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PREFACE

This bock is intended for upper-division electrical engineering students studying
power system analysis and design or as a reference for practicing engineers. As 2
reference, the book is wntten with self-study in mind. The text has grown out of
many years of teaching the subject material to students in electricat engineering at
various universities, including Michigan Technological University and Milwaukee
School of Engineering.

Prerequisites for students using this text are physics and mathematics through
differential equations and a circuit course, A background in electric machines is de-
sirable, but not essential. Other required background materials, including MATIAB
and an introduction to control systems, are provided in the appendixes.

In recent years, the analysis and design of power systems have been affected
dramatically by the widespread use of personal computers, Personal computers
have become so powerful and advanced that they can be used easily to perform
steady-state and transicnt analysis of large interconnected power systems. Mod-
emn personal computers' ability to provide information, ask questions, and react
to responses have enabled cngineering educators to integrate computers into the
curmiculum. One of the difficulties of teaching power system analysis courses is
not having a real system with which 1o experiment in the laboratory. Therefore,
this book is written to suppiement the teaching of power system analysis with a
computer-simulated system. I developed many programs for power system analy-
sis, giving students a valuable tool that allows them to spend more time on analysis
and design of practical systems and less on programming, thereby enhancing the
learning process. The book also provides a basis for further exploration of more
advanced topics in power system analysis.

MATLARB is a matrix-based software package, which makes it ideal for power
system analysis. MATLAB, with its exiensive numerical resources, can be used to
obtain numerical solutions that involve various types of vector-matrix operations.
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In addition, SIMULINK provides a highly interactive environment for simulation
of both linear and nonlinear dynamic systems. Both programs are integrated into
discussions and problems. T developed a power system toolbox containing a set
of M-files to help in typical power system analysis. In fact, all the examples and
figures in this book have been generated by MATLAB functions and the use of this
toolbox. The power systemn tooibox allows the student to anatyze and design power
systems without having to do detailed programming. Some of the programs, such
as power flow, optimization, short-circuit, and stability analysis, were originally
developed for a mainframe computer when 1 worked for power system consufting
firms many years ago. These programs have been refined and modularized for inter-
active use with MATLAB for many problems related to the operation and analysis
of power systems. These software madules are versatile, allowing some of the typi-
cal problems to be solved by several methods, thus enabling students to investigate
alternative solution techniques. Furthcrmore, the software modules are structured
in such a way that the user may mix them for other power system analyses.

This book has more than 140 tHustrative examples that use MATLARB to as-
sist in the analysis of power systems. Each example ilfustrates a specific concept
and usually contains a script of the MATLAB commands used for the model cre-
ation amd computation. Some examples are quite elaborate, in order to bring the
practical world closer. The MATLAB M-files on the accompanying diskette can be
copied 10 the user’s computer and used 1o solve all the examples. The scripts can
also be utilized with modifications as the foundation for solving the end-of-chapter
probieims.

The book is organized inta 12 chapters and 3 appendixes. Each chapter be-
gins with a introduction describing the topics students will encounter. Chapter 1
is a brief overview of the development of power systems and a description of the
major components in the power system. Included is a discussion of generating sta-
tions and transmission and subtransmission networks that convey the energy from
the primary source to the load areas. Chapter 2 reviews power concepts and three-
phase systems. Typical students already wilt have studied much of this material.
However, this specialized topic of networks may not be included in circuit the-
ory courses, and the review here wilt reinforce these concepts. Before going into
system analysis, we have to model all components of electrical power systems.,
Chapter 3 addresses the steady-state presentation and modeling of synchronous
machines and transformers. Also, the per unit.system is presented, followed by the
one-line diagram representation of the network.

Chapter 4 discusses the parameters of a multicircuit transmission line. These
parameters are computed for the balanced system on a per phase basis. Chapter 5
thoroughly covers transmission line modeling and the performance and compensa-
tion of the transmission lines. This chapter provides the concepts and tools neces-
sary for the preliminary transmission line design. Chapter 6 presents a comprehen-

stve coverage of the power flow solution of an interconnected power system during
normal operation. First, the commonly used iterative techniques for the solution of
nonlinear algebraic equation are discussed. Then several approaches to the solu-
tion of power flow are described. These. techniques are applied to the solution of
practical systems using the developed software modules.

Chapter 7 covers some essential classical optimization of continuous fune-
tions and their appiication to optimal dispaich of generation. The programs devel-
oped here are designed to work in synergy with the power flow programs. Chap-
ter 8 deals with syachronous machine transient analysis. The voltage equations of
the synchronaus machine are first developed. These nonlinear equations are trans-

“formed into Linear differential equations using Park’s transformation. Analytical

solution of the transformed equations can be obtained by the Laplace transform
technique. However, MATLAB 15 used with euse to simulate the nonlinear differ-
ential equations of the synchronous machine directly in time-domain in matrix
torm for all modes of operation. Thus students can observe the dynamic response -
of the synchronous machine during short circuits and appreciate the significance
and consequence of the change of machine parameters. The ultimate objective of * .
this chapter is to develop simple network models of the synchronous generator for
power system fault analysis and transient stability studies.

Chapter 9 covers balunced fault analysis. The bus impedance matrix by the
bieilding algorithms 1s formulated and employed for the systematic computation
ot bus voltages and line currents during fanlts. Chapter 10 discusses methods of
symmetrical components thai resolve the problem of an unbalanced circuit into
a solution of a number of balanced circuits. Included are graphical displays of
the symumetrical components transformation and some applications. The method

" 13 applied to the unbalanced fault, which once again allows the treatment of the

problem on simple per phase basis. Algorithms have been developed to simulate
different types of unbalanced faults. The software modules developed for unbal-
anced faults include single line-to-ground fault. line-to-line fault, and double line-
to-ground fault, :

Chapter 11 covers power systent stability problems. First, the dynamic be-
havior of a one-machine system due to a small disturbance is investigated. and the
analytical solution of this linearized model is obtained. MATLAB and SIMULINK
are used conveniently to simulate the system, and the model is extended to multi-
machine systems, Next, the transient stability using equal area criteria is discussed,
and the result is represented graphicaily, providing physical insight into the dy-
namic behavior of the machine. An introduction to nonlinear differential equations
and their numerical solutions is given. MATLAB is used to obtain the numerical so-
tution of the swing equation of a one-machine system. Simulation is also obtained
using the SIMULINK toolbox. A program compatible with the power flow pro-

e e e e -
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grams is developed for the transient stability analysis of thel mu:iuglee:r(;}ln;nes s;);s;zn;_f

Chapter 12 is concerned with power system comro. atr;1 - pm{e el

the contral schemes required to operate thcdp?::; Ifz;iﬂ;l;sl:;m : asrt:j) rgsinte(-:l iy

le models of the essential components use ¢
Eu(ommic voltage regulator (AVR) and ir?;éigfir:z?:gg a‘;z::l;zg(:liﬁi)ma:: ;1;:
cussed. The autosnatic generation contro -

“« includine tie-line power control, are analyzed. For each cas:;, the responses
?:?l:e ;Z:llus;:?e:lzelmang are obtained, The generator rcsponsc;sfwath tlr;i) AYiigti
various compensators, such as rat¢ feedback and Proportiona nregr'c:l t.‘31»-16(1 2
(PID) controliers, are obtained. Both AGC .and AV.R sysiems are ;1 us ra'l ).,
several examples, and the responses are obtained using M.flTLABA Th?ss ana y;zs
are supplemented by constructing the é‘:’MU{,INK block dl:.igram, w l1(: t-prové o
a highly interactive environment for simulation. Some basic matenals 'o mo ‘t_f
control theory are discussed, including the pole-placcmer.u state feedback demgg
and the op[in’]ul controller designs using the linear quadralllc' regula\'tor ba:t;ed or; 126
Riccari equation. These modern technigues are then applied for simulation of the
He bAy:)I;:::ﬁix A is a self-study MATLAB uInd SIMULINK lutor.ial f(.x:uscd on
power and control systems and coordinated with the text. Appi.fndix. B includes a
brief introduction to the fundamentals of control systems and is suitable for. slu-
dents without a background in control systems. Appendix C lists all funcu?ns,
script fites. and chapter examples. Answers 10 problems are given at the en.d of the
book. The instructor’s manual for this text contains the worked-out solutions for
all of the book’s problem. .

The material in the text is designed to be fully covered in a two-semester
undergraduate course sequence. The organization is flaxible, allowing instructors
1o select the material that best suits the requirements of a one-quarter or a one-
semester course. In 4 one-semester course, the first six chapters, which form the
basis for power system analysis, should be covered. The material in Chzlpt.er 2.cor1—
tains power concepts and three-phase systems, which are usually covered in circutt
courses. This chapter can be excluded if the students are well prepared, or it can be
used for review. Also, for students with electrical machinery background, Chap.ter
3 might be omitted. After the above coverage, additional material from the remain-
ing chapters may then be appropriate, depending on the syllabus requirer}lents and
the individual preferences. One choice is to cover Chapter 7 (optimal dispatch of
generation); another choice is Chapter 9 (balanced fautt). The generator reactances
required in Chapter 9 may be covered briefly from Section 8.7 without covenng
Chapter 8 in its entirety.

After reading the book, students should have a good perspective of power
system analysis and an active knowledge of various numerical techniques that can
be applied to the solution of large interconnected power systems, Students should
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find MATLAB helpful in learning the material in the text, particularly in solving the
problems at the end of each chapter.
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CHAPTER

1

THE POWER SYSTEM:
AN OVERVIEW

1.1 INTRODUCTION

Electric energy is the most popular form of energy, becaunse it can be transported
easily at high efficiency and reasonable cost.

The first electric network in the United States was established in 1882 at the
Pearl Street Station in New York City by Thomas Edison. The station supplied
dc power for lighting the lower Manhattan area. The power was generated by dc
generators and distributed by underground cables. In the same year the first water-
wheel driven generator was installed in Appleton, Wisconsin, Within a few years
many companies were established producing energy for lighting — all operated un-
der Edison’s patents, Because of the excessive power loss, RI? at low voltage,
Edison’s companies could deliver energy only a short distance from their stations,

With the invention of the trunsformer (William Stanley, 18835) to raise the
level of ac voltage for transmission and distribution and the invention of the induc-
tion motor (Nikota Tesla, 1888) to replace the dc motors, the advantages of the ac
system hecame apparent, and made the ac system prevalent. Another advantage of
the ac system is that due to lack of commutators in the ac generators, more power
can be produced conveniently at higher voltages.
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The first single-phase ac sysiem in the United States .was at Oregon City
where power was generated by two 300 hp waterwheel tu.rbmes and transmitted
at 4 kV to Portland. Southemn California Edison Company instalied the first three-
phase system at 2.3 kV in 1893. Many electric companies were deve_loped th.rough-
out the country. In the beginning, individual companies were operaFmg at dlfferfent
frequencies anywhere from 235 Hz to 133 Hz. But, as the need for interconnection
and parallel operation became evident, a standard fi requency of 60 Hz was adopted
throughout the U.S. and Canada. Most European countries selected the ISO-Hz S§ys-
tem. Transmission voltages have since risen steadily, and the extra high voltage
(EHV) in commercial use is 765 KV, first put into operation in the United States in
1969. :
For transmitting power over very long distances it may be more economical to
convert the EHY ac to EHV de. transmit the power over two lines, and invert it back
10 ac at the other end. Studies show that it is advantageous to consider de lines when
the transmission distance is 500 km or more. DC lines have no reactance and are
capuble of transferring more power for the same conductor size than ac lines. DC
transmission is especially advantageous when two remotely located large systems
are 1o be connected. The de transmission tie line acts as an asynchronous link
between the two rigid systems eliminating the instability problem inherent in the
ac links. The main disadvantage of the de link is the production of harmonics which
requires filtering, and a large amount of reactive power compensation required at
both ends of the line. The fisst £100-kV dc line in the United States was the Pacific
Intertic, $30 miles long between Oregon and California built in 1970

The entire continental United States is interconnected in an overall network
catled the power grid. A small part of the network is federaily and municipally
owned, but the bulk is privatcly owned. The system is divided into several geo-
graphical regions called power pools. In an interconnected system, fewer genera-
tors are required as a reserve for peak load and spinning reserve. Also, interconnec-
tion makes the energy generation and transmission more economical and reliable,
since power can readily be transferred from one area to others. At times, 1L may
be cheaper for a company to buy bulk power from neighboring utilities than to
produce it in one of its older plants,

1.2 ELECTRIC INDUSTRY STRUCTURE

The bulk generation of electricity in the United States is produced by integrated
investor-owned utilities (JOU). A small portion of power generation is federally
owned, such as the Tennessee Valley Authority and Bonneville Power Administra-
tion. Two separate levels of regulation currently regulate the United States electric
system. One is the Federal Energy Regulatory Commission (FERC), which reg-

1.2 ELECIRIC INDUSITRY 3 1RUCI UKE 3

ulates the price of wholesale electricity, service terms, and conditions. The other
is the Securities and Exchange Commission (SEC), which regulates the business
structure of electric utilities.

The transmission system of electric utilities in the Unites States and Canada
is interconnected into a large power grid known as the North American Power
Systems Interconnection. The power grid is divided into several pools. The pools
consist of several neighboring wtilities which operate jointly to schedule genera-
tion in a cost-effective manner. A privately regulated organization called the North
Amencan Electric Reliability Council (NERC) is responsible for maintaining sys-
{tem standards and reliability. NERC works cooperatively with every provider and
distributor of power to ensure reliability, NERC coordinates its efforts with FERC
as well as other organizations such as the Edison Electric Institute (EEI). NERC
currently has four distinct electrically separated areas. These areas are the Electric
Reliability Council of Texas (ERCOT); the Western States Coordination Council
(WSCC); the Eastern Interconnect, which incijudes all the states and provinces of
Canada east of the Rocky Mountains (excluding Texas), and Hydro-Quebec, which
has dc interconnects with the northeast. These electrically separate areas import
and export power to each other but are not synchronized electrically.

The electric power industry in the United States is undergoing fundamental
changes since the deregulation of the telecommunication, gas, and other indus-
tries. The generation business is rapidly becoming market-driven. This is a major
change for an industry which, until the last decade, was characterized by large,
vertically integrated monopolies. The implementation of open transmission access
has resulted in wholesale and retail markets. In the future, vtilities may possibly
be divided into power generation, transmission. and retail segments. Generating
utilities would sell directly to customers instead of to local distributors, This would
eliminate the monopoly that distributors currently have. The distributors would sell
their services as electricity distributors instead of being a retailer of electricity it-
self. The retail structure of power distribution would resemble the current structure
of the telephone communication industry. The consumer would have a choice as
to from which generator they purchase power. If the entire electric power industry
were to be deregulated, final consumers could choose from generators across the
country. Power brokers and power marketers will assume a major role in this new
competitive power industry. Currently, the ability to market electricity to retail end
users exists, but only in a limited number of states in pilot programs.

Extensive efforts are being made 1o create a more competitive environment
for electricity markets in order to promote greater efficiency. Thus, the power in-
dustry faces many new problems, with one of the highest priority issues being
reliability, that is. bringing a steady. unintérruptable power supply to all electricity
consumers. The restructuring and deregulation of electric utilities, together with
recent progress in technology, introduce unprecedented challenges and opportuni-
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ties for power systems research and open up new opportunities 1o young power

engineers.

1.3 MODERN POWER SYSTEM

The power system of today ;s 1 complex interconnected network as shown in Figure
1.1 (page 7). A power system Can be subdivided into four major parts:

o Generation
« Transmission and Subtransmission
« Distobution

« Loads

i.3.1 GENERATION

Generators — One of the essential components of power systems is the three-
phase ac generator known as synchronous generator or alierr.m{or. Synchronous
senerators have two synchronously rotating fields: One field is produced !J)’ the
rotor driven at synchronous speed and excited by dc current. The other field is pro-
duced in the stator windings by the three-phase armature currents. The Flc current
for the rotor windings is provided by cxcitation systems. ITI Fhe olde‘r u!uts. the ex-
citers are de generators mounted on the same shaft, providmg ex.cllatlon througfh‘
slip rings. Today’s systems use ac grnerators with rotating rect'sﬁefs, knoer as
brushiess excitation systems. The generator excitation system maintains generator
voltage and controls the reactive powcer flow. Because they lack the commutator,
ac g::hl.lerutors can generate high power at high voltage, typically 30 kV. In a power
plant, the size of generators can vary from 50 MW to 1500 MW. ‘

The source of the mecharical power, commonly known as the prime mover,
miy be hydraulic turbines at waterfalls, steam turbines whose: energy. comes from
the bumning of coal, gas and nuclear fuel, gas turbines, or occ.asmnally.mt.emal co;m
bustion engines burning oil. The estimated installed generation capacity 1n 1998 for
the United States is presented in Table 1.1.

Steam turbines operate at relatively high speeds of 3600 or 1800 rpm. The
generators to which they are coupled are cylindrical rotor, t\}fo-pole for 3600 rpm or
four-pole for 1800 rpm operation. Hydraulic turbines, particularly those operating
with a low pressure, operate at low speed. Their generators aré usually a sahept
type rotor with many poles. In a power station several generators are operated in
parallel in the power grid to provide the total power needed. They are connected at
a common point called a bus. '

Today the total instailed electric generating capacity is about 760,000 MW,
Assuming the United States population to be 270 million,

760 x 10°
270 x 108
To realize the significance of this figure. consider the average power of a
person 1o be approximatety 50 W. Therefore, the power of 2815 W is equivalent to

2815 W = 56
Sow Y (poyx;r slave)

Installed capacity per capita = = 2815 W

The annual kWh consumption in the United States is about 3, 55() x 10* kWh.
The asset of the investment for investor-owned companies is about 200 billion dal-
lars and they employ close to a half million people.

With today's emphasis on environmenta! consideration and conservation of
fossil fuels, many altermate sources are considered for employing the untapped
energy sources of the sun and the earth for generation of power. Some of these
alternate sources which are being used to some extent are solar power, geothermal
power, wind power, tidal power. and biomass. The aspiration for bulk generation
of power in the future is the nuclear fiesion. If nuclear tusion is harnessed economi-
cally, it would provide clean energy from an abundant source of fuel, namely water.

Table 1.1 Instaited Generation Capacity

Type Capacity, Percent Fuel
MW

Steam Plant 378,800 63 Coal, gas, petroleum
Nuclear 106,400 14 Uranium
Hydro and pumped storage 81,200 12 Water
Gas Turbine 60,800 8  Gas, petroleum
Combined cycle 15,200 2 Gas, petroleum
Internal Combustion 4,940 0.65 Gas, petroleum
Others 2,660 0:35  Geothermal, solar, wind
Total 760,000 100.00

Transformers — Another major component of a power system is the transformer.
It transfers power with very high efficiency from one level of voltage to another
fevel. The power transterred Lo the secondary is aimost the same as the primary,
except for losses in the transformer, and the product V I on the secondary side is
approximately the same as the primary side. Therefore, using a step-up transformer
of turns ratio a will reducc the secondary current by a ratio of 1/a. This will re-

duce losses in the line, which makes the transmission of power over long distances
possible,
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The insulation requirements and other practical design problems limit the
generated voltage to low values. usually 30 kV. Thus, step-up transformers are
used for transmission of power. At the receiving end of the transmission lines step-
down transformers are used to reduce the voltage to suitable values for distribution
or utilization. In a modern utility system, the power may undergo four or five trans-
formations between generator and ultimate user,

Sewdwm—

1.3.2 TRANSMISSION AND SUBTRANSMISSION

The purpose of an overhead transmission network is to transfer electric energy
from generating units at various locations to the distribution system which uli-
mately supplies the load. Transmission lines also interconnect neighboring utilities
which permits not only economic dispatch of power within regions during normal
conditions, but also the transfer of power between regions during emergencies.

Standard transmission voltages are established in the United States by the
American National Standards Institute (ANSI). Transmission volitage lines operat-
ing at more than 60 kV are standardized at 69 kV, 115 kV, 138 kV, 161 kV. 230 kV,
345 kV, 500 kV, and 765 kV line-to-line. Transmission voltages above 230 kV are
usually referred to as extra-high voltage (EHV).

Figure 1.1 shows an elementary diagram of a transmission and distribution
system. High voltage transmission lines are terminated in substations, which are
called high-voltage substations, receiving substations, or primary substations, The
function of some substations is switching circuits in and cut of service; they are
teferred to as swirching stations. At the primary substations, the voltage is stepped
down to a value more suitable for the next part of the journey toward the load. Very
large industrial customers may be served from the transmission system,

The portion of the transmission system that connects the high-voliage substa-
tions through step-down transformers to the distribution substations are called the
subtransmission network. There is no clear delineation between transmission and
subtransmission voltage levels. Typically, the subtransmission voltage level ranges
from 69 to 138 kV. Some large industria! customers may be served from the sub-
transmission system. Capacitor banks and reactor banks are usually installed in the
substations for maintaining the transmission line voltage.
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1.3.3 DISTRIBUTION
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The distribution system is that part which connects the distribution substations to
the consumers’ service-entrance equipment. The primary distribution lines are usu-
ally in the range of 4 t0 34.5 kV and supply the load in a well-defined geographical
area. Some small industrial customers are served directly by the primary feeders.
The secondary distribution network reduces the voltage for utilization by
commercial and residential consumers. Lines and cables not exceeding a few hun-

l ¥ Residential
- Consumers
2401120 v

]
e
—
-

FIGURE 1.1
Basic components of a power system.
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dred feet in length they, deliver power ta the individual consumers. The secondary
distribution serves most of the customers at levels of 240/120 V, single-phase,
three-wire; 208Y/120 v, three-phase, four-wire; or 480Y/277 V, three-phase, four-
wire. The power for a typical home is derived from a transformer that reduces the
primary feeder voltage 10 240/120 V using a three-wire line.

Distribution systems are both overhead and underground. The growth of un-
derground distribution has been extremely rapid and as much as 70 percent of new
residential construction is served underground.

1.3.4 LOADS

Loads of power systems are divided into industrial, commercial, and residential.
Very large industrial loads may be served from the transmission system. Large
industriad loads are served directly from the sublransmission network, and small
industriat loads are served from the primary distribution network. The industrial
loads are composite lozds, and induction motors form a high proportion of these
load. These composite loads are functions of voltage and frequency and form a
major part of the system load. Commercial and residential loads consist largelv
of lighting, heating, and cooling. These loads are independent of frequency and
consume negligibly small reactive power.

The real pawer of loads are expressed in terms of kilowatts or megawatts.
The magnitude of load varies throughout the day, and power must be available to
consumers on demand.

The daily-load curve of & utility is u composite of demands made by various
classes of users. The greatest value of load during a 24-hr period is called the peak
or maximum demand. Smaller peaking generators may be commissioned 10 meet
the peak load that occurs for only a few hours. In order to assess the usefulness
of the generating plani the load fuctor is defined. The load factor is the ratio of
average load over a designated period of time to the peak load occurring in that
period. Load factors may be given for a day, a month, or a year. The yearly, or
annual load factor is the most useful since a year represents a full cycle of time.
The daily load factor is

average load (L1
peak toad ’

Multiplying the numerator and denominator of (1.1) by a time period of 24 hr, we
have

Daily LF. =

e . w . % 1 h
Daily LF, = average load x 24 qr _ energy consumed during 24 he (1.2)
peak load x 24 hr peak load x 24 hr
The annual load factor is
Al L. < total annual energy (1.3)

peak load x 8760 hr
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Generally there is diversity in the peak load between different classes of loads,
which improves the overall system load factor. In order for a power plant to operate
economically, it must have a high system load factor. Today’s typical system load
factors are in the range of 55 to 70 percent.

There are a few other factors used by utilities. Utilization factor is the ratio of
maximum demand to the installed capacity, and plant factor is the ratio of annual
energy generation to the plant capacity x 8760 hr. These factors indicate how well
the system capacity is utilized and operated.

A MATILAB function barcycle(data) is developed which obtains a plot of the
load cycle for a given interval. The demand interval and the load must be defined
by the variable data in a three-column matrix. The first two columns are the de-
mand interval and the third column is the load value. The demand interval may be
minutes, hours, or months, in ascending order. Hourly intervals must be expressed
in military time.

Example 1.}

The daily [oad on a power system varies as shown in Table 1.2. Use the barcycle
tunction to obtain a plot of the daily load curve. Using the given data ccmpute the
average load and the daily load factor (Figure 1.2).

Table 1.2 Daily System Load

Interval, hr Load, MW
12AM. - 2AM. 6
2 - 6 5
6 -9 10
9 - 12 15
12PM. - 2PM. 12
2 - 4 14
4 - 6 16
6 - B 18
8 - 19 16
10 - 11 12
11 - 12AM. 6

The following commands

data=[ 0 2 6

2 6 5
6 9 10
9 12 15
12 14 12
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14 16 14 1.4 SYSTEM PROTECTION

16 18 16 |

18 20 18 In addition to generators, transformers, and transmission lines, other devices are

20 22 186 required for the satistactory operation and protection of a power system. Seme of

22 23 12 the protective devices dircctly connected to the circuits are called switchigear. They

23 24 61; include instrament transformers, circuit breakers, disconnect switches, fuses and
P = data(:,3); % Column array of load lightning arresters. These devices are necessary to deencrgize cither for normal
Dt = data(:, 2) - data(:,1); % Column array of demand interval operation or on the occurrence of faults. The associated control equipment and
W= P'xDt; % Total energy, area under the curve

rotective relays are placed on switchboard in control houses.
Pavg = W/sum(Dt) P X P

Peak = max(P)

LF = Pavg/Peak*100

barcycle(data)

xlabel('Time, hr’), ylabel (PP, MW?)

% Average load
% Peak load
% Percent load factoer

i Piots. the toad gete 1.5 ENERGY CONTROL CENTER

For refiable und economical operition of the power system it is necessary to mon-
itor the entire system in & centrol center. The modern control center of today ix

result in called the energy control center (ECC). Energy control centers are equipped with
on-line computers performing all signad processing through the remote acquisition
: systerm. Computers work 19 a hierarchical structure to properly coordinate differem
= functional requirements in normal as well as emergency conditions. Every enerey
16 control center contains a control console which consists of a visual display unit
1 (VDU keyboard, and light pen. Computers may give alarms as advance warn-
4 ! ings to the operators (dispatchers) when deviation from the normal state oceurs.
; i The dispatcher makes judgments and decisions and executes them with the aid of
B, 12r i a computer. Simutation tools and software puckages written in high-levet language
MW oL £ are implemented for efficient operation and reliable controf of the system. This is
2 referred 1o as SCADA, an acronym for “supervisory control anid diuta acquisition”
6 L i
| . 1 1.6 COMPUTER ANALYSIS
4 i | 1 1 [ H
0 5 10 15 20 25 For a pawer system to be practical it must be safe, reliable, and economical. Thus
Time. hr i many analyses must be performed to design and operate an electrical system. How-
ever, before going inta system analysis we have to model all components of elec-
FIGURE 1.2 ! trical power systems. Theretore, in this text, after reviewing the concepts of power
Daily load cycte for Example I.1. a and three-phase circuits, we will caleulite the parameters of a multi-circuit trans-
; mission line. Then, we will model the transmission line and look at the perfor-
= mance of the transmission line. Since transformers and generators are a part of
% the system, we will model these devices. Design of a power system, its operation
l § and expansion requires much analysis. This text presents methods of power system
Pavg = 11.5417 ; analysis with the aid of a personal computer and the use of MATLAB. The MAT-
Peak = 18 i} LAB environment permits a nearly direct transition from mathematical expression
LF  =64.12 =
2 i i— . e . . & e ——— T g




to simulation. Some of the basic analysis covered in this text are:

o Evaluation of transmission line parameters

e Transmission line performance and compensation
s Power flow unalysis .

« Economic scheduling of generation

e Synchronous machine transient analysis

+ Balanced fault |

s Symmetrical components and unbalanced fanlr -
= Swbility stadics

* Power system control

Many MATLAB functions are developed for the above studies thus allowing

the student to concentrate on analysis and design of practica) systems and spend
less 1me on programming.

PROBLEMS

i.1.

The demand estimation is the startzng point for planning the future electric
power supply. The consistency of demand growth over the years has led

10 numerous attempts to {it mathematical curves to this trend. One of the
simplest curves is

P o )D“(,u(f.—!u)

where a is the average per unit growih rate, 7 is the demand in year £, and
P 1s the given demand at year bg.

Assume the peak power demand in the United States in 1984 is 480 GW with
an average growth rate of 3.4 percent. Using MATLAB, plot the predicated

peak demand in GW from 1984 to 1999, Estimate the peak power demand
for the year 1999,

1.2. In a certain country, the energy consumption is expected to double in 10
years. Assuming a simple exponential growth given by
P= PQCM
caleulate the growth rate q.

1.3.

LO. LUMEPUEEK ANALY NS 13

The annual load of a substation is given in the following table. During each
month, the power is assumed constant at an average value. Using MA'TLAB
and the bareyele function, obtain a plot of the annual load curve. Write the
necessary siatements to find the average load and the annual lead factor.

Annual System Load
Interval, month | Load, MW
January
February
March
April
May
June
July
August
September
October
November
December
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CHAPTER

2

BASIC PRINCIPLES

2.1 INTRODUCTION

The concept of power is of central importance in electrical power svstems and iy
th‘c main topic of this chapter. The typical student will already have ‘sludied tuch
of this material, and the review here will serve to reinforee the power concepts
encountered in the electric circuit theory.

. in Il_lis chapter, the flow of energy in an ac circuit is investigated. By using
various trigonometric identitics, the instantaneous power p(t] is resolved into lw:)
components. A plot of these components is obtained using MATLA B to observe that
ag network_s not only consume energy at an average rate, but also borrow and return
cncrgy to 1ts sources. This leads to the basic definitions of average power /7 and
feachive power (. The volt-ampere S, which is a mathematical formulation based
on the phasor forms of voltage and current, is introduced. Then the complex power
baluance i demonstrated, and the transmission inefficiencies cansed by loads with
low power factors are discussed and demonstrated by means of several examples.

~ Next, the transmission of complex power between two voltage sources is con
sidered, and the dependency of real power on the voltage phase ;mg]c and the de-
Pﬁﬂden‘cy of reactive power on voltage magnitude is established. MATLAR is used
conven.:emly to demonstrate this idea graphically.
of a tl;lllzlally,dthe balanced lhre&phvase circ.ui{ is'cxamincd. An important property
nced three-phase system is that it deiivers constant power. That is, the
i4

i
i
§
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2.2 POWER [N SINGLE-PHASE AC CIRCUITS 1>

power delivered does not fiuctuate with time as in a single-phase system. For the

- purpose of analysis and modeling, the per-phase equivalent circuit is developed for

the three-phase system under balanced condition.

2.2 POWER IN SINGLE-PHASE AC CIRCUITS

Figure 2.1 shows a single-phase sinusoidal voltage suppiying a load.

i(t) :
o
+
u(t)
FIGURE 2.1

Sinusotdal source supplying a load,

Let the instantanecus voltage be

n(t) = Vi, cos(wt + &) 2.
and the instantaneous current be given by -
i{t) = I, cos(wt + 8,) {2.2)

The instantaneous power p(t) delivered to the load is the product of voltage (t)
and current i(t) given by

p(t) = v(t) i{t) = Vi Ly, cos(wt + 8,) cos{wt + 6;)

In Example 2.1, MATLAB is used (o plot the instantancous powet p(t), and the
result is shown in Figure 2.2, In studying Figure 2.2, we note that the frequency of
the instantaneous power is twice the source frequency. Also, note that it is possible
for the instantaneous power to be negative for a portion of each cycle. In a passive
network, negative power implies that energy that has been stored in inductors or
capacitors is now being extracted. )
It is informative to write (2.3) in another form using the trigonometric identity

1
cos Acos B = %cos(A - B)+ 5 cos(A + B) (2.4)

O i Giin, e
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which results in

1
plt) = SV’”I"‘ [cos(fy — 8,) + cos(2wt + 8, + é.)]
1.
= §Lm.{,,l {cos(f, - 8,) + cos[2fwt + 8,) — (6, — 8,01}
I..
= 51/,,1{,,1 [cos{By — 8;) + cos 2(wit + 8,) cos(8, — ;)
+sin 2(wt + 8,) sin(8, — 4,)]

The root-mean-square (rms) value of u(t) is [V = V,,/+v/2 and the rms vajue of

{tyistl = I, /vV2 . Letd = (6 — 8,). The above equation, in terms of the rms
values, is reduced to

plt) = [V||Icos OfL + cos 2{wt + 6,)] + |V sin 8 sin 2(wt + 0,)

—

— o

pult) . pxlt)
Energy flow into Energy torrowed and
the circuit returned by the circuit

(2.5

wh:?r'c ()Iis the angle between voltage and current, or the impedance angle. # is
positive :f[_hc load is inductive, (i.e., current is lagging the voltage) and € is negarive
if the load is capacitive (i.e., current is leading the voltage).

~ The instantancous power has been decomposed into two components. The
first component of (2.5) is

pr{t) = [V cos 8 + {V]{I| cos 8 cos 2wt + 8,1 (2.6}

'{l'hc seco_nd term in (2.6}, which has a frequency twice that of the source, accounts

aor the sinuserdal variation in the absorption of power by the resistive portion of
the foad. _Smce the average value of this sinusoidal function is zero, the average
power delivered to the load is given by

P=1W{I|cos§ (2.7

't{h:s 15 the power absorbed by the resistive component of the load and is also re-
a;Tt?q ;O rra]::;g t:e acti ve. power or re.'af power. The product of the rms voltage value
- Vo{} a;ﬂgnt \_f#lue [V} is called the apparent power and.is measured in
i ep a:; e prod‘uct of the apparent power and the cosine of the angle
——_ 8 current yields ‘the relal‘ power. Because cos 8 plays a key role in

ermination of the average power, it is called power factor. When the current

1 : .
vag;s the voliage, the power factor is considered lagging. When the current leads the
Oltage, the power factor is consideraed leading,

The second component of (2.5)

px(t) = V||| sin §sin 2(wt 4 4,) (2.8}

e CAUIYY R LY SMNULLE-TFIAJ0E A iR vl i g L

pulsates with twice the frequency and has an average value of zero. This compa-
nent accounts for power oscillating into and out of the lpad because of its reactive
element (inductive or capacitive). The amplitude of this pulsating power is calied
reactive power and is designated by ().

Q= |V|H|sind (2.9)

Both P and Q have the same dimension. However, in order to distinguish between
the real and the reactive power, the term “var” is used for the reactive power (var is
an acronym for the phrase “volt-ampere reactive™). For an inductive load, current is
tagging the voltage. 8 = (8, — 8,) > O and Q is positive; whereas, for a capacitive
foad, current 1s leading the voltage, 8 = (0, — ¢,) < 0 and  is negative.

A careful study of Equations {2.6) and (2.8) reveals the foltowing character-
istics of the instantancous power.

e For u pure resisior. the impedance angle is zero and the power factor is unity
{UPF), so that the apparent and real power are equal. The electric energy is
transformed into thermal energy.

« If the circuit is purely inductive, the current Jags the vohage by 90 and the
average power is zero. Therefore, in a purely inductive circuit, there is no
transformation of energy from electrical to nonelectrical form. The instanta-
neous power al the ternunal of a purely inductive circuit oscillates between
the cireait and the source. When p(f) is positive, encrgy is being stored in
the magneuc field associated with the inductive elements, and when p(?) is
negative, energy 1s being extracted from the magnetic fields of the inductive
elements.

o If the load is purely capacitive, the current leads the voltage by 907, and the
average puwer is zero, so there is no transformation of energy from electri-
cal to nonelectrical form. In a purely capaciuve circuit, the power oscillates
between the source and the electric field associated with the capacitive ele-
ments.

Example 2.1

The supply voltage in Figure 2.1 is given by u{t) = 100coswt and the load is
inductive with impedance Z = 1.25/60° . Determine the expression for the
mstantaneous current i(#) and the instantaneous power p{t). Use MATLAB to plot
i), ve{8), (). prif). and px () over an interval of 0 to 2x.

10020°

nar = 7m——— =804 —60° A
fmar = 257607




v(t) = Vi coswt, i{t) = I, cos{wt — 60) plt) = v(t)i(t)
100 6000
50 Vo 4000 S
6 / 2000 -
—50}+ 0
L | \/, \/
0 100 200 300 400”00 156" 500 50 200
wt, degree wi, degree
r-{t), Eq.26 pe(t), Eq.28
4000 4000 »
3000 A 2000 |
2000 . - 0
1000 } \ / \ / ~2000
0 L i i 1 L 1
0 100 200 300 4uo” 000 100 200 300 400
wt, degree wt, degree
FIGURE 2.2

Instantancous current, voliage, power, Egs. 2.6 and 2.8,

therefore

i(t) = 80 cosfwt ~ 60°) A
p(t) = v(t}i(t) = 8000 cos wt cos(wt — 60°) W
The following statements are used to plot the above instantaneous quantities and

the instantaneous terms given by (2.6) and (2.8).

Vo = 100; thetav = 0: % Voltage amplitude and phase angle

Z = 11255 gama = 60; % Impedance magnitude and phase angle
thetai = thetav - gama; % Current phase angle in degree
theta = (thetav - thetai)*pi/180; % Degree to radian

Inm = Vm/7,
wt = 0?‘05:2*pi;
v = Vm*cos(wt):

% Current amplitude
% wt from 0 to 2*pi
% Instantaneous voltage

2.3 LUMPLEX POWER 1Y

i = Im*cos(wt + thetai*pi/180); % Instantanecus current
p = v.*i; % Instantaneous power
Vv = Vm/sqrt(2); I=Im/sqrt(2); 4 rms voltage and current
P
Q

= V+xI*cos(thetal); .'/. Averz_\ge pover
= V«I*sin(theta); % Reactive power
S =P + j*Q % Complex power
pr = Px(1 + cos(2x{ut + thetav))); ‘f Eq. (2.6)
px = Q¥sin(2+(wt + thetav)); % Eq. (2.8}

Pxones(1, length{ut});%Average power of length w for plot
xline = zeros(l, length(wt}); %generates a zero vector
wt=180/pi*ut; % converting radian to degree
subplot(2,2,1}, plot(wt, v, wt,i,wt, xline), grid
title([’v(t)=Vm coswt, i(t)=Im cos(wt+’',num2str(thetai), *)?1)
xlabel(’wt, degree’)

subplot(2,2,2}, plot(wt, p, wt, xline), grid

title(Cp{t)=v{t) i(t)’),xlabel(’wt, degree’)

subplot(2,2,3}, plot(wt, pr, wt, PP,wt,xline), grid
title(’pr(t) Eq. 2.6’), xlabel(’wt, degree’)}

subplot{2,2,4}, plot{wt, px, wt, xline), grid

titleCpx(t) Eq. 2.8'), xlabel(’wt, degree’}, subplot{111)

o
-
"

2.3 COMPLEX POWER

The rms voltage phasor of (2.1) and the rms current phasor of (2.2) shown in Fig-
ure 2.3 are

V = |VI£8, and I = {I]/86;

The term V I* results in

P

FIGURE 2.3
Phasor diagram and power riangle for an inductive Joad (lagging PF).

VI* = |V|[I{L6, — 6; = [V||1]26
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= {V|}|cos 8 + j|V|[I|sin 8

The above equation defines a complex quantity where its real part is the average

(real) power P and its imaginary part is the reactive power Q. Thus, the complex
power designated by S is given by :

S=VI'=P+4Q (2.10)

The magnitude of 5, {S| = /P? + @2, is the apparent power; its unit is volt-
amperes and the larger units are kVA or MVA. Apparent power gives a direct indi-
cation of heating and s used as a rating unit of power equipment. Apparent power
has practical significance for an electric utility company since a utility company
must supply both average and apparent power to consumers,

The reactive power @) is positive when the phase angle § between voltage and
current (impedance angle} is positive (i.e., when the load impedance is inductive,
and 1 lags V). Q is negative when 4 is negative (i.e., when the load impedance is
capacitive and [ leads 1) as shown in Figure 2.4.

In working with Equation (2.10 ) it is convenient to think of P,Q, and S as
forming the sides of a right triangle as shown in Figures 2.3 and 2.4.

Wy, «
U: 'gu 5 T
FIGURE 2.4
Phasor diagram and power triangle for a capacilive load {leuding PF).
If the load impedance is Z then
V=2I (2.11)

substituting for V into (2.10) yields

S=VI"=ZII" = RI* + i X\I}? (2.12)

From (2.12) it is evident that complex power § and umpedance Z have the same
ang!e. Because the power triangle and the impedance triangle are similar triangles,
the impedance angle is sometimes called the power an gle.
Similarly, substituting for I from (2.11}) into (2.10) yields
' 1228k

. i
z = 7 i

L
{
\
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From (2.13), the impedance of the complex power S is given by

e

VA <

(2 54)

2.4 THE COMPLEX POWER BALANCE

From the conservation of energy, it is clear that real power supplied by the source is
equal to the sum of real powers absorbed by the load. At the same time, a balance
between the reactive power must be maintained. Thus the total complex power
delivered to the loads in parsallel is the sum of the complex powers delivered to
each. Proof of this is as follows:

I I Iy I3

FIGURE 25
Three Ioads in paratlel.

For the three loads shown in Figure 2.5, the total camplex power is given by

S=VI=Vh+ L+ L' =V + VI + VI {2.15)

Example 2.2

In the above circuit V' = 1200£40° V, Z; = 60 + j0'Q, Zy = 6 + j12 Q and
Z3 = 30 — 730 Q. Find the power absorbed by each load and the total complex
power,

1200£0°
=275 —90450A
1 8020 + 70
1200£0°
=0 40— 80 A
=551 1
1200£0°
=0 o904 420 A
=% 5% +J
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Sy = VI = 1200£0°(20 — jO) = 24,000 W + 50 var
Sy = VI3 = 1200£0°(40 + 780) = 48,000 W + 796, 000 var
Sy = VI; = 1200£0°(20 — 520} = 24,000 W — 524,000 var
The total load complex power adds up to
S=584+85+ 83 =96,000 W+ 772,000 var

Alternatively, the sum of complex power delivered to the load can be obtained by
first finding the total current.

IF=nL+1I+1I;=(20 + jO) + {40 — j80) + (20 + ;20)
= 80 — 460 = 100/-36.87° A
and
S = VI = (1200£0°}{100/36.87°) = 120, 000/36.87° VA
= 96.000 W + 572.000 var

A final insight is contained in Figure 2.6, which shows the current phasor diagram
and the complex power vector representation.

52
S
I3
1 S\
Sy
I
I
FIGURE 2.6

Current phasor diagram and power plane diagram.

The complex powers may also be obtained directly from (2.14)

V> (1200)? ;
R D = w
1 7 %0 24,000 W44 0
Vi2 (1200)° .
So=1t _ o W
2 7z 6712 48,000 W -+ 796,000 var
VI?  (1200)?
D l g AREUM — 94
3 Zs 30+ 730 24,000 W — 524,000 var

&
=
-
T
3
T
3
2
-
-
§
3
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2.5 POWER FACTOR CORRECTION

It can be seen from (2.7) that the apparent power will be larger than P if the power
factor 1s less than 1. Thus the current 7 that must be supplied will be larger for
PF < 11than it would be for PF = 1, even though the average power P supplied
is the same in either case. A larger current cannot be supplied without additional
cost to the utility company. Thus, it is in the power company’s {and its customer’s)
best interest that major loads on the system have power factors as close to 1 ag
possible. In order to maintain the power factor close to unity, power companics
install banks of capaciters throughout the network as needed. They also impose an
additional charge 1o industrial consumers who operate at low power factors. Since
industrial loads are inductive and have low lagging power factors, it is beneficial to
install capacitors to improve the power factor. This consideration is not important
for residential and small commercial customers because their power factors are -
close to unity,

Example 2.3
Two loads 2| = 100 + 0 Qand Z, = 10 4+ j20 © are connected across a 200-V
rms, 60-Hz source as shown in Figure 2.7.

(a) Find the total real and reactive power, the power factor at the source, and the
total current.

N (2
I Iy 12 hc
10 62 1 ]
Q)
200V (ﬂ 100 2 —c ‘
J20 0 | V'
I P
‘ Qe

. FIGURE 2.7

Circuit for Example 2.3 and the power triangle.

200£0°
i = =2/0° A
1 100
200/0°
. S Y Y
2= 10152 78

Sy = VI = 200£0°(2 — jO) = 400 W + 50 var
Sa = VI3 = 200£0°(4 + j8) = 800 W + j1600 var
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Total apparent power and current are

8= P+ jQ = 1200 + 71600 = 2000/53.13° VA
s S*  2000£-53.13°
T VST 20000

Power factor af the source is

=10£-53.13° A

PF = cos(53.13) = 0.6 lagging

(b) Find the capacitance of the capacitor connected across the foads to improve the
overall power factor to 0.8 lagging.

Torat real power P = 1200 W at the new power factor 0.8 lagging. Therefore

8 = cos™H{0.8) = 36.87°

Q' = Ptan @ = 1200 tan(36.87°) = 900 var
(0 = 1600 — 900 = 700 var

VI (2000
Sp T 4700
_ 10%

T 27 (60)(57.14)

Z, =

= —j57.14

= 46.42 uF
The totai power and the new current are

§' = 1200 + 900 = 1500/36.87°
I i _ 1500/—-36.87°
Ve 200£0°
Note the reduction in the supply current from 10 A to 7.5 A.

=7.5/-36.87°

Example 2.4
Three loads are connected in parallel across a 1400-V ﬁns, 60-Hz single-phase
supply as shown in Figure 2.8.

Load 1: Inductive load, 125 kVA at 0.28 power factor.

Load 2: Capacitive load, 10 kW and 40 kvar.

Load 3: Resistive load of 15 kW.

(2) Find the total kW, kvar, kVA, and the supply power factor.

2.5 POWER FACTOR CORRECTION 25

ey
|
o
—]
o
—
i

1400 V C_“) 1 2 3

FIGURE 2.3
Circuit for Example 2.4,

An inductive load has a lagging power factor, the capacitive load has a lead-
ing power factor, and the resistive load has a unity power factor.

For Load 1:
01 = cos™1{0.28) = 73.74° lagging
The load complex powers are

51 = 125/73.74 kKVA = 35 kW + 7120 kvar
Sy = 10 kW — 740 kvar

Sy = 15 KW + jO kvar

The total apparent power is

S=P+iQ=5+5+5
= (35 4 J120) + {10 — 740) + (15 + 70)
= 60 kW + j80 kvar = 100/53.13 kVA

The total current is

§* 100,000/ -53.13°
— = . = 7143/-53.13° A
1% 1400£0° -

The supply power factor is

I=

PF = cos(53.13) = 0.6 lagging

(b) A capacitor of negligible resistance is connected in paralle} with the above loads
to improve the power factor to 0.8 lagging. Determine the kvar rating of this ca-
pacitor and the capacitance in ;F.

L TR O T SR R
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Total real power F = 60 kW al the new power factor of 0.8 lagging results in the
new reactive power Q.

8 = cos™'(0.8) = 36.87°
Q" = 60tan{36.87°) = 45 kvar
Therefore, the required capacitor kvar is

Q. =80—45=35 kvar

and
B V2 1400?
A= 5 T Jas000 - 0009
= A® s
2r(60)(56) M

and the new current is

S 60,000 — 745, U(l{)
V- 1400400
Note the reduction in the supply current from 71.43 A to 53.57 A.

V' =

53.57/-36.87° A

26 COMPLEX POWER FLOW

Consider two ideal voltage sources connec:ud by a line of impedance Z = R +
7-X §las shown in Figure 2.9,

P
iy

Z=R+iX =]Z|

¥ Va

FIGURE 1.9
Two interconnected voltage sources.

Let the phasor voltage be 1] = |1} |£8) and Vi = |V4|Zd5. For the assumed direc-
tion of current

1, < Wled = olze, i

2l Tt

T A g i P e Sk . Al
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The complex power S is given by

Val

S =Vilt = s (Wil gy 5 _ DAl

12 I, = (Wi 1[IZi 1 [Z|£’Y 2]
V|2 WiV

1217 T Tz

Thus, the real and reactive power at the sending end are

Vil Ve

vil® W2

P = 7 Co5y — 7] cos(y + 6, — &) (2.16)
nl® Wi Wlival

G = IZJ siny \Z] sin(y + §; — 67) (2.17)

Power system transmission lines have small resistance compared to the reactance.
Assuming 1 = 0 (i.e., Z = X /907 ), the above equations become

Vil|Val |
P = I—-!il—ﬁsin(él~6g) (2.18)

Qn = By - 1l costs, ~ )] 219)

Since i = 0, there are no transmission line fosses and the real power sent equals
the real power received.

From the above results, for a typical power system with small B/ X ratio, the
following important observations are made :

1. Equation (2.18) shows that smaltl changes in 8, or d, will have a significant
effect on the real power flow, while small changes in voltage magnitudes will
not have appreciable effeet on the real power flow, Therefore, the flow of real
power on a transmission line is govermned mainly by the angle difference of
the terminal voliages (i.e., o o siné ), where § = §; — &o. If V) leads V5,
4 is positive and the rea) power flows from node 1 to node 2. i V) lags 15, 8
is negative and power flows from node 2 to node 1.

2. Assuming R = 0, the theoretical maximum power (static transmission ca-
pacity) occurs when § = 90° and the maximum power transfer is given by

IVAIIV2!

Pras = =2 (2.20)

In Chapter 3 we learn that increasing § beyond the static transmission capac-
ity will result in loss of synchronism between the two machines.




3. For maintaining transient stability, the power system is usually operated with
small load angle &. Also, from {(2.19) the reactive power flow is determined
by the magnitude difference of terminal voltages, {i.e., Q x [V|]| — |V5]3.

Example 2.5

Two voltage sources V; = 120/—-5 V and Vo = 10040 V are connected by a short
line of impedance Z = 1 + 70 as shown in Figure 2.9. Determine the real and
reactive power supplied or received by each source and the power loss in the line.

120£~5° - 100/0°

I, = = 3.135/-110.02°
12 T+,7 3.135¢ 0 A
00/0° — 120/ - 5°
Iy = 19020 2 =3.135/69.98° A
1+ 57

S1s =W, I, = 376.2/105.02° = —975 W + 7363.3 var
Sy = Vols, = 313.5/-69.98° = 107.3 W — 7294.5 var

Line loss is given by
S51=8+5,=98 W + j68.8 var
From the above results, since P is negative and P is positive, source 1 receives

97.5 W, and source 2 generates 107.3 W and the real power loss in the line is 9.8
W. The real power loss in the line can be checked by

P =Rl = (1)(3.135)2 = 9.8 W

Also, since @, is positive and (, is negative, source 1 defivers 363.3 var and source

2 receives 294.5 var, and the reactive power loss in the line is 68.6 var. The reactive
power loss in the line can be checked by

QL = Xz = (T)(3.135) = 68.8 var
Example 2.6

This example concerns the dire
Write a MATLAR program for
gle of source 1 is changed fro
magnitudes of the two sources
constant. Compute the cornple
the real power and plot By
commands

ction of power flow between two voltage sources.
the system of Example 2.5 such that the phase an-
m its initial value by £30° in steps of 5°. Voltage
and the voltage phase angle of source 2 is to be kept
x power for each source and the line loss. Tabulate
«Pa, and Py versus voltage phase angle 4. The following
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&7

El = input(’Source # 1 Voltage Mag. = ');

al = input(’Source# 1 Phase Angle = ');

E2 = input(’Scurce # 2 Voltage Mag. = ’);

a2 = input(’Source # 2 Phase Angle = 7);

R = input{’Line Resistance = ’);

¥ = input(’Line Reactance = ’'); o _

Z = R+ j*¥; 4 Line impedance
al = (-30+al:5:30+al}’; % Change al by +/- 30, col. arfay
alr = al*pi/180; % Convert degree to radian

k = length{al);

a2 = ones(k,1)*a2;
a2r = a2+¥pi/180;
V1 = Ei.*cos(alr) + j*El.xsin(alr);

V2 = E2.%cos(al2r) + j*E2.*sin(alZr);

[12 = (Vi - V2)_./Z; 1I21=-112;

S1 = Vi.xconj(I12); P1 = real(81); Qi =

imag(S1);

82 = V2.*conj(I21}; P2 = real(S82); 02 = i.mag_(S2);
SL = S51+82; PL = real(SL}; QL = imag(SL};
Resultl = (a1, P1, P2, PLI; }
disp(’® Delta 1 P-1 p-2 P-L ")
disp(Resultl)

plot{al, P1, al, P2, al,PL) ’
xlabel(’Source #1 Voltage Phase Angle’)
label(’ P, Watts'), ]
jt(ext(—izﬁ, -550, *P17), text(-26, 600,'P2%),
text(-26, 100, *PL’)

result in
Source # 1 Voltage Mag. = 120
Source # 1 Phase Angle = -5

Source # 2 Voltage Mag. = 100
Source # 2 Phase Angle =0
Line Resistance = 1

Line Reactance = 7T
al P-1 p-2 P-L
—32?3300 -872.2049 967.0119 94.8070
-30.0000 ~759.8461 832.1539 72.3078
-25.0000 -639.5125 692.4848 52.9723
-20.00600 -512.1201 549.0676 36.9475
-15.0000 -378.6382 402.9938 24 .3566
-1G.0000 -240.0828 255,3751 15.2923
~5.,0000 -97.5084 107.3349 9.8265 »

0 48,0000 -40.000¢ 8.0000

% Create col. array of same length for'a2
% Convert degree to radian
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5.0000

195.3349 -185.5084 9.8265
10.0000 343.3751 -328.0828 15.2923
15.0000 490.9938  -466,6382 24.3558
20.0000 637.0676 -600.1201 36.5475
25.0000 780.4848 -727.5125 52,9723

1000

o

800 -
600
400
P 200 | /
Watts
~200
—400
=600 F
~-800
—1000 -
—40 - -20 —10 0 ' 10 20 30
Source #1 Voltage Phase Angle |

FIGURE 2.10
Reul power versus voltage phase angle §.

Examination of Figure 2.10 shows that the flow of real power along the intercon-
nection is determined by the angle difference of the tenminal voltages. Problem 2.9
requires the development of a simifar program for demonstrating the dependency
of reactive power on the magnitude difference of terminal voltages.

2.7 BALANCED THREE-PHASE CIRCUITS

;l:j:n?‘ratmn transmission and distribution of electric power is accomplished by
o gen(:, thl:e phase circuits. At the generating station, three sinusoidal voltages
e l;;a[fa having the same amplitude but displaced in phase by 120°. This is
o ala nced source. If the generated voltages reach their peak values in the

quential order ABC, the generator is said to have a positive phuse seguence,

sho
oh wrn in Figure 2.1 1(a). If the phase order is ACB, the generator is said to have a
8ative phase sequence, as shown in Figure 2.11(b).

2.7. BALANCED THREE-PHASE CIRCUITS 31

E(.‘n EBn

™ "

EA“ E,‘ln

EBrl (a) : E‘C” (b)

FIGURE 2.11
{a} Posilive, or ABC, phase sequence. (b) Negative, or ACB, phase sequence.

In a three-phase system, the instantaneous power delivered to the external
loads is constant rather than pulsating as it is in a single-phase circuit, Also, three-
phase motors, having constant torque, start and run much bester than single-phase
motors. This feature of three-phase power, coupled with the inherent efficiency of
its transmission compared to single-phase (less wire for the same delivered power),
accounts for its universal use,

A power systemn has Y-connected generators and usually includes both A-
and Y-connected loads. Generators are rarely A-connected, because if the voltages
are not perfectly balanced, there will be a net voltage, and consequently a circulat-
mg current, around the A. Also, the phase voltages are lower in the Y-connected
generator, and thus less insulation is required. Figure 2.12 shows a Y-connected
generator supplying balanced Y-connected loads through a three-phase line. As-
suming a positive phase sequence {phase order ABC) the generated voltages are:

Egn = |E,)L0°
EBH = |EP!£_1200 .21
Eca = |Ep|(—240°

In power systems, great care is taken to ensure that the loads of transmission lines
are balanced. For balanced loads, the terminal voltages of the generator Va,, Vi,
and Vioy, and the phase voltages Vayn, Vi and Vo, at the load terminals are bajanced.
For “phase A" these are given by

Van = Epn ~ Zcla : (2.22)
Van = Van — Zrl, (2.23)
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FIGURE 2.12
A Y-connected generator supplying a Y-connected load.

2.8 Y-CONNECTED LOADS

To find the relationship between the line voltages (line-to-line 'voltages) and the
phase voltages (line-to-neutral voltages), we assume 2 positive, or ABC, sequence.,

We arbitrarily choose the line-to-neutra voltage of the a-phase as the reference,
thus

Van = |V]£0°
Vin = IV, £-120° (2.24)
Ven = |Vp|£—240°

where }Vp}.represents the magnitude of the phase voltage (line-to-neutral voltage).
The line voltages at the load terminals in terms of the phase voltages are found
by the application of Kirchhoff’s voltage law

Vab = Van — Vo = [Vp)(1£0° — 1£-120°) = V3V, 12300
Voo = Vin = Vi = [Vp[{1£—120° — 1/-240°) = ValV,[L-90°  (2.25)
Vea = Von ~ Van = |V3|(1£-240° — 1£0°) = /3|V,}£150°

The voltage phasor diagram of the Y-connected loads of Figure 2,12 is shown

in Figure 2,13, The relationship between the line voltages and phase voltages is
demonstrated graphically,
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Via V(:n Vas

FIGURE 2.13
Phasor diagram showing phase and line voltages.

If the rms value of any of the line voftages is denated by Vi, then ene of the
important characteristics of the Y-connected three-phase load may be expressed as

Vi, = V3|V, £30° (2.26)

Thus in the case of Y-connected loads, the magnitude of the line vollage is
V3 times the magnitude of the phase voltage, and for a positive phase sequence,
the set of line voltages feads the set of phase voltages by 30°.

The three-phase currents in Figure 2.12 also possess three-phase symmetry
and are given by

L
foomssl B o G
7= In
L= 1200 — 6 227)
ZP
Vs
L= 2 = |L|£—240° — ¢
7 =l

where £ is the impedance phase angle,
The currents in lines are also the phase currents (the current carried by the
phase impedances). Thus

In=1, (2.28)

i
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2.9 A-CONNECTED LOADS

A balanced A-connected load (with equal phase impedances)

is shown in Fig-
ure 2.14.

¢ Lo,
Topa”
: Ib. ZP TICLI.
FIGURE 2.14

A A-connected load.

Itis clear from the inspection of the circuit that the line voliages are the same
as phase voltages.
V=V, ; (2.29)

Consider the phasor diagram shown in Figure 2.15, where the phase current

: ; fab is
arbitrarily chosen as reference. we have

Lp = 11| £0°
Lo = | I} 2~120° (2.30
Ia = |1, £—240°

where |J;| represents the magnitude of the phase current,

FIGURE 2.15

Phasor diagram showing phase and line curremts.
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. graphically in Figure 2.15.
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The relationship between phase and line currents can be obtained by applying
Kirchhoff's current law at the comners of A.

Io = Iuy = lea = |IH1£0° — 1£-240°) = V/3|L,|£—30°
Iy = Tpe — Top = |1 (1£~120° — 1£0°) = /3|1,|£—150° (2.31)
Lo = lea = Ipe = [T (1£~240° — 1£-120°) = V3|L,}£90°
The refationship between the line currents and phase currents is demonstrated
If the rms of any of the line currents is denoted by I;, then one of the impor-
tant characteristics of the A-cannected three-phase load may be expressed as

I, = V3|1, (—30° (2.32)

Thus in the case of A-connected loads, the magnitude of the line current is /3
times the magnitude of the phase current, and with positive phase sequence, the set
of line currents lags the set of phase currents by 30°.

210 A-Y TRANSFORMATION

For analyzing network problems, it is convenient to replace the A-connected cir-
cuit with an equivalent Y-connected circuit. Consider the fictitious Y-connected
circuit of Zy (¥phase which is equivalent te a balanced A-connected circuit of
Z Qfphase, as shown in Figure 2.16.

FIGURE 2.16
{al A to (b) Y-connection.

For the A-connected circuit, the phase current 1, is given by

Vab | Vae _ Var + Ve
Ia=___fi+____u

= (2.33)
Za  Za VAN
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FIGURE 2.17
Phasor diugram showing phase and line voltages,

The phasm c.]iagram in Figure 2.17 shows the refationship between balanced phase
and line-to-line voltages. From this phasor diagram, we find

Vab + Vie = V3 |Van | £30° + V3 |Vn | £ - 30° (2.34)
= 3IVun (2.35)

Substituting ir (2.33), we get

}'u g ‘?’Vun
Za
or
Zn
I/:].?l = _:'j'_fn (2.36)

Now, for the Y-connected circuit, we have

Van = Z‘r’Ia (237)
Thus, from (2.36) and (2.37), we find that

_Za

z
=8

(2.38)

2.11 PER-PHASE ANALYSIS

The current in the neutral
g of th - inFi
ol . ¢ balanced Y-connected loads shown in Figure 2.12

Li=L+ILi+1.=0 (2.39)

L 12 BALANUED THREE-PHASE POWEHR 3

Since the neutral carries no current, a neutral wire of any impedance may be re-
placed by any other impedance, including a short circuit and an open circuit. The
return line may not actually exist, but regardless, a line of zero impedance is in-
cluded between the two neutral points. The balanced power system problems are
then soived on a “per-phase” basis. It is understood that the other two phases carry
identical currents except for the phase shift.

We may then look at only one phase, say “phase A" consisting of the source
Vin in series with Z; and Zp, as shown in Figure 2.18. The neutral is taken as
datum and usually a single-subscript notation is used for phase voltages.

Va I o Zy, Va

Lo

& -

—

FIGURE 2.18
Single-phase circuil for per-phase anabysis.

I the load in a three-pliase circuit is connected in a A, it can be transformed
into a Y by using the A-to-Y (ransformation. When the load is balanced, the
impedance of cach leg of the Y is onc-third the impedance of each leg of the A, as
given by (2.38), and the circuit is modeled by the single-phase equivalent circuit.

2.12 BALANCED THREE-I'HASE POWER

Consider a balanced three-phase source supplying a balanced Y- or A- connected
load with the following instantzneous voltages’

Uy = \@[Vpl cos{wt + 8y)
Vpn = V2|V, | cos(wt + 8, — 120°) (2.40)
Pew = V2V cos(wt + 8, — 240°)
_For a balanced load the phase cusrents are
ia = V2|I,] cos(wt + 8;)
iy = V2| L] cos(wt + 6; — 120°) (2.41)
i = V2|1, | cos{wt + 8 — 240°)
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where |V, and |/p| are the magnitudes of the rms phase voltage and current, re-
spectively. The total instantaneous power is the sum of the instantaneous power of
each phase, given by

P3s = Vanta + Vpnip + Uentc (2.42}

Substituting for the instantaneous voltages and currents from (2.40) and (2.41) into
(2.42)

Pag = 2|Vp||Ip] cos{wt + 8,) cos{wt + ;)
+2[Vp||1p| cos(wt + 8, — 120°) cos{wt + ; — 120°)
+2[Vp||Iy| cos(wt + 8, — 240°) cos{wt + 8; — 240°)

Using the trigonometric identity (2.4)

P3g = |VpllIpllcos (8, — 85} + cos(2wt + 8, + 8:)]
+Vpllpllcos(8y — ;) + cos(2wt + 8, + 6; — 240°)]  (2.43)
+[Vallpl{cos(8, — 6;) + cos(2wt + 8, + 8, — 480°)]

The three double frequency cosine terms in (2.43) are out of phase with each other
by 126° and add up to zero, and the three-phase instantanecus power is

Fap = 3|Vplipl cos @ (2.44)

6 = 0, — 8, is the angle between phase voltage and phase current or the impedance
angle.

Note that although the power in each phase is pulsating, the total instanta-
neous power is constant and equal to three times the real power in each phase. In-
decd, this constant power is the main advantage of the three-phase system over the
single-phase system. Since the power in each phase is pulsating, the power, then,
is made up of the real power and the reactive power. In order to obtain formuia
Symmelry between real and reactive powers, the concept of complex or apparent

power (5] is extended to three-phase systems by defining the three-phase reactive
power as ’

Qap = 3|VyllLp|sin 6 (2.45)
Thus, the complex three-phase power is
Szp = Pag + 7Qa¢ (2.46)
or
S3p = 3V, I (2.47)

Equations (2.44) and (2.45) are sometimes expressed in terms of the rms
magnitude of the line voltage and the rms magnitude of the line current. In a Y-
connected load the phase voltage |V,| = |V|/+/3 and the phase current I, = I;.

ot = - e
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In the A-connection V), = Vi and || = |I.]/+/3. Substituting for the phase volt-
age and phase currents in (2.44) and (2.45), the real and reactive powers for either
connection are given hy

Pyy = V3|Vl | cos 8 (2.48)
and

Qi = V3|Vi||IL|sind (2.49)

A comparison of the last two expressions with (2.44) and (2.45) shows that the
equation for the power in a three-phase system is the same for either a Y ora A
connection when the power is expressed in terms of line quantities,

When using (2.48) and (2.49) to calculate the total real and reactive power,
remember that 4 is the phase angle between the phase voltage and the phase current.
As m the case of single-phase systems for the computation of power, it is best to
use the complex power expression in terms of phase quantities given by (2.47):
The rated power is customarily given for the three-phase and rated voltage is the
line-to-fine voltage. Thus, in using the per-phase equivalent circuit, care must be
taken to use per-phase voltage by dividing the rated voltage by /3.

Example 2.7

A three-phase line has an impedance of 2 + 74 £2 as shown in Figure 2.19.

2+ j4Q
AT —r
X
41 =207.85V :\/\
f“"] Uit P ‘%GOSE
) AAAASTT
\/,vaj%ﬂ
C o AAAATT ¢
300
4002

n

FIGURE 2.1%
Thiree-phase circuit diagram for Example 2.7,

The line feeds two balanced three-phase loads that are connected in parallel. The
first load is Y-connected and has an impedance of 30+ 740 Q per phase. The secpnd
load is A-connected and has an impedance of 60 — j45 §2. The line is energized
at the sending end from a three-phase balanced supply of line voltage 207.85 V.
Taking the phase voltage Vg as reference, determine:

(a) The cuirent, real power, and reactive power drawn from the supply.




(b} The line voliage at the combined loads.
(c) The current per phase in each load.
(d) The total real and reactive powers in each {oad and the line.

(a} The A-connected load is transformed into an equivalent Y. The impedance per
phase of the equivalent Y is

— 545 :
Zg=§-0—3~2—=2{)-j15 Q
The phase voltage is
207.
W = L =120V
V3
The single-phase equivalent circuit is shown in Figure 2.20.
7 2+ 740
(o AAAN Y
L . I
3040 200
V) = 120£40°V Vs
7400 —-j150
M o— .
FIGURE 220

Single-phase equivalent circuit for Example 2.7.
The total impedance is

{30 + 740){20 — j15)
(30 + 740} + (20 — 515)
=24+ 74+22-j4=24Q

Z=2+j4+

With the phase voltage Vi, as reference, the current in phase a is

Vi 12040°
=t =5 A
Z 24
The three-phase power supplied is

S=3WI*= 3(120£0°)(540°) = 1800 W
(b) The phase voltage at the load terminal is

V2 = 120£0° — (2 + 74)(5£0°) = 110 — §20
=111.8/-10.3° V

Ew‘m“” a1 s * iy

The line voltage at the load terminal is
Vaar = V3 £30° Vo = V3 (111.8)£19.7° = 103.64/19.7° V

{c) The current per phase in the Y-connected load and in the equivalent Y of the A
load is

Vo 110 - 520

w Mo A U 9 NG
L=z =% w 1 364 -634° A
V, 110 - j20 _ |
A
L= = s J A

» phase current in the criginal A-connected load, i.e., I, is given b
The pt g : g y

; L 4ATU656°
N Y R T,

{d) The three-phase power ubsorbed by each load is

= 2.582/£56.5G6° A

S = 3Vall = 3(111.82 — 10.3°)(2.236£63.4°) = 450 W + j600 var
Sy = 3Vol} = 3(111.8/ ~ 10.3°)(4.472/—26.56°) = 1200 W — 5900 var

The three-phase power absorbed by the line is
Sp =3(Ry + jX I = 3(2 + j0(5)% = 150 W + j300 var

Itis clear that the sum of load powers and line losses is equal t6 the power delivered
from the supply, i.e.,

St + Sy + 81 = (450 + j600) + (1200 — 7900} -+ (150 + ;300)
= 1800 W + jO var

Example 2.8

A three-phase line has an impedance of 0.4 + 72.7 § per phase. The line ‘fecds two
balanced three-phase loads that are connected in parallel. The first Joad is absorb-
ing 560.1 kVA at 0.707 power factor lagging. The second load abs‘orb§ 132 kW :’t
unity power factor. The line-to-line voltage at the load end of the line is 3810.5 V.
Determine:

(a) The magnitude of the line voltage at the source end of the line.

i i line.
(b) Total real and reactive power loss in !he ' -
(c) Real power and reactive power supplied at the sending end of the line:
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; 04435270
O AAAA Y oo PROBLEMS
1 I : : .
: 2.J. Modify the program in Example 2.1 such that the following quantities can
i Vs = 2200/0° be entered by the user:

The peak amplitude V,,,, and the phase angie 8, of the sinusoidal supply

Tio— - v(t} = Vin cos(wt + 8,). The impedance magnitude Z, and the phase angle
-~ of the load.

FIGURE 221

Single-phase equivalent diageam for Example 2.8.

(a) The phase voltage at the load terminals is
3810.5
V3
The single-phase equivalent circuit is shown in Figure 2. 21
The total complex power is

Vo = =2200V

Sk(ze) = 560.1(0.707 + 7O.707) + 132 = 528 + j396
= 660/36.87° kVA
With the phase voltage V, as reference, the current in the line is
e S;?{:W} s
A

660, 000 —36.87°
3(220070°)

The phase voltage at the sending end is

= 100£-36.87° A

s

=2200£0° + (0.4 + j2.?)10(]£-—36.87° = 2401.7/4.58° V
The magnitde of the line voltage at the sending end of the line is
Aol = V3IVi| = V3(2401.7) = d160 v
(b) The three-phase power loss in the line is
Siisey = BRI + J3X [ = 3(0.4)(100)2 + 53(2.7)(100)2
= 12 kW + 58I kvar

(c) The three-phase sending power is

Ssa) = 3L = 3(2401.7£4.58°)(100£36.87°) = 540 kW -+ 7477 kvar

It is clear that the sum of
delivered from the supply, i.e

S

load powers and the line losses is equal to the power

130} = bR{;g‘g} + S;‘(-L,m.,) = {528 + 7396} + (12 +j81) = 540 KW+ j477 kvar

23.

The program should produce plots for i{t}, v(t), p(t}, p,(t} and p,(z), sim-
ilar ta Example 2.1. Run the program for V,, = 100 V, §, = 0 and the
following loads:

An inductive load, Z = 1.25/60°0)
A capacitive load, Z = 2.0£-30°¢1
A resistive load, Z = 2.5/0°0

() From p,(t} and p,(t) plots, estimate the rea} and reactive power for each
load, Draw a conclusion regarding the sign of reactive power for inductive
and capacitive loads.

{b) Using phasor values of current and voltage, calculate the real and reactive
power for each load and compare with the results obtained from the curves.
(c) If the above loads are all connected across the same power supply, deter-
mine the total real and reactive power taken from the supply.

A single-phase load is supplied with a sinusoidal voltage
v{t) = 200cos(377t)
The resulting instantaneous power is
p(t) = 800 + 1000 cos(754t — 36.87°)

(a) Find the complex power supptied to the load.

(b) Find the instantanecus current (¢} and the rms value of the current sup-
plied to the load,

(c) Find the load impedance.

(d) Use MATLAB to plot »(£), p(t). and i{t} = p(t)/v(t} over a range of
0 to 16.67 ms in steps of 0.1 ms. From the current plot, estimate the peak

" amplitude, phase angle and the angular frequency of the current. and vernify

the results obtained in part (b). Note in MATLAB the command for array or
element-by-element division is . /.

An inductive load consisting of R and X in series feeding from a 24.00-\’
rms supply absorbs 288 kW at a lagging power factor of 0.8. Determine R
and X.




24. Aninductive load consisting of R and X in parallel feeding from a 2400-V

nn; ;Jpply absorbs 288 kW at a lagging power factor of 0.8, Determine R
and X.

2.5. Two loads connected in parallel are supplied from a single
source. The two loads draw a total rea] power of 400 kW
of 0:8 lagging. One of the loads draws 120 kW at a po
leading. Find the complex power of the other load,

-phase 240-V ms

wer factor of 0.96

2.6. The ]{:'!Zld shown in Figure 2.22 consists of a resistance R in parallel with a
capac:tor.of reactance X, The load is fed from a single-phase supply through
a line of impedance 8.4 + J11.2 Q. The

ms voltage at the load terminal is
120620° V nms, and the load is takin
_ s aking 30 kVA at 0.8 power f; I
(a} Find the values of 1 and X power factorleading.

(b) Determine the supply voltage V.

84451120

1% 12000°P VSR ——34X

FIGURE 2.22
Circuit for Problem 2.6,

2.7. Twoimpedances, Z, = 0.8 +75.6 Qand Z, = 8516 Q, and a single-phase
!nolf)r are connected in parallel across a 200-V rms, 60-Hz supply as shown
in Figure 2.23. The mator draws 5 kVA at 0.8 power factor lagging.

+ I I
08 . I I
200£0° v i
_ 56 16 T at 0.8 PF lag
FIGURE 223

Circuit for Problem 2.7.

at a power factor
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(a} Find the complex powers S|, .5 for the two impedances, and § for the
motor.

(b) Determine the total power taken from the suppty, the supply current, and
the overall power factor.

(¢) A capacitor is connected in parallel with the loads. Find the kvar and the
capacitance in uF to improve the overall power factor to unity. What is the
new line current?

2.8. Two single-phase ideal voltage sources are connected by a line of impedance
of 0.7 + 2.4 £ as shown in Figure 2.24. V| = 500/16.26° V and V =
585/0° V. Find the complex power for each machine and determine whether
they are delivering or receiving real and reactive power. Also, find the rea!
and the reactive power loss in the fine.

0.7 + j24

S00£16.26° V

FIGURE 2.24
Clicuit fui Prablem 205,

2.9, Write a MATLAB program for the system of Example 2.6 such that the voit-
age magnitude of source 1 is changed from 75 percent to 100 percent of
the given value in steps of 1 V. The voltage magnitude of source 2 and the
phase angles of the two sources is to be kept constant. Compute the complex
power for each source and the line loss. Tabulate the reactive powers and
plot 1, Q2, and @1, versus voltage magnitude |V1]. From the results, show
that the flow of reactive power along the interconnection is determined by
the magnitude difference of the terminal voltages.

2.10. A balanced three-phase source with the following instantaneous phase volt-
ages

tgn = 2500 cos(wt)
Vg = 2500 cos(wt — 120°)
v = 2500 cos(wt — 240°)

Ry



supplies a balanced Y-connected load of impedance Z = 250/36.87°
phase. )

(a) Using MATLARB, plot the instantaneous POWETS p., pp, p. and their sum
versus wt over a range of 0:0.05: 21 on the same graph. Comment on the

nature of the instantaneous power in
each phase an
real power. P d the total three-phase

{b) Use (2._44) to verify the total Power obtained in part ()

£} per

2.11. :ﬂ}\}r:;;;\s/er}g;mreejpi}ase i‘uiply is applied to a balanced Y-connected
e: consistmg of three identical impedances of 4 °
Taking the phase to neutral voltage V,, as reference calculate HI0ETR
{2} The phasor currents in each line, 3

(b) The total active and reactive power supplied to the load

2.12. Repeat Problem 2.11 with the s
; . ame three-phase i i
connection. Take V,, as reference. N Ll
2.13. ;?lebala:jnc?d delta connec%cd load of 15 + J18 €2 per phase is connected at
: +e.r-12 ;)] a three-phase Imf: as.shown in Figure 2,25, The line impedance is
g ;ro lineper [fhasc.f'lg(l}e line is supplied from a three-phase source with a
-to- volta 5 <
fouowing: ge of 207 .85 V rms, Taking V,, as reference, determine the
(a) Current in phase a.
(b) Toral fzomplex power supptied from the source.
{¢) Magnitude of the line-to-line voltage at the load terminal.
14
. + 329

Vil = 20785y
f}cw b

15 + j180)

O AAAA
FIGURE 2.25
Circuit for Problem 2,13,

2.14, Three paralle] three-

h 5 .
three-phase supply. phase loads are supplied from a 207.85-V mms, 60-Hz

The loads are as follows:

_Load 1:A15h
. 0.6 Iag

P motor operatin

. at fujl- :
ging power factor. g load, 93.25 percent efficiency, and
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Load 2: A balanced resistive load that draws a total of 6 kW.
Load 3: A Y-connected capacitor bank with a total rating of 16 kvar.

(1) What is the total system kW, kvar, power facior, and the supply current
per phase?

(b) What is the system power factor and the supply current per phase when
the resistive load and induction motor are operating but the capacitor bank is
switched off?

2.15. Three loads are connected in parallel across a 12.47 kV three-phase supply.

Loud b Inductive load, 60 kW and 660 kvar.

Load 2: Capacitive load, 240 kW at 0.8 power factor.

Load 3: Resistive load of 60 kW.

(a) Find the total complex power, posver factor, and the supply current.

(b} A Y-connected capacitor bank is connected in parallel with the loads.
Find the total kvar and the capacitance per phase in uF to improve the overall
power factor to 0.8 lagging. What is the new Jine current?

2.16. A balanced A-connected load consisting of a pure resistances of 18 Q per
phase is in paralle] with a purely resistive balanced Y-connected load of 12 €}
per phase as shown in Figure 2.26. The combination is connected to a three-
phase balanced supply of 346.41-V ms (line-to-line) via a three-phase line
having an inductive reactance of j3 (1 per phase. Taking the phase voltage
Vun as reference, determine
(a) The current, real power, and reactive power drawn from the supply,

(b) The line-to-neutral and the line-te-line voltage of phase a at the combined
load terminals.
73Q
o e a
Vil =346.41 V¥
Vil ; 189

b_ £

e aas c

$12Q
o™
FIGURE 2.26

Circuit for Problem 2.16.




CHAPTER

3

GENERATOR AND
TRANSFORMER MODELS;
THE PER-UNIT SYSTEM

3.1 INTRODUCTION

Before the power systems network can be solved. it must first be modeled. The
three-phase balanced system is represented on a per-phase basis, which was de-
scribed in Section 2.10. The single-phase representation is also used for unbalanced
systems by means of symmetrical components which is treated in a later chapter.
In this chapter we deal with the balanced system, where transmission lines are rep-
resented by the = model as described in Chapter 4. Other essential components
of a power system are generators and transformers; their theory and construction
are discussed in standard electric machine textbooks. In this chapter, we represent
stmple models of generators and transformers for steady-state balanced operation.

Next we review the one-line diagram of a power system showing generators,
transformers, transmission lines, capacitors, reactors, and loads. The diagram is
usually limited to major transmission systems. As a rule, distribution circuits and
small loads are not shown in detail but are taken into account merely as lumped
loads on substation busses.

48
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In the analysis of power systems, it is frequently convenient to use the per-
unit system. The advantage of this method is the elimination of transformers by

simple impedances. The per-unit system is presented, followed by the impedance
diagram of the network, expressed to a common MVA base.

3.2 SYNCHRONOUS GENERATORS

Large-scale power is generated by three-phase synchronous generators, known as
alternaters, driven either by steam turbines, hydroturbines, or gas turbines. The
armature windings are placed on the stationary part called stator. The armature
windings are designed for generation of balanced three-phase voltages and are ar-
ranged to develop the sume number of magnetic poles as the field winding that is
on the rotor. The field which requires a relatively small power (0.2-3 percent of the
machine rating) for its excitation is placed on the rotor. The rotor is also equipped
with one or mare short-circutted windings known as damper windings. The rotor is
driven by a prime mover at constant speed and #ts field circuit is excited by direct
current. The excitation may be provided through siip rings and brushes by means of
dc generators (referred to as excirers) mounted on the same shaft as the rotor of the
synchronous machine. However, modemn excitation systems usually use ac gener-
ators with rotating rectifiers, and are known as brushless excitation. The generator
excitation system maintains generator voltage and controls the reactive power flow.

The rotor of the synchronous machine may be of cylindrical or salient con-
struction. The cylindrical type of rotor, also called round rotor, has one distributed
winding and a uniform air gap. These generators are driven by steam turbines and
are designed for high speed 3600 or 1800 rpm {two- and four-pole machines, re-
spectively) operation. The rotor of these generators has a relatively large axial
length and smalt diameter to limit the centrifugal forces. Roughly 70 percent of
large synchronous generators are cylindrical rotor type ranging from about 150 to
1500 MVA. The salient type of rotor has concentrated windings on the peles and
nonuniform air gaps. It has a relatively large number of poles, short axial length,
and farge diameter. The generators in hydroelectric power stations are driven by
hydraulic turbines, and they have salient-pole rotor construction.

3.21 GENERATOR MODEL

An elementary two-pole three-phase generator is illustrated in Figure 3.1. The sta-
tor contains three coils, aa’, b, and cc/, displaced from each other by 120 elec-
trical degrees. The concentrated full-pitch coils shown here may be considered to
represent distributed windings producing sinusoidal mmf waves concentrated on
the magnetic axes of the respective phases. When the rotor is excited to produce
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FIGURE 3.}

Elementary two-pole three-phase synchronous generator,

an air gap flux of ¢ per pole and is revolving
flux linkage of the coil varies with the positio
wt is measured in electrical radians from coil
for an N-tumn concentrated coil aa’ will be maximum (N¢) at wt = 0 and zero

atwt = /2. Assuming distributed winding. the flux linkage A, will vary as the
cosine of the angle wt. Thus, the flux linkage with coil a is

at constant angular velocity w, the
n of the rotor mmf axis wt, where
aa’ magnetic axis. The fiux linkage

As = Npcoswt (3.1
The voltage induced in coi] aa’ is obtained from Faraday’s law as
aA .
eaz—a-—:ngbsmut .
= Epar sinwt (3.2)

T
= Bz cosfiwf — -2—}

where

Emar = WN¢ =2nfN$
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Therefore, the rms value of the generated voltage is
E=244fNo 33

where [ is the frequency in hertz. In actual ac machine windings, the amlatu.re
coil of each phase is distributed in a number of slots. Since the emfs induced in
different slots are not in phase, their phasor sum is less than their numerical sum.
Thus, a reduction facter K, called the winding factor, must be applied. For most

three-phase windings K, is about 0.85 to 0.95. Therefore, for a distributed phase
winding, the rms value of the generated voltage is

E=444K,fN¢ (3.4)

The magnetic field of the rotor revolving at constant speed induces three-phase \
sinusoidai voltages in the armature, displaced by 27/3 radians. The frequency of
the induced armature vollages depends on the speed at which the rotor runs and
on the number of poles for which the machine is wound. The frequency of the
armature voltage is given by

f=fZ (3.9)
2 60

where 7i 15 the rotor speed in rpm, referred 1o as synchronous speed. puﬁng normal

conditions, the generator operates synchronously with lhc_ power gnd: This lresulfs

in three-phase balanced currents in the armature. z}ssgmfng‘currem in ‘phabe ais

lagging the generated emf e, by an angle 1, which is indicated by line mn in

Figure 3.1, the instantancous armature currents are

ig = Imay sin{wt — )
2w

1y = Ipaz sinfwt — ¢ — ?] (3.6)
dn
e = Inarsin{wt — ¢ — ?)

According to (3.2} the generated emf e, is maximum when the rot(_)r magnetic a;::
is under phase a. Since i, is lagging e, by an angie_tp, when line mn reac ;
the axis of coil aa’, current in phase a reaches its maximum value. At any 1ns{zfnh
of time, each phase winding produces a sinusoidally_ distr‘ibuted r_nm.tl;lva;eﬁ\:ll:ls
its peak along the axis of the phase winding. These sinusoidally dlstr;' t;e e
can be represented by vectors referred to as space phasors. The a:lnp m:he = oy
sinusoidally distributed mmf f,{#) is represented by the vector ¥y : ong ik e,
phase a. Similarly, the amplitude of the mmfs f;(8) arfd fo(8)ares 0\:?0 r}:al o
F,, and F, along their respective axis, The mmf amplitudes are proportt

B . T T P PL P




instantaneous value of the phase curreat, i.e.,
Fa = Kig = Klmorsin{wt — 9) = Fy, sin(wt ~ ¥)
, . 2
Fb == Klb = Kfma.r sm(wt = 'w - —371) = Fm Sin(wt — 7,!!) - ?3E) (3‘7)
: ; 4
Fe=Kic = Klpgysin{wt — 4 — —3?5) =F, sinfwt — 4 — %)

where K is proportional to the number of armature turns per phase and is a function
of the winding type. The resultant armature mmf is the vector sum of the above
mmfs. A suitable method for finding the resultant mmf is to project these mmfs on

line mn and obtain the resultant in-phase and quadrature-phase components. The
resultant in-phase components are

Fy = Fysin(wt — ¢) cos(wt — ) + F,, sin{wt — ¢ — 233)

2n :
cos(wt — 1 — -3—) + Fin sinfwt — o — %t) cos(wt — g — 4_71)
3
Using the trigonometric identity sinarcos @ = (1/2) sin 2a; the above expression

becomes

Eo .
= —2'—1[5111 2wt ~ ) +sin 2wt — o — ?E)
3
+sin 2{wt — ¢ — 4?ﬂ-)]

The above expression is the sum of three sinusoidal

other by functions displaced from each

27 /3 radians, which adds up to zero, i.e., Fy = 0.
The sum of quadrature components resuits in

£y = Fysin(wt — ) sin{wt — ) + F,, sinwt — ¢ — 2—3—71.) sim(wt — ip — 2??[)

. 4
+Fon Sm(Wt - — -S—ﬂ)sin(wt — - 4—:;—-)

Using the trigonometric tdentity sin? o =

1/2){1 —cos 2 i
becomes {1/2)(1 — cos 2a}, the above expression

F
= —-23[3—c052(wt — ) + cos 2wt — 3 — Qg)

+ cos 2wt — P — %{)]

The sinusoidal ferm
27 /3 radians and
resultant armature

s of the above expression are displaced from each other by
add up to zero, with Fy = 3/2F,,. Thus, the amplitude of the
mmf or stator mmf becomes

3

Fy = §Fm (3.8)

Hgmm- oen il e llhllll

20D T NGO ALELIALD WD A TGS O )

FT'J\
hY
hY
hY
Fsr
| /TI
| //
l rs
5 5
——
e
|
L7 E
// ! d 61,, Eur
- 4 1 : JX(.[ Iu
- L Fs g 1% E»"" '
T

FIGURE 3.2
Combined phasor/vector diagram fur one phase of a cylindrical rotor generator.

We thus conclude that the resultant armatisre mmf has a constant amplitude
perpendicular to line mn, and rotates at a constant speed and in synchronism
with the field mmf{ F;. To see a demonstration of the rotating magnetic field, type
rotfield at the MATLAB prompt. '

A typical synchronous machine field alignment for operation as a generator is
shown in Figure 3.2, using space vectors to represent the various fields. When the
rotor is revolving at synchronous speed and the armature current is zero, the field
mm{ F; produces the no-load generated emf E in each phase. The no-load gen-
erated voltage which is proportional to the field current is known as the excitation
voliage. The phasor voltage for phase a, which is lagging F; by 90°, is combined
with the mnmf vector diagram as shown in Figure 3.2. This combined phasot/vector
diagram leads to a circuit model for the synchronous machine. It must be empha-
sized that in Figure 3.2 mmfs are space vectors, whereas the emfs are time phasors.
When the armature is carvying balanced three-phase currents, F is produced per-
pendicular to line mn. The interaction of armature mmf and the field mmf, known
as armature reaction, gives rise to the resultant air gap mmf Fi,. The resultant mmf
F,+ is the vector sum of the field mmf F, and the armature mmf F;. The resultant
mmf is responsible for the resultant air gap flux ¢, that induces the generated emf
on-foad, shown by E,,. The armature mmf F, induces the emf E,., known as the
armature reaction voltage, which is perpendicular to Fy. The voltage E,; leads
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I, by 90° and thus can be represented by a voltage drop across a reactance Xow
due to the current Jg. Xq is known as the reactance of the armature reaction. The
phasor sum of E and £, is shown by Ej, perpendicular to F,,, which represents
the on-load generated emf,

E=FEu+jXola (.9)

The terminat volitage V is less than E, by the amount of resistive voltage drop
1,1, and leakage reactance voltage drop X,I,. Thus

E=V+[Ra+ {(Xe + Xop)la (3.10)

or
E=V+[Ra+jX ) (3.11)

where X, = (X¢+ X,,) is known as the synchronous reactance. The cosine of the
angle between 7 and V, i.e., cos 8 represents the power factor at the generator ter-
minals. The angle bewween E and Ej, is equal to the angle between the rotor mimf
£, and the air gap mmf F,,, shown by 8. The power developed by the machine
ts proportional to the product of £, Fy and sin &,. The relative positions of these
mmf{s dictates the action of the synchronous machine. When F. is ahead of F,, by
an angle &, the machine is operating as a generator and when F,. falls behind F,.,
the machine will act as a motor. Since E and E,, are proporttional 16 F, and Fy,,
respectively, the power developed by the machine is proportional to the products of
E, Fsr, and sin §,. The angle &, is thus known as the power angle. This is a very
important result because it relates the time angle between the phasor emfs with
the space angle between the magnetic fields in the machine. Usually the developed
power is expressed in terms of the excitation voltage F, the terminal voltage V,
and sin §. The angle § is approximately equal to &, because the leakage impedance
is very small compared to the magnetization reactance.

Due 10 the nonlinearity of the machine magnetization curve, the synchronous
reactance is not constant. The unsaturated synchronous reactance can be found
from the open- and short-circuit data. For operation at or near rated terminal volt-
age, it is usvally assumed that the machine is equivalent to an unsaturated one
whose magnetization curve is a straight line through the origin and the rated volt-
age point on the open-circuit characteristic. For steady-state analysis, a constant
value known as the saturated value of the synchronous reactance corresponding to
the rated voltage is used. A simple per-phase model for a cylindrical rotor genera-
tor based on (3.11) is obtained as shown in Figure 3.3. The armature resistance is
generally much smaller than the synchronous reactance and is often neglected. The

equivaient circuit connected to an infinite bus becomes that shown in Figure 3.4,
and (3.11) reduces o

E=V+iXI, (3.12)
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E <+> V¥ i Load

FIGURE 3.3

Synchronous machine equivalent circuit.

E vV

O

FIGURE 3.4 ‘
Synchronous machine connected to an infinite bus.
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Figure 3.5 shows the phasor diagram of the generator with terminal voltage
as reference for excitations corresponding to lagging, unity, anc.i leading power fa(E-
tors. The voltage regulation of an alternator is a figure of merit used for compan-

(c) Leading pf load

(a) Lagging pf load {b) Upf load

FIGURE 3.5
Synchronous generator phasor diagram.

son with other machines. It is defined as the percentage change in terminal voltage
from no-load to rated load. This gives an indication of the change in field current
required to maintain system voltage when going from no-load to rated load at some
specific power factor,

|Vﬂf} = |v;'a!.ed[ % 100 = M x 100 (313}
] Vrat&d’ l I Vrnted i

The no-load voltage for a specific power factor may be determined by Opera[?ng
the machine at rated load conditions and then removing the load and observing

YR =
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the no-load voltage. Since this is not a practical method for very large machines,
an accurate analytical method recommended by IEEE as given in reference [43]
may be used. An approximate method that provides reasonable results is to con-
sider a hypothetical linearized magnetization curve drawn to intersect the actual
magnetization curve at rated voltage. The value of £ calculated from (3.12) is then
used 1o find the field current from the linearized curve. Finally, the no-load voltage
carresponding to this field current is found from the actual magnetization curve.

3.3 STEADY-STATE CHARACTERISTICS—
CYLINDRICAL ROTOR

3.3.1 POWER FACTOR CONTROL

Most syachronous machines are connected 1o large interconnected electric power
networks. These networks have the important characteristic that the system voltage
at the point of connection is constant in magnitude, phase angle, and frequency.
Such a point in a power system is referred to as an infinite bus. That is, the voltage
at the generator bus will not be altered by changes in the generator's operating
condition.

The ability to vary the rotor excitation is an important feature of the syn-
chronous machine, and we now consider the effect of such a vartation when the
machine operates as a generator with constant mechanical input power. The per-
phase equivalent circuit of a synchronous generator connccted to an indinite bus is
shown in Figure 3.4. Neglecting the armature resistance, the output power is cqual
to the power developed, which is assumed to remain constant given by

Py = RBVIZ] = 3|V|IL, ) cos # (3.14)

where V' is the phase-to-neutral terminal voltage assumed to remain constant. From
(3.14) we see that for constant developed power at a fixed terminal voltage V,
1, cos § must be constant. Thus, the tip of the armature current phasor must fal on

a.venical line as the power factor is varied by varying the field current as shown in
Figure 3.6. From this diagram we have

od = E;sinéy = Xola1 costy (3.13)
Thus E, sind, is a constant, and the locus of £, is on the line ef. In Figure 3.6,
phas'or diagrams are drawn for three armatuce currents. Application of (3.12) for a
lagging power factor armature current f; results in Ey. If § is zero, the generator
operates at unity power factor and armature current has a minimum value, shown
by {az. which results in £, Similarly, F5 is obtained corresponding 10 I3 at a
leading power factor. Figure 3.6 shows that the generation of reactive power ¢an
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FIGURE 3.6
Variation of field current al constant power,

be controlled by meuns of the rotor excitation while maintaining a constant reat
power cutput. The vartation in the magnitude of armature current as the excitation
voltage is varied is best shown by a curve. Usually the field current is used as the
abscissa tnstead of excitation voltage because the field current is readily measured.
The curve of the armature current as the function of the field current resembles the
letter V and is often referred to as the V curve of synchronous machines. These
curves constitute one of the generator's most important characteristics. There is, of
course, a limit beyond which the excitation cannot be reduced. This limit is reached
when § = 90°. Any reduction in excitation below the stability limit for a particular
foad will cause the rotor to puit out of synchronism. The V curve is illustrated in
Figure 3.7 (page 62) for the machine in Example 3.3.

33.2 POWER ANGLE CHARACTERISTICS

Constder the per-phase equivalent circuit shown in Figure 3.4, The three-phase
complex power at the generator terminal is

S3s = VI (3.16)

Expressing the phasor voltages in polar form, the armature current is

I = [El{d —{V]i0 G.17)
|Zs Ly
Substituting for I} in (3.16) results in
at;
Si=3BIVL, s _sY (3.18)

|Zs} - A
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Thus, the real power P34 and reactive power Q34 are

LE|V] v
Py, =3 -4 — ]
i) Zi cos(y—4) — 3 1Z.] cos 7y {3.19)
JENV] 4K
Qi =3 sin(y — §) — -—l— i
o Z) {(y—=48) -3 Z] sin 3.20)
[I(t; R, is neglected, then Z, = FXsand v = gg°, Equations (3.19) and (3.20) reduce
SN
PJ¢ — ST sin g (32])
_ 1V
Qip = 3—£(|EJ cosd — |V (3.22)

f;‘quution (3.21) shows that if |E| and (V| are held f
is changed by varying the mechanical driving torque

sinusoidally with the angle 8. From (3.21), the theoret;
when ¢ = 90°

xed and the power angle &
. the power transfer varies
cal maximum power occurs

E|v
Pnuu:((}d.s} = 3'!'_){_!_' (3.23)

Tht;] l;}chavi:)r of fhc synchronous machine can be described as follows. [f we start
:rlnf F= g and :.nr;fease fhe driving torque, the machine accelerates, and the rotor
‘ r advances with respect to the resultant mmf F,.. This results in an increase
in 4, causing the machine 10 deliver electric power. At some value of § the machine
reacl?es equilibrium where the electric power output balances the increased me-
chanical power owing to the increased driving torque. It is clear that if an attempt
g:;fﬁr:;i; ::. advance § further than 90° by increasing the driving torque, the
5 outp‘ut would decrease from the Pirar point. Therefore, the excess
o ch1 eccontll ndues to accele'rale the machine, and the mmfs will no longer be
disconnec!syit ?rt:)p eu{ The machine loses synchr(‘mism and automatic equipment
o smn.cmr ;; ‘sysl‘en}. The value Pmaz’ is called the steady-state stabil-
s il }:‘Ia { :ry_ limit. In general, stability considerations dictate that a
il ot o ; mfr :chleve Steady-state operation for a power angle at consid-
b i - The control of rcal power fiow is maintained by the generator
_ rough the frequency-power control channel.

Equation (3.22) show
. s that for small 4. i i i
power c approximated o mall 4, cosd is nearly unity and the reactive

g
Qsp = 3';5—'051 ~ ) (.24
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From (3.24) we see that when |E| > [V] the generator delivers reactive power
to the bus, and the generator is said to be overexcited. If {E| < |V, the reactive
power delivered to the bus is negative; that is, the bus is suppiying positive reac-
tive power to the generator. Generators are normally operated in the overexcited
mode since the generators are the main source of reactive power for inductive load
throughout the system. Therefore, we conclude that the flow of reactive power is
governed mainly by the difference in the excitation voltage |E| and the bus bar
voltage |V'|. The adjustment in the excitation voltage for the control of reactive
power is achieved by the generator excitation system.

Exampie 3.1

A 50-MVA, 30-kV, three-phase, 60-Hz synchronous generator has a synchronous
reactance of 9 §) per phase and a negligible resistance. The generator is delivering
rated power at a 0.8 power factor lagging at the rated terminal voltage to an infinite
bus.

(a) Determine the excitation voltage per phase E and the power angle 6.

(b} With the excitation held constant at the value found in (a), the driving torque is
reduced until the generator is delivering 23 MW. Determine the armature current
and the power factor.

{c) If the generator is operating at the excitation voltage of part (a), what is the
steady-stale maximum power the machine can deliver before losing synchronism?
Also, find the armature current corresponding (o this maximum power.

{a) The three-phase apparent power is
50/36.87° MVA
40 MW + 730 Mvar

Sio = 50Zcos™' 0.8

The rated voltage per phase is
3a '
V=-—=1732/0° kV
V3

The rated current is

1 — S _ (50/-36.87)10°
CTV T 3(17.3240°)

= 962.25/-36.87° A

The excitation voltage per phase from (3.12) is
E =17320.5 + (79){962.25/ -36.87) = 23558£17.1° V

The excitation voltage per phase (line to neutral) is 23.56 kV and the power angle
is 17.1°. ’
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(b} When the generator is delivering 25 MW from (3.21) the power angle is

. R
4 = sin l[(&)(?d 56)(17.32) = 10.591

The armature current is

(23,558£10.581° — 17.320/0%)

la=
79

= 807.485/-53.43° A

The power factor is given by cos(53.43) = 0.596 lagging.
(¢} The maximum power occurs at § = Y(°

(EIV] . (23.56)(17.32
‘Dnmz(ii:p_} =3 X. = J—_")g(—_l

= 136 MW
TFhe armature current 1s

(23.558/90° — 17.32020°)
79

‘ru = - 324885636.320 A

The power factor is given by cos(36.32) = (.8057 feading.

Example 3.2

The generator of Example 3.1 is delivering 40 MW at a terminal voltage of 30 kV.

Compute the power angle, armature current, and power factor when the field cur-
rent is adjusted for the following excitations.

(;:) ';‘he excitation valtage is decreased to 79,2 percent of the value found in Exam-
ple 3.1

(b) 'Ii”hf:3 excitation voltage is decreased to 59.27 percent of the value found in Ex-
ampie 3.1,

{c} Find the minimum excitation below which the generator will lose synchronism.

(a) The new excitation voltage is

E = 0.792 x 23,558 = 18,657 V

From (3.21) the power angle is

§ = sin! { : H0)©) = 21.8°

(3)(18.657)(17.32)
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The armature current is

(18657/21.8° ~ 17320/0°)
79

I, = = 769.8/0° A

The power factor is given by cos{0) = 1.
(b) The new excitation voltage is

E = 0.5927 » 23,558 = 13.963 V
From (3.21} the power angle is

| [ (40)(9)
(3)(13.963)(17.32)

& =sin”

} = 29.748°

The armature current is

(13,963729.748° — 17,320£0°)

fyo== :
39

=962.3/36.87° A

From current phase angie, the power factor is cos 36.87 = 0.8 leading. The gener-
ator is underexcited and is actually receiving reactive power.

(¢) From (3.23), the minimum excitation corresponding to § = 90° is

_ o aoe)
T (3(17.329) H2s e

The armature current is

(6,928290° — 17,320/0°)
J'a Fred jg 7

= 2073/68.2° A

The current phase angle shows that the power factor is co568.2 = 0.37 leading.
The generator is underexcited and is receiving reactive power.

Example 3.3

For the generator of Example 3.1, construct the V curve for the rated power of 40
MW with varying field excitation from 0.4 power factor leading to 0.4 power factor
lagging. Assume the open-circuit characteristic in the operating region is given by
E = 20001; V.

The following MATLAB command results in the V curve shown in Figure 3.7.




P = 40: ‘ ' 4 real power, MW
vV = 3q/sqrt(3)+ j*0; % phase voltage, k¥
Zs = j*9; % synchronous impedance

ang = acos(0.4};

theta=ang:-0.01:-ang;%Angle 0.4 leading to 0.4 lagping pf
P = Pxones(1,length(theta));%generates array of sgge gige
lam = P./(3*abs(V)*cos(theta)): % current magnitude kA
Ia = Iam.*{cos{theta) + j*sin{thetal)): % current phasor
E=V + Zs.*Ia; % excitation voltage phasor

Em = abs(E); % excitation voltage magnitude, kV
If = Em*1000/2000; % field current, A

plot(If, Tam), grid, xlabel(’If - A’)
ylabel{’TIa - kA’), text(3.4, 1, ’Leading pf’)
text(13, 1, ‘Lagging pf?’), text(9, .71, *Upf’)
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FIGURE 3.7
V curve for generator of Example 3.3.

34 SALIENT-POLE SYNCHRONOUS GENERATORS

The model developed in Section 3.2 is only vaiid for cylindrical rotor generators

with uni i i
L uniform air gaps. The salient-pole rotor results in nonuniformity of the mag-
netic reluctance of the ajr gap. The reluct I

referred to as the rotor direct axis, is apprec

ance along the polar axis, commonly
tably less than that along the interpolar
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axis, commenly referred to as the guadrature axis. Therefore, the reactance has
a high value X, along the direct axis, and a low value X, along the quadrature
axis. These reactances produce voltage drop in the armature and can be taken into
account by resolving the armature current J, into two components [g, in phase,
and [y in time quadrature, with the excitation voltage. The phasor diagram with the
armature resistance neglected is shown in Figure 3.8. It is no longer possible to rep-

E

X1y

FIGURE 3.8

Phasor diagram for a salient-pole generator.

resent the machine by a simple equivalent circuit. The excitation voltage magnitude
is

|E| = |V]cosd + X1y (3.25)
The three-phase real power at the generator terminal is
P=3|V|l,|cost (3.26)

The power component of the armature current can be expressed in terms of [ and
1, as follows.

|[{.dcosé = ab+ de
= I, cos6 + Iysind (3.27)

Substituting from (3.27) into (3.26), we have

P =3V|(I,cos 5 + I;sin4) (3.28)
Now from the phasor diagram given in Figure 3.8,
|Visind = X,I, (3.29)
or
s Y [0 (3.30)
X"I
g gt S G L S -..,.:....\.-;_‘q’-".n;.-.--ww;.
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Also, from (3.25), I is given by

_|E| = V]cosé

1y X

{3.31)

Substituting for I; and I, from (3.31) and (3.30) into (3.28), the real power with
armature current neglected becomes

|EHV

Xa—
P3¢ = 3-—)(— sinéd + 3\|V|'2 2 Xq sin 24 {332
fid .

XX,

The power equation contains an additional term known as the reluctance power.
Equations (3.25) and (3.32) can be utilized for steady-state analysis. For shori-
circuit analysis, assuming a high X/R ratio, the power factor approaches zero
and the quadrature component of current can often be neglected. In such a case,
Xy merely replaces the X used for the cylindrical rotor machine. Generators are
thus modeled by their direct axis reactance in series with a constant-voltage power
source. Later in the text it will be shown that X takes on different values, depend-
ing upon the transient time following the short circuit. These reactances are usually
expressed in per-unit and are available from the manufacturer’s data.

3.5 POWER TRANSFORMER

Transformers are essential elements in any power system. They allow the relatively
low voltages from generators to be raised to a very high level for efficient power
transmission. At the user end of the system, transformers reduce the voltage to
values most suitable for utilization. In modern utility systems, the energy may un-
dergo four or five transformations between generator and ultimaie user. As a result,

a given system is likely to have about five times more kVA of installed capacity of
transformers than of generators.

3.6 EQUIVALENT CIRCUIT OF A TRANSFORMER
The equ.ivalem circuit model of a single-phase transformer is shown in Figure 3.9.
The equivalent circuit consists of an ideal transformer of ratio N;: N, together with
elements which represent the imperfections of the real transformer. An ideal trans-
folfrper would have windings with zero resistance and a lossless, infinite perme-
ability core, The voltage E, across the primary of the ideal transformer represents
the s voltage induced in the primary winding by the mutual flux ¢. This is the
portion of the core flux which links both primary and secondary coils. Assuming
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Zl=Rl+jX1 ZQ:R2+jX2
0——"—"\}\}\0‘\‘_" N = V\f\}\r“ s
+1 Iy I I
I, .
Wi Ra2 jXm £ E; Va I:}
FIGURE 3.9

Equivalent circuit of a transformer.

sinusoidal flux ¢ = @4y coswt, the instantanecus voltage e is

. do
€ =. I-E
= —w N D sinwt
= Eypar cos{wt + 90°) (3.33)
where
Elmaz = 27"le (bmr.u: . (3.34)

or the rms voltage magnitude £, is
Ey=3444f N Progr (3.35)

It is important to note that the phasor flux is lagging the inducz?d voltage F; by
90°. Similarly the ms voltage E across the secondary of the ideal transformer
represents the voltage induced in the secondary winding by the mutual flux ¢,
given by :

In the ideal transformer, the core is assumed to have a zero reluctance and there
is an exact mmf balanced between the primary and secondary. If 7} represents the
component of current to neutralize the secondary mmf, then

LEJV; = IQ.N"Q (33?)
Therefore, for an ideal transformer, from (3.35} through (3.37) we have

N
%:%:ﬁ (3.38)
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In a real iransformer, the reluctance of the core is finite, and when the secondary
current [, is zero, the primary current has a finite valee. Since at no-load, induced
voltage £, is almost equal to the suppiy voltage V1, the induced voltage and the
flux are sinusoidal. However, because of the nenlinear characteristics of the ferro-
magnetic core, the no-load current is not sinusoidal and contains odd harmonics.
The third harmenic is particularly troublesome in certain three-phase connections
of wransformers. For the purpose of modeling, we assume a sinusoidal no-load cur-
rent with the rms value of Ig, known as the no-load current. This current has a
component [y, in phase with flux, known as the magnetizing current, 10 set up
the core flux. Since flux is lagging the induced voltage E by 90°, /., is also lag-
ging the induced voltage Ey by 90°. Thus, this component can be represented in
the circuit by the magnetizing reactance jXn,,;. The other component of [y is I,
which supplies the eddy-current and hysteresis losses in the core. Since this is a
power component, it is in phase with £ and is represented by the resistance R
as shown in Figure 3.9.

In a real transfoomer with finite reluctance, all of the flux is not common to
both primary and secondary windings. The flux has three components: mutual flux,
primary leakage flux, and secondary leakage flux. The leakage Aux associated with
one winding does not link the other, and the voltage drops caused by the leakage
flux are expressed in terms of leakage reactances X, and X, Finally, R, and R,
are included to represent the primary and secondary winding resistances.

To obtain the perfonnance characteristics of a transformer, it is convenient
1o use an equivalent ciccuit model referred to ane side of the transformer. From
Kirchhoff’s voltage law (KVL), the voltage equation of the secondary side is

Ey,=Vy+ 7201 (3.39)

From the relationship (3.38) developed for the ideal transformer, the secondary
induced voltage and current are £y = (Ny/N|JEj and I, = (Ny/Na) 1, respec-
tively. Upon substitution, (3.39) reduces to

Ny, Nl)‘* ,
E =W — | Zal
: N.Z v (IVQ <2

=Vi + Z31; (3.40)

where

N\ 2 N2
Z:f = R:’, "/ ': = : ! ] g _l
2 = + 7 Y-— (;\;2 R-— + 4 j\'r‘.! X2
Relation (3.40) is the KVL cquation of the secondary side referred to the primary,
and the equivalent circuit of Figure 3.9 can be redrawn as shown in Figure 3.10,

50 the same effects are produced in the primary as would be produced in the sec-
ondary.
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FIGURE 3.10 - _
Exact equivalent eircuit referred lo the primary side.

On no-load, the primary voltage drop is very small, and V, can be vsed in -
place of E for computing the no-load current Iy. Thus, lhc_shunl branch can be
moved to the left of the primary series impedance with very little lo§s of accuracy.
In this manner, the primary quantities £ and X can be co.mbined Wl[l‘.l me referred
secondary quantities ) and X to obtain the equivalent pnmary quzm.tmcs R, a.nd
X.1. The equivalent circuit is shown in Figure 3.11 where we have dispensed with
the coils of the ideal transformer. From Figure 3.11

Zt’.l = Rel +j=xel

& I

I
Vi i)
o
FIGURE 3.11

Appeoximate equivalent circuit referred (o the primary.

W= Vi; + (Rel + lel)I’z (3.41)
where
N2 Ny * ; SE
RBa=H+ (F;) Ry Xa=X1+ (*ﬁ;) X9 and 12 = _3V2'“

The equivalent circuit referred to the secondary is also shown in Figure 3.12. From
Figure 3.12 the referred primary voltage V{ is given by

V=V + (Rea +3Xe2) 2 (3.42)
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ZeQ — Re‘z + chQ

o P AAAATO
o Iy I

L:‘{ ch j)i’m—z V2 [:]

FIGURE .12
Approximate equivalent circuit referred to the secondary.

F1

Power transformers are generally designed with very high permeability core and
very small core loss. Consequently, a further approximation of the equivalent cir-
cuit can bﬁ. made by omitting the shunt branch, as shown in Figure 3.13. The equiv-
afent circuit referred to the secondary is also shown in Figure 3‘]3.' .

Zoy = Ra + j X0 Zep = Rea + jXen
v, V= %;-Vz [] Vl’ — R’; Vi VQ"W
_ L]
o o
FIGURE 3.13

Simplilied ctreuits referred to'one side.

3.7 DETERMINATION OF EQUIVALENT
CIRCUIT PARAMETERS
I;leen?élirrizmiftersdof the :{pprf}ximate equivalent circuit are readily obtained from
o . :n ‘shlorl—c:rcunt ch£§. In tl_)e open-circuit test, rated voltage is ap-
Y reited Instnmmna s of one winding while the other winding terminals are open-
Gt cu;rem 5 men‘tis are .connec(cd to measure the input voltage V7, the no-load
ot (;}, and the mp:ul power Fg. If the secondary is open-circuited, the
Ly f:;i current [ will be zero, and only a small no-load current will
ik i e esu;.:pl;ly. AIsp, t!w primary voltage drop (R; + X}, can be
o quiva en.t cireuit reduces to the form shown in Figure 3.14,
secondary winding copper loss (resistive power loss) is zero and the
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o— ]
o Io I

Ic Im
Vl Rcl ijl
o o
FIGURE .14

Equivalent circuit for the open-citcuit test.

primary copper loss R, 1,2 is negligible, the ne-load input power Fy represents the
cransformer core loss commonly referred to as iron loss. The shunt elements R,
and X, may then be determined from the relations

V2
[z L 3.43
el P{J ( )
The two components of the no-load cugrent are
Vi
I.= 3.44
=g 344y

and

I, = It -I2 (3.45)

Therefore, the magnetizing reactance is

Xy = ;’i (3.46)

In the short-circuit lest, a reduced voltage Vi is applied at the terminals of one
winding while the other winding terminals are short-circuited. Instruments are con-
nected to measure the input voltage Vi, the input current Iy, and the input power
P,.. The applied voltage is adjusted until rated currents aré flowing in the wind-
ings. The primary voltage required to produce rated current is only a few percent
of the rated voltage. At the correspondingly low value of core flux, the exciting
current and core losses are entirely negligible, and the shunt branch can be omit-
ted. Thus, the power input can be taken to represent the winding copper loss. The
wransformer appears as a short when viewed from the primary with the equivalent
leakage impedance Z,1 consisting of the primary leakage impedance and the re-
ferred secondary leakage impedance as shown in Figure 3.15. The series elements
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Zel = Rel +jX€1

FIGURE 3.15
Equivalent circuit for the short-circuil test.

.1 and X may then be determined from the relations

»
Z«:l = E
I.‘!C
and
P.S{‘
flo1 = = 347
(Is{:)' ( }

Therefore, the equivalent leakage reactance is
Xzl Zateali® (3.48)

3.8 TRANSFORMER PERFORMANCE

The equivalent circuit can now be used to predict the performance characteris-
tics of the transformer. An important aspect is the transformer efficiency. Power
transformer efficiencies very from 93 percent to 99 percent, the higher efficiencies

being obtuineq from transformers with the greater ratings. The actual efficiency of
a transformer in percent is given by '

__output power

n= input power (3:49)

and the conventional efficienc

“ne y of a transformer at » fraction of the full-load power
is given by

_ nxSxPF .
(X Sx PF) + 7% x P 1 F. 3.0}

7

P 1] l.l.‘ll..
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where § is the full-load rated volt-ampere, P., is the full-load copper loss, and for
a three-phase transformer, they are given by

S = 3Vaf|f]
Pcu = 3R¢32|IQ![-:e

and F, is the iron loss at rated voltage. For varying I at constant power factor,
maximum efficiency occurs when

dn

S| SRS
dily|

For the above condition, it can be easily shown that maximum efficiency occurs
when copper loss equals core loss at nt per-unit loading given by

Fe
Peu

n = (3.51)
Another important performance characteristic of a transformer is change in the

secondary voltage from no-load to full-load. A figure of merit used to compare the
refative performance of different transformers is the voltage regulation. Voltage

. reguiation is defined as the change in the magnitude of the secondary terminal

voltage from no-load to full-load expressed as a percentage of the full-load vaiue.

(Vo — [Vo]

Regulation =
tVal

x 100 (3.52)
where V5 is the full-load rated voltage. Vay in (3.52) can be calculated by using
equivalent circuits referred to either primary or secondary, When the equivalent
circuit is referred to the primary side, the primary no-load voltage is found from
(3.41), and the voltage regulation becomes ;

Wl - 1%l

Regutation = , x 100 (3.53)
V2l

When the equivalent circuit is referred to the secondary side, the secondary no-load
voltage is found from (3.42), and the voltage regulation becomes
. Vil — |V
Regulation = M % 100 (3.54)
[Val
An interesting feature arises with a capacitive load. Because partial resonance is set

up between the capacitance and the reactance, the secondary voltage may actually
tend to rise as the capacitive load value increases.




72 3. GENERATOR AND TRANSFORMER MODELS, THE PER-UNIT SYSTEM

A program called trans is developed for obtaining the transformer perfor-
mance characteristics. The command trans displays a menu with three options:

Option ! calls upon the function [Re, Xm}] = troct(Vo, Io, Po) which prbmpts
the user to enter the no-load test data and returns the shunt branch parameters. Then

Ze = trsct(Vsc, Isc, Psc) is loaded which prompts the user to enter the shori-ctreuit
test data and returns the equivalent leakage impedance.

Option 2 calls upon the function [Zelv, Zehv] = wz2eqz(Elv, Ehv, Zlv, Zhv)
which prompts the user to enter the individual winding impedances and the shunt
branch. This function returns the referred equivalent circuit for both sides.

Option 3 prompts the user to enter the parameters of the equivalent circuit.

The above functions cun be used independently when the arguments of the
functions are defined in the MATLAB enviromment. If the above functions are typed
without the parenthesis and the arguments, the user will be prompted to enter the
required data.

After the selection of any of the above options, the program prompts the user
to enter the load specifications and proceeds to obtain the transformer performance
characteristics including an efficiency curve from 25 to 125 percent of full-load.

Example 3.4

Data obtained from short-circuit and open-circuit tests of a 240-kVA, 4800/240-V,
60-Hz transformer are:

Open-circuit test, Short-circuit test,
tow-side data high-side data
V=240V Vse = 1875V
Io=10A I.=50A

Fy = 1440 W P = 2025 W

Determine the parameters of the equivalent circuit

The commands

trans

display the following menu
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Type of parameters for input Select
To cbtain equivalent circuit from tests
To impput individual winding impedances
To input transformer equivalent impedance
To quit A

O WK -

Select number of menu — 1

Enter Transformer rated power inm kVA, S = 240
Enter rated low voltage in volts = 240

Enter rated high veltage in volts = 4800

Open circuit test data

Enter ’lv’ within quotes for data ref. to low side or
enter ‘hv’ within quotes for data ref. to high side — ’1v’
Enter input voltage, in velts, V, = 240

Enter no-load current in Amp, [, = 10

Enter no-load input power in Watt, P, = 1440

Short circuit test data

Enter ’1lv’ within quotes for data ref. to low side or
enter ‘hv’ within quotes for data ref. to high side — 'hv’
Enter reduced input voltage in volts, V. = 187.5

Enter input current in Amp, [, = S0

Enter input power in Watt, P, = 2625

au

Shunt branch ref. to LV side Shunt branch ref. to HV side
Rc = 40.000 ohm Re = 16000.000 ohm
Xm = 30.000 chm Xm = 12000.000 chm

Series branch ref. to LV side Series branch ref. to HVside
Ze = 0.002625 + j 0.0090 ohm Ze = 1.0%00 + j 3.6000 ohm

Hit return to continue

At this point the user is prompted to enter the load apparent power, power factor,
and voltage. The program then obtains the performance characteristics of the trans-
former including the efficiency curve from 25 to 125 percent of fuil load as shown
in Figure 3.16.

Enter load kVA, S2 = 240

Enter load power factor, pf = 0.8

Enter ’1g’ within quotes for lagging pf

or '1ld’ within quotes for leading pf -> ’1g’
Enter load terminal voltage in volt, V2 = 240
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Transformer Efficiency, pf = 0.8
98.2 . T T T . T . ' ;

938.06 +
97 .8+

976 -
9741
972+

Percent

0701

96.8} ]

Y005750 80 100 120 140 160 180 200 a0 30
Qutput Power, KW |

FIGURE 3.16
Efficiency curve of Example 3.4.

Secondary load voltage =  240.000

¥
Secondary load current = 1000.000 A at -36.87 degrees
Current ref. to primary = 50.000 & at . -36.87 degrees
Primary no-load current = 0.516 A at -53.13 degrees
Primary input current = 50.495 A at -37.03 degrees
Primary input voltage = 4851.278 V at 1.30 degrees

Voltage regulation = 3.152 %
Transformer efficiency 97.927 %

Maximum efficiency is 98.015 percent, ocgurs at 177.757 kVA
with 0.80 pf.

Al the end of this analysis the program menu is displayed.

3.9 THREE-PHASE TRANSFORMER CONNECTIONS

Thrce-l?hase power is transformed by usc of three-phase units, However, in large
extra high voltage (EHV) units, the insulation clearances and shipping limitations

May require a bank of three single-phase transformers connected in three-phase
arrangements,

3.9. THREE-PHASE TRANSFORMER CONNECTIONS 75

The primary and secondary windings can be connected in either wye (Y) or
delta (A) configurations. This results in four possible combinations of connections:
Y-Y, A-A, Y-A and A-Y shown by the simple schematic in Figure 3.17. In this
diagram, transformer windings are indicated by heavy lines. The windings shown
in parallel are located on the same core and their voltages are in phase. The Y-Y

AV : < A a
C : a
T T
C b
B b Be . o
Ae o Ao ac
C Co a .
n L n
B b B b

FIGURE 3.17
“Three-phase transformer connections.

connection offers advantages of decreased insulation costs and the availability of
the neutra! for grounding purposes. However, because of problems associated with
third harmonics and unbalanced operation, this connection is rarely used. To elimi-
nate the harmonics, a third set of windings, called a rerriary winding, connected in
A is normally fitted on the core to provide a path for the third harmonic currents.
This is known as the three-winding teansformer. The tertiary winding can be loaded
with switched reactors or capacitors for reactive power compensation. The A-A
provides no neutral connection and each transformer must withstand full line-to-
line voltage. The A connection does, however, provide a path for third harmonic
currents 1o flow. This connection has the advantage that one transformer can be re-
moved for repair and the remaining two can continue to deliver three-phase power
at a reduced rating of 58 percent of the original bank. This is known as the V
connection. The most common connection is the Y-A or A-Y. This connection is
more stable with respect to unbalanced loads, and if the Y connection is used on the
high voltage side, insulation costs are reduced. The Y-A connection is commonly
used to step down a high voltage to a lower voltage. The neutral point on the high
voltage side can be grounded. This is desirable in most cases. The A-Y connection
is commonly used for stepping up to a high voltage,
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3.9.1 THE PER-PHASE MODEL OF
A THREE-PHASE TRANSFORMER

In Y-Y and A-A connections, the ratio of the line voltages on HV and LV sides are
the same as the ratio of the phase voltages on the HV and LV sides. Furthermore,
there 1s no phase shift between the corresponding line voltages on the HV and LV
sides. However, the Y-A and the A-Y connections will result in a phase shift of
30° between the primary and secondary line-to-line voltages. The windings are
arranged in accordance to the ASA (American Standards Association) such that
the fine voltage on the HV side leads the corresponding line voltage on the LV side
by 30° regardless of which side is Y or A. Consider the Y=-A schematic diagram
shown in Figure 3.17. The positive phase sequence voltage phasor diagram for this
connection is shown in Figure 3.18, where Vy,, is taken as reference. Lel the Y

& 5 .
‘n Vg v
ci
b
: Vi
Viin ‘
‘FIGURE 3.18
30° phase shift in Vine-to-line voltages of Y- connection,

connection be the high voltage side shown by letter H and the A connection the
lwa voltage side shown by X. We consider phase e only and use subscript £ for
line and P for phase quantities. If Ny is the number of turns on one phase of
the high voltage winding and Ny is the number of wms on one phase of the low
voltage winding, the transformer tums ratio is a = Nyu/Nx = Vyp/Vxp. The
relationship between the line voltage and phase voltage magnitudes is ‘

Vi = \'/gVHP
Vxr=Vxp

Therefore, the ratio of the line voltage magnitudes for Y-A transformer is

Vil s

L (3.55)
Because the core losses

and magnetization current for power transformers are
the order of 1 percent o 2 o

f the maximum ratings, the shunt impedance is neglecied

o I

fii) 1

-
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and only the winding resistance and leakage reactance are used to model the trans-
former. In dealing with Y-A or A-Y banks, it is convenient to replace the A
connection by an equivalent Y connection and then work with only one phase.
Since for balanced operations, the Y neutral and the neutral of the equivalent Y
of the A connection are at the same potential, they can be connected together and
represented by a neutral conductor. When the equivalent series impedance of one
transformer is referred to the delta side, the A connected impedances of the trans-
former are replaced by equivalent Y-connected impedances, given by Zy = Za /3.
The per phase equivalent model with the shunt branch neglected is shown in Fig-
ure 3.19. Z¢1 and Z.9 are the equivalent impedances based on the line-to-neutral
connections, and the voltages are the line-to-neutral values.

Zey = Ry + le')

Zpy = Hep + 1 X1

L AV AVAVAVE i g S
Iy

11 = %;1,1:
-

FIGURE 3.19
The per phase equivalent circuil.

3.10 AUTOTRANSFORMERS

Transformers can be constructed so that the primary and secondary coils are electri-
cally connected. This type of transformer is called an autotransformer. A conven-
tional two-winding transformer can be changed into an autotransformer by con-
necting the primdry and secondary windings in series. Consider the two-winding
transformer shown in Figure 3.20(a). The two-winding transformer is converted
to an autotransformer arrangement as shown in Figure 3.20(b) by connecting the
two windings electrically in series so that the polarities are additive. The winding
from X, to X; is called the series winding, and the winding from H; to Hs is
called the common winding. From an inspection of this figure it follows that an
autotransformer can operate as a step-up as well as a step-down transformer. In
both cases, winding part H; H is common to the primary as well as the secondary
side of the transformer. The performance of an autotransformer is governed by the
fundamental considerations already discussed for transformers having two separate
windings. For determining the power rating as an autotransformer, the ideal trans-
former relations are ordinarily used, which provides an adequate approximation to
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the actual transformer values.

Iy
£ 1 xe
Ny Y
N - N
NNy X,
VH Hl.
Ny Vo
N
(@) (b)

FIGURE 3.20

{a} Two-winding transformer, (b) reconnected a5 an autotransformer,

From Figure 3.20(a), the two-winding voltuges and currents are related by

“w. M.

TR Ny a (3.50)
and

L_ N

T N v} (3.57}

where « is the tumns ratio of the two-winding trunsformer. From Figure 3.20(b}, we
have

Ve=W+W (3.58)
Substituting for V| from (3.56) into (3.58) yields
Ny
V=V, + —V
H 2+ N, Vs (3.59)
Since Vo = V., the voltage refationship between the two sides of an autotrans-
former becomes
. Ny
V=V +—=
H L+ N, VL
=(1+a)V (3.60)
or
Vu

Vi

G,

P "

3.10. AUTOTRANSFORMERS 79

Since the transformer is ideal, the mmf due to /), must be equal and opposite to the
mmf produced by I5. As a result, we have

Nolp = Ny (3.62)

From Kirchhoff's law, [, = Iy ~ I, and the above equation becomes

No(Ip — L) = NI : (3.63)
or
Ni+ Ny
Iy =——"r
L oD (3.64)
Since I} = [y, the current relationship between the two sides of an autotrans-
former becomes
I
L—14a (3.65)
Iy

The ratio of the apparent power rating of an autotransformer to a two-winding
wransformer, known as the power rating advantage, is found from

Sewte (V1 + V03N
sk T 0O A SR —_— 1 — :
S v 1+ N, + ) (3.66)

From (3.66), we can see that & higher rating is obtained as an autotransformer
with a higher number of turns of the common winding (IV;). The higher rating
as an autotransformer is a consequence of the fact that only S5, is transformed
by the electromagnetic induction. The rest passes from the primary to secondary
without being coupled through the transformer’s windings. This is known as the
conducted power. Compared with a two-winding transformer of the same rating,
autotransformers are smaller, more efficient, and have lower internal impedance.
Three-phase autotransformers are used extensively in power systems where the
voltages of the two systems coupled by the transformers do not differ by a factor
greater than about three.

Example 3.5

A two-winding transformer is rated at 60 kVA, 240/1200 V, 60 Hz. When oper-
ated as a conventional two-winding transformer at rated load, 0.8 power factor, its
efficiency is 0.96. This transformer is to be used as a 1440/1200-V step-down au-
totransformer in a power distribution system,

(a) Assuming ideal transformer, find the transformer kVA rating when vsed as an
autotransformer.
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(b) Find the efficiency with the kVA loading of part (a} and 0.8 power factor.

The two-winding transformer rated currents are:

60, 000

I = 2 e R

1 510 250 A
_ 60,000 < &
1200 0 T

The autotransformer connection is as shown in Figure 3.21.

+ t ]
210V 34250 A
I =300 A
—
1440V o m
1200V 4§50 A 1200 V

- _
FIGURE 3.21

Auto transformer connection for Example 3.5.
{1) The autotransformer secondary current is
Iy =250 + 50 = 300 A
With windings carrying rated currents, the autotransformer rating is
§ = (1200)(300){(1073) = 360 kVA
Therefore, the power advantage of the autotransformer is

Sa.uto - 360 =6
So_w 60

(b) When operated as a two-winding transformer at full-load, 0.8 power factor, the
tosses are found from the efficiency formula

(60)(0.8)
(60)(0.8) + Progs

Solving the above equation, the total transformer loss is

= (.96

48(1 ~ 0.96)
0.96

Pioss =

= 2.0 kW
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Since the windings are subjected to the same rated voltages and currents as the two-
winding transformer, the autotransformer copper loss and the core loss at the rated
values are the same as the two-winding transformer. Therefore, the autotransformer
efficiency at rated load, 0.8 power factor, is

_ {360)(0.8) _
n= (360)(0.8) + 2 x 106 = 99.31 percent

3.10.1 AUTOTRANSFORMER MODEL

When a two-winding transformer is connected as an autotransformer, its equiva-
lent impedance expressed in per-unit is much smatler compared to the equivalent
value of the two-winding connection. It can be shown that the effective per-unit
impedance of an autotransformer is smaller by a factor equal 1o the reciprocal of
the power advantage of the autotransformer connection. It is common practice to
consider an autotransformer as a two-winding transformer with its two winding
connceted in series as shown in Figure 3.22, where the equivalent impedance is .
referred to the N -tumn side.

R. X
Ry —t
' N
Vi M 2 Vi
o Iy

FIGURE 3.22
Autctransformer equivalent circuit.

3.11 THREE-WINDING TRANSFORMERS

Transformers having three windings are often used to interconnect three circuits
which may have different voltages. These windings are called primary, secondary,
and tertiary windings. Typical applications of three-winding transformers in power
systems are for the supply of two independent loads at different voltages from the
same source and interconnection of two transmission systems of different voltages.
Usually the tertiary windings are used to provide voltage for auxiliary power pur-
poses in the substation or to supply a local distribution system. In addition, the
switched reactor or capacitors are connected to the tertiary bus for the purpose
of reactive power compensation. Sometimes three-phase Y-Y transtormers and Y-
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connected autotransformers are provided with A—connected tertiary windings for
harmonic suppression.

3.11.1 THREE-WINDING TRANSFORMER MODEL

If the exciting current of a three-winding transformer is neglected, it is possible to
draw a simple single-phase equivalent T-circuit as shown in Figure 3.23.

Zs

=

FIGURE 3.23
Equivalent circuit of three-winding transformer,

Three short-circuit tests are carried out on a three-winding transformer with
Np. N, and N, tums per phase on the three windings, respectively. The three tests
are simidar in that in each case one winding is open, one shorted, and reduced volt-

age is applied to the remaining winding. The following impedances are measured
on the side (o which the voltage is applied.

Zpy = impedance measured in the primary circuit with the secondary
short-circuited and the tertiary open. '
Zp = impedance measured in the primary circuit with the tertiary short-
circuiied and the secondary open.
Z;, = impedance measured in the secondary circuit with the tertiary
short-circuited and the primary open.
Referving Z, to the primary side, we obtain

2
Ly = (%’—) L (3.67)
&

If Z,. Z,, and Z, are the impedances of the three separate windings referred to the

primary side, then

Zps = Zp+ Z,
Zpt=Zp+ 2, (3.68)
Zy=Zoe+ 7y
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Solving the above equations, we have

1 =
Zp Tl E(Zps + Zpt - Zst)

1

Z, = E(Zps + Zg — Zp) (3.69)
1 .

Ly = ‘j(zpt + Zg — Zps)

3.12 VOLTAGE CONTROL OF TRANSFORMERS

Voltage control in transformers are required to compensate for var)fin.g vol.tage
drops in the system and to control reactive power flow over transmission fines.
Transformers may also be used to control phase angle and, therefore, active power
flow. The two commonly used metheds are tap changing transformers and regulat-
ing transformers.

3.12.1 TAP CHANGING TRANSFORMERS

Practically all power transformers and many distribution transformers have taps in
one or more windings for changing the turns ratio. This method is the most popu_!ar
since it can be used for controlling voltages at all levels. Tap changing, by aliering
the voltage magnitude, affects the distribution of vars and may thelrefore be used to
contro! the fiow of reactive power. There are two types of tap changing transformers

(1) Off-load tap changing transformers.
(il) Tap changing under load (TCUL) transformers.

The off-load tap changing transformer requires the disconnection of the trans-
former when the tap setting is to be changed. Off-load tap .changers are used when
it is expected that the ratio will need to be changed only mfrec!ucntly, because of
load growth or some seasonal change. A typical transformer might have four taps
in addition to the nominal setting, with spacing of 2.5 percent of full-load voltage
between them. Such an arrangement provides for adjustments of up to 5 percent
above or below the nominal voltage rating of the transformer. _ .

Tap changing under load (TCUL) is u§ed when changes in ratio may be fre-
quent or when it is undesirable to de-energize the transforme:: to chm}gc a tap. A
large number of units are now being built with load tap cfhang.mg equipment. ?t is
used on transformers and autotransformers for transmission tie, for butk chsmbg-
tion units, and at other potnts of load service. Basically, a TCUL transformer is
a transformer with the ability to change taps while power is connected. A TCUL
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transformer may have built-in voltage sensing circuitry that automatically changes
taps 1o keep the system voltage constant. Such special transformers are VErY com-
mon in modem power systems. Special tap changing gear are required for TCUL
transformers, and the position of taps depends on a number of factors and requires
special consideration to arrive at an optimum location for the TCUL equipment.
Step-down units usually have TCUL in the low voltage winding and de-energized
taps in the high voltage winding. For example, the high voltage winding might be
equipped with a norninal voltage turns ratio plus four 2.5 percent fixed tap settings
to yield -5 percent buck or boost voltage. In addition to this, there could be pro-
vision, on the low voltage windings, for 32 incremental steps of % each, giving an
automatic range of +10 percent.

Tapping on both ends of a radial ransmission line can be adjusted to com-
pensate for the voltage drop in the line. Consider one phase of a three-phase trans-
mission line with a step-up transformer at the sending end and a step-down trans-
former at the receiving end of the line. A single-line rc'presema{ion ts shown in
Figure 3.24, where tg and ¢}, are the tap setting in per-unit. In this diagram, V} is
the supply phase voltage referred 1o the high voltage side, and V4 is the load phase
voltage, also referred to the high voltage side. The impedance shown includes the

VH" Q%ME i
1:tg tg:1

FIGURE 3.24
A radial line with tap changing transformers at both ends.

line impedance plus the referred tmpedances of the sending end and the receiving

end transformers to the high voltage side. If Vs and Vp are the phase voltages at
both ends of the line, we have

FIGURE 3.25
Voltage phasor diagram.

e e - ki B+ S
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VR=Vs+(R+jX)I (3.70)

The phasor diagram for the above equation is shown in Figure 3.25,

The phase shift d between the two ends of the line is usually small, and we
can neglect the vertical component of V. Approximating Vs by its horizontal com-
ponent resulis in :

|Vs| = {VR| + ab + de

= {Vr|{ + {{|Rcosf + [I| X sin (3.71)

Substituting for || from Py = |Vg||{{cos 6 and @, = |Vg||I]|sin & will result in

RP, + XQ,

Vel = VRl +
Vsl = [VRi Val

(3.72)

Since Vs = tsV] and Vi = t/V), the above relation in terms of V|, and V;
becomes

RPy+ XQ,
VT = &4 T i L 3.73
Qr
1 RP, + XQ¢)
tg= — [ tp|Vj| + —2—— % (3.74)
5= (a1 + g -

Assuming the product of t5 and tp is unity, i.e., tgtg = 1, and substituting for tp
in (3.74), the foliowing expression is found for ¢g.

(3.75)

Example 3.6

A three-phase transmission line is feeding from a 23/230-kV transformer athlts
sending end. The line is supplying a 150-MVA, 0.8 power ff:lctor load through a
step-down transformer of 230/23 kV. The impedance ot: the hm.: and transformers
at 230 kV is 18 + j60 . The sending end transformer is enea:glzt?d from a 23-kV
supply. Determine the tap setting for each transformc; to maintain the voltage at

the load at 23 kV.
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The load real and reactive power per phase are

B %(150}(0.8) =40 MW
Wi %(150)(0.6) =30 Mvar

The source and the load phase voltages referred to the high voltage side are

230 23 230
V=iV = (_) (_) e

From (3.75), we have

1
t§ = 1 _ UB)(0)+{60)(30) 1.08 pu
T (2307V3)2

and

1
t = —— =10. >
R= 168 0.926 pu

1122 REGULATING TRANSFORMERS OR BOOSTERS

Regulating transformers, also known as boosters, are used to change the voltage
magnitude and phase angle at a certain point in the system by a small amount. A
booster consists of an exciting transformer and a series transformer.

VOLTAGE MAGNITUDE CONTROL

Figure 3.26 shows the connection of a regulating transformer for phase a of a three-
phase system for voltage magnitude control. Other phases have identical arrange-
mcnt.hThe secondary of the exciting transformer is tapped, and the voltage obtained
from it is applied to the primary of the series transformer. The corresponding volt-

age on the secondary of the series transformer is added to the input voltage. Thus,
the output voltage is

Vi = Va8V, (3.76)

f}inl—‘e the voliages are in phase, a booster of this type is called an in-phase booster.
he outpl.it voltage can be adjusted by changing the excitation transformer taps.
By changing the switch from position 1 to 2, the polarity of the voltage across the

seTes transformer is reversed, so that the output voltage is now less than the input
voltage.
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o O

“+ +

Vﬂn VE‘I.’I’I
transformer

_ Exciting transformer =

o 5 o

FIGURE 3.26

Regulating transformer for voltage magnitude control.

PHASE ANGLE CONTROL

Reguiating transformers are also used to control the voltage phase angle. If the
injected voltage is out of phase with the input voltage, the resultant voltage will
have u phase shift with respect to the input voltage. Phase shifting is used to control
active power flow at major intertie buses. A typical arrangement for phase a of a
three-phase system is shown in Figure 3.27.

a AV,
o \AAS
+ Y TY +
f ri
Vaa G b y & Vin
_{: Series
Vie [ transformer
. 2
0-—C o

5 Exciting transformer

ol

ot

FIGURE 3.27
Regulaling transformer for voltage phase angle control.

The series transformer of phase a is supplied from the secondary of the exciting
transformer be. The injected voltage AVj. is in quadrature with the voltage Vo,
thus the resultant voltage V. goes through a phase shift &, as shown in Figure 3.28.

The cutput voltage is-

Vi, = Van + OVac (3.77

Similar connections are made for the remaining phases, resulting in 4 balanced
three phase output voltage. The amount of phase shift can be adjusted by changing
the excitation transformer taps. By changing the swiich from position 1 to 2, the
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V.
;Van
X |
S ;
Vid '\ an
b
Vird D)
Y 7
LY Fa
hY /
N Fd
NS
W,
FIGURE 3.28

Voltage phaser diagram showing phase shifting effect for phase a.

output voltage can be made to lag or lead the input voltage. The advantages of the
regulating transformers are

1. The main transformers are free from tappings.

o

The regulating transformers can be used at any intermediate point in the
system,

- The regulating transformers and the tap changing gears can be taken out of
service for maintenance without affecting the system.

3.13 THE PER-UNIT SYSTEM

The solution of an interconnected power system having several different voltage

levels requires the cumbersome transformation of all impedances to a single volt-
age level. However, power System engineers have devised the per-unit system such
that the various physical quantities such as power, voltage, current and impedance
are expressed as a decimal fraction or multiples of base quantities. In this system,
the different voltage levels disappear, and a power network involving generators,
transformers, and lines (of different voltage levels) reduces to 2 system of simple
. impedances. The per-unit value of any quantity is defined as

actual quantity

Quantity in per-unit = 2" q9anlity (3.78)
base value of quantity

it " "
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For example,

S Vv 1 Z
Eadl - 25 P
S5 Vou Vo Tn and Z, 75

where the numerators (actual values) are phasor guantities or complex values and
the denominators (base values) are always real numbers. A minimum of four base
quantities are required to completely define a per-unit system: volt-ampere, volt-
age, current, ‘and impedance. Usually, the three-phase base volt-ampere Sp or
MVAg and the line-to-line base voltage Vi or kVp are selected. Base cu'rrer?l
and base impedance are then dependent on Sz and Vi and must obey the circuit

Spu == Ipu =

laws. These are given by

Sy
Ip= 3.79)
g VARG
and
zy = YoIV3 (3.80)
Iy
Substituting for I'; from (3.79), the base impedance becomes
(V)
Zy = Sy
_ (Vp)* (3.81)
28 = 5, :

The phase and line quantities expressed in per-unit are the same, and the circuit
laws are valid, i.e.,

Spu = Viudp, (3.82)
and

Vou = Zpulpu - {3.83)

The load power at its rated voltage can also be expressed by a per-unit impedance.
If $1(3¢) is the complex load power, the load current per phase at the phase voltage
Vp is given by

oI 3.84
SL(3¢) - 3VPIP ( )

The phase current in terms of the ohmic load impedance is

_vre (3.85)
Ip= 5"
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Substituting for Ip from (3.85) into (3.84) results in the ochmic value of the load
impedance
_ 3vpl?

Sitae)

_WViol?
= S£(3¢) {3.86)

From (3.81) the load impedance in per-unit is

Zp _ Vi-r|®* Sp

Zp

Z T ey : (3.87
P Z.B I I".B SE‘(SO\J (3 )
or
V.. l?
Zpu = L‘p | (383)
Lipu)

3.14 CHANGE OF BASE

The impedance of individual generators and transformers, as supplied by the man-
ufacturer, are generally in terms of percent or per-unit quantities based on their own
ratings. The impedance of transmission lines are usually expressed by their ohmic
values. For power system analysis, all impedances must be expressed in per unit on
a commor system base. To accomplish this, an arbitrary base for apparent power is
- selected; for example, 100 MVA. Then, the voltage bases must be selected. Once a
voltage base has been selected for a point in a system, the remaining voltage bases
are no longer independent; they are determined by the various transformer tums
ratios. For example, if on a low-voltage side of a 34.5/115-kV transformer the base
voltage of 36 kV is selected, the base voltage on the high-voltage side must be
-36(115/34.5) = 120 kV. Normally, we try to select the voltage bases that are the
same as the nominal values,
Let Zi be the per-unit impedance on the power base 524 and the voltage
base Vg™, which is expressed by

ald ,Zﬂ Scid
Zpu =% ng = ZQ (Vé?dF (389}

Expres‘s;‘ng Zq 1o a new power base and a new voltage base, results in the new
per-unit impedance

ZQ Snew
Znew = Fn—l
pu dew ZQ (Vgew)z (390)

e

] E B eI
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From (3.89) and (3.90), the relationship between the old and the new per-unit val-
ues is

Gnew Void 2
new __ id~ 8 B
Znew - gl o (__V§ew) (3.9

[f the voltage bases are the same, (3.91) reduces to

gnew Zold Sgew : i (3 92
pu T Cpu Toold 22)
B 7

The advantages of the per-unit system for anatysis are described below.

The per-unit system gives us a clear idea of relative magnitudes of various
quantities, such as voltage, current, power and impedance.

s The per-unit impedance of equipmant of the same general type based on their
own ratings fall in a narrow range regardless of the rating of the equipment.
Whereas their impedance in ohms vary greatly with the rating.

» The per-unit values of impedance, voltage and current of a transformer are
the same regardiess of whether they are referred to the primary or the sec-
ondary side. This ix a great advantage since the different voltage levels dis-
appear and the entire system reduces fo a system of simple impedance.

s The per-unit systems are ideal for the computerized analysis and simulation
of complex power system problems.

¢ The circuit laws are valid in per-unit systems, and the power and voltage
equations as given by (3.82) and (3.83) are simplified since the factors of /3
and 3 are eliminated in the per-unit system.

Example 3.7 demonstrates how a per-unit impedance diagram is obtained for
a simple power system network. '

Example 3.7

The one-line diagram of a three-phase power system is shown in Figure 3.29. Select
2 common base of 100 MVA and 22 kV on the generator side. Draw an impedance
diagram with all impedances including the load impedance marked In per-unit. The
manufacturer’s data for each device is given as follow:
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C % Line } :? ) g
(] 220 kV ! )E-

@ 13 Ty

Ve 3 Line2  ©
6 110KV !

FIGURE .29
One-line dizgram for Example 3.7.

G 90MVA 22kV X=18%
T: S0MVA 22220kV X =10%
Ty: 40 MVa 2011 kY X =60%
T3: 40 MVA 227110kY X =64 %
Ty 40 MVA IO/ kY X =80%
M: 66.5MVA 1045kV X =185%

The U.*arce-phase' load at bus 4 absorbs 57 MVA, 0.6 power factor lagging at 10.45
KV. Line 1 and line 2 have reactances of 48 4 and 65.43 (3, respectively. '

First, the voltage bases must be determined for all sections of the network. The
generator rated voltage is given as the base voltage at bus 1. This fixes the vo,;liage
bases for the remaining buses in accordance to the transformer turns ratios. The
. base voltage Vg, on the LV side of T is 22 kV. Hence the base on its HV side is

220
Vaa = 22(5) =220 kV

This fixes the base on the HV side of T3 at Vga = 220 kV. and on its LV side at

11
VB4:220(2_26)=11 kv

Similarly,

the voltage base at buses 5 and 6 are

11
Ves = Vg = 22(—250) =110 kV
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Since generator and transformer voltage bases are the same as their rated values,
their per-unit reactances on a 100 MVA base, from (3.92) are

100

G: X=018( =— 1 =02

0 8(90) 0.20 pu

100

i X=0 — ] =0

1 010(50) 0.20 pu
100

T X =0. = o=

2 006(4{}) 0.15 pu

100 :

Ty X =0064 — | =0.

3 0.06 (40) 0.16 pu
1

Ty: X:0.08( 00) =02 pu

The motor reactance is expressed on its nameplate rating of 66.5 MVA and 10.45
kV. However, the base voltage at bus 4 for the motor is 11 kV. From (3.91) the
motor reactance on a 100 MVA, 11-kV base is

2
=02
66.5 ) H2a

Impedance bases for lines 1 and 2, from (3.81} are

{220)*
= =434 1§}
T
(110)?
Zps = =121 Q
B8 = 100
Line | and 2 per-unit reactances are
Linel: X = (%88?;1-) =0.10 pu
65.43
ine2: X ={-———]=0.54
Line ( 51 ) 0 pu

The toad apparent power at 0.6 power factor lagging is given by
Siae) = 57453.13° MVA
Hence, the load impedance in ohms is

(Veor)? | (1045)°

= = = 1.1495 + j1.53267 Q
i 57/-53.13° g

SHER
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The base impedance for the load is
(11)?
100

Therefore, the load impedance in per-unit is

1.1495 + j1.53267
Zrp) = 1.21

ZB4 = =1.21 Q

= 0.95 + j1.2667 pu

The per-unit equivalent circuit is shown in Figure 3.30.

1 50.20 j0.10 40.15 4
YT ST SYTY ]
I
30.16 j0.54 70.20
0.2 la'a’n Y oYY §0.25
Im
By 0.95 -
}'L ™
§1.2667
. FIGURE 3.3¢

* Per-unit impedance diagram for Example 3.7,

Example 3.8

The motor of Example 3.7 o

perates at full-load 0.8 power fact i i-
nal vollage o 0rtkes power factor leading at a termi

(a) De(erm%ne the voltage at the generator bus bar (bus 1}.
(b) Determine the generator and the motor internal emfs.

(2) The per-unit vokage at bus 4, taken as reference is

10.45
Vi=—— =095/0° pu

11
The motor apparent power at 0.8 power factor leading is given by
66.5
S = o
m = T ~3687° pu

X
i
b
=
F
-
%
-
3
=
= i
5
&
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Therefore, current drawn by the motor is

_ Sp _ 0.665/36.87

T L
% 0.95/0°

= (.56 + 7042 pu

and current drawn by the load is

Vi _ 095.0°

fi = L
L=z, T 095+ 51.2667

=0.36 — j0.48 pu
Total current drawn from bus 4 is
I=1In+ 1 = {056+ j0.42) + (0.36 — j0.48) = 0.92 — j0.06 pu

The equivalent reactance of the parallel branches is

- _045x08

En———————2 = i 1
I~ 0a5+09  ° P
The generator terminal voltage is

Vi = Vi + 2,1 = 0.95/0° + j0.3(0.92 — j0.06) = 0.968 + j0.276
= 1.0/15.91° pu
=922/15.91° kV

{b} The generator internal emf is

E, = Vi + Zg1 =0.968 + j0.276 + j0.20(0.92 ~ j0.06) = 1.0826/25.14° pu
= 23.82/25.14° kV

and the motor internal emf is

Ep = Vi = Zin L = 0.95 + jO — j0.25(0.56 + j0.42) = 1.064/—-7.56° pu
= 11.71/~7.56° kV

PROBLEMS

3.1. A three-phase, 318.75-kVA, 2300-V alternator has an armature resistance of
0.35 Q/phase and a synchronous reactance of 1.2 f¥/phase. Determine the
no-load line-to-line generated voltage and the voltage regulation at

(a) Full-load kVA, 0.8 power factor lagging, and rated voltage.
{b) Full-load kVA, 0.6_power- factor leading, and rated voltage.
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3.2. A 60-MVA, 69.3-kV, three-phase synchronous generator has a synchronous

3.3

34.

reactance of 15 §¥/phase and negligible armature resistance.

(a) The generator is dé]iven’ng rated power at 0.8 power factor lagging at the
rated terminal voltage to an infinite bus bar. Détermine the magnitude of the
generated emf per phase and the power angle §.

(b) If the generated emf is 36 KV per phase, what is the maximum three-
phase power that the generator can deliver before losing its synchronism?

(c) The generator is delivering 48 MW to the bus bar at the rated voltage
with its field current adjusted for a generated emf of 46 kV per phase. Deter-
mine the armature current and the power factor. State whether power factor
is lagging or leading?

A 24,000-kVA, 17.32-kV, 60-Hz, three-phase synchronous generator has a
synchronous reactance of 5 {¥fphase and negligible armature resistance.

(4) At a certain excitation, the generator delivers rated load, 0.8 power factor
tagging to an infinite bus bar at a line-to-line voltage of 17.32 kV. Determine
the excitation voltage per phase,

(b} The excitation voltage is maintained at 13.4 kV/phase and the terminal
voltage at 10 kV/phase. What is the maximum three-phase real power that
the generater can develop before pulling out of synchronism?

-(¢) Determine the armature current for the condition of part (b).

A' 34.64-kV, 60-MVA, three-phase salient-pole synchronous generator has a
direct axis reactance of 13.5 € and a quadrature-axis reactance of 9.333 Q.
The armatare resistance is negligible,

(a) Referring to the phasor diagram of a satient-pole generator shown in Fig-
ure 3.8, show that the power angle 4 is given by

5 — tant [ Xalla| cosd
V+ X i, siné

(b) Compute the load angle § and the per phase excitation voltage £ when

the generator delivers rated MVA. 0.8 i infini
ated ] » U.8 power factor lagging to an infinite bus
bar of 34.64-kV line-to-line voltage. ’

(c) The generator excitation voltage is kept constant at the value found in

€ power angle curve, i.e., equa-
- Use the command Pmax, k =
y-state maximum power Pmax

part (b). Use MATLAB to obtain a plot of th
tion (3.32) over a range of § = 0:0.05:180°
max(P); dmax = d(k), to obtain the stead
and the corresponding power angle dmax.
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0.2 + 70.45 O 0.002 + 70.0045 ©
H—WW-—W 3> WY\_.>_
+ I Iy I Iq
- b : 150 kVA
V1 1000 © j1500 Q El E2 V‘Z |::| 0.8 iag
FIGURE 3.31

Transformer circuit for Problem 3.5

- 3.5,

A 150-kVA, 2400/240-V single-phase transformer has the parameters as
shown in Figure 3.31.

(a) Determine the equivalent circuit referred to the high-voltage side.

(b} Find the primary voltage and voltage regulation when transformer is op-
erating at full load 0.8 power factor lagging and 240 V.

(c) Find the primary voltage and voltage regulation when the transformer is
operating at full-load 0.8 power factor leading,

(d) Verify your answers by running the trans program in MMATLAB and ob-
tain the transformer efficiency curve,

A 60-kVA, 4800/2400-V single-phase transformer gave the following test
results: ;

1. Rated voltage is applied to the low voltage winding and the high volt-
‘age winding is open-circuited. Under this condition, the current into the low
voltage winding is 2.4 A and the power taken from the 2400 V source is
3456 W.

2. A reduced voltage of 1250 V is applied to the high voltage winding and
the low voltage winding is shoni-circuited. Under this condition, the current
flowing into the high voltage winding is 12.5 A and the power taken from
the 1250 V source is 4375 W.

€a) Determine parameters of the equivalent circuit referred to the high volt-
age side.

{b) Determine voltage regulation and efficiency when transformer is operat-
ing at full-load, 0.8 power facter lagging, and a terminal voltage of 2400 V.
(c) What is the load kVA for maximum efficiency and the maximum effi-
ciency at 0.8 power factor? :

(d) Determine the efficiency when transformer is operating at 3/4 fufl-load,
0.8 power factor lagging, and a terminal voltage of 2400 V.
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3.7.

3.8.

3.9,

3.10.

1L

3.12,

(e) Vertfy your answers by running the trans program in MA TLAB and obtain
the transformer efficiency curve.

A two-winding transformer rated at 9-k VA, 120/90-V, 60-HZ has a core loss
of 200 W and a full-load copper loss of 500 W.

(2) The above transformer is to be connected as an auto transformer to supply
aload at 120 V from a 210-V source. What kVA load can be supplied without

exceeding the current rating of the windings? (For this part assume an ideal
transformer.)

{b} Find the efficiency with the kVA toading of part (a) and 0.8 power factor.

Three identical 9-MVA, T.2-kV/4.16-kV, single-phase transformers are con-
nected in wye on the high-voltage side and delta on the low voltage side. The
equivalent series impedance of each transformer referred to the high-voltage
side is 0.12 4 70.82 Q) per phase. The transformer supplies a balanced three-

phase load of 18 MVA, 0.8 power factor lagging at 4.16 kV. Determine the = &

line-to-line voliage at the high-voltage terminals of the transformer.

A 400-MVA, 240-kV/24-kV, three-phase Y-A transformer has an equivalent
series impedance of 1.2 4 76 €2 per phase referred to the high-voltage side,
The transformer is supplying a three-phase load of 400-MVA, 0.8 power
factor lagging at a terminal voltage of 24 kV (line to line) on its low-voltage
side. The primary is supplied from a fecder with an impedance of 0.6 +
J1.2  per phase. Determine the line-to-line voltage at the high-voltage ter-
minals of the transformer and the sending-end of the feeder,

In Problem 3.9, with transformer rated valves as base quantiijes, express all
impedances in per-unit, Working with pec-unit values, determine the line-to-
tine voltage at the hi gh-voltage terminals of the transformer and the sending-
end of the feeder.

A three-phase, Y-connected, 75-MVA, 27-kV synchronous generator has a
synchronous reactance of 9.0 () per phase. Using rated MVA and voltage as

base values, determine the per-unit reactance. Then refer this per-unit value
to a [00-MVA, 30-kV base.

A 40-MVA, 20-kV/400-kV, single-phase transformer has the following se-
ries impedances: .

41 =09+ 51.8 Qand Z, = 128 + 288

Using the transformer rating as base, determine the per-unit impedance of the
transformer from the ohmic value referred to the low-voltage side, Compute

the per-unit impedance using the ohmic vajue referred to the high-voltage
side.

s s
bl BB . sl
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.13. Draw an impedance diagram for the electric power system shown in Figure
a 3.32 showinz all impedances in per unit on a 100-MVA base. ‘ChOS}se 20.-1(\;
as the voltage base for generator. The three-phase power and line-line rating
are given below,
Gr: 90OMVA 20kV X =9%
7 80 MVA  20/200kV X = 16%
B 80MVA 200/20kV X = 20%

Gr: 90OMVA 18kV X =0%

Line: 200 kV X=1209

Load: 200 kV S = 48 MW +;j64 Mvar
Tl | T’Z

2

l ? 0l '
@ 3% Hmd L ¢ @

FIGURE 3.32
One-line diagram for Problem 3.13

3.14. The one-line diagram of a power system is shown in Figure 3.33.

4
l( - Line 1 ? )

_ C 2n0kv | )E |
@ . [
[ Line 2
' 110 kV

o
YT
Lh
—_—t— N
A

AL/

FIGURE 3.33
One-line diagram for Problem 3.14

The three-phase power and line-line ratings are given below.
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G 80 MVA 22kV X = 24%
Ty 50 MVA 22220kV X = 10%
To: 40 MVA 220/22kV X =6.0%
Ts: 40 MVA 2/110kV X = 6.4%
Line I: 220 kV X=12180
Line 2: 110 kV X =42350
M: 68.85 MVA  20kV X =225%

Load: 10 Mvar 4 kv A-connected capacitors
The three-phase ratings of the three-phase transformer are

Primary: Y-cornected 40MVA, [10kV
Secondary:  Y-connected 40 MVA, 22 kV
Tertiary: A-connected 15 MVA, 4kV

The per phase measured reactances at the terminal of a winding with the
second ene short-circuited and the third open-circuited are

Zps =9.6% 40 MVA, 110 kV/22 kV
Zy =7.2% 40 MVA, 110 kV/4 kV
Zg =12% 40 MVA, 22kV/4 kV

Obtain the T-circuit equivalent impedances of the three-winding transformer
to the common 100-MVA base. Draw an impedance diagram showing all

impedances in per-unit on a 100-MVA base. Choose 22 kV as the voltage
base for generator,

3.15. The three-phase power and line-line ratings of the ¢lectric power system
shown in Figure 3.34 are given below.

1) T

Yo ' ine m
OB —=— 1@

FIGURE 3.34
One-line diagram for Probiem 315

Gi: 60MVA  20kV X =9%

Ty S0MVA  20000kV X = 10%

Th: S50MVA  20000kV X = 10%

M: 432MVA 18KV X =8%

Line; 200 kV Z =120 + 5200 2

{a). Draw an im

pedance diagram showing all impedances in per-unit on a
100-MVA base,

Choose 20 kV as the voltage base for generator.

R R T R

3
3
E
3
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(b} The motor is drawing 45 MVA, 0.80 power factor lagging ata li_ne;to—line
terminal voltage of 18 kV. Determine the terminal voltage and the internal
emf of the generator in per-unit and in kV,

3.16. The one-line diagram of a three-phase power system is as shown in Figure
3.35. Impedances are marked in per-unit on a 100-MVA, 400-kV base. The
load at bus 2 is 53 = 15.93 MW —433.4 Mvar, and at bus 3 is §3 = 77 MW
+714 Mvar. It is required 10 hold the voltage at bus 3 at 400/0° kV, Working
in per-unit, determine the voltage at buses 2 and 1.

Wi V2 Vi
70.5 pu | 70.4 pu |
B
S;z SS
FIGURE .35

One-line diagram for Problem 3.16

3.17. The one-line diagram of a three-phase power system is as shown in Figure
3.36. The transformer reactance is 20 percent on a base of 100 MVA, 23/115
KV and the line impedance is Z = j66.12502. The load at bus 2is Sy = 184.8
MW 476.6 Mvar, and at bus 3 is S5 = 0 MW +520 Mvar. It is required to
bold the voltage at bus 3 at 115/0° kV. Working in per-unit, determine the
voltage at buses 2 and 1.

L.’l S
A
S
V3
Vol 661250 |
g ]
83
FIGURE 3.36

One-line diagram for Problem 3.17



CHAPTER

4

TRANSMISSION
LINE PARAMETERS

4.1 INTRODUCTION

The purpose of a transmission network is to transfer electric encrgy from generat-
ing units at various locations to the distribution system which ultimately supplies
the Joad. Transmission lines also interconnect neighboring utilities which permits
not only economic dispatch of power within regions during normal conditions, but
also transfer of power between regions during emergencies,

All transmission lines in a power system exhibit the electrical properties of
resistance, inductance, capacitance, and conductance. The inductance and capac-
itance are due to the effects of magnetic and electric fields around the conductor.
These parameters are €ssential for the development of the transmission line mod-
els used in power system analysis. The shunt conductance accounts for leakage
currents flowing acfoss tnsulators and ionized pathways in the air. The leakage
currents are negligible compared to the current flowing in the transmission lines
and may be neglected.

The first part of this chapter deals with the determination of inductance and
capacitance of overhead lines. The concept of geometric mean radius, GMR and
geometric mean distance GAD are discussed, and the function {GMD, GMRL,
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GMRC] = gmd is developed for the evaluation of GMR and GMD. This function
is very useful for computing the inductance and capacitance of single-circuit or
double-circuit transmission lines with bundled conductors. Alternatively, the func-
tion [L, C] = gmd2LC returns the line inductance in mH per km and the shunt
capacitance in pF per km. Finally the effects of electromagnetic and electrostatic
induction are discussed.

4.2 OVERHEAD TRANSMISSION LINES

A transmisston circuit consists of conductors, insulators, and usvally shield wires, -
as shown in Figure 4.1, Transmission lines are hung overhead from a tower usually
made of steel, wood or reinforced concrete with its own right-of-way. Steel tow-
ers may be single-circuit or double-circuit designs. Multicircuit steel towers have
been built, where the tower supports three to ten 63-kV lines over a given width
of right-of-way. Less than | percent of the nation's total transmission lines are
placed underground. Although underground ac transmission would present a sofu-
tion to some of the environmental and aesthetic problems involved with overhead
transmission lines, there are technical and economic reasons that make the use of
underground ac transmission prohibitive,

FIGURE 4.1
Typical Jattice-type structure for 345-kV transmission line.
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per phase, which is known as bundling of conductors. The bundle consis.ts (‘}f wo,
three, or four conductors. Bundling increases the effective radius of the line’s con-
ductor and reduces the electric field strength near the conductors, which reduces
corona power loss, audible noise, and radio interference. Another important ad-
vantage of bundling is reduced line reactance.

The selection of an economical voltage level for the transmission line is based
on the amount of power and the distance of transmission. The valtage chaice to-
gether with the selection of conductor size is mainly a process of weighing RI?
losses, audible noise, and radio interference level against fixed charges on the in-
vestment. Standard transmission voltages are established in the United States by
the American National Standards Institute (ANSI). Transmission voltage lines op-
erating at more than 60 XV are standardized at 69 kV, 115 kV, 138 kV, 161 kV,
230 kV, 345 kV, 500 kV. 765 kV line-to-line. Transmission voltages above 230 kV
are usually referred to as extra-high voltage (EHV) and those at 763 kV and above
are referred to as wultra-high voltage (UHV). The most commonly used conductor
materials for high voltage transmission lines are ACSR {aluminum conductor steel-
reinforced), AAC (all-aluminum conductor), AAAC {ail-aluminum alloy conduc-
tor), and ACAR {aluminum cenductor alloy-reinforced). The reason for their pop-
ularity is their low relative cost and high strength-to-weight ratio as compared to
copper conductors. Also, aluminum is in abundant supply, while copper is limited
in quantity. A table of the most commonly used ACSR conductors is stored in file
acst.m Characteristics of other conductors can be found in conductor handbooks
or manufacturer’s literature. The conductors are stranded to have flexibility. The
ACSR canductor consists of a center core of steel strands surrounded by layers of
aluminum as shown in Figure 4.2, Each layer of strands is spiraled in the opposite
direction of its adjacent layer. This spiraling holds the strands in place.

4.3 LINE RESISTANCE

The resistance of the conductor is very important in transmission efficiency eval-
uation and economic studies. The de resistance of a solid round conductor at a
specified temperature is given by

Ry = — 4.1

where p = conductor resistivity
{ = conductor length
A = conductor cross-sectional area o

The conductor resistance is affected by three factors: frequency, spiraling,
and temperature. .

When ac flows in a conductor, the current distribution is not uniform over
the conductor cross-sectional area and the current density is greatest at the surface
of the conductor. This causes the ac resistance to be somewhat higher th_an the c!c
resistance. This behavior is known as skin effect. At 60 Hz, the ac resistance is
about 2 percent higher than the dc resistance. ‘

Sir?:e a siran%led conductor is spiraled, each strand is longer than the finished
conductor. This results in a slightly higher resistance than the value calculated from
4.1.

The conductor resistance increases as temperature increases. This change can
be considered linear over the range of temperature normally encountered and may
be calculated from

FIGURE 4.2

Cross-sectional view of 2 24/7 ACSR conductor. T+t

1T+t1

_ Ry = (4.2)

Conductor manufacturers provide the characteristics of the standard conduc-
tors with conductor sizes expressed in circular mils (cmil). One mii equals 0.001
inch, and for g solid round conductor the area tn circular mils is defined as the
square of diameter in mils. As an example, 1,000, 000 cmil represents an area of
a selid round conductor ! inch in diameter. In addition, code words (bird names)
have been assigned to each conductor for easy refcrence.

At voltages above 730 kY, it is preferable to use more than one conductor

where Ry and R, are conductor resistances at i3 and t;-C®, respectively. T is a
temperature constant that depends on the conductor material. For aluminum T ~

228. )
Because of the above effects, the conductor resistance is best determined from

manufacturers’ data.
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4.4 INDUCTANCE OF A SINGLE CONDUCTOR

A current-carrying conductor produces a magnetic field around the conductor. The

magnetic flux lines are concentric closed circles with direction given by the right- -

hand rule. With the thumb pointing in the direction of the current, the fingers of the
right hand encircled the wire point in the direction of the magnetic field. When the
current changes, the flux changes and a voltage is induced in the circuit. By defi-
nition, for nonmagnetic material, the inductance L is the ratio of its total magnetic
flux linkage to the current I, given by

A

= 4,
7 (4.3)

where A = flux linkages, in Weber tums.

Consider a long round conductor with radius r, carrying a current [ as shown
in Figure 4.3,

FIGURE 4.3
Flux linkage of a long round conductor.

The magnetic field intensity H ., around a circle of radius z, is constant and
tangent to the circle. The Ampere’s law relating H; to the current I, is given by

2nx
Hp-dl=1, 4.4)
or
Iy
T = o (4.5)

where_ I, is_ the current enclosed at radius . As shown in Figure 4.3, Equation
(4.5) is all that is required for evaluating the flux linkage A of a conductor. The

R R —
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inductance of the conductor can be defined as the sum of contributions from flux
linkages intemal and external to the conductor,

44.1 INTERNAL INDUCTANCE

A simple expression can be obtained for the internal fiux linkage by neglecting the

skin effect and assuming uniform current density throughout the conductor cross
section, i.e.,

I I,
w2 = 72 (4.6)
Substituting for [, in (4.5) yieids
I
H; = T (4.7

For a nonmagnetic conductor with constant permeability g, the magnetic flux
density is given by B, = ugH_., or
ol

EiT m&? (48)

where pip is the permeability of free space (or air) and is equal to 47 x 10~ TH/m.
The differentiat flux d¢ for a small region of thickness dr and one meter length of
the conductor is

pol
2nr2

The flux d¢, links only the fraction of the conductor from the center to radius z.
Thus, on the assumption of uniform cusrent density, only the fraction wz?/xr? of -
the total current is linked by the flux, ie.,

dé, = B,dr- 1= zdx (4.9}

2
z Hol 5
={—= = 4.10
dh; (rﬂ )fiq‘,vx e dz 4.10)
The totat flux finkage is found by integrating dA, from 0 to r.
wol [T
’\in: = -2-;_['];:‘—'/0 Isdl'
= 0 b 4.11)
8n
From (4.3), the inductance due to the interpal flux linkage is
Eygmie Loy G677 il @.12)
r 2

Note that L, is independent of the conducter radius .
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44.2 INDUCTANCE DUE TO EXTERNAL FLUX LINKAGE

Consider H: extemal to the conductor at radius * > r as shown in Figure 4.4.
Since the circle at radius x encloses the eatire current, I, = J and in {(4.5) I is
replaced by I and the flux density at radivs = becomes

pol

2rr

FIGURE 4.4
Flux linkage between 2, and 12

Since thg entire current I is linked by the flux outside the conductor, the flux link-
age_ dApis qumenca!{y equal to the flux d¢,. The differential flux d¢ . for a small
region of thickness dr and one meter tength of the conductor is then given by

dA\r =d¢; = Bode - 1 = “—”{dx (4.14)
2rx

g

pol D21

’\e:t T —ar
27? D,z

s -~
2x 10 IlnD—1 Wbim (4.15)

The ; .
e inductance between two points external to a conductor is then

Lez =2 i 93
1 x 107 % in Dl I-Um (416)

4.5, INDUCTANCE OF SINGLE-PHASE LINES 1G9

4.5 INDUCTANCE OF SINGLE-PHASE LINES

Consider one meter length of a single-phase line consisting of two solid round
conductors of radius r| and r, as shown in Figure 4.5. The two conductors are
separated by a distance D. Conductor 1 carries the phasor current I referenced
into the page and conductor 2 carries return current [y = —I;. These currents set
up magnetic field lines that links between the conductors as shown.

Ilg QIQ

FIGURE 4.5
Single-phase two-wire line.

Inductance of conductor 1 due to internal flux is given by (4.12). The flux
beyond D links a net current of zero and does not contribute to the net magnetic
flux linkages in the circuit. Thus, to obtain the inductance of conductor 1 due to
the net external flux linkage, it is necessary to evaluate {4.16) from L) = r; to
Dy =D,

- D
Lygezsy =2 % 1077 In = H/m (4.17)

LB

The total inductance of conductor 1 is then

D
Ly :%x 10'?+2x10'71nr— H/m (4.18)
1

Equation (4.18) is often rearranged as follows:
Li=2x1077 (1 +In 2)
B 3 4 r

1 1 D
=2x 1077 (111:3I + In = + In -1—)
; !

1 D
=2x 1077 (ln — +In _) (4.19)
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1 ,
Let r} = rie” %, the inductance of conductor I becomes

L =2%x10""In -17 +2x 1077 In-? H/m (4.20)
1
Similarly, the inductance of conductor 2 is
' D
Ly=2x ]0"7111—17+2x ID_TInT H/m (4.21)
)

If the two conductors are dentical, r) = ry = rand L; = Ly = L, and the
inductance per phase per meter length of the tine is given by

D )
L=2x10"7 In—l; +2x10 7 In T H/m (4.22)
1t

Examination of (4.22) reveals that the first term is only a function of the conductor
radius. This term is considered as the inductance due 1o both the internal flux and
that external to conductor 1 1o a radius of | m. The second term of (4.22} is depen-
dent only upon conductor spacing. This term is known as the inducrance spacing
Juctor. The above terms are usually expressed as inductive reactances at 60 Hz and
are available in the manufacturers table in English units.

The term 7 = re™+ iy known mathematically as the self-geometric meun
distance of a circle with radius r and is abbreviated by GMR. ' can be considered
as the radius of a fictitious conductor assumed to have no intemal flux but with the
same inductance as the actua! conductor with radius r. GMR is commonly referred
10 as geometric mean radius and will be designated by D,. Thus, the inductunce
per phase in millthendes per kilometer becomes

L=02In I—?— mH/km 4.23)

E|

4.6 FLUX LINKAGE IN TERMS OF
SELF- AND MUTUAL INDUCTANCES

The series inductance per phase for the above single-phase two-wire line can be

expressed in terms of self-inductance of each conductor and their mutual induc-

tance. Consider one meter length of the single-phase circuit represented by two

coils characterized by the self-inductances I, and L3 and the mutal inductance

Ly2. The magnetic polarity is indicated by dot symbols as shown in Figure 4.6.
The flux linkages A) and A, are given by

Av =Lyl + Loy
Az = Lot Iy + Lol (4.24)
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Ly
I, * lL22

FIGURE 4.6
The single-phase line viewed as two magnetically coupled coils,

Since Iy = =TI, we have

A= (L - L)
Ay ={(—Lyy + Ly}l (4.25)

Comparing {4.25) with (4.20) and (4.21}, we conclude the following equivalent
expressions for the self- and mutual inductances: -

1
Ly =2x10""1ln—

i}

7, 1

Lypy=2x10""1n —

]

;.

L12 = LQ; =2x 107" In 5 (426)
The concept of self- and mutual inductance can be extended to a group of n con-
ductors. Consider n conductors carrying phasor currents [y, fs, ..., I, such that
L+h+ -+ L+--+1,=0 (4.2

Generalizing (4.24), the flux linkages of conductor 7 are

n
N=Lahi+> Lyl j#i (4.28)
i=t
or
1.2 1
N=2x107 [LinS + Y Lin—| j#q (4.29)
Ty i=t D,
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4.7 INDUCTANCE OF THREE-PHASE
TRANSMISSION LINES

47.1 SYMMETRICAL SPACING

Consider one meter length of a three-phase line with three conductors, each with
radius r, symmetrically spaced in a triangular configuration as shown in Figure 4.7.

FIGURE 4.7
Three-phase line with symmetrical spacing.

Assuming balanced three-phase currents, we have

I+ L+ 1.=0 (4.30)
From (4.29) the total Qux linkage of pliase « conductor is
Aa=2x1077 (Ia fipeeg Iyin L I.In —1—) (4.31)
! D D
Substitating for J, + I. = -1,

1
X 21007 (Ia'ln — - In i)
.

D

2x 10771, 1n 2, t (4.32)
T

Because of symmetry, Ay = A, = X, and the three inductances are identical.
Therefore, the inductance per phase per kilometer length is

L=02In DE mH/km 4.33)

]

where 7/ is the geometric mean radius. GAMR, and is shown by D,. For a solid
1

round conductor, D, = re~ i for stranded conductor D can be evaluated from

(4.50). Comparison of (4.33) with (4.23) shows that inductance per phase for a

ll_ll'ec-phase_circuit with equilateral spacing is the same as for one conductor of a
single-phase circuit,
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4.7.2 ASYMMETRICAL SPACING

Practical transmission lines cannot maintain symmetrical spacing of conductors
because of construction considerations. With asymmetrical spacing, even with bal-
anced currents, the voltage drop due to line inductance will be unbalanced. Con-
stder one meter length of a three-phase line with three conductors, each with radius
r. The Conductors are asymmetrically spaced with distances shown in Figure 4.8.

a

5&912

Dy

Dy
c

FIGURE 4.3

Three-phase line with asymmetrical spacing.

The application of (4.29} wili result in the following flux linkages,

s 1 1 1
A =2 x 107 (Iu In= + Lhin—+ Icin—)
T

Dy Dia
=2 x 10“7(1 1 ! + ] znl+1 1ui)
b — a an b S c Dgg
- 1 1 1
Ae = 2 x 10 ?(Ialll—ﬁi;-f-fblnD—?s-I-Icln;) (4.34)

of in matrix form
A=LI (4.3%)

where the symmetrical inductance matrix L is given by
In ;1,- In D+2 in j$
L=2x10"7| gz Ini g (4.36)

H 1
In Dia lnm 111;1

For balanced three-phase currents with I, as reference, we have

Iy = I,£240° = o*I,
I, =I1,/120° = al, 4.37)
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where the operator @ = 1/120° and a? = 1/240°. Substitting in (4.34) results in

i, s ,
Lo = o =2x%x 107! (lnl,-{-azln—l-—*l-alnL)
- r

Dy Dy
A o
Ly = i =2x 107 (alni— -Hnl +agln-1—)
Iy Do ?" Dy
Ao _ 1 1 1
LC = —=2x10 z ( 21 e — =
_ T a‘ln Da +ealn D +In i (4.38)

Examination of {4.38) shows that the phase inductances are not equat and they
contain an tmaginary term due to the mutual inductance.

4.7.3 TRANSPOSE LINE

A per-phase model of the transmission line is required in most power system anaf-
ysis. One way to regain symmetry in good measure and obtain a per-phase model
18 10 consider transposition. This censists of interchanging the phase configuration
every one-third the length so that each conductor is moved 1o occupy the next phys-

ical position in a regular sequence. Such a transposition arrangement is shown in
Figure 4.9.

1o
a c L
Fi I’r’
Dy "
& :
Dy h .
Dy
5 £ b ¢
~— ] — —ff— ~—fff—
FIGURE 4.9

A transposed three-phase line.

Since in a transposed line each phase takes all three positions, the inductance
per phase can be obtained by finding the average value of (4.38).

Lo+ Ly+ L
) O 2 . 3 kol {4.39)
3
Noting a + a? = 1/120° 4 1£240° = —1, the average of (4.38) becomes
- 2% 10°7 1. 1 1 1
L = -——-———(3ln———l = 52 —-—)
3 i D . Doy I Dy

=
=
=
T
-
=
-
z
S
1
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or
b4 1
LE=2x 107" (111—; - ln—h——l——j—)
r {D12Dy3Dy3)3
= 25 1077 1y L12DzsDua)s (4.40)
2
or the inductance per phase per kilometer length is
A
L=02In mHf&m {4.41)
5
where
GMD = \Rr" Dl-_gD‘_:;;Dl;; (442)

This again is of the same form as the expression for the inductance of one phase
of a single-phase line. GMD (geometric mean distance) is the equivalent con-
ductor spacing. For the above three-phase line this is the cube root of the prod-
uct of the three-phase spacings. D, is the geometric mean radins, GAMER. For
stranded conductor D, is obtained from the manufacturer’s data. For solid con-
ductor, Dy =1’ = rei.

In modem transmission lines, transposition is not generally used. However,
for the purpose of modeling, it is most practical to treat the circuit as transposed.
The error introduced as a result of this assumption is very small.

4.8 INDUCTANCE OF COMPOSITE CONDUCTORS

In the evaluation of inductance, solid round conductors were considered. However,
in practicdl transmission lines, stranded conductors are used. Also, for reasons of
economy, most EHV lines are constructed with bundled conductors. In this section
an expression is found for the inductance of composite conductors. The result can
be used for evaluating the G MR of stranded or bundled conductors. It is also useful
in finding the equivalent GMR and GMD of parallel circuits. Consider a single-
phase fine consisting of two composite conductors z and y as shown in Figure
4.10. The current in z is I referenced into the page, and the return current in y is
—I. Conductor r consists of n identical strands or subconductors, each with radius
r;. Conductor y consists of m identical strands or subconductors, each with radius
ry. The current is assumed to be equally divided among the subconductors. The
current per strand is I/n in z and I/m in y. The application of (4.29) will result in
the following expression for the total flux linkage of conductor a
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A i of

@)

FIGURE 4.10
Single-phase line with two composite conductors.

I I
,\“=2><10‘?H (]n-—;ﬁ-]n +1In 4.+ 1n

Ty ab

)
Dﬂﬂ

I 1 1 1
~2x 1077 = {1 1
m ( " Doy T Doy s Dac‘ i i

1
D o

)
DHJ”

or

A =2x 1077 In ¥ Day Day Dag' - Dam (4.43)
Vr:-, DubDac i Dan
The inductance of subconductor « is
=% x 10— ?l \'Duﬂ Duﬂ Du.(.. Du'm (444}

I/l’l ¥ r-f ubDuc T Duﬂ

Using (4.29), the inductance of other subconductors in z are Stmiiar]y obiained.
For example, the inductance of the subconductor n is

An 5 3 T
Lo =20 = 27 x 1077 In V200 Do Do Do (4.45)
I/n VT;DnnDnb' "Dnc
The average inductance of any one subconductor in group x is
Lo+ Ly+Le+--+L
By = 2 = n (4.46)

Since all the subconductors of conductor x are electrically parallel, the inductance
of x will be

Low Lo+ Ly+ L <-4 L
¥ — Le b+ ;+ + Ly (4.47)
n )
substituting the values of L,, Lj, Ley-o oy Ly in (4.47) results in
L, =2x10""In MDD H/imeter (4.48)

GMR,
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where

GMD = "IV(DOG’ Dab" S Dam) i (Dmr‘Dnb’ S Dmn) (449)

and

GMR; = "f(DaDay- - D (Dl i) (4.50)

an)"'

where Dyg = Dy oo = Dy = 14

GMD is the mnth root of the product of the mnth distances between n strands of
conductor x and m strands of conductor y. GMR, is the n? root of the product of
n? terms consisting of v of every strand times the distance from each strand 1o all
other strands within group z.

The inductance of conductor y can also be similarly obtained. The geometric
mean radius GMER, will be different. The geometric mean distance GMD, how-
ever, is the same.

Example 4.1

A stranded conductor consists of seven identical strands each having a radius r as
shown in Figure 4.11. Determine the (AR of the conductor in terms of r.

FIGURE 4.11
Cross sectton of a stranded conductor,

From Figure 4.11, the distance from strand 1 to all other strands is:

Diy=Dig=Dyy=2r
DH = dr

D13 = D15 = -\HD%‘ —Dgs = 2\/31"

From {4.50) the G MR of the above conductor is

GMR = ‘\"’/(:’-Zr-2\/§r-4r-2\/§r—2r-2f)6 'f"(27)6
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=)+ (2 (3)F ()8
= 2.1767r

With a large number of strands the calculation of GMR can become very tedious.
Usually these are available in the manufacturer’s data,

4.8.1 GMR OF BUNDLED CONDUCTORS

Extra-high voltage transmission lines are usually constructed with bundled con-
ductors. Bundling reduces the line reactance, which improves the line performance
and increases the power capability of the line. Bundling also reduces the voltage
surface gradient, which in turn reduces corona loss, radio interference, and surge
impedance. Typically, bundled conductors consist of two, three, or four subcon-
ductors symmetrically arranged in configuration as shown in Figure 4.12. The sub-
conductors within a bundle are separated at frequent intervals by spacer-dampers.
Spacer-dampers prevent clashing, provide damping, and connect the subconductors

in parallel.
w Py
d d

d d
G G-
FIGURE 4.12

Examples of bundled arrangements.

Ga-©

The GMR of the equivalent single conductor is obtained by using (4.50). If
D is the GAIR of each subconductor and d is the bundle spacing, we have

for the two-subconductor bundle

D= {(D, x d)2 = /D, % d

(4.51)
for the three-subconductor bundle
D= Y(D,xdxap = YD XE (4.52)
for the four~subconc_iuctor bundle
D= YD, xdx dxdx2l)t = L00YD T (453)
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4.9 INDUCTANCE OF THREE-PHASE
DOUBLE-CIRCUIT LINES

A three-phase double-circuit line consists of two identical three-phase circuits. The
circuits are operated with a;-ay, by~bs, and ¢1—cz in parallel. Because of geqmet-
rical differences between conductors, voltage drop due to line inductance w:!l be
unbalanced. To achieve balance, each phase conductor must be transposed within
its group and with respect to the parallel three-phase line. Consider a three-pha.sc
double-circuit line with relative phase positions a1b1e1—eobsag, as shown in Figure
4.13. ;

FIGURE 4.13
Transpused double-circuit line.

The method of GAMD can be used to find the inductance per phase. To do
this, we group identical phases together and use (4.49) to find the GALD between
each phase group

Dap = ‘\’/Dallea,b?Dagb; Days,
Dpe = \"/Dbm Diye2 Dyey D

DAC = ;/Daicl DmczDa:cl Dczc-;
The equivalent GMD per phase is then

GMD = /DapDpcDac
Similarly, from (4.50), the GMR of each phase group is
Dsa = {/(DtDayos)? = y/DtDsya,
Dsg = {/(DtDy,s,)2 = /Di Dy,
Dsc = V(DgDclm)z = \/D.EDc;CZ

(4.54)

(4.55)

(4.56)



120 4 TRANSMISSION LINE PARAMETERS

where D% is the geometric mean radius of the bundled conductors given by (4.51)% i

{4.53). The equivalent geometric mean radius for calculating the per-phase induc-
tance {o neutral is

GMR, = DsaDsaDse 4.57

The inductance per phase in millihenries per kilometer is

L =02 gMi
GAMR,

mH/km (4.58)

4.10 LINE CAPACITANCE

Transmission line conductors exhibit capacitance with respect to each other due to
the potential ditference between them. The amaount of capacitance between con-
d_u.clors is 4 function of conductor size, spacing, and height above ground. By defi-
nition, the capacitance C is the ratio of charge ¢ to the voltage V| given by

q
= L
v (4.59)
Consider

a long round conductor with radius r, carrying a charge of g coulombs
per meter length as shown in Figure 4.14,

FIGURE 4.14
Electric field around a long round cenductar,

The charge on the conductor

. : gives rise to an electric field with radial Aux
lines. The total electric flux is nu

merically equal to the value of charge on the

RV [P B -
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conductor. The intensity of the field at any point is defined as the force per unit
charge and is termed efectric field intensity designated as £. Concentric cylinders
surrounding the conductor are equipotential surfaces and have the same electric
flux density. From Gauss's law, for one meter length of the conductor, the electric
flux density at a cylinder of radius x is given by

P B (4.60)
A 2xz(1) _
The electric field intensity E may be found from the relation
D
E=— (4.61)
£n

where &g is the permittivity of free space and is equal to 8.85 x 1012 F/m. Substi-
tuting (4.60) in (4.61) results in
E=_1_ (4.62)
27E0.L
The potential difference between cylinders from position Dy te D, is defined as
the work done in moving a unit charge of one coulomb from D, to D, through the
electric field produced by the charge on the conductor. This is given by

e L3y q
Vig = Edr = / dr = In —= 4.63

12 I iy, emeyr 2meq D ( )
The notation Vy5 implies the voltage drop from 1 relative to 2, that is, 1 is under-
stood 1o be positive relative 1o 2. The charge g carrtes its own sign.

4.11 CAPACITANCE OF SINGLE-PHASE LINES

Consider one meter length of a single-phase line consisting of two long solid round
conductors each having a radius r as shown in Figure 4.15. The two conductors are
separated by a distance D). Conductor | carries a charge of q; couvlombs/meter
and conductor 2 carries a charge of g2 coulombs/meter. The presence of the sec-
ond conductor and ground disturbs the field of the first conductor. The distance of
separation of the wires I is great with respect to  and the height of conductors
is much larger compared with D. Therefore, the distortion effect is small and the
charge is assumed to be uniformly distributed on the surface of the conductors.

Assuming conductor 1 alone 1o have a charge of g, the voltage between
conductor L and 2 is

@ P (4.64)

Visg = Ireg T
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41 g2

D —

FIGURE 4.15
Single-phase two-wire line.

Now assuming only conductor 2, having a charge of g,, the voltage between con- -

ductors 2 and 1 is

¢ D
oy = Tl In =
Since Vigg) = —Vayqgo). We have
42 r
Visgsy = 5T In 5 (4.65)

From the principle of superposition, the potential difference due to presence of
both charges is

q1 D g2 r
n—+ —-in— :
2-’1’:’;1 H r ¥ 2?TE() . D (4 66)

Vip = Vl‘zf{h:- o "’1:[',“". =
For a single-phase line ¢» = —q; = —¢, and (4.66) reduces to
D
Vs = L0s Fim (3.67)
EG r

From (4.59), the capacitance between conductors is

in-;-

Cia = —2 Fim ; (4.68)

Equation (4.68) gives the line-to-line capacitance between the conductors. For the
Purpose of transmission line modeling, we find it convenient to define a capacitance
C between each conductor and 2 neutral as illustrated in Figure 4.16. Since the

1 Clz
o—it

g = C 2

2 1
©  O—HF—F0

FIGURE 4.16
lllustration of capacitance to newtral.

4.12. POTENTIAL DIFFERENCE IN A MULTICONDUCTOR CONFIGURATION 123

voltage to neutral is half of V|4, the capacitance to neutral C = 2C13, or

2ren

C= F/m (4.69)

D
ln7

Recalling 6 = 8.85 x 10~!2 F/m and converting to uF per kilometer, we have

0.0556
75— #F/km {4.70)
In= .
L
The capacitance per phase contains terms analogous to those derived for inductance
per phase. However, unlike inductance where the conductor geometric mean radius
(GMR) is used, in capacitance formula the actual conductor radius 7 is used.

C=

4.12 POTENTIAL DIFFERENCE IN A
MULTICONDUCTOR CONFIGURATION

Consider n parallel long conductors with charges qy. ¢s. . . . , g, coulombs/meter as
shown int Figure 4.17,

19 q3

() O

o Q

Gi G

FIGURE 4.17
Multiconductor configuration.

Assume that the distortion effect is negligible and the charge is uniformly
distributed around the conductor, with the following constraint

qtgt-+tqga=0 (4.71)
Using superposition and (4.63), potential difference between conductors i and j

due to the presence of all charges is

n

3 geln Dy “72)
k=1 Dk‘

When k = 4, D;; is the distance between the surface of the conductor and its center,
namely its radius r.

1
Vi — =
9 2?1'60
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4.13 CAPACITANCE OF THREE-PHASE LINES

Consider one meter length of a three-phase line with three long conductors, each

with radius r, with conductor spacing as shown Figure 4.18.

Dia /§> UL

il
FIGURE 4.1%
Three-phase transmission line,

Since we have a balanced three-phase system

Gata+q =0 (4.73)

We shall neglect the effect of ground and the shield wires. Assume that the line is
transposed. We proceed with the calcutation of the potential difference between a

and & for each section of transposition, Applying (4.72) to the first section of the
transposttion, 1, is

1 Dy T D
Vab(f) = “?t_—(; (Qu In —:5 + g in BE +g.In Bé)

(4.74)
] 13
Similarly, for the second section of the transposition, we have
1 D3 r Dz
Va = eo—— o In — In — =t (4.
B(I1) G (q n . +q nD23 +gcln D12) {4.75)
and for the last section
1 D r Dy ;
Vasirrn = 5— (g 22 4 g1 T 4 lwﬁ) 4.76
b(111) Inzg (q 1’1 - + ¢ ln b i In Do { )]
The average value of Vap is
1 Do Do D .opd
Vg = ——— Iyt 28D yIn ————
. (3)27eg (qa rd T D19 Dy3 Dy
D3 D3y Dy
+q.In ~——————) 4.77
D3 Dy3 Dy Fedid

._:..;,...,.._.....‘ ."Il ‘
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or

3 i
1 {D12D3D43)5 T ) (4.78)
b= 5— g B e
Vab (Q n - (DrsbaDa)

Note that the GAID of the conductor appears in the logarithm arguments and 1s
given by

GMD = {/D1;DxuDys (4.79)
Therefore, Vi, is
1 GAD r )
b= I —— (4.80)
‘ub - _27:_50 (f}u In o gy i1 GAID
Similarly, we find the average voltage V. as
1 GAID r )
= In —- (4.81)
Vier= 2weg (r},, i r T GMD
Adding (4.80) and (4.81) and substituting for q, + . = —¢4, we have
1 GAID T 394 1 GMD (4.82)
Vin b Vip=o— | 2qa In———— gl = n .82
T e r GMD 2req r
For balanced three-phase voltages,
Vub R Va.néoo = 'V:m £-120°
Vie = Vi £0° — Vi, 2 —-240° (4.83)
Therefore,
Vap + Vae = 3Van (4.84)
Substituting in (4.82) the capacitunce per phase to neutral is
e, o BBV ey 4.85)
" Van In Q—I";"«Q
or capacitance to nevtral in uF per Kilometer is
0.0556 (4.86)

In ————G‘:.m

. . f
This is of the same form as the expression for the capacitance of one ph;f,i(gr
a single-phase line. G MDD {geometric mean distance) is the equwaler:)td cr:tl o
spacing. For the above three-phase line this is the cube root of the produ
three-phase spacings.
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4.14 EFFECT OF BUNDLING

RN SO PR [V

The procedure for finding the capacitance per phase for a three-phase transposed
line with bundle conductors follows the same steps as the procedure in Section
3.13. The capacitance per phase is found to be '

2?T£0

= 7 Fm
GMD

T 4.87) §

_T_hc cffe.ct of bundling is to introduce an equivalent radius r®. The equivalent ra-
_dlus rb is similar o the GMR (geometric mean radius) calculated earlier for the :
inductance with the exception that radius r of each subconductor is used instead of
D,. i d is the bundle spacing, we obtain for the two-subconductor bundle

= Vrxd {4.88)

for the three-subconductor bundle

r’ = Vr x d? (4.89)

for the four-subconductor bundle

= 1.09Vr x & (4.90)

4.15 CAPACITANCE OF THREE-PHASE
DOUBLE-CIRCUIT LINES

Consider a three-phase

double-circuit line with relative phase positions a1b;c; -
caboas, as shown in Fi

gure 4.13. Each phase conductor is transposed within its
group and with respect to the paraliel three-phase line. The effect of shield wires
ancl‘thc ground are considered to be negligible for this balanced condition. Fol-
lowing the procedure of section 4.13, the average voltages V;, V. and V,, are
calculated and the per-phase equivalent capacitance to neutral is obtained 1o be

2me
IEW?D‘ F/m (4.91)
CMR,

OI capacitance to neutral in uF pér kilometer is
_ 0.0556

He

C =

i hid | )..__i

'_The expression for
1s given by (4.55).

GMD is the same as was found for inductance calculation and
The GMR, of each phase group is similar to the GMR,, with -

- omte
F 4

Sre—
N

o
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the exception that in (4.56) r? is used instead of Dg. This will result in the following
equations

TA= \,‘ rb Duluz
rg = Jr? Dy,
ro = /r? 5 - (4.93)

where 7 is the geometric mean radius of the bundled conductors given by (4.88) —
(4.90). The equivalent geometric mean radius for calculating the per-phase capaci-
tance to neutral is

GJ\IR(_, = \3/ raTrTO (494)

416 EFFECT OF EARTH ON THE CAPACITANCE

For an isolated charged conductor the electric flux lines are radial and are orthog-
onal to the cylindncat equipotential surfaces. The presence of earth will alter the
distribution of clectric flux lines and equipotential surfuces, which will change the
effective capacitance of the line.

The earth level is an equipotential surface, therefore the fiux lines are forced
to cut the surface of the earth orthogonally. The effect of the presence of earth
¢an be accounted for by the method of image charges introduced by Kelvin. To
illustrate this method, consider a conductor with a charge ¢ coulombs/meler at a
height H above ground. Also, imagine a charge —q placed at a depth H below
the surface of earth. This configuration without the presence of the earth surface
will produce the same field distribution as a single charge and the earth surface.
Thus, the earth can be replaced for the calculation of electric field potential by a
fictitious charged conductor with charge equal and opposite to the charge on the
actual conductor and at a depth below the surface of the earth the same as the
height of the actual conductor above earth. This imaginary conductor is called the
image of the actuul conductor. The procedure of Section 4.13 can now be used for
the computation of the capacitance. ;

The effect of the earth is to increase the capacitance. But normally the height
of the conductor is large as compared to the distance between the conductors,
and the earth effect 1s negligible, Therefore, for all line models used for balanced
steady-state analysis, the effect of earth on the capacitance can be neglected. How-
ever, for unbalanced analysis such as unbalanced faults, the earth’s effect as well
as the shield wires should be considered,
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Example 4.2

A 500-kV three-phase transposed line is composed of one ACSR 1,272 000- .
Fizontal conductor configuration as
iameter of 1.345 in and a GMR of I
per phase per kilometer of the line,

crmil, 45/7 Bittern conductor per phase with ho
shown in Figure 4.19. The conductors have a d
0.5328 in. Find the inductance and capacitance

a b c
(—Di; = 35 ~——— Dy = 35—

D=7 —uonu |

FIGURE 4.19
Conductor layout far Example 4.2.

Conductor radius is r = 1345
GMD is obtained using {4.42)

GMD = /35 x 35 x 70 = 44.097 ft

From (4.58) the inductance per phase is

44.097
U.u444

l'rt == 02 ]ll

= 1.38 mH/km
and from {4.92) the capacitance per phase is

_ 0.0556 )
= s < 0.0083 uF/km
0.056

Example 4.3

The line in Ex.ample 4.2 is replaced by two ACSR 636, 000-cmil, 24/7 Rook
conductors which have the same total cross-sectional area of aluminum as one

ilttern conductor. The line spacing as measured from the center of the bundle is
¢ same as before and is shown in Figure 4.20.

& b e
ﬂ_?é?_ﬁ D 0,0
r—D = 35" L, - Ed !

, 12 Dyy = 35'—

D=7 !

FIGURE 4.29
Conductor layoyt for Example 4.3,

—_— -

2x12 = 0.056 ft, and GMRy, = 0.5328/12 = 0.0444 11, B
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The conductors have a diameter of 0.977 in and a GMR of 0.3924 in. Bundle
spacing is 18 in. Find the inductance and capacitance per phase per kilometer of
the line and compare it with that of Exarnple 4.2.

Conductor radius is r = g.%?z = 0.4885 in, and from Example 4.2 GMD =
44.097 ft. The equivalent geometric mean radius with two conductors per bundle,

for calcufating inductance and capacitance, are given by (4.51) and (4.88)

Vdx D, JIEx 03924

GMR; = 5 13 = 0.22147 f1
and
GAIR. E vd xr V18 x (0.4385 — 02471 fi

12 12
From {4.38) the inductance per phase is

44.097

— 1.0538 mHA
0.22147 s P

L=02In

and from (4.92) the capacitance per phase is

= —(]—{égg? = 0.0107 uF/km

In 557

Comparing with the results of Example 4.2, there is a 23.3 percent reduction in the
inductance and a 28.9 percent increase in the capacitance.

The function [GMD, GMRL, GMRC] = gmd is developed for the computa-
tion of GM D, GAfllL, and GAIR for single-circui, double-circuit vertical, and
horizontal transposed lines with up to four bundied conductors. A menu is dis-
played for the selection of any of the above three circuits, The user is prompted
to input the phase spacing, number of bundled conductors and their spacing, con-
ductor diameter, and the G MR of the individual conductor, The specifications for
some common ACS R conductors are contained in a file named acst.m. The com-
mand aecsr will display the characteristics of AC'SR conductors. Also, the function
[L, C] = gmd2l¢ in addition to the geometric mean values returns the inductance
in mH per km and the capacitance in uF per km.

Example 4.4

A 735-KV three-phase transposed line is composed of four ACSR, 954, 000-cmil,
45/7 Rail conductors per phase with horizontal conductor configuration as shown
in Figure 4.21. Bundle spacing is 46 cm. Use acsr in MATLAB to obtain the con-
ductor size and the electrical characteristics for the Rail conductor. Find the indue-
tance and capacitance per phase per kilometer of the line.
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. i
a b c i
o0 o0 o0 E Example 4.5
00 0,0 00 - = A 345-kV double-circuit three-phase transposed line is composed of two ACSR,
+1§-+—D12 - 44.5— Do = 44,5 I ' 1,431, 000-cmil, 45/7 Bobolink conductors per phase with vertical conductor con-

{ _ figuration as shown in Figure 4.22. The conductors have a diameter of 1.427 in anld
Dz = 89 : a GMR of 0.564 in. The bundle spacing in 18 in. Find the inductance and capaci-
' E tance per phase per kilometer of the line. The following commands

FIGURE 4.21

Conducior layout for Example 4.4. a

ol
Ofsll =11m60

The command acsr displays the conductor code name and the area in cmils for the

ACSR conductors. The user is then prompted to enter the conductor code name 3E Hi =7m
within single quotes. =
x Q Sy =165m—8-0 ¢
Enter ACSR code name within single quotes -> ’rail’ ko v N b
Al J}rea Strand Diameter GMR Resistance Ohm/km Ampacity 3 Hy=05m
cmil  Al/St cm ¢m  60Hz 25C 60Hz 50C Ampere §
954000  45/7 2.959 1.173 0.0624 0.0683 1000 ' OLG— Siy = 125m —&-0
. F
The following commands i ’
= FIGURE 4.22
{GMD, GMRL, GMRC] = gmd ; 9 : Conductor layout for Example 4.5,
L=0.2+1og (GMD/GMRL) Y% mH/xm Eq. (4.58) 1
C = 0.0556/1og{GMD/GMRC) % micro F/km Eq. (4.92) 3 {GMD, GMRL, GMRC] = gmd;
result in L=0.2+1og (GMD/GMRL) % oH/km Eq. (4.58)
: ) C = 0.0556/10g(GMD/GMRC) % micro F/km Eq. (4.92)
Number of three-phase circuits Ent
er i
Single-circuit 1 result in
Donble—c?‘.rcuzllt ver?ical configuration 2 Number of three-phase circuits Enter
gouhlg-c1rcu1t horizontal configuraticn 3 Single-circuit i
O guzt 0 ; Double-circuit vertical configuration 2
: o . ; e : 3
B BT S e s : - ggubtitmrcult horizontal configuration °
Enter spacing unit within quotes 'm’ or 'ft’ — ft? b - :
gntgr row vector [D12, D23, D13] = [44.5 44.5 89) k- | Select number of menu — 2
ond. size, bundle spacing unit: ’cm’ or ’in’ ‘em? B i d
S il E it T ’in’' — ‘en = Circuit Arrangements

(1) abc-c’b’a’

Geometric Mean Radius im cm = 1.173 (2) abc-a’b’
abc-a c!

No. of bundled cond. (enter 1 for single cond.) = 4
Bundie spacing in cm = 46
GMD = 56.06649 ft

GMRL = 0.65767 f¢ GMRC = 0.69696 ft
L = 0.8891

Enter (1 or 2) — 1

Enter spacing unit within quotes 'm’ or ’'ft! — ‘'m’
Enter row vector [S1t, 822, 833] = [11 16.5 12.5]
Enter row vector [H12, H23] = {7 6.5]

Cond. size, bundle spacing unit: ’'cm’ or ’in' — ‘in’

= 0.
C=0.0127
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Conductor diameter in inch = 1.427

Geometric Mean Radius in inch = 0.564

No. of bundled cond. {enter 1 for single cond.) = 2
Bundle spacing in inch = 18

GMD = 11.21352 m

GMRL = 1.18731 m GMRC = 1.25920 m

L = 0.4491
C = 0.0254
Example 4.6

A 345-kV double-circuit three-phase transposed line is compesed of one ACSR,
536, 500-cmil, 26/7 Dove conductor per phase with horizontal conductor configu-
ration as shown in Figure 4.23. The conductors have a diameter of 0.927 in and a
G MR of 0.3768 in. Bundle spacing is 18 in. Find the inductance and capacitance
per phase per kilometer of the line. The following commands

a b 3 a o ¢
(3— 8m £3— 8m —~=-Su=9m-S— 8m 43— 8m —)

FIGURE 4.23
Conductor layout for Example 4.6,

(GMD, GMRL, GMRC] = gmd;
L=0.2%10g (GMD/GMRL) % mH/km Eq. (4.58)
C = 0.0556/1og(GMD/GMRC) 4 micro F/km Eq. (4.92)

.

result in

Number of three-phase circuits Enter
Single-circuit
Double-circuit vertical configuration

Double-circuit horizontal configuration
To quit

L= VR

Select number of menu — 3
Circuit Arrangements

(1) abec-a’b’¢’

(2) abc-c’bra?

Enter (1 or 2} — 1

Enter spacing unit within quotes 'm’ or ’'ft’ — 'm’
Enter row vector [Di2, D23, 813] = [B & 18]

Enter distance between two circuits, Sii = ¢
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Cond. size, bundle spacing unit: ’cm’ or ’in’ — ’in’
Conductor diameter in inch = 0.927
Geometric Mean Radius in inch = 0.3768

No. of bundled cond. (enter 1 for single cond.) =1
GMD = 14.92053 m

GMRL = 0.48%15 m GMRC = 0.54251 m
L = 0.6836
C =10.0168

4.17 MAGNETIC FIELD INDUCTION

Transmission line magnetic fields affect objects in the proximity of the line. The
magnetic fields, related to the currents in the line, induces voltage in objects that
have a considerable length paraliel to the line, such as fences, pipelines, and tele-
phone wires.

The magnetic field is affected by the presence of earth return currents. Car-
son [14] presents an equation for computation of mutual resistance and inductance
which are functions of the earth’s resistivity. For balanced three-phase systems the
total earth return current is zero. Under normal operating conditions, the magnetic
field in proximity 1o balanced three-phase lines may be calculated considering the
currents in the conductors and neglecting earth currents.

Magnetic fields have been reported to affect blood composition, growth, be-
havior, immune systems, and neural functions. There are general concerns regard-
ing the biological effects of electromagnetic and electrostatic fields on people.
Long-term effects are the subject of several worldwide research efforts.

‘Example 4.7

A three-phase untransposed transmission line and a telephone line are supported on
the same towers as shown in Figure 4.24. The power line carries a 60-Hz balanced

- .current of 200 A per phase. The telephone line is located directly below phase

b. Assuming balanced three-phase currents in the power line, find the voltage per
kilometer induced in the telephone line. o
From (4.15) the flux linkage between conductors 1 and 2 due to current I, is

AIZ(!Q] = 0.210_ In g‘ﬂ mWb/km

al

Since Dy = Dis, Ar2 due to I is zero. The flux linkage between conductors | and
2 due to current I is

D
Alz{jc)_ =0.2I.In Dd mWb/km

el
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a b c
{9— 3.6m —@-— 3.6 *6}
S " 7]

e
\_\\\ ////
Dy Dni! Dcl Dc? 4m
\\ ‘\ 5 //
\l/v\zl
& N}
—1.2 mb—
FIGURE 4.24

Conductor layout for Example 4.6,

Total flux linkage between conductors 1 and 2 due to al] currents is

D
A1z = 0.21, In EE + 0.2, 1n 2e2
ul cl

For positive phase sequence, with I as reference, [, = I,/ —240° and we have

mWb/km

— D 2 =] DC
Mz =021, (111 T +1£-240°In 5—2) mH/km

al 3
With 1, as reference, the instantaneous flux linkage is

An(t) = V2| A cos(wt + a)

Thus, the induced voltage in the telephone line per kilometer length is

d/\ b t
= ————;t( ) = \/§w|/\121cos(wt + a +90°)

The rns voltage induced in the telephone line per kilometer is
V= wfr\mllﬂ' +90° = Fwhig
From the circuits geometry
Dy = Dyo=(32+4)i=5m

Dy = Dy= (4.22 + 42)% =58 m
The total flux linkage is

A2 = 0.2 x 200£0°In 5—; + 0.2 x 200£-240° In -

= 10.283/ — 30° mWbh/km
The voltage induced in the telephone line per kilometer is

V = jwhiy = j2760(10.283/ —30°)(107%) = 3.88/60° V/km

5.8

i Ll e B0 e o 1 b s ko i m s e+ o
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4.18 ELECTROSTATIC INDUCTION

Transtuission line electric fields affect objects in the proximity of the line. The
efectric field produced by high voltage lines induces current in objects which are
in the area of the electric fields. The effects of electric fields becomes of increasing
concern at higher voltages. Electric fields, related to the voltage of the line, are the
primary cause of induction to vehicles, buildings, and objects of comparable size.
The human body is affected with exposure to electric discharges from charged
objects in the field of the line. These may be steady current or spark discharges.
The current densities in humans induced by electric fields of transmission lines are
known o be much higher than those induced by magnetic fields. '

The resultant electric field in proximity to a transmission line can be obtained
by representing the earth effect by image charges located below the conductors at
a depth equal to the conductor height. ‘

419 CORONA

When the surface potential gradient of a conductor exceeds the dielectric strength
of the surrounding air, ienization occurs in the area close o the conductor surface.
This partial iontzation s know as corona. The dielectric strength of air during fair
weather and at NTP {25°C and 76 cm of Hg} ts about 30 kV/ecm.

Corona produces power loss, audible hissing sound in the vicinity of the line,
ozane and radie and television interference. The audible noise is an environmental
concern and occurs in foul weather. Radio interference occurs in the AM band.
Rain and snow may produce moderate TVI in a low signal area. Corona is a func-
tion of conductor diameter, line configuration, type of conductor, and condition of
its surface. Atmospheric conditions such as air density, humidity, and wind influ-
ence the generation of corona. Corona losses in rain or snow are many times the
losses during fair weather. On a conductor surface, an irregulanity such as a con-
taminating particle causes a voltage gradient that may become the point source of
a discharge. Also, insulators are contaminated by dust or chemical deposits which
will Tower the disruptive voltage and increase the corona loss. The insulators are
cleaned periodically to reduce the extent of the problem. Corona can be reduced by
increasing the conductor size and the use of conductor bundling.

The power loss associated with corona can be represented by shunt conduc-
tance, However, under normal operating conditions g, which represents the resis-
tive leakage between a phase and ground, has negligible effect on performance and
is customarily neglected. (i.e., g = 0).
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PROBLEMS

4.1.

4.2

4.3.

4.4,

4.5.

A. solid cy!indrica!_aluminum conductor 25 km long has an area of 336 300
mrc.:u]‘a.r. mils. Obtain the conductor resistance at (a) 20°C and (b) 50°C ‘Th
resistivity of aluminum at 20°C is 2.8 x 10=% Q-m e

A transtniss.ion-!ine cable consists of 12 identical strands of aluminum, each
30m8QO diameter. The resistivity of aluminum strand at 20°C is éS X
107° £2-m. Find the 50°C ac resistance :

: . per km of the cable. i
effect correction factor of 1.02 at 60 Hz 1 ASTHIRE

A three-phase transmission line is designed to deliver 180.5 MVA at 220 kv
g\:er a distance of 63 krp. The total transmission line loss is not to exceed
-3 percent of the rated line MVA. If the resistivity of the conductor material

is 2.8 % Q-m, determine i
‘:, 2.84 x I.(J ‘ Q.m, determine the required conductor diameter and the
conductor size in circular mils.

3 single-phase tm‘nsmission line 35 km long consists of two solid round con-
CL':clors, each hav‘mg a diameter of 0.9 cm. The conductor spacing is 2.5 m
alculiste the equivalent diameter of a fictitious hollow, thin-watled conduc-

tor having tl?e same equivalent inductance as the original line. What is the
value of the inductance per conductor?

Find the geometric mean radius i
Fin radius of a conductor in terms of the radius :
individual strand for e

(a) Three equal strands as shown in Fi gure 4.25(a)
(b) Four equal strands as shown in Figure 4.25(b)

(b)

FIGURE 4,25
Cross section of the siranded conductor for Problem 4.5

4.6.

One circuj i issi

cme r;r;:umt of a single-phase trflnsmlsmon line is composed of three solid 0.5-

o _rhsemres. The return circuit is composed of two solid 2.5-cm radius
. arrangement of conductors is as shown in Figure 4.26. Applying

the concept of the GAD i
in milfihenry per kilomeL:: 4 GMR, find the inductance of the complete line
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Gsm O sm-G—10n——C3m—O
& M st

Conductor z Conductor y

FIGURE 4.26
Conductor layout for Problem 4.6.

4.7. A three-phase, 60-Hz transposed transmission line has a flat horizontal con-
figuration as shown in Figure 4.27. The line reactance is 0.486 {2 per kilo-
meter. The conductor geometric mean radins is 2.0 cm. Determine the phase
spacing D in meters.

u b c

G— o —©&— p —©

— 2D
FIGURE 4.27

Conductor layout for Problem 4.7,

4.8.

A three-phase transposed line is composed of one ACSR 159,000-cmil, 54/19
Lapwing conductor per phase with flat horizontal spacing of 8 m as shown
in Figure 4.28. The G AR of each conductor is 1.515 em.

(1) Determine the inductance per phase per kilometer of the line.

(b) This line is to be replaced by a two-conductor bundle with 8 m spacing
measured from the center of the bundles as shown in Figure 4.29. The spac-
ing between the conductors in the bundie is 40 cm. If the line inductance per
phase is to be 77 percent of the inductance in part {a), what would be the
G M R of each new conductor in the bundie?

a : b L
(3~ Dy =8m—3— Dy =8m —&)

D13 =16 m
FIGURE 4.28
Conducior tayout for Problem 4.8 {a).
a b c
0,0 0,0 Q0
+ 40~ |

,-—-D12=8m

D23=8m—-1

Dis=16m :

FIGURE 4.29
Conductor layout for Problem 4.8 (b}
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4.9. A three-phase transposed line is composed of one ACSR, 1,431,000-cmil

47/7 Bobolink conductor per phase with flat horzontal spacing of 11 m as
shown in Figure 4.30. The conductors have a diameter of 3.625 ¢m and a
GMR of 1.439 cm. The line is to be replaced by a three-conductor bun-
dle of ACSR, 477,000-cmil, 26/7 Hawk conductors having the same cross-
sectional area of aluminum as the single-conductor line. The conductors have
a diameter of 2.1793 cm and a GMR of 0.8839 cm. The new line will also
have a flat horizontal configuration, but it is to be operated at a hi gher volt-
age and therefore the phase spacing is increased to 14 m as measured from
the center of the bundles as shown in Figure 4.31, The spacing between the
conductors in the bundle is 45 cm. Determine

4.19.CORONA 139

a b c
O O O O OO
0,0 0,0 0,0
- 4h -~ 1 |

['__D12 =1ldm

Dgg =l4dm—
i
Di3=28m——

FIGURE 4.32
Conductor layout for Problem 4.10.

_ _ _ 4.11. A double circuit three-phase transposed line is composed of two ACSR,
{a} The percentage change in the inductance. 2,16,7000-cmil, 72/7 Kiwi conductor per phase with vertical configuration
(b) The percentage change in the capacitance. as shown in Figure 4.33. The conductors have a diameter of 44069 cm and a -
G MR of 1.7374 cm. The bundle spacing is 45 cm. The circuit arrangement
L b c is a1bicy, cabora. Find the inductance and capacitance per phase per kilo-
@— Dia=11m %— Dyy=11m _@ meter of the line. Find these values when the circuit arrangement is a b cy,
asbyey. Use function [GMD, GMRL, GMRC] =gmd, {4.58) and (4.92) in
Diy=22m MATLAR 10 verify your results.
FIGURE 4.30 a <)
Conducior layout for Problem 4.9 (a). O(@' Suia, =16m 50
o b ¢ His=10m
O O O
O',O 0.0 0,0
- 45 = | ( b‘ O Sblb!:%m —e- 0 b-z
I"_‘_"Dl?:]‘im_'l"—"'—Dggzlflm——*l
t I
L"——“——-—D;;;:?Sm I Hg;;:gm
FIGURE 431 ! S =17 E
Conductor layout for Probtem 4.9 (b). b el o O
1 ay
FIGURE 4.33

4.10. A single-circuit three-phase transposed transmission line is composed of four Conductor layout for Problem 4.11.

ACSR, 1,272,000-cmil conductor per phase with horizontal confi guration as

shown in Figure 4.32. The bundle spacing is 45 cm. The conductor code 4.12. The conductors of a double-circuit three-phase transmission line are placed

name is phefzsant. In MATLAB, use command aesr to find the conductor di-
ametc.r and its GM R. Determine the inductance and capacitance per phase
per kilometer of the line. Use function [GMD, GMRL, GMRC] =gmd
(4.58) and (4.92) in MATLAB to verify your results. ,

on the corner of a hexagon as shown in Figure 4.34. The two circuits are
in parallel and are sharing the balanced load equally. The conductors of the
circuits are identical, each having a radius r. Assume that the line is sym-
metrically transposed. Using the method of GMD, determine an expression
for the capacitance per phase per meter of the line.
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&) Ca
Q‘D‘Q
D D
b(%‘w \—>)bz
D D
B—.D‘J

€1 ; (€3]
FIGURE 4.34 o
Conductor fayout for Problem 4,12,

4.13. A 60-Hz, single-phase power line and a telephone line ars parallel 10 each
q{her as shown in Figure 4.35. The telephone line is symmetricaily posi-
tioned directly below phase . The power line carries an rms current of 226
A, As):sumc zero current flows in the ungrounded telephone wires. Find the
magnitude of the voltage per km induced in the telephone line.

2 b
G\Sm
Im
c d
G—2'm—€)

FIGURE 4.35
Conductor Jayout for Problem 4.13,

4.14. ;\t:[];ei-phasig, 60-Hz untransposed transmission line runs in paralle] with
ne cﬂnone lfne for 20 km. The power line carries a balanced three-phase
T lr:ant of Iy, = 3?04[(‘3" A, Dy = 320£-120° A, and 1, = 320/ -240°
ﬁc;w ¢ line configuration is as shown in Figure 4.36. Assume zero current
Rows in ‘the ungrounded telephone wires. Find the magnitude of the volta
Induced in the telephone line, o

4.15,

Eﬁng anhoppositelg.r charged conductor a depth H below the surface of the
as siiown in Figure 4.37(a). This configuration without the presence
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d e
G-2m-©

FIGURE 4.36
Conducter layout for Problem 4,14,

of the earth wili produce the same field as a single charge and the earth sur-
face. This imaginary conductor is called the image conductor. Figure 4.37(b}
shows a single-phase line with its image conductors. Find the potential dif-
ference Vi, and show that the equivalent capacitance to neutral is given by

2r

Con =Cpn = I__W
Il(?mfm)
i fu = —qu
p—%)
"JI, | \‘\ \\
A A T T
PEE N
L L3
!’ l' " H L ‘\ A
f i ] ) 1 1} .
! ] I3 1 L] ] 1
] ] i 1 1 ] 1
] 1 ] 1 3 1 1
B ek o ERT R B S DI oo i mmrr
1 ] 1 1 ' i ]
1 1 1 1 1 [} I
L] 1 ] 1 ] i i
1) [} 1] 1 i i !
LU TR T & £ I B
* Y ‘\ ! ,’ e
\\:\\“::/!"/
© ® O
—q —a — G
(a) Earth plane replaced (b) Single-phase line and its image

by image conductor

FIGURE 4.37
Conductor layout for Problem 4.15.
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LINE MODEL
AND PERFORMANCE

5.1 INTRODUCTION

In Chapter 4 the per-phase parameters of transmission lines were obtained. This
chapter deals with the representation and performance of transmission lines ‘unde}
normal oPemting conditions. Transmission lines are represented by an eqhivalem
:’r::;:le!e;vﬁ appropriate circuit parameters on a “per-phase” basis. The terminal
. [hgree_pg :S:;p;‘es:cd f_rom one line to neu(lral, the current for one phase and, thus,
e Iys em is reduced to an equivalent single-phase system.

helenntios u:g ll.ilrs:::d Ito t;{ml&:tllﬂlf: vcllage.s, currents, and power flows depends on
e - In this chal‘::ter the circuit parameters and voltage and current

rst developed for “short” and “medium” lines. Problems relating to

asses ()f I“‘L-\‘ il!ld lhell’ Opel'ati iti

Next, long line theo
along the distributed line
istic impedance are define
transmitted over the lines
conditions at the two end
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Ty 1s presented and expressions for voltage and current
model are obtained. Propagation constant and character-
d, and it is demonstrated that the electrical power is being

s of the line are of primary importance, an equivalent

at approximately the speed of light. Since the terminal .

TP
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x model is developed for the long lines. Several MATLAB functions are developed
for calculation of line parameters and performance. Finally, line compensations are
discussed for improving the line performance for unloaded and loaded transmission
lines.

5.2 SHORT LINE MODEL

Capacitance may often be ignored without much error if the lines are less than
about 80 km (50 miles) long, or if the voltage is not over 69 kV. The short line
model is obtained by muitiplying the series impedance per unit length by the line
length.

Z = (r + jwl)t
=R+jX 5.1

where r and L are the per-phase resistance and inductance per unit length, respec-
tively, and £ is the line length. The short line model on a per-phase basis is shown
in Figure 5.1. Vs and g are the phase voltage and current at the sending end of the
line, and Vi and Iy are the phase voltage and current at the receiving end of the
line.

FIGURE 5.1
Short line model.

If a three-phase load with apparent power Sp(s4y is connected at the end of
the transmission line, the receiving end current is obtained by

Sll
i CEE) {5.2)
VR

The phase voltage at the sending end is

Vs=Vr+ZIg (3.3
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and since the shunt capacitance is neglected, the sending end and the receiving end ;

current are equal, i.e.,

Is = Iy 4 B

The transmission line may be represented by a two-port network as shown in Fi gure
5.2, and the above equations can be written in terms of the generalized circuit
constants commeonly known as the ABC D constants

o Is In

+ +
Vs ABCD Ve
o -
FIGURE 52

Two-port representation of a transmission line.

Vs = AVr + BIy (5.5)
Is = CVp + DIy (5.6)

fsJ— C D [IR} (5.7

According to (5.3) and (5.4), for short fine madel

or in matrix form

A=1 B=Z C=0 D=1 (3.8)

Voltage regulation of the line ma
at the receiving end of the line
from no-foad to full-load,

y be defined as the percentage change in voltage
{expressed as percent of full-Joad voltage) in going

Percent VR = WRUVL)! - fVR(FL)I «

, 100 |
Vol =
At no-load I = 0 and from (5.5)
Vy
Vainey = T (5.10)

F .
or a short line, A = 1 and Viive = Vs

. _ . Voltage regulation is a meas
line voliage drop and depends on the {o ; i

ad power factor. Voltage regulation will be
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Vs Vs
Vs !
v Ziy Zin
(( 6 §
VR I a VR VR
(a) Lagging pf load (b} Upf load {c) Leading pf load
FIGURE 5.3

- Phasor diagram for short line.

poorer at low lagging power factor loads. With capacitive loads, i.e., leading power
factor loads, regulation may become negative. This is demonstrated by the phasor °
diagram of Figure 5.3.

Once the sending end voltage is calculated the sending-end power is obtained

by
Ssiasy = 3VsI3 (5.11)
The total line loss is then given by
Sriae) = Ss3e) ~ Sr(ae) G2y
and the transmission line efficiency is given by '
_ Proo) (5.13)
Ps(38)

where Pgag) and Pg34) are the total real power at the receiving end and sending
end of the line, respectively.

Example 5.1

A 220-kV, three-phase wransmission line is 40 km long. The resistance per phase
is 0.15 £ per km and the inductance per phase is 1.3263 mH per km. The shunt
capacitance is negligible. Use the short line model to find the voltage and power at
the sending end and the veltage regulation and efficiency when the line is supply-
ing a three-phase load of

{a) 381 MVA at 0.8 power factor lagging at 220 kV.
(b) 381 MVA at 0.8 power factor leading at 220 kV.

(a) The series impedance per phase is

Z = (r+ jwL)t = (0.15 + j2m x 60 x 1.3263 x 107240 = 6 + j20 Q
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The receiving end voltage per phase is

22040°
V3

Ve = 127£0° kv

The apparent power is
Spyzey = 381Zcos™! 0.8 = 381£36.87° = 304.8 + j228.6 MVA
The current per phase is given by

Ip= SRee) 3813687 x10° .
B="Twg Tx12720s 00— 68T A

From (5.3) the sending end voltage is

Vs = Vr + ZIp = 127£0° + (6 + j20)(1000£ — 36.87°)(10~%)
= 144.33£4.93° kV

The serding end line-to-line voltage magnitude is
[Vsi-1y] = V3|Vs| = 250 kV

The sending end power is

Ssagy = 3Vsls = 3 x 144.33/4.93 x 1000/ 36.87° x 10~3
= 322.8 MW + j288.6 Mvar
=433/41.8° MVA

Voltage reguiation is

250 — 220
Percent VR = — =
en 555 100 = 13.6%
Transmission line efficiency is
P - 304.8 :
p=2E0 x 100 = 94.4%

(b) The current for 381 MVA with 0.8 leading power factor is

In = RGo) _ 38143687 x 10°
3Ve 3 x 12720°

= 1000£36.87° A
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The sending end voltage 1s

Vs = Vi + ZIp = 127£0° + (6 + 720)(1000£36.87°)(107%)
= 121.39/9.29° kV

The sending end line-to-line voltage magnitude is
Wsir—1yl = V3 Vs = 210.26 kV
The sending end power is |
S0y = 3VsTs = 3 x 121.39/9.29 x 1000Z — 36.87° x 1073

= 322.8 MW — j168.6 Mvar
= 361.18Z ~ 27.58° MVA

Voltage regulation is

210.26 — 220

Percent VR = x 1080 = —4.43%

Transmission line efficiency is

— Ppaey 3048
T By 3028

x 100 = 94.4%

5.3 MEDIUM LINE MODEL

As the length of line increases, the line charging current becomes appreciable and
the shunt capacitance must be considered. Lines above 80 km (50 miles) and below
250 km (150 miles) in length are termed as medium length lines. For medium fength
lines, half of the shunt capacitance may be considered to be lumped at each end of
the line. This is referred to as the nominal © model and is shown in Figure 5.4.
Z is the total series impedance of the line given by (5.1), and ¥ is the total shant
admittance of the line given by

Y = (g + jwC)E (5.14)

Under normal conditions, the shunt conductance per unit length, which represents
the leakage current over the insulators and due to corona, is negligible and g is
assumed 10 be zero. C is the line to neutral capacitance per km, and £ is the line
fength. The sending end voltage and current for the nominal 7 model are obtained
as follows:
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IS Z=HR + _}‘X IL IR
AN T e e s
+ +
. e y L
Vs o2 T~ Wr
o &

FIGURE 54

Nominal # model for medium length line,

From KCL the current in the series impedance designated by I is

Y
Ip=1In+ —Q"VR

(5.15)
From KVL the sending end voltage is
Ve=Vp+ ZI, (5.16)
Substituting for 7 from (5.15), we obtain
zYy
V5=(1+—2—)VR+ZIR (5.1
The sending end current is
Y
IS=IL+—2~V5 (5.18)
Substituting for I, and Vs
Y ZY

Comparing (5.17) and (5.19) with (5.5) and (3.6}, the ABCD constants for the
nominal & model are given by

ZY
A=(1+_2}:) B=2
Z
c:y(1+-£i) D=(1+§2I)

IE‘I general, the ABC D constants are
nical two-port network, 4 =

{5.20)
(5.21)

complex and since the = model is a symmet-
D. Furthermore, since we are dealing with a linear

| 4HHI!iiiﬂliﬁiw e abh
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passive, bilateral two-port network, the determinant of the transmission matrix in
(5.7) is unity, ie.,

AD-BC =1 (5.22)

Solving (5.7), the receiving end guantities can be expressed in termns of the sending

end quantities by
Vel [ D -B Vs
] |-C A Is

Two MATLAB functions are written for computation of the tansmission matrix.
Function [ Z, ¥, ABCD | = rle2abed(r, L, C, g, f, Length) is used when resistance
in ohm, inductance in mH and capacitance in pF per unit length are specified, and
function [Z, Y, ABCD ] = zy2abcd(z, y, Length) is used when series impedance
in ohm and shunt admittance in siemens per unit length are specified. The above
functions provide options for the nominal 7 model and the equivalent = model
discussed in Section 5.4.

(5.23)

Example 5.2

A 345-KV, three-phase transmission line is 130 km long. The resistance per phase
is 0.030 €2 per km and the inductance per phase is 0.8 mH per km. The shunt ca-
pacitance is 0.0112 pF per km. The receiving end load is 270 MVA with 0.8 power
factor Jugging at 325 kV. Use the medium line model to find the voltage and power
at the sending end and the voltage regulation.

The function [Z, Y, ABCD] = rlc2abed(r, L, C, g, f, Length) is used to obtain the
transmission matrix of the line. The following commands

r=.036;g=0;f=60;

L =0.8; % milli-Henry
C=¢.0112; % micro-Farad
Length = 130; VR3ph = 325;

VR = VR3ph/sqrt(3} + j*0; % KV (receiving end phase voltage)
(2, ¥, ABCD] = rlc2abcd(r, L, C, g, £, Length);

AR = acos(0.8);

SR = 270*(cos(AR) + j*sin(AR)); % MVA (receiving end power)
IR = conj(8R)/(3*conj{VR)); % kA (receiving end current)
VsIs = ABCD* [VR; IR]}; % column vector [Vs; Is)
Vs = V¥sIs(1); :
Vs3ph = sqrt(3)*abs(Vs); % kV(sending end L-L voltage)

Is = V¥sIs(2); Ism = 1000*abs{is) ;%
pfs= cos(angle(Vs)- angle(Is)); % (sending end power factor)
8s = 3+Vs*conj(Is); % MVA (sending end power)
REG = (Vs3ph/abs(ABCD(1,1)) - VR3ph)/VR3ph *100;

A (sending end current)
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fprintf(’ Is = Jg A’, Ism}, fprintf(’ pf = Y%g’, pfs)
* fprintf(’ Vs = Yg L-L kV’, Vs3ph)

fprintf(* Ps = }g MW, real(Ss)),

fprintf{’ Gs = g Mvar’, imag(Ss))

fprintf(’ Percent voltage Reg. = %g’, REG)

nou

result in

Enter 1 for Medium line or 2 for long line — 1
Neminal 7 model

Z=4.68 + j 39.2071 ohms

Y =0+ j 0.000548899 siemens

ABCD — | 0:98924 + j 0.0012844 4.68 + j 39.207
© | -3.5251e-07 + j 0.00054595 ©0.98924 + j 0.0012844

Is = 421,132 A pf = 0.869657

Vs = 345.002 L-L kv

Ps = 218.851 MW Qs = 124,23 Mvar

Percent voltage Reg. = 7.30913

Example 5.3

A 345-kV. three-phase transmission line is 130 ki long. The series impedance is
¢ = 0.036+ 0.3 Q per phase per km, and the shunt admiltance is y = j4.22x 106
siemens per phase per km. The sending end voltage is 345 kV, and the sending end
current is 400 A at 0.95 power factor tagging. Use the medium line model to find
the voltage, current and power at the receiving end and the voltage regulation,

The function [Z, Y, ABCD] = zy2abcd(z, y, Length) is used to obtain the trans-
mission matrix of the line. The following commands

2 = .036 + jx 0.3; y = j*4.22/1000000; Length = 130,
Vs3ph = 345; Igm = 0.4; YkA;

As = -acos(0.95);

Vs = Vs3ph/sqrt(3) + j*0;
Is = Ism*(cos(As) + i*sin{As));
[Z,Y, ABCD] = zy2abcd(z, y, Length);

4 kV (sending end phase voltage)

VrIr = inv(ABCD)* [Vs; 1s1; y/ column vector [Vr; Ir]
Vr = Vrir(1);
Vr3ph = sqrt(3)*abs(vr); 4 ¥V(receiving end L-L voltage)

Ir = Vrlr(2); Irm = 1000+abs(Ir); % A (receiving end currenmt)
Pir= cos(angle(vr)- angle(Ir)}; Y(receiving end power factor)
Sr = 3*Vrsconj(Ir); % MVA (receiving end power)
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REG = (Vs3ph/abs(ABCD(1,1)) ~ Vr3ph)/Vr3ph *100;
fprintf(’ Ir = %g A’, Irm), fprintf(’ pf = %g’, pfr)
fprintf(’ Vr = Yg L-L kV’, Vr3ph)

fprintf(’ Pr = ¥g MW’, real(Sr))

fprintf(* Gr = %g Mvar’, imag(8r))

fprintf(’ Percent voltage Reg. = Yg’, REG)

result in

Enter 1 for Medium line or 2 for long line — 1
Hominal # model

Z=4.68 + j 39 ohms

Y =0+ j 0.0005486 siemens

0.9893 + §0.0012837 4.68 + ; 39
ABED = | 3. 5213e-07 + J 0.00084565 0.9893 + j 0.0012837
Ir = 441.832 A pf = 0.88750
Vr = 330.68 L-L kv

Pr = 224,592 MW Qr = 116.612 Mvar
Percent veltage Reg. = 5.45863

54 LONG LINE MODEL

For the short and medium length lines rensonably accurate models were obtained
by assuming the line parameters 1o be lumped. For lines 250 km (I§0 miles) and
tonger and for a more accurate solution the exact effect of the distributed param-
eters must be considered. In this section expressions for voltage and current at
any point on the line are derived. Then, based on these eguations an eq.uivalcn_l by
model is obtained for the long line. Figure 5.5 shows one phase of a distributed line
of length £ km.

The series impedance per unit length is shown by the lowercase letter z, and
the shunt admittance per phase is shown by the lowercas:_a fetter y, wt{ere z =
T+ jwL and y = g + jwC. Consider a small segment of line Ar ata dlstanr:‘e T
from the receiving end of the line. The phasor voltages and f:urrenls‘on both SIdCSI
of this segment are shown as a function of distance. From Kirchhoff's voltage law

Viz+ Az) = V{z) + 2 Az I{z) (5.24)

or

Vie+a2) - V(@) _ i (5.25)

Ax
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Is _[[_x + Az} 2 Az I{z) o IR“ The solution of the above equation is

+ + + +
V(I) = Ale‘fr + AQE_'W' (5.33)

Vg Vir+Az)——yArxr yAzr Z— V{z) Ve
where -, known as the propagarion constant, is a complex expression given by

_ - _ _ (3.31) or
e I _ ‘ —
L _ | gAI b x T=a+if=/zy= \/(r + jwlL){g + jwC) (5.34)
| :

FIGURE 5.5 The real part « is known as the artenuation constans, and the imaginary component

Long line with distributed parameters, A is known as the phase constant. 3 is measured in radian per unit length.

From (5.26), the current is

Taking the limit as Az — 0, we have Hel= l%(rl == Z(Al]fz"" ~ Aye )
o 2 I{x) (5.26) T = | LA -
- 2 = \/;(Ale - Ay (5.35)
Also, from Kirchhoff's current law or
Hz+Ax)=I(z) +yAzV(z + Az) (5.27) 1 yr —nx
) = (e = Ape™™) (5.36)

Iz + Az) — I(z)

where Z. is known as the characteristic impedance, given by
Az =yV{z + Az) (5.28) :

P o5 (5.37)
y

Taking the limit as Az — G, we have

dl{z)
dfr =yV(z) (5.29)

To find the constants A; and A, we note that when z = 0, V{z) = Vp, and .

. o I{z} = Ir. From (5.33) and (5.36) these constants are found to be
Differentiating (5.26) and substituting from (5.29), we get

; Vr+ Z:1g

?Viz) _ dl(s) Ay = s

dz? - dx 3 Ve —Z:0p
= 2y V(z) (5.30) Apsi (5-38)

Upon substitution in (5.33) and (5.36), the general expressions for voltage and
cumrent along a long transmission line become

Y =2y (5.31)

The following second-order differential equation will result.

Viz)= B IR ey VR FelR e (5.39)
Vi v

7 +IR61:|: _ TZ‘E—IR
2

d*V {z)
—a I{z) = . 7

L YViz}=0

e (5.40)
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The equations for voltage and currents can be rearranged as follows:

e e e¥T _ p—1T D
V(ir) = —*—-—2——1/3 + Zi:———Q——IR (5.41) '
_ 1 e’h‘. _ e-*y;r e'yJ: +e—-yz '. X
Hiz)e Z. 3 VRt —5——Ig (5.42) %

Recogmizing the hyperbolic functions sinh, and cosh, the
ten as follows: ;

V(z} = coshyr Vg'+ Z,sinh vzr In (5.43) ]

.
I{x) = 7 sinh -z Vi + cosh vz In Gany E

[

We are particularly interested in the relation between the sending end and the re- .:

ceiving end of the line. Setting x = ¢, V(€) = V, and 1(¢) = I,, the result is

Vs = cosh ¢V + Z,sinh ¥ ip (5.45)

I, = Z sinh v€ Vi + cosh € Ig (5.46) -

Rcwnung the above equations in terms of the ABCD constants as before, we have k

[ 3;; J i [ ¥ J [ f’fg } (5.47)

where

A = cosh ¢ B = Z,.sinh~¢ (5.48)

C=os
= Z sithyf D = cosh ~€ (5.49)

Note that, as before, A = I and AD - BC =1.

o {i is now possible to find an accurate equivalent w model, shown in Figure 5.6,
- l;e:? ace the ABCD.constants of the two-port network. Similar to the expressions
-17) and (5.19) obtained for the nominal =, for the equivalent m model we have

Zryt =
Vs = (1 + T) Va+Z'Ip | (5.50) “
2y 2 f
Is=Y' sl - 3
s=Y (1+ 3 )VR+(1+—2'—-)IR (5.51) .:'

C . ) _. E
omparing (5.50) and (5.51) with (5.45) and (5.46), respectively, and making use 38

of the identity

tanh X o Coshyb-1
sinh ¢

above equations are writ- 3

(557 2B
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the parameters of the equivalent = model are obtained.

inh v2
2'= Zesinh ol = 27— (5.53)
A +¢ Y tanh+£/2
SRR AL i Ry 04

f _ crsinhyf
7' = zinhdt

Is Ip
o _-.__—._._WYYY\_._
+ +
. y' _ Y tanh+é/2 yr L
Vs =7 =31 T Ve
o O
FIGURE 5.6

Equivatent  modet for long length line,

The functions [Z, Y, ABCD ] = ric2abedir, L, C, g, f, Length) and [Z, Y,
ABCD ] = zy2abed(z, v, Length) with option 2 can be used for the evaluation of
the transmission matrix and the equivalent 7 paraneters. However, Example 5.4
shows how these hyperbolic functions can be evaluated euastly with simple MAT-
LARB commands.

Example 5.4

A 500-kV, three-phase transmisston line is 250 km long. The series impedance is
z = 0.045 4 j0.4 Q per phase per km and the shunt admittance is y = j4 x 10~°
siemens per phase per km. Evaluate the equivalent @ model and the transmission
matrix

The following commands

z = 0,045 + j*.4; y = 3*4.0/1000000; Length = 250;
gamma = sqrt{z*y); Zc = sqrt{z/y);

A = cosh(gammatLength); B = Zc*sinh(gammaxLength);
C = 1/Zc * sinh{gamma*Length); D = 4,

ABCD = [A B; C D]

Z=B; Y = 2/Zc * tanh(gamma*Length/2)

n o

result in
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ABCD =
0.9504 + 0.005851 1G.8778 +98.367241
=0.0000 + 0.0010i 0.8504 + 0.0055i
Z =
10.8778 +58.36241
Y =

0.0000 + 0.00101

55 VOLTAGE AND CURRENT WAVES

The rms expression for the phasor value of voltage at any point along the line is 3

given by (5.33). Substituting o + j3 for v, the phasor voltage is
Viz) = Aje®®efs 4 Agem %10z

Transforming from phasor domain to time domain, the instantaneous voltage as a
function of ¢ and x becomes

u(t.z) = VIR A1 B0) o /IR A emoTeilut-8i) (5.55)

As z increases (moving away from the receiving end), the first term becoines larger
because of e and is calted the incident wave. The second term becomes smaller
because of e and is called the refleceed wave, At any point along the line, volt-
age is the sum of these two components.

-U{LI) = 'L‘]{.'.,.’!’I) +U2(£, .17) (556)

where
v{t, )= \/§Alemcos(wt+ Bx) (5.57)
vo(t, 2) = V2 Ageo* cos{wt = Ax) (5.58)

As the current expression is similar to the voltage, the current can also be consid-
ered as the sum of incident and refiected current waves,

Equations {3.57 y and (5.58 ) behave like traveling waves as we move along

the line, This is similar to the disturbance in the water at some sending point. To see - 38
this, consider the refiected wave ta(t. x) and imagine that we ride along with the -k
wave. To observe the instantaneous value, for example the peak amplitude requires %

that

: 2K
wt — ,»’3.1_‘ =K ar = Ef —_ X

83

5.5 VOLTAGE AND CURRENT WAVES 157

Thus, o keep up with the wave and observe the peak amplitude we must travel
with the speed

dm_w

i v (5.59)
dt g
Thus, the velocity of propagation is given by
w 2nf
== (5.60)
“TBTB

The wavelength A or distance = on the wave which results in a phase shift of 2
radian is

A= 2x
or
o fg (5.61)

When line losses are neglected, i.e., when ¢ = 0 and r = 0, the real part of the
propagation constant ¢ = {), and from (5.34) the phase constant becomes

8 =w/LC (5.62)
Also, the characteristic impedance is purely resistive and {5.37) becomes
A o (5.63)

which is commonly referred to as the surge impedance. Substituting for 3 in (5.60)
and (5.61), for a lossless line the velocity of propagation and the wavelength be-
come

1

- (5.64)
VIC

S 3 = (5.65)
VL

The expressions for the inductance per unit length L and f:apaci(ancc per unit length
C of a transmission line were derived in Chapter 4, given by (4.58) and (4.91).
When the internal flux linkage of a conductor is neglected GMR = GMR¢, and
upon substitution (5.64) and (5.65) become

i (5.66)
fioEo
B Y (5.67)
f/ioge
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Substituting for pp = 4m x 1077 and £ = 8.85 x 10712, the velocity of the wave }
is obtained to be approximately 3 x 10® m/sec, i.e., the velocity of light. At 60 Hz, 3
the wavelength is 5000 km. Similarly, substituting for L and C in (5.63), we have 3

1 g GMD
e = f— 1
& 2y gg nGMHC
GAD
~ 601n GMR. {5.68)

For typical transmission lines the surge impedance varies from approximately 40002
for 69-kV lines down 1o around 250 €2 for double-circuit 765-kV transmission lines,

For alossless line 4 = j3 and the hyperbolic functions cosh yxr=cosh jIzr=
cos Jz and sinh yx = sinh j0r = J sin Az, the equations for the rms vollage and
current along the line, given by (5.43) and (5.44), become

Viz} = cos e Vg + jZ,sin Bz Iy {5.69)

1
I(z) = j7 sin B2 Vig + cos 3z I, (5.70)

Atthe sendingend z = ¢

Vs = cos 38 Vg + jZ.sin B3¢ I (5.71)

1
I ——'jE- sin 3¢ Vg + cos 8¢ I (5.72)

[

For hand calcutation it is easier to use (5.71) and (5.72), and for more accurate
caleulations (5.47) through (5,49) can be used in MATLAB. The terminal conditions
are readily obtained from the above equations. For example, for the open-circuited

line Iy = 0, and from (5.71) the no-load receiving end voltage is
Ve
V = 5.73
Ro) = OB (5.73)

At no-load, the line current is entirely due to the line charging capacitive current

and the receiving end voltage is higher than the sending end voltage. This is evident
from (5.73), which shows that as the line length increases 8¢ increases and cos Be
decreases, resulting in a higher no-load receiving end voltage.

reduce to
Vs = jZ.sin e In 5.74) §
Is = cos B¢ I (5.75) ¥
;helflbove equations can be used to find the short circuit currents at both ends of :.'
e line. 4

For a solid short circuir at the receiving end, Vg = 0 and (5.71) and (5.72) =

wiaebom i sy

et Rin o iz b b
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5.6 SURGE IMPEDANCE LOADING

When the line is loaded by being terminated with an impedance equal to its char-
acteristic impedance, the receiving end current is

Vr
IR—E:

(5.76)
For a lossless line Z. is purely resistive. The load corresponding to the surge -
impedance at rated voltage is known as the surge impedance loading (SIL), given
by

3|Vgl®
SIL =3Vriy = Vel (5.77)
Z.
Since Vi = Viraced/ V3, SIL in MW becomes
. 2

SIL < (k VLI‘GtEd) MW (5.78)

Substituting for I'r in {5.69) and 1, 1 {5.70} will result in
V{z) = {cos Sz + 3sin 3z)Vr or V(r}=VriBz (5.7
Hz) = (cos Bz + jsindx)lg or I(z)=Igifz {5.80)

Equations (5.79) and (5.80) show that in a lossless line under surge imped‘ance
loading the voltage and current at any point along the line are constant in magnitude
and are equal to their sending end values. Since Z has no fcaf:tn{c COMPpORnENt,
there is no reactive power in the line, Qs = Qg = 0. This mdlcale_s that for
SIL, the reactive losses in the line inductance are cxacllygoffsel by {eacuw? power
supplied by the shunt capacitance or wL|Ig|> = wC|Vr|*. Fro.m this re]a;?rg \fave
find that Z, = Vg/Ip = VL]C, which v_enﬁes ihE result in (5_.633(.\1 4 or
typical transmission lines varies from approximately 150 MW for 230- V- melsl to
about 2000 MW for 765-kV lines. SIL is a useful mf:asurc o.f transmission n'lu:
capacity as it indicates a loading where the line‘§ reactive requirements are sma 1.
For loads significantly above S1L. shunt capacuors Ifiay be needed to minimize
voltage drop along the line, while for light Ioat_is ‘51gm.ﬁcantly bclo‘w SIL, §hunt
inductors may be needed. Generally the transmission l.u-!e ful.l-l'oad is mur:h hfgher
than SIL. The voltage profile for various loading conditions is iilustrated in Figure

3.11 (page 182) in Exampie 5.9(h).
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Example 5.5

A three-phase, 60-Hz, 500-kV transmission line is 300 km long. The line induc- -

tance is 0.97 mH/km per phase and its capacuance is 0.0115 pF/km per phase.
Assume a lossless line.

{a) Determine the line phase constant B, the surge impedance Z¢, velocity of prop- -

agation v and the line wavelength A,

{b) The receiving end rated load is 800 MW, 0.8 power factor lagging at 500 kV. .

Determine the sending end quantities and the voltage regulation.

(a) For a lossless line, from (5,62} we have

A =wVLC =21 x 60v/0.97 x 0.0115 x 10-° = 0.001259 rad/km

2= == [ 2R X WO oneas 0
Ve Voons xips T U

Velocity of propagation is

and from (5.63)

1 l.
P o e s

vLC VU097 x 0.0115 x 10-9

=2.994 x 10" km/s

and the line wavelength is

A= = 1(2994x10“~4990k
T F 60 ) B

(b) B¢ = 0.001259 x 300 = 0.3777 rad = 21.641°

The receiving end voltage per phase is -

500£0°
V3

The receiving end apparent power ix

Va =

= 288.675£0° kV

g 80
Riso} = T Lcos™1 0.8 = 1000£36.87° = 800 + 7600 MVA

The receiving end current per phase is given by

T == Skuey 1000/ — 36.87° x 103

= 1154.7/ — 36.87° A

3VE T 3 x 288675200
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From (5.71) the sending end voltage is

Ve =cos 3 Vp+ jZ,.sin B I
= (0.9295)288.67520° + 5{290.43)(0.3688)(1154.7/ — 36.87°)(107%)
= 356.53/16.1° kV

The sending end line-to-line voltage magnitude is
VL3l = V3{Vs| = 617.53 kV

From (5.72) the sending end current is

1
sin B3¢ Vi + cos B¢ Ip

fs—Jé

= i 3 (0-3088)(288.675£0°)(30°%) + (0. 9290)(1154 7L — 36.87°)
= 9023/ — 17.9° A

The sending end power is

Ssise) = 3VsIs = 3 x 356.53/16.1 x 902.3/~17.9° x 1073
=800 MW + j539.672 Mvar
= 965.1£34° MVA

Voltage regulation is

356.53/0.9295 — 288.675

x 100 = 32.87%
288.675

Percent VR =

The line performance of the above transmission line including the line re-
sistance is obtained in Example 5.9 using the lineperf program. When 2 line is
operating at the rated load, the exact solution results in Vg, ;) = 623.5£15.57°
kY, and I; = 903.1/~17.7° A. This shows that the lossless assumption yields
acceptable results and is suitable for hand calculation.

5.7 COMPLEX POWER FLOW
THROUGH TRANSMISSION LINES

Specific expressions for the complex power flow on a line may be obtained in terms
of the sending end and receiving end voltage magnitudes and phase angles and the
ABCD constants. Consider Figare 5.2 where the terminal relations are given by
(5.5) and (5.6). Expressing the ABCD constants in polar form as A = |A]/84,
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B = |B|/8g. the sending end voltage as Vs = |Vs|Z8, and the receiving end §

voltage as reference Vg = |Vg|£0, from (5.5) Ix can be written as

_ V5|48 = |A]484|VR|L0
= 1B[405

Ip

_ Vsl
[B] |B]

The receiving end complex power is

Snee) = Priey t 3Qrwey = 3VRIR {5.82)
Substituting for p, from {5.81), we have

Ve IV AllVg?
Sigae) = 3L“§ig—|nll9n -5- 3i—||l—lf]— {6g — 04 (5.83)

or in terms of the line-to-line voltages, we have

. Woi-oVie-n)l LA VR -1y
Shide) = Sl I e e S 2L

Bl |B]

0y — 6,4 (5.88)

The real and reactive pawer at the receiving end of the line are

V. _ V, _ AllV, _ 2 ;
Prise) = l stezollViri- )| cos{fpy—d) — -I—“—R(—L-jil—cos(ﬁﬁ—f)d) {5.85)
5] |B]
VWoes Vi Al Ve _ 2 .
Qhie) = Wat-ollVi Al sin{fp—8) — Msm(&g—ﬂ,\) (5.86)
|3 1B
The sending end power is
Ss(ae) = Pszgy + iQ@spe) = 3Vsls (5.87)

From (5.23), ¢ can be written as

_ |Al£84|Vs|L8 —|VR|Z0

Is |B|Z85

Substituting for I in (5.87) yields

|AVs(r—ry? Vsio—ollVai— '
Ps(sgy = —“—%—éicos(ag-e,‘)—l S "'igl"“‘ L)lcos(ﬁg—l-é) (5.89)
LA||Vsir_ a2 Vier—rilVaiz— :
Qs@as) = ___l‘_"ls.'_éL—l'i")i—Sin(BB—gﬁ) - Wste Ll}gim[’ 2l sin(fp+4) (5.90)

5 =gy EYRp g (5.81) j

il 0t i bl b 1 24 ek g e

(5.88)
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The real and reactive transmission line losses are

Prisgy = Psgg) — Priag) (5.91)
Qriey = Qsap) — Qrize) (5.92)

The locus of all points obtained by plotting Qnr3g) versus Py for fixed
line voltages and varying load angle 4 is a eircle known as the receiving end power
circle diagram. A family of such circles with fixed receiving end voltage and vary-
ing sending end voltage is extremely useful in assessing the performance character-
istics of the transmission line. A function calied pwreire(ABCD) is developed for
the construction of the receiving end power circle diagram, and its use is demon-
strated in Example 5.9(g).

For a losstess line B = X', 84 = 0, 6g = 90°, and A = cos A€, and the
real power transferred over the line is given by ‘

Vi -l \WVrer -
Pip |Vis(e L})|(1q r(r-1)! sind _ (5.93)

and the receiving end reactive power is

Wi -llVrL -1yl Vi—i)?
QR3¢= ( )A” ¢ ) COS(S——'E')'\TJ"—

For a given system operating at constant voltage, the power transferred is propor-
tional 1o the sine of the power angle é. As the load increases, § increases. For
a losstess line, the maximum power that can be transmitted under stable steady-
state condition occurs for an angle of Y0°. However, a transmission system with
its connected synchronous machines must also be able 1o withstand, without loss
of stability, sudden changes in generation, load, and faults. To assure an adequate

margin of stability, the practical operating load angle is usually limited to 35 10
45°.

cos g€ (5.94)

5.8 POWER TRANSMISSION CAPABILITY

The power handling ability of a line is limited by the thermal loading limit and
the stability limit. The increase in the conductor temperature, due to the real power
loss, stretches the conductors. This will increase the sag between transmission tow-
ers. At higher temperatures this may result in immeversible stretching. The thermal
limit is specified by the current-carrying capacity of the conductor and is available
in the manufacturer’s data. If the current-carrying capacity is denoted by Tipermats
the thermal loading limit of a line is

S.‘.hc‘._rmal =3 vératedIthermnt (595)
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The expression for real power transfer over the line for a lossless line is given

by (5.93). The theoretical maximum power transfer is when § = 90°. The practical
operating load angle for the line alone is limited to no more than 30 to 45°. This
is because of the generator and transformer reactances which, when added 1o the
line, will result in a larger 4 for a given load. For planning and other purposes, it is
very useful to express the power transfer formula in terms of STL, and construct

the line loadability curve. For a lossless line X' = Z.sin 8¢, and (5.93) may be =

written as '

Vs Vs 2 :
Py, = | S{L oY {1Ve-u)l | V’f"‘d sin ) (5.96)
Vrated Vrated Zc 51N ,’3{
The first two terms within parenthesis are the per-unit voltages denoted by Vg, and

Vipw, and the third term is recognized as S1 L. Equation (5.96) may be written as

P e
34 <in 37 sin §
VepullViRpu[STL
= VopullVrpu|STL fj",,I sin & (5.97)
sin{ %)

The function leadabil(L, C, f) obtains the loadability curve and thermal timit curve
of the line. The toadability curve as obtained in Figure 5.12 {page 182) for Examnple
5.9(i) shows that for short and medium lines the thermal limit dictates the maxi-
mum power transfer. Whereas, for longer lines the limit is set by the practical line
loadubility curve. As we see in the next section, for longer lines it may be necessary
fo use series capacitors in order 1o increase the power transfer over the line.

Example 5.6

A three-phase power of 700-MW is to be transmitted to a substation located 315

km from the source of power. For a preliminary line design assume the following
parameters;

Vs = 1.0 per unit, Vi = 0.9 per unit, A = 5000 km, Z. = 320 £, and
& = 36.87°

(a) Based on the practical line loadability equation determine a nominal voltage
tevel for the transmission line.

_(b) For the transmission voltage level obtained in (a) calculate the theoretical max-
Mmum power that can be transferred by the transmission line.

(a) From (5.61), the tine phase constant is

2
gt = —AE.‘;’ rad
360 360
S AUN = 99 68°
0= a0 (315) = 2268
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From the practical line loadability given by (5.97), we have

_ (L0)(09)(STL)

700 -
5in(22.68°)

sin(36.87°)
Thus

SIL =493.83 MW
From (5.78)

KV, = \/(ZC)(SIL) = \/(320)(499.83} = 400 kY
{b} The equivalent line reactance for a lossless line is given by
X'=Z.sin B¢ = 320sin(22.68) = 123.39 Q

For a lossless line, the maximum power that can be transmitted under steady state
condition occurs for a load angle of 90°. Thus, from (5.93), assuming {Vs| = 1.0
pu and |Vg| = (.9 pu, the theoretical maximum power is

- (400){0.9){400}

=1 W
123.39 (1) o7 M

P3¢[mu:c} =

5.9 LINE COMPENSATION

We have noted that a transmission line [oaded to its surge impedance loading has
no net reactive power flow into or out of the line and will have approximately a flat
voltage profile along its length. On long transmission lines, tight loads appreciably
less than S1L result in a rise of voltage at the receiving end, and heavy loads ap-
preciably greater than ST L will produce a large dip in voltage. The voltage profile
of a fong line for various loading conditions is shown in Figure 5.11 (page 182).
Shunt reactors are widely used to reduce high voltages under light load or open line
conditions. If the transmission system is heavily loaded, shunt capacitors, static var
control, and synchronous condensers are used to improve voltage, increase power
transfer, and improve the system stability.

5.9.1 SHUNT REACTORS

Shunt reactors are applied to compensate for the undesirable voltage effects asso-
ciated with line capacitance. The amount of reactor compensation required on a
transmission line to maintain the receiving end veltage at a specified value can be
obtained as follows,
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2 Long line T
+ +
Vs Vr I XLen
FIGURE 5.7

Shun! reactor compensation,

Consider a reactor of reactance Xy, connected at the receiving end of 2 3¢

long transmission line as shown in Figure 5.7, The receiving end current is

Vr
FXren

In= (5.98)
Substituting I into (5.71) results in

V‘\' = L”R(_('ﬁ_‘-‘; AF 4

sin AF}
<X Lsh

Note that Vi and Vi are in phase, which is consistent with the fact that no real - 38

power is being transmitted over the line. Solving for X yields

sin J¢ '
XL:.'!L = p—ﬁ“'_ T (599)
Vi — cos 3¢
For Vy = Vg, the required inductor reactance is
sin 3¢
Xpsh = ———2 5.100
Lsh 1—cosge ¢ ( ) -

To find the relation between I and Ip, we substitute for 1 from (5.98) into {(3.72)
1. '
Is = (h-z— sin 3€ X o + cos ,3!‘) In
Substituting for Xpon from (5.100) for the case when Vi = Vg results in

Is = —Ip (5.101)
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With one reactor only at the receiving end, the voltage profile will not be uniform,
and the maximum rise occurs at the midspan. It is left as an exercise 1o show that
for Vs = VR, the voltage at the midspan is given by

Vr
e
COS%

Also, the current at the midspan is zero. The function openline(ABCD) is used to
find the receiving end voltage of an open line and o determine the Mvar of the
reactor required to maintain the no-load receiving end voltage at a specified value.
Example 5.9(d) illustrates the reactor compensation. Installing reactors at both ends
of the line will improve the voltage profile and reduce the tension at midspan.

v, (5.102)

Example 5.7

For the transmission line of Example 5.5;

(a) Calculate the receiving end voltage when line is terminated in an open circuit
and is energized with 500 kV at the sending end.

{b) Determine the reactance and the Mvar of a three-phase shunt reactor 1o be in-

stalied at the receiving end to keep the no-load receiving end voltage at the rated
value.

{a) The line is energized with 500 kV at the sending end. The sending end voltage
per phase is '

Vg = ) = 288.675 kV

V3
From Example 5.5, Z, = 290.43 and 3¢ = 21.641°,
When the line is open I = 0 and from (5.71) the no-load receiving end
voltage is given by

Vs _ 288.675
cos 3¢ 0.9295
The no-load receiving end line-to-line voltage is

VaL-synty = V3 Vaguy = 537.9 kV
(b) For Vs = Vg, the required inductor reactance given by (5.100) is
5in(21.641°)
1 — cos(21.641°)
The three-phase shunt reactor rating s

Qg = KVeraea)® _ (5007

Vagmn = = 310.57 kV

Xien = (200.43) = 1519.5

= 164.53 Mvar

Xron  1519.5
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592 SHUNT CAPACITOR COMPENSATION
Shunt capacitors are used for lagging power factor circuits created by heavy loads. ] ;
The effect is to supply the requisite reactive power to maintain the receiving end J
voltage at a satisfactory level. Capacitors are connected either directly (o a bus bar 4
or to the tertiary winding of a main transformer and are disposed along the route to 4
minimize the losses and voltage drops. Given Vs and Vg, (5.85) and (5.86) can be §
used conveniently to compule the required capacitor Mvar at the receiving end fora 3!
specified load. A function called shntcomp(ABCD) is developed for this purpose, 3
and its use is demonstrated in Example 5.9(f). "

593 SERIES CAPACITOR COMPENSATION

Series capacitors are connected in series with the line, usually located at the mid- &
point, and are used to reduce the series reactance between the load and the supply 3
peint. This results in improved transient and steady-state stability, more econom- §
ical loading, and minimum voltage dip on load buses. Series capacitors have the B
good characteristies that their reactive power production vartes concurrently with 3
the line loading. Studies have shown that the addition of series capacitors on EHV 3
transmission lines can more than double the transient stability Toad limit of long
lines at a fraction of the cost of a new transmission line.

Long line
A L o In
T E :
e B e +
"‘}A Tser
Vs Ve _——3Xca |::l
FIGURE 5.8

Shunt and serics capacitor compensation.

With the series capacitor switched on as shown in Figure 5.8, from (5.93), the 3
power transfer over the line for a lossless line becomes

WVs-)[\Vap-1)|
Py = sin §
2 X' — XCser

(5.103)

Where X, is the series capacitor reactance. The ratio XCser/ X' expressed as a

percentage. is usually referred to as the percentage compensation. The percentage §
compensation is in the range of 25 to 70 percent.
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One major drawback with series capacitor compensation is that special pro-
tective devices are required to protect the capacitors and bypass the high current
produced when a short circuit occurs. Also, inclusion of series capacitors estab-
lishes a resonant circuit that can oscillate at a frequency below the normal syn-
chronous frequency when stimulated by a disturbance. This phenomenon is re-
ferred to as subsynchronous resonance (SSR). If the synchronous frequency minus
the electrical resonant frequency approaches the frequency of one of the turbine-
generator natural torsional modes, considerable damage to the turbine-generator
may result. If L’ is the lumped line inductance corrected for the effect of dis-
tribution and C,,, is the capacitance of the series capacitor, the subsynchronous

resonant frequency is
1
=t ve,n

where f is the synchronous frequency. The function sercomp(ABCD) can be used
to obtain the line performance for a specified percentage compensation. Finally,
when line is compensated with both series and shunt capacitors, for the specified
terminal voltages, the function srshcomp(ABCD) is used to obtain the line per-
formance and the required shunt capacitor. These compensations are also demon-
strated in Example 5.9(1).

(5.104)

Example 5.8

The transmission line in Example 5.5 supplies a load of 1000 MVA, 0.8 power
factor lagging at 500 kV.

{a) Determine the Mvar and the capacitance of the shunt capacitors to be installed
at the receiving end o keep the receiving end voltage at 500 kV when the line is
energized with 500 kV at the sending end.

(b) Oniy series capacitors are installed at the midpoint of the line providing 40 per-
cent compensation. Find the sending end voltage and voltage regulation.

(a) From Example 3.5, Z. = 290.43 and 3£ = 21.641°. Thus, the equivalent line
reactance for a lossless line is given by

X' = Z. sin 3¢ = 290.43sin{21.641°) = 107.11 Q
The receiving end power is

Sr(sey = 1000/ cos™1(0.8) = 800 + 7600 MVA

For the above opetating condition, the power angle & is obtained from (5.93)

(500)(500) _

i 1177
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which results in & = 20.044°. Using the approximate relation given by {5.94), the E 4

net reactive power at the receiving end is

{(500){500) . (500)2 o
s o SR e L S i 0_ —_ - i - 4
QRrize) 107 11 c0s{20.044°) 071 cos(21.641°) = 23.15 Mvar

Thus, the required capacitor Mvar is S¢' = 72315 — 3600 = —7576.85
The capacitive reactance is given by

Vel?  (500) ,
Xo= = = —j433.
CT S T istesy - M8 Q
or
106
= —— = 6. u4F
¢ ooy =L e

The shunt compensation for the above transmission line including the line
resistance is obtained in Example 5.9(f) using the lineperf program. The exact so-
lution results in 613.8 Mvar for capucitor reactive power as compared to 576.85

Mvar obtained from the approximate formula for the fossless line, This represents
approximaiely an error of 6 percent.

(b) For 40 percent compensation, the series capacitor reactance per phase is
Neer = 04X = 0.4(107.1) = 42.84 Q
The new equivalent # circuit parameters are given by
Z e[ N Xser} = J(107.1 — 42.84) = j64.26 Q

2 D]
Y'==j_ tan(p/2) = j —
Ig an(B¢/2} I 55043

The new B constant is B = 764.26 and the new A-constant is given by

tan(21.641°/2) = j0.001316 siemens

!

Y’ 64, 0.
A=14ZY _ | (56426)(0.001316)
2 2
The receiving end voltage per phase is

= 0.9577

5
Vi = \—05 = 288.675 kV

and the receiving end current is

; Shiagy 1000/ —36.87°
-_ -

= L1547/~36.87° kA

3VE T 3% 288.675/0°
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Thus, the sending end voltage is

Vs = AVp + Blp = 0.9577 x 288.675 + j64.26 x 1.1547/—36.87°
326.4£10.47° kv

and the line-to-line voltage magnitude is [Vs(L_1y] = V3 Vs = 565.4 kV. Voltage
regulation is

565.4/0.958 — 500
500

Percent VR = x 100 = 18%

The exact solution obtained in Example 5.9{f) results in Vs(L-1y = 5719 kV. This
represents an error of 1.0 percent,

510 LINE PERFORMANCE PROGRAM

A program called lineperf is developed for the complete analysis and compen-
sation of a transmission line, The command lineperf displays a menu with five
options for the computation of the parameters of the » models and the transmis-
sion constants. Selection of these options wilt call upon the following functions.

[Z, Y, ABCD] = ric2abed(r, L, C, g, f, Length) computes :md' retums the «
mode! parameters and the transmission constants when r in ohm, L in mH, and C
in 1F per unit length, frequency, and line length are specified.

{Z, Y, ABCD] = zy2abed(z, y, Length) computes and returns th.e 7 model
parameters and the transmission constants when impedance and admittance per
unit length are specified,

{Z, Y, ABCD) = pi2abed(Z, Y) returns the ABCD constants when the 7
model parameters are specified.

[Z, Y, ABCD] = abed2pi(A, B, C) returns the m mode] parameters when the
transmission constants are specified.

[L , C] = gmd2lc computes and retumns the inductance and ca;?acitance per
phase when the line configuration and conductor dimensions are specified.

[r, L, C, f] = abcd2ric(ABCD) returns the line parameters per unit length and
frequency when the transmission constants are specified.
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Any of the above functions can be used independently when the arguments of §
the functions are defined in the MATLAB environment. If the above functions are §
typed without the parenthesis and the arguments, the user will be prompted to enter 3
the required data. Next the lineperf loads the program listmenu which displays a 3
list of eight options for transmission line analysis and compensation. Selection of 3
these options will call upon the following functions.

i3 Ll i ik 7k w8 Rt e

givensr(ABCD) prompts the user to enter Vg, Pp and Qp. This function 3
computes Vs, Ps, Qg, line losses, voltage regulation, and transmission efficiency.

givenss(ABCD) prompts the user to enter Vs, Ps and Q5. This function com-
putes Vi, P, Q. line losses, voltage regulution, and transmission efficiency.

givenzi(ABCD) prompts the user to enter Vg and the load impedance. This

function computes Vs, Ps, Q. line losses, voltage regulation, and transmission
efficiency.

openline{ABCD) prompts the user to enter V. This function computes Vg
for the open-ended line. Also, the reactance and the Mvar of the necessary reactor
to maintain the receiving end voltage at a specified value are obtained. In addition,
the function plots the voltage profile of the line.

shcktlin(ABCD) prompts the user 10 enter V. This function computes the
current at both ends of the line for a solid short circuit at the receiving end.
Option 6 is for capucitive compensation and calls upon compmenu which

displays three options. Selection of these options will call upon the following func-
tions.

shntcomp{ABCD) prompts the user to enter Vs, Pg, @r and the desired V. %
This function computes the capacitance and the Mvar of the shunt capacitor bank
to be installed at the receiving end in order to maintain the specified V. Then, Vs,
Fs. Qs, tine losses, voltage regulation, and transmission efficiency are found.

sercomp(ABCD) prompts the user to enter Vz, Pr., Qr, power, and the per-
centage compensation (i.e., Xgser/ Xiine x 100 ). This function computes the Mvar 3
of the specified series capacitor and Vs, Ps, Qsg, line losses, voltage regulation, and -3
transmission efficiency for the compensated line. '

srsheomp(ABCD) prompts the user to enter Vs, Pr, Qg, the desired Vg and
the percentage series capacitor compensation, This function computes the capaci-
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tance and the Mvar of a shunt capacitor to be installed at the receiving end in order

to maintain the specified V. Also, Vs, Ps, Qg, line losses, voltage regulation, and
transmission efficiency are obtained for the compensated line.

Option 7 loads the pwrcire{ABCD) which prompts for the receiving end volt-
age. This function constructs the receiving end power circle diagram for various
values of Vg from Vg up 10 1.3V5.

Option 8 calls upon profmenu which displays two options. Seléclion of these
options will call upon the following functions: ;

vprofile(r, L, C, f} prompts the user 1o enter Vg, rated MVA, power factor,
Vr, Pr, and Qg. This function displays a graph consisting of voltage profiles for -
line length up to 1/8 of the line wavelength for the following cases: open-ended
line, line terminated in S1L, short-circuited line, and fult-load.

loadabil(L., C, f) prompts the user for Vg, Vg, rated line voltage, and current-
carrying capacity of the line. This function displays a graph consisting of the prac-
tical line loadability curve for § = 30°, the theoretical stability limit curve, and the
thermal limit. This function assumes a lossless line and the plots are obtained for a
line length up to 1/4 of the ling wavelength,

Any of the above functions can be used independently when the arguments of the
functions are defined in the MATLAB environment. The ABC D constant is en-
tered as a matrix. If the above functions are typed without the parenthesis and the
arguments, the user will be prompted to enter the required data.

Example 5.9

A three-phase, 60-Hz, 550-kV transmission line is 300 km long. The line parame-
ters per phase per unit length are found to be

r=0.016 Q/km L =097 mHkm C =0.0115 pzF/km

{a) Determine the line performance when load at the receiving end is 800 MW, 0.8
power factor lagging at 500 kV.

The command:

lineperf

displays the following menu
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Type of parameters for input Select
Parameters per unit length

r (), g {siemens), L (mH), C (uF) 1
Complex z and y per unit length

r + jxx (2}, g + j*b (siemens) T
Nominal 7 or Eq. 7 model 3

A, B, C, D constants 4
Conducter configuration and dimension . 5

To quit o

Select number of menu — 1

-Enter line length = 300

. Enter frequency in Hz = 60

Enter line resistance/phase in {1/unit length, r = 0.016
Enter line inductance in mH per unit length, L = 0.87
Enter line capacitance in pF per unit length, C = .0115
Enter line conductance in siemens per unit length, g = 0
Enter 1 for medium line or 2 for long line — 2

Equivalent 7 model

Z' = 4.57414 + j 107.119 ohms

Y' = 6.9638e-07 + j 0.00131631 siemens

Zc = 290.496 + j -6.35214 ohms

af = 0.00826172 neper ¢ = 0.377825 radian = 21.6478°
ABCD.— 0.9295 + ;30.0030478 4.5741 + ;107.12

~1.3341e — 06 + 3j0.0012699 0.9295 + ;0.0030478

At this point the program listmenu is automatically loaded and displays the fol-
lowing meny.

Transmission line performance
Analysis Select

Te calculate sending end quantities
for specified receiving end MW, Mvar 1
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To calculate receiving end guantities
for specified sending end MW, Mvar 2

To calculate sending end quantities

when load impedance is specified 3
Open-end line and reactive compensation 4.
Short-circuited line _ 5
Capacitive compensation 6
Receiving end circle diagram 7
Loadability curve and voltage profile 8
Te quit Y

Select number of menu — 1

Enter receiving end line-line voltage kV = 500

Enter receiving end voltage phase angle® = 0

Enter receiving end 3-phase power ¥d = 800

Enter receiving end 3-phase reactive power

{+ for lagging and - for leading power factor} Mvar = 600

Line performance for specified receiving end quantities

Vr = 500 kV (L-L) at 0°

Pr = 800 MW Qr = 600 Mvar

Ir = 1154.7 A at -36.8699° PFr = 0.8 lagging

Vs = 623.511 kV (L-L) at 15.5762° '

Is = 903.113 A at -17.6996°, PFs = 0.836039 lagging
Ps = 815.404 MW, Qs = 535.129 Mvar

PL = 15.4040 MW, QL = -64.871 Hvar

Percent Voltage Regulation = 34.1597

Transmission line efficiency = 98.1108

At the end of this analysis the listmenu (Analysis Menu) is displayed.

(b) Determine the receiving end quantities and the line performance when 600 MW
and 400 Mvar are being transmitted at 525 kV from the sending end.
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Selecting option 2 of the listmena results in the Mvar of a three-phase shunt reactor to be installed at the receiving end in order

to limit the no-load receiving end voltage to 500 kV.
Enter sending end line-line voltage kV = 525

Enter sending end voltage phase angle® = 0

Enter sending end 3-phase power MW = 600

Enter sending end 3-phase reactive power

(+ for lagging and - for leading power factor) Mvar = 400

N

Selecting option 4 of the listmenu results in

Enter sending end line-line voltage kV = 500
Enter sending end voltage phase angle® = O

Line performance for specified sending end quantities Open line and shunt reactor compensaticn

Vs = 525 kV {(L-L) at 0°

¥s = 500 kV (L-L) at 0°
Ps = 600 MW, Qs = 400 Mvar Vr = B37.92 kV (L-L) at -0.00327893°
Is = 793.016 A at -33.6901°, PFs = 0.83205 lagging Is = 394.394 A at 89.8723°, PFs = 0.0022284 leading

Vr = 417.954 kV (L-L) at ~16.3044°

Ir = 1002.6 A at ~52.16° PFr = 0.810496 lagging
Pr = 588.261 MW, Qr = 425.136 Mvar

PL = 11.7390 MW, QL = -25.136 Mvar

Percent Voltage Regulation = 35.1383
Transmission line efficiency = 98.0435

Desired no load receiving end voltage = 500 kV
Shunt reactor reactance = 1519.4 )
Shunt reactor rating = 164.538 Mvar

The voltage profile for the uncompensated and the compensated line is also found
as shown in Figure 5.9.

(¢) Determine the sending end quantities and the line performance when the re- Voltage profile of an unloaded iine, X4 = 1519 ohms

ceiving end load impedance is 290 §) at 500 kV. 540 : ' i Uncompensated 1
N ) . 530} 4
Selecting option 3 of the listmenu results in
520 | |
Enter receiving end line-line voltage kV = 500 7
Enter receiving end voltage phase angle® = 0 210
Enter sending end complex load impedance 290+ j # 0 Line 500 Comperisated
ine :
Line performance for specified load impedance KV 400t |
Vr = 500 XV (L-L) at ¢° 480
Ir = 995.431 A at 0° PFr = 1 470
Pr = 862.069 My, Qr = 0 Mvar ' .
Vs = 507.996 kV (L-L) at 21.5037° 460+ |
Is = 995.995 & at 21.7842°, PFs = 0.999988 leadin ; ‘ ' ‘
. ¥ - g i " =
Ps = 876.341 MW Qs = -4.290 Mvar 4504 50 100 150 200 250 300
PL = 14.272 MW QL = -4.290 Mvar Sending end HEHE e
Percent Voltage Regulation = 9,30464
Transmission line efficiency = 98.3714 FIGURE 5.9

Compensated and uncompensated voliage profile of open-ended line.

(d} Find the receivin
and is energized with

{e) Find the receiving end and the sending end currents when the line is terminated
in a short circuit,

g end voltage when the line is terminated in an open circuit
500 KV at the sending end. Also, determine the reactance and 5
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Selecting option 5 of the listmenu resunits in Shunt o £
unt capacitive compensation
Enter sending end line-line voltage kV = 500 g 5
Enter sending end voltage phase angle® = 0 E xs - ggg tg Et"t; at 59'24?9
. = -L} at iy
Line short-circuited at the receiving end » Pload = 800 MW, Qload = 600 Mvar
Load current = 1154.7 A at -36.B699°, PFl = 0.8 lagging
Vs = 500 kV (L-L)} at Q° E Required shunt capacitor:4(7.267 £}, 6.51314 uF,613.843 Mvar
Ir = 2692.45 A at -87.5549° B Shunt capacitor current = 708.811 A at 90°
Is = 2502.65 A at -87.367° . Pr = B0C.000 MW, Qr = -13.849 Mvar
- Ir = 923.899 A at 0.991732°, PFr = 0.99985 leading
Is = 940.306 & at 24.121° PFs = 0.997716 leading
g il ; Ps = 812 469 MW, s = -55.006 Mvar
() The line loading in part (a) resulted in a voltage regulation of 34.16 percent, PL = 12.469 MV, Qg = -41.158 Mvar

:1}:;3*’ IFE'{aCFBPlabIY high. To improve the line performance, the line is compen- 3 Percent Voltage Regulation = 7.58405
with series and shunt capacitors. For the loading condition in (a): » Transmission line efficiency = 98.4653

(1) Determine the Mvar and the capacitance of the shunt capacitors to be in-

stalled at the receiving end to keep the receivin
talle : ; g end voltage at 500 kV when the 2) Determine the line pe il ine § : et
s b o el (2) Determine the line performance when the line is compensated by series

capacitors for 40 percent compensation with the toad condition in (a) at 500 kV.

Selecting option 6 will display the compmenu as follows: Selecting option 2 of the compmenu resulis in

Capacitive compensation Enter receiving end line-line voltage kV = 500

Analysis Saldct Enter receiving end voltage phase angle” = Q
- D Enter receiving end 3-phase power MW = BOO
Shunt capacitive compensation 7 Enter receiving end 3-phase reactive power
(+ for lagging and - for leading power factor) Mvar = 600
Series capacitive compensation 2 Enter percent compensation for series capacitor
(Recommended range 25 to 75/ of the line reactance} = 40
i REPRSLRINE EREgesRRLIon 3 Series capacitor compensation
To quit
0 Vr = 500 kV (L-L) at 0°
Pr = 800 MW, Qr = 600 Mvar

Required series capacitor: 42.8476 Q, 61.9074 uF, 47.4047 Mvar
: Subsynchronous resconant frequency = 37.9473 Hz

. . TER = i ° = i
Enter sending end line-line voltage kV = 500 E Ir = 1154.7 A at -36.8699°, PFr = 0.8 lagging

Selecting option 1 of the com pmenu results in

Enter i o ; : Vs = 571.904 kv (L-L) at 9.95438°
Enter fﬁiiﬁii’ s G boh s Linerline VBIGEES RV 5 500 Is = 932.258 A at -18.044°, PFs = 0.882961 lagging
Enter receiyiit ooy LoLtage phase angle® = 0 Ps = 815.383 MW Qs = 433.517 Mvar
Ent ook ‘ouc Sephane pover HW = 500 'PL = 15.383 MW, QL = -166.483 Mvar
¢r receiving end 3-phase reactive power ; ’

Percent Voltage Regulation = 15.4322

(+ for laggin A
8ging an 600 =g Transmission line efficiency = 98.1134

for leading power factor) Mvar
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(3) The line has 40 percent series capacitor compensation and supplies the
load in (a). Determine the Mvar and the capacitance of the shunt capacitors to be
installed at the receiving end to keep the receiving end voltage at 500 kV when line §
is energized with 500 kV at the sending end. :

Selecting option 3 of the compmenau results in

Enter sending end line-line voltage kV = 500

Enter desired receiving end line-line voltage kV = 500
Enter receiving end voltage phase angle® = 0

Enter receiving end 3-phase power MW = 800

Enter receiving end 3-phase reactive power

(+ for lagging and - for leading power factor) Mvar = 600
Enter percent compensation for series capacitor
(Recommended range 25 to 75% of the line reactance) = 40

Series and shunt capacitor compensation

Vs = 500 kV (L-L) at 12.0224°

Vr = 500 kv (L-L) at ¢°

Pload = 800 MW, Qload = 600 Mvar

Load current = 1154.7 A& at -36.8699°, PF1 = 0.8 lagging
Required shunt capacitor: 432.736 Q, 6.1298 puF, 577.72 Mvar
Shunt capacitor current = 667.093 A at 90°

Required series capacitor: 42.8476 2, 61.9074 uF,37.7274 Mvar
Subsynchronecus resonant frequency = 37.9473 Hz

Pr = BOO MW, Qr = 22.2804 Mvar

Ir = 924.119 A at -1.5953°, PFr = 0.599612 lagging

Is = 951.165 A at 21.5%977°, PFs = 0.986068 leading

Ps = 812.257 MW, Os = -137.023 Mvar

PL = 12 257 MW, QL = -159.304 Mvar

Percent Voltage Regulation = 4.41619

Transmission line efficiency = 98.491

(8) Construct the receiving end circle diagram.

Selecting option 7 of the listmeriu results in

Enter receiving end line-line voltage kV = 500

A plot of the receiving end circle diagram is obtained as shown in Figure 5.10.
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Power circle diagram V;: from V; to 1.3V,

1000 1 T T

—1000, 500 1000 1500 2000

P, MW

FIGURE 5.10
Receiving end cirele diagram.

(h) Determine the line voltage profile for the following cases: no-load, rated load,
line terminated in the S L, and short-circuited line. -

Selecting option 8 of the listmenu results in

Voltage profile and line loadability

Analysis Select
Voltage profile curves i
Line leoadability curve 2
To quit 0

Selecting option | of the profmenu results in
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Voltage profile for length up to 1/8 wavelength, Z, = 290.5 ohms
800 r T r ' T : :

700 No-load -

600 4

500

V. 400
300
200
100}

0

t

T

SIL T

Rated load

1 ; . . ; 5, PHIVEKE
0 (100 200 300 400 500 600 700 800
Sending end Receiving end

FIGURE 5.11
Voltage profile for length up to 1/8 wavelength.

Loadability curve for length up to 1/4 wavelength

SIL = 860.8 MW, delta = 30 degrees

Thermal limit

Theoretical stability limit

ractical line loadabi ity

[ Y L L 1 1 L
0 200 400 600 800 1000 1200 1400
Line length

FIGURE 5.12
Line loadability curve for tength up to 1/4 wavelength.
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Enter sending end line-line voltage kV = 500
Enter rated sending end power, MVA = 1000
Enter power facter = 0.8

A plot of the voltage profile is obtained as shown in Figure 5.11 (page 182).

(1) Obtain the line loadability curves.
Selecting option 2 of the profmenu results in

Enter sending end line-~line voltage kV = 500

Enter receiving end line-line voltage kV = 500

Enter rated line-line voltage kV = 500

Enter line current-carrying capacity, Amp/phase = 3500

The line loadability curve is obtained as shown in Figure 5.12 (page 182).

PROBLEMS

5.1

th
[

A 65-kV, three-phase short transmission line is 16 km long. The line has a per
phase series impedance of 0.125+ 70.4375 ¥ per km. Determine the sending
end voltage, voltage regulation, the sending end power, and the transmission
efficiency when the line delivers

(a) 70 MVA, 0.8 lagging power factor at 64 kV.
(b) 120 MW, unity power factor at 64 kV.

Use lineperf program to verify your results.

Shunt capacitors are installed at the receiving end to improve the line perfor-
mance of Problem 5.1. The line delivers 70 MVA, 0.8 lagging power factor
at 64 kV. Determine the total Mvar and the capacitance per phase of the
Y-connected capacitors when the sending end voltage is

(a) 69 kV.

(b) 64 kV.

Hinr: Use (5.85) and (5.86) to compute the power angle ¢ and the receiving
end reactive power.

(¢} Use lineperf to obtain the compensated line performance.
A 230-kV, three-phase transmission line has a per phase series impedance
of 2 = 0.05 + 70.45 £ per km and a per phase shunt admittance of y =

73.4 x 107% siemens per km. The line is 80 km long. Using the nominal
model, determine

(a) The transmission line ABCD constants.
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54.

5.5.

5.6.

5.7

Find the sending end voltage and current, voltage regualation, the sending end I.

power and the transmission efficiency when the line delivers

(b) 200 MVA, 0.8 lagging power factor at 220 kV.
(c} 306 MW, unity power factor at 220 kV.

Use lineperf program to verify your results.

Shunt capacitors are installed at the receiving end 1o improve the line perfor-
mance of Problemn 5.3. The line delivers 200 MVA, 0.8 lagging power factor 3

at 220 kV.

(ajDetermine the total Mvar and the capacitance per phase of the Y-connected

capacitors when the sending end voltage is 220 kV. Hins: Use (5.85) and =

{5.86) to compute the power angle 6 and the recetving end reactive power.
(b) Use lineperf to obtain the compensated line performance,

A three-phase, 345-kV, 60-Hz transposed line is composed of two ACSR, E

1,113,000-cmil, 45/7 Bluejay conductors per phase with flat horizontal spac-

ing of 11 m. The conductors have a diameter of 3.195 cm and a GMR of '
1.268 cm. The bundie spacing is 45 cm. The resistance of each conducior

in the bundle is 0.0538 Q per km and the line conductance is negligible,
The fine is 150 km long. Using the nominal 7 model, determine the ABCD
constant of the line. Use lineperf and option § to verify your results,

The ABCD constants of a three-phase, 345-kV transmission line are

A= D = 0.98182 + j0.0012447 -
B = 4.035 + j58.947
C = j0.00061137

The line delivers 400 MVA at 0.8 lagging power factor at 345 kV. Determine
the sending end quantities, voltage regulation, and transmission efficiency.

Write a MATLAB function named {ABCD] = abedm(z, y, Lngt) to evaluate

apd return the ABCD transmission matsix for a medium-length transmis-
sion line where 7 is the per phase series impedance per unit length, y is the

shunt admittance per unit length, and Lngt is the line length. Then, write a ' '
Program that uses the above function and computes the receiving end quan- 73
liies, voltage regulation, and the line efficiency when sending end quantities %

are specified. The program should prompt for the following quantities:

The sending end line-to-line voltage magnitude in kV
The sending end voltage phase angle in degrees
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The three-phase sending end real power in MW
The three-phase sending end reactive power in Mvar

Use your program to obtain the solution for the following case.

A three-phase transmission line has a per phase series impedance of z =.
0.03 + 70.4 © per km and a per phase shunt admittance of y = 4.0 x 1078
siemens per km. The line is 125 km long. Obtain the ABCD transmission
matrix. Determine the receiving end quantities, voltage regulation, and the
line efficiency when the line is sending 407 MW, 7.833 Mvar at 350 kV.

Obtain the solution for Problems 5.8 through 5.13 using the lineperf pro-
gram. Then, solve each problem using hand calculations.

A three-phase, 765-kV, 60-Hz transposed line is composed of four ACSR,
1,431,000-cmil, 45/7 Bobolink conductors per phase with flat horizontal
spacing of 14 m. The conductors have a diameter of 3.625 cm and a GMR
of 1.439 ¢cm. The bundie spacing is 45 cm. The line is 400 km long, and for
the purpose of this problem, a lossless line is assumed.

{a) Determine the transmission line surge impedance Z,., phase constant 3,

wavelength A, the surge impedance loading SIL, and the ABCD constant.
b} The hine delivers 2000 MVA at 0.8 lagging power factor at 733 kV. De-
termine the sending end quantities and voltage regulation.

{c) Determine the receiving end quantities when 1920 MW and 600 Mvar
are being transmitted at 765 kV at the sending end.

(d)} The line is terminated in a purely resistive load. Determine the sending
end quantities and voltage regulation when the receiving end load resistance
is 264.5 (Y at 735 kV. ' :

The transmission line in Problem 5.8 is energized with 765 kV at the sending
end when the load at the teceiving end is removed.

(a) Find the receiving end voltage,

(b) Determine the reactance and the Mvar of a three-phase shunt reactor to
be installed a¢ the receiving end in order to limit the no-load receiving end
voltage 10 735 kV.

. The transmission line in Problem 5.8 is energized with 765 kV at the sending

end when a three-phase short-circuit occurs at the receiving end. Determine
the receiving end current and the sending end current.

. Shunt capacitors are installed at the receiving end to improve the line per-

formance of Problem 5.8. The fine delivers 2000 MVA, 0.8 lagging power
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factor. Determine the total Mvar and the capacitance per phase of the Y. E
connected capacitors to keep the receiving end voltage at 735 kV when the ‘3B
sending end voltage is 765 kV. Hint: Use (5.93) and (5.94) to compute the =
power angle § and the receiving end reactive power. Find the sending end &

quantities and voltage regulation for the compensated line.

Series capacitors are installed at the midpoint of the line in Problem 5.8, E
providing 40 percent compensation. Determine the sending end quantities
and the voltage regulation when the line delivers 2000 MVA at 0.8 lagging ‘3¢

power factor at 735 kV.

Sertes capacitors are installed at the midpoint of the line in Problem 5.8, pro-

viding 40 percent compensation. In addition, shunt capacitors are installed at
the receiving end. The line delivers 2000 MVA, 0.8 lagging power factor. De-
termane the total Mvar and the capacitance per phase of the series and shunt

capacitors 10 keep the receiving end voltage at 735 kV when the sending end
voltage is 765 kV. Find the sending end quantities and voltage regulation for
the compensated line.

The transmission line in Problem 5.8 has a per phase resistance of 0.011
per km. Using the lineperf program, perform the following analysis and
present a summary of the calculation along with your conclusions and rec-
ommendations.

(a) Determine the sending end quantities for the specified receiving end
quantities of 735/0°, 1600 MW, 1200 Mvar.

(b) Determine the receiving end quantities for the specified sending end
quantitics of 765/0°, 1920 MW, 600 Mvar.

{c} Determine the sending end quantities for a load impedance of 282.38 +
J0 Qat 735 kv

{(.1) F.ind the receiving end voltage when the line is terminated in an open
ctreuit and is energized with 765 kV at the sending end. Also, determine the
reactance and the Mvar of a three-phase shunt reactor to be installed at the
recciving end in order to limit the no-load receiving end voltage to 765 kV,
Obtain the voltage profile for the uncompensated and the compensated line.

te) Find .lhe receiving end and the sending end current when the line is ter-
minated in 2 three-phase short circuit.

(D) For the line louding of part (a), determine the Mvar and the capacitance of
the shunt capacitors to be installed at the receiving end to keep the receiving
end voltage at 735 kV when line is energized with 765 kV. Obtain the line

performance of the compensated line, :
(8) Determine the line performance when the line is compensated by series

capacitor for 40 percent compensation with the load condition in part {a) at -

735kV.

5.15.

5.16.
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(h) The line has 40 percent series capacitor compensation and supplies the:
load in part (a). Determine the Mvar and the capacitance of the shunt capac-
itors to be installed at the receiving end to keep the receiving end voltage at
735 kV when line is energized with 765 kV at the sending end.

(1) Obtain the receiving end circle diagram,

(j) Obtain the line voltage profile for a sending end voitage of 765 kV.

(k) Obtain the line loadability curves when the sending end voltage is 765
kV, and the receiving end voltage is 735 kV. The current-carrying capacity
of the line is 5000 A per phase.

The ABCD constants of a lossless three-phase, 500-kV transmission line are

A=D =086+ j0
B =0+ 351302
C = 50.002

{a) Obtain the sending end quantities and the voltage regulation when line
delivers 1000 MVA at 0.8 lagging power factor at 500 kV.

To improve the line performance, series capacitors are installed at both ends
in each phase of the transmission line. As a result of this, the compensated
ABCD constants become

A Bl1_[1 -lix.1[A B1[1 —§iX
c ]l {0 1 cC D|lo 1

where X, is the total reactance of the series capacitor. If X, = 100

{b) Determine the compensated ABCD constants.
(c) Determine the sending end quantities and the voltage regulation when
line delivers 1000 MVA at 0.8 lagging power factor at 500 kV.

A three-phase 420-kV, 60-HZ transmission line is 463 km long and may
be assumed lossless. The line is energized with 420 kV at the sending end.
When the load at the receiving end is removed, the voltage at the receiving
end is 700 kV, and the per phase sending end current is 646.6/90° A.

. {a) Find the phase constant 8 in radians per km and the surge impedance Z.

5.17.

in (2, o
(b) Ideal reactors are to be installed at the receiving end to keep |Vs| =
|Va] = 420 kV when load is removed. Determine the reactance per phase

and the required three-phase kvar.

A three-phase power of 3600 MW is to be transmitted via four identical
60-Hz transmission lines for a distance of 300 km. From a preliminary line
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design, the line phase constant and surge impedance are given by 8 = 9.46 x

10~ radian/km and Z, = 343 Q, respectively.

Based on the practical line loadability criteria determine the suitable nominal
voltage level in kV for each transmission line. Assume Vg = 1.0 per unit, |

Vg = (.9 per unit, and the power angle § = 36.87°.

5.18. Power system studies on an existing system have indicated that 2400 MW 4

are to be transmitted for a distance of 400 km. The voltage levels being

considered include 345 kV, 500 kV, and 765 kV. For a preliminary design ; 1

based on the practical line loadability, you may assume the following surge
impedances

45kV Zo=32002

S00kV Zo=2000

T65kV Zoc=2650

The line wa'veleng:h may be assumed to be 5000 km The practical line load- _.

ability may be based on a load angle & of 35°. Assume [Vs| = 1.0 pu and
[Vr| = 0.9 pu. Determine the number of three-phase transmission circuits
required for each voltage level. Each transmission tower may have up to two
circuits, To limit the corona loss, all 500-kV lines must have at least two con-

ductors per phase, and all 765-kV lines must have at least four conductors

per phase. The bundle spacing is 45 cm. The conductor size should be such
that the line would he capable of carrying current corresponding to at least
5000 MVA. Usc acsr command in MATLAB to find a suitable conductor size.

Following are the minimum recommended spacings between adjacent phase
. tonductors at various voltage levels.

Voliage level, KV Spacing meter
343 1.0
500 2.0
765 12.5

(a) Select a suitable voltage level, and conductor size, and tower structure.
. Use lineperf program and option 1 to obtain the voltage regulation and trans-
mission efficiency based on a receiving end power of 3000 MVA at 0.8 power

factor lagging at the sclected rated voltage. Modify your design and selecta 3
conductor size for a line efficiency of at least 94 percent for the above spec- 4

ified load,

(b) Obtain the line performance including options 4-8 of the lineperf pro- 3
gram for your final selection. Summarize the line characterstics and the re-

quired line compensation.

CHAPTER

6

POWER FLLOW ANALYSIS

6.1 INTRODUCTION

In the previous chapters, modeling of the major componenis of an elec.:tn'c power
system was discussed. This chapter deals with the steady-state aflalyms of an in-
terconnected power system during normal operation. The system is assumed to be
operating under balanced condition and is represented by a single-phase netw‘ork‘
The network contains hundreds of nodes and branches with impedances specified
in per unit on a common MVA base, )

Network equations can be formulated systematically in a variety of forms.
However, the node-voltage method, which is the most suitable form for many
power system analyses, is commonly used. The formulation of the network equa-
tions in the nodal admittance form results in complex linear simultar}eous algebraic
equations in terms of node currents. When node currents are sl_Jemﬁed, the set of
linear equations can be solved for the node voltages. Hmlwever, in a power system,
powers are known rather than currents. Thus, the resultl'ng equations in terms of
power, known as the power flow equation, become nonlinear and must be solved
by iterative techniques. Power flow studies, comljnonly referred to as load flow, are
the backbone of power system analysis and design. They are necessary .ft?r. pla:I:
ning, operation, economic scheduling and exchange of power between uulmcs_..
addition, power flow analysis is required for many other analyses such as transient
stability and contingency studies.

189
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In this chapter, the bus admittance matrix of the nede-voltage equation is
formulated, and a MATLAB function named ybus is developed for the systemn-

atic formation of the bus admittance matrix. Next, two commonly used iterative §

FET RURNIY R

techniques, namely Gauss-Seidel and Newton-Raphson methods for the solution §

of nonlinear algebraic equations, are discussed. These techniques are employed in

the solution of power flow problems. Three programs Ifgauss, ifnewton, and de-

couple are developed for the solution of power flow problems by Gauss-Seidel, :

Newton-Raphson, and the fast decoupled power flow, respectively.

. 6.2 BUS ADMITTANCE MATRIX

In order to cobtain the node-voltage equations, consider the simple power system 2

shown in Figure 6.1 where tmpedances are expressed in per unit on a common
MVA base and for simplicity resistances are neglected. Since the nodal solution is
based upon Kirchhoff’s current law, impedances are converted to admittance, ie.,

1 1
Tm oy + JTi

FIGURE 6.1
The impedance diagram of a simple system.
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I Yro4—j1 ~71.253y20 I,

—32.5
‘Yz

]

FIGURE 6.2 o
The admiltznce diagram for system of Figure 6.1,

The circuit has been redrawn in Figure 6.2 in terms of adrﬂilllances and trans-
formation to current sources. Node 0 (which is normally ground) is taken as refer-
ence. Applying KCL to the independent nodes | through 4 results in

I = y1oV1 + y12(01 = Vo) + pa(Vi = V3)

I = yoVa + yia(Va = Vi) + sV — V3)
0=yua(Va — o) + y13(Va — 1) & y34{Vs — Vi)
0= y34(Vq — V3)

Rearranging these equations yields

It = (y1o + vz + y13)V1 — y12V2 — y13Vs

Iy = —y12Vh + {y20 + v12 + ¥23)Va = y23V3
0= —y13V1 ~ yasVo + {313 + 23 + v34)Va — yaa Vit
0= —yuals + vV

We introduce the following admittances

Yi = vt yiz+ y3
Yoo = ye0 + 112 + ¥23




192 & POWER FLOW ANALYSIS

Y33 = y13 + ya3 + s
Yia = yu

Yig=Yo = —yn2
Yis =Yy = —-yi3
Yo3 = Y3
Yss =Y

The node equation reduces to

—Yaz

Il

—¥3

L=YuWi+ YoV + VsV + Yiu Wy
I =YaVi+YnVh+ YosVa+ YV
Iy = Y5 V1 + Yau Wy + YaaVy + Yo Vi
Li=YuWVi + YioVh + Ya Wy + YV

In the above network, since there is no connection between bus 1 and 4, Y3 =

Yy = 0; similarly Yoy = Yo = 0.

' Extending the above relation to an n bus system, the node-voltage equation
In matrix form is

[ 1, ] [ Y Yo oo Yy o Y T Vi ]
I Yoo Yoo -0 Yo o0 Yoy Va
LT Ya Yo oo Yo o Y || W e
| II’I i | Ynl Yu‘z Ym' Yrm 1‘:,ﬂ
or S )
Ibus = Ybus vbus (62)

where I, is the vector of the injected bus currents (i.e., external current sources}.
The current is positive when flowing towards the bus, and it is negative if lowing
away f.rorn the bus. Vi, is the vector of bus voitages measured from the reference
node (i.e., node voltages). Yy, is known as the bus admittance matrix. The diag-

on . ) ;
[hn'il elemcnt‘ of each node is the sum of admittances connected to it. It is known as
€ self-admittance or driving point admittance, i.e.,

n :
Yi=D v i#i 6.3) §
% __

The off-diagonal element is e

% . qual to the negative of the admitiance between the
nodes. It is known as the mum

al admittance or transfer admittance, i.e.,

Yy = Yii= —yy 64 3

[YSPRELT PR Y
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When the bus currents are known, (6.2) can be solved for the n bus voltages.
Vi =" Tus (6.5)-

The inverse of the bus admittance matrix is known as the bus impedance matrix
Zpus- The admittance matrix obtained with one of the buses as reference is nonsin-
gular. Otherwise the nodal matrix is singular.

Inspection of the bus admittance matrix reveals that the matrix is symmetric
along the leading diagonal, and we need to store the upper triangular nodal ad-
mittance matrix only. In a typical power system network, each bus is connected to
only a few nearby buses. Consequently, many off-diagonal elements are zero. Such
amatrix is cafled sparse, and efficient numerical techniques can be applied to com-
pute its inverse. By means of an appropriately ordered triangular decomposition,
the inverse of a sparse matrix can be expressed as a product of sparse matrix fac-
tors, thereby giving an advantage in computational speed, storage and reduction of
round-off errors. However, Z;,,5, which is required for short-circuit analysis, can be
obtained directly by the method of building algorithm without the need for matrix
inversion. This technique is discussed in Chapter 9.

Based on (6.3) and (6.4), the bus admittance matrix for the network in Figure
6.2 obtained by inspection is

—j850  j2.50  j5.00 0
.| j230 —j875 j5.00 0
bee =L 35000 3500 —j2250 §12.50

0 0 71250 —ji2.50

A function called Y = ybus(zdata) is wrtten for the formation of the bus
admittance matrix. zdata is the line data input and contains four columns. The
first two columns are the line bus numbers and the remaining columns contain the
line resistance and reactance in per unit. The function returns the bus admittance
matrix. The algorithm for the bus admittance program is very simple and basic to
power system programming. Therefore, it is presented here for the reader to study
and understand the method of solution. In the program, the line impedances are
first converted to admittances. Y is then initialized to zero. In the first loop, the
line data is searched, and the off-diagonal elements are entered. Finally, in a nested
loop, line data is searched to find the elements connected to a bus, and the diagonal
elements are thus formed.

The following is a program for building the bus admittance matrix:

function[Y] = ybus(zdata)

nl=zdata(:,1); nr-zdata(:,2); R=zdata(:,3); X=zdata(:,4);
nbr=length{zdata(:,1)); nbus = max{max{nl), max{nr});

Z = R + j*X; Abranch impedance
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= gnes{nbr,1)./Z;
Y = zeros(nbus,nbus); % initialize Y to zerg
for k = l:abr; % formation of the off diagonal elements
if nlCk) > 0 & nrék} > O
Y(ol(k),nx(k)) = ¥(nl{k),nr(k)} - y(k);
Y{nr(k),nl{k)) = Y(nl(k),nr(k});
end

end

for n = i:nbus
for k¥ = 1:0br
if nl(k} == n | nr(k) == n
Y(n,n) = Y(n,n) + y(k);
else, end
end

% formation of the diagonal elements

end

Example 6.1
The emfs shown in Figure 6.1 are E| = 1.1/0° and E; = 1.0/0°. Use the func-

tion Y = ybus(zdata) to obtain the bus admittance matrix. Find the bus impedance

matrix by inversion, and solve for the bus voltages.

With source transformation, the equivalent current sources are

= 1.1 - _i11
L= Glg T P
i 1.0 1 25
LT
The following commands
4 From To R X
z=[0 1 0 1.0
0 2 0 0.8
1 2 0 0.4
1 3 0 0.2
2 3 0 0.2
2 3 4 0 0.08];
Ib;SY:u?EJz_il 5 SRR B 5] .}’. bus admittance matrix
T tacE, ; -25; 0; ;5 % vector of bus currents

Vbus = Zbus+~Ibus % bus impedance matrix

result in

Ybranch admittance A

6.3, SOLUTION OF NONLINEAR ALGEBRAIC EQUATIONS 195

Y =
0 - 8,501 0 + 2.50i 0+ 5.001i 0+ 0.001
O + 2.50i1 g - 8.751 0+ 5.00i 0+ 0.001i
0+ 5.001i 0+ 5,001 0 - 22,501 0 + 12.501
0+ 0.001 0 + 0.00i1 0+ 12.501 ¢ - 12.501
Zbus =
¢ + 0.501 G+ 0.401 0 + 0.450i 0 + 0.4501
0+ 0.40i O+ D.481 0 + (.4401 0 + 0.4401
0 + 0.453 0 + 0.44i 0 + 0.5454 0 + 0.545i
0 + 0.45i 0+ 0.441 0 + 0.5451 0+ 0.6251
Vbus =
1.0500
1.06400
1.0450
1.0450

The solution of equation Iy,s = Yhus Vius by inversion is very inefficient. It
is not necessary to obtain the inverse of Y, Instead, direct selution is obtained
by optimally ordered triangular factorization. In MATLARB, the solution of linear
simultaneous equations AX = B is obtained by using the matrix division operator
\ (i.e., X = A\ B), which is based on the triangular factorization and Gaussian
elimination. This technique is superior in both execution time and numerical accu-
racy. It is two 10 three times as fast and produeces residuais on the order of machine
accuracy.

In Example 6.1, obtain the direct solution by replacing the statements Zbus =
inv(Y) and Vbus = Zbus*Ibus with Vbus = Y\ Ibus.

6.3 SOLUTION OF NONLINEAR
ALGEBRAIC EQUATIONS

The most common techniques used for the iterative solution of nonlinear algebraic
equations are Gauss-Seidel, Newton-Raphson, and Quasi-Newton methods. The
Gauss-Seidel and Newton-Raphson methods are discussed for one-dimensional
equation, and are then extended to n-dimensional equations.

6.3.1 GAUSS-SEIDEL METHOD

The Gauss-Seidel method is also known as the method of succes'sive displaf:e-
ments. To illustrate the technique, consider the solution of the nonlinear equation
given by

fz)=0 (65)
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The above function is rearranged and written as

z = g(z) 6.7)

If 2%} is an initial estimate of the variable z, the following iterative sequence is :-

formed.

28 = g(z) (6.8) 3

A solution is obtained when the difference between the absolute value of the sue- ]

cessive iteration is less than a specified accuracy, i.e.,

II(k+l} _ I(k)l <e (6.9) 5

where ¢ is the desired accuracy.

Example 6.2

Use the Gauss-Seidel method to find a root of the following equation
flzy =2 - 622+ 92 -4 =0
Solving for r, the above expression is written as

_ 14 6, 4
T = 9I+9I+§

= g{z)

The MATLAB plot command is used 16 plot g(x) and x over a range of 0 to 4.5,
as shown in Figure 6.3. The intersections of g{z) and z results in the roots of -
f(x). From Figure 6.3 two of the roots are found to be 1 and 4. Actually, there

is a repeated root at z = 1. Apply the Gauss-Seidel algorithm, and vse an initial
estimate of

0 =2
From (6.8), the first iteration is
1 6 4
2 = g(2) = =50 g7+ =222

The second iteration is

2 1
2% = 9(2.2222) = -—5(2.2222)3 + 2(2.2222)2 + % = 25173

The subsequent iterations result in 2.8966, 3.3376, 3.7308, 3.9568, 3.0988 and
4.0000. The process is repeated until the change in variable is within the desired
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1 i L 1 L A

05 - 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

FIGURE 6.3
Graphical illustration of the Gauss-Seide! method.

accuracy. It can be seen that the Gauss-Seidel method needs many iterations to
achieve the desired accuracy, and there is no guarantee for the convergence. In this
example, since the initial estimate was within a “boxed in” region, the solution
converged in a zigzag fashion to one of the roots. In fact, if the initial estimate
was outside this region, say (% = 6, the process would diverge. A test of conver-

gence, especially for the n-dimensional case, is difficult, and no general methods
are known,

The following commmands show the procedure for the solution of the given

equation starting with an initial estimate of z(® = 2.

dx=1; ° % Change in variable is set to a high value
X=2; % Initial estimate
iter = 0; - . % Iteration counter
disp(’Iter g dx x')%Heading for resulis
vhile abs(dx) >= 0.001 & iter < 100 %Test for comnvergence
iter = iter + 1; % No. of iterations
g = —1/9%x"3+6/9*x"2+4/9 ;

dx = g-x; % Change in variable
X = x + dx; % Successive approximation
fprintf(*%g’, iter), disp([g, dx, xI)

end

The result is
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Iter £ dx x

1 2.2222 0.2222 2.2222
2 2.5173 0.2851 2.5173
3 2.8966 0.3793 2.8966
4 3.3376 0.4410 3.3376
5 3.7398 0.4022 3.7398
6 3.9568 0.2170 3.9568
7 3.9588 0.0420 3.9988
8 4.0000 0.0012 4.0000
9 4.,0000 0.0000 4.0000

In some cases, an acceleration factor can be used to improve the rate of conver-
gence. If & > 1 is the acceleration factor, the Gauss-Seidel algorithm becomes

T = ) g [g(2®)) - 2] 6.10)

Example 6.3

Find a root of the equation in Example 6.2, using the Gauss-Seidel method with an =

acceleration factor of a = 1.25:
Starting with an initial estimate of z = 2 and using (6.10), the first iteration is
1,..4 6 4
2) = ——(2+_(27+=-=2
92) = 5+ + 5 =222
21

2+ 1.25[2.2222 — 2] = 2.2778

The second iteration is

6

1
9(2.2778) -§(2.2778)3 + 6(2.2778)2 + g = 2.5002

I(E) —

Il

2.2778 + 1.25{2.5902 — 2.2778] = 2.6683

The subsequent iterations result in 3.0801, 3.1831, 3.7238, 4.0084, 3.9978 and ¥
s shown graphically in Figure 6.4. Care must 3
i . eleration factor since the larger step size may _5
1t an overshoot. This can cause an increase in the number of iterations or 3
even result in divergence. In the MATLAB command of Example 6.2, replace the §
command before the end statement by z = z + 1.25 * dx to refiect the effect of the

4.0005. The effect of acceleration i
be taken not to use a very large ace

acceleration factor and run the program.
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b
ot
T

FIGURE 6.4
Graphical illusiration of the Gauss-Seidel method using acceleration factor.

We now consider the system of n equations in n variables

fl(xlsr'ln“ 'vIR) =q
folzr, 22,y 20) = €2 ' (6.11)

falzi 22, E) =6

Solving for-one variable from each equation, the above functions are rearranged
and written as

I =0 =+ gl(Il!er" 2 vInj
Ty = c2 + golxy, 22, ++, Tn) (6.12)
L= n Fagnfroae, -0, E0)

The iteration procedure is initiated by assuming an approximate solution for each
of the independent variables (I(lo)! I.(zo} vy xﬁ)}). Equation (6.12) results in 2 new
approximate sofution (:r{l” a;;” s 1:5,” ). In the Gauss-Seide! method, the updated
values of the variables calculated in the preceding equations are immediately used
in the solution of the subsequent equations. At the end of each iteration, the cal-
culated values of ali variables arc tested against the previous values. If all changes
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in the variables are within the specified accuracy, a solution has converged, oth- 3
erwise another iteration must be performed. The rate of convergence can often be 3
increased by using a suitable acceleration factor e, and the iterative sequence be- &

COIMES

(kt1) ()
T =T i cal

632 NEWTON-RAPHSON METHOD

The most widely used method for solving simultaneous nonlinear algebraic equa-

tions 1s the Newton-Raphson method. Newton'’s method is a successive approxima-

tion procedure based on an initial estimate of the unknown and the use of Taylor’s
series expansion. Consider the solution of the one-dimensional equation given by

fley=¢ (6.14)

If £1® is an initial estimate of the solution, and Az!® is a small deviation from the
correct solution, we must have

F9 ¢ Az =¢

Expanding the left-hand side of the above equation in Taylor's series about z{®
vields

df\ @ 1 {a2f\©
(o} =i (0 I 0342 _
=+ (dx) B it | (Az®)2 iz ¢

Assuming the error Az{® is very small, the higher-order terms can be neglected,
which results in

ALY ~ (ﬁ) (U) Axl®
dx

where

A = ¢ — F(2(O)

Adding Az to the initial estimate will result in the second approximation

A9
(1) = 2@ _c_(o_)
dz
(g‘)

+ O:(x(k-i—}} i IEk)) (613) :
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Successive use of this procedure yields the Newton-Raphson algorithm

A = ¢ — f(zN {6.15)
. Atk
Azt = E; o (6.16)
(%)
21 2 () L A (R) 6.17)

{6.16) can be rearranged as

Ak = R ALK (6.18)

()
0 — (ﬁ)
dx

The relatien in (6.18) demonstrates that the nonlinear equation f(z) — ¢ = 0 is
approximated by the tangent line on the curve at z* ). Therefore, a linear equation
is obtained in terms of the small changes in the variable. The intersection of the
tangent line with the z-axis resolts in (**Y), This idea is demonstrated graphically
in Example 6.4.

where

Example 6.4

Use the Newton-Raphson method to find a root of the equation given in Example
6.2. Assume an initial estimate of z'® = 6.

The MATLAB plot command is used to plot f{z) = % — 622 + 9z — 4 over
a range of 0 to 6 as shown in Figure 6.5. The intersections of f(z) with the z-axis
results in the roots of f{z). From Figure 6.5, two of the roots are found to be 1 and
4. Actually, there is a repeated root at x = 1.

Also, Figure 6.5 gives a graphical description of the Newton-Raphson method.
Starting with an initial estimate of 2} = 6, we extrapolate along the tangent to
its intersection with the z-axis and take that as the next approximation. This is
continued until successive x-values are sufficiently close.

The analytical solution given by the Newton-Raphson algorithm is

=) 322 10049
dz

ALY = ¢~ f(2) = 0 - [(6)° — 6(6)" + 9(6) — 4] = 50
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50 Y T T ; We see that Newton's method converges considerably more rapidly than the Gauss-
Seidel method. The method may converge to a root different from the expected one
40+ or diverge if the starting value is not close enough to the root,
Jor fz) =2~ 622 + 90— 4 The following commands show the procedure for the solution of the given equation
5 by the Newton-Raphson method.
dx=1; % Change in variable is set to a high value
Wr x=input {*Enter initial estimate -> '}; % Initial estimate
iter = 0; . . % Iteration counter
0 disp(’iter Dc J dx x') % Heading
- while abs(dx)} >='0.001 & iter < 100 Test for convergence
—10 . L . . . iter = iter + 1; % Wo. of iterations
0 1 2 3 4 5 Dc = 0 - {x"3 - 6%x72 + 9»x - 4); % Residual
o J = 3%x72 - 12%x + 9; % Derivative
FIGURE 6.5 dx= De/J; ) #Change ‘ in varia?le
Graphical illustration of the Newt -R i XSX % 41, h Successive solution
¢ Newton-Raphson algorithn. fprintf(’%g’, iter), disp({Dc, J, dx, x])
end
dfF\ @ .
(&;) =3(6)" - 12(6) + 9 =45 The result is

A -50
Ay = 22 T
(%)w) & = -l

Therefore, the result at the end of the first iteration is
W = 2@ L Az — 6 _ 11111 = 4.8889

The subsequent iterations result in

@ _ i 13.4431
= L AV = 48880 — 200
89 oy = L2789
(3) 2o (42‘ {2) e 2.9981
o = g2 A o7y =
! 125797 = 10405
“ _ 3 (3) 0.3748
L= At = 40405 — =
9ag1q — +01L
2 = o 4 A = g gopy 20095 _ 4.0000

9.0126

Enter the initial estimate -> 6
iter Dc J dx X

1 -50.0000 45.0000 -1.1111 4.8889
2 -13.443%1 ~ 22.0370 -0.6100 4.2789
3 -2.9981 12.5797 -0.2383 4.0405
4 -0.3748 5.4%14 -(.0395 4.0011
b -0.0085 9.0i26 -0.0011 4.0000
6 -0.0000 9.0000 -0.0000 4.0000

Now consider the n-dimensional equations given by (6.11). Expanding the left-
hand side of the equations (6.11) in the Taylor’s series about the initial estimates
and neglecting all higher order terms, leads to the expression

© © o
(f) @+ (g{}) Bz + (a—f) T (gﬁ) Az =
1 2

a Tn
(0 ©) (0
(f2)(0) + (%) Azgﬂ) + (%) .&Igu) +oeee (g}_) AI,(,?) =2
1 2 T

' 0 © '
{f ){0) + % = A:-:(O] + % @ Az{o} o he % Axﬁ}) = Ca
" ) 1 7"\ 8z, 2
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or in matrix form .

e 'Cl"(fl)(ﬂ} 7 ( {0) )(0) (3&)(0)
= | ()% (38)° - (26) || ado

. TG
e~ (@ ] [ (BR)T (8)° -
In short form, it can be vgritteri as

ACH) = gk A x )

[ AZO

7 3R
o

—_—
S
PO LV L

(8)° || a0 |

T{RRY PN YT

or
AXW < g1 Aotk (6.19)
and the Newton-Raphson algorithm for the n-dimensional case bécornes
XU = x ) L A x8) (6.20)
where
3
ax® = | 8%} aom | G U 2} 6.21) 18
A;rf,k) €y — (fn)(k)
%) o fep )Y

[ (g{%)(k) a
1

x

_—
e T
F b
e KN e
e

_ (gg‘,—)f*‘) (g;%)(k) (%)(k) l

J%) is called the Jacobian matrix. Elements of this matrix are the partial ;

Tk (5’{%) ) ( )-U.C) (ii)(k) (6.22)

derivatives evaluated at X*%) ¢ is assumed that J*) pag an inverse during each
Heration. Newton's method, as applied to a set of nonlinear equations, reduces the §

problem to solving a set of linear equations in order to determine the values that

tmprove the accuracy of the estimates,

The solution of (6.19) by inversion is very inefficient. It is not necessary
to obtain the inverse of J(). Instead, a direct solution is obtained by optimally
ordert?d trangular factorization. In MATLAB, the solution of linear simultaneous
cquations AC = JAX is obtained by using the matrix division operator \ (iLe.,

f—\-’t( = J\ AC) which is based on the triangular factorization and Gaussian elim-
mation,
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Example 6.5

Use the Newton-Raphson method to find the intersections of the curves

If + 3:% = 4
efl+ry =1
Graphically, the solution (o this system is represented by the intersections of the

circle % + 23 = 4 with the curve €*' 4 7, = 1. Figure 6.6 shows that these are
near {1, h_l.?) and (—1.8, 0.8),

3 ; T 1 T

2t el by =1]

FIGURE 6.6
Graphs of Example 6.5.

Taking partial derivatives of the above functions results in the Jacobian matrix

J=[2.Il 2I2:|

e*1 i

The Newton-Raphson algorithm for the above system is presented in the following
statements.

% Iteration counter

iter = 0;
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x=input ('Enter initial estimates, col. vector(x1;x2]->’);
Dx = [1; 1]; % Change in variable is set to a high value

c={4; 1]; ; Taking partial derivatives of the above functions results in the Jacobian matrix
disp(’Iter DC Jacobian matrix Dx x'); o
% Heading for results 23 —2z3 214
while max(abs(Dx)} >= 0.0001 & iter <10 ¥Convergence test J = Ty 11+ 219 -3
iter=iter+t; % Iteration counter 1—- x4 T3 -2 + To
f=[x(1)"2+x(2)7°2; exp{x(1))+x(2)}; % Functions _
. DC=C - f; : % Residuals The following statements solve the given system of equations by the Newton-
J = [2*x{1) 2%x{2) % Jacobian matrix Raphson algorithm
exp(x(1)) 11; _
Dx=J\DC? % Change in variables Dx=[10;10;10]; JChange in variable is set to a kigh value
x=x+Dx; % Successive solutions H x={1; 1; 1}; % Initial estimate
fprintf ("4g?’, iter), disp([DC, J, Dx, x]) % Results &% (_:_[115 3; 6]; . ]
end o iter = 0; % Iteration counter
s while max{abs(Dx))>=.0001 & iter<10;%Test for convergence
g . . . . =4 iter = iter + 1 % No. of iterations
. When 1}.1‘:. program is run, the user is prompted to enter the initial estimate. = F o= [%(1)~2-%(2)~2+x(3)~2 % Functions
Let us try an initial estimate given by [0.5; -1]. =

x(1)*x(2)+x(2) ~2-3+x(3)
X{1)=x (1) *x(3)+x(2)*x{3)] ;

Enter Initial estimates, col. vector [z;: 23] — [05; —-1] S DC =C - F % Residuals
5 = ~2%x (2 2xx(3) % Jacobian matrix
Tter AC Jacobian matrix Ax z _ S d [izg)(l) x(l))(£21x(2) -3 '
1 2.7500 21.0006 -2.0000 0.8034 1.3034 1-x(3) x(3) —x(1)+x(2)]
0.3513 ' 1.6487  1.0000 -0.9733 -1.9733 Dx=I\DC YChange 4n variable
2 -1.5928 2.6068 -3.9466 -0.2561 1.0473 i Y Successive solution
~0.7088 3.6818 1.0000 0.2344 -1.7389 i ;
3 -0.1205 2.0946 -3.4778 -0.0422 1.0051
“0.1111 2.8499  1.0000 ©.0092 -1.7296 : The program results for the first iteration are
4 -0.0019 2.0102 -3.4593 -0.0009 1.0042
-0.0025 2.732t  1.0000 0.0000 -1.7296 DC = J=
§ -0.0000 2.0083 -3.4593 -0.0000 1.0042 10 2 2 2
-0.0000 2.7296 1.0000 -0.0000 -1.7296 4 1 a3 -3
After five iterations, the solution converges to z; = 1.0042 and 5 = —1.7296 ' ' 5 ' 0 1 0
accurate to four decimal places. Starting with an initial value of [-0.5; 1], which : Dx = we=
15 closer to the other intersection, results in Ty = ~1.8163 and z, = 0.8374. : ‘éggg gggg
Example 6.6 | : _ 5.250 6.250

Statting with the initial vaiues, 7; = 1, z3 = 1, and z3 = 1, solve the following

: After six iterations, the solution converges to z; = 2.0000, z; = 3.0000, and
system of equations by the Newton-Raphson method.

x3 = 4.0000. )
Newton’s method has the advantage of converging quadratically ‘:vhen we
are near a root. However, more functional evaluations are required during each

:t.‘f—x%-kz% = 11

miTy a3 —3ry = 3 ‘ Heration. A very important limitation is that it does not generally converge (o a
Ty ~Tyr3+ 203 = 6 solution from an arbitrary starting point.
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6.4 POWER FLOW SOLUTION

Power flow studies, commonly known as load flow, form an important part of §
power system analysis. They are necessary for planning, economic scheduling, and {
control of an existing system as well as planning its future expansion. The problem §
consists of determining the magnitudes and phase angle of voltages at each bus and 3
active and reactive power flow in each line. _
In solving a power flow problem, the system is assumed to be operating under §
balanced conditions and a single-phase mode! is used. Four quantities are associ- 4
ated with each bus. These are voltage magnitude |V|, phase angle 4, real power P, °
and reactive power Q. The system buses are generally classified into three types.

Slack bus One bus, known as slack or swing bus, is taken as reference where the 3
magnitude and phase angle of the voltage are specified. This bus makes uvp -3
the difference between the scheduled loads and generated power that are
caused by the losses in the network.

Load buses At these buses the active and reactive powers are specified. The mag-

nitude and the phase angle of the bus voltages are unknown. These buses are .
called P-Q) buses, '

Regulated buses These buses are the generator buses. They are also known as
voltage-controlled buses. At these buses, the real power and voltage magni- 2=
tude are specified. The phase angles of the voltages and the reactive power
are to be determined. The limits on the value of the reactive power are also
specified. These buses are called P-V buses.

6.4.1 POWER FLOW EQUATION

Consider a typical bus of a power system network as shown in Figure 6.7, Trans-

mission lines are represented by their equivalent 7 models where impedances have 2l

been converted to per unit admittances on a common MVA base. -
Application of KCL to this bus results in

L=yVi+ (Vi - V) +ue(Vi = Vo) + - + in (Vi — Vi) ;
= @o+va tynt o F vV vl - peVe — o — pinVa 6.23) 5%

or

n n
L=Viy wi— > wiV i
=0 =1

6.5. GAUSS-SEIDEL POWER FLOW SOLUTION 209

Vi Vi
il R
1
Ui ‘1/2
|
b
Yin 1:“
]
0
FIGURE 6.7

A typical bus of the power system.

The real and reactive power at bus £ is

P +jQi = Vil (6.25)
or
r=BoiG ;JQ' 6.26)
Substituting for {; in (6.24) yields
Bi=3Q e o2 o
T:"’igyﬁ—gyu‘é J#i 6.27)

From the above relation, the mathematical formulation of the power flow
problem results in a system of algebralc nonlinear equauons which must be solved
by iterative techniques.

6.5 GAUSS-SEIDEL POWER FLOW SOLUTION

In the power flow study, it is necessary to solve the set of nonlinear equations
represented by (6.27) for two unknown variables at each node. In the Gauss-Seidel
method {6.27) is solved for ¥, and the iterative sequence becomes

plsch - J Q sch

NE

k
-+ Eyijv}( )

v{(’*‘“) - §#i (6.28)

Ui
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where y;; shown in lowercase letters is the actual admittance in per umit. Pr’di
and Q" are the net real and reactive powers expressed in per unit. In writing ‘th
KCL_, current entering bus £ was assumed positive. Thus, for buses where real and
reactive powers are injected into the bus, such as generator buses, P3¢* and Qich
have positive values. For load buses where real and reactive powcr; are ﬂowi‘ng_ ;

away from the bus, P<® and Q" have negative values. If (6.27) is solved for P,
and Q,, we have ; 3

" (k1) _ ) (k) i i
PO =RV S g = 3 V)

iti 629

i=0 i=1 x

(kil) _ LR (L) n H Y ; ;‘
QU =SV Yw - ow P a2 630)]

The power flow equation is usually expressed in terms of the elements of 3%
the bus admittance matrix. Since the off-diagonal elements of the bus admittance 3§

© matrix Yy, shown by uppercase letters, are Y o '
are Yy = 37 1,5, (6.28) becomes

—¥;, and the diagonal elements -

prach _jQ:-ch

S o ¢ # 17k}
play _ v 2, Y, E:
= 7 = |
and -
(h+1) KD () uy : o k.
A AN A P S R ©32) §8
i

(_k+I) T 1K) (k) i 3 5 ) 3
U=V vl s 63 BB
)=1 E'..‘ i

fE 3] A

Y

ﬁxe::lm;;n(ajl?i the admittance to ground of line charging susceptance and any other %
oy ey grounc_l. In S.ecu.on 6.7, a model is presented for transformers

ning off-nominal ratio, which includes the effect of transformer tap setting. 8
Since both components of voltage are specified for the slack bus, there are .3

e kb

Egr;;i;) iquztlu‘ms which must be sol\:ed by an iterative method. Under normal 3!
10 per ugn it(;n 1lt10ns, the voltage magnlltude of buses are in the neighborhood of : i
ot s ar; close to the voltage magnitude of the slack bus. Voltage magnitude at ;;
i dsomewhat lower than the slack bus value, depending on the reactive 31
b and, whereas the scheduled voltage at the generator buses are somewhat "

- Also, the phase angle of the load buses are below the reference angle in ;3 i

ac :
cordance to the real power demand, whereas the phase angle of the generator 3
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buses may be above the reference value depending on the amount of real power
flowing into the bus. Thus, for the Gauss-Seidel method, an initial voltage estimate
of 1.0 + j0.0 for unknown voltages is satisfactory, and the converged solution
correlates with the actual operating states.

For P-Q buses, the real and reactive powers P** and Q" are known. Start-
ing with an initial estimate, (6.31) is solved for the real and imaginary components
of voltage. For the voltage-controlled buses (P-V buses) where Pi’d‘ and |V;| are
specified, first (6.33) is solved for Q**" and then is used in (6.31) to solve for
v;{“l). However, since [V;| is specified, only the imaginary part of V;(Hl) is re-

tained, and its real part is selected in order to satisfy

(egkﬂ))g 5 (fl_(kﬂ])-z - |V112 (6.34)
or

D = Iy — (12 (6.35)
where eEkH) and fi{kH) are the real and imaginary components of the voltage

M 3 % P
V:-‘j‘ D in the iterative sequence.
The rate of convergence is increased by applying an acceleration factor to the
approximate solution obtained from each iteration.
S L S £ R 3 &)
L‘- =V +all ~k )

H ical

(6.36)

where a is the acceleration factor. its value depends upon the system. The range of
1.3 to 1.7 is found to be satisfactory for typical systems.

The updated voltages immediately replace the previous values in the solution
of the subsequent equations. The process is continued until changes in the real and
imaginary components of bus voltages between successive iterations are within a
specified accuracy, ie.,

IeEk-{-l} _ egk)i <e

=g e 637)

For the power mismatch to be reasonably small and acceptable, a very tight tol-
erance must be specified on both components of the voltage. A voltage accuracy
in the range of 0.00001 to 0.00005 pu is satisfactory. In practice, the method for
determining the completion of a solution is based on an accuracy index set up on
the power mismatch. The itcration continues until the magnitude of the largest ele-
ment in the AP and A€ columns is less than the specified value. A typical power
mismatch accuracy is 0.001 pu

Once a solution is converged, the net real and reactive powers at the slack bus
are computed from (6.32) and (6.33).
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6.6 LINE FLOWS AND LOSSES

After the iterative solution of bus voltages, the next step is the computation of Iim.;
flows and line losses. Consider the line'connecting the two buses 7 and J in Figure 3
6.8. The line current [;;, measured at bus ¢ and defined positive in the direction ¥

Vi | v;
N Iy Yij

L
i

FIGURE 6.8
Transmission line mode! for calculating line flows.

i — jis given by

Ly = It + Lo = (Vi — Vi) + yuoV (6.38)

S.,imiia.}-iy. the line cusrent 1;; measured at bus j and defined positive in the direction
J — i is given by

Lii = —Ii + Lo = yi{V; — Vi) + yjoV; (6.39)

The complex powers S,; from bus i to § and S;i from bus 7 to ¢ are
Sij = VI (6.40)

Sji = V;I; (6.41)

The power loss in line i — j is the ﬂéebraic sum of the power flows determined
from (6.40) and (6.41), i.e., '

St =85+ 85 (6.42)

The power flow solution by the Gauss-Seidel method is demonstrated in the 3

following 1two examples.

Example 6.7

Figure 6.9 shows the one-line diag
generation

ram of a simple three-bus power system with

at bus 1. The magnitude of voltage at bus 1 is adjusted to 1.05 per AR

66 LINE FLOWS AND LOSSES 213

anit. The scheduled loads at buses 2 and 3 are as marked on the diagram. Line
impedances are marked in per unit on a 100-MVA base and the line charging sus-
ceptances are neglected.

1

0.01 + 50.03 0.0125 + 70.025 |—— 110.2
Mvar
Slack Bus 3
Vi = 1.05/0°

138.6 45.2
MW Mvar

0.02 + j0.04

» 256.6
MW"

FIGURE 6.9
One-line diagram of Example 6.7 (impedances in pu on 100-MVA base). -

(1) Using the Gauss-Seidel method, determine the phasor values of the voliage at
the load buses 2 and 3 (P-Q buses) accurate to four decimal places.

(b) Find the slack bus real and reactive power,

{c) Determine the line fiows and line losses. Construct a power flow diagram show-
ing the direction of line fiow,

(a) Line impedances are converted to admittances

1
V127 502 + 70.04
Similarly, 313 = 10— 730 and yy3 = 16 — j32. The admittances are marked on the
network shown in Figure 6.10.
At the P-Q buses, the complex loads expressed in per units are

=10 — 520

sch . _ (29664 51102)  oeen 1400 pu
577 = 100 ' _EEP
gioh _ &%‘5-_2) = —1.386 — j0.452 pu

Since the actual admittances are readily available in Figure 6.10, for hand calcu-
lation, we use (6.28). Bus 1 is taken as reference bus (slack bus). Starting from
an initial estimate of V,% = 1.0+ j0.0 and V{% = 1.0+ j0.0, ¥ and V} are
computed from (6.28) as follows

ach _ s yach 0
BEZED +yaVi + Vs
7S L

2 + Y23
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: y12 = 10 — 520 -
L, 256.6
C MW
yi3 = 10 — 530 23 = 16 — j32  |—— 110.2
Mvar
Slack Bus 3
Vi = 1.0540°
1358.6 45.2
MW Myvar
FIGURE 6.10

One-line diagram of Example 6.7 (admittances in pu on 100-MVA base),

~HIRELAD 4 (10 ~ 20)(1.05 + 70) + (16 — 732)(1.0 + 50)

(26 — 352)
= (.9825 — 70.0310
and
Pach _ snaeh
V.{;OQ + y13V1 + o3 V;m
AR

Yiz + 23
- 1.386+70.452

(26 - ;62)

il

1.0011 — 0.0353

For the second iteration we have
—2.566+71.102

i
]

10— + (10~ j30)(1.05 + 70} + (16 — 732)(0.9825 - ;0.0310)

v - Sl + (10 — 720)(1.05 + j0) + {16 — 432)(1.0011 — j0.0353) %

(26 — 552)
= 0.9816 — j0.0520
and

—1.386470. . - s g on o
v oot o + (10 = 730)(L.05 + j0) + (16 — j32)(0.9816 — j0.052)

(26 — j62)

= 1.0008 — j0.0459

The process

Vi = 0.9808 - 50.0578

Vi = 1.0004 - j0.0488

A is continued and a solution is converged with an accuracy of 5 x 107 =%
PET Umitin seven iterations as given below, =

6.6. LINE FLOWS AND LOSSES 215

Vi = 0.9803 — j0.0594
V2 = 0.9801 — j0.0598
vi® = 0.9801 — j0.0599
V3™ — 0.9800 - j0.0600

vi* = 1.0002 — j0.0497
V¥ = 1.0001 — 50.0499
V& = 1.0000 — j0.0500
Vi = 1.0000 — 50.0500

The final solution is

V2 = 0.9800 — 70.0600 = 0.98183/-3.5035° pu
Vs = 1.0000 — j0.0500 = 1.00125/—2.8624° pu

{b) With the knowledge of all bus voltages, the slack bus power is obtained from
6.27)

Py~ jQi = WWWilyiz + n13) — (m2Ve + 113Va)]
= 1.05[1.05(20 — j50) — (10 ~ 720)(0.98 — ;.06) —
(10 — 730)(L.0 — 50.05)]
= 4.095 — 71.890

or the stack bus real and reactive powers are P, = 4.095 pu = 409.5 MW and
2: = 1.890 pu = 189 Mvar,

(c) To find the line flows, first the line currents are computed. With line charging
capacitors neglected, the line currents are

I = yia(Vy — Vo) = (10 — 520){(1.05 + j0) — (0.98 ~ 50.06)] = 1.9 — ;0.8
Lhi=-Ia=-19+408

his = y13(V1 ~ V3) = (10 ~ 30)[(1.05 + j0) — (1.0 — j0.05)] = 2.0 — j1.0
Iy =-I3=-20+41.0

Iz = yoa(Va — V3) = (16 — §32)[(0.98 — 0.06) — (1 — 0.05)] = —.64 + ;.48
Iy = — I3 = 0.64 — j0.48

The line flows are

S12 = Vil}, = (1.05 + j0.0)(1.9 + j0.8) = 1.995 + j0.84 pu
= 199.5 MW 4 j84.0 Mvar
Sg1 = VaI3, = (0.98 — j0.06)(—1.9 — 70.8) = —1.91 — j0.67 pu
= —191.0 MW — j67.0 Mvar
813 = ViIfy = (1.05 + j0.0)(2.0 + 71.0) = 2.1 + j1.05 pu
= 210.0 MW 4 j105.0 Mvar
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831 = Vil

(1.0 — 70.05){~2.0 - 1.0} = —2.05 — 0.90 pu

-205.0 MW - 790.0 Mvar

Sa3 = Val3s = (0.98 — 70.06}(—0.656 + j0.48) = ~0.656 — 30.432 pu
= —65.6 MW ~ j43.2 Mvar

{1.0 — 70.05)(0.64 + 70.48) = 0.664 + §0.448 pu

= 66.4 MW + j44.8 Mvar

5‘32 = Vg I:;2

and the line losses are

Sp12=S12+ 53, = 8.5 MW + j17.0 Mvar
Sr13 = S13 4+ S31 =50 MW + 7150 Mvar
Spas=8u+ 812 =08 MW + 51.60 Mvar

:Thl.i power flow diagram is shown in Figure 6.11, where real power direction is 3
indicated by ~ and the reactive power direction is indicated by . The values 3

within parentheses are the real and reactive losses in the line.

11995 ]
s ] (8.5) 191 2
<ol P (17.0) —— |7
: 84.0 67.0 | 2566
210.0 . 205 ;
- ) 664 (g 656 .
—t  (15) > —~ (1.6) —— 1 1102
105.0 90.0 44.8 (16) 43.2 '

T

1386 452

FIGURE 6.11

Power ﬂpw diagram of Example 6.7 {powers in MW and Mvar).

Example 6.8

Figure 6.12 shows the one-

p;_"zv‘"-‘ltﬂgﬁ magnitude at bus 3 is fixed at 1.04 pu with a real power generation 3
E_ 00 MW. A load consisting of 400 MW and 250 Mvar is taken from bus 2.3
'ne Impedances are marked in per unit on a 100 MVA base, and the line charging 3

susceptances are neglected. Obtain the power flow solution by the Gauss-Seidel
method including line flows and line losses.

liné diagram of a simple three-bus power system with
Benerators at buses 1 and 3. The magnitude of voltage at bus 1 is adjusted to 1.05

..-.:;..uﬂ-&ummw-..iﬁmiu i
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1 0.02 + j0.04 .
—— 400
: MW
0.01 + j0.03 0.0125 + 70.025 f—— 250
Myvar
Slack Bus 3
Vi = 1.0540°
200 [ Vs 1=1.04
MW

FIGURE 6.12
One-line diagram of Example 6.8 (impedances in pu on $00-MVA base).

Line impedances converted to admittances are y;2 = 10—3520, 13 = 10— 430
and yo3 = 16 — 732. The load and generation expressed in per units are

sen {400 + j250) :
st = = L= _40-425
53 100 40— 4 pu
20
e Y
. 1o

Bus 1 is taken as the reference bus (slack bus). Starting from an initial estimate of
V9 = 1.0 4 50.0 and V¥ = 1.04 + j0.0, V3 and V3 are computed from (6.28).

poeh _jQuh

0
5 — +rnzV1 + Y2y
v; :

AL

Ve + Yoz
:?%{%“5 + (10 — j20){1.05 + j0) + {16 — 532)(1.04 + jO)
a (26 — j52)

= 0.97462 — 70.042307

Bus 3 is a regulated bus where veltage magnitude and real power are specified. For
the voltage-controlled bus, first the reactive power is computed from (6.30)

el

M = oV % (s + va) ~ 1isVh - vas¥3 )
= ~Q{(1.04 — jO)[(1.04 + j0)(26 — 762) — (10 — 730)(1.05 + j0) —
(16 — 532){0.97462 — 70.042307)]}
= 1.16 . ’
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complex voltage at bus 3, denoted by lf;{sl), is calculated

P;sch_' ach

"_.({T?L + vz + y-z:aVzm

VU) o V3
3

Y1z + ya3
20-jL16 |

{26 - j62)
= 1.03783 — j0.005170

Since |V3] is held constant at 1.04 pu, only the

ie, /i = ~0.005170, and its real part is obtained from
1 .
_eg) = /(1.04)2 — (0.005170)2 = 1.039987
Thus

1
Vi = 1.039987 — j0.005170
For the second iteration, we have

Frrgach !
L2 Vz‘“j + vV + yg3V3( )

- 2+ Y3 :
—A.0+32.5 p
_ mmeresonmr + (10 — 720)(1.05) + (16 — j32)(1.039987 + 70.005170)

(26 — j53)

= 0.971057 — 70.043432

{2) _ L1 1
i = =S{Vy [Va( )(?}13 + Y23} — yi3V1 ~ y?:svgm]}

= —G{(1.039987 + 70.00517G)[(1.039987 — 70.005170)(26 — 562) —

(10 = 730)(1.05 + 50) — (16 — 732)(0.971057 — 70.043432)]}
= 1.38796

Poch_smysch

ac Q -
-J?(J':Tn‘ + yW) + yaa VP
; :

Y13 + yo3
2.0-71.38706

A2
"’c;i) =

—2U0-71.38706 .
_. 130087+ 50.00517 + {10 — 730)(1.05) + (16 — j32)(.971057 — 5.043432) -

(26 - ;62)

1.63908 — 40.00730

1y . 3
The value of Q:(, }is used as di‘ for the computation of voltage at bus 3. The

_ “Teizze T (10— 730)(1.05 + 50) + (16 — 532)(0.97462 — 70.042307)

imaginary part of Vc(:,” is retained,
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Since V3| is held constant at 1.04 pu, only the imaginary part of Vg} is retained,

ie, éz) = —0.00730, and its real part is obtained from

e§” = /(1.04)? — (0.00730)? = 1.039974
or

V% = 1.030974 — 0.00730

The process is continued and a solution is converged with an accuracy of 5 x 1073
pu in seven iterations as given below.

V¥ = 0.97073 - j0.04479 QLY = 142904 V¥ = 1.03996 — j0.00833
Vi = 0.97065 — j0.04533 Q" =1.44833 vV = 1.03996 — j0.00873
Vi = 097062 — j0.04555 QP =1.45621 V¥ =1.03996 — 50.00893
Vi = 0.97061 - j0.04565 QY = 1.45947  V® = 1.03996 — j0.00900
Vi = 0.97061 — j0.04560 QY = 146082 V" = 1.03996 — 50.00903

The final solution is

Vo = 0.97168/-2.6948" pu

S3 =20+ 14617 pu
V3 =1.04/--.498° pu
S; =2.1842 +71.4085 pu

Line flows and line losses are computed as in Example 6.7, and the results ex-
pressed in MW and Mvar are

812 = 179.36 + j118.734 Sy = —170.97 — j101.947 51> = 839+ j16.79
S13 = 39.06 + j22.118  §3 = -38.88 —j21.569 Sri3 =0.18 +;0.548
Sy = —229.03 — §148.05 Sz = 238.88 + j167.746  Spo3 = 5.85 + f19.69

The power flow diagram is shown in Figure 6.13, where real power direction
is indicated by — and the reactive power direction is indicated by ~. The values
within parentheses are the real and reactive losses in the line.
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| 179.362 (8.393) 170.968
2B (16.787) - S -~
118.734 101.947 | 400
C: 30.061 ( gqy 38378 2B878 g 347 229.092
140.852 ~ (548) —— ——  (19.693)—— 1 250
22.118 21.569 167.746 148.053
3 “
200 146.177

FIGURE 6.13
Power flow diagram of Example 6.8 (powers it MW and Mvar).

6.7 TAP CHANGING TRANSFORMERS

In Section 2.6 it was shown that the flow of real power along a transmission line is
determined by the angle difference of the terminal veltages, and the flow of reactive
power is determined mainly by the magnitude difference of terminal voltages. Real
and reactive powers can be controlled by use of tap changing transformers and
reguliling transformers.

In i tap changing transformer, when the ratio is at the nominal value, the
transformer is represented by a series admittance ¥ in per unit. With off-nominal
ratio, the per unit admittance is different from both sides of the transformer, and the
admittance must be modified to include the effect of the off-nominal ratio. Consider
a transformer with admittance y, in series with an ideal transformer representing
the off-nominal tap ratio 1:a as shown in Figure 6.14. y, is the admitance in per
unit based on the nominal turn ratio and & is the per unit off-nominal tap position
allowing for small adjustment in voltage of usually +10 percent. In the case of
phase shifting transformers, a is a complex number. Consider a fictitious bus z
between the turn ratio and admittance of the transformer. Since the complex power
on either side of the ideal transformer is the same, it follows that if the voltage goes
through a positive phase angle shift, the current will go through a negative phase
angie shift. Thus, for the assumed direction of currents, we have

Ve = =W (6.43)
fi = —d'l; (6.44)

The current 7, is given by
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L Y
Vi I Y Ve
l:a

FIGURE 6.14
Transformer with tap setting ratio a:1
Substituting for V;, we have

I = yVi - %V} (6.45)
Also, from (6.44) we have

1

substituting for I; from (6.43) we have

By, My, e

IJ - a" V' ]ai‘z J

writing (6.45) and (6.46) in matrix form resulls in

11' 5 Ye _% [ 1/1 ] ’ (64?)
[ I } a [ ~& P ] V;
For the case when a is real, the # model shown in Figure 6.15 represents the ad-
mittance matrix in (6.47). In the = model, the left side corresponds to the non-tap
side and the right side corresponds to the tap side of the transformer.

Non-tap side Tap side

yt/ﬂ

FIGURE 6.15
Equivalent circuit for a tap changing transformer.
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6.8 POWER FLOW PROGRAMS

Several computer programs have been developed for the power flow solution of'_.

practical systems. Each method of solution consists of four programs. The pro- §

gram for the Gauss-Seidel method is Ifgauss, which is preceded by Ifybus, and is 3

foilowed by busout and lineflow. Programs Ifybus, busout, and lineflow are de-

signed to be used with two more power flow programs. These are Ifnewton fo

the Newton-Raphson method and decouple for the fast decoupled method. The 3

following is a brief description of the programs used in the Gauss-Seidel method.

Ifybus This program requires the kine and transformer parameters and transformer 38
tap settings specified in the input file named linedata. It converts impedances 3

to admittances and obtains the bus admittance matrix. The
signed to handle paralle] lines.

program is de- &

Ifgauss This program abtains the power flow solution by the Gauss-Seidel method

and requires the files named busdata and linedata. Tt is designed for the di- 3
rect use of load and generation in MW and Mvar, bus voltages in per unit, "

and angle in degrees. Loads and generation are converted to per unit guanti-
ties on the buse MVA selected. A provision is made to maintain the generator

reactive power of the voltage-controlled buses within their specified limits, =

The violation of reactive power limit may occur if the specified voltage is =

either too high or too low. After a few iterations (10%* iteration in the Gauss

method), the var calculated at the generator buses are examined. If a himit is "'
reached, the voltage magnitude is adjusted in steps of 0.5 percent up to +5

percent to bring the var demand within the specified limis.

busout This program produces the bus output tesult in a tabulated form. The bus 3

output result includes the voltage magnitude and angle, real and reactive |

power of generators and loads, and the shunt capacitor/reactor Mvar. Total 4

generation and total load are also included as outlined in the sample case,

lineflow ‘This program prepares the line output data. It is designed to display the
active and reactive power flow entering the line terminals and line losses as =
well as the net power at each bus. Also included are the total real and reactive

losses in the system. The output of this portion is also shown in the sample
case. 4
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6.9 DATA PREPARATION

In order to perform a power flow analysis by the Gauss-Seidel method in the MAT-
LAB environment, the following variables must be defined: power system base
MVA, power mismatch accuracy, acceleration factor, and maximum number of it-
erations. The name (in lowercase letters) reserved for these vanables are basemva, -
accuracy, accel, and maxiter, respectively. Typical values are as follows:

basemva
accel

106;
1.6;

accuracy = 0.001;
maxiter = 80;

The initial step in the preparation of input file is the numbering of each bus. Buses
are numbered sequentially. Although the numbers are sequentially assigned, the
buses need not be entered in sequence. In addition, the following data files are re-
quired.

BUS DATA FILE - busdata The format for the bus entry is chosen to facili-
tate the required data for each bus in a single row. The information required must be
included in a matrix called busdata. Column 1 is the bus number. Column 2 con-
tains the bus code. Columns 3 and 4 are voltage magnitude in per unit and phase
angle in degrees. Columns 5 and 6 are load MW and Mvar. Column 7 through 10
are MW, Mvar, minimum Mvar and maximum Mvar of generation, in that order.
The last column is the injected Mvar of shunt capacitors. The bus code entered in
column 2 13 used for identifying load, voltage-controlled, and slack buses as out-
lined below:

1 This code is used for the slack bus. The only necessary information for this bus
is the voltage magnitude and its phase angle.

0 This code is used for load buses. The loads are entered positive in megawatts
and megavars. For this bus, initial voltage estimate must be specified. This is
usually 1 and 0 for voltage magnitude and phase angle, respectively. If vol-
age magnitude and phase angle for this type of bus are specified, they will
be taken as the initial starting voltage for that bus instead of a flat start of 1
and 0,

2 This code is used for the voltage-controlled buses. For this bus, voltage magni-
tude, real power generation in megawatts, and the minimum and maximum
limits of the megavar demand must be specified,

LINE DATA FILE - linedata Lines are identified by the node-pair method. The
information required must be included in a matrix called linedata. Columns 1 and
2 are the lne bus numbers. Columns 3 through 5 contain the line resistance, reac-
tance, and one-haif of the totat line charging susceptance in per unit on the specified
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MVA base. The last column is for the transformer tap setting; for lines, 1 must be §

bt -l +

entered in this column. The lines may be entered in any sequence or order with # _
the only restriction being that if the entry is a transformer, the left bus number is ‘W

assumed to be the tap side of the transformer.

The IEEE 30 bus system is used to demonstrate the data preparation and thc"

use of the power flow programs by the Gauss-Seidel method.

Example 6.9

Figure 6.16 is part of the American Electric Power Service Corporation network -

which is being made available to the electric utility industry as a standard test case
for evaluating various analytical methods and computer programs for the solution

of power system problems. Use the lfgauss program {o obtain the power solution -
by the Gauss-Seidel method. Bus 1 is taken as the slack bus with its voltage ad-

Justed to 1.06£0° pu. The data for the voltage-controlled buses is

Regulated Bus Data
Bus  Voltage Min, Mvar Max. Mvar
No. Magnitude Capacity Capacity

2 1.043 -40 50

5 1.010 -40 40

8 1.010 -10 40

11 1.082 -6 24
| 13 1.071 -6 24

Transformer tap setting are given in the table below. The left bus number is as-
sumed 10 be the tap side of the transformer.

Transformer Data
Transformer  Tap Setting
Designation pu

4-12 0.932
6- 9 0.978
6--10 0.969
28 - 27 0.968

The data for the injected ¢} due to shunt capacitors is

Injected Q due fo Capacitors
Bus No, Mvar

FIGURE 6.16

30-bus IEEE sample system.
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Three Winding Transformer
Equivalents

30

27

29
;:?Er”

r?.ﬁ

G: Generators
C: Synchronous condensers
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Generation and loads are as given in the data prepared for use in the MATLAB % Line Data
envirenment in the matrix defined as busdata, Code 0. code 1, and code 2 are used SRR Y
for the load buses, the slack bus and the voltage-controlled buses, respectively. 3 * Bus bus R X 1/2 B 1 for Line code or
Vaiues for basemva, accuracy, accel and maxiter must be specified. Line data are § j % nl nor pu pu pu tap setting value
as given in the matrix called linedata. The last column of this data must contain 1 JE linedata=[1 2 0.0192  0.0676 dsbdedy |, 1
for lines, or the tap setting values for transformers with off-nominal turmn ratio, The 3% : - 0J0a5e  O.1850 0.02040 L
control commands required are Ifybus, Ifgauss and lineflow, A diary command 3 i g 1 gg?;g g éggg ggéi;g i
lmh:);:e us'e-ddto save th; oulptft{u;ime specified file name. The power flow data and : % 2 5 0.0472 0.1983 0.02090 1
manesrequired arsastoliows, * 2 6  0.0581 0.1763  0.01870 1
clear - % clears all variables from workspace. § 4 6 0.0119  0.0414 0.00450 i
basemva = 100; accuracy = 0.001; accel = 1.8; maxiter = 100; g 5 7 0.0460  0.1160 0.01020 1
% IEEE 30-BUS TEST SYSTEM (American Electric Power) E 6 7 0.0267 0.0820  0.00850 1
h Bus Bus Voltage Angle --Load-- --~Generator-~-Injected & 6 2 0.0120  ©.0420 0.00450 !
A No code Mag. Degree MW Mvar MW Mvar Qmin Qmax Mvar < 6 9 0.0 0.2080 0.0 0.978
2 2 1.043 0 21.70 12.7 40.0 0.0 -40 50 - 0 B 9 i1 0.0 . 0.2080 0.0 1
3 010 0 24 1.2 0000 0 06 o 9 10 0.0 Qe D0 !
40 106 0 76 16 00 00 0 o o P 4 12 0.0 Guzech 0.9 eIl
5§ 2 1001 0 942 1.0 0.0 0.0-40 40 o WE 12 13 0.0 0809 0.0 !
6 0 1.0 0 0.0 00 0.0 00 0 0 0 12 14  0.1231  0.2559 0.0 1
7 0 1.0 0 22.8 10.9 0.0 6.0 0 © 0 l 12 15 0.0662 (0.1304 0.0 1
8 2 1.01 0 30.0 30.0 0.0 0.0-10 a0 ¢ & 12 16  0.0945 0.1987 0.0 1
90 1.0 0 00 00 00 00 0 0 0 e I !
100 1.0 0 58 20 0.0 00 0 o0 190 = 16 17  0.0824 0.1923 0.0 1
11 2 1.082 0 0.0 0.0 0.0 0.0 -6 24 o BE 15 18  0.1073 0.2185 0.0 1
12 0 1.0 0 1.2 7.5 o o 0 o o 18 19  0.063% 0.1292 0.0 1
13 2 1071 6 0.0 00 0 0 -6 24 0 19 20  0.0340 ©0.0680 0.0 1
4 0 1.0 0 6.2 1.6 0 o0 o 0 0 10 20 0.0936 .0.2090 0.0 1
15 ¢ 1.0 0 82 2.5 0o 0 0 0 0 - 10 17 0.0324 0.0845 0.0 1
16 0 1.0 0 3.5 1.8 o 0 0 0 0 - 1w 2 0.0348 0.0749 0.0 i
17 0 1.0 0 90 58 0 0 o 0 o 10 22 0.0727 0.1499 0.0 1
18 ¢ 1.0 0 3.2 0.8 0 0 o 0 0 21 22 0.0116' 0.0236 0.0 1
19 0 1.0 0 95 34 o0 o0 0 o 0 15 23 0.1000 0.2020 0.0 1
200 1.0 0 2.2 07 o0 0 0 0 0 . 22 24  0.1150 0.1790 0.0 1
210 1.0 0 17.5 11.2 o 0 o 0 0 23 24  0.1320 0.2700 0.0 1
22 0 1.0 0 0.0 0.0 0 0 0 0 0 : 24 25 0.1885 0.3282 0.0 1
23 0 1.0 0. 3.2 16 0o o 0 0 0 25 26  0.2544 0.3800 0.0 1
24 ¢ 1.0 G 8.7 6.7 0 4] 0 ¢ 4.3 25 27 0.1093 0.2087 0.0 SR
2% 0 1.0 0 0.0 0.0 0 0 c 0 0 28 27 £.0000 0.3960 0.0 0.968
26 0 1.0 0 3.5 2.3 0 0 ¢ o 0 27 29 0.2198 0©.4153 0.0 1
276 1.0 0 0.0 00 0 o 0 0 0 27 30  0.3202 0.6027 0.0 1
28 0 1.0 0 0.0 0.0 0 0 0o 0 0 28 30 0.2399 0.4533 0.0 1
22010 0 24 098 o0 9o o 0 0 8 28 0.0636 ©0.2000  0.0214 1
3 ¢ 1.0 o0 106 1.9 o o 0 0 0];: 6 28 0.0169 0.0599  0.066 1};
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1fybus 3
1fgauss % Pover flow solution by Gauss-Seidel method E
busout % Prints the power flow solution on the screen B
lineflow Y% Computes and displays the line flow and losses

The Ifgauss, busout-and the lineflow produce the following tabulated results.

Power Flow Scolution by Gauss-Seidel Method
Maximum Power mismatch = 0.000951884
No. of iterations = 34

Bus Voltage Angle ~— ---~- Load----- --Generation-- Injected
No. Mag. Degree MW Mvar. MW Mvar Mvar
1 1.060 €.000 0.000 0.000 260.950 -17.010 0.00
2 1.043 -5.496 21,700 12.700 40.000 48.828 0.00
3 1.022 -8.002 2.400 1.200 0.000 0.000 0.00
4 1.012 -9.659 7.600 1.600 0.000 0.000 0.00
5 1.01¢ -14.38¢ 94.200 19.000 0.000 35.995 0.00
6 1.012 -11.396 0.000 0.000 0.000 0.000 0.00
7 1.003 -13.149 22.800 10.900 0.000 0.000 0.00
8 1.010 -12.114 30.000 30.000 0.000 30.759 0.00
S 1.051 -14.432 £.000 0.000 0.000 0.000 0.00
10 1.044 -16.024 §.800 2.000 0.000 0.000 19.00
11 1,082 -14.432 0.000 0.000 0.000 16.113 0.00
12 1.057 -15.301 11.200 7.500 0.000 ¢.000 0.00
13 1.071 -15.300 0.000 0.000 ©.000 10.408 0.00
14 1.043 -16.150 6.200 1.600 0.000 0.000 0.00
15 1.038 -16.276 8.200 2.500 0.000 Q.000 0.060
16 1.045 ~15.879 3.500 1.800 0.000 0.000 0.00
17 1.039 -16.187 9.000 5.800 €.000 0.000 0.00
18 1.028 -16.881 3.200 . 0.900 0.000 0.000 0.00
19 1.025 -17.049 9.500 3.400 ¢.000 0.000 0.00
20 1.029 -16.851 2.200 0.700 0.000 0.000 0.00
21 1.032 -16.4868  17.500 11.200 0.000 0.000 0.00
22 1.033 -16.455 0.000 0.000 0.000 0.000 0.00
23 1.027 -16.660 3.200 1.600 0.000 0.000¢ 0.00
24 1.022 -16.8729 B.700 . 6.700 0.000 0.000 4.30
25 1.019 -16.423 0.000 0.000 0.000 0.000 0.00
26 1.001 -15.835 3.500 2.300 0.000 0.000 0.00
27 1.026 -15.913 0.000 0.000 0.000 0.000 0.00
28 1.011 -~12.086 0.000 4.000 0.000 0.000 0

% Forms the bus admittance matrix 3

.00

20 1.008
30 G.994
Total
--Line--
from to
1
2
3
2
i
4
5
6
3
1
4
4
2
3
6
12
5
6
2
4
7
8
g
10
28
7
5
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-17.133 2.400 0.500 ¢.000 0.00¢ 0.00
-18.016 10.800 1.500 0.000 €.000 0.00
283.400 126.200 300.950 125.089 23.30

Line Flow and Losses

Pover at bus & line flow --Line loss-- Transformer
My Mvar MVA Mw Mvar  tap

260.850 -17.010 261.504
177.743 -22.140 179.117 5.461 10.517
83.197 5.1256 83.354 2.807 7.079

18.300 36.126  40.497

172.282 32.657 175.350 5.461 10.517
45.702 2,720 45.783 1.106 -0.519
82.5590 1.7¢c4 83.008 2.995 8.178
61.905 -0.966 61,513 2.047 2.263
-2.400 -1.200 2.683
-80.39¢ 1.954 80.414 2.807 7.07¢%
78.034 -3.087 78.095 0.774 1.348
-7.600 -1.800 7.767
-44.596 -3.239 44.713 1.166 -0.519
=77.263 4.432  77.390 0.771 1.345
70.132 -17.624 72.313 0.605 1.181
44.131  14.827 46.482 0.000 4.686 0.932
-84.20¢ 16,995 95.721
-79.995 6.474 80.256 2.955 g.178
-14.210 10.467 17.649 0.151 -1.887
0.000 0.000 G.000
-59.858 3.228 59.945 2.047 2.263
-69.527 18.805 72.026 0.605 1.18t
37.537 -1.915 37.586 0.368 -0.598
29.534 -3.712 29.766 0.103 -0.558 -
27.687 -7.318 28.638 0.000 1.693 0.978
15.828 0.656 15.842 0.000 1.279 0.968
18.840 -9.575 21.134 0.060 -13.085

-22.800 -10.900 25.272
14.361 -12.154 18.814 0.151 -1.687
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.193 0.368 -0.598
: 17 -9.000 ~5.800 10.707
.010 f i6 -3.646 -1.413 3.910 0.012 0.027
.599 0.103 -0.558 . 10  ~5.332 -4.355 6.885 0.014 0.037
.433 0.000 -4.368 g
: 18 -3.200 -0.500 3.324
-000 - i5 -5.970 -1.661 6.197 0.039 0.079
.086 0.000 1.593 E 19 2.779 ¢.787 2.888 0.005 0.010
.663  -0.000 0.481 E
540 0.000  0.811 » 19 " -9.500 -3.400 10.090
= 18 -2.774 - -0.777 2.881 0.005 0.010
962 20 -6.703 -2.875 7.217 0.017 0.034
.840 0.000 1.279 :
. 359 0.000 0.811 ; 20 -2.200 -0.700 2.309
.698 0.081 0.180 19 6.720 2.709 7.245 0.017 0.034
.920 0.014 0.037 . 10 -8.937 -3.389 9.558 0.081 0.180
.551 0.110 0.236 -
.811 0.0582 0.107 21 -17.500 -11.200 20.777
10 -15.613 -9.609 18,333 0.110 0.236
113 22 -1.849 -1.827 2.463 0.001 0.001
114 -0.000 0.461 :
3 22 ¢.000 0.000 0.000
479 - 10 -7.531 -4.380 8.712 0.052 0.107
.237 0.000 4. 686 xE 21 1.850 1.628 2.464 0.001 0.001
274 0.000 0.132 o 24 5.643 2.795 6.297 ¢.043 0.067
.219 0.074 0.155
.164 0.217 0.428 : 23 ~-3.200 -1.600 3.578
.955 0.053 0.112 : 15 -4.972 -2.900 5.756 0.031 0.063
24 1.771 1.282 2.186 ¢.006 0.012
. 406 3
.406 0.000 0.132 - 24 -8.700 -2.400  '9.025
22 -5.601 -2.728 6.230 0.043 0.067
.403 ; 23 -1.765 -1.270 2.174 ' 0.008 0.012
.103 0.074 0.155 25 -1.322 1.604 2.079 ¢.008 0.014
.742 0.006 0.006 ;
25 0.000 0.000 0.000
.573 . : 24 1.330  -1.580 2.073 0.008 0.014
.808 8.217 0.428 T 28 3.520 2.372 4.244 0.044 0.066
.734  0.008 0.006 3 27 -4.866 -0.786 4.929 0.026 0.049
.256 0.039 0.079 —
.815 0.031 0.063 = 26 -3.500 -2.300 4.188
—1 25 -3.476 -2.306 4,171 0.044 0.086
3.936 ey
7.859 0.053 0.112 e O 27 . 0.000 0.000 0.000

3.831 0.012 0.027 25 4.892 0.83b 4.963 0.026 0.049
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28 -18.192 -4.152 18.660 -0.000 1.310
29 €6.178 1.675 6.401 0.086 0.162
.30 7.093 1.663 7.286 0.162 0.304

28 0.000 0.000 0.000
27 18.192 5.463 18.994 -0.000C 1.310 ©.968
8 0.570 -2.003 2.082 0.000 -4.368
6 -18.780 -3.510 19.106 0.060 -13.08%

29 -2.400 ~0.900 2.563
27 -6.093 -1.513 6.278 0.086 0.162"
30 3.716 0.801 3.764 0.034 0.063

30 -10.600 -1.800 10.769
27 -6.932 -1.359 7.064 0.162 0.304
28 -3.683 -0.537 3.722 0.034 0.063
Total loss ) 17.594 22.233

6.10 NEWTON-RAPHSON POWER FLOW SOLUTION

Because of its quadratic convergence, Newton's method is mathematically superior

to the Gauss-Seidel method and is less prone to divergence with ill-conditioned
problems, For large power systems, the Newton-Raphson methed is found to be
more efficient and practical. The number of iterations required to obtain a solution
15 independent of the system size, but'more functional evalvations are required at
each iteration. Since in the power flow problem real power and voltage magnitude

are specified for the voltage-controlled buses, the power flow equation is formu- S

lated in polar form, For the typical bus of the power system shown in Figure 6.7,

the current entering bus ¢ is given by (6.24). This equation can be rewritten in terms 3

of the bus admittance ma(nx as

I; zzy,-jvj (6.48) _:_'_- ;-

have

n
I = ) [Y511V51655 + 5
j=1

The complex power at bus i is

O o (6.50)

In the above equation, § includes bus i. Expressing this equation in polar form, we
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Substituting from (6.49) for I; in (6.50),
— Qi = [V|£=4 Z; AVil26i; + §; (6.51)

Separating the real and imaginary parts,

P =3 ViV, 1|Vl cos (85 — 6 + 65) (6.52)
1=1
Qi = = " |VillV5|IYs;|sin (8,; — & + 6;) (6.53)
i=1

Equations (6.52) and (6.53) constitute a set of nonlinear algebraic equations in
terms of the independent variables, voitage magnitude in per unit, and phase angle
in radians. We have two equations for each load bus, given by (6.52) and (5.53), and

_one equation for each voltage-controlled bus, given by (6.52). Expanding (6.52)

and (6.53) in Taylor's series about the initial estimate and neglecting all higher
order terms results in the following set of linear equations,

FAp®) T T ap k) ap k) | ap, (0) ar, ) 1 [ o olk) 7
A}.Dz .5% 333 5|T’:ZI El_liv’n A

. aA Y ap | pp () ap. (k) ;
AP, E7 "SR ” S 117 AR 17t A8

(k) 80, () 20, %) | a0, (K 80, (k) (k)
AQS 20u .. B Lag ) ., 0gp AV
*) s s | a0 ® a0, B *)
A0 | [T o & o & LA

In the above equation, bus 1 is assumed to be the slack bus. The Jacobian matrix
gives the linearized relationship between small chdnges in voltage angle ASEH
and voltage magnitude AIV( )| with the small changes in real and reactive power
AF’,“‘) and AQU‘) Elements of the Jacobian matrix are the partial derivatives of

(6.52) and (6.53), evaluated at .’_\5(” and /_\.IV{ }} In short form, it can be written
as

[26]1=1% 2]l awi) (6.54)

For voltage-controlled buses, the voltage magnitudes are known. Therefore, if m
buses of the system are voltage-controlled, m equations involving AQ and AV
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and the corresponding columns of the Jacobian matrix are eliminated. Accordingly, ‘ﬁg
there are n — 1 real power constraints and n — 1 — m reactive power constraints,
and the Jacobian matrix is of order (2r — 2 — m) x (2n —~ 2 — m). J; is of the

order (n — 1} x {n — 1), Jpis of the order (n — 1) x (n — 1 — m), Jj is of the

order (n — 1 —m) x (n ~ 1), and J is of the order (n ~ 1~ m) x (n — 1 — m), .

The diagonal and the off-diagonal elements of J; are

ap, |
55 = 2 WV 1Yy sin(8, — & +4,)

Jj#i
ap, | |

The diagonal and the off-diagonal elements of J5 are

o] = 2Vl cos+ SVl cos(0, = 6, + )
j#t

P, o

3—1@=|V}[|Yiﬂcos(9ij—-5i+§j) 5 i

The diagonal and the off-diagonal elements of .75 are

9Q;

T, = 2 (VIVIIYG cos(@y; — & +4;)
J#i
0 _ .
85; = —|[VillViilYi;lcos(8i; — & + 8;)  j#1

The diagonal and the off-diagonal elements of J4 are

00, N I

BV = —-2{Vi{|Yi! sin8y; — Z WVillYislsin{8s; — & + §;)
' i |

8Q);

EVA = _Ir."'fm’;lein(f’ij.-* Si+48;) j#d

The terms AP,-”‘} and {_\.QEH are the difference between the scheduled and calcu- -

lated values, known as the power residuals, given by

AP:(U o }:)isch — ]3‘“-)
AQHM = geer _ oo
i 3 1

(6.55)

(6.56)

(6.57)

(6.58)

(6.59)

{6.60)

(6.61)

©6.62)

6.63)
(6.64) 3

o b ek o s 2 Bt
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The new estimates for bus voltages are
s = 68 4 Ag (6.65)
VP = 15 ay®) (6.66)

The procedure for power fiow solution by the Newton-Raphson method is as
follows:

1. For load buses, where Pt-sc"‘ and Qf“" are specified, voltage magnitudes and
phase angles are set equal to the slack bus vatues, or 1.0 and 0.0, i.e., lViw)] =
1.0 and JEO) = 0.0. For voltage-regulated buses, where |Vi| and P<" are
specified, phase angles are set equal to the slack bus angle, or §, i.e., 6,{-@) = 0.

2. For load buses, Pfﬂ and QEH are calculated from (6.52) and (6.53) and
AP and AQY) are calculated from (6.63) and (6.64).

3. For voltage-controlled buses, Pl-(k) and AP“-(H are cajculated from (6.52) and
(6.63), respectively.

4. The elements of the Jacobian matnix (J1, Ja, J3, and J3) are calculated
from (6.55) — (6.62). '

5. The linear simultaneous equation (6.54) is solved directly by optimally or-
dered triangular factorization and Gaussian elimination.

6. The new voitage magnitudes and phase angles are computed from {6.65) and
(6.66).

7. The process is continued until the residuals AP‘-(“ and AQEH are less than
the specified accuracy, ie.,
PP < e
1AQ%) ) < e (6.67:

The power flow solution by the Newton-Raphson method is demonstrated ir
the following example.
Exarmple 6.10

Obtain the power flow solution by the Newton-Raphson method for the system o
Example 6.8. '
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Line impedances converted to admittances are g0 = 10 — 720, y13 = 10 — 530, §
and y33 = 16 — 532. This results in the bus admittance matrix

Yiue = | —10+3520 26— 352 -—16 + ;32

[ 20— 50 —10+ 3520 —10 + 530
—10 4730 —16 + 732

26 — j62

Converting the bus admittance matrix to polar form with angles in radian yields

22.36068/2.0344 58.13777/-1.1071
31.6227841.8925

35.77709/2.0344

[ 53.85165/ —1.9029 22.36068/2.0344
Ybus ==
35.77709/2.0344 67.23095/-1.1737

31.62278/1.8925 ]

From (6.52) and (6.53}, the expressions for real power at bus 2 and 3 and the :
reactive power at bus 2 are '

Py = V| |Vi{[Yar| cos(B21 — &3 + &1) + |VEE||Yaa) cos B +
[Va||Va]|Yas| cos(Bas — 62 + &3)
- Py = |Va|Vi|Yan| cos(83y — 83 + 81} + |V3]| V| Yaa] cos(fi32 —
83 + 82) + | V|| Va3 cos 633
Q2 = —{V|[Vi(|Yai | sin(8a, — 63 + 81) — |V2||Yao|sin 82y —
[V2][ V3l Yas! sin(fa3 — 65 + 53)

Elements of the Jacobian matrix are obtained by taking partial derivatives of the ;
above equations with respect 1o 85, 83 and V3] -

aP,
35, = [VallVillYaulsin(621 — & + 61) + [Val| Vsl Yas]
sin{fz3 — 8, + 83}

apP, ' ; :
% = —|Val{Va||Yas! sin(fa3 — 82 + &5)

P
_—3|Vz| = [VillY21| cos(8a1 — 63 + 81) + 2|Va){Yaz| cos 82 +
Val[Yaa| cos(0a23 — & -+ 83)
P, e
?‘55 = ~|V3||V2||Yaz| sin(Bay — 83 + 82)

Ps
75, = VsllVillYaul sinBs1 — &5 + 51) + | Vsl Val[Vaal
sin{833 — 83 + &5}

apP,
‘a_lf,;l = ]V;;”Y;;g[cos(&ag —d3 + 52)
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8Q
Tar = VallVill¥ar| cos(@ = & + 81) + Vil V4l Yas|

cos(fa3 — 2 + d3)

3
gcg—g = ~|Va{|V5||Ya3]| cos(Bo3 — 89 + 82)
3
8Qy _
31V3| = —{VillYai[sin(821 — &3 + &1) — 2|Va|[Yao| sin 82y —

|Vl Yas| sin(823 — 82 + 63)

The load and generation expressed in per units are

400 + 7250) .

Ssch = _( = 40— 2.

2 T 4.0—-3725 pu

200
Pyh= =g,
g 100 20 pu

The slack bus voltage is V; = 1.05/0 pu, and the bus 3 voltage magnitude is
V3] = 1.04 pu. Starting with an initial estimate of [V;*| = 1.0, 5" = 0.0, and

déo) = 0.0, the power residuals are computed from (6.63) and (6.64)
AP = Pyt~ P o 4.0 - (~1.14) = —2.8600
AP = pph - PO = 90— (0.5616) = 1.4384
AQY = gzt _ @ = 25— (—2.28) = —0.2200

Evaluating the elements of the Jacobian matrix with the initial estimate, the set of
linear equations in the first iteration becomes

—2.8600 5428000 —33.28000  24.86000 N
14384 | =| —33.28000  66.04000 —16.64000 A&
—0.2200 —27.14000  16.64000  49.72000 | | ALY

Obtaining the solution of the above matrix equation, the new bus voltages in the
first iteration are

880 = 0+ (~0.045263) = —0.045263

8§ = 0 + (-0.007718) = —0.007718
VD] =14 (—0.026548) = 0.97345

A& = —0.045263
A8 = ~0.007718
AWVEY| = —0.026548

Voltage phase angles are in radians. For the second iteration, we have

—0.099218 51.724675 —31.765618  21.302567 A
0.021715 | = | —32.981642  65.656383 —15.379086 Ass!
—0.050914 -28.538577  17.402838  48.103589 | | AV
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and ;
AslY = -0.001795 Y = —0.045263 + (—0.001795) = —0.04706
AN = —0.000985 8% = —0.007718 + (—0.000985) = —0.00870
AV = —0.001767 Vi = 0.973451 + (~0.001767) = 0.971684
For the third iteration, we have
~0.000216 51.596701 —31.693866  21.147447 A
0.000038 | = | —32.933865  65.597585 —15.351628 A
—0.000143 —28.548205 - 17.396932  47.954870 | | AV
and
A% = —0.000038 85 = —0.047058 + (—0.0000038) = —0.04706

asl? = —0.0000024

85 = —0.008703 + (—0.0000024) = 0.008705
AV = —0.0000044

|‘l-’.2{3}[ = 0.971684 + (—0.0006044) = 0.97168
The sotution converges in 3 iterations with a maximum power mismatch of 2.5 x
10~" with V3 = 0.97168/-2.696° and V3 = 1.04/-0.4988°. From (6.52) and
(6.53), the expressions for reactive power at bus 3 and the slack bus real and reac-
tive powers are
Qs = —Wl|Vi[{Ys1]sin{f3; — &y + 61) — |Val[Val| V3ol
Si!l(932 - f53 + 52) - ]V3|2|Y33| sin 933
Py = [ViP[Yi] cos 1y + |Vi||Va]| V12| cos(@iz — 8y + 83) + V3] V3]
|Y13| cos(f13 ~ &1 + 43)
Q1= —|Vi[Yu|sin 6,y — [Vi||Val|Yial sin{ys — 8; + &) — (V]| Vs]
I.Y;g[sin(ﬂlg - 51 + 53}

Upon substitution, we have

(3 = 14617 pu
P =2.1842 pu
@; = 1.4085 pu

Ifina!!:v. the line flows are calculated in the same manner as the line flow calcula-
tons in the Gauss-Seidel method described in Example 6.7, and the power flow g

diagram is as shown in Figure 6.13.

A program named Ifnewton is developed for power flow solution by the '
Newton-Raphson method for practical power systems. This program must be pre- °
ceded by the Iybus program. busout and lineflow programs can be used to print 3
the load flow solution and the line flow results. The format is the same as the ;

Gauss-Seidel. The following is a brief description of the lfnewton program.

6.10. NEWTON-RAPHSON POWER FLOW SOLUTION 239

Ifnewton This program obtains the power flow solution by the Newton-Raphson
method and requires the busdata and the linedata files described in Sec-
tion 6.9. It is designed for the direct use of load and generation in MW and
Myvar, bus voltages in per unit, and angle in degrees. Loads and generation
are converted to per unit quantities on the base MVA selected. A provision
is made (o maintain the generator reactive power of the voltage-controlled
buses within their specified limits. The violation of reactive power limit may
occur if the specified voltage is either too high or too low. In the second it-
eration, the var calculated at the generator buses are examined. If a limit is
reached, the voltage magnitude is adjusted in steps of 0.5 percent up to 5
percent to bring the var demand within the specified limits.

Example 6.11

Obtain the power flow solution for the IEEE-30 bus test system by the Newton
Raphson methed. : '

The data required is the same as in Example 6.9 with the following commands

clear % clears all variables from the workspace.
basemva = 100; accuracy = 0.001; maxiter = 12;

busdata= [ same as in Example 6.9 1,
linedata = [ same as in Example 6.9 };

lfybus % Forms the bus admittance matrix
lfnewton % Power flow sclution by Newton-Raphsen method
busout % Prints the power fiow solution on the screen

lineflow % Computes and displays the line flow and losses
The output of Ifnewton is

Power Flow Solution by Newton-Raphson Method
Maximum Power mismatch = 7.54898e-07
No. of iterations = 4

Bus Voltage Angle — -——-- Load----- -~Generation-- Injected
No. Mag. Degree MW Mvar MW Mvar Mvar

I 1.060 0.000 0.000 0.000 260.998 -17.02% 0.00
2 1.043 -5.497 21.700 12,700 40.000 48,822 0.060
3  1.022 -8.004 2.400 1.200 0.000 0.000 0.00
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4 1.013 -9.661 T.6G0 1.600 G.000 0.000 0.
5 1.010 -14.381 94,200 19.000 0.000 35.975 0.
6 1.012 -11.398 ¢.0C0 0.000 0.000 0.000 0.
7 1.063 -13.150 22.800 10.900 0.000 0.000 0.
8 1.016 -12.115 30.000  30.000 0.000 30.826 0.
9 1.051 -14.434 C¢.000 C.000 0.000 0.000 0.
10 1.044 -16.024 5.800 2.000 0.000 0.000 19.
11 1,082 -14.434 C.000 0.000 0.000 16.119 0.
12 1.057 -15.302 11.200 7.500 G.000 0.000 0.
13 1.071 -15.302 0.000 0.000 0.0G0 10.423 O.
14 1.042 -16.191 6.200 1.600. 0.00C0 0.000 0.
15 1.038 -16.278 8.200 2.500 0.000 0.000 0.
16 1.045 -15.880C 3.500 1.800 0.0C0 0.000 0.
17 1.039 -16.188 9.000 5.800 0.0C0 0.000 C.
18 1.028 -16.884 3.200 0.900 C.000 0.000 0.
19 1.025 -17.052 9.500 3.400 0.0C0 0.C00 0.
20 1.029 -16.852 2.200 0.700 0.060 G.000 0.
21 1.032 -16.468 17.500 11.200 0.000 0.000 0.
22 1.033 -16.455 ¢.000 0.000 ¢.000 0.¢00 0.
23 1.027 -16.662 3.200 1.6800 0.000 0.600 C.
24 1.022 -16.830 8.700  6.700 ¢.000 0.000 4.
25 1.019 -16.424 ¢.000 0.000 ¢.000 0.000C 0.
26 1.001 -16.842 3.500 2.300 ¢.000 0.000 0.
27 1.026 -15.912 ¢.0C0 0.000 ¢.000 0.00¢ O
28 1.011 -12.057 0.000 0.000 0.000 0.000 0.
2% 1.006 -~17.13§ 2.400 .500 ¢.000 0.000 _ 0©.
30 0.995 -18.015 10.600 1.500 0.000 0.000 0.
Total 283.400 126.200 300.998 125.144  23.
The output of the lineflow is the same as the line flow output of Example 6.9 with
the power mismatch as dictated by the Newton-Raphson method.

6.11 FAST DECOUPLED POWER FLOW SOLUTION

Power system transmission lines have a very high X/R ratio. For such a system,

real power changes AP arc less sensitive to changes in the voltage magnitude
and are most sensitive to changes in phase angle A4. Similarly, reactive power is
less sensitive to changes in angle and are mainly dependent on changes in voltage

magnitude. Therefore, it is reasonable to set elements Jo and J3 of the Jacobian
Mmatnix to zero. Thus, (6.54) becomes

[5e]=[7 5][aw

Lol S0 i it ot b

(6.68) 4
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or

AP = J,A6 = [%?] Ab (6.69)

8Q

AQ = JA|V] = [32V1

j Ay (6.70)

(6.69) and (6.70) show that the matrix equation is separated into two decoupled
equations requiring considerably less time to solve compared to the time required
for the solution of (6.54). Furthermore, considerable simplification can be made to
eliminate the need for recomputing .Jy and J during each iteration. This procedure
results in the decoupled power flow equations developed by Stott and Alsac{75-
76]. The diagonal elements of .J; described by (6.55) may be written as

8P y :
ke YOIV sin(8y = & + &;) — Vil |Vi) sin 8
1 J—_'l :

Replacing the first term of the above equation with —Q);, as givén by (6.53), results
in
op,
06;

—Q; — Vil*[Yul sin 85

Il

=Q,—ViI’By

Where B;; = |Y;;]sin#y; is the imaginary part of the diagonal elements of the bus
admittance matrix. Bj; is the sum of susceptances of all the elements incident to bus
1. In a typical power system, the self-susceptance B;; 3> Q, and we may neglect
Q;. Further simplification is obtained by assuming |V;|? ~ |V;], which yields

oF;

— = —[VilBq
35 = IV

{6.71)
Under normat operating conditions, 4; — d; is quite small. Thus, in (6.56) assuming
85 — &; + 8; ~ 0, the off-diagonal elements of J; becomes

OF;

5% = —{Vi|V3iBy;

Further simplification is obtained by assuming |V;} =1

ap;

(6.72)
a4;

= —|Vi| By
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Similarly, the diagonal elements of .J; described by (6.61) may be written as

2@ _

gy = ~VillYalsin b - > VillV;1iYl sin(8y; — & + 65)

=1
replacing the second term of the above equation with —Q;, as given by (6.53),
results in

9Q; -
a|?f}f‘| = —Willtulsin®e+ Qs
Again, since B;; = Yy sindy; 3> Q;, Q; may be neglected and (6.61) reduces to
Qi
gy = ~IilBa =9

Likewise in (6.62), assuming 8,; ~ §; + §; = 8,5 yields
9Q;

=5 VB, :

sy = 1B, (6.74)
With these assumptions, equations {6.69) and (6.70) take the following form

ar B’ Ad {6 ?5):

Vil '

AQ

— = ~B" AlV {6.76

Vi VI )

Here, B’ and B" are the imaginary part of the bus admittance matrix Ype.,. Since
the elements of this matrix are constant, they need to be tangularized and in-
verted only once at the beginning of the iteration. B’ is of order of (n — 1). For
voltage-controlled buses where |Vi| and P; are specified and Q; is not specified,
the corresponding row and column of Yj,,, are eliminated. Thus, B” is of order of
(n — 1 — m), where m is the number of voltage-regulated buses. Therefore, in the

fast decoupled power flow algorithm, the successive voltage magnitude and phase
angle changes are '

AP

Ab = ~{BN-127 6.77)
AQ :

AlVI=—fB"— 1= ; 6.78
Pl= =~ (6:28)

The fast decoupled power flow solution requires more iterations than the Newton-
Raphson method, but
flow solution is obtained very rapidly. This technique is very useful in contingencyf

anal)(SIS where numerous outages are to be simulated or a power flow solution is |
required for on-line control.

reguires considerably less time per iteration, and a power
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Example 6.12

Obuain the power flow solution by the fast decoupled method for the system of Ex-
ample 6.8.

The bus admittance matrix of the system as obtained in Example 6.10 is

20 — 550 —10+4 320 —10 + 730
Yous = | ~10+3720 26— j52 —16 -+ 532
—~10 4730 —16+ 332 26 — j62

In this system, bus 1 is the slack bus and the comresponding bus susceptance matrix
for evaluation of phase angles Ad, and Ad; is '

B = [ 32 —62 ]
The inverse of the above matrix is

[B']_l— —0.028182 -0.014545
| —0.014545 -0.023636

From (6.52) and (6.53), the expressions for real power at bus 2 and 3 and the
reactive power at bus 2 are
Py = |VoliVy||Yay| cos{821 — 83 + &) + |V.2|| Yoo cos 89
+{V2l|Vall¥23| cos(fa3 ~ &; + 63)
Py = |V3|[Vi{[Ya1| cos(f31 — & + &) + [Va][Va]|Yaz) cos{Baa
—83 + 62) + {V||Yas| cos B33
Q2 = —|V|\Vil|Yar| sin(Ba1 — 8y + 81} — V|| Yae| sin b2
—{Va||VallYaa| sin{f23 — 82 + 63)

The load and generation expressed in per units are

S;r:h - _@1%3_25_02 =—40— 425 pu
200
Bt 00 20 pu

The slack bus voltage is V; = 1.05/0 pu, and the bus 3 volt'age( t;';mgnituche is
V3] = 1.04 pu. Starting with an initial estimate of [Vi?} = 1.0, 8 = 0.0, and
5&0) = 0.0, the power residuals are computed from (6.63) and (6.64)

AP® = pgh — PO = _40- (—1.14) = —2.86
A P§°) — Ps’d' _ P§°) = 2.0 — (0.5616) == 1.4384
AQY = Qyh — Q) = —2.5 — (—2.28) = —0.22
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The fast decoupled power flow algorithm given by (6.77) becomes

A8Y ] [ -0.028182 —0.014545 "91-3500 _ [ ~0.060483
As™ | T | 0014545 —0.023636 1484 1 7 1 —0.008909

Since bus 3 is a regulated bus, the corresponding row and column of B’ are elimi- 1

nated and we get

BH @ [_52I
From (6.78), we have
—-17[-.22
AV = - =112 = -0, :
Vol [52} [ o ] 0.0042308

The new bus voltages in the first iteration are

A8 = ~0.060483
A8 = —0.008989
AVY) = —0.0042308

85" = 0+ (~0.060483) = —0.060483
85" = 0+ (—0.008989) = —0.008989
V"] =1+ (—0.0042308) = 0.995769

The voltage phase angles are in radians. The process is continued until power resid- 28

uals are within a specified accuracy. The result is tabulated in the table below.

Tter & &y [V2] AP, AP, AQ,
i -0.060482  -0.008909 0.995769 -2.860000  1.438400 -0.220000

-0.044802  -0.008986 0.972985 -0.021395 0.001195 0.365249
-0.047665 -0.008713 0.973116 -0.153368 0.112899 0.006657
0.047614  -0.008645 0.971414 0.000520 0.002610 -0.086136

-0.046928  -0.008720 0.971732  0.000948 -0.001411  0.020119

Lle - g i ST I R

10 -0.047094 -0.008702 0971669 -0.000470 0.000510  -0.004688 |

12 -0.047054 -0.008706 0.971681 0.000170 . -0.000163 0.001087
13 -0.047063 -0.008706 0.97 1684 -0.000458 0.000330 0.000151
14 -0.047064 .0.008706 0.971680 -0.000053 0.000048 -D.000250

Converting phase angles to degrees the final solution is V2 = 0.971687—2.696° -

and V3 = 1.04/--0.4988°, Using (6.52) and (6.53) as in Example 6,10, the reactive

-0.056496  -0.007952 0.965274 0.175895 -0.070951 -1.579042 |
-0.044194  -0.008690 0.965711 0.640309 -0.457039 0.021948

-0.046936  -0.008702 0.971333  0.035980 -0.02619¢  -0.004067
-0.047087  .0.008707 0971762 -0.008442 0.006133  0.001558 3

L -0.047057 -0.008705 0971660 0.001971  -0.001427 -0.000500 |2
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power at bus 3 and the slack bus real and reactive powers are

(J1 = 14617 pu
Py = 21842 pu
1 = 1.4085 pu

The fast decoupled power flow for this example has taken 14 iterations with the
maximum power mismatch of 2.5 x 1074 pu compared to the Newton-Raphson
method which took only three iterations. The highest X /R ratio of the transmission
lines in this example is 3. For systems with a higher X/R ratio, the fast decoupled
power flow method converges in relatively fewer iterations. However, the number
of ierations is a function of system size.

Finally, the line flows are calculated in the same manner as the line flow cal-
culations in the Gauss-Seidel method described in Example 6.7, and the power flow
diagram is as shown in Figure 6.13,

A program named decouple is developed for power flow solution by the fast
decoupled methed for practical power systems. This program must be preceded by
the Ifybus program. busout and lineflow programs can be used to print the load
flow solution and the line flow results. The format is the same as the Gauss-Seidel
method. The following is a brief description of the decouple program:

decouple This program finds the power flow solution by the fast decouple methed
and requires the busdata and the linedata files described in Section 6.9. It is
designed for the direct use of load and generation in MW and Muvar, bus volt-
ages in per unit, and angle in degrees. Loads and generation are converted
1o per unit quantities on the base MVA selected. A provision is made to
maintain the generator reactive power of the voltage-controlled buses within
their specified limits. The violation of reactive power limit may occur if the
specified voltage is either too high or too low. In the 10th iteration, the vars
calculated at the generator buses are examined. If a limit is reached, the volt-
age magnitude is adjusted in steps of 0.5 percent up to +5 percent (o bring
the var demand within the specified limits.

Example 6.13

Obtain the power flow solution for the IEEE-30 bus test system by the fast decou-
pled method.

Data required is the same as in Example 6.9 with the following commands
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clear
basemva = 100;

% clears all variables from the workspace.
accuracy = 0.001; maxiter = 20;

busdata= [ same as in Example 6.9 ];
linedata = same as in Example 6.9 ]

lfybus % Forms the bus admittance matrix
decouple 4 Pover flow solution by fast decoupled method -
buscut % Prints the power flow solution on the screen

lineflow } Computes and displays the line flow and losses :

The output of decouple is

Power Flow Sclution by Fast Decoupled Method
Maximum Power mismatch = 0.000919582
No. of iteratioms = 15

Bus Voltage Angle — ----- Load----- --Generation-- Injected
No. Mag. Degree MW Mvar MW Mvar " Mvar
1 1.060 0.000 0.000 0.00¢ 260,998 -17.021 0.00
2  1.043 -5.497 21.700 12.700 40.000 48.822 ¢.00
3 1.022 -8.004 2.400 1.200 0.000 0.000 0.00
4 1.013 -9.662 7.600 1.600 0.000 0.000 0.00
5 1.010 -14.381 94.200 19.000 0.000 35.975 0.00 |
6 1.012 -11.398 0.000 0.000 0.000 0.000 0.00 ;
7 1.003 -13.149 22.800 10.900 0.000 0.000 0.00
8 1.010 -12.115 30.000 30.000 0.000 30.828 ¢.00
$ 1.051 -14.434 0.000 0.000 0.000 0.000 0.00
10 1.044 -16.024 5.800 2.000 0.000 0.000 19.00
11 1.082 -14.434 0.000 0.000 0.000 16.120 0.00
12 1.057 -15.303  11.200 7.500 G.000 0.000 0.00
13 1.071 -15.303 0.000 ©.000 0.000 106.421 0.00
14 1.042 -16.198 6.200 1.600 0.000 0.000 0.00
15 1.038 -16.278 8.200 2.500 0.000 0.000 0.00
16 1.045 -15.881 3.500 1.800 0.000 0.000 0.00
17 1.039 -16.188 $.000 5.800 0.000 0.000 0.00
18 1.028 -16.882 3.200 0.900 0.000 0.000 0.00
18 1.025 -17.05t 9.500 3.400 0. 000 0.000 0.00
20 1.029 -16.852 .- 2.200 0.700 0.000 0.000 0.00
21 1.032 -16.468 17.500 1%.200 0.000 0.000 0.00
22 1.033 -16.454 0.000 0.000 0.000 0.000 0.00 .3
23 1,027 -16.661 3.200 1.600 0.000 0.000  0.00 3
24 1.022 -16.829 8.700 6.700 0.000 0.000 4.30 &
25 1,019 -16.423 0.000 0.000 0.000 0.000 0.00
26 1.001 -16.840 3.500 2.300 0.000 ¢.000 0.00
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27 1.026 -15.912 0.000 0.000 C.000 0.000 0.00
28 1.011 -12.087 C¢.000 0.000 0.000 0.600 0.00
28 1.006 -17.136 2.400 0.900 0.000 0.000 0.00
30 0.995 -18.014 10.600 1.900 ¢.000 ¢.000 0.00
Tetal 283.400 128. 200 300.998 125.145 23.30

The output qf the lineflow is the same as the line flow output of Example 6.9 with
the power mismatch as dictated by the fast decoupled method, '

PROBLEMS

6.1. A power system network is shown in Figure 6.17. The generators at buses
I and 2 are represented by their equivalent current sources with their reac-
tances in per unit on a 100-MVA base. The lines are represented by 7 model
where series reactances and shunt reactances are also expressed in per unit
on a F00'MVA base. The loads at buses 3 and 4 are expressed in MW and
Mvar.

(a) Assuming a voltage magnitude of 1.0 per unit at buses 3 and 4, convert
the loads to per unit impedances. Convert network impedances to admit-
fances and obtain the bus admittance matrix by inspection,

(b) Use the function Y = ybus(zdata) to obtain the bus admittance matrix.
The function argument zdata is & matrix containing the line bus numbers,
resistance and reactance. (See Example 6.1.)

l 3
1 . r@—{ll
§0.25
t g -, f
Y ' jo8 !
= 3417: i 74
sl 3 5 4
S R s S <
100 MW 525 Mvar 200 MW + 550 Mvar
FIGURE 6.17

One-line diagram for Problem 6.1,
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6.2. A power system network is shown in Figure 6.18. The values marked are

impedances in per unit on a base of 100 MVA. The currents entering buses 1 _.;

and 2 are

I, =138 —j2.72 pu
Is = 0.69 — 71.36 pu

(2) Determine the bus admittance matrix by inspection.

(b) Use the function. Y = ybus(zdata) 1¢ obtain the bus admittance matrix, -

The function argument zdata is a matrix containing the line bus numbers,
resistance and reactance. (Sce Example 6.1.) Write the necessary MATLAB -
commands to obtain the bus voliages. '

:

1
0.02 + 70.04

0.01 + j0.03

FIGURE 6.18
One-line diagram for Problem 6.2.

6.3. Use Gauss-Seidel method to find the solution of the following equations

Ty + T2 =10
ry+xa=56

with the following initial estimates

{a) :rgu) =1 and I(Qu) =1

(b) I(lm = 1and Igo) =2

Continue the iterations unil |£&a:£k)| and |A:r:g°){ are less than 0.001.
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6.4. A fourth-order polynomial equation is given by
ot — 212% + 1472% ~ 379z + 252 = 0

(a} Use Newton-Raphson method and hand calculations to find one of the
roots of the polynomial equation. Stari with the initial estimate of z(® = ¢
and continue until |Az*)| < 0.001.

(b) Write a MATLAB program 1o find the roots of the above polynomial by
Newton-Raphson method. The program should prompt the user to input the
initial estimate. Run using the initial estimates of @, 3, 6, 10.

(c) Check your answers using the MATLAB function r = roots(A), where A
is a row vector containing the polynomial coefficients in descending powers.

6.5. Use Newton-Raphson method and hand calculation to find the solution of
the following equations:

;I:f—?;rl—:c-2=3
x3 +z3 =11

(a) Start with the initiat estimates of :.,-'(10} =2 x&o} = 3. Perform three itera-
tions.

{b) Write a MATLAB program to find one of the solutions of the above equa-
tions by Newton-Raphson method. The program should prompt the user to
input the initial estimates. Run the program with the above initial estimates.

6.6, Inthe power system network shown i Figure 6.19, bus | is a slack bus with
Vi = L.0Z0° per unit and bus 2 is a load bus with S5 = 280 MW + j60
Mvar. The linc impedance on a base of 100 MVA is Z = 0.02 + j0.04 per
unit,

(a) Using Gauss-Seidel method, determine V2 . Use an initial estimate of
VL% = 1.0 + 50.0 and pesform four iterations.

(b) If after several iterations voltage at bus 2 converges to Vo = 0.90 — j0.10,
determine S and the real and reactive power loss in the line.

s, l Z13 = 0.02 + j0.04

. B
1 8o = 280 MW +;60 Mvar

Y

FIGURE 6.19
One-line diagrarn for Problem 6.6.
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. 3
v, = 1£0°1 T35 2
Slack
300 MW 270 Mvar
FIGURE 6.20

6.7.

6.8.

One-line diagram for Problem 6.7.

Figure 6.20 shows the one-line diagram of a simple three-bus power system
with generation at bus 1. The voltage at bus 1 is ¥} = 1.0/0° per unit

The scheduled loads on buses 2 and 3 are marked on the diagram. Line g
impedances are marked in per unit on a 100-MVA base. For the purpose "

of hand calculations, line resistances and line charging susceptances are ne- -
glected.

(2) Using Gauss-Seidel method and initial estimates of 1V, = 1.0 + jt and

V:,,(m = 1.0 + j0, determine V5 and V3. Perform two iterations.
(b) If after several iterations the bus voltages converge to

Va = 0.90 — 70.10 pu
V3 = 0.95 - j0.05 pu

determine the line flows and line losses and the slack bus real and reactiv

power. Construct a power flow diagram and show the direction of the line |
flows.

(¢) Check the power flow solution using the Ifgauss and other required pro- 7

grams. (Refer to Example 6.9.) Use a power accuracy of 0.00001 and an;
acceleration factor of 1.0. :

Figure 6.21 shows the one-line diagram of a simple three-bus power sys(eni
with generation at buses 1 and 3. The voltage at bus 1 is V; = 1.025/0° per
unit. Voltage magnitude at bus 3 is fixed at 1.03 pu with a real power gener-

ation of 300 MW. A load consisting of 400 MW and 200 Mvar is taken from "=

bus 2. Line impedances are marked in per unit on a 100-MVA base. For the

vy = 1.02540°

O =0

Slack
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40.05 Py = 300 MW

| Vs |=1.03

400 MW 200 Mvar

FIGURE 6.21
One-line diagram for Problem 6.8

purpose of hand calculations, line resistances and line charging susceptances
are neglected.

(a) Using Gauss-Seidel method and initial estimates of Vz(o) = 1.0 + j0 and
V3(D) = 1.03 + jO and keeping {V4]| = 1.03 pu. determine the phasor values
of V; and Vj . Perform two iterations.

(b} If after several iterations the bus voltages converge to

Vy = 1.001243/-2,1° = 1.000571 — j0.0366898 pu
V3 = 1.03/1.36851° = 1.029706 + j0.0246 pu

determine the line flows and line losses and the slack bus reat and reactive
power. Construct a power flow diagram and show the direction of the line
flows. ;

{c) Check the power flow solution using the Ifgauss and other required pro-
grams. {Refer to Example 6.9.) '

X, = j0.0125 982 X, = 0.16

\ 3 E 50.25 3 E l

1 081 1951 2
3 4

FIGURE 6.22

One-line diagram for Problem 6.9.
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6.9. The one-line diagram of a four-bus power system is as shown in Figure 6,22, )
Reactances are given in per unit on a common MVA base. Transformers T} S
and T> have tap settings of 0.8:1, and 1.25:1 respectively. Obtain the bus e

admittance matrix.

6.10. In the two-bus system shown in Figure 6.23, bus | is a slack bus with V] =
1.0£0° pu. A load of 150 MW and 50 Mvar is taken from bus 2. The line
admittance is y12 = 10£-73.74° pu on a base of 100 MVA. The expression
for real and reactive power at bus 2 is given by

Py = 10|V3f|Vi|cos(106.26° — & + 8,) + 10|Va|? cos(—73.74°)
Q2 = ~10|V5||V1|sin(106.26° — 65 + &;) — 10|V} sin(—73.74°)

Using Newton-Raphson method, obtain the voltage magnitude and phase
angle of bus 2. Start with an initial estimate of |V~2|(U) = 1.0 puand 5,09 =
0°. Pecform two iterations, '

1 2
O | Y12 = 28 — 396 r——— 150 MW
Vi = 1.0£0° =t 50 Mvar
FIGURE 6.2}

One-ling diagram for Problem 6.16.

6.11. In the two-bus system shown in Figure 6.24, bus 1 is a slack bus with V} =
1.0£0° pu. A load of 100 MW and 50 Mvar is taken from bus 2. The line
impedance is z;9 = 0.12 + §0.16 pu on a base of 100 MVA. Using Newton-
Raphson method, obtain the voltage magnitude and phase angle of bus 2.
Start with an initial estimate of [V3[® =1.0 pu and 6, = 0°. Perform
two iterations.

2 ;
1
Q sipe0iPes0ad >30DEN
FIGURE .24

One-line diagram for Problem 6.11.
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6.12. Figure 6.25 shows the one-line diagram of a simple three-bus power system
with generation at buses | and 2. The voltage at bus 1 is V = 1.0£0° per unit.
Voltage magnitude at bus 2 is fixed at 1.05 pu with a real power generation
of 400 MW. A load consisting of 500 MW and 400 Mvar is taken from bus
3. Line admittances are marked in per unit on a 100 MVA base. For the

purpose of hand calculations, line resistances and line charging susceptances
are neglected,

i 12 = ~j40 R
Py = 400 MW
Y13 = —320 Y23 = —j20

Silack Bus 3 | V5 {=1.05

VI = 1.040°
900 400
MW Myvar

FIGURE 6.25

One-line diagram for Problem 6.12

(@) Show that the expression for the real pawer at bus 2 and real and reactive
power at bus 3 are '

Py = 40[Vo{Vi] cos(90° — &3 + &;) + 20{V5{ V5] cos(80° — 83 + &3)
Py = 20|V l|Vi] cos(90° — 83 + &,) + 20]Va]{Va| cos(90° — &3 + 6,)
Q3 = —20V3 V3] sin(90° — 63+8,) — 20| V|| Va | sin(90° — 85 +85) -+ 40| V3|2

{b) Using Newton-Raphson method, start with the initial estimates of 15 0 -
1.0 + 50 and V53(® = 1.0 + jO, and keeping {V2| = 1.05 pu, determine the
phasor values of V5 and V4. Perform two iterations.

(c) Check the power flow solution for Problem 6.12 using lfnewton and other
required programs. Assume the regulated bus (bus # 2) reactive power limits
are between 0 and 600 Mvar.

6.13, For Problem 6.12:
(a) Obtain the power flow solution using the fast decoupled algorithm. Per-
form two iterations,
(b} Check the power flow solution for Problem 6.12 using decouple and
other required programs. Assume the regulated bus (bus # 2) reactive power
limnits are between 0 and 600 Mvar,

6.14. The 26-bus power system network of an electric utility company is shown
in Figure 6.26 (page 256). Obtain the power flow solution by the following
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. SHUNT
methods: CAPACITORS | A NSFORMER TAP
{a) Gauss-Seidel power flow {see Example 6.9). Bus No. - Mvar - - ;
. Designation Tap Setting
{b) Newion-Raphson power flow (see Example 6.11). 1 4.0
2—- 3 0.960
{c) Fast decoupled power flow (see Example 6.13). 4 2.0
5 50 2-13 0.960
6 2'0 3-13 1.017
The load data is as follows. 1 ; 4— 8 1.050
1.5
. 4—12 1.050
12 20 :
LOAD DATA 15 0.5 6— 19 0.950
Bus Load Bus Load 19 50 77— 9 0.950
No. MW Mvar || No. MW Mvar '

1 510 41.0 14~ 240 120 The line and transformer data containing the series resistance and reactance
7 220 15.0 15 700 310 in per unit and one-half the total capacitance in per unit suscepiance on a
3 64.0 50.0 16 550 270 100-MVA base are tabulated below, i
4 250 10.0 17 780 380
5 30,0 300 18 1530 67.0
& 76.0 9.0 19 750  15.0 _ LINE AND TRANSFORMER DATA .
7 00 00| 20 480 270 Bus Bus R, X iB, |[Bus Bus R, X, 3B,
g8 00 0.0 21 460 230 No. No. pu pu pu No. No. - pu pu pu
9 890 500 22 450 220 1 2 0.0005 0.0048 0.0300 j 10 22 00069 0.0298 0.005
10 0.0 0.0 23 250 120 1 18 0.0013 0.0110 0.0600 || 11 25 0.0960 0.2700 0.010
11 250 15.0 24 540 270 2 3 00014 0.0513 0.0500 | 11 26 0.0165 0.0970 0.004
12 890 48.0 25 280 130 2 7 0.0103 0.0586 0.01801 12 14 0.0327 0.0802 0.000
_3 31.0 15.0 26 400 200 2 8 0.0074 0.0321 0.0390 | 12 15 0.0180 0.0598 0.000
: 2 13 0.0035 0.0967 0.0250 || 13 14 0.0046 0©.0271 0.001
Voltage magnitude, generation schedule, and the reactive power limits for - 2 26 0.0323 0.1967 0.0000 || 13 15 0.0116 0.0610 0.000
the regulated buses are tabulated below. Bus 1, whose voltage is specified as 3 13 0.0007 0.0054 0.0005 | 13 16 0.0179 0.0888 0.001
V1 = 1.025/0°, is taken as the slack bus. 4 8 0.0008 0.0240 0.0001 4 14 15 0.0069 0.0382 0.000
4 12 0.0016 0.0207 0.0150 |j 15 16 0.0209 0.0512 0.000
GENERATION DATA 5 6 0.0069 0.0300 0.0990 | 16 17 0.0990 0.0600 0.000
Bus Voltage Generation Mvar Limits 6 7 00053 0.0306 0.0010 |[ 16 20 0.0239 0.0585 0.000
No. Mag. MW Min. Max. 6 11 0.0097 0.0570 0.0001 || 17 18 0.0032 0.0600 0.038
1 1.02% 6 18 0.0037 0.0222 0.0012 § 17 21 0.2290 0(.4450 0.000
2 1.020 79.0 400 2500 6 19 0.0035 0.0660 0.0450 | 19 23 0.0300 0©.1310 0.000
3 L025 20.0 400 1500 8 21 0.0050 0.0900 0.0226 ([ 19 24 0.0300 0.125¢ 0.002
4  1.050 100:0 400  80.0 7 8 0.0012 0.0069 0.0001 || 19 25 0.1190 0.2249 0.004
5  1.045 300.0 400 160.0 7 9 (0.0009 0.0429 0.0250 I 20 21 0.0657 0.1570 0.000
26 1.015 60.0 15.0 500 8 12 0.0020 0.0180 0.0200 § 20 22 0.0150 0.0366 0.000
9 10 0.0010 0.0493 0.0010 | 21 24 0.0476 0.151¢ 0.000
The Mvar of the shunt capacitors installed at substations and the transformer 10 12 0.0024 0.0132 0.0100 |22 23 0.0290 0.0990 0.000
tap settings are given below, 10 19 0.0547 0.2360 0.0000 || 22 24 0.0310 0.0880 0.000
; 10 20 0.0066 0.0160 0.0010 § 23 25 0.0987 0.1168 0.000
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FIGURE 6.26

Tl

Ogne-line diagram for Problem 6.14.

CHAPTER

7

OPTIMAL DISPATCH
OF GENERATION

7.1 INTRODUCTION

The formulation of power flow problem and its solutions were discussed in Chap-
ter 6. One type of bus in the power flow was the voltage-controlled bus, where real
power generation and voltage magnitude were specified. The power flow solution
provided the voltage phase angle and the reactive power generation. In a practical
power system, the power plants are not located at the same distance from the center
of loads and their fuel costs are different. Also, under normal opérating conditions,
the generation capacity is more than the total load demand and losses. Thus, there
are many options for scheduling generation. In an interconnected power system,
the objective is to find the real and reactive power scheduling of each power plant
in such a way as to minimize the operating cost. This means that the generator's
real and reactive power are allowed to vary within certain limits so as to meet a
particular load demand with minimum fuel cost. This is called the optimal power
flow (OPF) problem. The OPF is used to optimize the power flow solution of large
scale power system. This is done by minimizing selected objective functions while
maintaining an acceptable system performance in terms of generator capability
limits and the output of the compensating devices. The objective functions, also

157
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known as cost functions, may present economic costs, system security, or other %
objectives. Efficient reactive power planning enhances economic operation as well &
as system security. The OPF has been studied by many researchers and many al-

gorithms using different objective functions and methods have been presented {11,
12,22, 23, 40, 42, 54, 78].
In this chapter, we will limit our analysis to the economic dispatch of real

power generation. The classical optimization of continuous functions is introduced, .

The application of constraints to optimization problems is presented. Following

this, the incremental production cost of generation is introduced. The economic .

dispatch of generation for minimization of the total operating cost with transmis-
sion losses neglected is obtained. Next, the transmission loss formula is derived
and the economic dispatch of generation based on the loss formula is obtained.

A program named bloss is developed for the evaluation of the transmission loss
B coefficients which can be used following any one of the power flow programs
Ifgauss, lfnewton, or decouple discussed in Chapter 6. Also, a genera! program &

cailed dispatch is developed for the optimal scheduling of real power generation
and can be used in conjunction with the bloss program.

7.2 NONLINEAR FUNCTION OPTIMIZATION

Unconstrained Parameter Optimization

Nonlinear function optimization is an important tool in computer-aided designand

is part of a broader class of optimization called nonlinear programming. The un-
derlying theory and the computational methods are discussed in many books. The
basic goal is the minimization of some nonlinear objective cost function subject to
nonlinear equality and inequality constraints.

The mathematical tools that are used to solve unconstrained parameter opti
mization problems come directly from multivariable calculus. The necessary con-
dition to minimize the cost function -

flz 22, 20) (7.1)
is obtained by setting derivative of f with respect to the variables equal to zero, .
1. .,
i : :
'(—}';';—U 1—1,...,n (72)
or
V=40 (7.3}
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where

af af af
vf= (63: "Bxy " Bzn

) (7.4)

which is known as the gradient vector. The terms associated with second deriva-
tives is given by
I
8331' ax_,-

(7.5)

The above equation results in a symmetric matrix called the Hessian matrix of the
function,

Once the derivative of f is vanished at local extrema (£, 5, ..., &n), for f.
to have a relative minimum, the Hessian matrix evaluated at (£,, %o, . .., £,)} must
be a positive definite matrix. This condition requires that all the eigenvalues of the
Hessian matrix evaluated at (£, £2,...,4,) be positive,

In summary, the unconstrained minimum of a function is found by setting
its partial derivatives (with respect to the parameters that may be varied) equal
to zero and solving for the parameter values. Among the sets of parameter values
obtained, those at which the matrix of second partial derivatives of the cost function
is positive definite are local minima. If there is a single local minimum, it is also
the global minimum; otherwise, the cost function must be evaluated at each of the
local minima to determine which one is the global minimum.

Example 7.1

Find the minimum of
fxyze,...,20) = If+2$§+39:§+x1:r2+3:3$3 —8z; — 16zy — 3223 +110

Equating the first derivatives to zero, resuits in

6—f=2x1+z:g—~8=0

33:1
6—f=1:1+4:c2+1:3~16=0
Ozo

—(?-f—=:c2+62:3-—32=0
dx;3

or
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The solution of the above linear simultaneous equation is readily obtained (in MAT- '3
IABuse X = A\B)and is given by (£;, %2, £1) = (3,2, 5). The function evaiu- 3
ated at this point is £{3,2,5) = 2. To see if this point is 2 minimum, we evaluate §
the second dervatives and form the Hessian matrix

210
H()‘f):[1 4 1]
01 6

e

el

Using the MATLAB function eig(H), the eigenvalues are found to be 1.55, 4.0 and
6.45, which are all positive. Thus, the Hessian matrix is a positive definite matrix §
and {3, 2, 5) is 2a minimum point.

7.2.1 CONSTRAINED PARAMETER OPTIMIZATION:
EQUALITY CONSTRAINTS

ol i o Mk BB A J 8 b o

This type of problem arises when there are functional dependencies among the §
parameters to be chosen. The problem is to minimize the cost function

frun o) .6 S

subject to the equality constraints

gi{x1,x0,...,70) =0 i=1,2,... .,k
Such problems may be solved by the Lagrange multiplier method. This provides -
an augmented cost function by introducing k-vector A of undetermined quantities. 3

The unconstrained cost function becomes

k
L=Ff+3 Mg ' 7:8)

i=1

The resulting necessary conditions for constrained local minima of £ are the fol- 3
lowing: =

ac 89,_
Bz, ax,+§ &=
aL

zﬁ:=9i—0

Note that Equation (7.10) is simply the original constraints.

7.2. NONLINEAR FUNCTION OPTIMIZATION 261

Example 7.2

Use the Lagrange multiplier method for solving constrained parameter oplin'fiza-
tions to determine the minimum distance from origin of the xy plane to a circle
described by

(x—8)2+(y~6)2=125

The minimum distance is obtained by mmlmlzauon of the distance square, given
by

fla,y) =22+ 47

The MATLAB plot command is used to plot the circle as shown in Figure 7.1,

14

12

2 L <] -

0 2 4 6 8 10
z

12 14

FIGURE 7.1
Constraint function of Example 7.2

From this graph, clearly the minimum distance is 5, located at point (4, 3).

Now let us usc Lagrange multiplier to minimize f(z,y) subject to the con-
straint described by the circle equation. Forming the Lagrange function, we obtain
L= 452+ Nz - 82+ (y—6)* — 25]

The necessary conditions for extrema are

S);—=Q;J:+A(2x—16)=0 or 2z(A+1)=16)
I
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_8;:23;—%,\(29'—12):0 or 2y(A+1)=12x
Y
aLc 2 2

oL (z-8 —6)2-25=0

e =alg=iB) F (Y0

The solution of the above three equations will provide optimal points. In this prob;
lem, a direct solution can be obtained as follows:
Eliminating A from the first two equations results in

Y=1

K b o L

Substituting for ¥ in the third equation yields

%-Z-I2-25x+75=0 |

The solutions of the abave quadratic equations are £ = 4 and £ = 12. Thus, the
corresponding extrema are at points (4, 3} with A = 1, and (12, 9) with A = -3,
From Figure 7.1, it is clear that the minimum distance is at point (4, 3) and the max- 4
imum distance is at point (12, 9). To distinguish these points, the second derivatives §
are obtained and the Hessian matrices evaluated at these points are formed. The §
matrix with positive eigenvalues is a positive definite matrix and the parameters
correspond 1o the minimum point. :
In many problems, a direct solution is not possible and the above equations
are solved iteratively. Many iterative schemes are available. The simplest search ¢
method is to assume a value for A and compute & f. If Af is zero, the estimated §
X corresponds to the optimum solution. If not, depending on the sign of Af, A §
is increased or decreased, and another solution is obtained. With two solutions, a 3
better value of ) is obtained by extrapolation and the process is continued until Af §
is within a specified accuracy. A significantly superior method applicable to con- §
tinuous functions is the Newton-Raphson method. One way to apply the Newton- 3
Raphson method to the problem at hand is as follows: From the first two equations,
x and y are found. These are

s 8
ST T A+

62X
Y= e

Substituting into the third equation results in

1002 3
(A+1)2

200Xx

f) = A+ 1

+75=0
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This is a nonlinear equation in terms of A and can be solved by the Newton-
Raphson method. The Newton-Raphson method is a successive approximation pro-
cedure based on an initial estimate of the unknown and the use of Taylor’s series
expansion (see Chapter 6 for more details). For a one-dimensional case,

A—){; k) (7.11)

AMF) =

and

A1y — (R L AR (7.12)

Starting with an estimated value of A, a new value is found in the direction of steep-
est decent (negative gradient). The process is repeated in the direction of negative

gradient until A f(A) is less than a specified accuracy. This algerithm is known as
the gradient method. For the above function, the gradient is

df(\) _ 2000 200 _  —200
dx T (A1 O+ D2 O +1)8

The following commands show the procedure for the soluuon of the given
equation by the Newton-Raphson method.

iter = 0; % Iteration counter

Df = 10; % Exrror in Df is set to a high value

Lambda = input(’Enter estimated value of Lambda = ?);

fprintf(’\n ?)

disp([’ Iter bt J

H x Y:])

while abs(Df) >= 0.0001

iter = iter + 1,

x = 8+*Lambda/(Lambda + 1);

y = 6+Lambda/(Lambda + 1);

= (x- 872 + (y - 6)72 - 25;

J = -200/{Lambda + 1)"3;

Delambda =-D£/J; % Change in variable
- disp{[iter, Df, J, Delambda, Lambda, x, y])

Lambda = Lambda + Delambda; % Successive solution

end

DLambda Lambda*

% Test for convergence
% No. of iterations

It

% Residual

When the program is run, the user is prompted to enter the initial estimate for
A. Using a vatue of A = (.4, the result is

Enter estimated value of Lambda = 0.4
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Tter Af J A A z iy
1 26.0240 -72.8863 0.3570 0.4000 2.2857 1.7134
2 7.3934 -36.8735 0.2005 0.7570 3.4468 2.5851
3 1.0972 -26.6637 0.0411 0.9575 3.9132 2.5349
4
5

0.0337 -25.05056 ¢©.0013 0.9987 3.9973 2.9980
©.0000 -25.0001 ©.0000 1.0000 4.0000 3.0000

After five iterations, the solution converges to A = 1.0, = = 4, and y = 3, corre-
sponding to the minimum length. If the program is run with an initial estimate of
—2, the solution converges o A = —3, ¥ = 12, y-= 9, which corresponds to the
maximum length.

7.2.2 CONSTRAINT PARAMETER OPTIMIZATION:
INEQUALITY CONSTRAINTS

Practical optimization problems contain inequality constraints as well as equality
constraints, The probiem is to minimize the cost function

AN 013 |

subject to the equality constraints

gilzi, 22, .., xa) =0 i=12....k (7.14)

and the inequality constraints

uj(Il,Iz,..‘,Iﬂ)SU i:l,?,...,ﬂt (7.15)

The Lagrange multiplier is extended to include the inequality constraints by in-
troducing m-vector g of undetermined quantities. The unconstrained cost function
becomes

m

k
L= f+2)v.,-g,- +Z“J'"J (7.16)
i=1 j=1

The resulting necessary conditions for constrained local minima of £ are the fol-
lowing:

oL -

'3-1.—‘—0 l—l,...,ﬂ (71?)
ac .

a’\‘_—gg=0 i=1,...,k (7.18)
L _ o o E:
Byj_u"h._ i=1...,m (7.19)
miu; =0 & p;>0 j=1,...,m (7.20) }
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Note that Equation (7.18) is simply the original equality constraints. Suppose
(F1,%2,...,%n) is a relative minimum. The inequality constraints in (7.19) is said
1o be inactive if strict inequality holds at {&,,%y,...,%,) and u; = 0. On the
other hand, when strict equality holds, the constraint is active at this point, {i.e., if
the constraint pju (%3, L9, ...,%,) = 0 and g; > 0. This is known as the Kuhn-
Tucker necessary condition.

Example 7.3

Solve Example 7.2 with an additional inequality constraint defined beiow. The
problem is to find the minimum value of the function

flz,y) =2 +4
subject to one equality constraint
glr,y) ={z -8+ (y~62-25=0
and one inequality constraint,
ulz,y) =2z +y > 12
The unconstrained cost function from (7.16) is
L=x2+y2 4+ Nz 82+ (y — 6)* — 25] + p{2x + y — 12)

The resulting necessary conditions for constrained local minima of £ are

oL

= - =0
P 2z + 2XM(x — 8) + 21

9 oy A=) =D
By

aL 5 "

e S —_— — —2 e
a5 = @8+ (y-6?-25=0
O o orty—12=0

Ou

Eliminating y from the first two equations result in
(2¢ —4y}(1+ A} +8A=0
From the fourth condition, we have

y=12-2¢
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Substituting for y in the above equation, yields
_4)+438
T o1+
Now substituting for  in the previous equation, we get
4X+ 2.4
1+ A

Substituting for x and y in the third condition (equality constraint) results in an
equation in terms of A

A+48 N /aa+24 0 N2
( T+ _8) +( T+ "6) ~er=1
from which we have the following equation

AM4204036=0

Roots of the above equation are A = —0.2 and A = —1.8. Substituting for these
values of A in the expression for x and y, the corresponding extrema are
(z.y}=1(5,2) for A=-02, u=-56
(z,)={3,6) for A=-18 u= —12

y:

14
12
5 / N
. )
6
; /
4
AR /
2L 4
FE e SR L,
Ur.-_’
0 2 4 6 8 10 12 14
x
FIGURE 7.2

Constraint functions of Example 7.3.

The minimum distance from the cost function is 5.385, tocated at point (5, 2),
and the maximum distance is 6.71 located at point {3. 6)

_Adt'iing the inequality constraint 2x + y > 12 to the graphs in Figure 7.1, the :
solution is verified graphically as shown in Figure 7.2. :
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7.3 OPERATING COST OF A THERMAL PLANT

The factors influencing power generation at minimum cost are operating efficten-
cies of generators, fuel cost, and transmission losses. The most efficient generator
in the system does not guarantee minimum cost as it may be located in an area
where fuel cost is high. Also, if the plant is located far from the load center, trans-
mission losses may be considerably higher and hence the plant may be overly un-
economical. Hence, the problem is to determine the generation of different plants
such that the total operating cost is minimum. The operating cost plays an impor-
tant role in the economic scheduling and are discussed here.

The input 1o the thermal plant is generally measured in Btu/h, and the out-
put is measured in MW, A simplified input-output curve of a thermal unit known
as heat-rate curve is given in Figure 7.3(a). Converting the ordinate of heat-rate .

Fuel
input, CCO_S
(3]
Bu/h $/h
(a} P, MW ) P, MW
FIGURE 7.3

{a) Heal-rate curve, (B) Fuel-cost curve.

curve from Btu/h to $/h results in the fieel-cost curve shown in Figure 7.3(b}). In

all practical cases, the fuel cost of generator ¢ can be represented as a quadratic
function of rea! power generation

Ci= i + FiP + wbP? (7.21}

An important characteristic is obtained by plotting the derivative of the fuel-cost

curve versus the real power. This is known as the incremental fuel-cost curve shown
in Figure 7.4,

dC;
dF;

— 2P+ 02)

The incremental fuel-cost curve is a measure of how costly it will be to produce
the next increment of power. The total operating cost includes the fuel cost, and
the cost of labor, supplies and maintenance. These costs are assumed to be a fixed
percentage of the fuel cost and are generally included in the incremental fuel-cost
curve.
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P, MW

FIGURE 7.4
TFypical incremental fuel-cost curve.

7.4 ECONOMIC DISPATCH NEGLECTING
LOSSES AND NO GENERATOR LIMITS

The simplest economic dispatch problem is the case when transmission line losses
are neglected. That is, the problem model does not consider system configuration
and line impedances. In essence, the model assumes that the system is only one bus
with all generation and loads connected to it as shown schematically in Figure 7.5.

C Ca Cn,
By + P + P“s +
Pp l
FIGURE 7.5
Plants connecied to a common bus.

Since transmission losses are neglected, the total demand Pp is the sum of all -
generation. A cost function C; is assumed to be known for each plant. The problem ==
is to find the real power generation for each plant such that the objective function :

(i.e., total production cost) as defined by the equation
Ry
Cg = Z C{
i=1

n
=Y ai+BP+%P]

i=1
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is minimum, subject to the constraint

ng :
S P=Pp (7.24)
i=1

where C; is the total production cost, C; is the production cost of ith plant, £ is
the generation of ith plant, Pp is the total load demand, and n is the total number
of dispatchable generating plants.

A typical approach is to augment the constraints into objective function by
using the Lagrange multipiers

L=Ci+ X (PD -3 }?,-) (7.25) .

-i=1

The minimum of this unconstrained function is found at the point where the partials
of the function to its variables are zero.

ar
_—= 7.26
P, 0 {7.26)
ac
— = 1.27
R 0 ( )
First condition, given by (7.26), results in
aC, '
— 4+ A0-1)=0
oF, + A0 )
Since
Cg=Cl+Cz+"'+Cng
then
IC, _dc; A
ap, — dPF,

and therefore the condition for optimum dispatch is

dC; - :
dP: = L (7.28)

or

6,' + 2‘7"P§ ==X . (?-29)
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Second condition, given by (7.27), results in

Mg 2 '_.
S Ph=pPp (7.30) A
i=1 .

Equation (7.30) is precisely the equality constraint that was to be imposed. In sum- _
mary, when losses are neglected with no generator limits, for most economic oper-

ation, all plants must operate at equal incremental production cost while satisfying 3
the equality constraint given by (7.30). In order to find the solution, (7.29) is solved 3

for B :
A—p

Pi= (7.31) -

2y

The relations given by (7.31) are known as the coordination equations. They are

functions of A. An analytical solution can be obtained for A by substituting for F; :

in (7.30), i.e.,
Tig A N : "
> il Pp (7.32) |
o %m

or

\ = PD"‘Z?:"H%
Xilrgs

The value of A found from (7.33) is substituted in (7.31) to obtain the optimal
scheduling of generation.

The selution for economic dispatch neglecting losses was found analytically.
However when losses are considered the resulting equations as seen in Section
7.6 are nonlinear and must be solved iteratively. Thus, an iterative procedure is
introduced here and (7.31) is solved iteratively, In an iterative search technique,
starting with two values of A, a better value of X is obtained by extrapolation,
and the process is continued until A P, is within a specified accuracy. However, as

mentioned earlier, a rapid solution is obtained by the use of the gradient method.
To do this, (7.32) is written as

(7.33)

F(A) = Pp (1.34)

Expanding the left-hand side of the above equation in Taylor's series about an -

operating point A%, and neglecting the higher-order terms results in

(k) '
sy + (L) ax = (7.35)
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or

S .. (7.36)
or
ANK) — = . (1.37)

and therefore,
ARFD Al L AR | (7.38)

where

g
APW = pp -3 P (7.39)

i=1
The process is continued until AP*) is less than a specified accuracy.

Example 7.4

The fuel-cost functions for three thermal plants in $/h are given by

Cy = 500 + 5.3P; + 0.004P}
Cy = 400 + 5.5P; + 0.006 P2
C3 = 200 + 5.8P; + 0.009P;

where Py, P, and P; are in MW. The total load, Fp, is 800 MW. Neglecting line
losses and generator limits, find the optimal dispatch and the total cost in $/h

(a) by analytical method using (7.33)

(b) by graphical demonstration.

(c) by iterative technique using the gradient method.

(a) From (7.33), X is found to be
_ 800+ 0?633 + 0.56?2 + ofr’d?s
st o tans
800 -+ 1443.0555
S Ty o NI

A
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Substituting for X in the coordination equation, given by (7.31), the optimal dis-

patch is
P = 82(5_0565:?)3' = 400.0000
e 82—‘—'(503056? — 250.0000
P= %{%}g = 150.0000
(b) From (7.28), the necessary conditions for optimal dispatch are
Z—i: =5.3+0.008P, = X
% =.5.5 +0.012P = A
j—g;’_ = 5.8+ 0.018P; = A
subject to

PL+ P+ P=Pp

To demonstrate the concept of equal incremental cost for optimal dispatch, we can
use MATLAB plot command to plot the incremental cost of each plant on the same
graph as shown in Figure 7.6. To obtain a solution, various values of A could be
tried until one is found which produces 3~ P, = Pp. For each )\, if 3. P; < Pp,
we increase A otherwise, if }_ P, > Pp, we reduce X. Therefore, the horizontal
dashed-line shown in the graph is moved up or down until at the optimum point
A\, © P = Pp. For this example, with Pp = 800 MW, the optimal dispatch is
Py =400, P, = 250, and P; = 150 at A = 8.5$/MWh.

(¢} For the numerical solution usinig the gradient method, assume the initial value
of ) = 6.0. From coordination equations, given by (7.31), Py, Py, and P; are

_ 60-53
R _2(0.004) = 87.5000
(1) 6.0—55

P ——— =41
s 2(0.006) 41.6667
(1 _ 60-58
3 = Songy = LU

Since Pp = 800 MW, the error AP from (7.39) is
AP =800 — (87.5 + 41.6667 + 11.1111) = 659.7222
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$/MWh

i
I
I
I
i
f
j
I
; ; ; 1
0 100 200 300 400 500
P, MW

FIGURE 7.6
Illustrating the concept of equat incremental cost production cost.

From (7.37)

AxD = : 659.7222 _ 659.7222 —25

i 3
2(0.004) + 3(0.006) + 2(0.069) 263.8888

Therefore, the new value of X is
A2 = 604+25=85

Continuing the process, for the second iteration, we have

(2 _ 85-53 _
b7 2(0.004) A00.000d
@ _ 8.5-535 _

P, = 50006 = 250.0000
(2) _85-58 _

P = 30.009) 150.0000

and
AP® = 800 — (400 + 250 + 150) =

Since AP = 0, the equality constraint is met in two iterations. Therefore, the

~ optimal dispatch are

P=400 MW
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and the totat fuel cost is

for Example 7.4.

When the program is run, the result is

Enter estimated value of Lambda = &

Lambda P1 P2 - P3 DP
6.0000 87.500 41.6667
8.5000 400.000 250.0000 150.0000

7. OPTIMAL DISPATCH OF GENERATION

Py =250 MW
Py=150 MW
A =85 $/MWh

C, = 500 + 5.3(400) + 0.004(400)? + 400 + 5.5(250) + 0.006(250)?
4200 + 5.8(150) + 0.000(150)% = 6,682.5 $/h

To demonstrate the above method, the following simple program is written 1

“m i “&wt&hﬂhhhtﬁ&m' T T T SR S e 1

alpha ={500; 400; 200];

beta = {6.3; 5.5; 5.8]; gamma=[.004; .006; .0091;
PD=800; 2
DelP = 10; % Error in DelP is set to a high value

lambda = input(’Enter estimated value of Lambda = ');

fprintf(*® ) :

disp([’ Lambda Pl p2 P3 DR,
? grad Delambda’])

iter = 0;

while abs(DelP)

iter = iter + 1;

% Iteration counter
% Test for convergence

% No. of iterations
P = (lambda - beta)./{2»gamma}; % Coordination equation
DelP =PD - sum(P}; % Residual
J = sum(ones{length(gamma), 1)./(2+gamma)};% Gradient sum
Delambda = DelP/J: % Change in variable
disp({lambda, P(1), P(2), P(3), DelP, ], Delambda])
lambda = lambda + Delambda; % Successive solution j
end

totalcest = sum{alpha + beta.*P + gamma.*P."2)

>= 0.001

grad Delambda.__;, -
659.7222 263.8889 2.500 ;
0.0000 263.8889 0.000

11.111%

totalcost =

6682.5
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A general program called dispatch is developed for the optimal dispatch prob-
lem. The program returns the system J, the optimal dispatch generation vector P,

and the total cost. The following reserved variables are required by the dispatch
program:

Pdt This reserved name must be used to specify the total load in MW. If Pdt is
not specified the user is prompted to input the total load. If dispatch is used

following any of the power flow programs, the total foad is automatically
passed by the power fiow program.

cost This reserved name must be used to specify the cost function coefficients. The
coefficients are arranged in the MATLAB matrix format, Each row contains
the coefficients of the cost function in ascending powers of P.

mwlimits This name is reserved for the generator’s real power limits and are dis-
cussed in Section 7.5. This entry is specified in matrix form with the first
column representing the minimum value and the second column represent-
ing the maximum value. If mwlimits is not specified, the program obtains
the optimal dispatch of generation with no limits. '

B BO B0O These names are reserved for the loss formula coefficient matrices and
arc discussed in Section 7.6, If these variables are not specified, optimal
dispatch of generation is obtained neglecting losses.

The total generation cost of a thermal power system can be obtained with the
aid of the gencost command. This program can be used following any of the power
flow programs or the dispatch program, provided cost function matrix is defined.

Example 7.5

Neglecting generator limits and systemn losses, use dispatch program to obtain the
optimal dispatch of generation for thermal plants specified in Example 7.4.

We use the following command:

cost = {500 5.3 0.004
400 5.5 0.0086
200 5.8  0.009];
Pdt = B0O;
dispatch
gencost
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The result is

Incremental cost of delivered.power(system lambda) = 5.5$/Mwh S

Optimal Dispatch of Generation:

400. 0000

250.0000

150.0000 5
Total generation cost = 6682.50 $/n

7.5 ECONOMIC DISPATCH NEGLECTING
LOSSES AND INCLUDING GENERATOR LIMITS

The power output of any generator should not exceed its rating nor should it be be-
tow that necessary for stable boiler operation. Thus, the generations are restricted 2=
to lie within given minimum and maximum limits. The problem is to find the real :

power generation for each plant such that the objective function {i.e., total produc-

tion cost) as defined by (7.23) is minimurm, subject to the constraint given by (7.24)
and the inequality constraints given by

g (7.40)

R 4

‘pi(mt'ﬂ] S Pi S -Pi(m-a.r) i= 1,.

Where P,y and Pitinar) are the minimum and maximum generating limits re-
spectively for plant i.

The Kuhn-Tucker conditions complement the Lagrangian cenditions to in-
clude the inequality constraints as additional terms. The necessary conditions for
the optimat dispatch with losses neglected becomes

C;

P = A for  Piminy <P < Fitmaz)

acy

ap £ for Bi=Pg €7.40)
dC;

= 2 A .for P = Pnin

The numerical solution is the same as before. That is, for an estimated ), P;
are found from the coordination Equation (7.31) and iteration is continued until
YoP:= Pp. As soon as any plant reaches a maximum or minimum, the pla.nt'
becomes pegged at the limit. In effect, the plant output becomes a constant, and
only the unviolated plants must operate at equal incremental cost.
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Example 7.6
Find the optimal dispatch and the total cost in $/h for the thermal plaqts qf Example
7.4 when the total load is 975 MW with the following generator limits (in MW):

200 < Py < 450
150 < P, < 350
100 < P; <225

Assume the initial value of A} = 6.0. From coordination equations given by’
(731), Pl. Pg, and P3 are

(y _ 6.0-53

= = 87.5000
Fy 2(0.004)

m _60~55 = 41.6667

27 2(0.006) '

() _60-58 11.1111
b= 2(0.009)

Since Pp = 975 MW, the error AP from (7.39) is
AP =975 — (87.5 + 41.6667 + 11.1111) = 834.7222

From (7.37)

834.7222 _ B34.7222

~ 263.8888

A - = 3,1632

1 1
3(0.604) + o008 + 3(5.009)
Therefore, the new value of A is
A® = 6.043.1632 = 9.1632

Continuing the process, for the second iteration, we have

@ _ 9.1632-53

= 482.8947
A= =00

@ 9.1632 — 5.5 — 305.2632
fe 2(0.006)

@ _ 9163258 _ .00
B= 2(0.009) .

and

AP@ = 975 — (482.8947 + 3052632 -+ 186.8421) = 0.0
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Since AP = (, the equality constraint is met in two iterations. However, P} ::
exceeds its upper limit. Thus, this plant is pegged at its upper limat. Her!ce P =
450 and is kept constant at this value. Thus, the new imbalance in power is

AP =975 — (450 + 305.2632 + 186.8421) = 32.8047

From (7.37)

32.8047
AND = — -

30.006) T 3(0.009

_ 32.8947
T 138.8889

= 0.2368

Therefore, the new value of A is
A8 = 91632 + 0.2368 = 9.4

For the third iteration, we have

PP = 450
(3) _ 94~55 -3
B= 2(0.006) o
@3 _94-58 _
3 = 30000 - o0

and
APY) = 975 — (450 + 325 + 200) = 0.0

AP®) =, and the equality constraint is met and P; and P; are within their limits.
Thus, the optimal dispatch is

Py =450 MW
Py=325 MW
Py=1200 MW

A=94 $/MWh
and the total fuel cost is

C; = 500 + 5.3(450) + 0.004(450)% + 400 + 5.5(325) + 0.006(325)°
+200 + 5.8(200) + 0.009(200)% = 8,236.25 $/h

The following commands can be used to obtain the optimal dispatch of gen- =
eration including generator limits.
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cost = {500 5.3 0.004
400 5.5 0.006
200 5.8 ©.009];
mwlimits=[200 450
180 350
100 225];
Pdt = §75;
dispatch

gencost

The result is

Incremental cost of delivered power(system lambda) = 9.4$/MWh
Optimal Dispatch of Generation:

450
325
200

Total generation cost = 8236.25 $/h

7.6 ECONOMIC DISPATCH INCLUDING LOSSES

When transmission distances are very small and load density is very high, trans-
mission losses may be neglected and the optimal dispatch of generation is achieved
with ail plants operating at equal incremental production cost. However, in a large
mterconnected network where power is transmitted over long distances with low
load density areas, transmission losses are a major factor and affect the optimum
dispatch of generation. One common practice for including the effect of transmis-
sion losses is to express the total transmission loss as a quadratic function of the
generator power outputs. The simplest quadratic form is

Ty Ty

P =Y PByP (7.42)

i=1 j=1

A more general formula containing a linear term and a constant term, referred to
as Kron's loss formula, is

ng ng ng
PL=Y Y PByP;+) BuP:+ By (7.43)
i=1j=1 i=l
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The coefficients B;; are called loss coefficients or B-coefficients. B-coefficients are
assumed constant, and reasonable accuracy can be expected provided the actual op- |
erating conditions are close to the base case where the B-constants were computed, §
There are varicus ways of amriving at a loss equation. A method for obtaining these
B-coefficients is presented in Section 7.7. p

The economic dispatching problem is to minimize the overall generating cost
(i, which is the function of plant output 1

C; = i:ci
i=1

n
=Y a+BP+ 1P

=1

(7.44y

subject to the constraint that generation should equal total demands plus losses,
Le.,

Mg
Y P=Pp+P

(7.45)
satisfying the inequality constraints, expressed as follows:
Pi[miu) <P < Pi(muz) i=1,... 2y Tig (7.46)

where P00y and F(y,qy-are the minimum and maximum generating limits, re-
spectively, for plant 1.

Using the Lagrange multiplier and adding additional terms 1o include the in-
equality constraints, we obtain 3

' ) ﬂ.g- "Ig
L=Co+APo+Pr—)Y P)+ ) tipmer){Pi — Pyman)) +
i=1 i=1

(7.47)

b AL a1 e i

g
Z Pi(min](Pi - Ps‘(min))
i=1

The constraints should be understood to mean the ft(may) = 0 When Pi < Pias
and that g,y = 0 when P; > Fi(min)- In other words, if the constraint is not §
violated, its associated 4 variable is zero and the corresponding term in (7.47) does 3§
not exist. The constraint only becomes active when violated. The minimum of this }

nnc.onstraincd function is found at the point where the partials of the function to its i
variables are zero, E
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%‘g =0 (7.49)
aL )
Hi{mez)
aL
=P = Pjnimy =0 (7.51)
3#i(m;‘n) s

Equations (7.50} and (7.51) imply that P should not be allowed to go beyond its
limit, and when P is within its limits g;(min) = Hy(mar) = 0 and the Kuhn-Tucker
function becomes the same as the Lagrangian one. First condition, given by (7.48),
results in

acCy ary,

=+ M0+ — —-1)=0
R SR TR
Since
Co=Cr1+Ca+ -+ Ch,
then _
oC _ dC,
P, ~ dP,
and therefore the condition tor optimum dispatch is
dC; arr :
— +A=—="=2A i 7.52
FT TS ¥ "s =242

The term %%f is known as the incremental transmission loss. Second condition,
given by (7.49), resulis in

I’!! .
ZPi=PD+PL

(7.53)
1i=1] i
Equation (7.53) is precisely the equality constraint that was to be imposed.
Classically, Equaticen (7.52) is rearranged as
(—ITP) %.: A i=leang (7.54)
1— -()T’L: 1
or
dC;

L:‘a}: = A i=1,...,ng (7.55)
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where L; is known as the penalty factor of plant ¢ and is given by

1

aFP
1- ¢

,"=

Hence, the effect of transmission loss is to introduce a penalty factor with a value
that depends on the location of the plant. Equation (7.55) shows that the minimum E
cost is obtained when the incremental cost of each plant multiplied by its penalty 3

factor is the same for all plants.

The incremental production cost is given by (7.22), and the incremental trans-

mission loss is obtained from the loss formula (7.43) which yields

_ BP," g
Wj: = 23; B,'J'FB' + Byg;

Substituting the expression for the incremental production cost and the incremental :

transmission loss in (7.52) results in

ng
B+ 2w P+ QAZB,'J'PJ; + By A=A
=t
Ut
i . : e p 1 ﬁ! -
(A+B,,)H+;B,,PJ_2( — Bg; — ,\) (7.58)

i#

Extending (7.58) to all plants results in the following linear equations in matrix
form

R 4+By By v Bin, P 1-Bgy — 2
B;Il %'{"BQQ - Bg-ng P2 =% 1 '—-BD-Q— f (759)
¥ i ) » ,T“ . . - -
B“yl B“sz e ‘—f:_l-B"s“s P"! l"BG‘ﬂg'" ﬁ“—jl

or in short form

. To find the optimal dispatch for an estimated value of A{)), the simultaneou
linear equation given by (7.60) is solved. In MATLAB use the command P = E\D

(7.56)

(7.57)

E TR AR LEN PR WL S
. - .. BRI
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Then the iterative process is continued using the gradient method. To do this, from
(7.58), P; at the kth iteration is expressed as

AB(1 - By) - g ~ 228y B, p®
Jwi J

)
E= 7.61
' 2(y + AKX By,) (51
Substituting for P; from (7.61) in (7.53} resalts in
ng Afkﬁfl — Bg) - B —2®y B p®)
igi 4 (k)
- = P P 7.62
= 20w + A% By) B (7.62)
or
fOO® =pp+ PP (7.63)

Expanding the left-hand side of the above equation in Taylor's series about an
operating point A%}, and neglecting the higher-order terms results in

df () (k)
(ky 4 { G4 ®) = pp + P} 7.64
fN +(d,\) Al + (7.64}
or
k
AxRY = FE‘P(_L:}
(A
(42)
{k}
(B
where
k
foapa® (1 — Bai) + Buffi — 2‘}’:‘2#‘ BijP} ) (7.66)
ez:? (a) = 2(v + M0 By)? '
and therefore,
ARFD 2B 4 AN (7.67)
where
i)
AP® = pp 4+ P 3" p® (7.68)
. # i=1
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The process is continued until AP®) is less than a specified accuracy.
If an approximate joss formula expressed by

Mg
PL=Y BuP} (7.69)
t=1

is used, By; = 0, Boo = 0, and solution of the simultaneous equation given by
(7.61) reduces to the following simple expression

*) _ Ak — g,
! 2(‘71’ + MK Bli)

and {(7.66) reduces to
Ap. ) Te . I
@) =yl Buf amn)
ax SoAnt Alk) B, )?
Example 7.7
The fuel cost in $/h of three thermal plants of a power system are
C, = 200 + 7.0P, + 0.008P7 $/m

Cy = 180 + 6.3P, + 0.009PF $h
Cy = 140 + 6.8P; + 0.007P; $/h

where Py, Py, and P; are in MW. Plant outputs are subject to the following limits

10 MW < 85 MW
10 MW < 80 MW
10 MW < 70 MW

For this problem, assume the real power loss is given by the simplified expression -
Pripy = 0.0218PF_; + 0.0228PF ., + 0.0179P% .

where the loss coefficients are specified in per unit on a 100-MVA base. Determine ‘
the optimal dispatch of generation when the total system load is 150 MW,

In the cost function P; is expressed in MW. Therefore, the real power loss in
terms of MW generation is

Pp = |0.0218 (i)z + 0.0228 (E)Q +0.0179 (fi)z x 100 MW
) 100 T 100 ' 100
= 0.000218P7 + 0.0002281F + 0.000179Pf MW
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For the numerical solution using the gradient method, assume the initial value of
A = 8.0. From coq_rdinalion equations, given by (7.70), le, sz. and Pél) are

L Sl =51.3136 MW
: 2(0.008 + 8.0 x 0.000218)
P = 0183 = 785292 MW
2 2(0.009 + 8.0 x 0.000228) ~ _
8.0—-68
P =71.1575 MW

37 2(0.007 + 8.0 x 0.000179)
The real power loss is
PV =0.000218(51.3136)2 +0.000228(78.5292)% +0.000179(71.1575)2 =2 886
Since Pp = 150 MW, the error AP from (7.68) is
AP = 150 + 2.8864 — (51.3136 + 78.5292 + 71.1575) = —48.1139
From (7.71)
0.009 + 0.000228 x 6.3

= 3{0.008 + 8.0 x 0.000218)2 ' 2(0.009 + 8.0 x 0.000228)2
0.007 + 0.000179 x 6.8

i: (aﬂ-)(” _ 0.008 4+ 0.000218 x 7.0

i=1 A

; = 152.4924
2(0.007 + 8.0 x 0.000179)2
From (7.65)
—48.1139
N o
AN 152.4994 £.31552

Therefore, the new value of M is
A = 8.0 -0.31552 = 7.6845

Continuing the process, for the second iteration, we have

@ 7.6845 ~ 7.0
P = = 353728 MW
1™ 2(0.008 + 7.6845 x 0.000218)
PP = J:6815 — 63 = 643821 MW
2(0.009 + 7.6845 x 0.000228)
(2 _ Lo = 52.8015 MW

B = 2(0.007 -+ 7.6845 x 0.000179)
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The real power loss is From (7.65)

P =0.000218(35.3728)2 +0.000228(64.3821)° +0.000179(52.8015)% = 1.717 @ _ —0.01742

A =——— = —(.
154,624 0.0001127

Therefore, the new value of X is

Since Pp = 150 MW, the error AP from (7.68) is

AP? = 150+1.7169—{35.3728+64.3821 +52.8015) = —0.8395
AW = 7,679 — 0.0001127 = 7.6789

From (7.71)
3 (8P,- )(9) 00084000218 x70 00094000028 x63 M i;:le;sﬁ;\::; ;(s)rsr:zil ;hg;éqgua!ity constraint is met in four iterations, and the opti-

S\ 2\ /) T~ 2(0.008 + 7.684 x 0.000218)% * 2(0.009 + 7.684 x 0.000228)2 M P = 7.6789 are

0.007 + 0.000179 x 6.8 2 @y 7.6789 — 7.0 _

= = = 35.0007 MW
+2(0.007 + 7.6845 x 0.000179)2 e ‘ 2{0.008 + 7.679 x 0.000218)
{4) 7.6789 — 6.3
F : = =64.1317 MW
RIIAEE) 2 2(0.009 + 7.679 x 0.000228) badd
-0.8395 , - _6
AN = Toa5as 0005431 B = e — 524767 MW

2(0.007 + 7.679 x 0.000179)
Therefore, the new value of A is , '
. The real power loss is
A®) = 7.6845 — 0.005431 = 7.679

P —0.000218(35.0907)2 +0.000228(64.1317)? +0.000179(52.4767)% =1 699
For the third iteration, we have L ( ye ( ST+ ( §7) 6

- and the total fuel cost is
= 2(0.008 ;{.276979 :Z g gy e MW '
’ 7 6:{9 6 3' Cy = 200 + 7.0(35.0907) + 0.008(35.0907)% + 180 + 6.3(64.1317) +
(3 _ e B = 2 ; 2
PV = = 64.1363 MW i : 8(52. i : = :
o) 370,009 + 7.679 x 0,000228) 64.1369 M 0.009(64.1317)" + 140 + 6.8(52.4767) + 0.007(52.4767) 1592.65 $/h
pe 7.679-638 — 524834 MW The dispatch program can be used to find the optimal dispatch of generation. The

37 2(0.007 + 7.679 x 0.000179)

The real power loss is

program is designed for the loss coefficients to be expressed in per unit, The loss
coefficients are arranged in a matrix form with the variable name B. The base MVA
must be specified by the variable name basemva. If base mva is not specified, it is

PL) =0.000218(35.0965) +0.000228(64.1369)? +0.000179(52.4834)% = 1.699 3 Set(o'100 MVA.

Since Pp = 150 MW, the error AP from (7.68) is We use the following commands

® _ ; _ ; '
APY =150 + 1.6995 — (35_.0965 + 64.1369 + 52.4834) = —0.01742 cost = [200 7.0 0.008

From (7.71) 180 6.3  0.009
\ 140 6.8 0.007;
5 ( op; )(3>= 0.008 +0.000218 x 7.0 _ . 0.009 +0.000228 x 6.3 = mulimits =[10 85
Z\ B 2(0.008 + 7.679 x 0.000218)Z " 2{0.000 + 7.670 x 0.000228)2 % o 381 _
0.007 +0.000179x 68 _ . Pdt = 150; '
2(0.007 + 7.679 x 0.000179)2 ~ 7 B = [0.0218 .0 0
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0 0.0228 0
0 0 0.0179];
basemva = 100;
dispatch
gencost

The result is

Incremental cost of delivered power(system lambda) =
7.678935%/MWh

Optimal Dispatch of Generation:
35.0907

64.1317
52 4767

Total system loss = 1.6991 MW
Total generation cost = 1592.65 $/h

Example 7.8

Figure 7.7 (page 295) shows the one-line diagram of a power system described ?

iE] Example 7.9. The B matrices of the loss formula for this system are found in
Example 7.9. They are given in per unit on a 100 MVA base as follows

0.02i8 0.0093 0.0028
0.0093 0.0228 0.0017
0.0028 0.0017 0.0179

By = [0.0003 0.0031 0.0015 ]
By = 0.00030523

B =

Cost functions, generator limits, and total foads are given in Example 7.7. Use dis-
patch program to obtain the optimal dispatch of generation.

We use the following commands.

0.008

cost = [200 7.0
i80 6.3 0.008
140 6.8  0.007];
mwlimits =[10 85
10 80
10 70};
Pdt = 150;

o o 1 i kb v Lid sy e
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B= (0.0218 0.0093 0.0028
0.0093 0.0228 0.0017
0.0028 0.0017 0.0179];

B¢ = {0.0003 0.003%1 0.0015];

BOO = 0.00030523;
basemva = 100;
dispatch

gencost

The result is

Incremental cost of delivered power (system lambda) =
7.767785 $/MvWh :
Optimal Dispatch of Generation:

33.4701
64.0974
55.1011

Total generation cost - 1599.98 $/h

7.7 DERIVATION OF LOSS FORMULA

One of the major steps in the optimal dispatch of generation is to express the system
losses in terms of the generator’s real power outputs. There are several methods
of obtaining the loss formula. One method developed by Kron and adopted by
Kirchmayer is the loss cocfficient or B-coefficient method.

The total injected complex power at bus ¢, denoted by 5, is given by

The summation of powers over all buses gives the total system losses

n
PL+iQu=3 VIl =VLL, (7.73)
i=1
where P; and (Q;, are the real and reactive power loss of the system. Vi, is the
column vector of the nodal bus voltages and Iy, is the column vector of the in-
jected bus currents. The expression for the bus currents in terms of bus voltage was
derived in Chapter 6 and is given by (6.2) as

I, bus — Ybusvbus (?'74)
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where Yjys is the bus admittance matrix with ground as reference. Solving for Vpy,, §

we have

i Vb‘u.s = Yb;: Ibus
= Zyuslhus S (7.75)

The inverse of the bus admittance matrix is known as the bus impedance matrix,
The bus admittance matrix is nonsingular if there are shunt elements (such as shunt
capacitive susceptance) connected 1o the ground (bus number 0). As discussed in
Chapter 6, the bus admittance matrix is sparse and its inverse can be expressed
as a product of sparse matrix factors. Actvally Z,,, which is also required for

short-circuit analysis, can be obtained directly by the method of building algorithm "3

without the need for matrix inversion. This technique is discussed in Chapter 9.
Substituting for Vi, from (7.75) into (7.73), results in

P+ QL = [ZousTous] Lpus

= Ig‘us Zg;s It:us (7?6) £

Zpus 1s @ symmetrical matrix; therefore, Zg;s = Zyus. and the total system loss
becomes

P+ Q1 = Iy Zpus Iy .77

“The expression in (7.77) can also be expressed with the use of index notation as
Pu+jQu=>3 LZ;l; (7.78)

' i=1j=1

Since the bus impedance matrix is symmetrical, i.e., Zi; = Zj;, the above equation
may be rewritten as

PL+3QL = EZ Zi (LI} + LI}) (7.79) -

t—lj 1

The quantity inside the parentheses in (7.79) is real; thus the power loss can be

broken into its real and imaginary components as

Py

Ml'—‘

wlb—'

nM:a ﬁM:

ZR,J(I,I* + LI}) (7.80)

Z GBI+ LI (7.81)
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where R;; and X;; are the real and imaginary elements of the bus impedance ma-
trix, respectively. Again, since Ri; = Rj;, the real power loss equation can be
convented back into

PL= X; Z LRyI; (7.82)
1= _',' .

Or in matrix form, the equation for the system real power loss becomes
Py = I} JReusI}.s (7.83)

where Ry, is the real part of the bus impedance matrix. In order to obtain the
general formula for the system power [oss in terms of generator powers, we define
the total load current as the sum of all individual load currents, i.e.,

I+ e+t I, =1Ip (7.84)

where ng is the number of load buses and [p is the total toad currents. Now the
individual bus currents are assumed to vary as a constant complex fraction of the
total lead current, i.e.,

Ine=&Ip k=1,2... 14 (7.85)
or
Fei
fom i Lh (7.86)
Ip

Assuming bus | to be the reference bus (slack bus), expanding the first row in
(7.75) resulis in

W = Balps BuliEeoi Gl (1.87)

If ng is the number of generator buses and ny is the number of load buses, the
above equation can be written in terms of the load curments and generator cumrents
as

Tg ny '
Vi=> Zulu+ LZ VAYRIT (7.88)
i=1 =1

Substituting for Iy, from (7.85) into (7.88), we have
Ty Ry
Vi=Y Zilu+Ip 62y
i=1 k=1

g
=Y Zilu+ IpT (7.89)
i=1
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where

g 3
T=> 2y (7.90)

k=1

If Iy is defined as the current flowing away from bus 1, with all other load currents
set to zero, we have

Vi=-Znly (7.91)

Substituting for Vi in (7.89) and solving for I'p, we have

1 <2 1
Ip= i ;zurgf = TZ“I.J (7.92)

Substituting for Ip from (7.92) into (7.85), the load currents become

f & iy
Ie = —?,: Y 2y - %Zufo (1.93)
1=1
Let
_ b 7.94
ey (7.94)
Then
Ik =pr Y Ziidgi +pZulds (7.95)

i=1

Augmenting the generator currents with the above relation in matrix form, we have

In] [ 1 0 - 0 0. V[ In ]
fg 0 1 0 0 Igg
=0 I S
. ] “8ng
I PZu piZe o piZia, prZn 798
Iy p2Zu p2Zyg #2Z1n, P2211
[ Iin, | L & piZia P Zing, pZu | o]

Showing the above matrix by (7, (7.96) becomes

Isie = Clieis (7.97)
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Substituting for Iy, in (7.83), we have

P = {Crnew]TRbusC'I‘

new

T - -
= Taeu O Ryl I (7.98)

If Sgi is the complex power at bus 1, the generator current is

]._%_Pﬂi_ngi
gi= Y Y—

2
1~ % ;
=— Fu (7.99)
or
Toi = 9 Py, (7.100)
where '
1-j%
S il
Pi v (7.101)
Adding the current /; to the column vector current Jg; in (7.100) results in
In $ 0 o 00 Py
Ig 0 T}bz R . 0 ng
: = e o§ % 3 : : {7.102)
Ion, 0 0 - ¢, O Fyn,
Ig ¢ 0 - 0 I 1
or in short form _
Inew = WPy (7.103)
where
Py
Py
Po = {(7.104)
Pgﬂs
1
Substituting from (7.103) for I,,,, in (7.98), the loss equation becomes
Py = ['I’Pcl]TCTRbu,C“I"PE;,
= Pgl'I‘TCTRMSC“IJ‘Pél (7.105)
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The resultant matrix in the above equation is complex and the real power loss
found from its real part, thus '

P = PLR[HIPS, (7.106)’

where

H = UTCT Ry C10° (7.107) §

Since elements of the matrix H are complex, its real part must be used for comput-"

ing the real power loss. It is found that Ff is a Hermitian matrix. This means that
H is symmetrical and H = H*. Thus, real part of H s found from

_H+tH"

RH) = —

The above matrix is partitioned as follows

Bll BI'Z Blﬂ,g Bm/? ;
By By - Ba, Be/2 -
RH|= | oo : (7.109) ¥
Bngl Bﬂg? Tt Bn,n, Bﬂng /2 b o :

Boi/2 Bpaf2 -+ Bon,/2  Boo

Substitting for R[H] into (7.106), yields

By By .- B, Bu/?|[Fn
By By -+ By, Bp/2||Pa
Py = [Py P+« Pyn, 1] 2 S E :
Bn,l Bn,? Bn,n, Bl:m,/Q Pgﬂg
B@1/2 Bug/? Bﬂng/2 Bm 1

or

By By -+ B, Py ]

By, By -+ By P,
PL:[Pgl Pyi”'Pgng} v . ..9 :

Bn,l Bn,? e Bn,n, Pgﬂg d

By /2 S

+[Pn P o+ Pyn ] B.D.?./z

Bon, /2

(7.108) 3

a.110) =

+ Boo a1 =21
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Tc find the loss coefficients, first a power flow solution is obtained for the initial
operating state. This provides the voltage magnitude and phase angles at all buses.
From these results, load currents Iy, the total load current Ip, and £, are ob-
tained. Next the bus matrix Z,,,, is found. This can be obtained by converting the
bus admittance matrix found from Ifybus or directly from the building algorithm
described in Chapter 9. Next the transformation matrices ¢ and ¥ and H are ob-
tained. Finally the B-coefficients are evaluated from (7.109). It should be noted that
the B-coefficients are functions of the system operating state. If a new scheduling
of generation is not drastically different from the initial operating condition, the
loss coefficients may be assumed constant. A program named bloss is developed
for the computation of the B-coefficients. This program requires the power flow so-
lution and can be used following any of the power flow programs such as Ifgauss,
Ifnewton, or decouple. The B-coefficients obtained are based on the generation in
per unit. When generation are expressed in MW, the loss coefficients are

By = Bijpu/S8 Boi = Boipy and Boy = Byopu X Sp
where Sg is the base MVA.

Example 7.9

Figure 7.7 shows the one-line diagram of a simple 5-bus power system with gen-
erator at buses 1, 2, and 3. Bus 1, with its voltage set at 1.0620° pu, is taken as the
slack bus. Voltage magnitude and real power generation at buses 2 and 3 are 1.045
pu, 40 MW, and 1.030 pu, 30 MW, respectively.

= 1.06£0°

() o

Capacitive susceplance

0.08+0.24

—l' Line %B
somw 12 0.030
0.02+70.06  30Mvar 1-3 0.025
0.08+j0.24 - 0,020
_ 2-4 0.020
_OG12 | 2-5 0.015
12 [20mw | —I_F 3_4 0.010
O VL My . 60 MW 4-5 0.025

T40 MW 40 Mvar -
Vol = 1.045
FIGURE 7.7

One-line diagram of Example 7.9 (impedances in pu on 100-MVA base).
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The load MW and Mvar values are shown on the diagram. Line impedances and 3
one-half of the line capacitive susceptance are given in per unit on a 100-MVA '3
base. Obtain the power flow solution and use the bloss program to cobtain the loss §

coefficients in per unit,

We use the following commands

clear

basemva = 100; accuracy = 0.0001; maxiter = 10;

% Bus Bus Voltage Angle -Load- ----Generator----Injected
4 No code Mag. Degree MW Mvar MW Mvar Qmin OQmax Mvar
busdata=[1 1 1.06 0.0 0 0 0 0 10 50 0
2 2 1.045 0.0 20 10 40 30 10 50 0
3 2 1.03 0.0 20 i5 30. 10 10 40 0
4 0 1.0 0.0 50 30 c ¢ 0 0 0
5 0 1.00 0.0 60 40 ¢ 0 0 0 03;
% Bus bus R X 1/2 B 1 for lines code or
% nl nr pu pu “pu tap setting value
linedata=[1 2 0.02 Q.06 0.030 1
1 3 0.08 0.24 0.025 1
3 0.06 0.18 0.020 1
2 4 0.06 0.18 0.020 1
2 5 0.04 0.12 0.015 1
a 4 0.01 G.03 0.010 1
4 5 0.08 0.24 0.025 13;
lfybus % form the bus admittance matrix
lfnewton % Power flow solution by Newton-Raphson method
buscut % Prints the power flow solution on the screen
bloss

7 Obtains the loss formula coefficients

The’result is

Power Flow Solution by Newton-Raphson Method
Maximum Power mismatch = 1,43025e-05
No. of iterations = 3

Bus Voltage Angle — ----- Load=---- --Generation-- Injected
No. Mag. Degree MW Mvar MW Mvar Mvar
1 1.06¢ 0.000 0.000 0.00 83.051 T.271 0.00
2 1.045 -1.782 20.000 10.00  40.000 41.811 0.00
3 1.030 -2.664 20.000 15.00 30.000 24,148 ¢.00
4 1.019 ~3.243 50.000 30.00 0.000 0.000 .00
5 0.9%0 -4.405 60.000 40.00 0.000 0.000 0.00
Total 150.000 95.000 163.051 73.230

0.00 3
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B =
0.0218 0.0093 0.0028
0.0093 0.0228 0.0017
0.0028 0.0017 0.01795
BO =
0.0003 ¢.003t 0.001%
BOO =
3.0523e-04

Total system loss = 3.05248 MW

As we have seen, any of the power flow programs, together with the bloss
and dispatch programs can be used 1o obtain the optimal dispaich of generation.
The dispatch program produces a vartable named dpslack. This is the difference
{absolute value} between the scheduled slack generation determined from the coor-
dination equation, and the slack generation, obiained from the power flow solution.
A power flow solution obtained with the new scheduling of generation results in a
new loss coefficients, which can be used to solve the coordination equation again.
This process can be continued until dpstack is within a specified tolerance. This
procedure is demonstrated in the following example.

Example 7.10

The generation cost and the real power limits of the generators of the power sys-
tem in Example 7.9 is given in Example 7.4 and Exampie 7.6. Obtain the optimal
dispatch of generation. Continue the optimization process until the difference (ab-
sofute value) between the scheduled slack generation, determined from the coordi-
nation equation, and the slack generation. obtained from the power flow solution,
is within 0.001 M'W.

We use the foltowing commands

clear

basemva = 3100; accuracy = 0.0001; gmaxiter = 10;

% Bus Bus Voltage Angle --Load-- --Jenerator-- Injectad

A No code Mag. Degree WW WMvar ¥é Mvar Omin Qmax Mvar

busdata=f1 1 1.06 0.0 ¢ 6 5 5 10 80 0
2 9 1.045 0.0 20 10 &% 30 10 50 o
3 2 1.03 0.0 20 15 =5 19 10 40 0
4 0 1.00 0.0 53 306 < 9 0 o 0
s O 1.00 0.0 60 40 o 4 0 0 Q)
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% Bus bus R X 1/2 B 1 for lines code or .3 Bus Voltage Angle = ----- Lead----- -—Generation-- Injected
o’ nl nor pPu pu pu tap setting value ks No. Mag. Degree MW Mvar MW Mvar Mvar
linedata=[1 2 0.02 G.06 0.030 1 1 1.060 0.000 0.000 .00 83.051 7.271 0.00
1 3 0.08 0.24 0.025 1 2 1.045 -1.782  20.000 10.00 40.000 41.811 ¢.00
2 3 0.06 0.18 - 0.020 1 3 1.030 -2.664 20.000 15.00 30.000 24.148 0.00
2 4 0.06 0.18 0.020 1 4 1.019 -3.243 50.000 30.00 0.0060 0.000 0.0C
2 5 0.04 0.12 0.015 1 5 0.950 -4.405 60.000 40.00 0.000  0.000 0.00
3 4 0.01 0.43 0.010 1- Total i50.000 - 95.000 153.051 73.230 0.0¢
4 5 0.08 0.24 0.025 1];
B =
cost = {200 7.0 0.0608 G.0218 C¢.0093 0.0028
180 6.3 0.005 0.0093 0.0228 0.0017
140 6.8 0.007]: 0.0028 0.0017 0.0179
mvlimits =(10 85 BO =
10 80 0.0003  0.0031  0.0015
10 703; BOQ =
3.0523e-04
liybus % forms the bus admittance matrix Total system loss = 3.05248 MW
lfnewton % Power flow solution by Newton-Raphson method -#
busout % Prints the pover flow solution on the screemn < Total generation cost = 1633.24 $/h
bloss % Obtains the loss formula coefficients = Incremental cost of delivered power (system lambda) =
gencost % Computes the total generation cost $/h * 7.767608 $/MWh
dispatch % Obtains optimum dispatch of generation Optimal Dispatch of Generation:

% dpslack is the difference (absolute value) betwean

% the scheduled slack generation determined from the 33.4558
% coordination equation, and the slack generatiom 64.1101
% obtained from the power flow solution. - 55.1005
while dpslack > 0.001 % Test for convergence Absolute value of the slack bus real power mismatch,
lfnewton % New power flovw solution dpslack = 0.4960 pu
bloss % Loss coefficients are updated
dispatch %0Optimum dispatch of gen.with new B-coefficients S . In this example the final optimal dispatch of generation was obtained in six itera-
end ' _ tions. The results for final loss coefficients and final optimal dispatch of generation
busout % Prints the final power flow solution Eked is presented below :
gencost % Generation c¢ost with optimum scheduling of gen. _ =] :
' = B = .
s | 0.0472  0.0130  0.0036
The result is =g 0.0130 0.0130 0.0010

0.0036 0.0010 0.0115

Power Flow Solution by Newton-Raphson Method

Maximum Power mismatch = 1.43025e-05 =] BO
No. of iterations = 3 = 0.0047 0.0012 0.0004
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BOO = - 15 _
3.0516e-04 : - Slack
Total system loss = 2.15691 MW ' ;3 i
Incremental cost of delivered power (system lambda) = _ _
7.759051 $/Muh i i
Optimal Dispatch of Generation: . ; 2 \_L 3
| © —| 3
23.5581 ' _ ' g
£9.5553 : 26 @ 8
59.0368 e bt 13
; e | S+—
Absolute value of the slack bus real power mismatch, J_
dpslack = 0.0009 pu 1§ I6 7 4
Power Flow Selution by Newton-Raphson Method S
Maximum Pover mismatch = 1.90285e-08 oI i o
No. of iterations = 4 ~ o
Bus Voltage Angle — ----- Load----- -~Generation-- Injected 9 12 & 15
No. Mag. Degree My Mvar MW Mvar Mvar _
I 1.060  0.000 0.000 0.000 23.649 25.727  0.00 L il 19 10
2 1045 -0.262 20,000 10.000 69.518 30.767  0.00 A& i ‘ i
3 1.030 -0.495 20.000 15.000 58.8%0 14.052 0.00 3§
4 1.019  -1.208 50.000 30.000 0.000 0.000 0.00
5 0.9%0 -2.729 60.000 40.000 0.006 ©.000 0.00
Total 150.000 95.000 152.154 70.545 0.00 53 L] o 15
Total generation cost = 1596.96 $/h
227 20
The total generation cost for the initial operating condition is 1,633.24 $/h and
the total generation cost with optimal dispatch of generation is 1, 596.96 $/h. This 21 [
results in a savings of 36.27 $/h. ;
Example 7.11 17 L1
Figure 7.8 is the 26-bus power system network of Problem 6.14. Bus 1 is taken as
the slack bus with its voltage adjusted to 1.025/0° pu. The data for the voltage- FIGURE 7.8
controlled byses is One-line diagram of Example 7.11.
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e REGULATED BUS DATA
Bus Voltage Min. Mvar Max, Mvar
No. Magnitude Capacity Capacity
2 1.020 40 250
3 1.025 40 150
4 1.050 40 80
5 1.045 40 160
26 1.015 15 50

Transformer tap settings are given in the table below. The left bus number is as-

‘sumed to be the tap side of the transformer,

TRANSFORMER DATA
Transformer Tap Setting
Designation Per Unit
2-13 0.960
2-13 0.960
©3-13 1.017
4- 8 1.050
4-12 1.050
6-19 0.950
7- 9 0.950
The shunt capacitive data is
SHUNT CAPACITOR DATA
Bus No. Myvar
I 4.0
4 2.0
5 5.0
6 20
9 3.0
11 : 1.5
12 2.0
15 - 05
|19 5.0

Ger}eration and loads are as given in the data prepared for use in the MATIAB 32
environment in the matrix defined as busdata. Code 0, code 1, and code 2 are used -'h:' '
for the load buses, the slack bus, and the voltage-controlled buses, respectively. A
V:alues_ for basemva, accuracy, and maxiter must be specified. Line data are as §
given in the matrix called Enedata. The last column of this data must contain 1
for lines, or the tap setting values for transformers with off-nominal turn ratio. The 38
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generalor’s operating costs in $/h, with P; in MW are as follow:

Ci = 240 + 7.0P; + 000702}
Cy =200 + 10.0P, + 0.0095P¢
Cy = 220 + 8.5P; + 0.0090 P
Cy = 200 + 11.0P; + 0.0090F}
Cs = 220 + 10.5P5 + 0.0080 P2
Cag = 190 + 12.0Py5 + 0.0075P%

The generator’s real power limits are

GENERATOR REAL POWER LIMITS
Gen. Min. MW Max. MW

1 100 500

2 50 200

3 80 300

4 50 150

5 50 200

5 50 120

Write the recessary commands to obtain the optimal dispatch of generation
using dispatch. Continue the optimization process until the difference (absolute
value) between the scheduled shack generation, determined from the coordination
equation, and the slack generation, obtained from the power flow selution, is within
0.001 MW,

We use the following commands:

clear

basemva = 100; accuracy = 0.0001; maxiter = 10;

A Bus Bus Voltage Angle --Load-- --Generator---Injected
% Ne code Mag. Degree MW Mvar MW Mvar Qmin Gmax Mvar
busdata=[1 1 1.026 0.0 51 41 0 0 o 0 4
2 2 1020 0.0 22 15 79 O 40 250 0

3 2 1.025 0.0 64 50 20 0 40 150 0

4 2 1.05G 0.G 25 10 100 0 25 80 2

5§ 2 1.045 0.0 60 30 300 O 40 160 5

& 0 1.00 0.0 76 29 0 0 0 0 2

7T 0 1.00 0.0 0o 0 0 0 0 0 0

8 0 1.00 0.0 ] 0 0 0 Q 0 0

9 0 1.00 0.0 8g 50 1] 0 ] 0 3

10 0 1.00 0.0 0 0 0 4] 0 0 4]

11 0 1.00 0.0 25 15 0 0 0 0 1.5
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12 ¢ 1, 0.0 0 0 0 0 2 3 12 15 0.01800 0©.05980 0.00000 1
13 0 i. 0.0 15 0 o} 0] 0 0 13 14 0.00460 ©.02710 0.00100 1
14 0 1. 0.0 12 0O © Q 0 0°: 13 15 0.01160 0.06100 ©.00000 1
15 0 1. 0.0 31 0 0 0 0 0.5] 13 16 0.01793 0.08880 0.00100 1
16 0 i. 0.0 27 0 0 0 0 g 14 15 ©.00690 0.03820 0.00000 1
17 0 1 0.0 38 0 0 0] 0 4] f 15 16 0.02090 ¢.0512¢ 0.00000 i
18 0 1. 0.0 67 0 0 0 0 0 16 17 0.09800 0.06000 0.00000 1
18 0 1. 0.0 15 0o 0 0 0 5 16 20 0.02390 0.05850 0.00000 1
20 0 1. .0 27 0 0 0 0 0 17 18 0.00320 0.06000 0.03800 1
21 0 1. 0.0 23 0 0 0 0 0 17 21 0.22900 ©.44500 0©.0000QQ 1
22 0 1. 0.0 22 0 ¢ 0 0 "0 19 23 0.03000 0.13100 0.00000 1
23 0 1. 0.0 12 0 ¢ ] 0 0 19 24 0.03000 0.12500 0.00200 i
24 0 1. 0.0 27 0 ¢ 0 0 0 19 25 0.11900 0.22490 0.00400 1
25 0 1. 0.0 13 0 0 0 0 0 20 21 0.06570 0.15700 0.00000 1
26 2 1. 0.0 20 60 0O 15 . 50 0];: 20 22 0.01500 {.03660 ¢.0000Q 1
' 21 24 0.04760 0.15100 ¢©.00000 1
Bus bus X 1/2 B 1 for lines code or 22 23 0.02900 0.09900 0.00000 1
al ar pu pu tap setting value 22 24 0.03100 0.08800 0.00000 1
linedata=[1 2 0. 0. 0.03000 1 23 25 0.09870 ¢{.11680 0.00000 -1];
1 8 0. 0. 0.06000 1
2 3 0. 0. 0.05000 Q.96 ' cost = 240 7.0 0.0070
2 7 0. 0. 0.01800 1 200 10.0 0.0095
2 8 0. 0. 0.03900 1 220 8.5 0.0050
2 13 0. 0. 0.02500 ©.96 200 11.0 ©.0090
2 26 0. 0. 0.00000 1 220 10.5 0.0080
3 13 4. 0. 0.00050 1. 190 12.0 0.0075];
4 8 0. 0. 0.00010 1.
4 12 0. 0. 0.01500 1. mwlimits =[100 500
§E 6 0. 0. 0.09900 1 50 200
6 7 0. 0. 0.00105 1 80 300
6 11 0. 0. 0.00010 1 50 150
6 18 Q. 0. 0.00120 1 50 200
6 19 0. 0. 0.04500 Q. 50 1201;
6 21 0. 0. 0.02260 1 ;
7 8 0. 0. 0.00010 1 1fybus ¥ Forms the bus admittance matrix
7 89 0. 0. 0.02500 Q. lfneuton Y Power flow solution by Newton-Raphson method
g 12 0. 0. 0.02000 1 busout % Prints the power flow solutiocn on the screen
g 10 0. 0. 0.00100 1 bloss % Obtains the loss formula coefficients
10 12 0. 0. 0.01000 1 gencost % Computes the total generation cost $/h
10 18 0. 0. 0.00000 1 dispatch % Obtains optimum dispatch of generation
¢ 20 0. 0. 0.00100 1 % dpslack is the difference (absolute value) between
ic 22 0. 0. 0.00500 1 % the scheduled slack generation determined from the
11 25 Q. 0. 0.01000 1 % cocordination equation, and the slack generation
11 26 0. 0. 0.00400 1t % obtained from the power flow solution.
12 14 0. 0. 0.00000 1 |
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vhile dpslack>.001%Repeat till dpslack is within tolerance

1fnewton % New power flow solutiog) B =
bloss % Loss coefficients are updated 0.0014 0.0015 0.0009 ~0.0001 -0.0004 -0.0002
dispatch JOptimum dispatch of gen. with new B-coefficients] 0.0015 0.0043 0.0050 0.0001 -0.0008 -0.0003
end 1 0.0008  0.0050  0.0315 -0.0000 -0.0020 -0 0016
busout 4 Prints the final power flow solution -0.0001 - 0.0001 -0.0000 0.0029 -0.0006° ~0.0009
gencost ¥ Gemeration cost with optimum scheduling of gen.§ -0.0004  -0.0008 -0.0020 ~0.0006 0.0085 -0.000%
* -0.0002  -0.0003 -0.0016 -0.0008 -0.0001 0 .0176
> 3 i BO =
The result is : ~0.0002 -0.0008  0.0067  0.0001- 0.0000 -0.0012
Power Flow Solution by Newton-Raphson Method 2
Maximum Power mismatch = 3.18289e-10 = BOO =
No. of iterations = 6 g 0.0086
e 3 _
Bus Voltage Angle — --—-- Load~---- ~-Generation-- Injected flig Total system.loss =~ 15.53 W
Mo, Mag Pegree e Mo " Mvar Hoar % Total generation cost = 16760.73 $/h
1 1,025 0.000 51.000 41.000 719.534 224.011  4.00 - % Incremental cost of delivered power (system lambda) =
2 1020 -0.931 22.000 15.000 79.000 125.354  0.00 14, 9L1780 /ML .
3 1.035 -4.213  64.000 §0.000 20.000 63.0320 0.00 B Optimal Dispatch of Generation:
4 1.050  -3.582 25,000 10.000 100.000 49.223  2.00
5 1.045  1.120  50.000 30.000 300.000 124.466 5 .00 B 474.1196
5 099 -2.573 76,000 29.000  0.000 0.000 200 - 1737886
70.984 -3.206  0.000 0.000 0.000 0.000 0003 190.9515
8 0.997 -3.299  0.000 0.000 0.000 0.000 © 00 150.0000
9 1.003  -5.393 89.000 50.000 0.000 0.000 3.00 196.7196
10 0.989  -5.561  0.000  0.000 0.000 0.000 000 103.5772
ié grgg; ﬁi:gég ;g:ggg ;g:ggg g:ggg g:ggg ;:gg k. Absolute value of the slack bus real power mismatch,
1371.014  -4.430 31.000 15.000 0.000 0.000 0.00 dpslack = 245000
14 1.000  -5.040 24.000 12.000 0.000 0.000 0. 00
5 Q. - 4 -
16 ggg; —2 ggg gg ggg 33} ggg g ggg gggg ggg 3 In this example the final optimal dispatch of generation was obtained in three ile_ra-
17 0.987 -4.985 78.000 38.000 0.000 0.000 0.00 tions. The results for final loss coefficients and final optimal dispatch of generation
18 1.007 -1.866 153.000 67.000 0.000 0.000 0.00 -2 is prescnted below
19 1,004 -6.397 75.000 15.000 0.000  ©.000 5.00 & .
20 0.980 -6.025 48.000 27.000 ©.000 0. 000 0.00 B =
21 0.977 -5.778 46.600 23.000 0.000  ©.000 0.00 ° 0.00i7  0.0012  0.0007 -0.0001 -0.0005 -0.0002
22 0.978  -6.437 45.000 22.000 0 .000 0.000 0.00 = 0.0012  0.0014  0.0009  0.0001 =-0.0006 -0.0001
23 0.976 -7.087 25.000 12.000  ©.000 0.000 0.00 = 0.0007  ©.0009  0.003%  0.0000 ~0.0010 ~0.0006
24 0.968 -7.347 54.000 27.000 0.000 0.000 Q.00 - -3.0001 0.0001 0.0000 0.0024 -0.0006 ~-0.0008
25 0.974  -6.775  28.000 13.000 0. 000 0.000  0.00 -0.0005 -0.0006 -0.0010 -0.0006  0.0129 -0.0002
26 1.015  -1.803 40.000 20.000 60 000 32.706 0.00 = -0.0002 ~0.0001 . -0.0006 -0.0008 -0.0002  0.0150
Total 1263.000 637.000 1278.534 618.791  25.00 %
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B0 = 18 1.007 -1.884 153.000 67.000 0.000 0.000  0.00
{.0e-03 = E 19 1.005 -6.074 75.000 15.000 ©0.000  0.000  §.00
-0.3908 -0.1297  0.7047  0.0591  0.2161 -0.66351 2¢ 0.983 -4.759 48.000 27.000  ©0.000  0.000  0.00
-5 21 0,977 -5.411 46.000 23.000 0.000 0.00C .00
BOO = 92 (.980 -5.325 45000 22.000 0.000 0.000 0.00
0.0056 23 (.978 -6.388 25,000 12.000 ¢.000 0.000 0.00
g 24 0.969 -6.672 54,000 27.000 0.000 0.G00 0.60
Total system leoss = 12.807 MW : . % 25 0.575 -6.256 28.000 13.000 0.000 . 0.000 0.00
Incremental cost of delivered power (system lambda) = I 26 1.015 -0.284 40.000 20.000 B86.939 27.892 0.00
13.538113 $/Mwh g '
Optimal Dispatch of Generation: Total 1263.000 637.000 1275.800 §590.396 25.00
447 .6919 4
173.1938 : Total generation cost =  15447.72 $/h
263.4859 ' L :
138.8142 _
165.5884 The total generation cost for the initial operating condition is 16,760.73 $/h and
87.0260 E the total generation cost with optimal dispatch of generation is 15, 447.72 $/M. This
results in a savings of 1,313.010 $/h. That is, with this loading, the total annual
Absolute value of the slack bus real power mismatch, : _ savings is over $11 million.
dpslack = 0.0008 pu
PROBLEMS

Power Flouw Solution by Newton-Raphson Method
Maximum Power mismatch = 2.33783e-05
No. of iterations = 3

7.3, Find a rectangle of maximum perimeter that can be inscribed in a circle of
unit radius given by

ylo,g) =2’ +y' -1=0

ﬁus :oltage Angle  -—---- Load----- ~-Generation-- Injected
¢. Hag. Degree MW Mvar MW Mvar Mvar Check the eigenvalues for sufficient conditions.
é 1.025  0.000 61.000 41.000 447.611 250.582  4.00 3 7.2. Find the minimum of the function
1.020 -0.200 22.000 15.000 173.087 57.303 0.00 1__ ; . 2
3 1.0456  -0.639 64.000 50.000 263.363 78.280 0.00 B fay) =" +2
4 1.050 -2.101 25.000 10.000 138.716 33.449 2.00 = . . - '
2 1.33? -1.453  50.000 30.000 166.099 142.890 5.00 K subject toi the eqaality coustraint
: -2.874 76.000 29.000 0.000 0.000 2.00 3
g 3-395 ~2.406  0.000  0.000 0.000 0.000 0.00 : glmy) =zt +a=0
-998  -2.278  0.000  0.000  0.000 0.000  0.00 1 i iti
91'0 é . g;? -4.387 89,000 50.000 0.600 0.0600 3.0Q : Chipei g the SUMEIcl Conditions, -
il . s :g : g;z 22 : 300 0.000 0.000 0.000 0.00 7.3. Use the Lagrangian multiplier method for solving constrained parameter op-
I b ; : .000 15,000 0.000 0.000 1.50 timization problems to determine an isosceles triangle of maximum area that
v 5 . .282 . B89.000 48000 0.000 0.000 2.00 may be inscribed in a circle of radius 1
” lggg ~1.261 31.000 15. 000 0.000 0.000 0.00 ¥ ‘
5 o : - -2.445 24 000 12.000 0.000 0.000 0.00 7.4. For a second-order bandpass filter with transfer function
(e .999 -3.229 70.000 31.000 0.000 0.000 .50
8 3.990 -3.990  55.000 27.000  0.000 0.000  0.00 ' His) = &
-983  -4.366 78.000 38.000 0.000 0.000 0.00 -(S)_'s?-+2Cwns4-wﬁ
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7.5.

7.6.

7.7,

7.8.

determine the values of the damping ratio and natural frequency, ¢ and wn';"
corresponding to a Bode plot whose peak occurs at 7071.07 radians/sec and
whose half-power bandwidth is 12,720.2 radians/sec. g

Find the minimum value of the function
flz,y) =2 +4°
subject to the equality constraint
glz,y) =2 -6z -2+ 17=0
Find the minimum value of the function
fle,y) =2 +¢°
subject to one equality constraint
gle,y) =2 -5: -y +20=0

and one inequality constraint
u(z,y) =2+ y > 6

The fuel-cost functions in $/h for two 800 MW thermal plants are given by

C1 =400 + 6.0P;, + 0.004P}
Ca=3500+ AP+ ~P}
where P; and P, are in MW.

(2) The incremental cost of power ) is $8/MWh when the total power de-

mand is 550 MW. Neglecting losses, determine the optimal generation of
each plant. *

(b) The incremental cost of power A is $10/MWh when the total power de-

mand is 1300 MW. Neglecting losses, determine the optimal generation of
each plant, '

(¢) From the results of (2} and (b} find the fuel-cost coefficients B and of"
the second plant. : .

The fuel-cost functions in $/h for three thermal plants are given by

C1 = 350 + 7.20P; + 0.0040P?
Cs = 500 + 7.30P, + 0.0025P7
C3 = 600 + 6.74P; + 0.0030P3

79.

7.10.

7.11.
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where Py, Py, and P; are in MW, The governors are set such that generators
share the load equally. Neglecting line losses and generator limits, find the
total cost in $/h when the total load is

(i) Pp = 450 MW
(i) Pp = 745 MW
(ifi) Pp = 1335 MW

Neglecting line losses and generator limits, determine the optimal scheduling
of generation for each loading condition in Problem 7.8

(a) by analytical technique, using (7.33) and (7.31).

(b} using Iterative method. Start with an initial estimate of A = 7.5 $/MWh.
(¢) find the savings in $/h for each case compared to the costs in Problem 7.8
when the generators shared load equally.

Use the dispatch program to check your results.

Repeat Problem 7.9 (a) and (b), but this time consider the following genera-
tor limits (in MW)

122 € P, €400
260 < Py <600
50 < Py <445
Use the dispatch program to check your results.

The fuel-cost fonction in $/h of two thermal plants are

Cy = 320 + 6.2P, + 0.004P}
Cy = 200 -+ 6.0P; + 0.003F7

where P and P are in MW. Plant outputs are subject to the following limits
(in MW)

50 < P < 250
50 < P, €350

The per-unit system real power loss with generation expressed in per unit on

a 100-MVA base is given by
Pripy = 0.0125P7 . +0.00625P5 .

The total load is 412.35 MW. Determine the optimal dispatch of generation.
Start with an initial estimate of A = 7 $/MWh. Use the dispatch program 10
check your results. ’ ’
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7.12. The 9-bus power system network of an Electric Utility Company is Show“

The line data containing the series resistance and reactance in per unit, and
Figure 7.9. The load data is tabulated below. Voltage magnitude, generatiog |

one-half of the total capacitance in per unit susceptance on a 100 MVA base

schedule and the reactive power limits for the reguiated buses are also taby 4 ' is tabulated below.
lated below. Bus |, whose voltage is specified as V] = 1.03£0°, is taken as W
the stack bus. LINE DATA |
Bus Bus R, X, 1B,
LOAD DATA No. No. PU PU PU
Bus Load 1 2 0018 0034 0.0045
No. MW Mvar 1 8 0014 0036 0.0030
] 0 0 GENERATION DATA 2 9 0006 0.030 00028
2 20 10 Bus Voltage Generation Myvar Limits 2 3 0013 0036 0.0030
3 25 15 No.  Mag. MW Min. Max. 3 4 0010 0050 0.0000
4 10 5 1 1.03 4 5 0018 0056 0.0000
5 40 20 2 1.04 . 80 0 250 5 6 0020 0060 0.0000
6 60 40 7 1.01 120 0 100 6 7 0015 0045 0.0038
7 - 10 5 6 9 0002 0066 00000
8 80 60 7 8 0.032 0076 0.0000
9 100 80 7 9 0022 0.065 0.0000
The Mvar of the shunt capacitors installed at substations are given below ' The generator’s operating costs in $a’ﬁ e Tollowas
SHUNT CAPACITORS
Bus No. "iar Cy = 240 + 6.7P, + 0.009P?
3 1.0 Cy = 220 + 6.1P, + 0.005P;
4 3.0

Cr = 240 + 6.5P; + 0.008 P}

The generator’s real power limits are

GENERATOR REAL POWER LIMITS
Gen. Min, MW . Max. MW

1 50 200

2 50 200

7 50 ) 100

L

- Write the necessary commands to obtain the optimal dispatch of generation
? “‘IT A 1 = using dispatch. Continue the optimization process until the difference (ab-
_T : solute value) between the scheduled slack generation, determined from the
O coordination equation, and the slack generation, obta_incd from the power
flow solution, ts within 0.001 MW.
FIGURE 7.9

One-line diagram for Problem 7.2,




