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Preface

This book deals with the art and science of power system engineering for those engineers who work
in electricity-related industries such as power utilities, manufacturing enterprises, engineering
companies, or for students of electrical engineering in universities and colleges. Each engineer’s
relationship with power system engineering is extremely varied, depending on the types of
companies they work for and their positions. We expect readers to study the characteristics of
power systems theoretically as a multi-dimensional concept by means of this book, regardless
of readers’ business roles or specialties.

We have endeavoured to deal with the following three points as major features of the book:

First, as listed in the Contents, the book covers the theories of several subsystems, such as
generating plants, transmission lines and substations, total network control, equipment-based local
control, protection, and so on, as well as phenomena ranging from power (fundamental) frequency
to lightning and switching surges, as the integrally unified art and science of power systems. Any
equipment in a power system network plays its role by closely linking with all other equipment, and
any theory, technology or phenomenon of one network is only a viewpoint of the profound dynamic
behaviour of the network. This is the reason why we have covered different categories of theories
combined in a single hierarchy in this book.

Secondly, readers can learn about the essential dynamics of power systems mostly through
mathematical approaches. We explain our approach by starting from physically understandable
equations and then move on to the final solutions that illustrate actual phenomena, and never skip
explanations or adopt half-measures in the derivations.

Another point here is the difference in meaning between ‘pure mathematically solvable’ and
‘engineering analytically solvable’. For example, a person (even if expert in transient analysis) cannot
derive transient voltage and current solutions of a simple circuit with only a few LCR constants
connected in series or parallel because the equational process is too complicated, except in special
cases. Therefore only solutions of special cases are demonstrated in books on transient analysis.
However, engineers often have to find solutions of such circuits by manual calculation. As they usually
know the actual values of LCR constants in such cases, they can derive ‘exact solutions’ by
theoretically justified approximation. Also, an appropriate approximation is an important technique
to find the correct solution. Readers will also find such approximation techniques in this book.

Thirdly, the book deals with scientific theories of power system networks that will essentially
never change. We intentionally excluded descriptions of advanced technologies, expecting such
technologies to continue to advance year by year.

In recent years, analytical computation or simulation of the behaviour of large power system or
complicated circuits has been executed by the application of powerful computers with outstanding
software. However, it is quite easy to mishandle the analysis or the results because of the number of
so many influential parameters. In this book, most of the theoretical explanation is based on typical
simple circuits with one or two generators and one or two transmission lines. Precise understanding
of the phenomena in such simple systems must always be the basis of understanding actual large
systems and the incidents that may occur on them. This is the reason why power system behaviour
is studied using small models.
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Introduction

‘Utilization of fire’, ‘agricultural cultivation’ and ‘written communication’: these three items are
sometimes quoted as the greatest accomplishments of humankind. As a fourth item, ‘social
structures based on an electrical infrastructure’, which was created by humans mostly within
the twentieth century, may be added.

Within the last hundred years, we have passed through the era of ‘electricity as a convenient tool’
to the point where electricity has become an inevitable part of our infrastructure as a means of
energy acquisition, transport and utilization as well as in communication media. Today, without
electricity we cannot carry out any of our living activities such as ‘making fire’, ‘getting food and
water’ ‘manufacturing tools’, ‘moving’, ‘communicating with others’, and so on. Humans in most
part of the world have thus become very dependent on electricity. Of course, such an important
electrical infrastructure means our modern power system network.

A power system network can be likened to the human body. A trial comparison between the two
may be useful for a better understanding of the essential characteristics of the power system.

First, the human body is composed of a great many subsystems (individual organs, bones,
muscles, etc.), and all are composed in turn of an enormous number of minute cells. A power
system network of a large arbitrary region is composed of a single unified system. Within this
region, electricity is made available in any town, public utility, house and room by means of metal
wires as a totally integrated huge network.

Generating plants, substations and transmission lines; generators, transformers, switchgear and
other high-voltage equipment; several types of control equipment, protection equipment and
auxiliary equipment; control and communication facilities in a dispatching or control centre; and
the various kinds of load facilities — all these are also composed of a very large number of small
parts or members. Individual parts play their important roles by linking with the rest of the network
system. Human operators at any part of the network can be added as important members of the
power system. We might say that a power system network is the largest and greatest artificial
system ever produced by people in the modern era.

Secondly, the human body maintains life by getting energy from the external environment, and
by processing and utilizing this energy. New cellular tissue is consequently created and old tissue is
discarded. In such a procedure, the human body continues to grow and change.

A power system can be compared in the same way. A prerequisite condition of a power system
network is that it is operated continuously as a single unified system, always adding new parts and
discarding old ones. Since long-distance power transmission was first established about a hundred
years ago, power systems have been operating and continuing to grow and change in this way, and,
apart from the failure of localized parts, have never stopped. Further, no new power system isolated
from the existing system in the same region has ever been constructed. A power system is the
ultimate inheritance succeeded by every generation of humankind.

Thirdly, humans experience hunger in just a few hours after their last meal; their energy storage
capacity is negligible in comparison with their lifetimes. In a power system such as a pumped-
storage hydro-station, for example, the capacity of any kind of battery storage system is a very small
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part of the total capacity. The power generation balance has to be maintained every second to
correspond to fluctuations or sudden changes in total load consumption. In other words, ‘Simulta-
neity and Equality of energy generation and energy consumption’ is a vital characteristic of
power system as well as of human body.

Fourthly, humans can continue to live even if parts of the body or organs are removed. At the
other extreme, a minute disorder in cellular tissue may be life-threatening. Such opposites can be
seen in power systems.

A power system will have been planned and constructed, and be operated, to maintain reasonable
redundancy as an essential characteristic. Thus the system may continue to operate successfully in
most cases even if a large part of it is suddenly cut off. On the contrary, the rare failure of one tiny
part, for example a protective relay (or just one of its components), may trigger a kind of domino
effect leading to a black-out.

Disruption of large part of power system network by ‘domino-effect’ means big power failure
leaded by abrupt segmentation of power system network, which may be probably caused by cascade
trips of generators caused by total imbalance of power generation and consumption which leads to
‘abnormal power frequency exceeding over or under frequency capability limits (OF/UF) of
individual generators’, ‘cascade trips of generators caused by power stability limits, Q-V stability
limits or by any other operational capability limits’, ‘cascade trips of trunk-lines/stations equipment
caused by abnormal current flow exceeding individual current capacity limits (OC), or by over or
under voltage limits (OV/UV)’, ¢ succeeding cascade trips after fault tripping failure due to a
breaker set back or caused by mal-operation of a protective relay’ and so on, and may be perhaps
caused as of ‘these composite phenomena’. These nature of power systems is the outcome that all
the equipment and parts of the power system, regardless of their size, are closely linked and
coordinated. The opposites of toughnees with well redundancy and delicacy are the essential
nature of power systems.

Fifthly, as with the human body, a power system cannot tolerate maltreatment, serious system
disability or damage, which may cause chronic power cuts, and moreover would probably causes
extremely fatal social damages. Recovery of a damaged power system is not easy. It takes a very
long time and is expensive, or may actually be impossible. Power systems can be kept sound only
by the endeavours of dedicated engineers and other professional people.

Sixthly, and finally, almost as elaborate as the human body, all the parts of power system
networks today (including all kinds of loads) are masterpieces of the latest technology, based on a
century of accumulated knowledge, something which all electrical engineers can share proudly
together with mechanical engineers. Also all these things have to be succeeded to our next
generations as the indispensable social structures.
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Overhead Transmission Lines and
Their Circuit Constants

In order to understand fully the nature of power systems, we need to study the nature of transmission
lines as the first step. In this chapter we examine the characteristics and basic equations of three-
phase overhead transmission lines. However, the actual quantities of the constants are described in
Chapter 2.

1.1 Overhead Transmission Lines with LR Constants

1.1.1 Three-phase single circuit line without overhead
grounding wire

1.1.1.1 Voltage and current equations, and equivalent circuits

A three-phase single circuit line between a point m and a point n with only L and R and without an
overhead grounding wire (OGW) can be written as shown in Figure 1.1a. In the figure, r; and L, are the
equivalent resistance and inductance of the earth, respectively. The outer circuits I and II connected at
points m and n can theoretically be three-phase circuits of any kind.

All the voltages V,, Vj, V. and currents I,,, I, I are vector quantities and the symbolic arrows show
the measuring directions of the three-phase voltages and currents which have to be written in the same
direction for the three phases as a basic rule to describe the electrical quantities of three-phase circuits.

In Figure 1.1, the currents /,, I, I in each phase conductor flow from left to right (from point m to
pointn). Accordingly, the composite current I, + I, + I has to return from right to left (from point n to
m) through the earth—ground pass. In other words, the three-phase circuit has to be treated as the set of
‘three phase conductors + one earth circuit’ pass.

In Figure 1.1a, the equations of the transmission line between m and n can be easily described as
follows. Here, voltages V and currents / are complex-number vector values:

mVa = nVa = (ra + joLaag)la + jooLapely + joLacgle — man @)
Vo =V = jWLhagIa + (r;, + jWthg)Ib + ijhchC - man @) (LD
mVe = nVe = joLeagla + joLepgly + (re + jorLeeg)le — mnvg ©) .

@

where ., V, = (rg + joLg)l, = —(rg + jooLg)(Ia + 1 + 1)

mn'g

Handbook of Power System Engineering Yoshihide Hase
© 2007 John Wiley & Sons, Ltd
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Figure 1.1 Single circuit line with LR constants

Substituting @) into (), and then eliminating man, I,

mVa = nVa = (ra+rg + joLaag + Lg)la + (rg + joLapg + Lg)lp+(rg + jwLacg + Lg)le
Substituting @ into Q) and () in the same way,

mVe = uVp = (rg + joLpag + L)l + (rp+ rg + joLppg + Lg)Ip+ (rgtjoLpeg+Le)Ie

mVe — Vo= (rg + joLeag + Lo)la + (rg + joLepg + Lo )y + (re + 1 + jwLecg + L)

®

©®

@
(1.2)

Now, the original Equation 1.1 and the derived Equation 1.2 are the equivalent of each other, so

Figure 1.1b, showing Equation 1.2, is also the equivalent of Figure 1.1a.

Equation 1.2 can be expressed in the form of a matrix equation and the following equations are

derived accordingly (refer to Appendix B for the matrix equation notation):

mVa nVa
mVp - 2V
mVe nVe
Tq + 71+ ja)L,mg + Lg re + ja)Labg + Lg re + ja)Lm.g + Lg 1,
= g + ja)Lbag + Lg rp, + g + j(/‘)Lbbg + Lg g + jWLbcg + Lg . Iy
rg + joLeag + Lg rg + joLepg + Ly Te +rg + joLeeg + Lg 1.
Tag + JOLag Tab + joLap Tac + joLac I,
=\ rba t joLig I'pb + joOLpp Tpe + jOLpe || Ip
rL'(l + ijL'll rcb + ijCb rL'L' + ijL'L' IL'
Zaa Zab Zac I,
= | Zpa Zop | Zpe || Ip
Zea Zcb Zec I

(1.3)
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where Zya = Yaa + joLag = (ra + 1g) + jo(Lagg + Lg) }

Zpp, Zcc are written in similar equation forms (1.4)
and Z,., Zp. are also written in similar forms
Now, we can apply symbolic expressions for the above matrix equation as follows:
mV ape = nVave = Zabe * Labe (1.5)
where
m Va n Va Zaa Zab Zac 1 a
mVabc = mV ’ "VﬂbC = Vb ’ lebL‘ = Zpa Zpp ZLpe ) Iabc = 1 (1.6)
m VC n Vc an Zcb ZCC I c

Summarizing the above equations, Figure 1.1a can be described as Equations 1.3 and 1.6 or
Equations 1.5 and 1.6, in which the resistance r, and inductance L, of the earth return pass are already
reflected in all these four equations, although I, and ,,, V, are eliminated in Equations 1.5 and 1.6. We
can consider Figure 1.1b as the equivalent circuit of Equations 1.3 and 1.4 or Equations 1.5 and 1.6. In
Figure 1.1b, earth resistance r, and earth inductance L, are already included in the line constants Z,,
Zap, etc., so the earth in the equivalent circuit of Figure 1.1b is ‘the ideal earth’ with zero impedance.
Therefore the earth can be expressed in the figure as the equal-potential (zero-potential) earth plane at
any point. It is clear that the mutual relation between the constants of Figure 1.1a and Figure 1.1b is
defined by Equation 1.4. It should be noted that the self-impedance Z,, and mutual impedance Z,, of
phase a, for example, involve the earth resistance r, and earth inductance Lg.

Generally, in actual engineering tasks, Figure 1.1b and Equations 1.3 and 1.4 or Equations 1.5 and
1.6 are applied instead of Figure 1.1a and Equations 1.1 and 1.2; in other words, the line impedances
are given as Zuq, Zap, etc., instead of Zy4g, Zap,e. The line impedances Zyy, Zyp, Zcc are named ‘the self-
impedances of the line including the earth—ground effect’, and Z,;,, Z,., Z., etc., are named ‘the
mutual impedances of the line including the earth—ground effect’.

1.1.1.2 Measurement of line impedances Z,,, Z ), Z

Let us consider how to measure the line impedances taking the earth effect into account.

As we know from Figure 1.1b and Equations 1.3 and 1.4, the impedances Z,4, Z,p, Zuc, €tc., can be
measured by the circuit connection shown in Figure 1.2a.

The conductors of the three phases are grounded to earth at point n, and the phase b and ¢ conductors
are opened at point m. Accordingly, the boundary conditions, V, = |V, = V.= 0,1, = I. = Ocanbe
adopted for Equation 1.3:

mVa 0 Zaa Zab Zac 1,
Ve |71 0 =] Zpa Zppy Zbe 0 D 17
ch 0 Zea Zeh Zec 0
mva/lﬂ :Zal/h me/Ia:Zbch ch/Ia:ZCa @
]a — — ]a
O Iy=0—p — ,=-1, ::I
° I,=0—p —1.-0
O
B @YD
/.
> Ig:_la —»Ig:()

(@) (b)

Figure 1.2 Measuring circuit of line impedance
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Therefore the impedances Zyq, Zy,, Zge can be calculated from the measurement results of |V,
mVpr mVe and Iy,

All the impedance elements in the impedance matrix Z 4. of Equation 1.7 can be measured in the
same way.

1.1.1.3 Working inductance (Loq — Lgp)

Figure 1.2b shows the case where the current / flows along the phase a conductor from point m to n and
comes back from n to m only through the phase b conductor as the return pass. The equation is

with boundary conditions [, = —I =1, I. =0, WVe=aVp:
m Va n Va Zua Zab Zuc 1
Vo |71 Y% | =1 Zoa | Zob | Zbe || 1 (1.8a)
m Vc n Vc an Zcb ch 0
Therefore
wVa— Ve = (Zaa — ,,;,)I : voltage drop of the phase a conductor between points m and n D
mVe — nVy = —(Zpb — Zpa)I = voltage drop of the phase b conductor between points m and n
V= mVa - th = {(Zaa - Zl/lb) + (Zhb - Zhll)}l @
VII=(,V, = V)T = (Zaa — Zap) + (Zby — Zpa) = {twice values of working impedance} }

(1.8b)

Equation 1.8(D) indicates the voltage drop of the parallel circuit wires a, b under the condition of the
‘go-and-return-current’ connection. The current / flows out at point m on the phase a conductor and
returns to m only through the phase b conductor, so any other current flowing does not exist on the
phase ¢ conductor or earth—ground pass. In other words, Equation 1.8b(]) is satisfied regardless of the
existence of the third wire or earth—ground pass. Therefore the impedance (Z,, — Z,;,) as well as
(Zpp — Zpy) should be specific values which are determined only by the relative condition of the phase
a and b conductors, and they are not affected by the existence or absence of the third wire or earth—
ground pass. (Z,, — Zup) is called the working impedance and the corresponding (Lyq — Lgp) is
called the working inductance of the phase a conductor with the phase b conductor.

Furthermore, as the conductors a and b are generally of the same specification (the same dimension,
same resistivity, etc.), the ipedance drop between m and n of the phase a and b conductors should be the
same. Accordingly, the working inductances of both conductors are clearly the same, namely
(Laa - Lab) = (Lbb - Lba)-

The value of the working inductance can be calculated from the well-known equation below, which
is derived by an electromagnetic analytical approach as a function only of the conductor radius » and
the parallel distance s, between the two conductors:

Laa — Lap = Ly — Lpa = 0.4605 1oglos“7b +0.05  [mH/km] (1.9)
This is the equation for the working inductance of the parallel conductors a and b, which can be
quoted from analytical books on electromagnetism. The equation shows that the working inductance
Lyq — Ly, for the two parallel conductors is determined only by the relative distance between the two
conductors s, and the radius 7, so it is not affected by any other conditions such as other conductors or
the distance from the earth surface.
The working inductance can also be measured as the value (1/2)V/I by using Equation 1.8b(®).

1.1.1.4 Self- and mutual impedances including the earth-ground
eﬁecf Laa, Lab

Now we evaluate the actual numerical values for the line inductances contained in the impedance
matrix of Equation 1.3.

The currents I, I, I flow through each conductor from point m ton and I, + I, + I returns fromn
to m through the ideal earth return pass. All the impedances of this circuit can be measured by the
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method of Figure 1.2a. However, these measured impedances are experimentally a little larger than
those obtained by pure analytical calculation based on the electromagnetic equations with the
assumption of an ideal, conductive, earth plane surface.

In order to compensate for these differences between the analytical result and the measured values,
we can use an imaginary ideal conductive earth plane at some deep level from the ground surface as
shown in Figure 1.3.

In this figure, the imaginary perfect conductive earth plane is shown at the depth H,, and the three
imaginary conductors o, 3, y are located at symmetrical positions to conductors a, b, c, respectively,
based on this datum plane.

The inductances can be calculated by adopting the equations of the electromagnetic analytical
approach to Figure 1.3.

1.1.1.4.1 Self-inductances Lyq, Lpp, Lcc  In Figure 1.3, the conductor a (radius 7) and
the imaginary returning conductor o are symmetrically located on the datum plane, and the distance
between a and o is h, + H,. Thus the inductance of conductor a can be calculated by the following
equation which is a special case of Equation 1.9 under the condition s, — h, + Hy:

ha + H,
r

Laag = 0.4605 log;

4+0.05  [mH/km] (1.10a)

Conversely, the inductance of the imaginary conductor « (the radius is H,, because the actual
grounding current reaches up to the ground surface), namely the inductance of earth, is

ha + H,
L, = 0.4605log, “; £ +0.05[mH/km]=0.05 [mH/km] (1.10b)
a
Therefore,
h Ha
Laa = Laag + Lg = 0.4605 log; o~ Tl o [mH/km] (1.11)
r

Lpp, Lee can be derived in the same way.

Incidentally, the depth of the imaginary datum plane can be checked experimentally and is mostly
within the range of Hy = 300 — 1000 m. On the whole H, is rather shallow, say 300 — 600 m in the

radius  [m]

b

+1,

H,=(300-900 m

] earth surface
--- imaginary datum plane

Figure 1.3 Earth—ground as conductor pass
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geological younger strata after the Quaternary period, but is generally deep, say 800 — 1000 m, in the
older strata of the Tertiary period or earlier.

1.1.1.4.2 Mutual inductances Ly, Lo, Lcg  The mutual inductance L, can be derived
by subtracting L,, from Equation 1.11 and the working inductance (Lyq — Lyp) from Equation 1.9:

hy + H
atHa 605 [mH/km|

Lab = Lga — (Lau — Lab) = 0.4605 10%10 Sb (] 1 )
ca .lza

=0.4605logy Sap +0.05 [mH/km]
Sab

Similarly

hy + H
b L 0,05 [mH/km]
sy (1.12b)
':.0.460510g,0s—“+0.05 [mH/km]
ab

Lha = 0.4605 loglo

where h, + H, = 2H, =2H, and so on.

Incidentally, the depth of the imaginary datum plane H, = H, = (h, + H,)/2 would be between
300 and 1000 m, while the height of the transmission tower A, is within the range of 10-100 m (UHV
towers of 800—1000 kV would be approximately 100 m). Furthermore, the phase-to-phase distance S,
is of order 10 m, while the radius of conductor r is a few centimetres (the equivalent radius r.; of EHV/
UHYV multi-bundled conductor lines may be of the order of 10-50 cm).

Accordingly,
Hy=Hp=He =2H, > ha =hy =he > Sap = Spe = Sca > ' Teft (1.13a)
sa[i.;sha.:.ha +H, =2H,=hy,+ Hy .
Then, from Equations 1.9, 1.11 and 1.12,
Laa=Lppy =Lec, Lap=Lpe =Lea (1.13b)

1.1.1.4.3 Numerical check 1ct us assume conditions sy, = 10m, r=0.05m,
H, = (ha+H,)/2= Hg = 900m.
Then calculating the result by Equation 1.11 and 1.12,

Ly =220mH/km, L, = 1.09 mH/km

If H, = (hga+H)/2=300m, then L, =1.98mH/km, L, =0.87mH/km. As h,+ H, is
contained in the logarithmic term of the equations, constant values L,,, Ly, and so on are not
largely affected by h, + H,, neither is radius r nor rer as well as the phase-to-phase distance s,p.
Besides, 0.1 and 0.05 in the second term on the right of Equations 1.9-1.12 do not make a lot of
sense.

Further, if transmission lines are reasonably transpositioned, Z,, = Zpp = Z¢cs Zap = Zpe = Zea Can
be justified so that Equation 1.3 is simplified into Equation 2.13 of Chapter 2.

1.1.1.5 Reactance of multi-bundled conductors

For most of the recent large-capacity transmission lines, multi-bundled conductor lines (n =2 — 8
per phase) are utilized as shown in Figure 1.4. In the case of n conductors (the radius of
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Figure 1.4 Overhead double circuit transmission line

each conductor is r), Luqg of Equation 1.10a can be calculated from the following modified

equation: )
ha + Hg 0.05
Laag = 0.4605 lOglO m + T [mH/km]
ha+H, 0.05
=0.4605 log;( — a0 [mH /km] \
Teff n
where  regt = r'/" x w"=1/" is the equivalent radius and
w[m] is the geometrical averaged distance of bundled conductors J (1.14a)

Since the self-inductance Lg of the virtual conductor « given by Equation 1.10b is not affected by
the adoption of multi-bundled phase a conductors, accordingly

h, + H,
Teff

1
Laa = Laag + Lg = 0.4605log, +0.05 (1 + ﬁ) [mH/km]} (1.14b)

1.1.1.5.1 Numerical check Using TACSR = 810 mm? (see Chapter 2), 2r = 40 mm and
four bundled conductors (n = 4), with the square allocation w = 50 cm averaged distance
W= (W12 - W13 - Wig - w3 - wag - wag)/©
= (50-50v2-50-50-50v/2 - 50)/6 = 57.24cm (1.14c)
rese = /Mo wD/m = 2014 572534 = 44.0mm

The equivalent radius reff = 44 mmis 2.2 times r = 20 mm, so that the line self-inductance L,, can
also be reduced by the application of bundled conductors. The mutual inductance L,, of
Equation 1.12a is not affected by the adoption of multi-bundled conductor lines.
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1.1.1.6 Line resistance

Earth resistance r, in Figure 1.1a and Equation 1.2 can be regarded as negligibly small. Accordingly,
the so-called mutual resistances 74, ¢, g in Equation 1.4 become zero. Therefore, the specific
resistances of the conductors r,, rp, 1. are actually equal to the resistances 744, rpp, F'ec in the impedance
matrix of Equation 1.3.

In addition to the power loss caused by the linear resistance of conductors, non-linear
losses called the skin-effect loss and corona loss occur on the conductors. These losses would
become progressionally larger in higher frequency zones, so they must be major influential
factors for the attenuation of travelling waves in surge phenomena. However, they can usually
be neglected for power frequency phenomena because they are smaller than the linear resistive
loss and, further, very much smaller than the reactance value of the line, at least for power
frequency.

In regard to the bundled conductors, due to the result of the enlarged equivalent radius, the
dielectric strength around the bundled conductors is somewhat relaxed, so that corona losses can
also be relatively reduced. Skin-effect losses of bundled conductors are obviously far smaller than that
of a single conductor whose aluminium cross-section is the same as the total sections of the bundled
conductors.

1.1.2 Three-phase single circuit line with OGW, OPGW

Most high-voltage transmission lines are equipped with OGW (overhead grounding wires) and/or
OPGW (OGW with optical fibres for communication use).

In the case of a single circuit line with single OGW, the circuit includes four conductors and the
fourth conductor (x in Figure 1.5) is earth grounded at all the transmission towers. Therefore, using the
figure for the circuit, Equation 1.3 has to be replaced by the following equation:

m Va n Va Zaa Zab Zac Zax I,
VY _ Yy _ | Zba Zpb Zpe Zpx I (1.152)
m Vc n Vc Zea Zcb Zee Zex I
mVX = 0 ﬂvX = 0 Zxa be ZX(,‘ ZXX IX
Extracting the fourth row,
1
I, =— Z_ (Zxala + thlb + thlc) (115b)
‘XX
point m I, — a point n x

7'7,V

a £X
mV j(li o - * - g V.
\ ¢ Ve / WVe )
— — U, + I+ 1,+1,) 7 /K /
overhead grounding wire  earth grounded at every tower

Figure 1.5 Single circuit line with OGW

L, —> b ao oc
/ I(, —» C \
b
ﬂ'LV,

\
i
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Substituting I, into the first, second and third rows of Equation 1.15a,

m Vu nVa Zaa Zab Zac Iy Zaxl X
mVb = W =1 Zpa Zpb Zpe | I | Zpelx
m VC n V(,' Z('ll ZCb ZL'C IL' ZCXIX
ZuxZ. ZaxZ. ZaxZ.
Zaa _ aZx xa Zab _ aZx xb Zac _ aZx xc
XX Xx xXx ;
Z, Z, Z 4
=| Zpa— —2 = | Zp— —]g L Zpe— —}; = Iy
XX XX XX
I.
ZexZ, ZoiZ ZexZ,
Zeq — C; = Zep — L; b Zee — CZX = (1.16)
xXx XX xx
chla Zzlzb chzc la
— / ! !
= Zba be Zbc ’ Iy
Zéa Zéb Zéc I
where Zyx = Zy, Zpy = Zyp, Zex = Zie
chla = Laa — 5aa7 Zzllb =Zap — 5ab
ZaxZxa ZaxZxp
Soa = - 2050 5, = Lutab
aa 7 a Zo

This is the fundamental equation of the three-phase single circuit line with OGW in which I, has
already been eliminated and the impedance elements of the grounding wire are slotted into the three-
phase impedance matrix. Equation 1.16 is obviously of the same form as Equation 1.3, while all the
elements of the rows and columns in the impedance matrix have been revised to smaller values with
corrective terms Oy = —ZgxZxa/Zsx €tC.

The above equations indicate that the three-phase single circuit line with OGW can be
expressed as a 3 x 3 impedance matrix equation in the form of Equation 1.16 regardless of the
existence of OGW, as was the case with Equation 1.3. Also, we can comprehend that OGW has roles
not only to shield lines against lightning but also to reduce the self- and mutual reactances of
transmission lines.

1.1.3 Three-phase double circuit line with LR constants

The three-phase double circuit line can be written as in Figure 1.6 and Equation 1.17 regardless of the
existence or absence of OGW:

mVa nVa Zaa Zab Zac ZaA ZB ZaC I,
mVb 2V Zpg Zpp Zpc Zpa Zpg Zpc Iy
mVYc _ n Vc _ Zcu Zcb ch ZcA ZCB ZCC . I c (1 1 7)
mVa nVa ZAq Zab Zac ZaaA ZaB Zac Ia
mVB VB ZBa ZBb Zpc Zpa ZpB Zpc Ip
mVe Ve Zca Zco Zcc Zca Zcs Zcc Ic

In addition, if the line is appropriately phase balanced, the equation can be expressed by
Equation 2.17 of Chapter 2.
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m n

— IA

— Ip

— I
/ — Ia \

mVA mVBm C / —> Ib \ nV(,‘ nVB nVA
V * n a

N2 WVen)e)

Figure 1.6 Three-phase double circuit line with LR constants
1.2 Stray Capacitance of Overhead Transmission Lines
1.2.1 Stray capacitance of three-phase single circuit line

1.2.1.1 Equation for electric charges and voltages on conductors

Figure 1.7a shows a single circuit line, where electric charges g, g», g [C/m] are applied to phase a, b,
¢ conductors and cause voltages v,, vp, Ve [ V], respectively. The equation of this circuit is given by

Vg Paa Pab Pac qa
Yo | = | Pba Dbb Pbc || qp | - Vabe = Pabe " Dabe
Ve Pca Pcb Pcc qc (1 1 8)
—p— Ne——
Vabe Pape Yabe
where g [C/m)], v[V] are instantaneous real numbers
radius b b
e
7’ \
) 2~ G
charge q, N . Q\//\ H /\ e
/6“: ol O Vi
Vea - q. | ca q
v, I I I
oo T T T T
( 1 1 1 f
]
/ / /
(a) (b)
< 9
K [\
@G&“//(\/Q\\ c
a /Cab ; //< be
P e e v
0} C:zpﬁ‘ e b
[ TTer) N
Vo G O Co V,
\ o] )
(©

Figure 1.7 Stray capacitance of single circuit line
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The inverse matrix equation can be derived from the above equation as

da kaa kap kac Va
ap | =| kea | kpb | kee || Vb | - 4abe = Kabe * Vabe (1.19)
dc kca kcb k(;(' Ve
SN—— N——
Gabe Kape Vabe

Here, p,;. and kg are inverse 3 x 3 matrices of each other, so that p;,. - kg =1 (1isthe 3 x 3
unit matrix; refer to Appendix B).

Accordingly,
kaa = (pbbpcc - pzc)/A F/m]
kbb = (pccpau - pczu)/A F/m]
kee = (paapbb - pr)/A F/m]

[
[
[
kab = kpa = 7(pabpcc - pacphc)/A F/m] (1.20)
[
[

koe = ke = —(Pbe Paa — PbaPea)/A F/m]
kea = kae = *(pcapbb - Pchah)/A F/m]3
A = paa Pob Pec + 2 Pab Pbe Pac — (paa Pic + Pvb P(%a + Pec pih) m/F]

where p [m/F] are the coefficients of the potential and & [F/m)] are the electrostatic coefficients of
static capacity.
Moditying Equation 1.19 a little,

qa = kaaVa + kapvp + Kacve

= (kaa + kab + kac)va + (7kah)( - Vb) + ( )(Va - VC) [C/m] (] 21)
qp = (kba + kpb + kpe )V + (—kbe) (Vo — ve) + (—kba) (Vb — va) [C/m] '
gc = (kea + kep + kee)ve + (=kea) (Ve = va) + (—kea) + (ve — vp) [C/m]
then
qa = Caava + Cab(va - Vb) + Cac(Va - Vc) [C/m]
ap = Cppvp + Coc(vp — ve) 4 Coa(vp — va) [C/m] (1.22)
ge = Cecve + Cea(ve — va) + Cep(ve — vp) [C/m]

with g4, qp, gc [C/m], vp, vp, v [V] and

Cua = kaa + kap + kac [F/m
Cpp = kpa + kpp + ke [F/m
Cee = kca + kcb + kcc' [F/ m

} Cap = —kap [F/ m]

)
Cac = —kac [F/m}

]

]

Cpe = —kpe [F/m]
Cea = —kea [F/ m]

(1.23)
Cra = —kpa [F/m
ch = —Keb [F/m 5

Equations 1.22 and 1.23 are the fundamental equations of stray capacitances of a three-phase single
circuit overhead line. Noting the form of Equation 1.22, Figure 1.7b can be used for another
expression of Figure 1.7a: C,,, Cpp, Cee are the phase-to-ground capacitances and C,p = Cpy,
Cpe = Cep, Ceq = C4c are the phase-to-phase capacitances between two conductors.

1.2.1.2 Fundamental voltage and current equations

Itis usually convenient in actual engineering to adopt current i(= dg/dr) [A] instead of charging value
¢[C], and furthermore to adopt effective (rms: root mean square) voltage and current of complex-
number V, [ instead of instantaneous value v(¢), i(z).
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As electric charge ¢ is the integration over time of current i, the following relations can be derived:
d
g= Jidz, i= d—f D
i(1) = Re(vV21) = Re(V2 1] - /@ *0)) = V2 |1 | cos(wrt + 0) @
Re() shows the real part of the complex number(Re(a + jb) = a).
(1) = Re(V2V) = Re(V2| V| - e/(@1+02))
= V2|V |cos(wt + 0;) ©)

() = Jidz - JRe(\/E 7] @ 0)) g
=Re(V2]I]- | /@) ar) (note that, in this book,
e L) () S
Equation 1.22 can be modified to the following form by adopting Equation 1.24(@) and by
replacement of v, — \/QVQ etc.:

Re (*ﬁ)’“) =Re{Caa- V2Va+ Cap - V2(Vy — Vi) + Cuc - V2(Vy — Ve)}

(1.24)

Re (%) =Re{Cpp - V2Vy + Cpe - V2(Vyy — Vi) + Cpa - V2(Vj — Vo)) (1.25)
Re (%) = Re{CL-L- . \/EVL + Cea - \/E(VL - Va) + ch : \/E(VL - Vb)}

Therefore . . .
I, = joCuo V4 + chab(va - Vb) + /U)Cac(va - Vc)

Iy = joCpp Vi + joCpe(Vy = Ve) + joCpa(Vy — Va) (1.26a)
I. = joCeVe + joCou(Ve — Vo) + jdCep(Ve — V)

or, with a small modification,

Ia Caa + Cab + Cac —Cab 7Cac Va
I, |=jo —Cha Cpa + Cpp + Cpe —Che |V | (1.26b)
I c _Cca —LCob Cca + Cch + Ccc Vc

This is the fundamental equation for stray capacitances of a three-phase single circuit transmission
line. Also Figure 1.7c is derived from one-to-one correspondence with Equation 1.26.

1.2.1.3 Coefficients of potential (p,.. Pab), coefficients of static capacity
(kaa, kop) and capacitances (Cqq, Cop)

The earth surface can be taken as a perfect equal-potential plane, so that we can use Figure 1.8, in which
the three imaginary conductors «, 3, y are located at symmetrical positions of conductors a, b, c,
respectively, based on the earth surface plane. By assuming electric charges +q,, +¢p, +¢q. and —q,,
—gp, —q. per unit length on conductors a, b, ¢, and a, 3, y respectively, the following voltage equation
can be derived:

2h

Va = (voltage of conductor a due to + ¢, of conductor a, & : 2¢, log, —= x9 x 10° [V])
r

(voltage of conductor a due to + g, of conductor b, f§ : 2¢;, 10ge Sap ><9 x 10° [V})

+<voltage of conductor a due to & g, of conductor ¢, y : 2¢. logeﬂ x9 x 10° [V]) ®
S,

vac



1.2 STRAY CAPACITANCE OF OVERHEAD TRANSMISSION LINES 13

radius r[m]

+q.

Sba

ha hb
'\ ’\/ —qe
14
44 Y

N

o

T earth surface
T Sap | Say p

’

Y
\Li=qy

Figure 1.8 Three parallel overhead conductors

Equations for vy, v, can be derived in the same way. Then

Va Paa Pab Pac da
Vb = Pba Pbb Pbc ! qb
Ve Pca Pcb Pcc dc
2h, Sap Say
log, — log— log, —
ge , g Sub Ee Sme -
s, 2h Shy 4
=2x9x10° x| log,~2 | log. =2 | log.2 |-[ ¢, |@ (1.27)
Sha r She g
S, Se 2h ¢
log, -~ log, —ef log, —
ca Sch r

where 5,5 = Spy = \/{sgb — (ha — hp)*} + (ha + hp)* = \ /52, + dhahy.
Refer to the supplement at the end of this chapter for the derivation of Equation 1.27(D.

The equation indicates that the coefficients of potential (pu4, pup, €tc.) are calculated as a
function of the conductor’s radius r, height (h,, hp, he) from the earth surface, and phase-to-phase
distances (s,p, Sqc, €tc.) of the conductors. paq, pap, €tc., are determined only by physical allocations
of each phase conductor (in other words, by the structure of towers), and relations like p,, = pp, are
obvious.

In conclusion, the coefficients of potential (paq, pap, €tc.), the coefficients of static capacity (kqq,
kap, etc.) and the capacitance (Caq, Cyp, etc.) are calculated from Equations 1.27, 1.20 and 1.23,
respectively. Again, all these values are determined only by the physical allocation of conductors and
are not affected by the applied voltage.
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1.2.1.4 Stray capacitances of phase-balanced transmission lines

Referring to Figure 1.8, a well-phase-balanced transmission line, probably by transposition, can be
assumed. Then

h=hy=hy=he, 81 =Sab = Spa =Sbe = Scb =Sca = Sac (1.28)
Saf = Sbo = Say = Sco = Shy =Scp

Ps ipazz = Dbb : Pce . } (1.29)
Pm = Pab = Pba = Pac = Pca = Pbc = Pcb

Accordingly, Equation 1.20 can be simplified as follows:

A =piyt 2P§,,2— 3psp3,
= (ps = pm)" (s +2pm) N
] ] ) Ps T Pm
ks  =kaa =kpp =kee = 2'_ 72" A=
(r; — pm)/ (Ps — pr)(Ps + 2pm)
km  =kap = kpa =kac = kea =kpe = kep = —(Pmps - p'Z")/A (1.30)
(Ps = Pm)(Ps +2pm)
1
Ps +2pm

ks+2ky, =

and from Equation 1.23

C‘\‘ = Cuu = Cbb = CL'L‘ = ks + 2km - m
Cn=Cup = Cpa=Couc = Cea =Cpe = Cepp = —kip, (1.31)

(ps - Pm)(Ps + 2pm) Ps — Pm .
and from Equation 1.27

Cs

\
_ . . o, 2h
Ps = Paa = Pbb = Pec =2 %9 % 10 log67 m/K] @
N
Pm = Pab = Pbc = Pea =2 X 9 X 10910gesL; [m/F]
2 2 1.32)
55+ (2h) (
=2 % 9 x 10°log,
Sit
2
=2><9><10910ge{1+<) } [m/F] Q [
Sit

where generally

20\ 2
h> sy, (—) >1
i

and

2h
S pm=2x9 % 10° loges—” [m/F| Q'
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Substituting ps, p,, from Equation 1.32 into Equation 1.31,

1 1 1
&= et o 2h 2 8
2 x9 x 10°( log, — +2log, — 2 x 9 x 10°log, —
r Sin ¢ rsh
0.02413 _ 0.02413
— S K10 ] = = k) ®
log;g— log;g—
210 ”5/2[ 210 rslzl
(zero-sequence capacitance)
hil
whtte (1.33)
lo 2h lo 2h
P Ee o _ g10 st
- : 2h 2h Sil
Ps — Pm = ] —
log, r log, ” 08107,
log 2h lo 2h
007 0.02413 O8I0
s m log o — logm? log;o—
i

In conclusion, a well-phase-balanced transmission line can be expressed by Figure 1.9al and
Equation 1.26b is simplified into Equation 1.34, where the stray capacitances Cs, Cy, can be calculated
from Equation 1.33:

I, Cs +2Cy, —Cp, —Cp, Va
Iy = jo —Cp, Cy +2Cy, —Cp, : Vi (1.34)
I —Cy, —Cpy Cs +2Cy, Ve
\—p— (\——
Tope Cape Vave

S agpe = jwcabc “Vabe

Incidentally, Figure 1.9al can be modified to Figure 1.9a2, where the total capacitance of one phase
C=Cs + 3C,, is called the working capacitance of single circuit transmission lines, and can be
calculated by the following equation:

1 3\
¢ EC5+3C = (k5+2km)+3(_km) :ks—km =
1 ! Ps — Pm
- = F/m]
2h 2h S [
2 %9 x 109(10ge__10ge_) 2x9x 10910ge7
r Si
0.02413
= 57 [WF/km] (positive sequence capacitance) D
logyo— > (1.35)
r

In case of multi-bundled (n) conductor lines, the radius r is replaced by the
equivalent radius refr,

Feff = rl/n X W(rhl)/n [m] @

where w is the geometrical averaged distance between bundled conductors.

J

1.2.1.4.1 Numerical check Taking the conditions conductor radius » = 0.05 m, averaged
phase-to-phase distance s;; = 10 m and average height 4 = 60 m, then by Equations 1.33 and 1.35, we
have

C; = 0.00436 pF/km, C,, = 0.00204 pF/km and C = C; + 3C,, = 0.01048 wF/km
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16 1
C”VW
Cm\\ /\ Cm
b ~SiH
C
2/ {

b e, " Y/

C C C m
cfclec] IREATIE Tl To 6T To
171 fi1—= 9[9[

(b) double circuit line

(al) single circuit line (a2) single circuit line
Figure 1.9 Stray capacitances of overhead line (well balanced)

1.2.2 Three-phase single circuit line with OGW
Four conductors of phase names a, b, ¢, x exist in this case, so the following equation can be derived as

an extended form of Equation 1.26a:

Iy = joCuoVa + jooCap(Va — Vi) + jooCac(Vy — Ve) + jooCax (Vg — Vi) (1.36a)
where V, = 0, because OGW is earth grounded at every tower. Accordingly,
Iy Caa + Cab + Cac + Cax —Cab —Cac Va
I, |=jo —Cha Cpa + Cop + Cpc + Cpx —Coe Ve
18 —Cea —Cob Cea + Cep + Coc + Cex Ve
(1.36b)

This matrix equation is again in the same form as Equation 1.26b. However, the phase-to-ground
capacitance values (diagonal elements of the matrix C) are increased (the value of C,, is increased for

the phase a conductor, from C,y + Cup + Cye t0 Cyy + Cap + Coe + Cux)

1.2.3 Three-phase double circuit line
Six conductors of phase names a, b, c, A, B, C exist in this case, so the following equation can be

derived as an extended form of Equation 1.26a:

1, = jw[CaaVa + Cab(Va — Vb) + Cae(Va — Vc) + CaA(Va — VA) + CaB(Va — VB)
(1.37a)

+ Cuc(Va — Ve)]



1.3 SUPPLEMENT: ADDITIONAL EXPLANATION FOR EQUATION 1.27 17

Then
Cua + Cap+
Cae + CaA+ —LCab *Cae —LaA *CuB —LaC
CaB + CuC
Cha + Cppt+
—Cpa Cpe + Cpa+ —Cpe —Cpa —Cip —Cic
Cpg + Cpc v
C«.‘a + Cch+ 4
—Cea —Ceb Cee + Cea+ —Ceca —Cep —Cec Vb
Ce + Cec Ve
Caa + Cap+ Vi
—Caa —Cap —Cac Cac + Caat+ —Cas —Cac Va
Cab + Cac %
Cpa + Cpp+ ¢
—Cga —Cap —Cpe —Cpa Cpc + Cpat —Csc
Cap + Che
Cca + Cep+
—Cca —Ccp —Cee —Cca —Ccn Ccc + Ceat
Cop + Cee (1.37b)

It is obvious that the double circuit line with OGW can be expressed in the same form.
The case of a well-transposed double circuit line is as shown in Figure 1.9b:

Cs +2Cn

43C, —Cn —Cp —Ch —Ch —Ch
Cs +2G,
1, a - Cm J+ 3 C/ " - Cm - C;n - C;n - Cl/ﬂ Va
m
Iy Cs +2Cp / / ’ Vb
L o —Cn —Cn 3c, —Cin —Cn —Cn Az
IA - Cl/ﬂ _Crln - C;n CX * 2/C " _Cm - Cm VA
IB +3Cm VB
Cs + 2G,
Ic —Chy —Chy —Cn —Cn 13 c, " —Cn Ve
Cy +2C,
_ C/ _Cl _ C/ —C —C s m
m m m m m +3C;n
Cs=Cuq =Cpp=Cer =Caa =Cpp=Ccc :one phase-to-ground capacitance
Cn=Cp=Cpc=-+=Cap=Cpc=--- : capacitance between two conductors of the same circuit
C,’n =Cia=Cpc=--=Cay=Cpp=--- :capacitance between two conductors of a different circuit
(1.38)

Above, we have studied the fundamental equations and circuit models of transmission lines and the
actual calculation method for the L, C, R constants. Concrete values of the constants are investigated in
Chapter 2.

1.3 Supplement: Additional Explanation for Equation 1.27

Equation 1.27(D can be explained by the following steps.
Step-1: The induced voltage v at arbitrary point y in Figure a

Figure a shows two parallel conductors x, x' (radius ) whose mutual distance is s [m] and the
conductor length is / [m], where /> s.

When charges +¢, —q are applied to per unit length of the conductors x, x’ respectively, the voltage
potential v at the arbitrary single pointy is given by the following equation (expressed in MKS units):

2 :
p=-"2 1og,2 =249 x 10° log, -2 (1)
S1

" 4neg S1
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where

4mey = (refer the Equation (4) in the next page.)

1
9 x 109

The voltage of the centre line g is obviously zero.

Step-2: The induced voltage v at arbitrary point y when +qq is
applied to the overhead conductor a in Figure b

This is a special case shown in Figure b in which the names of the conductors have been changed
(x— a, ¥ — o). The upper half zones of Figures a and b (the open space above the earth surface)
are completely the same. Accordingly, under the state of a single overhead conductor a with an
existing charge +g¢, the voltage v at the arbitrary point y in the open space can be calculated from
Equation 1.

Step-3: The induced voltage v, on the conductor a when +qq is
applied to conductor a

This case corresponds to choosing the arbitrary point y on the conductor surface in Figure b. Therefore
the voltage v, can be derived by replacing s; — r, s, — 2k in Equation 1:

2h

CoVa =244 -9 x 10° log, — )

Step-4: The induced voltage v, on the conductor a when +qy is
applied to conductor b

This case corresponds to replacement of x—b, ' =, y—a in Figure a. Accordingly,
$1 = Sab, $2 —qp in Equation 1,

Ve =2qp 9 % 10° log, -2 (3)
Sab
Equations 2 and 3 are the first and second terms on the right-hand side of Equation 1.27(D. The
equation is the expanded case for three conductors by applying the theorem of superposition. Clearly,
the equation can be expanded to the cases of parallel multi-conductors of arbitrary number n. (Note that
dmey = 1/(9 x 10%).)

(a) b= 2q log. 2
= log, =
4ng S1
(b) lines of electric force ) .
conductor x / ?}qulpotentlal surface
i

\
1
Ly
w7l Ov
gTolflnd surface

conductor x* —q

conductor)
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In the rationalized MKS system of units, 47¢g is given by the equation

1 1 1
dngg = — 100 = ———— 10" = ——
TEQ c% (3 « 108)2 9 % 109

where
co is the velocity of electromagnetic waves (light), co = 3 X 108 [m/s]
107 is the coefficient of translation from CGS to MKS units, namely

energy = (force) - (distance) = ((kg - m/s?) - m) = ((g - cm/s?) - cm) x 10’

“4)

Coffee break 1: Electricity, its substance
and methodology

The new steam engine of James Watt (1736-1819) ushered in the great dawn of the Industrial
Revolution in the 1770s. Applications of the steam engine began to appear quickly in factories,
mines, railways, and so on, and the curtain of modern mechanical engineering was raised. The
first steam locomotive, designed by George Stephenson (1781-1848), appeared in 1830.

Conversely, electrical engineering had to wait until Volta began to provide ‘stable
electricity’ from his voltaic pile to other electrical scientists in the 1800s. Since then, scientific
investigations of the unseen electricity on one hand and practical applications for telegraphic
communication on the other hand have been conducted by scientists or electricians simulta-
neously, often the same people. In the first half of the nineteenth century, the worth of electricity
was recognized for telegraphic applications, but its commercial application was actually
realized in the 1840s. Commercial telegraphic communication through wires between New
York and Boston took place in 1846, followed at Dover through a submarine cable in 1851.
However, it took another 40 years for the realization of commercial applications of electricity as
the replacement energy for steam power or in lighting.







Symmetrical Coordinate Method
(Symmetrical Components)

The three-phase circuit generally has four electric conducting passes (phase a, b, ¢ passes and an earth
pass) and these four electric passes are closely coupled by mutual inductances L and mutual
capacitances C. Therefore phenomena on any pass of a three-phase circuit cannot be independent
of phenomena on the other passes. For this reason, the three-phase circuit is always very complicated,
even for smaller system models. Furthermore, rotating machines including generators cannot be
treated as adequate circuit elements to be combined with transmission line or transformers. Accordingly,
the analysis of three-phase circuits by straightforward methods is not easy, even for only small models.
Symmetrical components is the vital method to describe transmission lines, solid-state machines,
rotating machines and combined total power systems as ‘precise and simple circuits’ instead of
‘connection diagrams’ by which circuit analysis can be conducted. Surge phenomena as well as power
frequency phenomena of total networks or partial three-phase circuits cannot actually be solved without
symmetrical components regardless of the purposes of analysis or the sizes of the networks.

In this chapter, the essential concept of the symmetrical coordinate method is examined first,
followed by a circuit description of three-phase transmission lines and other equipment by symme-
trical components.

2.1 Fundamental Concept of Symmetrical Components

It should be noted that the direct three-phase analytical circuits of power systems cannot be obtained
even for a small, local part of a network, although their connection diagrams can be obtained. First,
mutual inductances/mutual capacitances existing between different phases (typically of generators)
cannot be adequately drawn as analytical circuits of phases a, b, c. Furthermore, the analytical solution
of such circuits, including some mutual inductances or capacitances, is quite hard and even impossible
for smaller circuits. In other words, straightforward analysis of three-phase circuit quantities is
actually impossible regardless of steady-state phenomena or transient phenomena of small circuits.
The symmetrical coordinate method can give us a good way to draw the analytical circuit of a
three-phase system and to solve the transient phenomena (including surge phenomena) as well as
steady-state phenomena.

The symmetrical coordinate method (symmetrical components) is a kind of variable transforma-
tion technique from a mathematical viewpoint. That is, three electrical quantities on a, b, ¢ phases are
always handled as one set in the a—b—c domain, and these three variables are then transformed into
another set of three variables named positive (1), negative (2) and zero (0) sequence quantities in the
newly defined 0-1-2 domain. An arbitrary set of three variables in the a-b—c domain and the
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transformed set of three variables in the 0—1-2 domain are mathematically in one-to-one correspon-
dence with for each other. Therefore, the phenomena of a—b—c phase quantities in any frequency zone
can be transformed into the 0—1-2 domain and can be observed, examined and solved from the
standpoint in the defined 0—1-2 domain. Then the obtained behaviour or the solution in the 0-1-2
domain can be retransformed into the original a—b—c domain.

It can be safely said that the symmetrical coordinate method is an essential analytical tool for any
kind of three-phase circuit phenomenon, and inevitably utilized in every kind of engineering work of
power systems. Only symmetrical components can provide ways to obtain the large and precise
analytical circuits of integrated power systems including generators, transmission lines, station
equipment as well as loads.

Figure 2.1 shows the concept of such a transformation between the two domains in one-to-one
correspondence. One set of a, b, ¢ phase currents I, I, I. (or phase voltages V,, Vj,, V) atan
arbitrary point in the three-phase network based on the a—b—c domain is transformed to another set of
three variables named Iy, I1, I (or Vy, V1, V3) in the 0—1-2 domain, by the particularly defined
transformation rule. The equations of the original a—b—c domain will be changed into new equations of
the 0—1-2 domain, by which three-phase power systems can be described as precise and quite simple
circuits. Therefore, rather complex subjects in the a—b—c domain can be treated and resolved easily in
the 0-1-2 domain, and the solution in this domain is easily inverse transformed as the correct solution
in the original a—b—c domain.

There are two other important transformation methods:

a) a — B — 0 transformation method, (I, 1), I.) < (I, Ig, Ip): This is also useful as a
complementary analytical tool of symmetrical components. In some special circuits, o — § —
0 components provide easier solutions for the problems for which symmetrical components
may not give good solutions.

b) d—q—0 transformation method, (/,, I, I.) < (14, 1, Ip): This is a very powerful transfor-
mation specialized for the treatment of generators and other rotating machinery. Rotating
machines can be described as precise and simple circuits only by the d—q—0 method. Due to the
precise description of generator characteristics by the d—q—0 method, dynamic system
behaviour can be analysed.

We will learn more about these methods in later chapters.

Analytical-
subject [transform] ——
I,I, I d-q-0
0-1-2 method v 0-f3-0 method , method
circuit circuit circuit cireuit

| equation |<— “6&0":‘0\_ equation “%ao\“‘“\_, equation eq_ughpn
| D1y wr fAalp ) | &% | fUalply Fligiyig)
. *
| caleulation calculation calculation calculation
| * luti luti luti
| solution | A solution solution S(')u. 19n
. L L I, 11, I 141, tq g %
| Y
\ |— [inverse-transform]—1 L[inverse-transform] J
L [inverse-transform]

Figure 2.1 Concept of transformation
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2.2 Definition of Symmetrical Components

2.2.1 Definition

Let us imagine a.c. voltages and currents at an arbitrary point of a three-phase circuit and name these
quantities by complex-number variables V,, V;, V. and 1, I, I.. In association with this set of
voltages and currents, we introduce a new set of complex-number voltages and currents Vg, Vi, V;

and Iy, I1, I, defining them in the following equations:

1
VO = g(Va + Vh + Vc)

1
Vi =3(Va+av, + a®V,)

1
V, = g(va +ad*Vy +aV,)

or
Vi 1(1]1 V,
1 1 a a2 _'.V012:a.Vb
3 > abc
l|a"| a
L S —
Vo= a Vabe
1 3\
I() = g(]a + [b +IL)
1 2
L = g(la +aly +a’l.)
1 2
L= g(lu +al, + alc)
or >

| 1 1
0| =51 el [B] o =aTa
1|d%| a
~ —
Io= a + Lape /

a and a? are called vector operators and are defined as follows:

1 3 e
a= —§+j§ = /120" —[120° =cos 120° + jsin 120°
1 3 120°
a> = ,E,j;z[ = e /120" = -120° = cos 120° — jsin 120°

2

1 V3
—M20° = (-~
(-3+%)

where 120° = 2n/3 [rad].

2.1)

2.2)

(2.32)
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The vector operators a, a> can be modified into the following equations and written as vectors as

shown in Figure 2.2: 3
a=e"" [120° & =e /120" | —120° [F120°
P +a+1=0 @ —1=(a-1)(a+a+1)=0
=1 a+a=-—
@ +1=-a a+1=-d*
d=a-a=ua @ =a ¢ =d \ (2.3b)
a'=a'"d=d al=a?d=a
la) = |a* =1 a—a*=j\V3
l—a=d(1-a)=d*(a—a*)=da* jV3
A—1=(@+1)(a-1)=-d*(a—1)=—-d*(-d> - jV3)=a-j\3

where j = /0" =|90°, — j = /90" =[90°. J

The defined set of voltages Vg, Vi, V, are named the zero (0), positive (1) , negative (2) sequence
voltages, respectively, and the set of currents Iy, /1, I> are also named zero (0), positive (1), negative
(2) sequence currents in the newly defined 0—1-2 domain.

As Vy, Vy, Ve, I, Ip, I, are expressed as complex-number quantities (effective valued or peak
valued) in the a—b—c domain, then Vy, Vi, V, Iy, I1, I are consequently complex-number quantities
(effective valued or peak valued) in the 0—1-2 domain.

The inverse matrix equations of Equations 2.1 and 2.2 can be easily introduced as follows:

Vo=Vo+Vi+ Vo
Vi, =V +a2V1 +aV, or
Ve =Vy+aV; +a2VQ

1|a?|al. v (2.4)
A

IL,=h+L+1 1111
I, =Io+d*l, +al, or 1|d?| a (2.5)
I = Iy +al, + ¢’ 1]a|d®

1..V38
G=-gtiTy av
1200 4 1LV=Vv
120° 120°
] 1 .V3
2__ 4 _ N9 2
) v

(a) (b)

Figure 2.2 Vector operators a, a

2
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The equations for transformation to the 0—1-2 domain, Equations 2.1 and 2.2, and the equations for
inverse transformation to the a—b—c domain, Equations 2.3 and 2.4, are the basic definitions of the
symmetrical components transformation. Incidentally, the vector operator matrices a and a~! are
inverse matrices of each other, namely

1111 1111
-1 1 2 2
a-a :gl ala 1|a
1|a? 1 a?
a a!
14141 |14+ +a | l4+a+d® 1{0[0

=3 l4+a+ad® |1+ +dP | 1+d2+a*|=]0|1]|0|=1
1+ +al|ll+d+d?| 1+ +d° 0/0|1

(2.3¢)

All the quantities in the above defined equations are assigned as complex-number quantities;
however, any assignment does not exist in the definition with regard to frequency or waveforms. In
other words, the quantities may contain d.c. and/or higher harmonics. It should be noted that the
symmetrical components transformation can be applied not only for power frequency steady-state
phenomena but also for transient phenomena of any kind or even for travelling surges.

The voltage and current quantities are assigned as complex numbers in the above definitions, so that
the corresponding real-number equations (or imaginary-number equations) can be extracted from
them, which indicates the real behaviour of the actual voltage and current quantities in the a—b—c
domain as well as the 0—1-2 domain.

Lastly, needless to say, all the electrical quantities in the a—b-c domain such as electric charge g,
electric lines E, flux ¢, etc., can be transformed into the O—1-2 domain using the same definitions with
the above vector operators.

2.2.2 Implication of symmetrical components

We need to examine more aspects of the symmetrical components defined by the above equations. The
explanation below is followed by the current I, and obviously the same analogy can be applied to all
other quantities.

2.2.2.1 Transformation from a-b-c quantities to 0-1-2 quantities

Equation 2.2 can be transformed into Equation 2.2’ by multiplying by 3 both sides of the
equations:

3l = Iy |+| I
3 = aly |+ | d?I, (2.2)
3L = azlh + aly,

o For the first term: the same current components
o For the second term: counterclockwise balanced current components
o For the third term: clockwise balanced current components.
Whenever the current quantities are composed of only power frequency components (sinusoidal

waveform), they can be visualized by drawing them as vectors in complex-number domain coordi-
nates. Figure 2.3a shows the composition process of Iy, I1, I from I, I, I..
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2.2.2.2 Inverse transformation from 0-1-2 quantities to a-b-c quantities

Equation 2.5 can be examined as follows:

L=+ I |+| b
Iy = |Io| + |a® | + | al, (2.6)
IC = Io + all + a2[2

o Clockwise balanced complex-number currents I;, a*I;, al; are the components of the phase a,
phase b, phase c currents, respectively (positive-sequence components).

« Counterclockwise balanced complex-number currents I, al», a*I, are the components of the phase
a, phase b, phase c currents, respectively. (negative-sequence components).

o The three same-value quantities Iy, Iy, Iy are the components of the phase a, phase b, phase ¢
currents, respectively (zero-sequence components).

Figure 2.3b shows the composition process of I, I, I from 1y, Iy, I>.(Figure 2.3a and b are drawn
as a mutually paired case; however, the vectors in Figure 2.3a are drawn in half-dimensional length.)

Again, the quantities of the a—b—c and 0—1-2 domains are bilaterally transformable by the above
definition.

2.2.2.3 Three-phase-balanced condition

Figure 2.4 shows the special case where three phase currents are balanced with a sinusoidal waveform.
As 1, I, 1. are clockwise phase balanced, then

I, =1, I, = a*l,, I.=al, (2.72)
and
1 1 5
[0 :g(la+1b+lc):§]a(l+a +a):0
1 1
L =(a+aly+al)=l(1+a-a*+a -a)=1I,
? ? (2.7b)
2z 2 _ ! 2.2
)53 —3(Iu+a Iy +al;) —3Iu(1+a -a“+a-a)
1
:§Ia(1+a+a2) =0

Under the three-phase-balanced condition, the zero-phase current /y and negative-phase currents /,
are zero (or ‘do not exist’) and only positive current /; exists with the same vector value as /.

The three phase quantities I, I, I, or the transformed Iy, /1, I> under steady-state conditions (i.e.
including only power frequency terms) can be visualized as vectors in Gauss coordinates whether
balanced or unbalanced. Although transient quantities or multi-frequency quantities may not be
simply visualized, the equational relations between the a—b—c and 0—1-2 domains are always justified.

Note that the currents /,, I, I, at an arbitrary point in a three-phase circuit and the corresponding
currents I1, I, Iy in positive, negative and zero circuits should be marked by arrows ( — ) in the same
direction as the symbolic rule. The arrows of voltage polarities have to be selected analogously.

2.3 Conversion of Three-phase Circuit into Symmetrical
Coordinated Circuit

As the first step in studying the symmetrical components transformation, we need to study how the
equations and the related drawn circuits in the a—b—c domain are transformed into those in the
symmetrical 0—1-2 domain.
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zero-sequence —= Slo=1,+ 1 + 1, —1, — I — Ig
positive-sequence — 3L =L, +al,+a’l, _ 1l + —al + =L
negative-sequence — 3l =1, + a’I, + al, 1, s d’I, _yal,
4_3(10'!'114'12) 4_3111 (]
IC
2
a1l
al, a ~ o aly
.t
Y -
I, Ly Ly ol
1, \‘
1, 2y
3L, =1, +d’l, +al, phase-b current ate

phase-c current

Symmetrical sequence currents phase-a current

a phase == Li=ly+ L +1 —1 — 1 — I
pphase == L=ly+@h+aly _ 1l + a2l —»al,
I =Iy+al,+a2l, 7 7 3,
cphase == fc=fot @l + 4%y - —»al; _p a2l
- & 0
I, + 1+
a?l,
A
CLZI]’ = -
<(:,—/‘/' I aly
aly I,

I
I, =1y + a2l + aly

phase-a, -b, -c currents negative-sequence

current

zZero-sequence  positive-sequence
current current

()
Figure 2.3 (a) Composition of Iy, I, I from I,, I},, I.. (b) Composition of 1,, I, I. from Iy, I}, I

Let us try to transform Equations 1.3, 1.5 and 1.6 of the transmission line and Figure 1.1b in
Chapter 1 into symmetrical components. The equations of the transmission line (between points m and
n), Equations 1.5 and 1.6, are written again here:

mVave = nVabe = Zabe * Labe 2.8)
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5=,

Iy=1,=0

I,=d"I,

(a) three phase balanced current (b) current by symmetrical components

Figure 2.4 Symmetrical components of three-phase-balanced currents

Also we have transformation equations with regard to voltages and currents at points m and n. For
point m

-1
mVOIZ =a- mVabc mVabc =a - mV012 } (2.9
Toix = a - Igpe Lape =a " Iop
and for point n
-1
nV012 =a-: nVubc nVubc =a -y, V012 } (2.10)
Toix = a-Igpe Tape =a ' - Iop

As the currents at point m and n are assumed to be equal (because leakage current through the stray
capacitance of the line is neglected), suffix m or n is omitted for symbol 7 ;5.

Multiplying by a at the top (i.e. left-multiplying) of both sides in Equation 2.8, it can easily be
changed into a symmetric equation, namely

a- mVabc —a- nVabc = aZahc' Iuhc

T 1 7

mVo12 Vo2 a ' Iy

_ 2.11
wVorr = Vo = Zape -a " - Ion=Zo12 - Ion 21D

ie. mVo12 = nVor2 =Zo12 - Lo }
!

Zoiy=a -Zgpe-a_
Equation 2.8 was transformed into Equation 2.11 by symmetrical coordinates. The a—b—c

impedance matrix Z ;. was transformed into the 0—1-2 sequence impedance matrix Zyj» which
is defined by Equation 2.11.

2.4 Transmission Lines by Symmetrical Components
2.4.1 Single circuit line with LR constants

Assuming that the transmission line of Figure 1.1b is well phase transposed,

Zau =7 .:.Za' S5 Z.\'
bb } (2.12)

Zub ‘:.Zhu i.th .;Zcb = Zc‘a =Zac=Zn
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then Equations 1.5 and 1.6 can be simplified as follows:

mVa| |1V Zo | Z | Z
me - an =\Zn|Zs |Zn (2.13)
Ve Ve I | Zn | Zs
m Vabc - nVabc = Z ape
Accordingly Zg, of Equation 2.11 is
Z abe a’!
Zs | Zim | Zn 1111
Zo]2:a~ZabC~a71 =a|Zy| Zs | Zy | |1 a?
I | Zw | Zs | | 1] a|d?
Zs + 27 | Zs + (@® 4+ a)Zy | Zs+ (a + a®)Zy
=a| Zs+2Zy | ?Zs+ (1 +a)Zy | aZs + (1 + a®)Zp
Zs +2Zy | aZg+ (1 4 a*)Zy | a*Zs + (1 + a)Zy
(2.14)
] [z 22| 2 -2, Ze — Zom
=311]a @ || Zs+ 22y | a*(Zs — Zn) | a(Zs — Zn)
V| d®| a| |Zs+2Zn| alZs — Zn) | 6*(Zs — Zn)
a Z pe-a”!
Zs + 27y 0 0
= 0 Zs —Zn 0
0 0 Zs — Znm
Namely,
nVo| |aVo| | Z+2Z] O 0 Z|0]0
wnVi| = V1| = 0 Zs —Zm 0 ‘E 0170
RAmAZ 0 0 |7 —7n 0l0[z
e s——
Zoin Toi Zonn 2
mVy, Vo (2.15)
or ’

mVO - nVO = (ZX + 2Zm)IO = Zply
Vi-,Vi= (ZY — Zm)ll =711
wVo— Vo= (Zs—Zy)h =721,
where Zy =27, +27Z,, Z| =Z; —Zy

m

This is the equation of a single circuit transmission line in the symmetrical components domain.
Zy)2 is a simple diagonal matrix in which all the off-diagonal elements vanish (become zero). This
means that the positive-, negative- and zero-sequence equations are mutually independent of each
other because mutual impedances do not exist among them. Now we can conclude that, if the original
three-phase circuit is phase balanced (this assumption is acceptable for most cases only with small
errors), positive (1) sequence, negative (2) sequence and zero (0) sequence circuits can be indepen-
dently handled. Figure 2.5 shows the equivalent circuit of a three-phase (single circuit) transmission
line by symmetrical components, which is drawn from Equation 2.15.
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point m point n

Zoy=Zs+2Z, n

outer circuit outer circuit

— Lo
I zero-sequence circuit
0
ml 0 nro
Z 1= Z s Z m
" I positive-sequence circuit
mVI nvl

I negative-sequence circuit

V-
|

Figure 2.5 The equivalent circuit of three-phase single circuit transmission line (impedances)

Symmetrical impedances Zy, Z;, Z, are defined by Equation 2.15 in relation to the original
impedances Zs, Z,, while from the relation

h>Z1 =2y (2.16)

That is, for the transmission line, the positive-sequence impedance Z; and the negative-sequence
impedance Z, are equal and smaller than the zero-sequence impedance Z.

Note that, as the transmission line is not perfectly phase balanced, very small off-diagonal elements
may exist in the impedance matrix Zy,, so that positive-, negative- and zero- sequence circuits are
mutually linked by small mutual inductances. If necessary, we can examine the strict impedance
matrix by calculating equation Zg1o = a - Zyp. - = without any assumption of Equation 2.12.

2.4.2 Double circuit line with LR constants

Let us examine a double circuit transmission line as shown in Figure 1.5, assuming that the first
and second circuits are well phase transposed. The symbols 'V, 1T and 2V, 2I below refer to the
voltages and currents of the first and second circuits:

v, v, Zs | Zn| Zn| 2\ | 20 | 2 | |,
Wl ]z z ]zl 2 2] 2] [,
LV, Vel \Zw|Zn| 2|2, 2,1 2| |1,
vl v z]zz] 2]z 2]
wVo | 2Vl |Zn|Zn|Zn|Zn| Zs | Zn| |°1y
AARBARAAAEEARAREA
or
wVave| [ nVabe | Za | Y e _ Zon Mo + 25, 2Ly 2.17)
Y abe 7V abe Zy | Zon| | Mave Zy Mo+ Zon | ) .
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where we assume

Zs=Zga =Zpp =Zcc =Zpn = . self-impedance
Iy =Zgpy =Zpe =Zeg =Zpap =Zpc = : mutual impedance between the conductors of the same circuit
7 =Zup =7 =Zac =Zpa : mutual impedance between the conductors of another circuit

Symmetrical quantities of double circuit line r1nV0127 ,11V012, ,2"V0127 %Vonv 110127 21012 are

introduced in conjunction with a-b-c domain quantities LV, .. 2V . 2V 2V,
1 27 .
Iabc7 Iubc'

ly  _a.lypy ly 4. lpy Iy _a.l7

m? 012 = @ m¥ abe: n? 012 = 4" n¥ abes o2 =@ Lapc D

2 _ 2 2 _ 2 2 _ 2

Vo012 =@ 5V apes 2Vorz=a- 3V, Loy =a "1, (2.18)

1 _ -1 1 1 _ -1 1
mVabc_a 'mV0127 nVabC—a ’ V0127 I

The equation of circuit 1 in Equation 2.17 can be transformed to the 0—1-2 domain by utilizing
Equation 2.18:

1 1 _ 1
mVabc - nVabc =Zsn -1

abc

+2Z, -1

abc
11 11 _ 11 ;12
a - Vop—a Voo =Zm-a - Ly, +2Z,-a= -1y,

Left-multiplying by a and recalling that a -a~! =1,

for circuit 1 W= Wopn=(a-Zgy-a™t) Uy +(a-Z,-a) -2,
and for circuit 2 analogously (2.19)

Vo —wWon=(a-Z,-a') "Iy, +(a-Zy-a') Iy,

a-Zg,-a~' in the above equation is equal to Zgy, of the single circuit line in Equation 2.14,
)

Zs + 27y 0 0
a-Zy-a'= 0 Zs — Zm
0 0 Zs — Zn
and

zZ\zZ, 111

a-Z,-a'=a |7 12 17| |1|a* a

Z 1z 2 1] al|d

1 1111 32,/ 0] 0 3zZ,| 0
:glaa2'3Z,/,,00:000

1|a®| al| |32,/ 0|0 010

a zZ. a!
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Accordingly,
\
WVor|  [aVor e Zy-aa Z,, a! . Uoi| | Zow2| Zou . Ty
WVor| |[WVon ez, a M aZgat| | Plon| | Zow|Zon| |y
n¥o Vo Zs+2Z,| 0 0 3z, 0 0 ',
Wil 0 |Z-Zu| o0 0 0 0 o
wVal W2 |0 0 |Z-Zu| o 0 0 ',
v v, | 37, 0 0o |z +2z.] o 0 21,
2V, 2y, 0 0 0 |Z~Zu| 0 2y
Vol Vs 0 0 0 0 0 |Z—2Zu| |2,
Zy | 0 Zom| O | O 1,
0|z 0|00 1
|lofojlz|o|o]|oO '1,
[ Zom| 0 Zy| 0|0 21,
010 Zi| 0| |%
010 0| 7 2,
where (2.20a) )
2 =Zs — Zpm, Zo = Zs + 27, Zom = 3Z),
Equation 2.20a can be recast into the following equation:
ranO rllVo Zy | Zom l10
AARBEAREIE | °ly
lanl rlzvl Z1| 0 111
AR EARDIARE? (2.20b)
rlnv2 ,11V2 Z1| 0 l12
1211V2 B %Vz B 017 . 212

where Zy = Z; + 27, Zom = 3Z:n’ \=2Zy—7Zy

Figure 2.6 shows the equivalent circuit of the three-phase double circuit transmission line by
symmetrical components, which is drawn from Equation 2.20a or 2.20b.

The positive-, negative- and zero-sequence circuits are independent (mutual inductances do not
exist) of each other. In the positive- and negative-sequence circuits, the mutual inductances do not
exist between lines 1 and 2. However in the zero-sequence circuit, lines 1 and 2 are mutually coupled
together by Zoy = 3Z,,.

Zs and Z,, are actually the averaged values of Z,,, Zpp, Zqc and Zyp, Zpe, Zcq respectively, so
that Z; and Z,, can be calculated by using Equations 1.10 and 1.12. The positive-sequence impedance
Z| = Zs — Z, is derived from the working inductance L,, — L, given by Equation 1.9.

Also we learned in Chapter 1 that the values of L,,, L, are not so largely affected by rated voltage
classes because of the logarithmic term of these equations. Consequently Z; = Z,, Zj are not also
largely affected by rated voltage classes. Typical examples are shown in Table 2.1.
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Z()M = 3Z7;1

point m L point n
i Ze=z,+27,

circuit #1
zero-sequence circuit

- S )
O e # .
e | 174s— Ly, positive-sequence circuit

1y, #2

-
=
s

—
/O 4i1z Zo=I=ZLs—Z,, O\ #l negative-sequence circuit
)%1V2 (; W ? )IZVZ #2

2 P
mVZ ﬁ YZ

Figure 2.6 The equivalent circuit of three-phase double circuit transmission line (impedance)

2.4.3 Single circuit line with stray capacitance C

The stray capacitances of a well-phase-transposed single circuit line are shown by Figures 1.9a and b
and Equation 1.34. Equation 1.34 is repeated here:

Cs + 2Cm _Cm _Cm
—Cn Cs +2Cy, —Cn ’ (2.21)
~Cu | —Cu |Ci+2C,
Lope = joo x Cape XV ape

The transformation of this equation into symmetrical components is as follows:

Iop=a Igpe =a- jo - Cape - Vape = jo(a@ - Cape - @ " )Vo12 = joCo12Vora

where Cyio = a- Cype - a’!

a Cape a
—N— ——
(L (6426 ~Ca —Cp L1t
szzg 1lala®|| —=Cn |Cs+2Cn| —Cu |-|1|d?* a (2.22a)
1|a®| a —Cp —Cn Cs 4+ 2Cy, 1| a|d?
Cs 0 0

=10 |Cs+3Cy 0
0 0 Cs +3Cy

then
0 0 Colofo
C+3Ca] 0 |-[vi|=jolo]|c]o] |v]
0 Cs +3Cy, 01]0]|C (2.22b)
_ ==
Iz = jo x Coiz X Voiz Corz Voiz

where Cy = C;, C;=C,=C;+3C, C:working capacitance of single circuit line
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Figure 2.7 The equivalent circuit of three-phase single circuit transmission line (capacitance)

This is the equation of stray capacitances of a single circuit transmission line in the symmetrical
components domain. Cpj» is a simple diagonal matrix in which all the oft-diagonal elements vanish
(become zero).

Figure 2.7a shows the equivalent circuit of a three-phase (single circuit) transmission line by
symmetrical components, which is drawn from Equation (2.22b). The positive (1), negative (2) and
zero (0) sequence circuits of the phase-balanced three-phase transmission line are obviously
independent of each other.

Symmetrical capacitances Cy, C;, C, are defined by Equation (2.22b) in relation to the original
impedances Cs, C,, shown by Equation 1.33.

The physical meaning of the relations Cyp = C;, Cy = Cs+3C,, can be understood by
Figure 2.7b, where zero-sequence current cannot flow in the circuit branch of 3C,, because point
n is not earth grounded.

2.4.4 Double circuit line with C constants

The stray capacitances of a well-phase-transposed double circuit line are shown by Figure 1.9. The
symbols 'V, I and 2V, 2I are adopted as quantities of circuits 1 and 2, respectively, below.
Concerning the phase a current of circuit 1,

', = joClV, + {joCu('V, = 'V,) + joCu('V, = 'V)} + {joC, (v, —2V,)
+joC, (', =2V,) + joC,('V, = V.)} @
- (2.23a)
1, = jo(Cs +3Cn +3C)'V, = Cu('V, + 1V, +1v,) = PV, +2V, +2V,)
= jo(Cy +3Cy +3C )V, —3C,' vy —3C, 2V, @
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Similar equations are derived for the phase b and ¢ currents. Accordingly,

1Vo 2V0
Wol —3C,12V, (2.23b)
"WVo Vo

This equation is easily transformed into symmetrical components:

Iy = jo(Cs +3Cy +3C) 'V — BwC,'Vy — B3oCl 2V,
= jo(Cs +3C,)'V, = 300G, 2V, = joC'Vy + 3oC, (Vo —2Vy) (2.242)
' = jo(Cs +3Cw +3C))'V, ’
', = jo(Cs +3Cy +3C,)'V,
Accordingly,
0 0 —3C, 0 0
Cs +3Cp +3C), 0 0 0 0
0 Cys +3Cy, +3C, 0 0 0
0 0 C, +3C, 0 0
0 0 0 Cs +3Cy +3C), 0
0 0 0 0 Cy +3Cn +3C,
(2.24b)
Namely,
A ¢ +3c,| -3C, A
= jo .
21, -3C, | Cs+3C, | |*V,
|GV +3G,('Vy = 2V)
= jw
Cs-2Vy +3C, %V, — V)
G-+ GV =2V (G Gyl —Ch ||V 0
=jo = jo
Co -2V, + Cy(PVy — V) -Gy |Co+Cyl|?,
A |Gy +3C,+3C, 0 v,
= jw .
21 0 Cy+3Cn +3C, | |?V,
(2.24¢)
140 'V o)
= jo .
0|Ci| |V,
7, .| Cs+3Cy +3C), 0 v,
= jo .
21, 0 Cs +3Cu +3C), | |?V,
|Cijol |y, 3
= jo .
0Ci| |V,
where
positive-sequence capacitance: C; = C; = Cs + 3Cy, +3C, @
zero-sequence capacitance: Cp = Cs, Cy = 3C),
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Figure 2.8 The equivalent circuit of three-phase double circuit transmission line (capacitance)

Ci=Cy=C,+3C,,+3C",

This is the equation of the stray capacitances of double circuit lines, from which the equivalent
circuit of Figure 2.8 is derived.

2.5 Typical Transmission Line Constants
2.5.1 Typical line constants

L, C constant values of individual overhead transmission lines are different because the allocations of
conductors (in other words, the physical length r, &, Sy, etc., of the tower design) and the geological
characteristics of the earth—ground are individually different. However, the line constants are not so
different for lines of similar voltage classes, because the physical dimensions of the conductors are not
so different, at least for the same voltage class of transmission lines. In addition, the constants would
not be so different even for lines of different voltages, because the variables of the physical length r, A,
Sy, etc., of the tower design would be included in the logarithmic terms of the equations for L, C.

Table 2.1 shows typical L, C values of single circuit lines and double circuit lines. In Table 2.1, in
addition to the quoted four cases of real measured examples, we have indicated typically ‘easy-to-
remember L, C values’ which would be applicable as approximate values for most high-voltage
transmission lines. At least, readers can consider that the orders of the L, C constants of individual lines
could be appropriate as common values, regardless of the differences of area, utility companies or
countries. (The zero-sequence constants for circuit lane 1 and 2 shown in Table 2.1 will be explained in
Chapter 4.)

Typical constants of power cables are shown in Table 2.2 for convenience of comparison with
overhead lines; the details of power cables will be examined in Chapter 23.

Further, besides R, L, C constants, the leakage resistance G exists as the fourth line constant.
This is typically the creepage resistance of insulators of transmission lines or station equipment that
are parallel resistances with stray admittance jwC, and usually has extraordinarily large ohmic
values. G is an important constant which would be largely affected by the insulation characteristics
of individual high-voltage insulators, attenuation ratio of surge phenomena, and so on. However, G
can be neglected for most ordinary circuit analysis (except for surge analysis), because it has a quite
large resistance of, say, megaohm order.
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Table 2.2 Typical line constants of power cables (see also Chapter 23)

CV cables
¢ 2 8 5
2 £ 5 E z ¢
» 3 E £ 8 % k= s £ g
@ 5 s £ B 8 £ £ 5 S
< o = ot o >4 3] %] 3]
S T ¢ £ = = = 2 o = g E
S 5 2 & £ =2 £ Z £ g g <
g £ s = T | £ 5 = 2 = 20
3 & S £ & © = = s & S &
2r D S R Ly—-L, C jX Ic \/I%
(kV) (mm?) (mm) (mm) (mm) (mm) (Q/km) (mH/km) (wF/km) (Q/km) (A/km/¢) (q)
500 2500 61.2 27 142 163 0.00746 0.383 0.25 0.112 227 39.1
2000 53.8 27 134 155 0.00933 0.400 0.23 0.116 209 41.7
275 2500 61.2 23 133 160 0.00746 0.381 0.28 0.108 14.0 36.9
2000 53.8 23 125 149 0.00933 0.392 0.25 0.112 12.5 39.6
1200 41.7 23 112 134 0.01560 0.422 0.21 0.122 10.5 44.8
154 2000 53.8 17 108 122 0.00933 0.352 0.26 0.103 7.3 36.8
1200 41.7 17 96 110 0.01560 0.382 0.22 0.112 8.7 41.7
800 340 17 88 100  0.02310 0.404 0.19 0.119 5.3 46.1
66 2000 53.8 10 95 95 0.00933 0.302 0.53 0.086 6.3 239
1200 41.7 10 82 82 0.0156  0.324 0.43 0.092 5.1 29.6
800 340 10 73 73 0.0231  0.340 0.37 0.097 44 30.3
33 1200 41.7 8 73 73 0.0156  0.301 0.46 0.086 2.8 25.6
600 295 8 58 58 0.0308 0.324 0.38 0.092 2.3 29.2
200 170 8 45 45 0.0915 0.383 0.26 0.108 1.6 38.4
6.6 600 295 5 47 47 0.0308  0.282 0.71 0.089 0.8 19.9
200 170 4 32 32 0.0915 0.315 0.51 0.102 0.6 24.9
OF cables
(kV) (mm?) (mm) (mm) (mm) (mm) (km) (mH/km) (wF/km) (Vkm) (A/km/d) (Q)
500 2500 68.0 250 132 153 0.00732 0.305 0.37 0.101 335 28.7
2000 59.1 33.0 139 160 0.00915 0.388 0.27 0.113 245 37.9
275 2000 57.5 19.5 107 137 0.00915 0.363 0.41 0.098 204 29.8
1200 457 195 94 124 0.001510 0.389 0.34 0.105 17.0 33.8
154 2000 57.5 13,5 94 119 0.00915 0.333 0.57 0.09 159 24.2
1200 45.7 13.5 81 106  0.01510 0.367 0.45 0.095 12.6 28.6
800 40.6 125 74 96 0.02260 0.361 0.44 0.097 12.3 28.6
66 2000 570 80 82 106  0.00910 0.312 0.96 0.082 11.5 18.0
1200 452 80 69 92 0.01510 0.331 0.80 0.086 9.6 20.3
800 396 7.0 61 82 0.02230 0.334 0.79 0.087 9.5 20.6

Notes: The working inductance is calculated under the three-phase allocation of touched triangles. Accordingly,
(Ls — L) = 0.4605 log(D/r) + 0.05 mH/km
where (Sap - Spe  Sea)> = (D-D-D)'/? = D.
If the averaged phase-to-phase distance S is larger, the inductance would become slightly larger.
The reactance is calculated from jX = ;27 - 50(Ls — L,,) based on 50 Hz. Then the values should be
multiplied 1.2 times for the 60 Hz system.
The leakage current is calculated from I. = 27 - 50 - C(1/+/3)V.

The surge impedance is calculated from /(Ls — Ly)/C.
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The transmission lines are described as distributed-constant circuits in a strict expression.
However, provided that the evaluation of accuracy or percentage error is adequately investigated,
approximation by concentrated-constant circuits can be justified for most analytical work. Approx-
imation techniques including accuracy (or error percentage) estimation are essential in actual
engineering activities. This theme is investigated in Chapter 18 in more detail.

2.5.2 L, C constant values derived from typical travelling-wave
velocity and surge impedance

The velocity of travelling-wave propagation on transmission lines and the surge impedance are defined
by the following equations whose reasons are investigated in detail in Chapter 18:

velocity of travelling-wave propagation : u = 1/v/LC[m/s]

L (2.25a)
surge impedance ¢ Zourge = ol Q]
The inverse forms are
L— Zsurge
u

(2.25b)

c—_ 1

Zsurge tu

There are typical values for velocity u and surge impedance Zgyrge of overhead transmission lines
and power cables that are very easy to remember. Therefore we can find typical L and C values
from these typical u and Zgyge values by an inverse process.

For overhead transmission lines,

u = 300000 [km/s] = 3 x 10® [m/s] (velocity of light in air,300m/us)
Zsurge = 300 [Q)] (typically 200 — 500 )

Accordingly,

- %[H/ m] = 107° [H/m] = 1 [mH/km]

¢ 300 x 3 x 108 0.011 x 107" [F/m] = 0.011[uF/km]

This is almost the same as the typical L and C values in Table 2.1.

For power cables,

u = 150000 [km/s] = 1.5 x 10% [m/s] (1/2the velocity of light in air typically,
135000 — 150000 km/s, 135 — 150 m/pus)

Zsurge = 30 [Q} (typically 20 — 30 Q)
Accordingly,

Lo 30
T 15x%x 108

= 0.2[mH/km](about 1/5 of overhead transmission line)

[H/m] = 0.2 x 10~°[H/m]
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Table 2.3 Large-current-capacity types of conductors for overhead transmission lines (typical example)

Continuous Temporary
Maximum Maximum Maximum Maximum
temperature [°C] current [A] temperature [°C] current [A]
ACSR* 90 829 120 1125
TACSR 150 1323 180 1508
ZTACSR 210 1675 240 1831
XTACIR 230 1715 290 2004

#Aluminium alloy metal conductors.

1
T30x15x 108

= 0.22[pF/km] (about 20 times overhead transmission line)

c =0.22 x 10~°[F/m]

This is also very close to the typical L and C values in Table 2.2.

In total, the inductance L of the cable is smaller by about 1/2 or 1/5 while capacitance C'is larger by
about 20 times in comparison with that of the overhead line.

Table 2.3 and Figure 2.9 show typical advanced ACSR (Aluminium Conductor Steel Rein-
forced) conductors for overhead transmission lines. Due to recent advanced metal—-alloy production
and wire-drawing technology, large-current-capacity conductors with high-temperature-withstanding
characteristics even at 230°C and of light weight have beenrealized as is shown in the table. Furthermore,
ACFR conductors (where the tension member in steel twisted wires is replaced in carbon fibre string
twisted wires) have been experimentally adopted in order to realize lightweight conductors.

Figure 2.9 High-temperature-withstandable aluminium-clad steel wire (TACSR)

2.6 Generator by Symmetrical Components
(Easy Description)

2.6.1 Simplified symmetrical equations

A synchronous generator (or synchronous motor) may be considered as a machine containing three-
phase-balanced ideal power sources and three-phase-balanced leakage impedances, so that the
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generator may be simply expressed by Figure 2.10 as an approximate circuit. (Detailed approaches are
discussed in Chapter 10.)
Now, we have from Figure 2.10

Eq Z; | 2y | 2,
E, = azEa =\ Vo|=1Zn | Zs |Zn |- - @
E. = aE, Zon | Zn | Z,
Eupe Ve = Z ape e  — Va (2.26)

Vo = *Zn(la +1p +Ic) = 72”(310) = 73Z” o @

E,, Ep, E. : the generated source voltages of three-phase-balanced design

Equation (2.26) can be transformed into symmetrical components by left-hand multiplication of
the symmetric operator a:

a- E(lbL‘ —a- V(lbL' = aZabL' . Iabc —a- Vn
| (2.27a)
. Eon—Vor=aZge-a -lop—a-Vy

where

111 | Ea

E012==a’Eabc=* 1| al|d®| |dE,| =

1 612 a aEa

The first term on the right (a - Z 4 - a~ 1) is the same form as in Equation 2.14. The second term on
the right (a - V) is

| 1|1]1 —-3Z,- 1y
a-V,= § 1] a ll2 . = 0
1|d?| a 0
virtual generating source terminal generator terminal
Z S &, l

O 00
m
Ey=a?E, Z, Z

o -
Vn Vb
Z'IZ VC
I,+1,+1,=3I]

Figure 2.10 Generator (easy concept)
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Accordingly,
Zy| 0|0
—-wvi|=]olz|o]
0] 0/0]|z
or (2.27b)
—Vo = (Zo +3Zy)1o
E,— Vi =211
Vo =240

This is the transformed symmetrical equation of the generator and Table 2.1 shows the symmetrical
equivalent circuits of Equation (2.27b). The figure shows that a power source exists only in the
positive-sequence circuit, and the negative- and zero-sequence circuits are only made of passive
impedances. A generator may be theoretically named a ‘positive-sequence power generator’.

2.6.2 Reactance of generator

Equation 2.27b derived from Figure 2.10 shows that the generator has time-independent constant
symmetrical reactances and the positive- and negative-sequence reactances are the same quantities.
However, this is not correct.

The generator reactances will change from time to time under transient conditions, and, moreover,
the positive- and negative-sequence reactances as well as the zero-sequence reactances are different.
The generator can strictly be treated only by the d—q—0 transformation method in which the new
concept of direct-axis reactances (x, x);, x;) and quadrature-axis reactances (x;, x;, x,) are
introduced.

Now, by applying the reactances (x/}, x;, x4) as positive-sequence reactances, Figure 2.11 can be
treated as the mostly correct equivalent circuit of the generator while the positive-sequence reactance
will change from time to time as shown in Table 2.1 under transient conditions.

For most analyses of mainly power frequency phenomena (fault analysis, for example),
Equation 2.27b and Figure 2.11 can be applied as the satisfactory equivalent circuit of the synchronous

xgq (3~60 cycles time)

xq (Isec~)

xg (0 ~3cycles time)
ope . . X1 =
positive-sequence cirecuit 1

zero-sequence circuit

Figure 2.11 Generator (easy concept)
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generator while the following reactances are used in equivalent circuits (details are examined in
Chapter 10).
For the positive-sequence reactance,

¥l direct-axis subtransient reactance (0 — 3 cycle time, 0 ~45 or 60ms)
x1 =< /¢ direct-axis transient reactance (3 — 50 or 60 cycle time, ~ 1 sec)
xq ¢ direct-axis steady-state reactance (1 sec ~)

The time in parentheses means duration just after a sudden change of circuit condition.

For the negative-sequence reactance, x; can be treated as constant for most cases, although it may
change slightly just after a sudden change of circuit condition.

And for the zero—sequence reactance, xo can always be treated as constant.

The values of x/}, x;, x4, x2, xo for asynchronous generator are given on the name-plate in terms
of ratings. Figure 10.1 in Chapter 10 shows typical values of generator reactances.

2.7 Description of Three-phase Load Circuit
by Symmetrical Components

In power-receiving substations, feeder lines are connected to one of the HV, MV or LV buses, some of
them are connected to other generating stations and substations through the lines, and others to load
stations.

The equation for the totalized load is approximately written as follows.

(2.28)

or by symmetrical components

Vo Zy| 010 Il
Vil=101Z|0]| |1 (2.29)
%3 010|2 b

where Z, =2, =272y —Zy, 2o =25+ 27, >7) = 2».

It is obvious that the 1-, 2-, 0-sequence networks are mutually independent and the load can be
approximately expressed simply by Z;, Z,, Zj, respectively.



Fault Analysis by Symmetrical
Components

We learned in the previous chapters that three-phase power systems can be described as simple
equations and simple equivalent circuits by symmetrical components transformation. In this chapter
we will study fault analysis using symmetrical components.

The analytical method explained in this chapter is called traditionally fault analysis. However,
this is a very important analytical method invariably applied for the analysis of ‘all’ (instead
of ‘most’) kinds of phenomena such as normal states/irregular states (including faults, switch-
ing, etc.), steady states/transient states, d.c./power frequency/higher harmonic frequency/
surge (switching and lightning surges). In addition, this method is also applied for analysis
by manual calculation by simple model as well as by computer-based detail analysis for large
systems.

3.1 Fundamental Concept of Symmetrical
Coordinate Method

Electric quantities in three phases are phase balanced in normal states because every part of the
power system is more or less three-phase balanced. The balanced states are broken whenever line-
to-line faults or line-to-ground faults occur. Straightforward calculation of such an imbalanced
condition and, further, the transient condition in the a—b—c domain is impossible not only by
manual calculation but also by using computers. One serious reason is the existence of many
mutual inductances on lines and equipment; however, theoretically the reason is the fact that
generators cannot be actually described as accurate circuits in the a—b—c domain. Synchronous
generators can be described as accurate circuits only by application of the transformation
technique of symmetrical components together with the d—q—0 method (refer to Chapter 10).
As a matter of fact, a power system can be written as one circuit including various lines and
machines only in the symmetrical domain. In other words, the symmetrical coordinate method is
an essential analytical technique not only for drastic simplification to handle circuits but also for
precise analysis.

Figure 3.1 shows the process flow of fault analysis using symmetrical components. The first
step is to transform the power system connection and fault condition into the 0—1-2 domain circuit.
The second step is to find the circuit solution in the 0—-1-2 domain. The last step is to inverse-
transform the solution into the a—b—c domain.

Handbook of Power System Engineering Yoshihide Hase
© 2007 John Wiley & Sons, Ltd
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al) system equation
Sabc (Vabm Iabc, Zab(’)

b1) fault condition at point f
ffabc (fVabc: anbc)

transform ; x @

transform ; x @

a-b-c¢ domain

X

a2) system equation b2) fault condition
So12 (Voiz, Loz, Zo12) oz (Voiz, Aor2)
T T

1

¢ solution on 0-1-2 domain ‘

—1—

inverse-transform ; x -1

e

’ d) solution on a-b-¢ domain

e

0-1-2 domain

a-b-c domain

Figure 3.1 Procedure of fault analysis
3.2 Line-to-ground Fault (Phase a to Ground Fault: 1¢G)

It should be recalled that a three-phase power system can be drawn only as a connection diagram in the
a—b—c domain and not as a circuit in the a—b—c domain.

Let us examine a phase a to ground short-circuit fault (say, phase a 1¢G) at an arbitrary point f on a
transmission line. Figure 3.2a shows the partial situation of the connection diagram of the power
system including point f, where virtual a—b—c terminals branch out at fault point f.

The power system before the fault at point f can be drawn as a symmetrical circuit in the 1-2-0
domain as shown within the dashed lines of Figure 3.2b, where the corresponding virtual terminals
branch out at point f.

The related equations are

Vi=E — i, =E, — ;ZI,
Vo= _f221’2 = _fZ;I; @®

nn

fVO = _fZOIO == onlo

=1+
f12 :Iz +12 @
=1+ 1 o, 3.1
7= (21,2 =448
2y = (/] fy) = ————
y FE 4+ 7
Z/ ‘Z//
o 1P
Z, = (y2,/] 12,) = —; O
4 £y 4+ 2,
Z/ Z”
/ " 40 40
Zy=(s2y/] tZp) = ———

where

Z) : positive-sequence impedance looking into the circuit at point

#Z; : positive-sequence impedance looking into the left-hand side at point f
Z : positive-sequence impedance looking into the right-hand side at point f
(the // symbol means parallel impedance values)
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power network

point  fault point

I
m f X
-\\3\ : virtual terminal
I
\ —>fIa '/ .
7l \ R :arc-resistance

I
—>fic

S _ .
\ fVa (or may be tree-resistance)
R ()

3R (b)

Figure 3.2 Phase a line-to-ground fault

3.2.1 Condition before the fault

The outgoing currents o> (s flcon the virtual a—b—c terminals at point f are zero before the fault, so
the corresponding symmetrical sequence currents s fhs flg are also zero, namely

o=y = .=0

o=l =L, =0 (3.2)

Vo= 4V2=0
In the negative- and zero-sequence circuits, because any power source does not exist and the virtual
terminals are open, all the quantities including s fVas flys fVy at point f are therefore zero
before the fault.

In the positive-sequence circuit, we have I, = I/1 + 1'1' = 0. Accordingly, for the three-phase-
balanced load current flowing through point f before the fault,

E, - E,

L =1 (3.3)
2+ 1z
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Therefore

, iz
Vi=E - i, =— B+ — E| (3.4)

3.2.2 Condition of phase a to ground fault

Now, the phase a conductor to ground short-circuit fault at point f means that the phase a virtual
terminal is earth grounded (switch S closed through arc resistance R) at point f, while the phase band ¢
virtual terminals remain in the open condition in Figure 3.2. Therefore,

V —R- I
fla fla (3.5)
=l =0

Transforming the above equation from the a—b—c domain into the 0-1-2 domain,

do+d -y +a- = dy+a- Iy +a - 1, =0 '

Utilizing the relation a® +a = —1,

Iy = 1) = 41
ffo— 1T 2 (3.7)

This is the equation in the 0—1-2 domain transformed from Equation 3.5. The condition of Equation
3.7 can be expressed as the drawing circuit shown on the right-hand side outside the dashed line in
Figure 3.2b. Figure 3.2b is the equivalent circuit for the phase a to ground fault (phase a 1¢G) by
symmetrical components.

3.2.3 Voltages and currents at virtual terminal point f in the
0-1-2 domain

Now, phase a to ground faults are realized by switching on the virtual switch S in Figure 3.2b; in other
words, connecting the outside impedance L+ Zy+ 3R to the virtual terminals () Q) of the
positive-sequence circuit. The current flowing through terminals (1) 2) and the voltage can be easily
found by applying Thévenin’s theorem.

The current through terminals (D Q) at point f is given by

A4
I, =
PV 20+ (2 + 2y +3R)

o (3.8)
=l =gy =——;V,
f“total

Lol = fZ1 + §Zy + §Zy+ 3R
and the voltage at point f by
Vo=—s2y flo=—1Zy- I
Vo=—52y jIh=— 2, - 4l 3.9
Vi=—=(Vo+ Vo) +3R- I, = (;Zy+ ;Z, +3R) /I,
The voltage ¢V, in Equation 3.4 and 3.9 is the voltage between terminals (D and is glven by

Equation 3.4 as an already known initial quantity before the switch S closes, where E and E are
known quantities.
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Finally, the above solution of symmetrical voltages and currents on virtual terminals at point f are
inverse transformed into a~-b—c phase quantities at point f:

3
fla 1]1 ‘ 1 f[O(: fll) 3f]1 fVl
A 5 thotal
| = la‘a : 1 =10 0 @®
rle 1 a‘ a*| | rh(= ) 0 0
Vo 111 ~ % sh SR
ol =|1|a*|a|-|(sZy+ fZ, +3R)fI,| = (@* = 1) fZy + (¢* —a) yZy + a* - 3R| - 2
Ve 1 ala? — 1Z, I, (a—1)sZy+ (a—a*)sZ, +a-3R
3R
gl
thotal
(@* = 1) ;Zy + (@*> — a) ;Z, + a* - 3R v
= 7 fad! @
f*“total
(a—1);Zy+(a—d?) ;Z,+a-3R v
Z £
f“total
where (Ziya = (Z; + (Z, + ;Zy+ 3R
Z// . Z/ ,
fVI = ,f ! T El + /f ] //E]
fZI + fZ] fZl + /-Z]
(3.10)

All the solutions 1, oIy, (I, (Vg (V. (V. in the a—b—c domain were found.

Incidentally, £V, is the positive-sequence voltage (i.e. the phase a voltage) at point f before the
fault. If the load flow current on the line at point f before the fault is zero, the voltage at point fis of the
same value as that of the generator source voltage, namely E=E = vy

3.2.4 Voltages and currents at an arbitrary point under fault
conditions

Let us examine the voltages and currents at point m under the phase a 1¢G fault condition at point f
shown in Figure 3.2.

Figure 3.2b is the mathematical representation at any point of the system connection
diagram Figure 3.2a. Therefore, voltages and currents at points m(,,V, ,,Va, Vo> mlis mlas mlo)

and (,,V,, Vo> mVer mdas mly» ml.) are in correspondence to each other by the symmetrical
transformation:
VieE — 71 <E — .21
™M /1 //j 14 17 41 1} (.11a)
=L+
. Z// El E//
- 1 —
I = i S & + A= =Cr L+l D
2t 14 2+ 14
—— ————

the fault current supplied from the the load current before fault

left-hand side through point m to point f
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The load current is not included in the negative- and zero-sequence circuits, so
ZH
g f2 —
=——— H=Cr x (I, ®)
Lt !
7 * (3.11b)

Iy=——— 1y=Co- /] (©)

Pt b

21 ) .
where C} = ———— (C,, Cp are defined by the same equation forms)
e )

Cy is the coefficient of the branched current ,,/; / I, from the left hand-side through point m from
the total current fll, and is the vector value of 0—1.0/0. C,, Co/ are a¥so defined in the same way.

As we know already the value of Iy =¢I} =¢1I>, the currents I}, I,, I, at point m are calculated by
Equation 3.11. Finally the currents in the a—b—c domain at point m are

Ly 1 1 Co 1 1 1 0
L (=1 2| a || ¢ |fhit] 1 > a || Do (3.12)
1;_ 1 a a? C 1 a a* 0

fa\ult current term load current term

The second term on the right-hand side is the load current components that existed before the fault,
and the first term is the fault current components caused by the fault at point f.

This equation explains the fact that the fault current component at any point of the system is not
affected by the load current component just before the fault. In other words, we can calculate any
fault under the condition of zero load current, and then use vectors to superpose the load current if
necessary.

The voltages at point m can be calculated from the voltages and current quantities already found at
point f by utilizing the following equations:

m Vé fVO mZ() 0 0 12)
WSV l= Y+ o wZi 0o || 1 (3.13)
V) na 0 0 mZy A

Finally, the voltages can be inverse transformed into the a—b—c domain.

3.2.5 Fault under no-load conditions

A fault under no-load conditions is a special case of E/1 = E/l/ = fV1 in Figure 3.2b and Equ-
ation 3.10 @). The power system looking from point f under this condition can be regarded as a black
box with an internal power source, whos”e voltage across the terminals (DQ) is 4 (= E/1 = E’ll) and
internal impedance is ,Z;, = ( 2 // 2 ). On the other hand, as shown in Figure 3.3, the equivalent
circuit of the phase a to ground fault at point f connects the outer impedance 12y + ;Zy+ 3R to the
terminals (D) of the black box. Accordingly, the flow current at the terminals (DQ) is easily found by
Thévenin’s theorem. That is, the currentis I, = ,V,/{ ;Z; + (;Z, + ;Z, + 3R)}. This s of course
in accordance with Equation 3.8.

In conclusion of the above explanation, we can apply Figure 3.3 as the equivalent circuit, instead of
Figure 3.2b, whenever we need fault current components only (without load currents). Then we can
superpose load currents if necessary.
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voltage at point { before fault [V} = " = Ey’

o - Ly O S oar

E T 9 09 .
: , . y
: s Z<e Ly Z<e ol
: o/ o
' @

Figure 3.3 No-load fault calculation

3.3 Fault Analysis at Various Fault Modes

Voltage and current equations for cases of different mode faults are summarized in Tables 3.1a and b
in which equations in the 1-2—-0-sequence domain and a—b—c phase domain, as well as the equivalent
circuits, are indicated. Case 7 is that of the phase a to ground fault which we have already examined in
detail. The voltage and current equations and equivalent circuits for different fault modes can be
derived by the same procedure.

Note, incidentally, that the generator impedances are jx,| # jxg in a strict sense, while transmis-
sion line impedances are exactly Z; = Z,. Therefore, in case of a line fault at a great distance from the
generator, the condition jx,1, jxg < Zi,Z; and the approximationjx,| + Z1 = jxg2 + Z would be
justified, so the accuracy of calculation would be improved by the dominant line impedances.

Currents at point m for the case of a different mode fault at point f can be found by the following
procedure:

mli =Cr o,y =Co ¢y, 0o =Co- £l (3.14)

where C; = fZ” /( fZ/l + fZIII) etc. The inverse transformed currents are

k. CO'flo‘f‘Cl 'fll +C2'f12
wly | =] Co- g +aCi- 1y +aCy- I, (3.15)
wle Co- fly+aCy- I, +a*Cy- /I,

Voltage equations are derived analogously.

3.4 Conductor Opening

The cases of one- and two-phase conductor openings are examined in this section.

Conductor openings (or cut-offs) of one or two phases seldom happen as accidents in actual power
systems. However, the state of a single phase breaker tripping as a procedure of single phase reclosing is a
kind of one-phase conductor opening. Moreover, in the case of three-phase tripping by a circuit-breaker,
current tripping by breaker—pole opening of each phase occurs sequentially in time and the timing of
each phase tripping is different. In other words, a three-phase circuit is opened by the breaker through the
transient states of trip-start— 1¢ opening—2¢ opening and 3¢ opening. Furthermore, breaker tripping
failure may occur and give rise to severe situations. Phase-imbalanced opening occurs often and at
various places in practical engineering. (Breaker tripping phenomena will be explained in Chapter 19.)

3.4.1 Single phase (phase a) conductor opening

Referring to Table 3.2(1A), the phase a conductor is opened between the points p and q; v, vp, Ve, are
the voltages across the points p and q of each phase, and i, ip, i, are the phase currents at points p and q.
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Table 3.1a Equations and equivalent circuit for various fault modes

Fault conditions (a—b—c domain)

I, point f

#1 3¢S N ERNEI o+ fly+ ;1. =0 (14)
three-phase R |rle Va= V=4V
line-to-line fault V)

# 34G AR AL Vo= Vy=,Ve=0 (2A)
three-phase -
line-to-ground fault Vel

s — ] =
#3  19G & %X\V A= fle=0 (34)
phase a £><\f y fva =0
line-to-ground fault Ve

J[ney ST

1,
1= A, =0

I ==
#4248 > . Ay + 1. =0 (4A)
phase b to ¢ —
line-to-line fault Ve Vo iVa
77777777777

Vo= Ve

#5  2¢G
phase b, c double
line-to-ground fault

#6  3¢G
three-phase
line-to-ground fault

Va=rfla= gV =1 fly
= Vo—r- I, (6A)
= ROl + fly+ 5L

#7 146G
phase a
line-to-ground fault

L=, =0
o = fle (7A)
Va=R-f,

( 9ouRISISAI OIv) J[NEy OIY

#8  2¢G
phase b, ¢
line-to-ground fault

(8A)
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Table 3.1b Equations and equivalent circuit for various fault modes

Fault condition at point f and the equivalent circuits: Metallic fault

#1

#2

#3

#4

#5

3¢S
phase a, b, ¢

Iy =0 /Ea

f o=l =0, 7 :71

Vi= V=0 (1B) = 4 (10)
o =0, ;, =0, ;Vy=0 Vo= Vi=,V=0

E
Vo= Vi= V=0 o= b =0, f’lzfz”
(2B) = e (20)
th= =0
M=M=V =0
E,
_ o g _tEfa
o=l =rh="
[/
%0
Vo=—,7 -0 =—L 2 F
o= I = /b Vo= =r%0 flo=—x" sk
GB)=  _ _htsb (30)
Mot Vit V=0 A
V., = — .7 I :LZZ..E
Vo=l fh ==k
where A = 7y + ;Z, + ;Z,
Iy=0 E,
o I=0,I = — = —L
PR R A A
h=—h ety
(4B) = ;Vy =0 (4C)
_ 7
h= it Vi= Vy=— 2y I B g
1= f2== T
V=0 AL A A A
rEa
=
Z1+ (21 52)
ZZ' ZO
where(le//fzo)zg
4T %
o+ i+ =0
5B)= , % % 50
Vie Vo= .V y— Ay gy = s
o= =2 f 12+ 2, s A f
/‘V0:/‘V1 :/‘VZZ*/'Zz‘/'lz
z, 7
4 1%
= h=(;2,/] 52) - ¢y
f22+fZOf f f f

Continued
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Table 3.1b Continued

Fault condition at point f and the equivalent circuits: Arc fault (arc resistance R)

#6 3¢G
phase a, b, ¢
Vo—r- gy =3R- (I .
Vi =r- I Ip= 1, =0, Jd = u
gl 7 rlo=rh2 M=z
Va=r- gl (6B) = Vo= ,V, =0 (6C)
=l =0 M=rh =gt
fvzzfvozo
#7 146G
phase a E,

— _ _f
o=l =rh="%
— 7
fe0
fVO:*on'f’O:iA - E,

Iy = (1, = /I = .
oo }(713@fv‘zfl(fzv"fzfévww Moo
Mo+ Vit Va=3R- 4, _ 1% fAz JE,

7fZZ

V2=
A= ,Zy+ 2 + 47, ¥ 3R

fZZ'fIZZT‘fE

a

j = tha =82
#8 I A +A2»A0‘f° Ay +4Ap /!
'TA A
—A8a0
L=—"0 ]
27 M+ I
ZyAy
Vo==s% flo =3~ asrh
Ay - Ay (8C)
V, =
V= A2+Ao) rh
Z,A
rfota
2=yt fh =3 e
where
Ay =7, +r
D=7, +r

Ao = jZy+r+3R

Notes: All the quantities of the negative- and zero-sequence circuits becomes zero in cases 1(3¢S), 2(3¢G) and
6(3¢G), because power sources do not exist in these circuits.
Ea is the voltage at point f before the fault.
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Table 3.1c¢ Equations and equivalent circuit for various fault modes

Phase voltages and currents

#2

#3

#4

#5

ey OIERN

#6

#7

#3

(Y 9oUR)SISaI OIR) JNR) DIV

3¢S
phase a, b, ¢

3¢G
phase a, b, ¢

1¢G
phase a

2¢S
phase b, ¢

2¢G
phase b, ¢

3¢G
phase a, b, ¢

1¢G
phase a

2¢G
phase b, ¢

2
la= sl fly =a" ¢l (. =a I,
/= (E/ /2, (1D)
Va= V= ;Ve=0

Same as above (2D)

i, =30y =3/E,/A where A= Zy+ Z, + (7,

Ay =yl =0, fI,=0

(3D)
v 7(a271)f20+(a27a)f22 Py 7(a71)f-20+(a7a2)f22 :
Vo= A fRa Ve = A “1Ea
E
IIM:O,I;,:fflt.:(azfa)/Il:(azfa)»#
Z + Z
P N ) 7z (4D)
faz)
V,=2,:Vy, V)= ,V.= —,V,, where  V|=-—"—F
f Vo Ve = Ve g 14! le""fzzf“
Lo :(azfa)fZOJr(azfl)szA .
o= gl £h
2ot 5%
2
= Zy+(a—1),Z
fIC:(“ a)fo (a )f 2';’1 (5D)
H Tt it
3 Z, - 7, E
fe2 7 70 fFa
V,=—"—— /1, /V, = ;V.=0, where /I =———"——F7~
ez gz, 1 fre Nz + (4] 12
E
2 fa
fla= ¢l fly=a" ¢y, fl. =agl,, where jllzﬁ
) o , (6D)
Vo= Vi, (Vy=d® V), [Vo=aV,, where fvlzm-fEa
Ay =30 =3 E /A, I, = 1. =0
3R (@ = 1) ;Zy+(a® —a) ;Z, + &> - 3R
Va=3R Iy =" rEus 1V = A “rEa (7D)

(a— l)f-Zo+<a7d2)f-Zz +a-3R

fV‘. = A 'fEav where A = fZO + fZ| + fZZ + 3R
B (@ = a)Ag + (a* — 1)Ay _(a—a*)Ay+(a—1)A,
rla=0: sly = Ay + 4 rh e = Ao+ Ay rh
ZyAy + DoA; + fZZAO Ay - Ay
{ Ao + 4y +r}fll where sl = fEa/<A] * Ay + AO)
8D
{fzo My +a?MoAy +a ,Z, - A0+2}I Av =, Z +r (8D)
a‘r
Ao + 4, 7 A= fZ+r
Zy - Ay +aloAy 4+ a ,Z, - A
20 2 022 2 0 _
{ At +ar}f11 AoffZO+r+3R

where a — d?

\/§ a 71:j\/§a, lfa:j\/gaz.

This condition can be described by the following equations:

vp=ve=0
=0 } (3.16)
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Table 3.2 Phase opening modes (equations and equivalent circuits)

Phase a opening

Phase b, ¢ opening

pointp  point q

1q=0

050 v laz
Al |&— P
£ Ve 25
ig=0
Vve=ve=0 ] (14)
pqintp poin?:q
i R ¢ —\
p g: Z1<:‘:P¥/\E g{l::%lzl ~ F
BT —
—Z% <—V2 12
[1B] § 4
n é’ Z2<":10‘12 e g%z %
I BT )
o |8 L i 3
Qg+ 1y =1lg=
o+ i1=1p 0] (1B)
Vo=Vi=V2
i = GEa gEa
1 7+ Zy - 72y
"Th+z
i = % i
Zr + 7y
. -7
ip = -0
T vz (10)
Z -2y .
Vo=V =V = i
0 1 2 %+ 7 1
7= 7+ 7,
Zy = pZZ + q22
ZO = pZO + qZO
i,=0
(@ —a)Zy+ (P -1)Z
ip = -0
b ZZ+ZO 1
o (@a—d®)Zy+(a—1)Zy
le = 3|
¢ Z +Zy (1D)
32,7
= q
Zr+ 7y !
i = GEa_gEa
1= 74 VLRVA)
1
7+ 7y

lo /Va\.l.“.
ib_io Vi ”1_:'0
RA] | iez e 50 |
h=1c=0
2A
vy 0 } @A)
,— v, 4
nga:’:E:;‘. Z1<:':p/\&7:}1 D21 :g:g
[ —
22 AfVZ 2
281 0 |6 [z N b 9
_ig [V io»
f
o é’ Z()<::pV0 qVQ:>qZ0 %
== .} @B
Vo+ Vit ve=
o= iy = iy — GFa —sFa
o=h=h=7—"r
vi = (Z2 + Zp)iy
Vo = —27p 0
vo = —Z i1 (20)
where
7= ,7, + 7
Zr = p22 + qzz
2= 7+ 4%
. . 3(GEa B gEa)
iy =31 =——-+°>—~
21+ + 7y
iy =ic=0,v,=0
vy = {(@® = NZo+ (&> —a)Zp}ir [ (2D)

ve ={(a—1)Zp+ (a— az)Zz}il
GEa T g-a

="
! 21+ + 7y

&
&
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The transformed equation in the 0—1-2 domain is

Vo =V] =V

. 3.17

io+ii+ir=0 } ( )
This equation can be exactly described as the figure of equivalent circuits in Table 3.2 (1B). In the
figure, the negative- and zero-sequence circuits are connected in parallel to the positive-sequence
circuit. pZI, pZZ, pZO are the impedances of the left-hand side circuit at point p, and qZI, qZZ, qZO
are the impedances of the right-hand side circuit at point q. Then, from the equivalent circuit,

i1 = 6P sla ip = % i1, ip= 2 “i1
7+ 24 H+2y Z+ 7
L+ 2
2, -7 (3.18)

Vo=V] =V = -0
Zr +Zy

Zi= 2+ 2 L=yl + 2y Zo = 2o+ 2o

This equation is written again in Table 3.2 (1C), and the inverse transformed equation for a—b—c
phases is shown in Table 3.2 (1D).

3.4.2 Two-phases (phase b, c) conductor opening

Voltages and currents in this case are found in a similar way and the resulting equations as well as the
equivalent circuits are shown in Table 3.2 (2A, 2B, 2C, 2D).
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Coffee break 2: Dawn of the world of electricity,
from Coulomb to Ampeére and Ohm

It may be said that the modern history of electricity actually began with the great character
Coulomb. Any review of the legacy left by the great scientists Coulomb, Ampeére and Ohm
cannot be omitted from the historical stories of electricity.

Charles Augustin Coulomb (1736-1806)
wrote seven important treatises on electricity and
magnetism between 1785 and 1791. He obtained
some remarkable results by using the torsion balance
method on ‘electric point charges’, ‘magnetic
poles’, the distribution of electricity on the surface
of charged bodies and others, and in particular
the ‘law of attraction and repulsion’, which was
the theory of attraction and repulsion between
bodies of the same and opposite electrical charge.
He demonstrated an inverse square law for
attractive and repulsive forces (F = g; - ¢2/1?)
using accurate measures of his own design. He
also suggested that there was no perfect dielectric,
proposing that every substance has a limit above
which it will conduct electricity.

In 1800, Alessandro Volta (1745-1827) built Charles Augustin Coulomb (1736-1806)
the voltaic pile, which was the first battery to
produce a reliable, steady current of electricity.
He discovered, so to speak, the first practical method
of generating electricity. Needless to say, Volta was
a great benefactor to many electrical scientists as the
person who provided stable electricity for their
laboratory experiments at that time.

Hans Christian Oersted (1777-1851) discov-
ered in 1820 that a compass needle deflects
from magnetic north when an electric current is
switched on or off in a nearby wire. This showed
that electricity and magnetism were related phenom-
ena. This eventually led him to the conclusion that
‘an electric current creates a magnetic field” and thus
‘electromagnetism’ was born.

André Marie Ampere (1775-1836), a mathe-
matician, immediately on hearing about Oersted’s
experimental results, formulated a circuit force law
and treated magnetism by postulating small closed
circuits inside a magnetized substance. He also Alessandro Volta (1745-1827)
discovered ‘electro-dynamical forces’ between lin-
ear wires through his experiment in 1820, the same year as Oersted’s discovery. Ampere proved
that electric current also creates flux and furthermore mechanical force. ‘Ampere’s
corkscrew rule’ and ‘Ampere’s circuit law’ clearly indicate that current and flux are
equivalent to each other because one can create the other.
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Hans Christian Oersted (1777-1851)

Georg Simon Ohm (1787-1854) in 1825 was
convinced of the truth of what we today call
‘Ohm’slaw’ and gave its mathematical description
in his 1826 paper. His law showed that the current
through most materials is directly proportional to
the potential difference applied across the material.
He also published a fully mathematical approach to
his complete theory of electricity in a book pub-
lished in 1827, although the physics at that time
rested mostly on a non-mathematical approach. His
mathematical approach also had an impact in
showing the true scientific method.

Now, the facts that ‘electricity and magnetism
are likely to be mutually related’ and ‘current
produced mechanical force’ were almost recog-
nized in the works of Coulomb, Oersted, Ampeere
and Ohm. However, no one knew then that ‘mag-
netism can produce electricity’, much less that
‘mechanical power can make electrical power by
moving magnetism’.

>
comprpE—— !
£ b e =

QOersted proved that electric current set
up a magnetic field

Georg Simon Ohm (1787-1854)







A

Fault Analysis of Parallel Circuit
Lines (Including Simultaneous
Double Circuit Fault)

Simultaneous line faults are often caused in power systems and can become serious, so a detailed
examination and appropriate countermeasures are required to prevent serious power outages. Fault
analysis for double circuit lines is rather complicated because mutual inductances as well as mutual
capacitances exist between the double circuits. Moreover, fault analysis of simultaneous double faults
is very hard work. Study of the principles of analogue methods for such complicated system behaviour
is important regardless of whether we approach networks using computational or manual calculations.

So-called two-phase circuit theory is introduced as an effective approach in this chapter, and then
the principles of faults analysis on double circuit lines, including double faults, is examined.

4.1 Two-phase Circuit and its Symmetrical
Coordinate Method

4.1.1 Definition and meaning

Figures 4.1a and b show the two-phase circuit in comparison with the three-phase circuit. Although the
two-phase circuit has not been utilized as a practical power system, positive-, negative- and zero-
sequence circuits of double circuit transmission lines as are shown in Figures 2.6 and 2.8 for example
are types of two-phase circuit lines, because they are the same as in Figure 4.1(b) if the double circuits
are connected to the same single bus at the substation terminal.

Itis assumed below that parallel circuits 1 and 2 of the same double circuit line are well balanced and,
furthermore, each circuit is also well phase balanced by transposition. As is shown in Figures 2.6 and 2.8
of Chapter 2, mutual inductance and mutual capacitance between the first circuit 1 and the second circuit
2 exist on the zero-sequence circuit, but do not exist on the positive and negative-sequence circuits.

We have already learned that mutual inductances and capacitances of three-phase single circuit
transmission lines are extinguished by symmetrical coordinate transformation. Analogously, mutual
inductances and capacitances of the two-phase circuit must be extinguished by adopting a two-phase
symmetrical coordinate transformation. This is the reason why we are going to apply two-phase
symmetrical components as analytical tools for double circuit transmission lines. The so-called
double phase circuit theory is indeed the theory of symmetrical coordinates for double phase
circuits and is mathematically a kind of two-variable transformation.

Handbook of Power System Engineering Yoshihide Hase
© 2007 John Wiley & Sons, Ltd
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RN P,

(a) three phase circuit (b) two phase circuit

Figure 4.1 Three-phase and two-phase circuits

The relevant equations are defined by the following equation.
For the transformation

e[ ] [ v . -
= == : o Vior = aag - Vi
2[1 | a 21 | =1 P, g (4.12)
—— ——
Vioi 73 2y, LN 2y,
where a = e/3%%°/2 = c0s180° + jsin180° = —1

For the inverse transformation

'V, L] 1] Vil

.12 -1
= .. V,=a,, - VkOl (41b)
vl [ ] -1 ke
2y, a, Viot

This definition by Equations 4.1a, 4.1b is in the same form as in Chapter 2, with the size of matrix
equations being changed and the size of the operational matrix @, @ ' changed from 3 x 3t02 x 2;
the vector operator is changed from a = e/ 120° 4 ary = /180" — 1,

The transformation equation above is applied to the quantities of the double circuits 1 and 2 on the
positive-, negative- and zero-sequence double circuit lines. The suffix k = 1, 2 or 0 corresponds to 1-,
2- or 0-sequence quantities.

For the transformation

Zero—sequence components

o I V=1(1V+2V)
2 I T N 7 [ SRR O
Vo 201 | —1] [V

Positive-sequence components

=]
<
=
)
Il
2L
<
4
[
=~

1 1

:5 1 1 re or @

10

V1o (4.2a)
n

Negative-sequence components

] My ] V20=1(1V2+2V2)
[Vaol I N . 2 ®

1
va] 2[00 [ -1] Py
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For the inverse transformation

Zero-sequence components
Vo _ |11 Voo Vo= Voo + Vo
% 1| -1 Vo 2V, = Voo — Vou

Positive-sequence components

] [T 1] vl 1V1=V10+V11}®

2_\/1 1| —1] [V 2y, =Vio— Vi1

Negative-sequence components

vl [ ] = v kv
Z 1| =1 |Va 2V, = Vo — Vay

where

Voo, Vo1 : first- and second-lane voltages on the zero-sequence circuit

Vio, V11 : first- and second-lane voltages on the positive-sequence circuit
Va0, Va1 ¢ first- and second-lane voltages on the negative-sequence circuit
'V,,2V, : first- and second-circuit voltages in the zero-sequence domain

lVl , 2V1 : first- and second-circuit voltages in the positive-sequence domain
'v,,2V, : first- and second-circuit voltages in the negative-sequence domain

The equations for the current or any other quantities are defined similarly.

Let us refer to the transformed new circuits as the ‘Ist-lane circuit’ and ‘2nd-lane circuit’.

4.1.2 Transformation process of double circuit line

(4.2b)

The symmetrical equations of the double circuit line are quoted from Equations 2.20b and 2.24c. The

positive-sequence circuit (the negative-sequence circuit is of the same form) is

lV lV l[
m n

2V 2V Z 2r,
where Zy\=2Zy—Zy

1 1

1211 C, IZV1
where Cy =C;+3Cy +3C),

and the zero-sequence circuit is

1 1 1

VoVl [ %[ Zom 2y 12 g 12y
2y~ 2y = T Tz | | O o Vo=Zo-
m_’ 0 n'0) oM 0 0

12V

m ' 0

12 12
Vo Z, 1,

where Zy =Zs+ 27, Zoy = SZ,'11

—jo G ] G | Vol 21, = joCo -V,
G |Ga+q
1210 CO 12V[)

where Cyp=C,, C,=3C,

(4.3a)

(4.3b)
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The transformation of the above symmetrical equations into 1st- and 2nd-lane circuit equations can
be done using the following process and modifications:

wVio1 = nVior = (@29 X Zy - ayg) - Lo
2Ly = jolazg - Cr - ayy) - Vior

where

k=1,2,0

4.4)

axy - Zy - ag(; and apy - Cy - a2*¢1 can easily be calculated and the following transformed equations
are derived:

For the positive-sequence circuit

mVIO _ nVIO — Z110 i 110 _ Zs —Zm 0 ) 110 )
2V [V 0]Zi] |[In 0 Zs —Zm | |l
> (4.52)
:jw ci]o :jw Cs +3C, +3C, 0 Vgl
I 0] Ci 0 Cy+3Cn+3C, | [Vu]
For the negative-sequence circuit
mVZO _ nVZO — Z1]0 16X _ Zs — Zn 0 . )
mV21 n 017, D 0 Zs — Zm
L\ (4.5b)
I . |1C1 | 0 V2o . Cs +3C, + 3C;n 0 Vo
= jw . = jw — -
D n Ci| [Va 0 Cs +3Cy +3C), )
For the zero-sequence circuit
mVYoo| _ |nYoo| _ | Zo + Zom 0 |oo| _| Z+2Zn +37), 0 oo
Vo1 o1 0 Zy — Zom | |loi 0 Zs+2Z,, — 37}, | |l
loo| _ ;| Co 0 e o |
Iy 0 |Co+2Cy ||Vor 0 |G +6Cy,
(4.5¢)

These derived equations are in coincidence with the figures in Table 2.1. The transformed
zero-sequence equation shows that the mutual inductance as well as the mutual capacitance vanished,
so that the 1st- and 2nd-lane circuits can be treated as circuits with self-impedance and self-
capacitance only.

Figure 4.2 shows the vector relations between (1107 210) and (Iyg, Io1).

1 c
Ipy =5 (', =*Iy)

(b)

Figure 4.2 Vector diagram of two-phase symmetrical coordinates transformation

(a)
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4.2 Double Circuit Line by Two-phase Symmetrical
Transformation

4.2.1 Transformation of typical two-phase circuits

Figure 4.3(a)is a typical two-phase circuit. The circuit can be regarded as a zero-sequence circuit of the
double circuit line (putting suffix kK = 0), or as the positive-/negative-sequence circuits by further
omitting the mutual inductance and mutual capacitance between the first and second circuits (putting
k = 1,2). The circuit equations are

2 2

Vi eZul oZ 1 2V
#Vk_ZcO.ﬁ_ p2u| |nke
2vfoz217zz21+®
m'k c Lm k| BM| n-kl nv

1% AVARY E

e a2 kiraka £] ©) (4.6)
nV nZ nZ nIk

1 1 1 1

,21k _ glk N ?Ik N ,;1,@

!
1 nlk P
‘1,Q+21,Q=0 ®
Ly
Vi = nVi =Z I O]
point point point

@ [ _Tosectiong - m w——sectimf—wn
1st phase :l_lik I”_Iﬁ L, I+2 IE
| 7 lS&J N1 Ik, ’D’O“Z wg[ ntk™ n k.
2nd phase/- 2_Z£k o [Zfo‘]aZMf ‘7\)12 1., B ﬁzmm ’”_l» )j
1 ‘,/ 1 7z ZC’ Z
Vk | a B K
\%4

5V | 1ka ZoT ZeT Vi n
! m -|_ -|12m[ k

(b) i LILCO A ﬂZ + /iZM ﬁ{k0| i

Q 30N oo :

/: /']} mIkO 1 /'I 277,Z:

1st-lane cireuit  1Vro! Vo T Zo==— s NoE
l T JjaC N |

i lIkO aZ - aZM ﬁZ - /JZM nIIcll i

= ¢ 7T = !

ﬁ / ] k\l‘ mIkl I !

2nd-lane circuit Vi1 Vit 7 o= 4d _ 1 :
: 2 j2eC’ !

where Z ;= -

oC

Figure 4.3 Circuit transformation by two-phase symmetrical components
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The equations can be transformed into that of 1st- and 2nd-lane variables by the same transforma-
tion process as Equation 4.3:

from Equation (4.6) (D

Vi 1[0 [WZ]eZu] 1] 1 ,+ka0
211 -1 (xZM atZ 1 -1 llkl mvkl

— aZ+aZM‘ 0 . + kaO @
0 ‘ aZ _chM l]kl kal

from Equation (4.6) ©

WVl L[] 1] [Z]o] [1 ] 1] |k
Vol 201 [ 1] Jolz] [ ] 1] [

]z 2| L] ] ke L[] 1] Y]
2[1 | -1 |z, 2

cAmViol | Ze] O o
vl [0z

_ 162t pZu| O '+
0 sZ — pZuM 0 =

from Equation (4.6) 3

K% 4.7)

1
2[1 [ 1] |

1 1 V4

ozl ool M LT 1] HE

1
201 [ 1) [zlz] [ ] 1] L "2l [ 1] |E]

n

WY [2z]o] Lk | |E 3
o] 010 0

from Equation (4.6) @

ﬁ + mIkO + mII/cO @
n kl mIkl mll/cl

from Equation (4.6) 5
1 2 :
mII,(O = E(rlnll,c + mII,() =0 s mlllc() =0 @

N

from Equation (4.6) ®
(nVio + Vi) = GuVio = mVi) = Ze - Gulio + mlin)

!

Z.
. mvkl = ?C 'mll/cl ©®

The equivalent circuit in Figure 4.3(b) can be written from the above transformed equations.
It consists of two independent circuits which are named the 1st-lane circuit and the 2nd-lane circuit
of the positive-, negative- or zero-sequence domain for k = 1,2,0 respectively. In Figure 4.3(b), mutual
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inductances as well as mutual capacitances between the 1st lane and 2nd lane have already vanished. It
should be noted that in the 1st-lane circuit 2, Z is inserted, while in the 2nd-lane circuit, the first and
second circuits are short-circuited at the bus terminal n and so C + 2C6 is inserted.

4.2.2 Transformation of double circuit line

Figure 4.4a is the symmetrical equivalent circuit of the double circuit transmission line, in that the
mutual inductance and capacitance between the first and second circuits exist only for the zero
sequence. The figure can be easily transformed into the 1st- and 2nd-lane circuits of Figure 4.4b in the
same way as described by Figure 4.3.

The original three-phase double circuit line (of a—b—c and A—B—C phases, Figure 1.5 in Chapter 1)
has been transformed into Figure 4.4b, in which there are six mutually independent circuits. Mutual
constants between the 1st and 2nd lanes for the zero sequence have already vanished. Each 2nd-lane
circuit of the 1-2-0 sequence domain is a closed-circuit composed only of parallel line part constants.

R I M I

positive-seq. positive-seq. 15t-lane

nZ1 271 % ¢z 2,7
3 N
2 V1 om 1E A Vo o o
/ \
positive-seq. 2nd-lane 41 A
V11=0 :l_?ll T Cl 2V11=0

negative-seq. negative-seq. 1st-lane

L+ 21/{2 1Z1 nZ1
00
7 N
n/VZ
negative-seq. 2nd-lane  ,Z; 1
Vo1=0 :_7121 T (O nV21=0
zero-seq. . st-
) q / ZOIZIO ;fZOM 7, IZOM zero-seq. 1st-lane o= Zoo=
= 00 ZLZO pZO + pZOM qZ() + qZ()M 2”Z0
[l —
Voo Hoo Co V.
l {)0 o -l—]YO:]wCOﬂ/ 00
7
pZ01 = o=

zero-seq. 20d-lane  pZo— pZom 90— gZom
Vor=0 Z_f(n TCO +200 |, V=0
JYo1=jo (Cy+2Cy)

(a) Symmetrical circuit (b) 1st- 2nd_ Jane circuit

Figure 4.4 Equivalent circuit of double circuit line in 1st- and 2nd-lane circuit domain
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The circuit constants in Figure 4.4(b) are given by the following equations:

\

2y =Zs—Zp Ziw=21=Zs— Zn Znw=21=7Z;— Zn
7Y = joC JY10 = joCi JYin = joC
= jo(Cy +3Cp = jo(Cy + 3Cp = jo(Cy +3Cp
+3C,) +3C,) +3C),)

Zy =Zs + 27y Zoo = Zo + Zom Zor = Zo — Zom > (4.8)
Zow = 3Z), = Zy+ 22y + 37, = Zo + 22 — 32,
Yo = jwCo 7Yoo = jwCo JYo1 = jo(Co +2Cp)

= jwC; = jwCs = ja)(CS+6C,/n)
jY(l) = ja)C6

= jw-3C), J

where
Zoos Zo1: 1st- and 2nd-lane impedances in the zero-sequence domain

Y00, Yo1: 1st- and 2nd-lane admittances in the zero-sequence domain

Typical values of these lane impedances and admittances (capacitances) are shown in Table 2.1 in
Chapter 2.

It must be remembered that the impedances of 2 ,Z,,,2 ,Z,,2,Z,,2 ,Z, (instead of | Z,, ,Z,), ,Z,, ,Z,)
are inserted in the 1st-lane circuits in Figure 4.4(b).

The 2nd-lane circuit of each positive-, negative- and zero-sequence circuit is of closed circuit
without power source. Accordingly all the quantities in the 2nd-lane circuit are zero before the fault.
However, if the double circuit line is not necessarily well balanced, a so-called circulating current
would flow through the 2nd-lane circuits.

Let us now examine oo, lo; in the 1st- and 2nd-lane circuit of the zero-sequence domain:

1 1
Ioo = 5(110 + 210) = 6{(110 + llb + llc) + (2Ia + 2117 + 21(')}

4.9)
1 1
Ip1 = 5(110 =) = 6{(lla + 1,4+ 1) = CL, + 21, +%1,)}

Accordingly, if zero-sequence current exists under normal load conditions, then /y; of the 2nd lane
also exists and flows through the 2nd-lane closed loop circuit. Iy, is the so-called circulating current
of the double or multiple circuit line and is the zero-sequence current component which actually
circulates through the first and second circuits.

Further, Ioo, Io] are quantities which can be measured as the addition or subtraction of the current
transformer (CT) residual currents 1, = (1/3)('1, + '1, + '1,),%1, = (1/3)(?1, + I, +21,) at
the CT secondary terminals of the first and second circuits.

In the practical engineering field of protective relaying, the zero-sequence circulating current /o)
sometimes causes severe problems for certain types of protective relays, in particular for double circuit
lines of a highly resistive neutral grounding system, for which special countermeasures may be
required to prevent malfunction of the relays.
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4.3 Fault Analysis of Double Circuit Line
(General Process)

Figure 4.5 is the process flow diagram of fault analysis for the double circuit line. The steps with the
marks *1, *2 in the diagram correspond to the Figure 4.4(a), (b) respectively.

Tables 4.1a and b summarize the related equations and the corresponding equivalent circuits for the
cases of a single circuit fault and a double circuit fault at the same point f on a double circuit
transmission line. The double circuit transmission line before the fault is shown as Figure 1 in
Table 4.1, where a set of virtual terminals is prepared at point f for the connection of fault conditions
(Figure 1 corresponds to the process step *1).

In relation to Figure 1 in Table 4.1, Figure 2 shows the circuits in the symmetrical coordinate
domain (corresponding to *2) and Figure 3 the 1st- and 2nd-lane circuits in the symmetrical coordinate
domain (corresponding to *3). Capacitances can be of course added to these circuits if necessary.

The 1st- and 2nd-lane circuits in the symmetrical coordinate domain of Figure 3 can be described
by the following equation:

Vio=rEa — sZiy- fljo
f f f @

fVll = _qu ’ flll
Vo = =220 ¢l
Vo — g @) (4.10)
2= fe21 0 i1
Voo = =200+ floo 3
fVOl = *me ’ fIOI

where fZlo, fZ”, fZZO’ fZ217 fZOO, me are the 1Ist- and 2nd-lane impedances looking into
the circuit from point f in Figure 3, all of which can be found from Figure 3 as known quantities.

a-b-c¢ domain [
0-1-2 domain

1st, 2nd Jane domain

network condition

fault condition

*1
phase a,b,c
Table 4-1 Figure.1 phase a,b,c
l X agy l X ag, transformation
2
0-1-2 seq.
(Table 4.1 Figure.2) 0-1-2 seq.
l X dgg l X Gy transformation
1st, 2nd lanes ©ond
(Table 4-1 Figure.3) 1st, 2nd Jane

{

solution by 1st, 2nd Jane
Voo Vo1 Vio Vi1 Ve Ve ete.

l X Gg471
1VO 2V0 1V1 2V1 IVZ 2V2 ete. |
l x ag4! inverse-transformation

1V, 2V, 1V, 2V, 1V, 2V, |

0-1-2 domain { |

a-b-c¢ domain { |

Figure 4.5 General procedure for fault analysis of double circuit line
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For example,
#Zyp = {the parallel impedance of (,Z, +2u21), (,Z, +2,Z,)}
= (pZ1 +2,2))//(;Z) +2,Z,)
#Zyy = {the parallel impedance of ,Z;, .Z,} = ,Z,// ,Z,
and fE . 18 the known voltage at point f before the fault in Figure 4.3.

Now we complete our arrangement of circuit conditions before the fault.
4.4 Single Circuit Fault on the Double Circuit Line
Let us examine the phase b to phase c line-to-line fault at point f on the first circuit of the double circuit
transmission line.
4.4.1 Line-to-ground fault (1¢G) on one side circuit

The fault condition of this case is connection of the virtual terminals 71, #7 through the arc resistance R
(see Figure 1A):

1 1
flb = f]c = 0} : circuit 1

1,»v =R- lfI (4.11a)
fI = flh - fI — () : circuit2
and in the 1-2-0 domain
1 1 1
o= yh=ysh } - circuit 1
LV + }Vl + }Vz =3R- _lflo (4.11b)

2 2 2 . circui
f[0 = f11 = f12 =0 : circuit 2

The equation is in one-to-one correspondence to Figure 2A, which is the equivalent circuit of this
case. The calculation of this circuit is not easy, because mutual impedance exists in the zero-sequence

circuit. Therefore we try to transform the condition into the 1st- and 2nd-lane circuits.
Substituting Equation 4.2b into Equation 4.11b,

(tloo + flor) = (plio + pli1) = (o + f1o1)

(Voo + Vo) + (Vie+ fVin) + (Voo + fVar) = 3R (plog + flo1)

(tIoo = flor) = (plio — fli1) = (g — f151) =0 4.12)
oo = ot = pho = i = plao = flo

(Voo + Vo) + (fVio+ Vi) + (Voo + fVar) = 6R - 4l

Figure 3A is the equivalent circuit of this fault case because it is strictly in one-to-one correspon-
dence to the above equation. All the mutual impedance has already disappeared in Figure 3A, so the
voltage and current quantities at point f under the terminal condition of Figure 3A can easily be found
by calculation.

The resolved quantities are transformed into the symmetrical quantities by applying Equation 4.2b
for the inverse transformation, and are finally transformed into the three-phase quantities.
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4.4.2 Various one-side circuit faults

We can solve one-side circuit faults of various other modes by the same method. The related equations
and the equivalent circuits for these are also described in Table 4.1.

In the case of a phase b to ¢ line-to-ground fault (Figure 1B), for example, the equivalent circuit in
the symmetrical domain and the further transformed circuit are given by Figures 2B and 3B,
respectively. The calculation of Figure 3B is easy because the circuit is a single loop circuit without
mutual inductances. On the other hand, the manual calculation of Figure 2B is quite hard.

In the case of a phase b to ¢ line-to-line fault (Figure 1C), as another example, the calculation by
Figure 3C is easier than by Figure 2C in spite of the fact that the zero-sequence circuit with mutual
inductances is not even included.

4.5 Double Circuit Fault at Single Point f

4.5.1 Circuit 1 phase a line-to-ground fault and circuit 2
phases b and c line-to-line faults at point f

The fault condition in this case is shown in Figure 1E, where arc resistance is neglected.
The fault condition in the three-phase domain (see Figure 1E) is

W, ="%1.=0,  4v,=0 : circuit 1
(4.13a)
M,=0, G+ %.=0, GV, =%V, :circuit2
The fault condition in the 1-2-0 domain (see Figure 2E) is
_lfIO = }11 = }127 ‘fvo =+ _lfVl + _IfVZ =0 : circuitl
(4.13b)

y=0, L +%3L,=0, 3V, =%V, : circuit2
and the fault condition in the 1st- and 2nd-lane domain (see Figure 3E) is, on substituting
Equation 4.2b into Equation 4.13b,
(floo + flor) = (flio + fliy) = (phho + flo1)
(Voo + Vo) + (Vio+ Vi) + (Voo + V1) =0, (floo = flo1) =0

(tho = ) + (o — 1) =0, (Vo= Vi) = (Va0 = £Va1)

Then
oo = flon o = #la
f111:f120 2f100:(f110+f111) o
(4.14a)
Vot V= Vi + ¢V }
(Voo + Vo) = =2(;Vig + fVa1)

The equivalent circuit for Equation 4.14ais shown in Figure 3E. In this figure, one ideal transformer
(of turn ratio 1:2) is inserted in the equivalent circuit in order to satisfy Equation 4.14a completely.
Figure 3E can be redrawn as a quite simple circuit so that the calculation is easy, but on the other hand,
manual calculation of Figure 2E is almost impossible.
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For any other simultaneous double circuit fault modes, we can introduce solutions like
Equation 4.14a in the same manner. However, the corresponding equivalent circuits would not be
able to be drawn for most of the cases. We have to bear in mind that those cases where we can draw the
equivalent circuits are actually exceptional.

In other words, we have to find solutions only from the related equations for most of the cases
without having equivalent circuits. Therefore let us examine the above fault further as a typical
example and find the solution only from the related equations.

We have the six equations of Equation (4.10) as system side conditions and the other six equations
of Equation 4.14a as fault terminal conditions. Twelve variables (six for currents and six for voltages)
and twelve equations exist in total, so the equations can be solved as a set of simultaneous equations of
twelve dimensions and single order. Next, the simultaneous equations can be easily modified into a set
of six dimensions and single order only, with six current variables in this case.

Eliminating variables V by substituting Equation 4.10 into Equation 4.14a (Q),

2o tho = fZi - fln = 2oy pho t+ iZy - fly = 4E, }

(4.14b)
200 floo + fZo1 - flor T+ 25Z1g - flio + 252y - fly =2 4E,

All the variables for voltages have vanished, so Equations 4.14a and 4.14b can be rearranged as
simultaneous equations of six current variables:

= Tl [0
2 1| o, 0
1 —1
—1 -1 . ';j—:(l) = g (4.15)
Zio |75l |~ oo | FZa b E,
Zoo| £Zo1| 2 tZ1o 2427, E 2-,E,

This set of simultaneous equations is of six dimensions and single order only. These particular
equations can be solved manually, although this is not generally easy.

4.5.2 Circuit 1 phase a line-to-ground fault and circuit 2
phase b line-to-ground fault at point f (method 1)

A plain equivalent circuit would not exist in most cases of double circuit faults, so we have to execute a
complicated step-by-step calculation. As a typical case let us try to solve the circuit 1 phase a 1¢G and
circuit 2 phase b 1¢G fault. The fault condition in this case is shown as follows where we neglect arc
resistance.

The fault condition in the three-phase domain is

circuit 1 : Phase a to ground fault _I/Ib = }I . =0, _lfV =0

(4.16)
circuit 2 : Phase b to ground fault 2}-1“ = 3010 =0, Zth =0
The fault condition in the 1-2-0 domain is
circuit] LI, =11, =LI,, LV +Lv,+Lv, =0
f f f f f f “.17)

circuit 2 3010 =a?. ?11 =a- _2,-12, _2fV0 +d?- ?Vl +a- ?Vz =0
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The fault condition in the 1st- and 2nd-lane domain is, substituting Equation (4.2b) into
Equation (4.17),
(loo + flor) = (plio + (i) = (tlho + flo1)
(Voo + Vo) + (Vio+ ;Vi) + (Voo + Voy) =0 “18)
(oo = for) = a*(ho — ;) = alshg — ) .
(

Voo = Vo) + @ (;Vig = ;Vin) +a(;Vag — Vi) =0

Equation (4.10) as the system condition and Equation 4.18 as the fault condition include
12 equations in total so that a set of simultaneous equations of 12 dimensions and single order
can be prepared.

The six voltage variables can be eliminated by substituting Equation (4.10) into Equation (4.18) to
obtain the following equations:

oo+ flot = fho — s =0

oo+ flot = plo — sy =0

oo = ploy —a® plig + @ ;1 =0

rloo = plor —ayhy +azh; =0

200 - oo+ tZo1 - for + fZio - ot pZin fi t oo flao t pZy iy = 4B,

2 2
7Zoo - floo = sZor - flor T a (;Zio - slho — fZi1 - fln) +a(yZyy - 1o — 42y, - In1) = a” - (E,

(4.19a)
namely
11 -1 -1 oo 0
1| 1 -1 1 oy 0
1 -1 —a? +a? 1 0
Vil (4.19b)
1 -1 —a +a fIl 1 0
rZoo| 2ot | o Zn 1220 1221 +ho E,
2 P 2
Zoo| —fZot| @ fZio| a2y | acplyy | —a Doy (fhy| a7 pE,

This set of simultaneous equations is of six dimensions and single order for the current-variables
where all the impedances are known. We can solve the equations perhaps by using a PC, because
solution by hand may be too hard.

Incidentally, whenever voltage and current quantities ( fVOO’ fIOO’ etc.) at point f are found,
quantities at different arbitrary points can be found in the 1st- and 2nd-lane domain by straightforward
additional calculation.

4.5.3 Circuit 1 phase a line-to-ground fault and circuit 2
phase b line-to-ground fault at point f (method 2)

The current values of Equation 4.19b can be easily calculated by a computational approach as the
problem to obtain a 6 x 6 inverse matrix equation. However, considering the purpose of this book, a
method to find a solution manually is demonstrated here.
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The fault condition in the three-phase domain is

circuit 1 : Phase a to ground fault }Ib = lfIC =0, }Va =0 (4.20)
circuit2 : Phase b to ground fault ?f-l = ?16 =0, %”Vb =0 .
The transformed symmetrical current equations are
1 1 1
3-%ly =41, +0+0="1, 3.1y =0+%1,+0=73I,
3-Y =Y, +a-0+a-0="Y1,, 3.3, =0+4a-%l,+d* 0=a-%l, (4.21)

3- Y=Y, +a - 0+a-0="1,, 3.3,=0+d %, +a-0=ad*2I,

Accordingly,
Top = 2o+ 20g) = X(h, +21,)
rloo = 50rlo +75lo) = gUpla +51p
L 2 1 2
oy = E(flo =) = g(fla = 51p)
1 1
o :*(}11 +§Jl) :*(}Iu +a'2f1h)
2 6 4.22)
I —1(11 —21)—1(11 —a-2I)
=300 =h) = e(pla —a- 5l

1 1 2 1 1 2.2
f120 :E(flz + f12) :g(fla +a” - fIb)

1 2 1 2 2
£ :E(flz ) :g(fla —a”-%l,)

The transformed symmetrical voltage equations of Equation 4.20 are
0="v, =4vo+ v, + v,
= (Voo + Vo) + (Vio + (Vi) + (Vg + Va1) 23
0=2V,=2Vy+a* -3V, +a -2V, '
= (fVOO - fVOI) + az(fVIO - an) + a(fV20 - fVZI)
Substituting Equation 4.10 into Equation 4.23,
(tZoo" floo + rZor flo1) + (rZio" flio + fZir- flin) + (5Zao- oo + 21" fl1) = fE, }
(Zoo" floo = yZor* flor) +a*(;Zao- tho = yZuy- fIn) +alyZog - tloo = yZoy - ) = @+ E,
(4.24)

In Equation 4.22, all the currents in 1st- and 2nd-lane circuits in the 0—1-2 domain are shown as
functions only of ! I, and %Jh. Then, substituting Equation 4.22 into Equation 4.24,

{(sZo0 + sZo0) + (sZ10 + sZ10) + (sZ0 + sZ0)} - Yl

(1 Zoo — yZo1) +alyZio = Z1y) + @ (yZo0 = sZo1)} - 1y = 6 4E,
{200 = Zo1) + az(_leo = Z1) +a( 1 Zyy — ;Zy0)} - Y,

H(Zoo + fZo) + (sZio + tZ01) + (pZag + sZ51)} - ?11; =6a’ - 7Ea

(4.25)
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This set of simultaneous equations is of two dimensions and single order in only the two variables
lfla, 301[7, and all other variables have vanished. Equation 4.25 can be solved easily by hand:

, _Ai—Ad® o —BitALd

Fa™ A2 a8 I70 TP AT _a,B
where

Ar = (pZoo + tZo1) + (tZiog+ ;Z11) + (;Zy0 + (Z51) (4.26a)

Ay = (;Zoo — Zo1) +a( ;Zig — sZ1)) + @ (;Zog — Z1)

By = (200 — tZ01) +a*(;Zyo — (Z1y) + a( ;Zag — 1Z3y)

Furthermore, 7= ;Zyj and ,Z;; = ,Z,, in Figure 3 of Table 4.1b so that the terms including

vector operators ¢ and a~ ' disappear as follows:

A= (pZog + §Z01) +2(5Zy0 + 4Zy) } (4.26b)

A=Bi= (4200 — pZ01) — (1210 — sZ11)

We have found directly the fault phase currents lfla and ?Ih on the virtual terminals at point f.

On the other hand, the sound phase currents other than }I , and 21 , on the virtual terminals at point f
are zero. Therefore all the phase currents at the virtual terminals of point f have been found. Quantities
at other arbitrary points can be found consequently by additional calculation.

The characteristic of this method is to express all the lane circuit quantities of Figure 3 of Table 4.1b
as parameters of the fault phase currents only. The method is generally a very valuable calculation
technique to study various complicated fault conditions in double circuit lines. Furthermore, the
analogy may be applied to other types of calculation in practical engineering.

4.5.4 Various double circuit faults at single point f

Double circuit faults of other modes at point f can be analysed by method 1 or method 2, regardless of
the existence of visual equivalent circuits.

4.6 Simulitaneous Double Circuit Faults at Different
Points f, F on the Same Line

4.6.1 Circuit condition before fault

If lightning strikes a phase a conductor at point f, for example, it may cause flashover of other
phases or other circuits at different point F. These cascade flashover phenomena at different two
points are actually simultaneous faults at different points on the basis of a millisecond-order
timescale. In other words, simultaneous faults of various modes would occur very often in power
system networks. These phenomena have to be investigated from various engineering viewpoints.
In particular, the behaviour of directional distance relays has to be carefully examined in order to
prevent malfunction.

The analogy of fault analysis in case of a simultaneous fault at two different points is the same as
that shown in Figures 1 of Table 4.1. However, we have to imagine virtual terminals at the two different
points f, F as shown in Figures 4.6a—c.
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point point  point point

.oom F n )
section section section
ne i P q ” i n— The following relations exist
§ q ¢ among Figures a—c.
= ilu mZ10=2-mZ1  nZ10=2-,71
_ '}Ib mZ2O =2'mZ2 71Z20:2-71Z2

C?[J c/c‘%%; mZo0=2-mZo 2 Z00=2-1,2
@)Ei& 1Va ) = pZ10=p2Z1 pZu=pZ1

pZi20 = pZi2 pZlo1=pZ2
p4o0=pZotpZn pZor =pZo—pZu
(4Z, +Z by analogy)

zIa

ZI«”CA \e
(a) three- fVll ”\ 2V N

phase circuit 7 b zV 7 b zV

My +ih Y ;}11—111 . .
positive- - = point  point
méil

»Z1 aZ1 AT sZ10 f F 1Z10
Y O )
10 2210 7Z10 2w wlio

seq.

—_—

}Iz + ‘}Iz ‘}Iz }Jg —(}Iz
negative-  ,,Z» 7 7 7
pz q4i2 r42 nZZ

seq.

(b) Symmetrical circuit
(\

%QJ
O @
q%b,\‘fy

(e) 1% 2" 1ane circuit

Figure 4.6 Simultaneous double circuit faults at different points

The equations of the power system corresponding to Figure 4.6¢ are, for the positive-sequence, 1st
lane

Vo= —Zio(tho + gli0)s FVio = nEa — Z1o(plio — ¢l10)

fV10 — Vo= quO : 4110
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accordingly,

Vio = mEa — Zio( o + 4l10)
FVio=nEq — zZm(FIlo - qllo) ®

(4Z10 + sZ10 T 1Z10)gh10 = mEa — wEa — sZ10 * fhio +Z1o - Flio

for the positive-sequence, 2nd lane

Vi =—pZu( sy + 1)
Vi == Ziu (el — ) @

(gZi + 20+, Zi) g = —pZu - iy + 21 pln

for the negative-sequence, Ist lane

Voo = —5Zao( shho + 41a0)
FV20 = —1Zo0(rlao — 4120) ©) (4.27)

(4220 + 5Z20 + 1Z20) gla0 = —Z20 " flao + 1220 " Flo
for the negative-sequence, 2nd lane

Va1 = = pZo1 (g + 411)
FVor = *rzzl(Flzl - q121) @

(4Zor + pZo1 +,Z01) glo1 = — pZo1 * oy + 201 plyy

for the zero-sequence, 1st lane

Voo = —sZoo( floo + 4lo0)
V00 = —Zoo(rloo — ¢loo) ®
(4Z00 + sZo0 + 1Z00)gloo = —sZoo * floo + +Zoo " Floo

and for the zero-sequence, 2nd lane

Vor == pZoi (o1 + 4lo1)
Vo1 = = Zoi (ploy — 4lo1) ®

(¢Zor + pZor ++Zo1) lor = — pZor * (Lot + +Zo1 * Floa

Equation 4.27 and Figure 4.6(c) are in one-to-one correspondence to each other.
Equation (4.27) (D, 4110> can be deleted so that voltages Vo and V,, can be written as functions
of current variables rho and /|, and the given source voltages , E, and ,E,.
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By a similar treatment, Equation 4.27 can be reformed as follows by the general forms for the
equations of a power system.
for the positive-sequence, 1st lane

Vio = piomEasnEas £1ios rlho) }
V10 = FfrolmEas nEa> tlios rlho)
for the positive-sequence, 2nd lane

fVll = ffll(flll’Flll)v FVi :Ffll(flll’Flll)

for the nagative-sequence, 1st lane

fVZO = ff20(f1207F120)1 Vo = Ff20(f1207F120)
(4.28)

for the nagative-sequence, 2nd lane

Vor= (b pln)s Vo = phor (s ploy)
for the 0-sequence, 1st lane

fVOO = ffoo(fIOOvFloo)a Voo = FfOO(fIO()7FIOO)

for the 0-sequence, 2nd lane

Vor= sl (o plon)s #Vor = pfor (tlors lor)

These are the equations of the power system before the fault.

4.6.2 Circuit 1 phase a line-to-ground fault and circuit 2
phase b line-to-ground fault at different points f, F

Fault analysis of this sort of double fault is very challenging. To understand the logical analogy for the
solution of such cases it is essential that readers can find solutions by either computer analysis or
manual calculation.

Now, the process of the double fault will be demonstrated using method 2, which was discussed
above.

The fault condition in the three-phase domain is,

at point f, -lflb = _lflc =0
20p _27 _27 _
o =751 =7 =0
I
Va= 0

. (4.29)
at point F
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The fault condition in the 1-2—0 domain is, by transforming Equation 4.29,

for point f lfI0 = lfl1 = }Iz = %lfla

for point F (4.30)

12 _1 2 2, Lo
sl Fhi =34 Fl, P =347 Fl,

2Vo+a* 2V, +a -2V, =0

Then
Too = S (hly +20) = Vr = =2 = L @31)
100 2f0 fro 6f7 fro1 2f0 o 6fa .

In the same way, all the equations of Equation 4.30 can be transformed into the equations of the 1st-
and 2nd-lane circuits in the 0—1-2 domain, where the 1st- and 2nd-lane currents are expressed only by
the parameters of fault phase currents }I , and %I - That is,

1

1
oo = flor = rho = It = sho =l = ¢ fla @®
—1
2 2
Floo =¢rlp: - Flor = Fly
[ -1 5
Fllozg“'FIha rli :?a‘FIh @ (4.32)

155 -1,
Fho =@ Fly,  ply =—a"Fl,

(Voo + #Vor) + (Vio+ ¢Vi) + (Voo + V1) =0 (©)
(FVoo = #Vo) + @ (Vg — #Vir) + a(pVag = pV)) =0 @

Now we have an equation showing the fault condition, namely Equation 4.32, and equations
showing the system, namely Equation 4.27 or its modified Equation 4.28. Therefore we can solve the
problem by combining all these equations. By substituting Equation 4.32 (1) ) into Equation 4. 27 or
its modified Equation 4.28, all the 1st- and 2nd-lane voltages can be expressed as parameters of ! a
and FIh only. Next, by substituting the six 1st- and 2nd-lane voltages into Equatlon 432 3@, we
obtain simultaneous equations of two dimensions in only two variables, fI , and FI ;- Then we can
obtain the final solution.

4.6.3 Various double circuit faults at different points

In conclusion of the chapter, double circuits fault at different points of various modes can be solved by
utilizing the three-phase and two-phase symmetrical components together. It must be remembered that
actual power system analyses, even by large computers, are conducted mostly by utilizing these
transformations in order to eliminate mutual inductances of the lines.






Per Unit Method and Introduction
of Transformer Circuit

The per unit (PU) method (or % method) is a technique for handling any kind of quantity with its
particular dimensions as quantities of dimensionless ratio value based on 1.0 pu or 100%. This practice
is a very useful approach applied widely in many engineering fields, eliminating the troublesome
handling of several different kinds of quantities.

However, in power system engineering, the PU method has various meanings such as a ‘technique
for describing electrical circuits, and far exceeding the simple meaning of the only convenient method
to remove troublesome dimensions’. Many individual structuring members of power systems can be
combined together as one circuit (instead of a connection diagram) only by using the PU method.
Furthermore, transformers can be handled by PU expressions as equipment in which Kirchhoff’s law
are applied.

In this chapter we study the fundamental concept of the PU method first, and then study the circuit
description of transformers. Finally we try to describe the circuit for a typical power system model
containing several lines and various equipment.

5.1 Fundamental Concept of the PU Method

The PU method is quite important in power system engineering, the reasons for which are summarized
as follows:

a) Kirchhoff’s law is satisfied among currents of transformer primary, secondary and tertiary
windings so that transformers can be described as very simple circuits.

b) Generators can also be described as accurate and simple circuits (see Chapter 10).

¢) Transmission lines, generators, transformers, loads and other equipment of different types and
ratings can all be combined together as one circuit. practically only by applying PU method.

d) Relief from troublesome handling of practical dimensions (V, A, MVA, (), Wb, etc.).

For power system engineers, the first three items are the essential reasons and the last item is just a
supplementary reason.

Handbook of Power System Engineering Yoshihide Hase
© 2007 John Wiley & Sons, Ltd
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5.1.1 PU method of single phase circuit

Let us consider the PU method for a single phase circuit first. The basic equations of voltage, current
and apparent power are

V [volt] = Z [ohm] - I [ampere]
VA [volt - ampere] = P + jQ [volt - ampere] = V [volt] - I* [ampere] (5.1
where V, I, Z, VA (orS) : complex-number quantities, /* : the conjugate of 1

Now, in order to unitize the V, Z, I, VA quantities, the base quantities by sign of Vi,
Tvase, Zbase, VApase are introduced. All the base quantities are scalars (real numbers, or a vector of
/0°) and have to satisfy the equations below:

Vbase [VOIt] = Zpase [0hm] - Tase [ampere] (520)
VApase [Volt - ampere] = Viyge [VOIt] - Tpase [ampere] .
or
VApas It -
Vbase [Volt] (5.2b)
Voase [volt] V2. [ :

Zpase [ohm] = -
base [Ohm] ITvase [ampere]  VApase

We can select any arbitrary value for voltage base Vpase and capacity base VAp,ge, but the current
base Ipase and impedance base Zp,se have to be decided as depending on Viase and VApgge to satisfy
Equation 5.2a 5.2b.

Equation 5.1 can be unitized by the base quantities of Equation 5.2a as follows:

vz 1
Vbase Zbase I'base i (5 3)
VA _Pt+jo__ P . 0 vV oI
= = j fry .
VAbase VAbase VAbase VAbase Vbase Ibase
By using an overbar as the symbol for unitized quantities,
V=21 ®
VA=P+j0=V-I* @
_ \% - VA - I - \%
where V = Z= = = ©) 54
base Zbase Tpase Vbase
— VA — P —
A = P= 0= Q @
VAbase VAbase VAbdse

The unitized quantities V,Z, 1 *, VA, P + jO are non-dimensional complex numbers.

Equation 5.4 is the same as the original Equation 5.1, and the vector phase relations in Equation 5.1 are
preserved in Equation 5.4 because all the base quantities are selected as scalars (namely, a vector of /0°).

Unitized quantities can obviously be changed into actual values with individual dimensions using
the equations below:

V(VOIt) =V- Voase, Z = Z- Zopse, 1= I- Ibase } (5.5)

VA = m . VAbaseu P=P. VAbase7 0= @ - VApase

Figure 5.1 summarizes the PU method.
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system condition per-unitization ] ]
by practical unit values . conversion to the
V,1,%,VA —O—| _ |, | analysis —=| practical unit values
) b b V:
Vbase V= ‘—/ v
= V" Vbase

base quantities
VAbase, Vbase

!

I base, Z base

Figure 5.1 The concept of the PU method

5.1.2 Unitization of a single phase three-winding transformer
and its equivalent circuit

5.1.2.1 The fundamental equations before unitization

A single phase three-winding transformer can be written as the circuit of Figure 5.2a, at least for power
frequency phenomena, where pN - (N - N are the numbers of turns of the primary (P), secondary (S),
tertiary (T) windings, respectively. The transformer excitation current under a no-load condition can
usually be neglected (the excitation impedance is large enough) except under the situation of core
saturation caused by abnormally higher charging voltages. Therefore the relation of voltages and
currents in this transformer may be described by the following equation in which leakage impedances
of only three windings are taken into consideration:

PV Zpp Zps Zpr pl

sV |=| Zsp Zss Zst || ol ®

v Zir | Zrs | ZoN A (5.6)
ol pN + gl - N + ol - N =0 0)
Zps = Zsp, Zpr =Zrp, Zst =Z1s ®

where Zpp, Zss, Zrr are the self-impedances of the primary (P), secondary (S) and tertiary (T)
windings and Zpg, Zpr, Zst are the mutual impedances between the three windings.

% secondary /
V N T
primary pV p. V 3
J % N T TI] tertiary , rV

|
(a) (b) The equivalent circuit by Pu basis
pZ = (psZ + p_1Z - 5-1Z)/2
sZ = (p-sZ + s-1Z — p-1Z)I2
1Z = (p-1Z + 3-1Z — p-32)/2
P_SZ_, p_TZ, S_TZ_, are given on the name-plate

Figure 5.2 Single phase three-winding transformer
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5.1.2.2 Determination of base quantities for unitization

Each base quantity for unitization of this transformer must be determined so that the following
equations are satisfied:

VAbase = pVbase * Plbase = 5Vbase * Slbase = 1 Voase * Tlbase @

vaase — vaase — TVbase @ (5 7)
Y N
Plbase : PN = SIbase 'SN = TIbase ’ TN ©)

In other words:
*1 Capacity bases (VApase) of the primary (P), secondary (S) and tertiary (T) windings are selected
to have equal value (Equation (D).

*2 Voltage bases of the primary (P), secondary (S) and tertiary (T) windings are proportional to the
turns ratio (transformation ratio) of three windings (Equation (2)).

*3 Ampere bases of the primary (P), secondary (S) and tertiary (T) windings are dependently
determined as values of ‘capacity base (*1) divided by each voltage base (*2)’. That is, the
ampere-turn bases of the primary (P), secondary (S) and tertiary (T) windings have the same
value (Equation (3)).

5.1.2.3 Unitization of the original equation

Let us unitize the original Equation 5.6 using the base quantities of Equation 5.7 (recall that unitized
quantities are indicated by an overbar, e.g. pV — p V):

PV = PV “PVoaser sV = SV “sVoaser TV = TV “7Vbase

5 5 VAbase 5 5 VAbase
I = pl - pl =pl - —— 1= ¢,.=¢ —
P P* " P'bas P v S S% " S'bas N
e P Vbase e S Vbase (5 . 8)
_ - VA
I =7l e = 71 'Tm
T " base

The equation for ,V from Equation 5.6 (D) can be unitized as shown below:

pV = PV “PVoase = ZpPP - P7 “ plpase +Zps - S7 * sthase T ZpT - T7 “Tlhase

VAbase F

VAbase 5 VAbase 7
T

=Zpp-———pl +Zps- I +Zpr -
P " base S " base T " base

_ VApas - VApas - VAp.s _
PVZ Zpp - l;dse 'PI+ Zps-$ -S[+ ZPT'$ 'TI
P " base PVbase ’ vaase vaase ’ TVbase

=Zpp-pl +Zps- gl +Zpr - 11

o (5.9a)
sV, 7V can be unitized analogously.
Next, Equation 5.6 () can be unitized by Equation 5.7 (3) as follows:

Il - ,N I- N - N
plopV stV N
Plbase pN S[base ’ SN TIbase N (5.9b)
pl+gl+71=0
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Accordingly,
VA VA VA
Zpp - Vgase Zps - v I.Jasi/ Zpr - v ?ES;

v P " base P "base S base P "base T "base Vi
P‘_/ o Zsp - VAbase Zss - VAbase Zsr - VApase PT
SV N PVbase 'S Vbase Svl%ase N Vbase ’ TVbase Sj
T 7 VApase 7 VAbase 7 VAbase T

it | Ve Ve v
P%~base T“base SV base T "base T " base
Zpp Zps Zpr Pl
=| Zsp Zss Zsr || sl @
Zrp Zrs Zpp 7l
pl+sl+71=0 )
= VA
where Zpp = %
PVbase
= VApas VApas —
Zps =Zps - % bas:/ =Zsp - v b‘h; =Zgpetc.
PVbase * S " base P Vbase " S " base
(5.10)

In conclusion, Equation 5.10 is the unitized equation of Equation 5.6 by the base quantities of
Equation 5.8. In Equation 5.10, the summation of the unitized vector currents of the primary (P),
secondary (S) and tertiary (T) windings is zero. In other words, the unitized transformer circuit
equations are as if able to satisfy Kirchhoff’s law.

5.1.2.4 Introduction of unitized equivalent circuit

We have introduced Equation 5.10 as the unitized fundamental equations of a transformer in which the
vector sum of the currents is zero. Therefore, it would be useful if the equation could be written as the
one-to-one corresponding equivalent circuit of Figure 5.2b. We can indeed do that. It is clear that
Figure 5.2b satisfies Equation 5.10 . Then, if we define the impedances pZ, Z, ;Z in the figure so
that the circuits satisfies Equation 5.10 (D), the figure is the perfect equivalent circuit of the transformer
which satisfies Equation 5.10. Now let us find such a condition below:

(i) Under the condition 5/ = 0 (with the tertiary terminal opened), Figure 5.2b and Equation 5.10
have to coincide (with the tertiary terminal opened). Putting 7/ = 0 in Equation 5.10, we have
pV —sV = Zpp-pl +Zps-gl) — (Zsp - pl +Zss - l)
= (Zpp +Zss — 2Zps) - pl

On the other hand, putting 7/ = 0 in Figure 5.2b, we have

PV =5V =GZ+sZ) pl = p_sZ - pl,
oI+ =0

pZ+sZ=p sZ

The following equation has to be satisfied in order for the two equations above to coincide with
each other under the tertiary terminal open condition:

P—SZ = PZ + SZ =7Zpp + ZSS - 22})5

In the same way, the following conditions have to be satisfied.
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(ii) The required condition in order that Figure 5.2b and Equation 5.10 coincide under the
secondary terminal open condition (57 =0)is

P*TZ = PZ + TZ = ZPP + ZTT —2Zpr
(iii) The required condition in order that Figure 5.2b and Equation 5.10 coincide with each other
under the primary terminal open condition (p/ = 0) is
s-1Z = sZ + 1Z =Zss + Zrr — 2 Zsr

Summarizing, Figure 5.2b can be the precise equivalent circuit of the transformer by satisfying the
above three equations for the impedances.
Accordingly, for the transformer equations,

tertiary terminal open: pV — V= (pZ 4+ Z)-pl = p_¢Z - pl, pl+I =0
secondary terminal open: pV — V= (pZ +7Z) - pl = p_tZ-pl, pl+71=0 (5.11)
terminal openprimary: §V — ;V = (Z +7Z) I =g 7Z -, d+71=0

where the definitions of impedances are
leakage impedance between P and S under the condition 7/ = 0 :
P*SZ = PZ + 57 = ZPP + ZSS - ZZPS

leakage impedance between P and T under the condition ¢/ = 0 :

© HMpEaanee pEEen A . (5.12a)
p_sZ =pZ +4Z =Zpp+Zrr —2Zpr
leakage impedance between S and T under the condition pI = 0 :
s-1Z =sZ +1Z =Zss +Zr7 — 2 Zst
or, using the definition of pZ, ¢Z, ;Z in the equivalent circuit in Figure 5.2b,
e psZApgl—g 4L _
pZ =55 PzT ST = Zpp + Zsr — Zps — Zpr
_ Z+¢iZ—p 2 — _ _
§Z =P=5="5 ; PT= = Zss +Zpr — Zps — Zst (5.12b)
e pglHsiZ—-s 12 - = = =
rZ =0T S2T ST= = Zrr + Zps — Zpr — Zst

Figure 5.2b with the impedances pZ, (Z, 7Z becomes the unitized equivalent circuit of the transformer
by defining the impedances as in Equation 5.12b. The equivalent circuit of course satisfies Kirchhoff’s
law by unitization.

The impedances Zpp, Zps, etc., are the self- and mutual impedances (actually reactances) so that
the physical concept can be imagined from the winding structures, and the values can be estimated
by engineers in their transformer designs.

The impedance ,_Z can be measured as the leakage reactance between the primary and secondary
terminal under the tertiary winding open condition, and p_;Z, ¢_+Z can also be measured similarly.

On the other hand, pZ, (Z, +Z are the impedances defined only by Equations 5.12a and 5.12b in
order to obtain the equivalent circuit of Figure 5.2b, and we cannot find any other physical meaning for
that. However, transformers can be treated as kinds of black boxes by utilizing the above defined
equivalent circuits at least for power frequency phenomena of the power system networks.

Incidentally, the resistances of the transformer windings are negligibly small so that the above-
described Zcan be replaced by j X or jw L. Zpp = jXpp, Zps = jXpsaswellasjp_sX, jp_1X, js_7X,
etc., and have positive values (namely reactances). However, one of jpX, jsX, jrX could even have
negative values, just like a series capacitive element in the equivalent circuit.



5.2 PU METHOD FOR THREE-PHASE CIRCUITS 89

In regard to practical engineering, the percentage impedance drop voltages (%1Z) of individual
transformers are indicated on their name-plates, and are actually the percentage expression of leakage
reactances p_¢X, p_rX,¢_yX. Accordingly, utilizing these values, pZ, (Z, 7Z can be derived from
Equation 5.12b. In practical engineering, the percentage value p_ X is usually given by the MVA base
of the primary winding side, while p_¢X, ¢_X may be given by the MVA base of the tertiary winding
side on a name-plate, so that the base value conversion is required to derive the equivalent circuit. This
matter will be discussed in Sections 5.4 and 5.5.

The treatment for a two-winding transformer without tertiary winding can be done only by omitting
+Z in the equivalent circuit.

5.2 PU Method for Three-phase Circuits

Now the PU method for three-phase circuits needs to be introduced, followed by the unitized equations
and equivalent circuit of three-phase transformers and other power system members.

5.2.1 Base quantities by PU method for three-phase circuits

In regard to the PU method for three-phase circuits, the line-to-line (I-1) base quantities and line-to-

ground (I-g) base quantities are defined and both of them have to be strictly distinguished as the

premise of three-phase circuit analysis for any investigation purpose. These base quantities are defined
as follows:

VASd)base =3 VAld)buse =3 Vlfgbase ' Ilfgbase

=3 Vi_tpase * l1—tbase = \/§ * Vi_tbase - [lfgbase @

Vi_ibase = \/§ . Vlfgbase @

\/g 11— ppase = Ilfgbase @

(5.13a)

Bases of capacity (VA or MVA) and voltage (Vor kV) are defined first, and then bases for currents
[A], impedances Z [ohm], admittances [mho], etc., are dependently defined as follows:

A VAlqbbase _ VA3¢base
Tgbase Vl—gbase \/§ Vi_Ibase
kVA y MVA3ppas
_ 3gbase 3¢base %103 @
\/§ - KVi_base \/§ - KV pase
Z1_gbase = Vicgnase _ (Vitase)” _ (KVi-toase)’ %103
—gbase T)gbase VA; base kVA3¢base
2
Wi ® 513)
M VA3¢base
1 MVA3pbase
Y, ebase = = ©
ghase Zl—gbase (le—lbase)2
Vi Ibas
Z)—pase = ﬁ @
—Libase
1 11— jpase
Yi_tbase = =v ®
e Zi—Ibase Vi-Ibase .

The values of all the unitized quantities based on the 1-1 bases are written as variables with the suffix
! — [, and those based on the l-g bases with the suffix symbol / — g as the description rule.
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5.2.2 Unitization of three-phase circuit equations

Let us try to unitize Equation 2.26 and Figure 2.10 for the generator in Chapter 2 as a typical example.
The generator’s voltage equation from Equation 2.26 is

Ea Va ZA‘ Zm Zm I, a Vn
Ey=a®Eq || Vo |=| Zn | Zs | Zn || I |—| Va
E. = aE, Ve Zw | Zw | Z I, v, @
E e —V abe Z ape A gpe— Vn

Vo=-ZyIa+ 1y +1.) = =Z,(31p) = =3Z, - Iy
the voltage base quantity equation

Vlfgbase = Zlfgbase . Ilfgbase @
the unitized generator equation
E, Zi | Zn | Zn Iy Va (5.14)
Ep, = a2 ‘Eq = Zy Zs Zm 1 - Vi
Ec =a- Ea Zm Zm Zs 76 V”
Vo= Zo(a+ 1y +1) = ~Zy (31o) = —3Zy - I
— E — E, - E - v,
E, = . s Lb = b s Le = . sy VYn = — @
Vl—gbase Vl—gbase Vl—gbase Vl—gbase
_Z Zn o Z
Zs = sy fm = s Ln =
Zlfgbase Zlfgbase Vlfgbase
- 1 - I, - 1.
Ia = < 9 Ib = b sy e = -
Ilfgbase Ilfgbase Ilfgbase

The unitized generator Equation (3) is derived by dividing all the terms of Equation () by the above
base quantities (2). The unitized equation has the same form as that before unitization.

Equation 5.14 can obviously be transformed into the following equation as the one in the
symmetrical coordinate domain:

0 Vo Zo 0 0 To 3Z, 1o
Ea - Vl - 0 Zl 0 71 +
0 V) 0 0 Z I 0
= = = = = 5.15
or —Vo=2y-I0+32Z,- 1y ( )

—Vo=2Zr-1h

Equation 5.15 is also of the same form as Equation 2.27b.

As demonstrated in the above example, the base quantities of the PU method for three-phase
circuits are defined by Equations 5.13a and 5.13b and the unitized equations can be written in the same
form as that before unitization. In other words, the forms of equations and the equivalent circuits of the
usual three-phase circuits (generators, transmission line loads, etc.) are preserved unchanged by
unitization.
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5.3 Three-phase Three-winding Transformer,
its Symmetrical Components Equations
and the Equivalent Circuit

5.3.1 A — A — A-connected three-phase transformer

Figure 5.3b shows a typical three-phase three-winding transformer with A — A — A-connected wind-
ings, whose connection diagram with the terminal code names is printed on the name-plate as shown in
Figure 5.3a. This connection is called the ‘tertiary 30° lagging connection’, because the phase angle of the
low-tension bushing terminal a is 30° lagging in comparison with the bushing U and u terminals.

The code names of all the bushing terminals have been changed in Figure 5.3b because the special
names of the terminals are used only for analytical purposes, as is shown below:

primary (U, V, W — R, S, T), secondary (u, v, w — 1, s, t), tertiary (a, b, c — b, c, a)

The tertiary terminal names a, b, ¢ are intentionally changed by a 120° rotation, so the vector
directions of newly named a, b, ¢ terminals (the original c, a, b terminals, respectively) are rectangular
tothe phases R, S, Tandr, s, t, respectively. Moreover, the quantities inside each tertiary winding (with
suffix A) and the quantities outside each tertiary bushing (with suffix T) have to be strictly
distinguished from each other.

5.3.1.1 The fundamental equations before unitization

There are three of the single phase three-winding transformers with the same ratings, whose winding
connection is written in Figure 5.2. These three single phase transformers can be composed as one bank
of three-phases transformer as is shown in Figure 5.3b by simply connecting the bushing terminals.
Accordingly, Equation 5.16 is introduced as the fundamental equation of the three-phase transformer
in Figure 5.3b:

PV PV Zpp Zps Zpp 0 0 0 0 0 0 rl,
v, 7 Zse | Zss | Zsa 0 0 0 0 0 0 o,
N2 0 Zrp | Zns | Zan 0 0 0 0 0 0 N
WV, v 0 0 0 | Zr | Zrs | Zmn | O 0 0 W,
sV, | = sV | = 0 0 0 Zsp Zss Zsp 0 0 0 sl ()
AVp 0 0 0 0 Znp Zps Zan 0 0 0 Al
V. v 0 0 0 0 0 Zrp | Zps | Zpn L.
V. A 0 0 0 0 0 Zse | Zss | Zsa o,
K2 0 0 0 0 0 0 0 Znp | Zns | Zan N2
where  Zpg = Vsp, Zpp = Zpp
PV = pZy ply = pZ,(pla + ply + pl.) = pZ, - 3ply @
sV =52y sy = sZu(sla + sly + s1e) = 52, - 35k ®
TIa AIC AIIJ
rhy | = ala |~ | al @
e alp ala
2V ™V Ve
AV =1 rVe |~V ®
aVe Va ™V
pla-pN +sly - sN +al, - AN =0
Ply-pN + gl - N + 51, - AN =0 ©®
pLopN + gl N + oI - \N =0

(5.16)
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H-tension M-tension L-tension

U u a
)\ )\ ¢
(0] w 0 >y
W A% : b
(a) Phase name on name-plate

(Phase a of the tertiary winding is 30° lagging)

primary secondary tertiary

*Sla *Slb <T£l

sV sV,
@ SZn " AN turn TVc TVb
P
/
The tertiary phase a is 90° leadin,
1, = ply+ ply+ pl. 1,=sly+ sly+ sl ¢ yp g
Pin ?I; ‘;+P b* Ple Stn ; C}+S b+sle towards the primary phase a)
=9opio =98540

(b) The winding connection with the phase name for analytical purposes

sl
-~  x() B
\ al=-jrh ~ rl
s A - -~ — — — -
positive- e _ _ X pZ=(p.sZ+paZ — 5 aZ)I2
seq. sV1 aVi=-jrV1 - yl SZ: (Pst"'S—AZ —p,AZ)/z
|~ 1= (paZ + 547 —ps2)I2
To= il al
negative- | \ 4 Z;]_T z =~ 21_2
seq. X
% = — —
P/ 2 E‘/Z\AVZ =jrVe j Ve
|
- TIO
zero-
seq. X
Vo
/

Zexo ; Zero-sequence excitation impedance
(c) The equivalent circuit in the symmetrical domain

Figure 5.3 A — A — A transformer (low-tension winding 30° lagging connection)
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The submatrix of Equation (D) is equal to Equation 5.6. Equations (2) and (3) correspond to the
neutral connection of primary and secondary windings; equations @) and (5) correspond to the delta
connection of tertiary windings. Equation () is a physical premise for any transformer.

5.3.1.2 Determination of base quantities for unitization

The base quantities for the unitization of this transformer are determined so that the following
equations are satisfied:

1
gVA3q’>base = VAlq’)base :PVl—gbase 'Pll—gbase :SVl—gbase-sIl—gbase
1
= AVlflbase ’ Allflbase = (\/§ ’ TVl*gbase) <ﬁ 'TI[—gbase)
= TVlfgbase'TIlfgbase( =kika) @
AVictase = V3 17V gbase @
1
M- ipase = ﬁ T Il—gbase (©)
PVl—gbase _ SVl—gbase _ Avlflbase _ \/§ : TVl—gbase( Ekl)
pN N AN AN @
P[lfgbase pN= SIl—gbase sV = Al _ppase - AN G.17)
1
= 7§'T117gbase : AN( =k) ®
2
7 _ (Pvlfgbase) @
P%~l—gbase VA](j)base
2
7 _ (S Vlfgbase) @
S“1—gbase VAl¢base
2 2 2
7 _ (AVl—gbase) _ (\/§ ' TVl—gbase) —3. (TVl—gbase)
AT Tbase VAM)base VAId)base VA](/)base
=3 TZl—gbase

In other words:

*1 Capacity bases (VAp,se) Of the primary (P), secondary (S) and tertiary (T) windings have the same
value (Equation (7)).

*2 Voltage bases of the primary (P), secondary (S) and tertiary (T) windings are proportional to the
turns ratio (transformation ratio) of H(high)-/M(medium)-/L(low)-tension windings (Equation
@). This condition is satisfied simply by applying the rated voltages of each winding as base

voltages.

*3 Ampere bases of the primary (P), secondary (S) and tertiary (T) windings are dependently
determined as values of ‘capacity base (*1) divided by each voltage base (*2)’. In other words, the
ampere-turn bases of the primary (P), secondary (S) and tertiary (T) windings are to be of equal

value (Equations Q3@ (%).
*4 Impedance bases are dependently determined (Equations ©@)®)).
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5.3.1.3 Unitization of the original equation

Equation 5.16 can be divided by the appropriate base quantities which are defined by Equation 5.17, so
that the unitized equations are derived as follows:

V. Vo Zpp | Zps | Zpa rla
Vs sV Zsp Zss Zsp sly
N2 0 Zap | Zas | Zaa ala
va Pvn pr Zps ZPA Pib
sVo | =] V. | = Zsp | Zss | Zsa sy )
NG 0 Zap Zas Zaa aly
P Vr pv,, ZPP ZPS ZPA P7r_'
sVe V. Zsp | Zss | Zsa sl
aVe 0 Zap | Zas | Zaa RA
where
VA VA VA
Zpp 1pbase . Zps - lt/)ba‘s/e Zpa v ](f)ba;e
rPYi— P l—gbase S I—gbase P 7 l—gbase A" I[—gbase
( Vl gbase) & ’ ’
Zpp Zps Zpa
— — — z VA, ¢pbase z VA, pbase W VA, ¢pbase
— SP A — Y SA T
Zsp Zss Zsa PVI—gbase : SVl—gbase (SVI—gbase>2 SVI—gbase ‘A Vl—gbase
Zsp Zss Zaa
VA, ¢pbase VA, Pbase VA, ¢pbase
Zap - v v Zs - v v I3
PV l—gbase " A" I-gbase S Vi-gbase " A Y I—gbase (Avlfgbase)
and @)
Zps =Zsp, Zpa = Zyp, etc.,
PV =pZo ply = pZy - (ply + pI, + pl.) = pZ, - 3pIy (©)
sV =52y shy = sZy (sla + slp + 51.) = sZ, - 35y @
V34, ale aly 0 -1 1 ala
V300, |=| AI, |=| AL |=| 1 0 -1 RA ®
\/j . TT(‘ Aib Aja -1 1 0 Ajc
V34V, v Ve 0 1 -1 ™V
V3 AVe |=| 1Ve || Ve | = -1 0 1 Vo ©®
V3,4V, Va v 1 -1 0 Ve
ply+sl,+al, =0
ply + sl + 4T, =0 @
pletsle+al.=0

(5.18)
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5.3.1.4 Symmetrical equations and the equivalent circuit

The fundamental equations of Equation 5.18 for this transformer can be transformed into the
symmetrical domain to derive Equation 5.19 below. (The process of transformation is shown in

the supplement at the end of this chapter.)

»Yo PV Zer | Zps | Zpa ol
Vo sVa Zsp | Zss | Zsa oIy
AVo 0 Zap | Zas | Zaa Ao
Vi 0 Zpp Zps Zpa ply
Vi |- o |= Zsp | Zss | Zsa Lsh | @
NZ 0 Zap | Zas | Zaa aly
PVs 0 Zpp Zps Zpa ply
Vs 0 Zsp Zss Zsa sh
AV, 0 Zap Zs ZaA A
P‘_/n = Pzn Pin =3pZ, - ply @
sV =sZy sl = 3sZ, - sl ©)
TZO 0 1707 0
| =] il or —jrly | =1 Al @
! —jal Jrls R
9 AVB 0_ AYO
Vi =] iV or | =iV, | =] AV, ®
V2 —iaVa irVs AV2
plo+slo+alp =0
pli sl +,1 =0 ®
ph+ sl +4,1, =0
(5.19)

Itis clear from Equation 5.19 that mutual inductances do not exist between positive-, negative- and
zero-sequence quantities. The above equations can be recast as follows, and the positive-, negative-
and zero-sequence quantities can be treated independently.

For the positive sequence

pY] ?PP zPS ?PA Pll p7_1 + 511 +_A71 =0 @
Vi | = Zoe | Zss | Zsa i ol =gl } 3 (5.20a)
AVI Zap Zas Zaa 511 Avl = —jTV1
for the negative sequence
pV> Zer | Zps | Zpa ply ph+sh+,,=0 @
SKZ = gsp gss zm S{Z N jTIZ_ 3 (5.20b)
NG Zar | Zas | Zaa N AVa=irVs
and for the zero sequence
— = = = = = Io+ o+ alp=0
Vo PV Zep | Zps | Zpa rlo PTO fSoO VA ° 0 } @
V, Vv 7 7 iz 7 770 =Y AV0 T
Vo | = sV | =] Zsp Zsg Zgp sy | © Vo—37 7
Vo v Zo | Zas | Zaa | [ ] "y sy il
& — sV =352, slo

(5.20c)
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These are the unitized equations in the symmetrical coordinate domain.

Positive-sequence Equation 5.20a is completely the same as Equation 5.10 for a single-
phase transformer, so the equivalent circuit must be the same as in Figure 5.2b by the same analogy
described in Section 5.1.2. The negative- and zero-sequence quantities can be treated in the same
way.

The symmetrical equivalent circuits corresponding to Equations 5.20a—c can be written as in
Figure 5.3c, where impedances ,Z, ;Z, ,Z are defined by the equation

~_psZtp Al =5 a2

7 —
P 2
7 _pst s al = p s
§ 2
7= paZ s a2 —psZ (5.21)
2

P—SZ = PZ+SZ :ZPP+ZSS 722})5‘
P—AZ = PZ +AZ :pr +ZAA _ZZPA
S—AZ :SZ +AZ =27Zss +Zap — ZZSA

The expression on the right-hand side and the neutral grounding terminal in Figure 5.3c are strictly
in one-to-one correspondence to Equations Q)(3) of Equation 5.20a—c.

Numerical check
As a typical example for a 1000 MVA, 500 kV transformer for substation use with:

o Rated capacity H: 1000 MVA, M:1000 MVA, L: 300 MVA

o Rated voltage 500 kV/275 kV/63 kV

percentage impedances p X =14% (1000 MVApsse), p-.aX=44% (1000 MVAy.s.) and
s AX=26% (1000 MVAy,.),

the equivalent circuit reactance of the transformer can be calculated as follows by Equation 5.21,
where X takes capacitive values

pL=jpX =16% =j0.16 pu, Z=jsX=2%=—j0.02 pu, sZ=jsX=28% =;0.28 pu

Now let us consider Equation 5.20c and the corresponding zero-sequence equivalent circuit. As we
have the equations AVO = 0and ;/, = 0, the A terminal is earth grounded and the tertiary (T) terminal
is open. This means that the zero-sequence current from the tertiary (T) outside circuit cannot flow into
the (delta windings of the) transformer, though the zero-sequence current from the primary (P) or
secondary (S) outside circuit can flow into the (delta windings of the) transformer.

On the other hand, the equations for ,V,, and ¢V, in Equation 5.20c require us to insert 3,Z,, and
3¢Z,, into the primary and secondary branches respectively.

Therefore, if the primary and secondary neutral terminals are solidly earth grounded, the zero-
sequence current inflow from outside to the primary terminal flows partly into the delta winding (as the
circulating current) and partly out through the secondary terminal. If the neutral terminal on the
secondary side is opened or highly resistive grounded ( SZ, = 00), all the zero-sequence inflow current
from the primary side circulates through the delta windings.
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Equations 5.20a-5.20c and the equivalent circuit in Figure 5.3 as the expression for the three-phase
three-winding transformer in the symmetrical sequence domain are important because:

*1 The 1-2-0 sequence circuits are mutually independent.
*2 The unitized simple circuits allow the use of Kirchhoft’s law.
*3 They contain common reactances for 1-2-0 sequence circuits.

We know that an actual large power system can be expressed as a precise large single circuit,
combining both lines and equipment with various rated capacities and voltages. It is satisfying to think
that the largest key factor of such a technique owes much to the above-mentioned Equations 5.20a—c
and the equivalent circuit in Figure 5.3 for three-phase transformers, realized by the symmetrical
coordinate transformation and appropriate unitization.

Finally, the zero-sequence excitation impedance Z,( in Figure 5.3 will be discussed later.

5.3.2 Three-phase transformers with various winding
connections

Three-phase transformers with various different winding connection and their unitized equations
and equivalent circuits are shown in Table 5.1. Figure a in the table is just the case of Figure 5.3.
The equations and the equivalent circuits for transformers of other winding connections can be described
in the same way as Figure a. Autotransformers can be expressed by the same equivalent circuits.

5.3.3 Core structure and the zero-sequence excitation impedance

Table 5.2 shows a typical core structure of a transformer bank.

Say we want to impose three-phase-balanced voltages (i.e. positive- or negative-sequence
voltages) from primary terminals. The induced fluxes by the balanced voltage charging are also
three-phase balanced, so that any flux pass on the laminate steel core will not be saturated under normal
voltage operation. This is the reason why the excatition impedance Z,, can be neglected as very large
impedance values under the condition three-phase-balanced voltages and currents.

Next, let us impose zero-sequence voltages from the primary terminals shown in the figures of
Table 5.2. In the case of the transformers of Figures B and C, the caused zero-sequence flux ¢, may be
saturated because the return pass of ¢, is absent or of high magnetic reluctance, so that flux saturation
would be caused, and an abnormal temperature rise on the saturated flux pass would occur, if saturation
by ¢ were to continue for a long time. Of course the excitation current increases under saturation
phenomena, which means that the excitation impedance for zero-sequence voltage Z,. as a part of the
equivalent circuit would have smaller values.
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