CHAPTER

3

SYNCHRONOUS MACHINE
TRANSIENT ANALYSIS

8.1 INTRODUCTION

The steady state performance of the synchronous machine was described in Chap-
ter 3. Under balanced steady state operations, the rotor mmf and the resultant stator
mmf are stationary with respect to each other. As a result, the flux linkages with
the rotor circuit do not change with time, and no voltages are induced in the rotor
circuits, The per phase equivalent circuit then becomes a constant generated emf
in series with a simple impedance. In Chapter 3, for steady state operation the gen-
crator was represented with a constant emf behind the synchronous reactance Xj.
For salient-pole rotor, because of the nonuniformity of the air gap, the generator
was modeled with direct axis reactance X4 and the quadrature axis reactance Xg:
Under transient conditions, such as short circuits at the generator terminals,
the flux linkages with the rotor circuits change with time. This result in transient
currents in all the rotor circuits, which in turn reacts o
sient analysis, the idealized synchronous machine is re
netically coupled circuits with inductances which de
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great simplification can be made by transformation of stator variables from phases
a, b, and c into new variables the frame of reference of which moves with the rotor.
The transformation is based on the so-called two-axis theory, which was pioneered
by Blondel, Doherty, Nickle, and Park [20, 61]. The transformed equations are
linear provided that the speed is assumed to be constant,

In this chapter, the voltage equation of a synchronous.machine is first estab-
lished. Reference frame theory is then used to establish the machine equations with
the stator variables transformed to a reference frame fixed in the rotor (Park’s equa-
tions). The Park’s equations are solved numerically during balanced three-phase
short circuit. If the speed deviation is taken into account, transformed equations
become nonlinear and must be solved by numerical integration. In MATLAB, the
nonlinear differential equations of the synchronous machine in matrix form can be
simulated with ease. Also, there is the additional advantage that the original volt-
age equations can be used without the need for any transformations. In particular,
the numerical solution is obtained for the line-to-line and the line-to-ground short
circuits using direct-phase quantities.

Another objective of this chapter is to develop simple network models Of. t‘he
synchronous generator for the power system fault analysis and transient stability
studies. For this purpose, the generator behavior is divided into three periods: the
subtransient period, lasting only for the first few cycles; the transient period cover-
ing a relatively longer time; and, finally, the steady state period. Thus, the generator
equivalent circuits during transient state are obtained.

8.2 TRANSIENT PHENOMENA
To better understand the synchronous machine transient phenomena, we first study

the transient behavior of a simple RL circuit. Consider a sinusoidal voltage v(t) =
Vin sin(wt+a) applied to a simple RL circuit attime ¢ = (), as shown in Figure 8.1.
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FIGURE 8.1
A simple series circuit with constant R and L.
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The circuit consists of R in series with a constant L. The in

stantaneous voltage
equation for the circuit is

alfil = 88.1%pi/180;

alf2 = -1.9+pi/180;

gamma = 88.1xpi/180;

t = 0:.001:.3;

i1 = 40*5in(37?*t+a1f1—gamma)~40*exp(-t/.08).*sin(alfl—gamma);
i2 = 40*sin(377*t+alf2-gamma)-40*exp(-t/.08) -*sin(alf2-gamma) ;
subplot(2,1,1), plot(t, i1)

xlabel(’t, sec’), ylabel(’i(t)?)

subplot(2,1,2), plot(t, i2)

= xlabel(’t, sec’), ylabel(’i(t)’)

lot (111
nusoidal S8 SUbpLeRLTAL)

pa

Ri(t) + Ld-—;(:—) = Vinsin(wt + a) (8,1$

The solution for the current may be shown to be

i(t) = I;sin(wt + @ — ) — e t/" sin(a — 7) (8.2)_i 3 2

where I, = Vi, /Z, 7 = L/R, v = tan"'wL/R, and Z = VRZ ¥ X2, The ﬁrs.t'_'
term is the steady state sinusoidal component. The second term is a dc transient
component known as dc offset which decays exponentially. The dc and si

components are equal and opposite when t = 0, so that the condition for zero

initial current is satisfied. The magnitude of the dc component depends on the _ % = .
: & 3 i T 40 ‘ ’ '
instant of application of the voltage to the circuit, as defined by the angle a. The i
dc component is zero when (@ = ). This current waveform is shown in Figure g =
8.2(a). Similarly, the dc component will have a maximum initial value of V,,/Z 3 20 1
which is the peak value of the alternating component, if the circuit is closed when §
@ = 7 — /2 radians. The current waveform with maximum dc offset is shown e i i(t) 0
in Figure 8.2(b). If wL > R, then 7 = /2, so that circuit closure at voltage 5
maximum would give no dc component, and closure at voltage zero would cause E
the maximum dc transient current to flow, =20+ d i
|
Example 8.1 =
—— —40 ¢ o . : > :
In the circuit of Figure 8.1, let R = 0.125 2, L = 10 mH, and the source voltage = 3 U 0.05 0.10 0.15 0.20 025 050
be given by v(t) = 151 sin(377t+ «). Determine the current response after closing =3 (a) t, sec
the switch for the following cases. E —
(a) No dc offset. E— 80 . i . . :
(b) For maximum dc offset. 3 ——
Z =0.125 + j(377)(0.01) = 0.125 + j3.77 = 3.772/88.1° E 60r 1
s 151 SAOLA ]
Y = i(t) 20 :
and 3 =
‘. — Az
T= ‘}—z = (.08 sec _: —20}t | 4
e 2 the esponse i =] —40, 005 010 015 020 0% 030
i(t) = 40sin(wt + o — 88.1°) — 40e~/0-08 sin(a — 88.1°) — ®) .
, sec
The response has no dc offset if switch is closed when o = 88.1°, and it has the = |
maximum dc offset when o = 88.1° — 90° — —1.9°. The following commands FIGURE 8.2 TR S—
produce the responses shown in Figures 8.2(a) and 8.2(b). Current waveform, (#) with fo de offset, (b) wi '
=
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8.3 SYNCHRONOUS MACHINE TRANSIENTS

The synchronous machine consists of three stator windings mounted on the sta-

tor, and one field winding mounted on the rotor. Two additional fictitious windings
could be added to the rotor, one along the direct axis and one along the quadra-

ture axis, which model the short-circuited paths of the damper windings. These
windings are shown schematically in Figure 8.3.

4 Reference
; axis

4 ;
3 Qqadmture
/  axi1s

~

Direct ™
axis

FIGURE §.2
Schematic representation of a synchronous machine.

We shall assume a synchronous]
the synchronous speed w which will
the angle by which rotor di

Y rotating reference frame (axis) rotating with
be along the axis of Phase aatt = 0. If g is
rect axis is ahead of the magnetic axis of phase a, then

placement of the quadrature axis from the synchronously rotating

reference axis and (6 + 3) is the displacement of the direct axis.
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In the classical method, the idealized synchronous machine is represented as

a group of magnetically coupled circuits with inductances which depend on the an-

ular position of the rotor. In addition, saturation is neglected and spatial distribu-

ﬁon of armature mmf is assumed sinusoidal. The circuits are shown schematically
in Figure 8.4.

TR
VF :t LF
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Vb=10 ile Lp
Lq
Q
Vo=0
FIGURE 8.4

Schematic representation of mutually coupled circuits,

The stator currents are assumed to have a positive direction flowing out of the
machine terminals. Since the machine is a generator, following the circuit passive
sign convention, the voltage equation becomes

Uy r 00 0 0 O la Au ]

Uy 0 r 0 0 0 0 I:b Al

Ve 00+ 0 0 0 ic | _d]| A (8.4)
~vr [0 00 e 0 0 ||ir| @] A |
0 000 0 rp 0 ip A

0 000 0 0 rg LW L Ag |

The above equation may be written in partitioned form as

Vabe | _ [Rae O ] [_iabc ]_ i[ Aabe | ®5)
vipg | | 0 Rrpo || irpo dt | Arpg |

where

, Ap
—VF 3 =
VFDQ = [ 0 ] irpg = [tn ] AFDQ = [ig } ete. (8.6)
0

iQ



320 & SYNCHRONOUS MACHINE TRANSIENT ANALYSIS

The flux linkages are functions of self- and mutual inductances given by

I- A-c: I- Lan Lab
Ap Ly, Ly
Ac e Le:a ch
Ar | 7| Lra Lpg
AD Lpa Lps

LA ] [ Loa Loy

or in compact form we have

Lo =

8.3.1

Lac La.F
Lye Lpr
Lf_‘c LcF
Lr. Lfrfr
Lp. Lpr
Lgc Lgr
Lss Lsga
Lrs Lgr

LGD
Lyp
LcD
Lrp
Lpp
Lop

] [ iabc
irpQ

INDUCTANCES OF SALIENT-POLE MACHINES

Laq
LbQ
Leg
Lpg
Lpg
Lqq

iq
2
1c
ip
ip

| 1@

(3.7)':

(8.8)

The self-inductance of any stator coil varies periodically from a maximum (when
the direct axis coincides with the coil magnetic axis) to a minimum (when the
quadrature axis is in line with the coil magnetic axis). The self-inductance L,,, for
example, will be a maximum for § = 0, a minimum for # = 90° and maximum,
again for § = 180°, and so on. That is, Lgq has a period of 180° and can be
represented approximately by cosines of second harmonics. Because of the rotor

symmetry, the diagonal elements of the submatrix Lsg are represented as

Laa = Ls a5 Lm cos 26
Lyp = Ls + L cos2(8 — 27/3)
Lee = Lg + Ly cos 2(8 + 27/3)

Lop = Lpg = =M, — L,, cos 2(6 + = /6)
Lyc = Ley = =My — Ly cos 2(6 — m/2)
Leo =Loe=~M, - L,, cos 2(8 + 57/6)

(8.9)

where 6 is the angle between the direct axis and the magnetic axis of phase a,
as shown in Figure 8.3. The mutual inductances between any two stator phases
are also periodic functions of rotor angular position because of the rotor saliency.
We can conclude from the symmetry considerations that the mutual inductance
between phase a and b should have a negative maximum w ;
up 30° behind phase a or 30° ahead of phase b, and a negative minimum when it is ===
midway between the two phases. Thus, the variations of stator mutual inductances, =

i.e., the off-diagonal elements of the submatrix Lss can be represented as follows. Z

hen the pole axis is lined
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All the rotor self-inductances are constant since the effects of stator slots and satu-
ration are neglected. They are represented with single subscript notation.

Lpp=Lr Lpp=Lp LQQ‘——LQ (8.11)

The mutual inductance between any two circuits both in direct axis (or both in
quadrature axis) is constant. The mutual inductance between any rotor direct axis
circuit and quadrature axis circuit vanishes. Thus, we have

Lyp=Lpr=Mr Lrq=Lor=0 Lpg=Lgyp=0 (8.12)

Finally, let us consider the mutual inductances between stator and rotor circuits,
which are periodic functions of rotor angular position. Because only the space-
fundamental component of the produced flux links the sinusoidally distributed
stator, all stator-rotor mutual inductances vary sinusoidally, reaching a maximum
when the two coils in question align. Thus, their variations can be written as fol-
lows.

Loy = Lpa = Mpcos8
Ly = Lpy = Mpcos(0 — 2 /3)
Lep = Lpe = Mp cos(6 + 27 /3)
Lﬂp = L,r)“ = f‘-'fp cos
Lyp = Lpy = Mpcos(6 — 2 /3)
L.p = Lp.= Mpcos(f + 2 /3)
Lo = Lga = Mgsing
Lyg = Lgb = Mgsin(f — 27/3)
LcQ = Lg. = Mgsin(f + 27 /3)

(8.13)

The resulting differential equations (8.4) describing the behavior of the machine
have time-varying coefficients given by (8.9)—(8.13), and we are not able to use
Laplace transforms directly to obtain a closed form of solution.

8.4 THE PARK TRANSFORMATION

A great simplification can be made by transformation of stator variables frqm
phases a, b, and c into new variables the frame of reference of which moves with
the rotor. The transformation is based on the so called two-axis theory, which was
pioneered by Blondel, Doherty, Nickle, and Park [20, 61]. .
The transformed quantities are obtained from the projection of the actual vari-
ables on three axes; one along the direct axis of the rotor field winding, called the
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direct axis; a second along the neutral axis of the field winding, called the quadra- '- :
ture axis; and the third on a stationary axis. For example, the three armature cur- 3
rents i, 1y, and i, are replaced by three fictitious currents with the symbols 1, iq,

Nt ik itlondh AL ol

and 20. They are found such that, in a balanced condition, when i, + iy + i, = (), 8%

they produce the same flux, at any instant, as the actual phase currents in the arma- &

ture. The third fictitious current 7y is needed to make the transformation possible &

when the sum of the three-phase current is not zero.
The Park transformation for currents is as follows

io 1/V2 1/V2 1/V2 i i
iy } = \/QE l: cos@ cos(f —27/3) cos(f + 27 /3) } { iy } (8.14) =
fy sin  sin(0 — 27/3) sin(8 + 2r/3) g 3

~Or, In matrix notation

vy = Pigge (8.15)
Similarly for voltages and flux linkages, we have

Vodg = Pvuhc (8.16)

/\qu = P/\abc (8’7)
The Park transformation matrix is orthogonal, i.e., P~! = P7T and thus, it is a

power invariant transformation matrix. For the inverse Park transformation matrix
we get

1/V/2 cosf sin 6
1/V2 cos(6 — 2n/3) sin(8 — 2m/3)
1/V2 cos(0+2r/3) sin(6 + 27/3)

Pl = /2/3 (8.18)

We now wish to transform the time-varying inductances to a rotor frame of refer-
ence with the original rotor quantities unaffected. Thus, in (8.17) we augment the
P matrix witha 3 x 3 identity matrix U to get

e =18 o] Lo
AFDQ | | 0 U AFDQ

Aa.bc ] = [ p-! 0 A~r.v<f(,'|r
AF‘DQ 0 U )‘FDQ
Substituting in (8.8), we get

7 81l i
0 U AFDQ Lprs Lgr 0

(8.19)
or

(8.20)

01 ioa
o]y ] e

or
etz 1 [P O ] [ Lss
AFDQ “ 10 U Lrs

tion reduces to

] [Le 0 0
A 0 Li O
M l_| 0 0 L
M| T 0 kMe 0
Ap 0 kMp ©
(M) [0 0 kMg

Lsr
Lrr

0
kMg
0
Lp
Mg
0
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P—l

1%

0
KAMp
0
Mg
Lp
0

where we have introduced the following new parameters
Lo=Ls—2M,

3
Ld=Ls+ﬁ'1{s+§Lm

3
Ly=Ly+ M~ 3Ln

and k = \/3/2.

o]l

Substituting for P, P! and the inductances given by (8.9)—(8.13), the above equa-

0
0
kMg
0
0
Lq

]

lodg
irpo

1g
14
iq
ip
ip
Q
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] (8.22)

(8.23)

(8.24)
(8.25)

(8.26)

Transforming the stator-based currents (i,pc) into rotor-based currents ( iggy), With

rotor currents unaffected, we obtain
i0dy ] _ { P
i;:DQ 0

[ iabc ] = [ B
iFDQ 0

and similarly for voltages, we get

or

V:lhi‘ . [ P_—I 0
[ VEDQ N 0 8]

Substituting (8.20), (8.28), and (8.29) into (8.5), we get

P! 0} [V!qu l s [Rubc
0 UJ |vepeg

d
dt

0 ] [ Lake
U || irpg

1
irpo

Lo
U

|

b e |

ol |

8 ‘Rrog)

Plo
0 U

P07 [ Aoy ]
0 U| | AFDQ

Il

iodq
irpg

(8.27)

(8.28)

(8.29)

(8.30)
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or

[ Vodg
VFDQ

Evaluating the first term, and obtaining the derivative of the second term in (8.31),

8 SYNCHRONOUS MACHINE TRANSIENT ANALYSIS

[Le 0 0 0 0 o7 [
0 Lg 0 kMpkMp 0
[P OHRW 0 P! 07 [ iog 10 0 L Lo 0 kMg| d
- ' - kM Mp 0
Sril B Tesgll 0 Ul e gkng 5 in 1o o |©
o |
B [P 0} d [P 0] [ Modg (8.31) 2 0 0 kMg 0 0 Lg
0U| g4t 0 U ‘\F'DQ 2 - . L

yields
[ Vodg :| o { Rubc 0 [ i{jdq P U{I::'_1 0
= . di
VEDO 0  Rrpo irpgo 0 U
i i [ ’\U.iq }
dt { Arpg
Next, the expression for P4 P! can be written as
d df d d
PP l=p__p-l_ —p!
dt Ed R

Substituting for P from (8.14), and for the derivative of P—! from (8.18). we get

PE-P"I
dt

Substituting (8.23) and (8.34) into (8.32), the machine equation in the rotor frame -

of reference becomes

(]

[1/vV2  1/V2 1/V2

cos 8 cos(@ — 27 /3) cos(d + 2 /3)
L sinf sin(f — 27/3) sin(@ + 27/3)
0

= 2/3w

—sinf

L0 —sin(@ + 27/3) cos(8 + 27/3)

000
=w (0 01
0-10

= 0 0 0
D r owl, 0 0 wkM
0-wLy r —wkMp-wkMp O
00 0 rp 0 g
0 0 0

0 0 o0

cos @
0 —sin(f —27/3) cos(8 — 27r/3)]

assumed constant. Also, the first equation

8.5 BALANCED THREE-PHASE SHORT CIRCUIT

|

machine is assumed to be initially unloaded. i.e.,

ia(0%) = i4(0%) =i (07} =0

With reference to (8.15), this condition results in

(8.34) ig(0™) = 14(07) = 1,(07) =0

The initial value of the field current is

Ve
. iy
ir(07) = —
TF
io For balanced three-phase short circuit at the terminals of the machine
id .
iy Vg =Up=vp =)
tF With reference to (8.16), this condition results in
iD

U=y =g =0

10
ig
ig
iF
ip
Q
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(8.35)

We now make some observations regarding the nature of the above equations. The
most important one is that they have constant coefficients provided that speed is

} Aodg ] vy = —Tig — Lo%
AFDQ
is not coupled to the other equations. Therefore, it can be treated separately. The
(8.32) variables vo, Lo, and 1o are known as the zero-sequence variables. The name orig-
inally comes from the theory of symmetrical components, as discussed in Chapter
10. Finally, we note that while the transformation technique is a mathematical pro-
cess, it provides valuable insight into internal phenomena and gives the effects of
transients. Furthermore, it provides physical meaning to the new quantities.
(8.33)

Consider a three-phase synchronous generator eperating at synchronous speed with
constant excitation. We will explore the nature of the three armature currents and
the field current following a three-phase short circuit at the armature terminals. The
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Since ;, = 0, the machine equation in the rotor reference frame following a three
phase short circuit becomes

Vg [T 0 0 wly wkMg iy
—vp 0 TF 0 0 0 ip
0 |=- 0 0 ™D 0 0 ip
Uq ~wly —wkMp —wkMp r 0 iq
0 . 0 0 0 0 Q IQ
Ly kMp kMp 0O 0 147
kMg Lp Mrp 0 0 d | iF
— |kMp Mgy Lp 0 0 = ip (8.36)
0 0 0 Ly kMg| %],
0 0 0 k.fUQ LQ 10

This equation is in the state-space form and can be written in compact form as

: d..
v=—-Ri- Lal (8.37)

or
d. ~lp; -1
Tl -L7'Ri-L7'v (8.38)

If speed s assumed constant, the resulting state-space equation is linear and an
analytical solution can be obtained by the Laplace transform technique. However,
the availability of powerful simulation packages make it possible to simulate the
nonlinear differential equations of the synchronous machine easily in matrix form.
To consider the speed variation we need to include the dynamic equation of the
machine. This is a second-order differential equation known as the swing equation
which is descnibed in Chapter 11. The swing equation can be expressed in (h'c: state-
space form as two first-order differential equation and can easily be augmented
with (8.36). Since the speed variation has very little effect in the momentary current
immediately following the fault, speed variation may be neglected.

Once a solution is obtained for the direct axis and quadrature axis currents,
the phase currents arc obtained through the inverse Park transformation, i.e.,

igec = P iodg (8.39)
Substituting for P! from (8.18), and noting #g = 0, the phase currents are

=igcost+ 4, sin fl
ty = igcos(0 — 27 /3) + igsin(d — 27 /3) (8.40)
= igcos(f + 2r/3) + igsin(0 + 27 /3)

,__
s
[

85 BALANCED THREE-PHASE SHORT CIRCUIT 327

MATLAB provides two M-files named ode23 and oded5 for numerical solution
of differential equations employing the Runge-Kutta-Fehlberg integration method.
ode23 uses a simple second and third order pair of formulas for medium accuracy
and oded5 uses a fourth and fifth order pair for higher accuracy. Synchronous ma-
chine simulation during balanced three-phase fault is demonstrated in the following
example.

Example 8.2

A 500-MVA, 30-kV, 60-Hz synchronous generator is operating at no-load with a
constant excitation voltage of 400 V. A three-phase short circuit occurs at the arma-
ture terminals. Use oded5 to simulate (8.36), and obtain the transient waveforms
for the current in each phase and the field current. Assume the short circuit is ap-
plied at the instant when the rotor direct axis is along the magnetic axis of phase a,
i.e., 8§ = 0. Also, assume that the rotor speed remains constant at the synchronous
value. The machine parameters are

[ Generator Parameters for Example 8.2
Ly, =0.0072 H L,=00070H Lr=2500H
Lp=00068H Lg=00016H Mp=0.100H
Mp=00054H Mo=00026H Mgp=0.125H
F=000200Q rp=04000Q rp=0.0150Q
?‘Q = 0.0150 Q L(j =0.0010 H

The de field voltage is Vi = 400 V. The derivatives of the state equation given
by (8.38), together with the coefficient matrices in (8.36), are defined in a function
file named symshort.m, which returns the state derivatives. The initial value of the
ficld current 18

and since the machine is initially on no-load
i0(0%) = ia(0%) = i, (0°) = 0

The following file chp8ex2.m uses oded5 to simulate the differential equations de-
fined in symshort over the desired interval, The periodic nature of currents neces-
sitates a very small step size for integration. The currents i4 and 7, are substituted
in (8.40) and the phase currents are determined.

VF = 400; rF = 0.4; iF0 = VF/rF;
f = 60; w=2.%pix*f;
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d = 0; d=d*pi/180;

t0 = 0 ; tfinal = 0.80;

tspan =[t0, tfinal]; g

i0 = (0; iF0; 0; 0; 0 ]; % Initial currents
(t,i] = ode45(’symshort’ ,tspan,i0);

theta = w*t + d + pi/2;

id = i(:,1), iq = i(:,4), iF = i(:,2):

la = sqrt(2/3)*(id.*cos(theta) + iq.*sin(theta));
ib = sqrt(2/3)*(id.*cos(theta-2*pi/3)+ iq.*sin(theta-2+pi/3));
iec =

sqrt(2/3)=(id.*cos(theta+2+pi/3)+ iq.*sin(theta+2+pi/3));
figure(1), plot(t,ia), xlabel(’Time - sec.’), ylabel(’ia, A?)

title([’Three-phase short circuit ia, ’,’delta =’,num2str(d)])
figure(2), plot(t,ib), xlabel(’Time - sec.’), ylabel(’ib, A?)
title([’Three-phase short circuit ib, ?,’delta =',num2str(d)])
figure(3), plot(t,ic), xlabel(’Time - sec.’), ylabel(’ic, A’)
title([’Three-phase short circuit ic, ’,’delta =',num2str(d)])
figure(4), plot(t,iF), xlabel(’Time - sec.’), ylabel(’iF, A?)
title([’Three-phase short circuit iF,’,’delta = ’,num2str(d)])

Results of the simulations are shown in Figure 8.5.

Armature currents in the various phases vary with time in a rather complicated =
way. Analysis of the waveforms show that they consist of —

* A fundamental-frequency component.
¢ A dc component.

* A double-frequency component.

The fundamental-frequency component is symmetrical with respect to the
time axis. Its superposition on the dc component will give an unsymmetrical wave-
form. The degree of asymmetry depends upon the point of the voltage cycle at &8 3
which the short circuit takes place. The field current shown in Figure 8.5, like the ===
stator current, consists of dc and ac components, The ac component is decaying g
and is comprised of a fundamental and a second harmonic. The second harmonic g
components in the field current as well as the armature currents are relatively small =
and are usually neglected. Furthermore, in Section 8.7 we see that during short cir- =4
cuit, the effective reactance of the machine may be assumed only along the direct
axis and very simple models are obtained for power system fault studies and tran-
sient stability analysis. Before we obtain these simplified models, we consider the
unbalanced short circuit of synchronous machine.
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FIGURE 8.3
Balanced threz-rhzs2 short-circuit current waveforms,
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8.6 UNBALANCED SHORT CIRCUITS

Most frequent faults on synchronous machines are phase-to-phase and phase~to-
neutral short circuits. These unbalanced faults are most difficult to analyze. The
d-g-( model is not well suited for the study of unbalanced fault and requires further
transformation. The analytical solution becomes exceptionally complicated and at
the end of it all the solutions are still only approximate. In the numerical solution
the original voltage equations can be used without the need for any transforma-
tions. In the following section the machine equations are developed in direct-phase

quantities for simulation of the synchronous machine for the line-to-line and the
line-to-ground short circuits.

8.6.1 LINE-TO-LINE SHORT CIRCUIT

For a solid short circuit between phases a and b,

vb=vc:0

and

iy = —i

Stnee phase a is not involved in the short circuit and the generator is initially on &

no-load, ¢, = 0. thus
=i+ i +i.=0

and from (8.35), vo = 0. Substituting the above conditions into (8.15) and (8.16)
yields

vgsing — v, cqs& =0 (8.41)

ig = V2iysiné
iq = V2iycosf

Derivatives of the direct axis and the quadrature axis currents are

(ﬁd
dt
diy
dt

di

= ﬁ%sinﬁ%—ﬁwibcosﬂ
di

= v@fcosf)" V2 wiysin
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Substituting (8.42)—(8.45) into (8.36) and applying (8.41) to the first and fourth
equations in (8.36), the voltage equation for a line-10-line fault in direct-phase
quantities is obtained.

—
L
0 | =
0
V2kwME cos 6 TR 0 0 g
V2w Mp cos 8 ™D 0 0 iF
- V2kwhlgsin § 0 0 rQ in
| V2{r + w(Lg — Lg)]sin20 kwMpcosd kwMpcosd kwMgsind | L1 |
V2kMpsin 8 Lg Mp 0 Pt T
V2kMpsind Mg Lp 0 d | ir
- —V2kMgcost 0 0 Lo dt |ip
| V2(Lasin?6 + Lycos®8) kMpsing kMp smB —kMgq cos [ ig
(8.46)

This equation is in the state-space form and is written in compact form as (8.37).
The state derivatives is given by (8.38), which is suitable for numerical integration.

Example 8.3

The synchroneus generator in Problem 8.2 is operating at no-load with a constant
excitation voltage of 400 V. A line-to-line short circuit occurs between phases b and
¢ at the armature terminals. Use oded5 to simulate (8.46), and obtain the waveforms
for current in phase b and the field current. Assume the short circuit is applied at the
instant when the rotor direct axis is along the magnetic axis of phase g, i.e., § = 0.
Also, assume that the rotor speed remains constant at the synchronous value.

The dc field voltage is Vi = 400 V. The derivatives of the state equation given by
(8.38), together with the coefficient matrices in (8.46) are defined in a function file
named llshort.m which returns the state derivatives. The following file chp8ex3.m
uses oded5 to simulate the differential equation defined in lishort over the desired

interval. The current in phase b and the field current are determined and their plots
are shown in Figure 8.6.

= 400; xF = 0.4; iF0 = VF/rF;
f = 60; w = 2.+pixf;
d = 0; = d+pi/180;
t0o =0 ; tf:l.nal 0.80;

tspan = [tD, tfinall;
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io = (0; iFO; 0; 0:1: % Initial currents

[t,i] = ode45(’llshort’, tspan, iQ);

ib=i{:,1); iF=i{:,2);:

figure(1), plot(t,ib), xlabel{’t, sec’), ylabel(’ib, A’)

title([’Line-line short circuit ib, ’,’delta = ', num2str(d)])

figure(2), plot(t,iF), xlabel(’t, sec.’),ylabel(’'iF, A’)
title{[’Line-line short circuit iF, *,’delta = ’,num2str{d}])

% 10° Line-line short circuit#,, d =10
2~5 T T T T T 13 T

ibt 1

9T 02 03 o4 65 06 07

)'(103 Line-line short circuit ip, 4 =0
5‘0 L) T T T £y T 1

4.0y
iF 3.0
2.0

10

0 0.1 0.2 0.3 0.4 0.5 (1.6 0.7
¢, sec

FIGURE 8.5
Line-to-line short-circuit current waveforms.
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8.6.2 LINE-TO-GROUND SHORT CIRCUIT

For a solid short circuit between phases a and ground
v =10
and with the machine initially on no-load

1b=1c::0

A convenicnt way to obtain the voltage equation for line-to-ground short circuit is

to start with (8.4), 1.e., the machine voltage equation in direct phase quantities. Ap-
plying the short circuit condition 10 this equation and expressing the inductances in
terms of the more commonly d-¢-0 reactances, the following equation is obtained
for the line-to-ground fault on phase a.

0

— i.]‘!-‘ _
0 .
4] .
[r — 2wly,sin28 —wAlpsing —whMpsing wMgcosd ta
it M psin 8 Ty 0 0 ir
| —whAlpsind 0 D 0 ip | B47)
L wMQ cos 8 0 0 TQ iQ
[ Ly+Lymcos20 Mpcos8 Mpcosf Mgsind i
_ Mrpcos Lp Mg 0 d | iF
Mpcost Ay Lp 0 dt ip
ﬂlfQ sin & 0 1, LQ iQ
where
1
b= §(L0 + Lg + Lg) ’ (8.48)
1
= §(Lﬂ- - Lg) (8.49)

Equation (8.47) is in the state-space fonm and is written in compact form as (8.37).
The state derivatives is given by (8.38) which is suitable for numerical integration.

Example 8.4

The synchronous generator in Problem 8.2 is operating at no-load with a constant
excitation voltage of 400 V. A line-to-ground short circuit occurs on phase a of the
~armature terminals, Use odedS5 to simulate (8.47), and obtain the waveforms for the
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current in phase a and the field cument. Assume the short circuit is applied at the
instant when the rotor direct axis is along the magnetic axis of phase a, i.e., § = 0. 3
Also, assume that the rotor speed remains constant at the synchronous value.

The dc field voltage is Vi = 400 V. The derivative of the state equation :

given by (8.38), together with the coefficient matrices in (8.47), are defined in a 4
function file named Igshort.m which returns the state derivatives. The following §

file chp8ex4.m uses oded5 1o simulate the differential equation defined in Igshort ]
over the desired interval. The phase and the field currents are determined and their 4

plots are shown in Figure 8.7.

x10° Line-line short circuit i, d=20
I 0y T T T T T T
1 J
1,0.5 1 i}
Al ]
—-0.5} ]
,__1 L L 1 L I A 1 =
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 :
;<103 Line-ground short circuit ip, d=10
2.5} R
iF,
A 20F -
1.5 .
1‘0 1 1 Gy ) 1 A 3 L _._, 7
0 0.1 0.2 0.3 0.4 0.5 0.6 o7 0.8
t, sec
FIGURE 8.7

Line-to-ground short-circuit current waveforms,
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VF = 400; xF = 0.4; iFQ = VF/rF:;
f = 60; W = 2.%pi*f;
d =0; d = d*pi/180;

t0 = 0 ; tfinal = 0.80; tspan = {t0, tfinall;

i¢ = [0; iFQ; 0; 0;]: % Initial currents

tol = €.0001; % accuracy

ft,i] = ode45(’lgshort’, tspan, i0, tol);

ia=i{:,1); iF=i{:,2);.

figure(l), plot(t,ia), xlabel{’t, sec’), ylabel(’ia, A')
title([’Line-ground short c¢ircuit ia,?,’delta =’, num2str{d)])
figure(2), plot(t,iF), xlabel(’t, sec’), ylabel{’iF, A’)
title{{’Line-ground short circuit if,’,’delta = ’,num2str{d)])

"

A three-phase medel, which uses direct physical parameters, is well suited
for simulation on a computer, and it is not necessary to go through complex trans-
formations. The analysis can easily be extended to take the speed variation into
account by including the dynamic equations of the machine.

8.7 SIMPLIFIED MODELS OF SYNCHRONOUS
MACHINES FOR TRANSIENT ANALYSES

In Chapter 3, for steady-state operation, the generator was represented with a con-
stant emf behind a synchronous reactance X . For salient-pole rotor, because of the
nanuniformity of the air gap, the generator was medeled with direct axis reactance
X and the quadrature axis reactance X,. However, under short circuit conditions,
the circuit reactance is much greater than the resistance. Thus, the stator current
lags nearly w/2 radians behind the driving voltage, and the armature reaction mmf
is centered almost on the direct axis. Therefore, during short circuit, the effective
reactance of the machine may be assumed only along the direct axis.

The three-phase shost circuit waveform shown in Figure 8.5 shows that the
ac component of the armature current decays from a very high initial value to the
steady state value. This is because the machine reactance changes due to the effect
of the armature reaction. At the instant prior to short circuit, there is some flux on
the direct axis linking both stator and rotor, due only to rotor mmf if the machine is
on open cireuit, or due to the resultant of rotor and stator mmf if some stator current
is flowing. When there is a sudden increase of stator current on short circuit, the
fiux linking stator and rotor cannot change instantaneously due to eddy currents
fiowing in the rotor and damper circuits, which oppose this change. Since, the
stator mmf is unabie at first to establish any anmature reaction, the reactance of
armature reaction is negligible, and the initial reactance is very small and similar
in value to the leakage reactance. As the eddy current in the damper circuit and

_ eventually in the field circuit decays, the armature reaction is fully established. The
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armature reaction which is produced by a nearly zero power factor current provides
mostly demagnetizing effect and the machine reactance increases to the direct axis
synchronous reactance.

For purely qualitative purposes, a useful picture can be obtained by thinking
of the field and damper windings as the secondaries of a transformer whose primary
i5 the armature winding. During normal steady state conditions, there is no trans-
former action between stator and rotor windings of the synchronous machine as
the resultant field produced by the stator and rotor both revolve with the same syn-
chronous speed. This is similar to a transformer with open-circuited secondaries.’
For this condition, its primary may be described by the synchronous reactance X,
During disturbance, the rotor speed is no longer the same as that of the revolving
field produced by stator windings resulting in the transformer action. Thus, ﬁeld'___.-s £

and damper circuits resemble much more nearly as short-circuited secondaries. e

The equivalent circuit for this condition, referred to the stator side, is shown in
Figure 8.8. Ignoring winding resistances, the equivalent reactance of Figure 8.8,

Xy
e Y Y Y

VALAALS

Ay % Xia

P

% Xad
FIGURE 8.8
Equivalent circuit for the subtransient period.

known as the direct axis subtransient reactance, is

1 1 1 ;
Xi=Xe+(s—+ o+ )" 8.50
SRS TR (5.30)
If the damper winding resistance Ry is inserted in Figure 8.8 and the Thévenin’s
inductance seen at the terminals of R, is obtained, the circuit time constant, known
as the direct axis short circuit subtransient time constant, becomes

L -

Xiea + (5; + ;%f o
T4 =

Ry

In (8.51) reactances arc assumed in per unit and, therefore, they have the same
numerical values as inductances in per unit. For a 2-pole, turbo-alternators X
may be between 0.07 and 0.12 per unit, while for water-wheel alternators the range
may be 0.1 10 0.35 per unit. The direct axis subtransient reactance X is only used 3

(8.51)
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in calculations if the effect of the initial current is important, as for example, when
determining the circuit breaker short-circuit rating.

Typically, the damper circuit has relatively high resistance and the direct
axis short circuit subtransient time constant is very small, around 0.035 second.
Thus, this component of current decays quickly. It is then permissibie to ignore the
branch of the equivalent circuit which takes account of the damper windings, and
the equivalent circuit reduces to that of Figure 8.9.

X
e, R

ixad X,f

e

FIGURE 8.9

Equivalent circuit for the transient period.

Ignoring winding resistances, the equivalent reactance of Figure 8.9, known
as the direct axis short circuit transient reaciance, is

-1
1 1
X, = Xe+ + — (8.52)
4 Xoa X

If the field winding resistance R is inseried in Figure 8.9, and the Thévenin’s
inductance scen at the terminals of Ry is obtained, the ctrcuit time constant, known
as the direct axis short circuit transient time constant, becomes

Xr+(x+xg)"
Ry

The direct axis transient short circuit reactance X; may lie between 0.10 to 0.25
per unit. The short circuit transient time constant 75 is usually in order of 1 to 2
seconds. '

The field time constant which characterizes the decay of transients with the
armature open-circuited is called the direct axis open circuit transient time con-
stant, This is given by

- (8.53)

r_Xf

o= & - (854)

Typical values of the direct axis open circuit transient time constant are about 5
seconds. 7} is related to 7}, by

Te= =Ty (8.55)
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Finally, when the disturbance is altogether over, there will be no hunting of §

the rotor, and, hence there will not be any transformer action between the stator
and the rotor, and the circuit reduces to that of Figure 8.10.

Xe

FIGURE 8.10
Equivalent circuit for the steady state.

The equivalent reactance becomes the direct axis synchronous reactance, given by

mﬂwﬁ {4 -i;ii.ﬂ\p;ﬂ.u..-.a"duﬁ W b Dbl

T

Xq=X¢+ Xaq (®.56) 3 |

Similar equivalent circuits are obtained for reactances along the quadrature axis.
These reactances X', X, and X, may be considered for cases when the circuit re-
sistance results in a power factor apprecmblv above zero and the anmature reaction E

is not necessarily totally on the direct axis.

The fundamental-frequency component of armature current following the -

sudden application of a short circuit to the armature of an initially unloaded ma-
chine can be expressed as

. RS S NI A VTR O I
tac(t) = \/_EO[( o Xd)e t/ d+(‘5{3_3{‘;)e " JTXdJ ot} (8'57)5.

A typical symmetric trace of the short circuit waveform obtained for the data of
Example 8.5 is shown in Figure 8.11 (page 340).

It should be recalled that in the derivation of the above results, resistance was 3
neglected except in consideration of the time constant. In addition, in the above “mm—"
treatment the dc and the second harmonic components correspending to the decay 7o
of the trapped armature flux has been neglected. It should also be emphasized that=
the representation of the short-circuited paths of the damper windings and the solid =

iron rotor by a single equivalent damper circuit is an approximation to the actual __

situation. However, this approximation has been found to be quite valid in many
cases. The synchronous machine reactances and time constants are provided by the

manufacturers. These values can be obtained by a short circuit test described in the -

next section.

X o= 1.2;

8.7. SIMPLIFIED MODELS OF SYNCHRONOUS MACHINES FOR TRANSIENT ANALYSES 339

Example 8.5

A three-phase, 60-Hz synchronous machine is driven at constant synchronous speed
by a prime mover. The armature windings are initially open-circuited and field volt-
age is adjusted so that the armature terminal voltage is at the rated value (ie., 1.0
per unit), The machine has the following per unit reactances and time constants.

X1 =015 pu 74 = 0.035 sec
X, =0.40 pu Th = 1.0sec
Xd =1.20 pu

a) Determine the steady state, transient and subtransient short circuit currents,
b) Obtain the fundamental-frequency waveform of the armature current for a three-
phase short circuit at the terminals of the generator. Assume the short circuit is

applied at the instant when the rotor direct axis is along the magnetic axis of phase
a, ie,d =0

Eo 1.0 .
I{g = )L_’d = "'-2- = {3.8333 pu
i Eyg 1.0
s =
it vkl
»  Eo 10 _
d = 5m =p,15 — DoA0 P

To obtain the short ¢ircuit waveform, we write the following commands.

wl = 2%pi*60;

EQ = 1.0; delta = 0;
Xd2dash = 0.15;

Xddash = 0.4,

tau2dash = 0.035; taudash = 1.0;

t=0:1/(4*240):1.0;

iac = sqrt(2)+E0+*((1/Xd2dash-1/Xddash)*exp(-t/tau2dash)+...
(1/Xddash-1/Xd) *exp(-t/taudash) + 1/Xd}.*sin(w0*t + delta);
plot(t, iac), xlabel(’t, sec’), ylabel(’iac, A’)

end

The result is shown in Figure 8.11.

The trace is obtained up to 1 second. If the simulation period is extended to
about 57} = 5.0 seconds, the short circuit will reach to its steady state with a peak
value of Iy, = V2 Eo/ Xy = v2(1.0)/1.2 = 1.1785 per unit.
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) 0.2 0.4 0.6 0.8 1
i, sec

FIGURE &.11
The 60-Hz component of the shoni-cireuit current of a synchronous generator.

8.8 DC COMPONENTS OF STATOR CURRENTS

In the expression for the armature cument as given by (8.57), the unidirectional
transient component has not been taken into account. As seen from constderation
of the simple RL circuit of Figure 8.1, there will in general be a dc offset depending
on when the voltage is applied. Similarly, in the synchronous machine, the dc offset
component depend on the instantaneous value of the stator voltage at the time of
the short circuit. The rotor position is given by 8 = wt+3+ /2. The dc component
depends on the rotor position § when the shont circuit occurs at time ¢ = 0. The
time constant associated with the decay of the dc component of the stator current is
known as the armature short circuit time constant, T,. Most of the decay of the dc
component occurs during the subtransient period. For this reason the average value
of the direct axis and quadrature axis subtransient reactances is used for finding 7,.
It is approximately given by

" 1
I sl - (8.58)
TR,

Typical values of the armature short circuit time constant is around 0.05 to 0.17
second.

Since the three-phase voltages are each separated by 271/3 radians, the amaun
of the de component of the armature current is different in each phase and-depends

upon the point of the voltage cycle at which the short circuit occurs. The dc com- -
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ponent for phase a is given by

= ﬁﬁ?; sind e~ (8.59)
Xd

The superposition of the dc component on the fundamental frequency component
will give an asymmetrical waveform.

]. —tir" 1 1 o ¥ 1 .
1asy(t) = \‘/_EO [(X” == X_:i) e + (-5(-3; = E) [4 t/7q + Td] 51n(9t -+ 5)

+\/§§;—, 5in 56_”1-“ (860)
The degree of asymmetry depends upon the point of the voltage cycle at which the
fault takes place. The worst possible transient condition is § = # /2. The maximum
possible initial magnitude of the dc compenent is

. Ey '
Idc(mnx} = \/5 }:'f (36])

Therefore, the maximum rms current (ac plus dc) at the beginning of the shon
circuit is

Bt IR Vi (iﬂ) (f E°) (8.62)
from which
Fig =3 f;“ (8.63)
= V31§

In practice, the momentary duty of a circuit breaker is given in terms of the asym-
metrical short circuit current.

Example 8.6

For the machine in Example 8.5, assume that a three-phase short circuit is applied
at the instant when the rotor quadrature axis is along the magnetic axis of phase a,
1.e., § = w/2 radians. Obtain the asymmetrical waveform of the armature current
for phase a. The armature short circuit time constant is 7, = 0.15 sec.

In the MATLAB program of Example 8.5, we make & = 7 /2 and use (8.60) in place

of the 7,4, statement. Running this example results in the waveform shown in Figure
8.12,
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20 . :

15

10

Tasy,

t, sec
FIGURE 8.12

Synchronous gencrator asymenetrical short-cireuit current & = n/2.

8.9 DETERMINATION OF TRANSIENT CONSTANTS

A sudden three-phase short circuit is applied to the terminals of an unioaded gener-
ator and the oscillogram of the current in one phase is obtained. The test is repeated
untit a symmetric waveform is obtained which does not contain the dc offset. This
occurs when the voltage is near maximum at the instant of fault, The machine
reactances X7, X}, and Xy arid the time constants 7y and 7 are determined by
analyzing the oscillogram waveform as follow,

The waveform is divided into three periods: the subtransient period, lasting
anly for the first two cycles, during which the current decrement is very rapid;
the transient period, covering a refatively longer time, during which the current
decrement is more moderate; and finally, the steady state period.

The no-load generated voltage Ey is obtained by measuring the phase volt-
age and expressing it in per unit. The direct axis synchronous reactance Xy is
determined from the part of the oscillogram where the envelope of the current has
become constant. Denoting this amplitude with 14, oy the 1ms value of the steady

short circuitis Iy = Iy ./ V2. From this the direct axis synchronous reactance
is found .

=5,
The peak steady short circuit current is subtracted from two points after approx-

imately the 10th cycle where the subtransient component has decayed. Dividing
these values by /2 results in the following term :

Xg

(8.64) )

I S
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1.0}

In Ax,
p-u.

0.5F

0

0 0005 00L 0015 002 0025 007 0035 001 0045
t, sec

FIGURE 8.13
Current difference logarithm, In Ai’ and In Ai".

A = (I} — Ipe '
or
A =In{ly - Iay — t/4),
= —m't

If the points given by In At’ are plotted against a lincar time scale, a straight line
is obtained with y-intercept ¢ = In{I; — I} and slope —m’, as shown in Figure
8.13. The rms transient compoenent of current is obtained from

Ij=e +1 (8.65)
Transient reactance and time constan! are then obtained 'by
Xg= ?'—f (8.66)
d
and
! 1 .
= (8.67)

To find the subtransient components, the peak current of the first two cycles
are divided by +/2. Subtracting the steady short circuit current and the rms transient
currents found earlier from these points results in

A‘i": (Ig_I:t)e—r ..;,
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or
In A" = In{I] — 1) — t/7}
i H
=c —m't

If the points given by In Ai” are plotted against a linear time scale, a straight line is
obtained with.y-intercept ¢” = In{IJ — 1) and slope —m”, shown in Figure 8.13,
The rms subtransient component of current is given by

o= g 1, (8.68) -

Subtransient reactance and time constant are

E
X =2 (8.69)
Id
and
Ho_ 1 '

The above procedure is demonstrated in the following example.

Example 8.7

A threg-phase, 60-He synchronous machine is driven at constant synchronous speed
by & prime mover. The armature windings are initially open-circuited and field volt-
age is adjusted so that the armature terminal voltage is at the rated value (ie.. 1.0
per unit). The generator is suddenly subjected to a symmetrical three-phase short
circuit at the instant when direct axis is along the magnetic axis of phase q, i.e.,
¢ = 0. An oscillogram of the short-circuited current is obtained. The peak values
at the first two cycles, at the 20th and 21st cycles, and the steady value after a long
time were recorded as tabulated in the following table.

87569 6.7363 --.
0.0042 0.0208

28893 2.8608
03208 0.3375

Imaz, pu
Time, sec

1785
5.0000 |

Determine the transient and the subtransient reactances and time constants.

The following statements are written with reference to the above procedure,

EQ = 1. 0; :
Iw={8.7569 6.7363 2.8893 2.8608 1. 1788] ;
t=[0.0042 0.0208 0.3208 0©.3375 5.0000];
I = In/sqre(2); % The rms value of the above envelope
14=1(5);

% rms value of the steady short circuit
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Dr2=f£(3) t(4)]; % Time for 20th and 2ist cycles
Di2={I1(3)-id 1(4)-id];%Diff. between transient envelope and id
LDi2= log(Di2); #Natural log of the above two points
c2=polyfit(Dt2, LDi2, 1);
4Finds coefficients of a lst-order polyncmial
% i.e. the slope and intercept of a straight line
iddash=(exp(c2(2))+id) % rms value of the transient current
Xddash=E0/iddash % Direct axis transient reactance
taudash=abs{1/¢2(1)) Y%Direct axis sc transient time constant
Di=(iddash~-id)*{exp{(-t(1}/taudash) exp{(-t(2)/taudash)] ;
Dil={I(1)-Di(1)-id I(2)-Di{2)-id}; ¥ Subtransient envelope
LDil=log(Dil)};
Dtl =[t{1) t(2)};
cl=polyfit(Dt1, Lbil, 1);
#Finds coefficients of a lst-order pelynomial
% i.e. the slope and intercept of a straight line

% Natural log of the first twe points

id2dash=exp(c1(2))+iddash Yrms value of subtransient current
Xd2dash= EO/idZdash % Direct axis subtransient reactance
tau2dash=abs(1/c1(1))% direct axis sc subtransient time const.

t=0:.005:.045; ;

fit2 = polyval(c2, t); % line C2 evaluated for all values of t
fitl = polyval(cl, t); % line Cl evaluated for all values of t
plot(t, fitl, t, fit2),grid % Logarithmic plot of id’’ and id’
ylabel(*in(I} pu’ ) % intercepts are 1n(Id’’) and 1ln(Id?)
xlabel(’t, sec!) /slopes are reciprocal of time comstants

The result is

I} =2.5038 pu
I} = 6.6728 pu

X} =0.3994; pu
Xj =0.149%; pu

7y =0.9941 sec
74 = 0.0348 sec
Example 8.8

A 100-MVA, 13.8-kV, 60-Hz, Y-connected, three-phase synchronous generator is
connected to a 13.8-kV/220-kV, 100-MVA, A-Y connected transformer. The reac-
tances in per unit to the machine’s own base are

Xg=10pu X;=025pu X;=0.12pu

and its time constants are
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Ta=025sec 75 =04sec 15=11pu

The transformer reactance is 0.20 per unit on the same base. The generator is op-

erating at the rated voltage and no-load when a three-phase fault occurs at the'§
secondary terminals of the transformer as shown in Figure B.14.

F i W )
) E
13.8/220 kV

138 kV C:) X |

FIGURE 8.14
One-line diagram for Example §.8.

(a) Find the subtransient, transient, and the steady state short circuit currents in per |
unit and actual amperes on both sides of the transformer.

(b) What is the maximum rms current (ac plus dc) at the beginning of the fault?
{c) Obtain the instantancous expression for the short circuit cument including the |
dc component. Assume 8 = /2 radians.

(a) The base current on the generator side is

Sy 100 x 107

Ip = = =4184 A
T BVe V3138
The base current on the secondary side of the transformer is
Igp2 = . 8(4184;) = 2624 A
220 _
the subtransient, transient and the steady state shon circuit currents are
1.0 :
M = 3.125pu=13,075 A on the generator side
47 012+02 pu 8
=820A on the 220-kV side
= _ 0 _om pu = 9,288.5 A on the generator side
0.25+0.2
=582.5A onthe 220-kV side
1.0

Jg=——_ =(.833 pu=3,486.6 A on the generator side
4= Tgoy02 08 &
= 218.6 A on the 220-kV side
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(b} The maximum rms current (ac plus dc) at the beginning of the fault is
Iusy = V3I] = v3(3.125) = 54 pu = 22,646 A on the generator side

{c) The instantaneous short circuit current including the dc component from (8.60),
ford =w/2is

i(t)= V2

or

I —19)e™ 0+ (1= L)e ™M 4 1| sin(877¢ + m/2) + V2T e~t/025

ity = (1.28¢7%5 4+ 1.96e™ %M + 1.18]sin(377¢ + 7/2) + 4.42"% pu

Use MATLAR to obtain a plot of i(t).

8.10 EFFECT OF LOAD CURRENT

If the fault occurs when the generator is delivering a prefault load current, two
methods might be used in the solution of three-phase symmetrical fault currents.

(a) Use of internal voltages behind reactances

When there 1s a prefault load current, three fictitious internal voltages E”, E’,
and 1% may be considered to be effective during the subtransient, transient, and
the steady state periods, respectively. These voltages are known as the voliage be-
hind subtransient reactance, voltage behind transient reactance, and voltage be-
hind synchronous reactance. Consider the one-line diagram of a loaded generator

shown in Figure 8.15(a). The internal voltages shown by the phasor diagram in
Figure 8.15(b) are given by

jX
iXg
E" iXe
oy
E
(a)
FIGURE 8.15

{2) One-line diagram of a loaded generator, (b} phasor diagram.
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E" =V 4+ jX4I, @.71))
E =V+jx,1,

E=V+iX1,;
Example 8.9

In Example 8.8, a three- -phase load of 100 MVA, 0.8 power factor lagging is con- |
nected to the transformer secondary side as shown in Figure 8.16. The line-to-line :
voltage at the load terminals is 220 kV. A three- phase short circuit occurs at the’
toad terminats. Find the generator transient current including the load current.

-
C

13.8/220 kv

X

FIGURE 8.16
One-line diagran for Example 8.9.

The load may be represented by a per unit impedance as shown in Figure 8.16.
100/36.87°

St = T 1/36.87° pu
220
= — 1 a
Vv 2% £0° pu
v 1 :
Z =0.8 .6
=5 ST e rale
Before fault, the load current is
' 1% 1.0/0° e
I =—=-_""""" = O - 06 = 1["’36-87“ u
L=, T 0sxj06 08I 4

The emf behind transient reactance is
E=V+ X + X1y

= 1.0£0° + §(0.25 + 0.2)(0.8 — j0.6) = 127+_7036 = 1.32/15.83° pu '
When the fault is applied by closing switch S, the generator short circuit transicnt ; :

current is
1.32115.83"

E»"
Iy =< = = 0.8 — j2.822 = 2.93/~74.17° pu
P X, T X)) jost0g) 0842 P
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b) Using Thévenin’s theorem and superposition with load current
( E perp

The fault current is found in the absence of the load by obtaining the Thévenin’s
equivalent circuit to the point of fault. The total short circuit current is then given
by superimposing the fault current with the load current.

Exampie 8.10
Find the generator transient current in Problem 8.9 using Thévenin’s method.
The one-line diagram of Example 8.10 without the load is shown i in Figure

8.17(a). The circuit for the Thévenin’s equivalent impedance with respect to the
point of fault is shown in Figure 8.17(b). The Thévenin’s voltage is the prefault

SR 1

MIGEE; 025 02

(ORI

o |
o

(a) L))

FIGURE 8.17

{a} One-line diagram for Example §.10 without the load and (b) Thévenin's equivalent imgpedance to
the point of fault.

terminal voltage, i.e.,

and the Thévenin's impedance is

Zn = 7(0.25 + 0.2) = j0.45
The fault contribution is

oo Y _ Lo
T Zy 4045

Now superimpesing the load current with the fank current results in

= —j2.222 pu

I,=I;+ I, =~j2.222 + (0.8 — j0.6) = 0.8 — j2.822 = 2.93/—74.17° pu

which checks with the result in Example 8.9.
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PROBLEMS

8.1.

8.2,

8.3.

8.4,

8.5.

8.6.

8. SYNCHRONOUS MACHINE TRANSIENT ANALYSIS

A sinusoidal voltage given by v(t) = 390sin(315¢t + c) is suddenly applied
to aseries RL circuit. R =32 Qand L = 0.4 H.

(2) The switch is closed at such a time as to permit no transient current. What
value of & corresponds to this instant of closing the switch? Obtain the in-
Stantancous expression for (t). Use MATLAB 1o plot i(t) up to 80 ms in
steps of 0.01 ms,

{b) The switch is closed at such a time as to permit maximum transient cur-
reni, What value of a corresponds to this instant of closing the switch? Ob-
tain the instantaneous expression for i(t). Use MATLAB 10 plot i(t) up to 80
ms in steps of 0.01 ms.

{c) What is the maximum vz_liue of current in part (b) and at what time does
this occur after the switch is closed?

Consider the synchronous generator in Example 8.2. A three-phase short cir-
cuit is applied at the instant when the rotor direct axis position is at § = 30°,
Use oded5 to simulate (8.36), and obtain and plot the transient waveforms
for the current in each phase and the field current.

Consider the synchronous generator in Example 8.2. A line-to-line short cir-
cuit occurs between phases b and ¢ at the instant when the rotor direct axis
position is at § = 30°. Use oded5 to simulate (8.46), and obtain the transient
waveforms for the current in phase & and the field current,

Consider a fine-to-ground short circuit between phase @ and ground in a syn-
chronous generator. Apply the short circuit conditions

to the voltage equation of the synchronous machine given by (8.4), Substitute :
for all the flux linkages in terms of the inductances given by (8.9)—(8.13} and
verify Equation (8.47). :

Consider the synchronous generator in Example 8.2. A line-to-ground short
circuit occurs between phase a and ground at the instant when the rotor direct
axis position is at § = 30°. Use oded5 to simulate (8.47), and obtain the
transient waveforms for the current in phase a and the field current.

A three-phase, 60-Hz synchronous machine is driven at constant synchronous
speed by a prime mover. The armature windings are initially open-circuited
and field voltage is adjusted so that the armature terminal voltage is at the

8.7.

3.8,

8.9,
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rated value (.., 1.0 per unit), The machine has the following per unit reac-
tances and time constants.

X7 =025pu 7 = 0.04 sec

X, =045 pu 74 = ldsec

Xg =150 pu .

(a) Determine the steady state, transient, and subtransient short circuit cur-
rents.

(b} Obtain and plot the fundamental-frequency waveform of the armature
current for a three-phase short circuit at the terminals of the generator. As-
sume the short circuit is applied at the instant when the rotor direct axis is
along the magnetic axis of phase a, i.e., d = 0. '

For the machine in Problem 8.6, assume that a three-phase short circuit is
apptied at the instant when the rotor quadrature axis is along the magnetic
axis of phase g, ie., § = m/2 radians. Obtain and plot the asymmetrical
waveform of the armature current for phase a. The armature short circuit
time constant is 7, = (.3 sec.

A three-phase, 60-Hz synchronous machine is driven at constant synchronous
speed by & prime mover. The armature windings are initially open-circuited
and field voltage is adjusted so that the armature terminal voltage is at the
rated value {i.e., 1.0 per unit). The generator is suddenly subjected to a svm-
metrical three-phase short circuit at the instant when direct axis is along the
magnetic axis of phase @, i.e., § = 0. An oscillogram of the short-circuited
current is obtained. The peak values at the first two cycles, at the 20th and
21st cycles, and the steady value after a long time were recorded as tabulated
in the following table.

54016 4.6037
0.0042 0.0208

26930 2.6720
03208 0.3375

0.9445
10.004

finex, pu
Time, sec

Determine the transient and the subtransient reactances and time constants. -

A 100-MVA, three-phase, 60-Hz generator driven at constant speed has the
following per unit reactances and time constants '

X7 =020 pu 74 = 0.04 sec
X; =030 pu 74 = 1.0 sec
Xe =1.20pu 7o = 0.25 sec

The armature windings are initially open-circuited and field voltage is ad-
justed so that the armature terminal voltage is at the rated value (ie., 1.0
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8.10.

8.11

8.12.

per unit). The generator is suddenly subjected to a symmetrical three-phase
short circuit at the instant when § = #/2. Obtain and plot the asymmetrica] 3
waveform of the armature cuirent for phase a. Determine 3

(a) The rms value of the ac component in phase a at ¢ = 0.
(b) The dc component of the current in phase a at ¢t = 0.
(¢) The rms value of the asymmetrical current in phasecatt = 0.

A 100-MVA, 20-kV, 60-Hz three-phase synchronous generator is connected
to a 100-MVA, 20/400 kV three-phase transformer. The machine has the fol
lowing per unit reactances and time constants.

X{=0.15pu 7y = 0.035 sec
X3 =0.25pu Ty = 0.50 sec.
Xa =125pu 74 = 0.3 sec

The transformer reactance is 0.25 per unit. The generator is operating at the .3
rated voltage and no-load when a three-phase short circuit occurs at the sec
ondary terminals of the transformer.
(a) Find the subtransient, transient, and the steady state short circuit currents
in per unit and actual amperes on both sides of the transformer. "
{b) What is the maximum asymmetrical rms current (ac plus dc) at the be-
ginning of the short circuit? :
(<) Obtain and plot the instantaneous expression for the short circuit current -
including the dc component. Assume & = 7 /2 radians.

In Problem 8.10, a three-phase load of 80-MVA, 0.8 power factor lagging
is connected to the transformer secondary side. The line-to-line voltage at
the toad terminals is 400 kV. A three-phase short circuit occurs at the load -
terminals. Find the generator transient current including the load current.

A 100-MVA, 20-kV synchronous generator is connected through a transmis-
sion line to a 100-MVA, 20-kV synchronous motor. The per unit transient
reactances of the generator and motor are 0.25 and 0.20, respectively. The
line reactance on the base of 100 MVA is 0.1 per unit. The motor is taking
50 MW at 0.8 power factor leading at a terminal voltage of 20 kV. A three-
phase short circuit occurs at the generator terminals. Determine the transient
currents in each of the two machines and in the short circuit.

CHAPTER

9

BALANCED FAULT

9.1 INTRODUCTION

Fault studies form an important part of power system analysis. The problem con-
sists of determining bus voltages and line currents during various types of faults.
Faults on power systems are divided into three-phase balanced faults and unbal-
anced faults. Different types of unbalanced faults are single line-to-ground fauls,
line-to-line fault, and double line-to-ground fault, which are dealt with in Chapter
10. The information gained from fault studies are used for proper relay setting and
coordination. The three-phase balanced fault information is used to select and set
phase relays, while the line-to-ground fault is used for ground relays. Fault studies
are also used to obtain the rating of the protective switchgears.

The magnitude of the fault currents depends on the internal impedance of the
generators plus the impedance of the intervening circuit. We have seen in Chapter
8 that the reactance of a generator under short circuit condition is not constant.
For the purpose of fault studies, the generator behavior can be divided into three
periods: the subtransient period, lasting only for the first few cycles: the transienr
period, covering a relatively longer time; and, finally, the steady state period. In
this chapter, three-phase balanced faults are discussed. The bus impedance ma-
trix by the building algorithm is formulated and is employed for the systematic
computation of bus voltages and line currents during the fault. Two functions are
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developed for the formation of the bus impedance matrix. These function are Zbuyg 3

= zbuild(zdata) and Zbus = zbuildpi(linedata, gendata, yload). The latter one”

is compatible with power flow input/output files

- A program named symfault

developed for systematic computation of three-phase balanced faults for a largc-

interconnected power system.

9.2 BALANCED THREE-PHASE FAULT -

This type of fault is defined as the simultaneous short circuit across all three phases.

It occurs infrequently, but it is the most severe type of fault encountered. Becausa =
the network is balanced, it is solved on a per-phase basis. The other two phases

carry identical currents except for the phase shift.

In Chapter 8 it was shown that the reactance of the synchronous generator 3

under short-circuit conditions is a time-varying q
three reactances were defined. The subtransient

uantity, and for network analysis
reactance X, for the first few

cycles of the short circuit current, transient reactance X, for the next (say) 30
cycles, and the synchronous reactance X d» thereafter. Since the duration of the
short circuit current depends on the time of operation of the protective system, it

is not always easy to decide which reactance to

use, Generally, the subtransient -
reactance is used for determining the interrupting capacity of the circuit breakers.

In fault studies required for relay setting and coordination, transient reactance is
used. Also, in typical transient stability studies, transient reactance is used.

A fault represents a structural network change equivalent with that caused by & 3
the addition of an impedance at the place of fault. If the fault impedance is zero, -
the fault is referred to as the bolred faul: or the solid fault, The faulted network can 3

be solved conveniently by the Thévenin’s method. The procedure is demonstrated

in the following example.

Example 9.1

The one-line diagram of a simple three-bus power system is shown in Figure -

9.1. Each generator is represented by an emf be

hind the transient reactance. All

impedances are expressed in per unit on a common 100 MVA base, and for sim-
plicity, resistances are neglected. The following assumptions are made.

(¢} Shunt capacitances are neglected and the
(if) All generators are running at their rated
their emfs in phase, '

system is considered on no-load.
voltage and rated frequency with

Determine the fault current, the bus voltages, and the line currents during the
fanlt when a balanced three-phase fault with a fault impedance Z; = 0.16 per unit

accurs on
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(a) Bus 3.
(b} Bus 2.
(c) Bus 1.

FIGURE 8.1
The impedance diagram of a simple power system.

The fault is simulated by switching on an impedance Z; at bus 3 as shown
in Figure 9.2(a). Thévenin's theorem states that the changes in the network volF-
age caused by the added branch {the fault impedance) shown in Figure 9.2(a) is
equivalent to those caused by the added voltage V3{() with ali other sources short-
circuited as shown in Figure 9.2(b).

FIGURE $.2
(a) The impedance network for fault a1 bus 3, (b) Thévenin's equivalent network.
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(a) From 9.2(b), the fault cumrent at bus 3 is

V3(0)
I =
3(F) Tt 2

where V3(0} is the Thévenin’s voltage or the prefault bus voltage. The prefault bus
voltage can be obtained from the results of the power flow solution. In this example, 11- :
since the loads are neglected and generator’s emfs are assumed equal to the rated 3

value, ali the prefault bus voltages are equal to 1.0 per unit, i.c.,
Vi(0) = V4(0) = V3(0) = 1.0 pu

£33 is the Thévenin's impedance viewed from the faulted bus.

To find the Thévenin’s impedance, we convert the A formed by buses 123 to
an equivalent Y as shown in Figure 9.3(a).

il

j0.24
_-1':_
0.1 3 Z3a = j0.34
A
3 = 31~
BF){(E) Ven L(F) (5 Van
40.16 Ejo.lﬁ
o = © =

FIGURE 9.3
Reduction of Thévenin's equivalent network,

(j0.4)(j0.8) _ . (40.4)(j0.4)
Z = Z sEirar— = = = e—.
ls 23 jl.ﬁ JO 2 Z3s 1.6
Combining the parallel branches, Thévenin’s impedance is

(j0.4)(j0.6) .
T = HSRT :
B = Soa+j06 TI01

= j0.24 + 0.1 = j0.34
From Figure 9.3(c), the fault current is

Va(F) 1.0 _
Zss+ 25 j0.34+ 3016

= 0.1

L{F)=

—-372.0 pu

it bl b B bl o 0
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With reference to Figure 9.3(a), the current divisions between the two generators
are

0.6 .

Ioi = — 12 __[L(F)=—-j12 pu
Gl 704+ 706 3(F) 3 4
T = RS pu

©27 504+ 406 ° '

For the bus voltage changes from Figure 9.3(b), we get

AV, =0-(50.2)(—51.2) = —-024 pu
AVy =0- (j0.4)(-j0.8) = —0.32 pu
AV = (j0.16)(—42) — 1.0 = —-0.68 pu
The bus voltages during the fault are obtained by superpesition of the prefault

bus voltages and the changes in the bus voltages caused by the equivalent emf
connected to the faulted bus, as shown in Figure 9.2(b), i.e.,

WIFY=VI(0)+ AV, =1.0-024 =076 pu

Vo(F) = Vo{0) + AV =1.0-0.32 =0.68 pu

Vi{F)=V3(0) + AV3 =1.0-068=0.32 pu
The short circuit-currents in the lines are

_ Vi(F) - Vu(F) _ 0.76 — 0.68

Iiy(F) = 038 =-j0.1 pu
Vi(F) - Va{F)  0.76 — 0.32 A

13(F) = i }213 a(F) _ - = L i
Vo(F) — Va(F)  0.68 — 0.32 .

In(F) = 2 )223 alF) _ i ~j0.9 pu

(b} The fault with impedance Z; at bus 2 is depicted in Figure 9.4(a), and its
Thévenin's equivalent circuit is shown in Figure 9.4(b). To find the Thévenin's
impedance, we combine the parailel branches in Figure 9.4(b). Also, combining
parallel branches from ground to bus 2 in Figure 9.5(a), results in

» = (70.6){70.4) _
§0.6 + j0.4
From Figure 9.5(b), the fault current is

@ 1w
bk =3, +2Z;  j0.24+40.16

§0.24

—~32.5 pu
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The bus voltages during the fault are obtained by superposition of the prefauit
bus voltages and the changes in the bus voltages caused by the equivalent emf
connected to the faulted bus, as shown in Figure 9.4(b), i.e,

Vi(F) = Vi{0) + AV; =1.0-02=08 pu
Vo(F) = Va(0) + AVy = 1.0 - 0.6 = 0.4 pu
Vi(FY)=Va(0) + AV3=10-04=06 pu

The short circuit-currents in the lines are

VI{F} — Wo(F 0.8 -04
_ = Ia{(F) = )= Voll) . = —3j0.5 pu
FIGURE 9.4 z12 jo-8
(a) The impedance aetwork for fault at bus 2, (b) Thévenin's equivalent network. Ha(F) = Vithl - k) = Slm L =-3505 pu
_ Z13 704 '
T V3{(F} - W3{F) 0.6-04
I5n(F) = AE) -, - = ~j0.5 pu
§0.24 z32 jo4
_ 2 {¢)} The fault with impedance Z; at bus 1 is depicted in Figure 9.6(a), and its
A Thévenin’s equivalent circuit is shown in Figure 9.6(b)._
L(F )l
Zy = j0.16

(b) =
FIGURE 9.5 |
Reduction of Thévenin's equivalent network.

With refererice to Figure 9.5(a), the current divisions between the generators are

0.4 _

T = 2 R s

1= Gatj062F)=-710 pu
0.6 ,

Igs = —1— __L(F)=—-j1.

2= 507 706 2(F} = —j1.5 pu

For the bus voltage changes from Figure 9.4(a), we get

FIGURE 2.6
(a} The impedance network for fault at bus 1. (b) Thévenin’s equivalent network.

AV =0~ (j0.2)(—51.0) = -0.2 pu
AV = 0- (j0.4)(—j1.5) = —0.6 pu

-51.0

To find the Thévenin's impedance, we combine the parallel branches in Figure
AVy = —0.2 - (jo.4)(——)=—-04 pu

2 9.6(b). Also, combining parallel branches from ground to bus 1 in Figure 9.7(a),
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FIGURE 9.7
Reduction of Thévenin's equivalent network.

results in

7o _ UB2)(08) _

= = j0.16
1= %02 +j08 7
From Figure 9.7¢b), the fault current is
wnio 1.0
n(F) = 1{0) = —j3.125 pu

Zu+2Z; 016+ 0.16

With reference to Figure 9.7(a), the current divisions between the two generators
are '

0.8 .
Jon = 398 Py = —050
G1= j02+;508 o(F) = -j250 pu
0.2 A
=535 708 2(F) 70.625 pu

For the bus voltage changes from Figure 9.6(b), we get

AV, =0 - (j0.2)(—42.5) = —0.50 pu
AV, = 0 — (j0.4)(—j0.625) = —0.25 pu

—30.625 st fj

AV3 =—-0.5 + (}04)(—5—) = ~0.375 Pu

Bus voltages during the fault are obtained by superposition of the prefault bus volt- ~——-
ages and the changes in the bus voltages caused by the equivalent emf connected
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to the faulted bus, as shown in Figure 9.6(b), i.c.,.

Vi(F) =Vi(0) + AV; =1.0-050= 0.50 pu
Va(F) = V3(0) + AVa =10-025= 075 pu
Va(F) = V3(0) + AVs = 1.0 — 0.375 = 0.625 pu

The short-circuit currents in the lines are

I (FY = Va(F} = Vi{F) ='o_75 - 05

e 08 = —j0.3125 pu
Vi{F} - WV (F 0.625 — 0.5
L (F) = a{ }231 1(F) _ v = —50.3125 pu
W{F) - Vs(F 0.75 — 0.625
In(F) = 2 )223 31F) . G2 = 03125 pu

In the above example the load currents were neglected and all prefault bus
voliages were assumed (o be equal to 1.0 per unit. For more accurate calculation,
the prefault bus voltages can be obtained from the power flow solution. As we have
seen in Chapter 6, in a power system, loads are specified and the load currents are
unknown. One way to include the effects of load currents in the fault analysis is to
express the loads by a constant impedance evaluated at the prefault bus voliages.
This is a very good approximation which results in linear nodal equations. The
procedure is summarized in the following steps.

The prefault bus voltage's are obtained from the resulis of the power flow
solution.

o In order to preserve the linearity feature of the network, loads are converted
to constant admittances using the prefault bus voltages.

* a The faulted network is reduced into a Thévenin's equivalent circuit as viewed

. from the faulted bus. Applying Thévenin’s theotem, changes in the bus volt-
ages are obtained,

o Bus voltages during the fault are obtained by superposition of the prefault
bus voltages and the changes in the bus voltages computed in the previous
step.

o The currents during the fault in all branches of the network are then obtained.
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9.3 SHORT-CIRCUIT CAPACITY (SCC)

o Ml d o 1 - b

The short-circuit capacity at a bus is a common measure of the strength of a bus.
The short-circuit capacity or the short-circuit MVA at bus X 1s defined as the prod
uct of the magnitudes of the rated bus voltage and the fault current. The short-
circuit MVA is used for determining the dimension of a bus bar, and the inzerrupt-
ing capacity of a circuit breaker. The interrupting capacity is only one of many
ratings of a circuit breaker and should not be confused with the momentary duty of
the breaker described in (8.63).

Based on the above definition, the short-circuit capacity or the short-circuit
MVA at bus & is given by

SCC = V3V I (F) x 107 MVA 9.1)

where the line-to-line voltage V. is expressed in kilovolts and . (F) is expressed
in amperes. The symmetrical three-phase fault current in per unit is given by
Vi (0)
Kix

Ik(F)pu — (9.2)
where Vi.(0) is the per unit prefault bus voltage, and Xy, is the per unit reactance to
the point of fault. System resistance is neglected and only the inductive reactance
of the system is allowed for. This gives minimum system impedance and maximum 3
fault current and a pessimistic answer. The base current is given by

SB X 103
IH:. 7—_——
3V

where Sp is the base MVA and Vj is the line-to-line base voltage in kilovolts.
Thus, the fault current in amperes is

(9.3)

L(F) = I(F)puls

_ VL(O) SB x 103 (94)
X V3Ve P

Substituting for I;.(F) from (9.4) into (9.1) results in

Vi(0)Ss Vi

SCC =
X Va

If the base voltage is equal to the rated voltage, ie., VL = Vp

Vi{0)Ss

SCC =
Xk
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The prefault bus voitage is usually assumed to be 1.0 per unit, and we therefore

obtain from (9.6} the following approximate formula for the short-circuit capacity
ot the short-circuit MVA.

SCC= 2= MVA

9.7
kk

9.4 SYSTEMATIC FAULT ANALYSIS
USING BUS IMPEDANCE MATRIX

The network reduction used in the preceding example is not efficient and is not
applicable to large networks. In this section a more general fault circuit analysis
using nodal method is obtained, We see that by utilizing the elements of the bus
impedance matrix, the fault cumrent as well as the bus voltages during fault are
readily and easily calculated.

Consider a typical bus of an n-bus power system network as shown in Fig-
ure 9.8, The system is assumed to be operating under balanced condition and a
per phase circuit model is used. Each machine is represented by a constant voltage
source behind proper reactances which may be X[, X}, or Xg. Transmission lines
are represented by their equivalent = model and all impedances are expressed in
per unit on a common MVA base. A balanced three-phase fault is to be applied at
bus k through a fault impedance Zy. The prefault bus voltages-are obtained from
the power flow solution and are represented by the column vector

o

l

. -

:

|

o |

Sk %
o '
Z5
FIGURE 9.8

A typical bus of a power system. -
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Vb‘ua (0) =

As already mentioned, short circuit currents are so much larger than the steady:
state values that we may neglect the latter. However, a good approximation is to

represent the bus load by a constant impedance evatuated at the prefault bus volt-
age, i.e., '

=5 9.9)

Thc‘ changes in the network voltage caused by the fault with impedance Z; is
equivalent to those caused by the added voltage V. (0) with all other sources short-
circuited. Zeroing all voltage sources and representing all components and loads
by their appropriate impedances, we obtain the Thévenin's circuit shown in Figure

9.9. The bus voltage changes caused by the fault in this circuit are represented by
the column vector

[ AV,
AV, = | AV, (9.10} :
| av, |
,i i s
1) Y Y . : i
I k
FEJ Ven = Vi(0)
YARA®
; e = 'l‘ l Ik(F)
Zy
FIGURE 99
A typical bus of a power system,
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From Thévenin's theorem bus voltages during the fault are obtained by superposi-
tion of the prefault bus voltages and the changes in the bus voltages given by

vbus(F) = Vb‘us(o) + Avfms (911)

In Section 6.2, we obtained the node-voltage equation for an n-bus network. The
injected bus currents are expressed in terms of the bus voltages (with bus 0 as
reference), i.e.,

Eous = Yous Vins (9.12)
where Iy, 1s the bus current vector entering the bus and Y, is the bus admittance
matrix. The diagonal element of each bus is the sum of admittances connected to
it, i.e., ;

m
Y= Y J#i (9.13)
=0
The off-diagonal element is equal to the negative of the admittance between the
buses, i.e.,

Yii=Yhu= -y, (9.14)
where y;; (lower case) is the actual admittance of the line i-j. For more details
refer to Section 6.2. ;

In the Thévenin's circuit of Figure 3.9, current entering every bus is zero
except at the faulted bus. Since the current at faulted bus is leaving the bus, it is

taken as a negative current entering bus k. Thus the nodal equation applied to the
Thévenin's circuit in Figure 9.9 becomes

0 i o Yk o vie | | AW
“L(F) b= o ¥k o uma || AV (9.15)
L 1} ] Lyul o Ynk ?-mJ _AV,,_
or
Lius(F) = Yyus AV, (9.16)
Solving for AV, ., we have
AV = Zpuslu 9.17)
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where Zy,,, = Yb‘u‘s is known as the bus impedance matrix. Substituting (9.17) into ]

(9.11), the bus voltage vector during the fault becomes

Vius (F) = Vus(0) + ZigsLous (F) (9.18)

Writing the above matrix equation in terms of its elements, we have

Since we have only one single nonzero element in the current vector, the kth equa-
tion in (9.19) becomes

Vi(F) = Vi(0) - Zy I (F) (9.20)

Also from the Thévenin’s circuit shown in Figure 9.9, we have

Ve(F) = Z,Iu(F) (9.21)

For bolted fault, Z; = 0 and Vi{F) = 0. Substituting for Vi.(F} from (9.21) into
(9.20} and solving for the fault cumrent, we get

_ V(o)
L{F) = Tt 2, (9.22)

Thus for a fault at bus & we need only the Z; element of the bus impedance matrix.
This element is indeed the Thévenin's impedance as viewed from the faulted bus,
Also, writing the ith equation in (5.19) in terms of its element, we have

Vi(F) = Vi(0) — Zudi(F) (9.23)
Substituting for I (F), bus voltage during the fault at bus ¢ becomes
Vi(F) = W(0) - 2% _y,(0) 924
T Zae+ Zy ’

With the knowledge of bus voltages during the fault, we can calculate the fault
current in all the lines. For the line connecting buses ¢ and j with impedance 3.
the short circuit current in this line (defined positive in the direction i — 7) is

VilF) — Vi(F)
&3

I;i(F) = (3.25)

[ Vi(F) [ Vi) ] [ 20 - Zy - 20, 1T 0 ]
Ve(F) | = | ValO) |+ | Ziy -+ Zue o 2, | ~1(Fy | ©19)
i) lwo] |z s 4]l o
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We note that with the knowledge of the bus impedance matrix, the fault cur-
rent and bus voltages during the fault are readily obtained for any faulted bus in the
network. This method is very simple and practical. Thus, all fault calculations are
formulated in the bus frame of reference using bus impedance matrix Z;,,,.

One way to find Zy,, is 10 formulate Y, matrix for the system and then find
its inverse. The matrix inversion for a large power system with a large number of
buses is not feasible. A computationally attractive and efficient method for finding
Zpus Matrix is “building” or “assembling” the impedance matrix by adding one
network element at a time. In effect, this is an indirect matrix inversion of the
bus admittance matrix, The algorithm for building the bus impedance matrix is
described in the next section.

Example 9.2

A three-phase fault with a fault impedance Z¢ = j0.16 per unit occurs at bus 3 in
the network of Example 9.1. Using the bus impedance matrix method, compute the
fault current, the bus voltages, and the line currents during the fault,

In this example the bus impedance matrix is obtained by finding the inverse
of the bus admittance matrix. In the next section, we describe an efficient method
of finding the bus impedance matrix by the method of building algorithm.

To find the bus admittance matrix, the Thévenin's circuit in Figure 9.2(b) is
redrawn with impedances converted to admittances as shown in Figure 9.10. The
uwth diagonal element of the bus admittance matrix is the sum of ali admittances
connected to bus i, and the #jth off-diagonal element is the negative of the admit-
tance between buses i and j. Referring to Figure 9.10, the bus adiittance matrix
by inspection is

-j8.7% j1.25 ;25
Y= [ j1.25  —j6.25 325 J
2.5 j2.5  —3j50

Using MATLAB inverse function inv, the bus impedance matrix is obtained

§0.16 j0.08 j0.12
Zpws = | O.O8 j0.24 40.16
30.12 j0.16 §0.34

From (9.22), for a fault at bus 3 with fault impedance Z 1 = j0.16 per unit, the
fault corrent is '

. W(0) 1.0 .
= = — 2.
L{F) =+ Z, = j03d+ o1~ 20
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FIGURE 9.10
The admittance diagram for system of Figure 9.2 (b).

From (9.23), bus voltages during the fault are

Vi(F) = Vi{0) — Zials(F) = 1.0 — (j0.12)(=52.0) = 0.76 pu
Va(F) = Va(0) — ZosIs{F) = 1.0 — (j0.16)(~52.0) = 0.68 pu
Va(F) = V4(0) — Za3I3(F) = 1.0 — (50.34)(~72.0) = 0.32 pu

From (9.25), the short circuit currents in the lines are

Vi(F) - Vo{F) 0.76 - 068

g = = = —3j0.1

Iy (F) - 708 b] pu

Vi(F) - Va(F)  0.76 - 0.32 L

_ e . 1-1

IIS(F) z13 j0-4 7 pu
_ Va(F)- Va(F) _ 068032 _ .

In(F) = g ="oa 0.9 pu

The results are exactly the same as the values found in Example 9.1(a). The reader s
is encouraged to repeat the above calculations for fault at buses 2 and 1, and com =
pare the results with those obtained from parts (b) and (c) in Example 9.1.

Note that the values of the diagonal elements in the bus impedance matrix 2
are the same as the Thévenin’s impedances found in Example 9.1, thus eliminating
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the repeated need for network reduction for each fault location. Furthermore, the
off-diagonal elements are utilized in (9.24} to obtain bus veltages during the fault.
Therefore, the bus impedance matrix method is an indispensable tool for fault stud-
ies.

9.5 ALGORITHM FOR FORMATION
OF THE BUS IMPEDANCE MATRIX

Before we present the building algorithm for the bus impedance matrix, a few def-
initions from the discipline of the graph theory are introduced. The graph of a
network describes the geometrical structure of the network. The graph consists of
redrawing the network, with a line representing each element of the network. The-
graph of the network for Figure 9.2(a) before the fault application is shown in Fig-
ure 9.11(a). The buses are represented by noedes or vertices and impedances by

(a)

FIGURE9.11
Graph, a selected tree, and a cotree for the network of Figure 9.2(b).

line segments called elements or edges. A tree of a connected graph is a connected
subgraph connecting all the nodes without forming a loop. The elements of a tree
are called branches. In general, a graph contains multiple trees. The number of
branches in any selected tree denoted by b is always one less than the nodes, i.e.,

b=n-1 (9.26)

where 7 is the number of nodes including the reference node 0. Once a tree for a
graph has been defined, the remaining elements are referred to as links. The collec-

tion of links is called a corree. If e is the total number of elements in a graph, the
number of links in a cotree is

i=e~-b=e—m+1 (9.27)
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A loop that contains one link is called a basic loop. The number of basic loops
_is unique; it equals the number of links and is the number of independent loop
equations. A cutf set is a minimal set of branches that, when cut, divides the graph
into two connected subgraphs. A fundamental cut set is a cut set that contains only
one branch. The number of fundamental cut sets is unique; it equals the number of
branches and is the number of independent node equations. Figure 9.11(b) shows
a tree of a graph with the tree branches highlighted by heavy lines and the cotree
finks by dashed lines.
The bus impedance matrix can be built up starting with a single element and

the process is continued until all nodes and elements are included. Let us assume

that Z,,,; matrix exists for a partial network having m buses and a reference bus
as shown in Figure 9.12.

Partial s
network [—e

VA ‘m

Reference

FIGURE 9.12
Partial network.

The corresponding network equation for this partial network is

Vius = ZpusTous . 928

For an n-bus system, m buses are included in the network and Zy,,, is of order ,
m X m. We shall add one element at a time from the remaining portion of the :
network until all elements are included. The added element may be a branch ora ;

link described as follows,

ADDITION OF A BRANCH :
When the added element is a branch, a new bus is added to the partial network

creating a new row and a column, and the new bus impedance matrix is of order , 
(m + 1) x {m + 1). Let us add a branch with impedance z,, from an existing bus

P to a new bus g as shown in Figure 9.13(a). The network equation becomes
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1 1
|— o |——e
2 2
Patial | : p q Partial | : p
network —-e————s network ——
Zhus | P 7m ' Zn, | m
0 0 . q
I— L —
t - | Reference Reference
(a) (b)

FIGURE 9.13
Addition of a branch p-q.

Vi Ly Zyy o Ziyy o Zym Zig | [ L]
Vs Zyy Ly v Zyp v Zom Zay I
Vo l=1|2a 2o - Zpy Zom Zpg I {9.29}
Vm Zml Zm2 e Zmp T me qu JI.m
L Vg L Zoy 22 - 2y Zam  Zgq IR

The addition of branch does not affect the original matrix, but requires the calcu-
lation of the elements in the ¢ row and column. Since the elements of the power
system network are linear and bilateral, Zg; = Z;g, forg=1,...,m.

First, let us compute the elements Z,; for i = 1,...,m and i # ¢ (ie.,
excluding diagonal element Zg,). To calculate these elements we will apply a cur-
rent source of 1 per unit at the ith bus, i.e, I; = I pu, and keep remaining buses
open-circuited, ie., I, =0,k =1,...,mand k # 1, From (5.29), we get

Vi=2y
Vo = Zy
Vo = Zy _ - (9.30)
Vm = th
Vo=Zg
From Figure 9.13(a)
Vq = Vp - ‘qu (9'31)
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where vy, is the voltage across the added branch with impedance Zpq, and is givi

by

Upg = Zpqlpg

Since added element p-q is a branch, i, = 0, thus v, = 0 and {9.31) reduces to ;

Zgi = Zpi

t=1,...,m

(932) %

i#q (933)

To calculate the diagonal element Zg,, we will inject a current source of 1 per unit

at the gth bus, i.e., I, = 1 pu, and keep other buses open-circuited. From (5. 29),

(9.34)

Since at the gth bus, the injected current flows from the bus g towards the bus p,

we have
Vo= Zgq
ipg = —I, = —1. Hence, (9.32) reduces to
Ype = —2Zpq

Substituting for v,q in (9.31), we get

Ve=Vo+ 2

(9.35)

©0.36) =

Now, since from (9.30) fori = g, W, = Z g and V, = Zp,, (9.36) becomes

Zaq = Zpg + 2pq

{9.37)

If node p is the reference node as shown in Figure 9.13(b), V}, = 0 and we obtain

Zg=1Lpi=Vp=0

= o

From (9.37), the diagonal element becomes

Zgg = Zpq

ADDITION OF A LINK

,m i#q (9.38) “

(9.39) 3

-

When the added element is a cotree link between the bus p and g, no new bus is
created. The dimension of the Zp,, matrix remains the same but all the elements ==

are required to be calculated. Let us add a link with impedance z;, between two

existing buses p and g as shown in Figure 9.14(a). If I is the current through the ~—

added link in the direction shown in Figure 9.14(a), we have

Zpgly =

-V

m
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1 1
—— & T
2 2
—-e S
Partial | @ Partial :
network ——¢P network P
m A Zm E 1
bus q bus ¢
m tm ]
———&8 ——
0 P
| — & 0
Reference Reference,
(@) (b)

FIGURE %.14
Addition of a link p-¢q. -

or
V= Vo+ 2pgle =0 9.41)

The added link modifies the eld current I, to (I, — I;) and the old current i, to
{I; + Ir)} as shown in Figure 9.14(a), and the network equation becomes

Vi= Zuh+ - 42yl — L) + 2o + I+ - +ZimIn

Vo= Zph + - +Zpp(lp ~ ) + ZpglJy + 1)+ -+ +Zpradm

9.42
Vi = Zidit - 2Bl =T+ Bl Lot I E =<4l )
‘fm = -mlIl+ e +Zmp( Il) + qu(‘! + I!}+ +meIm
Substituting for ¥, and V}, from (9.42) into (9.41) results in
(Zgy — Zp) Ty ¥+ (Zgp— Zpp)lp + - H (Zgg ~ Zpg) Iy + - +
(Zgm — Zpm)Im + (2pg + Zpp + Zgq — 2Zpg) [ = 0 (9.43)
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Equations in (9.42) plus (9.43) result in m + 1 simultaneous equations, which ig
written in matrix form as

Vi Zu o Zip Zyg o Ty Zu [ LT
Ve Zpt - Zpp Zpg vt Zpm  Zy I,
Vo | =l 85 o5 B Bog e B B | ] T | 085
Vm Zml Zmp qu zmm - ng Im
L O Y L 20 ~ 24 24 - Zem Ze || I
where
Zo=Zig = Zig — Zip (9.45) 3
and
Zot = 2pg+ Zpp + Zogg — 2Zpq ' (9.46)

Now the link current I, can be eliminated. Equation (9.44) can be partitioned and

rewritlen in compact form as
Vius =
0

AZ=(2Zy - Zy Zg - Zme ]

ng:f} AZ [Itms]
Zy I

where

Expanding (9.47), we get

Vi Z Ib.u,+ AT,

and

0= AZ Y + Zpe I
or

AZT
Jp=———1I
4 Zu bus
Substituting from (9.51) for Iy in (9.49), we have
T
Vs = zﬂ!d AZAZ Vi
Ly

(9.47)
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™

or
Vius = Zpos Tyus (8.53)
where
T
new _ ot _ DZAZ (9.54)
Zu

Note that (9.54) reduces the matrix to its original size. The reason for this is that
we have not added a new node but only linked two existing nodes.

The bus impedance matrix can be constructed with addition of branches and
finks in any sequence. However, it is best to select a tree that contains the elements
connected to the reference node. If more than one element is connected between a
given node and the reference node, only one element can be selected as a branch
placing other elements in the cotree. The step-by-step procedure for building the
bus impedance matrix which takes us from a given bus impedance matrix Z"M to
a new ZgSvis summarized below.

Ruie 1: Addition of a Tree Branch to the Reference

Start with the branches connected to the reference node. Addition of a branch zy
between a new node g and the reference node 0 to the given Z ', matrix of order
(m x m), results in the ZP5Y matrix of order (m + 1) x (m + 1) From the results
of (9.38) and {(9.39), we have

Zy o Zim 0
new __ [ ¢ . 0 0 9.55
bus oss B D )
0 - 0 2z

This matrix is diagonal with the impedance values of the branches on the diagonal.

Rule 2: Addition of a Tree Branch from a New Bus to an Old Bus

Continue with the remaining branches of the tree connecting a new node to the’
existing node, Addition of a branch z,; between a new node g and the existing
node p to the given Z . matrix of order {m x m), results in the Z{% matrix of
order (m + 1} x (m + l) Erom the results of (9.33) and (9. 37) we have

[ 21y o Zyp e Zen VA
wu | T T e Ty G568
Zoil onr By G B oBonp
L Zpt v Zpp v Zpn Zpp Iy
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Rule 3: Addition of a Cotree Link between two existing Buses

When a link with impedance 2y, is added between two existing nodes p and g, we

augment the Z0
(9.45) we have

Z Z1p Zyy v Zim Zlq"ZIP“
new Zp Zop Zpg 0 Zpm Zpq=Zpp
Zps' = | Za Zap Zeq 0 Zgm Zog—Zep | 95Ty
Zm1 Zmp Zmg o Zmm  Zmg—Lmp
n.qu_Zpl ZQP_pr qu_qu qu_'zpm Zee A

where

Bip'= B s By~ 2By ©9.58) &=

The new row and column is eliminated using the relation in (9.54), which is re-
peated here

T
zpew = zgis - BZAZ (9.59)
VAT,
and AZ is defined as
_ Z1a = Znyp -
Lo — &
AZ = pgq rp (.60}
Zgq = Zgp
| Zmg — Zmp |

When bus ¢ is the reference bus, Zy; = Z;, = 0 (fori = 1,m), and (9.57) reduces
to '

Zi le Zim "le-‘

wre| % B el e
Zmy vt Zmp -+ Zmm “‘Zmp
| 52 ms =, v ~LBgm B )

bus MAlrix with a new row and a new column, and from (9.44) and
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where Zy = 2pq + pr, and

AZ=| -2, 962)

L ~Zmp |

The algorithm to construct the Zy,, matrix by adding one element at a time
can be used to remove lines or generators from the network. The procedure is
identical to that of adding elements, except that the removed element is considered
as negative impedance, in order 1o cancel the effect of the element.

Based on the above algorithm, two functions named Zbus = zbuild(zdata)
and Zbus = zbuild(}inedata, gendata, yload) are developed for the formation of
the bus impedance matrix. These functions are described in Section 9.6. Before -
demonstrating this program, for the sake of better understanding the building algo-
rithm, we shall demonstrate the hand calculation procedure for the simple three-bus
network of Example 9.1. :

Example 2.3

Construct the bus impedance matsix for the network in Exampie 8.1. The one-line
impedance diagram is shown in Figure 9.15(a).

FIGURE %.15
Impedance diagram of Example 9.1 and a proper tree.

The elements connected to the reference node are included in the proper tree as
shown in Figure 9.15(b). We start with those branches of the tree connected to the
reference node. Add branch 1, zjp = j0.2 between node ¢ = 1 and reference
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node . According to rule 1, we have
Ze), = 21 = zp = §0.2
bus = 211 = z19 = J3.20

Next, add branch 2, zag = j0.4 between node ¢ = 2 and reference node

7 _ Zn 0] _[402 0
bus 0 Zn|~| 0 jod

Note that the off-diagonal elements of the bus impedance matrix are zero. This is -
because there is no connection between these buses other than to the reference. In
this example, there are no more branches from a new bus to the reference. We con- - 20
tinue with the remaining branches of the tree. Add branch 3, z)3 = j0.4 between ==
the new node g = 3 and the existing node p = 1. According to rule 2, we get '

Zy Zio Zn ; 702 0 402
2o =1 Zn Zn Zn =| 0 j04 O

Zu Z12 Zu+213 302 0 306

All tree branches are in place. We now proceed with the links. Add link 4, z)p =

70.8 between node ¢ = 2 and node p = 1. From (9.57), we have

T Zn Z12 213 VAT AT
74 _ Zy Zm Za 2oy = Z2)
e Z3 Zag - Zaa Zy — Zn
L Zoy — Zn Lo — 2y Zyny— 213 Zyy
" 40.2 0 702 —450.2
| 7o j04 "o joa4
= | jo2 0 06 —j02
| —j0.2 j0.4 —j0.2 Zyy
From (9.58)

Zag = 219 + 21y + Zon — 2212 = §0.8 + j0.2 + j0.4 — 2(50) = j1.4

and
- ~j0.2
8z8% _ 1| b4 |[-jo2 jo4 —j02]
Zsy jl4 —30.2

_j0.05714  j0.11428 —j0.05714

§0.02857 —50.05714 j0.02857]
j0.02857 —70.05714  j0.02857
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From (9.59), the new bus impedance matrix is

(4}
Zfrus

Fj02 0 0.2 70.02857 —j0.05714  j0.02857
= |0 j04 0 ]— [—j0.05714 j0.11428 —;70.05714
1502 0 06 50.02857 —j0.05714  j0.02857 |
[ 70.17143 j0.05714 50.17143 |
= | 70.05714 50.28571 j0.0STM]
| j0.17143 70.05714 70.57143

Finally, we add link 35, 203 = j0.4 between node ¢ = 3 and node p = 2. R,

(9.57), we have . rom
[ Zi Zyp Zyy Z13— 212
Z(5) _ Zn Za Za3 Zoz — Zx
bus Z3 Zy Z33 Z33 — Zypy

L Z31 — 22y Zan — Zay Zaz — Zaz Z1a

[j0.17143  §0.05714 jO.17143  j0.11429
7005714 j0.28571 j0.05714 -3j0.22857
7017143  j0.05714 j0.57143  50.51429
| 70.11429 —370.22857 j0.51429 Zigg

From (9.58)
and
AZ AZT 70.11429
—— = = 5 —§0.22857 [ j0.11429 —350.22857 70.51429
4 i 70.51429 l

j0.01143 —30.02286  j0.05143
= | —0.02286 50.04571 —;0.10286
§0.05143 —70.10286 j0.23143

From (9.59), the new bus impedance matrix is

Lpus =

7j0.17143 50.05714 §0.17143 70.01143 —50.02286 j005, .
jO05714 7028571 50.05714| ~ [~j0.02286 jO.045T1 —j0.1G, "
| 70.17143 j0.05714 jO.57143
N 143
N

.

j0.08 7j0.24 j0.16

70.05143 —j0.10286 ;0.23
[ j0.16 j0.08 50.12}

| j0.12 j0.16 ;0.34

This is the desired bus impedance matrix Z&u,, which is the same as the N b
tained by inverting the Y, ; matrix in Example 9.2,
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Example 9.4

The bus impedance matrix for the network shown in Figure 9.16 is found to be

§0.3

FIGURE 9.16 '
Impedance diagram for Example 9.4.

§0.183 j0.078 ;j0.141
Zous = | jO.O78 §0.148 30.106
§0.141  j0.106 j0.267

The line between buses 1 and 3 with impedance Z;3 = 70.56 is removed by the —'.
simulaneous opening of breakers at both ends of the line. Determine the new bus

impedance matrix.

The removal of an element is equivalent to connecting a link having an impedance
equal to the negated value of the original impedance. Therefore, we add link z33 =
- 70.56 between node q = 3 and node p = 1. From (9.57), we have

Zu Zl2

Z0 e Zy &2

bus = Za1 Z3
Z31 - le Z32 g Zl?

Thus, we get

40.183 0.078
7 = j0.078 30.148
Chus T 40141 50.106

—j0.042 j0.028

TR T

Ziy  Zw—Zn

Zas Zyy — Zm

Z33 Z3y — 2y
Zy3 — Z13 Zaa

70.141 —3j0.042 "
j0.106  j0.028 ]
j0.267  j0O.126 et
70126 Zag
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From {9.58)

Zis=213+Z11+ Zaa—2Z13=—3j0.56 + j0.183 + §0.267—2(j0.141) = —;j0.392

and
7 AZT —50.042
A = = .01 = { j0.028 | [ —j0.042 j0.028 50.126 |
14 A j0.126 .

H

Jj0.0030 —350.0020 —30.0090

[—jo.oms 70.0030  §0.0135
§0.0135 —;0.0090 —;0.0405

From (9.59), the new bus impedance matrix is

Ziws. = | 70.078 j0.148 j0.106 §0.0030 —50.0020 —;0.0090
| 0141 j0.106 j0.267 j0.0135 —;0.0090 —;0.0405
C §0.1875 §0.0750 §0.1275
= | §0.0750 0.1500 j0.1150
| 50.1275 j0.1150 50.3075

[ 0.183 ;70.078 ;0.141 } [ —;0.0045 j0.0030  50.0135 ]

9.6 ZBUILD AND SYMFAULT PROGRAMS

Two functions are developed for the formation of the bus impedance matrix. One
function is named Zbus = zbuild(zdata), where the argument zdata is an e x 4
matrix containing the impedance data of an e-element network. Columns 1 and 2
are the element bus numbers and columns 3 and 4 contain the element resistance
and reactance, respectively, in per unit. Bus number 0 to generator buses contain
generator impedances. These may be the subtransient, transient, or synchronous re-
actances. Also, any other shunt impedances such as capacitors and load impedance
to ground (bus 0) may be includedin this matrix.

The other function for the formation of the bus impedance matrix is zbus
= zbuildpi(linedata, gendata, yload), which is compatible with the power flow

_programs. The first argument linedata is consistent with the data required for the

power flow solution. Columns 1 and 2 are the line bus numbers. Columns 3 through
5 contain line resistance, reactance, and one-half of the total line charging suscep-
tance in per unit on the specified MVA base. The last column is for the transformer
tap setting: for lines, 1 must be entered in this column. The lines may be entered in
any sequence or order. The generator reactances are not included in the linedata of
the power flow program and must be specified separately as required by the gen-

data in the second argument, gendata is an 1, X 4 matrix, where each row conlains




382 9 BALANCED FAULT

bus 0, generator bus number, resistance and reactance. The last argument, yload is}
optional. This is a two-column matrix containing bus number and the complex §
load admittance. This data is provided by any of the power flow programs lfgauss,
lfnewton or decouple. yload is automatically generated following the execution of §

any of the above power flow programs.

The zbuild and zbuildpi functions obtain the bus impedance matrix by the
building algorithm method. These functions select a tree containing elements to the 3
reference node. First, all branches connected to the reference node are processed.
Then the remaining branches of the tree are connected, and finally the cotree links 2

are added.

fault.

Example 9.5

Use the function zbus = zbuild{zdata) to obtain the bus impedance matrix for the 3

network in Example 9.3,

The network configuration containing resistances and reactances are specified and ¥

the zbuild function is used as follows.

zdata = [

N OO
Ww NN
‘coocoo
coooo
B ® e N

LS
-

Zbus = zbuild(zdata)

The result is

The program symfault(zdata, Zbus, V) is developed for the batanced three- 3
phase fault studies. The function requires the zdata and the Zbus matrices. The =
third argument V is optional. If it is not incladed, the program sets ali the prefault "
bus voltages to 1.0 per unit. If the variable V is included, the prefault bus voltages
must be specified by the array V containing bus numbers and the complex bus 4
voltage. The voltage vector V is automatically generated following the execution of
any of the power flow programs. The use of the above functions are demonstrated in 3}
the following examples. When symfault is executed, it prompts the user to enter the 3
faulted bus number and the fault impedance. The program computes the total fault 3 '

current and tabulates the magnitude of the bus voltages and line currents during the S
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Zbus =
0+ 0.161 0 + 0.081 0+ 0,121
0 + 0.081 O+ 0.24i 0+ 0.161
0+ 0.12i 0+ 0.164 0 + 0.341
Example 9.6

A three-phase fault with a fault impedance Z; = 50.16 per unit occurs at bus 3
in the network of Example 9.1. Use the symfault function to compute the fault
current, the bus voltages and line currents during the fault.

In this example all shunt capacitances and loads are neglected and all the prefault
bus voltages are assumed to be unity. The impedance diagram in Figure 9.2(b} is
described by the variable zdata and the following commands are used.

zdata = {fo 1 0 0.2
0 2 0 0.4
1 2 0 0.8
1 3 0O 0.4
2 3 0 0.43;
Zbus = zbuild{zdata)
symfault{zdata, Zbus)
The result is
Zbus = .
0 + 0.16001 0 + 0.08001 0+ G.12001
¢ + 0.08001 0 + 0.24001 0 + 0.16001
0+ 0.12001 ¢+ 0.16001 O + 0.34001
Enter Faulted Bus No..-> 3
Enter Fault Impedance Zf = R + j*X in
complex form (for bolted fault enter 0). 2f = j*0.16

Balanced three-phase fault at bus No. 3
Total fault current = 2.0000 Per unit

Bus Voltages during the fault in per wmnit

Bus: Voltage Angle

No. Magnitude Degree
1 0.7600 0.0000-
2 ¢.6800 0.0000
3 .~ 0.3200 0.0000
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_ LINE AND TRANSFORMER DATA |
Line ;urrents f'?r fault at bus No. 3 Bus Bus R X % B
rom (o] Current Angle : ) ’
Bus Bus  Magnitude  De ggee Nlo. No. PU PU PU
¢ 1 1.2000  -90.0000 2 000 006 00000
1 2 0.1000  -90.0000 2 3 008 030 00004
1 3 1.1000  -90.0000 2 5 004 o015 00002
G 2 0.8000  -90.0000 _ 2 6 012 045 0.0005
2 3 0.9000  -90.0000 : 3 4 010 040 0.0005
3 F 2.0000 ° -90.0000 . 3 6 004 040, 0.0005
; ] 4 6 015 060 00008
Example 9.7 J 4 9 018 070  0.0009
The 11-bus power system network of ic utili i N - 4 10 000 008  0.0000
i po ¥ of an electric utility company is shown in Figure . 5 7 005 043 0.0003
-6 8 0.06 0.48 0.0000
1 2 L1 4 7 8 006 035 00004
Q_}._S E_ JTT 10 7 11 000 010  0.0000
X —% E I ( ) 8 9 0052 048  0.0000
=B Neglecting the shunt capacitors and the loads, use zbuild{zdata) function to obtain
% the bus impedance matrix. Assuming all the prefault bus veltages are equal to 120°,
5 = 6 o use symfault function to compute the fault current, bus voltages, and ling currents
T : for a bolted fault at bus 8. When using zbuild function, the generator reactances
must be included in the impedance data with bus zero as the reterence bus, The
7 9 = impedance data and the required commands are as follows.
( ) lli- g E l‘ 3 —|__’_ : % Bus  Bus R X
I mp g { : % No. No. pu Pu
Y zdata = [C 1 0.00 0.20
— : - i : 0 10 0.00 0.15
plChath = 0 11 0.0  0.25
One-line diagram for Example 9.7 1 2 .00 0.06
. : 2 3 0.08 .30
The transient impedance of the generators on a 100-MVA base are given below, . g 2 5 0.04 0.15
; 2 6 0.12 0.45
GEN. TRANSIENT 3 4 0.10 0.40
i IMPEDANCEPU | e 3 6 0.04 0.40
Gen.No. R, X, | . - 4 8 0.15  0.60
1 0 020 ’ - 4 9 0.18 6.70
10 0 015 ' ™~ 4 10 0.00 0.08
11 0 025 : 5 7 0.05 0.43
] 6 8 0.06 0.48
The line and transformer data containing the series resistance and reactance in per 3 7 8 0.06 _ 0.35.
unit, and one-half of the total capacitance in per unit susceptance on a 100-MVA 7 11 0.00  0.10
base is tabulated below. 8 9 0.052 0.48
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Zbus = zbuild(zdata)
symfault{zdata, Zbus)

The bus impedance matrix is displayed on the screen, and the three-phase sho

circuit result is

Enter Faulted Bus No. -> 8
Enter Fault Impedance Zf = R + j*X in

complex form (for bolted fault enter Q). Zf

Balanced three-phase fault at bus No. 8

Total fault current =

3.3319 per unit

Bus Voltages during the fault in per unit
Angle
Degree

Bus Voltage
No. Magnitude
1 0.8082
2 ¢.7508
3 0.6882
4 ¢.7491
5 ¢.7007
6 0.5454
7 ¢.5618
8 ¢.0000
9 0.3008
10 0.8362
11 0.6868

-1.
=2,
.

8180
5443
5987

. 4902
.3762
.0194
.8128
-000¢
. 4495
. 4547
L2272

Line currents for fault at bus No. 8
Current
Magnitude D

From To
Bus Bus
G 1
1 2
2 3
2 5
2 6
3 [
4 3
4 6
4 9
& T
6 8
7 8
8 F
9 8
G 148
1o 4
G 11
11 7

= OWeE s 0000000000

. 9697
. 9697
.2053
. 3230
44327
. 3556
.1503
.3305
.6229
.3230
L1274
.582¢
.331%
.6229
.1028
.1028%
. 2601
. 2601

-82.
-82.
-87.

-79

-81.
-88.
-B88.

-82
-81

-79.
-83.
-84.
-83.

-81

-82,
-82.
-85.
~-85.

Angle
egree
4034
4034
8751
.9626
6497
087
4042
. 3804
.3672
9626
8944
0852
5126
.3672
6275
€275
1410
1410
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Example 9.8

in Example 9.7 consider the shunt capacitors and neglect the loads. Use zbuildpi
function to obtain the bus impedance matrix. Assuming all the prefault bus volt-
ages are equal 10 1£0°, use symfault function to compute the fault current, bus
voltages, and line currents for a bolted fault at bus 8.

The zbuildpi(linedata, gendata, yload) is designed to be compatible with the
power flow programs. The first argument linedata is consistent with the data re-
quired for the power flow program. The generator reactances are not included in
the linedata and must be specified separately by the gendata. The optional argu-
ment ylead contains the foad admittance which is generated from the power flow
solution. The loads are neglected in this example, therefore, the argument yload is
omiited. The impedance data and the required commands are as follows: :

% Bus Bus R X 1/28

% No. No. pu. pu pu

linedata=[1 2 0.00 0.06 0.0000
2 3 0.08 $.30 0.0004
2 5 0.04 0.15 0.0002
2 6 0.12 0.45 ¢.0005
3 4 0.10 0.40 0.0005
3 & 0.04 0.40 0.0005
4 6 0.15 .60 0.0008
4 9 0.18 0.70 0.0009
4 10 0.00 0.08 0.0000
5 T a.05 0.43 0.0003
6 8 0.06 0.48 0.0000
K 8 0.06 0.35 0.0004
7 11 0.00 0.10 0.0000 .
B 9 0.052 0.48 0.0000];

% Gen. Ra Xd’

gendata=[ 1 0 0.20
10 0 0.15

11 0 0.25];
Zbus=zbuildpi{linedata, gendata)
symfanlt(linedata, Zbus)

The bus impedance matrix is displayed on the screen, and the three-phase short
circuit resultis

Enter Faulted Bus No. -> 8

Enter Fault Impedance Zf = R + j*X in

complex form (for bolted fault enter 0}. Zf = 0
Balanced three-phase fault at bus No. 8

T
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Total fault current = 3.3301 per unit

Bus Voltages during the fault in per unmit

Bus Voltage Angle
No. Magnitude Degree
1 0.8080 -1.8188
2 0.7506 -2.5456
3 0.6879 ~1.5986
4 0.7489 -2.4915
5 0.7006 -2.3774
6 0.5451 ~-1.0185
7 0.5617 -3.8137
8 0.0000 0.0000
9 0.3005 2.4564
10 0.8361 -1.4553
11 0.6866 -2.2276
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LOAD DATA
Bus Load Bus Load
No. MW Mvar | Noo MW  Mvar
1 0.0 0.0 7 0.0 0.0
2 0.0 0.0 8 1100 900
3 150.0 1200 9 80.0 50.0
4 0.0 003 10 0.0 0.0
5 120.0 60.0 i1 0.0 0.0
6 140.0° 90.0

Line currents for fault at bus No. 8

From To Current Angle
Bus Bus Magnitude Degree
1 2 0.9704 -82.4068
2 3 0.2056 -87.7898
2 5 0.3230 -79.9386
2 6 0.4429 -81.6055
3 6 0.3556  .-88.0454
4 3 Q.1505 -88.2647
4 6 0.3308 -82.2823
4 5 0.6232° -81,3096
5 7 0.3228 -79.9261
6 8 1.1269 -83.8935
7 8 1.5818 -84.0781
8 F 3.3301 -83.5110
9 8 0.6224 -81.3606
19 4 1.1038 -82.6316
11 7 1.2604 -85.1416
Example 9.9

Repeat the symmetrical three-phase short circuit analysis for Example 9.7 consid-
enng the prefanlt bus voltages and the effect of load currents. The load data is as

foltows:

Voltage magnitude, generation schedule and the reactive power limits for the regu-
lated buses are tabulated below. Bus 1, whose voltage is specified as V) = 1.04£0°,
is taken as the slack bus. - !

GENERATION DATA
Bus Voltage Generation, Mvar Limits
No. Mag. MW Min. Max.
1 1.040
16 1.035 200.0 00 180.0
il 1.030 160.0 0.0 1200

Anyone of the power flow programs can be used to obtain the prefault bus volt-
ages and the load admittance. The Iifnewton program is used which returns the

prefault bus voltage array V and the bus load admittance array yload. The required
commands are as foliows. .

clear % clears all variables from workspace.
basemva = 100; accuracy = ¢.0001; maxiter = 10;
A Bus Bus Veltage Angle --Load-- -~-Generator---Injected
% No code Mag. Degree MW Mvar MW Mvar Qmin Qmax Mvar
busdata=[1 1 1.06 0. 0.0 0.0 0.0 0.0 © © 0
-2 0 t.o0 ¢ 0.0 0.0 0.0 0 0 0 0
3 0 1.0 0 150.0 120.0 0.0 0 0 0 0
4 0 1.0 0 0.0 0.0 0.0 0 0O o 0
5 0 1.0 0 120.0 60.0 0.0 0 0 ¢ ¢
6 0 1.0 0 140.¢ 90.0 0.0 0 o 0 o
7T 0 1.0 ¢ 6.0 0.0 0.0 0 0 0 0
8 0 1,0 ©0 1100 %.0 ©0.0 0 0 © O
=g 0 1.0 0 80.0 50.0 0.0 0 o 0o ¢
10 2 1.035 0 0.0 0.0 200.0 © 0 180 0O
112 1.03 0 0.0 0.0 1680.0 O 0 120 0©l;
% Bus Bus R X 1/2B
% No. No. pu pu pu

T,
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linedata=[}

2 0.00 0.08 0.0000 1

2 3 0.08 0.3¢ 0.0004 1

2 6 0.12 0.45 0.0005 1

3 4 0.10 0.40 0.0005 1

3 6 0.04 0.40 0.0005 1

4 6 0.15 0.60 0.0008 i

4 9 0.18 0.70 0.0009 1

4 10 0.00 0.08 0.0000 1

& 7 0.05 0.43 0.0003 1

6 8 0.06 ¢.48 0.0000 i

T 8 0.06 0.35 0.0004 1

7 11 0.00 0.10 0.0000 1

8 9 G.052 0.48 0.0000 1];
% Gen. Ra Xd’
gendata=[ 1 0 ¢.20

10 0 0.15

11 0 0.25];
lfybus % Forms the bus admittance matrix
lfnewton % Pouer flow solution by Newton-Raphson method
busout % Prints the power flow solution on the screen

Zbus=zbuildpi(linedata, gendata, yload) % Zbus including load 4§
symfault(linedata,Zbus,V)%3-phase fault including load current 3

The résull is

Pover Flew Solution by Newton-Raphson Method
Maximum Power Mismatch = 0.0000533178
No. of Iterations = 3

Bus Voltage Angle ----Load----  --Generation-- Injected
No. Mag. Degree MW Mvar MW Mvar Mvar
1 1.040 0.000 0.000 0.000 248.622 149.1863 0.0
2 1.031 -0.797 0.000 0.000 0.000 Q.000 0.0
3 0.997 -2.619 150,000 120.000 0.000 ¢.000 0.0
4 1.024 -1.737 0.000 0.000 0.000 0.000 0.0
5 0.881 -7.414 120.000 60.000 0.000 0.000 0.0
6 0.992. -3.336 140.000 90.000 0.000 0.000 0.0
7 1.0t4 -4.614 0.000  0.000 0.000 0.000 0.
8 0.981 -5.093 110.000 90.000 0.000 0.000 0
9 0.977 -4.842 80.000 50.000 0.000 0.000 0
10 1.035 -0.872 Q.000 0.000 200.000 144.994 0
11 1.020 -3.737 0.000 0.000 160.000 161.121 0
600.000 410.000 &08.622 455.278 0.0

cooco
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Enter Faulted Bus No. -> 8

Enter Fault Impedance Zf = R + j*X in

complex form (for bolted fault enter Q). Zf =0
Balanced three-phase fault at bus No. 8

-Total fault current =  3.3571 per unit

Bus Voltages during the in per unit

Bus  Voltage Angle

No. Magnitude Degree
1 0.BB76 -0.9467

2 0.8350 -2.0943

3 0.7321 -2.5619

4 0.7866 -3.1798

5 0.5148 -8.3043

8 0.5792 -2.4214

7 0.5179 . -8.2563

8 0.0000 ¢.0000

9 0.3156 0.9877

10 Q.8785 -1.7237

11 0.6631 -5.7785

Line currents for fault at bus No. 8

From To Current Angle
Bus Bus Magnitude Degree
1 2 0.9219 -73.3472
2 3 0.3321 -73.7856
2 6 0.5494 -76.3804
3 6 0.3804 -87.3283
4 3 0.1336 -87.2217
4 6 0.3357 -81.1554
4 9 0.6537 -81.4818
6 8 1.1974 -85.2964
7 5 0.0073  -82.5471
7 8 1.4585 -88.5207
8 F 3.3671 -85.4214
9 8 0.6538  -82.8293
10 4 1.1787 -79.4854
11 7 1.4733 -87.0395

PROBLEMS

9.1. The system shown in Figure 9.18 is initially on no load with generators oper-
ating at their raied voltage with their emfs in phase. The rating of the genera-
tors and the transformers and their respective percent reactances are marked
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on the diagram. All resistances are neglected. The line impedance is 7160 0,
A three-phase balanced fault occurs at the receiving end of the transmission

line. Determine the short-circuit current and the short-circuit MVA.

60 MVA, 30 kV
Xy =24%

Xg - 16%

X =16002
E—D—]—D _ el

1060 MVA |
30/400 kV

40 MVA, 30 kV
Xy = 24%

FIGURE 9.18
Onc-line diagram for Problem 9.1.

9.2. The system shown in Figure 9.19 shows an existing plant consisting of a
generator of 100 MVA, 30 kV, with 20 percent subtransient reactance and
a generator of 50 MVA, 30 kV with 15 percent subtransient reactance, con-
nected in paralle] to a 30-kV bus bar. The 30-kV bus bar feeds a transmission
line via the circuit breaker C which is rated at 1250 MVA. A grid supply is
connected to the station bus bar through a 500-MVA, 400/30-kV transformer
with 20 percent reactance. Determine the reactance of a current limiting re-
actor in ohm to be connected between the grid system and the existing bus
bar such that the short-circuit MVA of the breaker C does not exceed.

100 MVA — 50 MVA :

00 MVA
30 kV 30KV : A 200;30 KV
éxj; = 20% 4])(;' =15% X X, = 20%
ql c
H
‘.
FIGURE 9.1%

One-line diagram for Problem 9.2.
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9.3. The one-line diagram of a simple power system is shown in Figure 9.20.
Each generator is represented by an emf behind the transient reactance. Ail
impedances are expressed in per unit on a common MVA base. All resis-
tances and shunt capacitances are neglected. The generators are operating on
no load at their rated voltage with their emfs in phase. A three-phase fauk
occurs at bus 1 through a fault impedance of Z; == j0.08 per unit. _
{a) Using Thévenin’s theorem obtain the impedance to the point of fault and
the fault current in per unit.

{b} Determine the bus voltages and line currents during fault.

X; — 01
O3 Foto—%e=02_oiq ()
X; =01 X; =01
FIGURE 9.20

One-hne diagram for Prablem 9.3,

9.4. The one-line diagram of a stimple three-bus power system is shown in Figure
9.21 Each generator is represented by an emf behind the subtransient reac-
tance. All impedances are expressed in per unit on a commen MVA base. All
resistances and shuni capacitances are neglected. The generators are operat-
ing on no load at their rated voltage with their emfs in phase. A three-phase
fault occurs at bus 3 through a fault impedance of Z; = j0.19 per unit.

(a} Using Thévenin's theorem obtain the impedance to the point of fault and
the fault cumrent in per unit.
(b) Determine the bus voltages and line currents during fault.

j0.05 70.075

FIGURE 9.21
One-line diagram for Problem 9.4.

9.5. The one-line diagram of a simple four-bus power system is shown in Figure
9,22 Each generator is represented by an emf behind the transient reactance.
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All impedances are expressed in per unit on a common MVA base. Al resis-
tances and shunt capacitances are neglected. The generators are operating on

no load at their rated voltage with their emfs in phase. A bolted three-phase
fault occurs at bus 4.

(a) Using Thévenin’s theorem obtain the impedance to the point of fault and
the fault current in per unit.

(b) Determine the bus voltages and line currents during fauit.

(c) Repeat (a) and (b) for a fault at bus 2 with a fault impedance of Z; =
70.0225,

j0.20 5015

7020 0.20

FIGURE 922
One-line diagram for Problem 9.5,

9.6. Using the method of building algorithm find the bus impedance matrix for
the network shown in Figure 9.23.

b2

70.30

FIGURE 9.23
One-line diagram for Problem 9.6.
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9.7. Obtain the bus impedance matrix for the network of Problem 9.3,
9.8. Obtain the bus impedance matrix for‘ _the network of Problem 9.4.

9.9. The bus impedance matrix for the network shown in Figure 9.24 is given by

0.300 0200  0.275
Zyas =3 | 0200 0.400  0.250
0.275 0.250 0.41875

1 . 2
= 30.8
r :
0.2 2 0.6
0.4 . j0.8
FIGURE 9.24

One-line diagram for Problem 9.9.

There is a line outage and the line from bus | to 2 is removed, Using the
method of building algorithm determine the new bus impedance matrix.

9.10. The per unit bus impedance matrix for the power system of Problem 9.4 is
given by

0.0450 0.0075 0.0300
Zhus = 71 0.0075 0.06375 0.0300
0.0300 0.0300 0.21060

A three-phase fault occurs at bus 3 through a fault impedance of Z; = j0.19
per unit. Using the bus impedance matrix calculale the fault current, bus
voltages, and line currents during fault. Check your result using the Zbuild
and symfault programs.

%.11. The per unit bus impedance matrix for the power system of Problem 9.5 is
given by

0.240 0.140 0.200 0.200
7 _ ;| 0140 02275 0175 0.175
bus =71 0.200 0.175 0.310 0310
- 0.200 0.1750 0.310 0.500
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{a) A bolted three-phase fault occurs at bus 4. Using the bus impedance ma.
trix calculate the fault current, bus voltages, and line currents during fault,
(b) Repeat (a) for a three-phase fault at bus 2 with a fault impedance of O
Z; = j0.0225. _ -

(¢) Check your result using the Zbuild and symfault programs.

9.12. The per unit bus impedance matrix for the power system shown in Figure

9.25 is given by
' 0.150 0075 0140 0.135 e O ‘|Dg

3.075 0.1875 0.000 0.0975

0.140 0.090 0.2533 0.210 e X FIGURE 9.26
0.135 0.0975 0.210 0.2475 ; One-tine diagram for Problem 9.16.

Zb-us =7

A three-phase fault occurs at bus4 through a fault impedance of Z; = j0.0025

per unit. Using the bus impedance matrix calculate the fault current, bus volt- ] LINE AND TRANSFORMER DATA |
ages and line currents during fault. Check your result using the Zbuild and : Bus Bus R, X, % B,
symfault programs, : No. No. PU PU PU

; [ 4 0035 0225 00063
: 1 5 0025 0105 00045
O I 6 0040 0215 00055
j0.2 2 4 0000 0035 0.0000
3 5 0000 0042 0.0000
Z 4 6 0028 0125 0.0035
L 5 6 0026 0.175 0.0300
0.3
O The transient impedance of the generators on a 100-MVA base are given be-
low.
FIGURE %.25 :
One-line diagram for Problem 9.12. =~ GEN. TRANSIENT
= IMPEDANCE, PU
% Gen.No. R, X,
9.13. Repeat Example 9.7 for a bolted three-phase fault at bus 9. enl 0“ 02‘:)
9.14. Repeat Example 9.8 for a bolted three-phase fault at bus 9. S g g g ;g
9.15. Repeat Example 9.9 for a bolted three-phasc fault at bus 9. _
15. Repeat Example 9.9 for polied tirce-phiasc tau _ . z Neglecting the shunt capacitors and the loads, use Zbus = zbuild(zdata)
9.16. The 6-bus power system network of an elcctric utility company is shown in == function to obtain the bus impedance matrix. Assuming all the prefault bus
Figure 9.26. The line and transformer data containing the series resistance ——m— voltages are equal to 1/0°, use symfault(zdata, Zbus) function to compute
and reactance in per unit, and one-half of the total capacitance in per unit the fault current, bus voltages, and line currents for a bolted fault at bus 6.

When using Zbus = zhuild(zdata) function, the generator reactances must
be included in the zdata array with bus zero as the reference bus,

susceptance on a 100-MVA base, is tabulated below.
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2.17. In Problem 9.16 consider the shunt capacitors and neglect the loads. use ‘8

9.18,

- Voltage magnitude, generation schedule, and the reactive power limits for

9. BALANCED FAULT

zbuildpi(linedata, gendata, yload) function to obtain the bus impedance 8
matrix. Assuming all the prefault bus voltages are equal to 1£0°, use sym-
fault(linedata, Zbus) function to compute the fault current, bus voltages,
and line currents for a bolted fault at bus 6.

Repeat the symmetrical three-phase short circuit analysis for Problem 9.16

considering the prefauli bus voltages and the effect of load currents. The load
data is as follows.

LOAD DATA

Bus Load =
No. MW  Mvar |
1 0 0
2 0 0
3 0 ]
4 100 70
5 90 30
6 160 110

the regulated buses are tabulated below, Bus 1, whose voltage is specified as
V1 = 1.06/0°, is taken as the slack bus.

GENERATION DATA
Bus Voltage Generation, Mvar Limits
No. Mag. MW Min. Max.
1 1.060
2 1.040 150.0 00 1400
3 1.030 100.0 00 500

Use anyone of the power flow programs to obtain the prefault bus voltages
and the load admittance. The power flow program returns the prefauit bus
voltage array Y and the bus load admittance array yload.

CHAPTER

10

SYMMETRICAL COMPONENTS
AND UNBALANCED FAULT

10.1 INTRODUCTION

Different types of unbalanced faults are the single tine-to-ground fault, line-to-line
fauit, and double line-10-ground fault, )

The fault study that was presented in Chapter 9 has considered only three-
phase balanced faults, which lends itself to a simple per phase approach. Various
methods have been devised for the solution of unbalanced faults. However, since
the one-line diagram simplifies the solution of the balanced three-phase problems,
the method of symmetrical components that resolves the solution of nnbalanced
circuit into a solution of a number of balanced circuits is used. In this chapter, the
symmetrical components method is discussed. It is then applied to the unbalanced
faults, which allows once again the treatment of the problem on a simple per phase
basis. Two functions are developed for the symmetrical components transforma-
tions. These are abe2sc, which provides transformation from phase quantities to
symmetrical components, and sc2abe for the inverse transformation. In addition,
these functions produce plots of unbalanced phasors and their symmetrical com-
ponents. Finally, unbalanced faults are computed using the concept of symmet-
nical components. Three functions named lgfault(zdata0, zbus0, zdatal, zbus],
zdata2, zbus2, V), Iifault(zdatal, zbusl, zdata2, zbus2, V), and digfault(zdata0,

zbus(, zdatal, zbusl, zdata2, zhus2, V) are developed for the line-to-ground,
line-to-line, and the double line-to-ground fault studies.

359
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10.2 FUNDAMENTALS OF
SYMMETRICAL COMPONENTS

Symmetrical components allow unbalanced phase quantities such as curments and

voltages to be replaced by three separate balanced symmetrical components.
In three-phase system the phase sequence is defined as the order in which

they pass through a positive maximum. Consider the phasor representation of a
three-phase balanced current shown in Figure 10.1(a).

Icl . IE ' IO
[
/ %
Il I? /d
I 5
(@ (&) (c)
FIGURE 10.1

Representation of symmetrical components.

By convention, the direction of rotation of the phasors is taken to be counterclock-
wise. The three phasors are written as

Il = B0y =1
I} = I /240° = @21} (10.1)
= 1220 =41

where we have defined an operator a that causes a counterclockwise rotation of
120°, such that

a =1£120° = —0.5 + 70.866

a? = 1/£240° = —0.5 — 50.866 (102)

=1/360° =14 30

From above, it is clear that

l4atal=0 (10.3)

The order of the phasors is abc. This is designated the positive phase sequence.’

When the order is acbh as in Figure 10.1(b), it is designated the negative phase

16.2. FUNDAMENTALS OF SYMMETRICAL COMPONENTS 401

sequence. The negative phase sequence quantities are represented as

B=1240 =}
2 =120120° = al? (10.4)
T2 = I2/040° a2

When analyzing certain types of unbalanced faults, it will be found that a third set
of balanced phasors must be introduced. These phasors, known as the zero phase

sequence, are found to be in phase with each other. Zero phase sequence currents,
as in Figure 10.1{c), would be designated

B=pP=7 (10.5)

The superscripts 1, 2, and 0 are being used to represent positive, negative, and
zero-sequence guantilies, respectively. In some texts the notation 0, +, — is used
instead of 0, 1, 2. The symmetrical compenents method was introduced by Dr.
C. L. Fortescue in 1918. Based on his theory, three-phase unbalanced phasors of

a three-phase system can be resolved into three balanced systems of phasors as
follows.

1. Positive-sequence components consisting of a set of balanced three-phase
components with a phasc sequence abc.

2. Negative-sequence components consisting of a set of balanced three-phase
components with a phase sequence ach.

3. Zero-sequence components consisting of three single-phase components, all
equal in magnitude but with the same phase angles.

Consider the three-phase unbalanced currents 1, I, and I, shown in Figure
10.2 (page 405). We are seeking to find the three symmetrical gomponents of the

current such that
L=R+1}+1?
=041+ 17 ; (10.6)
L=I0+1'+12
According to the definition of the symmetrical components as given by (10.1),
(10.4), and (10.5), we can rewrite (10.6) all in terms of phase a components.

L=R+I+13

Iy = I8 + @%1} + ol (10.7)
I = I2 +al} +a®I
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or
T 11 1 10
L {=|14a? a I} (10.8)
Ie 1 a a? IZ

We rewrite the above equation in matrix notation as -

1% = A 912 (10.9)

where A is known as symmetrical components transformation matrix (SCTM)
which transforms phaser currents 12 into component currents 1212, and is

1 1 1
1 a? a
1 a af

Solving (10.9) for the symmetrical components of currents, we have

A= (10.10) ¥

1012 = A1 pobe

1 1 1
1 n a?
1 & a

From (10.10} and (10. _12), we conclude that

(10.11)

The inverse of A is given by

= (10.12)

C.«..I-'-‘

1
A"l = §A' (10.13) :

Substituting for A~ in (10.11), we have

b (fr1 I, .
Il =3|1 @ a* Iy (10.14)
2 1 &2 a i

or in component form, the symmetn’cal componeals are

I“— Mo+ 1+ 1)
I3 =31 +aly + a’L)
1

(10.15)
= 3o +a’ Iy +al) %

From (10.15), we note that the zero-sequence component of current is equal to
one-third of the sum of the phase currents. Therefore, when the phase currents sum
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to zero, e:g., .in a three-phase system with ungrounded neutral, the zero-sequence
current cannot exist. If the neutral of the power system is grounded, zero-sequence
current flows between the neutral and the ground. .

Similar expressions exist for voltages. Thus the unbalanced phase voltages in
terms of the symmetrical components voltages are

Vu =i V00+V:11 + VﬂZ

Vo = V2 + eV} +aV? (10.16)
Ve = VO 4 aV} 4+ V2
or in matrix notation
vabe — A Vgl? (10.17)
The symmetrical components in terms of the unbalanced voltages are
V= 3(Vat Vy+ Vo)
lr;‘_~(v +aVy + a?V,) (10.18)
V= 3{Va +a®V +aVi)
or in matrix notation
V2 = A-1yabe (10.19)

The apparent power may also be expressed in terms of the symmetrical compo-
nents. The three-phase complex power is

Sl = VeboTyabe? (10.20)
Substituting (10.9) and (10.17) in (10.20), we obtain
T -
Seey = (AVS?)" (AL0?)
="Vl AR AR (10.21)

Since AT = A, then from (10.13), ATA* = 3, and the complex power becomes
Stagy = 3 (V°12T1012')
=3V 4 3V 1Lt 4 3yt (10.22)

Equation (10.22) shows that the total unbalanced power can be obtained from the
sum of the symmetrical component powers. Often the subscript a of the symmet-
rical components are omitted, e.g., I%, I', and I? are understood to refer to phase a.
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Transformation from phase quantities to symmetrical components in MAT- 4
LAB is very easy. Once the symmetrical components transformation matrix A is'#§
defined, its inverse is found using the MATLAB function inv. However, for quick
calculations and graphical demonstration, the following functions are developed ¥
for symmetrical components analysis. ‘3

sctm The symmetrical components transformation matrix A is defined in this 3
script file. Typing sctm defines A. -

phasor{F) This function makes plots of phasors. The variable F may be expressed
inann X I array in rectangular complex form or as an n x 2 matrix. In the

tatter case, the first column is the phasor magnitude and the second column
is its phase angle in degree,

Fuz = abe2se(Fyy,.) This function returns the symmetrical componenis of a set
of unbalanced phasors in rectangular form. Fj, may be expressed ina3 x 1
array in rectangular complex form or as a 3 x 2 matrix. In the latter case,
the first column is the phasor magnitude and the second column is its phase
angle in degree for a, b, and ¢ phases. In addition, the function produces a
plot of the unbalanced phasors and its symmetrical components.

Fabe = sc2abe{Fyy5) This function returns the unbalanced phasor in rectangular
form when symmetrical components are specified. Fgyo may be expressed
in a3 x 1amay in rectangular complex form or as a 3 x 2 matrix. In the
latter case, the first column is the phasor magnitude and the second column 3
is its phase angle in degree for the zero-, positive-, and negative-sequence
components, respectively. In addition, the function produces a plot of the
unbalanced phasors and its symmetrical components.

Zpyg = zabe2sc(Zgp.) This function transforms the phase impedance matrix to the *
sequence impedance matrix, given by (10.30). '

Fy, =rec2pol(F;) This function converts the rectangular phasor F} into polar form 3 .
FP' : :

F}. = pol2rec(F,) This function converts the polar phasor F, into rectangular form —

Example 10.1

Obtain the symmetrical components of a set of unbalanced currents I, = 1.6£25°,
Iy = 1.0/180°, and I, = 0.9/132°. E
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The commands

Iabc = [1.86 25
1.0 180
0.9 132];

I012 = abc2sc¢(Iabe);

% Symmetrical components of phase a
I012p= rec2pol{I0t2)

% Rectangular to polar form

result in
I012P =
0.4512 96.4529
0.9435 -0.0550
0.6024 22.3157

and the plots of the phasors are shown in Figure 10,2,

1. a-b-cset I, Zero-sequence set
0 70 70
I, Iy I
Iy
1 - .
i Positive-sequence set Negative-sequence set
I
5 Ig
I;
I
L
FIGURE 10.2

Resolution of unbalanced phasors into symmetrical COMpOnEnts.

Example 16.2

The symmetrical components of a set of unbalanced three-phase voltages are V) =
0.6£90°, V! = 1.0£30°, and V2 = 0.8/-30°. Obtain the original unbalanced
phasors.

The commands
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Vo012 = {0.6 g0

1.0 30

0.8 -30]; :
Vabc = sc2abe(V012) ;%Unbalanced phasor to symmetrical comp.
Vabep= rec2pol (Vabc) % Rectangular to polar form

result in

Vabep =
1.7088 24,1825
0.400 80.0000
1.7088  155.8175

and the plots of the phasors are shown in Figure 10.3.

v a-b-cset Zero-sequence set
[ ; L’:.l Vﬂ{] Vbﬂ Vco
Vb F §
Positive-sequence set Negaliveiscquence set
vy
1._.:: { an ]
V2 V2
1
Vb
FIGURE 10.3

Transformation of the symmetrical components into phasor components.

10.3 SEQUENCE IMPEDANCES

This is the impedance of an equipment or component to the current of different se-
quences. The impedance offered to the flow of positive-sequence currents is known
as the positive-sequence impedance and is denoted by Z'. The impedance .of-
fered to the flow of negative-sequence currents is known as the negative-sequence
impedance, shown by Z2, When zero-sequence currents fiow, the impedance is
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called the zero-sequence impedance, shown by Z°. The sequence impedances of
transmission lines, generators, and transformers are considered briefly here.

10.3.1 SEQUENCE IMPEDANCES
OF Y-CONNECTED LOADS

A three-phase balanced load with self and mutual elements is shown in Figure 10.4,
The load neutral is grounded through an impedance Z,,.

o

FIGURE 10.4
Balanced Y-connected load.

The line-10-ground voltages are

Vo=20,+ 2y + 21 + Z,1,
Vi = Zmlo+ ZyIy + Zine + Zal, (10.23)
Ve= Zmla+ 2 dy + ZoI + 2,1,

From Kirchhoff's current law, we have
In=IL+IL,+1, (10.24)

Substituting for I, from (10.24) into (10.23) and rewriting this equation in matrix
form, yields

Va Ze+Zy ZpmA+Zn Zm4+ 2, I, ;
Wil=|2mt+Zn Z:s+2, Zm+2Z, Iy {10.25)
Vc Zm+ Zn Zm +Zn ZS'I'Z,-. Ic

or in compact form

yebe _ gabepabe (10.26)
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where

Zy+ Zy Zp +Zy Zwit Zy
Z%= | BBy FovZs G2,

(10.27) °
ZtZi Zn¥Ze DotZ.

Writing V“_“ and 1% in terms of their symmetrical components, we get

AV12 - Zabe 5 (012 (10.28)

Multiplying (10.28) by A~!, we get

vﬁl? = A—lzubCA:[El?

= AL (10.29)

where

zﬂl‘l e A—lzﬂbCA

(10.30)
Substituting for Z% A, and A~! from (10.27), (10.10), and (10.12), we have

or 1 11 1_) 2o+ Zy Zym+Zy Zm+Z,11 1 1
yA =3 Vow o (W dmtZn ZetZn Zm+Zn||1 @® a | (103D
L e a« j|Zu+2, Zu+Za Z:4Z, |1 a a?

Performing the above multiplications, we get

. Zs+3Z, + 22, 0 0
Z02 = 0 Ze— Zm 0 (10.32)
0 0 2, =

When there is no mutual coupling, we set Z,,, = 0, and the impedance matrix

becomes
Z,+3Z, 0 0
yALES 0 Z, 0

3 {10.33)

0 0 Z
The impedance matrix has nonzero elements appearing only on the principal diago-
nal, and it is a diagonal matrix. Therefore, for a balanced load, the three sequences
are independent. That is, currents of each phase sequence will produce voltage
drops of the same phase sequence only. This is a very important property, as it
permits the analysis of each sequence network on a per phase basis.
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10.3.2 SEQUENCE IMPEDANCES
OF TRANSMISSION LINES

Transmission line parameters were derived in Chapter 4. For static devices such
as transmission lines, the phase sequence has no effect on the impedance, because
the voltages and currents encounter the same geometry of the line, irrespective of
the sequence. Thus, positive- and negative-sequence impedances are equal, i.e.,
G T,

In deriving the line parameters, the effect of ground and shielding conductors
were neglected, Zero-sequence currents are in phase and flow through the a b,c con-
ductors to return through the grounded neutral. The ground or any shielding wire
are effectively in the path of zero sequence. Thus, Z°, which includes the effect
of the return path through the ground, is generally different from Z! and Z2. The
determination of the zero sequence impedance with the presence of earth neutral
wires is quite involved and the interested reader is referred to the Carson’s formula
(14]. To get an idea of the order of Z° we will consider the following simplified
configuration. Consider |-m length of a three-phase line with equilaterally spaced
conductors as shown in Figure 10.5. The phase conductors carry zero-sequence
{stngle-phase} currents with return paths through a grounded neutral. The ground
surface is approximated to an equivalent fictitious conductor located at the average
distance D, from cach of the three phases. Since conductor n cammes the return
current in opposite direction, we have

R+R+104+5L=0 (10.34)

I -

[+

D D
If@ﬁ{—o—\gbff
D, - .'-.;

Ground
HHTiiHTrriry
oI,

" FIGURE 10.5
Zero-sequence current flow with earth return,
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Since I = I? = I°, we have

I =-31° (10.35)

Utilizing the relation for the flux linkages of a conductor in a group expressed by :
(4.29), the total flux linkage of phase a conductor is

dy
D

Substituting for I, I?, and I, in terms of 19, we get

1 1
Aap =2 x 1077 (Ifln7+I£ln +I£ln—1~+fnln——) (10.36)
: T

D Dy

. 1 1 1 1
Aao = 2 % 10 TI‘? (11‘!;-’-11’1“5%-!115“3]!1“‘5:)

3
=2x10""0n Dy whim (10.37)
r' 2

Since Lo = Aqq/I2, the zero sequence inductance per phase in mH per kilometer
tength is

D}
r'D?
DD?

D D,
=0.2in = +3 (0.2 In 6-) mH/Km {10.38)

Lo =0.2In

=0.2In

The first term above is the same as the positive-sequence inductance given by
{4.33). Thus the zero sequence reactance can be expressed as

X%=x'+3x, (10.39)

where

Xp=2nf (0.2 In %) m{l/km (10.40)

The zero-sequence impedance of the transmission line is more than three times -3
larger than the positive- or negative-sequence impedance. .

10.3.3 SEQUENCE IMPEDANCES
OF SYNCHRONOUS MACHINE

The inductances of a synchronous machine depend upon the phase order of the
sequence current relative to the direction of rotation of the rotor. The positive-
sequence generator impedance is the value found when positive-sequence current
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flows from the action of an imposed positive-sequence set of voltages. We have
seen that the generator positive-sequence reactance varies, and in Section 9.2 one of
the reactances X ;, X :1 or X; was used for the balanced three-phase fault studies.

When negative-sequence currents are impressed in the stator, the net fiux in
the air gap rotates at opposite direction to that of the rotor. That is, the net flux
rotates at twice synchronous speed relative to the rotor. Since the field voltage is
associated with the positive-sequence variables, the field winding has no influence.
Consequently, only the damper winding produces an effect in the quadrature axis.

Hence, there is no distinction between the transient and subtransient reactances in

the quadrature axis as there is in the direct axis. The negative-sequence reactance
is close to the positive-sequence sublransient reactance, i.e.,

X2~ Xy (10.41) -

Zero-sequence impedance is the impedance offered by the machine to the fiow
of the zero-sequence current. We recall that a set of zero sequence currents are
all identical. Therefore, if the spatial distribution of mmf is assumed sinusotdal,
the resultant air-gap flux would be zero, and there is no reactance due to arma-
ture reaction. The machine offers a very small reactance due to the leakage flux.

Therefore, the zero-sequence reactance-is approximaied to the leakage reactance,
Ty

X%~ X, (10.42)

10.34 SEQUENCE IMPEDANCES
OF TRANSFORMER

In Chapter 3 we obtained the per phase equivalent circuit for a three-phase trans-
former. In power transformers, the core losses and the magnetization current are on
the order of 1 percent of the rated value; therefore, the magnetizing branch is ne-
glected. The transformer is modeled with the equivalent series leakage impedance.
Since the transformer is a static device, the leakage impedance will not change
if the phase sequence is changed. Therefore, the positive- and negative-sequence
impedances are the same. Also, if the transformer permits zero-sequence current

flow at all, the phase impedance (o zero-sequence is equal to the leakage impedance,
and we have

Z2°=7'=2%= 2 _ (10.43)

From Section 3.9.1, we recall that in a Y-A, or a A-Y transformer, the positive-
sequence line voltage on HV side leads the comresponding line voltage on the
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LV side by 30°. For the negative-sequence voltage the corresponding phase shift
is —30°. The equivalent circuit for the zero-sequence impedance depends on the
winding connections and also upon whether or not the neutrals are grounded. Fig-
ure 10.6 shows some of the more common transformer configurations and their
-zero-sequence equivalent circuits. We recall that in a transformer, when the core
reluctance is neglected, there is an exact mmnf balance between the primary and
secondary. This means that current can flow in the primary only if there is a cur-
rent in the secondary. Based on this observation we can check the validity of the

zero-sequence circuits by applying a set of zero-sequence voltage to the primary
and calculating the resulting currents.

Symbol Connection diagram Zero-sequence circuit
T o g 0 W
ad a a'

b.!'

B
J

(a) Y-Y connections with both neutrals groﬁnded — We know that the zero se- —
quence current equals the sum of phase currents. Since both neutrals are grounded,
there is a path for the zero sequence current to flow in the primary and secondary, -

and the transformer exhibits the equivalent Icakage impedance per phase as shown
in Figure 10.6(a).

(b)
(b) Y-Y connection with the primary neutral grounded — The primary neutra]
is grounded, but since the secondary neutral is isolated, the secondary phase current &
must sum up to zero. This means that the zero-sequence current in the secondary %51
is zero. Consequently, the zero sequence current in the primary is zero, reflecting 5=
infinite impedance or an open circuit as shown in Figure 10.6(h). '

noo B
J
[a]
L2 TR = a,
:;
‘q}
D‘h

po——-——— ¢
: coJ 3] _
{¢) Y-A with grounded neutral - In this configuration the primary currents “Z ' .
can flow because there is zero-sequence circulating current in the A-connected B a" BT g
secondary and a ground retum path for the Y-connected primary. Note that no zero- 222
sequence current can leave the A terminals, thus there is an isolation between the ZE: Y -
primary and secondary sides as shown in Figure 10.6(c). — 9
; be _ o
(d) Y-A connection with isolated neutral — In this configuration, because the COJ @

neutral is isolated, zero sequence current cannot flow and the equivalent circuit re-
flects an infinite impedance or an open as shown in Figure 10.6(d).

A a ad o— gt
(e) A-A connection — In this configuration zero-sequence currents circulate ; '
in the A-connected windings, but no currents can leave the A terminals, and the T ‘3 E— ; *
equivalent ¢ircuit is as shown in Figure 10.6(e). S AA v _

— po—f————] d
Notice that the neutral impedance plays an important part in the equivalent S| co—, o
circuit. When the neutral is grounded through an impedance Z,,, because I, = 3fg, | (e)
in the equivalent circuit the neutral impedance appears as 3Z, in the path of I,. o R

Transformer zero-sequence equivalent circuits,
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Example 10.3

A balanced three-phase voltage of 100-V line-to-neutral is applied to a balanced
Y-connected load with ungrounded neutral as shown in Figure 10.7. The three.
phase load consists of three mutually-coupled reactances. Each phase has a serjes
reactance of Z, = 712 2, and the mutuval coupling between phases is Z,,, = 4 0.

FIGURE 10.7
Circuit for Example 10.3.

{a) Determine the line currents by mesh analysis without using symmetrical com-
ponents.

(b) Determine the line currents using symmetrical components.

(a) Applying KVL to the two independent mesh equations yields

Zyda+ Zpdy — Zody ~ Zp 1, = Vo—-W = |VL|£1T/6
Zely+ Zpple— Z I, — Iy =V - V.= |VL|[—‘!Tf2

Also from KCL, we have
To+ I+ I.=0

Writing above equations in matrix form, results in -

(Zs - Zm) _(Zs - Zm) 0 Ia. IVLllﬂfﬁ
0] (Z, = Zm) '-(Zs = Zm) ] |: Ib ] = [ [VLll—ﬂ/2 ]
I 1 1 I 0

of in compact form

zmeshlabc = Y mesh
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Solving the above equations results in the line currents
%= Zmeshﬂlvmesh
The following commands

% (2) Solution by mesh analysis
2s=j*12; Zm=j*4; Va = 100; VL=Vaxsqrt(3);
z= [(Zs-Zm) -(Zs-Zm) 0

0 (Zs-Zm} -(Zs-Zm)

1 1 R
V=[VL*cos(pi/6) +j*VL*sin(pi/6)

VL*cos(-pi/2}+j*VL+»sin(-pi/2)
0 s

Y=inv(Z}
Iabe=Y*V; : % Line currents {Rectangular form)
Iabcp={abs{Iabc), angle(Iabc)+180/pil % Line currents (Polar)

result in
Iabcp =
12.5 -90.0
12.5 150.0
12.5 30.0

(b} Using the symmetrical components method, we have

an2 s 20121012

where

and from (10.32)
L+ 2% 0 0
ALLES 0 Zy— Zm 0
0 0 Zy~Zm
for the sequence components of currents, we get

°2 = [2012]—1Vm2

We write the following commands
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% {b) Sclution by symmetrical components method

2012=[Zs+2+Zm O 0 % Symmetrical components matrix
0 Zs-Zm 0

0 0 2s~Zm]; .
vo12=[0: Va ; 0]: 4Symmetrical components of phase voltages
I1012=inv(2012)*V012; ZSymmetrical components of line currents
a=cos(2%pi/3)+j*sin(2*pi/3};

A={ 1 1 1; 1 a2 a; 1aa"2]; % Transformation matrix
Iabc=A+1012; % Line currents (Rectangular form)
Tabep=[abs(labc), angle(Iabc)*180/pi] ¥ Line currents {(Polar)

which resuit in

labcp =
12.5 -90.0
12.5 150.0
12.5 30.0

This is the same result as in part (a).

Example 10.4
A three-phase unbalanced source with the following phase-to-neutral voltages
200 /Z25°

vebe = [ 100 /-155°
80 /Z100°

is applied to the circuit in Figure 10.4 (page 407). The load series impedance per .

phase is Z, = 8+ 524 and the mutual impedance between phases is Z,, = j4. The
load and source neutrals are solidly grounded. Determine ’

(a) The load sequence impedance matrix Z012 = A-178bc A
(b) The symmetrical components of voltage.

(c) The symmetrical components of current.

(d) The load phase currents.

(€) The complex power delivered to the load in terms of symmetrical components,

Sap = 3(VPIT + VIV + V22,
() The complex power delivered to the load by summing up the power in each
phase, 83, = VI + VI -+ VeI7.

We write the following commands
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Vabc = [200 25

100 -155

80 100];
Zabc = {8+j%24 j*4 j*4

j*4 8+jx24 j*4
 j*4 j*4  B+3j*24]; .

2012 = zabc2sc(Zabce) % Symmetrical components of impedance
V012 = abc2sc(Vabe); % Symmetrical components of voltage
V012p= rec2pol(V012) % Rectangular to polar form
1012 = inv(Z012)*V012; % Symmetrical components of current
I012p= rec2pol{1012) % Rectangular toc polar form
Iabc = scZabc(I012); % Phase currents

Iabcp= rec2pol(Iabce) A Rectangular to polar form
S3ph =3*(V012.')*»conj(I1012)}YPover using symmetrical components
Vabcr = Vabc(:, 1).x(cos(pi/180+Vabe(:, 2)) +. ..
j*sin{pi/180+Vabe(:, 2)));
83ph=(Vabcr. ')*conj (Iabc)

% Power using phase currents and voltages

The result is

2012 =
8.00 + 32.00%8 Q.00+ 0.00i 0.00+ 0.00i
0.0 + 0.001i B8.00 + 20.00i Q.00 + 0.00i
0.00 - 0.00i 0.00 - ©.00i 8.00 + 20.00i
Vo12p = :
47 .7739 67.6268
112.7841 -0.0331
61.6231 45.8825
1012p =
1.4484 -18.3369
5.2359 -68.2317
2.8608 -22.3161
Iabep =
8.7507 -47.0439
5.2292 143.2451%
3.0280 39.0675
N
S3ph = )
9.0471e+002+ 2.3373e+0031
S3ph =

9.0471e+002+ 2.3373e+003i
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104 SEQUENCE NETWORKS
OF A LOADED GENERATOR

Figure 10.8 represents a three-phase synchronous generator with neutral grounded
through an impedance Zy. The. generator is supplying a three-phase balanced load.

I

<
+

Va

FIGURE 10.8
Three-phase balanced source and impedance.

" The synchronous machine generates balanced three-phase internal voltages and is -
represented as a positive-sequence set of phasors

1
B = [ a? ] E, (10.44) °
a %

The machine is supplying a three-phase balanced load. Applying Kirchhoff’s volt-
age law to each phase we obtain

V=B =22l

Vo=Ey— 20y — Zuln (10.45) ==

Vc = EC = ZCIC i ZnIn

Substituting for I, = I, + Iy -+ I, and writing (10.45) in matrix form, we get

Va En Zs + Zn Zn Zn Ia
Vg, = Eb - Zn z,g + Zn Zn Ib
‘/I'.‘. EC Zn Zn Zs + zﬂ. IC
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or in compact form, we have
webe. o pebe . gabeyabe (10.47)

where V¥ is the phase terminal voltage vector and 1%% is the phase current vec-

tor. Transforming the terminal voltages and current phasors into their symmetrical
components results in

AVI2 _ AR0I2 . Zob A 1012  (10.48)
Multiplying (10.48) by A~1, we get -
Vgu - E212 - A—lzabcAIEIQ

- Egl'z — Z0121212 (10‘49)
where
(VY 1Y Z+2. Z, . Zn 11 1
Zm?:g 1 ¢ a2 7 Zot Zn Zn 1 2 a
1 & a Zy Za 2.+ 2, 1 a a2
(10.50)

Performing the above multiplications, we get

Ze+3Z, O 0 Z° 0 o0
FNE 0 5 L 0|=}0 2Z' 0 (10.51)
0 0  Z | 0 o Zz?

Since the generated emf is balanced, there is only positive-sequence voltage, i.e.,

0 -3
EX? = [ % (10.52)

Substituting for E912 and Z%'? in (10.49), we get

Vo 0 zZ° 0 0 e
Vil=1E|-|0 2" 0 1 (10.53)
1 0 0 0 Zz% Iz -

Since the above equation is very important, we write it in component form, and we
get

Vi=0-2°I]
vi=E, -2} (10.54)
V2=0-Z2




420 10. SYMMETRICAL COMPONENTS AND UNBALANCED FAULT

i ' 2 e 10
2, Y |
’ E{l : Vﬂl - . Vaz 2 V.O
L—Q. Y L 3
FIGURE 10.9

Sequence petworks: (a) Positive-sequence; (b) negative-sequence; {c) zero-sequence.

The three equations given by (10.54) can be represented by the three equwalent
sequence networks shown in Figure 10.9.

We make the following important observations.

e The three sequences are independent.

¢ The positive-sequence network is the same as the one-line diagram uvsed in
studying balanced three-phase currents and voltages.

e Only the positive-sequence network has a voltage source. Therefore, the
posilive-sequence current causes only positive-sequence voltage drops.

» There is no voltage source in the negative- or zero-sequence networks.

e Negative- and zero-sequence currents cause negative- and zero-sequence
voltage drops only.

¢ The neutral of the system is the reference for positive-and negative-sequence
networks, but ground is the reference for the zero-sequence networks, There-
fore, the zero-sequence current can flow only if the circuit from the system
neutrals to ground is complete.

¢ The grounding impedance is reflected in the zero sequence network as 37,.

» The three-sequence systems can be solved separately on a per phase basis.
The phase currents and voltages can then be determined by superposing their
symmetrical components of current and voltage respectively.

We are now ready with mathematical tools to analyze various types of unbatanced
faults. First, the fault current is obtained using Thévenin’s method and algebraic
manipulation of sequence networks. The analysis will then be extended to find the
bus voltages and fault current during fault, for different types of faults using the
bus impedance matrix.
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10.5 SINGLE LINE-TO-GROUND FAULT

Figure 10.10 illustrates a three-phase generator with neutral grounded through
impedance Z,,.

I

=

:”—

FIGURE 16.10
Line-to-ground fault on phase .

Suppose a line-to-ground fault occurs on phase e through impedance Zy.
Assuming the generator is initially on no-load, the boundary conditions at the fauit
point are

Vo= 2l (10.55)
T (10.56)

Substituting for I = I = 0, the symmetrical components of currents from (10.14}

are
IE 1 11 1 Ia, ’
Al=lt1aa}]0 (10.57)
IE 3 1 &% @ 0

From the above equation, we find that
1
P=n=1l= 3l (10.58)

Phase a voltage in terms of symmetrical components s

Vo= V4V, + 1 (o8
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Substituting for V2, V!, and V2 from (10.54) and noting IR =1!= 12 weget
Ve=E,~(2'+ 22+ 2% = _ (10.60)

where Z° = Z, + 3Z,. Substituting for V, from (10.55), and noting 1, = 370, we
get '

32/ =E, - (Z2' + 22+ 2912 ~ (1061)
ar

Fosks s
© T Z'+ 24+ 70+ 37,

(10.62)

The fault current is

3k,

Lsdls
¢ ZV 4+ 7224 720+ 37

(10.63)

Substituting for the symmetrical components of currents in (10.54), the symmetri-
cal components of voliage and phase voltages at the point of fault are obtained.
Equations (10.58) and (10.62) can be represented by connecting the sequence
networks in serics as shown in the equivalent circuit of Figure 10.11. Thus, for line-
to-ground faults, the Thévenin impedance to the point of fault is obtained for each
sequence network, and the three sequence networks are placed in series. In many
practical applications, the positive- and negative-sequence impedances are found

to be equal. If the generator neutral is solidly grounded, Z, = 0 and for bolted
faults Z 5= 0.

z' L, 22 12, 2013,
+ +
E, o Ve
32,
j S ,

FIGURE 10.11
Sequence network conncction for line-to-ground fault.
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10.6 LINE-TO-LINE FAULT

Figure 10.12 shows a three-phase generator with a fault through an impedance

" Zy between phases b-and ¢. Assuming Lhe_: generator is initially on no-load, the

poundary conditions at the fault point are

Vb—VCIfob ~(10.64)

Iy+1.=0 (10.65)

I, =0 © (10.66)

Substituting for I, = 0, and I, = —I,, the symmetrical components of currents

from (10.14) are

7 711 170 -
BDl=-|1 a a? Iy (10.67)
I 311 & —1Iy :

From the above equation, we find that

=0 (10.68)
Il = %(a —ah)I (10.69)
2= %(02 —a)l, (10.70)

FIGURE 1{.12
Line-to-line fault between phase b and €.
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Also, from (10.69) and (10.70), we note that

n=_p (10.71)
From (10.16), we have

(10.72)

Substituting for V! and V.2 from (10.54) and noting 12 = —I}, we get
(a® — @)[Ee = (Z' + ZD)I1) = 241, (10.73)

Substituting for Iy from (10.69), we get

31!
E.—(2'+ 20 = Z2j— 25— 10.74
(& + 2 Ma=2y (e —a?){a? — a) ( )
Since (& — a?){a® — &) = 3, solving for I} results in

. E.
“ T Z iy 22+ 74

The phase currents are

The favlt current is
I=~I={a~a)
or
I=—3V3L;

Substituting for the symmetrical components of curents in (10.54), the symmetri
cal components of voltage and phase voltages at the point of fault are obtained.

Equations (10.71) and (10.75) can be represented by connecting the positive- =

and negative-sequence networks in opposition as shown in the equivalent circuit of
Figure 10.13. In many practical applications, the positive- and negative-sequence
impedances are found to be equal. For a bolted fault, Zy = 0.

(10.75) .

(10.76)
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: 2,2 IBQ !
| +

Zy

| IS |

FIGURE 10.13
Sequence network connection for line-to-line fault.

16.7 DOUBLE LINE-TO-GROUND FAULT

Figure 10.14 shows a three-phase generator with a fault on phases b and ¢ through
an impedance Z; to ground. Assuming the generator is initially on no-load, the
boundary conditions at the fauit point are

(10.79)
(10.80)

Vo=Ve=2Zi{ly+ L)
L=+ +1}=0
From (10.16), the phase voltages V}, and V;, are

In=20

.

FIGURE 10.14
Double line-to-ground fault.
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Vo =V + V) +aV?
Veo=V2 + eV} +a®V2

(10.81) °
(10.82)
Since V, = V., from above we note that
vl =y?2 (10.83) -
Substituting for the symmetrical components of currents in (10.79), we get
Vo= Zp(I0 + oI} + al2 + 1% + oI} 4+ a%12)
-1 - 1)
=32,1° (10.84)
Substituting for ¥}, from (10.84) and f_or Vf from (10.83) into (10.81), we have
3Z,I2 = V2 4 (a® + o)V}
- Vau sy vﬂl

(10.85)

Substituting for the symmetrical components of voltage from (10.54) into (10.85)
and solving for 12, we get

E,~ 7'}
PPl = o 10.86
B Z%+3Z; ( )

Also, substituting for the symmetrical components of voltage in (10.83), we cbtain

E,- 2]}
2 o a
I; = ——T“ (10.87)
Substituting for I and I2 into (10.80) and solving for I}, we get
I o (10.88)

a = Z2{2513Z,)

Zt+ z?+zﬂ+3'zr',
Equations ( 10.86)-(10.88) can be represented by connecting the positive-sequence e
impedance in series with the parallel combination of the negative-sequence and
zero-sequence networks as shown in the equivalent circuit of Figure 10.15. The

value of I! found from (10.88) is substituted in (10.86) and (10.87), and J© and I2

are found, The phase currents are then found from (10.8). Finally, the fauit current
is obtained from

If=hL+I=3I0 (10.89)
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FIGURE 10.15
- Sequence network connection for double tine-to-ground fault.

Example 10.5

The one-hine diagram of a simple power system is shown in Figure 10.16. The
ncutral of each generator is grounded through a cumrent-limiting reactor of 0.25/3
per unit on a 100-MVA base. The system data expressed in per unit on a common
100-MVA base is tabulated below. The generators are running on no-load at their
rated voliage and rated frequency with their emfs in phase.

Determine the fault current for the following faults.

(a) A balanced three-phase fault at bus 3 through a fault impedance Z; = ;0.1
per unit.

(b) A single line-to-ground fault at bus 3 through a fault impedance Z; =
70.10 per unit.

{c) A line-to-line fault at bus 3 through a fault impedance Z; = 0.1 per unit.

{(d) A double line-to-ground fault at bus 3 through a fault impedance Z; =
70.1 per unit.

Item Base MVA Voltage Rating X! X2 X0

Gy 100 20kV 015 015 0.5
G 100 20kV 0.15 015 005
n 100 201220 kV 010 0108 0.10
I 100 20/220 kY 0i¢c o010 0O.10

Ly 100 220 kV 0.125 0125 0.30
Lys 100 220kVv 015 015 035
Las 100 C220kV 025 025 0.7125
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oL, . La

FIGURE 10.16

The one-line diagram for Example 10.5.

The positive-sequence impedance network is shown in Figure 10.17.

FIGURE 10.17

70.035714 70.059524

§0.071428

Positive-sequence impedance diagram for Example 10.5,

To find Thévenin impedance viewed from the faulted bus (bus 3), we convert
the delta formed by buses 123 to an equivalent Y as shown in Figure 10.17(b).

le =

Z?s

(j0.125)(j0.15)

70.525

(j0.125)(;0.25)

40.525

= 30.0357143

= j0.0595238
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(j0.15)(50.25)

A
# 70.525

= j0.0714286

Combining the paraliel branches, the positive-sequence Thévenin impedance is

0.2857143)(j0.3095238)
zL = U 0714286
33 70.5952381 rubebia

= 70.1485714 + j0.0714286 = 70.22

This is shown in Figure 10.18(a).,

30.22 : : §0.22

r—m—o e S—

EGL
- _—0

{a) Positive-sequence network (b) Negative-sequence network

FIGURE 10.18
Reduction of the positive-sequence Thévenin equivalent network.,

Smce the negative-sequence impedance of each element is the same as the positive-
sequence impedance, we have

and the negative-sequence network is as shown in Figure 10.18(b). The equivalent
circuit for the zero-sequence network is constructed according to the ransformer
winding connections of Figure 10.6 and is shown in Figure 10.19.

To find Thévenin impedance viewed from the faulted bus (bus 3), we convert
the delta formed by buses 123 to an equivalent Y as shown in Figure 10.19(b).

(70.30){(50.35) _ .
= XTI L = 50.0770642
s j1.3625
Tpy = BOSOUONIZ) _ L ) s6807
71.3625
Zag = (70.35)(j0.7125) _ §0.1830257
j1.3625 |
Combining the parallel branches, the zero-sequence Thévenin impedance is
20 = (§0.4770642)(70.2568807). + 70.1830275
30.7339449

= j0.1669725 + j0.1830275 = 70.35
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FIGURE 10.19 ;
Zero-sequence impedance diagram for Example 10.5.

70.35

|
— &

FIGURE 10.20
Zero-sequence network for Example [0.5.

The zero-sequence impedance diagram is shown in Fi gure 10.20.

(a) Balanced three-phase fault at bus 3.

Assuming the no-load generated emfs are equal to 1.0 per unit, the fault cur-
rent ig

o vy 10
B = e =

= 820.1/-90° A

—73.125 pu

(b) Single line-to-ground fault at bus 3.

From (10.62), the sequence components of the fault current are
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_ V{(0)

T ZL+ 25+ 25+ 32

_ 1.0

- §0.22 + j0.22 + 30.35 + 3(30.1)
= —j0.9174 pu

The fauit current 13

£ 1 1.1 n 55 —42.7523
Bl=|1a a Bael 0 3= 0 pu
5 1 a @? ity 0 0

(¢} Line-to line fault at bus 3.
The zero-sequence component of current is zero, i.e.,

$=0

From (10.73), the positive- and negative-sequence components of the fault current
are

Vi 1

Il = 2o ) - = —41.8519 pu
ST T LY 24, 2, j022 440924 501 ° P
The fault custent is

19 P 0 0
Bl=|1a a —71.8519 | = | —-3.2075
2 1 a a? 71.8519 3.2075

(d) Double line-to line-fault at bus 3.
From (10.88), the positive-sequence component of the fault current is

L= Vo = : = —j2.6017 pu
3 22,(2%, 432, j0.22(;0.35430.3) *<"
Zh+ WI_ 7022 + Sy mtoaeis
The negative-sequence component of current from (10.87) is
. ve . — z}. fl _fa o
o - 3(0) i afy 1 (30.2?)( 72.6017) ~ /10438 pu
233 J0.22
“The zero-sequence component of current from (10.86) is
17l . :
oo Vo Zal | 1- (G02)(=26017) _ L eong oy

8T Tz 43z, §0.35 + 0.3
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and the phase currents are

; 11 1 70.6579 0
Bl=|1a* a 26017 | = | 4.0587165.93°
1 & 4&° 71.9438 4.058/14.07°

The fault current is

I(F) = If + IS = 1.9732£90°

10.8 UNBALANCED FAULT ANALYSIS
USING BUS IMPEDANCE MATRIX

We have seen that when the network is balanced, the symmetrical components
impedances are diagonal, so that it is possible to calculate 2y, separately for
Zero-, positive-, and negative-sequence networks. Also, we have observed that for
a fault at bus &, the diagonal element in the k axis of the bus impedance matrix
Zj.s is the Thévenin impedance 1o the point of fault. In order to obtain a solution
for the unbalanced faults, the bus impedance matrix for each sequence network is
oblained separately, then the sequence impedances 2%, Z' k., and 2%y are con-
nected together as described in Figures 10.11, 10.13, and 10.15. The fault formulas
for various unbalanced faults is summarized below. In writing the symmetrical
compenents of voltage and currents, the subscript a is left out and the symmetrical
components are understood to refer to phase a.

10.8.1 SINGLE LINE-TO-GROUND FAULT USING Lius

Consider a fault between phase a and ground through an impedance Z; at bus k as
shown in Figure 10.21. The line-to-ground fault requires that positive-, negative-,
and zero-sequence networks for phase a be placed in series in order to compute the
Zero-sequence faull current as given by (10.62). Thus, in general, for a fault at bus
k. the symmetrical components of fault current is .

R=r =R~ %)

(10.90)
- Za+ ZR + 20 + 32

" where Z1, | 72 and Z,. are the diagonal elements in the k axis of the correspond-

ing bus impedance matrix and V(0) is the prefault voltage at bus k. The fault phase
current is .

Ighe = A2 (10.91)
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_——— =

FIGURE 10.21
Line-ta-ground fault at bus k.

10.8.2 LINE-TO-LINE FAULT USING Z;,,,

Consider a fault between phases b and ¢ through an impedance Zy; at bus k as
shown in Figure 10.22.

Bus & of network

FIGURE 10.22
Line-to-line fault at bus &.

The phase o sequence network of Figure 10.13 is applicable here, where the
positive- and negative-sequence networks are placed in opposition. The symmet-
rical components of the fauit current as given from (10.68), (10.71), and (10.75)
are

=0 (10.92)
Vi (0)

Lh=-I=

(10.93)

where Z},, and Z7, are the diagonal elements in the k axis of the corresponding
bus impedance matrix. The fault phase cuwent is then obtained from (10.91).
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10.83 DOUBLE LINE-TO-GROUND FAULT USING Z;, s

Consider a fault between phases & and ¢ through an impedance Z 1 to ground at bﬁg
k as shown in Figure 10.23.

Bus £ of network

A |

FIGURE 10.23
Double line-1o-ground fault at bus k.

The phase a sequence network of Figure 10.15 is applicable here, where the
positive-sequence impedance is placed in series with the parallel combination of
the negative- and zero-sequence networks. The symmetrical components of the
fault current as given from (10.86)-(10.88) are

Vi(0)
1 k
& = 71 4 ZalZ 432y (10.94)
s + Ly F 2y +32y .
V(Y - 2L 11 :
2= _J%uf*_x_x_g (10.95)

_V(0) - Z, 0}

1=
Z0, + 32,

(10.96)

where Z],, and 27, and ZJ,, are the diagonal elements in the k axis of the cor-

responding bus impedance matrix. The phase currents are obtained from (10.91),
and the fault current is

CL(FPy=I 4 IS (10.97)

1084 BUS VOLTAGES AND
LINE CURRENTS DURING FAULT

Using the sequence components of the fault current given by the formulas in (10.54),°

the symmetrical components of the ith bus voltages during fault are obtained

VIF)=0-Z}I¢
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VHF) = ViI(0) - Z) I} (10.98)
VAF) =0-231;

where V1(0) = V;i(0) is the prefault phase voltage at bus i. The phase voltages
during fault are

VA = A2 (10.99)
The symmetrical components of fault current in line £ to j is given by

VA(F) - VP(F)

0 _
! _ i/l
iw - V) (10.100)
ij 7T _
) 5
p = VB Vi)
i zij
where z{}, z/;, and 2%, are the zero-, positive-, and negative-sequence components

of the actual line impedance between buses i and j. Having obtained the symmet-
rical components of line current, the phase fault current in fine ¢ to 7 is

Igjbc = AI{?}‘? (10.101)
Example 10.6

Solve Example 10.5 using the bus impedance matrix. In addition, for each type of
fault determine the bus voltages and line currents during fault.

Using the function Zbus = zbuild(zdata), Z},,, and Z{, , are found for t_he positive-
sequence network of Figure 10.17 and the zero-sequence network of Figure 10.19.
The positive-sequence bus impedance matrix is

[ $0.1450 70.1050. 70.1300
Zl .= | j0.1050 ;0.1450 30.1200
| 70.1300 ;0.1200 j0.2200

and the zero-sequence bus impedance matrix is

[ 70.1820 j0.0545 50.1400
Z0., = | 70.0545 j0.0864 50.0650
| §0.1400 30.0650 30.3500

Since positive- and negative-sequence reactances for the sysiem in Example 10.5
are identical, 2}, = ZZ,..




a0 10, SYMMETRICAL COMPONENTS AND UNBALANCED FAULT

(2) Balanced three-phase fault at bus 3 through a fault impedance Z; = j0.1.

The symmetrical components of fault current is given by

flj 0 0
012 =
BE) = | ez | = | jomer | = [“‘33-125
0 0 0
The fault current is
11 1 0 3.125¢—90°
B Fy=1{1 a a —73.125 | = | 3.125/150°
1 a a 0 3.125/30°

For balanced fault we only have the positive-sequence component of voltage, Thus

from (10.98), bus voltages during fault for phase @ are

Vi(F) = 1= ZLI(F) = 1 - j0.13(-53.125) = 0.59375
Vo(F) = 1 — Z3313(F) = 1 — §0.12(—3.125) = 0.62500
Va(F) = 1= ZH1(F) = 1 - j0.22(—53.125) = 0.31250

Fault currents in lines for phase o are

Vol FY — : - ().
In(F) = H{F) : Vi(F) _ 062509 0.59375 — 025007 ~90°
30 70.125
Vi(F £.59375 — 0.31250
s )213 ) _ AT = 0.1875/—90°
IQ;;(F) _ Vol F) —l Va(F) s 0'5250?0“22_31250 = 0.125/—90°
323 3

(b) Single line-to-ground fault at bus 3 through a fauit impedance Z; = 0.1.

From (10.90), the symmetrical components of fault current is given by

1.0
B(F) = INF) = I}{F) =
3 ( ) -(3(}?) Ié (}?) 231 + 23%3 + 25?3 + 3E§f
1.0
0.9174
3022+3022+3035+;3(01) o
The fault current is
- 11 1 —50.9174 2.7523/-90°
BeF)=11 a? a -j0.9174 | = 0£0°
1 a af —30.9174 0/0°
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From (10.98), the symmetrical components of bus voltages during fault are

0 - Z%1§
VOHF) = | ViH0) - Z], 1)
0- 2413
0 - 25139
v, {0) ~-

VQOIQ(F) =
0~ Z§3-I§

OIZ(F) [

Bus voltages during fault are

0= 2,1
Vi {0) - Z4,13
0-Z4LI3

(1 1 1
VEFYy=|1 a? a
{1 a &°
(1 1 1
VE(FY=11 a® a
L 1 i a2
[1 1 1
VP(Fy=|1 a? a
1l a o

ZhI3

[ 0-j0.140(-j0.9174) 7 [ ~0.1284 |
= | 1-50.130(—70.9174) 0.8807

| 0—70.130(—509174) | | —0.1193 |

1 [ 0-370065(—j0.9174) 7 [ —0.0596 1
= | 1-;0.120(—30.9174) 0.8899

L 0 - j0.120(—50.9174) } | —0.1101 |

1 [ 0-j0.350(—j0.9174) 7 [ ~0.3211
= [ 1—350.220(~;0.9174) | = | 0.7982

| 0—350.220(—50.9174) | | —0.2018 |

[ —0.1284 T
08807 | =
| —0.1193 |

—0.0596 ] g
0.8809 | =
—0.1101 |

[ —0.3211 1 [
0.7982 | =

—0.2018 |

| 1.0046/+120.45° |

| 0.9757/+117.43°

| 1.0647/+125.56°

0.63320° 1
1.0046/-120.45°

0.720720° i
0.9757/-117.43°

0.275220° 1
1.0647/—125.56°

The symmetrical components of fault currents in lincs for phase a are

[ VA(F)-VR(F) ]
212

o1z _ | ViF)-V(F)

4 %12

V- V{F)

B 12 A

[ VRF)-VE(F)
11 13
VHF)-V ()
l %13
V2(F)-VE(F)

13 3

- Iy i

21" = =

[ —0.0556—(—0.1284)

30.3

0.8899-0.8807)
70.125
] —0.1101(0.1193)

70125

[ —0. 1234—!~—{) 3211) 7
0.35
8807 0.7982

30.15

| 70.15

—0‘1193—5—[}.2018!

0.2294/--90°
=1 0.0734/-90°
0.0734£-90°

0.5505/—-90°
= | 0.5505/~-90°
0.5505/-90°
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0 _ 0
Vi EV G ) ~0.0596—(—0.3211)

vt anvl - 30.7195 0.3670/-90°
82 - 2l )‘;33( I 0.889?{:3;’982} = | 0.3670/-90°
VA(FYVA(F —0.1101-(-0.2018 ; —op°
2( )zng( ) J_O's% ) 0.3670£—90
The line fault currents are
(1 1 1 77§02294/-90°7 [ 0.3761/~90°
IF)=| 1 a® a || 00734,-90° | = | 0.1560/—90°
L1 e a? ]| | 0.0734/-90° | | 0.1560£-90° ]
_ (1 1 1 7[05505/-90°7 [ 1.6514/-50° ]
I(Fy=|1 o a || 05505/-90° | = 0
[ 1 a a? ] | 055050-90° | | 0 |
- [1 1 1 77103670-90°7 [ 1.1009£-90°
BER =11 a? a 0.3670£-90° | = 0
|1 a & ] | 036707-90° | | 0

(¢) Line-to-line fault at bus 3 through a fault impedance Z; = j0.1.

From (10.92) and (10.93), the symmetrical components of fault current are
B=0 :
V3(0} _ 1 _

Zis+ Z3+ Z;  §0.22+ j0.22 + 0.1

Il=-1 = —51.8519

The fault current is

1 1 177 0 0
BFy=11 &% @ -71.8519 | = | —3.2075

1 a a? ]| j1.8519 3.2075

From (10.98), the symmetrical components of bus voltages during fault are

[ 0 T T 0 0
VIR = | V(0) - ZL1} | = | 1-0.130(—51.8519) ] = [ 0.7593 ]
RS ASE | 0-50.130(j1.8519) 0.2407
[ 0 1 i 0 0 .
VPHE) = | Vi) = Z51} | = | 1-370.120(~j1.8519 | = | 0.7778
0~ Z3,12 | 0~ 70.120(;1.8519) 0.2222
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l.:j[)i?(F) -

0-2Z4L13

Bus veltages during fault are

1 1 1 0
VE(F)=|1 o? a ] [0.7593] =
1 a a2 0.2407
; 11 17 8
V(R =1 & a 0.7778 | =
1 a a® ) | 02222 |

11 13 0
Vi(FY=11 a? a 0.5926 | =
1 a o] | 04074

= e

The symmetrical components of fanlt currents in

1£0°
0.672/-138.07°
0.672/+138.07°

0.6939/-136.10°
p 0.6939/+136.10°

0.5251/-162.21°
| 0.5251/+162.21°

tines for phase a are

0 -
012 VIRV 0.?77390,7593 0
M | St g ) QRO | o | gugy . gpe
1.;22 {F) ___VIZ{ F3 -0_22%2—-0.2407 0 s 1481 +900
-l L ;0125
- 0 = g
4] 0
VIR -vie) 3
o2y T = | U092 | | 111117 -90°
VAR Va) 0240704004 1.1111£-+90°
L 3 g &
T I Y S 0
VA FY-VMF) . :
%2 - 2—":_"};‘}_ = % = [ 0.7407/ -90°
V2RI VE(F 0.2232-0.4074 °
i _z_i_)zga_s_u By 0.7407/ 490

The line fault currents are

i
Ig(F) = :

— =

a a 0.148

1 0 0
e’ a || 0.148/-90° | = | --0.2566
a? 0.2566

[ 00 |

120° 1

0 0 0
VA 0) - ZL 1 ] = [ 1 — j0.220(—51.8519) } = [0.5926 }

0 — j0.220(;1.8519) 0.4074

|
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If§e(F) =

. 0 0
1 a2 a 1.11114-90° | = | —1.9245
1 a a* 1.11112+90° 1.9245

1 1 1 0 0
IB(F)=11 a® a 0.7407(~90° | = | —1.283
23 i

2 0.7407/ +90° 1.283

a a

| (d) Double line-to-ground fault at bus 3 through a fault impedance Z = j0.1.

From (10.94}110.96), the symmetrical components of fau!t'currcnl is given by

I:} - V;;(U) 1

= - - ——— - — —J2 6017
1, 23025, +32)) B 70.22(70.35+50.3)
Zgy + Eﬁﬁw 3022 + 5y w0

2= Vs(0) — Z4 1l 1 —j0.22(—52.6017)
2o _

- = 71.9438
7 70.22 1
(0 — ZLIL 1 - j0.92(— 42,
0= VJ{(L] Zyglys _ J.U 22( J? (.3017) = j0.6579
29, +32; 50.35 + 703

The phase currents at the faulted bus are

1 1 1 §0.6579 0
5% Fy~-11 &% a —j2.6017 | = | 4.0583/165.93°
I a 4 71.9438 4.0583214.07°

and the total fault curtent is
i I;’ + I§ = 4.0583/165.93° — 4.0583/14.07° = 1.9732/90°

i From (10.98), the symmetrical components of bus voltages during fault are

0-2%512° 7 [ 0-70.140(;0.6579) 0.0921

VPR = | V{0) - ZL1} | = | 1—30.130(—52.6017) | = | 0.6618
0-ZL12 | 0 70.130(51.9438) 0.2527

. 0-2Z%I§ 7. [ 0-3j0.065(0.6579) 0.0428 7

VPR(F) = | V}0)— Z2L1} | = | 1-;0.120(—j2.6017 | = | 0.6878
0~ ZHIZ | 0— 70.120(51.9438) 0.2333

[ 0-2Z%H1 ] 0 — 70.350(0.6579) 0.2303

VPHF) = | Vo) -2zLE} | = | 1-j0.220(—j2.6017) | = | 0.4276
0-Zz412 | 0 - ;0.220(51.9438) 0.4276

10.8. UNBALANCED FAULT ANALYSIS USING BUS IMPEDANCE MATRIX

Bus voltages during fault are

(1 1 1]
VE(FYy=|1 o o
i 1 a a? i
(1 1 1]
Ve (FY=11 a® a
|1 o a? i
1 1 1
VU F) = a® a
1 a o?

[ 0.0921
0.6618 | =
| 0.2527 |

[ 0.0428 7 -
0.6878 | =
| 0.2333 |

0.4276

1.0066£0° ]
0.5088/—135.86°
| 0.5088/+135.86°

0.963820° i
0.5740£-136.70°
| 0.5740/+136.70°

0.2303 1.085520°
0.4276 | = | 0.19742180° ]

0.1974/+180°

The symmetrical components of fault currents in lines for phase @ are

VOP)-VP(F) T

o2 _ | HESe)

12— I

VR(F)SVA(E)

|. 12 i
VR =VEF) 1

Z13
VHF)-VMF)

g - | WOE, |

)3
V2(F)-VHF
L (F)=V/(F)

L %13 )

VEE)-VHFA) ]

4
o | WETRe |
” VAEYVR(F)
213

The line fault currents are

1 1T 17
IB(F) = [1 a? @

1 a a?]

1 1 1
2Ry = |1 @ a
1 a a?

1 1 1
Iggc(F) =11 a2 a2
1 ¢ a

703

0,125
0.2557-0.2333
| T o

JoT
0.2537-0.4276
L = jais

0.0428—0.2303
10.7125

.25
0.2395--0.4276
| 30.25

0.1645/-90°
0.2081/+90°

0.1355/-90¢°

1.5610/-90°
1.1663/4-50°

} [ 0.3947/+90°

0.0921-0.0428
0.6618-0.687) .

- 0.0921-0.2303
10,35

0.1645/ —90°
0.2081/+8%0°
0.1555/-90°

[ 0.3947£+90° ]
= | 1.5610/-90°
| 1.1663/4+90° |

1 0.26327450° ]
= | 1.0d072-90°
| 0.77752+90° |

0.1118/-90°
= | 0.3682/-31.21

0.3682/—-148.79°

0
] = [ 2.435/165.93° ]
2.435£14.07°

0.2632/4-80° 0
1.0407/-90° | = | 1.6233/165.93°

0.77754+90°

1.6233/14.07°
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10.9 UNBALANCED FAULT PROGRAMS

Three functions are developed for the unbalanced fauit analysis. These functions
are are igfault(zdata0, Zbuso, zdatal, Zbusl, zdata2, Zhus2, V), lifault(zdatal,
Zbusl,zdata2, Zbus2, V), and digfauit(zdata0, Zbus0, zdatal, Zbusl, zdata2,

Zbus2, V). lgfault is designed for the single line-to-ground fault analysis, lfault

for the line-to-line fault analysis, and dlgfault for the double line-to-ground fauit

analysis of a power system network. lgfault and digfauit require the positive-, -
negative-, and zero-sequence bus impedance matrices Zbus0, Zbus1, and Zbus2, -
and Iifault requires the positive- and negative-sequence bus impedance matrices

Zbusl, and Zbus2. The last argument V is optional. If it is not included, the pro-

gram sets all the prefault bus voltages to 1.0 per unit. If the variable V is included, T2
the prefault bus voltages must be specified by the array V containing bus num- %
bers and the complex bus voltage. The voltage vector V is automatically generated 2

following the execution of any of the power flow programs.

The bus impedance matrices may be obtained from Zbus0 = zbuild (zdatal),
and Zbust = zbuild(zdatal). The argument zdatal contains the positive-sequence
network impedances. zdata0 contains the zero-sequence network impedances. Ar-
guments zdata@, zdatal and zdata2 are an e x 4 matrices containing the impedance
data of an e-element network. Columns | and 2 are the element bus numbers and :
columns 3 and 4 contain the element resistance and reactance, respectively, in per E
unit. Bus number 0 to generator buses contain generator impedances. These may
be the subtransient, transient, or synchronous reactances. Also. any other shunt 2
impedances such as capacitors and load impedances to ground (bus 0) may be in- -

cluded in this matrix.

The negative-sequence network has the same topology as the positive-sequence
network. The line and transformer negative-sequence impedances are the same -
as the positive-sequence impedances, however, the generator negative-sequence

feactances are different from the positive-sequence values. In the fauit analysis
of large power system usually the negative-sequence network impedances are as-
sumed to be identical to the positive-sequence impedances. The zero-sequence net-

work topology is different from the positive-sequence network. The zero-sequence |
network must be constructed according to the transformer winding connections of

Figure 10.6. All transformer connections except Y-Y with both neutral grounded
result in isolation between the primary and secondary in the zero-segquence net-

work. For these connections the'comresponding resistance and reactance columns in 2

the zero-sequence data must be filled with inf. For grounded Y-A connections, ad-
ditional entries must be included to represent the transformer impedance from bus
0'to the grounded Y-side. In case the neutral is grounded through an impedance Zj;
an impedance of 3Z, must be added to the transformer reactance. The reader is re-
minded of the 30° phase shift in a Y-A or A-Y transformer. According to the ASA

R
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convention, the positive-sequence voltage is advanced by 30° when stepping up
from the low-voitage side to the hi gh-voltage side. Similarly, the negative-sequence
voltage is retarded by 30° when stepping up from low-voltage to the high-voliage
side. The phase shifts due to A-Y transformers have no effect on the bus voltages
and line currents in that part of the system where the fault occurs. However, on the
other side of the A-Y transformers, the sequence vollages, and currents must be
shifted in phase before transforming to the phase quantities. The unbalanced fault
programs presently ignores the 30° phase shift in the A-Y transformers.

The other function for the formation of the bus impedance matrix is Zbus
= zbuildpi(linedata, gendata, yload), which is compatible with the power flow
programs. The first argument linedata is consistent with the data required for the
power flow solution. Columns 1 and 2 are the line bus numbers, Columns 3 through

-3 contain the line resistance, reactance, and one-haif of the total line charging sus-

cepiance in per unit on the specified MVA base. The last column is for the trans-
former tap setting; for lines, 1 must be entered in this column. The generator re-
actances are not included in the linedata for the power flow program and must be
specified separately as required by the gendata in the second argument. gendata is
an €g % 4 matrix, where each row contains bus 0, generator bus number, resistance
and reactance. The last argument yload is optional. This is a two-column matrix
containing bus number and the complex load admittance. This data is provided by
any of the power flow programs Ifgauss, Ifnewton or decouple. yload is automat-
ically generated following the execution of the above power flow programs,

The program promipts the user to enter the faulted bus number and the fault
impedance Zf. The program obtains the total fault current, bus voltages and line
currents during the fault. The use of the above functions are demonstrated in the
following examples.

Example 10.7

Use the Igfault, Bfault, and digfault functions to compuie the fault current, bus
voltages and line currents in the circuit given in Example 10.5 for the following
fault.

(a) A balanced three-phase fault at bus 3 through a fault impedance Z; = j0.1 per
unit,

(b) A single-line-to-ground fault at bus 3 through a fault impedance Z s = 70.1 per
unit.

(¢) A line-to-line fault at bus 3 through a fault impedance Zy = j0.1 per unit.

(d) A double line-to-ground fault at bus 3 through a fault impedance 2 = j0.1
per unit.




444. 10. SYMMETRICAL COMPONENTS AND UNBALANCED FAULT

In this example all shunt capacitances and loads are neglected and all the prefault 3
bus voltages are assumed to be unity. The positive-sequence impedance diagram i in 3
Figure 10.17 is described by the variable zdatal and the zZero-sequence 1mpedance
diagram in Figure 10.19 is described by the variable zdata0. The negative-sequence

data is assumed to be the same as the positive-sequence data. We use the followmg
commands.

zdatal

I
—

K== OO

.25
.25
.128
.15
.25];

Gr Lo MY R =
(oo B Y oo I v Y s
QOO0 00

zdatal

1l
~

|2 B T e T

.40
.10
.30
.35
.7125];

W R R
o0 0Oo0
COoOOoOGC

zdata2 = zdatal;

Zbusl = zbuild(zdatal)

Zbus0 = zbuild(zdatad)

Zbus2 = Zbusi;

symfault{zdatal, Zbusl)

lgfault(zdata0, Zbus0, zdatal, Zbusi, zdata?, Zbus?2)
llfault{zdatal, Zbusl, zdata2, Zbus2)
dlgfault{zdata0, Zbus0, zdatal, Zbusl, zdata2, Zbus?2)

The result is

Three-phase balanced fault analysis

Enter Faulted Bus No. -> 3

Enter Fault Impedance Zf = R + j*X in

complex form (for bolted fault enter 0). Zf = j*0.1
Balanced three-phase fault at bus No. 3

Total fault current =  3.1250 per unit
Bus Voltages during fault in per unit '
Bus Voltage' Angle
No. Magnitude Degres =
1 0.5938 0.0000 =
2 0.6250 0.0000 -
3 0.3125 0.0000

s iy

Line currents for fault at bus No. 3
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From To Current Angle

Bus Bus Magnitude Degree
G 1 1.6250 -50.0000
1 3 1.8750 -90.0000
G 2 1.5000 -90.0000
2 1 ©.2500 -50.0000
2 3 1.2500 -50. 0000
3 F 3.1250 -90.0000

Another fault location?
Enter 'y’ or ’'n’ within single quote -> ’n’

Line-to-ground fault analysis

Enter Faulted Bus No. -> 3

Enter Fault Impedance Zf = R + j*X in

complex form (for belted fault enter 0). Zf = j=0.1
Single line to-ground fault at bus No. 3

Total fault current = 2.7523 per unit

Bus Voltages during the fault in per unit

Bus =~ —=——-== Voltage Magnitude-------
No. Phase a Phase b Phase ¢
1 0.6330 1.0046 1.0046
2 0.7202 0.95757 0.9757
3 0.2752 1.0647 1.0647

Line currents for fault at bus No. 3

From To. Erote Line Current Magnitude----
Bus Bus Phase a Phase b Phase ¢
1 3 1.6514 0.0000 0.0000
2 1 0.3761 0.1560 0. 1560
2 3 1.1009 0.0000 0.0000
. 3 F 2.7523 ©.0000 0.0000

Another fault location?
Enter 'y’ or 'n’ within single quote -> ’n!’

Line-to-line fault analysis

Enter Faulted Bus No. -> 3

Enter Fault Impedance Zf = R + j*X in

complex form {for bolted fault enter 0). Zf = j*0.1
Line-to~line fault at bus No. 3

Total fault current = 3.2075 per unit

Bus Voltages during the fault in per unit




446_ 10. SYMMETRICAL COMPONENTS AND UNBALANCED FAULT

Bus = ----—-- Voltage Magnitude-------

No. Phase a Phase b Phase ¢

1 1.0600 0.6720 0.6720

2 1.0000 ¢.6939 0.6538

3 1.8000 0.5251 0.5251

Line currents for fault at bus No. 3

From To  -—e-- Line Current Magnitude----

Bus Bus Phase a Phase b Phase ¢
1 3 ¢.0000 1.9245 1.92458
2 1 6. 0000 0.2566 0.2566
2 2 0.0000 1.2830 1.2830
3 F ¢.0000 3.2075 3.2075

Another fault location?
Enter 'y’ or 'n’ within single quote -> 'n’

Double line-to-ground fault analysis

Enter Faulted Bus No. -> 3

Enter Fault Impedance Zf = R + j*X in

complex form (for bolted fault enter 0). 2f = j*0.1

Doudble line-to-ground fault at bus No. 3

Total fault current = 1.4737 per unit
Bus Voltages during the fault in per unit
Bus = ------- Voltage Magnitude-------
No. Phase a Phase b Phase ¢
1 1.0066 0.5088 0.5088
2 0.9638 0.5740 0.5740
3 1.0855 0.1974 0.1574
Line currents for fault at bus No. 3
From To - Line Current Magnitude----
Bus Bus Phase a Phase b Phase ¢
1 3 0.0009 2.4350 2.4350
2 1 0.1118 0.3682 0.3682
2 3 0.0000 1.6233 1.6233
3 F 0.0000 4.0583 4.0583

Another fault location?
Enter 'y’ or ‘n’ within single quote -> ’n’

Example 10.8

The 11-bus power system network of an electric utility company is shown in Fig-
ure 10.24. The positive- and zero-sequence reactances of the lines and transform-
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ers in per unit on a 100-MVA base is tabulated below. The transformer connec-
tions are shown in Figure 10.24. The A-Y transformer between buses 11 and 7 is
grounded through a reactor of reactance 0.08 per unit. The generators positive-,
and zero-sequence reactances including the reactance of grounding neutrals on a
100-MVA base is also tabulated below. Resistances, shunt reactances, and loads are
neglected, and all negative-sequence reactances are assumed equal to the positive-
sequence reactances. Use zbuild function to obtain the positive- and zero-sequence
bus impedance matrices. Assuming all the prefault bus voltages are equal to 1/0°,

use lgfault, Bfault, and dlgfault to compute the fanlt current, bus voltages, and
line currents for the following unbalanced faults,

- (a) A bolted single line-to-ground fault at hus 8.

(b) A bolted line-to-line fault at bus 8.
(¢) A bolted double line-to-ground fault at bus 8.

%]
=

e E
| sk
i

,_i

}%i

[y |

i C

L

4 <

+->~“%
=T

FIGURE 10.24
One-line diagram for Example 103,

GENERATOR TRANSIENT
IMPEDANCE, PU
Gen.No. X' Xx° x,

1 020 006 0.05
10 0.15 004 0.05
11 0.25 0.08 000
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LINE AND TRANSFORMER DATA sponding resistance and reactance columns in the zero-sequence data. For grounded
Bus Bus X!, b & Y-Aconnections, additional entries are included to represent the transformer imped-
No. No. PU PU ance from bus 0 to the grounded Y-side. The generators and transformers neutral
1 2 006 0.06 reactor are included in the zero-sequence circuit each with a reactance of 3X,,.
2 3 030 0.60 .
2 5 015 0.30 The positive- and zero-sequence impedance data and the required commands are
2 6 045 0.90 as follows.
: 4 A 0.80 zdatal = [0 1 0.00  0.20
3 6 040 0.80 0 10 0.00 0.15
4 6 0.60 1.00 0 11 0.00 0.25
4 9 070 1.10 1 2 0.00 0.06
4 10 008 0.08 2 3 0.00 0.30
5 7 043 0.80 2 5 0.00 0.15
6 8 048 " 095 2 6 0.00 0.45
7 8 035 0.70 3 4 6.00  0.40
7 i1 010 0.10 & 5 .00 ©.40
4 9 0.00 0.70
' o 4 1G 0.00 0.08
The equivalent circuit for the zero-sequence network is constructed according to 2% 5 7 0.00 0.43
the transformer winding connections of Figure 10.6 and is shown in Figure 10.25, fg 6 8 0.00  0.48
e 7 B .00 0.35
S _ 4 7 11 0.00 0.10
Voo | 060 33  j080 | oom 10 8 9 0.00  0.48);
zdatal = [ © 1 0.00 C.06+320.05
0 10 0.00 0.04+3x0.05
0] 11 0.00 0.08
i1l 0 2 0.00 0.06
0 7 0.00 0.10+3%.08
70.80 70.95 1 2 inf inf
U | i > 5 om0 050
1 : : .30
Ej{).ols. I e -! 2 6 0.00  0.90
S 3 4 0.00 0.8
30,24 3 6 0.00  0.80
} 4 6 0.00 1.00
FIGURE 10.25 4 9 0.00 1.10
_ Zero-sequence network for Example 10.8. 4 10 0.00 0.08
S 7 0.00 0.80
When using zbuild function. the generator reactances must be included in the = 6 8 0.00 0.85
impedance data with bus zero as the reference bus. — 7 8 0.00 0.70
The A-Y transformers result in isolation between the primary and secondary 71 inf inf
in the zero-sequence network. For these connections inf is entered in the corre- 8 9 0.00  0.90];
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zdata2=zdatal; 7 8 1.3441 0.0008 0.0098
Zbus0 = zbuild(zdatal) 8 F 2.8135 0.0000 0.0000
Zbusl = zbuild(zdatal) 9 8 0.5311 0.0023 0.0023
Zbus2 = Zbusl; 10 4 0.8615 Q.0711 0.0711
lgfault{zdatal, Zbus0, zdatal, Zbusi, zdata2, Zbus2) 11 7 0.7075 0.3538 0.3538

1lfault(zdatal, Zbusi,zdata2, Zbus?2)
dlgfault(zdata0, ZbusO, zdatal, Zbusl, zdata2, Zbus2) Another fault location?
_ Enter 'y’ or ’n’ within single quote -> ’n’
The result is Line-to-line fault analysis
Enter Faulted Bus No., -> 8
Enter Fault Impedance Zf = R + j»X in
complex form (for bolted fault enter Q). Zf = O
Line-to-line fault at bus No. 8

Line-to-ground fault analysis

Enter Faulted Bus No. -> 8

Enter Fault Impedance Zf = R + j*X in

complex form (for bolted fault enter 0)}. 2f = 0

Single line to-ground fault at bus No. 8 Total fault current = 2.9060 per unit
Total fault current = 2.8135 per unit : .
; .Bus Voltages during the fault in per unit

Bus Voltages during the fault in per unit Bus = ------- Voltage Magnitude-------

Bus = c-—e=ee Voltage Magnitude------= No: Phase a Phase b Phase ¢

No. Phase a Phase b Phase ¢ 1 1.0000 0.8576 0.8576

1 0.8907 0.9738 0.9738 2 1.0000 0.8168 0.8168

2 0.8377 0.9758 0.9756 3 1.0000 0.7757 0.7757

3 0.7451 0.9954 0.9954 4 1.0000 0.8157 0.8157

4 0.7731 1.0063 1.0063 5 1.0000 0.7838 0.7838

5 0.7824 0.9823 0.9823 6 1.0000 0.6871 0.6871

6 0.5936 1.0123° 1.0123 7 1.0000 0.6947 0.6947

7 0.6295 0.9995 0.9995 8 1.0000 0.5000 0.5000

8 0.0000 1.0898 1.0898 9 1.0000 0.5646 0.5646

9 0.3299 1.0453 1.0453 10 1.0000 0.8778 0.8778

10 0.8612 0.9995 0.9995 11 1.0000 0.7749 0.7749

11 0.8231 0.9588 0.9588 Fine purmentafon Badit wwlins . ia

Line currents for fault at bus No. 8 gi:m gﬁs ;;——-Llne Current Magnitude----

From To ----- Line Current Magnitude---- \ ase a Phase b Phase ¢

| Bus Bus Phase a Phase b Phase ¢ 2 0.0000 0.8465 0.8465

1 2 0.5464 0.2732 0.2732 2 3 0.0000 0.1762 0.1762
2 3 0.2113 0.0407 0.0407 2 5 0.0000 £.2820 0.2820
2 6 0.3966 0.0207 0.0207 2 8 0.0000 0.3883 0.3883
3 6 0.2877 0.0073 0.0073 3 6 0.0000 0.3047 0.3047
4 3 0.0764 0.0479 0.0479 4 3 0.0000 0.1285 0.1285
4 6 0.2540 0.0255 0.0255 4 6 0.0000 0.2887 0.2887
4 9 0.5311 0.0023 0.0023 4 9 0.0000 0.5461 0.5461
5 2 0.2753 0.0023 0.0023 5 7 0.0000 0.2820 0.2820
6 8 0.9383 0.0121 0.0121 6 8 0.0800 0.9817 0.9817
7 5 0.2753 0.0023 0.0023 7 8 0.0000 1.3782 1.3782
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8 F 0.0000 2.90860 2.9060
9 8 0.0000 0.5461 0.5461
10 4 0.0000 0.9633 0.9633
11 7 0.0000 1.0962 1.0962
Another fault locatien?
Enter 'y’ or ’n’ within single quote -> ’n’
Double line-to-ground fault analysis
Enter Faulted Bus No. -> 8
Enter Fault Impedance Zf = R + j*X in
complex form {(for bolted fault enter 0). Zf = 0
Double line-to-ground fault at bus No. 8
Total fault current = 2.4222 per unit
Bus Veltages during the fault in per unit
Bus = -——---- Veltage Magnitude---—-—---
No. Phase a Phase b Phase ¢
1 0.9530 0.844: 0.8441
2 0.9562 0.7884 0.7884
3 0.9919 0.7122 .0.7122
4 1.0107 0.7569 0.7569
5 0.9686 0.7365 0.7385
6 1.0208 0.5666 0.5666
7 0.9992 (.5%07 0.5907
8 1.13%81 0.0000 0.0000
| 8 1.0736 0.3151 0.3151
| 10 0.9991 0.8455 0.8455
| 1L 0.9239 0.7509 0.7509
Line currents for fault at bus No. 8
From Teg semss Line Current Magnitude----
Bus Bus Phase a Fhase b Phase c
1 2 0.2352 0.8546 0.8546
2 3 0.0350 0.2069 0.2069
2 5 0.0020 0.30863 0.3063
2 6 0.0178 0.4278 0.4278
3 6 0.0063 0.3277 0.3277
4 3 0.0413 0.1290 ¢.1290
4 6 0.0220 0.3050 0.3050
4 9 ¢.0020 0.5924 0.5924
5 7 0.0020 0.3063 0.3063
6 8 0.0i04 1.0696 1.0696
7 8 0.0084 1.4863 1.4863
8 F 0.0000 3.1483 3.1483
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e} a 0.0020 0.5924 0.5924
10 4 0.0612 1.0217 1.0217
11 7 0.3046 1.1067 1.1067

Another fault location?
Enter 'y’ or ’n’ within single quote -> ’'n’

PROBLEMS

10.1. Obtain the symmetrical components for the set of unbalanced voltages V, =
3004-120°, V, = 200£90°, and V, = 100/ —30°.

10.2. The symmetrical components of a set of unbalanced three-phase currents are
IR = 3£-30°, I; = 5£90°, and 12 = 4/30°. Obtain the original unbal-
anced phasors.

10.3. The operator ¢ is defined as ¢ = 1/120°; show that
(2) A8 = 171900

l+a
(b) =20 — 3/-180°
(c) (a - a®)(a® ~ a) = 3£0°
@V} = 715V,,1C,590° '
(€) Vi = 5 V2l —90°
10.4. The line-to-line voltages in an unbalanced three-phase supply are V,, =
1000£0°, Vi, = 866.0254/—150°, and V., = 500/120°. Determine the

symmetrical components for line and phase voltages, then find the phase
voltages Vip, Vi, and Vt?'"'

10.5. In the three-phase system shown in Figurc 10.26, phase a is on no load and
phases & and c are short-circuited to ground,

Ia=0

FIGURE 10.26
Cireuit for Problem 10.5.
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10.6.
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The following currents are given:

Iy =91.65/160.9°

I, = 60.006290°

Find the symmetrical components of current 19, I}, and I2.

A balanced three-phase voltage of 360-V line-to-neutral is applied to a bal-
anced Y-connected load with ungrounded neutral, as shown in Figure 10.27.
The three-phase load consists of three mutsally-coupled reactances. Each
phase has a series reactance of Z, = j24 (), and the mutual coupling be-
tween phases is Z,, = j6 §1. )
(&) Determine the line currents by mesh analysis without using symmetrical ~=
components. : 7

(b) Determine the line currents using symmetrical components.

FIGURE 10.27
Cirewst for Problem 10.6.

10.7. A three-phase unbalanced source with the following phase-to-neutral volt

‘ages

300 £~-120°
Ve — | 200 £90°
100 £-30°

is applied to the circuit in Figure 10.28. The load series impedance per phase
is Z; = 10 + j40 and the mutual impedance between phases is Zy = j9
The load and source neutrals are solidly grounded. Determine 2
(a) The load sequence impedance matrix, Z%? = A-1Z%% A,
(b) The symmetrical components of voltage.

(c) The symmetrical components of current.

(d) The load phase currents, =
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FIGURE 10.28
Circuit for Problem 10.7.

(2) The complex power delivered to the load in terms of symmetrical com-
ponents, Sy, = 3(VI0* 4+ V11" 4 v212°).
(f) The complex power delivered to the load by summing up the power in
each phase, Ssp = Vo I3 + Vi Ip + VL.IZ.
10.8. The line-to-line voltages in an unbatanced three-phase supply are V,, =
600£36.87°, Vi, = 800£126.87°, and V., = 1000/ —90°. A Y-connected
load with a resistance of 37 ' per phase is connected to the supply. Deter-
mine
(a) The symmetrical components of voliage.
(b) The phase voltages.
(c) The line currents.
10.9. A generator having a solidly grounded neutral and rated 50-MVA, 30-kV has
positive-, negative-, and zero-sequence reactances of 25, 15, and 5 percent,
respectively. What reactance must be placed in the generator neutral to limit

the fault current for a bolted line-to-ground fault to that for a bolied three-
phase fault?

10.10. What reactance must be placed in the neutral of the generator of Problem 9

to limit the magnitude of the fault current for a bolted double line-to-ground
tault to-that for a bolted three-phase fault?

10.11. Three 15-MVA, 30-kV synchronous generators A, B, and C are connected
via three reactors to a common bus bar, as shown in Figure 10.29. The neu-
trals of generators A and B are solidly grounded, and the neutral of generator
C is grounded through a reactor of 2.0 2. The generator data and the reac-
tance of the reactors are tabulated below. A line-to-ground fault occurs on
phase a of the common bus bar. Neglect prefault currents and assume gen-
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10.15. The reactance data for the power system shown in Figure 10.30 in per unit
on a common base is as follows:

erators are operating at their rated voltage. Determine the fault current ip -
phase a.

DD

Item X xr XxX°
en 010 0.10 005
Gy 0.10 010 Q.05
T 025 025 025

REACTOR Ty 025 025 0.25
Ty _ Line1-2 030 030 0.50
FIGURE 10.29 - 3 T 1 2. T2 4
Circuil for Problem 10.11, @_H:)_g E—D—l—g 1 i—|—l l—} %@
Ttem X! X2 X0

Ga 0.25pu 0.155pu  0.056 pu e
Gp 0.20pu  0.155pu  0.056 pu
Ge 020pu  0.i55pn  0.060 pu
Reactor 60 Q2 60 O 60 Q

+ <p L

FIGURE 1030
Circuit for Problem 10.15.

10.12. Repeat Problem 10.11 for a bolted line-to-line fault between phases band ¢. Obtain the Thévenin sequence impedances for the fault at bus 1 and compute

10.13. Repeat Problem 10.11 for a bolted double line-to-ground fault on phases b the-taulteusrent Insperunit-torthe folloningitaully

and ¢,
(a) A bolted three-phase fault at bus 1.

(b} A bolted single line-to-ground fault at bus 1.
(c) A bolted line-to-line fault at bus 1.

{d) A bolted double line-to-ground fault at bus 1,

10.14. The zero-, positive-, and negative-sequence bus impedance matrices for a
three-bus power system are

0.20 005 0.12
Zy,, =7 | 005 010 008 | pu

0.12 008 0.30

10.16. For Problem 10.15, obtain the bus impedance matrices for the sequence
networks. A bolted single line-to-ground fault occurs at bus 1. Find the fault
current, the three-phase bus voltages during fault, and the line currents in
each phase. Check your results using the zbuild and lgfault programs.

10.17. Repeat Problem 10.16 for a bolted line-to-line fault, Check your results

0.16 0.10 0.15
pu : ;
using the zbuild and Hfauit programs.

Thus =2y~ [ 0.10 0.20 0.12
2 0.15 0.12 0.25

10.18. Repeat Problem 10.16 for a bolted double line-to-ground fault. Check your

Determine the per unit fault current and the bus voltages during fault for results using the zbuild and dlgfault programs.

(a) A bolted three-phase fault at bus 2.

(b} A bolted single line-to-ground fault at bus 2.
(c) A bolted line-to-line fault at bus 2,

{d} A bolted double line-to-ground fault at bus 2.

10.19. The positive-sequence reactances for the power system shown in Figure
10.31 are in per unit on a common MVA base. Resistances are neglected
and the negative-sequence impedances are assumed -to be the same as the
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positive-sequence impedances. A bolted line-to-line fault occurs between

phases b and ¢ at bus 2. Before the fault occurmence, all bus voltages are
1.0-per unit. Obtain the positive-sequence bus impedance matrix. Find the
fault current, the three-phase bus voltages during fanlt, and the line currents
in each phase. Check your results using the zbuild and Nfault programs.

) T, 1 06 2 T,

X;=30.05 j0.15 j005 X, =3j0.05
3 j0.3 4

A <4 | N

FIGURE 10.31 _
Cireuit for Problem 10.19.

10.20. Use the lgfault, Ufanlt, and digfault functions to compute the fault current,
bus voliages, and line currents in the circuit given in Example 10.8 for the
following unbalanced fault.

(a) A bolted single line-to-ground fault at bus 9.
(b) A bolted fine-to-line fault at bus 9.
(¢) A holted double line-to-ground fault at bus 9.

All shunt capacitances and loads are neglected and the negative-sequence :
data is assumed to be the same as the positive-sequence data. All the prefault

bus voltages are assumed to be unity.

10.21. The six-bus power system network of an electric utility company is shown '
in Figure 10.32. The positive- and zero-sequence reactances of the lines and 7

wansformers in per unit on a 100-MVA base is tabulated below.

LINE AND TRANSFORMER DATA
Bus Bus X}, Xx°,
No. No. PU PU

{ 4  0.225 0.400

1 5 0.105 0.200

i 6 0.215 0.390

2 4 0035 0.035

3 5 0.042 0.042

4 6 0125 0.250

5 6 0175 0.350
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FIGURE 1032
One-line diagram for Preblem 10.32.

The transformer connections are shown in Figure 10.32. The A-Y trans-
former between buses 3 and 5 is grounded through a reactor of reactance 0,10
per unit. The generator's positive- and zero-sequence reactances including
the reactance of grounding neutrals on a 100-MVA base is tabulated below.

GENERATOR TRANSIENT
IMPEDANCE, PU

Gen.No. X! X X,
1 020 006 0.00
2 0.15 004 005
3 025 008 0.00

- Resistances, shunt reactances, and loads are neglected, and all negative-
sequence reactances are assurned equal to the positive-sequence reactances.
Use zbuild function to obtain the positive- and zero-sequence bus impedance
matrices. Assume all the prefault bus voltages are equal to 1/0°, use Igfault,
lfault, and dlgfault to compute the fault current, bus voltages, and line cur-
rents for the following unbalanced faults.

{a) A bolted single line-to-ground fault at bus 6.
(b) A bolted line-to-line fault at bus 6.
(c) A bolted double line-to-ground fault at bus 6.




CHAPTER

11

STABILITY

11.1 INTRODUCTION

The weadency of a power system to develop restoring forces equal to or greater than

the disturbing forces (0 maintain the state of equilibdum is known as stability. If

the forces tending to hold machines in synchronism with one another are sufficient :

to overcome the disturbing forces, the system is said to remain stable {to stay in
synchronism),

The stability problem is concerned with the behavior of the synchronous ma-
chines after a disturbance. For convenience of analysis, stability problems are gen-
erally divided into two major categories — steady-state stability and transient sta-

bility. Steady-state stability refers to the ability of the power system to regain syn-

chronism after small and slow disturbances, such as gradual power changes. An
extension of the steady-state stability is known as the dynamic stability. The dy

namic stability is concemed with small disturbances lasting for a long time with

the inclusion of automatic control devices. Transient stability studies deal with the

effects of large, sudden disturbances such as the occurrence of a fault, the sudden -
outage of a line or the sudden application or removal of loads. Transient stability
studies are needed to ensure that the system can withstand the transient condition’

following a major disturbance. Frequently, such studies are conducted when new
generating and transmitting facilities are planned. The studies are helpful in deter

mining such things as the nature of the relaying system needed, critical clearing
time of circuit breakers, voltage level of, and transfer capability between systems. -
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11.2  SWING EQUATION

Under normal operating conditions, the refative position of the rotor axis and the
resultant magnetic field axis is fixed. The angle between the two is known as the
power angle or torgue angle. During any disturbance, totor will decelerate or
accelerate with respect to the synchronously rotating air gap mmf, and a relative
motion begins. The equation describing this relative motion is known as the swing
equation. 1f, after this oscillatory period, the rotor locks back into synchronous
speed, the generator will maintain its stability. If the disturbance does not involve
any net change in power, the rotor retums 10 its original position. If the disturbance
is created by a change in generation, load, or in network conditions, the rotor comes

~to a new operating power angle relative to the synchronously revolving field.

In order to understand the significance of the power angle we refer to the
combined phasor/vector diagram of a two-pole cylindrical rotor generator illus-
truted in Figure 3.2. From this figure we see that the power angle 4, is the angle
between the rotor mmi F; and the resultant air gap mmf F,, both rotating at syn-
chronous speed. It is also the angle between the no-load generated emf E and the
resultant stator voltage F,,. If the generator armature resistance and leakage flux
are neglected, the angle between E and the terminal voltage V', denoted by 4, is
considered as the power angle,

Consider a synchronous generator developing an electromagnetic torque 7,
and running at the synchronous speed wyy,. If T}, 1s the driving mechanical torque.
then under steady-state operation with losses neglected we have

Tn="1T. (1.1

A departure from steady state due to a disturbance results in an accelerating (13, >
T.) or decelerating (T},, < T¢) torque T, on the rotor.

T,=Tx-T. (11.2)

If J is the combined moment of inertia of the pime mover and generator, neglect-
ing frictional and damping torques, from law’s of rotation we have
a8,

g T (11.3)

Jdt

where 8y, is the angular displacement of the rotor with respect to the stationary
reference axis on the stator. Since we are interested in the rotor speed relative to
synchronous speed, the angular reference is chosen relative to a synchronousty
rotating reference frame moving with constant angular velocity wym, that is

B = Womnt + Om (11.4)
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where &, is the rotor position before disturbance at time ¢ = 0, measured from the

synchronously rotating reference frame. Derivative of (11.4) gives the rotor angular
velocity

_ df, b

m = —

a = met o 1)

| and the rotor acceleration is

d*0, d%,, '
& = aE L)
" Substiating (11.6) into (11.3), we have =
B
J=7 =Tn-T. aLn -
Multiplying (11.7) by why,, results in
Jom =t = T = wnTe (118 -

Since angular velocity times torque is equal to the power, we write the above equa-
tion in terms of power

|
d%5

(11.9)

The gquantity Jwy, is called the inentia constant and is denoted by M. It is related
to kinetic energy of the rotating masses. W.

(11.10)

(1L11) -

Although M is called inertia constant, it is not really constant when the rotor speed
deviates from the synchronous speed. However, since w,, does not change by a 3
large amount before stability is lost, M is evaluated at the synchronous speed and
is considered to remain constant, i.c.,

(11.12)
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The swing equation in terms of the inertia constant becomes

M__dt? =P, - P,
It is more convenient to write the swing equation in terms of the electrical power
angle 4. If p is the number of poles of a synchronous generator, the electrical power
angle § is related to the mechanical power angle 6., by

(11.13})

6= gém (11.14)
also,
W= ‘Q“Wm (11.15}
Swing equation in terms of electrical power angle is
2. d%
-M— =P, -P. 11.16
F (11.16)

Since power system analysis is done in per unit system, the swing equation is usu-
atly expressed in per unit. Dividing (11.16) by the base power Sg, and substituting
for M from (11.12) results in

2 2Wg d§ P. P

LT S 11.17
PwaSpdit?  Sg Sy ( )

We now define the important quantity known as the H constans or per unit inertia
constant,

_ kinetic energy in M1J at rated speed _ Wg

H =
machine rating in MVA Sp

(11.18)

The unit of /1 is seconds. The value of H ranges from 1 to 10 seconds, depending
on the size and type of machine. Substituting in (11.17), we get

2 2H 425
P Wepp dt2

= Pripu) = Peipm) (11.19)

where P u) and Fyp,y are the per unit mechanical power and electrical power,
respectively. The electrical angular velocity is related to the mechanical angular
velocity by wym = (2/p)ws. (11.19) in terms of electrical angular velocity is

2H d%§

S =Pt < Pui (11.20)
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The above equation is often expressed in terms of frequency fo. and to simplify -

the notation, the subscript pu is omitted and the powers are understood to be in per ;
umt.

H d%
—F PR (11.21)
+]

where § is in electrical radian. If & is expressed in electrical degrees, the swing
equation becomes

H &

O B 1 SO = B 11.22
180, di2 ¢ £

11.3 SYNCHRONOUS MACHINE
MODELS FOR STABILITY STUDIES

The representation of a synchronous machine during transient conditions was dis-
cussed in Chapter 8. In Section 8.6 the cylindrical rotor machine was modeled with
a constant voltage source behind proper reactances, which may be X, X}, or Xga. '
The simplest model for stability analysis is the classical model, where saliency is ;
ignored, and the machine is represented by a constant voltage E’ behind the direct_
axis transient reactance X

Consider a generator connected to a major substation of a very jarge system
through a transmission line as shown in Figure 11.1.

E jX, Y, Zy 1%
(OH~——C

Zs

FIGURE 11.1 5
One machine connected to an infinite bus.

The substation bus voltage and frequency is assumed to remain constant. This is =
commonly referred to as an infinite bus, since its chamcteristics do not change re-
gardless of the power supplied or consumed by any device connected toif. The gen- ..
erator is represented by a constant voltage behind the direct axis transient reactance j

X!, The node representing the generator terminal voltage V; can be eliminated
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by converting the Y-connected impedances to an equivalent A with admittances
given by

= jX:;Zs +jx;ZL + 2.7,
_ 3Xq
20— jX:tZs'i‘jXéZL‘i‘ZLZs (11.23)
Zs

WS R T IR 70T 1,

The equivalent circuit with internal voltage represented by node 1 and the infinite

" bus by node 2 1s shown in Figure 11.2. Writing the nodal equations, we have

I E Y12 v I
1| — [ 2
T B

1 2

Y1o ¥20

FIGURE 11.2
Equivalent circuit of one machine connected 10 an infinite bus,

I = (10 + y12) B = 12V
I = —y12E + (y20 + y12)V

(11.24)

The above equattons can be written in terms of the bus admittance matrix as

[al=lm V]
I Yoo Yo 174

The diagonal elements of the bus admittance matrix are Yj; = yip + y12, and

(11.25)

Yas = yg + yi2. The off-diagonal elements are Yis = Yz = —y19. Expressing
the voltages and admittances in polar form, the real power at node 1 is given by
F. =R{E'L}]

= R E'|26(V11|L—811|E| L8 + |Y12|£—612|V{£0)]
or

o= IE’F!YH-l cos 41 + IE’IIV']Y]QICOS(& - 912) (11-26)
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The power flow equation given by (6.25) when applied to the above two-bus power

system results in the same expression as (11.26). In most systems, Z;, and Z,
are predominantly inductive. If all resistances are neglected, 811 = 612 = 90°,
Y12 = Bys = 1/ X2, and we obtain a simplified expression for power -

= |E'||V||B12| cos(s — 90°)
ot

'3
F.= AV sin § (11.27)
Xz

This is the simplest form of the power flow equation and is basic to an understand- =&
ing of all stability problems. The relation shows that the power transmitted depends 2

upon the transfer reactance and the angle between the two voltages. The curve P,
versus 4§ is known as the power angle curve and is shown in Figure 11.3,

P
Pma.r ““““““““““““ ;
P, |
Pm T
: : s
0 8o /2 :rr
FIGURE 11.3

Powcer-angle curve.
The gradual increase of the generator power output is possible until the maximum

| state stability limit, and occurs at an angular displacement of 90°.

E1V]

=t ] 11.28) A
P X1z ( Y

If an astempt were made to advance § further by further increasing the shaft input, _
the electrical power output will decrease from the Praz point. The machine will ;

electrical power is transferred. This maximum power is referred to as the steady- .
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accelerate, causing loss of synchronism with the infinite bus bar. The electric power
equation in terms of Py, 18

P, = Pz 5iné (11.29)

When a generator is suddenly short-circuited, the current during the transient
period is limited by its transient reactance X;. Thus, for transient stability prob-
Jems, with the saliency neglected, the machine is represented by the voltage E'
behind. the reactance X. If V; is the generator terminal voltage and 1, is the pre-
fault steady state generator current E’ is computed from

E' =V, +;jX1, (11.30)

Since the field winding has a small resistance, the field flux linkages will tend 10
remain constant during the initial disturbance, and thus the voltage E' is assumed
constant. The transient power-angle curve has the same general form as the steady-
state curve; however, it attains larger peak compared to the steady-state peak value.

11.3.1 SYNCHRONOUS MACHINE
MODEL INCLUDING SALIENCY

In Section 3.4 we developed the two-axis model of a synchronous machine un-
der steady state conditions taking into account the effect of saliency. The phasor
diagram of the sabent-pole machine under steady state conditions, with armature
resistance neglected, was presented in Figure 3.8. This phasor diagram is repre-
sented in Figure 11.4.

j_Xqu

Xals
Iq

FIGURE 11.3
Phasor diagram during transicat period.

The power-angle equation was given by (3.32). This equation presented in
per unit s

[EHV]

P = siné + IVL ———-—i 9 in 28 (1131

TX. 2X;X,
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and
[E] = [Vicos & + Xgl4
or
| |E| = |V!cosd + Xg}I,|sin(8 + 8) (11.32)

where E' is the no-load generated emf in per unit.and V is the generator terminal
voltage in per unil. Xz and X, are direct and quadrature axis reactances of the
synchronous machine. For a derivation of the above formula, refer to Section 3.4,

For a given power delivered at a given terminal voltage, we must compute E. In -

order to do that, we must first compute & as follows:

V]sind = X I,
= Xoll,fcos(d + 6)
= Xgl|la|{cos d cos b — sind sin #)

From the above relation, é is found to be

1 Xglda|cos®

b=t e X, L sin @

Sizbstituting for § from (11.33) into (11.32) wiil result in the voltage E.

A logical extension of the model would be to include the effect of transient

saliency. Since the machine circuits are largely inductive, the flux linkages tendto -

rernain constant during the early part of the transient period. During the transient
period, the direct axis transient reactance is X}. Since the field is on the direct axis

X:;, the quadrature axis transient reactance remains the same as Xg. The phasor

diagram under transient condition is shown in Figure 11.5. Following the procedure

I

FIGURE 11.5
Phasor diagram during transient period.

(1133)
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in Section 3.4, the transient power-angle equation expressed in per unit becomes

E |V L -
| ;‘l,l, | in5+1V|2Msin2é
d

e 20K

(11.34)

This equation represents the approximate behavior of the synchronous machine
during the early part of transient period. We now have to determine E,. From the
phasor diagram in Figure 11.5, we have

|B| = [V]cosd + X)Iy

or

|E7| = |V|cosé + X4| 1] sin(8 + 6)
From (11.32), we find

AET T o
X

and substitute it in the above equation to get

|El| = XY E| + {(X¢— X}V|cosé
7 X2

(11.35)

The prefault excitation voltage and power angles are computed from (11.32) and
(11.33).

In this section we presented two simple models for cylindrical rotor and
salient rotor synchronous machines. The choice of model for a given situation
must, in general, depend upon the type of study being conducted as well as the
data available. Although these models are useful for many stability studies, it is not
adequate for many situalions. More accurate models must include the effects of the
various rotor circuits.

Example 11.1

Consider a synchronous machine characterized by the following parameters:

Xe=10 X;=06 X;=03 perunit

and negligible armature resistance, The machine is connected directly to an infinite
bus of voltage 1.0 per unit. The generator is delivering a real power of 0.5 per unit
at 0.8 power factor lagging. Determine the voltage behind transient reactance and
the transient power-angle equation for the following cases.
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(a) Neglecting the saliency effect
(b} Including the effect of saliency

8 =cos”10.8 = 36.87°

0.5
§= ﬁZSG.B’(" = 0.625/36.87° pu
The prefault steady state current is
s* "
fi= v 0.625/—36.87° pu

(a) With saliency neglected, the voltage behind transient reactance is
E=V + i X, =10+ {70.3)(0.6252 -36.87°) = 1.1226/7.679° pu
The transient power-angle curve is given by

7 1- ;
IRV (L12ss)()

P
T Txy 03

sinéd
or
P, = 3.7419sin é

(B) When the saliency effect is considered, the initial steady state power angle given
by (11.33)1s

Xollolcosd | (0.6){0.625)(0.B)
V| + Xgllp)sing — 1.0 + (0.6)(.625)(.6)

The steady state excitation voliage E, given by (11.32), is

§ = tan~1 = 13.7608°

|E| = |Vicos § + X4|I4| sin{é + 8)
= (1.0) cos(13.7608°) + (1.0)(0.625) sin(13.7608° + 36.87°) = 1.4545 pu

The transient voltage E, given by (11.35) is

B = XHE] + Xy — XV ]| cos d
e Xi _
_ {0.3){1.4545) + (1.0 — 0.3){1.0)(cos 13.7608)
- 1.0

and from (11.34) the transient power-angle equation is

(1L1162)(1) . o (10)%(03-06)
Fe=05 0 50500 »

=1.1162 pu
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(a) (b)

FIGURE 11.6
Transient power-angle curve for Example 11.1.

or

P = 3.7208sin § — 0.8333sin 26

Using MATLAB, the power-angle equations obtained in (a) and {b) are ploued as
shown in Figure 11.6. We use the function [Pmax, k] = max(P) to find the max-
imum power in case (b). The maximum power is found to be 4.032, occurring at -
angle §{k) = 110.01°.

The coefficient of sin 26 is relatively small, and since Xy < X, itis negative.
Thus, the sin 26§ term has the property of subtracting from the sin § term in the
region 0° < § < 90°, but adding to it in the region 90° < § < 180°, During
sudden impact, when § swings from its initial value to the maximum value for
marginal stability, the overall effect of the sin 24 term has the tendency to average
out to zero. For this reason, the sin 28 term is often ignored in the approximate
power-angle equation.

11.4 STEADY-STATE STABILITY —
SMALL DISTURBANCES

The steady-state stability refers to the ability of the power system to remain in
synchronism when subjected to small disturbances. It is convenient 1o assume that
the disturbances causing the changes disappear. The motion of the system is free,
and stability is assured if the system returns to its original state. Such a behavior
can be determined in a linear system by examining the characteristic equation of
the system, It is assumed that the automatic controls, such as voitage reguiator and
governor, are not active. The actions of governor and excitation system and control
devices are discussed in Chapter 12 when dealing with dynamic stability,
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To illustrate the steady-state stability problem, we consider the dynamic be-
havior of a one-machine system connected an infinite bus bar as shown in Figure ;3
11.1. Substituting for the electrical power from (11.29) into the swing equation 3
giverin (11.21) results in

H d%6

fod? " m”

Ponez Sin g (11.36)
The swing equation is a nonlinear function of the power angle. However, for small
disturbances, the swing equation may be linearized with little loss of accuracy as :

follows. Consider a small deviation AJ in power angle from the initial operating
paint g, ie.,

§=bp+ A8 (11.37) ;
Substiwting in {11.36), we get

2 r}
St n) o s L

7 fo dt?

or

H d*5, H dAé . .

?TE o + T dE = Py, — Ppay(sin bg cos Ad + cos dg sin AS)
Since Ad is small, cos AS = 1 and sin Ad = Ad, and we have

H d%6 H d?Aé
—— =~ = P — Prar 80 — Praz 6o &6
:l'rfu d£2 ® T fo dt? sittd €08

Since at the initial operating state

B
7 fo dt?

The above equation reduces to linearized equation in terms of incremental change:
in power angle, i.e.,

= P, — Pparsindg

H d&’AS
o gz + oz cos8 A =0 (11.38)
The quantity Py, cos dg in (11.38) is the slope of the power-angle curve at dg. It :
is known as the synchronizing coefficient, denoted by P,. This coefficient plays an ===
important part in determining the system stability, and is given by o
P, = % = Pruaz €058 (1139)
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Substituting in (11.38), we have

H d’Aé

o ag tPAi=0 (11.40)

The solution of the above second-order differential equation depends on the roots
of the characteristic equation given by

2 7 fo
§° = ——=P,
H L3
When P, is negative, we have one root in the right-half s-plane, and the response
is exponentially increasing and stability is lost. When P, is positive, we have two
roots on the j-w axis, and the motion is oscillutory and undamped. The system is .
marginally stable with a natural frequency of oscillation given by

(11.41)

7 fo

Wh = 5

q (11.42)

It can be seen from Figure 11.3 that the range where P, (i.e., the stope dP/d8) is
positive lies between 0 and 30° with a maximum value at no-load (6y = 0).

As long as there is a difference in angular velocity between the rotor and the
resultant rotating air gap field, induction moter action will take place between them,
and a torque will be set up on the rotor tending to minimize the difference between
the two angular velocities. This is called the damping forque. The damping power
is approximately proportional to the speed deviation. -

dé
Py=D— (11.43)
The damping coefficient D may be determined either from design data or by test.
Additional damping torques are caused by the speed/torque characteristic of the
prime mover and the load dynamic, which are not considered here. When the syn-
chronizing power coefficient P, is positive, because of the damping power, oscil-
lations will damp out eventually, and the operation at the equilibrium angle will be
restored. No loss of synchronism occurs and the system is stable.
It damping is accounted for, the linearized swing equation becomes

H A8 dAé
rraE D+ PAs=0 (11.44)
or
a0 1}3@ 3 “—f"Ps AS=0 (11.45)

dtz dt
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or in terms of the standard second-order differential equation, we have

d*AD das o,
i+ Wwn—— +uf A5 =0 (11.46)

where wn, the natural frequency of oscillation is given by (11.42), and { is defined :
as the dimensionless damping ratio, given by

D fnfy :

(= 2\ HP, (11.47) -
The characteristic equation is

2+ Awns +wi=0 (11.48)

For normal operating conditions, ¢ = D/2,/ 2% <« 1, and roots of the character-
istic equation are complex '

51, 89 = —Cwq £ junyf/1— (2

= —Quyg + juwy

(11.49)_

where wy is the damped frequency of oscillation giver by

wag=wn1—¢2

It is clear that for positive damping, roots of the characteristic equation have neg- =
ative real part if synchronizing power coefficient P, is positive. The response is =
bounded and the system is stable, _
We now write (11.46) in state variable form. This makes it possible to extend
the analysis to multimachine systems. Let

(11.50)

=Aé and zp =Aw =£§§ then

=29 and Zy= —uﬁx; — 2(wn

Writing the above equations in matrix, we have
£©]_1 0 1 1 ]
Za | _Wﬁ _,20*’:1 T2

x(t) = Ax(t)

or

E1.4. STEADY-STATE STABILITY — SMALL DISTURBANCES 475

where

0 1
A= [ 2 ] (11.53)

This is the unforced state variable equation or the homogeneous state equation, If

the state variables x| and z, are the desired response, we define the output vector

©ar

y(t) as
y(t) = [{1} ?] [2 ] (11.54)
y(2) = Cx(2) (11.55)
Taking the Laplace transform, we have
sX(s5) —x(0) = AX(s)
ar
X{s) = {sI - Ay~ x(0) (11.56)
where
(sI—A):[ W } (1157)
wh 5+ 2wy
Substituting for {(sI — A)~!, we have
[ o
Xe) = T roroat w2
When the rotor is suddenly perturbed by a small angle Ach, z1(0) = Adg and

72(0} = Awp = 0 and we obtain -
Aé(s} - (23 + 2((0,—,)&50
5% + 20wys + wi
and
2
Aw(s) = — wn A%

82 + 20wns + wl
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Taking inverse Laplace transforms results in the zero-input response

AJQ :
AS = ———e Mt gin(wgyt + § 11.58
i ( ) (11.58)
and
Aw = —ﬂe_c‘”“‘ sinwyt (1_1.59')

=

where wy is the dam.ped frequency of oscillation, and # is given by
8 =cos”!¢

The moﬁon of rotor relative to the synchronously revolving field is

Ady
i-c

and the rotor angular frequency is

§=14dy+ et sinfwgt + 8) (11.61)

—Qwnt :
W= Wy~ —e——e sinwyt (11.62} -
h~¢ 2
The response time constant is %
1 2H '
= e s 11.63)
"7 Gun 7D s

and the response settles in approximately four time constants, and the setiling time °
is

t, = 4r (11.64)

From (11.42) and (11.47), we note that as inertia-constant H increases, the natural;
frequency and the damping ratio decreases, resulting in a longer settling time. An
increase in the synchronizing power coefficient P, results in an increase in the
natural frequency and a decrease in the damping ratio.

Example 11.2

A 60-Hz synchronous generator having inertia constant H = 9.94 MI/MVA and
a transient reactance X} = 0.3 per unit is connected to an infinite bus through |
a purely reactive circuit as shown in Figure 11.7. Reactances are marked on the !
diagram on a common system base. The generator is delivering real power of 0.6 _
per unit, 0.8 power factor lagging to the infinite bus at a voltage of V = 1 per unit.
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FIGURE 11.7
One-linc diagram for Example 11.2.

Assume the per unit damping power coefficient is D = 0.138. Consider a smal!
distarbance of A§ = 10° = 0.1745 radian. For example, the breakers open and
then quickly close. Obtain equations describing the motion of the totor angle and
the generator frequency,

The transfer reactance between the generated voltage and the infinite bus is

03
X =0.3+0.2+—§- = 0.65
The per unit apparent power is
g = %écos_l 0.8 = 0.75/36.87°

The current is
5 _ 0.75/—36.87°

ce— = =0.75/-36.87°
¥ 1.0£0°

I=

The excitation voltage is
E' =V + XTI =1.0£0° 4 (50.65)(0.75¢( —36.87°) = 1.35/16.79°

Thus, the initial operating power angle is 16.79° = 0.2931 radian. The synchro-
nizing power coefficient given by (11.39} is

(1.35)(1)
0.65

The undamped angular frequency of oscillation and damping ratio are

_rfap _ [)60) ) gecs 61405 radisec
Wn = \/'FP’“\[Q.% k=0

D fnfs 0138 (m)(60) = 0.2131
C=2VEP, =~ 2 \ ©@odj1o88a)

P, = Pyac0osdy = cos16.79° = 1.9884
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The linearized force-free equation which determines the mode of oscillation given
by (11.46) with § in radian is

d2A$
di?

+ 2.62%‘5‘?5 +37.7A8 =0

From (11.50), the damped angular frequency of oscillation is

wy = wayf1 — (2 = 6.1405,/1 — (0.2131)2 = 6.0 rad/sec

corresponding to a damped oscillation frequency of

fa= %9 = 0.9549 Hz

e

From (11.61) and (11.62), the motion of rotor relative to the synchronously re-
volving field in electrical degrees and the frequency excursion in Hz are given by
equiutions

§ = 16.79° + 10.234e~ % sin (6.0t + 77.6966°)
f=160—0.1746e '3 5in 6.0¢

The above equations are written in MATLAB commands as follows

E=1.35; V=1.0; H=9.94; X=0.65; Pm=0.6; D= 0.138; f0 = 60;: _
Pmax = E*V/X, dO0 = asin{Pm/Pmax) % Max. power .. 4
Ps = Pmax*cos{d0) % Synchreonizing power coefficient
wn = sqrt(pi*60/H*Ps)), Undamped frequency of oscillation
z = D/2xsqrt (pi*60/(H+Ps)) % Damping ratio
wd=wn*sqrt (1-z"2}, fd=wd/(2*pi) }Damped frequency oscill.
tau = 1/(z*un) % Time constant
th = acos(z) % Phase angle theta
Dd0 = 10*pi/180; % Initial angle in radian
t=0:.01:3;

Dd = DdOG/sqrt(1-z-2) *exp{-z*wn*t) . *sin{wdst + th);

d = (d0+Dd)*i80/pi; % Power angle in degree
Dw = -wn*Dd0/sqrt{1-z"2)xexp{-z+un+t) . *sin(wd*t); -
f =10+ Dw/(2%pi); % Frequency in Hz ~
subplot(2,1,1}, plot(t, d), grid
xlabel(’t sec’), ylabel(’Delta
subplot(2,1,2), plot(t,f), grid
xlabel{’t sec’), ylabel(’Frequency
subplot (111)

degree’)

Hz?)
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30.0 , | . , .
60
60.2 ‘ , : , .
60.1} ]
£ 60.0
Hz
59.9
5985 05 ) 15 2.0 2.5 3.0

t, sec

FIGURE 11.8
Natural responses of the rotor anghe and irequency for machine of Exampie 11.2.

The result is shown in Figure 11.8,

The response shows that a small disturbance will be followed by a relatively
slowly damped oscillation, or swing, of the rotor, before steady state operation at
synchronous speed is resumed. In the case of a steam turbine generator, oscillations
subside in a matter of two to three seconds. In the above example, the response
settles in about £; ~ 4r = 4(1/1.3} = 3.1 seconds. We also observe that the
oscillations are fairly low in frequency, in the order of 0.955 Hz.

The formulation of the one-iachine system with all control devices inac-
tive resulted in a second-order differential equation or a two-dimensional state
equation. Later on, when the analysis is extended to a multimachine sysiem, an
n-dimensional state variables equation is obtained. MATLAB Control Toolbox pro-

_ vides a function named initial for simulating continuous-time linear systems due

to an initial condition on the states. Given the system

x(t) = AX(t) + Bu(#)
y = Cx{t) + Du{t)’

(11.65)
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[y, x] = initial{A, B, C, D, xq, t) returns the output and state responses of the 4
system to the initial condition xg. The matrices y and x contain the output and “2F

state response of the system at the regularly spaced time vector ¢.
From (11.52)(11.54), the zero-input state equation for Example 11.2 is

[5]=1 stms —air ) [ 2
%9 —-37.705 —2.617 | | o

and

The initial state variables are Adg = 10° = 0.1745 radian, and A.égz 0. The fol-

lowing MATLARB commands are used to obtain the zero-input response for Example
1.2, ;

A=[0 1; ~-37.705 -2.617);

B = [0; 0}; % Column B zero-input
C=[1 0; 0 1};%Unity matrix defiring output y as x1 and x2
D = [0; 0];

Dx0 = [0.1745; 0]; % Initial conditions
fy, x] = initial(a, B, C, D, Dx0, t);

Dd = x(:, 1); Dw = x(:, 2);: % State variables x1 and x2
d = (d0 + Dd)+180/pi: % Pover angle in degree

f = £0 + Du/{2#pi);
subplot(2,1,1), plot{t, d}, grid
xlabel(’t sec’}, ylabel('Delta Degree’)
subplet(2,1,2), plot(t, £f), grid

xlabel{’t sec’), ylabel('Frequency Hz’),subplot{111)

% Frequency in Hz

The simulation results are exactly the same as the graphs shown in Figure 11.§.

Although it is convenient to assume that the disturbances causing the changes
disappear, we will now investigate the system response to small power impacts.

Assume the power input is increased by a smail amount A P. Then the linearized S

swing equation becomes

H dAS dAS

ﬂ_ﬁ-&T+D—‘it—+P,A6=AP : (11.66}
or : .
B2AS  wfy dAS  wfo 7 fo 7
4780 TJop889 | T p A5 Ti0Ap .
et gl *tah £ (11§7)_
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or in terms of the standard second-order differential equation, we have

d?AS dAs
it = 11.68
ai + 2w, 7 + wy, Ad = Au | ( )
where
7 fo
Auy=-——"AP 11.69
u= { )

and wn, and ¢ are given by (11.42) and (11.47), respectively. Transforming to the
state variable form, we have '

;= A8 and z,=Aw=A§ then
=2z and Ip= —w,?l:zl — 20w,y

Writing the above equations- in matrix, we have
I.l o 0 1 Ty o
[a]=l = [2]#[M]e am

x(t) = Ax{t) + BAu(t) (11.71)

or

This is the forced state variable equation or the zero-state equation, and with 1,
and z; the desired response, the output vector y(t) is given by (11.55). Taking the
Laplace transform of the state equation (11.71) with zero initial states results in

sX(s) = AX(s) + BAU(s)

or
X(s) = (sI— A)"'BAU(s) (11.72)
where
A=

Substitting for (sI — A)~1, we have

s+ 2w, 1 0 Au
—wﬁ s 1.+

X(s) = [

52 4 26wns + w?
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or
Ay
Ad(s) =
(s) 5(s% + 2Qwns + w?)
and
Aw(s) = Ky

82+ 2Cwn +w?

Takmg inverse Laplace transforms results in the step response
Au 1

S e (NN

2 1 me sin{wqt + 8}]

where & = cos™! ¢ and

Ab = (11.73) .

—~-—ﬁi—‘—e'c“’“£ sinwgt
wny'1 — C§

Substituting for Au from (11.69), the motion of rotor relative to the synchronously
revolving field in electrical radian becomes

‘.'ng AP [1 _1
Hw? Vi=-¢2
and the rotor angular frequency in radian per second is
T foAP

Huw, /1 -—(E

Aw = (11.74) .

§= b+ e =%t sin(wgt + 6)) (11.75)

W =uwp+ e ¥nt sinwgt

(11.76) 2=

Example 11.3

The generator of Example 11.2 is operating in the steady state at §p = 16.79° when
the input power is increased by a small amount AP = 0.2 per unit. The generator 3
excitation and the infinite bus bar voltage are the same as before, ie, B! = 1,35 ¢
per unit and V' = 1.0 per unit.
(a) Using (11.75) and (11.76), obtain the step response for the rotor angle and the
generator frequency. r
(b) Obtain the response using the MATLAB step function.

(c) Obtain a SIMULINK block diagram representation of the state-space model and
simulate to obtain the response.

expressing the power angle in degree, we get :
(180}(60){0.2) _ 1

(9.94)(6.1405)2[ V1= (0.2131)2

8 =16.79° + e~13 gin(6t + 77.6966°)]
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or
§ = 16.79° + 5.7631[1 — 1.0235¢™ 1% sin(6¢ + 77.6966°)]
Also, substituting the values in (1 1.76.} and expressing the frequency in Hz, we get

_ (60)(0.2) -13
f=60+ 2(9.94)(6.1405) /1 — (0.2131)2 t

sin 6t
or
f =60+ 0.10e " sin6¢

The above functions are plotted over a range of 0 to 3 seconds and the result is
shown in Figure 11.9. '

30.0 r T '

2501

4 20.0

15.0 | o

00y 05 1.0 5 2.0 25 3.0

601 T T T T

60.1 £ J

f, 600 /\/\/\

59.5¢+ .

5985 05 10 15 20 25 3.0

t, sec

FIGURE 119
Step responses of the rotor angle :md frequency for machme: of Example 11.3.
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(b) The step response of the state equation can be obtained conveniently, using |
the MATLAB Control Toolbox [y, x] = lsim(A, B, C, D, u, t) function or [y,x]
= step(A, B, C, D, iu, t) function. These functions are particularly useful when
dealing with multimachine systems. [y, x] = step(A, B, C, D, iu, t) returns the
output and step responses of the system. The index iu specifies which input to be
used for the step response. With only one input in = 1. The matrices y and x contain °
the output and state response of the system at the regularly spaced time vector ¢,
From (11.70), the state equation for Example 11.3 is

] 0 1 Ty 0
=l ot e |[ 3] [ ] e

o=Lo 1] 2]

From (11.69), Au = (60r/9.94)(0.2) = 3.79. The following MATLAB commands
are used to obtain the step response for Example 11.3.

and

A=[0 1; -37.705 -2.617];

Dp = 0.2; Du = 3.79; ¥ Small step change in power input
B = {0; 1)*Du;

C=[10; 0 1);%Unity matrix defining output y as x1 and x2
D = [o0; ¢l;

[y, x]1 = step(A, B, C, D, 1, t);

Dd = x(:, 1}; Dw = x(:, 2); 7, State variables xl1 and %2
d = (d0 + Dd)y*180/pi; % Power angle in degree
f = f0 + Dw/(2*pi); % Frequency in Hz
subplot(2,i,1), plot(t, d), grid

xlabel(’t sec’), ylabel(’Delta degree’)
subplot(2,1,2), plot(t, f)}, grid

xlabel{’t sec’), ylabel(’'Frequency Hz’),subplot(111)

=

The simulation resuits are exactly the same as the analytical solution and the plots
are shown in Figure 11.9.

(c) A SIMULINK model named sim1lex3.md! is constructed as shown in Figure
11.10. The file is opened and is run in the SIMULINK WINDOW. The simulation
results in the same response as shown in Figure 11.9. ¢

The response shows that the oscillation subsides in approximately 3.1 sec-
onds and a new steady state operating point is attained at § = 22.5°. For the lin-
earized swing equation, the stability is entirely independent of the input, and for a
positive damping coefficient the system is always stable as long as the synchroniz-
ing power coefficient is positive. Theoretically, power can be increased gradually”
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16,79 — +

/
=
]

180/pi >

An =379

r_*x =AX+Bul o
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]
i
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FIGURE 11.10
Simulation block diagram for Example 11.3.

up to the steady-state limit. It is important to note that the linearized equation is
only valid for very small power impact and deviation from the operating state.
Indeed, for a large sudden impact the nonlinear equation may result in unstable
solution and stability is lost even if the impact is less than the steady-state power
limit.

An important characteristic of the linear system is that the response is asymp-
totically stable if all roots of the characteristic equation have negative real part. The
polynomial characteristic equation is obtained from the determinant of (sT — A)
or eigenvalues of A. The eigenvalues provide very important results regarding the
nature of response. The reciprocal of the real component of the eigenvalues gives
the time constants, and the imaginary component gives the damped frequency of
oscillations. Thus, the linear system expressed in the state variable form is asymp-
totically stable if and only if all of the eigenvalues of A lie in the left half of the
complex plane. Therefore, to investigate the system stability of a multimachine
system when subjected to small disturbances, all we need to do is to examine the
eigenvalues of the A matrix. If the homogeneous state equation is written as

x = f(x} (117
we note that matrix A is the Jacobian matrix whose elements are partia! deriva-
tives of rows of f(x) with respect to state variables z, z9, - - - , z,,., evaluated st the

equilibrium point. In MATLAB we can use the function r = eig{ A}, which returns
the eigenvalues of the A matrix. In Example 11.2, the A matrix was found to be

Ao O 1 _ 0 1
T w2 2w, J T | -37.705 —2.617

and the commands
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A=1[0 1; -37.705 -2.617];
r = eig(d)
result in
r =
-1.3 + 6.00i
-1.3 + 6.00i

The linearized model for small disturbances is very useful when the system
is extended to include the govemor action and the effect of automatic voliage reg-
ulators in a multimachine system. The lincarized model allows the application of

the linear control system analysis and compensation, which will be dealt with in

Chapter 12.

11.5 TRANSIENT STABILITY —
EQUAL-AREA CRITERION

The transient stability studies involve the determination of whether or not synchro- *
nism is maintained after the machine has heen subjected to severe disturbance.
This may be sudden application of load, loss of generation, loss of large load, or a_':'
fault on the system, In most disturbances, oscillations are of such magnitude that

lineanzation is not permissible and the nonlinear swing equation must be solved.
A method known as the equal-area criterion can be used for a quick predic-
tion of stability. This method is based on the graphical interpretation of the energy

stored in the rotating mass as an aid to determine if the machine maintains its sta-

bility after a disturbance. The method is only applicable to a one-machine system

connected 1o an infinite bus or a two-machine system. Because it provides physi-
cal insight to the dynamic behavior of the machine, application of the method to

analysis of a single machine connected to a large system is considered here.
Consider a synchronous machine connected to an infinite bus. The swing
equation with damping neglected as given by (11.21) is
H %
——=FPh-F.=F
T f(} d£2 m [ a

where P, is the accelerating power. From the above equation, we have

dgtg '.'fou .
=P, - P,
a =g )
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Multiplying both sides of the above equation by 244 /dt, we get

2
JHLE_2mfy ds

diaz =~ g dm By
This may be written as

d [7ds\?] 2nf, dé
a [(EE) ] =T Pn= PG

or

d [(%‘:)2] - %I%(Pm - P)ds

Integrating both sides,

d6\? 2xf, f?
(E) - = /;O(Pm-Pe)dé

or

dé 2 fo ¢ .
o= \/__H ];D(Pm—Pe)dé (11.78)
Equation (11.78) gives the relative speéd of the machine with respect to the syn-
chronously revolving reference frame. For stability, this speed must become zero at

some time after the disturbance. Therefare, from (11.78), we have for the stability
criterion,

]
f (Pn—P}dé=0 (11.79)
do
Consider the machine operating at the equilibrium point 4y, corresponding to the
mechanical power input P,g = Peg as shown in Figure 11.11, Consider a sudden
step increase in input power represented by the horizontal line Pp,;. Since Py >
F,o, the accelerating power on the rotor is positive and the power angle & increases.
The excess energy stored in the rotor during the initial acceleration is

)
/50 {Pm1 — P.)dd = area abc = area A, (11.80)

With increase in 4, the electrical power increases, and when § = &, the electrical
power matches the new input power P,,;. Even though the accelerating power
is zero at this point, the rotor is running above synchronous speed; hence, & and
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FIGURE 11.11
Equal-area criterion—sudden change of load.

electrical power P, will continue to increase. Now P,, < P,, causing the rotor
lo decelerate toward synchronous speed until § = &,,4,. According to (11.79),
the rotor must swing past point b until an equal amount of energy is given up by

the rotating masses. The energy given up by the rotor as it decelerates back to
synchronous speed is

By

The result is that the rotor swings to point b and the angle 4,542, 2t which pbint

Jarea A;| = jarea A,| (11.82) -3

This is known as the equal-area criterion. The rotor angle would then oscillate
* back and forth between &g and 6,4, at its natural frequency. The damping present
in the machine will cause these oscillations 1o subside and the new steady state
operalion would be established at point b.

11.5.1 APPLICATION TO SUDDEN
INCREASE IN POWER INPUT

The equal-area criterion is used to determine the maximum additional power Py, :
which can be applied for stability to be maintained. With a sudden change in the
power input, the stability is maintained only if area A, at least equal to A; can be’.
located above P,,. If area Aj is less than area A,, the accelerating momentum can ;

never be overcome, The limit of stability occurs when 8,41 s at the intersection 0

J'"ﬂ: ’
] (Pt — P.)d5 = area bde = area As (1.81)
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line P, and the power-angle curve for 90° < § < 180°, as shown in Figure 11.12,

Fe

Pr 5

Pm(]

)
¥
]
i
¥
t
(N
P
i-
t
]
3
L
1
1

0 4 3,

FIGURE 11.12
Equal-area criterion—maximum power limit.

drnar T

Applying the equal-area criterion to Figure 11.12, we have

dmax

4y
Po(61 — &) — / P sin§ dé = Pore S0 8d8 = Poy(Spmaz — 61)
do

6
Integrating the above expression yields
(8maz — 80)Pm = Praar(cos 8y — €08 paz)
Substituting for Pp,, from
P = P sindpas
into the above equation results in
(dmaz — 8p) Sin dpnar + €OS Spaz = cos &y (11.83)

The above nonlinear algebraic equation can be solved by an iterative technique

for 8p5¢. Once by, is obtained, the maximum permissible power or the transient
stability limit is found from

Py = Phersind) (11.84)

where

8= 7= (11.85)
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Equation (11.83) is a nonlinear function of angle &4, written as

f(fsmn:r) =c (1186) ;

An iterative solution is obtained, using the Newton- -Raphson method, described in

Section 6.3. Starting with an initial estimate of 7/2 « 65::3;1 < m, the Newton-

Raphson algorithm gives

AFE) o E f(égfﬁx
mar T d[
where df /dd ., is the derivative of (11.83) and is given by

df
d‘sm axr

XY

6lk)

mar

and
St = )+ AsE), (11.89)

A solution is obtained when the difference between the absolute value of the suve-
cessive iteration is less than a specified accuracy, i.e.,

I =8| < (11.90)
A function named eacpower( P, £, V, X) is developed for a one-machine system
connected to an infinite bus. The function uses the above algorithm to find the
sudden maximum permissible power that can be applied for critical stability. The
function plots the power-angle curve and displays the shaded equal-areas. Py, E,
V,and X are the initial power, the transient internal voltage, the infinite bus bar

voltage, and the transfer reactance, respectively, all in per unit. If eacpower is used
without arguments, the user is prompted to enter the above guantities.

Example 11.4

The machine of Example 11.2 is delivering a real power of 0.6 per unit, at 0.8
power factor lagging to the infinite bus bar. The infinite bus bar voliage is 1.0 per
unit. Determine

(2) The maximum power input that can be applied without loss of synchronism.

(b} Repeat (a) with zero initial power input. Assume the generator internal voltagei

remains constant at the value computed in (a).

In Example 11.2. the transfer reactance and the generator internal voltage were’

found to be X = 0.65 pu, and £’ = 1.35 pu

(a) We use the following command:

(11.87)

= (Jmﬂr = ‘50) cos 6‘57&(1;: (1 188)’ |
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PO =0.6; E=1.35; V= 1.0; X = 0.65;
eacpower(F0, E, V, X)

which displays the graph shown in Figure 11.13 and results in

Initial power =  0.600 pu
Initial power angle = 16.791 degree
Sudden initial power = 1.084 pu
Total power for critical stability = 1.684 pu
Maximum angle swing = 125.840 pu

Nev operating angle 54.160 degree

(b} The initial power input is set to zero, i.e., P, = 0, and using eacpowerfPo, E
¥, X) displays the graph shown in Figure 11.14 with the following results;

Initial power = 0.00 pu
Initial power angle =  0.00 degree
Sudden initial power = 1.505 pu
Total power for critical stability = 1.505 pu
Maximum angle swing 133.563 pu

I n

New operating angle 46.437 degree

Equal-area criterion applied to the sudden change in power
2-5 1 T L} L} T

20}
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FIGURE 11.13
Maximum power limit by equal-area criterion for Exampie 11.4 (a).
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Equal-area criterion applied to the sudden chan ge in power
2-5 T T

1 bid
1 FIGURE 11.16
i T Equal-area criterion for a three-phase fault at the sending end.

O 30 60 90 120 150 180 o ;
R s ] its speed, storing added kinetic energy, and increasing the angle §. When the fault is
Mn;imm p(;wer limit by equal-area criterion for Example 11.4 (b). e cleared, both lines are assumed to be intact. The fault is cleared at &1, which shifts

N the operation to the original power-angle curve at point e. The net power is now

decelerating, and the previously stored kinetic energy will be reduced to zero at
11.6 APPLICATION TO L

point f when the shaded area (de £ 9). shown by A, equals the shaded area (abed),
THREE-PHASE FAULT shown by A;. Since P. is still greater than F,, the rotor continues to decelerate

and the path is retraced along the power-angle curve passing through points e and
a. The rotor angle would then oscillate back and forth around 4y at its natural fre-

Consider Figure 11.15 where a generator is connected to an infinite bus bar through
two paraliel lines. Assume that the input power P, is constant and the machine is

B quency. Because of the inherent damping, oscillation subsides and the operating
operating steadily, delivering power to the system with a power angle 8o as shown = 3 point retums to the original power angle do. '
in Figure 11.16. A temporary three-phase bolted fault occurs at the sending end of e The critical clearing angle is reached when any further increase in 6] canses
one of the fine at bus 1. ; the area Ay, representing decelerating energy to become less than the area repre-
1 2

senting the accelerating energy. This occurs when dmaz, OF point f, is at the inter-
section of line Py, and curve P,, as shown in Figure 11.17. Applying equal-area

) W : criterion to Figure 11.17, we have

6‘ ama: =
: / Fnds = f {Prraz sin§ — Pp)ds
| ; do L.
F _ .
FIGURE 11.15 3 Intcgrating both sides, we have
One-machine system connected to infinite bus, three-phase fault at F,

Pm((sc = 5{)) = Pmax (COS 5(: = €05 Jma:) = Pm(Jma:: - c)

When the fault is at the sending end of the line, point F, no power is transmit-

ted to the infinite bus. Since the resistances are neglected, the elec.mcal power.Pe ;

is zero, and the power-angle curve corresponds to the horizontal axis. Th:e: mach.me E - s o
accelerates with the total input power as the accelerating power, thereby increasing - ¢

Solving for §,, we get.

P

{Omaz — 69) + €08 bnas (11.91)

mazr
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FIGURE 11.17

Equal-area criterion for erlical cleaning angle.

The application of equal-area criterion made it possible to find the critical clearing
angle for the machine to remain stable. To find the cntical cleaning time, we still .
need to solve the nonlinear swing equation. For this particular case where the elec-
trical power P, during fault is zero, an analytical solution for critical clearing time
can be obtained. The swing equatien as given by (11.21), during fault with P, =0
becormes :

H 4§

7 fo di? TR
or

({25 ﬂ'f(}

B o

dt? H

Integrating both sides
ds ?Tf(] t "'rfﬂ
— =—=P dt = — Pt
d  H ’“,[n H'"
Integrating again, we get
7 fo 2
d= Pyt + 46
7H + 90
Thus, if 8, is the critical clearing angle, the corresponding critical clearing time is

. _ [P~ &)
d T foFPm

(11.92)
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O3] e

FIGURE 11.18
One-machine system connected [o infinite bus, three-phase fault at F.

Now consider the fault location F' at some distance away from the sending

. end as shown in Figure 11.18. Assume that the input power Py, is constant and the

machine is operating steadily, delivering power to the system with a power angle

8o as shown in Figure 11.19. The power-angle curve comesponding to the prefault
condition is given by curve A,

P

K

P, before fault

P, after fault

P, during fault

1
T
[}
i
1
1
1
1
1

1 61’1’10:: m

Conple s S

0 g

FIGURE 11.19
Equal-area criterion for a three-phase fauit at the away from the sending end.

With fault location at F, away from the sending end, the equivalent transfer
reactance between bus bars is increased, lowering the power transfer capability and
the power-angle curve is represented by curve B. Finally, curve C represents the
postfault power-angle curve, assuming the faulted line is removed. When the three-
phase fault occurs, the operating point shifts immediately to point b on curve B.
An excess of the mechanical input over its electrical output accelerates the rotor, -
thereby storing excess kinetic energy, and the angle § increases. Assume the fault is
cleared at 4, by isolating the faulted line. This suddenly shifts the operating point
to e on curve C. The net power is now decelerating, and the previously stored
kinetic-energy will be reduced to zero at point f when the shaded area (defg)
equals the shaded area (ebcd). Since P, is stiil greater than Py, the rotor continues
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to decelerate, and the path is retraced along the power-angle curve passing through
point &. The rotor angle will then oscillate back and forth around e at its namrg]
frequency. The damping present in the machine will cause these oscillations to %
subside and a new steady state operation will be established at the intersection of 4
P, and curve C. _

The critical clearing angle is reached when any further increase in §; causes
the area Ay, representing decelerating energy, to become less than the area rep
resenting the accelerating-energy. This occurs when d,,,., or point f, is at the
intersection of line Py, and curve ¢ as shown in Figure 11.20. .

Fe
P, before fault
P, after fanlt
Pin P, during fault
h
I
1 -5
0 50 ) ‘Sc ‘5max m

FIGURE 11.20 ) .
Equal-area criterion for critical clearing angle.

Applying equal-area criterion to Figure 11.20, we get

6: 'Smaz
Pm(é(_- — 5()) s f P mar sin bdé = /5 P3 maz Sifl ddé — Pm(émaz - 5(:)
& c

Integrating both sides, and solving for §., we obtain

Pm(ama: - 60} + Pyrmaz €08 oz — Pamax €OS do

(11.93)
PSmaz = P2ma:r

cosd, =

The application of equal-area criterion gives the critical clearing angle to mainfain_
stability. However, because of the nonlinearity of the swing equation, an analytical
solution for critical clearing time is not possible. In the next section we will discuss
the numerical solution, which can readily be extended to large systems.

A function named eacfault(Fy, E, V, X}, X, X3) is developed for a one-
machine systern connected to an infinite bus. This function obtains the power-angle
curve before fault, during fault, and after the fault clearance. The function uses
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equal-area criterion to find the critical clearing angle. For the case when power
transfer during fault is zero, (11.92) is used to find the critical clearing time. The
function plots the power-angle curve and displays the shaded equal-areas. P, E,
and V are the initial power, the generator transient internal voltage, and the infinite
bus bar voltage, all in per unit. X; is the transfer reactance before fault. Xqis
the transfer reactance during fauit. If power transfer during fault is zero, inf must
be used for X5. Finally, X3 is the postfault transfer reactance. If eacfault is used
without arguments, the user is prompted to enter the above quantities.

[}

Example 11.5

A 60-Hz synchronous generator having inertia constant H = 5 MJ/MVA and a
direct axis transient reactance X& = (.3 per unit is connected to an infinite bus
through a purely reactive circuit as shown in Figure 11.21. Reactances are marked
on the diagram on a common system base. The generator is delivering real power
Fe = 0.8 per unit and ) = 0.074 per unit to the infinite bus at a voltage of V = 1
per unit. '

(a) A temporary three-phase fault occurs at the sending end of the line at point F.
When the fault is cleared, both lines are intact. Determine the critical clearing angle
and the critical fault clearing time. _

{b) A three-phase fault occurs at the middle of one of the lines, the fault is cleared,
and the faulted line is isolated. Determine the critical clearing angle.

i
X, =02 X11 =03
o =
X'q=03 s ip =03
F
FIGURE 11.21

One-linc diagram for Example 11.5.

The current flowing into the infinite bus is
§*  0.8-—;0.074
Ve 1.040°
The transfer reactance between internal voltage and the infinite bus before fault is

X1=034+02+ % = (.65

I= = 0.8 — ;0.074 pu

The transient internal voltage is

E' =V +;X,I=10+ (j0.65)(0.8 — j0.074) = 1.17/26.387° pu
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(a) Since both lines are intact when the fault is cleared, the power-angle equanon " Application of equal-area criterion to a critically cleared system
before and after the fault is : 20 : Critical clearing angle = 84.77 ‘
Parsind = %sim?: 1.8siné _ 1.6} -
“The initial operating angle is given by 1ok ]
1.8kt §p = 0.8 = _
- ' | = 0.8 : -
8o = 26.388° = 0.46055 rad 04l i
and referring to Figure 11.17 i
Sinax = 180° — 8y = 153.612° = 2.681 rad %0 30 60 %0 120 150 Tob

: Power angle, degrees
Since the fault is at the beginning of the transmission line, the power transfer during

fault is zero, and the critical clearing angle as given by (11.91) is FIGURE 11.22
: Equal-area criterion for Example 11.5 (a).
0.8

cosd, = ﬁ(?.ﬁSl — 0.46055) + cos 153.61° = 0.09106

(b} The power-angie curve before the occurrence of the fault is the same as before,
Thus, the critical clearing angle is given by
8. = cos 1 (0.00106) = 84.775° = 1.48 rad =

From (11.92), the critical clearing time is and the generator is operating at the initial power angle 6y = 26.4° = 0.4605 rad.

' The fauit cccurs at point £ at the middle of one line, resulting in the circuit shown
2H (6 — o) \[ )(1.48 ~ 0.46055) = 0.26 second : in Figure 11.23. The transfer reactance during fault may be found most readily by
7 foPrm {m}(60)(.8) ' converting the Y-circuit ABF to an equivalent delta, efiminating junction C. The
Iting circuit is sh in Fi 11.24,
The use.of function eacfault(F,,, E, V, X, X9, X4) to solve the above problem Festiling circuit 15 shown In figure .
and to display po\aier-angle plot with the shaded equal-areas is demonstrated below. _ 4 05 o 0.3 B
We use the following commands — N Y
m=0.8 E=1.17; V=1.0; .
1 = 0.65; X2 = inf; X3 = 0.65; , o
eacfault(Pm E, V, X1, X2, X3) P % (DE 0.15 0.15 oV =10
The graph is displayed as shown in Figure 11.22 and the result is
Initial power angle = 26.388 r
Maximum angle swing = 153.612 -
Critical clearing angle = 84.775 FIGURE1123 . .
Critical clearing time = 0.260 sec _ Equivalent circuit with three-phase faule at the middie of one line.
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% Xs=18 B . Application of equal-area criterion to a cnitically cleared system
s 2.0 . ; — ,
Ve Critical clearing angle = 98.83
05430153 (s0)v =10 16]
12} ]
FIGURE 11.24 5 0.8 .:.:; 7 |
Equivalent circuit after Y-A transformation. E o !
: S = : ; ]
The equivalent reactance between generator and the infinite bus s 228 - i i
5)(0.: .5)(0.1 .3)(0.15 : ! : '
Xy = (0-5)(0.3) + (0.5)(0.15) + (0 3)((.} ) =18 pu “ae 0 L ; N . i
0.15 N 0 30 60 90 120 150 180
Thus, the power-angle curve during fault is ' B iR S
Popnarsind = (1—1?8&91 = 0.65sin é FIGURE 11.25

Equal-area eriterion for Example 11.5 (b),
When fault is cleared the faulted line is isolated. Therefore, the postfault transfer

reactance is

“Pm=0.8; E=1.17; V = 1.0;
Xz —03+02403=08 pu X1 = 0.65; X2 = 1.8; X3 = 0.8;
' eacfault(Pm, E, V, Xi, X2, X3)

“and the power-angle curve is

1.4625
Applying (11.93), the critical clearing angle is given by

0.8(2.5628 — 0.46055) -+ 1.4625 cos 146. 838° — (.65 cos 26.388°
1.4625 — 0.65

P sind = (1.17){1.0}) sind = 1.4625sin § = gt i The graph is displayed as shown in Figure 11.25 and the result is
3mar = =" ax = ety s
0.8 2y 7 _
; ; Initial power angle = 26.388
R :
elemng o Eigure L1206 Maximum angle swing = 146.838
B 180%= T ( 0.8 ) = 146.838° = 2.5628 rad Critical clearing angle = 98,834

11.7 NUMERICAL SOLUTION
OF NONLINEAR EQUATION

cos d,

= -0.15356 Numerical integration techniques can be applied to obtain approximate solutions
of nonlinear differential equations. Many algorithms are available for numerical
integration. Euler's method is the simplest and the least accurate of all numerical
methods. It is presented here because of its simplicity. By studying this method, we
will beable to grasp the basic ideas involved in numerical solutions of ODE and

can more easily understand the more powerful methods such as the Runge-Kutta
procedure. :

Thus, the critical clearing angle is

8. = cos~1{~0.15356) = 98.834°

Function eacfault(P,,, E, V, X1, X2, X3) is used to solve part (b) and to dlsplay
power-angle plot. We use the following commands
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Consider the first-order differential €Qy,
a
dx

at O f (11.94)

Euler’s method is illustrated in Figur 3 ;
the solution x(t). If at ¢y the value of Fia Where the curve shown represents
-7 Y noted by xy is given, the curve can

1

T
I

p—
] 1
i

o 131 t

FIGURE 11.26
Graphical interpretation of Euler’s method.

be approximated by the tangent evaluql g : : .
denoted b Ab, theincrement st e this point. For a small increment in ¢

givgﬂ y

Ar == Yz
=
thth
where %’f is the slope of the curv
X

(11.94), “135, the value of  at {g + Qtiﬁ
I1=IU+AI%'{U*(}£I At

dt iy,
The above approximation is the Taylg,

|e ; " o F
where higher-order terms have been di:rﬁ Y expansion of x around point (&g, Io)_, i 3

csfdﬁd

The subsequent values of ¢ ¢ o :
=d ant’e"mllarly determined. Hence, the compu-

tational algorithm is

dx

T =r :
A S V.V

r ) 7
atlto, ro), which can be determined from

a 1.953.

R EQUATION 3
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By applying the above algorithm successively, we can find apPrOxImate values of

z(t} at enough points from an initial state (to, Tg) to a final staf® (tr.xzp) A graph
ical illustration is shown in Figure 11.26. Euler's method assu™® that the stope 1s
constant over the entire interval At causing the points to fall pelow the curve. An
improvement can be obtained by calculating the stope at bot! lh"? beginning and
end of interval, and then averaging these slopes. This procedr® 15 known as the
modified Euler’s method and is described as follows.

By using the derivative at the beginning of the step, the yslue at the end of the
step (£; = ¢ + At) is predicted from

d.
I{=Io+i

t
dt a

]

Using the predicted value of J:f, the derivative at the end of ir‘[erval s determined
by

dx

0 = f(t1,2})

=
Then, the average value of the two derivatives is used to find th¢ corrcted value

dr

dt

Iy ¢

B
i

T =29+

dr |
+:‘-—-|l B
5 £

Hence, the computational algorithm for the successive values 'S

dr| o dr
Oty dtlgp At (11.96)
2

e
iy =&t

The problem with Euler’s method is that there is numer#cal €707 introduced
when discarding the higher-order terms in the series Taylor eAPanston. But by us-
ing a reasonably small value of At, we can decrease the errof DEtWeen successive
points. If the step size is decreased too much, the number of st#P> increa‘ses and the
computer round-off error increases directly with the number of operations. Thus,
the step size must be selected small enough to obtain a reasd“abl_}' solu-
tion, but at the same time, large enough to avoid the numeri¢al limitations of the
computer. )

The above technique can be applied to the solution of higher-ol'der differen-
tial equations. An nth order differential equation can be exp@S5ed in terms of n
first-order differential equations by the introduction of auxil#2™ variables. These
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variables are referred to as state variables, which may be physical quantities in a
system. For example, given the second-order differential equation
d?z dx

agdtz +aId +agr =¢

and the initial conditions xp and “;—f at tg, we introduce the following state vari-
Ia

ables,
ry=r
_ dr
ST

Thus, the above second-order differential equation can be written as the two fol- -
lowing simultaneous first-order differential equations. .

Iy =Ty
c ag aj
Iy = —— —I) — —Iy
a2 az ay

There are many other more powerful techniques for the numerical solution of non
linear equations. A popular technique is the Runge-Kutta method, which is based
on formulas derived by using an approximation to replace the truncated Taylor se-

ries expansion. The interested reader should refer to textbooks on numerical tech-
niques. MATLAB provides two powerful functions for the numerical solution of : =4
differential equations employing the Runge-Kutta-Fehlberg methods. These are - :
ode23 and oded5, based on the Fehlberg second- and third-order pair of formu- m
las for medium accuracy and forth- and fifth-order pair for higher accuracy. The &
nth-order differential equation must be transformed into n first order differential

equations and must be placed in an M-file that returns the state derivative of the
equations. The formats for these functions are :

[t, x] = ode23(’xprime’, tspan, x0)
[t, x] = oded5(’xprime’, tspan, x0)

where tspan =[t0, tfinal] is the time interval for the integration and x0 is a col-
uma vector of initial conditions at time t0. xprime is the state denvative of the
equations, defined in a file named xprime.m

11.8 NUMERICAL SOLUTION =
OF THE SWING EQUATION =
To demonstrate the solution of the swing equation, consider Figure 11.18 where S22 E
a generator is connected to an infinite bus bar throngh two parallel lines. Assum E
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that the input power Py, is constant. Under steady state operation P, = P, and
the initial power angle is given by

by = sin™! P,
lmaz
where
; B
Pl = |E|V| _
X,

and X, is the transfer reactance before the fault. The rotor is running at syn-
chronous speed, and the change in the angular velocity is zero, i.e.,

Awy=0

Now consider a three-phase fault at the middle of one line as shown in Figure 11.18.
The equivalent transfer reactance between bus bars is increased, lowering the power
teansfer capability, and the amplitude of the power-angle equation becomes

|E|iV]

P;amnx = X

where X 1s the wansfer reactance during fault. The swing equation given by
(1121} is

d25=ﬁ‘fu

5 "
”a';’z' ?(Pm“PSZmarsma):%g a

The above swing equation is transformed into the state variable form as

dé ;

-gt— = Aw (1197
dAw B m

dt  H'®

We now apply the modified Euler’s method to the above equations. By using the
derivatives at the beginning of the step, the value at the end of the step ({; =
to + At) is predicted from

dé
AR A

- 7 W

Ay
diw

Awl | = Awp+ | At
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Using the predicted value of 87, ;, and Aw?, | the derivatives at the end of interval
are determined by

dé
P = Qwfyy
dt Awy,,
dAw mfo
— =-lp
il H Tl
Then, the average value of the two derivatives is used to find the corrected value
dé dé
(8] s
‘5f+l =6 + = | At
\ 2
diw di
*&rlél + |
Awfy, = Aw, + 3 L At {11.98)

Based on the above algorithm, a function named swingmeu(P,,, E, V, X3,
Xa, Xy, H, f, tg, ty, Dt} is written for the transient stability analysis of a one-
machine system. The function arguments are
Per unit mechanical power input, assumed to remain constant
E Constant voltage back of wansient reactance in per unit
V  Infinite bus bar voltage in per unit
X,  Perunit reactance between buses E and V befare fault
Per unit reactance between buses E and V' during fault
X3  Per unit reactance between buses F and V after fault clearance
H Generator inertia constant in second, (MJ/MVA)
f System nominal frequency
te  Fault clearing time
t¢  Final ume for integration :
Dt Integration time interval, required for modified Euler

If swingmeu is used without the arguments, the user is prompted to enter the re- -~

quired data. In addition, based on the MATLAB automatic step size Runge-Kuita
ode23 and odeds functions, lwe more functions are developed for the transient sta-
bility analysis of a one-machine system. These are swingrk2(P,,, E, V, X, Xo,
Xz, H, f, 1, t;), based on odel3, and swingrkd(Pp,, E, V, X1, Xs, X3, H, §,

tey t1), based on oded3. The function arguments are as defined above, except since =

these techniques use automatic step size, the argument Dt is not required. Again, if ;’(

swingrk2 and swingrkd are used without arguments, the user is prompted to enter
the required data. All the functions above use a function named cetime(P,, F,

V, X1, Xa, X3, H, f), which obtains the critical clearing time of fault for critical X

stability,

5

e

e
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Example 11.6

In the system of Example 11.5 a three-phase fault at the middle of one line is
cleared by isolating the faulted circuit simultaneously at both ends.

(a) The fault is cleared in 0.3 second. Obtain the numerical solution of the swing
equation for 1.0 second using the modified Fuler method (function swingmeu)
with a step size of At = 0.01 second. From the swing curve, determine the system
stability.

(b) The swingmeun function automatically calls upon the cctime function and de-
termines the critical clearing time. Repeat the simulation and obtain the swing plots
for the critical clearing time, and when fault is cleared in 0.5 second.

(c) Obtain a SIMULINK block diagram model for the swing equation, and simulate

for a fault clearing time of 0.3 and 0.5 second. Repeat the simulation until a critical
clearing time is obtained. '

(a) For the purpose of understanding the procedure, the computations are per-

formed for one step. From Exampte 11.5, the power-angle curve before the oc-
cumence of the fault is given by

Py par = 1.8sinéd
and the generator is operating at the initial power angle

dg = 26.388° = 0.46055 rad
Awg =10

The fault occurs at point F at the middle of one line, resulting in the circuit shown

in Figure 11.23 (page 499). From the results obtained in Example 11.5, the accel-
erating power equation is

Py =08-0.65smnd

Appiying the modified Euler's method, the derivatives at the beginning of the step
are

s
Tl =
dA 60
d:" = “(5 ) (0.8 — 0.65sin 26.388°) = 19.2684 rad/sec?
do

At the end of the first step (¢, = 0.01), the predicted values are

& = 0.46055 + (0)(0:01) = 0.46055 rad = 26.388°
Awf = 0 + (19.2684)(0.01) = 0.1927 rad/sec
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Using the predicted value of 47, and Aw?, the derivatives at the end of interval are
determined by

ddé

e = Aw¥ = 0.1927 rad/sec

dt Bu? ;

dA '
) mO0) 1 5 _ in26.388°) = 19.2684 radisec? 5

dt & 9 o

Then, the average value of the two derivatives is used to find the corrected value

55 = 0.46055 + “_%192_7(0_01) = 0.4615 rad

19.2684 + 19.2684
2

The process is continued for the successive steps, until at ¢ = 0.3 second when the
fault is cleared. From Example 11.5, the postfault accelerating power equation is

Awf =0.0+ {0.01) =0.1927 rad/sec

P, =08 —~ 1.4625sin é

The process is continued with the new accelerating equation until the specified
final time ¢y = 1.0 second. The complete computations are cbtained using the
swingmeu function as follows

Pm = 0.80; E=1.17; V 1.0

X1 = 0.65; X2 = 1.80; X3 = 0.8;

H=5; f=60; t¢c =0.3; tf = 1.0; Dt = 0.01;
swingmeu{Puw, E, V, X1, X2, X3, H, f, tc, tf, Dt)

The time interval and the corresponding power angle § in degrees and the speed
deviation Aw in rad/sec are displayed in a tabular form. The swing plot is displayed

as shown in Figure 11.27.
The swing curve shows that the power angle returns after a maximum swing
indicating that with inclusion of system damping, the oscilfations will subside and
a new operating angle is attained. Hence, the system is found to be stable for this
fault clearing time. The critical clearing time is determined by the program to be

Critical clearing time
Critical clearing angle

= (.4 second
98.83 degrees

(b) The above program is run for a clearing time of £, = 0.4 second and £, = 0.5
second with the resuits shown in Figure 11.28. The swing curve for ¢, = 0.4
second corresponds to the critical clearing time. The swing curve for ¢, = 0.5

E
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One-machine system swing curve. Fault cleared at 0.3 sec
100 r

T
T

gob ..

8, 40
deg

OoF .

~2 02 0.4 0.6 0.5

t, sec

o
—
=

FIGURE 11.27 :
Swing curve for machine of Example 11.6. Fault cleared a1 0.3 sec.

One-machine system swing curve. Fault cleared at 0.4 sec and 0.5 sec

t. = 0.3 seq

200
5‘150
deg

00k

50

0 0.2 0.4 0.6 08 1.0

t, sec

FiGURE 11.28
Swing curves for machine of Example ! 1.6, for fault clearance at 0.4 sec and 0.5 sec.
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second shows that the power angle § is increasin
15 unstable for this clearing time,

.The’ swing curves for the machine in Problem [1.6 are obtained for faul¢
clearing times of t. = 0.3, t, = 0.4, and te = 0.3, with swingrk4 function, whick
uses the MATLAR oded5 function, We use the following statements. :

Pm = 0.80; E = 1.17; ¥ =
X1 0.65; X2 = 1.80; X3
tc = 0.3; tf = {;

swingrkd(Pm, E, V, X1, X2, X3, H, f, tc, tf)

g without limit. Hence, the system

1.0; H = 5.0;.f = 60;
=0.8;

]

tc = .5;
svingrk4(Pm, E, Vv, X1, x2, X3, H, £, tc, tf)
tec = .4;

swingrk4(Pm, E, V, X1, X2, X3, H, £, tc, tD)

The same numerical solutions are obtained and the swi

ncal ng curves are the same as
the ones shown in Figures 11.27 and 11.28.

{c} Using the state-space representation of the swing equation, given in (11.97), a
SIMULINK model named sim11ex6.mdl is constructed as shown in Figure 11.29,

Pn=038 A XS}

| N R AR PO
= = ~ 1RO/pi

t‘ a '—-' a p

Step Integl  Integ2 Rad o Scope

Degree

L

+~— 1.4625%sin(u)

Sum
| I Fault cleared
He— 91
During fault
Gre— 0.65*sin(u) |«

Set the Switch Threshold at the value of fault clearing time

FIGURE 11.29
Simulation block diagram for Example 11,6,

' The file is opened and is run in the SIMULINK WINDOW. Open the Switch
Dialog Box and change the Switch Threshold setting for different values of fault

clearing time. The simulation resuits in the same response as shown in Figure
11.27. |
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11.9 MULTIMACHINE SYSTEMS

Multimachine equations can be written similar to the one-machine system eon-
nected to the infinite bus. In order to reduce the complexity of the transient stabafity
analysis, similar simplifying assumptions are made as follows.

1. :Each synchronous machine is represented by a constani voltage source be-
hind the direct axis transient reactance. This representation neglects the ef-
fect of saliency and assumes constant flux linkages.

2. The govemeor’s actions are neglected and the input powers are assumed to
remain constant during the entire period of simulation.

3. Using the prefault bus voltages, all loads are converted to equivalent admit
tances to ground and are assumed (o remain constant.

4. Damping or asynchronous powers are ignored.

5. The mechanical rotor angle of each machine coincides with the angle of the
voltage behind the machine reactance,

6. Machines belonging to the same station swing logether and are said to be
coherent. A group of coherent machines is represented by one equivalent
machine.

The first step in the transient stability analysis is to solve the initial load flow
and to determine the initial bus voltage magnitudes and phase angles. The machine
currents prior to disturbance are calcutated from -

& B-jQ:
Iizw-l—‘:——'—*"-: JQI 1':':1,2,---
Vi v

1

,m (11,99

where m is the number of generators. V; is the terminal voltage of the ith gen-
erator, F; and Q; are the generator real and reactive powers. All unknown values
are determined from the initial power flow solution. The generator armatare resis-
tances are usually neglected and the voltages behind the transient reactances are
then obtained,

E=V;+iX3L; (11.100)
Next,.all loads are converted to equivalent admittances by using the relation

S _ B— 36 (11.101)

WEVET TP
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To include voltages behind transient reactances, m buses are added to the nbug |
power system network. The equivalent network with all loads converted to admit- ...

tances is shown in Figure 11.30,

n41

O nnttan

n+2 n-bus network

@ﬁl—’m— Loads are converted to

constant admittances

L+ m

FIGURE 11.30
Power system representation for transient stability analysis.

Nodes n+ 1,2+ 2,...,n + m are the internal machine buses, i.e., the buses
behind the transient reactances. The node voltage equation with node () as reference
for this network, as given by (6.2), is

F Y [ a0 Y, Yifen Vicnemy | [ W1 ]
1 2 Yin 17zm+1) Y?{n+m) Va
In = Ynl S Yrm Yn(n+1) Yn(n+m) Vn
A Yinsu: Yot | Ymenym+y Yinttinsm) ntl
L Tatm R L Y(n+m]l ,{n+mJn '{n+m)(n+l) e Y(n+m)(n+m] N E:Hm a
(11.102)
or
Yue's= ths Vbus

where Iy, is the vector of the injected bus currents and V,, is the vector of bus
voltages measured from the reference node. The diagonal elements of the bus ad-
mittance matrix are the sum of admittances connected to it, and the off-diagonal
elements are equal to the negative of the admittance between the nodes, This is

similar to the Ifybus used in the power flow analysis. The difference is that addi-

tional nodes are added to include the machine voltages behind transient reactances.
Also, diagonal elements are modified 1o include the load admittances.

{11.103)
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To simplify the analysis, all nodes other than the generator internal nodes are
eliminated using the Kron reduction formula. To eliminate the load buses, the bus
admittance matrix in (11.102) is partitioned such that the n buses to be removed are
represented in the upper n rows. Since no curent enters or leaves the load buses,
currents in the n rows are zero. The generator currents are denoted by the vector
I,,, and the generator and load voltages are represented by the vectors E';, and V,,
respectively, Then, Equation (11.102), in terms of submatrices, becomes

e R | g1
The voltage vector V,, may be eliminated by substitution as follows.
0=Y,,Vy+ Y E'p (11.105)
1.=%¥ VeodYowbs (11.106)
from (11.1085),
V,, =-Yar ' ¥pmBEm (11.107)
Now substituting into (11.106), we have
Lo ={Ymm =Y} Yo ' Yom]Em
=Yg, (15.108)
The reduced admittance mateix is
Y5 = Youm = Y Yo Yom (11.109)

The reduced bus admittance matrix has the dimensions {m x m), where m is the
number of generators,

" The electrical power output of each machine can now be expressed in terms
of the machine’s internal voltages,

S;i —_ g:.{;
or
P =R[ETL} (11.110)
whcre_
m
L= ZE.;K? (11.111)
i=1
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Expressing voltéges and admittances in polar form, i.e., Ef = |E}|/; and Y} =
|¥;;144,;. and substituting for I; in (11.110), results in
Poi = Y _ |EE}|Yisl cos(8y; — 8 + 85)
=t

(11.112)

The above equation is the same as the power flow equation given by. (6.52). Prior
to disturbance, there is equilibrium between the mechanical power input and the
electrical power output, and we have
TR i
Pri = S |EIE}Yis} cos(8y; — & + 55)

(11.113) =
i=l g1

11.10 MULTIMACHINE
TRANSIENT STABILITY

The classical transient stability study is based on the application of a mree-pt.!as-e
fault. A solid three-phase fault at bus k in the network results in Vi, = 0. This is
simulated by removing the kth row and column from the prefault bus admittance
matrix, The new bus admittance matrix is reduced by eliminating all nodes except .
the intemal generator nodes, The generator excitation volmge§ during the fault afad
postfault modes are assumed to remain constant. The elec%ncui power .Of the ith :
generator in terms of the new reduced bus admittance matnces are obtained from .
(11.112). The swing equation with damping neglected, as given by (11.21), for
machine ¢ becomes

H; d%;
ITTfU di?

= Pmi - i |E:HE‘;H}’;JICOS(3U - 6:‘ + 53)

(1114 5
j:l 5

where Y;; are the elements of the faulted reduced bus admittance matrix, and H; is
the inertia constant of machine i expressed on the common MVA base Sp. If Hg:

is the inertia constant of machine ¢ expressed on the machine rated MVA Sg,. then -W
H; is given by

H; = {11.115)?=-E;

Sci
He
SB Gl
T—

Showing the electrical power of the ith generator by P and transforming 2223
{11.114) into state variable model yields _——

.,m (11.116)

o
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We have two state equations for each generator, with initial power angles &y, and
Awg, = 0. The MATLAR function ode23 is employed to solve the above 2m first-
order differential equations. When the fault is cleared, which may involve the re-
moval of the faulty line, the bus admittance matrix is recomputed to reflect the
change in the network. Next, the postfault reduced bus admirtance matrix is evalu-
ated and the postfault electrical power of the ith generator shown by PP !is readily
determined from (11.112). Using the postfault power Pf‘f. the simulation is con-
tinued to determine the system stability, until the plots reveal a definite trend as
1o stability or instability. Usuiilly the slack generator is selected as the reference,
and the phase angle difference of all other generators with respect to the reference
machine are plotted. Usually, the solution is cammied out for two swings to show that
the second swing is not greater than the first one. If the angle differences do not
increase, the system is stable. If any of the angle differences increase indefinitely,
the system is unstable.

Based on the above procedure, a program named trstab s developed for tran-
sient stability analysis of a multimachine network subjected to a balanced three-
phase fault. The program trstab must be preceded by the power flow program. Any
of the power flow programs Ifgauss, Ifnewton, or decouple can be used. In addition
to the power flow data, generator data must be specified in a matrix named gen-
data, The first column contains the generator bus number terminal. Columns 2 and
3 contain resistance and transient reactance in per unit on the specified common
MVA base, and the last column contain the machine inertia constant in seconds,
expressed on the common MVA base. The program trstab automatically adds ad-
ditional buses to include the generator impedances in the power flow line data.
Also, the bus admittance matrix is modified to include the load admittances ¥load,
returned by the power flow program. The program prompis the user to enter the
faulted bus number, fault clearing time, and the line numbers of the removed faulty
line. The program displays the prefault, faulted, and postfauit reduced bus admit-
tance matrices. The machine phase angles are tabulated and a plot of the swing
curves is obtained. The program inquires for other fault clearing times and fault
locations. The use of trstab program is demonstrated in the following example.

Example 11.7

The power system network of an electric utility company is shown in Figure 11.31.
The load data and voltage magnitude, generation schedule, and the reactive power
limits for the regulated buses are tabulated on the next page. Bus 1, whose voltage
is specified as Vj = 1.06£0°, is taken as the slack bus. The line data containing the
series resistance and reactance in per unit, and one-half of the total capacitance in
per unif susceptance on a 100-MVA base is also tabulated as shown.
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o 3

FIGURE 11.31
One-line diagram for Problem 1.7,

LOAD DATA

Load
Mvar

O L P el b —

70
30
110

GENERATION SCHEDULE

Bus Voltage
No. Mag

Mvar Limits

! 1.06
2 1.04
3 1.03

LINE DATA

Rv
PU

X,
PU

IB.
PU

th Ja Oh LK B

[’M&rﬂm..—-n—-.o—-
oo

0.035
0.025
0.040
0.000
0.000
0.028
0.026

0.225
0.105
0.215
0.035

0.042

0.125
0.175

0.0063
0.0045
0.0055
0.0000
0.0060
0.0035
0.0300

The generator's armature resistances and transient reactances in per unit, and the &
inertiu constants in seconds cxpressed on a 100-MVA base are given below:
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MACHINE DATA

Gen. R, X, H
I 0 020 30
2 0 015 4
3.0 025 5

A three-phase fault occurs on line 5-6 near bus 6, and is cieered by the simultane-
ous opening of breakers at both ends of the line. Using the trstab program, perform
a transient stability analysis. Determine the System grzhilin “or

(a) When the fault is cleared in 0.4 second ’

(b} When the fault is cleared in 0.5 second

(c) Repeat the simulation to determine the critical Clearing ~=—a.

The required data and commands are as follows:

basemva = 100; accuracy = 0.0001; rmaxieer = --

'f. Bus Bus Voltage Angle --Load-- --Genesator—- Injected
% No code Mag. degree MW Mvar My Myar J=in Qmax Mvar
busdata=[1 1 1.06 0 0 0 c - ) 0 0
2 2 1.04 4] 0 0 1sg = o] 140 0
3 2 1.03 0 0 C 1o 9 S0 o0
4 0 1.0 0 100 7o o - 4 0 0
5 0 1.0 0] 90 30 0 5 ! 0 0
6 0 1.0 0 160 110 o ] 0 0];
% Line data
% Bus bus R X i/g : #z- line code or
A nl  nr Pu pu pu za; setting value
linedata=[1 4 0.0356 0.225 0.006s L
1 5 0.025 0.105 0.00s% L8
1 6 0.040 0.215 ©.Qps3- 1.0
2 4 0.000 0.035 0.0000 1.0
3 5 {.000 0.042 0.0o0n 2.0
4 6 0.028 0.125 0.0p03s 1.0
5 6 0.026 0.175 0.0309 1.0]:
1fybus % form the bus admittance =matr:gx for power flow
linewton % Power flow solution by ¥ewcsn-Raphson method
busout % Prints the power flow golpsien on the screen
% Generator data
% Gen. Ra Xa* H
_ gendata=[ 1 0 0.20 20
2 0 0.15 4
- 3 ¢ 0.25 53;
trstab 4 Performs the stability analysis.

% User is prompted to enter the clearizg time of fault,
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The power flow result is

Power Flow

Maximum Power Mismatch = 1.80187e-007
No. of Iterations = 4

Bus Voltage Angle ----- Load-~--- ---Generation--- Injected
No. HMag. degree MW Mvar MW Mvar Mvar

1 1.060 G.000 0.000 0.00 105,287 107.335 0.00'
2 1.040 1.470 0.000 0.00 150.000 99.771 0.00
3  1.030 0.800 0.000 0.00 100.000 35.670C 0.00
4 1.008 -1.401 100.000 70.00 0.000 0.000 0.00
5 1.016 -1.499 90.000 30.00 - 0.000 0.000 0.00
6 0.941 -5.607 160.00¢ 110.00 ¢.600  (.000 0.00
Total 350.000 210.00 355.287 242.776 0.00

The trstab result is

Reduced prefault bus admittance matrix

Ybf =
0.3517 - 2.8875i
0.2542 + 1.1491i
0.1925 + 0.9856i

G(1) Es (i} d40(i) Pm(i)
1 1.2781 8.0421 1.0529
2 1.2035 11.8260 1.5000
3 1.1427 13.0644 1.0000

Enter faulted bus No. -> 6§

Reduced faulteq bus admittance matrix

Ypf =
0.1913 - 3.5849i
0.0605 + 0.36441
0.05623 + 0.48213

Fault is cleared by opening a line.

0.2542 + 1:14911i
0.5435 - 2.8639%
0.1847 + 0.6904i

Sclution by Newton-Raphson Method

0.0605 + 0.3644i
0.3105 - 3.7467i
0.0173 + 0.1243i

7 The bus to bus numbers of '
line to be removed must be entered within brackets, e.g. [5,7]
Enter the bus to bus Nos. of line to be removed -> [5, 6]

0.1925 + 0.98561
0.1847 + 0.6904i
0.2617 - 2.28361

0.0523 + 0.4821i
0.0173 + 0,12431
0.1427 ~ 2.6463i

~100
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Reduced postfault bus admittance matrix

Yaf =
0.3392 - 2.8879i
0.2622 + 1.11273
0.1637 + 1.0251i

0.2622 + 1.11271
0.6020 -~ 2.7813i
0.1267 + 0.5401i

0.1637 + 1.0251i
0.1267 + 0.54011
0.28509 - 2.06441

Enter €learing time of fault in sec. t¢ =

0.4
Enter final simulation time in sec. tf 1.5

The phase angle differences of each machine with respect to the slack bus are
printed in a tabufar form on the screen, which is not presented here. The program
also obtains a plot of the swing curves which is presented in Figure 11.32.

Phase angle difference (fault cleared at 0.4 sec)
150 T ; . T

100

1

1.0

0.75 125 150

i, sec

0.50

FIGURE 11.32
Plots of angle differznces for machines 2 and 3 of Example 11.7.

Again the tabulated result is printed on the screen, and plots of the swing curves
are obtained as shown in Figure 11.33. Figure 11.32 shows that the phase angle
differences, after reaching a maximum of d9; = 123.9° and &3, = 62.95° will
decrease, and the machines swing together. Hence, the system is found to be stable
when fault is cleared in 0.4 second.

The program inquires for another fanlt clearing time, and the results continue
as follows: '
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Another clearing time of fault?

Enter 'y’ or ’'m’ within quotes -> 'y
Enter clearing time of fault in sec. tc = 0,
Enter fipal simulation time in sec. tf = 1.

5
S

The swing curves shown in Figure 11.33 show that machine 2 phase angle °

increases without limit. Thus, the system is unstable when fault is cleared in 0.5

second. The simulation is repeated for a clearing time of 0.45 second, which is -

found to be critically stable.

Phase angle difference (fault cleared at 0.5 sec)
140{) T T

1000 : : . Sl

deg : : : :
60{)_ .......... s Ve :

025 050 075 10
L, sec

FIGURE 1133 :
Pots of angle differences for machines 2 and 3 of Example 11.7.

PROBLEMS

11.1. A four-pole, 60-Hz synchronous generator has a rating of 200 MVA, 0.3
power factor lagging. The moment of inertia of the rotor is 45,100 kg-m2.
Determine M and H.

11.2. A two-pole, 60-Hz synchronous generator has a rating of 250 MVA, 0.

power factor lagging. The kinetic energy of the machine at synchronous

speed is 1080 MI. The machine is running steadily at synchronous speed
and delivering 60 MW to a load at a power angle of 8 electrical degrees. The

load is suddenly removed. Determine the acceleration of the rotor. If the ac- |
celeration computed for the generator is constant for a period of 12 cycles,

determine the value of the power angle and the rpm at the end of this time.
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11.2. Determine the kinetic energy stored by a 250-MVA, 60-Hz, two-pole syn-
chronous generator with an inertia constant H of 5.4 MJ/MVA. Assume
the machine is running steadily at synchronous speed with a shaft input of
331,100 hp The electrical power developed suddenly changes from its not-
mal value to a value of 200 MW. Determine the acceleration or deceleration
of the rotor. If the acceleration computed for the generator is constant for a
period of 9 cycles, determine the change in the power angle in that period
and the rpm at the end of 9 cycles.

11.4. The swing equations of two interconnected synchronous machines are writ-
ten as

H, d%6§,
Tr_fhthzpml_Pd

H; d25,
—=~—== Fns - FPey
‘ﬂ'fo dt2

Denote the relative power angle between the two machines by ¢ = §; — ;.
Obtain a swing equation equivalent to that of a single machine in terms of 8,
and show that

Has L
afodt2 ™ F
where
_ HiH,
B Hi+ H»
P HyPpy — Hi Py
m H1+H2
rlll 7 i
// P = HyPo — Hi Py
Hi+ H,

11.5. Two synchronous generators represented by a constant voltage behind tran-
sient reactance are connected by a pure reactance X = (1.3 per unit, as shown
in Figure 11.34. The generator inertia constants are H; = 4.0 MI/MVA and
Hy = 6 MI/MVA, and the transient reactances are X; = 0.16 and X} =
0.20 per unit. The system is operating in the steady state with £ = 1.2,
Py = 1.5 and E} = 1.1, Py = 1.0 per unit. Denote the relative power
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[E1]£6,

FIGURE 11.M
System of Problem [1.5.

1L6.

O—3

X}=0.2

FIGURE 11.35
Systemn of Problem 11.6.

Ll STABILITY
V=11 y_g449 V=10
} Y i
C) X{=0.16 x3=020(_ ) IEaltdy
H1 H‘2

angle between the two machines by § = 6, — 6. Referring to Problem -
11.4, reduce the two-machine system to an equivalent one-machine against
an infinite bus. Find the inertia constant of the equivalent machine, the me-
chanical input power, and the amplitude of its power angle curve, and obtain
the equivalent swing equation in terms of §,

A 60-Hz synchronous generator has a transient reactance of 0.2 per unit and
an inertia constant of 5.66 MI/MVA. The generator is connected to an infinite
bus through a transformer and a double circuit transmission line, as shown -
in Figure 11.35. Resistances are neglected and reactances are expressed ona &
common MVA base and are marked on the diagram. The generator is deliv-
ering a real power of 0.77 per unit to bus bar 1. Voltage magnitude at bus 1 is
1.1. The infinite bus voltage V = 1.0£0° per unit. Determine the generator
excitation voltage and obtain the swing equation as given by (11.36).

2
vV =1.0£0
()

1
X,=0.158 X1, =08

E
|V1|:11
X2=0.8

I1.7. A three-phase fault occurs on the system of Problem 11.6 at the sending end —= :
of the transmission lines. The fault occurs through an impedance of 0.082 per T
unit. Assume the generator excitation voltage remains constant at ' = 1,25 ~

per unit. Obtain the swing equation during the fault.
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11.8. The power-angle equation for a salient-pole generator is given by
B, = Paxsiné + Py sin2§

Consider a small deviation in power angle from the initial operating point &g,
i.e., 4 = §+68. Obtain an expression for the synchronizing power coefficient,
similar to (11.39), Also, find the linearized swing equation in terms of Ad.

11.9. Consider the displacement z for a unit mass supported by a nonlinear spring

as shown in Figure 11.36. The equation of motion is described by

FIGURE 11.36
System of Problem 11.9.

— f{t)

d?z(t) dz(t)
G dt

where M s the mass, B is the frictional coefficient and K is the spring
constant. The system is at the steady state z{0) = 0 for f(0) = 0. A small

perturbation f(t) = f(0) + A £(2) results in the displacement z{t) = z(0)+
Az(t).

M + Ksinz(t) = f(t)

(a) Obtain a linearized expression for the motion of the system in terms of
the system parameters, Az (t) and Af(t).

(b) For M = 1.6, B = 9.6, and K = 40, find the damping ratio { and the
damped frequency of oscillation w,.

11.10. The machine in’the power system of Problem 11.6 has a per unit damping
coefficient of D = 0.15. The generator excitation voltage is E' = 1.25
/ per unit and the generator is delivering a real power of 0.77 per unit to the
infinite bus at a voltage of V = 1.0 per unit. Write the linearized swing
equation for this power system. Use (1] 61) and (11.62) to find the equations
describing the motion of the rotor angle and the generator frequency for a

small disturbance of Ad = 15°. Use MATLAB to obtain the plots of rotor
angle and frequency.

-

11.Y1. Write the linearized swing equation of Problem 11.10 in state variable form.
Use [y, z] =initial(4, B, C, D, zg, t) and plot commands to obtain the zero-
input response for the initial conditions Ad = 15°, and Aw, = 0.
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11,12, The generator of Problem 11.10 is operating in the steady state at 6y =
27.835° when the input power is increased by a small amount AP = 0.15
per unit. The generator excitation and the infinite bus voltage are the same as
before. Use {11.75) and (11.76) to find the equations describing the motion .
of the rotor angle and the generator frequency for a small disturbance of -

AP = 0.15 per unit. Use MATLAB to obtain the plots of rotor angle and -
frequency.

11.13. Write the linearized swing equation of Problem 11,10 in state variable form. -
Use [y, z] = step(4, B,C, D, 1,t) and plot commands to obtain the zero-

state response when the input power is increased by a small amount AP =
0.15 per unit.

11.14. The machine of Problem 11.6 is delivering a real power input of 0.77 per
unit o the infinite bus at a voltage of 1.0 per unit. The generator excitation
voltage is E' = 1.25 per unit. Use eacpower(F,,,, E, V, X) to find
(a) The maximum power mpul that can be added without loss of synchro-
nism.

(b) Repeat (a) with zero initial power input. Assume the generator internal
voltage remains constant at the value computed in (a).

11.15. The machine of Problem 11.6 is delivering a real power input of 0.77 per
unit {o the infinite bus at a voltage of 1.0 per unit, The generator excitation
voltage is E' = 1.25 per unit.

(a) A temporary three-phase fault occurs at the sending end of one of the
transmission lines. When the fault is cleared, both lines are intact. Using
equal area criterion, determine the critical clearing angle and the critical fault
clearing time. Use eacfault(P,,,, F, V, X;, X, X3) to check the result and to
display the power-angle plot.

{b) A three-phase fault occurs at the middle of one of the lines, the fault is
cleared, and the faulted line is isolated. Determine the critical clearing angle.
Use eacfauit( Py, E, V, X, X5, X3) to check the results and to display the
power-angle plot.

11.16. The machine of Problem 11.6 is delivering a real power input of 0.77 per
unit to the infinite bus at a voltage of 1.0 per unit. The generator excitation
voltage is E = 1.25 per unit. A three-phase fault at the middle of one line
is cleared by isolating the faulted circuit simuitaneously at both ends.

(a) The fault is cleared in 0.2 second. Obiain the numerical solution of the 3
swing equation for 1.5 seconds. Select one of the functions swingmew, swmgrkz
or swingrk4.

(b) Repeat the simulation and obtain the swing plots when fault is cleared in
0.4 second, and for the critical clearing time,
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11.17. Consider the power system network of Example 11.7 with the described
operating condition. A three-phase fault occurs on line 1-5 near bus 5 and
is cleared by the simultaneous opening of breakers at both ends of the line.
Using the trstab program, perform a transient stability analysis. Determine
the system stability for
(a) When the fault is cleared in 0.2 second
/(b) When the fault is cleared in 0.4 second

“(c) Repeat the simulation 1o determine the critical clearing time.

11.18. The power system network of an electric company is shown in Figure 11.37.
The load data is as foliows.

:1_3 10:

1 ’ ki
OBH—s= b
i }
FIGURE 11.37
System of Problem 11.13.
. LOAD DATA
Bus Load Bus Load
No. MW Mvar || Noo MW Mvar

1 00 001 7 00 00
/ 2 00 00 8 1100 900
- 3 1500 1200 9 800 500
4 00 00 10 00 00
5 1200 60074 11 00 00

6 1400 900

Goltage magnitude, generation schedule, and the reactive power limits for
the regulated buses are tabulated below. Bus I, whose voltage is specified as
Vi = 1.0420°, is taken as the slack bus.

Tl o
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GENERATION SCHEDULE
Bus Voltage Generation, Myvar Limits
No. Mag. MW Min. Max.
| 1.040
10 1.035 200.0 0.0 1800
11 1.030 160.0 0.0 1200

The line data containing the per unit series impedance, and one-half of the

shunt capacitive susceptance on a 100-MVA base is tabulated below.

LINE AND TRANSFORMER DATA
Bus Bus R, X, %B.
No. No. PU PU PU

1 2 0.000 0006 0.000

2 3 0008 0.030 0.004

2 5 0.004 0.015 0.002

2 6 0012 0045 00035

3 4  0.010 0.040 0.005

3 6 0004 0040 0.005

4 6 0015 0.060 0.008

4 9 0018 0.070 0.009

4 10 0.000 0.008 0.000

5 7 0005 0.043 0.003

6 g8 0006 0048 0.000

7 8 0006 0.035 0.004 |

7 i1 0000 0.010 0.000

8 g 0005 0.048 0.000

The generator’s armature resistance and transient reactances in per unit, and’

the inertia constants expressed on a 100-MVA base are given below,

MACHINE DATA
Gen. R, X; H

1 0 0620 12

i0 0 015 10
11 0 025 9

A three-phase fault occurs on line 4-9, near bus 4, and is cleared by the -
simultaneous opening of breakers at both ends of the line. Using the trstab
program, perform a transient stability analysis. Determine the stability for
(a) When the fault is cleared in 0.4 second '

(b) When the fault is cleared in 0.8 second

{(c) Repeat the simulation to determine the critical clearing time.

CHAPTER

12

POWER SYSTEM CONTROL

12.1 INTRODUCTION

So far, this text has concentrated on the problems of establishing a normal operating
state and optimum scheduling of generation for a power system. This chapter deals
with the control of active and reactive power in order to keep the system in the
steady-state. In addition, simple models of the essential components used in the
control systems are presented. The objective of the control strategy is to generate
and deliver power in an interconnected system as economically and reliably as
possible while maintaining the voltage and frequency within permissible limits.

Changes in real power affect mainly the system frequency, while reactive
power is less sensitive to changes in frequency and is mainly dependent on changes
in voltage magnitude. Thus, reai and reactive powers are controlled separately.
The foad frequency control (LFC) loop controls the real power and frequency and
the“automatic voltage regulator (AVR) loop regulates the reactive power and volt-
age magnitude. Load frequency control (LFC) has gained in importance with the
growth of interconnected systems and has made the operation of interconnected
systems possible. Today, it is stili the basis of many advanced concepts for the
control of large systems.

The methods developed for control of individual generators, and eventually
control of large interconnections, play a vital role in modem energy conirol cen-
ters. Modem energy control centers (ECC) are equipped with on-line computers

T
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performing all signal processing through the remote acquisition systems known as
supervisory control and data acquisition (SCADA) systems. Only an introduction
to power system control is presented here. This chapter utilizes some of the con-
cepts of feedback control systems. Some students may not be fully versed in feed-
back theory. Therefore, a brief review of the fundamentals of linear controt systems
analysis and design is included in Appendix B. The use of MATLAR CONTROL
TOOLBOX functions and some useful custom-made functions are also described
in this appendix. '

The role of automatic generation controf (AGC) in power system operation, :

with reference to tie-line power control under normal operating conditions, is first

analyzed. Typical responses to real power demand are iflustrated using the latest == 1
simulation technique available by the MATLAB SIMULINK package. Finally, the
requirement of reactive power and voltage regulation and the influence on stability =+
of both speed and excitation controls, with use of suitable feedback signals, are I

examined.

12.2 BASIC GENERATOR CONTROL L.OOPS

In an interconnected power system, load frequency control (LFC) and automatic

voltage regulator (AVR) equipment are installed for each generator. Figure 12.1
represents the schematic diagram of the load frequency control (LFC) loop and

the automatic voltage regulator (AVR) loop. The controllers are set for a particular
operating condition and take care of small changes in load demand to maintain the -

frequency and voltage magnitude within the specified limits. Small changes in real
power are mainly dependent on changes in rotor angle & and, thus, the frequency.
The reactive power is mainly dependent on the voltage magnitude (i.e., on the
generator excitation). The excitation system time constant is much smaller than
the prime mover time constant and its transient decay much faster and does not
affect the LFC dynamic. Thus, the cross-coupling between the LFC loop and the
AVR loop is negligible, and-the load frequency and excitation voltage control are
analyzed independently. -
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The operation objectives of the LFC are to maintain reasonably uniform frequency, .
to divide the load between generators, and to control the tie-line interchange sched-
ules. The change in frequency and tie-line real power are sensed, which is a mea- :
sure of the change in rotor angle 4, i.e., the emmor Ad to be corrected. The error

signal. i.e., A f and A Py, are amplified, mixed, and transformed into a real power .
command signal A Py, which is sent to the prime mover to call for an increment in

the torque.
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Excitation . {Automztic voltage
system !mgulm (AVR)

FY
Gen. field | Voltage sensor

Y

e . ﬂ i —y
——1 X Turbine I G ;

Y
" ‘AP, AQe
Valve control APy :
mechanism
AFe | Load frequency Frequency
controf (LFCY ™ SEensor -
FIGURE 12.1

Schematic diagram of LFC and AVR of a synchronous penerator

The prime mover, therefore, brings change in the generator output by an
amount AP, which will change the values of A f and A 5, within the specified
lojerance. :

The fiest step in the analysis and design of a coauri system is mathematical
modeling of the system. The two most common methods are the transfer function
method ang the state variable approach. The state variable approach can be applied
to portray linear as well as nonlinear systems. In order w ase the transfer function
and linear state equations, the system must first be linearized. Proper assumptions
and approximations are made to linearize the mathemarical equations describing
the system, and a transfer function model is obtained for the following components.

i

12.3.1 GENERATOR MODEL

Applying the swing equation of a synchronous mackine given by (11.21) to small
perturbation, we have

2H 6

= ~ AP 12.1




530 12 POWER SYSTEM CONTROL

or in terms of small deviation in speed

b

L (ap,

3 3H —AF) (12.2)

With speed expressed in per unit, without explicit per unit notation, we have

A
408 L AB, = A

dt  2H (123

Taking Laplace transform of (12.3), we obtain

AQ(s) = Q—;E[APm(s] — AP,(s)] (124

inieihinlii Lhoede

The above relation is shown in block diagram form in Figure 12.2.

APL(s) -

—— AfQ(s)

L
-
-l
=

AP.(s)

FIGURE 12.2
Generator block diagram,

12.3.2 LOAD MODEL

The load on a power system consists of a variety of electrical devices, For resistive
loads, such as lighting and heating loads, the electrical power is independent of
frequency. Motor loads are sensitive to changes in frequency. How sensitive it is :
to frequency depends on the composite of the speed-load characteristics of all the
driven devices. The speed-load characteristic of a composite load is approximated
by

AP, = AP + DAw

whiere APy, is the nonfrequency-sensitive load change, and DAw is the frequency-
sensitive load change. D is expressed as percent change in load divided by percent =222
change in frequency. For example, if load is changed by 1.6 percent for a | percent ===
change in frequency, then D = 1.6, Including the Joad model in the genem{or§
block diagram, results in the block diagram of Figure 12.3. Eliminating the simplq_"ﬁ;
feedback loop in Figure 12.3, results in the block diagram shown in Figure 12.4.

12.3. LOAD FREQUENCY CONTROL 531

APL(s)
APu(s) 5375 AQs)
D "y
FIGURE 123 )
Generator and load block diagram,
APp(s)
APn(s) 2H:+T5 AQs)

FIGURE 12.4
Generator and load block diagram.

12,33 PRIME MOVER MODEL

The source of mechanical power, commonly known as the prime mover, may be
hydraulic turbines at waterfalls, steam turbines whose energy comes from the burn-
ing of coal, gas, nuclear fuel, and gas turbines. The mode! for the turbine relates
changes in mechanical power output AP, to changes in steam valve position
APy . Different types of turbines vary widely in characteristics. The simplest prime
mover model for the nonreheat steam turbine can be approximated with a single
time constant 77, resulting in the following transfer function

_APL(s) 1

GT(S)___ APy(s) 1+ 7ps

(12.6)

The block diagram for a simple turbine is shown in Figure 12.5.

APy(s) > 1+'lr;-s >~ A Pp(s)

FIGURE-12.5
Block diagram for a simple nonreheat steam turbine.

The time constant 77 is in the range of 0.2 to 2.0 seconds.
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1234 GOYERNOR MODEL

When the generator electrical load is suddenly increased, the electrical power ex-
ceeds the mechanical power input. This power deficiency is supplied by the kinetic
energy stored in the rotating system. The reduction in kinetic energy causes the tur-
bine speed and, consequently, the generator frequency (o fall. The change in speed
is sensed by the wrbine governor which acts to adjust the turbine input valve to
change the mechanical power output to bring the speed to a new steady-state. The
earliest governors were the Watt governors which sense the speed by means of ro-
tating flvballs and provides mechanical motion in response to speed changes. How-
‘ever, most modern governors use electronic means to sense speed changes. Figure
12.6 shows schematically the essentiat elements of a conventional Watt governor,
which consists of the following major parts.

To governor-
Lower controlled
1 vaives
#Raisc

I IITO close

Speed changer Too
P 8 T Hydraulic i

ampiifier

!

Speed

overnor ‘|

hedind

FIGURE 12.6
Speed governing system.

1. Speed Governor: The essential part are centrifugal flyballs driven directly or
through gearing by the turbine shaft. The mechanism provides upward and
downward vertical movements proportional to the change in speed.

- Linkage Mechanism: These are links for transforming the flyballs movement _
to the turbine valve through a hydraulic amplifier and providing a feedback .
from the turbine valve movement. '

3. Hydraulic Amplifier: Very large mechanical forces are needed to operate 'the 7
stecam valve, Therefore, the governor movements are transformed into high
power forces via several stages of hydraulic amplifiers. =

4. Speed Changer: The speed changer consists of a servomotor which can ber
operated manually or automatically for scheduling load at nominal frequency.

™,
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By adjusting this set point, a desired load dispatch can be scheduled at nom-
inal frequency.

For stable operation, the govemnors are designed to permit the speed to drop as the

load is increased. The steady-state characteristics of such a governor is shown in
Figure 12.7.

1.06 ¢

L Speed changer set to give

104 ~~o_wz=10at P =0.625pu

- Speed changer set to give

1.02 ~._w=10aP=10py

100 -

0.98

0.96

FIGURE 12.7
Governor steady-siate speed characlenstics,

The slope of the curve represents the speed regulation R. Governors typically
have a speed regulation of 5-6 percent from zero to full load. The speed governor
mechanism 4cts as a comparator whose output AP, is the difference between the

reference set power AP, ; and the power %Aw as given from the governor speed
characteristics, i.e.,

"1
APQ = AP,»ef = -‘é A (12?)

or in g-domain

X
AFg(s) = AP 4(s) — 5 AQ(s) (12.8)
The command AF, is transformed through the hydraulic amplifier to the steam
valve position command APy, Assuming a linear relationship and considering a
simple time constant 7,, we have the following s-domain relation

APy(s) = —:l-—;—APg[s) (12.9)
. g

1S
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AP,
AP q(s) e APy(s)
1/R f—— Auw(s)
FIGURE 12.3

Block diagram rcplrcscmalion of speed governing system for steam turbine.

Equations (12.8) and (12.9) are represented by the block diagram shown in Figure
12.8. Combining the block diagrams of Figures 12.4, 12.5, and 12.8 resuits in the
complete block diagram of the load frequency control of an isolated power statton
shown in Figure 12.9. Redrawing the block diagram of Figure 12.9 with the load

APL(s)
APr,_.;(s) AP, APy AP,
1 ! 1 | A0(s)
l+7gs [ 1+7rs 2Hs+ D
- Governor Turbine Rotating mass
and loa

g
R

FIGURE 12.9
Load frequency control block diagram of an isolated power system.

change —APr(s) as the input and the frequency deviation Af)(s) as the output
results in the block diagram shown in Figure 12.10. The open-loop transfer function
of the block diagram in Figure 12.10 is '

1 1
KGls)H(s) = R(2Hs + DY(1 + 7145)(1 + 7rs)

and the closed-loop transfer function relating the load change A Py, to the frequency :
deviation A} is '

AQ(s) {1+ 798)(1 + 7ps)
~APL(s) ~ (2Hs+ D)1+ 14s)(1 4 7rs} + 1/R

(12.10)

(12.11)

AQs) = —APL(S)T(s) 0212)
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Aw(s)

1
| 2Hs+D

4

1
R{l+7es)(i+7rs)

FIGURE 12.10
LFC block diagram with input A Py (s) and output AQ(s).

The load change is a step input, i.e., APy (s) = AP /s. Utilizing the final value
theorem, the steady-state value of Aw is

1
Awg, =i =(- _— .
w 11_1}6 sARs) = ( APL)D = (12.13)

i/R
It is clear that for the case with no frequency-sensitive load (i.e., with D = (), the

steady-state deviation in frequency is determined by the governor speed regulation,
and is

Awye = (-APL)R (12.14)
When several generators with governor speed regulations Ry, Ry, ..., R, are con-
nected to the system. the steady-state deviation in frequency is given by
1
Dwsy = (—APL) (12.15)

D+1/Ry+1/R2+---1/R,
Example 12.1

An isolated power station has the following parameters

Turbine time constant v = (.5 sec
Govemor time constant 7, = 0.2 sec
Generator inertia constant H = 5§ sec
Governor speed regulation = R per unit

The load varies by 0.8 percent for a I percent change in frequency, i.e., D = 0.8
(a) Use the Routh-Hurwit2 array (Appendix B.2.1) to find the range of R for control
system stability.

(b) Use MATLAR rlocus function to obtain the root focus plot.

{c) The govemor speed regulation of Example 12.1 is set to R = 0.05 per unit,
The turbine rated output is 250 MW at nominal frequency of 60 Hz. A sudden load
change of 50 MW (AP, = 0.2 per unit) occurs.
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(i) Find the steady-state frequency deviation in Hz.

(i) Use MATLAB to obtain the time-domain performance specifications and the ¥
frequency deviation step response.

(d) Construct the SIMULINK block diagram (see Appendix A.17) and obtain the
frequency deviation response for the condition in'part (c). -
Substituting the system parameters in the LFC block diagram of Figure 12.10 re- =
sults in the block diagram shown in Figure 12.11. The open-loop transfer function |

—BEREr A 1 Aw(s)
"1 10s+0.8 *
1
E(1+025(0+05s) [* :
FIGURE 12.11 g
LFC block diagram for Example 12.1. 3
is ]
. K
KG(H() = sy o8y + 02501 + 059) S
K ik

T g% 4+ 7.08s% + 10565 + 0.8

- L
where K = o

(2) The characteristic equation is given by

K 1
53+ 7.08s2 + 10.56s + 0.8

1+ KG(s)H{(s) = 1+

Akl

which results in the characteristic polynomial equation
s® +7.08s% + 10565 + 0.8 + K =0

The Routh-Hurwitz array for this polynomial is then (see Appendix B.2.1}

53 1 10.56

s2 1 7.08 08+ K
4 ?J.gfg;lf 0
P08+ K 0
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From the s' row, we see that for contral system stability, K must be less than
73.965. Also from the s° row, K must be greater than —0.8. Thus, with positive
values of K, for control system stability

K < 73.965

Since £ = % for control system stability, the governor speed regulation must be

1

R> 23565

or R > 0.0135

For K = 73.965, the auxiliary equation from the 5% row is
7.085% +74.765 =0

or s = £33.25. That is, for R = 0.0135, we have a pair of conjugate poles on the
jw axis, and the control system is marginally stable.

(b} To obtain the root-locus, we use the following commands.
num=1;
den = [1 7.08 10.56 .8];

figure{1}, rlocus(num, den)

The result is shown in Figure 12.12.

4 : ; E : !

FIGURE 12.12
Root-locus plot for Example 12.1.
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The loci intersect the jw axis at s = £33.25 for K’ = 73.965. Thus, the system is
marginally stable for B = ﬁﬁ = 0.0135.

{c) The closed-loop transfer function of the system shown in Figure 12.11 is

AQ(s) —T(s) = (14 0.25){1 + 0.5s)
—AP(s) (10s + 0.8){1 + 0.25)(1 + 0.55) + 1/.05
; _ 0152 4+07s+1
T $3 4 7.0852 4 10.565 + 20.8

(i) The steady-state frequency deviation due 1o a step input is _ oo

Awys = E%sﬁﬂ(s) = 5{—}3(—0‘2) = —0.0096 pu o
Thus, the steady-state frequency deviation in hertz due to the sudden application of ..
a 50-MW load is A f = {—0.0096)(60) = 0.576 Hz.

(ii} To obtain the step response and the time-domain performance specifications,
we use the following commands

PL = 0.2; numc = {0.1 0.7 1];

denc = [t 7.08 10.56 20.8];

t = 0:.02:10; ¢ = -PL*step(num, den, t};

figure(2), plot(t, c), xlabei(’t, sec’), ylabel(’pu’)

title(’Frequency deviation step response’), grid
timespec(num, den}

Frequency deviation step response

0

—-0.0025
-0.005

P —0.0075
-0.01
~0.0125
—0.015

0
t, sec

FIGURE 1213
Frequency deviation step response for Example 12.4.
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The ffequency deviation step response is shown in Figure 12.13, and the time-
domain performance specifications are

Peak time = 1,223
Rise time = 0.418
Settling time = 6.8

Percent overshoot = 54.80

(d) A SIMULINK model named sim12ex1.mdl is constructed as shown in Figure

12.14, :I‘hc file is opened and is run in the SIMULINK window. The simulation
results in the same response as shown in Figure 12.13.

To Workspace
1 =
APy Scope

a1 R Ll 1 2
. Tloda1 ’"lu.sa+1 10a+0.8 -

Sum!l Governor Turbine Sum Inertia, load

4\',

1
i

FIGURE 12.14
Simutation block diagram for Example 12.1.

Example 12,2

A single area consists of two generating units with the following characteristics.

Speed regulation R
Unit Rating  (pu on unit MVA base)
1 6060 MVA 6%
2 500 MvA 4%

The units are operating in parallel, sharing 900 MW at the nominal frequency. Unit
1 supplies 500 MW and unit 2 supplies 400 MW at 60 Hz. The load is increased
by 90 MW. -

(@) Assume there is no frequency-dependent load, i.e., D = 0. Find the steady-state
frequency deviation and the new generation on each unit.

{b) The load varies 1.5 percent for every 1 percent change in frequency, i.e., D =
1.5. Find the steady-state frequency deviation and the new generation on each unit.




First we express the governor speed regulation of each unit to a common MVA :

base. Select 1000 MVA for the apparent power base, then
1000

Ry = 600 ——(0.06) = 0.1 pu
1006
2= T ——(0.0%) = 0.08 pu
" The per unit load change is
90
AP = ——-=0.
L= Jo00 ~ 009 o
{2) From (12.15) with D = 0, the per unit steady-state frequency deviation is
—-AP —-0.09
Bugy = T—1 = 0. ~0.004 pu
TR 10+12 5
1

Thus, the steady-state frequency deviation in Hz is
Af = (—0.004){60) = —0.24 Hz
and the new frequency is
F=fot+ Af =60-024 =59.76 Hz
The change in generalio.n for each unit is -

Aw —0.004

= e m——— I — ; = .04
AP A 01 0 pu
=40 MW
Aw —0.004
= — = =0.05 pu
AR =-¢ 0.08 P
= 50 MW

Thus, unit 1 supplies 540 MW and unit 2 supplies 450 MW at the new operating :
frequency of 59.76 Hz.

MATLAR is used to plot the per unit speed characteristics of each governor as .
shown in Figure 12.15. As we can see from this figure, the initial generations are-
0.5 and 0.40 per unit at the nominal frequency of 1.0 per unit. With the addition of
0.09 per unit power speed drops to 0.996 per unit. The new generations are 0.54 .
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FIGURE 12.15
Load division berween the two units of Example 12.2

and (.45 per unit.

{b) For D = 1.5, the per unit steady-state frequency deviation is

~AP, 009

A = T T b T 0T I2s 515
R Y125+

-0.00375 pu

Thus, the steady-state frequency deviation in Hz is
Af = (-0.00375)(60) : —0.225 Hz
and the new frequency is
f=fot+ Af =60 — 0.225 = 59.775 Hz
The change in generation for each unit is

Aw —0.00375

= 37.500 MW
Aw —0.00375
APp= —— = m— = .
P=—% o5~ = 0046875 pu
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Thus, unit 1 supplies 537.5 MW and unit 2 supplies 446.875 MW at the new op-
erating frequency of 59.775 Hz. The total change in generation is 84.375, which is

5.625 MW less than the 90 MW load change, This is because of the change in load
due to frequency drop which is given by

AwD = (-0.00375)(1.5) = —0.005625 pu
= —5.625 MW

124 . AUTOMATIC GENERATION CONTROL

If the load on the system is increased, the turbine speed drops before the governor
can adjust the input of the steam to the new Ioad. As the change in the value of
speed diminishes, the error signal becomes smaller and the position of the gover-
nor flyballs gets closer to the point required to maintain a constant speed. However,
the constant speed will not be the set point, and there will be an offset, One way
to restore the speed or frequency to its nominal value is to add an integrator. The
integral unit monitors the average error over a period of time and will overcome
the offset. Because of its ability to return a system to its set point, integral action is
also known as the rest action. Thus, as the system load changes continuously, the
generation is adjusted automatically to restore the frequency 10 the nominal value.
This scheme is known as the antomatic generation control {AGC). In an intercon-
nected system consisting of several pools, the role of the AGC is to divide the loads
among system, stations, and generators so as to achieve maximum economy and
correctly control the scheduled interchanges of tie-line power while maintaining a
reasonably uniform frequency. Of course, we are implicitly assuming that the sys-
- -tem is stable, so the steady-state is achicvable. During large transient disturbances
and emergencies, AGC is bypassed and other emergency controls are applied. In
the following section, we consider the AGC in a single area system and in an inter-
connected power system.

1241 AGCIN A SINGLE AREA SYSTEM

With the primary LFC loop, a change in the system load will result in a steady-
state frequency deviation, depending on the governor speed regulation. In order

to reduce the frequency deviation to zero, we must provide a reset action. The

rest action can be achieved by introducing an integral controller to act on the load

reference seiting to change the speed set point. The integral controller increases |
the system type by 1 which forces the final frequency deviation to zero. The LFC ]

System, with the addition of the secondary loop, is shown in Figure 12.16. The
integral controller gain K must be adjusted for a satisfactory transient response.

Combining the parallel branches results in the equivalent block diagram shown in_
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AP (s)
AP (s} APy Ath
1 1 1 Aw(s)
- I+7,s 1 1+7rs 2Hs+D i
- Governor Turbine Rotating mass
and load
1
ﬁ *
KL
3
FIGURE 12.{6
AGC for an isolated power system.
- Figure 12.17.
—APL(s) ) Aw(s)

2 | 2Ha+D

[_ (EL'}'?I')(z-a-{r,s)(Hl )

Kl i TS

FIGURE 12.17 _
The equivalent block dingram of AGC for an isolated power system.

The closed-loop transfer function of the control system shown in Figure 12.17 with
only —A Py, as input becomes

AQ(s) s(1 4+ 745)(1 + 7ps) (12.16)
—~APy(s)  s(2Hs + DY(1 + 7,8)(1 + 775) +K;+s/R '
Example 12.3

The LFC system in Example 12.1 is equipped with the secondary integral control
{oop for automatic generation control,

{a) Use the MATLAB step function to obtain the frequency deviation step response
for a sudden load change of APy, = 0.2 per unit. Set the integral controller gain to
Kr="1

(b) Construct the SIMULINK block diagram and obtain the frequency deviation re-
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sponse for the condition in part (a). (b) A SIMULINK model named sim12ex3.mdl is constructed as shoyn in Figure
3 = 12.19. The file is opened and is vun in the SIMULINK window, Th simulation
() Substituting for the system parameters in (12.16), with speed regulation ad. s results in the same response as shown in Figure 12.18.

justed to R = 0.05 per unit, resuits in the following closed-loop transfer function 5

0.15* +0.7s% + 5

T =
(5) = +7.0853 + 10.565° 4 20.85 1 7

To find the step response, we use the following commands

PL = ¢,2;

KI = 7;

num = {¢.1 0.7 1 0);

den = [1  7.08 10.56 20.8 KIJ;
t =0:.02:12;

¢ = ~PL*step{num, den, t);

plot{t, ¢}, grid
xlabel(’'t, sec'), ylabel(’pu’)
title(’Frequency deviation step response’)

The step response is shown in Figure 12.18.

Frequency deviation step response
0.004 7 y T v r

—0.0
—0.004

pu
—-0.008 |

—0.012

~0.016§ - - ' - ;

FIGURE 12.18
Frequency deviation step response for Example 12.3.

From the step response, we observe that the steady-state frequency deviation Aw,,"
is zero, and the frequency retumns to its nominal value in approximately 10 seconds. -

To Workspacc
AP Au
e r——— e
= ’ 1 ! z el gl i o
. 0.2a4+1 05s+1 T 101+ 0.8 b
Suml Governor  Turbine S:;*a Inertia, load
1
R
7 I L
LY Integrator
FIGURE 12.19

Simulation biock diagram for Example 12.3.

1242 AGC IN THE MULTIAREA SYSTEM

In many cases, a group of generators are closely coupled internally and sWing in
unison. Furthermore, the generator turbines tend to have the same response char.
acteristics. Such a group of generators are said be coherent. Then it i possible 1o
let the LFC loop represent the whole system, which is referred to as a controf area.
The AGC of a multiarea system can be realized by studying first the AGC for a
two-area system. Consider two areas represented by an equivalent geterating ynit
interconnected by a lossless tie line with reactance X,;,. Each area is reprasented
by a voltage source behind an equivalent reactance as shown in Figure 12,20,

During normal operation, the real power transferred over the tie line is given
by

E\\Eqf |
Pyy = 22| ;!12 213”1612 (12.17)

where Xjp = X+ Xpe + X3, and 812 = §; - 6,. Equation (12.17) can be linearized
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Y LYY

Xy X2 Xa

() Ey 26,

FIGURE 12.20
Equivalent network for a two-area power system.

for a small deviation in the tie-line flow A Py from the nominal value, i.e.,

AP = =22 (12.18)

= P Adyp

The quantity P is the slope of the power angle curve at the initial operating angle
812, = &, ~ 63,. This was defined as the synchronizing power coefficient by
{11.39) in Section 11.4. Thus we have

_ 1Bl E,| cos

dPyy
= Ad 12,
X5 s A1, {12.19)

Py =
d612 312

The tie-line power deviation then takes on the form

APy = P,(AS) — ASy) (12.20)
The tie-line power flow appears as a load increase in one area and a load decrease
in the other area, depending on the direction of the flow. The direction of flow
is dictated by the phase angle difference; if Ad; > Ad,, the power flows from
area | to area 2. A block diagram representation for the two-area system with LEC
containing only the primary loop is shown in Figure 12.21.

Let us consider a load change APy in area I. In the steady-state, both areas

will have the same steady-state frequency deviation, ie.,
Aw = Awy = Aws
and

A.Pml - A.Plz - APL] = AwDI.
A‘pr.rﬂ + AP]Q = AL.LJDQ

(12.22)
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SO
By
AP (s)
AP,-,;;(S B AP'.f‘l APml _
1 1 1 AWI(SJ
14758 1+Trs 2H a+ I
Governor Turbine 17 Rotating mass
and load + 1
2Py [ F
N a
APropa(s) APyy APpy |4
Y 1 1 1 Dag(s)
N/ T+79 " Terras ;3% D; %
- Governer Turbine ~ Rotating mass
APya(s) and load
1
Ha

FIGURE 12.21
Twao-area systern with only prmary LFC toop.

The change in mechanical power is determined by the governor speed characteris-
tics, given by

By

(12.23)
1

—Aw

AP, = s

-Substituting from (12.23) into (12.22), and solving for Aw, we have

~ A B

T (gt D)+ (g + Do)
_ —APy

T B+ B2

Aw

(12.24)

where

(12.25)
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B, and B; are known as the frequency bias factors. The change in the tie-line
power is

(g +DoAPy
(7 + D)(g; + Da)

By
- AR,
B + Bg( 1)

APyp = (12.26)

Example 12.4

A two-area system connected by a tie line has the following parameters on a 1000-
MVA common base

Area 1 2

Speed regulation Ry, =0.05 R, = 0.0625
Frequency-sens. load coeff. Dy =0.6 D; =09
Inertia constant H =35 Hy=4
Base power 1000 MVA 1000 MVA
Governor time consiant To1 = 0.2 sec Tg2 = 0.3 sec
Turbine time constant rr1 = 0.5 sec T = 0.6 sec

The units are operating in parallel at the nominal frequency of 60 Hz. The syn-
chronizing power coefficient is computed from the initial operating condition and
is given 1o be P, = 2.0 per unit. A Joad change of 187.5 MW occurs inarea 1.

(a) Determine the new steady-state frequency and the change in the tie-line flow.
{b) Construct the SIMULINK block diagram and obtain the frequency deviation re-
sponse for the condition in part {a).

(a) The per unit load change in area 1 s

187.5
APpy = —— =0.1875 pu
“1 7 1000 E
The per unit steady-state frequency deviation is
Awe, AP —-0.1875 = —0.005 pu

TG AD) (D) (@0+06)+(16+09)
Thus, the steady-state frequency deviation in Hz is

Af = (-0.005)(60) = —0.3 Hz
and the new frequency is

f=fo+Af=60-03=59.7 Hz

12 4. AUTOMATIC GENERATION CONTROL, S4y

The change in mechanical power in each area is

Aw ~0.005

APm = = e — = (.10
'T TR, 0.05 pu
= 100 MW
Ry 0.0625

Thus, area 1 increases the generation by 100 MW and area 2 by 80 MW at the fiew
operating frequency of 59.7 Hz. The total change in generation is 180 MW, wy,
is '_!.5 MW less than the 187.5 MW load change because of the change in the ares
loads due to frequency drop.

The change in the area 1 load is AwD, = (-0.005)(0.6) = —0.003 ¢
unit {—3.0 MW), and the change in the area 2 load is AwD; = (—0.005)(0‘9)pc

=

—0.0045 per unit (—4.5 MW). Thus, the change in the total area load is —7.5 Mw.
The tie-line power flow is '

1
APp = Aw (—ﬁ- + D‘z) = —0.005{16.9) = 0.0845 pu
2
= —84.5 MW

That is, 84.5 MW flows from area 2 1o area 1. 80 MW comes from the incre

generation in area 2, and 4.5 MW comes from the reduction in area 2 load ¢
frequency drop. '

e o
(b) A SIMULINK model named sim12ex4,md! is constructed as shown in F; i
12.22, The file is opened and is mn in the SIMULINK window, The sirnu]ati';ﬂ
result is shown in Figure 12.23. The simulation diagram returns the vector P

containing't, Pry1, Pra, and Ppa. A plot of the per unit power response is Ob‘ain A
in MATLAB as shown in Figure 12.24, ¢

12.4.3 TIE-LINE BIAS CONTROL

In Example 12.4, where LFCs were equipped with only the primary control loo

a change of power in area 1 was met by the increase in generation in both a:eg
associated with a change in the tie-line power, and a reduction in frequency. In the
normal operating state, the power system is operated so that the demands of

are satisfied at the nominal frequency. A simple control strategy for the Mongal
mode is
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FIGURE 12.22
Simulation block diagram for Example 12.4,

Frequency deviation step response
0.0

~0.0025 ) --
—0.005 - -

pu  —.0075
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FIGURE 12.23 _
Frequency deviation step response for Example 12.4.
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Power deviation step response

0.30 !
0.25
Q.20
0.15
PO D10

0.05
0.0
-0.05
—0.10

o
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t, sec

FIGURE 12.24 _
Power deviation step response for Example 12.4.

¢ Keep frequency approximately at the nominal value (60 Hz).
e Maintain the tie-line flow at about schedule,
 Each area shouid absorb its own load changes,
Conventional LFC is based npon tie-line bias control, where each area tends to

reduce the area control error (ACE) to zero. The contro) error fo

r each area consis(s
of a linear comnbination of frequency and tie-fine.error, '

ACE, = Z:AP,-,- + K; Aw 1227
i=1

The area bias K; determines the amount of interaction during a disturbance in
the neighboring areas. An overal] satisfactory performance is achieved when K i 18

selected equal to the frequency bias factor of that area, ie., B; = % + D;. Thus,
the ACEs for a two-area system are
. ACEl = APIZ o Bl ﬁwl (1228)

ACE)y = APy + B; Auwy
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where A Py; and A Py, are departures from scheduled interchanges. ACEs are used

as actuating signals to activate changes in the reference power set points, and when
steady-state is reached, APy and Aw will be zero. The integrator gain constant
must be chosen small enough so as not to cause the area to go into a chase mode,
The block diagram of a simple AGC for a two-area system is shown in Figure
12.25. We can easily extend the tie-line bias control to an n-area system,

L
—1 ]

GPy ()

FIGURE 12.25
AGC block diagram for a two-area system.

Example 12.5

Construct the SIMULINK model for the two-area system of Example 12.4 with the
inclusion of the ACEs, and obtain the frequency and power response for each area.

A SIMULINK model named sim12ex5.md] is constructed as shown in Figure 12.26.

The file is opened and is run in the SIMULINK window. The integrator gain con-
stants are adjusted for a satisfactory response. The simulation result for K, = Zm=e
+ K12 = 0.3 is shown in Figure 12.27. The simulation diagram returns the vector el
AP, containing t, A Pr,1, APma, and APjy. A plot of the per unit power msmnse%
is obtained in MATLAB as shown in Figure 12.28. As we can see from Figure

12.27, the frequency deviation returns to zero with a settling time of approximately
20 seconds. Also, the tie-line power change reduces to zero, and the increase in =

area 1 load is met by the increase in generation A P,,,.
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FIGURE 12.26
Simulation block diagram for Example 12.5.

Frequency deviation step response

0.005 — " !

0.0

pu —0.005

—0.01

—0.015 i i : ;

FIGURE 12.27
Frequency deviation step response for Example 12.5.
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Power deviation step response
0.35 T T : :
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FIGURE 12.28
Power deviation siep response for Example 12.5.

125 AGC WITH OPTIMAL DISPATCH OF GENERATION

The factors influencing power generation at minimum cost are operating efficien-
cies, fuel cost, and transmission losses. The optimal dispatch of generation was
discussed in Chapter 7, and a program named dispatch was developed to find the
optimal dispatch of generation for an interconnected power system,

The optimal dispatch of generation may be treated within the framework of
LFC. In direct digital control systems, the digital computer is included in the con-
trol loop which scans the unit generation and tie-line flows. These settings are
compared with the optimal settings derived from the solution of the optimal dis-
patch program, such as dispatch program developed in Chapter 7. If the actual -
settings are off from the optimal values, the computer generates the raise/lower
pulses which are sent to the individual units. The allocation program will also take
into account the tie-line power contracts between the areas. R

With the development of modem control theory, several concepts are included ——==
in the AGC which go beyond the simple tie-line bias control. The fundamental 25552

approach is the use of more extended mathematical models. In retrospect. the AGC _i:‘ﬂ;_—;;

can be used to include the representation of the dynamics of the area, or even of =
the complete system, =
Other concepts of the modern control theory are being employed, such as 5
state estimation and optimal control with linear regulator utilizing constant feed- !m:’
back gains. In addition to the structures which aim at the control of deterministic E
-
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signals and disturbances, there are schemes which employ stochastic control con-
cepls, e.g., minimization of some expected value of an integral quadratic error cri-

terion. Usually, this results in the design of the Kalman filter, which is of value for
the control of small random disturbances,

12.6 REACTIVE POWER AND VOLTAGE CONTROL

The generator excitation system maintains generator voltage and controls the reac-
tive power flow. Thé generator excitation of older systems may be provided through
slip rings and brushes by means of dc generators mounted on the same shaft s the
rotor of the synchronous machine. However, modern excitation systems usually
use ac generators with rotating rectifiers, and are known as brushless excitation.

As we have seen, a change in the real power demand affects essentially the
frequency, whereas a change in the reactive power affects mainly the voltage mag-
nitude. The interaction between voltage and frequency controls is generally weak
enough to justify their analysis separately.

The sources of reactive power are generators, capacitors, and reactors. The
generator reaclive powers are controlied by field excitation. Other supplementary
methods of improving the voltage profile on electric transmission sysiems are
transformer load-tap changers, switched capacitors, step-voltage regulators, and
sta_lic var control equipment. The primary means of generator reactive power con-
trol is the generator excitation control using automatic voltage regulatyr (AVR), -

~ which 1s discussed in this chapter. The role of an (AVR) is to hold the terminal

voltage magnitude of a synchronous generator at a specified level. The schematic
diagram of a simplified AVR is shown in Figure 12.29.

An increase in the reactive power load of the generator is accompanied by a
drop in the terminal veltage magnitude. The voltage magnitude is sensed through a
potential transformer on one phase. This voltage is rectified and compared to a dc

_ set point signal. The amplified error signal controls the exciter field and increases

the exciter terminal voltage. Thus, the generator field current is increased, which
results in an increase in the generated emf. The reactive power generation is in-
creased to a new equilibrium, raising the terminal voltage to the desired value. We
will look briefly at the simplified models of the component involved in the AVR

system,

12.6.1 AMPLIFIER MODEL

The excitation system amplifier may be a magnetic amplifier, rotating amplifier, or
modem electronic amplifier. The amplifier is represented by a gain K 4 and a time
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FIGURE 12.29
A typical arrangement of a simple AVR.
constant 74, and the transfer function is
VR(S) _ h:‘l (12.29)

Ve(s) T 147148

Typical values of X 4 are in the range of 10 to 400. The amplifier time constant is :
very small, in the range of 0.02 to 0.1 second, and often is neglected.

12.6.2 EXCITER MODEL

There is a variety of different excitation types. However, modem excitation sys- 3
tems uses ac power source through solid-state rectifiers such as SCR. The output
voltage of the exciter is a nonlinear function of the field voltage because of the satu-
ration effects in the magnetic circuit. Thus, there is no simple relationship between
the terminal voltage and the field voliage of the exciter. Many models with various B

degrees of sophistication have been developed and are available in the IEEE rec- sammsm
ommendation publications. A reasonable model of a modem exciter is a linearized ===
model, which takes into account the major time constant and ignores the satura-—==
tion or other nonlinearities. In the simplest form, the transfer function of a modem“?“”"'-'

exciter may be represented by a single time constant 7z and a gain K, ie., o e

Ve(s) _ _Ki a3
Val) " 14789

The time constant of modern exciters are very small.
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12.6.3 GENERATOR MODEL

The synchronous machine generated emf is a function of the machine magneti-
zation curve, and its terminal voltage is dependent on the generator load. In the
linearized model, the transfer function relating the generator terminal voltage 1o
its field voltage can be represented by a gain K and a time constant T, and the
transfer function is

Vils) _  Ke
VF'(S) 1+ 7gs

These constants are load dependent, K¢ may vary between 0.7 to 1, and 1¢; be-
tween 1.0 and 2.0 seconds from full-load to no-lead.

(123h

12.6.4 SENSOR MODEL

The voltage is sensed through a potential transformer and, in one form, it is rectified

through a bridge rectifier. The sensor is modeted by a simple first order transfer
function, given by

Vs(s) _  Kg
Vg{S) 14+ 71ps
Tr 1s very small, and we may assume a range of 0.0] to 0.06 second. Utilizing the

above models results in the AVR block diagram shown in Figure 12.30.

T Vi (s) Kp Ve(s) e V;(S}Lr

(12.32)

r::‘,’(’-"

l+ras x I+7ps I+1ss

Vs{s} Amplifier Exciter Generator
Sensor
.5
1+rgs |

FIGURE 12.30 .
A simplified avtomatic voltage regulator block diagram.

The open-loop transfer function of the block diagram in Figure 12.30 is
' KaKgKcK
KG(s)H(s) = ABEAGHR

(12.33)

(1+7a8)(1 + 7E8)(1 + 1035)(1 + TRS)

and the closed-loop transfer function relating the generator terminal voltage Vi(s)
to the reference voltage Vi ¢(s) is

Vi(s) _ KAKEKGKR(]. +'1'Rs)
(1+748)(1 + 7£5)(1 + 765)(1 + TRS) + KaKsKcKr

- (12.34)
Vref (-5)
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or The open-loop transfer function of the AVR system shown in Figure 12.31 is

Ka
Vi(s) = T(s)Vres(s) (235 ROEHE) = 0151+ 045)(1 + 9)(1 +0.09)
; ; 300K 4
For a step input V,.;(s) = 1, using the final value theorem, the steady-state re- . =
sponse is : (s +10)(s + 2.55{3[ESK+ 1){s + 20)
A
K 5%+ 33.55% + 307.5s% + 775s + 500
V,,, = lim sVj(s) = —2 (12.36)
5—0 1+ K4

(a) The characteristic equation is given by
Example 12.6

900K 4
1+ KG(s)H(s) =1+ - =
The AVR system of a generator has the following parameters s* + 33.55% + 307.55% + 77555 + 500
Gain T which results in the characteristic polynomial equation
Amplifier I, TA=0.1 s* +33.55° + 307552 + 7755 + 500 + 500K 4 = 0
Exciter Kp=1 15=04

Generator Ko =1 710=140

The Routh-Hurwitz array for this polynomial is then (see Appendix B.2.1;
Sensor Kp=1 1=005

. , s 307.5 500 4 500K 4
(a) Use the Routh-Hurwitz array (Appendix B.2.1) to find the range of K4 for s3] 335 775 0
control system stability. 5% | 284.365 500+ 500K4 O
{b) Use MATLAB rlocus function to obtain the root locus piot, s! | 589K, -T716.1 © T
(c) The amplifier gain.is set to K4 = 10 5% | 500 + 500K 4

(1) Find the steady-state step response. ) -

(ii) Use MATLAB to obtain the step responsc i the-timé-domain perfor— From the s’ row we see that, for control system stability, K4 must be less than
mance specifications. 12.16, also from the s° row, K4 must be greater than —1. Thus, with positive
(d) Construct the SIMULINK block diagram and obtain the step response. values of Ky, for control system stability. the amplifier gain must be

Substituting the system parameters in the AVR block diagram of Figure 12.30 re- ; Ka <1216

sults in the block diagram shown in Figure 12.31. 3 For K = 12.16, the auxiliary equation from the s2 row is

Veer(8) /N Vels) [ VRIS T T\ VRS) [T | els) 284.365s% + 6580 = 0
1+0.1s 1 1+04s R ' T _
Vs(s) : ; or § = +74.81. That is, for K = 12.16, we have a pair of conjugate poles on the
2 Jjw axis, and the control system is marginally stable.
(b) To obtain the root-locus plot for the range of K from 0 to 12.16, we use the
4 « following commands.
170.05s
" num=500;

FIGURE 12.31 den=f1 33.5 307.5 775 ©500];
AVR block diagram for Example 12.6, figure(1l), rlocus(num, den);
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98 L e i , ........... ............

=25

50 :
290 ~15

FIGURE 1232
Roat-locus plot for Example 12.6.

.Thc result is shown in Figure 12.32. The loci intersect the jw axis at s = +374.81

for K 4 = 12.16. Thus, the sysiem is marginally stable for K4 = 12.16.
(c) The closed-loop transfer function of the system shown in Figure 12,31 is

Vs) 25K 4{s + 20)
Vies(s) ~ s%+ 33.55% + 307.552 + 7755 + 500 + 500K 4

(£} The steady-state response is
Ka
1+ K,

For the amplifier gain of K4 = 10, the steady-state response is

V,, = lirréslf';(s) =

10
Vi, = gqg = 0909

and the steady-state eror is
Ve,, = 1.0 - 0.902 = 0.091

In order to reduce the steady-state error, the amplifier gain must be increased, whlch
results in an unstable control system.

(i) To obtain the step response and the time-domain performance specnﬁcallons, _

we use the following commands
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KA= 10;

numc=KA*[25 500] ;

denc={1 33.5 307.5 775 500+ 500*KA]:
t=0:.05:20;

c=step(numc, denc, t);

figure(2), plot(t, ¢), grid
timespec(numc, denc)

The time-domain performance specifications are

Peak time = 0.791
Rise time = 0.247
Settling time = 19.04

Percent overshoot = 82.46

The terminal voltage step response is shown in Figure 12.33.

Terminal voltage step response

1.0}
(1 4:3 3 T R U 20K O 2 B e ¥
0.50

t, sec

FIGURE 12.33
Terininat voltage step response for Example 12.6. -

(d) A SIMULINK model named sim12ex6.mdl is constructed as shown in Figure
12.34. The file is opened and is run in the SIMULINK window. The simulation
results in the same response as shown in Figure 12.33. From the results, we see
that for an amplifier gain K 4 = 10, the response is highly oscillatory, with a very
large overshoot and a long settling time. Furthermore, the steady-state error is over
9 percent. We cannot have a small steady-state error and a satisfactory transient
response at the same time.
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L Example 12.7
_I_ AA_:E glr i s Cxro i I A rate feedback stabilizer is added to the AVR system of Example 12.6. The sia-
- bilizer 1 ti =0, d. and ivati s
Step Amplifier  Exciter Gen. (?t K’_:‘: 2‘“’3 constant is 77 = .04 second, and the derivative gain is adjusted to
] : (a) Obtain the step response and the time-domain performance Specifications.
Mux (b) Construct the SIMULINK model and obtain the step response,
1 =il | V; | (a) Substituting for the parameters in the block diagram of Figure 12.35 and apply-
B3+ 11 Sensor To workspace ing the Mason’s gain formula, we obtain the closed-loop transfer function
2
FIGURE 12.34 Vals) 250(s* + 455 + 500)

Simulation block diagram for Example 12.6.

Vies(s) ~ 85+ 58.5s% + 13,6453 + 270,962.552 -+ 274,8755 + 137, 500
(i) The steady-state response is

12.6.5 EXCITATION SYSTEM

(250)(500)
STABILIZER — RATE FEEDBACK

Vi” = 'l,‘l_lﬁ)s‘/g(b) = '——fm— = (.909
As we have seen in Example 12.6, even for an small amplifier gain of K4 = 10,
AVR step response is not satisfactory, and a value exceeding 12.16 results in an
unbounded response. Thus, we must increase the relative stability by introducing
a controller, which would add a zero to the AVR open-loop transfer function. One
way to do this is to add a rate feedback to the control sysiem as »hown in Figure

12.35. By proper adjustment of K r and 7, a satisfactory response can be obtained.

To find the step response, we use the following commands

numc=250*{1 45 500];

denc={1 58.5 13645 270962.5 274875 137500];
t=0:.05:10;

c=step{numc, denc, t); plot(t, c), grid
timespec{numc, denc)

Terminal voltage step response

Vres(s) N Velo) [ | VRO [ e | VR [ ] W)

‘;\’—/ " Titas "l l+Tgs 1 Tirgs 1.0 ' j T
=% Amplifier . Exciter Generator .8 LRI T sy o SO - WURR. T ]
Stabilizer [ ; : :
06 o o s e SRR R = T S |
Kp : : : :
l1+7ps 3 . . :
£ d 04- ........... ..... PRI S e d
Sensor : : : ;
. y ozt - Ao sy _
1+Tps | .
0 1 1 1 1
0 2 4 - 6 8 10
FIGURKE 12,35 . g
Block diagram of the compensated AVR system. ; t, sec
= FIGURE 12.36

Terminal voitage step response for Example 12.7.




564 12, POWER $YSTEM CONTROL

The step response is shown in Figure 12.36. The time-domain performance speci-
fications are

Peak time = 6.08 - Percent overshoot = 4,13

Rise time = 2.9%5
Settling time = 8.08

(b} A SIMULINK model named sim12ex7.mdl is constructed as shown in Figure
12.37. - ' '

Vre_f :
—l 10 o1 1
| __""ﬂ Olafl[ "|04s31 3+l >
Siep . Amplifier  Exciter Gen. Cl?t
F
!:' Mux
20 |
PR
Scope
Stabilizer P
L To workspace
Aba+l ‘SCHSOI'

FIGURE 12.37
Simulation block diagram for Example 12.7.

The file is opened and is run in the SIMULINK window. The simulation re-
sults in the same response as shown in Figure 12.36. The results show a very satis-
factory transient response with an overshoot of 4.13 percent and a settling time of
approximately 8 seconds.

12.6.6 EXCITATION SYSTEM
+ STABILIZER — PID CONTROLLER

One of the most common controllers available commercially is the proportional

integral derivative (PID) controller. The PID controller is used to improve the dy-

namic response as well as to reduce or eliminate the steady-state error. The deriva-
tive controller adds a finite zero to the open-loop plant transfer function and im-
proves the transient response. The integral controller adds a pole at origin and
increases the system type by one and reduces the steady-state error due to a step
function to zero. The PID controller transfer function is

Gc(s) = Kp + % + KDS (12.37) :
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The block diagram of an AVR compensated with a PID controller is shown in
Figure 12.38.

Vref(s) Ve Vr Ve Vt(S)
K K K | K
KP+_3L+KDS 1+'r‘:s a l+‘r§;3 | l+7gs
T Vs PID ' Amplifier  Exciter  Generator
Sensor
Ka i,
I+rps |
FIGURE 12.38

AVR system with PID controller.

Example 12.8

A PID controller is added in the forward path of the AVR system of Example 12.6
as shown in Figure 12.38. Construct the SIMUL/NK model. Set the proportional
gain Kp to 1.0 and adjust K; and Kp until a step response with a minimum over-
shoot and a very small settling time is obtained.

Vref
10 1 ;
| ' PID Dda+i| ] dsr] S >
Step Kp =100 Amplifier  Exciter Gen.
r=10.25 _ i |
Kp=10.28
i:l Mux
Scope
ekl : AN
955*1E Sensor To workspace
FIGURE 12.3%

Simulation block diagram for Example 12.8.

A SIMULINK model named sim12ex8.mdl is constructed as shown in Figure 12.39.
The file is opened and is run in the SIMULINK window. An integral gain of K; = -
0.25 and a derivative gain of Kp = 0.28 is found to be satisfactory. The response
settles in about 1.4 seconds with a negligibly small overshoot. Note that the PID
controller reduces the steady-state error to zero. The simulation result for the above
settings is shown in Figure 12.40,
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1.2 ,- - ; The above constants depend upon the network parameters and the operating condi-
f tions. For the detailed derivation, see references 2 and 52. For a stable system, Pg
B0 resmunwomsane oo fmoe s i : is positive. Also, K9, Ky, and Kjg are positive, but K5 may be negative. Including
Y : 3 {12.38)—(12.40) in the AGC system of Figure 12.16 and the AVR system of Figure
08 LT 12.38, a linearized model for the combined LFC and AVR systems is obtained. A
i i : : combined simulation block diagram is constructed in Example 12.9.
f f Example 12.9
0.4 o TR —— h | An isolated power station has the following parameters
02_ _____ ST Sempe S | B e consEnt
: : Turbine Kr=1 r =035
00 0I5 1i0 1I5 2.0 Governor Kg =1 Ty = 0.2
Ampliﬁer Ka=10 T4 =101
t, sec Exciter Keg=1 e =04
FIGURE 12.40 Generator Kg =08 710=14
Terminal voltage step response for Example 12.8. Sensor Kp= 7r = 0.05
’ Inertia H =
127 AGC INCLUDING EXCITATION SYSTEM Regylitios % =008
The load varies by 0.8 percent for a 1 percent change in frequency, ie., D =
Since there is a weak coupling between the LFC and AVR systems, the frequency 0.8. Assume the synchrenizing coefficient Py is 1.5, and the voltage coefficient
and voltage were controlled separately. We can study the coupling effect by ex- K ts 0.5. Also, the coupling constants are K- = 6.2, K; = 14, and K5 =
tending the linearized AGC system to include the excitation system. In (12.17), —0.1. Construct the combined SIMULINK block diagram and obtain the frequency
we found that a small change in the real power is the product of the synchronizing deviation and terminal voltage responses for a load change of AP, = 0.2 per
power coefficient Ps and the change in the power angle Ad. If we include the small unit.
effect of voltage upon real power, we obtain the following linearized equation A SIMULINK model named sim12ex%.mdl is constructed as shown in Figure

12.41. The file is opened and is run in the SIMULINK window. The integrator gain
in the secondary LFC loop is set to a value of 6.0. The excitation PID controller is
tuned for Kp = 1, K = 0.25, and Kp = 0.3. The speed deviation step response
and the terminal voltage step response are shown in Figures 12.42 and 12.43. It is
observed that when the coupling coefficients are set to zero, there is little change in

the transient response. Thus, separate treatment of frequency and voltage control
loops is justified.

AP, = P AS + KoFE' (12.38)

where K3 is the change in electrical power for a small change in the stator emf.

Also, including the small effect of rotor angle upon the generator terminal voltage,
we may write

AV, = Ks A8 + KgE' (12.39)

where K is the change in the terminal voltage for a small change in rotor angle at
constant stator emf, and K is the change in terminal voltage for a small change in
the stator emf at constant rotor angle. Finally, modifying the generator field transfer
function to include the effect of rotor angle, we may express the stator emf as

12.8 INTRODUCTORY MODERN CONTROL APPLICATION

The classical design techniques used so far are based on the root-locus that utilize
only the plant output for feedback with a dynamic controller. In this section, we
employ modemn control designs that require the use of ali state variables to form a

f K¢ linear static controller.

E = — K4 AS 12.40
Tr Kbl _. (12.40)
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FIGURE 12.41
Simulation block diagram for Example 2.9,

0.005 — — - T

0.0 : : -

—{0.005

-0.010

pu —0.015

~0.020
—0.025 ; : : : g

—0.035

~0.04 — AN B i s

i, sec

FIGURE 12,42
Frequency deviation step response for Example 12,8,
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1.2 — — 5
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1.0

0 b fovzon b e wes | I S B & s s s e -
gobbo e SO SO - p——

0.0 i -

i, sec

FIGURE 12.43
Terminal veltage step response for Example 12.8.

Modermn control design is especially useful in multivariable systems. One ap-
proach in modern control systems accomplished by the use of state feedback is
known as pole-placement design. The pole-placement design allows all roots of
the system characleristic equation 1o be placed in desired locations. This results in
a regulator with constant gain vector K.

The state-variable feedback concept requires that all states be accessible in a
physical system, For systems in which all states are not available for feedback, a
state estimator (observer) may be designed to implement the pole-placement de-
sign. The other approach to the design of regulator systems is the optimal control
problem, where a specified mathematical performance criterion is minimized.

12.8.1 POLE-PLACEMENT DESIGN

. The control is achieved by feeding back the state variables through a regulator with

constant gains. Consider the control system presented in the state-variable form
x(t) = Ax(t) + Bu(t} (12.41)
y(t) = Cx(t)

Now consider the block diagram of the system shown in Figure 12.44 with the
following state feedback control

u(t) = —Kx(t) (12.42)

where K is a 1 x n vector of constant feedback gains. The control system input
r(t) is assumed to be zero. The purpose of this system is to retum all state variables
to values of zero when the states have been perturbed.
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———'—ir(t) ; 1o > Plant L(t*)-

T ()] ()| - |Tat)

Kl‘

Kg‘

FIGURE 12.44
Control system design via pole placement.

Substituting (12.42) into (12.41), the compensated system state-variable rep-
resentation becomes e

x(t) = (A — BK)x(t) = Arx(t} (12.43)
The compensated system characteristic equation is
jsi— A +BK|=0 (12.44)

Assuwine the system is represented in the phase variable canonical form as follows.

i 0 1 0 ... 0 T 0
T 0 0 | J— 0 Ty 0
: = : : + 1 fu{t) (12.45)
.'i?,—,._l 0 0. 0 ... 1 In-_ 0
.’i’:n —fg —4a&)] —a&2 ... —ap_-] In 1

Substituting for A and B into (12.44), the compensated characteristic equation for
the control system is found.

|ST~ A+ BK]= 5"+ (an_; +kn)s™ 14+ (a1 +k2)s +(ao+k1) =0  (12.46)

For the specified closed-loop pole locations — Ay, ..., —A,, the desired character-
istic equation is

ac(s)=(s+A) - (5+A)=s"+@n1s" 1+t s +ag =0 (1247

The design objective is to find the gain matrix X such that the characteristic equa-

tion for the controfled system is identical to the desired characteristic equation.
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Thus, the gain vector K is obtained by equating coefficients of equations (12.46)
and (12.47), and for the ith coefficient we get

ki = Q.1 — A (12.48)

If the s.tate model is not in the phase-variable canonical form, we can use the trans-
formation technique to transform the given state model (o the phase-variable canon-
tcal form. The gain factor is obtained for this model and then transformed back to

conform with the original model. This procedure results in the following formula,
known as Ackermann’s formula.

K=[0 0 - 0 1]8%(A) (12.49)
where the matrix S is given by
§S=(B 4B A’B ... A*'B] (12.50

and the notation «.(A} is given by
ac(A) = A"+ o A" oAt agl (12.51)

The function [K, Ar] =placepol{A, B, C, p) is developed for the pole-placement
design. A, B, C are system matrices and p is a row vector containing the desired
closed-loop poles. This function returns the gain vector K and the closed-loop sys-

tem matrix Ar. Also, the MATLAB Control System Toelbox contains two functions

for pole-placement design. Function K = acker{A, B, p) is for single input sys-
tems, and function K = place{A, B, p), which uses a more reliable algorithm,
is for multiinput systems. The condition that must exist to place the closed-loop
poles at the desired location is to be able to transform the given state model into
phase-variable canonical form.

We demonstrate the use of pole-placement design by applying it to the LFC
of an isolated power system considered before, which is represented again in Fig-

ure 12.45. The s-domain equations describing the block diagram shown in Figure
12.45 are

(14 78)APy(s) = APrey - = AQLs)

(14 rrs}APm(s) = APy (12.52)
(2Hs 4+ D)AQ(s) = APy, — AP,

Solving for the first derivative term, we have

1 1 1 -
sAPy(s) = e APy — B AQs) + - AP, op{s)

1 1
sOPn{s)= - ARy — — APy (12.53)
1 D 1
SAQs) = 57 APy — 7= A0(s) = 7= APy
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APL(s) and the output equation is
Y 1 _ 1 1 Af(s) N
- L47gs | Yres Hs+D " where = Aw and
- Governor Turbine Rotating mass

and load APy,
AP,
Lok Aw

{a) We use the foliowing commands

FIGURE 12.45
Load frequency control block diagram of an isolated power system, PL = 0.2;
A=[-5 0 -100; 2 -2 0; 0 0.1 ~0.08];
o ) ) B = [0; 0; -0.1]; BPL = B+PL;
Transforming into time-domain and expressing tn matrix form the state equation c=1[0 0o 11; D= o:
becomes - : t=0:0.02:10;
; g g 1 5, 1 Iy, x] = step(A BPL G @, Ly B3

APy &n O om | [ary 0 ™ o] figure(1), plot{t, y), grid

AR, | = % = 0||AP |+ 01 AP L+ 0 |APF,y (1254} ; xlabel(’t, sec’), ylabel(’pu’)

Aw 0 g—ff 52| LA H 0 B r =eig(A)

The frequency deviation step response result is shown in Figure 12.46, which is the

same as the response obtained in Figure 12.13 using the transfer function method.
Example 12.10 ' '

Obtain the state variable representation of the LFC system of Example 12.1 with 0

one input APy, and perform the following analysis. o F—

(a) Use the MATLAB step function to obtain the frequency deviation step response o

for a sudden load change of AP, = 0.2 per unit.

(b) Construct the SIMULINK block diagram and obtain the frequency deviation re- : -0.005

sponse for the condition in part (a).

(c) Use placepole(A, B, C, p) function to place the compensated closed-loop pole pu ~0.0075

at —276 and -3. Obtain the frequency deviation step response of the compensated

system. L 3 -0.01

(d) Construct the SIMULINK block diagram and obtain the frequency deviation re- = _

sponse for the condition in part (c) ~(.0125

Substituting the parameters of the system in Example 12.1 in the state equation ° -0.015 ' i i i
(12.51) with AP,y == 0, we have 0 2 4 8 ) 10

: t, sec
_ o 0 _
*=[ g _g log]x+[ J ]u 5y % FIGURE 12.46

0 0.1 0.08 0.1 Uncompensated frequency deviation step response for Example 12,10,
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The command r = ¢ig{A) returns the roots of the characteristic equation, which are

r =

-5.8863

-0.5968 + 1.7826i
-0.5968 - 1.78251

(b) The SIMULINK state-space model can be nsed 10 obtain the response. A SIMU-
LINK model named sim12xxb.mdl is constructed as shown in Figure 12.47. The
state-space description dialog box is opened, and the A, B, C, and D constants

are entered in the appropriate box in MATLAB matrix notation. The simulation - .

APy,
i=Ar+ Bu| Aw | |
| y=Cz+ Du *
Step Input Scope

State-space

FIGURE 12.47
Simulation block diagram for Examplc 12.10 (b).

parameters are set to the appropriate values. The file is opened and is run in the
SIMULINK window. The simulation results in the same response as shown in Fig-
ure 12.46.

(c) We are seeking the feedback gain vector K to place the roots of the system
characteristic equation at —2 + j6 and —3. The following commands are added to
the previous file.

P= ["2.0+j*6 -2.0-3*6 -3];

[X, Af] = placepol{A, B, C, P);
t=0:0.02:4; :
{y, x] = step(Af, BPL, C, D, 1, t);
figure(2), plot(t, y), grid
xlabel(’t, sec’), ylabel(’pu’)

The result is

Feedback gain vecter K

4.2 0.8 0.8
Uncompensated Plant transfer function:
Numerator 0 -¢.10 -0.70 -1.0
Denominator 1 7.08 10.56 20.8
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Compensated system closed-leoop transfer function:
Numerator ¢ =-0.1 -0.7 -1

Denominator 1 7.0 §2.0 120
Compensated system matrix A - B=K
-5.00 0.00 -100.00

2.00 -2.00 0.00
0.42 0.18 0.00

and the frequency deviation step response is shown in Figure 12.48.

g.0

—0.60
pu —goobl-i o T

—0.003

— T S

t, sec

FIGURE 12.48 ;
Compensated frequency deviation step response for Example 12.10.

Thus, the state feedback constants K; = 4.2, K5 = 0.8, and K3 = 0.8 result in
the desired characteristic equation roots. The transient response is improved, and

the response settles to a steady-state value of A5 = —0.0017 per unit in about 2.5
seconds.

(d} A SIMULINK modet named sim12xxd.mdi is constructed as shown in Figure
12.49. In the state-space description dialog box, C is specified as an identity. matrix
of rank 3 to provide the three state variables as output. The file is opened and is run

in the SIMULINK window. The simulation results in ths same response as shown
in Figure 12.48.
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AP

‘—I sl o O O
y=Cz + Du mux

Step . 2 C 1]
State-space Scope

4.2 e
<@}
FIGURE 12.4%

Simulation block diagram for Example 12.10 {d}.

1282 OPTIMAL CONTROL DESIGN

Optimal control is a branch of modern control theory that deals with designing con-
trols for dynamic systems by minimizing a performance index that depends on the
system variables. In this section, we will discuss the design of optimal controllers
for linear systems with quadratic performance index, the so-called linear quadratic
regulator {LQR) problem. The object of the optimal regulator design is to deter-

mine the optimal control law u”(x, t) which can transfer the system from its initial -

state to the final state such that a given performance index is minimized. The per-
formance index is selected to give the best trade-off between performance and cost
of control. The performance index that is widely used in optimal control design
is known as the gquadratic performance index and is based on minimum-error and
minimum-energy critefia.

Consider the plant described by

x{t) = Ax(t) + Bu(?t) (12.55)
The problem is to find the vector K(t}) of the control law
u(t) = —K(t)x(t) (12.56) &

which minimizes the value of a qﬁadratic performance index J of the form

t
¥= / "¢ Qx + WRu)dt
to

subject to the dynamic plant equation in (12.55). In (12.57), Q is a positive semidef-
inite matrix, and R is a real symmetric matrix. Q is positive semidefinite, if all its _

(12.57)
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principal minors are nonnegative. The choice of the elements of Q and R allows
the relative weighting of individual state variables and individual control inputs.
To obtain a formal sclution, we can use the method of Lagrange multipliers,
The constraint problem is solved by augmenting (12.55) into (12.57) using an n-
vector of Lagrange multipliers, A. The problem reduces to the minimization of the
following unconstrained function.
L(x,\u,t) = [x'Qx + u'Ruj] + X[Ax + Bu — %] (12.58)

The optimal values (denoted by the subscript +) are found by equating the partial
derivatives to zero.

aL

G =AX+Bu-%=0 = X =AX"+Bu" (1259
aL 1

— =2Ru*+AB=0 = RW 2
e u’ + e = u 21'1‘. AB (12.60)
6£ . ¥ ] 3 '

S =2QENENA=0 > A=-20x-AN (126D)

Assume that there exists a symmeltric, time-varying positive definite matrix p(t)
satisfying

A =2p{t)x” (12.62)
Substituting (12.42) inte (12.60) gives the optimai closed-loop control law
u(t) = —R"?B'p(t)x' (12.63)
Obtaining the derivative of (12.62), we have
' A =2(px" + px") (12.64)
Finally, equating (12.61} with (12.64); we obtain
p(t) = —p{t})A — A'p(t) - Q + p{t}BR'B'p(¢) (12.65)

The above equation is referred to as the matrix Riccati equation. The boundary
condition for (12.63) is p(t;} = 0. Therefore, (12.63) must be integrated backward
in time. Since a numerical solution is performed forward in time, a dummy time
variable 7 = t; — ¢ is replaced for time £, Once the solution to (12.65) is obtained,

the solution of the state equation (12.59) in conjunction with the optimum contro}
equation (12.63) is obtained.
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The function [, p, K, t, x|= riccati is developed for the time-domain solu-
tion of the Riccati equation. The function returns the solution of the matrix Ric-
cati equation, p(7), the optimal feedback gain vector k(7}, and the initial state
response x(t}. In order to use this function, the user must declare the function
[A,B, Q,R, tg, t¢, xg] =system(A, B, Q. R, tg, t1, xg) containing system ma-

trices and the performance index matrices in an M-file named system.m.

‘The optimal controller gain is a time-varying state-variable feedback. Such
feedback are inconvenient to implement, because they require the storage in com- -
puter memory of time-varying gains. An alternative control scheme is to replace the  ~—
time-varying optimal gain K(t) by its constant steady-state value. In most practi-
cal applications, the use of the steady-state feedback gain is adequate. For linear
time-invariant systems, since p = G, when the process is of infinite duration, that

ts £ = 00, (12.63) reduces to the algebraic Riccati equation

PA+ AP+ Q-pBR !B'p=0

used for the solution of the algebraic Riccati equation.

The LQR design procedure is in stark contrast to classical control design,
where the gain matrix K is selected directly. To design the optimal LQR, the design |
engineer first selects the design parameter weight matrices Q and R. Then, the - 3
feedback gain K is automatically given by matrix design equations and the closed- = ]
loop time responses are found by simulation. If these responses are unsiritable, new B
vilues of @ and R are selected and the design is repeated. This has the significant
advantages of allowing all the control loops in a multiloop system to be closed

simultancously, while guaranteeing closed-Ioop stability.

Example 12.11

Design an LQR state feedback for the syslerﬂ described in Example 12.10.

(12.66)
The MATLAB Control System Toolbox function [k, pl=lqr2(A, B, Q, R) can be .

(a) Find the optimal feedback gain vector to minimize the performance index

R / (20217 + 1525 + 5rs? + 0.15u )
¢

The admissible states and control values are unconstrained. Obtain the frequency

deviation step response for a sudden load change of APy = (1.2 per unit,

(b} Construct the STMULINK block diagram and obtain the freque

sponse for the condition in part (a).
For this system we have

-5 0 -100 0
2 -2 o| B= 0| Q=
0 01 —008] -0.1

A=

ncy deviation re-

Lok i it
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and R = 0.15,

(a) We use the following commands

PL=Q.2;

A=1(5 0 -100; 2 -2 0;0 0.1 -0.08];
B =1{0; 0; -0.1]; BPL=PL#B:

c=1[0 0 1]1; D =0;

Q=1[200 0; 0 100; 0 0 5]: R = .15;
(X, P} = 1qr2(A, B, Q, R) g

Af = A - BsK

t=0:0.02:1;

[y. x] = step(Af, BPL, €, D, 1, t);
plot(t, y), grid, xlabel(’t, sec’), ylabel(’pu’)

The result is

K =
6.4128 1.1004 -112.6003
p =
1.5388 0.3891 -9.6192 ]
0.3891 2.37T21 -1.6506
-9.6192 -1.6506 168.9004
Af =
~5.0000 Q0 -100.0G00
2.0000 -2.0000 0
0.6413 0.2100 -11.3400
0.0
0.0002
0.0004
pu  —(.0006
-0.0008}- -
-0.001
_0'00120 0.2 04 0.6 0.8
' L, sec
FIGURE 12.50

Frequency deviation step response for Example 12.11.
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The frequency deviation step response is shown in Figure 12.50. The transient re-

sponse settles to a steady-state value of A,, = —0.0007 per unit in about 0.6
second. ,

(b) A SIMULINK model named sim12xx1.mdl is constructed as shown in Figure
12.51. The state-space description dialog box is opened, and the A, B, C, and
ID constants are entered in the appropriate box in MATLAB matrix notation. Also,
the LQR description dialog box is opened, and weighting matrix Q and weighting

coefficient R are set to the given values. The simulation parameters are sel to the

APy
l— i=Az+Bu 4
y=Cz+ Du [ Demux p Av T
e State-space Scope

Feedback gain
using LQR design

K =

FIGURE 12.51
Simulation block diagram for Example 12.11,

appropriate values, The file is opened and is run in the SIMULINK window. The
simulation vesults in the same response as shown in Figure 12.50.

PROBLEMS

12.1. A 250-MW, 60-Hz turbine generator set has a speed regulation of 5 percent
based on its own rating. The generator frequency decreases from 60 Hz to
a steady state value of 55.7Hz. Determine the increase in the turbine power
output.

12.2. Two generating units rated for 250 MW and 400 MW have governor speed
regulation of 6.0 and 6.4 percent, respectively, from no-load to full-load,
‘respectively. They are operating in parallel and share a load of 500 MW.
Assnming free governor action, determine the load shared by each unit.

12.3. A single area consists of two generating units, rated at 400 and 800 MVA,
with speed regulation of 4 percent and 5 percent on their respective ratings.
The units are operating in parallel, sharing 700 MW. Unit 1 supplies 200
MW and unit 2 supplies 500 MW at 1.0 per unit (60 Hz) frequency. The load
is increased by 130 MW.
(a) Assume there is no frequency-dependent load, i.e. D = 0. Find the
steady-state frequency deviation and the new generation on each unit.

12.4.

12.5.

12.6.

12.7.

12.8.
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(b) The load varies 0.804 percent for every 1 percent change in frequency,
i.e., D = 0.804. Find the steady-state frequency deviation and the new gen-
eration on each unit.

An isolated power station has the LFC system as shown in Figure 12.9 with
the following parameters

Turbine time constant 7 = 0.5 sec
Governor time constant 7, = 0.25 sec
Generator incrtia constant /f = 8 sec
Governor speed regulation = R per unit

The load varies by 1.6 percent for a 1 percent change in frequency, ie., D =
1.6.

(a) Use the Routh-Hurwitz array (Appendix B.2.1) to find the range of R for
control system stability.
(b) Use MATLARB rlocus function to obtain the root-locus plot.

The govemnor speed regulation of Problem 12.4 is set to R = 0.04 per unit.
The turbine rated output is 200 MW at nominal frequency of 60 Hz. A sud-
den load change of 30 MW (A Py = 0.25 per unit) occurs.

(a) Find the steady-state frequency deviation in Hz,

(b) Obtain the closed-loop transfer function and use MATLAB 1o obtain the
frequency deviation step response.

(c) Construct the SIMULINK block diagram and obtain the frequency devia-

- tion response.

The LFC system in Problem 12.5 is equipped with the secondary integral
cantrol loop for automatic generation control as shown in Figure 12.16.

(a) Use the MATLAB step function to obtain the frequency deviation step
response for a sudden load change of APy, = (.25 per unit. Set the integral
controller gain to Ky = 9.

(b) Construct the SIMULINK block diagram and obtain the frequency devia-
tion response for the condition in part (a).

The load changes of 200 MW and 150 MW occur simultaneously in areas 1
and 2 of the two-area systerm of Example 12.4. Medify the SIMULINK block

diagram (sim12ex4.mdl), and obtain the frequency deviation and the power
responses.

Modify the SIMULINK model for the two-area system of Example 12.5 with

the tie-line bias control (sim12ex5.mdl} to include the load changes specified

in Problem 12.7. Obtain the frequency and power response deviation for each
area.
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12.9. A generating unit has a simplified linearized AVR systemn as shown in Figure
2

(l::)sli.e the Routh-Hurwitz array {(Appendix B.2.1) to find the range of X4
for controf system stability.
{(b) Use MATLAB rlocus function to obtain the root-locus plot.
(¢) The amplifier gain is set to K4 = 40. Find the system closed-loop trans-
fer function, and use MATLAB to obtain the step response.
(d) Construct the SIMULINK block diagram and obtain the_ step response.

Vi(s) Vr{s) Vils)
4 L 1 | os
1+0.055 1+90.5a = 1+s
Amplifier Exciter Generator

FIGURE 12.52
AVR system of Problem 12,9,

12.10. A rate feedback stabilizer is added to the AVR system of Problem 129 as
shown in Figure 12.53. The stabilizer time constant is 77 = 0.04 second,
and the derivative gain is adjusted to Krg = 0.1. w
(a} Find the system closed-loop transfer function, and use MATLAB to obtain
the step response.
(b) Construct the SIMULINK model, and obtain the step response.

o e NCE T 20 purm L0 rr B0

\ 170.05 15050 T+s ¥
i Amplifier Exciter - Generator
Stabilizer
Kre |,
14+7Fs
Sensor .-
FIGURE 1253 :
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with a minimum overshoot and a very small settling time is obtained (sug-

gested values K; = 0.2, and Kp = 0.25).

Vier(s} Ve Va VE Vi(s)
KP + Esl + KDS * l+?}.0(]53 * 1+(l).5s = IOITBS
- PID Amplifier Exciter Generator

FIGURE 1254
AVR systemn with P1D controller for Problem 12,11,

12.12. Figure 12.55 shows an inverted penduium of length L and mass m mounted
on.a cart of mass M, by means of a force « applied to the cart. This is a
model of the attitude control of a space booster on takeoff. The differential
equations describing the motion of the system is obtained by summing the
forces on the pendulum, which result in the following nonlinear equations.

(M +m)i +mLcos88 =mLsinf§? +u

mLcos8 % +mL% = mgLsing

(a) Linearize the above equations in the neighborhood of the zero initial

mg
7 s

—— M

AVR system with rate feadback for Problem 12.10.

12.11. A PID controller is added in the forward path of the AVR system of Prob- ;
lem 12.9 as shown in Figure 12.54. Construct the SIM ULH'VK model. Setthe == =
proportional gain Kp to 2.0, and adjust Ky and Kp until a step response ;

C NS L
VI TTIVEIITIITII IO

FIGURE 12.55
Inveried pendulum on a cart.

states. Hint: Substitute 8 for sin 8, 1 for cos# and 0 for §2. With the state

variables defined as x; = @, 13 = 0, z3 = x, and x4

= %, show that the
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linearized state equation is

T 0 1 00 I 0l
12 _ Mimg 0 0 0 22 | | "ML Ly
Z3 . 0 01 I3 0
%4 ~mg 00 0] 1Lm =

Assume M =dkg m=02kg, L =0.5m, and g = 9.81 m/s2.

{b) Use the MATLARB function eig(A) to find the roots of the system charac-

teristic equation.

(c) Define C as the identity matrix of rank 4, i.e, C = eye(4) and D =
zeros(, 1). Use the MATLAB function {y, x] = initial(A, B, C, D, X, t)
to simulate the system for 20 seconds in response to an initial condition off-
set of (0} = 0.1 rad, and z{0) = G.im (e, zo = [0.3 0 01 O]
Obtain a plot of § and x, and comment on the stability of the system.

{d) You may have found that the inverted pendulum is unstable, that is, it
will fall over unless a suitable control force via state feedback is used. The
purpose is to design a control system such that for a small initial distur-
bance the pendulum can be brought back to the vertical position (§ = 0),
and the cart can be brought back to the reference position (z = 0). A simple
method is to use a state feedback gain to place the compensated closed-loop
poles in the left-half of the s-plane, Use the custom made function [K, Af]
= placepol(A, B, C, P) and design a state feedback controller fo place the
compensated closed-loop poles at —2 + (.5, —4, and ~ 5. Simulate the sys-
temn for 20 seconds in response o the same initial condition offset. Obtain a
plotof ¢, z,andu = - Kz’

12.13. Construct the SIMULINK block diagram for the linearized model of the

inverted pendulum described in Problem 12.12 (a) with the state feedback
controller. Assume the state feedback gains are K = —170.367, Ko =
—38.054, K3 = —17.3293, and K, = —24.1081. Obtain the response for &,
x, and v for the initial condition offset of §{0) = 0.1 rad and z(0) = 0.1m
(ie.zo=[01 0 0.1 0}

12.14. A classical problem in control systems is to ﬁnd the optimal control law

which will transfer the system from its initial state to the final state, such
that a given performance index is minimized.

(a) Design an LQR state feedback for the linearized model of the inverted

pendulum described in Problem 12.12, and find the optimal feedback gain
vector to minimize the performance index

(nv ]
J= f (10:1:12 + 10x2% + 53 + 45242 + 0.2112) dt
0 =
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The admissible states and control values are unconstrained.

(b) Define C as the identity matrix of rank 4, i.e., C = eye(4) and D =
zeros(4, 1). Use the MATLAB function [K, P} = Iqr2 (A, B, Q, R) to design
a state feedback controller in response to an initial condition offset of 8(0) =
0.1 rad and z(0) = 0.1m (ie., 7o = [0.1 O 0.1 0}). Use the MATLAB
function {y, x} = initial(A, B, C, D, X, t) to simulate the system for 20 -
seconds. Obtain a plot of 8, z, and the control law © = —kz'. .

12.15, Construct the SIMULINK block diagram for the linearized model of the
inverted pendulum described in Problem 12.12(a) using the SIMULINK LQR

model. Obtain the response for 8, x, and u for the initial condition offset
described in Problem 12.14,

12.16. Obtain the state variable representation of the LFC system of Problem 12.4

with one input APy, and perform the following analysis:

(a) Use the MATLAR step function 1o obtain the frequency deviation step
response for a sudden load change of APy, = 0.2 per unit.

(b) Construct the SIMULINK block diagram and obtain the frequency devia-
tion response for the condition in part (a).

(¢) Use placepol(A, B, C, p) function to place the compensated closed-loop
pole at —4 £ j6 and -4, Obtain the frequency deviation step response of the
compensated system.

{d) Construct the SIMULINK block diagram and obtain the frequency devia-
tion response for the condition in part {c).

12.17. Destgn a LQR state feedback for the system described in Problem 12.16.
(a) Find the optimal feedback gain vector to minimize the performance index

oG i )
J= f (4024 + 2022° + 10257 + 0.202) dt
O

The admissible states and control values are unconstrained. Obtain the fre-
quency deviation step response for a sudden load change of APy = 0.2 per
anit.

(b) Construct the SIMULINK block diagram and obtain the frequency devia-
tion step response for the condition in part (a}.




APPENDIX

A

INTRODUCTION TO MATLAB

MATLAB, developed by Math Works Inc., is a software package for high perfor-
mance numerical computation and visualization. The combination of analysis ca-
pabilitics, flexibility, reliability, and powerful graphics makes MATLAB the premier
software package for electrical engineers.

MATLAB provides an interactive environment with hundreds of rcliable and
accurate built-in mathematical functions. These functions provide solutions to a
broad range of mathematical problems including matrix algebra, complex arith-
metic, linear systems, differential equations, signal processing, optimization, non-

linear systems, and many other types of scientific computations. The most impor- =2

tant feature of MATLAB is its programming capability, which is very easy to leam
and to use, and which allows user-developed functions. Tt also aliows access to
Fortran algorithms and C codes by means of external interfaces. There are several
optional toolboxes written for special applications such as signal processing, con-
trol systems design, system identification, statistics, neural networks, fuzzy logic,
symbolic computations, and others. MATLAB has been enhanced by the very pow-

erful SIMULINK program. SIMULINK is a graphical mouse-drive:} program for the '_
simulation of dynamic systems. SIMULINK enables students to simulate linear, as

well as nonlinear, systems easily and efficiently.

The following section describes the use of MATLAB and is designed to give ==

a quick familiarization with some of the commands and capabilities of MATLAB.
For a description of all other commands, MATLAB functions, and many other useful
features, the reader is referred to the MATLAR User's Guide.
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A INSTALLING THE TEXT TOOLBOX

The diskette included with the book contains all the developed functions and chap-
ter examples. The M-files reside in the directories labeled Folder 1 and Folder 2.
The file names for chapter examples begin with the letters chp. For example, the

-M-file for Example 11.4 is chpllexd. The appendix examples begin with exa and

exb and a number. The disk contains a file called setup.exe that automates instal-
lation of all the files. Insert the diskette in the disk drive and use Windows to view
its contents, For automatic instaliation double click on the setup.exe icon to start
the installation. The installation program will prompt you for the location of the
MATLARB directory and the name of the directory where you would like the files to
be installed. '

Alternatively, you can copy the M-files manually. To do this, create a subdi-
rectory, such as power, where the MATLAB toolbox resides. Copy all the files from
Folder 1 and Folder 2 to the subdirectory matlab \1oolbox\power.

In the MATLAB 5 Command Window open the Path Browser by selecting
Set Path from the File menu. From the Path menu choose Add to Path. Select the
directory to add, choose Add to back option and press OK to add to the current
MATLARB directory area. Save before exiting the Path Browser.

If you are running MATLAB 4 edit the matlabre.m located in the subdirectory

matlab\bin, where the search paths are specified. Describe the subdirectory just
created by adding the statement

";C:\matlab\toolbox\power’, ... atthe end of this file.

A.2 RUNNING MATLAB

MATLAB supports almost every computational platform, MATLAB for WINDOWS
is started by clicking on the MATLAB icon. The Command window is launched,
and after some messages such as intro, demo, help help, info, and others, the
prompt “ > ™ is displayed. The program is in an interactive command mode. Typ-
ing who or whos displays a list of variable names currently in memory. Also, the
dir command lists all the files on the default directory. MATLAB has an on-line
help facility, and its use is highly recommended. The command help provides a

List of files, built-in functions and operators for which on-line help is available. The
command

help function name

will give information on the specified function as to its purpose and use. The com-
mand
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help help

will give information as to how to use the on-line help. -
MATLAB has a demonstration program that shows many of its features. The
command demo brings up a menu of the available demonstrations. This will pro-

vide a presentation of the most important MATLAB facilities. Follow the instruc- -

tions on the screen — it is worth trying.

MATLARB 5.2 includes a Help Desk facility that provides access to on line
help topics, documentation, getting started with MATLAB, online reference mate-
rials, MATLAB functions, real-time Workshop, and several toolboxes. The online
documentation is available in HTML, via either Netscape Navigator Release 3.0 or
Microsoft Internet Explorer 3.0. The command helpdesk launches the Help Desk,’
or you can use the Help menu to bring up the Help Desk. ;

1f an expression with correct syntax is entered at the prompt in the Command
window, it is processed immediately and the result is displayed on the screen. If an
expression requires more than one iine, the last character of the previous line must
contain three dots “...”. Characters following the percent sign are ignored. The (%)
may be used anywhere in a program to add clarifying comments. This is especially
helpful when creating a program. The command clear erases alf variables in the
Command window.

MATLAB is also capable of executing sequences of commands that are stored
in files, known as script files or M-files. Clicking on File, New M-file, opens the
Edit window. A progeam can be written and saved in ASCII format with a filename
having extension .m in the directory where MATLAB runs. To nun the program,
click on the Command window and type the filename without the .m extension at
the MATLAB command *3»". You can view the text Edit window simultaneously
with the Command window. That is, you can use the two windows to edit and debug

a script file repeatedly and run it in the Command window without ever quitting
MATILAB.

In addition to the Command window and Edit window are the Graphic win-

dows or Figure windows with black (default) background. The plots created by

the graphic commands appear in these windows. -
Another type of M-file is a funcrion file. A function provides a convenient

way to encapsulate some computation, which can then be used without worrying

about its implementation. In contrast to the script file, a function file has a name 7
following the word “function” at the beginning of the file. The filename must be '
the same as the “function” name. The first line of a function file must begin with

the function statement having the following syntax

function [output arguments) = function name (input arguments)
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The output argument(s) are variables returned. A function need not return a value.
The input arguments are variables passed to the function. Variables generated in
function files are local to the function. The use of global variables make defined
variables common and accessible between the main script file and other function
files. For example, the statement global R S T declares the variables R, §, and T
to be global without the need for passing the variables through the input list. This
statement goes before any executable statement in the script and function files that
need 1o access the values of the global variables, _ :

Normatlly, while an M-file is executing, the commands of the file are not dis-
played on the screen. The command echo allows M-files to be viewed as they
execute. echo off tumns off the echoing of all script files. Typing what lists M-files
and Mai-files in the default directory. .

MATLARB follows conventional Windows procedure. Information from the
command screen can be printed by highlighting the desired text with the mouse
and then choosing the print Selected ... from the File menu. If no text is high-
lighted the entire Command window is printed. Similarly, selecting print from the
Figure window sends the selected graph to the printer. For a complete list and help
on general purpose commands, type help general.

A.J VARIABLES

Expressions 1iyped without u variable name are evaluated by MATLAR, and the re-
sult is stored and displayed by a variable called ans. The result of an expression
can be assigned to a variable name for further use. Variabie names can have as
many as 19 characters (including letters and numbers). However, the first char-
acter of a variable name must be a letter. MATLAB is case-sensitive. Lower and
uppercase letters represent two different variables. The command casesen makes
MATLAB insensitive to the case. Variables in script files are global. The expres-

sions are composed of eperators and any of the available functions, For example,
if the following expression is typed

X = exp(-0.2696+.2)*sin(2+pi*0.2)/(0.01%sqrt (3)#1og(18))

the result is displayed on the screen as

18.0001

and is assigned to x. If a variable name is not used, the result is assigned to the
variable ans. For example, typing the expression

250/sin{pi/6)




SWF A, INTRODUCTIUN 10U MAFLAN

results in

ans =
500.0000

If the last character of a statement is a semicolon (;), the expression is executed, but
the result is not displayed. However, the result is displayed upon entering the vari-
able name. The command disp may be used 1o display a variable without printing
its name. For example, disp(x) displays the value of the variable without printing
its name. If x contains a text string, the string is displayed.

A4 OUTPUT FORMAT
While all computations in MATLAB are done in double precision, the default for-

mat prints results with five significant digits. The format of the displayed output
can be contrelled by the following commands,

MATLAB Command Display

format Default. Same as format short

format short Scaled fixed point format with § digits

format long Scaled fixed point format with 15 digits

format short e Floating point format with 5 digits

format long e Floating point format with 15 digits

format short g Best of fixed or floating point with 5 digits

format long ¢ Best of fixed or floating point with 15 digits

format hex Hexadecimal format

format + The symbols +, - and blank are printed for
" positive, negative, and zero elements

format bank Fixed format for dollars and cents

format rat Approximation by ratio of small integers

format compact Suppress extra line feeds

format loose Puts the extra line feeds back in

For more flexibility in the output format, the command fprintf displays- the result

with a desired format on the screen or 1o a specified filename. The general form of
this command is the following.- .

fprintf{fstr, A,...)

wri_tes the real elements of the variable or matrix A, ... according to the specifi-
gatlons in the string argument of £str. This string can contain format characters
like ANCI C with certain exceptions and extensions. fprintf is "vectorized” for the

A4 OUTPUT FORMAT 3%}

case when A is nonscalar. The format string is recycled through the elements of
A (columnwise) uniil all the elements are used up. It is then recycled in a similar
manner through any additional matrix arguments. The characters used in the for-
mat string of the commands fprintf are listed in the table below.

Format codes Control characters
%e  scientific format, lower case e \n new line
%E  scientific format, upper case E \r beginning of the line
%f  decimal format \b back space
%s  string \t  tab
%v  integer \g new page
%i  foltows the type 1/ apostrophe
%x  hexadecimal, lower case \\ back slash
%X hexadecimal, upper case \a bell

A simple example of the fprintfis

fprintf(’Area = %7.3f Square meters \n’, pi*4.5°2)
The resalts is

Area = 63.617 Square meters

The %7.3f prints a fioating point number seven characters wide, with three digits
after the decimal point. The sequence \n advances the output to the ieft margin on
the next line.

The following command displays a formatted table of the natural logarithmic for
numbers 10, 20, 40, 60, and 80

x = [10; 20; 40; 60; 80];
y = [x, log(x)];
fprintf(*\n Number Natural log\n’)
fprintf(*%4i \t %8.3f\n’,y’)
The result is

Number  Natural log

10 2.303
20 2.996
40 3.689
60 4.094
80 4.382
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An M-file can prompt for input from the keyboard. The command input
causes the computer to request data from the keyboard. For example, the command

R = input(’Enter radius in meter ')
displays the text string
Enter radius in meter

and waits for a number to be entered. If a number, say 4.5 is entered, it is assigned
to variable R and displayed as

R =
4 _5000

The command keyboard placed in an M-file will stop the execution of the
file and permit the user to examine and change variables in the file. Pressing cntrl-
z terminates the Keyboard mode and returns to the invoking file, Another useful
command is diary A:filename. This command creates a file on drive A, and all
output displayed on the screen is sent to that file. diary off turns off the diary. The
contents of this file can be edited and used for merging with a word processor file.
Finally, the command save filename can be used to save the expressions on the
screen to a file named filename.mat, and the statement load filename can be used
to load the file filename.mat. .

MATLAB has a useful collection of transcendental functions, such as expo-
nential, logarithm, trigonometric, and hyperbolic functions. For a complete list and
help on operators, type help aps, and for elementary math functions, type help
elfun.

A5 CHARACTER STRING

A sequence of characters in single quotes is called a character string or text vari-
able.

c =*'Good’

results in

€ = Good
A text variable can be augmented with more text variables, for example,
¢s = [e, * luck’]

produces

cg =
Good iuck
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A.6 VECTOR OPERATIONS

An n vector is a row or a column array of n numbers. In MATLAB, elements en-
closed by brackets and separated by semicolons generate a column vector.
For example, the statement

X=1[2; -4; 8]

results in
X=
2
~4
8

If elements are separated by blanks or commas, a row vector is produced. E]emems\
may be any expression. The statement

R = [tan(pi/4) =sqrt(9) -5]
results in the cutput
R = .
1.0000 3.0000 -5.0000

The transpose of a column vector results in a row vector, and vice versa. For exam-
ple

Y=R’
will produce
YYo=
1.0000
3.0000
~-5.0000

:'LIMTLAB has two different types of arithmetic operations. Matrix arithmetic
operations are defined by the rules of linear algebra, Array arithmetic operations
are carried out element-by-element. The period character () distinguishes the array
operations from the matrix operations. However, since the matrix and array opera-
lionj are the same for addition and subtraction, the character pairs .+ and .- are not
used.

Vectors of the same size can be added or subtracted, where addition is per-
formed componentwise. However, for multiplication, specific rules must be fol-
lowed in order to obtain the correct resulting values, The operation of multiplying
a vector X with a scalar k (scalar multiplication) is performed componentwise. For
example P = 5 » R produces the output
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B =

5.0000 15.0000 -25.00Q0

. The inner product or the dot preduct of two vectors X and Y denoted by {X,Y) is
a scalar quantity defined by S i=1 ziyi. If X and Y are both column vectors defined
above, the inner product is given by

g = X'*Y

and results in

-50

The operator (.* performs element-by-element operation. For example, for the pre-
viously defined vectors, X and Y, the statement

E = X.*Y
resulis in
E —
2

-12
-40

1 el e s B

The operator ./ performs element-by-element division. The two arrays must have
the same size, unless one of them is a scalar. Array powers or element-by-element
powers are denoted by ( . 7). The trigonometric functions, and other elementary

mathematical functions such as abs, sqrt, real, and log, also operate element by
element.

Various norms {(measure of size) of a vector can be obtained. For example, the
Euclidean norm is the square root of the inner product of the vector and itseif. The
command

N = norm(X)

produces the output .

N =
9.1652

X0 e =

The angle between two vectors X and Y is defined by cos® = p¥ymy

statement
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Theta = acos{ X' *Y/{norm{X)*norm(Y)) )
results in the output

Theta =
2.7444

where Theta is in radians.

- The zero vector, also referred 1o as onigin, is a vector with all components

equal to zero. For example, to build a zero row vector of size 4, the following .
command '

Z

zeros(l, 4)
results in

Z

o 0 0 0

The onre vector is a vector with each component equal o one. To generate a one
vector of size 4, use

I = ones(1, 4)

The result is

I =
1 i 1 1

In MATLAB, the colon (:) can be used to generate a row vector. For example
x = 1:8
generates a row veclor of integers from 1 to 8.

x -
1 2 3 4 5 6 7 8

For incremznts other than unity, the following command
z=0:pi/3 : pi
results in

Zz =

0000 1. 0472 2.0%44 3.1418
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For negative increments
bl S I €

results in

x=
5 4 3 2 1

Alternatively, special vectors can be created, the command linspace(x, y, n) creates
a vector with n elements that are spaced linearly between x and y. Stmilarly, the
command logspace{x, y, n) creates a vector with n elements that are spaced in even
logarithmic increments between 10% and 10¥.

A.7 ELEMENTARY MATRIX OPERATIONS

In MATLAB, a matrix is created with a rectangular array of numbers surrounded by
brackets. The elements in each row are separated by blanks or commas. A semi-
colon must be used to indicate the end of a row. Matrix elements can be any MAT-
LAB expression. The statement
A=[6 1 2, -1 8 3;, 2 4 9]

results in the output

A=
6 1 2
-1 8 3
2 4 9

If a semicolon is not used, each row must be entered in a separate line as shown
below.

The entire row or column of a matrix can be addressed by means of the sym-
bol (:). For example

3 = A3, )

results in
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3 =
2 4 9

Similarly, the statement A(:, 2) addresses all elements of the second column in A.

Matrices of the same dimension can be added or subtracted. Two matrices, A
and B, can be multiplied together to form the product AB if they are conformable.
Two symbols are used for nonsingular matrix division. A\Bisequivalentto A™! B,

and A/B is equivalent to 4B}
Example A.1

For the matrix equation below, AX = B, determine the vecior X.

4 -2 —10 T [ —10
2 10 - —12 x | = 12
-4 —6 16 Z3 —~16

The following statements

A=1(4 -2 -10; 2 10 -12; -4 -6 16];
B = {-10; 32; -16];
X = A\B

result in the output

X =
2.0000
4.0000
1.0000

In addition to the built-in functidns, numerous mathematical functions are

available in the form of M-files. For the current list and their applications, see the
MATLAB User’s Guide. :

Example A.2

Use the inv function to determine the inverse of matrix A in Example A.1 and then
determine X. The following statements

A=1[4 -2 -10; 2 10 -12; -4 -¢ 16];
B = [-10; 32; ~1861;

C = inv(d)

X = CsB

result in the output
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C -
9.2000 2.3000 3.1000
0.4000 0.600C 0.7000
0.7000 0.8000 1.1000
X =
2.0000
4.0000
1.0000
Example A3

Use the lu factorization function to express the matrix A of Example A.2 as the
product of upper and lower triangular matrices, A = LU. Then find X from X =
U~1L-'B. Typing

A=[4 -2 -10; 2 10 -12; -4 -6 16 ]
B = [-10; 32 -16]; '

(LU = luld)
results in
L = _
1.0000 0 0
0._5000 1.0000 0

-1.0000 -0.7273 1.0000

4.0000 -2.0000 -10.0000
0 1:1.0000 -7.0000

0 0 0.9091
Now entering
X = inv({U)*inv(L)*B
results in
x =
2.0000
4.0000
1.0000

Dimensioning is automatic in MATLAB. You can find the dimensions and rank of

an existing matrix with the size and rank statements. For vectors, use the command
length.
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A.7.1 UTILITY MATRICES

There are many special utility matrices which are useful for matrix operations., A
few examples are

eye(m, n) Generates an m-by-n identity matrix.
zeros(m, n) Generates an m-by-n matrix of zeros.
ones(im,n}  Generates an m-by-n matrix of ones. .
diag(x) Produces a diagonal matrix with the

: elements of x on the diagonal line.

For a complete list and help on elementary matrices and matrix manipulation, type

help elmat. There are many other special built-in matrices. For a complete list and
hetp on specialized matrices, type help specmat.

A72 EIGENVALUES

If A is an n-by-n matrix, the n numbers X that satisfy Az = Az are the eigenvalues
of A. They are found using eig(A), which retums the eigenvalues in a column
vector. Eigenvalues and eigenvectors can be obtained with a double assignment
statement {X, D] = eig(A). The diagonal elements of D are the eigenvalues and
the columns of X are the corresponding eigenvectors such that AX = X D.

Example A4

Find the eigenvalues and the eigenvectors of the matrix A given by

0 1 -1
A=| -6 ~-11 6
-6 —11 5
A=[0 &t -1; -6 -11 6; -6 -11 B58};

(X,D] = eig(4)

The eigenvalues and the eigenvectors are obtained as follows

X = D=
=0.7071  0.2182 -0.0921 -1 0 0
0.0000 0.4364 -0.5523 o -2 0
-0.7071  0.8729 -0.8285 o o0 -3

A8 COMPLEX NUMBERS

All the MATLAB arithmetic operators are available for complex operations. The
imaginary unit /1 is predefined by two variables i and j. In a program, if other
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valves are assigned 10 ¢ and j, they must be redefined as imaginary units, or other

characters can be defined for the imaginary unit.
j = sqrt(-1) = or i = sqrt(-1)

Once the complex unit has been defined, complex numbers can be generated.

Example A.5

Evaluate the following function V' = Zc cosh g + sinh g/Zc, where Z¢ = 200 +
4300 and g = 0.02 + j1.5

H

i sqre(-1); Zc = 200 + 300+i; g

Zc¢ *cosh{g) + sinh{g)/Zc

= (.02 + 1,5=*i;

resulls in the output

V =
B.1672 + 25.21721

It is important to note that, when complex numbers are entered as matrix elements
within brackets, we avoid any biank spaces. If spaces are provided around the com-
plex number sign, it represents two separate numbers.

Example A.6

In 1he circuit shown in Figure A.1, determine the node voltages 1 and V5, and the
power delivered by each source.

V] M2 = 0.35 — _3'12 V2

30 + j40A

o)

Yo =

Yo =
1.15-j08  0.55—j0.4

FIGURE A.1
Circuit for Example A6

Kirchhoff’s current law results in the following matrix node equation.

15-3720  —.35+51.2 ] [ Vi ] _ [30+440 ]
—-35+ 1.2 09-3416 || Va 20 + j15

and the complex power of each source is given by § = VI*. The following pro-
gram is written to yield solutions to V; ,Vo and § using MATLAB.
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J=sqre{-1) %4 Defining j
I=[30+j*40; 20+3j%15] % Column of node current phasors
Y=[1.5-j*2 —.35+j%1.2; - . 35+j%1.2 .9-j*1.86)

% Complex admittance matrix Y
inv(¥)*I % Node voltage solution
% complex power at nodes

disp(’The solution is’) V=
5=V.*conj(I)

result in

The solution is
v = .
3.5902 + 35,09728]
6.0155 + 36.2212i

1511.4 + 909 .21
663.6 + 634.2i

The prime () transposes a real matrix; but for complex matrices, the symbol ()
must be used to find the transpose.

A9 POLYNOMIAL ROOTS
AND CHARACTERISTIC POLYNOMIAL

1f p is a row vector containing the coefficients of a polynomial, roots{p) returns
a column vector whose elements are the roots of the polynomial. ¥ r is a column

vector containting the roots of a polynomial, poly(r) retums a row vector whose
elements are the coefficients of the polynomial.

Example A7

Find the roots of the following polynomial.

%+ 95° + 31.255% + 61.255% 4 67,7542 +14.755 + 15

The polynomial coefficients are ente

red in a row vector in descending powers.
The roots are found using roots. '

{1 9 31.25 61.25 67.75

p
I = roots(p)

14.75 15 ]

I

The polynomial roots are obtained in column vector
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r =
-4.0000 k
-3.0000 : j
-1.0000 + 2.0000i1
-1.0000 - 2.0000i
0.0000 + 0.50001 . s
0.0000 - 0.50001 &
Example A.8 Lo

The roots of a polynomial are —1,
tion.

—2, —3 & j4. Determine the polynomial equa-

Complex numbers may be entered using function { or 7. The roots are then
entered in a column vector. The polynomial equation is obtained using poly as
follows i

i = sqre(-1)
r=[-1 -2 -3+4si -3-4xi ]
p = poly(r)

The coefficients of the polynomial equation are obtained in a row vector,

p =
1 9 45 87 OG0

Therefore, the pelynomia) equation is

st 40952 + 4552 + 875+ 50 =10
Example A9

Determine the roots of the characteristic equation of the following matrix.

0 1 -1

A=| -6 ~11 6

—6 ~11 5
The characteristic equation of the matrix is found by poly, and the roots of this .
equation are found by roots:

A=[0 1 -1; -6 -11 6; -6 -11 5);
P = poly(A)
r = roots{p)

The result is as follows
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p=
1.0000 6.0000 11.0000 6.0000
r = -3.0000
=-2.0000
-1.0000

The roots of the characteristic equation are the same as the eigenvalues of matrix
A. Thus, in place of the poly and roots function, we may use .

T = eig(A)

A9.1 PRODUCT AND DIVISION OF POLYNOMIALS

The product of polynomials is the convolution of the coefficients. The division of
polynemials is obtained by using the deconvolution command.

Example A.10

(@) Given A = s2 + 75 +12,and B = s + 9, find C = AB.
(b) Given Z = s* + 95° + 375 + 815 + 52, and ¥ = s + 45 + 13, find X = &.

The ¢commands

fi1 7 121 rB=(1t © 9];

A=
C = conv(A, B} .
Z=11 9 37 81 82}, Yy =101 4 13];
[X, r]l = deconv(Z, Y)
result in
G
i 7 21 63 108
s
1 5 4
r -
0 0 0

A92 POLYNOMIAL CURVE FITTING
In general, a polynomial fit to data in vector z and y is a function p of the form
p(z) = a1zt + ezt o

The degree is d, and the number of coefficients is n = 4 + 1. Given a set

of points in vectors z and y, polyfit(x, ¥, d) retums the coefficients of dth order
polynomial in descending powers of .
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Example A.11
Find a polynomial of degree 3 to fit the following data

1 2 4 6 10
7 23 109 307 1231

< B
-

[0t 2 4 & 10);
] [t 7 23 109 307 1231];
polyfit(x,y,3)

=
non

The coeffictents of a third degree polynomial are found as follows

Cc =

1.0000 2.0000 3.0000 1.0000

ie,y=2%+2:2+3r + 1.

A93 POLYNOMIAL EVALUATION

If ¢ is a vector whose elements are the coefficients of a polynomial in descending
powers, the polyval(c, x} is the value of the polynomial evaluated at x. For example,
to evaluate the above polynomial at points 0, 1, 2, 3, and 4, use the commands

c
X

y

[1 2 3 13;
0:1:4;
polyval(c, x)

oo

which result in

y =
7 23 b5b 109
- A9.4 PARTIAL-FRACTION EXPANSION

_{1', P, K] = residuelb, a] finds the residues, poles, and direct terms of a partial
fraction expansion of the ratio of two polynomials

P(s)  bys" 4 bmoys™ 14+ his+ by
Q(s}) ans*+apast i+ +aystag

Vectors b and a specify the coefficients of the polynomials in descending powers

of 5. The residues are returned in column vector r, the pole locations in column

vector p, and the direct terms in row vector k. '
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Example A.12

Determine the partial fraction expansion for

25% +9s + 1

Fl§) = 0¥—F———

) 2 +52+4s5+4
b=(2 0 9 1];
a=01 1 a a7;
[r,p.k) = residue(b,a)

The result is as follows

r:
0.0000 -0.2500i
0.0000 +0.2500i
-2.0000
p = .
0.0000 +2.00001
0.0000 -2.00001
-1.0000
K =
2.0000

Therefore the partial fraction expansion is

-2 j0.25

—_7“0.25_2 -2 1
s+1 s+ 352

2+ =
5~ 32 s+1+32+4

[b, a] = residue(r, p, K) converts the partial fraction expansion back to the poly-
nomial P(s)/Q(s).

For a complete list and help on matrix analysis, linear equations, eigenvalues,
and matrix functions, type help matfan,

A.10 GRAPHICS

MATLAB can create high-resolution, publication-quality 2-D, 3-D, linear, semilog,
log, polar, bar chart and contour plots on plotters, dot-matrix printers, and laser
printers. Some of the 2-D graph types are plot, loglog, semilogx, semi -logy, polar,
and bar. The syntax for the above plots includes the following optional symbols
and colors.
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COLOR SPECIFICATION | LINE STYLE-QPTION
Long name  Short name | Style Symbol
black k solid -
blue b dashed --
cyan c dotted :
green g dash-dot - -
magenta m point X
red T circle o
white w x-mark X
yellow y plus +
star ®

You have three optiens for plotting multiple curves on the same graph. For exam-
ple,

plot{x1l, yi,’r’, x2, y2, *+b’, x3, ¥3, *--")
plots (x1, y1) with a solid red line, {(x2, y2) with a blue + mark, and (x3,

y3} with a dashed line. If X and Y are matrices of the same size, plot(X, Y) will
plot the columns of Y versus the column of X,

Alternatively, the hold command can be used to place new plots on the previ-

ous graph. hold on holds the current plot and ail axes properties; subsequent plot
commands are added to the existing graph. hold off returns to the default mode

whereby a new plot command replaces the previous plot. hold, by itself, toggles
the hold state.

Another way for plotting multiple curves on the same graph is the use of the

line command. For example, if a graph is generated by the command plot(x1,
y1), then the commands ' '

line(x2, y2, ’+b’)
line(x3, y3, ’'--7)

Add curve (x2,7 y2) with a blue + mark, and (x2, y2) with a dashed line to
 the existing graph generated by the previous plot command. Multiple figure win-
dows can be created by the figure command. figure, by itself, opens a new figure
window, and returns the next available figure number, known as the figure handle.
figure(h) makes the figure with handle h the current figure for subsequent plotting
commands. Plots may be annotated with title, z — y labels and grid. The command
grid adds a grid to the graph. The commands title(’Graph title *) titles the plot,

and xlabel(’x-axis label '}, ylabel('y-axis label *} label the plot with the specified
string argument. The command text(x-coordinate, y-coordinate, *text’) can be used

for placing text on the graph, where the coordinate values are taken from the cur-
reqt plot. For example, the statement
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text{(3.5, 1.5, 'Voltage’)

will write Voltage at point (3.5, 1.5) in the current plot. Alternatively, you can use
the gtext("rext’) command for interactive fabeling. Using this command after a plot
provides a crosshair in the Figure window and lets the user specify the location of
the text by clicking the mouse at the desired location. Finally, the command leg-
end(string!, string2, string3, ...} may be used to place a legend on the current plot
using the specified strings as labels. This command has many optional arguments.
For example, legend( linerype!l, stringl, linervpe2, string2, linerype3, string3d, ...)
specifies the line types/color for each label at a suitable location. However, you
can move the legend to. a desired location with the mouse. legend off removes the
fegend from the current axes. .
MATLAB provides automatic scaling. The command axis([x min. x max. y
min. y max.]} enforces the manual scaling. For example

axis([-10¢ 40 -80 60])

produces an z-axis scale from —10 to 40 and a y-axis scale from —G0 10 60. Typing
axis again or axis(’auto’) resumes auto scaling. Also, the aspect ratio of the plot
can be made equal to one with the commaund axis(’square’). With a square aspect
ratio, a line with slope | is at a true 45 degree angle. axis("equal’) will make the
z- and y-axis scaling factor and tic mark increments the same, For a complete list
and help on general purpose graphic functions, and two- and three-dimensional
graphics, see help graphics, help plotxy, and help plotxyz.

There are many other specialized commands for two-dunensional plotting.
Among the most useful are the semilogx and semilogy, which produce a plot with
an z-axis log scale and a y-axis log scale. An interesting graphic command is the
comet plot. The command comet(x, y) plots the data in vectors x and y with a
comet moving through the data points, and you can see the curve as it is being
plotted. For a complete list and help on general purpose graphic functions and two-
dimensional graphics, see help graphics and help plotxy.

A.11 GRAPHICS HARD COPY

The easiest way to obtain hard-copy printout is to make use of the Windows built-
in facilities. In the Figure window, you can pull down the file menu and click on
the Print command to send the current graph directly to the printer. You can also
import a graph to your favorite word processor. To do this, select Copy options
from the Edit pull-down menu, and check mark the Invert background option in
the dialog box to invert the background. Then, use Copy command to copy the
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graph into the clipboard. Launch your word processor and use the Paste command
to import the graph.

Some word processors may not provide the extensive support of the Windows
graphics and the captured graph may be corrupted in color. To eliminate this prob-
lem use the command

system dependent (14, ’‘on’)

which sets the metafile rendering to the lowest common denominator. To set the
metafile rendering to normal, use '

system dependent{14, ’off’)

In addition MATLAB provides a function called print that can be used to pro-
duce high resotution graphic files. For example,

print -dhpgl [filename]

saves the graph under the specified filename with extension hgl. This file may be
processed with an HPGL- compatible plotter. Similarly, the command

print -dilll [filename]

prOf:luces a graphic file compatibie with the Adobe Illustrator’88. Another print
option allows you to save and reload a figure. The command

print -dmfile [ filename )

produces a MAT file and M-file to reproduce the figure again.
Example A.13 |

Create a linear X-Y plot for the following variables,

Lz 0 05 10 15 20 25 30 35 40 43 50
yi10 10 16 24 30 .38 52 68 82 96 123

For a small amount of data, you can type in data explicitly using brackets,

x={0 05 10 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0];
y=1{10 10 16 24 30 38 62 68 82 96 123];
Plet(x, y), grid

xlabel(’x’), ylabel(’y’), title(’A simple plot example’)
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plot(x, ¥} produces a linear plot of y versus z on the screen, as shown in Figure A2

A simple plot example

140 : T . : .
1110 ]

%

FIGURE A.2
Example of X-} plol.

For large amounts of data, use the text editor to create a file with extension m.
Typing the filenanie creates your data in the workspace.

Example A.14

Fit a polynomial of order 2 to the data in Example A.13. Plot the given data point
with symbaol x, and the fitted curve with a solid line. Place a boxed legend on the
graph.

The command p = polyfit(x, ¥, 2) is used to find the coefficients of a polyno-
mial of degree 2 that fits the data, and the command yc¢ = polyval(p, x) is used to
evaluate the polyromial at all values in x. We use the following command.

x=[0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0};
y = [10 10 16 24 30 38 52 68 82 96 123);
p = polyfit(x, y, 2) ¥ finds the coefficients of a polynomial

% of degree 2 that fits the data
yc = polyval{(p, x);%polynomial is evaluated at all points in x
plot(x, y,’x’, x, yc)¥%plots data with x and fitted polynomial
xlabel(’x’), ylabel(’y’), grid
title(’Polynomial curve fitting’)
legend(’Actual data’, ’Fitted polynomial’)

The result is the array of coefficients of the polynomial of degree 2, and is
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i 4.,0232 2.0107

9.6783

Thus, the parabola 4.0z + 2.0z + 9.68 is found that fits the given data in the
least-square sense. The plots are shown in Figure A3,

Polynomial curve fitting
M= 1

X Actial data ] T = g
~_Fitted polynomial |

i

540 45 50

50 25 30 3
X

0 05 10 15

FIGURE A3
Fitting a parabola to the data jn Example A.L3.

Example A.15

Plot function y = 1 + ¢~ % sin(8t — 7/2) from 0 to 3 seconds. Find the lir_ne cor-
responding to the peak value of the function and the peak value. The graph is to be
labeled, titled, and have grid lines displayed.

Remember to use . * for the element-by-element multiplication of the two terms in
the given equation. The command fep, k] = max(c) return'_s the peak value and the
index k comresponding to the peak time. We use the following commands.

t=0:.005:3; ¢ = 1+ exp{-2%t).*sin{B*t - pi/2}; .

tep, k] = max(c). % cp is the maximum value of ¢ at interval k

tp = t{k) . %4 tp is the peak time

plot(t, c), xlabel(' t - sec’), ylabel(’c’), grid

title{’Damped sine curva')

text(0.55,1.35,[’cp =/, ,num2str(¢p)])%Text in qque‘& the va}ue
% of ¢p are printed on the graph at the specified locatien

text(0.55, 1.2, {’tp = ’,num2str{tp)])

The result is
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e w
1.4702
k =
73
tp =
0.3600

and the plot is shown in Figure A 4.

Damped sine curve

15 l l T T T
-cp=1.4702 3 : :
\tp=0.36: 1
10k |- . r
c
0.5}
0 H ; i : ; _J
] 0.5 1.0 1.5 2.0 25 30
t, sec
FIGURE A4

Graph of Example A.15.

An interactive way to find the data points on the curve is by using the ginput
command. Entering [x, y] = ginput will put a crosshair on the graph. Pysition the
crosshair at the desired location on the curve, and click the mouse. Yoy can repeat
this procedure for extracting coordinates for as many points as required, When the
return key is pressed, the input is terminated and the extracted data is printed on
the command menu. For example, (o find the peak value and the peak time for the

function in Example A.15, try
[tp, ¢p) = ginput

A crosshair will appear, Move the crosshair to the peak position, and click the
mouse. Press the return key to get

cp =
1.47

tp .
0.38
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subplot splits the Figure window into multiple portions, in order to show several
plots at the same time. The statement subplot(m, n, p) breaks the Figure window
into an m-by-n box and uses the pth box for the subsequent plot. Thus, the com-
mand subplot(2, 2, 3). plot(x,y) divides the Figure window into four subwindows
and plots y versus x in the third subwindow, which is the first subwindow in the
second row. The command subplot(111}) returns to the default Figure window. This
is demonstrated in the next example.

Example A.16

Divide the Figure window into four partitions, and plot the following functions for
wt from 0 to 3 in steps of 0.05.

1. Plot v = 120sinwt and i = 100sin{wt — 7/4} versus wt on the upper left
portion.

2. Plot p = vi on the upper right portion.

3. Given F,, = 3.0, plot f, = Fusinwt, Fy = Fnsin(wt — 27/3), and
F. = F,, sin{wt — 47 /3) versus wi on the lower left portion.

4. For fp = 3F,,, construct a circle of radius fr on the lower right portion.

wt = 0: 0.05: 3#pi; v=120*sin{wt}; %Sinusoidal voltage
i = 100*sin{wt - pi/4); ¥Sinusoidal current
p = v.*i; %Instantaneous power
subplot(2, 2, 1), plot{wt, v, wt, i}; %Plot of v & i versus wt
title(’Voltage & current’), xlabel(’wt, radians’);

subplot(2, 2, 2), plot(wt, p); % Instantaneous power vs. wt
. title(’Power’), xlabel{’ wt, radians ')}

Fm=3.0;

fa = Fm*sin(ut); % Three-phase mmf’s fa, fb, fc

fb = Fm*sin(uwt - 2#pi/3); fc = Fm*sin(wt - 4*pi/3);
subplot(2, 2, 3), plot(wt, fa, wt, fb, wt, fc)
title(’3-phase mmf’), xlabel(’ wt, radians ?)

iR = 3/2*Fm’ :

subplot(2, 2, 4), plot(-fR*cos(wt), fR*sin(wt))
title(’Rotating mmf’), subplot{111)

Example A.16 results are shown in Figure A.5,

A.12. THREE-DIMENSIONAL PLOTS 6§13

Voltage & current

Power
150 T
100 + ]
50+t 7
0 - ]
—30 . ]
—100+ i
_1500 5 10 “50000 5 10
wt, radians wt, radians
3-phase mmf Rotating mmf
5
< 0 L. Al

|
[

!
o

0 5

wt, radians

FIGURE A.5
Subplot demonstration.

A.12 THREE-DIMENSIONAL PLOTS

MATILAB provides extensive facilities for visualization of- three-dimensional data.
The most common are plots of curves in a three-dimensional space, mesh plots,
surface plots, and contour plots. The command plot3(x, y, z , *style option’) pro-
duces a curve in the three-dimensional space. The viewing angle may be speci-
fied by the command view{uzimuth, elevation). The arguments azimuth, and ele-
vation specifies-the horizontal and vertical rotation in degrees, respectively. The

_ title, xlabel, ylabel, etc., may be used for three-dimensional plots. The mesh and

surf commands have several optional arguments and are used for plotting meshes
and surfaces. The contour(z) command creates a contour plot of matrix z, treat-
ing the values in z as heights above the plane. The statement mesh(z) creates a
three-dimensional plot of the elements in matrix z. A mesh surface is defined by
the z coordinates of points above a rectangular grid in the x-y plane. The plot is
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formed by jeining adjacent points with straight lines. meshgrid transforms the do-
main specified by vector x and y into arrays X and Y. For a complete list and help
on general purpose Graphic functions and three-dimensional graphics, see help
graphics and help plotxyz. Also type demo to open the MATLAR Expo Menu
Map and visit MATLAB. Select and observe the demos in the Visualization section,

Exampie A.17

Obtain the cartesian plot of the Bessel function Jo/z2 + y? over the range —12 <
<12 12 <y <12,

Use the following commands

% Cartesian plot of Bessel function JO(sqrt{x~2+y~2))
fx, y] = meshgrid(-12:0.6:12, -12: .6:12); :
% meshgrid transforms the specified domain
% into array x and y for evaluating z
r = sqrt(x.”2 + y.72); z = bessel(0,r);
m = [-45 60];
mesh{z, m)

% vieuing angle
% 3-D mesh plot

Enter exal7 at the MATLAB prompt to see the result,

A.13 HANDLE GRAPHICS

It is often desirable to be able to customize the graphical output. MATLAB allows
object-oriented programming, enabling the user to have complete control over the
details of a graph. MATLAB provides many low-level commands known as Handle
Graphics. These commands makes it possible to access individual objects and their
properties and change any property of an object without affecting other properties
or objects. Handle Graphics provides a graphical user interface (GUI) in which
the user interface includes push buttons and menus. These topics are not discussed
here; like MATLAB syntax, they are easy to follow, and we leave these topics for
the interested reader to explore.

A4 LOOPS AND LOGICAL STATEMENTS

MATLAB provides loops and logical statements for programming, like for, while,
and if statements. The for statement instructs the computer to perform all subse-

qQuent expressions up to the end statement for a specified number of counted times.
The expression may be a matrix. The following is an example of a nested loop.

vianini waiatlizn ]

.
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for i = 1:n, for j = lL:n
expression
end, end

The while statement allows statements to be repeated an indefinite number of
times under the control of a logic statement. The if, else, and elseif statements al-
low conditional execution of statements. MATLAB has six relational operators and
four logical operators, which are defined in the following table.

Relational Operator Logical Operator
== equal & logical AND
~=  not equal |  logical OR
< less than ~  logical complement
= less than or equal to xor exclusive OR
>  greater than
= greater than or equal to

A5 SOLUTION OF DIFFERENTIAL EQUATIONS

Analytical solutions of linear time-invariant equations are obtained through the
Laplace transform and its inversion. There are other techniques which use the
state transition matrix ¢(t) to provide a solution. These anaytical methods are nor-
mally restricted to linear differential equations with constant coefficients. Numeri-
cal techniques solve differential equations direcily in the time domain: they apply
not only to linear time-invariant, but also to nonlinear and time varying differential
equations. The value of the function obtained at any step is an approximation of
the value which would have been obtained analytically; whereas, the analytical so-
lution is exact. However, an analytical solution may be difficult, time consuming,
or even impossible to find.

MATLAB provides two functions for numerical solutions of differential equa-
tions employing the Runge-Kutta method. These are ode23 and oded5, based on
the Fehiberg- second and third-order pair of formulas for medium accuracy and
fourth- and fifth-order pair for high accuracy. The nth-order differential equation
must be transformed into n first-order differential equations and must be placed in
an M-file that returns the state derivatives of the equations. The following examples
demonstrate the use of these functions.

Example A.18

Consider the simple mechanical system of Figure A.6. Three forces influence the

motion of the mass, namely, the applied force, the frictional force, and the spring
force,
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FIGURE A.6

Mechanical translational system.

Applying Newton’s law of mation, the force equation of the system is

d*r dz
— + B— + Kz = f(t
Mdt2+ 5 H Kz fit)
Let
rn=x
and ) e
LT
then
dIl _
a2
dxa 1
R e — - K
— = 37|/ (t} - Bza — Kz)]

With the system initially at rest, a force of 25 newtons is applied at time ¢ = 0. As-
sume that the mass M = 1 kg, frictional coefficient B = 5 N/m/se¢c, and the spring

" constant K' = 25 N/m. The above equations are defined in an M-file mechsys.m
as follows.

function xdot = mechsys(t, x); ¥ Teturns the state derivatives
F = 25; % Step input
M=1; B=25; K=25; xdot = [x(2); 1/M*(F - B*x(2)-K=x(1) )} 1;

The following M-file, exal8.m, uses ode23 to simulate the system over an interval
of 0 to 3 sec., with zero initial conditions.

tspan = [0, 3];

Y% time interval
x0 = [0, 0];

% initial conditions
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Time response of mechanical translational system
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FIGURE A.7
Response of the mechanical systern of Example A.18,

[t,x] = cde23(’mechsys’, tspan, x0);

subplot(2, 1, 1}, plot{t, x}, xlabel(’t, seoc’)
title(’Time response of mechanical translational system’)
text(2, 1.2, 'Displacement’), text(Z, 0.2, *Velocity®)

d = x(:, 1); v =x(:, 2);

subplot(2, 1, 2}, plot{d, v)

title(’Velocity versus displacement ’)
xlabel(’Displacement’), ylabel(’Velocity’), subplot(111)

Results of the simulation are shown in Figure A.7.

Example A.19

The circuit elements in Figure A8are R=14Q, L= 2H,and C = 0.32 F. The
initial inductor current is zero, and the initial capacitor voltage is 0.5 volts. A step

voltage of 1 volt is applied at time ¢ = 0. Determine i(t) and v(¢) over the range
0 < ¢ < 15 sec. Also, obtain a plot of current versus capacitor voltage.
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FIGURE A8
RLC circuit for Example A.19.

Applying KVL "
; i
Rz+Ld—t+v¢:V3
and
an du,
1= —
dt
Let )
Xl = Vs
and :
XTo = i il E
=3
Then i
y 1 i
Iy = E“Iz ::
and 1 i
gy = 2(Ve =31~ Ras)

The above equations are defined in an M-file electsys.m as follows.

" function xdot = electsys(t, x);

% returns the state derivatives
¥ =1 ' % Step input
R=1.4; L=2;¢-= 0.32;

xdot = [x(2)/C; 1/L+( V - %(1) - R*x(2) )];

The following M-file, exal9.m, uses ode23 to simulate the system over an ipterval ==
of O to 15 sec, _ e

tspan = [0, 15];

% time interval
x0 = [0.5, 0];

% initial conditions

A.15 SOLUTION OF DIFFERENTIAL EQUATIONS

[t,x] = ode23(’electsys’, tspan, x0);
subplot (2, i, 1), plot(t, x)

title("Time response of an RLC series circuit’)
xlabel(’t, sec')

text(8,1.05, Capacitor voltage’), text(8, .05, Current’)
ve=s x(:, 1); i=x(:, 2);

subplot(2, 1, 2), pletive, i)

title(*Current versus capacitor voltage ')

xlabel (’Capacitor voltage’), ylabel(’Current’)
subplot(111) i

Results of the simulation are shown in Figure A.9.
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FIGURE A.9
Response of the serics RLC circuit of Example A 19,

619
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A.16 NONLINEAR SYSTEMS

A great majority of physical systems are linear within some range of the vanables,
However, all systems ultimately become nonlinear as the ranges are increased with-
out limit. For the nonlinear systems, the principle of superposition does not apply.

_0de23 and ode45 simplify the task of solving a set of nonlinear differential equa-
tions, as demonstrated in Example A.20.

Example A.20

Consider the simple pendulum itlustrated in Figure A.10, where a weight of W =
mg kg is hung from a support by a weightless vod of length L meters. While usually
approximated by a linear differential equation, the system really is nonlinear and
includes viscous damping with a damping coefficient of B kg/m/sec.

mg

FIGURE A.10
Pendulum oscitlator,

If 8 in radians is the angle of deflection of the rod, the velocity of the weight '

at the end will be L8 and the tangential force acting to increase the angle & can be
wrilten as

Fr=-Wsin 8 - BLé
From Nc)vlon’s law
Fr=mL@

Combining the two equations for the force, we get

ng-[- BLO4+Wsinf=0
Let 2y = 8 and zy = 6 (angular velocity), then

Iy =T
B

2?'2 e 1 — sin I
m"

mL
The above equations are defined in an M-file pendulum.m as follows.

s LT
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FIGURE A.11
Response of the pendulum described in Example A.20.

functidn xdot = pendulum(t,x);lireturns the state derivatives
W=2; L= _.6;B=20.02; g=9.81;, m=Wg;
xdot = [x(2) ; -B/m*x(2)-W/(@*L}*sin(x (1)) 1;

The following M-file, exa20.m, uses ode23 to simulate the system over an
interval of @ to 5 sec. Results of the simulation are shown in Figure A 11.

tspan = [0, §];

x0 = 1, 01;

[t,x] = 0de23(’pendulum’, tspam, x0); .
subplot(2, 1, 1), plot(t, x)

title(’Time response of a rigid pendulum’)
xlabel(’t, sec’)

text(3.2, 3.5, ’Velocity’) , text(3.2, 1.2, 'Angle-rad.’)
th= x(:, 1J;  w=1x(:, 2);

subplot(2, 1, 2), plot(th, w)

% time intexrval
% initial conditions
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title{’Phase plane plot of pendulum’)
xlabel(’Position, rad’}, ylabel(’Angular velocity’)
subplot (111}

A.17 SIMULATION DIAGRAM

The differential equations of a lumped linear network can be written in the form

x(t) = Ax(t) + Bu(t) . an

y(t) = Cx(t) + Du(t)

This system of first-order differential equations is known as the state equation
of the system, and x is the state vector. One advantage of the state-space method
is that the form lends itself easily to the digital and/or analog computer methods
of solution. Further, the state-space method can be easily extended to analysis of
nonlinear systems. State equations may be obtained from an nth-order differen-
tial equation or directly from the system model by identifying appropriate state
variables.

To illustrate how we select a set of state variables, consider an nth-order linear
plant modet described by the differential equation

dny d‘u—-ly
am T o1 g

d :
+...+r.:]ld—3:r + agy = u(t) (A2)
where y(t) is the plant output and u(t) is its input. A state model for this system
is not unique, but depends on the choice of a set of state variables. A useful set of
state variables, referred to as phase variables, is defined as

. - n—1
D1=h L= Ta=4% -y In=TY

We express & = x5y for k = 1,2,...,n — 1, and then solve for d"y/dt™,
. and replace y and its derivatives by the corresponding state variables to give

3.31 = 4es
ig = I3
(A.3)
Eno1 = Tn
i':ﬂ =

—Qqpr; —a1¥y — ... —p_1 Tn + u(t)
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or in matrix form

3| 0 1 0 0 T 0

T9 0 0 1 0 Ta 0

2= B : P g : co A | ul®) (A4)
Tr_y 0 6 0 ... 1 In_1 0

Tn —fap —a1 —a2 ... —Qy_| Tn 1

and the output equation is

y=[1 0 ©o .. 0]x (A.5)

The M-file ode2phv.m is developed which converts an nth-order ordinary differ-
ential equation to the state-space phase variable form. [A, B, C] = ede2phv(ai, k)
returns the matrices A, B, C, where ai is-a row vector containing coefficients of the
equation in descending order, and k is the coefficient of the right-hand side.

Equation (A.3) indicates that state variables are determined by integrating
the corresponding state equation. A diagram known as the simulation diagram can
be constructed to model the given differential equations. The basic element of the
simulation diagram is the integrator. The first equation in (A.3) is

T =23

Integrating, we have

:clzf:cgdx

The above integral is shown by the foliowing time-domain symbol. The integrating
block is identified by symbol -;- Adding an integrator for the remaining state vari-

ables and completing the last equation in {A.3) via a summing point and feedback
paths, a simulation diagram is obtained.

Il(t)

S S

T (ﬁ)

—_ 3

-

A8 INTRODUCTION TO SIMULINK

SIMULINK is an interactive environment for modeling, analyzing, and simulating
a wide variety of dynamic systems. SIMULINK provides a graphical user inter-
face for constructing block diagram models using “drag-and-drop” operations. A
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system is configured in terms of block diagram representation f‘rom a libl.-ary of
standard components. SIMULINK is very easy to learn. A system in bloc.:k diagram
representation is built easily and the simulation results are d}splayed‘ quickly. )

Simulation algorithms and parameters can be changed in the middle of a sim-
ulation with intuitive results, thus providing the user with a reszy access learn-
ing tool for simulating many of the operational problems found in the ln.:al world.
SIMULINK is panicularly useful for studying the effects of nonlineanties on the
behavior of the system, and as such, it is also an ideal research tool. The key fea-
tures of SIMULINK are

Interactive simulations with live display.

A comprehensive block library for creating linear, nonlinear, discrete or hy-
brid multi-input/output systems.

Seven integration methods for fixed-step, variable-step, and stiff systems.

Unlimited hierarchical model structure.

Scalar and vector connections.

Mask facility for creating custom blocks and block libraries.

SIMULINK provides an open architecture that atlows you to extend the simulation
environment:

* You can easily perform “what if” analyses by changing model parameters -
either interactively or in batch mode - while your simulations are running.

= Creating custom blocks and block libraries with your own icons and user
interfaces from MATLAR, Fortran, or C code.

* You can generate C code from SIMULINK models for embedded applica-
tions and for rapid prototyping of control systems.

» You can create hierarchical models by grouping blocks into subsystems.
There are no limits on the number of blocks or connections.

» SIMULINK provides immediate access to the mathematical, graphical, and .

programming capabilities of MATLAB, you can analyze data, automate pro-
cedures, and optimize parameters directly from SIMULINK.:

® The advanced design and analysis capabilities of the toolboxes can be exe-
cuted from within a simulation using the mask facility in SIMULINK.
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* The SIMULINK block library can be extended with special-purpose block-
sets. The DSP Blockset can be used for DSP algorithm development, while
the Fixed-Point Blockset extends SIMULINK for modeling and simulating
digital control systems and digital filters.

A.18.1 SIMULATION PARAMETERS AND SOLVER

You set the simulation parameters and select the solver by choosing Parame-
ters from the Simulation menu. SIMULINK: displays the Simulation Parameters

dialog box, which uses three “pages” to manage simulation parameters. Solver,
Workspace 1/0, and Diagnostics. .

SOLVER PAGE

The Solver page appears when you first choose Parameters from the Simulation
menu of when you select the Solver tab. The Soiver page allows you to:

s Set the start and stop times — You can change the start time and stop time
for the simulation by entering new values in the Start time and Stop time

ficlds. The default start time is 0.0 seconds and the default stop time is 10.0
seconds.

o Choose the solver and specify solver parameters — The default solver provide
accurate and efficient results for most problems. Some solvers may be more
efficient that others at solving a particular problem; you can choose between
variable-step and fixed-step solvers. Variable-step solvers can modify their
step sizes during the simulation. These are oded5, ode23, odell3, odelSs,
ode23s, and discrete. The default is oded5. For variable-step solvers, you
can set the maximum and suggested initial step size parameters. By default,
these parameters are automatically determined, indicated by the value auto.
For fixed-step solvers, you can choose ede5, oded, oded, ode2, odel, and
discrete.

s Output Options — The Qutput options area of the dialog box enables you
to control how much output the simulation generates. You can choose from

three popup options. These are: Refine output, Produce additional output,
and Produce specified output only.

WORKSPACE I/O PAGE

The Workspace I/0 page manages the input from and the output to the MATLAB
workspace, and allows: _ ;




626 A. INTRODUCTION TO MATLAB

e Loading input from the workspace — Input can be specified either as MAT-
LAR command or as a matrix for the Import blocks,

e Saving the output to the workspace ~You can specify return variables by se-
lecting the Time, State, and/or Output check boxes in the Save to workspace
area. '

DIAGNOSTICS PAGE

The Diagnostics page allows you to select the evel of waming messages displayed
during a simulation.
A.18.2 THE SIMULATION PARAMETERS PIALOG BOX

Table below summarizes the actions performed by the dialog box buttons, which
appear on the bottom of each dialog box page.

Button Action

Apply  Applies the current parameter values and keeps the dialog box
open. During a simulation, the parameter values are applied
imimediately.

Revert  Changes the parameter values back to the values they had
when the Dialog box was most recently opened and applies
the parameters.

Help Displays help text for the dialog box page.

Close  Applies the parameter values and closes the dialog box. Dur-

ing a simulation, the parameter values are applied immedi-

ately.

To stop a simulation, choose Stop from the Simulation menu. The keyboard short-
cut for stopping a simulation is Cul-T. You can suspend a running simulation by
choosing Pause from the Simulation menu. When you select Pause, the menu item

" changes to Continue. You proceed with a suspended simulation by choosing Con-
tinue.

A.18.3 BLOCK DIAGRAM CONSTRUCTION

At the MATLAB prompt, type SIMULINK. The SIMULINK BLOCK LIBRARY,
containing seven icons, and five puil-down menu heads, appears. Each icon con-
tains various components in the titled category. To see the content of each category,
double click on its icon. The easy-to-use pull-down menus altow you to create a
SIMULINK block diagram, or open an existing file, perform the simulation, and
make any modifications. Basically, one has to specify the model of the system
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(state space, discrete, transfer functions, nonlinear ode’s, etc), the input (source)
to the system, and where the output (sink) of the simulation of the system will go.
Generally when building 2 model, design it first on the paper, then build it using the
computer. When you start putting the blocks together into a model, add the blocks
to the model window before adding the lines that connect them. This way, you can
reduce how often you need to open block libraries. An introduction to SIMULINK
i1s presented by constructing the SIMULINK diagram for the following examples.

MODELING EQUATIONS

Here are some examples that may improve your understanding of how to model
equations.

Example A.21

Maoadel the equation that converts Celsius temperature to Fahrenheit. Obtain a dis-
play of Fahrenheit-Celsius temperature graph over a range of 0 to 100°C.

9
Tr = ETC + 32 (A.6)

First, consider the blocks needed to buitd the model, These are:

A ramp block to in;ﬁut the temperature signal, from the source library.

A constant block, to define the constant of 32, also from the source library.

A gain block, to multiply the input signal by 9/5, from the Linear library.

A sum block, to add the two guantities, also from the Linear library.

A scope bleck to display the output, from the sink Iibrﬁry.

To create a SIMULINK block diagram presentation select new... from the File
menu. This provides an untitled blank window for designing and simulating a dy-
namic system. Copy the above blocks from the block libraries into the new window
by depressing the mouse button and dragging. Assign the parameter values to the
Gain and Constant blocks by opening {(double clicking on} each block and entering
the appropriate value. Then click on the close button to apply the value and close
the dialog box. The next step is to connect these icons together by drawing lines
connecting the icons using the left mouse button (hold the button down and drag
the mouse to draw a line). You should now have the SIMULINK block diagram as

4~ . shown in Figure A.12,

The Ramp block inputs Celsius temperature. Open this block, set the Stope
to 1, Start time to 0, and lhe_ Initial output to 0. The Gain block multiplies that
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FIGURE A.12
Simulink diagram for the system of Example A.21.

temperature by the constant 9/5. The sum block adds the value 32 to the result and

outputs the Fahrenheit temperature. Pull down the Simulation dialog box and select
Parameters. Set the Start time to zero and the Stop Time to 100. Pull down the File
menu and use Save to save the model under simexa21 Start the simulation. Double
click on the Scope, click on the Aute Scale, the result is displayed as shown in
Figure A.13.

220

Fahrenheit : :

60

29 20 10 60 80 100

Celsius

FIGURE A.13
Fahrenheit-Celsius temperature graph for Example A.21.

Example A.22

Construct a simulation diagram for the state equation described in Example A.18.
Use SIMULINK 1o model and simulate the step response of this system, and dis-
play the results graphically. ' -

State equation in Example A.18 for M = 1kg, B = 5 N/m/sec, K = 25 N/m, and

i
i
i
P
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f(2} = 25u(t), is given by

I = I9
Z2 = ~25r; — 5z3 + 25u(t)

The simulation dingram is drawn from the above equations by inspection and is
shown in Figure A.14.

F=25

‘ | T2 1 Ty ] 1 ]
| — 5 A

Step Inpwt Sum Integratort Integrator2 Scope 1

=1 -
\
Gain2 4 o Scope 2

Gainl

FIGURE A.14
Stmulink diagram for the system of Example A.22.

To create a SIMULINK block diagram presentalion seiect new... Irom the
File menu. This provides an untitled blank window for designing and simulating a
dynamic system. You can copy blocks from within any of the seven block libraries
or other previously opened windows into the new window by depressing the mouse
buiton and dragging. Open the Source Library and drag the Step Input block to
your window. Double click on Step Input to open its dialog box. Set the step time
to a large value, say 100, and set the Initial Value and the Final Value to 25 to
represent the step input. Open the Linear Library and drag the Sum block to the
right of the Step Input block. Open the Sum dialog box and enter + - - under List
of Signs. Using the left mouse button, click and drag from the Step output port to
the Summing block input port to connect them. Drag a copy of the Integrator block
from the Linear Library and connect it to the output port of the Sum block. Click
on the Integrator block once to highlight it. Use the Edit command from the menu
bar to copy and paste a second Integrator. Next drag a copy of the Gain block from
the Linear Library. Highlight the Gain block, and from the puli-down Options
menu, click on the Flip Horizontal to rotate the Gain block by 180°. Double click
on Gain block to open its dialog box and set the gain to 5. Make a copy of this
block and set its gain to 25. Connect the output ports of the Gain blocks to the
Sum block and their input ports to the locations shown in Figure A.14. Finally, get
two Auto-Scale Graphs from the Sink Library, and connect them to the output of
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each Integrator. Before starting simulation, you must set the simulation parameters.
Pull down the Simulation dialog box and select Parameters. Set the Start Time
to zero, the Stop Time to 3, and for a more accurate integration, set the Maximum
Step Size to 0.1, Leave the other parameters at their default values. Press QK to
close the dialog box.

If you don't like some aspect of the diagram, you can change it in a variety of
ways. You can move any of the icons by clicking on its center and dragging. You
can move any of the lines by clicking on one of its comers and dragging. You can
change the size and the shape of any of the icons by clicking and dragging on its
‘comners. You can remave any line or icon by clicking on it 10 select it and using the
cut command from the edit menu. You should now have exactly the same system as
shown in Figure A.14. Pull down the File menu and use Save as 1o save the model
under a {ile name simexa22. Start the simulation. SIMULINK will create the Figore

- windows and display the system responses. To see the second Figure window, click
and drag the first one to a new focation. The simulation results are shown in Figures
A.15 and A.16, which are the same as the curves shown in Figure A.7.

SIMULINK enables you to construct and simulate many complex systems,
such as control systems modeled by block diagram with transfer functions includ-
ing the effect of nonlinearities, In addition, SIMULINK provides a number of built-
in state variable models and subsystems that can be utilized easily.

FIGURE A.15
Displacement response of the sysiem described in Example A.22.
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FIGURE A.16
Velocity response of the system described in Example A.22,

Examplc A.23

Consider the system defined by

dy d%y  dy
2—= +4—2 48
di3 ¥ 4dt? T Sdz

We have a third-order system; thus there are three state variables. Let us choose the
state variables as

+ 10y = 10u(t)

n =y
ra=y
IS.:?}

Then we obtain

J'.:]:IQ
Ty =3

Jf3 = —53:1 o 41‘2 = 22‘.‘3 + Su(t)

The last of these three equations was obtained by solving the original differential
equation for the highest derivative term y and then substitating y = 3, § = 72,
and § = z3 into the resulting equation. Using matrix notation, the state equation is

1 0 1 ] Ty 0
:.'i?g = 0 0 i T3 + |0 u(t)
I3 -5 —q -2 X3 5
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and the output equation is given by
y=[(1 0 0]x

The simulation diagram is obtained from the system differential equations and is
given in Figure A.17.

Buft)

- P 0 IR 100 S (O O O | D
] I EnE
Step Input Integrater] | Integrator2 | Integrator3 Scope

FIGURE A.17
Simulation diagram for the system of Example A.23.

A SIMULINK Block diagram is constructed and saved as simexa23. The sim-
ulation response is shown in Figure A.18.

1.4 e RS T S . R R CRA

T S W N T e
I SR WA WY o N S -
. 08F - A £ S SRR - SRR TS s b
061 f e s s S Dol o
B tho s o oty s B R
O i Gs e fmonboems s s s oot B
0' i L 1 i H i 1 i i

FIGURE A.18
Simulation result for the system in Example A.23.
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Example A.24

Use the state-space model to simulate the state and output equations described in
Example A.23.

The State-Space model provides a dialog box where the A, B, C, and I
matrices can be entered in MATLAB matrix notation, or by variables defined in
Workspace. A SIMULINK diagram using the State-Space model is constructed as

shown in Figure A_19, and saved as s:mex324 The simulation result is the same as
in Figure A.18,

Sufty

| ra i Bt
Step Inpn - Statespace Scope
FIGURE A.1%

Siate-space model for sysiem in Example A 24.

Note that in this example, the output is given by y = z,, and we define C
asC =[1 0 0] Ifitis desired 1o access all the states, then we can define
C" as an identity matrix, in this case a third order, i.e,, C = eye(3), and D as

I} = zeros(3, 1). The output is a vector of state vanablec A DeMux blocl\ may be
added to produce individual states for graphing separately.

A.184 USING THE TO WORKSPACE BLOCK

The To Workspace block can be used to return output trajectories to the MATLAB
Workspace. Example A.25 illustrates this use.

Example A.25

Obtain the step response of the following transfer function, and send the result to
the MATLAB Workspace.

Cls) 25
R(s)  s2+42s+425

where r(t) is a unit step function. The SIMULINK block diagram is constructed
and saved in a file named simexa25 as shown in Figure A.20.

The To Workspace block can accept a vector input, with each input element’s
trajectortes stored as a column vector in the resulting workspace variable. To spec-
ify the variables open the To Workspace block and for the variable name enter c.




€34 - A. INTRODUCTION TO MATLAB

uft) ——————

i 25 c
32 +25+25

Step [nput To Workspéce

Transfer Fen

(O5—

Clock T4 Workspace

FIGURE A.20
Sirmulink model for system in Example A25.

The time vector is stored by feeding a Clock block into To Workspace block. For
this block variable name specify t. The vectors ¢ and ¢ are returned to MATLAB
Workspace upon simulation.

A.13.5 LINEAR STATE-SPACE
MODEL FROM SIMULINK DPIAGRAM

SIMULINK provides the linmod, and dlinmod functions to extract linear models
from the block diagram model in the form of the state-space matrices A, B, C and
D. State-space matrices describe the linear input-output relationship as

#{t) = Az(t) + Bult) (AT
y(t) = Cx(t) + Du(t) (A.8)
The following Example illustrates the use of linmod function. The input and

outputs of the SIMULINK diagram must be defined vsing Inport and Qutport
blocks in place of the Source and Sink blocks.

Example A.26

Obtain the state-space model for the system represented .b}' the block diagr.am
shown in Figure A.21. The mode! is saved with a filename simexa26. Run the sim-

ulation and to extract the linear model of this SIMULINK system, in the Command

Window, enter the command
[A,B,C,D) = linmed(’simexa26’)

The result is

+2
) P
+ — =
in C

Suml ontroller
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FIGURE A 21
Simulink madel for system in Example A.26.

A=
0] 0 0 20
-1 -1 o G
-1 1 -i0 -56
0 0 1 0
C =
_ 1 0o o0 o
D=

[ I e ]

10

Owm

In order to obtains the transfer function of the system from the state-space model,

we use the command

[num, den]=ss2tf(4, B,
the result is
num =
0.0000 ¢.0000¢
den =

1.0000 11.0000

Thus, the transfer function model is

C, B

0.000C 20.0000 40.0000

66.0000 76.0000 40.0000

205 + 40

T(s}

T 3T+ 1% + 6692 + 765 + 40

-Once the data is in the state-space form, or converted to a transfer function model,
you can apply functions in Control System Toolbox for further analysis:
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« Bode phase and magnitude frequency plot:
bode(A, B, €, D) or bode(num, den)
» Linearized time response:

step(A, B, C, D) or step(num, den)
1sim(A, B, C, D) or lsim(num, den)
impulse(4, B, €, D) or impulse{(num, den)

A.18.6 SUBSYSTEMS AND MASKING

SIMULINK subsystems, peovide a capability within SIMULINK similar to subpro-
grams in traditional programming languages.

Masking is a powerful SIMULINK feature that enables you to customize the
dialog box and icon for a block or subsystem. With masking, you can simplify the
use of your mode!l hy replacing many dialog boxes in a subsystem with a single
one.

Example A.27

To encapsulate a portion of an existing SIMULINK model into a ‘itlbb‘} stem, con-

sider the SIMULINK model of Example A.23 shown in Figure A.22, and proceed
as follows:

Suft)

; IO U TG (N R Y N |
4 s TTow &
Swep > Integratort | Integrator2 Scope
@I
" Gain?2
FIGURE A.22

Simulation diagram for the system of Example A.23.
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I. Select all the blocks and signal lines to be included in the subsystemn with
the bounding box as shown,

2. Choose Edit and select Create Subsystem from the model window menu bar.
SIMULINK will replace the select blocks with a subsystem block that has
an input port for each signal entering the new subsystem and an output port

for each signal leaving the new subsystem. SIMULINK will assign default
names to the input and output ports. :

Su(t)
x | |
; * Inl Qur! 1
Ste Scope
# Subsysiem B
FIGURE A.23

Simulation diagram for the system of Example A.23.

To mask a block, select the block, then choose Create Mask from the Edit menu.

The Mask Editor appears. The Mask Editor consists of three pages, each handling
a different aspect of the mask.

e The Initialization page enables you to define and describe mask dialog box
parameter prompts, name the variables associated with the parameters, and
specify initialization commands,

s The Icon page enables you to define the block icon. '

» The Documentation page enables you to define the mask type, and specify
the block description and the block help.

In this example for icon the system transfer function is entered with command

dpoly([i0], (2 4 & 10])

A short description of the system and relevant help topics can be entered in the
Documentation page. The subsystem block is saved in a file named simexa28.
Additional SIMULINK examples are found in Chapter 12. Also, many interesting
examples are available in SIMULINK demo.



APPENDIX

B

REVIEW OF FEEDBACK
CONTROL SYSTEMS

B.1 THE CONTROL PROBLEM

The first step in the analysis and design of control systems is mathemauca‘l mod-
eling of the system. The two most common methods are the transfer fu.ncuon ap-
proach and the state equation approach. The state equations can be applied to por-
tray linear as well as nonlinear systems

All physical systems are nonlinear to some extent. In order to use the transfer
function and linear state equations, the system must first be linearized. Thus, prgpcr
assumptions and approximations are made so that the system can be chz}mcfenzed
by a linear mathematical model. The model may be validated by analyzing its per-
formance for realistic input conditions and then by comparing with field test .data
taken from the dynamic system in its operating environment. Further anal)-s‘ls of
the simulated mode! is usually necessary to obtain the model response for differ-
ent feedback configurations and parameters settings. Once an acceptable corftroller
has been designed and tested on the model, the feedback control strategy is then
applied to the actual system to be controlled. )

When we wish to develop a feedback conirol system for a specific purpose,
the general procedure may be summarized as follows:

638
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- Choose a way 10 adjust the variable to be controlled: €.g., the mechanical

load will be positioned with an electric motor or the temperature will be
controlled by an electrical resistance heater.

. Select syitable sensors, power supplies, amplifiers, etc., to complete the loop.

. Determine what is required for the system to operate with the specified ac-
- curacy in steady-state and for the desired response time.

Analyze the resulting system to determine its stability,

Modify the system to provide stability and other desired operating conditions

by redesigning the amplifier/controller, or by introducing additional control
loops. i

The objective of the control system is to control the output ¢(t} in some pre-
scribed manner by the input () through the elements of the control system. Some

of the essential characteristics of feedback control systems are investigated in the
following sections.

B.2 STABILITY

Consider the block diagram of a simple closed-looﬁ control system as shown in
Figure B.1 where R(s) is the s-domain reference input, and C(s) is the s-domain
controlled output. G(s) is the plant transfer function, K is a simple gain controtler,

RGN

r

2, K

H{s)

FIGURE B.1
A simple closed-loep control system.

and the feedback elements H (s) represent the sensor transfer function. The closed-
loop transfer function is

KG(s)
=TT RGWA®) oy




640 B. REVIEW OF FEEDBACK CONTROL SYSTEMS

or the s-domain response is
C(s) = T(s)R(s) ®.2)

The gain K G(s)H (s) is commonly referred to as the open-loap transfer function.
For a system to be usable, it must be stable. A linear time-invariant system is stable
if every bounded input produces a bounded output. We call this characteristic sra-
bility. The denominator polynomial of the closed-loop transfer function set equal
to zero is the system charactenistic equation. That is, the characteristic equation is
given by

1+ KG{s)H(s) = 0 (B.3)

The roots of the characteristic equation are known as the poles of the closed-loop
transfer function. The response is bounded if the poles of the closed-loop system
are in the left-hand portion of the s-plane. Thus, a necessary and sufficient condi-
tion for a feedback system to be stable is that all the poles of the system transfer
function have negative real parts.

The stability of a linear time-invariant system may be checked by using the
Control System Toolbox function impulse to obtain the impulse response of the
system. The system is stable if its impulse response approaches zero as time ap-
proaches infinity. One way 1o determine the stability of a system is by simulation.
The function Isim can be used to observe the output for typical inputs. This is par-
ticularly useful for nonlinear systems. Alternatively, the MATLAB function roots
can be utilized to obtain the roots of the characterstic equations. In the classical
control theory, several techniques have been developed requiring little computation
for stability analysis. One of these techniques is the Rowsh-Hurwitz criterion. Con-
sideration of the degree of stability of a system often provides valuable information
about its behavior. That is, if it is stable, how close is it to being unstable? This is
the concept of refative stabitiry. Usually, relative stability is expressed in terms of
the speed of response and overshoot. Other methods frequently used for stability

studies are the Bode diagram, Root-locus plot, Nyquist criterion, and Lyapunov’s
stability criterion.

B.2.1 THE ROUTH-HURWITZ

STABILITY CRITERION . _ )

The Routh-Hurwitz criterion provides a quick method for determining absolute
stability that can be applied to an nth-order characteristic equation of the form

Cns" +an 15" b ... tastap=0 (B.4)

e Tt o e e s b s B .
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The criterion is applied through the use of a Routh table defined as

§ On Gn-2 On—4
"' | @pot Brnea Gnes
sh=4 by ba by
g3 €1 ) 3
@n; Gn-1, - - ., g are the coefficients of the characteristic equation and
Gn_18n-2 — Gply.. Qn_10p_4 — GnQp_5
bl=nln2 nn3’b2:nln4 nn,elCA
an-1 n-1
bian_3 —an_1b; b1an-5 — 2n—1b3
=, = —————_  glc.

bl Ll 2 bl T

Calculations in each row are continued until only zero elements remain. The neces-
sary and sufficient condition that all roots of (B.4) lie in the left half of the s-plane
is that the elements of the first column of the Routh-Hurwitz array have the same
sign. If there are changes of signs in the elements of the first column, the number
of sign changes indicates the number of roots with positive real parts.

A function called routh{a) is written that forms the Routh-Hurwitz array and
determines if any roots have positive real parts. a is a row vector containing the
coefficients of the characteristic equation.

If the first element in a row is zero, it is replaced by a very small positive
number ¢, and the calculation of the array is completed. If all elements in a row
are zero, the system has poles on the imaginary axis, pairs of complex conjugate
roots forming symmetry about the origin of the s-plane, or pairs of real roots with
opposite signs. In this case, an auxiliary equation is formed from the preceding
row. The all-zero row is then replaced with coefficients obtained by differentiating
the auxiliary equation.

- B.22 ROOT-LOCUS METHOD

The root-locus method, developed by W. R. Evans, enables us to find the closed-
loop poles from the open-loop poles for all the values of the gain of the open-loop
transfer function. The root tocus of a system is a plot of the roots of the system
characteristic equation as the gain factor K is varied. Therefore, the designer can
select a suitable gain factor to achieve the desired performance criteria. If the re-

quired performance cannot be achieved, a controller can be added to the system to
alter the root locus in the required manner,




642 B REVIEW OF FEEDBACK CONTROL SYSTEMS

Consider the feedback control system given in Figure B.1. In general, the
open-loop transfer function is given by

K(s+z1)(s+22)---(5+ 2m)
{s+pi}{s+p2)---(s+pn)

KG(s)H(s}) = (B.5)
where m is the number of finite zeros, and 7 is the number of finite poles of the loop

wransfer function. If n > m, there are (n — m) zeros at infinity. The characteristic
equation of the closed-loop transfer function is given by (B.3); therefore

(s+p)(s+pa)- (5+pn) _ _
(s +21)(5+ 22) - {5+ 2m)

(B.6)

From (B.6) it follows that for a point in the s-plane to be on the roaot locus, when
0 < K < o, it must satisfy the following two conditions.

N 'producl of vector lengths from finite poles
~ product of vector lengths from finite zeros

{(B.1
and

Zanglcs of zeros of GH (s} — Z angles of poles of GH{s)=r(180)° (B.8)
where r = +1, +3.£5,--

Given a transfer function of an open-loop control system, the Control Sysiem Tool-
box function rlocus(num, den ) produces a root-locus plot with the gain vector
automatically determined. If the open-loop system is defined in state space, we
use rlocus(A, B, C, D). rlocus(num, den, K) or rlocus(A, B, C, D, K) uses the
usci-supplicd gain vector K. If the above commands are invoked with the left hand
arguments [r, K], the matrix r and the gain vector K arc retummed, and we need to
use plot(r, * . *) to obtain the plot. rlocus function is accurate, and we use it to ob-
tain the root-locus. A 'good knowledge of the characteristics of the root loci offers

insights into the effects of adding poles and zeros to the system transfer function. -

1t is important to know how to construct the root locus by hand, so we can design a
simple system and be able to understand and develop the computer-generated loci.

For the busic construction rules for sketching the root locus, refer to any text on
feedback control systems,

B.3 STEADY-STATE ERROR

In addition to being stable, a control system is also expected to meet a specified
performance requitement when it is commanded by a set-point change or disturbed

i 3‘
1
f
i
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by an external force. The performance of the control system is judged not only by
the transient response, but also by steady-state error. The steady-state error is the
error as the transient response has decayed, leaving only the continuous response.
High loop gains, in addition to sensitivity reduction, will also reduce the steady-
state error. The steady-state ervor for a control system is classified according to its
response characteristics 10 a polynomial input. A system may have no steady-state
error to a step input, but the same system may exhibit nonzero steady-state error to
a ramp input. This depends on the type of the open-loop transfer function.

Consider the system shown in-Figure B.1. The closed-loop transfer function
is given by (B.1). The ermror of the clesed-loop system is

1

Using the final-value theorem, we have
i@ sR(s)
e = I T KGR H(s) =i

For the polynomial inputs, such as step, ramp, and parabolas, the steady-state error
from the above equation will be:

Unit step input

1 1
= = B.1i
€ = T Tms o KGO H() 1+ 5, R
Unit ramp input
1 1
= =X B.12
€= fim,_osKG(s)H(s) Ky (343
Unit parabolic input
: 1 1
- == % B.13
€ss = fim,—o S2KG(8)H(3) Ko B.19

In order to define the system type, the general opcn-ioop- transfer function is writlen
in the following form.

_ K1 +T18){1+T3s)...(1 + Tms)
KGO = G T 0T Ths) (1 Tos)

(B.14)

The type of feedback control system refers to the order of the pole of G(s) H (s} at
s=1{.
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Two functions, errorzp(z,p,k) and errortf(num, den), are written for com-
putation of system steady-state error due to typical inputs, namely unit step, unit
ramp, and unit parabolic. errorzp(z,p,k) finds the st.eady-state error when the. sys-
tem is represented by the zeros, poles, and gain. z is a column vector conta_mmg
the transfer function zeros, p is a column vector containing the poles, and K is the
gain. If the numerator power m is less than the denominator power n, the-n there
are (n — m) zeros at infinity, and vector z must be padded with (n —m) inf. er-
rortf(num, den) finds the steady-state error when the transfer function is expressed
as the ratio of two polynomials.

B.4 STEP RESPONSE

Assessing the time-domain performance of closed-loop system models is impor-
tant, because control systems are inherently time-domain systems. The perfor-
mance of dynamic systems in the time domain can be defined in terms of the time
response o standard test inputs. One very common input to control systems is the
step function, If the response 1o a step input is known, it is mathematically possible
to compute the response 1o any input. The step respoase for a second-order system
is obtained. The standard form of the second-order transfer function is given by

2

- “n B.15
Gls) §2 + 2wns + wy? ( )

where w,, is the natural frequency. The natural frequency is the frequency of oscil-
lation if all of the damping is removed. Its vatue gives us an indication of the speed
of the response. € is the dimensioniess damping ratio. The damping ratio gives us
an idea about the nature of the transient response. It gives us a feel for the amount
of overshoot and oscillation that the response undergoes.

The transient response of a practical control system often exhibits damped
oscillations before reaching steady-state. The underdamped response {{<Niwoa
- umit step input, subject to zero initial condition, is given by

c(t) =1- %e'c“"“ sin(Bunt + &) (B.16)

where § = /1 —¢? and 6 = tan~1{3/¢).

The performance criteria that are used to characterize the transient response

to a unit step input include rise time, peak time, overshoot, and settling time. We
define the rise time t,. as the time required for the response to rise from 10 percent
of the final value to 90 percent of the final value, The time to reach the peak value
is t,. The swiftness of the response is measured by ¢, and tp. The similarity with

ata—r
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which the actual response matches the step input is measured by the percent over-
shoot and settling time ¢,. For underdamped systems, the percent overshoot P.O.

. is defined as
- po. = maximum value — final value (B.17)
final value
The peak time is obtained by setting the derivative of (B.16) to zero.
x
g — o (B.18)

wpy/'1— (2

The peak value of the step response occurs at this time, and evalvating the response
in (B.16) at t = £, yields

Cltp) = Mpy = 1 4 e~ 57/ V1€ (B.19)
Therefore, from (B.17), the percent overshoot is
P.O. = e~ ¢"/V1=¢" « 100 (B.20)

Settling time is the time required for the step response to settle within a small
percent of its final value. Typically, this value may be assumed to be 42 percent of

the final value. For the second-order system, the response remains within 2 percent
after 4 time constants, that is

ty=4r = — (B.21)

Cwn

Given a transfer function of a closed-loop control system, the Control System Tool-
box function step(num, den} produces the step response plot with the time vector
automatically determined. If the closed-loop system is defined in state space, we
use step(A, B, C, D). step(num, den, t) or step(A, B, C, D, iu, t) uses the user-
supplied time vector t. The scalar ju specifies which input is to be used for the step
response. If the above commands are invoked with the lefi-hand arguments [y, x, t],
the output vector, the state response vectors, and the time vector t are retumned, and
we need to use plot function to obtain the plot. See also initial and Isim functions.
A function called timespec{num, den) is written which obtains the time-domain )
performance specifications, P.O., t,, t,, and ;. num and den are the numerator
and denominator of the system closed-loop transfer function,

B.5 ROOT-LOCUS DESIGN

The design specifications considered here are limited to those dealing with system
accuracy and time-domain performance specifications. These performance speci-

fications can be defined in terms of the desirable location of the dominant closed-
loop poles.
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The root locus can be used to determine the value of the loop gaian . which
results in a satisfactory closed-loop behavior. This is called the propomonal con-
troller and provides gradual response to deviations from the set p().ll'lt. lelere are
practical limits as to how large the gain can be made. In fact, very high gains lead
1o instabilities. If the root-locus plot is such that the desired performance cannot
be achieved by the adjustment of the gain, then it is necessary to reshape tl}e roat
loci by adding the additional controller G'¢(s) to the fona‘vard path, as shown in Fig-
ure B.2. G.(s) must be chosen so that the root locus will pass through the proper
region of the s-plane.

R(s) C(s)

Ge(s) —1G(s) =%

H{s)

FIGUREB.2
A closed-leop conlrol system with controller.

The proportional controller {P) has no sense of time, and its action is de-
termined by the present valve of the error. An appropriate controller must make
corrections based on the past and future values, This can be accomplished by com-
bining proportional with integral action-(PI') or proporticnal with derivative action
(PD). There is also a proportional-plus-integral-plus-derivative controller ( PID).

K
Gels) = Kp+ TI + Kps (B.22)

The ideal integral and differential compensators require the use of active amplifiers.

Other compensators which can be realized with only passive network ele-
ments are lead, lag, and lead-lag compensators. A first-order compensator having
a single zero and pole in its transfer function is

Ge(s) = s+ po

(B.23)
B.5.1 GAIN FACTOR COMPENSATION
'OR P CONTROLLER

The proportional controller is a pure gain controller. The design is accomplished
by choosing a value of Ky which results, in a satisfactory transient response.

gy E
I S ETE T
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B.5.2 PHASE-LEAD DESIGN

In (B.23) the compensator is a high-pass filter or phase-lead, if po > zo. The
phase-lead network contributes a positive angle to the root-locus angle criterion of
(B.8) and tends to shift the root locus of the plant toward the left in the s-plane.
The lead network acts mainly to modify the dynamic response to raise bandwidth
and to increase the speed of response. In a sense, a lead network approximates
derivative control. If py < 2z, the compensator is a low-pass filter or phase-lag.
The phase-lag compensator adds a negative angle to the angle criterion and tends
to shift the root locus 1o the right in the s-plane. The compensator angle must be
small to maintain the stability of the system. The lag network is usually used to
raise the low-frequency gain and thus to improve the steady-state accuracy of the

system. The lag network is an approximate integral control. The DC gain of the
compensator is

ag =G0y = Ko

(B.24)

For a given desired location of a closed-loop pole s, the design can be accom-
plished by trial and error. Select a proper value of zy and use the angle criterion
of (B.8) to determine py. Then, the gain K is obtained by applying the magnitude
criterion of (B.7). Altematively, if the compensator DC gain, ag = (K.z0)/po, is
specified, then for a given location of the closed-loop pole

51 =5 8 - (B.25)
zg and pg are obtained such that the equation
1+ Ge{s1)Gp{s1) =0 (B.26)

is satisfied. It can be shown that the above parameters are found from the following
equations.

_ o 1 _.GoPo

_ S i K
. a; By by an. Tz ®2D
where
- sin 8 + agM sin{8 — )
L= Isi| Msing
B sin{ + ¢} + agM sin 8 (B.28)
4 |s1] sin ’

where M and 3> are the magnitude and phase angle of the open-loop plant transfer
function evaluated at s, i.e.,

Gyls1) = MLy (8.29)
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For the case that ¢ is either 0° or 180°, (B.28) is given by

bilsil pe L sag=0 (B.30)

ay |s1jcos @£ ¥ ¥

where the plus sign applies for ©» = 0° and the minus sign applies for i = 180°.
For this case, the zero of the compensator must also be assigned.

B.S3 PHASE-LAG DESIGN

In the phase-lag control, the poles and zeros of the controlier are placed very close
together, and the combination is located relatively close to the origin of the s-plane..
Thus, the root loci in the compensated system are shifted only slightly from their
original locations. Hence, the phase-lag compensator is used when the system tran-
siem response is satisfactory but requires a reduction in the steady-state error. The
{unction [numo, dene, denc] = phlead(num, den, s;) can be used for phase-lag
compensation by specifying the desired pole sg slightly to the right of the uncom-
pensated pole location. Alternatively, phase-lag compensation can be obtained by
assuming a DC gain of unity for the compensator based on the following approxi-
mate method.

K.z ;
s B flie D580 (B.31)
Po
Therefore,
. M . .
A== since pg < zp them A, <1 (B.32)
<0

I Ry is the gain required for the desired closed-loop pole s1, then from (B.3)

K= (8.33)

Gpls1)

If we place the pole and zero of the lag compensator very close to each other with
their magnitude much smaller than sy, then

Kefs+20)

Gc(si)i_ s+ po

Now, the gain K required to place a closed-loop pole at approximately s is given
by

3 1 - 1 - Ko
Gt‘(SI)Gp(-"'l} B Kpo(sl) ol

=

(B.35)

~ K, (B.34)

T A T T )
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. Since K, < 1, then K > Kg. Next, select the compensator zero zq, arbitrarily '

small. Then from (B.31) the compensator pole is

Po = KQZU (B36)
The compensated system transfer function is then given by

5+ zp

KG,G. = KK,
? s+ po

G; - (B3T)

A lag-lead controller may be obtained by appropriately combining a lag and a lead
network in series. :

B.5.4 PID DESIGN

One of the most common controllers available commercially is the PID controller.
Different processes are suited to different combinations of Proportional, integral,
and derivative control. The control engineer’s task is to adjusi the three gajn factors
1o arrive at an acceptable degree of error reduction simultaneously with acceptable
dynamic response. For a desired location of the closed-loop pole sy, as given by
(B.25), the following equations are obtained to satisfy (B.26).

Ko = —sin{8+¢) 2K;cosf
P T Msing Is1)

sin Ky

Kp = o
|S|,I. M Sll’lﬁ |31|2

(B.38)

For PD or PI controllers, the appropridte gain is set to zero. The above £quations
can be used only for the complex pole sy. For the case that s, is rea], (ise zero of
the PD controller (20 = Kp/Kp) and the zero of the PI controller (5, = K1/Kp)
are specified, and the comesponding gains to satisfy angle and magnirude criteria
are obtained accordingly. For the PID design, the value of K to achjeve a desired

steady-state error is specified. Again, (B.38) is applied only for the complex pole
51-

B.55 PD CONTROLLER

Here, both the error and its derivative are used for control, and the cgmpensator
transfer function is

Gc(s) =Kp+ Kps=Kp (3+ &) (B.39)
Kp
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From above, it can be seen that the PD controller is equivalent to the addition of a
stmple zero at s = —Kp /K p to the open-loop transfer function, which improves
the transient response. From a different point of view, the PD controller may also
be used to improve the steady-state error, because it anticipates large errors and
attempts corrective action before they occur. The function [numo, deno, denc] =
rldesign{num, den, s} with option 4 is used for the PD controller design.

B.5.6 PICONTROLLER

The integral of the error as well as the error itself is used for control, and the
compensator transfer function is

K, Kp(s+ K;/Kp)

Gols) = Kp+ —L = (B.40)
b1 5

The Pl contreller is common in process control or regulating systems. Integral
control bases its corrective action on the cumulative error integrated over time. The
controlier increases the type of system by 1 and is used to reduce the steady-state
errors. The function [numo, deno, denc] = ridesign(num, den, s,) with option 5
is used for the PI controller design.

B.5.7 PID CONTROLLER

The PID controller is used to improve the dynamic response as well as to reduce or

eliminate the steady-state error. The function {nume, deno, denc] = ridesign(num,

den, 51} with option 6 is used for the PID controller design.

Based on the above equations, several functions are developed for the root-
locus design. These are

Function Controlier
{numo, deno, denc] = pcomp(num, den, ¢) Proportional
[numo, deno, denc] = phlead(num, den, s;) Phase-Lead
[numo, deno, denc] = phlag(num, den, {) Phase-Lag
[numo, deno, denc] = pdcomp(num, den, 55} PD
[nume, deno, denc] = picomp(num, den, 3,) Pl
&umo, deno, denc] = pidcomp(num, den, 5,) PID

Alternatively, the function [numo, deno, denc] = rldesign{num, den, s;) displays -

a menu with six options that allow the user to select any of the above controller
designs. s1 = ¢ + jw is a desired pole of the closed-loop transfer function, except
for the pcomp and phlag controllers, where ¢, the damping ratio of the domi-
nant poles, is substituted for s;. num and den are row vectors of polynomial co-
efficients of the uncompensated open-loop plant transfer function. The function
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phlead(num, den, s1) may also be used to design phase-lag controllers. To do
this, the desired pole location s; must be assumed slightly to the right of the un-
compensated pole position. The function obiains the controfler transfer function
and roots of the compensated characteristic equation. Also, the function returns

the open-loop and closed-loop numerators and denominators of the compensated
system transfer function.

Example B.1

The block diagram of a control system is as shown in Figure B.3. G(s) is a simple
propertional controller of gain K.

R(s) C(s)
Ge(s) GrE ST TE)

FIGURE B.3
Control system for Example B. 1,

(a) Construct the Routh-Hurwitz array and determine the range of K for closed-
loop stability.

(b) Find the value of K to yield a steady-state error of 0.15 for a unit step input.
(c) Use MATLAR rlocus function to obtain the root-locus plot.

(d) Use rldesign and option 1 1o find the gain K such that the dominant ciosed-

loop poles damping ratio will be equal to 0.96. Obtain the step response curves for
Ky, and the value of K found in (b).

(a) The closed-loop transfer function of the control system shown in Figure B.3 is

C(s) _ 100K
R(s) %4 2652 + 2165 + 576 + 100K

The Routh-Hurwitz array for this polynomial is then (see Appendix B.2.1)

|1 216
52|26 576 + 100K
s! 1193.846 — 3.846K 0
s% | 576 + 10K 0

From the s! row we see that, for control system stability, & must be less than 50.4,
also from the s° row, K must be greater than —5.76. Thus, with positive values of
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PR ST

I system stability, the gain must be o t = 0:.005:4; _ :
K, for control sy 4 1 ¢l = step(numo, denc, t); % Step response for zeta = 0.96
K <504 ‘5 num2 = 100%32.64; den2 = [1 26 216 3840];
€2 = step(num2, den2, t); % Step response for K = 32.64
i . 2 S5 i i i
. — 50.4, the auxiliary equation from the s? row is ; figure(2), plot(tr, c1, t, c2) , grid
For K i xlabel(’t, sec’), ylabel(’c{t)’)
2652 + 5616 = 0 text(3.1, 0.75, 'K = 32.64’), text(3.1, 0.1, K = 0.287)
. | timespec(num2, den2) % Time-domain spec. for K = 32.64
or s = £714.7. That is, for K = 50.4, we have a pair of conjugate poles on the g
j — w axis, and the control system is marginally stable. ' The result is
(b} The position error constant given by (B.11} is ‘_ Compensator type Enter
~ . Gain compensation 1
100K 1004 P
K, = lim Ge(s)G,(s) = lim ‘ = : Phase~lead (or phase-lag ) 2
L P 30 (s + 6)(s + 8)(s + 12) 576 Phase-lag (Approximate K = Ky/K.) 3
_ ) PD Contrgller 4
For a unit step input PI Controller 5
PID Controller 6
€45 = T R = (.15 To quit 0
bl
o ' Enter your choice — 1
s :
- — 100K Controller gain: KG = 0.28
E o . o
Bow vectors of polynomial coefficients of the compensated
or 2 system:
== 32.64 '
Kesd Open-loop num. 28
: % v w Open-loop den. 1 26 216 6576
2 closed- ; ain is : :
The closed-loop transfer function for this gai _ Closed-loop den. 1 26 216 604
L13) {100}(32:64) Rocts of the ted ch teristi i
= = = oC compensated characteristic equation:
R(s) . %+ 26s” + 216s + 3840 -12.8445
(¢) The MATLAB Control Toolbox function rlocus is used to obtain the root-locus -6.5778 + 1 '9383%
plot -6.5778 - 1.8383i
o ' Peak time = 0.289 Percent hoot = 65.9
(d) To find the gain for the step response damping ratio of ¢ = 0.96, and the step ont overstoo

Rise time = 0.096

response plots, we use the following commands. Settling time = 3.3

num = 100;

den f1 26 218 576];

figure(1), rlocus(num, den), grid, axis{([-200 -15 15]):;

zeta = (,96; % damping ratio
[numo, deno, dencl=rldesign{num,den,zeta);% Gain controller

The roat-locus plot is shown in Figure B.4, and the step response is shown in

Figure B.5. The step response damping ratio of 0.96 resulted in a controller gain of
Mg = 0.23, .
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Real

FIGUREBA4
Reot-locus plot for Example B.1.

FIGURE B.5
Step response with proportional controller for Example B. L.

From Figure B.5, we see that the transient response is satisfactory, but the
steady-state error given by

1

28
1+ 576

= 0.9536

exs

is very large, and the steady-state response is i — 0.9536 = 0.0464. In order to
reduce the steady-state error, the gain must be increased. The gain for a steady-

state error of 0.15 was found to be 32.64, but the step response is highly oscillatory '

with an overshoot of 65.9 percent, which is not satisfactory.
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Example B.2
For the control system in Example B.1, design a controller to meet the following
specifications.

e Zero steady-state error for a step input
e Step response dominant poles damping ratio ¢ = 0.995

= Step response dominant pole time constant 7 = 0.1 second

The plant transfer function of the control system in Example B.1 is type zero.

To reduce the steady-state error to zero, we must increase the system type by one.
Thus, we select a PID controller, i.e.,

K
Gols) = Kp+ ?’ + Kps

From the last two specifications, {w, = & = 10, and # = cos™! 0,995 = 5.73°.
Thus, the required complex closed-loop poles are —10 j1. The function rldesign
with option 6 is used for a PID controller design. The user is prompted to enter
a value for the integral gain K, and the program determines Kp and Kp. The
process may be repeated for different values of K until a satisfactory response 1s
obtained. For this example, use a value of 9.09 for K. The following commands

num = i100; den = {1 26 216 576);

sl= -10+j*1; % Desired location of closed-loop poles
[numo, deno, denc]l=rldesign{num, den, si); %PID design
t = 0:.01:4;

step(numo, denc, t), grid
xlabel(’Time -sec.’}, ylabel{’c(t)’)

result in

Compensator type : Enter
Gain compensation 1
Phase-lead {or phase-lag ) 2
Phase-lag (Approximate K = Ky/K,) 3
PD Controller 4
- B
6
0

PI Controller
PID Controller
To quit

Enter your choice — 6
Enter the integrator gain KI — 9.09
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Gc = 2.1 + 9.08/s + 0.14s

.Row vectors of polynomial cecefficients of the compensated
system:

Open-lcep num. 14 210 908
Open-loop den. 1 26 230 576 o
Closed-loop den 1 26 230 786 509

Roots of the compensated characteristic equation:

-10 + 1i
=10 - 1i
=3
-3

Thus, the compensated open-loop transfer function is

1452 4 210s + 909
(53 + 2652 4+ 2165 + 576)

GeGy = -

and the compensated closed-loop transfer function is

C(s) 14s? + 210s + 909

R(s) = st + 263 + 223052 + 7865 + 909

FIGURE B.§
Step response with PID controtier for Example B.2,

ST |
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The PID controller increases the system type by 1. That is, we have a type I system,

and the steady-state error due to a unit step input is zero. The transient response is
also improved as shown in Figure B.6.

B.6 - FREQUENCY RESPONSE

The frequency response of a system is the steady-state response of the system to a
sinusoidal input signal. The frequency response method and the root-locus method
are simply two different ways of applying the same basic principles of analysis.
These methods supplement each other, and in many practical design problems,
both techniques are employed. One advantage of the frequency response method
is that the transfer function of a system can be determined experimentally by fre-
quency response tests. Furthermore, the design of a system in the frequency domain
provides the designer with control over the system bandwidth and over the effect
of noise and disturbance on the system response.

The response of a linear time-invariant system to sinusoidat input r{t) =
Asin{wt) is given by

elt) = A |G(jw))| sinfwt + 8(w)) ' (B.41)

where the transfer function G{jw) is obtained by substituting jw for s in the ex- -

pression for G(s). The resulting transfer function may be written in polar form
as

Gjw) =|G0w)l L8{w) (B.42)

Alternatively, the transfer function can be represented in rectangular complex form
as

G(jw} = RG(jw) + jSCliw) = R{jw) + jX (jw) (B.43)

The most common graphical representation of a frequency response function is the

Bode plot. Other representations of sinusoidal transfer functions are polar plor and
log-magnitude versus phase plot.

B.6.1 BODEPLOT

The Bode plot consists of two graphs plotted on semi-log paper with linear vertical
scales and logarithmic herizontal scales. The first graph is a plot of the magnitude
of a frequency response function G{jw) in decibels versus the logarithm of w, the
frequency. The second graph of a Bode plot shows the phase function §(w) versus
the logarithm of w. The logarithmic representation is useful in that it shows both
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the low- and high-frequency characteristics of the transfer function in one diagram.
Furthermore, the frequency response of a system may be approximated by a series
of straight line segments.

Given a transfer function of a system, the Control System Toolbox function
bode(num, den) produces the frequency response plot with the frequency vector
automatically determined. If the system is defined in state space, we use bode(A,
B, C, D). bode(num, den, w) or bode(A, B, C, D, iu, w) uses the user-supplied fre-
quency vector w. The scalar ju specifies which input is to be used for the frequency
response. If the above commands are invoked with the lefi-hand arguments [mag,
phase, w}, the frequency response of the system in the matrices mag, phase, and
w are returned, and we need to use plot or semilogx functions to obtain the plot.

B.6.2 POLAR PLOT

A polar plot, also called the Nyquist plot, is a graph of QG (jw) versus RG(jw)
with w varying from —co 10 +o0. The polar plot may be direcily graphed from
sinusoidal steady-state measurements on the components of the open-loop transfer
function.

Given a transfer function of a system, the Control Systerm Toolbax function
nyquist(num, den) produces the Nyquist plot with the frequency vector automat-
tcally determined. Il the system is defined in state space, we use nyquist(A, B, C,
D}. nyquist{num, den, w) or nyquist(A, B, C, D, iu, w) uses the user-supplied fre-
quency vector w. The scalar iu specifies which input is to be used for the Nyquist
response. If the above commands are invoked with the left-hand arguments [re, im,
w]. the frequency response of the system in the matrices re, im, and w are returned,
and we need 10 use plot(re, im) function te obtain the plot.

B.6.3 RELATIVE STABILITY
The closed-toop transfer function of a control system is given by

_Cls) _ KG(s)

TS = Re) = TT KGHE)

(B.44)

For BIBO stability, poles of T{s) must li¢ in the left-half s-plane. Since zeros
of 1+ WG H(s) are poles of T'(s), the system is BIBO stable when the roots of the
characteristic equation 1 + K GH(s) lie in the left-half s-plane. All points on the
root tocus satisfy the foflowing conditions. '

| KGH(s) |=1 and LGH(s) = —180° (B.45)

The intersection of the polar plot with the negative real axis has a phase angle
of —130°. The frequency wye corresponding to this point is known as the phase

4
j
1
!
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crossover frequency, Tn addition, as the loop gain is increased, the polar plot cross-
ing (1, 0) point has the property described by

K GH(Gwpe) |=1  and  LGH(jwpe) = ~180° (B.46)
The closed-loop respanse becomes marginally stable when the frequency response
magnitude is unity and its phase angle is —180°. The frequency at which the polar
plot intersect (—1,0) point is the same frequency that the root locus crosses the
Jw-axis. For a still larger value of X, the polar plot will enclose the {—1, 0} point,
and the system is unstable.

Thus, the system is stable if
| KGH(jw) | < 1 at LG H (jwp:) = —180° (B.4T)-

The proximity of the K GH (jw) plot in the polar coordinates to the (—1,0) point
gives an indication of the stability of the closed-loop system.

B.6.4 GAIN AND PHASE MARGINS

Gain margin and phase margin are two common design criteria related to the open-
loop frequency response. The gain margin is the amount of gain by which the gain
of a stable system must be increased for the polar plot to pass through the {—1,0)
point. The gain margin is defined as

G.M = % ' (B.48)

where K. is the critical loop gain for marginal stability and K is the actual loop
gain. The above ratio can be writien as -

K. |GH{jwpet 1 1
GM. = ; = = - B.49
K |GH(jwpe)l K |GH(wpe) @ (B.49)

In terms of decibels, the gain margin is
G.M.dﬁ =20 logm(GM) = -20 logm |KGH(_‘]WPC)! = 20 logm 41 (BSO)

The gain margin is simply the factor by which K must be changed in order to
render the system unstable. The gain margin alone is inadequate to indicate relative
stability when system parameters affecting the phase of GH (jw) are subject to
variation. Another measure, called phase margin, is required to indicate the degree
of stability. Let wy., known as the gain crossover frequency, be the frequency at
which the open-loop frequency response magnitude is unity. The phase margin is
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the angle in degrees through which the polar plot must be rotated about the origin
in order to intersect the {—1,0) point. The phase margin is given by

P.M. = (GH(jwge) — (—180°) (B.51)

For satisfactory performance, the phase margin should be between 30° and 60°,
and the gain margin should be greater than 6 dB. The MATLAB Control System
Toolbox function [Gm, Pm, wy. , wge ] = margin(mag, phase w) can be used with
bode function for evaluation of gain and phase margins, wp. and wy,.

B.6.5 NYQUIST STABILITY CRITERION

The Nyquist stability criterion provides a convenient method for finding the num-
ber of zeros of 14+ G H{s) in the right-haif s-plane directly from the Nyquist plot of
GH(s). The Nyquist stability criterion is defined in terms of the {(—1,0) point on
the Nyquist plat or the zero-dB, 180° point on the Bode plot. The Nyquist criterion
is based upon a theorem of complex variable mathematics developed by Cauchy.
The Nyquist diagram is obtained by mapping the Nyquist path into the complex
plane via the mapping function G H (s). The Nyquist path is chosen so that it encir-
cles the entire right-half s-plane. When the s-plane locus is the Nyquist path, the
Nyquist stability criterion is given by

Z=N4+P (B.52)

where

P = number of poles of GH(s) in the right-half s-plane,
N = number of clockwise encirclements of (—1, 0} point by the Nyquist diagram,

Z = number of zeros of 1 + GH{(s) in the right-haif s-plane.

For the closed-loop system to be stable, Z must be zero, that is

N=-P (B.53)

B.6.6 SIMPLIFIED NYQUIST CRITERION

If the open-loop transfer function GH{s) does not have poles in the right-half
s-plane (P = 0), it is not necessary to plot the complete Nyquist diagram; the
polar plot for w increasing from 0 to oo is sufficient. Such an open-loop transfer
function is called minimum-phase transfer function . For minimum-phase open-
loop transfer functions, the closed-loop system is stabie if and only if the polar plot
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lies to the right of (—1, 0) point. For a minimum-phase open-loop transfer function,
the criterion is defined in terms of the polar plot crossing with respect to (—1,0)

. point, as follows.

Right of —1 stable Wpe > tlge |GH(jw,,c)| <1,GM4p >0, PM>0°
On —1 marg. stable wpe = wye [GH{Jwpe)| = 1, GMyg =0, PM =0°
Leftof —1 notstable  wpe < wye |GH (Jwpe)| > 1, GMyg < 0, PM < 0°

If P is not zero, the closed-loop system is stable if and only if the number of coun-
terclockwise encirclements of the Nyquist diagram about {—1,0) point is equal
to P. _

The MATLAR Control System Toolbox function [re, im] = nyquist{num, den,
w) can obtain the Nyquist diagram by mapping the Nyquist path. However, the
argument w is specified as a real number. In order to map a complex number s =
a+ jb, we must specify w = — js, since the above function automatically multiplies
w by the operator j. To avoid this, the developed function {re, im] = cnyquist(rum,
den, s) can be used, where the argument s must be specified as a complex number.
In defining the Nyquist path, care must be taken for the path not to pass through
any poles or zeros of GH(s).

B.6.7 CLOSED-LOOPFREQUENCY RESPONSE

The closed-loop frequency response is the frequency responsc of the closed-loop
transfer function T'(jw). The Control System Toolbox function bede, described in
Section B.6.1, is used to obtained the closed-loop frequency.

The performance specifications in terms of closed-loop frequency response
are the closed-loop system bandwidth wg and the closed-loop system resonant
peak magnitude M. The bandwidth wp is defined as the frequency at which the
|T{(jw)| drops to 70.7 percent of its zero frequency value, or 3 dB down from the
zero frequency value, The bandwidth indicates how well the system tracks an input
sinusoid and is a measure of the speed of response. If the bandwidth is small, only
signals of relatively low frequency are passed, and the response is slow; whereas,
a large bandwidth corresponds to a fast rise time. Therefore, the rise time and

+ the bandwidth are inversely proportional o each other. The frequency at which
the peak occurs, the resonant frequency , is denoted by w;, and the maximum

amplitude, Mp, is called the resonant peak magnitude. M, is a measure of the
relative stability of the system. A large M, corresponds to the presence of a pair
of dominant closed-loop poles with small damping ratio, which results in a large
maximum overshoot of the step response in the time domain. If the gain K is set 50
that the open-loop frequency response GH(jw) passes through the (—1,0) point,
M, will be infinity. In general, if My, is kept between 1.0 and 1.7, the transient
response will be acceptable. The developed function frqspec(w, mag) calculates
My, wy, and the bandwidth wg from the frequency response data.




662 B. REVIEW OF FEEDBACK CONTROL SYSTEMS

B.6.8 FREQUENCY RESPONSE DESIGN

The frequency response design provides information on the steady-state response,
stability margin, and system bandwidth. The transient response performance c¢an be
estimated indirectly in terms of the phase margin, gain margin, and resonant peak
magnitude, Percent overshoot is reduced with an increase in the phase margin, and
the speed of response is increased with an increase in the bandwidth. Thus, the gain
crossover frequency, resonant frequency, and bandwidth give a rough estimate of
the speed of transient response.

A common approach to the frequency response design is to adjust the open-
leop gam so that the requirement on the steady-state accuracy is achieved. This
is called the proportional controller. If the specifications on the phase margin and
gain margin are not satisfied, then it is necessary to reshape the open-loop trans-
fer function by adding the additional controller G,(s) to the open-loop transfer
function. G.{s) must be chosen so that the system has certain specified charac-

- tenstics. This can be accomplished by combining proportional with integral action
(PT}) or proportional with derivative action {(PD). There are also proportional-plus-
integral-plus-derivative ( PID) controllers with the following transfer function.

K
Ge(s) = Kp + ?" + Kps (B.54)

The ideal integral and differential compensators require the use of active amplifiers.
Other compensators which can be realized with onty passive network elements are

lead, lag, and lead-lag compensators. A first-order compensator having a single
zero and pole in its transfer function is

K.(5 + zp)

Cele) = s+ po

(B.55)

Several functions have been developed for the selection of suitable controller pa-

rameters based on the satisfaction of frequency response criteria, such as gain mar-
gin and phase margin, These functions tabulated below.

Alternatively, the function [numo, deno, denc] = frdesign{num, den) allows
Ser to select any of the above controller desi gns where num and den are row
ynomial coefficients of the uncompensated open-loop plant transfer

function returns the open-loop and closed-loop numerators and de-
the compensated system transfer function.

the u
vectors of pol
function. The
nominators of

B.6. FREQUENCY RESPONSE 663

Function Controller
[numeo, deno, denc] = frqp(num, den) Proportional
{numeo, deno, denc] = frqlead(num, den) Phase-lead
[numo, deno, denc] = frqlag(num, den) Phase-lag
{numo, deno, denc] = frqpd(num, den) PD
[numo, deno, denc)] = Frqpi(num, den) Pl
{numo, deno, denc) = frqpid{num,den} PID

Example B.3

Design a PID controller for the system of Example B.1 for a compensated system
phase margin of 77.8°. Choose a value of 9.09 for K}, and select the new phase
crossover frequency of 1.53 rad/s. Also, obtain the Bode plot of the compensated
open-loop transfer function. The following commands:

num = 100; den = [1 26 216 576];
[numo, deno, dencl=frdesign{num, den); % PID design
w o= ,1:.1:20; '
[(mag, phase] =bode{numo, denc, w); dB = 20%logiO(mag);
figure(1), plot(w, dB), grid
xlabel('w, rad/sec’), ylabel{’dB’)
figure(2), plot(w, phase), grid
xlabel(’w, rad/sec’}, ylabel(’Degrees’)
result in

Compensator type Enter
Gain compensation '
Phase-lead
Phase-lag
FD Controller
PI Controller
PID Controller
To quit :
Enter your choice — &
Enter the integrator gain KI — 8.09
Enter desired Phase Margin — 77.8
Enter wgc — 1.53
Uncompensated control system
Gain Margin = 50.4 Gein crossover w = KaN
Phase Margin = Inf Phase crossover w = 14.7
Gc = 2.10655 + 9.08/s + 0.14074s
Row vectors of polynomial coefficients of the compensated

LD Dy B WA e

system:

Open-loop num.  14.07 210.65 909

Open-loop den. 1 26 218 576 0
Closed-loop den i 26 230.07 786.65 909
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Gain Margin = 30300 Gain crossover w = 1.53
Phase Margin = 77.8 Phase crossover w = 653
Bandwidth = 1.95

Ropts of the compensated characteristic equation:

-g, 9943 + 1.00971

-9, 9943 ~ 1.0097i

-3.1671

-2, 8444

The PID controller increases the system type by 1. That is, we have a type | system,
and the Steady-state error due to a unit step input is zero, and the step response is
similar to Figure B.6. The compensated open-loop Bode plot is shown in Figure
B.7.

0
-18
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-30
—40

" dB

w, radf/sec

~100
~110
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~130
~140
~150

~160
0
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FIGURE B.7
The compensateq open-locp Bode plot for Example B.3.

APPENDIX

C

POWER SYSTEM TOOLBOX

The Power System Toolbox, containing a set of M-files, has been developed by the
author to assist in typical power system analysis. Some of the programs, such as
power flow, optimization, short-circuit and stability analysis, were originally de-
veloped by the author for a mainframe computer when waorking for power system
consulting firms many years ago. These programs have been refined and modular-
ized for interactive use with MATLAR for many problems related to the operation
and analysis of power systems. The software modules are structured in such a way
that the user may mix them for other power system analyses. The M-files for typi-
cal power system analyses are designed to work in synergy and communicate with
each other through the use of some global variables.

The software diskette included with this book contains all the developed func-
tions and chapter examples. Instructions for installing the Power System Toolbox
can be found with the Installing the Text Toolbox described in Appendix A, We
recommend that you store the files from this toolbox in a directory named power,
where the MATLAB toolbox resides. Add the necessary search path to the MAT-
LAB Path Browser. This appendix contains a list of all functions and script files in
the Power System Toolbox developed by the author. The file names for the chapier
examples are also included.

665




' 666 C. POWER SYSTEM TOQLROX

LIST OF FUNCTIONS, SCRIPT FILES, AND EXAMPLES IN THE
POWER SYSTEM TOOLBOX

Load Cycle

barcycle(data)

Plot foad cycle for a given load interval

Transmission Line Parameters

{1, C]=gmd2lc

[GMD, GMRL, GMRC | =gmd Multicircuits GMD and GMR

Multicircuit GMD, GMRL, L, and C

acsr Displays the ACSR characteristics
Transmission Line Performance
lineperf Line performance program
(LG
abed2ric(ABCD) ABCD to rLC conversion
[Z.Y.ABCD ] =
abed2pi(A, B, C) ABCD to 7 model conversion
{Z,Y, ABCD] =
pi2abed(Z, Y) 7 model to ABCD conversion
[Z,Y,ABCD | =
ric2abed(r, L, C, g, f,Ln)  rLC to ABCD conversion
[Z.Y,ABCD | =
zy2Zabed(z, vy, Ln) zy 10 ABCD conversion
listmenu Displays 8 options for analysis
givensr(ABCD) Sending end values from receiving end power
givenss(ABCD) Receiving end values from sending end power
givenzl(ABCD) Sending end values from load impedance
loadabil(L, C, ) Line loadability curves
openline({ABCD) Open line analysis and reactor compensation
shektlin(ABCD) Receiving end short circuit
compmenu Displays 3 options for capacitive compensation
sercomp(ABCD) Series capacitor compensation
shntcomp(ABCD) Shunt capacitor compensation
srshcomp(ABCD) Shunt and series capacitors compensation
profmenu Displays two options for loadabil and vprofile
pwrcirc(ABCD) Receiving end power circle diagram
| yprofile(ABCD)}) Voltage curves for various loading
Optimal Dispatch of Generation
bloss Returns loss coefficients when followed by power flow pro-
gram
dispatch Obtains optimum dispatch of generation
| gencost Computes the total gencration cost $/hr

e omi e bl
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Transformer and Induction Motor

trans Transformer characteristics

tperf This script file is called by trans

[ Re, Xm | = troct(Vo, Io, Po) Shunt branch from OC test

[Ze } = rset(Vsc, Isc, Psc) Obtains the series branch from SC test
[ Zel, Ze2 |= wsc(EL, E2, Z1,Z2) Winding impedances to Eq. impedance

rotfield Revolving field demonstration

im Equivalent circuit analysis

imchar Torque/speed curve {called by im)
imsol Motor performance {called by im)

Power Flow Analysis

ybus Obtains ¥y, given R and X values
1fybus Obtains Yy, given m model with specified linedata file
ifgauss Power flow solution by the Gauss-Seidel method

Ifnewion . Power flow solution by the Newton-Raphson method
decouple  Power flow solution by the Fast Decoupled method
busout Retumns the bus cutput result in tabular form

lineflow Returns the line flow and losses in tabular form

Symmetrical Components

sctm Symmetrical Components Transformation Matrix
phasor(F} Plots phasors expressed in rectangular or polar
FO12 = abc2sc(Fabc)  Phasors to symmetrical components conversion
Fabc = sc2abc(F012)  Symmetrical comporients to phasors conversion
Z012 = zabc2se(Zabe)  Tmpedance matrix to symmetrical components

Fr = pol2rec(Fp) Polar phasor to rectangular phasor conversion

Fp = rec2pol{Fr) Rectangular phasor to polar phasor conversion

Fault Analysis .

dlgfauit(Z0, ZbusO, Z1, Zbusl, Double line-to-ground fault
72,7Zbus2, V) :
1gfault( Z0, ZbusO, Z1, Zbusl, Line-to-ground faukt

72, Zbus2, V} '
Nlfault(Z1, Zbusl, Z2, Zbus2, V)
symfauit(Z1, Zbusl, V) - Line-to-ground fault

Zbus = zbuild(zdaa) Builds the Bus Impedance Matrix

Zbus = zbuiidpi(finedata, gen- Builds the Bus Impedance Matrix, com-
data, load) patible with load flow data

Line-to-line fault
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Synchronous Machine Transients

669

lgshort(1,i) Returns state derivatives of current for L-G short circuit
1lshori(t, i) Returns state derivatives of current for line-line short circuit
symshor(t, i)  Returns state derivatives of current for 3-phase short circuit

Control System Functions

Power System Stability

cctime Obtains the critical clearing time for fault

eacfault(P0, E, V, X1, Displays equal area criterion & finds critical

X2, X3) clearing time of fault

eacpower(P0, E, V, X} Displays equal area criterion & max. steady-state
power

xdot = afpower(t, x) One-machine system state derivative after fault

xdot = pfpower(t, x) One-machine system state derivative during fault

swingmeu(Pm, E, V, X1, One-machine swing curve, modified Euler
X2, X3, H,f tc, tf)

swingrk2(Pm, E, V, X1, One-machine swing curve, MATLAB ode23
X2,X3, H, f, tc, th

swingrk4(Pm, E, V, X}, One-machine swing curve, MATLAR ode34
X2, X3, H, f, tc, tf)

xot = afpek(1, x) Muitimachine system state derivative after fault

xdot = dfpek(t, x) Multimachinc systern state derivative during
fault

trstab ' Stability analysis works in synergy with load
flow

{ Ybus, Ybf | = ybusbf¢ Multimachine system reduced Y}, before fault
linedata, yload, nbusl,
nbust)

Ypf = ybusbf(Ybus, Multimachine system reduced Yj,,, during fault
nbus], nbust, nf)

Yaf = ybusaf(linedata, Multimachine system reduced Yp,, after fault
yload, nbusi, nbust, )
nbrt)

electsys Returns the state derivatives for Example A.19
errortf Steady-state error, transfer function in polynomial form
eITorzp Steady-state error, transfer function in zero pole form
frentrl Frequency response design equations
frdesign Frequency response design program
frglag Frequency response design phase-lag controller
frqlead Frequency response design phase-lead controfler
frqp Frequency response design P controller
frgpd Frequency response design PD controller
frqpi Frequency response design PI controller
frgpid Frequency response design PID controller
frqspec Frequency response performance specifications
ghs Returns magnitude and phase of a complex function GH(s)
ltstm Laplace transform of state transition matrix
mechsys Returns the state derivatives for Example A_18
pcomp Root-locus design P controller
pdcomp Root-{ocus design PD controller
pdlead Root-locus design phase-lead controller
perddulum Returns the state derivatives for Example A 20
phiag Root-locus design phase-lag controller
picomp Root-locus design PI controller
pidcomp Root-locus design PID controller
placepol Pole-placement design
pnetfdbk Feedback compensation using passive elements
riccasim Returns state derivative of Riccati equation

| rccati Optimal regulator design
ridesign Root-locus design program
routh Routh-Hurwitz array
ss2phv Transformation to control canonical form
statesim Returns state derivatives for use in Riccati equation
stm Determines the state transition matrix ¢(t)
system System matrices defined for use in Riccati equation
tachfdbk Tachometer feedback control
timespec Time-domain performance specifications -
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List of M-Files for Chapter Examples
CHPIEXT  CHPSEX3  CHPIEX]  CHPIOEXS  EXAl BIBLIOGRAPHY
CHP2EXI1 CHPSEX6 CHP7EX8 CHPIOEX4 EXA2
CHP2EX?2 CHPSEX7 CHP7EX9 CHPI0EX5 EXA3J
CHPZEX3 CHPSEXSE CHP7EX10 CHPI0EX6 EXA4
CHP2EX4  CHPSEX9 CHP7EX1] CHP10EX7 EXAS
CHP2EX5 CHP6EX] CHPBEX1 CHPIOEXS EXA6
CHP2EX6 CHPSEX?2 CHPREX2 CHPI11EX1 EXA7
CHP2EX7 CHP6EX3 CHPSEX3 CHP11EX2 EXAB
CHP2EX38 CHP6EX4 CHPBSEX4 CHPI11EX3 EXA9
CHP3EX1 CHP6EXS CHP8EXS5 CHPIIEX4 EXA10
CHP3EX2 CHP6EX6 CHPBEX6 CHPI1EXS EXAll
CHP3IEX3 CHP6EX7 CHPSEX7 CHPLI1EX6 EXA12
CHP3EX4 CHPSEXS CHPBEXS CHPI1IEX7? EXAIL3 .
CHP3EX5 - CHPSEX9 CHPREX9 CHP12EX] EXAl4 1. Anderson, P. M., Analysis of Faulted Power Systems, IEEE Press, New York,
CHP3EX6 ~ CHP6EXI0  CHPSEXI0  CHPI2EX2  EXAIS B3
CHPAEXI TLEERIL whitiakae CHEAZEA EXaib 2. Anderson, P.M,, and Fouad, A. A., Power System Control and Stability, The
CHP4EX2 CHEGEZE!Z CHPQEX2 CHETZEXA Exians Towa State University Press, Ames, lowa, 1977.
CHP4EX3 CHPGEX13 CHPYEX3 CHPIZ2EX5 EXAIlS
CHP4EX4 CHP6GEX 14 CHPY9EX4 CHPI12EX6 EXAI19 3. Amillaga, 1., Amold, C. P, and Harker, B. J., Computer Modeling of Elec-
CHP4EXS5 CHP6EX15  CHP9EXS CHPI2EX7  EXA20 trical Power Systems, John Wiley & Sons, Inc., New York, 1986.
CHP4EX6 CHP7EX1 CHPIEX6 CHP12EX8 EXB1
CHP4EX7 CHP7EX?2 CHPSEX7 CHP12EX9 EXB?2 4. Berger, A. R, Power Systemns Analysis, Prentice-Hall, Englewood, Cl1ffs,
CHPSEX1 CHP7EX3 CHP9EXS CHP12XX EXB3 New Jersey, 19!0 _
CHEOEXD cHI R CHE9EX) GHpT2XX] 5. Bergseth, F. R., and Venkata, S. S., Introduction to Electric Energy Devices,
CHIDEX) SHE Silalir ) Prentice-Hall, Englewood, Cliffs, New Jersey, 1987.
CHPSEX4 CHPTEX6 CHPI10EX2 E
6. Billinton, R., Ringiee, R., and Wood, A., Power System Reliability Calcula-
tions, MIT Press, Cambridge, Massachusetts, 1973,
List of SIMULINK-Files for Chapter Examples
SIM11EX3  SIMIIEX6  SIMIZEX! SIMI2EX3  SIMI2EX4 7. Billinton, R., Power System Reliability Evaluations, Gordon and Breach,
SIMI2EXS  SIMI2EX6  SIMI2EX7 SIMI2EX8  SIMI2EX9 New York, 1970,
IMEXA21 SIMEXA22
gmgix.:g giﬁg{){ﬁ\)‘f’lﬂ) gmlliz)z{szIS gIMEXA% SIMEXA27 8. Brosan, G. S., and Hayden, J. T., Advanced Electrical Power and Machines,
LSIMEXAZS SIMEXB1 Sir Isaac Pitman & Sons, Ltd.. London. 1966.
If you encounter any bugs or problems please contact me at the following e-mail 9. grown H. E., Solution of Large Networks by Malnx Methods, John Wiley
addresses or visit my Web sites for updates and information on this product. Sons, Inc., New York, 1975.
Web site:  http//www.msoe.edu/~ saadat 10. Brown, H. E,, Person, C. E., Kirchmayer, L. K., and Stagg, W. G., Digital
http:/fwww.home.att.net/~saadat Calculation of Three-Phase Short-Circuits by Matnx Method, AIEE Trans.,
e-mail: saadat@msoe.edu Part 3, pp. 1277-1282, 1960.
saadat@ worldnet.att.net
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ANSWERS TO PROBLEMS

Chapter 1

1.1. 79934 GW
1.2, 693%
1.3, 8 MW, 50%

Chapter 2

2.4, 5 = 2000 W+ j3464.1 var, §; = 2165.1 W — 1250 var,
S3 = 2000 W + 50 var, $ = 6165.1 W + j2214.1 var

2.2, (a) 80O W + 7600 var, (b) 10 cos(377¢t — 36.87°} A, 7.071£—36.87° A
{¢) 20£36.87° 0

23. 1280,960

24, 209, 26.670

2.5. 280 kW + 5335 kvar

2.6. (2)60 9,80 2, (b) 1250£16.26° V

27. (2) Sy = 1 kW + ;7 kvar, S = 1 kW — j2 kvar, S3 = 4 KW + 53 kvar,
(b) § = 6 kW + ;8 Kvar, 502-53.13° A, 0.6 lagging, (c) 8 kvar, 530.5 uF,
30 A

2.8. Source 1 delivers 28 kW and receives 21 kvar, Source 2 receives 24.57 kW
and delivers 32.76 kvar, 3.43 kW, 11,76 kvar

2.10. () 30kW
2.11%. (a)50/—36.87° A, 50/ —156.87° A, 50/ —276.87° A, (b} 288 kW, 216 kvar

678
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2.12. (a) 150/~66.87° A, 150£—186.87° A, 50/53.13° A, (b) 864 kW, 648 kvar

2.13. (2) 12£-53.13° A, (b) 2592 W + j 3456 var, (c) 16233V

2.14. (2) 18 kW, 0 kvar, unity power factor, 50 A, (b) 66.9£—-41.63° A,0.7474
lagging

2.15. (a) 360 kW + 7480 kvar, 0.6 lagging, 27.78/ -53.13° A, (b) 210 kvar, 3.58
pF, 20.835/-36.87" A

2.16. (a) 40/-36.87° A, 19.2 kW + j14.4 kvar, (b) 160 V. 277.1 V

Chapter 3

3.1. (a)2440.80 V,6.12 %, (b) 2200.4 V, —4.33%

3.2, (a) 36 kV, 9.59°, (b) 288 MW, (c) 547.47 A, 0.7306 lagging

3.3. (a) 12806V, (b) 80.4 MW, (c) 3344/36.73°

3.4. (b)16.26°,30kV, (c) 138.712 MW at 75°

3.5. (@) 04 + 709 Q, 1000 Q, 715009, (by 2453.9 V, 2.247%, (c) 2387 V,
~0.541%

3.6, (a) 28+ 796 2, 6666.67 £, 75000 £, (b) 21.839%, 85.97%, (c) 53.237 kVA,
86.057%, (d) 85.88%

37, (a) 21 kVA, (b) 96%

38. 13.346kV

3.9. (a)247.69kV, (b) 249.72 kV

3.10. (a) 1.03205 pu, 247.69 kV, (b) 1.0405 pu, 249.72 kV

3.11, 0.926 pu, 1.0 pu

312, 0.122 + §0.252 pu

A13. Xg, = j01, Xqy = jO.2, X1, = j0.25, Xg, = j0.081, X1ine = jO.3,
Xroad =0.75 + 1.0,

314. X¢g = jO3, Xy, = j0.2, X5, = 70.15, X1y, = j0.16 Xpin., = 70.25,
XLme; = 30 35 XM = }0 27, XLoad = --_?10 Zp —30 06, Zs —30 18,
Zr = 40.12

3.15. (@) X, = jO.15, Xy = j0.2, X7, = §0.2, Xpine = 0.3+ 5.5 Xas =
J0.15, (b) 26.359 kV, 27.5 kV

'3.16. 440 kV 480 kV

3.17. 126.5kV, 27.6 kV
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Chapter 4

4.1.
4.2,
4.3.
44.
4.5.
4.6.
4.7.
4.8.
4.9,

4.10.
4.1%.
4.12.
4.13.
4.14.

() 4.1 9, (b) 4.6 Q

0.3774 Qfkm

1.894 ¢m, 556000 cmil

0.35 cm, 46 mH

(a) 1.467, (b) 1.723r

1.486 mH/km

10m

{a) 1.3 mH/km, (b) .15 cm
27.5% decrease, 35.25% increase
0.88929 mH/km, 0.012658 uF/km
0.4752 mH/km, 0.0240035 pFfkm, 0.517453 mH/km, 0.0219974 uF/km

4rme

In0.866 5/
5 Vikm

Sov

Chapter 5

5.1

5.2
5.3.

54,
5.5.
5.6.

5.
5.8.

(2) 70.508 kV, 10.17%, 58.39 MW +350.37 Mvar, 95.90%.
(b) 69.0 kV, 7.83%, 127 MW +724.61 Mvar, 94.465%

(a) 14.117 Mvar, 9.14uF, (b) 61.24 Mvar, 39.66uF

{a) 0.9951 + j0.000544, 4 + 736 £, j0.0002713 S

(b) 242.67 kv, 502.38/—~33.69° A, 10.847%, 163.18 MW +7134.02 Mvar,
98.052%

{¢) 230.03 kV, 799.86/2.5° A, 5.073%, 313.74 MW +455.9 Mvar, 97.53%
141.123 Mvar, 7.734uF :
0.98182 + 50.0012447, 4.035 + 558.947, §0.00061137

33752’25 kV, 592.29/—27.325° A, 324.87 MW, + 1228.25 Mvar, 14.259%,
/0 B ’

345 kV, 672.54/ —9.633° A, 401.884 MW +70.0 Mvar, 2.73%, 98.743%

éa) 264.702 €2, 29°, 4965.2 km, 2210.88 MW, 0.8746, 7128.34 0, 70.0018316

(b) 896.982 kV, 1100.23/ —2.456° A, 1600 MW +3601.508 Mvar, 39.536%

5.9.

5.10.
5.11.
5.12,
5.13.

5.14.

5.15.

5.16.
57
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(c) 653.33 kV, 1748.78/-43.556° A, 1920 MW +5479.33 Mvar, 33.88%
(d) 735.13 KV, 1604.07/8.98° A, 2042.44 MW +41.32 Mvar, 14.358%

874.68 kV, (b) 772.13 €1699.658 Mvar

3441.47/-90° A, 30092/ —90° A

802.95 Mvar, 3.943 uF, 1209.46/24.653° A, 1600 MW --590.38 Mvar, 19%
822.677 kV, 1164.59/-3525° A, 1600 MW +j440.16 Mvar, 21.035%

81.464 Mvar, 51.65 uF, %3.25 Mvar, 2.765 uF, 765 kV, 1209.72£16.1° A,
1600 MW —596.32 Mva, 12.55%

Use lineperf to obtain thetransmission line performance. Present a summary
of the calculations alongwith your recommendations,

(a) 622.153 kV, 794.649/-1.33° A, 800 MW +3305.408 Mvar, 44.687%
(b) 0.96, 739.2, 50.002

(c) 530.759 kV, 891.142/-5.65° A, 800 MW -+ 7176.448 Mvar, 10.575%
(a) 0.002 Rad/km, 500 €, (b) 1000 2, 176.4 Mvar
400 kV '

Chapter 6

6.1,

62
6.3.
6.4.

6.5.

6.6.

£ 0.0 - j20.25 0.0+ 54.00 0.0+ 710.00 0.0 + 72.50
0.0+ §4.00 0.0 — 1500 0.0+ jO.00 0.0+ j6.25
0.0 + 71000 0.0+ 3400 10— j15.00 0.0+ ;5.00
| 0.0+ 37250 0.0+7625 00+37500 2.0-3514.00

[ 1.0293/1.46° ]

Ybus =

1.0217£0.99°
| 1.0001£-0.015°

(a) x; = 5.0000 2 =1.0000, T; = 2.0006 =z, = 3.9994
@1,()1,479

| 4.3929 4.0222 4.0001
) = @) — @ =
* [ 4.9286 ] A [ 4.9964 ] * [ 5.0000 ]

Vis =

@ V&Y = 09200 - 01000 V) = 0.9024 — 50.0081
Vv = 0.9005 - 501000 V5" = 0.9001 — j0.1000
(b) S12 = 300 MW +;100 Mvar '
Spp = —280 MW - 760 Mvar
S. =20 MW + i) Mvar
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67. () V" = 0.9360 — 50.0800 ViV = 0.9602 — j0.0460 - EZ’ 533';";‘:;‘;:?“3;]‘;’ the clements of the bus admittance mairix It Gl
v = 0.9089 - j0.0974 VP = 0.9522 — j0.0493 D ® e
(b) S}Q = 300 MW 4 j300 Mvar 6(1} _ . . (2 _ 00985 radian = 1.6327°
Se; = —300 MW _3240 Myvar _ ) = 0.0275 radian = 1.5782 52 =00 racian = 1.
St =0 MW +j60 Mvar - 85 = -0.1078 radian = —6.179° 457 = —0.1189 radian=—6.816"
Sig =400 MW 4 j400 Mvar VY| = 0.9231 pu |V‘2’| = 0.9072 pu
Sy = —400 MW — 5360 Mvar (c) The power flow program Ifnewton is used to obtain the solution (Set'
Sp, =0 MW+ j40 Mvar Example 6.9).
S3 =100 MW + j90 Mvar T . @) : o
: _ : - é = 0.0262 radian = 1.5006° 85" = 0.0277 radian = 1.5863
St =0 MW -I—qu Mvar : 5%1) ~ . 2 62(2) = _0.1182 radian— —6.772°
; Sy =T00 MW + j700 Mvar 3(1] = —0.1119 radian = —6.412 (g} = —{. jan=—6.
| . . a . V5] = 0.9250 pu V42| = 0.9088 pu :
6.8. (a)V; " =1.0025 — 70.0500 Q3" = 1.23G0 {b) The power flow program decouple is used to obtain the solution {See
v, = 1.0299 + j0.0152

Example 6.11).

(2) _ . {2) _ '
V," = L0001 — j0.0409 Q3" = 1.3671 6.14. Follow the Instruction for Data Preparation (Section 6.9) and Example 6.9.

V.2 = 1.0208 + j0.0216

(b) S12 = 150.428 MW + 3100.159 Mvar
Sy = -150428 MW — j92.387 Mvar Chapter 7
St =0 MW 4 §7.772 Mvar _
S13 = —50.428 MW — 79.648 Mvar 7.1. A square of side length = 1.4142, perimeter = 5.6568
Sqff #E50.428 MW + §10.902 Myar For A = —2.828, &% = % = —5.6568. Second derivatives are negative.
Stig =0 MW+ 51255 Mvar Thus, objective fu:?El?on is maximized
Sa3 = —249.572 MW — j107.613 Mvar » O3 .
S3 = 249572 MW+ 7126.034 Mvar 72 r=y= —%- A= 45

Sp.y =0 MW 4 j18.421 Mvar
S =100 MW + j90.51 Mvar

~j125 0 j§100 O

%z?f; g;b = 2. Second derivatives are positive. Thus, objective function is

minimized.

0 —j6.25 0 5 _ 7.3. Base = 1.732, Height = 1.5, Area= 1.209
6.9, Y= 100 0 —j89 39 74. ¢ = 0.5, w, = 10,000 rad/sec, My, == 1.1547
1] 75 79  —713 7.5. Minimum value of the function = 12.5,atx = 1.5,y =32, A =1
610 VD= 09100 6 = —0.1300 rad 7.6, Minimum value of the function = 17, at z = 1,y = 4, A = it
|V2(2)1 = 0.8886 5{2) —0.1464 rad 77. (a)} P, = 250 MW, P, = 300 MW

— 500 MW, P, = 800 MW
61 V2| = 08000 5“’H—0.1000 rad A o

(c) ﬁ = 6.8, ¥ = 0.002
VIR = 0.7227 5(2) = —0.1350 rad 78. () Cr=4,84975%h (i) C; = 7,310.46 $/ (i) C; = 12,783.04 $h
6.12. The bus admittance matrix in polar form is | 79, (i) F =100 MW, P, = 140 MW, P; = 210 MW, ) = 8.0
60/-% 40/  20/% ' .3 Cp = 4,823.70 $h
Yous = | 4023 60/-F 2043 ] (i) P = 175 MW, P, = 260 MW, P; = 310 MW, A = 8.6
2045 20/% 40/-% '
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7.10. (i) P, = 122 MW, P, = 260 MW, P; = 68 MW, A = 7.148
Ce = 4,927.13 $M £ -
(1)} P, = 175 MW, P; = 260 MW, P; = 310 MW, A = 8.6
Ce=17,277.20 $h
(iil) Py = 350 MW, P, = 540 MW, P; = 445 MW, A = 10
Cr=12,724.38 $h
7.11. P =161.1765 MW, P, = 258.6003 MW, A = 7.8038 C, = 3,375.43 $/h
7.12. P, =70.360 MW, P, = 181.557 MW, P; = 97.111 MW, X = 8.1513
C; = 3,194.85 $/h
Chapter 8
8.1. (a)a =75.75°i(t) = 3sin 315¢
(b)Y @ = —14.25°,4(t} = 3sin(315¢ — w/2) + 380t
(c) In MATLAB using [Imax, k] = max(i), tmax= 1(k) result in
imax = 4.37 A, tmax = 0.0096 sec.
8.2. Inthe file chp8ex2.m set d = 30°, rename the file and run the program.
8.3. In the file chp8ex3.m set d = 30°, rename the file and run the program.
8.5. In the file chp8ex4.m set d = 30°, rename the file and run the program.
8.6. (a)0.6667 pu, 2.2222 pu, 4.0 pu :
(b) ige(t) = (2.5142¢ % 4 2.2¢ 07143t | 0.9428) sin wi
B.7. iagy(t) = (2.5142e~ 5 4-2.2e~ 07143 1.0.0428) sin (wi+/2)+5.6568¢ 33393
88. X;=0449, 1} = 1.382sec, X = 0.2498,rf = 1.0397 sec,
8.9. idgey(t) = (2.357e7 % + 3.5355¢ ¢ + 1.1785) sin(wt + 7/2) + 7.071e™ %
Toe = 5.0 s, Ipnee = 7.071, Tasy = 8.66 rms
8.10. (a) I7 = 2.5 pu, 7.216.88 A, 360.84 A '
I; = 2.0 pu, 5,773.50 A, 288.68 A
T4 = 0.6667 pu, 1,924.5 A, 96.23 A
(b) Iosy = 4.3333 pu, 12,500 A, 625 A
() tasy(t) = (0.7070e~257 1 18856~ + 0.9428) sin{wt + n/2) +
3_53556—3.3335-
8.11. I} = 2.56/-75.53° pu, or 7393.69/ ~75.53° A

C:=17,277.20 $/h
(ili) Py = 325 MW, P, = 500 MW, P, = 510 MW, A = 9.8
C: = 12, 705.20 $/h

(¢} Savings: (i) 21.05 $/h

(i1) 33.26 $/h  (jii) 77.84 $/h

_ 8.12. Ig = 3.545/-78.6° pu, I', = 3.599/ ~95.3° pu, I, = 7.068/ —87.03° pu
Chapter 9
9.1, 2.0/-90° pu = 288.675/ —~90° A, 200 MVA
92, 180
93 (@)70-2pu, 5.0£-90° pu, (b) Vi = 0.4 pu; Vs = 0.8 pu, V5 = 0.7 ou
9.4. (a)j0.4 pu, 2.5/-90° pu
(b) Vi = 0.925 pu, V5 = 0.925 pu, V; = 0.475 pu
Il? =1 pu, 113 = 1.5/-90° Pu, 123 = 10&—900 pu
9.5. (a) 70.5 pu, 2.0£-90° pu
(b) VI = (.60 pu, VQ = (.65 pu, V3 =038 pu, V4 =0 pu
ha=1.1/-90° pu, Iy; = 0.1/—90° pu. I3 = 0.9/-90° pu
T34 = 2.0£-90° pu
(¢): (a) j0.25 pu, 4.0/ —90° pu
(b) Vi =0.44 pu, V5 = 0.09 pu, V3 = 0.3 pu, V4 = 0.3 pu
T = 0.74-90° pu, [13 = 0.7£-90° pu, I35 = 0.7/-90° pu
[ 70.2400 70.1400 30.2000 ;0.1400
96. 7, . j0.1400 j0.2275 §0.1750 30.2275
B 70.2000 30.1750 30.3100 50.1750
[ 70.1400 350.2275 30.1750 ;0.4175
[ 40.12 50.04 3;0.06
9.7. Zps =1 j0.04 ;0.08 50.02
| 70.06 j0.02 3;0.08
[ 70.0450 §0.00750 30.0300
98. Zpuy = | j0.0075 70.06375 50.0300
[ 70.0300 70.03000 30.2100 |
[ 70.32 70.16 40.28
99, Zps =1 j0.16 j0.48 ;0.24
' | 7028 70.24 ;0.42
9.10. Same as Problem 9.4
9.11. Same as Problem 9.5
9.12. 4.0/~90° pu

Vi = 0.46 pu, V5 = 0.61 pu, V3 = 0.16 pu, V; = 0.01 pu
I3 =1.5/-90° pu, Iy = 1.5£-90° pu, I, = 0.3£—-90° pu,
I:Zd = 1.0£-90° Py, 134 = 1.5/--90° pu
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9.13. Run chp9ex7 for a bolted fault at bus 9.
9.14. Run chp9ex8 for a bolted fault at bus 9.
9.15. Run chp9ex9 for a bolted fault at bus 9.
9.16-9.18. Make data similar to Examples 9.7-9.9.

Chapter 10

10.1. V0 = 42.265/-120°, V! = 193.185/—135°, V2 = 86.947/ —84.896°
10.2. I, = 8.185/42.216°, I, = 4.0£/—30°, I, = 8.185/—102.216°
10.4.

288.675£30°
440.958/-19.106°
Vubc e

0
V12 = | 763.763/-10.93°
| 166.667£60°

0
Vo2 [440.958& —40.89° }

600.925/—-166.102°
333.333460°

[ 20790°

60£-90°
L 40290° |
[ 20£-90° ]
20£150°
| 20£30°

105. 102 =

10.6. J9b¢c =

10.7. (a
& 42.265/-120°

707 = [10”50 0 0] (b) Vo= [ 193.185£ —135°

0  10+335 0

0.829£161.31°
(¢) IM2=| 5307/150.95°
2.388£—158.95°

(e) 834 = 1,036.8 + 33, 659.6
(f) Same as (&)
10.8,

0
Vo2 _ | 136.879/139.933° }
| 451.105/54.603°

T 12.993/70.561°
Iobe = | 900.9/163.741°

15.395/-73.686°

86.947/—84.896°
7.907£165.46°
] (d) I = } 5.819/14.867°

2.701.-96.93°

480.754/70.560°
Yok = [ 333.338/163.741°

569.611/—73.685°

|
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10.9. 1.8Q

10.10. 0.82502

10.11. I, = 12/-90°pu

10.12. 7, = -9.116 pu

1013, Iy = I, + I, = 12.5/°%0° pu

10.14. (a) 5/—90° pu, (b) 62 —90° pu, (c) —4.33/—90° pu, (d) 7.5290° pu

10.15. (2)4.395£—90° pu, (b) 4.669£—90° pu, (c) —3.807 £—90° pu, (d) 4.979/90°
pu '

10.16. I; = 4.6693Z-90° pu

Bus VYoltage Magnitude
No. | Phasea Phaseb Phasec
1 [ 000600 09704 09704
2 | 05214 09567 09567
3 107977 09535 0.9535
4 | 0.8911 09739 0.9739
From To Line current magnitude
Bus Bus |{ Phasea Phaseb  Phasec
1 F 1 46693 0.0000 0.0000
2 ; 1.4786  0.1556 0.1556
3 1 | 20234 10117 1.0117
4 2 1.0895 0.5447 0.5447
10.17. I; = —3.8067 pu
Bus Voltage Magnitude
No. | Phasea Phaseb Phasec
1 1.0000  0.5000  0.5000
2 1.0000  0.6401  0.6401
3 | 1.0000 07954 07954
4 ] 10000 0.8871 0.8871
From To Line current magnitude
Bus DBus | Phasea Phaseb  Phasec
1 F | 00000 3.8067 3.8067
2 1 [ 0.6000 13323 1.3323
3 1 §0.0000 24744 2.4744
4 2 | 00000 1.3323 1.3323
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10.18. I, = 4.9793£90° pu 11.2. 600°/sec? = 100rpm/sec, 20°, 3620 rpm
a= NoTags Masoide 11.3. 376°/sec? = 62.66Trpmisec, 28.2°, 3609.4.rpm
No. | Phase a Phaseb Phasec ; 11.5. H =24 MIMVA, Py, = 0.5 pu, Pras = 2,
1 | 09336 0.0000 00000 €5 _ 4500(1 — 2sind & isin degrees
7| 09004 04965 0.4965 art ( d o i
3 | 0.8921 0.7626 0.7626 11.6. B’ = 1.25/27.189° ,0.03%f = 0.77 - 1.65sin§) , (& is in radians)
g | 05415 DT g 11.7. 0.03%¢ = 0.77 - 0.5sind) , (5 is in radians) |
[ From To Line current magnitude : 11.8. 288 L pAf—0 where P, = 22| — P cosé + 2P, ¢os 26
Bus Bus | Phasea Phaseb Phase ¢ o dt P Wl e ° * ’
[ F | 00000 45486  4.5485 . 11.9. (=06, wy=4.0rad/sec
2 1 101660 15076  1.5076 - 11.10. § = 27.835° + 16.0675¢~ 24977 5in(6.5059¢ + 69°)
3 1 | 10788 25325  2.5325 _ —2.4977¢ ;
4 2 | 05809 13636 13636 | 4 sealk=apille sin6.5050¢ Hz
. 11.11.
-1 0.120  0.040  0.030 0.020 - A= 4805649 4 ;955 ] B= [g] c= [(1) ?] D= [g ]
L) _ | 0040 0080 0010 0.040 e o _
bus 1 0030  0.010 0.045 0.005 11,12, § = 27.835° 4 5.8935(1 ~ 1.0712¢~ 24977t 5in(6.5059¢ + 69°)
0.020 0.04070.005 0.045 J f=60+0.1222¢ 249 5in 6.5059t Hz
Total fault current = 10.8253 per unit 0
11,13. A, B, D are the same as in Problem 11.11, B = { 4.9955 ]
Bus Yoltage Magnitude '
No. { Phasea Phaseb Phasec 1i.14. (a) 0.649 pu. (b) 1.195 pu
1 | 1.0000 0.6614 -0.6614 ° 4 = - o
B Beom o 11.15. (a) . = 82.593°, ¢, = 0.273 sec (b) §. = 77.82
3| 1.0000 09079 0.9079 LL1S., L= Dudiser
4 | 1.0000 06614 06614 ' 11.17. (a) Suable (b) Unstable (c) £, = 0.29 sec
From - To Line current magnitude : 11.18. (a) Stable (b) Unstable (c) t, = 0.72 sec
Bus Bus | Phasea Phaseb Phase ¢
i 2 [00000 07217 0.7219
I 2 | 0.0000 14434  1.4434 Chapter 12
2 F [ 0.0000 108253 10.8253
3 1 [ 0.0000 21651  2.1651 ' 12.1. 25 MW
4 2 | 00000 86603  8.6603 12.2. Py =200 MW, Py = 300 MW
10-20 RBI} ChplOexS for a bOl[ed fauh at bus g, ' ' 12.3. (a) Af = -0.3 HZ, Pl = 250 MW, P2 = 580 MW
10.21, Make dala Similﬂf to Examp]e 10.8. ’ (b) Af B —0.291 HZ, P}_ = 248.5002 MW. P2 - 577-6(}04 MW,
: . AP, = —3.8994
Chapter 11 : 12.4. (a) R > 0.009678

1.1. M =85 Ml.rad/sec, H = 4.0 MI/MVA

(b) Use rlocus tor KG{S)H(s) = 253+12,232ﬁ-1‘r.23+1.5' where K = %
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12.5. (a) —0.5563 Hz
52 - ; . .
(b) T(s) = %’%}%, use step function with value of —0.25 pu.

INDEX

(¢} Simulation response same as the response in (b)
12.6. (b)T{(s) = %, use step function with value of —0.25
12.7. Modify sim12ex4.mdl
12.8. Modify sim12ex5.mdl
12.9. (a) K4 < 43.3125
(b} b) Use rlocus for KG(s)H(s) = ——-32%ka .

: $+233°+623+ 1320
= 1280 ; X
©T(s)= T Bs2 625 1300 Use step to obtain the response
(d) Simulation response same as the response in (c)

12i0(s+25 .
12.10. (@) T'(s) = 3"+48342+5}?£=+68)703+3?000’ usc step to obtain the response

(b) Simulation responst same as the response in (a)
- 1212, (b) 0,0, +4.5388, (c) Unstable

@ K =] ~170.3666 —38.0540 —~17.3293 —24.1081 |

ABCD constants, 144
AC resistance, 105
Acceleration factor, 198
Ackermann’s formula, 571
Active power, 16

[ 1} 1.0000 0 0 Admittance matrix, 192
@A, - —64.5823 —19.0270 —8.6646 —12.0540 AIl-aJum%num alloy conductor, 104
f 0 0 0 1.0000 All-aluminum conductor, 104

Aliemators, 49

Aluminum conductor alloy-reinforced,
104

42,1012 9.5135  4.3323 6.0270
1214 @ K = [ —125.0988 —28.6369 —5.0000 —10.5129 ]

0 1.0000 0 0 Aluminum conductor steel-reinforced,
b A, = —41.9484 —14.3185 -25000 —5.2565 ' 104
/ 0 0 0 1.0000 ' Amplifier model, 555
| 30.7842 7.1592 1.2500 2.6282 Annual load factor, 8
(a) A = 9 s 0 Apparent power, 16
0 0062 —0.1 Area control error (ACE), 551
. Armature mmf, 52
B:[O 0 -0l625 ]’BPL=B*PL-C=[0 0 1]»D=0 Armature reaction, 53
. -40 0.0 -100 Armature short circuit time constants,
(K =[64 54 -944] A-BK=] 20 -20 0 340
04 04 -6 Array powers, 594

Attenuation constant, 153

(@ K = [ 83477 1437 -162.0007 ] T

—4.0000 0 -100.0000 Automatic voltage regulator, 555
Ay = 2.0000 -2.0000 0 Autotransformers, 77
0.5217 0.1540 —10.2250 Average power, 16

Axis, 606

‘B-coefficients, 280

Balanced fault, 353

Balanced three-phase circuits, 30
Balanced three-phase fault, 354
Balanced three-phase power, 37
Balanced three-phase short circuit, 325
Bandwidth, 661

Base current, 89

Base impedance, 89

Base voltage, 89

Base volt-ampere, 89

Basic loops, 370

Bode plot, 657

Bolted fauit, 354

Branches of a tree, 369

Brushiess excitation, 49

Building algorithm, 369
Bundling, 105

Bus, 4

Bus admittance matryx, 192

Bus code, 223

Bus data file, 223

Bus impedance matrix, 193, 369
Bus voltages during fault, 366, 434

Capacitance:
of single-phase lines, 121

691




692 INDEX

of three-phase lines, 124
of three-phase two-circuit
lines, 126
Case-sensitive, 589
Change of base, 90
Character string, 592
Characteristic impedance, 153
Characteristic polynomial, 601
Circle diagram, 163
Circular mils, 104
Closed-loop frequency response, 661
Coherent, 511
Colon, 595
Column vector, 593
Complex numbers, 599
Complex powes, 19
Complex power balance, 21
Complex power flow, 26
Composite load, 530
Control area, 545
Coordination equations, 270
Copper loss, 68
Corona, 135
Cost function, 268
Cotree, 369
Critical clearing angle, 493, 496
Critical clearing time, 494, 507
Current waves, 156
Current-carrying capacity, 163
Cut set, 370
Cylindrical rotor generator, 56

Diily-load curve, 8

Daily-1oad factor, 8

Damped frequency of oscillation, 474
Damper, 49 :
Damping power, 473

Damping ratio, 474, 644

DC component, 341

DC components of stator currents, 340
DC offset, 316

DC resistance, 105

DC transmission tie line, 2

Decoupled power flow, 240

A-Y transformation, 35

A-connected loads, 34

Deregulation, 3

Derivation of loss formula, 289

Direct axis, 318

Direct axis reactance, 64

Direct axis reluctance, 63

Direct axis subtransient reactance, 336

Direct axis synchronous reactance, 338,
342

Distribution, primary, 6

Distribution, secondary, 8

Diversity, 0

Division of polynomials, 603

Dot product, 594

Double line-to-ground fault, 425, 434

Driving point admittance, 192

Dynarnic stability, 460

Economic dispatch, generator limits,
276

Economic dispatch neglecting losses,
268

Economic dispatch, transmission losses,
279

Edison, Thomas, 1-

Effect of bundling on capacitance, 126

. Effect of earth on capacitance, 127

Effect of load current, 347
Eigenvalues, 259, 599

Electric field intensity, 121

Electric industry structure, 2
Electrostatic induction, 135
Flement-by-element division, 594
Element-by-element multiplication, 594
Elementary matrix operation, 396
Energy control center, 11, 528
Equal-area criterion, 486

Equivalent 7 model, 154

Equivalent circuit of transformer, 64

Equivalent leakage impedance, 69
Excitation voltage, 53

Exciter, 49

Exciter model, 556

Extra-high voltage, 2, 104

Fast decoupied power flow solution,
240

Fault analysis using Zpys, 363

Flux linkage, 50, 106, 320

Frequency bias factor, 548

Frequency response, 657

Frequency response design, 662

Fuel-cost curve, 267

Function file, 588

Fundamental cut set, 370

Gain factor, 641

Gain margin, 659

Gauss-Seidel, 195

(Gauss-Seidel power flow solution, 209
Generalized circuit constants, 144
Generation, 4

Generator model, 529, 557
Generator voltage regulation, 35
Geomeltric mean distance, 110
Geometric mean radius, 110
GMR of bundle conductors, 11§
Govermnor model, 532

Gradient method, 263, 270, 283
Gradient vector, 259

Graph of network, 369

Graphics, 605

Graphics hard copy, 607

H constant, 463

Handle graphics, 614
Heat rate, 267

Help, 587

Help Desk, 588

Hessian matrix, 259
Hyperbolic functions, 154

INDEX 693

Ideal transformer, 65

Impedance matrix, 193, 369

Impedance triangle, 20

Incident wave, 156

Incremental fuel cost, 267

Incremental fuel-cost curve, 267

Incremental production cost, 270

Incremental wansmission loss, 281

Inductance due to external flux link-
age, 108

" Inductance of composite conductors,

115

Inductance of single conductor, 106

Inductance of single-phase lines, 109

Inductance of three-phase lines, 112

Inductance of three-phase two-circuit
lines, 119

Inductance spacing factor, 110

Inductances of salient-pole machines,
320

Inequality constraints, 264

Inertia constant, 463

Infinite bus, 56

Inner product, 594

Input-output curve, 267

Installed generation capacity, 4

Installing Text toolbox, 587

Instantaneous power, 15

Integral controller, 542

Internal flux linkage, 107

Internal inductance, 107

Iron loss, 69

Jacobian matrix, 204, 233

Kinetic energy, 462

Kron reduction formula, 513
Kron’s loss formula, 279
Kuhn-Tucker, 265, 276

Lagrange multiplier, 260, 280, 577
Line compensation, 165
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Line currents, 435

Line data file, 223

Line flows, 212

Line inductance, 120

Line loadability equation, 164
Line losses, 212

Line performance program, 171
Line resistance, 1335
Line-to-line fault, 423, 433
Line-to-line short circuit, 330, 333
Line voltage, 32

Line voltage regulation, 144
Linear quadratic regulator, 576
Links of a cotree, 369

Load bus, 208

Load flow, 189

Load frequency control, 528
Load impedance, 90

Load model, 530

Loads, 8

Logical statements, 614

Long line model, 15]

Loops, 614

Loss coefficients, 280

Machine model for transient analy-
ses, 335

Magnetic field induction, 133

Magnetic field intensity, 106

Magnetic fiux density, 107

Matrix division, 597

Matrix multiplication, 597

Medium length lines, 147

Medium line model, 147

Mil, 104

Minimum phase transfer function, 660

Moment of inertia, 461

Momentary duty, 341

Multimachine system, 511

Multimachine transient stability, 514
Mutual inductance, 111

Negative phase sequence, 30, 401

Newton-Raphson, 200

Newton-Raphson power flow solution,
232

Nominal = moedel, 147

Nonlinear algebraic equations, 195

Nonlinear function optimization, 258

Nonlinear programming, 258

Nonlinear systems, 620

Numerical solution of swing equation,
504

Nyquist, 661

Nyquist diagram, 660

Nyquist path, 660

Nyquist plot, 658

Nyquist stability criterion, 660

One vector, 595

One-line diagram, 91

One-machine system connected to in-
finite bus, 472

Qpen-circuit test, 68

Open circuit transient time constant,
337

Open line, 167

Operating cost of thermal plant, 267

Optimal control design, 576

Optimal dispatch of generation, 257

QOutput format, 590

Overhead transmission lines, 103

Overshoot, 644

P-QQ bus, 208

P-V bus, 208

Pacific Intertie, 2

Park transformation, 321
Partial fraction expansion, 604
Path Browser, 587

PD controller, 646, 649

Peak load, 8

Peak time, 644

Penalty factor, 282

Per phase basis, 37

Per-unit system, 88

Permeability of free space, 107

Permittivity of free space, 121

Phase constant, 153

Phase-lag design, 648

Phase-lead design, 647

Phase margin, 659

Phase sequence, 30

Phase variables, 622

Phase voltage, 32

PI controller, 646, 650

PID controller, 564, 650

PID design, 649

Plant factor, 9

Plant cutput, 622

Polar plot, 658

Polynomial curve fitting, 603

Polynomial evaluation, 604

Polynomial roots, 601

Pools, 3

Positive phase scquence, 30, 400

Positive-sequence subtransicnl reac-
tance, 411

Potential difference between two points,
121

Patential difference, muiticonductors,
123 :

Power angle, 54, 461

Power angle characteristics, 57

Power-angle curve, 466

Power circle diagram, 163

Power factor, 16

Power factor control, 56

Power factor comrection, 23

Power flow:
decoupled. 240
Gauss-Seidel, 209
Newton-Raphson, 232

through transmission lines, 161

Power flow analysis, 1 89

INDEX 695

Power flow data preparation, 223
Power flow equation, 189, 209
Power flow programs, 222

Power flow solution, 208

Power grid, 2

Power in single-phase ac circuit, 15
Power pool, 2

Power residuals, 234

Power system control, 527

Power System Toolbox, 663
Power transformers, 64

Power transmission capability, 163
Power tnangle, 20.

Primary feeder, 8

Prime mover model, 531

Prime movers, 4

Product of polynomials, 603
Production cost, 268

Propagation constant, 153
Proportional controller, 646, 662

Quadratic performance index, 570
Quadrature axis, 318

Quadrature axis reactance, 64
Quadrature axis reluctance, 63

Rate feedback, 562
Reactance of armature reaction, 54
Reactive power, 17

and voltage control, 555
Reactive power flow, 59
Reactive transmission line loss, 163
Real power, 16
Real transmission line loss, 163
Reference bus, 208
Reflected wave, 1560
Regulated bus, 208
Regulated bus data, 224
Regulating transformers, 86
Relative stability, 640, 638
Reluctance power, 64
Reset action, 542
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Resonant frequency, 661
Resonant peak magnitude, 661
Riccati equation, 577
Rise time, 644

Root locus, 641
Root-locus design, 645
Rotor, 49

Round rotor, 49
Routh-Hurwitz array, 641
Row vector, 593

Running MATLARB, 587

Salient-pole rotor, 49
Salient-pole synchronous generator, 62
SCTM, 402
Self-inductance, 111
Semicolon, 590
Sensor model, 557
Sequence impedances; 406
of lines, 409
of loads, 407
of machines, 41
of transformer, 411
Sequence networks, 420
of generator, 418
Series capacitor compensation, 168
Settling time, 644
Short circuit current in lines, 366
Short circuit subtransient time con-
stant, 336
Short circuit transient reactance, 337
Short circuit transient time constant,
337
Short length line, 143
Short line model, 143
Short-circuit test, 69
Shunt capacitor compensation, 16§ .
Shunt reactors, 165
Simplified Nyquist criterion, 660
Simulation diagram, 623
SIMULINK, 623

Single line-to-ground fault, 421, 432
Slack bus, 208

Small disturbances, 471

Solid fault, 354

Solution of differential equations, 615
Sources of electricity, 5

Space phasor, 31

Sparse matrix, 193

Speed govemning system, 532
Speed regulation, 533

Stabilizer, 562

Standard transmission voltages, 6
Stanley, William, 1

State equation, 622

State feedback, 569

State feedback control, 569

Steate variables, 622

Static stability limits, 58

Stator, 49

Steady-state error, 642
Steady-state period, 315
Steady-state stability limit, 466

Steel towers, 103

Subplot, 612

Substation, 6

Subtransient peried, 315

Subtransient reactance, 344

Subtransient time constant, 344

Subtransmission, 6

Surge impedance, 157

Surge impedance loading (SIL), 159

Swing bus, 208

Swing equation, 464

Switchgear, 11

Symmetrical components, 399

Synchronizing coefficient, 472

Synchronizing power coefficient, 477

Synchronous condenser, 163

Synchronous generator phasor diagram,
55 :

Synchronous generators, 49

Synchronous machine transient anal-
ysis, 314

Synchronous machine transients, 318

Synchronous reactance, 54

Synchronous speed, 51

Synchronously rotating reference frame,
318

Tap changing transformers, 83, 220
Taylor’s series, 260
Temperature constant, 105

 Tesla, Nikola, |

Thévenin's impedance, 356
Thévenin's veltage, 356
Thermal loading limit, 163
Three-dimensional plots, 613
Three-phase transformer connections,
74
Three-phase transformer model, 76
Three-winding transformer model, 82
Three-winding transformers, 81
Tie-line bias control, 549
Time-domain performance specifica-
tionis, 644
Torque angle, 461
Transfer admittance, 192
Transfer function, 529, 638
Transformer bus data, 224
Transformer efficiency, 70
Transformer equivalent circuit, 66
Transformer leakage flux, 66
Transformer magnetizing current, 66
Transformer maximum efficiency, 71
Transformer mutual flux, 66
Transformer no-load current, 66
Transformer performance, 70
Transformer voltage regulation, 71
Transformer zero-sequence impedance,
412
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Transient period, 315

Transient phenomena, 315
Transient reactance, 343
Transient stability, 460
Transient time constant, 343
Transmission and distribution, 6
Transmission line parameters, 102
Transmission matnx, 149
Transpose, 593

Transposed line, 114

Tree of network, 369

Turbine model, 531

Ultra-high voltage, 104

Unbalanced faults, 359

Unbalanced short circuit, 330

Unconstrained parameter optimization,
258

Utility matrices, 599

Utilization factor, 9

V curve, 57

Var, 17

Variables, 589

Vector operation, 593

Velocity of propagation, 157
Voltage control of transformers, 83
Voltage-controlled bus, 208
Voltage regulation, 144

Voltage waves, 156

Wave length, 157
Y-connected loads, 32

Zero phase sequence, 401

Zero-sequence reactance of lines, 410

Zero-sequence subtransient reactance,
411

Zero-sequence variable, 325

Zero vector, 5983




