\sqrt{L C} \tan ^{-1}(x)$
(d) The time for the capacitor to recharge to the supply voltage at a constant current of I_{m}, is

$$
\begin{aligned}
& v_{C}\left(t=t_{1}\right)=V_{s}=\frac{1}{C} \int_{0}^{1} I_{m} d t \\
& \mathrm{t}_{1}=\mathrm{V}_{\mathrm{s}} \mathrm{C} / \mathrm{I}_{\mathrm{m}}
\end{aligned}
$$

The total time for discharge and recharge is $t_{2}=t_{1}+t_{q}$

CHAPTER 3

DIODE RECTIFIERS

Problem 3-1

$V_{\mathrm{m}}=170 \mathrm{~V}, \mathrm{R}=10 \Omega, \mathrm{f}=60 \mathrm{~Hz}$
From Eq. $(3-21), V_{d}=0.6366 \mathrm{~V}_{\mathrm{m}}=0.6366 \times 170=113.32 \mathrm{~V}$

Problem 3-2

$V_{m}=170 \mathrm{~V}, \mathrm{R}=10 \Omega, \mathrm{f}=60 \mathrm{~Hz}$ and $\mathrm{L}_{\mathrm{c}}=0.5 \mathrm{mH}$
From Eq. $(3-21), V_{d c}=0.6366 \mathrm{~V}_{\mathrm{m}}=0.6366 \times 170=113.32 \mathrm{~V}$
$I_{d c}=V_{d c} / R=113.32 / 10=11.332 \mathrm{~A}$
Since there are two commutations per cycle, Eq, (3-79) gives the output voltage reduction, $\mathrm{V}_{\mathrm{x}}=2 \times 60 \times 0.5 \times 10^{-3} \times 11.332=0.679 \mathrm{~V}$ and the effective output voltage is $(113.32-0.679)=112.64 \mathrm{~V}$

Problem 3-3

$\mathrm{R}=10 \Omega, \mathrm{~V}_{\mathrm{m}}=170 \mathrm{~V}, \mathrm{f}=60 \mathrm{~Hz}$
For a six-phase star rectifier $q=6$ in Eqs. (3-32) and from Eq. (3-32), $\mathrm{V}_{\mathrm{dc}}=$ $170(6 / \pi) \sin (\pi / 6)=162.34 \mathrm{~V}$

Problem 3-4

$R=10 \Omega, V_{m}=170 \mathrm{~V}, \mathrm{f}=60 \mathrm{~Hz}, \mathrm{~L}_{\mathrm{c}}=0.5 \mathrm{mH}$
For a six-phase star-rectifier, $\mathrm{q}=6$ in Eq. (3-69). From Eq. (3-32), $\mathrm{V}_{\mathrm{dc}}=$ $170(6 / \pi) \sin (\pi / 6)=162.34, \mathrm{I}_{\mathrm{dc}}=162.34 / 10=16.234 \mathrm{~A}$.
Since there are six commutations per cycle, Eq. (3-79) gives the output voltage reduction, $\mathrm{V}_{\mathrm{x}}=6 \times 60 \times 0.5 \times 10^{-3} \times 16.234=2.92 \mathrm{~V}$ and the effective output voltage is $(162.34-2.92)=159.42 \mathrm{~V}$
$R=100 \Omega, V_{s}=280 \mathrm{~V}, \mathrm{f}=60 \mathrm{~Hz}$
$\mathrm{V}_{\mathrm{m}}=280 \times \sqrt{ } 2 / \sqrt{ } 3=228.6 \mathrm{~V}$
From Eq. $(3-40), \mathrm{V}_{\mathrm{dc}}=1.6542 \times 228.6=378.15 \mathrm{~V}$

Problem 3-6

$\mathrm{R}=100 \Omega, \mathrm{~V}_{\mathrm{s}}=280 \mathrm{~V}, \mathrm{f}=60 \mathrm{~Hz}$ and $\mathrm{L}_{\mathrm{c}}=0.5 \mathrm{mH}$
$\mathrm{V}_{\mathrm{m}}=280 \times \sqrt{ } 2 / \sqrt{ } 3=228.6 \mathrm{~V}$
From Eq. $(3-40), \mathrm{V}_{\mathrm{dc}}=1.6542 \times 228.6=378.15 \mathrm{~V}$
$I_{d c}=V_{d c} / R=378.15 / 100=37.815 \mathrm{~A}$
Since there are six commutations per cycle, Eq. (3-79) gives the output voltage reduction, $\mathrm{V}_{\mathrm{x}}=6 \times 60 \times 0.5 \times 10^{-3} \times 37.815=6.81 \mathrm{~V}$ and the effective output voltage is $(378.15-6.81)=371.34 \mathrm{~V}$

Problem 3-7

$V_{\mathrm{dc}}=400 \mathrm{~V},{ }^{`} \mathrm{R}=10 \Omega$
From Eq. (3-21), $\mathrm{V}_{\mathrm{dc}}=400=0.6366 \mathrm{~V}_{\mathrm{m}}$ or $\mathrm{V}_{\mathrm{m}}=628.34 \mathrm{~V}$
The rms phase voltage is $V_{s}=V_{m} / \sqrt{ } 2=628.34 / \sqrt{ } 2=444.3 \mathrm{~V}$
$I_{d c}=V_{d c} / R=400 / 10=40 \mathrm{~A}$

Diodes:

Peak current, $\mathrm{I}_{\mathrm{p}}=628.34 / 10=62.834 \mathrm{~A}$
Average current, $\mathrm{I}_{\mathrm{d}}=\mathrm{I}_{\mathrm{dc}} / 2=40 / 2=20 \mathrm{~A}$
RMS current, $I_{R}=62.834 / 2=31.417 \mathrm{~A}$
Transformer:
RMS voltage, $\mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\mathrm{m}} / \sqrt{ } 2=444.3 \mathrm{~V}$
RMS current, $\mathrm{I}_{\mathrm{s}}=\mathrm{I}_{\mathrm{m}} / \sqrt{ } 2=44.43 \mathrm{~A}$
Volt-amp, VI $=444.3 \times 44.43=19.74 \mathrm{kVA}$
$P_{\mathrm{dc}}=\left(0.6366 \mathrm{~V}_{\mathrm{m}}\right)^{2} / \mathrm{R}$ and $\mathrm{Pac}_{\mathrm{ac}}=\mathrm{V}_{\mathrm{s}} \mathrm{I}_{\mathrm{s}}=\mathrm{V}_{\mathrm{m}}^{2} / 2 \mathrm{R}$
TUF $=P_{d c} / P_{a c}=0.6366^{2} \times 2=0.8105$ and the de-rating factor of the transformer is $1 /$ TUF $=1.2338$.

Problem 3-8
$\mathrm{V}_{\mathrm{dc}}=750 \mathrm{~V}, \mathrm{I}_{\mathrm{dc}}=9000 \mathrm{~A}$
From Eq. (3-40), $\mathrm{V}_{\mathrm{dc}}=750=1.6542 \mathrm{~V}_{\mathrm{m}}$ or $\mathrm{V}_{\mathrm{m}}=453.39 \mathrm{~V}$
The phase voltage is $\mathrm{V}_{\mathrm{s}}=\mathrm{V}_{\mathrm{m}} / \sqrt{ } 2=453.39 / \sqrt{ } 2=320.59 \mathrm{~V}$
Diodes:
Peak current, $\mathrm{I}_{\mathrm{p}}=9000 \mathrm{~A}$
Average current, $\mathrm{I}_{\mathrm{d}}=\mathrm{I}_{\mathrm{dc}} / 2=9000 / 2=4500 \mathrm{~A}$
RMS current, $\mathrm{I}_{\mathrm{R}}=9000 / \sqrt{ } 2=6363.96 \mathrm{~A}$
Transformer:
RMS voltage, $\mathrm{V}_{\mathrm{s}}=320.59 \mathrm{~V}$
RMS current, $I_{s}=I_{p}=9000 \mathrm{~A}$
Volt-amp per phase, VI $=320.59 \times 9000=2885.31 \mathrm{kVA}$
TUF $=\mathrm{P}_{\mathrm{dc}} / \mathrm{P}_{\mathrm{ac}}=750 \times 9000 /(3 \times 2885.31)=0.7798$ and the de-rating factor
of the transformer is $1 /$ TUF $=1.2824$

Problem 3-9

$\mathrm{V}_{\mathrm{m}}=170 \mathrm{~V}, \mathrm{f}=60 \mathrm{~Hz}, \mathrm{R}=15 \Omega$ and $\omega=2 \pi \mathrm{f}=377 \mathrm{rad} / \mathrm{s}$
From Eq. (3-22), the output voltage is

$$
v_{L}(t)=\frac{2 V_{m}}{\pi}-\frac{4 V_{m}}{3 \pi} \cos (2 \omega t)-\frac{4 V_{m}}{15 \pi} \cos (4 \omega t)-\frac{4 V_{m}}{35 \pi} \cos (6 \omega t)-. . \infty
$$

The load impedance, $Z=R+j(n \omega L)=\sqrt{R^{2}+(n \omega L)^{2}} \angle \theta_{n}$ and $\theta_{n}=\tan ^{-1}(n \omega L / R)$
and the load current is given by

$$
i_{L}(t)=I_{d c}-\frac{4 V_{m}}{\pi \sqrt{R^{2}+(n \omega L)^{2}}}\left[\frac{1}{3} \cos \left(2 \omega t-\theta_{2}\right)-\frac{1}{15} \cos \left(4 \omega t-\theta_{4}\right)-\frac{1}{35} \cos \left(6 \omega t-\theta_{6}\right)-. . \infty\right]
$$

where $\quad I_{d c}=\frac{V_{d c}}{R}=\frac{2 V_{m}}{\pi R}$
The rms value of the ripple current is

$$
I_{a c}^{2}=\frac{\left(4 V_{m}\right)^{2}}{2 \pi^{2}\left[R^{2}+(2 \omega L)^{2}\right]}\left(\frac{1}{3}\right)^{2}+\frac{\left(4 V_{m}\right)^{2}}{2 \pi^{2}\left[R^{2}+(4 \omega L)^{2}\right]}\left(\frac{1}{15}\right)^{2}+\frac{\left(4 V_{m}\right)^{2}}{2 \pi^{2}\left[R^{2}+(6 \omega L)^{2}\right]}\left(\frac{1}{35}\right)^{2}+. . \infty
$$

Considering only the lowest order harmonic ($n=2$) and neglecting others,

$$
I_{a c}=\frac{4 V_{m}}{\sqrt{2} \pi \sqrt{R^{2}+(2 \omega L)^{2}}}\left(\frac{1}{3}\right)
$$

Using the value of I_{dc} and after simplification, the ripple factor is

$$
\begin{aligned}
& R F=\frac{I_{a c}}{I_{d c}}=\frac{0.481}{\sqrt{1+(2 \omega L / R)^{2}}}=0.04 \\
& 0.481^{2}=0.04^{2}\left[1+(2 \times 377 \mathrm{~L} / 15)^{2}\right] \text { or } \mathrm{L}=238.4 \mathrm{mH}
\end{aligned}
$$

Problem 3-10

$V_{m}=170 \mathrm{~V}, \mathrm{f}=60 \mathrm{~Hz}, \mathrm{R}=15 \Omega$ and $\omega=2 \pi \mathrm{f}=377 \mathrm{rad} / \mathrm{s}$
For $q=6$, Eq. $(3-39)$ gives the output voltage as

$$
v_{L}(t)=0.9549 V_{m}\left[1+\frac{2}{35} \cos (6 \omega t)-\frac{2}{143} \cos (12 \omega t)+. . \infty\right]
$$

The load impedance, $Z=R+j(n \omega L)=\sqrt{R^{2}+(n \omega L)^{2}} \angle \theta_{n}$

$$
\text { and } \theta_{n}=\tan ^{-1}(n \omega L / R)
$$

and the load current is

$$
i_{L}(t)=I_{d c}-\frac{0.9549 V_{m}}{\sqrt{R^{2}+(n \omega L)^{2}}}\left[\frac{2}{35} \cos \left(6 \omega t-\theta_{6}\right)-\frac{2}{143} \cos \left(12 \omega t-\theta_{12}\right)+. . \infty\right]
$$

where

$$
I_{d c}=\frac{V_{d c}}{R}=\frac{0.9549 V_{m}}{R}
$$

The rms value of the ripple current is

$$
I_{a c}^{2}=\frac{\left(0.9549 V_{m}\right)^{2}}{2\left[R^{2}+(6 \omega L)^{2}\right]}\left(\frac{2}{35}\right)^{2}+\frac{\left(0.9549 V_{m}\right)^{2}}{2\left[R^{2}+(12 \omega L)^{2}\right]}\left(\frac{2}{143}\right)^{2}+. . \infty
$$

Considering only the lowest order harmonic ($n=6$) and neglecting others,

$$
I_{a c}=\frac{0.9549 V_{m}}{\sqrt{2} \sqrt{R^{2}+(6 \omega L)^{2}}}\left(\frac{2}{35}\right)
$$

Using the value of I_{dc} and after simplification, the ripple factor is

$$
\begin{aligned}
& R F=\frac{I_{a c}}{I_{d c}}=\frac{1}{\sqrt{2} \times \sqrt{1+(6 \omega L / R)^{2}}}\left(\frac{2}{35}\right)=0.02 \\
& 0.0404^{2}=0.02^{2}\left[1+(6 \times 377 \mathrm{~L} / 15)^{2}\right] \text { or } \mathrm{L}=11.64 \mathrm{mH}
\end{aligned}
$$

Problem 3-11

$\mathrm{E}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{dc}}=10 \mathrm{~A}, \mathrm{~V}_{\mathrm{p}}=120 \mathrm{~V}, \mathrm{~V}_{\mathrm{s}}=\mathrm{V}_{\mathrm{p}} / \mathrm{n}=120 / 2=60 \mathrm{~V}$
$\mathrm{V}_{\mathrm{m}}=\sqrt{ } 2 \mathrm{~V}_{\mathrm{s}}=\sqrt{ } 2 \times 60=84.85 \mathrm{~V}$
(i) From Eq. $(3-17), \alpha=\sin ^{-1}(20 / 84.85)=15.15^{\circ}$ or 0.264 rad $B=180-15.15=164.85^{\circ}$
The conduction angle is $\delta=\beta-\alpha=164.85-15.15=149.7^{\circ}$
(ii) Equation (3-18) gives the resistance R as

$$
\begin{aligned}
& \quad R=\frac{1}{2 \pi I_{d c}}\left[2 V_{m} \cos \alpha+2 \alpha E-\pi E\right] \\
& R=\frac{1}{2 \pi \times 10}\left[2 \times 84.85 \times \cos 15.15^{\circ}+2 \times 20 \times 0.264-\pi \times 20\right]=1.793 \Omega \\
& \text { (iii) Equation (3-19) gives the rms battery current } \mathrm{I}_{\mathrm{rms}} \text { as }
\end{aligned}
$$

$$
I_{r m s}^{2}=\frac{1}{2 \pi R^{2}}\left[\left(\frac{V_{m}^{2}}{2}+E^{2}\right) \times(\pi-2 \alpha)+\frac{V_{m}^{2}}{2} \sin 2 \alpha-4 V_{m} E \cos \alpha\right]=272.6
$$

or $\quad I_{r m s}=\sqrt{272.6}=16.51 \mathrm{~A}$

The power rating of R is $P_{R}=16.51^{2} \times 1.793=488.8 \mathrm{~W}$
(iv) The power delivered P_{dc} to the battery is
$P_{\mathrm{dc}}=E \mathrm{I}_{\mathrm{dc}}=20 \times 10=200 \mathrm{~W}$
$h \mathrm{P}_{\mathrm{dc}}=100$ or $\mathrm{h}=200 / \mathrm{P}_{\mathrm{dc}}=200 / 200=1 \mathrm{hr}$
(v) The rectifier efficiency η is

$$
\eta=\frac{P_{d c}}{P_{d c}+P_{R}}=\frac{200}{200+488.8}=29 \%
$$

(vi) The peak inverse voltage PIV of the diode is $P I V=V_{m}+E=84.85+20=104.85 V$

Problem 3-12

It is not known whether the load current is continuous or discontinuous. Let us assume that the load current is continuous and proceed with the solution. If the assumption is not correct, the load current will be zero current and then move to the case for a discontinuous current.
(a) $\mathrm{R}=5 \Omega, \mathrm{~L}=4.5 \mathrm{mH}, \mathrm{f}=60 \mathrm{~Hz}, \omega=2 \pi \times 60=377 \mathrm{rad} / \mathrm{s}, \mathrm{V}_{\mathrm{s}}=120 \mathrm{~V}$, $Z=\left[R^{2}+(\omega L)^{2}\right]^{1 / 2}=5.28 \Omega$, and $\theta=\tan ^{-1}(\omega L / R)=18.74^{\circ}$
(i) The steady-state load current at $\omega t=0, I_{1}=6.33 \mathrm{~A}$. Since $\mathrm{I}_{1}>0$, the load current is continuous and the assumption is correct.
(ii) The numerical integration of i_{L} in Eq. (3-27) yields the average diode current as $\mathrm{I}_{\mathrm{d}}=8.8 \mathrm{~A}$
(iii) By numerical integration of $\mathrm{i}_{\mathrm{L}}{ }^{2}$ between the limits $\omega t=0$ to π, we get the rms diode current as $\mathrm{I}_{\mathrm{r}}=13.83 \mathrm{~A}$.
(iv) The rms output current $I_{r m s}=\sqrt{ } 2 I_{r}=\sqrt{ } 2 \times 13.83=19.56 \mathrm{~A}$

Problem 3-13
(a) $\mathrm{R}=5 \Omega, \mathrm{~L}=2.5 \mathrm{mH}, \mathrm{f}=60 \mathrm{~Hz}, \omega=2 \pi \times 60=377 \mathrm{rad} / \mathrm{s}, \mathrm{V}_{\mathrm{ab}}=208 \mathrm{~V}$, $Z=\left[R^{2}+(\omega L)^{2}\right]^{1 / 2}=5.09 \Omega$, and $\theta=\tan ^{-1}(\omega L / R)=10.67^{\circ}$
(i) The steady-state load current at $\omega \mathrm{t}=\pi / 3, \mathrm{I}_{1}=50.6 \mathrm{~A}$.
(ii) The numerical integration of i_{L} in Eq. $(3-47)$ yields the average diode current as $I_{d}=17.46 \mathrm{~A}$. Since $I_{1}>0$, the load current is continuous.
(iii) By numerical integration of $\mathrm{i}_{\mathrm{L}}{ }^{2}$ between the limits $\omega t=\pi / 3$ to $2 \pi / 3$, we get the rms diode current as $\mathrm{I}_{\mathrm{r}}=30.2 \mathrm{~A}$.
(iv) The rms output current $\mathrm{I}_{\mathrm{rms}}=\sqrt{ } 3 \mathrm{I}_{\mathrm{r}}=\sqrt{ } 3 \times 30.2=52.31 \mathrm{~A}$

Problem 3-14

$R F=5 \%, R=200 \Omega$ and $f=60 \mathrm{~Hz}$
(a) Solving for C_{e} in Eq. (3-62),

$$
C_{e}=\frac{1}{4 \times 60 \times 200}\left[1+\frac{1}{\sqrt{2} \times 0.05}\right]=315.46 \mu \mathrm{~F}
$$

(b) From Eq. (3-61), the average load voltage $V_{d c}$ is

$$
V_{d c}=169.7-\frac{169.7}{4 \times 60 \times 200 \times 415.46 \times 10^{-6}}=169.7-11.21=158.49 \mathrm{~V}
$$

Problem 3-15

$R F=5 \%, R=200 \Omega$, and $f=60 \mathrm{~Hz}$
(a) For a half-wave rectifier, the frequency of output ripple voltage is the same as the supply frequency. Thus, the constant 4 in Eq. (3-62) should be changed to 2 .
Solving for C_{e} in Eq. (3-62),

$$
C_{e}=\frac{1}{2 \times 60 \times 200}\left[1+\frac{1}{\sqrt{2} \times 0.05}\right]=630.92 \mu \mathrm{~F}
$$

(b) From Eq. (3-61), the average load voltage $V_{d c}$ is

$$
V_{d c}=169.7-\frac{169.7}{2 \times 60 \times 200 \times 415.46 \times 10^{-6}}=169.7-22.42=147.28 \mathrm{~V}
$$

Problem 3-16

$$
\omega=2 \pi \times 60=377 \mathrm{rad} / \mathrm{s}, \mathrm{~V}_{\mathrm{dc}}=48 \mathrm{~V}, \mathrm{~V}_{\mathrm{s}}=120 \mathrm{~V}, \mathrm{~V}_{\mathrm{m}}=\sqrt{ } 2 \times 120=169.7 \mathrm{~V}
$$

(a) Voltage ratio $x=V_{d c} / V_{m}=48 / 169.7=28.28 \%$
$\alpha=\sin ^{-1}(x)=16.43^{\circ}$
Solving Eq. (3-70) for B gives: $B=117.43^{\circ}$
Equation (3-105) gives the current ratio $\mathrm{I}_{\mathrm{dc}} / \mathrm{Ipk}=13.425 \%$
Thus, $\mathrm{I}_{\mathrm{pk}}=\mathrm{I}_{\mathrm{dc}} / 0.13425=186.22 \mathrm{~A}$
The required value of inductance is
$L_{\mathrm{e}}=\mathrm{V}_{\mathrm{m}} /\left(\omega \mathrm{I}_{\mathrm{pk}}\right)=169.7 /(377 \times 186.22)=2.42 \mathrm{mH}$.
Equation (3-106) gives the current ratio $\mathrm{I}_{\mathrm{rms}} / \mathrm{Ipk}=22.59 \%$
Thus $\mathrm{I}_{\mathrm{rms}}=0.2259 \times \mathrm{I}_{\mathrm{pk}}=0.2259 \times 186.22=42.07 \mathrm{~A}$
(b) $\mathrm{I}_{\mathrm{dc}}=15 \mathrm{~A}, \mathrm{~L}_{\mathrm{e}}=6.5 \mathrm{mH}, \mathrm{I}_{\mathrm{pk}}=\mathrm{V}_{\mathrm{m}} /\left(\omega \mathrm{L}_{\mathrm{e}}\right)=169.7 /(377 \times 6.5 \mathrm{mH})=$ 69.25 A
$y=I_{d c} / I_{p k}=15 / 69.25=21.66 \%$
Using linear interpolation, we get

$$
\begin{aligned}
x & =x_{n}-\left(x_{n+1}-x_{n}\right)\left(y_{n}-y\right) /\left(y_{n+1}-y_{n}\right) \\
& =10-(15-10)(25.5-21.66) /(21.5-25.5)=14.8 \% \\
V_{d c} & =x V_{m}=0.148 \times 169.7=25.12 \mathrm{~V} \\
\alpha & =\alpha_{n}-\left(\alpha_{n+1}-\alpha_{n}\right)\left(y_{n}-y\right) /\left(y_{n+1}-y_{n}\right) \\
& =5.74-(8.63-5.74)(25.5-21.66) /(21.5-25.5)=8.51^{\circ} . \\
B & =B_{n}-\left(\beta_{n+1}-B_{n}\right)\left(y_{n}-y\right) /\left(y_{n+1}-y_{n}\right) \\
& =139.74-(131.88-139.74)(25.5-21.66) /(21.5-25.5)=132.19^{\circ} . \\
z & =I_{r m s} / I_{p k}=z_{n}-\left(z_{n+1}-x_{n}\right)\left(y_{n}-y\right) /\left(y_{n+1}-y_{n}\right) \\
& =37.06-(32.58-37.06)(25.5-21.66) /(21.5-25.5)=32.76 \%
\end{aligned}
$$

Thus $\mathrm{I}_{\mathrm{rms}}=0.3276 \times \mathrm{I}_{\mathrm{pk}}=0.3276 \times 69.25=22.69 \mathrm{~A}$
(a)
$\mathrm{f}:=60 \quad$ Vdc $:=48 \quad$ Idc $:=25 \quad \omega:=2 \cdot \pi \cdot \mathrm{f} \quad \omega=376.99$

$\mathrm{Vs}:=120 \quad \mathrm{Vm}:=\sqrt{2} \cdot \mathrm{Vs}$	
$\mathrm{x}:=\frac{\mathrm{Vdc}}{\mathrm{Vm}} \quad \alpha:=\operatorname{asin}(\mathrm{x})$	$180 \cdot \frac{\alpha}{\pi}=16.43$
$\mathrm{k}:=\sqrt{1-(\mathrm{x})^{2}}+\left(\frac{2}{\pi}-\frac{\pi}{2}\right) \mathrm{x}$	$100 \cdot \mathrm{k}=69.49$
$\mathrm{Ipk}:=\frac{\mathrm{Idc}}{\mathrm{k}}$	$\mathrm{Ipk}=35.97$
$\mathrm{Lcr}:=\frac{\mathrm{Vm}}{\omega \cdot \mathrm{Ipk}}$	$1000 \cdot \mathrm{Lcr}=12.51 \quad \mathrm{mH}$

$\mathrm{k}_{\mathrm{r}}:=\sqrt{\frac{1}{\pi}} \cdot\left[\int_{\alpha}^{\alpha+\pi}[(\cos (\alpha)-\cos (\phi))-\mathrm{x} \cdot(\phi-\alpha)]^{2} \mathrm{~d} \phi\right]$
$100 \cdot \mathrm{k}_{\mathrm{r}}=81.91$
Irms := $\mathrm{k}_{\mathrm{r}} \cdot \mathrm{Ipk}$

$$
\text { Irms }=29.47
$$

(b)

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{dc}}:=15 \quad \mathrm{Ipk}:=69.25 \\
& \mathrm{k}:=\frac{100 \cdot \mathrm{I}_{\mathrm{dc}}}{\mathrm{Ipk}} \quad \mathrm{k}=21.66 \\
& \mathrm{x}_{\mathrm{n}}:=60 \quad \mathrm{x}_{\mathrm{n} 1}:=65 \\
& \alpha_{\mathrm{n}}:=36.87 \quad \alpha_{\mathrm{n} 1}:=40.54 \\
& \mathrm{k}_{\mathrm{n}}:=23.95 \quad \mathrm{k}_{\mathrm{n} 1}:=15.27 \\
& \mathrm{kr}_{\mathrm{n}}:=31.05 \quad \mathrm{kr}_{\mathrm{n} 1}:=26.58 \\
& \mathrm{x}:=\mathrm{x}_{\mathrm{n}}+\left[\frac{\left(\mathrm{x}_{\mathrm{n} 1}-\mathrm{x}_{\mathrm{n}}\right) \cdot\left(\mathrm{k}-\mathrm{k}_{\mathrm{n}}\right)}{\mathrm{k}_{\mathrm{n} 1}-\mathrm{k}_{\mathrm{n}}}\right] \\
& \mathrm{Vdc}:=\mathrm{x} \cdot \frac{\mathrm{Vm}}{100} \quad \mathrm{~V} \quad \mathrm{Vdc}=104.06 \\
& \alpha:=\alpha_{\mathrm{n}}+\left[\frac{\left(\alpha_{\mathrm{n} 1}-\alpha_{\mathrm{n}}\right) \cdot\left(\mathrm{k}-\mathrm{k}_{\mathrm{n}}\right)}{\mathrm{k}_{\mathrm{n} 1}-\mathrm{k}_{\mathrm{n}}}\right] \quad \alpha=37.84 \\
& \mathrm{kr}:=\mathrm{kr}_{\mathrm{n}}+\left[\frac{\left(\mathrm{kr}_{\mathrm{n} 1}-\mathrm{kr}_{\mathrm{n}}\right) \cdot\left(\mathrm{k}-\mathrm{k}_{\mathrm{n}}\right)}{\mathrm{k}_{\mathrm{n} 1}-\mathrm{k}_{\mathrm{n}}}\right] \quad \mathrm{kr}=29.87 \\
& \mathrm{Irms}:=\frac{\mathrm{kr} \cdot \mathrm{Ipk}}{100} \quad \mathrm{Irms}=20.69
\end{aligned}
$$

Problem 3-17

Let t_{1} and t_{2} be the charging and discharging time of capacitor. For a singlephase full-wave rectifier, the period of output voltage is $T / 2$, where T is the period of the input voltage and the supply frequency is $f=1 / T$. $t_{1}+t_{2}=T / 2$. If $t_{2} \gg t_{1}$ which is normally the case, $t_{2} \approx T / 2$

During discharging of the capacitor, the capacitor discharges exponentially and the output (or capacitor) voltage is

$$
v_{o}(t)=V_{m} e^{-t / R C}
$$

where V_{m} is the peak value of supply voltage.
The peak-to-peak ripple voltage is

$$
v_{r}=v_{o}\left(t=t_{1}\right)-v_{o}\left(t=t_{2}\right)=V_{m}-V_{m} e^{-t_{2} / R C}=V_{m}\left[1-e^{-t_{2} / R C}\right]
$$

Since, $e^{-x} \approx 1-\mathrm{x}, \mathrm{V}_{\mathrm{r}}=\mathrm{V}_{\mathrm{m}}\left(1-1+\mathrm{t}_{2} / \mathrm{RC}\right)=\mathrm{V}_{\mathrm{m}} \mathrm{t}_{2} / \mathrm{RC}=\mathrm{V}_{\mathrm{m}} /(2 \mathrm{fRC})$
Thus, the rms value of the output voltage harmonics is

$$
V_{a c}=\frac{v_{r}}{2 \sqrt{2}}=\frac{V_{m}}{4 \sqrt{2} f R C}
$$

Problem 3-18

$\mathrm{R}=20 \Omega, \mathrm{~L}=5 \mathrm{mH}, \mathrm{f}=60 \mathrm{~Hz}, \omega=2 \pi \mathrm{f}=377 \mathrm{rad} / \mathrm{s}$
Taking a ratio of $10: 1$, the value of the capacitor is given by

$$
\sqrt{R^{2}+(6 \omega L)^{2}}=\frac{10}{6 \omega C_{e}}
$$

or

$$
C_{e}=\frac{10}{6 \times 377 \sqrt{R^{2}+(6 \times 377 L)^{2}}}=192.4 \mu \mathrm{~F}
$$

From Eq. (3-39), the rms value of the 6th harmonic is
$V_{6}=\frac{2}{35 \sqrt{2}} \times 0.9549 V_{m}$
From Eq. (3-64), the rms vale of the ripple voltage is

$$
V_{a c}=\frac{V_{6}}{(n \omega)^{2} L_{1} C-1}=\frac{2}{35 \sqrt{2}} \times \frac{0.9549 V_{m}}{(6 \omega)^{2} L_{1} C-1}
$$

$V_{\mathrm{dc}}=0.9549 \mathrm{~V}_{\mathrm{m}}$
The ripple factor is
$R F=\frac{V_{a c}}{V_{d c}}=\frac{\sqrt{2}}{35} \times \frac{1}{(6 \omega)^{2} L_{1} C-1}=0.05$
or $(6 \omega)^{2} L_{1} C-1=0.808$ and $L_{1}=1.837 \mathrm{mH}$

Problem 3-19

(a) With $q=6$, Eq. (3-39) gives the output voltage as
$v_{L}(t)=0.9549 V_{m}\left[1+\frac{2}{35} \cos (6 \omega t)-\frac{2}{143} \cos (12 \omega t)+. . \infty\right]$
The load impedance, $Z=R+j(n \omega L)=\sqrt{R^{2}+(n \omega L)^{2}} \angle \theta_{n}$
and $\theta_{n}=\tan ^{-1}(n \omega L / R)$
and the load current is

$$
i_{L}(t)=I_{d c}-\frac{0.9549 V_{m}}{\sqrt{R^{2}+(n \omega L)^{2}}}\left[\frac{2}{35} \cos \left(6 \omega t-\theta_{6}\right)-\frac{2}{143} \cos \left(12 \omega t-\theta_{12}\right)+\ldots \infty\right]
$$

where

$$
I_{d c}=\frac{V_{d c}}{R}=\frac{0.9549 V_{m}}{R}
$$

(b) $\mathrm{V}_{\mathrm{m}}=170 \mathrm{~V}, \mathrm{f}=60 \mathrm{~Hz}, \mathrm{R}=200 \Omega, \omega=2 \pi \mathrm{f}=377 \mathrm{rad} / \mathrm{s}$

The rms value of the ripple current is

$$
I_{a c}^{2}=\frac{\left(0.9549 V_{m}\right)^{2}}{2\left[R^{2}+(6 \omega L)^{2}\right]}\left(\frac{2}{35}\right)^{2}+\frac{\left(0.9549 V_{m}\right)^{2}}{2\left[R^{2}+(12 \omega L)^{2}\right]}\left(\frac{2}{143}\right)^{2}+. . \infty
$$

Considering only the lowest order harmonic ($\mathrm{n}=6$) and neglecting others,

$$
I_{a c}=\frac{0.9549 V_{m}}{\sqrt{2} \sqrt{R^{2}+(6 \omega L)^{2}}}\left(\frac{2}{35}\right)
$$

Using the value of I_{dc} and after simplification, the ripple factor is

$$
\begin{aligned}
& R F=\frac{I_{a c}}{I_{d c}}=\frac{1}{\sqrt{2} \times \sqrt{1+(6 \omega L / R)^{2}}}\left(\frac{2}{35}\right)=0.02 \\
& 0.0404^{2}=0.02^{2}\left[1+(6 \times 377 \mathrm{~L} / 200)^{2}\right] \text { or } \mathrm{L}=11.64 \mathrm{mH}
\end{aligned}
$$

Problem 3-20

(a)

(b) For the primary (or supply) current,
$a_{0}=0$

$$
\begin{aligned}
& a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} \frac{I_{a}}{2} \cos (n \theta) d \theta=0 \\
& b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} \frac{I_{a}}{2} \sin (n \theta) d \theta=\frac{2 I_{a}}{n \pi} \\
& \varphi_{n}=\tan ^{-1}\left(a_{n} / b_{n}\right)=0 \\
& i_{s}(t)=\frac{2 I_{a}}{\pi}\left[\frac{\sin \omega t}{1}+\frac{\sin 3 \omega t}{3}+\frac{\sin 5 \omega t}{5}+\ldots \infty\right]
\end{aligned}
$$

The rms value of the fundamental current is
$\mathrm{I}_{1}=2 \mathrm{I}_{\mathrm{a}} /(\pi \sqrt{ } 2)$
The rms current is $\mathrm{I}_{\mathrm{s}}=\mathrm{I}_{\mathrm{a}} / 2$. At the primary (or supply) side, $\mathrm{PF}=\mathrm{I}_{1} / \mathrm{I}_{\mathrm{s}}=$ $2 \sqrt{ } 2 / \pi=0.9$ and $H F=\sqrt{\left(I_{s} / I_{1}\right)^{2}-1}=0.4834$.
(c) For the rectifier input (or secondary) side,
$\mathrm{a}_{\mathrm{o}} / 2=\mathrm{I}_{\mathrm{a}} / 2$
$a_{n}=\frac{1}{\pi} \int_{0}^{\pi} I_{a} \cos (n \theta) d \theta=0$
$b_{n}=\frac{1}{\pi} \int_{0}^{\pi} I_{a} \sin (n \theta) d \theta=\frac{I_{a}}{n \pi}(1-\cos n \theta)$
$\varphi_{\mathrm{n}}=\tan ^{-1}\left(\mathrm{a}_{\mathrm{n}} / \mathrm{b}_{\mathrm{n}}\right)=0$
$C_{n}=\sqrt{ }\left(a_{n}^{2}+b_{n}^{2}\right)$ and $I_{1}=C_{1} / \sqrt{ } 2=\sqrt{ } 2 I_{a} / \pi$
and $I_{s}=I_{a} / \sqrt{ } 2$
$\mathrm{PF}=\mathrm{I}_{1} / \mathrm{I}_{\mathrm{s}}=2 / \pi=0.6366$ and $H F=\sqrt{\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{1}\right)^{2}-1}=1.211$

Problem 3-21

(a)

(b) For the primary (or supply) current: From Eq. (3-23), the primary current is
$i_{s}(t)=\frac{4 I_{a}}{\pi}\left[\frac{\sin \omega t}{1}+\frac{\sin 3 \omega t}{3}+\frac{\sin 5 \omega t}{5}+. . \infty\right]$
$I_{1}=4 I_{a} /(\pi \sqrt{ } 2)$
The rms current is $\mathrm{I}_{\mathrm{s}}=\mathrm{I}_{\mathrm{a}}$. $\mathrm{PF}=\mathrm{I}_{1} / \mathrm{I}_{\mathrm{s}}=2 \sqrt{ } 2 / \pi=0.9$ and $H F=\sqrt{\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{1}\right)^{2}-1}=$ 0.4834 .
(c) For the rectifier input (or secondary) current:
$a_{o} / 2=I_{a} / 2$
$a_{n}=\frac{1}{\pi} \int_{0}^{\pi} I_{a} \cos (n \theta) d \theta=0$
$b_{n}=\frac{1}{\pi} \int_{0}^{\pi} I_{a} \sin (n \theta) d \theta=\frac{I_{a}}{n \pi}(1-\cos n \theta)$
$\varphi_{n}=\tan ^{-1}\left(a_{n} / b_{n}\right)=0$
$C_{n}=\sqrt{ }\left(a_{n}{ }^{2}+b_{n}{ }^{2}\right)$ and $I_{1}=C_{1} / \sqrt{ } 2=\sqrt{ } 2 I_{a} / \pi$
and $I_{s}=I_{a} / \sqrt{ } 2$
$\mathrm{PF}=\mathrm{I}_{1} / \mathrm{I}_{\mathrm{s}}=2 / \pi=0.6366$ and $H F=\sqrt{\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{1}\right)^{2}-1}=1.211$
Problem 3-22
(a)

(b) For the primary (or secondary) phase (or line) current:
$a_{0} / 2=0$

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{7 / 6}^{5 \pi / 6} \frac{2 I_{a}}{3} \cos (n \theta) d \theta-\frac{1}{\pi} \int_{3 \pi / 6}^{2 \pi \pi / 6} \frac{I_{a}}{3} \cos (n \theta) d \theta \\
& =\frac{2 I_{a}}{n \pi} \cos \frac{n \pi}{2} \sin \frac{n \pi}{3}
\end{aligned}
$$

$$
b_{n}=\frac{1}{\pi} \int_{z_{i / 6} / 6}^{5 \pi} \frac{2 I_{a}}{3} \sin (n \theta) d \theta-\frac{1}{\pi} \int_{\pi / 6}^{2 \pi \pi / 6} \frac{I_{a}}{3} \sin (n \theta) d \theta
$$

$$
=\frac{2 I_{a}}{n \pi} \sin \frac{n \pi}{2} \sin \frac{n \pi}{3}
$$

$$
C_{n}=\sqrt{a_{n}^{2}+b_{n}^{2}}=\frac{2 I_{a}}{n \pi} \sin \frac{n \pi}{3}
$$

$$
\varphi_{n}=\tan ^{-1}\left(a_{n} / b_{n}\right)=\tan ^{-1}(\cot n \pi / 2)
$$

$$
\text { (c) } \mathrm{I}_{1}=\mathrm{C}_{1} / \sqrt{ } 2=\sqrt{ } 3 \mathrm{I}_{\mathrm{a}} /(\pi \sqrt{ } 2), \varphi_{1}=0 \text { and } \mathrm{I}_{5}=\sqrt{ } 2 \mathrm{I}_{\mathrm{a}} / 3
$$

$$
\mathrm{PF}=\mathrm{I}_{1} / \mathrm{I}_{\mathrm{s}}=3 \sqrt{ } 3 / 2 \pi=0.827 \text { and } H F=\sqrt{\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{1}\right)^{2}-1}=0.68
$$

Problem 3-23

(a)

(b) For the primary line current:

$$
\begin{aligned}
& a_{0} / 2=0 \\
& a_{n}=\frac{1}{\pi} \int_{\pi / 6 / 6}^{\pi \pi / 6} \frac{I_{a}}{\sqrt{3}} \cos (n \theta) d \theta-\frac{1}{\pi} \int_{\int_{\pi / 2}^{2 \pi+\pi / 6}}^{2 \pi} \frac{I_{a}}{\sqrt{3}} \cos (n \theta) d \theta \\
& =-\frac{2 I_{a}}{\sqrt{3} n \pi} \sin \frac{n \pi}{6}\left(1-\cos \frac{2 n \pi}{3}\right) \\
& b_{n}=\frac{1}{\pi} \int_{\pi / 6}^{5 \pi / 6} \frac{I_{a}}{\sqrt{3}} \sin (n \theta) d \theta-\frac{1}{\pi} \int_{S_{\pi / 2}^{2 \pi+\pi / 0}}^{2} \frac{I_{a}}{\sqrt{3}} \sin (n \theta) d \theta \\
& =\frac{2 I_{a}}{\sqrt{3} n \pi} \cos \frac{n \pi}{6}\left(1-\cos \frac{2 n \pi}{3}\right) \\
& C_{n}=\sqrt{a_{n}^{2}+b_{n}^{2}}=\frac{2 I_{a}}{\sqrt{3} n \pi}\left(1-\cos \frac{2 n \pi}{3}\right) \\
& \varphi_{n}=\tan ^{-1}\left(a_{n} / b_{n}\right)=\tan ^{-1}(-\tan n \pi / 6)=-n \pi / 6 \\
& \mathrm{I}_{1}=\mathrm{C}_{1} / \sqrt{ } 2=\sqrt{ } 3 \mathrm{I}_{\mathrm{a}} /(\pi \sqrt{ } 2), \varphi_{1}=-\pi / 6 \text { and } \mathrm{I}_{\mathrm{s}}=\sqrt{ } 2 \mathrm{I}_{\mathrm{a}} / 3
\end{aligned}
$$

(c) For the secondary (or primary) phase current,

$$
\begin{aligned}
& a_{0} / 2=0 \\
& a_{n}=\frac{1}{\pi} \int_{\pi / 6}^{5 \pi / 6} \frac{2 I_{a}}{3 \sqrt{3}} \cos (n \theta) d \theta-\frac{1}{\pi} \int_{\pi / 6}^{2 \pi+\pi / 6} \frac{I_{a}}{3 \sqrt{3}} \cos (n \theta) d \theta \\
& =\frac{2 I_{a}}{\sqrt{3} n \pi} \cos \frac{n \pi}{2} \sin \frac{n \pi}{3} \\
& b_{n}=\frac{1}{\pi} \int_{=/ 6}^{5 \pi / 6} \frac{2 I_{a}}{3 \sqrt{3}} \sin (n \theta) d \theta-\frac{1}{\pi} \int_{5 \pi / 6}^{2 \pi \pi / 6} \frac{I_{a}}{3 \sqrt{3}} \sin (n \theta) d \theta \\
& =\frac{2 I_{a}}{\sqrt{3} n \pi} \sin \frac{n \pi}{2} \sin \frac{n \pi}{3} \\
& C_{n}=\sqrt{a_{n}^{2}+b_{n}^{2}}=\frac{2 I_{a}}{3 n \pi} \sin \frac{n \pi}{3} \\
& \varphi_{n}=\tan ^{-1}\left(a_{n} / b_{n}\right)=\tan ^{-1}(\cot n \pi / 2)=n \pi / 2 \\
& \mathrm{I}_{1}=\mathrm{C}_{1} / \sqrt{ } 2=\mathrm{I}_{\mathrm{a}} /(\pi \sqrt{ } 2), \varphi_{1}=0 \text { and } \mathrm{I}_{\mathrm{s}}=\sqrt{ } 2 \mathrm{I}_{\mathrm{a}} /(3 \sqrt{ } 3) \\
& \operatorname{PF}=\mathrm{I}_{1} / \mathrm{I}_{\mathrm{s}}=3 \sqrt{ } 3 / 2 \pi=0.827 \text { and } H F=\sqrt{\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{1}\right)^{2}-1}=0.68
\end{aligned}
$$

Problem 3-24

(a)

(b) For the primary line current:
$a_{0} / 2=0$
$a_{n}=\frac{I_{a}}{\pi}\left[\int_{1 / 3}^{2 \pi / 3} \cos (n \theta) d \theta-\int_{\pi}^{\pi / 3} \cos (n \theta) d \theta+\int_{2 \pi}^{2 \pi+\pi / 3} \cos (n \theta) d \theta\right]$
$=-\frac{2 I_{a}}{n \pi} \sin \frac{n \pi}{2} \cos \frac{7 n \pi}{6}$

$$
\begin{aligned}
b_{n} & =\frac{I_{a}}{\pi}\left[\int_{n / 3}^{2 \pi / 3} \sin (n \theta) d \theta-\int_{\pi}^{5 \pi / 3} \sin (n \theta) d \theta+\int_{2 \pi}^{2 \pi \pi / 3} \sin (n \theta) d \theta\right] \\
& =\frac{I_{a}}{n \pi}\left(1-\cos n \pi-2 \sin \frac{n \pi}{2} \cos \frac{7 n \pi}{6}\right)
\end{aligned}
$$

For $\mathrm{n}=1, \mathrm{C}_{1}=\sqrt{ }\left(\mathrm{a}_{1}{ }^{2}+\mathrm{b}_{1}{ }^{2}\right)=2 \sqrt{ } 3 \mathrm{I}_{\mathrm{a}} / \pi$
$\varphi_{1}=\tan ^{-1}\left(\mathrm{a}_{1} / \mathrm{b}_{1}\right)=\tan ^{-1}(1 / \sqrt{ } 3)=\pi / 6$
$\mathrm{I}_{1}=\mathrm{C}_{1} / 2=\sqrt{ } 2 \sqrt{ } 3 \mathrm{I}_{\mathrm{a}} / \pi$, and $\mathrm{I}_{\mathrm{s}}=\mathrm{I}_{\mathrm{a}} \sqrt{ }(2 / 3)$
(c) For the secondary or primary phase current,
$a_{0} / 2=0$
$a_{n}=\frac{I_{a}}{\pi}\left[\int_{\pi / 3}^{2 \pi / 3} \cos (n \theta) d \theta-\int_{4 \pi / 3}^{5 \pi / 3} \cos (n \theta) d \theta\right]=0$
$b_{n}=\frac{I_{a}}{\pi}\left[\int_{\pi / 3}^{2 \pi / 3} \sin (n \theta) d \theta-\int_{4 \pi / 3}^{5 \pi / 3} \sin (n \theta) d \theta\right]$
$=\frac{4 I_{a}}{n \pi} \sin \frac{n \pi}{2} \sin \frac{n \pi}{6}$
$C_{n}=b_{n}$ and $\varphi_{n}=0$
$\mathrm{C}_{1}=2 \mathrm{I}_{\mathrm{a}} / \pi, \mathrm{I}_{1}=\mathrm{C}_{1} / \sqrt{ } 2=2 \mathrm{I}_{\mathrm{a}} /(\sqrt{ } 2 \pi), \varphi_{1}=0$ and $\mathrm{I}_{\mathrm{s}}=\mathrm{I}_{\mathrm{a}} / \sqrt{ } 3$
$\mathrm{PF}=\mathrm{I}_{1} / \mathrm{I}_{\mathrm{s}}=\sqrt{ } 2 \sqrt{ } 3 / \pi=0.78$ and $H F=\sqrt{\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{1}\right)^{2}-1}=0.803$

Problem 3-25
(a)

(b) For the primary (or secondary) phase (or line) current:
$a_{0} / 2=0$

$$
\begin{aligned}
& a_{n}=\frac{2 I_{a}}{\pi} \int_{\pi / 6}^{\pi / 6} \cos (n \theta) d \theta=\frac{4 I_{a}}{n \pi} \sin \frac{n \pi}{3} \cos \frac{n \pi}{2} \\
& b_{n}=\frac{2 I_{a}}{\pi} \int_{\pi / 6}^{5 \pi / 6} \sin (n \theta) d \theta=\frac{4 I_{a}}{n \pi} \sin \frac{n \pi}{3} \sin \frac{n \pi}{2} \\
& C_{n}=\frac{4 I}{n \pi} \sin \frac{n \pi}{3} \text { and } \varphi_{\mathrm{n}}=\tan ^{-1}\left(\mathrm{a}_{\mathrm{n}} / \mathrm{b}_{\mathrm{n}}\right)=\tan ^{-1}(\cot \mathrm{n} \pi / 2) \\
& \text { (c) } \mathrm{C}_{1}=2 \sqrt{ } 3 \mathrm{I}_{\mathrm{a}} / \pi \text { and } \varphi_{1}=0 \\
& \mathrm{I}_{1}=\mathrm{C}_{1} / \sqrt{ } 2=\sqrt{ } 2 \sqrt{ } 3 \mathrm{I}_{\mathrm{a}} / \pi, \text { and } \mathrm{I}_{\mathrm{s}}=\mathrm{I}_{\mathrm{a}} \sqrt{ }(2 / 3) \\
& \mathrm{PF}=\mathrm{I}_{1} / \mathrm{I}_{\mathrm{s}}=3 / \pi=0.9549 \text { and } H F=\sqrt{\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{1}\right)^{2}-1}=0.3108
\end{aligned}
$$

Problem 3-26
(a)

(b) For the primary line current,

$$
a_{0} / 2=0
$$

$$
\begin{aligned}
a_{n} & =\frac{2 I_{a}}{\sqrt{3} \pi}\left[\int_{\pi / 6}^{5 / 2} \cos (n \theta) d \theta+\int_{\pi / 2}^{5 \pi / 6} 2 \cos (n \theta) d \theta+\int_{\pi / 6}^{T_{\pi / 6}} \cos (n \theta) d \theta\right] \\
& =-\frac{8 I_{a}}{\sqrt{3} n \pi} \cos \frac{2 n \pi}{3} \sin \frac{n \pi}{3} \cos \frac{n \pi}{6} \\
b_{n} & =\frac{2 I_{a}}{\sqrt{3} \pi}\left[\int_{\pi / 6}^{1 / 2} \sin (n \theta) d \theta+\int_{\pi / 2}^{5 \pi / 6} 2 \sin (n \theta) d \theta+\int_{s_{\pi / 6}}^{7 \pi / 6} \sin (n \theta) d \theta\right] \\
& =\frac{8 I_{a}}{\sqrt{3} n \pi} \sin \frac{2 n \pi}{3} \sin \frac{n \pi}{3} \cos \frac{n \pi}{6} \\
C_{n} & =\frac{8 I_{a}}{\sqrt{3} n \pi} \sin \frac{n \pi}{3} \cos \frac{n \pi}{6} \\
\varphi_{n} & =\tan ^{-1}\left(\mathrm{a}_{n} / \mathrm{b}_{n}\right)=\tan ^{-1}(\cot (2 \mathrm{n} \pi / 3)) \\
\mathrm{C}_{1} & =2 \sqrt{ } 3 \mathrm{I}_{\mathrm{a}} / \pi \text { and } \mathrm{I}_{1}=\mathrm{C}_{1} / \sqrt{ } 2=\sqrt{ } 2 \sqrt{ } 3 \mathrm{I}_{\mathrm{a}} / \pi, \varphi_{1}=\tan ^{-1}(-1 / \sqrt{ } 3)=-\pi / 6
\end{aligned}
$$

(c) For the primary (or secondary) phase current,
$a_{0} / 2=0$
$a_{n}=\frac{2 I_{a}}{\pi} \int_{\pi / 6}^{\pi / / 6} \cos (n \theta) d \theta=\frac{4 I_{a}}{n \pi} \sin \frac{n \pi}{3} \cos \frac{n \pi}{2}$
$b_{n}=\frac{2 I_{a}}{\pi} \mathscr{L}_{2 \pi 6}^{5 \pi / 6} \sin (n \theta) d \theta=\frac{4 I_{a}}{n \pi} \sin \frac{n \pi}{3} \sin \frac{n \pi}{2}$
$C_{n}=\frac{4 I_{a}}{n \pi} \sin \frac{n \pi}{3}$ and $\varphi_{n}=\tan ^{-1}\left(\mathrm{a}_{n} / \mathrm{b}_{\mathrm{n}}\right)=\tan ^{-1}(\cot \mathrm{n} \pi / 2)$
$\mathrm{I}_{1}=\mathrm{C}_{1} / \sqrt{ } 2=\sqrt{ } 2 \sqrt{ } 3 \mathrm{I}_{\mathrm{a}} / \pi$, and $\mathrm{I}_{\mathrm{s}}=\mathrm{I}_{\mathrm{a}} \sqrt{ }(2 / 3)$
$\mathrm{PF}=\mathrm{I}_{1} / \mathrm{I}_{\mathrm{s}}=3 / \pi=0.9549$ and $H F=\sqrt{\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{1}\right)^{2}-1}=0.3108$

Problem 3-27

(a)

(b) For the primary (or secondary) line current,
$a_{0} / 2=0$
$a_{n}=\frac{2 I_{a}}{\pi} \int_{\pi / 6}^{\pi \pi / 6} \cos (n \theta) d \theta=\frac{4 I_{a}}{n \pi} \sin \frac{n \pi}{3} \cos \frac{n \pi}{2}$
$b_{n}=\frac{2 I_{a}}{\pi} \int_{\pi / 6}^{5 \pi / 6} \sin (n \theta) d \theta=\frac{4 I_{a}}{n \pi} \sin \frac{n \pi}{3} \sin \frac{n \pi}{2}$
$C_{n}=\frac{4 I}{n \pi} \sin \frac{n \pi}{3}$ and $\varphi_{n}=\tan ^{-1}\left(\mathrm{a}_{\mathrm{n}} / \mathrm{b}_{\mathrm{n}}\right)=\tan -^{-1}(\cot \mathrm{n} \pi / 2)$
$\mathrm{I}_{1}=\mathrm{C}_{1} / \sqrt{ } 2=\sqrt{ } 2 \sqrt{ } 3 \mathrm{I}_{\mathrm{a}} / \pi$, and $\mathrm{I}_{\mathrm{s}}=\mathrm{I}_{\mathrm{a}} \sqrt{ }(2 / 3)$
(c) For the primary (or secondary) phase current,
$a_{0} / 2=0$

$$
\begin{aligned}
a_{n} & =\frac{2 I_{a}}{3 \pi}\left[\left[_{1 / 6}^{1 / 2} \cos (n \theta) d \theta+\int_{\pi_{1 / 2}}^{\pi / 6} 2 \cos (n \theta) d \theta+\int_{\pi / 6}^{7 \pi / 6} \cos (n \theta) d \theta\right]\right. \\
& =\frac{8 I_{a}}{3 n \pi} \cos \frac{2 n \pi}{3} \sin \frac{n \pi}{3} \cos \frac{n \pi}{6}
\end{aligned}
$$

$$
\begin{aligned}
b_{n} & =\frac{2 I_{a}}{3 \pi}\left[I_{1 / 6}^{\pi / 2} \sin (n \theta) d \theta+\int_{\pi / 2}^{\pi / 6} 2 \sin (n \theta) d \theta+\int_{S_{\pi / 6} / 6}^{\pi / / 6} \sin (n \theta) d \theta\right] \\
& =\frac{8 I_{a}}{3 n \pi} \sin \frac{2 n \pi}{3} \sin \frac{n \pi}{3} \cos \frac{n \pi}{6} \\
C_{n} & =\frac{8 I_{a}}{3 n \pi} \sin \frac{n \pi}{3} \cos \frac{n \pi}{6} \\
\varphi_{n} & =\tan ^{-1}\left(\mathrm{a}_{n} / \mathrm{b}_{n}\right)=\tan ^{-1}(\cot (2 n \pi / 3)) \\
C_{1} & =2 \sqrt{ } 3 \mathrm{I}_{\mathrm{a}} / \pi \text { and } \mathrm{I}_{1}=\mathrm{C}_{1} / \sqrt{ } 2=\sqrt{ } 2 \sqrt{ } 3 \mathrm{I}_{\mathrm{a}} / \pi, \varphi_{1}=\tan ^{-1}(-1 / \sqrt{ } 3)=-\pi / 6 \\
\mathrm{I}_{\mathrm{S}} & =\sqrt{ } 2 \mathrm{I}_{\mathrm{a}} / 3, \mathrm{PF}=\mathrm{I}_{1} / \mathrm{I}_{\mathrm{s}}=3 / \pi=0.9549 \\
\mathrm{HF} & =\left[\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{1}\right)^{2}-1\right]^{1 / 2}=0.3108
\end{aligned}
$$

CHAPTER 4

POWER TRANSISTORS

Problem 4-1
$V_{C C}=100 \mathrm{~V}, B_{\text {min }}=10, B_{\text {max }}=60, R_{C}=5 \Omega, O D F=20, \mathrm{~V}_{\mathrm{B}}=8 \mathrm{~V}$,
$\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}=2.5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{BE}(\text { sat })}=1.75 \mathrm{~V}$.
From Eq. $(4-14), \mathrm{I}_{\mathrm{CS}}=(100-2.5) / 5=19.5 \mathrm{~A}$
From Eq. $(4-15), \mathrm{I}_{\mathrm{BS}}=19.5 / \mathrm{B}_{\text {min }}=19.5 / 10=1.95 \mathrm{~A}$
Eq. (4-16) gives the base current for a overdrive factor of 20,

$$
\mathrm{I}_{\mathrm{B}}=20 \times 1.95=33 \mathrm{~A}
$$

(a) Eq. (4-9) gives the required value of R_{B},
$R_{B}=\left(V_{B}-V_{B E(\text { sat })}\right) / I_{B}=(8-1.75) / 33=0.1894 \Omega$
(b) From Eq. (4-17), $B_{f}=19.5 / 33=0.59$
(c) Eq. $(4-18)$ yields the total power loss as

$$
\mathrm{P}_{\mathrm{T}}=1.75 \times 33+2.5 \times 19.5=106.5 \mathrm{~W}
$$

Problem 4-2

$\mathrm{V}_{\mathrm{CC}}=40 \mathrm{~V}, B_{\text {min }}=12, B_{\text {max }}=75, \mathrm{R}_{\mathrm{C}}=1.5 \Omega, \mathrm{~V}_{\mathrm{B}}=6 \mathrm{~V}$,
$\mathrm{V}_{\mathrm{CE}(\text { sat })}=1.2 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{BE}(\text { sat })}=1.6 \mathrm{~V}$.
From Eq. $(4-14), \mathrm{I}_{\mathrm{CS}}=(40-1.2) / 1.5=25.87 \mathrm{~A}$
From Eq. $(4-15), \mathrm{I}_{\mathrm{BS}}=25.87 / \mathrm{B}_{\min }=25.87 / 12=2.156 \mathrm{~A}$
$\mathrm{I}_{\mathrm{B}}=(6-1.6) / 0.7=4.4 / 0.7=6.286 \mathrm{~A}$
(a) $O D F=I_{B} / I_{B S}=6.286 / 2.156=2.916$
(b) From Eq. $(4-17), B_{f}=25.8 / 6.286=4.104$
(c) Eq. (4-18) yields the total power loss as
$\mathrm{P}_{\mathrm{T}}=1.2 \times 25.87+1.6 \times 6.286=41.104 \mathrm{~W}$

Problem 4-3

$\mathrm{V}_{\mathrm{cc}}=200 \mathrm{~V}, \mathrm{~B}_{\mathrm{BE}(\mathrm{sat})}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=8 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}(\text { sat })}=2 \mathrm{~V}, \mathrm{I}_{\mathrm{CS}}=100 \mathrm{~A}, \mathrm{t}_{\mathrm{d}}=0.5 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{r}}$ $=1 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{s}}=5 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{f}}=3 \mu \mathrm{~s}, \mathrm{f}_{\mathrm{s}}=10 \mathrm{kHz}, \mathrm{k}=0.5, \mathrm{~T}=1 / \mathrm{f}_{\mathrm{s}}=100 \mu \mathrm{~s} . \mathrm{kT}=\mathrm{t}_{\mathrm{d}}+$ $\mathrm{t}_{\mathrm{r}}+\mathrm{t}_{\mathrm{n}}=50 \mu \mathrm{~s}$ and $\mathrm{t}_{\mathrm{n}}=50-0.5-1=48.5 \mu \mathrm{~s},(1-\mathrm{k}) \mathrm{T}=\mathrm{t}_{\mathrm{s}}+\mathrm{t}_{\mathrm{f}}+\mathrm{t}_{0}=50 \mu \mathrm{~s}$ and $t_{0}=50-5-3=42 \mu \mathrm{~s}$.
(a) From Eq. (4-21),
$P_{c}(\mathrm{t})=3 \times 10^{-3} \times 200=0.6 \mathrm{~W}$
$P_{d}=3 \times 10^{-3} \times 200 \times 0.5 \times 100^{6} \times 10 \times 10^{3}=3 \mathrm{~mW}$
During rise time, $0 \leq \mathrm{t} \leq \mathrm{t}_{\mathrm{r}}$:
From Eq. (4-23), $\mathrm{t}_{\mathrm{m}}=1 \times 200 /[2(200-2)]=0.505 \mu \mathrm{~s}$
From Eq. $(4-24), P_{p}=200^{2} \times 100 /[4(200-2)]=5050.5 \mathrm{~W}$
From Eq. (4-25),
$\mathrm{P}_{\mathrm{r}}=10 \times 10^{3} \times 100 \times 1 \times 10^{-6}[220 / 2+(2-200) / 3]=34 \mathrm{~W}$
$P_{\text {on }}=P_{d}+P_{r}=0.003+34=34.003 \mathrm{~W}$
(b) Conduction Period, $0 \leq \mathrm{t} \leq \mathrm{t}_{\mathrm{n}}$:
$P_{c}(t)=2 \times 100=200 \mathrm{~W}$
From Eq. (4-27), $P_{n}=2 \times 100 \times 48.5 \times 100^{6} \times 10 \times 10^{3}=97 \mathrm{~W}$
(c) Storage Period, $0 \leq t \leq t_{s}$:
$P_{c}(t)=2 \times 100=200 \mathrm{~W}$
From Eq. $(4-28), P_{s}=2 \times 100 \times 5 \times 10-{ }^{6} \times 10 \times 10^{3}=10 \mathrm{~W}$
Fall time, $0 \leq \mathrm{t} \leq \mathrm{t}_{\mathrm{f}}$:
From Eq. $(4-30), P_{p}=200 \times 100 / 4=5000 \mathrm{~W}$
From Eq. $(4-31), P_{f}=200 \times 100 \times 3 \times 10-^{6} \times 10 \times 10^{3} / 6=100 \mathrm{~W}$
$P_{\text {off }}=P_{s}+P_{f}=10+100=110 \mathrm{~W}$
(d) Off-period, $0 \leq t \leq t_{0}$:
$P_{c}(t)=3 \times 10^{-3} \times 200=0.6 \mathrm{~W}$

From Eq. (4-33),
$\mathrm{P}_{\mathrm{o}}=3 \times 10^{-3} \times 200 \times 42 \times 10^{-6} \times 10 \times 10^{3}=0.252 \mathrm{~W}$
(e) The total power loss in the transistor due to collector current is $\mathrm{P}_{\mathrm{T}}=\mathrm{P}_{\mathrm{on}}+\mathrm{P}_{\mathrm{n}}+\mathrm{P}_{\text {off }}+\mathrm{P}_{\mathrm{o}}=34.003+97+110+241.255 \mathrm{~W}$
(f)

Problem 4-4
$T_{J}=150^{\circ} \mathrm{C}, T_{A}=25^{\circ} \mathrm{C}, R_{J C}=0.04{ }^{\circ} \mathrm{C} / \mathrm{W}, \mathrm{R}_{\mathrm{CS}}=0.05^{\circ} \mathrm{C} / \mathrm{W}$
From Problem 4-3, $\mathrm{P}_{\mathrm{T}}=241.25 \mathrm{~W}$
$P_{T}\left(R_{J C}+R_{C S}+R_{S A}\right)=T_{J}-T_{A}=150-25=125$
$R_{S A}=125 / 241.25-0.04-0.05=0.0681^{\circ} \mathrm{C} / \mathrm{W}$

Problem 4-5

$\mathrm{B}_{\mathrm{BE}(\text { sat) })}=3 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=8 \mathrm{~A}, \mathrm{~T}=1 / \mathrm{f}_{\mathrm{s}}=100 \mu \mathrm{~s}, \mathrm{k}=0.5, \mathrm{kT}=50 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{d}}=0.5 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{r}}$ $=1 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{n}}=50-1.5=48.5 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{s}}=5 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{f}}=3 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{on}}=\mathrm{t}_{\mathrm{d}}+\mathrm{t}_{\mathrm{r}}=1.5 \mu \mathrm{~s}, \mathrm{t}_{\text {off }}$ $=\mathrm{t}_{\mathrm{s}}+\mathrm{t}_{\mathrm{f}}=5+3=8 \mu \mathrm{~s}$
(a) During the period, $0 \leq t \leq\left(t_{\text {on }}+t_{n}\right)$:
$\mathrm{i}_{\mathrm{b}}(\mathrm{t})=\mathrm{I}_{\mathrm{BS}}$
$\mathrm{V}_{\mathrm{BE}}(\mathrm{t})=\mathrm{V}_{\mathrm{BE}}$ (sat)
The instantaneous power due to the base current is
$\mathrm{P}_{\mathrm{b}}(\mathrm{t})=\mathrm{i}_{\mathrm{b}} \mathrm{V}_{\mathrm{BE}}=\mathrm{I}_{\mathrm{BS}} \mathrm{V}_{\mathrm{BE}(\text { sat })}=8 \times 3=24 \mathrm{~W}$
During the period, $0 \leq t \leq t_{0}=\left(T-t_{o n}-t_{n}\right): P_{b}(t)=0$
From Eq. (4-35), the average power loss is

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{B}}=\mathrm{I}_{\mathrm{BS}} \mathrm{~V}_{\mathrm{BE}(\text { sat })}\left(\mathrm{t}_{\mathrm{on}}+\mathrm{t}_{\mathrm{n}}+\mathrm{t}_{\mathrm{s}}\right) \mathrm{f}_{\mathrm{s}} \\
& \quad=8 \times 3 \times(1.5+48.5+5) \times 10^{-6} \times 10 \times 10^{3}=13.2 \mathrm{~W}
\end{aligned}
$$

Problem 4-6

$\mathrm{V}_{\mathrm{cc}}=200 \mathrm{~V}, \mathrm{~B}_{\mathrm{BE}(\text { sat })}=2.3 \mathrm{~V}, \mathrm{I}_{\mathrm{B}}=8 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}(\text { sat })}=1.4 \mathrm{~V}, \mathrm{I}_{\mathrm{CS}}=100 \mathrm{~A}, \mathrm{t}_{\mathrm{d}}=0.1$ $\mu \mathrm{s}, \mathrm{t}_{\mathrm{r}}=0.45 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{s}}=3.2 \mu \mathrm{~s}, \mathrm{t}_{\mathrm{f}}=1.1 \mu \mathrm{~s}, \mathrm{f}_{\mathrm{s}}=10 \mathrm{kHz}, \mathrm{k}=0.5, \mathrm{~T}=1 / \mathrm{f}_{\mathrm{s}}=100$ $\mu \mathrm{s}$. $\mathrm{kT}=\mathrm{t}_{\mathrm{d}}+\mathrm{t}_{\mathrm{r}}+\mathrm{t}_{\mathrm{n}}=50 \mu \mathrm{~s}$ and $\mathrm{t}_{\mathrm{n}}=50-0.45-0.1=49.45 \mu \mathrm{~s},(1-\mathrm{k}) \mathrm{T}=\mathrm{t}_{\mathrm{s}}$ $+\mathrm{t}_{\mathrm{f}}+\mathrm{t}_{\mathrm{o}}=50 \mu \mathrm{~s}$ and $\mathrm{t}_{\mathrm{o}}=50-3.2-1.1=45.7 \mu \mathrm{~s}$.
(a) From Eq. (4-21),
$P_{c}(\mathrm{t})=3 \times 10^{-3} \times 200=0.6 \mathrm{~W}$
$P_{d}=3 \times 10^{-3} \times 200 \times 0.1 \times 10^{-6} \times 10 \times 10^{3}=0.6 \mathrm{~mW}$
During rise time, $0 \leq t \leq t_{r}$:
From Eq. $(4-23), \mathrm{t}_{\mathrm{m}}=0.45 \times 200 /[2(200-1.4)]=0.2266 \square \mathrm{~s}$
From Eq. $(4-24), \mathrm{P}_{\mathrm{p}}=200^{2} \times 100 /[4(200-1.4)]=5035.25 \mathrm{~W}$
From Eq. (4-25),
$P_{r}=10 \times 10^{3} \times 100 \times 0.45 \times 10^{-6}[220 / 2+(1.4-200) / 3]=15.21 \mathrm{~W}$
$\mathrm{P}_{\text {on }}=\mathrm{P}_{\mathrm{d}}+\mathrm{P}_{\mathrm{r}}=0.0006+15.21 \mathrm{~W}=15.21 \mathrm{~W}$
(b) Conduction Period, $0 \leq t \leq t_{n}$:
$P_{c}(t)=1.4 \times 100=280 \mathrm{~W}$
From Eq. (4-27), $P_{n}=1.4 \times 100 \times 49.45 \times 10^{-6} \times 10 \times 10^{3}=69.23 \mathrm{~W}$
(c) Storage Period, $0 \leq \mathrm{t} \leq \mathrm{t}_{\mathrm{s}}$:
$\mathrm{P}_{\mathrm{c}}(\mathrm{t})=1.4 \times 100=140 \mathrm{~W}$

From Eq. $(4-28), P_{s}=1.4 \times 100 \times 3.2 \times 10^{-6} \times 10 \times 10^{3}=4.48 \mathrm{~W}$
Fall time, $0 \leq \mathrm{t} \leq \mathrm{t}_{\mathrm{f}}$:
From Eq. $(4-30), P_{p}=200 \times 100 / 4=5000 \mathrm{~W}$
From Eq. $(4-31), \mathrm{P}_{\mathrm{f}}=200 \times 100 \times 1.1 \times 10^{-6} \times 10 \times 10^{3} / 6=36.67 \mathrm{~W}$ $P_{\text {off }}=P_{s}+P_{f}=4.48+36.67=41.15 \mathrm{~W}$
(d) Off-period, $0 \leq t \leq t_{0}$:
$P_{c}(\mathrm{t})=3 \times 10^{-3} \times 200=0.6 \mathrm{~W}$
From Eq. (4-33),
$P_{0}=3 \times 10^{-3} \times 200 \times 45.7 \times 10^{-6} \times 10 \times 10^{3}=0.274 \mathrm{~W}$
(e) The total power loss in the transistor due to collector current is $P_{T}=P_{\text {on }}+P_{n}+P_{\text {off }}+P_{o}=15.21+69.23+41.15+0.274=125.87 \mathrm{~W}$
(f)

Problem 4-7

$V_{D D}=40 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=35 \mathrm{~A}, \mathrm{I}_{\mathrm{DSS}}=250 \mu \mathrm{~A}, \mathrm{R}_{\mathrm{DS}}=28 \mathrm{~m} \Omega, \mathrm{~V}_{G S}=10 \mathrm{~V}, \mathrm{t}_{\mathrm{d}(\mathrm{on})}=25$ $\mathrm{ns}, \mathrm{t}_{\mathrm{r}}=60 \mathrm{~ns}, \mathrm{t}_{\mathrm{d}(\text { off })}=70 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}}=25 \mathrm{~ns}, \mathrm{f}_{\mathrm{s}}=20 \mathrm{kHz}, \mathrm{k}=0.6, \mathrm{~T}=1 / \mathrm{f}_{\mathrm{s}}=50$ $\mu \mathrm{s} . \mathrm{kT}=\mathrm{t}_{\mathrm{d}(\mathrm{on})}+\mathrm{t}_{\mathrm{r}}+\mathrm{t}_{\mathrm{n}}=50000 \mathrm{~ns}$ and $\mathrm{t}_{\mathrm{n}}=50000-25-60=29915 \mathrm{~ns}$, (1k) $\mathrm{T}=\mathrm{t}_{\mathrm{f}}+\mathrm{t}_{\mathrm{d}(\text { off })}+\mathrm{t}_{\mathrm{o}}=20000 \mathrm{~ns}$ and $\mathrm{t}_{0}=20000-70-25=19905 \mathrm{~ns}$.
(a) During delay time, $0 \leq \mathrm{t} \leq \mathrm{t}_{\mathrm{d}\left(\mathrm{O}_{\mathrm{n}}\right)}$:
$\mathrm{i}_{\mathrm{D}}(\mathrm{t})=\mathrm{I}_{\mathrm{DSS}}$
$\mathrm{V}_{\mathrm{DS}}(\mathrm{t})=\mathrm{V}_{\mathrm{DD}}$
The instantaneous power due to the collector current is
$P_{D}(t)=i_{D} V_{D S}=I_{D S S} V_{D D}=250 \times 10^{-3} \times 40=0.01 \mathrm{~W}$
The average power loss during the delay time is
From Eq. (4-21), $\mathrm{P}_{\mathrm{d}}=\mathrm{I}_{\mathrm{DSs}} \mathrm{V}_{\mathrm{DD}} \mathrm{t}_{\mathrm{d}(\mathrm{on})} \mathrm{f}_{\mathrm{s}}$

$$
=250 \times 10^{-3} \times 40 \times 25 \times 10^{-9} \times 20 \times 10^{3}=5 \mathrm{~mW}
$$

During rise time, $0 \leq \mathrm{t} \leq \mathrm{t}_{\mathrm{r}}$:

$$
\begin{aligned}
& i_{D}(t)=\frac{I_{D S}}{t_{r}} t \\
& { }_{D S S}(t)=V_{D D}+\left(R_{D S} I_{D S}-V_{D D}\right) \frac{t}{t_{r}}
\end{aligned}
$$

From Eq. (4-22)

$$
P_{D}(t)=i_{D} v_{D S}=\frac{I_{D S}}{t_{r}} t\left[V_{D D}+\left(R_{D S} I_{D S}-V_{D D}\right) \frac{t}{t_{r}}\right]
$$

From Eq. (4-23) the power $\mathrm{P}_{\mathrm{D}}(\mathrm{t})$ will be maximum when $\mathrm{t}=\mathrm{t}_{\mathrm{m}}$, where

$$
t_{m}=\frac{t_{r} V_{D D}}{2\left(V_{D D}-R_{D S} I_{D S}\right)}=\frac{60 \times 10^{-9} \times 40}{2 \times\left(40-25 \times 10^{-3} \times 35\right)}=30.67 \mathrm{~ns}
$$

and Eq. $(4-24)$ yields the peak power

$$
P_{p}=\frac{\mathrm{V}_{\mathrm{DD}}^{2} I_{D S}}{4\left(\mathrm{~V}_{\mathrm{CC}}-V_{C E(s a t)}\right)}=\frac{40^{2} \times 35}{4\left(40-25 \times 10^{-3} \times 35\right)}=357.83 \mathrm{~W}
$$

From Eq. (4-25).
$P_{r}=f_{S} I_{D S} t_{r}\left[\frac{V_{D D}}{2}+\frac{R_{D S} I_{D S}-V_{C C}}{3}\right]$
$=20 \times 10^{3} \times 35 \times 60 \times 10^{-9}\left[40 / 2+\left(25 \times 10^{-3} \times 35-40\right) / 3\right]=1.3877 \mathrm{~W}$
The total power loss during the turn-on is
$P_{\text {on }}=P_{d}+P_{r}=0.005+1.3877=1.39275 \mathrm{~W}$
(b) Conduction Period, $0 \leq t \leq t_{n}$:
$\mathrm{i}_{\mathrm{D}}(\mathrm{t})=\mathrm{I}_{\mathrm{DS}}$
$V_{D S}(t)=R_{D S} I_{D S}$
$P_{D}(t)=i_{D} V_{D S}=R_{D S} I_{D S} I_{D S}=25 \times 10^{-3} \times 35^{2}=30.625 \mathrm{~W}$
From Eq. (4-27), $P_{n}=R_{D S} I_{D S} I_{D S} t_{n} f_{s}$

$$
=25 \times 10^{-3} \times 35^{2} \times 29915 \times 10^{-9} \times 20 \times 10^{3}=18.32 \mathrm{~W}
$$

(c) Storage Period, $0 \leq \mathrm{t} \leq \mathrm{t}_{\text {d(off) }}$:
$i_{D}(t)=I_{D S}$
$v_{D S}(t)=R_{D S} I_{D S}$
$P_{C}(t)=i_{D} V_{D S}=R_{D S} I_{D S} \quad I_{D S}=25 \times 10^{-3} \times 35^{2}=30.625 \mathrm{~W}$
$P_{D(\text { off })}=R_{D S} I_{D S} I_{D S} t_{d \text { (off) }} f_{s}$

$$
=25 \times 10^{-3} \times 35^{2} \times 70 \times 10^{-9} \times 20 \times 10^{3}=42.87 \mathrm{~mW}
$$

Fall time, $0 \leq \mathrm{t} \leq \mathrm{t}_{\mathrm{f}}$:

$$
\begin{aligned}
& i_{D}(t)=I_{D S}\left(1-\frac{t}{t_{f}}\right) \\
& v_{D S}(t)=\frac{V_{D D}}{t_{f}} t \\
& P_{D}(t)=V_{D D} I_{D S}\left[\left(1-\frac{t}{t_{f}}\right) \frac{t}{t_{f}}\right]
\end{aligned}
$$

This power loss during fall time will be maximum when $t=t_{f} / 2=12.5 \mathrm{~ns}$.
From Eq. (4-30), the peak power,
$P_{D}=V_{D D} I_{D S} / 4=40 \times 35 / 4=350 \mathrm{~W}$
From Eq. $(4-31), P_{f}=V_{D D} I_{D S} t_{f} f_{s} / 6$

$$
=40 \times 35 \times 25 \times 10^{-9} \times 20 \times 10^{3} / 6=0.117 \mathrm{~W}
$$

The power loss during turn-off is

$$
P_{\text {off }}=P_{D(\text { off })}+P_{f}=0.04287+0.117=0.15987 \mathrm{~W}
$$

(d) Off-period, $0 \leq t \leq t_{0}$:
$\mathrm{i}_{\mathrm{D}}(\mathrm{t})=\mathrm{I}_{\mathrm{DSS}}$
$V_{D S}(t)=V_{D D}$
$P_{D}(t)=i_{D} V_{D S}=I_{D S S} V_{D D}=250 \times 10^{-6} \times 40=10 \mathrm{~mW}$
$P_{O}=I_{D S S} V_{D D} t_{0} f_{S}$

$$
=250 \times 10^{-6} \times 40 \times 19905 \times 10^{-9} \times 20 \times 10^{3}=3.981 \mathrm{~mW}
$$

(e) The total power loss in the transistor due to collector current is

$$
\begin{aligned}
P_{T} & =P_{\text {on }}+P_{n}+P_{\text {off }}+P_{o} \\
& =1.3927+18.32+0.04287+0.01=20.466 \mathrm{~W}
\end{aligned}
$$

Problem 4-8

From Problem 4-7, $\mathrm{P}_{\mathrm{T}}=20.466 \mathrm{~W}$
$R_{J C}=1{ }^{\circ} \mathrm{K} / \mathrm{W}, \mathrm{R}_{\mathrm{CS}}=1^{\circ} \mathrm{K} / \mathrm{W}, \mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{A}}=30^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}+273=423^{\circ} \mathrm{K}$
$\mathrm{T}_{\mathrm{A}}=30^{\circ} \mathrm{C}+273=303^{\circ} \mathrm{K}$
$P_{T}\left(R_{J C}+R_{C S}+R_{S A}\right)=T_{J}-T_{A}=423-303=120$
$R_{S A}=120 / 20.466-1-1=3.863^{\circ} \mathrm{K} / \mathrm{W}$

Problem 4-9

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{T}}=200 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE} 1}=1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CE} 2}=1.1 \mathrm{~V} \\
& \text { (a) } \mathrm{R}_{\mathrm{e} 1}=10 \mathrm{~m} \Omega, \mathrm{R}_{\mathrm{e} 2}=20 \mathrm{~m} \Omega \\
& \mathrm{I}_{\mathrm{E} 1}+\mathrm{I}_{\mathrm{E} 2}=\mathrm{I}_{\mathrm{T}} \\
& \mathrm{~V}_{\mathrm{CE} 1}+\mathrm{I}_{\mathrm{E} 1} \mathrm{R}_{\mathrm{e} 1}=\mathrm{V}_{\mathrm{CE} 2}+\mathrm{I}_{\mathrm{E} 2} \mathrm{R}_{\mathrm{e} 2} \\
& \text { or } \mathrm{I}_{\mathrm{E} 1}=\left(\mathrm{V}_{\mathrm{CE} 2}-\mathrm{V}_{\mathrm{CE} 1}+\mathrm{I}_{\mathrm{T}} \mathrm{R}_{\mathrm{e} 2}\right) /\left(\mathrm{R}_{\mathrm{e} 1}+\mathrm{R}_{\mathrm{e} 2}\right) \\
& \quad=\left(1.1-1.5+200 \times 20 \times 10^{-3}\right) /(0.01+0.02)=120 \mathrm{~A} \text { or } 60 \% \\
& \mathrm{I}_{\mathrm{E} 2}=200-120=80 \mathrm{~A} \text { or } 40 \% . \quad \Delta \mathrm{I}=60-40=20 \% \\
& \text { (b) } \mathrm{R}_{\mathrm{e} 1}=\mathrm{R}_{\mathrm{e} 2}=20 \mathrm{~m} \Omega
\end{aligned}
$$

$\mathrm{I}_{\mathrm{E} 1}=\left(1.1-1.5+200 \times 20 \times 10^{-3}\right) /(0.01+0.02)=90 \mathrm{~A}$ or 45% $\mathrm{I}_{\mathrm{E} 2}=200-90=110 \mathrm{~A}$ or $55 \% . \quad \Delta \mathrm{I}=55-45=10 \%$

Problem 4-10

$\mathrm{I}_{\mathrm{L}}=100 \mathrm{~A}, \mathrm{~V}_{\mathrm{s}}=400 \mathrm{~V}, \mathrm{f}_{\mathrm{s}}=20 \mathrm{kHz}, \mathrm{t}_{\mathrm{r}}=1 \mu \mathrm{~s}$, and $\mathrm{t}_{\mathrm{f}}=3 \mu \mathrm{~s}$.
(a) From Eq. $(4-44), L_{s}=440 \times 1 / 100=4 \mu \mathrm{H}$
(b) From Eq. $(4-46), C_{s}=100 \times 3 / 400=0.75 \mu \mathrm{~F}$
(c) From Eq. $(4-47), R_{s}=2 \sqrt{ }(4 / 0.75)=4.62 \Omega$
(d) From Eq. $(4-48), R_{s}=10^{3} /(3 \times 20 \times 0.75)=22.22 \Omega$
(e) $V_{s} / R_{s}=0.05 \times I_{L}$ or $400 / R_{s}=0.05 \times 100$ or $R_{s}=80 \Omega$
(f) From Eq. (4-49), the snubber loss is

$$
P_{s}=0.5 C_{s} V_{s}^{2} f_{s}=0.5 \times 0.75 \times 10^{-6 \times} 400^{2} \times 20 \times 10^{3}=1200 \mathrm{~W}
$$

Problem 4-11

$\mathrm{I}_{\mathrm{L}}=40 \mathrm{~A}, \mathrm{~V}_{\mathrm{s}}=30 \mathrm{~V}, \mathrm{f}_{\mathrm{s}}=50 \mathrm{kHz}, \mathrm{t}_{\mathrm{r}}=60 \mathrm{~ns}$, and $\mathrm{t}_{\mathrm{f}}=25 \mathrm{~ns}$
(a) From Eq. $(4-44), L_{s}=30 \times 60 \times 10^{-9} / 40=0.045 \mu \mathrm{H}$
(b) From Eq. $(4-46), C_{s}=40 \times 25 \times 10^{-9} / 30=0.0333 \mu \mathrm{~F}$
(c) From Eq. $(4-47), R_{s}=2 \sqrt{ }(45 / 33.33)=2.324 \Omega$
(d) From Eq. $(4-48), R_{s}=10^{6} /(3 \times 50 \times 33.33=200 \Omega$
(e) $V_{s} / R_{s}=0.05 \times I_{L}$ or $30 / R_{S}=0.05 \times 40$ or $R_{S}=15 \Omega$
(f) From Eq. (4-49), the snubber loss is

$$
\begin{aligned}
\mathrm{P}_{\mathrm{s}} & =0.5 \mathrm{C}_{\mathrm{s}} \mathrm{~V}_{\mathrm{s}}^{2} \mathrm{f}_{\mathrm{s}} \\
& =0.5 \times 33.33 \times 10^{-9} \times 30^{2} \times 50 \times 10^{3}=0.75 \mathrm{~W}
\end{aligned}
$$

CHAPTER 5

DC-DC CONVERTERS

Problem 5-1

$\mathrm{V}_{\mathrm{s}}=220 \mathrm{~V}, \mathrm{k}=0.8, \mathrm{R}=20 \Omega$ and $\mathrm{V}_{\mathrm{ch}}=1.5 \mathrm{~V}$.
(a) From Eq. $(5-1), V_{a}=0.8 \times(220-1.5)=174.8 \mathrm{~V}$
(b) From Eq. $(5-2), V_{0}=\sqrt{ } 0.8 \times 220=V$
(c) From Eq. $(5-5), P_{0}=0.8 \times(220-1.5)^{2} / 20=3819.4 \mathrm{~W}$

From Eq. (5-6), $\mathrm{P}_{\mathrm{i}}=0.8 \times 220 \times(220-1.5) / 20=3845.6 \mathrm{~W}$
The chopper efficiency is $\mathrm{P}_{0} / \mathrm{P}_{\mathrm{i}}=3819.4 / 3845.6=99.32 \%$
(d) From Eq. (5-4), $\mathrm{R}_{\mathrm{i}}=20 / 0.8=12.5 \Omega$
(e) From Eq. (5-8), the output voltage is

$$
\begin{aligned}
v_{o}(t) & =\frac{220}{\pi}[\sin (2 \pi \times 0.8) \cos (2 \pi \times 10000 t)+0.691 \times \sin (2 \pi \times 10000 t)] \\
& =82.32 \times \sin (62832 t+\phi)
\end{aligned}
$$

where $\phi=\tan ^{-1}[\sin (0.8 \times 2 \pi) / 0.691]=54^{\circ}$.
The rms value is $\mathrm{V}_{1}=82.32 / \sqrt{ } 2=58.2 \mathrm{~V}$
Note: The efficiency calculation, which includes the conduction loss of the chopper, does not take into account the switching loss due to turn-on and turn-off of the converter.

Problem 5-2

$\mathrm{V}_{\mathrm{s}}=220 \mathrm{~V}, \mathrm{R}=10 \Omega, \mathrm{~L}=15.5 \mathrm{mH}, \mathrm{E}=20 \mathrm{~V}, \mathrm{k}=0.5$ and $\mathrm{f}=5000 \mathrm{~Hz}$
From Eq. $(5-15), \mathrm{I}_{2}=0.9375 \mathrm{I}_{1}+1.2496$
From Eq. $(5-16), \mathrm{I}_{1}=0.9375 \mathrm{I}_{2}-1.2496$
(a) Solving these two equations, $\mathrm{I}_{1}=8.6453 \mathrm{~A}$
(b) $\mathrm{I}_{2}=9.3547 \mathrm{~A}$
(c) $\Delta \mathrm{I}=\mathrm{I}_{2}-\mathrm{I}_{1}=9.35475-8.6453=0.7094 \mathrm{~A}$

From Eq. $(5-21), \Delta \mathrm{I}_{\max }=0.7094 \mathrm{~A}$
and Eq. (5-22) gives the approximately value, $\Delta \mathrm{I}_{\max }=0.7097 \mathrm{~A}$
(d) The average load current is approximately,

$$
I_{a}=\left(I_{2}+I_{1}\right) / 2=(9.35475+8.6453) / 2=9 \mathrm{~A}
$$

(e) From Eq. (5-24),

$$
I_{o}=\left[I_{1}^{2}+\frac{\left(I_{2}-I_{1}\right)^{2}}{3}+I_{1}\left(I_{2}-I_{1}\right)\right]^{1 / 2}=9.002 \mathrm{~A}
$$

(f) $\mathrm{I}_{\mathrm{s}}=\mathrm{k} \mathrm{I}_{\mathrm{a}}=0.8 \times 9=7.2 \mathrm{~A}$
and the input resistance is $R_{i}=V_{s} / I_{s}=220 / 7.2=30.56 \Omega$
(g) From Eq. $(5-25), I_{R}=\sqrt{k} I_{0}=\sqrt{ } 0.8 \times 22.1=15.63 \mathrm{~A}$

Problem 5-3

$$
\begin{aligned}
& V_{s}=220 \mathrm{~V}, \mathrm{R}=0.2 \Omega, E=10 \mathrm{~V}, \mathrm{f}=200 \mathrm{~Hz}, \mathrm{~T}=1 / \mathrm{f}=0.005 \mathrm{~s} \\
& \Delta i=200 \times 0.5=10 \mathrm{~A} . \\
& V_{a}=k V_{s}=R I_{a}
\end{aligned}
$$

The voltage across the inductor is given by

$$
L \frac{d i}{d t}=V_{S}-R I_{a}=V_{S}-k V_{S}=(1-k) V_{S}
$$

For a linear rise of current, $\mathrm{dt}=\mathrm{t}_{1}=\mathrm{kT}$ and $\mathrm{di}=\Delta \mathrm{i}$

$$
\Delta i=\frac{(1-k) V_{S}}{L} k T
$$

For worst case ripple condition: $\frac{d(\Delta i)}{d k}=0$
and this gives, $\mathrm{k}=0.5$

$$
\Delta i \mathrm{~L}=10 \times \mathrm{L}=220(1-0.5) 0.5 \times 0.005 \text { or } \mathrm{L}=27.5 \mathrm{mH}
$$

Problem 5-4

$\mathrm{V}_{\mathrm{s}}=110 \mathrm{~V}, \mathrm{E}=220 \mathrm{~V}, \mathrm{P}_{\mathrm{o}}=30 \mathrm{~kW}=30000 \mathrm{~W}$
(c) Since the input power must be the same as the output power, $V_{s} I_{s}=P_{o}$ or $110 \times I_{s}=30000$ or $I_{s}=A$
(a) The battery current, $\mathrm{I}_{\mathrm{b}}=\mathrm{P}_{\mathrm{o}} / \mathrm{E}=30000 / 220=136.36 \mathrm{~A}$
$I_{b}=(1-k) I_{s}$ or $k=136.36 / 272.73-1=0.5$
(b) $R_{c h}=(1-k) E / I_{s}=(1-0.5) \times 220 / 272.73=0.4033 \Omega$

Problem 5-5

$\mathrm{V}_{\mathrm{s}}=110 \mathrm{~V}, \mathrm{~L}=7.5 \mathrm{mH}, \mathrm{E}=220 \mathrm{~V}$
From Eq. $(5-28), \mathrm{i}_{1}(\mathrm{t})=\left(110 \times 10^{3} / 7.5\right) \mathrm{t}+\mathrm{I}_{1}$
From Eq. (5-29),
$\mathrm{i}_{2}(\mathrm{t})=\left[(110-220) \times 10^{3} / 7.5\right) \mathrm{t}+\mathrm{I}_{2}=-\left(110 \times 10^{3} / 7.5\right) \mathrm{t}+\mathrm{I}_{2}$
where $I_{2}=i_{1}(t=k T)=\left(110 \times 10^{3} / 7.5\right) k T+I_{1}$

$$
\left.\mathrm{I}_{1}=\mathrm{i}_{2}[\mathrm{t}=(1-\mathrm{k}) \mathrm{kT}]=-110 \times 10^{3} / 7.5\right)(1-\mathrm{k}) \mathrm{kT}+\mathrm{I}_{2}
$$

Solving for I_{1} and I_{2} yields $\mathrm{I}_{1}=0, \mathrm{I}_{2}=\left(110 \times 10^{3} / 7.5\right) \mathrm{kT}$
$\mathrm{i}_{1}(\mathrm{t})=\left(110 \times 10^{3} / 7.5\right) \mathrm{t}$, for $0 \leq \mathrm{t} \leq \mathrm{kT}$
$\mathrm{i}_{2}(\mathrm{t})=-\left(110 \times 10^{3} / 7.5\right) \mathrm{t}+\left(110 \times 10^{3} / 7.5\right)(1-\mathrm{k}) \mathrm{T}$, for $0 \leq \mathrm{t} \leq(1-\mathrm{k}) \mathrm{T}$.

Problem 5-6

$V_{s}=600 \mathrm{~V}, \mathrm{R}=0.25 \Omega, \mathrm{~L}=20 \mathrm{mH}, \mathrm{E}=150 \mathrm{~V}, \mathrm{k}=0.1$ to 0.9 and $\mathrm{f}=250$ Hz

For $\mathrm{k}=0.1$, the load current is discontinuous
From Eq. $(5-15), \mathrm{I}_{2}=8.977$
From Eq. $(5-16), \mathrm{I}_{1}=0, \Delta \mathrm{I}=8.977 \mathrm{~A}$ and $\mathrm{I}_{\mathrm{a}}=4.4885 \mathrm{~A}$
For $\mathrm{k}=0.2$, the load current is discontinuous
$\mathrm{I}_{2}=17.9103 \mathrm{~A}, \mathrm{I}_{1}=0 \mathrm{~A}, \Delta \mathrm{I}=17.9103 \mathrm{~A}$ and $\mathrm{I}_{\mathrm{a}}=8.955 \mathrm{~A}$
For $\mathrm{k}=0.3$
$\mathrm{I}_{2}=0.9851 \mathrm{I}_{1}+26.7985, \mathrm{I}_{1}=0.9656 \mathrm{I}_{2}-20.6367$
$\mathrm{I}_{2}=132.64 \mathrm{~A}, \mathrm{I}_{1}=107.44 \mathrm{~A}, \Delta \mathrm{I}=25.2 \mathrm{~A}$ and $\mathrm{I}_{\mathrm{a}}=120.04 \mathrm{~A}$
For $\mathrm{k}=0.4$
$\mathrm{I}_{2}=0.9802 \mathrm{I}_{1}+35.64, \mathrm{I}_{1}=0.97044 \mathrm{I}_{2}-17.733$
$\mathrm{I}_{2}=374.42 \mathrm{~A}, \mathrm{I}_{1}=345.62 \mathrm{~A}, \Delta \mathrm{I}=28.8 \mathrm{~A}$ and $\mathrm{I}_{\mathrm{a}}=360.02 \mathrm{~A}$
For $\mathrm{k}=0.5$
$\mathrm{I}_{2}=0.9753 \mathrm{I}_{1}+44.44, \mathrm{I}_{1}=0.97045 \mathrm{I}_{2}-14.814$
$\mathrm{I}_{2}=615 \mathrm{~A}, \mathrm{I}_{1}=585 \mathrm{~A}, \Delta \mathrm{I}=30 \mathrm{~A}$ and $\mathrm{I}_{\mathrm{a}}=600 \mathrm{~A}$
For $\mathrm{k}=0.6$
$\mathrm{I}_{2}=0.97044 \mathrm{I}_{1}+53.2, \mathrm{I}_{1}=0.9802 \mathrm{I}_{2}-11.881$
$\mathrm{I}_{2}=854.38 \mathrm{~A}, \mathrm{I}_{1}=825.58 \mathrm{~A}, \Delta \mathrm{I}=28.8 \mathrm{~A}$ and $\mathrm{I}_{\mathrm{a}}=840 \mathrm{~A}$
For $\mathrm{k}=0.7$
$\mathrm{I}_{2}=0.9656 \mathrm{I}_{1}+61.91, \mathrm{I}_{1}=0.9851 \mathrm{I}_{2}-8.933$
$\mathrm{I}_{2}=1092.6 \mathrm{~A}, \mathrm{I}_{1}=1067.4 \mathrm{~A}, \Delta \mathrm{I}=25.2 \mathrm{~A}$ and $\mathrm{I}_{\mathrm{a}}=1080 \mathrm{~A}$
For $k=0.8$
$\mathrm{I}_{2}=0.9608 \mathrm{I}_{1}+70.58, \mathrm{I}_{1}=0.99 \mathrm{I}_{2}-5.97$
$\mathrm{I}_{2}=1329.6 \mathrm{~A}, \mathrm{I}_{1}=1310.4 \mathrm{~A}, \Delta \mathrm{I}=19.2 \mathrm{~A}$ and $\mathrm{I}_{\mathrm{a}}=1320 \mathrm{~A}$
For $\mathrm{k}=0.9$
$\mathrm{I}_{2}=0.956 \mathrm{I}_{1}+79.2, \mathrm{I}_{1}=0.995 \mathrm{I}_{2}-2.99$
$\mathrm{I}_{2}=1565.4 \mathrm{~A}, \mathrm{I}_{1}=1554.6 \mathrm{~A}, \Delta \mathrm{I}=10.8 \mathrm{~A}$ and $\mathrm{I}_{\mathrm{a}}=1560 \mathrm{~A}$

Problem 5-7

$\mathrm{V}_{\mathrm{s}}=600 \mathrm{~V}, \mathrm{R}=0.25 \Omega, \mathrm{~L}=20 \mathrm{mH}, \mathrm{E}=150 \mathrm{~V}, \mathrm{k}=0.1$ to 0.9 and $\mathrm{f}=250$ Hz
The maximum ripple occurs at $\mathrm{k}=0.5$.
From Eq. $(5-21), \Delta \mathrm{I}_{\max }=(600 / 0.25) \tanh [0.25 /(4 \times 250 \times 0.02)]=$ 29.9985 A.

From Eq. $(5-22), \Delta \mathrm{I}_{\max }=[600 /(4 \times 250 \times 0.02)]=30 \mathrm{~A}$

Problem 5-8

$\mathrm{V}_{\mathrm{s}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}=10 \Omega, \mathrm{~L}=6.5 \mathrm{mH}, \mathrm{E}=5 \mathrm{~V}$ and $\mathrm{k}=0.5$.
$\mathrm{V}_{\mathrm{S}}:=10 \quad \mathrm{R}:=10 \quad \mathrm{~L}:=6.5 \cdot 10^{-3} \quad \mathrm{f}:=1000$
$\mathrm{E}:=5 \quad \mathrm{k}:=0.5 \quad \mathrm{~T}:=\frac{1}{\mathrm{f}} \quad \mathrm{z}:=\frac{\mathrm{T} \cdot \mathrm{R}}{\mathrm{L}} \quad \mathrm{z}=1.54$
From Eq. (5-35), we get

$$
I_{1}:=\frac{V_{s} \cdot k \cdot z}{R} \cdot \frac{e^{-(1-k) \cdot z}}{1-e^{-(1-k) \cdot z}}+\frac{V_{s}-E}{R} \quad I_{1}=1.16 \quad A
$$

From Eq. (5-36), we get

$$
\begin{aligned}
\mathrm{I}_{2}:=\frac{\mathrm{V}_{\mathrm{s}} \cdot \mathrm{k} \cdot \mathrm{z}}{\mathrm{R}} \cdot \frac{1}{1-\mathrm{e}^{-(1-\mathrm{k}) \cdot \mathrm{z}}}+\frac{\mathrm{V}_{\mathrm{s}}-\mathrm{E}}{\mathrm{R}} & \mathrm{I}_{2}=1.93 \mathrm{~A} \\
\Delta \mathrm{I}:=\mathrm{I}_{2}-\mathrm{I}_{1} & \Delta \mathrm{I}=0.77 \quad \mathrm{~A}
\end{aligned}
$$

Problem 5-9

$\mathrm{V}_{\mathrm{s}}=15 \mathrm{~V}, \Delta \mathrm{~V}_{\mathrm{c}}=10 \mathrm{mV}, \Delta \mathrm{I}=0.5 \mathrm{~A}, \mathrm{f}=20 \mathrm{kHz}, \mathrm{V}_{\mathrm{a}}=5 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{a}}=0.5 \mathrm{~A}$
(a) From Eq. (5-48), $\mathrm{V}_{\mathrm{a}}=\mathrm{k} \mathrm{V}_{\mathrm{s}}$ and $\mathrm{k}=\mathrm{V}_{\mathrm{a}} / \mathrm{V}_{\mathrm{s}}=5 / 15=0.3333$
(b) From Eq. $(5-52), L=5(15-5) /(0.5 \times 20000 \times 15)=333.3 \mu \mathrm{H}$
(c) From Eq. $(5-53), \mathrm{C}=0.5 /\left(8 \times 10 \times 10^{-3} \times 20000\right)=312.5 \mu \mathrm{~F}$
(d)

$$
\mathrm{R}:=\frac{\mathrm{V}_{\mathrm{a}}}{\mathrm{I}_{\mathrm{a}}} \quad \mathrm{R}=10
$$

From Eq. (5-56) $\quad \mathrm{L}_{\mathrm{c}}(\mathrm{k}):=\frac{(1-\mathrm{k}) \cdot \mathrm{R}}{2 \cdot \mathrm{f}} \quad \mathrm{L}_{\mathrm{c}}(0.333) \cdot 10^{6}=166.75 \quad \mu \mathrm{H}$
From Eq. (5-89) $\quad \mathrm{C}_{\mathrm{c}}(\mathrm{k}):=\frac{1-\mathrm{k}}{16 \cdot \mathrm{~L}_{\mathrm{c}}(0.333) \cdot \mathrm{f}^{2}}$

$$
\mathrm{C}_{\mathrm{c}}(0.333) \cdot 10^{6}=0.63 \quad \mu \mathrm{~F}
$$

Problem 5-10

$\mathrm{V}_{\mathrm{s}}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{a}}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{a}}=0.5 \mathrm{~A}, \mathrm{f}=20 \mathrm{kHz}, \mathrm{L}=250 \mu \mathrm{H}$, and $\mathrm{C}=440 \mu \mathrm{~F}$.
(a) From Eq. (5-62) $15=6 /(1-k)$ or $k=3 / 5=0.6=60 \%$
(b) From Eq. $(5-67), \Delta I=6 \times(15-6) /\left(20000 \times 250 \times 10^{-6} \times 15\right)$
$=0.72 \mathrm{~A}$
(c) From Eq. $(5-65), \mathrm{I}_{\mathrm{s}}=0.5 /(1-0.6)=1.25 \mathrm{~A}$

Peak inductor current, $\mathrm{I}_{2}=\mathrm{I}_{\mathrm{s}}+\Delta \mathrm{I} / 2=1.25+0.72 / 2=1.61 \mathrm{~A}$
(d) From Eq. $(5-71), \Delta V_{c}=0.5 \times 0.6 /\left(20000 \times 440 \times 10^{-6}\right)=34.1 \mathrm{mV}$
(e) $\mathrm{R}:=\frac{\mathrm{V}_{\mathrm{a}}}{\mathrm{I}_{\mathrm{a}}} \quad \mathrm{R}=30$

From Eq. (5-72)

$$
\mathrm{L}_{\mathrm{c}}(\mathrm{k}):=\frac{\mathrm{k} \cdot(1-\mathrm{k}) \cdot \mathrm{R}}{2 \cdot \mathrm{f}}
$$

$$
L_{c}(0.6) \cdot 10^{6}=180 \quad \mu \mathrm{H}
$$

From Eq. (5-73)

$$
\mathrm{C}_{\mathrm{c}}(\mathrm{k}):=\frac{\mathrm{k}}{2 \cdot \mathrm{f} \cdot \mathrm{R}}
$$

$$
C_{c}(0.6) \cdot 10^{6}=0.5 \quad \mu \mathrm{~F}
$$

Problem 5-11

$\mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}, \mathrm{k}=0.6, \mathrm{I}_{\mathrm{a}}=1.5 \mathrm{~A}, \mathrm{f}=25 \mathrm{kHz}, \mathrm{L}=250 \mu \mathrm{H}$, and $\mathrm{C}=220 \mu \mathrm{~F}$
(a) From Eq. $(5-78), V_{a}=-12 \times 0.6 /(1-0.6)=-18 \mathrm{~V}$
(b) From Eq. (5-87), the peak-to-peak output ripple voltage is

$$
\Delta V_{c}=1.5 \times 0.6 /\left(25000 \times 220 \times 10^{-6}\right)=163.64 \mathrm{mV}
$$

(c) From Eq. (5-84), the peak-to-peak inductor ripple voltage is $\Delta \mathrm{I}=12 \times 0.6 /\left(25000 \times 250 \times 10^{-6}\right)=1.152 \mathrm{~A}$
(d) From Eq. $(5-81), I_{s}=1.5 \times 0.6 /(1-0.6)=2.25 \mathrm{~A}$

Since I_{s} is the average of duration $k T$, the peak to peak current of transistor, $\mathrm{I}_{\mathrm{p}}=\mathrm{I}_{\mathrm{s}} / \mathrm{k}+\Delta \mathrm{I} / 2=2.25 / 0.6+1.152 / 2=4.326 \mathrm{~A}$
(e) $\mathrm{R}:=\frac{-\mathrm{V}_{\mathrm{a}}}{\mathrm{I}_{\mathrm{a}}} \quad \mathrm{R}=\mathrm{I}$

From Eq. (5-88)

$$
\mathrm{L}_{\mathrm{c}}(\mathrm{k}):=\frac{(1-\mathrm{k}) \cdot \mathrm{R}}{2 \cdot \mathrm{f}}
$$

$$
L_{c}(0.6) \cdot 10^{6}=, \quad \mu \mathrm{H}
$$

From Eq. (5-89)

$$
\mathrm{C}_{\mathrm{c}}(\mathrm{k}):=\frac{\mathrm{k}}{2 \cdot \mathrm{f} \cdot \mathrm{R}}
$$

$$
\mathrm{C}_{\mathrm{c}}(0.6) \cdot 10^{6}=\quad \quad \mu \mathrm{F}
$$

Problem 5-12

$\mathrm{V}_{\mathrm{s}}=15 \mathrm{~V}, \mathrm{k}=0.4, \mathrm{I}_{\mathrm{a}}=1.25 \mathrm{~A}, \mathrm{f}=25 \mathrm{kHz}, \mathrm{L}_{1}=250 \mu \mathrm{H}, \mathrm{C}_{1}=400 \mu \mathrm{~F}, \mathrm{~L}_{2}=$ $350 \mu \mathrm{H}$ and $\mathrm{C}_{2}=220 \mu \mathrm{~F}$
(a) From Eq. $(5-100), V_{a}=-0.4 \times 15 /(1-0.4)=-10 \mathrm{~V}$
(b) From Eq. $(5-103), I_{5}=1.25 \times 0.4 /(1-0.4)=0.83 \mathrm{~A}$
(c) From Eq. (5-106), $\Delta \mathrm{I}_{1}=15 \times 0.4 /\left(25000 \times 250 \times 10^{-6}\right)=0.96 \mathrm{~A}$
(d) From Eq. $(5-112), \Delta \mathrm{V}_{\mathrm{c} 1}=0.83(1-0.4) /\left(25000 \times 400 \times 10^{-6}\right)=50 \mathrm{mV}$
(e) From Eq. (5-109), $\Delta \mathrm{I}_{2}=0.4 \times 15 /\left(25000 \times 350 \times 10^{-6}\right)=0.69 \mathrm{~A}$
(f) From Eq. $(5-113), \Delta \mathrm{V}_{\mathrm{c} 2}=0.69 /\left(8 \times 25000 \times 220 \times 10^{-6}\right)=15.58 \mathrm{mV}$
(g) From Eq. $(5-120), \Delta \mathrm{I}_{\mathrm{L} 2}=1.25 /(1.0-2 \times 0.4)=6.25 \mathrm{~A}$
$\mathrm{I}_{\mathrm{p}}=\mathrm{I}_{\mathrm{s}}+\mathrm{I}_{1} / 2+\mathrm{I}_{\mathrm{L} 2}+\Delta \mathrm{I}_{2} / 2=0.83+0.96 / 2+6.25+0.69 / 2=7.91 \mathrm{~A}$

Problem 5-13

$\mathrm{V}_{\mathrm{s}}=15 \mathrm{~V}, \mathrm{k}=0.4, \mathrm{I}_{\mathrm{a}}=1.25 \mathrm{~A}, \mathrm{f}=25 \mathrm{kHz}, \mathrm{L}_{1}=250 \mu \mathrm{H}, \mathrm{C}_{1}=400 \mu \mathrm{~F}, \mathrm{~L}_{2}=$ $350 \mu \mathrm{H}$ and $\mathrm{C}_{2}=220 \mu \mathrm{~F}$
$\mathrm{V}_{\mathrm{S}}:=15 \quad \mathrm{k}:=0.4 \quad \mathrm{I}_{\mathrm{a}}:=1.25 \quad \mathrm{f}:=25 \cdot 10^{3}$
From Eq. (5-115) $\quad \mathrm{L}_{\mathrm{c} 1}(\mathrm{k}):=\frac{(1-\mathrm{k}) \cdot \mathrm{R}^{2}}{2 \cdot \mathrm{k} \cdot \mathrm{f}} \quad \mathrm{L}_{\mathrm{c} 1}(0.4) \cdot 1000=4.32 \mathrm{mH}$
From Eq. (5-116) $\quad \mathrm{L}_{\mathrm{c} 2}(\mathrm{k}):=\frac{(1-\mathrm{k}) \cdot \mathrm{R}}{2 \cdot \mathrm{f}} \quad \mathrm{L}_{\mathrm{c} 2}(0.4) \cdot 1000=0.14 \quad \mathrm{mH}$
From Eq. (5-117) $\quad \mathrm{C}_{\mathrm{c} 1}(\mathrm{k}):=\frac{\mathrm{k}}{2 \cdot \mathrm{f} \cdot \mathrm{R}} \quad \mathrm{C}_{\mathrm{c} 1}(0.5) \cdot 10^{6}=0.83 \quad \mu \mathrm{~F}$
From Eq. (5-118) $\mathrm{C}_{\mathrm{c} 2}(\mathrm{k}):=\frac{1}{8 \cdot \mathrm{f} \cdot \mathrm{R}}$ $\mathrm{C}_{\mathrm{c} 2}(0.5) \cdot 10^{6}=0.42 \quad \mu \mathrm{~F}$

Problem 5-14

$\mathrm{V}_{\mathrm{s}}=110 \mathrm{~V}, \mathrm{~V}_{\mathrm{a}}=80 \mathrm{~V}, \mathrm{I}_{\mathrm{a}}=20 \mathrm{~A}$
$\Delta \mathrm{V}_{\mathrm{c}}=0.05 \times \mathrm{V}_{\mathrm{a}}=0.05 \times 80=4 \mathrm{~V}$
$\mathrm{R}=\mathrm{V}_{\mathrm{a}} / \mathrm{I}_{\mathrm{a}}=80 / 20=4 \Omega$
From Eq. (5-48), $k=V_{a} / V_{s}=80 / 110=0.7273$
From Eq. $(5-49) I_{s}=k I_{a}=0.7273 \times 20=14.55 \mathrm{~A}$
$\Delta \mathrm{I}_{\mathrm{L}}=0.025 \times \mathrm{I}_{\mathrm{a}}=0.025 \times 20=0.5 \mathrm{~A}$
$\Delta \mathrm{I}=0.1 \times \mathrm{I}_{\mathrm{a}}=0.1 \times 20=2 \mathrm{~A}$
(a) From Eq. (5-51), we get the value of L_{e}

$$
L_{e}=\frac{V_{a}\left(V_{S}-V_{a}\right)}{\Delta I f V_{S}}=\frac{80 \times(110-80)}{2 \times 10 \mathrm{kHz} \times 110}=1.091 \mathrm{mH}
$$

From Eq. (5-128), we get the value of C_{e}

$$
C_{e}=\frac{\Delta I}{V_{C} 8 f}=\frac{2}{4 \times 8 \times 10 \mathrm{kHz}}=6.25 \mu \mathrm{~F}
$$

Assuming a linear rise of load current i_{L} during the time from $t=0$ to $t_{1}=k$
T, Eq. (5-129) gives the approximate value of L as

$$
L_{e}=\frac{k T \Delta V_{C}}{\Delta I_{L}}=\frac{k \Delta V_{C}}{\Delta I_{L} f}=\frac{0.7273 \times 4}{0.5 \times 10 \mathrm{kHz}}=0.582 \mathrm{mH}
$$

Problem 5-15

PSpice simulation

Problem 5-16

$k=0.4, R=150 \Omega, r_{L}=1 \Omega$ and $r_{c}=0.2 \Omega$.

$$
\mathrm{k}:=0.5 \quad \mathrm{R}:=150 \quad \mathrm{r}_{\mathrm{L}}:=1 \quad \mathrm{r}_{\mathrm{c}}:=0.2
$$

(a) Buck

$$
\mathrm{G}(\mathrm{k}):=\frac{\mathrm{k} \cdot \mathrm{R}}{\mathrm{R}+\mathrm{r}_{\mathrm{L}}} \quad \mathrm{G}(0.5)=0.5
$$

(b)Boost

$$
G(k):=\frac{1}{1-k} \cdot\left[\frac{(1-k)^{2} \cdot R}{(1-k)^{2} \cdot R+r_{L}+k \cdot(1-k) \cdot \frac{r_{c} \cdot R}{r_{c}+R}}\right] \quad G(0.5)=1.95
$$

(c)Buck-Boost

$$
G(k):=\frac{-k}{1-k} \cdot\left[\frac{(1-k)^{2} \cdot R}{(1-k)^{2} \cdot R+r_{L}+k \cdot(1-k) \cdot \frac{r_{c} \cdot R}{r_{c}+R}}\right] \quad G(0.5)=-0.97
$$

