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Series Introduction

Power engineering is the oldest and most traditional of the various areas within
electrical engineering, yet no other facet of modern technology is currently under-
going a more dramatic revolution in both technology and industry structure. But
none of these changes alter the basic complexity of electric power system behavior,
or reduce the challenge that power system engineers have always faced in designing
an economical system that operates as intended and shuts down in a safe and non-
catastrophic mode when something fails unexpectedly. In fact, many of the ongoing
changes in the power industry—deregulation, reduced budgets and staffing levels,
and increasing public and regulatory demand for reliability among them—make
these challenges all the more difficult to overcome.

Therefore, I am particularly delighted to see this latest addition to the Power
Engineering series. J. C. Das’s Power System Analysis: Short-Circuit Load Flow and
Harmonics provides comprehensive coverage of both theory and practice in the
fundamental areas of power system analysis, including power flow, short-circuit
computations, harmonics, machine modeling, equipment ratings, reactive power
control, and optimization. It also includes an excellent review of the standard matrix
mathematics and computation methods of power system analysis, in a readily-usable
format.

Of particular note, this book discusses both ANSI/IEEE and IEC methods,
guidelines, and procedures for applications and ratings. Over the past few years, my
work as Vice President of Technology and Strategy for ABB’s global consulting
organization has given me an appreciation that the IEC and ANSI standards are
not so much in conflict as they are slightly different but equally valid approaches to
power engineering. There is much to be learned from each, and from the study of the
differences between them.

As the editor of the Power Engineering series, I am proud to include Power
System Analysis among this important group of books. Like all the volumes in the
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Power Engineering series, this book provides modern power technology in a context
of proven, practical application. It is useful as a reference book as well as for self-
study and advanced classroom use. The series includes books covering the entire field
of power engineering, in all its specialties and subgenres, all aimed at providing
practicing power engineers with the knowledge and techniques they need to meet
the electric industry’s challenges in the 21st century.

H. Lee Willis

iv Series Introduction
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Preface

Power system analysis is fundamental in the planning, design, and operating stages,
and its importance cannot be overstated. This book covers the commonly required
short-circuit, load flow, and harmonic analyses. Practical and theoretical aspects
have been harmoniously combined. Although there is the inevitable computer simu-
lation, a feel for the procedures and methodology is also provided, through examples
and problems. Power System Analysis: Short-Circuit Load Flow and Harmonics
should be a valuable addition to the power system literature for practicing engineers,
those in continuing education, and college students.

Short-circuit analyses are included in chapters on rating structures of breakers,
current interruption in ac circuits, calculations according to the IEC and ANSI/
IEEE methods, and calculations of short-circuit currents in dc systems.

The load flow analyses cover reactive power flow and control, optimization
techniques, and introduction to FACT controllers, three-phase load flow, and opti-
mal power flow.

The effect of harmonics on power systems is a dynamic and evolving field
(harmonic effects can be experienced at a distance from their source). The book
derives and compiles ample data of practical interest, with the emphasis on harmonic
power flow and harmonic filter design. Generation, effects, limits, and mitigation of
harmonics are discussed, including active and passive filters and new harmonic
mitigating topologies.

The models of major electrical equipment—i.e., transformers, generators,
motors, transmission lines, and power cables—are described in detail. Matrix tech-
niques and symmetrical component transformation form the basis of the analyses.
There are many examples and problems. The references and bibliographies point to
further reading and analyses. Most of the analyses are in the steady state, but
references to transient behavior are included where appropriate.
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A basic knowledge of per unit system, electrical circuits and machinery, and
matrices required, although an overview of matrix techniques is provided in
Appendix A. The style of writing is appropriate for the upper-undergraduate level,
and some sections are at graduate-course level.

Power Systems Analysis is a result of my long experience as a practicing power
system engineer in a variety of industries, power plants, and nuclear facilities. Its
unique feature is applications of power system analyses to real-world problems.

I thank ANSI/IEEE for permission to quote from the relevant ANSI/IEEE
standards. The IEEE disclaims any responsibility or liability resulting from the
placement and use in the described manner. I am also grateful to the International
Electrotechnical Commission (IEC) for permission to use material from the interna-
tional standards IEC 60660-1 (1997) and IEC 60909 (1988). All extracts are copy-
right IEC Geneva, Switzerland. All rights reserved. Further information on the IEC,
its international standards, and its role is available at www.iec.ch. IEC takes no
responsibility for and will not assume liability from the reader’s misinterpretation
of the referenced material due to its placement and context in this publication. The
material is reproduced or rewritten with their permission.

Finally, I thank the staff of Marcel Dekker, Inc., and special thanks to Ann
Pulido for her help in the production of this book.

J. C. Das

vi Preface
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1

Short-Circuit Currents and
Symmetrical Components

Short-circuits occur in well-designed power systems and cause large decaying tran-
sient currents, generally much above the system load currents. These result in dis-
ruptive electrodynamic and thermal stresses that are potentially damaging. Fire risks
and explosions are inherent. One tries to limit short-circuits to the faulty section of
the electrical system by appropriate switching devices capable of operating under
short-circuit conditions without damage and isolating only the faulty section, so that
a fault is not escalated. The faster the operation of sensing and switching devices, the
lower is the fault damage, and the better is the chance of systems holding together
without loss of synchronism.

Short-circuits can be studied from the following angles:

1. Calculation of short-circuit currents.
2. Interruption of short-circuit currents and rating structure of switching

devices.
3. Effects of short-circuit currents.
4. Limitation of short-circuit currents, i.e., with current-limiting fuses and

fault current limiters.
5. Short-circuit withstand ratings of electrical equipment like transformers,

reactors, cables, and conductors.
6. Transient stability of interconnected systems to remain in synchronism

until the faulty section of the power system is isolated.

We will confine our discussions to the calculations of short-circuit currents, and the
basis of short-circuit ratings of switching devices, i.e., power circuit breakers and
fuses. As the main purpose of short-circuit calculations is to select and apply these
devices properly, it is meaningful for the calculations to be related to current inter-
ruption phenomena and the rating structures of interrupting devices. The objectives
of short-circuit calculations, therefore, can be summarized as follows:
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. Determination of short-circuit duties on switching devices, i.e., high-, med-
ium- and low-voltage circuit breakers and fuses.

. Calculation of short-circuit currents required for protective relaying and co-
ordination of protective devices.

. Evaluations of adequacy of short-circuit withstand ratings of static equip-
ment like cables, conductors, bus bars, reactors, and transformers.

. Calculations of fault voltage dips and their time-dependent recovery profiles.

The type of short-circuit currents required for each of these objectives may not be
immediately clear, but will unfold in the chapters to follow.

In a three-phase system, a fault may equally involve all three phases. A bolted
fault means as if three phases were connected together with links of zero impedance
prior to the fault, i.e., the fault impedance itself is zero and the fault is limited by the
system and machine impedances only. Such a fault is called a symmetrical three-
phase bolted fault, or a solid fault. Bolted three-phase faults are rather uncommon.
Generally, such faults give the maximum short-circuit currents and form the basis of
calculations of short-circuit duties on switching devices.

Faults involving one, or more than one, phase and ground are called unsym-
metrical faults. Under certain conditions, the line-to-ground fault or double line-to-
ground fault currents may exceed three-phase symmetrical fault currents, discussed
in the chapters to follow. Unsymmetrical faults are more common as compared to
three-phase faults, i.e., a support insulator on one of the phases on a transmission
line may start flashing to ground, ultimately resulting in a single line-to-ground fault.

Short-circuit calculations are, thus, the primary study whenever a new power
system is designed or an expansion and upgrade of an existing system are planned.

1.1 NATURE OF SHORT-CIRCUIT CURRENTS

The transient analysis of the short-circuit of a passive impedance connected to an
alternating current (ac) source gives an initial insight into the nature of the short-
circuit currents. Consider a sinusoidal time-invariant single-phase 60-Hz source of
power, Em sin!t, connected to a single-phase short distribution line, Z ¼ ðRþ j!LÞ,
where Z is the complex impedance, R and L are the resistance and inductance, Em is
the peak source voltage, and ! is the angular frequency ¼2�f , f being the frequency
of the ac source. For a balanced three-phase system, a single-phase model is ade-
quate, as we will discuss further. Let a short-circuit occur at the far end of the line
terminals. As an ideal voltage source is considered, i.e., zero Thévenin impedance,
the short-circuit current is limited only by Z, and its steady-state value is vectorially
given by Em=Z. This assumes that the impedance Z does not change with flow of the
large short-circuit current. For simplification of empirical short-circuit calculations,
the impedances of static components like transmission lines, cables, reactors, and
transformers are assumed to be time invariant. Practically, this is not true, i.e., the
flux densities and saturation characteristics of core materials in a transformer may
entirely change its leakage reactance. Driven to saturation under high current flow,
distorted waveforms and harmonics may be produced.

Ignoring these effects and assuming that Z is time invariant during a short-
circuit, the transient and steady-state currents are given by the differential equation
of the R–L circuit with an applied sinusoidal voltage:

2 Chapter 1
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L
di

dt
þ Ri ¼ Em sinð!tþ �Þ ð1:1Þ

where � is the angle on the voltage wave, at which the fault occurs. The solution of
this differential equation is given by

i ¼ Im sinð!tþ � � �Þ � Im sinð� � �Þe�Rt=L ð1:2Þ
where Im is the maximum steady-state current, given by Em=Z, and the angle
� ¼ tan�1ð!LÞ=R.

In power systems !L � R. A 100-MVA, 0.85 power factor synchronous gen-
erator may have an X/R of 110, and a transformer of the same rating, an X/R of 45.
The X/R ratios in low-voltage systems are of the order of 2–8. For present discus-
sions, assume a high X/R ratio, i.e., � � 90�.

If a short-circuit occurs at an instant t ¼ 0, � ¼ 0 (i.e., when the voltage wave is
crossing through zero amplitude on the X-axis), the instantaneous value of the short-
circuit current, from Eq. (1.2) is 2Im. This is sometimes called the doubling effect.

If a short-circuit occurs at an instant when the voltage wave peaks, t ¼ 0,
� ¼ �=2, the second term in Eq. (1.2) is zero and there is no transient component.

These two situations are shown in Fig. 1-1 (a) and (b).

Short-Circuit Currents and Symmetrical Components 3

Figure 1-1 (a) Terminal short-circuit of time-invariant impedance, current waveforms with

maximum asymmetry; (b) current waveform with no dc component.
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A simple explanation of the origin of the transient component is that in power
systems the inductive component of the impedance is high. The current in such a
circuit is at zero value when the voltage is at peak, and for a fault at this instant no
direct current (dc) component is required to satisfy the physical law that the current
in an inductive circuit cannot change suddenly. When the fault occurs at an instant
when � ¼ 0, there has to be a transient current whose initial value is equal and
opposite to the instantaneous value of the ac short-circuit current. This transient
current, the second term of Eq. (1.2) can be called a dc component and it decays at
an exponential rate. Equation (1.2) can be simply written as

i ¼ Im sin!tþ Idce
�Rt=L ð1:3Þ

Where the initial value of Idc ¼ Im ð1:4Þ
The following inferences can be drawn from the above discussions:

1. There are two distinct components of a short-circuit current: (1) a non-
decaying ac component or the steady-state component, and (2) a decaying
dc component at an exponential rate, the initial magnitude of which is a
maximum of the ac component and it depends on the time on the voltage
wave at which the fault occurs.

2. The decrement factor of a decaying exponential current can be defined as
its value any time after a short-circuit, expressed as a function of its initial
magnitude per unit. Factor L=R can be termed the time constant. The
exponential then becomes Idce

t=t 0 , where t 0 ¼ L=R. In this equation,
making t ¼ t 0 ¼ time constant will result in a decay of approximately
62.3% from its initial magnitude, i.e., the transitory current is reduced
to a value of 0.368 per unit after an elapsed time equal to the time
constant, as shown in Fig. 1-2.

3. The presence of a dc component makes the fault current wave-shape
envelope asymmetrical about the zero line and axis of the wave. Figure
1-1(a) clearly shows the profile of an asymmetrical waveform. The dc
component always decays to zero in a short time. Consider a modest
X=R ratio of 15, say for a medium-voltage 13.8-kV system. The dc com-
ponent decays to 88% of its initial value in five cycles. The higher is the
X=R ratio the slower is the decay and the longer is the time for which the

4 Chapter 1

Figure 1-2 Time constant of dc-component decay.
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asymmetry in the total current will be sustained. The stored energy can be
thought to be expanded in I2R losses. After the decay of the dc compo-
nent, only the symmetrical component of the short-circuit current
remains.

4. Impedance is considered as time invariant in the above scenario.
Synchronous generators and dynamic loads, i.e., synchronous and induc-
tion motors are the major sources of short-circuit currents. The trapped
flux in these rotating machines at the instant of short-circuit cannot
change suddenly and decays, depending on machine time constants.
Thus, the assumption of constant L is not valid for rotating machines
and decay in the ac component of the short-circuit current must also be
considered.

5. In a three-phase system, the phases are time displaced from each other by
120 electrical degrees. If a fault occurs when the unidirectional compo-
nent in phase a is zero, the phase b component is positive and the phase c
component is equal in magnitude and negative. Figure 1-3 shows a three-
phase fault current waveform. As the fault is symmetrical, Ia þ Ib þ Ic is
zero at any instant, where Ia, Ib, and Ic are the short-circuit currents in
phases a, b, and c, respectively. For a fault close to a synchronous gen-
erator, there is a 120-Hz current also, which rapidly decays to zero. This
gives rise to the characteristic nonsinusoidal shape of three-phase short-
circuit currents observed in test oscillograms. The effect is insignificant,
and ignored in the short-circuit calculations. This is further discussed in
Chapter 6.

6. The load current has been ignored. Generally, this is true for empirical
short-circuit calculations, as the short-circuit current is much higher than
the load current. Sometimes the load current is a considerable percentage
of the short-circuit current. The load currents determine the effective
voltages of the short-circuit sources, prior to fault.

The ac short-circuit current sources are synchronous machines, i.e., turbogen-
erators and salient pole generators, asynchronous generators, and synchronous and
asynchronous motors. Converter motor drives may contribute to short-circuit cur-
rents when operating in the inverter or regenerative mode. For extended duration of
short-circuit currents, the control and excitation systems, generator voltage regula-
tors, and turbine governor characteristics affect the transient short-circuit process.

The duration of a short-circuit current depends mainly on the speed of opera-
tion of protective devices and on the interrupting time of the switching devices.

1.2 SYMMETRICAL COMPONENTS

The method of symmetrical components has been widely used in the analysis of
unbalanced three-phase systems, unsymmetrical short-circuit currents, and rotating
electrodynamic machinery. The method was originally presented by C.L. Fortescue
in 1918 and has been popular ever since.

Unbalance occurs in three-phase power systems due to faults, single-phase
loads, untransposed transmission lines, or nonequilateral conductor spacings. In a
three-phase balanced system, it is sufficient to determine the currents and vol-
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tages in one phase, and the currents and voltages in the other two phases are
simply phase displaced. In an unbalanced system the simplicity of modeling a
three-phase system as a single-phase system is not valid. A convenient way of
analyzing unbalanced operation is through symmetrical components. The three-
phase voltages and currents, which may be unbalanced, are transformed into three

6 Chapter 1

Figure 1-3 Asymmetries in phase currents in a three-phase short-circuit.
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sets of balanced voltages and currents, called symmetrical components. The
impedances presented by various power system components, i.e., transformers,
generators, and transmission lines, to symmetrical components are decoupled
from each other, resulting in independent networks for each component. These
form a balanced set. This simplifies the calculations.

Familiarity with electrical circuits and machine theory, per unit system, and
matrix techniques is required before proceeding with this book. A review of the
matrix techniques in power systems is included in Appendix A. The notations
described in this appendix for vectors and matrices are followed throughout the
book.

The basic theory of symmetrical components can be stated as a mathematical
concept. A system of three coplanar vectors is completely defined by six parameters,
and the system can be said to possess six degrees of freedom. A point in a straight
line being constrained to lie on the line possesses but one degree of freedom, and by
the same analogy, a point in space has three degrees of freedom. A coplanar vector is
defined by its terminal and length and therefore possesses two degrees of freedom. A
system of coplanar vectors having six degrees of freedom, i.e., a three-phase unba-
lanced current or voltage vectors, can be represented by three symmetrical systems of
vectors each having two degrees of freedom. In general, a system of n numbers can
be resolved into n sets of component numbers each having n components, i.e., a total
of n2 components. Fortescue demonstrated that an unbalanced set on n phasors can
be resolved into n� 1 balanced phase systems of different phase sequence and one
zero sequence system, in which all phasors are of equal magnitude and cophasial:

Va ¼ Va1 þ Va2 þ Va3 þ . . .þ Van

Vb ¼ Vb1 þ Vb2 þ Vb3 þ . . .þ Vbn

Vn ¼ Vn1 þ Vn2 þ Vn3 þ . . .þ Vnn

ð1:5Þ

where Va;Vb; . . . ;Vn, are original n unbalanced voltage phasors. Va1, Vb1; . . . ;Vn1

are the first set of n balanced phasors, at an angle of 2�=n between them, Va2,
Vb2; . . . ;Vn2, are the second set of n balanced phasors at an angle 4�=n, and the
final set Van;Vbn; . . . ;Vnn is the zero sequence set, all phasors at nð2�=nÞ ¼ 2�, i.e.,
cophasial.

In a symmetrical three-phase balanced system, the generators produce
balanced voltages which are displaced from each other by 2�=3 ¼ 120�. These vol-
tages can be called positive sequence voltages. If a vector operator a is defined which
rotates a unit vector through 120� in a counterclockwise direction, then
a ¼ �0:5þ j0:866, a2 ¼ �0:5� j0:866, a3 ¼ 1, 1þ a2 þ a ¼ 0. Considering a three-
phase system, Eq. (1.5) reduce to

Va ¼ Va0 þ Va1 þ Va2

Vb ¼ Vb0 þ Vb1 þ Vb2

Vc ¼ Vc0 þ Vc1 þ Vc2

ð1:6Þ

We can define the set consisting of Va0, Vb0, and Vc0 as the zero sequence set, the set
Va1, Vb1, and Vc1, as the positive sequence set, and the set Va2, Vb2, and Vc2 as the
negative sequence set of voltages. The three original unbalanced voltage vectors give
rise to nine voltage vectors, which must have constraints of freedom and are not
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totally independent. By definition of positive sequence, Va1, Vb1, and Vc1 should be
related as follows, as in a normal balanced system:

Vb1 ¼ a2Va1;Vc1 ¼ aVa1

Note that Va1 phasor is taken as the reference vector.
The negative sequence set can be similarly defined, but of opposite phase

sequence:

Vb2 ¼ aVa2;Vc2 ¼ a2Va2

Also, Va0 ¼ Vb0 ¼ Vc0. With these relations defined, Eq. (1.6) can be written as:

Va

Vb

Vc

��������

�������� ¼
1 1 1

1 a2 a

1 a a2

��������

��������
Va0

Va1

Va2

��������

�������� ð1:7Þ

or in the abbreviated form:

�VVabc ¼ �TTs
�VV012 ð1:8Þ

where �TTs is the transformation matrix. Its inverse will give the reverse transforma-
tion.

While this simple explanation may be adequate, a better insight into the sym-
metrical component theory can be gained through matrix concepts of similarity
transformation, diagonalization, eigenvalues, and eigenvectors.

The discussions to follow show that:

. Eigenvectors giving rise to symmetrical component transformation are the
same though the eigenvalues differ. Thus, these vectors are not unique.

. The Clarke component transformation is based on the same eigenvectors
but different eigenvalues.

. The symmetrical component transformation does not uncouple an initially
unbalanced three-phase system. Prima facie this is a contradiction of
what we said earlier, that the main advantage of symmetrical components
lies in decoupling unbalanced systems, which could then be represented
much akin to three-phase balanced systems. We will explain what is
meant by this statement as we proceed.

1.3 EIGENVALUES AND EIGENVECTORS

The concept of eigenvalues and eigenvectors is related to the derivation of symme-
trical component transformation. It can be briefly stated as follows.

Consider an arbitrary square matrix �AA. If a relation exists so that.

�AA �xx ¼ � �xx ð1:9Þ
where � is a scalar called an eigenvalue, characteristic value, or root of the matrix �AA,
and �xx is a vector called the eigenvector or characteristic vector of �AA.

Then, there are n eigenvalues and corresponding n sets of eigenvectors asso-
ciated with an arbitrary matrix �AA of dimensions n� n. The eigenvalues are not
necessarily distinct, and multiple roots occur.
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Equation (1.9) can be written as

�AA� �I
� �

�xx½ � ¼ 0 ð1:10Þ

where I the is identity matrix. Expanding:

a11 � � a12 a13 . . . a1n

a21 a22 � � a23 . . . a2n

. . . . . . . . . . . . . . .

an1 an2 an3 . . . ann � �

�����������

�����������

x1

x2

. . .

xn

�����������

�����������
¼

0

0

. . .

0

�����������

�����������
ð1:11Þ

This represents a set of homogeneous linear equations. Determinant jA� �I j must
be zero as �xx 6¼ 0.

�AA� �I
�� �� ¼ 0 ð1:12Þ

This can be expanded to yield an nth order algebraic equation:

an�
n þ an � I�n � 1þ . . .þ a1�þ a0 ¼ 0; i.e.,

�1 � a1ð Þ �2 � a2ð Þ . . . �n � anð Þ ¼ 0
ð1:13Þ

Equations (1.12) and (1.13) are called the characteristic equations of the matrix �AA.
The roots �1; �2; �3; . . . ; �n are the eigenvalues of matrix �AA. The eigenvector �xxj
corresponding to ���j is found from Eq. (1.10). See Appendix A for details and an
example.

1.4 SYMMETRICAL COMPONENT TRANSFORMATION

Application of eigenvalues and eigenvectors to the decoupling of three-phase systems
is useful when we define similarity transformation. This forms a diagonalization
technique and decoupling through symmetrical components.

1.4.1 Similarity Transformation

Consider a system of linear equations:

�AA �xx ¼ �yy ð1:14Þ
A transformation matrix �CC can be introduced to relate the original vectors �xx and �yy to
new sets of vectors �xxn and �yyn so that

�xx ¼ �CC �xxn

�yy ¼ �CC �yyn

�AA �CC �xxn ¼ �CC �yyn

�CC�1 �AA �CC �xxn ¼ �CC�1 �CC �yyn

�CC�1 �AA �CC �xxn ¼ �yyn
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This can be written as

�AAn �xxn ¼ �yyn

�AAn ¼ �CC�1 �AA �CC
ð1:15Þ

�AAn �xxn ¼ �yyn is distinct from �AA �xx ¼ �yy. The only restriction on choosing �CC is that it
should be nonsingular. Equation (1.15) is a set of linear equations, derived from
the original equations (1.14) and yet distinct from them.

If �CC is a nodal matrix �MM, corresponding to the coefficients of �AA, then

�CC ¼ �MM ¼ x1; x2; . . . ; xn½ � ð1:16Þ
where �xxi are the eigenvectors of the matrix �AA, then

�CC�1 �AA �CC ¼ �CC�1 �AA x1; x2; . . . ; xn½ �
�CC�1 �AAx1; �AAx2; . . . ; �AAxn
� �

¼ �CC�1 �1x1; �2x2; . . . ; �nxn½ �

¼ C�1 x1; x2; . . . ; xn½ �

�1

�2

:

�n

�����������

�����������

¼ �CC�1 �CC

�1

�2

:

�n

�����������

�����������
¼ ���

ð1:17Þ

Thus, �CC�1 �AA �CC is reduced to a diagonal matrix ���, called a spectral matrix. Its diagonal
elements are the eigenvalues of the original matrix �AA. The new system of equations is
an uncoupled system. Equations (1.14) and (1.15) constitute a similarity transforma-
tion of matrix �AA. The matrices �AA and �AAn have the same eigenvalues and are called
similar matrices. The transformation matrix �CC is nonsingular.

1.4.2 Decoupling a Three-Phase Symmetrical System

Let us decouple a three-phase transmission line section, where each phase has a
mutual coupling with respect to ground. This is shown in Fig. 1-4(a). An impedance
matrix of the three-phase transmission line can be written as

Zaa Zab Zac

Zba Zbb Zbc

Zca Zcb Zcc

�������
������� ð1:18Þ
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where Zaa, Zbb, and Zcc are the self-impedances of the phases a, b, and c; Zab is the
mutual impedance between phases a and b, and Zba is the mutual impedance between
phases b and a.

Assume that the line is perfectly symmetrical. This means all the mutual impe-
dances, i.e., Zab ¼ Zba ¼ M and all the self-impedances, i.e., Zaa ¼ Zbb ¼ Zcc ¼ Z
are equal. This reduces the impedance matrix to

Z M M

M Z M

M M Z

�������
������� ð1:19Þ

It is required to decouple this system using symmetrical components. First find
the eigenvalues:

Z � � M M

M Z � � M

M M Z � �

��������

�������� ¼ 0 ð1:20Þ

The eigenvalues are

Short-Circuit Currents and Symmetrical Components 11

Figure 1-4 (a) Impedances in a three-phase transmission line with mutual coupling between

phases; (b) resolution into symmetrical component impedances.
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� ¼ Z þ 2M

¼ Z �M

¼ Z �M

The eigenvectors can be found by making � ¼ Z þ 2M and then Z �M.
Substituting � ¼ Z þ 2M:

Z � ðZ þ 2MÞ M M

M Z � ðZ þ 2MÞ M

M M Z � ðZ þ 2MÞ

��������

��������
X1

X2

X3

��������

�������� ¼ 0 ð1:21Þ

This can be reduced to

�2 1 1

0 �1 1

0 0 0

��������

��������
X1

X2

X3

��������

�������� ¼ 0 ð1:22Þ

This give X1 ¼ X2 ¼ X3 ¼ any arbitrary constant k. Thus, one of the eigenvectors of
the impedance matrix is

k

k

k

�������
������� ð1:23Þ

It can be called the zero sequence eigenvector of the symmetrical component trans-
formation matrix and can be written as

1

1

1

�������
������� ð1:24Þ

Similarly for � ¼ Z �M:

Z � ðZ �MÞ M M

M Z � ðZ �MÞ M

M M Z � ðZ �MÞ

��������

��������
X1

X2

X3

��������

�������� ¼ 0 ð1:25Þ

which gives

1 1 1

0 0 0

0 0 0

��������

��������
X1

X2

X3

��������

�������� ¼ 0 ð1:26Þ

This gives the general relation X1 ¼ X2 ¼ X3 ¼ 0. Any choice of X1;X2;X3 which
satisfies this relation is a solution vector. Some choices are shown below:

X1

X2

X3

��������

�������� ¼
1

a2

a

��������

��������;
1

a

a2

��������

��������;
0ffiffiffi
3

p
=2

� ffiffiffi
3

p
=2

��������

��������;
1

�1=2

�1=2

��������

�������� ð1:27Þ
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where a is a unit vector operator, which rotates by 120� in the counterclockwise
direction, as defined before.

Equation (1.27) is an important result and shows that, for perfectly symme-
trical systems, the common eigenvectors are the same, although the eigenvalues are
different in each system. The Clarke component transformation (described in sec.
1.5) is based on this observation.

The symmetrical component transformation is given by solution vectors:

1

1

1

�������
�������

1

a

a2

�������
�������

1

a2

a

�������
������� ð1:28Þ

A symmetrical component transformation matrix can, therefore, be written as

�TTs ¼
1 1 1

1 a2 a

1 a a2

��������

�������� ð1:29Þ

This is the same matrix as was arrived at in Eq. (1.8). Its inverse is

�TT�1
s ¼ 1

3

1 1 1

1 a a2

1 a2 a

��������

�������� ð1:30Þ

For the transformation of currents, we can write:

�IIabc ¼ �TTs
�II012 ð1:31Þ

where �IIabc, the original currents in phases a, b, and c, are transformed into zero
sequence, positive sequence, and negative sequence currents, �II012. The original pha-
sors are subscripted abc and the sequence components are subscripted 012. Similarly,
for transformation of voltages:

�VVabc ¼ �TTs
�VV012 ð1:32Þ

Conversely,

�II012 ¼ �TT�1
s

�IIabc; �VV012 ¼ �TT�1
s

�VVabc ð1:33Þ
The transformation of impedance is not straightforward and is derived as follows:

�VVabc ¼ �ZZabc
�IIabc

�TTs
�VV012 ¼ �ZZabc

�TTs
�II012

�VV012 ¼ �TT�1
s

�ZZabc
�TTs
�II012 ¼ �ZZ012

�II012

ð1:34Þ

Therefore,

�ZZ012 ¼ �TT�1
s

�ZZabc
�TTs ð1:35Þ

�ZZabc ¼ �TTs
�ZZ012

�TT�1
s ð1:36Þ
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Applying the impedance transformation to the original impedance matrix of
the three-phase symmetrical transmission line in Eq. (1.19), the transformed matrix
is

�ZZ012 ¼
1

3

1 1 1

1 a a2

1 a2 a

��������

��������
Z M M

M Z M

M M Z

��������

��������
1 1 1

1 a2 a

1 a a2

��������

��������

¼
Z þ 2M 0 0

0 Z �M 0

0 0 Z �M

��������

��������

ð1:37Þ

The original three-phase coupled system has been decoupled through symme-
trical component transformation. It is diagonal, and all off-diagonal terms are zero,
meaning that there is no coupling between the sequence components. Decoupled
positive, negative, and zero sequence networks are shown in Fig. 1-4(b).

1.4.3 Decoupling a Three-Phase Unsymmetrical System

Now consider that the original three-phase system is not completely balanced.
Ignoring the mutual impedances in Eq. (1.18), let us assume unequal phase impe-
dances, Z1, Z2, and Z3, i.e., the impedance matrix is

�ZZabc ¼
Z1 0 0

0 Z2 0

0 0 Z3

��������

�������� ð1:38Þ

The symmetrical component transformation is

�ZZ012 ¼
1

3

1 1 1

1 a a2

1 a2 a

��������

��������
Z1 0 0

0 Z2 0

0 0 Z3

��������

��������
1 1 1

1 a2 a

1 a a2

��������

��������

¼ 1

3

Z1 þ Z2 þ Z3 Z1 þ a2Z2 þ aZ3 Z1 þ aZ2 þ aZ3

Z1 þ aZ2 þ aZ3 Z1 þ Z2 þ Z3 Z1 þ a2Z2 þ aZ3

Z1 þ a2Z2 þ aZ3 Z1 þ aZ2 þ aZ3 Z1 þ Z2 þ Z3

��������

��������

ð1:39Þ

The resulting matrix shows that the original unbalanced system is not decoupled.
If we start with equal self-impedances and unequal mutual impedances or vice versa,
the resulting matrix is nonsymmetrical. It is a minor problem today, as nonreciprocal
networks can be easily handled on digital computers. Nevertheless, the main appli-
cation of symmetrical components is for the study of unsymmetrical faults. Negative
sequence relaying, stability calculations, and machine modeling are some other
examples. It is assumed that the system is perfectly symmetrical before an unbalance
condition occurs. The asymmetry occurs only at the fault point. The symmetrical
portion of the network is considered to be isolated, to which an unbalanced condi-
tion is applied at the fault point. In other words, the unbalance part of the network
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can be thought to be connected to the balanced system at the point of fault.
Practically, the power systems are not perfectly balanced and some asymmetry
always exists. However, the error introduced by ignoring this asymmetry is small.
(This may not be true for highly unbalanced systems and single-phase loads.)

1.4.4 Power Invariance in Symmetrical Component Transformation

Symmetrical component transformation is power invariant. The complex power in a
three-phase circuit is given by

S ¼ VaI
�
a þ VbI

�
b þ VcI

�
c ¼ �VV 0

abc
�II�abc ð1:40Þ

where I�a is the complex conjugate of Ia. This can be written as

S ¼ ½ �TTs
�VV012� �TT�

s
�II�012 ¼ �VV 0

012
�TT 0
s
�TT�
s
�II�012 ð1:41Þ

The product �TTs
�TT�
s is given by (see Appendix A):

�TT 0
s
�TT�
s ¼ 3

1 0 0

0 1 0

0 0 1

��������

�������� ð1:42Þ

Thus,

S ¼ 3V1I
�
1 þ 3V2I

�
2 þ 3V0I

�
0 ð1:43Þ

This shows that complex power can be calculated from symmetrical components.

1.5 CLARKE COMPONENT TRANSFORMATION

It has been already shown that, for perfectly symmetrical systems, the component
eigenvectors are the same, but eigenvalues can be different. The Clarke component
transformation is defined as

Va

Vb

Vc

��������

�������� ¼
1 1 0

1 � 1
2

ffiffiffi
3

p
2

1 � 1
2

�
ffiffiffi
3

p
2

����������

����������

V0

V�

V�

��������

�������� ð1:44Þ

Note that the eigenvalues satisfy the relations derived in Eq. (1.27), and

V0

V�

V�

��������

�������� ¼
1
3

1
3

1
3

2
3

� 1
3

� 1
3

0 1ffiffiffi
3

p � 1ffiffiffi
3

p

�����������

�����������

Va

Vb

Vc

��������

�������� ð1:45Þ

The transformation matrices are

�TTc ¼
1 1 0

1 �1=2
ffiffiffi
3

p
=2

1 1=2
ffiffiffi
3

p
=2

��������

�������� ð1:46Þ
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�TT�1
c ¼

1=3 1=3 1=3

2=3 �1=3 �1=3

0 1=
ffiffiffi
3

p �1=
ffiffiffi
3

p

��������

�������� ð1:47Þ

and as before:

�ZZ0�� ¼ �TT�1
c

�ZZabc
�TTc ð1:48Þ

�ZZabc ¼ �TTc
�ZZ0��

�TT�1
c ð1:49Þ

The Clarke component expression for a perfectly symmetrical system is

V0

V�

V�

��������

�������� ¼
Z00 0 0

0 Z�� 0

0 0 Z��

��������

��������
I0

I�

I�

��������

�������� ð1:50Þ

The same philosophy of transformation can also be applied to systems with
two or more three-phase circuits in parallel. The Clarke component transformation
is not much in use.

1.6 CHARACTERISTICS OF SYMMETRICAL COMPONENTS

Matrix equations (1.32) and (1.33) are written in the expanded form:

Va ¼ V0 þ V1 þ V2

Vb ¼ V0 þ a2V1 þ aV2

Vc ¼ V0 þ aV1 þ a2V2

ð1:51Þ

and

V0 ¼
1

3
Va þ Vb þ Vcð Þ

V1 ¼
1

3
Va þ aVb þ a2Vc

� �
V2 ¼

1

3
Va þ a2Vb þ aVc

� �
ð1:52Þ

These relations are graphically represented in Fig. 1-5, which clearly shows that
phase voltages Va, Vb, and Vc can be resolved into three voltages: V0, V1, and V2,
defined as follows:

. V0 is the zero sequence voltage. It is of equal magnitude in all the three
phases and is cophasial.

. V1 is the system of balanced positive sequence voltages, of the same phase
sequence as the original unbalanced system of voltages. It is of equal
magnitude in each phase, but displaced by 120�, the component of
phase b lagging the component of phase a by 120�, and the component
of phase c leading the component of phase a by 120�.
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Figure 1-5 (a), (b), (c), and (d) Progressive resolution of voltage vectors into sequence
components.
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. V2 is the system of balanced negative sequence voltages. It is of equal
magnitude in each phase, and there is a 120� phase displacement between
the voltages, the component of phase c lagging the component of phase a,
and the component of phase b leading the component of phase a.

Therefore, the positive and negative sequence voltages (or currents) can be
defined as ‘‘the order in which the three phases attain a maximum value.’’ For the
positive sequence the order is abca while for the negative sequence it is acba. We can
also define positive and negative sequence by the order in which the phasors pass a
fixed point on the vector plot. Note that the rotation is counterclockwise for all three
sets of sequence components, as was assumed for the original unbalanced vectors, Fig.
1-5(d). Sometimes, this is confused and negative sequence rotation is said to be the
reverse of positive sequence. The negative sequence vectors do not rotate in a direction
opposite to the positive sequence vectors, though the negative phase sequence is
opposite to the positive phase sequence.

Example 1.1

An unbalanced three-phase system has the following voltages:

Va ¼ 0:9 < 0� per unit
Vb ¼ 1:25 < 280� per unit
Vc ¼ 0:6 < 110� per unit

The phase rotation is abc, counterclockwise. The unbalanced system is shown
in Fig. 1-6(a). Resolve into symmetrical components and sketch the sequence vol-
tages.

Using the symmetrical component transformation, the resolution is shown
in Fig. 1-6(b). The reader can verify this as an exercise and then convert back
from the calculated sequence vectors into original abc voltages, graphically and
analytically.

In a symmetrical system of three phases, the resolution of voltages or currents
into a system of zero, positive, and negative components is equivalent to three
separate systems. Sequence voltages act in isolation and produce zero, positive,
and negative sequence currents, and the theorem of superposition applies. The fol-
lowing generalizations of symmetrical components can be made:

1. In a three-phase unfaulted system in which all loads are balanced and in
which generators produce positive sequence voltages, only positive
sequence currents flow, resulting in balanced voltage drops of the
same sequence. There are no negative sequence or zero sequence voltage
drops.

2. In symmetrical systems, the currents and voltages of different sequences
do not affect each other, i.e., positive sequence currents produce only
positive sequence voltage drops. By the same analogy, the negative
sequence currents produce only negative sequence drops, and zero
sequence currents produce only zero sequence drops.

3. Negative and zero sequence currents are set up in circuits of unbalanced
impedances only, i.e., a set of unbalanced impedances in a symmetrical
system may be regarded as a source of negative and zero sequence cur-
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rent. Positive sequence currents flowing in an unbalanced system produce
positive, negative, and possibly zero sequence voltage drops. The negative
sequence currents flowing in an unbalanced system produce voltage drops
of all three sequences. The same is true about zero sequence currents.

4. In a three-phase three-wire system, no zero sequence currents appear in
the line conductors. This is so because I0 ¼ ð1=3ÞðIa þ Ib þ IcÞ and, there-
fore, there is no path for the zero sequence current to flow. In a three-
phase four-wire system with neutral return, the neutral must carry out-of-
balance current, i.e., In ¼ ðIa þ Ib þ IcÞ. Therefore, it follows that
In ¼ 3I0. At the grounded neutral of a three-phase wye system, positive
and negative sequence voltages are zero. The neutral voltage is equal to
the zero sequence voltage or product of zero sequence current and three
times the neutral impedance, Zn.

5. From what has been said in point 4 above, phase conductors emanating
from ungrounded wye or delta connected transformer windings cannot
have zero sequence current. In a delta winding, zero sequence currents, if
present, set up circulating currents in the delta winding itself. This is
because the delta winding forms a closed path of low impedance for
the zero sequence currents; each phase zero sequence voltage is absorbed
by its own phase voltage drop and there are no zero sequence components
at the terminals.

Short-Circuit Currents and Symmetrical Components 19

Figure 1-6 (a) Unbalanced voltage vectors; (b) resolution into symmetrical components.
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1.7 SEQUENCE IMPEDANCE OF NETWORK COMPONENTS

The impedance encountered by the symmetrical components depends on the type of
power system equipment, i.e., a generator, a transformer, or a transmission line. The
sequence impedances are required for component modeling and analysis. We derived
the sequence impedances of a symmetrical coupled transmission line in Eq. (1.37).
Zero sequence impedance of overhead lines depends on the presence of ground wires,
tower footing resistance, and grounding. It may vary between two and six times the
positive sequence impedance. The line capacitance of overhead lines is ignored in
short-circuit calculations. Appendix B details three-phase matrix models of transmis-
sion lines, bundle conductors, and cables, and their transformation into symmetrical
components. While estimating sequence impedances of power system components is
one problem, constructing the zero, positive, and negative sequence impedance net-
works is the first step for unsymmetrical fault current calculations.

1.7.1 Construction of Sequence Networks

A sequence network shows how the sequence currents, if these are present, will flow
in a system. Connections between sequence component networks are necessary to
achieve this objective. The sequence networks are constructed as viewed from the
fault point, which can be defined as the point at which the unbalance occurs in a
system, i.e., a fault or load unbalance.

The voltages for the sequence networks are taken as line-to-neutral voltages.
The only active network containing the voltage source is the positive sequence net-
work. Phase a voltage is taken as the reference voltage, and the voltages of the other
two phases are expressed with reference to phase a voltage, as shown in Fig. 1-5(d).

The sequence networks for positive, negative, and zero sequence will have per
phase impedance values which may differ. Normally, the sequence impedance net-
works are constructed on the basis of per unit values on a common MVA base, and a
base MVA of 100 is in common use. For nonrotating equipment like transformers,
the impedance to negative sequence currents will be the same as for positive sequence
currents. The impedance to negative sequence currents of rotating equipment will be
different from the positive sequence impedance and, in general, for all apparatuses
the impedance to zero sequence currents will be different from the positive or nega-
tive sequence impedances. For a study involving sequence components, the sequence
impedance data can be: (1) calculated by using subroutine computer programs, (2)
obtained from manufacturers’ data, (3) calculated by long-hand calculations, or (4)
estimated from tables in published references.

The positive direction of current flow in each sequence network is outward at
the faulted or unbalance point. This means that the sequence currents flow in the
same direction in all three sequence networks.

Sequence networks are shown schematically in boxes in which the fault points
from which the sequence currents flow outwards are marked as F1, F2, and F0, and
the neutral buses are designated as N1, N2, and N0, respectively, for the positive,
negative, and zero sequence impedance networks. Each network forms a two-port
network with Thévenin sequence voltages across sequence impedances. Figure 1-7
illustrates this basic formation. Note the direction of currents. The voltage across the
sequence impedance rises from N to F. As stated before, only the positive sequence
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network has a voltage source, which is the Thevenin equivalent. With this conven-
tion, appropriate signs must be allocated to the sequence voltages:

V1 ¼ Va � I1Z1

V2 ¼ �I2Z2

V0 ¼ �I0Z0

ð1:53Þ

or in matrix form:

V0

V1

V2

��������

�������� ¼
0

Va

0

��������

���������
Z1 0 0

0 Z2 0

0 0 Z3

��������

��������
I0

I1

I2

��������

�������� ð1:54Þ

Based on the discussions so far, we can graphically represent the sequence impe-
dances of various system components.

1.7.2 Transformers

The positive and negative sequence impedances of a transformer can be taken to be
equal to its leakage impedance. As the transformer is a static device, the positive or
negative sequence impedances do not change with phase sequence of the applied
balanced voltages. The zero sequence impedance can, however, vary from an open
circuit to a low value depending on the transformer winding connection, method of
neutral grounding, and transformer construction, i.e., core or shell type.

We will briefly discuss the shell and core form of construction, as it has a major
impact on the zero sequence flux and impedance. Referring to Fig. 1-8(a), in a three-
phase core-type transformer, the sum of the fluxes in each phase in a given direction
along the cores is zero; however, the flux going up one limb must return through the
other two, i.e., the magnetic circuit of a phase is completed through the other two
phases in parallel. The magnetizing current per phase is that required for the core
and part of the yoke. This means that in a three-phase core-type transformer the
magnetizing current will be different in each phase. Generally, the cores are long
compared to yokes and the yokes are of greater cross-section. The yoke reluctance is
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Figure 1-7 Positive, negative, and zero sequence network representation.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



only a small fraction of the core and the variation of magnetizing current per phase is
not appreciable. However, consider now the zero sequence flux, which will be direc-
ted in one direction, in each of the limbs. The return path lies, not through the core
limbs, but through insulating medium and tank.

In three separate single-phase transformers connected in three-phase config-
uration or in shell-type three-phase transformers the magnetic circuits of each phase
are complete in themselves and do not interact, Fig. 1-8(b). Due to advantages in
short-circuit and transient voltage performance, the shell form is used for larger
transformers. The variations in shell form have five- or seven-legged cores. Briefly,
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Figure 1-8 (a) Core form of three-phase transformer, flux paths for phase and zero sequence
currents; (b) shell form of three-phase transformer.
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we can say that, in a core type, the windings surround the core, and in the shell type,
the core surrounds the windings.

1.7.2.1 Delta–Wye or Wye–Delta Transformer

In a delta–wye transformer with the wye winding grounded, zero sequence impe-
dance will be approximately equal to positive or negative sequence impedance,
viewed from the wye connection side. Impedance to the flow of zero sequence cur-
rents in the core-type transformers is lower as compared to the positive sequence
impedance. This is so, because there is no return path for zero sequence exciting flux
in core type units except through insulating medium and tank, a path of high
reluctance. In groups of three single-phase transformers or in three-phase shell-
type transformers, the zero sequence impedance is higher.

The zero sequence network for a wye–delta transformer is constructed as
shown in Fig. 1-9(a). The grounding of the wye neutral allows the zero sequence
currents to return through the neutral and circulate in the windings to the source of
unbalance. Thus, the circuit on the wye side is shown connected to the L side line. On
the delta side, the circuit is open, as no zero sequence currents appear in the lines,
though these currents circulate in the delta windings to balance the ampère turns in

Short-Circuit Currents and Symmetrical Components 23

Figure 1-9 (a) Derivations of equivalent zero sequence circuit for a delta–wye transformer,
wye neutral solidly grounded; (b) zero sequence circuit of a delta–wye transformer, wye

neutral isolated.
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the wye windings. The circuit is open on the H side line, and the zero sequence
impedance of the transformer seen from the high side is an open circuit. If the
wye winding neutral is left isolated, Fig. 1-9(b), the circuit will be open on both
sides, presenting an infinite impedance.

Three-phase current flow diagrams can be constructed based on the convention
that current always flows to the unbalance and that the ampère turns in primary
windings must be balanced by the ampère turns in the secondary windings.

1.7.2.2 Wye–Wye Transformer

In a wye–wye connected transformer, with both neutrals isolated, no zero sequence
currents can flow. The zero sequence equivalent circuit is open on both sides and
presents an infinite impedance to the flow of zero sequence currents. When one of the
neutrals is grounded, still no zero sequence currents can be transferred from the
grounded side to the ungrounded side. With one neutral grounded, there are no
balancing ampère turns in the ungrounded wye windings to enable current to flow
in the grounded neutral windings. Thus, neither of the windings can carry a zero
sequence current. Both neutrals must be grounded for the transfer of zero sequence
currents.

A wye–wye connected transformer with isolated neutrals is not used, due to the
phenomenon of the oscillating neutral. This is discussed in Chapter 17. Due to
saturation in transformers, and the flat-topped flux wave, a peak emf is generated
which does not balance the applied sinusoidal voltage and generates a resultant third
(and other) harmonics. These distort the transformer voltages as the neutral oscil-
lates at thrice the supply frequency, a phenomenon called the ‘‘oscillating neutral.’’ A
tertiary delta is added to circulate the third harmonic currents and stabilize the
neutral. It may also be designed as a load winding, which may have a rated voltage
distinct from high- and low-voltage windings. This is further discussed in Sec.
1.7.2.5. When provided for zero sequence current circulation and harmonic suppres-
sion, the terminals of the tertiary connected delta winding may not be brought out of
the transformer tank. Sometimes core-type transformers are provided with five-limb
cores to circulate the harmonic currents.

1.7.2.3 Delta–Delta Transformer

In a delta–delta connection, no zero currents will pass from one winding to another.
On the transformer side, the windings are shown connected to the reference bus,
allowing the circulation of currents within the windings.

1.7.2.4 Zigzag Transformer

A zigzag transformer is often used to derive a neutral for grounding of a delta–delta
connected system. This is shown in Fig. 1-10. Windings a1 and a2 are on the same
limb and have the same number of turns but are wound in the opposite direction.
The zero sequence currents in the two windings on the same limb have canceling
ampère turns. Referring to Fig. 1-10(b) the currents in the winding sections a1 and c2
must be equal as these are in series. By the same analogy all currents must be equal,
balancing the mmfs in each leg:

ia1 ¼ ia2 ¼ ib1 ¼ ib2 ¼ ic1 ¼ ic2
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The impedance to the zero sequence currents is that due to leakage flux of the
windings. For positive or negative sequence currents, neglecting magnetizing current,
the connection has infinite impedance. Figure 1-10(a) shows the distribution of zero
sequence current and its return path for a single line to ground fault on one of the
phases. The ground current divides equally through the zigzag transformer; one-
third of the current returns directly to the fault point and the remaining two-thirds
must pass through two phases of the delta connected windings to return to the fault
point. Two phases and windings on the primary delta must carry current to balance
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Figure 1-10 (a) Current distribution in a delta–delta system with zigzag grounding trans-
former for a single line-to-ground fault; (b) zigzag transformer winding connections.
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the ampère turns of the secondary winding currents, Fig. 1-10(b). An impedance can
be added between the artificially derived neutral and ground to limit the ground fault
current.

Table 1-1 shows the sequence equivalent circuits of three-phase two-winding
transformers. When the transformer neutral is grounded through an impedance Zn, a
term 3Zn appears in the equivalent circuit. We have already proved that In ¼ 3I0.
The zero sequence impedance of the high- and low-voltage windings are shown as
ZH and ZL, respectively. The transformer impedance ZT ¼ ZH þ ZL on a per unit
basis. This impedance is specified by the manufacturer as a percentage impedance on
transformer MVA base, based on OA (natural liquid cooled for liquid immersed
transformers) or AA (natural air cooled, without forced ventilation for dry-type
transformers) rating of the transformer. For example, a 138–13.8 kV transformer
may be rated as follows:

40 MVA, OA ratings at 55�C rise
44.8 MVA, OA rating at 65�C rise
60 MVA, FA (forced air, i.e., fan cooled) rating at first stage of fan cooling,

65�C rise
75 MVA, FA second-stage fan cooling, 65�C rise

These ratings are normally applicable for an ambient temperature of 40�C,
with an average of 30�C over a period of 24 h. The percentage impedance will be
normally specified on a 40-MVA or possibly a 44.8-MVA base.

The difference between the zero sequence impedance circuits of wye–wye con-
nected shell- and core-form transformers in Table 1-1 is noteworthy. Connections 8
and 9 are for a core-type transformer and connections 7 and 10 are for a shell-type
transformer. The impedance ZM accounts for magnetic coupling between the phases
of a core-type transformer.

1.7.2.5 Three-Winding Transformers

The theory of linear networks can be extended to apply to multiwinding transfor-
mers. A linear network having n terminals requires 1

2 nðnþ 1Þ quantities to specify it
completely for a given frequency and emf. Figure 1-11 shows the wye equivalent
circuit of a three-winding transformer. One method to obtain the necessary data is to
designate the pairs of terminals as 1; 2; . . . ; n. All the terminals are then short-
circuited except terminal one and a suitable emf is applied across it. The current
flowing in each pair of terminals is measured. This is repeated for all the terminals.
For a three-winding transformer:

ZH ¼ 1

2
ZHM þ ZHL � ZMLð Þ

ZM ¼ 1

2
ZML þ ZHM � ZHLð Þ

ZL ¼ 1

2
ZHL þ ZML � ZHMð Þ

ð1:55Þ

where ZHM ¼ leakage impedance between the H and X windings, as measured on the
H winding with M winding short-circuited and L winding open circuited; ZHL ¼
leakage impedance between the H and L windings, as measured on the H winding
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Table 1-1 Equivalent Positive, Negative, and Zero Sequence Circuits for Two-Winding
Transformers
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with L winding short-circuited and M winding open circuited; ZML ¼ leakage impe-
dance between the M and L windings, as measured on the M winding with L winding
short-circuited and H winding open circuited.

Equation (1.55) can be written as

ZH

ZM

ZL

��������

�������� ¼ 1=2

1 1 �1

1 �1 1

�1 1 1

�������
�������
ZHM

ZHL

ZML

�������
�������

We also see that

ZHL ¼ ZH þ ZL

ZHM ¼ ZH þ ZM

ZML ¼ ZM þ ZL

ð1:56Þ

Table 1-2 shows the equivalent sequence circuits of a three-winding transformer.

1.7.3 Static Load

Consider a static three-phase load connected in a wye configuration with the neutral
grounded through an impedance Zn. Each phase impedance is Z. The sequence
transformation is

Va

Vb

Vc

��������

�������� ¼
Z 0 0

0 Z 0

0 0 Z

��������

��������
Ia

Ib

Ic

��������

��������
InZn

InZn

InZn

��������

�������� ¼ Ts

V0

V1

V2

��������

�������� ¼
Z 0 0

0 Z 0

0 0 Z

��������

��������Ts

I0

I1

I2

��������

��������
3I0Zn

3I0Zn

3I0Zn

��������

�������� ð1:57Þ

V0

V1

V2

��������

�������� ¼ T�1
s

Z 0 0

0 Z 0

0 0 Z

��������

��������Ts

I0

I1

I2

��������

��������þ T�1
s

3I0Zn

3I0Zn

3I0Zn

��������

�������� ð1:58Þ
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Figure 1-11 Wye-equivalent circuit of a three-winding transformer.
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¼
Z 0 0

0 Z 0

0 0 Z

�������
�������
I0

I1

I2

�������
�������þ

3I0Zn

0

0

�������
������� ¼

Z þ 3Zn 0 0

0 Z 0

0 0 Z

�������
�������
I0

I1

I2

�������
������� ð1:59Þ

This shows that the load can be resolved into sequence impedance circuits. This result
can also be arrived at by merely observing the symmetrical nature of the circuit.
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Table 1-2 Equivalent Positive, Negative, and Zero Sequence Circuits for Three-Winding

Transformers
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1.7.4 Synchronous Machines

Negative and zero sequence impedances are specified for synchronous machines by
the manufacturers on the basis of the test results. The negative sequence impedance
is measured with the machine driven at rated speed and the field windings short-
circuited. A balanced negative sequence voltage is applied and the measurements
taken. The zero sequence impedance is measured by driving the machine at rated
speed, field windings short-circuited, all three-phases in series, and a single-phase
voltage applied to circulate a single-phase current. The zero sequence impedance of
generators is low, while the negative sequence impedance is approximately given by

X 00
d þ X 00

q

2
ð1:60Þ

where X 00
d , and X 00

q are the direct axis and quadrature axis subtransient reactances.
An explanation of this averaging is that the negative sequence in the stator results in
a double-frequency negative component in the field. (Chapter 18 provides further
explanation.) The negative sequence flux component in the air gap may be consid-
ered to alternate between poles and interpolar gap, respectively.

The following expressions can be written for the terminal voltages of a wye
connected synchronous generator, neutral grounded through an impedance Zn:

Va ¼
d

dt
Laf cos �If � LaaIa � LabIb � LacIc½ � � IaRa þ Vn

Vb ¼
d

dt
Lbf cos � � 120�ð ÞIf � LbaIa � LbbIb � LbcIc½ � � IaRb þ Vn

Vc ¼
d

dt
Lcf cos � � 240�ð ÞIf � LcaIa � LcbIb � LccIc½ � � IaRc þ Vn

ð1:61Þ

The first term is the generator internal voltage, due to field linkages, and Laf denotes
the field inductance with respect to phase A of stator windings and If is the field
current. These internal voltages are displaced by 120�, and may be termed Ea, Eb,
and Ec. The voltages due to armature reaction, given by the self-inductance of a
phase, i.e., Laa, and its mutual inductance with respect to other phases, i.e., Lab and
Lac, and the IRa drop is subtracted from the generator internal voltage and the
neutral voltage is added to obtain the line terminal voltage Va.

For a symmetrical machine:

Laf ¼ Lbf ¼ Lcf ¼ Lf

Ra ¼ Rb ¼ Rc ¼ R

Laa ¼ Lbb ¼ Lcc ¼ L

Lab ¼ Lbc ¼ Lca ¼ L 0

ð1:62Þ

Thus,

Va

Vb

Vc

��������

�������� ¼
Ea

Eb

Ec

��������

��������� j!

L L 0 L 0

L 0 L L 0

L 0 L 0 L

��������

��������
Ia

Ib

Ic

��������

���������
R 0 0

0 R 0

0 0 R

��������

��������
Ia

Ib

Ic

��������

��������� Zn

In

In

In

��������

�������� ð1:63Þ
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Transform using symmetrical components:

Ts

V0

V1

V2

��������

�������� ¼ Ts

E0

E1

E2

��������

��������� j!

L L 0 L 0

L 0 L L 0

L 0 L 0 L

��������

��������Ts

I0

I1

I2

��������

���������
R 0 0

0 R 0

0 0 R

��������

��������Ts

I0

I1

I2

��������

��������� 3Zn

I0

I0

I0

��������

��������
V0

V1

V2

��������

�������� ¼
E0

E1

E2

��������

��������� j!

L0 0 0

0 L1 0

0 0 L2

��������

��������
I0

I1

I2

��������

���������
R 0 0

0 R 0

0 0 R

��������

��������
I0

I1

I2

��������

���������
3I0Zn

0

0

��������

��������
ð1:64Þ

where

L0 ¼ Lþ 2L 0

L1 ¼L2 ¼ L� L 0 ð1:65Þ

The equation may, thus, be written as

V0

V1

V2

��������

�������� ¼
0

E1

0

��������

���������
Z0 þ 3Zn 0 0

0 Z1 0

0 0 Z2

��������

��������
I0

I1

I2

��������

�������� ð1:66Þ

The equivalent circuit is shown in Fig. 1-12. This can be compared with the
static three-phase load equivalents. Even for a cylindrical rotor machine, the
assumption Z1 ¼ Z2 is not strictly valid. The resulting generator impedance matrix
is nonsymmetrical.
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Figure 1-12 Sequence components of a synchronous generator impedances.
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Example 1.2

Figure 1-13(a) shows a single line diagram, with three generators, three transmission
lines, six transformers, and three buses. It is required to construct positive, negative,
and zero sequence networks looking from the fault point marked F. Ignore the load
currents.

The positive sequence network is shown in Fig. 1-13(b). There are three gen-
erators in the system, and their positive sequence impedances are clearly marked in
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Fig. 1-13(b). The generator impedances are returned to a common bus. The
Thévenin voltage at the fault point is shown to be equal to the generator voltages,
which are all equal. This has to be so as all load currents are neglected, i.e., all the
shunt elements representing loads are open-circuited. Therefore, the voltage magni-
tudes and phase angles of all three generators must be equal. When load flow is
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Figure 1-13 (a) A single line diagram of a distribution system; (b), (c), and (d) positive,

negative, and zero sequence networks of the distribution system in (a).
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considered, generation voltages will differ in magnitude and phase, and the voltage
vector at the chosen fault point, prior to the fault, can be calculated based on load
flow. We have discussed that the load currents are normally ignored in short-circuit
calculations. Fault duties of switching devices are calculated based on rated system
voltage rather than the actual voltage, which varies with load flow. This is generally
true, unless the prefault voltage at the fault point remains continuously above or
below the rated voltage.

Figure 1-13(c) shows the negative sequence network. Note the similarity with
the positive sequence network with respect to interconnection of various system
components.

Figure 1-13(d) shows zero sequence impedance network. This is based on the
transformer zero sequence networks shown in Table 1-1. The neutral impedance is
multiplied by a factor of three.

Each of these networks can be reduced to a single impedance using elementary
network transformations. Referring to Fig. 1-14, wye-to-delta and delta-to-wye
impedance transformations are given by:

Delta to wye:

Z1 ¼
Z12Z31

Z12 þ Z23 þ Z31

Z2 ¼
Z12Z23

Z12 þ Z23 þ Z31

Z3 ¼
Z23Z31

Z12 þ Z23 þ Z31

ð1:67Þ

and from wye to delta:

Z12 ¼
Z1Z2 þ Z2Z3 þ Z3Z1

Z3

Z23 ¼
Z1Z2 þ Z2Z3 þ Z3Z1

Z1

Z31 ¼
Z1Z2 þ Z2Z3 þ Z3Z1

Z2

ð1:68Þ

34 Chapter 1

Figure 1-14 Wye–delta and delta–wye transformation of impedances.
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1.8 COMPUTER MODELS OF SEQUENCE NETWORKS

Referring to the zero sequence impedance network of Fig. 1-13(d), a number of
discontinuities occur in the network, depending on transformer winding connections
and system grounding. These disconnections are at nodes marked T, U, M, and N.
These make a node disappear in the zero sequence network, while it exists in the
models of positive and negative sequence networks. The integrity of the nodes should
be maintained in all the sequence networks for computer modeling. Figure 1-15
shows how this discontinuity can be resolved.

Figure 1-15(a) shows a delta–wye transformer, wye side neutral grounded
through an impedance Zn, connected between buses numbered 1 and 2. Its zero
sequence network, when viewed from the bus 1 side is an open circuit.

Two possible solutions in computer modeling are shown in Fig. 1-15(b) and (c).
In Fig. 1-15(b) a fictitious bus R is created. The positive sequence impedance circuit
is modified by dividing the transformer positive sequence impedance into two parts:
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Figure 1-15 (a) Representation of a delta–wye transformer; (b) and (c) zero and positive

and negative sequence network representation maintaining integrity of nodes.
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ZTL for the low-voltage winding and ZTH for the high-voltage winding. An infinite
impedance between the junction point of these impedances to the fictitious bus R is
connected. In computer calculations this infinite impedance will be simulated by a
large value, i.e., 999þ j9999, on a per unit basis.

The zero sequence network is treated in a similar manner, i.e., the zero
sequence impedance is split between the windings and the equivalent grounding
resistor 3RN is connected between the junction point and the fictitious bus R.

Figure 1-15( c) shows another approach to the creation a fictitious bus R to
preserve the integrity of nodes in the sequence networks. For the positive sequence
network, a large impedance is connected between bus 2 and bus R, while for the zero
sequence network an impedance equal to Z0TH þ 3RN is connected between bus 2
and bus R.

This chapter provides the basic concepts. The discussions of symmetrical com-
ponents, construction of sequence networks, and fault current calculations are car-
ried over to Chapter 2.

Problems

1. A short transmission line of inductance 0.05 H and resistance 1 ohm is
suddenly short-circuited at the receiving end, while the source voltage is
480 ð ffiffiffi

2
p Þ sin ð2�ftþ 30�Þ. At what instant of the short-circuit will the dc

offset be zero? At what instant will the dc offset be a maximum?
2. Figure 1-1 shows a nondecaying ac component of the fault current.

Explain why this is not correct for a fault close to a generator.
3. Explain similarity transformation. How is it related to the diagonaliza-

tion of a matrix?
4. Find the eigenvalues of the matrix:

6 �2 2

�2 3 �1

2 �1 3

2
64

3
75

5. A power system is shown in Fig. 1-P1. Assume that loads do not con-
tribute to the short-circuit currents. Convert to a common 100 MVA
base, and form sequence impedance networks. Redraw zero sequence
network to eliminate discontinuities.

6. Three unequal load resistances of 10, 20, and 20 ohms are connected in
delta 10 ohms between lines a and b, 20 ohms between lines b and c and
200 ohms between lines c and a. The power supply is a balanced three-
phase system of 480 V rms between the lines. Find symmetrical compo-
nents of line currents and delta currents.

7. In Fig. 1-10, the zigzag transformer is replaced with a wye–delta con-
nected transformer. Show the distribution of the fault current for a phase-
to-ground fault on one of the phases.

8. Resistances of 6, 6, and 5 ohms are connected in a wye configuration
across a balanced three-phase supply system of line-to-line voltage of
480V rms (Fig. 1-P2). The wye point of the load (neutral) is not
grounded. Calculate the neutral voltage with respect to ground using
symmetrical components and Clarke’s components’ transformation.
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9. Based on the derivation of symmetrical component theory presented in
this chapter, can another transformation system be conceived?

10. Write equations for a symmetrical three-phase fault in a three-phase wye-
connected system, with balanced impedances in each line.

11. The load currents are generally neglected in short-circuit calculations. Do
these have any effect on the dc component asymmetry? (1) Increase it;
(2)Decrease it; (3) have no effect. Explain.

12. Write a 500 word synopsis on symmetrical components, without using
equations or figures.

13. Figure 1-9(a) shows the zero sequence current flow for a delta–wye trans-
former, with the wye neutral grounded. Construct a similar diagram for a
three-winding transformer, wye–wye connected, with tertiary delta and
both wye neutrals solidly grounded.

14. Convert the sequence impedance networks of Example 1.2 to single impe-
dances as seen from the fault point. Use the following numerical values
on a per unit basis (all on a common MVA base). Neglect resistances.

Generators G1, G2, and G3: Z1 ¼ 0:15, Z2 ¼ 0:18, Z0 ¼ 0:08, Zn (neu-
tral grounding impedanceÞ ¼ 0:20;

Transmission lines L1, L2, and L3: Z1 ¼ 0:2, Z2 ¼ 0:2;
Transformers T1, T2, T3, T4, T5, and T6: Z1 ¼ Z2 ¼ 0:10, transformer

T1:Z0 ¼ 0:10
15. Repeat problem 14 for a fault at the terminals of generator G2.
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Figure 1-P1 Power system with impedance data for Problem 5.

Figure 1-P2 Network for Problem 8.
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2

Unsymmetrical Fault Calculations

Chapter 1 discussed the nature of sequence networks and how three distinct sequence
networks can be constructed as seen from the fault point. Each of these networks can
be reduced to a single Thévenin positive, negative, or zero sequence impedance. Only
the positive sequence network is active and has a voltage source which is the prefault
voltage. For unsymmetrical fault current calculations, the three separate networks
can be connected in a certain manner, depending on the type of fault.

Unsymmetrical fault types involving one or two phases and ground are:

. A single line-to-ground fault

. A double line-to-ground fault

. A line-to-line fault

These are called shunt faults. A three-phase fault may also involve ground. The
unsymmetrical series type faults are:

. One conductor opens

. Two conductors open

The broken conductors may be grounded on one side or on both sides of the
break. An open conductor fault can occur due to operation of a fuse in one of
the phases.

Unsymmetrical faults are more common. The most common type is a line-to-
ground fault. Approximately 70% of the faults in power systems are single line-to-
ground faults.

While applying symmetrical component method to fault analysis, we will
ignore the load currents. This makes the positive sequence voltages of all the gen-
erators in the system identical and equal to the prefault voltage.

In the analysis to follow, Z1, Z2, and Z0 are the positive, negative, and zero
sequence impedances as seen from the fault point; Va, Vb, and Vc are the phase to
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ground voltages at the fault point, prior to fault, i.e., if the fault does not exist; and
V1, V2, and V0 are corresponding sequence component voltages. Similarly, Ia, Ib, and
Ic are the line currents and I1, I2, and I0 their sequence components. A fault impe-
dance of Zf is assumed in every case. For a bolted fault Zf ¼ 0.

2.1 LINE-TO-GROUND FAULT

Figure 2-1(a) shows that phase a of a three-phase system goes to ground through an
impedance Zf . The flow of ground fault current depends on the method of system
grounding. A solidly grounded system with zero ground resistance is assumed. There
will be some impedance to flow of fault current in the form of impedance of the
return ground conductor or the grounding grid resistance. A ground resistance can
be added in series with the fault impedance Zf . The ground fault current must have a
return path through the grounded neutrals of generators or transformers. If there is
no return path for the ground current, Z0 ¼ 1 and the ground fault current is zero.
This is an obvious conclusion.

Phase a is faulted in Fig. 2-1(a). As the load current is neglected, currents in
phases b and c are zero, and the voltage at the fault point, Va ¼ IaZf . The sequence
components of the currents are given by

I0

I1

I2

��������

�������� ¼
1

3

1 1 1

1 a a2

1 a2 a

��������

��������
Ia

0

0

��������

�������� ¼
1

3

Ia

Ia

Ia

��������

�������� ð2:1Þ

Also,

I0 ¼ I1 ¼ I2 ¼
1

3
Ia ð2:2Þ

3I0Zf ¼ V0 þ V1 þ V2 ¼ �I0Z0 þ Va � I1Z1ð Þ � I2Z2 ð2:3Þ

which gives

I0 ¼
Va

Z0 þ Z1 þ Z2 þ 3Zf

ð2:4Þ

The fault current Ia is

Ia ¼ 3I0 ¼
3Va

Z1 þ Z2 þ Z0ð Þ þ 3Zf

ð2:5Þ

This shows that the equivalent fault circuit using sequence impedances can be con-
structed as shown in Fig. 2-1(b). In terms of sequence impedances’ network blocks
the connections are shown in Fig. 2-1(c).

This result could also have been arrived at from Fig. 2-1(b):

Va � I1Z1ð Þ þ �I2Z2ð Þ þ �I0Z0ð Þ � 3ZfI0 ¼ 0

which gives the same equations (2.4) and (2.5). The voltage of phase b to ground
under fault conditions is
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Vb ¼ a2V1 þ aV2 þ V0

¼ Va

3a2Zf þ Z2 a2 � a
� �þ Z0 a2 � 1

� �
Z1 þ Z2 þ Z0ð Þ þ 3Zf

ð2:6Þ

Similarly, the voltage of phase c can be calculated.
An expression for the ground fault current for use in grounding grid designs

and system grounding is as follows:

Ia ¼
3Va

R0 þ R1 þ R2 þ 3Rf þ 3RGÞ þ j X0 þ X1 þ X2ð Þð ð2:7Þ
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Figure 2-1 (a) Line-to-ground fault in a three-phase system; (b) line-to-ground fault equiva-
lent circuit; (c) sequence network interconnections.
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where Rf is the fault resistance and RG is the resistance of the grounding grid;
R0, R1, and R2 are the sequence resistances and X0, X1, and X2 are sequence
reactances.

2.2 LINE-TO-LINE FAULT

Figure 2-2(a) shows a line-to-line fault. A short-circuit occurs between phases b and
c, through a fault impedance Zf . The fault current circulates between phases b and c,
flowing back to source through phase b and returning through phase c; Ia ¼ 0,
Ib ¼ �Ic. The sequence components of the currents are

I0

I1

I2

��������

�������� ¼
1

3

1 1 1

1 a a2

1 a2 a

��������

��������
0

�Ic

Ic

��������

�������� ¼
1

3

0

�aþ a2

�a2 þ a

��������

�������� ð2:8Þ

From Eq. (2.8), I0 ¼ 0 and I1 ¼ �I2.
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Figure 2-2 (a) Line-to-line fault in a three-phase system; (b) line-to-line fault equivalent
circuit; (c) sequence network interconnections.
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Vb � Vc ¼ 0 1 �1
�� ��

Va

Vb

Vc

��������

�������� ¼ 0 1 �1
�� ��

1 1 1

1 a2 a

1 a a2

��������

��������
V0

V1

V2

��������

��������

¼ 0 a2 � a a� a2
�� ��

V0

V1

V2

��������

��������

ð2:9Þ

Therefore,

Vb � Vc ¼ a2 � a
� �

V1 � V2ð Þ
¼ a2I1 þ aI2
� �

Zf

¼ a2 � a
� �

I1Zf

ð2:10Þ

This gives

V1 � V2ð Þ ¼ I1Zf ð2:11Þ
The equivalent circuit is shown in Fig. 2-2(b) and (c).

Also

Ib ¼ a2 � a
� �

I1 ¼ �j
ffiffiffi
3

p
I1 ð2:12Þ

and,

I1 ¼
Va

Z1 þ Z2 þ Zf

ð2:13Þ

The fault current is

Ib ¼ �Ic ¼
�j

ffiffiffi
3

p
Va

Z1 þ Z2 þ Zf

ð2:14Þ

2.3 DOUBLE LINE-TO-GROUND FAULT

A double line-to-ground fault is shown in Fig. 2-3(a). Phases b and c go to ground
through a fault impedance Zf . The current in the ungrounded phase is zero, i.e.,
Ia ¼ 0. Therefore, I1 þ I2 þ I0 ¼ 0.

Vb ¼ Vc ¼ Ib þ Icð ÞZf ð2:15Þ
Thus,

V0

V1

V2

��������

�������� ¼
1

3

1 1 1

1 a a2

1 a2 a

��������

��������
Va

Vb

Vb

��������

�������� ¼
1

3

Va þ 2Vb

Va þ ðaþ a2ÞVb

Va þ ðaþ a2ÞVb

��������

�������� ð2:16Þ
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Figure 2-3 (a) Double line-to-ground fault in a three-phase system; (b) double line-to-

ground fault equivalent circuit; (c) sequence network interconnections.
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which gives V1 ¼ V2 and

V0 ¼
1

3
Va þ 2Vbð Þ

¼ 1

3
V0 þ V1 þ V2ð Þ þ 2 Ib þ Icð ÞZf½ �

¼ 1

3
V0 þ 2V1ð Þ þ 2 3I0ð ÞZf½ �

¼ V1 þ 3ZfI0

ð2:17Þ

This gives the equivalent circuit of Fig. 2-3(b) and (c).
The fault current is

I1 ¼
Va

Z1 þ ½Z2kðZ0 þ 3Zf Þ�

¼ Va

Z1 þ
Z2ðZ0 þ 3Zf Þ
Z2 þ Z0 þ 3Zf

ð2:18Þ

2.4 THREE-PHASE FAULT

The three phases are short-circuited through equal fault impedances Zf , Fig. 2-4(a).
The vectorial sum of fault currents is zero, as a symmetrical fault is considered and
there is no path to ground.
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Figure 2-4 (a) Three-phase symmetrical fault; (b) equivalent circuit; (c) sequence network.
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I0 ¼ 0 Ia þ Ib þ Ic ¼ 0 ð2:19Þ

As the fault is symmetrical:

Va

Vb

Vc

��������

�������� ¼
Zf 0 0

0 Zf 0

0 0 Z
f

��������

��������
Ia

Ib

Ic

��������

�������� ð2:20Þ

The sequence voltages are given by

V0

V1

V2

��������

�������� ¼ ½Ts��1

Zf 0 0

0 Zf 0

0 0 Zf

��������

��������½Ts�
I0

I1

I2

��������

�������� ¼
Zf 0 0

0 Zf 0

0 0 Zf

��������

��������
I0

I1

I2

��������

�������� ð2:21Þ

This gives the equivalent circuit of Fig. 2-4(b) and (c).

Ia ¼ I1 ¼
Va

Z1 þ Zf

Ib ¼ a2I1

Ic ¼ aI1

ð2:22Þ

2.5 PHASE SHIFT IN THREE-PHASE TRANSFORMERS

2.5.1 Transformer Connections

Transformer windings can be connected in wye, delta, zigzag, or open delta. The
transformers may be three-phase units, or three-phase banks can be formed from
single-phase units. Autotransformer connections should also be considered. The
variety of winding connections is, therefore, large [1]. It is not the intention to
describe these connections completely. The characteristics of a connection can be
estimated from the vector diagrams of the primary and secondary emfs. There is a
phase shift in the secondary voltages with respect to the primary voltages, depend-
ing on the connection. This is of importance when paralleling transformers. A
vector diagram of the transformer connections can be constructed based on the
following:

1. The voltages of primary and secondary windings on the same leg of the
transformer are in opposition, while the induced emfs are in the same
direction. (Refer to Appendix C for further explanation.)

2. The induced emfs in three phases are equal, balanced, and displaced
mutually by a one-third period in time. These have a definite phase
sequence.

Delta–wye connections are discussed, as these are most commonly used. Figure
2-5 shows polarity markings and connections of delta–wye transformers. For all
liquid immersed transformers the polarity is subtractive according to ANSI
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(American National Standard Institute) standard [2]. (Refer to Appendix C for an
explanation.) Two-winding transformers have their windings designated as high
voltage (H) and low voltage (X). Transformers with more than two windings have
their windings designated as H, X, Y, and Z. External terminals are distinguished
from each other by marking with a capital letter, followed by a subscript number,
i.e., H1, H2, and H3.

2.5.2 Phase Shifts in Winding Connections

The angular displacement of a polyphase transformer is the time angle expressed in
degrees between the line-to-neutral voltage of the reference identified terminal and
the line-to-neutral voltage of the corresponding identified low-voltage terminal. In
Fig. 2-5(a), wye-connected side voltage vectors lead the delta-connected side voltage
vectors by 30�, for counterclockwise rotation of phasors. In Fig. 2-5(b) the delta-
connected side leads the wye-connected side by 30�. For transformers manufactured
according to the ANSI/IEEE (Institute of Electrical and Electronics Engineers, Inc.,
USA), standard [3], the low-voltage side, whether in wye or delta connection, has a

Unsymmetrical Fault Calculations 47

Figure 2-5 Winding connections and phase displacement for voltage vectors for delta–wye
connected transformers.
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phase shift of 30� lagging with respect to the high-voltage side phase-to-neutral
voltage vectors. Figure 2-6 shows ANSI/IEEE [3] transformer connections and a
phasor diagram of the delta side and wye side voltages. These relations and phase
displacements are applicable to positive sequence voltages.

The International Electrotechnical Commission (IEC) allocates vector groups,
giving the type of phase connection and the angle of advance turned though in
passing from the vector representing the high-voltage side emf to that representing
the low-voltage side emf at the corresponding terminals. The angle is indicated much
like the hands of a clock, the high-voltage vector being at 12 o’clock (zero) and the
corresponding low-voltage vector being represented by the hour hand. The total
rotation corresponding to hour hand of the clock is 360�. Thus, Dy11 and Yd11
symbols specify 30� lead (11 being the hour hand of the clock) and Dy1 and Yd1
signify 30� lag. Table 2-1 shows some IEC vector groups of transformers and their
winding connections.

2.5.3 Phase Shift for Negative Sequence Components

The phase shifts described above are applicable to positive sequence voltages or
currents. If a voltage of negative phase sequence is applied to a delta–wye connected
transformer, the phase angle displacement will be equal to the positive sequence
phasors, but in the opposite direction. Therefore, when the positive sequence cur-
rents and voltages on one side lead the positive sequence current and voltages on the
other side by 30�, the corresponding negative sequence currents and voltages will lag
by 30�. In general, if the positive sequence voltages and currents on one side lag the
positive sequence voltages and currents on the other side by 30�, the negative
sequence voltages and currents will lead by 30�.

Example 2.1

Consider a balanced three-phase delta load connected across an unbalanced three-
phase supply system, as shown in Fig. 2-7. The currents in lines a and b are given.
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Figure 2-6 Phase designations of terminal markings in three-phase transformers according

to ANSI/IEEE standard.
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Table 2-1 Transformer Vector Groups, Winding Connections, and Vector Diagrams

(continued)
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Table 2-1 (continued)
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The currents in the delta-connected load and also the symmetrical components of
line and delta currents are required to be calculated. From these calculations, the
phase shifts of positive and negative sequence components in delta windings and line
currents can be established.

The line current in c is given by

Ic ¼ � Ia þ Ibð Þ
¼ �30þ j6:0A

The currents in delta windings are

IAB ¼ 1

3
Ia � Ibð Þ ¼ �3:33þ j4:67 ¼ 5:735 < 144:51�A

IBC ¼ 1

3
Ib � Icð Þ ¼ 16:67� j5:33� 17:50 < �17:7�A

ICA ¼ 1

3
Ic � Iað Þ ¼ �13:33þ j0:67 ¼ 13:34 < 177:12�A

Calculate the sequence component of the currents IAB. This calculation gives

IAB1 ¼ 9:43 < 89:57�A

IAB2 ¼ 7:181 < 241:76�A

IAB0 ¼ 0A

Calculate the sequence component of current Ia. This calculation gives

Ia1 ¼ 16:33 < 59:57�A

Ia2 ¼ 12:437 < 271:76�A

Ia0 ¼ 0A

This shows that the positive sequence current in the delta winding is 1=
ffiffiffi
3

p
times the

line positive sequence current, and the phase displacement is þ30�, i.e.,

IAB1 ¼ 9:43 < 89:57� ¼ Ia1ffiffiffi
3

p < 30� ¼ 16:33ffiffiffi
3

p < ð59:57� þ 30�ÞA
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Figure 2-7 Balanced delta-connected load on an unbalanced three-phase power supply.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



The negative sequence current in the delta winding is 1=
ffiffiffi
3

p
times the line negative

sequence current, and the phase displacement is �30�, i.e.,

IAB2 ¼ 7:181 < 241:76� ¼ Ia2ffiffiffi
3

p < �30� ¼ 12:437ffiffiffi
3

p < ð271:76� � 30�ÞA

This example illustrates that the negative sequence currents and voltages undergo a
phase shift which is the reverse of the positive sequence currents and voltages.

The relative magnitudes of fault currents in two winding transformers for
secondary faults are shown in Fig. 2-8, on a per unit basis. The reader can verify
the fault current flows shown in this figure.
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2.6 UNSYMMETRICAL FAULT CALCULATIONS

Example 2.2

The calculations using symmetrical components can best be illustrated with an
example. Consider a subtransmission system as shown in Fig. 2-9. A 13.8-kV
generator G1 voltage is stepped up to 138 kV. At the consumer end the voltage
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Figure 2-8 Three-phase transformer connections and fault current distribution for second-
ary faults.
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is stepped down to 13.8 kV, and generator G2 operates in synchronism with the
supply system. Bus B has a 10,000-hp motor load. A line-to-ground fault occurs at
bus B. It is required to calculate the fault current distribution throughout the
system and also the fault voltages. The resistance of the system components is
ignored in the calculations.

Impedance Data

The impedance data for the system components are shown in Table 2-2. Generators
G1 and G2 are shown solidly grounded, which will not be the case in a practical
installation. A high-impedance grounding system is used by utilities for grounding
generators in step-up transformer configurations. Generators in industrial facilities,
directly connected to the load buses are low-resistance grounded, and the ground
fault currents are limited to 200–400 A. The simplifying assumptions in the example
are not applicable to a practical installation, but clearly illustrate the procedure of
calculations.

The first step is to examine the given impedance data. Generator-saturated
subtransient reactance is used in the short-circuit calculations and this is termed
positive sequence reactance; 138-kV transmission line reactance is calculated from
the given data for conductor size and equivalent conductor spacing. The zero
sequence impedance of the transmission line cannot be completely calculated from
the given data and is estimated on the basis of certain assumptions, i.e., a soil
resistivity of 100�m.

Compiling the impedance data for the system under study from the given
parameters, from manufacturers’ data, or by calculation and estimation can be
time consuming. Most computer-based analysis programs have extensive data
libraries and companion programs for calculation of system impedance data and
line constants, which has partially removed the onus of generating the data from
step-by-step analytical calculations. Appendix B provides models of line constants
for coupled transmission lines, bundle conductors, and line capacitances. References
3 and 4 provide analytical and tabulated data.

Next, the impedance data are converted to a common MVA base. A
familiarity with the per unit system is assumed. The voltage transformation ratio
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Figure 2-9 A single line diagram of power system for Example 2.2.
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of transformer T2 is 138–13.2 kV, while a bus voltage of 13.8 kV is specified, which
should be considered in transforming impedance data on a common MVA base.
Table 2-1 shows raw impedance data and their conversion into sequence
impedances.

For a single line-to-ground fault at bus B, the sequence impedance net-
work connections are shown in Fig. 2-10, with the impedance data for compo-
nents clearly marked. This figure is based on the fault equivalent circuit shown
in Fig. 2-1(b), with fault impedance Zf ¼ 0. The calculation is carried out per
unit, and the units are not stated in every step of the calculation.

The positive sequence impedance to the fault point is

Z1 ¼
jð0:25þ 0:18þ 0:04þ 0:24Þ � j0:37� j1:67

jð0:37þ 1:67Þ
jð0:25þ 0:18þ 0:04þ 0:24Þ þ j0:37� j1:67

jð0:37þ 1:67Þ
This gives Z1 ¼ j0:212:
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Table 2-2 Impedance Data for Example 2.2

Equipment Description Impedance data

Per unit
impedance 100-

MVA base

G1 13.8-kV, 60-MVA, 0.85 Subtransient reactance ¼ 15% X1 ¼ 0:25
power factor generator Transient reactance ¼ 20% X2 ¼ 0:28

Zero sequence reactance ¼ 8% X0 ¼ 0:133
Negative sequence

reactance ¼ 16:8%
T1 13.8–138 kV step-up

transformer, 50/84 MVA,
delta–wye connected, wye

neutral solidly grounded

Z ¼ 9% on 50-MVA base X1 ¼ X2 ¼ X0

¼ 0:18

L1 Transmission line, 5 miles
long, 266.8 KCMIL,

ACSR

Conductors at 15 ft (4.57 m)
equivalent spacing

X1 ¼ X2 ¼ 0:04
X0 ¼ 0:15

T2 138–13.2 kV, 30-MVA step-
down transformer, wye–

delta connected, high-
voltage wye neutral solidly
grounded

Z ¼ 8% X1 ¼ X2 ¼ X0

¼ 0:24

G2 13.8-kV, 30-MVA, 0.85 Subtransient reactance ¼ 11% X1 ¼ 0:37
power factor generator Transient reactance ¼ 15% X2 ¼ 0:55

Zero sequence reactance ¼ 6% X0 ¼ 0:20
Negative sequence reactance

¼ 16:5%
M 10,000-hp induction motor

load
Locked rotor reactance ¼ 16:7%

on motor base kVA (consider 1

hp � 1 kVAÞ

X1 ¼ 1:67
X2 ¼ 1:80
X0 ¼ 1

Resistances are neglected in the calculations.

KCMIL: Kilo-circular mils, same as MCM.

ACSR: Aluminum conductor steel reinforced.
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Z2 ¼
jð0:28þ 0:18þ 0:04þ 0:24Þ � j0:55� j1:8

jð0:55þ 1:8Þ
jð0:28þ 0:18þ 0:04þ 0:24Þ þ j0:55� j1:8

jð0:55þ 1:8
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Figure 2-10 Sequence network connections for single line-to-ground fault, (Example 2.2).
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This gives Z2 ¼ j0:266.
Z0 ¼ j0:2. Therefore,

I1 ¼
E

Z1 þ Z2 þ Z0

¼ 1

j0:212þ j0:266þ j0:2
¼ �j1:475pu

I2 ¼ I0 ¼ �j1:475

Ia ¼ I0 þ I1 þ I2 ¼ 3ð�j1:475Þ ¼ �j4:425pu

The fault currents in phases b and c are zero:

Ib ¼ Ic ¼ 0

The sequence voltages at a fault point can now be calculated:

V0 ¼ �I0Z0 ¼ j1:475� j0:2 ¼ �0:295

V2 ¼ �I2Z2 ¼ j1:475� j0:266 ¼ �0:392;

V1 ¼ E � I1Z1 ¼ I1ðZ0 þ Z2Þ ¼ 1� ð�j1:475� j0:212Þ ¼ 0:687

A check of the calculation can be made at this stage; the voltage of the faulted
phase at fault point B ¼ 0:

Va ¼ V0 þ V1 þ V2 ¼ �0:295� 0:392þ 0:687 ¼ 0

The voltages of phases b and c at the fault point are

Vb ¼ V0 þ aV1 þ a2V2

¼ V0 � 0:5ðV1 þ V2Þ � j0:866ðV1 � V2Þ
¼ �0:295� 0:5ð0:687� 0:392Þ � j0:866ð0:687þ 0:392Þ
¼ �0:4425� j0:9344

jVbj ¼ 1:034pu

Similarly,

Vc ¼ V0 � 0:5ðV1 þ V2Þ þ j0:866ðV1 � V2Þ
¼ �0:4425þ j0:9344

jVcj ¼ 1:034pu

The distribution of the sequence currents in the network is calculated from the
known sequence impedances. The positive sequence current contributed from the
right side of the fault, i.e., by G2 and motor M is

�j1:475
jð0:25þ 0:18þ 0:04þ 0:24Þ

jð0:25þ 0:18þ 0:04þ 0:24Þ þ j0:37� j1:67

jð0:37þ 1:67Þ
This gives �j1:0338. This current is composed of two components, one from the
generator G2 and the other from the motor M. The generator component is

ð�j1:0338Þ j1:67

jð0:37þ 1:67Þ ¼ �j0:8463
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The motor component is similarly calculated and is equal to �j0:1875:
The positive sequence current from the left side of bus B is

�j1:475

j0:37� j1:67

jð0:37þ 1:67Þ
jð0:25þ 0:18þ 0:04þ 0:24Þ þ j0:37� j1:67

jð0:37þ 1:67Þ
This gives �j0:441. The currents from the right side and the left side should sum to
�j1:475. This checks the calculation accuracy.

The negative sequence currents are calculated likewise and are as follows:

In generator G2 ¼ �j0:7172
In motor M ¼ �j0:2191
From left side, Bust B ¼ �j0:5387
From right side ¼ �j0:9363

The results are shown in Fig. 2-10. Again, verify that the vectorial summation at the
junctions confirms the accuracy of calculations.

Currents in generator G2

IaðG2Þ ¼ I1ðG2Þ þ I2ðG2Þ þ I0ðG2Þ
¼ �j0:8463� j0:7172� j1:475

¼ �j3:0385

jIaðG2Þj ¼ 3:0385pu

IbðG2Þ ¼ I0 � 0:5ðI1 þ I2Þ � j0:866ðI1 � I2Þ
¼ �j1:475� 0:5ð�j0:8463� j0:7172Þ � j0:866ð�j0:8463þ j0:7172Þ
¼ �0:1118� j0:6933

jIbðG2Þj ¼ 0:7023pu

IcðG2Þ ¼ I0 � 0:5ðI1 þ I2Þ þ j0:866ðI1 � I2Þ
¼ 0:1118� j0:6933

jIcðG2Þj ¼ 0:7023pu

This large unbalance is noteworthy. It gives rise to increased thermal effects due to
negative sequence currents and results in overheating of the generator rotor. A
generator will be tripped quickly on negative sequence currents.

Currents in Motor M. The zero sequence current in the motor is zero. Thus,

IaðMÞ ¼ I1ðMÞ þ I2ðMÞ
¼ �j0:1875� j0:2191

¼ �j0:4066

jIaðMÞj ¼ 0:4066pu
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IbðMÞ ¼ �0:5ð�j0:4066Þ � j0:886ð0:0316Þ ¼ 0:0274þ j0:2033

IcðMÞ ¼ �0:0274þ j0:2033

jIbðMÞj ¼ jIcðMÞj ¼ 0:2051pu

The summation of the line currents in the motor M and generator G2 are

IaðG2Þ þ IaðMÞ ¼ �j0:4066� j3:0385 ¼ �j3:4451

IbðG2Þ þ IbðMÞ ¼ �0:1118� j0:6993þ 0:0274þ j0:2033 ¼ �0:084� j0:490

IcðG2Þ þ IcðMÞ ¼ 0:1118� j0:6933� 0:0274 þ 0:2033 ¼ 0:084� j0:490

Currents from the left side of the bus B are

Ia ¼ �j0:441� j0:539

¼ �j0:98

Ib ¼ �0:5ð�j0:441� j0:5387Þ � j0:866ð�j0:441þ j0:5387Þ
¼ 0:084þ j0:490

Ic ¼ �0:084þ j0:490

These results are consistent as the sum of currents in phases b and c at the fault
point from the right and left side is zero and the summation of phase a currents gives
the total ground fault current at b ¼ �j4:425. The distribution of currents is shown
in a three-line diagram (Fig. 2-11).

Continuing with the example, the currents and voltages in the transformer T2

windings are calculated. We should correctly apply the phase shifts for positive and
negative sequence components when passing from delta secondary to wye primary of
the transformer. The positive and negative sequence current on the wye side of
transformer T2 are

I1ðpÞ ¼ I1 < 30� ¼ �j0:441 < 30� ¼ 0:2205� j0:382

I2ðpÞ ¼ I2 < �30� ¼ �j0:539 < �30� ¼ �0:2695� j0:4668

Also, the zero sequence current is zero. The primary currents are

IaðpÞ ¼ I0 þ I1ðpÞ þ I2ðpÞ

0:441 < 300� þ 0:5397 < 240� ¼ �0:049� j0:8487

IbðpÞ ¼ a2I1ðpÞ þ aI2ðpÞ ¼ �0:0979

IcðpÞ ¼ aI1ðpÞ þ a2I2ðpÞ ¼ �0:049� j0:8487

Currents in the lines on the delta side of the transformer T1 are similarly
calculated. The positive sequence component, which underwent a 30� positive shift
from delta to wye in transformer T2, undergoes a �30� phase shift; as for an ANSI
connected transformer it is the low-voltage vectors which lag the high-voltage side
vectors. Similarly, the negative sequence component undergoes a positive phase shift.
The currents on the delta side of transformers T1 and T2 are identical in amplitude
and phase. Figure 2-11 shows the distribution of currents throughout the distribu-
tion system.
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The voltage on the primary side of transformer T2 can be calculated. The
voltages undergo the same phase shifts as the currents. Positive sequence voltage
is the base fault positive sequence voltage, phase shifted by 30� (positive) minus the
voltage drop in transformer reactance due to the positive sequence current:

V1ðpÞ ¼ 1:0 < 30� � jI1ðpÞX1t

¼ 1:0 < 30� � ðj0:441 < 30�Þð�j0:24Þ
¼ 0:958þ j0:553

V2ðpÞ ¼ 0� I2ðpÞX2t

¼ �ð0:539 < �30�Þð0:24 < 270�Þ
¼ 0:112� j0:0647

Thus,

VaðpÞ ¼ 0:9577 ¼ j0:553þ 0:112� j0:0647 ¼ 1:0697þ j0:4883 ¼ 1:17 < 24:5�

VbðpÞ ¼ �0:5ðV1ðpÞ þ V2ðpÞÞ � j0:866ðV1ðpÞ � V2ðpÞÞ
¼ �j0:9763

VcðpÞ ¼ �0:5ðV1ðpÞ þ V2ðpÞÞ � j0:866ðV2ðpÞ � V1ðpÞÞ
¼ �1:0697þ j0:4883 ¼ 1:17 < 155:5�

Note the voltage unbalance caused by the fault.
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Figure 2-11 Three-line diagram of fault current distribution, (Example 2.2).
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2.7 SYSTEM GROUNDING AND SEQUENCE COMPONENTS

The alternating current power system grounding is concerned with the nature and
location of an intentional electric connection between the electrical system phase
conductors and ground. The utility systems at high-voltage transmission level,
subtransmission level, and distribution level are solidly grounded. The utility
generators connected through step-up transformers are invariably high-resistance
grounded. The industrial systems at medium-voltage level are low-resistance
grounded. Recent trends for low-voltage industrial systems are high-resistance
grounded systems for continuity of processes in a continuous process plant. It is
not the intention here to describe the power system grounding methods or their
characteristics, except to point out the role of symmetrical components and fault
current calculations that are often required for these systems.

In a solidly grounded system, no intentional impedance is introduced between
the system neutral and ground. These systems meet the requirement of ‘‘effectively
grounded’’ systems in which the ratio X0=X1 is positive and less than 3.0 and the
ratio R0=X0 is positive and less than 1, where X1, X0, and R0 are the positive
sequence reactance, zero sequence reactance, and zero sequence resistance, respec-
tively. The coefficient of grounding (COG) is defined as a ratio of ELG=ELL in
percentage, where ELG is the highest rms voltage on a sound phase, at a selected
location, during a fault affecting one or more phases to ground, and ELL is the rms
phase-to-phase power frequency voltage that is obtained at the same location with
the fault removed. Calculations in Example 2.2 show the fault voltage rises on
unfaulted phases. Solidly grounded systems are characterized by a COG of 80%.
By contrast, for ungrounded systems, definite values cannot be assigned to ratios X0=
X1 and R0=X0. The ratio X0=X1 is negative and may vary from low to high values.
The COG approaches 120%. For values of X0=X1 between 0 and �40, a possibility
of resonance with consequent generation of high voltages exists. The COG affects
the selection of rated voltage of the surge arresters and stresses on the insulation
systems. The overvoltages based on relative values of sequence impedances are
plotted in Ref. 4.

In impedance grounded systems, an intentional low or high impedance is
introduced between the neutral and ground. In a high-resistance grounded system,
the resistance is calculated so that Ir is at least equal to Ic, where Ir is the current
through the resistor and Ic is the system capacitance current returning to ground due
to distributed phase capacitances of the power system equipment like motors, cables,
and transformers. The total ground current is therefore

ffiffiffi
2

p
Ic.

Example 2.3

Figure 2-12(a) shows a 5-MVA 34.5–2.4 kV delta–delta transformer serving indus-
trial motor loads. It is required to derive an artificial neutral through a wye–delta
connected transformer and high-resistance ground the 2.4-kV secondary system
through a grounding resistor. The capacitance charging current of the system is
8A. Calculate the value of the resistor to limit the ground fault current through
the resistor to 10 A. Neglect transformer resistance and source resistance.

The connection of sequence networks is shown in Fig. 2-12(b) and the given
impedance data reduced to a common100-MVA base are shown in Table 2-3. Motor
wye-connected neutrals are left ungrounded in the industrial systems, and therefore
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motor zero sequence impedance is infinite. (This contrasts with grounding practices
in some European countries, where the motor neutrals are grounded.) The source
zero sequence impedance can be calculated based on the assumption of equal posi-
tive and negative sequence reactances. The motor voltage is 2.3 kV and, therefore its
per unit reactance on 100-MVA base is given by

16:7

1:64

� �
2:3

2:4

� �2

¼ 9:35

Similarly, the grounding transformer per unit calculations should be adjusted
for correct voltages:

X0 ¼
1:5

0:06

� �
2:4

2:4=
ffiffiffi
3

p
� �

¼ 75

The equivalent positive and negative sequence reactances are: 1.41 per unit each. The
zero sequence impedance of the grounding transformer is 50þ j75 per unit. The total
fault current should be limited to 10-j8 ¼ 12:80 amperes. Thus, the required impe-
dance is
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Figure 2-12 (a) Artificially derived neutral grounding in a delta–delta system through a

wye–delta grounding transformer, (Example 2.3); (b) connection of sequence impedances for
high-resistance fault calculations, (Example 2.3).

(a)
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Zt ¼
2400=

ffiffiffi
3

p

12:8=3

� �
¼ 324:8 ohms

The base ohms (100-MVA baseÞ ¼ 0:0576. The required Zt ¼ 324:8=base
ohms ¼ 5638:9 per unit. This shows that the system positive and negative sequence
impedances are low compared to the desired total impedance in the neutral circuit.
The system positive and negative sequence impedances can, therefore, be neglected.

IR0 ¼ 10=3 ¼ 3:33 A. Therefore, ZR0 ¼ ð2400= ffiffiffi
3

p Þ=3:33 ¼ 416:09 ohms ¼
416:09=base ohms ¼ 7223:9 per unit. The additional resistor to be inserted:

RR0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z2

R0 � X2
t0

q
� Rt0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7223:92 � 752

p
� 50

¼ 7173:5 per unit

Multiplying by base ohms, the required resistance ¼ 413:2 ohms:
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Figure 2-12 (continued)
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These values are in symmetrical component equivalents. In actual values, referred to
120 V secondary, the resistance value is

RR ¼ 120

2400

� �2

413:2� 3 ¼ 3:1 ohms

If we had ignored all the sequence impedances, including that of the ground-
ing transformer, the calculated value is 3.12 ohms. This is often done in the
calculations for grounding resistance for high-resistance grounded systems, and
all impedances including that of the grounding transformer can be ignored without
appreciable error in the final results. The grounding transformer should be rated to
permit continuous operation, with a ground fault on the system. The per phase
grounding transformer kVA requirement is 4:16� 3:33A ¼ 13:8 kVA, i.e., a total
of 13:8� 3 ¼ 41:5 kVA. The grounding transformer of the example is, therefore,
adequately rated.

2.8 OPEN CONDUCTOR FAULTS

Symmetrical components can also be applied to the study of open conductor faults.
These faults are in series with the line and are called series faults. One or two
conductors may be opened, due to mechanical damage or by operation of fuses
on unsymmetrical faults.

2.8.1 Two-Conductor Open Fault

Consider that conductors of phases b and c are open-circuited. The currents in these
conductors then go to zero.

Ib ¼ Ic ¼ 0 ð2:23Þ
The voltage across the unbroken phase conductor is zero, at the point of break, Fig.
2-13(a).
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Table 2-3 Impedance Data for Example 2.3—High-Resistance Grounding

Equipment Given data
Per unit impedance on

100-MVA base

34.5-kV source Three-phase fault ¼ 1500MVA Xs1 ¼ Xs2 ¼ 0:067
Line-to-ground fault ¼ 20 kA sym Xs0 ¼ 0:116

34.5–2.4 kV, 5-MVA
transformer, delta–delta
connected

X1 ¼ X2 ¼ X0 ¼ 8% Xt1 ¼ Xt2 ¼ Xt0 ¼ 1:60

2.3 kV 1800-hp (1640 kVA)

induction motor load

Locked rotor reactance ¼ 16:7%
(on motor base kVA)

Xm1 ¼ Xm2 ¼ 9:35

Grounding transformer, X0 ¼ 1:5% X0 ¼ 75
60-kVA, wye–delta

connected 2400:120 V

R0 ¼ 1:0% R0 ¼ 50
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Va0 ¼ Vao1 þ Vao2 þ Va0 ¼ 0

Ia1 ¼ Ia2 ¼ Ia0 ¼
1

3
Ia

ð2:24Þ

This suggests that sequence networks can be connected in series as shown in Fig.
2-13(b).

2.8.2 One Conductor Open

Now consider that phase a conductor is broken, Fig. 2-14(a)

Ia ¼ 0 Vb0 � Vc0 ¼ 0 ð2:25Þ
Thus,

Vao1 ¼ Vao2 ¼ Vao0 ¼
1

3
Vao

Iai þ Ia2 þ Ia0 ¼ 0

ð2:26Þ
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Figure 2-13 (a) Two-conductor open series fault; (b) connection of sequence networks.
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This suggests that sequence networks are connected in parallel, Fig. 2-14(b).

Example 2.4

Consider that one conductor is broken on the high-voltage side at the point marked
O in Fig. 2-9. The equivalent circuit is shown in Fig. 2-15.

An induction motor load of 10,000 hp was considered in the calculations for a
single-line-to-ground fault in Example 2.2. All other static loads, i.e., lighting and
resistance heating loads, were ignored, as these do not contribute to short-circuit
currents. Also, all drive system loads, connected through converters, are ignored,
unless the drives are in a regenerative mode. If there are no loads and a broken
conductor fault occurs, no load currents flow.

Therefore, for broken conductor faults all loads, irrespective of their types,
should be modeled. For simplicity of calculations, again consider that a 10,000-hp
induction motor is the only load. Its positive and negative sequence impedances for
load modeling will be entirely different from the impedances used in short-circuit
calculations.
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Figure 2-14 (a) One-conductor open series fault; (b) connection of sequence networks.
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Chapter 12 discusses induction motor equivalent circuits for positive and nega-
tive sequence currents. The range of induction motor impedances per unit (based
upon motor kVA base) are

Xlr ¼ 0:14� 0:2 < 83� � 75�

Xþ
load ¼ 0:9� 0:95 < 20� � 26�

X�
load � Xlr

ð2:27Þ

where Xlr ¼ induction motor locked rotor reactance at its rated voltage, Xþ
load ¼

positive sequence load reactance, and X�
load ¼ negative sequence load reactance.

The load impedances for the motor are as shown in Fig. 2-15. For an open
conductor fault as shown in this figure, the load is not interrupted. Under normal
operating conditions, the motor load is served by generator G2, and in the system of
Fig. 2-15 no current flows in the transmission line L. If an open conductor fault
occurs, generator G2, operating in synchronism, will trip on operation of negative
sequence current relays. To proceed with the calculation assume that G2 is out of
service, when the open conductor fault occurs.

The equivalent impedance across an open conductor is
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Figure 2-15 Equivalent circuit of an open conductor fault, (Example 2.4).
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ðj0:25þ j0:18þ j0:08þ j0:24þ 9:9þ j4:79Þpos
þ j0:28þ j0:18þ j0:04þ j0:24þ 0:20þ j1:65ð Þnegk
h
j0:18þ j0:15þ j0:24ð Þzero

�
¼ 9:918þ j6:771 ¼ 12:0 < 34:32�

The motor load current is

0:089 < �25:84� pu (at 0:9 power factor ½PF�Þ
The load voltage is assumed as the reference voltage, thus the generated voltage is:

Vg ¼ 1 < 0� þ ð0:089 < �25:84�Þðj0:25þ j0:18þ j0:04þ j0:24Þ
¼ 1:0275þ j0:0569 ¼ 1:0291 < 3:17�

The positive sequence current is

I1g ¼ VG=Zt ¼
1:0291 < 3:17�

12:00 < 34:32�

	 


¼ 0:0857 < 31:15� ¼ 0:0733þ j0:0443

The negative sequence and zero sequence currents are

I2g ¼ �I1g
Z0

Z2 þ Z0

¼ ð0:0857 < 31:15�Þ 0:53 < 90�

2:897 < 86:04�

	 


0:0157 < 215:44�

I0g ¼ �I1g
Z2

Z2 þ Z0

¼ 0:071 < 210:33�

Calculate line currents:

Iag ¼ I1g þ I2g þ I0g ¼ 0

Ibg ¼ a2I1g þ aI2g þ I0g ¼ 0:1357 < 250:61�

Icg ¼ 0:1391 < �8:78�

The line currents in the two phases are increased by 52%, indicating serious
overheating. A fully loaded motor will stall. The effect of negative sequence currents
in the rotor is simulated by the equation:

I2 ¼ I21 þ kI22 ð2:28Þ
where k can be as high as 6. The motors are disconnected from service by anti single
phasing devices and protective relays.

The ‘‘long way’’ of calculation using symmetrical components, illustrated by
the examples, shows that, even for simple systems, the calculations are tedious and
lengthy. For large networks consisting of thousands of branches and nodes these are
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impractical. There is an advantage in the hand calculations, in the sense that ver-
ification is possible at each step and the results can be correlated with the expected
final results. For large systems, matrix methods and digital simulation of the systems
are invariable. This gives rise to an entirely new challenge for analyzing the cryptical
volumes of analytical data, which can easily mask errors in system modeling and
output results.

Problems

1. A double line-to-ground fault occurs on the high-voltage terminals of
transformer T2 in Fig. 2-9. Calculate the fault current distribution and
the fault voltages throughout the system, similar to Example 2.2.

2. Repeat Problem 1 for a line-to-line fault and then for a line-to-ground
fault.

3. Calculate the percentage reactance of a 60/100 MVA, 13.8–138 kV trans-
former in Fig. 2-P1 to limit the three-phase fault current at bus A to 28
kA symmetrical. for a three-phase symmetrical fault at the bus. Assume
only nondecaying ac component of the short-circuit current and neglect
resistances.

4. In Problem 3, another similar generator is to be added to bus A. What is
the new short-circuit current? What can be done to limit the three-phase
short-circuit level at this bus to 36 kA?

5. Calculate the three-phase and single line-to-ground fault current for a
fault at bus C, for the system shown in Fig. 1-P1, Chapter 1. As all the
generators are connected through delta–wye transformers, and delta
windings block the zero-sequence currents, does the presence of genera-
tors (1) increase, (2) decrease, or (3) have no effect on the single line-to-
ground fault at bus C.

6. In Problem 5 list the fault types in the order of severity, i.e., the magni-
tude of the fault current.
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Figure 2-P1 Distribution system for Problem 3.
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7. Calculate the three-phase symmetrical fault current at bus 3 in the system
configuration of Fig. 2-P2. Neglect resistances.

8. Figure 2-P3 shows an industrial system motor load being served from a
115-kV utility’s system through a step-down transformer. A single line-to-

70 Chapter 2

Figure 2-P2 System configuration for Problem 7.

Figure 2-P3 System configuration for Problem 8.
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ground fault occurs at the secondary of the transformer terminals. Specify
the sequence network considering the motor load. Consider a load oper-
ating power factor of 0.85 and an overall efficiency of 94%. Calculate the
fault current.

9. A wye–wye connected transformer, with neutral isolated and a tertiary
close-circuited delta winding serves a single phase load between two
phases of the secondary windings. A 15-ohm resistance is connected
between two lines. For a three-phase balanced supply voltage of 480V
between the primary windings, calculate the distribution of currents in all
the windings. Assume a unity transformation ratio.

10. Calculate the COG factor in Example 2.2 for all points where the fault
voltages have been calculated.

11. Why is it permissible to ignore all the sequence impedances of the system
components and base the fault current calculations only on the system
voltage and resistance to be inserted in the neutral circuit when designing
a high-resistance grounded system?

BIBLIOGRAPHY

1. WD Stevenson. Elements of Power System Analysis. 4th ed. New York: McGraw-Hill,

1982.
2. CA Gross. Power System Analysis. New York: John Wiley, 1979.
3. GO Calabrase. Symmetrical Components Applied to Electric Power Networks. New

York: Ronald Press Group, 1959.
4. JL Blackburn. Symmetrical Components for Power Systems Engineering. New York:

Marcel Dekker, 1993.
5. DR Smith. Digital Simulation of Simultaneous Unbalances Involving Open and Faulted

Conductors. IEEE Trans PAS, Vol. 89, No. 8. 1970, pp 1826–1835.

REFERENCES

1. Transformer Connections (Including Auto-transformer Connections). General Electric,
Publication no. GET-2H, Pittsfield, MA, 1967.

2. ANSI/IEEE. General Requirements of Liquid Immersed Distribution, Power and

Regulating Transformers. Standard C57.12.00-1987.
3. ANSI. Terminal Markings and Connections for Distribution and Power Transformers.

Standard C57.12.70-1978.

4. Electrical Transmission and Distribution Reference Book. 4th ed. Westinghouse Electric
Corp., East Pittsburgh, PA, 1964.

Unsymmetrical Fault Calculations 71

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



3

Matrix Methods for Network Solutions

Calculations for the simplest of power systems, i.e., Example 2.2, are involved and
become impractical. For speed and accuracy, modeling on digital computers is a
must. The size of the network is important. Even the most powerful computer may
not be able to model all the generation, transmission, and consumer connections of a
national grid, and the network of interest is ‘‘islanded’’ with boundary conditions
represented by current injection or equivalent circuits. Thus, for performing power
system studies on a digital computer, the first step is to construct a suitable math-
ematical model of the power system network, and define the boundary conditions.
As an example, for short-circuit calculations in industrial systems, the utility’s con-
nection can be modeled by sequence impedances, which remain invariant. This gen-
eralization may not, however, be valid in every case. For a large industrial plant,
with cogeneration facilities, and the utility’s generators located close to the industrial
plant, it will be necessary to extend the modeling into the utility’s system. The type of
study also has an effect on the modeling of the boundary conditions. For the steady-
state analysis this model describes the characteristics of the individual elements of the
power system and also the interconnections.

A transmission or distribution system network is an assemblage of a linear,
passive, bilateral network of impedances connected in a certain manner. The points
of connections of these elements are described as buses or nodes. The term bus is
more prevalent and a bus may be defined as a point where shunt elements are
connected between line potential and ground, though it is not a necessary require-
ment. A bus may be defined in a series circuit as the point at which a system
parameter, i.e., current or voltage, needs to be calculated. The generators and
loads are also connected to buses or nodes.

Balanced three-phase networks can be described by equivalent positive
sequence elements with respect to a neutral or ground point. An infinite conducting
plane of zero impedance represents this ground plane, and all voltages and currents

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



are measured with reference to this plane. If the ground is not taken as the reference
plane, a bus known as a slack or swing bus is taken as the reference bus and all the
variables are measured with reference to this bus.

3.1 NETWORK MODELS

Mathematically, the network equations can be formed in the bus (or nodal) frame of
reference, in the loop (or mesh) frame of reference, or in the branch frame of
reference. The bus frame of reference is important. The equations may be repre-
sented using either impedance or admittance parameters.

In the bus frame of reference, the performance is described by n� 1 linear
independent equations for n number of nodes. As stated earlier, the reference
node, which is at ground potential, is always neglected. In the admittance form,
the performance equation can be written as

�IIB ¼ �YYB
�VVB ð3:1Þ

where �IIB is the vector of injection bus currents. The usual convention for the flow of
current is that it is positive when flowing toward the bus, and negative when flowing
away from the bus. �VVB is the vector of bus or nodal voltages measured from the
reference node, and �YYB is the bus admittance matrix. Expanding Eq. (3.1):

I1

I2

:

Iðn�1Þ

�����������

�����������
¼

Y11 Y12 : Y1;n�1

Y21 Y22 : Y2;n�1

: : : :

Yðn�1Þ;1 Yðn�1Þ;2 : Yðn�1Þ;ðn�1Þ

�����������

�����������

V1

V2

:

Vn�1

�����������

�����������
ð3:2Þ

�YYB is a nonsingular square matrix of order ðn� 1Þðn� 1Þ. It has an inverse:

�YY�1
B ¼ �ZZB ð3:3Þ

where �ZZB is the bus impedance matrix. Equation (3.3) shows that this matrix can
be formed by inversion of the bus admittance matrix; �ZZB is also of the order
ðn� 1Þðn� 1Þ. It also follows that

�VVB ¼ �ZZB
�IIB ð3:4Þ

3.2 BUS ADMITTANCE MATRIX

We note the similarity of the bus impedance and admittance matrices; however, there
are differences in their formation and application as we will examine. In the impe-
dance matrix the voltage equations are written in terms of known constant voltage
sources, known impedances, and unknown loop currents. In the admittance matrix,
current equations are written in terms of known admittances and unknown node
voltages. The voltage source of Thévenin branch equivalent acting through a series
impedance Z is replaced with a current source equal to EY , in parallel with an
admittance Y ¼ 1=Z, according to Norton’s current equivalent. The two circuits
are essentially equivalent, and the terminal conditions remain unaltered. These net-
works deliver at their terminals a specified current or voltage irrespective of the state
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of the rest of the system. This may not be true in every case. A generator is neither a
true current nor a true voltage source.

The formation of a bus admittance matrix for a given network configuration is
straightforward. Figure 3-1(a) shows a five-node impedance network with three
voltage sources, Ex, Ey, and Ez; Fig. 3-1(b) shows the admittance equivalent network
derived from the impedance network. The following current equations can be written
for each of the nodes 1–5. Note that node 0 is the reference node. Five independent
node-pair voltages are possible, measured from node 0 to the other nodes. As node 0
is taken as the reference node, there is one node–voltage pair less than the number of
the nodes. The current equation at node 1 is

ExYa þ EyYa ¼ V01Ya þ V01 � V03ð ÞYb þ V01 � V02ð ÞYc

ExYa ¼ V01 Ya þ Yb þ Ycð Þ � V02Yc � V03Yb

ð3:5Þ

Similarly, for node 2:

EzYe ¼ V02 Yc þ Yd þ Yeð Þ � V01Yc � V04Yd � V05Ye ð3:6Þ
and equations for nodes 3–5 are

Node 3: � EyYb ¼ V03 Yb þ Yf þ Yg

� �� V01Yb � V04Yg ð3:7Þ
Node 4: 0 ¼ V04 Yd þ Yg þ Yh

� �� V02Yd � V03Vg � V05Yh ð3:8Þ
Node 5: � EzYe ¼ V05 Yh þ Yeð Þ � V02Ye � V04Yh ð3:9Þ
In writing these equations, the direction of current flow must be properly

accounted for by change of sign. If a source current arrow is directed away from
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Figure 3-1 (a) Network with voltage sources; (b) identical network with Norton equivalent

current sources.
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the node, a minus sign is associated with the term. The above equations can be
written in the matrix form:

ExYa þ EyYb

EZYe

�EyYb

0

�EzYe

��������������

��������������

¼

ðYa þ Yb þ YcÞ �Yc �Yb 0 0

�Yc ðY
c
þ Yd þ YcÞ 0 �Yd �Ye

�Yb 0 ðYb þ Yf þ YgÞ �Yg 0

0 �Yd �Yg ðYd þ Yg þ YhÞ �Yh

0 �Ye 0 �Yh ðYh þ YeÞ

��������������

��������������
�

V01

V02

V03

V04

V05

��������������

�������������� (3.10)

For a general network with nþ 1 nodes:

�YY ¼

Y11 Y12 : Y1n

Y21 Y22 : Y2n

: : : :

Yn1 Yn2 : Ynn

�����������

�����������
ð3:11Þ

where each admittance Yii ði ¼ 1; 2; 3; 4; . . .Þ is the self-admittance or driving point
admittance of node i, given by the diagonal elements, and it is equal to an algebraic
sum of all admittances terminating in that node. Yik ði; k ¼ 1; 2; 3; 4 . . .Þ is the mutual
admittance between nodes i and k or transfer admittance between nodes i and k and
is equal to the negative of the sum of all admittances directly connected between
those nodes. The current entering a node is given by

Ik ¼
Xn
n¼1

YknVn ð3:12Þ

To find an element, say, Y22, the following equation can be written:

I2 ¼ Y21V1 þ Y22V2 þ Y23V3 þ � � � þ Y2nVn ð3:13Þ
The self-admittance of a node is measured by shorting all other nodes and finding the
ratio of the current injected at that node to the resulting voltage (Fig. 3-2):

Y22 ¼
I2
V2

V1 ¼ V3 ¼ � � �Vn ¼ 0ð Þ ð3:14Þ
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Similarly, the transfer admittance is

Y21 ¼
I2
V1

V2 ¼ V3 ¼ � � �Vn ¼ 0ð Þ ð3:15Þ

Example 3.1

Figure 3-3(a) shows a simple network of three buses with series and shunt elements.
Numerical values of circuit elements are impedances. The shunt resistors may repre-
sent unity power factor loads. Write the bus admittance matrix by examination and
by use of Eqs (3.14) and (3.15).

The bus admittance matrix is formed by inspection. At node 1 the self admit-
tance Y11 is 1þ 1=j0:2 ¼ 1� j5, and the transfer admittance between node 1 and 2,
Y12 ¼ �ð1=j0:2Þ ¼ j5. Similarly, the other admittance elements are easily calculated:

�YYB ¼
Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y32 Y33

��������

��������

¼
1� j5 j5 0

j5 0:5� j8:33 j3:33

0 j3:33 0:33� j3:33

��������

��������

ð3:16Þ

Alternatively, the bus admittance matrix can be constructed by use of Eqs
(3.14) and (3.15). Apply unit voltages, one at a time, to each bus while short-circuit-
ing the other bus voltage sources to ground. Figure 3-3(b) shows unit voltage applied
to bus 1, while buses 2 and 3 are short-circuited to ground. The input current I to bus
1 gives the driving point admittance. This current is given by

V

1:0
þ V

j0:2
¼ 1� j5 ¼ Y11
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Figure 3-2 Calculations of self-admittance in a network, with unit voltage applied at a bus
and other buses short-circuited to ground or reference node.
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Bus 2 is short-circuited to ground; the current flowing to bus 2 is

�V

j0:2
¼ Y12 ¼ Y21

Matrix Methods for Network Solutions 77

Figure 3-3 (a) Network for Examples 3.1 and 3.2; (b) calculation of admittance elements by
unit voltage injection; (c) calculation of impedance elements by unit current injection; (d)

diagram of network.
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Only buses directly connected to bus 1 have current contributions. The current
flowing to bus 3 is zero:

Y13 ¼ Y31 ¼ 0

The other elements of the matrix can be similarly found and the result obtained is the
same as in Eq. (3.16).

3.3 BUS IMPEDANCE MATRIX

The bus impedance matrix for ðnþ 1Þ nodes can be written as

V1

V2

�
Vm

�����������

�����������
¼

Z11 Z12 � Z1m

Z21 Z22 � Z2m

� � � �
Zm1 Zm2 � Zmm

�����������

�����������

I1

I2

�
Im

�����������

�����������
ð3:17Þ

Unlike the bus admittance matrix, the bus impedance matrix cannot be formed by
simple examination of the network circuit. The bus impedance matrix can be formed
by the following methods:

. Inversion of the admittance matrix

. By open circuit testing

. By step-by-step formation

. From graph theory.

Direct inversion of the Y matrix is rarely implemented in computer applica-
tions. Certain assumptions in forming the bus impedance matrix are:

1. The passive network can be shown within a closed perimeter, (Fig. 3-4). It
includes the impedances of all the circuit components, transmission lines,
loads, transformers, cables, and generators. The nodes of interest are
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Figure 3-4 Representation of a network as passive elements with loads and faults excluded.

The nodes of interest are pulled out of the network and unit voltage is applied at the common
node.
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brought out of the bounded network, and it is excited by a unit generated
voltage.

2. The network is passive in the sense that no circulating currents flow in the
network. Also, the load currents are negligible with respect to the fault
currents. For any currents to flow an external path (a fault or load) must
exist.

3. All terminals marked 0 are at the same potential. All generators have the
same voltage magnitude and phase angle and are replaced by one equiva-
lent generator connected between 0 and a node. For fault current calcula-
tions a unit voltage is assumed.

3.3.1 Bus Impedance Matrix from Open-Circuit Testing

Consider a passive network with m nodes as shown in Fig. 3-5 and let the voltage at
node 1 be measured when unit current is injected at bus 1. Similarly, let the voltage
at bus 1 be measured when unit current is injected at bus 2. All other currents are
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Figure 3-5 (a, b) Equivalent networks for calculations of Z11 and Z12 for formation of bus

impedance matrix.
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zero and the injected current is ¼ 1 per unit. The bus impedance matrix equation
(3.17) then becomes:

V1

V2

�
Vm

���������

���������
¼

Z11

Z21

�
Zm1

���������

���������
ð3:18Þ

where Z11 can be defined as the voltage at bus 1 when one per unit current is injected
at bus 1. This is the open circuit driving point impedance. Z12 is defined as voltage at
bus 1 when one per unit current is injected at bus 2. This is the open-circuit transfer
impedance between buses 1 and 2. Z21 is defined as voltage at bus 2 when one per unit
current is injected at bus 1. This is the open-circuit transfer impedance between buses
2 and 1. Generally,

Z12 ¼ Z21 ð3:19Þ
To summarize, the open-circuit driving point impedance of bus i is determined

by injecting a unit current between bus i and the reference node and keeping all other
buses open circuited. This gives the diagonal elements of the bus impedance matrix.
The open-circuit transfer impedance between buses i and j is found by applying a
unit current between bus i and the reference node and measuring the voltage at bus j,
while keeping all other buses open circuited. This gives the off-diagonal elements.

Example 3.2

Find the bus impedance matrix of Example 3.1 by inversion and also by open-circuit
testing.

The inversion of the admittance matrix in Eq. (3.16), calculated in Example
3.1, gives

�ZZB ¼
0:533þ j0:05 0:543� j0:039 0:533� j0:092

0:543� j0:039 0:55þ j0:069 0:552þ j0:014

0:533� j0:092 0:522þ j0:014 0:577þ j0:258

��������

�������� ð3:20Þ

From Eq. (3.20) we note that the zero elements of the bus admittance matrix get
populated in the bus impedance matrix. As we will discover, the admittance matrix
for power system networks is sparse and this sparsity is lost in the impedance matrix.

The same bus impedance matrix can be constructed from the open-circuit test
results. Unit currents are injected, one at a time, at each bus and the other current
sources are open circuited. Figure 3-3(c) shows unit current injected at bus 1 with bus
3 current source open circuited. Z11 is given by voltage at node 1 divided by current
I1ð¼ 1:0 per unit):

1 2þ j0:02ð Þ½ �� 3þ j0:03ð Þ�� � ¼ Z11 ¼ 0:533þ j0:05

The injected current divides as shown in Fig. 3-3(c). Transfer impedance Z12 ¼ Z21

at bus 2 is the potential at bus 2. Similarly, the potential at bus 3 gives Z13 ¼ Z31.
The example shows that this method of formation of bus impedance matrix is
tedious.
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3.4 LOOP ADMITTANCE AND IMPEDANCE MATRICES

In the loop frame of reference:

�VVL ¼ �ZZL
�IIL ð3:21Þ

where �VVL is the vector of loop voltages, �IIL is the vector of unknown loop currents,
and �ZZL is the loop impedance matrix of order l � l; �ZZL is a nonsingular square
matrix and it has an inverse:

�ZZ�1
L ¼ �YYL ð3:22Þ

where �YYB is the loop admittance matrix. We can write:

�IIL ¼ �YYL
�VVL ð3:23Þ

It is important to postulate the following:

. The loop impedance matrix can be constructed by examination of the net-
work. The diagonal elements are the self-loop impedances and are equal
to the sum of the impedances in the loop. The off-diagonal elements are
the mutual impedances and are equal to the impedance of the elements
common to a loop.

. The loop admittance matrix can only be constructed by inversion of the loop
impedance matrix. It has no direct relation with the actual network com-
ponents.

Compare the formation of bus and loop impedance and admittance matrices.
The loop impedance matrix is derived from basic loop-impedance equations. It

is based on Kirchoff’s voltage law which states that voltage around a closed loop
sums to zero. A potential rise is considered positive and a potential drop, negative.
Consider the simple network of Fig. 3-6. Three independent loops can be formed as
shown in this figure, and the following equations can be written:

E1 ¼ I1ðZ1 þ Z2Þ � I2Z2

0 ¼ �I1Z2 þ I2ðZ2 þ Z3Þ � I3Z4

�E2 ¼ 0� I2Z4 þ I3ðZ4 þ Z5Þ
ð3:24Þ

In the matrix form, these equations can be written as:

E1

0

�E2

��������

�������� ¼
Z1 þ Z2 �Z2 0

�Z2 Z2 þ Z3 �Z4

0 �Z4 Z4 þ Z5

��������

��������
I1

I2

I3

��������

�������� ð3:25Þ
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Figure 3-6 Network with correct choice of loop currents.
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The impedance matrix in the above example can be written without writing the
loop equations and by examining the network. As stated before, the diagonal ele-
ments of the matrix are the self-impedances around each loop, while off-diagonal
elements are the impedances common to coupled loops. An off-diagonal element is
negative when it carries a current in a loop in the opposite direction to the current in
the coupled loop.

3.4.1 Selection of Loop Equations

The selection of loop equations is arbitrary, yet there are certain limitations in
forming these equations. The selection should result in a sufficient number of inde-
pendent voltage equations. As an example, in Fig. 3-7 the selection of loop currents,
I1 and I2 is not adequate. An additional loop current marked I3 must be selected.

3.5 GRAPH THEORY

Linear network graphs help in the assembly of a network. The problem for large
networks can be stated that a minimum number of linearly independent equations of
zero redundancy must be selected to provide sufficient information for the solution
of the network.

A topographical graph or map of the network is provided by shorting
branch emfs, opening branch current sources, and considering all branch impe-
dances as zero. The network is, thus, replaced by simple lines joining the nodes.
A linear graph depicts the geometric interconnections of the elements of a net-
work. A graph is said to be connected only if there is a path between every pair
of nodes. If each element is assigned a direction, it is called an oriented graph.
The direction assignment follows the direction assumed for the current in the
element.

Consider the network of Fig. 3-8(a). It is required to construct a graph.
First, the network can be redrawn as shown in Fig. 3-8(b). Each source and the
shunt admittance across it are represented by a single element. Its graph is shown
in Fig. 3-8(c). It has a total of nine branches, which are marked from 1 through 9.
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Figure 3-7 Incorrect choice of loop currents in the network when only two loops I1 and I2
are selected. I3 must be selected.
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The node or vertex of a graph is the end point of a branch. In Fig. 3-8(c), the
nodes are marked as 0–4. Node 0 is at ground potential. A route traced out
through a linear graph which goes through a node no more than one time is
called a path.

The tree-link concept is useful when large systems are involved. A tree of the
network is formed which includes all the nodes of a graph, but no closed paths.
Thus, a tree in a subgraph of a given connected graph, which has the following
characteristics:

. It is connected

. It contains all the nodes of the original graph

. It does not contain any closed paths.

Figure 3-8(d) shows a tree of the original graph. The elements of a tree are called tree
branches. The number of branches B is equal to the number of nodes minus 1, which
is the reference node:

B ¼ n� 1 ð3:26Þ
The number of tree branches in Fig. 3-8(d) is four, one less than the number of
nodes. The elements of the graph that are not included in the tree are called links or
link branches and they form a subgraph, which may or may not be connected. This
graph is called a cotree. Figure 3-8(e) shows the cotree of the network. It has five
links. Each link in the tree will close a new loop and a corresponding loop equation is
written. Whenever a link closes a loop, a tie-set is formed, which contains one link
and one or more branches of the established tree. A tree and cotree of a graph are
not unique. A set of branches of a connected graph is called a cut-set, if the following
properties hold:

. If the branches of the cutset are removed, the graph is split into two parts,
which are not connected.

. No subset of the above set has this property. This ensures that no more than
the minimum number of branches are included in the cut-set.

Basic cut-sets are those which contain only one branch and, therefore, the
number of basic cut-sets is equal to the number of branches. An admittance matrix
can be formed from the cut-sets. The network is divided into pieces of cut-sets and
Kirchoff’s current law must be satisfied for each cut-set line. No reference node need
be given. The various cut-sets for the tree in Fig. 3-8(d) are as shown in Fig. 3-8(f).

A loop which is formed by closing only one link is called a basic loop. The
number of basic loops is equal to the number of links. In a metallically coupled
network, loops L are given by

L ¼ e� B ð3:27Þ
where B is the number of tree branches, and e is the number of nodes. The graph of
Fig. 3-8(c) has nine elements and there are four tree branches. Therefore, the number
of loops is equal to five.

If any two loops, say loops 1 and 2, have a mutual coupling, the diagonal term
of loop 1 will have all the self-impedances, while off-diagonal terms will have mutual
impedance between 1 and 2.
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Elimination of loop currents can be done by matrix partitioning. In a large
network, the currents in certain loops may not be required and these can be elimi-
nated. Consider a partitioned matrix:

�EEx

�EEy

�����
����� ¼

�ZZ1
�ZZ2

�ZZ3
�ZZ4

�����
�����

�IIx
�IIy

�����
����� ð3:28Þ

The current given by array �IIx is only of interest. This is given by:

�IIx ¼ �ZZ1 � �ZZ2
�ZZ�1
4

�ZZ3

� ��1 �EEx ð3:29Þ
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Figure 3-8 (a) Equivalent circuit of a network; (b) network redrawn with lumped elements

and current injections at the nodes; (c) oriented connected graph of the network; (d) tree of the
oriented network; (e) cotree of the oriented network; (f) cut-sets of the network.
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3.6 BUS ADMITTANCE AND IMPEDANCE MATRICES BY GRAPH
APPROACH

The bus admittance matrix can be found by graph approach:

�YYB ¼ �AA �YYp
�AA 0 ð3:30Þ

where �AA is the bus incidence matrix, �YYp is the primitive admittance matrix and �AA 0 is
the transpose of the bus incident matrix. Similarly, the loop impedance matrix can be
formed by

�ZZL ¼ �BB �ZZp
�BB 0 ð3:31Þ

where �BB is the basic loop incidence matrix, �BB 0 its transpose, and �ZZp the primitive bus
impedance matrix.

3.6.1 Primitive Network

A network element may contain active and passive components. Figure 3-9 shows
impedance and admittance forms of a network element, and equivalence can be
established between these two. Consider the impedance form shown in Fig. 3-9(a).
The nodes P and Q have voltages Vp and Vq and let Vp > Vq. Self-impedance, Zpq,
has a voltage source, epq, in series. Then:

Vp þ epq � Zpqipq ¼ Vq

or

Vpq þ epq ¼ ZpqVpq

ð3:32Þ

Where Vpq=Vp�Vq= voltage across P–Q and ipq is current through P–Q.
In the admittance form and referring to Fig. 3-9(b):

ipq þ jpq ¼ YpqVpq

Also,

jpq ¼ �Ypqepq

ð3:33Þ

Where jpq is current source in parallel with P–Q.
The performance equations of the primitive network can be derived from Eqs.

(3.32) and (3.33). For the entire network, the variables become column vector and
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Figure 3-9 (a, b) Primitive network, impedance and admittance forms.
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parameters becomes matrices. The performance equations in impedance and admit-
tance forms are

�VV þ �ee ¼ �ZZp
�ii

�ii þ �jj ¼ �YYp
�VV

Also,

�YYp ¼ �ZZ�1
p

ð3:34Þ

The diagonal elements are the impedances or admittances of the element p–q, and the
off-diagonal elements are mutual impedances/admittances. When there is no cou-
pling between the elements, the matrices are diagonal.

Example 3.3

Write the primitive admittance matrix of the network of Fig. 3-8(b).
The matrix is written by simply examining the figure. There are no mutual

couplings between the elements. The required matrix is

1 2 3 4 5 6 7 8 9

0–1 0–2 0–3 0–4 1–2 1–3 1–4 2–4 3–4

0–1 y10
0–2 y20
0–3 y30
0–4 y40
1–2 y12
1–3 y13
1–4 y14
2–4 y24
3–4 y34

The top and left-side identifications of the elements between nodes is helpful in
formation of the matrix. It is a diagonal matrix. If there are mutual couplings
between elements of the network, the appropriate off-diagonal elements in the
matrix are populated.

3.6.2 Incidence Matrix from Graph Concepts

Consider a graph with n nodes and e elements. The matrix �AA of Eq. (3.30) has n rows
which correspond to the n nodes and e columns which correspond to the e elements.
This matrix is known as an incidence matrix. The matrix elements can be formed as
follows:

aij ¼ 1, if the jth element is incident to and directed away from the node i.
aij ¼ �1, if the jth element is incident to but directed towards the node i.
aif ¼ 0, if the jth element is not incident to the node.
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When a node is taken as the reference node, then the matrix �AA is called a reduced
incidence matrix or bus incidence matrix.

Example 3.4

Form an incidence and reduced incidence matrix from the graph of the network in
Fig. 3-8(a).

The bus incidence matrix is formed from the graph of the network in Fig. 3-
8(c):

e=n 1 2 3 4 5 6 7 8 9

1 1 �1 1 1

2 1 1 �1

3 1 �1 1

4 1 �1 1 �1

0 �1 �1 �1 �1

This matrix is singular. The matrix without the last row pertaining to the reference
node, which is shown shaded, is a reduced incidence matrix. It can be partitioned as
follows:

e=ðn� 1Þ Branches Links

Buses Ab AL

We can therefore write:

Aðn�1Þ;e ¼ Abð Þðn�1Þ;ðn�1Þ� ALð Þðn�1Þ;l ð3:35Þ

Using Eq. (3.30), the bus admittance matrix is

�AA �YYp
�AA ¼ �YYB ¼

Y10 þ Y12 þ Y13 þ Y14 �Y12 �Y13 �Y14

�Y12 Y20 þ Y12 þ Y24 0 �Y24

�Y13 0 Y30 þ Y13 þ Y43 �Y43

�Y14 �Y24 �Y43 Y40 þ Y14 þ Y24 þ Y43

�����������

�����������
(3.36)

Example 3.5

Form the primitive admittance matrix of network in Fig. 3-3(a) and then the bus
incidence matrix. From these calculate the bus admittance matrix.

The graph of the network is shown in Fig. 3-3(d). The primitive admittance
matrix is
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�YYp ¼

1 0 0 0 0

0 0:5 0 0 0

0 0 0:333 0 0

0 0 0 �j5 0

0 0 0 0 �j3:33

��������������

��������������
From the graph of Fig. 3-3(d), the reduced bus incidence matrix (ignoring node 0) is

�AA ¼
1 0 0 1 0

0 1 0 �1 �1

0 0 1 0 1

��������

��������
The bus admittance matrix is

�YYB ¼ �AA �YYp
�AA 0 ¼

1� j5 j5 0

j5 0:5� j8:33 j3:33

0 j3:33 0:33� j3:33

��������

��������
This is the same matrix as calculated before.

The loop impedance matrix can be similarly formed from the graph concepts.
There are five basic loops in the network of Fig. 3-8(b). The basic loop matrix �BBL of
Eq. (3.31) is constructed with its elements as defined below:

bij ¼ 1, if jth element is incident to ith basic loop and is oriented in the same
direction.

bij ¼ �1, if jth element is incident to the ith basic loop and is oriented in the
opposite direction.

bij ¼ 0, if ith basic loop does not include the jth element.

Branch Frame of Reference

The equations can be expressed as follows:

�VVBR ¼ �ZZBR
�IIBR

�IIBR ¼ YBR
�VVBR

ð3:37Þ

The branch impedance matrix is the matrix of the branches of the tree of the con-
nected power system network and has dimensions, b� b; �VVBR is the vector of branch
voltages and �IIBR is the vector of currents through the branches.

3.7 ALGORITHMS FOR CONSTRUCTION OF BUS IMPEDANCE
MATRIX

The �ZZ matrix can be formed step by step from basic building concepts. This method
is suitable for large power systems and computer analysis.

Consider a passive network with m independent nodes. The bus impedance
matrix of this system is given by
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�ZZ ¼
Z11 Z12 � Z1m

� � � �
Zm1 Zm2 � Zmm

��������

�������� ð3:38Þ

The build-up of the impedance matrix can start with an arbitrary element between a
bus and a common node and then adding branches and links, one by one. The
following procedure describes the building blocks of the matrix.

3.7.1 Adding a Tree Branch to an Existing Node

Figure 3-10(a) shows that a branch pk is added at node p. This increases the dimen-
sions of the primitive bus impedance matrix by 1:
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Figure 3-10 (a) Adding a tree-branch; (b) and (c) adding a link, in the step-by-step forma-

tion of bus impedance matrix.
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�ZZ ¼

Z11 Z12 � Z1m Z1k

� � � � �
Zm1 Zm2 � Zmm Zmk

Zk1 Zk2 � Zkm Zkk

�����������

�����������
ð3:39Þ

This can be partitioned as shown:

�ZZxy;xy
�ZZxy;pk

�ZZpk;xy
�ZZpk;pk

�����
�����

�IIxy
�IIpk

�����
����� ¼

�VVxy

�VVpk

�����
����� ð3:40Þ

where �ZZxy;xy ¼ Primitive bus impedance matrix. This remains unchanged as addition
of a new branch does not change the voltages at the nodes in the primitive matrix.
�ZZxy;pk ¼ Mutual impedance matrix between the original primitive matrix and ele-
ment pq. �ZZpk;xy ¼ �ZZxy;pk and �ZZpk;pk ¼ Impedance of new element.

From Eq. (3.40):

�IIxy
�IIpk

�����
����� ¼

�YYxy;xy
�YYxy;pk

�YYpk;xy
�YYpk;pk

�����
�����

�VVxy

�VVpk

�����
����� ð3:41Þ

where:

�YYxy;xy
�YYxy;pk

�YYpk;xy
�YYpk;pk

�����
����� ¼

�ZZxy;xy
�ZZxy;pk

�ZZpk;xy
�ZZpk;pk

�����
�����
�1

ð3:42Þ

The matrix �ZZ has therefore to be inverted.
From Eq. (3.41):

�IIpk ¼ �YYpk;xy
�VVxy þ �YYpk;pk

�VVpk ð3:43Þ

If 1 per unit current is injected at any bus other than k and all other currents are zero
then Ipk ¼ 0. This gives

�VVpk ¼ �
�YYpk;xy

�VVxy

�YYpk;pk

�VVp � �VVk ¼ �
�YYpk;xyð �VVx � �VVyÞ

�YYpk;pk

�ZZkj � �ZZpj ¼
�YYpk;xyð �XXxj � �ZZyjÞ

�YYpk;pk

ð3:44Þ

thus, Zkj (j ¼ 1; 2; . . . ;m; j 6¼ k) can be found from the following equation:

�ZZkj ¼ �ZZpj þ
�YYpk;xyð �ZZxj � �ZZyjÞ

�YYpk;pk

ð3:45Þ
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If a per unit current is injected at bus k and all other currents are zero, then Eq.
(3.43) becomes:

�1 ¼ �YYpk;xy
�VVxy þ �YYpk;pk

�VVpk ð3:46Þ

This gives Zkk:

�ZZkk ¼ �ZZpk þ
1þ �YYpk;xyð �ZZxk � �ZZykÞ

�YYpk;pk

ð3:47Þ

2. If there is no coupling between pk and any existing branch xy, then,

�ZZkj ¼ �ZZpj j ¼ 1; 2; . . . ;m; j 6¼ k ð3:48Þ
�ZZkk ¼ �ZZpk þ �ZZpk;pk ð3:49Þ

3. If the new branch is added between p and the reference node 0, then

�ZZpj ¼ 0 ð3:50Þ
�ZZkj ¼ 0 ð3:51Þ
�ZZkk ¼ �ZZpk;pk ð3:52Þ

3.7.2 Adding a Link

A link can be added as shown in Fig. 3-10(b). As k is not a new node of the system,
the dimensions of the bus impedance matrix do not change; however, the elements of
the bus impedance matrix change. To retain the elements of the primitive impedance
matrix let a new node e be created by breaking the link pk, as shown in Fig. 3-10(c).
If Ee is the voltage of node e with respect to node k, the following equation can be
written:

V1

V2

�
Vp

�
Vm

Ee

��������������������

��������������������

¼

Z11 Z12 � Z1m Z1e

Z21 Z22 � Z2m Z2e

� � � � �
Zp1 Zp2 � Zpm Zpe

� � � � �
Zm1 Zm2 � Zmm Zme

Ze1 Ze2 � Zem Zee

��������������������

��������������������

I1

I2

�
Ip

�
Im

Ie

��������������������

��������������������

ð3:53Þ

In this case the primitive impedance matrix does not change, as the new branch
pe can be treated like the addition of a branch from an existing node to a new node,
as discussed above. The impedances bearing a subscript e have the following defini-
tions:

Z1e ¼ voltage at bus 1 with respect to the reference node when unit current is
injected at k.
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Zei ¼ voltage at bus e with reference to k when unit current is injected at bus 1
from reference bus.

Zee ¼ voltage at bus e with respect to k when unit current is injected to bus e
from k.

Equation (3.53) is partitioned as shown:

�IIxy

�IIpe

�����
����� ¼

�YYxy;xy
�YYxy;pe

�YYpe;xy
�YYpe;pe

�����
�����

�VVxy

�VVpe

�����
����� ð3:54Þ

Thus,

�IIpe ¼ �YYpe;xy
�VVxy þ �YYpe;pe

�VVpe ð3:55Þ

If unit current is injected at any node, except node e, and all other currents are zero:

0 ¼ �YYpe;xy
�VVxy þ �YYpe;pe

�VVpe ð3:56Þ

This gives

�ZZej ¼ �ZZpj � �ZZkj þ
�YYpe;xyð �ZZxj � �ZZyjÞ

�YYpe;pe

j ¼ 1; 2; . . . ;m j 	= e ð3:57Þ

If Ie is 1 per unit and all other currents are zero:

�1 ¼ �YYpe;xy
�VVxy þ �YYpe;pe

�VVpe ð3:58Þ

This gives

�ZZee ¼ �ZZpe � �ZZqe þ
1þ �YYpe;xyð �ZZxe � �ZZyeÞ

�YYpe;pe

ð3:59Þ

Thus, this treatment is similar to that of adding a link. If there is no mutual coupling
between pk and other branches and p is the reference node:

�ZZpj ¼ 0 ð3:60Þ
�ZZej ¼ �ZZpj � �ZZkj ð3:61Þ
�ZZee ¼ �ZZpk;pk � �ZZke ð3:62Þ

The artificial node can be eliminated by letting voltage at node e ¼ 0:

�VVbus

0

�����
����� ¼

�ZZbus
�ZZje

�ZZej
�ZZee

�����
�����

�IIbus

�IIe

�����
����� ð3:63Þ

�ZZbus;modified ¼ �ZZbus;primitive �
�ZZje

�ZZ 0
je

�ZZee

ð3:64Þ
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3.7.3 Removal of an Uncoupled Branch

An uncoupled branch can be removed by adding a branch in parallel with the branch
to be removed, with an impedance equal to the negative of the impedance of the
uncoupled branch.

3.7.4 Changing Impedance of an Uncoupled Branch

The bus impedance matrix can be modified by adding a branch in parallel with the
branch to be changed with its impedance given by

Zn ¼ Zk Z:Zn

Z þ Zn

� �
ð3:65Þ

where Zn is the required new impedance and Z is the original impedance of the
branch.

3.7.5 Removal of a Coupled Branch

A branch with mutual coupling M can be modeled as shown in Fig. 3-11. We
calculated the elements of bus impedance matrix by injecting a current at a bus
and measuring the voltage at the other buses. The voltage at buses can be maintained
if four currents as shown in Fig. 3-11 are injected at either side of the coupled
branch:

Igh

Ipk

�����
����� ¼

Ygh;gh Ygh;pk

Ypk;gh Ypk;pk

�����
�����
Vg � Vh

Vp � Vk

�����
����� ð3:66Þ

This gives

I

�I

I 0

�I 0

�����������

�����������
¼

Ygh;gh �Ygh;gh Ygh;pk �Ygh;pk

�Ygh;gh Ygh;gh �Ygh;pk Ygh;pk

Ypk;gh �Ypk;gh Ypk;pk � 1=Zpk;pk �Ypk;pk þ 1=Zpk;pk

�Ypk;gh Ypk;gh �Ypk;pk þ 1=Zpk;pk Ypk;pk � 1=Zpk;pk

�����������

�����������

Vg

Vh

Vp

Vk

�����������

�����������
ð3:67Þ

which is written in abbreviated form as

�IIw ¼ �KK �VVw ð3:68Þ
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Figure 3-11 Adding a coupled branch in the step-by-step formation of impedance matrix.
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Partition the original matrix, separating out the coupled portion as follows:

V1

Vj

�
Vg�1

Vhþ1

�
Vp�1

Vkþ1

�
Vm

Vg

Vh

Vp

Vk

¼

Z11

Zj1

Zg1

Zh1

Zp1

Zk1

Zgg

Zkg

Zgh

Zkh

Zgp

Zkp

Zkk

Zkk

�

0

1

�
�
�
�
�
�
�
�

I

�I

I 0

�I 0

ð3:69Þ

This is written as

�VVu

�VVw

�����
�����

�AA �BB

�CC �DD

�����
�����

�IIu

�IIw

�����
����� ð3:70Þ

From Eqs. (3.68) and (3.70):

If �IIu ¼ 0

�VVw ¼ I � �DD �KK
� ��1 �DD �IIj ð3:71Þ

�VVu ¼ �BB �KK �VVw þ �BB �IIj ð3:72Þ
If �IIu 	= 0

�VVw ¼ I � �DD �KK
� ��1 �CC �IIu ð3:73Þ

�VVu ¼ �AA �IIu þ �BB �KK �VVw ð3:74Þ
If the transformed matrix is defined as

�AA 0 �BB 0

�CC 0 �DD 0

�����
����� ð3:75Þ

then Eqs. (3.71)–(3.74) give �CC 0, �DD 0, �AA 0, and �BB 0, respectively.
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Example 3.6

Consider a distribution system with four buses, whose positive and negative
sequence networks are shown Fig. 3-12(a) and zero sequence network in Fig.
3-12(b). The positive and negative sequence networks are identical and rather
than rþ jx values, numerical values are shown for ease of hand calculations.
There is a mutual coupling between parallel lines in the zero sequence network.
It is required to construct bus impedance matrices for positive and zero
sequence networks.

The primitive impedance or admittance matrices can be written by examination
of the network. First consider the positive or negative sequence network of Fig.
3-12(a). The following steps illustrate the procedure.

1. The build-up is started with branches 01, 02, and 03 that are connected to
the reference node, Fig. 3-13(a). The primitive impedance matrix can be simply
written as
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Figure 3-12 (a) Positive and negative sequence network for Example 3.6; (b) zero-sequence

network for Example 3.6.
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0:05 0 0

0 0:2 0

0 0 0:05

�������
�������

2. Next, add link 1–2, Fig. 3-13(b). As this link has no coupling with other
branches of the system:

Zej ¼ Zpj � Zkj

Zee ¼ Zpk;pk þ Zpe � Zke

p ¼ 1, k ¼ 2.

Ze1 ¼ Z11 � Z21 ¼ 0:05

Ze2 ¼ Z12 � Z22 ¼ 0� 0:2 ¼ �0:2

Ze3 ¼ Z13 � Z23 ¼ 0

Zee ¼ Z12;12 þ Z1e � Z2e ¼ 0:04þ 0:05þ 0:2 ¼ 0:29

The augmented matrix is

0:05 0 0 0:05

0 0:2 0 �0:2

0 0 0:05 0

0:05 �0:2 0 0:29

���������

���������
3. Eliminate the last row and last column by using Eq. (3.64). This gives

0:0414 0:0345 0

0:0345 0:0621 0

0 0 0:05

�������
�������

4. Add link 2–3, Fig. 3-13(c):

p ¼ 2; k ¼ 3 and there is no mutual coupling with other branches:

This gives

Ze1 ¼ Z1e� Z21 ¼ 0:345� 0 ¼ 0:345

Ze2 ¼ Z2e ¼ 0:0621� 0 ¼ 0:0621

Ze3 ¼ Z3e ¼ 0� 0:05 ¼ �0:05

Zee ¼ Z23;23 þ Z2e � Z3e ¼ 0:06þ 0:0621� ð�0:05Þ ¼ 0:1721

The augmented matrix is

0:0414 0:0345 0 0:0345

0:0345 0:0621 0 0:0621

0 0 0:05 �0:05

0:0345 0:0621 �0:05 0:1721

����������

����������
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5. Eliminate last row and column. The modified matrix is

0:0345 0:0221 0:010

0:0221 0:0397 0:018

0:010 0:0180 0:355

�������
�������

6. Add branch 3 to 4, p ¼ 3, k ¼ 4:

Z41 ¼ Z31 ¼ 0:01

Z42 ¼ Z32 ¼ 0:018

Z43 ¼ Z33 ¼ 0:0355

Z44 ¼ Z34 þ Z34;34 ¼ 0:0355þ 0:1 ¼ 0:1355

The augmented matrix is

0:0345 0:0221 0:01 0:01

0:0221 0:0397 0:018 0:018

0:01 0:018 0:0355 0:0355

0:01 0:018 0:0355 0:1355

����������

����������
7. Add first parallel link 1–4, Fig. 3-13(d):

p ¼ 1, k ¼ 4

Ze1 ¼ Z1e ¼ 0:0345� 0:01 ¼ 0:0245

Ze2 ¼ Z2e ¼ 0:0221� 0:018 ¼ 0:0041

Ze3 ¼ Z3e ¼ 0:01� 0:0355 ¼ �0:0255

Ze4 ¼ Z4e ¼ 0:01� 0:1355 ¼ 0:1255

Zee ¼ 0:2þ 0:0245� ð�0:1255Þ ¼ 0:350
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This gives the matrix:

0:0345 0:0221 0:01 0:01 0:0245

0:0221 0:0397 0:018 0:018 0:0041

0:01 0:018 0:0355 0:0355 �0:0255

0:01 0:018 0:0355 0:1355 �0:1255

0:0245 0:0041 �0:0255 �0:1255 0:349

������������

������������
8. Eliminate last row and last column using Eq. (3.64):

0:0328 0:0218 0:0118 0:0188

0:0218 0:0397 0:0183 0:0195

0:0118 0:0183 0:0336 0:0264

0:0188 0:0195 0:0264 0:0905

���������

���������
9. Finally, add second parallel link 1–4, Fig. 3-13(e):

Ze1 ¼ Z1e ¼ 0:0328� 0:0188 ¼ 0:014

Ze2 ¼ Z2e ¼ 0:0218� 0:0195 ¼ 0:0023

Ze3 ¼ Z3e ¼ 0:0118� 0:0264 ¼ �0:0146

Ze4 ¼ Z4e ¼ 0:0188� 0:0905 ¼ �0:0717

Zee ¼ 0:2þ 0:014� ð0:0717Þ ¼ 0:2857

This gives

0:0328 0:0218 0:0118 0:0188 0:014

0:0218 0:0397 0:0183 0:0195 0:0023

0:0118 0:0183 0:0336 0:0264 �0:0146

0:0188 0:0195 0:0264 0:0905 �0:0717

0:014 0:0023 �0:0146 �0:0717 0:2857

������������

������������
10. Eliminate last row and column:

0:0328 0:0218 0:0118 0:0188

0:0218 0:0397 0:0183 0:0195

0:0118 0:0183 0:0336 0:0264

0:0188 0:0195 0:0264 0:0905

�����������

�����������

�

0:014

0:0023

�0:0416

�0:0717

�����������

�����������
0:014 0:0023 �0:0146 �0:0717
�� ��

0:2857
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This gives the final positive or negative sequence matrix as

�ZZþ; �ZZ� ¼
0:0321 0:0217 0:0125 0:0223
0:217 0:0397 0:0184 0:0201
0:0125 0:0184 0:0329 0:0227
0:0223 0:0201 0:0227 0:0725

��������

��������
Zero Sequence Impedance Matrix

The zero sequence impedance matrix is similarly formed, until the last parallel
coupled line between buses 1 and 4 is added. The zero sequence impedance matrix,
until the coupled branch is required to be added, is formed by a step-by-step pro-
cedure as outlined for the positive sequence matrix:

0:0184 0:0123 0:0098 0:0132

0:0123 0:0670 0:0442 0:314

0:0098 0:0442 0:0806 0:0523

0:0132 0:0314 0:0523 0:1567

���������

���������
Add parallel coupled lines between buses 1 and 4, p ¼ 1, k ¼ 4.

The coupled primitive impedance matrix is

Zpr ¼
0:3 0:1

0:1 0:3

�����
�����

Its inverse is given by

Z�1
pr ¼

0:3 0:1

0:1 0:03

�����
�����
�1

¼
3:750 �1:25

�1:25 3:750

�����
�����

Ype;pe ¼ 3:75

Ype;xy ¼ �1:25

p ¼ 1, k ¼ 4 coupled with 2–3. Thus,

Zx1 ¼ 0:0184; Zx2 ¼ 0:0123; Zx3 ¼ 0:0098; Zx4 ¼ 0:0132

Zy1 ¼ 0:0132; Zy2 ¼ 0:0314; Zy3 ¼ 0:0523; Zy4 ¼ 0:1567

This gives

Ze1 ¼ Z11 � Z41 þ
Ype;peðZx1 � Zy1Þ

Ype;pe

¼ 0:0184� 0:0132þ ð�1:25Þð0:0184� 0:0132Þ
3:75

¼ �0:0035

Similarly,

Ze2 ¼ 0:0123� 0:314þ �1:25

3:75

� �
ð0:0123� 0:314Þ ¼ �0:0127

Ze3 ¼ 0:0098� 0:523þ �1:25

3:75

� �
ð0:0098� 0:0523Þ ¼ �0:0283
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Ze4 ¼ 0:0132� 0:1567þ �1:25

3:75

� �
ð0:0132� 0:1567Þ ¼ �0:0957

Zee is given by

Zee ¼ Z1e� Z4eþ
1þ ð�1:25ÞðZe1 � Ze4Þ

3:75

¼ 0:0035� ð�0:0957Þ þ 1þ ð�1:25Þð0:0035� ð�0:0957ÞÞ
3:75

¼ 0:3328

The modified impedance matrix is now:

0:0184 0:0123 0:0098 0:0132 0:0035

0:0123 0:0670 0:0442 0:0314 �0:0127

0:0098 0:0442 0:0806 0:0523 �0:0283

0:0132 0:0324 0:0523 0:1567 �0:0957

0:0035 �0:0127 �0:0283 �0:0957 0:3328

������������

������������
Finally, eliminate the last row and column:

0:0184 0:0123 0:0098 0:132

0:0123 0:0670 0:0442 0:0314

0:0098 0:0442 0:0806 0:0523

0:0132 0:0314 0:0523 0:1567

�����������

�����������

�

0:0035

�0:0127

�0:0283

�0:0957

�����������

�����������
0:0035 �0:0127 �0:0283 �0:0957
�� ��

0:3328

This gives the final zero sequence bus impedance matrix:

0:0184 0:0124 0:0101 0:0142

0:0124 0:0665 0:0431 0:0277

0:0101 0:0431 0:0782 0:0442

0:0142 0:0277 0:0442 0:1292

���������

���������
Note that at each last row and column elimination, Z21 ¼ Z12, Z23 ¼ Z32, etc.

Also, in the final matrix there are no negative elements. If a duplex reactor is
modeled (Appendix C), some elements may be negative; the same is true, in some
cases, for modeling of three-winding transformers. Other than that, there is no check
on correct formation.
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3.8 SHORT-CIRCUIT CALCULATIONS WITH BUS IMPEDANCE
MATRIX

Short-circuit calculations using bus impedance matrices follow the same logic as
developed in Chapter 2. Consider that the positive negative and zero sequence bus
impedance matrices Z1

ss, Z
2
ss, and Z0

ss are known and a single line-to-ground fault
occurs at the rth bus. The positive sequence is then injected only at the rth bus and all
other currents in the positive sequence current vector are zero. The positive sequence
voltage at bus r is given by

V1
r ¼ �Z1

rrI
1
r ð3:76Þ

Similarly, the negative and zero sequence voltages are

V2
r ¼ �Z2

rrI
2
r

V0
r ¼ �Z0

r I
0
r

ð3:77Þ

From the sequence network connections for a line-to-ground fault:

I1r ¼ I2r ¼ I0r ¼ 1:0

Z1
rr þ Z2

rr þ Z0
rr þ 3Zf

ð3:78Þ

This shows that the following equations can be written for a shorted bus s.

3.8.1 Line-to-Ground Fault

I0ss ¼ I1ss ¼ I2ss ¼
1

Z1
ss þ Z2

ss þ Z0
ss þ 3Zf

ð3:79Þ

3.8.2 Line-to-Line Fault

I1ss ¼ �I2ss ¼
1

Z1
ss þ Z2

ss þ Zf

ð3:80Þ

3.8.3 Double Line-to-Ground Fault

I1s ¼ 1

Z1
ss þ Z2

ssðZ0
ss þ 3Zf Þ

Z2
ss þ ðZss0 þ 3Zf Þ

ð3:81Þ

I0s ¼ � Z2
ss

Z2
ss þ ðZ0

ss þ 3Zf Þ
I1s ð3:82Þ

I2s ¼ ð�Z0
ss þ 3Zf Þ

Z2
ss þ ðZ0

ss þ 3Zf Þ
I1s ð3:83Þ

The phase currents are calculated by

Iabcs ¼ TsI
012
s ð3:84Þ

The voltage at bus j of the system is
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V0
j

V1
j

V2
j

��������

���������
0

1

0

�������
��������

Z0
js 0 0

0 z1js 0

0 0 Z2
js

��������

��������
I0s

I1s

I2s

��������

�������� ð3:85Þ

where j ¼ 1; 2; . . . ; s; . . . ;m.
The fault current from bus x to bus y is given by

I0xy

I1xy

I2xy

���������

���������
¼

Y0
xy 0 0

0 Y1
xy 0

0 0 Y2
xy

���������

���������
V0

x � V0
y

V1
x � V1

y

V2
x � V2

x

���������

���������
ð3:86Þ

where

I0xy ¼

I012

I013

�
I0mm

�����������

�����������
ð3:87Þ

and

Y0
xy ¼

Y0
12;12 Y0

12;13 Y0
12;mn

Y0
13;12 Y0

13;13 Y0
13;mn

Y0
mn;12 Y0

mn;13 Y0
mn;mn

��������

�������� ð3:88Þ

where Y0
xy is the inverse of the primitive matrix of the system. Similar expressions

apply to positive sequence and negative sequence quantities.

Example 3.7

The positive, negative, and zero sequence matrices of the system in Fig. 3-12 are
calculated in Example 3.6. A double line-to-ground fault occurs at bus 4. Using the
matrices already calculated, it is required to calculate:

. Fault current at bus 4

. Voltage at bus 4

. Voltage at buses 1, 2, and 3

. Fault current flows from buses 3 to 4, 1 to 4, 2 to 3

. Current flow in node 0 to bus 3.

The fault current at bus 4 is first calculated as follows:

I14 ¼ 1

Z1
4s þ

Z2
4s � Z0

4s

Z2
4s þ Z0

4s

¼ 1

0:0725þ 0:0725� 0:1292

0:0725þ 0:1292

¼ 8:408
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I04 ¼ �Z2
4s

Z2
4s þ Z0

4s

I14

¼ �0:0725� 8:408

0:0725þ 0:1292

¼ �3:022

I24 ¼ �Z0
4s

Z2
4s þ Z0

4s

I14

¼ �0:1292� 8:408

0:0727þ 0:1292

¼ �5:386

The line currents are given by

Iabc4 ¼ TsI
012
4

i.e.,

Ia4

Ib4

Ic4

��������

�������� ¼
1 1 1

1 a2 a

1 a a2

��������

��������
I04

I14

I24

��������

��������

¼
1 1 1

1 a2 a

1 a a2

��������

��������
�3:022

8:408

�5:386

��������

��������

¼
0

�4:533� j11:946

�4:533þ j11:946

��������

�������� ¼
0

12:777 < 249:20

12:777 < 110:780

��������

��������
Sequence voltages at bus 4 are given by

V0
4

V1
4

V2
4

��������

�������� ¼
0

1

0

��������

���������
Z0

4s

Z1
4s

Z2
4s

��������

��������
I04

I14

I24

��������

��������

¼
0

1

0

��������

���������
0:1292 0 0

0 0:0725 0

0 0 0:0725

��������

��������
�3:022

8:408

�5:386

��������

��������

¼
0:3904

0:3904

0:3904

��������

��������
Line voltages are, therefore,
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Va
4

Vb
4

Vc
4

��������

�������� ¼
1 1 1

1 a2 a

1 a a2

��������

��������
V0

4

V1
4

V2
4

��������

��������

¼
1 1 1

1 a2 a

1 a a2

��������

��������
0:3904

0:3904

0:3904

��������

�������� ¼
1:182

0

0

��������

��������
Similarly,

�VV0;1;2
1 ¼

0

1

0

��������

��������
0:0142 0 0

0 0:0223 0

0 0 0:0223

��������

��������
�3:022

8:408

�5:386

��������

��������

¼
0:0429

0:8125

0:1201

��������

��������
Sequence voltages at buses 2 and 3, similarly calculated, are

�VV0;1;2
2 ¼

0:0837

0:8310

0:1083

��������

��������
�VV0;1;2
3 ¼

0:1336

0:8091

0:1223

��������

��������
The sequence voltages are converted into line voltages:

V1
�aabc ¼

0:976 < 00

0:734 < 125:20

0:734 < 234:80

��������

��������V2
�aabc ¼

1:023 < 00

0:735 < 12150

0:735 < 238:30

��������

��������V3
�aabc ¼

1:065 < 00

0:681 < 119:20

0:681 < 240:80

��������

��������
The sequence currents flowing between buses 3 and 4 are given by

I034

I134

I234

��������

�������� ¼
1=0:2 0 0

0 1=0:1 0

0 0 1=0:1

��������

��������
0:1336� 0:3904

0:8091� 0:3904

0:1223� 0:3904

��������

��������

¼
�1:284

4:1870

�2:681

��������

��������
Similarly, the sequence currents between bus 3 to 2 are
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I032

I132

I232

��������

�������� ¼
1=0:08 0 0

0 1=0:06 0

0 0 1=0:06

��������

��������
0:1336� 0:0837

0:8091� 0:8310

0:1223� 0:1083

��������

�������� ¼
0:624

�0:365

0:233

��������

��������
This can be transformed into line currents.

�IIabc32 ¼
0:492

0:69þ j0:518

0:69� j0:518

��������

��������
�IIabc34 ¼

0:222

�2:037þ j5:948

�2:037þ j5:948

��������

��������
The lines between buses 1 and 4 are coupled in the zero sequence network. The

�YY matrix between zero sequence coupled lines is

�YY0
14 ¼

3:75 �1:250

�1:25 3:75

�����
�����

Therefore, the sequence currents are given by

I014a

I014b

I114a

I114b

I214a

I214b

�����������������

�����������������

¼

3:75 �1:25 0 0 0 0

�1:25 3:75 0 0 0 0

0 0 5 0 0 0

0 0 0 5 0 0

0 0 0 0 5 0

0 0 0 0 0 5

�����������������

�����������������

0:0429� 0:3904

0:0429� 0:3904

0:8125� 0:3904

0:8125� 0:3904

0:1201� 0:3904

0:1201� 0:3904

�����������������

�����������������

¼

�0:8688

�0:8688

2:1105

2:1105

�1:3515

�1:3515

�����������������

�����������������
Each of the lines carries sequence currents:

�II01214a ¼ �II01214b ¼
�0:8688

2:1105

�1:3515

��������

��������
Converting into line currents:

�IIabc14a ¼ �IIabc14b ¼
�0:11

�1:248� j2:998

�1:248þ j2:998

��������

��������
Also the line currents between buses 3 and 4 are:

�IIabc34 ¼
0:222

�2:037� j5:948

�2:037þ j5:948

��������

��������
Within the accuracy of calculation, the summation of currents (sequence com-

ponents as well as line currents) at bus 4 are zero. This is a verification of the
calculation. Similarly, the vectorial sum of currents at bus 3 should be zero. As
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the currents between 3 and 4 and 3 and 2 are already known, the currents from node
0 to bus 3 can be calculated.

Example 3.8

Reform the positive and zero sequence impedance matrices of Example 3.6 after
removing one of the parallel lines between buses 1 and 4.

Positive Sequence Matrix

The positive sequence matrix is

0:0321 0:0217 0:0125 0:0223

0:0217 0:0397 0:0184 0:0201

0:0125 0:0184 0:0329 0:0277

0:0223 0:0201 0:0227 0:0725

���������

���������
Removing one of the parallel lines is similar to adding an impedance of �0:2 between
1 and 4:

Z1e ¼ Ze1 ¼ Z11 � Z41 ¼ 0:0321� 0:0223 ¼ 0:0098

Z2e ¼ Ze2 ¼ Z12 � Z42 ¼ 0:0217� 0:0201 ¼ 0:0016

Z3e ¼ Ze3 ¼ Z13 � Z43 ¼ 0:0125� 0:0227 ¼ �0:0102

Z4e ¼ Ze4 ¼ Z14 � Z44 ¼ 0:0223� 0:0725 ¼ 0:0502

Zee ¼ �0:2þ 0:0098� ð�0:0502Þ ¼ �0:14

The augmented impedance matrix is, therefore,

0:0321 0:0217 0:0125 0:0223 0:0098

0:0217 0:0397 0:0184 0:0201 0:0016

0:0125 0:0184 0:0329 0:0227 �0:0102

0:0223 0:0201 0:0227 0:0725 �0:0502

0:0098 0:0016 �0:0102 �0:0502 �0:14

������������

������������
Eliminate the last row and column:

0:0321 0:0217 0:0125 0:0223

0:0217 0:0397 0:0184 0:0201

0:0125 0:0184 0:0329 0:0227

0:0223 0:0201 0:0227 0:0725

�����������

�����������

�

0:0098

0:0016

�0:0102

�0:0502

�����������

�����������
0:0998 0:0016 �0:0102 �0:0502
�� ��

�0:14
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This is equal to

0:0328 0:0218 0:0118 0:0188

0:218 0:0397 0:0183 0:0195

0:0118 0:0183 0:0336 0:0264

0:0188 0:0195 0:0264 0:0905

���������

���������
The results can be checked with those of Example 3.6. This is the same matrix that
was obtained before the last link between buses 1 and 4 was added.

Zero Sequence Matrix

Here, removal of a coupled link is involved. The zero sequence matrix from Example
3.6 is

1 2 3 4

1 0.0184 0.0124 0.0101 0.0142

2 0.0124 0.0665 0.0431 0.0277
3 0.0101 0.0431 0.0782 0.0442
4 0.0142 0.0277 0.0442 0.1292

Rewrite this matrix as

2 3 1 4

2 0.0665 0.0431 0.0124 0.0277
3 0.0431 0.0782 0.0101 0.0442

1 0.0124 0.0101 0.0184 0.0142
4 0.0277 0.0442 0.0142 0.1292

Therefore,

V2

V3

V1

V4

�����������

�����������
¼

0:0665 0:0431 0:0124 0:0277

0:0431 0:0782 0:0101 0:0442

0:0124 0:0101 0:0184 0:0142

0:0277 0:0442 0:0142 0:1292

�����������

�����������

0

0

I þ I 0

�I � I 0

�����������

�����������
or

�VVu

�VVw

�����
����� ¼

�AA �BB

�CC �DD

�����
�����

�IIu

�IIw

�����
�����

From adding the coupled link in Example 3.6, we have

I14

I 0
14

�����
����� ¼

3:75 �1:25

�1:25 3:75

�����
�����
V1 � V4

V1 � V4

�����
�����

Matrix Methods for Network Solutions 109

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



The matrix �KK is:

�KK ¼

Y14;14 �Y14;14 �Y14;14a �Y14;14a

�Y14;14 Y14;14 �Y14;14a Y14;14a

Y14a;14 �Y14a;14 Y14a;14a � 1=Z14a;14a Y14a;14a þ 1=Z14a;14a

�Y14a;14 �Y14a;14a �Y14a;14a þ 1=Z14a;14a Y14a;14a � 1=Z14a;14a

�����������

�����������
Substituting the values:

�KK ¼

3:75 3:75 �1:25 1:25

�3:75 3:75 1:25 �1:25

�1:25 1:25 0:4167 �0:4167

1:25 �1:25 �0:4167 0:4167

�����������

�����������
From Eq. (3.68):

�IIw ¼

I

�I

I 0

�I 0

�����������

�����������
¼ �KK

V1

V4

V1

V4

�����������

�����������
This gives

I þ I 0

�I � I 0

�����
����� ¼

1:6667 �1:6667

�1:6667 1:6667

�����
�����
V1

V4

�����
�����

Therefore, from equivalence of currents, we apply Eq. (3.71)–(3.74).

New �C 0, �IIu 6¼ 0

�VVw ¼ I � �DD �KK
� ��1 �CC �IIu

V1

V4

�����
�����
2

¼
1 0

0 1

�����
������

0:0184 0:0142

0:0142 0:1292

�����
�����

1:6667 �1:6667

�1:6667 1:6667

�����
�����

" #�1

�
0:0124 0:0101

0:0277 0:0442

�����
�����
1

0

�����
�����

This is equal to

1:0087 �0:0087

�0:2392 1:2392

�����
�����
0:0124

0:0277

�����
����� ¼

0:0123

0:0314

�����
�����

Similarly,

V1

V4

�����
�����
3

¼
1 0

0 1

�����
������

0:0184 0:0142

0:0142 0:1292

�����
�����

1:6667 �1:6667

�1:6667 1:6667

�����
�����

" #�1
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� 0:0124 0:0101 0:0277 0:0442
�� �� 0

1

�����
�����

¼ 1:0087 �0:0087

�0:2392 1:2392

�����
����� 0:0101

0:0442

�����
����� ¼ 0:0098

0:0523

�����
�����

Therefore, the new �CC 0 is

�CC 0 ¼ 0:0123 0:0098

0:0314 0:0523

�����
�����

New �AA 0 �IIu 6¼ 0

�VVu ¼ �AA �IIu þ �BB �KK �VVw

Thus

V2

V3

�����
�����
2

¼
0:0665 0:0431

0:0431 0:0782

�����
�����
1

0

�����
�����þ

0:0124 0:0277

0:0101 0:0442

�����
�����

1:6667 �1:6667

�1:6667 1:6667

�����
������

0:0123

0:0314

�����
����� ¼

0:067

0:0442

�����
�����

Similarly,

V2

V3

�����
�����
3

¼
0:0442

0:0806

�����
�����

Thus, the new �AA 0 is

�AA 0 ¼
0:0670 0:0442

0:0442 0:0806

�����
�����

New �DD 0, �IIu ¼ 0

�VVu ¼ I � �DD �KK
� ��1 �DD �IIj

V1

V4

�����
�����
1

¼
1 0

0 1

�����
������

0:0184 0:0142

0:0142 0:1292

�����
�����

1:6667 �1:6667

�1:6667 1:6667

�����
�����

" #�1

�
0:0184 0:0142

0:0142 0:1292

�����
�����
1

0

�����
�����

¼
0:0184

0:0132

�����
�����
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Similarly,

V1

V4

�����
�����
4

¼
0:0132

0:1567

�����
�����

Therefore �DD 0 is

�DD 0 ¼
0:0184 0:0132

0:0132 0:1567

�����
�����

New �BB 0, �IIu ¼ 0

�VVu ¼ �BB �KK �VVw þ �BB �IIj

V2

V3

�����
�����
1

¼
0:0124 0:0277

0:0101 0:0442

�����
�����

1:6667 �1:6667

�1:6667 1:6667

�����
�����
0:0184

0:0132

�����
�����þ

0:0124

0:0101

�����
�����

¼
0:0123

0:0098

�����
�����

Similarly,

V2

V3

�����
�����
4

¼
0:0314

0:0523

�����
�����

The new �BB 0 is

�BB 0 ¼
0:0123 0:0314

0:0098 0:0523

�����
�����

Substituting these values, the impedance matrix after removal of the coupled line is

2 3 1 4

2 0.0670 0.0442 0.0123 0.0314
3 0.0442 0.0806 0.0098 0.0523

1 0.0123 0.0098 0.0184 0.0132
4 0.0314 0.0523 0.0132 0.1567

Rearranging in the original form:

1 2 3 4

1 0.0184 0.0123 0.0098 0.0132
2 0.0123 0.0670 0.0442 0.0314

3 0.0098 0.0442 0.0806 0.0523
4 0.0132 0.0314 0.0523 0.1567
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Referring to Example 3.6, this is the same matrix before the coupled link between 1
and 4 was added. This verifies the calculation.

3.9 SOLUTION OF LARGE NETWORK EQUATIONS

The bus impedance method demonstrates the ease of calculations throughout the
distribution system, with simple manipulations. Yet it is a full matrix and requires
storage of each element. The Y-matrix of a large network is very sparse and has a
large number of zero elements. In a large system the sparsity may reach 90%,
because each bus is connected to only a few other buses. The sparsity techniques
are important in matrix manipulation and are covered in Appendixes A and D. Some
of these matrix techniques are:

. Triangulation and factorization: Crout’s method, bifactorization, and pro-
duct form.

. Solution by forward–backward substitution.

. Sparsity and optimal ordering.

A matrix can be factored into lower, diagonal, and upper form called LDU
form. This is of special interest. This formation always requires less computer sto-
rage. The sparse techniques exhibit a distinct advantage in computer time required
for the solution of a network and can be adapted to system changes, without rebuild-
ing these at every step.

Problems

1. For the network in Fig. 3-P1, draw its graph and specify the total
number of nodes, branches, buses, basic loops, and cut-sets. Form
a tree and a cotree. Write the bus admittance matrix by direct inspec-
tion. Also, form a reduced bus incidence admittance matrix, and form
a bus admittance matrix using Eq. (3.30). Write the basic loop inci-
dence impedance matrix and form loop impedance matrix, using Eq.
(3.31).
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2. For the network shown in Fig. 3-P2, draw its graph and calculate all the
parameters, as specified in Problem 1. The self-impedances are as shown
in Fig. 3-P2. The mutual impedances are as follows:

Buses 1–3: 0.2 ohms; buses 2–5 ¼ 0:3 ohms
3. Figure 3-P3 shows the positive and negative sequence network of a power

system. Form the bus impedance matrix by a step-by-step build-up pro-
cess, as illustrated in Example 3.6.

4. A double line-to-ground fault occurs at bus 2 in the network of Fig. 3-P3.
Find the fault current. Assume for the simplicity of hand calculations that
the zero sequence impedance network is the same as the positive and
negative sequence impedance.

5. In Problem 4, calculate all the bus voltages.
6. In Problem 4, calculate the fault currents flowing between nodes 1–2, 4–2,

3–1, and a 3–4, also the current flowing between node 0 and bus 1.
7. Remove the coupled element of 0.4 between buses 3 and 4 and reform the

bus impedance matrix.

114 Chapter 3

Figure 3-P2 Network for Problem 2.
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8. A single line-to-ground fault occurs at bus 4 in Problem 7, after the
impedance matrix is reformed. Calculate the fault current and fault vol-
tages at buses 1, 2, 3, and 4, and the currents flowing between all buses
and the current in the ground circuit from buses 1 and 2.
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4

Current Interruption in AC Networks

Current interruption in high-voltage ac networks has been intensively researched
since the introduction of high-voltage transmission lines. These advances can be
viewed as an increase in the breaker interrupting capacity per chamber or a decrease
in the weight with respect to interrupting capacity. Fundamental electrical phenom-
ena occurring in the electrical network and the physical aspects of arc interruption
processes need to be considered simultaneously. The phenomena occurring in an
electrical system and the resulting demands on the switchgear can be well appre-
ciated and explained theoretically, yet no well founded and generally applicable
theory of the processes in a circuit breaker itself exists. Certain characteristics
have a different effect under different conditions, and care must be applied in gen-
eralizations.

The interruption of short-circuits is not the most frequent duty a circuit
breaker has to perform, but this duty subjects it to the greatest stresses for which
it is designed and rated. As a short-circuit represents a serious disturbance in the
electrical system, a fault must be eliminated rapidly by isolating the faulty part of the
system. Stresses imposed on the circuit breaker also depend on the system config-
uration and it is imperative that the fault isolation takes place successfully and that
the circuit breaker itself is not damaged during fault interruption and remains ser-
viceable.

This chapter explores the various fault types, their relative severity, effects on
the electrical system, and the circuit breaker itself. The basic phenomenon of inter-
ruption of short-circuit currents is derived from the electrical system configurations
and the modifying effect of the circuit breaker itself. This chapter shows that short-
circuit calculations according to empirical methods in IEC or ANSI/IEEE standards
do not and cannot address all the possible applications of circuit breakers. It pro-
vides a background in terms of circuit interruption concepts and paves a way for
better understanding of the calculation methods to follow in the following chapters.
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The two basic principles of interruption are: (1) high-resistance interruption or
an ideal rheostatic circuit breaker, and (2) low resistance or zero-point arc extinction.
Direct current circuit breakers also employ high-resistance arc interruption; how-
ever, emphasis in this chapter is on ac current interruption.

4.1 RHEOSTATIC BREAKER

An ideal rheostatic circuit breaker inserts a constantly increasing resistance in the
circuit until the current to be interrupted drops to zero. The arc is extinguished when
the system voltage can no longer maintain the arc, because of high-voltage drops.
The arc length is increased and the arc resistance acquires a high value. The energy
stored in the system is gradually dissipated in the arc. The volt–amp characteristic of
a steady arc is given by

Varc ¼ Anode voltageþ Cathode voltageþ Voltage across length of arc

Aþ C

Iarc
þ Bþ D

Iarc

� �
d ð4:1Þ

where Iarc is the arc current, Varc is the voltage across the arc, d is the length of the
arc, and A, B, C, and D are constants. For small arc lengths, the voltage across the
arc length can be neglected:

Varc ¼ Aþ C

Iarc
ð4:2Þ

The voltage across the arc reduces as the current increases. The energy dissipated in
the arc is

Earc ¼
ðt
0

ivdt ð4:3Þ

Where i ¼ im sin!t is current and v ¼ ir voltage in the arc.
Equation (4.3) can be written as

Earc ¼
ðt
0

i2mr sin
2 !tdt ð4:4Þ

The approximate variation of arc resistance, r, with time, t, is obtained for different
parameters of the arc by experimentation and theoretical analysis.

In a rheostatic breaker, if the arc current is assumed to be constant, the arc
resistance can be increased by increasing the arc voltage. Therefore, the arc voltage
and the arc resistance can be increased by increasing the arc length. The arc voltage
increases until it is greater than the voltage across the contacts. At this point, the arc
is extinguished. If the arc voltage remains lower, the arc will continue to burn until
the contacts are destroyed.

Figure 4-1 shows a practical design of the arc lengthening principle. The arc
originates at the bottom of the arc chutes and is blown upwards by the magnetic
force. It is split by arc splitters, which may consist of resin-bonded plates of high-
temperature fiber glass, placed perpendicular to the arc path. Blow-out coils, in some
breaker designs, subject the arc to a strong magnetic field, forcing it upwards in the
arc chutes.
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This principle has been successfully employed in some commercial designs of
medium-voltage breakers, and is stated here for reference only. All high-voltage
breakers are current-zero breakers and further discussions are confined to this
method of arc interruption.

4.2 CURRENT-ZERO BREAKER

In a current-zero circuit breaker, the interruption takes place during the passage of
current through zero. At the same time the electrical strength of the break-gap
increases so that it withstands the recovery voltage stress. All high-voltage breakers,
and high-interrupting capacity breakers, whatever may be the arc quenching medium
(oil, air, or gas), use current zero interruption. In an ideal circuit breaker, with no
voltage drop before interruption, the arc energy is zero. Modern circuit breakers
approach this ideal on account of short arc duration and low arc voltage.

Figure 4-2(b) shows a typical short-circuit current waveform in an inductive
circuit of Fig. 4-2(a), the short-circuit being applied at t ¼ 0. The short-circuit cur-
rent is limited by the impedance Rþ j!L and is interrupted by breaker B. The
waveform shows asymmetry as discussed in Chap. 1. At t ¼ t1, the contacts start
parting. The time t1 � t is termed the opening time, since it takes some finite time for
the breaker operating mechanism to set in motion and the protective relaying to
signal a fault condition.

As the contacts start parting, an arc is drawn, which is intensely cooled by the
quenching medium (air, SF6, or oil). The arc current varies sinusoidally for a short
duration. As the contacts start parting, the voltage across these increases. This
voltage is the voltage drop across the arc during the arcing period and is shown
exaggerated in Fig. 4-2(c) for clarity. The arc is mostly resistive and the voltage in the
arc is in phase with the current. The peculiar shape of the arc voltage shown in Fig.
4-2(c) is the result of the volt–ampère characteristic of the arc, and at a particular
current zero, the dielectric strength of the arc space is sufficiently high. The contacts
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Figure 4-1 Principle of a rheostatic breaker and arc elongation.
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part at high speed, to prevent continuation of the arc. When the dielectric strength
builds and a current zero occurs, the current is interrupted. In Fig. 4-2(c) it occurs at
t ¼ t2, and the interval t2 � t1 is the arcing time. The interval t2 � t is the total
interrupting time. With modern high-voltage breakers it is as low as two cycles or
even lower, based on the system power frequency. The ANSI standard defines the
rated interrupting time of a circuit breaker as the time between trip circuit energiza-
tion and power arc interruption on an opening operation, and it is used to classify
breakers of different speeds. The rated interrupting time may be exceeded at low
values of current and for close–open operations; also, the time for interruption of the
resistor current for interrupters equipped with resistors may exceed the rated inter-
rupting time. The increase in interrupting time on close–open operation may be
important from the standpoint of line damage or possible instability.

The significance of interrupting time on breaker interrupting duty can be
appreciated from Fig. 4-2(b). As the short-circuit current consists of decaying ac
and dc components, the faster is the breaker, the greater the asymmetry and the
interrupted current.
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Figure 4-2 Current interruption in a current-zero breaker: (a) circuit diagram showing a

mainly inductive circuit and short-circuit at terminals; (b) current waveform; (c) voltage dur-
ing interruption and after fault clearance.
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The interrupting current at final arc extinction is asymmetrical in nature, con-
sisting of an ac component and a dc component. The rms value is given by

Ii ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrms of ac componentÞ2 þ ðdc componentÞ2

q
ð4:5Þ

IEC specifications term this as the breaking current.

4.3 TRANSIENT RECOVERY VOLTAGE

The essential problem of current interruption consists in rapidly establishing an
adequate electrical strength across the break after current zero, so that restrikes
are eliminated. Whatever may be the breaker design, it can be said that it is achieved
in most interrupting mediums, i.e., oil, air blast, or SF6 by an intense blast of gas.
The flow velocities are always governed by aerodynamic laws. However, there are
other factors that determine the rate of recovery of the dielectric medium: nature of
the quenching gases, mode of interaction of pressure and velocity of the arc, arc
control devices, contact shape, number of breaks, etc. Interruption in vacuum circuit
breakers is entirely different and not discussed.

At the final arc interruption, a high-frequency oscillation superimposed on the
power frequency appears across the breaker contacts. A short-circuit current loop is
mainly inductive, and the power frequency voltage has its peak at current zero;
however, a sudden voltage rise across the contacts is prevented by the inherent
capacitance of the system, and in the simplest cases a transient of the order of
some hundreds to 10,000 c/sec occurs. It is termed the natural frequency of the
circuit. Figure 4-3 shows the recovery voltage profile after final current extinction.
The two components of the recovery voltage, (1) a high-frequency damped oscilla-
tion, and (2) the power frequency recovery voltages, are shown. The high-frequency
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Figure 4-3 Final current interruption and the resulting recovery voltages.
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component is called the transient recovery voltage (TRV) and sometimes the restrik-
ing voltage. Its frequency is given by

fn ¼
1

2�
ffiffiffiffiffiffiffi
LC

p ð4:6Þ

where fn is the natural frequency, and L and C are equivalent inductance and
capacitance of the circuit.

If the contact space breaks down within a period of 1/4 cycle of initial arc
extinction, the phenomena are called reignitions and if the breakdown occurs after
I/4 cycle, the phenomena are called restrikes.

The transient oscillatory component subsides in a few microseconds and the
power frequency component continues.

4.3.1 First Pole to Clear Factor

TRV refers to the voltage across the first pole to clear, because it is generally higher
than the voltage across the other two poles of the breaker, which clear later.
Consider a three-phase ungrounded fault; the voltage across the breaker phase,
first to clear, is 1.5 times the phase voltage (Fig. 4-4). The arc interruption in
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Figure 4-4 First pole to clear factor for three-phase faults: (a) a three-phase terminal fault
with no connection to ground; (b) three-phase fault with no contact to ground and an exten-

sion of the load side circuit; (c) three-phase fault with ground contact.
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three phases is not simultaneous, as the three phases are mutually 1208 apart. Thus,
theocratically, the power frequency voltage of the first pole to clear is 1.5 times the
phase voltage. It may vary from 1.5 to 2, rarely exceeding 3, and can be calculated
using symmetrical components. The first pole to clear factor is defined as the ratio of
rms voltage between the faulted phase and unfaulted phase and phase-to-neutral
voltage with the fault removed. Figure 4-4 shows first pole to clear factors for three-
phase terminal faults. The first pole to clear factor for a three-phase fault with
ground contact is calculated as

1:5
2X0=X1

1þ 2X0=X1

ð4:7Þ

where X1 and X2 are the positive and zero sequence reactances of the source side.
Also, in Fig. 4-4, Y1 and Y2 are the sequence reactances of the load side. Figure 4-5
illustrates the slopes of tangents to three TRV waveforms of different frequencies. As
the natural frequency rises, the rate of rise of recovery voltage (RRRV) increases.
Therefore, it can be concluded that:

1. Voltage across breaker contacts rises slowly, as RRRV decreases.
2. There is a swing beyond the recovery voltage value, the amplitude of

which is determined by the circuit breaker and breaker damping.
3. The higher is the natural frequency of the circuit the lower is the breaker

interrupting rating.
4. Interrupting capacity/frequency characteristics of the breaker should not

fall below that of the system.

The TRV is affected by many factors, amongst which the power factor of the current
being interrupted is important. At zero power factor, maximum voltage is impressed
across the gap at the instant of current zero, which tends to reignite the arc in the hot
arc medium.
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Figure 4-5 Effect of frequency of transient recovery voltage (TRV) on the rate of rise of

recovery voltage (RRRV).
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TRV can be defined by specifying the crest and the time to reach the crest, and
alternatively, by defining the segments of lines which envelop the TRV waveform.

The steepest rates of rise in a system are due to short-circuits beyond transfor-
mers and reactors which are connected to a system of high short-circuit power. In
these cases, the capacitance which retards the voltage rise is small; however, the
breaking capacity of the breaker for such faults need only be small compared to
the short-circuit power of the system, as the current is greatly reduced by the reac-
tance of the transformers and reactors. It means that, in most systems, high short-
circuit levels of current and high natural frequencies may not occur simultaneously.

The interrupting capacity of every circuit breaker decreases with an increase in
natural frequency. It can, however, be safely said that the interrupting (or breaking)
capacity for the circuit breakers decreases less rapidly with increasing natural fre-
quency than the short-circuit power of the system. The simplest way to make the
breaking capacity independent of the natural frequency is to influence the RRRV
across breaker contacts by resistors, which is discussed further. Yet, there may be
special situations where the interrupting rating of a breaker may have to be reduced
or a breaker of higher interrupting capacity may be required.

A circuit of a single-frequency transient occurs for a terminal fault in a power
system composed of distributed capacitance and inductances. A terminal fault is
defined as a fault close to the circuit breaker, and the reactance between the fault
and the circuit breaker is negligible. TRV can vary from low to high values, in the
range 20–10,000 Hz.

A circuit with inductance and capacitance on both sides of the circuit breaker
gives rise to a double-frequency transient. After fault interruption, both circuits
oscillate at their own frequencies and a composite double-frequency transient
appears across the circuit-breaker contacts. This can occur for a short-line fault.
Recovery may feature traveling waves, depending on the faulted components in the
network.

In the analyses to follow, we will describe IEC methods of estimating the TRV
wave shape. The ANSI/IEEE methods are described in the rating structure of ANSI-
rated breakers in Chapter 5. The IEC methods are simpler for understanding the
basic principles and these are well defined in the IEC standard.

Figure 4-6 shows the basic parameters of the TRV for a terminal fault in a
simplified network. Figure 4-6(a) shows power system constants, i.e., resistance,
inductance, and capacitances. The circuit shown may well represent the � model
of a transmission line (see Chap. 10). Figure 4-6(b) shows the behavior of the
recovery voltage, transient component, and power frequency component. The ampli-
tude of the power frequency component is given by

�
ffiffiffi
2

p
u0 ð4:8Þ

where � depends on the type of fault and the network, and u0 is the rated system rms
voltage. The rate of rise of recovery voltage (RRRV ¼ S) is the tangent to the TRV
starting from the zero point of the unaffected or inherent transient recovery voltage
(ITRV). This requires some explanation. The TRV can change by the circuit breaker
design and operation. The TRV measured across terminals of two circuit breakers
can be different. The power system characteristics are calculated, ignoring the effect
of the breakers. This means that an ideal circuit breaker has zero terminal impedance
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Figure 4-6 Basic parameters of the recovery voltage profile in a simplified terminal fault: (a)
system configuration—R, X, C1, and C2 are system resistance, reactance, and shunt capaci-
tances respectively; (b) recovery voltage profile; (c) initial TRV curve, delay line, and RRRV,
shown as S.
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when carrying its rated current, and when interrupting short-circuit current its term-
inal impedance changes from zero to infinity instantaneously at current interruption.
The TRV is then called inherent transient recovery voltage (ITRV).

Figure 4-6(c) shows an enlarged view of the slope. Under a few microseconds
the voltage behavior may be described by the time delay td, which is dependent on
the ground capacitance of the circuit. The time delay td in Fig. 4-6(c) is approximated
by

td ¼ CZ0 ð4:9Þ
where C is the ground capacitance and Z0 is the surge impedance. Measurements
show that a superimposed high-frequency oscillation often appears. IEC specifica-
tions recommend a linear voltage rise with a surge impedance of 450 ohms and no
time delay, when the faulted phase is the last to be cleared in a single line-to-ground
fault. This gives the maximum TRV. It is practical to distinguish between terminal
faults and short-line faults for these phenomena.

4.4 THE TERMINAL FAULT

This is a fault in the immediate vicinity of a circuit breaker, which may or may not
involve ground. This type of fault gives the maximum short-circuit current. There are
differences in the system configuration, and the TRV profile differs widely. Two- and
four-parameter methods are used in the IEC standard.

4.4.1 Four-Parameter Method

Figure 4-7 shows a representation of the TRV wave by the four-parameter method.
In systems above 100 kV or locations where the short-circuit currents are relatively
heavy compared to the maximum short-circuit current in the system, the TRV wave
has an initial period of high rise, followed by a low rate of rise. Such waveforms can
be represented by the four-parameter method:

u1 ¼ first reference voltage (kV)
t1 ¼ time to reach u1, in �sec
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Figure 4-7 IEC four-parameter representation of TRV.
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uc ¼ second reference voltage, peak value of TRV
t2 ¼ time to reach uc, in �sec

IEC specifies values of u1, uc, t1, and t2 for the circuit breakers. The interrupt-
ing current tests are carried out on circuit breakers with specified TRVs. The seg-
ments can be plotted, as shown in Fig. 4-7, based on the breaker data. For systems
with rated voltages not exceeding 100 kV, the parameter u1 is given by

u1 ¼
1:5

ffiffiffi
2

p
urffiffiffi

3
p ð4:10Þ

For systems with rated voltages >100 kV:

u1 ¼
1:3

ffiffiffi
2

p
urffiffiffi

3
p ð4:11Þ

where ur is the breaker rated voltage. Factors 1.5 and 1.3 in Eqs (4.10) and (4.11) are
first pole to clear factors. The amplitude factor k is defined as the ratio of the peak
recovery voltage and the power frequency voltage:

k ¼ uc
u1

ð4:12Þ

The natural frequency is given by

fn ¼ 103

2t2
kHz ð4:13Þ

4.4.2 Two-Parameter Representation

Figure 4-8 shows representation of TRV wave by two parameter method. This
waveform occurs in systems less than 100 kV or locations where short-circuit current
is low compared to the maximum short-circuit current in the system. TRV can be
approximately represented by a single frequency transient.

uc ¼ peak of TRV wave (kV)
t3 ¼ time to reach peak (�sec)
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Figure 4-8 IEC two-parameter representation of TRV.
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The initial rate of rise of TRV is contained within segments drawn according to the
two- or four-parameter method by specifying the delay line, as shown in Fig. 4-6.
The rate of rise of TRV can be estimated from

S ¼ 2�f
ffiffiffi
2

p
IkZ0 ð4:14Þ

where Ik is short-circuit current and Z0 is the surge impedance; Z0 can be found from
sequence impedances. For a three-phase ungrounded fault, and with n equal out-
going lines:

Z0 ¼ 1:5ðZ1=nÞ
2Z0=Z1

1þ 2Z0=Z1

ð4:15Þ

where Z1 and Z2 are the surge impedances in positive and negative sequence of
individual lines and n is the number of lines emanating from the substation. For
single-frequency transients, with concentrated components, IEC tangent (rate of
rise) can be estimated from

S ¼ 2
ffiffiffi
2

p
fnku0

0:85
ð4:16Þ

where fn is the natural frequency and k is the amplitude factor.
The peak value uc in the four-parameter method cannot be found easily, due to

many variations in the system configurations. The traveling waves are partially or
totally reflected at the points of discontinuity of the surge impedance. A superimpo-
sition of all forward and reflected traveling waves gives the overall waveform.

4.5 THE SHORT-LINE FAULT

Faults occurring between a few and some hundreds of kilometers from the breaker
are termed short-line faults. A small length of the line lies between the breaker and
the fault location, Fig. 4-9(a). After the short-circuit current is interrupted, the
breaker terminal at the line end assumes a sawtooth oscillation shape, as shown in
Fig. 4-9(c). The rate of rise of voltage is directly proportional to the effective surge
impedance (which can vary between 35 and 450 ohms, the lower value being applic-
able to cables) and to the rate of rise of current at current zero. The component on
the supply side exhibits the same waveform as for a terminal fault, Fig. 4-9(b). The
circuit breaker is stressed by the difference between these two voltages, Fig. 4-9(d).
Because of the high-frequency oscillation of the line side terminal, the TRV has a
very steep initial rate of rise. In many breaker designs the short-line fault may
become a limiting factor of the current-interrupting capability of the breaker.

It is possible to reduce the voltage stresses of TRV by incorporating resistances
or capacitances in parallel with the contact break. SF6 circuit breakers of single
break design up to 345 kV and 50 kA interrupting rating have been developed.

4.6 INTERRUPTION OF LOW INDUCTIVE CURRENTS

A circuit breaker is required to interrupt low inductive currents of transformers at
no load, high-voltage reactors or locked rotor currents of motors. On account of
arc instability in a low-current region, current chopping can occur, irrespective of
the breaker interrupting medium. In a low-current region, the characteristics of the
arc decrease, corresponding to a negative resistance which lowers the damping of
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the circuit. This sets up a high-frequency oscillation, depending on the LC of the
circuit.

Figure 4.10(a) shows the circuit diagram for interruption of low inductive
currents. The inductance L2 and capacitance C2 on the load side can represent
transformers and motors. As the arc becomes unstable at low currents, the capaci-
tances C1 and C2 partake in an oscillatory process of frequency:

f3 ¼
1

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

C1C2

C1 þ C2

r ð4:17Þ
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Figure 4-9 Behavior of TRV in a short-line fault: (a) system equivalent circuit; (b) recovery
voltage on the source side; (c) recovery voltage on the load side; (d) voltage across the breaker

contacts.
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Practically no current flows through the load inductance L2. This forces a current
zero, before the natural current zero, and the current is interrupted, Fig. 4-10(b).
This interrupted current ia is the chopped current at voltage ua, Fig. 4-10(c). Thus,
the chopped current is not only affected by the circuit breaker, but also by the
properties of the circuit. The energy stored in the load at this moment is

i2a
L2

2
þ u2a

C2

2
ð4:18Þ
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Figure 4-10 Interruption of low inductive currents: (a) the equivalent circuit diagram; (b)

chopped current ia at ua; (c) source side voltage; (d) load side voltage; (e) voltage across
breaker contacts; (f) phenomena of repeated restrikes.
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which oscillates at the natural frequency of the disconnected circuit:

f2 ¼
1

2�
ffiffiffiffiffiffiffiffiffiffiffi
L2C2

p ð4:19Þ
This frequency may vary between 200 and 400 Hz for a transformer. The maximum
voltage on the load side occurs when all the inductive energy is converted into
capacitive energy:

u22max

C2

2
¼ u22

C2

2
þ i2a

L2

2
ð4:20Þ

The source side voltage builds up with the frequency:

f1 ¼
1

2�
ffiffiffiffiffiffiffiffiffiffiffi
L1C1

p ð4:21Þ

The frequency f lies between 1 and 5 kHz. This is shown in Fig. 4-10(c).
The linear expression of magnetic energy at the time of current chopping is not

strictly valid for transformers and should be replaced with

Volume of transformer core �
ðBm

0

HdB ð4:22Þ

where B is the magnetic flux density and H the magnetic field intensity (B-H hyster-
esis curve).

The load side voltage decays to zero, on account of system losses. The max-
imum load side overvoltage is of concern; from Fig. 4-10(d) and from the simplified
relationship (4.20), it is given by

u2max ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2a þ i2a

L2

C2

s
ð4:23Þ

A similar expression applies for the supply side voltage.
Thus, the overvoltage is dependent on the chopped current. If the current is

chopped at its peak value, the voltage is zero. The chopped currents in circuit break-
ers have been reduced with better designs and arc control. The voltage across the
supply side of the break, neglecting the arc voltage drop, is us and it oscillates at the
frequency given by L and C1. The voltage across the breaker contacts is us ¼ u2 � u1.
The supply side frequency is generally between 1 and 5 kHz.

If the circuit breaker voltage intersects the dielectric recovery characteristics of
the breaker, reignition occurs and the process is repeated anew, Fig. 4-10(f). With
every reignition, the energy stored is reduced, until the dielectric strength is large
enough and further reignitions are prevented. Overvoltages of the order of two to
four times may be produced on disconnection of inductive loads.

4.7 INTERRUPTION OF CAPACITIVE CURRENTS

A breaker may be used for line dropping and interrupt charging currents of cables
open at the far end or shunt capacitor currents. These duties impose voltage
stresses on the breaker. Consider the single-phase circuit of Fig. 4-11(a). The
distributed line capacitance is represented by a lumped capacitance C2, or C2

may be a power capacitor. The current and voltage waveforms of capacitance
current interruption in a single pole of a circuit breaker under the following
three conditions are shown:
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Figure 4-11 Interruption of capacitance current. (a) The equivalent circuit diagram; (b)
current and voltage waveforms without restrike, with restrike and with current chopping.
ia is chopping current and ua is voltage on the disconnected side on current chopping.

l ¼ damping factor< 1.
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. Without restrike

. With restrike

. With restrike and current chopping

After interruption of the capacitive current, the voltage across the capacitance C2

remains at the peak value of the power frequency voltage:

u2 ¼
ffiffiffi
2

p
unffiffiffi
3

p ð4:24Þ

The voltage at the supply side oscillates at a frequency given by supply side C1 and
L1, about the driving voltage un. The difference between these two voltages appears
at the breaker pole. This can be more than double the rated voltage, with no prior
charge on the capacitors.

If the gap across poles of a circuit breaker has not recovered enough dielectric
strength, restrike may occur. As the arc bridges the parting contacts, the capacitor
being disconnected is again reconnected to the supply system. This results in a
frequency higher than that of the natural frequency of the source side system
being superimposed on the 60-Hz system voltage. The current may be interrupted
at a zero crossing in the reignition process. Thus, the high-frequency voltage at its
crest is trapped on the capacitors. Therefore, after half a cycle following the restrike,
the voltage across the breaker poles is the difference between the supply side and the
disconnected side, which is at the peak voltage of the equalizing process, and a
second restrike may occur. Multiple restrikes can occur, pumping the capacitor
voltage to 3, 5, 7, . . . times the system voltage at each restrike. The multiple
restrikes can terminate in two ways: (1) these may cease as the breaker parting
contacts increase the dielectric strength, and (2) these may continue for a number
of cycles, until these are damped out.

A distinction should be made between reignitions in less than 5 msec of current
zero and reignitions at 60-Hz power frequency. Reignitions in less than 5 msec have a
low voltage across the circuit breaker gap and do not lead to overvoltages.

Disconnecting a three-phase capacitor circuit is more complex. The instant of
current interruption and trapped charge level depends on the circuit configuration.
In an ungrounded three-phase wye-connected bank, commonly applied at medium-
and high-voltage levels, let phase a current be first interrupted. This will occur when
the voltage of phase a is at its peak. Figure 4-12(a) shows that phase a is interrupted
first. The charge trapped in phase a is one per unit and that trapped in phases b and c
is 0.5 per unit.

The interruption of phase a changes the circuit configuration and connects the
capacitors in phases b and c in series. These capacitors are charged with equal and
opposite polarities. The current in phases b and c will interrupt simultaneously as
soon as the phase-to-phase current becomes zero. This will occur at 908 after the
current interruption in phase a, at the crest of the phase-to-phase voltage so that an
additional charge of

ffiffiffiffiffiffiffiffi
3=2

p
is stored in the capacitors, as shown in Fig. 4-12(b). These

charges will add to those already trapped on the capacitors in Fig. 4-12(a) and thus
voltages across capacitor terminals are:
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Eab ¼ 0:634

Ebc ¼ 1:73 per unit

Eac ¼ 2:37 per unit

ð4:25Þ

Further escalation of voltages occurs if the phases b and c are not interrupted after
908 of current interruption in phase a. It is hardly possible to take into account all
forms of three-phase interruptions with restrikes.

4.8 PRESTRIKES IN BREAKERS

A prestrike may occur on closing a circuit breaker, establishing the current flow,
before the contracts physically close. A prestrike occurs in a current flow at a
frequency given by the inductances and capacitances of the supply circuit and the
circuit being closed. In Fig. 4-13, this high-frequency current is interrupted at t ¼ t1.
Assuming no trapped charge on the capacitors, the voltage rises to approximately 2
per unit. A high-frequency voltage given by source reactance and stray capacitance is
superimposed on the recovering bus voltage. If a second prestrike occurs at t ¼ t2, a
further escalation of the bus voltage occurs. Thus, the transient conditions are
similar as for restrikes; however, the voltage tends to decrease as the contacts
come closer in a closing operation. In Fig. 4-13, um is the maximum system voltage,
ur is the recovery voltage, and us is the voltage across the breaker contacts.
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Figure 4-12 Sequence of creating trapped charges in a three-phase ungrounded capacitor
bank: (a) first phase a clears; (b) phases b and c clear in series.

Figure 4-13 Voltages due to prestrikes at t ¼ t1 and t ¼ t2. The inrush current is interrupted

at t ¼ t1.
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4.9 OVERVOLTAGES ON ENERGIZING HIGH-VOLTAGE LINES

The highest overvoltages occur when unloaded high-voltage transmission lines are
energized and re-energized and this imposes voltage stresses on circuit breakers.

Figure 4-14(a) shows the closing of a line of surge impedance Z0 and of length
l, open at the far end. Before the breaker is closed, the voltage on the supply side of
the breaker terminal is equal to the power system voltage, while the line voltage is
zero. At the moment of closing the voltage at the sending end must rise from zero to
the power frequency voltage. This takes place in the form of a traveling wave on the
line with its peak at um interacting with the supply system parameters. As an
unloaded line has capacitive impedance, the steady-state voltage at the supply end
is higher than the system voltage and, due to the Ferranti effect, the receiving end
voltage is higher than the sending end (see Chap. 10 for further discussions).
Overvoltage factor can be defined as follows:

Total overvoltage factor ¼ OVtot ¼
um
un

ð4:26Þ

where um is the highest voltage peak at a given point and un is the power frequency
voltage at supply side of breaker before switching.
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Figure 4-14 Overvoltages to ground on closing a transmission line: (a) basic circuit; (b) and

(c) voltages on the source and line side and superimposition of traveling waves occurs at t ¼ t1.
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Power frequency overvoltage factor ¼ OVpf ¼
upf
un

ð4:27Þ

This is the ratio of the power frequency voltage upf after closure at a point and power
frequency voltage un on supply side before closing.

Transient overvoltage factor ¼ OVtr ¼
um
upf

ð4:28Þ

The power frequency overvoltage factor can be calculated by known line parameters.
This is given by

1

cos �1� Xs=Z0 sin �l
ð4:29Þ

where the surge impedance and � are given by

Z0 ¼
ffiffiffiffiffiffi
L1

C1

s
ð4:30Þ

� ¼ 2� f
ffiffiffiffiffiffiffiffiffiffiffi
L1C1

p
ð4:31Þ

The relationship between sending and receiving end voltages is 1= cos �l.
This shows that the increase in power frequency voltage depends considerably

on the line length. The transient voltage is not so simple to determine and depends on
the phase angle at the closing instant (Fig. 4-13). At the instant t ¼ t1, the maximum
superposition of the transient and power frequency voltages occurs.

Trapped charges occur on the transmission lines in three-pole autoclosure
operations. Contact making of three poles of a circuit breaker is nonsimultaneous.
Consider breakers at the sending and receiving ends of a line and a transient ground
fault, which needs to be cleared by an auto-reclosure operation. The opening of the
two breakers is nonsimultaneous and the one which opens later must clear two line
phases at no load. These two phases can, therefore, remain charged at the peak of the
power frequency voltage, which is still present when the closure takes place. After the
dead time, one breaker has to close with two phases still charged. If the closing
instant happens to be such that the trapped charge and the power frequency voltage
are of opposite polarity, maximum transient overvoltage will occur.

4.9.1 Overvoltage Control

The power frequency component of the overvoltage is controlled by connecting high-
voltage reactors from line to ground at the sending and receiving ends of the trans-
mission lines. The effect of the trapped charge on the line can be eliminated if the
closing takes place during that half cycle of the power frequency voltage, which has
the same polarity as the trapped charge. The high-voltage circuit breakers may be
fitted with devices for polarity-dependent closing. Controlling overvoltages with
switching resistors is yet another method.

Lines with trapped charge and no compensation and no switching resistors in
breakers may have overvoltages greater than three times the rated voltage. Without
trapped charge this overvoltage will be reduced to 2.0–2.8 times the rated voltage.

With single-stage closing resistors and compensated line, overvoltages are
reduced to less than twice the rated voltage. With two-stage closing resistors or
compensated lines with optimized closing resistors, the overvoltage factor is 1.5.
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4.9.2 Synchronous Operation

A breaker can be designed to open or close with reference to the system voltage
sensing and zero crossing. An electronic control monitors the zero crossing of the
voltage wave and controls the shunt release of the breaker. The contacts can be made
to touch at voltage zero or voltage crest. In the opening operation the current zero
occurs at a definite contact gap. As the zeroes in three-phase voltages will be dis-
placed, the three poles of the breaker must have independent operating mechanisms.

4.10 OUT-OF-PHASE CLOSING

Figure 4-15 shows two interconnected systems which are totally out of phase. In Fig.
4-15(a), a voltage equal to three times the system peak voltage appears across the
breaker pole, while in Fig. 4-15(b), a ground fault exists on two different phases at
the sending and receiving ends (rather an unusual condition). The maximum voltage
across a breaker pole is 2� ffiffiffi

3
p

times the normal system peak voltage. The present-
day high-speed relaying has reduced the tripping time and, thus, the divergence of
generator rotors on fast closing is reduced. Simultaneously, the high-speed auto-
reclosing to restore service and remove faults increases the possibility of out-of-
phase closing, especially under fault conditions. The effect of the increased recovery
voltage when the two systems have drifted apart can be stated in terms of the short-
circuit power that needs to be interrupted. If the interrupting capacity of a circuit
breaker remains unimpaired up to double the rated voltage, it will perform all events
satisfactorily as a tie-line breaker when the two sections of the system are completely
out of synchronism. The short-circuit power to be interrupted under out-of-step
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Figure 4-15 Overvoltages due to two interconnected systems totally out of phase: (a)
unfaulted condition, the maximum voltage equal to three times the peak system voltage; (b)
ground faults on different phases on the source and load sides, the maximum voltage equal to

2
ffiffiffi
3

p
times the peak system voltage.
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conditions is approximately equal to the total short-circuit power of the entire
system, but reaches this level only if the two systems which are out-of-phase have
the same capacity (Fig. 4-16). In this figure, P1 is the interrupting capacity under
completely out-of-phase conditions of two interconnected systems, and P2 is the total
short-circuit capacity; Xa and Xb are the short-circuit reactances of the two systems.

4.11 RESISTANCE SWITCHING

Circuit breaker resistors can be designed and arranged for the following functions:

. To reduce switching surges and overvoltages.

. For potential control across multibreaks per phase.

. To reduce natural frequency effects.

Figure 4-17 shows a basic circuit of resistance switching. A resistor ‘r’ is provided in
parallel with the breaker pole, and R, L, and C are the system parameters on the
source side of the break. Consider the current loops in this figure. The following
equations can be written:

un ¼ iRþ L
di

dt
þ 1

C

ð
ic dt ð4:32Þ

1

C

ð
ic dt ¼ irr ð4:33Þ

i ¼ ir þ ic ð4:34Þ
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Figure 4-16 Interrupting capacity P1 in the case of out-of-step operation as a function of

ratio of short circuit reactances Xa/Xb and P2, the total short-circuit capacity.
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This gives

d2ir
dt2

þ R

L
þ 1

rC

� �
dir
dt

þ 1

LC
þ R

rLC

� �
ir ¼ 0 ð4:35Þ

The frequency of the transient is given by

fn ¼ 1

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

LC
� 1

4

R

L
� 1

rC

� �2
s

ð4:36Þ

In power systems, R is 
 L. If a parallel resistor across the contacts of value
r < 1

2

ffiffiffiffi
L

p
=C is provided, the frequency reduces to zero. The value of r at which

frequency reduces to zero is called the critical damping resistor. The critical resis-
tance can be evaluated in terms of the system short-circuit current, Isc:

r ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffi
u

Isc!C

r
ð4:37Þ

Figure 4-18 shows the effect of the resistors on the recovery voltage. Opening
resistors are also called switching resistors and are in parallel with the main break
and in series with an auxiliary resistance break switch. On an opening operation, the
resistor switch remains closed and opens with a certain delay after the main contacts
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Figure 4-17 Resistance ‘‘r’’ connected in parallel with the circuit breaker contacts (resis-
tance switching) on a short-circuit interruption.

Figure 4-18 Reduction of RRRV with parallel resistance switching.
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have opened. The resistance switch may be formed by the moving parts in the
interrupter or striking of an arc dependent on the circuit breaker design.

Figure 4-19 shows the sequence of opening and closing in a circuit breaker
provided with both opening and closing resistors. The closing resistors control the
switching overvoltage on energization of, say, long lines. An interrupting and closing
operation is shown. The main break is shown as SB, the breaking resistor as RB. On
an opening operation, as the main contact start arcing, the current is diverted
through the resistor RB, which is interrupted by contacts SC. In Fig. 4-19(d) the
breaker is in open position. Figures 4-19(e) and (f) show the closing operation.
Finally, the closed breaker is in shown in Fig. 4-19(a).

4.12 FAILURE MODES OF CIRCUIT BREAKERS

In ac circuit breakers the phenomena of arc interruption are complex. Arc plasma
temperatures of the order of 25,000 K–5000 K are involved, with conductivity chan-
ging a billion times as fast as temperature in the critical range associated with
thermal ionization. Supersonic turbulent flow occurs in changing flow and contact
geometry at speeds from 100 to 1000 m/sec in the arc. The contact system should
accelerate from a stationary condition to high speeds in a very short time.

With parabolic pressure distribution in the contact zone of a double-nozzle
configuration, a cylindrical arc with temperatures nearing 25,000K exists. Due to the
low density of gas at high temperatures, the plasma is strongly accelerated by an
axial pressure gradient. A so-called thermal arc boundary at a temperature of 300–
2000K exists. The arc downstream expands into nozzles and in this region the
boundary layer between arc and gas is turbulent with formation of vortices.

Two types of failures can occur: (1) dielectric failure which is usually coupled
with a terminal fault, and (2) thermal failure which is associated with a short-line
fault. If after a current zero, the RRRV is greater than a critical value, the decaying
arc channel is re-established by ohmic heating. This period, which is controlled by
the energy balance in the arc is called the thermal interruption mode. Figure 4-20
shows successful thermal interruption and a thermal failure. Within 2 msec after
interruption, the voltage deviates from TRV. It decreases and approaches the arc
voltage.

Following the thermal mode, a hot channel exists at temperatures from 300–
5000K, and a gas zone adjacent to the arc diminishes at a slow rate. The recovering
system voltage distorts and sets the dielectric limits. After successful thermal inter-
ruption, if the TRV can reach such a high peak value that the circuit breaker gap
fails, it is called a dielectric failure mode. This is shown in Fig. 4-21. Figure 4-21(a)
shows successful interruption, and Fig. 4-21(b) shows dielectric failure at the peak of
the recovery voltage, and rapid voltage decay.

The limit curves for circuit breakers can be plotted on a log u and log I basis, as
shown in Fig. 4-22. In this figure, u is the system voltage and I the short-circuit
current. The portion in thick lines shows dielectric limits, while the vertical portion in
thin lines shows thermal limits. In thermal mode: (1) metal vapor production form
contact surfaces, (2) di=dt, i.e., the rate of decrease of the current at current zero, (3)
arc constrictions in the nozzle due to finite velocity, (4) nozzle configurations, (5)
presence of parallel capacitors and resistors, and (6) type of quenching medium and
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Figure 4-19 Sequence of closing and opening operation of a high-voltage circuit breaker
provided with opening and closing resistors.
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pressures are of importance. In the dielectric mode, the generation of electrons in an
electric field is governed by Townsend’s equation:

@ne
@t

¼ � @neVe

@d
þ ð�� �ÞnsVe ð4:38Þ

where ne is the number of electrons, � is the Townsend coefficient (number of
charged particles formed by negatively charged ions), d is the spacing of electrodes,
� is the attachment coefficient, and Ve is the electron drift velocity.

The failure rate of circuit breakers all over the world is decreasing on account
of better designs and applications.
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Figure 4-20 Thermal failure mode of a circuit breaker, while opening: (a) successful inter-
ruption; (b) failure in the thermal mode.

Figure 4-21 Dielectric failure mode of a high-voltage circuit breaker: (a) successful inter-

ruption; (b) failure at the peak of TRV.
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4.12.1 Stresses in Circuit Breakers

The stresses in a circuit breaker under various operating conditions are summarized
in Fig. 4-23. These stresses are shown in terms of three parameters, current, voltage,
and du=dt, in a three-dimensional plane. Let the current stress be represented along
the x axis, the du=dt, stress along the y axis, and the voltage stress along the z axis.
We see that a short-line fault (A1, A2, A3 ) gives the maximum RRRV stress, though
the voltage stress is low. A terminal fault (B1, B2, B3) results in the maximum
interrupting current, while capacitor switching (C) and out-of-phase switching (D)
give the maximum voltage stresses. All the stresses do not occur simultaneously in an
interrupting process.

Problems

1. Distinguish between reignitions, restrikes, and current chopping in high-
voltage circuit breakers.

2. What is a delay line in TRV representation by two- and four-parameter
representation? Describe the parameters on which it depends and its
calculation.

3. Describe two accepted failure modes of circuit breakers. Categorize the
fault types which can lead to each of these two modes.

4. Find the recovery voltage across the breaker contacts while interrupting
the 4-A (peak) magnetizing current of a 138-kV, 20-MVA transformer.
Assume a capacitance of 4 nF to ground and an inductance of 4H.

5. What is the value of a switching resistor to eliminate the restriking tran-
sient in Problem 4?

6. On the source side of a generator breaker, L ¼ 1:5 mH and C ¼ 0:005 mF.
The breaker interrupts a current of 20 kA. Find (a) RRRV, (b) time to
reach peak recovery voltage, and (c) frequency of oscillation.
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Figure 4-22 General form of limiting curve in a circuit breaker plotted as log u versus log I ,
where V is the rated voltage of the breaker and I is the short-circuit current; n indicates the

number of interrupting chambers in series. Thick lines show dielectric mode and thin lines
thermal mode of possible failure.
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7. Explain the influence of power factor and first pole to clear on TRV.
What is the effect of frequency of TRV and load current on interrupting
duty of the circuit breaker?

8. A synchronous breaker is required to control a large shunt capacitor
bank. Overvoltages can be reduced by closing the breaker at (1) peak
of the voltage, and (2) zero crossing of the voltage. Which of the two
statements is correct? Assume that the capacitors do not have a residual
charge.

9. Comment on the correctness of these statements: (1) interrupting an
asymmetrical current gives rise to higher TRV than interrupting a sym-
metrical current; (2) as the current to be interrupted reduces, so does the
initial rate of rise of the recovery voltage; (3) the thermal mode of a
failure of breaker is excited when interrupting a capacitor current, due
to higher TRV; (4) an oscillatory TRV occurs for a fault on a transformer
connected to a transmission line; (5) selecting a breaker of higher inter-
rupting rating is an assurance that, in general, its TRV capability is
better.

10. Describe a simple circuit element to control the RRRV, when interrupt-
ing a highly magnetizing current.
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Figure 4-23 Stresses in a high-voltage circuit breaker in terms of short-circuit current,

RRRV, and maximum overvoltage. A1, A2, and A3 short-line faults; B1, B2, and B3 terminal
faults; C capacitance currents; D out-of-phase or asynchronous conditions.
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5

Application and Ratings of Circuit
Breakers and Fuses According to
ANSI Standards

In Chap. 4, we discussed current interruption in ac circuits and the stresses that can
be imposed on the circuit breakers, depending on the nature of fault or the switching
operation. We observed that the system modulates the arc interruption process and
the performance of a circuit breaker. In this chapter, we will review the ratings of
circuit breakers and fuses according to ANSI, mainly from the short-circuit and
switching point of view, and examine their applications. While a general-purpose
circuit breaker may be adequate in most applications, yet higher duties may be
imposed in certain systems which should be carefully considered. This chapter also
forms a background to the short-circuit calculation procedures in Chap. 7. Recent
revisions of ANSI/IEEE Standards promote harmonization with IEC and world
standards.

5.1 TOTAL AND SYMMETRICAL CURRENT RATING BASIS

Prior to 1964, high-voltage circuit breakers were rated on a total current basis [1,4].
At present, these are rated on a symmetrical current basis [2,3]. Systems of nominal
voltage less than 1000V are termed low voltage, from 1000 to 100,000 V as medium
voltage, and from 100 to 230 kV as high voltage. Nominal system voltages from 230
to 765 kV are extra-high voltage (EHV) and higher than that ultra-high voltage
(UHV). ANSI covers circuit breakers rated above 1 to 800 kV. The difference in
total and symmetrical ratings depends on how the asymmetry in short-circuit current
is addressed. The symmetrical rating takes asymmetry into account in the rating
structure of the breaker itself. The asymmetrical profile of the short-circuit current
shown in Fig. 5-1 is the same as that of Fig. 1-1, except that a decaying ac component
is shown. The rms value of a symmetrical sinusoidal wave, at any instant, is equal to
the peak-to-peak value divided by 2.828. The rms value of an asymmetrical wave-
shape at any instant is given by Eq. (4.5). For circuit breakers rated on a total
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current rating basis, short-circuit interrupting capabilities are expressed in total rms
current. For circuit breakers rated on a symmetrical current basis, the interrupting
capabilities are expressed as rms symmetrical current at contact parting time. The
symmetrical capacity for polyphase or phase-to-phase faults is the highest value of
the symmetrical component of the short-circuit current in rms ampères at the instant
of primary arcing contact separation, which the circuit breaker will be required to
interrupt at a specified operating voltage on the standard operating duty and irre-
spective of the dc component of the total short-circuit current [2].

Figure 5-2 shows an asymmetrical current waveform, where t is the instant of
contact parting. The peak-to-peak value of the asymmetrical ac current is given by
ordinate A. This is the sum of two ordinates A 0 and B 0, called the major ordinate and
minor ordinates, respectively, as measured from the zero line. The dc component D is

D ¼ A 0 � B 0

2
ð5:1Þ

The rms value of ac component B is

146 Chapter 5

Figure 5-1 Asymmetrical current wave with decaying ac component.

Figure 5-2 Evaluation of rms value of an offset wave.
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B ¼ A 0 þ B 0

2:828
ð5:2Þ

Thus, total interrupting current in rms is:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 þD2

p
ð5:3Þ

Equation (5.3) forms the total current rating basis and Eq. (5.2) forms the
symmetrical current basis. Figure 5-3 shows that the total rms symmetrical current
is higher than the rms of the ac component alone. This does not mean that the effect
of the dc component at the contact parting time is ignored in the symmetrical rating
of the breakers. It is considered in the testing and rating of the breaker. Breakers
rated on a symmetrical current basis are discussed in the rest of this chapter.

5.2 ASYMMETRICAL RATINGS

The asymmetry in polyphase and phase-to-phase interrupting is accounted for by
testing the breaker at higher total current (asymmetrical current) based on a mini-
mum contact parting time. This includes the tripping delay. The contact parting is the
sum of the tripping delay plus breaker opening time. The ANSI standard [3] specifies
that the primary contact parting time will be considered equal to the sum of one-half
cycle (tripping delay) and the lesser of: (1) the actual opening time of the particular
breaker; or (2) 1.0, 1.5, 2.5, or 3.5 cycles for breakers having a rated interrupting time
of 2, 3, 5, or 8 cycles, respectively. This means that 2, 3, 5, and 8 cycle breakers have
contact parting times of 1.5, 2, 3, and 4 cycles, respectively, unless the test results
show a lower opening time plus a half-cycle tripping delay.

The asymmetrical rating is expressed as a ratio S, which is the required asym-
metrical interrupting capability per unit of the symmetrical interrupting capability.
This is shown in Fig. 5-4. Ratio S is found by multiplying the symmetrical inter-
rupting capability of the breaker determined for the operating voltage by an appro-
priate factor. The value of S is specified as 1.4, 1.3, 1.2, 1.1, or 1.0 for breakers
having a contact parting time of 1, 1.5, 2, 3, or 4 or more cycles, respectively.

The tripping delay can be less than one-half cycle or more than one-half cycle.
In either case, the effect on the asymmetrical rating should be considered.
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Figure 5-3 Symmetrical ac and total current profiles, rms values.
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5.3 VOLTAGE RANGE FACTOR K

The maximum symmetrical interrupting capability of a circuit breaker is K times the
rated short-circuit current. Between the rated maximum voltage and 1/K times the
rated maximum voltage, the symmetrical interrupting capacity is defined as

Rated short circuit current�Rated maximum voltage

Operating voltage
ð5:4Þ

This is illustrated in Fig. 5-5. The interrupting rating at lower voltage of application
cannot exceed the rated short-circuit current multiplied by K. For breakers rated at
72.5–800 kV, K ¼ 1. Also Ref. [5], year 2000 sets k=1 for all breakers including
indoor circuit breakers to 38kV.

Example 5.1

A 15-kV circuit breaker (maximum rated voltage) has a K factor of 1.30 and rated
short-circuit current of 37 kA rms. What is its interrupting rating at 13.8 kV? What is
the breaker maximum symmetrical interrupting capability?

The rated interrupting current at 13.8 kV is given by Eq. (5.4) and is
37� ð15=13:8Þ ¼ 40:2 kA. The maximum symmetrical interrupting capability of
this breaker is 37K ¼ 48 kA rms.

5.4 CAPABILITIES FOR GROUND FAULTS

Symmetrical and asymmetrical interrupting capabilities for line-to-ground faults are
1.15 times the symmetrical and asymmetrical values, respectively, specified for poly-
phase and phase-to-phase faults. In no case are these capabilities required to exceed
K times the symmetrical interrupting capability and K times the asymmetrical inter-
rupting capability.
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Figure 5-4 Ratio S as a function of contact parting time. Ref. [3], year 1999 plots the
asymmetrical capability in terms of contact parting time in ms and % dc component which
conceptually is identical with earlier standard, i.e., for a contact parting time of 2 and 3 cycles,

the required dc component is 48% and 32%. (From Ref. 3. Copyright 1979 IEEE. All rights
reserved. Reproduced with permission.)
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Example 5.2

Consider the 15-kV circuit breaker of Example 5.1. Its symmetrical interrupting
capability for a line-to-ground fault is 40:2� 1:15 ¼ 46 kA, when applied at
13.8 kV. Its maximum symmetrical interrupting capability, whether for polyphase
or a single line-to-ground fault is 37K, i.e., 48 kA rms. This circuit breaker has an
interrupting time of five cycles, and a contact parting time of three cycles. From Fig.
5-4, S ¼ 1:1. The required asymmetrical rating for polyphase faults at an operating
voltage of 13.8 kV is, therefore, ¼ 40:2� 1:1 ¼ 44:22 kA. For line-to-ground faults it
is 40:2� 1:1� 1:15 ¼ 50:8. This cannot exceed the asymmetrical rating at the max-
imum rated voltage of 15 kV ¼ 37K � 1:1 ¼ 52:8 kA.

5.5 CLOSING–LATCHING–CARRYING INTERRUPTING
CAPABILITIES

A circuit breaker is capable of performing the following operations in succession:

It will close and immediately after that latch any normal frequency current, which does
not exceed 1.6K times rated short-circuit current, peak not exceeding 2.7 K times the
rated short-circuit current. This factor is changed to 2.6 (for 60-Hz circuit breakers) and

2.5 (for 50-Hz circuit breakers) in the revised standards.
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Figure 5-5 Relationship of interrupting capacity, closing and latching capability, and car-

rying capability to rated short-circuit current. (From Ref. 3. Copyright 1979 IEEE. All rights
reserved. Reproduced with permission.)
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This is the total current, and not the symmetrical current and it is not a function of
voltage of use. This current is closely approximated by using the ac and dc compo-
nents measured at the half-cycle point. The close and latch capabilities are compared
against the first-cycle (momentary) total rms or peak short-circuit duty imposed by
the power system. In Fig. 5-1, the crest of the first-cycle short-circuit current is given
by PP 0. The ratio of the peak value of the current to the rms value varies with the
asymmetry. A peak value corresponding to approximately 90% asymmetry forms
the rating basis. At 90% asymmetry the peak value, rms value, and the ratio of peak
value to rms value are 2.69, 1.62, and 1.66, respectively.

Table 5-1 gives asymmetrical factors, based upon fault point X/R ratio or
power factors. The relation between rms asym and peak values for factor 2.7 is
given by:

rmsasym ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðPeakasym �

ffiffiffi
2

p
Þ2 þ 1

q
ð5:5Þ

It will carry a short-circuit current, I, for any time up to the permissible tripping delay.
The rated permissible tripping delay, Y, in seconds is the maximum value of time for
which the breaker is required to carry K times the rated short-circuit current, after
closing on this current and before tripping.

The values of Y are specified in an ANSI standard [5], i.e., for circuit breakers of
72.5 kV and below, the rated permissible delay is 2 sec and for circuit breakers of
121 kV and above it is 1 sec. The tripping delay at lower values of current can be
increased and within a period of 30 min should not increase the value given byðt

0

i2 dt ¼ Y ½K � rated short-circuit current�2 ð5:6Þ

It will then be capable of interrupting any short-circuit current, which at the instant of
primary arcing contact separation has a symmetrical value not exceeding the required
asymmetrical capability.
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Table 5-1 Asymmetrical Factors Based on X=R Ratio or Short-Circuit Power Factor

Short-circuit power
factor (%) X=R ratio

Ratio of rms sym. ampères to:

Max. single-phase
inst. peak

Max. single-phase
rms at 1

2 cycle

0

1
2
3
4

5
6
18

40
70

100

1
100.00
49.993
33.332
24.979

19.974
16.623
5.4649

2.2913
1.0202
0000

2.828

2.785
2.743
2.702
2.663

2.625
2.589
2.231

1.819
1.517
1.414

1.732

1.697
1.662
1.630
1.599

1.569
1.540
1.278

1.062
1.002
1.000
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Table 5-2 Preferred Ratings of Indoor Oil-Less Circuit Breakers

Rated maximum
voltage

(kV, rms)

Rated voltage
range factor

(K)

Rated continuous current
at 60Hz

(ampères, rms)

Rated short-

circuit current at
rated maximum

kV

(kA, rms)

Rated
interrupting

time cycles

Rated maximum

voltage divided
by K

(kV, rms)

Maximum
symmetrical
interrupting

capability and
rated short-time

current

(kA, rms)

Closing and
latching

capability 2.7K

times rated
short-circuit

current

(kA, peak)

4.76

4.76
4.76

8.25

15.0
15.0

15.0

38.0

38.0

1.36

1.24
1.19

1.25

1.3
1.3

1.3

1.65

1.0

1200

1200,2000
1200,2000,3000

1200,2000

1200,2000
1200,2000

1200,2000,3000

1200,2000,3000

1200,3000

8.8

29
41

33

18
28

37

21

41

5

5
5

5

5
5

5

5

5

3.5

3.85
4.0

6.6

11.5
11.5

11.5

23.0

38.0

12

36
49

41

23
36

48

35

40

32

97
132

111

62
97

130

95

108

Ref. [5], year 2000 revision shows preferred ratings for K=1. Example: Rated voltage 15kV, short-circuit and rated short-time current rating 40, 50, 63 kA and

corresponding close and latch capability 104,130, and 164 kA peak (2.6 times the rated short-circuit current). Factor T2 for TRV calculations is specified for the first time.

It is 50 ms for 4.76 kV, 75 ms for 15kV and 125 ms for 38 kV breakers. Ratings with earlier K>1 will remain popular for some years to come.

Source: Ref. 5. Copyright 1987, 2000 IEEE. Reproduced with permission.
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Table 5-3 Preferred Ratings for Outdoor Circuit Breakers 121 kV and Above Including Circuit Breakers Applied in Gas-Insulated Substations

Rated

Maximum

voltage

(kV)

Rated voltage

range factor

(K)

Rated continuous current

at 60Hz

(ampères, rms)

Rated short-

circuit current

at rated

maximum

voltage

(kA, rms)

Rated time to

point P

(T2; msec)

Rated rate

R

(kV/msec)

Rated delay

time

(T1;msec)

Rated

interrupting

time cycles

Maximum

permissible

tripping delay

Closing and

latching

capability, 2.6K

times rated

short-circuit

current

(kA, peak)

123

123

123

145

145

145

145

170

170

170

170

245

245

245

245

362

362

550

550

800

800

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1200,2000

1600,2000,3000

2000,3000

1200,2000

1600,2000,3000

2000,3000

2000,3000

1600,2000,3000

2000

2000

2000

1600,2000,3000

2000,3000

2000,3000

2000,3000

2000,3000

2000,3000

2000,3000

3000,4000

2000,3000

3000,4000

31.5

40

63

31.5

40

63

80

31.5

40

50

63

31.5

40

50

63

40

63

40

63

40

63

260

260

260

330

310

310

310

360

360

360

360

520

520

520

520

775

775

1325

1325

1530

1530

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2.0

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

2

3(50ms)

3

3

3

3

3

3

3

3

3

3

3

3

3

3

2(33ms)

2

2

2

2

2

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

82

104

164

82

104

164

208

82

104

130

164

82

104

130

164

104

164

104

164

104

164

Source: Ref. 5. Copyright 2000 IEEE. Reproduced with permission.
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The requirements set out in the above paragraphs are successively applied.
Tables 5.2 [5] and 5.3 [5] show the preferred ratings of indoor oil-less circuit breakers
up to 72.5 kV and outdoor high-voltage circuit breakers of 121 kV and above, respec-
tively. These tables show the close and latch capability in terms of peak asymmetrical
currents. Table 5.2 shows earlier ratings based upon factor 2.7k, while Table 5.3
shows ratings based on factor 2.6.

5.6 SHORT-TIME CURRENT CARRYING CAPABILITY

The circuit breaker will be capable of carrying any short-circuit current for 3 sec
whose rms value, determined from the envelope of a current wave at the time of
maximum crest, does not exceed 1.6K times the rated short-circuit current, or whose
maximum crest value does not exceed 2.7K times the rated short-circuit current. The
rms value as determined over a 3-sec period does not exceed K times the rated short-
circuit current. Mathematically:

I ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

ðT
0

i2 dt

� �s
ð5:7Þ

where T ¼ 3 sec and I is the instantaneous rms current in ampères. The breaker is
not capable of interrupting until it has cooled down to normal heat run temperature.

5.7 SERVICE CAPABILITY DUTY REQUIREMENTS AND RECLOSING
CAPABILITY

ANSI rated circuit breakers are specified to have the following interrupting perfor-
mance:

1. Between 85 and 100% of asymmetrical interrupting capability at operat-
ing voltage and for breakers above 121 kV, two standard duty cycles.

O� 15 s� CO� 3min� CO or O�O:3s�
CO� 3min� CO for circuit breakers for rapid reclosing.
For generator breakers: CO�30 min�CO

2. Between rated current and 85% of required asymmetrical capability a
number of operations in which the sum of interrupted currents do not
exceed 400% of the required asymmetrical interrupting capability of the
breaker at rated voltage.
CO: close–open

Whenever a circuit breaker is applied having more operations or a shorter time
interval between operations, other than the standard duty cycle, the rated short-
circuit current and related required capabilities are reduced by a reclosing capability
factor R, determined as follows:

R ¼ ð100�DÞ% ð5:8Þ

D ¼ d1ðn� 2Þ þ d1
ð15� t1Þ

15
þ d1

ð15� t2Þ
15

þ . . . ð5:9Þ
where D is the total reduction factor in per cent, d1 is specified in an ANSI standard
[3], n is the total number of openings, t1 is the first time interval (<15 sec), and t2 is
the second time interval (<15 sec).

Application and Ratings of Circuit Breakers and Fuses 153

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



Interrupting duties thus calculated are subject to further qualifications. These
should be adjusted for X/R ratios. All breakers are not rated for reclosing duties.
Breakers rated more than 1200 A and below 72.5 kV are not intended for reclosing
operations. Breakers rated 72.5 kV and above have reclosing capabilities irrespective
of the current ratings.

5.7.1 Transient Stability on Fast Reclosing

High-speed reclosing is used to improve transient stability and voltage conditions in
a grid system. Figure 5-6 illustrates the effect of high-speed single-phase reclosing on
transient stability, using equal area criteria of stability. A transient single line-to-
ground fault occurs on the tie line; the tie line breaker opens and then closes within a
short-time delay, called the dead time of the breaker. Some synchronizing power
flows through two unfaulted phases, during a single line-to-ground fault, and no
power flows during the dead time. The dead time of the circuit breaker on fast
reclosing implies a time interval sufficient for the arc fault path to become deionized
(Chap. 4). In Fig. 5-6, 	1�	2 is the breaker dead time. Synchronous motors and
power capacitors tend to prolong the arcing time.

154 Chapter 5

Figure 5-6 Transient stability of a tie line circuit with fast reclosing on a single line-to-
ground fault: (a) equivalent system representation; (b) equal area criteria of stability. Fault

occurs at torque angle 	0; breaker opens at 	1 and recloses at 	2 to remove the transient fault.
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5.8 CAPACITANCE CURRENT SWITCHING

ANSI ratings [5] distinguish between general-purpose and definite-purpose circuit
breakers and there is a vast difference between their capabilities for capacitance
current switching. Definite-purpose breakers may have different constructional fea-
tures, i.e., a heavy-duty closing and tripping mechanism and testing requirements.
Table 5-4 shows the capacitance current switching ratings. General-purpose breakers
do not have any back-to-back capacitance current switching capabilities. A 121-kV
general-purpose circuit breaker of rated current 2 kA and 63 kA symmetrical short-
circuit has overhead line charging current or isolated capacitor switching current
capability of 50A rms and no back-to-back switching capability. The following
definitions are applicable:

1. Rated open wire line charging current is the highest line charging current
that the circuit breaker is required to switch at any voltage up to the rated
voltage.

2. Rated isolated cable charging and isolated shunt capacitor bank switch-
ing current is the highest isolated cable or shunt capacitor current that the
breaker is required to switch at any voltage up to the rated voltage.

The cable circuits and switched capacitor bank are considered isolated
if the rate of change of transient inrush current, di=dt does not exceed the
maximum rate of change of symmetrical interrupting capability of the
circuit breaker at the applied voltage [6]:

di

dt

� �
max

¼
ffiffiffi
2

p
! ½rated maximum voltage/operating voltage�I ð5:10Þ

where I is the rated short-circuit current in ampères.
3. Cable circuits and shunt capacitor banks are considered switched back-

to-back if the highest rate of change of inrush current on closing exceeds
that for which the cable or shunt capacitor can be considered isolated.

The oscillatory current on back-to-back switching is limited only by the impedance
of the capacitor bank and the circuit between the energized bank and the switched
bank.

The inrush current and frequency on capacitor current switching can be calcu-
lated by solution of the following differential equation:

iRþ L
di

dt
þ
ð
idt

C
¼ Em sin!t ð5:11Þ

The solution to this differential equation is discussed in many texts and is of the
form:

i ¼ A sinð!tþ �Þ þ Be�Rt=2L sinð!0t� �Þ ð5:12Þ
where

!0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

LC
� R2

4L2

s
ð5:13Þ

The first term is a forced oscillation, which in fact is the steady-state current, and the
second term represents a free oscillation, and has a damping component e�rt=2L. Its
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Table 5-4 Preferred Capacitance Current Switching Rating for Outdoor Circuit Breakers 121 kV and Above, Including Circuit Breakers Applied
in Gas-Insulated Substations

Rated

maximum

voltage

(kV)

Rated short-

circuit current at

rated maximum

voltage

(kA, rms)

Rated continuous

current at 60Hz

(ampères, rms)

General-

purpose circuit

breakers, rated

overhead line

current

(ampères, rms)

General-

purpose circuit

breakers, rated

isolated current

(ampères, rms)

Definite-purpose breakers rated capacitance switching current shunt capacitor bank

or cable

Overhead line

current

(ampères, rms)

Rated isolated

current

(ampères, rms)

Back-to-back switching

Current

(ampères, rms)

Inrush current

Peak current

(kA)

Frequency

(Hz)

123

123

123

145

145

145

145

170

170

170

170

245

245

245

245

362

362

550

550

800

800

31.5

40

63

31.5

40

63

80

31.5

40

50

63

31.5

40

50

63

40

63

40

63

40

63

1200,2000

1600,2000,3000

2000,3000

1200,2000

1600,2000,3000

2000,3000

2000,3000

1600,2000

2000,3000

2000,3000

2000,3000

1600,2000,3000

2000,3000

2000,3000

2000,3000

2000,3000

2000,3000

2000,3000

3000,4000

2000,3000

3000,4000

50

50

50

80

80

80

80

100

100

100

100

160

160

160

160

250

250

400

400

500

500

50

50

50

80

80

80

80

100

100

100

100

160

160

160

160

250

250

400

400

500

500

160

160

160

160

160

160

160

160

160

160

160

200

200

200

200

315

315

500

500

500

500

315

315

315

315

315

315

315

400

400

400

400

400

400

400

400

500

500

500

500

500

500

315

315

315

315

315

315

315

400

400

400

400

400

400

400

400

500

500

500

500

–

–

16

16

16

16

16

16

16

20

20

20

20

20

20

20

20

25

25

25

25

–

–

4250

4250

4250

4250

4250

4250

4250

4250

4250

4250

4250

4250

4250

4250

4250

4250

4250

4250

4250

–

–

Source: Ref. 5. Copyright 2000 IEEE. Reprinted with permission.
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frequency is given by !0=2�. Resistance can be neglected and this simplifies the
solution. The maximum inrush current is given at an instant of switching when
t ¼ ffiffiffiffiffiffiffiffiffiffiðLCÞp

. For the purpose of evaluation of switching duties of circuit breakers,
the maximum inrush current on switching an isolated bank is

Ipeak ¼
ffiffiffi
2

pffiffiffi
3

p Erms

ffiffiffiffi
C

L

r
ð5:14Þ

where E is the line-to-line voltage and C and L are in H and F, respectively. The
inrush frequency is

finrush ¼ 1

2�
ffiffiffiffiffiffiffi
LC

p ð5:15Þ

For back-to-back switching, i.e., energizing a bank on the same bus when
another energized bank is present, the inrush current is entirely composed of inter-
change of currents between the two banks. The component supplied by the source is
of low frequency and can be neglected. This will not be true if the source impedance
is comparable to the impedance between the banks being switched back-to-back. The
back-to-back switching current is given by

Iinrush ¼
ffiffiffi
2

pffiffiffi
3

p Erms

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C1C2

ðC1 þ C2ÞðLeqÞ

s
ð5:16Þ

where Leq is the equivalent reactance between the banks being switched. The inrush
frequency is

finrush ¼ 1

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LeqC1C2

ðC1 þ C2Þ

s ð5:17Þ

Example 5.3

Consider the system of Fig. 5-7. Two capacitor banks C1 and C2 are connected on
the same 13.8-kV bus. The inductances in the switching circuit are calculated in
Table 5-5. Let C1 be first switched. The inrush current is mostly limited by the source
inductance, which predominates. The inrush current magnitude and frequency, using
the expressions in Eqs (5.14) and (5.15), are 5560A peak and 552.8 Hz, respectively.
The maximum rate of change of current is

2�ð552:81Þð5560Þ � 10�6 ¼ 19:31A=msec

Consider that a definite-purpose indoor 15-kV breaker of 2 kA continuous rating
and 40.2 kA interrupting at 13.8 kV. From Eq. (5.10) the breaker di=dt is:

2�ð60Þ
ffiffiffi
2

p
ð40200Þ10�6 ¼ 21:43A=msec

This is more than 19.283 A/msec as calculated above. Thus, the capacitor bank can
be considered isolated.

Now calculate the inrush current and frequency on back-to-back switching,
i.e., capacitor C2 is switched when C1 is already connected to the bus. The equivalent
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inductance on back-to-back switching consists of a small length of bus between the
banks and their cable connections. The source inductance is ignored, as practically
no current is contributed from the source. The inductance in the back-to-back
switching circuit is 14.46 mH. From Eqs (5.16) and (5.17) the inrush current is
22.7 kA and the inrush frequency is 5653 Hz. From Table 5-4 the intended defi-
nite-purpose breaker to be used has a maximum crest current of 18 kA and an inrush
frequency of 2.4 kHz. In this example even the definite-purpose circuit breaker will
be applied beyond its rating. In order to reduce the inrush current and frequency an

158 Chapter 5

Figure 5-7 (a) Connection diagram for capacitor bank switching; (b) equivalent reactance
diagram (Example 5.3).
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additional reactance should be introduced into the circuit. An inductance of 70 mH
will reduce the inrush current to 9.4 kA and the frequency to 2332 Hz. Inrush current
limiting reactors are generally required when the capacitor banks are switched back-
to-back on the same bus. In the case where power capacitors are applied as shunt
tuned filters, the filter reactors will reduce the inrush current and its frequency, so
that the breaker duties are at acceptable levels.

Rated transient overvoltage factor is defined as the ratio of the transient voltage appear-
ing between a circuit breaker disconnected terminal and the neutral of the disconnected
capacitance during opening to the operating line-to-neutral crest voltage prior to open-

ing [6].

For definite-purpose breakers the overvoltage factor should not exceed the
values given below in 50 random three-phase operations [6].

. 2.5 for circuit breakers rated 72.5 kV and below

. 2.0 for circuit breakers rated 121 kV and above

For general-purpose circuit breakers, the transient overvoltage factor will not exceed
3.0. The overvoltage control and synchronous breakers are described in Chap. 4.

Rated transient inrush current is the highest magnitude which the circuit breaker will be
required to close at any voltage up to the rated maximum voltage and will be measured
by the system and unmodified by the breaker. Rated transient inrush frequency is the
highest natural frequency which the circuit breaker is required to close at 100% of its

rated back-to-back shunt capacitor or cable switching current.
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Table 5-5 Capacitor Switching (Example 5.3): Calculation of Inductances and

Capacitances

No. System data

Calculated inductance

or capacitance

1 Three-phase short-circuit level at 13.8-kV bus,

850MVA, X=R ¼ 30

L1 source ¼ 593:97mH

2 3 0 of 13.8-kV bus L2 bus ¼ 0:63 mH

3 30 0 of 2-3/C 500 KCMIL cables L3 cable ¼ 1:26 mH

4 Inductance of the bank itself L4 bank ¼ 5mH

5 Total inductance, when capacitor C1 is switched
¼ L1 þ L2 þ L3 þ L4

600.86 mH

6 Capacitance of bank C1, consisting of 9 units in
parallel, one series group, wye connected, rated

voltage 8.32 kV, 400 kvar each, total three-phase
kvar at 13.8 kV ¼ 9:885Mvar

C1 ¼ 0:138� 10�3 F

7 Total inductance when C2 is switched and C1 is
already energized=inductance of 9 feet of

13.8 kV bus, 60 feet of cables and inductances
of banks themselves

14.42mH

8 Capacitance of bank C2, consisting of 6 units in
parallel, one series group, wye connected, rated
voltage 8.32 kV, 400 kvar each, total three-phase

kvar at 13.8 kV ¼ 6:59 Mvar

C2 ¼ 0:092� 10�3 F
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For systems below 72.5 kV, shunt capacitors may be grounded or ungrounded and
for systems above 121 kV both the shunt capacitors and the systems will be solidly
grounded. If the neutral of the system, the capacitor bank, or both, are ungrounded,
the manufacturer should be consulted for circuit breaker application. The first phase
to interrupt affects the recovery voltage.

Special applications may exist where the circuit-breaker duties need to be care-
fully evaluated [5, 6]. These applications may be:

1. Switching through a transformer of turns ratio greater than one will have
the effect of increasing the switching current. Dropping EHV and UHV
lines through low-voltage circuit breakers can increase the effective line
charging current in the 750–1000 A range.

2. The effect of the capacitive discharge currents on voltage induced in the
secondary of the bushing type current transformer should be considered.
In certain system configurations, i.e., when a number of capacitors are
connected to a bus, for a fault on a feeder circuit, all bus connected
capacitors will discharge into the fault. The BCT (bushing current trans-
former) secondary voltage may reach high values. This secondary voltage
can be estimated from

1

BCT ratio

� �
ðCrest transient currentÞ

�
ðRelay reactanceÞ

Transient frequency

System frequency

� �� ð5:18Þ

Higher than the normal inrush currents are possible on fast reclosing of
power capacitors. Reclosing is, generally, not attempted on power capa-
citor banks. Capacitors over 600 V are provided with internal discharge
devices (resistors) to reduce the residual charge to 50V or less within 5
min.

3. When parallel banks of capacitors are located on a bus section, caution
must be applied in fault switching sequence, so that the last circuit
breaker to clear the fault is not subjected to a capacitive switching duty
beyond its capability.

4. Switching capacitor banks under faulted conditions gives rise to high
recovery voltages, depending on the grounding and fault type. A phase-
to-ground fault produces the most severe conditions when the source is
ungrounded and the bank neutral is grounded. If an unfaulted phase is
first to clear, the current may reach 1.73 times the rated current and the
recovery voltage 3.46 Emax, phase-to-ground. When the faulted phase is
first to interrupt, the current is 3.06 times the rated current and the
recovery voltage 3.0 Emax. The ANSI standard [6] provides tables of
system configurations and recovery voltages.

5.9 LINE CLOSING SWITCHING SURGE FACTOR

The rated line closing switching surge factors are specified in ANSI for breakers of
362 kV and above specifically designed to control the switching overvoltages, and are
shown in Table 5-6 [5]. The rating designates that the breaker is capable of control-
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Table 5-6 Rated Line Closing Switching Surge Factors for Circuit Breakers Specifically Designed to Control Line Closing Switching Surge

Maximum Voltage, and Parameters of Standard Reference Transmission Lines

Rated maximum

voltage
(kV, rms)

Rated line closing

switching surge
factor

Line length
(miles)

Percentage shunt

capacitance divided
equally at line ends L1 L0=L1 R1 R0 C1 C1=C0

362
500
800

2.4
2.2
2.0

150
200
200

0
0

60

1.6
1.6
1.4

3
3
3

0.05
0.03
0.02

0.5
0.5
0.5

0.02
0.02
0.02

1.5
1.5
1.5

L1 ¼ positive and negative sequence inductance in mH per mile.

L0 ¼ zero sequence inductance in mH per mile.

R1 ¼ positive and negative sequence resistance in ohms per mile.

R0 ¼ zero sequence resistance in ohms per mile.

C1 ¼ positive and negative sequence capacitance in microfarads per mile.

C0 ¼ zero sequence capacitance in microfarads per mile.

Source: Ref. 5. Copyright 2000 IEEE. Reproduced with permission.
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ling the switching surge voltages so that the probability of not exceeding the rated
overvoltage factor is 98% or higher when switching the standard reference transmis-
sion line from a standard reference source [7].

Switching surge overvoltages are discussed in Sec. 4.9. ANSI takes a statistical
approach. Random closing of circuit breaker will produce line closing switching
surge maximum voltages which vary in magnitude according to the instantaneous
value of the source voltage, the parameters of the connected system, and the time
difference between completion of a circuit path by switching traveling waves in each
phase. These variations will be governed by laws of probability, and the highest and
lowest overvoltages will occur infrequently.

The assumptions are that the circuit breaker connects the overhead line directly
to a power source, open at the receiving end and not connected to terminal appa-
ratus such as a power transformer, though it may be connected to an open switch or
circuit breaker. The system does not include surge arresters, shunt reactors, potential
transformers, or series or shunt capacitors.

The reference power source is a three-phase wye-connected voltage source with
the neutral grounded and with each of the three-phase voltages in series with an
inductive reactance which represents the short-circuit capability of the source. The
maximum source voltage, line to line, is the rated voltage of the circuit breaker. The
series reactance is that which produces the rated short-circuit current of the circuit
breaker, both three phase and single phase at rated maximum voltage with the short-
circuit applied at the circuit breaker terminals.

The standard transmission line is a perfectly transposed three-phase transmis-
sion line with parameters as listed in the ANSI/IEEE standard [7]. Any power system
which deviates too greatly from the standard reference power system may require
that a simulated study be made.

5.10 OUT-OF-PHASE SWITCHING CURRENT RATING

The assigned out-of-phase switching rating is the maximum out-of-phase current
that can be switched at an out-of-phase recovery voltage specified in ANSI and
under prescribed conditions. If a circuit breaker has an out-of-phase switching cur-
rent rating, it will be 25% of the maximum short-circuit current in kiloampères,
unless otherwise specified. The duty cycles are specified in ANSI/IEEE standard
[7]. The conditions for out-of-phase switching currents are:

1. Opening and closing operations in conformity with manufacturers’
instructions, closing angle limited to a maximum out-of-phase angle of
908 whenever possible.

2. Grounding conditions of the neutral corresponding to that for which the
circuit breaker is tested.

3. Frequency within �20% of the rated frequency of the breaker.
4. Absence of fault on either side of the circuit breaker.

Where frequent out-of-phase operations are anticipated, the actual system
recovery voltages should be evaluated (see Sec. 4.10). A special circuit breaker, or
one rated at a higher voltage, may sometimes be required. As an alternative solution,
the severity of out-of-phase switching can be reduced in several systems by using
relays with co-ordinated impedance sensitive elements to control the tripping instant,
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so that interruption will occur substantially after or substantially before the instant
the phase angle is 1808. Polarity sensing and synchronous breakers are discussed in
Chapter 4.

5.11 TRANSIENT RECOVERY VOLTAGE

As discussed in Chap. 4, the interrupting capability of the circuit breaker is related to
transient recovery voltage (TRV). If the specified TRV withstand boundary is
exceeded in any application, a different circuit breaker should be used or the system
should be modified. The addition of capacitors to a bus or line is one method of
improving the recovery voltage characteristics.

For circuit breakers rated 100kV and below, the rated transient voltage is
defined as the envelope formed by a 1 � cosine curve using the values of E2 and
T2 defined in the ANSI standard [5]; E2 is the peak of TRV and its value is 1.88 times
the maximum rated voltage. The time T2, specified in microseconds, to reach the
peak is variable, depending on short-circuit type, circuit breaker, and voltage rating.
For indoor oil-less circuit breakers up to 38 kV, T2 varies from 50 to 125 ms. See Ref.
[5], 2000. Also, E2 ¼ 1:88� V where V is rated voltage in kV.

The plot of this response curve for first half-cycle of the oscillatory component
of TRV is shown in Fig. 5-8. The supply voltage is considered at its peak during this
interval and is represented by a straight line in Fig. 5-8, i.e., the power frequency
component of TRV is constant. This definition of TRV by two parameters, E2 and
T2 is akin to that of Fig. 4-8, i.e., IEC representation by two parameters. The curve
of Fig. 5-8 is called one-minus-cosine curve.

For breakers rated 100 kV and above, the rated TRV is defined by the envelope
formed by the exponential cosine curve obtained by using the rated values of E1, R,
T1, E2, and T2 from the standards, and applying these values at the rated short-
circuit current of the breaker. R is defined as the rated TRV rate, ignoring the effect
of the bus side lumped capacitance, at which the recovery voltage rises across the
terminals of a first-pole-to-interrupt for a three-phase, ungrounded load side term-
inal fault under the specified rated conditions. The rate is a close approximation of
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Figure 5-8 One-minus-cosine TRV wave for breakers rated 72.5 kV and below.
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the maximum de=dt in the rated envelope, but is slightly higher because the bus side
capacitance is ignored.

The exponential cosine envelope is defined by whichever of e1 and e2 is larger:

e1 ¼ E1ð1� e�t=
Þ with a time delay T1 ðmsecÞ ð5:19Þ

 ¼ E1=R ð5:20Þ

e2 ¼
E2

2
ð1� cos ð�t=T2ÞÞ ð5:21Þ

The following wave shapes of TRV can be obtained:

Ref. [4], year 2000, specifies E2 ¼ 1:49� V and E1 ¼ 1:06� V
The examples to follow may not use the parameters from the latest revision of

ANSI/IEEE standards, yet these illustrate the calculation procedure and form a
conceptual base. Also Fig. 5-9 has been removed from Ref. [5] year 2000, as TRV
curves are included in Ref. [3], year 1999.

Example 5.4

Consider a 550-kV breaker. The ratings are:

K factor ¼ 1
Current rating ¼ 2 kA
Rated short-circuit current ¼ 40 kA
Rated time to point P, T2 msec ¼ 1325
R, rate of rise of recovery voltage ¼ 1:6 kV=msec
Rated time delay T1 ¼ 5:4 msec (compare this to td of Chap. 4)
E2 ¼ 1:76� rated maximum voltage
E1 ¼ 1:5

ffiffiffi
2

p
=
ffiffiffi
3

p
times rated maximum voltage.

Then:

E1 ¼ 1:5
ffiffiffiffiffiffiffiffi
2=3

p
Emax ¼ 673:6 kV

E2 ¼ 1:76Emax ¼ 968:0 kV


 ¼ E1=R ¼ 673:6=1:6 ¼ 421

Substituting in Eqs (5.19) and (5.20):

e1 ¼ 673:6ð1� e�t=421Þ
e2 ¼ 484:0ð1� cos 0:1358t0Þ

The calculated TRV, for a rated fault current, is shown in Fig. 5-10.

Example 5.5

Now consider that the TRV is required to be calculated for 75% of the rated fault
current. This requires calculation of adjustment factors from Fig. 5-9.
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Kr ¼ 1:625 (rate of rise multiplying factor)

K1 ¼ 1:044 ðE2 multiplying factorÞ

Kt ¼ 1:625 ðT2 dividing factorÞ
The adjusted parameters are:

E1 ¼ 673:6 kV
E2 ¼ ð968ÞðK1Þ ¼ 1010:6 kV
R ¼ ð1:6ÞðKrÞ ¼ 2:60 kV=msec
T2 ¼ ð1325Þ=ðKtÞ ¼ 815:4 msec
T1 ¼ 5:4 msec

 ¼ E1=R ¼ ð673:6Þ=2:60 ¼ 259:1 msec.
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Figure 5-9 TRV rate and voltage multipliers for fractions of rated interrupting current.
(From Ref. 5. Copyright 1979 IEEE. All rights reserved. Reproduced with permission.)
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The TRV for 75% interrupting fault duty is superimposed in Fig. 5-10 for compar-
ison and it is higher than the TRV for 100% interrupting current.

We discussed sawtooth TRV waveform for a short-line fault in Sec. 4.5. Initial
TRV can be defined as an initial ramp and plateau of voltage added to the initial
front of an exponential cosine wave shape. This TRV is due to relatively close
inductance and capacitance associated with substation work. For breakers installed
in gas-insulated substations the initial TRV can be neglected because of low bus
surge impedance and small distance to the first major discontinuity. However, for
other systems at low levels of fault current the initial rate of TRV may exceed the
envelope defined by the standards. In such cases the short-line initial TRV capability
can be superimposed on the calculated TRV curve and the results examined.

The circuit breaker will be capable of interrupting single-phase line faults at
any distance from the circuit breaker on a system in which:

. The TRV on a terminal fault is within the rated or related transient voltage
envelope.

. The voltage on the first ramp of the sawtooth wave is equal to or less than
that in an ideal system in which surge impedance and amplitude constant
are as follows:

242 kV and below, single conductor line: Z ¼ 450; d ¼ 1:8 ð5:22Þ

362 kV and above, bundled conductors: Z ¼ 360; d ¼ 1:6 ð5:23Þ
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Figure 5-10 Calculated TRV waveshapes (Examples 5.4–5.6).
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The amplitude constant d is the peak of the ratio of the sawtooth component
which will appear across the circuit breaker terminal at the instant of interruption.
The triangular wave for short-line capability is defined as

e ¼ dð1�MÞ
ffiffiffi
2

p Vffiffiffi
3

p kV ð5:24Þ

RL ¼
ffiffiffi
2

p
!MIZ � 10�6 ð5:25Þ

TL ¼ e=RL msec ð5:26Þ
where RL is the rate of rise, TL is the time to peak, M is the ratio of fault current to
rated short-circuit current, I is the rated short-circuit current in kA, V is the rated
voltage, Z is the surge impedance, and e is the peak voltage in kV.

Example 5.6

For a 550-kV breaker, whose TRV wave shapes are plotted in Fig. 5-10, plot the
short-line capability for a 75% short circuit current and a surge impedance of 360
ohms.

M ¼ 0:75, I ¼ 40 kA, V ¼ 550, d ¼ 1:6, and Z ¼ 360 ohms. This gives:

e ¼ 1:6ð0:75Þð550Þ
ffiffiffi
2

pffiffiffi
3

p ¼ 179:6 kV

Also,

RL ¼
ffiffiffi
2

p
� 377� 0:75� 40� 360� 10�6 ¼ 5:75 kV=msec

and TL ¼ 31:2 ms:
This is shown in Fig. 5-10.

Oscillatory TRV

Figure 5-11 shows an example of an underdamped TRV, where the system TRV
exceeds the breaker TRV capability curve. Such a waveform can occur when a circuit
breaker clears a low-level three-phase ungrounded fault, limited by a transformer on
the source side or a reactor, Figs 5-11(a) and (b) [8]. Figure 5-11(c) shows that the
circuit breaker TRV capability is exceeded. Where this happens, the following
choices exist:

1. Use a breaker with higher interrupting rating.
2. Add capacitance to the circuit breaker terminals to reduce the rate of rise

of TRV.
3. Consult the manufacturer concerning the application.

A computer simulation using EMTP (electromagnetic transient program) of the
TRV may be required. The interested reader may refer to ANSI standard
C37.06.1–1997, ‘‘Trial-use guide for high-voltage circuit breakers rated on symme-
trical current basis–Designated definite purpose for fast transient recovery voltage
rise times.’’ (Not to be confused with definite purpose circuit breakers for capaci-
tance current switching.)
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5.12 LOW-VOLTAGE CIRCUIT BREAKERS

The three classifications of low-voltage circuit breakers are: (1) molded case circuit
breakers, (2) insulated case circuit breakers, and (3) low-voltage power circuit break-
ers [9–11].

5.12.1 Molded Case Circuit Breakers (MCCBs)

In MCCBs, the current carrying parts, mechanism, and trip devices are com-
pletely contained in a molded-case insulating material and these breakers are not
maintainable. Available frame sizes range from 15 to 6000 A, interrupting
ratings from 10 to 100 kA symmetrical without current limiting fuses and to
200 kA symmetrical with current limiting fuses. These can be provided with
electronic trip units, and have limited short-time delay and ground fault sensing
capability. When provided with thermal magnetic trips, the trips may be adjus-
table or nonadjustable, and are instantaneous in nature. Motor circuit protectors
(MCPs) may be classed as a special category of MCCBs and are provided with
instantaneous trips only. MCPs do not have an interrupting rating by them-
selves and are tested in conjunction with motor starters. All MCCBs are fast
enough to limit the amount of prospective current let-through and some are fast
enough to be designated as current-limiting circuit breakers. For breakers claimed to
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Figure 5-11 (a) and (b) Power system configurations where TRV may exceed the breaker
capabilities for a fault limited by the transformer or reactor; (c) oscillatory TRV.
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be current limiting, peak current and I2t are tabulated for the threshold of current-
limiting action.

5.12.2 Insulated Case Circuit Breakers (ICCBs)

Insulated case circuit breakers utilize characteristics of design from both the power
and MCCBs, are not fast enough to qualify as current-limiting type, and are partially
field maintainable. These can be provided with electronic trip units and have short-
time ratings and ground fault sensing capabilities. These utilize stored energy
mechanisms similar to low-voltage power circuit breakers.

MCCBs and ICCBs are rated and tested according to UL 489 [12]. Standard
MCCBs and ICCBs are tested in the open air without enclosure and are designed to
carry 100% of their current rating in open air. When housed in an enclosure there is
20% derating, though some models and frame sizes may be listed for application at
100% of their continuous current rating in an enclosure. MCCBs are fixed mounted
in switchboards and bolted to bus bars. ICCBs can be fixed mounted or provided in
drawout design.

5.12.3 Low-Voltage Power Circuit Breakers (LVPCBs)

Low-voltage power circuit breakers are rated and tested according to ANSI C37.13
[10] and are used primarily in drawout switchgear. These are the largest in physical
size and are field maintainable. Electronic trip units are almost standard with these
circuit breakers and these are available in frame sizes from 800 to 6000A, interrupt-
ing ratings, 40–100 kA sym. without current-limiting fuses.

All the three types of circuit breakers have different ratings, short-circuit test
requirements, and applications. The short-circuit ratings and fault current calcula-
tion considerations are of interest here.

The symmetrical interrupting rating of the circuit breaker takes into account
the initial current offset due to circuit X=R ratio. The value of the standard X=R
ratio is used in the test circuit. For LVPCBs this standard is X=R ¼ 6:6, correspond-
ing to a 15% power factor. Table 5-7 shows the multiplying factor (MF) for other
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Table 5-7 Multiplying Factors for Low-Voltage LVPCBs

System short-
circuit power
factor (%)

System X=R
ratio

Multiplying factors for the calculated
current

Unfused circuit

breakers

Fused circuit

breakers

20
15
12
10

8.5
7
5

4.9
6.6
8.27
9.95

11.72
14.25
20.0

1.00
1.00
1.04
1.07

1.09
1.11
1.14

1.00
1.07
1.12
1.15

1.18
1.21
1.26

Source: Ref. 10. Copyright 1990 IEEE. All rights reserved. Reproduced with
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X=R ratios. The recommended MFs for unfused circuit breakers are based on high-
est peak current and can be calculated from

MF ¼
ffiffiffi
2

p
½1þ e��=ðX=RÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½1þ en=ðx=RÞ�

2:29

s
ð5:27Þ

The MF for the fused breaker is based on the total rms current (asymmetrical) and is
calculated from:

MF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2e�2�=ðX=RÞ

p
1:25

ð5:28Þ

In general, when X=R differs from the test power factor, the MF can be approxi-
mated by

MF ¼ 1þ e��ðX=RÞ

1þ e��= tan�
ð5:29Þ

where � is the test power factor.
MCCBs and ICCBs are tested in the prospective fault test circuit according to

UL 489 [12]. Power factor values for the test circuit are different from LVPCBs and
are given in Table 5-8. If a circuit has an X=R ratio which is equal to or lower than
the test circuit, no corrections to interrupting rating are required. If the X=R ratio is
higher than the test circuit X=R ratio, the interrupting duty requirement for that
application is increased by a MF from Table 5-9. The MF can be interpreted as a
ratio of the offset peak of the calculated system peak (based on X=R ratio) to the test
circuit offset peak.

While testing the breakers, the actual trip unit type installed during testing
should be the one represented by referenced specifications and time–current curves.
The short-circuit ratings may vary with different trip units, i.e., a short-time trip only
(no instantaneous) may result in reduced short-circuit interrupting rating compared
to testing with instantaneous trips. The trip units may be rms sensing or peak sen-
sing, electronic or electromagnetic, and may include ground fault trips.

IEC standards do not directly correspond to the practices and standards in use
in North America for single-pole duty, thermal response, and grounding. A direct
comparison is not possible.
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Table 5-8 Test Power Factors of MCCBs

Interrupting rating
(kA, rms sym.) Test power factor range X=R

10 or less
10–20
Over 20

0.45–0.50
0.25–0.30
0.15–0.20

1.98–1.73
3.87–3.18
6.6–4.9
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5.12.3.1 Single-Pole Interrupting Capability

A single-pole interruption connects two breaker poles in series, and the maximum
fault current interrupted is 87% of the full three-phase fault current. The interrupt-
ing duty is less severe as compared to a three-phase interruption test, where the first-
pole-to-clear factor can be 1.5. Therefore, the three-phase tests indirectly prove the
single-pole interrupting capability of three-pole circuit breakers. For the rated X=R
every three-pole circuit breaker intended for operation on a three-phase circuit can
interrupt a bolted single-phase fault. LVPCBs are single-pole tested with maximum
line-to-line voltage impressed across the single pole and at the theoretical maximum
single-phase fault current level of 87% of maximum three-phase bolted fault current.
Generally, single-pole interrupting is not a consideration. Nevertheless, all MCCBs
and ICCBs do not receive the same 87% test at full line-to-line voltage. In a corner
grounded delta system (not much use in the industry), a single line-to-ground fault
on the load side of the circuit breaker will result in single-phase fault current flowing
through only one pole of the circuit breaker, but full line-to-line voltage impressed
across that pole. A rare fault situation in ungrounded or high-resistance grounded
systems can occur with two simultaneous bolted faults on the line side and load side
of a circuit breaker and may require additional considerations. Some manufacturers
market circuit breakers rated for a corner grounded systems.

5.12.3.2 Short-Time Ratings

MCCBs, generally, do not have short-time ratings. These are designed to trip and
interrupt high-level faults without intentional delays. When provided with electronic
trip units, capabilities of these breakers are utilized for short-delay tripping. ICCBs
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Table 5-9 Short-Circuit Multiplying Factors for MCCBs and ICCBs

Power factor (%) X=R ratio

Interrupting rating multiplying factor

10 kA or less 10–20 kA >20kA

5
6

7
8
9
10

13
15
17

20
25
30

35
40
50

19.97
16.64

14.25
12.46
11.07
9.95

7.63
6.59
5.80

4.90
3.87
3.18

2.68
2.29
1.98

1.59
1.57

1.55
1.53
1.51
1.49

1.43
1.39
1.36

1.31
1.24
1.18

1.13
1.08
1.04

1.35
1.33

1.31
1.29
1.28
1.26

1.21
1.18
1.15

1.11
1.05
1.00

1.00
1.00
1.00

1.22
1.20

1.18
1.16
1.15
1.13

1.09
1.06
1.04

1.00
1.00
1.00

1.00
1.00
1.00
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do have some short-time capability. LVPCBs are designed to have short-time cap-
abilities and can withstand short-time duty cycle tests.

For an unfused LVPCB, the rated short-time current is the designated limit of
prospective current at which it will be required to perform its short-time duty cycle of
two periods of 0.5 sec current flow separated by 15 sec intervals of zero current at
rated maximum voltage under prescribed test conditions. This current is expressed in
rms symmetrical ampères. The unfused breakers will be capable of performing the
short-time current duty cycle with all degrees of asymmetry produced by three-phase
or single-phase circuits having a short-circuit power factor of 15% or greater. Fused
circuit breakers do not have a short-time current rating, though the unfused circuit
breaker element has a short-time rating as described above.

5.12.3.3 Series Connected Ratings

Series connection of MCCBs or MCCBs and fuses permits a downstream circuit
breaker to have an interrupting rating less than the calculated fault duty, and the
current limiting characteristics of the upstream device ‘‘protects’’ the downstream
lower rated devices. Series combination is recognized for application by testing only.
The upstream device is fully rated for the available short-circuit current and protects
a downstream device, which is not fully rated for the available short-circuit current
by virtue of its current-limiting characteristics. The series rating of the two circuit
breakers makes it possible to apply the combination as a single device, the interrupt-
ing rating of the combination being that of the higher rated device. As an example, a
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Figure 5-12 Let-through curves of current-limiting fuses.
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single upstream incoming breaker of 65 kA interrupting may protect a number of
downstream feeder breakers of 25 kA interrupting and the complete assembly will be
rated for 65 kA interrupting. The series rating should not be confused with cascading
arrangement. IEC also uses this term for their series rated breakers [13]. A method of
cascading which is erroneous and has been in use in the past is shown in Fig. 5-12.

Consider a series combination of an upstream current limiting fuse of 1200A,
and a downstream MCCB. The available short-circuit current is 50 kA sym., while
the MCCB is rated for 25 kA. Figure 5-12 shows the let-through characteristics of
the fuse. The required interrupting capability of the system, i.e., 50 kA is entered at
the point A, and moving upwards the vertical line is terminated at the 1200A fuse
let-through characteristics. Moving horizontally, the point C is intercepted and then
moving vertically down the point D is located. The symmetrical current given by D is
read off, which in Fig. 5-12 is 19 kA. As this current is less than the interrupting
rating of the downstream device to be protected, the combination is considered safe.
This method can lead to erroneous results, as the combination may not be able to
withstand the peak let-through current given by point E in Fig. 5-12 on the y axis.
Calculations of series ratings is not permissible and these can only be established by
testing.

A disadvantage of series combination is lack of selective co-ordination. On a
high fault current magnitude both the line side and load side circuit breakers will
trip. A series combination should not be applied if motors or other loads that
contribute to short-circuit current are connected between the line-side and load-
side MCCBs.

5.13 FUSES

Fuses are fault sensing and interrupting devices, while circuit breakers must have
protective relays as sensing devices before these can operate to clear short-circuit
faults. Fuses are direct acting, single-phase devices, which respond to magnitude and
duration of current. Electronically actuated fuses are a recent addition and these
incorporate a control module that provides current sensing, electronically derived
time-current characteristics, energy to initiate tripping, and an interrupting module
which interrupts the current [14–18].

5.13.1 Current-Limiting Fuses

A current-limiting fuse is designed to reduce equipment damage by interrupting the
rising fault current before it reaches its peak value. Within its current limiting range,
the fuse operates within 1/4 to 1

2 cycle. The total clearing time consists of melting
time, sometimes called the pre-arcing time and the arcing time. This is shown in Fig.
5-13. The let-through current can be much lower than the prospective fault current
peak and the rms symmetrical available current can be lower than the let-through
current peak. The prospective fault current can be defined as the current that will be
obtained if the fuse was replaced with a bolted link of zero impedance. By limiting
the rising fault current, the I2t let-through to the fault is reduced because of two
counts: (1) high speed of fault clearance in 1/4 cycle typically in the current limiting
range, and (2) fault current limitation. This reduces the fault damage.
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Current-limiting fuses have a fusible element of nonhomogeneous section. It
may be perforated or notched and while operating it first melts at the notches,
because of reduced cross-sectional area. Each melted notch forms an arc that length-
ens and disperses the element material into the surrounding medium. When it is
melted by current in the specified current-limiting range, it abruptly introduces a
high resistance to reduce the current magnitude and duration. It generates an inter-
nal arc voltage, much greater than the system voltage, to force the current to zero,
before the natural current zero crossing. Figure 5-14 shows the current interruption
in a current-limiting fuse. Controlling the arcs in series controls the rate of rise of arc
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Figure 5-13 Current interruption by a current-limiting fuse.

Figure 5-14 Arc voltage generated by a current-limiting fuse during interruption: (a) arc

voltage; (b) interrupted current; (c) system voltage; (d) perspective fault current.
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voltage and its magnitude. The arc voltages must be controlled to levels specified in
the standards [17], i.e., for 15.5-kV fuses of 0.5 to 12A, the maximum arc voltage is
70 kV crest, and for fuses >12A, the arc voltage is 49 kV crest.

The current-limiting action of a fuse becomes effective only at a certain mag-
nitude of the fault current, called the critical current or threshold current. It can be
defined as the first peak of a fully asymmetrical current wave at which the current-
limiting fuse will melt. This can be determined by the fuse let-through characteristics
and is given by the inflection point on the curve where the peak let-through current
begins to increase less steeply with increasing short-circuit current, i.e., point F in
Fig. 5-12 for a 800-A fuse. The higher is the rated current of the fuse, the greater is
the value of the threshold current at which the current-limiting action starts.

5.13.2 Low-Voltage Fuses

Low-voltage fuses can be divided into two distinct classes, current-limiting type and
noncurrent- limiting type. The current-limiting class fuses are types CC, T, K, G, J,
L, and R. Noncurrent-limiting fuses, i.e., class H fuses, have a low interrupting
rating of 10 kA, are not in much use in industrial power systems, and are being
replaced with current-limiting fuses. Current-limiting fuses have interrupting cap-
abilities up to 200 kA rms symmetrical. The various classes of current-limiting fuses
are designed for specific applications, have different sizes and mounting dimensions,
and are not interchangeable. As an example, classes J, RK1, and RK5 may be used
for motor controllers, control transformers, and back-up protection. Class L (avail-
able in current ratings up to 6 kA) is commonly used as a current-limiting device in
series rated circuits. Class T is a fast-acting fuse that may be applied to load-center,
panel-board, and circuit-breaker back-up protection.

5.13.3 High-Voltage Fuses

High-voltage fuses can be divided into two distinct categories: distribution fuse
cutouts and power fuses. Distribution cutouts are meant for outdoor pole or cross
arm mounting (except distribution oil cutouts), have basic insulation levels (BILs) at
distribution levels, and are primarily meant for distribution feeders and circuits.
These are available in voltage ratings up to 34.5 kV. The interrupting ratings are
relatively low, 5.00 kA rms sym. at 34.5 kV. The power fuses are adapted to station
and substation mounting, have BILs at power levels and are meant primarily for
applications in stations and substations. These are of two types: expulsion-type fuses
and current-limiting fuses. Expulsion-type fuses can again be of two types: (1) fiber-
lined fuses having voltage ratings up to 169 kV, and (2) solid boric acid fuses which
have voltage ratings up to 145 kV. The solid boric acid fuse can operate without
objectionable noise or emission of flame and gases. High-voltage current-limiting
fuses are available up to 38 kV, and these have comparatively much higher inter-
rupting ratings. Table 5-10 shows comparative interrupting ratings of distribution
cutouts, solid boric acid, and current-limiting fuses. While the operating time of the
current-limiting fuses is typically one-quarter of a cycle in the current-limiting range,
the expulsion-type fuses will allow the maximum peak current to pass through and
interrupt in more than one cycle. This can be a major consideration in some applica-
tions where a choice exists between the current-limiting and expulsion-type fuses.
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Class E fuses are suitable for protection of voltage transformers, power trans-
formers, and capacitor banks, while class R fuses are applied for medium-voltage
motor starters. All class E rated fuses are not current limiting; E rating merely
signifies that class E rated power fuses in ratings of 100E or less will open in 300
sec at currents between 200 and 240% of their E rating. Fuses rated above 100E open
in 600 sec at currents between 220 and 264% of their E ratings.

5.13.4 Interrupting Ratings

The interrupting ratings relate to the maximum rms asymmetrical current available
in the first half cycle after fault which the fuse must interrupt under the specified
conditions. The interrupting rating itself has no direct bearing on the current-limit-
ing effect of the fuse. Currently, the rating is expressed in maximum rms symmetrical
current and thus the fault current calculation based on an E=Z basis can be directly
used to compare the calculated fault duties with the short-circuit ratings. Many
power fuses and distribution cutouts were earlier rated on the basis of maximum
rms asymmetrical currents; rms asymmetrical rating represents the maximum current
that the fuse has to interrupt because of its fast-acting characteristics. For power
fuses the rated asymmetrical capability is 1.6 times the symmetrical current rating.
The asymmetrical rms factor can exceed 1.6 for high X=R ratios or a low-power
factors short-circuit currents (Table 5-1).

A basic understanding of the ratings and problems of application of circuit
breakers and fuses for short-circuit and switching duties can be gained from this
chapter. The treatment is not exhaustive and an interested reader will like to explore
further.

Problems

1. A 4.76-kV rated breaker has a rated short-circuit current of 41 kA sym.
and a K factor of 1.19. Without referring to tables calculate its (i) max-
imum symmetrical interrupting capability, (ii) short-time current rating
for 3 sec, and (iii) close and latch capability in asymmetrical rms and
crest. If the breaker is applied at 4.16 kV, what is its interrupting cap-
ability and close and latch capability? How will these values change if the
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Table 5-10 Short-Circuit Interrupting Ratings of High-Voltage Fuses

Fuse type Current ratings
Nominal voltage rating in kV–maximum
short-circuit interrupting rating (kA rms

symmetrical)

Distributions fuse

cutouts

Up to 200A 4.8–12.5, 7.2–15, 14.4–13.2, 25–8, 34.5–5

Solid-material boric
acid fuses

Up to 300A 17.0–14.0, 38–33.5, 48.3–31.5, 72.5–25,
121–10.5, 145–8.75

Current-limiting fuses Up to 1350A for
5.5 kV, up to 300A

for 15.5 kV, and
100A for 25.8 and
38 kV

5.5–50, 15.5–50 (85 sometimes), 25.8–35,
38.0–35
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breaker is applied at 2.4 kV? Calculate similar ratings for 40kA, K=1
rated circuit breaker according to ANSI year 2000 revision.

2. The breaker of Problem 1 has a rated interrupting time of five cycles.
What is its symmetrical and asymmetrical rating for phase faults and
single line-to-ground faults, when applied at 4.16 and 2.4 kV, respec-
tively?

3. A 15-kV circuit breaker applied at 13.8 kV has a rated short-circuit cur-
rent of 28 kA rms, K factor ¼ 1.3, and permissible tripping delay Y ¼ 2
sec. What is its permissible delay for a short-circuit current of 22 kA?

4. In Example 5.3 reduce all reactances by 10% and increase all capacitances
by 10%. Calculate the inrush current and frequency on (i) isolated capa-
citor bank switching, and (ii) back-to-back switching. Find the value of
reactor to be added to limit the inrush current magnitude and frequency
to acceptable levels for a definite-purpose breaker.

5. Provide two examples of power system configurations, where TRV is
likely to increase the standard values. Why can it be reduced by adding
capacitors?

6. Plot the TRV characteristics of a 121-kV breaker, from the data in Table
5-3, at (i) a rated interrupting current of 40 kA, and (ii) a 50% short-
circuit current. Also, plot the initial profile of TRV for a short-line fault.

7. Why is the initial TRV not of concern for gas-insulated substations?
8. A LVPCB, ICCB, and MCCB are similarly rated at 65 kA sym. inter-

rupting. What other short-circuit rating is important for their applica-
tion?

9. Each type of breaker in Problem 8 is subjected to a fault current of 50 kA,
X=R ¼ 7:0. Calculate the interrupting duty multiplying factors from the
tables in this chapter.

10. What are the advantages and disadvantages of current-limiting fuses as
compared to relayed circuit breakers for short-circuit interruption? How
do these compare with expulsion-type fuses?

11. Explain the series interrupting ratings of two devices. What are the rela-
tive advantages and disadvantages of this configuration? Why should the
series rating of two devices not be calculated?
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6

Short-Circuit of Synchronous and
Induction Machines

A three-phase short circuit on the terminals of a generator has two-fold effects. One,
large disruptive forces are brought into play in the machine itself and the machine
should be designed to withstand these forces. Two, short-circuits should be removed
quickly to limit fault damage and improve stability of the interconnected systems.
The circuit breakers for generator application sense a fault current of high asymme-
try and must be rated to interrupt successfully the short-circuit currents. This is
discussed in Chaps 7 and 8.

According to NEMA [1] specifications a synchronous machine shall be capable
of withstanding, without injury, a 30-sec, three-phase short-circuit at its terminals
when operating at rated kVA and power factor, at 5% overvoltage, with fixed
excitation. With a voltage regulator in service, the allowable duration t, in seconds,
is determined from the following equation, where the regulator is designed to pro-
vide a ceiling voltage continuously during a short-circuit:

t ¼ Nominal field voltage

Exciter ceiling voltage

� �2

�30 sec ð6:1Þ

The generator should also be capable of withstanding without injury any other short-
circuit at its terminals for 30 sec provided that

I22 t � 40 for salient-pole machines ð6:2Þ

I22 t � 30 for air-cooled cylindrical rotor machines ð6:3Þ
and the maximum current is limited by external means so as not to exceed the three-
phase fault; I2 is the negative sequence current due to unsymmetrical faults.

Synchronous generators are major sources of short-circuit currents in power
systems. The fault current depends on:

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



1. The instant at which the short-circuit occurs.
2. The load and excitation of the machine immediately before the short-

circuit.
3. The type of short-circuits, i.e., whether three phases or one or more than

one phase and ground are involved.
4. Constructional features of the machine, especially leakage and damping.
5. The interconnecting impedances between generators.

An insight into the physical behavior of the machine during a short-circuit can
be made by considering the theorem of constant flux linkages. For a closed circuit
with resistance r and inductance L, ri þ L di=dt must be zero. If resistance is
neglected, L di=dt ¼ 0, i.e., the flux linkage Li must remain constant. In a generator,
the resistance is small in comparison with the inductance, the field winding is closed
on the exciter, and the stator winding is closed due to the short-circuit. During the
initial couple of cycles following a short-circuit, the flux linkages with these two
windings must remain constant. On a terminal fault, the generated emf acts on a
closed circuit of stator windings and is analogous to an emf being suddenly applied
to an inductive circuit. Dynamically, the situation is more complex, i.e., the lagging
stator current has a demagnetizing effect on the field flux, and there are time con-
stants associated with the penetration of the stator flux and decay of short-circuit
current.

6.1 REACTANCES OF A SYNCHRONOUS MACHINE

The following definitions are applicable.

6.1.1 Leakage Reactance Xl

The leakage reactance can be defined but cannot be tested. It is the reactance due to
flux setup by armature windings, but not crossing the air gap. It can be divided into
end-winding leakage and slot leakage. A convenient way of picturing the reactances
is to view these in terms of permeances of various magnetic paths in the machine,
which are functions of dimensions of iron and copper circuits and independent of the
flux density or the current loading. The permeances thus calculated can be multiplied
by a factor to consider the flux density and current. For example, the leakage
reactance is mainly given by the slot permeance and the end-coil permeance.

6.1.2 Subtransient Reactance X 00
d

Subtransient reactance equals the leakage reactance plus the reactance due to the flux
setup by stator currents crossing the air gap and penetrating the rotor as far as the
damper windings in a laminated pole machine or as far as the surface damping
currents in a solid pole machine. The subtransient conditions last for one to five
cycles on a 60Hz basis.

6.1.3 Transient Reactance X 0
d

Transient reactance is the reactance after all damping currents in the rotor surface or
amortisseur windings have decayed, but before the damping currents in the field
winding have decayed. The transient reactance equals the leakage reactance plus

180 Chapter 6

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



the reactance due to flux setup by the armature which penetrates the rotor to the field
windings. Transient conditions last for 5 to 200 cycles on a 60Hz basis.

6.1.4 Synchronous Reactance Xd

Synchronous reactance is the steady-state reactance after all damping currents in the
field windings have decayed. It is the sum of leakage reactance and a fictitious
armature reaction reactance, which is much larger than the leakage reactance.
Ignoring resistance, the per unit synchronous reactance is the ratio of per unit
voltage on an open circuit divided by per unit armature current on a short circuit
for a given field excitation. This gives saturated synchronous reactance. The unsatu-
rated value of the synchronous reactance is given by the per unit voltage on air-gap
open circuit line divided by per unit armature current on short-circuit. If 0.5 per unit
field excitation produces full-load armature current on short-circuit, the saturated
synchronous reactance is 2.0 per unit. The saturated value may be only 60–80% of
the unsaturated value.

6.1.5 Quadrature Axis Reactances X 00
q , X

0
q, and Xq

Quadrature axis reactances are similar to direct axis reactances, except that they
involve the rotor permeance encountered when the stator flux enters one pole tip,
crosses the pole, and leaves the other pole tip. The direct axis permeance is encoun-
tered by the flux crossing the air gap to the center of one pole, then crossing from one
pole to the other pole and entering the stator from that pole. Figure 6-1 shows the
armature reaction components. The total armature reaction F can be divided into
two components, Fad and Faq; Fad is directed across the direct axis and Faq across the
quadrature axis. As these mmfs (magneto-motive forces) act on circuits of different
permeances, the flux produced varies. If damper windings across pole faces are
connected X 00

q is nearly equal to X 00
d .

6.1.6 Negative Sequence Reactance X2

The negative sequence reactance is the reactance encountered by a voltage of reverse-
phase sequence applied to the stator, with the machine running. Negative sequence
flux revolves opposite to the rotor and is at twice the system frequency. Negative
sequence reactance is practically equal to the subtransient reactance as the damping
currents in the damper windings or solid pole rotor surface prevent the flux from
penetrating farther. The negative sequence reactance is generally taken as the aver-
age of subtransient direct axis and quadrature axis reactances, Eq. (1.60).

6.1.7 Zero Sequence Reactance X0

The zero sequence reactance is the reactance effective when rated frequency currents
enter all three terminals of the machine simultaneously and leave at the neutral of the
machine. It is approximately equal to the leakage reactance of the machine with full-
pitch coils. With two-thirds-pitch stator coils, the zero sequence reactance will be a
fraction of the leakage reactance.
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6.1.8 Potier Reactance Xp

Potier reactance is a reactance with numerical value between transient and subtran-
sient reactances. It is used for calculation of field current when open circuit and zero
power factor curves are available. Triangle ABS in Fig. 6-2 is a Potier triangle. As a
result of the different slopes of open circuit and zero power factor curves, A 0 B 0 in
Fig. 6-2 is slightly larger than AB and the value of reactance obtained from it is
known as the Potier reactance.

6.2 SATURATION OF REACTANCES

Saturation varies with voltage, current, and power factor. For short-circuit calcula-
tions according to ANSI/IEEE methods described in Chap. 7, saturated subtransient
reactance must be considered. The saturation factor is usually applied to transient
and synchronous reactances, though all other reactances change, though slightly,
with saturation. The saturated and unsaturated synchronous reactances are already
defined above. In a typical machine transient reactances may reduce from 5 to 25%
on saturation. Saturated reactance is sometimes called the rated voltage reactance
and is denoted by subscript ‘‘�’’ added to the ‘‘d’’ and ‘‘q’’ subscript axes, i.e., X 00

dv

and Xqv denote saturated subtransient reactances in direct and quadrature axes,
respectively.
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Figure 6-1 Armature reaction components in a synchronous machine in the direct and
quadrature axes.
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6.3 TIME CONSTANTS OF SYNCHRONOUS MACHINES

6.3.1 Open Circuit Time Constant T 0
do

The open circuit time constant expresses the rate of decay or buildup of field current
when the stator is open circuited and there is zero resistance in the field circuit.

6.3.2 Subtransient Short-Circuit Time Constant T 00
d

The subtransient short-circuit time constant expresses the rate of decay of the sub-
transient component of current under a bolted (zero resistance), three-phase short-
circuit at the machine terminals.

6.3.3 Transient Short-Circuit Time Constant T 0
d

The transient short-circuit time constant expresses the rate of decay of the transient
component of the current under a bolted (zero resistance), three-phase short-circuit
at the machine terminals.

6.3.4 Armature Time Constant Ta

The armature time constant expresses the rate of decay of the dc component of the
short-circuit current under the same conditions.

Table 6-1 shows electrical data, reactances, and time constants of a 13.8-kV,
112.1-MVA 0.85 power factor generator.

6.4 SYNCHRONOUS MACHINE BEHAVIOR ON TERMINAL SHORT-
CIRCUIT

The time immediately after a short-circuit can be divided into three periods:
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Figure 6-2 Open circuit, zero power factor curves, and Potier triangle and reactance.
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Table 6-1 Generator Data

Description Symbol Data

Generator
112.1MVA, 2-pole, 13.8 kV, 0.85 PF, 95.285MW, 4690A, 0.56

SCR, 235 field V, wye connected

Per unit reactance data, direct axis
Saturated synchronous
Unsaturated synchronous

Saturated transient
Unsaturated transient
Saturated subtransient

Unsaturated subtransient
Saturated negative sequence
Unsaturated negative sequence

Saturated zero sequence
Leakage reactance, overexcited
Leakage reactance, underexcited

Xdv

Xd

X 0
dv

X 0
d

X 00
dv

X 00
d

X2v

X2I

X0v

X0I

XLM;OXE

XLM;UEX

1.949
1.949

0.207
0.278
0.164

0.193
0.137
0.185

0.092
0.111
0.164

0.164

Per unit reactance data, quadrature axis
Saturated synchronous
Unsaturated synchronous
Unsaturated transient

Saturated subtransient
Unsaturated subtransient

Xqv

Xq

X 0
q

X 00
qv

X 00
q

1.858
1.858
0.434

0.140
0.192

Field time constant data, direct axis
Open circuit

Three-phase short-circuit transient
Line-to-line short-circuit transient
Line-to-neutral short-circuit transient

Short-circuit subtransient
Open circuit subtransient

T 0
d0

T 0
d3

T 0
d2

T 0
d1

T 00
d

T 00
do

5.615

0.597
0.927
1.124

0.015
0.022

Field time constant data quadrature axis
Open circuit

Three-phase short-circuit transient
Short-circuit subtransient
Open circuit subtransient

T 0
qo

T 0
q

T 00
q

T 00
q0

0.451

0.451
0.015
0.046

Armature dc component time constant data

Three-phase short-circuit
Line-to-line short-circuit
Line-to-neutral short-circuit

Ta3

Ta2

Ta1

0.330
0.330
0.294
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. The subtransient period lasting from 1 to 5 cycles.

. The transient period which may last up to 100 cycles or more.

. The final or steady-state period. Normally, the generator will be removed
from service by protective relaying, much before the steady-state period is
reached.

In the subtransient period the conditions can be represented by the flux linking
the stator and rotor windings. Any sudden change in the load or power factor of a
generator produces changes in the mmfs, both in direct and quadrature axes. A
terminal three-phase short-circuit is a large disturbance. At the moment of short-
circuit the flux linking the stator from the rotor is trapped to the stator, giving a
stationary replica of the main-pole flux. The rotor poles may be in a position of
maximum or minimum flux linkage, and as these rotate, the flux linkages tend to
change. This is counteracted by a current in the stator windings. The short-circuit
current is, therefore, dependent on rotor angle. As the energy stored can be consid-
ered as a function of armature and field linkages, the torque fluctuates and reverses
cyclically. The dc component giving rise to asymmetry is caused by the flux trapped
in the stator windings at the instant of short-circuit, which sets up a dc transient in
the armature circuit. This dc component establishes a component field in the air gap
which is stationary in space, and which, therefore, induces a fundamental frequency
voltage and current in the synchronously revolving rotor circuits. Thus, an increase
in the stator current is followed by an increase in the field current. The field flux has
superimposed on it a new flux pulsating with respect to field windings at normal
machine frequency. The single-phase induced current in the field can be resolved into
two components, one stationary with respect to the stator which counteracts the dc
component of the stator current, and the other component travels at twice the
synchronous speed with respect to the stator and induces a second harmonic in it.

The armature and field are linked through the magnetic circuit, and the ac
component of lagging current creates a demagnetizing effect. However, some time
must elapse before it starts becoming effective in reducing the field current and the
steady-state current is reached. The protective relays will normally operate to open
the generator breaker and simultaneously the field circuit for suppression of gener-
ated voltage.

The above is rather an oversimplification of the transient phenomena in the
machine on short-circuit. In practice, a generator will be connected in an intercon-
nected system. The machine terminal voltage, rotor angle, and frequency all change
depending on the location of the fault in the network, the network impedance, and
the machine parameters. The machine output power will be affected by the change in
the rotor winding emf and the rotor position in addition to any changes in the
impedance seen at the machine terminals. For a terminal fault the voltage at the
machine terminals is zero and, therefore, power supplied by the machine to load
reduces to zero, while the prime mover output cannot change suddenly. Thus, the
generator accelerates. In a multimachine system with interconnecting impedances,
the speeds of all machines change, so that these generate their share of synchronizing
power in the overall impact, as these strive to reach a mean retardation through
oscillations due to stored energy in the rotating masses.

In a dynamic simulation of a short-circuit, the following may be considered:

. Network before, during, and after the short-circuit.
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. Induction motors’ dynamic modeling, with zero excitation.

. Synchronous machine dynamic modeling, considering saturation.

. Modeling of excitation systems.

. Turbine and governor models.

Figure 6-3 shows the transients in an interconnected system on a three-phase short-
circuit lasting for five cycles. Figure 6-3(a) shows the torque angle swings of two
generators which are stable after the fault, Fig. 6-3(b) shows speed transients, and
Fig. 6-3 (c) shows the field voltage response of a high-response excitation system. A
system having an excitation system voltage response of 0.1 sec or less is defined as the
high-response excitation system [2]. The excitation systems may not affect the first
cycle momentary currents, but are of consideration for interrupting duty and 30
cycle currents. The reactive and active power transients are shown in Figs 6-3(d)
and (e), respectively. The voltage dip and recovery characteristics are shown in Fig.
6-3(f). A fault voltage dip of more than 60% occurs. Though the generators are
stable after the fault removal, the large voltage dip can precipitate shutdown of
consumer loads, i.e., the magnetic contactors in motor controllers can drop out
during the first-cycle voltage dip. This is of major consideration in continuous pro-
cess plants. Figure 6-3 is based on system transient stability study. Transient analysis
programs such as EMTP [3] can be used for dynamic simulation of the short-circuit
currents.

For practical calculations, the dynamic simulations of short-circuit currents are
rarely carried out. The generator is replaced with an equivalent circuit of voltage and
certain impedances intended to represent the worst conditions, after the fault (Chap.
7). The speed change is ignored. The excitation is assumed to be constant, and the
generator load is ignored. That this procedure is safe and conservative has been
established in the industry by years of applications, testing, and experience.

6.4.1 Equivalent Circuits During Fault

Figure 6-4 shows an envelope of decaying ac component of the short-circuit current
wave, neglecting the dc component. The extrapolation of the current envelope to
zero time gives the peak current. Note that, immediately after the fault, the current
decays rapidly and then more slowly.

Transformer equivalent circuits of a salient pole synchronous machine in the
direct and quadrature axis at the instant of short-circuit and during subsequent time
delays helps to derive the short-circuit current equations and explain the decaying ac
component of Fig. 6-4. Based on the above discussions these circuits are shown in
Fig. 6-5 in the subtransient, transient, and steady-state periods. As the flux pene-
trates into the rotor, and the currents die down, it is equivalent to opening a circuit
element, i.e., from subtransient to transient state, the damper circuits are opened.

The direct axis subtransient reactance is given by

x 00
d ¼ Xl þ

1

1=Xad þ 1=Xf þ 1=Xkd

ð6:4Þ

where Xad is the reactance corresponding to the fundamental space wave of the
armature in the direct axis, Xf is the reactance of the field windings, Xkd that of
the damper windings in the direct axis, and Xl is the leakage reactance. Xf and Xkd
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are also akin to leakage reactances. Similarly, the quadrature axis subtransient reac-
tance is given by

X 00
q ¼ Xl þ

1

1=Xaq þ 1=Xkq

ð6:5Þ

where Xaq is the reactance corresponding to the fundamental space wave in the
quadrature axis, the Xkq is the reactance of the damper winding in the quadrature
axis; Xl is identical in the direct and quadrature axes. The quadrature axis rotor
circuit does not carry a field winding, and this circuit is composed of damper bars or
rotor iron in the interpolar axis of a cylindrical rotor machine.

The direct axis and quadrature axis short-circuit time constants associated with
decay of the subtransient component of the current are

T 00
d ¼ 1

!rD

XadXfXl

XadXf þ XfXl þ XadXl

þ Xkd

	 

ð6:6Þ

T 00
q ¼ 1

!rQ

XaqXl

Xaq þ Xl

þ Xkq

	 

ð6:7Þ

where rD and rQ are resistances of the damper windings in the direct and quadrature
axis, respectively. When the flux has penetrated the air gap, the effect of the eddy
currents in the pole face cease after a few cycles given by short-circuit subtransient
time constants. The resistance of the damper circuit is much higher than that of the
field windings. This amounts to opening of the damper winding circuits, and the
direct axis and quadrature axis transient reactances are given by

X 0
d ¼ Xl þ

1

1=Xad þ 1=Xf

¼ XadXf

Xf þ Xad

þ Xl

	 

ð6:8Þ

X 0
q ¼ Xl þ Xaq ð6:9Þ

The direct axis transient time constant associated with this decay is

T 0
d ¼ 1

!rf

XadXl

Xad þ Xl

þ Xf

	 

ð6:10Þ

where rf is the resistance of the field windings.
Finally, when the currents in the field winding have also died down, given by

the transient short-circuit time constant, the steady-state short-circuit current is
given by the synchronous reactance:

Xd ¼ Xl þ Xad ð6:11Þ
Xq ¼ Xl þ Xaq ð6:12Þ

Equations (6.9) and (6.12) show that X 0
q is equal to Xq. The relative values of X

00
q , X

0
q,

and Xq depend on machine construction. For cylindrical rotor machines, Xq � X 0
q.

Sometimes one or two damper windings are modeled in the q axis.
Reverting to Fig. 6-4, the direct axis transient reactance determines the initial

value of the symmetrical transient envelope and the direct axis short-circuit time
constant T 0

d determines the decay of this envelope. The direct axis time constant
T 0
d is the time required by the transient envelope to decay to a point where the

difference between it and the steady-state envelope GH is 1=eð¼ 0:368Þ of the
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Figure 6-3 Transient behavior of two generators in an interconnected system for a three-
phase fault cleared in 5 cycles: (a) torque angle swings; (b) speed transients; (c) field voltage;
(d) and (e) reactive and active power swings; (f) voltage dip and recovery profile.
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initial difference GA. A similar explanation applies to decay of the subtransient
component in Fig. 6-4.

6.4.2 Fault–Decrement Curve

Based on Fig. 6-4, the expression for a decaying ac component of the short-circuit
current of a generator can be written as

iac ¼ Decaying subtransient componentþ decaying transient component

þ steady-state component

¼ ði 00d � i 0dÞe�t=T 00
d þ ði 0d � idÞe�t=T 0

d þ id ð6:13Þ
The subtransient current is given by

i 00d ¼ E 00

X 00
d

ð6:14Þ

where E 00 is the generator internal voltage behind subtransient reactance:

E 00 ¼ Va þ X 00
d sin� ð6:15Þ

where Va is the generator terminal voltage, and � is the load power factor angle,
prior to fault.
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Figure 6-4 Decaying ac component of the short-circuit current, and subtransient, transient,
and steady-state currents.
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Similarly, the transient component of the current is given by

i 0d ¼
E 0

X 0
d

ð6:16Þ

where E 0 is the generator internal voltage behind transient reactance:

E 0 ¼ Va þ X 0
d sin� ð6:17Þ

The steady-state component is given by

id ¼
Va

Xd

iF
iFg

� �
ð6:18Þ
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Figure 6-5 Equivalent transformer circuits of a synchronous generator during subtransient,

transient, and steady-state periods, after a terminal fault.
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where iF is the field current at given load conditions (when regulator action is taken
into account) and iFg is the field current at no-load rated voltage.

The dc component is given by

idc ¼
ffiffiffi
2

p
i 00d e

�t=Ta ð6:19Þ
where Ta is the armature short-circuit time constant, given by

Ta ¼
1

!r

2X 00
d X

00
q

X 00
d þ X 00

q

	 

ð6:20Þ

where r is the stator resistance.
The open circuit time constant describes the decay of the field transient; the

field circuit is closed and the armature circuit is open:

T 00
do ¼

1

!rD

XadXf

Xad þ Xf

þ Xkd

	 

ð6:21Þ

and the quadrature axis subtransient open circuit time constant is

T 00
qo ¼

1

!rQ
ðXaq þ XkqÞ ð6:22Þ

The open circuit direct axis transient time constant is

T 0
do ¼

1

!rf
½Xad þ Xf � ð6:23Þ

The short-circuit direct axis transient time constant can be expressed as

T 0
d ¼ T 0

do

X 0
d

ðXad þ XlÞ
	 


¼ Tdo

X 0
d

Xd

ð6:24Þ

It may be observed that the resistances have been neglected in the above
expressions. In fact these can be included, i.e., the subtransient current is

i 00d ¼ E 00

rD þ X 00
d

ð6:25Þ

where rD is defined as the resistance of the armortisseur windings on salient pole
machines and analogous body of cylindrical rotor machines. Similarly, the transient
current is

i 0d ¼ E 0

rf þ X 0
d

ð6:26Þ

Example 6.1

Consider a 13.8-kV, 100-MVA 0.85 power factor generator. Its rated full-load cur-
rent is 4184A. Other data are:

Saturated subtransient reactance X 00
dv ¼ 0.15 per unit

Saturated transient reactance X 0
dv ¼ 0.2 per unit

Synchronous reactance Xd ¼ 2.0 per unit
Field current at rated load if ¼ 3 per unit
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Field current at no-load rated voltage ifg ¼ 1 per unit
Subtransient short-circuit time constant T 00

d ¼ 0.012 sec
Transient short-circuit time constant T 0

d ¼ 0.35 sec
Armature short-circuit time constant Ta ¼ 0.15 sec
Effective resistance* ¼ 0.0012 per unit
Quadrature axis synchronous reactance* ¼ 1.8 per unit

A three-phase short-circuit occurs at the terminals of the generator, when it is
operating at its rated load and power factor. It is required to construct a fault
decrement curve of the generator for: (1) the ac component, (2) dc component,
and (3) total current. Data marked with an asterisk are intended for Example 6.5.

From Eq. (6.15) the voltage behind subtransient reactance at the generator
rated voltage, load, and power factor is

E 00 ¼ V þ X 00
d sin� ¼ 1þ ð0:15Þð0:527Þ ¼ 1:079 PU

From Eq. (6.14) the subtransient component of the current is

i 00d ¼ E 00

X 00
dv

¼ 1:079

0:15
per unit ¼ 30:10 kA

Similarly, from Eq. (6.17), E 0, the voltage behind transient reactance is 1.1054 per
unit and, from Eq. (6.16), the transient component of the current is 23.12 kA.

From Eq. (6.18) current id at constant excitation is 2.09 kA rms. For a ratio of
if=iFg ¼ 3, current id ¼ 6:28 kA rms. Therefore, the following equations can be writ-
ten for the ac component of the current:

with constant excitation:

iac ¼ 6:98e�t=0:012 þ 20:03e�t=0:35 þ 2:09 kA

with full-load excitation:

iac ¼ 6:98e�t=0:012 þ 16:84e�t=0:35 þ 6:28 kA

The ac decaying component of the current can be plotted from these two equations,
with the lowest value of t ¼ 0:01�1000 sec. This is shown in Fig. 6-6. The dc com-
ponent is given by Eq. (6.19):

idc ¼
ffiffiffi
2

p
i 00d e

�t=Ta ¼ 42:57e�t=0:15 kA

This is also shown in Fig. 6-6. At any instant, the total current isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i2ac þ i2dc

q
kA rms

The fault decrement curves are shown in Fig. 6-6. Short-circuit current with
constant excitation is 50% of the generator full-load current. This can occur for a
stuck voltage regulator condition. Though this current is lower than the generator
full-load current, it cannot be allowed to be sustained. Voltage restraint or voltage-
controlled overcurrent generator backup relays (ANSI/IEEE device number 51V) or
distance relays (device 21) are set to pick up on this current. The generator fault
decrement curve is often required for appropriate setting and co-ordination of these
relays with the system relays.
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6.5 CIRCUIT EQUATIONS OF UNIT MACHINES

The behavior of machines can be analyzed in terms of circuit theory, which makes it
useful not only for steady-state performance but also for transients like short-cir-
cuits. The circuit of machines can be simplified in terms of coils on the stationary
(stator) and rotating (rotor) parts and these coils interact with each other according
to fundamental electromagnetic laws. The circuit of a unit machine can be derived
from consideration of generation of emf in coupled coils due to (1) transformer emf,
also called pulsation emf, and (2) the emf of rotation.

Consider two magnetically coupled, stationary, coaxial coils as shown in Fig.
6-7. Let the applied voltages be v1 and v2 and the currents i1 and i2 respectively. This
is, in fact, the circuit of a two-winding transformer, the primary and secondary being
represented by single-turn coils. The current in the primary coil (any coil can be
called a primary coil) sets up a total flux linkage �11. Change of current in this coil
induces an emf given by

e11 ¼ � d�11

dt
¼ � d�11

di1
� di1
dt

¼ �L11

di1
dt

¼ �L11pi1 ð6:27Þ
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Figure 6-6 Calculated fault decrement curves of generator (Example 6.1).
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where L11 ¼ �d�11=di1 is the total primary self-inductance and the operator
p ¼ d=dt. If �1 is the leakage flux and �12 is the flux linking with the secondary
coil, then the variation of current in the primary coil induces in the secondary coil an
emf:

e12 ¼ � d�12

dt
¼ � d�12

di1
� di1
dt

¼ �L12

di1
dt

¼ �L12pi1 ð6:28Þ

where L12 ¼ �d�12=di1 is the mutual inductance of the primary coil winding with
the secondary coil winding. Similar equations apply for the secondary coil winding.
All the flux produced by the primary coil winding does not link with the secondary.
The leakage inductance associated with the windings can be accounted for as

L11 ¼ L12 þ L1 ð6:29Þ
L22 ¼ L21 þ L2 ð6:30Þ

The mutual inductance between coils can be written as:

L12 ¼ L21 ¼ Lm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðL11 � L1ÞðL22 � L2Þ

p
¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L11L22

p
ð6:31Þ

Thus, the equations of a unit transformer are

v1 ¼ r1i1 þ ðLm þ L1Þpi1 þ Lmpi2

v2 ¼ r2i2 þ ðLm þ L2Þpi2 þ Lmpi1

Or in the matrix form:

va
vb

����
���� ¼ r1 þ ðL1 þ LmÞp Lmp

Lmp r2 þ ðL2 þ LmÞp
����

���� ia
ib

����
���� ð6:32Þ

If the magnetic axis of the coupled coils are at right angles, no mutually induced
pulsation or transformer emf can be produced by variation of currents in either of
the windings. However, if the coils are free to move, the coils with magnetic axes at
right angles have an emf of rotation, er, induced when the winding it represents
rotates:

er ¼ !r� ð6:33Þ
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Figure 6-7 Representation of magnetically coupled coils of a two-winding transformer.
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where !r is the angular speed of rotation and � is the flux. This emf is a maximum
when the two coils are at right angles to each other and zero when these are copha-
sial.

To summarize, a pulsation emf is developed in two coaxial coils and there is no
rotational emf. Conversely, a rotational emf is developed in two coils at right angles,
but no pulsation emf. If the relative motion is at an angle �, the emf of rotation is
multiplied by sin �:

er ¼ !r� sin � ð6:34Þ
The equations of a unit machine may be constructed based on the above simple

derivation of emf production in coils. Consider a machine with direct and quadra-
ture axis coils as shown in Fig. 6-8. Note that the armature is shown rotating and has
two coils D and Q at right angles in the d�q axes. The field winding F and the
damper winding KD are shown stationary in the direct axis. All coils are single turn
coils. In the direct axis there are three mutual inductances, i.e., of D with KD, KD
with F, and F with D. A simplification is to consider these equal to inductance Lad.
Each coil has a leakage inductance of its own. Consequently, the total inductances of
the coils are

Coil D: ðLd þ LadÞ
Coil KD: ðLkd þ LadÞ
Coil F: ðLf þ LadÞ ð6:35Þ

The mutual linkage with armature coil D when all three coils carry currents is

�d ¼ LadðiF þ iD þ idÞ ð6:36Þ
where iF, iD, and id are the currents in the field, damper, and direct axis coils.
Similarly, in the quadrature axis:

�q ¼ Laqðiq þ iQÞ ð6:37Þ
The emf equations in each of the coils can be written on the basis of these observa-
tions.

Field coil: no q-axis circuit will affect its flux, nor do any rotational voltages
appear. The applied voltage vf is:

vf ¼ rf iF þ ðLad þ Lf ÞpiF þ LadpiD þ Ladpid ð6:38Þ
Stator coil KD is located similarly to coil F:

vD ¼ rDiD þ ðLad þ LkdÞpiD þ LadpiF þ Ladpid ð6:39Þ
Coil KQ has no rotational emf, but will be affected magnetically by any current iQ in
coil Q:

vQ ¼ rQiQ þ ðLaq þ LkqÞpiQ þ Laqpiq ð6:40Þ
Armature coils D and Q have the additional property of inducing rotational emf:

vd ¼ rdid þ ðLad þ LdÞpid þ Ladpif þ LadpiD þ Laq!riQ þ ðLaq þ LqÞ!riq

ð6:41Þ
vq ¼ rqiq þ ðLaqLqÞpiq þ LaqpiQ � Lad!riF � Lad!riD � ðLad þ LdÞ!rid ð6:42Þ

196 Chapter 6

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



Short-Circuit of Synchronous and Induction Machines 197

Figure 6-8 (a) Development of the circuit of a unit machine; (b) flux linkages in the direct
and quadrature axes’ coils.
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These equations can be written in a matrix form:

vf

vD

vQ

vd

vq

������������

������������
¼

rf þ ðLad þ Lf Þp Ladp Ladp

Ladp rD þ ðLad þ LkdÞp Ladp

rQ þ ðLaq þ LkqÞp Laqp

Ladp Ladp Laq!r rd þ ðLad þ LdÞp ðLaq þ LqÞ!r

�Lad!r �Lad!r Laqp �ðLad þ LdÞ!r rq þ ðLaqLqÞp

������������

������������

iF

iD

iQ

id

iq

������������

������������
ð6:43Þ

6.6 PARK’S TRANSFORMATION

Park’s transformation [4,5] greatly simplifies the mathematical model of synchro-
nous machines. It describes a new set of variables, such as currents, voltages, and flux
linkages, obtained by transformation of the actual (stator) variables in three axes: 0,
d, and q. The d and q axes are already defined, the 0 axis is a stationary axis.

6.6.1 Reactance Matrix of a Synchronous Machine

Consider the normal construction of a three-phase synchronous machine, with three-
phase stationary ac windings on the stator, and the field and damper windings on the
rotor (Fig. 6-9). The stator inductances vary, depending on the relative position of
the stator and rotor. Consider that the field winding is cophasial with the direct axis
and also that the direct axis carries a damper winding. The q axis also has a damper
winding. The phase windings are distributed, but are represented by single turn coils
aa, bb, and cc in Fig. 6-9. The field flux is directed along the d axis and, therefore, the
machine-generated voltage is at right angles to it, along the q axis. For generator
action the generated voltage vector E leads the terminal voltage vector V by an angle
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Figure 6-9 Representation of d�q axes, reference axes, and windings in a synchronous

machine.
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�, and from basic machine theory we know that � is the torque angle. At t ¼ 0, the
voltage vector V is located along the axis of phase a, which is the reference axis in
Fig. 6-9. The q axis is at an angle � and the d axis is at an angle �þ �=2. For t > 0,
the reference axis is at an angle !rt with respect to the axis of phase a. The d axis of
the rotor is, therefore, at

� ¼ !rtþ �þ �=2 ð6:44Þ
For synchronous operation !r ¼ !0 ¼ constant.

Consider phase a inductance, it is a combination of its own self-inductance Laa

and its mutual inductances Lab and Lbc with phases b and c. All three inductances
vary with the relative position of the rotor with respect to the stator because of
saliency of the air gap. When the axis of phase a coincides with the direct axis
(Fig 6.9), i.e., � ¼ 0 or �, the resulting flux of coil aa is maximum in the horizontal
direction and its self-inductance is a maximum. When at right angles to the d axis,
� ¼ �=2 or 3�=2 its inductance is a minimum. Thus, Laa fluctuates twice per revolu-
tion and can be expressed as

Laa ¼ Ls þ Lm cos 2� ð6:45Þ
Similarly, self-inductance of phase b is maximum at � ¼ 2�=3 and of phase c at
� ¼ �2�=3:

Lbb ¼ Ls þ Lm cos 2 � � 2
�

3

� 
ð6:46Þ

Lcc ¼ Ls þ Lm cos 2 � þ 2
�

3

� 
ð6:47Þ

Phase-to-phase mutual inductances are also a function of �; Lab is negative and
is maximum at � ¼ ��=6. This can be explained as follows: for the direction of
currents shown in coils aa and bb, Lab is negative. When the angle is ��=3, the
current in the phase b coil generates the maximum flux, but the linkage with the
phase a coil is better when the angle is zero degrees. However, at this angle the flux is
reduced. The maximum flux linkage can be considered to take place at an angle
which is an average of these two angles, i.e., �=6:

Lab ¼ � Ms þ Lm cos 2 � þ �

6

� h i
ð6:48Þ

Lbc ¼ � Ms þ Lm cos 2 � � �

2

� h i
ð6:49Þ

Lca ¼ � Ms þ Lm cos 2 � þ 5
�

6

� h i
ð6:50Þ

Stator-to-rotor mutual inductances are the inductances between stator wind-
ings and field windings, between stator windings and direct axis damper windings,
and between stator windings and quadrature axis damper windings. These reactances
are:

From stator phase windings to field windings

LaF ¼ MF cos � ð6:51Þ
LbF ¼ MF cosð� � 2�=3Þ ð6:52Þ
LcF ¼ MF cosð� þ 2�=3Þ ð6:53Þ
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From stator phase windings to direct axis damper windings

LaD ¼ MD cos � ð6:54Þ
LbD ¼ MD cosð� � 2�=3Þ ð6:55Þ
LcD ¼ MD cosð� þ 2�=3Þ ð6:56Þ

From stator phase windings to damper windings in the quadrature axis

LaQ ¼ MQ sin � ð6:57Þ
LbQ ¼ MQ sinð� � 2�=3Þ ð6:58Þ
LcQ ¼ MQ sinð� þ 2�=3Þ ð6:59Þ

The rotor self-inductances are: LF, LD, and LQ. The mutual inductances are

LDF ¼ MR LFQ ¼ 0 LDQ ¼ 0 ð6:60Þ
The mutual inductance between field windings and direct axis damper windings are
constant and do not vary. Also, the d and q axes are displaced by 908 and the mutual
inductances between the field and direct axis damper windings and quadrature axis
damper windings are zero.

The inductance matrix can therefore be written as

�LL ¼ �LLaa
�LLaR

�LLRa
�LLRR

����
���� ð6:61Þ

where �LLaa is a stator-to-stator inductance matrix:

�LLaa ¼
Ls þ Lm cos 2� �Ms � Lm cos 2ð� þ �=6Þ �Ms � Lm cos 2ð� þ 5�=6Þ

�Ms � Lm cos 2ð� þ �=6Þ Ls þ Lm cos 2ð� � 2�=3Þ �Ms � Lm cos 2ð� � �=2Þ
�Ms � Lm cos 2ð� þ 5�=6Þ �Ms � Lm cos 2ð� � �=2Þ Ls þ Lm cos 2ð� þ 2�=3Þ

������
������

ð6:62Þ
�LLaR ¼ �LLRa is the stator to-rotor inductance matrix:

�LLaR ¼ �LLRa ¼
MF cos � MD cos � MQ sin �

MF cosð� � 2�=3Þ MD cosð� � 2�=3Þ MQ sinð� � 2�=3Þ
MF cosð� þ 2�=3Þ MD cosð� þ 2�=3Þ MQ sinð� þ 2�=3Þ

������
������
ð6:63Þ

�LLRR is the rotor-to-rotor inductance matrix

�LLRR ¼
LF MR 0
MR LD 0
0 0 LQ

������
������ ð6:64Þ

The inductance matrix of Eq. (6.61) shows that the inductances vary with the angle �.
By referring the stator quantities to rotating rotor dq axes through Park’s transfor-
mation, this dependence on � is removed and a constant reactance matrix emerges.

6.6.2 Transformation of Reactance Matrix

Park’s transformation describes a new set of variables, such as currents, voltages,
and flux linkages in 0dq axes. The stator parameters are transferred to the rotor
parameters. For the currents this transformation is
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i0

id

iq

�������
������� ¼

ffiffiffi
2

3

r 1ffiffiffi
2

p 1ffiffiffi
2

p 1ffiffiffi
2

p

cos � cos � � 2
�

3

� 
cos � þ 2

�

3

� 
sin � sin � � 2

�

3

� 
sin � þ 2

�

3

� 

�����������

�����������

ia

ib

ic

�������
������� ð6:65Þ

Using matrix notation:

�ii0dq ¼ �PP �iiabc ð6:66Þ
Similarly,

�vv0dq ¼ �PP �vvabc ð6:67Þ
���0dq ¼ �PP ���abc ð6:68Þ

where ��� is the flux linkage vector. The a–b–c currents in the stator windings produce
a synchronously rotating field, stationary with respect to the rotor. This rotating
field can be produced by constant currents in the fictitious rotating coils in the dq
axes; P is nonsingular and �PP�1 ¼ �PP 0:

�PP�1 ¼ �PP 0 ¼
ffiffiffi
2

3

r
1ffiffiffi
2

p cos � sin �

1ffiffiffi
2

p cos � � 2�

3

� �
sin � � 2�

3

� �
1ffiffiffi
2

p cos � þ 2�

3

� �
sin � þ 2�

3

� �

������������

������������
ð6:69Þ

To transform the stator-based variables into rotor-based variables, define a matrix as
follows:

i0
id
iq
iF
iD
iQ

������������

������������
¼ �PP �00

�00 �11

����
����
ia
ib
ic
iF
iD
iQ

������������

������������
¼ �BB �ii ð6:70Þ

where �11 is a 3� 3 unity matrix and �00 is a 3� 3 zero matrix. The original rotor
quantities are left unchanged. The time-varying inductances can be simplified by
referring all quantities to the rotor frame of reference:

���odq
���FDQ

����
���� ¼ �PP �00

�00 �11

����
���� ���abc

���FDQ

����
���� ¼ �PP �00

�00 �11

����
���� �LLaa

�LLaR
�LLRa

�LLRR

����
���� �PP�1 �00

�00 �11

����
���� �PP �00
�00 �11

����
���� �iiabc
�iiFDQ

����
����
ð6:71Þ

This transformation gives

�0
�d
�q
�F
�D
�Q

������������

������������
¼

L0 0 0 0 0 0
0 Ld 0 kMF kMD 0
0 0 Lq 0 0 kMq

0 kMF 0 LF MR 0
0 kMD 0 MR LD 0
0 0 kMQ 0 0 LQ

������������

������������

i0
id
iq
iF
iD
iQ

������������

������������
ð6:72Þ
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Define:

Ld ¼ Ls þMs þ
3

2
Lm ð6:73Þ

Lq ¼ Ls þMs �
3

2
Lm ð6:74Þ

L0 ¼ Ls � 2Ms ð6:75Þ

k ¼
ffiffiffi
3

2

r
ð6:76Þ

The inductance matrix is sparse, symmetric, and constant. It decouples the 0dq axes
as will be illustrated further.

6.7 PARK’S VOLTAGE EQUATION

The voltage equation [4,5] in terms of current and flux linkages is

�vv ¼ � �RR �ii � d ���

dt
ð6:77Þ

or

va
vb
vc
vF
vD
vQ

������������

������������
¼

r 0 0 0 0 0
0 r 0 0 0 0
0 0 r 0 0 0
0 0 0 rF 0 0
0 0 0 0 rD 0
0 0 0 0 0 rQ

������������

������������

ia
ib
ic
iF
iD
iQ

������������

������������
� di

dt

�a
�b
�c
�F
�D
�Q

������������

������������
ð6:78Þ

This can be partitioned as

�vvabc
�vvFDQ

����
���� ¼ � �rrs

�rrFDQ

����
���� �iiabc
�iiFDQ

����
����� di

dt

���abc
���FDQ

����
���� ð6:79Þ

The transformation is given by

�BB�1 �vvB ¼ � �RR �BB�1 �iiB � d

dt
ð �BB�1 ���BÞ ð6:80Þ

where

�PP �00

�00 �11

�����
����� ¼ �BB; �BB

�iiabc
�iiFDQ

�����
����� ¼

�iiodq
�iiFDQ

�����
����� ¼ �iiB; �BB

���abc
���FDQ

�����
����� ¼

���0dq
���FDQ

�����
����� ¼ ���B;

�BB
�vvabc

�vvFDQ

�����
����� ¼ �vv0dq

�vvFDQ

�����
����� ¼ �vvB

ð6:81Þ
Equation (6.80) can be written as

vB ¼ � �BBR �BB�1 � �BB
d

dt
ð �BB�1 ���BÞ ð6:82Þ
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First evaluate:

�BB
d �BB�1

d�
¼

�PP �00

�00 �11

�����
�����
d �PP�1

d�
�00

�00 �00

�������
������� ¼

�PP
d �PP�1

d�
�00

�00 �00

�������
������� ð6:83Þ

where, it can be shown that

�PP
d �PP�1

d�
¼

0 0 0
0 0 1
0 �1 0

������
������ ð6:84Þ

As we can write:

d �BB�1

dt
¼ d �BB�1

d�

d�

dt
ð6:85Þ

�BB
d �BB�1

d�
¼

0 0 0 0 0 0
0 0 1 0 0 0
0 �1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

������������

������������
ð6:86Þ

The voltage equation becomes:

�vvB ¼ �RR �iiB � d�

dt

0
�q
��d
0
0
0

������������

������������
� d ���B

dt
ð6:87Þ

When the shaft rotation is uniform d�=dt is a constant and Eq. (6.87) is linear and
time invariant.

6.8 CIRCUIT MODEL OF SYNCHRONOUS MACHINES

From the above treatment, the following decoupled voltage equations can be writ-
ten:

Zero sequence

v0 � ri0 �
d�0
dt

ð6:88Þ

Direct axis

vd ¼ �rid �
d�

dt
�q �

d�d
dt

ð6:89Þ

vF ¼ rf if þ
d�F
dt

ð6:90Þ

vD ¼ rDiD þ d�D
dt

¼ 0 ð6:91Þ
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Quadrature axis

vq ¼ �riq þ
d�

dt
�d �

d�q
dt

ð6:92Þ

vQ ¼ rQiQ þ d�Q
dt

¼ 0 ð6:93Þ

The decoupled equations relating to flux linkages and currents are:

Zero sequence

�0 ¼ L0i0 ð6:94Þ
Direct axis

�d
�F
�D

������
������ ¼

Ld kMF kMD

kMF LF MR

kMD MR LD

id
iF
iD

������
������

������ ð6:95Þ

Quadrature axis

�q
�Q

����
���� ¼ Lq kMQ

kMQ LQ

����
���� iq
iQ

����
���� ð6:96Þ

This decoupling is shown in equivalent circuits in Fig. 6-10:

6.9 CALCULATION PROCEDURE AND EXAMPLES

There are three steps involved:

1. The problem is normally defined in stator parameters, which are of inter-
est. These are transformed into 0dq axes variables.

2. The problem is solved in 0dq axes, parameters, using Laplace transform
or other means.

3. The results are transformed back to a–b–c variables of interest.

These three steps are inherent in any calculation using transformations. For simpler
problems it may be advantageous to solve directly in stator parameters.

Example 6.2

Calculate the time variation of the direct axis, quadrature axis voltages, and field
current, when a step function of field voltage is suddenly applied to a generator at no
load. Neglect damper circuits.
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As the generator is operating without load, iabc ¼ i0dq ¼ 0. Therefore, from Eqs
(6.94)–(6.96):

�0 ¼ 0 �d ¼ kMFiF �F ¼ LFiF �q ¼ 0

From Eqs (6.88)–(6.92):

v0 ¼ 0

vd ¼ � d�d
dt

¼ �kMF

diF
dt

vF ¼ rf if þ LF

diF
dt

vq ¼ !0�d ¼ !0kMFiF

Therefore, as expected, the time variation of field current is

if ¼
1

rf
ð1� eð�rf=LFÞtÞ
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Figure 6-10 Synchronous generator decoupled circuits in d�q axes.
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The direct axis and quadrature axis voltages are given by

vd ¼ � kMF

LF

e�ðrf=LFÞt

vq ¼ �!kMF

rF
ð1� e�ðrf=LFÞtÞ

The phase voltages can be calculated using Park’s transformation.

Example 6.3

A generator is operating with balanced positive sequence voltage of

va ¼
ffiffiffi
2

p
jVj cosð!0tþ ffVÞ

across its terminals. The generator rotor is described by

� ¼ !1tþ
�

2
þ �

Find v0, vd, and vq.
This is a simple case of transformation using (6.65):

v0
vd
vq

������
������ ¼

2jVjffiffiffi
3

p

1ffiffi
2

p 1ffiffi
2

p 1ffiffi
2

p

cos � cos � � 2�

3

� �
cos � þ 2�

3

� �

sin � sin � � 2�

3

� �
sin � þ 2�

3

� �

�����������

�����������

cos !0tþ ffVð Þ
cos !0tþ ffV � 2�

3

� �

cos !0tþ ffV � 4�

3

� �
����������

����������
A solution of this equation gives

vd ¼
ffiffiffi
3

p
jVj sin½ð!0 � !1Þtþ ffV � ��

vq ¼
ffiffiffi
3

p
jVj cos½ð!0 � !1Þtþ ffV � ��

ð6:97Þ

These relations apply equally well to derivation of id, iq, �d, and �q.
For synchronous operation !1 ¼ !0 and the equations reduce to

vq ¼
ffiffiffi
3

p
jVj cosðffV � �Þ

vd ¼
ffiffiffi
3

p
jVj sinðffV � �Þ

ð6:98Þ

Note that vq and vd are now constant and do not have the slip frequency term
!1 � !0. We can write:

vq þ jvd ¼
ffiffiffi
3

p
jVje jðffV��Þ ¼

ffiffiffi
3

p
Vae

�j� ð6:99Þ
Therefore, Va can be written as

Va ¼
vqffiffiffi
3

p þ j
vdffiffiffi
3

p
� �

e j� ¼ ðVq þ jVdÞe j� ð6:100Þ

where

Vq ¼ vq=
ffiffiffi
3

p
and Vd ¼ vd=

ffiffiffi
3

p
ð6:101Þ

This is shown in the phasor diagram of Fig. 6-11.
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We can write these equations in the following form:

ReVa

ImVa

����
���� ¼ cos � � sin �

sin � cos �

����
���� Vq

Vd

����
����

Vq

Vd

����
���� ¼ cos � sin �

� sin � cos �

����
���� ReVa

ImVa

����
����

ð6:102Þ

Example 6.4

Steady-State Model of Synchronous Generator

Derive a steady-state model of a synchronous generator and its phasor diagram.
In the steady state all the currents and flux linkages are constant. Also i0 ¼ 0

and rotor damper currents are zero. Equations (6.89)–(6.94) reduce to

vd ¼ �rid � !0�q

vq ¼ �riq þ !0�d

vf ¼ rf if

ð6:103Þ

where

�d ¼ Ldid þ kMFif

�F ¼ kMf id þ LFif

�q ¼ Lqiq

ð6:104Þ

Substitute values of �d and �q from Eq. (6.104) to Eq. (6.103); then, from Example
6.3 and then from Eqs (6.100) and (6.101), we can write the following equation:

Va ¼ �rðIq þ jIdÞe j� þ !0LdIde
� j� � j!0LqIqe

j� þ 1ffiffiffi
2

p !0MFif e
j�

where id ¼ ffiffiffi
3

p
Id and iq ¼ ffiffiffi

3
p

Iq.
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Figure 6-11 Vector diagram illustrating relationship of direct axes and quadrature axes’
voltages to the terminal voltage.
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Define:

ffiffiffi
2

p
E ¼ !0MFif e

j� ð6:105Þ

This is the no load voltage or the open circuit voltage with generator current ¼ 0.
We can then write:

E ¼ Va þ rIa þ jXdIde
j� þ jXqIqe

j� ð6:106Þ

The phasor diagram is shown in Fig. 6-12(a). The open circuit voltage on no load is a
q-axis quantity and is equal to the terminal voltage.

As the components Id and Iq are not initially known, the phasor diagram is
constructed by first laying out the terminal voltage Va and line current Ia at the
correct phase angle �, then adding the resistance drop and reactance drop IXq. At
the end of this vector the quadrature axis is located. Now the current is resolved into
direct axis and quadrature axis components. This allows the construction of vectors
IqXq and IdXd. This is shown in Fig. 6-12(b).
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Figure 6-12 (a) Phasor diagram of a synchronous generator operating at lagging power

factor; (b) to illustrate the construction of phasor diagram from known stator parameters.
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Example 6.5

Consider the generator data of Example 6.1. Calculate the direct and quadrature axis
components of the currents and voltages and machine voltage E when the generator
is delivering its full-load rated current at its rated voltage. Also calculate all the
angles shown in the phasor diagram, Fig. 6-12(a). If this generator is connected to
an infinite bus through an impedance of 0:01þ j0:1 per unit (100 MVA base), what is
the voltage of the infinite bus?

The generator operates at a power factor of 0.85 at its rated voltage of 1.0 per
unit. Therefore, � ¼ 31:88. The generator full-load current is 4183.8A ¼ 1:0 per unit.
The terminal voltage vector can be drawn to scale, the Ir drop (¼ 0:0012 per unit) is
added, and the vector IXq ¼ 1:8 per unit is drawn to locate the q axis. Current I can
be resolved into direct axis and quadrature axis components, and the phasor diagram
is completed as shown in Fig. 6-12(b) and the values of Vd, Id, Vq, Iq, and E are read
from it. The analytical solution is as follows:

The load current is resolved into active and reactive components Ir ¼ 0:85 per
unit and Ix ¼ 0:527 per unit, respectively. Then, from the geometric construction
shown in Fig. 6-13:

ð�� �Þ ¼ tan�1 XqIr þ rIx
Va þ rIr � XqIx

� �

¼ tan�1 ð1:8Þð0:85Þ þ ð0:0012Þð0:527Þ
1þ ð0:0012Þð0:85Þ þ ð1:8Þð0:527Þ
� �

¼ 38:148

ð6:107Þ

Note that the resistance from the above calculation can even be ignored without an
appreciable error. Thus, ð�� �þ �Þ ¼ 69:938; this is the angle of the current vector
with the q axis. Therefore,

Iq ¼ Ia cosð�� �� �Þ ¼ 0:343 pu; iq ¼ 0:594 pu

Id ¼ �Ia sinð�� �� �Þ ¼ �0:939 pu; id ¼ �1:626 pu

Vq ¼ Va cosð�� �Þ ¼ 0:786 pu; vq ¼ 1:361 pu

Vd ¼ �Va sinð�� �Þ ¼ �0:618 pu; vd ¼ 1:070 pu

The machine generated voltage is

E ¼ Vq þ rIq � XdId ¼ 2:66 pu
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Figure 6-13 Phasor diagram of the synchronous generator for Example 6.5.
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The infinite bus voltage is simply the machine terminal voltage less the IZ drop
subtracted vectorially:

V1 ¼ Vaff08� Iaff31:88Zff84:38 ¼ 0:94ff � 4:88

The infinite bus voltage lags the machine voltage by 4.88. Practically, the infinite bus
voltage will be held constant and the generator voltage changes, depending on the
system impedance and generator output.

Example 6.6

Symetrical Short-Circuit of a Generator at No Load

Derive the short-circuit equations of a synchronous generator for a balanced three-
phase short-circuit at its terminals. Ignore damper circuit and resistances and neglect
the change in speed during short-circuit. Prior to short-circuit the generator is oper-
ating at no load. Ignoring the damper circuit means that the subtransient effects are
ignored. As the generator is operating at no load, iabc ¼ iodq ¼ 0, prior to the fault.

From Eqs (6.89)–(6.94):

Zero sequence

v0 ¼ �L0

di0
dt

¼ 0

Direct axis

vd ¼ �!0�q �
d�d
dt

¼ 0

vf ¼
d�F
dt

Quadrature axis

vq ¼ !0�d �
d�q
dt

¼ 0

The flux linkages can be expressed in terms of currents by using Eqs (6.95) and
(6.96):

!0Lqiq þ Ld

did
dt

þ kMF

dif
dt

¼ 0

vf ¼ kMF

did
dt

þ LF

dif
dt

�!0Ldid � !0kMFif þ Lq

diq
dt

¼ 0

These equations can be solved using Laplace transformation. The initial con-
ditions must be considered. In Example 6.4, we demonstrated that at no load, prior
to fault, the terminal voltage is equal to the generated voltage and this voltage isffiffiffi

2
p

E ¼ !0MFiFe
j�

and this is a quadrature axis quantity. Also, vd ¼ 0. The effect of short-circuit is,
therefore, to reduce vq to zero. This is equivalent to applying a step function of �vq1
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to the q axis. The transient currents can then be superimposed on the currents prior
to fault. Except for current in the field coil all these currents are zero. The solution
for iF will be superimposed on the existing current iF0.

If we write:

kMF ¼ Lad ¼ Xad=!

LF ¼ ðXf þ XadÞ=!
The expressions converted into reactances and using Laplace transform, dx=dt ¼
sXðsÞ � xð0�Þ (where XðsÞ is Laplace transform of x(t)) reduce to

0 ¼ ð1=!ÞðXad þ Xf ÞsiF þ ð1=!ÞXadsid ð6:108Þ
0 ¼ ð1=!ÞðXdÞsid þ ð1=!ÞXadsif þ ðXqÞiq ð6:109Þ
�vq ¼ ð1=!ÞðXqÞsiq � xadiF � ðXdÞid ð6:110Þ

The field current from Eq. (6.108) is

iF ¼ �idXad=ðXad þ Xf Þ ð6:111Þ
The field current is eliminated from Eqs (6.109) and (6.110) by substitution. The
quadrature axis current is

iq ¼ 1

Xaq þ Xl

XadXf

Xad þ Xf

þ Xl

	 

s

!
id

¼ � X 0
d

Xq

� �
s

!
id

and

id ¼
!2

X 0
d

1

s2 þ !2

	 

vq

Solving these equations gives

id ¼
ð ffiffiffi

3
p jEjÞ
X 0

d

ð1� cos!tÞ

iq ¼ � ð ffiffiffi
3

p jEjÞ
Xq

sin!t

Note that k ¼ ffiffiffiffiffiffiffiffi
3=2

p
. Apply:

�iiabc ¼ �PP �ii0dq

with � ¼ !tþ �=2þ �, the short-circuit current in phase a is

ia ¼
ffiffiffi
2

p
jEj 1

X 0
d

� �
sinð!tþ �Þ ¼ Xq þ X 0

d

2X 0
dXq

sin �� Xq � X 0
d

2X 0
dXq

sinð2!tþ �Þ
	 


ð6:112Þ
The first term is normal-frequency short-circuit current, the second is constant asym-
metric current, and the third is double-frequency short-circuit current. The 120-Hz
component imparts a nonsinusoidal characteristic to the short-circuit current wave-
form. It rapidly decays to zero and is ignored in the calculation of short-circuit
currents.
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When the damper winding circuit is considered, the short-circuit current can be
expressed as

ia ¼
ffiffiffi
2

p
E

"
1

Xd

� �
sin ð!tþ �Þ þ 1

X 0
d

� 1

Xd

� �
e�t=T 0

d sin ð!tþ �Þþ

1

X 00
d

� 1

X 0
d

� �
e�t=T 00

d sin ð!tþ �Þ

� ðX 00
d þ X 00

q Þ
2X 00

d X
00
q

e�t=Ta sin �� ðX 00
d � X 00

q Þ
2X 00

d X
00
q

e�t=Ta sin ð2!tþ �Þ
#

ð6:113Þ

. The first term is final steady-state short-circuit current.

. The second term is normal-frequency decaying transient current.

. The third term is normal-frequency decaying subtransient current.

. The fourth term is asymmetric decaying dc current.

. The fifth term is double-frequency decaying current.

Example 6.7

Calculate the component short-circuit currents at the instant of three-phase terminal
short-circuit of the generator (particulars as shown in Table 6-1). Assume that phase
a is aligned with the field at the instant of short-circuit, maximum asymmetry, i.e.,
� ¼ 0. The generator is operating at no load prior to short-circuit.

The calculations are performed by substituting the required numerical data
from Table 6-1 into (6.113):

Steady-state current ¼ 2.41 kA rms
Decaying transient current ¼ 20.24 kA rms
Decaying subtransient current ¼ 5.95 kA rms
Decaying DC component ¼ 43.95 kA
Decaying second-harmonic component = 2.35 kA rms

Note that the second-harmonic component is zero if the direct axis and quadrature
axis subtransient reactances are equal. Also, the dc component in this case is
40.44 kA.

6.9.1 Manufacturer’s Data

The relationship between the various inductances and the data commonly supplied
by a manufacturer for a synchronous machine is not obvious. The following rela-
tions hold:

Lad ¼ Ld � La ¼ kMF ¼ kMD ¼ MR ð6:114Þ
Laq ¼ Lq � La ¼ kMQ ð6:115Þ

Field leakage reactance Lf is

Lf ¼
LadðL 0

d � LaÞ
ðLd � L 0

dÞ
ð6:116Þ

and
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LF ¼ Lf þ Lad ð6:117Þ
The damper leakage reactance in the direct axis is

Lkd ¼
LadLf ðL 00

d � LaÞ
LadLa � LFðL 00

d � LaÞ
ð6:118Þ

and

LD ¼ Lkd þ Lad ð6:119Þ

Lkq ¼
LaqðL 00

q � LaÞ
Lq � L 00

q Þ
ð6:120Þ

In the quadrature axis the damper leakage reactance is

LQ ¼ Lkq þ Laq ð6:121Þ
The field resistance is

rf ¼
Lf

T 0
do

ð6:122Þ

The damper resistances in direct axis can be obtained from

T 00
d ¼ ðLDLF � L2

adÞ
rDLF

L 00
d

L 0
d

� �
ð6:123Þ

and in the quadrature axis from

T 00
q ¼ L 00

qLQ

LarQ
ð6:124Þ

Example 6.8

Using the manufacturer’s data in Table 6-1, calculate the machine parameters in the
d�q axes. Applying the equations in Sec. 6.9.1:

Lad ¼ Xd � Xl ¼ 1:949� 0:164 ¼ 1:785 per unit¼ KMF ¼ KMD ¼ MR

Laq ¼ Xq � Xl � 1:858� 0:164 ¼ 1:694 per unit ¼ KMQ

Lf ¼ ð1:785Þð0:278� 0:164Þ=ð1:964� 0:278Þ ¼ 0:121 per unit
LF ¼ 0:121þ 1:785 ¼ 1:906 per unit
Lkd ¼ ð1:785Þð0:121Þð0:193� 0:164Þ=fð1:785Þð0:164Þ � ð1:096ð0:193� 0:164Þg ¼
0:026 per unit

LD ¼ 0:026þ 1:785 ¼ 1:811 per unit
Lkq ¼ ð1:694Þð0:192� 0:164Þ=ð1:858� 0:192Þ ¼ 0:028 per unit
LQ ¼ 0:028þ 1:694 ¼ 1:722 per unit
T 0
do ¼ 5:615 s ¼ 2116:85 rad

rf ¼ 1:906=2116:85 ¼ 1:005� 10�5 per unit

rD ¼ ð1:811Þð1:906Þ � 1:7852

ð0:015Þð377Þð1:906Þ
0:193

0:278

� �
¼ 0:0131 per unit

rQ ¼ 0:192

1:858

� �
1:722

0:015� 377

� �
¼ 0:031 per unit
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The per unit system for synchronous machines is not straightforward, and variations
in the literature exist. Reference [6] provides further reading.

6.10 SHORT-CIRCUIT OF AN INDUCTION MOTOR

For a terminal fault, whether an induction machine is operating as an induction
generator or motor, the machine feeds into the fault due to trapped flux linkage with
the rotor. This fault current will be a decaying transient. A dc decaying component
also occurs to maintain the flux linkage constant.

In terms of d�q axes, both the stator and rotor are cylindrical and symmetrical.
The d axis is chosen arbitrarily as the axis of the stator phase a. The three-phase
winding is converted into a two-phase winding so that the axis of the second phase
becomes the q axis. The two stator phases are then the fixed axis coils, 1D and 1Q,
respectively, Fig. 6-14.

The rotor circuit, whether of wound type or cage type, is also represented by d-
and q-axis coils, though a squirrel cage rotor is more complex and space harmonics
are neglected. These coils are 2D and 2Q. The impedance matrix can be set up as for
a synchronous machine, as follows:

v1d

v1q

v2d

v2q

���������

���������
¼

r1 þ ðLm þ L1Þp Lm

r1 þ ðLm þ L1Þp Lmp

Lmp Lm!r r2 þ ðLm þ L2Þp ðLm þ L2Þ!r

�Lm!r Lmp �ðLm þ L2Þ!r r2 þ ðLm þ L2Þp

���������

���������

i1d

i1q

i2d

i2q

���������

���������
ð6:125Þ

where r1 and r2 are stator and rotor resistances, respectively, and L1 and L2 are
stator and rotor reactances, respectively. 1D and 1Q have mutual inductance Lm,
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Figure 6-14 Representation of an induction machine.
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which is also the mutual inductance between 1Q and 2Q. Here, !r ¼ ð1� slÞ!, where
s1 is the motor slip. For a short-circuited rotor, v2d ¼ v2q ¼ 0. Also, there is no
difference in the d and q axes except for time, and it is possible to write:

v1d ¼ v1 v1q ¼ �jv1

i1d ¼ i1 i1q ¼ �ji1 ð6:126Þ
i2d ¼ i2 i2q ¼ �ji2

By analogy with a synchronous machine, reactances Xa;Xf ; and Xad are equivalent
to X1, X2, and Xm in the induction machine. The transient reactance of the induction
machine is

X 0 ¼ X1 þ
XmX2

Xm þ X2

ð6:127Þ

This is also the motor-locked rotor reactance. The equivalent circuit of the induction
motor is shown in Chap. 12. The open circuit transient time constant is

T 0
o ¼ X2 þ Xm

!r2
ð6:128Þ

The short-circuit transient time constant is

T 0 ¼ T 0
0

X 0

X1 þ Xm

ð6:129Þ

This is approximately equal to

T 0 ¼ X 0

!r2
ð6:130Þ

and the time constant for the decay of dc component is

Tdc ¼
X 0

!r1
ð6:131Þ

AC symmetrical short-circuit current is:

iac ¼
E

X 0 e
�t=T 0 ð6:132Þ

and dc current is:

idc ¼
ffiffiffi
2

p E

X 0 e
�t=Tdc ð6:133Þ

where E is the prefault voltage behind the transient reactance X 0. At no load, E is
equal to the terminal voltage.

Example 6.9

Consider a 4-kV, 5000-hp four-pole motor, with full-load kVA rating ¼ 4200. The
following parameters in per unit on motor-base kVA are specified:

r1 ¼ 0:0075

r2 ¼ 0:0075
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X1 ¼ 0:0656

X2 ¼ 0:0984

Rm ¼ 100

Xm ¼ 3:00

Calculate the motor short-circuit current equations for a sudden terminal fault.
The following parameters are calculated using Eqs (6.127)–(6.131):

X 0 ¼ 0:1608 PU

T 0 ¼ 0:057 sec

Tdc ¼ 0:057 sec

T0 ¼ 1:09 sec

The ac component of the short-circuit current is

iac ¼ 6:21e�t=0:057

At t ¼ 0, the ac symmetrical short-circuit current is 6.21 times the full-load current.
The dc component of the short-circuit current is

idc ¼ 8:79e�t=0:057

The nature of short-circuit currents is identical to that of synchronous machines;
however, the currents decay more rapidly. Typically, the effect of short-circuit cur-
rents from induction machines is ignored after six cycles.

Practical Short-Circuit Calculations

For practical short-circuit calculations, dynamic simulation or analytical calcula-
tions are rarely carried out. Chapter 7 describes the ANSI empirical calculation
procedures and shows that the machine models are simple, and represented by a
voltage behind an impedance which changes with the type of calculations. The
detailed machine models and calculation of time variation of short-circuit currents
are sometimes required to validate the empirical results [7]. These form a background
to the empirical methods to be discussed in Chaps 7 and 8.

Problems

1. Calculate the fault decrement curves of the generator, data as given in
Table 6-1. Calculate (i) the ac decaying component, (ii) dc component,
and (iii) total current. Plot the results in a similar manner to those of Fig.
6-6.

2. Consider the system and data shown in Fig. 6-P1. Calculate (i) prefault
voltages behind reactances Xd, X

0
d, and X 00

d for faults at G and F, and (ii)
the largest possible dc component for faults at G and F.

3. Calculate the field current in Problem 2 on application of short-circuit.
4. Calculate three-phase short-circuit subtransient and transient time con-

stants in Problem 2 for a fault at F.
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5. Write a numerical expression for the decaying ac component of the cur-
rent for faults at G and F in Problem 2. What is the ac component of the
fault current at 0.05 and 0.10 sec?

6. Transform the calculated direct axis and quadrature axis voltages derived
in Problem 6.2 into stator voltages using Park’s transformation.

7. Draw a general steady-state phasor diagram of a synchronous motor
operating at (i) leading power factor, and (ii) lagging power factor.

8. Construct a simplified dynamic phasor diagram (ignoring damper circuit
and resistances) of a synchronous generator using Park’s transforma-
tions. How does it differ from the steady-state phasor diagram?

9. Show that first column of P 0 is an eigenvector of L11 corresponding to
eigenvalue Ld ¼ Ls � 2Ms.

10. Form an equivalent circuit similar to Fig. 6-10 with numerical values
using the generator data from Table 6-1.

11. A 13.8-kV, 10,000-hp four-pole induction motor has a full load efficiency
of 96% and a power factor of 0.93. The locked rotor current is six times
the full-load current at a power factor of 0.25. Calculate the time varia-
tion of ac and dc components of the current. Assume equal stator and
rotor resistances and reactances. The magnetizing resistance and reac-
tance are equal to 130 and 3.0 per unit, respectively, on machine MVA
base.
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Figure 6-P1 Circuit diagram and system data for Problem 2.
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7

Short-Circuit Calculations According to
ANSI Standards

ANSI methods of short-circuit calculations are used all over North America, and are
accepted in many other countries. These standards have been around for a much
longer time than any other standard in the world. The IEC [1] standard for short-
circuit calculation was published in 1988 and the calculation procedures according to
IEC are discussed in Chap. 8. A VDE [2] (Deutsche Electrotechnische Kommission)
standard has been around since 1971. There has been a thrust for analog methods
too. Nevertheless, for all equipment manufactured and applied in industry in the
USA, ANSI standards prevail. Most foreign equipment for use in the U.S. market
has been assigned ANSI ratings.

We will confine our discussions to symmetrical ratings of the breakers. The
interpretations, theory, and concepts governing ANSI methods of calculations are
discussed with illustrative examples.

7.1 TYPES OF CALCULATIONS

In a multivoltage system four types of short-circuit calculations may be required.
These are:

1. First-cycle (momentary) duties for fuses and low-voltage circuit breakers.
2. First-cycle (momentary) duties for medium- or high-voltage circuit

breakers.
3. Contact parting (interrupting) duties for high-voltage circuit breakers

(circuit breakers rated above 1 kV).
4. Short-circuit currents for time-delayed relaying devices.

Irrespective of the type of fault current calculation, the power system is reduced
to a single Thevénin equivalent impedance behind the source voltage.
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7.1.1 Prefault Voltage

The source voltage or prefault voltage is the system rated voltage, though a higher or
lower voltage can be used in the calculations. The worst short-circuit conditions
occur at maximum loads, because the rotating loads contribute to the short-circuit
currents. It is unlikely that the operating voltage will be above the rated voltage at
maximum loading. Under light load conditions, the operating voltage may be higher,
but the load contributions to the short-circuit currents will also be reduced. The
effect of higher voltage at a reduced load is offset by the reduced contributions from
the loads.

7.2 IMPEDANCE MULTIPLYING FACTORS

Depending on the type of calculation, the dynamic (rotating equipment) reactances
are multiplied by factors given in Table 7-1 [3, 4]. The static equipment impedances
are assumed to be time invariant, i.e., harmonics and saturation are neglected.
Maintaining a constant emf and artificially increasing the equivalent impedance to
model a machine during short-circuit has the same effect as the decay of the flux
trapped in the rotor circuit. In Table 7-1, manufacturer’s data for the transient and
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Table 7-1 Impedance Multiplier Factors for Rotating Equipment for Short-Circuit

Calculations

Type of rotating machine

Positive sequence reactance for

calculating

Interrupting duty
(per unit)

Closing and
latching duty
(per unit)

All turbogenerators, all hydrogenerators with
amortisseur windings, and all condensers





Though this simplification can be adopted, where the medium- and high-vol-
tage breakers are applied close to their first-cycle ratings, it is permissible to ignore
all low-voltage motors rated <50 hp. Depending on the extent of low-voltage loads,
this may permit retaining the existing medium- or high-voltage breakers in service, if
these are overdutied from the close and latch capability considerations. Close to a
generating station, the close and latch capabilities may be the limiting factor.

7.3 ROTATING MACHINES MODEL

The rotating machine model for the short-circuit calculations is shown in Fig. 7-1.
The machine reactances are modeled with suitable multiplying factors from Table
7-1. The multiplying factors are applicable to resistances as well as reactances, so
that the X=R ratio remains the same. The voltage behind the equivalent transient
reactance at no load will be equal to the terminal voltage, i.e., Vs ¼ Vt, as no prefault
currents need be considered in the calculations. A justification of neglecting the
prefault currents is indirectly discussed in Chap. 6, i.e., the concept of constant
flux linkages. The total current before and after the transition (pre- and post-
fault) should not change. The dc component is equal in magnitude to the ac com-
ponent, but of the opposite polarity. Thus, the ac and dc components of the current
summate to zero to maintain a constant flux linkage, i.e., no load conditions. If
preloading is assumed, this balance is no longer valid.

7.4 TYPES AND SEVERITY OF SYSTEM SHORT-CIRCUITS

A three-phase power system may be subjected to symmetrical and unsymmetrical
faults. Generally, three-phase ungrounded faults impose the most severe duty on a
circuit breaker, since the first phase to interrupt has a normal frequency recovery
voltage of approximately 87% of the system phase-to-phase voltage. A single phase-
to-ground fault current can be higher than the three-phase current. This condition
exists when the zero sequence impedance at the fault point is less than the positive
sequence impedance. Subject to the limiting value of K times the short-circuit current
(where K is the voltage range factor), high-voltage circuit breakers have 15% more
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Figure 7-1 Equivalent machine model for short-circuit calculations.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



capability for the single line-to-ground faults as compared to polyphase faults. This
increased capability may be sufficient for most applications. Depending on the rela-
tive magnitude of sequence impedances, it may be necessary to investigate other
types of faults. For calculations of short-circuit duties the fault resistance is ignored.
This gives conservatism to the calculations.

7.5 CALCULATION METHODS

Two calculation procedures are:

1. E=X or E=Z simplified method.
2. E=X or E=Z method with adjustments for ac and dc decrements.

7.5.1 Simplified Method X=R � 15

The results of the E=X calculation can be directly compared with the circuit breaker
symmetrical interrupting capability, provided that the circuit X=R ratio is 15 or less.
This is based on the rating structure of the breakers and curve in Fig. 5-4. When the
circuit X=R ratio is 15 or less, the asymmetrical short-circuit duty never exceeds the
symmetrical short-circuit duty by a proportion greater than that by which the circuit
breaker asymmetrical rating exceeds the symmetrical capability. It may only be
slightly higher at four-cycle contact parting time.

7.5.2 Simplified Method X=R >15

A further simplification of the calculations is possible when the X=R ratio exceeds
15. For X=R ratios higher than 15, the dc component of the short-circuit current may
increase the short-circuit duty beyond the compensation provided in the rating
structure of the breakers. A circuit breaker can be immediately applied without
calculation of system resistance, X=R ratio, or remote/local considerations, if the
E=X calculation does not exceed 80% of the breaker symmetrical interrupting
capability.

7.5.3 AC and DC Decrement Adjustments

Where a closer calculation is required ac and dc decrement adjustments should be
considered. This method is also recommended when a single line-to-ground fault
supplied predominantly by generators, at generator voltage, exceeds 70% of the
circuit breaker interrupting capability for single line-to-ground faults. For calcula-
tions using this method, the fault point X=R ratio is necessary. Two separate net-
works are constructed; (1) a resistance network, with complete disregard of the
reactance, and (2) a reactance network with complete disregard of the resistance.
The fault point X=R ratio is calculated by reducing these networks to an equivalent
resistance and an equivalent reactance at the fault point. This gives more accurate
results than any other reasonably simple procedure, including the phasor representa-
tion at the system frequency.

The resistance values for various system components are required and for
accuracy of calculations these should be obtained from the manufacturer’s data.
In the absence of these data, Table 7-2 and Figs 7-2–7-4 provide typical resistance
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data. The variations in X=R ratio between an upper and lower bound are shown in
the ANSI/IEEE standard [3].

Once the E=X calculation is made and the X=R ratio is known, the interrupting
duty on the high-voltage circuit breakers can be calculated by multiplying the cal-
culated short-circuit currents with an appropriate multiplying factor. This multiply-
ing factor is based on:

1. Contact parting time of the circuit breaker.
2. Calculated X/R ratio.
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Table 7-2 Resistance of System Components for Short-Circuit Calculations

System component Approximate resistance

Turbine generators and condensers Effective resistance
Salient pole generators and motors Effective resistance
Induction motors 1.2 times the dc armature resistance

Power transformers AC load loss resistance (not including no-load
losses or auxiliary losses)

Reactors AC resistance
Lines and cables AC resistance

The effective resistance ¼ X2v=ð2�fTa3Þ, where X2v is the rated-voltage negative-sequence reactance and

Ta3 is the rated voltage generator armature time constant in seconds.

Source: Ref. 3. Copyright 1999 IEEE. All rights reserved. Reproduced with permission.

Figure 7-2 Typical X=R ratios for induction motors based on induction motor hp rating.
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Figure 7-3 Typical X=R ratios for transformers based on transformer self-cooled MVA
rating.

Figure 7-4 Typical X=R ratios for synchronous generators and synchronous motors based

on their kVA rating.
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3. Effects of ac decay (remote sources) or effects of ac and dc decay (local
sources).

7.5.4 Fault Fed from Remote Sources

If the short-circuit current is fed from generators through (1) two and more trans-
formations, or (2) a per unit reactance external to the generator that is equal to or
exceed 1.5 times the generator per unit subtransient reactance on a common MVA
base, i.e., it supplies less than 40% of its terminal short-circuit current, it is consid-
ered a remote source. In this case the effect of ac decay need not be considered and
the curves of multiplying factors include only dc decay. These curves are shown in
Fig. 7-5. The decrement factor for the standard contact parting time of the breakers
is shown within a rectangle, which includes a half-cycle tripping delay. Factors for
higher contact parting time, applicable when the tripping delay is increased above a
half-cycle, are also shown. Interpolation between the curves is possible. If the trip-
ping delay is increased, the short-circuit duty is reduced. The multiplying factor for
the remote curves is calculable, and is given by

Remote MF ¼ ð1=SÞ½1þ 2e�4�C=ðX=RÞ�1=2 ð7:1Þ
where C is the contact parting time in cycles at 60 Hz and S is given in Fig. 5-4. As an
example, the remote multiplying factor for five cycle breaker, which has a contact
parting time of three cycles, and for a fault point X=R of 40, from Eq. (7.1), is 1.21,
which can also be read from the curves in Fig. 7-5.
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Figure 7-5 Three-phase and line-to-ground faults, E=X multiplying factors, dc decrement
only (remote sources). (From Ref. 3. Copyright 1999 IEEE. All rights reserved. Reproduced

with permission.)
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7.5.5 Fault Fed from Local Sources

When the short-circuit current is predominantly fed through no more than one
transformation or a per unit reactance external to the generator, which is less than
1.5 times the generator per unit reactance on the same MVA base, i.e., it supplies
more than 40% of its maximum terminal fault current, it is termed a local source.
The effect of ac and dc decrements should be considered. The multiplying factors are
applied from separate curves, reproduced in Figs 7-6 and 7-7.

The asymmetrical multiplying factors for the remote curves are not a known
equation. A number of sources may contribute to a fault through varying impe-
dances. Each of these contributions has a different ac and dc decay rate. The impe-
dance through which a fault is fed determines whether it is considered a local or
remote source. The ac decay in electrically remote sources is slower, as compared to
the near sources. The time constant associated with the ac decay is a function of
rotor resistance and added external reactance prolongs it (Chap. 6). An explanation
and derivation of the multiplying factors for ac and dc decrements, provided in Ref.
3, is as follows.

Figure 7-8 shows the relationship of fault current(Iasym/Isym)nacd (the subscript
‘‘nacd’’ means that there is no ac decrement), as a function of X=R ratio for various
contact parting times. The curves of this figure are modified so that the decrement of
the symmetrical component of the fault current is taken into consideration. Figure
7-9(a) shows the general relationship of X=R to the ac decrement as the fault location
moves away from the generating station. This empirical relationship is shown as a
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Figure 7-6 Three-phase faults, E=X multiplying factors, ac and dc decrement (local
sources). (From Ref. 3. Copyright 1999 IEEE. All rights reserved. Reproduced with permis-

sion.)
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band, based on small to large machines of various manufacturers. Figure 7-9(b)
shows the decay of the symmetrical component (ac component) of the fault current
at various times after fault initiation, as a function of the contact parting time and
the type of fault. Figure 7-9(c) establishes reduction factors that can be applied
to (Iasym/Isym)nacd to obtain this effect. The reduction factor is obtained from the
following relationship:

Reduction factor ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2ac þ I2dc

q
=ðE=XÞ

½Iasym=Isym�nacd
ð7:2Þ

As an example, consider an X=R ratio of 80 and contact parting time of three
cycles; the factor ðIasym=IsymÞnacd, as read from Fig. 7-8, is 1.5. Enter curve in Fig.
7-9(a) at X=R of 80, follow down to contact parting time curve in Fig. 7-9(b), and go
across to Fig. 7-9(c), curve labeled ðIasym=IsymÞnacd ¼ 1:5. A reduction factor of 0.885
is obtained. The modifier ðIasym=IsymÞnacd ratio for an X=R of 80 is calculated as
0:885� 1:5 ¼ 1:33 and this establishes one point on a three-phase modified decre-
ment curve, shown in Fig. 7-10. This curve is constructed by following the procedure
outlined above. Finally, E=X multipliers for the breaker application are obtained
through the use of a modified X=R decrement curve and the breaker capability curve
of Fig. 5-4. Continuing with the above calculation, the breaker asymmetric capabil-
ity factor for a three-cycle parting time is 1.1. The E=X multiplier required to ensure
sufficient breaker capability is, therefore, 1:33=1:1 ¼ 1:21. This establishes one point
in Fig. 7-6.

228 Chapter 7

Figure 7-7 Line-to-ground faults, E=X multiplying factors, ac and dc decrement (local

sources). (From Ref. 3. Copyright 1999 IEEE. All rights reserved. Reproduced with permis-
sion.)
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In a digital computer based calculation, the matrix equations can be used to
calculate voltages at buses other than the faulted bus, and current contributions from
individual sources can be calculated (Chap. 3). These currents can then be labeled as
remote or local.

In certain breaker applications, a breaker contact parting time in excess of the
contact parting time, with a half-cycle tripping delay assumed for the rating struc-
ture, may be used. If a breaker with a minimum contact parting time of two cycles is
relayed such that it actually parts contacts after four cycles after fault initiation, the
E=X multiplier for breaker selection can be reduced to account for the fault current
decay during the two-cycle period. This will reduce the interrupting duty, though it
may have other adverse effects on the power system. The fault damage will increase,
the operating time of backup protective devices will increase, and possible instability
in interconnected systems may occur.
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Figure 7-8 Ratio ðIasym=IsymÞnacd versus X=R ratio for breaker contact parting times. (From
Ref. 3. Copyright 1999 IEEE. All rights reserved. Reproduced with permission.)
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7.5.6 Weighted Multiplying Factors

For a system with several short-circuit sources, which may include generators that
may be classified local or remote, depending on the interconnecting impedances,
neither the remote nor the local multiplying factors can be exclusively applied. It
is logical to make use of both local and remote multiplying factors in a weighting
process. This weighting consists of applying a remote multiplying factor to that part
of the E=X symmetrical short-circuit current that is contributed by remote sources.
Similarly, the local multiplying factor is applied to the local component of the fault
current contribution. The fraction of interrupting current that is contributed by
remote sources is identified as the NACD ratio:

NACD ratio ¼
P

NACD source currents

E=X for the interrupting network
ð7:3Þ

This computation requires additional calculations of remote and total current con-
tributed at the fault point from various sources and is facilitated by digital compu-
ters. Figure 7-11 shows interpolated multiplying factors for various NACD ratios [6].

For the short-circuit current contribution from motors, irrespective of their
type and rating and location in the system, the ac decay is built into the premultiplying
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Figure 7-9 (a) Ac decrement for faults away from the sources; (b) adjustment factors for ac
decrement from X=R and fault location for breaker contact parting times (solid lines: three-

phase faults; dotted lines: line-to-ground faults); (c) adjustment factors for ac decrement.
(From Ref. 3. Copyright 1999 IEEE. All rights reserved. Reproduced with permission.)
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impedance factors in Table 7-1. Thus, it is assumed that the motors, howsoever
remote in the system, will continue contributing to the fault. In an actual system,
the postfault recovering voltage may return the motor to normal motoring function.
The magnetic contactors controlling the motors may drop in the first cycle of the
voltage dip on 30–70% of their rated voltage, disconnecting the motors from service.

7.6 NETWORK REDUCTION

Two methods of network reduction are:

1. Short-circuit current can be determined by complex impedance network
reduction, this gives the E=Z complex method.

2. Short-circuit current can be determined from R and X calculations from
separate networks and treating them as a complex impedance at the fault
point. This gives the E=Z method.

In either case, the X=R ratio is calculated from separate resistance and reactance
networks. The X=R ratio thus calculated is used to ascertain multiplying factors and
also for calculation of asymmetry factors for the first-cycle calculation. The X=R
ratio for single line-to-ground faults is ðX1 þ X2 þ X0Þ=ðR1 þ R2 þ R0Þ.
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Figure 7-10 Relationship of Iasym=Isym to X=R for several breaker contact parting times, ac

decrement included. (From Ref. 3. Copyright 1999 IEEE. All rights reserved. Reproduced
with permission.)
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The E=Z calculation from separate networks is conservative, and results of
sufficient accuracy are obtained. Branch current flows and angles may have greater
variation as compared to the complex network solution. Contributions from the
adjacent buses may not correlate well. However, this procedure results in much
simpler computing algorithms.

There could be a difference of 5–6% in the calculated results of short-circuit
currents between the complex impedance reduction method and the calculations
from the separate R and X networks. The separate R and jX calculations give higher
values, as compared to the Rþ jX complex calculation.

7.6.1 E=X or E=Z Calculation

The E=X calculation will give conservative results, and as the X=R at the fault point
is high, there may not be much difference between E=X and E=Z calculations. This
may not be always true. For low-voltage systems it is appropriate to perform E=Z
calculations, as the X=R ratios are low and the difference in the results between E=Z
and E=X calculations can be significant. Generally, E=Z calculations using the
complex method are the standard in industry.
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Figure 7-11 Multiplying factors for E=X ampères, three-phase faults, for various NACD
ratios and breaker interrupting times. (From Ref. 6.)
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7.7 BREAKER DUTY CALCULATIONS

Once the results of E=X or E=Z calculation for the interrupting network are avail-
able and the weighted multiplying factor is ascertained, the adequacy of the circuit
breaker for interrupting duty application is given by

MF � E=XðE=ZÞðinterrupting networkÞ
< Breaker interrupting rating kA sym.

ð7:4Þ

For calculations of close and latch capability or the first-cycle calculations, no con-
siderations of local and remote are required. High-voltage breakers are rated at 1.6K
times the rated short-circuit current in rms asym. or 2.7K times the rated short-
circuit current in peak. The peak multiplying factor based on X=R is given by

ffiffiffi
2

p
ð1:0þ sin�e�ð�þ1:5708ÞðR=XÞÞ ð7:5Þ

where � is arc tan (X=R) at the fault point.
For the first-cycle calculation, the results of E=X or E=Z calculation for a first-

cycle network are multiplied by the calculated crest multiplying factor, and the
results are compared with the breaker close and latch capability. The adequacy of
the breaker for first-cycle or close and latch capability is given by

Crest MF� E=XðE=ZÞ first cycle network

< Breaker close latch capability kA crest asym.
ð7:6Þ

Ref. [3] cautions that E/X method of calculations with ac and dc adjustments
described in section 7.5.3 can be applied provided X/R ratio does not exceed 45 at
60Hz (dc time constant not greater than 120ms). For higher X/R ratios it recom-
mends consulting the manufacturer. The interruption process can be affected and the
interruption window, which is the time difference between the minimum and max-
imum arcing times of SF6 puffer breakers may exceed due to delayed current zero.
This discussion is continued in section 7.6 below. We will examine in the calculations
to follow that the current zeros may be altogether missing for a number of cycles.
Though the examples to follow in section 7.10 use this calculation method, but this
qualification should be remembered.

7.8 HIGH X=R RATIOS (DC TIME CONSTANT GREATER THAN
45ms)

For a generator circuit breaker, the highest value of asymmetry occurs, when prior to
fault the generator is operating underexcited with a leading power factor. The dc
component may be higher than the symmetrical component of the short-circuit
current and may lead to delayed current zeros. An analysis of a large number of
generators resulted in a maximum asymmetry of 130% of the actual generator
current [7]. The symmetrical component of the short-circuit current is 74% of
generator current. Consequently, the ratio of the asymmetrical to symmetrical
short-circuit current rating is 1.55.
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In Sec. 5.2, the factor S was defined as the ratio Iasym=Isym. This can be written
as

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Idc
Isym

� �2

þ1

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�2 þ 1

p
ð7:7Þ

where � is a factor of asymmetry given by

� ¼ Idcffiffiffi
2

p
Isym

ð7:8Þ

Thus, for � ¼ 1:3, Iasym=Isym ¼ 2:09. For Isym ¼ 0:74 Igen, ratio Iasym=Igen can be
written as

Iasym=Igen ¼ ðIasym=IsymÞðIsym=IgenÞ ¼ 1:55 ð7:9Þ
According to the IEEE standard [7] the generator circuit breakers have:

S ¼ 1:6; 1:54; 1:49; 1:39; 1:32; or 1.25 for primary arcing contact parting

times of 1, 1.5, 2, 3, 4, and 5 cycles, respectively, for an X=R of 50

ð7:10Þ
For higher X=R ratios, the asymmetry can be calculated by considering the dc
component at the contact parting time, from Eq. (7.7). Any combination of sym-
metrical and dc components is possible provided that:

. The symmetrical current does not exceed the rated short-circuit current.

. The degree of asymmetry does not exceed 100%.

. The total short-circuit current does not exceed the required asymmetrical
interrupting capability.

However, a higher than 100% asymmetry at contact parting time can be obtained in
the real world situation. Depending on generator subtransient and transient short-
circuit time constants in the direct and quadrature axes and armature time constant
Ta, the ac component may decay faster than the dc component, leading to delayed
current zeros.

Additional resistance in series with the armature resistance forces the dc com-
ponent to decay faster. The time constant with added resistance is

Ta ¼ X 00
d =½2� f ðrþ Re� ð7:11Þ

where Re is the external resistance, see Eq. (6.20). If there is an arc at the fault point,
the arc resistance further reduces the time constant of the dc component. Figure 7-12
shows that at the contact parting time the dc component changes suddenly due to the
influence of the arc voltage of the generator circuit breaker and a current zero is
obtained within one cycle.

As we have seen generator characteristics, X/R ratio, time constants and the
subtransient component of the current influence the degree of asymmetry, (Fig. 6-4).
Also see Ref. [8]. It is also dependent upon initial loading conditions. The ac com-
ponent of the short-circuit current is greater in case of overexcited generator as
compared to under-excited generator, but dc component is almost identical [9].
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The interruption of ac current without a current zero is equivalent to interrup-
tion of dc current and HV breakers have very limited capabilities to interrupt dc
currents. Delaying the opening of contacts may ultimately bring a current zero, but
note that both ac and dc components are decaying and a number of cycles may elapse
before current zero is obtained. See Sec. 7.5.5 for limitations of this method.
Practically, delaying the opening of contacts is not implemented.

The generator breakers are designed and tested to interrupt currents of high
asymmetry. The arc interruption medium and arc control devies, i.e., arc rotation,
have an effect on the interruption process and introducing an arc resistance to force
current zero (Fig. 7-12). Large generators and transformers are often protected as a
unit and generator circuit breaker eliminated. When required, these should be care-
fully selected and applied. The actual asymmetry can be analytically calculated,
Example 7.1, and varies with the generator characteristics.

7.9 CALCULATION PROCEDURE

The calculation procedure is described for hand calculations, which is instructive.
Not much data preparation is required for present-day computer-based calculations.
Most programs will accept raw impedance data, through a graphic user interface; the
calculation algorithms tag it with respect to the short-circuit source type and apply
appropriate impedance multiplying factors, depending on the calculation type.
Matrix equations are solved and results presented in a user-friendly format. These
include fault-point complex impedance, X=R ratio, and magnitude and phase angles
of all the contributions to a bus from the adjacent buses. Remote and local compo-
nents of the currents, fault voltages, NACD ratio, and interrupting duty and asym-
metrical multiplying factors are tabulated in the computer output data for each
faulted bus. Based on the input data of the switching devices, all devices, which
are overdutied from short-circuit considerations, can be flagged and the percentage
overduty factors plotted.

7.9.1 ANSI Empirical Calculation Procedure

This can be summarized in the following steps:

1. A single-line diagram of the system to be studied is required as a first step.
It identifies impedances of all system components as pertinent to the
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Figure 7-12 Fault of high asymmetry: effect of arc resistance to force a current zero at
contact separation.
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short-circuit calculations. For hand calculation, a separate impedance
diagram may be constructed, which follows the pattern of a single-line
diagram with impedances and their X=R ratios calculated on a common
MVA base.

2. Appropriate impedance multiplying factors are applied from Table 7-1,
depending on the type of calculation. For high-voltage breakers at least
two networks are required to be constructed, one for the first-cycle cal-
culations and the other for the interrupting duty calculations.

3. A fault-point impedance positive sequence network (for three-phase
faults) is then constructed, depending on the location of the fault in the
system. Both resistances and reactances can be shown in this network, or
two separate networks, one for resistance and the other for reactance, can
be constructed.

4. For E=Z complex calculation, the fault-point positive sequence network
is reduced to a single impedance using complex phasors. Alternatively,
the resistance and reactance values obtained by reducing separate resis-
tance and reactance networks to a single-point network to calculate the
fault-point X=R ratio can also be used for E=Z calculation. This consid-
erably simplifies hand calculations, compared to complex impedance
reduction.

5. If there are many sources in the network, NACD is required to be calcu-
lated and that sets a limit to the complexity of networks which can be
solved by hand calculations. The currents from NACD sources have to be
traced throughout the system to the faulty node to apply proper weight-
ing factors, and this may not be easy in interconnected networks. The
calculation of the first-cycle duty does not require considerations of
remote or local.

6. The adjusted currents thus calculated can be used to compare with the
short-circuit ratings of the existing equipment or selection of new equip-
ment.

7.9.2 Analytical Calculation Procedure

In an analytical calculation, the currents from the various sources can be vectorially
summed at the fault point. No preimpedance multiplying factors and postmultiply-
ing duty factors are required. The dc component of the short-circuit current is
required to be calculated. The time constants associated with ac and dc decay are
required to calculate the currents at the contact parting time of the breaker. This
may not be always easy. Once each of the components is calculated, the theorem of
superimposition applies and the total currents can be calculated for circuit-breaker
duties.

7.10 EXAMPLES OF CALCULATIONS

In all examples we will consider close and latch capability=2.7K times the rated
short-circuit current. For newly rated breakers with a factor of 2.6, K=1, the duties
can be easily appropriated.
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Example 7.1

This example explores the problems of application of a generator circuit breaker for
high X=R ratio fault, when the natural current zero is not obtained because of high
asymmetry. The calculation is carried out using empirical and analytical methods.
Establishing a correlation between these two methods of calculations is attempted.
Figure 7-13 shows a generating station with auxiliary distribution system. A 112.1-
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Figure 7-13 A generating station single-line diagram for short-circuit calculations (Example
7.1).
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MVA generator is connected through a step-up transformer to supply power to a
138-kV system. The generator data are the same as presented in Table 6-1. Auxiliary
transformers of 7.5 MVA, 13.8–4.16 kV, and 1.5 MVA, 4.16–0.48 kV supply med-
ium- and low-voltage motor loads. The generator neutral is high-resistance
grounded, through a distribution transformer, the 4.16-kV system is low-resistance
grounded, and the 480-V system is high-resistance grounded. Thus, breaker duties
are based on three-phase fault currents. It is required to calculate the following using
empirical and analytical methods:

1. First-cycle and interrupting duties for faults at F1 (138 kV), F2 (13.8 kV),
and F3 (4.16 kV).

2. Short-circuit duties on 13.8-kV generator circuit breakers 52G and feeder
circuit breaker 52F.

Based on these calculations a circuit breaker of adequate short-circuit ratings is
required to be selected for application at 52G and 52F.

Three-Phase Fault at F1 (138 kV): Empirical Calculations

The fault at F1 is fed by three sources: utility source, generator, and the motor loads.
Table 7-3 gives the impedance data for all the system components broken down in
per unit R and X on a common 100-MVA base. The calculation is carried out on per
unit basis and the units are not stated at each step. The effective generator resistance
is calculated from the following expression in Table 7-2:
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Table 7-3 Impedance Data (Example 7.1)

Description of equipment

Per unit resistance
on a 100-MVA

base

Per unit reactance
on a 100-MVA

base

Utility’s 138-kV source, three-phase fault level ¼ 4556

MVA, X=R ratio ¼ 13:4
0.00163 0.02195

112.1-MVA generator, saturated subtransient
¼ 16:4% data in Table 6.1

0.001133 0.14630

Transformer T1, 60/100 MVA, Z ¼ 7:74%, X=R ¼ 32 0.00404 0.12894
Transformer T2, 7.5 MVA, Z ¼ 6:75%, X=R ¼ 14:1 0.06349 0.89776
Transformer T3, 1.5 MVA, Z ¼ 5:75, X=R ¼ 5:9% 0.63909 3.77968
13.8-kV cable C1, 2-1/C per phase, 1000 KCMIL, in

steel conduit, 80ft

0.00038 0.00101

4.16-kV cable C2, 1-1/C per phase, 500 KCMIL, in
steel conduit, 400ft

0.06800 0.10393

0.48-kV cables C3 and C4, 3-1/C per phase, 750
KCMIL, in steel conduit, 150ft

0.46132 0.85993

M1, 2425-hp, 2-pole induction motor 0.23485 7.6517

M2, 300-hp, 2-pole induction motors, 3 each 1.2997 19.532
M3, 500-hp, 2-pole induction motors, 2 each 0.90995 17.578
M4 and M4 0, 150-hp, 4-pole induction motor 11.714 117.19

M5 and M5 0, 75-hp, 4-pole, induction motor, 3 each 10.362 74.222
M6 and M6 0, 200-hp induction motors, lumped,

<50hp
20.355 83.458

B1, 5-kA bus duct, phase-segrated, 40ft 0.00005 0.00004

B2, 5-kA bus duct, phase-segrated, 80ft 0.00011 0.00008
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Effective resistance ¼ X2v

2�fTa3

ð7:12Þ

Using the generator data from Table 6-1, X=R ¼ 130. Correct input of X=R ratios
for generators and large reactors is important, as it may have a pronounced effect on
ac and dc decay.

Appropriate impedance multiplying factors from Table 7-1 are used before
constructing the positive sequence fault point network. The impedance multiplying
factor for calculation of first cycle or interrupting duties is one for all turbogenera-
tors. The motor impedances after appropriate multiplying factors for first cycle and
interrupting duty calculation are shown in Table 7-4. A positive sequence impedance
network to the fault point under consideration may now be constructed, using
modified impedances. Low-voltage motors of <50 hp are ignored for interrupting
duty calculations. Figure 7-14 shows the interrupting duty network for a fault at F1.

The result of reduction of impedance of the network shown in Fig. 7-14 with
complex phasors gives an interrupting duty impedance of Z ¼ 0:001426þ j0:020318
per unit.

The X=R ratio is calculated by separate resistance and reactance networks, i.e.,
the resistance network is constructed by dropping out the reactances in Fig. 7-14
and the reactance network is constructed by dropping out the resistances in Fig.
7-14. This gives an X=R ratio of 16.28. The interrupting duty fault current is, there-
fore, E=Z ¼ 20:54 kA symmetrical at 138 kV. To calculate the interrupting duty,
NACD is required. This being a radial system, it is easy to calculate the local
(generator) contribution through the transformer impedance, which is equal to
1.51 kA. The utility source is considered remote and it contributes 19.01 kA;
NACD ¼ 0.925. A 138-kV breaker will be a three-cycle breaker, with a contact
parting time of two cycles. The multiplying factor from Fig. 7-11 is, therefore,
equal to 1.

The first-cycle network will be similar to that shown in Fig. 7-14, except that
the motor impedances will change. This gives a complex impedance of
Z ¼ 0:001426þ j0:020309. The X=R ratio is 16.27 and the first-cycle symmetrical
current is 20.55 kA, very close to the interrupting duty current. The peak asymme-
trical current is calculated from Eq. (7.5) and is equal to 51.66 kA.
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Table 7-4 Example 7.1: Motor Impedances After Multiplying Factors in PU at 100-

MVA Base

Motor ID Quantity
Interrupting
duty MF

First-cycle
MF

Interrupting duty Z

per unit, 100-MVA
base

First-cycle Z,

per unit 100-MVA
base

M1
M2
M3
M4, M4 0

M5, M5 0

M6, M6 0

1
3
2
1

3
Group
<50 hp

1.5
1.5
3.0
3.0

3.0
1

1.0
1.0
1.2
1.2

1.2
1.67

0:352þ j11:477
1:949þ j29:298
2:7298þ j52:734

35:142þ j140:628
31:086þ j89:066
1

0:2348þ j7:6517
1:2997þ j19:532
1:0919þ j21:094
14:057þ j140:628
12:2134þ j89:066
33:99þ j139:380
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The effect of motor loads in this case is small. If the motor loads are dropped
and calculations repeated, the interrupting duty current ¼ first-cycle current ¼
20.525 kA symmetrical., i.e., a difference of only 0.13%. This is because the low-
voltage motors contribute through impedances of transformers T1, T2, and T3 in
series, and medium-voltage motors contribute through two-stage transformations.
The current contributed by small induction motors and small synchronous motors in
utility systems can, usually, be ignored except station service supply systems or at
substations supplying industrial distribution systems or locations close to large
motors, or both. Motor contributions increase half-cycle current more than the
symmetrical interrupting current at the contact parting time.

Short-Circuit Currents at F2 and F3: Empirical Calculations

Short-circuit currents at F2 and F3 are similarly calculated. In each case a new
positive sequence fault-point network, similar to that of Fig. 7-14, is required and
is reduced to a single impedance. The interrupting duty calculations for a fault at F2
are:
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Figure 7-14 Positive sequence impedance diagram for a fault at F1 (Example 7.1).
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Complex Z ¼ 0:001708þ j0:07359, X=R ¼ 75:26, E=Z ¼ 56:836 kA < 88:678
Utility’s remote contribution (through transformer T1 and bus duct B2

impedance) ¼ 27.69 kA
Generator local contribution through bus duct B1 ¼ 28.59 kA

Therefore, NACD ¼ 27:69=ð27:69þ 28:59Þ ¼ 0:487; the weighted multiplying factor
from Fig. 7-11 ¼ 1.272. The results of the first-cycle and interrupting duty calcula-
tions are shown in Tables 7-5 and 7-6.

Short-Circuit Duties of Generator Breaker: Empirical Calculations

The short-circuit duties calculated at F2 and F3 are for a bus fault. To calculate the
duties on the generator breaker, the fault current flow in either direction from the
utility and generator sides must be considered. For a fault at F2 (Fig. 7-13), breaker
52G experiences only the fault current contributed by the generator and does not
experience the fault current contributed by the utility’s source or auxiliary distribu-
tion. For a fault at F4, breaker 52G experiences the fault current contributions from
the utility’s source and auxiliary distribution, but does not experience the generator’s
contribution to the fault. The maximum duty is imposed by the higher of the cur-
rents in these two directions, which should consider not only the calculated magni-
tude, but also the duty multiplying factors as these can be very different. Similarly,
the maximum fault duty on feeder breaker 52F occurs for a fault at its load term-
inals, at F5, and the breaker does not experience the fault current contributed by the
rotating loads (medium- and low-voltage motors) connected to it. If bus bracing is
required at 13.8 kV for a fault at F2, all three contributions must be considered. In
general, when duties are to be calculated on a tie breaker having double-ended
contributions, the fault current through the breaker, which gives the maximum
short-circuit duty, needs to be considered.

Fault at F2. The fault point impedance for a fault at F2 for generator contribution
alone is 0:001183þ j0:14634 per unit. Therefore, the fault current contributed by the
generator is 28.588 kA sym. at < �89:5438 for interrupting or first-cycle calculations.
The calculated short-circuit current must be multiplied by an appropriate factor to
arrive at the interrupting duty for comparison with a circuit breaker rating. The
generator directly feeds the fault and, therefore, it is a local source. The curves for ac
and dc decrements in Fig. 7-6 are used. Considering a five-cycle breaker, the contact
parting time is three cycles, and fault point X=R ¼ 123, which gives a multiplying
factor, as read from Fig. 7-6, equal to 1.234. The required circuit breaker interrupt-
ing duty ¼ 28:588� 1:234 ¼ 35:28 kA symmetrical.

For close and latch or first-cycle capability, the generator contribution remains
unchanged. The first-cycle symmetrical current is 28.588 kA rms. The rms asymme-
trical current based on actual X=R is 48.60 kA. The asymmetrical multiplying factor
is 1.70, which is higher than the standard asymmetrical duty factor of 1.6 in ANSI/
IEEE standard [3]. The calculated and not the standard asymmetrical multiplying
factors are used for evaluation of breaker duties. The crest multiplying factor is given
by Eq. (7.5) and is equal to 2.789. The calculated close and latch duty is 79.73 kA
crest.

Short-Circuit Calculations: ANSI Standards 241

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



2
4
2

C
h
a
p
te
r
7

Table 7-5 Example 7.1: First-Cycle Duty Calculations; Faults at F1, F2, and F3

Fault location
Fault point
complex Z

Fault current (kA
sym. rms) X=R

Asymmetrical

multiplying factor
(rms)

Asymmetrical

multiplying factor
(peak)

Asymmetrical
current (kA rms)

Asymmetrical
current (kA peak)

F1
F2
F3

0:001426þ j0:020309
0:001725þ j0:073150
0:051672þ j0:771249

20.550
57.177
17.955

16.27
74.89
15.94

1.487
1.685
1.532

2.514
2.768
2.575

31.56
96.34
27.52

51.66
158.27
46.23

Table 7-6 Example 7.1: Interrupting Duty Calculations; Faults at F1, F2, and F3

Fault
location

Fault point Z from

complex network
reduction

Fault current
(kA sym.) X=R NACD

Weighted
MF

Interrupting duty
current, 5-cycle

sym. rated
breaker

F1
F2
F3

0:001426þ j0:020318
0:001708þ j0:073590
0:055477þ j0:846903

20.540
56.836
16.352

16.28
75.26
15.91

0.925
0.487
0.786

1.00
1.272
1.00

20.54
72.30
16.35
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Short-Circuit Duties on Generator Breaker: Analytical Calculations

Fault at F2. The analytical calculation is carried out for generator breaker duty for
a fault at F2. No premultiplying impedance factors and postmultiplying duty factors
are applicable. The calculation should account for the short-circuit current decay at
the contact parting time. The symmetrical current at the contact parting time (three
cycles contact parting time ¼ 50.0 ms) can be calculated using Eq. (6.13). When an
external reactance is added to the generator circuit, the subtransient component of
the current is given by

i 00d ¼ e 00

X 00
d þ Xe

ð7:13Þ

where Xe is the external reactance. Similar expressions apply for i 0d and id. The time
constants are also changed, i.e., the short-circuit transient time constant in Eq. (6.24)
becomes:

T 0
d ¼ T 0

do

X 0
d þ Xe

Xd þ Xe

ð7:14Þ

This means that adding an external reactance is equivalent to increasing the arma-
ture leakage reactance. The calculations use the generator data in Table 6-1. The
short-circuit subtransient time constant is 0.015 sec. From Table 7-3 the reactance of
the bus duct B1 is 0.00004 per unit. Its effect on the subtransient time constant from
is

T 00
d ¼ T 00

do

X 00
d þ Xe

X 0
d þ Xe

¼ ð0:22Þ 0:193þ 0:00004

0:278þ 0:00004

� �
¼ 0:015

As the bus B1 reactance is small, there is not much change in the subtransient time
constant. However, this illustrates the procedure. The transient time constant is also
practically unchanged at 0.597 sec.

The generator voltage behind subtransient or transient reactances is equal to its
rated terminal voltage, as the generator is considered at no load and constant excita-
tion. The procedure of calculation is similar to that illustrated in Example 6.1 for
calculation of a fault decrement curve. The subtransient current is

i 00d ¼ E 00

X 00
d þ Xe

¼ 1

0:14630þ 0:00004
pu ¼ 28:59 kA

Similarly, the transient and steady-state components of the currents are 20.17 and
2.15 kA, respectively. The following equation can, therefore, be written for symme-
trical current in kA:

iac ¼ 6:44e�t=0:015 þ 18:02e�t=0:597 þ 2:15

At contact parting time this gives the symmetrical current component as 18.95 kA.
Comparing the results of the two calculations, a wide divergence is observed,

18.95 kA symmetrical. by analytical calculation versus 28.588 kA (without multiply-
ing factors to account for asymmetry) by ANSI methods. Based on the analytical
calculations, an underrated breaker could be hastily selected if the asymmetrical
rating of the breaker is not calculated.
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The asymmetrical current at contact parting can also be calculated from Eq.
(6.113). As the generator subtransient reactances in the direct and quadrature axes
are approximately equal, the second frequency term in this equation can be neglected
and the dc component at contact parting time needs to be calculated. The decaying
dc component is given by

idc ¼
ffiffiffi
2

p
i 00d e

�t=Ta ¼ 40:43e�t=Ta

The effect of external resistance Ta should be considered on according to Eq. (7.11).
Table 6-1 shows an armature time constant of 0.33 sec; considering the bus duct B1
resistance of 0.00005 per unit, the time constant is reduced to approximately 0.32 sec.
At contact parting time, the dc component has decayed to 34.58 kA. The asymmetry
factor � at contact parting time is calculated as follows:

Asymmetrical ac current at contact parting time ¼ ffiffiffi
2

p ð18:95Þ ¼ 26:80 kA
Dc current at contact parting ¼ 34:58 kA

Factor � ¼ 34:58=26:80 ¼ 1:29, i.e., the asymmetry at contact parting time is
approximately 129% and the current zero is not obtained. The total rms asymme-
trical breaking current at contact parting time is, therefore:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

18:952 þ ð34:58Þ2
q

¼ 39:43 kA

The ratio S for asymmetrical-to-symmetrical duty is 39:43=18:95 ¼ 2:08. This is
much higher than the standard S ¼ 1:39 for a generator breaker of three-cycle con-
tact parting time for X=R ¼ 50, Eq. (7.10). To meet asymmetrical duty requirement
the generator breaker should have a symmetrical interrupting rating of
ð18:95Þð2:08Þ=1:39 ¼ 28:36 kA rms. The empirical calculations are based on
S ¼ 1:1 (Fig. 5-4). Therefore, a general-purpose breaker must have a symmetrical
interrupting rating of 39:43=1:1 ¼ 35:84 kA. Now, we are close to the earlier calcu-
lated result of 35.28 kA.

A fault resistance may introduce enough arc resistance to force the current to
zero after the contact parting time (Fig. 7-12). Simplified empirical/analytical cal-
culations in such cases have limitations, and a dynamic simulation is recommended.

The first-cycle current can also be analytically calculated. The symmetrical and
dc components are calculated at half-cycle. The ac component is then 33.41 kA crest
and the dc component is 39.39 kA. The total asymmetrical current at half-cycle is,
therefore, 72.80 kA crest. We calculated 79.73 kA earlier by empirical method and,
therefore, there are differences.
Fault at F4. Calculations for a fault at F4 ignore the generator contribution and
consider the contributions from the utility and auxiliary distribution; then, the
higher of the fault duties given by the currents at F2 and F4 is considered for the
generator breaker rating. Simplified calculations followed by analytical calculations
are performed.

The fault current contributed by the utility’s source through a 60-MVA trans-
former and bus duct B2 ¼ 27.693 kA symmetrical. rms at an < �87:8098. This is the
same for first-cycle and interrupting duty calculations, as the utility’s source impe-
dance model does not change with the type of calculation. In other words, the utility’s
connection is considered a remote source. This may not be true in every case. When
large generating stations are located close to the power system being investigated, the

244 Chapter 7

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



utility source cannot always be considered a remote source. The interrupting duty
fault current contributed by auxiliary distribution is ¼ 0:563 kA symmetrical at
< �86:8308. The total symmetrical fault current ¼ 28.257 kA at < �87:798, and
the X=R from separate networks is 26.0.

All the current is contributed by the remote source; therefore, NACD ¼ 1 and
the multiplying factor from the remote curves (Fig 7-5) is 1.102. The required
breaker duty to be compared with the breaker rating is 28:257� 1:102 ¼ 31:31 kA
for a five-cycle breaker rated on a symmetrical current basis.

For first-cycle calculation, the utility’s source contribution remains unchanged,
and the auxiliary motor load contribution is 0:904 kA at < �86:1828. This gives a
total symmetrical first-cycle current of 28.598 kA at < �87:768; X=R from separate
resistance and reactance networks ¼ 25.82. The first-cycle close and latch duty based
on fault point X=R is 45.91 kA rms asym. or 76.36 kA crest.

Analytical Calculation: Fault at F4 We can now conduct analytical calculation for
the fault at F4. Utility source, transformer T1, and bus duct B2 impedance in series
gives Z ¼ 0:00577þ j0:15097; X=R ¼ 26:16 from the separate X and R networks.
This gives a short-circuit current of 27.692 kA at an angle of < �87:818.

The equivalent impedance of low-voltage motors through cables and a 1.5-
MVA transformer plus medium-voltage motor loads through a 7.5-MVA transfor-
mer, as seen from the fault point F4, is 0:307þ j4:356. No impedance multiplying
factors to adjust motor impedance from Table 7-1 are used in this calculation. This
gives a short-circuit current of 0.958 kA at < �85:9688; X=R ¼ 14:2. The time con-
stant for the auxiliary distribution is, therefore:

1

2�f
ðX=RÞ ¼ 37:66ms

The ac symmetrical component of the auxiliary system decays and at contact parting
time it can be assumed to be 0.7 to 0.8 times the initial short-circuit current.
Therefore, the contribution from the auxiliary system is = 0.766 kA. No decay is
applicable to the utility source connected through the transformer. The total sym-
metrical current is

Isym ¼ 27:692þ 0:766 ¼ 28:458 kA rms

The asymmetrical current is now calculated. The time constant of the utility’s con-
tribution for an X=R of 26.16 is 0.0694 sec. Total dc current at the contact parting
time is the sum of components from the utility’s source and auxiliary distribution.
Thus, the total dc current is given by

Idc ¼
ffiffiffi
2

p
½27:692e�50:0=69:4 þ 0:958e�50:0=37:66�

This gives IDC ¼ 19:14 kA. Asymmetrical current is given by

Iasym ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Isym þ Idc

p
¼ 34:44 kA rms

The asymmetry factor � ¼ 19:14=ð ffiffiffi
2

p
28:458Þ ¼ 47:6%. There is no problem of not

obtaining a current zero. Also, S ¼ 34:44=28:44 ¼ 1:21.
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Selection of Short-Circuit Ratings of Generator Breaker

Now, we have the first-cycle and interrupting duty short-circuit currents available on
either side of the generator breaker. Interrupting and first-cycle duties for the fault at
F4 are lower than the duties calculated for the fault at F2. The breaker 52G selection
should, therefore, be based on fault duties at F2, i.e., 35.28 kA rms interrupting,
79.73 kA crest, close and latch.

Referring to Table 5-2 a general-purpose circuit breaker of rated short-circuit
current ¼ 37 kA sym. can be selected. This circuit breaker has a symmetrical inter-
rupting rating of 40.217 kA rms at 13.8 kV. The asymmetrical duty at voltage of
application � 1:1 ¼ 40:217� 1:1 ¼ 44:2 kA. The ratio of the breaker asymmetrical
rating to the calculated symmetrical short-circuit current at contact parting time is
2.33. The close and latch capability of the breaker is 130 kA crest. The generator
breakers are specified to have a standard short-circuit current rating of 63, 80, 100,
120, and 160 kA etc. A 63-kA generator breaker will be conservatively applied with
respect to calculated symmetrical and asymmetrical ratings. The selection is, there-
fore, theocratically adequate for the calculated duties, though the higher asymmetry
and not obtaining a zero at the contact parting time is not addressed. The higher
asymmetry multiplying factors in the calculation are no guarantee that the breaker
will operate successfully for the intended application. This is an application where a
generator breaker tested to interrupt 130% asymmetrical current is required (Sec.
7.8).

Duties at Feeder Breaker: Fault at F5

Empirical Calculations. The procedure for calculation is identical to that for the
generator breaker. The worst fault condition for the feeder breaker occurs for a fault
at its load terminals, and the breaker does not experience the short-circuit current
contribution of the auxiliary distribution system. There are two components of
current, one from the generator (local source) and the other from the utility (remote
source). The fault point E=Z from interrupting duty calculation from complex net-
work reduction gives: 56.27 kA; X=R ¼ 75:81; Z ¼ 0:001702þ j0:074326;
NACD ¼ 0:492. The weighted multiplying factor from Fig. 7-11 is 1.274, giving
an interrupting rating of 71.69 kA rms. This exceeds maximum 63kA (K=1) inter-
rupting rating of ANSI listed breakers, pointing to the need to elimate this breaker
and redesign protection system or adopting short-circuit current limiting methods.

For the close and latch capability, the symmetrical current is still 56.27 kA.
This is so because generator and utility source currents are identical for the first-cycle
and interrupting duty calculations. First-cycle asymmetrical rms current based on X
=R ratio is 94.85 kA or 155.93 kA crest.

Analytical Calculation. Analytically the results can be arrived at as follows, as the
generator and utility’s source components of the symmetrical current at contact
parting time have already been calculated:

Generator symmetrical current contribution ¼ 18.95 kA
Utility’s symmetrical current contribution ¼ 27.69 kA
Total symmetrical current ¼ 46.64 kA (these should be summed vectorially)
Generator dc component at contact parting time ¼ 34.22 kA
Utility’s dc component at contact parting time = 19.05 kA

246 Chapter 7

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



Total dc component ¼ 53.27 kA
Total asymmetrical current ¼ 70.80 kA
Required symmetrical interrupting duty of a five-cycle breaker ¼ 64.36 kA rms

Here, the asymmetry factor � ¼ 53:27=65:95 ¼ 0:81, and obtaining a current zero at
the contact parting time even with zero fault resistance is not a problem.

The example illustrates that ANSI empirical methods give conservative results.

Example 7.2

Construct bus admittance and impedance matrices of the network for Example 7.1
for interrupting duty calculations. Compare the calculated values of self-impedances
with the values arrived at in Example 7.1.

The system, in terms of admittances can be modeled as shown in Fig. 7-15. The
bus admittance matrix can be written by examination as follows:

Ybus ¼
3:614� j53:051 �0:249þ j7:743 0 0
�0:249þ j7:743 0:367� j15:553 �0:063þ j0:994 0

0 �0:063þ j0:994 0:1144� j1:397 �0:045þ j0:264
0 0 �0:045þ j0:264 0:0486� j0:293

��������

��������
The bus impedance matrix is:

Zbus ¼
0:0014þ j0:0203 0:0006þ j0:0107 0:0005þ j0:0092 0:00045þ j0:0083
0:0006þ j0:0107 0:0017þ j0:0736 0:0014þ j0:0632 0:0010þ j0:0570
0:0005þ j0:0092 0:0014þ j0:06321 0:0551þ j0:9135 0:0460þ j0:8239
0:00045þ j0:0083 0:0010þ j0:0570 0:0460þ j0:8239 0:5892þ j4:0647

��������

��������
The self-impedances Z11, Z22, etc., compare well with the values calculated from
positive sequence impedances of the fault point networks, reduced to a single impe-
dance. The X=R ratio should not be calculated from complex impedances and sepa-
rate R and X matrices are required. Zero values of elements are not acceptable.
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Figure 7-15 Equivalent admittance diagram of system of Fig. 7-13 (Example 7.2).
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Example 7.3

Example 7.3 is for calculations in a multivoltage level distribution system (Fig. 7-16).
Short-circuit duties are required to verify the adequacy of ratings of the switching
devices shown in this single-line diagram. These devices are:

1. 13.8-kV switchgear at buses 1, 2, and 3
2. 4.16-kV switchgear at bus 6

248 Chapter 7

Figure 7-16 Single-line diagram of a multivoltage level distribution system for short-circuit
calculations (Example 7.3).
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3. Primary switches of transformers T3 and T4
4. Primary fused switches of transformers T5 and T6
5. Type R fuses for medium-voltage motor starters, buses 7 and 8
6. Low-voltage power circuit breakers, bus 10
7. ICCB at bus 10
8. Molded case circuit breakers at low-voltage motor control center, bus 14

Also calculate bus bracings, withstand capability of 13.8 kV #4 ACSR overhead line
conductors connected to feeder breaker 2F3 and #4/0 cable connected to feeder
breaker 2F4.

In this example, emphasis is upon evaluation of calculated short-circuit duties
with respect to the equipment ratings. Three-phase fault calculations are required to
be performed.

Calculation of Short-Circuit Duties

The procedure of calculation is the same as that in Example 7.1. The impedance data
reduced to a common 100-MVA base are shown in Table 7-7. The fault point net-
works for various faulted buses can be constructed, one at a time, and reduced to a
single network. As an example, the fault network for the 13.8-kV bus 2 is shown in
Fig. 7-17. Reducing it to a single impedance requires wye–delta impedance transfor-
mation. The simplicity, accuracy, and speed of computer methods of solution can be
realized from this exercise. The reduced complex impedance for interrupting duty
calculations for bus 2 fault is: Z ¼ 0:003553þ j0:155536, and X=R from separate
networks is 47.9; E=Z ¼ 26:892 < �88:78. All the generator contribution of
14.55 kA is a local source as the generator is directly connected to the bus. The
remote (utility) source contributes to the fault at bus 2 through transformers T1
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Figure 7-17 Positive sequence impedance diagram for a fault at bus 2 (Example 7.3).
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Table 7-7 Impedance Data (100 MVA Base) Distribution System, Example 7.3

Equipment Description
Per unit
resistance

Per unit
reactance

U1 Utility source, 138 kV, 4260MVA, X=R ¼ 25 0.00094 0.02347
G1 Synchronous generator, 13.8 kV, 40MVA,

0.85 power factor, saturated subtransient
reactance ¼ 11:5%, saturated
transient ¼ 15%, X=R ¼ 56:7

0.00507 0.28750

R1, R2,

R3

Reactors, 13.8 kV, 2 kA, 0.25 ohms, 866KVA,

X=R ¼ 88:7
0.00148 0.13127

T1, T2 20/33.4 MVA, OA/FA, 138–13.8 kV, delta–
wye transformers, Z ¼ 8:0% on 20 MVA

OA rating, X=R ¼ 21:9, wye winding low
resistance grounded through 400A, 10 s
resistor

0.01827 0.39958

T3, T4 10/14 MVA, OA/FA, 13.8–4.16 kV, delta–wye
transformer, Z ¼ 5:5%, X=R ¼ 15:9, wye-
winding low-resistance grounded through

200A 10 sec resistor

0.03452 0.54892

T5, T6 2/2.58 MVA, OA/FA, 13.8–0.48 kV, delta–wye
transformer, Z ¼ 5:75%, X=R ¼ 6:3, wye-
winding high-resistance grounded

0.44754 2.83995

T7 1/1.29 MVA, AA/FA, 13.8–0.48 kV delta–wye
transformer, Z ¼ 5:75%, X=R ¼ 5:3, wye-
winding high-resistance grounded

1.06494 5.65052

T8 250 KVA, AA, 0.48–0.24 kV delta–wye
transformer, Z ¼ 4%, X=R ¼ 2:7, solidly
grounded

5.49916 15.02529

C1 1-3/C #4/0 15-kV grade shielded, MV-90, IAC
(interlocked armor), XLPE cable laid in
aluminum tray, 200 ft

0.00645 0.00377

C2 1-3/C 500 KCMIL, 15-kV grade shielded, MV-

90, IAC, XLPE cable laid in aluminum tray,
400ft

0.00586 0.00666

C7, C8 2-3/C, 350 KCMIL, 5-kV grade, shielded, MV-

90, XLPE, IAC cable, laid in aluminum tray,
100ft

0.01116 0.00790

C3, C4,

C5, C6

3-3/C, 500 KCMIL, 0.6-kV grade, THNN,

908C cables, laid in tray, 60ft

0.23888 0.23246

M1 1� 12,000-hp, squirrel cage induction motor, 2
pole (10,800 kVA), locked rotor reactance ¼
16:7%, X=R ¼ 46

0.0336 1.54630

M2 1� 10,000-hp synchronous motor, 8-pole, 0.8
power factor (10000 KVA), X ¼ 20%, X=R
¼ 34:4

0.05822 2.0000

MVM1 2� 1500-hp squirrel cage induction, 2-pole,
5� 300-hp induction motors, 4-pole, and
1� 3500-hp, 12 pole, 0.8 power factor

synchronous motor

0.21667
0.77958
0.20324

6:1851 ð2� 1500-hp)
11:719 ð5� 300-hp)
5:7142 ð3500-hp)
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and T2 and synchronizing bus reactors. The utility’s contributions through transfor-
mers T1 and T2 and synchronizing bus reactors are summed up. This gives 9.01 kA.
The remote/total ratio, i.e., NACD ratio is 0.335. The multiplying factor is 1.163 and
the interrupting duty is 31.28 for a five-cycle symmetrical breaker. If the calculation is
based on a separate R–X method, the fault point impedance is: 0:003245þ j0:15521.
This gives E=Z ¼ 26:895 kA. There is not much difference in the calculations by using
the two methods, though a difference up to 5% can occur. The results of calculations
are shown in Tables 7-8–7-12.

Evaluation of Short-Circuit Capabilities

It remains to evaluate the short-circuit ratings with respect to calculated duties.
Tables 7-8 through 7-12 show the equipment ratings as well as the calculated duties.
13.8-kV Switchgear. The 13.8-kV switchgear for buses 1, 2, and 3 consists of metal-
clad indoor circuit breakers having an interrupting rating at the voltage of applica-
tion of 13.8 kV = 30.4 kA rms and the close and latch capability is 58 kA rms asym.
The calculated duties on buses 1, 2, and 3 in Table 7-8 show that the interrupting
duties on bus 2 exceed the breaker ratings by 2.79%, though the close and latch duty
of 46.48 kA rms asym. is much below the breaker ratings. It would be hasty to
suggest that the entire bus 2 switchgear be replaced.

As the duties are calculated for a bus fault, it is necessary to calculate the duties
on individual breakers on this bus, by dropping the loads connected to each of these
breakers. Neglecting the load contribution means that the fault point X=R ratio and
duty multiplying factors will change. The load current component of the feeder
breaker can be vectorially subtracted from the bus fault current. Table 7-13 is
compiled on this basis and shows the interrupting duties on the feeder breakers
connected to bus 2. It is observed that the feeder breaker 2F2 to the transmission
line and the feeder breaker 2F3 to the 2-MVA transformer are overdutied. As the
feeder breaker 2F2 has no rotating loads, its interrupting duty is the same as that for
a bus fault. It may be possible to retrofit these two breakers with breakers of higher
interrupting rating, depending on the manufacturer and age of the equipment.
Increasing bus tie reactor impedance by providing another reactor in series with
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Table 7-7 (Contd.)

Equipment Description
Per unit
resistance

Per unit
reactance

MVM2,
MVM3

1� 1800-hp, 12 pole, 0.8 power factor
synchronous and 3� 1100-hp, 6-pole

induction motors

0.45904
0.21675

11.111 (1800 hp)
5.6229 (3� 1100 hp)

LVM1 Grouped 1350-hp induction motors � 50 hp
and 640-hp induction motors <50 hp

1.4829
5.4362

12.370 (>50hp)
26.093 (<50hp)

LVM2,

LVM3,
LVM4

Grouped 300-hp induction motors � 50 hp and

172 hp motors, <50hp

6.0664

20.227

50.606 (>50hp)

97.093 (<50hp)

L1 5200ft long, GMD ¼ 4ft, ACSR conductor A-

AA class (SWAN), #4 AWG [10]

1.41718 0.41718

2-3/C: Abbreviated for two three-conductor cables per phase. MV-90, XLPE, THNN: Cable insulation

types. See Ref. 11. The impedance of a cable is also a function of its construction and method of

installation.
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Table 7-8 Calculated Duties on 13.8 kV Breakers (Example 7.3)

Bus no. Breaker type

Breaker close

and latch

capability (kA,

asym. rms)

Breaker

interrupting

rating at

voltage of

application

(kA sym. rms)

Calculate first-cycle duties (close and latch capabilities) Calculate interrupting duties

Fault point Z

based on complex

impedance

reduction

Fault point

X=R ratio

Multiplying

factor based

on X=R

Calculated

duty (kA rms

asym.)

Fault point Z

based on complex

impedance

reduction

Fault point

X=R ratio

NACD/

weighted

multiplying

factor

Calculated

duty (kA rms

sym.)

1

2

3

15 kV, indoor

oil-less, 5-cycle

sym.

58 30.43 0:005767þ j0:175930

0:003578þ j0:149318

0:004903þ j0:159347

41.61

47.84

41.05

1.649

1.659

1.648

39.20

46.48

43.25

0:005831þ j0:18426

0:003553þ j0:155536

0:005291þ j0:171520

41.73

47.92

41.16

0.6/1.169

0.335/1.163

0.571/1.162

26.53

31.28

28.33

Table 7-9 Calculated Duties on 4.16-kV Breakers (Example 7.3)

Bus no. Breaker type

Breaker close

and latch

capability (kA,

asym. rms)

Breaker

interrupting

rating at

voltage of

application

(kA sym. rms)

Calculate first-cycle duties (close and latch capabilities) Calculate interrupting duties

Fault point Z based on

complex impedance

reduction

Fault point

X=R ratio

Multiplying

factor based

on X=R

Calculated

duty (kA rms

asym.)

Fault point Z

based on complex

impedance

reduction

Fault point

X=R ratio

NACD/

weighted

multiplying

factor

Calculated

duty (kA rms

sym.)

6 4.16 kV,

indoor, oil-

less, 5 cycle

sym.

58

(=97 kA crest)

30.43 0:029041þ j0:517160 18.41 1.649 41.70 0:032647þ j0:572088 18.03 0.475/1.00 24.22
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the existing reactor could be another solution, especially if a system expansion is
planned. Some remedial measures to the short-circuit problems are:

. Retrofitting overdutied breakers with new breakers

. Replacing with entirely new switchgear of higher ratings

. Adding current-limiting reactors

. Redistribution of loads and reorganization of distribution system

. Short-circuit current limiters [12]

. Duplex reactors (see Appendix C)

. Series connected devices for low-voltage systems. (See Sec. 5.12.3.3)

A detailed discussion of these topics is not covered.

4.16-kV Circuit Breakers and Motor Starters. Table 7-9 shows 4.16-kV metal-clad
circuit breaker ratings and calculated duties, and Table 7-10 shows a similar com-
parison of R-type fuses in medium-voltage motor starters. These devices are applied
much below their short-circuit ratings.

Transformer Primary Switches and Fused Switches. Short-circuit ratings of trans-
former primary switches (without fuses) are specified in terms of asymmetrical kA
rms and 10-cycle fault closing. The former rating indicates the maximum asymme-
trical withstand current capability, and the latter signifies that the switch can be
closed on to a fault for 10 cycles, with maximum fault limited to specified asymme-
trical fault closing rating. The upstream protective devices must isolate the fault
within 10 cycles. The short-circuit ratings on power fuses are discussed in Chap. 5.
First-cycle calculations are required. Table 7-11 shows the comparison and that the
equipment is applied within its short-circuit ratings.

Low-Voltage Circuit Breakers. The switching devices in low-voltage distribution
should be categorized into low-voltage power circuit breakers (LVPCBs), insulated
case circuit breakers (ICCBs), and molded case circuit breakers (MCCBs), as dis-
cussed in Chap. 5. These have different test power factors, depending on their type
and ratings, and interrupting duty multiplying factors are different. First-cycle cal-
culation is required for ascertaining the duties. Table 7-12 shows these calculations.
It is observed that the short-circuit duties on MCCBs at buses 11and 16 exceed the
ratings. A reactor in the incoming service to these buses can be provided.
Alternatively, the underrated MCCBs can be replaced or series rated devices
(Chap. 5) can be considered.
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Table 7-10 Short-Circuit Duties on 4.16-kV MCC (Example 7.3)

Bus no.

Motor starter

fuse type

Fuse

interrupting

rating (kA,

rms sym./

asym.)

Calculated first-cycle duties (sym. and asym.)

Fault point Z based on

complex impedance

reduction

Fault

point

X=R ratio

Multiplying

factor based

on X=R

Calculated

duty (kA rms

sym./asym.)

7, 8 Current

limiting

type R

50/80 0:037043þ j0:522930 15.09 1.523 26.47/40.31
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Table 7-11 Example 7.3: Calculated Duties 13.8-kV Transformer Primary Switches and Fuses

Transformer

Transformer
primary switch/
fused switch

Short-circuit
ratings

Fault-point impedance
(100-MVA base)

Fault point
X=R

Symmetrical
current
(kA rms)

Asymmetrical current
(kA rms)

10 MVA

2 MVA

Switch only

Fused switch,
with current-
limiting type

class E fuse

Switch 61 kA rms
asym. Fault

closing 10
cycles ¼ 61 kA
rms asym.

Fuse:
interrupting
¼ 50 kA rms, sym.

¼ 80 kA rms,
asym.

0:008709þ j0:153013

0:009926þ j0:153013

18.48

16.04

26.926

27.285

41.92

41.84

Table 7-12 Short-Circuit Duties on Low-Voltage Circuit Breakers (Example 7.3)

Breaker
identification

Breaker interrupting
rating (kA sym.)

Fault point
Z per unit

(100-MVA base) Fault point X=R Multiplying factor E=Z
Calculated duty

(kA sym.)

Bus 10, LVPCB
Bus 10, ICCB

Bus 14, MCCB1
Bus 11, MCCB
Bus 15, MCCB

Bus 16, 240V MCCB

50
65

65
35
35

10

0:37625þ j2:491190
0:37625þ j2:491190
0:588317þ j2:697419
0:617505þ j2:723650
2:480748þ j6:217019
6:087477þ j17:72271

6.65
6.65

4.68
4.44
2.51

2.92

1.002
1.063

1
1
1

1

47:73 < �81:368
47:73 < �81:368
43:57 < �77:708
43:07 < �77:238
17:97 < �68:258
12:84 < 71:048

47.82
50.73

43.57

43.07

17.97
12.84
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Bus Bracings. Bus bracings are, generally, specified in symmetrical rms ampères
and are indicative of mechanical strength under short-circuit conditions. The
mechanical stresses are proportional to I2=d, where d is the phase-to-phase spacing.
First-cycle symmetrical current is, therefore, used to compare with the specified bus
bracings. In terms of asymmetrical current, the bus bracings are 1.6 times the sym-
metrical current. Both the symmetrical and asymmetrical calculated values should be
lower than the ratings. It is sometimes possible to raise the short-circuit capability of
the buses in metal-clad switchgear by adding additional bus supports.

Power Cables. Power cables should be designed to withstand short-circuit currents
so that these are not damaged within the total fault clearing time of the protective
devices. During short-circuit, approximately all heat generated is absorbed by the
conductor metal, and the heat transfer to insulation and surrounding medium can be
ignored. An expression relating the size of copper conductor, magnitude of fault
current, and duration of current flow is

I

CM

� �2

tFac ¼ 0:0297 log10
Tf þ 234

T0 þ 234
ð7:15Þ

where I is the magnitude of fault current in ampères, CM is the conductor size in
circular mils, Fac is the skin effect ratio or ac resistance/dc resistance ratio of the
conductor, Tf is the final permissible short-circuit conductor temperature, depending
on the type of insulation, and T0 is the initial temperature prior to current change.
For aluminum conductors, this expression is

I

CM

� �2

tFac ¼ 0:0125 log10
Tf þ 228

T0 þ 228
ð7:16Þ

where Fac is given in Table 7-14 [13]. The short-circuit withstand capability of 4/0
(211600 CM) copper conductor cable of 13.8-kV breaker 2F4 has a short-circuit
withstand capability of 0.238 sec. This is based on an initial conductor temperature
of 908C, a final short-circuit temperature for XLPE (cross-linked polyethylene) insu-
lation of 2508C, and a fault current of 31.18 kA sym. (Fac from Table 7-14 ¼ 1.02).
The breaker interrupting time is five cycles, which means that the protective relays
must operate in less than 9 cycles to clear the fault. Major cable circuits in industrial
distribution systems are sized so that these are not damaged even if the first zone of
protective relays (instantaneous) fail to operate and the fault has to be cleared in the
time-delay zone of the backup device. From these criteria, the cable may be under-
sized.
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Table 7-13 Calculated Duties on Feeder Circuit Breakers on 13.8-kV Bus 2 (Example

7.3)

Breaker
ID Breaker service

Breaker rating

interrupting
(kA, sym. rms)

Breaker calculated interrupting
duty (kA sym. rms)

BG2
2F1
2F2
2F3

2F4

Generator breaker
Synchronous bus
13.8-kV distribution line
2-MVA transformer

10-MVA transformer

30.43 16.94
18.68
31.28 (overexposure ¼ 2:79%Þ
31.18 (overexposure ¼ 2:46%Þ
30.03
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Overhead Line Conductors. Calculations of short-circuit withstand ratings for over-
head line conductors must also receive similar considerations as cables, i.e., these
should be sized not only for load current and voltage drop consideration, but also
from short-circuit considerations. For ACSR (aluminium conductor steel reinforced)
conductors, a temperature of 1008C (608C rise over 408C ambient) is frequently used
for normal loading conditions, as the strands retain approximately 90% of rated
strength after 10,000 h of operation. Under short-circuit, 3408C may be selected as
the maximum temperature for all aluminum conductors and 6458C for ACSR, with a
sizable steel content. An expression for safe time duration based on this criterion and
no heat loss during short-circuit for ACSR is [11]:

t ¼ 0:0862
CM

I

� �2

ð7:17Þ

where t is the duration is seconds, CMs the area of conductor in circular mils, and I
is the current in ampères, rms.

From Eq. (7.17) # 4 (41740 CM) ACSR of the transmission line connected to
breaker 2F2 has a short-circuit withstand capability of 0.013 sec for a symmetrical
short-circuit current of 31.28 kA close to bus 2. The conductors, though adequately
sized for the load current of a 1-MVA transformer, are grossly undersized from
short-circuit considerations.

7.10.1 Deriving an Equivalent Impedance

A section of a network can be reduced to a single equivalent impedance. This tool
can prove useful when planning a power system. Consider that in Fig. 7-16, the 13.8-
kV system is of interest for optimizing the bus tie reactors or developing a system
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Table 7-14 Ac/Dc Resistance Ratios: Copper and

Aluminum Conductors at 60Hz and 658C

Conductor size

(KCMIL or AWG)

5 to 15-kV nonleaded shielded power

cable, 3 single concentric conductors in
same metallic conduit

Copper Aluminum

1000
900
800

750
700
600

500
400
350

300
250
4/0
3/0

2/0

1.36
1.30
1.24

1.22
1.19
1.14

1.10
1.07
1.05

1.04
1.03
1.02
1.01

1.01

1.17
1.14
1.11

1.10
1.09
1.07

1.05
1.03
1.03

1.02
1.01
1.01
<1%

<1%
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configuration. A number of computer runs may be required for this purpose. The
distribution connected to each of the 13.8-kV buses can be represented by equivalent
impedances, one for interrupting duty calculation and the other for first-cycle cal-
culation. Figure 7-18 shows these equivalent impedances. These can be derived by a
computer calculation or from the vectorial summation of the short-circuit currents
contributed to the buses.

This concept can be used in subdividing a large network into sections with
interfaced impedances at their boundaries, representing the contributions of the
connected systems. Attention can then be devoted to the section of interest, with
less computer running time and saved efforts in modeling and analyzing the output
results. Once the system of interest is finalized its impact on the interfaced systems
can be evaluated by detailed modeling.

Example 7.4

In the majority of cases, three-phase short-circuit currents give the maximum short-
circuit duties; however, in some cases, a single line-to-ground fault may give a higher
short-circuit duty. Consider the large generating station shown in Fig. 7-19. Fault
duties are required at point F. The source short-circuit MVA at 230 kV for a three-
phase and single line-to-ground fault is the same, 4000 MVA, X=R ¼ 15. (10.04 kA
< �86:198). Each generator is connected through a delta-wye step-up transformer.
The high-voltage wye neutral is solidly grounded. This is the usual connection of a
step-up transformer in a generating station, as the generator is high-impedance
grounded. With the impedance data for the generators and transformers shown in
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Figure 7-18 Equivalent impedances of the distribution system connected to 13.8-kV buses
in the distribution system of Fig. 7-16. F: first-cycle impedance; I: interrupting-duty impe-

dance.
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this figure, the positive sequence fault point impedance ¼ 0:00067þ j0:0146 per unit,
100-MVA base. Thus, the three-phase short-circuit current at F ¼ 17:146 kA sym.
Each generator contributes 2.31 kA of short-circuit current. The zero sequence impe-
dance at the fault point ¼ 0:00038þ j0:00978, and the single line-to-ground fault
current at F ¼ 19:277 kA, approximately 12.42% higher than the three-phase short-
circuit current.

Example 7.5

Figure 7-20(a) shows three motors of 10,000 hp, each connected to a 13.8-kV bus, fed
from a 138-kV source through a single step-down transformer. For a fault on load
side of breaker 52 calculate the motor contributions at the 13.8-kV bus, and the first-
cycle and interrupting duty currents by simplified ANSI methods, and by analytical
calculations for a three-cycle breaker contact parting time. Repeat the calculations
with series impedances added in the motor circuit as shown in Fig. 7-20(b).

Simplified Calculations

The source impedance in series with the transformer impedance is same for the first-
cycle and interrupting duty calculations. This gives Z ¼ 0:0139þ 0:2954 per unit on
a 100-MVA base. The source contribution through the transformer is, therefore,
14.147 kA at < �87:3068.
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Figure 7-19 Single-line diagram of a large generating station for calculation of fault cur-
rents (Example 7.4).
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The first-cycle impedance multiplying factor for a 10,000-hp motor is unity.
The motor kVA based on a power factor of 0.93 and efficiency of 0:96 ¼ 8375;
X=R ¼ 35. Therefore, the per unit locked rotor impedance for three motors in par-
allel is 0:0189þ j0:0667. This gives a first-cycle current of 6.270 kA at < �88:3758.
The total first-cycle current is 20.416 kA sym. at < �87:638; X=R ¼ 25:56. This gives
an asymmetrical current of 32.69 kA.
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Figure 7-20 Example 7.5: calculation of short-circuit current contributions from large

motors. (a) Motors directly connected to the 13.8kV bus; (b) motors connected through
common impedance to the 13.8kV bus.
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For interrupting duty, the impedance multiplying factor is 1.5. The equivalent
motor impedance of three motors in parallel is 0:02835þ j1:0005 per unit. This gives
a motor current contribution of 4.180 kA at < �88:3758. The total current is
18.327 kA < �87:55 8; X=R ¼ 24:45. The E=X multiplying factor for dc decay at a
three-cycle contact parting time is 1.086. The calculated interrupting duty current is
19.91 kA.

When a series impedance of 0.015 þ 0.30 per unit (100-MVA base) is intro-
duced into the circuit, the following are the results of the calculation:

First cycle motor contribution ¼ 4:324 kA < �87:9928
Total first-cycle current ¼ 18:47 kA sym. < �87:48; X=R ¼ 22:95
Asymmetry multiplying factor ¼ 1:5888
Asymmetrical current ¼ 29:33 kA rms
Interrupting duty motor contribution ¼ 3:215 < �88:098
Total current ¼ 17:326 < �87:458; X=R ¼ 22:87
E=X multiplying factor ¼ 1.070
Calculated interrupting duty current ¼ 18.57 kA

Analytical Calculation

We will recall Eqs (6.127)–(6.133) and Example 6.9. The equations for ac and dc
components of the short-circuit currents are reproduced below:

iac ¼
E

X 0 e
�t=T 0

idc ¼
ffiffiffi
2

p E

X 0 e
�t=Tdc

We showed that X 0 is the locked rotor reactance of the motor. This can be replaced
with Z 0. Tdc ¼ X 0=!r1 [Eq. (6.131)], where r1 is the stator resistance. Therefore, X 0

=r1 is in fact the ANSI X=R ratio. When an external impedance is added:

Tdc ¼
X 0 þ Xe

!ðr1 þ ReÞ
ð7:18Þ

where Re and Xe are the external resistances and reactances. Similarly, the time
constant T 0 becomes:

T 0 ¼ X 0 þ Xe

!r2
ð7:19Þ

We will first calculate the motor first-cycle and interrupting current contribu-
tions, without series impedance in the motor circuit; X 0 ¼ 0:0189þ j0:667 as before.
The time constants of large motors are generally specified by the manufacturers. For
the example, Tdc ¼ 0:093 and T 0 ¼ 0:102. The ac and dc current equations for the
motor are

iacm ¼ 6:27"�t=0:102 idcm ¼ 8:87"�t=0:093

At half-cycle, the ac and dc currents are 5.28 and 8.10 kA, respectively. The source
impedance in series with the transformer is 0:0139þ j0:2954 per unit. Therefore,
X=R ¼ 21:25 and the symmetrical current is 14.147 kA. The equation for the dc
current from the source is
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idcs ¼ 20e�t=0:0564

At half-cycle the dc component from the source is 17.26 kA. Therefore, the total
symmetrical current is 5:28þ 14:147 ¼ 19:427 kA and the dc current is 25.36 kA.
This gives an asymmetrical current of 31.94 kA. We calculated 32.69 kA by the
simplified method.

The interrupting currents are calculated at three cycles. The source dc compo-
nent is 8.24 kA, the motor dc component is 5.17 kA, the source ac component is
14.147 kA, and the motor ac component is 3.84 kA. This gives a symmetrical current
of 17.987 kA and an asymmetrical current of 22.44 kA. The interrupting duty to
compare with a five-cycle breaker is 22.444/1.1 = 20.39 kA. We calculated
19.91 kA by the simplified method.

Now consider the effect of series resistance in the motor circuit. The motor
impedance plus series impedance is ð0:0189þ j0:0667Þ þ ð0:015þ j0:30Þ ¼ 0:0239þ
j0:967 per unit. This gives a current of 4.32 kA.

The time constants are modified to consider external impedance according to
Eqs (7.18) and (7.19):

Tdc ¼
0:667þ 0:30

!ð0:0189þ 0:015Þ ¼ 0:0757

Also, T 0 is

T 0 ¼ 0:667þ 0:30

!ð0:0173Þ ¼ 0:148

The equations for motor ac and dc components of currents are then:

iacm ¼ 4:32e�t=0:148 idcm ¼ 6:12e�t=0:0757

This gives a total first-cycle current of 29.14 kA rms (versus 29.33 kA by the simpli-
fied method) and a symmetrical interrupting current of 17.23 kA; the dc component
at contact parting time is 11.4 kA. The total asymmetrical current is 20.65 kA. The
current for comparison with a five-cycle circuit breaker is 20.65/1.1 ¼ 18.77 kA. We
calculated 18.57 kA with the simplified calculations. The results are fairly close in this
example, though larger variations can occur.

7.11 THIRTY-CYCLE SHORT-CIRCUIT CURRENTS

Thirty-cycle short-circuit currents are required for overcurrent devices co-ordinated
on a time–current basis. The 30-cycle short-circuit current is calculated on the fol-
lowing assumptions:

. The contributions from the utility sources remain unchanged.

. The dc component of the short-circuit current decays to zero.

. The contribution from the synchronous and induction motors decays to
zero.

. The generator subtransient reactance is replaced with transient reactance or
a value higher than the subtransient reactance.
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Example 7.6

Calculate 30-cycle currents in the distribution system of Fig. 7-16 (Example 7.3).
The generator reactance is changed to transient reactance and all motor con-

tributions are dropped. Table 7-15 shows the results, which can be compared with
interrupting duty currents. The decay varies from 8 to 28%. The buses which serve
the motor loads show the highest decay.

7.12 DYNAMIC SIMULATION

Alternative methods of calculations of short-circuit currents which give accurate
results are recognized. The short-circuit calculations can be conducted on EMTP
or other digital computer programs which could emulate the transient behavior of
machines during short-circuit conditions. In this sense these programs become more
like transient stability programs carried out in the time domain. The behavior of
machines as influenced by their varying electrical and mechanical characteristics can
be modeled and the short-circuit current calculation accuracy is a function of the
machine models, static and dynamic elements as well as the assumptions.
Synchronous machines can be modeled by their appropriate subtransient, transient,
and synchronous impedances and time constants. This may result in a number of
differential equations so that harmonics and dc offset effects can be accounted for.
The inclusion of voltage regulators and excitation systems is possible. Dynamic
simulation puts heavy demand on the computing resources as well as on accurate
data entries.
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Table 7-15 30-Cycle Currents,

Distribution System (Fig. 7-16)

Bus identification 30-cycle currents in

kA sym.

13.8-kV buses

1
2
3
4

19.91
21.11
19.91
22.73

4.16-kV buses
5
6
7

8

18.26
18.38
18.17

18.17

Low-voltage buses
9

10

11
12
15

16

39.01
39.10

35.93
35.93
17.85

12.45
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Problems

(The problems in this section are constituted so that these can be solved by hand
calculations.)

1. A circuit breaker is required for 13.8-kV application. The E=X calcula-
tion gives 25 kA sym., and the X=R ratio is below 15. Select a suitable
breaker from the Tables in Chap. 5.

2. The X=R ratio in Problem 1 is 25. Without making a calculation, what is
the minimum interrupting rating of a circuit breaker for safe application?

3. A generating station is shown in Fig. 7-P1. The auxiliary distribution
loads are omitted. Calculate the short-circuit duties on the generator
breaker and the 230-kV breaker.

4. Indicate whether the following sources will be considered remote or local
in the ANSI calculation method. What is the NACD ratio? Which E=X
multiplying curve shown in this chapter will be used for interrupting duty
currents?
a. A 50-MVA 0.85 power factor generator; saturated subtransient

reactance ¼ 16%, X=R ¼ 60.
b. The above generator connected through a 0.4-ohm reactor in series

with the generator.
c. The generator is connected through a step-up transformer of 40/60

MVA; transformer impedance on a 40 MVA base ¼ 10%,
X=R ¼ 20.
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Figure 7-P1 Power system for Problem 3.
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d. A 10,000-hp synchronous motor, operating at 0.8 power factor lead-
ing.

e. A 10,000-hp induction motor, operating at 0.93 power factor lagging.
5. Figure 7-P2 shows the single-line diagram of a multilevel distribution

system. Calculate first-cycle and interrupting currents using the ANSI
calculation and analytical methods for faults at F1, F2, and F3. Use
the impedance data and X=R ratios specified in Table 7-P1.

6. Calculate the duties on circuit breakers marked 52G and 52T in Fig. 7-P2.
Use separate a R–X method for E=Z calculation. Each of these breakers
is five-cycle symmetrical rated.

7. Calculate the short-circuit withstand rating of a 250 KCMIL cable; con-
ductor temperature 908C, maximum short-circuit temperature 2508C,
ambient temperature 408C, short-circuit duration 0.5 sec.

8. The multiplying factors for short-circuit duty calculations for LVPCB
and MCCB are 1.095 and 1.19, respectively, though the available short
circuit current is 52.3 kA in each case. What is the fault point X=R?

9. In Example 7.3, construct a fault impedance network for the fault at Bus
3. Calculate fault point impedance and the X=R ratio based on separate
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Figure 7-P2 Power system for Problems 5 and 6.
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R–X networks. How does this impedance differ from the values arrived at
in Table 7-8 from complex impedance reduction calculation?

10. Write five lines on each to describe how the following devices are rated
from a short-circuit consideration? LVPCB, ICCB, and MCCB, power
cables, overhead ACSR conductors, transformer primary fused and
unfused switches and bus-bars in switchgear and switchboard enclosures,
investigating short-circuit ratings of transformers and reactors.

11. Explain the problems of high X=R faults. How does this affect the duties
on the high-voltage generator circuit breakers?

12. Which of the following locations of breakers in the same system and on
the same bus will have the maximum fault duties: Bus tie breaker, incom-
ing breaker, feeder breaker fully loaded, or feeder breaker lightly loaded?

13. Represent all the downstream distributions in Fig. 7-P2 at the 13.8-kV
bus with a single interrupting duty and first-cycle impedance.

14. Calculate 30-cycle currents in Fig. 7-P2 at all buses.
15. Form a bus admittance and bus impedance matrix of the system in Fig.

7-P2.
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8

Short-Circuit Calculations According to
IEC Standards

Since the publication of IEC 909 for the calculation of short-circuit currents in 1988
[1-3], it has attracted much attention and the different methodology compared to
ANSI methods of calculation has prompted a number of discussions and technical
papers. This chapter analyzes and compares the calculation procedures in IEC and
ANSI standards. Using exactly the same system configurations and impedance data
comparative results are arrived at, which show considerable differences in the calcu-
lated results by the two methods. Some explanation of these variances is provided
based on different procedural approaches. Neither standard precludes alternative
methods of calculation, which give equally accurate results.

8.1 CONCEPTUAL AND ANALYTICAL DIFFERENCES

The short-circuit calculations in IEC and ANSI standards are conceptually and
analytically different, nor is the rating structure of the circuit breakers identical.
There are major differences in the duty cycles, testing, temperature rises, recovery
voltages, and short-time ratings of circuit breakers in the two standards, and for the
purpose of IEC short-circuit calculations we will confine our attention to the speci-
fications of interest. Entirely different terminology is used in IEC [1, 4] to describe
the same phenomena in circuit breakers. The following overview provides a broad
picture and correlation with ANSI.

8.1.1 Breaking Capability

The rated breaking capability of a circuit breaker corresponds to the rated voltage
and to a reference restriking voltage, equal to the rated value, expressed as (1) rated
symmetrical breaking current that each pole of the circuit breaker can break, and (2)
rated asymmetrical breaking capability that any pole of the circuit breaker can
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break. The breaking capacity is expressed in MVA for convenience, which is equal to
the product of the rated breaking current in kA and rated voltage multiplied by an
appropriate factor, depending on the type of circuit (1 for a single-phase circuit, 2 for
a two-phase circuit, and

ffiffiffi
3

p
for a three-phase circuit).

This is equivalent to the interrupting capability in ANSI standards. There are
no K factors in IEC ratings. In IEC calculations the asymmetry at the contact
parting time must be calculated to ascertain the asymmetrical rating of the breaker.
As discussed in Chap. 5, ANSI breakers are rated on a symmetrical current basis and
the asymmetry is allowed in the rating structure and postfault correction factors.
Unlike ANSI, IEC does not recommend any postmultiplying factors to account for
asymmetry in short-circuit currents.

8.1.2 Rated Restriking Voltage

The rated restriking voltage is the reference restriking voltage to which the breaking
capacity of the circuit breaker is related. It is recommended that the nameplate of the
circuit breaker be marked with the amplitude factor and either the rate of rise of the
restriking voltage in volts /msec or natural frequency in kHz /sec be stated.

8.1.3 Rated Making Capacity

The rated making capacity corresponds to rated voltages and is given by 1:8� ffiffiffi
2

p ð¼
2:55Þ times the rated symmetrical breaking capacity. The making capacity in ampères
is inversely proportional to the voltage, when the circuit breaker is dual-voltage
rated. For voltages below the lower rated voltage, the making capacity has a con-
stant value corresponding to the lower rated voltage and for voltages higher than the
rated voltage no making capacity is guaranteed. This is equivalent to the close and
latch capability of ANSI standards as explained further.

8.1.4 Rated Opening Time and Break Time

The rated opening time up to separation of contacts is the opening time which
corresponds to rated breaking capacity. The rated total breaking time is the total
break time which corresponds to the rated breaking capacity. It may be different,
depending on whether it refers to symmetrical or asymmetrical breaking capacity.

The minimum time delay tm is the sum of the shortest possible operating time
of the instantaneous relay (ANSI tripping delay, equal to one half-cycle) and the
shortest opening time of the circuit breaker. Thus, the IEC breaking time is equiva-
lent to the ANSI interrupting time and the IEC minimum time delay tm is equivalent
to the ANSI contact parting time.

8.1.5 Initial Symmetrical Short-Circuit Current

IEC defines I 00
k , the initial symmetrical short-circuit current as the ac symmetrical

component of a prospective (available) short-circuit current applicable at the
instant of short-circuit if the impedance remains at zero-time value. This is
approximately equal to ANSI first-cycle current in rms symmetrical, obtained in
the first cycle at the maximum asymmetry in one of the phases. Note the difference
in the specifications.
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8.1.6 Peak Making Current

The peak making current, ip, is the first major loop of the current in a pole of a
circuit breaker during the transient period following the initiation of current during a
making operation. This includes the dc component. This is the highest value reached
in a phase in a polyphase circuit. The rated peak withstand current is equal to the
rated short-circuit making current. This can be reasonably compared with ANSI
close and latch capability, though there are differences in the rating structure.
Revision of factor 2.7 to 2.6 for 60Hz circuit breakers and 2.5 for 50Hz ciruit
breakers in ANSI standards (see Sec. 5.5) brings these two standards closer, though
there are differences. Also, IEC does not have any requirement, similar to that of
ANSI, for latching and carrying a current before interrupting (see Sec. 5.5).

8.1.7 Breaking Current

The rated short-circuit breaking current, Ibasym, is the highest short-circuit current that
the circuit breaker shall be capable of breaking (this term is equivalent to ANSI,
‘‘interrupting’’) under the conditions of use and behavior prescribed in IEC, in a
circuit having a power frequency recovery voltage corresponding to the rated voltage
of the circuit breaker and having a transient recovery voltage equal to the rated value
specified in the standards. The breaking current is characterized by (1) the ac compo-
nent, and (2) the dc component. The rms value of the ac component is termed the rated
short-circuit current. The standard values in IEC are: 6.3, 8, 10, 12.5, 16, 25, 31.5, 40,
50, 63, 80, and 100 kA. The dc component is calculated atminimum time delay tm. This
is entirely different from ANSI symmetrical ratings and calculations (Chap. 7).

8.1.8 Steady-State Current

The calculations of steady-state fault currents from generators and synchronous
motors according to IEC take into consideration the generator excitation, the type
of synchronous machine, salient or cylindrical generators, and the excitation settings.
The fault current contributed by the generator becomes a function of its rated
current using multiplying factors from curves parameterized against saturated syn-
chronous reactance of the generator, excitation settings, and the machine type.

This calculation is more elaborate and departs considerably from ANSI based
procedures for calculation of 30-cycle currents. For the purpose of short-circuit
calculations, Table 8-1 shows the equivalence between IEC and ANSI duties, though
qualifications apply.

The specimen IEC ratings of a typical dual-voltage rated circuit breaker are
shown below:

Voltage: 10 kV/11.5 kV
Frequency: 50 Hz
Symmetrical breaking capacity: 20.4 kA/17.8 kA
Asymmetrical breaking capacity: 25.5 kA/22.2 kA
Rated making capacity: 52 kA/45 kA
Rated restriking voltage:

amplitude factor 1.25
rate of rise 500 V/ms
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Rated short-time current (1 second): 20.4 kA
Rated operating duty: O-3m-CO-3m-CO

8.1.9 Highest Short-Circuit Currents

The three-phase, single line-to-ground, double line-to-ground, and phase-to-phase
fault currents are to be considered. Based on the sequence impedances, Fig. 8-1
shows which type of short-circuit leads to the highest short-circuit currents. When
there is no decay of the ac component Z2=Z1 ¼ 1, and with ac decay Z2=Z1 < 1.
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Table 8-1 Equivalence Between ANSI and IEC Short-Circuit Calculation Types

ANSI calculation type IEC calculation type

First-cycle current Initial short-circuit current, I 00
k

Closing-latching duty current, crest Peak current (making current), ip
Interrupting duty current Breaking current Ibsym and Ibasym (symmetrical

and asymmetrical)

Time-delayed 30-cycle current Steady-state current, Ik

Figure 8-1 Relative magnitudes of short-circuit currents depending on sequence impe-
dances. K1: Single phase-to-ground; K2: phase-to-phase; K2E: double phase-to-ground;
K3: three-phase fault circuits. For ZZ/Z1= 05, Z2/Z0=0.65, the single phase-to-ground
fault current is the maximum. (From Ref.1. Copyright 1988 IEC. All rights reserved.

Reproduced with permission.)
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8.2 PREFAULT VOLTAGE

IEC defines an equivalent voltage source given in Table 8-2 and states that the
operational data on the static loads of consumers, position of tap changers on
transformers, excitation of generators, etc., are dispensable; additional calculations
about all the different possible load flows at the moment of short-circuit are super-
fluous. The equivalent voltage source is the only active voltage in the system, and all
network feeders and synchronous and asynchronous machines are replaced by their
internal impedances. This equivalent voltage source is derived by multiplying the
nominal system voltage by a factor c given in Table 8-2.

ANSI uses a prefault voltage equal to the system rated voltage, though a higher
or lower voltage is permissible, depending on the operating conditions. IEC requires
that in every case the system voltage be multiplied by factor c from Table 8-2. We
will again revert to this c factor.

8.3 FAR-FROM-GENERATOR FAULTS

A ‘‘far-from-generator’’ short-circuit is defined as a short-circuit during which the
magnitude of the symmetrical ac component of the prospective (available) current
remains essentially constant. These systems have no ac component decay. For the
duration of a short-circuit, there is no change in the voltage or voltages that caused
the short-circuit to develop nor any significant change in the impedance of the
circuit, i.e., impedances are considered constant and linear. Far-from-generator is
equivalent to ANSI remote sources, i.e., no ac decay.

The following equation is supported:

Ik ¼ Ib ¼ I 00
k ð8:1Þ

where Ik is the steady-state current, Ib is the symmetrical breaking current, and I 00
k is

the initial symmetrical short-circuit current. For a single-fed short-circuit current, as
shown in Fig. 8-2, I 00

k is given by

I 00
k ¼ cUnffiffiffi

3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2
k þ X2

k

q ¼ cUnffiffiffi
3

p
Zk

ð8:2Þ
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Table 8-2 IEC Voltage Factor c

Nominal voltage ðUnÞ

Voltage factor c for calculation of

Maximum short-
circuit current (cmax)

Minimum short-
circuit current (cmin)

Low voltage (100–1000V):

(a) 230V/400V; 1.00 0.95
(b) other voltages 1.05 1.00

Medium voltage (>1–35 kV) 1.10 1.00
High voltage (>35–230 kV) 1.10 1.00

Source: Ref. 1. Copyright 1988 IEC. All rights reserved. Reproduced with permission.
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where Un is the normal system phase-to-phase voltage in volts and I 00
k is in ampères;

Rk and Xk are in ohms and are the sum of the source, transformer, and line impe-
dances, as shown in Fig. 8-2. Resistances of the order of Rk < 0:3Xk can be
neglected.

The peak short-circuit current is given by

ip ¼ 
ffiffiffi
2

p
I 00
k ð8:3Þ

where  can be ascertained from the X=R ratio from the curves in Fig. 8-3 or
calculated from the expression:

 ¼ 1:02þ 0:98e�3R=X ð8:4Þ
It is not necessary to take into account asynchronous motors or groups of asynchro-
nous motors, which have a total rated current of less than 1% of the initial symme-
trical short circuit current I 00

k calculated without the influence of motors:X
IrM � 0:01I 00

k ð8:5Þ
where

P
IrM is the sum of the rated currents of the motors.
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Figure 8-2 Calculation of initial short-circuit current, with equivalent voltage source.
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8.3.1 Nonmeshed Sources

IEC distinguishes between the types of networks. For nonmeshed sources (Fig. 8-4),
the initial short-circuit current, the symmetrical breaking current, and the steady-
state short-circuit current at fault location F are composed of various separate
branch short-circuit currents which are independent of each other. The branch cur-
rents are calculated and summed to obtain the total fault current, i.e., the theorem of
superimposition applies:

I 00
k ¼ I 00

kT1 þ I 00
kT2 ð8:6Þ

ip ¼ ipT1 þ ipT2 ð8:7Þ
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Figure 8-3 Factor  for calculation of peak current. (From Ref. 1 Copyright 1988 IEC. All
rights reserved. Reproduced with permission.)

Figure 8-4 Short-circuit fed from various sources which are independent of each other.
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The fault location F in Fig. 8-4 is such that the impedance between the bus and the
fault location F can be neglected. This is so, if this impedance is smaller than

0:05Unffiffiffi
3

p
I 00
kB

ð8:8Þ

where I 00
kB is the initial short-circuit current on the bus bar B in Fig. 8-4 for a three-

phase short-circuit determined from the summation of branch short-circuit currents
from Eq. (8.6).

8.3.2 Meshed Networks

For calculation of ip in meshed networks, (Fig. 8-5), three methods (A, B, and C) are
described.
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Figure 8-5 Calculation of initial short-circuit current in a meshed network. (a) The system
diagram; (b) equivalent circuit diagram with equivalent voltage source. (From Ref.1.

Copyright 1988 IEC. All rights reserved. Reproduced with permission.)
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8.3.2.1 Method A: Dominant X=R Ratio Method

It is necessary to choose the branches which together carry 80% of the current at a
nominal voltage corresponding to the short-circuit location. Any branch may be a
series combination of several elements. The factor a is determined from the X=R
ratio of this circuit (largest X=R ratio). In low-voltage networks a need not be
>1.8.

8.3.2.2 Method B: Equivalent X=R Ratio Method

The factor  ¼ 1:15b, where factor 1.15 is a safety factor to cover inaccuracies
caused by using X=R from a meshed network reduction with complex impedances,
and b is calculated from curves in Fig. 8-3 or mathematically from Eq. (8.4). In the
low-voltage networks the product of 1:15b is limited to 1.8 and in the high-voltage
networks to 2.0.

8.3.2.3 Method C: Equivalent Frequency Method

This method provides the equivalent frequency approach. A source of 20 Hz for 50-
Hz systems and 24 Hz for 60-Hz systems is considered to excite the network at the
fault point. The X=R at the fault point is then

X

R
¼ Xc

Rc

� �
f

fc

� �
ð8:9Þ

where f is the system frequency, fc is the excitation frequency, and Zc ¼ Rc þ jXc at
the excitation frequency. The factor  ¼ c is used in the calculations for the peak
current.

8.4 NEAR-TO-GENERATOR FAULTS

A ‘‘near-to-generator’’ fault is a short-circuit to which at least one synchronous
machine contributes a prospective initial symmetrical short-circuit current that is
more than twice the generator’s rated current, or a short-circuit to which synchro-
nous and asynchronous motors contribute more than 5% of the initial symmetrical
short-circuit current I 00

k , calculated without motors. These fault types have ac decay.
This is equivalent to ANSI local faults.

The factor c is applicable to prefault voltages as in the case of far-from-gen-
erator faults. The impedances of the generators and power station transformers are
modified by additional factors, depending on their connection in the system.

8.4.1 Generators Directly Connected to Systems

When generators are directly connected to the systems, their positive sequence impe-
dance is modified by a factor KG:

ZGK ¼ KGðRG þ jX 00
d Þ ð8:10Þ

KG is given by

KG ¼ Un

UrG

Cmax

1þ X 00
d sin�rG

� �
ð8:11Þ

where UrG is the rated voltage of the generator, Un is the nominal system voltage,
�rG is the phase angle between the generator current IrG and generator voltage UrG,
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and X 00
d is the subtransient reactance of the generator, at a generator-rated voltage on

a generator MVA base. Figure 8-6 shows the applicable vector diagram.
The generator resistance RG with sufficient accuracy is given by the following

expressions:

RG ¼ 0:05X 00
d for generators with UrG > 1 kV and SrG (power rating in MVA)

� 100MVA

¼ 0:07X 00
d for generators with UrG > 1 kV and SrG < 100MVA

¼ 0:15X 00
d for generators with UrG � 1000V ð8:12Þ

In addition to decay of the dc component, factors 0.05, 0.07, and 0.15 take into
account decay of the ac component during the first half-period after the short-circuit
took place.

8.4.2 Generators and Unit Transformers of Power Station Units

For generators and unit transformers of power stations, the generator and the
transformer are considered as a single unit.

The correction factor for the generators is

ZG;PSU ¼ KG;PSUZG ð8:13Þ

KG;PSU ¼ cmax

1þ X 00
d sin�rG

ð8:14Þ

and for the transformer:

ZT;PSU ¼ KT;PSUZTLV ð8:15Þ
KT;PSU ¼ cmax ð8:16Þ

where ZTLV ¼ impedance of unit transformer related to the low-voltage side,
ZG ¼ impedance of generator ¼ RG þ jX 00

d , and ZG;PSUZT;PSU ¼ corrected impe-
dances of the generator and unit transformer.

These factors are applicable to the low-voltage side of the power-station units.
For calculation of short-circuit currents on the high-voltage side the correction factor
is given by

KPSU ¼ tf
tr

� �2
cmax

1þ ðX 00
d � XTÞ sin�rG

� �
ð8:17Þ
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Figure 8-6 Phasor diagram of a synchronous generator at rated load and power factor.
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This corrects for the transformation ratio, where tr is the rated transformation ratio
at which the tap-changer is in the main position (i.e., no buck or boost of the voltage)
and tf is the fictitious transformation ratio given by the ratio Un=UrG ¼ UnQ=UrG;
UnQ is the nominal system voltage at the connection point Q of the power station
unit. Equation (8.17) can be written as:

KPSU ¼ U2
nQ

U2
rG

U2
rTLV

U2
rTHV

cmax

1þ ðX 00
d � XTÞ sin�rG

ð8:18Þ

The adjusted impedance of the whole power station unit is then:

ZPSU ¼ KPSUðt2rZG þ ZTHVÞ ð8:19Þ
In Eqs (8.17) and (8.18) X 00

d and XT are per unit reactances on the generator
and transformer MVA base, respectively, at their rated voltages. Note that the
equations are in actual units. These equations are valid for
UQ ¼ UnQ, and UG ¼ UrG. Special considerations, not stated in IEC, are applicable
if the tap-changer on the transformer results in an operating voltage permanently
higher than the nominal system voltage, UnQ, and/or the generator operating voltage
differs from its rated voltage UrG or for a power station with no tap changer where
the generator operating voltage is permanently higher than its rated voltage. Also,
the correction factors are not applicable to negative- or zero-sequence impedances
for unbalanced faults.

8.4.3 Motors

For calculations of I 00
k synchronous motors and synchronous compensators are trea-

ted as synchronous generators. The impedance ZM of asynchronous motors is deter-
mined from their locked rotor currents.

The following ratios of resistance to reactance of the motors applies with
sufficient accuracy:

RM=XM ¼ 0:10 with XM¼ 0:995ZM for high-voltage motors with powers PrM

per pair of poles � 1MW

RM=XM ¼ 0:15 with XM ¼ 0:989ZM for high-voltage motors with powers PrM

per pair of poles < 1MW

RM=XM ¼ 0:42 with XM ¼ 0:922ZM for low-voltage motor groups with

connection cables ð8:20Þ

8.4.4 Short-Circuit Currents Fed from One Generator

The initial short-circuit current is given by Eq. (8.2). The peak short-circuit current is
calculated as for far-from-generator faults, considering the type of network. For
generator corrected resistance KGRG and corrected reactance KGX

00
d are used.

8.4.4.1 Breaking Current

The symmetrical short-circuit breaking current is given by

Ib ¼ �I 00
k ð8:21Þ

Short-Circuit Calculations: IEC Standards 277

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



where factor � accounts for ac decay. The following values of � are applicable for
medium-voltage turbine generators, salient pole generators, and synchronous com-
pensators excited by rotating exciters or by static exciters, provided that for the static
exciters the minimum time delay is less than 0.25 sec and the maximum excitation
voltage is less than 1.6 times the rated excitation voltage. For all other cases � is
taken to be 1, if the exact value is not known.

� ¼ 0:84þ 0:26e�0:26I 00
kG=IrG for tmin ¼ 0:02 s

� ¼ 0:71þ 0:51e�0:30I 00
kG=IrG for tmin ¼ 0:05 s

� ¼ 0:62þ 0:72e�0:32I 00
kG=IrG for tmin ¼ 0:10 s

� ¼ 0:56þ 0:94e�0:38I 00
kG=IrG for tmin � 0:25 s ð8:22Þ

If the ratio of the initial short-circuit current and the machine rated current is equal
to or less than 2, then the following relation holds:

I 00
KG

IrG
� 2 � ¼ 1 for all values of tmin ð8:23Þ

In the case of asynchronous motors replace:

I 00
KG

IrG
by

I 00
kM

IrM
ð8:24Þ

8.4.4.2 Steady-State Current

The maximum and minimum short-circuit currents are calculated from

Ikmax ¼ �maxIrG ð8:25Þ
Ikmin ¼ �minIrG ð8:26Þ

where �max and �min for turbine generators are calculated from the graphs in Fig. 8-7.
In this figure, Xdsat is the reciprocal of the short-circuit ratio. We have not yet defined
the short-circuit ratio of a generator. It is given by

Rsc ¼
Per unit excitation at normal voltage on open circuit

per unit excitation for rated armature current on short circuit
ð8:27Þ

Referring to the open circuit and short-circuit curves of the generator, shown in
Fig. 8-8, the short-circuit ratio is OA/OB. Chapter 6 defined saturated synchronous
reactance as the ratio of per unit voltage on open circuit to per unit armature
current on short-circuit. In Fig. 8-8, OA is related to the normal rated voltage and
OB is proportional to the rated current of the machine. The short-circuit ratio is,
therefore, the reciprocal of synchronous reactance. It is a measure of the stiffness
of the machine, and modern generators tend to have lower short-circuit ratios
compared to those of their predecessors, of the order of 0.5 or even lower.

Maximum � curves for Series One are based on the highest possible excita-
tion voltage according to either 1.3 times the rated excitation at rated load and
power factor for turbine generators or 1.6 times the rated excitation for a salient-
pole machine. The maximum � curves for Series Two are based on the highest
excitation voltage according to either 1.6 times the rated excitation at rated load
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and power factor for turbine generators or 2.0 times the rated excitation for
salient-pole machines. The graphs for the salient pole machines are similar and
not shown.
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Figure 8-7 (a,b) Factors �max and �min for turbine generators; Series One and Series Two

defined in the text. (From Ref. 1. Copyright 1988 IEC. All rights reserved. Reproduced with
permission.)

Figure 8-8 Open-circuit magnetization and short-circuit curves of a synchronous generator
to illustrate short-circuit ratio.
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8.4.5 Short-Circuit Currents in Nonmeshed Networks

The procedure is the same as that described for far-from-generator faults. The
modified impedances are used. The branch currents are superimposed, as shown in
Fig. 8-9.

I 00
k ¼ I 00

k;PSU þ I 00
kT þ I 00

kM þ � � �
ip ¼ ip;PSU þ ipT þ ipM þ � � �
Ib ¼ Ib;PSU þ I 00

kT þ IbM þ � � �
IK ¼ Ib;PSU þ I 00

kT þ � � �

ð8:28Þ

8.4.6 Short-Circuit Currents in Meshed Networks

Figure 8-10 shows that the initial short-circuit currents in meshed networks can be
calculated by using modified impedances and the prefault voltage at the fault point.
The peak current ip is calculated as for far-from-generator faults. Methods A, B, and
C for meshed networks are applicable. The symmetrical short-circuit breaking cur-
rent for meshed networks is conservatively given by

Ib ¼ I 00
k ð8:29Þ

A more accurate expression is provided as follows:

Ib ¼ I 00
k �

X
i

�U 00
Gi

cUnffiffiffi
3

p ð1� �iÞI 00
kGi �

X
j

�U 00
Mj

cUnffiffiffi
3

p ð1� �iqiÞI 00
kMj ð8:30Þ

�U 00
Gi ¼ jX 00

diI
00
kGi

�U 00
Mj ¼ jX 00

MjI
00
kMj

ð8:31Þ

where �U 00
Gi, and �U 00

Mj are the initial voltage differences at the connection points of
the synchronous machine i and the asynchronous motor j, and I 00

kGi and I 00
kMj are the

parts of the initial symmetrical short-circuit currents of the synchronous machine i
and the asynchronous motor j; � is defined in Eq. (8.22) and q is defined in Eq.
(8.36).
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Figure 8-9 Calculation of I 00
k , ip, Ib, and Ik for a three-phase short-circuit fed from non-

meshed sources.
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For the steady-state current, the effect of motors is neglected. It is given by

Ik ¼ I 00
k;M ð8:32Þ

8.5 INFLUENCE OF MOTORS

Synchronous motors and synchronous compensators contribute to I 00
k ; ip; Ib; and Ik.

Asynchronous motors contribute to I 00
k ; ip; and Ib and for unbalanced faults to Ik.

Low-voltage motors in public power supply systems can be neglected. High- and
low-voltage motors which are connected through a two-winding transformer can be
neglected if
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Figure 8-10 Calculation of initial short-circuit current in a meshed network fed from several

sources. (a) The system diagram; (b) equivalent circuit diagram with equivalent voltage source.
(From Ref. 1. Copyright 1988 IEC. All rights reserved. Reproduced with permission.)
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P
PrMP
SrT

� 0:8

c100
P

SrT

S 00
kQ

� 0:3

�����
�����

ð8:33Þ

where
P

PrM is the sum of rated active power of the motors,
P

SrT is the sum of
rated apparent power of the transformers, and S 00

kQ is the symmetrical short-circuit
power at the connection point without the effect of motors. This expression is not
valid for three-winding transformers.

8.5.1 Low-Voltage Motor Groups

For simplifications of the calculations, groups of low-voltage motors including their
connecting cables can be combined into an equivalent motor:

IrM ¼ sum of rated currents of all motors in the group

Ratio of locked rotor current to full load current ¼ ILR=IrM ¼ 5

RM=XM ¼ 0:42; a ¼ 1:3; and m ¼ 0:05 MW if nothing definite is known

ð8:34Þ
The partial short-circuit current of low-voltage motors is neglected if the rated

current of the equivalent motor (sum of the ratings of group of motors) is <0.01%
of the initial symmetrical short-circuit current at the low-voltage bus to which these
motors are directly connected, without the contributions from the motors:

IrM � 0:01I 00
k;M ð8:35Þ

8.5.2 Calculations of Breaking Currents of Asynchronous Motors

For calculation of breaking short-circuit current from asynchronous motors another
factor q (in addition to �) is introduced; q ¼ 1 for synchronous machines. The factor
q is given by

q ¼ 1:03þ 0:12 ln m for tmin ¼ 0:02s

¼ 0:79þ 0:12 ln m for tmin ¼ 0:05s

¼ 0:57þ 0:12 ln m for tmin ¼ 0:10s

¼ 0:26þ 0:10 ln m for tmin � 0:25s ð8:36Þ
where m is the rated active power of motors per pair of poles.
Therefore, the breaking current of asynchronous machines is given by

Ib;sym ¼ �qI 00
k ð8:37Þ

8.5.3 Static Converter Fed Drives

Static converters for drives as in rolling mills contribute to I 00
k and ip only if the

rotational masses of the motors and the static equipment provide reverse transfer of
energy for deceleration (a transient inverter operation) at the time of short-circuit.
These do not contribute to Ib. Nonrotating loads and capacitors (parallel or series)
do not contribute to the short-circuit currents. Static power converter devices are
treated in a similar manner as asynchronous motors with following parameters:
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UrM ¼ rated voltage of the static converter transformer on the network side

or rated voltage of the static converter if no transformer is present

IrM ¼ rated current of static converter transformer on the network side or

rated current of the static converter if no transformer is present

ILR=IrM ¼ 3

RM=XM ¼ 0:10 with XM ¼ 0:995 ZM ð8:38Þ

8.6 COMPARISON WITH ANSI CALCULATION PROCEDURES

The following comparison of calculation procedures underlines the basic philoso-
phies in ANSI and IEC calculations [5].

1. IEC requires calculation of initial symmetrical short-circuit current, I 00
k , in

each contributing source. These component I 00
k currents form the basis of further

calculations. Thus, tracking each contributing source current throughout the net-
work is necessary. Each of these component currents is a function of machine char-
acteristics, R=X ratio, type of network (meshed or radial), type of excitation system
for synchronous generators, contact parting time (minimum time delay), and the
determination whether contribution is near to or far from the short-circuit location.
Multiplying factors on generators, unit transformers, and power station units (PSUs)
are applicable before the calculation proceeds. The PSU consisting of a generator
and a transformer is considered as a single entity, and separate procedures are
applicable for calculation of whether the fault is on the high- or low-voltage side
of the transformer. IEC treats each of above factors differently for each contributing
source.

This approach is conceptually different from that of ANSI, which makes no
distinction between the type of network, and the network is reduced to a single
Thévenin impedance at the fault point, using complex reduction, or from separate
R and X networks, though prior impedance multiplying factors are applicable to
account for ac decay. ANSI states that there is no completely accurate way of
combining two parallel circuits with different values of X=R ratios into a single
circuit with one X=R ratio. The current from the several circuits will be the sum
of the decaying terms, usually with different exponents, while from a single circuit, it
contains just one such term. The standard then advocates separate X and R networks
and states that the error for practical purposes is on the conservative side.

In all IEC calculations, therefore, the initial short-circuit current is first
required to be calculated as all other currents are based on this current. These initial
short-circuit currents from sources must be tracked throughout the distribution
system. The peak current and breaking current are then calculated based on factors
to be applied to initial short-circuit current. In ANSI calculations, interrupting duty
and first-cycle networks can be independently formed with prior impedance multi-
plying factors. In an application of circuit breakers, one of the two duties, i.e., the
first cycle or interrupting may only be the limiting factor.

2. Both standards recognize ac decay, though the treatment is different.
ANSI standards model motors with prior multipliers. Where the contribution of
the large motors is an appreciable portion of the short-circuit current, substitution
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of tabulated multipliers with more accurate data based on manufacturer’s time
constants is recommended, but ANSI treats these multipliers on a global basis and
these do not change with the location of fault points or the contact parting time of
the breaker. IEC treats each motor individually and decay must be calculated on the
basis of contact parting time, machine type, and its size, speed, and proximity to the
fault. Contributions from motors can be ignored in certain cases in IEC, while ANSI
considers motor contributions throughout, except as discussed in Sec. 7.2.1.

3. ANSI makes no distinction between remoteness of induction and synchro-
nous motors for the short-circuit calculations. Impedance multiplying factors (Table
7.1) of the motors are considered to account for ac decay, irrespective of their
location. IEC considers generators and motors as near to or far from the fault
location for breaking and steady-state current calculations. Asynchronous machines
are considered near if the sum of all motors I 00

k is > 5% of the total I 00
k without

motors, otherwise these are considered remote. Synchronous machines are consid-
ered near if their I 00

k is more than twice the rated current.
4. Both standards recognize the rapid decay of the dc component of the fault

current and add a half-cycle of tripping time to arrive at the contact parting time
(IEC minimum time delay).

5. IEC calculations require that the dc component be calculated at the con-
tact parting time to calculate the asymmetrical breaking current, i.e.,

idc ¼
ffiffiffi
2

p
I 00
k "�!t=X=R ð8:39Þ

where X=R is computed differently for radial or meshed networks. In radial net-
works idc is the sum of the dc currents calculated with X=R ratios in each of the
contributing elements. While Methods B and C are applicable for meshed networks
for calculation of ip, no indication is given for calculation of the contribution of dc
current.

Calculations of the dc component at the contact parting time is not required in
ANSI. The dc decay is built into the postfault calculations with E=X or E=Z multi-
pliers from the curves. Also, the rating structure of ANSI takes into account certain
asymmetry, depending on the contact parting time (Fig. 5-4).

6. ANSI uses a prefault voltage equal to the rated system voltage, unless
operating conditions show otherwise. IEC considers a prior voltage multiplying
factor c from Table 8-2 irrespective of the system conditions. This factor seems to
be imported from VDE (Deutsche Electrotechnische Kommission) and is approxi-
mately given by:

cUn ¼ UrG 1þ IrG
ffiffiffi
3

p
X 00

d sin�rG

UrG

� �
� 1:1 ð8:40Þ

7. The calculations of steady-state current is materially different and more
involved in IEC calculations.

8. IEC specifically details the calculation of ip and I 00
k from static converter-

fed drive systems and states that the converter-fed motors do not contribute to Ib.
9. IEC calculations are more demanding on the computing resources and

require a larger database.
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8.7 EXAMPLES OF CALCULATIONS AND COMPARISON WITH ANSI
METHODS

Example 8.1

Calculate the fault current contributions of the following synchronous machines,
directly connected to a bus, using ANSI and IEC methods. Calculate the first-cycle
(IEC peak) and interrupting (IEC breaking, symmetrical and asymmetrical) currents
for contact parting times of two cycles and three cycles (IEC minimum time
delay ¼ 0:03 and 0.05 sec, approximately). Compare the results.

. 110-MVA, 13.8-kV 0.85 power factor generator, X 00
dv ¼ 16% on generator

MVA base
. 50-MVA, 13.8-kV 0.85 power factor generator, X 00

dv ¼ 11% on generator
MVA base

. 2000-hp, 10-pole, 2.3-kV 0.8 power factor synchronous motor, X 00
lr ¼ 20%

. 10000-hp, 4-pole, 4-kV synchronous motor, 0.8 power factor, X 00
lr ¼ 15%

Table 8-3 shows the results of ANSI calculations. These calculations have already
been discussed in Chap. 7 and the description is not repeated here. Table 8-4 shows
all the steps in IEC calculations. We will go through these steps for a sample
calculation for a 110-MVA generator.

The percentage subtransient reactances for all the machines are the same in
both calculations. The X=R ratio for ANSI calculations is estimated from Fig. 7-4,
while for IEC calculations it is based on Eq. (8.12). A considerable difference is
noted in these two values. IEC states that the factor RG takes into account the decay
of the ac component during the first half-period after the short-circuit takes place.
Thus, IEC uses artificially high values of the resistances and it makes a difference in
the fault asymmetry. For a 110-MVA generator, RG ¼ 0:05 from Eq. (8.12), i.e., X
=R ¼ 20 versus 80 from Fig. 7-4.

Next, factor KG is calculated from Eq. (8.11). This is based on a rated power
factor of 0.85 of the generator:

KG ¼ Un

UrG

cmax

1þ X 00
d sin�rG

� �
¼ 1:10

1þ 0:16� 0:526
¼ 1:05

In the above calculation X 00
d is in per unit on a machine MVA base at machine rated

voltage. From Eq. (8.10), the modified generator impedance is

ZGK ¼ KGðRG þ jX 00
d Þ ¼ 1:05ð0:0073þ j0:1455Þ per unit 100-MVA base

The initial short-circuit current from Eq. (8.2) is

jI 00
k j ¼

cmax

jZGKj
¼ 1:1

0:153
¼ 7:191 per unit ¼ 30:09 kA

Here, we are interested in magnitude only, as the calculations are from a single
source and summations are not involved. For calculation of peak current, the factor
 is calculated from Eq. (8.4):

 ¼ 1:02þ 0:98e�3R=X ¼ 1:02þ 0:98� 0:861 ¼ 1:863

The peak current from Eq. (8.3) is, therefore:

ip ¼ 
ffiffiffi
2

p
I 00
k ¼ 1:863�

ffiffiffi
2

p
� 30:09 ¼ 79:27 kA

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



2
8
6

C
h
a
p
te
r
8

Table 8-3 ANSI Fault Current Calculations from Synchronous Generators and Motors Directly Connected to a Bus

Description

Percentage X 00
d

on equipment
MVA base X=R

Impedance multiplying factors First-cycle calculations Interrupting duty calculations

First cycle Interrupting

First-cycle
current (kA

sym.)

First-cycle
current (kA

peak)

3-cycle contact
parting time
(kA rms)

2-cycle contact
parting time
(kA rms)

110-MVA, 0.85-pF, 13.8-kV

generator

16 80.0 1 1 28.76 79.78 34.62
MF ¼ 1:204

34.20
MF ¼ 1:189

50-MVA, 0.85-pF, 13.8-kV

generator

11 65.0 1 1 19.02 52.50 22.30
MF ¼ 1:173

22.35
MF=1.175

2000-hp, 10-pole, 2.3-kV

synchronous motor, 0.8 pF

(2000 kVA)

20 25.0 1 1.5 2.51 6.68 1.67
MF ¼ 1:00

1.72
MF ¼ 1:030

10,000-hp, 4-pole, 4-kV

synchronous motor, 0.8 pF

(10,000 kVA)

15 34.4 1 1.5 9.62 26.01 6.73
MF ¼ 1:050

6.98
MF ¼ 1:088
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The breaking current factor � is calculated from Eq. (8.22). For 0.05 minimum time
delay:

� ¼ 0:71þ 0:51e�0:30I 00
kG=IrG ¼ 0:71þ 0:51e�0:30�30:09=4:60 ¼ 0:78

The calculation for 0.03 minimum time delay is not given directly by Eqs (8.22) and
interpolation is required. Alternatively, the factor can be estimated from the graphs
in the IEC standard.

The symmetrical interrupting current at 0.05 sec minimum time delay is

ibsym ¼ �I 00
k ¼ 0:78� 30:09 ¼ 23:47 kA

The dc component from Eq. (8.39) is

idc ¼
ffiffiffi
2

p
I 00
k e

�!t=X=R ¼
ffiffiffi
2

p
� 30:9� e�377�0:05=20 ¼ 16:58 kA

The asymmetrical breaking current is

ibasym ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i2bsym þ i2dc

q
¼ 29:73 kA

Table 8-4 is compiled similarly for other machines. Synchronous motors are
treated as synchronous generators for the calculations. A comparison of the results
by two methods of calculation shows considerable differences. ANSI first-cycle cur-
rent and IEC peak currents are comparable, with a difference within 3%. Greater
divergence is noted in the interrupting duty currents. ANSI interrupting duty cur-
rents for generators at 0.05 sec contact parting time are much higher than IEC
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Table 8-4 IEC Fault Current Calculations from Synchronous Generators and Motors

Directly Connected to a Bus

Equipment

110-MVA,

0.85-pF,
13.8-kV
generator

50-MVA,

0.85-pF,
13.8-kV
generator

2000-hp, 10-pole,

0.8-pF, 2.4-kV
synchronous

motor

10,000-hp,

4-pole, 0.8-pF,
4-kV synchronous

motor

Percentage X 00
d on

equipment kVA

base

16 11 20 15

RG or RM 0:05X 00
d 0:07X 00

d 0:07X 00
d 0:07X 00

d

cmax 1.1 1.1 1.1 1.1

KG or KM 1.015 1.040 0.982 1.010

I 00
KG or I 00

kM kA rms 30.09 20.06 2.68 10.45

� 1.863 1.814 1.814 1.814

ip kA peak 79.27 51.46 6.88 26.80

� (0.05 sec) 0.78 0.74 0.81 0.73

� (0.03 sec) 0.85 0.82 0.85 0.81

ibsym (0.05 sec) 23.47 14.84 2.17 7.63

ibsym (0.03 sec) 25.57 16.45 2.28 8.46

IDC (0.05 sec) kA 16.58 7.58 1.01 3.95

IDC (0.03 sec) kA 24.17 12.85 1.72 6.70

ibasym (0.05 sec) kA 28.73 16.66 2.39 8.59

ibasym (0.03 sec) kA 35.18 20.87 2.86 10.79
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breaking currents, i.e., for a 110-MVA generator the ANSI current is 34.20 kA sym.
For comparison with IEC asymmetrical breaking current, it should be further multi-
plied by 1.1, as ANSI breakers are rated on symmetrical current basis. Thus, the
current for comparison with IEC is 37.62 kA, while the IEC asymmetrical breaking
current is 28.73 kA. At 0.03 sec contact parting time the ANSI asymmetrical break-
ing current is 34:62� 1:2 ¼ 41:54 kA, and the IEC asymmetrical breaking
current ¼ 35.18 kA. The difference narrows down at 0.03 sec contact parting time.
It is interesting to note that the ANSI interrupting duty current at 0.03 sec contact
parting time is approximately equal to 0.05 sec contact parting time, as these two
currents have different asymmetry rating factor S. Yet the differential in breaking
currents in IEC calculations for minimum time delays of 0.03 and 0.05 sec is large
compared to ANSI calculations. The interrupting (breaking, asymmetrical) currents
from motors are higher in IEC calculations. Consider a asymmetrical breaking
current at 0.03 sec contact parting time of a 10,000-hp motor,
6:98� 1:2 ¼ 8:376 kA ANSI versus 10.79 kA IEC, a difference of approximately
29%. The larger difference in the generator currents is accountable to different X=
R ratios. The difference narrows down if the same X=R ratios are used; this is
illustrated in Example 8.3.

Example 8.2

Calculate the fault current contributions of the following asynchronous machines,
directly connected to a bus, using ANSI and IEC methods. Calculate first-cycle (IEC
peak) currents and the interrupting (breaking) currents at contact parting times of
two and three cycles, 60 Hz basis, and IEC minimum time delays of 0.03 and 0.05 sec
approximately. Compare the results.

. 320-hp, 2-pole, 2.3-kV induction motor, Xlr ¼ 16:7%

. 320-hp, 4-pole, 2.3-kV induction motor, Xlr ¼ 16:7%

. 1560-hp, 4-pole 2.3-kV induction motor, Xlr ¼ 16:7%

These results of ANSI calculations are shown in Table 8-5, while those of IEC
calculations are shown in Table 8-6. Most of the calculation steps for asynchronous
motors are in common with those for synchronous motors, as illustrated in Example
8.1. The motor locked rotor reactance of Xlr ¼ 16:7% on a motor kVA base is used
in both calculation methods; however, the resistances are based on recommendations
in each standard. Factor q must also be calculated for asynchronous motors and it is
given by Eq. (8.36). This requires m equal to the motor-rated power in megawatts per
pair of poles to be calculated on the basis of motor power factor and efficiency. The
symmetrical breaking current is then given by (8.37).

A comparison of results again shows divergence in the calculated currents.
Interestingly, in ANSI calculations, the interrupting duty current for a 320-hp
two-pole motor is twice that of the four-pole motor, 0.28 kA versus 0.14 kA.
(These should be multiplied by factor S to compare with IEC asymmetrical current
results.) This is so because a prior impedance multiplying factor of 1.5 is applicable
to a two-pole 320-hp motor and this factor is 3 for a four-pole 320-hp motor. IEC
calculation results for a two-pole motor is only slightly higher, 0.237 kA versus
0.204 kA at 0.05 sec minimum time delay. There is a difference in the decrement
of the currents at 0.03 and 0.05 sec in ANSI and IEC calculations, after ANSI
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Table 8-5 ANSI Fault Current Calculations from Asynchronous Motors Directly Connected to a Bus

Description

Xlr on

equipment
MVA base X=R

Impedance multiplying factors First-cycle calculations Interrupting duty calculations

First cycle Interrupting

First-cycle
current

(kA sym.)

First-cycle
current

(kA peak)

3-cycle contact
parting time
(kA rms)

2-cycle contact
parting time
(kA rms)

320-hp, 2-pole induction

motor, 2.3 kV (kVA ¼ 285)

16.7 15 1 1.5 0.427 1.094 0.28
MF ¼ 1:0

0.28
MF ¼ 1:0

320-hp, 4-pole induction

motor, 2.3 kV (kVA ¼ 285Þ
16.7 15 1.2 3 0.356 0.909 0.14

MF ¼ 1:0
0.14

MF ¼ 1:0
1560-hp, 4-pole, 2.3-kV

induction motor

(kVA ¼ 1350Þ

16.7 28.5 1 1.5 2.028 5.433 1.37

MF ¼ 1:016
1.43

MF ¼ 1:055
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currents are multiplied by a factor of 1.1 or 1.2 to account for asymmetry for
comparison with IEC currents. The magnitudes of the currents are also materially
different. The interrupting duty ANSI current for a 300-hp four-pole motor at a
contact parting time of 0.05 sec is 0:14� 1:1 ¼ 0:154 kA versus 0.204 kA in IEC
calculations, a difference of 32.4%.

Example 8.3

Example 7.1 of Chap. 7 is repeated with the IEC method of calculation. All the
impedance data remain unchanged, except that the resistance components are esti-
mated from IEC equations.

Three-Phase Fault at F1

For a fault at F1, the generator and transformer are considered as a PSU. For a fault
on the high-voltage side the correction factor is given by Eq. (8.17), repeated below:

KPSU ¼ tf
tr

� �2
cmax

1þ ðX 00
d � XTÞ sin�rG
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Table 8-6 IEC Fault Current Calculations from Asynchronous Motors Directly

Connected to a Bus

Description

300-hp, 2-pole, 2.3-kV

induction motor
(kVA ¼ 285), power

factor ¼ 0:9,
efficiency ¼ 0:93

300-hp, 4-pole, 2.3-kV

induction motor
(kVA ¼ 285), power

factor ¼ 0:9,
efficiency ¼ 0:93

1500-hp, 4-pole, 2.3-kV

induction motor
(kVA ¼ 1350), power

factor ¼ 0:92,
efficiency ¼ 0:94

ILR=IrM 6 6 6
I 00
K=IrM 6.6 6.6 6.6

m (electric power

per pair of poles)

(MW)

0.256 0.128 0.621

RM=XM 0.15 0.15 0.15
�M 1.65 1.65 1.65
� (0.05 sec) 0.79 0.79 0.79

� (0.03 sec) 0.83 0.83 0.83
q (0.05 sec) 0.63 0.54 0.73
q (0.03 sec) 0.79 0.66 0.86

I 00
KM (kA rms) 0.473 0.473 2.229
ipM (kA crest) 1.104 1.104 5.201
ibsym (0.05 sec) kA 0.235 0.202 1.285
ibsym (0.03 sec) kA 0.310 0.259 1.591

IDC (0.05 sec) kA 0.029 0.029 0.136
IDC (0.03 sec) kA 0.101 0.101 0.479
ibasym (0.05 sec) 0.237 0.204 1.292

ibasym (0.03 sec) 0.326 0.278 1.661
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Consider that the 60/100 MVA transformer is at rated voltage tap ratio, which is also
the nominal system voltage on the high-voltage side and the generator-rated voltage
on the low-voltage side. Then:

KPSU ¼ 1:1

1þ ð0:164� 0:0774Þð0:527Þ ¼ 1:052

The generator and transformer per unit impedances are on their respective MVA
base, as shown in Table 7-3. The modified power station impedance is then

ZPSU ¼ KPSUðZG þ ZTÞ
¼ 1:052ð0:007315 þ j0:14630þ 0:00404þ j0:12894Þ
¼ 0:01195þ j0:28955

in per unit on a 100-MVA base. It is not necessary to consider the asynchronous
motor contributions. The initial short-circuit current is then the sum of the source
and PSU components, given by

I 00
k ¼ I 00

kPSU þ I 00
kQ

The utility’s contribution, based on the source impedance on per unit from Table
7-3:

I 00
k Q ¼ 1:1

ZkQ

¼ 1:1

ð0:00163þ j0:02195Þ ¼ 3:7187� j49:78 pu

¼ j20:90j kA at 138 kV

PSU contribution

I 00
kPSU ¼ 1:1

ZPSU

¼ 1:1

0:01195þ j0:28955
¼ 0:1565� j3:7925 pu

¼ j1:59j kA at 138 kV

Therefore:

I 00
k ¼ 3:7187� j49:78þ 0:1565� j3:793 ¼ 3:8875� j53:573 pu ¼ j22:47j kA

The peak current ip is

ip ¼ ipPSU þ ipQ

Power station R=X ¼ 0:01195=0:28955 ¼ 0:04128. Therefore, PSU from Eq.
(8.4) ¼ 1:886. This gives

ipPSU ¼ PSU

ffiffiffi
2

p
I 00
kPSU ¼ ð1:886Þð

ffiffiffi
2

p
Þð1:59Þ ¼ 4:24 kA

Utility system R=X ¼ 0:0746, PQ ¼ 1:803:

ipQ ¼ Q

ffiffiffi
2

p
I 00
kQ ¼ ð1:803Þð

ffiffiffi
2

p
Þð20:90Þ ¼ 53:29 kA

ip ¼ 53:29þ 4:24 ¼ 57:53 kA peak.
The symmetrical breaking current is the summation of two currents—one from

the PSU and the other from the source:

Ib ¼ IbPSU þ IbQ ¼ IbPSU þ I 00
kQ
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Considering a contact parting time of 0.03 s, for the PSU contribution, � is calcu-
lated from Eq. (8.22). This gives � ¼ 0:94.

IbPSU ¼ 0:94� 1:59 ¼ 1:495 kA

Total breaking current ¼ 20:90þ 1:495 ¼ 22:395 kA symmetrical.
The dc components at contact parting time are calculated using Eq. (8.39),

repeated below:

idc ¼
ffiffiffi
2

p
I 00
k e

�2�ftR=X

The dc component of the utility’s source, based on X=R ¼ 14:3, from Table 7-3, isffiffiffi
2

p
ð20:90Þe�377ð0:03Þð0:0746Þ ¼ 12:71 kA

Similarly, the dc component from the PSU, based on X=R ¼ 24:23 from
ZPSU ¼ 1:41 kA; the total dc current is 14.12 kA.

Finally, the asymmetrical breaking current is

Ibasym ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2b þ ðidcÞ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð22:395Þ2 þ ð14:12Þ2

q
¼ 26:47 kA

Three-Phase Short-Circuit at F2

The adjustment factor ZG;PSU for the low-voltage side faults for PSUs is given by Eq.
(8.13):

ZG ¼ RG þ jX 00
d

RG ¼ 0:05 X 00
d for generator UrG > 1 kV and SrG � 100MVA

RG ¼ 0:05� 0:14630 ¼ 0:007315
ZG ¼ 0:007315þ j0:14630

KG;PSU ¼ cmax

1þ X 00
d sin�rG

¼ 1:1

ð1þ 0:164� 0:52Þ ¼ 1:0136

Therefore:

ZGPSU ¼ KGPSUZG ¼ 1:0136ð0:007315þ j0:14630Þ
¼ 0:0074þ j0:1483

We have ignored small impedances of bus ducts B1 and B2 in the above calculations.
We will also ignore contributions from all motors. The initial short-circuit currents
are the sum of the partial short-circuit currents from the generator and source
through transformer T1. The partial short-circuit current from the generator is

I 00
KG ¼ 1:1

ZGPSU

¼ 1:1

ð0:0074þ j0:1483Þ
¼ 0:369þ 7:399 pu

¼ j30:99j kA
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To calculate the partial short-circuit current of a utility’s system through the
transformer T1, the transformer impedance is modified. From Eqs (8.15) and (8.16):

ZT;PSU ¼ KT;PSUZT ¼ cZT ¼ 1:1ð0:00404þ j0:12894Þ
The potential short-circuit is:

I 00
KT1 ¼

1:1

1:1ðZTPSUÞ þ ZQÞ
¼ 1:1

1:1ð0:00404þ j0:12894Þ þ ð0:00163þ j0:02195Þ
¼ 1

ð0:006074þ j0:16378Þ ¼ 0:2261� j6:0972 pu

¼ j25:53j kA
By summation, the initial short-circuit current is then

I 00
k ¼ I 00

KG þ I 00
KT1

¼ 0:369� j7:399þ 0:2261 � j6:0972

¼ 0:595� j13:496 pu

¼ j56:5j kA
As resistance is low, this current could have been calculated using reactances only.
The peak current ip is the sum of the component currents:

ip ¼ ipG þ ipT

Factor  for the generator, based on RG=X
00
d ¼ 0:05, from Eq. (8.4) ¼ 1.86. Thus,

the peak current contributed by the generator is

ipG ¼ G

ffiffiffi
2

p
I 00
kG ¼ 1:86�

ffiffiffi
2

p
� 30:99 ¼ 81:52 kA

Similarly, calculate ipT:

R=X ¼ 0:00607=0:16378 ¼ 0:0371

T ¼ 1:90

ipT1 ¼ ð1:90Þð
ffiffiffi
2

p
Þð25:53Þ ¼ 68:60 kA

Therefore, the total peak current is 150.12 kA. The symmetrical breaking current Ib
is calculated at a minimum time delay of 0.05 s. It is the summation of the currents
from the source through T1, which is equal to the initial short-circuit current and the
symmetrical breaking current from the generator: Ib ¼ IbG þ IbT ¼ IbG þ I 00

kT.

IbG ¼ �I !!KG

I 00
KG=IRG ¼ 30:99=4:690 ¼ 6:60

� ¼ 0:78; q ¼ 1

IbG ¼ ð0:78Þð30:99Þ ¼ 24:17 kA

Total breaking current symmetrical ¼ 49.70 kA.
For asymmetrical breaking current dc components at a minimum time delay of

0.05 s are calculated:
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Generator component ¼ 17.08 kA
Transformer component ¼ 17.96 kA
Total dc component ¼ 35.04 kA

This gives a total asymmetrical breaking current of 60.81 kA.
These results are compared with the calculations in Example 7.1 and are

shown in Table 8-7. IEC currents are higher for a fault at F1 and lower for a
fault at F2, and we neglected the motor contributions and bus duct impedances.
Generally, for calculations involving currents contributed mainly by generators,
ANSI interrupting currents are higher than IEC currents. IEC uses an artificially
high generator resistance, which is further multiplied by factor KGPSU. As a result the
fault currents have comparatively much reduced in magnitude and asymmetry. The
calculation for faults at F1 are higher in IEC, because of factor c, which increases the
source contribution by 10%, while the generator contribution through transformer
T1 is comparatively small.

Short-Circuit Currents Contributed by the Generator

In Example 7.1, we calculated the generator fault current for a fault at F2 and noted
high asymmetry. The current zeros are not obtained at the contact parting time and
an asymmetry factor of 116% is calculated. The calculation is repeated with IEC
methods, by first considering the X=R ratio of the generator from IEC equations,
and then the same as in ANSI calculations. For X=R from IEC equations, the
calculations give:

I 00
KG ¼ 30.99 kA
ipG ¼ 81:52 kA peak
ibGsym ¼ 24.17 kA
iGDC ¼ 17.08 kA
ibGasym ¼ 29.59

The asymmetry factor � ¼ ð17:08Þ= ffiffiffi
2

p ð24:17Þ ¼ 49:9%. There is no problem of not
achieving a current zero at the contact parting time. Also, ratio S ¼ 29:59=24:17 ¼
1:224:

The calculation is repeated with generator X=R ratio equal to 130, and the
small impedance of the bus duct is ignored. The partial currents are:
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Table 8-7 Examples 8.3 and 8.4: Comparative Results of Three-Phase Short-Circuit
Calculations

Fault location Calculation method

First-cycle current kA
asym. crest (ANSI) or
peak current ip (IEC)

Interrupting duty
current (ANSI) or

Ibasym (IEC)

F1 (138 kV) ANSI calculation 51.66 20:54� 1:2 ¼ 24:65
IEC calculation 57.53 26.47

F2 (13.8 kV) ANSI calculation

IEC calculation

158.27
150.12

72:30� 1:1 ¼ 79:53
60.80

F3 (4.16 kV) ANSI calculation

IEC calculation

46.23

47.07

16:35� 1:1 ¼ 17:99
19.14
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I 00
KG ¼ 31.03 kA
ipG ¼ 87.64 kA peak
ibG sym ¼ 24.20 kA
iGDC ¼ 37.96 kA
ibGasym ¼ 45.02 kA

Here, we see that the asymmetry factor � ’ 1:12%. The results of the calculations
are shown in Table 8-8. It can, therefore, be said that IEC calculations recommend a
fictitious adjustment factor RG to account for ac decay, which substantially reduces
the asymmetry for faults fed from generators. When the same X=R ratios are used,
the results become more comparable.

Example 8.4

The effect of motors is neglected in Example 8.3. Calculate the partial currents from
the motors at 13.8 kV. Do these motor contributions need to be considered in IEC
calculations for a fault at F2? Also, calculate the peak current and the asymmetrical
breaking current for a fault at F3 on the 4.16-kV bus.

Effect of Motor Contribution at 13.8-kV Bus, Fault F2

For a fault at the 13.8-kV bus F2, an equivalent impedance of the motors through
transformers and cables is calculated. The partial currents from medium- and low-
voltage motors are calculated in Tables 8-9 and 8-10, respectively. The equivalent
impedance of low-voltage motors of two identical groups, from Table 8-10, is 6:45þ
j15:235 per unit.

The per unit impedance of transformer T3 from Table 7-3 is 0:639þ j3:780.
Therefore, the low-voltage motor impedance through transformer T3, seen from the
4.16-kV bus is 7.089 þ j19.015 per unit.

From Table 8-9, the equivalent impedance of medium-voltage motors is
0:58þ j4:55 pu. The equivalent impedances of low- and medium-voltage motors in
parallel is

ð7:089þ j19:015Þkð0:58þ j4:55Þ ¼ 0:637þ j3:707

To this add the impedance of cable C1 and transformer T2 from Table 7-3, which
gives 0:701þ j4:606 pu. This is the equivalent impedance as seen from the 13.8-kV
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Table 8-8 Generator Fault Currents: Example 8.4

Calculation type

Symmetrical

current
(kA rms)

Dc

component
(kA)

Asymmetrical
current

Asymmetry
factor � Ratio S

ANSI 18.95 34.58 39.43 1.29 2.08
IEC, generator RG

from IEC

24.17 17.08 29.59 0.50 1.22

IEC, generator X=R
same as in ANSI

calculation

24.20 37.96 45.02 1.12 1.86
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bus. Thus, the initial short-circuit current from the motor contribution is
1:1=ð0:701þ j4:606) per unit ¼ j0:99j kA.

The effect of motors in this example can be ignored and the above calculation
of currents from motor contributions is not necessary. From Eq. (8.33),

P
Prm¼ sum

of the active powers of all medium- and low-voltage motors ¼ 0.86 MW. Also,P
SrT ¼ rated apparent power of the transformer ¼ 7.5MVA. The left-hand side

of Eq. (8.33) ¼ 0.1147. Symmetrical short-circuit power at the point of connection,
without effect of motors, is

S 00
kQ ¼

ffiffiffi
3

p
I 00
k Un ¼

ffiffiffi
3

p
ð56:5Þð13:8Þ ¼ 1350:7MVA

The right-hand side of Eq. (8.33) gives 2.571 and the identity in Eq. (8.33) is satisfied.
The effect of motors can be ignored for a fault at 13.8 kV.

If the calculation reveals that motor contributions should be considered, we
have to modify ip at the fault point. This requires calculation of , which is not
straightforward. High-voltage motors have  ¼ 1:75 or 1.65 and low-voltage motors
have  ¼ 1:65. For a combination load,  ¼ 1:7 can be used to calculate ip approxi-
mately.
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Table 8-9 Partial Short-Circuit Currents from Asynchronous Medium-Voltage Motors:

Example 8.4

Parameter 2425 hp 300 hp 500 hp Sum (
P

)

Power output, Prm (MW) 1.81 0.224 0.373

Quantity 1 3 2

Power factor (cos �) 0.93 0.92 0.92

Efficiency (�r) 0.96 0.93 0.94

Ratio, locked rotor

current to full load

current (ILR=IrM)

6 6 6

Pair of poles (p) 1 1 2

Sum of MVA (SrM) 2.03 0.78 0.86

Sum, rated current (IrM) 0.28 0.11 0.12

I 00
K=IrM 6.6 6.6 6.6

Power per pole pair (m) 1.81 0.223 0.186

RM=XM 0.10 0.15 0.15

�m 1.75 1.65 1.65

� 0.78 0.78 0.78

q 0.86 0.61 0.59

I 00
KM 1.85 0.73 0.79

P ¼ 3:37
ipM 4.58 1.70 1.84

P ¼ 8:12
ibM 1.24 0.35 0.36

P ¼ 1:95
ZM 8.23 21.41 19.42

XM 0:995ZM ¼ 8:189 0:989ZM ¼ 21:17 0:989ZM ¼ 19:21
RM 0:1XM ¼ 0:82 0:15XM ¼ 3:18 0:15XM ¼ 2:88
Cable C2 0:068þ j0:104P

MV motors and cable 0:58þ j4:55
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Fault at F3. For a fault at F3, we will first calculate the motor contributions. The
low-voltage motor impedance plus transformer T3 impedance is 7:089þ j19:015, as
calculated above. The initial short-circuit contribution from the low-voltage motor
contribution is 1:1=ð7:089þ j19:015Þ ¼ 0:019� j0:051 pu or jI 00

k j ¼ 0:76 kA.
Medium-voltage impedance, from Table 8-9, is 0:58þ j4:55 per unit. The medium-
voltage motor contribution is 0:028� j0:239 pu or jI 00

k j ¼ 3:43 kA:
To calculate the generator and utility source contributions the impedances

ZG;PSU is in k with (ZT;PSU þ ZQ), i.e., 0:0074þ j0:1483 in k with
0:006074þ j0:16378. This gives 0:0034þ j0:0778 pu. Add transformer T2 impedance
(0:06349þ j0:89776) and cable C1 impedance (0.00038þj0.00101) from Table 7-3.
This gives an equivalent impedance of 0:0673þ j0:976 per unit. Thus, the initial
short-circuit current is 0:077� j1:122 per unit or jI 00

K j ¼ 15:61 kA. The total initial
symmetrical current, considering low- and medium-voltage motor contributions, is
19.80 kA. To calculate ip,  must be calculated for the component currents.

For contribution through transformer T2, using Eq. (8.4):

AT ¼ 1:02þ 0:98"�3ð0:06895Þ

¼ 1:82

As this is calculated from a meshed network, a safety factor of 1.15 is applicable, i.e.,
 ¼ 1:15 multiplied by 1.82 ¼ 2.093. However, for high-voltage systems  is not
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Table 8-10 Low-Voltage Motors, Partial Short-Circuit Current Contributions: Example

8.4

Parameter

Motors M4, M5, and

M6 (or identical group
of motors M4 0, M5 0,

and M6) Remarks

Prm (MW) 0.43 Calculated active

power rating of

the motor group

Sum of MVA (SrM) 0.52 Active power rating

divided by power

factor

RM=XM 0.42 From Eq. (8.20) for

group of motors

connected through

cables

m 1.3 From Eq. (8.4)

Ratio, locked rotor current to full load

current (ILR=IrM)

6

ZM in per unit 100-MVA base 32.12

XM in per unit 100-MVA base 0:922 ZM ¼ 29:61 Equation (8.20)

RM in per unit 100-MVA base 0:42 XM ¼ 12:44 Equation (8.20)

Cables C3 or C4 in per unit 100-MVA base 0:46þ j0:860 Table 7-3
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>2.0. This gives ipAT ¼ ð2Þð ffiffiffi
2

p Þð15:65Þ ¼ 44:27. For medium-voltage motors,  can
be calculated from Table 8-9:

MV ¼ ipffiffiffi
2

p
I 00
K

¼ 8:12ffiffiffi
2

p ð3:34Þ ¼ 1:72

For low-voltage motors through transformer T3:

LVT ¼ 1:02þ 0:98e�3ð6:97=19:02Þ ¼ 1:346

ipLV ¼ ð1:346Þð
ffiffiffi
2

p
Þð0:76Þ ¼ 1:45 kA

Total peak current by summation ¼ 47.07 kA.
The breaking current is the summation of individual breaking currents:
Breaking current through transformers at 4:16 kV ¼ jI 00

K j ¼ 15:65 kA
Breaking current medium-voltage motors from Table 8-9 = 1.96 kA
For low-voltage motors with I 00

KM=IRM ¼ 6:6, � ¼ 0:78, q can be conservatively
calculated for m � 0:3 and p ¼ 2. This gives q ¼ 0:64. The component breaking
current from low-voltage motors is therefore, 0:78� 0:64� 0:76 ¼ 0:38 kA. Total
symmetrical breaking current ¼ 17:98 kA.

To calculate the asymmetrical breaking current the dc components of the
currents should be calculated:

The dc component of the low-voltage motor contribution is practically zero.
The dc component of the medium-voltage motors at contact parting time of

0.05 s ¼ 0.5 kA.
The dc component of current through transformer T2 ¼ 6.07 kA.
Total dc current at contact parting time ¼ 6.57 kA; this gives asymmetrical

breaking current of 19.14 kA.

The results are shown in Table 8-7.

Example 8.5: Steady-State Currents

Calculate the steady-state currents on the 13.8-kV bus, fault point F2, in the system
of Example 7.1, according to IEC and ANSI methods.

IEC Method

The steady-state current is the summation of the source current through the trans-
former and the generator steady-state current:

Ik ¼ IkPSU þ IkG ¼ I 00
KPSU þ �maxIrG

Substitution of �min gives the minimum steady-state current; �max and �min are
calculated from Fig. 8-7; and IrG ¼ 4:69 kA, I 00

kG ¼ 30:99 kA, and ratio
I 00
kG=IrG ¼ 6:61. Also from Table 6-1, the generator Xd�sat ¼ 1:949. From Series
One curves in Fig. 8-7, �min ¼ 0:5 and �max ¼ 1:78. Therefore, the maximum gen-
erator steady-state current is 8.35 kA, and the minimum generator steady-state cur-
rent is 2.345 kA. The source steady-state current is equal to the initial short-circuit
current (25.53 kA); therefore, the total steady-state short-circuit current is 33.88 kA
maximum and 27.88 kA minimum.
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Figure 8-P1 System configuration for Problem 3.

Table 8-P1 Impedance Data for Problems 4 and 5

System component Description and impedance data

230-kV utility source Three-phase short-circuit ¼ 8690MVA, X=R ¼ 16:9
Step-up transformer 230–18 kV, 200MVA, Z ¼ 10%, X=R ¼ 35, HV tap at 23,5750V

Generator 18 kV, 230MVA, 0.85 power factor, subtransient reactance ¼ 16%

Three-winding auxiliary

transformer

18–4.16–4.16 kV, 20/10/10MVA. impedance 18 kV to each 4.16-kV

winding ¼ 8% 20-MVA base, impedance 4.16-kV winding to 4.16-kV

winding ¼ 15%, 20-MVA base

1-MVA transformer 4.16–0.48 kV, Z ¼ 5:75%, X=R ¼ 5:75
1.5-MVA transformer 4.16–0.48 kV, Z ¼ 5:75%, X=R ¼ 7:5
Medium-voltage

motors

M1 ¼ 5000-hp, 6-pole, synchronous, 0.8 power factor leading
M2 ¼ 2500-hp, 8-pole, induction
M3 ¼ 2500-hp, 2-pole, induction

M4 ¼ 2500-hp, 12-pole, synchronous, 0.8 power factor leading
M5 ¼ 2000-hp, 4-pole, synchronous, unity power factor
M6 ¼ 1000-hp, 2-pole induction

M7 ¼ 1000-hp, 6-pole induction
Low-voltage motor

groups

MG1 ¼ 2� 100 hp, and 6� 40 hp induction 4-pole induction
MG2 ¼ 4� 150 hp, and 8� 75 hp induction 6-pole induction
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ANSI Method

The source current from Example 7.1 is 27.69 kA. From Table 6-1, the generator
transient reactance is 0.278 on machine MVA base. The generator contribution is,
therefore, 16.87 kA, and the total steady-state current is 44.56 kA.

The calculations demonstrate that there are differences in results obtained by
ANSI and IEC methods and one or the other calculation method can give higher or
lower results. For the same impedance data and X=R ratios, the results are more
comparable. The predominant differences are noted in the contributions from
motors and generators, which are the major sources of short-circuit currents in
power systems. These differences vary with the contact parting times. The factor c
in IEC calculations makes the source contributions higher, and this generally results
in higher currents. It seems appropriate to follow the calculations and rating struc-
tures of breakers in these standards in their entity, i.e., use IEC calculations for IEC-
rated breakers and ANSI calculations for ANSI-rated breakers.

Problems

The problems in this secction are constituted so that they can be solved by hand
calculations.

1. A 13.8-kV, 60-MVA, two-pole 0.8 power factor synchronous generator
has a subtransient reactance of 11%. Calculate its corrected impedance
for a bus fault. If this generator is connected through a step-up transfor-
mer of 60 MVA, 13.8–138 kV, transformer Z ¼ 10%, X=R ¼ 35, what
are the modified impedances for a fault on the 138-kV side and 13.8-kV
side?

2. In Problem 1, the 138-kV system has a three-phase fault level of 6500
MVA, X=R ¼ 19. Calculate initial symmetrical short-circuit current,
peak current, symmetrical breaking current, and asymmetrical breaking
currents for a three-phase fault on the 138-kV side and 13.8-kV side. The
minimum time delay for fault on the 138-kV side is 0.03 s for a fault on
the 13.8-kV side is 0.05 s.

3. Figure 8-P1 shows a double-ended substation with parallel running trans-
formers. A three-phase fault occurs at F. Calculate I 00

k , ip, Ib sym, Ib asym,
Idc, and Ik.

4. Figure 8-P2 shows a generating station with auxiliary loads. Calculate
three-phase fault currents for faults at F1, F2, and F3. Calculate all
component currents I 00

k , ip, ib sym, Ib asym, Idc, and Ik in each case. The
system data are shown in Table 8-P1.

5. Repeat Problem 4 with typical X=R ratios from Figs 7-2 and 7-4.
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Figure 8-P2 System configuration for Problems 4 and 5.
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9

Calculations of Short-Circuit Currents
in DC Systems

The calculations of short-circuit currents in dc systems is essential for the design and
application of distribution and protective apparatuses used in these systems. The dc
systems include dc motor drives and controllers, battery power applications, emer-
gency power supply systems for generating stations, data-processing facilities, and
computer-based dc power systems and transit systems.

Maximum short-circuit currents should be considered for selecting the rating
of the electrical equipment like cables, buses, and their supports. The high-speed dc
protective devices may interrupt the current, before the maximum value is reached. It
becomes necessary to consider the rate of rise of the current, along with interruption
time, in order to determine the maximum current that will be actually obtained.
Lower speed dc protective devices may permit the maximum value to be reached,
before current interruption.

Though the simplified procedures for dc short-circuit current calculation are
documented in some publications, these are not well established. There is no ANSI/
IEEE standard for calculation of short-circuit currents in dc systems. A General
Electric Company publication [1] and ANSI/IEEE standard C37.14 [2] provide some
guidelines. IEC standard 61660-1 [3], published in 1997, is the only comprehensive
document available on the subject. This standard addresses calculations of short-
circuit currents in dc auxiliary installations in power plants and substations and does
not include calculations in other large dc power systems, such as electrical railway
traction and transit systems.

The IEC standard describes quasi steady-state methods for dc systems. The
time variation of the characteristics of major sources of dc short-circuit current from
initiation to steady-state are discussed and appropriate estimation curves and pro-
cedures are outlined.

A dynamic simulation is an option, however, akin to short-circuit current
calculations in ac systems; the simplified methods are easy to use and apply, though
rigorously these should be verified by an actual simulation.
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9.1 DC SHORT-CIRCUIT CURRENT SOURCES

Four types of dc sources can be considered:

. Lead acid storage batteries

. DC motors

. Converters in three-phase bridge configuration

. Smoothing capacitors
Figure 9-1 shows the typical short-circuit current–time profiles of these sources, and
Fig. 9-2 shows the standard approximate function assumed in the IEC standard [3].
The following definitions apply:

Ik ¼ Quasi steady-state short-circuit current
ip ¼ Peak short-circuit current
Tk ¼ Short-circuit duration
tp ¼ time to peak

Short-Circuit Currents in DC Systems 303

Figure 9-1 Short-circuit current–time profile of various dc sources: (a) rectifier without and
with smoothing reactor; (b) battery; (c) capacitor; (d) dc motor with and without additional

inertia mass. (From Ref. 3. Copyright 1997 IEC. Reproduced with permission.)
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1 ¼ Rise time constant

2 ¼ Decay-time constant

The function is described by:

i1ðtÞ ¼ ip
1� e�t=
1

1� e�tp=
1
ð9:1Þ

i2ðtÞ ¼ ip½ð1� �Þe�ðt�tpÞ=
2 þ ��t � tp ð9:2Þ
� ¼ Ik=ip ð9:3Þ

The quasi steady state current Ik is conventionally assumed as the value at 1 sec after
the beginning of short-circuit. If no definite maximum is present, as shown in Fig.
9-1(a) for the converter current, then the function is given by Eq. (9.1) only.

9.2 CALCULATION PROCEDURES

9.2.1 IEC Calculation Procedure

Figure 9-3 shown a hypothetical dc distribution system which has all the four sources
of short-circuit current, i.e., a storage battery, a charger, a smoothing capacitor, and
a dc motor. Two locations of short-circuit are shown: (1) at F1, without a common
branch, and (2) at F2, through resistance and inductance, Ry and Ly of the common
branch. The short-circuit current at F1 is the summation of short-circuit currents of
the four sources, as if these were acting alone through the series resistances and
inductances. Compare this to the IEC method of ac short-circuit calculations in
nonmeshed systems, discussed in Chapter 8.

For calculation of the short-circuit current at F2, the short-circuit currents are
calculated as for F1 but adding Ry and Ly to the series circuit in each of the sources.
Correction factors are introduced and the different time functions are added to the
time function of the total current.

Whether it is the maximum or minimum short-circuit current calculation, the
loads are ignored (i.e., no shunt branches) and the fault impedance is considered to
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Figure 9-2 Standard approximation of short-circuit function. (From Ref. 3. Copyright 1997
IEC. Reproduced with permission.)
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be zero. For the maximum short-circuit current, the following conditions are
applicable:

. The resistance of joints (in bus bars and terminations) is ignored.

. The conductor resistance is referred to 208C.

Short-Circuit Currents in DC Systems 305

Figure 9-3 A dc distribution system for calculation of short-circuit currents. (From Ref. 3.
Copyright 1997 IEC. Reproduced with permission.)
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. The controls for limiting the rectifier current are not effective.

. The diodes for the decoupling part are neglected.

. The battery is fully charged.

. The current limiting effects of fuses or other protective devices are taken
into account.

For calculation of the minimum short-circuit current:

. The conductor resistance is referred to maximum temperature.

. The joint resistance is taken into account.

. The contribution of the rectifier is its rated short-circuit current.

. The battery is at the final voltage as specified by the manufacturer.

. Any diodes in the decoupling parts are taken into account.

. The current-limiting effects of fuses or other protective devices are taken
into account.

9.2.2 Matrix Methods

Matrix methods contrast with superimposition techniques. In an example of calcula-
tion in Ref. [1], three sources of current, i.e., a generator, a rectifier, and a battery,
are considered in parallel. The inductances and resistances of the system components
are calculated and separate resistance and inductance networks are constructed,
much akin to the ANSI/IEEE method for short-circuit current calculations in ac
systems. These networks are reduced to a single resistance and inductance and then
the maximum short-circuit current is simply given by the voltage divided by the
equivalent resistance and its rate of rise by the equivalent time constant, which is
equal to the ratio of equivalent inductance over resistance. This procedure assumes
that all sources have the same voltage. When the source voltages differ, then the
partial current of each source can be calculated and summed. This is rather a sim-
plification. For calculation of currents from rectifier sources an iterative procedure is
required, as the resistance to be used in a Thévenin equivalent circuit at a certain
level of terminal voltage during a fault needs to be calculated. This will be illustrated
with an example.

9.3 SHORT-CIRCUIT OF A LEAD ACID BATTERY

The battery short-circuit model is shown in Fig. 9-4; RB is the internal resistance
of the battery, EB is the internal voltage, RC is the resistance of cell connectors,
LCC is the inductance of the cell circuit in H, and LBC is the inductance of the
battery cells considered as bus bars. The internal inductance of the cell itself is
zero. The line resistance and inductance are RL and LL, respectively. The equiva-
lent circuit is that of a short-circuit of a dc source through equivalent resistance
and inductance, i.e.,

iRþ L
di

dt
¼ EB ð9:4Þ

The solution of this equation is

i ¼ EB

R
ð1� e�ðR=LÞtÞ ð9:5Þ
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The maximum short-circuit current is then

IBsc ¼
EB

R
ð9:6Þ

and the initial maximum rate of rise of the current is given by di=dt at t ¼ 0, i.e.,

diB
dt

¼ EB

L
ð9:7Þ

Referring to Fig. 9-4 all the resistance and inductance elements in the battery
circuit are required to be calculated. The battery internal resistance RB by the IEEE
method [4] is given by

RB ¼ RcellN ¼ Rp

Np

ð9:8Þ

where RCell is the resistance/per cell, N is the number of cells, Rp is the resistance per
positive plate, and Np is the number of positive plates in a cell; Rp is given by

Rp ¼
V1 � V2

I2 � I1
�=positive plate ð9:9Þ

where V1 is the cell voltage and I1 is the corresponding rated discharge current per
plate. Similarly, V2 is the cell voltage and I2 is the corresponding rated discharge
current per plate at V2.

The following equation for the internal resistance is from Ref. [1]:

RB ¼ EB

100� I8hr
� ð9:10Þ

where I8hr is the 8-h ampère rating of the battery to 1.75V per cell at 258C. RB is
normally available from manufacturers’ data; it is not a constant quantity and
depends on the charge state of the battery. A discharged battery will have much
higher cell resistance.
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Figure 9-4 Equivalent circuit of the short-circuit of a battery through external resistance
and inductance.
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Example 9.1

A 60-cell 120V sealed, valve regulated, lead acid battery has the following electrical
and installation details:

Battery rating ¼ 200 Ah (ampere hour), 8-h rate of discharge to 1.75V per cell.
Each cell has the following dimensions: height ¼ 7.9 in. (¼ 200mm),
length ¼ 10.7 in. (¼ 272mm), and width ¼ 6.8 in. (¼ 173mm). The battery is
rack mounted, 30 cells per row, and the configuration is shown in Fig. 9-5. Cell
interconnectors are 250 KCMIL, diameter ¼ 0.575 in.

Calculate the battery short-circuit current. If the battery is connected through a
cable of approximately 100 ft length to a circuit breaker, cable resistance 5m� and
inductance 14 mH, calculate the short-circuit current at breaker terminals.

The battery resistance according to Eq. (9.10) and considering a cell voltage of
2V per cell, is

RB ¼ EB

100� I8�h

¼ 120

100� 200
¼ 6m�

The manufacturer supplies the following equation for calculating the battery resis-
tance:

RB ¼ 31� EB

I8 hr
m� ð9:11Þ

Substituting the values, this gives a battery resistance of 18.6m�. There is three
times the difference in these values, and the manufacturer’s data should be used.

From Fig. 9-5, battery connectors have a total length of 28 ft, size 250 KCMIL.
Their resistance from the conductor resistance data is 1.498 m� at 258C. The total
resistance in the battery circuit is RB þ RC ¼ 20:098m�. Therefore, the maximum
short-circuit current is 120=ð20:098� 10�3Þ ¼ 5970A:

The inductance Lc of the battery circuit is sum of the inductances of the cell
circuit LCC plus the inductance of the battery cells, LCB. The inductance of two
round conductors of radius r, spaced at a distance d, is given by the expression:

308 Chapter 9

Figure 9-5 Battery system layout for calculation of short-circuit current (Examples 9.1
and 9.2).
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L ¼ �0

�
0:25þ ln

d

r

� �
ð9:12Þ

where �0 is the permeability in vacuum ¼ 4�10�7 H/m. From Fig. 9-5, the distance
d ¼ 24 in. and r, the radius of 250 KCMIL conductor, is 0.2875 in. Substituting the
values in Eq. (9.12) the inductance is 1.87 mH/m for the loop length. Therefore, for a
18-ft loop length in Fig. 9-5, the inductance LCC ¼ 10:25 mH.

The inductance of battery cells can be determined by treating each row of cells
like a bus bar. Thus, the two rows of cells are equivalent to parallel bus bars at a
spacing d ¼ 24 in, the height of the bus bar h ¼ height of the cell ¼ 7:95 in and the
width of the bus bars w ¼ width of the cell ¼ 6:8 in. The expression for inductance
of the bus bars in this configuration is:

L ¼ �0

�

3

2
þ ln

d

hþ w

� �
ð9:13Þ

This gives inductance in H per meter loop length. Substituting the values, for an 18-ft
loop length, inductance LBC ¼ 4:36 mH. The total inductance is, therefore, 14.61 mH.
The initial rate of rise of the short-circuit current is given by

EB

LC

¼ 120

14:61� 10�6
¼ 8:21� 106 A=s

The time constant is

LC

RB þ RC

¼ 14:61� 10�6

20:01� 10�3
¼ 0:73ms

The current reaches 0:63� 5970 ¼ 3761A in 0.73ms and in 1.46ms it will be
0:87� 5970 ¼ 5194A.

The cable resistance and inductance can be added to the values calculated
above, i.e., total resistance ¼ 25:01m� and total inductance is 28.61 mH. The max-
imum short-circuit current is, therefore, 4798A, and the time constant changes to
1.14 msec. The current profiles can be plotted.

IEC Calculation

To calculate the maximum short-circuit current or the peak current according to
IEC, the battery cell resistance RB is multiplied by a factor 0.9. All other resistances
in Fig. 9-4 remain unchanged. Also, if the open-circuit voltage of the battery is
unknown then use EB ¼ 1:05UnB, where UnB ¼ 2:0V/cell for lead acid batteries.
The peak current is given by

ipB ¼ EB

RBBr

ð9:14Þ

where ipB is the peak short-circuit current from the battery and RBBr is the total
equivalent resistance in the battery circuit, with RB multiplied by a factor of 0.9. The
time to peak and the rise time is read from curves in Fig. 9-6, based on 1=�, which is
defined as follows:

1

�
¼ 2

RBBr

LBBr

þ 1

TB

ð9:15Þ
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The time constant TB is specified as equal to 30 ms and LBBr is the total equivalent
inductance to the fault point in the battery circuit. The decay time constant 
2B is
considered to be 100 msec. The quasi steady-state short-circuit current is given by

IkB ¼ 0:95EB

RBBr þ 0:1RB

ð9:16Þ

This expression considers that the battery voltage falls and the internal cell resistance
increases after the short-circuit. Note that all equations from IEC are in MKS units.

Example 9.2

Calculate the short-circuit current of the battery in Example 9.1, by the IEC method.
The total resistance in the battery circuit, without external cable, is

0:9� 18:6þ 1:498 ¼ 18:238m�. The battery voltage of 120V is multiplied by factor
1.05. Therefore, the peak short-circuit current is

ipB ¼ EB

RBBr

¼ 1:05� 120

18:238� 10�3
¼ 6908:6A

This is 15.7% higher compared to the calculation in Example 9.1: 1/� is calculated
from Eq. (9.15).

1

�
¼ 2

18:238� 10�3

14:61� 10�6
þ 1

30� 10�3

¼ 15:6ms
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Figure 9-6 Time to peak tpB and rise time constant 
1B for short-circuit of a battery. (From
Ref. 3. Copyright 1997 IEC. Reproduced with permission.)
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From Fig. 9-6, the time to peak ¼ 4:3ms and the rise time constant is 0.75 ms. The
quasi steady-state short-circuit current is

IkB ¼ 0:95� 126� 103

18:238þ 0:1ð18:6Þ ¼ 5956A

The calculations with external cable added are similarly carried out. The cable
resistance is 5m� and inductance is 14 mH. Therefore, RBBr ¼ ð0:9Þð18:6Þ þ 1:498 þ
5 ¼ 23:24m�. This gives a peak current of 5422 A; 1=� ¼ 2:40ms and time to peak is
7 ms. The rise time constant is 1.3msec, and the quasi steady-state short-circuit
current is 4796A. The short-circuit current profile is plotted in Fig. 9-7(a).
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Figure 9-7 Calculated short-circuit current–time profiles: (a) battery (Example 9.2); (b) dc

motor (Example 9.4); (c) rectifier (Example 9.6); (d) capacitor (Example 9.7).
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9.4 DC MOTOR AND GENERATORS

An expression for the short-circuit from dc generators and motors [1] is

ia ¼
e0
r 0d

ð1� e�	atÞ � e0
r 0d

� e0
rd

� �
ð1� e	f tÞ ð9:17Þ

where

ia ¼ per unit current
e0 ¼ internal emf prior to short-circuit in per unit
rd ¼ steady-state effective resistance of the machine in per unit
r 0d ¼ transient effective resistance of the machine in per unit
	a ¼ armature circuit decrement factor
	f ¼ field circuit decrement factor

The first part of the equation has an armature time constant, which is relatively
short and controls the buildup and peak of the short-circuit current; the second part
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Figure 9-7 (Continued)
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is determined by the shunt field excitation and it controls the decay of the peak value.
The problem of calculation is that the time constants in this equation are not time
invariant. Saturation causes the armature circuit decrement factor to increase as the
motor saturates. Approximate values suggested for saturated conditions are 1.5–3.0
times the unsaturated value and conservatively a value of 3.0 can be used. The
unsaturated value is applicable at the start of the short-circuit current and the
saturated value at the maximum current. Between these two extreme values the
decrement is changing from one value to another. Figure 9-8 shows the approximate
curve of the short-circuit current and its equivalent circuit. For the first two-thirds of
the curve the circuit is represented by machine unsaturated inductance L 0

a, and for
the last one-third L 0

a is reduced to one-third with series transient resistance. The peak
short-circuit current in per unit is given by

i 0a ¼
e0
r 0d

ð9:18Þ

The transient resistance r 0d in per unit requires some explanation. It is the effective
internal resistance:

r 0d ¼ rw þ r 0b þ r 0x ð9:19Þ

where rw is the total resistance of the windings in the armature circuit, r 0x is the
equivalent to flux reduction in per unit, and r 0b is the transient resistance equal to
reactance voltage and brush contact resistance in per unit. The flux reduction and
distortion are treated as ohmic resistance. The values of transient resistance r 0d in per
unit are given graphically in the AIEE Committee Report of 1950 [5], depending on
the machine rating, voltage, and speed. The transient resistance is not constant and
there is a variation band. The machine load may also effect the transient resistance
[6]. There does not seem to be any later publication on the subject. Similarly, the
steady-state resistance is defined as

rd ¼ rw þ rb þ rx ð9:20Þ
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Figure 9-8 Short-circuit current–time curve for a dc motor or generator showing two

distinct time constants.
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where rb is the steady-state resistance equivalent to reactance voltage and brush
contact in per unit, and rx is the steady-state resistance equivalent to flux reduction
in per unit.

The maximum rate of rise of the current is dependent on armature unsaturated
inductance. The unit inductance is defined as

La1 ¼
V1

Ia

2� 60

2�PN1

ð9:21Þ

The per unit inductance is the machine inductance L 0
a divided by the unit inductance:

Cx ¼
L 0
a

La1

¼ PN1L
0
a

19:1

Ia
V1

ð9:22Þ

This can be written as

L 0
a ¼

19:1CxV1

PN1Ia
ð9:23Þ

where P ¼ number of poles, N1 ¼ base speed, V1 ¼ rated voltage, Ia ¼ rated
machine current, and Cx varies with the type of machine. Charts of initial inductance
plotted against unit inductance show a linear relationship for a certain group of
machines. For this purpose the machines are divided into four broad categories as
follows:

Motors: Cx ¼ 0:4 for motors without pole face windings.
Motors: Cx ¼ 0:1 for motors with pole face windings.
Generators: Cx ¼ 0:6 for generators without pole face windings.
Generators: Cx ¼ 0:2 for generators with pole face windings.

The armature circuit decrement factor is

	a ¼
r0d2�f
Cx

ð9:24Þ

The maximum rate of rise of current in amperes per second is given by:

dia
dt

¼ V1eo
L 0
a

ð9:25Þ

The rate of current rise can also be expressed in terms of per unit rated current:

dia
dt

¼ PN1eo
19:1Cx

ð9:26Þ

In Eqs (9.25) and (9.26) e0 can be taken as equal to unity without appreciable
error. More accurately, e0 can be taken as 0.97 per unit for motors and 1.03 for
generators. The inductance L 0

a is given in tabular and graphical forms in an AIEE
publication [7] of 1952. Figure 9-9 shows L 0

a values in mH for certain motor sizes,
without pole face windings. Again, there does not seem to be a later publication on
the subject.
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Example 9.3

Calculate the short-circuit current of a 230-V, 150-hp, 1150-rpm motor, for a short-
circuit at motor terminals. The motor armature current is 541A.

From graphical data in Ref. 1, the transient resistance is 0.068 per unit. Also,
the inductance L 0

a from the graphical data in Fig. 9-9 is 1.0 mH. Then, the peak
short-circuit current is

I 0
a ¼ Ia

r 0d
¼ 541

0:068
¼ 7956A

and the initial rate of rise of the current is

dia
dt

¼ V1

L 0
a

¼ 230

1� 10�3
¼ 230 kA=s

As shown in Fig. 9-8, the time constant changes at point b.

L 0
a

3r 0d
The base ohms are Va=Ia ¼ 230=541 ¼ 0:425. Therefore, r 0d in ohms ¼ ð0:425Þ �
ð0:068Þ ¼ 0:0289�. This gives a time constant of 11.52ms. The short-circuit profile
can now be plotted.
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Figure 9-9 Inductance of dc motors in mH versus motor hp.
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IEC Method

The resistance and inductance network of the short-circuit of a dc machine with a
separately excited field is shown in Fig. 9-3. The equivalent resistance and inductance
are

RMB ¼ RM þ RML þ Ry

LMB ¼ LM þ LML þ Ly

ð9:27Þ

where RM, and LM are the resistance and inductance of the armature circuit includ-
ing the brushes, RML, and LML are the resistance and inductance of the conductor in
the motor circuit, and Ry and Ly are the resistance and inductance of the common
branch, if present. The time constant of the armature circuit up to the short-circuit
location, 
M , is given by


M ¼ LMB

RMB

ð9:28Þ

The quasi steady-state short-circuit current is given by

IKM ¼ LF

L0F

UrM � IrMRM

RMB

IðKM¼ 0; when n ! 0Þ ð9:29Þ

where:

LF ¼ equivalent saturated inductance of the field circuit on short-circuit
L0F ¼ equivalent unsaturated inductance of the field circuit at no load
UrM ¼ rated voltage of the motor
IrM ¼ rated current of the motor
n ¼ motor speed
nn ¼ rated motor speed

The peak short-circuit current of the motor is given by

ipM ¼ �M
UrM � IrMRM

RMB

ð9:30Þ

At normal speed or decreasing speed with 
mec � 10
F, the factor �M ¼ 1, where 
mec

is the mechanical time constant, given by


mec ¼
2�Jn0RMBIrM

MrUrM

ð9:31Þ

where J is the moment of inertia, and Mr is the rated torque of the motor.
The field circuit time constant 
F is given by:


F ¼ LF

RF

ð9:32Þ

For 
mec � 10
F the time to peak and time constant are given by

tpM ¼ �1M
M


1M ¼ �2M
M
ð9:33Þ
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The factor �1M and �2M are taken from Fig. 9-10 and are dependent on 
F=
M and
LF=L0F. For decreasing speed with 
mec < 10
F, the factor �M is dependent on 1=� ¼
2
M and !0:

!0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1


mec
M
1� IrMRM

UrM

� �s
ð9:34Þ

where !0 is the undamped natural angular frequency and � is the decay coefficient;
�M is derived from the curves in the IEC standard [3].

For decreasing speed with 
mec < 10
F, the time to peak 
M is read from a curve
in the IEC standard, and the rise time constant is given by


1M ¼ �3M
M ð9:35Þ
where the factor �3M is again read from a curve in the IEC standard [3], not repro-
duced here.

Decay time constant 
2M

For nominal speed or decreasing speed with 
mec � 10
F:


2M ¼ 
F when n ¼ nn ¼ const:


2M ¼ L0F

LF

�4M
mec when n ! 0 with 
mec � 10
F
ð9:36Þ

For decreasing speed with 
mec < 10
F:


2M ¼ �4M
mec ð9:37Þ
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Figure 9-10 Factors �1M and �2M for determining the time to peak tpM and the rise-time
constant 
1M for normal and decreasing speed with 
mec � 10
F; short-circuit of a dc motor.

(From Ref. 3. Copyright 1997 IEC. Reproduced with permission.)
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where �4M is again read from a curve in the IEC standard, not reproduced here.
Thus, the IEC calculation method requires extensive motor data and use of a num-
ber of graphical relations in the standard. The rise and decay time constants are
related to 
mec < 10
F or 
mec � 10
F.

Example 9.4

Calculate the short-circuit current for a terminal fault on a 115V, 1150-rpm, six-
pole, 15-hp motor. The armature current ¼ 106A, the armature and brush circuit
resistance ¼ 0:1�, and the inductance in the armature circuit ¼ 8mH; 
F ¼ 0:8 s,

mec > 10
F, L0F=LF ¼ 0:5, and 
mec ¼ 20 s.

There is no external resistance or inductance in the motor circuit. Therefore,
RMBr ¼ RM ¼ 0:10�. IEC is not specific about the motor circuit resistance, or how it
should be calculated or ascertained.

The time constant is


M ¼ LM

RM

¼ 8� 10�3

0:10
¼ 80ms

The quasi steady-state current from Eq. (9.29) is

0:5
115� ð0:10Þð106Þ

0:10

� �
¼ 522A

From Eq. (9.30) the peak current is 1044A, because for 
mec > 10
F, factor �M in Eq.
(9.30) ¼ 1. The time to peak and time constant are given by Eq. (9.33). From Fig.
9-10, and for 
F=
M ¼ 10 and LF=L0F ¼ 0:5, factor �1M ¼ 8:3 and �2M ¼ 3:7.
Therefore, the time to peak is 640ms and the time constant 
1M ¼ 296ms.

The short-circuit profile is plotted in Fig. 9-7(b).

9.5 SHORT-CIRCUIT CURRENT OF A RECTIFIER

The typical current–time curve for a rectifier short-circuit is shown in Fig. 9-11. The
maximum current is reached at one half-cycle after the fault occurs. The peak at half-
cycle is caused by the same phenomenon that creates a dc offset in ac short-circuit
calculations. The magnitude of this peak is dependent on X=R ratio, the ac system
source reactance, rectifier transformer impedance, and the resistance and reactance
through which the current flows in the dc system. The addition of resistance or
inductance to the dc system reduces this peak and, depending on the magnitude of
these components, the peak may be entirely eliminated, with a smoothing dc reactor
as shown in Fig. 9-1(a). The region A in Fig. 9-11 covers the initial rise of current, the
peak current occurs in region B, and region C covers the time after one cycle until the
current is interrupted.

The initial rate of rise of the dc short-circuit current for a bolted fault varies
with the magnitude of the sustained short-circuit current. The addition of inductance
to the dc circuit tends to decrease the rate of rise.

An equivalent circuit of the rectifier short-circuit current is developed with a
voltage source and equivalent resistance and inductance. The equivalent resistance
varies with rectifier terminal voltage, which is a function of the short-circuit current.
The equivalent resistance is determined from the rectifier regulation curve by an
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iterative process, which can admirably lend itself to iterative computer solution. The
equivalent inductance is determined from a sustained short-circuit current for a
bolted fault and rated system voltage. The magnitude of the peak current is deter-
mined from ac and dc system impedance characteristics [1].

The following step-by-step procedure can be used:
Calculate total ac system impedance ZC ¼ RC þ XC in ohms. Convert to per

unit impedance zC, which may be called the commutating impedance in per unit on a
rectifier transformer kVA base. This is dependent on the type of rectifier circuit. For
a double-wye, six-phase circuit, the conversion is given by [1]:

ZC ¼ zC � 0:6� ED

ID
� ð9:38Þ

Assume a value of rectifier terminal voltage eda under faulted condition and obtain
factor K2 from Fig. 9-12. The preliminary calculated value of the sustained short-
circuit current is then given by

Ida ¼
K2

zc
ID ð9:39Þ

where ID is the rated value of the rectifier dc current. The equivalent rectifier resis-
tance is then given by

RR ¼ ðED � EdaÞ
Ida

� ð9:40Þ

where ED is the rated rectifier voltage in volts and Eda is the assumed rectifier
terminal voltage in volts under fault conditions.

The sustained value of the fault current is

Idc ¼
ED

RR þ RD

amp�eeres ð9:41Þ

where RD is the resistance external to the rectifier. The rectifier terminal voltage in
volts is

Edc ¼ ED � IdcRR ð9:42Þ
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Figure 9-11 Short-circuit current profile of a rectifier.
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The value of Eda ¼ eda � ED should be within 10% of the calculated value Edc, the
rectifier terminal voltage under sustained short-circuit current. The iterative process
is repeated until the desired tolerance is achieved.

Example 9.5

Consider a 100-kW source at 125V dc. The dc resistance of the feeder cable, RD, is
0.004�. Let the ac source and rectifier transformer impedance zC ¼ 0:05 pu and
ID ¼ 800A. Calculate the rectifier resistance for a fault at the end of the cable.

Assume eda ¼ 0:5 per unit, i.e., Eda ¼ 62:5V; K2 from Fig. 9-12 ¼ 0:63.
Therefore:

Ida ¼
K2

zc
ID ¼ 0:63

0:05
� 800 ¼ 10,080A

Then RR is

RR ¼ ED � Eda

Ida
¼ 62:5

10080
¼ 0:0062�

Idc ¼
ED

RR þ RD

¼ 125

0:0062þ 0:004
¼ 12,255A

Edc ¼ 125� ð12255Þð0:0062Þ ¼ 75:98V

We can iterate once more for a closer estimate of RR:

Edc ¼ 76V
eda ¼ 49V
K ¼ 0:77
Ida ¼ 12,320�
RR ¼ 0:006169�
Idc ¼ 12292:5A
Edc ¼ 49:17V
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Figure 9-12 Sustained fault current factor versus rectifier terminal voltage.
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IEC Method

The equivalent short-circuit diagram is shown in Fig. 9-13. The maximum dc short-
circuit current is given by the minimum impedance ZQmin, which is obtained from
the maximum short-circuit current I 00

KQmax of the ac system:

ZQmin ¼ cUnffiffiffi
3

p
I 00
kQmax

ð9:43Þ

The minimum dc current is given by

ZQmax ¼
cUnffiffiffi
3

p
I 00
kQmin

ð9:44Þ

In Fig. 9-13 the resistance and inductances on the ac side are:

RN ¼ RQ þ RP þ RT þ RR

XN ¼ XQ þ XP þ XT þ XR

ð9:45Þ

where RQ and XQ are the short-circuit resistance and reactance of the ac source
referred to the secondary of the rectifier transformer, RP and XP are the short-circuit
resistance and reactance of the power supply cable referred to the secondary side of
the transformer, RT and XT are the short-circuit resistance and reactance of the
rectifier transformer referred to the secondary side of the transformer, and RR and
XR are the short-circuit resistance and reactance of the commutating reactor, if
present.

Similarly, on the dc side:

RDBr ¼ RS þ RDL þ Ry

LDBr ¼ LS þ LDL þ Ly

ð9:46Þ

where RS;RDL, and Ry, are the resistances of the dc saturated smoothing reactor, the
conductor in the rectifier circuit, and the common branch, respectively, and LS, LDL,
and Ly are the corresponding inductances. The quasi steady-state short-circuit cur-
rent is

ikD ¼ �D
3
ffiffiffi
2

p

�

cUnffiffiffi
3

p
ZN

UrTLV

UrTHV

ð9:47Þ
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Figure 9-13 Equivalent circuit for short-circuit current calculations of a rectifier.
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where ZN is the impedance on the ac side of three-phase network. The factor �D as a
function of RN=XN and RDBr=RN is estimated from the curves in the IEC standard
[3]. Alternatively, it is given by the following equation:

�D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðRN=XNÞ2
1þ ðRN=XNÞ2ð1þ 0:667ðRDBr=RNÞÞ2

s
ð9:48Þ

The peak short circuit current is given by

ipD ¼ �DIkD ð9:49Þ
where the factor �D is dependent on:

RN

XN

1þ 2RDBr

3RN

	 

and

LDBr

LN

ð9:50Þ

It is estimated from the curves in the IEC standard [3] (not reproduced) or from the
following equation:

�D ¼ ipD
IkD

¼ 1þ 2

�
e�

�
3þ�Dð Þ cot �D sin�D

�

2
� arctan

LDBr

LN

� �
ð9:51Þ

where

�D ¼ arctan
1

RN

XN

1þ 2

3

RDBr

RN

� � ð9:52Þ

Time to peak tpD, when �D � 1:05, is given by

tpD ¼ ð3�D þ 6Þmsec when
LDBr

LN

� 1

tpD ¼ ð3�D þ 6Þ þ 4
LDBr

LN

� 1

� �	 

ms when LDBrLN>1

ð9:53Þ

If �D < 1:05, the maximum current, compared with the quasi steady-state short-
circuit current, is neglected, and tpD ¼ Tk is used.

The rise time constant for 50 Hz is given by


1D ¼ 2þ ð�D � 0:9Þ 2:5þ 9
LDBr

LN

� �	 

ms when �D � 1:05


1D ¼ 0:7þ 7� RN

XN

1þ 2

3

LDBr

LN

� �	 

0:1þ 0:2

LDBr

LN

� �	 

ms when �D < 1:05

ð9:54Þ
For simplification:


1D ¼ 1

3
tpD ð9:55Þ

The decay time constant 
2D for 50 Hz is given by


2D ¼ 2

RN

XN

0:6þ 0:9
RDBr

RN

� � ms ð9:56Þ
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The time constants for a 60-Hz power system are not given in the IEC standard.

Example 9.6

A three-phase rectifier is connected on the ac side to a three-phase, 480–120 V, 100-
kVA transformer of percentage ZT ¼ 3%, X=R ¼ 4. The 480-V source short-circuit
MVA is 30, and the X=R ratio ¼ 6. The dc side smoothing inductance is 5 mH and
the resistance of the cable connections is 0.002 �. Calculate and plot the short-circuit
current profile at the end of the cable on the dc side.

Based on the ac side data, the source impedance in series with the transformer
impedance referred to the secondary side of the rectifier transformer is

RQ þ jXQ ¼ 0:00008þ j0:00048�

RT þ jXT ¼ 0:001þ j0:00419�

Therefore:

RN þ jXN ¼ 0:0011 þ j0:004671�

On the dc side:

RDBr ¼ 0:002� and LDBr ¼ 5 mH

This gives

RN

XN

¼ 0:24 and
RDBr

RN

¼ 2:0

Calculate �D from Eq. (9.48):

�D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð0:24Þ2
1þ ð0:24Þ2ð1þ 0:667Þð2:0Þ2

s
¼ 0:897

The quasi steady-state current is, therefore, from Eq. (9.47):

IkD ¼ ð0:897Þ 3
ffiffiffi
2

p

�

 !
1:05� 480ffiffiffi
3

p � 0:0048

� �
120

480

� �
¼ 18:36 kA

To calculate the peak current, calculate the ratios:

RN

XN

1þ 2

3

RDBr

RN

� �
¼ ð0:24Þð1þ 0:667� 2Þ ¼ 0:56

LDBr

LN

¼ 5� 10�6

0:0128� 10�3
¼ 0:392

Calculate �D from Eqs (9.51) and (9.52). From Eq. (9.52):

�D ¼ tan�1 1

1þ 0:667ð2:0Þ
� �

¼ 60:758

and from Eq. (9.51), �D ¼ 1:204. Thus, the peak short-circuit current is

ipD ¼ �DIkD ¼ 1:204� 18:36 ¼ 22:10 kA
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The time to peak is given by Eq. (9.53) and is equal to

tpD ¼ ð3�D þ 6Þms ¼ ð3� 1:204þ 6Þ ¼ 9:62ms

The rise time constant is given by Eq. (9.54) and is equal to 3.83 ms, and the decay
time constant is given by Eq. (9.56) and is equal to 4.58 ms.

The current profile is plotted in Fig. 9-7(c), which shows the calculated values.
The intermediate shape of the curve can be correctly plotted using Eqs (9.1) and
(9.2). Note that, in this example, the IEC equations are for a 50-Hz system. For a 60-
Hz system, the peak will occur around 8.3 ms.

9.6 SHORT-CIRCUIT OF A CHARGED CAPACITOR

9.6.1 IEC Method

The resistance and inductance in the capacitor circuit from Fig. 9-3 are

RCBr ¼ RC þ RCL þ Ry

LCBr ¼ LCL þ Ly

ð9:57Þ

where RC is the equivalent dc resistance of the capacitor, and RCL and LCL are the
resistance and inductance of a conductor in the capacitor circuit. The steady-state
short-circuit current of the capacitor is zero and the peak current is given by

ipC ¼ �C
EC

RCBr

ð9:58Þ

where EC is the capacitor voltage before the short-circuit, and �C is read from curves
in the IEC standard [3], based on:

1=� ¼ 2LCBr

RCBr

!0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

LCBrC
p

ð9:59Þ

If LCBr ¼ 0, then �C ¼ 1.
The time to peak tpC is read from curves in the IEC standard [3]. If LCBr ¼ 0,

then tpC ¼ 0. The rise time constant is


1C ¼ �1CtpC ð9:60Þ
where �1C is read from curves in IEC. The decay time constant is


2C ¼ �2CRCBrC ð9:61Þ
Where �2C is read from curves in IEC standard [3]. The curves for these factors are
not reproduced.

Example 9.7

A 120-V, 100-mF capacitor has RCBr ¼ 0:05� and LCBr ¼ 10mH. Calculate the
terminal short-circuit profile.
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From Eq. (9.59):

1=� ¼ 2� 10� 10�3

0:05
¼ 0:4

Also,

!0 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10� 10�3 � 100� 10�6
p ¼ 1000

From curves in the IEC standard, �c ¼ 0:92 . The peak current from Eq. (9.58) is
then ð0:92Þ � ð120=0:05Þ ¼ 2208A. The time to peak from curves in IEC ¼ 0:75ms,
and �lC ¼ 0:58. From Eq. (9.60) the rise time constant is ð0:58Þ � ð0:75Þ ¼ 0:435ms.
Also, �2C ¼ 1, and, from Eq. (9.61), the decay time constant is 5 ms. The short-circuit
current profile is plotted in Fig. 9-7(d).

9.7 TOTAL SHORT-CIRCUIT CURRENT

The total short-circuit current at fault F1 (Fig. 9-3) is the sum of the partial short-
circuit currents calculated from the various sources. For calculation of the total
short-circuit current at F2 (Fig. 9-3), the partial currents from each source should
be calculated by adding the resistance and inductance of the common branch to the
equivalent circuit. A correction factor is then applied. The correction factors for
every source are obtained from

ipcorj ¼ 	j ipj

Ikcorj ¼ 	jIkj
ð9:62Þ

where the correction factor 	j is described in the IEC standard [3].

Example 9.8

The sources (rectifier, battery, motor, and capacitor) in Examples 9.2, 9.4, 9.6, and
9.7 are connected together in a system configuration as shown in Fig. 9-3. Plot the
total short-circuit current.

The profiles of partial currents shown in Fig. 9-7 are summed. As the time to
peak, magnitudes, and decay time constants are different in each case a graphical
approach is taken and the total current profile is shown in Fig. 9-14. The peak
current is approximately 27.3 kA and the peak occurs at approximately 9 ms after
the fault.

The short-circuit current from the rectifier predominates. The short-circuit
current from the capacitor is a high rise pulse, which rapidly decays to zero. The
dc motor short-circuit current rises slowly. Smaller dc motors have higher armature
inductance (Fig. 9-9) resulting in a slower rate of current rise. The rectifier current
peaks approximately in one half-cycle of the power system frequency. The relative
magnitudes of the partial currents can vary substantially, depending on the system
configuration. This can give varying profiles of total current and time to peak.
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9.8 DC CIRCUIT BREAKERS

The general-purpose low-voltage dc power circuit breakers do not limit the peak
available current and these breakers are assigned peak, short-time, and short-circuit
ratings. A high-speed breaker during interruption limits the peak to a value less than
the available (perspective) current and these breakers have a short-circuit rating and
short-time rating. A semi-high speed circuit breaker does not limit the short-circuit
current on circuits with minimal inductance, but becomes current limiting for highly
inductive circuits. This design also requires a peak rating. Rectifier circuit breakers
are a class in themselves and these carry the normal current output of one rectifier,
and during fault conditions function to withstand or interrupt abnormal currents as
required. This breaker requires a short-circuit current rating for n� 1 rectifiers and a
short-time current rating for its own rectifier.

The dc breakers may have thermal magnetic or electronic trip devices, i.e.,
general-purpose circuit breakers of 2 kA or lower are provided with instantaneous
tripping elements set to operate at 15 times the rated continuous current, and break-
ers rated >2kA have instantaneous trips set to operate at 12 times the rated current.
The rectifier circuit breakers have a reverse-current tripping element set to operate at
no more than 50% of the continuous currents rating.

Two or three poles of a breaker may be connected in series for enhanced
interrupting rating. The interrupting capacity of a breaker decreases with increasing
dc voltage. The maximum inductance for full interrupting rating in microhenries is
specified and the reduced interrupting rating for higher values of inductance can be
calculated. When the breakers are rated for ac as well as dc systems, the interrupting
rating on dc systems are much lower.
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Figure 9-14 Total fault current profile of the partial short-circuit currents calculated in

Examples 9.1, 9.4, 9.6, and 9.7.
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With general-purpose dc circuit breaker for the fault location F1, the fault
current profile shown in Fig. 9-14 should have a peak rating of 40 kA and a short-
circuit rating of higher than 25 kA.

Problems

1. Calculate and plot the short-circuit current profile for a battery system
with details as follows: lead acid battery, 240V, 120 cells, 400Ah rating at
a 8-hr rate of 1.75V per cell at 258C. Each cell has length 15.5 ft, width
6.8 in, and height 10 in. The cells are arranged in two-tier configuration in
four rows, 30 cells per row. Intercell connectors are of 1 in. � 1/2 in.
cross-section, resistance 0.0321m�/ft. Calculate the battery internal resis-
tance by using Eq. (9.11). The battery is connected through a cable of
resistance 0.002� and inductance 15 mH. The fault occurs at the end of
the battery cable. Repeat with the IEC calculation method, as in Example
9.2.

2. Calculate and plot the terminal short-circuit current of a dc motor of
50 hp, 230V, 690 rpm, armature current 178A, and transient resistance
0.07�, using the method of Example 9.3. Repeat the calculations using
the IEC method. Additional motor data: 
F ¼ 1:0 s, J ¼ 2 kg/m2,
L0F=LF ¼ 0:3.

3. Calculate and plot the short-circuit current profile for a fault on the dc
side of a rectifier system in the following configuration: 480 V, three-
phase ac source fault level ¼ 20 kA, X=R ¼ 5, 480–230V, three-phase
300 kVA rectifier transformer, Z ¼ 3:5%, X=R ¼ 5, the dc side equivalent
resistance and inductance equal to 0.001� and 3 mH, respectively.

4. Sum the partial fault currents calculated in Problems 1, 2, and 3 and
calculate the maximum short-circuit current and time to peak. What
should be the peak short-circuit rating and interrupting rating of a gen-
eral-purpose dc circuit breaker?
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10

Load Flow Over Power Transmission
Lines

Load flow is a solution of the steady-state operating conditions of a power system. It
presents a ‘‘frozen’’ picture of a scenario with a given set of conditions and con-
straints. This can be a limitation, as the power system’s operations are dynamic. In
an industrial distribution system the load demand for a specific process can be
predicted fairly accurately and a few load flow calculations will adequately describe
the system. For bulk power supply, the load demand from hour to hour is uncertain,
and winter and summer load flow situations, though typical, are not adequate. A
moving picture scenario could be created from static snapshots, but it is rarely
adequate in large systems having thousands of controls and constraints. Thus, the
spectrum of load flow (power flow) embraces a large area of calculations, from
calculating the voltage profiles and power flows in small systems to problems of
on-line energy management and optimization strategies in interconnected large
power systems.

Load flow studies are performed using digital computer simulations. These
address operation, planning, running, and development of control strategies.
Applied to large systems for optimization, security, and stability, the algorithms
become complex and involved. While the treatment of load flow, and finally optimal
power flow, will unfold in the following chapters, it can be stated that there are many
load flow techniques and there is a historical background to the development of these
methods.

In this chapter we will study the power flow over power transmission lines,
which is somewhat distinct and a problem by itself. The characteristics and
performance of transmission lines can vary over wide limits, mainly dependent on
their length. Maintaining an acceptable voltage profile at various nodes with varying
power flow is a major problem. We will consider two-port networks, i.e., a single
transmission line, to appreciate the principles and complexities involved.
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10.1 POWER IN AC CIRCUITS

The concepts of instantaneous power, average power, apparent power, and reactive
power are fundamental and are briefly discussed here. Consider a lumped impedance
Ze j�, excited by a sinusoidal voltage E < 08 at constant frequency. The linear load
draws a sinusoidal current. The time varying power can be written as

pðtÞ ¼ Reð
ffiffiffi
2

p
E" j!tÞReð

ffiffiffi
2

p
I" jð!t��ÞÞ ð10:1Þ

¼ 2EI cos!t: cosð!t� �Þ
¼ EI cos � þ EI cosð2!t� �Þ ð10:2Þ

The first term is the average time-dependent power, when the voltage and current
waveforms consist only of fundamental components. The second term is the magni-
tude of power swing. Equation (10.2) can be written as

EI cos �ð1þ cos 2!tÞ þ EI sin �: sin 2!t ð10:3Þ

The first term is the power actually exhausted in the circuit and the second term is
power exchanged between the source and circuit, but not exhausted in the circuit.
The active power is measured in watts and is defined as

P ¼ EI cos �ð1þ cos 2!tÞ � EI cos � ð10:4Þ

The reactive power is measured in var and is defined as:

Q ¼ EI sin � sin 2!t � EI sin � ð10:5Þ

These relationships are shown in Fig. 10-1; cos � is called the power factor (PF) of the
circuit, and � is the power factor angle.

The apparent power in VA (volt-ampères) is given by

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þQ2

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ ðP tan �Þ2

q
¼ P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ tan2 �Þ

q
¼ P sec � ¼ P= cos �

ð10:6Þ

The power factor angle is generally defined as

� ¼ tan�1 Q

P

� �
ð10:7Þ

If cos � ¼ 1, Q ¼ 0. Such a load is a unity power factor load. Except for a small
percentage of loads, i.e., resistance heating and incandescent lighting, the industrial,
commercial, or residential loads operate at lagging power factor. As the electrical
equipment is rated on a kVA basis, a lower power factor derates the equipment and
limits its capacity to supply active power loads. The reactive power flow and control
is one important aspect of power flow and Chap. 13 is devoted to it. The importance
of power factor (reactive power) control can be broadly stated as:

. Improvement in the active power handling capability of transmission lines.

. Improvement in voltage stability limits.
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. Increasing capability of existing systems: the improvement in power factor
for release of a certain per unit kVA capacity can be calculated from Eq.
(10.6):

PFimp ¼ PFext

1� kVAava

ð10:8Þ

where PFimp is improved power factor, PFext is existing power factor, and
kVAava is kVA made available as per unit of existing kVA.

. Reduction in losses: the active power losses are reduced as these are propor-
tional to the square of the current. With PF improvement, the current per
unit for the same active power delivery is reduced. The loss reduction is
given by the expression:

Lossred ¼ 1� PFext

PFimp

� �2

ð10:9Þ

where Lossred is reduction in losses in per unit with improvement in
power factor from PFext to PFimp. An improvement of power factor
from 0.7 to 0.9 reduces the losses by 39.5%.

. Improvement of transmission line regulation: the power factor improvement
improves the line regulation by reducing the voltage drops on load flow.

All these concepts may not be immediately clear and are further developed.
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Figure 10-1 Active and reactive power in ac circuits.
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10.1.1 Complex Power

If the voltage vector is expressed as Aþ jB and the current vector as C þ jD, then by
convention the volt-ampères in ac circuits are vectorially expressed as

EI� ¼ ðAþ jBÞðC � jDÞ
¼ AC þ BD þ jðBC � ADÞ
¼ Pþ jQ

ð10:10Þ

where P ¼ AC þ BD is the active power and Q ¼ BC � AD is the reactive power; I�

is the conjugate of I. This convention makes the imaginary part representing reactive
power negative for the leading current and positive for the lagging current. This is the
convention used by power system engineers. If a conjugate of voltage, instead of
current, is used, the reactive power of the leading current becomes positive. The
power factor is given by

cos � ¼ AC þ BDffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C2 þD2

p ð10:11Þ

10.1.2 Conservation of Energy

The conservation of energy concept (Tellegen’s theorem) is based on Kirchoff laws
and states that the power generated by the network is equal to the power consumed by
the network (inclusive of load demand and losses). If i1; i2; i3; . . . ; in are the currents
and v1; v2; v3; . . . ; vn the voltages of n single-port elements connected in any manner:

Xk¼n

k¼1

VkIk ¼ 0 ð10:12Þ

This is an obvious conclusion.
Also, in a linear system of passive elements, the complex power, active power,

and reactive power should summate to zero:

Xk¼n

k¼1

Sn ¼ 0 ð10:13Þ

Xk¼n

k¼1

Pn ¼ 0 ð10:14Þ

Xk¼n

k¼1

Qn ¼ 0 ð10:15Þ

10.2 POWER FLOW IN A NODAL BRANCH

The modeling of transmission lines is unique in the sense that capacitance plays a
significant role and cannot be ignored, except for short lines of length less than
approximately 50 miles (80 km). Let us consider power flow over a short transmis-
sion line. As there are no shunt elements, the line can be modeled by its series
resistance and reactance, load, and terminal conditions. Such a system may be called
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a nodal branch in load flow or a two-port network. The sum of the sending end and
receiving end active and reactive powers in a nodal branch is not zero, due to losses
in the series admittance Ysr (Fig. 10-2). Let us define Ysr, the admittance of the series
elements ¼ gsr � jbsr or Z ¼ zl ¼ lðrsr þ jxsrÞ ¼ Rsr þ Xsr ¼ 1=Ysr, where l is the
length of the line. The sending end power is

Ssr ¼ VsI
�
s ð10:16Þ

where I�s is conjugate of Is. This gives

Ssr ¼ Vs½YsrðVs � VrÞ��
¼ ½V2

s � VsVr"
jð�s��rÞ�ðgsr � jbsrÞ ð10:17Þ

where sending end voltage is Vs < �s and receiving end voltage is Vr < �r. The com-
plex power in Eq. (10.17) can be divided into active and reactive power components:
At the sending end:

Psr ¼ ½V2
s � Vs cosð�s � �rÞ�gsr � ½VsVr sinð�s � �rÞ�bsr ð10:18Þ

Qsr ¼ ½�VsVr sinð�s � �rÞ�gsr � ½V2
s � VsVr cosð�s � �rÞ�bsr ð10:19Þ

and, at the receiving end:

Prs ¼ ½V2
r � VrVs cosð�r � �sÞ�gsr � ½VrVs sinð�r � �sÞ�bsr ð10:20Þ

Qrs ¼ ½�VrVs sinð�r � �sÞ�gsr � ½V2
r � VrVs cosð�r � �sÞ�bsr ð10:21Þ

If gsr is neglected:

Prs ¼
jVsjjVrj sin �

Xsr

ð10:22Þ

Qrs ¼
jVsjjVrj cos �� jVrj2

Xsr

ð10:23Þ

where � in the difference between the sending end and receiving end voltage vector
angles ¼ ð�s � �rÞ. For small values of delta, the reactive power equation can be
written as

Qrs ¼
jVrj
Xsr

ðjVsj � jVrjÞ ¼
jVrj
Xsr

j�Vj ð10:24Þ
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Figure 10-2 Power flow over a two-port line.
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where j�Vj is the voltage drop. For a short line it is

j�Vj ¼ IrZ ¼ ðRsr þ jXsrÞ
ðPrs � jQrsÞ

Vr

� RsrPrs þ XsrQrs

jVrj
ð10:25Þ

Therefore, the transfer of real power depends on the angle �, called the trans-
mission angle, and the relative magnitudes of the sending and receiving end voltages.
As these voltages will be maintained close to the rated voltages, it is mainly a
function of �. The maximum power transfer occurs at � ¼ 908 (steady-state stability
limit).

The reactive power flows is in the direction of lower voltage and it is indepen-
dent of �. The following conclusions can be drawn:

1. For small resistance of the line, the real power flow is proportional to
sin �. It is a maximum at � ¼ 908. For stability considerations the value is
restricted to below 908. The real power transfer rises with the rise in the
transmission voltage.

2. The reactive power flow is proportional to the voltage drop in the line,
and is independent of �. The receiving end voltage falls with increase in
reactive power demand.

10.2.1 Simplifications of Line Power Flow

Generally, the series conductance is less than the series susceptance, the phase angle
difference is small, and the sending end and receiving end voltages are close to the
rated voltage:

gsr � bsr

sinð�s � �rÞ � �s � �r

cosð�s � �rÞ � 1

Vs � Vr � 1 per unit ð10:26Þ
If these relations are used:

Psr � ð�s � �rÞbsr
Qsr � ðVs � VrÞbsr
Prs � �ð�r � �sÞbsr
Qrs � �ðVr � VsÞbsr ð10:27Þ

10.2.2 Voltage Regulation

The voltage regulation is defined as the rise in voltage at the receiving end, expressed
as a percentage of full-load voltage when the full load at a specified power factor is
removed. The sending end voltage is kept constant. The voltage regulation is
expressed as a percentage or as per unit of the receiving end full-load voltage:

VR ¼ Vrnl � Vrfl

Vrfl

� 100 ð10:28Þ

where Vrnl is the no-load receiving end voltage and Vrfl is the full load voltage at a
given power factor.
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10.3 ABCD CONSTANTS

A transmission line of any length can be represented by a four-terminal network,
Fig. 10-3(a). In terms of A, B, C, and D constants, the relation between sending and
receiving end voltages and currents can be expressed as

Vs

Is

����
���� ¼ A B

C D

����
���� Vr

Ir

����
���� ð10:29Þ

In the case where sending end voltages and currents are known, the receiving end
voltage and current can be found by:

Vr

Ir

����
���� ¼ D �B

�C A

����
���� Vs

Is

����
���� ð10:30Þ

Also,

AD � BC ¼ 1 ð10:31Þ
The significance of these constants can be stated as follows:

A ¼ Vs=Vr, when Ir ¼ 0, i.e., the receiving end is open circuited. It is the ratio
of two voltages and is thus dimensionless
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Figure 10-3 (a) Schematic representation of a two-terminal network using ABCD con-

stants; (b) two networks in series; (c) two networks in parallel.
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B ¼ Vr=Ir, when Vr ¼ 0, i.e., the receiving end is short-circuited. It has dimen-
sions of an impedance and is specified in ohms

C ¼ Is=Vr, when the receiving end is open circuited and Ir is zero. It has the
dimensions of an admittance

D ¼ Is=Ir, when Vr is zero, i.e., the receiving end is short-circuited. It is the
ratio of two currents and is thus dimensionless (10.32)

Two ABCD networks in series, Fig. 10-3(b), can be reduced to a single equivalent
network:

Vs

Is

����
���� ¼ A1 B1

C1 D1

����
���� A2 B2

C2 D2

����
���� Vr

Ir

����
���� ¼ A1A2 þ B1C2 A1B2 þ B1D2

C1A2 þD1C2 C1B2 þD1D2

����
���� Vr

Ir

����
����
ð10:33Þ

For parallel ABCD networks, Fig. 10-3(c), the combined ABCD constants are

A ¼ ðA1B2 þ A2B1Þ=ðB1 þ B2Þ
B ¼ B1B2=ðB1 þ B2Þ
C ¼ ðC1 þ C2Þ þ ðA1 ¼ A2ÞðD2 ¼ D1Þ=ðB1 þ B2Þ
D ¼ ðB2D1 þ B1D2Þ=ðB1 þ B2Þ ð10:34Þ

Example 10.1

Calculate the ABCD constants of a short transmission line, voltage regulation, and
load power factor for zero voltage regulation.

In a short transmission line, the sending end current is equal to the receiving
end current. The sending end voltage can be vectorially calculated by adding the IZ
drop to the receiving end voltage. Considering a receiving end voltage Vr < 08 and
current Ir < �:

Vs ¼ Vr < 08þ ZIr < �

Therefore, from Eq. (10.29), A ¼ 1, B ¼ Z, C ¼ 0, and D ¼ 1:

Vs

Vr

����
���� ¼ 1 Z

0 1

����
���� Vr

Ir

����
����

The equation can be closely approximated as

Vs ¼ Vr þ IRsr cos�þ IXsr sin� ð10:35Þ
For a short line the no-load receiving end voltage equals the sending end voltage:

Vs ¼ AVr þ BIr

At no load Ir ¼ 0 and A ¼ 1; therefore, the no-load receiving end voltage ¼ sending
end voltage ¼ Vs=A. Therefore, the regulation is

Vs=A� Vr

Vr

¼ IRsr cos�þ IXsr sin�

Vr

ð10:36Þ

The voltage regulation is negative for a leading power factor.
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Example 10.2

A short three-phase, 13.8-kV line supplies a load of 10 MW at 0.8 lagging power
factor. The line resistance is 0.25 ohm and its reactance is 2.5 ohms. Calculate the
sending end voltage, regulation, and value of a capacitor to be connected at the
receiving end to reduce the calculated line regulation by 50%.

The line current at 10 MW and 0.8 power factor ¼ 523 < �36:878. The sending
end voltage is

Vs ¼ Vr < 08þ
ffiffiffi
3

p
� 523ð0:8� j0:6Þð0:25þ j2:5Þ

or this is closely approximated by Eq. (10.35) which gives a sending end voltage of
15.340 kV. From Eq. (10.36), the line regulation is 11.16%. This is required to be
reduced by 50%, i.e., to 5.58%. The sending end voltage is given by

jVsj � 13:8

13:8
¼ 0:0538 or jVsj ¼ 14:54 kV

The line voltage drop must be reduced to 742V. This gives two equations: 428 ¼
Inð0:25 cos�n þ 2:5 sin�nÞ and In ¼ 418= cos�n (10MW of power at three-phase,
13.8 kV, and unity power factor 418A), where In is the new value of the line current
and �n the improved power factor angle. From these two equations, �n ¼ 17:28, i.e.,
the power factor should be improved to approximately 0.955. The new current
In ¼ 437:5 < �17:28. Therefore, the current supplied by the intended capacitor
bank is

I � In ¼ ð417:9� j129:37Þ � ð418:4� j313:8Þ ¼ �j184A (leading)

Within the accuracy of calculation, the active part of the current should cancel out,
as the capacitor bank supplies only a reactive component. The capacitor reactance to
be added per phase ¼ 13,800=ð ffiffiffi

3
p

:184Þ ¼ 43:30�, which is equal to 61.25 mF.

10.4 TRANSMISSION LINE MODELS

10.4.1 Medium Long Transmission Lines

For transmission lines in the range 50–150 miles (80–240 km), the shunt admittance
cannot be neglected. There are two models in use, the nominal �- and nominal T-
circuit models. In the T-circuit model the shunt admittance is connected at the
midpoint of the line, while in the � model, it is equally divided at the sending end
and the receiving end. The � equivalent circuit and phasor diagram are shown in
Fig. 10-4(a) and (b). The nominal T- circuit model and phasor diagram are shown in
Fig. 10-4(c) and (d). The ABCD constants are shown in Table 10-1.

Example 10.3

Calculate the ABCD constants of the � model of the transmission line shown in
Table 10-1.

The sending end current is equal to the receiving end current, and the current
through the shunt elements Y=2 at the receiving and sending ends is

Is ¼ Ir þ
1

2
VrY þ 1

2
VsY
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The sending end voltage is the vector sum of the receiving end voltage and the drop
through the series impedance Z is

Vs ¼ Vr þ Ir þ
1

2
VrY

� �
Z ¼ Vr 1þ 1

2
YZ

� �
þ IrZ

The sending end current can, therefore, be written as

Is ¼ Ir þ
1

2
VrY þ 1

2
Y Vr 1þ 1

2
YZ

� �
þ IrZ
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Figure 10-4 (a) � representation of a transmission line; (b) phasor diagram of � represen-
tation; (c) T representation of a transmission line; (d) phasor diagram of T representation.
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Table 10-1 ABCD Constants of Transmission Lines

Line length Equivalent circuit A B C D

Short Series impedance only 1 Z 0 1

Medium Nominal �, Fig. 10-4 (a) 1þ 1
2YZ Z Y ½1þ 1=4ðYZÞ� 1þ 1

2YZ
Medium Nominal T, Fig. 10-4 (b) 1þ 1

2YZ Z½1þ 1=4ðYZÞ� Y 1þ 1
2YZ

Long Distributed parameters cosh �1 Z0 sinh �1 ðsinh �1Þ=Z0 cosh �1
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¼ VrY 1þ 1

4
YZ

� �
þ Ir 1þ 1

2
YZ

� �

or in matrix form

Vs

Is

����
���� ¼

1þ 1

2
YZ

� �
Z

Y 1þ 1

4
YZ

� �
1þ 1

2
YZ

� �
��������

��������
Vr

Ir

����
����

10.4.2 Long Transmission Line Model

Lumping the shunt admittance of the lines is an approximation and for line lengths
over 150 miles (240 km), the distributed parameter representation of a line is used.
Each elemental section of line has a series impedance and shunt admittance asso-
ciated with it. The operation of a long line can be examined by considering an
elemental section of impedance z per unit length, and admittance y per unit length.
The impedance for the elemental section of length dx is zdx and the admittance is
ydx. Referring to Fig. 10-5, by Kirchoff’s voltage law:

V ¼ Izdxþ V þ @V

@x
dx

@V

@x
¼ �IZ

ð10:37Þ

Similarly, from the current law:

I ¼ Vydxþ I þ @I

@x
dx

@I

@x
¼ �Vy

ð10:38Þ

Differentiating Eqs (10.37) and (10.38):

@2V

@x2
¼ yzV ð10:39Þ
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Figure 10-5 Model of an elemental section of a long transmission line.
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@2I

@x2
¼ yzI ð10:40Þ

These differential equations have solutions of the form:

V ¼ V1e
�x þ V2e

��x ð10:41Þ
where � is the propagation constant. It is defined as

� ¼ ffiffiffiffiffi
zy

p ð10:42Þ
Define the following shunt elements, to distinguish from line series elements: gsh is
the shunt conductance, bsh is the shunt susceptance, xsh is the shunt capacitive
reactance, and Y ¼ yl, the shunt admittance, where l is the length of the line. The
shunt conductance is small and ignoring it gives y ¼ j=xsh.

y ¼ jbsh

yz ¼ �bshxsc þ jrscbsh

j�j ¼
ffiffiffiffiffiffi
bsh

p
ðr2sc þ x2scÞ1=4 ð10:43Þ

The complex propagation constant can be written as

� ¼ �þ j� ð10:44Þ
where � is defined as the attenuation constant. Common units are nepers per mile or
per km.

� ¼ j�j cos 1

2
tan�1 �rsc

xsc

� �	 

ð10:45Þ

� ¼ j�j sin 1

2
tan�1 � rsc

xsc

� �	 

ð10:46Þ

where � is the phase constant. Common units are radians per mile.

The characteristic impedance is

Z0 ¼
ffiffiffi
z

y

r
ð10:47Þ

Again neglecting shunt conductance:

z

y
¼ rsc þ jxsc

jbsh
¼ xscxsh � jxshrsc

Z0 ¼
ffiffiffiffiffiffiffiffi
xsh

p ðr2sc þ x2scÞ1=4 ð10:48Þ

< Z0 ¼
1

2
tan�1 � rsc

xsc

� �
ð10:49Þ

The voltage at any distance x can be written as

Vx ¼
Vr þ Z0Ir

2

����
����e�xþj�x þ Vr � Z0Ir

2

����
����e��x�j�x ð10:50Þ

These equations represent traveling waves. The solution consists of two terms, each
of which is a function of two variables, time and distance. At any instant of time the
first term, the incident wave, is distributed sinusoidally along the line, with amplitude
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increasing exponentially from the receiving end. After a time interval �t, the dis-
tribution advances in phase by !�t=�, and the wave is traveling toward the receiving
end. The second term is the reflected wave, and after time interval �t, the distribu-
tion retards in phase by !�t=�, the wave traveling from the receiving end to the
sending end.

A similar explanation holds for the current:

Ix ¼ Vr=Z0 þ Ir
2

����
����e�xþj�x � Vr=Z0 � Ir

2

����
����e��x�j�x ð10:51Þ

These equations can be written as

Vx ¼ Vr

e�x þ e��x

2

� �
þ IrZ0

e�x � e��x

2

� �

Ix ¼ Vr

Z0

e�x � e��x

2

� �
þ Ir

e�x þ e��x

2

� � ð10:52Þ

or in matrix form:

Vs

Is

����
���� ¼

cosh �l Z0 sinh �l

1

Z0

sinh �l cosh �

������
������
Vr

Ir

����
���� ð10:53Þ

These ABCD constants are shown in Table 10-1.

10.4.3 Reflection Coefficient

The relative values of V1 and V2 depend on the conditions at the terminals of the
line. The reflection coefficient at the load end is defined as the ratio of the amplitudes
of the backward and forward traveling waves. For a line terminated in a load
impedance ZL:

V2 ¼
ZL � Z0

ZL þ Z0

� �
V1 ð10:54Þ

Therefore, the voltage reflection coefficient at the load end is

�L ¼ ZL � Z0

ZL þ Z0

ð10:55Þ

The current reflection coefficient is negative of the voltage reflection coefficient.
For a short-circuited line, the current doubles and for an open circuit line the voltage
doubles. Figure 10-6 shows the traveling wave phenomenon. The reflected wave at
an impedance discontinuity is a mirror image of the incident wave moving in the
opposite direction. Every point in the reflected wave is the corresponding point on
the incident wave multiplied by the reflection coefficient, but a mirror image. At any
time the total voltage is the sum of the incident and reflected waves. Figure 10-6(b)
shows the reinforcement of the incident and reflected waves. The reflected wave
moves toward the source and is again reflected. The source reflection coefficient,
akin to the load reflection coefficient, can be defined as

�s ¼
Zs � Z0

Zs þ Z0

ð10:56Þ
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A forward traveling wave originates at the source, as the backward traveling wave
originates at the load. At any time the voltage or current at any point on the line is
the sum of all voltage or current waves existing at the line at that point and time.

10.4.4 Lattice Diagrams

The forward and backward traveling waves can be shown on a lattice diagram
(Fig. 10-7). The horizontal axis is the distance of the line from the source and the
vertical axis is labeled in time increments, each increment being the time required
for the wave to travel the line in one direction, i.e., source to the load. Consider a
point P in the pulse shape of Fig. 10-7(b) at time t 0. The time to travel in one
direction is l=u, where u is close to the velocity of light, as we will discuss further.
The point P then reaches the load end at t 0 þ l=us. and is reflected back. The
corresponding point on the reflected wave is P�L. At the sending end it is re-
reflected as P�L�S, Fig. 10-7(b).

Example 10.4

A lossless transmission line has a surge impedance of 300 ohms. It is terminated in a
resistance of 600 ohms. A 120-V dc source is applied to the line at t ¼ 0 at the
sending end. Considering that it takes t seconds to travel the voltage wave in one
direction, draw the lattice diagram from t ¼ 0 to 7t. Plot the voltage profile at the
load terminals.

342 Chapter 10

Figure 10-6 (a) Incident and reflected waves at an impedance change in a long transmission

line; (b) reinforcement of incident and reflected waves; (c) incident and reflected waves crossing
each other.
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The sending end reflection coefficient from Eq. (10.56) is �1 and the load reflec-
tion coefficient fromEq. (10.55) is 0.33. The lattice diagram is shown in Fig. 10-8(a). At
first reflection at the load, 120V is reflected as 0:33� 120 ¼ 39:6V, which is re-
reflected from the sending end as �1� 39:6 ¼ �39:6V. The voltage at the receiving
end can be plotted from the lattice diagram in Fig. 10-8(a) and is shown in Fig. 10-8(b).

10.4.5 Infinite Line

When the line is terminated in its characteristic load impedance, i.e., ZL ¼ Z0, the
reflected wave is zero. Such a line is called an infinite line and the incident wave
cannot distinguish between a termination and the continuation of the line.

The characteristic impedance is also called the surge impedance. It is approxi-
mately 400 ohms for overhead transmission lines and its phase angle may vary from
08 to 158. For underground cables the surge impedance is much lower, approxi-
mately 1/10 that of overhead lines.

10.4.6 Surge Impedance Loading

The surge impedance loading (SIL) of the line is defined as the power delivered to a
purely resistive load equal in value to the surge impedance of the line:

SIL ¼ V2
r =Z0 ð10:57Þ
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Figure 10-7 (a) A point P at time t 0 on a pulse signal applied to the sending end of a
transmission line; (b) lattice diagram.
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For 400 ohms surge impedance, SIL in kW is 2.5 multiplied by the square of the
receiving end voltage in kV. The surge impedance is a real number and therefore
the power factor along the line is unity, i.e., no reactive power compensation (see
Chap. 13) is required. The SIL loading is also called the natural loading of the
transmission line.
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Figure 10-8 (a) Lattice diagram of Example 10.4; (b) the receiving end voltage profile.
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10.4.7 Wavelength

A complete voltage or current cycle along the line, corresponding to a change of 2�
radians in angular argument of � is defined as the wavelength �. If � is expressed in
rad/mile:

� ¼ 2�=� ð10:58Þ
For a lossless line:

� ¼ !
ffiffiffiffiffiffiffi
LC

p
ð10:59Þ

Therefore:

� ¼ 1

f
ffiffiffiffiffiffiffi
LC

p ð10:60Þ

and the velocity of propagation of the wave:

v ¼ f � ¼ 1ffiffiffiffiffiffiffi
LC

p ’ 1ffiffiffiffiffiffiffiffiffiffi
�0k0

p ð10:61Þ

where �0 ¼ 4�� 10�7 is the permeability of the free space, and k0 ¼ 8:854� 10�12 is
the permittivity of the free space. Therefore, 1=½ ffiffiðp �0k0Þ� ¼ 3� 1010 cm/s or 186,000
miles/s ¼ velocity of light. We have considered a lossless line in developing the above
expressions. The actual velocity of the propagation of the wave along the line is
somewhat less than the speed of light.

10.5 TUNED POWER LINE

In the long transmission line model, if the shunt conductance and series resistance
are neglected, then:

� ¼
ffiffiffiffiffiffiffiffi
YZ

p
¼ j!

ffiffiffiffiffiffiffi
LC

p
ð10:62Þ

cosh �l ¼ cosh j!l
ffiffiffiffiffiffiffi
LC

p
¼ cos!l

ffiffiffiffiffiffiffi
LC

p
ð10:63Þ

sinh �l ¼ sinh j!l
ffiffiffiffiffiffiffi
LC

p
¼ j sin!l

ffiffiffiffiffiffiffi
LC

p
ð10:64Þ

where l is the length of the line. This simplifies ABCD constants and the following
relationship results:

Vs

Is

����
���� ¼

cos!l
ffiffiffiffiffiffiffi
LC

p
jZ0 sin!l

ffiffiffiffiffiffiffi
LC

p
j

Z0

sin!l
ffiffiffiffiffiffiffi
LC

p
cos!l

ffiffiffiffiffiffiffi
LC

p
������

������
VR

IR

����
���� ð10:65Þ

If

!l
ffiffiffiffiffiffiffi
LC

p
¼ n� ðn ¼ 1; 2; 3 . . .Þ ð10:66Þ

then

jVsj ¼ jVrj jIsj ¼ jIrj ð10:67Þ
This will be an ideal situation to operate a transmission line. The receiving end
voltage and currents are equal to the sending end voltage and current. The line
has a flat voltage profile.
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� ¼ 2�f

v
¼ 2�

�
ð10:68Þ

As 1=
ffiffiffiffi
L

p
C � velocity of light, the line length � is 3100, 6200, . . . miles or � ¼

0:1168 per mile. The quantity �1 is called the electrical length of the line. The length
calculated above is too long to avail this ideal property and suggests that power lines
can be tuned with series capacitors to cancel the effect of inductance and with shunt
inductors to neutralize the effect of line capacitance. This compensation may be done
by sectionalizing the line. For power lines, series and shunt capacitors for heavy load
conditions and shunt reactors under light load conditions are used to improve power
transfer and line regulation. We will revert to this in Chap. 13.

10.6 FERRANTI EFFECT

As the transmission line length increases, the receiving end voltage rises above the
sending end voltage, due to line capacitance. This is called the Ferranti effect. In a
long line model, at no load ðIR ¼ 0Þ, the sending end voltage is

Vs ¼
Vr

2
e�lej�l þ Vr

2
e��l �ee j�l ð10:69Þ

At l ¼ 0, both incident and reflected waves are equal to Vr=2. As l increases, the
incident wave increases exponentially, while the reflected wave decreases. Thus, the
receiving end voltage rises. Another explanation of the voltage rise can be provided
by considering that the line capacitance is lumped at the receiving end. Let this
capacitance be Cl; then, on open circuit the sending end current is:

Is ¼
Vs

j!Ll � 1

j!Cl

� � ð10:70Þ

C is small in comparison with L. Thus, !Ll can be neglected. The receiving end
voltage can then be written as

Vr ¼ Vs � Isð j!LlÞ
¼ Vs þ Vs!

2CLl2

¼ Vsð1þ !2CLl2Þ ð10:71Þ
This gives a voltage rise at the receiving end of

jVsj!2CLl2 ¼ jVsj!2l2=�2 ð10:72Þ
where v is the velocity of propagation. Considering that v is constant, the voltage
rises with the increase in line length.

Also, from Eq. (10.65) the voltage at any distance x in terms of the sending end
voltage, with the line open circuited and resistance neglected, is

Vx ¼ Vs

cos�ðl � xÞ
cos�l

ð10:73Þ

and the current is

Ix ¼ j
Vs

Z0

sin �ðl � xÞ
cos�l

ð10:74Þ
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Example 10.5

A 230-kV three-phase transmission line has 795 KCMIL, ACSR conductors, one per
phase. Neglecting resistance, z ¼ j0:8� per mile and y ¼ j5:4� 10�6 siemens (same
as mhos) per mile. Calculate the voltage rise at the receiving end for a 400 mile long
line.

Using the expressions developed above:

Z0 ¼
ffiffiffi
z

y

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j0:8

j5:4� 10�6

s
¼ 385�

� ¼ ffiffiffiffiffi
zy

p ¼ 2:078� 10�3 rad=mile ¼ 0:1198/mile; �l ¼ 0:119� 400 ¼ 47:68. The
receiving end voltage rise from Eq. (10.73):

Vr ¼ Vs

cosðl � lÞ
cos 47:68

¼ Vs

0:674
¼ 1:483Vs

The voltage rise is 48.3% and at 756 miles, one-quarter wavelength, it will be infinite.
Even a voltage rise of 10% at the receiving end is not acceptable as it may give

rise to insulation stresses and affect the terminal regulating equipment. Practically,
the voltage rise will be more than that calculated above. As the load is thrown off,
the sending end voltage will rise before the generator voltage regulators and excita-
tion systems act to reduce the voltage, further increasing the voltages on the line.
This points to the necessity of compensating the transmission lines.

The sending end charging current from Eq. (10.74) is 1.18 per unit and falls to
zero at the receiving end. This means that the charging current flowing in the line is
118% of the line natural load.

10.6.1 Approximate Long Line Parameters

Regardless of voltage, conductor size, or spacing of a line, the series reactance is
approximately 0.8�/mile and the shunt-capacitive reactance is 0.2M�/mile. This
gives a � of 1:998� 10�3/mile or 0.11458/mile.

10.7 SYMMETRICAL LINE AT NO LOAD

If we consider a symmetrical line at no load, with the sending end and receiving end
voltages maintained the same, these voltages have to be in phase as no power is
transferred. Half the charging current is supplied from each end and the line is
equivalent to two equal halves connected back-to-back. The voltage rises at the
midpoint, where the charging current falls to zero and reverses direction. The syn-
chronous machines at the sending end absorb leading reactive power, while the
synchronous machines at the receiving end generate lagging reactive power Fig.
10-9(a), (b), and (c). The midpoint voltage is, therefore, equal to the voltage as if
the line was of half the length.

On loading, the vector diagram shown in Fig. 10-9(d) is applicable. By sym-
metry, the midpoint voltage vector exactly bisects the sending and receiving end
voltage vectors, and the sending end and receiving end voltages are equal. The
power factor angle at both ends are equal but of opposite sign. Therefore, the
receiving end voltage on a symmetric line of length 2l is the same as that of line
of length l at unity power factor load. From Eq. (10.65) the equations for the sending
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end voltage and current for a symmetrical line can be written with �l replaced by
�l=2 ¼ �=2.

Vs ¼ Vm cos
�

2

� �
þ jZ0Im sin

�

2

� �
ð10:75Þ

Is ¼ j
Vm

Z0

sin
�

2

� �
þ Im cos

�

2

� �
ð10:76Þ

At the midpoint:

Pm þ jQm ¼ VmI
�
m ¼ P ð10:77Þ

Qs ¼ ImgVsI
�
s

¼ j
sin �

2
Z0I

2
m � V2

m

Z0

" #
ð10:78Þ

where P is the transmitted power. No reactive power flows past the midpoint and it is
supplied by the sending end.
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Figure 10-9 (a) Phasor diagram of a symmetrical line at no load; (b) the voltage profile of a

symmetrical line at no load; (c) the charging current profile of a symmetrical line at no load;
(d) the phasor diagram of a symmetrical line at load.
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10.8 ILLUSTRATIVE EXAMPLES

Example 10.6

Consider a line of medium length represented by a nominal � circuit. The impe-
dances and shunt susceptances are shown in Fig. 10-10 in per unit on a 100-MVA
base. Based on the given data calculate ABCD constants. Consider that one per unit
current at 0.9 power factor lagging is required to be supplied to the receiving end.
Calculate the sending end voltage, currents, power, and losses. Compare the results
with approximate power flow relations derived in Eq. (10.27):

D ¼ A ¼ 1þ 1

2
YZ

¼ 1þ 0:5½ j0:0538�½0:0746þ j0:394�
¼ 0:989þ j0:002

and

C ¼ Y 1þ 1

4
YZ

� �
¼ ð j0:0538Þ½1þ ð�0:0053þ j0:9947�
¼ �0:000054þ j0:0535

B ¼ Z ¼ 0:0746 þ j0:394

The voltage at the receiving end bus is taken as equal to the rated voltage of
one per unit at zero degree phase shift, i.e., 1 < 08. The receiving end power is,
therefore,

V2I
�
2

ð1 < 08Þð12 < 25:88Þ
0:9þ j0:436

It is required to calculate the sending end voltage and current:

V1 ¼ AV2 þ BI2

¼ ð0:989þ j0:002Þð1 < 08Þ þ ð0:0746 þ j0:394Þð1 < 25:88Þ
¼ 1:227þ j0:234
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Figure 10-10 Transmission line and load parameters for Problems 10.6 and 10.7.
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The sending end voltage is

jV1j ¼ j1:269j < 14:798

The sending end current is

I1 ¼ CV2 þDI2

ð�0:000054þ j0:0535Þ þ ð0:989þ j0:002Þð1 < �25:88Þ
¼ 0:8903� j0:3769

¼ 0:9668 < �22:9448

The sending end power is

V1I
�
1 ¼ ð1:269 < 14:798Þð0:9668 < 22:9448Þ
¼ 0:971þ j0:75

Thus, the active power loss is 0.071 per unit and the reactive power loss is 0.314 per
unit. The reactive power loss increases as the power factor of the load becomes more
lagging.

The power supplied based on known sending end and receiving end voltages
can also be calculated using the following equations.

The sending end active power is

½V2
1 � V1V2 cosð�1 � �2Þ�g12 � ½V1V2 sinð�1 � �2Þ�b12

½1:2692 � 1:269 cosð14:798Þ�0:464� ½1:269 sinð14:798Þ�ð�2:450Þ
¼ 0:971 as before

In this calculation, a prior calculated sending end voltage of 1:269 < 14:79 for supply
of per unit current at 0.9 lagging power factor is used. For a given load neither the
sending end voltage nor the receiving end current is known.

The sending end reactive power is

Q12 ¼ ½�V1V2 sinð�1 � �2Þ�g12 � ½V2
1 � V1V2 cosð�1 � �2�b12�

Y

2
V2

1

¼ ½�1:269 sin 14:798�0:464� ½1:2692 � 1:269 cosð14:798Þ�ð�2:450Þ
� ð0:0269Þð1:2692Þ

¼ 0:75 as before

The receiving end active power is

P21 ¼ ½V2
2 � V2V1 cosð�2 � �1Þ�g12 � ½V2V1 sinð�2 � �1Þ�b12

¼ ½1� 1:269 cosð�14:798Þ�0:464� ½1:269 sinð�14:798Þ�ð�2:450Þ
¼ 0:9

and the receiving end reactive power is

Q21 ¼ ½�V2V1 sinð�2 � �1Þ�g12 � ½V2
2 � V2V1 cosð�2 � �1Þ�b21 �

Y

2
V2

2

¼ ½�1:269 sinð�14:798Þ�0:464� ½1� 1:269 cosð�14:798Þ�ð�2:450Þ
� ð0:0269Þð1Þ ¼ 0:436
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These calculations are merely a verification of the results. If the approximate
relations of Eq. (10.27) are applied:

P12 � P21 ¼ 0:627

Q12 � Q21 ¼ 0:68

This is not a good estimate for power flow, especially for the reactive power.

Example 10.7

Repeat the calculation in Example 10.6, with a long line distributed parameter
model, with the same data. Calculate the sending end current and voltage and
compare the results.

Z ¼ 0:0746þ j0:394

Y ¼ 0:0538

The product ZY is

ZY ¼ 0:021571 < 169:328

� is the attenuation constant in nepers:

� ¼ j�j cos 1

2
tan�1 �R

X

� �	 


and � is the phase shift constant in radians:

� ¼ j�j sin 1

2
tan�1 �R

X

� �	 


Thus:

� ¼ 0:0136687 nepers

� ¼ 0:146235 radians

The hyperbolic functions cosh � and sinh � are given by

cosh � ¼ cosh � cos�þ j sinh � sin �

¼ ð1:00009Þð0:987362Þ þ jð0:013668Þð0:14571Þ
¼ 0:990519 < 0:11528

sinh � ¼ sinh � cos�þ j cosh � sin �

¼ ð0:013668Þð0:989326Þ þ jð1:00009Þð0:14571Þ
¼ 0:146349 < 84:6988

The sending end voltage is thus

V1 ¼ cosh �V2 þ Z0 sinh �I2

¼ ð0:990519 < 0:11528Þð1 < 08Þ þ ð2:73 < �5:3618Þð0:1463449 < 84:6988Þ
ð1 < �25:8428Þ
1:2697 < 14:738
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This result is fairly close to the one earlier calculated by using the � model.
The sending end current is

I2 ¼
1

Z0

� �
ðsinh �ÞV2 þ ðcosh �ÞI2

¼ ð0:3663 < 5:3618Þð0:146349 < 84:6988Þ
þ ð0:990519 < 0:11528Þð1 < �25:848Þ
¼ 0:968 < �22:8658

Again there is a good correspondence with the earlier calculated result using the
equivalent � model of the transmission line. The parameters of the transmission line
shown in this example are for a 138-kV line of length approximately 120 miles. For
longer lines the difference between the calculations using the two models will diverge.
This similarity of calculation results can be further examined.

Equivalence Between � and Long Line Model

For equivalence between long line and �-models, ABCD constants can be equated.
Thus, equating the B and D constants:

Z ¼ Zc sinh �l

1þ 1

2
YZ ¼ cosh �l ð10:79Þ

Thus,

Z ¼
ffiffiffi
z

y

r
sinh �l ¼ zl

sinh �l

l
ffiffiffiffiffi
yz

p ¼ Z
sinh �l

�l

	 

ð10:80Þ

i.e., the series impedance of the � network should be increased by a factor
ðsinh �l=�lÞ.

1þ 1

2
YZc sinh �l ¼ cosh �l

This gives

1

2
Y ¼ Y

2

tanh �l=2

�l=2

	 

ð10:81Þ

i.e., the shunt admittance should be increased by [ðtanh �l=2Þ=ð�l=2Þ]. For a line of
medium length both the series and shunt multiplying factors are � 1.

10.9 CIRCLE DIAGRAMS

Consider a two-node two-bus system, similar to that of Fig. 10-2. Let the sending
end voltage be Vs < �8 and the receiving end voltage Vr < 08. Then:

Ir ¼
1

B
Vs �

A

B
Vr ð10:82Þ

Is ¼
D

B
Vs �

1

B
Vr ð10:83Þ

Constants A, B, C, and D can be written as

A ¼ jAj < �; B ¼ jBj < �; D ¼ jDj < � ðA ¼ DÞ ð10:84Þ
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The receiving end and sending end currents can be written as

Ir ¼
1

B

����
����jVsj < ð� � �Þ � A

B

����
����jVrj < ð�� �Þ ð10:85Þ

Is ¼
D

B

����
����jVsj < ð�þ � � �Þ � 1

B

����
����jVrj < �� ð10:86Þ

The receiving end power is

Sr ¼ VrI
�
r

¼ jVrjjVSj
jBj < ð�� �Þ � A

B

����
����jVrj2 < ð�� �Þ ð10:87Þ

The sending end power is

Ss ¼
D

B

����
����jVsj2 < ð�� �Þ � jVsjjVrj

jBj < ð�þ �Þ ð10:88Þ

The real and imaginary parts are written as follows:

Pr ¼
jVsjjVrj
jBj cosð�� �Þ � A

B

����
����jVrj2 cosð�� �Þ ð10:89Þ

Qr ¼
jVsjjVrj
jBj sinð�� �Þ � A

B
jjVrj2 sinð�� �Þ

���� ð10:90Þ

Here, �, the phase angle difference, is substituted for � (the receiving end
voltage angle was assumed to be 08). Similarly, the sending end active and reactive
powers are

Ps ¼
D

B

����
����jVsj2 cosð�� �Þ � jVsjjVrj

jBj cosð�þ �Þ ð10:91Þ

Qs ¼
D

B

����
����jVsj2 sinð�� �Þ � jVsjjVrj

jBj sinð�þ �Þ ð10:92Þ

The received power is maximum at � ¼ �:

PrðmaxÞ ¼ jVsjjVrj
jBj � jAjjVrj2

jBj cosð�� �Þ ð10:93Þ

and the corresponding reactive power for maximum receiving end power is

Qr ¼ � jAjjVrj2
jBj sinð�� �Þ ð10:94Þ

The leading reactive power must be supplied for maximum active power transfer.
For a short line, the equations reduce to the following:

Pr ¼
jVsjjVrj
jZj cosð"� �Þ � jVrj2

jZj cos " ð10:95Þ

Qr ¼
jVsjjVrj
jZj sinð"� �Þ � jVrj2

jZj sin � ð10:96Þ
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Ps ¼
jVsj2
jZj cos � � jVsjjVrj

jZj cosð"þ �Þ ð10:97Þ

Qs ¼
jVsj2
jZj sin � � jVsjjVrj

jZj sinð"þ �Þ ð10:98Þ

where " is the impedance angle.
The center of the receiving end circle is located at the tip of the phasor:

� A

B

����
����jVrj2 < ð�� �Þ ð10:99Þ

In terms of the rectangular co-ordinates the center of the circle is located at

� A

B

����
����jVrj2 cosð�� �Þ MW ð10:100Þ

� A

B

����
����jVrj2 sinð�� �Þ Mvar ð10:101Þ

The radius of the receiving end circle is

jVSjjVrj
jBj MVA ð10:102Þ

The receiving end circle diagram is shown in Fig. 10-11. The operating point P
is located on the circle by received real power Pr. The corresponding reactive power
can be read immediately as Qr. The torque angle can be read from the reference line
as shown. For a constant receiving end voltage Vr the center C is fixed and concentric
circles result for varying Vs, Fig. 10-12(a). For constant Vs and varying Vr, the
centers move along line OC and have radii in accordance with VsVr=B, Fig. 10-12(b).

The sending end circle diagram is constructed on a similar basis and is shown
in Fig. 10-13. The center of the sending end circle is located at the tip of the phasor:

D

B

����
����jVsj2 < ð�� �Þ ð10:103Þ

or in terms of rectangular co-ordinates at

D

B

����
����jVsj2 cosð�� �ÞMW;

D

B

����
����jVsj2 sinð�� �Þ Mvar ð10:104Þ

The center of the sending end circle is

jVsjjVrj
jBj ð10:105Þ

Example 10.8

Consider Examples 10.6 and 10.7, solved for � and long line models. Draw a circle
diagram and calculate (a) the sending end voltage, (b) the maximum power trans-
ferred in MW if the sending end voltage is maintained equal to the calculated voltage
in (a), (c) the value of a shunt reactor required to maintain the receiving end voltage
equal to the sending end voltage ¼ 1 per unit at no load, (d) the leading reactive
power required at the receiving end when delivering 1.4 per unit MW load at 0.8
power factor, the sending end and receiving end voltages maintained as in (a).
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Figure 10-11 Receiving end power circle diagram of a transmission line.

Figure 10-12 (a) Receiving end power circles for different sending end voltages and constant

receiving end voltage; (b) receiving end power circles for constant sending end voltage and
varying receiving end voltage.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



The calculated A, and B constants from Example 10.6 are

A ¼ 0:989þ j0:002 ¼ jAj < � ¼ 0:989 < 0:1168

B ¼ 0:076þ j0:394 ¼ jBj < � ¼ 0:40 < 798

Thus, the co-ordinates of center C are

ð�0:4732;�2:426Þ
The receiving end power is 0:9þ j0:436. The circle diagram is shown in Fig. 10-14.
CP by measurement ¼ 3:2 ¼ jVsjjVrj=jBj. This gives Vs ¼ 1:28, as calculated in
Example 10.6.

(b) The radius of the circle for Vs ¼ 1:28, Vr ¼ 1, is given by jVsjjVrj=jBj ¼ 3:2,
with center C. The maximum power transfer in MW is ¼ 2:75 per unit, equal to
O 0O 00 in Fig. 10-14.

(c) The diameter of the circle for per unit sending and receiving end voltages is
2.5, with C as the center. The shunt reactor required � 0:08 per unit, given by QQ 0 in
Fig. 10-14.

(d) Following the construction shown in Fig. 10-14, a new load line is drawn
and the leading reactive power required � 0:82 per unit, given by QLQ

0
L.

10.10 SYSTEM VARIABLES IN LOAD FLOW

In the above analysis, currents have been calculated on the basis of system impe-
dances or admittances and assumed voltages. The complex powers have been calcu-
lated on the basis of voltages. In load flow situations, neither the voltages nor the
currents at load buses are known. The required power balance is known. A bus can
connect system admittances, shunt admittances, generators, loads, or reactive power
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Figure 10-13 Sending end power circle diagram.
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sources. The consumer demand at any instant is uncontrollable in terms of active
and reactive power requirements. For a two-node two-port circuit, this is represented
by a four-dimensional disturbance vector p:

p ¼
p1
p2
p3
p4

��������

�������� ¼
PD1

QD1

PD2

QD2

��������

�������� ð10:106Þ

where PD1;PD2;QD1; and QD2 are the active and reactive power demands at the two
buses.

The magnitudes of voltages and their angles at buses 1 and 2 can be called state
variables and represented by

x ¼
x1
x2
x3
x4

��������

�������� ¼
�1
jV1j
�2
jV2j

��������

�������� ð10:107Þ

Lastly, the active and reactive power generation at buses 1 and 2 may be called
control variables:

u ¼
u1
u2
u3
u4

��������

�������� ¼
PG1

QG1

PG2

QG2

��������

�������� ð10:108Þ

Thus, for a two-bus system we have 12 variables. For large power systems,
there will be thousands of variables and the load flow must solve for interplay
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Figure 10-14 Circle diagram for solution of Example 10.8.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



between these variables. This will be examined as we proceed along with load flow
calculations in the following chapters. In a steady-state operation:

f ðx; p; uÞ ¼ 0 ð10:109Þ

PROBLEMS

1. Mathematically derive ABCD constants for nominal T models shown in
Table 10-1.

2. A 500 mile (800 km) long three-phase transmission line operating at
230 kV supplies a load of 200 MW at 0.85 power factor. The line series
impedance Z ¼ 0:35þ j0:476�/mile and shunt admittance
y ¼ j5:2� 10�6 S/mile. Find the sending end current, voltage, power,
and power loss, using short-line model, nominal � model, and long
line model. Find the line regulation in each case. What is the SIL loading
of the line?

3. A 400-kV transmission line has the following A and B constants:
A ¼ 0:9 < 28;B ¼ 120 < 758. Construct a circle diagram and ascertain
(a) the sending end voltage for a receiving end load of 200 MW at 0.85
power factor, (b) the maximum power that can be delivered for sending
an end voltage of 400 kV, and (c) the Mvar required at the receiving end
to support a load of 400 MW at 0.85 power factor, the sending end
voltage being held at 400 kV.

4. Plot the incident and reflected currents for the line of Example 10.4 at
midpoint of the line.

5. A 230-kV transmission line has the following line constants:
A ¼ 0:85 < 48; B ¼ 180 < 658. Calculate the power at unity power factor
that can be supplied with the same sending end and receiving end voltage
of 230 kV. If the load is increased to 200 MW at 0.9 power factor, with
the same sending end and receiving end voltage of 230 kV, find the com-
pensation required in Mvar at the receiving end.

6. Draw the current and voltage profile of a symmetrical 230 kV, 300 miles
long line at no load and at 100 MW, 0.8 power factor load. Use the
following line constants: L ¼ 1:98mH/mile; C ¼ 0:15 mF/mile.

7. An underground cable has an inductance of 0.45 mH/m and a capacitance
of 80 pF/m. What is the velocity of propagation along the cable?

8. Derive an expression for the maximum active power that can be trans-
mitted over a short transmission line of impedance Z ¼ Rþ jX . Find the
maximum power for an impedance of 0:1þ j1:0, line voltage 4160V, and
regulation not to exceed 5%.

9. A loaded long line is compensated by shunt power capacitors at the
midpoint. Draw a general vector diagram of the sending end and receiv-
ing end voltages and currents.

10. Derive the ABCD constants of a transmission line having resistance
0.1�/mile, reactance 0.86�/mile, and capacitance 0.04 mF/mile. What
is the electrical length of the line?
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11

Load Flow Methods: Part I

The Y-matrix iterative methods were the very first to be applied to load flow calcula-
tions on the early generation of digital computers. These required minimum storage,
however, may not converge on some load flow problems. This deficiency in Y-matrix
methods led to Z-matrix methods, which had a better convergence, but required
more storage and slowed down on large systems. These methods of load flow are
discussed in this chapter.

We discussed the formation of bus impedance and admittance matrices in
Chap. 3. For a general network with nþ 1 nodes, the admittance matrix is

�YY ¼
Y11 Y12 � Y1n

Y21 Y22 � Y2n

� � � �
Yn1 Yn2 � Ynn

��������

�������� ð11:1Þ

where each admittance Yiiði ¼ 1; 2; 3; 4; . . .Þ is the self-admittance or driving point
admittance of node i, given by the diagonal elements and it is equal to the algebraic
sum of all admittances terminating at that node. Yikði; k ¼ 1; 2; 3; 4; . . .Þ is the mutual
admittance between nodes i and k or transfer admittance between nodes i and k and is
equal to the negative of the sum of all admittances directly connected between those
nodes. In Chap. 3, we discussed how each element of this matrix can be calculated.
The following modifications can be easily implemented in the bus admittance matrix:

1. Changing of a branch admittance from ysr to ysr þ�ysr between buses S
and R leads to

Yss ! Yss þ�ysr

Ysr ! Ysr ��ysr

Yrr ! Yrr þ�ysr ð11:2Þ
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2. Addition of a new branch of admittance ysr between existing buses S and
R gives

Yss ! Yss þ ysr

Ysr ! Ysr � ysr

Yrr ! Yrr þ ysr

ð11:3Þ

3. Addition of a new branch between an existing bus S and a new bus is
shown in Fig. 11-1. Let the new bus be designated N 0. The order of the
Y matrix is increased by one, from n to nþ 1. The injected current at bus
N 0 is

In 0 ¼ Yn 0sVs þ Yn 0n 0Vn 0

Yn 0s ¼ �ys;n 0

Yn 0n 0 ¼ yn 0n 0 þ ysn 0 ð11:4Þ
All equations remain unchanged except the bus S equation:

Is ¼ Ys1V1 þ � � � þ ðYss þ ys;n 0 ÞVs þ � � � þ Ysn 0Vn 0 ð11:5Þ
Thus:

Yss ! Yss þ ysn 0

Ysn 0 ! �ysn 0 ð11:6Þ

11.1 MODELING A TWO-WINDING TRANSFORMER

A transformer can be modeled by its leakage impedance as in short-circuit calcula-
tions; however, in load flow calculations a transformer can act as a control element:

. Voltage control is achieved by adjustments of taps on the windings, which
change the turns ratio. The taps can be adjusted under load, providing
an automatic control of the load voltage (Appendix C). The under load
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Figure 11-1 Adding a new branch between an existing bus S and a new bus N 0 in a Y

matrix.
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taps generally provide �10�20% voltage adjustments around the rated
transformer voltage, in 16 or 32 steps. Off-load taps provide �5%
voltage adjustment, two taps of 2.5% below the rated voltage and
two taps of 2.5% above the rated voltage. These off-load taps must
be set at optimum level before commissioning, as these cannot be
adjusted under load.

. Transformers can provide phase-shift control to improve the stability limits.

. The reactive power flow is related to voltage change and voltage adjust-
ments indirectly provide reactive power control.

We will examine each of these three transformer models at appropriate places. The
model for a ratio-adjusting type transformer is discussed in this chapter. The impe-
dance of a transformer will change with tap position. For an autotransformer there
may be 50% change in the impedance over the tap adjustments. The reactive power
loss in a transformer is significant, and the X=R ratio should be correctly modeled in
load flow.

Consider a transformer of ratio 1 :n. It can be modeled by an ideal transformer
in series with its leakage impedance Z (the shunt magnetizing and eddy current loss
circuit is neglected), as shown in Fig. 11-2(a). With the notations shown in this
figure:

Vs ¼ ðVr � ZIrÞ=n ð11:7Þ
As the power through the transformer is invariant:

VsI
�
s þ ðVr � ZIrÞI�r ¼ 0 ð11:8Þ

Substituting Is=ð�IrÞ ¼ n, the following equations can be written:

Is ¼ ½nðn� 1ÞY �Vs þ nYðVs � VrÞ ð11:9Þ
Ir ¼ nYðVr � VsÞ þ ½ð1� nÞY �Vr ð11:10Þ

Equations (11.9) and (11.10) give the equivalent circuits shown in Fig. 11-2(b) and
11.2(c), respectively. For a phase-shifting transformer, a model is derived in Chap.
12.

The equivalent � circuits of the transformer in Fig. 11-2(c) leads to

Yss ¼ n2Ysr Yrs ¼ Ysr ¼ �nYsr Yrr ¼ Ysr ð11:11Þ
If the transformer ratio changes by �n:

Yss ! Yss þ ½ðnþ�nÞ2 � n2�Ysr

Ysr ! Ysr ��nYsr

Yrr ! Yrr

ð11:12Þ

Example 11.1

A network with four buses and interconnecting impedances between the buses, on a
per unit basis, is shown in Fig. 11-3(a). It is required to construct a Y matrix. The
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turns’ ratio of the transformer should be accounted for according to the equivalent
circuit developed above. All impedances are converted into admittances, as shown in
Fig. 11-3(b), and the Y matrix is then written ignoring the effect of the transformer
turns’ ratio settings:

�YYbus ¼
2:176� j7:673 �1:1764þ j4:706 �1:0þ j3:0 0

�1:1764þ j4:706 2:8434� j9:681 �0:667þ j2:00 �1:0þ j3:0
�1:0þ j3:0 �0:667þ j2:00 1:667� j8:30 j3:333

0 �1:0þ j3:0 j3:333 1:0� j6:308

��������

��������
The turns’ ratio of the transformer can be accommodated in two ways: (1) by

equations, or (2) by the equivalent circuit of Fig. 11-2(c). Let us use Eqs (11.2) to
modify the elements of the admittance matrix:
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Figure 11-2 (a) Equivalent circuit of a ratio adjusting transformer, ignoring shunt elements;
(b) equivalent � impedance network; (c) equivalent � admittance network.
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Figure 11-3 (a) Impedance data for a 4-bus network with a ratio-adjusting transformer; (b)

the 4-bus system with impedance data converted to admittance; (c) equivalent circuit adjusted
for transformer turns’ ratio.
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Y33 ! Y33 þ ½ðnþ�nÞ2 � n2�Y34

¼ 1:667� j8:30þ ½1:12 � 1�½�j3:333�
¼ 1:667� j7:60

Y34 ! Y34 ��nY34

j3:333� ð1:1� 1Þð�j3:333Þ
¼ j3:666

The modified Y bus matrix for the transformer turns’ ratio is

�YYbus;modified

¼

2:1764� j7:673 �1:1764þ j4:706 �1:0þ j3:0 0

�1:1764þ j4:706 2:8434� j9:681 �0:667þ j2:00 �1:0þ j3:0

�1:0þ j3:0 �0:667þ j2:00 1:667� j7:60 j3:666

0 �1:0þ j3:0 j3:66 1:0� j6:308

���������

���������
As an alternative, the equivalent circuit of the transformer is first modified for

the required turns’ ratio, according to Fig. 11-2(c). This modification is shown in Fig.
11-3(c), where the series admittance element between buses 3 and 4 is modified and
additional shunt admittances are added at buses 3 and 4. After the required mod-
ifications, the admittance matrix is formed, which gives the same results as arrived at
above.
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Figure 11-3 (Continued)
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11.2 LOAD FLOW, BUS TYPES

In a load flow calculation, the voltages and currents are required under constraints
of bus power. The currents are given by

�II ¼ �YY �VV ð11:13Þ
and the power flow equation can be written as

Ss ¼ Ps þ jQs ¼ VsI
�
s s ¼ 1; 2; . . . ; n ð11:14Þ

Where n = number of buses

From Eqs (11.13) and (11.14) there are 2n� 2 equations and there are 4n variables
(2n current variables and 2n voltage variables) presenting a difficulty in solution. The
current can be eliminated in the above formation:

Ss ¼ Ps þ jQs ¼ Vs

Xn
r¼1

YsrVr

 !�
r; s ¼ 1; 2; . . . ; n ð11:15Þ

Now there are 2n equations and 2n variables. This does not lead to an immedi-
ate solution. The constant power rather than constant current makes the load flow
problem nonlinear. The loads and generation may be specified but the sum of loads
is not equal to the sum of generation as network losses are indeterminable until the
bus voltages are calculated. Therefore, the exact amount of total generation is
unknown. One solution is to specify the power of all generators except one. The
bus at which this generator is connected is called the swing bus or slack bus. A utility
source is generally represented as a swing bus or slack bus, as the consumers’ system
is much smaller compared to a utility’s system. After the load flow is solved and the
voltages are calculated, the injected power at the swing bus can be calculated.

Some buses may be designated as PQ buses while the others are designated as
PV buses. At a PV bus the generator active power output is known and the voltage
regulator controls the voltage to a specified value by varying the reactive power
output from the generator. There is an upper and lower bound on the generator
reactive power output depending on its rating, and for the specified bus voltage,
these bounds should not be violated. If the calculated reactive power exceeds gen-
erator Qmax, then Qmax is set equal to Q. If the calculated reactive power is lower
than the generator Qmin, then Q is set equal to Qmin.

At a PQ bus, neither the current, nor the voltage is known, except that the load
demand is known. A ‘‘mixed’’ bus may have generation and also directly connected
loads. The characteristics of these three types of buses are shown in Table 11-1.
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Table 11-1 Load Flow—Bus Types

Bus type Known variable Unknown variable

PQ Active and reactive power ðP;QÞ Current and voltage ðI;VÞ
PV Active power and voltage ðP;VÞ Current and reactive power ðI;QÞ
Swing Voltage Current, active and reactive power

ðI;P, and QÞ
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11.3 GAUSS AND GAUSS–SEIDEL Y -MATRIX METHODS

The principal of Jacobi iteration is shown in Fig. 11-4. The program starts by
setting initial values of voltages, generally equal to the voltage at the swing bus. In
a well-designed power system, voltages are close to rated values and in the absence
of a better estimate all the voltages can be set equal to 1 per unit. From node
power constraint, the currents are known and substituting back into the Y-matrix
equations, a better estimate of voltages is obtained. These new values of voltages
are used to find new values of currents. The iteration is continued until the
required tolerance on power flows is obtained. This is diagrammatically illustrated
in Fig. 11-4. Starting from an initial estimate of x0, the final value of x* is obtained
through a number of iterations. The basic flow chart of the iteration process is
shown in Fig. 11-5.

11.3.1 Gauss Iterative Technique

Consider that n linear equations in n unknowns (x1 . . . ; xn) are given. The a coeffi-
cients and b dependent variables are known:

a11x1 þ a12x2 þ � � � þ anxn ¼ b1

a21x1 þ a22x2 þ � � � þ a2nxn ¼ b2

� � � � � � � � � � � �
an1x1 þ an2x2 þ � � � þ annxn ¼ bn ð11:16Þ

These equations can be written as

x1 ¼
1

a11
ðb1 � a12x2 � a13x3 � � � � � a1nxnÞ
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Figure 11-4 Illustration of numerical iterative process for final value of a function.
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x2 ¼
1

a22
ðb2 � a21x1 � a23x3 � � � � � a2nxnÞ

� � � � � � � � � � � �

xn ¼
1

ann
ðbn � an1x1 � an2x2 � � � � � an;n�1xn�1Þ ð11:17Þ

An initial value for each of the independent variables x1; x2 . . . ; xn is assumed. Let
these values be denoted by

x01; x
0
2; x

0
3 . . . x

0
n ð11:18Þ

The initial values are estimated as

x01 ¼
y1
a11

x02 ¼
y2
a22

� � � � � � � � �
x0n ¼

yn
ann

ð11:19Þ
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Figure 11-5 Flow chart of basic iterative process of Jacobi-type iterations.
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These are substituted into Eq. (11.17), giving

x01 ¼
1

a11
½b1 � a12x

0
2 � a13x

0
3 � � � � a1nx0n�

x02 ¼
1

a22
½b2 � a21x

0
1 � a23x

0
3 � � � � a2nx0n�

� � � � � � � � � � � �

x0n ¼
1

ann
½bnn � an1x

0
1 � an2x

0
2 � � � � an;n�1x

0
n�1� ð11:20Þ

These new values of

x11; x
1
2; . . . ; x

1
n ð11:21Þ

are substituted into the next iteration. In general, at the kth iteration:

xk1 ¼
1

a11
½b1 � a12x

k�1
2 � a13x

k�1
3 � � � � � a1nx

k�1
n �

xk2 ¼
1

a22
½b2 � a21x

k�1
1 � a23x

k�1
3 � � � � � a2nx

k�1
n �

� � � � � � � � � � � �

xkn ¼
1

ann
½bn � an1x

k�1
1 � an2x

k�1
2 � � � � � an;n�1x

k�1
n�1� ð11:22Þ

Example 11.2

Consider a three-bus network with admittances as shown in Fig. 11-6. The currents
at each of the buses are fixed, which will not be the case in practice, as the currents
are dependent on voltages and loads. Calculate the bus voltages for the first five
iterations by the Gauss iterative technique.

The matrix equation is

3 �1 0
�1 4 �3
0 �3 6

������
������
v1
v2
v3

������
������ ¼

3
4
2

������
������
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Figure 11-6 A three-bus system for Examples 11.2, 11.3, and 11.5.
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Thus:

3v1 � v2 ¼ 3

�v1 þ 4v2 � 3v3 ¼ 4

�3v2 þ 6v3 ¼ 2

There are three equations and three unknowns. Let v1 ¼ v2 ¼ v3 ¼ 1 be the initial
values. This relationship is generally valid as a starting voltage estimate in load flow,
because the voltages throughout the network must be held close to the rated vol-
tages. The following equations can then be written according to the Gauss iterative
method:

vkþ1
1 ¼ 1þ 1

3
vk2

vkþ1
2 ¼ 1þ 1

4
vk1 þ

3

4
vk3

vkþ1
3 ¼ 1

3
þ 1

2
vk2 ð11:23Þ

The values of v1, v2, and v3 at k ¼ 1 are

k ¼ 1
v1 ¼ 1þ ð0:3333Þð1Þ ¼ 1:333
v2 ¼ 1þ 0:25ð1Þ þ 0:75ð1Þ ¼ 2:000
v3 ¼ 0:3333þ ð0:25Þð1Þ ¼ 0:833
k ¼ 2
v1 ¼ 1þ ð0:3333Þð2Þ ¼ 1:667
v2 ¼ 1þ 0:25ð1:333Þ þ 0:75ð0:8333Þ ¼ 1:958
v3 ¼ 0:3333þ 0:5ð2:000Þ ¼ 1:333

The results for the first five iterations are presented in Table 11-2.

11.3.2 Gauss–Seidel Iteration

Instead of substituting the k� 1 approximations into all the equations in the kth
iteration, the kth iterations are immediately used as soon as these are found. This will
hopefully reduce the number of iterations.

xk1 ¼
1

a11
½b1 � a12x

k�1
2 � a13x

k�1
3 � � � � � a1nx

k�1
n �
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Table 11-2 Gauss Iterative Solution of Example 11.2

Voltage k ¼ 0 k ¼ 1 k ¼ 2 k ¼ 3 k ¼ 4 k ¼ 5

v1ðkÞ
v2ðkÞ
v3ðkÞ

1
1
1

1.333
2.000
0.8333

1.667
1.958
1.333

1.653
2.417
1.312

1.806
2.397
1.542

1.799
2.608
1.532
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xk2 ¼
1

a22
½b2 � a21x

k
1 � a23x

k�1
3 � � � � � a2nx

k�1
n �

xk3 ¼
1

a33
½b3 � a31x

k
1 � a32x

k
2 � � � � � a3nx

k�1
n �

� � � � � � � � � � � �

xkn ¼
1

ann
½bn � an1x

k
1 � an2x

k
2 � � � � � an;n�1x

k
n�1� ð11:24Þ

Example 11.3

Solve the three-bus system of Example 11.2 by Gauss–Seidel iteration.
We again start with the assumption of unity voltages at all the buses, but the

new values of voltages are immediately substituted into the downstream equations.
From Eq. (11.23), the first iteration is as follows:

k ¼ 1
v1 ¼ 1þ 0:3333ð1Þ ¼ 1:333. This value of v1 is immediately used:
v2 ¼ 1 ¼ 0:25ð1:333Þ þ 0:75ð1Þ ¼ 2:083. This value of v2 is immediately used:
v3 ¼ 0:3333þ 0:5ð2:083Þ ¼ 1:375.

The result of the first five iterations is shown in Table 11-3. A better estimate of the
final voltages is obtained in fewer iterations.

11.3.3 Convergence

The convergence can be defined as:

"k ¼ jVk�1
s � Vk

s j < " (specified value) ð11:25Þ
The calculation procedure is repeated until the specified tolerance is achieved. The
value of " is arbitrary. For Gauss–Seidel iteration, " ¼ 0:00001 to 0.0001 is common.
This is the largest allowable voltage change on any bus between two successive
iterations before the final solution is reached. Approximately 50–150 iterations are
common, depending on the number of buses and the impedances in the system.

11.3.4 Gauss–Seidel Y-Matrix Method

In load flow calculations the system equations can be written in terms of current,
voltage, or power at the kth node. We know that the matrix equation in terms of
unknown voltages, using the bus admittance matrix for nþ 1 nodes, is
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Table 11-3 Gauss–Seidel Iterative Solution of Example 11.3

Voltage k ¼ 0 k ¼ 1 k ¼ 2 k ¼ 3 k ¼ 4 k ¼ 5

v1
v2
v3

1
1
1

1.333
2.083
1.375

1.694
2.455
1.561

1.818
2.625
1.646

1.875
2.703
1.685

1.901
2.739
1.703
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I1
I2
� � �
Ik

��������

�������� ¼
Y11 Y12 � � � Y1n

Y21 Y22 � � � Y2n

� � � � � � � � � � � �
Yn1 Yn2 � � � Ynn

��������

��������
V01

V02

� � �
Von

��������

�������� ð11:26Þ

where 0 is the common node. The significance of zero or common node or slack bus
is discussed in Chap. 3.

Although the currents entering the nodes from generators and loads are not
known, these can be written in terms of P, Q, and V:

Ik ¼
Pk � jQk

V�
k

ð11:27Þ

The convention of the current and power flow is important. Currents entering the
nodes are considered positive, and thus the power into the node is also positive. A
load draws power out of the node and thus the active power and inductive vars are
entered as: �P� jð�QÞ ¼ �Pþ jQ. The current is then ð�Pþ jQÞ=V�. The nodal
equal of current at the kth node becomes:

Pk � jQk

V�
k

¼ Yk1V1 þ Yk2V2 þ Vk3Y3 þ � � � þ YkkVk þ � � � þ YknVn ð11:28Þ

This equation can be written as:

Vk ¼
1

Ykk

Pk � jQk

V�
k

� Yk1V1 � Yk3V3 � � � � � YknVn

	 

ð11:29Þ

In general, for the kth node:

Vk ¼
1

Ykk

Pk � jQk

V�
k

�
Xi�n

i¼1

YkiVi

" #
for i 6¼ k ð11:30Þ

The kth bus voltage at rþ 1 iteration can be written as

Vkþ1
k ¼ 1

Ykk

Pk � jQk

V�
k

�
Xk�1

i¼1

YkiV
kþ1
i �

Xn
i¼kþ1

YkiV
k
i

" #
ð11:31Þ

The voltage at the kth node has been written in terms of itself and the other voltages.
The first equation involving the swing bus is omitted, as the voltage at the swing bus
is already specified in magnitude and phase angle.

The Gauss–Seidel procedure can be summarized for PQ buses in the following
steps:

1. Initial phasor values of load voltages are assumed, the swing bus voltage
is known, and the controlled bus voltage at generator buses can be spe-
cified. Though an initial estimate of the phasor angles of the voltages will
accelerate the final solution, it is not necessary and the iterations can be
started with zero degree phase angles or the same phase angle as the swing
bus. A flat voltage start assumes 1þ j0 voltages at all buses, except the
voltage at the swing bus, which is fixed.
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2. Based on the initial voltages, the voltage at a bus in the first iteration is
calculated using Eq. (11.30), i.e., at bus 2:

V21 ¼
1

Y22

P2 � jQ2

V�
20

� Y21V10 � � � � � Y2nVn0

" #
ð11:32Þ

3. The estimate of the voltage at bus 2 is refined by repeatedly finding new
values of V2 by substituting the value of V2 into the right-hand side of the
equation.

4. The voltages at bus 3 is calculated using the latest value of V2 found in
step 3 and similarly for other buses in the system.

This completes one iteration. The iteration process is repeated for the entire network
till the specified convergence is obtained.

A generator bus is treated differently; the voltage to be controlled at the
bus is specified and the generator voltage regulator varies the reactive power
output of the generator within its reactive power capability limits to regulate the
bus voltage:

Qk ¼ �Im V�
k

Xi�n

i¼1

YkiVi

( )" #
ð11:33Þ

where Im stands for the imaginary part of the equation. The revised value of Qk is
found by substituting the most updated value of voltages:

Qkþ1
k ¼ �Im Vk�

k

Xk�1

i¼1

YkiV
kþ1
i þ Vk�

k

Xn
k

YkiV
k
i

" #
ð11:34Þ

The angle �k is the angle of the voltage in Eq. (11.30):

�kþ1
k ¼ ff of Vkþ1

k

¼ ff of
Pk � jQkþ1

k

YkkðVk
k Þ�

�
Xk�1

i¼1

Yki

Ykk

Vkþ1
i �

Xn
i¼kþ1

Yki

Ykk

Vk
i

" #
ð11:35Þ

For a PV bus the upper and lower limits of var generation to hold the bus voltage
constant are also given. The calculated reactive power is checked for the specified
limits:

QkðminÞ < Qkþ1
k < QkðmaxÞ ð11:36Þ

If the calculated reactive power falls within the specified limits, the new value of
voltage Vkþ1

k is calculated using the specified voltage magnitude and �kk. This new
value of voltage Vkþ1

k is made equal to the specified voltage to calculate the new
phase angle �kþ1

k .
If the calculated reactive power is outside the specified limits, then,

If Qkþ1
k > QkðmaxÞ Qkþ1

k ¼ QkðmaxÞ ð11:37Þ
If Qkþ1

k < QkðminÞ Qkþ1
k ¼ QkðminÞ ð11:38Þ

This means that the specified limits are not exceeded and beyond the reactive power
bounds, the PV bus is treated like a PQ bus. A flow chart is shown in Fig. 11-7.
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Figure 11-7 Flow chart for Gauss–Seidel method of load flow.
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Example 11.4

A three-bus radial system of distribution is shown in Fig. 11-8 consisting of three
branch impedances shown in per unit on a 100-MVA base. Bus 1 is a swing bus with
voltage 1 < 08 in per unit. Buses 2 and 3 are load buses, loads as shown, and bus 4 is a
generation bus, i.e., a PV bus with voltage of 1.05 per unit, phase angle unknown. The
generator is a 25-MVA unit, rated power factor of 0.8 (15 Mvar output at rated MW
output of 20). Though the generator will be connected through a step-up transformer,
its impedance is ignored. Also, the capacitance to ground of the transmission lines is
ignored. Calculate the load flow by the Gauss–Seidel iterative method.

The impedances are converted into admittances and a Y matrix is formed:

�YYbus

¼
0:896� j1:638 �0:896þ j1:638 0 0

�0:896þ j1:638 1:792� j3:276 �0:896þ j1:638 0

0 �0:896þ j1:638 2:388� j4:368 �1:492þ j2:730

0 0 �1:492þ j2:730 1:492� j2:730

��������

��������
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Figure 11-8 Four-bus network with generator for load flow (Examples 11.4, 11.6, and 11.9).
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Let the initial estimate of voltages at buses 2 and 3 be 1 < 08, 1 < 08 respectively. The
voltage at bus 2, V2 is

V1
2 ¼ 1

Y22

P2 � jQ2

V0�
2

� Y21V
0
1 � Y23V

0
3 � Y24V

0
4

	 

ð11:39Þ

¼ 1

1:792� j3:276

"
�0:2þ j0:1

1:0þ j0
� ð�0:896þ j1:638Þð1:0 < 08Þ

� ð�0:896þ j1:638Þð1:0 < 08Þ
#

¼ 0:9515 < �2:0598

Substitute this value back into Eq. (11.39) and recalculate:

V
1ð2Þ
2 ¼ 1

1:792� j3:276

�0:2þ j0:1

0:9515 < 2:0598
þ 1:792� j3:276

	 

¼ 0:948 < �2:058

Another closer estimate of V2 is possible by repeating the process.
Similarly,

V1
3 ¼ 1

2:388� j4:368

	 

�"

�0:1þ j0:05

1:0þ j0
� ð�0:896þ j1:638Þð0:948 < �2:058Þ

� ð�1:492þ j2:730Þð1:05 < 08Þ
#

0:991 < �1:4458

Note that the newly estimated value of bus 2 voltage is used in this expression. The
bus 3 voltage after another iteration is

V312 ¼ 0:993 < �1:4538

For the generator bus 4 the voltage at the bus is specified as 1:05 < 08. The reactive
power output from the generator is estimated as

Q0
4 ¼ �Im½V�

40fY41V1 þ Y42V21ð2Þ þ Y43V31ð2Þ þ Y44V40g� ð11:40Þ
Substituting the numerical values:

Q0
4 ¼� Im½1:05 < 08½ð�1:492þ j2:730Þð0:991 < �1:3878Þ

þ ð1:492� j2:730Þð1:05 < 08Þ��
This is equal to 0.125 per unit. The generator reactive power output at rated load is
0.150 per unit.

The angle � of the voltage at bus 4 is given by

ffV1
4 ¼ ff 1

Y44

P4 � jQ40

V0�
4

� Y41V1 � Y42V
1ð2Þ
2 � Y43V

1ð2Þ
3

	 

ð11:41Þ
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The latest values of the voltage are used in Eq. (11.41). Substituting the numerical
values and the estimated value of the reactive power output of the generator:

ffV1
4 ¼ ff 1

1:492� j2:730

0:2� j0:125

1:05 < 08
� ð�1:492þ j2:730Þð0:993 < �1:4538Þ

	 


This is equal to < 0:548.
V1

4 is given as 1:05 < 0:548; the value of voltage found above can be used for
further iteration and estimate of reactive power.

Q1
4 ¼� Im½1:05 < �0:548fð�1:492þ j2:730Þð0:993 < �1:4538Þ

þ ð1:492� j2:730Þð1:05 < 0:548Þ
This gives 0.11 per unit reactive power. One more iteration can be carried out
for accuracy. The results of the first and subsequent iterations are shown in
Table 11-4.

Now suppose that for the specified voltage of 1.05 per unit, the generator
reactive power requirement exceeds its maximum specified limit of 0.15, i.e., a gen-
erator rated at 0.9 power factor will have a reactive capability at full load equal to
0.109 per unit. The 1.05 per unit voltage cannot then be maintained at bus 3. The
maximum reactive power is substituted and the bus voltage calculated as in a PV
bus.

11.4 CONVERGENCE IN JACOBI-TYPE METHODS

Example 11.4 shows that in the very first iteration the calculated results are close to
the final results. Most power system networks are well conditioned and converge.
Generally, the convergence is better ensured when the diagonal elements of the Y
matrix are larger than the off-diagonal elements. This may not always be the case. In
systems which have a wide variation of impedances, oscillations may occur without
convergence.

11.4.1 Ill-Conditioned Network

Consider two linear equations:

1000x1 þ 20001x2 ¼ 40,003

x1 þ 2x2 ¼ 4

The solution is

x1 ¼ �2; x2 ¼ 3

Let the coefficient of x1 in the first equation change by �0:1%, i.e., the coefficient is
999. The new equations are

999x1 þ 20001x2 ¼ 40,003

x1 þ 2x2 ¼ 4

The solution is

x1 ¼ � 2

3
; x2 ¼

7

3
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Table 11-4 Gauss–Seidel Iterative Solution of Network of Example 11.4

Iteration

Bus 2 Bus 3 Bus 4

Voltage
Load
current Voltage

Load
current Voltage

Generator
current

Generator
active
power

Generator
reactive
power

Converged
for " ¼

1

2
3
4

10

0:948 < �2:05
0:944 < �2:803
0:943 < �2:717
0:942 < �2:647
0:942 < �2:426

0:236
0.2370
0.2373
0.2373

0.2373

0:993 < �1:453
0:991 < �1:268
0:991 < �1:125
0:990 < �1:012
0:990 < �0:645

0.1126

0.1128
0.1129
0.1129

0.1129

1:05 < 0:6
1:05 < 0:863
1:05 < 0:999
1:050 < 1:111
1:050 < 1:482

0.2179

0.2194
0.22
0.22

0.2199

0.2

0.2
0.2
0.2

0.2

0.12

0.1144
0.1155
0.1157

0.1155

0.12
0.0025
0.002

0.0006
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Now let the coefficient of x1 in the first equation change by þ1%, i.e., it is 10,001.
The new equations are

10001x1 þ 20001x2 ¼ 40,003

x1 þ 2x2 ¼ 4

The solution of these equations is

x1 ¼ 2; x2 ¼ 1

This is an example of an ill-conditioned network. A small perturbation gives rise to
large oscillations in the results.

11.4.2 Negative Impedances

Negative impedances may be encountered while modeling certain components, i.e.,
duplex reactors and sometimes the three-winding transformers. When negative ele-
ments are present, the Gauss–Seidel method of load flow will not converge.

11.4.3 Convergence Speed and Acceleration Factor

The convergence speed of the Y-matrix method corresponds to the indirect solution
of linear simultaneous equations. A relationship between convergence and eigenva-
lues can be derived as follows.

From Eq. (11.26):

�II ¼ ½ �LLþ �DDþ �UU� �YY
�VVkþ1 ¼ ½ �DD��1½ �IIk � ð �LLþ �UUÞ� �VVk

ð11:42Þ

A matrix can be transformed into LDU form (see Appendix A). Also, from Eq.
(11.22):

�xxkþ1 ¼ �DD�1ð �bbþ �LL1 �xx
k þ �UUu �xx

kÞ ð11:43Þ
This can be written as

�xxkþ1 ¼ �MM �xxk þ �gg where

�MM ¼ �DD�1ð �LL1 þ �UUuÞ; �gg ¼ �DD�1 �bb
ð11:44Þ

If �1; �2; �3; . . . are the eigenvalues of a square matrix �MM, and �i 6¼ �j ðI 6¼ jÞ, and
x1; x2; x3; . . . are the eigenvectors, then the eigenvectors are linearly independent. An
arbitrary vector can be expressed as a linear combination of eigenvectors:

�xx ¼ c1 �xx1 þ c2 �xx2 þ � � � þ cn �xxn ð11:45Þ
As �MM �xx ¼ � �xx, the above equation can be written as:

�MM �xx ¼ C1�1 �xx1 þ C2�2 �xx2 þ � � � þ Cn�n�xxn

�MM2 �xx ¼ C1�
2
1 �xx1 þ C2�

2
2 �xx2 þ � � � þ Cn�

2
n�xxn

�MMkþ1 �xx ¼ C1�
kþ1
1 �xx1 þ C2�

kþ1
2 �xx2 þ � � � þ Cn�

kþ1
n �xxn ð11:46Þ

If

j�ij < 1ði ¼ 1; 2; 3; . . . ; nÞ ð11:47Þ
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Then, convergence occurs as k increases and the successive terms of Eq. (11.46)
become zero. The speed of convergence is dominated by the maximum value of �i.

One method to reduce the maximum value of � is acceleration:

xkþ1
1 ¼ 1

a11
b1 � a12x

k
2 � a13x

k
2 � � � � � a1nx

k
n

j k
xkþ1
1 ¼ xk1 þ � xkþ1

1 � xk1

h i
ð11:48Þ

i.e., if the �x between iterations is not small enough, it is multiplied by a numerical
factor � to increase its value; � is called the acceleration factor. The value of �
generally lies between:

0 < � < 2 ð11:49Þ

An � value of 1.4–1.6 is common. A value of � < 1 is called a decelerating constant.
The larger the system, the more time it takes to solve the load flow problem,

depending on the value of �.

Example 11.5

Solve the system of Example 11.3 using the Gauss–Seidel method, with an accelera-
tion factor of 1.6.

V
ðkþ1Þ 0
1 ¼ 1þ 1

3
Vk

2

V
ðkþ1Þ
1 ¼ Vk

1 þ 1:6ðV ðkþ1Þ 0
1 � Vk

1 Þ
V

ðkþ1Þ 0
2 ¼ 1þ 1

4
Vkþ1

1 þ 3

4
Vk

3

V
ðkþ1Þ
2 ¼ Vk

2 þ 1:6ðV ðkþ1Þ 0
2 � Vk

2 Þ
V

ðkþ1Þ 0
3 ¼ 1

3
þ 1

2
Vkþ1

2

V
ðkþ1Þ
3 ¼ Vk

3 þ 1:6ðV ðkþ1Þ 0
3 � Vk

3 Þ

Using the above equations the values of voltages for k ¼ 1 are calculated as
follows:

V1 0
1 ¼ 1þ 1

3
ð1Þ ¼ 1:333

V1
1 ¼ 1þ 1:6ð1:333� 1Þ ¼ 1:6ð0:333Þ ¼ 1:538

V2 0
2 ¼ 1þ 1

4
ð1:538Þ þ 3

4
ð1Þ ¼ 2:1345

V2
2 ¼ 1þ 1:6ð2:1345� 1Þ ¼ 2:8152

V3 0
3 ¼ 1

3
þ 1

2
ð2:8152Þ ¼ 1:7406

V3
3 ¼ 1þ 1:6ð1:7406� 1Þ ¼ 2:1849
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The results of the first five iterations are shown in Table 11-5. These can be compared
to the results in Table 11-3. The mismatch between bus voltages progressively
reduces.

Example 11.6

Repeat the calculations of Example 11.4, with an acceleration factor of 1.6.
The voltage at bus 2 is calculated in the first two iterations as 0:948 < �2:058,

(Example 11.4). Using an acceleration factor of 1.6:

V1
2 ¼ V0

2 þ 1:6ðV1 0
2 � V0

2 Þ
¼ 1 < 08þ 1:6ð0:948 < �2:058� 1 < 08Þ
¼ 0:916� j0:054

Use this voltage to calculate the initial voltage on bus 3:

V1 0
3 ¼ 1

2,388� j4:368

�0:1þ j0:05

1:0þ j0
� ð�0:896þ j1:638Þð0:916� j0:054Þ

�ð�1:493þ j2:730Þð1:05 < 08Þ

2
4

3
5

¼ 0:979� j0:032

Calculate the bus 3 voltage with the acceleration factor:

V1
3 ¼ V0

3 þ 1:6ðV1 0
3 � V0

3 Þ
¼ 1 < 08þ 1:6ð0:979� j0:032� 1þ j0Þ
¼ 0:966� j0:651

For bus 4 calculate the reactive power, as in Example 11.4, using the voltages
found above. The results are shown in Table 11-6, which shows that there is initial
oscillation in the calculated results, which are much higher than the results
obtained in Table 11-4. However, at the 10th iteration, the convergence is
improved compared to the results in Table 11-4. Selection of an unsuitable accel-
eration factor can result in a larger number of iterations and oscillations and a lack
of convergence.
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Table 11-5 Solution of Example 11.5, with Gauss–Seidel Iteration and Acceleration
Factor of 1.6

Voltage k ¼ 0 k ¼ 1 k ¼ 2 k ¼ 3 k ¼ 4 k ¼ 5

Vk 0
1

Vk
1

Vk 0
2

Vk
2

Vk 0
3

Vk
3

1

1

1

1.333

1.538
2.135
2.815

1.741
2.185

1.938

2.178
3.183
3.404

2.035
1.945

2.135

2.109
2.986
2.735

1.700
1.533

1.912

1.794
2.598
2.516

1.591
1.626

1.839

1.866
2.686
2.788

1.727
1.788
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Table 11-6 Solution of Example 11.6, with an Acceleration Factor of 1.6

Iteration

Bus 2 Bus 3 Bus 4

ConvergenceVoltage
Load
current Voltage

Load
current Voltage

Generator
current

Generator

reactive
power

Generator

active
power

1
2

3
4
10

0:917 < �3:403
0:939 < �3:814
0:929 < �3:587
0:947 < �2:836
0:943 < �2:326

0.2439
0.2380

0.2406
0.2360
0.2372

0:970 < �3:105
0:974 < �3:134
0:988 < �2:049
0:998 < �1:083
0:991 < �0:485

0.1153
0.1148

0.1132
0.1103
0.1129

1.023
1.045

1.053
1.050

1:050 < 1:650

0.23
0.2252

0.2236
0.2100
0.2193

0.124
0.124

0.124
0.0927
0.1142

0.2
0.2

0.2
0.2
0.2

�0:034
0:0094
0:01295
0:0140

�0:00053
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11.5 GAUSS–SEIDEL Z -MATRIX METHOD

From Chap. 3, we know how a bus impedance matrix can be formed. We will revisit
bus impedance matrix from load flow considerations. The voltage at the swing bus is
defined and need not be included in the matrix equations. The remaining voltages are

V2

V3

�
Vn

��������

�������� ¼
Z22 Z23 � � � Z2n

Z32 Z33 � � � Z3n

� � � �
Zn2 Zn3 � � � Znn

��������

��������
I2
I3
�
In

��������

�������� ð11:50Þ

Therefore, we can write:

Vk ¼ Zk2I2 þ Zk3I3 þ � � � þ ZknIn ð11:51Þ
The current at the kth branch can be written as

Ik ¼
Pk � jQk

V�
k

� ykVk ð11:52Þ

where yk is the admittance of bus k to a common reference bus. If the kth branch is a
generator which supplies real and reactive power to the bus, P and Q are entered as
positive values. If the kth branch draws power from the network, then P and Q are
entered as negative values.

The general procedure is very similar to the Y admittance method:

Vk ¼ ZklI1 þ � � � þ ZknIn

¼ Zkl

P1 � jQ1

V�
1

� y1V1

	 

þ � � � þ Zkn

Pn � jQn

V�
n

� ynVn

	 


Vk ¼
Xi�n

i¼1

Zki

Pi � jQi

V�
i

� yiVi

	 

ð11:53Þ

The iteration process is:

1. Assume initial voltages for the n buses:

V0
1 ;V

0
2 ; . . . ;V

0
n ð11:54Þ

2. Calculate V1 from Eq. (11.53) in terms of the initial assumed voltages and
substitute back into the same equation for a new corrected value:

V1
1 ¼

Xn
i¼1

Zki

Pi � jQi

V0�
i

� yiV
0
i

� �
ð11:55Þ

3. Repeat for bus 2, making use of corrected values of V1 found in step 2.
Iterate to find a corrected value of V2 before proceeding to the next bus.

4. When all the bus voltages have been evaluated start all over again for the
required convergence.

At a generator bus the reactive power is not known and an estimate of reactive
power is necessary. This can be made from:

Qk ¼ �Im
V�

k

Zkk

Vk �
Xi�n

i¼1;i 6¼k

Zki

Pi � jQi

V�
i

" #
ð11:56Þ
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A Z impedance matrix has strong convergence characteristics, at the expense of
larger memory requirements and preliminary calculations. Modifications due to
system changes are also comparatively difficult.

11.6 CONVERSION OF Y TO Z MATRIX

A number of techniques for formation of a bus impedance matrix are outlined in
Chap. 3. We will examine one more method, by which a bus impedance matrix can
be constructed from an admittance matrix by a step-by-step pivotal operation. The
following equations are supported:

new Ykk ¼
1

Ykk

ðYkk ¼ pivotÞ ð11:57Þ

new Ykj ¼
Ykj

Ykk

j ¼ 1; . . . ; nð j 6¼ kÞ ð11:58Þ

new Yik ¼ � Yik

Ykk

i ¼ 1; . . . ; nð j 6¼ kÞ ð11:59Þ

new Yij ¼ Yij �
YikYkj

Ykk

	 

ði 66¼ k; j 6¼ kÞ ð11:60Þ

The choice of a pivot is arbitrary. The new nonzero elements can be avoided by a
proper choice (Appendix D). The procedure can be illustrated by an example.

Example 11.7

Consider a hypothetical four-bus system, with the admittances as shown in Fig. 11-9.
Form a Y matrix and transform to a Z matrix by pivotal manipulation. Check the
results with the step-by-step buildup method of the bus impedance matrix described
in Chap. 3.
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Figure 11-9 Four-bus network for Example 11.7.
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The Y-bus matrix is easily formed by examination of the network:

�YY ¼
7 �2 0 �3

�2 5 �3 0
0 �3 4 0

�3 0 0 6

��������

��������
Pivot ð3; 3Þ:

Y31 ¼
Y31

Y33

¼ 0

Y32 ¼
Y32

Y33

¼ �3=4 ¼ �0:75

Y33 ¼
1

Y33

¼ 0:25

Y34 ¼
Y34

Y33

¼ 0

Y13 ¼ �Y13

Y33

¼ 0

Y23 ¼ �Y23

Y33

¼ �ð�3=4Þ ¼ 0:75

Y43 ¼ �Y43

Y33

¼ 0

Y22 ¼ Y22 �
Y23Y32

Y33

¼ 5� ð�3Þð�3Þ=4 ¼ 2:75

etc:

The transformed matrix is

7 �2 0 �3
�2 2:75 0:75 0
0 �0:75 0:25 0
�3 0 0 6

��������

��������
Next, use the pivot ð4; 4Þ. The transformed matrix is

5:5 �2 0 0:5
�2 2:75 0:75 0
0 �0:75 0:25 0

�0:5 0 0 0:167

��������

��������
Next, use the pivot ð2; 2Þ:

4:045 0:727 0:545 0:5
�0:727 0:364 0:273 0
0:545 0:273 0:455 0
�0:5 0 0 0:167

��������

��������
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and finally the pivot ð1; 1Þ gives the Z matrix:

�ZZ ¼
0:2470 0:1797 0:1350 0:1236
0:1797 0:4950 0:3709 0:0898
0:1350 0:3709 0:528 0:0674
0:1236 0:0898 0:0674 0:2289

��������

��������
Step-by Step Buildup

Chapter 3 showed a step-by-step building method for a Z matrix.
Node 1 to ground and adding branch 1 to 2 and 2 to 3 gives the Z matrix as

0:5 0:5 0:5
0:5 1 1
0:5 1 1:33

������
������

Add the 1-ohm branch between node 3 and ground. The new Z matrix is

0:5 0:5 0:5
0:5 1 1
0:5 1 1:33

������
�������

1

2:33

0:5
1

1:33

������
������ 0:5 1 1:33
�� �� ¼ 0:393 0:285 0:215

0:285 0:571 0:429
0:215 0:429 0:571

������
������

Add branch 1 to 4:

�ZZ ¼
0:393 0:285 0:215 0:393
0:285 0:571 0:429 0:285
0:215 0:429 0:571 0:215
0:393 0:285 0:215 0:726

��������

��������
Finally, add the 0.333-ohm branch between node 4 and ground. The final Z matrix is

0:393 0:285 0:215 0:393

0:285 0:571 0:429 0:285

0:215 0:429 0:571 0:215

0:393 0:285 0:215 0:726

���������

���������
� 1

1:059

0:393

0:285

0:215

0:726

���������

���������

0:393 0:285 0:215 0:726
�� �� ¼

0:247 0:1797 0:135 0:1236

0:1797 0:495 0:3709 0:0898

0:1350 0:3709 0:528 0:0674

0:1236 0:0898 0:0674 0:2289

���������

���������
This is the same result as arrived at by pivotal operation.

Example 11.8

Solve the network of Example 11.2 by the Z-matrix method.
The Y matrix of Example 11.2 is

�YY ¼
3 �1 0
�1 4 �3
0 �3 6

������
������

Form the Z matrix:

�ZZ ¼
0:385 0:154 0:077
0:154 0:462 0:231
0:071 0:231 0:282

������
������
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Then:

v1
v2
v3

������
������ ¼ �ZZ

3
4
2

������
������ ¼

1:923
2:769
1:718

������
������

No more iterations are required, as the currents are given. These values exactly
satisfy the original equations. Compare these results obtained after five iterations
in Tables 11-1, 11-2, and 11-5, which are still approximate and require more itera-
tions for better accuracy.

Example 11.9

Solve Example 11.4 with a Z bus matrix of load flow.
Using the same initial voltage estimate on the buses as in Example 11.4:

I02 ¼ bP2 þ jQ2=V
0
2 c� � Y21V1

¼ ½ð�0:2� j0:1Þ=1:0�� � ð�0:896þ j1:638Þ � 1 < 08

¼ 0:696� j1:538

The equation for the swing bus need not be written.

I03 ¼ bP3 þ jQ3=V
0
3 c� � Y31V1

¼ ½ð�0:1� j0:05Þ1 < 08�� � ð0Þ1 < 08 ¼ �0:1þ j0:05

The reactive power at bus 4 is

Q0
4 ¼ ImbV0

4 ðY41V
0
1 þ Y42V

0
2 þ Y43V

0
3 þ Y44V

0
4 Þ�c

Im½1:05 < 08½ð�1:492þ j2:730Þð1 < 08Þ þ ð1:492� j2:730Þð1:05 < 08Þ��� ¼ j0:144

This is within the generator rated reactive power output.

I04 ¼ ½ðP4 þ jQ4=V
0
4 �� � Y41V1

¼ 0:19� j0:137

Thus, the voltages are given by

V2

V3

V4

������
������ ¼ �ZZ

I2
I3
I4

������
������

where the Z matrix is formed from the Y matrix of Example 11.4. The equation for
the swing bus is omitted.

�ZZ ¼
0:257þ j0:470 0:257þ j0:470 0:257þ j0:470
0:257þ j0:470 0:514þ j0:940 0:514þ j0:940
0:257þ j0:470 0:514þ j0:940 0:668þ j1:222

������
������

Therefore;

V2

V3

V4

������
������ ¼ �ZZ

0:696� j1:538
�0:1þ j0:05
0:19� j0:137

������
������ ¼

0:966� j0:048
1:03� j0:028
1:098þ j0:004

������
������ ¼

0:983 < �2:848
1:030 < �1:568
1:098 < 0:218

������
������
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The calculations are repeated with the new values of voltages. Note that V4 is higher
than the specified limits in the first iteration. Since V4 is specified as 1.05, in the next
iteration we will use V4 ¼ 1:05 < 0:218 and find the reactive power of the generator.

A comparison with the Y-matrix method is shown in Table 11-7.

Problems

(The problems can be solved without modeling the systems on a digital computer.)

1. In Example 11.1 consider that the line between buses 2 and 3 is removed.
Form the Y-impedance matrix. Modify this matrix by reconnecting the
removed line.

388 Chapter 11

Table 11-7 Comparison of Y and Z Matrix Methods for Load Flow

No. Compared parameter Y matrix Z matrix Remarks

1 Digital computer
memory
requirements

Small Large Sparse matrix
techniques easily
applied to Y

matrix
2 Preliminary

calculations
Small Large Software programs

can basically

operate from the
same data input

3 Convergence

characteristics

Slow, may not

converge at all

Strong Both methods may

slow down on
large systems

4 System modifications Easy Slightly difficult See text

Figure 11-P1 Network with impedance and generation data for load-flow Problems 2–5.
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2. Figure 11-P1 shows a distribution system with data as shown. Convert all
impedances to per unit base and form a Y matrix.

3. Calculate the currents and voltages in the system of Fig. 11-P1 by (1)
Gauss iterative method, (2) Gauss–Seidel iterative method, and (3)
Gauss–Seidel iterative method with an acceleration factor of 1.6.
Calculate to first two iterations in each case.

4. Convert the Y matrix of Problem 2 into a Z matrix by (1) pivotal manip-
ulation, and (2) step-by-step buildup.

5. Calculate currents and voltages by the Z-matrix method in Problem 3.
6. Figure 11-P2 is a modification of the circuit in Example 11.5, with a tap

adjusting transformer. Calculate load flow with the transformer at rated
voltage tap and at 1:1.1 tap. How does the reactive power flow change
with the transformer tap adjustment? Calculate to first iteration.

Load Flow Methods: Part I 389

Figure 11-P2 Four-bus system with ratio-adjusting transformer for Problem 6.
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12

Load Flow Methods: Part II

The Newton–Raphson (NR) method has powerful convergence characteristics,
though computational and storage requirements are heavy. The sparsity techniques
and ordered elimination (discussed in Appendix D) led to its earlier acceptability and
it continues to be a powerful load-flow algorithm even in today’s environment for
large systems and optimization [1]. A lesser number of iterations are required for
convergence, as compared to the Gauss–Seidel method, provided that the initial
estimate is not far removed from the final results, and these do not increase with
the size of the system [2]. The starting values can even be first estimated using a
couple of the iterations with the Gauss–Seidel method for load flow and the results
input into the NR method as a starting estimate. The modified forms of the NR
method provide even faster algorithms. Decoupled load flow and fast decoupled
solution methods are offshoots of the NR method.

12.1 FUNCTION WITH ONE VARIABLE

Any function of x can be written as the summation of a power series, and Taylor’s
series of a function f ðxÞ is

y ¼ f ðxÞ ¼ f ðaÞ þ f 0ðaÞðx� aÞ þ f 00ðaÞ
2!

ðx� aÞ2 þ � � � þ f nðaÞðx� aÞn
n!

ð12:1Þ

where f 0ðaÞ is the first derivative of f ðaÞ. Neglecting the higher terms and considering
only the first two terms, the series is

y ¼ f ðxÞ _¼¼ f ðaÞ þ f 0ðaÞðx� aÞ ð12:2Þ
The series converges rapidly for values of x near to a. If x0 is the initial estimate, then
the tangent line at ðx0; f ðx0ÞÞ is:

y ¼ f ðx0Þ þ f 0ðx0Þðx1 � x0Þ ð12:3Þ
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where x1 is the new value of x, which is a closer estimate. This curve crosses the x
axis (Fig. 12-1) at the new value x1. Thus

0 ¼ f ðx0Þ þ f 0ðx0Þðx1 � x0Þ

x1 ¼ x0 �
f ðx0Þ
f 0ðx0Þ

ð12:4Þ

In general:

xkþ1 ¼ xk �
f ðxkÞ
f 0ðxkÞ

ð12:5Þ

Example 12.1

Consider a function:

f ðxÞ ¼ x3 � 2x2 þ 3x� 5 ¼ 0

Find the value of x.
The derivative is

f 0ðxÞ ¼ 3x2 � 4xþ 3

Let the initial value of x ¼ 3, then f ðxÞ ¼ 13 and f 0ðxÞ ¼ 18, for k ¼ 1: From Eq.
(12.4), x1 ¼ 3� ð13=18Þ ¼ 2:278. Table 12-1 is compiled to k ¼ 4 and gives
x ¼ 1:843. As a verification, substituting this value into the original equation, the
identity is approximately satisfied.

392 Chapter 12

Figure 12-1 Progressive tangents to a function y ¼ f ðxÞ at x0, x1, and x2, showing the

crossings with the X axis, each crossing approaching closer to the final value x�.
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12.2 SIMULTANEOUS EQUATIONS

The Taylor series, Eq. (12.1), is applied to n nonlinear equations in n unknowns,
x1; x2; . . . ; xn:

y1 ¼: f1ðx1; x2; . . . ; xnÞ þ�x1
@f1
@x1

þ�x2
@f1
@x2

þ � � � þ�xn
@f1
dxn

� � � � � � � � � � � � � � �

yn ¼: fnðx1; x2; . . . ; xnÞ þ�x1
@fn
@x1

þ�x2
@fn
@x2

þ � � � þ�xn
@fn
@xn

ð12:6Þ

As a first approximation, the unknowns represented by the initial values x01; x
0
2; x

0
3;

. . . can be substituted into the above equations, i.e.,

yn ¼ fnðx01; x02; . . . ; x0nÞ þ�x01
@fn
@x1

����
0

þ � � � þ�x0n
@fn
@xn

����
0

ð12:7Þ

where x01; x
0
2; x

0
3; . . . ; x

0
n are the first estimates of n unknowns. On transposing:

y1 � f 01 ¼ @f1
@x1

����
0

�x01 þ
@f1
@x2

����
0

�x02 þ � � � þ @f1
@xn

����
0

�x0n

� � � � � � � � � � � � � � �

yn � f 0n ¼ @fn
@x1

����
0

�x01 þ
@fn
@x2

����
0

�x02 þ � � � þ @fn
@xnð0Þ

�����
0

�x0n ð12:8Þ

where

fnðx01; x02; . . . ; x0nÞ is abbreviated as f 0n

The original nonlinear equations have been reduced to linear equations in

�x01;�x02; . . . ;�x0n ð12:9Þ
The subsequent approximations are

x11 ¼ x01 þ�x01
x12 ¼ x02 þ�x02
� � � � � � � � � � � � � � �
x1n ¼ x0n þ�x0n

ð12:10Þ
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Table 12-1 Iterative Solution of a Function of

One Variable (Example 12.1)

k xk f ðxkÞ f 0ðxkÞ

0
1

2
3
4

3
2.278

1.931
1.848
1.844

13
3.277

0.536
0.025

� 0

18
9.456

6.462
5.853
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or in matrix form:

y1 � f 01

y2 � f 02

� � �
yn � f 0n

����������

����������
¼

@f1
@x1

� � � @f1
@xn

@f2
@x1

� � � @f2
@xn� � � � � � � � �

@fn
@x1

� � � @fn
@xn

��������������

��������������

�x01

�x02

� � �
�x0n

����������

����������
ð12:11Þ

The matrix of partial derivatives is called a Jacobian matrix. This result is written as

�xxkþ1 ¼ �xxk � ½JðxkÞ��1f ð �xxkÞ ð12:12Þ
This means that determination of unknowns requires inversion of the Jacobian.

Example 12.2

Solve the two simultaneous equations:

f1ðx1; x2Þ ¼ x21 þ 2x2 � 3 ¼ 0

f2ðx1; x2Þ ¼ x1x2 � 3x22 þ 2 ¼ 0

Let the initial values of x1 and x2 be 3 and 2, respectively.

�JJðxÞ ¼
@f1
@x1

@f1
@x2

@f2
@x1

@f2
@x2

��������

�������� ¼
2x1 2

x2 x1 � 6x2

����
����

Step 0:

�xx1 ¼ �xx0 � 6 2

2 �9

����
����
�1

f ð �xx0Þ

¼ 3

2

����
�����

9

58

2

58
2

58
� 6

58

��������

��������
10

�4

����
���� ¼ 1:586

1:241

����
����

Step 1:

x2 ¼ �xx1 � 3:172 2

1:241 �5:86

����
����
�1

f ð �xx1Þ

¼ 1:586

1:241

����
����� 0:278 0:095

0:095 �0:151

����
���� 1:997

�0:652

����
���� ¼ 1:092

1:025

����
����

Step 2:

x3 ¼ �xx2 � 2:184 2

1:025 �5:058

����
����
�1

f ð �xx2Þ

¼ 1:092

1:025

����
����� 0:386 0:153

0:078 �0:167

����
���� 0:242

�0:033

����
���� ¼ 1:004

1:001

����
����
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Thus, the results are rapidly converging to the final values of x1 and x2, which are
1, 1.

12.3 RECTANGULAR FORM OF NEWTON-RAPHSON METHOD OF
LOAD FLOW

The power flow equation at a PQ node is

S0
s ¼ P0

s þ jQ0
s ¼ Vs

Xr�n

r¼1

ðYsrVrÞ� ð12:13Þ

Voltages can be written as

Vs ¼ es þ jhs

Vr ¼ er � jhr ð12:14Þ
Thus, the power is

ðes þ jhsÞ
Xr�n

r¼1

ðGsr � jBsrÞðer � jhrÞ
" #

¼ ðes þ jhsÞ
Xr�n

r¼1

ðGsrer � BsrhrÞ � j
Xr�n

r¼1

ðGsrhr þ BsrerÞ
" #

ð12:15Þ

Equating the real and imaginary parts, the active and reactive power at a PQ node is:

Ps ¼ es
Xr�n

r¼1

ðGsrer � BsrhrÞ þ hs
Xr�n

r¼1

ðGsrhr þ BsrerÞ ð12:16Þ

Qs ¼ es
Xr�n

r¼1

ð�Gsrhr � BsrerÞ þ hs
Xr�n

r¼1

ðGsrer � BsrhrÞ ð12:17Þ

where Ps and Qs are functions of es, er, hs, and hr. Starting from the initial values,
new values are found which differ from the initial values by �Ps and �qs:

�P0
s ¼ Ps � P0

s (first iteration) ð12:18Þ
�Q0

s ¼ Qs �Q0
s (first iteration) ð12:19Þ

For a PV node (generator bus) voltage and power are specified. The reactive
power equation is replaced by a voltage equation:

jVgj2 ¼ e2g þ h2g ð12:20Þ
�jV0

g j2 ¼ jVgj2 � jV0
g j2 ð12:21Þ

Consider the four-bus distribution system of Fig. 11-8. It is required to write the
equations for voltage corrections. Buses 2 and 3 are the load (PQ buses), bus 1 is the
slack bus, and bus 4 is the generator bus. In Eq. (12.11) the column matrix elements
on the left consisting of ðy1 � f 01 Þ . . . ðyn � f 0n Þ are identified as �P, �Q, etc. The
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unknowns of the matrix equation are �e; and �h. The matrix equation for voltage
corrections is written as

�P2

�Q2

�P3

�Q3

�P4

�V2
4

��������������

��������������
¼

@P2=@e2 @P2=@h2 @P2=@e3 @P2=@h3 @P2=@e4 @P2=@h4

@Q2=@e2 @Q2=@h2 @Q2=@e3 @Q2=@h3 @Q2=@e4 @Q2=@h4

@P3=@e2 @P3=@h2 @P3=@e3 @P3=@h3 @P3=@e4 @P3=@h4

@Q3=@e2 @Q3=@h2 @Q3=@e3 @Q3=@h3 @Q3=@e4 @Q3=@h4

@P4=@e2 @P4=@h2 @P4=@e3 @P4=@h3 @P4=@e4 @P4=@h4

@V2
4=@e2 @V2

4=@h2 @V2
4=@e3 @V2

4=@h3 @V2
4=@e4 @V2

4=@h4

��������������

��������������

�e2

�h2

�e3

�h3

�e4

�h4

��������������

��������������
ð12:22Þ

In the rectangular form there are two equations per load (PQ) and generator (PV)
buses. The voltage at the swing bus is known and thus there is no equation for the
swing bus.

Equation (12.22) can be written in the abbreviated form as

�gg ¼ �JJ �xx ð12:23Þ
�es ¼ es (new)� es (old)

�Ps ¼ P0
s � Psðe2; h2; e3; h3; e4; h4Þ

�Qs ¼ Q0
s �Qsðe2; h2; e3; h3; e4; h4Þ

�V2
s ¼ V2

s0 � ðe2s þ h2s Þ ð12:24Þ
where �es and �hs are voltage corrections.

Equation (12.12) can be written as

�xxkþ1 � �xxk ¼ �½ �JJðxkÞ��1f ðxkÞ ð12:25Þ
or

�e2
�h2
�
�

��������

�������� ¼ J�1

�P2ðe2; f2; . . .Þ þ P0
2

�Q2ðe2; f2; . . .Þ þQ0
2

�
�

����������

����������
ð12:26Þ

The partial coefficients are calculated numerically by substituting assumed initial
values into partial derivative equations:

Off-diagonal elements, s 6¼ r:

@Ps=@er ¼ �@Qs=@hr ¼ Gsres þ Bsrhs ð12:27Þ
@Ps=@hr ¼ @Qs=@er ¼ �Bsres þ Gsrhs ð12:28Þ
@V2

s =@er ¼ @V2
s =@hr ¼ 0 ð12:29Þ

Diagonal elements:

@Ps=@es ¼
Xr�n

r¼1

ðGsrer � BsrhrÞ þ Gsses þ Bsshs ð12:30Þ
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@Ps=@hs ¼
Xr�n

r¼1

ðGsrhr þ BsrerÞ � Bsses þ Gsshs ð12:31Þ

@Qs=@es ¼
Xr�n

r¼1

ð�Gsrhr � BsrerÞ � Bsses þ Gsshs ð12:32Þ

@Qs=@hs ¼
Xr�n

r¼1

ðGsrer � BsrhrÞ � Gsses � Bsshs ð12:33Þ

@V2
s =@es ¼ 2es ð12:34Þ

@V2
s =@hs ¼ 2hs ð12:35Þ

12.4 POLAR FORM OF JACOBIAN MATRIX

The voltage equation can be written in polar form:

Vs ¼ Vsðcos �s þ j sin �sÞ ð12:36Þ
Thus, the power is

Vs

Xr�n

r¼1

YsrVsr

 !�

¼ Vsðcos �s � j sin �sÞ
Xr�n

r¼1

ðGsr � jBsrÞVrðcos �r � j sin �rÞ ð12:37Þ

Equating real and imaginary terms:

Ps ¼ Vs

Xr�n

r¼1

Vr½ðGsr cosð�s � �rÞ þ Bsr sinð�s � �rÞ� ð12:38Þ

Qs ¼ Vs

Xr�n

r¼1

Vr½Gsr sinð�s � �rÞ � Bsr cosð�s � �rÞ� ð12:39Þ

The Jacobian in polar form for the same four-bus system is

�P2

�Q2

�P3

�Q3

�P4

������������

������������
¼

@P2=@�2 @P2=@V2 @P2=@�3 @P2=@V3 @P2=@�4

@Q2=@�2 @Q2=@V2 @Q2=@�3 @Q2=@V3 @Q2=@�4

@P3=@�2 @P3=@V2 @P3=@�3 @P3=@V3 @P3=@�4

@Q3=@�2 @Q3=@V2 @Q3=@�3 @Q3=@V3 @Q3=@�4

@P4=@�2 @P4=@V2 @P4=@�3 @P4=@V3 @P4=@�4

������������

������������

��2

�V2

��3

�V3

��4

������������

������������
ð12:40Þ

The slack bus has no equation, because the active and reactive power at this bus are
unspecified and the voltage is specified. At PV bus 4, the reactive power is unspecified
and there is no corresponding equation for this bus in terms of the variable �V4.

�Ps ¼ P0
s � Psð�2V2�3V3�4Þ ð12:41Þ

�Qs ¼ Q0
s �Qsð�2V2�3V3�4Þ ð12:42Þ
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The partial derivatives can be calculated as follows:

Off-diagonal elements: s 6¼ r:

@Ps=@�r ¼ GsrVsVr sinð�s � �rÞ � BsrVsVr cosð�s � �rÞ ð12:43Þ
@Ps=@Vr ¼ GsrVs cosð�s � �rÞ þ Bsr sinð�s � �rÞ

¼ �ð1=VrÞð@QsÞ=ð@�rÞ ð12:44Þ
@Qs=@�r ¼ �GsrVsVr cosð�s � �rÞ � BsrVsVr sinð�s � �rÞ ð12:45Þ
@Qs=@Vr ¼ GsrVs sinð�s � �rÞ � BsrVs cosð�s � �rÞ

¼ ð1=VrÞð@Ps=@�rÞ ð12:46Þ
Diagonal elements:

@Ps=@�s ¼ Vs

Xr�n

r¼1

Vr½ð�Gsr sinð�s � �rÞ þ Bsr cosð�s � �rÞ� � V2
s Bss

¼ �Qs � V2
s Bss ð12:47Þ

@Ps=@Vs ¼
Xr�n

r¼1

½VrðGsr cosð�s � �rÞ þ Bsr sinð�s � �rÞ� þ VsGss

¼ ðPs=VsÞ þ VsGss ð12:48Þ

@Qs=@�s ¼ Vs

Xr�n

r¼1

½VrðGsr cosð�s � �rÞ þ Bsr sinð�s � �rÞ� � V2
s Gss

¼ Ps � V2
s Gss ð12:49Þ

@Qs=@Vs ¼
Xr�n

r¼1

½vrðGsr sinð�s � �rÞ � Bsr cosð�s � �rÞ� � VsBss

¼ ðQs=VsÞ � VsBss ð12:50Þ

12.4.1 Calculation Procedure of Newton-Raphson Method

The procedure is summarized in the following steps, and flow charts are shown in
Figs 12-2 and 12-3.

. Bus admittance matrix is formed.

. Initial values of voltages and phase angles are assumed for the load (PQ)
buses. Phase angles are assumed for PV buses. Normally, the bus voltages
are set equal to the slack bus voltage, and phase angles are assumed equal
to 08, i.e., a flat start.

. Active and reactive powers, P and Q, are calculated for each load bus.

. �P and �Q can, therefore, be calculated on the basis of the given power at
the buses.

. For PV buses, the exact reactive power is not specified, but its limits are
known. If the calculated value of the reactive power is within limits, only
�P is calculated. If the calculated value of reactive power is beyond the
specified limits, then an appropriate limit is imposed and �Q is also
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calculated by subtracting the calculated value of the reactive power from
the maximum specified limit. The bus under consideration is now treated
as a PQ (load) bus.

. The elements of the Jacobian matrix are calculated.

. This gives �� and �jVj.

. Using the new values of �� and �jVj, the new values of voltages and phase
angles are calculated.

. The next iteration is started with these new values of voltage magnitudes
and phase angles.

. The procedure is continued until the required tolerance is achieved. This is
generally 0.1 kW and 0.1 kvar.
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Figure 12-2 Flow chart for NR method of load flow for PQ buses.
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Example 12.3

Consider a transmission system of two 138-kV lines, three buses, each line modeled
by an equivalent � network, as shown in Fig. 12-4(a), with series and shunt admit-
tances as shown. Bus 1 is the swing bus (voltage 1.02 per unit), bus 2 is a PQ bus with
load demand of 0.25 þ j0.25 per unit, and bus 3 is a voltage-controlled bus with bus
voltage of 1.02 and a load of 0.5 j0 per unit all on 100 MVA base. Solve the load flow
using the NR method, polar axis basis.
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Figure 12-3 Flow chart for NR method of load flow for PV buses.
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First, form a Y matrix as follows:

�YY ¼
0:474� j2:428 �0:474þ j2:45 0
�0:474þ j2:45 1:142� j4:70 �0:668þ j2:297

0 �0:668þ j2:297 0:668� j2:272

������
������

The active and reactive power at bus 1(swing bus) can be written from Eqs (12.38)
and (12.39) as

P1 ¼ 1:02� 1:02½0:474 cosð0:0� 0:0Þ þ ð�2:428Þ sinð0:0� 0:0Þ�
þ 1:02V2½ð�0:474Þ cosð0:0� �2Þ þ 2:45 sinð0:0� �2Þ
þ 1:02� 1:02½0:0 cosð0:0� �3Þ þ 0:0 sinð0:0� �3Þ�

Q1 ¼ 1:02� 1:02½0:474 sinð0:0� 0:0Þ � ð�2:428Þ cosð0:0� 0:0Þ�
þ 1:02V2½ð�0:474Þ sinð0:0� �2Þ � 2:45 cosð0:0� �2Þ�
þ 1:02� 1:02½0:0 sinð0:0� �3Þ � 0:0 cosð0:0� �3Þ�
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Figure 12-4 (a) System of Example 12.3 for load-flow solution; (b) final converged load-

flow solution with reactive power injection at PV bus 3; (c) converged load flow with bus 3
treated as a PQ bus.
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These equations for the swing bus are not immediately required for load flow, but
can be used to calculate the power flow from this bus, once the system voltages are
calculated to the required tolerance.

Similarly, the active and reactive power at other buses are written:

P2 ¼ V2 � 1:02½�0:474 cosð�2 � 0Þ þ 2:45 sinð�2 � 0Þ� þ V2

� V2½1:142 cosð�2 � �2Þ þ ð�4:70Þ sinð�2 � �2Þ� þ V2

� 1:02½ð�0:668Þ cosð�2 � �3Þ þ 2:297 sinð�2 � �3�
Substituting the initial values ðV2 ¼ 1; �2 ¼ 08Þ;P2 ¼ �0:0228.

Q2 ¼ V2 � 1:02½ð�0:474Þ sinð�2 � 0:0Þ � 2:45 cosð�2 � 0:0Þ� þ V2

� V2½1:142 sinð�2 � �2Þ � ð�4:70Þ cosð�2 � �2Þ� þ V2

� 1:02½ð�0:668Þ sinð�2 � �3Þ � 2:297 cosð�2 � �3Þ�
Substituting the numerical values, Q2 ¼ �0:142.

P3 ¼ 1:02� 1:02½0:0 cosð�3 � 0:0Þ þ 0:0 sinð�3 � 0:0Þ� þ 1:02

� V2½ð�0:668Þ cosð�3 � �2Þ þ 2:297 sinð�3 � �2Þ� þ 1:02

� 1:02½0:668 cosð�3 � �3Þ þ ð�2:047Þ sinð�3 � �3�
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Substituting the values, P3 ¼ 0:0136:

Q3 ¼ 1:02� 1:02½0:0 sinð�3 � 0:0Þ � 0:0 cosð�3 � 0:0Þ� þ 1:02

� V2½ð�0:668Þ sinð�3 � �2Þ � 2:297 cosð�3 � �2Þ� þ 1:02

� 1:02½0:668 sinð�3 � �3Þ � ð�2:272Þ cosð�3 � �3Þ�

Substituting initial values, Q3 ¼ �0:213.
The Jacobian matrix is

�P2

�Q2

�P3

������
������ ¼

@P2=@�2 @P2=@V2 @P2=@�3
@Q2=@�2 @Q2=@V2 @Q2=@�3
@P3=@�2 @P3=@V2 @P3=@�3

������
������
��2
�V2

��3

������
������

The partial differentials are found by differentiating the equations for P2, Q2, P3, etc.

@P2=@�2 ¼ 1:02½V2ð0:474Þ sin �2 þ 2:45 cos �2� þ 1:02½V2ð0:668Þ sinð�2 � �3Þ
þ V2ð2:297Þ cosð�2 � �3Þ�

¼ 4:842
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@P2=@�3 ¼ V2ð1:02Þ½ð�0:668Þ sinð�2 � �3Þ � 2:297 cosð�2 � �3�
¼ �2; 343

@P2=@V2 ¼ 1:02½ð�0:474Þ cos �2 þ 2:45 sin �2�
þ 2V2ð1:142Þ þ 1:02½ð�0:608Þ cosð�2 � �3Þ þ 2:297 sinð�2 � �3Þ�

¼ 1:119

@Q2=@�2 ¼ 1:02½�V2ð0:474Þ cos �2 þ 2:45 sin �2� þ 1:02½V2ð�0:668Þ cosð�2 � �3Þ
þ 2:297 sinð�2 � �3Þ�

¼ �1:1648

@Q2=@V2 ¼ 1:02½ð�0:474Þ sin �2 � 2:45 cos �2� þ 2V2ð4:28Þ
þ 1:02½ð�0:668Þ sinð�2 � �3Þ � 2:297 cosð�2 � �3Þ�

¼ 4:56

@Q2=@�3 ¼ 1:02V2½0:668 cosð�2 � �3Þ � 2:297 sinð�2 � �3Þ�
¼ 0:681

@P3=@�2 ¼ 1:02V2½ð0:668Þ sinð�3 � �2Þ � 2:297 cosð�3 � �2Þ�
¼ 2:343

@P3=@V2 þ 1:02½ð�0:668Þ cosð�3 � �2Þ þ 2:297 sinð�3 � �2Þ�
¼ 0:681

@P3=@�3 ¼ 1:02½0:668 sinð�3 � �2Þ þ 2:297 cosð�3 � �2Þ�
¼ 2:343

Therefore, the Jacobian is

�JJ ¼
4:842 1:119 �2:343
�1:165 4:56 0:681
�2:343 0:681 2:343

������
������

The system equations are

��12
�V1

2

��13

������
������ ¼

4:842 1:119 �2:343
�1:165 4:56 0:681
�2:343 0:681 2:343

������
������
�1 �0:25� ð�0:0228Þ

0:25� ð�0:142Þ
�0:5� 0:0136

������
������

Inverting the Jacobian gives

��12
�V1

2

��13

�������
������� ¼

0:371 �0:153 0:4152

0:041 0:212 �0:021

0:359 �0:215 0:848

������
������
�0:2272

0:392

�0:5136

������
������ ¼

�0:357

�0:084

�0:601

������
������

The new values of voltages and phase angles are

�12

V1
2

�13

�������
������� ¼

0

1

0

�������
�������þ

�0:357

0:084

�0:601

�������
������� ¼

�0:357

1:084

�0:729

�������
�������
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This completes one iteration. Using the new bus voltages and phase angles the power
flow is recalculated. Thus, at every iteration, the Jacobian matrix changes and has to
be inverted.

In the first iteration, we see that the bus 2 voltage is 8.4% higher than the rated
voltage; the angles are in radians. The first iteration is no indication of the final
results. The hand calculations, even for a simple three-bus system, become unwieldly.
The converged load flow is shown in Fig. 12-4(b). A reactive power injection of 43
Mvar is required at bus 3 to maintain a voltage of 1.02 per unit and supply the
required active power of 0.5 per unit from the source. There is a reactive power loss
of 48.65 Mvar in the transmission lines themselves, and the active power loss is 12.22
MW. The bus phase angles are high with respect to the swing bus, and the bus 2
operating voltage is 0.927 per unit, i.e., a voltage drop of 7.3% under load. Thus,
even with voltages at the swing bus and bus 3 maintained above rated voltage, the
power demand at bus 2 cannot be met and the voltage at this bus dips. The load
demand on the system is too high, it is lossy, and requires augmentation or reduction
of load. A reactive power injection at bus 2 will give an entirely different result.

If bus 3 is treated as a load bus, the Jacobian is modified by adding a fourth
equation of the reactive power at bus 3. In this case the bus 3 voltage dips down to
0.78 per unit, i.e., a voltage drop of 22%; the converged load flow is shown in Fig. 12-
4(c). At this lower voltage of 0.78 per unit, bus 3 can support an active load of only 0.3
per unit. This is not an example of a practical system, but it illustrates the importance
of reactive power injection, load modeling, and its effect on the bus voltages.

The load demand reduces proportionally with reduction in bus voltages. This is
because we have considered a constant impedance type of load, i.e., the load current
varies directly with the voltage as the load impedance is held constant. The load
types are discussed further.

12.5 SIMPLIFICATIONS OF NEWTON-RAPHSON METHOD

The NR method has quadratic convergence characteristics; therefore, the conver-
gence is fast and solution to high accuracy is obtained in the first few iterations. The
number of iterations does not increase appreciably with the size of the system. This is
in contrast to the Gauss–Seidel method of load flow which has slower convergence
even with appropriately applied acceleration factors. The larger the system, the
larger are the number of iterations; 50–150 iterations are common.

The NR method, however, requires more memory storage and necessitates
solving a large number of equations in each iteration step. The Jacobian changes
at each iteration and must be evaluated afresh. The time required for one iteration in
the NR method may be 5–10 times that of the Gauss–Seidel method. Some simpli-
fications that can be applied are as follows:

From Eq. (12.22), the first equation is

�P2 ¼ ð@P2=@e2Þ�e2 þ ð@P2=@h2Þ�h2 þ ð@P2=@e3Þ�e3 þ ð@P2=@h3Þ�h3

þ ð@P2=@e4Þ�e4 þ ð@P2=@h4Þ�h4 ð12:51Þ
The second term of this equation ð@P2=@h2Þ�h2 denotes the change in bus 2 active
power for a change of h2 to h2 þ�h2. Similarly, the term ð@P2=@e2Þ�e2 indicates
change in bus 2 active power for a change of e2 to e2 þ�e2.
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The change in power at bus 2 is a function of the voltage at bus 2, which is a
function of the voltages at other buses. Considering the effect of e2 only:

�P2 ¼: ð@P2=@e2Þ�e2 ð12:52Þ

Thus, the Jacobian reduces to only diagonal elements:

�P2

�Q2

�P3

�Q3

�P4

�V4

������������

������������
¼

@P2=@e2 : : : :
: @Q2=@h2 : : : :
: : @P3=@e3 : : :
: : : @Q3=@h3 : :
: : : : @P4=@e4 :
: : : : : @v24=@h4

������������

������������

�e2
�h2
�e3
�h3
�e4
�h4

������������

������������
ð12:53Þ

Method 2 reduces the Jacobian to a lower triangulation matrix:

�P2 ¼: ð@P2=@e2Þ�e2

�Q2 ¼: ð@Q2=@e2Þ�e2 þ ð@Q2=@h2Þ�h2 ð12:54Þ

Thus, the Jacobian matrix is

�P2

�Q2

�P3

�Q3

�P4

�V2
4

��������������

��������������
¼

@P2=@e2 : : : : :

@Q2=@e2 @Q2=@h2 : : : :

@P3=@e2 @P3=@h2 @P3=@3e3 : : :

@Q3=@e2 @Q3=@h2 @Q3=@h3 @Q3=@h3 : :

@P4=@e2 @P4=@h2 @P4=@e3 @P4=@h3 @P4=@e4 :

@V2
4=@e2 @V2

4=@h2 @V2
4=@e3 @V2

4=@h3 @V2
4=@e4 @V2

4=@h4

��������������

��������������
�

�e2

�h2

�e3

�h3

�e4

�h4

��������������

��������������
ð12:55Þ

Method 3 relates P2 and Q2 to e2 and h2, P3 and Q3 to e3 and h3, etc. This is the
Ward–Hale method. The Jacobian is
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�P2

�Q2

�P3

�Q3

�P4

�V2
4

��������������

��������������
¼

@P2=@e2 @P2=@e2 : : : :

@Q2=@e2 @Q2=@h2 : : : :

: : @P3=@e3 @P3=@h3 : :

: : @Q3=@e3 @Q3=@h3 : :

: : : : @P4=@e4 @P4=@h4

: : : : @V2
4=@e4 @v24=@h4

��������������

��������������
�

�e2

�h2

�e3

�h3

�e4

�h4

��������������

��������������
ð12:56Þ

Method 4: A combination of methods 2 and 3:

�P2

�Q2

�P3

�Q3

�P4

�V2
4

��������������

��������������
¼

@P2=@e2 @P2=@h2 : : : :

@Q2=@e2 @Q2=@h2 : : : :

@P3=@e2 @P3=@h2 @P3=@e3 @P3=@h3 : :

@Q3=@e2 @Q3=@h2 @Q3=@eh3 @Q3=@h3 : :

@P4=@e2 @P4=@h2 @P4=@e3 @P4=@h3 @P4=@e4 @P4=@h4

@V2
4=@e2 @V2

4=@h2 @V2
4=@e3 @V2

4=@h3 @V2
4=@e4 @V2

4=@h4

��������������

��������������
�

�e2

�h2

�e3

�h3

�e4

�h4

��������������

��������������
ð12:57Þ

Method 5 may give the least iterations for a value of � < 1, a factor somewhat
akin to the acceleration factor in the Gauss–Seidel method (>1). The Jacobian is of
the form LDU (Appendix A):

�P2

�Q2

�P3

�Q3

�P4

�V4

������������

������������
¼ ðLþDÞ

�ek2
�hk2
�ek3
�hk3
�ek4
�hk4

��������������

��������������
þ �U

�ek�1
2

�hk�1
2

�ek�1
3

�hk�1
3

�ek�1
4

�hk�1
4

��������������

��������������
ð12:58Þ
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12.6 DECOUPLED NEWTON–RAPHSON METHOD

It has already been demonstrated that there is strong interdependence between active
power and bus voltage angle and between reactive power and voltage magnitude.
The active power change �P is less sensitive to changes in voltage magnitude, and
changes in reactive power �Q are less sensitive to changes in angles. In other words,
the coupling between P and bus voltage magnitude is weak and between reactive
power and phase angle is weak.

The Jacobian in Eq. (12.22) can be rearranged as follows:

�P2

�P3

�P4

�Q2

�Q3

����������

����������
¼

@P2=@�2 @P2=@�3 @P2=@�4 @P2=@V2 @P2=@V3

@P3=@�2 @P3=@�3 @P3=@�4 @P3=@V2 @P3=@V3

@P4=@�2 @P4=@�3 @P4=@�4 @P4=@V2 @P4=@V3

@Q2=@�2 @Q2=@�3 @Q2=@�4 @Q2=@V2 @Q2=@V3

@Q3=@�2 @Q3=@�3 @Q3=@�4 @Q3=@V2 @Q3=@V3

����������

����������

��2
��3
��4
�V2

�V3

����������

����������
ð12:59Þ

Considering that

Gsr <<< Bsr ð12:60Þ
sinð�s � �rÞ <<< 1 ð12:61Þ

cosð�s � �rÞ ’ 1 ð12:62Þ
The following inequalities are valid:

j@Ps=@�rj >>> j@Ps=@Vrj ð12:63Þ
j@Qs=@�rj <<< j@Qs=@Vrj ð12:64Þ

Thus, the Jacobian is

�P2

�P3

�P4

�Q2

�Q3

����������

����������
¼

@P2=@�2 @P2=@�3 @P2=@�4 : :
@P3=@�2 @P3=@�3 @P3=@�4 : :
@P4=@�2 @P4=@�3 @P4=@�4

: : : @Q2=@V2 @Q2=@V3

: : : @Q3=@V2 @Q3=@V3

����������

����������

��2
��3
��4
�V2

�V3

����������

����������
ð12:65Þ

This is called P–Q decoupling.

12.7 FAST DECOUPLED LOAD FLOW

Two synthetic networks, P–� and P–V, are constructed. This implies that the load
flow problem can be solved separately by these two networks, taking advantage of
P–Q decoupling [3].

In a P–� network, each branch of the given network is represented by con-
ductance, the inverse of series reactance. All shunt admittances and transformer off-
nominal voltage taps which affect the reactive power flow are omitted, and the swing
bus is grounded. The bus conductance matrix of this network is termed �BB�.

The second model is called a Q–V network. It is again a resistive network. It
has the same structure as the original power system model, but voltage-specified
buses (swing bus and PV buses) are grounded. The branch conductance is given by
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Ysr ¼ �Bsr ¼
xsr

x2sr þ r2sr
ð12:66Þ

These are equal and opposite to the series or shunt susceptance of the original net-
work. The effect of phase-shifter angles is neglected. The bus conductance matrix of
this network is called �BBv.

The equations for power flow can be written as

Ps=Vs ¼
Xr�n

r¼1

Vr½Gsr cosð�s � �rÞ þ Bsr sinð�s � �rÞ� ð12:67Þ

Qs=Vs ¼
Xr�n

r¼1

Vr½Gsr sinð�s � �rÞ � Bsr cosð�s � �rÞ� ð12:68Þ

and partial derivatives can be taken as before. Thus, a single matrix for load flow can
be split into two matrices as follows:

�P2=V2

�P3=V3

:
�Pn=Vn

��������

�������� ¼
B�
22 B�

23 : B�
2n

B�
32 B�

33 : B�
3n

: : : :
B�
n2 B�

n3 : B�
nn

��������

��������
��2
��3
:

��n

��������

�������� ð12:69Þ

The correction of phase angle of voltage is calculated from this matrix:

�Q2=V2

�Q3=V3

:
�Qn=Vn

��������

�������� ¼
Bv
22 Bv

23 : Bv
2n

Bv
32 Bv

33 : Bv
3n

: : : :
Bv
n2 Bv

n3 : Bv
nn

��������

��������
�V2

�V3

:
�Vn

��������

�������� ð12:70Þ

The voltage correction is calculated from this matrix.
These matrices are real, sparse, and contain only admittances; these are con-

stants and do not change during successive iterations. This model works well for
R=X 
 1. If this is not true, this approach can be ineffective. If phase shifters are not
present, then both the matrices are symmetrical. Equations (12.69) and (12.70) are
solved alternately with the most recent voltage values. This means that one iteration
implies one solution to obtain j��j to update � and then another solution for j�Vj to
update V .

Example 12.4

Consider the network of Fig. 12-5(a). Let bus 1 be a swing bus, bus 2 and 3 PQ buses,
and bus 4 a PV bus. The loads at buses 2 and 3 are specified as is the voltage
magnitude at bus 4. Construct P–� and Q–V matrices.

P–� Network

First construct the P–� network shown in Fig. 12.5(b). The associated matrix is

�BB� ¼
6:553 �2:22 �0:333
�2:22 5:886 �3:333
�0:333 �3:333 3:666

������
������
��2
��3
��4

������
������ ¼

�P2=V2

�P3=V3

�P4=V4

������
������
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Q^VNetwork

The Q–V network is shown in Fig. 12-5(c). The associated matrix is

�BBv ¼ 9:345 �2:22
�2:22 9:470

����
���� �V2

�V3

����
���� ¼ �Q2=V2

�Q3=V3

����
����

The power flow equations can be written as in Example 12.3.
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Figure 12-5 (a) Four-bus system with voltage tap adjustment transformer; (b) decoupled P–
� network; (c) Q–V network.
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12.8 MODEL OF A PHASE-SHIFTING TRANSFORMER

A model of a transformer with voltage magnitude control through tap changing
under load or off-load tap operation was derived in Sec. 11.1. The voltage drop in
a transmission line is simulated in a line drop compensator, which senses the remote
secondary voltage and adjusts the voltage taps. The voltage taps, however, do not
change the phase angle of the voltages appreciably. A minor change due to change of
the transformer impedance on account of tap adjustment and the resultant power
flow through it can be ignored. The real power control can be affected through
phase-shifting of the voltage. A phase-shifting transformer changes the phase
angle without appreciable change in the voltage magnitude; this is achieved by
injecting a voltage at right angles to the corresponding line-to-neutral voltage, Fig.
12-6(a).

The Y bus matrix for load flow is modified. Consider the equivalent circuit
representation of Fig. 12-6(b). Let the regulating transformer be represented by an
ideal transformer with a series impedance or admittance. Since it is an ideal trans-
former, the complex power input equals the complex power output, and for a voltage
adjustment tap changing transformer we have already shown that

Is ¼ n2yVs � nyVr ð12:71Þ
where n is the ratio of the voltage adjustment taps (or currents). Also,

Ir ¼ yðVr � nVsÞ ð12:72Þ
These equations cannot be represented by a bilateral network. The Y matrix repre-
sentation is

Is
Ir

����
���� ¼ n2y �ny

�ny y

����
���� Vs

Vr

����
���� ð12:73Þ
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Figure 12-5 (Continued)
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If the transformer has a phase-shifting device, n should be replaced with n ¼ Nej�

and the relationship is

Is
Ir

����
���� ¼ N2y �N�y

�Ny y

����
���� Vs

Vr

����
���� ð12:74Þ

where N* is a conjugate of N. In fact, we could write:

N ¼ n" j0 for transformer without phase shifting ð12:75Þ
N ¼ n" j� for transformer with phase shifting ð12:76Þ

The phase shift will cause a redistribution of power in load flow, and the bus angles
solved will reflect such redistribution. A new equation must be added in the load flow
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Figure 12-6 (a) Voltage injection vector diagram of a phase shifting transformer; (b) sche-
matic diagram of phase-shifting transformer.
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to calculate the new phase-shifter angle based on the latest bus magnitudes and
angles [4]. The specified active power flow is

PðspecÞ ¼ VsVr sinð�s � �r � ��Þbsr ð12:77Þ
where �� is the phase-shifter angle. As the angles are small:

sinð�s � �r � ��Þ � �s � �r � �� ð12:78Þ
Thus,

�� ¼ �s � �r �
PðspecÞ
VsVrbsr

ð12:79Þ

�� is compared to its maximum and minimum limits. Beyond the set limits the phase
shifter is tagged nonregulating. Incorporation of a phase-shifting transformer makes
the Y matrix non symmetric.

Consider the four-bus circuit of Example 11.1. Let the transformer in line 3 to 4
be replaced with a phase-shifting transformer, phase shift � ¼ �48. The Y bus can
then be modified as follows.

Consider the elements related to line 3 to 4, ignoring the presence of the trans-
former. The sub matrix is

3 4

3 1.667�j8.30 j3.333

4 j3.333 1.0�j6.308

With phase shifting the modified submatrix becomes:

3 4

3 1.667�j8.30 ej4j3.333

4 e�j4ðj3:333Þ 1.0�j6.308

12.9 DC MODELS

The concept of decoupling and P–� and P–V models is the key to the dc circuit
models. All voltages are close to the rated voltages, the X=R ratio is >3.0, and
the angular difference between the tie-line flow is small.

12.9.1 P-h Network

The P– � circuit model of a series element is shown in Fig. 12-7(a). The active power
flow between a bilateral node can be written as

�pji � ð��j ���iÞbij ð12:80Þ
When a phase adjustment element is provided in series the model, shown in
Fig. 12-7(b), the relation is

�pji � ð��j ���i þ��Þbij ð12:81Þ
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Consider the four-bus circuit of Fig. 12-7(c). In terms of branch flows, the following
equations can be written from branch relationships:

��1 ���2 ¼ �P12=b12

��2 ���3 ¼ �P23=b23

��3 ���4 ¼ �P34=b34

��42 ���13 ¼ �P41=b41

��42 ���2 ��� ¼ �P42=b42

ð12:82Þ
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Figure 12-7 (a) Dc circuit P–� model of a tie-line; (b) dc circuit P�� model of a voltage tap
adjusting transformer; (c) circuit diagram for P�� network equations.
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From the node relationships:

��P12 þ�P41 þ�P1 ¼ 0

�P12 ��P23 þ�P42 þ�P2 ¼ 0

�P23 ��P34 þ�P3 ¼ 0

ð12:83Þ

12.9.2 Q–V Network

The dc formation of a transmission line, Fig. 12-8(a), is given by

�Qij � ð�Vi ��VjÞbij � 2bsh�Vi

¼ �Qijlbij � 2bsh�Vi

ð12:84Þ

In Eq. (12.84), bsh is one-half of the total shunt susceptance, i.e., the total line shunt
susceptance ¼ 2bsh. We obtain twice the normal susceptance in each leg of the �
model because of partial differentiation of the power flow equation with respect to
voltage; �Qijl pertains to the line, Fig. 12-8(a). Looking from the receiving end:

�Qji � ð�Vj ��ViÞbij � 2bsh�Vj

¼ �Qijlbij � 2bsh�Vj

ð12:85Þ

The dc model of a voltage tap adjusting transformer, Fig. 12-8(b), is

�Qij ¼ ð�Vi ��Vj ���Þbij
�Qji ¼ ð�Vj ��Vi þ��Þbij

ð12:86Þ

Consider the circuit of Fig. 12-8(c). The following equations can be written,
based on branch relations:

�V1 ��V2 ¼ �Q12=b12

�V2 ��V3 ¼ �Q23=b23

�V3 ��V4 ��� ¼ �Q34=b34

�V4 ��V1 ¼ �Q41=b41

ð12:87Þ

From the node relations:

��Q14l þ�Q12l � 2ðbsh14 þ bsh24Þ�V1 ¼ �Q1

��Q12l þ�Q23l � 2ðbsh12 þ bsh23Þ�V2 ¼ �Q2

��Q23l þ�Q34l � 2bsh23�V3 ¼ �Q3

�Q14l þ�Q34l � 2bsh14�V4 ¼ �Q4

ð12:88Þ

12.10 LOAD MODELS

Load modeling has a profound impact on load-flow studies. Figure 12-9 shows the
effect of change of operating voltage on constant current, constant MVA, and con-
stant impedance load types. Heavy industrial motor loads are approximately con-
stant MVA loads, while commercial and residential loads are mainly constant
impedance loads. Classification into commercial, residential, and industrial is rarely
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adequate and one approach has been to divide the loads into individual load com-
ponents. The other approach is based on measurements. Thus, the two approaches
are:

. Component-based models

. Models based on measurements

A component-based model is a bottom-up approach in the sense that different
load components comprising the loads are identified. Each load component is tested
to determine the relations between real and reactive power requirements versus
voltage and frequency. A load model in exponential or polynomial form can then
be developed from the test data.
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Figure 12-8 (a) Dc circuit Q–V model of phase-shifting transformer; (b) dc circuit Q�V
model of a tie-line; (c) circuit diagram for Q–V network equations.
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The measurement approach is a top-down approach in the sense that the model
is based on the actual measurement. The effect of the variation of voltage on active
and reactive power consumption is recorded and, based on these, the load model is
developed.

A composite load, i.e., a consumer load consisting of heating, air-conditioning,
lighting, computers, and television is approximated by combining load models in
certain proportions based on load surveys. This is referred to as a load window.
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Figure 12-9 (a) Behavior of constant current, constant MVA, and constant impedance
loads with respect to current loading as a function of voltage variations; (b) behavior of
constant current, constant MVA, and constant impedance loads with respect to MVA loading

as a function of voltage variations.
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Construction of the load window requires certain data, i.e., load saturation, compo-
sition, and diversity data. Any number of load windows can be defined.

The load models are normalized to rated voltage, rated power, and rated
frequency and are expressed in per unit. The exponential load models are

P

Pn

¼ V

Vn

����
�����v f

fn

����
�����f ð12:89Þ

Q

Pn

¼ Q0

P0

V

Vn

����
�����v f

fn

����
�����f ð12:90Þ

where V is the initial value of the voltage, P0 is the initial value of power, Vn is the
adjusted voltage, and Pn is the power corresponding to this adjusted voltage. The
exponential factors depend on the load type. The frequency dependence of loads is
ignored for load-flow studies and is applicable to transient and dynamic stability
studies. Another form of load model is the polynomial model.

Consider the equation:

P ¼ Vn ð12:91Þ
For all values of n, P ¼ 0 when V ¼ 0, and P ¼ 1 when V ¼ 1, as it should be.
Differentiating:

dP

dV
¼ nVn�1 ð12:92Þ

For V ¼ 1, dP=dV ¼ n. The value of n can be found by experimentation if dP=dV ,
i.e., change in active power with change in voltage, is obtained. Also, by differentiat-
ing P ¼ VI .

dP

dV
¼ I þ V

dI

dV
ð12:93Þ

For V and n equal to unity, the exponential n from Eqs (12.92) and (12.93) is

n ¼ 1þ �I

�V
ð12:94Þ

The exponential n for a composite load can be found by experimentation if the
change of current for a change in voltage can be established. For a constant power
load n ¼ 0, for a constant current load n ¼ 1, and for a constant MVA load n ¼ 2.
The composite loads are a mixture of these three load types and can be simulated
with values of n between 0 and 2. The following are some quadratic expressions for
various load types [5]. An EPRI report [6] provides more detailed models.

Air conditioning:

P ¼ 2:18þ 0:268V � 1:45V�1 ð12:95Þ
Q ¼ 6:31� 15:6V þ 10:3V2 ð12:96Þ

Fluorescent lighting:

P ¼ 2:97� 4:00V þ 2:0V2 ð12:97Þ
Q ¼ 12:9� 26:8V þ 14:9V2 ð12:98Þ
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Induction motor loads:

P ¼ 0:720þ 0:109V þ 0:172V�1 ð12:99Þ
Q ¼ 2:08þ 1:63V � 7:60V2 þ 4:08V3 ð12:100Þ
We will discuss the induction motor model in some detail, because of its

importance. The equivalent circuit of the induction motor, shown in Fig. 12-10, is
derived in many texts. The power transferred across the air gap is

Pg ¼ I22
r2
s

ð12:101Þ

Referring to Fig. 12-10, r2 is the rotor resistance, s is the motor slip, and I2 the rotor
current. Mechanical power developed is the power across the air gap minus copper
loss in the rotor, i.e.,

ð1� sÞPg

Thus, the motor torque T in newton meters can be written as

T ¼ 1

!s

I22
r2
s
� 1

!s

V2
1 ðr2=sÞ

ðR1 þ rs=sÞ2 þ ðX1 þ x2Þ2
ð12:102Þ

where R1 is the stator resistance, V1 is the terminal voltage, and !s is the synchronous
angular velocity ¼ 2�f =p, p being the number of pairs of poles. From Eq. (12.102) the
motor torque varies approximately as the square of the voltage. Also, if the load
torque remains constant and the voltage dips, there has to be an increase in the
current.

Figure 12-11 shows typical torque–speed characteristics of an induction motor
at rated voltage and reduced voltage. Note the definitions of locked rotor torque,
minimum accelerating torque, and breakdown torque during the starting cycle.
Referring to Fig. 12-11, there is a cusp or reverse curvature in the accelerating torque
curve, which gives the minimum accelerating torque or breakaway torque (= CD).
The maximum torque, called the breakdown torque in the curve, occurs at slip sm
and is given by EF. The normal operating full-load point and slip sf is defined by
operating point P. The starting load characteristics shown in this figure is for a fan or
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Figure 12-10 Equivalent circuit of an induction motor for balanced positive sequence
voltages.
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blower, and varies widely depending on the type of load to be accelerated. Assuming
that the load torque remains constant, i.e., a conveyor motor, when a voltage dip
occurs, the slip increases and the motor torque will be reduced. It should not fall
below the load torque to prevent a stall. Considering a motor breakdown torque of
200%, and full load torque, the maximum voltage dip to prevent stalling is 29.3%.
Figure 12-12 shows torque–speed characteristics for NEMA (National Electrical
Manufacturer’s Association) design motors A, B, C, D, and F [7].
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Figure 12-11 Torque-speed characteristics of an induction motor at rated voltage and

reduced voltage with superimposed load characteristics.

Figure 12-12 Torque speed characteristics of NEMA designs A, B, C, D, and F motors.
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The effects of voltage and frequency variations on induction motor perfor-
mance are shown in Table 12-2. We are not much concerned about the effect of
frequency variation in load-flow analysis, though this becomes of importance in
harmonic analysis. The emf of a three-phase ac winding is given by

Eph ¼ 4:44Kw fTph� volts ð12:103Þ
where Eph is the phase emf, Kw is the winding factor, f is the system frequency, Tph are
the turns per phase, and� is the flux. Maintaining the voltage constant, a variation in
frequency results in an inverse variation in the flux. Thus, a lower frequency results in
overfluxing the motor and its consequent derating. In variable-frequency drive sys-
tems V=f is kept constant to maintain a constant flux relation.

We discussed the negative sequence impedance of an induction motor for
calculation of an open conductor fault in Example 2.4. A further explanation is
provided with respect to Fig. 12-13 which shows the negative sequence equivalent
circuit of an induction motor. When a negative sequence voltage is applied, the mmf
wave in the air gap rotates backwards at a slip of 2.0 per unit. The slip of the rotor
with respect to the backward rotating field is 2� s. This results in a retarding torque
component and the net motor torque reduces to

T ¼ r2
!s

I22
s
� I222
2� s

 !
ð12:104Þ
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Table 12-2 Effects of Voltage Variations on Induction Motor Performance

Characteristics of induction
motor

Variation

with
voltage

Performance at rated voltage (1.0 per unit) and
other than rated voltages

0.80 0.95 1.0 1.05 1.10

Torque

Full-load slip
Full-load current
Full-load efficiency
Full-load power factor

Starting current
No load losses (watts)
No load losses (vars)

¼ V2

¼ 1=V2

� 1=V

¼ V
¼ V2

¼ V2

0.64

1.56
1.28
0.88
0.90

0.80
0.016
0.16

0.90

1.11
1.04
0.915
0.89

0.95
0.023
0.226

1.0

1.0
1.0
0.92
0.88

1.0
0.025
0.25

1.10

0.91
0.956
0.925
0.87

1.05
0.028
0.276

1.21

0.83
0.935
0.92
0.86

1.10
0.030
0.303

Figure 12-13 Equivalent circuit of an induction motor for negative sequence voltage.
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where I22 is the current in the negative sequence circuit.
From equivalent circuits of Figs 12-10 and 12-13, we can write the approximate

positive and negative sequence impedances of the motor:

Z1 ¼ ½ðR1 þ r2=sÞ2 þ ðX1 þ x2Þ2�1=2
Z2 ¼ ½ðR1 þ r2=ð2� sÞ2 þ ðX1 þ x2Þ2�1=2

ð12:105Þ

Therefore, approximately, the ratio Z1=Z2 ¼ Is=If , where Is is the starting current or
the locked rotor current of the motor and If is the full load current (s ¼ 1 at starting).
For an induction motor with a locked rotor current of six times the full-load current
the negative sequence impedance is one-sixth of the positive sequence impedance. A
5% negative sequence component in the supply system will produce 30% negative
sequence current in the motor, which gives rise to additional heating and losses.
Equations (12.105) are a simplification; the rotor resistance will change with respect
to high rotor frequency and rotor losses are much higher than the stator losses. A
5% voltage unbalance may give rise to 38% negative sequence current with 50%
increase in losses and 408C higher temperature rise as compared to operation on a
balanced voltage with zero negative sequence component. Also, the voltage unba-
lance is not equivalent to the negative sequence component. The NEMA definition
of percentage voltage unbalance is maximum voltage deviation from the average
voltage divided by the average voltage as a percentage. Operation above 5% unba-
lance is not recommended.

The zero sequence impedance of motors, whether the windings are connected
in wye or delta formation, is infinite. The motor windings are left ungrounded.

From load flow considerations, it is conservative to assume that a balanced
reduction in voltage at the motor terminals gives rise to a balanced increase in line
current, inversely proportional to the reduced voltage. More accurate models may
use part of the motor load as a constant kVA load and part as the constant impe-
dance load.

Table 12-3 shows approximate load models for various load types. A synchro-
nous motor is modeled as a synchronous generator with negative active power output
and positive reactive power output, akin to generators, assuming that the motor has a
leading rated power factor. The reactive power supplied into the system depends on
the type of excitation and control system. As a load flow provides a static picture, the
time constants applicable with control devices are ignored, i.e., if a load demands a
certain reactive power output, which is within the capability of a generator, it is
available instantaneously. The drive systems can be assumed to have a constant active
power demand with the reactive power demand varying with the voltage.

12.11 IMPACT LOADS AND MOTOR STARTING

Load flow presents a frozen picture of the distribution system at a given instant,
depending on the load demand. While no idea of the transients in the system for a
sudden change in load application or rejection or loss of a generator or tie-line can be
obtained, a steady-state picture is presented for the specified loading conditions.
Each of these transient events can be simulated as the initial starting condition,
and the load flow study rerun as for the steady-state case. Suppose a generator is
suddenly tripped. Assuming that the system is stable after this occurrence, we can

422 Chapter 12

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



calculate the redistribution of loads and bus voltages by running the load flow
calculations afresh, with generator 4 omitted. Similarly, the effect of an outage of
a tie-line, transformer, or other system component can be studied.

12.11.1 Motor Starting Voltage Dips

One important application of the load flow is to calculate the initial voltage dip on
starting a large motor in an industrial distribution system. From the equivalent circuit
of an induction motor in Fig. 12-10 and neglecting the magnetizing and eddy current
loss circuit, the starting current or the locked rotor current of the motor is

Ilr ¼
V1

ðR1 þ r2Þ þ jðX1 þ x2Þ
ð12:106Þ

The locked rotor current of squirrel-cage induction motors is, generally, six times the
full-load current on across the line starting, i.e., the full rated voltage applied across
the motor terminals with the motor at standstill. Higher or lower values are possible,
depending on motor design.

Wound rotor motors may be started with an external resistance in the circuit to
reduce the starting current and increase the motor starting torque. Synchronous
motors are asynchronously started and their starting current is generally 3 to 4.5
times the rated full load current on across the line starting. The starting currents are
at a low power factor and may give rise to unacceptable voltage drops in the system
and at motor terminals. On large voltage dips, the stability of running motors in the
same system may be jeopardized, the motors may stall, or the magnetic contactors
may drop out [8]. The voltage tolerance limit of solid-state devices is much lower and
a voltage dip>10%may precipitate a shutdown. As the system impedances or motor
reactance cannot be changed an impedance may be introduced in the motor circuit to
reduce the starting voltage at motor terminals. This impedance is short-circuited as
soon as the motor has accelerated to approximately 90% of its rated speed. The
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Table 12-3 Representation of Load Models in Load Flow

Load type

P
(constant

kVa)

Q
(constant

kVa)

P
(constant

ZÞ

Q
(constant

ZÞ
Generator

power

Generator
reactive

min/max

Induction motor

running

þP Q (lagging)

Induction or
synchronous
starting

þP Q (lagging)

Generator þP QðmaxÞ=
QðmaxÞ�

Synchronous

motor

�P Q (leading)

Power capacitor Q (leading)
Rectifier þP Q (lagging)

Lighting þP Q (lagging)

Qmin
� for generator can be leading.
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reduction in motor torque, acceleration of load, and consequent increase in starting
time are of consideration. Some methods of reduced voltage starting are: reactor
starting, autotransformer starting, wye–delta starting (applicable to motors which
are designed to run in delta), capacitor start, and electronic soft start. Other methods
for large synchronous motors may be part-winding starting or even variable-fre-
quency starting. It is not the intention to describe the starting methods of motors
except to state that the starting impact load varies with the method of starting and
needs to be calculated carefully along with the additional impedance of a starting
reactor or autotransformer introduced into the starting circuit.

12.11.2 Snapshot Study

This will calculate only the initial voltage drop and no idea of the time-dependent
profile of the voltage is available. To calculate the starting impact, the power factor
of the starting current is required. If the motor design parameters are known, this
can be calculated from Eq. (12.106); however, rarely, the resistance and reactance
components of the locked rotor circuit will be separately known. The starting power
factor can be taken as 20% for motors under 1000hp and 15% for motors >1000 hp.
The manufacturer’s data should be used when available.

Consider a 10,000-hp, four-pole synchronous motor, rated voltage 13.8 kV,
rated power factor 0.8 leading, and full-load efficiency 95%. It has a full load current
of 410.7A. The starting current is four times the full-load current at a power factor
of 15%. Thus, the starting impact is 5.89 MW and 38.82 Mvar.

During motor starting, generator transient behavior is important. On a sim-
plistic basis the generators may be represented by a voltage behind a transient
reactance, which for motor starting may be taken as the generator transient reac-
tance. Prior to starting the voltage behind this reactance is simply the terminal
voltage plus the voltage drop caused by the load through the transient reactance,
i.e., Vt ¼ V þ jIXd, where I is the load current. For a more detailed solution the
machine reactances change from subtransient to transient to synchronous, and open-
circuit subtransient, transient, and steady-state time constants should be modeled
with excitation system response.

Depending on the relative size of the motor and system requirements more
elaborate motor starting studies may be required. The torque speed and accelerating
time of the motor is calculated by step-by-step integration for a certain interval,
depending on the accelerating torque, system impedances, and motor and loads’
inertia. A transient stability program can be used to evaluate the dynamic response
of the system during motor starting [9].

12.12 PRACTICAL LOAD FLOW STUDIES

The requirements for load flow calculations vary over a wide spectrum, from small
industrial systems to large automated systems for planning, security, reactive power
compensation, control, and on-line management. The essential requirements are:

. High speed, especially important for large systems.

. Convergence characteristics, which are of major consideration for large
systems, and the capability to handle ill-conditioned systems.
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. Ease of modifications and simplicity, i.e., adding, deleting, and changing
system components, generator outputs, loads, and bus types.

. Storage requirement, which becomes of consideration for large systems.

The size of the program in terms of number of buses and lines is important.
Practically, all programs will have data reading and editing libraries, capabilities of
manipulating system variables, adding or deleting system components, generation,
capacitors, or slack buses. Programs have integrated databases, i.e., the impedance
data for short-circuit or load flow calculations need not be entered twice, and graphic
user interfaces. Which type of aligrothm will give the most speedy results and con-
verge easily is difficult to predict precisely. Table 11-7 shows a comparison of earlier
Z and Y matrix methods. Most programs will incorporate more than one solution
method. While the Gauss–Seidel method with acceleration is still an option for
smaller systems, for large systems some form of the NR decoupled method and
fast load-flow algorithm are commonly used, especially for optimal power flow
studies. Speed can be accelerated by optimal ordering (Appendix D). In fast
decoupled load flow the convergence is geometric, and less than five iterations are
required for practical accuracies. If differentials are calculated efficiently the speed of
the fast decoupled method can be even five times that of the NR method. Fast
decoupled load flow is employed in optimization studies and in contingency evalua-
tion for system security.

The preparation of data, load types, extent of system to be modeled, and
specific problems to be studied are identified as a first step. The data entry can be
divided into four main categories: bus data, branch data, transformers and phase
shifters, and generation and load data. Shunt admittances, i.e., switched capacitors
and reactors in required steps, are represented as fixed admittances. Apart from
voltages on the buses, the study will give branch power flows, identify transformer
taps, phase-shifter angles, loading of generators and capacitors, power flow from
swing buses, load demand, power factors, system losses, and overloaded system
components.

Example 12.5

Consider a 15-bus network shown in Fig. 12-14. It is solved by the fast decoupled
load flow method, using a computer program. The impedance data are shown in
Table 12-4. The bus types and loading input data are in Table 12-5. The bus voltages
on PV buses and generator maximum and minimum var limits are specified in this
table. All loads are modeled as constant kVA loads. There are 100 Mvar of shunt
power capacitors in the system; this is always a constant impedance load.

The results of the load flow calculation are summarized in Tables 12-6–12-8.
Table 12-6 shows bus voltages, Table 12-7 shows power flows, losses, bus voltages,
and voltage drops, and Table 12-7 shows the overall load flow summary. The follow-
ing observations are of interest:

. Voltages on a number of buses in the distribution are below acceptable level.
Voltage on the 138-kV bus 10 is 12% below rated voltage and at bus 4 is
6.1% below rated voltage. There is a 5.85% voltage drop in transmission
line L8. The voltages at buses 2 and 3 are 4.2 and 6.6%, respectively,
below rated voltages. Bus 9 voltage cannot be maintained at 1.04 per unit
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with the generator supplying its maximum reactive power. When correc-
tive measures are to be designed, it is not necessary to address all the
buses having low operating voltages. In this example, correcting voltages
at 230-kV buses 2 and 3 will bring up the voltages in the rest of the
system. Bus 10 will require additional compensation.

. As a constant kVA load model is used, the load demand is the sum of the
total load plus the system loses (Table 12-8). It is 431.35 MW and 176.88
Mvar, excluding the Mvar supplied by shunt capacitors.

426 Chapter 12

Figure 12-14 A 15-bus power system for Examples 12.5 and 12.6.
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Table 12-4 Examples 12.5 and 12.6: Impedance Data

From
bus

To
bus Connection type

Impedance data in per unit on a 100-MVA base,
unless specified otherwise

1
1
2

2
3
4

4
5
2
3

6
8
11

13
5

2
3
3

6
8
11

10
13
5
4

7
9

12

14
15

L1: 230 kV transmission line
L2: 230 kV transmission line
L3: 230 kV transmission line

L4: 230 kV transmission line
L5: 230 kV transmission line
L6: 138 kV transmission line

L7: 138 kV transmission line
L8: 138 kV transmission line
T1: 100/133 MVA two-winding transformer, 230–138 kV
T2: 100/133 MVA two-winding transformer, 230–138 kV

T3: 60/100.2 MVA transformer, 230–13.8 kV (generator step-up transformer)
T4: 100/133 MVA transformer, 230–13.8 kV (generator step up transformer)
T5: 80/133.6 MVA two-winding transformer, 138–13.8kV (generator step up

transformer)
T6: 40 MVA two-winding transformer, 138–44 kV
T7: 120 MVA two-winding transformer (generator step-up transformer),

138–13.8 kV

Z ¼ 0:0275þ j0:1512, �-model, y ¼ j0:2793
Z ¼ 0:0275þ j0:1512, �-model, y ¼ j0:2793
Z ¼ 0:0413þ j0:2268, �-model, y ¼ j0:4189
Z ¼ 0:0157þ j0:008, �-model, y ¼ j0:1396
Z ¼ 0:0157þ j0:008, �-model, y ¼ j0:1396
Z ¼ 0:0224þ j0:1181, �-model, y ¼ j0:0301
Z ¼ 0:0224þ j0:1181, �-model, y ¼ j0:0301
Z ¼ 0:0373þ j0:1968, �-model, y ¼ j0:0503
Z ¼ 10% on 100-MVA base, X=R ¼ 34:1, tap 1:1.02
Z ¼ 10% on 100-MVA base, X=R ¼ 34:1, tap 1:1.03

Z ¼ 10% on 60-MVA base, X=R ¼ 34:1, tap 1:1.03
Z ¼ 10% on 100-MVA base, X=R ¼ 34:1, tap 1:1.04
Z ¼ 9% on 80-MVA base, X=R ¼ 34:1, tap 1:1.05

Z ¼ 8% on a 40-MVA base, X=R ¼ 27:3, tap 1:1.01
Z ¼ 11% on a 120-MVA base, X=R ¼ 42, tap 1:1.02
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Table 12-5 Examples 12.5 and 12.6: Bus, Load, and Generation Data

Bus

identification Type of bus

Nominal voltage

(kV)

Specified voltage

(per unit)

Bus load

(MW/Mvar)

Shunt capacitor

(Mvar)

Generator rating (MW)
and max/min var output

(Mvar)

1

2
3
4

5
6
7
8

9
10
11

12
13
14

15

Swing

PQ
PQ
PQ

PQ
PQ
PV
PQ

PV
PQ
PQ

PV
PQ
PQ

PV

230

230
230
138

138
230
13.8

230

13.8
138
138

13.8
138
44

13.8

1:01 < 0

–
–
–

–
–

1:04 < ?
–

1:04 < ?
–
–

1:04 < ?
–

1:04 < ?

–

52/39
40/30
60/50

40/30
30/25
–

60/40

–
60/40
–

–
40/30
40/30

35

–

35

–
–
30

–

45MW, 0.85 pF (28/3)

80 MW, 0.9 pF (38/3)

60 MW, 0.85 pF (37/3)
–

100 MW, 0.85 pF (62/6)
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. There is a total of 100 Mvar of power capacitors in the system. These give an
output of 84.14 Mvar. The output is reduced as a square of the ratio of
operating voltage to rated voltage. The behavior of shunt power capaci-
tors is discussed in Chap. 13.

. The generators operate at their rated active power output. However, there is
little reactive power reserve as the overall operating power factor of the
generators is 88.90 lagging. Some reserve spinning power capability
should be available to counteract sudden load demand or failure of a
parallel line or tie circuit.

. There are two devices in tandem that control the reactive power output of
the generators—the voltage-ratio taps on the transformer and the gen-
erator voltage regulators. The role of these devices in controlling reactive
power flow is discussed in Chap. 13.

. System losses are 9.337 MW and 42 Mvar. An explanation of the active
power loss is straightforward; the reactive power loss mainly depends on
the series reactance and how far the reactive power has to travel to the
load (Chap. 13). Table 12-7 identifies branch flows from-and-to between
buses and the losses in each of the circuits. The high-loss circuits can be
easily identified.

Example 12.6

The load flow of Example 12.5 is repeated with constant impedance representation of
loads. All other data and models remain unchanged.

Table 12-9 shows bus voltages, Table 12-10 branch load flow and losses, and
Table 12-11 an overall load summary. The results can be compared with those of the
corresponding tables for the constant kVA load model of Example 12.5. The follow-
ing observations are of interest:

. In Example 12.5, with a constant kVA load, the overall demand (excluding
the reactive power supplied by capacitors) is 431.35 MW and 176.88
Mvar. With the constant impedance load model, ‘‘off-loading’’ occurs
with voltage reduction, and the load demand reduces to 397.29 MW and
122.66 Mvar. This helps the system to recover and the resulting voltage
drops throughout are smaller as compared to those of a constant kVA
load.
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Table 12-6 Example 12.5: Bus Voltages, Magnitudes, and Phase Angles (Constant kVA

Loads)

Bus # Voltage Bus # Voltage Bus # Voltage

1
2

3
4
5

1:01 < 0:08
0:9585 < �5:78
0:9447 < �6:68
0:9393 < �10:78
0:9608 < �7:18

6
7

8
9
10

0:9650 < �5:08
1:04 < �0:78
0:9445 < �5:58
1:0213 < �0:68
0:8808 < �18:68

11
12

13
14
15

0:9696 < �6:48
1:04 < �2:48
0.9006<-13:08
0.9335<-18.78
1:03:54 < �1:88
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Table 12-7 Example 12.5: Active and Reactive Power Flows, Losses, Bus Voltages, and Percentage Voltage Drops (Constant kVA Loads)

Circuit

Connected buses From–to flow To–from flow Losses Bus voltage (%)

Voltage
drop (%)

From
bus #

To bus
# MW Mvar MW Mvar kW kvar From To

L1

L2
L3
L4
T1

L5
T2

L7

L8
L6
T7

T3

T4

T5

T6

1

1
2
2
2

3
3
4

4
5
5

6
8
11
13

3

2
3
6
5

8
4
11

10
13
15

7
9

12
14

68:174
78:177
6:819

�14:794
22:732

�19:786
62:792

�58:956
61:685
82:402

�99:704
�44:865
�79:761
�59:867
40:422

10:912
19:253

�14:602
�11:240
17:002
�2:021
30:428

�12:124
18:025
35:807

�49:680
�23:418
�29:872
�14:183
�2:035

�66:748
�76:219
�6:788
14:835

�22:697
19:857

�62:632
59:867

�59:904
�80:421
�99:997
44:999
79:999
60:000

�40:274

�30:160
�35:239
�23:169
�1:466
�16:126
�10:072
�24:975
14:183

�12:790
�27:964
61:999
28:000
38:000
18:711
6:072

1426.0

1957.7
30.6
41.3
25.7

71.9
159.9
910.9

1781.3
1981.2
293.3

134.4
238.3
132.8
147.8

�19248:6
�15986:0
�37770:9
�12705:9

876:3
�12092:4

5453:6
2059:9
5234:9
7842:5
12319:0
4581:9
8127:8
4527:8
4036:1

101.00

101.00
95.85
95.85
95.85

94.47
94.47
93.93

93.93
96.08
96.08

96.50
94.45
96.96
90.06

95.85

94.47
94.47
96.50
96.08

94.45
93.93
96.96

88.08
90.06
103.54

103.99
102.13
104.00
93.35

5.15

6.53
1.38
0.65
0.23

0.01
0.53
3.03

5.85
6.01
7.46

7.49
7.68
7.04
3.29
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. The bus voltages improve in response to the reduced load demand. These
are 2–5% higher as compared to a constant kVA load model.

. The generators reactive output reduces in response to increased bus voltage.
The redistribution of active power changes the phase angles of the vol-
tages.

. The active power loss decreases and the reactive power loss increases. This
can be explained in terms of improved bus voltages, which allow a greater
transfer of power between buses and hence a larger reactive power loss.

Contingency Operation

Consider now that the largest generator of 100 MW on bus 15 is tripped. Assuming
that there is no widespread disruption, the operating voltages on buses 13–15 dip by
12–15%. Also, the voltage on the 230-kV bus 9 is down by approximately 9%. Even
if the swing bus has all the spinning reserve and the capability to supply the increased
demand due to loss of the 100-MW generator, and none of the system components,
transformers, or lines is overloaded, the system has potential voltage problems.

While this load flow is illustrative of what to expect in load flow results, the
number of buses in a large industrial distribution system may approach 300 and in
the utility systems 5000 or more. Three-phase models may be required. The discus-
sions are continued in the chapters to follow.
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Table 12-8 Example 12.5: Load Flow Summary (Constant kVA Loads)

Item MW Mvar MVA
Percentage power

factor

Swing bus 146.35 30.16 149.43 97.9 lagging
Generators 285.00 146.71 320.55 88.90 lagging

Total demand 431.35 176.875 466.21 92.5 lagging
Total load

modeled
422.01 MW,
constant kVA

303 Mvar,
constant kVA

519.99 81.2 lagging

Power capacitors

output

�84:18

Total losses 9.337 42.742
System mismatch 0.010 0.003

Table 12-9 Example 126: Bus Voltages, Magnitudes, and Phase Angles (Constant

Impedance Loads)

Bus # Voltage Bus # Voltage Bus # Voltage

1
2

3
4
5

1:01 < 0:08
0:9717 < �4:38
0:9659 < �5:08
0:9692 < �8:28
0:9765 < �5:18

6
7

8
9

10

0:9750 < �3:58
1:04 < 0:88
0:9646 < �3:88
1:04 < 0:98
0:9375 < �14:78

11
12

13
14
15

0:9841 < �4:08
1:04 < 0:08
0:9312 < �10:28
0:9729 < �15:28
1:04 < 0:28

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



4
3
2

C
h
a
p
te
r
1
2

Table 12-10 Example 12.6: Active and Reactive Power Flows, Losses, Bus Voltages, and Percentage Voltage Drops (Constant Impedance Type

Loads)

Circuit

Connected buses From–to flow To–from flow Losses Bus voltage (%)

Voltage
drop (%)

From
bus #

To bus
# MW Mvar MW Mvar kW kvar From To

L1

L2
L3
L4

T1

L5
T2

L7
L8
L6

T7

T3

T4

T5

T6

1

1
2
2

2
3
3

4
4
5

5
6
8

11

13

3

2
3
6

5
8
4

11
10
13

15
7
9

12

14

51:949
60:344
5:512

�16:287
12:807

�23:729
51:148

�59:046
53:830
74:394

�99:738
�44:880
�79:773
�59:878
38:248

3:668
6:662

�18:254
�7:255
15:307
�2:245
23:141
�0:277
5:994

25:049
�38:769
�17:905
�27:016
�1:785
�5:943

�51:134
�59:240
�5:498
16:331

�12:794
23:826

�51:049
59:877

�52:652
�72:930
�100:00

45:00
80:00
60:00

�38:121

�26:625
�27:892
�20:993
�5:751
�14:885
�10:291
�19:764

1:785
�4:345
�20:070
49:774
24:301
21:996
34:608
9:396

815.4

1103.8
14.3
44.1

12.4
97.6
99.0

830.8
1178.1
1463.3

262.0
120.0
222.7
122.2

126.5

�22957:8
�21230:4
�39247:6
�13005:9

421:6
�12536:2

3376:6
1508:3
1648:2
4978:4
11005:2
4091:6
7592:4
4167:1
3453:3

101.00

101.00
97.17
97.17

97.17
96.59
96.59

96.92
96.92
97.65

97.65
97.50
96.64
98.41

94.12

97.17

96.59
96.59
97.50

97.65
96.64
96.92

98.41
93.75
93.12

104.00
104.00
104.00
104.00

97.29

3.83

4.41
0.58
0.33

0.47
0.05
0.33

1.49
3.17
4.53

6.35
6.50
7.36
5.59

4.17
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Problems

(These problems can be solved without modeling on a digital computer.)
1. Solve the following equations, using the NR method, to the second itera-

tion. Initial values may be assumed as equal to zero.

9x1 � x1x2 � 6 ¼ 0

x1 þ 6x2 � x23 � 10 ¼ 0

x2x
2
3 � 10x3 þ 4 ¼ 0

2. Write power flow equations of the network shown in Fig. 12-P1, using the
NR method in polar form.

3. Solve the three-bus system of Fig. 12-P1, using the NR method to two
iterations.

4. Solve Problem 12.3, using the decoupled NR method, to two iterations.
5. Construct P–� and Q–V networks of the system shown in Fig. 12-P1.
6. Solve the network of Fig. 12-P1, using the fast decoupled method, to two

iterations.
7. Solve the network of Fig. 12-P1 using the Ward–Hale method.
8. Solve Example 12.3 for one more iteration and show that the bus 2

voltage dips below rated system voltage.
9. What are the major differences in constant kVA, constant impedance,

and constant current loads? How will each of these behave under load
flow?

10. How can the initial starting drop of a motor be calculated using a load
flow program? Is a specific algorithm necessary? What is the effect of
generator models?

11. A 1500-hp, 4-kV, four-pole induction motor has a slip of 1.5%, a locked
rotor current 6 times the full load current, and 94% efficiency.
Considering that Xm ¼ 3 per unit, and stator reactance ¼ rotor
reactance ¼ 0.08 per unit, draw the equivalent positive and negative
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Table 12-11 Example 12.6: Load Flow Summary (Constant Impedance-Type Load)

Item MW Mvar MVA
Percentage power

factor

Swing bus 112.29 10.39 112.77 99.6 lagging
Generators 285.00 112.33 306.34 93.0 lagging

Total demand 397.293 122.660 415.80 95.5 lagging
Total load demand 390.785 189.40 434.26 89.9 lagging
Total constant impedance-

type load modeled
422.01 303 (and 100-Mvar

capacitors) ¼ 202

Mvar

0

Total losses 6.51 66.74
System mismatch 0.011 0.001
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sequence circuit. If the voltage has a 5% negative sequence component
calculate the positive sequence and negative sequence torque.

12. What are the dimensions of the Y matrix in Example 12.5? What is the
percentage of populated elements with respect to the total elements?
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Figure 12-P1 A three-bus system for Problems 2, 3, 5, 6, and 7.
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13

Reactive Power Flow and Control

Chapters 11 and 12 showed that there is a strong relationship between voltage and
reactive power flow, though real power flow on loaded circuits may further escalate
the voltage problem. The voltages in a distribution system and to the consumers
must be maintained within a certain plus–minus band around the rated equipment
voltage, ideally from no load to full load, and under varying loading conditions.
Sudden load impacts (starting of a large motor) or load demands under contingency
operating conditions, when one or more tie-line circuits may be out of service, result
in short-time or prolonged voltage dips. High voltages may occur under light run-
ning load or on sudden load throwing and are of equal considerations, though low
voltages occur more frequently. ANSI C84.1 [1] specifies the preferred nominal
voltages and operating voltage ranges A and B for utilization and distribution equip-
ment operating from 120–34,500 V. For transmission voltages over 34,500 V only
nominal and maximum system voltage is specified. Range B allows limited excur-
sions outside range A limits. As an example, for a 13.8 kV nominal voltage, range
A¼14.49 – 12.46kV and range B ¼ 14:5 – 13.11kV. Cyclic loads, e.g., arc furnaces
giving rise to flicker, must be controlled to an acceptable level. The electrical appa-
ratuses have a certain maximum and minimum operating voltage, range in which
normal operation is maintained, i.e., induction motors are designed to operate suc-
cessfully under the following conditions [2]:

1. Plus or minus 10% of rated voltage, with rated frequency.
2. A combined variation in voltage and frequency of 10% (sum of absolute

values) provided that the frequency variations do not exceed �5% of
rated frequency.

3. Plus or minus 5% of frequency with rated voltage.

Motor torque, speed, line current, and losses vary with respect to the operating
voltage, as shown in Table 12-2. Continuous operation beyond the designed voltage
variations is detrimental to the integrity and life of the electrical equipment.
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A certain balance between the reactive power consuming and generating appa-
ratuses is required. This must consider losses which may be a considerable percen-
tage of the reactive load demand.

When the reactive power is transported over mainly reactive elements of the
power system, the reactive power losses may be considerable and these add to the
load demand (Example 12.5). This reduces the active power delivery capability of
most electrical equipment rated on a kVA base. As an example, consider the reactive
power flow through a 0.76-ohm reactor. For a 70Mvar input the output is 50Mvar
and 20Mvar are lost in the reactor itself. If the load voltage is to be maintained at 1.0
per unit, the source side voltage should be raised to 1.28 per unit, representing a
voltage drop of 28% in the reactor. Figure 13-1 shows reactive power loss and
voltage drops in lumped reactance.

In a loaded transmission line, when power transfer is below the surge impe-
dance loading, the charging current exceeds the reactive line losses and this excess
charging current must be absorbed by shunt reactors and generators. Above surge
impedance loading the reactive power must be supplied to the line. At 1.5 times the
surge loading an increase of 150 MW will increase the reactive power losses in a 500-
kV transmission line by about 95Mvar, or about 50% of the line charging. At twice
surge loading, approximately 1800 MW (surge impedance 277 ohms), a 100-MW
load increase will increase reactive loses by 100Mvar.

A V–Q control may necessitate addition of leading or lagging reactive power
sources, which may be passive or dynamic in nature. Shunt reactors and capacitors
are examples of passive devices. The SVC (static var controller) is an example of a
dynamic device. It should be ensured that all plant generators operate within their
reactive power capability limits and remain stable. The on-load tap changing trans-
formers must be able to maintain an acceptable voltage within their tap setting
range.

Assessment of voltage problems in a distribution system under normal and
contingency load-flow conditions, therefore, requires investigations of the following
options:

. Location of reactive power sources, i.e., series and shunt capacitors, syn-
chronous condensers, voltage regulators, overexcited synchronous
motors, and SVCs with respect to load.

. Control strategies of these reactive power sources.

. Provision of on-load tap changing equipment on tie transformers.

. Undervoltage load shedding.

. Stiffening of the system, i.e., reduction of system reactance which can be
achieved by bundle conductors, duplicate feeders, and additional tie-
lines.

. Redistribution of loads.

13.1 VOLTAGE INSTABILITY

Consider the power flow on a mainly inductive tie-line, Fig. 13-2(a). The load
demand is shown as Pþ jQ, the series admittance Ysr ¼ gsr þ bsr, and
Z ¼ Rsr þ jXsr. A similar circuit is considered in sec. 10.2. The power flow equation
from the source bus (an infinite bus) is given by
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Pþ jQ ¼ Vr"
�j�½ðVs � Vr"

j�Þðgsr þ jbsrÞ�
¼ ½ðVsVr cos � � V2

r gsr þ VsVrbs sin �Þ�
þ j½ðVsVr cos � � V2

r Þbsr � VsVr sin �� ð13:1Þ
If resistance is neglected:

P ¼: VsVrbsr sin � ð13:2Þ

Q ¼: ðVsVr cos � � V2
r Þbsr ð13:3Þ
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Figure 13-1 Voltage drop and reactive power loss in lumped reactance: A: 0.76 ohms; B:
0.57 ohms; C: 0.38 ohms; D: 0.19 ohms.
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These are the same equations as derived in Eqs (10.22) and (10.23). If the receiving
end load changes by a factor �Pþ�Q, then:

�P ¼ ðVsbsr sin �Þ�V þ ðVsVrbsr cos �Þ�� ð13:4Þ

and

�Q ¼ ðVs cos � � 2VrÞbsr�V � ðVsVrbsr sin �Þ�� ð13:5Þ

where �Vr is the scalar change in voltage Vr and �� is the change in angular
displacement. If � is eliminated from Eq. (13.1) and resistance is neglected, a dynamic
voltage equation of the system is obtained as follows:

V4
r þ V2

r ð2QXsr � V2
s Þ þ X2

srðP2 þQ2Þ ¼ 0 ð13:6Þ

438 Chapter 13

Figure 13-2 (a) Active and reactive power flow through a predominantly reactive two-port
connector; (b) receiving end voltage per unit versus system reactance in per unit for different

power factors and constant power output. Stable and unstable regions and critical reactance
are shown.
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The positive real roots of this equation are

Vr ¼
�2QXsr þ V2

s

2
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2QXsr � V2

s Þ2 � 4X2
srðP2 þQ2Þ

q" #1=2

ð13:7Þ

This equation shows that, in a lossless line, the receiving end voltage Vr is a
function of the sending end voltage Vs, series reactance Xsr, and receiving end real
and reactive power. Voltage problems are compounded when reactive power flows
over heavily loaded active power cirucits. If reactive power is considered as zero and
the sending end voltage is 1 per unit, then Eq. (13.7) reduces to

Vr ¼
1

2
� 1

2

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 4X2

srP
2Þ

p
" #1=2

ð13:8Þ

For two equal real value of Vr:

ð1� 4X2
srP

2Þ1=2 ¼ 0; i.e., Xsr ¼ 1=2P ð13:9Þ
This value of Xsr may be called a critical reactance. Figure 13-2(b) shows the

characteristics of receiving end voltage, against system reactance for constant power
flow, at lagging and leading power factors, with the sending end voltage maintained
constant. This figure shows, for example, that at a power factor of 0.9 lagging,
voltage instability occurs for any reactance value exceeding 0.23 per unit. This
reactance is the critical reactance. For a system reactance less than the critical
reactance there are two values of voltages, one higher and the other lower. The
lower voltage represents unstable operation, requiring large amount of source cur-
rent. For a system reactance close to the critical reactance, voltage instability can
occur for a small positive excursion in the power demand. As the power factor
improves a higher system reactance is permissible for the power transfer. The voltage
instability can be defined as the limiting stage beyond which the reactive power
injection does not elevate the system voltage to normal. The system voltage can
only be adjusted by reactive power injection until the system voltage stability is
maintained. From Eq. (13.7) the critical system reactance at voltage stability limit
is obtained as follows:

ð2QXsr � V2
s Þ ¼ 4X2

srðP2 þQ2Þ

4X2
srP

2 þ 4XsrQV2
s � V4

s ¼ 0 ð13:10Þ
The solution of this quadratic equation gives

XsrðcriticalÞ ¼
V2

s

2

Q�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 � P2

p
P2

" #

¼ V2
s

2P
ð� tan�þ sec�Þ

ð13:11Þ

Where � is the power factor angle.

Enhancing the thermal capacity of radial lines by use of shunt capacitors is increas-
ingly common. However, there is a limit to which capacitors can extend the load-
carrying capability [3].
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In practice the phenomenon of collapse of voltage is more complex. Constant
loads are assumed in the above scenario. At lower voltages, the loads may be
reduced, though this is not always true, i.e., an induction motor may not stall
until the voltage has dropped more than 25%, even then the magnetic contactors
in the motor starter supplying power to the motor may not drop out. This lock out
of the motors and loss of some loads may result in voltage recovery, which may start
the process of load interruption afresh, as the motors try to reaccelerate on the
return voltage.

From Eq. (13.5) as � is normally small:

�Q

�V
¼ Vs � 2Vr

Xsr

ð13:12Þ

If the three phases of the line connector are short-circuited at the receiving end, the
receiving end short-circuit current is

Ir ¼
Vs

Xsr

ð13:13Þ

This assumes that the resistance is much smaller than the reactance. At no load
Vr ¼ Vs, therefore:

@Q

@V
¼ � Vr

Xsr

¼ � Vs

Xsr

ð13:14Þ

Thus:

@Q

@V

����
���� ¼ short-circuit current ð13:15Þ

Alteratively, we could say that

�Vs

V
� �Vr

V
¼ �Q

Ssc

ð13:16Þ

where Ssc is the short-circuit level of the system. This means that the voltage regula-
tion is equal to the ratio of the reactive power change to the short-circuit level. This
gives the obvious result that the receiving end voltage falls with the decrease in
system short-circuit capacity, or increase in system reactance. A stiffer system
tends to uphold the receiving end voltage.

Example 13.1

Consider the system of Fig. 13-3. Bus C has two sources of power, one transformed
from the 400-kV bus A and connected through a transmission line and the other
from the 230-kV bus B. These sources run in parallel at bus C. The voltages at buses
A and B are maintained equal to the rated voltage. A certain load demand at bus C
dips the voltage by 10 kV. What is the reactive power compensation required at bus
C to bring the voltage to its rated value?

An approximate solution is given by Eq. (13.16). Based on the impedance data
shown in Fig. 13-3, calculate the short-circuit current at bus C. This is equal to
7.28 kA. Therefore:

@Q

@V
¼ 12:62Mvar=kV
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A reactive power injection of 126.2Mvar is required to compensate the voltage drop
of 10 kV.

The voltage-reactive power stability problem is more involved than portrayed
above. Power systems have a hierarchical structure: power generation – transmission
lines – subtransmission level – distribution level – and finally to the consumer level.
As reactive power does not travel well over long distances, it becomes a local pro-
blem. The utility companies operate with an agreed voltage level at inter-tie connec-
tions, and provide for their own reactive power compensation to meet this
requirement. It can be said that there are no true hierarchical structures in terms
of reactive power flow.

The voltage instability is not a single phenomenon and is closely linked to the
electromagnetic stability and shares all aspects of active power stability, though there
are differences.

Consider the equations of active and reactive power flow, Eqs (10.18) and
(10.19), for a short line. Let the voltages be fixed. The angle � (phasor difference
between the sending end and receiving end voltage vectors) varies with receiving bus
power, as shown in Fig. 13-4(a). Beyond the maximum power drawn, there is no
equilibrium point. Below the maximum power drawn there are two equilibria, one in
the stable state and the other in the unstable state. A load flow below the maximum
point is considered statically stable.

A similar curve can be drawn for reactive power flow, Fig. 13-4(b). The
angles are fixed, and the bus voltage magnitude changes. The character of this
curve is the same as that of the active power flow curve. A reactive power
demand above the maximum reactive power results in the nonexistence of a
load-flow situation. The point �VU is statically unstable, corresponding to
��U . If we define:

jPðmaxÞ � Pj < " ð13:17Þ

jQðmaxÞ �Qj < " ð13:18Þ
then, however small " may be, there will always be two equilibrium points. Such an
equilibrium point may be called a bifurcation point. The derivatives @P=@� and
@Q=@V are zero at the static stability limit.
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Figure 13-3 System for calculation of reactive power injection on voltage dip (Example

13.1).
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13.2 REACTIVE POWER COMPENSATION

The need for reactive power compensation is obvious from the above discussions
[4, 5]. An acceptable, if not ideally flat voltage profile, has to be maintained.
Concurrently the stability is improved and the maximum power limit that can
be transmitted increases.

13.2.1 Z0 Compensation

It was shown in Chap. 10 that a flat voltage profile can be achieved with a SIL
loading of V2=Z0. The surge impedance can be modified with addition of capacitors
and reactors so that the desired power transmitted is given by the ratio of the square
of the voltage and modified surge impedance:

Pnew ¼ V2=Zmodified ð13:19Þ
The load can suddenly change, and ideally, the compensation should also adjust
instantaneously according to Eq. (13.19). This is not a practical operating situation
and stability becomes a consideration. Passive and active compensators are used to
enhance stability. The passive compensators are shunt reactors, shunt capacitors,
and series capacitors. The active compensators generate or absorb reactive power
at the terminals where these are connected. Their characteristics are described
further.
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Figure 13-4 (a) To illustrate real power steady-state instability; (b) to illustrate reactive
power steady-state instability.
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13.2.2 Line Length Compensation

The line length of a wavelength of 3100 miles arrived at in Chap. 10 for a 60-Hz
power transmission is too long. Even under ideal conditions, the natural load (SIL)
cannot be transmitted > �=4 (¼ 775 miles). Practical limits are much lower. As
� ¼ !

ffiffiffiffiffiffiffi
LC

p
, the inductance can be reduced by series capacitors, thereby reducing

�. The phase-shift angle between the sending end and receiving end voltages is also
reduced and the stability limit is, therefore, improved.

13.2.3 Compensation by Sectionalization of Line

The line can be sectionalized, so that each section is independent of one other, i.e.,
meets its own requirements of flat voltage profile and load demand. This is compen-
sation by sectionalizing, achieved by connecting constant-voltage compensators
along the line. These are active compensators, i.e., thyristor switched capacitors
(TSCs), thyristor controlled reactors (TCRs), and synchronous condensers. All
three types of compensating strategies may be used in a single line.

Consider that a distributed shunt inductance Lshcomp is introduced. This
changes the effective value of the shunt capacitance as

j!Ccomp ¼ j!C þ 1

j!Lshcomp

¼ j!Cð1� KshÞ ð13:20Þ

where

Ksh ¼ 1

!2LshcompC
¼ Xsh

Xshcomp

¼ bshcomp

bsh
ð13:21Þ

where Ksh is the degree of shunt compensation. It is negative for a shunt capacitance
addition.

Similarly, let a distributed series capacitance Csrcomp be added. The degree of
series compensation is given by Ksc:

Ksc ¼
Xsrcomp

Xsr

¼ bsr
bsrcomp

ð13:22Þ

The series or shunt elements added are distinguished by subscript ‘‘comp’’ in the
above equations. Combining the effects of series and shunt compensations:

Z0comp ¼ Zo

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ksc

1� Ksh

s

P0comp ¼ P0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Ksh

1� Ksc

s
ð13:23Þ

Also,

�comp ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� KshÞð1� KscÞ

p
ð13:24Þ
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The effects are summarized as follows:

. Capacitive shunt compensation increases � and power transmitted and
reduces surge impedance. Inductive shunt compensation has the opposite
effect, reduces � and power transmitted and increases surge impedance. A
100% inductive shunt capacitance will theocratically increase the surge
impedance to infinity. Thus, at no load, shunt reactors can be used to
cancel the Ferranti effect.

. Series capacitive compensation decreases surge impedance and � and
increases power transfer capacity. Series compensation is applied more
from the steady state and transient stability consideration rather than
from power factor improvement. It provides better load division between
parallel circuits, reduced voltage drops, and better adjustment of line
loadings. It has practically no effect on the load power factor. Shunt
compensation, on the other hand, directly improves the load power fac-
tor. Both types of compensations improve the voltages and, thus, affect
the power transfer capability. The series compensation reduces the large
shift in voltage that occurs between the sending and receiving ends of a
system and improves the stability limit.

The performance of a symmetrical line was examined in Sec. 10.7. At no load,
the midpoint voltage of a symmetrical compensated line is given by:

Vm ¼ Vs

cosð�l=2Þ ð13:25Þ

Therefore, series capacitive and shunt inductive compensation reduce the Ferranti
effect, while shunt capacitive compensation increases it.

The reactive power at the sending end and receiving end of a symmetrical line
was calculated in Eq. (10.78) and is reproduced below:

Qs ¼ �Qr ¼
sin �

2
Z0I

2
m � V2

m

Z0

" #

This equation can be manipulated to give the following equation in terms of natural
load of the line and Pm ¼ VmIm and P0 ¼ V2

0=Z0:

Qs ¼ �Qr ¼ Po

sin �

2

PV0

P0Vm

� �2

� Vm

V0

� �2
" #

ð13:26Þ

For P ¼ P0 (natural loading) and Vm ¼ 1:0 per unit, Qs ¼ Qr ¼ 0.
If the terminal voltages are adjusted so that Vm ¼ V0 ¼ 1 per unit:

Qs ¼ �Qr ¼ P0

sin �

2

P

P0

� �2

�1

" #
ð13:27Þ

At no load:

Qs ¼ �Qr ¼ �P0 tan
�

2
� �P0

�

2
ð13:28Þ
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If the terminal voltages are adjusted so that for a certain power transfer, Vm ¼ 1 per
unit, then the sending end voltage is

Vs ¼ Vm 1� sin2
�

2
1� P

P0

� �2
" # !1=2

¼ �Vr ð13:29Þ

When series and shunt compensation are used, the reactive power requirement at no
load is approximately given by

Qs ¼ �P
�l

2
ð1� KshÞ ¼ �Qr ð13:30Þ

If Ksh is zero, the reactive power requirement of a series compensated line is approxi-
mately the same as that of an uncompensated line, and the reactive power handling
capability of terminal synchronous machines becomes a limitation. Series compensa-
tion schemes, thus, require SVCs or synchronous condensers/shunt reactors.

13.2.4 Effect on Maximum Power Transfer

The power transfer for an uncompensated lossless line under load, phase angle � is

P ¼ VsVr

Z0 sin �l
sin � ¼ VsVr

Z0 sin �
sin � ð13:31Þ

This can be put in more familiar form by assuming that sin � ¼ �:

�l ¼ � ¼ !l
ffiffiffiffiffiffiffi
LC

p

Z0� ¼ !l
ffiffiffiffiffiffiffi
LC

p
ð
ffiffiffiffiffiffiffiffiffiffi
L=C

p
Þ ¼ !lL ¼ Xsc

ð13:32Þ

P ¼ VsVr

Z0 sin �
sin � � P0

sin �
sin � � P0

�
� ð13:33Þ

We know that � ¼ 908 for a theoretical steady-state limit. A small excursion or
change of power transmitted or switching operations will bring about instability,
Fig. 13-4(a). Practically, an uncompensated line is not operated at > 308 load angle.

With compensation the ratios of powers becomes:

Pcomp

P
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� Ksc

1� Ksh

s
sin �x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� KscÞð1� KshÞ

qh i ð13:34Þ

Series compensation has a more pronounced effect on Pmax. Higher values of Ksc can
give rise to resonance problems and in practice Ksc 6>0.8. Series compensation can be
used with a line of any length and power can be transmitted over a larger distance
than is otherwise possible.

Example 13.2

A 650-mile line has � ¼ 0:1168/mile.

1. Calculate Pmax as a function of P0 for an uncompensated line.
2. What are the limitations of operating under these conditions.
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3. Considering a load angle of 308, calculate the sending end voltage if the
midpoint voltage is held at 1 per unit. Also, calculate the sending end
reactive power of the uncompensated line.

4. Recalculate these parameters with 80% series compensation.

1. The electrical length is � ¼ �1 ¼ 0:116� 650 ¼ 75:48. Therefore, the max-
imum power transfer as a function of natural load is 1= sin 75:48 ¼ 1:033P0.

2. An uncompensated transmission line is not operated close to the steady-
state limit.

3. If the midpoint voltage is maintained at 1 per unit, by adjustment of the
sending end and receiving end voltages, the sending end voltage from Eq. (13.29) is

ð1Þ½1� ðsin 37:25Þ2ð1� 0:52Þ�1=2 ¼ 0:852 pu

The ratio P=P0 ¼ 0:5 for load angle � ¼ 308. Thus, the voltages are too low. The
reactive power input required from Eq. (13.27) is 0.36 kvar per kW of load trans-
ferred at each end, i.e., a total of 0.72 kVar per kW transmitted.

4. With 80% series compensation, the maximum power transfer from Eq.
(13.34) is

Pcomp=P ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:8

p
sin½75:4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 0:8
p � ¼ 4:0278P0

From Eq. (13.23) the surge impedance with compensation is 0.447Z0. Therefore, the
natural loading ¼ 2:237P0. If the line is operated at this load, a flat voltage profile is
obtained. The new electrical length of the line is

� 0 ¼ sin�1 P 0
0

P 0
max

� �
¼ 33:78

13.2.5 Compensation with Lumped Elements

The distributed shunt or series compensation derived above is impractical and a line
is compensated by lumped series and shunt elements at the midpoint or in sections,
using the same methodology. The problem usually involves steady state as well as
dynamic and transient stability considerations.

Figure 13-5 (a) shows a midpoint compensation [4]. Each half-section of the
line is shown as an equivalent�model. The circuit of Fig. 13-5 (a) can be redrawn as
shown in Fig. 13-5 (b). The phasor diagram is shown in Fig. 13-5(c) The degree of
compensation for the central half, km, is

�m ¼ bshcomp

0:5bsh
ð13:35Þ

For equal sending and receiving end voltages:

P ¼ V2

Xsrð1� sÞ sin � ð13:36Þ

where

s ¼ Xsr

2

bsh
4

ð1� �mÞ ð13:37Þ

The midpoint voltage can be expressed as
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Vm ¼ V cosð�=2Þ
1� s

ð13:38Þ

The equivalent circuit of the line with compensation is represented in Fig. 13-
5(d). For s < 1, the midpoint compensation increases the midpoint voltage, which
tends to offset the series voltage drop in the line. If the midpoint voltage is controlled
by variation of the susceptance of the compensating device, then using the relation-
ship in Eq. (13.38), Eq. (13.36) can be written as

P ¼ V2

Xsrð1� sÞ sin � ¼
VmV

Xsr cosð�=2Þ
sin � ¼ 2

VmV

Xsr

sin
�

2
ð13:39Þ

If the midpoint voltage is equal to the sending end voltage ¼ receiving end voltage:

P ¼ 2V2

Xsr

sin
�

2
ð13:40Þ

This is shown in Fig. 13-5(e). Thus, the power transmission characteristics is a
sinusoid whose amplitude varies as s varies. Each sinusoid promises ever higher
power transfer. For P >

ffiffiffi
2

p
Pmax, angle � > �=2. When the transmission angle

increases, the compensator responds by changing the susceptance to satisfy Eq.
(13.40). The economic limit of a compensator to put effective capacitive susceptance
may be much lower than the maximum power transfer characteristics given by Eq.
(13.40). When the compensator limit is reached it does not maintain a constant
voltage and acts like a fixed capacitor.

The shunt compensation to satisfy Eq. (13.38) can be calculated from the
following equation:

bshcomp ¼ � 4

Xsr

1� V

Vm

cos
�

2

	 

þ bsh

2
ð13:41Þ

In Chap. 12, we have seen that reactive power cannot be transferred over long
distances. Due to the inherent problem of flow of reactive power connected with
reduction of voltage and usable voltage band, voltage controlled (PV) buses must be
scattered throughout the power system.

13.3 REACTIVE POWER CONTROL DEVICES

Some of the devices and strategies available for reactive power compensation and
control are:

. Synchronous generators

. Synchronous condensers

. Synchronous motors (overexcited)

. Shunt capacitors and reactors

. Static var controllers

. Series capacitors with PSSs (power system stabilizers)

. Line dropping

. Undervoltage load shedding

. Voltage reduction

. Under load tap changing transformers

. Setting lower transfer limits
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13.3.1 Synchronous Generators

Synchronous generators are primary voltage-control devices and primary sources of
spinning reactive power reserve. Figure 13-6 shows the reactive capability curve of a
generator. To meet the reactive power demand, generators can be rated to operate at
0.8 power factor, at a premium cost. Due to thermal time constants associated with
the generator exciter, rotor, and stator, some short-time overload capability is avail-
able and can be usefully utilized. On a continuous basis, a generator will operate
successfully at its treated voltage and with a power factor at a voltage not more than
5% above or below the rated voltage, but not necessarily in accordance with the
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Figure 13-5 (a) Midpoint compensation of a transmission line; (b) circuit of (a) redrawn; (c)
phasor diagram. (d) equivalent circuit; (e) P–� characteristics and dynamic response operation
of a midpoint compensator.
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Figure 13-5 (Continued)

Figure 13-6 Reactive capability curve of a 0.85 power factor rated synchronous generator
with stability limit curves. Curve A: classical stability limit; curve B: enhanced stability limit
with high-response excitation system; curve C: 20-min overload reactive capability, dotted

reactive capability curve shows operation at higher than rated voltage.
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standards established for operation at the rated voltage [6]. The generator capability
curves at voltages other than the rated voltage may differ.

Referring to Fig. 13-6, the portion SPQ is limited by the generator mega-
watt output, the portion QN by the stator current limit, and the portion NM by
the excitation current limit and ST by end-iron heating limit. Q is the rated load
and power factor operating point. In the leading reactive power region the mini-
mum excitation limit (MEL) and the normal manufacturer’s underexcited reactive
ampère limit (URA) are imposed. MEL plays an important role in voltage con-
trol. The MEL curve rises slightly above the pull-out curve also called classical
static stability curve A, providing an extra margin of stability and preventing
stator end-turn heating from low excitation. Where cables or a large shunt
capacitors’ bank can remain in service after a large disturbance, the capability
of the generators to absorb capacitive current comes into play and appropriate
settings of MEL are required. Curve B shows the improvement in the stability
achieved by high-response excitation systems. The dotted curve shows the effect
of operating at a higher than rated voltage, and curve C shows the short-time
overload capability in terms of reactive power output.

The reactive output of a generator decreases if the system voltage increases and
conversely it increases if the system voltage dips. This has a stabilizing effect on the
voltage. The increased or decreased output acts in a way to counteract the voltage
dip or voltage rise.

13.3.2 Synchronous Condensers

A synchronous condenser is a dynamic compensator and is characterized by its large
synchronous reactance and heavy field windings. It develops a zero power factor
leading current with least expenditure in active power losses. Figure 13-7 shows a V
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Figure 13-7 V curves for a synchronous condenser and 0.8 leading power factor synchro-
nous motor.
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curve for a constant output voltage. The rated reactive power output for a 0.8
leading power factor synchronous motor is also shown for comparison. In a syn-
chronous condenser at 100% excitation, full-load leading kvars are obtained. At
about 10% of the excitation current, the leading kvar output falls to a minimum
corresponding to the losses. The rated field current is defined as the current for rated
machine output at rated voltage. The lagging kvar is usually limited to approxi-
mately one-third of the maximum leading kvar to prevent loss of synchronism on
a disturbance. The full-load power factor may be as low as 0.02. The current drawn
by a synchronous condenser can be varied from leading to lagging by change of its
excitation, i.e., machine internal voltage behind its synchronous reactance (steady
state) and transient reactance (for transient stability) characteristics.

A synchronous condenser provides stepless control of reactive power in both
underexcited and overexcited regions. Synchronous condensers have been used for
normal voltage control, high-voltage dc (HVDC) applications, and voltage control
under upset conditions with voltage regulators. The transient open circuit time con-
stant is high (of the order of few seconds) even under field forcing conditions, yet
synchronous condensers have been applied to improve the transient stability limits
on voltage swings. At present, these are being replaced with static var compensators,
which have faster responses.

Figure 13-8 shows the response characteristics of a synchronous condenser.
Consider that the condenser is initially operating at point a, neither providing induc-
tive nor capacitive reactive power. A sudden drop in voltage ð�VÞ, forces the con-
denser to swing to operating point c along the load line 2. As it is beyond the rated
operating point d at rated excitation, the operation at c is limited to a short time, and
the steady-state operating point will be restored at d.
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Figure 13-8 Operation of a synchronous condenser on sudden voltage dip.
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13.3.3 Synchronous Motors

In an industrial distribution system, synchronous motors can be economically
selected, depending on their speed and rating. Synchronous motors are more suitable
for driving certain types of loads, e.g., refiners and chippers in the pulp and paper
industry, Banbury mixers, screw-type plasticators and rubber mill line shafts, com-
pressors, and vacuum pumps. The power factor of operation of induction motors
deteriorates at low speeds due to considerable overhang leakage reactance of the
windings. Synchronous motors will be more efficient in low-speed applications, and
can provide leading reactive power. Higher initial cost as compared to an induction
motor is offset by the power savings. A careful selection of induction and synchro-
nous motors in an industrial environment can obviate the problems of reactive
power compensation and maintain an appropriate voltage profile at the load centers.
Synchronous motors for such applications are normally rated to operate at 0.8
power factor leading at full load and need a higher rated excitation system as
compared to unity power factor motors. An evaluation generally calls for synchro-
nous motors versus induction motors with power factor improvement capacitors.

The type of synchronous motor excitation control impacts its voltage control
characteristics. The controllers can be constant current, constant power factor, or
constant kvar type, though many uncontrolled excitation systems are still in use. A
constant-current controller compensates for decrease in motor field current due to
field heating; the reactive power output from the motor increases at no load and
consequently the voltage rises at no load and falls as the motor is loaded. A constant
power factor controller increases the reactive power output with load, and the vol-
tage rises with the load. A cyclic load variation will result in cyclic variation of
reactive power and thus the voltage. A constant reactive power controller will main-
tain a constant voltage profile, irrespective of load, but may give rise to instability
when a loaded motor is subjected to a sudden impact load. Constant var and power
factor controllers are common. Figure 13-9 shows the voltage control characteristics
of these three types of controllers.

452 Chapter 13

Figure 13-9 Effect of synchronous motor controller type on voltage regulation. A: constant
current or unregulated controller; B: constant power-factor controller; C: constant kvar con-

troller.
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13.3.4 Shunt Power Capacitors

Shunt capacitors are extensively used in industrial and utility systems at all voltage
levels. As we will see, the capacitors are the major elements of flexible ac transmis-
sion systems (FACTS). Much effort is being directed in developing higher power
density, lower cost improved capacitors, and an increase in energy density by a factor
of 100 is possible. These present a constant impedance type of load, and the capa-
citive power output varies with the square of the voltage:

kvarV2 ¼ kvarV1
V2

V1

����
����2 ð13:42Þ

Where kvarv1 is output at voltage V1 and kvarv2 is output at voltage V2. As the
voltage reduces, so does the reactive power output, when it is required the most. This
is called the destabilizing effect of the power capacitors. (Compare to the stabilizing
effect of a generator excitation system.)

Capacitors can be switched in certain discrete steps and do not provide a
stepless control. Figure 13-10 shows a two-step sequential reactive power switching
control to maintain voltage within a certain band. As the reactive power demand
increases and the voltage falls (shown linearly in Fig. 13-10 for simplicity), the first
bank is switched at A, which compensates the reactive power and suddenly raises the
voltage. The second step switching is, similarly, implemented at B. On reducing
demand the banks are taken out from service at A 0 and B 0. A time delay is associated
with switching in either direction to over-ride transients. Voltage or power factor
dependent switching controls are also implemented. Power capacitors have a wide
range of applications:

. Power factor improvement capacitors switched with motors at low- and
medium-voltage levels or in multistep power factor improvement controls
in industrial systems.

. Single or multiple banks in industrial distribution systems at low- and med-
ium-voltage substations.
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Figure 13-10 Sequential switching of capacitors in two steps with reactive power flow
control to maintain voltage within a certain acceptable band. The no-load voltage is assumed

to be 1.025 per unit.
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. As harmonic filters in industrial distribution systems, arc furnaces, steel
mills, and HVDC transmission.

. Series or shunt devices for reactive power compensation in transmission
systems.

. Essential elements of SVC and FACTS controllers.

Some of the problems associated with the shunt power capacitors are:

. Switching inrush currents at higher frequencies and switching overvoltages.

. Harmonic resonance problems.

. Limited overvoltage withstand capability.

. Limitations of harmonic current loadings.

. Possibility of self-excitation of motors when improperly applied as power
factor improvement capacitors switched with motors.

. Prolonging the decay of residual motor voltage on disconnection, and
trapped charge on disconnection, which can increase the inrush current
on reswitching and lead to restrikes.

. Requirements of definite purpose switching devices.

These are offset by low capital and maintenance costs, modular designs varying from
very small to large units and fast switching response.

13.3.5 Static Var Controllers

The var requirements in transmission lines swing from lagging to leading, depending
on the load. Shunt compensation by capacitors and reactors is one way. However, it
is slow, and power circuit breakers have to be derated for frequent switching duties.
SVCs obviate some of these limitations and can be classified into the following
categories [7]:

Thyristor-controlled reactor (TCR), Fig. 13-11(a)
Thyristor-switched capacitor (TSC), Fig. 13-11(b)
Fixed capacitor and thyristor-controlled reactor (FC-TCR), Fig. 13-11(c)
Thyristor-switched capacitor (TSC) and thyristor-controlled reactor (TCR),

Fig. 13-11(d)

Figure 13-12 shows the circuit diagram of a FC-TCR. The arrangement pro-
vides discrete leading vars from the capacitors and continuously lagging vars from
thyristor-controlled reactors. The capacitors are used as tuned filters, as considerable
harmonics are generated by thyristor control (Chap. 17).

The steady-state characteristics of a FC-TCR is shown in Fig. 13-13. The
control range is AB with a positive slope, determined by the firing angle control.

Q� ¼ jbc � blð�ÞjV2 ð13:43Þ
where bc is the susceptance of the capacitor, and blð�Þ is the susceptance of the
inductor at firing angle �. As the inductance is varied, the susceptance varies over
a large range. The voltage varies within limits V ��V . Outside the control interval
AB, the FC-TCR acts like an inductor in the high-voltage range and like a capacitor
in the low-voltage range. The response time is of the order of one or two cycles. The
compensator is designed to provide emergency reactive and capacitive loading
beyond its continuous steady-state rating.
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A TSC-TCR provides thyristor control for both the reactive power control
elements, capacitors, and reactors. Improved performance under large system dis-
turbances and lower power loss are obtained. Figure 13-14 shows the V–I character-
istics. A certain short-time overload capability is provided both in the maximum
inductive and capacitive regions (shown for the inductive region in Fig. 13-14).
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Figure 13-11 SVC controllers: (a) thyristor-controlled reactor (TCR); (b) thyristor-
switched capacitor (TSC); (c) fixed capacitors with thyristor-controlled reactor of (FC-
TCR); (d) thyristor-switched capacitor and thyristor-controlled reactor (TSC-TCR).
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Figure 13-12 Circuit diagram of a FC-TCR, with switched capacitor filters.
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Voltage regulation with a given slope can be achieved in the normal operating range.
The maximum capacitive current decreases linearly with the system voltage, and the
SVC becomes a fixed capacitor when the maximum capacitive output is reached. The
voltage support capability decreases with decrease in system voltage.

SVCs are ideally suited to control the varying reactive power demand of large
fluctuating loads (i.e., rolling mills and arc furnaces) and dynamic overvoltages due
to load rejection and are used in HVDC converter stations for fast control of reactive
power flow.
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Figure 13-13 Steady-state V–Q characteristics of an FC-TCR.

Figure 13-14 V–I characteristics of an SVC (TSC-TCR) showing reduced output at lower

system voltages.
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Compensation by sectionalizing is based on a midpoint dynamic shunt com-
pensator. With a dynamic compensator at the midpoint the line tends to behave like
a symmetrical line. The power transfer equation for equal sending and receiving end
voltages is Eq. (13.40). The advantage of static compensators is apparent. The mid-
point voltage will vary with the load, and an adjustable midpoint susceptance is
required to maintain constant voltage magnitude. With rapidly varying loads, it
should be possible for the reactive power demand to be rapidly corrected, with
least overshoot and voltage rise. Figure 13-15 shows transient power angle curves
for an uncompensated line, with phase angle shift, shunt compensation, and series
compensation. With the midpoint voltage held constant the angles between the two
systems can each approach 908, for a total static stability limit angle of 1808.

The power system oscillation damping can be obtained by rapidly changing the
output of the SVC from capacitive to inductive so as to counteract the acceleration
and deceleration of interconnected machines. The transmitted electrical power can
be increased by capacitive vars when the machines accelerate and it can be decreased
by reactive vars when the machines decelerate.

13.3.6 Series Capacitors

An implementation schematic of the series capacitor installation is shown in Fig.
13-16. The performance under normal and fault conditions should be considered.
Under fault conditions, the voltage across the capacitor rises, and unlike a shunt
capacitor, a series capacitor experiences many times its rated voltage due to fault
currents. A zinc oxide varistor in parallel with the capacitor may be adequate to
limit this voltage. Thus, in some applications the varistor will reinsert the bank
immediately on termination of a fault. For locations with high fault currents a
parallel fast acting triggered gap is introduced which operates for more severe
faults. When the spark gap triggers it is followed by closure of the bypass breaker.
Immediately after the fault is cleared, to realize the beneficial effect of series
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Figure 13-15 P–� characteristics. A: uncompensated line; B: with phase-angle regulator; C:

with midpoint shunt compensation; D: with series compensation.
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capacitor on stability, it should be reinserted quickly, and the main gap is made
self-extinguishing. A high-speed reinsertion scheme can reinsert the series capaci-
tors in a few cycles. The bypass switch must close at voltages in excess of nominal,
but not at levels too low to initiate main gap spark-over.

The discharge reactor limits the magnitude and frequency of the current
through the capacitor when the gap sparks over. This prevents damage to the capa-
citors and fuses. A series capacitor must be capable of carrying the full line current.
Its reactive power rating is

I2Xc per phase ð13:44Þ
and, thus, the reactive power output varies with the load current.

Figure 13-17 shows the impact of series versus shunt compensation at the
midpoint of a transmission line. Both systems are, say, designed to maintain 95%
midpoint voltage. The midpoint voltage does not vary much when a SVC is applied,
but with series compensation it varies with load. However, for a transfer of power
higher than the SVC control limit, the voltage falls rapidly as the SVC hits its ceiling
limit, while series compensation holds the midpoint voltage better.

A series capacitor has a natural resonant frequency given by

fn ¼
1

2�
ffiffiffiffiffiffiffi
LC

p ð13:45Þ

where fn is usually less than the power system frequency. At this frequency the
electrical system may reinforce one of the frequencies of the mechanical resonance,
causing subsynchronous resonance (SSR). If fr is the SSR frequency of the compen-
sated line, then at resonance:

2�frL ¼ 1

2�frC

fr ¼ f
ffiffiffiffiffiffiffi
Ksc

p ð13:46Þ
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Figure 13-16 Schematic diagram of a series capacitor installation.
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This shows that the SSR occurs at frequency fr, which is equal to normal frequency
multiplied by the square root of the degree of compensation. The transient currents
at subharmonic frequency are superimposed upon the power frequency component
and may be damped out within a few cycles by the resistance of the line. Under
certain conditions subharmonic currents can have a destabilizing effect on rotating
machines. A dramatic voltage rise can occur if the generator quadrature axis reac-
tance and the system capacitive reactance are in resonance. There is no field winding
or voltage regulator to control quadrature axis flux in a generator. Magnetic circuits
of transformers can be driven to saturation and surge arresters can fail. The inherent
dominant subsynchronous frequency characteristics of the series capacitor can be
modified by a parallel connected TCR.

Table 13-1 shows the comparative characteristics and applications of reactive
power compensating devices.

13.4 SOME EXAMPLES OF REACTIVE POWER FLOW

Three examples of the reactive power flow are considered to illustrate reactive
power/voltage problems in transmission [8], generating and industrial systems.

Example 13.3

Figure 13-18(a) shows three sections of a 230-kV line, with a series impedance of
0:113þ j0:80� per mile and a shunt capacitance of 0.2M� per mile. Each section is
150 miles long. A voltage-regulating transformer is provided at each bus. The reac-
tive power flow is considered under the following conditions:

. The rated voltage applied at slack bus 1 at no load.

. A load of 40Mvar applied at furthermost right bus 4. No tap adjustment on
transformers and no reactive power injection is provided.
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Figure 13-17 Series versus shunt compensation; power transfer characteristics for a mid-

compensated line.
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. The transformer’s tap adjustment raises the voltage at each bus to approxi-
mately 230 kV.

. A 30Mvar capacitive injection is provided at bus 3.

. Transformer tap adjustment and reactive power injection of 5Mvar each at
buses 2 and 3.

1. At no load the voltage rises at the receiving end due to charging capaci-
tance current. Each line section is simulated by a � network. The voltage at bus 4 is
252.6 kV. The charging current of each section flows cumulatively to the source, and
25.2Mvar capacitive power must be supplied from the slack bus.

2. The line sections in series behave like a long line and the voltage will rise or
fall, depending on the loading, unless a section is terminated in its characteristic impe-
dance. On a lossless line the voltage profile is flat and the reactive power is limited. On a
practical lossy line and termination in characteristic impedance the voltage will fall at a
moderate rate and when not terminated in characteristic impedance, the voltage will
drop heavily, depending on the reactive power flow. Figure 13-18(b) shows progressive
fall of voltage in sections, and the voltage at bus 4 is 188.06 kV, i.e., 81.7% of nominal
voltage. At this reduced voltage only 26Mvar of load can be supplied.

3. Each tap changer raises the voltage to the uniform level of the starting
section voltage. Note that the charging kvar of the line, modeled as shunt admit-
tance, acts like a reactive power injection at the buses, augmenting the reactive power
flow from the upstream bus. The voltages on the primary of the transformer, i.e., at
the termination of each line section are shown in Fig. 13-8(c).
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Table 13-1 Characteristics of Reactive Power Sources

Equipment Characteristics

Generators Primary souce of reactive power reserve, continuously adjustable
reactive power in inductive and capacitive regions limited by
generator reactive power–reactive capability curve. Response

time depending on excitation system, fast response excitation
systems of 0.1 sec possible. Limited capacitive reactive power
on underexcitation

Synchronous condensers Continuously adjustable reactive power in inductive and

capacitive regions, slow response (1 sec). Limited inductive
reactive power

SVC Same as synchronous condensers, wider range of control, fast

response, 1 to 2 cycles, better range of reactive power
capability. Harmonic pollution and SSR of consideration

Power capacitors Switchable in certain steps, only capacitive reactive power,

response dependent on control system, of the order of a couple
of cycles with circuit breaker control

Shunt reactors Single unit per line, inductive reactive power only, switching

response dependent on control system, of the order of a couple
of cycles with power circuit breaker controls

Load and line dropping Emergency measures. Load dropping also reduces active power
ULTC transformers In certain steps only, slow response, does not generate reactive

power, only reroutes it
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4. A reactive power injection of 30Mvar at bus 3 brings the voltages of buses
2 and 3 close to the rated voltage of 230 kV. However, the source still supplies
capacitive charging power of the transmission line system and the reactive power
to the load flows from the nearest injection point. Thus, reactive power injections in
themselves are not an effective means to transmit reactive power over long distances.

5. This shows the effect of tap changers as well as reactive power injection.
Reactive power injection at each bus with tap changing transformers can be an
effective way to transmit reactive power over long distance, but the injections at
each bus may soon become greater than the load requirement. This shows that the
compensation is best provided as close to the load as practicable.

Figure 13-18(e) shows the voltage profile in each of the above cases.
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Example 13.4

This example illustrates that relative location of power capacitors and the available
tap adjustments on the transformers profoundly affect the reactive power flow.

Figure 13-19 illustrates effects of off-load and on-load tap changing with shunt
capacitors located at the load or at the primary side of the transformer. Figures
13-19(a)–(c) show the load flow when there are no power capacitors and only a
tap changing transformer. Figures 13-19(d)–(f) show capacitors located on the
load bus. Figures 13-19(g)–(i) show capacitors located at the transformer pri-
mary side. In each of these cases, the objective is to maintain load voltage equal
to rated voltage for a primary voltage dip of 10%. In each case a constant
power load of 30 MW and 20Mvar is connected to the transformer secondary.
Only reactive power flows are shown in these figures for clarity.

Figure 13-9(a) shows that with the transformer primary voltage at rated level,
taps on the transformer provide a 5% secondary voltage boost to maintain the load
voltage at 1.00 per unit and counteract the voltage drop in the transformer. If the
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Figure 13-18 (a) A three-section 230-kV line at no load; (b) with 40-Mvar load at bus 4, no
tap adjustments, and no reactive power injection; (c) with transformer tap adjustment to
compensate for the line voltage drop; (d) with reactive power injection of 30Mvar at bus 3;

(e) with reactive power injection of 5Mvar at buses 2 and 3 and transformer tap adjustments;
(f) voltage profile along the line in all five cases of study.
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primary voltage dips by 10%, the load voltage will be 0.89 per unit and the reactive
power input to transformer increases by 1.0Mvar. An underload adjustment of taps
must provide a 15% voltage boost to maintain the load voltage equal to the rated
voltage, Fig. 13-19(c).

For load flow in Fig. 13-19(d) the transformer secondary voltage is at rated
level, as capacitors directly supply 20Mvar of load demand and no secondary vol-
tage boost is required from the transformer tap settings. Yet, 2.4Mvar is drawn from
the source, which represents reactive power losses in the transformer itself. A 10%
dip in the primary voltage results in a load voltage of 0.88 per unit and the reactive
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Figure 13-19 Reactive power flow with power capacitors and transformer tap changing.
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power requirement from the source side increases to 7.25Mvar. Thus, load capaci-
tors have not helped the voltage as compared to the scenario in Fig. 13-19(b). The
combination of power capacitor and on-load tap changing to maintain the rated
secondary voltage is shown in Fig. 13-19(f).

Figures 13-19(g)–(i) show the voltages, tap settings, and reactive power flows,
when the power capacitors of the same kvar rating are located on the primary side of
the transformer. The source has to supply higher reactive power as compared to the
capacitors located on the load bus.

Example 13.5

Figure 13-20 shows a distribution system with a 71-MVA generator, a utility tie
transformer of 40/63MVA, and loads lumped on the 13.8-kV bus. A 0.38-ohm
reactor in series with the generator limits the short-circuit currents on the 13.8-kV
system to acceptable levels. However, it raises the generator operating voltage and
directly reduces its reactive power capability due to losses. The total plant load
including system losses is 39MW and 31Mvar. The excess generator power is
required to be supplied into the utility’s system and also it should be possible to
run the plant on an outage of the generator. The utility transformer is sized ade-
quately to meet this contingency.

In order to maintain voltages at acceptable levels in the plant distribution, it is
required to hold the 13.8 kV bus voltage within �2% of the rated voltage. Also, the
initial voltage dip on sudden outage of the generator should be limited to 12% to
prevent a process loss.
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Figure 13-20 A 13.8-kV industrial cogeneration facility (Example 13.5).
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Figure 13-21 shows reactive power sharing of load demand from the utility
source and generator, versus generator operating voltage. To meet the load reactive
power demand of 31Mvar, the generator must operate at 1.06 per unit voltage. It
delivers its ratedMvar output of 37.4. Still, approximately 4Mvar of reactive power
should be supplied by the utility source. A loss of 10.4Mvar occurs in the generator
reactor and transformer. To limit the generator operating voltage to 1.05, still higher
reactive power must be supplied from the utility’s source.

If reactive power compensation is provided in the form of shunt harmonic
filters (Chap. 19), the performance is much improved. With an 11-Mvar filter
alone, the generator can be operated at 1.05 per unit voltage. Its reactive power
output is 28.25Mvar, the source contribution is 1Mvar, and the loss is 9Mvar.
Addition of another 5Mvar of the seventh harmonic filter results in a flow of
6Mvar into the utility’s system; the generator operates at 30.25Mvar, approxi-
mately at 81% of its rated reactive power capability at rated load, and the remain-
ing reactive power capability of the generator cannot be normally utilized with its
maximum operating voltage of 1.05 per unit. It serves as a reserve in case of a
voltage dip.

On the sudden loss of a generator, initial voltage dips of 17.5, 5.5, and 4%,
respectively, occur with no harmonic filter, with only the fifth harmonic filter, and
with both fifth and seventh harmonic filters in service. This is another important
reason to provide reactive power compensation. It will prevent a process loss, and to
bring the bus voltage to its rated level, some load shedding is required. Alternatively,
the transformer should be provided with underload tap changing.
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Figure 13-21 Reactive power sharing between generator and utility system versus voltage of

generation for Example 13.5.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



13.5 FACTS

The concept of flexible ac transmission systems (FACTS) was developed by EPRI
and many FACTS operating systems are already implemented [9, 10]. The world’s
first thyristor-controlled series capacitor was put in service on the Bonneville Power
Authority’s 500-kV line in 1993.

We have examined the problem of power flow over transmission lines and the
role of SVCs’ series and shunt compensation to change the impedance of the line or
its transmission angle. Advances in recent years in power electronics, software,
microcomputers, and fiber-optic transmitters that permit signals to be sent to and
fro from high-voltage levels make possible the design and use of fast FACTS con-
trollers. For example, the use of thyristors makes it possible to switch capacitors
orders of magnitude faster than with circuit breakers and mechanical devices.

Another thrust leading to FACTS is the use of electronic devices in processes,
industry, and the home, which has created an entirely new demand for power quality
that the energy providers must meet. Power quality problems include voltage sags
and swells, high-frequency line-to-line surges, steep wave fronts, or spikes caused by
switching of loads, harmonic distortions, and outright interruptions, which may
extend over prolonged periods. An impulse is a unidirectional pulse of 10 ms in
duration. A voltage sag is a reduction in nominal voltage for more than 0.01 s
and less than 2.5 s. A swell is an increase in voltage for more than 0.01 s and less
than 2.5 s. Low and high voltages are reduction and increase in voltage for more
than 2.5 s. All these events are observable. A problem that is not easily detected is the
common-mode noise which occurs on all conductors of an electrical circuit at the
same time. The tolerance of processes to these power quality problems are being
investigated more thoroughly; however, the new processes and electronic controls
are more sensitive to power quality problems. It is estimated that the power quality
problems cost billions of dollars per year to the American industry.

The basic electronic devices giving rise to this thrust in the power quality are
listed in Table 13-2. FACTS devices control the flow of ac power by changing the
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Table 13-2 FACTS Devicesa

Application
STATCOM or
STATCON

SPFC
(SSSC) UPFC

NGH-SSR
damper

Voltage control
Var compensation

Series impedance control
MW flow control
Transient stability
System isolation

Damping of oscillations

X
X

X

X

X

X
X
X
X

X

X
X

X
X
X
X

X

X

X

X

aEach of these devices has varying degress of control characteristics broadly listed above.

STATCOM, STATCON: static synchronous compensator or static condenser.

SPFC, SSSC: series power flow controller; static series synchronous compensator.

UPFC: unified power flow controller.

NGH-SSR: Narain G. Hingorani subsynchronous resonance damper [9].
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impedance of the transmission line or the phase angle between the ends of a specific
line. Thyristor controllers can provide the required fast control, increasing or
decreasing the power flow on a specific line and responding almost instantaneously
to stability problems. FACTS devices can be used to dampen the subsynchronous
oscillations which can be damaging to rotating equipment, i.e., generators. These
devices and their capabilities are only briefly discussed in this chapter.

13.5.1 Synchronous Voltage Source

A solid-state synchronous voltage source, abbreviated as SS, can be described as
analogous to a synchronous machine. A rotating condenser has a number of desir-
able characteristics, i.e., high capacitive output current at low voltages and a source
impedance that does not cause harmonic resonance with the transmission network.
It has a number of shortcomings too, e.g., slow response, rotational instability, and
high maintenance.

An SS can be implemented with a voltage source inverter using GTOs (gate
turn-off thyristors). An elementary six-pulse voltage source inverter with a dc voltage
source can produce a balanced set of three quasi-square waveforms of a given
frequency. The output of the six-pulse inverter will contain harmonics of unaccep-
table level for transmission line application, and a multipulse inverter can be imple-
mented by a variety of circuit arrangements (see Chap. 17).

The reactive power exchange between the inverter and ac system can be con-
trolled by varying the amplitude of the three-phase voltage produced by the SS.
Similarly, the real power exchange between the inverter and ac system can be con-
trolled by phase shifting the output voltage of the inverter with respect to the ac
system. Figure 13-22(a) shows the coupling transformer, the inverter, and an energy
source which can be a dc capacitor, battery, or superconducting magnet.

The reactive and real power generated by the SS can be controlled indepen-
dently and any combination of real power generation/absorption with var generation
and absorption is possible, as shown in Fig. 13-22(b). The real power supplied/
absorbed must be supplied by the storage device, while the reactive power exchanged
is internally generated in the SS.

The reactive power exchange is controlled by varying the amplitude of three-
phase voltage. For a voltage greater than the system voltage, the current flows
through the reactance from the inverter into the system, i.e., the capacitive power
is generated. For an inverter voltage less than the system voltage the inverter absorbs
reactive power. The reactive power is, thus, exchanged between the system and the
inverter, and the real power input from the dc source is zero. In other words, the
inverter simply interconnects the output terminals in such a way that the reactive
power currents can freely flow through them.

The real power exchange is controlled by phase shifting the output voltage of
the inverter with respect to the system voltage. If the inverter voltage leads the
system voltage, it provides real power to the system from its storage battery. This
results in a real component of the current through tie reactance, which is in phase
opposition to the ac voltage. Conversely, the inverter will absorb real power from the
system to its storage device if the voltage is made to lag the system voltage.

This bidirectional power exchange capability of the SS makes complete tem-
porary support of the ac system possible.
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13.5.2 Static Synchronous Compensator (STATCOM)

Figure 13-23 shows the schematic of an inverter-based shunt STATCOM, sometimes
called a static condenser (STATCON). It is a shunt reactive power compensating
device, Fig. 13-22(a). It can be considered as an SS with a storage device as dc
capacitor. A GTO-based power converter produces an ac voltage in phase with
the transmission line voltage. When the voltage source is greater than the line voltage
ðVL < V0Þ, leading vars are drawn from the line and the equipment appears as a
capacitor; when voltage source is less than the line voltage ðVL > V0Þ, a lagging
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Figure 13-22 (a) A shunt connected synchronous voltage source; (b) possible modes of
operation for real and reactive power generation.
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reactive current is drawn. The basic building block is a voltage-source inverter which
converts dc voltage at its terminals into three-phase ac voltage. A STATCON may
use many six-pulse inverters, output phase shifted and combined magnetically to give
a pulse number of 24 or 48 for the transmission systems. Using the principal of
harmonic neutralization, the output of n basic six-pulse inverters, with relative
phase displacements, can be combined to produce an overall multiphase system.
The output waveform is nearly sinusoidal and the harmonics present in the output
voltage and input current are small (see Chap. 20). This ensures waveform quality
without passive filters.

The V–I characteristics is shown in Fig. 13-24. As compared to the character-
istics of an SVC, the STATCON is able to provide rated reactive current under
reduced voltage conditions. It also has transient overload capacity both in the
inductive and capacitive region, the limit being set by the junction temperature of
the semiconductors. By contrast an SVC can only supply diminishing output current
with decreasing system voltage

The ability to produce full capacitive current at low voltages makes it ideally
suitable for improving the first swing (transient) stability. The dynamic performance
capability far exceeds that of a conventional SVC. It has been shown that the current
system can transition from full rated capacitive to full rated inductive vars in
approximately a quarter-cycle.

STATCON, just like SVC, behaves like an ideal midpoint compensator until
the maximum capacitive output current is reached. The reactive power output of a
STATCOM varies linearly with the system voltage while that of the SVC varies with
the square of the voltage. In an SVC, thyristor-controlled reactors produce high
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Figure 13-23 Schematic of a STATCOM or STATCON inverter-based static shunt com-
pensator.
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harmonic content, as the current waveform is chopped off in the phase-controlled
rectifiers, and passive filters are required. A STATCON uses phase multiplication or
pulse-width modulation and the harmonic generation is a minimum.

Summarizing, the following advantages are obtained:

. Interface with real power sources

. Higher response to system changes

. Mitigation of harmonics as compared to an FC-TCR

. Superior low-voltage performance.

13.5.3 Static Series Synchronous Compensator

A static series synchronous compensator may also be called a series power flow
controller (SPFC). The basic circuit is that of an SS in series with the transmission
line (Fig. 13-25). We have observed that conventional series compensation can be
considered as a reactive impedance in series with the line, and the voltage across it is
proportional to the line current. A series capacitor increases the transmitted power
by a certain percentage, depending on the series compensation for a given �. In
contrast, an SSSC injects a compensating voltage, Vq in series with the line irrespec-
tive of the line current. The SSSC increases the maximum power transfer by a fraction
of the power transmitted, nearly independent of �:

Pq ¼
V2

Xsc

sin �þ V

Xsc

Vq cos
�

2

� �
ð13:47Þ

While a capacitor can only increase the transmitted power, the SSSC can decrease it
by simply reversing the polarity of the injected voltage. The reversed voltage adds
directly to the reactive power drop in the line and the reactive line impedance is
increased. If this reversed polarity voltage is larger than the voltage impressed across
the line by sending and receiving end systems, the power flow will reverse.

jVqj ¼ jVs � Vrj þ IXL ð13:48Þ
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Figure 13-24 V–I characteristics of a STATCON.
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Thus, stable operation of the system is possible with positive and negative power
flows, and due to the response time being less than one cycle, the transition from
positive to negative power flow is smooth and continuous. Figure 13-26 shows P–�
curves of a series capacitor and an SSSC.

The SSSC can negotiate both the reactive and active power with an ac system,
simply by controlling the angular position of the injected voltage with respect to the
line current. One important application is simultaneous compensation of both reac-
tive and resistive elements of the line impedance. By applying series compensation,
the X=R ratio decreases. As R remains constant the ratio is ðXL � XcÞ=R. As a result
the reactive component of the current supplied by the receiving end progressively
increases while the real component of the current transmitted to the receiving end
progressively decreases. An SSSC can inject a component of voltage in antiphase to
that developed by the line resistance drop to counteract the effect of resistive voltage
drop on the power transmission.

The dynamic stability can be improved, as the reactive line compensation with
simultaneous active power exchange can damp power system oscillations. During
periods of angular acceleration (increase of torque angle of the machines), an SSSC
with suitable energy storage can provide maximum capacitive line compensation to
increase the active power transfer and also absorb active power, acting like a damp-
ing resistor in series with the line.

The problems of SSR stated for a series capacitor in Sec. 13.3.6 are avoided.
The SSSC is essentially an ac voltage source which operates only at the fundamental
frequency and its output impedance at other frequencies can be theocratically zero,
though SSSC does have a small inductive impedance of the coupling transformer. An
SSSC does not form a series resonant circuit with the line inductance, rather it can
damp out the subsynchronous oscillations that may be present due to existing series
capacitor installations.

Figure 13-27 shows the characteristics of an SSSC. The VA rating is simply the
product of maximum line current and the maximum series compensating voltage.
Beyond the maximum rated current, the voltage falls to zero. The maximum current

472 Chapter 13

Figure 13-25 Series connected synchronous voltage source, series power flow controller
(SPFC), or solid-state series compensator (SSSC).
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rating is practically the maximum steady-state line current. In many practical appli-
cations only capacitive series line compensation is required and an SSSC can be
combined with a fixed series capacitor.

If the device is connected to a short line with infinite buses, unity voltages, and
constant phase angle difference, the characteristic can be represented by a circle in
the P–Q plane with

Center ¼ S0Z
�=2R ð13:49Þ

Radius ¼ jS0Z
�=2Rj ð13:50Þ

where S0 ¼ P0 þ jQ0 ¼ uncompensated power flow, Z is the series impedance of the
line ¼ Rsc þ jXsc and Z* is complex conjugate of Z. The operating characteristics are
defined by the edge of the circle only. Figure 13-28 shows the power transfer cap-
ability of a variable series capacitor with an SPFC controller. The portion of the
characteristics to the left of the origin shows power reversal capability.

13.5.4 Unified Power Flow Controller

A unified power controller consists of two voltage source switching converters, a
series and a shunt converter, and a dc link capacitor (Fig. 13-29). The arrangement
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Figure 13-26 (a) P–� characteristics of conventional series capacitive compensation; (b) P–�
characteristics of an SSSC as a function of the compensating voltage Vq.
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functions as an ideal ac-to-ac power converter in which real power can flow in either
direction between ac terminals of the two converters, and each inverter can indepen-
dently generate or absorb reactive power at its own terminals. Inverter 2 injects an ac
voltage Vq with controllable magnitude and phase angle (0 to 3608) at the power
frequency in series with the line. This injected voltage can be considered as an SS.

474 Chapter 13

Figure 13-27 Range of SSSC voltage versus current, with overload capacity shown in

dotted lines.

Figure 13-28 Operating characteristics of an SSSC in P–Q plane, showing comparison with

variable series capacitor.
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The real power exchanged at the ac terminal is converted by inverter into dc power
which appears as dc link voltage. The reactive power exchanged is generated intern-
ally by the inverter.

The basic function of inverter 1 is to absorb the real power demanded by
inverter 2 at the dc link. This dc link power is converted back into ac and coupled
with the transmission line through a shunt transformer. Inverter 1 can also generate
or absorb controllable reactive power. The power transfer characteristics of a short
transmission line with a unified power flow controller (UPFC) connecting two infi-
nite buses, unity voltage, and a constant phase angle, can be represented by a circle
on the P–Q plane:

ðPR � P0Þ2 þ ðQR �Q0Þ2 ¼
Vi

Z

� �2

ð13:51Þ

where P0 and Q0 are the line uncompensated real and reactive power, Vi is the
magnitude of the injected voltage, and Z is the line series impedance. The center
is at the uncompensated power leve S0 and the radius is Vi=Z. Consider a UPFC
with 0.25 per unit (pu) voltage limit. Let the series reactance of the line be 1.0 pu and
the uncompensated receiving end power be 1þ j0 pu. The UPFC can then control
the receiving end power within a circle of 2.5 per unit. With its center being at ð1; 0Þ,
power transfer could be controlled between þ3:5 pu and �1:5 pu.

The allowable operating range with the UPFC is anywhere inside the circle,
while the SPFC operating range is the circle itself. The portion of the UPFC circle
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Figure 13-29 Schematic diagram of a unified power flow controller (UPFC).
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inside the SPFC circle represents operation of the UPFC with real power transfer
from the transmission system to the series inverter to the shunt inverter, while the
portion of the UPFC circle outside the SPFC circle represents the transfer of real
power from the shunt inverter to the series inverter to the transmission system (Fig.
13-30). A comparison with phase angle regulator and series capacitors is superim-
posed in this figure. These devices provide one-dimensional control, while the UPFC
provides simultaneous and independent P and Q control over a wide range.

Table 13-2 also shows characteristics and applications of FACTS controllers.

Problems

1. Mathematically derive Eqs (13.6) and (13.37).
2. The voltage under load flow at a certain bus in an interconnected system

dips by 10%, while the voltages on adjacent buses are held constant. The
available short-circuit current at this bus is 21 kA, voltage 230 kV. Find
the reactive power injection to restore the voltage to its rated value of
230 kV.

3. In Example 13.1, the line is compensated by a shunt compensation of
Ksh ¼ 0:3. Calculate all the parameters of Example 13.2. Repeat for series
and shunt compensation of Ksh ¼ Ksc ¼ 0:3:

4. A 100-MVA load at 0.8 power factor and 13.8 kV is supplied through a
short transmission line of 0.1 per unit reactance (100-MVA base).
Calculate the reactive power loss, and the load voltage. Size a capacitor
bank at load terminals to limit the voltage drop to 2% at full load. What
are the capacitor sizes for three-step switching to maintain the load vol-
tage no more than 2% below the rated voltage as the load varies from
zero to full load?
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Figure 13-30 Comparison of characteristics of UPFC, SPFC, and series capacitor in P–Q

plane.
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5. A 200-MW, 18-kV, 0.85 power factor generator is connected through a
200-MVA step-up transformer of 18–500 kV and of 10% reactance to a
500-kV system. The transformer primary windings are provided with a
total of five taps, two below the rated voltage of 2.5 and 5% and two
above the rated voltage of 2.5 and 5%. Assuming that initially the taps
are set at a rated voltage of 18–500 kV, what is the generation voltage to
take full rated reactive power output from the generator? If the operating
voltage of the generator is to be limited to rated voltage, find the tap
setting on the transformer. Find the reactive power loss through the
transformer in each case. Neglect resistance.

6. A 100 mile (160 km) long line has R ¼ 0:3 ohms, L ¼ 3 mH, and
C ¼ 0:015 mF. It delivers a load of 100 MVA at 0.85 power factor at
138 kV. If the sending end voltage is maintained at 145 kV, find
theMvar rating of the synchronous condenser at the receiving end at
no load and at full load.

7. Derive an equation for the load line of the synchronous condenser shown
in Fig. 13-8.

8. Plot P–� curves of (a) 230 kV uncompensated line, (b) with midpoint
shunt compensation of 0.6, and (c) with series compensation of 0.6.
The line is 200 miles long, has a series reactance of 0.8 ohm/mile, and a
susceptance y ¼ 5:4� 10�6 S/mile.

9. Compare the performance of conventional SVC devices with FACT con-
trollers.

10. Compare UPFC with STATCON and SCCC.
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14

Three-Phase and Distribution System
Load Flow

Normally, three-phase systems can be considered as balanced. Though some unba-
lance may exist, due to asymmetry in transmission lines, machine impedances, and
system voltages, yet these are often small and may be neglected. A single-phase
positive sequence network of a three-phase system is adequate for balanced systems.
During faults, though the systems are balanced, voltages are not. Unbalance voltages
and unbalance in three-phase networks can also occur simultaneously. The un-
balances cannot be ignored in every case, i.e., a distribution system may serve
considerable single-phase loads. In such cases, three-phase models are required. A
three-phase network can be represented both in impedance and admittance form.

Equation (3.32) for a three-phase network can be written as

Va
pq

Vb
pq

Vc
pq

��������

��������þ
eapq

ebpq

ecpq

��������

�������� ¼
Zaa

pq Zab
pq Zac

pq

Zba
pq Zbb

pq Zbc
pq

Zca
pq Zcb

pq Zcc
pq

���������

���������
iapq

ibpq

icpq

��������

�������� ð14:1Þ

The equivalent three-phase circuit is shown in Fig. 14-1(a), and its single line repre-
sentation in Fig. 14-1(b). In the condensed form, Eq. (14.1) is

Vabc
pq þ eabcpq ¼ Zabc

pq iabcpq ð14:2Þ
Similarly, for a three-phase system, Eq. (3.33) in the admittance form is

iapq

ibpq

icpq

��������

��������þ
japq

jbpq

jcpq

��������

�������� ¼
yaapq yabpq yacpq

ybapq ybbpq ybcpq

ycapq ycbpq yccpq

���������

���������
Va

pq

Vb
pq

Vc
pq

��������

�������� ð14:3Þ

In the condensed form, we can write:
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iabcpq þ jabcpq ¼ yabcpq V
abc
pq ð14:4Þ

A three-phase load flow study is handled much like a single-phase load flow. Each
voltage, current, and power becomes a three-element vector and each single-phase
admittance element is replaced by a 3� 3 admittance matrix.

14.1 PHASE CO-ORDINATE METHOD

In Chap. 1 we showed that a symmetrical system, when transformed by symmetrical
component transformation, is decoupled and there is advantage in arriving at a
solution using this method. The assumption of a symmetrical system are not valid
when the system is unbalanced. Untransposed transmission lines, large single-phase
traction loads, and bundled conductors are some examples. Unbalanced currents
and voltages can give rise to serious problems in the power system, i.e., negative
sequence currents have a derating effect on generators and motors and ground
currents can increase the coupling between transmission line conductors. Where
the systems are initially coupled (Example B.1, Appendix B), then even after sym-
metrical component transformation the equations remain coupled. The method of
symmetrical components does not provide an advantage in arriving at a solution. By
representing the system in phase co-ordinates, i.e., phase voltages, currents, impe-
dances, or admittances, the initial physical identity of the system is maintained.
Using the system in the phase frame of reference, a generalized analysis of the
power system network can be developed for unbalance, i.e., short-circuit or load
flow conditions [1–3]. The method uses a nodal Y admittance matrix and, due to its
sparsity, optimal ordering techniques are possible. Series and shunt faults and multi-
ple unbalanced faults can be analyzed. The disadvantage is that it takes more itera-
tions to arrive at a solution.
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Figure 14-1 (a) Three-phase network representation, primitive impedance matrix; (b) single
line representation of three-phase network.
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Transmission lines, synchronous machines, induction motors, and transfor-
mers are represented in greater detail. The solution technique can be described in
the following steps:

. The system is represented in phase-frame of reference.

. The nodal admittance matrix is assembled and modified for any changes in
the system.

. The nodal equations are formed for solution.

The nodal admittance equation is the same as for a single-phase system:

�YY �VV ¼ �II ð14:5Þ
Each node is replaced by three equivalent separate nodes. Each voltage and current
is replaced by phase-to-ground voltages and three-phase currents; I and V are col-
umn vectors of nodal phase currents and voltages. Each element of �YY is replaced
with a 3�3 nodal admittance sub-matrix. Active sources such as synchronous
machines can be modeled with a voltage source in series with passive elements.
Similarly, transformers, transmission lines, and loads are represented on a three-
phase basis. The system base Y matrix is modified for the conditions under study,
e.g., a series fault on opening a conductor can be simulated by Y-matrix modifica-
tion. The shunt faults, i.e., single phase-to-ground, three phase-to-ground, two
phase-to-ground, and their combinations can be analyzed by the principal of super-
imposition.

Consider a phase-to-ground fault at node k in a power system. It is equivalent
to setting up a voltage Vf at k equal in magnitude but opposite in sign to the prefault
voltage of the node k. The only change in the power system that occurs due to fault
may be visualized as the application of a fault voltage Vf at k and the point of zero
potential. If the effect of Vf is superimposed upon the prefault state, the fault state
can be analyzed. To account for effect of Vf all emf sources are replaced by their
internal admittances and converted into equivalent admittance based on the prefault
nodal voltage. Then, from Eq. (14.5):

Ii ¼ 0; and Vk ¼ prefault voltage

i ¼ 1; 2; . . . ;N; i 6¼ k
ð14:6Þ

The fault current is

ik ¼
Xi¼N

i¼1

YkiEi ð14:7Þ

where Ei is the net postfault voltage.
For two single line-to-ground faults occurring at two different nodes p and q:

Ii ¼ 0; i ¼ 1; 2; . . . ;N

i 6¼ p; q
ð14:8Þ

where Vp and Vq are equal to prefault values. Nodes p and q may represent any
phase at any busbar. The currents Ip and Iq are calculated from

Ik ¼
XN
i¼1

YkiEi k ¼ p; q ð14:9Þ
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Thus, calculation of multiple unbalanced faults is as easy as a single line-to-ground
fault, which is not the case with the symmetrical component method.

14.2 THREE-PHASE MODELS

Three-phase models of cables and conductors are examined in Appendix B. Y
matrices of three-phase models are examined in this chapter, mainly for use in the
factored Gauss–Y admittance method of load flow.

14.2.1 Conductors

A three-phase conductor with mutual coupling between phases and ground wires has
an equivalent representation shown in Fig. 14-2(a) and (b) (see Appendix B for
details) and the following equations are then written for a line segment:
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Figure 14-2 (a) Mutual couplings between a line section with ground wire in the impedance
form; (b) transformed network in impedance form; (c) equivalent admittance network of a

series line section.
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Va � V 0
a

Vb � V 0
b

Vc � V 0
c

��������

�������� ¼
Zaa 0�g Zab 0�g Zac 0�g

Zba 0�g Zbb 0�g Zbc 0�g

Zca 0�g Zcb 0�g Zcc 0�g

��������

��������
Ia

Ib

Ic

��������

�������� ð14:10Þ

See also Eq. (B.22) in Appendix B.
In the admittance form, Eq. (14.10) can be written as

Ia

Ib

Ic

��������

�������� ¼
Yaa�g Yab�g Yac�g

Ybc�g Ybb�g Ybc�g

Yca�g Ycb�g Ycc�g

��������

��������
Va � V 0

a

Vb � V 0
b

Vc � V 0
c

��������

�������� ð14:11Þ

Equation (14.11) can be rearranged as follows:

Ia ¼ Yaa�g Va � V 0
a

� �þ Yab�g Vb � V 0
b

� �þ Yac�g Vc � V 0
c

� �
¼ Yaa�g Va � V 0

a

� �þ Yab�g Va � V 0
b

� �þ Yac�g Va � V 0
c

� �
� Yab�g Va � Vbð Þ � Yac�g Va � Vcð Þ

Ib ¼ Ybb�g Vb � V 0
b

� �þ Ybb�g Vb � V 0
a

� �þ Ybc�g Vb � V 0
c

� �
� Yab�g Vc � Vað Þ � Ybc�g Vb � Vcð Þ

Ic ¼ Ycc�g Vc � V 0
c

� �þ Ycb�g Vc � V 0
b

� �þ Yca�g Vc � V 0
a

� �
� Ycb�g Vc � Vbð Þ � Yca�g Vc � Vað Þ

ð14:12Þ

The same procedure can be applied to nodes V 0
a , V

0
b , and V 0

c . This gives the
equivalent series circuit of the line section as shown in Fig. 14-2(c). The effect of
coupling is included in this diagram. Therefore, in the nodal frame we can write the
three-phase � model of a line as:

Ia

Ib

Ic

I 0
a

I 0
b

I 0
c

��������������

��������������
¼

Yabc þ 1
2
Ysh �Yabc

�Yabc Yabc þ 1
2
Ysh

�������������

�������������

Va

Vb

Vc

V 0
a

V 0
b

V 0
c

��������������

��������������
ð14:13Þ

where

�YYabc ¼ �ZZ�1;abc ð14:14Þ

There is a similarity between the three-phase and single-phase admittance matrix,
each element being replaced by a 3� 3 matrix.

The shunt capacitance (line charging) can also be represented by current injec-
tion. Figure 14-3(a) shows the capacitances of a feeder circuit and Fig. 14-3(b) shows
current injection. The charging currents are
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Ia ¼ � 1

2
Yab þ Yac þ Yan½ �Va þ

Yab

2
Vb þ

Yac

2
Vc

Ib ¼ � 1

2
Yab þ Yac þ Yan½ �Vb þ

Yab

2
Va þ

Ybc

2
Vc

Ic ¼ � 1

2
Yab þ Yac þ Yan½ �Vc þ

Yac

2
Va þ

Ybc

2
Vb

ð14:15Þ

14.2.2 Generators

The generators can be modeled by an internal voltage behind the generator transient
reactance. This model is different from the power flow model of a generator, which is
specified with a power output and bus voltage magnitude.

The positive, negative, and zero sequence admittances of a generator are well
identified. The zero sequence admittance is

Y0 ¼
1

R0 þ jX0 þ 3ðRg þ jXgÞ
ð14:16Þ
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Figure 14-3 (a) Capacitances in a three-phase circuit; (b) equivalent current injections.
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where R0 and X0 are the generator zero sequence resistance and reactance and Rg

and Xg are the resistance and reactance added in the neutral grounding circuit; Rg

and Xg are zero for a solidly grounded generator. Similarly,

Y1 ¼
1

X 0
d

ð14:17Þ

Y2 ¼
1

X2

ð14:18Þ

where X 0
d is the generator direct axis transient reactance and X2 is generator negative

sequence reactance (resistances ignored). These sequence quantities can be related to
the phase quantities as follows:

�YYabc ¼
Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y32 Y33

��������

��������

¼ 1

3
�TTs

�YY012 �TTt
s ¼

Y0 þ Y1 þ Y2 Y0 þ aY1 þ a2Y2 Y0 þ a2Y1 þ aY2

Y0 þ a2Y1 þ aY2 Y0 þ Y1 þ Y2 Y0 þ aY1 þ a2Y2

Y0 þ aY1 þ a2Y2 Y0 þ a2Y1 þ aY2 Y0 þ Y1 þ Y2

��������

��������
ð14:19Þ

where a is vector operator 1 < 120�.
The machine model suitable for unbalance loading and neutral current flow is

written as

I1

I2

I3

S�=E�
1

In

��������������

��������������
¼

Y11 Y12 Y13 �Y1 �Y0

Y21 Y22 Y23 �a2Y1 Y0

Y31 Y32 Y33 �aY1 �Y0

�Y1 �aY1 �a2Y1 3Y1 0

�Y0 �Y0 �Y0 0 3Y0

��������������

��������������

V1

V2

V3

E1

Vn

��������������

��������������
ð14:20Þ

Referring to Fig. 14-4, we can write:
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Figure 14-4 Norton equivalent circuit of a generator.
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Ia ¼ S�
1=E

�
1 Ib ¼ S�

2=E
�
2 Ic ¼ S�

c =E
�
3 ð14:21Þ

Ia ¼ S�
1=E

�
1 Ib ¼ S�

2=aE
�
1 Ic ¼ S�

c =a
2E�

1 ð14:22Þ

Ia þ Ib þ Ic ¼
S�

E�
1

¼ S�
1 þ S�

2 þ S�
3

E�
1

ð14:23Þ

where S1, S2, and S3 are the individual phase powers, S is the total power, and E1 is
the positive sequence voltage behind the transient reactance. For a solidly grounded
system the neutral voltage is zero. The internal machine voltages E1, E2, and E3 are
balanced; however, the terminal voltages V1, V2, and V3 depend on internal machine
impedances and unbalance in machine currents, Ia, Ib, and Ic. Because of unbalance
each phase power is not equal to one-third of the total power. I1, I2, and I3
are injected currents and In is the neutral current. Equation (14.20) can model
unbalances in the machine inductances and external circuit ½2�.

14.2.3 Three-Phase Transformer Models

Three-phase transformer models considering winding connections, and turns ratio,
are described in this section ½4�. Consider a 12-terminal coupled network, consisting
of three primary windings and three secondary windings mutually coupled through
the transformer core (Fig. 14-5). The short-circuit primitive matrix for this network
is

i1

i2

i3

i4

i5

i6

�����������������

�����������������

¼

y11 y12 y13 y14 y15 y16

y21 y22 y23 y24 y25 y26

y31 y32 y33 y34 y35 y36

y41 y42 y43 y44 y45 y46

y51 y52 y53 y54 y55 y56

y61 y62 y63 y64 y65 y66

�����������������

�����������������

v1

v2

v3

v4

v5

v6

�����������������

�����������������

ð14:24Þ

This ignores tertiary windings. It becomes a formidable problem for calculation if all
the Y elements are distinct. Making use of the symmetry the Y matrix can be
reduced to
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Figure 14-5 Elementary circuit of a three-phase transformer showing 12-terminal coupled

primitive network.
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ð14:25Þ

This considers that windings 1, 3, and 5 are primary windings and windings 2, 4, and
6 are secondary windings with appropriate signs for the admittances. The primed
elements are all zero if there are no mutual couplings, e.g., in the case of three single-
phase transformers.

Consider a three-phase wye–delta transformer (Fig. 14-6). The branch and
node voltages in this figure are related by the following connection matrix:

v1

v2

v3

v4

v5

v6

�����������������

�����������������

¼

1 0 0 0 0 0

0 0 0 1 �1 0

0 1 0 0 0 0

0 0 0 0 1 �1

0 0 1 0 0 0

0 0 0 �1 0 1

�����������������

�����������������

Va

Vb

Vc

VA

VB

VC

�����������������

�����������������

ð14:26Þ

or we can write:

�vvbranch ¼ �NN �VVnode ð14:27Þ

Kron’s transformation [5] is applied to the connection matrix N to obtain the node
admittance matrix:

�YYnode ¼ �NNt �YYprim
�NN ð14:28Þ
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Figure 14-6 Circuit of a grounded wye–delta transformer with voltage and current relations

for derivation of connection matrix.
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The node admittance matrix is obtained in phase quantities as

�YYnode ¼

ys y 0
m y 0

m �ðym þ y 00
mÞ ðy 0

m þ y 00
mÞ 0

y 0
m ys y 0

m 0 �ðym þ y 00
mÞ ðym þ y 00

mÞ
y 0
m y 0

m ys ðym þ y 00
mÞ 0 �ðym þ y 00

mÞ
�ðym þ y 00

mÞ 0 ðym þ y 00
mÞ 2ðys � y 000

m Þ �ðys � y 000
m Þ �ðys � y 000

m Þ
ðym þ y 00

mÞ �ðym þ y 00
mÞ 0 �ðys � y 000

m Þ 2ðys � y 000
m Þ �ðys � y 000

m Þ
0 ðym þ y 00

mÞ �ðym þ y 00
mÞ �ðys � y 000

m Þ �ðys � y 000
m Þ 2ðys � y 000

m Þ

��������������

��������������
(14.29)

The effect of turns ratio is not considered in the above matrix. The node admittance
matrix can be divided into submatrices as follows:

�YYnode ¼
�YYI

�YYII

�YYt
II

�YYIII

�����
����� ð14:30Þ

where each 3� 3 submatrix depends on the winding connections, as shown in Table
14-1. The submatrices in this table are defined as follows:

�YYI ¼
yt 0 0

0 yt 0

0 0 yt

�������
������� �YYII ¼

1

3

2yt �yt �yt

�yt 2yt �yt

�yt �yt 2Yt

�������
������� �YYIII ¼

1ffiffiffi
3

p
�yt yt 0

0 �yt yt

yt 0 �yt

�������
�������

ð14:31Þ
Here, yt is the leakage admittance per phase in per unit. Note that all primed ym are
dropped. These are considerably smaller in magnitude than the unprimed values and
the numerical values of ys; yp and ym are equal to the leakage impedance yt.

If the off-nominal tap ratio between primary and secondary windings is � : �,
where � and � are the taps on the primary and secondary side, respectively, in per
unit, then the submatrices are modified as follows:

. Divide self-admittance of primary matrix by �2

. Divide self-admittance of secondary matrix by �2

. Divide mutual admittance matrixes by ��
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Table 14-1 Submatrices of Three-Phase Transformer Connections

Winding connections Self-admittance Mutual admittance

Primary Secondary Primary Secondary Primary Secondary

Wye–G Wye–G �YYI
�YYI � �YYI � �YYI

Wye–G Wye �YYII
�YYII � �YYII � �YYII

Wye Wye–G
Wye Wye
Wye–G Delta �YYI

�YYIII
�YYIII

�YYt
III

Wye Delta �YYII
�YYIII

�YYIII
�YYt
III

Delta Wye �YYII
�YYIII

�YYIII
�YYt
III

Delta Wye–G �YYII
�YYIII

�YYIII
�YYt
III

Delta Delta �YYII
�YYII � �YYII � �YYII

Y t
III is transpose of YIII.

] ]
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Consider a wye-grounded wye transformer. Then, from Table 14-1:

�YYabc ¼
�YYI � �YYI

� �YYI
�YYI

�����
����� ¼

yt 0 0 �yt 0 0

0 yt 0 0 �yt 0

0 0 yt 0 0 �yt

�yt 0 0 yt 0 0

0 �yt 0 0 yt 0

0 0 �yt 0 0 yt

�����������������

�����������������

ð14:32Þ

For off-nominal taps the matrix is modified as

�YYabc ¼

yt
�2 0 0

yt
�� 0 0

0
yt
�2 0 0

yt
�� 0

0 0
yt
�2 0 0

yt
��

yt
�� 0 0

yt
�2 0 0

0
yt
�� 0 0

yt
�2 0

0 0
yt
�� 0 0

yt
�2

������������������������

������������������������

¼ �YYyg�yj
�� ð14:33Þ

The following symmetrical component transformation is therefore applied:

�IIp;012

�IIs;012

�����
����� ¼

�TTs 0

0 �TTs

�����
�����
�1

�YYy�y

�� �� �TTs 0

0 �TTs

�����
�����

�VVp;012

�VVs;012

�����
����� ð14:34Þ

where Ts is the symmetrical component transformation matrix, Eqs. (1.29) and
(1.30).

A three-phase transformer winding connection of delta primary and grounded-
wye secondary is commonly used. From Table 14-1, its matrix equation is

�YYabc ¼

2
3
yt � 1

3
yt � 1

3
yt � ytffiffiffi

3
p ytffiffiffi

3
p 0

� 1
3
yt

2
3
yt � 1

3
yt 0 � ytffiffiffi

3
p ytffiffiffi

3
p

� 1
3
yt � 1

3
yt

2
3
yt

ytffiffiffi
3

p 0 � ytffiffiffi
3

p

� ytffiffiffi
3

p 0
ytffiffiffi
3

p yt 0 0

ytffiffiffi
3

p � ytffiffiffi
3

p 0 0 yt 0

0
ytffiffiffi
3

p � ytffiffiffi
3

p 0 0 yt

�������������������������

�������������������������

ð14:35Þ
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where yt is the leakage reactance of the transformer.
For an off-nominal transformer, the Y matrix is modified as shown below:

�YYabc ¼

2
3
yt
�2 � 1

3
yt
�2 � 1

3
yt
�2 � ytffiffiffi

3
p

��
ytffiffiffi
3

p
��

0

� 1
3
yt
�2

2
3
yt
�2 � 1

3
yt
�2 0 � ytffiffiffi

3
p

��
ytffiffiffi
3

p
��

� 1
3
yt
�2 � 1

3
yt
�2

2
3
yt
�2

ytffiffiffi
3

p
��

0 � ytffiffiffi
3

p
��

� ytffiffiffi
3

p
��

0
Ytffiffiffi
3

p
��

yt
�2 0 0

ytffiffiffi
3

p
��

� ytffiffiffi
3

p
��

0 0
yt
�2 0

0
ytffiffiffi
3

p
��

� ytffiffiffi
3

p
��

0 0
yt
�2

���������������������������

���������������������������
ð14:36Þ

where � and � are the taps on the primary and secondary side in per unit.
In a load-flow analysis, the equation of a wye-grounded delta transformer and

� ¼ � ¼ 1 can be written as

IA

IB

IC

Ia

Ib

Ic

������������������

������������������

¼

yt 0 0 � 1ffiffiffi
3

p yt
1ffiffiffi
3

p yt 0

0 yt 0 0 � 1ffiffiffi
3

p yt
1ffiffiffi
3

p yt

0 0 yt
1ffiffiffi
3

p yt 0 � 1ffiffiffi
3

p yt

� 1ffiffiffi
3

p yt 0 1ffiffiffi
3

p yt
2
3
yt � 1

3
yt � 1

3
yt

1ffiffiffi
3

p yt � 1ffiffiffi
3

p yt 0 � 1
3
yt

2
3
yt � 1

3
yt

0 1ffiffiffi
3

p yt � 1ffiffiffi
3

p yt � 1
3
yt � 1

3
yt

2
3
yt

��������������������������

��������������������������

VA

VB

VC

Va

Vb

Vc

������������������

������������������

ð14:37Þ

Here, the currents and voltages with capital subscripts relate to primary and those
with lower case subscripts relate to secondary. In the condensed form we will write it
as

�IIps ¼ �YYY��
�VVps ð14:38Þ

Using symmetrical component transformation:

�II012p

�II012s

������
������ ¼

�TTs 0

0 �TTs

�����
�����
�1

�YYy��

�TTs 0

0 �TTs

�����
�����

�VV012
p

�VV012
s

������
������ ð14:39Þ
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Expanding:

�II012p

�II012s

�����
����� ¼

yt 0 0 0 0 0

0 yt 0 0 yt < �30� 0

0 0 yt 0 0 yt < 30�

0 0 0 0 0 0

0 yt < 30� 0 0 yt 0

0 0 yt < �30� 0 0 yt

�����������������

�����������������

�VV012
p

�VV012
s

�����
�����

ð14:40Þ
The positive sequence equations are

I1p ¼ ytV
1
p � yt < �30�V1

s

I1s ¼ ytV
1
s � yt < 30�V1

p

ð14:41Þ

The negative sequence equations are

I2p ¼ ytV
2
p � yt < 30�V2

s

I2s ¼ ytV
2
s � yt < �30�V2

p

ð14:42Þ

The zero sequence equation is

I0p ¼ ytV
0
p I0s ¼ 0 ð14:43Þ

For a balanced system only the positive sequence component needs to be considered.
The power flow on the primary side:

Sij ¼ ViI
�
ij ¼ Vi y

�
t V

�
i � y�t < 30�V�

j

� �
¼ ytV

2
i cos �yt � yt ViVj

�� ��cosð�i � �yt � �j þ 30
���

þ j �ytV
2
i sin �yt � yt ViVj

�� �� sin �i � �yt � �j þ 30
�� �� ð14:44Þ

and on the secondary side:

Sji ¼ VjI
�
jt ¼ Vj y

�
t V

�
j � y�t < �30�V�

i

� �
¼ ytV

2
j cos �yt � yt VjVi

�� �� cos �j � �yt � �i � 30�Þ� ��
þ j �ytV

2
j sin �yt � yt VjVi

�� �� sin �j � �yt � �i � 30�Þ� �� ð14:45Þ

14.2.4 Load Models

For a distribution system, the load window concept is discussed in Chap. 12. Based
on test data a detailed load model can be derived, and the voltage characteristics of
the models is considered. A typical three-phase load is shown in Fig. 14-7. The
unbalance is allowed by load current injections.
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14.3 DISTRIBUTION SYSTEM LOAD FLOW

The distribution system analysis requirements are as follows:

. It should be capable of modeling 4–44 kV primary distribution feeders and
networks, 120/208 V secondary networks, and isolated 277/480 V systems
simultaneously. These systems become very large and may consist of 4000
secondary distribution buses (three-phase models ¼ 12,000 buses) and
2000 primary distribution buses. The system must be, therefore, capable
of handling 20,000 buses. As an example, Southern California Edison
serves 4.2 million customers over a territory of 50,000 square miles and
there are 600 distribution substations, 3800 distribution circuits over
38,000 circuit miles, 61,000 switches, 800 automatic reclosures, and
7600 switched capacitor banks. Data generation and modeling become
very time consuming.

. The system is inherently unbalanced. In the planning stage, it may be ade-
quate to model the system on a single-phase basis, but the operation
requires three-phase modeling. The capability of modeling three-phase
systems, line segments, and transformers with phase shifts is a must. The
core and copper losses need to be considered. A nonlinear model of the
core losses is appropriate.

. The cogenerators should be capable of being modeled on primary and
secondary systems.
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Figure 14-7 (a) Three-phase load representation; (b) equivalent current injection.
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. Contingency analysis is required to study effect of outage of feeders.

. Short-circuit calculations are performed using the same database. The load
currents may not be small compared to short-circuit currents and cannot
be neglected. Prefault voltages and current injections obtained in load
flow are input into the short-circuit calculations. Contributions of the
cogenerators to faults must be included. Figure 14-8 shows a flow chart.

. A feeder has several interfeeder switches to link with other feeders. Under
heavy loading or contingency conditions, normally open switches are
closed to prevent system overloads. Optimal interfeeder switching deci-
sions are required to be made in a distribution system. As any switching
operation must be carried out to prevent overloads, the problem of

492 Chapter 14

Figure 14-8 Flow chart for short-circuit calculations considering prefault voltages and

currents.
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optimal switching translates into a problem of dispatching currents
through alternate routes to meet the load demand to prevent overloads
and achieve phase balance. The radial nature of the network is preserved
and the number of switching operations is minimized.

. Optimal capacitor location on distribution feeders for voltage control and
energy loss reduction is required.

In today’s environment, distribution networks are being influenced by energy
savings and improvements in power quality. Regenerative methods of generation
and storage, e.g., fuel cells, are receiving impetus. Optimization of alternative sources
of energy and maximization of network utilization without overloading a section are
required ½6�.

14.3.1 Methodology

The Gauss and Newton–Raphson (NR) methods are applicable. In the NR
approach, because of the low X=R ratio of conductors associated with distribution
system line segments compared to transmission systems, the Jacobian cannot be
decoupled. A Gauss method using a sparse bifactored bus admittance matrix flow
chart is shown in Fig. 14-9. As the voltage-specified bus in the system is only the
swing bus, the rate of convergence is comparable to that of the NR method.

The voltage at each bus can be considered as having contributions from two
sources, and the theorem of superimposition is applied. These two sources are the
voltage-specified station bus and the load and generator buses, Fig. 14-10(a). The
loads and cogenerators are modeled as current injection sources. The shunt capaci-
tance currents are also included in the current injections. Using the superimposition
principal, only one source is active at a time. When the swing bus voltage is acti-
vated, all current sources are disconnected, Fig. 14-10(b). When the current sources
are activated, the swing bus is short-circuited to ground, Fig. 14-10(c).

14.3.2 Distribution System as a Ladder Network

A distribution system forms a ladder network, with loads teed-off in a radial fashion,
Fig. 14-11(a). It is a nonlinear system, as most loads are of constant kW and kvar.
However, linearization can be applied.

For a linear network assume that the line and load impedances are known and
the source voltage is known. Starting from the last node, and assuming a node
voltage of Vn, the load current is given by

In ¼
Vn

Z1n

ð14:46Þ

Note that In is also the line current, as this is the last node. Therefore, the voltage at
node n� 1 can be obtained simply by subtracting the voltage drop:

Vn�1 ¼ Vn þ In�1;nZn�1;n ð14:47Þ
This process can be carried out until the sending end node is reached. The calculated
value of the sending end voltage will be different from the actual applied voltage.
Since the network is linear, all the line and load currents and node voltages can be
multiplied by the ratio:
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Figure 14-9 Flow chart for distribution system load flow using Gauss factored Y matrix.
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Vactual=Vcalculated ¼ Vs=Vcalculated ð14:48Þ
Actually the node current must be calculated on the basis of complex power at the
load:

Inode ¼ Snode=Vnodeð Þ� ð14:49Þ
Starting from the last node, the sending end voltage is calculated in the forward
sweep, as in the linear case. This voltage will be different from the sending end
voltage. Using this voltage, found in the first iteration, a backward sweep is per-
formed, i.e., the voltages are recalculated starting from the first node to the nth node.
This new voltage is used to recalculate the currents and voltages at the nodes in the
second forward sweep. The process can be repeated until the required tolerance is
achieved.

A lateral circuit, Fig. 14-11(b), can be handled as follows ½7�:
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Figure 14-10 (a) Original system for load flow; (b) only swing bus activated; (c) swing bus
grounded, only current injections activated.
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. Calculate the voltage at node 2, starting from node 4, ignoring the lateral to
node 3. Let this voltage be V2.

. Consider that the lateral is isolated and is an independent ladder. Now the
voltage at node 3 can be calculated and therefore current I3 is known.

. The voltage at node 2 is calculated back, i.e., voltage drop I3Z3 is added to
voltage V3. Let this voltage be V 0

2. The difference between V2 and V 0
2

must be reduced to an acceptable tolerance. The new node 3 voltage is:
V3ðnewÞ ¼ V3 � ðV2 � V 0

2Þ. The current I3 is recalculated and the calcula-
tions iterated until the desired tolerance is achieved.

14.3.3 Optimal Capacitor Location

The optimum location of capacitors in a distribution system is a complex process
[8, 9]. The two main criteria are voltage profiles and system losses. Correcting the
voltage profile will require capacitors to be placed towards the end of the feeders,
while emphasis on loss reduction will result in capacitors being placed near load
centers. An automation strategy based on intelligent customer meters, which moni-
tor the voltage at consumer locations and communicate this information to the
utility, can be implemented ½10�.

We will examine the capacitor placement aligrothm based on loss reduction
and energy savings using dynamic programming concepts [11]. A reader may first
pursue Chap. 15 before going through this section. We can define the objective
functions as:

. Peak power loss reduction

. Energy loss reduction

. Voltage and harmonic control

. Capacitor cost

The solved variables are fixed and switched capacitors, and their number, size,
location, and switched time. Certain assumptions in this optimization process are the
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Figure 14-11 (a) Distribution system as a ladder network; (b) load flow with a teed-off
lateral.

(a)

(b)
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loading conditions of the feeders, type of feeder load, and capacitor size based on the
available standard ratings and voltages. Consider the placement of a capacitor at
node K (Fig. 14-12). The peak power loss reduction of the segment is

PLk ¼ 3Rk 2ILKICK � I2CK
� � ð14:50Þ

where Rk is the resistance of segment K , ILK is the peak reactive current in segment K
before placement of the capacitor, and ICK is the total capacitor current flowing
through segment K.

The power loss reduction under average load can be written as:

PLAK ¼ 3RK 2ICKILKLF � I2CK
� � ð14:51Þ

where all the terms are as defined before and LF is the load factor. The overall
objective function for loss reduction can then be written as

F ¼
XN
k¼1

FpPLK þ FaVPLAK

� � ð14:52Þ

where Fp is the monetary conversion factor for power loss reduction under peak load
in $/kW/year, Fav is the monetary conversion factor for power loss under average
load in $/kW/year, N is the number of line segments.

An optimal value function can be defined as follows:

Sðx; yxÞ ¼ Max
XN
k¼1

FpPLK þ FavPLAK

� �" #
ð14:53Þ

where Sðx; yxÞ is the maximum value of the objective function calculated from sub-
station to line segment if the capacitive current flowing through segment x is ys. Also,

ICX ¼ Ibaseyx ð14:54Þ

We can define some constraints in the optimization process:
The power factor at the substation outlet is to be maintained lagging, i.e., the

load current is greater than the capacitive current:

IL1 > IC1 ð14:55Þ
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Figure 14-12 Load and capacitance current flows at node k with a capacitor bank.
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This requires that the total capacitive current flowing through ðk� 1Þ segment be at
least equal to the total capacitive current flowing into node k:

ICK�1 � ICK ð14:56Þ
The values of yx are defined over an adequate range of discrete values.

A dynamic programming formulation seeks the minimum (or maximum) path
subject to constraints and boundary conditions. The recursive relation is given by

Sðx; yxÞ ¼ MAXyx�1�yx FPPLX Ibaseyxð Þ þ FavPLAx IbaseyxÞ þ S x� 1; ys�1ð Þð �½
ð14:57Þ

The boundary condition is given by

Sð0; y0Þ ¼ 0 for all y0 ð14:58Þ
i.e., stage 0 means that the substation is encountered and no capacitors are installed
beyond this point. The recursive procedure is illustrated by an example:

Consider the three-segment system in Fig. 14-13. Assume that the value of IL1
¼ 1:0 per unit and the smallest capacitor size is 0.3 per unit with an upper limit of 0.9
per unit. In Fig. 14-14 stage 1 shows that a target node can be constructed with every
possible value of Ic1. A path is added for each target node and the cost is calculated
using Eq. (14.51) for N ¼ 1 :

cost ¼ 3R1 2� 1:0� 0:9� 0:92
� �

FP � I2base þ 3R1 2� 1:0� 0:9� 0:92
� �

FavI
2
base

The graph can be constructed as shown in Fig. 14-14 for the other two stages also,
and the cost of the path connecting the two nodes can be calculated in an identical
manner. Once the cost associated with every path is calculated, the problem reduces
to finding the maximum cost path from one of the initial nodes to the target nodes
½11�. The voltage and switching constraints can be added to the objective function.
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Figure 14-13 A three-section distribution system with capacitor compensation.
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Figure 14-14 Three-stage flow chart of dynamic programming.
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15

Optimization Techniques

The application of computer optimization techniques in power systems is reaching
new dimensions with improvements in algorithm reliability, speed, and applicability.
Let us start with a simple situation. Optimization can be aimed at reducing some-
thing undesirable in the power system, e.g., the system losses or cost of operation, or
maximizing a certain function, e.g., efficiency or reliability. Such maxima and
minima are always subject to certain constraints, i.e., tap settings on transformers,
tariff rates, unit availability, fuel costs, etc. The problem of optimization is thus
translated into the problem of constructing a reliable mathematical model aimed
at maximizing or minimizing a certain function, within the specified constraints.

It is possible to model a wide range of problems in planning, design, control,
and measurement. Traditionally, optimization has been used for the economic
operation of fossil-fueled power plants, using an economic dispatch approach. In
this approach inequality constraints on voltages and power flows are ignored and
real power limits on generation and line losses are accounted for. A more compli-
cated problem is system optimization over a period of time.

The optimization techniques are often applied off-line. For many power
system problems an off-line approach is not desirable, because optimal solution
is required for immediate real-time implementation and there is a need for efficient
and reliable methods. Table 15-1 shows the interaction of various levels of system
optimization.

Linear programming [1–3] deals with situations where a maximum or mini-
mum of a certain set of linear functions is desired. The equality and inequality
constraints define a region in the multidimensional space. Any point in the region
or boundary will satisfy all the constraints; thus, it is a region enclosed by the
constraints and not a discrete single value solution. Given a meaningful mathema-
tical function of one or more variables, the problem is to find a maximum or mini-
mum, when the values of the variables vary within some certain allowable limits. The
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variables may react with each other or a solution may be possible within some
acceptable violations, or a solution may not be possible at all.

Mathematically, we can minimize:

f x1; x2; . . . ; xnð Þ ð15:1Þ
subject to:

g1 x1; x2; . . . ; xnð Þ � b1

g2 x1; x2; . . . ; xnð Þ � b2

. . .

gm x1; x2; . . . ; xnð Þ � bn

ð15:2Þ

The linear programming is a special case of an objective function [Eq. (15.1)] when
all the constraints [Eq. (15.2)] are linear.

15.1 FUNCTIONS OF ONE VARIABLE

A function f ðxÞ has its global minima at a point x� if f ðxÞ � f ðx�Þ for all values of x
over which it is defined. Figure 15.1 shows that the function may have relative
maxima or minima. A stationary point, sometimes called a critical point, is defined
where

f 0ðxÞ ¼ df ðxÞ=dx ¼ 0 ð15:3Þ
The function f ðxÞ is said to have a weak relative maximum at x0 if there exists an �,
0 < � < �, such that f ðxÞ � f ðx0Þ and there is at least one point x in the interval ½x0 �
�; x0 þ �� such that f ðxÞ ¼ f ðx0Þ. The relative minimum of a function occurs at a
point where its derivative is zero. For a vector:
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Table 15-1 Various Levels of System Optimization

Time duration Control process Optimized function

Seconds Automatic generation
control

Minimize area control error, subject to
system dynamic constraints

Minutes Optimal power flow Minimize instantaneous cost of operation or

other indexes, e.g., pollution
Hours and days Unit commitment,

hydrothermal
Minimize cost of operation

Weeks Grid interchange
co-ordination

Minimize cost with reliability constraints

Months Maintenance scheduling Minimize cost with reliability constraints

Years Generation planning Minimize expected investment and
operational costs
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g1 ¼
@f

@x1

����
x¼x0

¼ 0

. . .

gn ¼
@f

@xn

����
x¼x0

¼ 0

ð15:4Þ

The derivative condition is necessary, but not sufficient, as the derivative can occur
at maxima or saddle points. Additional conditions are required to ascertain that a
minimum has been obtained.

15.2 CONCAVE AND CONVEX FUNCTIONS

Important characteristics of the functions related to existence of maxima and
minima are the convexity and concavity. A function f ðxÞ is concave for some interval
in x, if for any two points x1 and x2 in the interval and all values of �, 0 � � � 1

f �x2 þ 1� �ð Þx1½ � � �f x2ð Þ þ 1� �ð Þf x1ð Þ ð15:5Þ

The definition of the concave function is

f �x2 þ ð1� �Þx1½ � � f x2ð Þ þ ð1� �Þf x1ð Þ ð15:6Þ

Figure 15-2 shows convexity and concavity. Some functions may not be definitely
convex or concave. The function f ðxÞ ¼ x3 in Fig. 15-2(d) is concave in the interval
ð�1; 0Þ and convex in the interval ð0;1Þ.

The convexity plays an important role. If it can be shown that the objective
function is convex and the constraint set is convex, then the problem has a unique
solution. It is not easy to demonstrate this. The optimal power flow problem (Chap.
16) is generally nonconvex. Therefore, multiple minima may exist which may differ
substantially.
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Figure 15-1 A single value function showing relative maxima and minima.
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15.3 TAYLOR’S THEOREM

If f ðxÞ is continuous and has a first derivative, then for any two points x1 and x2,
where x2 ¼ x1 þ incremental h, there is a �, 0 � � � 1, so that

f ðx2Þ ¼ f ðx1Þ ¼ hf 0 �x1 þ ð1� �Þx2½ � ð15:7Þ
Extending:

f ðx2Þ ¼ f ðx1Þ þ hf 0ðx1Þ þ
h2

2!
f 0ðx1Þ þ � � � þ hn

n!
f ðnÞ �x1 þ ð1� �Þx2½ � ð15:8Þ
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Figure 15-2 (a) A convex function; (b) concave function; (c) convex and concave function;
(d) graph of function f ðxÞ ¼ x3.
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A function f ðxÞ has a relative maximum or minimum at x� if n is even, where n is the
order of the first nonvanishing derivative at x�. It is a maximum if f ðnÞðx�Þ < 0 and a
minimum if f ðnÞðx�Þ > 0.

Example 15.1

Consider f ðxÞ ¼ ðx� 1Þ4:
df ðxÞ
dx

¼ 4ðx� 1Þ3; d2f ðxÞ
dx2

¼ 12ðx� 1Þ2; d3f ðxÞ
dx3

¼ 24ðx� 1Þ; d4f ðxÞ
dx4

¼ 24

The fourth derivative is even, and is the first nonvanishing derivative at x ¼ 1;
therefore, x ¼ 1 is the minimum.

The convexity of a function assumes great importance for minimization. If f ðxÞ
is convex over a closed interval a � x � b, then any relative minimum of f ðxÞ is also
the global minima.

Functions of multivariables

Equation (15.8) can be written as

f ðx2Þ ¼ f ðx1Þ þ rf ðx1Þhþ
1

2
h 0H �x1 þ ð1� �Þx2½ �h ð15:9Þ

where rf is the gradient vector:

rf ¼ @f

@x1
;

@f

@x2
; . . . ;

@f

@xn

� �
ð15:10Þ

Matrix �HH is of m� n dimensions and is called a Hessian. It consists of second partial
derivatives of f ðxÞ.

Hij ¼
@2f ðx1; . . . ; xnÞ

@xi@xj
ð15:11Þ

A sufficient condition for f ðxÞ to have a relative minimum at point x� is that �HH be
positive definite. Also, if the solution to the gradient set of equations is unique, then
the solution is a global minimum.

Example 15.2

Consider the solution of a function:

3x21 � 9x1 þ 4x22 � 3x1x2 � 3x2

The gradient vector is

g ¼
6x1 � 9� 3x2

8x2 � 3x1 � 3

�����
�����

Setting it to zero and solving for x1 and x2 gives

x1

x2

�����
����� ¼

3=13

�1=13

�����
�����

This solution is unique. The Hessian is given by:
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�HH ¼
@2f
@x21

@2f
@x1@x2

@2f
@x2@x1

@2f
@x22

���������

���������
¼

6 �3

�3 8

�����
�����

Thus, �HH is a positive definite, and therefore the above solution is a global solution.
If f ðxÞ is convex over a closed convex set X in En (Euclidean space), then any

local minimum of f ðxÞ is also the global minimum of f ðxÞ over x.
A property of a function can be defined as unimodality. A function is unimodal

if there is a path from every point x to the optimal point along which the function
continuously increases or decreases. Figure 15-3(a) shows a strongly unimodal func-
tion, while Fig. 15-3(b) shows a nonunimodal function. A strictly unimodal function
will have just one local optimum which corresponds to the global optimum.

15.4 LAGRANGIAN METHOD, CONSTRAINED OPTIMIZATION

Suppose a function:

f ðx1x2Þ ¼ k ð15:12Þ
has to be minimized subject to constraint that

gðx1x2Þ ¼ b ð15:13Þ
The function f ðx1; x2Þ increases until it just touches the curve of gðx1; x2Þ. At this
point the slopes of f and g will be equal. Thus,
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Figure 15-3 (a) Function showing strong unimodality; (b) nonunimodal function.
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dx1
dx2

¼ � @f =@x2
@f =@x1

slope of f ðx1; x2Þ

dx1
dx2

¼ � @g=@x2
@g=@x1

slope of gðx1; x2Þ
ð15:14Þ

Therefore,

@f =@x2
@f =@x1

¼ @g=@x2
@g=@x1

ð15:15Þ

or

@f =@x2
@f =@x1

¼ @g=@x2
@g=@x1

¼ � ð15:16Þ

This common ratio � is called the Lagrangian multiplier. Then:

@f

@x1
� �

@g

@x1
¼ 0 ð15:17Þ

@f

@x2
� �

@g

@x2
¼ 0 ð15:18Þ

The Lagrangian function is defined as

Fðx1; x2; �Þ ¼ f ðx1; x2Þ þ � b� gðx1; x2Þ½ � ð15:19Þ
Differentiation of Eq. (15.19) with respect to x1, x2, and � and equating to zero will
give Eqs. (15.17) and (15.18). These are the same conditions as if a new uncon-
strained function h of three variables is minimized:

hðx1x2�Þ ¼ f ðx1x2Þ � �gðx1x2Þ ð15:20Þ
Thus,

@h

@x1
¼ 0

@h

@x2
¼ 0

@h

@�
¼ 0

ð15:21Þ

Example 15.3

Minimize the function:

f ðx1x2Þ ¼ x1 þ 2x1x2 þ 9:5x2 ¼ k

for

gðx1x2Þ ¼ x21 þ x2 � 12

Form the function with the Lagrangian multiplier as in Eq. (15.20):
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hðx1x2Þ ¼ x1 þ 2x1x2 þ 9:5x2 � � x21 þ x2 � 12
� �

@h

@x1
¼ 1þ 2x2 � 2�x1 ¼ 0

@h

@x2
¼ 2x1 þ 9:5� � ¼ 0

@h

@�
¼ �x21 � x2 þ 12 ¼ 0

This gives x1 ¼ 1, x2 ¼ 11; and � ¼ 11:5. The value of the function is 127.5.
However, this is not the global minimum.

Care has to be exercised in applying this method. A convex and a concave
function may be tangential to each other while the absolute minimum may be some-
where else, as in this example. Figure 15-4 shows that the calculated value is not
really the minimum.

15.5 MULTIPLE EQUALITY CONSTRAINTS

The function:

f x1; x2; . . . ; xnð Þ ð15:22Þ
subject to m equality constraints:

g1 x1; x2; . . . ; xnð Þ
g2 x1; x2; . . . ; xnð Þ

. . .

gm x1; x2; . . . ; xnð Þ

ð15:23Þ
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Figure 15-4 Functions in Example 15.3.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



can be minimized by forming a function:

h x1; x2; . . . ; xn; �1; �2; . . . ; �mð Þ ¼ f x1; x2; . . . ; xnð Þ þ �1g1 x1; x2; . . . ; xnð Þ
þ . . .þ �mgm x1; x2; . . . ; xnð Þ

ð15:24Þ
where nþm partial derivatives with respect to xi, i ¼ 1, to n, and �j, j ¼ 1 to m, are
obtained. The simultaneous equations are solved and the substitution gives the
optimum value of the function.

15.6 OPTIMAL LOAD SHARING BETWEEN GENERATORS

We will apply Lagrangian multipliers to the optimal operation of generators, ignor-
ing transmission losses. The generators can be connected to the same bus, without
appreciable impedance between these, which will be valid system for ignoring losses.
The cost of fuel impacts the cost of real power generation. This relationship can be
expressed as a quadratic equation:

Ci ¼
1

2
anP

2
Gn þ bnPGn þ wn ð15:25Þ

where an; bn; and wn are constants. wn is indepdendent of generation.

The slope of the cost curve is the incremental fuel cost (IC):

@C1=@PGn ¼ ðICÞn ¼ anPGn þ bn ð15:26Þ
or inversely, the generation can be expressed as a polynomial of the form:

PGn ¼ �n þ �n dCn=dPGnð Þ þ �n dCn=dPGnð Þ2þ � � � ð15:27Þ
Considering spinning reserve, the total generation must exceed power demand. The
following inequality must be strictly observed:X

PG > PD ð15:28Þ
where PG is the real rated power capacity and PD is the load demand. The load on
each generator is constrained between upper and lower limits:

Pmin � P � Pmax ð15:29Þ
The operating cost should be minimized, so that various generators optimally share
the load:

C ¼
Xi¼n

i¼1

CiPGi is minimum when

Xi¼n

i¼1

PGi � PD ¼ 0

ð15:30Þ

Further, the loading of each generator is constrained in Eq. (15.29).
This is a nonlinear programming problem as the cost index C is nonlinear. If

the inequality constraint of Eq. (15.28) is ignored, a solution is possible by
Lagrangian multipliers:
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� ¼ C � �
Xi¼n

i¼1

PGi � PD

" #
ð15:31Þ

where � is the Lagrangian multiplier.
Minimization is achieved by the condition that

@�=@PGn ¼ 0 ð15:32Þ
Since C is a function of P only, the partial derivative becomes a full derivative:

dCn

dPGn

¼ �; i.e.;

dC1

dPG1

¼ dC2

dPG2

¼ � � � ¼ dCn

dPGn

¼ �

ð15:33Þ

i.e., all units must operate at the same incremental cost. Figure 15-5 shows the
graphic iteration of � starting from an initial value of �0. The three different curves
for C represent three different polynomials given by Eq. (15.25). An initial value of
IC0 ¼ �0 is assumed and the outputs of the generators are computed. If

Xn
i¼1

PGi ¼ PD ð15:34Þ

the optimum solution is reached, otherwise increment � by �� and recalculate the
generator outputs.

Example 15.4

Consider that two generators are required to share a load of 500 MW. The incre-
mental costs of these two generators are given by

dCa

dPGa

¼ �a ¼ 0:003Pa þ 3:3$=MWhr

dCb

dPGb

¼ �b ¼ 0:005Pb þ 2:2$=MWhr
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Figure 15-5 Graphical representation of Lagrangian multiplier iteration.
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If Pa and Pb are the loads on each generator, then:

Pa þ Pb ¼ 500

and from Eq. (15.33):

�a ¼ �b

Solution of these equations gives:

Pa ¼ 175MW

Pb ¼ 325MW

� ¼ �a ¼ �b ¼ 3:825ð$=MWhrÞ

15.7 INEQUALITY CONSTRAINTS

A function f ðx1; x2Þ subject to inequality constraint gðx1; x2Þ � 0 can be minimized
by adding a non-negative Z2 to the inequality constraints; gðx1; x2Þ takes a value
other than zero, only if the constraint gðx1; x2Þ � 0 is violated. If gðx1; x2Þ < 0, Z2

takes a value required to satisfy the equation gðx1; x2Þ þ Z2 ¼ 0. If gðx1; x2Þ � 0,
then Z2 ¼ 0:

h x1; x2ð Þ ¼ f x1; x2ð Þ � � g x1; x2ð Þ þ Z2
� � ¼ 0 ð15:35Þ

The function h now has four variables, x1, x2, �, and Z. The partial derivatives of h
are obtained with respect to these variables and are equated to zero:

@h

@x1
¼ @f

@x1
� �

@g

@x1
¼ 0

@h

@x2
¼ @f

@x2
� �

@g

@x2
¼ 0

@h

@�
¼ �g x1; x2ð Þ � Z2 ¼ 0

@h

@Z
¼ �2�Z ¼ 0

ð15:36Þ

The last condition means that either � or Z or both � and Z must be equal to zero.

Example 15.5

Minimize:

f x1; x2ð Þ ¼ 2x1 þ 2x1x2 þ 3x2 ¼ k

subject to the inequality constraint:

g x1; x2ð Þ ¼ x21 þ x2 � 0

first form the unconstrained function:

h ¼ f ðx1; x2Þ � � gðx1; x2Þ þ Z2
� �

¼ 2x1 þ 2x1x2 þ 3x2 � � x21 þ x2 � 3þ Z2
� � ¼ k
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This gives

@h

@x1
¼ 2þ 2x2 � 2�x1 ¼ 0

@h

@x2
¼ 2x1 þ 3� � ¼ 0

@h

@�
¼ x21 þ x2 � 3þ Z2 ¼ 0

@h

@Z
¼ 2�Z

From the last equation, either Z or � or both are zero. Assume Z ¼ 0, then solving
the equations gives x1 ¼ 0:76 and x2 ¼ 2:422. Again, it can be shown that this is the
relative minimum and not the global minimum.

15.8 KUHN–TUCKER THEOREM

This theorem makes it possible to solve a nonlinear programming (NLP) problem
with several variables, where the variables are constrained to satisfy certain equality
and inequality constraints. The minimization problem with constraints for control
variables can be stated as

min f ð �xx; �uuÞ ð15:37Þ
subject to the equality constraints:

gð �xx; �uu; �ppÞ ¼ 0 ð15:38Þ
and inequality constraints:

�uu� �uumax � 0 ð15:39Þ
�uumin � �uu � 0 ð15:40Þ

Assuming convexity of the functions defined above, the gradient

�rr� ¼ 0 ð15:41Þ
where � is the Lagrangian formed as

� ¼ f ð �xx; �uuÞ þ �tgð �xx; �uu; �ppÞ þ �t
max �uu� �uumaxð Þ þ �t

min �uumin � �uuð Þ ð15:42Þ
and

�t
max �uu� �uumaxð Þ ¼ 0

�t
min �uumin � �uuð Þ ¼ 0

�max � 0

�min � 0

ð15:43Þ

Equations (15.43) are exclusion equations. Multiples �max and �min are dual
variables associated with the upper and lower limits on control variables, some-
what similar to �. The superscript t stands for transpose. See Appendix A. If ui
violates a limit, it can be either the upper or lower limit and not both. Thus,
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either of the two inequality constraints, Eqs. (15.39) or (15.40), is active at any
one time, i.e., either �max or �min exist at one time and not both.

The gradient equation can be written as

@�

@x
¼ @f

@x
þ @g

@x

� �t

� ¼ 0 ð15:44Þ

@�

@u
¼ @f

@u
þ @g

@u

� �t

�þ �i ¼ 0 ð15:45Þ

In Eq. (15.45):

�i ¼ �i;max if ui � ui;max > 0

�i ¼ ��i;min if ui;min � ui > 0

@�

@�
¼ gð �xx; �uu; �ppÞ ¼ 0

ð15:46Þ

Thus, � given by Eq. (15.45) for any feasible solution, with � computed from Eq.
(15.44), is a negative gradient with respect to �uu:

� ¼ � @�

@u
ð15:47Þ

At the optimum, � must also satisfy the exclusions equations:

�i ¼ 0 if uiðminÞ < ui < uiðmaxÞ

�i ¼ �iðmaxÞ � 0 if ui ¼ uiðmaxÞ

�i ¼ ��iðminÞ � 0 if ui ¼ uiðminÞ

ð15:48Þ

Using Eq. (15.47), these equations can be written as

@�

@ui
¼ 0 if uiðminÞ < ui < uiðmaxÞ

@�

@ui
� 0 if ui ¼ uiðmaxÞ

@�

@ui
� 0 if ui ¼ uiðminÞ

ð15:49Þ

15.9 SEARCH METHODS

In the above discussions, the functions must be continuous, differentiable, or both.
In practice, very little is known about a function to be optimized. The search
methods can be classified as follows:

. The unconstrained one-dimensional search methods which can be simulta-
neous or sequential.

. Multidimensional search methods which can also be simultaneous or
sequential.
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One-dimensional search methods place no constraints on the function, i.e., continu-
ity or differentiability. An exhaustive one-dimensional search method, for example,
subdivides the interval ½0; 1� into �x=2 equally spaced intervals, and the accuracy of
the calculations will depend on the selection of �x. In practice, the functions have
more than one variable, maybe thousands of variables, which may react with each
other, and, hence, multidimensional methods are applied.

15.9.1 Univariate Search Method

A univariate search changes one variable at a time so that the function is maximized
or minimized. From a starting point, with a reasonable estimate of the solution x0,
find the next point x1 by performing a maximization (or minimization) with respect
to the variable x1:

�xx1 ¼ �xx0 þ �1 �ee1 ð15:50Þ
where e1 ¼ ½1; 0; . . . ; 0� and �1 is a scalar. This can be generalized so that

f �xxk þ �kþ1 �eekþ1

� �
k ¼ 0; 1; . . . ; n� 1 ð15:51Þ

is maximized. The process is continued until j�kj is less than some tolerance value.
Table 15-2 for two functions illustrates this procedure for minimization. The

advantage is that only one function is minimized at a time, while the others are held
constant. The new values of the other functions are found, one at a time, by sub-
stituting the value of the first function and minimizing. The advantage is that it does
not require calculations of derivatives. The search method is ineffective when the
variables have interaction, or geometrically there are deep valleys and/or ridges.

15.9.2 Powell’s Method of Conjugate Directions

If a quadratic function to be minimized is

hð �xxÞ ¼ �xx 0 �AA �xxþ �bb 0 �xxþ c ð15:52Þ
The direction �pp and �qq are then defined as conjugate directions [3] if

�pp 0 �AA �qq ¼ 0 ð15:53Þ
For a unique minimum, it is necessary that matrix �AA is positive definite. Each
iterative step begins with a one-dimensional search in n linearly independent direc-
tions. If these directions are called:

�rr1; �rr2; . . . ; �rrn ð15:54Þ
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Table 15-2 Univariate Search Method–Function of Two Variables

Calculated points Minimized function Value found Best current estimate

ð6; 6Þ f ðx1; 6Þ x1 ¼ 5:2 5:2; 6
ð5:2; 6Þ f ð5:2; x2Þ x2 ¼ 2:9 5:2; 2:9
ð5:2; 2:9Þ f ðx1; 2:9Þ x1 ¼ 1:8 1:8; 2:9
ð1:8; 2:9Þ f ð1:8; x2Þ x2 ¼ 0:8 1:8; 0:8
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and we assume that we start at point x0, then initially these directions are chosen to
be the co-ordinates:

r1 ¼ x1; 0; . . . ; 0ð Þ; r2 ¼ 0; x2; . . . ; 0ð Þ; . . . ; rn ¼ 0; 0; . . . ; xnð Þ ð15:55Þ
The first iteration corresponds to the univariate method, in which one variable is
changed at a time. Each iteration develops a new direction. If a positive definite
quadratic function is being minimized, then after n iterations all the directions are
mutually conjugate.

15.10 GRADIENT METHODS

Starting with an initial value, a sequence of points can be generated so that each
subsequent point makes:

f ðx0Þ > f ðx1Þ > f ðx2Þ � � � ð15:56Þ
f x0 þ�x
� � ¼ f ðx0Þ þ rf ðx0Þ� �t

�xþ � � � ð15:57Þ
Close to x0, vector rf ðx0Þ is in a direction to increase f ðxÞ. Thus, to minimize it,
�rf ðX0Þ is used. If a gradient vector is defined as

�ggk¼: �rrf ðXkÞ ð15:58Þ
Then,

�xxkþ1 ¼ �xxk þ hkð� �ggkÞ ð15:59Þ

Example 15.6

Consider a function:

f ðx1; x2Þ ¼ 2x21 þ 2x1x2 þ 3x22

Gradient vector g is

rf ¼
@f
@x1

@f
@x2

�������
������� ¼

4x1 þ 2x2

2x1 þ 6x2

�����
�����

The successive calculations to k ¼ 5 are shown in Table 15-3. The initial assumed
values are: x1 ¼ 4:000 and x2 ¼ 0:000.

15.10.1 Method of Optimal Gradient

The method is also called the method of steepest decent [1, 4]. Determine hk so that:

hk ¼ minimum f ð �xxk � h �ggkÞ ð15:60Þ
The procedure is as follows:

. Set initial value of xð¼ x0Þ

. Iteration count k ¼ 0

. Calculate gradient vector gk

. Find hk to minimize Eq. (15.60)
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then

�xxkþ1 ¼ �xxk � hk �ggk ð15:61Þ
The convergence is reached if

f �xxkþ1
� 

� f �xxk
� ��� ��� < � ð15:62Þ

Example 15.7

The previous example is solved by the optimal gradient method to five iterations.
The results of the calculations are shown in Table 15-4. The minimum is being
approached faster in lesser iterations. A comparison between the gradient method
and the optimal gradient method is shown in Fig. 15-6.
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Table 15-4 Example 15.7: Minimization with Optimal Gradient Method

k xk fk gk f ðxk � hgkÞ hk

0 4.000 32 16.000 960:00 h2 � 320:00 hþ 32 0.1758

0.000 8.000
1 1.1872 5.4176 1.936 94:330 h2 � 40:5196 hþ 5:4176 0.2148

�1:4064 �6:064
2 0.7713 1.0646 2.883 16:623 h2 � 5:4027 hþ 1:0646 0.1863

�0:101 0.937
3 0.2342 0.208 0.386 3:593 h2 � 1:5524 hþ 0:208 0.2160

�0:2755 �1:185
4 0.1508 0.0407 0.564 0:9543 h2 � 0:3519 hþ 0:0407 0.18615

�0:0196 0.184

5 0.0458 0.01780 – – –
0.0538

Table 15-3 Example 15.6: Minimization of a Function with Gradient Method

k x1; x2 f ðx1; x2Þ gk jgkj g 0
kjgkj

0 4.000 32.000 16.000 17.888 0.895
0.000 8.000 0.447

1 3.553 22.670 13.318 13.942 0.955

�0:447 4.124 0.296
2 2.598 11.294 8.906 8.936 0.997

�0:743 0.738 0.083
3 1.601 4.528 4.752 5.065 0.938

�0:826 �1:754 0:346
4 0.663 0.934 1.692 2.297 0.737

�0:480 �1:554 �0:676
5 �0:074 0.0972 0.096 1.032 0.093

0.196 1.028 0.996
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All iterative methods of minimization, whether quadratically convergent or
not, locate h as the limit of sequence x0, x1; x2; . . ., where x0 is the initial approx-
imation to the position of the minimum and where for each subsequent iteration, xi
is the position of the minimum with respect to variations along the line through xi in
some specified direction pi. The method of steepest decent uses the directions of the
negative gradient of f ðxÞ at xi, and the method of alternate directions uses cyclically
the directions of the n co-ordinate axes. Methods which calculate each new direction
as a part of iteration cycles are more powerful than those in which the directions are
assigned in advance [5].

15.11 LINEAR PROGRAMMING—SIMPLEX METHOD

A linear programming problem [1] can be defined as:

Max z ¼
Xn
j¼1

cjxj

st

Xi¼n

j¼1

�ijxj ¼ bi i ¼ 1; 2; . . . ;m

xj � 0 j ¼ 1; 2; . . . ; n

ð15:63Þ
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Figure 15-6 Convergence in gradient and optimal gradient methods.
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where ‘‘st’’ stands for ‘‘subject to.’’ The coefficients cj , and aij are real scalars and
may vary. The objective function:

f ð �xxÞ ¼
Xn
j¼1

cjxj ð15:64Þ

is in linear form in variables xj, whose values are to be determined. The inequalities
can be converted by addition of either non-negative slack or surplus variables to
equalities. In matrix form, Eq. (15.63) can be written as

max z ¼ �cc 0 �xx

�AA �xx ¼ �bb

�xx � �00

ð15:65Þ

Define the following:
A feasible solution to the linear programming is a vector which satisfies all the

constraints of the problem. The X feasible solutions are defined as

X ¼ �xx A�xx ¼ �bb; �xx � �00
��� �n

ð15:66Þ

A basic feasible solution is a feasible solution with no more than m positive x values.
These positive x values correspond to linearly independent columns of matrix �AA. A
nondegenerate basic feasible solution is a basic feasible solution with exactly m
positive xj values. It has fewer than m positive xj values.

The following can be postulated:

. Every basic feasible solution corresponds to an extreme point of the convex
set of feasible solutions of X.

. Every extreme point of X has m linearly independent vectors (columns of
matrix �AA) associated with it.

. There is some extreme point at which the objective function z takes its
maximum or minimum value.

The matrix �AA can be partitioned into a basic matrix �BB and a nonbasic matrix
�NN. Similarly, the vector �xx can be partitioned and the following equation can be
written:

�AA �xx ¼ �BB; �NN
� � �xxB

�xxN

	 

¼ �bb ð15:67Þ

Therefore:

�BB �xxB þ �NN �xxN ¼ �bb ð15:68Þ
For the basic solution, �xxN should be zero; �xxB ¼ B�1 �bb is the basic solution. Variables
�xxB are called the basic variables. If the vector �cc is partitioned as �ccB, �ccN , then the
optimum function z ¼ �ccB �xxB. From the basic properties of vectors in En, any combi-
nation of the columns of the �AA matrix can be written as a linear combination of
columns in the matrix �BB.
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�aaj ¼
Xm
i¼1

yij �aai ¼ B �yyi ð15:69Þ

or

�yyj ¼ B�1 �aaj ð15:70Þ
If a new basic feasible solution is required, then one or more vectors �aai should

be removed from �BB, and substituted with some other vectors �aaj from �NN. In the
simplex method of Dantzig, only one vector at a time is removed from the basis
matrix and replaced with the new vector which enters the basis [6]. As each feasible
solution corresponds to an extreme point of the convex set of solutions, by replacing
one vector at a time, the movement is from one extreme point to an adjacent extreme
point of the convex set. The interior point method basically differs in this concept.

Consider a vector �aar from the set �aaj which is to enter the basis, so that �yyrj 6¼ 0;
then, from Eq. (15.69):

�aar ¼
1

yri
�aaj �

Xm
i¼1

yij
yrj

�aai ð15:71Þ

The substitution gives the new basic solution. One more condition that needs to be
satisfied is that xBr is non-negative. The column r to be removed from the basis can
be chosen by the equation:

xBr
yrj

¼ min
xBi
yij

; yij > 0

�
ð15:72Þ

The minimum in Eq. (15.72) may not be unique. In this case, one or more variables
in the new basic solution will be zero and the result will be a degenerate basic
solution. The vector to enter the basis can be selected so that:

1. The new objective function ¼ old objective function þ ðxBr=yrjÞ ðcj � zjÞ:
2. In the absence of degeneracy, ðxBr=yrjÞ > 0. Therefore, ðcj � zjÞ should be

selected to be greater than zero.

Example 15.8

Maximize:

z ¼ 2x1 � 5x2

st

2x1 þ 4x2 � 16

3x1 þ 9x2 � 30

x1; x2 � 0

Convert inequalities to equalities by adding slack or surplus variables:

2x1 þ 4x2 � x3 ¼ 16

3x1 þ 9x2 þ x4 ¼ 30

x1; x2; x3; x4 � 0
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Define matrix �AA and its vectors �aap; j ¼ 1; 2; 3, and 4:

�AA ¼ 2 4 �1 0
3 9 0 1

����
���� �bb ¼ 16

30

����
����

Therefore:

�aa1 ¼
2

3

�����
����� �aa2 ¼

4

9

�����
����� �aa3 ¼

�1

0

�����
����� �aa4 ¼

0

1

�����
�����

Consider that �aa1 and �aa4 form the initial basis; then:

x1 �aa1 þ x4 �aa4 ¼ �bb

x1
2

3

�����
�����þ x4

0

1

�����
����� ¼

16

30

�����
�����

This gives x1 ¼ 8, x2 ¼ 6, and x3 ¼ x4 ¼ 0. Therefore, the initial feasible solution is

�xxB ¼
8

6

�����
�����

Express vectors �aa2 and �aa3, not in the basis in terms of vectors �aa1 and �aa4:

�aa2 ¼ y12 �aa1 þ y42 �aa4

�aa3 ¼ y13 �aa1 þ y43 �aa4

Therefore:

4

9

�����
����� ¼ y12

2

3

�����
�����þ y42

0

1

�����
�����

Solving: y12 ¼ y42 ¼ 3; therefore, �yy2 ¼ j2; 3j.
Similarly,

�1

0

�����
����� ¼ y13

2

3

�����
�����þ y43

0

1

�����
�����

Solving, y13 ¼ �1=2, y42 ¼ 3=2; therefore, �yy3 ¼ j � 1=2; 3=2j.
Compute z for �yy2 ¼ j2; 3j and �yy3 ¼ j � 1=2; 3=2j:
zj ¼ �cc 0B �yyj

Here, �cc 0 ¼ j2;�5; 0; 0j and �cc 0B ¼ j2; 0j. Therefore:

z2 ¼ j 2 0 j
2

3

�����
����� ¼ 4

z3 ¼ 2 0
�� �� �1=2

3=2

�����
����� ¼ �1

where z2 � c2 ¼ 4þ 5 ¼ 9, and z3 � c3 ¼ �1� 0 ¼ �1.
Since z3 � c3 < 0, �aa3 will enter the basis. The vector to leave the basis can only

be �aa1 or �aa4. The criterion is given by Eq. (15.72):
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min
xBi
y13

; y13 > 0

� �
i.e.,

x1
y13

or
x4
y43

> 0

but y13 ¼ �1=2; therefore, �aa4 leaves the basis. The original value of the objective
function is

z ¼ �cc 0B �xxB ¼ 2; 0
�� �� 8

6

����
���� ¼ 16

The new value is given by

ẑz ¼ zþ x4
y43

c3 � z3ð Þ ¼ 16þ 6

3=2
ð1Þ ¼ 20

where ẑz denotes the new value

Compute the new value of �xxB:

x1 �aa1 þ x3 �aa3 ¼ �bb

x1
2

3

�����
�����þ x3

�1

0

�����
����� ¼

16

30

�����
�����

Solving for x1 ¼ 10, x3 ¼ 4:

ẑz ¼ 2; 0j j 10

4

�����
����� ¼ 20

�aa1 was in the basis, �aa4 left the basis, and �aa3 entered the basis. Calculate �aa2 and �aa4 in
terms of �aa1 and �aa3:

�aa2 ¼ y12 �aa1 þ y32 �aa3

�aa4 ¼ y14 �aa1 þ y34 �aa3

4

9

�����
����� ¼ y12

2

3

�����
�����þ y32

�1

0

�����
�����

0

1

�����
����� ¼ y14

2

3

�����
�����þ y34

�1

0

�����
�����

�yy2 ¼ j3; 2j and �yy4 ¼ j1=3; 2=3j.
Compute zj:

z2 ¼ 2; 0j j
3

2

�����
����� ¼ 6 z4 ¼ j2; 0j

1=3

2=3

�����
����� ¼ 2=3

z2 � c2 ¼ 6þ 5 > 0

z4 � c4 ¼ 2=3� 0 > 0

Therefore, the optimal solution is: x1 ¼ 8, x2 ¼ 0, x3 ¼ 6, x4 ¼ 0, and z ¼ 20.
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15.12 QUADRATIC PROGRAMMING

The problem is one of NLP of the form:

maximize f ð �xxÞ ¼ �cc 0 �xxþ �xx 0P �xx

st

A �xx � �bb and �xx � 0

ð15:73Þ

There are m constraints and n variables; �AA is an m� n matrix, P is an n� n matrix, �cc
is an n component vector, and �bb an m component vector, all with known linear
elements. The vector �xx 0 ¼ ðx1; x2; . . . ; xnÞ is the vector of unknowns. The nonlinear
part of the problem is the objective function second term �xx 0P �xx. Because it is of
quadratic form the matrix P is symmetric. We can postulate the following:

1. The function f ð �xxÞ is concave if P is a negative semidefinite or negative
definite.

2. The function f ð �xxÞ is convex if P is a positive semidefinite or positive
definite.

3. If the function is concave then Khun–Tucker conditions are satisfied by a
global maxima:

F �xx ���
� � ¼ �cc 0 �xxþ �xx 0P �xxþ

Xm
i¼1

�i bi �
Xn
j¼1

aijxj

" #
ð15:74Þ

15.13 DYNAMIC PROGRAMMING

Dynamic programming (DP) can be described as a computational method of solving
optimization problems without reference to particularities, i.e., linear or nonlinear
programming. It can be used to solve problems where variables are continuous and
discrete or for optimization of a definite integral. It is based on the principal of
optimality, which states that a subpolicy of an optimal policy must in itself be an
optimal subpolicy. The essential requirement is that the objective function must be
separable.

The problem with n variables is divided into n subproblems, each of which
contains only one variable. These are solved sequentially, so that the combined
optimal solution of n problems yields the optimal solution to the original problem
of n variables.

Consider that an objective function is separable and can be divided into n
subfunctions, let us say three, for example. Then:

f ðxÞ ¼ f1ðx1Þ þ f2ðx2Þ þ f3ðx3Þ ð15:75Þ
The optimal value of f ðxÞ is then the maximum of

max f1ðx1Þ þ f2ðx2Þ þ f3ðx3Þ½ � ð15:76Þ
taken over all the non-negative integers of the constraint variables. If the optimal
solution is described by x̂x1, x̂x2, and x̂x3 and assuming that x̂x2 and x̂x3 are known, then
the problem reduces to that of a single variable:

max f1x1 þ f2x̂x2 þ f3x̂x3½ �� � ð15:77Þ
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We do not know x̂x2 and x̂x3, but these must satisfy the constraints.
Consider that the total number of units in a generating station, their individual

cost characteristics, and load cycle on the station is known, the unit commitment can
be arrived at by DP.

Let the cost function be defined as:
FNðxÞ ¼ minimum cost of generating x MW from N units
fNðyÞ ¼ Cost of generating y MW by Nth unit
FN�1ðx� yÞ ¼ Minimum cost of generating ðx� yÞ MW by N � 1 units
DP gives the following recursive relationship:

FNðxÞ ¼ MIN fNðyÞ þ FN�1ðx� yÞ½ � ð15:78Þ
Let t units be generated by N units. As a first step, arbitrarily choose any one unit out
of the t units. Then F1ðtÞ is known from Eq. (15.78). Now F2ðtÞ is the minimum of

f2ð0Þ � F1ðtÞ½ �
f2ð1Þ � F1ðt� 1Þ½ �
� � �
f2ðtÞ � F1ð0Þ½ �

ð15:79Þ

This will give the most economical two units to share the total load. The cost curve of
these two units can be combined into a single unit, and the third unit can be added.
Similarly calculated the minima of F3ðtÞ, F4ðtÞ; . . . ;FnðtÞ.

Example 15.9

Consider that three thermal units, characteristics, and cost indexes as shown in Table
15-5 are available. Find the unit commitment for sharing a load of 200 MW. The
indexes a and b for each unit in cost equation (15.25) are specified in Table 15-5 and
indexes w are zero.

We select unit 1 as the first unit:

F1ð200Þ ¼ f1ð200Þ ¼
1

2
ð0:02Þð200Þ2 þ ð0:50Þð200Þ ¼ $500=hr

We will be consider a step of 50 MW to illustrate the problem. Practically it will be
too large. From Eq. (15.79):

F2ð200Þ ¼ min f2ð0Þ þ F1ð200Þ½ �; f2ð50Þ þ F1ð150Þ½ �; f2ð100Þ þ F1ð100Þ½ �;�
f2ð150Þ þ F1ð50Þ½ �; f2ð200Þ þ F1ð0Þ�

�
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Table 15-5 Example 15.9: Dynamic Programming—A System with Three Thermal Units

Generation capability Cost indices

Unit number Minimum Maximum a b w

1 50 200 0.02 0.50 0
2 50 200 0.04 0.60 0
3 50 200 0.03 0.70 0
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The minimum of these expressions is given by

f2ð50Þ þ F1ð150Þ½ � ¼ $380=hr

Similarly calculate:

F2ð150Þ ¼ min f2ð0Þ þ F1ð150Þ½ �; f2ð50Þ þ F1ð100Þ½ �; ½f2ð100Þ
�

þF1ð50Þ�; f2ð150Þ þ F1ð0Þ½ �g
F2ð100Þ ¼ min f2ð0Þ þ F1ð100Þ½ �; f2ð50Þ þ F1ð50Þ½ �; f2ð100Þ þ F1ð0Þ½ �� �
F2ð50Þ ¼ min f2ð0Þ þ F1ð50Þ½ �; f2ð50Þ þ F1ð0Þ½ �� �

The minimum values are

F2ð150Þ ¼ f2ð50Þ þ F1ð100Þ½ � ¼ $230=hr

F2ð100Þ ¼ f2ð50Þ þ F1ð50Þ½ � ¼ $130=hr

F2ð50Þ ¼ f2ð0Þ þ F1ð50Þ½ � ¼ $50=hr

Bring the third unit in

F3ð200Þ ¼ min f3ð0Þ þ F2ð200Þ½ �; f3ð50Þ þ F2ð150Þ½ � f3ð100Þ þ F2ð100Þ½ ��
f3ð150Þ þ F2ð50Þ½ � f3ð200Þ þ F2ð0Þ½ ��

The minimum is given by

F3ð200Þ ¼ f3ð50Þ þ F2ð150Þ½ � ¼ $302:50=hr

Therefore, the optimum load sharing on units 1, 2, and 3 is 100, 50, and 50 MW,
respectively. If we had started with any of the three units as the first unit, the results
would have been identical. The dimensions for large systems are of major considera-
tion, and often DP is used as a subprocess within an optimization process.

15.14 INTEGER PROGRAMMING

Many situations in power systems are discrete, i.e., a capacitor bank is on-line or off-
line. A generator is synchronized: on at some time, ðstatus ¼ 1Þ and off (status 0) at
other times. If all the variables are of integer type, the problem is called integer
programming. If some variables are of continuous type, the problem is called
mixed integer programming. These problems have a nonconvex feasible region
and a linear interpolation between feasible points (status 0 and 1) gives an infeasible
solution. Nonconvexity makes these problems more difficult to solve than those of
smooth continuous formulation. The two mathematical approaches are:

. Branch and bound methods

. Cutting plane methods

In the branch and bound method, the problem is divided into subproblems based on
the values of the variables, i.e., consider three variables and their relaxed noninteger
solution as: x1 ¼ 0:85, x2 ¼ 0:45, and x3 ¼ 0:92. Here, x2 is far removed from the
integer values; thus, a solution is found with x2 ¼ 0 and x2 ¼ 1. This leads to two
new problems, with alternate possibilities of x2 ¼ 1 or x2 ¼ 0. The process can be
continued, where the possible solutions with all integer values will be displayed.
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Bounding is used to cut off whole sections of the tree, without examining them and
this requires an incumbent solution, which can be the best solution found so far in
the process, or an initial solution using heuristic criteria.

In the cutting plane method, additional constraints, called cutting planes, are
introduced, which create a sequence of continuous problems. The solution of these
continuous problems is driven toward the best integer solution.

Optimization applied to power systems is a large-scale problem Given a certain
optimization problem, is there a guarantee that an optimal solution can be found
and the method will converge? Will the optimized system be implementable? How it
can be tested? A study [6] shows that optimal power flow results are sensitive to
ULTC (under load tap changing) operation and load models. The optimized system
did not converge on load flow and had transient stability problems. High-fidelity
mathematical models and accurate robust methods of solution are required for real
solutions to real problems and to avoid the dilemma of real solutions to nonreal
problems or nonsolutions to real world problems.

REFERENCES

1. PE Gill, W Murray, MH Wright. Practical Optimization. New York: Academic Press,

1984:
2. DG Lulenberger. Linear and Non-Linear Programming. Reading, MA: Addison Wesley,

1984.

3. RJ Vanderbei. Linear Programming: Foundations and Extensions, 2nd Edition. Boston:
Kluwar, 2001.

4. R Fletcher, MJD Powell. A rapidly Convergent Descent Method for Minimization. Comp
J 5(2): 163–168, 1962.

5. R Fletcher, CM Reeves. Function Minimization by Conjugate Gradients, Comp J 7(2):
149–153, 1964.

6. GB Dantzig. Linear Programming and Extensions. Princeton, NJ: Princeton University

Press, 1963.
7. E Yaahedi, HMZ E1-Din. Considerations in Applying Optimal Power Flow to Power

System Operation. IEEE Trans PAS 4(2): 694–703, 1989.

524 Chapter 15

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



16

Optimal Power Flow

In the load-flow problem, the system is analyzed in symmetrical steady state. The
specified variables are real and reactive power at PQ buses, real powers and voltages
at PV buses, and voltages and angles at slack buses. The reactive power injections
can also be determined, based on the upper and lower limits of the reactive power
control. However, this does not immediately lead to optimal operating conditions, as
infinitely variable choices exist in specifying a balanced steady-state load-flow situa-
tion.

The constraints on the control variables are not arbitrary, i.e., the power gen-
eration has to be within the constraints of load demand and transmission losses.
These demands and limits are commonly referred to as equality and inequality
constraints. There are wide range of control values for which these constraints
may be satisfied, and it is required to select a performance which will minimize or
maximize a desired performance index (Chap. 15).

16.1 OPTIMAL POWER FLOW

The optimal power flow (OPF) problem was defined in early 1960, in connection
with the economic dispatch of power [1]. Traditionally, the emphasis in performance
optimization has been on the cost of generation; however, this problem can become
fairly complex when the hourly commitment of units, hourly production of hydro-
electric plants, and cogeneration and scheduling of maintenance without violating
the needs for adequate reserve capacity are added. The OPF problem can be
described as the cost of minimization of real power generation in an interconnected
system where real and reactive power, transformer taps, and phase-shift angles are
controllable and a wide range of inequality constraints are imposed. It is a static
optimization problem of minute-by-minute operation. It is a nonlinear optimization
problem. In load flow we linearize the network equations in terms of given con-
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straints about an assumed starting point and then increment it with �, repeating the
process until the required tolerance is achieved. Today, any problem involving the
steady state of the system is referred as an OPF problem. The time span can vary
(Table 15-1). In the OPF problem, the basic definitions of state variable, control
vector, and input demand vector are retained. OPF requires solving a set of non-
linear equations, describing optimal operation of the power system:

Minimize Fð �xx; �uuÞ
with constraints gð �xx; �uuÞ ¼ 0

hð �xx; �uuÞ � 0

ð16:1Þ

where gðx; uÞ represent nonlinear equality constraints and power flow constraints,
and hðx; uÞ are nonlinear inequality constraints, limits on the control variables, and
the operating limits of the power system. Vector x contains dependent variables. The
vector u consists of control variables; Fðx; uÞ is a scalar objective function.

Constraints, controls, and objectives are listed in Table 16-1.

16.1.1 Handling Constraints

The constraints are converted into equality constraints by including slack variables
or including constraints at the binding limits. Let Bðx; uÞ be the binding constraint
set, comprising both equalities and enforced inequalities hðx; uÞ with umin � u � umax.
The Lagrangian function of Eq. (16.1) is then

�ð �xx; �uuÞ ¼ f ð �xx; �uuÞ þ �tBð �xx; �uuÞ ð16:2Þ

526 Chapter 16

Table 16-1 Constraints, Controls, and Objective Functions in OPF

Inequality and equality
constraints Controls Objectives

Power flow equations Real and reactive power Minimize generation cost
Limits on control variables generation Minimize transmission losses

Circuit loading active and Voltage profiles and Mvar Minimize control shifts
reactive generation at buses Minimize number of controls

Net area active and reactive LTC transformer tap rescheduled

power generation positions Optimize voltage profile
Active and reactive power Transformer phase shifts Minimize area active and

flow in a corridor Net interchange reactive power loss

Unit Mvar capability Synchronous condensers, Minimize shunt reactive power
Active and reactive reserve SVCs, capacitors, and compensation

limits reactor banks Minimize load shedding
Net active power export Load transfer Minimize air pollution

Bus voltage magnitudes HVDC line MW flows
and angle limits Load shedding

Spinning reserve Line switching

Contingency constraints Standby start-up units
Environmental and security

constraints

Dependent variables are all variables that are not control functions.
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The binding constraints cannot be definitely known beforehand and identification
during optimization becomes necessary. A back-off mechanism is necessary to free
inequality constraints if later on these become nonbinding.

Another approach is the penalty modeling, which penalizes the cost function if
the functional inequality constraint is violated. Its Lagrangian function is

�ð �xx; �uuÞ ¼ f ð �xx; �uuÞ þ �tBð �xx; �uuÞ þWð �xx; �uuÞ ð16:3Þ
where

Wð �xx; �uuÞ ¼
X
i

rih
2
i ð �xx; �uuÞ ð16:4Þ

where i is the violated constraint, ri is the penalty weight, and hiðx; uÞ is the ith
constraint. Kuhn–Tucker conditions should be met for the final x, u, and �.
Squaring the constraints increases the nonlinearilty and decreases the sparsity.

The augmented Langrangian function [2] is a convex function with suitable
values of � and is written as

�ð �xx; �uu; �; �Þ ¼ f ð �xx; �uuÞ � �tBð �xx; �uuÞ þ 1

2
�Bð �xx; �uuÞtBð �xx; �uuÞ ð16:5Þ

Where:

Bð �xx; �uuÞ ¼ 0

ðx; uÞmin � ðx; uÞ � ðx; uÞmax

ð16:6Þ

A large value of � may mask the objective function and a small value of � may make
the function concave. Thus, the augmented Lagrangian method minimizes Eq.
(16.5), subject to constraints, Eq. (16.6).

16.2 DECOUPLING REAL AND REACTIVE OPF

It was shown in Chap. 13 that the real and reactive subsets of variables and constraints
are weakly coupled. For high X=R systems, the effect of real power flow on voltage
magnitude and of reactive power flow on voltage phase-angle change is relatively
negligible. Thus, during a real power OPF subproblem, the reactive power control
variables are kept constant, and in reactive power OPF, the real power controls are
held constant at their previously set values [3]. A summary of control and constraints
of decoupled subproblem are shown in Table 16-2. The advantages are:

. Decoupling greatly improves computational efficiency.

. Different optimization techniques can be used.

. A different optimization cycle for each subproblem is possible.

Real power controls are set to optimize operating costs, while reactive power con-
trols are optimized to provide secure postcontingency voltage level or reactive power
dispatch. The solution method for the real and reactive power OPF subproblem can
be different. Figure 16-1 shows the flow chart for the decoupled solution.
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16.3 SOLUTION METHODS OF OPF

OPF methods can be broadly classified into two optimization techniques:

. Linear programming based methods

. Nonlinear programming based methods

Linear programming is reliable for solving specialized OPF problems characterized
by linear separable objectives. The nonlinear programming techniques are:

. Sequential quadratic programming

. Augmented Lagrangian methods

. Generalized reduced gradient methods

. Projected augmented Lagrangian

. Successive linear programming

. Interior point methods

The new projective scaling Karmarkar’s algorithm, see section 16.9, for linear pro-
gramming has the advantage of speed for large-scale problems by as much as 50:1
when compared to simplex methods. The variants of inheritor-point methods are
dual affine, barrier, and primal affine algorithm.

16.4 GENERATION SCHEDULING CONSIDERING TRANSMISSION
LOSSES

In Chap. 15, we considered optimizing generation, ignoring transmission losses.
Generation scheduling, considering transmission line losses can be investigated as
follows.

528 Chapter 16

Table 16-2 Controls and Constraints of Decoupled Active and Reactive Power OPF

OPF Constraints Controls

Active power OPF Network power flow MW generation
Bus voltage angles Transformer phase shifter positions
Circuit loading MW Area MW Interchange

MW branch flow HVDC line MW flows
MW reserve margins Load shedding
Area MW interchange Line Switching
MW flow on a corridor Load transfer

Limits on controls Fast start-up units
Reactive power OPF Network reactive power flow Generator voltages and Mvars

Bus voltage magnitude LTC tap positions

Mvar loading Capacitor, reactor, SVC synchronous
Unit Mvar capability condenser statuses
Area Mvar generation

Corridor Mvar flow
Mvar reserve margins
Limits on controls
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Figure 16-1 Decoupled optimal power flow.
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The total cost of generation is

C ¼
Xi¼k

i¼1

Ci ð16:7Þ

Total generation ¼ total demand plus total transmission losses. Therefore,

Xk
i¼1

PGi � PD � PL ¼ 0 ð16:8Þ

where k is the number of plants, PL is total transmission loss, and PD is the system
load. To minimize the cost solve for the Lagrangian as

� ¼
Xk
i¼1

C1 � �
Xk
i¼1

�PD � PL

" #
ð16:9Þ

The losses are a function of generation and the power demand is unpredictable; thus,
the power generation is the only control function.

@�

@PGi

¼ dCi

dPGi

� �þ �
@PL

@PGi

¼ 0 i ¼ 1; 2; . . . ; k ð16:10Þ

Rearranging:

� ¼ dCi

dPGi

Li i ¼ 1; 2; . . . ; k ð16:11Þ

Where

Li ¼
1

ð1� @PL=@PGiÞ
ð16:12Þ

is called the penalty factor of the ith plant. This implies that the minimum fuel cost is
obtained when the incremental fuel cost of each plant multiplied by its penalty factor
is the same for all the plants. The incremental transmission loss (ITL) associated with
the ith plant is defined as @PL=@PGI. Thus,

dCi

dPGi

¼ � 1� ðITLÞi
� � ð16:13Þ

This equation is referred to as the exact co-ordination equation.

16.4.1 General Loss Formula

The exact power flow equations should be used to account for transmission loss.
Commonly, the transmission loss is expressed in terms of active power generation
only. This is called the B-coefficient method. The transmission losses using B coeffi-
cients is given by

PL ¼
Xk
m¼1

Xk
n¼1

PGmBmnPGn ð16:14Þ

where PGm, PGn is the real power generation at m, n plants, and Bmn are loss coeffi-
cients, which are constant under certain assumed conditions.
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In matrix form:

�PPL ¼ �PPt
G
�BB �PPG ð16:15Þ

�PPG ¼

PG1

PG2

-

PGk

�����������

�����������
�BB ¼

B11 B12 � B1k

B21 B22 � B2k

� � � �
Bk1 Bk2 � Bkk

�����������

�����������
ð16:16Þ

The B coefficients are given by

Bmn ¼
cosð�m � �nÞ

jVmj jVnj cos �m cos�n

X
p

IpmIpnRp ð16:17Þ

where �m and �n are the phase angles of the generator currents at m and n with
respect to a common reference; cos�m and cos �n are the power factors of the load
currents at m and n plants, Ipm and Ipn are the current distribution factors, i.e., the
ratio of load current to total load current, and Rp is the resistance of the pth branch.

In order that Bmn do not vary with the load, the assumptions are:

. Ratios Ipm and Ipn remain constant.

. Voltage magnitudes remain constant.

. The power factor of loads does not change, i.e., the ratio of active to reactive
power remains the same.

. Voltage phase angles are constant.

From Eqs. (16.15) and (16.16), for a three-generator system the loss equation will be

PL ¼ B11P
2
1 þ B22P

2
2 þ B33P

2
3 þ 2B12P1P2 þ 2B13P1P3 þ 2B23P2P3 ð16:18Þ

Due to simplifying assumptions a more accurate expression for loss estimation may
be required. The loss equation based on bus impedance matrix and current vector is

�PPL þ j �QQL ¼ �II tbus �ZZbus
�II�bus

¼ �IIp þ j �IIq
� �t �RRþ j �XX

� �
�IIp � j �IIq
� � ð16:19Þ

Expanding and considering the real part only:

PL ¼ I tpRIp þ I tqRIq ð16:20Þ
The currents at a bus in terms of bus voltage and active and reactive power are:

Ipi ¼
1

jVij
Pi cos �i þQi sin �ið Þ ð16:21Þ

Iqi ¼
1

jVij
Pi sin �i �Qi cos �ið Þ ð16:22Þ

Substituting these current values into Eq. (16.20) and simplifying, the loss equation is

PL ¼
Xn
j¼1

Xn
k¼1

Rki cosð�i � �kÞ
jVkj jVij

PkPi þQkQið Þ þ Rki sinð�i � �kÞ
jVkj jVij

PkQi �QkPið Þ
	 


ð16:23Þ
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For small values of �k and �i, the second term of Eq. (16.23) can be ignored:

PL ¼
Xn
j¼1

Xn
k¼1

Rki cosð�i � �kÞ
jVkj jVij

PkPi þQkQið Þ
	 


ð16:24Þ

Equation (16.24) can be put in matrix form. Let:

Cki ¼
Rki cosð�i � �kÞ

jVkj jVij
ð16:25Þ

Dki ¼
Rki sinð�i � �kÞ

jVkj jVij
ð16:26Þ

then Eq. (16.24) is

Ploss ¼
Xn
k¼1

Xn
i¼1

PkCkiPi þQkCkiQi þ PkDkiQi �QkDkiPið Þ ð16:27Þ

or in matrix form:

Ploss ¼ P1;P2 . . . ;Pn Q1;Q2; . . . ;Qn

�� ��
C11 C12 � C1n D11 D12 � D1n

C21 C22 � C2n D21 D22 � D2n

� � � � � � � �
�D11 �D12 � D1n C11 C12 � C1n

�D21 �D22 � �D2n C21 C22 � C2n

� � � � � � � �
�Dn1 �Dn2 � Dnn Cn1 Cn2 � Cnn

�����������������

�����������������

P1

P2

�
Pn

Q1

Q2

�
Qn

�������������������

�������������������

ð16:28Þ

or in partitioned form:

�PPloss ¼ �PPl
�QQl

�� �� �CC �DD
� �DD �CC

����
���� �PP

�QQ

����
���� ð16:29Þ

where �DD is zero for the approximate loss equation.

16.4.2 Solution of Co-Ordination Equation

The solution of the co-ordination equation is an iterative process. For the nth plant:

dCn

dPn

þ �
@PL

@Pn

¼ � ð16:30Þ

As Cn is given by Eq. (15.25):

ðICÞn ¼
dCn

dPn

¼ anPn þ bn $=MWhr ð16:31Þ

From Eq. (16.14):

ðITLÞn ¼
@PL

@Pn

¼ 2
Xk
m¼1

PmBmn ð16:32Þ
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or

ðITLÞn ¼
@PL

@Pk

¼ 2
Xn
i¼1

CkiPi þDkiQið Þ ð16:33Þ

In the approximate form:

@PL

@Pk

¼ 2
Xn
i¼1

CkiPi ð16:34Þ

Thus, substituting in (16.31)

anPn þ bn þ 2�
Xk
m¼1

2BmnPm ¼ �

Pn ¼
1� bn

� �
Xk

m¼1m 6¼n

2BmnPm

an
� þ 2Bmn

ð16:35Þ

The iterative process is enumerated as follows:

1. Assume generation at all buses except the swing bus and calculate bus
power and voltages based on load flow.

2. Compute total power loss PL. Therefore, ITL can be computed based on
Eq. (16.33).

3. Estimate initial value of � and calculate P1;P2 . . . ;Pn based on equal
incremental cost.

4. Calculate generation at all buses; Eq. (16.34) or polynomial (15.26) can be
used.

5. Check for �P at all generator buses:

�P ¼
Xn
i¼1

Pk
Gi � PD � Pk

L

�����
����� � �1 ð16:36Þ

6. Is �P < �?
If no, update �. If yes, is the following inequality satisfied?

Pk
Gi � Pk�1

Gi � �2 ð16:37Þ
7. If no, advance iteration count by 1 to kþ 1.

The flow chart is shown in Fig. 16-2.

Example 16.1

Consider the two-generator of Example 15.4. These supply load through transmis-
sion lines as shown in Fig. 16-3. The line impedances are converted to a load base of
500 MVA for convenience. The power factor of the load is 0.9 lagging. From Eq.
(16.34) and ignoring coefficients Dki:

@PL

@P1

¼ 2 C11Pl þ C12P2Þ ¼ 2C11P1ð
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Figure 16-2 Flow chart: iterative generator scheduling considering transmission losses.
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where coefficient C12 represents the resistence component of the mutual coupling
between the lines. As we are not considering coupled lines, C12 ¼ 0: If the sending
end and receiving end voltages are all assumed as equal to the rated voltage and
�1 ¼ �2 ¼ 0, then

@PL

@P1

¼ 2C11P1 ¼ 2R11P1 ¼ 2� 0:005P1 ¼ 0:01P1

Similarly,

@PL

@P2

¼ 2C22P2 ¼ 2� 0:0065P2 ¼ 0:013P2

As an initial estimate, assume a value of �, as calculated for load sharing without
transmission line losses, as equal to 3.825. Set both �1 ¼ �2 ¼ 3:825 and calculate the
load sharing:

� ¼ �1
1

1� @PL=@P1

¼ �2
1

1� @PL=@P2

Here:

�1 ¼ 0:003ð500ÞP1 þ 3:3 ¼ 1:5P1 þ 3:3

�2 ¼ 0:005ð500ÞP2 þ 2:2 ¼ 2:5P2 þ 2:2

Thus:

3:825ð1� 0:01P1Þ ¼ 1:5P1 þ 3:3

3:825ð1� 0:013P2Þ ¼ 2:5P2 þ 2:2

This gives

P1 ¼ 0:341; P2 ¼ 0:6373; P1 þ P2 ¼ 0:9783

The sum of powers should be > 1:0, as some losses occur in transmission. The initial
value of � is low. Consider a demand of approximately 1.02 (2% losses) and adjust
the value of �. A value of 3.87 gives: P1 ¼ 0:37 ð¼ 185MW) and P2 ¼ 0:655
ð¼ 327:5MW). The total demand is, therefore, 1.025, representing 2.5% losses.

A load flow is now required with outputs of generator 1 and generator 2 limited
to the values calculated above. The load flow results give a load voltage of 0:983
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< �0:93� at the load bus, and a reactive power input of 156 and 106 Mvar, respec-
tively, from generators 1 and 2 (reactive power loss of 30 Mvar and an active power
loss of 3 MW, which is approximately 0.6%). Thus, the total system demand is
1.006. New values of loss coefficients and � values are found by the same procedure.

Practically, the generator scheduling considers the following constraints in the
optimization problem [4–7].

. System real power balance

. Spinning reserve requirements

. Unit generation limits

. State of the unit, i.e., it may be on or off

. Thermal unit minimum and maximum starting up/down times

. Ramp rate limits as the unit ramps up and down

. Fuel constraints

. System environmental (emission) limits, i.e., SO2 and NOx limits

. Area emission limits

In addition, the following reactive power limits are imposed:

. Reactive power operating reserve requirements

. Reactive power generation limits and load bus balance

. System voltage and transformer tap limits

16.5 STEEPEST GRADIENT METHOD

The independent variables are represented by u. These are the variables controlled
directly, say voltage on a PV bus or generation. Dependent, state, or basic variables,
which depend on the independent variables, are donated by x, i.e., the voltage and
angle on a PQ bus. Fixed, constant, or nonbasic variables may be in either of the
above two classes and have reached an upper or lower bound and are being held at
that bound, i.e., when the voltage on a PV bus hits its limit. These are donated by p.

The optimization problem can be stated as minimizations:

min cð �xx; �uuÞ
st

f ð �xx; �uu; �ppÞ ¼ 0

ð16:38Þ

Define the Lagrangian function:

�ð �xx; �uu; �ppÞ ¼ cð �xx; �uuÞ þ �T f ð �xx; �uu; �ppÞ ð16:39Þ
The conditions for minimization of the unconstrained Lagrangian function are

@�

@x
¼ @C

@x
þ @f

@x

	 
t
� ¼ 0 ð16:40Þ

@�

@u
¼ @C

@u
þ @f

@u

	 
t
� ¼ 0 ð16:41Þ

@�

@�
¼ f ð �xx; �uu; �ppÞ ¼ 0 ð16:42Þ
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Equation (16.42) is the same as the equality constraint, and @f =@x is the same as the
Jacobian in the Newton–Raphson method of load flow.

Equations (16.40)–(16.42) are nonlinear and can be solved by the steepest
gradient method. The control vector �uu is adjusted so as to move in the direction
of steepest descent. The computational procedure is as follows:

An initial guess of �uu is made, and a feasible load-flow solution is found. The
method iteratively improves the estimate of x:

�xxkþ1 ¼ �xxk þ ���x ð16:43Þ
where ���x is obtained by solving:

���X ¼ � JðXkÞ
h i�1

f ð �xxkÞ ð16:44Þ
Equation (16.40) is solved for �:

� ¼ � @f

@x

� �t	 
�1
@C

@x
ð16:45Þ

� is inserted into Eq. (16.41) and the gradient is calculated:

�rr� ¼ @C

@u
þ @f

@u

	 
t
� ð16:46Þ

if r� ! 0 is within the required tolerances, then the minimum is reached, otherwise
find a new set of variables:

�uunew ¼ �uuold þ ���u ð16:47Þ
where

���u ¼ �� �rr� ð16:48Þ
Here, �u is the step in the negative direction of the gradient. The choice of � in Eq.
(16.48) is important. The step length is optimized. Too small a value slows the rate of
convergence and too large a value may give rise to oscillations.

16.5.1 Adding Inequality Constraints on Control Variables

The control variables are assumed to be unconstrained in the above discussions.
Practically these will be constrained, i.e., generation has to be within certain upper
and lower bounds:

�uumin � �uu � �uumax ð16:49Þ
If �u in Eq. (16.48) causes ui to exceed one of the limits, then it is set corresponding
to that limit.

ui;new ¼ ui;max If ui;old þ�ui > ui;max

ui;new ¼ ui;min if ui;old þ�ui < ui;min

Otherwise ui;new ¼ ui;old þ�ui

ð16:50Þ

The conditions for minimizing � under constraint are (Chap. 15):

Optimal Power Flow 537

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



@�

@ui
¼ 0 if uimin < ui < ui;max

@�

@ui
� 0 if ui ¼ ui;max

@�

@ui
� 0 if ui < ui;min

ð16:51Þ

Thus, the gradient vector must satisfy the optimality constraints in Eq. (16.51)

16.5.2 Inequality Constraints on Dependent Variables

The limits on dependent variables are an upper and lower bound, e.g., on a PQ bus
the voltage may be specified within an upper and a lower limit. Such constraints can
be handled by the penalty function method (Chap. 15). The objective function is
augmented by penalties for the constraint violations. The modified objective func-
tion can be written as

C 0 ¼ Cð �xx; �uuÞ þ
X

Wj ð16:52Þ

where Wj is added for each violated constraint. A suitable penalty function is
described by

Wj ¼
Si

2
xj � xjmax

� �2
when xj > xjmax

Wj ¼
Si

2
xj � xjmin

� �2
when xj < xjmin

ð16:53Þ

The plot is shown in Fig. 16-4. This shows how the rigid bounds are replaced by soft
limits. The higher the value of Si, the more rigidly the function will be enforced [8].
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Figure 16-4 Penalty function; rigid and soft limits.
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16.6 OPF USING NEWTON’S METHOD

We will examine OPF using the Newton method, through an example [9,10].
Consider a four-bus system with the following variables:

. Voltage magnitudes V1;V2;V3, and V4

. Voltage phase angles �1; �2; �3, and �4

. Real power injections p1 and p2 from controllable generators 1 and 2

. t23 and t34, the tap ratios

The optimally ordered vector y for all variables is

�yyt ¼ p1; p2; t23; t34; �1; v1; �2; v2; �3; v3; �4; v4½ � ð16:54Þ
The objective function is the sum of cost functions of the active power outputs of the
generators:

F1ðyÞ ¼
1

2
G1p

2
1 þ b1p1 þ w1 ð16:55Þ

F2ðyÞ ¼
1

2
G2p

2
2 þ b2p2 þ w2 ð16:56Þ

FðyÞ ¼ F1ðyÞ þ F2ðyÞ ð16:57Þ
The inequality constraints are the upper and lower bounds on the following:

. Power outputs of generators 1 and 2

. Phase-shift angle

. Voltages of the four buses

. Tap ratios of two transformers

16.6.1 Functional Constraints

The functional constraints consist of equalities that are always active and inequalities
that are made active only when necessary to maintain feasibility. Real and active
power loads are examples of functional equality constraints that are always active.
The upper and lower bounds on the real and reactive power outputs of the genera-
tors are examples of functional inequality constraints that may be active or inactive.
The given equalities for buses 3 and 4 are

CPi ¼ PiðyÞ � Pi ð16:58Þ
CQi ¼ QiðyÞ � qi for i ¼ 3; 4 ð16:59Þ

where P is the real power mismatch, CQi is the reactive power mismatch, Pi is the
schedule real power load, and qi is the schedule reactive power load.

The real power injection at buses 1 and 2 is controlled. The sum of real power
flow at buses 1 and 2, including injections, is zero. The equations for this constraint
are

CPi ¼ PiðyÞ � Pi for i ¼ 1; 2 ð16:60Þ
The reactive power output of two generators is constrained:

qimin � QiðyÞ � qimax ð16:61Þ
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when QiðyÞ is feasible, the mismatch in Eq. (16.62) for CQi is made inactive. When
QiðyÞ needs to be enforced, CQi is made active:

CQi ¼ QiðyÞ � qi½ � ð16:62Þ

16.6.2 Lagrangian Function

The Lagrangian for any problem similar to the example can be written in the form:

� ¼ F �
X

�piCPi �
X

�qiCQi ð16:63Þ
where F is the objective function, �pi is the Lagrangian multiplier for CPi, and �qi is
the Lagrangian for CQi. Equation (16.63) implies active constraints for real and
reactive power injections.

The matrix equation of the linear system for minimizing the Lagrangian for
any OPF by Newton’s method is

�HHðy; �Þ � �JJT ðyÞ
� �JJðyÞ �00

�����
�����

���y

����

�����
����� ¼

� �ggðyÞ
� �ggð�Þ

�����
����� ð16:64Þ

where Hðy; �Þ is the Hessian matrix, JðyÞ is the Jacobian matrix, �ggðyÞ is the gradient
wrt y, and gð�Þ is the gradient wrt �.

Equation (16.64) can be written as

�WW�z ¼ � �gg ð16:65Þ
The diagonal and upper triangle of the symmetric W matrix is shown in Fig. 16-5,
when all bus mismatch constraints are active. Some explanations are: (1) the row and
columns for ��l is inactive as bus 1 is a swing bus, (2) reactive power injections at
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Figure 16-5 Optimal load flow: matrix W .
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buses 1 and 2 can take any value, and, thus, (3) row/column ��q1 and ��q2 are
inactive.

Gradient vector g is composed of first derivatives of the form @�=@yi or @�=@�i.
As an example:

@�

@P2

¼ @

@P2

F2 � �p2CF2

� � ð16:66Þ

¼ @

@P2

1

2
G2P

2
2 þ b2p2 þ w2 � �ðp2ðyÞ � p2Þ

	 

ð16:67Þ

¼ G2p2 þ b2 þ �p2

and

@�

@�2
¼ @

@�2
��piCPi � �qiCQi � �p2CP2i � �q2CQ2

� � ð16:68Þ

The Jacobian matrix is dispersed throughout the matrix W. Its elements are

@2�

@yi@�j
¼ @2�

@�j@yi
ð16:69Þ

where Yi could be �1; vi; tij, or pi, and �j can be �pi or �qi. These second-order partial
derivatives are also first partial derivatives of the form:

@Pi

@�i
¼ @Qi

@vi
ð16:70Þ

These are elements of the Jacobian matrix J.

16.6.3 The Hessian Matrix

Each element of H is a second-order partial derivative of the form:

@2�

@yi@yj
¼ @2�

@yj@yi
ð16:71Þ

The elements of the Hessian for the example objective function are

@2F1

@p21
¼ G1

@2F1

@p@�p1
¼ 1

@2F1

@p22
¼ G2

@2F1

@p1@�p2
¼ G1

ð16:72Þ

Other elements of H are sums of several second partial derivatives, i.e.,

@2�

@�2@v4
¼ ��p2

@2CP2

@�2@v4
� �q2

@2CQ2

@�2@v4
� �p4

@2CP4

@�2@v4
� �q4

@2CQ4

@�2@v4
ð16:73Þ
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The representative blocks 3� 3 of the matrix W in Fig. 16-5 are

@2L
@�23

@2L
@�3@v3

�@2L
@�3@�p3

@2L
@�3@�q3

0 @2L
@v23

�@2L
@v3@�p3

�@2L
@v3@�q3

0 0 0 0

0 0 0 0

�������������

�������������
ð16:74Þ

and block 3� 4 is

@2L
@�3@�4

@2L
@�3@v4

�@2L
@�3@�p4

�@2L
@�3@�q4

@2L
@v3@�4

@2L
@v3@v4

�@2L
@v3@�p3

�@2L
@v3@�q4

�@2L
@�p3@�4

�@2L
@�p3@v4

0 0

�@2L
@�q3@�4

�@2L
@�q3@v4

0 0

����������������

����������������

ð16:75Þ

16.6.4 The Active Set

The active set are the variables that must be enforced for a solution. This set includes
unconditional variables and the functions that would violate the constraints if the
bounds were not enforced. The following variables are enforced unconditionally:

�1 ¼ 0

Power mismatch equations for buses 3 and 4, i.e., CPi and CQi;
The mismatch equations for controllable real power, Eq. (16.60).
The values of the following variables and functions have inequality constraints:
Variables that will violate their bounds, p1; p2; t23; t34, and all bus voltages;
Mismatch equations for reactive power, where reactive power injections would
violate one of their bounds. In this case, CQ1 and CQ2.

16.6.5 Penalty Techniques

A penalty can be modeled as a fictitious controllable quadratic function, aimed at
increasing the optimized cost if the constraint is violated. A penalty is added when a
lower or upper bound is violated. If the penalty function is added to � and taken into
account for evaluation of �WW and �gg, it effectively becomes a part of the objective
function and creates a high cost of departure of the variable in the solution
�WW�z ¼ � �gg. For large values of Si the function will be forced close to its bound.

To modify W and g, the first and second derivatives of the function are computed, in
a similar way to the other function in F :

dEyi
dyi

¼ Si y
0
i � �yyi

� �
d2Eyi

d2yi
¼ Si

ð16:76Þ
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where �yy1 is the upper bound and y01 is the current value of y1. The first derivative is
added to @�=@y1 of g and the second derivative to @2�=@y12. It is assumed that �WW and
�gg are not factorized. However, practically, �WW will be factorized and its factors must
be modified to reflect addition of penalties. The imposition of a penalty on a variable
then requires a change in factors to reflect a change in one diagonal element of �WW ; �gg
must also be modified. When a penalty is added or removed by modifying factors of
�WW , this effects irritative correction of the variable Si, depending on the computer

word size. The larger the value of Si, the more accurate the enforcement of the
penalty.

To test whether a penalty is still needed, it is only necessary to test the sign for
its Lagrange multiplier �:

�i ¼ �Si yi � �yyið Þ ð16:77Þ

If �yyI is the upper bound and � < 0 or if �yyi is the lower bound and � is > 0, the
penalty is still needed. Otherwise it can be removed.

16.6.6 Selecting Active Set

The problem is to find a good active set for solving:

�WWk�zkþ1 ¼ � �ggk ð16:78Þ

An active set which is correct at zk may be wrong at zkþ1, because some inequality
constraints will be violated and some enforced inequality constraints will not be
necessary. The active set has to be adjusted in the iteration process until an optimum
is found.

16.6.7 Algorithm for the Coupled Newton OPF

Initialize:

Vector �zz of variables y and Lagrange multipliers � are given initial values; �pi can be
set equal to unity and �qi equal to zero. All other variables can have initial values as
in a load flow program.
Select active set;
Evaluate gk;
Test for optimum, if all the following conditions are satisfied:

. �ggk ¼ 0

. �i and �i for all inequalities pass the sign test

. The system is feasible

If all these conditions are satisfied, the optimum has been reached. Exit.
Primary iteration. Evaluate and factorize WðzkÞ.
Solve:

�WWðzkÞ�zk þ 1 ¼ � �ggðzkÞ ð16:79Þ
Compute new state. The flow chart is shown in Fig. 16-6.

Some of the characteristics of this method are:
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. Each iteration is a solution for the minimum of a quadratic approximation
of the Lagrangian function.

. Corrections in variables and Lagrangian multipliers that minimize the suc-
cessive quadratic approximations are obtained in one simultaneous solu-
tion of the sparse linear matrix equation.

. All variables (control, state, or bounded) are processed identically.

. Penalty techniques are used to activate and deactivate the inequality con-
straints. The use of penalties is efficient and accuracy is not sacrificed.

. Solution speed is proportional to network size and is not much affected by
the number of free variables or inequality constraints.

544 Chapter 16

Figure 16-6 Flow chart of Newton method: optimal power flow.
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16.7 SUCCESSIVE QUADRATIC PROGRAMMING

The method solves the problem of Eqs (16.1) by repeatedly solving a quadratic
programming approximation, which is a special case of nonlinear programming
[11,12]. The objective function is quadratic and the constraints are linear (Chap. 15).
The objective function f ðx; uÞ is replaced by a quadratic approximation:

qkð �DDÞ ¼ rf ð �xx; �uuÞk �DDþ 1

2
�DDtr2� ð �xx; �kkÞk; �k

h i
�DD ð16:80Þ

The step Dk is calculated by solving the quadratic programming subproblem:

min qkð �DDÞ
st

Gð �xx; �uuÞk þ Jð �xx; �uuÞk �DD ¼ 0

Hð �xx; �uuÞk þ Ið �xx; �uuÞk �DD ¼ 0

ð16:81Þ

where J and I are the Jacobian matrices corresponding to constraints G and H. The
Hessian of the Lagrangian appearing in Eq. (16.80) is calculated using quasi-Newton
approximation (computation of the Hessian in the Newton method is time consum-
ing. Quasi-Newton methods provide an approximation of the Hessian at point k,
using the gradient information from the previous iterations.) After Dk is computed
by solving Eq. (16.81), ðx; uÞ is updated using:

ð �xx; �uuÞkþ1 ¼ ð �xx; �uuÞk þ �k �DDk ð16:82Þ
where �k is the step length. Ascertaining the step length in constrained systems must
be chosen to minimize the objective function as well as to constrain violations.

16.8 SUCCESSIVE LINEAR PROGRAMMING

Successive linear programming (LP) can accommodate all types of constraints quite
easily and offers flexibility, speed, and accuracy for specific applications. The
approach uses linearized programming solved by using different variants of the
Simplex method. The dual relaxation method and primal method upper bounds
are more successfully implemented.

The primal approach tries to obtain an initial value of the objective function
based on all the constraints and then modify the objective function by sequentially
exchanging constraints on limits with those not on limits. The dual relaxation
method finds an initial value of the objective function, which optimally satisfies n
number of control variables. It then satisfies the remaining violated constraints by
relaxing some binding constraints [13]. The method has simpler, less time-consuming
initialization and can detect infeasibility at an early stage of the optimization pro-
cess, when only a few of the constraints are considered binding in the solution.

Figure 16-7 shows the flow chart [14]. The method allows one critical violated
constraint into tableau form at each step. One of the existing binding constraints
must leave the basis. The currently violated constraint may enter the basis arbitra-
rily; however, the constraint to leave the basis must be optimally selected.
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The constraints in the basis are tested for eligibility. This test is the sensitivity
between the incoming constraint and existing binding constraint k:

Sk ¼
�rin
�rk

ð16:83Þ

where �rin is the amount by which the violating branch flow or generation will be
corrected by entering its constraint into the basis, and �rk is the amount by which
existing binding constraint k will change when freed. Constraint k is eligible if:

. If this constraint and the incoming constraint are both on the upper or lower
limit and Sk is positive.

. If both the constraints are on the opposite limits and Sk is negative.
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Figure 16-7 Flow chart: dual relaxation method.
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The ratio test involving the incremental cost yk of each binding constraint is
stated as follows:

The binding constraint to be freed from the basis amongst all the eligible con-
straints is the one for which:

yk
Sk

����
���� ¼ minimum ð16:84Þ

If no eligible constraints are found, the problem is infeasible.

16.9 INTERIOR POINT METHODS AND VARIANTS

In 1984, N. K. Karmarkar [15] announced the polynomially bounded algorithm,
which was claimed to be 50 times faster than the simplex algorithm. Consider the LP
problem defined as

min �ccT �xx

st �AA �xx ¼ �bb

�xx � 0

ð16:85Þ

where �cc and �xx are n-dimensional column vectors, �bb is an m-dimensional vector, and �AA
is an m� n matrix of rank m, n � m. The conventional simplex method requires 2n

iterations to find the solution. The polynomial–time algorithm is defined as an
aligrothm that solves the LP problem in OðnÞ steps. The problem of Eq. (16.85) is
translated into

min �ccT �xx

st �AA �xx ¼ 0

�eeT �xx ¼ 1

�xx � 0

ð16:86Þ

where n � 2, �ee ¼ ð1; 1; . . . ; 1Þt and the following holds:

. The point x0 ¼ ð1=n; 1=n; . . . ; 1=nÞt is feasible in Eq. (16.86)

. The objective value of Eq. (16.86) ¼ 0

. Matrix �AA has full rank of m.

The solution is based on projective transformations followed by optimization
over an inscribed sphere, which creates a sequence of points converging in polyno-
mial time. A projective transformation maps a polytope P � Rn and a strictly inter-
ior point a 2 P into another polytope P 0 and a point a 0 2 P 0. The ratio of the radius
of the largest sphere contained in P 0 with the same center a 0 is OðnÞ. The method is
commonly called an interior point (IP) method due to the path it follows during
solution. The number of iterations required are not dependent on the system size.

We noted in Chap. 15 that, in the Simplex method, we go from one extreme
point to another extreme point (Example 15.8). Figure 16-8 shows a comparison of
the two methods. The Simplex method solves an LP problem, starting with one
extreme point on the boundary of the feasible region and then goes to a better
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neighboring extreme point along the boundary, finally stopping at the optimum
extreme point. The IP method stays in the interior of the polytope.

16.9.1 Karmarkar Interior Point Algorithm

The algorithm creates a sequence of points x0; x1; . . . ; xk in the following steps:

1. Let x0 ¼ center of simplex.
2. Compute next point xkþ1 ¼ hðxkÞ: Function � ¼ hðaÞ is defined by the

following steps:
3. Let �DD ¼ diagða1; a2; . . . ; anÞ be the diagonal matrix.
4. Augment AD with rows of 1s:

�BB ¼ �AA �DD
�eeT

����
����

5. Compute orthogonal projection of Dc into the null space of B:

�ccp ¼ 1� �BBT �BBBT
� ��1 �BB

h i
�DDc

6. The unit vector in the direction of �ccp is

�ccu ¼
�ccp
jcpj

7. Take a step of length !r in the direction of cu:

Z ¼ a� !rcu where r ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðn� 1Þp

8. Apply reverse protective transformation to z:

� ¼
�DD �zz

�eeT �DD �zz

Return � to xkþ1:

The potential function is defined as:

f ð �xxÞ ¼
Xn
i¼1

ln
ctx

xi

� �
ð16:87Þ
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Figure 16-8 Iterations in Simplex and interior point method.
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16.9.1.1 Check for Infeasibility

There should be certain improvement in the potential function at each step. If the
improvement is not achieved it can be concluded that the objective function must be
positive. This forms a test of the feasibility.

16.9.1.2 Check for Optimality

The check involves going from the current IP to an extreme point without increasing
the value of the objective function, and testing the extreme point for optimality. The
check is carried out periodically.

It can be shown that in O½nðqþ log nÞ� steps a feasible point x is found such
that

�cct �xx ¼ 0 or
�cct �xx

�ccta0
� 2�q where a0 ¼ ð1=nÞ �ee ð16:88Þ

16.9.2 Barrier Methods

One year after Karmarkar announced his method, Gill et al. presented an algorithm
based on projected Newton logarithmic barrier methods [16]. Gill’s work [17]
showed that Karmarkar work can be viewed as a special case of a barrier-function
method for solving nonlinear programming problems. One drawback of the
Karmarkar algorithm is that it does not generate dual solutions, which are of eco-
nomic significance. Todd’s work [18], an extension of Karmarkar’s algorithm, gen-
erates primal and dual solutions with objective values converging to a common
optimal primal and dual value. Barrier-function methods treat inequality constraints
by creating a barrier function, which is a combination of original objective function
and weighted sum of functions with positive singularity at the boundary. As the
weight assigned to the singularities approaches zero, the minimum of barrier func-
tion approaches the minimum of original function.

The following are variants of Karmarkar’s IP method:

. Projective scaling methods

. Primal and dual affine methods [19]

. Barrier methods

. Extended quadratic programming using IP

16.9.3 Primal–Dual IP Method

The algorithms based on Karmarkar’s projective method have polynomial–time
complexity requiring OðnLÞ iterations. These algorithms do not appear to perform
well in practice. The algorithms based on dual affine scaling methods exhibit good
behavior to real world problems. Most primal–dual barrier path following methods
have been shown to require Oð ffiffiffi

n
p

LÞ iterations at the most. We will discuss a primal –
dual IP method for linear programming [20,21].

The algorithm is based on:
. Newton method for solving nonlinear equations.
. Lagrange method for optimization with inequality constraints.
. Fiacco and McCormick barrier method for optimization with inequality

constraints.
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Consider an LP problem [Eq. (16.1)], and let it be a primal problem. The dual
problem is

max �bbt �yy

st �AAt �yyþ �zz ¼ �cc

�zz � 0

ð16:89Þ

First Lagranges are formed with barriers:

�pð �xx; �yyÞ ¼ �cct �xx� �
Xn
j¼1

lnðxjÞ � ytð �AA �xx� �bbÞ

�pð �xx; �yy; �zzÞ ¼ �bbt �yy� �
Xn
j¼1

lnðzjÞ � �xxT ð �AAt �yyþ �zz� �ccÞ
ð16:90Þ

The first-order necessary conditions for (16.90) are:

�AA �xx ¼ �bb (primal feasibility)

�AAt �yyþ �zz ¼ �cc (dual feasibility)

xjzj ¼ � for j ¼ 1; 2; . . . ; n

ð16:91Þ

If � ¼ 0, then the last expression in Eq. (16.91) corresponds to ordinary com-
plimentary slackness. In barrier methods, � starts at some positive value and
approaches zero, as xð�Þ ! x� (the constrained minima). Using Newton’s method
to solve Eq. (16.91), we have

�AA ���x ¼ �bb� �AAx0 ¼ d �PP

�AAt ���yþ ���z ¼ �cc� �zz0 � �AAty0 ¼ �d �DD

�ZZ ���xþ �XX ���z ¼ � �ee� �XX �ZZ �ee

ð16:92Þ

where:
�XX ¼ diag x01; . . . ; x

0
n

� �
�ZZ ¼ diag z01; . . . ; z

0
n

� �
�eet ¼ 1; 1; . . . ; 1ð Þ

ð16:93Þ

From Eq. (16.92) the following equations are obtained:

���y ¼ �AA �ZZ�1 �XX �AAt
� ��1 �bb� � �AA �ZZ�1 �ee� �AA �ZZ�1 �XXd �DD

� �
���z ¼ �d �DD� �AAt ���y

���x ¼ �ZZ�1 � �ee� �XX �ZZ �ee� �XX ���z
� � ð16:94Þ

x, y, and z are then updated:

x1 ¼ x0 þ �p�x

y1 ¼ y0 þ �d�y

z1 ¼ z0 þ �d�z

ð16:95Þ
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where �p and �d are step sizes for primal and dual variables, chosen to preserve x > 0
and z > 0.

This completes one iteration. Instead of taking several steps to converge for a
fixed value of �, � is reduced from step to step. Monteriro and Adler [24] proposed a
scheme for updating �, as follows:

�kþ1 ¼ �k 1� tffiffiffi
n

p
� �

0 < t <
ffiffiffi
n

p ð16:96Þ

and proved that convergence is obtained in a maximum of Oð ffiffiffi
n

p Þ iterations. The
convergence criteria is

�cct �xx� �bbt �yy

1þ j �bbt �yyj < � ð16:97Þ

16.10 SECURITY AND ENVIRONMENTAL CONSTRAINED OPF

Security constrained OPF, written as SCOPF for abbreviation, considers outage of
certain equipment or transmission lines [22,23]. The security constraints were intro-
duced in early 1970 and on-line implementation became a new challenge. In conven-
tional OPF, the insecurity of the system during contingency operations is not
addressed. Traditionally, security has relied on preventive control, i.e., the current-
operating point is feasible in the event of occurrence of a given subset of the set at all
possible contingencies. This means that the base case variables are adjusted to satisfy
postcontingency constraints, which can be added to Eq. (16.1):

min f ð �zzÞ
st gð �zzÞ ¼ 0

hð �zzÞ ¼ 0

�i �uui � �uu0ð Þ � �i

ð16:98Þ

Here, f ð �zzÞ ¼ f ð �xx; �uuÞ and the last constraint, called the coupling constraint, reflects the
rate of change in the control variables of the base case. �i is the vector of upper
bounds reflecting ramp-rate limits. Without the coupling constraints, the problem is
separable into N þ 1 subproblems.

The environmental constraints are implemented. The Clean Air Act requires
utilities to reduce SO2 and NOx emissions. These are expressed as separable quad-
ratic functions of the real power output of individual generating units.

The environmental constraints eðZÞ � 0 can be added to Eqs (16.98). This
makes the problem of SCOPF rather difficult to solve by conventional methods,
and decomposition strategies are used in the solution of OPF. Talukdar–Giras
Decomposition [17] is an extension of the sequential programming method.
Benders decomposition [19] is a variable partitioning method, where certain vari-
ables are held fixed while the others are being solved. The values of the complicating
variables are adjusted by the master problem, which contains the basic set and a
subproblem which has the extended OPF problem. Iterations between the master
problem and subproblem continue until the original problem is solved. References 24
& 33 provide further reading.
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Table 16-3, adapted from Ref. 23, shows various levels of SCOPF. References
24 to 33 provide further reading.
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17

Harmonics Generation

Harmonics in power systems can be studied under five distinct sections:

. Generation of harmonics

. Effects of harmonics

. Harmonic propagation, modeling, and analysis

. Mitigation of harmonics, passive and active filters

. Measurements of harmonics (not covered in this book)

Harmonics cause distortions of the voltage and current waveforms, which have
adverse effects on electrical equipment. Harmonics are one of the major power
quality concerns. The estimation of harmonics from nonlinear loads is the first
step in a harmonic analysis and this may not be straightforward. There is an inter-
action between the harmonic producing equipment, which can have varied topolo-
gies, and the electrical system. Over the course of recent years, much attention has
been focused on the analysis and control of harmonics, and standards have been
established for permissible harmonic current and voltage distortions.

In this chapter, we will discuss the nature of harmonics and their generation by
electrical equipment. Harmonics’ emission can have varied amplitudes and frequen-
cies. The most common harmonics in power systems are sinusoidal components of a
periodic waveform that have frequencies which can be resolved into some multiples
of the fundamental frequency. Fourier analysis is the mathematical tool employed
for such analysis, and Appendix E provides an overview. It is recommended that the
reader becomes familiarized with Fourier analysis before proceeding with the subject
of harmonics. Power systems also have harmonics that are noninteger multiples of
the fundamental frequency and have aperiodic waveforms. The generation of har-
monics in power system occurs from two distinct types of loads:
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1. Linear time-invariant loads are characterized so that an application of a
sinusoidal voltage results in a sinusoidal flow of current. These loads display a
constant steady-state impedance during the applied sinusoidal voltage. If the voltage
is increased, the current also increases in direct proportion. Incandescent lighting is
an example of such a load. Transformers and rotating machines, under normal
loading conditions, approximately meet this definition, though the flux wave in
the air gap of a rotating machine is not sinusoidal. Tooth ripples and slotting may
produce forward and reverse rotating harmonics. Magnetic circuits can saturate and
generate harmonics. As an example, saturation in a transformer on abnormally high
voltage produces harmonics, as the relationship between magnetic flux density B and
the magnetic field intensity H in the transformer core is not linear. The inrush
current of a transformer contains odd and even harmonics, including a dc compo-
nent. Yet, under normal operating conditions these effects are small. Synchronous
generators in power systems produce sinusoidal voltages and the loads draw nearly
sinusoidal currents. The harmonic pollution produced, due to these load types, for
applied sinusoidal voltages is small.

2. The second category of loads is described as nonlinear. In a nonlinear
device, the application of a sinusoidal voltage does not result in a sinusoidal flow
of current. These loads do not exhibit a constant impedance during the entire cycle of
applied sinusoidal voltage. Nonlinearity is not the same as the frequency dependence of
impedance, i.e., the impedance of a reactor changes in proportion to the applied
frequency, but it is linear at each applied frequency. On the other hand, nonlinear
loads draw a current that may even be discontinuous, or flow in pulses for a part of
the sinusoidal voltage cycle. Some examples of nonlinear loads are:

. Adjustable drive systems

. Cycloconverters

. Arc furnaces

. Switching mode power supplies

. Computers, copy machines, and television sets

. Static var compensators (SVCs)

. HVDC transmission

. Electric traction

. Wind and solar power generation

. Battery charging and fuel cells

. Slip recovery schemes of induction motors

. Fluorescent lighting and electronic ballasts

The distortion produced by nonlinear loads can be resolved into a number of
categories:

. A distorted waveform having a Fourier series with fundamental frequency
equal to power system frequency, and a periodic steady state exists. This
is the most common case in harmonic studies.

. A distorted waveform having a submultiple of power system frequency, and
a periodic steady state exists. Certain types of pulsed loads and integral
cycle controllers produce these types of waveforms.

. The waveform is aperiodic, but perhaps almost periodic. A trigonometric
series expansion may still exist. Examples are arcing devices, e.g., arc
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furnaces, and fluorescent, mercury, and sodium vapor lighting. The pro-
cess is not periodic in nature, and a periodic waveform is obtained if the
conditions of operation are kept constant for a length of time.

The components in a Fourier series which are not an integral multiple of the power
frequency are called noninteger harmonics.

The arc furnace loads are highly polluting and cause phase unbalance, flicker,
impact loading, harmonics, and resonance, and may give rise to torsional vibrations
in rotating equipment.

17.1 HARMONICS AND SEQUENCE COMPONENTS

In a three-phase balanced system under nonsinusoidal conditions, the hth-order
harmonic voltage (or current) can be expressed as

Vah ¼ Vh sin h!0tþ �hð Þ ð17:1Þ
Vbh ¼ Vh sin h!0t� 2h�=3þ �hð Þ ð17:2Þ
Vch ¼ Vh sin h!0tþ 2h�=3þ �hð Þ ð17:3Þ

Under balanced conditions, the hth harmonic (frequency of harmonic ¼ h times the
fundamental frequency) of phase b lags h times 120� behind that of the same har-
monic in phase a. The hth harmonic of phase c lags h times 240� behind that of the
same harmonic in phase a. In the case of triplen harmonics, shifting the phase angles
by three times 120� or three times 240� results in cophasial vectors. Table 17-1 shows
the sequence of harmonics, and the pattern is clearly positive–negative–zero. We can
write:

Harmonics of the order 3hþ 1 have positive sequence ð17:4Þ
Harmonics of the order 3hþ 2 have negative sequence ð17:5Þ
and harmonics of the order 3h are of zero sequence ð17:6Þ
All triplen harmonics generated by nonlinear loads are zero sequence phasors.

These add up in the neutral. In a three-phase four-wire system, with perfectly
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Table 17-1 Sequence of Harmonics

Harmonic order Sequence of the harmonic

1 þ
2 �
3 0
4 þ
5 �
6 0
7 þ
8 �
9 0
10,11,12 þ;�; 0
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balanced single-phase loads between the phase and neutral, all positive and negative
sequence harmonics will cancel out leaving only the zero sequence harmonics. In an
unbalanced single-phase load, the neutral carries zero sequence and the residual
unbalance of positive and negative sequence currents. Even harmonics are absent
in the line because of phase symmetry (Appendix E) and unsymmetrical waveforms
will add even harmonics to the phase conductors.

17.2 INCREASE IN NONLINEAR LOADS

Nonlinear loads are continually on the increase. It is estimated that, during the next
10 years, 60% of the loads on utility systems will be nonlinear. Concerns for harmo-
nics originate from meeting a certain power quality, which leads to the related issues
of (1) effects on the operation of electrical equipment, (2) harmonic analysis, and (3)
harmonic control. A growing number of consumer loads are sensitive to poor power
quality and it is estimated that power quality problems cost U.S. industry tens of
billion of dollars per year. While the expanded use of consumer automation equip-
ment, and power electronic controls is leading to higher productivity, these very loads
are a source of electrical noise, and harmonics and are less tolerant to poor power
quality. For example, ASDs (adjustable speed drives) are less tolerant to voltage sags
and swells, and a voltage dip of 10% of certain duration may precipitate a shutdown.

17.3 HARMONIC FACTOR

An index of merit has been defined as a harmonic distortion factor [1] (harmonic
factor). It is the ratio of the root-mean square of the harmonic content to the root-
mean square value of the fundamental quantity, expressed as a percentage of the
fundamental:

DF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

of squares of amplitudes of all harmonics

square of the amplitude of the fundamental

s
� 100% ð17:7Þ

Voltage and current harmonic distortion indexes, defined in Appendix F, are the
most commonly used indexes. THD (total harmonic distortion) in common use is the
same as DF.

17.4 THREE-PHASE WINDINGS IN ELECTRICAL MACHINES

The armature windings of a machine consist of phase coils which span approxi-
mately a pole-pitch. A phase winding consists of a number of coils connected in
series, and the emf generated in these coils is time displaced in phase by a certain
angle. The air gap is bounded on either side by iron surfaces and provided with slots
and duct openings and is skewed. Simple methods of estimating the reluctance of the
gap to carry a certain flux across the gap are not applicable and the flux density in
the air gap is not sinusoidal. Figure 17-1 shows that armature reaction varies
between a pointed and flat-topped trapezium for a phase spread of �=3. Fourier
analysis of the pointed waveform in Fig.17-1 gives

F ¼ 4

�
Fm cos!t

Xn¼1

n¼1

1

n
kmn sin nx

" #
ð17:8Þ
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where kmn is a winding distribution factor, depending on the cording and phase
spread.

The mmfs of three phases will be given by considering the time displacement of
currents and space displacement of axes as:

Ft ¼
4

�
Fm cos!t

Xn¼1

n¼1

1

n
kmn sin nx

" #
þ 4

�
Fm cos !t� 2

3
�

� �
�

Xn¼1

n¼1

1

n
kmn sin n x� 2

3
�

� �" #

þ 4

�
Fm cos !t� 4

3
�

� � Xn¼1

n¼1

1

n
kmn sin n x� 4

3
�

� �" #
ð17:9Þ

This gives:

Ft ¼
6

�
Fm Fmi sinðx� !tÞ þ 1

5
km5 sinð5x� !tÞ � 1

7
km7 sinð7x� !tÞ þ � � �

	 

ð17:10Þ

where km5 and km6 are harmonic winding factors.
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Figure 17-1 Armature reaction of a three-phase winding spanning a pole pitch.
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The mmf has a constant fundamental, and harmonics of the order of 5, 7, 11,
13 . . . or 6m� 1, where m is any positive integer. The third harmonic and its multi-
ples (triplen harmonics) are absent, though in practice some triplen harmonics are
produced. The harmonic flux components are affected by phase spread, fractional
slotting, and coil span.

17.5 TOOTH RIPPLES IN ELECTRICAL MACHINES

Tooth ripples in electrical machinery are produced by slotting as these affect air-gap
permeance. Figure 17-2 shows ripples in the air-gap flux distribution (exaggerated)
because of variation in gap permeance. The frequency of flux pulsations correspond
to the rate at which slots cross the pole face, i.e., it is given by 2gf , where g is the
number of slots per pole and f is the system frequency. This stationary pulsation
may be regarded as two waves of fundamental space distribution rotating at angular
velocity 2g! in forward and backward directions. The component fields will have
velocities of ð2g� 1Þ! relative to the armature winding and will generate harmonic
emfs of frequencies ð2g� 1Þf cycles per second. However, this is not the main source
of tooth ripples. Since the ripples are due to slotting, these do not move with respect
to conductors. Therefore, these cannot generate an emf of pulsation. With respect to
the rotor the flux waves have a relative velocity of 2g! and generate emfs of 2gf
frequency. Such currents superimpose an mmf variation of 2gf on the resultant pole
mmf. These can be again resolved into forward and backward moving components
with respect to the rotor, and ð2g� 1Þ! with respect to the stator. Thus, stator emfs
at frequencies ð2g� 1Þf are generated, which are the principal tooth ripples.
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Figure 17-2 Gap flux distribution due to tooth ripples.
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17.6 SYNCHRONOUS GENERATORS

The terminal voltage wave of synchronous generators must meet the requirements of
NEMA, which states that the deviation factor of the open line-to-line terminal
voltage of the generator shall not exceed 0.1.

Figure 17-3 shows a plot of a hypothetical generated wave, superimposed on a
sinusoid, and the deviation factor is defined as

FDEV ¼ �E

EOM

ð17:11Þ

where EOM is calculated from a number of samples of instantaneous values:

EOM ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

J

XJ
j¼1

E2
j

vuut ð17:12Þ

The deviation from a sinusoid is very small.
Generator neutrals have predominant third harmonic voltages. In a wye-con-

nected generator, with the neutral grounded through high impedance, the third
harmonic voltage for a ground fault increases toward the neutral, while the funda-
mental frequency voltage decreases. The third harmonic voltages at line and neutral
can vary considerably with load.

17.7 TRANSFORMERS

Harmonics in transformers originate as a result of saturation, switching, high-flux
densities, and winding connections. The following summarizes the main factors with
respect to harmonic generation:

1. For economy in design and manufacture, transformers are operated close
to the knee point of saturation characteristics of magnetic materials. Figure 17-4
shows a B–H curve and the magnetizing current waveform. A sinusoidal flux wave,
required by sinusoidal applied voltage, demands a magnetizing current with a
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Figure 17-3 Measurements of deviation factor of a generator voltage.
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harmonic content. Conversely, with a sinusoidal magnetizing current, the induced
emf is peaky and the flux is flat topped.

An explanation of the generation of the peaky magnetizing current considering
the third harmonic is provided in Fig. 17-5. A sinusoidal emf Ea generates a sinu-
soidal current flow, Ia, in lagging phase quadrature with Ea. This sets up a flat-
topped flux wave, �1, which can be resolved into two components: �a the funda-
mental flux wave, and �3 the third harmonic flux wave (higher harmonics are
neglected). The third harmonic flux can be supposed to produce a third harmonic
emf E3 and a corresponding third harmonic current I3, which when summed with Ia
makes the total current peaky.
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Figure 17-4 B–H curve of magnetic material and peaky transformer magnetizing current.

Figure 17-5 Origin of flat-topped flux wave in a transformer, third-harmonic current, and

overall peaky magnetizing current.
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2. In a system of three-phase balanced voltages the 5th, 7th, 11th . . . produce
voltages displaced by 120� mutually, while the triplen harmonic voltages are copha-
sial. If the impedance to the third harmonic is negligible, only a very small third
harmonic emf is required to circulate a magnetizing current additive to the funda-
mental frequency, so as to maintain a sinusoidal flux. This is true if the transformer
windings are delta connected. In wye–wye connected transformers with isolated
neutrals, as all the triplen harmonics are either directed inwards or outwards,
these cancel between the lines, no third harmonic currents flow, and the flux wave
in the transformer is flat topped. The effect on a wye-connected point is to make it
oscillate at three times the fundamental frequency, giving rise to distortion of the
phase voltages (Fig. 17-6). Tertiary delta-connected windings are included in wye–
wye connected transformers for neutral stabilization.

3. Three-phase core-type transformers have magnetically interlinked phases,
and the return paths of triplen harmonic fluxes lies outside the core, through the tank
and transformer fluid, which have high reluctance. In five-limb transformers the end
limbs provide return paths for triplen harmonics.

It can be said that power transformers generate very low levels of harmonic
currents in steady-state operation, and the harmonics are controlled by design and
transformer winding connections. The higher-order harmonics, i.e., the 5th and 7th,
may be less than 0.1% of the transformer full-load current.

4. Energizing a power transformer does generate a high order of harmonics
including a dc component. Figure 17-7 shows three conditions of energizing of a
power transformer: (a) the switch closed at the peak value of the voltage, (b) the
switch closed at zero value of the voltage, and (c) energizing with some residual
trapped flux in the magnetic core due to retentivity of the magnetic materials.
Figure 17-7(d) shows the spectrum of magnetizing inrush current, which resembles
a rectified current and its peak value may reach 8–15 times the transformer full-load
current, mainly depending on the transformer size. The asymmetrical loss due to
conductor and core heating rapidly reduces the flux wave to symmetry about the
time axis and typically the inrush currents last for a short duration (0.1 sec).

Typical harmonics generated by the transformer inrush current are shown in
Fig. 17-8. Overexcitation of transformers in steady-state operation can produce
harmonics. The generated fundamental frequency emf is given by

V ¼ 4:44fTphBmAc ð17:13Þ
where Tph is the number of turns in a phase, Bm is the flux density (consisting of
fundamental and higher order harmonics), and Ac is the area of core. Thus, the
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Figure 17-6 Phenomena of neutral oscillation in wye–wye connected transformer, due to

third-harmonic voltages.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



Harmonics Generation 563

Figure 17-7 (a–d) Switching inrush current transients in a transformer (see text).
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factor V=f is a measure of the overexcitation, though these currents do not normally
cause a wave distortion of any significance. Exciting currents increase rapidly with
voltage, and transformer standards specify application of 110% voltage without
overheating the transformer. Under certain system upset conditions, the transfor-
mers may be subjected to even higher voltages and overexcitation.

17.8 SATURATION OF CURRENT TRANSFORMERS

Saturation of current transformers under fault conditions produces harmonics in the
secondary circuits. Accuracy classification of current transformers is designated by
one letter, C or T, depending on current transformer construction. Classification C
covers bushing type transformers with uniformly distributed windings, and the leak-
age flux has a negligible effect on the ratio within the defined limits. A transformer
with relaying accuracy class C200 means that the percentage ratio correction will not
exceed 10% at any current from 1–20 times the rated secondary current at a standard
burden of 2.0 ohms, which will generate 200 V. The secondary voltage as given by
maximum fault current reflected on the secondary side multiplied by connected
burden (Rþ jX) should not exceed the assigned C accuracy class. When current
transformers are improperly applied saturation can occur, as shown in Fig. 17-9.
A completely saturated CT does not produce a current output, except during the first
pulse, as there is a finite time to saturate and desaturate. The transient performance
should consider the dc component of the fault current, as it has far more effect in
producing severe saturation of the current transformer than the ac component.

As the CT saturation increases, so does the secondary harmonics, before the
CT goes into a completely saturated mode. Harmonics of the order of 50% third,
30% fifth, 18% 7th, and 15% 9th and higher order may be produced. These can
cause improper operation of the protective devices. This situation can be avoided by
proper selection and application of current transformers.
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Figure 17-8 Harmonic components of the inrush current of a transformer.
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17.9 SHUNT CAPACITORS

High inrush frequencies on switching of shunt capacitors were discussed in Chap. 5
and these are given by Eqs (5.14) and (5.16) for single bank and back-to-back
switching. The frequency of the system transient is typically less than 1 kHz for
an isolated capacitor bank and less than 5 kHz for back-to-back switching. Series
filter reactors and switching inrush current limiting reactors reduce these frequencies.
The fast front of the switching surge voltage can cause a part-winding resonance and
harmonic generation in a transformer, if the frequency coincides with the transfor-
mer’s natural frequency which is of the order of 10–100 kHz, the first resonance
occurring in the range 7–15 kHz. The likelihood of exciting a part-winding resonance
on switching is remote, but switching overvoltages are of major concern.

The power capacitors do not generate harmonics by themselves, but are the
main cause of amplification of the harmonics due to resonance and increased har-
monic distortion. These can also reduce harmonic distortion, when applied as filters.
This important aspect of power capacitor is discussed in the chapters to follow.

17.10 SUBHARMONIC FREQUENCIES

Chapter 13 shows that series compensation of transmission lines with capacitors can
generate subharmonic frequencies and how these can be damped with some FACTS
devices. Switching of long lines close to a generator can cause oscillations. Power
oscillations can be described as:

. Interarea mode oscillations: These oscillations occur between one set of
machines swinging against other set of machines in a different area of
the transmission system. The oscillations are typically in range 0.2–0.5
Hz.

. Local mode oscillations: These oscillations occur between one or more
machines in a plant swinging against a large power source or network.
The oscillations are typically in the range 0.7–2.0 Hz.
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Figure 17-9 Saturation of a current transformer on asymmetrical fault current and origin of
harmonics.
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. Interunit mode oscillations: These oscillations occur when one machine
swings against another machine in the same area in the same power
plant. These oscillations are typically in the range 1.5–3.0 Hz.

Power system stabilizers in the excitation systems of the machines are used to sta-
bilize the oscillations.

It can, generally, be said that the harmonics in the power systems from sources
other than nonlinear loads are comparatively small, though these cannot always be
ignored. Major sources of harmonies are non-linear loads [2].

17.11 STATIC POWER CONVERTERS

The primary source of harmonics in the power system are power converters, recti-
fiers, inverters, and adjustable speed drives. The characteristic harmonics are those
produced by the power electronic converters during normal operation and these
harmonics are integer multiples of the fundamental frequency of the power system.
Noncharacteristic harmonics are usually produced by sources other than power elec-
tronic equipment and may be at frequencies other than the integer multiple of the
fundamental power frequency. The converters do produce some noncharacteristic
harmonics, as ideal conditions of commutation and control are not achieved in
practice. The ignition delay angles may not be uniform, and there may be unbalance
in the supply voltages and the bridge circuits.

17.11.1 Single-Phase Bridge Circuit

The single-phase rectifier full-bridge circuit of Fig. 17-10 is first considered. It is
assumed that there is no voltage drop or leakage current, the switching is instanta-
neous, the voltage source is sinusoidal, and the load is resistive. For full wave con-
duction, the waveforms of input and output currents are then as shown in Fig.
17-10(b) and (c). The average dc current is

Idc ¼
1

2�

ð2�
0

Em

R
sin!td!t ¼ 2Em

�R
ð17:14Þ

and the rms value or the effective value of the output current, including all harmo-
nics, is

Irms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2�

ð�
0

Em

R

� �2

sin2 !td!t

s
¼ Emffiffiffi

2
p R ð17:15Þ

The input current has no harmonics. The average dc voltage is given by

Edc ¼
2Em

�
ð17:16Þ

The output ac power is defined as:

Pac ¼ ErmsIrms ð17:17Þ
where Erms considers the effect of harmonics on the output. The dc output power is

Pdc ¼ EdcIdc ð17:18Þ
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The efficiency of rectification is given by Pdc=Pac. The form factor is a measure of the
shape of the output voltage or current and it is defined as

FF ¼ Irms

Idc
ð17:19Þ

The ripple factor, which is a measure of the ripple content of the output current
or voltage, is defined as the rms value of output voltage or current, including all
harmonics, divided by the average value:

RF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Irms

Idc

� �2

�1

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
FF2 � 1

p
ð17:20Þ
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Figure 17-10 (a) A single-phase full rectifier bridge circuit, with resistive load; (b) and (c)
waveforms with zero dc reactor.
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For the single-phase bridge circuit with resistive load, the ripple factor is

RF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Irms

Idc

� �2

�1

s
¼ 0:48 ð17:21Þ

This shows that the ripple content of the dc output voltage is high, Fig. 17-10(b).
This is not acceptable even for the simplest of applications. Let a series reactor be
added in the dc circuit. The load current is no longer a sine wave but the average
current is still equal to 2Em=�R. The ac line current is no longer sinusoidal, but
approximates a poorly defined square wave with superimposed ripples, Fig. 17-11(a)
and (b). The inductance has reduced the harmonic content of the load current by
increasing the harmonic content of the ac line current. When the inductance is large,
the ripple across the load is insignificant, and can be assumed constant, and the ac
current wave is now a square wave, Fig. 17-11(c) and (d).

17.11.1.1 Phase Control

A silicon-controlled rectifier (SCR) can be turned on by applying a short pulse to its
gate and turned off due to natural or line commutation. The term thyristor pertains
to the family of semiconducting devices for power control. The angle by which the
conduction is delayed after the input voltage starts to go positive until the thyristor is
fired is called the delay angle. Figure 17-12(b) shows waveforms with a large dc
reactor, and Fig. 17-12(c) shows waveform with no dc reactor but identical firing
angle. Thyristors 1 and 2 and 3 and 4 are fired in pairs as shown in Fig. 17-12(b).
Even when the polarity of the voltage is reversed, the current keeps flowing in
thyristors 1 and 2 until thyristors 3 and 4 are fired, Fig. 17-12(a). Firing of thyristors
3 and 4 reverse biases thyristors 1 and 2 and turns them off. (This is referred to as
class F type forced commutation or line commutation.) The average dc voltage is

Edc ¼
2

2�

ð�þ�

�

Em sin!td!ð!tÞ ¼ 2Em

�
cos� ð17:22Þ

and the Fourier analysis of the rectangular current wave in Fig. 17-12(b) gives

ah ¼ � 4Ia
h�

sin h�; h ¼ 1; 3; 5; . . . ð17:23Þ

¼ 0 h ¼ 2; 4; 6; . . .

bh ¼
4Ia
h�

cos h� h ¼ 1; 3; 5; . . . ð17:24Þ

¼ 0 h ¼ 2; 4; 6; . . .

Since:

I ¼
X1

h¼1;2;...

ah cosðh!tÞ þ bh sinðh!t½ Þ� ð17:25Þ

The rms input current is given by:

I ¼ 4

�
Id sinð!t� �Þ þ 1

3
sin 3ð!t� �Þ þ 1

5
sin 5ð!t� �Þ þ � � �

	 

ð17:26Þ
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Triplen harmonics are present. Figure 17-13 shows harmonics as a function of the
delay angle for a resistive load. The overlap angle (defined further) decreases the
magnitude of the harmonics. When the output reactor is small, the current goes to
zero, the input current wave is no longer rectangular, and the line harmonics
increase.

17.11.1.2 Power Factor, Distortion Factor, and Total Power Factor

For sinusoidal voltages and currents, the power factor is defined as kW/kVA and the
power factor angle � is

� ¼ cos�1 kW

kVA
¼ tan�1 kvar

kW
ð17:27Þ
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Figure 17-11 (a) Waveforms of a single-phase full rectifier bridge with small dc output

reactor; (b) with large dc output reactor.
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For nonlinear loads, � is still defined as the angle between the fundamental compo-
nent of the input current and voltage, but it is called the displacement angle. The
displacement factor is defined as cos�. For the single phase converter:

�h ¼ tan�1 ah
bh

¼ �h� ð17:28Þ

The displacement component of the power factor is the ratio of the active power of
the fundamental wave in watts to the apparent power of the fundamental wave in
volt–ampères including the exciting current of the thyristor convertor transformer.

The total power factor is defined as the total power input in watts to the total
volt–ampère input into the converter including harmonics. This includes the harmo-
nic components of the current and voltage and the exciting current of the
transformer.
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Figure 17-12 (a) Circuit of a single-phase fully controlled bridge; (b) and (c) waveforms

with large dc reactor and with zero dc reactor.
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At fundamental frequency the displacement power factor will be equal to the
total power factor, as the displacement power factor does not include kVA due to
harmonics, while the total power factor does include it. For harmonic generating
loads the total power factor will always be less than the displacement power factor.

The fundamental input power factor angle is equal to the firing angle �. For the
single-phase bridge circuit the input active and reactive power is

Active power ¼ 4

2�
IdEm cos� ð17:29Þ

Reactive power ¼ 4

2�
IdEm sin � ð17:30Þ

The power factor becomes depressed for large firing angles. This is the case whenever
phase control is used in the converter circuits. The maximum reactive power input
for a half-controlled bridge will be one-half of that of a fully controlled bridge.
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Figure 17-13 Harmonic generation as a function of phase-angle control, of delay angle, and
of resistive load.
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17.11.1.3 Harmonics on Output Side

The output waveform (on the dc side) contains even harmonics of the input fre-
quency and the Fourier expansion is

Ed0 ¼ Edc þ e2 sin 2!tþ e 02 cos 2!tþ e4 sin 4!tþ e 04 cos 4!tþ � � � ð17:31Þ
where em and e 0m ðm ¼ 2; 4; 6; . . .Þ are given by

em ¼ 2Em

�

sinðmþ 1Þ�
mþ 1

� sinðm� 1Þ�
m� 1

	 

ð17:32Þ

e 0m ¼ 2Em

�

cosðmþ 1Þ�
mþ 1

� cosðm� 1Þ�
m� 1

	 

ð17:33Þ

The converter can be considered as a harmonic current source; the even harmonics
go into the load and the odd harmonics into the supply source. The harmonics fed
into the supply system propagate into the power system. These can either be magni-
fied or attenuated and are the subject of study in this book. The harmonics in the
load circuit have an adverse effect on the loads, but are, generally, localized to the
loads to which these connect. There is harmonic power associated with harmonic
currents, which is a function of relative system impedances and load side impedance.
Figure 17-14 shows this action of the converter.

17.11.2 Three-Phase Bridge Circuit

A three-phase bridge has two forms: (1) half-controlled and (2) fully controlled. The
three-phase fully controlled bridge is described, as it is most commonly used.

Figure 17-15(a) shows a three-phase fully controlled bridge circuit, and Fig.
17-15(b) shows its current and voltage waveforms. The firing sequence of thyristors
is shown in Table 17-2. At any time two thyristors are conducting. The firing fre-
quency is six times the fundamental frequency and the firing angle can be measured
from point O shown in Fig. 17-15(b). With a large output reactor the output dc
current is continuous and the input current is a rectangular pulse of 2�=3 duration
and amplitude id . The average dc voltage is

Ed ¼ 2
3

2�

ð�=3þ�

�n=3þ�

Em cos!tdð!tÞ
	 


¼ 3
ffiffiffi
3

p

�
Em cos� ð17:34Þ
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Figure 17-14 Converter as a source of harmonic generation and harmonic power flow.
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where Em is the peak value of line to neutral voltage. For firing angles > �=2, the
circuit can work as an inverter, i.e., dc power is fed back into the ac system. This
requires that a dc source with opposite polarity is connected at the output. The
power factor is lagging for rectifier operation and leading for inverter operation.

Figure 17-16 shows a connection diagram and waveforms for a three-phase
fully controlled bridge, with delta–delta connection of the rectifier transformer and
firing angle � ¼ 0; the input current is rectangular and its Fourier analysis gives

ia ¼
2
ffiffiffi
3

p

�
Id cos!t� 1

5
cos 5!tþ 1

7
cos 7!t� 1

11
cos 11!tþ 1

13
cos 13!t

	 

ð17:35Þ
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Figure 17-15 (a) Circuit of a three-phase fully controlled bridge, with large dc output
reactor; (b) voltage and current waveforms for a certain delay angle �.

Table 17-2 Firing Sequence of Thyristors in Six-Pulse Full Converter

Conducting thyristors 5, 3 1, 5 6, 1 2, 6 4, 2 3, 4

Thyristor to be fired 1 6 2 4 3 5
Thyristor turning off 3 5 1 6 2 4
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Figure 17-16 A six-pulse bridge circuit, zero delay angle, large output reactor, and delta–
delta input transformer. Voltage and current relations.
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Figure 17-17 shows a similar connection diagram and waveforms for delta–wye
rectifier transformer connections. The input current is stepped and the resulting
Fourier series for the current waveform is

ia ¼
2
ffiffiffi
3

p

�
Id cos!tþ 1

5
cos 5!t� 1

7
cos 7!t� 1

11
cos 11!tþ 1

13
cos 13!t�; . . .

� �
ð17:36Þ

From these equations, the following observations can be made:

1. The line harmonics are of the order:

h ¼ pm� 1;m ¼ 1; 2; . . . : ð17:37Þ
where p is the pulse number. The pulse number is defined as the total
number of successive nonsimultaneous commutations occurring within
the converter circuit during each cycle when operating without phase
control. This relationship also holds for a single-phase bridge converter,
as the pulse number for a single phase bridge circuit is 2. The harmonics
given by Eq. (17.37) are an integer of the fundamental frequency and are
called characteristic harmonics, while all other harmonics are called non-
characteristic.

2. The triplen harmonics are absent. This is because an ideal rectangular
wave shape and instantaneous transfer of current at the firing angle are
assumed. In practice, some noncharacteristic harmonics are also pro-
duced.

3. The rms magnitude of the nth harmonic is If =h, i.e., the 5th harmonic is a
maximum of 20% of the fundamental:

Ih ¼
If
h

ð17:38Þ

4. Fourier series of the input current is given by (17.25)

an ¼ � 4Id
h�

sin
n�

3
sinðh�Þ h ¼ 1; 3; 5

¼ 0 h ¼ 2; 4; 6

bn ¼ � 4Id
h�

sin
h�

3
cosðh�Þ h ¼ 1; 3; 5

¼ 0 h ¼ 2; 4; 6

ð17:39Þ

Therefore:

I ¼ Ih sin h!tþ �hð Þ where �h ¼ tan�1 ah
bh

¼ �h� ð17:40Þ

The rms value of the nth harmonic input current is

Ih ¼ a2h þ b2h
� �1=2¼ 2

ffiffiffi
2

p

h�
sin

h�

3
ð17:41Þ

The rms value of the fundamental current is

Harmonics Generation 575

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



576 Chapter 17

Figure 17-17 A six-pulse bridge circuit, zero delay angle, large output reactor, and delta–
wye input transformer. Voltage and current relations.
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I1 ¼
ffiffiffi
6

p

�
Id ¼ 0:7797Id ð17:42Þ

The rms input current (including harmonics) is

2

2�

ð�=3þ�

��=3þ�

I2ddð!tÞ
	 
1=2

¼ Id

ffiffiffi
2

3

r
¼ 0:8165Id ð17:43Þ

5. The ripple factor of a six-pulse converter, with zero firing angle, is 0.076
and the lowest harmonic in the output of the converter is the sixth. As the
pulse number of the converter increases, the ripple in the dc output vol-
tage and the harmonic content in the input current are reduced. Also, for
a given voltage and firing angle, the average dc voltage increases with the
pulse number.

17.11.2.1 Cancellation of Harmonics Due to Phase Multiplication

Equations (11.35) and (11.36) show that the 5th, 7th, 17th, 19th; . . . harmonics are of
opposite sign. We know that there is a 30� phase shift between the primary and
secondary voltage vectors of a delta–wye transformer, while for a delta–delta or
wye–wye connected transformer, this phase shift is 0�. If the load is equally divided
on two transformers, one with delta–delta connections and the other with wye–delta
or delta–wye connections, harmonics of the order of 5th, 7th, 17th; . . . are elimi-
nated, and the system behaves like a 12-pulse circuit. This is called phase multi-
plication. The circuit is shown in Fig.17-18(a) and the waveform in the time domain
in Fig. 17-18(b). Extending this concept, 24-pulse operation can be achieved with
four transformers with 15� mutual phase shifts. As the magnitude of the harmonic is
inversely proportional to the pulse number, the troublesome lower-order harmonics
of larger magnitude are eliminated. This cancellation of harmonics, though, is not
100% as the ideal conditions of operation are rarely met in practice. The transfor-
mers should have exactly the same ratios and same impedances, the loads should be
equally divided and converters should have exactly the same delay angle.
Approximately 75% cancellation may be achieved in practice, and in harmonic
analysis studies 25% residual harmonics are modeled.

17.11.2.2 Effect of Source Impedance

The commutation of current from one SCR to another will take place instanta-
neously if the source impedance is zero. The commutation is delayed by an angle
� due to source inductance, and during this period a short-circuit occurs through the
conducting devices, the ac circulating current being limited by the source impedance;
� is called the overlap angle. When � is zero, the short-circuit conditions are those
corresponding to maximum asymmetry and � is large, i.e., slow initial rise. At
� ¼ 90�, the conditions are of zero asymmetry with its fast rate of rise of current.
Commutation produces two primary notches per cycle and four secondary notches
of lesser amplitude, which are due to notch reflection from the other legs of the
bridge, (Fig. 17-19). For a purely inductive source impedance, the output average dc
voltage is reduced and is given by

Ed ¼ Edo �
3!Ls

�
Id ð17:44Þ
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where Ls is the source inductance, and for a six-pulse fully controlled bridge Edo is
given by Eq. (17.34) and it is called the internal voltage of the rectifier.

Figure 17-20 shows that the overlap helps in reducing the harmonic content in
the input current wave, which is rounded off and is more close to a sinusoid.
Alternating-current harmonics at overlap are given by [1]:

Ih ¼ Idc

ffiffiffi
6

�

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2 � 2AB cosð2�þ �Þ

p
h½cos�� cosð�þ �Þ�

" #
ð17:45Þ

where

A ¼
sin ðh� 1Þ�

2

h i
h� 1

ð17:46Þ

B ¼
sin ðhþ 1Þ�

2

h i
hþ 1

ð17:47Þ
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Figure 17-18 (a) Harmonic elimination with phase multiplication: circuit diagram; (b) input
current waveform.
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The depth of the voltage notch is calculated by the IZ drop and is a function of the
impedance. The width of the notch is the commutation angle:

� ¼ cos�1 cos�� Xs þ Xtð ÞId½ � � � ð17:48Þ
cos� ¼ 1� 2Ex=Edo ð17:49Þ

where Xs is the system reactance in per unit on converter base, Xt is the transformer
reactance in per unit on converter base, Id is the dc current in per unit on converter
base, and Ex is the dc voltage drop caused by commutating reactance. Notches cause
EMI (electromagnetic interference) problems and misoperation of electronic devices
which sense the true zero crossing of the voltage wave.

As a six-pulse converter is most frequently used in industry, Appendix G
provides graphical/analytical methods for estimation of harmonics, with varying
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Figure 17-20 Effect of overlap angle on the current waveform.

Figure 17-19 Voltage notching due to commutation in a six-pulse fully controlled bridge
with dc output reactor.
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overlap angles. The assumption of a flat-topped wave is not correct. The actual wave
and its effect on line harmonics is discussed in this appendix. Table 17-3 shows the
theoretical magnitude of harmonics given by Eq. (17.38) and a typical harmonic
spectrum, assuming ripple-free dc output current and instantaneous commutation.

17.11.2.3 Effect of Output Reactor

The foregoing treatment of six-pulse converters assumes large dc inductance, so that
the output dc current is continuous. At large phase-control angles and low output
value of the reactor the current will be discontinuous, giving rise to increased line
harmonics. See Appendix G for further discussions.

17.11.2.4 Effect of Load with Back emf

Harmonic magnitude will be largely affected if the output dc load is active, e.g., a
battery charge. A dc motor has low inductance as well as a back emf. The value of
inductance at which the load current becomes discontinuous can be calculated by
writing a differential equation of the form:

Ld

did
dt

þ idRd ¼ Em cosð!tþ �Þ ð17:50Þ

and solving for id, equating it to zero, and evaluating Ld.
When the load has a back emf, the load current waveform is not only decided

by the firing angle, but also by the opposing voltage of the load. Figure 17-21 shows
the waveforms of output voltage and the load current for a single-phase fully con-
trolled circuit feeding a battery charger, neglecting source impedance; � is called the
conduction angle. The harmonics are increased. At large control angles and with dc
motor loads, having a back emf, the discontinuous nature of the dc voltage and ac
current, for a six-pulse converter, may give rise to higher harmonics and the fifth
harmonic can reach peak levels up to three times that of the rectangular wave.

7.11.3 Diode Bridge Converter

Converters with an output dc reactor and front-end thyristors follow the dc link
voltage. A full converter controls the amount of dc power from zero to full dc
output. The voltage and current waveforms of this type of converter are discussed
in Sec. 17.11.2. The harmonic injection into the supply system may be represented by
a Norton equivalent. This type of converter is used at the front end of current source
inverters.

The full-wave diode bridge with capacitor load, as shown in Fig. 17-22, is the
second type of converter. It converts from ac to dc and does not control the amount
of dc power. This type of converter does not cause line notching, but the current
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Table 17-3 Theoretical and Typical Harmonic Spectrum of Six-Pulse Full Converters
with Large DC Reactor

h 5 7 11 13 17 19 23 25
1=h 0.200 0.143 0.091 0.077 0.059 0.053 0.043 0.040

Typical 0.175 0.111 0.045 0.029 0.015 0.010 0.009 0.008
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drawn is more like a pulse current rather than the approximate square-wave current
of the full converter. The voltage and current waveform are shown in Fig. 17-22(b).
This circuit is better represented by a Thévenin equivalent and the source impedance
has a greater impact.

Typical current harmonics for comparison are shown in Table 17-4. In the
diode converter with dc link capacitor the fifth harmonic is higher by a factor of 3
to 4 times and the seventh harmonic by a factor of 3. This type of converter with dc
link capacitor is used in voltage source inverters (VSIs). Sometimes, a controlled
bridge may replace the diode bridge preceding the dc link capacitor.

17.12 SWITCH-MODE POWER (SMP) SUPPLIES

Single-phase rectifiers are used for power supplies in copiers, computers, TV sets,
and household appliances. In these applications the rectifiers use a dc filter capacitor
and draw impulsive current from the ac supply. The harmonic current is worse than
that given by Eq. (17.26). Figures 17.23(a) and (b) show conventional and switch
mode power supplies (SMPSs). In the conventional power supply system, the main
ripple frequency is 120 Hz, and the current drawn is relatively linear. Capacitors C1

and C2 and inductor act as a passive filter. In the SMPSs, the incoming voltage is
rectified at line voltage and the high dc voltage is stored in capacitor C1. The
transistorized switcher and controls switch the dc voltage from C1 at a high rate
(10–100 kHz). These high-frequency pulses are stepped down in a transformer and
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Figure 17-21 Current waveform with delay angle and a load with back emf.

Table 17-4 Typical Current Harmonics for a Six-Pulse Converter

and Diode Bridge Converter, as a Percentage of Fundamental
Frequency Current

Current harmonic Six-pulse converter Diode bridge converter

5 17.94 64.5

7 11.5 34.6
11 4.48 5.25
13 2.95 5.89
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rectified. The switcher eliminates the series regulator and its losses in conventional
power supplies. There are four common configurations used with the switched mode
operation of the dc to ac conversion stage, and these are fly back, push–pull, half-
bridge, and full bridge. The input current wave for such an SMPS is highly non-
linear, flowing in pulses for part of the sinusoidal ac voltage cycle, Fig. 17-23(c). The
spectrum of an SMPS is given in Table 17-5 and shows high magnitude of the third
and fifth harmonics.

17.13 ARC FURNACES

Arc furnaces may range from small units of a few ton capacity, power rating 2–3
MVA, to larger units having 400-ton capacity and power requirement of 100 MVA.
The harmonics produced by electric arc furnaces are not definitely predicted due to
variation of the arc feed material. The arc current is highly nonlinear, and reveals a
continuous spectrum of harmonic frequencies of both integer and noninteger order.
The arc furnace load gives the worst distortion, and due to the physical phenomenon
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Figure 17-22 (a) Circuit of a diode bridge with dc link bus capacitor; (b) input current
waveform.
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of the melting with a moving electrode and molten material, the arc current wave
may not be same from cycle to cycle. The low-level integer harmonics predominate
over the noninteger ones. There is a vast difference in the harmonics produced
between the melting and refining stages. As the pool of molten metal grows, the
arc becomes more stable and the current becomes steady with much less distortion.
Figure 17-24 shows erratic rms arc current in a supply phase during the scrap melting
cycle, and Table 17-6 shows typical harmonic content of two stages of the melting
cycle in a typical arc furnace. The values shown in this table cannot be generalized.
Both odd and even harmonics are produced. Arc furnace loads are harsh loads on
the supply system, with attendant problems of phase unbalance, flicker, harmonics,
impact loading, and possible resonance.

Figure 17-25 shows that the arc furnace presents a load of low lagging power
factor. Large erratic reactive current swings cause voltage drops across the reactive

Harmonics Generation 583

Figure 17-23 (a) Conventional power supply circuit; (b) switch mode power supply circuit;

(c) input current pulse waveform.
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impedance of the ac system, resulting in irregular variation of the terminal voltage.
These voltage variations cause variation in the light output of the incandescent lamps
and are referred to as flicker, based on the sensitivity of the human eye to the
perception of variation in the light output of the incandescent lamps.

Appendix F describes the flicker limits. SVCs are used to control flicker and
sometimes these may themselves produce interphase harmonics.

17.14 CYCLOCONVERTERS

Cycloconverters are used in a wide spectrum of applications from ball-mill and linear
motor drives to static var generators. The range of application for synchronous or
induction motors varies from 1000 to 50,000 hp and the speed control in the ratio of
50 to 1. Figure 17-26(a) shows the circuit of a three-phase single phase cycloconver-
ter, which synthesizes a 12-Hz output, and Fig. 17-26(c) shows the output voltage
waveform with resistive load. The positive converter operates for half the period of
the output frequency and the negative converter operates for the other half. The
output voltage is made of segments of input voltages, Fig 17.26 (b) and the average
value of a segment depends on the delay angle for that segment; �p is the delay angle
of the positive converter and �� �p is the delay angle of the negative converter. The
output voltage contains harmonics and the input power factor is poor. For three-
phase, three systems Fig 17.26(a), i.e., a total of 36 thysistors are required.
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Table 17-5 Spectrum of Typical Switch Mode Power Supply

Harmonic Magnitude Harmonic Magnitude

1 1.000 9 0.157
3 0.810 11 0.024
5 0.606 13 0.063

7 0.370 15 0.07

Figure 17-24 Erratic melting current in one-phase supply circuit of an arc furnace.

Source: Ref. 1. Copyright 1992 IEEE. All rights reserved. Reproduced with permission.
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The voltage of a segment depends on the delay angle. If the delay angles of the
segments are varied so that the average value of the segment corresponds as closely
as possible to the variations in the desired sinusoidal output voltage, the harmonics
in the output are minimized. Such delay angles can be generated by comparing a
cosine signal at source frequency with an output sinusoidal voltage.

Cycloconverters have characteristic harmonic frequency of

fh ¼ ðpm� 1Þf � 6nf0 ð17:51Þ
where f0 is the output frequency of the cycloconverter, m; n ¼ 1; 2; 3; . . . ; and p is the
pulse number. Because of load unbalance and asymmetry between phase voltages
and firing angles, noncharacteristic harmonics are also generated:
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Figure 17-25 Typical performance curves for an arc furnace, showing the normal operating

zone in thick line.

Table 17-6 Harmonic Content of Arc Furnace Current as Percentage of
Fundamental

h Initial melting Refining

2 7.7 0.0
3 5.8 2.0
4 2.5 0.0

5 4.2 2.1
7 3.1

Source: Ref. 1. Copyright 1992 IEEE. All rights reserved. Reproduced with permission.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



fh ¼ ðpm� 1Þf � 2nf0 ð17:52Þ
As the output frequency varies, so does the spectrum of harmonics. Therefore,
control of harmonics with single tuned filters becomes ineffective (Chap. 20). Ref.
[3] is entirely devoted to cycloconverters.

17.15 THYRISTOR-CONTROLLED REACTOR

Consider a TCR, controlled by two thyristors in an antiparallel circuit as shown in
Fig.17-27(a). If both thyristors are gated at maximum voltage, there are no har-
monics and the reactor is connected directly across the voltage, producing a 90�

lagging current, ignoring the losses. If the gating is delayed, the waveforms as
shown in Fig. 17-27(b) result. The instantaneous current through the reactor is

i ¼
ffiffiffi
2

p V

X
cos�� cos!tð Þ for � < !t < �þ � ð17:53Þ

¼ 0 for �þ � < !t < �þ � ð17:54Þ
where V is the line-to-line fundamental rms voltage, � is the gating angle, and � is the
conduction angle. The fundamental component can be written as
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Figure 17-26 To illustrate principal of a cycloconverter.
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If ¼
�� sin �

�X
V ð17:55Þ

Appreciable amount of harmonics are generated. Assuming balanced gating angles
only odd harmonics are produced. The rms value is given by

Ih ¼
4V

�X

sinðhþ 1Þ�
2ðhþ 1Þ þ sinðh� 1Þ�

2ðh� 1Þ � cos�
sin h�

h

	 

ð17:56Þ

where h ¼ 3; 5; 7; . . . unequal conduction angles will produce even harmonics includ-
ing a dc component.
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Figure 17-27 (a) Circuit of a thyristor-controller reactor; (b) current waveforms due to
varying firing and conduction angles.
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17.16 THYRISTOR-SWITCHED CAPACITORS

A capacitor traps charge at the maximum voltage when current is zero. This makes
thyristor switching of capacitors difficult as a possibility exists that maximum ac
peak voltage can be applied to a capacitor charged to a maximum negative peak. The
use of thyristors to switch capacitors is limited to allowing conduction for an integral
number of half-cycles and point of wave switching, i.e., gating angles of > 90� are
not used. The thyristors are gated at the peak of the supply voltage, when dV=dt ¼ 0,
and the capacitors are already charged to the peak of the supply voltage. In practice,
all TSC circuits have some inductance, and oscillatory switching transients result.
For a transient-free switching:

cos � ¼ 0 ð17:57Þ

Vc ¼ �V
ðXc=XLÞ

Xc=XL � 1
ð17:58Þ

i.e., the capacitors are gated at supply voltage peak and the capacitors are charged to
a higher than the supply voltage prior to switching. Since it is generally difficult to
guarantee the second condition it is difficult to prevent oscillatory transients. The
transients on gating with V ¼ 0 and with dV=dt ¼ 0 are shown in Fig. 17-28.

The synchronous SVC, described in Chap. 13, produces much lower harmo-
nics. With pulse width control, described in the section below, the ac side harmonics
are controlled. Thyristor-controlled series compensation produces harmonics in
series with the line (Chap. 13).

17.17 PULSE WIDTH MODULATION

Over the years the pulse switching time of the power devices has been drastically
reduced:

. SCR (fast thyristor) : 4�sec

. GTO (gate turn off thyristor) : 1:0�sec

. GTR (giant transistor) : 0:8�sec

. IGBT (insulated gate bipolar) : 0:2�sec

. IGBT (power plate type) : 0:1�sec

The voltage source invertors using IGBTs operate from a dc link bus. The inverter
synthesizes a variable voltage, of variable-frequency waveform (V=f ¼ constant), by
switching the dc bus voltage at high frequencies (10–20 kHz). The inverter output
line-to-line voltage is a series of voltage pulses with constant amplitude and varying
widths. IGBTs have become popular for power output levels up to approximately
250 kW, as these can be turned on and off from simple low-cost driver circuits.
Motor low-speed torque can be increased and improved low-speed stability is
obtained. The high-frequency switching results in high dV=dt and the effects on
motor insulation, connecting cables, and EMI are discussed in Chap. 18. Recent
trends in soft switching technology reduce the rise time, Fig. 17-29(f) and (g).

Techniques of pulse width modulation (PWM) are:

. Single-pulse width modulation

. Multiple-pulse width modulation

. Sinusoidal pulse-width modulation

. Modified sinusoidal pulse-width modulation
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In a single-pulse width modulation technique, there is one pulse per half-cycle and
the width of the pulse is varied to control the inverter output voltage, Fig. 17-29(a)
and (b). By varying Ar from 0 to Ac, the pulse width � can be varied from 0 to 180�.
The modulation index is defined as Ar=Ac. The harmonic content is high, but can be
reduced by using several pulses in each half-cycle of the output voltage. The gating
signal is generated by comparing a reference signal with a triangular carrier wave.
This type of modulation is also known as uniform pulse-width modulation. The
number of pulses per half-cycle are N ¼ fc=2f0, where fc is the carrier frequency
and f0 is the output frequency.
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Figure 17-28 (a) Circuit of a thyristor-switched capacitor; (b) switching transients with
V ¼ 0 and with dV=dt ¼ 0.
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Figure 17-29 (a) and (b) Single pulse-width modulation; (c) and (d) sinusoidal pulse-width

modulation; (e) reflection of switching transients in the input current wave; (f) high dV=dt due
to high-frequency switching; (g) reduced dV=dt due to soft switching.
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In sinusoidal PWM, the pulse width is varied in proportion to the amplitude of
the sine wave at the center of the pulse, Fig. 17-29(c) and (d). The distortion factor
and the lower-order harmonic magnitudes are reduced considerably. The gating
signals are generated by comparing a reference sinusoidal signal with a triangular
carrier wave of frequency fc. The frequency of the reference signal fr determines the
inverter output frequency f0, and its peak amplitude Ar controls the modulation
index and output voltage V0. This type of modulation eliminates harmonics and
generates a nearly sinusoidal voltage wave. The input current waveform has a sinu-
soidal shape due to pulse-width shaping; however, harmonics at switching frequency
are superimposed, Fig. 17-29(e).

17.18 ADJUSTABLE SPEED DRIVES

Adjustable speed drives account for the largest percentage of nonlinear loads in the
industry. A comparison of electronic drive systems with type of motor, horse power
rating, and drive system topology is shown in Table 17-7. Most drive systems require
that the incoming ac power supply be converted into dc. The dc power is then
inverted back to ac at a frequency demanded by the speed reference of the ac
variable-frequency drive or the dc feeds directly to dc drive systems through two
or four quadrant converters. The fully controlled bridge circuit with output reactor
and three-phase diode bridge circuit discussed above form the basic front-end input
circuits to drive systems.

17.19 PULSE BURST MODULATION

Typical applications of pulse burst modulation (PBM) are ovens, furnaces, die hea-
ters, and spot welders [2]. Three-phase PBM circuits can inject dc currents into the
system, even when the load is purely resistive. A solid-state switch is kept turned on
for an integer number �n of half-cycles out of a total of n cycles (Fig. 17-30). The
control ratio 0 < � < 1 is adjusted by feedback control. The integral cycle control
minimizes EMI, yet the circuit may inject significant dc currents into the power
system. Neutral wire carries pulses of current at switch off and switch on, which
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Table 17-7 Adjustable-Speed Drive Systems

Drive motor Horse power Normal speed range Converter type

DC 1–10,000 50 : 1 Phase controlled, line commutated

Squirrel-cage
induction

100–4000 10 : 1 Current link, force commutated

Squirrel-cage

induction

1–1500 10 : 1 Voltage link, force commutated

Wound rotor 500–20,000 3 : 1 Current link, line commutated
Synchronous

(brushless
excitation)

1000–60,000 50 : 1 Current link, load commutated

Synchronous or
squirrel cage

1000–60,000 50 : 1 Phase controlled, line commutated
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have high harmonic content, depending on the control ratio �. Harmonics in the
100–400 Hz band can reach 20% of the line current. Loading of neutrals with triplen
and fifth harmonics is a concern. The spectrum is deficient in high-order harmonics.

17.20 CHOPPER CIRCUITS AND ELECTRIC TRACTION

The dc traction power supply is obtained in the rectifier substations by unsmoothed
rectification of utility ac power supply, and 12-pulse bridge rectifiers are common.
Switching transients from commutation occur and harmonics are injected into the
supply system. Auxiliary converters in the traction vehicles also generate harmonics,
while EMI radiation is produced from fast current and voltage changes in the switch-
ing equipment.

A chopper with high inductive load is shown in Fig. 17-31; the input current is
pulsed and assumed as rectangular. The Fourier series is

icðtÞ ¼ kId þ
Ia
n�

X1
h¼1

sin 2h�k cos 2h�fctþ
Id
h�

X1
h¼1

1� cos 2h�kð Þ sin 2h�fct

ð17:59Þ
where fc is the chopping frequency, and k is the mark-period ratio (duty cycle of the
chopper ¼ t1=T). The fundamental component is given for h ¼ 1. In railway dc fed
traction drives, thyristor choppers operate up to about 400 Hz. The chopper circuit is
operated at fixed frequency and the chopping frequency is superimposed on the line
harmonics. An input low-pass filter (Chap. 20) is normally connected to filter out the

592 Chapter 17

Figure 17-30 (a) Circuit for pulse burst modulation; (b) pulse burst modulation control,

current waveform.
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chopper-generated harmonics and to control the large ripple current. The filter has
physically large dimensions, as it has a low resonant frequency. The worst case
harmonics occur at a mark-period ratio of 0.5. Imperfections and unbalances in
the chopper phases modify the harmonic distribution and produce additional har-
monics at all chopper frequencies. Transient inrush current to filter occurs when the
train starts and may cause interference if it contains critical frequencies.

In a VSI fed induction motor traction drive from a dc traction system, the
inverter fundamental frequency increases from zero to about 120 Hz as the train
accelerates. Up to the motor base speed the inverter switches many times per cycle.
To calculate source current harmonics this variable-frequency operation must be
considered in addition to three-phase operation of the inverter. Harmonics in the
dc link current depend on the spectrum of the switching function. Optimized PWM
with quarter-wave symmetry is used in traction converters and though each dc link
current component contains both odd and even harmonics, the positive and negative
sequence components cancel in the dc link waveform, leaving only zero sequence and
triplen harmonics in the spectrum.

Multilevel VSI drives or step-down chopper drives are used with GTOs. VSIs
may use a different control strategy, other than PWM, such as torque band control
with asynchronous switching, and the disadvantage is that relatively high 6h harmo-
nics are produced, together with third harmonic and some subharmonics. In the
chopper inverter drive the harmonics due to chopper and inverter combine. The
input harmonic current spectrum consists of multiples of chopper frequency with
side bands at six times the inverter frequency:

fh ¼ kfc � 6hfi ð17:60Þ

where k and h are positive integers, fc is the chopper frequency, and fi is the inverter
frequency.

In ac fed traction drives, the harmonics can be calculated depending on the
drive system topology. Drives with dual semicontrolled converters and dc motors are
rich sources of harmonics. In drives fed with a line pulse converter and voltage or
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Figure 17-31 (a) A chopper circuit with input filter; (b) current waveform.
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current source inverter, the line converter is operated with PWM to regulate the
demand to the VSI, while maintaining nearly unity power factor. The source current
harmonics are mainly derived from the line operation of the pulse converter.

17.21 SLIP FREQUENCY RECOVERY SCHEMES

The slip frequency power of large induction motors can be recovered and fed back
into the supply system. Figure 17-32 shows an example of a subsynchronous cascade.
The rotor slip frequency voltage is rectified, and the power taken by the rotor is fed
into the supply system through a line commutated inverter. The speed of the induc-
tion motor can be adjusted as desired throughout the subsynchronous range, without
losses, though the reactive power consumption of the motor cannot be corrected in
the arrangement shown in Fig. 17-32.

Such a system can cause subharmonics in the ac system. For six-pulse rectifica-
tion, the power returned to the system pulsates at six times the rotor slip frequency.
Torsional oscillations can be excited if the first or second natural torsional frequency
of the mechanical system is excited, resulting in shaft stresses [4]. The ac harmonics
for this type of load cannot be reduced by phase multiplication as dc current ripple is
independent of the rectifier ripple.

17.22 LIGHTING BALLASTS

Lighting ballasts may produce large harmonic distortions and third harmonic cur-
rents in the neutral. The newer rapid start ballast has a much lower harmonic
distortion. The current harmonic limits for lighting ballasts are given in Tables
17-8 and 17-9. Table 17-8 shows that the limits for the newer ballasts are much
lower as compared to earlier ballasts (Table 17-9). This also compares distortion
produced by the lighting ballasts with other office equipment [5].

This chapter shows that it may not be always possible to estimate clearly
harmonic emission. The topologies of harmonic producing equipment are changing
fast, and manufacturer’s data can be used, wherever practical. The system impedance
plays a major role. Consider that load currents are highly distorted but the system
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Figure 17-32 A slip recovery scheme for a wound rotor induction motor.
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impedance is low. Thus, the voltages will not be much distorted. Appendix F shows
ANSI limits for harmonic currents that a user can inject into utility system, and these
take the system impedance into cognisance. The limits are specified on the basis of
the Is=Ir ratio, where Is is the short-circuit current and Ir is the load demand current.
Further discussions continue in Chap. 19.

17.23 INTERHARMONICS

Interharmonics in power systems have attracted much attention in recent years [6].
Cycloconverters and arcing loads are the major sources. The integral cycle control
(Sec. 17.9), induction motor cascade (Sec. 17.21), and low frequency power line
carrier (ripple control) are other sources. IEC [7] defines interharmonics as: ‘‘between
the harmonics of the power frequency voltage and current, further frequencies can be
observed which are not an integer of the fundamental. They appear as discrete
frequencies or as a wide-band spectrum.’’ The term subharmonic is popular in the
engineering community (Sec. 7.10), but it has no official definition. A definition is
sub-synchronus frequency component. Impact and limitation of interharmonics are
described in Appendix F. Ref. [2] has many references for further reading.

Problems

1. Derive Eqs. (17.35), and (17.36), using Fourier series.
2. A six-pulse fully controlled converter operates at a three-phase, 480-V,

60-Hz system. The output current is 10 A and the firing angle is �=4.

Harmonics Generation 595

Table 17-8 Current Harmonic Limits for Lighting Ballasts

Harmonic Maximum value (%)

Fundamental 100

2nd harmonic 5
3rd harmonic 30
Individual harmonics > 11th 7

Odd triplens 30
Harmonic factor 32

Table 17-9 THD Ranges for Different Types of Lighting
Ballasts

Device type THD(%)

Older rapid start magnetic ballast 10–29
Electronic IC-based ballast 4–10
Electronic discrete based ballast 18–30

Newer rapid start electronic ballast < 10
Newer instant start electronic ballast 15–27
High intensity discharge ballast 15–27

Office equipment 50–150

Source: Ref. 5. Copyright 1995 Square D Company. All rights reserved.

Reproduced with permission.
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Calculate the input current, the harmonic amplitude of the output vol-
tage, and the output voltage ripple factor.

3. Calculate the load resistance, the source inductance, and the overlap
angle in Problem 2.

4. What are noncharacteristic harmonics? How are these generated?
5. Give an example of aperiodic harmonic generation.
6. Distinguish between displacement factor and power factor. A single-

phase full bridge supplies a motor load. Assuming that the motor dc
current is ripple free, determine the input current (using Fourier analysis),
harmonic factor, distortion factor, and power factor for an ignition delay
angle of �.

7. What order of harmonics can be expected in the inrush current of a
transformer? How long do these last? What gives rise to these harmonics?
If the transformer core has trapped residual magnetism, will it reduce or
increase the harmonics?

8. Draw a spectrum of line harmonics for a 12-pulse converter. Assume a
rectangular current wave shape, zero overlap angle, and a large dc reactor
to give ripple-free output current. Calculate the harmonic factor to the
29th harmonic.

9. Tabulate all possible two-winding transformer connections, that will con-
vert two equally loaded six-pulse converter circuits into a 12-pulse circuit.

10. Calculate the Fourier series for an input current to a six-pulse converter,
with a firing angle of �. Calculate the harmonic spectrum for � ¼ 15�; 45�,
and 60�. What will be the effect of doubling the source reactance?

11. Describe an appropriate model for a current source and voltage source
inverter.

12. High ac system reactance increases overlap angle and a waveform closer
to a sinusoid results. The ac system voltage distortion is reduced. Is this a
correct statement?
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18

Effects of Harmonics

Harmonics have deleterious effects on electrical equipment. These can be itemized as
follows (see also Ref. [1]):

1. Capacitor bank failure because of reactive power overload, resonance,
and harmonic amplification. Nuisance fuse operation.

2. Excessive losses, heating, harmonic torques, and oscillations in
induction and synchronous machines, which may give rise to torsional
stresses.

3. Increase in negative sequence current loading of synchronous generators,
endangering the rotor circuit and windings.

4. Generation of harmonic fluxes and increase in flux density in transfor-
mers, eddy current heating, and consequent derating.

5. Overvoltages and excessive currents in the power system, resulting from
resonance.

6. Derating of cables due to additional eddy current heating and skin effect
losses. A possible dielectric breakdown.

7. Inductive interference with telecommunication circuits.
8. Signal interference and relay malfunctions, particularly in solid-state and

microprocessor controlled systems.
9. Interference with ripple control and power line carrier systems, causing

misoperation of the systems, which accomplish remote switching, load
control, and metering.

10. Unstable operation of firing circuits based on zero voltage crossing detec-
tion and latching.

11. Interference with large motor controllers and power plant excitation
systems.
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18.1 ROTATING MACHINES

18.1.1 Pulsating Fields and Torsional Vibrations

Harmonics will produce elastic deformation, e.g., shaft deflection, parasitic torques,
vibration noise, and additional heating, and will lower the efficiency of rotating
machines.

The movement of the harmonics is with or against the direction of the funda-
mental. A criterion of forward or reverse rotation is established from h ¼ 6m� 1,
where h is the order of the harmonic and m is any integer. If h ¼ 6mþ 1, the rotation
is in the forward direction, but at 1/h speed. Thus, 7th, 13th, 19th, . . . harmonics
rotate in the same direction as the fundamental. Harmonics of the order 1, 4, 7, 10,
13, . . ., are termed positive sequence harmonics (Chap. 17, Table 17-1).

If h ¼ 6m� 1, the harmonic rotates in a reverse direction to the fundamental.
Thus, 5th, 11th, 17th, . . ., are the reverse rotating harmonics. Harmonics of the
order 2, 5, 8, 11, 14, . . ., are the negative sequence harmonics.

In a synchronous machine, the frequency induced in the rotor is the net rota-
tional difference between the fundamental frequency and the harmonic frequency.
The fifth harmonic rotates in reverse with respect to the stator and with respect to the
rotor the induced frequency is that of sixth harmonic. Similarly, the forward rotating
seventh harmonic with respect to the stator, produces a sixth harmonic in the rotor.
The interaction of these fields produces a pulsating torque at 360 Hz and results in
oscillations of the shaft. Similarly the harmonic pair 11 and 13 produce a rotor
harmonic of the 12th. If the frequency of the mechanical resonance exists close to
these harmonics during starting, large mechanical forces can occur.

The same phenomena occur in induction motors. Considering slip of the induc-
tion motors, the positive sequence harmonics, h ¼ 1; 4, 7, 10, 13, . . ., produce a
torque of ðh� 1þ sÞ! in the direction of rotation, and the negative sequence har-
monics, h ¼ 2, 5, 8, 11, 14, . . ., produce a torque of �ðhþ 1� sÞ! opposite to that of
rotation. Here, s is the slip of the induction motor.

It is possible that harmonic torques are magnified due to certain combinations
of stator and rotor slots, and cage rotors are more prone to circulation of harmonic
currents as compared with the wound rotors.

The zero sequence harmonics (h ¼ 3, 6, . . .) do not produce a net flux density.
These produce ohmic losses.

All parasitic fields produce noise and vibrations. The harmonic fluxes super-
imposed upon the main flux may cause tooth saturation, and zigzag leakage can
generate unbalanced magnetic pull, which moves around the rotor. As a result the
rotor shaft can deflect and run through a critical resonant speed amplifying the
torque pulsations.

Torque ripples may exist at various frequencies. If the inverter is a six-step
type, then a sixth harmonic torque ripple is created which would vary from 36 to 360
Hz when the motor is operated over the frequency range 6–60 Hz. At low speeds
such torque ripple may be apparent as observable oscillations of the shaft speed or as
torque and speed pulsations, usually termed cogging. It is also possible that some
speeds within the operating range may correspond to natural mechanical frequencies
of the load or support structure. At such frequencies, amplification can occur giving
rise to large dynamic stresses. Operation other than momentary, i.e., during starting,
should be avoided at these speeds.
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The oscillating torques in synchronous generators can simulate the turbine–
generator into a complex coupled mode of vibration that results in torsional oscilla-
tions of rotor elements and flexing of turbine buckets. If the frequency of a harmonic
coincides with the turbine–generator torsional frequency, it can be amplified by the
rotor oscillation.

A documented case of failure of a large generator is described in Ref. [2]. A
control loop within an SVC unit in a nearby steel mill resulted in modulation of
the 60 Hz waveform. This created upper and lower sidebands, producing 55 and 65
Hz current components. The reverse phase rotation manifested itself as a 115 Hz
stimulating frequency on the rotor, which drifted between 114 and 118 Hz. This
excited the sixth mode natural frequency of the rotor shaft, creating large torsional
stresses.

18.1.2. Subharmonic Frequencies and Subsynchronous Resonance

We discussed subharmonic frequencies in Chap. 13 in conjunction with series com-
pensation of transmission lines. Generally, the transient currents excited by subhar-
monic resonant frequencies damp out quickly due to positive damping. This is a
stable subharmonic mode. Under certain conditions this can become unstable. We
know that in a synchronous machine the positive sequence subharmonic frequencies
will set up a flux which rotates in the same direction as the rotor, and its slip
frequency is fe � f , where fe is the frequency of the subharmonic. As fe is < f , it is
a negative slip and contributes to the negative damping. The synchronous machine
can convert mechanical energy into electrical energy associated with the subharmo-
nic mode. If the negative damping is large, it can swap the positive resistance damp-
ing in the system and a small disturbance can result in large levels of currents and
voltages. The subharmonic torque brought about by the difference frequency fe � f
rotates in a backward direction with respect to the main field and if this frequency
coincides with one of the natural torsional frequencies of the machine rotating
system, damaging torsional oscillations can be excited. This phenomenon is called
subsynchronous resonance.

18.1.3 Increase of Losses

The effect of harmonics on motor losses should consider the subdivision of
losses into windage and friction, stator copper loss, core loss, rotor copper
loss, and stray loss in the core and conductors, and the effect of harmonics
on each of these components. The effective rotor and stator leakage inductance
decreases and the resistance increases with frequency. The effects are similar as
discussed for negative sequence in Chap. 13, but these will be more pronounced
at higher frequencies. The rotor resistance may increase four to six times the dc
value while leakage reactance may reduce to a fraction of the fundamental
frequency value. The stator copper loss increases in proportion to the square
of the total harmonic current plus an additional increase due to skin effect at
higher frequencies. Harmonics contribute to magnetic saturation and the effect
of distorted voltage on core losses may not be significant. Major loss compo-
nents influenced by harmonics are stator and rotor copper loss and stray losses.
A harmonic factor of 11% gives approximately 25% derating of general-purpose
motors [3].
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18.1.4 Effect of Negative Sequence Currents

Synchronous generators have both continuous and short-time unbalanced current
capabilities, which are listed in Tables 18-1 and 18-2 [4,5]. These capabilities are
based on 120 Hz negative sequence currents induced in the rotor due to continuous
unbalance or unbalance under fault conditions. In the absence of harmonics, unba-
lance loads and impedance asymmetries (i.e., nontransposition of transmission lines)
require that the generators should be able to supply some unbalance currents. When
these capabilities are exploited for harmonic loading, the variations in loss intensity
at different harmonics versus 120 Hz should be considered. The following expression
can be used for equivalent heating effects of harmonics translated into negative
sequence currents:

I2eqv ¼
6f

120

� �1=2

ðK5;7ÞðI5 þ I7Þ2 þ
12f

120

� �1=2

ðK11;13ÞðI11 þ I13Þ2 þ � � �
" #1=2

ð18:1Þ
where K5,7, K11,13, . . ., are correction factors to convert from maximum rotor surface
loss intensity into average loss intensity [6] (from Fig. 18-1), f is the fundamental
frequency, and I5, and I7 are harmonic currents in pu values.

Example 18.1

Consider a synchronous generator, with continuous unbalance capability of 0.10 pu
(Table 18-2). It is subjected to fifth and seventh harmonic loading of 0.07 and 0.04
pu, respectively. Is the unbalance capability exceeded?

From Fig. 18-1 and harmonic ratio 0.04/0.07 = 0.57, K5,7 = 0.43. From Eq.
(18.1):

I2eqv ¼
ffiffiffi
3

p
ð0:43Þð0:07þ 0:04Þ

h i1=2
¼ 0:095

The continuous negative sequence capability is not exceeded. The example shows
that the sum of harmonic currents in pu can exceed the generator continuous nega-
tive sequence capability.
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Table 18-1 Requirements of Unbalanced Faults on Synchronous Machines

Type of synchronous machine Permissible I2
2t

Salient pole generator 40
Synchronous condenser 30
Cylindrical rotor generators

Indirectly cooled 30
Directly cooled (0–800 MVA) 10
Directly cooled (801–1600 MVA) 10� ð0:00625Þ(MVA-800)
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18.1.5 Insulation Stresses

The high-frequency operation of modern PWM inverters with IGBTs is discussed in
Chap. 17. It subjects the motors to high dv=dt. It has an adverse effect on the motor
insulation and contributes to the motor bearing currents and shaft voltages. The rise
time of the voltage pulse at the motor terminals influences the voltage stresses on the
motor windings. As the rise time of the voltage becomes higher, the motor windings
behave like a network of capacitive elements in series. The first coils of the phase
windings are subjected to overvoltages, as shown in Fig. 18-2, which shows ringing.
There has been a documented increase in the insulation failure rate caused by turn-
to-turn shorts or phase-to-ground faults due to high dv=dt stresses [7]. The common
remedies are to provide inverter-grade motor insulation or to add filters. The soft
switching slows the initial rate of rise, as discussed in Chap. 17.

NEMA [3] has established limitations on voltage rise for general-purpose
NEMA Design A and B induction motors and definite purpose-inverter-fed motors.
Windings designed for definite-purpose inverter grade motors use magnet wires with
increased build and these polyester-based wires exhibit higher breakdown strength.
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Figure 18-1 Ratio K for average loss to maximum loss based on harmonic pair. (From Ref.
6.)

Table 18-2 Continuous Unbalance Current Capability of Generators

Type of generator and rating Permissible I2 (%)

Salient pole, with connected amortisseur windings 10
Salient pole, with nonconnected amortisseur windings 5
Cylindrical rotor, indirectly cooled 10

Cylindrical rotor, directly cooled
to 960 MVA 8
961–1200 MVA 6
1201–1500 MVA 5
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. The stator winding insulation system of general-purpose motors rated at
� 600 V shall withstand Vpeak ¼ 1 kV and rise time � 2 msec and for
motors rated at >600 V these limits are Vpeak � 2.5 pu and rise time
� 1 msec.

. For definite purpose inverter-fed motors with base rating voltages � 600 V,
Vpeak� 1600V and rise time is� 0:1 msec. Formotors with base rating voltage
>600 V, Vpeak � 2.5 pu and rise time is � 0:1 msec. Vpeak is of single ampli-
tude and 1 pu is the peak of the line-to-ground voltage at the maximum
operating speed point.

The derating due to harmonic factor, effect on motor torque, starting current, and
power factor are also described in NEMA [3].

The motor windings can be exposed to higher than normal voltages due to
neutral shift and common mode voltages [8], and in some current source inverters
it can be as high as 3.3 times the crest of the nominal sinusoidal line-to-ground
voltage.

Harmonics also impose higher dielectric stress on the insulations of other
electrical apparatuses. Harmonic overvoltages can lead to corona, void formation,
and degradation.

18.1.6 Bearing Currents and Shaft Voltages

PWM inverters give rise to additional shaft voltages due to voltage and current
spikes superimposed on the phase quantities during inverter operation. These will
cause currents to flow through the bearings. If shaft voltages higher than 300 mV
(peak) occur, the motor should be equipped with insulated bearing or the shaft
should be grounded.

18.1.7 Effect of Cable Type and Length

When the motor is connected through long cables, the high dv=dt pulses generated
by PWM inverters cause traveling wave phenomena on the cables, resulting in rein-
forcement of the incident and reflected waves due to impedance discontinuity at the
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Figure 18-2 Pulse-width modulation, ringing in output voltage waveform due to traveling
wave phenomena in interconnecting cables.
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motor terminals, and the voltages can reach twice the inverter output voltage. An
anology can be drawn with long transmission lines and traveling wave phenomena.
The incident traveling wave is reflected at the motor terminals and reinforcement of
incident and reflected waves occurs. Due to dielectric losses and cable resistance,
damped ringing occurs as the wave is reflected from one end of the cable to the other.
The ringing frequency is a function of the cable length and wave propagation velo-
city, and is of the order of 50 kHz to 2 MHz [9]. Figure 18-2 is a representation of the
ringing frequency. The type of cable between motor and drive system and grounding
play an important role in this phenomenon.

By adding output filtering the cable charging current as well dielectric stresses
on the motor insulation can be reduced. The common filter types are:

. Output line inductors

. Output limit filter

. Sine-wave filter

. Motor termination filter

An output inductor reduces dv=dt at the inverter and motor. The ringing and
overshoot may also be reduced, depending on the cable length. Output limit filters
may consist of a laminated core inductor or ferrite core inductors. A sine-wave filter
is a conventional low-pass filter, formed from an output inductor, capacitor and a
damping resistor. Motor termination filters are first-order resistor/capacitor filters
(Chap. 20).

18.2 TRANSFORMERS

A transformer supplying nonlinear load may have to be derated. Harmonics effect
transformer losses and eddy current loss density. The upper limit of the current
distortion factor is 5% of the rated current and the transformer should be able to
withstand 5% overvoltage at rated load and 10% at no load. The harmonic currents
in the applied voltage should not exceed these limits.

In addition to its derating due to increased harmonic induced eddy current loss,
a drive system transformer may be subjected to severe current cycling and load
demand, depending on the drive system. The following calculations are based
upon Ref. [10].

The losses in a transformer can be divided into (1) no-load losses, and (2) load
losses. The load losses consist of copper loss in windings and stray load losses. The
stray load losses can be subdivided into the losses in windings and losses in non-
winding components of the transformer, i.e., core clamps, structures, and tank. The
total transformer load loss PLL is

PLL ¼ Pþ PEC þ POSL ð18:2Þ
where P is I2R loss. PEC is the winding eddy current loss and POSL is other stray loss.
If the rms value of the current including harmonics is the same as the fundamental
current, I2R loss will be maintained the same. If the rms value due to harmonics
increases, so does the I2R loss.

IðpuÞ ¼
Xh¼hmax

h¼1

ðIhðpuÞÞ2
" #1=2

ð18:3Þ

Effects of Harmonics 603

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



The eddy current loss PEC is assumed to vary in proportion to the square of the
electromagnetic field strength. Square of the harmonic current or the square of the
harmonic number can be considered to be representative of it. Due to skin effect the
electromagnetic flux may not penetrate conductors at high frequencies. The leakage
flux has its maximum concentration between interface of two windings:

PECðpuÞ ¼ PEC�RðpuÞ
Xh¼max

h¼1

I2hðpuÞh
2 ð18:4Þ

where PEC-R is the winding eddy current loss under rated conditions. All the stray
loss is assumed to occur in the windings. PLL can be written as

PLLðpuÞ ¼
Xh¼hmax

h¼1

I2hðpuÞ þ PEC�RðpuÞ
Xh¼hmax

h¼1

I2hðpuÞh
2 ð18:5Þ

The per unit value of nonsinusoidal current is given by

ImaxðpuÞ ¼
PLL�RðpuÞ

1þ Ph¼hmax

h¼1

f 2h h
2=

Ph¼hmax

h¼1

f 2h

� �
PEC�RðpuÞ

	 

2
6664

3
7775

1=2

ð18:6Þ

where PEC-R is calculated from transformer test data and the maximum eddy current
loss density is to be assumed 400% of the average value. The division of eddy current
loss between windings is:

. 60% in inner winding and 40% in outer winding for all transformers having
a self-cooled rating of <1000 A and for all transformers having turns ratio
4:1 or less.

. 70% in inner winding and 30% in outer winding for all transformers having
turns ratio >4:1 and having one or more windings with a maximum self-
cooled rating of >1000 A.

PEC-R is specified by the manufacturer or is given by

PEC�R ¼ Total load loss� copper loss

¼ PLL � K I2ð1�RÞR1 þ I22�RR2

� � ð18:7Þ

In this expression for copper loss, R1 and R2 are the resistances measured at the
winding terminals ( i.e., H1 and H2 or X1 and X2) and should not be confused with
winding resistances; K ¼ 1 for single-phase transformers and 1.5 for three-phase
transformers. As the low-voltage winding is the inner winding, maximum PEC-R is
given by

maxPEC�RðpuÞ ¼
K1PEC�R watts

KðI2�RÞ2R2 watts
pu ð18:8Þ
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where K1 is the division of eddy current loss in the inner winding, equal to 0.6 or 0.7
multiplied by the maximum eddy current loss density of 4.0 per unit, i.e., 2.4 or 2.8,
depending on the transformer turns ratio and current rating.

Example 18.2

A delta–wye connected isolation transformer of 13.8–2.3 kV is required for a 2.3-kV
3000-hp drive motor connected to a Load Commutated Inverter (LCI), with the
following current spectrum:

I = 693A, I5 = 121A, I7 = 79A, I11 = 31A, I13 = 20A, I17 = 11A, I19 = 7A,
I23 = 6A, I25 = 5A.

Calculate its harmonic loading. The following loss data are supplied by the manu-
facturer:

No load loss= 3800W, I2R loss = 20 kW, eddy current and stray loss = 3200 W,
total load loss = 23 kW, and total transformer loss = 27 kW.

We first calculate the rms value of the current spectrum, including the funda-
mental. It is

Xh¼25

h¼1

I2h

" #1=2

¼ 709A

Considering this as the per unit base current, the per unit harmonic currents are
calculated, the calculation steps being shown in Table 18-3. This table also shows
the calculation of numerical parameters for solution of Eq. (18.6).

From the test results PEC-R is 16% of the I2R loss. The maximum local loss
density under rated load conditions, PLL-R(PU), is 1.16 pu. From Eq. (18.5) the local
loss density for a nonsinusoidal current, substituting the numerical values from
Table 18-3 is

PLLðpuÞ ¼ 1:00þ 0:16ð2:7514Þ ¼ 1:4402pu
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Table 18-3 Calculations of Derating of a Transformer Due to Harmonic Loads

h IhðpuÞ IhðpuÞ2 h2 IhðpuÞ2h2 fh f 2h f 2h h
2

1 0.977 0.955 1 0.955 1.0 1.0 1.00

5 0.171 0.029 25 0.725 0.175 0.0306 0.7643
7 0.111 0.012 49 0.588 0.111 0.0122 0.5975
11 0.043 0.0018 121 0.2178 0.045 0.0020 0.2449
13 0.028 0.0006 169 0.1014 0.029 0.0008 0.1385

17 0.015 0.00022 289 0.0636 0.015 0.0002 0.0680
19 0.010 0.00010 361 0.0361 0.010 0.0001 0.0362
23 0.008 0.000064 529 0.0339 0.009 0.00008 0.0423

25 0.007 0.000049 625 0.0306 0.008 0.00006 0.0375

P
1.00 2.7514 1.04604 3.2667
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This means that the transformer losses while supplying the required spectrum loads
are:

No load loss = 3800 W, no change;
I2R loss = 20,000 W, no change;
Eddy and stray loss = 0.442 (20,000) = 8840 W, as compared to 3200W for
sinusoidal load, i.e., an increase of 5640 W of total losses.

The permissible current with the given harmonic spectrum is

ImaxðpuÞ ¼
1:16

1þ 3:2667
1:04604 � 0:16

" #
¼ 0:879

This shows a derating of 12.1%.
PEC-R is normally calculated from the winding resistance data and load loss

data supplied by the manufacturer, according to Eqs (18.7) and (18.8). Now suppose
that for the same transformer, the fundamental current rating is 709 A, the voltage
ratio is 13.8–2.3 kV, and the transformer is delta–wye connected. The following
resistance data are supplied:

R1 = 1.052 ohms, R2 = 0.0159 ohms and the total load loss = 23,200 W. Calculate
its derating when supplying the same harmonic current spectrum.

The primary (13.8 kV) winding current = 71.19 A. The copper loss in windings
is

1:5½ð1:052Þð71:19Þ2 þ ð0:0159Þð709Þ2� ¼ 19986:3W

From the given loss data:

PEC�R ¼ 23,200� 19,986.3 ¼ 3213:7W

From Eq. (18.8) the maximum PEC-Rmax is

PEC�Rmax
¼ 2:4� 3213:7

11988:9
¼ 0:643 pu

A table similar to Table 18-3, based on the transformer fundamental current of
709 A as the base can be constructed and the derating calculated.

18.2.1 UL K Factor of Transformers

The UL (Underwriter’s Laboratories) standards [11,12] also specify transformer
derating (K-factors) when carrying non-sinusoidal loads.

The expression below is the UL K factor of transformers:

K factor ¼
Xh¼hmax

h¼1

f 2h h
2=

Xh¼hmax

h¼1

f 2h

 !" #
ð18:9Þ

Compare this with Eq. (18.6). This factor occurs in the denominator of Eq. (18.6).
The UL K factor is simply a multiplier for the conductor eddy current loss. A con-
ductor carrying a nonlinear current with a UL K factor of 4 will have four times the
loss of the same conductor carrying a sinusoidal load. Thus, there is a marked
difference between the derating in ANSI/IEEE recommendations [10] and UL K
factor [11,12]. If a transformer has 3% eddy current loss and a K factor of 5, then
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the eddy current loss increases to 3� 5 ¼ 15%. The UL method ignores eddy current
loss gradient. Figure 18-3 shows the higher derating with the ANSI method of cal-
culation for a six-pulse converter harmonic spectrum, assuming a theoretical magni-
tude of harmonics of 1=h, for a K factor load of approximately 9.

Example 18.3

Calculate the UL K factor for the harmonic loading spectrum of Example 18.1:
From Eq. (18.9) and Table 18-3, the K factor is 3.2667/1.04604=3.12.

18.3 CABLES

A nonsinusoidal current in a conductor causes additional losses. The ac conductor
resistance is changed due to skin and proximity effects. Both these effects are depen-
dent on frequency, conductor size cable construction, and spacing. We observed that
even at 60 Hz the ac resistance of conductors is higher than the dc resistance (Table
7-14). With harmonic currents these effects are more pronounced. The ac resistance
is given by

Rac=Rdc ¼ 1þ Ycs þ Ycp ð18:10Þ
where Ycs is due to conductor resistance resulting from the skin effect, and YCP is due
to the proximity effect. The skin effect is an ac phenomenon, where the current
density through the conductor cross-section is not uniform and the current tends
to flow more densely near the outer surface of a conductor than towards the center.
This is because an ac flux results in induced emfs which are greater at the center than
at the circumference, so that the potential difference tends to establish currents that
oppose the main current at the center and assist it at the circumference. The result is
that current is forced to the outside, reducing the effective area of the conductor.
This effect is utilized in high ampacity hollow conductors and tubular bus bars, to
save material costs. The skin effect is given by [13]

Ycs ¼ FðxsÞ ð18:11Þ
where Ycs is due to skin effect losses in the conductor and FðxsÞ is the skin effect
function.
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Figure 18-3 Relative derating of transformers: ANSI method and UL K factor.
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xs ¼ 0:875

ffiffiffiffiffiffiffiffiffiffiffi
f
ks
Rdc

s
ð18:12Þ

where the factor ks depends on the conductor construction. The proximity effect
occurs because of distortion of current distribution between two conductors in close
proximity. This causes a concentration of current in the parts of conductors or bus
bars closest to each other (currents flowing in forward and return paths). The expres-
sions and graphs for calculating the proximity effect are given in Ref. [13]. The
increased resistance of conductors due to harmonic currents can be calculated,
and the derated capacity is

1

1þ Ph¼1

h¼1

I2hRh

ð18:13Þ

where Ih is the harmonic current and Rh is the ratio of resistance at that harmonic
with respect to conductor dc resistance.

For a typical six-pulse harmonic spectrum, the derating is approximately 3 to
6%, depending on the cable size. The cable deration should not normally be a
consideration (see also Ref. [14]).

18.4 CAPACITORS

The main effect of harmonics on capacitors is that a resonance condition can occur
with one of the harmonics (see Sec. 18.5). Capacitors may be located in an industrial
plant or close to such a plant which has significant harmonic-producing loads. This
location is very possibly subject to harmonic resonance, and should be avoided, or
the capacitors can be used as tuned filters. On a subtransmission system where the
capacitors are located far from the harmonic-producing loads, the propagation of
harmonics through the interconnecting system needs to be studied. The linear loads
served from a common feeder, which also serves nonlinear loads of some other
consumers, may become susceptible to harmonic distortion. There have been two
approaches, one to consider capacitor placement from a reactive power considera-
tion and then study the harmonic effects, and second to study the fundamental
frequency voltages, reactive power, and harmonic effects simultaneously. A consu-
mer’s system which does not have harmonics can be subjected to harmonic pollution
due to harmonic loads of other consumers in the system.

The capacitors can be severely overloaded due to harmonics, especially under
resonant conditions, and can be damaged. The limitations on power capacitors due
to harmonics are as follows [15]:

. The per unit kvar (calculated on basis of fundamental and harmonic cur-
rents and voltages) should not exceed 1.35:

kvarðpuÞ � 1:35 ¼
Xh¼hmax

h¼1

ðVhIhÞ ð18:14Þ
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. The rms current including all harmonics should not exceed 1.8. If there is
only one harmonic, say the fifth, its magnitude can be 150% of the funda-
mental:

Irms � 1:8 ¼
Xh¼hmax

h¼1

I2h

" #1=2

ð18:15Þ

. The limits on rms voltage are given by

Vrms � 1:1 ¼
Xh¼hmax

h¼1

V2
h

" #1=2

ð18:16Þ

. VS, the sum of randomly occurring voltages, which for conservatism may be
considered cophasial, should not exceed

Vs � 1:2
ffiffiffi
2

p Xh¼hmax

h¼1

Vh ð18:17Þ

The infrequent limits of overvoltages and currents are shown in Fig. 18-4.

18.5 HARMONIC RESONANCE

18.5.1 Parallel Resonance

When shunt power factor capacitors are connected in a power system for power
factor improvement or reactive power compensation, these act in parallel with the
system impedance. Ignoring resistance, the impedance of the parallel combination is

j!Lð1=j!CÞ
ð j!Lþ 1=j!CÞ ð18:18Þ
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Figure 18-4 Peak transient overvoltage and peak transient current capability of shunt

capacitors.
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This means that the system impedance, considered solely inductive, is in par-
allel with a capacitor. Assuming that L and C remain invariant with frequency,
resonance occurs at a frequency where the inductive and capacitive reactance are
equal and the denominator of Eq. (18.18) is zero, i.e., the impedance of the combi-
nation is infinite for a lossless system. The impedance angle changes abruptly as the
resonant frequency is crossed (Fig. 18-5). The inductive impedance of the power
source and distribution (utility, transformers, generators, and motors), as seen
from the point of application of the capacitors, equals the capacitive reactance of
the power capacitors at the resonant frequency:

j2�fnL ¼ 1

j2�fnC
ð18:19Þ

where fn is the resonant frequency. Depending on the relative values of the system
inductance and capacitance, it may happen that this resonant frequency coincides
with one of the load generated harmonics, say the fifth. If the resonant frequency is
300 Hz, 5j!L ¼ 1=ð5j!CÞ, where ! pertains to the fundamental frequency. The
power capacitor forms one branch of the tuned resonant circuit, while the rest of
the distribution system acts like the other parallel branch as seen from the point of
harmonic current source. When excited at resonant frequency a harmonic current
magnification occurs in the parallel tuned circuit, though the exciting input current is
small. This magnification of harmonic current may be many times the exciting
current and may even exceed the normal fundamental frequency current. It over-
loads the capacitors and results in severe harmonic currents and distortion in the
power system, with their consequent deleterious effects on the power system compo-
nents.
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Figure 18-5 Parallel resonance in a lossless system with lumped inductance and capaci-

tance.
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Resonance with one of the load generated harmonics is the major effect of
harmonics on the power system. This condition has to be avoided in any application
of power capacitors. The resonant conditions of a power system with shunt power
capacitors is

h ¼ fn
f
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kVAsc

kvarc

s
ð18:20Þ

where h is the order of harmonics, fn is the resonant frequency, f is the fundamental
frequency, KVAsc is the short-circuit duty (in kVA) at the point of application of the
shunt capacitors, and kvarc is the shunt capacitor rating (in kvar).

Consider that the short-circuit level at the point of application of power capa-
citors is 500 MVA. Resonance at 5th, 7th, 13th, . . ., harmonics they occur for a
shunt capacitor bank size of 20, 10.2, 4.13, 2.95, . . ., Mvar, respectively. The smaller
the size of the capacitor the higher the resonant frequency.

The short-circuit level in a system is not a fixed entity. It varies with the
operating conditions. In an industrial plant these variations may be more pro-
nounced than in a utility system, as a plant generator or part of the plant rotating
load may be out of service, depending on variations in processes and operation. The
resonant frequency in the system will float around.

The lower-order harmonics are more troublesome from a resonance point of
view. As the order of harmonics increases (i.e., the frequency increases) their
magnitude reduces. Sometimes, a harmonic analysis study is limited to the 25th or
29th harmonic only. This may not be adequate and possible resonances at higher
frequencies can be missed. Table 18-4 shows the harmonic current spectrum at the
secondary of a lightly loaded 480-V transformer, with a capacitor bank of 40 kvar.
Resonance occurs at the 29th and 31st harmonics and the current distortion at these
harmonics is 17.7 and 17.5%, respectively. The total THD is 25.42. Table 18-5 shows
the effect of switching more capacitor units as the load develops, with a 160-kvar
bank. Now the resonance occurs at the 11th and 13th harmonic and the THD is
7.72%. These distortion limits are way beyond the acceptable limits (see Appendix
F). This shows that higher-order harmonics can be equally troublesome and give rise
to high distortions, if a resonant condition exists.

It can be concluded that:

. The resonant frequency will swing around depending on the changes in the
system impedance, e.g., switching a tie-circuit on or off, operation at
reduced load. Some sections of the capacitors may be switched out, altering
the resonant frequency.

. An expansion or reorganization of the distribution may bring about a reso-
nant condition, where none existed before.

. Even if the power capacitors in a system are sized to escape resonance,
immunity from resonant conditions cannot be guaranteed owing to future
system changes.

18.5.2 Series Resonance

In a series resonant circuit, the resistance, capacitance, and inductance are in series,
and the inductive reactance at the resonant frequency is again equal to the
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Table 18-4 Measurements of Harmonic Spectrum of a 480-V Substation with 40-kvar

Capacitor Bank, Fundamental Current 35.4 A

Harmonic Percentage Phase angle (8) Harmonic Percentage Phase angle8

5 0.6 146 22 0.2 �98
7 0.2 �59 24 0.2 �98

9 0.2 �138 26 0.2 �142
11 1.1 4 28 0.3 171
13 1.5 �9 30 0.6 28
17 0.4 51 32 0.3 84

19 1.8 51 36 0.2 37
21 0.5 26
23 1.4 �88

25 1.5 �96
27 1.4 83
29 17.7 31

31 17.5 �106
35 1.8 30
37 2.3 59

41 1.6 �28
43 0.4 148

P
Odd 25.3%

P
Even 0.9

THD: 25.42%.

Table 18-5 Measurements of Harmonic Spectrum of a 480-V Substation with 160-kvar
Capacitor Bank, Fundamental Current 148.5 A

Harmonic Percentage Phase angle (8) Harmonic Percentage Phase angle8

5 0.8 141 14 0.2 21

7 0.3 �63 16 0.2 �62
9 0.3 �125

11 2.7 24

13 6.7 63
15 0.9 �10
17 0.6 �151

19 0.6 �179
21 0.2 168
25 0.2 34

29 1.5 128
31 1.5 �17
37 0.2 82

P
Even 0.4

41 0.2 �7P
Odd 7.7%

THD: 7.72%.
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capacitive reactance; however, the circuit has a low impedance at the resonant
frequency, equal to the resistance. If the resistance is ignored, the circuit impedance
is zero. A series combination of the capacitor bank and line or transformer
reactance may form a low impedance path for harmonic currents and can generate
high voltages. Capacitive impedances of cables and long overhead lines cause
resonance in the range 5–15 kHz. Series compensation of power lines is another
example. A transformer with a capacitor connected on its secondary can form a
series resonant circuit.

18.6 VOLTAGE NOTCHING

The commutation notches in Fig. 17-19 show that the voltage waveform has more
than one zero crossing. Much electronic equipment uses the crossover of the wave-
forms to detect frequency or generate a reference for the fining angle. Such items of
equipments are timers, domestic clocks, and UPS (uninterruptible power supply)
systems. Many controllers using an inverse cosine type of control circuit will be
susceptible to zero crossing. Automatic voltage regulators of generators is another
example. The control of firing angle and hence the dc voltage and excitation will be
affected. All drives using rectifier front end can also be affected, and converter
disruption can occur. Line harmonics seem to affect the accuracy and operation
of the magnetic devices and peripheral equipment also.

The second significant feature is the oscillations caused by excitation of system
inductance and capacitances. The capacitances may be those of power factor correc-
tion capacitors or cables. The frequency range is from 5 to 60 kHz. These can cause
interference with telecommunication through coupling of the power line with the
telephone line.

If the firing angle is near the crest of the wave, overvoltages can occur, as
commutation oscillation near the peak of the voltage can drive it more than the
normal crest voltage. The effect of high dv=dtmay manifest in the failure of the solid-
state devices and in EMI.

18.7 EMI (ELECTROMAGNETIC INTERFERENCE)

Disturbances generated by switching devices such as BJTs (bipolar junction transis-
tors), IGBTs (insulated gate bipolar transistors), and high-frequency PWM modula-
tion systems, and voltage notching due to converters, generate high-frequency
switching harmonics. Also, a short rise and fall time of 0:5 msec or less occurs due
to the commutation action of the switches. This generates sufficient energy levels in
the radio-frequency range in the form of damped oscillations between 10 kHz to 1
GHz. The following approximate classification of electromagnetic disturbance by
frequency can be defined:

Below 60 Hz : subharmonic
60–2 kHz : harmonics
16–20 kHz : acoustic noise
20–150 kHz : range between acoustic and radio-frequency disturbance
150 kHz–30 MHZ : conducted radio frequency disturbance
30 MHZ–1 GHz : radiated disturbance
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The high-frequency disturbances are referred to as EMI. The radiated form is pro-
pagated in free space as electromagnetic waves, and the conducted form is trans-
mitted through power lines, especially at distribution level. Conducted EMI is much
higher than the radiated noise. Two modes of conducted EMI are recognized, sym-
metrical or differential mode and asymmetrical or common mode. The symmetrical
mode occurs between two conductors that form a conventional return circuit and
common mode propagation takes place between a group of conductors and ground
or another group of conductors.

The noise at frequencies around a few kilohertz can interfere with audiovisual
equipment and electronic clocks. Shielding and proper filtering are the preventive
measures. There are various standards that specify the maximum limit on conducted
EMI. Lightning surges, arcing-type faults and operation of circuit breakers and fuses
can also produce EMI.

18.8 OVERLOADING OF NEUTRAL

Figure 17-23 shows that the line current of switched mode power supplies flows in
pulses. Also, the PBM technique (see Sec. 17.19) gives rise to neutral current. At low
levels of currents, the pulses are nonoverlapping in a three-phase system, i.e., only
one phase of a three-phase system carries current at any one time. The only return
path is through the neutral and as such the neutral can carry the summed currents of
the three phases. Its rms value is, therefore, 173% of the line current (Fig. 18-6). As
the load increases, the pulses in the neutral circuit overlap and the neutral current as
a percentage of line current reduces. The third harmonic is the major contributor to
the neutral current, other triplen harmonics have insignificant contributions. A mini-
mum of 33% third harmonics is required to produce 100% neutral current in a
balanced wye system.
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Figure 18-6 Summation of neutral current in a three-phase four-wire system.
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The nonlinear loads may not be perfectly balanced and single-phase unba-
lanced nonlinear loads can create higher unbalance currents in the neutral. The
NEC (National Electrical Code) published by NFPA - National Fire Protection
Association [16], recommends that, where the major portion of the load consists
of nonlinear loads, the neutral shall be considered as a current-carrying conductor.
In some installations the neutral current may exceed the maximum phase current.
The single-phase branch circuits can be run with a separate neutral for each phase
rather than using a multiwire branch circuit with a shared neutral.

18.9 PROTECTIVE RELAYS AND METERS

System harmonics may result in possible relay misoperation. Relays that depend on
crest voltages and/or current or voltage zeros are affected by harmonic distortion on
the wave. The excessive third-harmonic zero sequence current can cause ground
relays to false trip. A Canadian Study [1] documents the following effects:

1. Relays exhibited a tendency to operate slower and/or with higher pickup
values rather than to operate faster and/or with lower pickup values.

2. Static underfrequency relays were susceptible to substantial changes in
operating characteristics.

3. In most cases the changes in the operating characteristics were small over
a moderate range of distortion during normal operation.

4. Depending on the manufacturer, the overvoltage and overcurrent relays
exhibited various changes in the operating characteristics.

5. Depending on harmonic content, the operating torque of the relays could
be reversed.

6. Operating times could vary widely as a function of the frequency mix in
the metered quantity.

7. Balanced beam distance relays could exhibit both underreach and over-
reach.

8. Harmonics could impair the operation of high-speed differential relays.

Harmonic levels of 10–20% are generally required to cause problems with relay
operation. These levels are much higher than will be tolerated in a power system.

Metering and instrumentation are affected by harmonics. Close to resonance,
high harmonic voltages may cause appreciable errors. A 20% fifth harmonic content
can produce a 10–15% error in a two-element three-phase watt transducer. The error
due to harmonics can be positive, negative, or smaller with third harmonics, depend-
ing on the type of meter. The presence of harmonics reduces reading on power factor
meters.

18.10 CIRCUIT BREAKERS AND FUSES

Harmonic components can affect the current interruption capability of circuit break-
ers. The high di=dt at current zero can make the interruption process more difficult.
Figure 17-15 for a six-pulse converter shows that the current zero is extended and
di=dt at current zero is very high. Vacuum breakers are less sensitive to the harmonic
currents. There are no definite standards in the industry for derating. One method is
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to arrive at the maximum di=dt of the breaker, based on its interrupting rating at
fundamental frequency, and then translate it into maximum harmonic levels assum-
ing that the harmonic in question is in phase with the fundamental [1].

A typical reduction in the current-carrying capacity of molded case circuit
breakers when in use at higher frequency sine-wave currents is shown in Table
18-6. The effect on larger breakers can be more severe since the phenomenon is
related to skin effect and proximity effect.

Harmonics will reduce the current-carrying capacity of the fuses. Also, the
time–current characteristics can be altered and the melting time will change.
Harmonics affect the interrupting rating of the fuses. Excessive transient overvol-
tages from current-limiting fuses, forcing current to zero, may be generated. This can
cause surge arrester operation and capacitor failures.

18.11 TELEPHONE INFLUENCE FACTOR

Harmonic currents or voltages can produce electric and magnetic fields that will
impair the performance of communication systems. Due to proximity there will be
inductive couplings with the communication systems. Relative weights have been
established by tests for the various harmonic frequencies that indicate the distur-
bance to voice frequency communication. This is based on the disturbance produced
by injection of a signal of the harmonic frequency relative to that produced by a
1 kHz signal similarly injected. The TIF weighting factor is a combination of C-
message weighting characteristics, which account for relative interference effects of
various frequencies in the voice band, and a capacitor which provides weighting that
is directly proportional to frequency to account for an assumed coupling function
[17]. It is a dimensionless quantity given by the ratio of the square root of the sum of
the squares of the weighted root-mean square values of all the sine-wave components
(fundamental and harmonics) to the root-mean square value of the entire wave:

TIF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPðXfWf Þ2

q
Xt

ð18:21Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX ðXfWf Þ

Xt

	 
2s
ð18:22Þ
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Table 18-6 Reduction in Current Carrying Capability (%)

of Molded Case Circuit Breakers, 408C Temperature Rise

Breaker size Sinusoidal current

300 Hz 420 Hz
70A 9 11

225A 14 20

Based on published data of one manufacturer.
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where Xt is the total rms voltage or current, Xf is the single-frequency rms current or
voltage at frequency f, and Wf is the single-frequency weighting at frequency f.

The TIF weighting function which reflects the C-message weighting and cou-
pling normalized to 1 kHz is given by

Wf ¼ 5Pf f ð18:23Þ
where Pf is the C-message weighting at frequency f, and f is the frequency under
consideration.

The single-frequency TIF values are listed in Table 18-7. The weighting is high
in the frequency range 2 to 3.5 kHz in which human hearing is most sensitive.

Telephone interference is often expressed as a product of the current and TIF,
i.e., IT product where I is the rms current in ampères. Alternatively, it is expressed as
a product of voltage and TIF weighting, where the voltage is in kV, i.e., kV-T
product.

Table 18-8 [17] gives balanced IT guidelines for converter installations. The
values are for circuits with an exposure between overhead systems, both power and
telephone. Within an industrial plant or commercial building, the interference
between power cables and twisted pair telephone cables is very low, and interference
is not normally encountered. Telephone circuits are particularly susceptible to the
influence of ground return currents.

Problems

1. A synchronous generator has an I22T of 30. Calculate the time duration
for which the generator can tolerate the typical harmonic spectrum cur-
rent of a six-pulse converter given in Table 17-3, as a percentage of its
rated full-load current.

2. Explain how the fifth and seventh harmonic pair produce a sixth harmo-
nic in the rotor circuit of a synchronous generator? What is the rotation
of this harmonic?

3. Draw a table showing the forward reverse and zero sequence harmonics
in a machine up to the 37th harmonic.
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Table 18-7 1960 Single-Frequency TIF Values

Freq.
Hz

TIF Freq.
Hz

TIF Freq.
Hz

TIF Freq.
Hz

TIF

60 0.5 1020 5100 1860 7820 3000 9670
180 30 1080 5400 1980 8330 3180 8740

300 225 1140 5630 2100 8830 3300 8090
360 400 1260 6050 2160 9080 3540 6730
420 650 1380 6370 2220 9330 3660 6130
540 1320 1440 6560 2340 9840 3900 4400

660 2260 1500 6680 2460 10,340 4020 3700
720 2760 1620 6970 2580 10,600 4260 2750
780 3360 1740 7320 2820 10,210 4380 2190

900 4350 1800 7570 2940 9820 5000 840
1000 5000

Source: Ref. 17. Copyright 1992 IEEE. All rights reserved. Reproduced with permission.
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4. Complete the derating calculation of the transformer in Example 18.2 by
constructing a table similar to Table 18-3. Tabulate losses under normal
loading conditions and under harmonic loads.

5. Calculate the derating of a 5 MVA, 13.8–4.16 kV delta-wye transformer
when subjected to the typical harmonic current spectrum of Table 17-3, as
per unit of its rated current. The transformer data are: R10.2747=ohms;
R20.02698=ohms; stray load loss at rated current = 32000W.
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Table 18-8 Balanced IT Guidelines for Converter Installation Tie Lines

Category Description IT

I Levels unlikely to cause interference Up to 10,000

II Levels that might cause interference 10,000–50,000
III Levels that probably will cause interference >50,000

Source: Ref 17. Copyright 1992 IEEE. All rights reserved. Reproduced with permission.
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19

Harmonic Analysis

The purpose of harmonic analysis is to ascertain the distribution of harmonic cur-
rents, voltages, and harmonic distortion indices in a power system. This analysis is
then applied to the study of resonant conditions and harmonic filter designs and also
to study other effects of harmonics on the power system, i.e., notching and ringing,
neutral currents, saturation of transformers, and overloading of system components.
On a simplistic basis, harmonic simulation is much like a load flow simulation. The
impedance data from a short-circuit study can be used and modified for the higher
frequency effects. In addition to models of loads, transformers, generators, motors,
etc., the models for harmonic injection sources, arc furnaces, converters, SVCs, etc.
are included. These are not limited to characteristics harmonics and a full spectrum
of load harmonics can be modeled. These harmonic current injections will be at
different locations in a power system. As a first step, a frequency scan is obtained
which plots the variation of impedance modulus and phase angle at a selected bus
with variation of frequency or generates R–X plots of the impedance. This enables
the resonant frequencies to be ascertained. The harmonic current flows in the lines
are calculated, and the network, assumed to be linear at each step of the calculations
with added constraints, is solved to obtain the harmonic voltages. The calculations
may include the following:

. Calculation of harmonic distortion indices.

. Calculation of TIF, KVT, and IT (see Sec. 18.11).

. Induced voltages on communication lines.

. Sensitivity analysis, i.e., the effect of variation of a system component.

This is rather a simplistic approach. The rigorous harmonic analysis gets
involved because of interaction between harmonic producing equipment and the
power system, the practical limitations of modeling each component in a large
power system, the extent to which the system should be modeled for accuracy,
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and the types of component and nonlinear source models. A furnace arc impedance
varies erratically and is asymmetrical. Large power high-voltage dc (HVDC) con-
verters and FACTS devices have large nonlinear loads and superimposition is not
valid. Depending on the nature of the study simplistic methods may give erroneous
results.

19.1 HARMONIC ANALYSIS METHODS

There are a number of methodologies for calculation of harmonics and effects of
nonlinear loads. Direct measurements can be carried out, using suitable instrumen-
tation. This is not discussed in this book. The analytical analysis can be carried out
in the frequency and time domains. Another method is to model the system to use a
state-space approach. The differential equations relating current and voltages to
system parameters are found through basic circuit analysis. We will discuss fre-
quency and time-domain methods [1,2].

19.1.1 Frequency Domain Analysis

For calculations in the frequency domain, the harmonic spectrum of the load is
ascertained and the current injection is represented by a Norton’s equivalent circuit.
Harmonic current flow is calculated throughout the system for each of the harmo-
nics. The system impedance data are modified to account for higher frequency, and
are reduced to their Thévenin equivalent. The principal of superposition is applied. If
all nonlinear loads can be represented by current injections, the following matrix
equations are applicable:

�VVh ¼ �ZZh
�IIh ð19:1Þ

�IIh ¼ �YYh
�VVh ð19:2Þ

The formation of bus impedance and admittance matrices has already been dis-
cussed. The distribution of harmonic voltages and currents are no different for net-
works containing one or more sources of harmonic currents. During the steady state
the harmonic currents entering the network are considered as being produced by
ideal sources that operate without repercussion. The entire system can then be mod-
eled as an assemblage of passive elements. Corrections will be applied to the impe-
dance elements for dynamic loads, e.g., generators and motors’ frequency dependent
characteristics at each incremental frequency chosen during the study can be mod-
eled. The system harmonic voltages are calculated by direct solution of the linear
matrix equations (19.1) and (19.2).

In a power system, the harmonic injection will occur only on a few buses. These
buses can be ordered last in the Y matrix and a reduced matrix can be formed. For n-
nodes and n� j þ 1 injections, the reduced Y matrix is

Ij
�
In

������
������ ¼

Yjj � Yjn

� � �
Ynj � Ynn

������
������
Vi

�
Vn

������
������ ð19:3Þ

where diagonal elements are the self-admittances and the off-diagonal elements are
transfer impedances as in the case of load flow calculations.
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Linear transformation techniques are discussed in Chap. 3. The admittance
matrix is formed from a primitive admittance matrix by transformation:

�YYabc ¼ �AA
0
�YYprim

�AA ð19:4Þ
and the symmetrical component transformation is given by

�YY012 ¼ �TT �1
s

�YYabc
�TTs ð19:5Þ

The vector of nodal voltages is given by

�VVh ¼ �YY �1
h

�IIh ¼ �ZZh
�IIh ð19:6Þ

For the injection of a unit current at bus k:

�ZZkk ¼ �VVk ð19:7Þ
where Zkk is the impedance of the network seen from bus k. The current flowing in
branch jk is given by

�IIjk ¼ �VVjkð �VVj � �VVkÞ ð19:8Þ
where Yjk is the nodal admittance matrix of the branch connected between j and k.

Variation of the bus admittance matrix, which is produced by a set of mod-
ifications in the change of impedance of a component, can be accommodated by
modifications to the Y-bus matrix as discussed before. For harmonic analysis the
admittance matrix must be built at each frequency of interest, for component level
RLC parameters for circuit models of lines, transformers, cables, and other equip-
ment. Thus, the harmonic voltages can be calculated. A new estimate of the harmo-
nic injection currents is then obtained from the computed harmonic voltages, and the
process is iterative until the convergence on each bus is obtained. Under resonant
conditions, large distortions may occur and the validity of assumption of linear
system components is questionable. From Eq. (19.1) we see that the harmonic impe-
dance is important in the response of the system to harmonics. There can be inter-
action between harmonic sources throughout the system, and if these are ignored,
the single-source model and the superposition can be used to calculate the harmonic
distortion factors and filter designs. The assumption of constant system impedance is
not valid, as the system impedance always changes, say due to switching conditions,
operation, or future additions. These impedance changes in the system may have a
more profound effect on the ideal current source modeling than the interaction
between harmonic sources. A weak ac/dc interconnection defined with a short-circuit
ratio (short-circuit capacity of the ac system divided by the dc power injected by the
converter into converter bus) of <3 may have voltage and power instabilities, tran-
sient and dynamic overvoltages, and harmonic overvoltages [3].

19.1.2 Frequency Scan

A frequency scan is merely a repeated application in certain incremental steps of
some initial value of frequency to the final value, these two values spanning the range
of harmonics to be considered. The procedure is equally valid whether there are
single or multiple harmonic sources in the system, so long as the principal of super-
imposition is held valid. Then, for unit current injection the calculated voltages give
the driving point and transfer impedance, both modulus and phase angle. The Ybus
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contains only linear elements for each frequency. Varying the frequency gives a series
of impedances which can be plotted to provide an indication of the resonant condi-
tions. Figure 19-1 shows a frequency scan of impedance modulus versus frequency.
The parallel resonances occur at peaks, which give the maximum impedances and the
series resonances at the lowest points of the impedance plots. Figure 19-1 shows
parallel resonance at two frequencies f p1 and f p2 and series resonance at f s1 and
f s2. We will see in Chap. 20 that such a frequency scan is obtained with two single-
tuned shunt filters. Multiphase frequency scans can identify the harmonic resonance
caused by single-phase capacitor banks.

19.1.3 Voltage Scan

A voltage scan may similarly be carried out by applying unit voltage to a node and
calculating the voltages versus frequency in the rest of the system. The resulting
voltages represent the voltage transfer function to all other nodes in the system.
This analysis is commonly called a voltage transfer function study. The peaks in
the scan identify the frequencies at which the voltages will be magnified and the
lowest points indicate frequencies where these will be attenuated.

19.1.4 Phase Angle of Harmonics

For simplicity, all the harmonics may be considered cophasial. This does not
always give the most conservative results, unless the system has one predominant
harmonic, in which case only harmonic magnitude can be represented. The phase
angles of the current sources are functions of the supply voltage phase angle and
are expressed as

�h ¼ �h;spectrum þ hð�1 � �1;spectrumÞ ð19:9Þ
where �1 is the phase angle obtained from fundamental frequency load flow solution,
and �h;spectrum is the typical phase angle of harmonic current source spectrum (see
also Appendix G). The phase angles of a three-phase harmonic source are rarely 1208
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Figure 19-1 Frequency scan showing parallel and series resonance frequencies.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



apart, as even a slight unbalance in the fundamental frequency can be reflected in a
considerable unbalance in the harmonic phase angle.

19.1.5 Newton–Raphson Method

The Newton–Raphson method can be applied to harmonic current flow [4,5]. This is
based on the balance of active power and reactive volt–ampères, whether at funda-
mental frequency or at harmonics. The active and reactive power balance is forced to
zero by the bus voltage iterations.

Consider a system with n+1 buses, bus 1 is a slack bus, buses 2 through m� 1
are conventional load buses, and buses m to n have nonsinusoidal loads. It is
assumed that the active power and the reactive volt–ampère balance are known at
each bus and that the nonlinearity is known. The power balance equations are
constructed so that �P and �Q at all nonslack buses is zero for all harmonics.
The form of �P and �Q as a function of bus voltage and phase angle is the same
as in conventional load flow, except that Ybus is modified for harmonics. The current
balance for fundamental frequency is written as

Ir;m

Ii;m

�
Ii;n

���������

���������
¼

gr;mðVm;V
5
m; � � � ; �m; �mÞ

gi;mðVm;V
5
m; � � � ; �m; �mÞ
�

gi;nðVn;V
5
n ; � � � ; �n; �nÞ

����������

����������
ð19:10Þ

where Ir,m and Ii,m are real and imaginary bus injection currents at bus m at the
fundamental, � is the firing angle, and � is the commutation parameter. This equa-
tion is modified for buses with harmonic injections as

Ikr;1

Iki;1

::

Iki;m�1

Ikr;m

Iki;m

::

Iki;n

���������������������

���������������������

¼ �

0

0

::

0

0

gkr;mðV1
m;V

5
m; � � � ; �m; �mÞ

gki;mðV1
m;V

5
m; � � � ; �m; �mÞ
::

gki;nðV1
n ;V

5
n ; � � � ; �n; �nÞ

����������������������

����������������������

ð19:11Þ

where Ikr;l is the real and Iki;l is the imaginary part of the current at the kth harmonic,
gki and gkr are the imaginary and real parts of the current equation at the kth har-
monic, and Vm with superscript is the voltage at that harmonic.

The third equation is the apparent volt–ampère balance at each bus:

S2
L ¼

X
s

P2
L þ

X
s

Q2
L þ

X
D2

L ð19:12Þ

where the third term of the equation denotes distortion power at bus L, which is not
considered as an independent variable, as it can be calculated from real and imagin-
ary components of currents (see Sec. 19.7).
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The final equations for the harmonic power flow become:

�W

�I1

�I

�I7

::

�����������

�����������
¼

J1 J5 J7 :: 0

YG1;1 YG1;5 YG1;7 :: H1

YG5;1 YG5;5 YG5;7 :: H5

YG7;1 YG7;5YG7;7 :: H7

� � �

�����������

�����������

�V1

�V5

::

::

��

�����������

�����������
ð19:13Þ

where all elements in Eq. (19.13) are sub-vectors and sub-matrices partitioned from
�M (apparent mismatches), J, and �U, i.e., �M ¼ J�U.

�W ¼ mismatch active and reactive volt-ampères
�I l ¼ mismatch, fundamental current
�Ik ¼ mismatch harmonic currents at kth harmonic
Jl ¼ conventional power flow Jacobian
Jk ¼ Jacobian at harmonic k

ðYGÞk; j ¼ Yk;k þ Gk;kðk ¼ jÞ
¼ Gk; jðk 6¼ jÞ

where Yk;k is an array of partial derivatives of injection currents at the kth harmonic
with respect to the kth harmonic voltage, and Gk; j are the partials of the kth har-
monic load current with respect to the jth harmonic supply voltage; Hk are the
partial derivatives of nonsinusoidal loads for real and imaginary currents with
respect to � and �. Ref. [6] discusses the impedance matrix method of harmonic
analysis. Also see Ref. [7,8].

19.1.6 Time Domain Analysis

The simplest harmonic model is a rigid harmonic source and linear system impe-
dance. A rigid harmonic source produces harmonics of a certain order and constant
magnitude and phase, and the linear impedances do not change with frequencies.
Multiple harmonic sources are assumed to act in isolation and the principal of
superimposition applies. These models can be solved by iterative techniques, and
the accuracy obtained will be identical to that of time-domain methods. For arc
furnaces and even electronic converters under resonant conditions an ideal current
injection may cause significant errors. The nonlinear and time-varying elements in
the power system can significantly change the interaction of the harmonics with the
power system. Consider the following:

1. Most harmonic devices that produce uncharacteristic harmonics as term-
inal conditions are in practice not ideal, e.g., converters operating with
unbalanced voltages.

2. There is interaction between ac and dc quantities and there are interac-
tions between harmonics of different order, given by switching functions
(defined later).

3. Gate control of converters can interact with harmonics through synchro-
nizing loops.

Time-domain analyses have been used for transient stability studies, transmis-
sion lines, and switching transients. It is possible to solve a wide range of differential
equations for the power system using computer simulation and to build up a model
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for harmonic calculations, which could avoid many approximations inherent in the
frequency domain approach. Harmonic distortions can be directly calculated and
making use of FFT (Fast Fourier Transform, see Appendix E) these can be con-
verted into frequency domain. The graphical results are waveforms of zero crossing,
ringing, high dv=dt, and commutation notches. The transient effects can be calcu-
lated, e.g., the part-winding resonance of a transformer can be simulated. The syn-
chronous machines can be simulated with accurate models to represent saliency, and
the effects of frequency can be dynamically simulated. EMTP is one very widely used
program for simulation in the time domain.

For analysis in the time domain, a part of the system of interest may be modeled
in detail. This detailed model consists of three-phase models of system components,
transformers, harmonic sources, and transmission lines and it may be coupled with a
network model of lumped RLC branches at interconnection buses to represent the
driving point and transfer impedances of the selected buses. The overall system to be
studied is considerably reduced in size and time-domain simulation is simplified.

19.1.7 Switching Function

Switching function is a steady-state concept for study of interactions between the ac
and dc sides of a converter. The terminal properties of many converters can be
approximated in the time domain by the converter switching function. The modula-
tion/demodulation properties of the converter account for interaction between har-
monics, generation of noncharacteristic harmonics, propagation of dc harmonics on
the ac side, and operation under unbalanced voltage or current. Consider the switch-
ing function of a converter, as shown in Fig. 19-2. The switching function is 1 when
dc current flows in the positive direction, �1 when it flows in the negative direction,
and zero otherwise. The switching functions of three phases are symmetrical and
balanced and in steady state these lag the system voltage by a converter delay angle.
The ac current output of phase a is the product of the switching function and the dc
current in phase a:

Ia ¼ IdcSa ð19:14Þ
Ib ¼ IdcSb ð19:15Þ
Ic ¼ IdcSc ð19:16Þ

Vdc ¼ VaSa þ VbSb þ VcSc ð19:17Þ
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Figure 19-2 Switching function of a six-pulse converter.
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The converter appears as a current source from the ac side and a voltage source from
the dc side. The switching functions allow one to conduct studies for harmonic
interaction between two or more converters in near proximity. The switching func-
tion assumes that the control system operates perfectly and delivers ignition pulses at
regular intervals. Practically, there is interaction between the network harmonics and
converter controls, which can be detected by modeling synchronizing loops.

19.2 HARMONIC MODELING OF SYSTEM COMPONENTS

19.2.1 Transmission Lines

The transmission line models are in Appendix B, which gives impedance calculations
for a mutually coupled three-phase line, with ground wires, bundled conductors, and
symmetrical component transformations. The transmission line model to be used is
determined by the wavelength of the highest frequency of interest. Long-line effects
should be represented for lines of length 150/h miles, where h is the harmonic
number. The effect of higher frequencies is to increase the skin effect and proximity
effects. A frequency-dependent model of the resistive component becomes impor-
tant, though the effect on the reactance is ignored. The resistance can be multiplied
by a factor gðhÞ ½9�:

RðhÞ ¼ RdcgðhÞ ð19:18Þ
gðhÞ ¼ 0:035X2 þ 0:938yX > 2:4 ð19:19Þ

¼ 0:35X þ 0:3yX � 2:4 ð19:20Þ
where

X ¼ 0:3884

ffiffiffiffi
fh
f

s ffiffiffiffiffiffiffi
h

Rdc

s
ð19:21Þ

Where fh ¼ harmonic frequency and f ¼ system frequency.

19.2.2 Underground Cables

Appendix B gives cable models. Cables have more significant capacitance than over-
head lines. An estimate of length where long-line effects are modeled is 90/h miles.

19.2.3 Filter Reactors

The frequency-dependent Q of the filter reactors is especially important, as it affects
the sharpness of tuning (Chap. 20). Resistance at high frequencies can be calculated
by the following expressions:

Rh ¼
0:115h2 þ 1

1:15

" #
Rf for aluminum reactors ð19:22Þ

Rh ¼
0:055h2 þ 1

1:055

" #
Rf for copper reactors ð19:23Þ
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19.2.4 Transformers

The single-phase and three-phase transformer models are discussed in load flow and
Appendix C. A linear conventional T-circuit model of the transformer is shown in
Appendix C and fundamental frequency values of resistance and reactance can be
found by a no-load and short-circuit test on the transformer. The resistance of the
transformer can be modified with increase in frequency according to Fig. 19-3. While
the resistance increases with frequency, the leakage inductance reduces. The magne-
tizing branch in the transformer model is often omitted if the transformer is not
considered a source of the harmonics. This simplified model may not be accurate, as
it does not model the nonlinearity in the transformer on account of:

. Core and copper losses due to eddy current and hysteresis effects. The core
loss is a summation of eddy current and hysteresis loss; both are frequency
dependent:

Pc ¼ PePh ¼ KeB
2f 2 þ KhB

sf ð19:24Þ

where B is the peak flux density, s is the Steinmetz constant (typically 1.5–
2.5, depending on the core material), f is the frequency, and Ke and Kh are
constants.

. Leakage fluxes about the windings, cores, and surrounding medium.
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Figure 19-3 Increase in transformer resistance with frequency.
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. Core magnetization characteristics, which are the primary source of trans-
former non-linearity.

A number of approaches can be taken to model the nonlinearities. EMTP transfor-
mer models, Satura and Hysdat are discussed in Appendix C. These models consider
only core magnetization characteristics and neglect nonlinearities or frequency
dependence of core losses and winding effects.

Capacitances of the transformer windings are generally omitted for harmonic
analysis of distribution systems; however, for transmission systems capacitances are
included. Surge models of transformers are discussed in Appendix C. A simplified
model with capacitances is shown in Fig. 19-4; Cbh is the high-voltage bushing
capacitance, Cb is the secondary bushing capacitance, Chg and Clg are distributed
winding capacitances, and Chl is the distributed winding capacitance between the
windings. Typical capacitance values for core-type transformers are shown in Table
19-1.

Converter loads may draw dc and low-frequency currents through the trans-
formers, i.e., a cycloconverter load. Geomagnetically induced currents flow on the
earth’s surface due to geomagnetic disturbance are typically at low frequencies
(0.001–0.1 Hz), reaching a peak value of 200A. These can enter the transformer
windings through grounded wye neutrals and bias the cores to cause half-cycle
saturation. (See Appendix C.)

19.2.5 Induction Motors

Figure 12-10 shows the equivalent circuits of an induction motor. The shunt ele-
ments gc and bm are relatively large compared to R1, r2, X1, and x2. Generally, the
locked rotor current of the motor is known and is given by Eq. (12.106). At funda-
mental frequency, neglecting magnetizing and loss components, the motor reactance
is

Xf ¼ X1 þ x2 ð19:25Þ
and the resistance is

Rf ¼ R1 þ
r2
s

ð19:26Þ
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Figure 19-4 Simplified capacitance model of a two-winding transformer.
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This resistance is not the same as used in short-circuit calculations. At harmonic
frequencies, the reactance can be directly related to the frequency:

Xh ¼ hXf ð19:27Þ
though this relation is only approximately correct. The reactance at higher frequen-
cies is reduced due to saturation. The stator resistance can be assumed to vary as the
square root of the frequency:

R1h ¼
ffiffiffi
h

p
� ðR1Þ ð19:28Þ

The harmonic slip is given by:

sh ¼
h� 1

h
for positive sequence harmonics ð19:29Þ

sh ¼
hþ 1

h
for negative sequence harmonics ð19:30Þ

The rotor resistance at harmonic frequencies is

r2h ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� hÞp
sh

ð19:31Þ

Also see Ref. [7].

19.2.6 Generators

The average inductance experienced by harmonic currents, which involve both the
direct axis and quadrature axis reactances, is approximated by

Average inductance ¼ L 00
d þ L 00

q

2
ð19:32Þ

At harmonic frequencies the fundamental frequency reactance can be directly pro-
portioned. The resistance at harmonic frequencies is given by

Rh ¼ Rdcb1þ 0:1ðhf =f Þ1:5c ð19:33Þ
This expression can also be used for calculation of harmonic resistance of transfor-
mers and cables having copper conductors.
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Table 19-1 Capacitance of Core-Type Transformers in nF

MVA rating of
transformer Chg Chl Clg

1 1.2–14 1.2–17 3.1–16
2 1.4–16 1–18 3–16

5 1.2–14 1.1–20 5.5–17
10 4–7 4–11 8–18
25 2.8–4.2 2.5–18 5.2–20
50 4–6.8 3.4–11 3–24

75 3.5–7 5.5–13 2.8–30
100 3.3–7 5–13 4–40
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19.3 LOAD MODELS

Figure 19-5(a) shows a parallel RL load model. It represents bulk power load as an
RL circuit connected to ground. The resistance and reactance components are cal-
culated from fundamental frequency voltage, reactive volt-ampère and power factor:

R ¼ V2

S cos�
L ¼ V2

2�fS sin�
ð19:34Þ

The reactance is frequency dependent and resistance may be constant or it can also
be frequency dependent. Alternatively, the resistance and reactance may remain
constant at all frequencies.

Figure 19-5(b) shows a CIGRE (Conference Internationale des Grands
Reseaux Electriques à Haute Tension) type-C load model [10], which represents
bulk power, valid between 5th and 30th harmonics. Here, the following relations
are applicable:

Rs ¼
V2

P
Xs ¼ 0:073hRs Xp ¼

hRs

6:7 Q
P � 0:74

ð19:35Þ

This load model was derived by experimentation

19.4 SYSTEM IMPEDANCE

The system impedance to harmonics is not a constant number. Figure 19-6 shows the
R–X plot of a system impedance. The fundamental frequency impedance is induc-
tive, its value representing the stiffness of the system. The resonances in the system
make the R–X plots a spiral shape, and the impedance may become capacitive. Such
spiral shaped impedances have been measured for high-voltage systems, and reso-
nances at many frequencies are common. These frequencies at resonance points and
also at a number of other points on the spiral shaped curves are indicated as shown
in Fig. 19-6. At the resonance the impedance reduces to a resistance. The system
impedance can be ascertained by the following means:

. A computer solution can be used to calculate the harmonic impedances.
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Figure 19-5 (a) Parallel RL load model; (b) CIGRE type-C model.
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. In noninvasive measurements the harmonic impedance can be calculated
directly from the ratio of harmonic voltage and current reading.

. In another measurement method, a shunt impedance is switched in the
circuit and the harmonic impedance is calculated by comparing the harmo-
nic voltages and currents before and after switching.

The spiral shaped impedance plots can be bounded in the Z plane by a circle on the
right side of the Y axis and tangents to it at the origin at an angle of 758. This
configuration can also be translated in the Y plane (Fig. 19-7) [11].

Figure 19-8(a) shows the calculated impedance modulus and Fig. 19-8(b) the
impedance angle versus frequency plots of a 400-kV line, consisting of four bundled
conductors of 397.5 KCMIL ACSR per phase in horizontal configuration. The
average spacing between bundles is 35 ft, and the height above the ground is
50 ft. Two ground wires at ground potential are considered in the calculations,
and the earth resistivity is 100 � m. Each conductor has a diameter of 0.806 in.
(0.317 cm) and bundle conductors are spaced 6 in. (0.15 m) center to center.

The plots show a number of resonant frequencies. The impedance angle
changes abruptly at each resonant frequency.

19.5 THREE-PHASE MODELS

The power system elements are not perfectly symmetrical. Asymmetry is involved in
the circuit loading and mutual couplings and unbalanced self- and mutual impe-
dances result. The problem is similar to the three-phase load flow, and is com-
pounded by the nonlinearities of the harmonic loads [12]. Single-phase models are
not adequate when:

. Telephone interference is of concern. The influence of zero sequence har-
monics is important, which gives rise to most of the interference with the
communication circuits.

. There are single-phase capacitor banks in the system.

. There are single phase or unbalanced harmonic sources.

. Triplen harmonics are to be considered, ground currents are important, and
significant unbalanced loading is present.
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Figure 19-6 R–X plot of a supply system source impedance.
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The network asymmetries and mutual couplings should be included, which
require a 3� 3 impedance matrix at each harmonic. Three-phase models of trans-
formers with neutral grounding impedances, mutually coupled lines, distributed
parameter transposed, and untransposed transmission lines should be possible in
the harmonic analysis program.

19.5.1 Uncharacteristic Harmonics

Uncharacteristic harmonics will be present. These may originate from variations in
ignition delay angle. As a result, harmonics of the order 3q are produced in the direct
voltage and 3q� 1 are produced in the ac line current, where q is an odd integer.
Third harmonic and its odd multiples are produced in the dc voltage and even
harmonics in the ac line currents. The uncharacteristic harmonics may be amplified,
as these may shift the times of voltage zeros and result in more unbalance of firing
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Figure 19-7 Generalized impedance plot (a) in R–X plane and (b) in Y plane.
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angles. A firing angle delay of 18 causes approximately 1% third harmonic. The
modeling of any user defined harmonic spectrum and their angles should be possible
in a harmonic analysis program.

19.6 MODELING OF NETWORKS

The modeling is dependent on the network being studied. Networks vary in complex-
ity and size and generally it is not possible to include the detailed model of every
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Figure 19-8 (a) Frequency scan of a 400-kV line with bundle conductors; (b) corresponding
phase angle of the impedance modulus.
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component in the study. A high-voltage grid system may incorporate hundreds of
generators, transmission lines, and transformers. Thus, the extent to which a system
should be modeled has to be decided. The system to be retained and deriving an
equivalent of the rest of the system can be addressed properly only through a sensi-
tivity study. An example of the effect of the extent of systemmodeling is shown in Fig.
19-9 for a 200-MW dc tie in a 230-kV system [2]. A 20-bus model shows resonance at
the 5th and 12th harmonics, rather than at the 6th and 13th when larger numbers of
buses are modeled. This illustrates the risk of inadequate modeling.

19.6.1 Industrial Systems

Industrial systems vary in size and complexity, and some industrial plants may
generate their own power and have operating loads of 100MW or more. The utility
ties maybe at high voltages of 115, 138 or even 230 kV. It is usual to represent the
utility source by its short-circuit impedance. There may be nearby harmonic sources
or capacitors which will impact the extent of external system modeling. Generators
and large rotating loads may be modeled individually, while an equivalent motor
model can be derived connected through a fictitious transformer impedance repre-
senting a number of transformers to which the motors are connected. This aggregat-
ing of loads is fairly accurate, provided that harmonic source buses and the buses
having capacitor compensations are modeled in detail.

19.6.2 Distribution Systems

The primary distribution system voltage levels are 4–44 kV, while the secondary
distribution systems are of low voltage (<600 V). A distribution system harmonic
study is undertaken to investigate harmonic problems, resonances, and distortion in
the existing system or to investigate the effect of adding another harmonic source.
Single- or three-phase models can be used as demanded by the study. At low-voltage
distribution level the unbalance loads and harmonic sources are of particular impor-
tance, demanding a three-phase representation. The distribution systems are tied
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Figure 19-9 Errors introduced into a 200-bus system by inadequate modeling. (Adapted

from Ref. 2.)
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into the interconnected power network, and the system may be too large to be
modeled. In most cases it will be sufficiently accurate to represent a transmission
network by its short-circuit impedance. This impedance may change, depending
upon modifications to the system or system operation and is not a fixed entity.
When capacitors or harmonic sources are present, a more detailed model will be
necessary. The transmission system itself can be a significant source of harmonics in
the distribution system and measurement at points of interconnection may be neces-
sary to ascertain it. The load models are not straightforward, if these are lumped
with harmonic producing loads. The motor loads can be segregated from the non-
rotating loads which can be modeled as an equivalent parallel R–L impedance.
Again it is not feasible to model each load individually and feeder loads can be
aggregated into large groups without loss of much accuracy.

The studies generally involve finite harmonic sources and the background
harmonic levels are often ignored. These can be measured and analysis, generally,
combines modeling and measurements for accuracy. A study shows that the
harmonic currents at higher frequencies have widely varying phase angles,
which result in their cancellation [13]. At lower frequencies up to the 13th the
cancellation is not complete. Unbalance loads on the feeder result in high har-
monic currents in the neutral and ground paths. At 5th and 7th harmonics the
loads can be modeled as: (1) harmonic sources, (2) a harmonic source with a
parallel RL circuit and (3) a harmonic source with a series RL circuit. Radial
distribution systems will generally exhibit a resonance or cluster of resonances
between fifth and seventh harmonics. See also Ref. [14].

19.6.3 Transmission Systems

Transmission systems have higher X=R ratios and lower impedances and the har-
monics can be propagated over much longer distances. The capacitances of trans-
formers and lines are higher and these need to be included. The operating
configuration range of a transmission system is much wider than that of a distribu-
tion system. A study may begin by identifying a local area which must be modeled in
detail. The distant portions of the system are represented as lumped equivalents.
Equivalent impedance based on short-circuit impedance is one approach, the second
approach uses a frequency versus impedance curve of the system, and there is a third
intermediate area, whose boundaries must be carefully selected for accuracy. These
can be based on geographical distance from the source bus. Series line impedance
and the number of buses distant from the source are some other criteria. Figure
19-10 shows division of a network into areas of main study and external systems.
Sensitivity methods provide a better analytical tool.

19.6.4 Sensitivity Methods

The purpose is to ascertain the sensitivity of the system response when a component
parameter varies. Adjoint network analysis can be used. The network N consisting of
linear passive elements is excited at the bus of primary interest by a unit current at
the harmonic source bus and branch currents I1; I2; . . . ; In are obtained. The transfer
impedance T is defined as the voltage output across the bus of primary interest
divided by the harmonic current of the input bus. The adjoint network N*, which
has the same topology as the original network, is excited by a unit current source
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from the output to obtain adjoint network branch currents I�1 ; I
�
2 ; . . . ; I

�
n are

obtained. The sensitivity of a transfer impedance T is defined as

ST
x ¼ @T

@x

x

T

� 
ð19:36Þ

where x is any parameter R, L or C at frequency denoted by ST
x . The sensitivities can

be calculated using

@T

@x
¼ Ix � I�x ð19:37Þ

where Ix and I�x are x element branch currents from two-network analysis of N and
N*, respectively, Fig. 19-11(a). The efficacy of the method is limited to small varia-
tions in the parameter. When large variations occur in external system equivalents,
these can cause serious changes in the transfer function, and the bilinear theorem can
be applied. These large changes in the transfer function of a two-port network to
changes in an internal parameter are analyzed by pulling out Z of the network,
effectively forming a three-port network, Fig. 19-11(b). For the transfer impedance
the following equation is obtained:

T ¼ V2

I1
¼ ZxinTð0Þ þ ZTð1Þ

Z þ Zxin

ð19:38Þ
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Figure 19-10 Division of a network into main study and external interconnected systems.
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where T(0) is the transfer impedance when Z=0, Tð1Þ is the transfer impedance
when Z ¼ 1 (open circuited), and Zxin is the input impedance looking into the
network from the nodes of Z [15].

19.7 POWER FACTOR AND REACTIVE POWER

The power factor of a converter is given by the expression:

Total PF ¼ q

�
sin

�

q

� �
ð19:39Þ

where q is the number of converter pulses and �q is the angle in radians. This ignores
commutation overlap, no-phase overlap, and neglects transformer magnetizing cur-
rent. For a six-pulse converter the power factor is 3=� ¼ 0:955. A 12-pulse converter
has a theoretical power factor of 0.988. With commutation overlap and phase retard
the power factor is given by [16]:

PF ¼ E 0
dIdffiffiffi

3
p

ELIL
¼ 3

�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3f ð�; �Þp cos�� Ex

Edo

� �
ð19:40Þ

where

E 0
d ¼ Ed þ Er þ Ef

Ed ¼ average direct voltage under load
Er ¼ resistance drop
Ef ¼ total forward drop per circuit element
Id ¼ dc load current in average ampères
EL ¼ primary line-to-line ac voltage
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Figure 19-11 (a) Two-port N network, with a harmonic source and its adjoint network; (b)
three-port network.
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IL ¼ ac primary line current in rms ampères
� ¼ phase retard angle
� ¼ angle of overlap or commutation angle

Edo ¼ theoretical dc voltage
Ex ¼ direct voltage drop due to commutation reactance

and

f ð�; �Þ ¼ sin�½2þ cosð�þ 2�� � �½1þ 2 cos� cosð�þ �Þ�
½2� cos�� cosð�þ �Þ�2 ð19:41Þ

The displacement power factor is

cos �1 ¼
sin2 �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ sin2 �� 2� sin� cos�
p ð19:42Þ

This relationship neglects transformer magnetizing current. The correction for mag-
netizing current is approximately given by

cos �1 ¼ cos½arc cos � 0
1 þ arc tanðImag=I1Þ� ð19:43Þ

where cos�1 is the is displacement power factor without transformer magnetizing
current. The power factor of converters will vary with the type of converter and dc
filter. In a PWM inverter, driven from a dc link voltage with a reactor and capacitor,
the drive motor power factor is not truly reflected on the ac side, and is compensated
by the filter capacitor and reactor.

Line commutated inverters require reactive power from the supply system. The
closer is the operation to zero voltage dc the more the reactive power required.
Figure 19-12 shows the reactive power requirement of a fully controlled bridge
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Figure 19-12 Reactive power requirements of fully controlled and half-controlled bridge

circuits.
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circuit versus half-controlled bridge circuit. The maximum reactive power input for a
half-controlled circuit is seen to be half of the fully controlled circuit.

In the case of sinusoidal voltage and current the following relationship holds:

S2 ¼ P2 þQ2 ð19:44Þ
where P is the active power, Q is the reactive volt ampère and S is the volt ampère.
This relationship has been amply explored in load flow section:
S ¼ Vf If ;Q ¼ Vf If sinð�f ��f Þ, and PF ¼ P=S.

In the case of nonlinear load or when the source has nonsinusoidal waveform,
the reactive power Q can be defined as

Q ¼
Xh¼1

h¼1

VhIh sinð�h � �hÞ ð19:45Þ

and the apparent power can be defined as

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þQ2 þD2

q
ð19:46Þ

where D is the distortion power. Consider D2 up to the third harmonic:

D2 ¼ ðV2
0 þ V2

1 þ V2
2 þ V2

3 ÞðI20 þ I21 þ I22 þ I23 Þ
� ðV0I0 þ V1I1 cos �1 þ V2I2 cos �2 þ V3I3 cos �3Þ2
� ðV1I1 sin �1 þ V2I2 sin �2 þ V3I2 sin �3Þ2

ð19:47Þ

An expression for distortion power factor can be arrived from current and voltage
harmonic distortion factors. From the definition of these factors, rms harmonic
voltages and currents can be written as

VrmsðhÞ ¼ Vf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðTHDV=100Þ2

q
ð19:48Þ

IrmsðhÞ ¼ If

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðTHDI=100Þ2

q
ð19:49Þ

Therefore, the total power factor is

PFtot ¼
P

Vf If

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðTHDV=100Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðTHDI=100Þ2

q ð19:50Þ

Neglecting the power contributed by harmonics and also voltage distortion, as it is
generally small

PFtot ¼ cosð�f � �f Þ �
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðTHDI=100Þ2
q

¼ PFdisplacementPFdistortion

ð19:51Þ

The total power factor is the product of displacement power factor (which is the
same as the fundamental power factor) and is multiplied by the distortion power
factor as defined above.
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19.8 SHUNT CAPACITOR BANK ARRANGEMENTS

Formation of shunt capacitor banks from small to large sizes and at various voltages
is required for filter design and reactive power compensation. These can be con-
nected in a variety of three-phase connections, which depend on the best utilization
of the standard voltage ratings, fusing and protective relaying. To meet certain kvar
and voltage requirements, the banks are formed from standard unit power capacitors
available in certain ratings and voltages. For high-voltage applications, these are
outdoor rack mounted. For medium-voltage applications a bank may be provided in
an indoor or outdoor metal enclosure or it can be rack mounted outdoors. Table
19-2 [17] shows the number of series groups for wye-connected capacitor banks
required for line operating voltages from 12.47 to 500-kV, i.e., for 500 kV applica-
tion, 14 series strings of 21.6 kV rated capacitors, or 38 strings of 7.62 kV rated
capacitors are required in a formation as shown in Fig. 19-13. The unit sizes are,
generally, limited to 100, 200, 300, and 400 kvar, and in each string a number of units
are connected in parallel to obtain the required kvar. There are limitations in form-
ing the series and parallel strings. A minimum number of units should be placed in
parallel per series group to limit voltage on the remaining units to 110%, if any one
unit goes out of service, say due to operation of its fuse. Individual capacitor-can
fusing is selected to protect the rupture/current withstand rating of the can. Table 19-
3 shows the minimum units in a parallel group [17]. Also there is a limit to the
number of parallel units connected in a series group when expulsion-type fuses are
used for individual capacitor-can protection. The energy liberated and fed into the
fault when a fuse operates is required to be limited, depending on the fuse character-
istics (Fig. 19-14). The energy release may be as follows:

E ¼ 2:64 J per KVAC rated voltage ð19:52Þ
E ¼ 2:64ð1:10Þ2 J per KVAC 110% voltage ð19:53Þ
E ¼ 2:64ð1:20Þ2 J per KVAC 120% voltage ð19:54Þ

Normally, capacitors up to 3100 kvar can be connected in parallel when expulsion
fuses are used. This limit can be exceeded if capacitor units are fused with current-
limiting fuses (generally limited to indoor metal-enclosed installations).

Apart from the multiple series group grounded wye banks, the capacitors may
be connected in:

. ungrounded wye connection

. ungrounded double wye neutrals

. grounded double wye neutrals

. delta connection

These connections are shown in Fig. 19-15. Delta connection is common for low-
voltage application with one-series group rated for line-to-line voltage. A wye
ungrounded group can be formed with one group per phase, when the required
operating voltage corresponds to standard capacitor unit rating. The wye neutral is
left ungrounded. Grounded Y neutrals and multiple series group are used for
voltages above 34.5 kV. Multiple series groups limit the fault current. Grounded
capacitors provide a low impedance path for lightning surge currents and give
some protection from surge voltages; however, third-harmonic currents can circu-
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Table 19-2 Number of Series Groups in Y-Connected Capacitor Banks

Available capacitor voltage KV per unit

V (kV) V (kV) 21.6 19.92 14.4 13.8 13.28 12.47 9.96 9.54 8.32 7.96 7.62 7.2 6.64

500.0 288.7 14 15 20 21 22 29 30 35 36 38
345.0 199.2 10 15 16 20 21 24 25 27
230.0 132.8 10 14 16 17 18 20
161.0 92.9 7 13 14

138.0 79.7 4 6 6 6 8 10 11 12
115.0 66.4 5 7 8 9 9 10
69.0 39.8 2 3 3 4 5 6

46.0 26.56 2 4
34.5 19.92 1 2 3
24.9 14.4 1 2

23.9 13.8 1 2
23.0 13.28 1
14.4 8.32 1
13.8 7.96 1

13.2 7.62 1
12.47 7.2 1
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Figure 19-13 Formation of a 500-kV shunt capacitor bank with series groups.

Table 19-3 Minimum Number of Units in Parallel Per Series Group to Limit Voltage on

Remaining Units to 110% with One Unit Out

Number of series

groups Grounded Y or � Ungrounded Y
Double Y, equal

sections

1 – 4 2

2 6 8 7
3 8 9 8
4 9 10 9
5 9 10 10

6 10 10 10
7 10 10 10
8 10 11 10

9 10 11 10
10 10 11 11
11 10 11 11

12 and over 11 11 11
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Figure 19-15 Three-phase connections of shunt capacitor banks.

Figure 19-14 Energy fed into a fault from parallel capacitor units.
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late, and these may overheat the system grounding impedances. In the case of an
ungrounded multiple series group wye-connected bank, third-harmonic currents do
not flow, but the entire bank, including the neutral should be insulated for the line
voltage. Double-wye banks and multiple series groups are used when a capacitor
bank becomes too large for the 3100 kvar per group for the expulsion type of
fuses.

19.9 STUDY CASES

At each step of the calculations in these examples, we will analyze the results and
draw inferences as we proceed. Modifications to the original problem and its solu-
tion reveal the nature of the study and harmonic resonance problems. We will then
continue with the same examples in Chap. 20 to address the resolution of harmonic
problems that we discover in this section.

Example 19.1: A Substation with Single Harmonic Source

Consider a six-pulse drive system load and a 2000-hp induction motor connected as
shown in Fig. 19-16(a); 10 MVA and 5 MVA transformers have a percentage impe-
dance of 6%. A 4.16-kV bus 2 is defined as the point of common coupling (PCC).
The explanation of PCC is included in Appendix F. It is required to calculate the
harmonic voltages and currents into the 2000-hp motor and 10-MVA transformer
T1, and also harmonic distortion factors starting with hand calculations. The source
impedance of the supply system is first neglected in the hand calculations; it is
relatively small compared to the transformer impedance. We will itemize the steps
of the calculations and make observations as we proceed.

(i) Derive a harmonic current injection model: The convertor operates at a
firing angle � of 158 and 5-MVA transformer T2 is fully loaded. The hand calcula-
tions are limited to the 17th harmonic. This is to demonstrate the procedure of
calculations, rather than a rigorous solution of the harmonic flow problem.
Harmonic flow calculations are generally carried to the 40th harmonic and pre-
ferably to the 50th. By limiting the calculation to lower frequencies, a possible
higher frequency resonance can be missed and serious errors in calculations of
distortion factors can occur.

The commutating reactance is 0:06þ 0:03 ¼ 0:09%, approximately, on a 5
MVA base. The overlap angle is calculated using Eq. (17.49) and it is � 14:58.
From Appendix G, the percentage harmonic currents are 18, 13, 6.5, 4.8, and
2.8%, respectively, for the 5th, 7th, 11th, 13th, and 17th harmonics. In terms of
the fundamental current of transformer T2 = 695 A, the injected harmonic currents
are: 125, 90, 76, 33, and 19 A, respectively, for the 5th, 7th, 11th, 13th, and 17th
harmonics. The transformer must be capable of supplying these nonlinear loads.

(ii) Calculate Bus harmonic impedances: Table 19.4 shows the calculation of the
transformer T1 resistance and reactance at harmonic frequencies. The resistance at
fundamental frequency is multiplied by appropriate values read from the curve in
Fig. 19-3. The reactance at harmonic frequencies is directly proportional to the
harmonic frequency, though this is an approximation.

To calculate the harmonic impedances of the induction motor, its locked rotor
reactance at rated voltage is taken as 16.7% (the same as in the short-circuit calcula-
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tions). For a 2000-hp motor, this gives a Xm of 1.658 ohms. The fundamental
frequency resistance is calculated from the X=R ratio of 30. This gives a resistance
of 0.0522 ohms.

Assume that 45% of the resistance is the stator resistance and 55% is the rotor
resistance. The stator resistance is then 0.02487 ohms and the rotor resistance is
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Figure 19-16 (a) System with harmonic load for Example 19.1; (b) with a shunt capacitor of

1.35 Mvar added at bus 2.
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0.03033 ohms. The slip at fifth harmonic (negative sequence harmonic) is 1.2. The
resistance at the fifth harmonic from Eqs. (19.28) to (19.31) is

0:02487
ffiffiffi
5

p
þ

ffiffiffi
6

p ð0:03033Þ
1:2

¼ 0:1186

Harmonic resistance and reactance for the motor, calculated in a likewise manner,
are shown in Table 19-4.

The transformer and motor impedances are paralleled to obtain the harmonic
bus impedances at each frequency. Here, the resistance and reactance are separately
paralleled, akin to X=R calculation for the short-circuit currents. This method is not
to be used for harmonic studies and complex impedance calculation should be
performed. The harmonic impedances calculated at bus 2, the PCC, are shown in
Table 19-4.

(iii) Calculate harmonic currents and voltages: As the harmonic currents are
known, the bus harmonic voltages can be calculated, by IZ multiplication. The
harmonic currents in the motor and transformer T1 are then calculated, based on
the harmonic voltages. Note that these do not exactly sum to the harmonic injected
currents (Table 19-5).

(iv) Calculate harmonic current and voltage distortion factors: The limits of
current and voltage distortion factors are discussed in Appendix F. The voltage
harmonic distortion factor is given byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð60:85Þ2 þ ð61:35Þ2 þ ð81:40Þ2 þ ð41:67Þ2 þ ð31:46Þ2
q

ð4160= ffiffiffi
3

p Þ
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Table 19-4 Example 19.1: Calculation of Harmonic Impedancesa

Harmonic
order

Transformer T1 Motor Bus 2

R X Z R X Z R X Z

5 0.0277 0.5166 0.5173 0.1186 8.290 8.291 0.0225 0.4863 0.4868
7 0.0416 0.7231 0.7243 0.1525 11.606 11.607 0.0368 0.6807 0.6817

11 0.0832 1.1363 1.1393 0.1789 18.238 18.239 0.0568 1.0696 1.0711
13 0.0901 1.3420 1.3450 0.1987 21.554 21.555 0.0620 1.2614 1.2629
17 0.1730 1.7560 1.7645 0.2241 28.186 28.187 0.0976 1.653 1.6558

aAll values are in ohms.

Table 19-5 Example 19.1: Harmonic Current Flow and Harmonic Voltages

Harmonic
order

Harmonic current
injected (A)

Current into
transformer T1 (A)

Current into
2000-hp motor (A)

Harmonic voltage
(V)

5 125 117.63 7.33 60.85
7 90 84.71 5.28 61.35

11 76 71.45 4.46 81.40
13 33 30.98 1.93 41.67
17 19 17.80 1.12 31.46

Harmonic voltage distortion factor = 5.36%.
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This gives 5.36% distortion. The calculation is not accurate as the higher order
harmonics are ignored. The total demand distortion (TDD) is defined in
Appendix F. Based on the current injected into the main transformer T1 it isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð117:63Þ2 þ ð84:71Þ2 þ ð71:45Þ2 þ ð30:98Þ2 þ ð17:80Þ2
q

830

Note that the TDD is based upon the total load demand, which includes the non-
linear load and the load current of the 2000-hp motor (see Appendix F). This gives a
TDD of 19.9% This exceeds the permissible levels at the PCC (Appendix F). This
can be expected as the ratio of nonlinear load to total load is approximately 83%.
When the nonlinear load exceeds about 35% of the total load, a careful analysis is
required.

(v) Reactive power compensation: Consider now that a power factor improve-
ment shunt capacitor bank at bus 2 in Fig-19.16(b) is added to improve the overall
power factor of the supply system to 90%.

The operating power factor of the converter is 0.828. A load flow calculation
shows that 5.62 MW and 3.92 Mvar must be supplied from the 13.8 kV system to
transformer T1. This gives a power factor of 0.82 at 13.8 kV, and there is 0.58 Mvar
of loss in the transformers.

A shunt capacitor bank of 1.4 Mvar at bus 2 will improve the power factor
from the supply system to approximately 90%.

(vi) Form a capacitor bank and decide its connections: A capacitor rating of 2.77
kV and 300 kvar is standard. The reasons for using a voltage rating higher than the
system voltage are discussed in Chap. 20. At the voltage of use, two units per phase,
connected in ungrounded wye configuration will give

3ð600Þ 2:4

2:77

	 
2
¼ 1351:25 kvar

and

Xc ¼
ðkVÞ2 � 103

kvar
¼ 2:772 � 103

600
¼ 12:788�

or C= 2.074E-4F
(vii) Estimate resonance with capacitors: The short-circuit level at bus 2 in Fig.

19-16(a) is approximately 150 MVA and from Eq. (18.20), parallel resonance can be
estimated to coincide with the 11th harmonic. To ascertain the resonant frequency
correctly a frequency scan is made at small increments of frequency. To capture the
resonance correctly, this increment of frequency should be as small as practical. A
scan at five-cycle intervals will miss the resonance peak by four cycles.

(viii) Limitations of hand calculations: This brings a break point in the hand
calculations. Assuming that the impedances are calculated at five cycle intervals, to
cover the spectrum up to even the 17th harmonic, 192 complex calculations must be
made in the first iteration. The hand calculations are impractical even for a small
system.

(ix) Frequency scan with capacitors: Resorting to a computer calculation, the
current injection is extended to the 35th harmonic and the system short-circuit level
of 40 kA is inputed.

The results of frequency scan at two-cycle intervals show that the resonant
frequency is between 630 and 632 (A two-cycle frequency step is used in the calcula-
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tions). This result was expected. The maximum angle is 88.598 and the minimum
�89:938; the impedance modulus is 122.70 ohms. The impedance modulus is shown
in Fig. 19.17(a) and phase angle in 19.17(b). If a frequency scan is made without the
capacitors it shows that the maximum impedance is 3 ohms and it is a straight line of
uniform slope [Fig. 19-17(a), dotted lines]. The impedance at parallel resonance
increases many fold. Figure 19-17(b) shows an abrupt change in impedance phase
angle with the addition of capacitor.

(x) Harmonic study with capacitors: The distribution of harmonic currents at
each frequency are shown in Table 19-6. It shows that:

. The harmonic currents throughout the spectrum are amplified. This ampli-
fication is high at the 11th harmonic (close to the resonant frequency of 630–
632 Hz). While the injected current is 76 A, the current in the capacitor bank
is 884 A, in the supply transformer 753 A, and in the motor 55.7 A.

648 Chapter 19

Figure 19-17 (a) Impedance modulus showing resonance at 11th harmonic with addition of

1.35 Mvar capacitor bank (Example 19.1); (b) impedance phase angle plot.
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. The 11th harmonic voltage is 1030 V. The harmonic voltage distortion is
43.3% and the voltage–time wave shape in Fig. 19-18 shows large distortion
due to 11th harmonic. The total harmonic current demand distortion factor
is 94.52%. Appendix F shows that total TDD for this system should not
exceed 8%.

. The harmonic loading on the capacitor banks is calculated as follows:

Irms ¼
Xh¼35

h¼1

I2h

" #1=2

¼ 806:6A

The permissible rms current in the capacitors including harmonics is 1.8 times the
rated current = 337.56 A. The current loading is exceeded. The rms voltage is
calculated in a similar way to current and it is 2614 V, Vrms rated = 2770 V, Vrms
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Table 19-6 Example 19.1: Harmonic Currents and Voltages with a Shunt Capacitor

Bank

Order of the
harmonic

Injected
current (A)

Current in

the capacitor
bank (A)

Current in the

transformer T1,
at PCC (A)

Current in

the 2000-hp
motor (A)

Harmonic

voltage, bus 2
(V)

5 125 36.4 150 11.1 93.5
7 90 71.5 150 11.1 13.9
11 76 884 753 55.7 1030
13 33 95 58 4.3 94.2

17 19 30 11 0.81 23.2
19 10.5 15.9 4.5 0.33 10.70
23 3.5 4.4 0.86 0.064 2.47

25 2.8 3.4 0.56 0.042 1.74
29 2 2.3 0.28 0.021 1.02
31 1.4 1.6 0.17 0.013 0.65

35 1.2 1.4 0.14 0.009 0.65

Figure 19-18 Voltage–time waveform, showing pollution from 11th harmonic.
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permissible = 3047 V. The voltage rating is not exceeded. The kvar loading is
calculated from:

kvar ¼
Xh¼35

h¼1

IhVh ¼ 2283

The rated kvar= 1351, permissible kvar = 1.35 � 1351 =1823. The rated kvar is
exceeded.

(xi) Sizing capacitor bank to escape resonance: The capacitor bank is sized to
escape the resonance with any of the load-generated harmonics. If three capacitors of
300 kvar, rated voltage 2.77 kV are used in parallel per phase in wye configuration,
the total three-phase kvar is 2026 at the operating voltage, and the resonant fre-
quency will be approximately 515 Hz [Eq. (18.20)]. As this frequency is not generated
by the load harmonics and also is not a multiple of third harmonic frequencies, a
repeat of harmonic flow calculation with this size of capacitor bank should consid-
erably reduce distortion.

The results of calculation do show that the voltage distortion and TDD are 4
and 18%, respectively. Amplification of harmonic currents occurs noticeably at the
fifth and seventh harmonics. Thus:

. The mitigation of the resonance problem by selecting the capacitor size to
escape resonance, may not minimize the distortion to acceptable levels.

. Current amplifications occur at frequencies adjacent to the resonant fre-
quencies, though these may not exactly coincide with the resonant frequency
of the system.

. The size of the capacitor bank has to be configured based on series parallel
combinations of standard unit sizes and this may not always give the desired
size. Of necessity, the capacitor banks have to be sized a step larger or a step
smaller to adhere to configurations with available capacitor ratings and
over- or under-compensation results.

. The resonant frequency swings with the change in system operating condi-
tions and this may bring about a resonant condition, however carefully the
capacitors were sized in the initial phase. The resonant frequency is espe-
cially sensitive to change in the utility’s short-circuit impedance.

The example is carried further in Chap. 20 for the design of passive filters.

Example 19.2: Large Industrial System

This example portrays a relatively large industrial distribution system with plant
generation and approximately 18% of the total load consisting of six-pulse conver-
ters. The system configuration is shown in Fig. 19-19. The loads are lumped on
equivalent transformers—this is not desirable when harmonic sources are dispersed
throughout the system. A 225-bus plant distribution system is reduced to an 8-bus
system in Fig. 19-19. Some reactive power compensation is provided by the power
factor improvement capacitors switched with the medium-voltage motors at buses 6
and 7. The load flow shows that reactive power compensation of 7.2 and 6.3 Mvar at
12.47 kV buses 2 and 3, respectively, is required to maintain an acceptable voltage
profile on loss of a plant generator. This compensation is provided in two-step
switching. The power factor improvement capacitors at bus 3 are split into two
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sections of 4.5 and 2.7 Mvar, respectively. The capacitors at bus 2 are divided into
two banks of 3.6 and 2.7 Mvar, respectively. The series reactors can be designed to
turn the capacitor banks into shunt filters, but here the purpose is to limit inrush
currents, especially on back-to-back switching, and also to reduce the switching duty
on the circuit breakers (not shown in Fig.19-9).
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Figure 19-19 Single-line diagram of a large industrial plant, loads aggregated for harmonic
study (Example 19.2).
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Some medium-voltage motor load can be out of service and their power factor
improvement capacitors will also be switched out of service. The loads may be
operated with one or two generators out of service, with some load shedding. The
medium-voltage capacitors on buses 2 and 3 have load-dependent switching and one
or both banks may be out of service. This switching strategy is very common in
industrial plants, to avoid generation of excessive capacitive reactive power and also
to prevent overvoltages at no load.

The following three operating conditions are studied for harmonic simulation:

1. All plant loads are operational with both generators running at their
rated output, and all capacitors shown in Fig. 19-19 are operational.
Full converter loads are applied.

2. No. 2 generator is out of service. The motor loads are reduced to approxi-
mately 50%, and 2.7 Mvar capacitor banks at buses 2 and 3 are out of
service, but the converter load is not reduced.

3. The effect of 30 MVA of bulk load and 18 MW of converter load con-
nected through a 115-kV 75-mile transmission line (modeled with distrib-
uted line constants), which was ignored in cases 1 and 2 is added. These
loads and transmission line model is superimposed on operating condi-
tions 1.

The results of harmonic simulation are summarized in Tables 19-7 and 19-8.
Table 19-7 shows harmonic current injection into the supply system at 115 kV and
generators nos 1 and 2. Table 19-8 shows the parallel and series resonant frequencies.
The impedance modulus versus frequency plot of the 115-kV bus and 12.47-kV buses
2 and 3 for all three cases of study are shown in Figs 19-20–19-22. The R=X plots of
the utility’s supply system and impedance modulus verses frequency plots are shown
in Fig. 19-23.

It is seen that the resonant frequencies vary over wide limits and so does the
harmonic current flow. In operating condition 2 with partial loads and some capa-
citors out of service, additional resonant frequencies occur, which did not exist under
operating condition 1. Under condition 3 the harmonic current injection at higher
frequencies in the utility system increases appreciably. Condition 2 gives higher
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Table 19-7 Example 19.2: Harmonic Current Flow, Operating Conditions 1, 2, and 3

Harmonic
order

Current in generator 1 Current in generator 2 Current in utility’s system

1 2 3 1 2 3 1 2 3

5 187 257.00 167.00 209 Generator 196.00 3.22 69.02 23.3
7 353 7.06 340 84.2 out of 82.90 44.9 18.31 44.60

11 1.52 17.10 1.83 102 service 109.00 3.80 2.13 4.32
13 6.76 3.25 5.10 21.40 18.50 0.22 0.500 3.67
17 2.88 2.71 4.31 2.74 3.34 0.48 0.33 1.55
19 0.68 19.00 0.27 1.03 0.74 1.28 2.23 1.88

23 0.06 0.93 0.09 0.12 0.15 0.003 0.18 1.64
25 0.19 0.37 0.16 0.11 0.09 0.03 0.08 1.63
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distortion at the PCC, though the distortion in generator 1 is reduced. The contin-
uous negative sequence capability of generators (I2 = 10%) is exceeded in operating
conditions 1 and 3.

The analysis is typical of large industrial plants where power factor improve-
ment capacitors are provided in conjunction with nonlinear plant loads. The varia-
tions in loads and operating conditions result in large swings in the resonant
frequencies. The example also illustrates the effect of power capacitors and nonlinear
loads which are located 75 miles away from the plant distribution. The need for
mitigation of harmonics is obvious, and the example is continued further in Chap. 20
for the design of passive harmonic filters.
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Table 19-8 Example 19.2: Resonant Frequencies and Impedance Modulus, Operating

Conditions 1, 2, and 3

Bus ID

1 2 3

Parallel

resonance

Series

resonance

Impedance

modulus

Parallel

resonance

Series

resonance

Impedance

modulus

Parallel

resonance

Series

resonance

Impedance

modulus

Utility 403 424 239.6 373

496

385

530

318.6 400 425 213.6

Bus 2 586 1436 17.68 367
905

647 41.5 589 1436 28.26

Bus 3 400

893

635

1343

33.76 493

1153

860

1699

26.24 401

892

635

1342

12.89

Figure 19-20 Impedance modulus versus frequency plot for three conditions of operation,

115 kV utility’s bus (Example 19.2).
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Example 19.3

Calculate TIF, IT, and kVT at the sending end of line L1 (Fig. 19-19), operating
condition 3 of Example 19.2.

IT and kVT is calculated from Eq. (18.22) and TIF factors are given in Table
18-7. The harmonic currents or voltages in the line are known from harmonic
analysis study. Table 19-9 shows the calculations. From this table:

Xh¼49

h¼1

I2h

" #1=2

¼ 0:159 kA

654 Chapter 19

Figure 19-21 Impedance modulus versus frequency plot for three conditions of operation,
12.47-kV bus 2 (Example 19.2).

Figure 19-22 Impedance modulus versus frequency plot for three conditions of operation,

12.47-kV bus 3 (Example 19.2).
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Figure 19-23 R–X plots of utility’s source impedance under three conditions of operation

(Example 19.2).
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The TIF weighting factors are high in the frequency range 1620–3000 and, for
accuracy, harmonic currents and voltages should be calculated up to about the
49th harmonic. From Table 19-9:

Xh¼49

h¼1

W2
f I

2
f

" #1=2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4700:73

p
¼ 68:56

Therefore IT = 68.56/0.159=360.85; kVT can be similarly calculated using harmo-
nic voltages in kV. TIF factors for industrial distribution systems are, normally, not
a concern.

Example 19.4: Transmission System

Harmonic load flow in a transmission system network is illustrated in this example.
The system configuration is shown in Fig. 19-24. There are eight transmission lines
and the line constants are shown in Table 19-10. These are modeled with distributed
parameters or � networks. Also, the six-pulse and 12-pulse converters are modeled as
ideal converters.

The frequency scan with only harmonic injections and without bulk linear
loads shows numerous resonant frequencies with varying impedance modulus, e.g.,
Fig. 19-25 shows these at the 230-kV bus 1. The resonance at higher frequencies is
more predominant. The harmonic current flows in lines as shown in Table 19-11.

Figure 19-26 is a frequency scan with bulk loads applied. The resonant fre-
quencies and a number of smaller resonance points are eliminated. The impedance
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Table 19-9 Example 19.3: Calculation of IT Product, Sending End, Distributed

Parameter Line L1 (Fig. 19-22)

Harmonic Frequency
TIF weighting

ðWf Þ

Harmonic

current in kA
ðIf Þ Wf If ðWf If Þ2

1 60 0.5 0.158 0.079 0.006
5 300 225 0.0127 2.857 8.165
7 420 650 0.00269 1.749 3.057

11 660 2260 0.0110 24.860 618.020
13 780 3360 0.00438 14.717 216.584
17 1020 5100 0.00431 21.980 483.164

19 1140 5630 0.00381 21.450 460.115
23 1380 6370 0.00257 16.371 268.006
25 1500 6680 0.00324 21.643 468.428
27 1740 7320 0.00292 21.374 456.865

31 1860 7820 0.00247 19.315 373.085
35 2100 8830 0.00175 15.453 238.780
37 2220 9330 0.00157 14.648 214.567

41 2460 10,360 0.00146 15.126 228.784
43 2580 10,600 0.00150 15.900 252.810
47 2820 10,210 0.00150 15.315 234.549

49 2940 9820 0.00135 13.256 175.748
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modulus is reduced. Table 19-12 shows the cluster of resonant frequencies and
impedance modulus in these two cases.

The effect on harmonic current flows in line sections 1–5 and 1–2 under
harmonic injections only and under harmonic injections and loads is shown in
Figs. 19-27 and 19-28.
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Figure 19-24 A transmission system for harmonic analysis study (Example 19.4).
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Example 19.5: Three-Phase Modeling

Consider a 2.0-MVA, 2.4–0.48 kV delta–wye connected transformer serving a mixed
three-phase load and single phase load, as shown in Fig. 19-29. A single-phase 480–
240 V, 500-kVA transformer serves lighting and switch-mode supply loads. The
harmonic spectrum is modeled according to Chap. 17. The results of harmonic
flow study are shown in Table 19-13 and the harmonic currents injected into the
wye secondary of a 2-MVA, 2.4–0.48 kV transformer are shown. The capacitors at
bus B amplify third harmonic currents. As the single-phase transformer is connected
between phases a and b, only these phases carry harmonic currents. The harmonic
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Table 19-10 Example 19.4: Transmission Line Data and Models

Line
#

Voltage
(kV)

Conductor

ACSR
KCMIL

Length
(miles) GMD

R (per
unit, 100

MVA
base)

XL (per
unit, 100

MVA
base)

Xc (per unit,
100 MVA

base) Model
type

L1 230 636 100 34 0.00003 0.08585 1.8290 Distributed
L2 230 636 120 34 0.00004 0.10302 1.5240 Distributed
L3 230 636 50 34 0.00002 0.04293 3.6580 Distributed
L4 230 636 40 34 0.00001 0.03434 4.5720 Distributed

L5 115 715 30 21 0.00004 0.08828 20.347 � model
L6 115 715 40 21 0.00005 0.11771 15.260 Distributed
L7 115 715 50 21 0.00006 0.14713 12.208 Distributed

L8 34.5 397.5 30 5 0.00072 0.62473 131.228 � model
L9 34.5 397.5 30 5 0.00072 0.62473 131.228 � model

Figure 19-25 Cluster of resonant frequencies at 230-kV bus 1 without bulk load applied

(Example 19.4).
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Table 19-11 Harmonic Current Flow, with Harmonic Current Injection, Bulk Loads Not Applied

Line

Harmonic current flow (A)

5th 7th 11th 13th 17th 19th 23rd 25th 29th 31st 35th 37th 41st 43rd

#L1
1-2

2-1

5.71

4.39

7.16

1.50

7.73

0.06

2.55

1.39

6.17

2.79

0.90

0.95

0.52

0.47

18.5

0.32

7.92

7.91

2.71

2.24

0.41

0.40

42.81

46.20

0.04

0.08

1.31

0.89
#L2
1-3

3-1

6.70

13.62

21.60

2.56

16.03

13.01

4.06

5.19

10.70

0.53

21.50

3.89

1.18

0.20

0.87

2.99

21.60

6.58

3.68

0.42

1.40

3.28

17.20

29.30

1.19

0.44

0.11

0.04
#L3
1-4

4-1

4.30

10.00

12.63

7.17

8.31

4.56

8.39

3.86

24.70

2.95

7.54

2.64

0.38

2.18

2.39

2.01

1.71

1.73

1.92

1.62

9.14

1.43

72.80

1.36

1.39

1.22

3.38

1.07
#L4
1-5

5-1

5.63

0.00

1.95

0.00

0.03

6.85

1.73

5.79

20.20

0.00

30.00

0.00

0.29

3.27

15.10

3.01

15.30

0.00

0.95

0.00

7.30

2.15

12.60

2.04

0.16

0.00

2.17

1.60
#L5
6-7
7-6

7.59
6.37

4.45
5.67

11.31
7.88

16.10
15.10

6.75
6.45

0.07
0.87

2.68
3.20

9.01
18.50

1.24
19.40

0.30
3.43

23.6
22.0

148.00
173.00

1.61
0.88

0.25
4.34

#L6
6-8
8-6

0.84
0.00

1.00
0.00

12.50
13.70

13.10
11.60

0.60
0.00

0.86
0.00

10.30
6.55

22.40
6.02

24.10
0.00

5.10
0.00

33.2
4.30

250.00
4.70

1.79
0.00

1.24
3.24

#L7
7-9
9-7

33.20
20.10

11.10
14.30

32.40
9.13

24.40
7.72

4.47
5.91

6.09
5.28

4.64
4.37

8.46
4.02

2.52
3.46

2.05
3.24

30.5
2.87

239.00
2.71

1.78
2.45

4.40
2.14

#L8
10-12
21-10

1.20
0.00

1.50
0.00

3.62
0.00

0.07
0.00

1.73
0.00

3.26
0.00

22.2
0.00

46.70
0.00

23.5
0.00

3.09
0.00

5.25
0.00

3.31
0.00

0.00
0.00

2.61
0.00

#L9
11-13
13-11

1.40
0.00

1.19
0.00

5.29
0.00

3.63
0.00

3.03
0.00

2.72
0.00

6.13
0.00

13.50
0.00

12.50
0.00

1.81
0.00

6.17
0.00

23.8
0.00

0.00
0.00

0.08
0.00
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Figure 19-26 Shift in resonant frequencies at 230-kV bus 1 with bulk load applied (Example
19.4).

Table 19-12 Example 19.4: Resonant Frequencies and Maximum Impedance Modulus

Bus ID

Without load With load

Parallel
resonance

(Hz)

Series
resonance

(Hz)

Impedance
modulus
(ohms)

Parallel
resonance

(Hz)

Series
resonance

(Hz)

Impedance
modulus
(ohms)

1 242,362,524,
581,739,958,

997,1123,
1186,1513,
1646,1735,

1832,2053,
2126,2212,
2381,2569,

2881,2979

187,340,464,
572,733,872,

979,1114,
1165,1189,
1520,1687,

1823,1856,
2084,2199,
2370,2555,

2612,2909

27,410 545,974,
1742,2074,

2153,2582,
2902,2990

870,1166,
1874,2114,

2574,2610,
2934

3749

6 362,580,739,
958,997,

1123,1187,

1294,1315,
1514,1646,
1735,1832,

2054,2126,
2213,2381,

2638

469,643,757,
967,1022,
1129,1279,

1312,1346,
1538,1685,
1819,2008,

2056,2149,
2372,2636,

2872

46,300 1542,1662,
1762,2150,
2298,2442,

2665

1558,1702,
2014,2166,
2394,2657

1135

10 362,580,739,
958,997,

1123,1186,

1295,1315,
1513,1645,

2212

392,589,742,
962,1004,
1126,1243,

1306,1502,
1639,1738,

2224

32,820 2306,2402,
2622

2357,2466,
2860

448.6
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currents in phase c are zero. If the 350-kvar capacitors are removed, the harmonic
injection pattern changes. The currents at the scond and third harmonics are reduced
while those at the fourth, fifth, and seventh harmonics are increased, i.e., capacitors
amplify lower order harmonics and attenuate higher order harmonics.

One solution of harmonic mitigation is to convert capacitors at bus B into
filters. It may be necessary to increase the reactive power rating. A second possibility
is to provide a harmonic filter on the load side of a single-phase transformer. A third
possibility is to install zero sequence traps on the wye side of the 2.4-kV transformer.
We will discuss these in Chap. 20.
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Figure 19-27 Harmonic current flow in bus tie 1–5 (Example 19.4).

Figure 19-28 Harmonic current flow in bus tie 1–2 (Example 19.4).
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Problems

1. Calculate overlap angle and harmonic spectrum (using equations in
Appendix G) of a six-pulse converter operating in the following config-
uration:
Delay angle ¼ 300, supply source short-circuit level at 13.8 kV ¼ 875
MVA, converter transformer 3000 kVA, percentage impedance ¼ 5.5%,
converter load ¼ 75% of the transformer kVA rating.

2. A 10-MVA transformer has a percentage impedance of 10% and X=R
ratio of 10. Tabulate its resistance and reactance for harmonic spectrum
of a six-pulse converter up to the 25th harmonic.

662 Chapter 19

Figure 19-29 System with single-phase nonlinear load for three-phase simulation (Example
19.5).

Table 19-13 Example 19.5: Harmonic Current Injected Into Wye Secondary of
Transformer T1 (in A), Fig. 19-29

h

With 350-kvar capacitors on bus B 350-kvar capacitors on bus B removed

Phase a Phase b Phase c Phase a Phase b Phase c

2 141 141 0 46.3 46.3 0
3 456 456 (single- 241 241 (single-
4 8.8 8.8 phase 150 150 phase

5 7.82 7.82 load) 24 24 load)
6 6.30 6.30 18 18
7 8.26 8.26 60 60
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3. Repeat Problem 2 for an induction motor of a 2.3-kV, four-pole, 2500-
hp, full-load power factor ¼ 0.92, full load efficiency ¼ 0.93%, locked
rotor current ¼ six times the full-load current at 20% power factor.

4. Calculate PF, DF, distortion power, and active and reactive power for the
converter in Problem 1.

5. Harmonic propagation in a transmission system is to be studied. Describe
how the extent of the system to be modeled will be decided. What models
of lines and transformers will be used?

6. Form a capacitor bank of 15 Mvar, operating voltage 44 kV in wye
configuration from unit capacitor sizes in Table 19-2. Expulsion fuses
are to be used for fusing of individual capacitor units.

7. Explain why IT and kVT will be different at the sending and receiving end
of a transmission line.
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20

Harmonic Mitigation and Filters

With the increase in consumer nonlinear load, the harmonics injected into the power
supply system and their consequent effects are becoming of greater concern.
Harmonic currents seeking a low impedance path or a resonant condition can travel
through the power system and create problems for the consumers who do not have
their own source of harmonic generation. IEEE standard 519 [1] stipulates who is
responsible for what. A consumer can inject only a certain amount of harmonic
current into the supply system, depending on his/her load, short-circuit current,
and supply system voltage. The utility supply companies must ensure a certain
voltage quality at the PCC (point of common coupling) with the consumer appara-
tus. These harmonic current and voltage limits [1,2] are discussed in Appendix F.

20.1 MITIGATION OF HARMONICS

There are four major methodologies for mitigation of harmonics:

1. The equipment can be designed to withstand the effect of harmonics, e.g.,
transformers, cables, and motors can be derated. Motors for PWM inver-
ters can be provided with special insulation to withstand high dv=dt, and
the relays can be rms sensing.

2. Passive filters at suitable locations, preferably close to the source of har-
monic generation can be provided so that the harmonic currents are
trapped at the source and the currents propagated in the system are
reduced.

3. Active filtering techniques, generally, incorporated with the harmonic
producing equipment itself can reduce the harmonic generation at source.
Hybrid combinations of active and passive filters are also a possibility.
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4. Alternative technologies can be adopted to limit the harmonics at source,
e.g., phase multiplication, operation with higher pulse numbers, conver-
ters with interphase reactors, active wave-shaping techniques, and har-
monic compensation built into the harmonic producing equipment itself
to reduce harmonic generation.

What will be the most useful strategy in a given situation largely depends on the
currents and voltages involved, the nature of loads, and the specific system para-
meters, i.e., short-circuit level at the PCC.

20.2 BAND PASS FILTERS

The operation of a single-tuned (ST) shunt filter is explained with reference to Fig.
20-1. (Any other type of filter connected in the shunt can be termed a shunt filter.)
Harmonic current injected from the source, through impedance Zc divides into the
filter and the system. The system impedance for this case, shown as Zs, consists of the
source impedance Zu in series with the transformer impedance Zt and paralleled with
the motor impedance:

Ih ¼ If þ Is ð20:1Þ

where Ih is the harmonic current injected into the system, Ifl is the current through
the filter and Is is the current through the system impedance. Also,

IfZf ¼ IsZs ð20:2Þ

i.e., the harmonic voltage across the filter impedance (Zf ) equals the harmonic
voltage across the equivalent power system impedance (Zs).

If ¼
Zs

Zf þ Zs

	 

Ih ¼ �fIh ð20:3Þ

Is ¼
Zf

Zf þ Zs

	 

Ih ¼ �sIh ð20:4Þ

where �f and �s are complex quantities which determine the distribution of harmonic
current in the filter and system impedance. These equations can also be written in
terms of admittances.

A properly designed filter will have �f close to unity, typically 0.995, and the
corresponding � for the system will be 0.05. The impedance angles of �f and �s may
be of the order of �818 and �2:68, respectively.

The harmonic voltages should be as low as possible. The equivalent circuit of
Fig. 20-1 shows that system impedance plays an important role in the harmonic
current distribution. For an infinite system impedance, the filtration is perfect, as
no harmonic current flows through the system impedance. Conversely, for a system
of zero harmonic impedance, all the harmonic current will flow into the system and
none in the filter. In the case where there is no filtration all the harmonic current
passes on to the system. The lower the system impedance, i.e., the higher the short-
circuit current, the smaller is the voltage distortion.
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In a ST filter, as the inductive and capacitive impedances are equal at the
resonant frequency, the impedance is given by the resistance R.

Z ¼ Rþ j!Lþ 1

j!C
¼ R ð20:5Þ

The following parameters can be defined:

!n is the tuned angular frequency in radians and is given by

!n ¼
1ffiffiffiffiffiffiffi
LC

p ð20:6Þ
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Figure 20-1 (a) Diagram of connections with a single-tuned (ST) shunt filter and harmonic
source; (b) equivalent circuit looking from harmonic injection as the source.
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X0 is reactance of the inductor or capacitor at the tuned angular frequency. Here,
n ¼ fn=f , where fn is the filter-tuned frequency and f is the power system frequency.

X0 ¼ !nL ¼ 1

!nC
¼

ffiffiffiffi
L

C

r
and !n ¼

ffiffiffiffiffiffiffi
1

LC

r
ð20:7Þ

The quality factor of the tuning reactor is defined as

Q ¼ X0

R
¼

ffiffiffiffiffiffiffiffiffiffi
L=C

p
R

ð20:8Þ
It determines the sharpness of tuning. The pass band is bounded by frequencies at
which

jZf j ¼
ffiffiffi
2

p
R ð20:9Þ

� ¼ !� !n

!n

ð20:10Þ

At these frequencies the net reactance equals resistance, capacitive on one side and
inductive on the other. If it is defined as the deviation per unit from the tuned
frequency, then for small frequency deviations, the impedance is approximately
given by

jZf j ¼ R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�2Q2

q
¼ X0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q�2 þ 4�2

q
ð20:11Þ

To minimize the harmonic voltage, Zf should be reduced or the filter admittance
should be high as compared to the system admittance.

The plot of the impedance is shown in Fig. 20-2. The sharpness of tuning is
dependent on R as well as on X0 and the impedance of the filter at its resonant
frequency can be reduced by reducing these. The asymptotes are at

jXf j ¼ �2X0j�j ð20:12Þ
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Figure 20-2 Response of a ST shunt filter, pass band, and asymptotes with varying Q

factors.
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The edges of the pass band are at � ¼ �1=2Q and width ¼ 1=Q. In Fig. 20-2, curve A
is for R ¼ 5 ohms, X0 ¼ 500 ohms, and Q ¼ 100, with asymptotes and pass band, as
shown. Curve B is for R ¼ 10 ohms, X0 ¼ 500 ohms, and Q ¼ 50. These two curves
have the same asymptotes. The resistance, therefore, effects sharpness of tuning.

20.2.1 Tuning Frequency

ST filter is not tuned exactly to the frequency of the harmonic it is intended to
suppress. The system frequency may change, causing harmonic frequency to
change. The tolerance on filter reactors and capacitors may change due to aging
or temperature effects. The tolerance on commercial capacitor units is �20% and
on reactors �5%. For filter applications it is necessary to adhere to closer toler-
ances on capacitors and reactors. Where a number of capacitor units are connected
in series or parallel, these are carefully formed with tested values of the capacitance
so that large phase unbalances do not occur. Any such unbalances between the
phases will result in overvoltage stress; in addition, the neutral will not be at
ground potential in ungrounded wye-connected banks. A tolerance of �2.0% on
reactors and a plus tolerance of +5% on capacitors (no negative tolerance) in
industrial environment is practical. Closer tolerances may be required for high-
voltage dc (HVDC) applications.

A change in L or C of 2% causes the same detuning as a change of system
frequency by 1% [3]:

� ¼ �f

fn
þ 1

2

�L

Ln

þ�C

Cn

� �
ð20:13Þ

Figure 20-3 shows the circuits, and R–X and Z–! plots of single tuned filters in
isolation and in parallel.

20.3 PRACTICAL FILTER DESIGN

Example 20.1

We will continue with Example 19.1 and go through the iterations of designing ST
filters, so that the harmonic distortions are at acceptable limits.

Form a ST Shunt Filter

In Example 19.1, with the addition of a 1350-kvar capacitor bank, the resonant
frequency is close to the 11th harmonic which gives large magnification of harmonic
currents and distortion factors. A ST filter design is generally started with the lowest
harmonic, though the resonant harmonic may be higher. Consider that a ST filter
tuned to the 4.7th harmonic is formed. Filter reactance is given by Eq. (20.7) which
gives filter L= 0.682 mH. Let the reactor X=R ratio be arbitrarily chosen as 40 at the
fundamental frequency. We will discuss Q of the filter reactors according to Eq.
(20.8), at the tuned frequency of the filter, in Sec. 20.8. The results of the frequency
scan and phase angle plot are shown in Figs. 20-4(a) and (b) respectively. These can
be compared with those of Figs. 19-17(a) and (b). It is noted that:
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. The resonance is not eliminated. It will always shift to a frequency which is
lower than the selected tuned frequency. This shifted parallel resonant fre-
quency, in Fig. 20-4(a), is 257 Hz. It is given by:

f11 ¼
1

2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðLs þ LÞC

s
ð20:14Þ

where Ls is the system reactance.
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Figure 20-3 Circuit connections; and R–X and Z–! plots of a ST shunt filter in isolation
and two ST filters in parallel.
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. The resonance peak has its own value of Q given by

Q1 ¼
1

ðRs þ RÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLs þ LÞ

C

r
ð20:15Þ

where Rs is the system resistanc. Figure 20-4(a) shows that the impedance
modulus is considerably reduced. It is 9.17 ohms as compared to 122.7 ohms
with capacitor alone.

. The harmonic currents flow are shown in Table 20-1. To calculate TDD
(total demand distortion) according to the IEEE [1], short-circuit current
and load-demand current at the PCC are required. From the data given
in Fig. 19-16(a), short-circuit current is 20.82 kA. The average load
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Figure 20-4 Impedance modulus and phase-angle plots with application of a ST fifth har-

monic filter (Example 20.1); response compared with capacitors alone.
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current is 830 A. Thus, the ratio Isc=IL ¼ 25:08. The permissible and
calculated harmonic current distortion factors with the fifth harmonic
ST filter are shown in Table 20-2. The TDD for seventh and 11th
harmonics are above permissible limits and the total TDD is 11.87%.
Though the total TDD is reduced from 94.52% (without filter reactor)
to 11.87%, it is still above permissive limits.

Add Another ST Filter for Seventh Harmonic

As the distortion limits are not met, we can try splitting the 1350-kvar capacitor
bank used to form the fifth harmonic ST filter into two equal parallel ST filters, one
tuned to n= 4.7 as before and the other tuned to n = 6.7. We had used two units of
300 kvar, 2.77 kV per phase, giving an installed kvar of 1800 at 2.77 kV (=1350
kvar at 2.4 kV). This is split into two equal banks, 900 kvar, each at 2.77 kV,
and ST filters are formed. The results of TDD calculation are again shown in
Table 20-2. TDD for 5th harmonic worsens. The fifth harmonic current in the
supply system is increased, while the seventh harmonic current is reduced. The
harmonic current flow is shown in Table 20-3, case 1.

Effect of Tuning Frequencies

As fifth harmonic current is increased, a sharper tuning of the fifth ST filter is
attempted by shifting the resonant frequency to n = 4.85. TDD calculations are
shown in Table 20-2. The harmonic current distributions are shown in Table 20-3,
case 2. A closer tuning of the fith ST filter increases the fifth harmonic loading of the
filter, resulting in reduced TDD at these frequencies.

With the fifth ST filter tuned to n = 4.85 and the seventh to n = 6.7, the TDD
for harmonics <11 meets the requirements, however, TDD for harmonics 11 < h <
17 is still high. This points to the necessity of adding another ST filter for for the
eleventh harmonic.
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Table 20-1 Example 20.1: Harmonic Currents and Voltages with Fifth Harmonic ST

Filter

Order of

harmonic

Current in ST

filter (A)

Current in

transformer T1 (A)

Current in 2000-hp

motor (A)

Harmonic voltage,

bus 2 (V)

5 79.56 42.30 3.13 26.3

7 24.07 61.40 4.54 53.4
11 14.95 56.8 4.20 77.76
13 6.18 25.00 1.85 40.38

17 3.38 14.50 1.08 30.7
19 1.93 8.44 0.63 19.9
23 0.60 2.70 0.20 7.71

25 0.48 2.16 0.16 6.71
29 0.34 1.54 0.11 5.57
31 0.24 1.08 0.08 4.17
35 0.20 0.95 0.06 3.26
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Table 20-2 Example 20.1: Summary of TDD Under Various Conditions Studied

Harmonic order!
Operating condition# <11 11 � h < 17 17 � h < 23 23 � h < 35 35 � h

Total

TDD
IEEE limits 7.0 3.5 2.5 1.0 0.5 8.0
Harmonic order! 5 7 11 13 17 19 23 25 29 31 35

No capacitor 14.172* 10.208* 8.608* 3.733* 2.144* Not calculated (total TDD not accurate) 19.91%*
1350-kvar capacitors 18.07* 18.07* 90.723* 6.987* 1.325 0.542 0.103 0.067 0.033 0.020 0.017 94.52*
5th harmonic ST

filter, n ¼ 4:7
5.096 7.398* 6.843* 3.012 1.747 1.017 0.325 0.260 0.186 0.130 0.114 11.87*

5th and 7th harmonic
ST filters, n ¼ 4:7 and
6.7

8.72* 2.783 5.892* 2.662 1.578 0.922 0.296 0.237 0.169 0.119 0.100 11.03*

5th and 7th harmonic
ST filters n=4.85
and 6.7

5.422 2.759 5.855* 2.638 1.566 0.916 0.293 0.237 0.169 0.119 0.100 9.04*

5th, 7th, and 11th
harmonic ST filters,
n ¼ 4:85, 6.7, and 10.6

3.572 2.700 1.658 2.110 2.082 1.42 0.571 0.504 0.425 0.320 0.238 6.85

5th, 7th, and 11th
harmonic ST filters,
with tolerances

8.735* 4.614 1.205 1.313 0.988 0.600 0.200 0.163 0.118 0.083 – 10.10*

One large 5th
harmonic ST filter,
n ¼ 4:85

0.984 3.398 3.289 1.675 0.998 0.583 0.188 0.151 0.107 0.075 0.050 5.24

Isc/IL = 25, IL = 830 A = base current, six-pulse converter, 2.4 kV.

* Shows that TDD limites are exceeded. See Appendix F.
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Add Another ST Filter for 11th Harmonic

Another equal section of the capacitor bank is added and n = 10.6. The results of
the simulation are shown in Table 20-4 and the TDD calculations are in Table 20-2.
The TDD for each band of frequencies as well as total TDD now meets the require-
ments. A total of three ST filters of equal sections, each consisting of 900 kvar (300
kvar per phase) rated voltage of 2.77 kV, connected in ungrounded wye and pro-
vided with series tuning reactors n = 4.85, 6.7, and 10.6, respectively, meet the
requirements. The frequency scan of the impedance and its phase angles, with all
three filters in place, are plotted in Fig. 20-5.

Minimum Filter

In this example, though additional reactive power is not required from fundamental
frequency load flow conditions, yet to meet the TDD requirements an additional
11th ST filter has become necessary. The converse may be also true, depending on
the load power factor and percentage of nonlinear load to total load. Compromises
are often required when filters must meet the requirements of certain reactive power
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Table 20-3 Example 20.1: Harmonic Simulation, Fifth and Seventh ST Filters, Effect of

Tuning Frequency

Harmonic

order h # Fifth ST filter Seventh ST filter 2000-hp motor Supply system PCC

5 67.1b 30.2 5.36 72.4

89.00c 12.23 3.33 45.00
7 45.2 60.7 1.71 23.1

50.59 60.33 1.70 22.90
11 6.43 17.10 3.62 48.90

6.91 16.89 3.60 48.6
13 2.73 6.56 1.63 22.1

2.92 6.53 1.62 21.9

17 1.53 3.39 1.31 13.10
1.62 3.37 0.96 13.00

19 0.87 1.91 0.57 7.65

0.93 1.89 0.56 7.61
23 0.27 0.58 0.18 2.46

0.29 0.58 0.18 2.44

25 0.22 0.46 0.15 1.97
0.23 0.46 0.14 1.96

29 0.16 0.33 0.11 1.41
0.16 0.33 0.10 1.41

31 0.11 0.23 0.07 0.99
0.11 0.23 0.07 0.99

35 0.09 0.19 0.06 0.83

0.09 0.19 0.06 0.83

aHarmonic current flow in ampères.
bCase 1: top row, fifth ST filter n = 4.7, 7th ST, filter n = 6.7.
cCase 2: bottom row, fifth ST filter n = 4.85, 7th ST filter n = 6.7.
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compensation as well as TDD. A filter designed to control only the harmonic dis-
tortion, without the limitation of meeting a certain reactive power demand, is termed
the minimum filter.

One Large Fifth Harmonic ST Filter to Meet the TDD Requirements

As the relative harmonic loading of the filter and the system depends on the filter
reactance, if the requirements of TDD are not met, the simplest artifice is to increase
the size of the filter, i.e., increase the fundamental frequency Mvar rating and rede-
sign the filter. Often this becomes a limitation of the passive filters that to achieve the
required TDD, the size of the filter is too large, resulting in overcompensation of the
reactive power and giving rise to overvoltage when in service and reduced voltage
when out of service.

In this example we can iterate by trying increasing sizes of the fifth ST filter,
without parallel seventh and 11th filters, until the TDD requirements are met.
Calculations show that a single fifth ST filter requires 9000 kvar of capacitors
(3000 kvar per phase, i.e., 10 units of 300 kvar, rated voltage 2.77 kV, connected
in parallel) to satisfy the TDD requirements. The harmonic currents in the PCC with
this filter are shown in Table 20-5 and TDD in Table 20-2.

The single large filter with 9.00 Mvar of capacitors is impractical. The example
illustrates that simply increasing the size of the filter may not give an optimum solution.

Shifted Resonant Frequencies

Each parallel ST filter gives rise to a shifted resonant frequency, below its own tuned
frequency. If the shifted resonance frequency coincides with one of the character-
istics, noncharacteristic, or triplen harmonics present in the system, current magni-
fication at these frequencies will occur. The switching inrush current of a transformer
is rich in even and third harmonics (Fig.17-8). As the transformers are switched in
and out, harmonic current injections into the system and filters will increase, though
this will last for the switching duration of the transformers. It is possible that these
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Table 20-4 Example 20.1: Harmonic Simulation Fifth, Seventh, and 11th ST Filters

h #
Fifth ST
filter

Seventh ST
filter

11th ST
filter

2000-hp
motor

Supply system
PCC

Harmonic

voltage at
PCC (bus 2)

5 94.3 13.06 7.49 3.53 47.7 29.65
7 5.67 67.7 11.04 1.90 25.7 22.41

11 1.42 3.47 60.38 0.74 9.99 13.66

13 1.44 3.22 16.71 0.80 10.8 17.51
17 1.02 2.12 7.09 0.61 8.17 17.28
19 0.61 1.24 3.82 0.37 4.96 11.72
23 0.20 0.39 1.12 0.12 1.66 4.74

25 0.16 0.32 0.88 0.10 1.35 4.19
29 0.12 0.23 0.61 0.07 0.98 3.53
31 0.08 0.16 0.41 0.05 0.69 2.66

35 0.06 0.12 0.36 0.03 0.57 1.98

aHarmonic current flow in ampères; harmonic voltage in volts.
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currents are sufficiently magnified to give rise to large harmonic voltages. High
overvoltages can occur if the system is sharply tuned to the harmonic that is being
excited by the transformer inrush current, (second, third, fourth, and even harmo-
nics). Capacitor banks could also fail prematurely. This places a constraint in the
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Figure 20-5 Example 20.1: impedance modulus and phase-angle plots with 5th, 7th, and

11th harmonic filters.

Table 20-5 Example 20.1: Current Into PCC with One Large Fifth Harmonic ST Filtera

h ! 5 7 11 13 17 19 23 25 29 31 35

Harmonic
current!

8.17 28.2 27.3 13.9 8.29 4.84 1.56 1.25 0.89 0.63 0.42

aHarmonic current flow in ampères.
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design of ST filters. The shifted resonance frequencies should have at least 30 cycles
difference between the adjacent and odd or even harmonics. Even then, some ampli-
fication of the transformer switching inrush current will occur. In this example, with
three ST filters, the shifted frequencies are 271, 367, and 549 Hz.

The last two frequencies are close to the sixth and ninth harmonics. A wider
band can be attempted by slightly lowering the tuning frequency of the seventh and
11th ST filters. The shifted frequencies can also be calculated from Eq. (20.14).

Effect of Tolerances on Filter Components

The tolerances on capacitors and reactors will result in detuning. Consider that
components of the following tolerances are selected:

. Capacitors: + 5%

. Reactors: �2%

Let the capacitance of the fifth and seventh filters increase by 5% and the inductance
by 2%. This is quite a conservative assumption for checking the detuning effect and
resulting current distribution. The series-tuned frequencies of the fifth and seventh
filters will shift to a lower value.

The results of harmonic current flow are shown in Table 20-6. The harmonic
distortion increases above the acceptable limits.

This points to the necessity of iterating the design with required tolerances and
fine tuning the selected tuning frequencies. Closer tolerances on the components is an
option, but that may not be practical and economically justifiable.

Outage of One of the Parallel Filters

Outage of one of the parallel ST filters should be considered. It will have the follow-
ing effects:

. The current loading of remaining filters in service may increase substantially
and the capacitors and reactors may be overloaded.

676 Chapter 20

Table 20-6 Harmonic Simulation with Tolerances on Filtersa (see text)

h #
Fifth ST
filter

Seventh ST
filter

11th ST
filter

2000-hp
motor

Supply system
PCC

5 81.4 22.9 11.4 5.36 72.5
7 8.11 57.1 16.4 2.84 38.3

11 1.41 3.28 60.55 0.74 10.00

13 1.44 3.10 16.78 0.80 10.9
17 1.02 2.06 7.11 0.61 8.20
19 0.61 1.21 3.84 0.37 4.98

23 0.20 0.39 1.12 0.12 1.66
25 0.16 0.32 0.88 0.10 1.35
29 0.12 0.23 0.61 0.07 0.98

31 0.08 0.16 0.41 0.05 0.69

aHarmonic current flow in ampères.
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. The resonant frequencies will shift and may result in harmonic current
amplification.

. The harmonic distortion will increase

Table 20-7 shows the effect of outage of one of the three filters at a time. The
harmonic distortion at the PCC increases in every case, though the filter components
are not overloaded. According to IEEE Standard 519 [1] it is permissible to operate
the system on a short-term basis with higher distortion limits at the PCC, provided
that the faulty unit is placed back in service quickly after rectification.

Sometimes, the outage of a filter may result in overloading of the remaining
filters in service. It then becomes necessary that parallel filters are also removed from
service. The filter protection and switching scheme are designed so that, with the
outage of a unit, the complete system is shut down.

Operation with Varying Loads

When load-dependent switching is required for reactive power compensation, multi-
ple capacitor banks are switched in an ascending order, i.e., 5th, 7th, and 11th.
Generally, this will occur during start-up conditions; however, if sustained operation
at reduced loads is required, it is necessary to control the harmonic distortion at each
of the operating loads and switching steps. The harmonic loads may or may not
decrease in proportion to the overall plant load. This adds another step in designing
an appropriate passive filtering scheme to meet the TDD requirements.

Division of Reactive kvar Between Parallel Filter Banks

When multiple parallel filters are required and the total kvar requirements are also
known, it remains to find out the most useful distribution of kvar amongst the
parallel filters. In the above example, the 5th, 7th, and 11th filters are based on
equal kvar. This is too simplistic an approach, rarely implemented. As filters should
be sized to handle the harmonic loading, one approach would be to divide the
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Table 20-7 Example 20.1: Effect of Outage of One of the Parallel Filtersa

Harmonic
order h #

Fifth ST out Seventh ST out 11th ST out

Seventh

ST filter

11th ST

filter

Utility

(PCC)

Fifth ST

filter

11th ST

filter

Utility

(PCC)

Fifth ST

filter

Seventh

ST filter

Utility

(PCC)

5 53.28 30.57 194 85.48 6.79 43.2 89.00 12.23 45.00
7 72.2 11.78 27.5 22.9 44.57 104.00 50.59 60.33 22.90
11 3.5 61.53 10.2 1.48 63.27 10.5 6.91 16.89 48.60

13 3.37 17.47 11.3 1.59 1.85 1.20 2.92 6.53 21.90
17 2.24 7.49 8.64 1.14 7.97 9.20 1.62 3.37 13.00
19 1.31 4.05 5.25 0.68 4.31 5.59 0.93 1.89 7.61
23 0.42 1.19 1.76 0.22 1.27 1.87 0.29 0.58 2.44

25 0.34 0.93 1.43 0.18 0.98 1.52 0.23 0.46 1.96
29 0.24 0.64 1.04 0.13 0.68 1.11 0.16 0.33 1.41
31 0.19 0.44 0.73 0.09 0.47 0.78 0.11 0.23 0.99

35 0.14 0.40 0.46 0.07 0.41 0.48 0.07 0.14 0.46

aHarmonic current in ampères.
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required kvar based on the percentage of harmonic current that each filter will carry.
This will not be known in advance. The other method is to proportionate the filters
with respect to harmonic current generation, i.e., the lower order harmonics are
higher in magnitude, so more kvar are allocated to a lower order filter. Again
some iteration will be required to optimize the sizes initially chosen, based on the
actual fundamental and harmonic current loadings and the desired reactive power
compensation.

Losses in the Capacitors

The power capacitors have some active power loss component, though small. Figure
20-6 shows the average losses versus ambient temperature for capacitors. At an
operating temperature of 408C, the loss is approximately 0.10 W/ kvar and increases
to 0.28 W/kvar at �408C. This loss should be considered in the filter design, by an
equivalent series resistance inserted in the circuit.

20.4 RELATIONS IN A ST FILTER

The reactive power output of a capacitor at fundamental frequency is V2=Xc. In the
presence of a filter reactor it is given by

Sf ¼
V2

XL � Xc

¼ V2

Xc=n
2 � Xc

¼ n2

n2 � 1
� (reactive power without reactor)

ð20:16Þ

The reactive power output with a filter reactor tuned to, say 4.85 f is approximately
4% higher than without the reactor. This is so because the voltage drop in the
reactor is added to the capacitor voltage and its operating voltage is

Vc ¼ V þ VL ¼ V þ j!LðV=ð j � 1=j!CÞÞ

¼ n2

n2 � 1

ð20:17Þ
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Figure 20-6 Average losses in film-foil capacitor units, with variation of temperature.
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The capacitors in a fifth harmonic filter tuned to 4.85 f operate at approxi-
mately 4% higher than the system voltage. While selecting the voltage rating on the
filter capacitors, the considerations are:

. Higher operating voltage due to presence of filter reactors.

. Sustained upward operating voltage of the utility power supply system. This
may be due to location, e.g., close to generating stations, or may be due to
voltage adjustment tap changing on transformers.

. The higher voltages that will be imposed when one or two capacitor units in
a parallel group go out of service. The neutral unbalance detection schemes
do not take a bank out of service if one or two units in a parallel group go
out of service, say due to fuse operation on the individual capacitor units. If
the problem cascades then a trip is initiated.

Generally, an operating voltage slightly higher than the nominal system voltage is
selected, though the capacitors have a 10% overvoltage capability, Eq. (18.16). This
reduces the reactive capability at the voltage of application as the square of the
voltages. To meet the requirement of a certain reactive power output a larger number
of units are then required.

The fundamental loading of the capacitors is given by

V2
c

Xc

¼ V2

Xc

n2

n2 � 1

" #2

¼ Sf

n2

n2 � 1

" #
ð20:18Þ

and the harmonic loading is

I2hXc

h
¼ I2hV

2

Sh

h2

h2 � 1
ð20:19Þ

When harmonic voltages and current flows are known form harmonic simulation,
the harmonic loading can be found from

Xh¼1

h¼2

VhIh ð20:20Þ

The fundamental frequency loading of the filter reactor is

V2
L

XL

¼ Vc

n2

	 
2
n2

Xc

" #
¼ V2

c

n2Xc

¼ Sf

n2
n2

n2 � 1

" #
ð20:21Þ

The harmonic loading for the reactor is the same as for the capacitor.
The increase in bus voltage on switching a capacitor at a transformer second-

ary bus is approximately given by

%�V ¼ KvarcapacitorZt

kVAt

ð20:22Þ

A flow chart of the design of ST filters is thus shown in Fig. 20-7.
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Figure 20-7 Flow chart for design of ST filters.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



20.5 FILTERS FOR A FURNACE INSTALLATION

Example 20.2

Figure 20-8 shows a furnace installation. The total operating load is 150 MVA. The
PCC is the 230 kV side of 125/208 MVA transformer. A reactive power compensa-
tion of 135 Mvar is required, which is provided by four ST filters formed with 54, 27,
27, and 27 Mvar capacitors, respectively, for second, third, fourth, and fifth harmo-
nics. These are connected at the main 34.5-kV bus. The capacitor banks are formed
as follows:

. Second harmonic ST filter: double wye, grounded, three-series groups, each
group containing eight units of 400-kvar capacitors of rated voltage 6.42 kV
(Fig. 20-9).

. Third, fourth, and fifth ST filters: single wye ungrounded, three-series
groups, each group containing eight units of 400-kvar capacitors of rated
voltage 6.42 kV.

The tuning frequencies for second, third, fourth, and fifth ST filters are 1.95, 2.95,
3.95, and 4.95 times the fundamental frequency, respectively.

The system is impacted with a harmonic spectrum during the melting cycle of
the furnaces. The results of harmonic flow calculations and TDD at the PCC are
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Figure 20-8 Single-line diagram of a furnace installation, showing ST filters.
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shown in Table 20-8. This table shows harmonic current loading of the filters and
harmonic currents fed into the 230-kV system. We observe that each ST filter oper-
ates effectively providing a low impedance path for the harmonic it is intended to
shunt away. TDD at the 230-kV PCC is 1.32. Fig. 20-9 shows formation of 2nd

harmonic filter.

Dynamic Stresses

Filters for furnace installations should receive special considerations with respect to
transient surges. Consider that a second harmonic ST filter is not installed in a
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Figure 20-9 Formation of a 57.6-Mvar double-wye, 34.5-kV capacitor bank for second
harmonic filter (Example 20.2).

Table 20-8 Example 20.2: Harmonic Filters for Arc Furnace (Fig. 20-8)a

Harmonic

Second

harmonic
ST filter

Third

harmonic
ST filter

Fourth

harmonic
ST filter

Fifth

harmonic
ST filter

Harmonic
currents

at PCC
(230-kV bus)

Harmonic
voltages

at PCC
(230-kV bus)

2 192.20 1.07 0.77 0.69 0.868 0.437
3 6.83 134.2 10.00 6.69 2.82 0.267
4 0.91 1.63 59.5 3.87 0.50 0.022

5 0.54 0.75 2.34 97.78 0.34 0.0337
7 5.08 6.18 13.39 28.89 3.50 8.37

aHarmonic current flow in ampères; harmonic voltages in kV.

Load demand = 350.8 A, three-phase short-circuit current at PCC = 20 kA, ratio ISC/IL = 57,

permissible total TDD = 6.0%, permissible TDD for h < 11 = 5%; calculated TDD = 1.32%, which is

also total TDD.
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furnace installation, and the lowest harmonic order filter is the third. The shifted
resonant frequency may coincide with one of the transformer inrush current harmo-
nics or be close to it, and may increase the transformer inrush currents. Though these
last for a short duration, these will stress the filter reactor and capacitors. Switching
inrush currents were discussed in Sec. 5.8 and it was noted that the presence of filter
reactors lowers the frequency as well as the magnitude of the inrush currents.
However, their duration may increase, as the reactors are of high Q, giving less
damping. Synchronous switching and resistance switching are the options. For nor-
mal switching it will be necessary to calculate the effect of switching and of trans-
former inrush currents, and resulting harmonic voltages, and apply these to the
specifications of filter reactors and capacitors.

Attenuation of Harmonics

In the above example we declared a 230-kV bus as the PCC. If a 34.5-kV bus is
declared as the PCC and the TDD is calculated, it will be higher than the TDD at the
230-kV bus. The calculated TDD at the 34.5-kV bus is 1.35. This shows attenuation
of harmonics in propagation through system elements, in this case, the transformer
impedance. The impact is the maximum at the point of injection and attenuation
occurs as the harmonics are propagated into the system, unless there is amplification
due to resonance. Partial resonances are common when capacitors are used.

Noninteger Harmonics

Furnace loads generate noninteger harmonics. Generally, for a furnace installation
the seventh harmonic filter is a high-pass filter (see Section 20.8).

20.6 FILTERS FOR AN INDUSTRIAL DISTRIBUTION SYSTEM

Example 20.3

Example 19.2 for application of power capacitors in an industrial plant showed that
depending on the operating condition, resonant frequencies swing over a wide spec-
trum and the harmonic distortion at the PCC is high. The equivalent negative
sequence current loading of generators is exceeded. Even without harmonics, a
part of the generator negative sequence capability may be utilized due to unbalance
loads and voltages and system asymmetries. The harmonic loading on the generators
and harmonic distortion is reduced by turning capacitor banks at buses 2 and 3 into
parallel fifth and seventh ST filters.

The following details are applicable for the final filter designs:
Bus 2, fifth harmonic ST filter: five units of 300 kvar, 7.2 kV, per phase, total

capacitor Mvar = 4.5, connected in ungrounded wye configuration; n = 4.85, C =
76.75 mF, L = 3.897 mH.

Buses 2 and 3, seventh harmonic ST filter: three units of 300 kvar, 7.2 kV, per
phase, giving 2.7 Mvar total, connected in ungrounded wye configuration; n = 6.75,
C = 46.05 mF, L = 3.353 mH.

Bus 3, fifth harmonic ST filter: four units of 300 kvar, 7.2 kV, per phase, total
capacitor Mvar = 3.6, n = 4.85, C = 61.40 mF, L = 4.872 mH, Q = 100.

X=R ratio of reactors = 100 at fundamental frequency. The harmonic current
flow is studied under the same three conditions as in Example 19.2 and TDD at the
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PCC is calculated. The normal load demand current Ir = 250 A in cases 1 and 3, and
410 A in case 2, when No.2 generator is out of service. The three-phase short-circuit
current is 30.2 kA sym. The results of calculation are shown in Table 20-9. The
following observations are of interest.

When the 75-mile 115-kV line and its harmonic load is modeled, TDD
increases over normal operating condition 1. (See Example 19.3 for a description
of the operating conditions for this system.) This shows the impact of harmonic
loads that may be located at considerable distance from the consumer. These should
invariably be considered in an harmonic analysis study.

In operating condition 2, seventh harmonic ST filters on buses 2 and 3 are out
of service. TDD is slightly above the limits. This is acceptable for short-term opera-
tion.

The smaller generator G2 rated at 47.97 MVA has a higher harmonic loading
as compared to the larger generator G1 of 82 MVA. The impedance modulus shows
some interaction between ST filters and capacitors at motors. Generally, it is desir-
able to observe one strategy of reactive power compensation in a distribution system,
due to the problem of secondary resonance, discussed in Sec. 20.7.

The resonant frequency varies by a maximum of 1.2% in the three cases.
This can be compared to the much wider swings shown in Table 19-8, without filters.
The resulting harmonic current flows through the system and filters change
with switching operation, yet the TDD at the PCC remains within acceptable
limits (Table 20-9). Also, the negative sequence loadings of the generators are at
safe levels.

20.7 SECONDARY RESONANCE

In the case where there are secondary circuits which have resonant frequencies close
to the switched capacitor bank, the initial surge can trigger oscillations in the
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Table 20-9 Example 19.3: Harmonic Simulation with Filtersa

Harmonic
order#

Current in
generator 1

Current in
generator 2

Current into the utility’s
system (PCC)

1b 2 3 1 2 3 1 2 3

5 37 35.6 31.7 51.7 Generator 48.7 6.78 7.05 12.8

7 24.4 104 27.3 24.9 out of 26.3 4.13 25.81 5.44
11 2.03 42.3 2.3 25.7 service 27.2 1.24 5.45 3.70
13 3.76 3.99 2.87 17.6 15.2 1.17 0.21 4.15
17 2.83 1.76 4.0 10.0 12.1 0.75 0.56 0.90

19 2.03 1.60 8.20 7.13 4.96 0.54 0.45 2.13
23 1.94 1.81 2.89 7.71 9.53 0.54 0.47 0.95
25 1.75 1.73 1.30 7.44 6.19 0.48 0.44 1.80

Calculated TDD at PCC! 3.28 6.66 6.12

Permissible TDD at PCC! 7.5 6 7.5

aHarmonic current flow in ampères.
b 1,2,3 refer to study cases, see Example 19.2.
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secondary circuits that are much larger than the switched circuit. The ratio of these
frequencies is given by

fc
fm

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
LmCm

LsCs

s
ð20:23Þ

where fc is the coupled frequency, fm is the main circuit switching frequency, Ls and
Cs are the inductance and capacitance in the secondary circuit, and Lm and Cm are
the inductance and capacitance in the main circuit. Figure 20-10(a) shows the circuit
diagram and Fig. 20-10(b) shows amplification of transient voltage in multiple capa-
citor circuits. The amplification effect is greater when the natural frequencies of the
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Figure 20-10 (a) Circuit of a secondary resonance; (b) overvoltages due to secondary

resonance. (From Ref. 4.)
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two circuits are almost identical. Damping ratios of the primary and coupled circuits
will effect the degree of interaction between the two circuits [4].

20.8 FILTER REACTORS

Filter reactors for filter applications are subjected to high harmonic frequencies. A
harmonic current flow spectrum, based on the worst case operation, is normally
required by a manufacturer for an appropriate design. There are two basic forms
of construction: (1) air-core reactors and (2) iron-core reactors. The reactors can be
designed considering higher harmonic losses and air-core types are generally pre-
ferred over iron-core reactors. The earlier construction of air-insulated reactors,
consisting of large conductors restrained in polyester or poured-in concrete has
given way to small parallel conductors, epoxy insulated and encapsulated. Air-
core reactors can be designed to better tolerances as compared to iron-core reactors.
The change in magnetic material properties can give rise to wider fluctuations in the
reactance value in iron-core reactors, though these are designed with lower flux
densities, and are smaller in dimensions. The reactors must withstand system-
through fault symmetrical ampères for 3 sec and also the mechanical stresses brought
about by asymmetrical short-circuit currents. Dynamic stresses due to switching and
transformer inrush currents may have to be considered.

20.8.1 Q Factor

Apart from its impact on the filter performance, the Q factor determines the funda-
mental frequency losses and this could be an overriding consideration, especially
when the reactors at medium-voltage level are required to be located indoors in
metal or fiber-glass enclosures and space is at a premium. Consider a second har-
monic filter for the furnace installation in Fig. 20-9. The capacitor is 0.00128 mF, the
inductor is 0.01371mH, i.e., inductive reactance = 5.1687 ohms. A X=R of 50 gives
a reactor resistance of 0.1032 ohms. The fundamental frequency current is 1280 A.
This gives a loss of approximately 507 kW/hr (at fundamental), which is very sub-
stantial.

Equation (20.8) defines the filter Q based on the inductive or capacitive reac-
tance at the tuned frequency (these are equal). The fundamental frequency losses and
heat dissipation are of major consideration. This does not mean that the effect on
filter performance can be ignored. The higher the value of Q, the more pronounced is
the valley at the tuned frequency. However, for industrial systems. The value of R
can be limited to the resistance built in the reactor itself.

Example 20.4

The effect of change in Q of the filter is examined in this example. We have an X=R
of 100 at fundamental frequency for the filter reactors in example 20.3. Thus, the
resistance values of the reactors are:

Fifth harmonic filter at bus 2 = 0.01469�,
Fifth harmonic filter at bus 3 = 0.01836�,
Seventh harmonic filter at bus 2 and bus 3 = 0.012642�.
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Figure 20-2 shows that the sharpness of tuning is dependent upon the resis-
tance. Harmonic load flow of Example 20-3 is repeated with tuning reactors of X=
R ¼ 10 and the results are shown in Table 20-10. There is hardly an appreciable
difference in the harmonic current flow. In industrial systems the performance of
single tuned filters will be, generally, indistinguishable for Q [Eq. (20.8)] ¼ 20 to Q ¼
100:

The X/R of tuning reactors at 60-Hz is given by 3.07K0.377 where K is the three-
phase kVA ¼ 3�2 X� 10�3 (I is the rated current in amperes and X the reactance in
ohms). X/R of a 1500 lVA reactor will be 50 while that of a 10MVA reactor it will bo
100. High X/R reactors can be purchased at a cost premium. Thus, selection of X/R
of the reactor depands upon:

Initial capital investment
Active energy losses
Effectiveness of the filtering

The optimization of filter admittance and Q for the impedance angle of the
network and � are required for the transmission systems. The optimum value of Q is
given by [4]:

Q ¼ 1þ cos�m

2�m sin�m

ð20:24Þ

where �m is the network impedance angle. Consider a frequency variation of �1%, a
temperature coefficient of 0.02% per degree Celsius, and a temperature variation of
�308C on the inductors and capacitors, then from Eq. (20.13) � ¼ 0:006. For an
impedance angle �m ¼ 808, the optimum Q from Eq. (20.24) is 99.31. The higher the
tolerances on components and frequency deviation, the lower the value of Q.

20.9 DOUBLE-TUNED FILTER

A double-tuned filter is derived from two ST filters, and is shown in Fig. 20-11. Its
R–X plot and Z–! plots are identical to that of two ST filters in parallel, as shown in
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Table 20-10 Effect of Change of Q: Harmonic Simulation, Condition 1 of Example 20.3a

Harmonic

order

Current in generator 1 Current in generator 2
Current into utility’s

system (PCC)

X/R

=100

X/R

=7–10

X/R

=100

X/R

=7–10

X/R

=100

X/R

=7–10

5 37 37.5 51.7 54.0 6.78 6.90
7 24.4 25.0 24.9 25.7 4.13 4.24
11 2.03 2.03 25.7 25.7 1.24 1.24
13 3.76 3.76 17.6 17.6 1.17 1.17

17 2.83 2.83 10.0 10.0 0.75 0.75
19 2.03 2.03 7.13 7.13 0.54 0.54
23 1.94 1.94 7.71 7.71 0.54 0.54

25 1.75 1.75 7.44 7.44 0.48 0.48

aHarmonic current flow in ampères.
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Fig. 20-3. The advantage with respect to two ST filters is that the power loss at
fundamental frequency is less and one inductor instead of two are subjected to full
impulse voltage. In Fig. 20-12 the BIL (basic insulation level) on reactor L2 is
reduced while reactor L1 sees the full impulse voltage. This is an advantage in
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Figure 20-11 Equivalent circuits of two ST parallel filters and a single double-tuned filter.

Figure 20-12 Z–! plots of two parallel ST filters and equivalent double-tuned filter
(Example 20.5).
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high-voltage applications. The following equations [5] transform two ST filters of
different frequencies into a single double-tuned filter:

C1 ¼ Ca þ Cb ð20:25Þ

L2 ¼
ðLaCa � LbCbÞ2

ðCa þ CbÞ2ðLa þ LbÞ
ð20:26Þ

R2 ¼ Ra

a2ð1� x2Þ
ð1þ aÞ2ð1þ x2Þ

" #
� Rb

1� x2

ð1þ aÞ2ð1þ x2Þ

" #
þ R1

að1� aÞð1� x2Þ
ð1þ aÞ2ð1þ x2Þ

" #

ð20:27Þ

C2 ¼
CaCbðCa þ CbÞðLa þ LbÞ2

ðLaCa � LbCbÞ2
ð20:28Þ

R3 ¼ �Ra

a2x4ð1� x2Þ
ð1þ ax2Þ2ð1þ x2Þ

" #
þ Rb

ð1� x2Þ
ð1þ ax2Þ2ð1þ x2Þ

" #
þ R1

ð1� x2Þð1� ax2Þ
ð1þ x2Þð1þ ax2Þ

" #

ð20:29Þ

L1 ¼
LaLb

La þ Lb

ð20:30Þ

where

a ¼ Ca

Cb

x ¼
ffiffiffiffiffiffiffiffiffiffiffi
LbCb

LaCa

s
ð20:31Þ

Generally, R1 is omitted and R2 and R3 are modified so that the impedance near
resonance are practically the same. Note that inductor L1 will have some resistance,
which is considered in the above equations.

Example 20.5

Consider the fifth and seventh filter section for a high-voltage application, at 50 Hz,
numerical values as shown in Fig. 20-11. It is converted into a double-tuned filter
and the response is compared with the original ST parallel filters. Use of the above
equations gives the following numerical values for the filter:

C1 ¼ 0:34 mF R1 ¼ 2:07�
C2 ¼ 7:931 mF R2 ¼ 1:527�
L1 ¼ 0:329H R3 ¼ 1:232�
L2 ¼ 0:039H

The response of the two filters (without external connections) is superimposed in
Fig. 20-12.

20.10 DAMPED FILTERS

Figure 20-13 shows four types of damped filters. The first-order filter is not used as it
has excessive loss at fundamental frequency and requires a large capacitor. The
second-order high pass is generally used in composite filters for higher frequencies.
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If it were to be used for the full spectrum of harmonics, the capacitor size would
become large and fundamental frequency losses in the resistor would be of consid-
eration. This will be illustrated with an example. The filter is more commonly
described as a second-order high-pass filter. The third-order filter has a substantial
reduction in fundamental frequency losses, due to the presence of C2 which increases
the filter impedance; C2 is very small compared to C1. The filtering performance of
type-C filters lies between that of second- and third-order filters. C2 and L2 are series
tuned at fundamental frequency and the fundamental frequency loss is reduced. Also
see Ref. [5].
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Figure 20-13 Circuits of damped filters: (a) first-order filter; (b) second-order filter; (c)
third-order filter; (d) type-C filter.
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The bandpass filters give rise to a shifted resonance frequency, while damped
filters do not. This advantage of damped filters can be exploited and possible reso-
nances at shifted frequencies can be avoided. Unlike ST parallel multiple filters, there
are no parallel branches, yet the component sizing becomes comparatively large and
it may not possible to exploit this advantage in every system design. The perfor-
mance and loading is less sensitive to tolerances. The behavior of damped filters can
be described by the following two parameters [6]:

m ¼ L

R2C
ð20:32Þ

f0 ¼
1

2�CR
ð20:33Þ

The impedance can be expressed in the parallel equivalent form:

Yf ¼ Gf þ jBf ð20:34Þ
where

Gf ¼
m2x4

R1 ð1�mx2Þ2 þm2x2
� � ð20:35Þ

Bf ¼
x

R1

1�mx2 þm2x2

ð1�mx2Þ2 þm2x2

" #
ð20:36Þ

where

x ¼ f

f0
ð20:37Þ

Considering that the filter is in parallel with an ac system of admittance Ya <
��a (max), then the minimum total admittance as �a and Y vary is:

Y ¼ Bf cos �a þ Gf sin�a ð20:38Þ
provided that the sign of each term is taken as positive and x is less than the value
that gives

j cot�f j ¼
Gf

Bf

�����
����� ¼ tan�a

�� �� ð20:39Þ

For a given C select parameters f0 and m to obtain a sufficiently high admittance
(low impedance) over the required frequency range. Values of m are generally
between 0.5 and 2.

20.10.1 Second-Order High-Pass Filter

The characteristics of a second-order high-pass filter are shown in Fig. 20-14 , with
its R–X and Z–! plots. It has a low impedance above a corner frequency, thus it will
shunt a large percentage of harmonics at or above the corner frequency. The sharp-
ness of tuning in high-pass filters is the reciprocal of tuned filters:

Q ¼ R

ðL=CÞ1=2 ¼
R

XL

¼ R

Xc

ð20:40Þ
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With high Q the filtering action is more pronounced. Filter impedance is given by

Z ¼ 1

j!C
þ 1

R
þ 1

j!L

� ��1

ð20:41Þ

The higher the resistance the greater is the sharpness of tuning. The Q value may
vary from 0.5 to 2 and there is no optimum Q, unlike with bandpass filters.

The reactive power of the capacitor at fundamental frequency is the same as for
a ST filter. The loading at harmonic h is

I2h
Xc

h
¼ 1

Sf

I2h
h
V2 n2

n2 � 1

" #
ð20:42Þ

Thus, the total harmonic loading is:

V2 n2

Sf ðn2 � 1Þ
Xh¼max

h¼min

I2h
h

ð20:43Þ
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Figure 20-14 Circuit and R–X and Z–! plots of a second-order high-pass filter.
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The reactor loading at fundamental frequency can be calculated by assuming that
current through the parallel resistor is zero, i.e., current through the inductor is the
same as through the capacitor; then, fundamental frequency loading is

I2LXL ¼ I2c
Xc

n2
¼ Sf

n2
n2

2
� 1

" #
ð20:44Þ

At harmonic h, the harmonic current Ih divides into the resistance and inductance.
The inductive component of the current is

IhL ¼ Ih
R

Rþ j!L
¼ Ih

Q

½Q2 þ ðh=nÞ2�1=2 ð20:45Þ

The total harmonic loading is, therefore

¼ Q2 V
2

Sf

n2

n2 � 1

" # Xh¼max

n¼min

n
I2h

Q2n2 þ h2

" #
ð20:46Þ

The loss in the resistor can be calculated as follows:

R ¼ QhXL ð20:47Þ

jIRj ¼
jILjXL

R
¼ IL

Qn
ð20:48Þ

Thus, the power loss is

I2RR ¼ 1

Qn
I2LXL ð20:49Þ

¼ 1

Qn
ðMvar loadingÞ ð20:50Þ

¼ S

Qn3
n2

n2 � 1

" #
ð20:51Þ

See also Ref. [5].

20.11 DESIGN OF A SECOND-ORDER HIGH-PASS FILTER

Example 20.6

In Example 20.1, we concluded that three ST filters for the 5th, 7th, and 11th har-
monics designed around 900-kvar capacitors, rated voltage 2.77 kV (equivalent to 675
kvar at a system voltage of 2.4 kV) for each filter leg, provided adequate filtration and
controlled TDD to acceptable values. A total of 2700 kvar was required. We also
observed that if a ST filter for the fifth harmonic is used it has to be of unpractically
large size, requiring 9000 kvar of similarly rated capacitors. Capacitor units rated at
2.4 kV could be used, depending on the system overvoltage profile.

If a single second-order high-pass filter is designed to control TDD to accep-
table levels in Example 20.1, its size will be still larger than the single 5th ST filter. This
is so because a high-pass filter has a higher impedance at notch frequency, as com-
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pared to a ST filter. The application of a high-pass filter is, generally, for higher
frequencies and notch reduction. Four cases of study are presented in Table 20-11.

Case 1: capacitor size 1.8 Mvar per phase; C = 622 mF, reactor L = 0.4805
mH (reactor X=R = 100), R = 0.181�.

Case 2: as case 1 except that filter Q = 4.85. For n = 4.85, C = 622 mF, L =
0.4805, R = 0.875�. A marked difference in the harmonic currents injected at the
PCC occurs with higher Q. The TDD is still high.

Case 3: the size of capacitors is doubled, i.e., 3.6 Mvar per phase, 10.8 Mvar
total. The TDD at the PCC is still not in control, especially at lower harmonics.

The frequency scan of these three cases are shown in Fig. 20-15. For large
resistance the filter reverts to a ST filter.

Case 4: a ST fifth harmonic filter of 300 kvar per phase (C = 10.37 mF, L =
2.88 mH, Q = 100, n = 4.85), is paralleled with a high-pass filter; C = 1.2 Mvar per
phase (3.6 Mvar total), C = 414.9 mF, L = 0.346 mH, filter Q = 4.5, n = 7. The
result of harmonic current flow into the PCC almost meets the TDD requirements.

This shows that three ST filters are the best design choice for Example 20.1.
The circuit diagram of a high-pass filter in conjunction with parallel ST filters, and
R–X and Z–! plots, are shown in Fig. 20-16.

20.12 ZERO SEQUENCE TRAPS

Zig-zag transformers and delta–wye transformers will act as zero sequence traps when
connected in the neutral circuit of a three-phase four-wire system. Figure 20-17 shows
a delta–wye transformer serving single-phase nonlinear loads of switched-mode
power supplies, PCs, printers, and fluorescent lighting. As discussed in Chap. 17,
the neutral can carry excessive harmonic currents. A zig-zag or delta–wye transformer
connected as shown in Fig. 20-17 will reduce harmonic currents and voltage.

As we discussed in Chap. 2, the zero sequence impedance of the core-type
delta–wye transformer is low as the zero sequence flux seeks a high reluctance
path through air or the transformer tank. The delta winding carries the zero
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Table 20-11 Example 20.6: High-Pass Filtera

Harmonic
order h # Case 1 Case 2 Case 3 Case 4

5 322 145 79 46.2
7 173 60.8 33.5 21.5

11 31.6 36.7 20.3 25.6
13 9.21 14.3 7.81 13.0
17 3.05 6.80 3.65 7.96

19 1.44 3.61 1.93 4.66
23 0.33 0.98 0.52 1.49
25 0.23 0.73 0.39 1.19

29 0.13 0.46 0.24 0.84
31 0.08 0.30 0.16 0.58
35 0.06 0.21 0.09 0.43

aHarmonic currents in PCC, in ampères.
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sequence currents to balance the primary ampère turns. In an unbalanced system, the
positive and negative sequence components will also be present, and these will not be
suppressed. In a zig-zag transformer, all windings have the same number of turns,
but each pair of windings on a leg are wound in the opposite direction. A zig-zag
transformer has low zero sequence impedance and works in the same manner as a
delta–wye transformer.

Figure 20-17 shows that the three-phase four-wire system, with neutral solidly
grounded, serves single-phase loads. The neutral currents have two parallel paths,
both of low impedance, through the delta–wye or zig-zag transformer and also
through the grounded neutral. The neutral voltage rise will be much less, though
it will not be completely stable.
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Figure 20-15 Z–! plots of a second-order high-pass filter with varying Q and capacitor
bank size (Example 20.6).
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20.13 LIMITATIONS OF PASSIVE FILTERS

Passive filters have been widely applied to limit harmonic propagation, improve
power quality, reduce harmonic distortion, and provide reactive power compensa-
tion simultaneously. These can be designed for large-current applications and high
voltages. Many such filters are in operation for HVDC links, and passive filters are
still the only choice when high voltages and currents are involved.

696 Chapter 20

Figure 20-16 High-pass filter for higher frequencies in parallel with two ST filters. R–X and
Z–! characteristics.
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Some of the limitations of the passive filters are apparent from the examples [7].
These can be summarized as follows:

. Passive filters are not adaptable to the changing system conditions and once
installed are rigidly in place. Neither the tuned frequency nor the size of the
filter can be changed so easily. The passive elements in the filters are close
tolerance components.

. A change in the system or operating condition can result in detuning and
increased distortion. This can go undetected, unless there is on-line mon-
itoring equipment in place.

. The design is largely affected by the system impedance. To be effective, the
filter impedance must be less than the system impedance, and the design can
become a problem for stiff systems. In such cases a very large filter will be
required. This may give rise to overcompensation of reactive power, and
overvoltages on switching and undervoltages when out of service.

. Often, passive filters will require a number of parallel shunt branches. Outage
of a parallel unit totally alters the resonant frequencies and harmonic current
flows. This may increase distortion levels beyond permissible limits.

. Power losses in the resistance elements of passive filters can be very sub-
stantial for large filters.

. The parallel resonance between filter and the system (for single- or double-
tuned filters) may cause amplification of currents of a characteristic or
noncharacteristic harmonic. A designer has a limited choice in selecting
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Figure 20-17 Delta–wye or zig-zag transformer used as neutral trap in a three-phase four-
wire system serving nonlinear loads.
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the tuned frequency to avoid all possible resonances with the background
harmonics. System changes will alter this frequency to some extent, however
carefully the initial design might have been selected.

. Damped filters do not give rise to a system parallel resonant frequency;
however, these are not so effective as a group of ST filters. The impedance
of a high-pass filter at its notch frequency is higher than the corresponding
ST filter. The size of the filter becomes large to handle the fundamental and
the harmonic frequencies.

. The aging, deterioration, and temperature effects detune the filter in a ran-
dom manner (though the effect of maximum variations can be considered in
the design stage).

. If the converters feed back dc current into the system (with even harmonics),
it can cause saturation of the filter reactor with resulting increase in distor-
tion.

. Definite-purpose breakers are required. To control switching surges, special
synchronous closing devices or resistor closing is required (see Chap. 4).

. The grounded neutrals of wye-connected banks provide a low-impedance
path for the third harmonics. Third-harmonic amplification can occur in
some cases.

. Special protective and monitoring devices (not discussed) are required.

20.14 ACTIVE FILTERS

By injecting harmonic distortion into the system, which is equal to the distortion
caused by the nonlinear load, but of opposite polarity, the waveform can be cor-
rected to a sinusoid. The voltage distortion is caused by the harmonic currents
flowing in the system impedance. If a nonlinear current with opposite polarity is
fed into the system, the voltage will revert to a sinusoid.

Active filters can be classified according to the way these are connected in the
circuit [8,9]:

. in series connection

. in parallel shunt connection

. hybrid connections of active and passive filters.

20.14.1 Shunt Connection

As we have seen, the voltage in a weak system is very much dependent on current,
while a stiff system of zero impedance will have no voltage distortion. Thus, pro-
vided that the system is not too stiff, a nonsinusoidal voltage can be corrected by
injecting proper current. A harmonic current source is represented as a Norton
equivalent circuit, and it may be implemented with a voltage-fed PWM inverter to
inject a harmonic current of the same magnitude as that of the load into the system,
but of harmonics of opposite polarity. A shunt connection is shown in Fig. 20-18(a).
The load current will be sinusoidal, so long as the load impedance is higher than the
source impedance:

Ifl ¼ Ih for jZLj > jZsj; Ih � 0 ð20:52Þ
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In Chap. 17 we studied two basic types of converters-current and voltage. A
converter with dc output reactor and constant dc current is a current harmonic source.
A converter with a diode front end and dc capacitor has a highly distorted current
depending on the ac source impedance, but the voltage at rectifier input is less depen-
dent on ac impedance. This is a voltage harmonic source. It presents a low impedance
and shunt connection will not be effective. A shunt connection is more suitable for
current source controllers where the output reactor resists the change of current.

20.14.2 Series Connection

Figure 20-18(b) shows a series connection. A voltage Vf is injected in series with the
line and it compensates the voltage distortion produced by a nonlinear load. A series
active filter is more suitable for harmonic compensation of diode rectifiers where the
dc voltage for the inverter is derived from a capacitor, which opposes the change of
the voltage.

Thus, the compensation characteristics of the active filters are influenced by the
system impedance and load. This is very much akin to passive filters; however, active
filters have better harmonic compensation characteristics against the impedance
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Figure 20-18 (a) Shunt connection of an active filter, (b) series connection of an active filter.
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variation and frequency variation of harmonic currents. The control systems of the
active filters have a profound effect on the performance and a converter can have
even a negative reactance. The active filters by themselves have the limitations that
initial costs are high and do not constitute a cost-effective solution for nonlinear
loads above approximately 500 kW, though further developments will lower the
costs and extend applicability.

20.14.3 Hybrid Connection

Hybrid connections of active and passive filters are shown in Fig. 20-19. Figure
20-19(a) is a combination of shunt active and shunt passive filters. Figure 20-19(b)
shows a combination of a series active filter and a shunt passive filter while Fig. 20-
19(c) shows an active filter in series with a shunt passive filter. The combination of
shunt active and passive filters has already been applied to harmonic compensation
of large steel mill drives [10]. Addition of a large shunt capacitor will reduce the load
resistance and Eq. (20.52) is no longer valid. The shunt passive filter will draw a large
source current from a stiff system and may act as a sink to the upstream harmonics.
It is required that in a hybrid combination the filters share compensation properly in
the frequency domain.

In a series connection, the active filter is connected in series with the passive
filter, both being in parallel with the load, as shown in Fig. 20-19(c). With suitable
control of the active filter, it is possible to avoid resonance and improve filter per-
formance. The active filter can be either voltage or current controlled. In current-
mode control the inverter is a voltage source to compensate for current harmonics.
In voltage-mode control the converter is a voltage-source inverter controlled to
compensate for the voltage harmonics. The advantage is that the converter itself is
far smaller, only about 5% of the load power. The active filter in such schemes
regulates the effective source impedance as experienced by the passive filter, and
the currents are forced to flow in the passive filter rather than in the system. This
makes the passive filter characteristics independent of the actual source impedance
and a consistent performance can be obtained.

20.14.4 Combination of Active Filters

A combination of series and shunt active filters is shown in Fig. 20-20. This looks
similar to the unified power controller discussed in Chap. 13, but its operation is
different [10]. A series filter blocks harmonic currents flowing in and out of the
distribution feeders. It detects the supply current and is controlled to present a
zero impedance to the fundamental frequency and high resistance to the
harmonics. The shunt filter absorbs the harmonics from the supply feeders and
detects the bus voltage at the point of connection. It is controlled to present infinite
impedance to the fundamental frequency and low impedance to the harmonics. The
harmonic currents and voltages are extracted from the supply system in the time
domain.

The electronics and power devices used in both types of converters for filters are
quite similar, Fig. 20-21, which shows three-phase voltage-source and current-source
PWM converters. The current-source active filter has a dc reactor with a constant dc
current while the voltage-source active filter has a capacitor on the dc side with
constant dc voltage. An output filter is provided to attenuate the inverter switching
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effects. In a current-source type, LC filters are necessary, Fig. 20-21(b). Transient
oscillations can appear because of resonance between filter capacitors and inductors.
The controls are implemented so that the inverter outputs a harmonic current equiva-
lent but opposite to that of the load. The source side current is therefore sinusoidal,
but the voltage will be sinusoidal only if the source does not generate any harmonics.
Bipolar junction transistors are used with switching frequencies up to 50 kHz for
modest ratings. SCRs and GTOs are used for higher power outputs.

A further classification is based on the control system, i.e., time domain and
frequency domain corrections.

20.15 CORRECTIONS IN TIME DOMAIN

Corrections in the time domain are based on holding instantaneous voltage or
current within reasonable tolerance of a sine wave. The error signal can be the
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Figure 20-19 (a), (b), and (c): Hybrid connections of active and passive filters.
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difference between actual and reference waveforms. Time-domain techniques can be
classified into three main categories [9]:

. Triangular wave

. Hysteresis

. Deadbeat

The error function can be instantaneous reactive power (IRP, described in Sec.
20.17) or EXT (extraction of fundamental frequency component). For EXT the
fundamental component of the distorted waveform is extracted through a 60-Hz
filter and then the error function is eðtÞ ¼ f 60ðtÞ � f ðtÞ. For IRP the error function
is given by the difference between the instantaneous orthogonal transformation of
actual and 60-Hz components of voltages and currents.

The triangular-wave method is easiest to implement, and can be used to gen-
erate two-state or three-state switching functions. A two-state function can be con-
nected positively or negatively, while a three-state function can be positive, negative,
or zero (Fig. 20-22).

In the two-state system, the inverter is always on, Fig. 20-22(a). The extracted
error signal is compared to a high-frequency triangular carrier wave, and the inverter
switches each time the waves cross. The result is an injected signal that produces
equal and opposite distortion.

In a three-state system (hysteresis method), preset upper and lower limits are
compared to an error signal, Fig. 20-22(b). So long as the error is within a tolerable
band, there is no switching and the inverter is off.

The advantages of time-domain methods are fast response, though these are
limited to one-node application, to which these are connected and take measurement
from.

20.16 CORRECTIONS IN THE FREQUENCY DOMAIN

Fourier transformation is used to determine the harmonics to be injected. The error
signal is extracted using a 60-Hz filter and the Fourier transform of the error signal is
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Figure 20-20 Connections of a unified power quality conditioner.
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taken. The cancellation of M harmonics method allows for compensation up to the
Mth harmonic, where M represents the highest harmonic to be compensated. A
switching function is constructed by solving a set of nonlinear equations to deter-
mine the precise switching times and magnitudes. Quarter-wave symmetry is
assumed to reduce the computations. Because an error function is used, the system
can easily accommodate system changes, but requires intense calculations and the
time delays associated with it. The computations increase with M and the increased
computational requirements are the main disadvantage, though these can be applied
in dispersed networks.

The predetermined frequency method injects specific frequencies into the sys-
tem, which are decided in the design stage of the system, much like passive harmonic
filtering. This eliminates the need for real-time commutation of switching signals, but
the harmonic levels present must be carefully evaluated beforehand and each filter
designed for the specific requirements. See also Refs. [11,12].
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Figure 20-21 (a) Voltage-source inverter active filter; (b) current-source active inverter filter.
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20.17 INSTANTANEOUS REACTIVE POWER

The signal method of control generates an error signal based on input voltage or
current and a reference sinusoidal waveform. A more elaborate function is the
instantaneous power method which calculates the desired current so that the instan-
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Figure 20-22 (a) Two-step switching function; (b) three-step switching function.
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taneous active and reactive power in a three-phase system are kept constant, i.e., the
active filter compensates for variation in instantaneous power [13]. By linear trans-
formation the phase voltages ea, eb, ec and load currents ia, ib, ic are transformed into
an �–� (two-phase) co-ordinate system:
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and
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The instantaneous real power p and the instantaneous imaginary power q are defined
as

p
q

����
���� ¼ e� e�

�e� e�

����
���� i�
i�

���� ð20:55Þ

Here, p and q are not conventional watts and vars. The p and q are defined by the
instantaneous voltage in one phase and the instantaneous current in the other phase.

p ¼ e�i� þ e�i� ¼ eaia þ ebib þ ecic ð20:56Þ
To define instantaneous reactive power, the space vector of imaginary power is

defined as

q ¼ e� � i� þ e� � i� ð20:57Þ
Equation (20.55) can be written as
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These are divided into two kinds of currents:
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This can be written as

i�
i�

����
���� ¼ i�P

i�P

����
����þ i�q

i�q

����
���� ð20:60Þ

where i�P is the �-axis instantaneous active current:

i�P ¼ e�
e2� þ e2�

P ð20:61Þ

i�q is the �-axis instantaneous reactive current:

i�q ¼
�e�

e2� þ e2�
q ð20:62Þ
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i�P is the �-axis instantaneous active current:

i�P ¼ e�

e2� þ e2�
P ð20:63Þ

and i�q is the �-axis instantaneous reactive current:

i�q ¼
e�

e2� þ e2�
q ð20:64Þ

The following equations exist:

p ¼ e�i�P þ e�i�P 	 P�P þ P�P

0 ¼ e�i�q þ e�i�q 	 P�q þ P�q

ð20:65Þ

where the �-axis instantaneous active and reactive powers are

P�P ¼ e2�
e2� þ e2�

p P�q ¼
�e�e�

e2� þ e2�
q ð20:66Þ

The �-axis instantaneous active and reactive power is

P�P ¼ e2�

e2� þ e2�
p P�q ¼

e�e�

e2� þ e2�
q ð20:67Þ

The sum of the instantaneous active powers P�q and P�p coincides with the instan-
taneous real power in the three-phase circuit. The instantaneous reactive powers P�q

and P�q cancel each other and make no contribution to the instantaneous power flow
from the source to the load.

Consider instantaneous power flow in a three-phase cycloconverter. The
instantaneous reactive power on the source side is the instantaneous reactive
power circulating between source and cycloconverter while the instantaneous reac-
tive power on the output side is the instantaneous reactive power between the cyclo-
converter and the load. Therefore, there is no relationship between the instantaneous
reactive powers on the input and output sides, and the instantaneous imaginary
power on the input side is not equal to the instantaneous imaginary power on the
output side. However, assuming zero active power loss in the converter, the instan-
taneous real power on the input side is equal to the real output power.

20.18 HARMONIC MITIGATION AT SOURCE

The harmonic mitigation at source, without filters, has attracted the attention of
industry and researchers. This covers a wide field, spanning industrial applications to
transmission systems and HVDC. We will briefly look at four systems from the point
of view of harmonic mitigation.

20.18.1 Phase Multiplication

The principal of harmonic elimination by phase multiplication is discussed in Chap.
17. Figure 20-23 shows a 2300-V medium-voltage drive system, where each motor
phase is driven by three PWM cells. Each group of power cells is wye connected with
a floating neutral, and is powered by an isolated secondary winding of the drive
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input transformer. A greatly improved voltage waveform is obtained due to phase
displacements in the transformer secondary windings, and the harmonic distortion
meets IEEE limits [1] without filters. Another advantage is that the common mode
voltages are eliminated.
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Figure 20-23 An ac drive system with secondary-phase multiplication and low harmonic
distortion. (Courtesy of Robicon Corporation, New Kensington, PA.)
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20.18.2 Multilevel Converters

Multilevel voltage source converters for high-power applications and HVDC have
drawn interest in recent years [14]. The staircase voltage wave is synthesized from
several levels of dc capacitor voltages. An m-level diode clamp converter consists of
m� 1 capacitors on the dc bus and produces m levels of the phase voltage by appro-
priate switching. Figure 20-24(a) shows a single-phase, five-level diode clamp circuit
with four dc bus capacitors, C1, C2, C3, and C4. The voltage across each capacitor is
Vdc/4. The staircase voltage shown in Fig. 20-24(b) is generated by the five switch
combinations shown in Fig. 20-24(a) and the switching matrix shown below:

Sa1 Sa2 Sa3 Sa4 S 0
a1 S 0

a2 S 0
a3 S 0

a4

V4 1 1 1 1 0 0 0 0

V3 0 1 1 1 1 0 0 0

V2 0 0 1 1 1 1 0 0

V1 0 0 0 1 1 1 1 0

V0 0 0 0 0 1 1 1 1

�������������

�������������
ð20:68Þ

With high switching levels, the harmonic content is low enough and filters are
not needed. The disadvantages are large clamping diodes, unequal switching ratings,
and real power control. The clamping diodes can be replaced with capacitors called
flying capacitor based control or multilevel converters using cascade converters with
dc sources. An application in a back-to-back intertie connection is shown in Fig, 20-
24(c). The resulting harmonic distortion is within IEEE limits without filters [13].

20.18.3 Parallel Connected 12-Pulse Converters, with Interphase
Reactor

Figure 20-25(a) shows the circuit of a conventional 12-pulse thyristor converter with
interphase reactor and phase shift obtained through delta–delta and delta–wye input
transformers. Figure 20-25(b) is a conventional stepped waveform of the 12-pulse
converter. This can be rendered close to a sinusoid by superposition of a triangular
current as shown in Fig. 20-25(c) and the system has a better waveform than that of a
36-pulse thyristor converter [15].

20.18.4 Active Current Shaping

By using proper control systems, the input current of converters can be forced to
follow a sinusoid in phase with voltage, addressing the need for reactive power
compensation as well as harmonic elimination [10]. The load current can be written as

ILðtÞ ¼ K�ðtÞ þ iqðtÞ ð20:69Þ
where K�ðtÞ is the active component of the load current and K is a coefficient that
can be calculated in the control circuit; iqðtÞ is the nonactive component of the
current. The nonactive current must be compensated to have maximum power factor
and harmonic rejection. The desired reference current in the active filter is

iqðtÞ ¼ ILðtÞ � k�ðtÞ ð20:70Þ
The above techniques discussed form an introduction, some references are

provided for the interested reader to probe further.
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Figure 20-24 (a) Single-phase, full-bridge, five-level diode-clamp converter circuit; (b)

stepped voltage generation resulting in low harmonic distortion; (c) two-diode clamp multi-
level converters for back-to-back intertie system.
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generation of a 12-pulse circuit; (c) improvement in voltage waveform with triangular-wave
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Appendix A

Matrix Methods

A.1 REVIEW SUMMARY

A.1.1 Sets

A set of points is denoted by

S ¼ ðx1; x2; x3Þ ðA:1Þ
This shows a set of three points, x1, x2, and x3. Some properties may be assigned to
the set, i.e.,

S ¼ fðx1; x2; x3Þjx3 ¼ 0g ðA:2Þ
Equation (A.2) indicates that the last component of the set x3 = 0. Members of a set
are called elements of the set. If a point x, usually denoted by �xx, is a member of the
set, it is written as

�xx 2 S ðA:3Þ
If we write:

�xx =2S ðA:4Þ
then point x is not an element of set S. If all the elements of a set S are also the
elements of another set T, then S is said to be a subset of T, or S is contained in T:

S � T ðA:5Þ
Alternatively, this is written as

T � S ðA:6Þ
The intersection of two sets S1 and S2 is the set of all points �xx such that �xx is an
element of both S1 and S2. If the intersection is denoted by T, we write:

T ¼ S1 \ S2 ðA:7Þ
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The intersection of n sets is

T 	 S1 \ S2 \ . . . \ Sn 	 \n
i¼1Si ðA:8Þ

The union of two sets S1 and S2 is the set of all points �xx such that �xx is an element of
either S1 or S2. If the union is denoted by P, we write:

P ¼ S1 [ S2 ðA:9Þ
The union of n sets is written as:

P 	 S1 [ S2 [ . . . [ Sn 	 Un
i¼1Si ðA:10Þ

A.1.2 Vectors

A vector is an ordered set of numbers, real or complex. A matrix containing only one
row or column may be called a vector:

�xx ¼
x1
x2
�
xn

��������

�������� ðA:11Þ

where x1, x2, . . ., xn are called the constituents of the vector. The transposed form is

�xx 0 ¼ jx1; x2; . . . ; xnj ðA:12Þ
Sometimes the transpose is indicated by a superscript letter t. A null vector �00 has all
its components equal to zero and a sum vector �11 has all its components equal to 1.

The following properties are applicable to vectors

�xxþ �yy ¼ �yyþ �xx

�xxþ ð �yyþ �zzÞ ¼ ð �xxþ �yyÞ þ �zz

�1ð�2 �xxÞ ¼ ð�1�2Þ �xx
ð�1 þ �2Þ �xx ¼ �1 �xxþ �2 �xx

�00 �xx ¼ �00

ðA:13Þ

Multiplication of two vectors of the same dimensions results in an inner or scalar
product:

�xx 0 �yy ¼
Xn
i¼1

xiyi ¼ �yy 0 �xx

�xx 0 �xx ¼ j �xxj2

cos� ¼ �xx 0 �yy
jxjjyj

ðA:14Þ

where � is the angle between vectors and |x| and |y| are the geometric lengths. Two
vectors �xx1 and �xx2 are orthogonal if:

�xx1 �xx
0
2 ¼ 0 ðA:15Þ
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A.1.3 Matrices

1. A matrix is a rectangular array of numbers subject to certain rules of
operation, and usually denoted by a capital letter within brackets [A], a capital letter
in bold, or a capital letter with an overbar. The last convention is followed in this
book. The dimensions of a matrix indicate the total number of rows and columns.
An element aij lies at the intersection of row i and column j.

2. A matrix containing only one row or column is called a vector.
3. A matrix in which the number of rows is equal to the number of columns is

a square matrix.
4. A square matrix is a diagonal matrix if all off-diagonal elements are zero.
5. A unit or identity matrix �II is a square matrix with all diagonal elements

=1 and off-diagonal elements = 0.
6. A matrix is symmetric if, for all values of i and j, aij = aji.
7. A square matrix is a skew symmetric matrix if aij = �aji for all values of i

and j.
8. A square matrix whose elements below the leading diagonal are zero is

called an upper triangular matrix. A square matrix whose elements above the leading
diagonal are zero is called a lower triangular matrix.

9. If in a given matrix rows and columns are interchanged, the new matrix
obtained is the transpose of the original matrix, denoted by �AA 0.

10. A square matrix �AA is an orthogonal matrix if its product with its trans-
pose is an identity matrix:

�AA �AA 0 ¼ �II ðA:16Þ
11. The conjugate of a matrix is obtained by changing all its complex ele-

ments to their conjugates, i.e., if

�AA ¼ 1� i 3� 4i 5
7þ 2i �i 4� 3i

����
���� ðA:17Þ

then its conjugate is

�AA� ¼ 1þ i 3þ 4i 5
7� 2i i 4� 3i

����
���� ðA:18Þ

A square matrix is a unit matrix if the product of the transpose of the conjugate
matrix and the original matrix is an identity matrix:

�AA� 0 �AA ¼ �II ðA:19Þ
12. A square matrix is called a Hermitian matrix if every i–j element is equal

to the conjugate complex j–i element, i.e.,

�AA ¼ �AA� 0 ðA:20Þ
13. A matrix, such that:

�AA2 ¼ �AA ðA:21Þ
is called an idempotent matrix.
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14. A matrix is periodic if

�AAkþ1 ¼ �AA ðA:22Þ
15. A matrix is called nilpotent if

�AAk ¼ 0 ðA:23Þ
where k is a positive integer. If k is the least positive integer, then k is called the index
of nilpotent matrix.

16. Addition of matrices follows a commutative law:

�AAþ �BB ¼ �BBþ �AA ðA:24Þ
17. A scalar multiple is obtained by multiplying each element of the matrix

with a scalar. The product of two matrices �AA and �BB is only possible if the number of
columns in �AA equals the number of rows in �BB.

If �AA is an m� n matrix and �BB is n� p matrix, the product �AA �BB is an m� p
matrix where

cij ¼ ai1b1j þ ai2b2j þ � � � þ ainbnj ðA:25Þ
Multiplication is not commutative:

�AA �BB 6¼ �BB �AA ðA:26Þ
Multiplication is associative if confirmability is assured:

�AAð �BB �CCÞ ¼ ð �AA �BBÞ �CC ðA:27Þ
It is distributive with respect to addition:

�AAð �BBþ �CCÞ ¼ �AA �BBþ �AA �CC ðA:28Þ
The multiplicative inverse exists if jAj 6¼ 0. Also,

ð �AA �BBÞ 0 ¼ �BB 0 �AA 0 ðA:29Þ
18. The transpose of the matrix of cofactors of a matrix is called an adjoint

matrix. The product of a matrix �AA and its adjoint is equal to the unit matrix multi-
plied by the determinant of A.

�AA �AAadj ¼ �II jAj ðA:30Þ
This property can be used to find the inverse of a matrix (see Example A.4).

19. By performing elementary transformations any nonzero matrix can be
reduced to one of the following forms called the normal forms:

½Ir� ½Ir 0� Ir
0

����
���� Ir 0

0 0

����
���� ðA:31Þ

The number r is called the rank of matrix �AA. The form:

Ir 0
0 0

����
���� ðA:32Þ

is called the first canonical form of �AA. Both row and column transformations can be
used here. The rank of a matrix is said to be r if (1) it has at least one nonzero minor
of order r, and (2) every minor of �AA of order higher than r = 0. Rank is a nonzero
row (the row that does not have all the elements =0) in the upper triangular matrix.
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Example A.1

Find the rank of the matrix:

�AA ¼
1 4 5
2 6 8
3 7 22

������
������

This matrix can be reduced to an upper triangular matrix by elementary row opera-
tions (see below):

�AA ¼
1 4 5
0 1 1
0 0 12

������
������

The rank of the matrix is 3.

A.2 CHARACTERISTICS ROOTS, EIGENVALUES, AND
EIGENVECTORS

For a square matrix �AA, the �AA� � �II matrix is called the characteristic matrix; � is
a scalar and �II is a unit matrix. The determinant jA� �I j when expanded gives
a polynomial, which is called the characteristic polynomial of �AA and the equation
jA� �I j ¼ 0 is called the characteristic equation of matrix �AA. The roots of the
characteristic equation are called the characteristic roots or eigenvalues.

Some properties of eigenvalues are:

. Any square matrix �AA and its transpose �AA 0 have the same eigenvalues.

. The sum of the eigenvalues of a matrix is equal to the trace of the matrix
(the sum of the elements on the principal diagonal is called the trace of the
matrix).

. The product of the eigenvalues of the matrix is equal to the determinant of
the matrix. If

�1; �2; . . . ; �n

are the eigenvalues of �AA, then the eigenvalues of

k �AA are k�1; k�2; . . . ; k�n
�AAm are �m1 ; �

m
2 ; . . . ; �

m
n

�AA�1 are 1=�1; 1=�2; . . . ; 1=�n

ðA:33Þ

. Zero is a characteristic root of a matrix, only if the matrix is singular.

. The characteristic roots of a triangular matrix are diagonal elements of the
matrix.

. The characteristics roots of a Hermitian matrix are all real.

. The characteristic roots of a real symmetric matrix are all real, as the real
symmetric matrix will be Hermitian.
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A.2.1 Cayley–Hamilton Theorem

Every square matrix satisfies its own characteristic equation:

If j �AA� � �II j ¼ ð�1Þnð�n þ a1�
n�1 þ a2�

n�2 þ � � � þ anÞ ðA:34Þ
is the characteristic polynomial of an n� n matrix, then the matrix equation:

�XXn þ a1 �XXn�1 þ a2 �XXn�2 þ � � � þ an �II ¼ 0

is satisfied by �XX ¼ �AA

�AAn þ a1 �AAn�1 þ a2 �AAn�2 þ � � � þ an �II ¼ 0

ðA:35Þ

This property can be used to find the inverse of a matrix.

Example A.2

Find the characteristic equation of the matrix:

�AA ¼
1 4 2
3 2 �2
1 �1 2

������
������

and then the inverse of the matrix.
The characteristic equation is given by

1� � 4 2
3 2� � �2
1 �1 2� �

������
������ ¼ 0

Expanding, the characteristic equation is

�3 � 5�2 � 8�þ 40 ¼ 0

then, by the Cayley–Hamilton theorem:

�AA2 � 5 �AA� 8 �II þ 40 �AA�1 ¼ 0

40 �AA�1 ¼ � �AA2 þ 5 �AAþ 8 �II

We can write:

40A�1 ¼ �
1 4 2
3 2 �2
1 �1 2

������
������
2

þ5
1 4 2
3 2 �2
1 �1 2

������
������þ 8

1 0 0
0 1 0
0 0 1

������
������ ¼ 0

The inverse is

A�1 ¼
�0:05 0:25 0:3
0:2 0 �0:2

0:125 �0:125 0:25

������
������

This is not an effective method of finding the inverse for matrices of large dimen-
sions.

A.2.2 Characteristic Vectors

Each characteristic root � has a corresponding nonzero vector �xx which satisfies the
equation j �AA� � �II j �xx ¼ 0. The nonzero vector �xx is called the characteristic vector or
eigenvector. The eigenvector is, therefore, not unique.
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A.3 DIAGONALIZATION OF A MATRIX

If a square matrix �AA of n� n has n linearly independent eigenvectors, then a matrix �PP
can be found so that

�PP�1 �AA �PP ðA:36Þ
is a diagonal matrix.

The matrix �PP is found by grouping the eigenvectors of �AA into a square matrix,
i.e., �PP has eigenvalues of �AA as its diagonal elements.

A.3.1 Similarity Transformation

The transformation of matrix �AA into P�1 �AA �PP is called a similarity transformation.
Diagonalization is a special case of similarity transformation.

Example A.3

Let �AA ¼
�2 2 �3
2 1 �6
�1 �2 0

������
������

Its characteristics equation is

�3 þ �2 � 21�� 45 ¼ 0

ð�� 5Þð�� 3Þð�� 3Þ ¼ 0

The eigenvector is found by substituting the eigenvalues:

�7 2 �3
2 �4 �6
�1 �2 �3

������
������
x
y
z

������
������ ¼

0
0
0

������
������

As eigenvectors are not unique, by assuming that z ¼ 1, and solving, one eigenvector
is

ð�1;�2; 1Þt

Similarly, other eigenvectors can be found. A matrix formed of these vectors is

�PP ¼
�1 2 3
�2 �1 0
1 0 1

������
������

and the diagonalization is obtained:

�PP�1 �AA �PP ¼
5 0 0
0 �3 0
0 0 �3

������
������

This contains the eigenvalues as the diagonal elements.
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A.4 LINEAR INDEPENDENCE OR DEPENDENCE OF VECTORS

Vectors �xx1; �xx2; . . . ; �xxn are dependent if all vectors (row or column matrices) are of the
same order, and n scalars �1; �2; . . . ; �n (not all zeros) exist such that:

�1 �xx1 þ �2 �xx2 þ �3 �xx3 þ � � � þ �n �xxn ¼ 0 ðA:37Þ
Otherwise they are linearly independent. In other words, if vector �xxK þ 1 can be
written as a linear combination of vectors ðx1; �xx2; . . . ; �xxnÞ, then it is linearly depen-
dent, otherwise it is linearly independent. Consider the vectors:

�xx3 ¼
4
2
5

������
������ �xx1 ¼

1
0:5
0

������
������ �xx2 ¼

0
0
1

������
������

then

�xx3 ¼ 4 �xx1 þ 5 �xx2

Therefore, �xx3 is linearily dependent on �xx1 and �xx2.

A.4.1 Vector Spaces

If �xx is any vector from all possible collections of vectors of dimension n, then for any
scalar �, the vector � �xx is also of dimension n. For any other n-vector �yy, the vector
�xxþ �yy is also of dimension n. The set of all n-dimensional vectors are said to form a
linear vector space En. Transformation of a vector by a matrix is a linear transfor-
mation:

�AAð� �xxþ � �yyÞ ¼ �ð �AA �xxÞ þ �ð �AA �yyÞ ðA:38Þ
One property of interest is

�AA �xx ¼ 0 ðA:39Þ
i.e., whether any nonzero vector �xx exists which is transformed by matrix �AA into a
zero vector. Equation (A.39) can only be satisfied if the columns of �AA are linearly
dependent. A square matrix whose columns are linearly dependent is called a sin-
gular matrix and a square matrix whose columns are linearly independent is called a
nonsingular matrix. In Eq. (A.39) if �xx ¼ �00, then columns of �AA must be linearly
independent. The determinant of a singular matrix is zero and its inverse does not
exist.

A.5 QUADRATIC FORM EXPRESSED AS A PRODUCT OF
MATRICES

The quadratic form can be expressed as a product of matrices:

Quadratic form ¼ �xx 0A �xx ðA:40Þ
where

�xx ¼
x1
x2
x3

������
������ �AA ¼

a11 a12 a13
a21 a22 a23
a31 a32 a33

������
������ ðA:41Þ
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Therefore,

�xx 0A �xx ¼ x1 x2 x3
�� �� a11 a12 a13

a21 a22 a23

a31 a32 a33

�������
�������
x1

x2

x3

�������
�������

¼ a11x
2
1 þ a22x

2
2 þ a33x

2
3 þ 2a12x; x2 þ 2a23x2x3 þ 2a13x1x3

ðA:42Þ

A.6 DERIVATIVES OF SCALAR AND VECTOR FUNCTIONS

A scalar function is defined as

y ffi f ðx1; x2; . . . ; xnÞ ðA:43Þ
where x1; x2; . . . ; xn are n variables. It can be written as a scalar function of an n-
dimensional vector, i.e., y ¼ f ð �xxÞ, where �xx is an n-dimensional vector:

�xx ¼
x1
x2
�
xn

��������

�������� ðA:44Þ

In general, a scalar function could be a function of several vector variables, i.e.,
y ¼ f ð �xx; �uu; �ppÞ, where �xx; �uu, and �pp are vectors of various dimensions. A vector function
is a function of several vector variables, i.e., �yy ¼ f ð �xx; �uu; �ppÞ.

A derivative of a scalar function with respect to a vector variable is defined as

@f

@x
¼

@f =@x1
@f =@x2

�
@f =@xn

��������

�������� ðA:45Þ

The derivative of a scalar function with respect to a vector of n dimensions is a vector
of the same dimension. The derivative of a vector function with respect to a vector
variable x is defined as

@f =@x ¼
@f1=@x1 @f1=@x2 � @f1=@xn
@f2=@x2 @f2=@x2 � @f2=@xn

� � � �
@fm=@x1 @fm=@x2 � @fm=@xn

��������

�������� ¼
½@f1=@x1�T
½@f2=@x2�T

�
½@fm=@xn�T

��������

�������� ðA:46Þ

If a scalar function is defined as

s ¼ �Tf ð �xx �uu �ppÞ
¼ �1 f1ð �xx; �uu; �ppÞ þ �2 f2ð �xx; �uu; �ppÞ þ � � � þ �m fmð �xx; �uu; �ppÞ

ðA:47Þ

then @s=@� is

@s

@�
¼

f1ð �xx; �uu; �ppÞ
f2ð �xx; �uu; �ppÞ

::
fmð �xx; �uu; �ppÞ

��������

�������� ¼ f ð �xx; �uu; �ppÞ ðA:48Þ
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and @s=@x is

@s

@x
¼

�1
@f1
@x1

þ �2
@f2
@x1

þ . . .þ �m
@fm
@x1

�1
@f1
@x2

þ �2
@f2
@x2

þ . . .þ �m
@fm
@x2

. . . . . .

�1
@f1
@xn

þ �2
@f2
@xn

þ . . .þ �m
@fm
@xn

�������������������

�������������������

¼

@f1
@x1

þ @f2
@x1

þ . . .þ @fm
@x1

@f1
@x2

þ @f2
@x2

þ . . .þ @fm
@x2

. . . . . .

@f1
@xn

þ @f2
@xn

þ . . .þ @fm
@xn

�������������������

�������������������

�1

�2

::

�m

���������

���������
ðA:49Þ

Therefore,

@s

@x
¼ @f

@x

����
����T� ðA:50Þ

A.7 INVERSE OF A MATRIX

The inverse of a matrix is often required in the power system calculations, though it
is rarely calculated directly. The inverse of a square matrix �AA is defined so that

�AA�1 �AA ¼ �AA �AA�1 ¼ �II ðA:51Þ

The inverse can be evaluated in many ways.

A.7.1 By Calculating the Adjoint and Determinant of the Matrix

�AA�1 ¼
�AAadj

jAj ðA:52Þ

Example A.4

Consider the matrix:

�AA ¼
1 2 3
4 5 6
3 1 2

������
������

Its adjoint is

�AAadj ¼
4 �1 �3
10 �7 6
�11 5 �3

������
������

and the determinant of �AA is equal to �9.
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Thus, the inverse of �AA is

�AA�1 ¼
� 4

9

1

9

1

3

� 10

9

7

9
� 2

3
11

9
� 5

9

1

3

�����������

�����������
A.7.2 By Elementary Row Operations

The inverse can also be calculated by elementary row operations. This operation is as
follows:

1. A unit matrix of n� n is first attached to the right side of matrix n� n
whose inverse is required to be found.

2. Elementary row operations are used to force the augmented matrix so
that the matrix whose inverse is required becomes a unit matrix.

Example A.5

Consider a matrix:

�AA ¼ 2 6
3 4

����
����

It is required to find its inverse.
Attach a unit matrix of 2� 2 and perform the operations as shown:

2 6
3 4

����
���� 1 0
0 1

����
����! R1

2

1 3
3 4

����
���� 1

2
0

0 1

�����
�����! R2 � 3R1

1 3
0 �5

����
����

1

2
0

�3

2
1

�������
�������! R1 þ

5

3
R2

1 0
0 �5

����
����
�2

5

3

5�3

2
1

�������
�������! R2 �

1

5

1 0
0 1

����
����
�2

5

3

5
3

10

�1

5

�������
�������

Thus, the inverse is

�AA�1 ¼
�2

5

3

5
3

10

�1

5

�������
�������

Some useful properties of inverse matrices are:
The inverse of a matrix product is the product of the matrix inverses taken in

reverse order, i.e.,

½ �AA �BB �CC��1 ¼ ½ �CC��1½ �BB��1½ �AA��1 ðA:53Þ
The inverse of a diagonal matrix is a diagonal matrix whose elements are the respec-
tive inverses of the elements of the original matrix:
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A11

B22

C33

������
������
�1

¼

1

A11
1

B22
1

C33

������������

������������
ðA:54Þ

A square matrix composed of diagonal blocks can be inverted by taking the inverse
of the respective submatrices of the diagonal block:

½block A�
½block B�

½block C�

������
������
�1

¼
½block A��1

½block B��1

½block C��1

������
������

ðA:55Þ

A.7.3 Inverse by Partitioning

Matrices can be partitioned horizontally and vertically, and the resulting submatrices
may contain only one element. Thus, a matrix �AA can be partitioned as shown:

�AA ¼
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

a41 a42 a43 a44

��������

�������� ¼
�AA1

�AA2
�AA3

�AA4

����
���� ðA:56Þ

where

�AA ¼
a11 a12 a13
a21 a22 a23
a31 a32 a33

������
������ ðA:57Þ

�AA2 ¼
a14
a24
a34

������
������ �AA3 ¼ a41 a42 a43

�� �� �AA4 ¼ ½a44� ðA:58Þ

Partitioned matrices follow the rules of matrix addition and subtraction. Partitioned
matrices �AA and �BB can be multiplied if these are confirmable and columns of �AA and
rows of �BB are partitioned exactly in the same manner:

�AA112�2
�AA122�1

�AA211�2
�AA221�1

�����
�����

�BB112�3
�BB122�1

�BB211�3
�BB221�1

�����
����� ¼ �AA11

�BB11 þ �AA12
�BB21

�AA11
�BB12 þ �AA12

�BB22
�AA21

�BB11 þ �AA22
�BB21

�AA21
�BB12 þ �AA22

�BB22

����
����
ðA:59Þ

Example A.6

Find the product of two matrices A and B by partitioning:

�AA ¼
1 2 3
2 0 1
1 3 6

������
������ �BB ¼

1 2 1 0
2 3 5 1
4 6 1 2

������
������
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is given by

�AA �BB ¼
1 2
2 0

����
���� 1 2 1
2 3 5

����
����þ 3

1

����
���� 4 6 1
�� �� 1 2

2 0

����
���� 0
1

����
����þ 3

1

����
����½2�

1 3
�� �� 1 2 1

2 3 5

����
����þ ½6� 4 6 1

�� �� 1 3
�� �� 0

1

����
����þ ½6�½2�

��������

��������
A matrix can be inverted by partition. In this case, each of the diagonal submatrices
must be square. Consider a square matrix partitioned into four submatrices:

�AA ¼ �AA1
�AA2

�AA3
�AA4

����
���� ðA:60Þ

The diagonal submatrices �AA1 and �AA4 are square, though these can be of different
dimensions. Let the inverse of �AA be

�AA�1 ¼ �AA 00
1

�AA 00
2

�AA 00
3

�AA 00
4

����
���� ðA:61Þ

then

�AA�1 �AA ¼ �AA 00
1

�AA 00
2

�AA 00
3

�AA 00
4

����
���� �AA1

�AA2
�AA3

�AA4

����
���� ¼ 1 0

0 1

����
���� ðA:62Þ

The following relations can be derived from this identity:

�AA 00
1 ¼ ½ �AA1 � �AA2

�AA�1
4

�AA3��1

�AA 00
2 ¼ � �AA 00

1
�AA2

�AA�1
4

�AA 00
4 ¼ ½� �AA3

�AA�1
1

�AA2 þ �AA4��1

�AA 00
3 ¼ � �AA 00

4
�AA3

�AA�1
1

ðA:63Þ

Example A.7

Invert the following matrix by partitioning:

�AA ¼
2 3 0
1 1 3
1 2 4

������
������

�AA1 ¼ 2 3
1 1

����
���� �AA2 ¼ 0

3

����
���� �AA3 ¼ 1 2

�� �� �AA4 ¼ ½4�

�AA 00
1 ¼ 2 3

1 1

����
����� 0

3

����
���� 1

4

	 

1 2
�� ��	 
�1

¼
2

7

12

7
1

7
� 8

7

�������
�������

�AA 0
2 ¼ �

2

7

12

7
1

7
� 8

7

�������
�������
0
3

����
���� 1

4

	 

¼

� 9

7
6

7

�������
�������
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�AA 00
3 ¼ � 1

7

	 

1 2
�� �� �1 3

1 �2

����
���� ¼ � 1

7

1

7

����
����

�AA 00
4 ¼ � 1 2

�� �� �1 3
1 �2

����
���� 0
3

����
����þ ½4�

	 
�1

¼ 1

7

�AA�1 ¼

2

7

12

7
� 9

7
1

7
� 8

7

6

7

� 1

7

1

7

1

7

�����������

�����������

A.8 SOLUTION OF LARGE SIMULTANEOUS EQUATIONS

The application of matrices to the solution of large simultaneous equations consti-
tutes one important application in the power systems. Mostly, these are sparse
equations with many coefficients equal to zero. A large power system may have
more than 3000 simultaneous equations to be solved.

A.8.1 Consistent Equations

A system of equations is consistent if they have one or more solutions.

A.8.2 Inconsistent Equations

A system of equations that has no solution is called inconsistent, i.e., the following
two equations are inconsistent:

xþ 2y ¼ 4

3xþ 6y ¼ 5

A.8.3 Test for Consistency and Inconsistency of Equations

Consider a system of n linear equations:

a11x1 þ a12x2 þ � � � � þa1nx1 ¼ b1

a21x1 þ a22x2 þ � � � � þA2nx2 ¼ b2

� � � � � �
an1x1 þ an2x2 þ � � � � þamnxn ¼ bn

ðA:64Þ

Form an augmented matrix �CC:

�CC ¼ ½ �AA; �BB� ¼
a11 a12 � a1n b1
a21 a22 � a2n b2
� � � � �
an1 an2 � ann bn

��������

�������� ðA:65Þ
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The following holds for the test of consistency and inconsistency:

. A unique solution of the equations exists if: rank of �AA = rank of �CC ¼ n,
where n is the number of unknowns.

. There are infinite solutions to the set of equations if: rank of �AA = rank of
�CC ¼ r, r < n.

. The equations are inconsistent if rank of �AA is not equal to rank of �CC.

Example A.8

Show that the equations:

2xþ 6y ¼ �11

6xþ 20y� 6z ¼ �3

6y� 18z ¼ �1

are inconsistent.
The augmented matrix is

�CC ¼ �AA �BB ¼
2 6 0 �11
6 20 �6 �3
0 6 �18 �1

������
������

It can be reduced by elementary row operations to the following matrix:

2 6 0 �11
0 2 �6 30
0 0 0 �91

������
������

The rank of A is 2 and that of C is 3. The equations are not consistent.
The equations (A.64) can be written as

�AA �xx ¼ �bb ðA:66Þ
where �AA is a square coefficient matrix, �bb is a vector of constants, and �xx is a vector of
unknown terms. If �AA is nonsingular, the unknown vector �xx can be found by

�xx ¼ �AA1 �bb ðA:67Þ
This requires calculation of the inverse of matrix �AA. Large system equations are not
solved by direct inversion, but by a sparse matrix techniques.

Example A.9

This example illustrates the solution by transforming the coefficient matrix to an
upper triangular form (backward substitution). The equations:

1 4 6
2 6 3
5 3 1

������
������
x1
x2
x3

������
������ ¼

2
1
5

������
������
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can be solved by row manipulations on the augmented matrix, as follows:

1 4 6
2 6 3
5 3 1

������
������
2
1
5

������
������! R2 � 2R1 ¼

1 4 6
0 �2 �9
5 3 1

������
������

2
�3
5

������
������! R3 � 5R1

¼
1 4 6
0 �2 �9
0 �17 �29

������
������

2
�3
�5

������
������! R3 �

17

2
R2 ¼

1 4 6
0 �2 �9
0 0 47:5

������
������

2
�3
20:5

������
������

Thus,

47:5x3 ¼ 20:5

�2x2 � 9x3 ¼ �3

x1 þ 4x2 þ 6x3 ¼ 2

which gives

�xx ¼
1:179
�0:442
0:432

������
������

A set of simultaneous equations can also be solved by partitioning:

a11; � � � ; a1k a1m; � � � ; a1n
:: ::

ak1; � � � ; akk akm; � � � ; akn
am1; � � � ; amk amm; � � � ; amn

:: ::
an1; � � � ; ank anm; � � � ; ann

������������

������������

x1
�
xk

xm
�
xn

������������

������������
¼

b1
�
bk

bm
�
bn

������������

������������
ðA:68Þ

Equation (A.68) is horizontally partitioned and rewritten as

�AA1
�AA2

�AA3
�AA4

����
���� ¼ �XX1

�XX2

����
���� �BB1

�BB2

����
���� ðA:69Þ

Vectors �xx1 and �xx2 are given by

�XX1 ¼ �AA1 � �AA2
�AA�1
4

�AA3

� ��1 �BB1 � �AA2
�AA�1
4

�BB2

� � ðA:70Þ

�XX2 ¼ �AA�1
4 ð �BB2 � �AA3

�XX1Þ
� � ðA:71Þ

A.9 CROUT’S TRANSFORMATION

A matrix can be resolved into the product of a lower triangular matrix �LL and an
upper unit triangular matrix �UU, i.e.,

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

��������

�������� ¼
l11 0 0 0
l21 l22 0 0
l31 l32 l33 0
l41 l42 l43 l44

��������

��������
1 u12 u13 u14
0 1 u23 u24
0 0 1 u34
0 0 0 1

��������

�������� ðA:72Þ
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The elements of �UU and �LL can be found by multiplication:

l11 ¼ a11

l21 ¼ a21

l22 ¼ a22 � l21u12

l31 ¼ a31

l32 ¼ a32 � l31u12

l33 ¼ a33 � l31u13 � l32u23

l41 ¼ a41

l42 ¼ a42 � l41u12

l43 ¼ a43 � l41u13 � l42u23

l44 ¼ a44 � a41u14 � l42u24 � l43u3

ðA:73Þ

and

u12 ¼ a12=l11

u13 ¼ a13=l11

u14 ¼ a14=l11

u23 ¼ ða23 � l21u13Þ=l22
u24 ¼ ða24 � l21u14Þ=l22
u34 ¼ ða34 � l31u14 � l32u24Þl33

ðA:74Þ

In general:

lij ¼ aij �
Xk¼j�1

k¼1

likukj i � j ðA:75Þ

for j ¼ 1; . . . ; n

uij ¼
1

lii
aij �

Xk¼j�1

k¼1

likukj

 !
i < j ðA:76Þ

Example A.10

Transform the following matrix into LU form:

1 2 1 0
0 3 3 1
2 0 2 0
1 0 0 2

��������

��������
From Eqs. (A.75) and (A.76):

1 2 1 0
0 3 3 1
2 0 2 0
1 0 0 2

��������

�������� ¼
1 0 0 0
0 3 0 0
2 �4 4 0
1 �2 1 2:33

��������

��������
1 2 1 0
0 1 1 0:33
0 0 1 0:33
0 0 0 1

��������

��������
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The original matrix has been converted into a product of lower and upper triangular
matrices.

A.10 GAUSSIAN ELIMINATION

Gaussian elimination provides a natural means to determine the LU pair:

a11 a12 a13
a21 a22 a23
a31 a32 a33

������
������
x1
x2
x3

������
������ ¼

b1
b2
b3

������
������ ðA:77Þ

First, form an augmented matrix:

a11 a12 a13 b1
a21 a22 a23 b2
a31 a32 a33 b3

������
������ ðA:78Þ

1. Divide the first row by a11. This is the only operation to be carried out on
this row. Thus, the new row is

1 a 0
12 a 0

13 b 0
1

a 0
12 ¼ a12=a11; a

0
13 ¼ a13=a11; b

0
1 ¼ b1=a11

ðA:79Þ

This gives

l11 ¼ a11; u11 ¼ 1; u12 ¼ a 0
12; u13 ¼ a 0

13 ðA:80Þ
2. Multiply new row 1 by �a21 and add to row 2. Thus, a21 becomes zero.

0 a 0
22 a 0

23 a 0
33b

0
2

a 0
22 ¼ a22 � a21a

0
12

a 0
23 ¼ a23 � a21a

0
13

b 0
2 ¼ b2 � a21b

0
1

ðA:81Þ

Divide new row 2 by a 0
22. Row 2 becomes

0 1 a 00
23 b 00

2

a 00
23 ¼ a 0

23=a
0
22

b 00
2 ¼ b 0

2=a
0
22

ðA:82Þ

This gives

l21 ¼ a21; l22 ¼ a 0
22; u22 ¼ 1; u23 ¼ a 0

23 ðA:83Þ
3. Multiply new row 1 by �a31 and add to row 3. Thus, row 3 becomes:

0 a 0
32 a 0

33b
0
3

a 0
32 ¼ a32 � a32a

0
12

a 0
33 ¼ a33 � a31a

0
13

ðA:84Þ

Multiply row 2 by �a32 and add to row 3. This row now becomes

0 0 a 00
33 b 00

3 ðA:85Þ
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Divide new row 3 by a 00
33. This gives

0 0 1 b 0 00
3

b 0 00
3 ¼ b 00

3 =a
00
33

ðA:86Þ

From these relations:

l33 ¼ a 00
33; l31 ¼ a31; l32 ¼ a 0

32; u33 ¼ 1 ðA:87Þ
Thus, all the elements of LU have been calculated and the process of forward
substitution has been implemented on vector �bb.

A.11 FORWARD–BACKWARD SUBSTITUTION METHOD

The set of sparse linear equations:

�AA �xx ¼ �bb ðA:88Þ
can be written as

�LL �UU �xx ¼ �bb ðA:89Þ
or

�LL �yy ¼ �bb ðA:90Þ
where

�yy ¼ �UU �xx ðA:91Þ
�LL �yy ¼ �bb is solved for �yy by forward substitution. Thus, �yy is known. Then �UU �xx ¼ �yy is
solved by backward substitution.

Solve �LL �yy ¼ �bb by forward substitution:

l11 0 0 0
l21 l22 0 0
l31 l32 l33 0
l41 l42 l43 l44

��������

��������
y1
y2
y3
y4

��������

�������� ¼
b1
b2
b3
b4

��������

�������� ðA:92Þ

Thus,

y1 ¼ b1=l11

y2 ¼ ðb2 � l21y1Þ=l22
y3 ¼ ðb3 � l31y1 � l32y2Þ=l33
y4 ¼ ðb4 � l41y1 � l42y2 � l43y3Þ=l44

ðA:93Þ

Now solve �UU �xx ¼ �yy by backward substitution:

1 u12 u13 u14
0 1 u23 u24
0 0 1 u34
0 0 0 1

��������

��������
x1
x2
x3
x4

��������

�������� ¼
y1
y2
y3
y4

��������

�������� ðA:94Þ
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Thus,

x4 ¼ y4

x3 ¼ y3 � u34x4

x2 ¼ y2 � u23x3 � u24x4

x1 ¼ y1 � u12x2 � u13x3 � u14x4

ðA:95Þ

The forward–backward solution is generalized by the following equation:

�AA ¼ �LL �UU ¼ ð �LLd þ �LLlÞð �II þ �UUuÞ ðA:96Þ
where �LLd is the diagonal matrix, �LLl is the lower triangular matrix, �II is the identity
matrix, and �UUu is the upper triangular matrix.

Forward substitution becomes

�LL �yy ¼ �bb

ð �LLd þ �LLlÞ �yy ¼ �bb

�LLd �yy ¼ �bb� �LLl �yy

�yy ¼ �LL�1
d ð �bb� �LLl �yyÞ

ðA:97Þ

i.e.,

y1
y2
y3
y4

��������

�������� ¼
1=l11 0 0 0
0 1=l22 0 0
0 0 1=l33 0
0 0 0 1=l44

��������

��������x
b1
b2
b3
b4

��������

���������
0 0 0 0
l21 0 0 0
l31 l32 0 0
l41 l42 l43 l44

��������

��������
y1
y2
y3
y4

��������

��������

2
664

3
775

ðA:98Þ
Backward substitution becomes

ð �II þ �UUuÞ �xx ¼ �yy

�xx ¼ �yy� �UUu �xx
ðA:99Þ

i.e.,

x1
x2
x3
x4

��������

�������� ¼
y1
y2
y3
y4

��������

���������
0 u12 u13 u14
0 0 u23 u24
0 0 0 u34
0 0 0 0

��������

��������
x1
x2
x3
x4

��������

�������� ðA:100Þ

A.11.1 Bifactorization

A matrix can also be split into LU form by sequential operation on the columns and
rows. The general equations of the bifactorization method are

lip ¼ a1p for � p

upj ¼
apj

app
for j > p

aij ¼ a1 j � lipupj for i > p; j > p

ðA:101Þ
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Here, the letter p means the path or the pass. This will be illustrated with an
example.

Example A.11

Consider the matrix:

�AA ¼
1 2 1 0

0 3 3 1

2 0 2 0

1 0 0 2

��������

��������
It is required to convert it into LU form. This is the same matrix of Example A.10.

Add an identity matrix, which will ultimately be converted into a U matrix and
the �AA matrix will be converted into an L matrix:

1 2 1 0

0 3 3 1

2 0 2 0

1 0 0 2

��������

��������
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

��������

��������
First step, p=1:

The shaded columns and rows are converted into L and U matrix column and row
and the elements of �AA matrix are modified using Eq. (A.101), i.e.,

a32 ¼ a32 � l31u12

¼ 0� ð2Þð2Þ ¼ �4

a33 ¼ a33 � l31u13

¼ 2� ð2Þð1Þ ¼ 0

Step 2, pivot column 2, p=2:

732 Appendix A

1 � � � 1 2 1 0

0 3 3 0 0 1 0 0

2 �4 0 0 0 0 1 0

1 �2 �1 2 0 0 1 0

1 0 0 0 1 2 1 0

0 3 0 0 0 1 1 0.33

2 �4 4 1.32 0 0 1

1 �2 1 2.66 0 0 0 1
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Third step, pivot column 3, p=3:

This is the same result as derived before in Example A.10.

A.12 LDU (PRODUCT FORM, CASCADE, OR CHOLESKI FORM)

The individual terms of L, D, and U can be found by direct multiplication. Again,
consider a 4� 4 matrix:

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

��������

�������� ¼
1 0 0 0

l21 1 0 0

l31 l32 1 0

l41 l42 l43 1

��������

��������
d11 0 0 0

0 d22 0 0

0 0 d33 0

0 0 0 d44

��������

��������
1 u12 u13 u14
0 1 u23 u24
0 0 1 u34
0 0 0 1

��������

��������
ðA:102Þ

The following relations exist:

d11 ¼ a11

d22 ¼ a22 � l21d11u12

d33 ¼ a33 � l31d11u13 � l32d22u23

d44 ¼ a44 � l41d11u14 � l42d22u24 � l43d33u34

u12 ¼ a12=d11

u13 ¼ a13=d11

u14 ¼ a14=d11

u23 ¼ ða23 � l21d11u13Þ=d22
u24 ¼ ða24 � l21d11u14Þ=d22
u34 ¼ ða34 � l31d11u14 � l32d22u24Þ=d33
l21 ¼ a21=d11

l31 ¼ a31=d11

l32 ¼ ða32 � l31d11u12Þ=d22
l41 ¼ a41=d11

l42 ¼ ða42 � l41d11u12Þ=d22
l43 ¼ ða43 � l41d11u13 � l42d22u23Þ=d33

ðA:103Þ
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0 3 0 0 0 1 1 0.33

2 �4 4 0 0 0 1 0.33

1 �2 1 2.33 0 0 0 1
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In general:

dii ¼ a11 �
Xi¼1

j¼1

lijdjjuji for i ¼ 1; 2; . . . ; n

uik ¼ aik �
Xi¼1

j¼1

lif djjujk

" #
=dii for k ¼ i þ 1 . . . ; n i ¼ 1; 2; . . . ; n

lki ¼ aki �
Xi¼1

j¼1

lkjdjjuji

" #
=dii for k ¼ i þ 1; . . . ; n i ¼ 1; 2; . . . ; n

ðA:104Þ

Another scheme is to consider A as a product of sequential lower and upper matrices
as follows:

A ¼ ðL1L2; . . . ;LnÞðUn; . . . ;U2U1Þ ðA:105Þ

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

��������

�������� ¼
l11 0 0 0
l21 1 0 0
l31 0 1 0
l41 0 0 1

��������

��������
1 0 0 0
0 a222 a232 a242
0 a322 a332 a342
0 a422 a432 a442

��������

��������
1 u12 u13 u14
0 1 0 0
0 0 1 0
0 0 0 1

��������

��������
ðA:106Þ

Here the second step elements are denoted by subscript 2 to the subscript.

l21 ¼ a21 l31 ¼ a31 l41 ¼ a41

u12 ¼ a12=l11 u13 ¼ a13=l11 u14 ¼ a14=l11

aij2 ¼ a1j � l1iu1j i; j ¼ 2; 3; 4

ðA:107Þ

All elements correspond to step 1, unless indicated by subscript 2.
In general for the kth step:

dk
kk ¼ akkk k ¼ 1; 2; . . . ; n� 1

lkik ¼ akik=a
k
kk

ukj ¼ akkj=a
k
kk

akþ1
ij ¼ ðakij � akika

k
kjÞ=akkk

k ¼ 1; 2; . . . ; n� 1i; j ¼ kþ 1; . . . ; n

ðA:108Þ

Example A.12

Convert the matrix of Example A.10 into LDU form:

1 2 1 0
0 3 3 1
2 0 2 0
1 0 0 2

��������

�������� ¼ l1 � l2 � l3 �D� u3 � u2 � u1

The lower matrices are

l1 � l2 � l3 ¼
1 0 0 0
0 1 0 0
2 0 1 0
1 0 0 1

��������

��������
1 0 0 0
0 1 0 0
0 �4=3 1 0
1 �2=3 0 1

��������

��������
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1=4 0

��������

��������
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The upper matrices are

u3 � u2 � u1 ¼
1 0 0 0
0 1 0 1=3
0 0 1 1=3
0 0 0 1

��������

��������
1 0 0 0
0 1 1 0
0 0 1 0
0 0 0 1

��������

��������
1 2 1 0
0 1 0 0
0 0 1 0
0 0 0 1

��������

��������
The matrix D is

D ¼
1 0 0 0
0 3 0 0
0 0 4 0
0 0 0 7=3

��������

��������
Thus, the LDU form of the original matrix is

1 0 0 0
0 1 0 0
2 �4=3 1 0
1 �2=3 1=4 1

��������

��������
1 0 0 0
0 3 0 0
0 0 4 0
0 0 0 7=3

��������

��������
1 2 1 0
0 1 1 1=3
0 0 1 1=3
0 0 0 1

��������

��������
If the coefficient matrix is symmetrical (for a linear bilateral network), then

½L� ¼ ½U�t ðA:109Þ
Because

lipðnewÞ ¼ aip=app

upi ¼ api=appðaip ¼ apiÞ
ðA:110Þ

The LU and LDU forms are extensively used in power systems.
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Appendix B

Calculation of Line and Cable
Constants

This appendix presents an overview of calculations of line and cable constants with
an emphasis on three-phase models and transformation matrices. Practically, the
transmission or cable system parameters will be calculated using computer-based
subroutine programs. For simple systems the data are available in tabulated form for
various conductor types, sizes, and construction [1-4]. Nevertheless, the basis of these
calculations and required transformations are of interest to a power system engineer.

B.1 AC RESISTANCE

As we have seen, the conductor ac resistance is dependent upon frequency and
proximity effects, temperature, spiraling and bundle conductor effects, which
increase the length of wound conductor in spiral shape with a certain pitch. The
resistance increases linearly with temperature and is given by the following equation:

R2 ¼ R1

T þ t2
T þ t!

� �
ðB:1Þ

where R2 is the resistance at temperature t2, R1 is the resistance at temperature t1, T
is the temperature coefficient, which depends on the conductor material. It is 234.5
for annealed copper, 241.5 for hard drawn copper, and 228.1 for aluminum. The
resistance is read from manufacturers’ data, databases in computer programs, or
generalized tables.

B.2 INDUCTANCE

The internal inductance of a solid, smooth, round metallic cylinder of infinite length is
due to its internal magnetic field when carrying an alternating current and is given by

Lint ¼
�0

8�
H=m ðHenry per meterÞ ðB:2Þ
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where �0 is the permeability ¼ 4�� 10�7(H/m). Its external inductance is due to the
flux outside the conductor and is given by

Lext ¼
�0

2�
ln

D

r

� �
H=m ðB:3Þ

where D is any point at a distance D from the surface of the conductor, and r is the
conductor radius. In most inductance tables, D is equal to 1 ft and adjustment
factors are tabulated for higher conductor spacings. The total reactance is

L ¼ �0

2�

1

4
þ ln

D

r

	 

¼ �0

2�
ln

D

e�1=4r

	 

¼ �0

2�
ln

D

GMR

	 

H=m ðB:4Þ

where GMR is called the geometric mean radius and is 0.7788r. It can be defined as
the radius of a tubular conductor with an infinitesimally thin wall that has the same
external flux out to a radius of 1 ft as the external and internal flux of a solid
conductor to the same distance.

B.2.1 Inductance of a Three-Phase Line

We can write the inductance matrix of a three-phase line in terms of flux linkages �a,
�b, and �c:

�a
�b
�c

������
������ ¼

Laa Lab Lac

Lba Lbb Lbc

Lca Lcb Lcc

������
������
Ia
Ib
Ic

������
������ ðB:5Þ

The flux linkage �a .�b, and �c are given by

�a ¼
�0

2�
Ia ln

1

GMRa

� �
þ Ib ln

1

Dab

� �
þ Ic ln

1

Dac

� �	 


�b ¼
�0

2�
Ia ln

1

Dba

� �
þ Ib ln

1

GMRb

� �
þ Ic ln

1

Dbc

� �	 


�c ¼
�0

2�
Ia ln

1

Dca

� �
þ Ib ln

1

Dcb

� �
þ Ic ln

1

GMRc

� �	 
 ðB:6Þ

where Dab, Dac, . . ., are the distances between conductor of a phase with respect to
conductors of b and c phases; Laa, Lbb, and Lcc are the self-inductances of the
conductors, and Lab, Lac, . . ., are the mutual inductances. If we assume a symme-
trical line, i.e., the GMR of all three conductors is equal and also the spacing
between the conductors is equal. The equivalent inductance per phase is

L ¼ �0

2�
ln

D

GMR

� �
H=m ðB:7Þ

The phase-to-neutral inductance of a three-phase symmetrical line is the same as the
inductance per conductor of a two-phase line.

B.2.2 Transposed Line

A transposed line is shown in Fig. B-1. Each phase conductor occupies the position
of two other phase conductors for one-third of the length. The purpose is to equalize
the phase inductances and reduce unbalance. The inductance derived for a symme-
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trical line is still valid and the distance D in Eq. (B.7) is substituted by GMD
(geometric mean distance). It is given by

GMD ¼ ðDabDbcDcaÞ1=3 ðB:8Þ
A detailed treatment of transposed lines with rotation matrices is given in Ref. 5.

B.2.3 Composite Conductors

A transmission line with composite conductors is shown in Fig. B-2. Consider that
group X is composed of n conductors in parallel and each conductor carries 1/n of
the line current. The group Y is composed of m parallel conductors, each of which
carries �1=m of the return current. Then Lx, the inductance of conductor group X is

Lx ¼ 2� 10�7 ln
nm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Daa 0 ;Dab 0 ;Dac 0 ; . . . ;DamÞ; . . . ; ðDna 0 ;Dnb 0 ;Dnc 0 ; . . . ;DnmÞ

p
n2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðDaaDabDac; . . . ;DanÞ; . . . ; ðDnaDnbDnc; . . . ;DnnÞ
p

ðB:9Þ
Henry per meter.
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Figure B-1 A transposed transmission line.

Figure B-2 Inductance of composite conductors.
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We write Eq. (B.9) as

Lx ¼ 2� 10�7 ln
Dm

Dsx

� �
H=m ðB:10Þ

Similarly,

Ly ¼ 2� 10�7 ln
Dm

Dsy

� �
H=m ðB:11Þ

The total inductance is

L ¼ ðLx þ LyÞH=m ðB:12Þ

B.3 IMPEDANCE MATRIX

In Chap. 1 we decoupled a symmetrical three-phase line 3� 3 matrix having equal
self-impedances and mutual impedances [see Eq. (1.37)].We showed that the off-
diagonal elements of the sequence impedance matrix are zero. In high-voltage trans-
mission lines which are transposed, this is generally true and the mutual couplings
between phases are almost equal. However, the same cannot be said of distribution
lines and these may have unequal off-diagonal terms. In many cases the off-diagonal
terms are smaller than the diagonal terms and the errors introduced in ignoring these
will be small. Sometimes an equivalence can be drawn by the equations:

Zs ¼
Zaa þ Zbb þ Zcc

3

Zm ¼ Zab þ Zbc þ Zca

3

ðB:13Þ

i.e., an average of the self- and mutual impedances can be taken. The sequence
impedance matrix then has only diagonal terms. (See Example B.1.)

B.4 THREE-PHASE LINE WITH GROUND CONDUCTORS

A three-phase transmission line has couplings between phase-to-phase conductors
and also between phase-to-ground conductors. Consider a three-phase line with two
ground conductors, as shown in Fig. B-3. The voltage Va can be written as

Va ¼ RaIa þ j!LaIa þ j!LabIb þ j!LacIc þ j!LawIw þ j!LavIv

� j!LanIn þ V 0
a þ RnIn þ j!LnIn � j!LanIa � j!LbnIb

� j!LcnIc � j!Lwniw � j!lvnIv

ðB:14Þ

where:

Ra;Rb; . . . ;Rn are resistances of phases a; b; . . . ; n
La;Lb; . . . ;Ln are the self inductances
Lab;Lac; . . . ;Lan are the mutual inductances
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This can be written as

Va ¼ ðRa þ RnÞIa þ RnIb þ RnIc þ j!ðLa þ Ln � 2LanÞIa
þ j!ðLab þ Ln � Lan � LbnÞIb þ j!ðLac þ Ln � Lan � LcnÞIc þ RnIw

þ j!ðLaw þ Ln � Lan � LwnÞIw þ RnIv þ j!ðLav þ Ln � Lan � LvnÞIv þ V 0
a

¼ Zaa�gIa þ Zab�gIb þ Zac�gIc þ Zaw�gIw þ Zav�gIv þ V 0
a

ðB:15Þ
where Zaa-g and Zbb-g are the self-impedances of a conductor with ground return,
and Zab-g and Zac-g are the mutual impedances between two conductors with com-
mon earth return. Similar equations apply to the voltages of other phases and
ground wires. The following matrix then holds for the voltage differentials between
terminals marked w; �; a; b; and c, and w 0; � 0; a 0; b 0; and c 0:

�Va

�Vb

�Vc

�Vw

�Vw

����������

����������
¼

Zaa�g Zab�g Zac�g Zaw�g Za��g

Zba�g Zbb�g Zbc�g Zbw�g Zb��g

Zca�g Zcb�g Zcc�g Zcw�g Zc��g

Zwa�g Zwb�g Zwc�g Zww�g Zw��g

Z�a�g Z�b�g Z�c�g Z�w�g Z���g

����������

����������

Ia
Ib
Ic
Iw
Iv

����������

����������
ðB:16Þ

In the partitioned form this matrix can be written as

� �VVabc

� �VVw�

����
���� ¼ �ZZA

�ZZB
�ZZC

�ZZD

����
���� �IIabc

�IIw�

����
���� ðB:17Þ

Considering that the ground wire voltages are zero:

� �VVabc ¼ �ZZA
�IIabc þ �ZZB

�IIw�

0 ¼ �ZZc
�IIabc þ �ZZD

�IIw�
ðB:18Þ
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Figure B-3 Transmission line section with two ground conductors.
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Thus:

�IIw� ¼ � �ZZ�1
D

�ZZC
�IIabc ðB:19Þ

� �VVabc ¼ ð �ZZA � �ZZB
�ZZ�1
D

�ZZCÞ �IIabc ðB:20Þ
This can be written as:

� �VVabc ¼ �ZZabc
�IIabc ðB:21Þ

�ZZabc ¼ �ZZA � �ZZB
�ZZ�1
D

�ZZC ¼
Zaa 0�g Zab 0�g Zac 0�g

Zba 0�g Zbb 0�g Zbc 0�g

Zca 0�g Zcb 0�g Zcc 0�g

������
������ ðB:22Þ

The five-conductor circuit is reduced to an equivalent three-conductor circuit. The
technique is applicable to circuits with any number of ground wires provided that the
voltages are zero in the lower portion of the voltage vector.

B.5 BUNDLE CONDUCTORS

Consider bundle conductors, consisting of two conductors per phase (Fig. B-4). The
original circuit of conductors a, b, c and a 0, b 0, c 0 can be transformed into an
equivalent conductor system of a 00, b 00, and c 00.

Each conductor in the bundle carries a different current and has a different
self- and mutual impedance because of its specific location. Let the currents in the
conductors be Ia, Ib, and Ic, and I 0

a , I
0
b , and I 0

c , respectively. The following primitive
matrix equation can be written:

Va

Vb

Vc

V 0
a

V 0
b

V 0
c

������������

������������

Zaa Zab Zac Zaa 0 Zab 0 Zac 0

Zba Zbb Zbc Zba 0 Zbb 0 Zbc 0

Zca Zcb Zcc Zca 0 Zcb 0 Zcc 0

Za 0a Za 0b Za 0c Za 0a 0 Za 0b 0 Za 0c 0

Zb 0a Zb 0b Zb 0c Zb 0a 0 Zb 0b 0 Zb 0c 0

Zc 0a Zc 0b Zc 0c Zc 0a 0 Zc 0b 0 Zc 0c 0

������������

������������

Ia
Ib
Ic

Ia 0

Ib 0

Ic 0

������������

������������
ðB:23Þ

This can be partitioned so that

�VVabc
�VVa 0b 0c 0

����
���� ¼ �ZZ1

�ZZ2
�ZZ2

�ZZ4

����
���� Iabc

�IIa 0b 0c 0

����
���� ðB:24Þ

for symmetrical arrangement of bundle conductors �ZZ1 ¼ �ZZ4.
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Figure B-4 Transformation of bundle conductors to equivalent single conductors.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



Modify so that the lower portion of the vector goes to zero. Assume that

Va ¼ V 0
a ¼ V 00

a

Vb ¼ V 0
b ¼ V 00

b

Vc ¼ V 0
c ¼ V 00

c

ðB:25Þ

The upper part of the matrix can then be subtracted from the lower part:

Va

Vb

Vc

0
0
0

������������

������������
¼

Zaa Zab Zac Zaa 0 Zab 0 Zac 0

Zba Zbb Zbc Zba 0 Zbb 0 Zbc 0

Zca Zcb Zcc Zca 0 Zcb 0 Zcc 0

Za 0a � Zaa Za 0b � Zab Za 0c � Zac Za 0a 0 � Zaa 0 Za 0b 0 � Zab 0 Za 0c 0 � Zac 0

Zb 0a � Zba Zb 0b � Zbb Zb 0c � Zbc
Zb 0a 0 � Zba 0 Zb 0b 0 � Zbb 0 Zb 0c 0 � Zbc 0

Zc 0a � Zca Zc 0b � Zcb Zc 0c � Zcc Zc 0a 0 � Zca 0 Zc 0b 0 � Zcb 0 Zc 0c 0 � Zcc 0

������������

������������

Ia
Ib
Ic

Ia 0

Ib 0

Ic 0

������������

������������
ðB:26Þ

We can write it in the partitioned form as

�VVabc

0

����
���� ¼ �ZZ1

�ZZ2

� �ZZt
2 � �ZZ1 Z4 � Z2

����
���� �IIabc

�IIa 0b 0c 0

����
���� ðB:27Þ

I 00
a ¼ Ia þ I 0

a

I 00
b ¼ Ib þ I 0

b

I 00
c ¼ Ic þ I 0

c

ðB:28Þ

The matrix is modified as shown below:

Va

Vb

Vc

0
0
0

������������

������������
¼

Zaa Zab Zac Zaa 0 � Zaa Zab 0 � Zab Zac 0 � Zac

Zba Zbb Zbc Zba 0 þ Zba Zbb 0 þ Zbb Zbc 0 � Zbc

Zca Zcb Zcc Zca 0 � Zca Zcb 0 � Zcb Zcc 0 � Zcc

Za 0a � Zaa Za 0b � Zab Za 0c � Zac Za 0a 0 � Zaa 0 � Za 0a þ Zaa Za 0b 0 � Zab 0 � Za 0b þ Zab Za 0c 0 � Zac 0 � Za 0c þ Zac

Zb 0a � Zba Zb 0b � Zbb Zb 0c � Zbc Zb 0a 0 � Zba 0 � Zb 0a þ Zba Zb 0b 0 � Zbb 0 � Zb 0b þ Zbb Zb 0c 0 � Zbc 0 � Zb 0c þ Zbc

Zc 0a � Zca Zc 0b � Zcb Zc 0c � Zcc Zc 0a 0 � Zca 0 � Zc 0a þ Zca Zc 0b 0 � Zcb 0 � Zc 0b þ Zcb Zc 0c 0 � Zcc 0 � Zc 0c þ Zcc

������������

������������

Ia þ I !a
Ib þ I !b
Ic þ I !c

Ia 0

Ib 0

Ic 0

������������

������������
ðB:29Þ

or in partitioned form:

�VVabc

0

����
���� ¼ Z1 Z2 � Z1

Zt
2 � Z1 ðZ4 � Z2Þ � ðZt

2 � Z1Þ
����

���� I 00
abc

I 0
abc

����
���� ðB:30Þ

This can now be reduced to following 3� 3 matrix as before:

V 00
a

V 00
b

V 00
c

������
������ ¼

Z 00
aa Z 00

ab Z 00
ac

Z 00
ba Z 00

bb Z 00
bc

Z 00
ca Z 00

cb Z 00
cc

������
������
I 00
a

I 00
b

Ic

������
������ ðB:31Þ

B.6 CARSON’S FORMULA

The theoretical value of Zabc-g can be calculated by Carson’s formula (c. 1926). This
is of importance even today in calculations of line constants. For an n-conductor
configuration, the earth is assumed as an infinite uniform solid with a constant
resistivity. Figure B-5 shows image conductors in the ground at a distance equal
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to the height of the conductors above ground and exactly in the same formation,
with the same spacings between the conductors. A flat conductor formation is shown
in Fig. B-5.

Zii ¼ Ri þ 4!PiiGþ j Xi þ 2!G ln
Sii

ri
þ 4!QiiG

	 

�=mile ðB:32Þ

Zij ¼ 4!PiiGþ j 2!G ln
Sij

Dij

þ 4!QijG

	 

�=mile ðB:33Þ

where:

Zii = the self-impedance of conductor i with earth return (ohms/mile)
Zij = mutual impedance between conductors i and j (ohms/mile)
Ri = resistance of conductor in ohms/mile
Sii = conductor to image distance of the ith conductor to its own image
Dij = distance between conductors i and j
ri = radius of conductor (in ft)
! = angular frequency
G = 0:1609347� 10�7 ohm-cm
GMRi = geometric mean radius of conductor i
� = soil resistivity
�ij = angle as shown in Fig. B-5
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Figure B-5 Conductors and their images; Carson’s formula.
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Expressions for P and Q are

P ¼ �

8
� 1

3
ffiffiffi
2

p k cos � þ k2

16
cos 2� 0:6728þ ln

2

k

� �
þ k2

16
� sin � þ k3 cos 3�

45
ffiffiffi
2

p � �k4 cos 4�

1536

ðB:34Þ

Q ¼ �0:0386þ 1

2
ln

2

k
þ 1

3
ffiffiffi
2

p cos � � k2 cos 2�

64
þ K3 cos 3�

45
ffiffiffi
2

p

� k4 sin 4�

384
� k4 cos 4�

384
ln

2

k
þ 1:0895

� �
ðB:35Þ

where

k ¼ 8:565x104Sij

ffiffiffiffiffiffiffiffi
f =�

p
ðB:36Þ

Sij is in feet and � is soil resistivity in ohms-meter, and f is the system frequency. This
shows dependence on frequency as well as on soil resistivity.

B.6.1 Approximations to Carson’s Equations

These approximations involve P and Q and the expressions are given by:

Pij ¼
�

8
ðB:37Þ

Qij ¼ �0:03860 þ 1

2
ln

2

kij
ðB:38Þ

Using these assumptions, f ¼ 60 Hz and soil resistivity ¼ 100�-m, the equations
reduce to:

Zii ¼ Ri þ 0:0953þ j0:12134 ln
1

GMRi

þ 7:93402

� �
�=mile ðB:39Þ

Zij ¼ 0:0953þ j0:12134 ln
1

Dij

þ 7:93402

� �
�=mile ðB:40Þ

Equations (B.39) and (B.40) are of practical significane for calculations of line impe-
dances.

Example B.1

Consider an unsymmetrical overhead line configuration, as shown in Fig. B-6. The
phase conductors consist of 556.5 KCMIL (556,500 circular mils) of ACSR con-
ductor consisting of 26 strands of aluminum, two layers and seven strands of steel.
From the properties of ACSR conductor tables, the conductor has a resistance of
0.1807 ohms at 60 Hz and its GMR is 0.0313 ft at 60 Hz; conductor diameter
= 0.927 in. The neutral consists of 336.4 KCMIL, ACSR conductor, resistance
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0.259 ohms per mile at 60 Hz and 508C and GMR 0.0278 ft, and conductor diameter
0.806 in. It is required to form a primitive Z matrix, convert it into a 3� 3 Zabc

matrix, and then to sequence impedance matrix Z012.
Using Eq. (B.39) and (B.40):

Zaa ¼ Zbb ¼ Zcc ¼ 0:1859þ j1:3831

Znn ¼ 0:3543þ j1:3974

Zab ¼ Zba ¼ 0:0953þ j0:8515

Zbc ¼ Zcb ¼ 0:0953þ j0:7674

Zca ¼ Zac ¼ 0:0953þ j0:7182

Zan ¼ Zna ¼ 0:0953þ j0:7539

Zbn ¼ Znb ¼ 0:0953þ j0:7674

Zcn ¼ Znc ¼ 0:0953þ j0:7237

Therefore, the primitive impedance matrix is

�ZZprim ¼
0:1859þ j1:3831 0:0953þ j0:08515 0:0953þ j0:7182 0:0953þ j0:7539
0:0953þ j0:8515 0:1859þ j1:3831 0:0953þ j0:7624 0:0953þ j0:7674
0:0953þ j0:7182 0:0953þ j0:7624 0:1859þ j1:3831 0:0953þ j0:7237
0:0953þ j0:7539 0:0953þ j0:7674 0:0953þ j0:7237 0:3543þ j1:3974

��������

��������
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Figure B-6 Distribution line configuration for calculation of line parameters (Examples B.1
and B.3).
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Eliminate the last row and column using Eq. (B.22):

�ZZabc ¼
0:1846þ j0:9825 0:0949þ j0:4439 0:0921þ j0:3334
0:0949þ j0:4439 0:1864þ j0:9683 0:0929þ j0:3709
0:0921þ j0:3334 0:0929þ j0:3709 0:1809þ j1:0135

������
�������=mile

Convert to Z012 by using the transformation equation (1.29):

�ZZ012 ¼
0:3705þ j1:7536 0:0194þ j0:0007 �0:0183þ j0:0055

�0:0183þ j0:0055 0:0907þ j0:6054 �0:0769� j0:0146
0:0194þ j0:0007 0:0767þ j0:0147 0:0907þ j0:6054

������
������

This shows the mutual coupling between sequence impedances. We could average
out the self- and mutual impedances according to Eq. (B.13):

Zs ¼
Zaa þ Zbb þ Zcc

3
¼ 0:184þ j0:9973

Zm ¼ Zab þ Zbc þ Zca

3
¼ 0:0933þ 0:38271

The matrix Zabc then becomes:

�ZZabc ¼
0:184þ j0:9973 0:933þ j0:3827 0:933þ j0:3827
0:933þ j0:3827 0:184þ j0:9973 0:933þ j0:3827
0:933þ j0:3827 0:933þ j0:3827 0:184þ j0:9973

������
�������=mile

and this gives

�ZZ012 ¼
0:3706þ j1:7627 0 0

0 0:0907þ j0:6146 0
0 0 0:0907þ j0:6146

������
�������=mile

Example B.2

Figure B-7 shows a high-voltage line with two 636,000 mils ACSR bundle conduc-
tors per phase. Conductor GMR = 0.0329 ft, resistance = 0.1688 ohms per mile,
diameter = 0.977 in., and spacings are as shown in Fig. B-7. Calculate the primitive
impedance matrix and reduce it to a 3� 3 matrix, then convert it into a sequence
component matrix.
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Figure B-7 Configuration of bundle conductors (Example B.2).
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From Eqs. (B.39) and (B.40) and the specified spacings in Fig. B7, matrix Z1 is

�ZZ1 ¼
0:164þ j1:3770 0:0953þ j0:5500 0:0953þ j0:4659
0:953þ j0:5500 0:164þ j1:3770 0:0953þ j0:5500
0:0953þ j0:4659 0:0953þ j0:5500 0:164þ j1:3770

������
������

This is also equal to Z4, as the bundle conductors are identical and symmetrically
spaced. Matrix Z2 of Eq. (B.27) is

�ZZ2 ¼
0:0953þ j0:8786 0:0953þ j0:5348 0:0953þ j0:4581
0:0953þ j0:5674 0:0953þ j0:8786 0:0953þ j0:5348
0:0953þ j0:4743 0:0953 þ j0:08786 0:0953þ j0:8786

������
������

The primitive matrix is 6� 6 given by Eq. (B.23) formed by partitioned matrices
according to Eq. (B.24).Thus, from �ZZ1 and �ZZ2 the primitive matrix can be written.
From these two matrices, we will calculate matrix equation (B.30):

�ZZ1 � �ZZ2 ¼
0:069þ j0:498 j0:0150 j0:0079

�j0:0171 0:069þ j0:498 j0:0150
�j0:00841 �j0:0170 0:069þ j0:498

������
������

and

�ZZk ¼ ð �ZZ1 � �ZZ2Þ � ð �ZZt
2 � �ZZ1Þ ¼

0:138þ j0:997 �j0:0022 �j0:0005
�j0:0022 0:138þ j0:997 �j0:0022
�j0:0005 �j0:0022 0:138þ j0:997

������
������

The inverse is

�ZZ�1
k ¼

0:136� j0:984 0:000589� j0:002092 0:0001357� j0:0004797
0:0005891� j0:002092 0:136� j0:981 0:0005891� j0:002092
0:0001357� j0:0004797 0:0005891� j0:002092 0:136� j0:981

������
������

then, the matrix ð �ZZ2 � �ZZ1Þ �ZZ�1
k ð �ZZt

2 � �ZZ1Þ is
0:034þ j0:2500 �0:000018� j0:000419 0:0000363� j0:0003871

�0:000018� j0:000419 0:034þ j0:2500 �0:000018� j0:000419
0:0000363� j0:000387 �0:000018� j0:000419 0:034þ j0:2500

������
������

Note that the off-diagonal elements are relatively small as compared to the
diagonal elements. The required 3� 3 transformed matrix is then Z1 minus the
above matrix:

�ZZtransformed ¼
0:13þ j1:127 0:095þ j0:55 0:095þ j0:466
0:095þ j0:55 0:13þ j1:127 0:095þ j0:55
0:095þ j0:466 0:095þ j0:55 0:13þ j1:127

������
�������=mile

Using Eq. (1.29), the sequence impedance matrix is

�ZZ0:12 ¼
0:32þ j2:171 0:024� j0:014 �0:024� j0:014

�0:024� j0:014 0:035þ j0:605 �0:048þ j0:028
0:024� j0:014 0:048þ j0:028 0:035þ j0:605

������
�������=mile
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B.7 CAPACITANCE OF LINES

The shunt capacitance per unit length of a two-wire, single-phase transmission
line is

C ¼ �"0
lnðD=rÞF=m ðFarads per meterÞ ðB:41Þ

where "0 is the permittivity of free space ¼ 8:854� 10�12F/m, and other symbols are
as defined before. For a three-phase line with equilaterally spaced conductors, the
line-to-neutral capacitance is

C ¼ 2�"0
lnðD=rÞF=m ðB:42Þ

For unequal spacings, D is replaced with GMD from Eq. (B.7). The capaci-
tance is affected by the ground and the effect is simulated by a mirror image of the
conductors exactly at the same depth as the height above the ground. These mirror-
image conductors carry charges which are of opposite polarity to conductors above
the ground (Fig. B-8). From this figure, the capacitance to ground is

Cn ¼
2�"0

lnðGMD=rÞ � lnð3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sab 0 ;Sbc 0 ;Sca 0 ;

p
=3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Saa 0 ;Sbb 0 ;Scc 0 ; Þ

p ðB:43Þ

Using the notations in Eq. (B.10), this can be written as

Cn ¼
2�"0

lnðDn=DsÞ
¼ 10�9

18 lnðDm=DsÞ
F=m ðB:44Þ

B.7.1 Capacitance Matrix

The capacitance matrix of a three-phase line is

�CCabc ¼
Caa �Cab �Cac

�Cba Cbb �Cbc

�Cca �Ccb Ccc

������
������ ðB:45Þ

This is diagrammatically shown in Fig. B-9(a). The capacitance between the phase
conductor a and b is Cab and the capacitance between conductor a and ground is:
Caa � Cab � Cac. If the line is perfectly symmetrical, all the diagonal elements are the
same and all off-diagonal elements of the capacitance matrix are identical:

�CCabc ¼
C �C 0 �C 0

�C 0 C �C 0

�C 0 �C 0 C

������
������ ðB:46Þ

Symmetrical component transformation is used to diagionalize the matrix:

�CC012 ¼ �TT�1
s

�CCabc
�TTs ¼

C � 2C 0 0 0
0 C þ C 0 0
0 0 C þ C 0

������
������ ðB:47Þ

The zero, positive, and negative sequence networks of capacitance of a symmetrical
transmission line are shown in Fig. B-9(b). The eigenvalues are C � 2C 0, C þ C 0, and
C þ C 0. The capacitance C þ C 0 can be written as 3C 0 þ ðC � 2C 0Þ, i.e., it is equiva-
lent to the line capacitance of a three-conductor system plus the line-to-ground
capacitance of a three-conductor system.
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In a capacitor, V ¼ Q=C. The capacitance matrix can be written as

�VVabc ¼ �PPabc
�QQabc ¼ �CC�1

abc
�QQabc ðB:48Þ

where �PP is called the potential coefficient matrix, i.e,

Va

Vb

Vc

������
������ ¼

Paa Pab Pac

Pba Pbb Pbc

Pca Pcb Pcc

������
������
Qa

Qb

Qc

������
������ ðB:49Þ

where

Pii ¼
1

2�"0
ln
Sii

ri
¼ 11:17689 ln

Sii

ri
ðB:50Þ

Pij ¼
1

2�"0
ln

Sij

Dij

¼ 11:17689 ln
Sij

Dij

ðB:51Þ

where:
Sij = conductor-to-image distance below ground (in ft)
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Figure B-8 Calculation of capacitances, conductors, mirror images, spacings, and charges.
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Dij = conductor-to-conductor distance (in ft)
ri = radius of the conductor (in feet)
"0 = permitivity of the medium surrounding the conductor ¼ 1:424� 10�8

F/mile for air.
For sine-wave voltage and charge, the equation can be expressed as

Ia
Ib
Ic

������
������ ¼ j!

Caa �Cab �Cac

�Cba �Cbb �Cbc

�Cca �Ccb Ccc

������
������
Va

Vb

Vc

������
������ ðB:52Þ

750 Appendix B

Figure B-9 (a) Capacitances of a three-phase line; (b) equivalent positive, negative, and zero
sequence networks of capacitances.
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The capacitance of three-phase lines with ground wires and with bundle conductors
can be addressed as in the calculations of inductances. The primitive P matrix can be
partitioned and reduces to a 3� 3 matrix.

Example B.3

Calculate the matrices P and C for Example B.1. The neutral is 30 ft above ground
and the configuration of Fig. B-6 is applicable.

The mirror images of the conductors are drawn in Fig. B-6. This facilitates
calculation of the spacings required in Eqs. (B.50) and (B.51) for the P matrix. Based
on the geometric distances and conductor diameter the primitive P matrix is

�PP ¼

Paa Pab Pac Pan

Pba Pbb Pbc Pbn

Pca Pcb Pcc Pcn

Pna Pnb Pnc Pnn

���������

���������

¼

80:0922 33:5387 21:4230 23:3288

33:5387 80:0922 25:7913 24:5581

21:4230 25:7913 80:0922 20:7547

23:3288 24:5581 20:7547 79:1615

���������

���������
This is reduced to a 3� 3 matrix

P ¼
73:2172 26:3015 15:3066
26:3015 72:4736 19:3526
15:3066 19:3526 74:6507

������
������

Therefore, the required �CC matrix is inverse of �PP, and �YYabc is

�YYabc ¼ j! �PP�1 ¼
j6:0141 �j1:9911 �j0:7170
�j1:9911 j6:2479 �j1:2114
�j0:7170 �j1:2114 j5:5111

������
������� siemens=mile

B.8 CABLE CONSTANTS

The construction of cables varies widely; it is mainly a function of insulation type,
method of laying, and voltage of application. For high-voltage applications above
230 kV, oil-filled paper insulated cables are used, though recent trends see the devel-
opment of solid dielectic cables up to 345 kV. A three-phase solid dielectic cable has
three conductors enclosed within a sheath and because the conductors are much
closer to each other than those in an overhead line and the permittivity of insulating
medium is much higher than that of air, the shunt capacitive reactance is much lower
as compared to an overhead line. Thus, use of a T or � model is required even for
shorter cable lengths.

The inductance per unit length of a single conductor cable is given by

L ¼ �0

2�
ln
r1
r2
H=m ðB:53Þ

where r1 is the radius of the conductor and r2 is the radius of the sheath, i.e., the
cable outside diameter divided by 2.
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When single conductor cables are installed in magnetic conduits the reactance
may increase by a factor of 1.5. Reactance is also dependent on conductor shape, i.e.,
circular or sector, and on the magnetic binders in three-conductor cables.

B.8.1 Concentric Neutral Underground Cable

We will consider a concentric neutral construction as shown in Fig. B-10(a). The
neutral is concentric to the conductor and consists of a number of copper strands
that are wound helically over the insulation. Such cables are used for underground
distribution, directly buried or installed in ducts. Referring to Fig. B-10(a), d is the
diameter of the conductor, d0 is the outside diameter of the cable over the concentric
neutral strands, and ds is the diameter of an individual neutral strand. Three cables in
flat formation are shown in Fig. B-10(b). The GMR of a phase conductor and a
neutral strand are given by the expression:

GMRcn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMRsnR

n�1n
q

ðB:54Þ

where GMRcn is the equivalent GMR of the concentric neutral, GMRs is the GMR
of a single neutral strand, n is the number of concentric neutral strands, and R is the
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Figure B-10 (a): Construction of a concentric neutral cable; (b) configuration for calcula-

tion of cable series reactance (Example B.4).
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radius of a circle passing through the concentric neutral strands (see Fig. B-10(a)) ¼
ðd0 � dsÞ=2 (in ft).

The resistance of the concentric neutral is equal to the resistance of a single
strand divided by the number of strands.

The geometric mean distance between concentric neutral and adjacent phase
conductors is

Dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dn

mn � Rnnp ðB:55Þ
where Dij is the equivalent center-to-center distance of the cable spacing. Note that it
is less than Dmn, the center-to-center spacing of the adjacent conductors, Fig. B-
10(b). Carson’s formula can be applied and the calculations are similar to those in
Example B.1.

Example B.4

A concentric neutral cable system for 13.8 kV has a center-to-center spacing of 8 in.
The cables are 500 KCMIL, with 16 strands of #12 copper wires. The following data
are supplied by the manufacturer:

GMR phase conductor = 0.00195 ft
GMR of neutral strand = 0.0030 ft
Resistance of phase conductor = 0.20 ohm/mile
Resistance of neutral strand = 10.76 ohms/mile. Therefore, the resistance of

the concentric neutral = 10.76/16= 0.6725 ohm/mile.
Diameter of neutral strand = 0.092 in.
Overall diameter of cable = 1.490 in.
Therefore, R ¼ ð1:490� 0:092Þ=24 ¼ 0:0708 ft.

The effective conductor phase-to-phase spacing is approximately 8 in., from Eq.
(B.55).

The primitive matrix is a 6� 6 matrix, similar to Eq. (B.16). In the partitioned
form, Eq. (B.17), the matrices are

�ZZa ¼
0:2953þ j1:7199 0:0953þ j1:0119 0:0953þ j0:9278
0:0953þ j1:0119 0:2953þ j1:7199 0:0953þ j1:0119
0:0953þ j0:9278 0:0953þ j1:0119 0:2953þ j1:7199

������
������

The spacing between the concentric neutral and the phase conductors is approxi-
mately equal to the phase-to-phase spacing of the conductors. Therefore,

�ZZB ¼
0:0953þ j1:284 0:0953þ j1:0119 0:0953þ j0:9278
0:0953þ j1:0119 0:0953þ j1:284 0:0953þ j1:0119
0:0953þ j0:9278 0:0953þ j1:0119 0:0953þ j1:284

������
������

Matrix �ZZc ¼ �ZZB and matrix �ZZD is given by

�ZZD ¼
0:7678þ j1:2870 0:0953þ j1:0119 0:0953þ j0:9278
0:0953þ j1:0119 0:7678þ j1:2870 0:0953þ j1:0119
0:0953þ j0:9278 0:0953þ j1:0119 0:7678þ j1:2870

������
������

This primitive matrix can be reduced to a 3� 3 matrix, as in other examples.
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B.8.2 Capacitance of Cables

In a single conductor cable, the capacitance per unit length is given by

C ¼ 2�"0"

lnðr1=r2Þ
F=m ðB:56Þ

Note that " is the permittivity of the dilectric medium relative to air. The capaci-
tances in a three-conductor cable are shown in Fig. B-11. This assumes a symmetrical
construction, and the capacitances between conductors and from conductors to the
sheath are equal. The circuit of Fig. B-11(a) is successively transformed and Fig.
B-11(d) shows that the net capacitance per phase ¼ C1 þ 3C2.
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Figure B-11 (a) Capacitances in a three-conductor cable; (b) and ( c) equivalent circuits; (d)

final capacitance circuit.
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By change of units, Eq. (B.56) can be expressed as

C ¼ 7:35"

logðr1=r2Þ
pF=ft ðB:57Þ

This gives the capacitance of a single-conductor shielded cable. Table B-1 gives
values of " for various cable insulation types.
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Table B-1 Typical Values for Dielectric Constants of Cable Insulation

Type of insulation Permittivity (")

Polyvinyl chloride (PVC) 3.5–8.0
Ethyelene-propylene insulation (EP) 2.8–3.5
Polyethylene insulation 2.3

Cross-linked polyethylene 2.3–6.0
Impregnated paper 3.3–3.7
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Appendix C

Transformers and Reactors

A power transformer is an important component of the power system. The
transformation of voltages is carried out from generating voltage level to trans-
mission, subtransmission, distribution, and consumer level. The installed capacity
of the transformers in a power system may be seven or eight times the generating
capacity. The special classes of transformers include furnace, converter, regulat-
ing, rectifier, phase shifting, traction, welding, and instrument (current and
voltage) transformers. Large converter transformers are installed for HVDC
transmission.

The transformer models and their characteristics are described in the relevant
sections of the book in various chapters. This appendix provides basic concepts, and
discusses autotransformers, step-voltage regulators, and transformer models not
covered elsewhere in the book.

C.1 MODEL OF A TWO-WINDING TRANSFORMER

We represented a transformer model by its series impedance in the load flow and
short-circuit studies. We also developed models for tap changing, phase shifting, and
reactive power flow control transformers. Concepts of leakage flux, total flux, and
mutual and self-reactances in a circuit of two magnetically coupled coils are
described in Chap. 6 and Eq. (6.32) of a unit transformer are derived. These can
be extended and a matrix model can be written as

�1
�2
�
�n

��������

�������� ¼
r11 r12 � r1n
r21 r22 � r2n
� � � �
rn1 rn2 � rnn

��������

��������
i1
i2
�
in

��������

��������þ
L11 L12 � L1n

L21 L22 � L2n

� � � �
Ln1 Ln2 � Lnn

��������

��������
d

dt

i1
i2
�
in

��������

�������� ðC:1Þ
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A two-winding transformer model can be derived from the circuit diagram
shown in Fig. C.1(a) and the corresponding phasor diagram (vector diagram)
shown in Fig. C-2. The transformer supplies a load current I2 at a terminal voltage
V2 and lagging power factor angle �2. Exciting the primary winding with voltage V1

produces changing flux linkages. Though the coils in a transformer are tightly coupled
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Figure C-1 (a) Equivalent circuit of a two-winding transformer; (b), (c), (d) simplifications

to the equivalent circuit.
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by interleaving the windings and are wound on a magnetic material of high perme-
ability, all the flux produced by primary windings does not link the secondary. The
winding leakage flux gives rise to leakage reactances. In Fig. C-2, �m is the main or
mutual flux, assumed to be constant. The emfs induced in the primary windings is E1

which lags �m by 908. In the secondary winding, the ideal transformer produces an
emf E2 due to mutual flux linkages. There has to be a primary magnetizing current
even at no load, in a time phase with its associated flux, to excite the core. The
pulsation of flux in the core produces losses. Considering that the no-load current
is sinusoidal (which is not true under magnetic saturation, see Chap. 17), it must have
a core loss component due to hysteresis and eddy currents:

I0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2m þ I2e

q
ðC:2Þ

where Im is the magnetizing current, Ie is the core loss component of the current, and
I0 is the no-load current; Im and Ie are in phase quadrature. The generated emf
because of flux �m is given by

E2 ¼ 4:44fn2�m ðC:3Þ
where E2 is in volts when �m is in Wb/m2, n2 is the number of secondary turns, and f
is the frequency. As primary ampère turns must be equal to the secondary ampère
turns, i.e., E1I1 ¼ E2I2, we can write:

E1=E2 ¼ n1=n2 ¼ n and

I1=I2 � n2=n1 ¼ 1=n
ðC:4Þ
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Figure C-2 Vector diagram of a two-winding transformer on load.
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The current relation holds because the no-load current is small. The terminal
relations can now be derived. On the primary side, the current is compounded
to consider the no-load component of the current, and the primary voltage is equal
to �E1 (to neutralize the emf of induction) and I1r1 and I; x1 drop in the primary
windings. On the secondary side the terminal voltage is given by the induced emf
E2 less I2r2 and I2x2 drops in the secondary windings. The equivalent circuit is
therefore as shown in Fig. C-1(a). The transformer is an ideal lossless transformer
of turns ratio n.

In Fig. C-1(a) we can refer the secondary resistance and reactance to the
primary side or vice-versa. The secondary windings of n turns can be replaced
with an equivalent winding referred to the primary, where the copper loss in the
windings and the voltage drop in reactance is the same as in the actual winding.
We can denote the resistance and reactance of the equivalent windings as r 02
and x 0

2:

I21 r
0
2 ¼ I22 r2 r 02 ¼ r2

I22
I21

 !
� r2

n1
n2

� �
¼ n2r2

x 0
2 ¼ x2

I2E1

I2E2

� �
� x2

n1
n2

� �
¼ n2x2

ðC:5Þ

The transformer is an ideal transformer with no losses and having a turns ratio
of unity and no secondary resistance or reactance. By also transferring the load
impedance to the primary side, the unity ratio ideal transformer can be eliminated
and the magnetizing circuit is pulled out to the primary terminals without appreci-
able error, Fig. C-1(b) and (c). In Fig. C-1(d) the magnetizing and core loss circuit is
altogether omitted. The equivalent resistance and reactances are

R1 ¼ r1 þ n2r2

X1 ¼ x1 þ n2x2
ðC:6Þ

Thus, on a simplified basis the transformer positive or negative sequence model is
given by its percentage reactance specified by the manufacturer, on the transformer
natural cooled MVA rating base. This reactance remains fairly constant and is
obtained by a short-circuit test on the transformer. The magnetizing circuit compo-
nents are obtained by an open circuit test.

The expression for hysteresis loss is

Ph ¼ KhfB
s
m ðC:7Þ

where Kh is a constant and s is the Steinmetz exponent, which varies from 1.5 to 2.5,
depending on the core material; generally, it is =1.6.

The eddy current loss is

Pe ¼ Kef
2B2

m ðC:8Þ
where Ke is a constant. Eddy current loss occurs in core laminations, conductors,
tanks, and clamping plates. The core loss is the sum of the eddy current and hyster-
esis loss. In Fig. C-2, the primary power factor angle �1 is > �2.
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C.1.1 Open Circuit Test

Figure C-3 shows no-load curves when an open circuit test at rated frequency and
varying voltage is made on the transformer. The test is conducted with the secondary
winding open circuited and rated voltage applied to the primary winding. For high-
voltage transformers, the secondary winding may be excited and the primary wind-
ing opened. At constant frequency Bm is directly proportional to applied voltage and
the core loss is approximately proportional to B2

m.The magnetizing current rises
steeply at low flux densities, then more slowly as iron reaches its maximum perme-
ability, and thereafter again steeply, as saturation sets in.

From Fig. C-1 the open circuit admittance is

YOC ¼ gm � jbm ðC:9Þ
This neglects the small voltage drop across r1 and x1. Then:

gm ¼ P0

V2
1

ðC:10Þ

where P0 is the measured power and V1 is the applied voltage. Also,

bm ¼ Q0

V2
1

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2
0 � P2

0

q
V2

1

ðC:11Þ

where P0,Q0, and S0 are measured active power, reactive power, and volt–ampères on
open circuit. Note that the exciting voltage E1 is not equal to V1, due to the drop that
no-load current produces through r1 and x1. Corrections can be made for this drop.

C.1.2 Short-Circuit Test

The short-circuit test is conducted at the rated current of the winding, which is
shorted and a reduced voltage is applied to the other winding to circulate a full-
rated current:

Psc ¼ I2scR1 ¼ I2scðr1 þ n2r2Þ ðC:12Þ
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Figure C-3 No-load test on a transformer.
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where Psc is the measured active power on short-circuit and Isc is the short-circuit
current.

Qsc ¼ I2scX1 ¼ I2scðx1 þ n2x2Þ ðC:13Þ

Example C.1

The copper loss of a 2500 kA, 13.8-4.16 kV delta–wye connected three-phase trans-
former is 18 kW on the delta side and 14 kW on the wye side. Find R1, r1, r2, and r 02
for phase values throughout. If the total reactance is 5.5%, find X1, x1 x2, and x 0

2,
assuming that the reactance is divided in the same proportion as resistance.

The copper loss per phase on the 13.8 kV side = 18/3 = 6 kW and the current
per phase = 60.4 A. Therefore, r1 = 1.645 ohms. Similarly for the 4.16 kV side, the
copper loss = 14/3 = 4.67 kW, the current = 346.97 A, and r2 = 0.0388 ohms; r2
referred to the primary side = r 02 = (0.0388)(13.8 � p

3/4.16)2= 1.281 ohms, and
R1 = 2.926 ohms. A 5.5% reactance on a transformer MVA base of 2.5 = 12.54
ohms on the 13.8 kV side, then x1 = (12.54)(1.645)/2.926 = 7.05 ohms and
x 0
2 = 5.49 ohms. Referred to the 4.16 kV side x2 = 0.166 ohms. The transformer

X=R ratio = 4.28, which is rather low.

Example C.2

The transformer of Example C.1 gave the following results on open circuit test: open
circuit on the 4.16 kV side, rated primary voltage and frequency, input = 10 kW
and no-load current = 2.5 A. Find the magnetizing circuit parameters.

The active component of the current Ie = 3.33/13.8 = 0.241 A per phase.
Therefore,

gm ¼ 10� 103

3� ð13:8� 103Þ2 ¼ 0:017� 10�3mhos

The magnetizing current is

Im ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I20 � I2e

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:442 � 0:2412

p
¼ 1:42A

The power factor angle of the no-load current is 9.638, and bm from Eq. (C.11) is
�0:103� 10�3 mhos per phase.

C.2 TRANSFORMER POLARITY AND TERMINAL CONNECTIONS

C.2.1 Additive and Subtractive Polarity

The relative direction of induced voltages, as appearing on the terminals of the
windings is dependent on the order in which these terminals are taken out of the
transformer tank. As the primary and secondary voltages are produced by the same
mutual flux, these must be in the same direction in each turn. The load current in the
secondary flows in a direction so as to neutralize the mmf of the primary. How the
induced voltages will appear as viewed from the terminals depends on the relative
direction of the windings. The polarity refers to the definite order in which the
terminals are taken out of the tank. Polarity may be defined as the voltage vector
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relations of transformer leads as brought out of the tank. Referring to Fig. C-4(a) the
polarity is the relative direction of the induced voltage from H1 to H2 as compared
with that from X1 to X2, both being in the same order. The order is important in the
definition of polarity.

When the induced voltages are in the opposite direction, as in Fig. C-4(b), the
polarity is said to be additive, and when in the same direction, as in Fig. C-4(a), it is
said to be subtractive. According to the ANSI standard all liquid immersed power
and distribution transformers have subtractive polarity. Dry-type transformers also
have subtractive polarity.
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Figure C-4 (a) Polarity and polarity markings, subtractive polarity; (b) additive polarity.
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When the terminals of any winding are brought outside the tank and marked
so that H1 and X1 are adjacent, the polarity is subtractive. The polarity is additive
when H1 is diagonally located with respect to X1, Fig. C-4(b). The lead H1 is
brought out as the right-hand terminal of the high-voltage group as seen when facing
the highest voltage side of the case. The polarity is often marked by dots on the
windings. If H1 is dotted, then X1 is dotted for subtractive polarity. The currents are
in phase. Angular displacement and terminal markings for three-phase transformers
and autotransformers are discussed in Ref. [1].

C.3 PARALLEL OPERATION OF TRANSFORMERS

Transformers may be operated in parallel to supply increased loads, and for relia-
bility, redundancy, and continuity of the secondary loads. Ideally, the following
conditions must be satisfied:

. The phase sequence must be the same.

. The polarity must be the same.

. Voltage ratios must be the same.

. The vector group, i.e., the angle of phase displacement between primary and
secondary voltage vectors, should be the same.

. Impedance voltage drops at full load should be the same, i.e., the percentage
impedances based on the rated MVA rating must be the same.

It is further desirable that the two transformers have the same ratio of percen-
tage resistance to reactance voltage drops, i.e., the same X=R ratios.

With the above conditions met, the load sharing will be proportional to the
transformer MVA ratings. It is basically a parallel circuit with two transformer
impedances in parallel and a common terminal voltage:

I1 ¼
IZ2

Z1 þ Z2

I2 ¼
IZ1

Z1 þ Z2

ðC:14Þ

where I1 and I2 are the current loadings of each transformer and I is the total current.
In terms of the total MVA load, S, the equations are

S1 ¼
SZ2

Z1 þ Z2

S2 ¼
SZ1

Z1 þ Z2

ðC:15Þ

While the polarity and vector group are essential conditions, two transformers may
be paralleled when they have:

. Unequal ratios and equal percentage impedances

. Equal ratios and unequal percentage impedances

. Unequal ratios and unequal percentage impedances

It is not a good practice to operate transformers in parallel when:

. Either of the two parallel transformers is overloaded by a significant amount
above its rating.

Transformers and Reactors 763

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



. When the no-load circulating current exceeds 10% of the full-rated load.

. When the arithmetical sum of the circulating current and load current is
>110%.

The circulating current means the current circulating in the high- and low-voltage
windings, excluding the exciting current.

Example C.3

A 10-MVA, 13.8–4.16 kV transformer has a per unit resistance and reactance of
0.005 and 0.05, respectively. This is paralleled with a 5-MVA transformer of the
same voltage ratio, and having per unit resistance and reactance of 0.006 and 0.04,
respectively. Calculate how these will share a load of 15 MVA at 0.8 power factor
lagging.

Convert Z1 and Z2 on any common MVA base and apply Eqs. (C.14) and
(C.15). The results are:

10 MVA transformer S1 = 9.255<�37:938
5 MVA transformer S2 = 5.749<�35:208

The loads do not sum to 15 MVA because of different power factors. The MW and
Mvar components of the transformer loads should sum to the total load components:

10 MVA transformer: 7.30 MW, 5.689 Mvar, 5 MVA transformer: 4.698 MW
and 3.314 Mvar, total equal to an approximate load MW of 12 MW and 9.0 Mvar.

If the terminal voltages differ, there will be circulating current at no load. With
reference to Fig. C-5 the load sharing is given by the following equations:

I1 ¼
E1 � V

Z1

I2 ¼
E2 � V

Z2

ðC:16Þ

where V is the load voltage. This is given by

V ¼ ðI1 þ I2ÞZL ¼ E1 � V

Z1

þ E2 � V

Z2

� �
ZL ðC:17Þ
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Figure C-5 Equivalent circuit of two parallel running transformers with different voltage
ratios and percentage impedance.
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This can be written as

V
1

Z1

þ 1

Z2

þ 1

ZL

� �
¼ E1

Z1

þ E2

Z2

� �
ðC:18Þ

For a given load, the caculation is iterative in nature, as shown in Example C.4.

Example C.4

In Example C.3, the transformers have the same percentage impedances and the
same X=R ratios; the secondary voltage of the 10-MVA transformer is 4 kV and
that of the 5-MVA transformer is 4.16 kV. Calculate the circulating current at no
load.

We will work on per phase basis. The 10-MVA transformer impedance referred
to 4 kV secondary is 0:008þ j0:08 ohms, and the 5-MVA transformer impedance at
4.16 kV secondary is 0:0208þ j0:1384 ohms; Z1 þ Z2 ¼ 0:0288þ j0:2184. Assume
that the load voltage is 4 kV; then, on a per phase basis, the load is 5 MVA at 0.8
power factor and the load impedance is 0:853þ j0:64 ohms.

E1

Z1

þ E2

Z2

¼ 4000ffiffiffi
3

p ð0:008þ j0:08Þ þ
4160ffiffiffi

3
p ð0:0208 þ j0:1384Þ ¼ 5409� j45:550 kA

Also,

1

Z1

þ 1

Z2

þ 1

ZL

� �
¼ 3:048� j20:003

From Eq. (C.18), the load voltage is 2260� j74:84 volts phase-to-neutral.
From Eq. (C.16), the 10-MVA transformer load current is 980:04� j445:347 and
that of the 5-MVA transformer is 672:17� j874:42. The total load current is
1652:2� j1319:75 and the single-phase load MVA is 3.645 MW and 3.112
Mvar. This is much different from the desired loading of 4 MW and 3 Mvar.
This is due to assumption of the load voltage. The calculation can be repeated
with a lower estimate of load voltage and recalculation of load impedance.

C.4 AUTOTRANSFORMERS

The circuit of an autotransformer is shown in Fig. C-6(a). It has windings common
to primary and secondary, i.e., the input and output circuits are electrically con-
nected. The primary voltage and currents are V1 and I1 and the secondary voltage
and current are V2 and I2. If the number of turns are n1 and n2, as shown, then
neglecting losses:

V1

V2

¼ I2
I1

¼ n1 þ n2
n2

¼ n ðC:19Þ
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Figure C-6 (a) Circuit of an autotransformer, step-down configuration shown; (b) vector

diagram of an autotransformer on load; (c) equivalent circuit of an autotransformer.
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The ampère turns I1n1 oppose ampère turns I2n2 and the common part of the wind-
ing carries a current of I2 � I1. Consequently, a smaller cross-section of the con-
ductor is required. Conductor material in the autotransformer as a percentage of
conductor material in a two-winding transformer for the same kVA output is

Mauto

Mtwowinding

¼ I1ðn1Þ þ ðI2 � I1Þn2
I1ðn1 þ n2Þ þ I2n2

¼ 1� 2

ðnÞ þ ðI2=I1Þ
¼ 1� V2

V1

ðC:20Þ

The savings in material cost are most effective for transformation voltages close to
each other. For a voltage ratio of 2, approximately 50% savings in copper could be
made.

The vector diagram is shown in Fig. C-6(b) and the equivalent circuit in Fig. C-
6(c). Neglecting the magnetizing current:

V1 ¼ �E1 � I1ðr1 cos �þ x1 sin�Þ þ ðI2 � I1Þðr2 cos�þ x2 sin�Þ ðC:21Þ
where � is the load power factor. Note that the impedance drop in the common
winding is added, because the net current is opposed to the direction of I1. The
equation for the secondary voltage is

V2 ¼ E2 � ðI2 � I1Þðr2 cos�þ x2 sin�Þ ðC:22Þ
Combining these two equations, we write:

V1 ¼ nV2 þ I1½ðr1 þ ðn� 1Þ2r2Þ cos�þ ðx1 þ ðn� 1Þ2x2Þ sin�� ðC:23Þ
This means that the equivalent resistance and reactance corresponding to a two-
winding transformer are:

R1 ¼ r1 þ ð1� nÞ2r2
X1 ¼ x1 þ ð1� nÞ2x2

ðC:24Þ

An autotransformer can be tested for impedances exactly as a two-winding trans-
former. The resistance and reactance referred to the secondary side is:

R2 ¼ R1=n
2 ¼ r2 þ r1=n

2

X2 ¼ X1=n
2 ¼ x2 þ x1=n

2
ðC:25Þ

The kVA rating of the circuit with respect to the kVA rating of the windings is ðn�
1Þ=n A 1-MVA, 33–22 kV autotransformer has an equivalent two-winding kVA of
ð1:5� 1Þ=1:5 ¼ 0:333� 1000 ¼ 333 kVA. The series impedance is less than that of a
two-winding transformer. This is beneficial from the load-flow point of view, as the
losses and voltage drop will be reduced, however, a larger contribution to short-
circuit current results.

A three-phase autotransformer connection is shown in Fig. C-7(a). Such banks
are usually Y-connected with a grounded neutral, and a tertiary winding is added for
third-harmonic circulation and neutral stabilization (see Fig. 17-6). This circuit is
akin to that of a three-winding transformer, and the positive and zero sequence
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circuits are as shown. The T-circuit positive sequence parameters are calculated by
shorting one set of terminals and applying positive sequence voltage to the other
terminals and keeping the third set of terminals open circuited.

ZH

ZX

ZY

������
������ ¼ 1=2

1 1 �1
1 �1 1
1 1 �1

������
������
ZHX

ZHY

ZXY

������
������pu ðC:26Þ

This is identical to Eq. (1.54).
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Figure C-7 (a) Circuit of a three-phase autotransformer with tertiary delta; (b), (c) positive
and zero sequence circuits.
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The zero sequence impedance is given by

ZX0

ZH0

Zn0

������
������ ¼

1

2

1 �1 1 ðn� 1Þ=n
1 1 �1 �ðn� 1Þ=n2
�1 1 1 1=n

������
������
ZHX

ZHY

ZXY

6Zn

��������

�������� ðC:27Þ

where n is defined in Eq. (C.19). If the neutral of the autotransformer is ungrounded,
the current in the secondary winding is balanced by circulating currents in the
tertiary and no current flows in the primary winding.

C.4.1 Scott Connection

Two autotransformers with suitable taps can be used in a Scott connection, for
three-phase to two-phase conversion and flow of power in either direction. The
arrangement is shown in Fig. C-8. The line voltage V appears between terminals
C and B and also between terminals A and B and A and C. The voltage between A
and S is V 3

p Þ=2; the second autotransformer, called the teaser transformer, has
ð 3
p

=2Þ turns. The two secondaries having equal turns produce voltages equal in
magnitude and phase quadrature. The neutral of the three-phase system can be
located on the second or teaser transformer. The neutral must have a voltage of
V= 3

p
to terminal A, i.e., the neutral point can be trapped at V ½ð 3

p
=2Þ � 1= 3

p � ¼
0:288n1 turns from S. It can be shown that the three-phase side is balanced for a two-
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Figure C-8 (a) Circuit of a Scott-connected transformer; (b) three-phase primary and two-

phase secondary voltages.
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phase balanced load, i.e., if the load is balanced on one side it will be balanced on the
other.

C.5 STEP-VOLTAGE REGULATORS

Step-voltage regulators [2] are essentially autotransformers. The most common
voltage regulators manufactured today are of single-phase type with reactive
switching, resulting in �10% voltage regulation in 32 steps, 16 ‘‘boosting’’ and
16 ‘‘bucking.’’ The rated voltages are generally up to 19920 kV (line to neutral),
150 kV BIL (basic insulation level), and the current rating ranges from 5 to
2000 A (not at all voltage levels). The general application is in distribution sys-
tems and three single-phase voltage regulators can be applied in wye or delta
connection to a three-phase three-wire or three-phase four-wire system. The wind-
ing common to the primary and secondary is designated as a shunt winding, and
the winding not common to the primary and secondary is designated as a series
winding. The series winding voltage is 10% of the regulator applied voltage. The
polarity of this winding is changed with a reversing switch to accomplish buck or
boost of the voltage. When the voltage regulation is provided on the load side it
is called a type-A connection, Fig. C-9(a). The core excitation varies as the shunt
winding is connected across the source voltage. In a type-B connection, Fig. C-
9(b), the regulation is provided on the load side and the source voltage is applied
by way of series taps. Figure C-9(d) shows the schematic of a tap-changing circuit
with current-limiting reactors and equalizer windings.

C.5.1 Line Drop Compensator

The step regulators are controlled through a line drop compensator; its schematic
circuit is shown in Fig. C-9( c). The voltage drop in the line from the regulator to the
load is simulated in a R 0–X 0 network in the compensator. The settings on these
elements are decided on the basis of load flow prior to insertion of the regulator,
i.e., the voltage and current at the point of application give the system impedance to
be simulated by R 0 and X 0 in the line drop compensator.

C.6 EXTENDED MODELS OF TRANSFORMERS

A transient transformer model should address saturation, hysteresis, eddy current,
and stray losses. Saturation plays an important role in determining the transient
behavior of the transformer. Extended transformer models can be very involved
and these are not required in every type of study. At the same time, a simple
model may be prone to errors. As an example, in distribution system load flow,
representing a transformer by series impedance alone and neglecting the shunt ele-
ments altogether may not be proper, as losses in the transformers may be consider-
able. For studies on switching transients, it is necessary to include capacitance of the
transformers as high-frequency surges will be transferred more through electrostatic
couplings rather than through electromagnetic couplings. For short-circuit calcula-
tions, capacitance and core loss effects can be neglected. Thus, the type of selected
model depends on the nature of the study. There are many approaches to the models,
some of which are briefly discussed.
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Figure C-9 (a), (b) Circuits of type-A and type-B connection step-voltage regulators; (c)

schematic of line-drop compensator; (d) reactance-type tap changer with reversing switch.
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The equivalent circuit of the shunt branch of a transformer for nonlinearity
can be drawn as shown in Fig. C-10. The excitation current has half-wave sym-
metry and contains only odd harmonics (see Appendix E). We may consider the
excitation current as composed of two components, a fundamental frequency
component and a distortion component. The fundamental frequency component
is broken into two components, ie and im as discussed before, which give rise to
shunt components gm and �bm, Fig. C-1(a). The distortion component may be
considered as a number of equivalent harmonic current sources in parallel with
the fundamental frequency components, each of which can be represented in the
phasor form, Iei < �i. To consider the effect of variation in the supply system
voltages, the model parameters at three voltage levels of maximum, minimum,
and rated voltage can be approximated by quadratic functions of the supply
system voltage:

W ¼ aþ bV þ cV2

W ¼ Rm;Xm; Ie3; Ie5; . . . ; �3; �5; . . .
ðC:28Þ

where Ie3, Ie5, . . ., �3, �5, . . . are the harmonic currents and their angles. The coeffi-
cients a, b, and c can be found from

a
b
c

������
������ ¼

1 Vmin V2
min

1 Vrated V2
rated

1 Vmax V2
max

������
������
W0

W1

W2

������
������ ðC:29Þ

where W0, W1, W2 are measured values of W for Vmin, Vrated, and Vmax, respectively.

C.6.1 Modeling the Hysteresis Loop

A model of the hysteresis loop can be constructed, based on measurements. The
locus of the midpoints of the loop is obtained by measurements at four points and its
displacement by a consuming function, whose maximum value is ob, and ef changes
periodically by half-wave symmetry (Fig. C-11). The consuming function can
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Figure C-10 Transformer shunt branch model considering nonlinearity.
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be written as f ðxÞ ¼ �ob sin!t. The periphery can be then represented by 16 line
segments [3]:

i ¼ ðik �mk�kÞ þmk�� ob sinð!tÞ
�k�1 < j�j4�k

k ¼ 1; 2; . . . 16

ðC:30Þ

C.6.2 EMTP Models

Figure C-12(a) shows a single-phase model; R remains constant, and it is calculated
from excitation losses. The nonlinear inductor is modeled from transformer excita-
tion data and from its nonlinear V–I characteristics. In modern transformers the
cores saturate sharply and there is a well-defined knee. Often a two-slope piecewise
linear inductor is adequate to model such curves. The saturation curve is not sup-
plied as a flux–current curve, but as a rms voltage–rms current curve. The satura
routine in EMTP [4] converts voltage–current input into flux–current data. Figures
C-12(b) and (c) show an example of this conversion for a 750-MVA, 420–27 kV five-
leg, core type, wye–delta connected transformer. The nonlinear inductance should be
connected between the windings closest to the iron core. The input data are pre-
sented in per unit values with regard to the winding connections and the base current
and voltage. S base = 250MVA, V base = 27kV and I base = 9259A

Imag ¼ ½I2ex � ðPex=VexÞ2�1=2 ðC:31Þ
There is linear interpolation between the assumed values and finite-difference
approximation to sinusoidal excitation. The hysteresis is ignored.

The EMTP model hysdat represents a hysteresis loop in 4–5 points to 20–25
points for a specific core material. The positive and negative saturation points, as
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Figure C-11 Piece wise hysteresis loop curve fitting.
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Figure C-12 (a) EMTP model satura; (b), (c) conversion of V–I characteristics into �–I

characteristics.
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defined in Fig. C-11, need only to be specified. Figure C-13 shows EMTP simulation
of the excitation current in a single-phase, 50-kVA transformer.

C.6.3 Nonlinearity in Core Losses

Figure C-14 shows a frequency domain approach and considers that winding resis-
tance and leakage reactance remain constant and the nonlinearity is confined to the
core characteristics [5]. The core loss is modeled as a superimposition of losses
occurring in fictitious harmonic and eddy current resistors. The magnetizing char-
acteristics of the transformer is defined by a polynomial expressing the magnetizing
current in terms of flux linkages:

iM ¼ A0 þ A1�þ A2�
2 þ A3�

3 þ � � � ðC:32Þ
Only a specific order of harmonic currents flow to appropriate Gh resistors in Fig.
C-14. From Eqs. (C.7) and (C.8) the core loss equation is

Pfe ¼ Ph þ Pe ¼ KhB
sf þ KeB

2f 2 ðC:33Þ
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Figure C-13 Simulation of inrush current of a 50-kVA transformer.

Figure C-14 Nonlinear shunt model with superimposition of harmonic currents in resistors.
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For a sinusoidal voltage, this can be written as:

Pfe ¼ kh f
1�sEs þ keE

2 ðkh 6¼ Kh and ke 6¼ KeÞ ðC:34Þ
This defines two-conductance Gh for hysteresis loss and Ge for eddy current loss,
given by

Gh ¼ kh f
1�sEs�2;Ge ¼ ke ðC:35Þ

C.7 HIGH-FREQUENCY MODELS

For the response of transformers to transients a very detailed model may include
each winding turn and turn-to-turn inductances and capacitances [6]. Consider a
disk-layer winding or pancake sections as shown in Fig. C-15(a). Each numbered
rectangular block represents the cross-section of a turn. The winding line terminal is
at A and winding continues beyond E. Each section can be represented by a series of
inductance elements with series and shunt capacitances as shown in Fig. C-15(b).
Though the model looks complex, the mutual inductances are not shown, resistances
are not represented, and no interturn capacitances are shown. This circuit will be
formidable in terms of implementation. For most applications, representation of
each turn is not justified and by successive lumping a much simpler model is
obtained, Fig. C-15(c). A further simplified model is shown in Fig. 19-4.

Consider the circuit in Fig. C-16. A 7.5-Mvar capacitor bank is switched at the
13.8-kV bus and the resulting switching overvoltages on the secondary of a 2.5-
MVA, 13.8–0.48 kV transformer connected through 400 ft 500-KCMIL, 15-kV
cable are simulated using EMTP. The transformer model shown in Fig. 19-4 is
used. The results are shown in Fig. C-17. This figure shows high-frequency compo-
nents, due to multiple reflections in the connecting cable, and the peak secondary.
Voltage is 3000 volts. This is very high for a 480-volt system. Surge arresters and
capacitors applied at transformer terminals will appreciably reduce this voltage.

The switching of transformers can give rise to voltage escalation inside the
transformer windings. The windings have internal ‘‘ringing’’ frequencies and certain
switching operations can excite these frequencies creating excessive intra-winding
stresses. A snubber circuit (usually a capacitor in series with a resistor) connected
phase to ground can limit these voltage peaks. See also Refs. [7,8].

C.8 DUALITY MODELS

Duality-based models can be used to represent transformers. These models are based
on core topology and utilize the correspondence between electric and magnetic
circuits, as expressed by the principle of duality. Voltage, current, and inductance
in electrical circuits correspond to flux, mmf, and reluctance, respectively:

I ¼ V

R

� ¼ MMF

l=��0a
¼ MMF

S

ðC:36Þ

where l is the length of the magnetic path, a is the cross-sectional area, and S is the
reluctance, which is analogous to resistance in an electrical circuit and determines the
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magnetomotive force necessary to produce a given magnetic flux. Permeance is the
reverse of reluctance.

Figure C-18(a) shows electrical equivalent circuit of a three-winding core-type
transformer portraying magnetic coupling in three- and five-limbed transformers [9].
Non-linear inductances correspond to iron flux paths in the magnetic circuit, permit-
ting each core limb to be modeled separately. Each Lk represents top and lower
yokes and each Lb represents a wound limb; L0 represents the flux path through
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Figure C-15 (a) Winding turns in a pancake coil; (b) circuit of winding inductance and
capacitances; (c) simplified circuit model.
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Figure C-16 Circuit for simulation of capacitor switching transient.

Figure C-17 EMTP simulation of transient overvoltage on 480-V secondary of 2.5-MVA

transformer in Fig. C-16.
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the air, outside the core and around the windings. Finally, the ladder network
between linear inductances L0 and Lb represents winding leakages through air.
Inductances Lh, Ly represent unequal flux linkages between turns due to finite wind-
ing radial build and these are small compared to L0 and Lb. This model is simplified
as shown in Fig. C-18(b). The various inductances are calculated from short-circuit
tests.

Duality models can be used for low-frequency transient studies, such as short-
circuits, inrush currents, ferroresonance, and harmonics [10].

C.9 GIC MODELS

Geomagnetically induced currents (GICs) flow through the earth’s surface due to
solar magnetic disturbances and these are typically 0.001 to 0.1 Hz and can reach
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Figure C-18 (a) Duality based-circuit model of a core-type, three-winding transformer;

(b) simplified circuit derived from (a).
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peak values of 200 A. These can enter transformer windings through grounded
neutrals, Fig. C-19(a), and bias the transformer core to half-cycle saturation. As a
result the transformer magnetizing current is greatly increased. Harmonics increase
and these could cause reactive power consumption, capacitor overload, false opera-
tion of protective relays, etc. [11].

A model for GIC is shown in Fig. C-19(b). Four major flux paths are included.
All R elements represent reluctances in different branches. Subscripts c, a, and t
stand for core, air, and tank, respectively, and 1, 2, 3, and 4 represent major branches
of flux paths. Branch 1 represents the sum of core and air fluxes within the excitation
windings, branch 2 represents the flux path in yoke, and branch 3 represents the sum
of fluxes entering the side leg, part of which leaves the side leg and enters the tank.
Branch 4 represents flux leaving the tank from the center leg. An iterative program is
used to solve the circuit of Fig. C-19 so that nonlinearity is considered.

C.10 REACTORS

We have discussed the following applications of reactors in various chapters of this
book:

. Current-limiting reactors, mainly from the standpoint of limiting the short-
circuit currents in a power system. These can be applied in a feeder, in a tie-
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Figure C-19 (a) GIC entering the grounded neutrals of the wye-connected transformers;
(b) a transformer model for GIC simulation.
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line, in synchronizing bus arrangements (Fig. 7-16 ), and as generator reac-
tors (Fig. 13-20).

. Shunt reactors for reactive power compensation.

. Reactors used in static var controllers, i.e., SVCs, TCRs, TSCs, and dis-
charge reactors in a series capacitor (Chap. 13).

. Harmonic filter reactors and inrush current-limiting reactors

. Line reactors to limit notching effects and dc reactors for ripple current
limitation in drive systems.

Further applications are:

. Smoothing reactors are used in series with an HVDC line or inserted into a
dc circuit to reduce harmonics on the dc side. Filter reactors are installed on
the ac side of converters. Radio interference and power-line carrier filter
reactors are used to reduce high-frequency noise propagation.

. Reactors are installed in series in a medium-voltage feeder (high-voltage side
of the furnace transformer) to improve efficiency, reduce electrode con-
sumption, and limit short-circuit currents.

. An arc suppression reactor, called a Peterson coil, is a single-phase variable
reactor that is connected between the neutral of a transformer and ground
for the purpose of achieving a resonant grounding system, though such
grounding systems are not in common use in the USA, but prevalent in
Europe. The inductance is varied to cancel the capacitance current of the
system for a single line-to-ground fault.

. Reactors are used in reduced-voltage motor starters to limit the starting
inrush currents.

. Series reactors may be used in transmission systems to modify the power
flow by changing the transfer impedance.

We will discuss a duplex reactor, which can sometimes be usefully applied to
limit short-circuit currents and at the same time improve steady-state performance
as compared to a conventional reactor [12]. It consists of two magnetically coupled
coils per phase. The magnetic coupling, which is dependent on the geometric
proximity of the coils, is responsible for desirable properties of a duplex reactor
under short-circuit and load-flow conditions. The equivalent circuit is shown in
Figs C-20 (a) and (b) and its application in Fig. C-20( c). The mutual coupling
between coils is

Lm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL11 � L1ÞðL22 � L2Þ

p
¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L11L22

p
¼ kL ðC:37Þ

where k is the coefficient of coupling. Note that the inductance of sections 1 to 4 in
the T equivalent circuit, for direction of current flow from source to loads,
becomes negative ð¼ �kLÞ. Between terminals 2 and 4, and 3 and 4 it is L. The
terminal 4 is fictitious and the source terminal is 1, while the load terminals are 2
and 3. Thus, the effective inductance between the source to a load terminal is
ð1� kÞL, where L is the inductance of each winding and k is the coefficient of
coupling. Effective reactance to load flow is reduced by a factor of k and voltage
drops will also be reduced by the same factor. For a short-circuit on any of the
load buses, the currents in one of the windings reverses and the effective induc-
tance is 2Lð1þ kÞ. The short-circuit currents will be more effectively limited. The
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Figure C-20 (a), (b) Equivalent circuits of a duplex reactor; (c) a circuit showing application
of a duplex reactor.
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limitations are that k is dependent on the geometry of the coils and is almost
independent of the current loading of the coils. Cancellation of the magnetic
field under load flow occurs only when the second winding is loaded. The advan-
tages of a duplex reactor are well exploited if the loads are split equally on two
buses, Fig-C.20(c).
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Appendix D

Sparsity and Optimal Ordering

It is seen that linear simultaneous equations representing a power system are sparse.
These give sparse matrices. Consider a 500-node system and assuming that, on
average, there are two bus connections to a node, the admittance matrix A will
have 500 diagonal elements and 500� 2� 2 ¼ 2000 off-diagonal elements. The
total number of elements in A are 500� 500 ¼ 250; 000. The population of nonzero
elements is, therefore, 1.0%. The assumptions of two buses per node in a transmis-
sion network is high. Typically, it will be 1–1.5, further reducing the percentage of
nonzero elements.

When the matrix is factorized in LU or LDU form, nonzero elements are
created where none existed before:

aijðnewÞ ¼ aijðprimitiveÞ � aipapj
app

ðD:1Þ

If aij is zero in the original matrix at the beginning of the pth step and both aip and apj
are nonzero in value, then aij (new) becomes a new nonzero term.

D.1 OPTIMAL ORDERING

Optimal ordering is the rearrangement of the order of sequence of columns and
rows in the matrix to minimize nonzero terms. When a programming scheme is

app apj ) app apj

aip 0 aip aij

)

(D.2)
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used which stores and processes only nonzero terms, saving in operations and
computer memory can be achieved by keeping the stored tables of factors as
short as possible. A truly optimal ordering scheme should produce the fewest
nonzero elements. For large systems, the determination of such an optimal order-
ing itself may require a long computer time, which may not be justifiable practi-
cally, for the benefits in reducing the nonzero elements. An effective algorithm for
absolute optimal ordering has not been developed; however, several schemes give
near optimal solutions.

D.2 FLOW GRAPHS

Power system matrices are symmetrical and, therefore, their structures can be
described by flow graphs. Optimal elimination then translates into a topological
problem. The following theorems can be postulated:

1. Any graph which is obtained from another graph by a node-eliminating
process is independent of the order in which the nodes are eliminated

2. When any two successive nodes are adjacent in the original graph or in
the graph generated by the elimination process, the node with the smaller
valence occurs first.

The valency of a node connected in a graph is the number of new paths created
or added as a result of elimination of the node. Hence, the valency of the node is
defined as the number of new links added to the graph, i.e., the new nonzero ele-
ments generated in the coefficient matrix because of elimination of the node.

In a connected graph, the nodes communicate between each other. A node can
be eliminated if a path exists and the flow in the graph is not interrupted. In the graph
of Fig. D-1, node 14 can be eliminated. This will not add any new branches nor any
new nonzero elements. Similarly, node 13 can be eliminated, as a path exists between
node 12 and 5, and, in the coefficient matrix, element a12,5 will be nonzero. However,
elimination of node 4 will add a new link between 3 and 5 and hence the element a3,5
which was zero earlier, will appear as a nonzero element in the matrix. Elimination of
node 7 adds four new links, as shown. The new links are shown dotted.
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Figure D-1 A network for node elimination.
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Consider the network of Fig. D-2 and the ordered matrix as shown below, with
nonzero terms. The ordering here is 1, 2, 3, 4, and 5:

786 Appendix D

1 2 3 4 5

1 X X X

2 X X X X

3 X X

4 X X X

5 X X X
(D.3)

Figure D-2 (a) Graph of a five-node network; (b)–(e) graphs with successive elimination of

nodes 1, 2, 3, and 4.
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Eliminate node 1 (Fig. D-2). Two new nonzero elements are introduced:

X X X
X X X Xnew X

X X
X Xnew X X

X X X

����������

����������
ðD:4Þ

Eliminate node 2, and four new nonzero elements are produced. The matrix, after
elimination of node 1 and and introduction of new elements due to elimination of
node 2, is

X X Xnew X
X X Xnew Xnew

Xnew Xnew X X
X Xnew X X

��������

�������� ðD:5Þ

Eliminate node 3. No new nonzero element is produced. There is already a path
between 3 and 5 (dotted). The modified matrix after elimination of node 2 is

X Xnew Xnew

Xnew X X
Xnew X X

������
������ ðD:6Þ

Node 3 followed by node 4 can now be eliminated.
Now consider the reordered scheme of elimination, shown in Fig. D-3.

1. Node 3 is first eliminated; no new link or nonzero element is created.
2. Node 4 is next eliminated; creates two new nonzero elements.
3. Node 5 is next eliminated; creates no new nonzero element.
4. Node 2 can now be eliminated.

This gives the ordered original matrix as 3, 4, 5, 2, and 1:

The number of nonzero elements created at the pth step are

Nnonzero ¼ nðn� 1Þ
2

ðD:8Þ

where n is the number of nodes directly connected to the pivot node, but not directly
connected to each other.
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3 4 5 2 1

3 X X

4 X X X

5 X X X

2 X X X X

1 X X X (D.7)

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



D.3 OPTIMAL ORDERING SCHEMES

A number of near optimal schemes have been developed:

Scheme 1

The rows of the coefficient matrix are numbered according to the number of nonzero
off-diagonal elements, before elimination. The rows with the least number of off-
diagonal terms comes first, followed by the next rows in ascending order of nonzero
off-diagonal terms. This method is simple and fast to execute, but does not give the
minimum number of nonzero terms. In other words the scheme is to reorder the
nodes so that the number of connecting branches to each node are in ascending order
in the original network.

Scheme 2

The rows in the coefficient matrix are numbered so that, at each step, the next row to
be operated upon is the one with fewest nonzero terms. If more than one row meets
this criterion, select any one first. Thus, the nodes are numbered so that at each step
of elimination, the next node to be eliminated is the one having the fewest connected
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Figure D-3 (a)–(d) Graphs with alternate order of node elimination.
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branches, i.e., the minimum degree. This method requires simulation of the elimina-
tion process to take into account the changes in the branch connections as each node
is eliminated.

Scheme 3

At each step of the elimination process select the node that produces the smallest
number of new branches. From the network point of view, at each step, the next
node to be eliminated is the one which will produce the fewest row equivalents of
every feasible alternative.

Scheme 4

If at any stage of elimination, more than one node has the same degree, then remove
the one which creates the minimum off-diagonal zero terms, i.e., new links in the
system graph. This exploits the merits of Schemes 2 and 3.

Consider the network of Fig. D-4(a). Its matrix without prior ordering, in
terms of numbered nodes in serial ascending order, is

An examination of the coefficient matrix shows that:
Nodes 7, 10, and 11 have only one connection with the other nodes and thus

one off-diagonal element. According to Scheme 1 the optimal ordering sequence can
start with any of these nodes, in any order.

Nodes 1, 3, 6, and 9 come next. These have two connections with the other
nodes in the original network and can be eliminated next, in any order.

Nodes 2, 4, and 5 have three connections and should be eliminated next in any
order, while node 8 has four connections and should be eliminated last.

Thus, the optimal ordering according to scheme 1 is 7, 10, 11, 1, 3, 4, 6, 9, 2, 4, 5,
and 8. This is shown graphically in Fig. D-4(b) and each step of elimination is marked
by the side of the node in a triangle. This scheme generates four new elements.
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1 2 3 4 5 6 7 8 9 10 11

1 X X X

2 X X X X

3 X X X

4 X X X X

5 X X X X

6 X X X

7 X X

8 X X X X X

9 X X X

10 X X

11 X X (D.9)
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Next, Scheme 2 is applied and it is shown in Fig. D-4(c). While optimal order-
ing could have been written straightaway, without examination of the modified
graphs in Scheme 1, or straight from the examination of the coefficient matrix, the
optimal ordering according to Scheme 2 is not easily visualized, unless the modified
graphs on successive node elimination are examined.

After nodes 7, 10, and 11 are eliminated, nodes 8, 9, 3, 1, 5, and 6 have two
branches connected to them. Thus, there is a choice in elimination order. Figure D-4
(c) shows the elimination in the order 1, 3, 5, and 6. Elimination of 1 and 3 give one
new element each.

As the network should be examined after each elimination, the node 2 which
had three branches has only one branch connected to it after these eliminations.
Thus, it comes next in the order of elimination. This leaves nodes 4, 9, and 8 which
have two branches connected to each, in a triangle. Thus, any of these can be
eliminated first. This gives an optimal order 7, 10, 11, 1, 3, 5, 6, 2, 4, 9, and 8.

This order is not unique. Other orders will satisfy the Scheme 2 criteria.
Figure D-4(d) shows Scheme 3. Here, only one new element is produced. The

optimal order of Scheme 2 could also give the same result. Consider that after
elimination of nodes 7, 10, and 11 in Scheme 2, there is a choice to eliminate 8, 9,
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Figure D-4 (a) Graph of original 11-node network; (b)–(d) alternate optimal ordering
Schemes 1, 2, and 3.
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5, 6, or 1. Let us eliminate 9. Node 8 then has only one path to node 4 and should be
eliminated next. The next node to eliminate will be node 4 (single path) followed by
node 3. Thus, Scheme 2 could also give only one new element. As an exercise the
reader can construct a graph and optimal order for scheme 40.
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Appendix E

Fourier Analysis

E.1 PERIODIC FUNCTIONS

A function is said to be periodic if it is defined for all real values of t and if there is a
positive number T such that

f ðtÞ ¼ f ðtþ TÞ ¼ f ðtþ 2TÞ ¼ f ðtþ nTÞ ðE:1Þ
then T is called the period of the function.

If k is any integer and f ðtþ kTÞ ¼ f ðtÞ for all values of t and if two functions
f1ðtÞ and f2ðtÞ have the same period T, then the function f3ðtÞ ¼ af1ðtÞ þ bf2ðtÞ, where
a and b are constants, also has the same period T. Figure E-1 shows a periodic
function.

E.2 ORTHOGONAL FUNCTIONS

Two functions f1ðtÞ and f2ðtÞ are orthogonal over the interval ðT1;T2Þ if
ZT2

T1

f1ðtÞf2ðtÞ ¼ 0 ðE:2Þ

Figure E-2 shows two orthogonal functions over the period T.

E.3 FOURIER SERIES AND COEFFICIENTS

A periodic function can be expanded in a Fourier series. The series has the expres-
sion:

f ðtÞ ¼ a0 þ
X1
n¼1

an cos
2�nt

T

� �
þ bn sin

2�nt

T

� �� �
ðE:3Þ
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where a0 is the average value of function f ðtÞ. It is also called the dc component, and
an and bn are called the coefficients of the series. A series such as Eq. (E.3) is called a
trigonometric Fourier series. The Fourier series of a periodic function is the sum of
sinusoidal components of different frequencies. The term 2�=T can be written as !.
The nth term n! is then called the nth harmonic and n=1 gives the fundamental; a0,
an, and bn are calculated as follows:

a0 ¼
1

T

ZT=2

�T=2

f ðtÞdt ðE:4Þ

an ¼
2

T

ZT=2

�T=2

cos
2�nt

T

� �
dt for n ¼ 1; 2; . . . ;1 ðE:5Þ
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Figure E-1 A periodic function.

Figure E-2 Orthogonal functions.
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bn ¼
2

T

ZT=2

�T=2

sin
2�nt

T

� �
dt for n ¼ 1; 2; . . . ;1 ðE:6Þ

These equations can be written in terms of angular frequency:

a0 ¼
1

2�

Z�
��

f ðxÞ!td!t ðE:7Þ

an ¼
1

�

Z�
��

f ðxÞ!t cosðn!tÞd!t ðE:8Þ

bn ¼
1

�

Z�
��

f ðxÞ!t sinðn!tÞd!t ðE:9Þ

This gives

xðtÞ ¼ a0 þ
X1
n¼1

½an cosðn!tÞ þ bn sinðn!tÞ ðE:10Þ

We can write:

an cos n!tþ bn sin!t ¼ ½a2n þ b2n�1=2½sin�n cos n!tþ cos �n sin n!t�
¼ ½a2n þ b2n�1=2 sinðn!tþ �nÞ

ðE:11Þ

where

�n ¼ tan�1 an
bn

The coefficients can be written in terms of two separate integrals:

an ¼
2

T

ZT=2

0

xðtÞ cos 2�nt

T

� �
dtþ 2

T

Z0
�T=2

xðtÞ cos 2�nt

T

� �
dt

bn ¼
2

T

ZT=2

0

xðtÞ sin 2�nt

T

� �
dtþ 2

T

Z0
�T=2

xðtÞ sin 2�nt

T

� �
dt

ðE:12Þ

Example E.1

Find the Fourier series of a function defined by

xþ � 0 � x � �

�x� � � � � x < 0

Find a0, which is given by

a0 ¼
1

�

Z0
��

ð�x� �Þdxþ 1

�

Z�
0

ðxþ �Þdx ¼ �
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an ¼
1

�

Z0
��

ð�x� �Þ cos nxdxþ 1

�

Z�
0

ðxþ �Þ cos nxdx

� 4

n2�
if n is odd

¼ 0 if n is even

bn is given by

bn ¼
1

�

Z0
��

ð�x� �Þ sin nxdxþ 1

�

Z�
0

ðxþ �Þ sin nxdx

¼ 4

n
if n is odd

¼ 0 if n is even

Thus, the Fourier series is

f ðxÞ ¼ �

2
� 4

�

cos x

12
þ cos 3x

32
þ � � �

� �
þ 4

sin x

1
þ sin 3x

3
þ � � �

� �

E.4 ODD SYMMETRY

A function f ðxÞ is said to be an odd or skew symmetric function, if

f ð�xÞ ¼ �f ðxÞ ðE:13Þ
The area under the curve from �T=2 to T=2 is zero. This implies that

a0 ¼ 0; an ¼ 0 ðE:14Þ

bn ¼
4

T

ZT=2

0

f ðtÞ sin 2�nt

T

� �
dt ðE:15Þ

Figure E-3(a) shows a triangular function, having odd symmetry. The Fourier series
contains only sine terms.

E.5 EVEN SYMMETRY

A function f ðxÞ is even symmetric, if

f ð�xÞð¼ f ðxÞ ðE:16Þ
The graph of such a function is symmetric with respect to the y axis. The y axis is a
mirror of the reflection of the curve.

a0 ¼ 0; bn ¼ 0 ðE:17Þ

an ¼
4

T

ZT=2

0

f ðtÞ cos 2�nt

T

� �
dt ðE:18Þ
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Figure E-3(b) shows a triangular function with odd symmetry. The Fourier series
contains only cosine terms. Note that the odd and even symmetry has been obtained
with the triangular function, by shifting the origin.

E.6 HALF-WAVE SYMMETRY

A function is said to have half-wave symmetry if

f ðxÞ ¼ �f ðxþ T=2Þ ðE:19Þ

Figure E-3(c) shows a square-wave function which has half-wave symmetry, with
respect to the period �T=2. The negative half-wave is the mirror image of the
positive half, but phase shifted by T=2 (or � radians). Due to half-wave symmetry
the average value is zero. The function contains only odd harmonics.
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Figure E-3 (a) Triangular function with odd symmetry; (b) triangular function with even

symmetry; (c) square function with half-wave symmetry.
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If n is odd, then

an ¼
4

T

ZT=2

0

xðtÞ cos 2�nt

T

� �
dt ðE:20Þ

and an ¼ 0 for n = even. Similarly,

bn ¼
4

T

ZT=2

0

xðtÞ sin 2�nt

T

� �
dt ðE:21Þ

for n = odd, and it is zero for n = even.

E.7 HARMONIC SPECTRUM

The Fourier series of a square-wave function is

f ðtÞ ¼ 4k

�

sin!t

1
þ sin 3!t

3
þ sin 5!t

5
þ � � �

� �
ðE:22Þ

where k is the amplitude of the function. The magnitude of the nth harmonic is 1/n,
when the fundamental is expressed as one per unit. The construction of a square
wave from the component harmonics is shown in Fig. E-4(a) and the plotting of
harmonics as a percentage of the magnitude of the fundamental gives the harmonic
spectrum of Fig. E-4(b). A harmonic spectrum indicates the relative magnitude of
the harmonics with respect to the fundamental and is not indicative of the sign
(positive or negative) of the harmonic, nor its phase angle.

E.7.1 Constructing Fourier Series from Graphs and Tables

When the function is given as a graph or table of values, a Fourier series can be
constructed as follows:

a0 ¼
1

�

Z2�
0

f ðxÞdx ¼ 2

2�� 0

Z2�
0

f ðxÞdx

¼ twice mean value of f ðxÞ; 0 to 2�

ðE:23Þ

Similarly:

an ¼ twice mean value of f ðxÞ cos nx; 0 to 2� ðE:24Þ

bn ¼ twice mean value of f ðxÞ sin nx; 0 to 2� ðE:25Þ

Example E.2

Construct the Fourier series for the function given in Table E-1. The step-by-step
calculations are shown in Table E-2.

a0 ¼ 2�mean of f ðxÞ
a1 ¼ 2�mean of f ðxÞ cos x
b1 ¼ 2�means of f ðxÞ sin x
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Figure E-4 (a) Construction of a square wave from its harmonic components; (b) harmonic
spectrum of a square wave.

Table E-1 Example E.2

x 08 308 608 908 1208 1508 1808 2108 2408 2708 3008 3308

f ðxÞ 3.45 4.87 6.98 2.56 1.56 1.23 0.5 2.6 3.7 4.8 3.2 1.1
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From the summation of functions in Table E-2:

f ðxÞ ¼ a0 þ a1 cos xþ a2 cos 2xþ � � � b1 sin xþ b2 sin 2xþ � � �
¼ 6:092þ 1:212 cos x� 1:038 cos 2xþ � � � þ 0:068 sin xþ 1:608 sin 2xþ � � �

E.8 COMPLEX FORM OF FOURIER SERIES

A vector with amplitude A and phase angle � with respect to a reference can be
resolved into two oppositely rotating vectors of half the magnitude so that

jAj cos � ¼ jA=2je j� þ jA=2je�j� ðE:26Þ

Thus

an cos n!tþ bn sin n!t ðE:27Þ
can be substituted by

cosðn!tÞ ¼ e jn!t þ e�jn!t

2
ðE:28Þ

sinðn!tÞ ¼ e jn!t � e�jn!t

2j
ðE:29Þ

Thus

xðtÞ ¼ a0
2
þ 1

2

Xn¼1

n¼1

ðan � jbnÞe jn!t þ 1

2

Xn¼1

n¼1

ðan þ jbnÞe�jn!t ðE:30Þ

We introduce negative values of n in the coefficients, i.e.,
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Table E-2 Example E.2: Step-by-Step Calculations

x (degrees) f ðxÞ f ðxÞ sinx f ðxÞ sin 2x f ðxÞ cosx f ðxÞ cos 2x

0 3.45 0 0 3.45 3.45
30 4.87 2.435 4.217 4.217 2.435
60 6.98 6.07 6.07 3.49 �3.49

90 2.56 2.56 0 0 �2.56
120 1.56 1.351 �1.351 �0.78 �0.78
150 1.23 0.615 �1.015 �1.065 0.615
180 0.5 0 0 �0.5 0.5

210 2.6 �1.30 2.252 �2.252 1.3
240 3.7 �3.204 3.204 �1.85 �1.85
270 4.8 �4.8 0 0 �4.8

300 3.2 �2.771 �2.771 1.6 �1.6
330 1.1 �0.55 �0.957 0.957 0.55

Totals 36.55 0.406 9.649 7.276 �6.23

a0 = 2 � mean of f(x) = (2)(36.55)/12=6.0917.
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a�n ¼
2

T

ZT=2

�T=2

xðtÞ cosð�n!tÞdt ¼ 2

T

ZT=2

�T=2

xðtÞ cosðn!tÞdt ¼ an n ¼ 1; 2; 3; . . .

ðE:31Þ

b�n ¼
2

T

ZT=2

�T=2

xðtÞ sinð�n!tÞdt ¼ � 2

T

ZT=2

�T=2

xðtÞ sinðn!tÞdt ¼ �bn n ¼ 1; 2; 3; . . .

ðE:32Þ
Hence,X1

n¼1

ane
�jn!t ¼

X1
n¼�1

ane
jn!t ðE:33Þ

and X1
n¼1

jbne
�jn!t ¼ �

X1
n¼�1

jbne
jn!t ðE:34Þ

Therefore, substituting in Eq. (E.30), we obtain:

xðtÞ ¼ a0
2
þ 1

2

X1
n¼�1

ðan � jbnÞe jn!t ¼
X1

n¼�1
cne

jn!t ðE:35Þ

This is the expression for a Fourier series expressed in exponential form, which is the
preferred approach for analysis. The coefficient cn is complex and given by

cn ¼
1

2
ðan � jbnÞ ¼

1

T

ZT=2

�T=2

xðtÞe�jn!tdt n ¼ 0;�1;�2; . . . ðE:36Þ

E.8.1 Convolution

When two harmonic phasors of different frequencies are convoluted, the result will
be harmonic phasors at sum and difference frequencies:

jakj sinðk!tþ �kÞjbmj sinðm!tþ �mÞ
¼ 1

2
jakjjbmj sin ðk�mÞ!tþ �k � �m þ �

2

� 
� sin ðkþmÞ!tþ �k þ �m þ �

2

� h i
ðE:37Þ

Convolution is a process of correlating one time series with another time series that
has been reversed in time.

E.9 FOURIER TRANSFORM

Fourier analysis of a continuous periodic signal in the time domain gives a series of
discrete frequency components in the frequency domain. The Fourier integral is
defined by the expression:

Xðf Þ ¼
Z�1

1
xðtÞe�j2�ftdt ðE:38Þ
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If the integral exists for every value of parameter f (frequency), then this equation
describes the Fourier transform. The Fourier transform is a complex quantity:

Xð f Þ ¼ RXð f Þ þ jIXð f Þ ðE:39Þ

where RXðf Þ is the real part of the Fourier transform and IXð f Þ is the imaginary
part of the Fourier transform. The amplitude or Fourier spectrum of xðtÞ is given by

jXð f Þj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ð f Þ þ I2ð f Þ

q
ðE:40Þ

�ð f Þ is the phase angle of the Fourier transform and is given by

�ð f Þ ¼ tan�1 ImXð f Þ
ReXð f Þ
	 


ðE:41Þ

The inverse Fourier transform or the backward Fourier transform is defined as

xðtÞ ¼
Z1

�1
Xð f Þe j2�ftdt ðE:42Þ

Inverse transformation allows determination of a function of time from its Fourier
transform. Equations (E.38) and (E.42) are a Fourier transform pair and the rela-
tionship can be indicated by

xðtÞ $ Xð f Þ ðE:43Þ

Example E.3

Consider a function, defined as

xðtÞ ¼ �e��tt > 0

¼ 0 t < 0
ðE:44Þ

It is required to write its forward Fourier transform.
From Eq. (E.38):

Xð f Þ ¼
Z1
0

�e��te�j2�ftdt

¼ ��

�þ j2�f
e�ð�þj2�f Þt

���1
0

¼ �

�þ j2�f
¼ ��

�2 þ ð2�f Þ2 � j
2�f�

�2 þ ð2�f Þ2

This is equal to

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ ð2�f Þ2

q e j tan�1½�2�f =�� ðE:45Þ
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Example E.4

Convert the function arrived at in Example E.3 to xðtÞ.
The inverse Fourier transform is

xðtÞ ¼
Z1

�1
Xð f Þe j2�ftdf

¼
Z1

�1

��

�2 þ ð2�f Þ2 � j
2�f�

�2 þ ð2�f Þ2
	 


e j2�ftdf

¼
Z1

�1

�� cosð2�ftÞ
�2 þ ð2�f Þ2 þ 2�f� sinð2�ftÞ

�2 þ ð2�f Þ2
	 


df

þ j

Z1
�1

�� sinð2�ftÞ
�2 þ ð2�f Þ2 þ

2�f� cosð2�ftÞ
�2 þ ð2�f Þ2

	 

df

The imaginary term is zero, as it is an odd function.
This can be written as

xðtÞ ¼ ��

ð2�Þ2
Z1

�1

cosð2�tf Þ
ð�=2�Þ2 þ f 2

df þ 2��

ð2�Þ2
Z1

�1

f sinð2�tf Þ
ð�=2�Þ2 þ f 2

df

As

Z1
�1

cos�x

b2 þ x2
dx¼ �

b
e�ab

and

Z1
�1

x sin �x

b2 þ x2
dx¼ �e�ab

xðtÞ becomes

xðtÞ ¼ ��

ð2�Þ2
�

�=2�
e�ð2�tÞð���Þ

	 

þ 2��

ð2�Þ2 �e�ð2�tÞð���Þ
h i

¼ �

2
e��t þ �

2
e��t ¼ �e��t t > 0

i.e.,

�e��tt > 0 $ �

�þ j2�f
ðE:46Þ

Example E.5

Consider a rectangular function defined by

xðtÞ ¼ K jtj � T=2

¼ 0 jtj > T=2
ðE:47Þ
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The Fourier transform is

Xð f Þ ¼
ZT=2

�T=2

Ke�j2�ftdt ¼ KT
sinð�fTÞ
�fT

	 

ðE:48Þ

This is shown in Fig. E-5. The term in parentheses in Eq. (E.48) is called the sinc
function. The function has zero value at points f ¼ n=T .

E.10 SAMPLED WAVEFORM: DISCRETE FOURIER TRANSFORM

The sampling theorem states that if the Fourier transform of a function xðtÞ is zero
for all frequencies greater than a certain frequency fc, then the continuous function
xðtÞ can be uniquely determined by a knowledge of the sampled values. The con-
straint is that xðtÞ is zero for frequencies greater than fc, i.e., the function is band
limited at frequency fc. The second constraint is that the sampling spacing must be
chosen so that

T ¼ 1=ð2fcÞ ðE:49Þ
The frequency 1=T ¼ 2fc is known as the Nyquist sampling rate.

Fourier Analysis 803

Figure E-5 (a) Bandwidth-limited rectangular function with even symmetry, amplitude K ;

(b) the sinc function, showing side lobes.
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Aliasing means that the high-frequency components of a time function can
impersonate a low frequency if the sampling rate is low. Figure E-6 shows a high
frequency as well as a low frequency that share identical sampling points. Here, a
high frequency is impersonating a low frequency for the same sampling points. The
sampling rate must be high enough for the highest frequency to be sampled at least
twice per cycle, T ¼ 1=ð2fcÞ.

Often the functions are recorded as sampled data in the time domain, the
sampling being done at a certain frequency. The Fourier transform is represented
by the summation of discrete signals where each sample is multiplied by

e�j2�fnt1 ðE:50Þ
i.e.,

Xð f Þ ¼
X1

n¼�1
xðnt1Þe�j2�fnt1 ðE:51Þ

Figure E-7 shows the sampled time domain function and the frequency spectrum for
a discrete time domain function.
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Figure E-6 High-frequency impersonating a low frequency—to illustrate aliasing.

Figure E-7 (a) Sampled time domain function; (b) frequency spectrum for the discrete time

domain function.
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Where the frequency domain spectrum as well as the time domain function are
sampled functions, the Fourier transform pair is made of discrete components:

Xð fkÞ ¼
1

N

XN�1

n¼0

xðtnÞe�j2�kn=N ðE:52Þ

XðtnÞ ¼
XN�1

k¼0

XðfkÞe j2�kn=N ðE:53Þ

Figure E-8 shows discrete time and frequency functions. The discrete Fourier trans-
form approximates the continuous Fourier transform. However, errors can occur in
the approximations involved. Consider a cosine function xðtÞ and its continuous
Fourier transform Xð f Þ, which consists of two impulse functions that are symmetric
about zero frequency, Fig. E-9(a).

The finite portion of xðtÞ which can be viewed through a unity amplitude
window wðtÞ, and its Fourier transform Wðf Þ, which has side lobes, are shown in
Fig. E-9(b).

Figure E-9(c) shows that the corresponding convolution of two frequency
signals results in blurring of Xð f Þ into two sine x=x shaped pulses. Thus, the estimate
of Xð f Þ is fairly corrupted.

Fourier Analysis 805

Figure E-8 Discrete time (a) and frequency (b) domain functions.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



The sampling of xðtÞ is performed by multiplying with cðtÞ Fig. E-9(d); the
resulting frequency domain function is shown in Fig. E-9(e).

The continuous frequency domain function shown in Fig. E-9(e) can be made
discrete if the time function is treated as one period of a periodic function. This
forces both the time domain and frequency domain functions to be infinite in extent,
periodic and discrete Fig. E-9(e). The discrete Fourier transform is reversible mapping
of N terms of the time function into N terms of the frequency function. Some
problems are outlined below.

E.10.1 Leakage

Leakage is inherent in the Fourier analysis of any finite record of data. The function
may not be localized on the frequency axis and has side lobes (Fig. E-5). The objective
is to localize the contribution of a given frequency by reducing the leakage through
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Figure E-9 Fourier coefficients of the discrete Fourier transform viewed as corrupted esti-
mate of the continuous Fourier transform. (From Ref. 1.)
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these side lobes. The usual approach is to apply a data window in the time domain,
which has lower side lobes in the frequency domain, as compared to a rectangular
data window. An extended cosine bell data window is shown in Fig. E-10. A raised
cosine wave is applied to the first and last 10% of the data and a weight of unity is
applied for the middle 90% of the data. A number of other types of windows which
give more rapidly decreasing side lobes have been described in the literature [1].

E.10.2 Picket-Fence Effect

The picket-fence effect can reduce the amplitude of the signal in the spectral win-
dows, when the signal being analyzed falls in between the orthogonal frequencies,
say between the third and fourth harmonics. The signal will be experienced by both
the third and fourth harmonic spectral windows, and in the worst case halfway
between the computed harmonics. By analyzing the data with a set of samples
that are identically zero the fast Fourier transform (FFT) algorithm (Sect. E.11)
can compute a set of coefficients with terms lying in between the original harmonics.

E.11 FAST FOURIER TRANSFORM

The FFT is simply an algorithm that can compute the discrete Fourier transform
more rapidly than any other available algorithm.

Define:

W ¼ e�j2�=N ðE:54Þ
The frequency domain representation of the waveform is

Xð fkÞ ¼
1

N

XN¼1

n¼0

xðtnÞWkn ðE:55Þ

The equation can be written in matrix form:

ðXÞ f0Þ
Xð f1Þ

�
Xð fkÞ

�
Xð fN�1Þ

������������

������������
¼ 1

N

1 1 � 1 � 1
1 W � Wk � WN�1

� � � � � �
1 Wk � Wk2 � WkðN�1Þ

� � � � � �
1 WN�1 � W ðN�1Þk � W ðN�1Þ2

������������

������������

xðt0Þ
xðt1Þ
�

xðtnÞ
�

xðtN�1Þ

������������

������������
ðE:56Þ
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Figure E-10 An extended data window.
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or in a condensed form:

½ �XXð fkÞ� ¼
1

N
�WWkn

h i
�xxðtnÞ½ � ðE:57Þ

where ½ �XXð fkÞ� is a vector representing N components of the function in the frequency
domain, while ½ �xxðtnÞ� is a vector representing N samples in the time domain.
Calculation of N frequency components from N time samples therefore requires a
total of N �N multiplications.

For N ¼ 4:

Xð0Þ
Xð1Þ
Xð2Þ
Xð3Þ

��������

�������� ¼
1 1 1 1
1 W1 W2 W3

1 W2 W4 W6

1 W3 W6 W9

��������

��������
xð0Þ
xð1Þ
xð2Þ
xð3Þ

��������

�������� ðE:58Þ

However, each element in matrix ½ �WWkn� represents a unit vector with clockwise
rotation of 2n=N, ðn ¼ 0; 1; 2; . . . ;N � 1Þ. Thus, for N ¼ 4 (i.e., four sample points),
2�=N ¼ 908. Thus,

W0 ¼ 1 ðE:59Þ
W1 ¼ cos�=2� j sin�=2 ¼ �j ðE:60Þ
W2 ¼ cos�� j sin� ¼ �1 ðE:61Þ
W3 ¼ cos 3�=2� j sin 3�=2 ¼ j ðE:62Þ
W4 ¼ W0 ðE:63Þ
W6 ¼ W2 ðE:64Þ

Hence, the matrix can be written in the form:

Xð0Þ
Xð1Þ
Xð2Þ
Xð3Þ

��������

�������� ¼
1 1 1 1
1 W1 W2 W3

1 W2 W0 W2

1 W3 W2 W1

��������

��������
xð0Þ
xð1Þ
xð2Þ
xð3Þ

��������

�������� ðE:65Þ

This can be factorized into

Xð0Þ
Xð1Þ
Xð2Þ
Xð3Þ

��������

�������� ¼
1 W0 0 0
1 W2 0 0
0 0 1 W1

0 0 1 W3

��������

��������
1 0 W0 0
0 1 0 W0

1 0 W2 0
0 1 0 W2

��������

��������
xð0Þ
xð1Þ
xð2Þ
xð3Þ

��������

�������� ðE:66Þ

Computation requires four complex multiplications and eight complex
additions. Computation of Eq. (E.58) requires 16 complex multiplications and 12
complex additions. The computations are reduced.

While this forms an overview, an interested reader may like to probe further.
Reference 1 lists 62 further references.
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Appendix F

Limitation of Harmonics

F.1 HARMONIC CURRENT LIMITS

The limits of harmonic indices, current, and voltage are defined at the point of
common coupling (PCC) [1]. This can be a point of metering or the point of connec-
tion of the consumer apparatus with the utility supply company, the point of inter-
ference. Within an industrial plant PCC is the point between the nonlinear load and
other load. Thus, if the nonlinear loads are dispersed throughout the distribution
system, then PCCs are all the buses to which these loads are connected.

HVDC systems and SVCs owned and operated by the utility are excluded from
the definition of the PCC. Harmonic measurements are recommended at PCC. It is
assumed that the system is characterized by the short-circuit impedance and that the
effect of capacitors is neglected. The recommended current distortion limits are
concerned with total demand distortion (TDD), which is defined as the total root-
sum square harmonic current distortion as a percentage of maximum demand load
current (15 or 30 min demand).

The limits for the current distortion that a consumer must adhere to are shown
in Tables F-1 and F-2 [1]. The ratio Isc/IL is the ratio of the short-circuit current
available at the PCC to the maximum fundamental frequency current and is calcu-
lated on the basis of the average maximum demand for the preceding 12 months. As
the size of user load decreases with respect to the size of the system, the percentage of
the harmonic current that the user is allowed to inject into the utility system increases.

Tables F-1 and F-2 are applicable to six-pulse rectifiers. For higher pulse
numbers, the limits of the characteristic harmonics are increased by a factor offfiffiffiffiffiffiffiffiffiffiffiðp=6Þp

provided that the amplitudes of noncharacteristic harmonics are less than
25% of the limits specified in the tables [Eq. (17.37)].

An overriding article is provided that the transformer connecting the user to
the utility system should not be subjected to harmonic currents in excess of 5% of the
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transformer rated current. Where this requirement is not met, a higher rated trans-
former should be considered.

The injected harmonic currents may create resonance with the utility’s system
and a consumer must insure that harmful series and parallel resonances are not
occurring. The utility’s source impedance may have a number of resonant frequen-
cies (Fig. 19-6) and it is necessary to model the utility’s system in greater detail for
harmonic flow calculations.

The limit of harmonic current injection does not limit a user’s choice of con-
verters or selection of harmonic producing equipment technology. Neither does it lay
down limits on the harmonic emission from equipment. It is left to the user how he
would adhere to the limits of harmonic current injection, whether by choice of an
alternative technology, use of passive or active filters, or any other harmonic miti-
gating device. This is in contrast to the IEC which has laid out the maximum
emission limits from the equipment [2].
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Table F-1 Current Distortion Limits for General Distribution Systems (120 V–69 kV)

Maximum harmonic current distortion in % of fundamental

Harmonic order (odd harmonics)b

Isc=IL
a <11 11 � h < 17 17 � h < 23 23 � h < 35 354h TDD

<20c 4.0 2.0 1.5 0.6 0.3 5.0
20–50 7.0 3.5 2.5 1.0 0.5 8.0
50–100 10.0 4.5 4.0 1.5 0.7 12.0

100–1000 12.0 5.5 5.0 2.0 1.0 15.0
>1000 15.0 7.0 6.0 2.5 1.4 20.0

aIsc = Maximum short-circuit current at PCC; IL = maximum load current (fundamental frequency) at

PCC.
bEven harmonics are limited to 25% of the odd harmonic limits above.
cAll power generation equipment is limited to these values of current distortion regardless of Isc/IL.

For PCCs from >69 to 161 kV, the limits are 50% of the limits above.

Current distortions that occur in a dc offset, e.g, half-wave converters are not allowed

Source: Ref. 1. Copyright 1992 IEEE. All rights reserved. Reproduced with permission.

Table F-2 Current Distortion Limits for General Transmission Systems (>161 kV),
Dispersed Generation and Cogeneration

Isc=IL
a

Harmonic order (odd harmonics)b

THD<11 11 � h < 17 17 � h < 23 23 � h < 35 354h

<50 2.0 1.0 0.75 0.3 0.15 2.5
>50 3.0 1.5 1.15 0.45 0.22 3.75

aIsc = maximum short-circuit current at PCC; IL = maximum load current (fundamental frequency) at

PCC.

All power generation equipment is limited to these values of current distortion regardless of Isc/IL.
bEven harmonics are limited to 25% of the odd harmonic limits above.

Current distortions that occur in a dc offset, e.g., half-wave converters, are not allowed.

Source: Ref. 1. Copyright 1992 IEEE. All rights reserved. Reproduced with permission..
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The IEC standard [2] involves limits on harmonic current injected into a public
distribution network by nonlinear appliances with an input current less than or equal
to 16A. This classifies such appliances into four classes (A–D). For each class,
harmonic current emission limits are established up to the 39th harmonic. The
classes are:

Class A: Three-phase appliances.
Class B: Portable appliances.
Class C: Lighting appliances, including dimmer systems.
Class D: Appliances with input current with an assigned special wave shape

and an active power input P < 600W measured according to the method
illustrated in the standard. This special wave shape is shown in Fig. F-1 and
the harmonic emission limits are presented in Table F-3.

The standard lays down methods for testing individual appliance harmonic
emissions in the regulated frequency range. We have seen that the harmonic injection
into a system is also a function of the system impedance. Unlike the IEEE [1], IEC
limits apply to all systems irrespective of their stiffness.

F.2 VOLTAGE QUALITY

While a user can inject only a certain amount of harmonic current into the utility
system as discussed in Sec. F.1, the utilities and power producer must meet a certain
voltage quality to the consumers. The recommended voltage distortion limits are
given in Table F-4. The index used is THD (total harmonic voltage distortion) as a

Limitation of Harmonics 811

Figure F-1 Line current block for harmonic emission control. (From Ref. 1.)

Table F-3 Harmonic Emission Limits for Class D Appliances

Harmonic order
Maximum admissible

harmonic current (mA/W)
Maximum admissible
harmonic current (A)

3 3.4 2.3
5 1.9 1.14

7 1.0 0.77
9 0.5 0.4
11 0.35 0.33
13 � n � 39 3.85/n 0.15 (15/n)

Source: Ref. 2.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



percentage of nominal fundamental frequency voltage. The limits are system design
values for worst case for normal operation, conditions lasting for more than 1 h. For
shorter periods, during startups or unusual conditions, the limits can be exceeded by
50%. If the limits are exceeded, harmonic mitigation through use of filters or stiffen-
ing of the system through parallel feeders is recommended.

Example F.1

The harmonic current and voltage spectrum of a 12-pulse LCI inverter, operating at
� ¼ 158, is presented in first two columns of Table F-5. The demand current is 1200
A, which is also the inverter maximum operating current. The available short-circuit
current at the PCC is 14 kA. Calculate the distortion limits. Are these exceeded?
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Table F-4 Harmonic Voltage Limits for Power Producers (Public Utilities or

Cogenerators)

Harmonic distortion in % at PCC

< 69 kV >69–161 kV >161 kV

Maximum for individual harmonic 3.0 1.5 1.0

Total harmonic distortion (THD)% 5.0 2.5 1.5

High-voltage systems can have up to 2.0% THD where the cause is an HVDC terminal that will

attenuate by the time it is tapped for a user.

Source: Ref. 1. Copyright 1992 IEEE. All rights reserved. Reproduced with permission.

Table F-5 Example F.1a

h Ih (A)
Harmonic
distortion IEEE limits Vh (V)

5 24.32 2.027 1.0 20.86
7 13.43 1.119 1.0 16.13

11 65.42 5.452 2.82 123.46
13 39.69 3.331 2.82 88.52
17 1.87 0.156 0.375 5.45
19 0.97 0.081 0.375 3.16

23 8.45 0.704 0.846 33.34
25 8.54 0.711 0.846 36.62
29 0.98 0.081 0.15 4.87

31 0.76 0.063 0.15 4.04
35 5.02 0.418 0.423 30.14
37 3.27 0.273 0.423 20.75

41 0.23 0.019 0.075 1.62
43 0.23 0.019 0.075 1.70
47 3.45 0.287 0.423 27.81

49 2.58 0.215 0.423 21.69

Total distortion 6.887% 5% 4.08%

a12-pulse harmonic content, 15º firing angle, 4.16-kV bus; load current = base current = 1200 A; short-

circuit current = 14 kA.
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Table F-5 is extended to show permissible limits of the TDD at each of the
harmonics, and individual and total permissible current distortions are calculated
from Table F-1 for Isc/IL < 20 (actual Isc/IL = 11.67). The noncharacteristic har-
monics are reduced to 25% and the characteristic harmonics [Eq. (17.37)] are multi-
plied by a factor of the square root of p over 6, i.e., 2

p
.

Table F-5 shows that current distortion limits on a number of harmonics are
exceeded. Also, the total TDD is greater than permissible limits. The total THD
voltage is below the 5% limit, but the distortion at the 11th harmonic is 3.32%,
which exceeds the maximum permissible limit of 3% on an individual harmonic.

In this example, the distortion limits exceed the permissible limits, though a 12-
pulse converter is used, and the base load equals the converter load, i.e., all the load
is nonlinear. Generally, the harmonic producing loads will be some percentage of the
total load demand and this will reduce TDD as it is calculated on the basis of total
fundamental frequency demand current. Also, note that if the short-circuit level of
the system changes so does the harmonic distribution (Chap. 20).

F.3 COMMUTATION NOTCHES

Commutation notches are shown in Fig. F-2(a). For low-voltage systems, the notch
depth, the total notch area of the line-to-line voltage at the PCC, and THD should be
limited as shown in Table F-6. The notch area is given by

AN ¼ VNtN ðF:1Þ

Limitation of Harmonics 813

Figure F-2 (a) Voltage notches; (b) circuit diagram for calculation of notch area.
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where AN is the notch area in volt-microseconds VN is the depth of the notch in volts,
line-to-line, (L-L) of the deeper notch in the group, and tN is the width of the notch
in microseconds.

Consider the equivalent circuit of Fig. F-2(b) and let us define the following
inductances:

Lt is the inductance of the drive transformer
LL is the reactance of the feeder line
Ls is the inductance of the source

The notch depth depends where we look into the system. The primary voltage goes to
zero at the converter terminals, point A in Fig. F-2(b), and the depth of the notch is
maximum. At B the depth of the notch in per unit of the notch depth at A is given by

Ls þ LL

Ls þ Lt þ LL

ðF:2Þ

If point C in Fig. F-2(b) is defined as the PCC, then the depth of the notch at the
PCC in per unit with respect to notch depth at the converter is

VN ¼ Ls

LL þ Lt þ Ls

ðF:3Þ

The impedances in the converter circuit are acting a sort of potential divider. The
width of the notch is given by the commutation angle � and by the expression:

tN ¼ 2ðLL þ Lt þ LsÞId
e

ðF:4Þ

where e is the instantaneous voltage (L-L) prior to the notch. The area of the notch
at the converter terminals is given by

AN ¼ 2IdðLs þ Lt þ LLÞ ðF:5Þ
A relationship between line notching and distortion factor is given by

Vh ¼
Xh¼1

h¼5

V2
h

" #1=2

¼ 2V2
NtN þ 4ðVN=2Þ2tN

ð1=f Þ

" #1=2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3V2

NtNf
q

ðF:6Þ

In Eq. (F.6) the two deeper and four less deep notches per cycle, Fig. F-2(a), are
considered.
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Table F-6 Low-Voltage System Classification and Distortion Limits

Special applications General systems Dedicated systems

Notch depth 10% 20% 50%
THD (voltage) 3% 5% 10%
Notch area ðAnÞ 16,400 22,800 36,500

The notch area for voltages other than 480 V is given by multiplication by a factor V/480. Notch area is

given in volts-�secs at rated voltage and current. Special applications include hospitals and airports. A

dedicated system is exclusively dedicated to the converter load.

Source: Ref. 1. Copyright 1992 IEEE. All rights reserved. Reproduced with permission.
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Example F.2

Consider a system configuration as shown in Fig. F-3. It is required to calculate the
notch depth and notch area at buses A, B, and C.

The inductances throughout the system are calculated and are shown in Fig.
F-3. The source inductance (reflected at 480 V), based on the given short-circuit
data, is 0.64 mH. It is a stiff system at 13.8 kV, and the source reactance is small.

A 1-MVA transformer reactance referred to the 480-V side, based on the X=R
ratio, Xt = 5.638% = 0.1299 ohms. This gives an inductance of 34.4 mH at 480 V.
Similarly, for a 1.5-MVA transformer, the inductance is 23.2 mH. The feeder induc-
tance is given or it can be calculated, based on given cable/bus duct data. The notch
depth at bus C as a percentage of depth at the converter = (34.4 + 0.64)/(34.4 +
0.64 + 30) = 54%. Referring to Table F-6, this exceeds the limits even for a
dedicated system.

Consider that the converter is supplying a motor load of 500 hp at 460 V and
the dc current is continuous and equal to 735 A. The notch area at the converter ac
terminals is then given by:

2IdðLs þ LT1 þ LF1Þ ¼ 2� 735ð0:64þ 34:3þ 30Þ
¼ 95609 V-msec

Therefore, the notch area at bus C ¼ 0:54� 95609 ¼ 51628V-msec. From Table F-6,
the limits for dedicated systems and general systems are 36,500 and 22,800, respec-
tively. The calculated value is much above these limits.

Limitation of Harmonics 815

Figure F-3 System configuration with drive loads for calculation of notch area (Example

F.2).
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The notch area at bus A due to the converter at bus C is

0:64

0:64þ 34:4þ 30
ð95609Þ ¼ 940:8 V-msec

In a likewise calculation, the notch depth at bus B = 44.28%, area = 35061 V-msec.
The notch area at bus A due to the converter load at bus B = 940.8 V-msec.

The total notch area at bus A can be considered as a sum of the notch areas due
to converter loads at buses B and C. This assumes that the notch widths due to
commutation are additive, which is a very conservative assumption.

This example suggests that problems of notching can be mitigated by:

. Decreasing the source impedance behind the PCC bus.

. Increasing the impedance ahead of (on the load side) of the PCC bus.
Isolation transformers and line reactors are commonly used and serve the
same purpose.

. In Chap. 20 we have seen that providing second-order high-pass filters is
another option, which can also provide reactive power compensation and
improve the voltage profile on low-power factor loads.

F.4 INTERHARMONICS

We defined interharmonics in Sec. 17.23 and briefly discussed the type of nonlinear
loads, which may give rise to interharmonics in power systems. The interharmonic
frequency components greater than the power frequency cause heating effects that
are similar to those caused by harmonics. The impact on light flicker (Sec. F.5) is
important. Modulation of power system voltage with interharmonic voltage intro-
duces variations in system voltage rms value. The IEC flicker meter is used to
measure the light flicker indirectly by simulating the response of an incandescent
lamp and human-eye-brain response to visual stimuli [3]. The other impacts of
concern are:

. Excitation of subsynchronous conditions in turbo-generator shafts (see also
Sec. 18.1.2)

. Interharmonic voltage distortions similar to other harmonics

. Interference with low frequency power line carrier control signals

. Overloading of conventional tuned filters. See Sec. 20.13 for the limitations
of the passive filters, the tuning frequencies, the displaced frequencies, and
possibility of a resonance with the series tuned frequency. As the interhar-
monics vary with the operating frequency of a cycloconverter, a resonance
can be brought where none existed before making the design of single tuned
filters impractical.

IEC 61000-4-7 [4] has established a method of measurement of harmonics and
interharmonics utilizing a 10- or 12-cycle window for 50 Hz and 60 Hz systems.
This results in a spectrum with 5 Hz resolution. The 5Hz bins are combined to
produce various groupings and components for which limits and guidelines can be
referenced. The IEC limits the interharmonic voltage distortion to 0.2% for the
frequency range from DC to 2 kHz.
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There are yet no limits of interharmonics assigned in IEEE 519-1992 [1]. The follow-
ing recommendations are from Ref. [5] and may be incorporated in this standard:

. Limit of 0.2% for frequencies less than 140 Hz to address flicker of incan-
descent lamps and fluorescent lamps.

. Limit individual interharmonic component distortion to less than 1% above
140 Hz up to some frequency, yet to be determined, to protect low frequency
PLC (power line carrier), address sensitivity to light flicker within 8 Hz of
harmonic frequencies, and account for resonance’s created by harmonic
filters.

. For higher frequencies, limit interharmonic voltage component and total
distortion to some percentage related to proposed frequency dependent
harmonic voltage limits to protect high frequency PLC and filter resonances.
Alternatively, define a linear limit curve with increasing slope, to recognize
the reduced impact on light flicker with increasing frequency.

F.5 FLICKER

Voltage flicker occurs due to operation of rapidly varying loads, such as arc furnaces
which affect the system voltage. This can cause annoyance by causing visible light
flicker on tungsten filament lamps. The human eye is most sensitive to light varia-
tions in the frequency range 5–10 Hz and voltage variations of less than 0.5% in this
frequency can cause annoying flicker on tungsten lamps. The percentage pulsation of
voltage related to frequency at which it is most perceptible, from various references,
is included in Ref. [1].

Apart from arc furnaces, there are other loads that can generate flicker.
Large spot welding machines often operate close to the flicker perception limits.
Industrial processes may comprise a number of motors having rapidly varying
loads or starting at regular intervals, and even domestic appliances such as coo-
kers and washing machines can cause flicker on weak systems. However, the most
harsh load for flicker is an arc furnace. During the melting cycle of a furnace the
reactive power demand is high and this causes cyclic voltage drops in the supply
system. This voltage drop is proportional to the short-circuit MVA of the supply
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Figure F-4 Voltage and frequency variations due to flicker.
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system and the arc furnace MVA. Figure F-4 shows cyclic fluctuations of the
voltage.

The change in peak voltage is �V ¼ V2 � V1. The rms modulating voltage is
�V=ð2 ffiffiffi

2
p Þ and the average rms voltage is ðV1 þ V2Þ=ð2

ffiffiffi
2

p Þ. The voltage flicker in
percentage is defined as

V2 � V1

V2 þ V1

� 100 ðF:7Þ

For a furnace installation, the short-circuit voltage depression (SCVD) is
defined as

SCVD ¼ 2MWfurnace

MVAsc

ðF:8Þ

where MW is the installed load of the furnace in MWfurnace and MVAsc is the short-
circuit level of the utility’s supply system. This gives an idea whether potential
problems with flicker can be expected. An SCVD of 0.02–0.025 may be in the
acceptable zone, between 0.3 and 0.35 in the borderline zone, and above 0.035
objectionable [6]. When there are multiple furnaces, these can be grouped into one
equivalent MW. Example 20.2 describes the use of tuned filters to compensate for the
reactive power requirements of an arc furnace installation. The worst flicker occurs
during the first 5–10 min of each heating cycle and decreases as the ratio of the solid
to liquid metal decreases.

The response of the passive compensating devices is slow. When it is essential
to compensate load fluctuations within a few milliseconds, SVCs are required.
Referring to Fig. 13-12, large TCR flicker compensators of 200 MW have been
installed for arc furnace installations. Closed-loop control is necessary due to the
randomness of load variations and complex circuitry is required to achieve response
times of less than one cycle. Significant harmonic distortion may be generated, and
harmonic filters will be required. TSCs have also been installed and these have
inherently one cycle delay as the capacitors can only be switched when their terminal
voltage matches the system voltage. Thus, the response time is slower. SVCs employ-
ing TSCs do not generate harmonics, but the resonance with the system and trans-
former needs to be checked.
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Appendix G

Estimating Line Harmonics

The harmonic generation is a function of the topology of the harmonic producing
equipment (Chap. 17). Six-pulse current source converters are most commonly
applied and the harmonic estimation from these has been discussed in Chap. 17,
and is visited again. Figure G-1 shows the line current waveforms. The theoretical or
textbook waveform is rectangular and considers instantaneous commutation, Fig.
G.1(a). The effect of commutation delay and firing angle still retains the flat-top
assumption, Fig. G-1(b). The dc current is not flat-topped and the actual waveform
has a ripple, Fig. G-1(c). For lower values of the dc reactor and large phase-control
angles the current is discontinuous, Fig. G-1(d).

G.1 WAVEFORM WITHOUT RIPPLE CONTENT

An estimation of the harmonics ignoring waveform ripple is provided by Eqs.
(17.45)–(17.49), which are reproduced below for ease of reference:

Ih ¼ Id

ffiffiffi
6

�

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A2 þ B2 � 2AB cosð2�þ �Þ

p
h½cos �� cosð�þ �Þ� ðG:1Þ

where

A ¼
sin ðh� 1Þ�

2

h i
h� 1

ðG:2Þ
and

B ¼
sin ðhþ 1Þ�

2

h i
hþ 1

ðG:3Þ
The angle � is given by

� ¼ cos�1½cos�� ðXs þ XtÞId� � � ðG:4Þ
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We also defined Xs and Xt as the system and transformer reactance in per unit on a
converter base and Id as the dc current in per unit on a converter base. The calcula-
tion is illustrated with an example:

Consider a 2-MVA delta–wye, 13.8–0.48 kV transformer, impedance 5.75%,
and a supply system short-circuit level of 500 MVA. The six-pulse converter operates
with � ¼ 458.

Considering a converter base equal to the rated kVA of the transformer and
converting the transformer and source impedances to a converter base, we have:

Xt ¼ 0:0575 and Xs ¼ 0:004 in per unit. The resistance is ignored. From Eq. (G.4):

� ¼ cos�1½cos 458� ð0:0575þ 0:004Þ� � 458 ¼ 4:88

We will calculate the magnitude of the fifth harmonic. From Eq. (G.2), A = 0.0417
and from Eq. (G.3), B = 0.0414. Substituting these values into Eq. (G.1), we have a
fifth harmonic current equal to 27.47% of the dc current.

For large gating angles and relatively small commutation angles, the current
can be assumed to be trapezoidal. For this waveform:

Ih
Id

¼ 2

ffiffiffi
2

p

�
� sin h�=3

�
� sin h�=2

h�=2
ðG:5Þ
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Figure G-1 (a) Rectangular current waveform; (b) waveform with commutation angle; (c)

waveform with ripple content; (d) discontinuous waveform due to large delay angle control.
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or
Ih
I1

¼ 1

h
� sin h�=2

h�=2
� sin h�=3
sin�=3

ðG:6Þ

where I, is fundamental fequency current.
We will calculate the fifth harmonic current, based on Eqs (G.5) and (G.6).

From Eq. (G.5):

Ih ¼
2:

ffiffiffi
2

p

�

sin 3008
�

sin 128
0:2094

¼ 0:2465Id

We are more interested in the harmonics as a percentage of the fundamental
frequency current and, from Eq. (G.6), Ih = 19.86% of the fundamental current.

G.2 WAVEFORM WITH RIPPLE CONTENT

The above equations ignored ripple content. Figure G-2 considers a ripple content,
which is sinusoidal, and a sine half-wave is superimposed on the trapezoidal wave-
form. The following equations are applicable [1].

Ih ¼ Ic
2
ffiffiffi
2

p

�

sin
h�

3

� �
sin

h�

2

h2
�

2

þ
rcgh cos h

�

6

� 
1� sin

�

3
þ �

2

� 
2
664

3
775 ðG:7Þ

where

gh ¼
sin ðhþ 1Þ �

6
� �

2

� h i
hþ 1

þ
sin ðh� 1Þ �

6
� �

2

� h i
h� 1

�
2 sin h

�

6
� �

2

� 
sin

�

3
þ �

2

� h i
h

ðG:8Þ
where Ic is the value of the dc current at the end of the commutation, and rc is the
ripple coefficient ð¼ �i=IcÞ.

In Fig. G-2 the time zero reference is at !t 0 ¼ 0, at the center of the current
block. This is even symmetry and, therefore, only cosine terms are present. The
instantaneous current is then:

ih ¼ Ih
ffiffiffi
2

p
cos n!t 0 ðG:9Þ
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Figure G-2 Trapezoidal current waveform with superimposed sinusoidal ac ripple.
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The current harmonics referred to !t 0 ¼ 0 (Fig. G-2) are

ih ¼ Ih
ffiffiffi
2

p
sin

n�

2
sin½nð!t� �1Þ� ðG:10Þ

where �1 is the phase angle between fundamental current and source voltage
ð¼ �þ �=2Þ.

We will continue with the example to illustrate the method of calculation.
Consider that Vdo = 2.34 (480/

ffiffiffi
3

p
) = 648 V. The short-circuit current on the

480-V bus is designated as Is = 39 kA. Let Ic = 2 kA, and Vd/Vdo = 0.8, where
Vd is the dc operating voltage and Vdo is the no load voltage; then, Ic/Is

ffiffiffi
2

p
= 0.036.

Using these values and from Fig. G-3 for � ¼ 458, the overlap angle � can be read as
approximately 4:58. Let us say it is 4:88, as before.

Entering the values of � and Vd/Vdo = 0.8 in Fig. G-4, we read Ar = 0.1,
where Ar is the voltage-ripple integral or the ripple area.

Calculate the ripple current �i ¼ ArVdo=Xr:

Xr ¼ !Ld þ 2Xc

where Xr is ripple reactance, Ld is the inductance in the dc circuit in H, and Xc is the
commutating reactance.

First consider that there is no dc inductance, Xr = 2Xc = 2�0.0071 ohms (the
reactance of the transformer and the source referred to the 480-V side), and that
�i ¼ 4563, then the ripple coefficient rc ¼ �i=Ic ¼ 2:28.

Now, the harmonics as a percentage of the fundamental current can be calcu-
lated graphically from Figs. G-5(a)–(h) from Ref. [1]. Negative values indicate a
phase shift of �, and I1 is the fundamental frequency current.
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Figure G-3 Converter load curves for six-pulse bridge.
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Continuing with the example, and entering Fig. G-5(a) for � ¼ 4:8 and
rc ¼ 2:28, we find that it is outside the range on the X axis. An approximate value
of 40% fifth harmonic can be read.

More accurately, Eqs. (G.7) and (G.8) can be used. From Eq. (G.8), and
substituting the numerical values:

gh ¼
sin 165:68

6
þ sin 110:48

4
� 2ðsin 1388 sin 62:48Þ

5
¼ 0:03875
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Figure G-4 Voltage-ripple integral for calculation of ripple current �i.

Figure G-5 (a)–(h) Harmonic currents in per unit of fundamental frequency current as a
function of rc.

Copyright 2002 by Marcel Dekker, Inc. All Rights Reserved.



Figure G-5 (Continued)
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Figure G-5 (Continued)
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and from Eq. (G.7):

Ih ¼
2
ffiffiffi
2

p

�

sin 3008 sin 128
1:0472

þ ð2:28Þð0:03857Þ cos 1508
0:113

	 

¼ �0:762Ic

The ratio of currents I1=Ic is given in Fig. G-6. For rc = 2.28, it is 1.8 and therefore
the fifth harmonic in terms of the fundamental current is 42.3%. This is close to 40%
estimated from the graphs.
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Figure 6-5 (Continued)

Figure G-6 Fundamental line current and commutation current as a function of rc.
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If a dc inductor of 1 mH is added, then Xr ¼ 0:3912 ohms, �i ¼ 165:6, the
ripple coefficient rc ¼ �i=Ic ¼ 0:08, and the fifth harmonic reduces to 20% of the
fundamental current. The reader may also refer to classical work in Ref. [2] and a
recent work in Ref. [3].

G.3 PHASE ANGLE OF HARMONICS

When a predominant harmonic source acts in isolation, it may not be necessary to
model the phase angles of the harmonics. For multiple harmonic sources, phase
angles should be modeled. Figure G-7(a) shows the time–current waveform of a
six-pulse current source converter, when the phase angles are represented and it is
recognizable as the line current of a six-pulse converter, with overlap and no ripple
content; however, the waveform of Fig. G-7 (b) has exactly the same spectra, but all
the harmonics are cophasial. It can be shown that the harmonic current flow and the
calculated distortions for a single-source harmonic current will be almost identical
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Figure G-7 (a) Six-pulse converter current, harmonics at proper angles; (b) all harmonics
cophasial.
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for these two waveforms. Assuming that the harmonics are cophasial in multisource
current models does not always give the most conservative results.

Figure G-8(a) shows the time–current waveform of a pulse width modulated or
voltage source converter, with harmonic phase angles. The harmonic spectrum and
phase angles are shown in Table G-1. The phase angle of the fundamental is shown
to be zero. Equation (19.9) applies and for a certain phase angle of the fundamental,
the phase angle of the harmonics is calculated by shifting the angle column by h�1
(harmonic order multiplied by fundamental frequency phase angle). Figure G-8(b)
shows the waveform with all harmonics cophasial. Some observations as for Figs. G-
7(a) and G-7(b) are applicable.

For multiple source assessment, the worst-case combination of the phase
angles can be obtained by performing harmonic studies with one harmonic-produ-
cing element modeled at a time. The worst-case harmonic level, voltage, or current is
the arithmetical summation of the harmonic magnitudes in each study. This will be a
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Figure G-8 (a) PWM voltage source converter current, harmonics with proper phase angles;
(b) all harmonics cophasial.
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rather lengthy study. Alternatively, all the harmonic sources can be simultaneously
modeled, with proper phase angles. The fundamental frequency angles are known by
prior load flow flow and the angle of harmonics can be calculated using Eq. (19.9).

REFERENCES

1. AD Graham, ET Schonholzer. Line Harmonics of Converters with DC-Motor Loads.
IEEE Trans Ind Appl 19: 84-93, 1983.

2. JC Read. The Calculation of Rectifier and Inverter Performance Characteristics. JIEE,
UK, 495-509, 1945.

3. M Gr‘tzbach, R Redmann. Line Current Harmonics of VSI-Fed Adjustable-Speed Drives.

IEEE Trans Ind Appl 36: 683-690, 2000.

Estimating Line Harmonics 829

Table G-1 Harmonic Spectrum of a Voltage Source or

Pulse-Width Modulated ASD (Adjustable Speed Drive)

Harmonic order Magnitude Phase angle

1 100.0 0
3 3.1 �160

5 60.7 �178
7 41.2 �172
9 0.7 158
11 3.85 165

13 7.74 �177
14 0.3 �53
15 0.41 135

17 3.2 32
18 0.3 228
19 1.54 179

21 0.32 110
23 1.8 38
25 1.3 49

29 1.2 95
31 0.7 222
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