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Preface

These lectures notes are intended to be used in the Systemdynamik und Leit-
technik der elektrischen Energieversorgung (Vorlesungsnummer ETH Zürich
35-528) lectures given at ETH in the eighth semester in electrical engineer-
ing.

The main topic covered is frequency control in power systems. The
needed models are derived and the primary and secondary frequency con-
trol are studied. A detailed model of the synchronous machine, based on
Park’s transformation, is also included. The excitation and voltage control
of synchronous machines are briefly described. An overview of load models
are also given.

Zürich in March 2003

Göran Andersson
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1
Introduction

In this chapter a general introduction to power systems control is given.
Some basic results from control theory are reviewed, and an overview of the
use of different kinds of power plants in a system is given.

The main topics of these lectures will be

• Power system dynamics

• Power system control

• Security and operational efficiency.

In order to study and discuss these issues the following tools are needed

• Control theory (particularly for linear systems)

• Modelling

• Simulation

• Communication technology.

The studied system comprises the subsystems Electricity Generation, Trans-
mission, Distribution, and Consumption (Loads), and the associated control
system has a hierarchic structure. This means that the control system con-
sists of a number of nested control loops that control different quantities in
the system. In general the control loops on lower system levels, e.g. locally
in a generator, are characterized by smaller time constants than the control
loops active on a higher system level. As an example, the Automatic Voltage
Regulator (AVR), which regulates the voltage of the generator terminals to
the reference (set) value, responds typically in a time scale of a second or
less, while the Secondary Voltage Control, which determines the reference
values of the voltage controlling devices, among which the generators, oper-
ates in a time scale of tens of seconds or minutes. That means that these
two control loops are virtually de-coupled. This is also generally true for
other controls in the systems, resulting in a number of de-coupled control
loops operating in different time scales. A schematic diagram showing the
different time scales is shown in Figure 1.1.

1
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Figure 1.1. Schematic diagram of different time scales of power system controls.

The overall control system is very complex, but due to the de-coupling
it is in most cases possible to study the different control loops individually.
This facilitates the task, and with appropriate simplifications one can quite
often use classical standard control theory methods to analyse these con-
trollers. For a more detailed analysis, one has usually to resort to computer
simulations.

A characteristic of a power system is that the load, i.e. the electric
power consumption, varies significantly over the day and over the year. This
consumption is normally uncontrolled. Furthermore, since substantial parts
of the system is exposed to external disturbances, the possibility that lines
etc. could be disconnected due to faults must be taken into account. The
task of the different control systems of the power system is to keep the power
system within acceptable operating limits such that security is maintained
and that the quality of supply, e.g. voltage magnitudes and frequency, is
within specified limits. In addition, the system should be operated in an
economically efficient way. This has resulted in a hierarchical control system
structure as shown in Figure 1.2.

1.1 Control Theory Basics - A Review

The de-coupled control loops described above can be analyzed by standard
methods from the control theory. Just to refresh some of these concepts,
and to explain the notation to be used, a very short review is given here.

1.1.1 Simple Control Loop

The control system in Figure 1.3 is considered. In this figure the block G(s)
represents the controlled plant and also possible controllers. From this figure
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Figure 1.2. The structure of the hierarchical control systems of a power system.

the following quantities are defined 1 :

• r(t) = Reference (set) value (input)

• e(t) = Control error

• y(t) = Controlled quantity (output)

• v(t) = Disturbance

Normally the controller is designed assuming that the disturbance is equal
to zero, but to verify the robustness of the controller realistic values of v
must be considered.

In principle two different problems are solved in control theory:

1. Regulating problem

2. Tracking problem

1Here the quantities in the time domain are denoted by small letters, while the Laplace
transformed corresponding quantities are denoted by capital letters. In the following this
convention is not always adhered to, but it should be clear from the context if the quantity
is expressed in the time or the s domain.



4 1. Introduction

Σ
e + 

_ 

 
  

G(s) 

 
H(s) 

r y 

12 24 0 

P 

(h) 

v 

Figure 1.3. Simple control system with control signals.

In the regulating problem, the reference value r is normally kept constant
and the task is to keep the output close to the reference value even if dis-
turbances occur in the system. This is the most common problem in power
systems, where the voltage, frequency and other quantities should be kept
at the desired values irrespective of load variations, line switchings, etc.

In the tracking problem the task is to control the system so that the
output y follows the time variation of the input r as good as possible. This
is sometimes also called the servo problem.

The transfer function from the input, R, to the output, Y , is given by
(in Laplace transformed quantities)

F (s) =
Y (s)

R(s)
=

C(s)

R(s)
=

G(s)

1 + G(s)H(s)
(1.1)

In many applications one is not primarily interested in the detailed time
response of a quantity after a disturbance, but rather the value direct after
the disturbance or the stationary value when all transients have decayed.
Then the two following properties of the Laplace transform are important:

g(t → 0+) = lim
s→∞

sG(s) (1.2)

and
g(t → ∞) = lim

s→0

sG(s) (1.3)

where G is the Laplace transform of g. If the input is a step function,
Laplace transform = 1/s, and F (s) is the transfer function, the initial and
stationary response of the output would be

y(t → 0+) = lim
s→∞

F (s) (1.4)

and
y(t → ∞) = lim

s→0

F (s) (1.5)
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1.1.2 State Space Formulation

A linear and time-invariant controlled system is defined by the equations







ẋ = Ax + Bu

y = Cx + Du

(1.6)

The vector x = (x1 x2 . . . xn)T contains the states of the system, which
uniquely describe the system. The vector u has the inputs as components,
and the vector y contains the outputs as components. The matrix A, of
dimension n × n, is the system matrix of the uncontrolled system. The
matrices B, C, and D depend on the design of the controller and the available
outputs. In most realistic cases D = 0, which means that there is zero
feedthrough, and the system is said to be strictly proper. The matrices A
and B define which states that are controllable, and the matrices A and
C which states that are the observable. A controller using the outputs as
feedback signals can be written as u = −Ky = −KCx, assuming D = 0,
where the matrix K defines the feedback control, the controlled system
becomes

ẋ = (A − BKC)x (1.7)

1.2 Control of Electric Power Systems

The overall control task in an electric power system is to maintain the bal-
ance between the electric power produced by the generators and the power
consumed by the loads, including the network losses, at all time instants.
If this balance is not kept, this will lead to frequency deviations that if too
large will have serious impacts on the system operation. A complication is
that the electric power consumption varies both in the short and in the long
time scales. In the long time scale, over the year, the peak loads of a day are
in countries with cold and dark winters higher in the winter, so called winter
peak, while countries with very hot summers usually have their peak loads
in summer time, summer peak. Examples of the former are most European
countries, and of the latter Western and Southern USA. The consumption
vary also over the day as shown in Figure 1.4. Also in the short run the
load fluctuates around the slower variations shown in Figure 1.4, so called
spontaneous load variations.

In addition to keeping the above mentioned balance, the delivered elec-
tricity must conform to certain quality criteria. This means that the voltage
magnitude, frequency, and wave shape must be controlled within specified
limits.

If a change in the load occurs, this is in the first step compensated by
the kinetic energy stored in the rotating parts, rotor and turbines, of the
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Figure 1.4. Typical load variations over a day. Left: Commercial
load.; Right: Residential load.

generators resulting in a frequency change. If this frequency change is too
large, the power supplied from the generators must be changed, which is done
through the frequency control of the generators in operation. An unbalance
in the generated and consumed power could also occur as a consequence of
that a generating unit is tripped due to a fault. The task of the frequency
control is to keep the frequency deviations within acceptable limits during
these events.

To cope with the larger variations over the day and over the year gener-
ating units must be switched in and off according to needs. Plans regarding
which units should be on line during a day are done beforehand based on
load forecasts2. Such a plan is called unit commitment. When doing such
a plan, economic factors are essential, but also the time it takes to bring a
generator on-line from a state of standstill. For hydro units and gas tur-
bines this time is typically of the order of some minutes, while for thermal
power plants, conventional or nuclear, it usually takes several hours to get
the unit operational. This has an impact on the unit commitment and on
the planning of reserves in the system3.

Depending on how fast power plants can be dispatched, they are clas-
sified as peak load, intermediate load, or base load power plants. This
classification is based on the time it takes to activate the plants and on the

2With the methods available today one can make a load forecast a day ahead which
normally has an error that is less than a few percent.

3In a system where only one company is responsible for the power generation, the unit
commitment was made in such a way that the generating costs were minimized. If several
power producers are competing on the market, liberalized electricity market, the situation
is more complex. The competing companies are then bidding into different markets, pool,
bi-lateral, etc, and a simple cost minimizing strategy could not be applied. But also in
these cases a unit commitment must be made, but after other principles.
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fuel costs and is usually done as below4. The classification is not unique and
might vary slightly from system to system.

• Peak load units, operational time 1000–2000 h/a

– Hydro power plants with storage

– Pumped storage hydro power plants

– Gas turbine power plants

• Intermediate load units, operational time 3000–4000 h/a

– Fossil fuel thermal power plants

– Bio mass thermal power plants

• Base load units, operational time 5000–6000 h/a

– Run of river hydro power plants

– Nuclear power plants

In Figure 1.5 the use of different power plants is shown in a load duration
curve representing one years operation.

The overall goal of the unit commitment and the economic dispatch is
the

• Minimization of costs over the year

• Minimization of fuel costs and start/stop costs

4The fuel costs should here be interpreted more as the “value” of the fuel. For a hydro
power plant the “fuel” has of course no cost per se. But if the hydro plant has a storage
with limited capacity, it is obvious that the power plant should be used during high load
conditions when generating capacity is scarce. This means that the “water value” is high,
which can be interpreted as a high fuel cost.
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Figure 1.5. Duration curve showing the use of different kinds of power plants.



2
Frequency Control in Electric Power

Systems

In this chapter, a model that can be used for studying frequency variations
following a disturbance, like generator or load tripping, in an electric power
system is developed. Models for the frequency dependency of loads are dis-
cussed.

2.1 System Model

It was discussed in chapter 1 that the system’s frequency will deviate from
the desired (or nominal) frequency if the balance between power generation
and load consumption (including losses) is not maintained. Since the swing
equations constitute a general model of the movement of the generators’
rotors, these equations can be used for studying the variation of the system
frequency.

After a disturbance, like loss of production, in the system, the frequency
in different parts of the system will vary according to Figure 2.1. The
frequencies of the different machines can be viewed as comparatively small
variations over an average frequency in the system. This average frequency,
called the system frequency in the following, is the frequency that can be
defined for the so–called centre of inertia (COI) of the system.

We want to derive a model that is valid for reasonable frequency devia-
tions, the exact version of swing equation will be used, i.e.

∆ω̇i =
ω0

2Hi

(Tmi(p.u.) − Tei(p.u.)) , (2.1)

with the usual notation. The indices m and e denote mechanical (turbine)
and electrical quantities respectively. ∆ωi is used here to denote the de-
viation in rotor angular frequency as compared with the nominal one ω0.
(For rotor oscillations the frequency of ∆ωi is often of interest, while the
amplitude of ∆ωi is the main concern in frequency control.) By extending
the right hand side with the actual angular frequency and expressing the

9
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Figure 2.1. The frequency in different locations in an electric power
system after a disturbance. The thicker solid curve indicates the aver-
age system frequency. Other curves depict the frequency of individual
generators.

power in SI–units, like MW instead of p.u.,

2HiSi∆ω̇i =
ω2

0

ωi
(Pmi − Pei) (2.2)

is obtained. Pmi and Pei are now expressed in the same SI–unit as Si,
cf. Appendix A. Further, for every synchronous machine i

ωi = ω0 + ∆ωi , (2.3)

and for the frequency in the centre of inertia (COI)

ω = ω0 + ∆ω . (2.4)

The system frequency deviation ∆ω (or ω) is now defined as
∑

i

HiSi∆ωi = H∆ω (2.5)

with
H =

∑

i

HiSi . (2.6)

Adding eq. (2.2) for all generators in the system leads to

2H∆ω̇ = ω2

0

∑

i

Pmi − Pei

ωi

. (2.7)
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A very simple and useful model can be derived if some more assumptions
are made.

The overall goal of our analysis is to derive an expression that gives the
variation of ∆ω after disturbance of the balance between

∑

Pmi and
∑

Pei.
Therefore, we define

Pm =
∑

i

Pmi = Pm0 + ∆Pm , (2.8)

where ∆Pm denotes a possible disturbance, like loss of a generator (turbine).
The total generated power is consumed by the loads and the transmission
system losses, i.e.

Pe =
∑

i

Pei = Pload + Ploss , (2.9)

which can, in the same way as in eq. (2.8), be written as

Pe = Pe0 + ∆Pload + ∆Ploss (2.10)

with

Pe0 = Pload0 + Ploss0 . (2.11)

If the system is in equilibrium prior to the disturbance,

Pm0 = Pe0 (2.12)

and

Pm0 = Pload0 + Ploss0 (2.13)

are valid.

The following assumptions are now made:

• The transmission losses after and before the disturbance are equal,
i.e. ∆Ploss = 0.

• All generator angular frequencies ωi in the right hand side of eq. (2.7)
are set equal to the system average angular frequency ω.

If neither the disturbance nor the oscillations in the transmission system are
too large, these approximations are reasonable. Using these assumptions
and eqs. (2.8) – (2.13), eq. (2.7) can now be written as

∆ω̇ =
ω2

0

2Hω
(∆Pm − ∆Pload) . (2.14)

Eq. (2.14) can be represented by the block diagram in Figure 2.2.
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Figure 2.2. Block diagram of eq. (2.14).

2.2 Model of Frequency Control

Eq. (2.14) describes the variation of the system’s average frequency when
the balance between generated and demanded power is no longer preserved,
i.e. when ∆Pm 6= ∆Pload. In the most common case ∆Pm − ∆Pload is
negative after a disturbance, like the tripping of a generator station. It is
also possible that the frequency rises during a disturbance, for example when
an area that contains much generation capacity is isolated. Since too large
frequency deviations in a system are not acceptable, automatic frequency
control, which has the goal of keeping the frequency during disturbances at
an acceptable level, is used. The spontaneous load variations in an electric
power system result in a minute–to–minute variation of up to 2%. This
alone requires that some form of frequency control must be used in most
systems.

There are at least two reasons against allowing the frequency to deviate
too much from its nominal value. A non–nominal frequency in the system
results in a lower quality of the delivered electrical energy. Many of the
devices that are connected to the system work best at nominal frequency.
Further, too low frequencies (lower than ≈ 47−48 Hz) lead to damaging vi-
brations in steam turbines, which in the worst case have to be disconnected.
This constitutes an even worse stress on the system and can endanger the
system’s security. (Hydro power plants are more robust and can normally
cope with frequencies down to 45 Hz.)

The frequency after a disturbance thus depends on the parameters con-
tained in eq. 2.14). In addition to the constant of inertia, H, the trajectory
is determined by

• the frequency dependency of the loads,

• the control of the hydro turbines,
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Figure 2.3. Block diagram of the frequency control in a power system.

• the control of the steam turbines, and

• load shedding.

This is summarized in the block diagram in Figure 2.3. Under frequency
load shedding is a form of system protection.

In many systems, a rotating scheme for how load should be shed, if that
is necessary, is devised. Such a scheme is often called rotating load shedding.

The frequency dependency of loads will be discussed in the next section,
while the frequency control performed by generating units will be discussed
in subsequent two chapters.

To give the reader a pre-view of how a typical frequency response would
be in systems with different frequency controls, Figure 2.4 is included. We
will revert to this figure when the models in the next chapter has been
developed.

2.2.1 Frequency Dependency of Loads

In an electric power system, the power demand of the load varies with the
frequency and the voltage. These variations are, as a rule, highly compli-
cated and change during the day and over the year. For compound loads,
such as a transformer station in the high–voltage net, the compound struc-
ture of the separate loads is difficult to represent in a simple way. Generally,
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more or less simplified models have to be used. For the phenomenon studied
here, the main influence is the frequency dependency of the loads, which,
for small frequency variations, can be written as

Pload = Pload0(1 + Dl∆ω) = Pload0 + D∆ω . (2.15)

The parameter Dl changes of course, depending on the load type and compo-
sition, but typical values are in the interval 0–2% per % frequency variation.
Since Dl is positive, the frequency dependency of the loads leads to natural
stabilization of the frequency in the system. If that is the only stabilizing
control in the system, an unbalance between generation and load power of
∆P leads to a value of ∆ω = ∆P/D for the remaining frequency deviation
in the system.
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.
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3
Primary Frequency Control

In this chapter the part of the frequency control that is performed on the
power plant level will be described. This is called the primary frequency
control. The static, i.e. steady state, characteristics of this is described by
the speed (or frequency) droop, which determines the permanent frequency
deviation after the primary frequency control has acted. Turbine models are
also derived.

3.1 Introduction

A schematic block diagram of the power and frequency control of a power
plant is given in Figure 3.1. The control loop consists here of the turbine,
generator, and the network.

The primary control indicates here the control actions that are done lo-
cally based on the set values for frequency (normally the nominal frequency)
and the power. The actual values of these could be measured locally, and
deviations from the set values will results in an signal that will influence the
valves, gates, servos, etc, so that the desired active power output is delivered
from the generating unit. In the primary frequency control the control task
of priority is to bring the frequency back to (short term) acceptable values,
and this control task is shared by all generators participating in the primary
frequency control irrespective of what caused the control action.

In the secondary frequency control, also called load frequency control, the
set values of the generator power is adjusted to compensate for undesired
fluctuations introduced by the primary frequency control. These undesired
fluctuations could be too large a frequency deviation during steady state
or power flows on tie lines outside the scheduled values. In this control
loop the cause of the control error is considered when the control action is
determined. This control could be done automatically, and is then often
called Automatic Generation Control, or it could be done manually. This is
further discussed in chapter 4.

The tertiary control loop in Figure 3.1 concerns the unit commitment
and economic dispatch problems and is done off line based on economic
optimization. This will not be elaborated on in these lectures.

17
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Figure 3.1. Schematic block diagram of the power and frequency con-
trol of a power plant. R = Controller. T = Turbine. G = Generator.

For a thermal unit the block diagram of the primary control is shown in
Figure 3.2. The controller controls by use of a servomotor the valve through
which the high pressure and high temperature steam flows from the boiler to
the turbines. In the high pressure turbine part of the energy of the steam is
converted into mechanical energy. Often the steam is then reheated before
it is injected into a medium pressure or low pressure turbine, where more en-
ergy is extracted from the steam. (More about different steam turbines and
their modelling can be found in subsection 3.2.1.) These turbine-generator
systems can be very large. In a big thermal unit of rating 1000 MW, the
total length of the turbine-generator shaft could be more than 50 m.

We will now make some simplified studies concerning the dynamics of
the frequency response of the system in Figure 3.2. If the total inertia of the
turbine-generator system is J , the mechanical torque from the turbine(s) is
Tm, the electrical torque on the generator is Te, then the equation of motion
will be

J
dω

dt
= Tm − Te (3.1)

where both Tm and Te are positive for a generator. If the frequency controller
is implemented as a proportional controller, i.e. as ∆Tm = K∆ω, the block
diagram of Figure 3.3 is obtained. This model can now be used to study the
frequency response. The relationship between power and torque is given by:

T =
P

ω
(3.2)
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Figure 3.2. Block diagram of the primary control of a thermal unit.
HP = High Pressure Turbine. LP = Low Pressure turbine.

 me  ma 

 Te 

 Ta 

 ω 

 ωref 

 ∆ω 

 − 

 + 

 − 

 + 

 T (p.u.) 

 TN 

 ωN 

 ω (p.u) 

 Ta0  ∆Ta  +  + 

 

 J 

     
1

sJ
 

     K  

Figure 3.3. Block diagram of simple system with proportional fre-
quency controller.

Two cases will be studied:

1. Change of the reference value of the frequency by a step.

2. Change of the active power load Pe with a step.

It is straightforward to derive the following relationship for case 1

∆ω

∆ωref

=
1

s
· 1

1 + sτ
(3.3)

and the following for the second case

∆ω

∆Te

= −1

s
· 1/K

1 + sτ
(3.4)
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Figure 3.4. Step response in the frequency after a step change, ∆ωref ,
in the reference value of the frequency. (In per unit of ∆ωref ) (τ = 5
s)

The time constant τ is given by

τ =
J

K
(3.5)

These step responses are shown in Figures 3.4 and 3.5.
It is common to express the gain K of the controller in per unit:

K =
∆Tm/TN

∆ω/ωN

(3.6)

where the value of K often is in the range

0.03 < 1/K < 0.1 (3.7)

This means that a change in the frequency of 3 to 10 % will result in a
change in the delivered electrical torque of 100 %. This is called the static
speed droop of the controller, see Figure 3.6. For small deviations of the
frequency, the per unit values of torque and power are almost identical.
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Figure 3.5. Step response in the frequency after a step change, ∆Te

in the active power load.(X = ∆Te/K, T = 5 s)
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Figure 3.6. The speed droop of a frequency controller.
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3.2 Turbine Control

This section gives an overview of the modelling of turbines, steam and hydro,
and their controllers. Their characteristics and behaviour are also briefly
discussed. The aim here is to give an understanding of the basic physical
mechanisms behind these models that are very commonly used in simulation
packages for the study of power systems dynamics. Figure 3.7 shows a
block diagram how these turbine models are integrated in the overall system
models.

 
AGC 

Speed 
changer 
 

Speed 
governor 

Valves 
or gates 

Turbine Generator 

Electrical system 
- Loads 
- Transmission lines 
- Other generators 

Tie line power 

Frequency 

Energy supply system: 
Steam or water 

Speed 

Other 
signals 

Turbine 
controls 

Figure 3.7. Functional block diagram of power generation and control
system. AGC = Automatic Generation Control, see chapter 4 (From
ref. [1])

3.2.1 Turbine Models

Steam Turbines

Figures 3.8 ,3.9, and 3.10 show the most common steam turbines and their
models.

It is outside the scope of these lecture notes to give a detailed derivation
and motivation of these models, only a brief qualitative discussion will be
provided. In a steam turbine the stored energy of high temperature and
high pressure steam is converted into mechanical (rotating) energy, which
then is converted into electrical energy in the generator. The original source
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of heat can be a furnace fired by fossil fuel (coal, gas, or oil) or biomass, or
it ca be a nuclear reactor.

The turbine can be either tandem compound or cross compound. In
a tandem compound unit all sections are on the same shaft with a single
generator, while a cross compound unit consists of two shafts each connected
to a generator. The cross compound unit is operated as one unit with one
set of controls. Most modern units are of tandem compound type, even if
the crossover compound units are more efficient and has higher capacity.
However, the costs are higher and could seldom be motivated.

The power outlet from the turbine is controlled through the position of
the Control Valves, which control the flow of steam to the turbines. The
delay between the different parts of the steam path is usually modelled by
a first order filter as seen in Figures 3.8 ,3.9, and 3.10. Certain fractions of
the total power is extracted in the different turbines, and this is modelled
by the factors FV HP , FHP , , FIP , FLP in the models. Typical values of
the time constant of the delay between the control valves and the high-
pressure turbine, TCH , is 0.1–0.4 s. If a re-heater is installed the time delay
is larger, typically TRH = 4 − 11 s. The time constant of delay between the
intermediate pressure and the low pressure turbines, TCO, is in the order
0.3–0.6 s.
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Figure 3.8. Steam turbin configurations and approximate linear mod-
els. Nonreheat and tandem compund, single reheat configurations.
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Figure 3.10. Steam turbin configurations and approximate linear
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3.2. Turbine Control 27

Step Response To illustrate the dynamics of a steam turbine, the configu-
ration with tandem compound, single reheat, Figure 3.8, with the following
data will be studied:

TCH = 0.1 s, TRH = 10 s, TCO = 0.3 s

FHP = 0.3, FIP = 0.4, FLP = 0.3

As TCH � TRH und TCO � TRH , we can in an approximate analysis put
TCH = TCO = 0. Then a simplified block diagram according to Figure 3.11
can be used. For this system the step response is easy to calculate, and is
according to Figure 3.12.

GVP

MP  Σ 

1

1 10s+

0.3 0.7

Figure 3.11. Simplified model of tandem compound, single reheat
system in Figure 3.9.

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (s)

P
ow

er
 fr

om
 tu

rb
in

e

FIP + FLP = 0.7 

FHP = 0.3 

TRH = 10 s 

Figure 3.12. Step response of system in Figure 3.11.
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Figure 3.13. Schematic drawing of hydro turbine with water paths.

Hydro Turbines

Compared with steam turbines, hydro turbines are easier and cheaper to
control. Thus, frequency control is primarily done in the hydro power plants
if available. If the amount of hydro–generated power in a system is not
sufficient, the steam turbines have to be included in the frequency control.

The power produced by a generator is determined by the turbine gover-
nor and the dynamic properties of the turbine. Thus, to be able to determine
the frequency’s dynamic behaviour, models for the turbine as well as for the
turbine control are necessary.

Figure 3.13 depicts a hydro turbine with penstock and hydro reservoir
and defines the notation that will be used from now on. Bernoulli’s equation
for a trajectory between the points P1 and P2 can be written as

∫ P2

P1

∂v

∂t
· dr +

1

2
(v2

2 − v2

1) + Ω2 − Ω1 +

∫ P2

P1

1

ρ
dp = 0 . (3.8)

The following assumptions are usually made:

• v1 = 0, since the reservoir is large and the water level does not change
during the time scale that is of interest here.

• The water velocity is non–zero only in the penstock.
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• The water is incompressible, i.e. ρ does not change with water pressure.

• The water pressure is the same at P1 and P2, i.e. p1 = p2.

Further,

Ω2 − Ω1 = −gh . (3.9)

The above assumptions together with eq. (3.9) make it possible to write
(3.8), with vout = v2 and the length of the penstock L, as

L
dv

dt
+

1

2
v2

out − gh = 0 . (3.10)

The velocity of the water in the penstock is v. The effective opening of the
penstock, determined by the opening of the turbine’s control valve (guide
vanes), is denoted a. If the penstock’s area is A,

vout =
A

a
v (3.11)

is valid and eq. (3.10) can be written as

dv

dt
=

1

L
gh − 1

2L

(

A

a
v

)2

. (3.12)

The maximum available power at the turbine is

P =
1

2
ρav3

out =
1

2
ρ
A3v3

a2
. (3.13)

To get the system into standard form,



























x = v ,

u =
a

A
,

y = P ,

(3.14)

are introduced. (Here, we have used the standard notation, i.e. x for state, u
for control signal, and y for output signal.) The system now can be written
as



















ẋ =
gh

L
− x2

1

2Lu2
,

y = ρA
x3

2u2
.

(3.15)

The system corresponding to eq. (3.15) can be described with the block
diagram in Figure 3.14.
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Figure 3.14. Block diagram showing model of hydro turbine.

Eq. (3.15) is nonlinear and a detailed analysis is beyond the scope of
these lecture notes. To get an idea of the system’s properties, the equations
are linearised, and small variations around an operating point are studied.
In steady state, ẋ = 0, and the state is determined by x0, u0, and y0, which
fulfils















x0 = u0

√

2gh ,

y0 =
ρAx3

0

2u2
0

.

(3.16)

Small deviations ∆x, ∆u, and ∆y around the operating point satisfy






























∆ẋ = −2x0

1

2Lu2
0

∆x +
2x2

0

2Lu3
0

∆u ,

∆y = 3ρ
Ax2

0

2u2

0

∆x − 2ρ
Ax3

0

2u3

0

∆u ,

(3.17)

which, using eqs. (3.16), can be written as


























∆ẋ = −
√

2gh

u0L
∆x +

2gh

u0L
∆u ,

∆y =
3y0

u0

√
2gh

∆x − 2y0

u0

∆u .

(3.18)

The quantity L/
√

2gh has dimension of time, and from the above equations
it is apparent that this is the time it takes the water to flow through the
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penstock if a = A. That time is denoted T :

T = L/
√

2gh . (3.19)

If eqs. (3.18) are Laplace–transformed, ∆x can be solved from the first
of the equations, leading to

∆x =
L/T

1 + su0T
∆u , (3.20)

which, when inserted in the lower of eqs. (3.18) gives

∆y =
y0

u0

· 1 − 2u0Ts

1 + u0Ts
∆u . (3.21)

u0T = a0T/A also has dimension of time and is denoted Tw. That makes it
possible to write eq. (3.21) as

∆y =
y0

u0

· 1 − 2Tws

1 + Tws
∆u . (3.22)

It is evident that the transfer function in eq. (3.22) is of non–minimum
phase, i.e. not all poles and zeros are in the left half plane. In this case, one
zero is in the right half plane. That is evident from the step response to
eq. (3.22), depicted in Figure 3.15.

The system has the peculiar property to give a lower power just after
the opening of the control valve is increased before the desired increased
power generation is reached. The physical explanation is the lower pressure
appearing after the control valve is opened, so that the water in the penstock
can be accelerated. When the water has been accelerated, the generated
power is increased as a consequence of the increased flow. That property of
water turbines places certain demands on the design of the control system
for the turbines.

3.2.2 Turbine Controllers

It is the task of the turbine governor to control the control valve such that
the desired power is produced by the generator in question. That power is
partly determined by the set value for the produced power and partly by
a contribution originating from the frequency control. In this context, the
latter is of interest.

There is a number of different turbine governors for steam turbines. A
quite general model that can describe most controllers in a satisfying way
is depicted in Figure 3.16. The gain K determines here the speed droop
characteristics of the controller, i.e. S = 1/K.

A model of controller of a hydro turbine is given in Figure 3.17. The
control servo is here represented simply by a time constant Tp. The main
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Figure 3.15. The variation of the produced power, ∆y, after a step
change in the control valve.

servo, i.e. the guide vane, is represented by an integrator with the time
constant TG. Typical values for these parameters are given in Table 3.1.
Limits for opening and closing speed as well as for the largest and smallest
opening of the control valve are given. The controller has two feedback loops,
a transient feedback loop and a static feedback loop. The transient feedback
loop has the amplification δ for high frequencies. Thus, the total feedback
after a frequency change is −(δ +σ). In steady state, the transient feedback
is zero, and the ratio between the frequency deviation and the change in the
control valve is given by

∆u =
1

σ
∆ω . (3.23)

Parameter Typical Values

TR 2.5 – 7.5 s

TG 0.2 – 0.4 s

Tp 0.03 – 0.06 s

δ 0.2 – 1

σ 0.03 – 0.06

Table 3.1. Typical values for some Parameters of the turbine con-
troller for hydro power.
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Figure 3.16. General Model of Turbine Controller for Steam Turbine.

Using eq. (3.22), the stationary change of power is obtained as

∆P =
1

σ

P0

u0

∆ω . (3.24)

Thus, the speed droop for generator i, Si, is

Si =
1

σi

P0i

u0i
, (3.25)

and the total speed droop, S, in the system is given by

S =
∑

i

Si . (3.26)

The transient feedback is needed since the water turbine is a non–minimum
phase system as discussed above. If the transient feedback is left out or
made too small, the system can become unstable. The transient feedback
causes the system to be slower; the transient frequency deviations become
considerably larger since the initial total feedback can be about ten times
larger than the static feedback, i.e. the speed droop is initially lower than
its stationary value.

3.3 Role of Speed Droop

It is of particular interest to study the actions of the frequency control in
steady state. Under the assumption that the turbine power controller has
an integrating character ( ε → 0 when t → ∞ in Figure 3.18), it follows that
in steady state

(f0 − f) · 1

S
+ (P0 − P ) = 0(= ε) (3.27)
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Figure 3.17. Model of turbine governor for hydro turbine.

which can be written as

S = − f0 − f

P0 − P
= − f − f0

P − P0

Hz/MW (3.28)

or in per unit

S = −

f − f0

f0

P − P0

P0

(3.29)

(Eg.(3.29) is equivalent with eq. (3.6) with S = 1/K.)
The speed droop characteristic, Figure 3.19, gives all possible operating

points (P, f) of the turbine. The position and slope of the straight line
can be fixed by the parameters P0, f0 and S. We have chosen to label the
horisontal axis with the power P with for small deviations of the frequency
around the nominal value is identical with the torque T . In the literature
the speed droop characteristics is sometime also described by ω instead of
by f .
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Figure 3.18. Schematic block diagram of system of controller, tur-
bine, generator, and power system.
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Figure 3.19. Speed droop characteristic of turbine control.
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Figure 3.20. Generator operating in a large interconnected system.

We will now study how the frequency control of a generator will act in
three different situations. Firstly, when the generator is part of a large inter-
connected system, and secondly when the generator is in islanded operation
feeding a load. The third system to be studied is a two machine system.

Generator in large system If a generator is embedded in a large inter-
connected system, it can with a very good approximation be modelled as
connected to an infinite bus as shown in Figure 3.20

In steady state the frequency is given by the one of the infinite bus, fN .
From the speed droop characteristics, Figure 3.19, the power produced by
the generator can then be determined. The turbine controller controls thus
only the power, not the frequency, see Figure 3.21.

PP0 PN

f

fN

f0 S

P=g( )fN

f0 and P are nominal values0

Figure 3.21. Speed droop characteristics for the case when the gen-
erator is connected to an infinite bus (large system).
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Figure 3.22. Generator in islanded operation.

Islanded Operation In islanded operation the generator feeds a load, which
here is assumed to be a resistance load, Figure 3.22. By a voltage controller
the voltage U is kept constant and thus also P . In this case the turbine con-
troller will control the frequency, not the power. The resulting frequency can
also here be determined from the speed droop characteristics, Figure 3.23.

PP0 P

f

f

f0 S

f=h(P)

f0 and P are nominal values0

Figure 3.23. Speed droop characteristics for the case when the gen-
erator is in islanded operation.
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Figure 3.24. Two generator (subsystem) system.

Two Generator System The two generator system, Figure 3.24, provides a
simple model that is often used to study the interaction between two areas
in a large system. In this model the two generators could represent two
subsystems, and the speed droop is then the sum of all the individual speed
droops of the generators in the two subsystems, Figure 3.25. With the help
of the speed droop characteristics of the two systems, we will determine how
a change in load will compensated by the two systems. Thus, if we have a
change ∆P in P , what will the changes in P1, P2, and f be?

This will be solved in the following way:

• The quantities (P 1
0
, f1

0
, S1) and (P 2

0
, f2

0
, S2) describe the speed droop

characteristics of the two systems g1 and g2.

• From these the sum g3 = g1 + g2 is formed.

• From the given P we can determine P1, P2 and fN from g3.

• In a similar way: From P +∆P can P1 +∆P1, P2 +∆P2 and fN +∆f
be determined, and thus ∆P1, ∆P2 und ∆f .

All these steps are shown in Figure 3.25.
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Figure 3.25. Speed droop characteristics for a two machine (subsystem) system.
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4
Load Frequency Control

In this chapter the secondary, or load-frequency, control of power systems
will be discussed. Simple models that enable the simulation of the dynamic
behaviour during the action of frequency controllers will also be derived and
studied.

In the previous chapters the role of the primary frequency control was dealt
with. It was shown that after a disturbance a static frequency error will
persist unless additional control actions are taken. Furthermore, the primary
frequency control might also change the scheduled interchanges between
different areas in an interconnected system, see the Two Machine example in
section 3.3. To restore the frequency and the scheduled power interchanges
additional control actions must be taken. This is done through the Load-
Frequency Control (LFC). The LFC can be done either manually through
operator interaction or automatically, in which latter case it is often called
Automatic Generation Control (AGC). The characteristics of AGC will be
studied in the subsequent sections, both during steady state and dynamic
conditions.

4.1 Automatic Generation Control - Static Model

The overall goal of the LFC is to

• Keep the frequency in the interconnected power system close to the
nominal value.1

• Restore the scheduled interchanges between different areas, e.g. coun-
tries, in an interconnected system.

How this is achieved by the use of AGC will now be demonstrated.

Consider a two area system as depicted in Figure 4.1. The two con-
trollers, R1 and R2, will send new reference values of the power to the

1In many systems deviations of up to ±0.1 Hz from the nominal value ( 50 or 60 Hz)
is deemed as acceptable in steady state. In some systems, North America, even tighter
tolerance bands are applied, while recently in UK the tolerance band has been relaxed
somewhat.

41
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Figure 4.1. Two area system with AGC.

generators participating in the AGC. In a n area system there are n con-
trollers Ri, one for each area i. A block diagram of such a controller is given
in Figure 4.2. A common way is to implement this as a PI-controller:

∆Pci = −(Cpi +
1

sTNi

)∆ei (4.1)

where Cpi = 0.1 . . . 1.0 and TNi = 30 . . . 200 s. The error ∆ei is called
Area Control Error, ACEi for area i.

We will now set n = 4, and from this it will be clear how this could be
extended to any n ≥ 2. The ACEs are in this case:

ACEi = (
∑

ji

PT i,ref − P ji

T i) + Bi(fref,i − f) i = 1, 2, 3, 4 (4.2)

ACEi = ∆PT i + Bi∆fi i = 1, 2, 3, 4 (4.3)

The constants Bi are called frequency bias factors [MW/Hz]. All fref,i are
the same in the different areas, and f is also the same in steady state. The
goal is to bring all ACEi → 0.

The variables are thus
∑

ji

P ji

T i (four variables) and f , i.e. in total five

variables. Since we have four equations ( ACEi = 0), we need one more
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Figure 4.2. Controller for AGC (∆ei = Error = ACEi =
Area Control Error for area i)

equation. As fifth equation we have the power balance:

∑

j1

P j1
T1

+
∑

j2

P j2
T2

+
∑

j3

P j3
T3

+
∑

j4

P j4
T4

= 0 (4.4)

and consequently a solution can be achieved.
In steady state is f identical for all areas, and we assume that the fre-

quency is controlled back to the reference value, i.e. fref = f . If the sum
of the reference values of the tie line powers PT i,ref is 0, then the system

will settle down to a operating point where PT i,ref =
∑

ji

P ji

T i for all tie line

powers.

Selection of Frequency Bias Factors

Consider the two area system in Figure 4.1. The load is now increased with
∆Pl in area 2. If the tie line power should be kept the same, the generation
must be increased in area 2, which means that ACE1 = 0.

In this case the speed droop characteristics are according to Figure 3.25,
which implies

∆f = −S∆Pl, ∆f = −S1∆PT1,

∆f = −S2(∆Pl − ∆PT1) and ∆PT1 = −∆PT2 (4.5)
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The AGC controller forms now an ACE:

ACE1 = ∆PT1 +B1∆f = ∆PT1 +B1(−S1∆PT1) = ∆PT1(1−B1S1) (4.6)

which means that ACE1 = 0 if B1 = 1/S1. This means the no action is
taken by controller, and this is called Non Interactive Control. In area 2 we
have

ACE2 = ∆PT2 + B2∆f = ∆PT2 + B2(−S2(∆Pl − ∆PT1)) =

∆PT2(1 − B2S2) − B2S2∆Pl (4.7)

and if B2 = 1/S2 this implies

ACE2 = −∆Pl (4.8)

This means that only controller 2 reacts in steady state and the load increase
∆Pl is compensated for in area 2, cf eq. (4.1).

4.2 Dynamic Model

Up to now we have mostly studied the static part of the frequency control,
i.e. what can be concluded from the speed droop characteristics of the
system. In this section we will study the dynamic behaviour during the
action of the frequency controllers. Two cases will be analyzed. The first
case corresponds to a system where all the generators and loads are strongly
coupled to each other, which is the case in a highly meshed system. In this
case we can model the system by a one node system, where all the generators
and loads are connected at the same node. Secondly, we will study a two
area system with a tie line between the two areas. This latter case will be
studied with and without AGC implemented.

4.2.1 One Node System

For the individual generator the swing equation applies:

2HiSBi

d(ωi/ω0)

dt
= Pti − Pei

, i = 1, . . . , n (4.9)

Assuming that the generators are strongly coupled (ωi = ω), gives

2(
∑

i

HiSBi
)
d(ω/ω0)

dt
=

∑

i

(Pti − Pei
) (4.10)

2HSB
d(ω/ω0)

dt
= Pt − Pe (4.11)
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Figure 4.3. A block diagram for the dynamics of n generators con-
nected at one node.

where

SB =
∑

i

SBi
Total rating (4.12)

H =

∑

i HiSBi
∑

i SBi

Total inertia constant (4.13)

Pt =
∑

i

Pti Total turbine power (4.14)

Pe =
∑

i

Pei
Total generator power (4.15)

from ω/ω0 = (2πf)/(2πf0) = f/f0 it follows that

2HSB

f0

df

dt
= Pt − Pe (4.16)

As these differential equations are linear, they are also valid for the quantities

∆Pt = Pt − Pt0

∆Pe = Pe − Pe0
(4.17)

∆f = f − f0

(4.18)

and consequently
2HSB

f0

d∆f

dt
= ∆Pt − ∆Pe (4.19)

A block diagram of eq. (4.19) is given in Figure 4.3.

Turbine and Controller Consider the block diagram in Figure 4.4. From
this figure it follows that

Pt(s) =
Gt(s)

Gt(s) +
1

K
s
[Pt0 −

1

S
(f − f0)] (4.20)



46 4. Load Frequency Control

Controller Turbine

1
S

-+

+

-

f0

Pt0 K
s

G (s)t

f

Droop

Pt

Figure 4.4. Block diagram of the dynamics for turbine and turbine control.

f∆
 − 

eP∆

tP∆
 + 

f
0f

 +  + 

 + 

 − 

 − 

tP0tP

f∆

 − 

0tP∆
 + 

tP∆

f∆
 + 

 + 

VP∆

 

     

0

1

(2 / )BHS f s
 

1

S

K

s
( )tG s

Regler Turbine 

Statik 

     
1

1 sT+
 

1

S

1

VD

0

0

2W
s

f

Figure 4.5. Block diagram of the system when the dynamics of the
turbine is neglected.

If the dynamics of the turbine is neglected (Gt(s) = 1), one obtains

Pt =
1

1 + sT
[Pt0 −

1

S
(f − f0)] T =

1

K
(4.21)

This equations is also valid for the ∆ quantities:

∆Pt =
1

1 + sT
[∆Pt0 −

1

S
∆f ] (4.22)

and the block diagram in Figure 4.5 is valid.
In steady state we have

∆Pt = − 1

S
∆f (∆Pt0 = 0) (4.23)

and for the case of several controllers

∆Pti = − 1

Si

∆f i = 1, . . . , n (4.24)

∑

i

∆Pti = −
∑

i

1

Si

∆f (4.25)
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where

∆Pt =
∑

i

∆Pti Total change in the turbine power (4.26)

By defining
1

S
=

∑

i

1

Si
(4.27)

we thus have

∆Pt = − 1

S
∆f (4.28)

Loads The loads are either frequency dependent or frequency independent.
Furthermore, kinetic energy can be stored (rotating masses in motors). A
load model that captures this is given by

PV − PV0
= ∆PV = KV ∆f + g(∆ḟ) (4.29)

where

• PV0
: Load power when f = f0

• KV : Frequency dependency

• g(∆ḟ): Function the models the load with rotating masses

The function g(∆ḟ) will now be derived. The rotating masses have the
following kinetic energy:

W (f) =
1

2
J(2πf)2 (4.30)

The change in the kinetic energy is given by

PM =
dW

dt
(4.31)

and

∆PM =
d∆W

dt
(4.32)

∆W can be approximated by

W (f0 + ∆f) = 2π2J(f0 + ∆f)2 =

W0 + ∆W = 2π2Jf2

0 + 2π2J2f0∆f + 2π2J(∆f)2

= W0 +
2W0

f0

∆f +
W0

f2

0

(∆f)2

⇒ ∆W ≈ 2W0

f0

∆f

⇒ ∆PM ≈ 2W0

f0

d∆f

dt
=

2W0

f0

∆ḟ (4.33)
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Figure 4.6. Block diagram of the dynamic load model.
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Figure 4.7. System with all generators and loads connected to one node.

The frequency dependency is given by

∂PV

∂f
∆f =

1

DV

∆f = KV ∆f (4.34)

The block diagram in Figure 4.6 describes the load model.

Total System The system in Figure 4.7 can now be described by the block
diagram in Figure 4.8.
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Dynamic Behaviour From the block diagram in Figure 4.8 it is straight-
forward to derive the transfer function between ∆P and ∆f (∆Pt0 = 0):

∆f = − 1 + sT
1

S
+

1

DV
(1 + sT ) + (

2W0

f0

+
2HSB

f0

)s(1 + sT )

∆P (4.35)

The step response for

∆P (s) =
∆z

s
(4.36)

is given in Figure 4.9. The frequency deviation in steady steady state is

∆f∞ = lim
s→0

(s · ∆f) =
−∆z

1

S
+

1

DV

=
−∆z

1

DR

= −∆z · DR (4.37)

with
1

DR
=

1

S
+

1

DV
(4.38)

In order to calculate an equivalent time constant, Tf , T is put to 0. This
can be done since for realistic systems

T � TM =
f0

SB

(
2W0

f0

+
2HSB

f0

) (4.39)

This means that the transfer function in eq. (4.35) can be approximated by
a first order function

∆f =
−∆P

1

DR
+ TM

SB

f0

s

=
−1

1 + TMDR
SB

f0

s

DR∆P (4.40)

or

∆f =
1

1 + TMDR
SB

f0

s
∆f∞ (4.41)

with

Tf = TMDR
SB

f0

(4.42)

as the equivalent time constant.

TM =
f0

SB

(
2W0

f0

+
2HSB

f0

) (4.43)

with
1

DR

=
1

S
+

1

DV

(4.44)
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Figure 4.9. The step response for a one node system. The upper dia-
gram shows the step function, the increase in turbine power (solid), and
the load variation (dashed). The lower diagram shows the frequency
deviation.

Example

• SB = 4000 MW

• f0 = 50 Hz

• S = 4% = 0.04 f0

SB
= 0.04·50

4000
Hz/MW

• DV = 50

4000
Hz/MW

• ∆z = 400 MW

• TM = 10 s

Than follws

∆f∞ = − 1
4000

2
+

4000

50

400 = −0.192 Hz (4.45)
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Figure 4.10. Model of a two area system. System 1 is much smaller
than system 2.

and

Tf = 10
1

4000

2
+

4000

50

4000

50
= 0.38s (4.46)

4.2.2 Two Area System

We will now study the behaviour in a two area system. Each area could be
modelled as in the previous subsection. The two areas are connected with
a tie line over which power can be exchanged.

We will first consider the case without AGC. It is further assumed that
one of the areas is much smaller than the other. The bigger of the two areas
can then be regarded as an infinite bus in our analysis. It will now studied
the behaviour after a load change in the smaller system, system 1. The
system to be studied, with notation, is depicted in Figure 4.10. dargestellt.

The tie line power is given by

PT =
U1U2

X
sin(ϕ1 − ϕ2) (4.47)

where X is the (equivalent) reactance of the tie line. For small deviations
one gets (U1 and U2 are constant)

∆PT =
∂PT

∂ϕ1

∆ϕ1 +
∂PT

∂ϕ2

∆ϕ2 =
U1U2

X
cos(ϕ10 − ϕ20)(∆ϕ1 − ∆ϕ2) (4.48)

or
∆PT = P̂T (∆ϕ1 − ∆ϕ2) (4.49)

with

P̂T =
U1U2

X
cos(ϕ10 − ϕ20) (4.50)
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Figure 4.11. Power flow in Area 1 of the two area system.

As system 2 is very big (infinite bus) it follows that

(
TMSB

f0

)2 � (
TMSB

f0

)1 ⇒ f2 = constant ⇒ ∆ϕ2 = 0 (4.51)

and consequently

∆PT = P̂T ∆ϕ1 = 2πP̂T

∫

∆f1dt (4.52)

Figure 4.11 shows the power flow and Figure 4.12 the block diagram of the
system.

Without secondary frequency control (AGC), i.e. ∆Pt0 = 0, the follow-
ing transfer functions apply

∆f =
−s

2πP̂T + (
1

DV
+

1

S(1 + sT )
)s +

TMSB

f0

s2

∆P (4.53)

∆PT =
2πP̂T

s
∆f (4.54)

∆PT =
−2πP̂T

2πP̂T + (
1

DV
+

1

S(1 + sT )
)s +

TMSB

f0

s2

∆P (4.55)

The response for

∆P (s) =
∆z

s
(4.56)
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Figure 4.12. Block diagram of Area 1 of the two area system.

is shown if Figure 4.13. The steady state frequency deviation is

∆f∞ = lim
s→0

(s · ∆f) = 0 (4.57)

and the steady state deviation of the tie line power is

∆PT∞ = lim
s→0

(s · ∆PT ) = −∆z (4.58)

The infinite bus brings the frequency deviation ∆f back to zero, by increas-
ing the tie line power so the load increase is fully compensated.

With secondary control (AGC) one obtains the step response in Fig-
ure 4.14. The load increase is in this case fully compensated by the genera-
tors in Area 1.
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Figure 4.13. Step response for the system in Figure 4.11 without
AGC. The upper diagram shows the step in load, the turbine power
(solid) and the tie line power (dashed). The lower diagram shows the
frequency deviation.
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Figure 4.14. Step response for the system in Figure 4.11 with AGC.
The upper diagram shows the step in load, the turbine power (solid)
and the tie line power (dashed). The lower diagram shows the fre-
quency deviation.



5
Model of the Synchronous Machine

Almost all energy consumed by various loads in an electric power system is
produced by synchronous machines, or, more correctly, the conversion from
the primary energy sources, like water energy, nuclear energy, or chemical
energy, to electrical energy is done in synchronous machines with a mechan-
ical intermediate link, the turbine. This is true in larger power systems, but
not always in smaller systems like isolated islands, power supply of equip-
ment in deserts, or other smaller systems. In these systems, the energy
can come from asynchronous generators, for example in wind generation
units, batteries, or some other source of electrical energy. In systems with
synchronous generators, these have an extremely important part in many
dynamic phenomena. Thus, it is very important to develop usable and real-
istic models of the synchronous machines. In the previous chapters, mainly
the mechanical properties of the synchronous machines have been modelled
using the swing equation, while a very simplistic model of the electrical prop-
erties of the synchronous machine has been used. In this chapter, a more
general, detailed model of the electric parts of the synchronous machine will
be derived. The simple models used earlier will be justified. It should be
emphasized that the description here aims towards the development of mod-
els usable for studying dynamic phenomena in the power system. It is not
the purpose of these models to give a detailed and deep understanding of the
physical functions of the synchronous machine. Of course, it is desirable to
have a good insight into the physics of the synchronous machine to be able to
derive appropriate models. For a detailed discussion of these aspects, books
and courses dealing with the theory of electrical machines should be studied.

5.1 Park’s Transformation

Park’s transformation is a phase transformation (coordinate transformation)
between the three physical phases in a three phase system and three new
phases, or coordinates, that are convenient for the analysis of synchronous
machines. This transformation is also known as the dq–transformation or
Blondel’s transformation. A reason why the transformation is suitable can
be derived from Figure 5.1.

It is obvious that the phase quantities in the a–, b–, and c–phases will
vary periodically in steady state. Further, the self and mutual inductances
between stator circuits and rotor circuits will vary with the rotor position.
Instead of performing all computations in the fixed stator system, the stator

57
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Figure 5.1. Definition of Quantities in Park’s Transformation.

quantities voltages, currents, and fluxes can be transformed to a system that
rotates with the rotor. Thus, two orthogonal axes are defined as shown in
Figure 5.1: One along the axis in which the current in the rotor windings
generates a flux, and one in an axis perpendicular to this. The first is the
direct axis (d–axis), and the other is the quadrature axis (q–axis). From now
on, the denominations d–axis and q–axis will be used. To make the system
complete, a third component corresponding to the zero sequence must be
defined.

Figure 5.1 is a simplified picture of a synchronous machine and should
only be viewed as an intuitive basis for the transformation given below. The
machine in Figure 5.1 has one pole pair, but Park’s transformation can, of
course, be applied to machines with an arbitrary number of pole pairs.

Park’s transformation is, as a consequence of the reasoning above, time
dependent, and the connection between the phase currents and the trans-
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formed currents is given by






































id =

√

2

3

[

ia cos θ + ib cos

(

θ − 2π

3

)

+ ic cos

(

θ +
2π

3

)]

,

iq =

√

2

3

[

−ia sin θ − ib sin

(

θ − 2π

3

)

− ic sin

(

θ +
2π

3

)]

,

i0 =

√

1

3
(ia + ib + ic) .

(5.1)

If the a–axis is chosen as reference,

θ = ωt + θ0 (5.2)

is obtained and the time dependence in the transformation is obvious. It
should be pointed out that ia, ib, and ic are the real physical phase currents
as functions of time and not a phasor representation of those. Now,

xabc = (xa, xb, xc)
T

x0dq = (x0, xd, xq)
T

(5.3)

can be defined. x can here be an arbitrary quantity, like voltage, current,
or flux. With this notation, Park’s transformation can be written as

x0dq = Pxabc (5.4)

with

P =

√

2

3





1/
√

2 1/
√

2 1/
√

2
cos θ cos(θ − 2π

3
) cos(θ + 2π

3
)

− sin θ − sin(θ − 2π
3

) − sin(θ + 2π
3

)



 . (5.5)

The inverse transformation is then given by

xabc = P−1x0dq , (5.6)

and it can easily be shown that

P−1 = P T . (5.7)

A mnemonic for Park’s transformation can be obtained from Figure 5.1 by
projecting the a–, b–, and c–axes onto the d– and q–axes in the figure.

Equation (5.7) implies that Park’s transformation is an orthonormal
transformation. This is reflected in the expression for the momentary power
that is produced in the stator windings

p = uaia + ubib + ucic = uT
abciabc =

(P−1u0dq)
T P−1i0dq = (P T u0dq)

T P−1i0dq =

uT
0dqPP−1i0dq = uT

0dqi0dq =

u0i0 + udid + uqiq .

(5.8)
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Here, Equations (5.6) and (5.7) have been used. Equation (5.8) can therefore
be written as

p = uaia + ubib + ucic = u0i0 + udid + uqiq . (5.9)

Equation (5.9) shows that the introduced transformation is power invariant,
which is a consequence of Equation (5.7).

It should be pointed out that there are several different variants of Park’s
transformation appearing in literature. They can differ from the form pre-
sented here by the direction of the q–axis and by constants in the transfor-
mation matrix. When using equations from some book or paper, it is thus
important to make sure that the definition of Park’s transformation used is
the same as one’s own. Otherwise, wrong results might be obtained.

The rotor windings produce a flux linkage that mainly lies in the direction
of the d–axis. That flux evokes an emf, E, which is lagging by 90◦, hence
in the direction of the negative q–axis. For generator operation, the phasor
for E leads by an angle δ before the phasor for the terminal voltage U . At
t = 0, the negative q–axis thus leads by an angle δ before the phasor for the
voltage along the a–axis, cf. Figure 5.1. For t > 0, the d– and q–axes have
moved by an angle ωt with the angular speed of the rotor ω. The rotor’s
d–axis will hence be in position

θ = ωt + δ +
π

2
. (5.10)

It is particularly of interest to study how zero sequence, negative sequence,
and positive sequence quantities are transformed by Park’s transformation.
It is comparatively easy to show that a pure zero sequence quantity only
leads to a contribution in x0 with xd = xq = 0. A pure positive sequence
quantity

xabc(+) =
√

2x





sin(θ + α)
sin(θ + α − 2π

3
)

sin(θ + α + 2π
3

)



 (5.11)

is transformed to

x0dq(+) =
√

3x





0
sin(α)

− cos(α)



 , (5.12)

i.e. pure DC-quantities (time independent) in the dq–system with the zero
sequence component equal zero. A pure negative sequence quantity gives
rise to quantities in d– and q–directions that vary with the angular frequency
2ω. The zero sequence component vanishes also in this case. (Show this!)
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5.2 The Inductances of the Synchronous Machine

In the following, a synchronous machine with one damper winding in d– and
one in q–axis and, of course, a field winding is considered. Quantities related
to these windings are denoted with the indices D, Q, and F, respectively.
The flux linkages in the stator windings and in the windings F, D, and Q
depend on the currents in these windings according to

(

Ψabc

ΨFDQ

)

=

(

Labc,abc Labc,FDQ

LFDQ,abc LFDQ,FDQ

)(

iabc

iFDQ

)

. (5.13)

Labc,abc, . . ., LFDQ,FDQ are 3× 3 matrices with self and mutual inductances
as matrix elements. These matrices will depend on the rotor position, hence
they are time dependent. It can be shown that the inductances in these
matrices can be approximated by
Labc,abc:































Laa = Ls + Lm cos 2θ ,
Lbb = Ls + Lm cos(2θ − 4π

3
) ,

Lcc = Ls + Lm cos(2θ + 4π
3

) ,
Lab = Lba = −Ms − Lm cos(2θ + π

3
) ,

Lbc = Lcb = −Ms − Lm cos(2θ + π) ,
Lac = Lca = −Ms − Lm cos(2θ + 5π

3
) .

(5.14)

Labc,FDQ and LFDQ,abc:











































































LaF = LFa = MF cos θ ,
LbF = LFb = MF cos(θ − 2π

3
) ,

LcF = LFc = MF cos(θ + 2π
3

) ,

LaD = LDa = MD cos θ ,
LbD = LDb = MD cos(θ − 2π

3
) ,

LcD = LDc = MD cos(θ + 2π
3

) ,

LaQ = LQa = −MQ sin θ ,
LbQ = LQb = −MQ sin(θ − 2π

3
) ,

LcQ = LQc = −MQ sin(θ + 2π
3

) .

(5.15)

LFDQ,FDQ:






































LFF = LF ,
LDD = LD ,
LQQ = LQ ,

LFD = LDF = MR ,
LFQ = LQF = 0 ,
LDQ = LQD = 0 .

(5.16)
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All inductances with only one index in Equations (5.14)–(5.16) are constants
and depend on the design of the synchronous machine. The resulting induc-
tances are of course, as mentioned before, not quite exact. They can be
called exact in an ideal machine, where spatial harmonics and other unsym-
metries are neglected. For a real synchronous machine, the approximations
are usually very good and lead to fully acceptable results for the computa-
tions and analyses treated here. It should be emphasized that the model
developed here is for use in computations where the synchronous machines
are part of a larger system. The model is not primarily aimed at studies of
the internal quantities in the generator.

It is now natural to transform the abc–components in Equation (5.13)
to 0dq–components. For this, an extended transformation given by

Pex =

(

P 0
0 I

)

, (5.17)

with P according to (5.5) and a 3 × 3 unit matrix I is used. The result is

(

Ψ0dq

ΨFDQ

)

=

(

L0dq,0dq L0dq,FDQ

LFDQ,0dq LFDQ,FDQ

)(

i0dq

iFDQ

)

, (5.18)

with the inductance matrix given by�
L0dq,0dq L0dq,FDQ

LFDQ,0dq LFDQ,FDQ � =

�
P 0
0 I � �

Labc,abc Labc,FDQ

LFDQ,abc LFDQ,FDQ � �
P

−1 0
0 I � .

(5.19)

The virtue of the Park’s transformation is apparent in the following equa-
tion, where the inductance matrix in (5.18) is computed

L0dq,0dq =





L0 0 0
0 Ld 0
0 0 Lq



 , (5.20)

with










L0 = Ls − 2Ms ,

Ld = Ls + Ms + 3

2
Lm ,

Lq = Ls + Ms − 3

2
Lm ,

(5.21)

and

L0dq,FDQ =





0 0 0
kMF kMd 0

0 0 kMq



 , (5.22)

where

k =

√

3

2
(5.23)

and, of course,
LFDQ,0dq = LT

0dq,FDQ . (5.24)
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ω

d

d-axis

q-axis

q Q

F

D

Figure 5.2. Schematic Picture of the Transformed System. (One
Damper Winding in the d–Axis and One in the q–Axis.)

LFDQ,FDQ has, of course, not changed, but for completeness it is re-
peated here.

LFDQ,FDQ =





LF MR 0
MR LD 0
0 0 LQ



 . (5.25)

Two important observations can be made from Equations (5.20)–(5.25):

• The inductances in the inductance matrix in Equation (3.18) are not
dependent on time.

• The quantities in d– and q–directions are decoupled. (The induction
matrix is block diagonal: one 2 × 2 matrix and one 1 × 1 matrix.)

The second observation above leads to a picture of the transformed sys-
tem according to Figure 5.2.

5.3 Voltage Equations for the Synchronous Machine

For the three stator circuits and the three rotor circuits the following rela-
tions can be written:







ua = −raia − Ψ̇a ,

ub = −rbib − Ψ̇b ,

uc = −rcic − Ψ̇c ,

(5.26)
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ψa

ra ia

+

u

ψF

rF iF

uF

+

-

Figure 5.3. Sign Convention for Stator and Rotor Circuits.

and






uF = rF iF + Ψ̇F ,

0 = rDiD + Ψ̇D ,

0 = rQiQ + Ψ̇Q .

(5.27)

Equations (5.26) and (5.27) can be written more compactly in vector
form,

(

uabc

uFDQ

)

= −
(

Rabc 0
0 RFDQ

)(

iabc

iFDQ

)

−
(

Ψ̇abc

Ψ̇FDQ

)

. (5.28)

The vector uFDQ is defined as

uFDQ = (−uF , 0, 0)T , (5.29)

while the other vectors are defined as before. Rabc and RFDQ are diagonal
3 × 3 matrices.

If Equation (5.28) is multiplied by Pex according to Equation (5.17), all
quantities are transformed to the dq–system, i.e.

(

u0dq

uFDQ

)

= −
(

PRabcP
−1 0

0 RFDQ

)(

i0dq

iFDQ

)

−
(

P Ψ̇abc

Ψ̇FDQ

)

. (5.30)

The matrix PRabcP
−1 is denoted R0dq, and if ra = rb = rc = r, which in

most cases is true,
R0dq = Rabc = rI (5.31)

is valid.
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To get Equation (5.30) expressed solely in dq–quantities, also the last
term on the right hand side must be expressed in these. Since P is time
dependent, it is important to remember that

Ṗ 6= 0 , (5.32)

which leads to

Ψ̇0dq =
d

dt
(PΨabc) = ṖΨabc + P Ψ̇abc , (5.33)

and thus

P Ψ̇abc = Ψ̇0dq − ṖΨabc = Ψ̇0dq − ṖP−1Ψ0dq . (5.34)

Equation (5.30) can hence be written as

(

u0dq

uFDQ

)

= −
(

R0dq 0
0 RFDQ

)(

i0dq

iFDQ

)

−
(

Ψ̇0dq

Ψ̇FDQ

)

+

(

ṖP−1Ψ0dq

0

)

.

(5.35)
Some trivial computations show that the matrix ṖP−1 can be expressed as

ṖP−1 =





0 0 0
0 0 ω
0 −ω 0



 . (5.36)

The voltage equations in the dq–system can thus be written in component
form as







u0 = −ri0 − Ψ̇0 ,

ud = −rid − Ψ̇d + ωΨq ,

uq = −riq − Ψ̇q − ωΨd ,

(5.37)

and






uF = −rF iF − Ψ̇F ,

0 = −rDiD − Ψ̇D ,

0 = −rQiQ − Ψ̇Q .

(5.38)

In the previous section, expressions for the dependencies of the flux linkages
on the currents in the different windings were derived. To further simplify
the expressions that were obtained, the per unit system for the different
windings is now introduced so that all mutual inductances in the d–axis
are equal, and all in the q–axis are equal. (In our case, only one damping
winding in the q–axis was considered, but in a more general case several
damper windings can be considered.) We introduce

√

3

2
MF =

√

3

2
MD = MR = LAD ,

√

3

2
MQ = LAQ .

(5.39)
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The different fluxes can then be written as






Ψ0 = L0i0 ,
Ψd = Ldid + LAD(iF + iD) ,
Ψq = Lqiq + LAQiQ ,

(5.40)

and






ΨF = LF iF + LAD(id + iD) ,
ΨD = LDiD + LAD(id + iF ) ,
ΨQ = LQiQ + LAQiq .

(5.41)

Equations (5.37) and (5.38) together with Equations (5.40) and (5.41) now
describe the electrical dynamics of a synchronous machine completely. These
equations together with a description of the external system unequivocally
determine the behaviour of the synchronous machine during different dis-
turbances. In Figure 5.4, a graphical description of these equations is given.

In Equation (5.37), we observe that the emf in d– and q–direction consists
of two terms: one that is a time derivative of the absolute value of the flux
linkage and one that arises because the field winding is rotating. The first
of these is usually called stator transient and the other rotational emf. In
steady state, the first of these vanishes, and the whole emf is created by the
rotation of the field winding. It can be shown that the terms Ψ̇d and Ψ̇q are
in most applications much smaller than ωΨd and ωΨq, which justifies that
the first ones are often neglected.

5.4 Synchronous, Transient, and Subtransient Induc-

tances, and Time Constants.

The complete description of the synchronous machine given in the previous
section can be simplified and made more physical if a number of new pa-
rameters that can be expressed in the already defined ones are introduced.
In steady state and a sufficiently long time after a disturbance, the currents
in the damper windings vanish, and the inductances treated in this section
describe how the currents are linked with the fluxes directly after a distur-
bance and in steady state. Further, the time constants that specify how
fast the currents in the damper windings decay are derived. Earlier, the
synchronous inductances Ld and Lq were defined. They are repeated here
for completeness.

{

Ld = Ls + Ms + 3

2
Lm

Lq = Ls + Ms − 3

2
Lm

(5.42)

These inductances describe the synchronous machine in steady state. For a
synchronous machine with salient poles, like a hydro power generation unit,
Lm > 0 and thus Ld > Lq, while Lm ≈ 0 for machines with round rotor
leading to Ld ≈ Lq.
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+
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+
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+
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LAQ

Rotor Circuits Stator Circuits

Figure 5.4. Graphical Description of the Voltage Equations and the
Linkage between the Equivalent Circuits.

If all rotor windings are short circuited, and a symmetrical three phase
voltage is applied on the machine’s terminals, the flux linkage in the d–axis
initially depends on the subtransient inductance and after a couple of periods
on the transient reactance. A voltage is applied to the stator windings,





ua

ub

uc



 =
√

2U





cos θ
cos(θ − 2π

3
)

cos(θ + 2π
3

)



 c(t) , (5.43)

with a step function c(t), i.e. c(t) = 0 for t < 0 and c(t) = 1 for t > 0. If the
voltage vector in Equation (5.43) is Park–transformed,





u0

ud

uq



 =
√

3U





0
c(t)
0



 (5.44)
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is obtained. For t = 0+, that is, directly after the voltage is applied on
the terminals, the flux linkages ΨF and ΨD are still zero, since they cannot
change instantly:

{

0 = LF iF + LAD(id + iD)
0 = LDiD + LAD(id + iF )

(5.45)

From (5.45), iD and iF can now be expressed in id,























iD = −LFLAD − L2

AD

LFLD − L2

AD

id ,

iF = −LDLAD − L2

AD

LFLD − L2

AD

id .

(5.46)

The expression for iD and iF can be related to Ψd in (5.40), giving

Ψd =

(

Ld −
LDL2

AD + LF L2

AD − 2L3

AD

LFLD − L2

AD

)

id = L′′

did , (5.47)

with the subtransient inductance L′′

d in the d–axis

L′′

d = Ld −
LD + LF − 2LAD

LF LD/L2

AD − 1
. (5.48)

The subtransient inductance in the d–axis, L′′

d, is thus defined as the initial
flux linkage of the stator current in per unit, when all rotor windings are
short–circuited and with no current flowing in them before the disturbance.

If there is no damper winding in the d–axis, or if the current in the
damper winding has decayed to zero, i.e. iD = 0, the same reasoning and
the same computations as above lead to

Ψd =

(

Ld −
L2

AD

LF

)

id = L′

did , (5.49)

with the transient inductance in the d–axis, L′

d, defined as

L′

d = Ld −
L2

AD

LF
. (5.50)

Show this!
The transient inductance in the d–axis, L′

d, is thus defined as the flux
linkage in the d–axis in per unit of the stator current with the assumptions
above. For a machine with damper windings, that is the flux some peri-
ods after the “disturbance” when the current in the damper winding has
vanished. The time constant for this is derived later.

An equivalent analysis to that above can be performed for the q–axis,
but, since no field winding exists in the q–axis, the terminology is somewhat
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different. For a machine with salient poles and damper winding in the q–axis,
the effective inductance after the current in the damper winding has decayed
is practically equal to the synchronous inductance. Hence it is sometimes
said that, for machines with salient poles, the transient and synchronous
inductances in the q–axis are equal.

If the reasoning above is repeated with the modification that cos θ in
Equation (5.43) is changed to sin θ etc., one obtains that

L′′

q = Lq −
L2

AQ

LQ

(5.51)

for a synchronous machine with an equivalent damper winding in the q–axis.
According to the reasoning above,

L′

q = Lq . (5.52)

If one additional damper winding is introduced into the q–axis, a value of
L′

q can be defined that is different from Lq. In general, for the inductances
defined,

L′′

d < L′

d < Ld ,

L′′

q < L′

q < Lq .
(5.53)

(For the derivation of relationships defining L′

q and L′′

q if more than one
damper winding in the q–axis is modelled, we refer to books on the theory
of electrical machines.)

The time constants that determine how fast transients in the rotor wind-
ings decay after a disturbance are easiest to compute if it is assumed that the
stator circuits are open, i.e. ia = ib = ic = 0, or equivalently i0 = id = iq = 0.
This is not consistent with the derivation above, but the obtained results
can be used to compute the time constants that are valid when the generator
is connected to a network. The time constants that will be derived here are
those normally specified by the manufacturer of the generator and are easily
obtained by measurements.

Suppose now that the stator windings are open and look at a step in the
field voltage at the time t = 0, i.e. uF = UF c(t).

{

rf if + Ψ̇F = UF c(t)

rDiD + Ψ̇D = 0
(5.54)

Since id = 0,
{

ΨD = LDiD + LADiF ,
ΨF = LF iF + LADiD .

(5.55)

At t = 0+, ΨD = 0 and thus

iF (0+) = − LD

LAD
iD(0+) . (5.56)
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Round Rotor Salient Pole

xd (p.u.) 1.0 – 2.3 0.6 – 1.5

xq (p.u.) 1.0 – 2.3 0.4 – 1.0

x′

d (p.u.) 0.15 – 0.4 0.2 – 0.5

x′′

d (p.u.) 0.12 – 0.25 0.15 – 0.35

x′

q (p.u.) 0.3 – 1.0 —

x′′

q (p.u.) 0.12 – 0.25 0.2 – 0.45

T ′

do (s) 3.0 – 10.0 1.5 – 9.0

T ′′

do (s) 0.02 – 0.05 0.01 – 0.05

T ′

qo (s) 0.5 – 2.0 –

T ′′

qo (s) 0.02 – 0.05 0.01 – 0.09

H (s) 3 – 5 (n = 3000 rpm) 1.5 – 5
5 – 8 (n = 1500 rpm)

Table 5.1. Typical Values for Some Parameters of Synchronous Machines.

The current iF (0+) can now be eliminated from the equations, which leads
to

diD
dt

+
rD

LD − L2

AD/LF

iD = −UF
LAD/LF

LD − L2

AD/LF

. (5.57)

Here, it has been assumed that rD � rF , which generally is true. The
subtransient time constant of the open circuit in the d–axis, T ′′

do, can now
be defined as

T ′′

do =
LD − L2

AD/LF

rD
. (5.58)

When iD has vanished, i.e. when iD = 0, the field current is determined
solely by the upper of Equations (5.54), and the transient time constant of
the open circuit, T ′

do, is given by

T ′

do = LF/rF . (5.59)

Accordingly, for a synchronous machine with a damper winding in the q–
axis,

T ′′

qo = LQ/rQ (5.60)

is defined.
The quantities introduced in this section are important parameters of a

machine and are usually given by the manufacturer of the machine. The rea-
sons for this are that they are easily measured and that they are introduced
in a natural way into the simplified models we will derive in the next section.
In Table 5.1, typical values for some of the discussed parameters for different
types and sizes of synchronous machines are given. Reactances instead of
inductances are given in Table 5.1, i.e. xd = ω0Ld etc., with ω0 = 2πf0.
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5.5 Simplified Models of the Synchronous Machine

A complete and exact model of the synchronous machine, considering the
assumptions and approximations made, was presented in Sections 3.2 and
3.3. If the synchronous machine is simulated in, for example, a stability
program, these are often the equations used to model the synchronous ma-
chine. Nevertheless, it is, for several reasons, often meaningful to use models
that comprise more simplifications and approximations than those derived
earlier. If a better insight into a problem is wanted or if a problem is ana-
lyzed without using computer simulations, simplified representations of the
synchronous machine are often the only possibility. Here, such a model will
be derived under the following assumptions:

• The stator transients are neglected, i.e. we set Ψ̇d = Ψ̇q = 0.

• The d–axis contains no damper windings.

• In the q–axis, one damper winding is modelled.

With these assumptions, the synchronous machine is described by the
equations















Ψd = Ldid + LADiF ,
Ψq = Lqiq + LAQiQ ,
ΨF = LF iF + LADid ,
ΨQ = LQiQ + LAQiq ,

(5.61)

{

uF = rF iF + Ψ̇F ,

0 = rQiQ + Ψ̇Q ,
(5.62)

{

ud = −rid + ωΨq ,
uq = −riq − ωΨd .

(5.63)

For completeness, some relations defined above are repeated here.

{

L′

d = Ld − L2

AD/LF

L′′

q = Lq − L2

AQ/LQ
(5.64)

The goal is now to eliminate all quantities with indices F and Q, except for
uF , from the equations above to get a model that can be used to represent
the synchronous machine as a component in a system. That means that the
only quantities that should be present in the model are stator voltages, the
stator current, and uF , which is a control variable that can be changed by
the excitation system as described in Chapter 6.

From the Equations (5.61), iQ is eliminated, which leads to

Ψq −
LAQ

LQ
ΨQ = L′′

q iq . (5.65)
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Now, by defining

e′d = ω
LAQ

LQ
ΨQ , (5.66)

Equation (5.65) can be written as

Ψq − e′d/ω = L′′

q iq . (5.67)

Equivalent derivations can be done for the rotor circuit in the d–axis,
i.e. for the field winding.

Ψd −
LAD

LF

ΨF = L′

did (5.68)

is obtained, which, using the definition

e′q = −ω
LAD

LF

ΨF , (5.69)

can be written as
Ψd + e′q/ω = L′

did . (5.70)

Now, the quantities
{

ed = ωLAQiQ ,
eq = −ωLADiF

(5.71)

are introduced. From the equations above, the relationships

{

ed = e′d − (xq − x′′

q )iq ,

eq = e′q + (xd − x′

d)id ,
(5.72)

with xd = ωLd etc. can be obtained.
According to Equations (5.71) and (5.72),

iQ =
e′d − (xq − x′′

q)iq

ωLAQ
. (5.73)

Substituting this into (5.62) gives

rQ

e′d − (xq − x′′

q)iq

ωLAQ
+

LQ

ωLAQ
ė′d = 0 , (5.74)

or, assuming ω̇ = 0,

T ′′

qoė
′

d + e′d − (xq − x′′

q)iq = 0 . (5.75)

For the rotor circuit in the d–axis, i.e. for the exciter winding, accordingly

T ′′

doė
′

q + e′q + (xd − x′

d)id = −ωLAD

rF
uF (5.76)



5.5. Simplified Models of the Synchronous Machine 73

is obtained, which, using

eF =
ωLAD

rF
uF , (5.77)

can be written as

T ′′

doė
′

q + e′q + (xd − x′

d)id = −eF . (5.78)

If Equations (5.75) and (5.78) are Laplace–transformed and the voltage
equation (5.63) is rewritten with the introduced quantities, we obtain

(

ud

uq

)

=

(

e′d
e′q

)

+

(

−rd x′′

q

−x′

d −rq

)(

id
iq

)

, (5.79)

with e′d given by

e′d =
(xq − x′′

q)iq

1 + sT ′′

qo

(5.80)

and e′q from

e′q = −
eF + (xd − x′

q)id

1 + sT ′′

do

. (5.81)

This model, i.e. Equations (5.79)–(5.81), together with the swing equation,
are often called the fourth order model. This model of the synchronous
machine demands, with the assumptions made here, four state variables: e′d
and e′q and the “mechanical” quantities ω and δ.

Often, also the damper winding in the q–axis can be neglected. That
leads to a third order model, which can be written as

(

ud

uq

)

=

(

0
e′q

)

+

(

−rd xq

x′

d −rq

)(

id
iq

)

, (5.82)

with e′q according to Equation (5.81).
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6
The Excitation System of the Synchronous

Machine

In this chapter, a short description of the function and design of the most
common excitation systems is given. Models of these systems for implemen-
tation in simulation programs and for analytical studies are also given.

6.1 Construction of the Excitation System

The main purpose of the excitation system is to feed the field winding of the
synchronous machine with direct current so that the main flux in the rotor
is generated. Further, the terminal voltage of the synchronous machine is
controlled by the excitation system, which also performs a number of pro-
tection and control tasks. A schematic picture of a generator with excitation
system is depicted in Figure 6.1. Below, a short description of the functions
of the different blocks in Figure 6.1 is given:

• The exciter supplies the field winding with direct current and thus
comprises the “power part” of the excitation system.

• The controller treats and amplifies the input signals to a level and
form that is suited for the control of the exciter. Input signals are pure
control signals as well as functions for stabilizing the exciter system.

• The voltage measurement and load compensation unit mea-
sures the terminal voltage of the generator and rectifies and filters it.
Further, load compensation can be implemented if the voltage in a
point apart from the generator terminals, such as in a fictional point
inside the generator’s transformer, should be kept constant.

• The power system stabilizer, PSS, gives a signal that increases
the damping to the controller, cf. Chapter 7. Usual input signals for
the PSS are deviations in rotor speed, accelerating power, or voltage
frequency.

• The limiter and protection can contain a large number of functions
that ensure that different physical and thermal limits, which genera-
tor and exciter have, are not exceeded. Usual functions are current
limiters, over–excitation protection, and under–excitation protection.
Many of these ensure that the synchronous machine does not produce
or absorb reactive power outside of the limits it is designed for.

75



76 6. The Excitation System of the Synchronous Machine

Synchronous

Machine

PSS

Measurements
Voltage

Load Compensation

Limiter and

Protection

ExciterRegulator

A

A = To the Power System

Figure 6.1. Schematic Picture of a Synchronous Machine with Exci-
tation System with Several Control, Protection, and Supervisory Func-
tions.

Today, a large number of different types of exciter systems is used. Three
main types can be distinguished:

• DC excitation system, where the exciter is a DC generator, often
on the same axis as the rotor of the synchronous machine.

• AC excitation system, where the exciter is an AC machine with
rectifier.

• Static excitation system, where the exciting current is fed from a
controlled rectifier that gets its power either directly from the gen-
erator terminals or from the power plant’s auxiliary power system,
normally containing batteries. In the latter case, the synchronous ma-
chine can be started against an unenergised net, “black start”. The
batteries are usually charged from the net.

Below, a more comprehensive treatment of some of the functions de-
scribed above is given.

6.2 Compensation Equipment

Figure 6.2 shows the block diagram of a compensation circuit, consisting of
a converter for measured values, a filter, and a comparator.

There are several reasons for the use of compensation in voltage control
of synchronous machines. If two or more generators are connected to the
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Figure 6.2. Block Diagram for Compensating Circuit.

same bus, the compensation equipment can be used to create an artificial
impedance between those. That is necessary to distribute the reactive power
in an appropriate way between the machines. The voltage is measured
“somewhat inside” the generator, corresponding to positive values of Rc

and Xc in Figure 6.2. If a machine is connected with a comparatively large
impedance to the system, which usually is the case since the generator’s
transformer normally has an impedance in the order of magnitude of 10%
on basis of the machine, it can be desirable to compensate a part of this
impedance by controlling the voltage “somewhat inside” of that impedance.
This then corresponds to negative values of Rc and Xc. As a rule, Xc is
much larger than Rc.

6.3 DC Excitation Systems

Today, hardly any DC excitation systems are being installed, but many of
these systems are still in operation. Generally, it can be said that there is
a large number of variants of the different excitation systems listed above.
Every manufacturer uses its own design, and demands that depend on the
application often lead to considerable differences in the detailed models of
the devices in each group. Here, typical examples for models will be given. In
reality, the models given by the manufacturers and power suppliers must be
used. One example of a DC excitation system, the IEEE type DC1 system,
is given in Figure 6.3. The input signal for the controller is the voltage
error Uerr from the compensation equipment. The stabilizing feedback UF

is subtracted, and sometimes a signal from the PSS is added. Both these
signals vanish in steady state. The controller is mainly described by the
dominating time constant TA and the amplification KA. The limits can
represent saturation effects or limitations of the power supply. The time
constants TB and TC can be used to model internal time constants in the
controller. These are often small and can then usually be neglected.

The output signal from the voltage controller, UR, controls the exciter.
The exciter consists of a DC machine that can be excited independently or
shunt excited. For shunt excited machines, the parameter KE models the
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Figure 6.3. Model of DC Exciter System (IEEE Type DC1).

setting of the field regulator. The term SE represents the saturation of the
exciter and is a function of the exciter’s output voltage, EF . If saturation is
neglected, that is SE = 0, the effective time constant of the exciter becomes
TE/KE , and its effective amplification is 1/KE .

6.4 AC Excitation Systems

For AC excitation systems, the exciter consists of a smaller synchronous ma-
chine that feeds the exciter winding through a rectifier. The output voltage
of the exciter is in this case influenced by the loading. To represent these
effects, the exciter current is used as an input signal in the model. In Fig-
ure 6.4, an example of a model of AC exciter systems is shown (IEEE type
AC1). The structure of the model is basically the same as for the DC exci-
tation system. Some functions have been added. The rectifier of the exciter
prevents (for most exciters) the exciter current from being negative. The
feedback with the constant KD represents the reduction of the flux caused
by a rising field current IF . That constant depends on the synchronous and
transient reactances of the exciter. The voltage drop inside the rectifier is
described by the constant KC , and its characteristic is described by FEX ,
which is a function of the load current.

DC and AC excitation systems are sometimes called rotating exciters,
since they contain rotating machines. That distinguishes them from static
excitation systems, which are described in Section 6.5.

6.5 Static Excitation Systems

In static excitation systems, the exciter winding is fed through a transformer
and a controlled rectifier. By far most exciter systems installed today are of
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Figure 6.4. Model of an AC Exciter System (IEEE Type AC1).
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Figure 6.5. Model of a Static Exciter System.

that type, and a large number of variants exists. The primary voltage source
can be a voltage transformer that is connected to the generator terminals,
but even a combination of voltage and current transformers can be found.
With the latter arrangement, an exciter current can be obtained even if the
voltage at the generator terminals is low, for example during a ground fault
in or near the power plant. Sometimes, it is possible to supplement these
voltage sources by using the auxiliary power of the power plant as voltage
source. That makes it possible to start the generator in an unenergised net.
An example of a model of a static exciter system is shown in Figure 6.5.

Static excitation systems can often deliver negative field voltage and
even negative field current. However, the maximum negative field current is
usually considerably lower than the maximum positive field current.

The time constants are often so small that a stabilizing feedback is not
needed. The constant KF can then be set to zero. Since the exciter system
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is normally supplied directly from the generator bus, the maximum exciter
voltage depends on the generator’s output voltage (and possibly its current).
This is modelled by the dependency of the limitations of the exciter output
on the generator’s output voltage. The constant KC represents the relative
voltage drop in the rectifier.



7
Damping in Power Systems

In this chapter, a short introduction to damping in a power system is given.
Different sources of positive and negative damping are discussed, and meth-
ods to improve the damping are given.

7.1 General

What damping in the context of electro–mechanical oscillations in a power
system means is quite self–evident. Normally, two different kinds of electri-
cal torques appear at a generator rotor that is oscillating: a synchronizing
torque ∆Ts and a damping torque∆Td. The synchronizing torque ∆Ts is
in phase with the deviation in rotor angle ∆θ, whereas the damping torque
∆Td is in phase with the deviation in rotor speed ∆ω. The synchronizing
torque, also called the synchronizing power, strives, if it is positive, to bring
the rotor back to the stable equilibrium in which the mechanical power is
equal to the electrical power. When the generator has reached an operating
point where the synchronizing power no longer can return the system to
the stable equilibrium, the generator will fall out of phase. The variation
of the synchronizing torque with the rotor angle determines, together with
the machine’s moment of inertia the frequency of rotor oscillations. The
partitioning into synchronizing and damping torque is shown in Figure 7.1.

Damping is neglected in the classical model. Therefore, the system will,
after a disturbance, either fall out of phase (instability) or oscillate with un-
changed amplitude. This is not realistic, since real systems contain damping.
The damping torque depends on the time derivative of the rotor angle in
such a way that the oscillation is damped. Normally, the damping torque is
rather small and thus influences the oscillation frequency only marginally.
It mainly influences the amplitude. In a synchronous machine, the main
contributors to damping are the damper windings and the field winding.

If the modes of oscillation in a system are determined by computing
the eigenvalues of the linearised system’s Jacobian matrix, changes in the
synchronizing and damping torques will become apparent as follows: An
increase of the synchronizing torque moves the eigenvalue parallel to the
imaginary axis towards larger values. This corresponds to an increase in the
spring constant in a mechanical analogy. If the damping torque is increased
instead, the eigenvalue will move parallel to the real axis to the left. In
the classical model, all eigenvalues will be situated on the imaginary axis.
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Figure 7.1. Partitioning of Electrical Torque in Synchronizing and
Damping Components.

Necessary for stability is that no eigenvalues are situated in the right half
plane. This corresponds to positive ∆Ts as well as positive ∆Td in Figure 7.1.

7.2 Causes of Damping

As mentioned earlier, the internal damping of a generator comes from the
windings in the rotor circuit. That damping is determined by phases and
amplitudes of the oscillating torques caused by induced currents in exciter
winding and damping windings. Further, some loads contribute with posi-
tive damping. These contributions originate from the frequency dependency
of the loads, but also their voltage dependency contributes.

Generally, the inner damping of the generators decreases with decreasing
frequency of the oscillations. The currents in the damping windings decay,
and hence, for very slow oscillations, their contribution is small.

Low or negative damping in a power system can lead to spontaneous ap-
pearance of large power oscillations. This can, in the worst case, necessitate
tripping of lines and it must be avoided. That type of instability is called
small signal instability or instability caused by low damping. (Earlier, that
type of instability was called dynamic instability.)

A common reason for low damping is the use of voltage controllers with
high gain. That was experienced in generators feeding a strong net through
a line. Such a configuration can also be analyzed comparably easily. It can
be shown that an eigenvalue with positive real part can occur when large
amounts of power are transmitted and voltage controllers with high gains are
used. Before the reason behind this phenomenon was known, the problem
was solved by operating the generator with manual voltage control, or by
making the voltage controller slower or decreasing its gain.

To explain that mechanism in detail is beyond the scope of this com-
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Figure 7.2. Block Diagram of a Simple PSS.

pendium, but in summary, it can be said that the rotor angle influences
the generator voltage, which through the voltage controller influences the
transient emf, which influences the electrical torque. Now it turns out that,
when the load on the machine is high, the phase angle can be such that a
contribution with negative damping is obtained. If the amplification in the
voltage controller is high, that negative contribution can be significant.

7.3 Methods to Increase Damping

Several methods for increasing the damping in a power system are available.
The simplest and usually cheapest way is the installation of power system
stabilizers, PSS, in the generators. The operating principle for these is very
simple. To increase the damping in the system, a signal is added to the
reference voltage of the generator’s voltage controller. The phase of this
signal should of course be such that it results in a positive contribution to
the damping. Thus, the same physical mechanism in the system of generator
and voltage controller that above resulted in negative damping is used to
obtain positive damping.

Such a power system stabilizer usually utilizes the rotor deviation from
the synchronous frequency ∆ω as input signal. Sometimes, other signals
that contain the same information can be used, like Pe or Te. A diagram
illustrating the principle mode of operation of a PSS is given in Figure 7.2.
The input signal, in this case ∆ω, first passes a high–pass filter to ensure that
permanent frequency deviations do not contribute. The next filter shifts the
phase appropriately for the critical oscillation frequency so that a positive
contribution to damping is obtained. The constant Kstab determines the
size of that contribution. That constant should of course not be chosen
larger than necessary to obtain the needed damping, since this could lead
to undesired side effects.

Other possibilities for increasing the damping in a system are different
types of controllable equipment that may be installed in the system, such as
HVDC (High Voltage Direct Current) or SVC (Static Voltage Condensers).
These components can often give large contributions to damping, but they
are usually too expensive to install them only to increase the damping, and
the existing equipment is not always located optimally for damping purposes.
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8
Load Modelling

Since, neglecting losses, an equal amount of power is consumed in the loads
in the system as is generated in the generators, the load characteristics are on
principle just as important for the system properties as the generators. That
is, however, not reflected in the level of detail and the accuracy usually used
in load models for analyzing system stability. This chapter discusses briefly
how load characteristics influence the system stability and which problems
arise in the derivation of appropriate load models. The most common load
models are presented.

8.1 The Importance of the Loads for System Stability

The characteristics of the loads influence the system stability and dynamics
in many different ways. The voltage characteristics of the loads have a
direct influence on the accelerating power for generators nearby and are
thus very important for the behaviour during the first oscillation after a
fault. It has been shown in section 2.2.1 that the frequency dependency of
the loads influences directly how large the frequency deviation after different
system disturbances will become. The frequency dependency of the loads
also influences the system damping. The same is true for their voltage
dependency since it influences the voltage control.

This compendium concentrates on what is usually called angular stabil-
ity, or synchronous stability, that is, the ability of the generators to stay
synchronized after disturbances. Another important property of a power
system is the ability to keep the voltages in the system within acceptable
limits during disturbances. This is a measure for the voltage stability of
the system. Voltage stability is highly dependent on the balance of reactive
power in the system, but also the active power has some influence here. It
is obvious that the voltage dependency of the loads is of high importance
for the system’s voltage stability.

It is for several reasons difficult to derive good load models. (Of course,
deriving models for single load objects is formally not very difficult. Loads
here are, however, lumped loads as they are perceived from a bus in the
high voltage grid.) First, it is difficult to estimate the composition of the
loads, since it varies during the day as well as during the year. Further,
this composition varies from bus to bus. Thus, sometimes different load
models have to be used at different buses, depending on the composition of
the loads, for example industrial loads, domestic loads, and rural loads.
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8.2 Load Models

For studies of angular stability, loads are usually modelled with static mod-
els. Sometimes, large induction motors have to be represented individually
by special models to obtain the correct dynamic behaviour. Dynamic load
models for lumped loads have begun to be used during the last few years,
especially for studying voltage stability, but those are expected to be used
in the future more widely and even for other types of studies. The frequency
dependency is generally modelled according to Section 4.2, page 47.

8.2.1 Static Load Models

For traditional stability studies, where the investigated time frame is at
most around 10 s after the disturbance, the most commonly used model
types are static models. They are called static since they describe the load
using only algebraic equations. The modelled load dynamics are in these
cases so fast that they can be considered instantaneous compared with other
phenomena, like rotor oscillations, that are modelled. The most common
model for voltage dependency is

P = P0

(

U

U0

)α

,

Q = Q0

(

U

U0

)β

.

(8.1)

However, the load can also be modelled as an arbitrary polynomial in
(U/U0),

P = P0

∑

i

ki

(

U

U0

)αi

. (8.2)

In Equations (8.1) and (8.2), U0 is the nominal voltage at nominal load,
P0 and Q0. In Equations (8.1), the voltage exponents α and β are often
different.

If α = 0, the load is called constant power load; if α = 1, it is called
constant current load; and if α = 2, it is a constant impedance load. It is
very common to model the (active) load for stability studies as consisting of
these three parts. Usually, a somewhat larger voltage exponent is used for
the reactive load.

Some examples for the voltage exponents of different loads are:
Electric heating: α = 2, Q = 0.
Light bulbs: α ≈ 1, 6, Q = 0.
Fluorescent tubes: α ≈ 0, 9, β ≈ 2.
To be able to include active and reactive losses in the underlying distribution
grid, the above models have to be modified.
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8.2.2 Motor Loads

Around half of all electric power used by the industry is used for operation
of motors. Sometimes, the load in certain nodes is dominated by electric
motors. It can then be justified to model those explicitly.

For small changes in voltage, a motor load behaves approximately like a
constant power load. For larger voltage changes, it can be necessary to use
a more accurate representation. Synchronous machines are then modelled
according to the models derived in Chapter 5, with the mechanical part Pm

depending on the characteristic of the mechanical load. A large part of the
motor load consists of induction motors that can be modelled as follows:
An induction motor is basically a synchronous machine with short–circuited
exciter coil. If the exciter coil rotates with an angular speed different from
the rotating fluxes generated by the three phase coils, a current that gener-
ates a flux is induced in the exciter coil. Between the rotating synchronous
flux generated in the phase windings and the flux from the exciter wind-
ing, energy is exchanged. This is the basis for the function of the induction
motor.

The induction motor can, according to Figure 8.1, be described by a
voltage source behind an impedance. The value of L′ can be obtained from
the equivalent circuit of the induction motor shown in Figure 8.2.

In Figure 8.2
rs and Ls are the stator resistance and inductance,
Lm is the magnetizing inductance,
rr and Lr are rotor resistance and inductance.



88 8. Load Modelling

The slip s is defined by

s =
ω0 − ω

ω0

(8.3)

and thus L′ is given by

L′ = Ls +
LmLr

Lm + Lr
. (8.4)

The dynamics are described by

de′

dt
=

1

τ ′

0

(e′ − jω0(Ls + Lm − L′)i) + jω0se
′ , (8.5)

i =
e − e′

rs + jω0L′
, (8.6)

dω

dt
=

1

2Hm
(Te − Tl) , (8.7)

Te = <(e′ · i∗) . (8.8)

Here,
ω is the machine’s angular speed,
ω0 is the system’s angular speed,
Tl is the load torque,
τ ′

0
= (Lr + Lm)/rr are no load operation constants.

8.2.3 Equivalent Dynamic Loads

The load models presented above are, as mentioned, valid for studying phe-
nomena that do not last longer than about ten seconds after a disturbance.
If phenomena taking place in a longer time frame should be studied, slow
dynamics in the system have to be accounted for. These dynamics origi-
nate mainly from two different sources: The tap changers installed at lower
voltage levels that try to restore the voltage to the desired value and the
controllers installed at the loads.

The control of tap changers can be done in several different ways, but
common to most systems are that tap changers are stepped, typically in
intervals of some tens of seconds, until the voltage is restored . Since this
control exists at different voltage levels (cascade coupled controllers), un-
desirable overshoots in the control can occur if the control loops are not
coordinated. Generally, the control has to be slower the lower the voltage
level is.

In Sweden, a large part of the load, at least in winter, consists in many
areas of heating loads. The changes in this type of load are determined by
thermostats. Hence, it takes some time until, for example, a voltage drop
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becomes apparent. That time is determined by the thermal time constants
for what is heated, such as houses, and by the design of the thermostats.

Summarizing, it can be said that the dynamics determined by tap–chan-
ger control and load dynamics are highly complicated. Measurements are
needed to get reliable results. Measurements of load characteristics have
during the last few years become very important, and much work is be-
ing done in many utilities to investigate load characteristics under different
loading conditions.

A typical example of a load behaviour after a voltage drop is shown in
Figure 8.3. It is clearly visible how the load drops momentarily, as described
by the load models from Section 8.2.1, to recover later to a considerably
higher level. A rather general description is given by

Tp
dPr

dt
+ Pr = Ps(U) − Pt(U) , (8.9)

Pl(t) = Pr + Pt(U) , (8.10)

where
Pr(t) is a state variable,
Ps(U) is a static model for the long term load behaviour,
Pt(U) is a static model for the transient load behaviour,
Pl(t) is the value of the active load at the time t.
Of course, U = U(t) in the equations above.

For the reactive load, similar behaviour and equations are valid.
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Appendix A
Connection between per unit and SI

Units for the Swing Equation

If nothing else is given after a quantity, that quantity is in SI–units. If a
quantity is expressed in per unit, p.u. is given in brackets after the quan-
tity (p.u.). For simplicity, it is assumed that the nominal electrical and
mechanical frequencies are equal, (rad/s).

In SI–units,

J
d2θ

dt2
= ∆T , (A.1)

with
J = moment of inertia for rotor turbine (kgm2),
θ = angle (rad),
ω = angular velocity (rad/s),
∆T = effective torque on the rotor turbine (Nm).

When using electrical degrees, Equation (A.1) is usually written as

M

ω0

· d2θ

dt2
= ∆T , (A.2)

with
M = moment of inertia = Jω0

180

π
(Js/el◦).

The H-factor, or constant of inertia, for synchronous machine i is defined
by

Hi =
1

2
Jω2

0

Si
, (A.3)

with
Hi = constant of inertia for synchronous machine i (s),
Si = rated power of synchronous machine.
The per unit base for torques at synchronous machine i, Tbas,i, is given by

Tbas,i =
Si

ω0

, (A.4)

leading to

∆T = ∆T (p.u.)
Si

ω0

. (A.5)

Using (A.3) and (A.5), (A.1) can be written as

2HiSi

ω2
0

· d2θ

dt2
=

Si

ω0

∆T (p.u) , (A.6)
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or
d2θ

dt2
=

ω0

2Hi

∆T (p.u) . (A.7)

Equation (A.7) can also be written as

d

dt
(θ̇) =

ω0

2Hi
∆T (p.u) , (A.8)

which is the same as

d

dt
(ω) =

ω0

2Hi
∆T (p.u) , (A.9)

or
d

dt
(ω(p.u.)) =

∆T (p.u)

2Hi

. (A.10)

Generally,
P = Tωm , (A.11)

with the actual mechanical angular speed of the rotor ωm that, according
to the assumptions, is equal to the electrical angular speed ω. With the
equations above, this gives

P (p.u) = T (p.u)ω(p.u) . (A.12)

Equation (A.10) now becomes

ω̇(p.u.) =
∆P (p.u.)

2Hi
· 1

ω(p.u.)
. (A.13)

For rotor oscillations, ω(p.u.) ≈ 1 and (A.13) can be approximated by

ω̇(p.u.) =
∆P (p.u.)

2Hi
, (A.14)

or
ω̇ =

ω0

2Hi

∆P (p.u.) . (A.15)

The most common equations in literature are (A.9), (A.10), (A.14), and
(A.15). Of these, (A.9) and (A.10) are exact if ω is the actual angular
frequency. Equations (A.14) and (A.15) are good approximations as long as
ω ≈ ω0. That is valid for “normal” oscillations in power systems.



Appendix B
Influence of Rotor Oscillations on the

Curve Shape

If the relative movement between the field winding of a synchronous machine
and its phase windings is a purely rotating motion with constant angular
speed, the resulting induced voltages in the phase windings will be shaped
ideally like a sinusoid. From now on, it is assumed that the field winding is in
the rotor, while the phase windings are on the stator, but since the relative
motion determines the voltage in the phase windings, it is even possible
to think of stationary field windings and rotating phase windings. In all
modern larger synchronous machines, the field winding is on the rotor, so
the assumption above does have a practical background. However, almost
all relationships and conclusions are independent of this assumption.

For simplicity, consider a single phase synchronous machine according
to Figure B.1. A three phase machine has two more phase windings shifted
±120◦ relative to the phase winding in the figure. The phase winding and
the exciter winding are arranged so that the flux linkage through the phase
winding is sinusoidally shaped as a function of the angle θm in Figure B.1:

Φ(t) = Φ0 cos θm = Φ0 cos ω0t , (B.1)

with the angular speed of the rotor ω0 according to the system’s electrical
frequency. That flux induces a voltage in the phase winding that is given by

U(t) =
dΦ

dt
= −Φ0 ω0 sinω0t = −Û sinω0t . (B.2)

Now, we shall study how the flux linkage through the phase windings will
be influenced when rotor oscillations appear in the system. If the balance
between power into the generator and power from the generator, i.e. between
mechanical torque and electrical power, is disturbed, the rotor will start to
oscillate relative to an undisturbed reference rotor that continues to rotate
with the angular speed ω0. The rotor position can generally be described
by

θm(t) = ω0t + θ(t) , (B.3)

where θ(t) is a solution of the swing equation. It has earlier been mentioned
that stable solutions of the swing equation for a synchronous machine con-
nected to a strong grid consist of oscillations that are nearly sinusoidal with
frequencies on the order of magnitude of some tenths of a Hertz to some
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Figure B.1. Schematic Picture of Single Phase Synchronous Machine.

Hertz. To investigate how the linked flux, and thus the voltage and the
current, look during an oscillatory movement, a rotor motion according to

θm(t) = ω0t + µ sin(ωrt + θr) , (B.4)

with the angular speed ωr corresponding to the oscillation frequency and
the amplitude of the oscillatory movement µ, is assumed. The flux linkage
can now be written as

Φ(t) = Φ0 cos θm(t) = Φ0 cos(ω0t + µ sin(ωrt + θr)) , (B.5)

which implies that the oscillatory movement contains a phase–angle modu-
lation of the flux linkage. The momentary angular frequency, Ω(t), is defined
for Ψ(t) as

Ω(t) =
d

dt
(ω0t + µ sin(ωrt + θr)) (B.6)

and varies between ω0 + µωr and ω0 − µωr. It can be shown (cf. text books
on modulation theory) that Equation (B.5) can be written as

Φ(t) = Φ0

n=∞
∑

n=−∞

Jn(µ) cos((ω0 + nωr)t + nθr) . (B.7)

Jn(µ) is a Bessel function of the first kind with the argument µ and degree
n, as given by

Jn(µ) =
1

π

∫ π

−π

cos(µ sinx − nx)dx . (B.8)

An important property of Jn(µ) that will be used later is

J−n(µ) = (−1)nJn(µ) . (B.9)
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Figure B.2. Bessel Functions of the First Kind of Order 0 to 3.

From Equation (B.7) follows that, in spite of that the momentary angular
frequency for Φ(t) is between ω0+µωr and ω0−µωr, Φ(t) will have infinitely
many side bands with the frequencies ω0 ± nωr beside the fundamental fre-
quency ω0. A relevant question is how large the amplitude of these side
bands is. Generally, the coefficients Jn(µ) decay rapidly when the order n
becomes larger than the argument µ. In Figure B.2, values for the first four
Bessel functions are shown for the argument µ between 0 and 1. It should
be observed that µ is measured in radians, so that 1 corresponds to approx-
imately 57◦, which in this context is quite a large amplitude. Figure B.2
shows that side bands with n = 3 and larger can be neglected even for am-
plitudes as large as µ = 1. Φ(t) can thus be approximated quite accurately
by

Φ(t) ≈ Φ0

n=2
∑

n=−2

Jn(µ) cos((ω0 + nωr)t + nθr) . (B.10)

Typical oscillation frequencies are, in most cases considerably, lower than
3 Hz, so that practically the whole energy spectrum for Φ(t) lies in the
frequency area f0 ± 6 Hz, i.e. 50(60) ± 6 Hz. This justifies the usual
representation of the grid with the traditional phasor model with a constant
frequency corresponding to f0.

If the amplitude is very small, say less than µ ≈ 0.2, corresponding to
an amplitude of approximately 10◦, side bands with n = 2 and higher can
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Figure B.3. Vector with Superimposed Oscillation, According to the Text.

be neglected, see Figure B.2. Further, it can be shown that, if µ is small,

J0(µ) ≈ 1 − µ2

4
,

J1(µ) ≈ µ

2
,

(B.11)

are valid, and Φ(t) can be written as

Φ(t) ≈ Φ0((1−
µ2

4
) cos ω0t+

µ

2
cos((ω0 +ωr)t+θr)−

µ

2
cos((ω0−ωr)t−θr)) .

(B.12)
Equation (B.9) has here been used. That approximation is used even in a
context of power system analysis other than rotor oscillations, namely when
studying so–called subsynchronous oscillations, SSO. If there is a resonance
phenomenon at a subsynchronous frequency it is called subsynchronous res-
onance, SSR. The most common cause of SSO are torsional oscillations on
the axis connecting the turbine(s) and the generator rotor. The frequencies
of the natural oscillations on that axis are typically 5 Hz and higher. (For
an axis with n distinct “masses”, including generator rotor and, maybe,
exciter, there are n − 1 different eigenfrequencies.) For the side band in
Equation (B.12), i.e. for ω0 ± ωr, the frequency can deviate significantly
from the nominal frequency, so that it is normally not possible to look only at
the component with nominal frequency. Since the electrical damping for the
lower side band, the subsynchronous frequency, can be negative, due to, for
example, series compensation, the partitioning according to Equation (B.12)
has to be kept. The damping in the upper side band, the supersynchronous
frequency, is almost always positive.

To increase the understanding for the partitioning in Equation (B.12), a
more intuitive derivation than the stringent mathematical one using Bessel
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functions can be given. Consider a vector with amplitude 1 that performs
small oscillations with an angular frequency ωr and amplitude µ. This can
be illustrated geometrically according to Figure B.3. The vector with filled
arrowhead oscillates symmetrically around the horizontal axis with the fre-
quency ωr and the amplitude µ. That vector can now be partitioned into
the three vectors with unfilled arrowheads. One vector does not move and
lies along the horizontal axis. Two vectors with amplitude µ/2 rotate with
the angular frequency ±ωr according to Figure B.3. It is easily observed
that the sum of the vectors with hollow arrowhead is at all times equal to
the vector with filled arrowhead. Since the vectors rotate with the angular
frequency ω0 with respect to a stationary system, Equation (B.12) is ob-
tained directly from the projection of the vectors on to the horizontal axis,
with the modification that the factor for the fundamental frequency is one.


