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This book presents techniques that have been applied successfully in solving
power system problems with a digital computer. [t can thus serve as a text for
advanced power system courses to inform prospective power engineers of methods
currently emploved in the electric utility industry. Recause of the increasing
use of the computer as an indispensable tool in power system engineering, this
book will also serve as a basic reference for power system engineers responsible
for the development of computer applications.

The material contained in the text has been developed from notes for
special two-week courses offered since 1964 at Purdue University, The University
of Wisconsin and the University of Santa Clara. These courses were attended
by representatives of universitics, electrie utilities, and equipment manufacturers,

Solution techniques are presented for the three problems encountered moxt
freggiontly in power system analysis, namely, short circuit, load flow, and power
svstem stability.  In addition to an enginecring description of these problenis,
the mathematical techniques that are required for a computer solution are
described.  Thus, relevant material is included from matrix algebra and numeri-
cal analysis.  Itis assumed, however, that the reader has a gencral understanding
of elementary power system analysis.

Chapter 1 presents, as a hrief introduction. the impact of computers on
poser system engineering, the orientation of enginecring problems to ecomputers,
and the advantages of digital computation. Chapter 2 covers the baxic principles
of matrix alzebra and provides sufficient backzround in matrix theory for the
remainder of the book.  For readers familiar with matrix teehniques, this ehapter
serves as a review and establishes the notation used throughout the text.  Inei-
denee and network matrices are introduced in Chapter 3, which presents the
teehiniques for deseribing the geometric structure of a network and outlines the
transformations required to derive network matrices.  The formation of these
matrices is the first step in the analvsix of power system problems.  Chapter 4
presents algorithme which can be used in an alternative method for the forma-
tion of certain network matrices. These algorithms have proved to be effective
for use in computer calculation.  The methods described in Chapters 3 and 4 are
developed for single-phase representation of power systems. Chapter 3 extends



these methods for three-phase representation. The application of network
matrices to short circuit calculations is presented in Chapter 6. Several
methods are included and a typical computer prograni is described to illustrate a
practical application of the techniques.

Chapter 7 contains a briel introduction to the solution of lincar and ron-
linear simultancous algebraic equations,  This materal is presented ina manner
that affords direct application to the solution of the load flow probleni. The
formulation and solution of the load flow problem iz presented in Chapter S,
This chapter also describes the procedures for handling voltage-controlled Luses,
transformers, and tie line control. The different methods are compared from
several points of view and a description is given of an actual program u~cd for
load flow calculations. In a mauner similar to that in Chapter 7, Chapter @
introduces methods for the numerical solution of the differential equations that
are required for transient stability studies.  Chupter 10 covers the formubation
and solution techniques emplaved in transient studies and presents procedures
for the detailed representation of synchronous and induction machines, exciter
and governor systems, and the distance relays. An actual trunsient stability
computer program is described.

The first efforts in the development of this material were made in the carly
1950s at the American Electric Power Service Corporation as a result of the
interest in the application of computers to the planning and operation of electric
power systems. In 1959, the authors had an opportunity to work together as
members of the staff of the American Electric Power Service Corporation and
continued to work together on & part-time basis for several years. Thisx made
possible the further development of basic computer methods established in
previous years‘:

This research work was endorsed enthusiastically by the management of the
American Electric Power Company. The authors wish to express their apprecia-
tion for this support.

It is a pleasure also to acknowledge the contributions of those who have
helped in the preparation of this book. The authors would like particularly to
thank Jorge F. Dopazo, who studied the text in detail and made many sugges-
tions; Marjorie Watson, for her contribution related to the mathematical tech-
niques and for editing the manuscript; and G. Robert Bailey, Dennis W. Johnston,
Kasi Nagappan, Janice F. Hohenstein, and other members of the Engineering
Analysis and Computer Division. The authors would like also to thank Profes-
sors Arun G. Phadke and Danicl K. Reitun of The University of Wiseonsin for
their helpful comments in reviewing the text. Last, but certainly not least,
sincere thanks to Constance Aquila for her excellent work in the typing and
general preparation of the manuscript.

Glenn W. Stagg
Ahmed H. El-Abiad
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1.1 Historical note

The great technical advances in the design and production of commercial
and seientific general-purpose digital computers since the carly 1950s have
placed a powerful tool at the disposal of the engineering profession.  This
advancement has made cconomically feasible the utilization of digital
eomputers for routine caleulations encountered in everyday engincering
work.  In addition. it Tes provided the capability for performing more
advunced engineering and =cientific computations that were previously
impossible because of their complex or time-consuming nature.  All
these trends have inercased immensely the interest in digital computers
and have necessitated u better understanding of the engineering and
mathematicad bases for problem solving,

The planning, design, and operation of power svstems require con-
tinuous and comprehensive analysis to cvaluate current system per-
formance and to ascertain the effectiveness of alternative plans for system
expansion.  These studies play an important role in providing a high
standard of power system reliability and ensuring the maximum utiliza-
tion of capital investment.

The computational task of determining power flows and voltage
Jevels resulting from a single operating condition for even a small network
is all but insurmountable if performed by manual methods. The need
for computational aids in power system engincering led in 1929 to the
design of a special-purpose analog computer called an ac network analyzer.
This device made possible the study of a greater variety of system oper-
ating conditions for both present and future system designs. It provided
the ability to determine power flows and system voltages during normal
and emergency conditions and to study the transient behavior of the
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system resulting from fault conditions and switching operations. By the
middle 1950s 50 network analyzers were in operation in the United Stutes
and Canada and were indispensable tools to planning, relaying, and oper-
ating engineers.

The earliest application of digital computers to power system prob-
lems dates back to the late 1940s.  However, most of the early applica-
tions were limited in scope because of the small capacity of the punched
card calculators gencrally in use at that time.  The availability of large-
scale digital computers in the middle 1950s provided equipment of sufli-
cient capacity and speed to mect the requirements of major power system
problems. In 1957 the Amecrican Electric Power Service Corporation
completed a large-scale load flow program for the IBAI 704 which calcu-
lated the voltages and power flows for a specified power system netwaork.

The initial application of the load flow program to transmission
planning studies proved so successful that all subsequent studies employed
the digital computer instead of the network unadyzer.  The success of
this program led to the development of programs for short circuit and
transient stability calculations. Today the computer is an indispensable
tool in all phases of power system planning, design, and operation.

1.2 Impgact of computers

The development of computer technology has provided the following
advantages to power system engineering:

1. More efficient and economic means of performing routine engineering
calculations required in the planning, design, and operation of a
power system

2. A better utilization of engineering talent by relieving the engincer
from tedious hand ecalculations and permitting him to spend more
time on technical work

3. The ability to perform more effcctive engineering studies by applying
caleulating procedures to obtain a number of alternate solutions for a
particular problem to provide a broad base for engincering decisions

4. The capability of performing studies which heretofore were not possi-
ble because of the volumec of caleulations involved

Two major factors which have contributed to the realization of these
benefits are the declining cost of computing equipment and the develop-
ment of efficient computational techniques. Now that a substantial
reduction in computing cost has been cffected, principal effort must be
directed toward the orientation of engineering problems to computer
solutions.
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1.3 Orientation of engineering problems to computers

The process of applying a computer to the solution of engineering prob-
lems involves a number of distinct steps. These steps are:

1. Problem definition Imtially, the problem must be defined precisely
and the objectives determined.  This may be the most difficult step in
the entire process.  Consfderation must be given to the pertinent data
available for input, the scope of the problem and its limitations, the desired
results, and their relative importance in making an engineering decision.
This phase requires the judgement of experienced and capable engineers.

2. Mathematical formulation After the problem has been defined, it is
necessary to develop a mathematical model to represent the physical
system. This requires specifying the characteristics of individual system
components as well as the relations which govern the interconnection of
the elements.  Different mathematical models may be used to represent
the same system and, for many problems, complementary (dual) formula-
tions may be obtained. One formulation may result in a different number
of equations than ancther as, for example, in the case of network problems
which can be solved using either loop equations or node equations. The
mathematical formulation of the problem, therefore, includes the design
of a number of models and the selection of the best model to describe the
physical system.

3. Selection of a solution {echnique The formulation of most engineering
problems involves mathematical expressions, such as sets of nonlinear
equations, differential equations, and trigonometric functions, which
cannot be evaluated directly by a digital computer. A computer is
capable of performing only the four basic arithmetic operations of addi-
tion, subtraction, multiplication, and division. A solution for any
problem, therefore, must be obtained by numerical techniques which
employ the four bLusic arithmetic operations. It is important in this
phase to select a method which is practical for machine computation and,
in particular, will produce the desired results in a reasonable amount of
computer time.  Since numerical approaches involve a number of assump-
fions, earcful consideration must be given to the degree of aceuracy
required.

4. Program design  The sequence of logical steps by which a particular
problem is to be solved. the allocation of memory, the access of data, and
the assignment of input and output units are important aspects of com-
puter program design.  The objectives are primarily to develop a pro-
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cedure which eliminates unnecessary repetitive calculations and remains
within the capability of the computer. The program design is usually
prepared in the form of a diagram called a flow chart.

5. Programming A digital computer has a series of instructions con-
sisting of operation codes and addresses which it is able to interpret and
execute. In addition to the arithmetic and input/output instructions,
logical instructions are available which are used to direct the sequence of
calculations. The translation of the precise detailed steps to be per-
formed in the solution of a problem into an organized list of computer
instructions is the process of programming. A program can be developed
by using computer instructions in actual or symbolic form, or it can be
written in a generalized programming language, such as FORTIRAN.

6. Program verification There are many -opportunities to introduce
errors in the development of a complete computer program. Therefore,
a systematic series of checks must be performed to ensure the correctness
of problem formulation, method of solution, and operation of the program.

7. Application Engineering programs, in general, can be classified into
two groups. The first consists of special-purpose programs, which are
developed in a relatively short period for the solution of simple engineering
problems. Such a problem is usually well defined, and often the program
completely serves its purpose after the first series of calculations has been
completed. Some small programs are used on a continuing basis but are
restricted in their use because of their special-purpose nature.

The second group consists of general-purpose programs that are
designed for the analysis of large engincering problems,  These programs
are applied extensively in the regular studies of once or more engineering
departments. Their use may have an effect on the approach to an engi-
neering problem and the organization of a study. Thus, it is important
that consideration be given to the manner in which 2 program is to be
empioyed in an engineering activity. Some aspects which must be con-
sidered are means of collecting and preparing data, processing time, and
presentation of results. Programs of this type are becoming an integral
part of power system engineering.

The relative importance of each of these steps varies from problem to
problem. Moreover, all steps are closely related and play an important
role in the decisions that must be made. Of primary importance is the
interrelation of the mathematical formulation of a problem and the selec-
tion of a solution technique. Frequently, it is difficult to evaluate the
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influence of these two steps on cach other without developing a complete
program and performing actual calculations to compare the alternatives.

The material covered in this book pertains to the first three steps,
with particular emphasis on the interrelutions of teps 2 and 3. Simpli-
fied flow charts are used to illustrate the methods presented.
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2.1 Introduction

In recent years, the use of matrix algebra for the formulation and solution
of complex engincering problems has become increasingly important with
the advent of digital computers to perform the required calculations.
The application of matrix notation provides a concise and simplified
means of expressing many problems. The use of matrix operations pre-
sents a logical and ordered process which is readily adaptable for a com-
puter solution of a large system of simultaneous equations.

2.2 Basic concepts and definitions
Matrix notation

Matrix notation is a shorthand means of writing systems of simultancous
equations in a concise form. A matrix is defined as a rectangular array
of numbers, called elements, arranged in a systematic manner with m rows
and n columns. These elements can be real or complex numbers. A
double-subscript notation a,; is used to designate a matrix element.
The first subseript 7 designates the row in which the clement lies, and the
second subscript 7 designates the column.

In the following system of equations,

anzi + anT: + 21T = Y
anti + @222 + ATy = Y2 (2-2-1)
anTy + anT; + anT; = Y,

I1, 1, and z; are unknown variables; ayy, a1s, a3, . . . , a3 are the coefhi-
cients of these variables; yi, ys, and y: are known parameters. The
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cocficients form an array

apy  dia dig
Q21 Q22 Q33 2.2.2
Q3 Qzz daz

which is the coefficient matriz of the system of equations (2.2.1).
Similarly, the variables and parameters can be written in matrix
form:

I Y1
Zy and Y2 (2.2.3)
I3 Y3

The matrix (2.2.2) is designated by a capital letter 4 and the matrices
2.2.3) by X and Y, respectively. In matrix notation the equations
(2.2.1) are written

AX =Y

A matrix with m rows and n columns is said to be of dimension m
by n, or m X n. A matrix with a single row and more than one column
(m = 1 and n > 1) is called a row matriz or row veclor. A matrix with a
single colimn and more than one row is called a column matriz or column
veclor.

Types of matrices

Some matrices with special characteristics are significant in matrix opera-
tions. These are:

Square matrix. When the number of rows equals the number of columns,
that is, m = n, the matrix is called a square matriz and its order is equal
to the number of rows (or columns). The elements in a square matrix
a;; for which 7 = j are called diagonal elements. Those for which 7 # j
are called off-diagonal elements. For elements a;; to the right of the diago-
nal 7 is less than j, and for those to the left of the diagonal 7 is greater
than j.

Upper triangular mairiz  If the elements a,; of a square matrix are zero
for ¢ > j, then the matrix is an upper triangular matriz. For example:

13 G2 A1y
4 =10 Qg2 Qg3
0 0 A3a3
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Lower triangular matriz 1f the elements ai; of a square matrix are zero
for 7 < j, then the matrix is a lower triangular matriz. TFor example:

a1 0 0
A = | Q23 QA22 0
a1 QA3 4z

Diagonal matriz  If all off-diagonal elements of a square matrix are zero
(a; = Oforall 7 = j), then the matrix is a diagonal matriz. For example:

a1 0 0
A=(0 aa O
0 0 ¢ FF)

Unit or identily matriz  1f all diagonal elements of a square matrix equal
one and all other elements are zero (a;; = 1fore = jand a;; = 0for¢ » j),
the matrix is the wunit or identity matriz, designated by the letter U
For example:

1 0
U=101
0 0

— O O

Null matriz  If all elements of a matrix are zero, it is a null matrix.

Transpose of a matriz  If the rows and columns of an m X n matrix are
interchanged, the resultant n X m matrix is the {ranspose and is desig-
nated by A*. For the matrix

an ze_l
A= |an an
a1 Aaxn

the transpose is
Al = ay;y  Qa Gax]
a1z Qa22 QA
Symmetric matriz  1If the corresponding off-diagonal elements of a square

matrix are equal (a; = a;;), the matrix is a symmelric matriz. For
example:

A=

DS U =
(20 VRN
= O W
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The transpose of a symmetric matrix is identical to the matrix itself,
that is, A* = A.

Skew-symmetric matriz 1If A = —A¢ for 4 square matrix, A is a skew-
symmetric matriz. The corresponding off-diagonal elements are equal but
of opposite sign (a; = —a;) and the diagonal elements are zero.  Lor
example:
0 -5 3
A= ) 0 0
-3 -6 0

Orthogonal matriz If A'A = U = AA' for u square matrix with real
elements, then A is an orthogonal matrix.

Conjugate of a matriz  If all the elements of a matrix are replaced by their
conjugates (replace the element a + jb by a — 7b), the resultant mutrix is
the conjugate and is designated by A*. TIor a mutnx

- i3 5
A‘[4+]‘2 1+]‘1}

the conjugate is

—J73 5
A* =] 0 4
[4 A Jl}
If all the elements of A are real, then A = A* If all clements are pure
imaginary, then 4 = —A™
Hermitian matriz If A = (A*)* for a squarc complex matrix, A4 1s a
Hermitian matriz in which all diagonal elements are real.  Tor example:

[ 4 2-3
a=lafn 13

Skew-Hermitian matriz  If A = —(A*)! for a square complex matrix, A
1s a skew-Hermitian matriz in which all diagonal elements are either zero
or pure imaginary. For example:

~ 0 23
A‘[—z—ﬁ 0 ]

Unitary mairiz If (A*)'A = U = A(A*)* for a square complex matrix,
A is a unitary mairiz. A unitary matrix with real elements is an orthogo-
nal matrix.
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Table 2.1 summarizes some types of special matrices.

Tuble 2.1  Types of special matrices

Condition Type of malriz
A= -4 Null

{1 = 4t Symmetde

A = — A Skew-syinmetric
A =4 leal

A= —-A" Pure imaginary
A = (A*) Hermitian

{ = — (A" Skew-I{ermitian
A4 = U Orthogonal
(A4 =U Unitary

2.3 Determinants

Definition and properties of determinants
The solution of two simultaneous equations

anti + apr, =k (2 3 1)
anty + an: = ke o
can be obtained by eliminating the variables one at a time. Solving for
roin terms of ry from the second equation and substituting this expression
for oy in the first equation, the following is obtained:

ks 253
anxy + ap | -— — — 1y
(4 (533

Ty + ks — apanzy = dk
(011022 - 012021)1'1 = anky — apks:

ky

1

Qaky — aiks
Ty = ———
a11022 — Q1212

Then, substituting 1y in cither of the equations (2.3.1), z: is obtained:

ank, — ank,
Ty = ———
a1d2e — d12an
The expression (aya2s — apaz) is the value of the determinant of
the coefficient matrix .1, where || denotes the determinant

| .
!’“ - Iall Qa2
o Pan  any
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The solution of the equations (2.3.1) by means of determinants is

Ty =

‘ ky ais ‘
ks (122{ ankl - ankz
I = =
[*3S T 3¢ ] a11822 — Q12821
a1 Q22
an ki
a2 ko _ ank, — ank,
air a2 a11@22 — G20z
a1 Q22

A determinant is defined only for a square matrix and has a single value.
A method for evaluating the determinant of an n X n matrix is given in
Chap. 7.

Determinants have the following properties:

The value of a determinant is zero if

a. All elements of a row or column are zero

b. The corresponding elements of two rows (or columns) are equal

¢. _A row (or column) is a linear combination of one or more rows
(or columns)

If two rows (or columns) of a determinant are interchanged, the value

of the determinant is changed in sign only

The value of a determinant is not changed if

a. All corresponding rows and columns are interchanged, i.e.,

| A = |4

b. k times the elements of any row (or column) are added to the
corresponding elements of another row (or column)

If all elements of a row (or column) are multiplied by a factor k, the

value of the determinant is multiplied by &

The determinant of the product of matrices is equal to the product of

the determinants of the matrices, i.e.,

14 B C| = |A]|B]|C]|

The determinant of the sum (or difference) of matrices is not equal
to the sum (or difference) of the individual determinants, i.e.,

|A + B — C| = |A| + |B| — |C]

The application of these properties can reduce the work in evaluating
determinants.
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Minors and cofactors

The determinant obtained by striking out the ith row and jth column is
called the minor of the element a;;. Thus, for

an a4z Ay
!A| = | Q21 Q22 Q413
az QGz2 Qi

the minor of as; is

a1z QA
a3z Qa3

The order of this minor is one less than that of the original determinant.
By striking out any two rows and columns a minor of order two less than
the original determinant is obtained, ete.

The cofactor of an element is

(—1)"*(minor of a;)
where the order of the minor of a;;is n — 1. The cofactor of as, desig-

nated by A4, is

___‘ az au’

lays a
Ag] = (_1)24,1{ 12 13
i | @2 as

A3z Qss

The following relationships between a determinant and cofactors
exist:

1. The sum of the products of the elements in any row (or column) and
their cofactors is equal to the determinant:

Al = anday + an2dan + adas (2.3.2)

2. The sum of the products of the elements in any row (or column) and
the cofactors of the corresponding elements in another row (or column)
1s equal to zero:

anAan + 2z + a3 =0 (2.3.3)

Adjoint

If cach element of w square matrix is replaced by its cofactor and then the
matrix is transposed, the resulting matrix is an adjoint which is designated
by A+

rAn An A:l
At = Az .‘1:2 A
Ay An A
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2.4 Mairix operations
Equality of matrices

If A and B are matrices with the same dimension and each element a,;
of A is equal to the corresponding element b; of B, the matrices are
equal, i.e.,

A=28

Addition and subtraction of matrices

Matrices of the same dimension are conformable for addition and sub-
traction. The sum or difference of two m X n matrices, A and B, is a
matrix C of the same dimension, i.e.,

A+B=C

where each element of C is

Cij = Gy £ by

For n conformable matrices the sum or difference is
AtBztCxtD+ - -+t N=R

where t};e elements of the resultant matrix R are
rg=ay kb ke kdi £ £y

The commutative and associative laws apply to addition of matrices
as follows:

A4+ B=B+ A commutative law
i.e., the sum of the matrices is independent of the order of the addition.
A+B+C=A4A+(B+C =(A+B) +C associative law

i.e., the sum of the matrices is independent of the order in which the
matrices are associated for addition.

Multiplication of a matrix by a scalar

When a matrix is multiplied by a scalar, the elements of the resultant
matrix are equal to the product of the original elements and the scalar.
For example:

kA =B

where b;; = ka;; for all 7 and ;.
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The multiplication of a matrix by a scalar obeys the commutative
law and the distributive law as follows:

kA = Ak commutative law
KA+ B) =kA + kB = (A 4+ Bk distributive law

Multiplication of matrices
AMultiplication of two matrices
AB =C

1s defined only if the number of columns of the first matrix A equals the
number of rows of B. Thus, for the product of matrix A of dimension
m X ¢ and matrix B of dimension ¢ X n, the matrix C is of dimension
m X n. Any clement ¢,; of C is the sum of the products of the corres-
ponding elements of the 71th row of 4 and the jth column of B, that is,

€ = @by 4+ anby + 0+ agh,

or
q

c.,v=20,kbk,- 1=1,2, ... ,m3=12 ...,n
k=1

For example:

a2 [bn bx'z] anbir + @by anbi + @b
AB =|an amn [b'n baz | = anbu -+ a'.v-zbu aszxz 4 Gasdoy
T3 (a2 anbir 4+ aibar  asbyy + anban
In the product A B, A premultiplics B or B postmultiplies 4. The
product B.A is not defined since the number of columns of B is not equal
to the number of rows of 4. When the products A B and BA arc defined
for a square matrix, it can be shown that, in general,

AB # BA

Therefore, the commutative law does not hold for matrix multiplication.
If the matrices A, B, and C satisfy the dimension requirements for multi-
plication and addition, the following properties hold:

A(B+ C) = AB 4+ AC distributive law

A(BCY = (AB)C = ABC associative law
However,
AB = 0 does not necessarily imply that A = Qor B = 0

CA4

i

CB does not necessarily imply that A = B
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1f ¢ = AB, then the transpose of C is equal to the product of the
transposed matrices in reverse order, 1.e.,

Ct = B'A!

This is the reversal rule.

Inverse of a matrix

Division does not exist in matrix algebra except in the case of the division
of a matrix by a scalar. This operation is performed by dividing each
element of a matrix by the scalar. However, for a given set of equations,

anZy + a12Z2 + QT3 = Y1

anzi + anT: + a1y = Y2 (2.4.1)
ATy + @iy + a5z = Y

or, in matrix form,

AX =7 (2.4.2)

it is desirable to express z,, 72, and z; as functions of y1, y», and ys, that is,
X = BY

If there is a unique solution for the equations (2.4.1), then matrix B
exists and 1s the tnverse of A.

If the determinant of A is not zero, the equations can be solved for
the z,’s as follows:

All A21 /i31
Ty =1+ Y2t T Y
|A] |A] |A]
Al2 AZZ A32
Ty = — — —
2 |A|y1+|A|y2+|A\y3
A13 A23 ASJ
Iz = |Aiy1+“A'yz+|Alyz
where A1y, Az, . . ., Assare the cofactors of ayy, @y, . . ., assand |4

is the determinant of A. Thus

All A21 ASI
4] Al 14]

B _ AIZ A22 A32 _ A+
|4l 1Al 1Al] 14
Ali A23 A33

14l 14l 14
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where A+ is the adjoint of A, It should be noted that the elements of the
adjoint A+ are the cofactors of the elements of 4, but are placed in trans-
posed position.  The matrix B s the inverse of A and is written 41

Multiplying 4 by its inverse,
An An A

_ — 1 0 0
G S Al 4]

Alz A72 AJ?

noan || =0 S0 SR l=lo 1 0|=U

A | NV VR VUV

All A23 AIXS

— - 0 0 1
R AT VTR VY

results in the unit matrix. This follows from the relationships (2.3.2)
and (2.3.3). A diagonal term of U, such as uiy, equals 1 since

An Arg A LAl
ay = =

At Ay T A T

and an off-diagonal term, such as wu;,, equals zero since

Am Agg Azg 0

ML kLS 2B _ 2 _9
an A 2 |A] aus 14| JA]
Thus

AAT = ATA = U

Ta solve for X from the matrix equation (2.4.2) hoth sides of the equation
arc premultiplicd by A=%L

AX =Y
ATAX = A'Y
UX = A'Y
X =AY

The order of the matrices in the product must be maintained.

If the determinant of a matrix is zero, the inverse does not exist.
Such a matrix is ealled a stngular matrir.  1f the determinant of 4 matrix
is not zero, the matrix is a nonsingular matriz and has a uniquc inverse.

The inverse of the product of matrices ean be obtained by the reversal
rule, i.e.,

(AR)~t = B-14-t

The transpose and inverse operations on a matrix can be inter-
changed, i.e.,

(A1 = (4-1)¢
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Partitioning of matrices

A large matrix can be subdivided into several submatrices of smaller
dimensions:

1

A\ A /12

Ay Ay

If the diagonal submatrices A, and A, are squure, the subdivision is
called principal partitioning.

Partitioning can be used to show the specific structure of (4 and to
simplify matrix computation. Each submatrix is considered s an cle-
ment in the partitioned matrix.  Addition or subtraction iz performed
as follows:

i

A4, A, B, B Ay By b = B

I+

Az_ A4 Ba B4 ’ 113 : L{J -'14 _I". 84
[
L

where the dimensions of corresponding submutrices must B¢ conformable.
Multiplication is performed as follows:

! [

A, A, B, BQ‘E e,

i
A, | A, B.| B. |~ Ca{ C,

where

Cl = A\B;, + A,B;
Cz = A.\Bz + AzBA
Cy = A3B, + AB;
04 = Asz + A434

The rule for partitioning two matrices whose product is to be found is:
the n columns of the premultiplier are grouped into &k and n — k columns
from left to right, and the n rows of the postmultiplier are grouped into
k and n — k rows from top to bottom in order that the submatrices are
conformable for multiplication.
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The transpose of a partitioned matrix is shown below.

Ay A,
A =
A, A,
Ay A4
At =
Azt A‘l
The inverse of a partitioned matrix is obtained as follows:
A] f11
A=
Ay Ay
Bx 81
ATt =]
B3 B4
where

By = (4, — 4,477
By = —Byd. A4

B, — AL B,

B, A — AUGB,

(2.4.3.)

|l

and .1, and A4 must be square matrices.

2.5 Linear dependence and rank of a matrix

Linear dependence

The columns of an m X n matrix A can be written as n eolumn vectors.
falic] - - el

Also, the rows of matrix A4 can be written as m row vectors.

frablre} s il
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The column vectors are linearly independent if the equation

pifei} + pefea) + -+ palea} =0 (2.5.1)
is satisfied only for all px =0 (k =1, 2, . . ., n). Similarly, the row
vectors are linearly independent if only zero values for the sculars
g- (r=1,2,...,m) satisfy the equation

(11{7‘1] + (12{7'2} + o+ lermj =0 (2.5.2)

It is not possible to express one or more linearly independent column
vectors (or row vectors) as a linear combination of others.

If some px # 0 satisfies (2.5.1), the column vectors are linearly
dependent. If some ¢ # 0 satisfies (2.5.2), the row vectors are linearly
dependent. That is, it is possible to express one or more column vectors
(or row vectors) as a linear combination of others. If the column vectors
(or row vectors) of a matrix 4 are linearly dependent, then the determi-
nant of A is zero. '

Rank of a matrix

The rank of an m X n matrix A is equal to the maximum number of
linearly independent columns of A or the maximum number of linearly
independent rows of A. The former is called the column rank and the
lutter the row rank. The column rank is cqual to the row runk. The
rank of a matrix is equal to the order of the largest nonvanishiug deter-
minant in A. For example, consider the matrix

1 2 4
A=12 4 8
3 8 10

The rows are linearly dependent since the equation
{124} + ¢2{248} + ¢3{3810} =0

1s satisfied for

Q=2
g2 = —1
g3 =0

Similarly, the columns are linearly dependent since the equation

1 2 4
D142, + P24y + 01y 8 =0
3 8 10
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is satisfied for

P =6
pr = —1
py = —1

However, no two calumns are lincarly dependent and, therefore, the rank
of the matrix is 2.

2.6 Linear equations

A linear svstem of m equations in n unknowns is written

ATy + QX2 0 A+ @aZa = Y
ATy + QT2 + 0+ QaT. = Y2 (2.6.1)
AmiZTy F AmaZz + ° 0 GpnTa = Ym

where a,; = known coefficients or parameters of the system
r; = unknown variables of the system
y. = known constants of the system

The system of equations (2.6.1) in matrix form is

AX =Y

It

The augmented matriz of A, designated by A4, is formed by adjoining
the column vector Y as the (n + 1)st column to A.

ayy Q412 Qi Y
7 Az Qo2 Qi Y2
[1 S
L@mi Gmz © " Gmn YUm
If y1, y2, . . ., yn are all zero in (2.6.1), the linear equations are
homogeneous and
AX =0

If one or more y, are nonzero, the lincar equations are nonhomogeneous.

The necessary and sufficient condition for a system of linear equations
to have a solution is that the rank of the coefficient matrix 4 be equal to
the rank of the augmented matrix A. A unique solution exists when A
is a square matrix and the rank of 4 is equal to the number of columns
(variables). The unique solution is nontrivial for nonhomogeneous
equations and trivial (i.e., zero) for homogeneous equations. If the rank
of A is less than the number of equations, some of the equations are
redundant and do not place any further constraint on the variables.
If the rank of A is less than the number of variables of the system, there
are an infinite number of nontrivial solutions.
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Problems
2.1  Given:
1 1 35 2 1 5
A= 3 2 4 and B=|-3 4 4
-7 2 3 7 -2 2
Determine:
a C=A+2B
b. What type of matrix C is
c. D=A—-B
d. What type of matrix D is
2.2 Given:
1 2
A=[:g s ‘;] and B =3 4
5 6
Determine:
a. C=AB
b. D = BA
c. E=AB
d. What the relationship of matrix £ to matrix D is
2.3  Given:
11 8 5 -2 1 1
A=) 8 1 5 and B = 1 —1 0
5 5 2 3 -1 -1
Determine:

a. C = B‘AB

b. What type of matrix A4 is
¢. What type of matrix C is
d. D=C"

e. E=CC!

f. What type of matrix E is
G

2.4 iven:
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Determine:
a. B =A4"!
b. XfromAX =Y
Given:
0 d 7 1
1= -3 0 -1 7
‘ -7 1 0 -5
-1 -7 b 0
Determine:
a. B =014 4050
b, What type of matrix A s
c. That I8 is orthogonal
Given:
1 1 1
] V3 ] 3
LIS B I T
V3 : V1 A3
—ytiy iy

Determine:

a. B = {A*)4

b, What type of matrix .4 is
Given:

2 -2 1 443
A = J2 1 2 -7
1 -3 24 3

Determine:

a. B = (4A*)

b. What type of matrix A is
Given:

{1 1 |72 ] [t
“‘[0 —3] JB‘L‘»* 0] and Y‘[a’]

Determine:

a. X from (A +jiBX* =Y
b. What type of matrix A is
¢. What type of matrix B 1s

23
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2.9  Given the partitioned matrix:

1
A= -2 _1—
—6 4| 2

Determine B = A-! using the formulas (2.4.3) for the inverse of
a partitioned matrix.

2.10 Given:

—
1 2] 0 3 1
4 6 0 0 1 1
“lo ol14 5 1|1
A, 3 0] 5 10 2|1
4 1| 1 2 12]]1

|

Determine A.,.
2.11 Given the partitioned matrices:

1 2|00 010
1 1/0 0 00
A_001320
10 0|2 3 410
0 01 53 20
0 0|0 O 015

1 3 5 611
711 3 2|4

3 4|12 6 5|1
3"463125
2 6|7 3 8|1
7 213 1 415

Determine C = AB.



2.12 Given:

Chapter 2

2
.

“i

and N is a null matrix.
Show that

the inverse of C is

Matrix algebra

2 1 -1
A=|5 6 3
L3 5 4
Show that 4 is a singular matrix and determine its rank.
2,11 Given:
i
l ! 6 0 3|1
A (A l24 22
4 = =} 17 53
A43 :&4 ; 6 4 2 2
f
Determine B = A, — A4,
2.15  Given:
[ 3 -2 1 _
A=|-2 5 -8 B-= [_f :
1 -8 12
1 0 -1
c=ls -1 7]

Determine D = A — C'BC.

25
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3.1 Introduction

The formulation of a suitable mathematies! model is the first step in the
analysis of an electrical network.  The model musr deseribe the charac-
teristics of individual netwerk components as well ax the relations that
govern the interconnection of these elements. A network matrix equa-
tion provides a convenient mathematical model fur & digital computer
solution.

The elements of a network matrix depend »n the selection of the
independent variables. which can be either eurrents or voltages.  Cor-
respondingly, the elements of the network muarrix will he impedances ur
admittances.

The electrical characteristics of the individusl network components
can be presented conveniently in the form of a primitive network muirix.
This matrix, while adequately describing the characteristies of each com-
ponent, does not provide any informaticn pertaming to the network con-
nections. It is neressary, therefore. te transform the primitive network
matrix into a network matrix that describes the performance of the mter-
connected network.

The form of the network matrix used in the performance equation
depends on the frame of reference. namely, bus or loop. In the bus
frame of reference the variables are the nodal voltuges and nodal currents.
In the loop frame of reference the variables are loop veltages wnd loop
currents.

The formation of the appropriate network matrix is an integral part
of a digital computer program for the solution of power system problems.
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3.2 Graphs

Ir. nrder 1o describe the geometrical structure of a netwark 1t 1s sufficient
i, r=piace the network components by single line segraenis irrespective
of the characteristics of the components. These line segments are called
elements and their terminals are called nodes. A rode and an element are
inricent f the node is a terminal of the element.  Nodex can be incident
to one or more elements.

A graph shows the geometrical interconnection
network. A subgraph is any subset of elements of the graph: A pathisa
subgraph of connected elements with no more than twe clements con-
nected to any one node. A graph is connected if and snly if there 1s a
path between every pair of nodes. If each element of the connected
graph is assigned a direction it is then oriented. A representation of a
power system and the corresponding oriented graph are shown in Fig. 3.1.

the slements of a

Fig. 3.1 Power sys-
tem representations.
{a) Single line dia-
gram; (b) positive se-
quence network dia-
gram;(c)oriented con-
nected graph.
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(
o¥

Branch v
———— Link o =

Fig. 3.2 Tree and cotree of the oriented connected graph.

A connected subgraph containing all nodes of 2 graph but no closed
path is called a tree. The elements f a tree are called branches and forn:
a subset of the elements of the connected graph.  The number of branches
b required to form a tree is

b=n—-1 (3.2.1)

where n is the number of nodes in the graph.

Those elements of the connected graph that are not included in the
tree are called links and form a subgraph, not necessarily connected.
called the cotree. The cotree is the complement of the tree.  The number
of links [ of a connected graph with ¢ elements is

l=e—1b
From equation (3.2.1) it follows that
l=e—n+1 3.2.2

A tree and the corresponding cotree of the graph given in Fig. 3.1c are
shown in Fig. 3.2.

If a link is added to the tree, the resulting graph contains one closed
path, called a loop. The addition of each subsequent link forms one or
more additional loops. Loops which contain only one link are inde-
pendent and are called basic loops. Consequently, the number of basic
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©

Fig. 3.3 Basic loops of the oriented connected graph.

loops is equal to the number of links given by equation (3.2.2). Orienta-
tion of a basic loop i1s chosen to be the same as that of its link. The basic
loops of the graph given in Fig. 3.2 are shown in Fig. 3.3.

A cut-set is a set of elements that, if removed, divides a connected
graph into two connected subgraphs. A unique independent group of

Fig. 3.4 Basic cut-sets of the oriented connected graph.
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cut-sets may be chosen if each cut-set contains only one branch. Inde-
pendent cut-sets are called basic cut-sets. The number of basic cut-sets
is equal to the number of branches. Orientation of a basic cut-set is
chosen to be the same as that of its branch.  The basic cut-sets of the
graph given in Fig. 3.2 are shown in Fig. 3.4

3.3 Incidence matrices
Element-node incidence matrix A

The incidence of elements to nodes in a connected graph is shown by the
element-node incidence matrix. The elements »of the matrix are as
follows:

a, = 1 if the 7th element is incident to and oriented away from the jth
node

ay; = —1 if the ith element is incident to and onented toward the jth
node

i

a;; = 0 if the /th element is not incident to the -th nude

The dimension of the matrix is ¢ X n. where ¢ is the number of elements
and 7 is the number of nodes in the graph. The element-node incidence
matrix for the graph shown in Fig. 3.2 1s

n
Ne @ & 0 ©

1 1 —1
2 1 -1
3 1 -1

Py
1l
IS
|

[
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Since

4
Va; =0 1=1,2,... e
et

o

the columns of A are linearly dependent. Hence. the rank of 4 < n.

Bus incidence matrix A

Anv node of a connected graph can be selected as the reference node.
Then. the variables of the other nodes, referred to as buses, can be
measured with respect to the assigned reference. The matrix obtained
from 4 by deleting the column corresponding to the reference node is the
element-bus incidence matrix 4, which will be called the bus incidence
mitrix.  The dimension of this matrix is ¢ X (n — 1) and the rank is
n — 1 = b, where b is the number of branches in the graph. Selecting
node 0 as reference for the graph shown in Fig. 3.2,

\_ bus

6 1] -1

-1
—
|
—

This matrix is rectangular and therefore singular.

If the rows of 4 are arranged according to a particular tree, the matrix
can be partitioned into submatrices A, of dimension b X (n — 1) and 4,
of dimension { X (n — 1), where the rows of 4, correspond to branches
and the rows of A, tolinks. The partitioned matrix for the graph shown
in g 3.2 s



Chapter 3 Incidence and network matrices 33

bus . bus
o @ 6® O ~ Buses
e \ e ‘\_\
1| -1
2 -1 E
= Ay
3 —1 Z
4= 4 -1 1| =
5 1| —1
L
6 | 1 -1 £ A
7 1 ~1

As is a nonsingular square matrix with rank {n — {}.

Branch-path incidence matrix K

The incidence of branches to paths in a tree 1s shown by the branch-path
incidence matrix, where a path is oriented from s bus to the reference
node. The elements of this matrix are:

k; = 1if the ith branch is in the path from rhe jth bus to reference and is
oriented in the same direction
ki; = —1if the ¢th branch is in the path from the jth bus to reference but

1s oriented in the opposite direction
k;; = 0 if the sth branch is not in the path from the jth bus to reference

With node O as reference the branch-path 1ncidence matrix associated with
the tree shown in Fig. 3.2 is

path

O ® 6 ©

b
1| -1
%
2 —1
K =

3 -1 -1
4 -1

This 1s a nonsingular square matrix with rank (n — ;.
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The branch-path incidence matrix and the submatrix A, relate the
branches to paths and branches to buses, respectively. Since there :s
a one-tc-one correspondence between paths and buses,

A K = U (3.3.1}
Therefore,
Kt = A4, (3.3.2>

Basic cut-set incidence muatrix B

The incidence of elements to basic cut-sets of a connected graph is shown
by the basic cut-set incidence matrix B. The elements of this matrix are:

b,; = 11if the ith element is incident to and oriented in the same direction
as the jth basic cut-sey

b, = —1 if the 7th element is incident to and oriented in the opposite
direction as the jth basic cut-set

b, = 0 if the 7th element is not ineident to the jth basic cut-set

The basic cut-set incidence matrix, of dimension ¢ X b, for the graph
shown in Fig. 3.4 is

b Basic cut-sets

eN] 4 B C D
1 1
2 1
3 1

B = 4 1

5 -1 1 1
6 —1 1
7 —1 1

The matrix B can be partitioned into submatrices Uy and B, where the
rows of U correspond to branches and the rows of B; to links. The
partitioned matrix is
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b Basic cut-sets b Basic cut-sers
e \l A B c D e\ . ’
S ! : ' ! L o
Ler ! |
| | i | S ! \
E ! | Log | :
2 C L i Z T
i L | - -t z 17 |
: !
3 1 I
— S |
B = 4 t ‘ : o= ! !
| ! . '
‘ ! : f |
5 | -1 1
i i — - ) E
6 | —11 1 PoE B
— =
7 -1 1 ‘

The identity matrix U, shows the one-to-one correspondence of the
branches and basic cut-sets.

The submatrix B; can be abrained from the bus incidence matrix A.
The incidence of links to huses is shown by the submatrix A4, and the
incidence of branches to buses is shown by the submatrix 4,. Since
there is a one-to-one correspendence of the branches and basic cut-sets.
BiA, shows the incidence of Links to buses. that is,

B4, = A,

Therefore,

Bz = A[Ab_l

In addition, as shown in equation (3.3.2),
Ayl = Kt

Therefore,

B, = A\K! (3.3.3;

Augmented cut-set incidence matriz B

Fictitious cut-sets, called tie cut-sets, can be introduced in order that the
number of cut-sets equals the number uf elements. Each tie cut-set
contains only one link of the connected graph. The tie cut-sets for the
graph given in Fig. 3.4 are shown in Fig. 3.5. An augmented cut-set
incidence matrix is formed by adjoining to the basic cut-set incidence
matrix additional columns corresponding to these tie cut-sets. A tie
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Basic cut-set

. } f\
Tie cut-set O

Fig. 3.5 Basic and tie cut-sets of the oriented connected graph.

cut-set is oriented in the same direction as the associated link. The
augmented cut-set incidence matrix for the graph shown in Fig. 3.5 is

e Basic cut-sets Tie cut-sets
2 A B ¢ D E F @
o [
1 \ 1 ‘ )
| | i
| ’ ! i
2 1 \ 1 |
| | '
! : j
3 ! S O !
N B |
B= 4 t | 5 !
. ; -
5 ‘ e l 1|1
6 ‘ I | | 1
i
I ; \
7 -1 1 ‘ 1
L

This is a square matrix of dimension e X ¢ and is nonsingular.
The matrix B can be partitioned as follows:
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e Basic cut-sets Tie cut-sets
e A B :’j D E F G
] T i : :
1 1 i i f ’
— it
2 S} * ‘
5 | ‘ |
B= 4 ’ i
| 7 {
5 1 -1 1 1 1 A
6 | —1' 1 T i ﬂ
1
7 I 1
e\\< Basic cut-sets Tie cut-sets
i
|
g I
< |
[>] 1
g Us 0 1
=
= |
|
p |
E B( (.;l :
— |
‘ i

Basic loop incidence matrix (

The incidence of elements to basic loops of a connected graph is shown by
the basic loop incidence matrix C. The elements of this matrix are:

¢i; = 11if the 7th element is incident to and oriented in the same direction
as the jth basic loop
¢; = —1 if the 7th element is incident to and oriented in the opposite

direction as the jth basic loop
ci; = 0 if the ¢th element is not incident to the jth basic loop
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The basic loopincidence matrix, of dimension e X I, for the graph shown
in Fig. 3.3 is

[ 2]

[¥%]

7

Basic loops
E F G
B
l z
: .
i =1 1
: |
L1 -1
i -1 !
| |
: {
1
1
1

The matrix C can be partitioned into submatrices Cs and U, where
the rows of €, correspond to branches and the rows of U; to links. The
partitioned matrix is

N

e\

Basic loops 7| .
Q X. Basic loops

1

7

E F
1
w
1| -1 1 <
o)
-1 -1 &
_1 =
1
._*Ud:’
1 = of
1
] L

The identity matrix U, shows the one-to-one correspondence of links to
basic loops.

Augmented loop incidence matriz C

The number of basic loops in a connected graph is equal to the number of
JJinks.  In order to have a total number of Ioops equal to the number of
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- Basic loop ~
~ Open loop D

Fig. 3.6 Basic and open loops of the oriented connected graph.

elements, let (¢ — [} loops, corresponding tu the b branches, be designated
as open loops. An open loop, then, is defined as a path between adjacent
nodes connected by a branch. The open lnops for the graph given in
Fig. 3.3 are shown in Fig. 3.6. The orientation nf an open loop is the
same as that for the associated branch.

The augmented loop incidence matrix is formed by adjeining to
the basic loop incidence matrix the columns showing the incidence of
elements to open loops. This matrix, for the graph shown in Fig. 3.6 is

¢ Open loops Basic loops
e A B ¢ D E F G
, ! .
1 1 { ‘ 1 !
2 1 1 -1, 1
T
3 1 -1 S -1
C= 4 1| -1
|
5 1 i
6 1 .
| -
7 ; b1
| | '

This is a square matrix, of dimension e X ¢, and is nonsingular.
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The matrix C can be partitioned as follows:

N

€ Open loops Basic lvops
f’_‘\l A B C D E F G
11 ’ b ;
EN I PR
2 1 ; 1o -1 1
3 1 —1 b —1
—_— — ¥
C= 4 IR .
| i
. !
5 ‘; 1 i
|
; — D
7 ! 1
| 1

N Open loops Basic loops

7]
<
S
=1 Db Cb
s
[
jaa)
‘_Elc.‘
= 0 U,
—_

3.4 Primitive network

Network components represented both in impedance form and in admit-
tance form are shown in Fig. 3.7. The performance of the components
can be expressed using either form. The variables and parameters are:

'pe 18 the voltage across the element p—q
epe 1s the source voltage in series with element p—¢
ip¢ 1s the current through element p—q
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Jee 18 the source current in parallel with element p—¢
» 15 the self-impedance of element p-g
Ype s the self-admittance of element p-g

Each element has two variables. 15, and ¢, [ steady -tate these
vanables and the parameters of the elements z,, and y,, are real numbers
for direct current circuits and complex numbers for alternating current
cireuits

The performance equation of an element 1n impedance form is

Upg t €pq = Zpglpg (34.1)
or in admittance form is
oo + Jpc = Ynel'sa 13.4.2)

The parallel source current in admittauce form is related to the series
source voltage in impedance form by

Jpe = T Ype€pq

A set of unconnected elements i~ defined as & primitive network.
The performance equations of a primitive network can be derived from
(3.4.1) or (3.4.2) by expressing the variables as vectors and the parame-

E E
O
=S =N
P P — ‘9
Py
tpg =E,—E,
(a)
g
E - ! E
Pe Ypg q
® i — @
tpgtipg
Upg =Ep—E,
(b)

Fig. 3.7 Representations of a network component. (a’
Impedance form; (b) admittance form.
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ters as matrices. The performance equation i impedance form is
f i = 2]

:r 1 admittance form is

7=yl

A diagonal element of the matrix [2] or [y] of the primitive network s the
seif impedance z,q 5, or self-admittance y,, ;o An off-diagonal element 1s
*5¢ mutual impedance z,,,, or the mutual admittance ypq, between the
“lenients p—¢ and r-s. The primitive admittance matrix [y] can be
obtained by inverting the primitive impedance matrix {z].  The matrices
21 und {y] are diagonal matrices if there is ne mutual coupling between
clements. In this case the self-impedances are equal to the reciprocals
of the corresponding self-admittances.

3.5 Formation of network matrices
by singular transformations

Network performance equations

A network is made up of an interconnected set of elements. In the bus
frame of reference, the performance of an interconnected network is
described by n — 1 independent nodal equations, where n is the number of
nodes. In matrix notation, the performance equation in impedance
form is

Esrs = Zpuyslaus
or in admittance form is
Isrs = YpusEsus

where EBL'S

vector of bus voltages measured with respect to the refer-
ence bus

Iprs = vector of impressed bus currents

Zprs = bus impedance matrix whose elements are open circuit
driving point and transfer impedances
Yprs = bus admittance matrix whose elements are short circuit

driving point and transfer admittances
In the branch frame of reference the performance of the intercon-
nected network is described by b independent branch equations where b
13 the number of branches. In matrix notation, the performance equa-
tion 1n impedance form is

EBR = ZBRIBR
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or in admittance form is
Isx = YerEgr

where Epr = vector of voitages across the hranches

Igr = vector of currents through the branches

Zgr = branch impedance matrix whase elements are open circuit
driving point and transfer impedascex o the hranches of
the network

Ygr = branch admitiance matrix w < are short circult

driving point and transfer admitcaiicas «f the branches of
the network

In the loop frame of reference, the performans= of an interconnected

network is described by { independent loop equations where ( is the num-

ber of links or basic loops. The performance srquation in impedance

form is

ELOOP = ZLooproop

or in admittance form is
Itoor = YioorEroor

where Eroop = vector of basic loop voltages
ILoor = vector of basic loop currents
Zroor = loop impedance matrix
Yi00p = loop admittance matrix

Bus admittance and bus impedance matrices

The bus admittance matrix Ygys can be ohtained by using the bus inci-
dence matrix A to relate the variables and paramerers of the primitive
network to bus quantities of the interconnected network. The perform-
ance equation of the primitive network

1+ = [y
1s premultiplied by A¢, the transpose of the bus incidence matrix, to obtain
A%+ A9 = Aylp (3.5.1)

Since the matrix A shows the incidence of elements to buses, 4% is a
vector in which each element is the algebraic sum of the currents through
the network elements terminating at a bus. In accordance with Kirch-

hoff’s current law, the algebraic sum of the currents at a bus is zero.
Then

A7 =0 (3.5.2)
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Similarly, A4 gives the algebraic sum of the source currents at each bus
and equals the vector of impressed bus currents. Therefore

Iprs = AY (3.5.3)
Substituting from equations (3.5.2) and {3.5.3) into (3.5.1) yields
Iprs = AYyly (3.5.4)

Pewer into the network is (Ihys)Eprs and the sum of the powers in the
primitive network is (7*)%. The power in the primitive and intercon-
nected networks must be equal, that is, the transformation of variables
must be power-invariant. Hence

(T30s)'Epus = (7%)9 (3.5.5)
Taking the conjugate transpose of equation (3.5.3)

(Tgus) = (7¥)4x

Since 4 is a real matrix

A* =

and

Ty = (774 (3.5.6)
Substituting from equation (3.5.6) into (3.5.5)

(7")'AEsus = (J)%

Since this equation is valid for all values of 7, it follows that

AEgrs =1 (3.5.7)
Substituting from equation (3.5.7) into (3.5.4),

Ines = AfylAEsys (3.5.8)
Since the performance equation of the network is

Invs = YousEpes (3.5.9)
it follows from equations (3.5.8) and (3.5.9) that

Yvs = A'ylA

The bus incidence matrix 4 is singular and therefore A/(y]A is a singular
transformation of [y].

The bus impedance matrix can be obtained from

Zpvs = Yaps = (Ayl4)~!
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Branch admittance and branch impedance matrices

The branch admitiance matrix Y zg can be obtained by using the basic
cut-set incidence matrix B to relate the variabies and parameters of the
primitive network tc¢ branch quantities of the interconnected network.
The performance equation of the primitive network in admittance form is
premultiplied by B* tc obtain

B + By = Ry'¥ (3.5.10)

Since the matrix B shows the incidence «f elements to basic cut-sets,
Bt is a vector in which each element is the algebraic sum of the currents
through the elements incident to a basie cut-set.

The elements of a basic cut-set if removed divide the network into
two connected subnetworks. Therefore, an element of the vector B is
the algebraic sum of the current entering a subnetwork and by Kirchhoff’s
current law is zero. Therefore

Ba =0 (3.5.11)

Similarly, B is a vector in which each element is the algebraic sum of the
source currents of the elements incident to the basic cut-set and is the
total source current in parallel with a branch. Therefore

Isr = By (3.5.12)
Substituting from equations (3.5.11) and (3.5.12) into {3.5.10) yields
Ipr = Bylp (3.5.13)

Power into the network is (I'z)!(E5z) and since power is invariant
(I3r)‘Esr = (J%)%

Obtaining (I%)* from equation (3.5.12), then

(J*)'B*Er = (J*)%

Since B is a real matrix

B* = B and (J*)BEgr = (7%)%

Since this equation is valid for all values of 7, it follows that

i = BEse (3.5.14)
Substituting from equation (3.5.14) into (3.5.13) yields
Isr = B{y)BE s (3.5.15)

The relation between the branch currents and the branch voltages is

Isr = VgrEse (3.5.16%
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It follows from equations (3.5.15) and (3.5.16} that
Ysr = BYy]B

The basic cut-set matrix B is a singular matrix and therefore B{y|B is a
singular transformation of [y].
The branch impedance matrix can be obtaiued from

Zpr = Y = (By]B)!

Loop impedance and loop admittance matrices

The loop impedance matrix Z.gop can be nbtained by using the basic
loop incidence matrix C to relate the variables and parameters of the
primitive network to loop quantities of the interconnected network.
The performance equation of the primitive network

v+ é = [2]1
is premultiplied by C' to obtain
Co + Ce = CY2] (3.5.17)

Since the matrix C shows the incidence of elements to basic loops, C'%
gives the algebraic sum of the voltages around each basic loop. In
accordance with Kirchhoff’s voltage law, the algebraic sum of the voltages
around a loop is zero. Hence

Co =0 (3.5.18)

Similarly C'¢ gives the algebraic sum of the source voltages around each
basic loop. Therefore

Eroor = C'e (3.5.19)
Since power is invariant

(IToor)Eroor = (1*)'e

Substituting for Eroor from equation (3.5.19), then

(I7o0p)C'e = (i*)'e

Since this equation is valid for all values of &, it follows that

(%) = (I700p)'C*

Hence,

1= C*Iro0p
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Since C is a real matrix,

c*=2C
and
1= CI_LOOP (3520)

Substituting from equations (3.3.18: 155 10}, and /3 5.20) into (3.5.17)
vields

Eroor = C12)C1Loop (3.5.21)
The performance equation of the network ir: the icop frame of reference is
Eroor = Z1oorILoor (3.5.22)
and it follows from equations (3.5 21; and (3.5.22) that

Zioop = CYz]C

Since C is a singular matrix, CYz]C is a singular transformation of [2].

Table 3.1 Formation of network matrices by
singular transformations

Network matrices

Primitive Loop Bus Branch
3
8
<
.§L Ciz]C
g :T [2] l—Z roop Zgys Zpr
~ 3
| ! !
}
3 fl
£ [yl Yroor Yaus Ygr
2 AylA
§ 1 ~
< By]|B
f
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Table 3.2 Current and voltage relations between
primitive and interconnected networks

Frame of reference

1
Loop l‘ Bus Branch
|
E 1 = ClLoor ! Torn = AY Isr = BY
S . . .
% Eroop = C% i = AEgus 7 = BEpgg
~

The loop admittance matrix can be obtained from
Yioor = Zgpop = (CY[2]C)7!

The singular transformations for obtaining network matrices are
summarized in Table 3.1.  The current and voltage relations between the
primitive and interconnected networks are summarized in Table 3.2.

3.6 Formation of network matrices
by nonsingular transformations

Branch admittance and branch impedance matrices

The branch admittance matrix Ype can be obtained also by using the
augmented cut-set incidence matrix B to relate the variables and parame-
ters of the primitive network to those of an augmented interconnected
network. The augmented network is obtained by connecting a fictitious
branch in series with each link of the original network. In order to
preserve the performance of the interconnected network the admittance
of each fictitious branch is set to zero and its current source is set equal to
the current through the associated link, as shown in Fig. 3.8a. The volt~
age across a fictitious branch is zero. Then a tie cut-set can be inter-
preted as a cut-set containing a link and a fictitious branch, as shown in
Fig. 3.8b.

The performance equation of the augmented network in the branch
frame of reference is

iBR = ?BREBR
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5 Fictitious

Fictitious
hranch
Tie cut-set G
Fretitious
node
T Fictitious
» branch
- P

@

(b)

N
\2,)

Fig. 3.8 Representation of an augmented network. :a Fictitious
branch in series with a link; (b) interpretation of a tie cut-set.

The matrix Y gz will be obtained directly from the admittance matrix
P sz of the augmented network.
The performance equation for the primitive network

t+7 = [yl
is premultiplied by B to obtain
Ba + By = Byl (3.6.1)
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Equation (3.6.'1} can be written in the partitioned matrix form:

T T T T
va 1 Bz‘ : 7'}, ' Ub I B(‘ ' jb 3
e e o e —— ]|
0 [T 10U
Us: Bt ' ; ‘
P —~~—~‘§ y e {3.6.2)
0 Ui |

where the primitive current vectors 7 and J are partitioned into the current
vectors T, and J», which are associated with branches of the network, and
the current vectors i; and i, which are associated with links. The left
side of equation (3.6.2) 1s

2‘1, + Bz"l'x « jb + Bl‘jl
L+
1 i ; h
where

% + By = B4 and Jo + B = BY
However

B7 =0 and By = Igg

Then the left side of equation (3.6.2) is

! | i
S0 % ! Ipp . } Ipr
! Tt LT

on i Ji i -t

Since each element of 7, is equal to a current source of a fictitious
branch, 7, + Ji is a vector in which each element is equal to the algebraic
sum of the source currents of a fictitious branch and its associated link.
Therefore,

IBR

fBH =

1+ Ji ‘!
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and equation (3.6.1) hecomes
fBR - B‘[y]l (3.6.3)

Since the voltages across the fietitious hranches are zero, the voltage
vector of the augmented network s

Buw=

The voltages across the elements af the onginal network from equation
(3.5.14) are

¢ = BEgg
However

BEBR = BEBR

o= BEgx (3.6.4)
Substituting from equation (3.t.4; nto equation (3.6.3)

Por = B'[H]BEBR (3.6.5)
Since the performance equation of the augmented network is

fsn = YBREBR (3.6.6)

it follows from equations (3.6.5) and (3.6.6; that the admittance matrix of
the augmented network is

Yer = By)B (3.6.7)

Equation (3.6.7) can be written in the partitioned form

: Y, Y. U, B¢ ye g Ust 0
i e (3.6.8)
: Y, Y. 0 U yn ya B, U

where [y»] = primitive admittance matrix of branches
[yed] = [yn]* = primitive admittance matrix whose elements are the
mutual admittances between branches and links
[yu] = primitive admittance matrix of links
It follows from equation (3.6.8) that

Yy = [yw) + Brlys] + [ys)Bi + BiyulB: (3.6.9)
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Sines
Yer = BYy|B
or
P T
Yoo = L% BT) C Yo Ui ‘ U
e ‘__,; 7“,,__.,}
Y Yu . B: ;
T T
Por = lyw) + Bilyal + lyaBr + BilyulBi {3.6.10)
Frone equations (3.6.9) and (3.6.10), therefore,
)'1-:/: = Yl

The branch impedance matrix can be obtained from

Zpk = Y7}

Loop impedance and loop admittance matrices

The loop impedance matrix Zpoop can be obtained also by using the aug-
mented loop ineidence matrix (' to relate the variables and parameters of
the primitive network to those of an augmented interconnected network.
The augmented network is obtained by connecting a fictitious link in
parallel with each branch of the original network. In order to preserve
the performance of the interconnected network the impedance of each
fietitious link 1s set to zero and its voltage source is set equal and opposite
to the voltage across the associated branch, as shown in Fig. 3.9a. The
current through a fictitious link is zero. Then an open loop can be
interpreted as a loop containing a branch and a fictitious link as shown in
Fig. 3.9b.

The performance equation of the augmented network in the loop
frame of reference is

]‘;LU(/I' s ZLOOI’jLOOP

The matrix Zypop will be obtained directly from the impedance matrix

Zioup of the augmented network.
The performance equation for the primitive network

P+ F= [gf
i< premultiplied by C* to obtain

Ct + Ce = O (3.6.11)
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Fictitious
link ~

(b)

®

Fig. 3.9 Representation of an augmented network. ‘a} Fictitious
link in parallel with a branch; b, interpretation of an open loop.

Equation (3.6.11) can be written in the partitioned form

| Ub : 0 € . Ub 0 ! 1
+ ,, o = j i ' z ‘ 1
‘ Cbt I’ l’[ ‘ (4] ‘ ‘ Cb‘ I,~"1 : ‘

(3.6.12)
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where the primitive voltage vectors # and & are partitioned into the voltage
vectors B, and &, which are associated with the brauches of the network.
and the voltage vectors #; and &, which are assceiated with the links.

The left side of equation (3.6.12) is

! [ i
! ( |
| |

('tf"‘.‘a -+ l-’z = C‘f‘ and Cb‘éb + éz = C'?
However

7 =0 and C% = ELoop

The left side of equation (3.6.12) is then

b e ! v+ e

0 Eroop | Eroop

Since each element of # is equal to a voltage source of a fictitious link,
fy -+ & is a vector in which each element is equal to the algebraic sum of

the source voltages in an open loop. Therefore,

I
{ v+ e

ELOOP =1

Eroop

and from equations (3.6.11) and (3.6.13)
ELoop = C“[z]i

(3.6.13)

(3.6.14)

Since the currents in the open loops are zero, the current vector of the

augmented network is

0

fLOOP =
ILOOP

The currents through the elements of the original network from equation

(3.5.20) are

i = Clroop
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However,

Trour = Clroor

then

= oo (3.6.15)
Substititing from equation (3.6.15) into equation (31143,

Fiooe = (2l pop 36 16)
Siee the performance equation of the augmented nerw rs s

Eww . Zz,oupfl.uop 3617
it follows from equations (3.6.16) and (3.6.17) that the impedance ratrix
of the augmented network is

Zivor = C2|C i3.6.18)

Equation £3.6.18) can be written in the partitioned forn:

Z; Zg (/,b 0 (43 2pi Lyb :' Cb

S S R 3651y
Z, Z, Gy Uy 2w 0 U,

where [2,] = primitive impedance matrix of branches
[2s1] = [2w]* = primitive impedance matrix whose elements are the
mutual impedances between branches and links
[24] = primitive impedance matrix of links
It follows from equation (3.6.19) that

Zy = CitlzwiCy + [28]Co + Ciilzn] + [2u] (3.6.20:
Since
Zroop = C2)C
or - - o
Zroop = Gyt 1 Uyl ‘ 2 0 2 LGy l
| | : i i |
i i il |
(7’3 ! 2 E ? U,
then
Zroor = C'lze)Chs + [26]Cs + Collzn] + [24] (3.6.21)

From equations (3.6.20) and (3.6.21), therefore,

ZLOOP = Z4
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The loop admittance matrix can be obtsined from

Yiogp = 2471

Derivation of loop admittance matrix from
augmented network admittance matrix

Che Toop admittance matrix Yooop can be obtaimed from the augmented
admittance matrix Tae Irom equat:ons £3.6.7) and (3.6.18),

7 Yer = Cl2)CBy|B (3.6.22)

In partitioned form.

' o | ! i i
Uy Gy Us i B i Uy B+ Cy
Ch = — - | T e (3.6.23)
0 U, o U 0 f

|

The currents through the elements of the primitive network from equa-
tion 13.3.20) are

i=Clio0p
Premultiplying by B!,
B9 = BClLo0p (3.6.24)

However. from equation (3.5.11) the left side of equation (3.6.24) is zero.
Therefore, equation (3.6.24) can be written

(Cs + B 1roop = 0

It follows that

Cy = —B¢ ' (3.6.25)
Substituting from equation (3.6.25) into equation (3.6.23),

Ch=C (3.6.26)
In a similar manner it can be shown that

CB =1 (3.6.27)
Substituting from equation (3.6.26) into (3.6.22),

Z100pY 82 = CY2)[y)B

Since
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then
Z"g,.;ak fmz = ‘?‘B
Therefore, from equation +3.6.27),
ZronpYug = U (3.6.28)

Fauwition (3.6.28) i partitoned form s

It follows that

Z\Y + Z,Y; = Uy (3.6.29)
Zl)/vz -+ Zz}/4 = 0

Z Y+ ZY, =0 (3.6.30)
Z)Y.+ ZY, =1, (3.6.31)

Solving for Z: from equation :3.6.30),
Zs = —Z ;Y

and substituting into equation {3.6.31),
—Z)Y Y'Y, + Z,)Y, = U

or

Zy(Y, =YY 'Yy = U

Since

ZYo0p = U

it follows that

Yicor = Y4 — Y3V 1Y,

Derivation of branch impedance matrix
from augmented impedance matrix

The branch impedance matrix Zgg can be obtained from the augmented
impedance matrix Zroop. Combining equations (3.6.29) and (3.6.30)
yields

(Zy — Z:ZZ))Y, = U
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Since

ZgrY, = Us

1t follows that

Zex = Ly — L2V Z

Derivation of branch admittance and impedance matrices
from bus admittance and impedance matrices

Using the branch-path incidence matrix X the branch admittance matrix
Y 4« can be obtained from Yrs. From equation (3.3.1),

:15K‘ e va
and from equation (3.3.3),
B[ = {11K‘

Postmultiplying 4 by K¢,

Ab ] : Az,K‘
Gl = R (3.6.32)
‘; A[ i : .’11K‘ ‘
i ! i‘
Substituting from equations (3.3.1) and (3.3.3) into (3.6.32),
Ty
AK‘= —— - B
' By
‘ I
Transposing,
KA = Bt
Postmultiplying by [y]4K! yields
KA fylAK® = BY{y]AK!
or
K(AylA)K* = B{y]B (3.6.33)

From the singular transformations,

Yees = A(yld and Ysr = By]B
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Hence equation (3.6.33) becomes
Ysr = KYpusK! (3.6.34)
The branch impedance matrix is
Zpr = Y3k = (KO 'Y LK™ (3.6.35)
From equation (3.3.2),
Kt = 4,7t (3.6.36)
Substituting from equation (3.6.36) into equation :3.6.33),

ZBR = «AbZBUS*‘iOI

Derivation of bus admittance and impedance matrices
from branch admittance and impedance matrices

Equation (3.6.34) is premultiplied by K-' and postmultiplied by (K*)~!
to obtain

K'Y pr(K)™ = Yars (3.6.37)
Substituting from equation (3.6.36) into equation (3.6.37),

Yers = AtY grds

Since

Zgvs = Yyus

then

Zprs = (A3'Y prdp)™! or Zprs = K'ZprK

The nonsingular transformations for obtaining network matrices are
summarized i Table 3.3.

3.7 Example of formation of
incidence and network matrices

The method of forming the incidence and network matrices will be illus-
trated for the network shown in Fig. 3.10. The incidence matrices for a
given network are not unique and depend on the orientation of the graph
and the selection of branches, basic cut-sets, and basic loops. However,
the network matrices are unique.
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-’-T® T ®
|

",1\, (2 T . Fig. 3.i¢ Sample net-

work.

Problem
2 Form the incidence matrices 4. 4, K, B. B, C. and € for the network
shown in Fig. 3.10.

b. Form the network matrices Ygrs. Ygr, and Zioop by singular
transformations.

- Form the network matrices Z;cor. Zsgr. and Zgn« by nonsingular
sransformations.

Solution

The impedance data for the sample network is given in Table 3.4.

Table 3.4 Impedances for sample network

Self Mutual

Element Bus code Impedance Bus code Impedance

number g Zpa.pq s Zpqurs
1 1-2(1) 0.6
2 1-3 0.5 1-2(1) 0.1
3 34 0.5
4 1-2(2) 0.4 1-2(H 0.2
5 2-4 0.2

The network contains four nodes and five elements, that is, n = 1
and ¢ = 5. The number of branches is

b=n—1=3
and the number of basic loops is

l=e—n+1=2
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3

» PN
@ - < (i
\
|
3
z A5
i
1
|
N |
1 & él (.2,.:’
|
o ——————— d
7 Fig.3.11 Tree and cotree
——— Branch of the oriented connected
— ——— Link graph of sample network.

a. The branches and links of the oriented connected graph of the network
are shown in Fig. 3.11.  The element-node incidence matrix s

N

o a2 0

F>: RS 2 ® ‘4
11 -1 :
2 1 e t
i= 3 1 i ~1
4.1 -1 ! }
I N
- | i | | i
5 Lo =N
! | 1

Selecting node 1 as the reference, the bus incidence matrix is

bus
® ® ©
[
1
1 -1
2 [—1
i |
A= 3 1 -1
4 | -1
|
5 1 -1
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The branch-path ineidence matnx is

A path’t
\ I A
b .
D] - 1
K= 2 —1 ] —1
3 -1

The basic and tie cut-sets of the oriented connected graph of the
network are shown in Fig. 3.12. The basic cut-set incidence matrix is

N A B ¢
1 77717 |
2 1
B= 3 | 1
4 1 |
5 | —1 1 1

Fig. 3.12 Basic and tie
cut-sets of the oriented
connected graph of sample
network.

‘é;"“'*’“ Basic cut-set
: -%; Tie cut- set
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_— I o
Q (4
3 h ®
; \
\
\
5h
\
E \\
S
] - T @/
' D
e - _J Fig. 3.13 Basic and open
) 4 loops of the oriented con-
Basic loop nected graph of sample
Open loop network.

The sugmented cut-set incidence matrix is

“\e‘ -
CSA B C D E
11 ; .
! i
2 e
: I
B= 3 i ‘1
—|—
4 1| 1
: z
‘ i ‘
5‘—111{1 1
! |
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The basic and open loops of the oriented connected graph are shown
in Fig. 3.13.  The basic loop incidence matrix is

:\\.\i\‘ D E
I —1 1
S
C= 3 - V—Ql_’
s
s

The augmented loop incidence matrix is

e .
e\*A B C D E

11 ? -1 1

2 1 —15 

! i |

6= 3. L 1
| 1 il

4 ‘ L
3
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b. The primitive impedance matrix of the sample network from Table
3.4 s

:\i 1 2 3 4 5
1 106 0.1 09|
2 0.1 0.5
[2] = 3 0.5 {
4 0.2 0.4
5 0.2

By inversion, the primitive admittance matrix is

N e
e N\ 1 2 3 4

(<1}

1 2.083 | —0.417 —1.042
2 | —0.417 | 2.083 - 0.208
y] = 3 2.000
4 | —1.042 | 0.208 3.021
5 5.000
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74 Computer methods in power system analysis
Problems
3.1 Select for the sample network shown in Fig. 3.10 a different tree

than that used in the example. Retain node 1 as the reference and
form:

a.

The incidence matrices 4. 4. K, 8. B, , and € and verify the
following relations:

. AKt=U
1. B, == 4,K!
ni. = —B¢
iv. OB =1

b. The network matrices Ygrs. Yss, and Zioop by singular
transformations
¢. The network matrices Zipop. Zzr. and Zgys by nonsingular
transformations
B (N) c
5 O
( B
i
A -

Fig. 3.14 Sample power sys-
tem for Prob. 3.2.

The posifive and zero sequence impedance data for the sample
power system shown in Fig. 3.14 is given in Table 3.5. For this
system:

a.

Draw the positive sequence diagram and an oriented connected
graph.

Table 3.5 Positive and zero sequence impedance data of sample power
system for Prob. 3.2

Etement

Positive sequence  Zero sequence Mutual
impedance impedance Element impedance

Generator A 0.0 +50.25 0.0 +;0.1

Generator B 0.0 +50.25 0.0 +30.1

Generator C 0.0 +j0.25 0.0 + ;0.1

Line A-B 0.03 +30.13  0.08 + j0.45

Line B~C(N) 0.05 + j0.22 0.13 +;0.75 Line B-C(S) 0.08 + j0.48
Line B-C(S) 0.05 + j0.22 0.13 4350 75

Line C-D 0.02 + j0.11 0.07 + ;0.37
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b. Selecting ground as reference, form the incidence matrices
A, K, B, B. ¢, and (" and venify the relations:
1. AK =
ii. B = 4K
Hi. Cp = —B¢
iv. CB -~
c. Neglecting resisrauce. form the posiuve sequence network
matrices * nos Zurs, Yar, Zre. Zioew and Yieor by singular
transformat ons
d. Neglecting resistsnce, form the zers se:jiience network matrices
Yeus, Zer s, Yien. Zrre Zooor and ¥Viege by singular trans-
formations.
e. Repeat ¢ and d using nonsinguler transformations.
f. Repeat ¢ including resistance.
TrG Tt 777
| -
!
‘ - ' Fig. 3.15 Sample network
Lic - F  for Prob. 3.3.

Table 3.6 Positive sequence
reactances of sample net-

work for Prob. 3.3

Positive sequence

Element reactance
G-4 0.04
G-B 0.05
A-B 0.04
B-C 0.03
A-D 0.02
C-F 0.07
D-F 0.10

3.3 The positive sequence reactances for the network shown in Fig. 3.15
are given in Table 3.6. Designate elements A-B and D-F as links
and node G as the reference bus. Form:

a.

b.

The incidence matrices 4, 4, K, B. B, ¢, and €
The network matrices Ysus, Ysa. and Zpoor by singular
transformations
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4y The network matrices YBL'S, Zm,fs, ZBR,- ZL,(;()]’. ‘d.lld YLO(:P by
nonsingular transformations
2.4  Prove that when there is no mutual coupling the diagonal and off-
diagonal elements of the bus admittance matrix Y s can be com-
nuted from

Yo= ¥y
¥ e = 1Y

where y;, is the sum of the admittances of all lines connecting
buses 7 and j.
3.5 Using the bus impedance matrix Zg-s computed in Prob. 3.2 and
the internal generator voltages given in Table 3.7:
a. Compute the positive and zero sequence bus voltages of the
network.
b.  Compute the positive and zero sequence currents flowing in the

line B-C(N).

Table 3.7 Internal generator voltages
for Prob. 3.5

Internal per unit vollages

Generator  Positive sequence Zero sequence

A 1.0/0° 0

B 1.1/-10° 0

C 1.0/-10° 0.1/0°

3.6 Using the relations between interconnected and primitive network
variables prove the following:

a. :11,K‘ = (/v
b. B[ == AIK'
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Algorithms for formation of
network meirices

4.1 Introduction

The methods presented in Secs. 3.5 and 3.6 reguire transformation and
inversion of matrices to obtain network matrices. An alternative method
based on an algorithm can be used to form the bus impedance matrix
directly from system parameters and coded bus numbers. The under-
lying principle of the algorithm is the formation of the bus impedance
matrix in steps, simulating the construction of the network by adding one
element at a time (Brown, Person, Kirchmaver, and Stagg, 1960)f. A
matrix is formed for the partial network represented after each element
is connected to the network.

In addition, an algorithm is presented for deriving the loop admit-
tance matrix from a given bus impedance matrix.

4.2 Algorithm for formation of bus impedance matrix
Performance equation of a partial network

Assume that the bus impedance matrix Zpys is known for a partial net-
work of m buses and a reference node 0. The performance equation of
this network, shown in Fig. 4.1, is

Epvus = Zpuslpus

t Names in parentheses refer to the Bibliography at the end of each chapter.



Partial
network

Partial
network

A
S G N
; N B
5 E,
' I
@< n
En
Reference

(a)

Partial
network

(b)

Reference

Fig. 4.1 Representation of a
partial network.

Fig. 4.2 Representations of a par-
tial network with an added ele-
ment. (a) Addition of a branch;
(b) addition of a link.
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where Epys = an m X 1 vector of bus voltages messured with respect
to the reference node
Isus = an m X 1 vector of impressed hus currents

When an element p—y is added to the partial network it may be a
branch or a link as shown in Fig. 4.2.

If p—q is a branch, a new bus ¢ is added ¢ the partial network and
the resultant bus impedance matrix is of dimension (v 4+ 1) X (m + 1).
The new voltage and current vectors are of dimersion. 5 + 1) X 1,
To determine the new bus impedance matrix reguoires oniy the calculation
of the elements in the new row and column.

If p—¢q is a link, no new bus is added to the partin! network. In
this case, the dimensions of the matrices in the performance equation are
unchanged, but all the elements of the bus impedaiice matrix must be
recalculated to include the effect of the added link.

Addition of a branch

The performance equation for the partial network with an added branch
pgis

1 P 7 §

a | : : I R

E, 1:Zu | Zy ; Z1p , L | L Iy |

E, ! Z21 Z22 ! o Zzp ; o Zom qu [ P

i i i \ :

— e

= I
CE, = P: Zoy  Zpy - Zop } . Zom | Zy, I, ' (4.2.1)

! | i ‘ i

Enl m Zm Zn

Y .
3
N .

\
E, q Za  Zg

'§qu-"'

It is assumed that the network consists of bilateral passive elements.
Hence Z,; = Z,, where i = 1,2, . . . , m and refers to the buses of the
partial network, not including the new bus ¢. The added branch p—q
is assumed to be mutually coupled with one or more elements of the par-
tial network.

The elements Z,; can be determined by injecting a current at the ith
bus and calculating the voltage at the gth bus with respect to the reference
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‘\ _‘
Partial ey
-

network

0

11 I@ i
per unit ;
N 7

4 ,;'//"/
@ Fig. 4.3 Injected current and
Reference bus voltages for calculation of Z,;.

node as shown in Fig. 4.3. Since all other bus currents equal zero, it
follows from equation (4.2.1) that

El - ZliI'
E2 b Zb'ls
E, = Zl (4.2.2)
Em - ZmJl
E, = 72,1,

Letting /; = 1 per unit in equations {4.2.2), Z; can be obtained directly
by calculating £,.

The bus voltages associated with the added element and the voltage
across the element are related by

Ey=E, — vy (4.2.3)

The currents in the elements of the network in Fig. 4.3 are expressed in
terms of the primitive admittances and the voltages across the elements by

1 ! | v
| | '
i Yra.pa | Yoape | Upg
| [

L= ; — (4.2.4)

lpo . i yw.Pq ‘ ypv.oﬂ ' llpv :

|
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In equation (4.2.4) pq is a fixed subscript and refers to the added element
and po is & variable suhscript and refers to all other elements. Then,

ipe and vy, are, respectively, current through and voltage across the
added element

1,0 and 7,, are the current and voltage vectors of the elements of the
partial network

Upape 1s the self-admittance of the added element

Tpq.se s the vector of mutual admittances between the added
element. p—¢ and the elements p—¢ of the partial network

oo pe is the transpose of the vectsr §pg .0

[Ypo.pe) 1s the primitive admittance matrix of the partial network

The current in the added branch, shown in Fig. 4.3, is
1pg =0 (4.2.5)

However v,, is not equal to zero since the added branch is mutually
coupled to one or more of the elements of the partial network. Moreover,

b0 = E, — E, (4.2.6)

where E, and E, are the voltages at the buses in the partial network.
From equations (4.2.4) and (4.2.5).

Tpq¢ = Yra,pe¥pq T Tpapolos = 0

and therefore,

_ Ypq.00Vps

Upe
Ypa.pe

Substituting for #,, from equation (4.2.6),

_ ng_.nv(Ep - Ev)

Ype.pe

Upg

Substituting for v, in equation (4.2.3) from (4.2.7),
?]pq,w(E_'p - E,)

Yra.pe

E,=E, +

Finally, substituting for E,, E,, E,, and E, from equation (4.2.2) with
I, =1,

ch,pv(Zp- - Zn) 1= 1, 2, .., m

2y =2y +
! " Yva.pe 1 #q

(4.2.8)
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The element Z,, can be calculated by injecting a current at the gth
bus and calculating the voltage at that bus. Since all other bus cur-
rents equal zero, it follows from equation (4.2.1) that

Ey = Zyl,
Ey = Zal,
Ey, = Zpl, (4.2.9)
En = Znd,
By = Zol,

Letting 7, = 1 per unit in equations (4.2.9), Z, can be obtained directly
by calculating E,.

The voltages at buses p and ¢ are related by equation (4.2.3), and
the current through the added element is

lpg = —Ig = —1 (4.2.10)
The voltages across the elements of the partial network are given by
equation (4.2.6) and the currents through these elements by (4.2.4).
From equations (4.2.4) and (4.2.10),

Tpe = Ypa.palpe T Upapolps = —1

and therefore,

| l + gpq‘pdl-)pﬂ
Upg = —
Yra.pq

Substituting for #,, from equation (4.2.6),

tpg = — T FrerelBy = B2) (4.2.11)
Yra.pq

Substituting for v,, in equation (4.2.3) from (4.2.11),

1+ gpa.pa(Ep - E,)

Yra.pq

F,=FE,+
Finally, substituting for E,, E,, E,, and E, from equation (4.2.9) with
Iq = 1;

1+ gpq.pv(qu — Zﬂq)

Yra.pe

Lo = Zpe + (4.2.12)

If there is no mutual coupling between the added branch and other

elements of the partial network, then the elements of 7., are zero and
1

Zpe.pe =
Ypa.pa
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It follows from equation (4.2.8) that

t=12 ... ,m
Zu=2a q
and frem equation (4.2.12) that
Zo= ZDG + Zpe.pa

Furthermore, if there is no mutual coupling and p is the reference node,

1=1,2,....m
:l} r & :

Zp = ¥ 1% g
and

=1, 2, ,m
Za =0 17 q
Also
Zpg =0

and therefore,

Zie = 2pa.pq

Addition of a link

If the added element p—¢ is a link, the procedure for recalculating the
elements of the bus impedance matrix is to connect in series with the
added element a voltage source e; as shown in Fig. 4.4. This creates a

Partial

network

Tli = 1 per unit

Fig. 4.4 Injected cur-
rent voltage source in
series with added link

@ and bus voltages for cal-
Reference culation of Z;;.
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fictitious node ! which will be eliminated later. The voltage source ¢
is selected such that the current through the added link is zero.

The performance equation for the partial network with the added
element p-/ and the series voltage source ¢; is

1 P m l

| I ', l |
Ex l'Zu Zu “‘§Z1y "'izxm le 11

S S [ I N i
j’ Ez Zn i VAT T '5 Zzp o Ztn Za ‘ I,

| | i
‘ E, |=p|Zn | Zp Zos Zom | Zp I, i
( H
| i
: |
! E,. m Zml an Zmp Z.uu Zml Im ;
l € Iy Zy l Zy |- pr | Zim Zy I i
(4.2.13)

Since
€ = Ez - Eq

the element Z;; can be determined by injecting a current at the 7th bus
and calculating the voltage at the {th node with respect to bus ¢. Since
all other bus currents equal zero, it follows from equation (4.2.13) that

Ek=Zh'[.‘ k=l,2,...,m
e = Zul (4.2.14)

Letting I, = 1 per unit in equations (4.2.14), Z;; can be obtained directly
by calculating e;.
The series voltage source is

€ = Ep — Eq — Upt (4215)
Since the current through the added link is
1o = 0

the element p~! can be treated as a branch. The current in this element
in terms of primitive admittances and the voltages across the elements is

Tp! = Ypipilpt + gpl,pvf-)p,
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where

ip; = i,q =0

Therefore
. grl.wﬁw
e = —
Yplpl
Since
dploe = Ypgupe and Yz T Ype.pg
then
Jpq.pad .
v = — TR (4.2.16)
Yra.pq

Substituting in order from ecuations 14.2.16), (4.2.6;, and (4.2.14) with
I, = 1 into equation {4.2.15; yields
Upasol Lo — 2o r=1.2. ... m
Zyn=2p—Zyu+ Ypaoor Lo = Lot o (4.2.17)
Yre.pe 1=

The element Z; can be calculated by injecting a current at the [th
bus with bus g as refererice and calculating the veitage at the Ith bus with
respect to bus ¢.  Since all other bus currents equal zero, it follows from
equation (4.2.13) that

Ev = Zul, =002 05 . e

4.2.18)
&l = Zulz ( 8)

Letting I; = 1 per unit in equation (4.2.18), Z; can be obtained directly
by calculating e;.
The current in the element p—{ is

This current in terms of primitive admittances und the voltages across
the elements is

Tpt = Ypt,piWpt + Fptpalpe = —1

Again, since

Uptoe = Ypa.pe and Yplpt = Ypa.pq
then

I + Upe.palion
I (4.2.19)

Yra.pq
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Substituting in order from equations (4.2.19), (4.2.6), and (4.2.18) with
I; = 1 into (4.2.15) yields

1+ Gpope(Zor — Za2)
Zu=2Zpy—Zq+ + Froel L d 14.2.20)

Yra,pq

If there is no mutual coupling between the added element and other
elements of the partial network. the elements of §,,.,, are zero and

1

Ypa.pq
It follows from equation (4.2.17) that

Zi = 2y~ 2. ;;ll,?,...,m
and from equation (4.2.20),

Zu="Zp~Zo+ 250

Furthermore. if there is no mutual coupling and p is the reference node,

1=1,2, ..., ,m
Z, =0 ]

Hol

o

Z,,l = 0
and therefore,
Zn= —Zag—+ Zpe.pq

The elements in the /th row and column of the bus impedance matrix
for the augmented partial network are found from equations (4.2.17)
and 14.2.20). It remains to calculate the required bus impedance matrix
to include the effect of the added link. This can be accomplished by
modifying the elements Z,;, where 7, j = 1,2, . . . | m, and eliminating
the /th row and column corresponding to the fictitious node.

The fictitious node [ is eliminated by short circuiting the series voltage
source e, From equation (4.2.13),

Em‘s = Zal'sisc's + Z.‘z[l (4»2-21)
and

€ = Z:,[hm's + Zul, =0 (4.2.22)
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where 7,7 = 1,2, . ., = Solving for [; from equation (4.2.22) and
substituting inte (4.2.21),

- ZaZi .

EBUS = (ZBI?F - ";’“J IIJ"JS

&y
which is the performance cquatien of the partial network including the
link p—¢. It follows tha! the required bus impedance matniy is
5
2.2,
ZBL'S (modified: = ZB("'E ‘befer eriminanien, T T
Zy

where any element of Zgi s woditieas 18

Z:ZZi)

Zvi(modiﬁed) = Zti(befuree!émma:mnl - 7
174

A summary of the equations for the formation of the bus impedance
matrix is given in Table 4.1.

4.3 Modification ef the bus impedance
matrix for changes in the network

The bus impedance matrix Z g5 can be modified to reflect changes in the
network. These changes may be addition of elements, removal of ele-
ments, or changes in the impedances of elements.

The method described in Sec. 4.2 based on the algorithm for forming
a bus impedance matrix can be applied if elements are added to the net-
work. Then Zg¢s is considered the matrix of the partial network at that
stage and the new elements are added one at « time to produce the new
bus impedance matrix Z5;.

The procedure to reniove elements or ta change the impedances of
elements is the same. If an element is removed which is not mutually
coupled to any other element, the modified bus impedance matrix can be
obtained by adding, in parallel with the element, a link whose impedance
1s equal to the negative of the impedance of the element to be removed.
If the impedance of an uncoupled element is changed, the modified bus
impedance matrix can be obtained by adding a link in parallel with the
element such that the equivalent impedance of the two elements is the
desired value.

When mutually coupled elements are removed or their impedances
changed, the modified bus impedance matrix can not be obtained by
adding & link and using the procedure described in Sec. 4.2. However,
an equation can be derived for modifying the elements of Zurs by
introducing appropriate changes in the bus currents of the original net-
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work to simulate the removal of elements or changes in their impedances.
The performance equation In terms of the new bus currents 1is

E'svs = Zpes(Ipr o + Al s 4.3.1)

where Al pi s is a vezter of bus current changes such that gy will reflect
the desired ~hanges in the network.

An elemeni 7., of the moudified bus impedanee matrix can be obtained
ov ealeulating for the moedified network the volrage at bus 2 with a current
mjected at hus ; This s eguivalent to calculating tor the original
metwork the veltage wi bas @ with the same vaiue of current injected at
mus j and appropriate changes in currents at the buses which are terminals
of the elements bemg rhanged.

If the elemeniz u-» coupled to elements p-g are remouved or their
impedances are changed, the corresponding changes in the bus currents
are

Al = Ai,‘, Lo L

A[k = —Al;_, ‘\ = ¥

Al = A7, =y (4.3.2)
Al = ~AlL, E =y

Al =0 for all other &

Letting the injected current at the jth bus equal nne per unit,
I =1

I =0 k=1.2 ... .n (4.3.3)

k=j
From the performance equation (4.3.1),

Ei=) Zalli +AL)  i=12....n
k=1

Substituting for AZ, and I, from equations (4.3.2) and (4.3.3),

E: = Z:j + quA_iyw - Zl}'iA_Z)lv + Z{pA—Z'pv - ZaaEpa
E/ = Z.‘j -+ .(Zw - va)Eur + (Z—cp - ZW)ED"

Using the subscript of for network elements y—» and p—o.
El=Z,+ (Zia — Zig)Bias T=1,2, ... n (4.3.4)
From the performance equation of the primitive network,
Ades = (] = [y (4.3.5)

where [y.] and [y.] are respectively the square submatrices of the original
and modified primitive admittance matrices. The rows and columns of
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the submatrices correspond to the network elements ag—» and o—o. The
subscripts of the elements of ([y,] — {y.]) are a8, ¥8. The voltage vector
in equation (4.3.5) is

i, = E. — E,

Substituting for EY and E; from equation (4.3.4),

P = 20— 28+ (Zval = [Zsa) — 1Zrsl + (Zig)ATas (4.3.6)
Substituting from equation (4.3.6} for #., into (4.3.5).

Stas = (y) = W2 — 2a; + ((Zva] — [Zad] — [Zo] + Zs61)Btas!
(4.3.7)
Solving equation (4.3.7) for Azas,

Aiag = (U ~ (lg] = W23 = [Zsa) — [Zos] + [Zag])}

Designating
[Aw] = [w] — (5]
and

(Ml = U = [84)(1Za] = [Zsa) = 1Z18] + [Zss])}

equation (4.3.8) becomes

Atas = [MI7Ay(Z,5 — Zs)) (4.3.9)
Substituting from equation (4.3.9) for Az.s into (4.3.4),

El=Zs5+ (Zia — Z)IMI0y)(Z,; — 24)

This equation gives, for the original network, the voltage at bus 7 as a
result of injecting one per unit current at bus j and the appropriate cur-
rent changes at buses 4, », p, and ¢ to simulate the effect of changes in the
elements u—v. Thus, from the definition of the bus impedance matrix, the
7jth element of the modified bus impedance matrix is

Z, =72+ (2 = Z)MIAYN( 2y — 2sy)  i=1,2,. .. .1
The process is repeated for each 7 = 1,2, . . . | n to obtain all elements
of Z5us

4.4 Example of formation and
modification of bus impedance matrix

The method based on the algorithm for forming the bus impedance
matrix will be illustrated using the sample network given in Fig. 3.10.
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Examples of the modification of this bus impedance matrix will also be
given.

Problem
a. Form the bus impedance matrix Z g s of the network shown i Fig. 4.5.

— ® ) T @
T :

on

i
P ]
L_L@ (2) 4 : @ Fig. 4.5 Sample net-

work.

b.  Modify the bus impedance matrix obtained in part & to nclude the
addition of an element from bus 2 to bus 4 with an impedance uf 0.3
and coupled to element 5 with a mutual impedance of 0.1.

c¢. Modify the bus impedanee matrix obtained in part & ts remove the
new element from bus 2 to bus 4.

Solutien

The data for the network is given in Table 4.2. The bus impedance
matrix will be formed by adding elements of the network in the order
indicated in the first column of this table. Node 1 is selected as reference.

Table 4.2 Impedances foer sample network

Self Mutual

Element Bus code Impedance Bus code Impedance

rumber P—q Zpe.pe r—s Zpqurs
1 1-2(1) 0.6
4 1-2(2) 0.4 1-2(1) 0.2
2 1-3 0.5 1-2(1) 0.1
3 3-4 0.5
5 2-4 0.2

a. Stepl. Start with element 1 which is a branch fromp = 1tog = 2.
The elements of the bus impedance matrix for the partial network con-
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rainng the single branch are

| |

(DI 0
VAT 1—‘———!
@; 0 0.6

Siree node 118 the reference, the elements of the tirst row and colimn are
2o and need not be written.  Thus
)

Z/er 8 =

i
——

Step 2. Add element 4, which is a link, from p = 1 (reference) to
¢ = 2, mutually coupled with element 1. The augmented impedance
matrix with the fictitious node { will be

©) l
e

2

/\Z{g\Z{[»

| \ i
i I

where

T = Zis = — oy + Vi (Zia — Za)

Yz aum
1 + ylz(:'\,,m(l)(,le - Zu)

Yiz,12(2)

ZII = -Z2I +

and Zyp = Zy = 0. Invert the primitive impedance matrix of the
partial network to obtain the primitive admittance matrix.

1~2(1) 1-2(2)

i
1-2¢(1): 0.6 0.2
(200.00) = ! ‘
"(")i 0.4 ‘
1-2(1) 1-2(2)
1-2(1) ‘ 2 —1
[2p0pa] 1 = (Yps, pe] =
1-2(2) —1 3
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Then,
(—=1)(=06
Ty = Zp = —0.6 + &—)T» ) —0.4
1-1(0.4
Zi= 04 + ~—~,§—) =06
and the augmented matrix s
2 ]
5 0.6 —0.4 !
LD =04 0.6
S
Eliminating the lth row and column,
; Zg[ZIz (—0,4)(-0.4;’ )
Loy =Zyp — —— =06 — ——" - o= 0.3333
m e ’ 06 ’
and

@
Zg.g. ¢ = ’\"\2) i 0.3333
Step 3. Add element 2. which i1s a branch. from p = 1 (reference;

to g = 3, mutually coupled with element 1. This adds & new bus and the
bus impedance matrix is

@ ®
® 03333 Zn _j

Zpus = |
®| Zw | Zu |
|
where
| | ,
Yizazcn 0 Yizaze | i VAT ATE
1 ] |
Zy'— Za |
Zyy = Loy = =
Yi13,13
| |
Y13.12(1) Y13,12(2) | Zyy — 2y
1+ a :
| H
| VAT ATE
—
Zaa =

Y1313
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and Zy; = Z13 = 0. Invert the primitive impedanse matrix to obtain
the primitive admittance matrix.

1-2(1) -z 1-3
1-2(1)| 0.6 g4 0.1
(Zpenel = 1-2(2) 1 02 S
1-3 0.1 05
1-2(1) 1-2(2) u 71—3

1-2(1) 2.0833 | —1.0417 | —0.4167

[200.00) ! = [Ypouou] = 1-2(2) | —1.0417 3 0208 0.2083

1-3 —0.4167 02085 2.0833

Then, o
! T
- —0.4167 =~ 0.2083 ' —0 3333
{ : L
. —0.3333
Zoo = Loy = = = 0.0333
woe 2.0833
| ‘
| —0.4167 K 0.2083 t . ~0.0333
1+ ' Ve
{ —0.0333
Zay = = (.4833
2.0833
and
| &
@ 0.3333 | 0.0333
Zprs = [
@\ 0.0333 } 0.4833 |

Step 4. Add element 3, which is a branch, from p = 3 to g = 4, not
mutually coupled. This adds a new bus.

Z‘H - Z42 = Zzz = 00333
Z34 = Z43 = 33 = 0.4833
Zu = Za4 + 234,34 = 0.4833 + 0.5 = 0.9833
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Thus,
@ & ©
'y 0 3333 1 0.0333 00333 i
SR R OO
Zors =3 ©0.0333 1 0 4833 | 0 4833 . ]
o 07);3‘3 —0_4833 O~ ‘;83;
Step 5. Add eIemerrlirﬁ[);w"ni_ch—Vi;z link, tfron p = 216 ¢ = 4, not

mutually eoupled. The elements of the Ith rew and enlumn of the
augmented matrix are

Zu=1Z2u =22y — Zy =0.3333 — 0.0333 = 0.3000

Zy =23 =2y — Zy = 00333 — 0.4833 = —0.4500

Zau =2y =Zs — Z¢ = 00333 — 0.9833 = —0.9500
Zi= 2y — Zy+ 2o402¢e = 0.3000 + 0.9500 + 0.2 = 1.4500

The augmented matrix is

3 0.3333 0.0333 00333  0.3005
50033 04838 04833 —0.45.6@‘}
T 0.0333 ¢ 0.4833 | 0.9833 _7;0,9563(;
| R
[ 0.3000 —0.9500 i 1.4300

. —0.4500

Eliminating the lth row and column,

) ZuZ
Zyy = Zoy — 2228 03333 —
éll
’ I3 Z Z.‘s
Zoy =2y = Zgy — 228 00333 —
Zy
, , ZuZ
Zyo= 24y = Zye — 228 _ 00333 —
le
, Tl ‘
Zy = Zy — 228 20,4833 —
le
, , ZuZ
Zy=Zy=Zy — 2" = 0.4833 —
le
) ZuZ
Zii = Zo — “Zi 0 o33

ZI!

(0:3000) 0.5000)

{ = 0.2712
1.4500
g =045
(0.3000) =0.4500) _ 16
1.4500
(0.3000)(~0.9500) _ . oq
1.4500
(—0.4500)( —0.4500) = 0.3436
1.4500
(~0.4300): ~0.9500) _ (oo
1.4500
500) —
(=09500) ~0.9500) _

1.4500
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and

® & %

@ 0.2712 1 0.1263 © 0.229% |

| |

Zys =G 0.1263 10,3436 0 185 |

©0.2208

C0U1885 . 0.3600

b, Adding anew element, which i 2 k. from p = 2 to ¢ = 4, mutually
coupled with element 5 result= in the augmented matrix

o ® ® z

. i | X
2 0.2712 0 0.1263 | 0.2298 1 Z,

i N P ———
}/‘[ 0.1263 0.3436 | 0.1885 Zy:

’ |

where
gm.;ﬂ(Zpl ': Zﬂ

Ypa.pq

T = Zp = Lo + [ =234

and
1 + gm.pv(Zpl - Zvl;’

Yrq.pq

Zu = Zy — Zg +

The primitive impedance matrix is

1-2(1) 1-2(2) 1-3 3-4 0 24(1) 2-4(2)

1-2()] 06 0.2 ‘ 0.1

| I

122)| 02 | 0.4

|
i i
|

)
\ |

—_ | e

! ]
|
i i
|
i

1-3 0.1 0.5
[2] = |
31 0.5
2-4(1) 0.2 0.1
| .
2-4(2) | | 0.1 0.3
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Since the new element is coupled to only one nther element, 1t is sufficient
ro nvert the submatrix for the coupied elements. which is

2-411) 242

[ ST N N
Thus
2 41 242
2-4(1) 6 =2
LUPUVPOI = .7 7‘.>77~77j77 T
2.4(2) —2 1
and

SAD2TI2 = 02208

Zu = Zi = 02712 — 0.2298 + ST = 00207

Zy = Ziy = 0.1263 — 0.1885 + —;29«(»12230— OIS g onnt

Zu = Zu = 0.2298 — 0.3600 + *3‘0‘("22380_ 03609 _ 0636
Zu = 0.0207 + 0.0636 — - :3_‘”'040300‘- = D0636) g 9931

and the augmented matrix is

® ® “ {

‘ I
@) 02712 | 0.1263 | 0.225  0.0207
® | 0.1263 i 0.3436 | 0 1885  —0.0311 |
| : |
®| 0.2298 | 01885 0 3608 —0.0636

| |

1l 00207 | —0.0311 —0 0656 0 2031 |
|
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Eliminating the {th row and celumn,

(0.0207) (0.0207)

70 = 02712 — S o697
2 ! 0.2931
» , 002010 —0.0311) )
Zip = Zhy = 01263 — Sl S = 01285
, , (0.0207) [ —0.0656;
20— 7 = oovus — 0200 0000) by
02031
, (—0.0311){ —0.0311)
7= 03436 — o TR 0,3403
” 0.2931
, , (—0.0311)(—0.0636) ‘
2 = 7 = 0.1885 — CaeL ~ 0.1816
, (—0.0656( —0.0656) ‘
7', = 0.3609 — A — 0.3462
“ 3609 0.2931

Finally,

® @
|

|
0.2697 | 0.1285 © 0.2344 |

e

|
Zyrs = @10.1285 | 0.3403 ¢ 0.1816 “
i I

®] 0.2344 i 0.1816 = 0.3462

¢.  The modified clements of this bus impedance matrix for the removal
of the network element 2-4(2) mutually coupled to network element
2-4(1) are obtained from

Ly = Zu4 (Za — ZoWM Y2 — Zs) 1,5 =2.3,4
where g—» is 2-4 and p—o is also 2-14 and the indices a. v = 2, 2 and B,
5 =4 4

The original primitive admittance submatrix is

2-4(1) 2-4(2)

2-4(1) 6 | -2 |
ly] = —
2-4(2) | -2 ’ 4 }
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znd the modified primitive admittance submatrix is

24l 2-4(2)

2-4iiy 3
(ll,; =

202
Thus
: ] 14 o i/ H _
lye) = [y = law =

Also

”” = ;[‘ - IAQ:]([‘Z‘/a] - [Zba} - [Z'rﬁ] + [Zé,‘l] b

2-4(1)

2-4(2)

1
i

2-4(1)

L

where
@ @
@ 102007 | 0 2607
Zod) = e ——
| 0.2697 | 0.2697
@ @
@' 0.2341 | 0.2344
[Zba] =
&1 0.2314 | 0.2344
\
® ®
@ 0.2344 | 0.2344
[Z+4] =
®  0.2344 | 0.2344
® ®
®| 0.3462 | 0.3462
[Z3] =
@®] 0.3462 | 0.3462

2-4(2)

Algorithms for formation of network matrices
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4
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Substituting in the above equation,

]
1

11471 © 01471 |

[M] = (SR
—0.2042 © 0 7058
e e e
| 082753 1 —0 17247 .
M = e
0.34494 ©  1.34494 |
and
! |
1.17247 | —2.34494 |
(M Ay = | |
—2.34494 = 1.08988 |
I i

Fori=2andj =2,

Loy = Loy + ( Zaa “ Zyg ' —  Zoy Zoy )[JI]“‘[Ay,] 1222 %Z‘._,

| .
‘222 2ZA‘.’
Z;z = {.2697 +\ 0.0353 ‘ 0.0353 I 1.17247‘ —2.34494‘ [(0,0353 ‘
|
J

?-2.34494‘ 4.68988 | | 0.0353 |

Zy = 0.2697 + 0.0015 = 0.2712
Tori =2andj = 3,

Ziy = Zn + (‘ Za

| : i
Zzz | — “ Zu i Zu ) [x‘[]wl[Ay,] Z-_v;; Z43 w

Z a3 Zs :
i

Zyy = 0.1285 + [0,0353 é 0.0353 117247’ ~2.34494 | | —0.0531 |
i

—2‘34494} 468988 | | —0.0531 ]

Zy = 0.1285 — 0.0022 = 0.1263
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Fori=2andj =4,

= N
Z;A = Zy + ( Loy Zys. — Lyt 2y, ‘) [M]~VAy,] ! Zsye
e e I.__

t 2y

[

Zu

N
'
2

li

0.2344 + é0.0SSZ’. 0035 117247 —2 34444

¢

0 1118

Doe2 34494 1 AROSR

N
I

0.2344 — 0.0046 = 0.229%

For7 =3andj = 3,

1

-0.1118

Zy=Zyu+ (i Z s Zy — 1 7 Z:; §> [M]~Y Ay, _/4_: - f4 |
Zj = 0.3403 + —0 0531, —0 05313?NM1.17247E—2V344§;€? ~0.0531
| 1—2.344945 4<68988i§i;0,0531
| ! g
Zg; = 0.3403 + 0.0033 = 0.3436
Foriv=3andj = 4,

‘ - | T T
ZL=:ZM—+< anznlyzﬂizmi>LMrﬂa%] ‘Zuih_%zué
Zy, = 0.1816 +-wf0.0531?-0.053ﬁ % 1.17247?—2<34494 —0.1118

‘;__2434494; 4.68988! | —0.1118

Z;, = 0.1816 + 0.0069 = 0.1885
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Fori=4andj=4,

’

| ; ; R
AT VAT f(! Zg Zu“ ——%Z“:Z“ ‘> MYy agd ey A

———————- [ S

Zogo= 03462 + —0.1118 =0 1118 117247 -2 34494 -0 (s

—‘_’.3-}494 4!\6‘988 01118

Zy = 0.3462 + 0.0147 = 0.3609

1
Zwrs = 3" 0.126: ’ 0 3436 0.1885;
! 1 :
0 209%;

0.1885 i0.3609

{
’ |
. !

which is equal to the matrix obtained in part a.

4.5 Derivation of loep admittance
maitrix from bus impedance matrix

Derivation of node-pair impedance matrix
from bus impedance matrix

An element of the node-pair impedance matrix Zyp is designated by Zy pq.
If there is a current source between p and ¢ only, an element of this matrix
i¢ defined as

E,—F; ,7=1,2 ...,n

Beime = 15 i

(4.5.1)

Letting the current /,, = 1 per unit as shown in Fig. 4.6,

Zi)qu = FEi— EJ'
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calculation of Z;,,,.

105

Fig. 4.6 Injected current for

equation of the nerwork written in terms of Zges 13

1 p 4 n
| ; B o
o 1 Zy 2y VAR VAP B B
T | : b
i ! : | I
SR | 4
j o —
E, p| Zn ! Zp» Zy | Zpn
j i : | ‘
_ ' 4.5.2)
| | : i
E, q| Za ' Zy L FZgn s 1o
S , ' o 1
N R S
— 1
En n an 'Zﬂp‘ [ an Lo " va ‘ In \
Since I,, = 1, then I, =1 and I, = —1. From equation (4.5.2) it
follows that
E, =27,-2, and E, =2,,—-127Z,
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From equation (4.5.1),
1,7=12 ... .n -
Z:,.pg = Z.‘p - Z,',, - Z,'q -+ Zj . . (403)

Using all node-patr combinations for p~q, all elements »f Zxp can be calcu-
lated from equation (4.5.3). The matrix Zx  has dimension

nin — 1y nn — 1)
B

Derivation of element-pair admittance matrix
from node-pair impedance matrix

The element-pair admittance matrix is designated by 1 zp and the element
of the matrix by Y, ,. If there is a voltage source only in series with
p—¢, an element of this matrix is defined as

(27

R
Yina
€pq

Network

“ae s
—-—
o

@ Fig. 4.7 Series voltage source for
Reference calculation of Yi;, e



Chapter 4 Algorithms for formation of network matrices 107

where 1;, = rurrent through the element i—j
€po = Voltage source in series with the element p-g

Let e, = 1 per unit. as shown it Fig. 4.7, then

YVipe =1 {4.5.4)

[t remuains therefore to caleulate the eurrent 7,
The serfornunce equation i admittance form for rhe primitive
network s

The current through the element 1 1=
Ui = —Jo F Gijselos (1.5.5)

where po refers to all elements of the network. The voltage shurce in
series with p-g¢ induces currents in the elements mutually coupled with
p—q. This voltage source can be replaced by equivalent current sources
in parallel with each element, as shown in Fig. 4.8 The equivalent

Element p-q

g
P4y
%]]::”jﬁq'_ypq,p

Network .

— e Fig. 4.8 Equivalent source
@ currents for calculation of
Reference Yiiing-
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current source for the element 1 is

Jii = — Ui {456)
The voltages 7,, can be obtained from the performance equation of

the network using the node-pair impedance masfrix

E,\‘p = ZprNp ‘457)

From equation (4.5.7), the voltages across the ciements p—o of the network
are

E, — E, = (Z0)l,, i4.5.8)
where
i = £, — B, (4.5.9)

and the indices ps and v refer to the node-pairs corresponding to the
terminals of the network elements. The elements of Z,,,, are obtained
directly from Zyp, and Z,,,, has dimension ¢ X e where ¢ equals the
number of elements. The elements of the vector I,, are equal to the
shunt source currents which replace the series source voltage. Therefore,

I = ~Tuvpg (4.5.10)
Substituting from equations (4.5.9) and (4.5.10) into (4.5.8),

oo = ~[Z o Purpe (4.5.11)
Substituting from equations (4.5.6) and (4.5.11) into (4.5.5) yields

f = Yiiwe — Giipel ZoauslPur.ma

Hence from equation (4.5.4),

Yiiee = Yisra = GisooolZ oauslGuv,0a (4.5.12)

and using all combinations of element pairs the matrix Ygp can be
obtained. The matrix Y gp has dimension e X e.

If there is no mutual coupling in the network, equation (4.5.12)
reduces to

Yiioe = ~YiiiiiieYpa.pe 1y # pg
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and
b
Yo = Yijii = Yisiilis islisis

Equation (4.5.12) can be written in terms of the eiements of the bus
impedance matrix since

Zptuv} = [ZP#] - {Zﬁ‘] - [ZN! + EZMJ
Then
Y'LW = Y — glj.av([Zp»} - lZwJ - [Z,,] + izfy,l;‘gnt »9

If it is desired to derive Zyp from a given Y ge, the elements of Zyp
can be obtained in a manner similar to that deseribed i this section.  An
element of Zyp, in terms of the element-pair admitiance matrix, can be
expressed by
(4.5.13)

Zipe = Zijpg — Zi5.00LY popr) Zuv.ng

If there is no mutual coupling, equation (4.5.123} reduces 1o
Ziype = =2 Y ijpefpa,pe Yy # pg

and

Zijai = #ijii = 2i5Y i

Derivation of loop admittance matrix from
element-pair admittance matrix

Given the element-pair admittance matrix Ygp, the elements of the loop
admittance matrix Y o0p can be obtained directly. VYgy is partitioned
as follows:

Branches  Links

-
(5}
v-: .
g Y‘l Yz
e

Yep =R
2
£ Y Y,
-
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where the submatrix Y, is associated with the basic loops of the inter-
connected network since each link corresponds to a basic loop. Therefore

YLOOP = Y4

It is possible to derive Yy from a given Y 10op since the elements of
the submatrices Y, Y, and Y, can be determined from the elements of
Y,. Let ¢— be a branch common to loops A. B, and (" and let p—q be a
branch common to loops G and H. If a voltage source e, = 1 per unit

is applied in series with the branch p—¢q, then by definition of an element
Of YEP7

Viipe = 1y

Moreover, the voltages in the loops G and H are equal to one per unit.
Hence, the currents in the loops A, B, and C are

I, = Yac+ Yau
Is = Ype + Ypu
Ic = Yee + Yen

where the admittances are obtained from the loop admittance matrix.
Since the current in branch ¢-j is the algebraic sum of the currents in
loops A, B, and C,

1y =Ixa+Is+ Ic

Therefore,
Yipeg= Yac+ Yan+ Yoe + Yeu + Yoo + Yen

The signs of the loop admittance terms are determined by the orientation
of the branches with respect to the loops.

4.6 Example of derivation of loop admittance
matrix from bus impedance matrix

The method of deriving the loob admittance matrix from the bus imped-
ance matrix will be illustrated for the sample network shown in Fig. 3.10.

Problem

Derive the loop admittance matrix Y .00p from the bus impedance matrix
Zsrs of the network shown in Fig. 3.10.
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Solution
The primitive admittance matrix is
1-2(1) 1-2(2} -3 24 3-4

§ ' T ) ; @
1-2(1) 2083 | —1042 | —€ 417 , | f

22 —1.042 0 3021 0208 .

W =13 ~ —0417 0208 2082
. ! | ——. i .
24 | 50
; i i :
34 ! ; 2.0
) i ! J ‘

h

The bus impedance matrix of the network obtained by nonsingular trans-
formation is

@ ® 9
® 0.271 | 0.126 1 0230

Zws=®' 0126 0.344 | 0.189 |
| I ; .

! 3
@, 0.230 ; 0.189 | 0.362

First, form the node-pair impedance matrix Zyp. The elements of
the first row from the equation

Zi:'-w = Zip - Z)‘P - Z!’q + qu
are

Z12.12 =Zn — Zn — Zy + Zy
=0-0-0+40271 = 0.271

le.ls = Zu - Zn - Z13 + Zzs
=0—-0-—0+0.126 = 0.126

le,ﬂ = Zl') - Z22 - Zu + Zu
=0 —0.271 — 0 + 0.230

le.34 = Zxa - Zn - Zu + Zu
=0-—0.126 — 0 + 0.230 = 0.104

le,u = Zn - Zzl - Zu + Z'H
=0-0-0+0.230 = 0.230

Zu.za = sz - Zn - sz + Zzs
=0-0271 —0+0.126 = —0.145

—0.041
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The elements of the remaining rows are obtained in a similar manner.
The node-pair impedance matrix is

1-2 1-3 2-4 3-4 14 2-3
1—2? 0.271 0,126 —0.041§ 0.104 0.2301 —0 145
R | ‘ .
1—35 0 126% 04344‘; 0063/ —0.155| 0.180 0 218,
2~4i1 —0.041 0063% 0173/ 0.069| 0.132 0 104
Zyr= | | | | ';
34, 0104 —0.155 0069 0328 0.173 —0.259
H\ 0.230 0.189! 0‘132% 0.173 0.3623——0.041’;
| i |
2-3 ~0.145| 0.218) 0.1045i —0.259] —0.041" 0.363,
Then
1-2(1)  1-2(2) 1-3 2-4 34
L2) 0271 0271 0.126| —0.041 0104
1—2(2)‘! 0.271| 0.271 1 0.126 | —0.041 T o0 |
Zowr =13  0.126| 0.126  0.344 | 0.063 ‘ -0.155 '
2-4 j —0.041 | —0.041| 0.063, 0.173  0.069 |
3-4 \ 0.10¢ 0104 | 0155 | 0.069 0.3

Second, form the submatrix Y, of the element-pair admittance

matrix Yep.
equation

e - -
)iJ,pq = Yijpg — yli'w[zw.w]yw,m

The elements of the submatrix are obtained from the
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The elements Y122 and Y, 4 are ealculated in a similar manner.
The submatrix Y, is the loop admittance matrix

D E
D 1841  0.340
Yioor = e e
F 0.340 0.875
Problems

4.1 Using the data for the sample power system given 1 Preb. 3.2 and
neglecting resistance. form the following positive sequence matrices:
a. ‘The bus impedance matrix using the algorithm
b. The node-pair impedance matrix Zyp
¢.  The element-pair admittance matrix Ygp
d. The loop admittance matrix Y oop from Yiee

4.2 Repeat Prob. 4.1 using the zerc sequence network data and neglect-
Ing resistance.

4.3 Modify the positive and zero sequence bus impedance matrices
obtained in Probs. 4.1 and 4.2 to reflect the vpening of the north
circuit V between buses B and (.

1.4 Derive the equation

Z!I'.N = Zijpg T zl’i.pa[ypv.w]zuvvpu

for obtaining the elements of the node-pair impedance matrix Zyp
using the element-pair admittance matrix Ygp.

4.5 Form the node-pair impedarnice matrix Zyp using the loop admit-
tance matrix Y io0p obtained from Prob. 4.1, part d.

4.6 Show that the branch impedance matrix Zzg can be derived from
the node-pair impedance mutrix Zyp.
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igapter 5
Three-phase neticorks

5.1 Introduction

Power systems are operated usually with balanced three-phase generation
and loads. A balanced network is ubtained by the transposing of trans-
mission lines.  This makes possible the treatment of many three-phase
power system problems on a single-phase busis  {f there is unbalanced
exeitation on a balanced network the solution -f network problems can be
nbtained by one of two methods.  The first method analyzes the network
in terms of actual phase quantities. The second method nvolves the
transformation of unbalanced phase quantities into balanced sequence
quantities. Two important types of sequence quantities are symmetrical
components and Clarke’s components. For svmmetrical components,
the balanced sequence impedances are uncoupled for both stationary and
rotating elements. For Clarke’s components the balanced sequence
impedances are uncoupled only for stationarv elements. Transforma-
tions for unbalanced networks, in general. do not vield uncoupled sequence
impedances.

3.2 Three-phase network elements

A three-phase network component represented in impedance form is
shown in Fig. 5.1. This component represented in admittance form is
shown in Fig. 5.2. The variables and parameters are:

i g are the voltages across the element p— for phases a. b, and
¢, respectively
Bt i are the source voltages in series with phases a, b. and ¢,

respectively, of the element p—q
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o a
Ep Eq
- | °
Sea ( ) e S R

e
P 2] i; i
By Eb
a. o q
P b T (gt
.p ! qu i b ?
pq
. ¥ 5 C
E; E,
-~ ~—( : : | — e
3 5 —
b €pq S Y qc
i L
L -
a a Vg b b . b £ ]
qu-Ep—ILq vW-Ep—Eq U.W-Ep_Eq

Fig. 5.1 Representation of three-phase network com-
ponent in impedance form.
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Fig. 5.2 Representation of three-phase network component in admit-
tance form.
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The performance equation of
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are the currents through the element p— for phases a, b,
and ¢, respectively

are the source currents in parallel wiih phases 4. &, and ¢,
respectively, of the element p—q

is the three-phase impedance matrix for vie element p-q

is the three-phase admittunce matnx for ihe element p-g

1 three-phase eleracer in impedance

Jorm 18
— ’__l T
| ¢ .
Pl e ! aa ab e
P pq ‘ ‘ Zpe  %pq ‘rq
) L] R -
: ! , :
b bob — | pa | bb ) )
e | € } = B g 2 (3.2.1)
' ! | e
T | | ) !
e i e ca | Lob by
“re | | €pq ‘ Zpq | %pq : | tog
: L ' i ]

- aa
where 25

Sab
Pq
ac

|

self-impedance of phase @ of the three-phase element con-
necting nodes p and g
mutual impedance between phases a and b

z;o = mutual impedance between phases a and ¢
and so forth.
Lquation (5.2.1) can be written more concisely s

.a.b.c ab.c _ _a.b.crab,c
rg + epq qu qu

e

The performance equation in admittance form is

—l [ ] i |
I F W
a | ca aa ‘ ab O B T R
Upq { ’ Jpq Ypg | Ype ‘ Ype | i Upq i
{ | U
| - s .
b b | ba | b | : I
H — i ! . ¥ i
lpq‘+']pq ym‘ypq;«l/;‘qs!lml
H \ ! i l
c ! to ca b | e B e i
pq | Joq Ype | ¥Upa 5 Ypq | i Upq i
! | - HEt | i
which can be written
ra.b,c cabe __ ., a.bic,a,bc
Trq +]Pq = Yo Upq
where
abec __ a,b.c\—1
Ypg = (ZPG )

The parallel three-phase source eurrent in admittance form and the three-
phase series source voltage in impedance form have the relationship. as
is the case in single-phase representation,

ja.bie

Jrq

PR 1, %Y. .
y}’? eP'I
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The impedance matrix 232 and the admittance matrix y%r< of «
stationary bilateral element are symmetric. If, in addition, the three-
phase element is balanced. then the diagonai elements of 250, desiguated
by z;,, are equal znd the off-diagonal elements. designated by 27, are
equal, that is,

aa bb ec '
= = = 7
Zpq qu qu “pg
and
ab _ ,ac __ ba _ be __ e W om
Zpq Zpq Zpqa = “pa T %pq¢ T Tpe T %pg

The corresponding relations are true in the admittance matny 4,7

The impedance and admittance matrices of balanced three-phase
rotating elements are not svmmetric. However, the mutual coupling
from phase a to phase b, b to ¢, and ¢ to a for the phase sequence a. b. ¢ are
identical, that is,

ab __ ,bc _ _ca _ _ml
Zpg T %pqg T %pg T Zpg
Similarly,

ac _ ba __ _cb _ m2
Zpe T %pg T Zpg T %pg

The performance equation of the three-phase primitive network in
impedance form is

i.a,b,c + éa,b,c — [za,b_c]ic.b,:
or in the admittance form 1s
7‘a,b.c + 7‘a,b‘c — [ya,b.c]f.a,b,c

The vectors representing the variables are composed of 3 X 1 submatrices
corresponding to the variables of a particular three-phase network
element. The parameter matrices are composed of 3 X 3 submatrices.
These submatrices correspond to the self and mutual three-phase imped-
ance or admittance matrices of the network elements.

3.3 Three-phase balanced network elements

Balanced excitation

The exeitation of any three-phase element is balanced when the source
voltages or source currents of all phases are equal in magnitude and dis-



placed from each other by 120°.

| :
s i !
! ePV ! ' 1
abe _ ' b ’ — 7 ; 4
“ra _[epqi_fa ,;e::q
i N
5 b i
i < ! :
I €pq l ;@
A B S
where
n o=@y = —1, 4 jig \/:{

[t followsthata’® = 1,a* + a + 1
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For balanced excitation,

o
[Joo | 1
M,,w,.l [——
cet.e B a
/pq _1~7pq!_§a2 Jre
i
1o | 1@ |
[ T
0.anda* = a®. The phase voltages

and phase currents are balanced if the excitation of a balanced three-
phase element is balanced. Then, the performance equation. in imped-
ance form, for a stationary element is

— e T
R : i
1{ I 2p¢ * Zpg ' Zpg ‘ilf
— E__.,i; R
2 |8 = ,m mo 2, @ 5
" | €pe = i %oa | Zpq  %pq fia ézpa (5.3.1)
—_— ‘_i ifm.___i e - ! :_, _AAi
a | e i a ?
) , “pe . “pe Pe !
| L ! S i
and for a rotating element is
‘E ‘ -‘ | s ' mi | m2
1 i i1 ;
1 1 ‘zpqizpqlzpq 1 1
'7— — | A;__‘A“‘i‘_ |~_;
: 2 a 2 a __ | ,m2 e - o.ml ! 9 | a .
| @7 | Vpe t|a €pe | Zpq Ezpq . Zpg 0 07 1p (5.3.2)
| — |——= S ‘7_:
i ml mi | s i i
a | a ‘zm‘zm Zpe @
Both sides of equation (5.3.1) can be premultiplied by the conjugate
transpose of
¥
1
—
- a?
| a
[
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that is,
( | P
1 . a . a*
i H M
to obtain
Q,a G (8 __ .m\-a 55,3
35, + 35, = 3z}, qu)l,,q (54.3)

Dividing by 3, equation (5.3.3) becomes

a | L2 m Ay a
a4 = ¢ —
! pe PPG ‘2}70 ZPQ)]PQ

where (25, — 25 ) is the positive sequence impedance, which is designated
by z,,- Thus, a balanced three-phase element with balanced excitation
can be treated as a single-phase element in network problems. The
power in the element is equal to three times the power per phase.

In a similar manner, equation (5.3.2) can be reduced to

.a a . (.3 2,ml m2\ ‘a
"pq + €pg = (‘pq ta Zpq + aznq)zpq

where 23+ a7 + az]} is the positive sequence impedance.
The performance equation, in admittance form, for a stationary
element is

e T The = o — Ype)5e
and for a rotating element is

e FJpe = Whe + @Pypg + ayi)es,

Unbalanced excitation

When the excitation is unbalanced, the performance equation of a three-
phase element can be reduced to three independent equations by diago-
nalizing the impedance matrix 252, Using a complex transformation
mutrix T’ then the phase variables are expressed in terms of a new set of

variables as follows:

abe _ S0k
! = Tv;’

re
abc _ v5.k L
(qu = Tquk (5.3.4)
a.bc __ SN

e = TYW

The complex power in the element is

Npe = Ppg + jQpe = {(7";?&)*}[(’0")‘(

rq

Substituting from equations (3.3.4),

Spo = LS (T Tl (5.3.5)



Chapter 5 Three-phase networks 123

The complex power in terms of the ¢, j, k sequence variables is

Spe = LR ¥ eyt (5.3.6)

rq

If the complex powers S, and S, are equal, that is, the selected trans-
formation T is power-invariant. then from equations (5.3.5) and (5.3.6),

TN = U = T(T*y
Thus T is a unitary matrix.

Substituting from equations (5.3.4) the performance equation (5.2.2)
becomes

T(oi* 4 ity = godeTy (5.3.7)
Both sides of equation (5.3.7) can be premultiplied by (T*)¢ to obtain
- g

It follows that

t)k _ (T*)‘Z“MT (5.3.8)

A similar transformation can be obtained far the performance equation in
1ts admittance form.

5.4 Transformation matrices

Symmetrical components

Two particular transformations for three-phase balanced elements are of
interest. One of these transforms the three-phase quantities into zero,
positive, and negative sequence quantities. xuown as symmetrical com-
ponents. The matrix for this transformation 1s

which is a unitary matrix, thatis, (TF)!T, = U; and furthermore, because
T, is symmetric, T} = T,7'. Using this transformation the impedance
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matrix for a stationary element 2j>* from equation (5.3.8) becomes

] T i [ { | |
I i : i | H
i | Lm " | : | {
1 1 1if2’“ 25 z"i i’lillll
1 bio [ U A
312 2 | m s mo L Vg2 !
‘g T 3 1 a ay;zw Zpq znql 3}l,a | @ i
: VAL
1 : : ! '
] Vb oom i m s H i i [ 2 1
1 a a i zp !lzp, zpq; ‘1:a‘a‘
P B t
That is,
¢ I
& D m i !
zm-{-ZZW ! ;
|
|
01,2 __ g __ . m | i
%y = Zpq zNi
|
l ] . am
| Zpq Zpq
I

where the zero sequence impedance is
o __ e m

Zpe T Zpq + 221:«

the positive sequence impedance is

(¢ S __ am
Zpg = Zpq Zpq

the negative sequence impedance is

(2 _ 0 __ . m
%pq = %pg Zpq

and 22)* refers to the transformed impedance matrix, which is diagonal

for a balanced three-phase element.

The transformation matrix 7, also diagonalizes the impedance matrix
for a rotating element, even though 232 is not symmetric. This diago-
nalized matrix is

3 ml m2
ZPV _F qu -F qu

| )
01,2 __ | 2,ml m2Z
2y, = | Zpq + a2y, + azj;
Z' 4_ azml 4‘ a22m2
re Pre Pe
. 0) __ ml m2
where zfﬁ = 23, + 23, :{- 25, ,
— 4 2.m m
Zpe = Zpg +a Zpq + az,,

z
(2) __ & ml 9 m2
2 = 23, + azp, + a2},
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Clarke’s components

Annther transformation matrix transforms the three-phase guantities
into zero, alpha, and beta sequence quantities, known as Clarke’s enmpo-
nents  The matrix tor this transformation is

L2 0 E

R | _ i

HE — .

T.= . PV Vi
V3
S V|V

which is an orthogonal matrix, that is, T¢T. = U. Therefore Tt = T;"
Using this transformation the impedance matrix for a stationary element

s __ .m
ZPQ qu

2,7* from equation (5.3.8) becomes
[ i ¥
gy 22| |

: )
!
0.a,8 ! [ -
Zpg T | Zpq Zpq
i
\

where the diagonal elements are the zero, alpha, and beta impedance
components, respectively, and zf,':"’ refers to the transformed impedance
matrix which is diagonal for a balanced three-phase element.

The transformation matrix 7. does not diagonalize the nonsymmetric
impedance matrix 22 for a rotating element. The following is obtained
by this transformation.

; |
i '3 ml m2
. %pq + 2pq + Zpq i

13

2 1 1 2
o (z’;q - 2:« 2 — }é(z;‘q + Z:q

5.5 Three-phase unbalanced network elements

When a three-phase element is unbalanced, the transformation T,, or

T., on 252 does not yield uncoupled sequence impedances. Even though

it is possible to diagonalize z“‘,';“, no single transformation exists for
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diagenalizing the impedance matrices for all elements nf 2 network
because the unbalance of the different elements, in general. is not related.
Therefore, it may be desirable to maintain the original three-phase quanti-
ties for the solution of network problems. When the transformation 7,
is used the sequence networks cannot be treated independently,

5.6 Incidence and network matrices
for three-phase netweorks

Incidence and network matrices for a three-phase balanced or unbalanced
network can be formed by the same procedures as those described in
Chap. 3 for single-phase networks. The entries 1, —1, and 0 it the inci-
dence matrices for a single-phase network, however, will be replaced by
the 3 X 3 matrices, U, — U, and null, respectively. Also, the impedance
or admittance of a network element will be a 3 X 3 matrix. The rows
and columns of this matrix refer to the phases a, b, and ¢ or to the appro-
priate sequence components. The network matrices will be composed of
3 X 3 submatrices whose elements also refer to the phase or sequence
components.

3.7 Algorithm for formation of
three-phase bus impedance matrix

Performance equation of a partial three-phase network

The performance equation for a three-phase network representation in
the bus frame of reference and impedance form is
By = Zshalas
where E4%¢ = vector of the three-phase bus voltages measured with
respect to the reference bus
Is%s = vector of impressed three-phase bus currents
Z3bs = three-phase bus impedance matrix
When the three-phase elements of the network are balanced, their
impedance or admittance matrices can be diagonalized by the transforma-
tion matrix 7, or T.. In this case, the three sequence networks can be
treated independently. The procedures based on the algorithm described
in Chap. 4 can be applied to form the independent sequence network
matrices.
When the three-phase elements of the network are unbalanced, the
3 X 3 submatrices Z&>° and Z%*° of the bus impedance matrix are not
equal. The equations for the formation of the three-phase bus impedance
matrix by the algorithm can be derived in 2 manner similar to that for
single-phase networks.
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Addition of a branch

The performance equation of the partial network with an added branch
p—q, in terms of three-phase quantities. is

1 2 P m q
PR e R R -
. ‘ a1 ; ! ; ‘ .
ht;.b.c 1 7?} Zu b, . Z‘;':"’ i C Zt;;i,c Zz;,b.: 3 ja [N
|
———— | S ,l — ‘;~_~?>. — ek B i ‘] ra, - ‘
E;.b.c ) / Za b oL _Za.h B : Z;ﬁ‘t /a IR j

|
| .
i
C Labe v 7abc ! zabe . . a.b.~ b,
ESNC = pi Z 1 257! 25y L “pm e |l
e [E—— _!7;“,___ AU S O S
L % o = e
: ( I i | H
i B '
- i S \ “—"_'m‘ T B o , - ":
A £ el !
E:br ij ‘c|Zabc1, L. Zcbr? . Zabc Zﬂc i lll’z’;f.y\
? | i t { :
a.b.c: a.b,c j a.b.e! | ) abec, 5 a.b.c a.b.n | ab.
Eq i Z Z i !Zqﬂ ! ngm qu ! in ‘

The elements Z2” can be determined by injecting a three-phase current
at the 7th bus, as shown in Fig. 5.3. and measuring the voltage at the gth
bus with respect to the reference node. Similarly, the elements VARS
can be determined by injecting a three-phase current at the qth bus, as

—e

I e

———o
. Three-phase
. element p-q
. /

Partial
network

R

Fig. 5.3 Injected three-phase
current for calculation of Z3;>°.
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®

—a

F——0

——o

: Three-phase
element p-q __

j @

Partial

: Fig. 5.4 Injected three-
@ phase current for calcula-
e tion of Z3;>* and Z:;b“.

shown in Fig. 5.4, and measuring the voltage at the ¢th bus with respect
to the reference node.

To calculate Z%> let the current at the ith bus be /¢*° and all
other bus currents equal zero. The voltage across the added element
p-qis
;qb .c Ea e E:.b.c (57_2)
The vector of voltages across the elements p—o of the partial network is
—abc - Eabc E“:.b.c (573)

The current in the element p—g, in terms of the primitive admittances and
the voltages across the elements, 1s

e = Upopalye” + Toasalis (5.7.4)
Since 27 = 0, from equation (5.7.4),

50 =~ (Upgnd et (5.7.5)
Substituting from equations (5.7.2) and (5.7.3) into (5.7.3),

Esbe — E:.b.c = — (g )it Fabe — Fobe (5.7.6)

From equation (5.7.1),

Ea.b.c = Za.P.ch.b.c 5
E:.b.c — Z"p"»b"’l;'b'” ({)77)
q qr [
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and at any bus k,
E:.b.z — Z:;b.c[?,b.c

Using the relationships from equation (5.7.7) in 15.7.6) and solving for
Zu,b,c[q.b,c
q 1 !

Wb, b, Wb, b 1,80, —1:758.8, a.b,c Jhoe ra.b.r =
ZEIre = ZI 4 (Yesd)  Vaen Zabe = Zar Vi ie (5.7.8)
Since equation (5.7 8) is valid for all values «f 79> it foliows that

Wb boe Ja@be o1 -ab, boe by S
Zyre = 230 & Waewd) T Wawsal Zahe — Zabe (5.7.9)

To calculate Z&*, let the current at the gth bus be 19> and all other
bus currents equal zero. If the added element p-7 were not mutually
coupled to the elements of the partial network the voltage at the ith
bus would be the same whether the current 74> s injected at bus p or g,
that is, I3** = I%*° and therefore

Yabie __ b, b _ 7a.beyab.c

Eyhe = ZiheIehe = 2918

However, the element p—q is assumed to be mutually coupled to one or
more elements of the partial network; therefore,

rabc _ 7ab.cjabie _ bieyab.e a.b.c = -

Ky = Zirelyhe = 292190 + AES (5.7.10)

where AE*** is the change in voltage at bus 7 due to the effect of mutual
coupling. The vector of voltages induced in the elements p—o is

za.b,c _ za.bc yab.c = -
s = w-mlv (5.7.11)

The series source voltages &%>° and parallel source currents & are
related by

oo = =[] renhe (5.7.12)

Substituting from equation (5.7.11) into (5.7.12),

Tt = B (5.7.13)

However, in terms of bus currents,

Tobe = Jobe = —Jobe (5.7.14)
and the change in voltage at the ith bus due to mutual coupling is
AEY™e = Zghelpte + Zehelebe (5.7.15)

Sabstituting for I%*¢ and I¢*¢ from equations (5.7.13) and (5.7.14),
equation (5.7.15) becomes

AE?,b.c — _(Z?‘;b.c _ Z?..b.c [ a.b e "2“"“ Iu.b.c (5.7.16)

ZP"-I”] P pe" ¢
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Substituting from equation (5.7.1A) into (5.7.10), it follows that

ab.c _ ‘7abe a.b, boeyiabiel 1za.be 1
Z3re = 23 — (Zgh — ZaPd st ate (5.7.17)
From the matrix equation,
| S
a.b.c a.b.c a.b.e ab.e i T
pq.pq Zpq.pa Ypave | rsee U
[
! , Cod
a.b.c ; a.b.e ab.c 1 F.b,0 ! T
Zpapg Zpa.pe Yoo, pq . Yoo, pa . : l
| i
! ! !
1 D
then
sa.be ,abe _ __ [,abec]sabe
2p0.peYpa.pe = [ZM,P’]yﬂ.;q (5.7.18)

Premultiplying by [25%¢]~' and postmultiplying by (y%es,) ", equation
(5.7.18) becomes

(el 25 = —TnpeWpana) ™ (5.7.19)
Substituting from equation (5.7.19) into (5.7.17),
Zyhe = Z + (25 — 23 )y Woasa) ! (5.7.20)

The element Z2¥¢ can be determined by injecting a three-phase
current at the gth bus and measuring the voltage at that bus with respect
to the reference node. Let the current at the gth bus be I&*¢ and all

other bus currents equal zero. Since 742 = —J%*°, substituting in
equation (5.7.4) for z";':"’ and solving for v,

8¢ = (RS 3 + g G721
Substituting from equations (5.7.2) and (5.7.3) into (5.7.21),

E;.b.c _ E:'b'° - —-(y;'qb:;q)_l{lz.b‘c + g;,:l,;(E:.b.c _ E_:'b")} (5-7‘22)

From equation (5.7.1),

E:.b,c — Z;.:,c[:.b.c

E:.b,c — Z:&b,clz,b.c (5'7'23)
and at any bus k,

E:.b.c — Z:’:":I:‘b'c

Substituting from equation (5.7.23) into (5.7.22) and solving for Z32<I%*,

it follows, since the resulting equation is valid for all values of 14>, that

Z:;’b.c — Z;.:,c _+_ (y;.:..;q)~1{ U + gu,b.c (Za.b,c — Z:;b,c)} (5.7_24)

.7 rQ
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1f there i8 no mutual coupling between the added branch and the elements
of the partial network, the elements of 7375, are zeroand (y52e,) ' = 2bc,

Then, equations (5.7.9), (56.7.20), and (5.7.24) reduce to

a.be . 7ab.c
z5be = I

Za.b,c = Zq,b.c

iq ip
7a.b.c - Za.b;a: + 2a.b.t:
‘qq¢ Pe »e.P¢

If. in addition, p is the reference node, the elements of Z%%° and Z%}
are zero. Also

Z::»c — Za.b.e

ra:PQ

If the network elements are balanced, then Z3* = Z2>° and either
equation (5.7.9) or (5.7.20) can be used.

Addition of a link

As in the case of single-phase networks, when the new element is a link 1t
is connected in series with a voltage source as shown in Fig. 5.5. The
three-phase voltage source 2> is selected such that the current through
the added link is zero. Then the element p—I, where [ is a fictitious node,

. @ Three phase
hd element p-q

Partial
network

Fig. 5.5 Three-phase voltage
I source in series with added

@ link for calculation of Z3*,
Reference Z5™<, and Z3h°.
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can be treated as a branch. The performance equation of the partial
uetwork -with the added branch p-i, in terms of three-phase quantities, is

1 2 BN i
/:ala< 1 l Z:i,lb.c Z?Zbc Lo cl’:: ;/,{,t I’;‘L( :
whle - o a b 3 h
£y R AR A J?zp ‘ AN L
i
. — [ I . e PR e ~
| a.b.c Gb( ab.c t7ah 7ab atboc S Ee
Al - .. gebe : : )7
L= p ACOERAC S ASSS VARSE DAN I (5.7.25)
i .
! e e e e e ‘ s oo R
/ 1
—_— e - - ——
| :
b abc ab.c! | ) ab,c a.b.c bora.
Ee m | VA VA A Ié
| | |
i ! . ; ; -
‘ ‘~ ) ‘ i ) = b
C;;.bvc l ?Zabc Zabc‘ . . ]Zti;jb.c: Lot Z(I]’:r Z?,'b' I‘; ¢
i

The elements Z%%¢ can be determined by injecting a three-phase current
at the ;th bus and measuring the voltage at the fictitious node [ with
respect to bus ¢ Let the current at the ith bus be /4% and all other bus
currents equal zero.  Then, from equation (5.7.25).

C? boe Za b, c[q,b,c (:)726)
Alzo. as shown in Fig. 5.5,

be _ ,ebc __ ,a.bec il
et =2 vl (5.7.27)

The current %2 in terms of the primitive admittances and the voltages
across the e]ements 18

Z'z;,:m V/‘;I)pcll,abc + yayb c-ubc (3728)
Since

~a.b.c ~a.b,c

Jplbw - Z/qupv

ab.c __ ab.c

Ypipt = Ypa.pq

and the elements of 2 are zero, then the voltage 13, from equation
(5.7.28), is

U0 = = Wpand) Traselar (5.7.29)
Substituting from equation (5.7.29) into (5.7.27),

e(zlbf — abr + (y:.qb:;q)—ly;:;d abe (5730)
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Substituting for z"b * and 7 from equations (5.7.2}, (5.7.3}, and (5.7.7)
into (5.7.30),

ab ¢ - {Za bhe Zz;,"b.c)lg.b.c + \y;:;q: Za;b.r . Z:;vo' [?.Ir.c (5731)

i
PQP"(

Substituting for ¢2*¢ from equation {3.7.26) into (5.7.311, it follows, since
the resulting equation is valid for all values of 7¢* ¢ that

VARSIV ACIE A SR E I e Al A (5.7.32)

Yps,oot
The elements Z%>" can he determined by injecting 2 three-phase
current between g and { and measuring the voitage «t bus .. Let the
current between g and ! be 7§ and all other bus eurrents equal zero.  If
the added element were not mutually coupled to the elements of the
partial network, then

E,:,b,: — (Zf;:b'c _ Z?éb,c)l;x,b.t
However, because of the effect of mutual coupling,
) piang
E“z.b,c — Z?ib,c]?.b,c — (Z?;,b'c . Z?;b,c)l?.b.c 4+ AE?'b‘C (:)733)

Following the same procedure as in the case where the added element is a
branch, then

AEH = —(Zhe — Zepo)(atel b I (5.7.3%)

and from equation (5.7.19),

ab.c1—-158.b.¢ __mebe (,abc y—1
(LI s S yw-pa(yrq~ﬂq)

Substituting from equation (3.7.34) into equation (3.7.33) it follows, since
the resultant equation is valid for all values of I#**, that

Z?ib.c = Zq.b.c . Zn_z.b,c _+_ (Zabc Z?’b c)ya.bpq 'yabu \—1 (5735)

»q.pq’
The element Z4>¢ can be determined by injecting a three-phase cur-
rent between ¢ and [ and measuring the voltage at node { with respect
to bus ¢.  Let the current between ¢ and I be 77" and all cther bus cur-

rents equal zero. Since ©30° = —I7*°, substituting in equation (5.7.28)
for 242 and solving for v"b * then

130 = = (yams) THUIE + g i) (5.7.36)
Substituting from equation (5.7.36) into (5.7.27),

ezl:.b.c — vabc + (y;:;q) 1(1?.64 + g;,::;az-):;b.c) (5737)

Substituting for v and #%>° from equations (5.7.2), (5.7.3), and (5.7.7)
into (5.7.37),
a be _ (Za be Zab c)]u b.e + <y4;:;q)71(1a be + —;;;:,(Zz,lb,c _ Z":,{b,c)[;n.b,c;
(5.7.38)
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From equation (5.7.25),
be Z?ib'cl?'b'c (5739)

Substituting from equation (5.7.39; into (5.7.38). it follows, since the
resultant equation is valid for all values of 145 that

(—(Zabc‘*7abc)+(ljabc‘ 11( + ab' 7aoc o Zubc): (5740)

pg-pe/

If there is no mutual coupling between thp ‘xdd»}d ok and the elements of
he partial network, equations (5.7.32), (5735, and (5.7.40) reduce to

Z?{,b,r — Zabc — Zabc
yabc n.b,c n,b.c
2 = Zip - Zia

abec _ 7abec __ 77abec a.b.c
AT A 2"+ 250

If, in addition, p is the reference node,

7abe _ __ 7abe
Zli - Zqi
Z?l.b.c — _Z?&b.c
a.be _ __ 77abe a.b,c
Z5 = qu + 2p¢.pq

Furthermore, if the elements are balanced,
R

The fictitious node ! is eliminated by short cireuiting the link voltage

source ¢**¢. From equation (5.7.23),

Eobe = Zahelshs + ZebeIete (5.7.41)
and

(b Zabc]n;gl;}.g 4 Zaberede = 0 (5.7.42)
where 7,7 = 1,2, ... ,m. Solving for /¢*¢from equation (5.7.42) and

substituting into (5.7.41),
Ests = 1255 — Zive(2)- 2y T
Therefore,

/a bye . Za.b.c
ij(modified) T “4“ij (beforeelimination)

— Tz T
A summary of equations for the formation of the three-phase bus
impedance matrix is given in Table 5.1.  These equations can be written

in terms of symmetrical or Clarke’s components.

5.8 Modification of the three-phase bus
impedance matrix for changes in the network

The formulas given in Table 5.1 can be used to modify a three-phase bus
impedance matrix when an element is added to the network. The<e
formulas can be used also when an element not mutually coupled to other
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elements of the network is removed or its impedance is changed. The
procedures sre similar to those used for single-phase networks. When
an element is removed, the modified three-phase bus impedance matrix
can be ubtained by adding a parallel element whose three-phase impedance
's equal te the negative of the impedance of the element to be removed.
When the rmpedance of ar. element is to be changed, the modified three-
phuse bus ‘mpedance matrx cxn be obtained by adding » parallel element
-urh that the equivalent three-phase impedance of the two elements 1s
the-desired value.

The same procedures as those used for single-phase netwaorks can be
employed to derive an equation for modifying the submatrices of the
three-phase bus impedance matrix when mutually coupled elements are
removed or their impedances are changed. This equation is

Zatt = 2yt + (2 — Do M Ayt NS = 2y
where

Ay = et =

[ebe] = (0 = (a2 1252 - (250 — (238 + 12581

t

5.9 Example of formation and modification
of three-phase network matrices

The methods of forming three-phase network matrices by transformation
and by algorithm will be illustrated using the sample system shown in
Iig. 5.6a.

Fig. 5.6 Sample three-
phase system. (a) Single
line diagram; (b) tree and
cotree of oriented con-
nected graph.

Branch
——— Link
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Problem

Form the bus incidence matrix 4 with grourd as reference.

Form the bus admittance matrix Y g5 by transformation.

Form the bus impedance matrix Zgy s using the algorithm.

Modify the three-phase bus impedance matrix obtained in part ¢ to
remove element 3 between bus 2 and bus 3.

N

Table 5.2 Three-phase impedances for sample system

Self Mutual
Bus Bus
Element code Impedance code Impedance
number p—gq 285 r—s Fhad

PUPY

0.080 | —0.025 | —0.020

1 1-2 —0.020 0.080 | —0.025

| —0.025 | —0.020 0.080

0.080 | —0.025 | —0.020

2 1-3 —0.020 0.080 | —0.025

—0.025 | —0.020 0.080

1.50 0.50 0.50

3 2-3 0.50 1.50 0.50
0.50 0.50 1.50
0.60 0.20 0.20 0.20 | 0.20 | 0.20
4 2-4 0.20 0.60 0.20 2-3 0.20{ 0.20 | 0.20
0.20 0.20 0.60 0.20 | 0.20 | 0.20
0.90 0.30 0.30 0.30 | 0.30 | 0.30
5 4-3 0.30 0.90 0.30 2-3 0.30 { 0.30 | 0.30
0.30 0.30 0.90 0.30 | 0.30 | 0.30
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Solution

The data for the sample three-phase system is given in Table 5.2. The
impedances for this system are represented by real numbers equal to the
generator and line reactances. The branches and links of the oriented

conimected graph for the single-line representation of the system are shown
o Fig. 5.6b.

. The bus incidence matrix is

N

 busi
O
¢
1 —U:
2 -U
1= 4 U -v
3 Ul =U
5 -U!l U

where U is a 3 X 3 unit matrix.
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¢. 'The bus impedance matrix will be formed by first adding all branches

and then adding the links.

Step 1. Start with element 1, the branch from p =1 to ¢ = 2.
The elements of the bus impedance matrix of the partial network are

@

a b c

al 0.080 | —0.025 —0020

e

i ‘
|

Z%% = @b| —0.020 | 0.080 | —0.025

¢! =0.025 | —0.020 0.080

L

i
;
i
|
|
i

Step 2. Add element 2, the branch from p =1 to ¢ = 3. This
adds a new bus and the bus impedance matrix is
® ®
a b c a b c
a| 0.080! —0.025| —0.020 l|
@b| —0.020 0.080l —0.025
c| —0.025| —0.020| 0.080
735 =
a 0.080| —0.025| —0.020
®b —0.020| 0.080| —0.025
¢ —0.025| —0.020| 0.080

Step 3. Add element 4, the branch from p = 2 to ¢ = 4. This
element is not connected to the reference node and its addition creates a

new bus. Using the formulas in Table 5.1
Z‘q‘;-:'c = Z;;:‘ i = 23
VA VA t1=2,3
and

2Bl a.b,c ab.c
qu - Zr'z o Zpq.9q
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Step4d. Add element 5, the link from p = 4 to ¢ = 3. This element
is not connected to the reference node and is not mutually coupled {5 an
existing element of the partial network. The elements of the rows and
columns eorresponding to the fictitious node [ are obtained from

a,bec _ 7abe a,b,e — .
Z!'b - ZPtb - Zqib r= 2y 37 4
Zabe _ 7abe _ 7ab.e S
le - le Ziq t = 2’ 3.4
and
7a,bc _ abe __ a, b,c a.b,c
Z” - Zpl qu + Zpa.pe
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Step 5. Add element 3, the link from p = 2 to ¢ = 3 mutually
coupled to elements 4 and 5. This element is not counnected to the
reference node.  The elements of the rows and columns correspouding to
the fictitious node ! are obtained from

7abec __ Jabe __ 7abe a.b,e \—1-a0.¢ (Pabe a,b,¢e) A
= Am' 237+ Warse) yvqw(zm Z,,- / PE

7ab.c . 8.0 7a.b, - bt ek, b y— Y
Z?ZOC - Z::Por . Z‘ao ¢ 4 (Z;zpbc _ Zz’br abz(\ljubc) i i

1Y o0, 2¢\Y 1. pq
and

Z;zl.b.c - Z:.!b.c - Zzib,c + ( a,b,c )._1{ Lr S+ ga.b,c /Z:I,b.c . Z:;E.e)}

1
Ypa.pe 045,09\

il
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s
B
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156 Computer methods in power system analysis

Also

(M) = (U — [8y2*(232] - (282 — (2581 + (28D
o,y =2,4,2
g,6=4,33

ab,c ab,c | 7a,b,c
2% 230° Iy

I

» [ 7ab,c | ab,e ab.c ! a.b,e
where |22 Z% VAT 7%

ab,e
ZTZ

abec | ab,c
| Z22 Z!l

Zc.zb.c Zn.b.c Zu,zb.e
4 44 . 4
\
|
ab,e] b, be | 7ab,
(Z32) = | 23 | Z30° 1 Zw°
ab,c ab,c ; ab,e
Z% Z3 | Z3
a,n,e a,0,¢ i a.0,¢c
VA b VA Boor ' 7 b
24 23 23
abe] _ ab,c ab,e ab,c
[276 ] - Zu Zu Z(S
a,b,c a.b.c a,b,¢
le Z23 Z23
Ze ) e | 2y
abe] ab.c ab,c ab,c
(2% = | 230 | 235 | 2%
ab,c a.b.c ab.e
Z:N ZI:! ZIS

and Z$P%, Z$P, and so forth, are obtained from the original bus impedance
matrix.
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158 Computer methods in power system analysis

For fhe calculation of Z33*, 1 =2, j =3 « v =2, 4 2. and
3,8 =4,3,3. Then

]

(Pabie _ Pebey — b, b, b, b b, S !
(Zabe — 250 = | Zspe — 2500 | 230 — Z3ye | 29y — Z39° )

§ B i

0239 —40057!—0047 0359, — .0085 — .0071  0598|— 0142 - 011§
N | \ — E

= .~ 0047, 0239 —.0057|— 0071 0359 — . 0085|- 0118/ 0598~ 0142]

- ‘0057i— .0047§ .0239|— 0085 — .0071] .0359|— 0142/ — .0118] 0598

a.bec _ 7ab,c
Z!I Z( 3

i !
(\Z:;b.c . Zzb.c) — l Z:,‘b,c . Z:,ab.c

and

|
B,¢ ab,c
| Z:: -2z 33

‘.~<0239 L0057 .0047

.0047 | —.0239 .0057

.0057 .0047 | —.0239

—.0359 .0085 .0071

= .0071 | —.0359 .0085

.0085 .0071 | —.0359

4 —.0598 .0142 .0118

.0118 | —.0598 .0142

0142 | 0118 | —.0598
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Problems

5.1 In Prob. 3.2, the positive and zero sequence dats for the sample

system shown in Fig. 3.14 is given in Table 3.5 =or this system:

a.

N1
[N]

With ground as reference, form the three-phase incidence
matrices 4, K, B, B, €7, and € for the oriented connected graph
selected for Prob. 3.2 and verify the relations:

i, ALK =U
. By = AK!
di. €y = — B¢
w. CB=U

Neglecting resistance and assuming all negative sequence
reactances are equal to the corresponding pusitive sequence
reactances, form the three-phase network matrices Y%%% and
Zab¢ 5 by singular transformations.

Neglecting resistance and assuming the positive and negative
sequence impedances are equal, form the three-phase network
matrix Z%%5 using the algorithm and ground as reference.
Transform Z%%5 calculated in part ¢ to Z%}s. The submatrices
for positive and zero sequences can be verified with those obtained
in Prob. 3.2.

The sequence impedance data for the sample system shown in Fig.

5.7 is given in Table 5.3. Selecting ground as reference (node 0),
compute Z %% using the algorithm.

O_

WO

Fig. 5.7 Sample system for

@ @ Prob. 5.2.
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O

i i

Fig. 5.2 Sample system for Prob. 5.3.

5.3 The reactance data for the three-phase system shown in Fig. 5.8 is
Generators A and C:

) = @ = (.1
r® = 0.04
z, = 0.02

Transformer A-B:

P = 2 = 2O = (]

r, = 0.05

Transmission line B-C:

T

: |
' i

, l ! !
10.310.2 ,og

: R
xevb-c=j0,2,oA41 0.1 ]
i | ‘ [

! | \ ;

0 0.1 02,

a. With ground as reference form Y %32

b. TForm Z%}2 using the algorithm.
c. Determine Z%55 from Z%j2 obtained in part b.

5.4 Assume that the transmission line B-C of Prob. 5.3 is balanced and
its reactance is

0.3,0.1 }0.1!

b =101]0301
| |

1 |

01101 i0.3‘
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)

Compute Z$) ¢, 292 ¢, and Z2

BU S BUS-
b. Determine Z%%5 from Z%y3 obtained in part a and compare the

the results to those obtained for the unbalanced line in Prob. 5.3,

part c.
The sequence impedance data for the sample system shown in Fig.
5.9 is given in Table 5.4. The mutual impedances 23,y and 2937

are not equal because of the eircuit arrangement. For this system
compute Z §5E using the ground (node Q) as reference.

O
T

® ®

Fig. 5.9 Sample system
1 Jor Prob. 5.5.
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chapier 6
Short circuﬂé\&ifuﬁmi,

i
o

6.1 Introduction

Short circuit ealeulations provide currents and voltages on a power system
during fault conditions.  This information is required to design an ade-
quate protective relaying system and to determine interrupting require-
ments for circuit breakers at each switching location. Relaying systems
must recognize the existence of a fault and initiate circuit breaker opera-
tion to disconncct faulted facilities. This action is required to assure
minimum disruption of electrical service and to limit damage in the faulted
equipment. The currents and voltages resulting from various types of
fauits occurring at many locations throughout the power system must be
calculated to provide sutficient data to deveiop an eflective relaying and
switching svstem.  To obtain the required information a special purpose
analog computer, called a network analyzcr, was used extensively for
short circuit studies before digital techniques were available.

The bus frame of reference in admittance form was employed in the
first application of digital computers to short circuit studies. This
method, whieh was patterned after similar techniques employe:! for load
flow caleulations, used an iterative technique (Coombe and Lewis, 1936).
This required a complete iterative solution for each fault type and loca-
tion.  The procedure was time-consuming, particularly if, as was usually
the ease, the currents and vaoltages were required for a large number of
fault oeations. Consequently, this method was not adopted generally.

The development of techniques for applying a digital computer to
form the bus impedance matriv made it feasible to use Thevenin's the-
orem for short cireuit caleulations.  This approach provided an efficient
means of determining short cirenit currents and voltages because these
values can be obtained with few arithmetic operations involving only
related portions of the bus impedance matrix.
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Fig. 6.1 Three-phase representation of a power system.

6.2 Short circuit calculations using Z,.

System representction

The three-phase representation of a power system under steady ctate
condition is shown in Fig. 6.1. In general, sufficient accuracy in short
circuit studies can be obtained with a simplified representation. The
simplified three-phase representation is shown in Fig. 6.2 and is obtained
by:

1. Representing each machire by a constant voltage behind the machine
reactance, transient or subtransient

2. Neglecting shunt connections, e.g., loads, line charging, ete.

3. Betting all transformers at nominal taps

In many short circuit studies, particularly for high voltage systems, it is
suflicient to represent transmission line and transformer impedances s
real numbers equal to the corresponding reactances.

Fault currents and voltages

The use of the bus impedance matrix provides a convenient means of
caleulating short circuit currents and voltages when the ground is selected
as reference. One of the distinct advantages is that, once the bus
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Machines
. P
. Transmission system .
[’ i
a b ¢ |
e, i ab ¢
o | E®
i
labe
Eﬂ. N
P
!
|
i
L

Fig. 6.2 Three-phase representation of a power system for short circuit
studies.

impedance matrix is formed, the elements of this matrix can be used
directly to calculate the currents and voltages associated with various
types of faults and fault locations.

The representation of the system with a fault at bus p is shown in
Fig. 6.3, In this representation, derived by means of Thevenin's the-
orem, the internal impedance is represented by the bus impedance matrix
including machine reactances, and the open-circuited voltage is repre-
sented by the bus voltages prior to the fault.

The performance equation of the system during a fault is

AN —. [rabe _ 7abe Fab,e
BUS(F) ™ bsusm) ZBUSIBUS(F) (6«21)
The vnknown voltage vector is
!
c.bc |
EI(F> ‘
[ a.b,c b
bBUS(F) I‘pil')
ab,c
“n(F)
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where the eclements of E%%S.,, arc the three-phuse voltage vectors

ab,c L f
A0S 1=1,2,...,n

The known voltage vector prior to the fault is

a,b,c
El(o)

¢ — rab.c
8(0) “ p(0)

ISk

i

I,"o.b.t
‘n(0)

The unknown bus current vector during a fault at bus p is

0

Ja,b.c — a.b.e
IBUS(F) - Ip(r)

The three-phase bus impedance matrix is

a,b,c e . 7ahc L 7ab.c
Z% Z3, Z3,
7abe __ 7a.b,c ... 7ab.c L. 77a.b,c
2305 = 2y A Z5
| - .

7a.b.¢ ... 7abc .. 7a.b.c
Z VAR VA
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E.(n)
—C—
g — O
S O
Bus invnp¢-4dnnc( matrix . \{,', 1
E— (transmission system and o Ey0)
: machine reactances) ° C
— O e
® i)
L < > -

abc

[1%a) Fault Eym

Fig. 6.3 Three-phase representation of a power system with a fault at bus p.

where the elements of Z%5¢% are matrices of dimension 3 X 3. Equation
(6.2.1) can be written as follows:

~a.be ~abe ab.crad.e
bnr EI(OJ Z pr()")

ab,e ra.be abc ab.c
L"(FJ I’zm: / p 1;;(#'1
Fu.b,e = [abc _ gadefabe (6.2.2)
“p(Fy plo) “pp ‘L p(F)
cabe a.b.c a.b.c b.e
Ln(l-') - bn(D) 7 [;(m

The threc-phase voltage vector at the faulted bus p is, from Fig. 6.3,

pabie o godere e (6.2.3)

. C
n(F) Pl F)

where Z3%¢ is the three-phase impedance matrix for the fault. The
clements of this 3 X 3 mairix depend on the type of fault and fault
impedance.  Substituting from equation (6.2.3) for ££2%5, the pth equa-
tion of (6.2.2) becomes

Zaheiote = Eoke — LeheIoh (6.2.4)

Solving cquation (6.2.4) for 13% yields
Iobs = (Z5% + Zoy ) By (6.2.5)
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Substituting for I3%s in equation (6.2.3), the three-phase voltage at the
faulted bus p is

Byl = Zshe(Z50 + Loty Egls (6.2.6)
Similarly, the three-phase voltages at buse§ other than p can be obtained
by substituting for 7% from equation (6.2.5). Then

Uiy = LGS — ZREZE A Ly )T (2 (6.2.7)

When it is desirable to express the parameters of the fault circuit
in the admittance form, the three-phase fault current at bus p is

Ly = Y Bl 6.2.8)
where Y$%¢ is the three-phase admittance matrix for the fault.  Substi-
tuting I;'(”,'-j from equation (6.2.8), the pth equation of (6.2.2) becomes

Eobs = By — Zom Y Lohs (6.2.9)

rabc — (U+Zabcyabc) ;(Zznc ((3.2'10)

“p(F)

Solving equation (6.2.9) for £2%S vields

Substituting for £2%¢ in equation {6.2.8), the three-phase current at the
faulted bus p is

abc= Yabc(U+£ubcyabc) 1[1;1’(!(:)): (('211)

p(h

Similarly, the three-phase voltages at huses otler than pocan be abtained
by substituting for l‘,‘_,;,f from cquation (6.2.11).  Then

By = Eig — Z80 Vit (U + ZipcYho)minle i#p (6.2.12)

WF)

[Fault currents flowing through the elements of the network can be

salculated with the bus voltages obtained from equations (65.2.6) and

((» 2.7) or from equations (6.2.10) and (6.2.12), These currents in terms
of the voltuges across the clements of the netwaork wre

i?,,b)" ,__‘ [ a.b, r]Ua b

where the elements of the current vector are
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the elements of the voltage vector are

a
Vsicpy
e,be b
Uhon = | Y
vl
e

and the elements of the primitive admittance matrix are

aa ab ac
Yijxt Yijkt Yixt

a.be ba bb be
Yijut = | Y | Yijur | Yijm

ca b ee
Yij Yoyur | Yijw

)

where 7 is the mutual admittance between phase b of network element
i~ and phase ¢ of network element k=l The three-phase current in the
network element 7-7 can be calculated from

rabe _ ~a.besad.e
LitEFy = Vi pabloo(F (6.2.13)

where po refers to the element 7-7 as well as to elements mutually coupled
to 1i—7.  Since

mt = Eglys — il
then equation (6.2.13) becomes
s = gk (B — Ea) (6.2.14)

Le formulas for fault currents and voltages derived in this section
can be used for balanced and unbalanced three-phase short circuit studies.

3.3 Short circuit calculations for
balanced three-phase network using Z,

Transformation to symmetrical components

The formulas developed in the preceding section for calculation of fault
currents and voltages can be simplified for a balanced three-phase net-
work by using symmetrical components. The primitive impedance
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matrix for a stationary balanced three-phase element is

: m m
zl’q ZVW qu
za,b.c = zm Zl zm
re rq pe re
m m '
qu zPQ zpq

This matrix can be diagonalized by the transformation (T7)%%°T, into

(0)
zP'I

01,2 _ (L)
rq re

2)

zﬂq

where 20,200, and z{%) are the zero, positive, and negative sequence
impedances, respectively. The positive and negative sequence imped-
ances for a stationary balanced three-phase element are equal. In
addition, it is generally accepted that positive and negative sequence
impedances for rotating elements can be assumed equal for short circuit
calculations.

In a similar manrer, each y&%f in the primitive admittance matrix
and each Z&*¢ in the bus impedance matrix;can be diagonalized by the

transformation matrix 7, to obtain, respectively,

(0 0)
Yijkt YA

0,1,2 _ (¢}] 01,2 __ (1)
Yijur = Yijxt and Z;" = Z;

It is customary to assume that all bus voltages prior to the fault are equal
in magnitude and phase angle. Assuming the magnitude of the line-to-
ground voltage Fiq cqual to one per unit, then the ith bus voltage before
the fault is

‘abe 2
By = a




Chapter 6 Short circuit studies 175
Transforming into symmetrical components, that is
E?{(}fz = (T}) By

then

0
Eig® =| V3
0

The fault impedance matrix Z%>¢ can be transformed by 7, into the matrix
Z%"?. The resulting matrix is diagonal if the fault is balanced. The
fault impedance and admittance matrices in terms of three-phase and
symmetrical components for various types of faults are given in Table 6.1.

Similarly, the equations for calculating fault currents and voltages
can be written in terms of symmetrical components.  The current at the
faulted bus p is

b = (ZE1 + 25T E (6.3.1)
or »
Iy = YSUU(U + 25,V B! (6.3.2)
The voltage at the faulted bus p is
EGyy = ZEMNZEY + 25, ) B (6.3.3)
or
EYY = (U + 25 Yt ) Ly (6.3.4)
The voltages at buses other than p arc

Efyt = Eyyt — Z5NHZE + 200 RS (6.3.5)
or

Efit = Elg® = Z51YSNNU + 25 YR )T ED? (6.3.6)

The fault current in the three-phase element -7 is

0,1,2 _ -0,1,2,7012 L 0.1,2
Lty = Yijpo (Lpf.F) bd(Fﬁ (637)

Three-phase-to-ground fault

Fault currents and voltages for a three-phase-to-ground fault can be
obtained by substituting the corresponding fault impedance matrix; in
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Table 6.1 Fault impedance and admittance matrices

Three-phase components

Type of faull

Z;'b" Y;.b.c
zr +:, Z z, yo + 2w_ Yo — yr %yo; yirﬁ
z, zr t+ 2 2 % Yo — y¥ yo+2yriyo~yr
Zg z 2r + 2 Yo = Yr | Yo — Yr {yo + 2yr
: :
Three-phase-to— where yo = ;,—+§;,
ground
2] -1 ] —1
Not defined "_3’ -1 2 -1
—-11] =1 2
sr 0 0 yr 0 0
) w | 0 0 [y 0
0 0 o 0 0 0

a b c
. T‘" 4] 0 0
© 0 0
0 zr + 2, —Z
2 0 |zr+z2 z, zh + 22pz, | 2p + 22p2,
. ? 0 2y zr + 24 0 -2y zr + 24
Line-to-line-to- 2+ 22r2, | 2b + 2212,
ground
a b c
* T 0 0| o©
Zp ZF
Not defined ng 0 1| —1
. . 0 -1 1
Line-to-line
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Symmetrical components

Z%l,’ y:_,l.:
z2r+ 3z, | O 0 Yo 0 0
0 2y 0 0 yr 0
0 4} zy 0 0 yr
1
where yo = ——
zr + 3z,
o« 0 0 0 0 0
0 |z | 0 vel 0 1 | 0
0 0 zp 0 0 1
1 1 1
- vr I
Not defined 3 1 ‘ 1 1
1 ‘ 1 1
2zp —zp —2F
) : e N
Not defined m i~z ! 2zp + 3z, f(zr +32,)
—z5 :——(zr+32,) 2zp + 3z,

Not defined

177
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terms of symmetrical components, into equations (6.3.1), (6.3.3), and

(6.3.5).

Both sides of the resulting cquations can be premultiplied by

7, to obtain the corresponding formulas in terms of phase components.
The fault impedance matrix for a three-phase-to-ground fault is,

from Table 6.1,
i
zp + 3z, g

i
|

(6.3.8)

The three-phase fault current and the bus voltages are obtained by sub-
stituting, from equation (6.3.8), for Z%'* in equations (6.3.1), (6.3.3),

and (6.3.3).

The current at the faulted bus p is

f

7~

which reduces to

(®)

Ip(l") 0

o, | = V3

p(F) (1
zr + Zmr

2)

I, 0

(6.3.9)

The phase components of the fault current at bus p can be obtained by
These currents are

premultiplying both sides of equation (6.3.9) by T..

a
p(F)

b —_
I)z(f') -

¢
p(F)

1
! 2
a

| |
2r 435, + 2 | 0 ‘
| i
i | _
ez V3
1 ! ZF+Z(1;:;: O!
! [E—
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The voltage at the faulted bus p is

E(’,o()p, ZF + 32, 0
];vu) . 2 \/3
“pFy | T F Y
o+ 2
MY
Lp(P) ZF 0
which reduces to
(0
[_:p( Fy 0
1;(1) - _\{3 Zr—
il Ty
(2}
Lp(F) 0
The phase components of the fauit voltage are
Y
POF) 1
2F
Eb - az
p(F) zp + Z(;; !
E;(F) a
The voltages at buses other than p are
0 [+ ‘
[~ (0) 4
Ei(F) O Zt'p ‘ 0
LS LA 31 — (1) V3
E:’(P) - \/3— Zip W
zp + »p
B || o 22 o

Short circuit studies
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which reduces to

(0)
Elk 0
Z(l)
¢V —_ B P
Eip | = V31 - I3y
zp + pr

2)
Lk 0

In phase components,

G
El(F) 1
— (n
It =(1— _ZL__ at
“iF) z + Z(x)
—_— F /| —
<
H¥S) a

Table 6.2 Current and voltage formulas for three-phase-to-ground
fault at bus p

Three-phase components Synumelrical components
1 0
a.b.c Ep N 01,2 V3 Eym
156 = 2 + 20 a L = e + 2D 1
F PP | F PP |—
a 0
1 0
gobe o o 5 gora V3 z2rE 0 ;
- = P L Fy T 70
P(F) zr +£;13 Hd 2F +‘4w’ [
[ 0
1 0

1 1
ZQE, ZE o

b s Fa . v
Eips = (E.(o) o Z’;:) a? Eipy = V3 (E‘(o) =T Z‘;;) 1
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The formulas derived in this scetion are summarized in Table 6.2, The
line-to-ground voltage was assumed to be one per unit in the derivations.
The formulas in Table 6.2 include the term for the line-to-ground voltage
which can be set at any desired per unit value.

The currents in the network elements during the fault can be calcu-
lated from cquation (6.3.7).  Since the zero and negative sequence bus
voltages are zero for a three-phase fault and there is no mutual coupling
in the positive sequence network, that is, ¥t = 0 except when po = 4j,
then equation (6.3.7) reduces to

(03 ‘

Liich 0

(1) o [SSIE AI0 S I A0 8}
LR | = U:j,;;‘(ﬁe(n L;‘(F))
()

(AP ‘ 0

In phase components,

\——'__" —
‘a i
Yk | 1
] 1 1 1
— (RS0E AIS LI ALE B ?
i iR J\ = \/3 ’Jn’..‘,‘(l’.uv ]';(r)) a
‘ .
LiicF) a
-

Line-to-ground fault

The fault admittance matrix for a line-te-ground fault in phase a is,
from Table 6.1,

l,
1hl
_}___l
b
o _Irly (6.3.10)
3 \
S R
‘ !
11,1
|

The fault current and the bus voltages are obtained by substituting from
equation (6.3.10) for ¥'%"?* in equations (6.3.2), (5.3.4), and (6.3.6). The
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current at the faulted bus p is

Computer methods in power system analysis

I, | [lr+zg¥) znt oz 0
Yr Yr yr H Yr
I(pl()p, = ? 1/1 Z(;; ‘g 1+ Z;l; ? Z;; —é‘ ’\/?;
Yr Yr n Yr
Lie 11 Zy | Zny |1t Z‘»Z—B“ 0
I
which reduces to
I3k
V3

I¥e | = . (6.3.11)

P Z<p°; + 24;’,’ + 3z

(2)

p(F)

The phase coraponents of the fault current at bns p can be cbtained by
premultiplying both sides of equation (6 2.11) by T,.

5 3

Ly Z0 + 22 + 3er
! ;U') i, 0

P 0

/.

The voltage at the faulted bus p is

These currents are

-1
i YF Yyr s YP
ES L ER s (B s 0
oy Y¥ o Y¥ o Y
: E;‘()F) = [(pl; -g 1 + é(;; '3— J(pl; '?3— \/§
Yr Yr Yr
Elr, ey wy | 1+HZn7 0
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which reduces to

(0) 1)
Ep(F> va

E | = 13
PP ZO 4220 + 3er
PP PP

@ _ 7
EP(F) pr

Z;O,z -+ Z;l,: -+ 3zr

The phase components of the fault voltage are

3Zr
Ea
p(F) 0 [¢8
pr + QZ’W + 32;‘
(0 __ 7
E® = | a2 — va an
pRy | = 0 5%
pr + 2pr "+‘ 32}?
0y _ 7
Ee a — pr pr
»(F) (0 &3]
pr + Zpr + 3Zp

The voltages at buses other than p are

I
B0 | K
| -
| o _ | | g | V'3 1
s A R R R oy e
Bih| | 0 RS ']
|

which reduces to

Ef | 0 7
- VE]
Ed | = | V3| = oo | 48
| Fain | =V Tz en e | T
Eankl 7y
In phase components,
Ep, 1 Zy + 22

1
T 2% 4+ 220 + 3z

~e 0y __ 7
Eir, a 2y Zy

b — 2 0y __ (1
E;(h =] a Zi, Z'.’
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Table 6.3 Current and voltage formulas for line-to-ground fault (phase a) at bus P

Three-phase components Symmetrical componenis
1 1
. 3Epia o o o \/E_Eﬂoj
PV Y 970 3 gy i R LR P e P
1] 1
—|

3zp
Z0 + 229 + 325

— 7
l?i‘

oy _ ay
. ZPP ZFP
©) L oz}
i+ 2200 + 3z,

=3 V3 Eyo .
E5ds = By | o =TT ozm £ an | Lee t T + %
224 PP

a1,2
E»(’)

— 7
Z”

oo L =2
1
Z0 + 2280 + 32r

ZO 4 228
Z9 + 220 4 3z,

0 z®
zZe ogzm e V3E

.5, c . P ip LR ol 53 +op(9) 1

et = E, et |- E T Sl = E, 3| - ———2C | 2"

S M ZE 42zl + 3 | T TR L4 22y + e
- Zo _zwm 0 Z‘-‘y’ i
a ip ip H

Z& + 227 + 32y
i#Ep t#p

The formulas derived in this section are summarized in Table 6.3. The
line-to-ground voltage was assumed to be one per unit in the derivations.
The formulas in Table 6.3 include the term for the line-to-ground voltage
which can be set at any desired per unit value.

The currents in the network elements during the fault can be calcu-
lated from equation (6.3.7).

6.4 Example of short circuit calculations using Zy;

The method of calculating short circuit currents and voltages will be
illustrated for the sample system shown in Fig. 6.4a. The oriented con-
nected graph of this system is shown in Fig. 6.4b. This sample system
is identical to the one used in Sec. 5.9.
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Problem

a. Using symmetrical components, calculate the following for a three-
phase fault at bus 4:
i.  Total fault current
ii. Bus voltages during fault
ili,  Short circuit currents in lines connected to the faulted bus
b. Using symmetrical components, calculate the following for a line-to-
ground fault at bus 4:
1. Total fault current
ii.  Bus voltages during fault
iil.  Short circuit currents in lines connected to the faulted bus.
¢. Determine the maximum three-phase short circuit current that cir-
cuit breaker A must interrupt for a fault on the line side of the breaker.

Solution

a. The bus impedance matrix in terms of sequence quantities must be
determined to calculate three-phase and line-to-ground fault currents
using symmetrical components. Table 5.2 shows the three-phase imped-
ances of the network clements.  The zero, positive, and negative sequence
impedances of the network elements can be obtained by means of the
transformation matrix T,, that is,

0,1,2 __ *\¢ a.be
2y = (1) )e T,
Assuming the impedance matrices of the generators are symmetric and

using the average value —0.0225 for the off-diagonal clements, the
sequence impedances are shown in Table 6.4,

@ ®

S

Fig. 6.4 Sample sys-
tem for short circuit
calculations. (a) Sin-
gle line diagram
of three-phase system;
Branch  (b) oriented connected

(b) ® ——— Link graph.
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Table 6.4 Zero, positive, and negative sequence impedances for

sample system

Self Mutual
Bus Bus
Element code Impedance code Impedance
mnber pg i Y
€.035
I 1-2 0.1025
0.1025
0.033
2 1-3 0.1025
0.1025
2.50
38 2-8 | 1.00
! 1.00
| 1.00 0.60
4 2-4 0.40 2-3
0.40
1.50 0.90
5 4-3 | 0.60 2-3
0.60

Since there is no coupling between the sequence impedances, the bus
impedance matrix in terms of sequence quantities can be obtained by
forming the positive, negative, and zero sequence bus impedance matrices
independently. First, the positive sequence bus impedance matrix will
be formed.
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Z80 =@ 0.1025
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Start with clement 1, the branch from p =1 to q¢ = 2.
The positive sequence bus impedance matrix for the partial network is

®

]

1 toq =3 Then,

2 to ¢ = 4. Thus,

Step 2. Add element 2, the branch from p
©) ®
0.1025
Zoys =
® 0.1025
Step 3. Add clement 4, the branch from p
Zou =2y =12n
Z34 = 243 = 0
Zu=2Zu+ 224,24
and
@ ® ®
@ 0.1025 0.1025
Zhus = ® 0.1025
® | 0.1025 0.5025
Step 4. Add clement 5, the link from p = 4 to ¢ = 3.. The ele-
ments of the row and column corresponding to the fictitious node ! are
Zn = Z:l = Zu - Zn
Zla = Z.u = Zn - Zn
Ziy=2Zay= Zu - Z:u
Zu=Za—2u+ zaa
and the augmented matrix is
©) ® O] !
@ | 0.1025 0.1025 0.1025
® 0.1025 —0.1025
®| 0.1025 0.5025 0.5025
l| 0.1025 | —0.1025 0.5025 1.2030
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To eliminate the Ith row and column the elements of the augmented
matrix are modified as follows:
Zyy = Zn — ZuZi'Zy
Z33 = th - ZZIZ” Zl3

impedance matrix is

® ® ®
®| 0.0876 | 0.0149 | 0.0586
Z%s = ®| 0.0149 | 0.0876 | 0.0439
@/ 0.0586 | 0.0439 | 0.2928

Zu =Zu— ZuZu Zi
Zza = Zu = Zy — ZﬂZulZiS
Zoy =24 =2y — YV AIAR
Z;‘ = Z;. = Zu - Z;[Z"_‘lz“
Thus,
® ® ®

@ 0.0938 | 0.0087 0.0598
Z%hs = ® | 0.0087 0.0938 | 0.0427

_@ 0.0598 | 0.0427 | 0.2930

Step 5. Add element 3, the link from p = 2 to ¢ = 3. As in the

previous step,
Zy =2y = Zy — Zsz
'Zﬂ = Zal — Z23 h Z33
Zuy=2Zu= Zy — Zy
Zy=2n—Zu+ zaamn

@ ® ® !
@| 0.0938 0.0087 | 0.0598 0.0851
® 1| 0.0087 0.0938 | 0.0427 —0.0851
®| 0.0598 (.0427 | 0.2930 0.0171
l| 0.0851 —0.0851 0.0171 1.1702
Elinﬁnating the {th row and column, the final

positive sequence bus
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Since positive and negative primitive sequence impedances are equal, the
positive and negative sequence bus impedance matrices are equal.

The procedure for forming the zero sequence bus impedance matrix
is identical for the first four steps. The zero sequence bus impedance
matrix of the partial network, before adding element 3, is

® ® ®
@ | 0.0345

0.0005 | 0.0209

70 =@ ! 0.0005 | 0.03¢5 | 0.0141

\
|

(©| 0.0209 | 0.0141 | 0.6182

Step 5. Add element 3, the link from p = 2 to ¢ = 3, which is
coupled with the elements 4 and 5. The elements of the row and column
corresponding to the fictitious node ! are

yn,u(Zn - Z42) + 2/23,43(242 - Z:n)

Z12 = Z22 - ZM +

V23,23
iy =2y — 733 + Y3222 — Z43) + ya0.45(Zis = Z3a)
V23,23
i = oy — Lo b YanadZow — Z43) + Yos.5Z i — Z3)
Ya3,23
Ty = Bop — By - 1+ vu20(Zu = Z40) + ynis(Za — Zy)
Y2323

The zero sequence primitive impedance matrix is

1-2 1-3 2-3 2-4 4-3

l—2§ 0.035 | 1

-3 0.035 !

2-3 IZ:’;OO 0.600 | 0.900
2-4 | 0.600 | 1.000

4-3 0.900 1.500
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The new element 3 is coupled only to elements 4 and 5 and it is sufficient
to invert the submatrix containing the coupled elements.

2-3 24 4-3

2-3|2.500 | 0.600 | 0.900

(22 ] = 2-4 | 0.600 | 1.000

p9,p0

4-3| 0.900 1.500

Thus,
2-3 24 4-3

2-3 0.625 | —0.375 | —0.375

v, = 2-4 —0.375  1.225 | 0.225

4-3 | —0.375 0.225 0.892

and the augmented matrix is

® ® ® !

@ | 0.0345 0.0005 | 0.0209 0.0136
®| 0.0095 0.0345 | 0.0141 —0.0136
®| 0.0209 0.0141 | 0.6182 0.0027
| 0.0136 ‘—0.0136 —0.0027 1.6109

Eliminating the Ith row and column, the final zero sequence bus imped-
ance matrix is

® ® ®
@®]| 0.0344 | 0.0006 = 0.0209

Z%s = (| 0.0006 | 0.0344 | 0.0141

®| 0.0209 | 0.0141 | 0.6182
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Combining the elements of the three sequence impedance matrices, the
bus impedance matrix is

® ® ®
0 1 2 0 1 2 0 1 2
0 rO.T):w; 0.0006 0.0209
®1 0.0876 0.0149 0.0586
2 0.0876 0.0149 0.0586
0]0.0006 - |0.0344 0.0141
5 =@l 0.0149 0.0876 0.0439
2 0.0149 0.0876 0.0439
010.0209 0.0141 0.6182
@1 0.0586 0.0439 0.2928
2 0.0586 0.0439 0.2928

Assuming the fault impedance is zero, the total fault current for a
threc-phase fault at bus 4 is

] 0 0 0
012 _ = = ;
(A I 0.2028 | 34243
0 0 0

Ishe = TI%% = 3.42
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Bus voltages during fault are

0,1,2
Eaiw

31,2
bl(P) -

Computer methods in power system analysis

0
0
0
0 0
VAYRVE] t - 0.0386
V3 - Z0 4z, | V3 - 0.2928 V3
0 0
0
0.80 /3
0
0 0
VARRVE] 0.0439 -
—x vV - 3
V3=, V3 =~ Qoo V
0 0
0

0.85 /3
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The phase components of the voltages are

"abe 0,1,2 __
Eum - TE4<F) -

Eghs = T.EYY? = 080 a?
L¢3} 2F)

abe _ 012 _ x| A2
Eshe = T.EGR =085 a

The short circuit currents in the lines cornected to the faulted bus are

0

S 1 : I 1
8% = | Y ~ Bl | = | g5 © — 085 V)

| |
L
| ]
| |
] ;

[

0

i

0

\

|

;4—-
= ', —1.524/3
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0.1,
Yo

The phase components of these currents are

ra,b.e
13(P)

‘a,b,c
Y S)

Computer methods in power system analysis

0 0
1
= y;l(),u(E‘;()F) - E(&)F) — (0.80 '\/—3— —-0) .
0.40
0 0

=| 200-/3

_ 0,12 _ _
= Tayr = —1

= Tagas = 2.00

|
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b. The fault current for a line-to-ground fault at bus 4, assuming zero
12 V3

fault impedance, is
1]
I3k V'3 1|

= 1 ) = V<
PZR 4220 + 32, | 06182 + 0.5856 |j
1 1

0.83 V3
=| 0833
0833

The phase components of the total fault current are

2.49

b 01,2 _
I:(F) - TII‘(F) - 0

Bus voltages during the fault are

—Z® —0.6182
V3 ‘
EyRl = 7O T 270 1 3. Z9 +Z3) =083+3 0.9110
AV —0.2928
1
—=0.5131 /3 !
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0 z3
Bkl = | VO |~ e sy v e | 0
0 A ‘
0 | 0.0209
=13 —083+/3]0.0586
0 | 0.0586
|
—0.0173 /3 |
= 0.9514 /3
—0.0486 /3
0 A
s 3
E%LE = 3| — v 7
3(F) \/— Zi(:) + QZ;? T 3z, 43
0 zy
I I
0 | 0.0141
= | V3! = 08331 0.0439
0 ! 0.0439
—0.0117 /3 \
=| 096363 ’
—0.0364 /3
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The phase components of the voltages are

32;‘

!

I :

‘ ZQ 4220 + 3z
|

700 D
Eite = | 28— Zi |, 06182 —0.2928

TZD 4w 2zy 48 | |0 T 06182 4 05836

AV A , 00182 — 0.2928
ZR 422 + 3zr 0.6182 -+ 0.58356

a

= —0.77 — j0.866

—0.77 + j0.866

| 78 b 27D
[ N 1] o
|7 22+ ey

0y 701y
Zu — 724

Ll 2+ vz

-7y

ZE + 278 + 32r

0.0209 + 0.1172

0.6182 + 0.5856 0.8853 + 70

0.0209 — 0.0586
=|a |- | —————2=|=| —0.4687 —;0.866
¢ 0.6182 + 0.5836 7-08

0.0209 — 0.0586
s T —0.4687 + j0.866
¢ 0.6182 + 0.5836 [
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—0.4752 — j0.866

—0.4752 + 70.866

) VAV SV AR 1 0.0141 + 0.0878
7+ 220 + 3z 0.6182 + 0.5836
, AL AR 0.0141 — 0.0439
— . ——— = - — e S
: 29+ 220 + 3ar T | 0.6182 + 05856
Z28 =23 0.0141 — 0.0439
_fa T la " VU141 = 90209
¢ 729 L 020 4 3z, 06182 4 0.5856
P
0.9154 + 70

Short cireuit currents in the lines connected to the faulted bus are

[
T TR T T Al L ~0) M
| Yis,43 Ely Eyy) T 3/43,23(1'/2<r) LY .
) IS\ DI AL
+ le.'Z{(“‘Z(F} I‘ur‘))
1 It )
yu.as(EuF) - Es(f‘)>

) (2) (2)
yﬂ,lB(E((F) — Ele)

0.892(—0.5131 + 0.0117) + (—=0.375)(—0.0173 + 0.0117)
+ 0.225(~0.0173 4+ 0.5131)

Lo :
o (0-7561 0.9636)

1
0T (—0.2430 + 0.0361)

e
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(0) (0 ) ) (0) 3
yu,u(E'sz) - E«F)) + y24,43(E4(F) - Ea(m
(0) (0) )
+ yu.u(Ez(F) — Eikh

01,2 %} () ML)
1a4(F) Yaias(Eory — Er
(2) 2) 7(2)

‘ Yoiaa(ESry — I,

1.225(—0.0173 + 0.5131) + 0.225(—0.5131 + 0.0117)
+ (—0.375)(—0.0173 + 0.0117)

1
=3 53 (09514 — 0.7561)

1
— (0. 2
04 (—0.0486 + 0.2430)

0.50 /3
= 10493
0.49 /3

The phase components of the currents in the lines connected to the [ault
bus are

—1.02 1.47
ik = T = 0 and 305 = Ta0p = 0
0 0

¢. The fault currents occurring for a fault on the line side of breaker A
can be calculated by assuming the fault on bus 4, since both locations are
electrically equivalent. When this type of fault occurs and breaker A
opens before breaker B, the interrupted current will be the total fault
current at bus 4 less the fault contribution flowing from bus 3 over line 5.
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This current is

abe __ yabe _ 2
IS — 15qr = 342 a

= 2.00

When breaker B opens first, breaker 4 must interrupt the total fault
current’ which occurs when line 6 is apen. The fanlt current can be enl-
culated after modifying the bus impedance matrix to open line 5. To
simulate the opening of line 5 a fictitious link, whose impedance is equal
to the negative of the impedance of element 5, is added between buses
4 and 3. From Table 6.4, the impedance of this fictitious link in terms
of the sequence quantities will be

—1.5

0,1,2 e
Za,0n = —0.60

—-0.60

The cdements of the (th row and column ure
Zm S Zu s Zn — Zn

Zu - Zu - Zu - Zu

L = Zu = Zu == Zu

.

Ju~Ta—Lu+ Z43,435(2)

und the nugimented positive sequence mndrix is

(1) _ (x) (4) {
(5| 0.087¢ 0.0149 0.0586 0.0437
®| 0.0149 0.0876 0.0439 —0.0437
®| 0.0586 0.0439 0.2928 0.2489
1| 0.0437 | —0.0437 | 0.2489 —0.3074
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The element Z,, of the modified bus impedance matrix is
Zi= 74— ZuZ7 0

This new value is

7% = 0.4943

Then, the total fault current is

0 0

104 = /3 S N V3 L

wn Z& 4 2 0.494
0 0

I

g
(=]
N
S

The phase components of the total fault current are

Ity = TR =202 o

which are the maximum currents to be interrupted.

6.5 Short circuit calculations using Z o,

Short circuit currents and voltages can be calculated using the loop
impedance matrix for the simplified system given in Fig. 6.2 (Lantz,
1957). The loop currents of the simplified system are zero prior to the
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fault since all bus currents and off-nominal tap settings are neglected.
It is necessary, therefore, to calculate the loop currents resulting from the
fault in order to determine short circuit currents and voltages. The
fault calculations can be performed using either three-phase quantities
or symmetrical components. The method will be described using three-
phase quantities.

The number of three-phase elements in the simplified system is equal
to the number of network elements plus the number of machine equiva-
lents. The number of nodes is equal to the number of buses n plus
ground, that isn 4+ 1. The number of links or basic loops, in the simpli-
fied system, is, then

=(+te)—n+1)+1
or
ln=e+e —n

where ¢ is the number of three-phase network elements and e, is the
number of three-phase machine equivalents.

A fault at bus p is simulated by adding a link from the bus to ground.
Using the representation of the system shown in Fig. 6.3, the voltages
during the fault are

5, 5 .
ESbéin = Ejvse + AES0S (6.5.1)

where the vector AE%YS represents changes in bus voltages resulting from
the faulted bus source voltage E25s.

The performance equation of a network in the loop frame of refer-
ence is

Fab.c
ELOOP = LOOPILOOP

For the faulted system, shown in Fig. 6.3, the known loop voltage vector is

0

0

a.b.c
“p(0)

The dimension of the loop impedance matrix, which includes the fault
loop, is 3(ls + 1) X 3(ln + 1). The unknown loop current vector due
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to the fault is

ab
IA(F)
Fa.b.e —
IIO()I’()) =
ahb,e
Ila(f‘)
ab.e
[L(F}

where ]%0 is the current associated with the fault loop. The loop cur-

rents can be calculated, then, from
I3tsen = (Z355p) ESosp
The currents in all elements of the network during fault can be calcu-

lated from

sabe _
LFy CIs LOOP(F)

(6.5.2)

where C is the loop incidence matrix on a three-phase basis. The current
vector can be partitioned as follows:

*u.b,e
1y(Fy

)
Ry

a,0.¢

Py

where 1% = branch current vector
1% = link current vector
Then the vector of voltage changes is

i

A Lhobe ab,cl5a.b,e
AEGys = Kz 15

where K = branch-path incidence matrix on a three-phase basis

[25%¢] = primitive impedance matrix for branches
The bus voltages during the fault are obtained by adding the voltage
changes to the voltages prior to the fault. Equation (6.5.1) becomes

E;B.: , = f;b Lo I\l' ~a.b. ‘]"‘b .€ (653)

N

The current at tne fauited bus is the same as the current in the auxiliary

loop, that is, 79:%.
The method described can be employed to calculate faults at various
locations in the system by adding links, one at a time, between the
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faulted bus and ground. This requires the formation and inversion of a
loop impedance matrix for each different fault location. The necessary
matrix operations required to provide short circuit data for a large number
of locations, therefore, would be time-consuming.

An alternate method, in which links are added simultaneously
between each bus and ground, requires the formation of a single loop
impedance matrix and only one inversion of a submatrix (Byerly, Long,
Baldwin, and King, 1958). In this method, the currents in the auxiliary
loops are changed to simulate different fault locations. Phase currents
are assumed for the auxiliary loop associated with a faulted bus p depend-
ing on the type of fault. Assuming one per unit phase current, the pth
auxiliary loop current is

For a three-phase fault:

abe 2
ILp(F) - a

For a line-to-ground faclt on phase a:

Y -
I‘I‘.p(‘;’) =10

For a line-to-line fault between phases b and c:

0
wim = 1
-1

The currents in all other auxiliary loops are assumed to be zero.
The loop voltage and current vectors and the loop impedance matrix
in the performance equation for the entire network, including auxiliary
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loops, can be partitioned as follows:

rab,c by hoe
I3 AT SR N
H -
= ! (6.5.4)
ra.b,c a.b.eyt r7ab,c a,b,c
EL(F) (Z.\I ) ZA IL(I")

In equation (6.5.4), the vectors E%*° and I%"¢ refer to the loops in the
simplified system and E%%% and 19 refer to the auxiliary loops.

The veetor 1254 can be calculated for a fault at bus p from equation
(6.5.4) by assuming the auxiliary loop currents to be

Tabc b, S-S
I?rr§ - ]?,mci‘) (6.0.-))

where 525, iz the assumed threc-phase current vector of the pth auxiliary
leop.  From cquation (6.5.4) it follows that

Zr;:h.cl-r;l,b.c + lel‘.lh.el'c;l.(bi‘c, - ]::;bc (6.5.6)
Since E%*¢ = 0, equation (6.5.6) becomes

Zi.b.cji,b.c + Z‘}.’b,cjz;‘.(biﬁ =0

Solving for the loop currents of the simplified system,

Ighe = —(Z3* ) 23Tyl (6.5.7)
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The auxiliary loop voltages, from equation (6.5.4), are
S = (@) e + 28I

Substituting from equation (6.5.7) for 1%, then
Byt = 1250 = 5y as Tl ©58)
Fquation (6.5.8) determines the auxiliary loop source voltages for the
assumed auxiliary loop currents given by equation (6.5.5).

To determine actual fault current the voltage source in the pth

ab,e

auxiliary loop must equal K355, the pth bus voltage prior to the fault.
The caleulated source voltage of the pth auxiliary loop K505, is obtained
from cquation (6.5.8) using the assumed currents.  The actual fault

current al bus p s

TFor phase a:

124 0
I3, m(actual) = I3 . (assumed) Ea’”—’
LprF)
For phase b:
T
b i 20
1% mfactual) = I (assumed) o
"Lp(F)

and so forth.

The loop currents 7%%¢ of the simplified system can be obtained from
equation (6.5.7) using the actual auxiliary loop currents. The branch
currents can be calculated from equation (8.5.2) and the bus voliage.
then. can be determined from equation \0.3.3°.

In equation (0.5.8), the assumed auxiliary loop currents I3% are
flowing in the auxiliary links connecting network buses and ground and
therefore are bus currents. The auxiliary loop voltages E4%5 are the
bus voltages resulting from the assumed currents. In equation (6.5.8),
then,

Zghe — (ZEOZEOIZee = 2355

In this method, therefore, the loop impedance matrix is used to determine
the bus impedance matrix for the calculation of short circuits.

6.6 Example of short circuit calculations using Z,,05

Using the loop frame of reference, the method of calculating short circuit
currents and voltages will be illustrated for a fault at bus 4 in the sample
system shown in Fig. 6.4a.
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Problem
Using symmetrical components, calculate the following for a three-phase

fault at bus 4:
i.  Total fault current
ii. Short circuit currents in all the lines of the network

iii.  Bus voltages during the fault

Solution

The positive secquence loop impedance matrix for the system including
the link representing the fault must be determined to calculate the three-
phase fault conditions. The basic loops prior to fault are shown in the
oriented conneccted graph in Fig. 6.5a. The basic loops of the graph
including the fault link are shown in Fig. 6.5b. The basic loop incidence

Fig. 6.5 Basic loops of ori-
ented connected graph for sam -
ple power system. (a) Prior
to fault; (b) durin, fault
(%) @ condition.
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matrix for the fault condition is

l
x A B L
1-2 1 1 1
1-3| -1 | —1
2-4 1 1
C =
2-3 1
4-3 1
4-1 1

Using the sequence impedances given in Table 6.4 and letting the
impedance of the fault link be zero, the positive sequence primitive

impedance matrix is

€

g

1-2

1-3

1-2

0.1025

1-3

0.1025

2-4

0.40C0

2] =
2-3

1.0000

4-3

0.6000

4-1

The positive sequence loop impedance matrix is

Zop = Cl2IC = B

A

L

A B &
1.2050 | 0.2050 | 0.1025
0.2050 | 1.2030 | 05025
0.1025 | 0.5025 | 0.5025
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Assuming the line-to-ground voltages prior to the fault arc equal to one per
unit, the voltage source in the loop associated with the faulted bus is

adec _
EA(O) -

and the sequence voltages are

0
ESy = (THESS = | V3
0

The positive sequence loop currents are

T — f¢8) —1(h
‘LOOP - (ZLOOP ELOOP

I 0.855 ' —0.125 | ~0030 | | 0 } —0.05 /3
| : !

1P | =| —-0.125 ‘ 1.442 | —1.416 | | 0 ‘ = —142+/3

Ie |t | —0.050 1 —1.416 | 3.416 \/“;E | 3.424/3
] t H }

where I, is the positive sequence current associated with the fault
loop and equals the total positive sequence fault current. The sequence
currents are

0

L = 342+/3
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Then, the phase components of the fault current are

1

Wb, I3 X -
135 = Ty, = 342 o

a

The positive sequence currents in the elements of the network are

= — T
1 = Clig0p

A B L
iy 1-2 1 1] 1 —0.054/3 1.95/3
By 1-3| -1 | —1 —1.42 /3 1.47 /3
i 2-4 1] 1 3.42 /3 2.00 /3
I B 2-3 1 B T0:)5 V3
iy 4-3 1 —1.424/3
Y 4-1 1 3.42 /3

Then, the sequence and phase components are

0 | 1

2 =] 1.95/3 i = Ty = 1.95| o
L ° -

0 1

9 = 147+/3 it = Taly" = 1.47] a?
0 a




0
90 = 2.004/3
0
0
9% = | —0.05 /3

0,1,2

Gt =] —1.4243

0

‘ab,c

124

Ja.b,e
123

ca.b,c
143

Chapter 6

= Tyl = 200]| a?

a
rl
= Ta3'? = —0.05]| a?
a
1
=Ty = —1.42| a?
a

The branch-path incidence matrix is

\path

@ 6 ©
b
1-2 | —1 —I
K= 1-3 -1 |
2-4 -1

Short circuit studies
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Since the positive sequence bus voltages prior to the fault are
Efn = B = EQy = /3
the positive sequence bus voltages during the fault are

(b — I ATH
Egusiry = Lyiso + 8l 5us

1
EY, F‘ ~0.20 | |080+/3

(1)
ES(F)

\/ﬁ‘ 1 |+\/§ —0.15 i = | 0.85+/3 !

Em)s n —1oo| o0

i } i '

213

Then, the sequence and phase components of bus voltages during the

fault are

KR o
v |

EGL = 1080 /3 Eghs = TLENLEE = 080 a?
__*M__! i
0 ' a
(S '
' o
0 1
Ei =085 3/3 1 I3 = TR = 085 of
BE— i
i 0 ' a
SN _
l. 0
L
By = B =10 |
°|

Using the alternative method described in See. 6.5, the loop impedance

matrix is partitioned as follows:

51,2 e,1,2
ZL Z.\I

0.1,2
Loor — —_—

2z | 25
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For the sample system, then,

A B L

1

i

k i

2. = B|0.2050 i 1.2050 | 0.5025 |
i

L' 0.1025 | 0.5025 | 0.5025

Assuming the fault current equal to one per unit,

abe  __ 2 01,2 __ *\tra.b.c
Iie = | a and e = (TOHLG =

The positive sequence voltage of the fault loop with the assumed value of

fault current is

1) 2 [¢3] (1) (l) (1) 1)
FL(F 5 {ZA - (Z ) Z }ILtF)

Io.loesio.sozs

=1{0502 — t—ru—" |

[

0.855—0. 140

|
i
i
|
=

! |
i |
5 0.8

I

0.293 /3

The actual positive sequence fault current is

]1(1)

h . 1(1) _ER Koy
L4(F) (actua) — £ LA(F) (assumed) L(
LACF)

= 473 (63?;;%75) = 3423

Then, the sequence and phase components of the fault current are

1 2.'41(':‘) =14/3

abe .
Itie = Tdpin 3.42 | a?

1
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The positive sequence loop currents are

1P = —(ZP) 215k
, . |7
‘ I» { 5|1 0.1025 —0.05
= al 3423 = /3 |———
Iy ‘—0 145]  0.835| | 0.5025 —1.42

Using the loop currents, the currents in the elements and bus voltages
can be calculated as previously shown.

6.7 Description of short circuit program

The majority of short circuit studies involve only the calculation of three-
phase and line-to-ground faults. The American Electric Power Short
Circuit Program, which is designed to calculate these faults, uses the
positive and zero sequence bus impedance matrices as described in Sec.
6.3 and the simplified system representation presented in Sec. 6.2.

The input data describing the system is specified using power plant
and substation names. Data for generators, synchronous condensers,
and terminal points includes the station names and corresponding posi-
tive and zero sequence reactances. Lines are specified by two station
names, one for each terminal, along with the line reactances. Each set
of twao lines which are mutuaily coupled requives a station name for each
terminal and a mutual reactance. Transformers are specified by station

names for cach terminal, the number of windings and their connections,
and the positive and zero sequence reactances. The input data may
include aiso a study name, case number, and identifying remarks.

The program f{irst assigns sequential bus numbers and then rearranges
the network data to facilitate the formation of the positive and zero
sequence bus impedance matrices. During this phase extensive data
checks are performed.  Next, the positive sequence bus impedance matrix
is formed. This matrix is temporarily stored on an auxiliary storage
device to provide space in memory for the next program segment. Then
the zero sequence bus impedance matrix is formed and the positive
sequence bus impedance matrix is retrieved for use in the fault calcula-
tions. Since these matrices are symmetrical only the diagonal elements
and upper off-diagonal.elements need to be formed and stored. The
sequence of steps in the short circuit program is shown in Fig. 6.6.

Short circuits in megavolt-nmperes (mva) are caleulated for each
bus and tabulated with the appropriate station name.  The following

sults are obtained:
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1. Total three-phase and line-to-ground bus fault currents

2. Three-phase and line-to-ground fault contributions in each line con-
nected to the faulted bus

3. Zero sequence driving point reactance for the faulted bus

4.

Total three-phase and line-to-ground bus fault currents and cor-

[ Hewd wyntem data }—4- —_————

!

Assign bus numbers and
sort and check network data

Any
data
errors ?

Terminate
Job

Form positive sequence
bus impedance matrix

f

Store positive sequence L Data
bus impedance matrix recard

t

Form zero sequence
bus impedance matrix

{

Retrieve positive sequence
bus impedance matrix

————

!

Calculate three - phase and
line -t - ground faults

{

‘ Write results }*-— —_——

!

Terminate
Job

Fig. 6.6 Simplified flow chart
for the American Electric Power
Short Circuit Program.
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responding line contributions when lines connected to the faulted bus
are opened one at a time

In order to locate quickly the short circuit results for individual
stations, the printed output includes a title page with an index of stations
listed alphabetically und their corresponding page numbers. A sample
of this output is shown in Fig. 6.7.

In addition to these results which are obtained automatically for
each bus, the following results can be obtained by special options:

1. Fault contributions in lines not connected directly to the faulted bus

Bus voltages during fault

3. Tault contributions following the switching of lines not connected
to the faulted bus

4. Fault contributions following the switching of two or more lines con-
nected to the faulted bus

o

Problems

6.1 The reactance data for the three-phase system shown in Fig. 6.8 is
Generator:

M = 2 = 0.1

0 = (.04
z, = 0.02
Transformer:

M = 2@ = 20 = Q.1
z, = 0.05

Form the positive and zero sequence bus impedance matrices and

@ ®

P

Fig. 6.8 Sample system for Prob. 6.1.



6.2

6.3

6.4

6.6

Chapter 6 Short circuit studies 219

calculate the total fault current and the contributions from the

generator and transformer for the following faults at bus A:

a. Three-phase-to-ground

b. Line-to-ground

For a fault at bus p let the admittance between each phase and

neutral be ya, ¥, and y., and let the admittance between neutral

and ground be y,.

a. Torm the fault admittance matrix ¥4

b.  Verify that cach fault admittance matrix ¥ %> given in Table 6.1
is a special case for the condition that y, = ¥ = Ve

Derive the equations for the total fault current in terms of symmetri-

cal components and phase quantities for the following faults at

bus p:

a. Three-phase (not grounded)

b. Line-to-line

¢. Line-to-line-to-ground

TFrom the equations for the fault currents draw the sequence net-

works and their connections to simulate the following faults:

a. Three-phase

b. Line-to-ground

c. Line-to-line

d. Line-to-line-to-ground

Using the sample system given in Prob. 5.3, compute the total fault

current and bus voltages for the following faults at bus B:

a. Three-phase-to-ground

b. Line-to-ground

¢. Line-to-line-to-ground

Using the same sample system given in Prob. 5.3, and assuming the

transmission line B-C is balanced and its reactance is

T0:i01 01
1050101
Ia.b.e=i0,1;0.310.1!
: i : !
f i ; |
0.110.1] .3|

|

L i

compute the total fault current and bus voltages for the following
faults at bus B:

a. Three-phase-to-ground

b. Line-to-ground

¢. Line-to-line-to-ground

Compare these results with those obtained from Prob. 6.5.
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O -O

Fig. 6.9 Sample two-phase sys-
@ @ tem for Prob. 6.7.

@....

6.7 The reactance data for the two-phase system shown in Fig. 6.9 1s
Generators 4 and C:

Transmission lines A-B and B-C:

V72

3

Tag = Ipc = |

I 4
= =
{

V2

1
l
J

Transmission hne A-C:

Tpe = |/

2+/2

RS
|e

The bus voltages are

1.1/30° ‘
Efp=|———
1.1/120°
1.2/0°
Ee=|—
1.2/90°

Compute the following:
a. The bus impedance matrix with ground as reference
b. The phase currents in each line
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¢. The ground current at bus B for a fault with the reactance

d. The fault voltages at buses A and B
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_élmpter 7
Solution of siim@?us
algebraicequati

7.1 Introduction

The subject of numerical analysis pertains to that branch of mathematics
which 1s a study of methods and thoir application for the numerica!
solution of mathematical problems.  The mathemuncal relations of
physical quantities must be established for a specific problem. It is
then necessary to consider which of the available methods 1s most appro-
priate for obtaining a solution. Consideration must be given to both
the speed with which the solution can be obtained and the resultant
accuracy. The selection of a method is influenced also by the capability
of the available computer.

Among the important and most frequently encountered problems in
numerical analysis is the solution of sets of algebraic equations. A
number of methods are available to solve sets of equations.  All of these,
however, fall into one of two general types: direct or iterative. A direct
method, also referred to as an exact method, provides a solution in a
definite number of arithmetic operations. The number of operations
depends on the computational technique selected and the number of
equations. Furthermore, if the coefficients of the equations form a
symmetric matrix, the solution requires fewer arithmetic operations than
for a problem of the same dimensions with a nonsymmetric matrix.

Except for the inevitable round-off error of intermediate or final
results, a solution obtained by direct methods is exact. Failure to obtain
an adequate solution for a consistent set of equations can be encountered
by the loss of significant digits in the course of computation. For
example, this could be a result of subtracting twe numbers that are very
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near the same value. Thus, selecticn of a direct computational method
and the number of significant digits retained throughout the process are
important.

On the other hand, methods empinrying iterative techniques provide,
in un orderly fashion, successive approximate solutions which may con-
verze to results with acceptable aceuracy.  The rate of convergence, 1.e,,
the required number of successive approximations or iterations. depends
primarily on the coefficient matnx defining the physiesi system.  Depend-

;g on the charaeteristics of rhis matrix, the successive approximate
solutions may converge rapidly or siowly or even diverge. Thus, the
formulation of a problem has a direct bearing on the time required for
convergence. The iterative computational technique adopted also has
an intluence on the rate of convergence. An additional factor affecting
the t:me of solution is the choice of the estimated initial values to start
the computational process.

7.2  Direct methods for solution
of linear algebraic equations

Simultaneous equations

A physical system in steady state can be represented by a set of simul-
taneous equations of the form

fir ra. ..., 3 = >
folzy 2o o L L Za) = Yo (7.2.1)
f,-ﬂI;. Ta, ... ,In) = Yn

where 7, are functions relating the unknown variables r; with the known
parameters of the system. The system (7.2.1) is nonlinear if at least one
of the functions f; is nonlinear. If all fs are linear the system of equa-
tions is linear. A linear system can be represented in matrix form by
A4X =Y

where 4 is a constant coefficient matrix.

Solution by determinants

Consider the following system of linear equations:

anry — G2T2 + Q1373 + G124 =
21 Iy — A20T2 + A23T3 + ATy = Yo
ATy — 3Ty + Q3373 + A3aZs = Y3
anry — G4l + G433 + 4Ty = Y4

I
<
=
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The determinant of the coefficient matrix 1s

Gyir Gy Az Ay
Qgp U2z Q2z Qo
&3 A3 A3z 23

Qap T4y dge dyy

Muitiply the first equaticn by Ay, the cofactor of 4., the second euetion
5y Ay the third by 4. ete. The produets wre added to obran

rilandy 4+ anda 1 anda + asda)
& 12(0121‘1;1 + Ay der v 1‘232-‘131 + (142:1“}
+ r3(apAn + asda + dads + acdal
+ za(a1sd . + anda + andsn + anda)
=y A + yeda + ysda + yda

4
(R
189
~—

From the relationships of determinant and cofact.:rs the term

nifandn; + anda + anda + andy) = 04,

and the remaining terms are zero. L.e..

rilayAy + ayda + ayds + aidar =0 j#E |

The equation {7.2.2) becomes

Al = yidn + pedn + ysda +oyeda (2.3

The right-hand side of equation (7.2.3) is the determinant of the mutrix
obtained by replacing the first column of 4 with the known parameters
Y1, Y2, ¥s. and y,.  Designating this determinant by Ay,

Y1 Q2 Q13 Q14
Yz Qg Q23 Aoy
Ys Q32 QAzz (34
Ys Q42 Qa3 Qa4

Ay =

and solving equation (7.2.3) for x,.

L
VY
if |[A] # 0. Similarly,
4
“T A
Y
T4l
[Ad
Ty = —

A
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where (4,], {A4, and |44} are the determinants obtained by replzeing
respectively the second, third, and fourth columns of 4 with the known
parameters. This method of solution is known as Cramer's rile.

(Causs elimination method

T'he successive elimination of unknowns is the simplest and most practieal
+irect method of solving a system of linear equations  Many veranons
ot the original scheme attributed to Gauss have been proposed for
~rganizing the computation to minimize the number of anthmetic steps,
1, reduce round-off error, and to minimize the chance of errur in hand
caleulations, A detailed description of the elimination method applied
to a system of four equations will be used to illustrate the metkod.
The given set of linear equations is

ansy + a2 + a13T3 + G1aTe = Y1
anIy F QoeTy + A23T3 + ATy = Y2
syt @saXy b @33T3 o+ ATy = Ys
ATy + QT + QZs + QuTs = Yo

{7.2.4)

As an initial step, divide the first equation by its leading coefficient
ap; # 0 to obtain

o Qrz (23 Q14 "1
Tt xRz by =
ayy a a ay

TUsing by; and g, to designate the resulting coefficients and constant term,
respectively, the system of equations (7.2.4) becomes

Ty + by + biaxs + bz = o1
anly + a2 + A93T3 + QosTy = Y2
ATy + @327y + A33T3 + QT = Y3
anry + Qs + 4T3 + Gty Ys

(7.2.5)

Next, transform the set of equations to a new set in which the leading
coeflicients of the second, third, and fourth equations are zero. This is
accomplished by multiplying the first equation of the system (7.2.5) by
the leading coefficient of the second equation and then subtracting the
resulting equation from the second equation to obtain

(@sy — 021)11 + (022 - azlbn)ih + (aza - a2lbl3)x3 + (024 - G:xbu)—h
= Y: — ang1
Designate these intermediate coefficients by a3 and y3'' to obtain

9] (1 1
@' Ts + sy rs + ay)re = yy



Chapter 7 Solution of simultaneous algebraic equations 227

in which «; has been eliminated. Following the same procedure for
subsequen” equations, the third equation becomes

(@31 — @ujry + (az — flaxbl‘z)Iz + {@s. = anbiry & oidae - aph)ry
= = A
or, using the new notation,
ayre + ai = akne = ]!
and the fourth equation is
(@ — @s1)7y =~ Qqz — Aubio)rs + {4y — agbioz. ~ a.. — bty
= 4y — Aadh

or

M e
ATy + 04313 +alz = N

The final transformed equatiom after eliminating r; from the second.

third, and fourth equations of (7.2.5; ure
1 + brars + bxsfs + buzy = [73}
1 { ‘1
ar, + aqsra + agi’r,, =y T 2.6)
) [N
aPr: + a)s + ahn = 4
D : D 1 (1
Ay Te + A T3 + Ay Ta = Y,

This procedure is repeated for the second, third. and frurth equations
to eliminate rs from the third and fourth equations.  Dividing the second
equation of (7.2.6) by its leading coefficient,

(l) (e8] )

42 sy _ Y

T2 (1; L=

22 22 22
where ajy = 0. Denoting these new coefficients by b:; and g, respec-

o

tively, the syvstem of equations (7.2.6) becomes

I

Zy + biexa + biaxs + bz, g1
I =+ basrs + b°4174 = g2

1 LD a

ap'T: + ay'zs + a34x4 Y3

(09} 1) (1) 1)
QT2 + a3+ a“r4 Y,

il

i

Multiply the second equation in (7.2.7) by the leading coefficient of the
third equation and subtract the resulting equation from the third equation
to obtain

(@) — ag)xs + (@) — aipbes)zs + (@i — apbaas = ¥ — aflgs
Denote these new intermediate coefficients by a3 and y,” to obtain

Y3

(2) W) 2y
a337s + a3;x = y3
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with z, eliminated. Similarly for the fourth equation,

aes + affe = o
The transformed equations after eliminating z. from the third and fourth
equations of (7.2.7) are

Iy bpxs + bisxs 4 bz = ¢
I+ bﬁaIa + bory = ge

afr + afro - o

aizs + afz =y

(7.2.8)

Continuing, the third equation in (7.2.8) becomes
T3 + buZy = g5

and the fourth is

ajijre=yQ

The transformed equations of (7.2.8) are

1y + bz, + bixy + b1414 = g1

To + bagzy + byzy = g2
23 + baxy = g3

(3) (3
Ay Te = Yy

Divide the fourth equation by a!}’ # 0 to obtain the final transformed
equations

Iyt brars + bisxs + bz = g1

Iy 4+ boyry + bogry = g2 =
2.9
Ty + by = g3 e )
Ty = (4

This is a triangular set of equations, the solution of which is the solution
of the original set of equations (7.2.4).

The value of z, is obtained directly and is substituted into the third
equation of the triangular set (7.2.9) to obtain a solution for r;. Both
ry and r; are substituted in the second equation to obtain z.. All three
values are substituted in the first equation to obtain z;. The process of
obtaining the triangular system of equations is referred to as the forward
course and the process for obtaining the solution is called back substitution.

The general equations in the Gauss elimination method for trans-
forming the coefficients and parameters a;; and y: of equations (7.2.4)
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into b;; and g; of equatinns (7.2.9) are, at the kth step in the process,

a\:l .
a® = g L e L1 > k41
1] 1) am-»“ v —_—
kk
i
g:kt — yw‘k—l — ! 2 I8 + 1
k-1
a ‘ .
bL-_, =T i > E+1
Ay
g B y’;k—l}
k= oo
k-1
Ay,
The final solutinn is then
n
x.~=g,—Zb;,~:z,- r=nn—1,n—2 ...,21

If the leading coefficient is zers at any step in the forward course,
then an alternate variable must be selected for elimination.  [f the lead-
ing coefficient is zero at the last step, there is no unigue solution for the
set of equations.

Crout method or compact form

The forward course of the elimination method may be performed
more directly by a modification of the Gauss elimination method acered-
ited to Crout.  This method eliminates the need for explicitly determin-
ing and recording all coefficients of the modified equations in each step
of the process. In applying this technigue it is more convenient to work
directly with the augmented matrix:

ay Q2 Qi3 Qg Y
A Q21 Qg2 Q23 Q24 Y2
Q31 @32 A3z Q34 Y3
g1 Ag2 Qg3 AQag Y4

Uniformity in notation is gained by redesignating the constant terms
Y1, Y. Y5 and y, as ays, @, azs, and ag, respectively, in the augmented
matrix. Thus,

>
Q
)
Q
3
o
Q
>
o
x
~
=
Q
)
o
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where the elements on the principal diagonal are those elements whose
row and column indices are equal.

The basis of the Crout method is to determine the elements for an
auxiliary matrix

enn fi2 fis fue Sis

7 ey ey fuo fae fas
B =
€31 €32 €y ,fn fzs

Lé’n €32 €43 4y fts

of the same dimension as 4, in which the elements above the diagenal
will be the same as the coefficients of the triangular set of equations
obtained in the (Gauss elimination method. These elements are desig-
nated by f;; for7 < jin B. The elements occupying the positions on and
below the diagonal, designated by e;; for 7 > 7. are the only necessary
additional intermediate values that must be calculated and recorded in
this computational process. In the Gauss elimination method, these
positions would contain ones on the diagonal and zeros below after the
completion of the forward course. The recording of the intermediate
values makes it possible to calculate all elements of B, in an orderly
process, from the elements of A and from the previously calculated
elements of B.

The elements of the first column of B are identical to the elements of
the first column of A. That is,

€y = dan
€21 = do
€31 = a3
€4 = an

The remaining elements of the first row of B are obtained by dividing the
curresponding elements of 4 by the diagonal element a;;:
ays

flz = -

ay

Qays
ay
Ay
fu = —
an
Qags
ayy

The order of the computation then proceeds as follows: determine the

remuining elements of the second column, the second row, the third
column, third row, etc. The remaining elements of the second column
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are obtained from the equations

€22 = dya — 821f12
€32 = fizy — Gaxfu
€t = flag — edlflz

The remaining elements of the second row to the right of the diagonal
are determined from the equations

itas ~— e21f1;

fro= R
€22
dgg =~ €
foo = 2 e (7.2.10)
€22
‘ Ags — 621f15
Jos = o0
€22

Each of these equations results from a combination of steps. For
example, in the first equation of {7.2.10) the numerator is the inter-
mediate value

€23 = Qa3 — eaf1s (7.2.11;
and f.5 was obtained from
€25

f23=* (

€22

=1
o
—
[36)

Combining equations {7.2.11) and (7.2.12) yields the formula for ji;
shown in equation (7.2.10). The need to determine explicitly the ele-
ment €; is eliminated by using equation (7.2.10).

Continuing, the remaining elements of the third column are deter-
mined by

es3 = 33 — exfizs — €a2f2y
€43 = Q3 — 841f13 - 642f23

and the remaining elements of the third row by

azq — Calfu - 837f24

f:u =
€33
aszs — eufi; — exfas
fas =
€33
Finally,
€1 = Qus — €qfia — Caafas — €43fa
and
Qg5 — e!Lflé - 642].25 - e43fas
qu =

€44
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Crout’s method is shown pictorially in the following diagram.

H ¢ B i
i ‘ : | 1 ,
e | Sz i fus | fu | fis ! S : i SO
e = 1
| 1 : )
€21 ; €22 f23 fu fzs i : fz ‘ ! f29 i
— et i
3! €32 €33 f:n fas : f?? : fag
———
fa € ! o€y3 | @Qas | Gas ' @as | Qar 0 Qes Qe | Dtep
i i ? i ' ’
! : | ‘
f A5 ass . . | Asy .
; S :
i i J
€61 | €62 €63 Qg4 ; |
| i ! !
H . B I '
k an | ! ' i
‘ ‘ i '
€51 €g2 | es3 | Qss | ags agy
i | i
Step
4

Assume that the first three columns and three rows have been calculated
and the next step is to calculate ey and the remaining terms in the fourth

column, e;s, €g4, €74, and eg,.

obtain eqq.
i
€44 = Agq4 — | €41 ‘ €42 | €43 fu
i
faa
f.u

The following operations are performed to

The wvalue e, immediately replaces as. This minimizes the storage
requirement for a computer solution.

to obtain the remaining column values.

€64 = Qsq — | €g1 ‘ €62

€63

S

a4
fIH

Similar operations are performed
For example,
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The next step is to calculate f,; and the remaining terms in the fourth row.

7 1T
| | .
045_2641:742‘343| ‘fls(
R SO N B S,
I
t
I J2s
b
—
! fas
foo = R I
€44

The value f,; replaces ays.
The general equations for the Crout methed are
-1
€i; = Qij — k};] eikfkj ) _>_ J

and
i—1

1 ..
fo=— (au _ eikfkj) 1<y
€a kL=(1

The final values of zy. x., 73 ete. are obiwred by hick substitution
after all elements of B have been deternuned.  These are

If:f:.n»l_ Z Sz t=nn—1...,21
k=141

Gauss-Jordan method

A modification of the Gauss elimination method. known as the Gauss-
Jordan method, eliminates the need for back substitution to obtain the
values of the unknowns. This method provides a uniform procedure and
1s adaptable to computer calculation.

The first step of eliminating z, is performed as before.  The second
step is modified to the extent that after r, is eliminated from succeeding
equations, z, is eliminated also from the previous equation. Similarly,
after elimination of r; in step 3, r; is eliminated frem the preceding
equations. Finally, in the fourth step of the elimination process, for
equations (7.2.4) it is necessary only to eliminate z, from the preceding
equations. At this stage each of the equations has been reduced to an
equation involving a single unknown, r.. The solution then is obtained
directly. The Gauss-Jordan method results in a diagonal set of equations
while the Gauss elimination method resultsin a triangular set of equations.

At any stage of the elimination process in both the Gauss elimination
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and Gauss-Jordan methods a loss of significant digits may occur in the
calculated coeflicients. To overcome this difficulty the order of elimina-
tion of the variables can be changed. A method that improves the
accuracy is puwotal condensation. The procedure is as follows: select the
largest element (pivot) of the coefficient matrix and eliminate the cor-
responding z;. Repeat this process for the reduced system. For the
final solution, the order of the values z; will depend on the order of selec-
tion for the pivotal elements.

Evaluation of determinants

The Gauss elimination method may be applied to the evaluation of deter-
minants. Consider the determinant

a;y Az Qps
az21 Q22 Qg3
| a3y Q32 Qs |

A] =

First, remove the factor a,; from the first row to obtain

1 bz bis
Qa1 Q22 Q23
| az Gz A3z

‘A‘ = 4y

where by, = app/an and by = aiz/an.  Next, multiply the elements of
the first row of the determinant by the leading element a,; of thesecond
row and subtract the resultant products from the elements of the second
row. Repeating this operation for subsequent rows, the determinant
has the form

1 by bua
_ @ M
4] = a1 |0 af} gy
@
0 a3) afy |

That is,
M (b
Al = Ay Qa3 ’
‘ ‘—a“ (el
32 33

Repeating the process,

(L ’ 1 bes

22 ()
10 a3

|A| = ana

which is equivalent to

(1)

|A] = anai}|asy

lags
The value of the determinant is then

i 1
|A| = anasyaly
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Except for the last multiplications to obtain the value of the deter-
minant. this process is identical to, that performed i the forward course
of the elimination methad.  In accordance with Cramers ruie the solu-
tion of a linear system ts found by

and requires the evaluation ~f » + 1 determinants of srder ». Thus the
compufstion required for the (vauss elimination method * ubtain a com-
plete solution only slightly exceeds that required o evaluate a single
determinant. This shows the inefficiency of the use ot Cramer’s rule for
the sclution of linear sets of equations.

Solution of multiple sets of equations and matrix inversion

The Gauss elimination method may be applied to the simultaneous solu-
tion of several sets of linear equations for which only the known constants
differ. This is accomplished by adjoining all the constant vectors y",

¥, ., ¥{" to the coefficient matrix as follows:
i1 in)
an Iy am Y1 U ¥
(1 2
An1 ns @ Y Yn Yo

The elimination process is then applied to the entire array. Each back
substitution must be performed separately fur the (Gauss elimination
method, but for the Gauss-Jordan method all solutions are obtained
directly.

If many constant vectors are given, it may be advantageous to obtain
the inverse of the coefficient matrix and then multiply this inverse by
each of the constant vectors in turn to obtain each solution. Given the
set of linear equations,

o e (1
anzy + apr: + aT; + ez, = yid
JEES 31

ATy + A%y + AoaTs + ATy = Y

@arts - Guas + Gaats 4 Qauks = y?) (7.2.13)
auZ; + @2Z: + auz; + auz = Y

the solution is, from équation (7.2.3),

21 = buyt” + buyt” + bisys” + buyd®

T2 = bayi” + baayt” + Doy + bouyl? (7.2.14)

Iy = b.uy(ll) + bzzyé" + bazy;) + buyin
= buy(,” + bny(;) + b43y§1) + buy(})

8
S
|
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where

nd 4. is the cofactor of a;. The equations ¢7.2.14% are written in
muTris notation as

X o= 47y ®
where

irbn biz bis by
- bay bar bay o
[ bar b3 by b
Lbu b b bu

4

s the inverse of the coefficient matrix A of equations (7.2.13) and XV
= the 2olution vector corresponding to the constant vector Y. Solu-
tens for the sets with the different constants y®. 4%, . . ., y\™ are

1 H i
obrained in a similar fashion.

N = 4-1y®
X o= Ay ®
‘\'a'n = . —IY(n)

The inverse matrix A~ can be obtained in the following manner.
The elements of the first column of A~ that is, byy, bs1, by, -and by, are
ecual to the corresponding values obtained for ), z,, 5, and z, when the
svstem of equations (7.2.13) is solved by letting »{" = 1.0 and y3 =
“ =y} = 0. Thisis readily shown by substituting for the values of
».} inequations (7.2.14). Similarly, the second column of A~ isobtained
irom the solution with yi¥ = 1.0 and y{¥ = ¥ = y{¥ = 0, the third col-
umn when ¥ = 1.0 and ¥ = 3¥ = y{¥ = 0, etc.

The scheme for solving several sets of equations with the same coeffi-
cient matrix but with different constant terms is employed to determine

the elements of A~!, by using the augmented array

a;; ay, ay;; ay, 1 0 0 0
aay Aoa Qo3 QAoy 0 1 0 O
[ st Ay Q3 Ay 0 01 0
La” A, Qg aq 0 0 0 1
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where
l1ooo
polt 100
]oa‘;o|
0o o1

Using the Gauss-Jordazn method, the final array will be

1 0 5 0 5y b~ bu-}
0 1 6 0 oy bu buy b
0 0 1 ﬂ ;)31 ba’; b33 b34;
0 6 9 1 ba be by bn_j

where the unit matrix replaces the cocfficlent matrix and the &, are 17+
elements of A1

7.3 Example of solution of linear
equations by direct methods

The application of direct methods fur the soluticn of Lnear wgebr.
equations will be illustrated by caleulating the short cireuis currents -
the network shown in Fig. 7.1

Problem

For a fault on bus 3

a. Calculate the short circuit currents by the Gauss elimination meth- =
b. Calculate the short circuit currents and obtain the inverse of -+
coefficient matrix by the Gauss-Jordan method.

Fig. 7.1 Sample system for solution of simultaneous
linear equations.
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Solution

The data for the network is given in Table 7.1. The impedance of the
generator is 0.01 and the voltage behind the generator is assumed equal
to one per unit. The loop equations of the network are

1.0 = 0.01(J; + I- + ;) + (0.3380 -+ 0.2790)I, + 0.1830/:

1.0 = 001, + I: + [5) + 0.47407, + (0.0251 + 0.1360)/5 + 0.1830:;
1.0 = 001y, + [, -+ I + (0.5000 + 0.1860)1; + (0.0251 + 0.136014;

Combining terms

0.62707, + 0.1930]; + 0.01001; = 1.0
0.1930/7; + 048407, + 0.17111; = 1.0
0.01007, + 0.17111; + 0.69601; = 1.0

i

a. The forward course in the Gauss elimination method for the solution
of the linear equations is shown in Table 7.2.  The original coefficients nf
the matrix and constant terms are given in part a. Included also is
the control sum obtained by adding the coefficients and constant term of
euch row. If the same operations are performed on this sum as on the
coetticients and constant term, the control sum will equal at each stage the
sum of the elements of the row. This provides a check on the arithmetic
operations of the process.

The process is initiated by dividing all elements in the first row by
0.6270. the leading coefficient. The resulting elements are given in the
first row of part b of Table 7.2. The elements of this new row are
multiplied then by 0.1930, the leading coefficient of the second row. The
resulting terms are subtracted from the elements of the second row to
obrain a new second row as shown in part b. Next, the elements of the
first row are multiplied by 0.0100 and the resultant terms are subtracted
from the elements of the third row. This procedure is repeated for the
second und third rows by first dividing the elements of the second row by

Table 7.1 Impedance data for sample system

Self Mutual

Bus coide /:npedance Bus code  [mpedance
Py Zpq.pe =8 2pq.re
1-2 0.5000 1-3 0.0251
1-3 0.4740 2-3 0.1360
1-4 0.3380 1-3 0.1830
2-3 0.1860
3-4 0.2790
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Table 7.2 Forward course of Gauss elimination method

_Y‘ I: i
U o627u 0.1930 FRUIUE U ioasie
5 1930 04840 [FIRIa B0 RS
n 9300 0.171) U GOE tn {ONTT
o0 0307815 IESHEN{ 2 HINBGE
0 0. 424502 0 HU2INA LOUNATOG
O 0.165022 (1 4051 HRE TR Y
HE
10 0.307515 [GRUEREN 1504896 2.
0 1.0 0395726 1630236 K
4] 0 0.629350 0 TIO135 i,
1.4 0.307815 0015440 1 Au4N08
0 1.0 0 BUAT2H 1.630236
0 0 1.0 1125363 2825565
s

0.424592.  This process is continued until the equations are transformed
into the triangular set of equations shown in part d of Table 7.2, This
completes the forward course. Then, by back substitution

I; = 1.128363
I, = 1.630236 — 0.395726/; = 1.183713
I, = 1.594896 — 0.307815/. — 0.0159497; = 1.212535

il

b. The Gauss-Jordan method for obtaining the solution of the equations
and the inverse of the ¢oeflicient matrix is shown in Table 7.3.  Part a
of this table includes the original coefficient matrix, the unit matrix,
constant terms, and control sum. The elimination process is continued
until the original matrix is transformed into the unit matrix. The
unit matrix is replaced by the coeflicients of the inverse matrix as shown
in part d. The solution values are obtained directly and replace the
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Table 7.3 Selution and matrix inversion by Gauss-Jordan method

1. I I, Check sum
B i - T |
0 6270 01930 0.0100 1.0 0 ¢ 1.0 | 2 8300
0 1u30 0.4840 0. 1711 i} 1.0 i 1.0 , 2.8481.
0 oloag 0 1711 0 6960 ¢ 0 1.0 1.0 . 2.8771
a
1 0 307815 O 015949 1.3948u¢ 4] g 1 594896 1 4.513557
N 0 424592 0.168022 -0.307815 1.0 N 0.692185 | 1 976983
o 0.168022 0 695841 -0 015948 9 10 0 984051 | 2 831964
‘b)
i
10 0 —0.105861  1.818052 ~0 724967 o 1.093085 | 3.080310
0 1.0 0.395726 —0.724667 2.355202 (1] 1.630236 | 4.656195
0 0 0.629350 0 105861 -0.395726 1.0 0.710135 | 2049621
Hl
- - |
10 0 0 1.835859 --0.7561531 0 168207 1.212535 “ 3.425070
0 1.0 0 ~0.791531  2.604026 -0 628785 1.183713 | 3.367423
0 0 1.0 0168207 —0.628785  1.588041 1.128363 | 3.256727
R . \
id)
constant terms. The solution is
I, = 1.212535
I, = 1.183713
I, = 1.128363
7.1 Iterative methods for solution
of linear algebraic equations
Iterative solution
Given the system of linear equations,
ansy + @1ex; + Q1373 + 14Ty = Y1
a21T) + A2082 + Q23T3 + Aoy = Y2 (7.4.1)
A3l + A3ol2 + A33T3 + C34Ts = Y3 )

ATy T A49T2 + Q4373 + QaaTs

Ys
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From the first equation,
anZy = Y1 — Gizls — G13T3 — (1424

Dividing by the coefficien a,,. x; can be expressed as a function of z».
z3, and z,.

1
Iy = — W1 — Uz — dil; — d14T4)
1

&

In a similar manner the second. third, and fourth eguations cun be
rewritten so that the set of equations (7.4.1) 1s in the form

zy = — (Y1 — Q12Ty — A13T3 — a14T4)
an
1

Ty = — (Y2 — an%y — G23Tz — QaaT4)
2 (742
1

T3 = — (Y3 — ATy — G3Ty — A3als}
A3z
1 N

Ty = — <y4 — A41T) — A49Tg — A43T3)
A gy

An arbitrary set of initial values can be selected for r:, s, 75, and ..
which then may be substituted in the right-hand sides of equations (7.4.2
to calculate new z values. For convenience the initial values can be
chosen as z{¥ = yi/an, 2 = ys/@s, 1Y = yiiam, 70 = ys/ass. M
the results match the initial values within the specified tolerance. a solu-
tion has been obtained. If the selected and calculated values differ, «
new selection must be tried. The calculated values obtamed in the first
trial can be used directly as estimates of the unknown «’s for the second
trial. The process then becomes automatic. Finally, when a selected
set of values results in the same calculated values, within the specified
tolerance, a solution has been obtained.

This repetitive process for obtaining a solution of a set of equations
is known as an iterative method. It is applicable to those systems of
equations for which the diagonal elements of the coefficient matrix are
large in comparison to the off-diagonal elements. In general, for these
systems, each successive step of the iterative process results in calculated
values of the unknowns that are closer to being equal to the final solutior.
Then the iteration process is said to converge. For other systems of
equations the iterative process may result in calculated values that oscil-
late or diverge from a solution.
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Gauss and Gauss-Seidel iterative methods

Expheitly. the 1terative process described requires the selection of initial
values

o 0 ©
F I I

i

te use in the formulas

Lo a1 Ay s @y
i e e
a1y ayy ayy Ty
e Y axy aaz Aan )
o= - = It = =X =
Qo2 Qe (2833 Az
) a Ano An ns
kel Un nl n2 x an—i
S e S L B e S
Qnn Qnn Qnn Ann

i order to caleulate a second estimate

Y .
E L S

The superseript k refers to the iteration count.  These calculated values
are used in the formulas to obtain a third estimate

2 i) 2
B e

2 n

and so forth.  This technique is referred to as the Gauss iterative method
in which the new estimates are substituted only after all equations have
been processed.

An alternative method is to make an immediate substitution in
subsequent equations for each new value of r as it is obtained. Thus,
in the solution of r; the values used would be

k-1 k+1 +1 k
'rl . I? P -1 Iu»lv 3 x"k
This iteration scheme, called Gauss-Seidel, has the following formulas:

i1 1 aj. A1n

I} = —_ ng e e e e e e e e e e e —_— .T,.k
an as a1y
. 1 as a
~1 Yo 21 1 2n
I; = 2 I’;* S e e e e e e e e e e e e e xnk
(233 (2553 [¢22]
ko1 Yo A gy Giiol g Qiiv1 o Qin
X = - - T T T Xy T T I o - — Tn
Ay a:; [e8H (U Ay
a a 1
S L O . o rersl e
= 20 ST ; e - ]
Ann Ann Qnn
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Successive approximation and correction techniques

The iterative methods thus far deseribed have been applied for deter-
mining new valiues for the variables.  This techmque can be referred to
as 1 method of siuceessive approximation.

A variation to this is a procedure called the method f successive
correction in whieh corrections to the mitial selected values for the varia-
bles are caleulated.  For this scheme cuch varable 1, s the sam of its
mitial value r'" and the correetions ohtained at each step of the proc-
ess, l.e.,

i'); e i‘;r;l‘ — J,iu)) + (1‘12) . .Cu"l e 4 ;NT‘k . Il‘gl

oF =1 T,
Let the difference in the values of » obtained in two successive itera-
tions be
k+1
:

1 ,
A= -y

Replacing 7' and 2,* with their equivalent expressions from equations

(7.4.3), the formula for calculating successive corrections 1s

1
1 K1 k41
o=y — T - a I — AT
au
1 : i ~ 14 J—1 k1"
i /N T SUE R S A/ ARTE o SR ¢ S
a.,
Combining terms,
k+1 __ 1 . y k1 k N 41 '3
o = — [y — ) —aaltt k) - — Aoy (257 — 1)
"
¢ k-1 k—1
— QT — 250 = awle = )

The resultant formula in terms of « s

1
k41 ; A+l k41 K+l
a,"+ = —{— a0 — G.gd;‘ o — ai,:‘—la:‘_l‘

al‘

k A o d
— @, 0 — Gty (7.44)

where
k+1 __ ]' ( k+-1 k+1 i+1
a, = a —an10, — Qn20y T T Qanm10G

nn

The iterative process is initiated by selecting a set of initial values
for the variables r,, z., r; and 7,. These values are substituted in the
formulas (7.4.3) to obtain new values for the variables z{*, r(", 2{". and
r{" and the first correction terms oV, o, o). and (" are derermined.
Equation (7.4.4) is used to calculate successive corrections ¥, af”, etc.
Each newly calculated of*! is used in successive equations. The process
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i= continued until the values of all correction terms are less than s specified
tolerance.  Final values of the variables z; are obtained from the equation

o o= 0 4

~[1
2

Relaxation method

The methods of Gauss and Gauss-Seidel are uzed 1o salve inear algebraie
couations by SUCCessive approxinuiiions or correi Uonis L hese methods
treat the equations in the order they are specitied. The methaod of relaxa-
ton makes possible the applieation of a variery o schemes “hat alter
the order,

Consider the system of equations

Iy 4+ b 4 by + b — 2 = 0

baey + Lo A4 bagry + by — 2 = 0
bory + bgaxs + x4 by — 23 =0
hoer + br:fz + bqsfs + Iy —2z, =0

a

where by = -7

(e85

W

g =

Ay

Axin the Gauss and Gauss-Seidel iterative methods an initial set of values
ix =elected for xy, s, £, and r,.  Designating these initial values as z(®,
the values RI” obtained as a result of the initial substitution are:

20 bry? b + b — 2 = R
bt 0 A o+ bt — 2 = R
}),1]'1(” + bsgIﬁ_»O) + Al"i-‘m + b:,,g.l‘;m — Q3 = R;OA
o™ 4 baary? + by + Y =z =R

Wt
A
i

N

The relaxation procedure consists of estimating new values for the
variables until all K's, called residuals, become negligible.  The usual
procedure is to seleet the largest residual R* resulting from the kth
iteration and ealeulate the change in x.* required to reduce R#* to zero.
Thix change 1s

Art = —RfF
and the new estimate for the variable is

k1
T = xf Azt

1
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Substituting z{*' causes each of the other residuzls 1o change. They
are recalculated fron

R¥MY = RF + b Arr =1

The largest residual resulting from these ealeulstions i then seleeted and
the process is repeated.  Thus. the order . wineh the variables are
reestimated depends sclely on the magritude of the veoduals. The
solution is obtained when all R's are ceduesd s withie o <pecified
tolerance.

A varlety of schemes can be empieyed tor teducing the residuals.
The method just described reduces the iargest residiuad 1o zero for an
iteration.  An alternative would be 6 reduce soveri
a fixed amount, say §. This is referred to as bicel deration The selee-
tion of & can be such as to result in a residual of opposite g, i.e.. make a
change in z; larger than required for nwking R. equal to sero. This is
called orerrelaration, whereas underrelarai/on veters to the selection of a
new r; which is not sufficient to reduce £ to seri. Thes sehemes mayv
be employed interchangeably at each step of the proces.

sif eesidunls by

7.5 Example of solution of linear
equations by iterative methods

The iterative solution of linear equations will be illustrated using the
same problem that was solved in Sec. 7.3.

Problem

Caleulate the short circuit currents I, 7., and 7, for = fault on bus 3 of
the network shown in Fig. 7.1 using the following methods-

a. Gauss iteration

b.  Gauss-Seide] iteration

¢. Relaxation

Solution

Rewrite the loop equations

0.62701; + 0.1930/, + 0.0100I; = 1.0
0.19301, + 0.48407, + 0.17111; = 1.0
0.0100; + 0.17111, + 0.6960I; = 1.0

for iterative solution as follows:

I, = 1.594896 — 0.307815/, — 0.0159491,
I, = 2.066116 — 0.3987607; — 0.3535121,
I3 = 1.436782 — 0.0143681, — 0.2458331,
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Table 7.4 Salution by Gauss
iterative method

Iteration
I I. I
1.0 1.0 ]
; 1.271132 1 313844 1176581
3 1171710 1.143303 1 085332
1225497 1.211601 1 138885
! 1203783 1174827 1121322
5 1.215383 1189694 1 130675
o 1.210657 1. 181763 1 126853
T 1213160 1.1%4998 1 125871
N 1.212132 1. 183287 1.128039
o 1.212672 1.183991 1.128475
i 1.212448 1.183622 1.128204
11 1.212564 1.183775 1.128389
12 1.212515  1.183695 1 128349
a. Seleet for an initial estimated solution [ = I = I = 1.0.

Substitute these values in the equations to obtain a new estimate, I3V,
[. . and 1YY as shown in Table 7.4, Repeat the process until the changes
in all variables are equal or less than 0.0001. The solution values using
the Gauss iterative method are obtained in the twelfth iteration.

b.  The results obtained by the Gauss-Seidel iterative method are shown
in Table 7.5. The initial values I® = I?" = [{¥" = 1.0 are substituted
in the first equation to obtain [{® = 1.271132. Next, I} = 1.271132
and [ = I = 1.0 are substituted in the second equation to obtain
I} = 1.205727. This process is repeated until the changes in all varia-
bles are equal or less than 0.0001. The solution values are obtained in
the =ixth iteration.

c.  The loop equations are rewritten for the relaxation method as follows:

114 0.3078157, + 0.0159497; — 1.594896 = R,
0.3987607, + I, + 0.3535121; — 2.066116 = R,
0.0143687, + 0.2458337, + I; — 1436782 = R;

Substitute the initial values I = I¥¥ = I = 1.0 in these equations
to caleulate the residuals R; as shown in Table 7.6. Recompute I, to
reduce the maximum residual Ry = —0.313844 to zero as follows:

AlY = —RY® = 0.313844
I,V = I® 4+ AT = 1.313844
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Table 7.5 Solution by Gauss-Seidel
iterative method
Ileration
coun! I8 {. {3
0 T 10 L
1 [ P203727 Poi22nt
2 T OISNASN 127262
3 TOINGOB06 HERLAN N5
4 M IoIs3ui2 T 12KRA420
3 ! 1IN A tOI2R3R5
6 To18s724 U12N362
Table 7.6 Solution by relaxation method
Iteration
count 7, I, I; R, R e
0O 10 L0 1.0 -0 271132 —0. 313844 = UL TGN
1 i 6 1313844 10 -0.174526 1} BRI
21 17432¢ 1 313844 10 0 0 0BG Sl 00620
3001 174526 Io313544 1 096920 0 001546 0 105336 §]
4 1.174526  1.209988  1.096920 —0.030423 0 0. 0255351
5 1.204949 1.209988 1. 096920 0 0 0121518 — 1) 025044
6 1204949 1.209985 1 122014 0.000400 0.021002 0
71 204949 1. 188986 1.122014 -—0.006064 ] -0 005163
8 1.211013  1.188986  1.122014 0 0.002418%  — 0005076
9 1.211013 1.188986 1.127090 0. 000081 0.004214 0
10 1.211013 1.184772 1 127090 —0.001216 4] —0 001036
11 1212229 1.184772 1.127090 0 0. 00C484 -~ 0001019
12 1.212229 1.184772 1.128109 0.000016 0. (00814 8
13 1.212229 1.183928 1128109 —0.000244 0 — 000207
14 1.212473 1.183928 1 128109 0 0 Q00008 — {1 000203
15 1.212473 1. 183928 1.128312 0.000003 G.0001T0 0
16 1.212473 1 183758 1.128312 —0.000050 0 — 3 000042

Next, recompute the residuals,

(1)
Ry

[¢)]
Ry

Il

I

R + byAIY
—0.271132 + 0.307815(0.313844)
—0.271132 + 0.096606 = —0.174526
R + byAlY
—0.176581 + 0.245833(0.313844)
~0.176581 + 0.077153 = —0.099428
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Repeat the process for the new maximum residual. Continue until all
residuals are equal or less than 0.0001. The solution values are obtained
in the sixteenth iteration.

7.6  Methods for solution of
nonlinear algebraic equations

Iterative solution

Inii the Gauss elimination method the system of equations

,"lﬂrl' Loo oL fn) = Y
j~2'IL To, ... R 'In) = Y \7 6 1)
fn(.-l'l‘ Lo, oo, In) = Yn

ix reduced to the system

QTa, Ty ..., Ta) =1y
Golda, Ts. . . .\ Tn) = Te
Gr-tT2, X3, o . . In) = Thoi

by the elimination of the variable x;.  This process is continued a suffi-
cient number of times until one equation with one unknown is obtained
thut can be solved readily for that unknown. The remaining unknowns
cun be obtained by back substitution in the intermediate relations devel-
oped 1 the elimination process. This method is not always applicable
for the solution of nonlinear equations since one or more of the unknowns
cannot always be eliminated from the system of equations (7.6.1).

In the iterative methods the system of equations (7.6.1) is written
i the form

Iy = N + ¢1('ij T3, . . . ,In)
Ir=y» T $oldy, Ty, . . ., Tp)
Ln = Yn + ¢7I(Ily To, . . . ,I,,,_])

and the computation is initiated by selecting an approximate solution

03 «0) )
SRR N T 2

which is used to obtain a new approximation

1 A1)
Iy I, L, X,

This in turn is used to obtain a third approximation, ete. The process is
continued unuil all changes in the z.’s in succeeding iterations are within a
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specified tolerance. The iterative method is applicable to the solution

of both linear and nonlinesr systems of equations

Newton-Raphson method

Given a set of nonlivear equations.

filry, oo . o Xns = Y

fg(l'l, Lo, . . . L Tal T Uy

.............. . (7‘6‘_))

falzy, T2y . L Ln) = Y

and the initial estimate for the soluticn veetor

P2 SR A

Assume Az, Axy, . . . , Ax, are the corrections required for 1‘0’. P

1 respectively, so that the equations [7.6.2) are solved. i

fl(I(O) + AI :r“” ‘f‘ AIQ P ,I;m + A.Lp,\ = g

f (x“” + A:cl, 2 4+ Az ..., 1)+ Az = oy L
(7.6.3)

fa (1‘(0) 4+ Axy, 28 + Az B S st B

Each equation of the set (7.6.3) can be expanded by Taylor’s theorem for a
function of two or more variables. For example, the following 1s obtained
for the first equation:

[i@® + Ay, 2 4+ Ay, .o, 2 A = 0 )
d c)f a
+A;rle A Coran L
dxy ¢ dxry © ax, ©
where ®, is a function of higher powers of Axi, Acs, . . . , Az, and second.,

third, etc., derivatives of the function fi. [f the initial estimate for r.’s
is near the solution value, the Az s will be relatively small and all terms
of higher powers can be neglected. The linear ~et of equations resulting
1s as follows:

© (0 0 f‘ 4 6f1 S ‘2};‘ =

filzy?, 237, .. ) + Axn 57,10 Ay - Y + Az, 3z, 0 Y1
afsy: afs. a

fE®, 20, .., 7)) + A -12 ran a2 oy
63:1 A axz 0 aIn 0
O fn dfn Ofnr

W@ 2 I F A A AT = Ya

f( 1 2 ’ n) la.l'l o a1y © + 3z, 10 ¥
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In matrix form, equations (7.6.4) are

r n p(’)fl i af ar _}
_ 0 (0 ) N N cAN A
v — [P, 2, .., 2)) o 19 9z, 1 poy I 7,
af2y S afs
. 0y (0 ) R B R
ye — fo(x\”, 23, .., 2)) | oz, !0 92, 10 e !” AT,
Afa| Ofnl Jf..]

B P U i ENGAL AT,
Ly Ja(@”, 737, n)—‘ 97,10 9z, 0 gz 0 || )
or
D=JC

where J is the Jacobian for the functions f; and C is the change vector
Az;. The elements of the matrices D and J are evaluated by substituting
the current, values of z’s. Hence a solution for the Az; can be obtained
by the application of any method for the solution of a system of linear
equations. The new values for z/'s are calculated from

P = " + Az;
The process is repeated until two successive values for each z; differ only
by a specified tolerance. In this process the elements of J can be reeval-

uated each iteration, or only every kth iteration provided the Ax, are
changing slowly.

7.7 Example of solution of nonlinear equations
Problem
Solve the nonlinear equations

y>—4r—4 =0
2y —z2—-2=0

using the Newton-Raphson method.

Solution

The curves of the two equations are shown in Fig. 7.2 and the point of
intersection gives the solution. Selecting the point % = —1 and
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-"/y’-4 x~4=0
2
T eymx-2m0
1
TR
] 2
-1
=2
\ Fig. 7.2 Graph of nonlinear equa-
tions.

y©@ = 1 as the initial approximation and substituting,

Sy =y —dr -4 =14+4 -4 =1
gla®y™ =2y —2—-2=2+41-—-2=1

i

d
o _ 4
dz
d
—f =2y =2
dy
a4
9 _
dx
a3
a _
dy
Substituting in
)
Sy ™)y 4 Az _[ + Ay g:f = ()
1}
99
g{z @ y™) 4 Ax— + Ay Pt =0
¥

the following linear simultancous cquations are obtained:

1 — 4z +2Ay =0
1l —ar+ 28y =0

Solving,

Ar =0

Ay = —0.5
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Thus
o 2 Ay = —]
ey ® Ay = 0.5

Repeating the process with the new estimates,

flet ™) =025 + 4 — 4 = 0.25

glah )y =1+1-2=0
af
ax
af
Iy
dg
dx
9y
ay

= —4
=1

= -1

and the linear equations are

025 —4Ar +ay =0

—Ar + 24y =0
Solving,
Ar = 0.07143
Ay = 0.03571
and
r® = 7™ 4+ Ar = —1.0 + 0.07143 = —0.92857

y@ = y(l> + Ay

It

0.5 + 0.03571 = 0.33571
Substituting z» and y® in the original equations,

Sy ) = 0.28699 + 3.71428 — 4 = 0.00127
gl y) = 1.07142 4 0.92857 — 2 —0.00001

Il

The values of x and y are close to the solution values. Form the linear
equations using the same coeflicients df/dx, df/dy, dg, dr, and dg/dy to
obtain

0.00127 — 4Az + Ay =0
—0.00001 — Ar + 24y =0

Solving,

Az = 0.00035
Ay = 0.00018
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Since the changes are within the tolerance of 0.0005, the final solution is:

% o=

9,13.’ P y('z; + Ag

-+ Ar = —0.92857 + 0.00035 = —0.92822
0.53571 + 0.0001% = 0.53589

I

Substituting «* and y® in the originai equation for the final oheek,

I = 28718 + 3.71288 — 1 = (1.00006
(6 7y = 107178 + 0.92822 — 2 = 0.00000

g

The equations have a second selution that can be obtained by choos-
ing the initial values from the graph @ Fig. 7.2 near the cooraimates for
a second point of intersection.

7.8 Comparison of methods

The best method to apply for the solution of any set of =quat.ons repre-
senting a physical system depends or the characteristics of the system.

The direct methods, in general, require many arithmetic caleulations,
but the number of operations required can be determined o advinee.
This facilitates the evaluation of the efficiency of these methods. How-
ever, the round-off errors are acenmulated at each stage, and for a1 large
system the error may increase se that the solution is tnvalid

The iterative methods are most successful when cach dragonal
element in the coefficient matrix is large in magnitude refative to the other
elements in its row. Round-off errors in these methods tend te be cor-
rected at successive stages of the process.

The advantage associated with the relaxation method is that the
residual of largest magnitude is known at each stage and the modification
of the corresponding z is performed to reduce this residual 1o zero. A
preassigned cyclic order is not required, therefore, as in other iterative
methods. The decision process to take advantage of this technique
requires more computer logic and machine time for each iterarion.

The Newton-Raphson method is applicable when the truncation
error obtained by neglecting the functions &, is not significant, that is.
if all Az, are small in magnitude and the initial values selected for r.
are reasonably close to an actual solution.

Problems
7.1 Show that the equations

3$1+(1I2—+—I3=5
Xy — 21)2 - 2(1173
4z, + x, + axs

o
@ |
(Vo)
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have
a. A unique solution when a # +1
b. No solution whena = —1

¢ An infinite number of solutions when a = 1
Solve by Cramer’s rule without iitroducing round-off error the
following set of equations:

T+ y+z=175
0.5r + 2y + 32 =225
2r + 3y + 4z = 4.50

Solve the following system of equations by Crout’s method:
dr+y+22=1
20 — 2y +2=3

r+ 2y — 0.5z = -2

Solve the following system of equations by the Gauss elimination
method:

9431‘1 + 3.01,'2 - 2.11‘3 + Iy = 9.3
3.0z, + 6.0z, + 1.22; + 0.5z, = 9.0

zy + 0.520 + 0.4x; + 5.0xy = 5.5

Starting with the initial values,

¥ =1.0
¥ = 1.5
¥ = 0.5
¥ =11

solve the system of equations given in Prob. 7.4 by the Gauss-
Seidel iterative method.

Solve the system of equations given in Prob. 7.4 by matrix inversion.
Starting with initial values equal to zero, solve the following system
of equations by the relaxation method:

6131 - 2:52 + 3.1'3 -+ 93 = R[
22:1 —+‘ 5.'52 — I3 + 49 = R2
2I1 — Tq — 10.’[3 + 185 = Rz

Solve by the Newton-Raphson method the following system of
equations:

2?4 zy + 2z =120
v 4+ yz+ =176
z + 22 = 1.50
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using the initial values

ovo=0
yo=1
et = 075

7.0 Rolve the toliowing system of equations and obrain rhe inverse of
the coeffiersnt matnx by the Gauss-Tordan method:

ES it 200 - 20 ay = 4
2.('1 -+ 5 G L,_‘f(;; -+ 3134 =7
21y = 2re + dry 4 3rg = —1

Iy Jie + x4 220 =0
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8.1 Introduction

Load flow calculations provide power flows and voltages for a specified
power system subject to the regulating capability of generators, con-
densers, and tap changing under load transformers as well as specified
net interchange between individual operating systems. This information
1s essential for the continuous evaluation of the current performance of a
power system and for analyzing the effectiveness of alternative plans for
system expansion to meet increased load demand. These analyses require
the calculation of numerous load flows for both normal and emergency
operating conditions.

The load flow problem consists of the calculation of power flows and
voltages of a network for specified terminal or bus conditions. A single-
phase representation is adequate since power systems are usually bal-
anced. Associated with each bus are four quantities: the real and reac-
tive power, the voltage magnitude, and the phase angle. Three types of
buses are represented in the load flow calculation and at a bus, two of the
four quantities are specified. - It is necessary to select one bus, called the
slack bus, to provide the additional real and reactive power to supply the
transmission losses, since these are unknown until the final solution is
obtained. At this bus the voltage magnitude and phase angle are speci-
fied. The remaining buses of the system are designated either as voltage
controlled buses or load buses. The real power and voltage magnitude
are specified at a voltage controlled bus. The real and reactive powers
are specified at a load bus.

Network connections are described by using code numbers assigned
to each bus. These numbers specify the terminals of transmission lines
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and transformers. Code numbers are used also to identify the types of
buses, the'location of static capacitors, shunt reactors, and those network
elements in which off-nominal turns ratios of transformers are to be
represenied.

The two primary considerations in the development of an effective
engineering computer program are: (1) the formulation of a mathematical
description of the problem; and (2) the application of a numerical method
for a solution.  The analysis of the problem must also consider the inter-
relation between these two factors.

The mathematical formulation of the load flow problem results in a
system of algebraic nonlinear equations. These equations can be
established by using either the bus or loop frame of reference. The
coeflicients of the equations depend on the selection of the independent
variables, 1.e., voltages or currents. Thus, either the admittance or
impedance network matrices can be used.

Early approaches to the digital solution of load flows employed the
loop frame of reference in admittance form. The loop admittance matrix
was obtained by a matrix inversion. These methods did not have wide-
spread application because of the tedious data preparation required to
specify the network loops. Furthermore, the required matrix inversion
was time-consuming and had to be repeated for each subsequent case
involving network changes. Later approaches used the bus frame of
reference in the admittance form to describe the system. This method
gained widespread application because of the simplicity of data prepara-
tion and the ease with which the bus admittance matrix could be formed
and modified for network changes in subsequent cases. Also, combina-
tions of voltages and currents have been used as the independent varia-
bles. This formulation uses a hybrid matrix consisting of impedance,
admittance, current-ratio, and voltage-ratio elements. The ability to
formulate efficiently the network matrices has led to the use of the bus
frame of reference in the impedance form. However, the majority of
load flow programs for large power system studies still employ methods
using the bus admittance matrix. This approach remains the most
economical from the point of view of computer time and memory
requirements.

The solution of the algebraic equations describing the power system
are based on an iterative technique because of their nonlinearity. The
solution must satisfy Kirchhoff’s laws, i.e., the algebraic sum of all flows
at a bus must equal zero, and the algebraic sum of all voltages in a loop
must equal zero. One or the other of these laws is used as a test for con-
vergence of the solution in the iterative computational method. Other
constraints placed on the solution are: the capability limits of reactive
power sources; the tap setting range of tap changing under load trans-
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formers; and the specified power interchange between interconnected
systems.

8.2 Power system equations

Network performance equations

The equation describing the performance of the network of a pe. wev system
using the bus frame of reference in impedance form is

Ers=Zposlas 821
or in admittance form 1s
Isus = YeusEsus (8.2.2)

The bus impedance and admittance matrices can be formed for the
network including the ground bus. The elements of the matrices. then.
will include the effects of shunt elements to ground such as static capaci-
tors and reactors, line charging, and shunt elements of transformer equiva-
lents. When the ground bus is included and selected as the reference
node, the bus voltages in the network performance equations (8.2.1) and
{8.2.2) are measured with respect to ground.

If the ground bus is not included in the network, the elements of the
bus impedance and admittance matrices will not include the effects of
shunt elements and one of the buses of the network must be selected as
the reference node. In this case, the effects of shunt elements are treated
as current sources at the buses of the network and the bus voltages in the
performance equations (8.2.1) and (8.2.2) are measured with respect to
the selected reference bus.

Using the loop frame of reference, the network performance equation
in impedance forin is

ELOOP = ZLOOPILOOP
or in admittance form is
Iro0p = YiroorELooP

When the loop impedance and admittance matrices are formed for the
network not including shunt elements, the dimension of the matrices is
{ X I, where ! is the number of links or basic loops calculated from

l=e—n+1

e is the number of elements, excluding the shunt connections, and 7 is the
number of nodes. In this case, the effects of shunt elements are treated
as current sources at the buses of the network.
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If the shunt elements e, are included in forming the loop matrices,
the number of elements of the network is increased by e,. The total
number of elements is, then, e + ¢, and the number of nodes is inereased
ton + 1. Consequently, the number of loops and the dimension of the
loop matrices are increased by e, — 1.

The different forms of network equations are summarized in
Table 8.1.

Table 8.1 Network equations

Parameter form

Frame of R

reference Impedance Admittance
Bus Eprs = Zpuslsus Igrs = YeusEses
Loop Eroor = Zroorl Loor Iroor = YroorELoop

Bus loading equations

The real and reactive power at any bus p is
Py —3Qp = E;IP

and the current is

P, — jQp
,="7 >t 8.2.3)
= (
where I, is positive when flowing into the system.

In the formulation of the network equation, if the shunt elements to
ground are included in the parameter matrix, then equation (8.2.3) is
the total current at the bus.  On the other hand, if the shunt elements are
not included in the parameter matrix, the total current at bus p is

P, — jQp
I, = 222 . F
P E: Yplip
where y, is the total shunt admittance at the bus and y,E, is the shunt
current flowing from bus p to ground.

Line flow equations

After the iterative solution of bus voltages is completed, line flows can be
calculated. The current at bus p in the line connecting bus p to ¢ is

’
ypq

ipg = (Ep — EQype + Ep 2
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where yp; = line admittance
Yy, = total line charging admittance
’
Y : _—_— .. .
E, 7”“ = current contribution at bus p due t¢ iine charging

The power How. reul and reactive, is
. o

Ppe — jQp = g‘i,_gs,,,.,‘-

or

:’pq
P ,)

Py — jQpe = ENifly — Eo)yp, + ELE (8.2.4)
where at bus p the real power flow from bus p to ¢ :s P, and the reactive

is Qpg.  Similarly, at bus g the power flow from g to p is
Py — jQu = EX(Eq — Ep)ype + ETE, y“ (8.2.5)

The power loss in line p—¢ is the algebraic sum of the power flows deter-
mined from equations (8.2.4) and (8.2.5).

8.3 Solution techniques

Gauss iterative method using Ypys

The solution of the load flow problem is initiated by assuming voltages
for all buses except the slack bus, where the voltage is specified and
remains fixed. Then, currents are calculated for all buses except the slack
bus s from the bus loading equation

PP_jQP p=1727"'yn
E* pFEs

b4

I, = (8.3.1)

where 7 is the number of buses in the network. The performance of the
network can be obtained from the equation

Isys = YausEsvus (8.3.2)

Selecting the ground as the reference bus, a set of n — 1 simultaneous
equations can be written in the form

- YL,,,, (1, - qzl Y,,,E,,) ’; : i 2, m (8.3.3)

g#p
The bus currents calculated from equation (8.3.1), the slack bus voltage.
and the estimated bus voltages are substituted into equation (8.3.3) to
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abtain a new set of bus voltages. These new voltages are used inequation
(8.3.1) to recalculate bus currents for a subsequent solution of equation
(8.3.3). The process is continued until changes in all bus voltages are
negligible. After the voltage solution has been obtained, the power at
the slack bus and line flows can be calculated.

The network equation (8.3.3) and the bus lcading equation {8.3.1)
can be combined to obtain

. 1 Py — j@ Q - ) p=1.2, .. . ,n
By = (P2 = ) Vo | ' (834
P Ypp < E: qzl petiq )

g*p

which involves only bus voltages as variables. Formulating the load
flow problem in this manner results in a set of nonlinear equations that
can be solved by an iterative method.

A significant reduction in the computing time for a solution will be
obtained by performing as many arithmetic operations as possible before
initiating the iterative calculation. Letting

1
=T
YPP ?

equation (8.3.4) can be written

(Py —jQ)Ly X p=12 ...,n ]
E, =% ~JxP7r Y.L r ’ 8.3.5)
P E: qu relnEq p#Es (
q#p
Letting
(Pp — JQ») Ly, = KL,
and
}/pqup = Yqu
then, the bus voltage equation (8.3.5) becomes
N KLp < P = 1,2, ... ,n
E, = — YL, E T ’ 8.3.6
P E: qu pei“q P g ( )

q#p

The normal procedure for a load flow study is to assume a balanced
system and to use a single-phase representation equivalent to the positive
sequence network. Since there is no mutual coupling, the bus admittance
matrix can be formed by inspection and many of its elements will be zero.
Selecting bus 2 as the slack bus in the system shown in Fig. 8.1, the for-
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Fig. 8.1 Single line diagram and bus admittance matrix
of a power system.

mulas for the Gauss iterative solution are

KL

E*t = (Eﬁ)l* — YLuEy — YLyE# — YLuE

E, = specified fixed value

KL

B+ = @;7 =5 2y e A
KL

E’:H = (_E',*—;“ — YLuE — YLEé
KL "

E’;H = ZF;* — YLsE, — YLsaEak
KL

Bt = —= — YLaE, — YLuE{
(Eé*)*

where the superscript k refers to the iteration count. The sequence of
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e
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Fig. 8.2 Load flow solution by the Gauss iterative method using Ysus.
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steps for the load flow solution by the Gauss iterative method is shown
in Fig. 8.2.

Gauss-Seidel iterative method using Ygys

The bus voltage equation (8.3.6) also can be solved by the (Gauss-Seidel
iterative method (Glimn and Stagg, 1957). In this imethod the new
calculated voltage E%"' immediately repiaces £,* and is ased in the solu-
tion of the subsequent equations. For the system shown in Fig. 8.1,
the formulas for this method are

kL (gﬁ)l* — YL1sEs — YLy3E# — YLy E ¢
E, = specified fixed value

Bt = é%’:)i* — YLuB4* — YLsEd

B = -(;—f)‘* — YLuEY™ — YLiEs

EH = % — YLgEy — YL EX

EH! = é%ﬁ; — YLgE, — YL EX!

The sequence of steps for the load flow solution by the Gauss-Seidel
iterative method is shown in Fig. 8.3.

Relaxation method using Ypys

The equations for bus currents are used for the solution of the load flow
problem by the relaxation method (Jordan, 1957). From the network

IGreate r

Advance

|
k k+1

iteration count Replace E, by B, |

b4+1—k p=42.. ., nopws !

Test
for convergence
max AE® : €

F"'!‘e"sls 1 Calculate iine

flows and power
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Greater
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Set iteration
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4
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i
i
)

Test
» for slack bus Equal
p:s

Not equal

Solve voltage equation for bus p

ph i K N YL EX Y v Eh
P '(Ek).‘z pqFq ’2 g =9
P q=1

g=p+l

Calculate change in voltage of bus p

k kel k
AES=E, -E,

for maximum
change in voltage
iAE:l: max AE*

Set
Equal or less max AE*= IAE:I

Replace E, by E}*! <———|

Advance bus count
p+l—=p

il

Fig. 8.3 Load flow solution by the Gauss-Seidel iterative method using Ysus.
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performance equation (8.3.2), the current at bus p is

Ip=YuEi+ VYEsy - - - + YEp, - - - + Youks

This equation can be rewritten as

YmEi + YEr - - + Vol - o + YpEa — 15 = Ky

where R, is a residual and represents the error rw current st bas p resulting
from the assumed voltage solution. For the svstem: ~shown in Fig. 8.1,
the formulas for the relaxation method are

YuEf + YEy + YiEf + YuEE — I = Ry
YaEit + YuEF + VB — I R
YuEdk + YUEF + YEs — 15 = R (8.3.7)
VB, + YEf + YisEf — If = R
YeE: + YaE& + YesEet — I = Ré

1

il

where the equation for the slack bus has been excluded since £, is specified
and remains fixed.
With the set of bus voltages

(0 0 () (0) (0
El 7E2’Ea ;Ea :Es .vEe

bus currents are calculated from equation (8.3.1: =«nd then bus residuals
are calculated from equations (8.3.7). A voltage correction is obtained
for that bus at which the residual R, is a maximum. If the current at
bus p remained constant, the residual R, would be reduced to zerc by the
voltage correction

_ RS
YPP

¥

Test ™~

for end of

Equal or less

' Advance
‘ iteration count
k+1—+k

iteration
p:n

Test
Greater for convergence

ma.xAEk: €
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less

. Calculate line
flous and power
at slack bus

e -
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P
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k k
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[

Fig. 8.4 Load flow solution by the relaxation method using Ysus.
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An improved estimate of voltage for bus p is then
E¥' = Bt + AE}
and the new current is
I = Pn - jQp
41y %
? (EX*h)
As a result of the change in the current, the actual residual ut bus p is
1 _ L3 +
RV = I — I
Using the voitage E5*!, the new residuals for buses other than p and the

slack bus are caleulated from

=12 ....n
R¥' = RF + Yu0Er 17 0%
q q + !IPA » q = P, q £ 8
This process is repeated, each time correcting the voltage corresponding
to the largest residual, until all residuals are less than or equal to a
specified tolerance. The sequence of steps for the lvad tlow solution by
the relaxation method is shown in Fig. 8.4.

W —t ‘
i Calculate current at bus p %
| [ Fp=iQy
i r k+l |
1 (E,

VE

| Calculate residual at bus p |

k+1 k ke
R =Ip -IP

p
Calculate residuals at other buses :

k41 k . k
R, =Rq +Y, AE, |

!
|

; |
i i

g=12_....n qg#*p g#*s i

'

k+i
Advance | Replace E,' by E,,
iteration count | ’
k+1—k | ‘

Replace R, by R)"™"
p=12_. .n p=*s
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Newton-Raphson method using Yprg

The load flow problem can be solved by the Newton-Raphson method
using a set of nonlinear equations to express the specified real and reactive
powers in terms of bus voltages (Van Ness and Griffin, 1961). The
power at bus p is

Py, — Q5 = E;:Ip (8.3.8)

Substituting from the network performance equation (8.3.2) for I ,in (8.3.8),

Py — Q= Ef Y Vi, (8.3.9)
g=1

Since K, = e, + jfp and Y, = G, — 7By, equation (8.3.9) becomes
Py, — jQ» = (e — jf») 2 (Gpe — iBpa)eq + Jf2)
g=1

Separating the real and imaginary parts,

P, = i {ex(eGpq + faBpa) + f5(felGra — €Bpo)}
- (8.3.10)
Qr = E {fo(eGpq + foeBre) — €x(foGrq — €aBpo)}

g=1

This formulation results in a set of nonlinear simultaneous equations,
two for each bus of the system. The real and reactive powers P, and @,
are known and the real and imaginary components of voltage e, and f,
are unknown for all buses except the slack bus, where the voltage is
specified and remains fixed. Thus there are 2(n — 1) equations to be
solved for a load flow solution.

The Newton-Raphson method requires that a set of linear equations
be formed expressing the relationship between the changes in real and
reactive powers and the components of bus voltages as follows:

1
P ‘
AP, L‘ L. 9P, a_Pl L. 9P, Aey
‘ 681 aen——l afl af"—l
3P, dP._, | OP._ P,
AP, 1 1 1 d 1 Aen_s
dey den_y | Of3 dfar
- (8.3.11)
a a a a
AQ, 9 0 |9 L Af
dey den1 | OS2 9 fn-1
0Qn_ AQn_1 | 0Qa_ 0Qn—
AQus Qn—1 Qno1 | 0Qn_1 Qn1 Ay
ael aen—l afl af"—l
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where the coefficient matrix is the Jacobian and the nth bus is the slack.
In matrix form, equation (8.3.11) is

AP

AQ !

lengllAP:

R
i
i
I
‘

:
! !
o .

J4;iAf

[ P

Equations for deterinining the elements o the Jacobian cau be
derived from the bus power equations. The reil power from equation
(8.3.10) is

Py = ey(exGop + foBrpi + fo(fGpp — €pBpsi
+ Zl {eplealipg + faBpo) + Jolfeliue — €Bpol (8.3.12)
a=

q#p
p=i2 ...,n—1

Differentiating, the off-diagonal elements of J; are

apP,
de,

= e,Gpy — foBpq q#*Dp

and the diagonal elements of J, are

9P, C . 1
~— = 26,Grp + f3Bop — fpBpy + E (eqGpe + foeBpq) (8.3.13)
q=1

dep
9 #p

However, the equation for the current at bus p 15

n

I, = ¢p + jdy = (Gop — JByp)(ep + Jfp) + Z Urpe — IBp)teq + Jfo)
q=1
1#y

which can be separated into the real and imaginary parts

Cp = €x(ipp + f5Bpp + z (eeGpq + foBse)
ol
n (8.3.14)
dy, = erpp - epop + 2 (quw - qupq)

g=1
7P

p=12 ...,n—1

Therefore, the expression for the diagonal elements of J; can be simpliﬁed
by substituting the real component of current ¢, in equation (8.3.13)
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to obtain
aP,

= €;Gpp — foBpp + ¢
deéy

From equation (8.3.12), the off-diagonal elements of J, are

IP,
i = e,Bpy + [0y, qg#p

und the diagonal elements of ./, are
= epBpp + 2f5Gpp — €85, + z (felGpg — €aByq) (8.3.15)

g=1
9#p

apP,
af)"
The imaginary component of current from equation (8.3.14) is substi-
tuted in (8.3.15) to obtain

aP,
af,

= €8y + [5G0y + dy

The reactive power from equation (8.3.10) is

Qr = 156G + [Byo) = e5fsGrp — €2B1)

+ 2 oo + foBrd) ~ exfiGoy — eBp)}  (8.3.16)

g=1
qQ#p
p=12 ...,n—1
Differentiating, the off-diagonal elements of J; are
aQ
?F = ¢;Bp; + [5G 5 g*=*p
q

and the diagonal elements of J; are

Gl
o€,

= f3Gpp — Solipp + 2e,Bpp — 2 (foGpe = €eBpq) (8.3.17)
g=1
q#p

The imaginary component of current from equation (8.3.14) is substi-
tuted in equation (8.3.17) to obtain

95

dey

= epBpp + [5G0 — dyp

From equation (8.3.16), the off-diagonal elements of J, are

905
af,

= —e,Gp + [pBpq g p
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and the diagonal elements of J, are

i

é—fl, = elpp + 2fpBpp — €5 + E 2y, + feBp) (8.3.18)
e =
q#n

The real component of current from ccuntion -8.3.14) is substituted in
cquation (8.3.18) to obtain

9 _
afy

Given an initial set of bus voltages ~he reat and reactive powers are
calculated from equations (8.3.10}. The changes in power are the
differences between the scheduled ana «aicuiated values

AP,," = Pp(scheduled) - Pp"
AQPk = Qp(scheduled) - ka P = 1 ,f. BT { B 1

The estimated bus voltages and calculated powers are used to compute
bus currents in order to evaluate the elements of the Jacobian. The
linear set of equations (8.3.11) ean be solved for Ae; and Af; p = 1.
2, .. .,n—1, by a direct or an iterative method. Then, the new
estimates for bus voltages are

e};+1 . epk + Aepk
1
fff = fpk + Afpk

The process is repeated until AP and AQ,* for all buses are within «
specified tolerance. The sequence of steps for the load flow solution by
the Newton-Raphson method is shown in Fig. 8.5.

The Newton-Raphson method can be applied also to solve the loac
flow problem when the equations are expressed in polar coordinates.
In polar coordinates

E, = [E;\e* and Yoo = Vpglet

—epipp T [pBpp + ¢

Substituting in equation (8.3.9), the pewer at bus p is
Py —jQp = z |ELE Y pol € 7t8netts80}
g=1

Since e it —8) = ¢0s (B, + 8 — &) — jsSin (Bp + 8, — &), the real
and imaginary components of power are

Py, = 21 |EpEqY pg| €os (5 + 85 — &)
0=

(8.3.19)
Q»

Zl |E,E.Y ol sin (8,0 + 8, — 8 p=12,...,n—1
=
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1=

Y
[

1

Fig. 8.5
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)
1
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te ket G+ 1 B+ A (0 G —e .} B

N)t |

—¢.*B,o)i |

Calculate differerces between
scheduled and calculated powers

)
|
AP ‘Pucveduwd)_Pk |
AQ.) = Q, (sehetuted)— @
p=12....n p#s

!

Determine maximum change
in power max AP*and max AQ"

y

) Equal
est or
for convergence less
>—>—

m.a_tAP T€ /
maxAQ

Greater

Calculate bus currents
k_ ok

K P —JQ, i

P (Epk‘t ‘

p=112....,n p#sl

!

LCalcu[are elements for Jacobian

1

Calculate line |
flows and power !

at slack bus i

Load flow solution by the Newton-Raphson method using Yars.
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The elements of the Jacobian are calculated from equations (8.3.19)
and are

For J;:
aP
a_ap = |EpE Y g sin (6pg + 8, — 8) g = p

q
oP \ .
a_ap - 2 VESE Y poi Sin (65 + 85 ~ )

» q;l

q9#*p

For J,:
P

T = |E,Ypgi cos (6pg + 8, — 8;) g #p
9|E,|
aP = . R
6[E:| = 2|E,Y ppi cos 65, + qzx EY il 208 (B + 85 — o)

a%p

For J;:
i)
%’ = —lEPEWYPQi cos (opq + 6? - 54) q = D

Q
6 n
_%L = z |ERE Y 5ol cOs (650 + 65 — 8g)
3, L

q#p

Solve for veitage corrections

i )
‘L_,,,J —_— -
LaQ* PR aAfe

I .

1 | i !
! |apk R AR Ae*
‘ :
|

! Calculate new bus voltages

] Adwnce | ef*! = ekt he b
iteration count ; ke h
i =fr+af!
k+1—~k J 1 4 4

p=12_...,n p#*s

!
Replace e * by ¢X*- and f} by [**!
p=12 .n p#s

! i
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For J:
aQ .
51sz = |E,Y 4} sin (85 + 8, — 85) g#p
g
a0 o d .
(';f%i = 2|E,Y ppl sin 05, + E {E,Y ool sin (6, + 8, — 8g)
E, &
q#p

Then the equation relating the changes in pewer to the changes in the
voltage magnitudes and phase angles for the Newton-Raphson method is

‘ J1 Jo Ad

}Js 74 {ME!

|
|
|
i
|

{pproximations to Newton-Raphson method

In general, for a small change in the magnitude of bus voltage the real
power at the bus does not change appreciably. Likewise, for a small
change in the phase angle of the bus voltage the reactive power does not
change appreciably. Therefore, using polar coordinates, a solution for
the load flow problem can be obtained assuming the elements of the sub-
matrices J, and J; are zero (Carpentier, 1963). The simplified matrix
equation is

AP J1 0 AS

aQ

1
= | !
L 0 Js ] A\Ell

Successful solutions can be obtained also by reevaluating the Jacobian
in only the first few iterations.

When using rectangular coordinates, a solution to the load flow
problem also can be obtained by neglecting the off-diagonal elements of
the submatrices Jy, Ja, J3, and J4 of the Jacobian (Ward and Hale, 1956).
Thix results in the following equations for the changes in real and reactive
power at bus p:

P apP
AP, = — % TP A
P de, Aep + a7, f»
= Aep(exGop — foBpp + ¢p) + Afp(€pBop + f3Gpp + dy)
Q5 Q5
A, = L he, 4+ A
Q de, ep + 3fs f»

= Aep(epBpp + folpe — dp) + Afp(—€xGop + fpBpp + Cp)
p=12...,n—1
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These equations can be solved using the Gauss-Seidel iterutive method.

Gauss iterative method using Zgys

ot

Selecting an initial set of bus voltages, bus currents csn be calculated
from

P, - jQ
T, = MECRA £ T

F*
L

p=12 ....n

p s (8.3.20)

recnt wourees. A onew
the bhus impedance

where the shunt connections are treated as ou
astimate of voltages can be obtained, then, fr
netwerk equation

Esys = Zpuslpus + Ex (8.3.21)

where Ex is the vector whose elements are all equal t the voltage of the
slack bus and the bus impedance matrix formed by using the slack bus
as reference is of dimensionn — 1 X n — 1. The new valtage estimates
are used in equation (8.3.20) to recalculate bus currents.  The process i3
repeated until changes in all bus voltages are within 4 specified tolerance.
This method of solving the load flow problem uses 7he (Gauss iterative
methoed since the new bus currents are recalculated cniy after the corn-
pletion of an iteration.

Applying this method to the system given in Fig. 8.1 with bus 2
as slack (reference), the formula obtained from equation 78.3.21) is

6
By =Bt ) Zpld p=1,3,4,56

q=1
772
where
Py —Q
I} = ‘Z—E7,‘)’*_g — Yy

Gauss-Seidel iterative method using Zgys

The Gauss-Seidel iterative method can be applied also for the solution of
the load flow problem using the bus impedance network equation
(El-Abiad, Watson, and Stagg, 1961). The bus voltage equations
(8.3.21) are solved one at a time in the order established by the bus
coding. After each equation is solved to obtain a new estimate of bus
voltage, the corresponding bus current is recalculated. Then the formula
for the system given in Fig. 8.1 is

p—1 6
EMY = B, + Z Zo 5 + 2 Zold p=13456
% %
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Fig. 8.6 Load flow solution by the Gauss-Seidel iterative method using Zpys.
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where

Po=iQ _ s

(E:+l)t Yolig

I =
The sequence of steps for the load flow solution by this method is shown
in Fig. 8.6.

Gauss iterative method using Y uop

The performance equations of the network in the loop frame of reference
are not in terms of the bus quantities required for a loag Hew solution.
In using loop matrices, therefore, it is necessary to convert from the
initial assumed bus quantities to the loop quantities required for the
solution technique and then to relate the changes in loop quantities back
to bus quantities.

As in the previous methods. initial voltages are assumed for all buses
except the slack bus. Then, bus currents can be calcuiared {from

Pn __jQp

p=12 ...,n
IP= E: _yPEP

p*s

¥

Replace E,} by E,**

i

‘ Advance bus count
‘l p+1l=p

Test
for end of
iteration

Equal or less

< | |
* . Adwm | Replace Ip" by Ip. ! i
iteration count ! !
k+1-+~k L hk=1,2....,n p¥s {

Equal or

less

Test
for convergence

maxAEk H

| Calcuiate line |

flows and power |
at slack bus !

S

Greater
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In order to use loop quantities it is necessary to estimate a flow of current
through the network resulting from the calculated bus currents. An
initial estimate of current flow can be obtained by assuming that the bus
currents flow only through the tree of the network. Then the initial
link currents are zero and the branch currents are

iy = Klgys

where K is the branch-path incidence matrix. With the sssumed current,
flow. the voltage across each element can be caleulated from

5=z (8.3.22)

where [2] is the primitive impedance matrix. The loop voltages Eroop
and 7 are related by

Eroop = —C% (8.3.23)

where (* is the transpose of the basic loop incidence matrix: Substituting
for # in equation (8.3.23) from equation (8.3.22),

Eroor = —CYzlx (8.3.24)

where Eroop represents the errors in the loop voltages. The loop voltages
must be zero for a load flow solution since the network excluding all shunt
elements does not contain any sources.

To obtain an improved estimate of current flow in each element,
loop balancing currents can be calculated from

It00r = YioorELoor (8.3.25)

where Y100p is the loop admittance matrix and does not include the effects
of shunt elements. The loop balancing currents are superimposed on
the previously estimated flows to obtain new current estimates. The
changes in branch currents can be obtained from

Ady = Colroop (8.3.26)

where C, is the submatrix relating branches and basic loops in the basie
loop incidence matrix. The changes in the link currents are equal to
the loop balancing currents. The new branch currents are used to
calculate new bus voltages from

Epvs — Ep = K [z2w)% (8.3.27)

where [zs] is the primitive impedance matrix for branches only and Er

is the vector whose elements are all equal to the fixed voltage of the
slack bus.
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The new estimates of bus voltages are used to reestimate bus cur-
rents. The changes in the bus currents are

p=12 ....n

L

Then the changes i1 branch currents due to the changes in hus currents
can be calculated from

Eb = Kﬁfqus

These changes are added to the previnus branch currents to obtain

W= 57+ Ak

With the branch currents 7, and the previcus link currents i*~!, the new
loop voltages are obtained from equation (8.3.24). The loop balancing
currents are calculated from equation (8.3.25). The changes in the

branch currents due to the loop balancing currents are calculated from
equatfon (8.3.26). Then the new estimated branch currents are

= = Tk

k=7 + CbILaop

and the new link currents are
= sk~1 Tk

W =47+ Iipop

New estimates of bus voltages are obtained from equation (8.3.27).
The process is repeated until all loop voltages become negligible.

The sequence of steps for the load flow solution by this method is
shown in Fig. 8.7.

A solution of this type was employed first for digital load flow studies
(Dunstan, 1947). However, the early methods used real and reactive
power by assuming line flows and calculating voltage drops and phase
angle differences in order to determine balancing loop power flows.
Transmission losses had to be estimated during the iterative process.

8.4 Acceleration of convergence

In some cases the rate of convergence for an iterative process can be
increased by applying an acceleration factor to the approximate solution
obtained from each iteration. Let a and 8 be the acceleration factors

respectively for the real and imaginary components of voltage. The
accelerated values are

e‘;‘t:ooeleuted) = ePk + a(e:;‘-: - e?")
1 k
:-tlcceleuted) = fpk + ﬂ(f;- - fﬂk)

and replace the calculated ¢5t* and f5**.
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Fig. 8.7 Load flow solution by the Gauss iterative method using Y Loor.
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8.5 Examples of load flow calculations

The methods for solving the ioad flow problem will be ilinstrated for the
sample power system given in Fig. 8.8

Problem

With bus 1 as the slack, use the following methods to obtain a load flow
solution:

a. (auss-Seidel using Yao o with aceeleration factors of 1.3 and 1.4
and tolerances of 0.0001 and G.0001 per unit for the real aud imaginary
components of voltage

h.  Newton-Raphson using Ygis. with iolerances of 0.01 per umt for
the changes in the real and reactive bus pwers

c. Gauss-Seidel using Zgis, with voltage roierances of 0.001 and 0.001
per unit

d. Gauss using Yieop, with loop voltage tolerances of 0.01 and 0.01
per unit

. I .
Caiculate loop balansing curreris
roo=Y Er

100k LOGE " Lo

Calculate new branch and 'ink currents
S - N
=+ Ol
Tk Thel Tk
0h=u, +17,

‘ Replace iAh by 'Thl and {*7 by i

r

to obtain

L new current vector (7 for all e 1
Ty T T T e e
i Calculate new bus . ltages
kel _ R - L.
| Egle=E +K Lz, 01,

Advance | . Replace E;" by £
iteration count p=1 2 noowes

k+1--k I [ 1, B

7 Test !
Pt
7 for convergence

;

Calculate line
flows and power
at slack bus

-
Greater - max E." ¢ 7 Equal

o~ 7 07

iess

IO
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North
G Lake Main
w1 NG NS

® = TTE

South

Fig. 8.8 Sample system for load flow solution.

Solution

The transmission line impedances and line charging admittances in per
unit on a 100,000 kva base are given in Table 8.2.  The scheduled genera-
tion and loads and the assumed per unit bus voltages are givenin Table 8.3.

Table 8.2 Impedances and line
charging for sample system

Bus code  Impedance Line charging
Pq Zpe y;q/Z
1-2 0.02 + j0.06 0.0 + 50.030
1-3 C.08 --j0.24 0.0 +50.025
2-3 0.06 + 50.18 0.0 + 70.020
2-4  0.06 +30.18 0.0 4 jO.020
2-5 0.04 + j0.12 0.0 + j0.015
3-4 0.01 + 50.03 0.0 + j0.010
4-5 0.08 + j0.24 0.0 + 50.025
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Table 8.3 Scheduled generation and loads and assumed bus
voltages for sample system

Generation Load
Bus code Assumed T
P bus voltage Megawatts Megavars Megawaits Megavars
1 1.06 + ;0.0 0 0 «: ¢
2 1.0 +370.0 40 30 20 1w
3 1.0 +j50.0 0 0 45 i5
4 1.0 +j0.0 0 0 40 5
5 1.0 + ;0.0 0 0 60 10

a. The equations for the Gauss-Seidel iterative solution, using the bus
code numbers given in Fig. 8.8, are

E, = 1.06 + j0.0

KL

B = k;* — YLuEy — VIgEd — YLoEd — YLyE
“2
KL

E§+1 = (Eak)a* - YL;HEX - YL:;QE@"‘ - YL;HE("
KL

E’:+1 = (E k;* e YL42E§+1 - YL43E§+1 - YL“E"

4

KL

EH = (Esk;* — YLsEStY — VLo ES?

In order to calculate the parameters for these equations, it is neces-
sary, first, to determine the elements of the bus admittance matrix from
the transmission line and line charging admittances with ground as refer-
ence. The transmission line admittances, obtained by taking the recipro-
cal of the line impedances, are shown in Table 8.4 along with the total
line charging admittance to ground at each bus. Since there is no
mutual coupling in the representation of the system. the diagonal ele-
ment of the bus admittance matrix for bus 1 is

Yu=vyu+ys+un
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Table 8.4 Line admittances and
admittanees to ground for
sample system

Bus code Line admittance
P—q Yre

5.00000 —
1.25000 —
1.66667 —
1.66667 —
2.50000 —
10. 00000
1.25000 —

75000
00000
00000
50000
00000
. 75000

~ .

O3 s, S, b e e

<1 QO Gt e W

CAJlOt‘\Jt‘QP—‘P‘
e QU s O WD

|
~
w o

i
[$1]

<

Bus code Admittance to ground
14 Yr

0.0 + j0.05500
0.0 -+ j0.08500
0.0 + j0.05500
0.0 + j0.05500
0.0 + j0.04000

(S L

where y, is the sum of the line charging to ground at bus 1.

5.00000 — j15.00000
1.25000 — 73.75000
00 4+ 3j0.05500
6.25000 — 718.69500

The off-diagonal elements associated with bus 1 are

Yie= Yy = —y1. = —5.00000 + 515.00000
Yi; =Yy = —y13 = —1.25000 + 73.75000

ThUS, Yu is



Q001 I = 000eL'e j000sL el 4 Qoo — 00004 LL 4 0000y T —

000828+ 0008 T — _:S%.xﬁf LO9TG'SE 000007088 4 00000701 — 1 00000°6E 4 2999971 — ™

| B - , S

= LO916Tl 00000°¢f + 2996971 —

000007085 + 00000701 = 00569

01— J00S TP asl — FEEEs 01

0000¢° L0 4+ 0000$°C— 1000006 + £9999°1— 00000°¢E + L9

k 00082768 4 000La T =] 00000618 4 000006~

® ®

st woyshs ajdures oY) 10J 00UINJAL ST pUNOId YA XIJRUL 0dUTPIuUpe sng oy,
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The KL,'s are obtained from the equation
. . 1 )
KL,,=(P,—]Q,,)L,=(PP—JQP}"};— p=12...,n
PP
where P, — jQ, is the net load in per unit at the pth bus. For bus 2

i

KIl.= 20 — 40.20)
2= (020 =020 1 eresy T30 11500
= 0.00740 + j0.00370

The K L,’s for all buses are giver: in Table 8.5.
The YL,,'s are obtained from the equation

1

rPq
Y'PP

YL, =Yl =Y

pg=12 ...,n

For the element 1-2,

1
6.25000 — 718.69500

Y L. = (—5.00000 + ;15.00000)
= —0.80212 + ;0.00071

The Y L,'s for all elements are given in Table 8.6.

It is not necessary to calculate the parameters associated with the
slack bus for the solution of a particular load flow. For actual planning
and operating studies, however, the slack bus is frequently changed in
subsequent load flow cases. This type of change can be made readily if
the parameters of all buses are calculated and stored in the appropriate
data lists.

The first step in the iterative solution is to calculate a new estimate of
the voltage for bus 2. The new estimate from the equation

Table 8.5 Bus parameters for
sample system

Bus code
P KL,
1 0.0 + j0.0
2 0.00740 + j0.00370
3 —0.00698 — 70.00930
4 —0.00427 — ;0.00891
5 —0.02413 — 70.04545




KL,
Esll) = (E(zm)*
1s
pov _ 000740 + j0.00370
T 1.0 — ;0.0

Chapter 8

— (—0.15421 -+ j0.00012)(1.00 + /.0
— (—0.15421 - jO.00012){1.0 + /01,
— (—0.23131 -+ j0.00018){1.6 + 4 )
= 1.03752 + 70.00290

The change in voltage is

AEY = 0.03752

+ j0.00290

Load flow studies

— YLuE, — YLyE® — YE, £ — YLyEY

- {—0.4526% -+ j0.00036)(1.06 — ;0.0)

The accelerated value of bus voltage from ihe equation

(1) — RO (1)
E'l (accelerated) — E2 + CXAE2

15

E®, oy = 1.0 4 j0.0 + 1.4(0.0375% + 70.00290)

i

1.05253 + j0.00406

289

This value replaces the initial estimazed value of voltage for bus 2 and is

used in subsequent calculations of voltages for the remaining buses.

Table 8.6 Line parameters for

sample system

YLy

Bus code

P—q

1-2 -0.
1-3 -0
2-1 -0.
2-3 —0.
2-4 -0.
2-5 —-0.
3-1 —0.
3-2 -0.
34 -0.
4-2 —0.
4-3 -0
4-5 -0
5-2 -0
5-4 —-0.

80212 + j0.00071

.20053 + j0.00018

46263 + j0.00036
15421 + j0.00012
15421 + j0.00012
23131 + j0.00018
09690 + j0.00004
12920 + j0.00006
77518 + j0.00033
12920 + j0.00006

.77518 + j0.00033
.09690 + j0.00004
_66881 + 70.00072

33440 + 70.00036

The
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new estimate of the voltage for bus 3 from: the equation

. KL ‘ .
Ei")h = ZET(O)% - YL31E1 — YL;;gEfzx — Yk “0'
2
18
« —0.00698 — 70.00930
El = T T I (~0.09660 + ,0.00004)(1.06 + j0.0)

1.0 — jO.0
— (—0.12920 + j0.00006)(1.05253 + j0.00406)
— (—0.77518 + j0.00033)(1.0 -+ 0.0}
= 1.00690 — j0.00921

The change in voltage is
AEY = 0.00690 — j0.00921

The accelerated value of bus voltage from the equation

[;31!accelerued) = ﬁV.ESO) + aAE(SD

1s

Eceternsets = 1.0 + 70.0 + 1.4(0.00690 — ;0.00921)
1.00966 — 70.01289

I

This value replaces the initial estimated value of voltage for bus 3. The
process is continued for the remaining buses to complete one iteration.
If the process has not converged, new estimates of voltage are calculated
for all buses, starting again with bus2. The bus voltages for all iterations
are given in Table 8.7 and the changes in voltages in Table 8.8.

Table 8.7 Bus voltages from the Gauss-Seidel iterative
solution using Yprs

Bus voltages

Iteration

count T
k Bus 2 Bus 3 Bus 4 Bus 5
0 1.0 + j0.0 1.0 + j0.0 1.0 + ;0.0 1.0 + 70.0
1 1.05253 + ;0.00406 1.00966 — ;0.01289 1.01579 — ;0.02635 1.02727 — j0.07374
2 1.04528 — ;0.03015 1.02154 — j0.04227 1.02451 — ;0.06353 1.01025 — j0.08932
3 1.04732 — ;0.03618 1.02637 — j0.07153 1.02394 — ;0.08326 1.01712 — ;0.09826
4 1.04964 — 50.04730 1.02395 — ;0.08289 1.02268 — ;0.09079 1.01575 — ;0.10787
5 1.04749 — j0.05016  1.02300 — ;0.08693 1.02148 — ;0.09393 1.01315 — ;0.10782
6 1.04708 — 50.05057 1.02195 — ;j0.08877 1.02036 — ;0.09473 1.01316 — j0.10873
T 1.04678 — j0.05127  1.02106 — j0.08901 1.01977 — ;0.09493 1.01256 — ;0.10908
5 1.04639 — ;0.05120 1.02070 — ;0.08913 1.01945 — ;,0.09501 1.01224 — ;j0.10893
@ 1. 04630 — j0.05123  1.02048 — ;0.08918 1.01927 — ;0.09502 1.01219 — j0.10904
10 1.04623 — ;0.05126 1.02036 — ;0.08917 1.01920 — ;0.09504 1.01211 — j0.10904
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Table 8.8 Changes in bus voltages from the Gauss-Seidel iterative
solution using Yaus

[lera- Changes in bus volicges

tion

~ount
k Bus 2 Bus 3 Bux 4 Bus 5
Q 00 + 0.0 3.0 +50.0 0.¢ — Ui oo - ;0.0
1 0D 05253 + O 0040¢ O 00966 — ;O 01289 0. PIURTII PRt £ou2TET -0 NT3T4
2 -0 00724 - ;O .0342: Q.01:188 — j0.02938 [UNEAE f QTR S0 07O S0 01558
3 @ 00204 — ;0 00603 G 00483 — 50.02926 -G [REPRCI1 : HOGRT - i OUSYE
4 0.00232 — ;0 01112 -0 00242 — ;0.0113b6  -¢ . S N0InT o 00861
5 —0.00215 — ;0.00286 -0.00095 — j0.00404 -C -1 G + 00005
6 —0.00041 — ,0.0004i -0 00105 — ;0.0018%4 -0 ¢ 35000 = 20 00061
7 —0 00030 — ;0.0007C G 00089 — j0.00024 ~-90. -3 0060 — 0 00035
8 —0.00039 + j0.00007 --G.00036 — j0.00012 O ~-{y 00032 - ;0.00015
9 —0.00009 — ;0.00003 --0 00022 — j0.00005 --0 2 -2 00005 — 56 00011
10 —0.00007 — 50 00003 ~—-0.00012 +;0.00001 -C -0 0062~ o 00008 ~ ;0.00000

Note: The changes in bus voltages given in this table are the differences betsicen the accelerated
values. The tolerance test was made on the unaccelerated vcitage o c¢termining convergence.

The line flows are calculated with the final s woitages and the given
line admittances and line charging. The flew i lne -2 at bus 1 irom
the equation

, . e Uy
Poe — Qs = E:(Ep - Eq)yyq + EPEP%Z
18
P — JQ1n = (1.06 — ]00){106 + 70.0

— (1.04623 — j0.05126)}(5.0 — ;15.0)
+ (1.06 — j0.0)(1.06 + j0.0)(0.0 + ;0.03)
0.888 + j0.086

The flow in megawatts and megavars is
Py — jQ. = 88.8 + j8.6

The flow in line 1-2 at bus 2 is

Pa — jQu

(1.04623 + 70.05126)11.04623 — 70.05126

— (1.06 + j0.0)}(5.0 — 515.0)

+ (104623 + 70.05126)(1.04623 — j0.05126)(0.0 + ;0.3)
—0.874 — j0.062

or in megawatts and megavars,
Pgl _ ij = —'874 - ]62

All line flows for the system are given in Table 8.9.
The slack bus power can be determined by summing the flows on the
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Table 8.9 Calculated line flows
for sample system

T3us code Line flows
r-q
Megawatts Megavars

1-2 88.8 —8.6
1-3 40.7 1.1
2-1 —87.4 6.2
2-3 24.7 3.5
2-4 27.9 3.0
2-5 54.8 7.4
3-1 —39.5 -3.0
3-2 —24.3 —-6.8
3-4 18.9 -5.1
4-2 —27.5 -5.9
4-3 —18.9 3.2
4-5 6.3 —-2.3
5-2 —-53.7 —-7.2
5-4 —-6.3 -2.8

lines terminating at the slack bus. The real slack bus power is 129.5
megawatts and the reactive power is —7.5 megavars.

b.  The matrix equation for the solution of a load flow by the Newton-
Raphson method is

Jzk‘\ Ae*

J4k | Afk

AP* J

AQk | JSk

|

This equation does not include the slack bus. The changes in bus powers
are obtained from

NPHANE Pl riltaotedy— ok ip
AQP" =] QP(scheduled) - ka
where P ehedutedy a0d Qp (senedutedy are the net bus powers in per unit and

arc obtained from Table 8.3. The calculated bus powers are obtained
from the equations

Pt = {er*(e*Gpq T f*Bpe) + [ (fGpe = €*Bpo)}
1

I

INoE iM:

Q) { fo*(e*Gpq + f*Bpa) — €*(f*Gry — e*Bpg)}

1

<
n
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using the i1utial bus voltages given in Table 8.3 and the elements of the
bus admittanee matrix.
The real und reactive power for bus 2 are

Py = 1011 06 -5.00000) + 0.0(—15 00000} !
- 0 A0-A00000) — 1.06(—13.00000) |
+ L0 10.83334) + 0.0(32.41500) ;
w0 TGUT0.83334) — 1.0(32.41500) !
— LG Q=1 B6H6T) = 0.00—5.00000!
+ 3610 0(—1.66667) — 1.0(—>5.00000; |
= L0 -1.66667) + 0.0(—35.00000);
- 0..0.0 - 1.66667) — 1.0(—5.00000)}
1.0{1.00—-2.50000) + 0.0/ —7.50000)}
+ 00:0.00—2.50000) — 1.0/ —7.50000)
= —0.30000

4

and

O = 0.011.060 —5.00000) 4+ 0.0(— 15.00000) |
- 1.0{0.0¢ —5.00000) — 1.06(—15.00000)}
+ 0.011.0(10.83334) + 0.0(32.41500)
~ 1.0/0.0(10.83334) — 1.0(32.41500) |
+0.011.00—1.66667) + 0.0( —5.00000) |
— 1.0{0.0(—1.66667) — 1.0(—5.00000) }
+ 0.0{1.0(—1.66667) + 0.0(—5.00000)!
~ 1.0{0.0(—1.66667) — 1.0(—5.00000)}
+ 0.0{1.0(—2.50000) + 0.0(—7.50000) }
~ 1.010.0(—2.50000) — 1.0(—7.50000)

= —0.98500.

The powers for the remaining buses are

PP = —0.07500
P® = 0.0
PO =00
Q® = —0.28000
QP = —0.05500

QY = —0.04000
The changes in the real and reactive power for bus 2 are

AP = 0.20000 — (—0.30000) = 0.50000
AQY = 0.20000 — (—0.98500) = 1.18500
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The changes in powers for the remaining buses are

AP = —0.37500
APY = —0.40000
AP = —0.60000
AQS = 0.13000
AQ, = 0.00500
A, = —=0.06000
The bus eurrents used to determine the elements of the Jacebian can
be computed from the equation
R LV
4 (‘Eﬂk‘)t
The current for bus 2 is

~ —0.30000 — j(—0.98500)
B 1.0 — j0.0
= —0.30000 + ;0.98500

Iy
5

The components of the current for bus 2 are, then,

¢ = —0.30000

d.” = 0.98500

The components of currents for the remaining buses are
¢’ = —0.07500

4 = 0.28000

¢ = 0.0

dy¥ = 0.05500

¢¥ =0.0

d\® = 0.04000

The elements of the Jacobian are calculated using the bus voltages
and currents and elements of the bus admittance matrix. The diagonal
element in the first row of J,* from the equation

9Py — p k k k
P = e, Gyp — [5*Bpp + ¢5
€p
18
P, _
e = 1.0(10.83334) — 0.0(32.41500) + (—0.30000)

It

10.53334
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and the off-diagonal elerrents from the equation
JaP,
de,

€ Gpq — fo¥Bpq

are

P,
de;
aPQ
670‘,
aP,
des

i

1.00—1.66667) — D.0(--5.00000 = —1.66667

LO(—1.66667) - ¢.0{—5.00000} = —1.66667

I

1.0(—2.50000; -~ 0.0(—7.50000) = --2.50000

The diagonal element in the first row of J.* from the equation

P, k k ;

Zr e dE

Gfp eP BPP + fP GP + »

is

IP, . ) -

a—f— = 1.0(32.41500) + 0.0(10.83334) -+ 0.98500
2

= 33.40000

and the off-diagonal elements from the equation

0P,
af,

€5*Bpg + f5Gpq

are

0P
afs
6P2
df4
P,
afs

1.0(—5.00000) + 0.0{—1.66667}

-—5.00000

I

1.0(—5.00000) + 0.0(—1.66667) = —5.00000

1.0(—=7.50000) + 0.0(—2.50000) = —7.50000

The diagonal element in the first row of J4* from the equation

3Q,

de, = e*Byy + f54Gpp — dt

295
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1s

d
an 1.0(32.41500) + 0.0(10.83334) — 0.98500
€2

= 31.43000

It

and the off-diagonal elements from the equation
(}QP
deg

i

TG + e* By

are

3Qs
e
Q-
des
80
des

0.0(—1.66667) + 1.0(—5.00000) = —5.00000

il
i

—5.00000

Il
I

0.0(—1.66667) 4 1.0(—5.00000)

Il

0.0(—2.50000) + 1.0(—7.50000) = —7.50000

The diagonal element in the first row of J & from the equation

a(.

._)I'J = —ekapp + 5 Bpp + CPk

afp

1s

Q. . -

(?f = —1.0(10.83334) + 0.0(32.41500) + (—0.30000)
2

= —11.13334

and the off-diagonal elements from the equation

90y

E = [} By — ekapq

are

0.
af3
0Q:
afy
0.
afs

It

0.0(—5.00000) — 1.0(—1.66667) = 1.66667

= 0.0(—5.00000) — 1.0(—1.66667) = 1.66667

0.0(—7.50000) — 1.0(~—2.50000) = 2.50000
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The solution of the matrix equation for Ae, and Af,, p = 2, 3, 4, §,
can be obtained directly from

APk

)

Ak

o

where the inverse of the Jacobian is

3 - h i
L01826 | .01403 01492 0172€ 05478 04208] .04477 105177

i

l !

S ! | i
|
i

.01403 | 03167 02823 01388 .04208! .09502] .08469 05665

.01492 | 02823 ! 103367 02131 04477 .08469. .10101] .06393

‘ |
.01726 | (01888 . 02131 04577 05177 .05665‘ 06393 13670,
|
04771 | .03499 . 03752 04428 |- .01627|— .01214| — 01302‘ —.01529
‘ |

© 03499 | 08567 07351 © 04846 |— 01214]— 02933, — 02597 — 01687,

.03752 | 07551 0918s 05559 |—.01302; — .02597 — .03148‘— .01930

[ 1)
Ot
Ut
Ne

| 04428 | 04846 0 12796 —.015‘29—A01687\—.01930}—,04357

The voltage change vector is

Ae(®

—0.05084
—0.09123
—0.09747
—0.11284

Af“))

The new bus voltages are obtained from the equation
EXt = EF + AE

and after the first iteration are

E = 1.05505 — j0.05084

E{Y = 1.03176 — j0.09123

E® = 1.03136 — j0.09747
E = 1.02652 — j0.11284
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These values are used to compute the bus powers and currents and ele-
ments of the Jacobian for the next iteration. The changes in bus voltages
for all iterations are given in Table 810 and the bus voltages in Table
8.11. The process is termineted when the changes in both real and reac-
tive power at each bus are less than 0.01  The changes in powers for all
iterations are given in Table %.12.

The line flows can he ealenlated as shown previonsly and are given
i Table 8.9.

Table 8.10 Changes in bus voltages from the Newton-Raphson
solution using Y g«

Itera- 'hanges in bus 2Fuges
l‘oﬂ ————— e e O e e ettt e 1.
count
k Bus 2 Bus 3 Eus 9 Bus 5
0 00 +50.0 0.0 =300 no + 0.0

.02652 — ;0 11284
—0.01424 + 10 Q0375

1 0.05505 — j0.05084 0 03176 — ;0 99123
2 —0.00876 — j0.00044 —0 01132 + 30 00201 ¢

Table 8.11 Bus voltages from the Newton-Raphscn solution using Yprs

Iteration Bugs vaitages

count [ —m
k Bus 2 Bus 3 Bus g Bus 5

1.0 ~ 0.0
7 1.02652 — j0.11284

0 1.0 +50.0 +30.0 1.0 +
- 74
508 1.01228 — 70.1000¢

1.0
1 1.05505 — j0.05084 1.03176 — ;0 09123 1 03136
1.0

100
70.09
2 1.04629 — 50.05128 2043 — j0.08922 1 N19306 ~ ;0 09

Table 8.12 Changes in bus potwers from the Newton-Raphson
solution using Yprs

Itera- Changes in tus pewers
tion
count
k Bus 2 Bus 3 Bus 4 Bus 5

0 0.50000 — 51.18500 —0.37500 — 20.13000 —0.4000C — ju 00500 ~—0.60000 + j0.0600C
1 —0.09342 + ,0.03857 —0.00103 + ;0 03586 0 Q1171 4 70 03871 0.02244 + ;0.06563
2 —0.00073 + 50.00037 ° —0.00010 + ;0 00037 0.00003 + ;0.00044 0.00006 + 70 00094
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Prior to initiating the iterative process it is necessary to calculate
the bus currents with the scheduled net bus powers and assumed initial
bus voltages. From the values given in Table 8.3, the net bus powers in
per unit are obtained and substituted in the equation
[k — Py — 7Qy

* = EmRr T yokist

The currents for all buses, except the reference, are

¢ = Q%E%%O — (0.0 + j0.083)(1.0 + j0.0) = 0.200 — j0.285

Iy = 1?%5 ~ (0.0 + j0.055)(1.0 4+ 70.0) = —0.450 + j0.095
I = %5 — (0.0 + 70.055)(1.0 + j0.0) = —0.400 — j0.005
[P = %1—0 — (0.0 + 70.040)(1.0 + j0.0) = —0.600 + j0.060

The first step in the iterative process is to calculate a new estimate f
the voltage for bus 2 by multiplying the first row of the bus impedarre
matrix by the vector of bus currents as follows:

E;n - El e ZMJ(ZO) + Zm]fqm + ZzJim + Zzsl(sm
= (0.0168751 + j0.0505714)(0.200 — ;j0.285)
+ (0.0125714 + j0.0377143)(—0.450 + j0.095)
+ (0.0134286 + ;70.0402857)(—0.400 — j0.005)
+ (0.0157143 + j0.0471429)(—0.600 + 70.060)
= —0.00888 — j0.05399

Since the voltage at the reference bus has been specified, as giver. ‘u
Table 8.3,

E;l)

(—0.00888 — ;70.05399) + (1.060 + j0.0)
= 1.05112 — ;0.05399

The new current for bus 2 is

Py, —5Q
I = ZE(al))* : — yEY
0.20 — j0.20

= — (0.0 + 70.085)(1.05112 — ;0.05399
1.05112 + j0.05399 ~ (-0 170.085)(1.05 70.05399)

0.17544 — j0.028887
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This new value of bus current, replaces the previously caleulated value for
bus 2 in subsequent calculasicns.

A new estimate of the voitage for bus 2 is pbtained next by muli-
plying the second row of the bus impedance matrix by the vector of bus
currents as follows:

Esh — E1 Zggl(;) + Z;;:;I:za -+ Z“[‘c: +- Z;[;a
E{ = 1.02777 — jO.08781

The new current for bus 3 18
IV = —0.42585 + j0.12863

The process is continued tc nbhtain

E®P = 1.02521 — j0.09920
IV = —0.38732 + ;0.02933
and

E{ = 1.01913 — j0.11403
I = —0.57518 + j0.12120

A second iteration is performed by repeating the process, starting
again with bus 2. The bus voltages for all iterations are given in Table

Table 8.13 Bus voltages from the Gauss-Seidel iterative
solution using Zgys

Bus roltages
Iteration
count

k Busg 2 Bus 3 Bus 4 Bus 5

0 1.0 + ;0.0 1.0 + 0.0 1.6 + 50.0 1.0 +350.0

1 1.05112 — ;70.05399 1.02777 — ;0 09581 1.02521 — j0.09920 1.01913 — ;0.11403
2 1.04622 — ;j0.05086 1.02041 ~ ;0.08837 1.01924 — ;0 09454 1.01220 — 50.10841
3 1.04622 — ;0.05129 1.02035 — ;0.08924 1 01918 — j0.09508 1.01212 — ;0.10908

Table 8.14 Changes in bus voltages from the Gauss-Seidel iterative
solution using Zpys

Itera- Changes in bus voltages

tion

count
k Bus 2 Bus 3 Bus 4 Bus 5
0 0.0 + 50.0 0.0 +50.0 0.0 + 50.0 0.0 +50.0
1 0.05112 — ;0.05399 0.02777 — 50.09581 0.02521 — ;0 09920 0.01913 — j0.11403
2 —0.00490 + j0.00313 —0.00736 + j0.00744 —0 00597 + j0.00466 —0.00893 + ;0.00562
3 0.00000 — j0.00043 —0.00006 — 0.00087 —0.00006 — j0.00054 ~—0.00008 — ;0.00067
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Fig. 8.9 Tree, cotree, and basic ioops of the oriented con-
nected graph for sample power system.

8.13 and the changes in bus voltages i Takle 8 14, The process is termi-
nated when the changes in both components of the voltage at each bus
are less than 0.001.  The line fieows can be caleulated as shown previously
and are given in Table 8.9.

d. The tree, cotree, and basic ivups 71 the oriented connecred graph for
the power system are shown iu g, 9. The branch-path mcidence
matrix 1s

path |
O e & &
b ‘
1 —1 ! -1 —1i
2 N
K =
3 l —1
i
4 -1 5 :
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The basic loop incidence matrix is

YABC
€

: i
1 -1 -1 -1
2 -1 -1
| 4
3 1
;‘ |
C= 4+ 1 1 1
| |
5 1
?
6 L
7 ﬁ 1

The loop admittance matrix is

A B C
A4 | 1.07143 — j3.21429} —0.47619 + 71.42857 | —0.23809 + 70.71429
|
I |
Yioor = B| —0.47619 + j1.42857 1.06349 — 73.19048 | —0.30159 + ;0.90476

i
€. —0.23809 + 70.71429 —0.30159 + j0.90476 ; 0.68254 — 72.04762

which was obtained by first forming the loop impedance matrix by singu-
lar transformation and then taking its inverse. The loop admittance
matrix can be derived also from the bus impedance matrix by using the
algorithm described in Seec. 4.5.

The first step in the iterative process is to calculate the bus currents
with the scheduled bus powers and assumed initial bus voltages. The
currents in per unit for all buses except the slack are determined from the
equation

P Py, — jQ»

It = — ypEt

(E5)*
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These currents, identical to the initial bus currents calculated in the bus
impedance method, are

I = 0.200 — j0.285

I = —0.450 + j0.095
I = —0.400 — j0.005
[ = —0.600 + j0.060

i

The changes in bus currents are calculated from
Al = I — I

Since the bus currents prior to initiating the iterative procedure were
assumed to be zero, the changes in bus currents are

Al = 0.200 — jO.285

AI® = —0.450 + j0.095
AI® = —0.400 — j0.005
AI® = —0.600 + 70.060

I

The first changes in branch currents from the equation

Eb = KA_[}%S

are
eRoRcNo |
l : :
1 |=1—1-1 @ 0200 — j0.285
2 ~1-1 ®' —0450 + j0.095 |
by = :
3 ~1 @, —0.400 — j0.005 |
{ .
4-1 C®  —0.600 + j0.060

i

1) 1450 — j0.150

2! 1.000 — j0.055

3 0.600 — j0.060

4| —0.200 + j0.285
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Since the initial currents in the elements were assumed zero, the new
currents are

1 1.450 — 70.150

21 1.000 — j0.055

3 0.600 — jO.060

i =1 —0.200 + j0.285

5 0.0 + ;0.0

6| 00 +j00

~1

0.0 + 300

Then, from the equation

Eloop = — (2Nt

the loop voltages are

0
bL()OP'




i |
46018 2 + G1LYT0 |0
GLILE oH + 4L¥81°0 v i

- =
0ELYE 0f + 01€L1°0 _ 14

|
L ]

29Lv0'zl —

FUe8Y0

9206 oﬁ + 641020~

amﬁ\..cﬁ + 608430~

92306 oTr 64108°0—

wéi 2 + 6¥£90°1

L6823 1 + 6192¥°0—

FIOY0°0L — $1284°0

620F0° oH -~ BZ¥LT0

08210°00 - 98YT'0
R ]

:2:2 4 6086 0—

2682810 4+ 619240~

6aP1ael — SFI1L0'T

[8

)

Q

vV

0

~

g4 = U1

a1 syuoaInd dooy Suurpeq oYy uonunbd svuvwaoyad doof ayy wol g



308 Computer methods in power system analysis

e new branch currents from the equation .

v =+ Gl pgop

are
4 B C _
— CmTm o v
DoL450 = 0050 17 =1 =1 =1 4 024286 — 0016,
2 1.000 - j0.055 2 =1 —1 R 027420 — 0.04024.
—_— e —— S U— —j
3 0.600 — j0.060° 3, —1 ¢ 0.53714 —jfl“"""ﬂ

4. —0200 450285 4. 1 1 1

[

1°0.39572 — j0.00171

2 0.18857 + j0.04543

3 0.06286 + 70.00014

1 0.85428 + j0.13671
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The new link currents from the equation
. Tk
W= {r‘ + Z.LO(/F

are

! - i
5 024286 — 0.04786 |

!

20— 027G - 0.04029
053714 - 0.06014
i |

—

I [ e
The new rurresnts in ali elements are, then,

.
1] 0.39572 — j0.00171 |
e ,

| 0.18857 + j0.04543 |

0.06285 - ;0.00014

i
i
1
i
O |
i
'
'

70 = . | 0.8542% 4 ;0.13671

-

n 0.24286 — 70.04786

6 0.27429 — ;0.04029

71 0.53714 — ;0.06014

Thesce values replace the previous estimated flov
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The new bus voltages replace the mitially assumed voltages. If all loop
voltages are within a specified tolerance. the line flows are calculated.
[f any foup voltage is greater than the tolerance, the new bus voltages
are used to calculate new sstimates of bus currents. The remaining
steps of the iterative calcutation are repeated to obtain a second estimate
for the bus voltages. The bus voltages for each iteration are shown n

Tabie %.15 and changes in hus voltages are shown in Table 8.16. The
lonp voltages for each iteration are shown in Table 817
Table 8.15 Bus voltages from the Gauss iterative solution using Y roop
Rus voitages
Iteratior
O e e e ~
k Bus 2 Bus 3 Bus 4 Bus 5
v 10 4300 06 +50.0 1.0 4500 10 43500

1.05112 — ;0.05399
1.04626 — 5005073
1.04624 — 0.05131

1

1.02793 - j0.09482
i.02046 -- ;0.08826
1 02038 - ;0 08925

1.02741 — ;0 10095
1.01932 - ;0 09405
1.01925 — ;0 09511

1.02241 ~ ;jO.11604
1.01229 — ;0.10778
1.01221 — ;0.10912

Table 8.16 Changes in bus voltages from the Gauss iterative
solution using Y Loop

Itera- Changes 1n bus voitages

tion . _

count '
k Bus 2 Bus3 Bus 4 Bus 5
0 0.0 +350.0 0.0 +50.0 0.0 + 30 0 0.0 + 0.0
1 0.05112 — ;0.05399 0.02793 - ;0.09483 0.02741 — ;0.10095 0.02241 — ;0.11604
2 —0.00486 + ;0.00326 —0.00747 + j0.00657 —0.00809 + ;0 00690 —0.01012 + ;0.00826
3  —0.00002 — ;0.00058 - 0.00008 — ;0.00099 —0.00007 — ;0.00106 —0.00008 — ;0.00134

Table 8.17 Loop voltages from the Gauss iterative solution using Y Loop

Loop voltages

Iteration
count
k Loop A Loop B Loop C
0 0.17310 + ;0.34230 0.18475 + j0.37175 0.24715 + 70.51095
1 0.02559 — ;0.02738 0.02806 — 70.02956 0.04065 — 70.04094
2 0.00034 + 70.00381 0.00035 + j0.00415 0.00036 + j0.00596
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8.6 Voltage controlled buses

Voltage control at the terminal of a reactive power source

A modifieation of, or deviation from, the normal computational procedures
for the solution of the lnad flow problem is required ¢ take intc account
voltiage controlled buses. At these buses the voltage magnitude and the
reul power are specified.

In the Ganss and Gauss-Seidel methods using ¥ s the reactive
pover ata voltage controlivd bus p must be ealeniated before procceding
with the ealeulation of voltage at that bus. Separating the real and
imaginary parts of the bus power equation

Py, — 30, = E: E Yool

q=1

the reactive bus power is

(0o = 6,"Byp +f1v2Bmv + Z y’fr)‘\(’q(;pq + foBre) — €3G oy — 4"qu¢” (8.6.1)
=1
i p
where ¢, and f, are the components of voltage at bus p.  The values of
¢» and f, must satisfy the relation

et * fot = [ E pieehmdutea) ) (8.6.2)

in order to caleulate the reactive bus power required to provide the
scheduled bus voltage. The present estimates of ¢, and f* must be
adjusted, therefore, to satisfy equation (8.6.2).
The phase angle of the estimated bus voltage is
k

df = arctan'fik

€p
Assuming that the angles of the estimated and scheduled voltages are
equal, then adjusted estimates for e,* and f,* are

o

i

AN L
p o onewy !ldp:(s('h(‘dull-d) S 5pk

pews = A pi(scheduted) COS 6,F

Substituting €* .., and f¥ |, in equation (8.6.1), the reactive power
Q" is obtained and is used with Ej .., for calculating the new voltage
estimate E4F

In actual practice the limits of reactive power source at the voltage
controlled bus must be taken into account. If the calculated Q,* exceeds
the maximum capability Q.o of the source the maximum value is
taken as the reactive power at that bus. If the calculated value is less

than minimum capability Qpemiay the minimum value is used. In either
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case it is impossible to obtain 2 solution with the specified scheduled
voltage and therefore E} . .. cunnot be used i the caleulation of EX+

The sequence of steps requiret te nclude the effects of voltage
controlled buses in the Gauss-Seide: ‘terative method using Vavs is
shown in Fig. 8.10.

In the relaxation methoua using ¥ 5 « the reactive power at a voltage
controlled bus must be calcuiate} or o to o braming the new current I’,‘,“.

In the Newton-Ruphson merhd “he squations for a veltage con-
trolled bus p are

P, = 21 VeplegGpg t foBpit + J lioe = €854 !
P
and
[Ep|? = ep* + fp? (8.6.3)

where equation (8.6.3) replares the eiration for the reactive power.  The
matrix equation relating the changes it bus powers and the square of volt-
age magnitudes to changes in real and imaginary components of voltage is

AP J1 J-; At
AQ J3 J;
Af
AlE|? Js J.

The elements of the submatrices J,, J.. J; and J4 are calculated as
shown in Sec. 8.3. The off-dizgcenal efements of J; from equation
(8.6.3), are
A EL?
deq
and the diagonal elements are

AL _
- P

de,

Similarly, the off-diagonal elements of J¢ are

AL _ .
= q 14
af




N

< Test
</ for slack bus\>_E_qu_al_...___

B -~
\i’"/

Test
for voltage
controlled
bus

Calculate phase angle of bus p
k

) pk ~ arctan -

v
p

Calculate adjusted voltage for bus p-

X - i
€5 (new) prl(-(l\eduled) cos &,

] . &
/p(rww)_ lEp|(ltA¢dulfd) sun 5,,

l

Calculate reactive power at bus p

n
2 1
Q' = () (nei)  Bop +(/f () By + Z A

q=1
arp

(echm"'[v‘ Bm)'e:(new)( {q*GN-e"BW)!

{new)

Test Test E%X;al
for maximum ™ for minimum
limit limit greater
k. '
Qv ‘ Qp(max) Qp * Qp(min)

Greater Less

P {min)

Replace Q,* by Q, (mar) ] Replace Q: by @
Recompute KL, for bus p }‘—J Replace E;} by E} (neu) I‘—

————— e L
| Solve voltage equation for bus p |
| KL 1 » |
R i D YLy 4= Y YL, B |
: 4 q=1 q=p+l |
R —_————————— 4

Fig. 8.10 Calculation of reactive power at voltage controlled buses in the
Gauss-Seidel iterative method using Yyuys.
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and the diagonal elements are

9|Ey?
ik AR
af. f»

The change in the square of the voltage magmrude at bus p is
A\]fﬁk?? = HEp?(svhodulod,\}: - },Ewk‘l2

If sufficient reactive capability is not avaiabie 1o hold the desired
magnitude of bus voltage the reactive power must be fixed at & Hmit. 1o
this case the bus is treated as a load bus with hxed reactive power,

In the Grauss-Seidel method using Zg « a -orrention to the reactive
bus power can be caleulated in order to proviie ihe scheduled voltage
{Brown, Carter, Happ, and Person, 1963} Fron. the performance
equation, the voltage at bus p is

el;+l +J. :+1 = ZPlIkl+1 R A P T
The current at bus p can be corrected by A/, * Hbrain
er + fp = Zpllli+‘ E e A ¢ e Y P b

where ¢, and f, satisfy the equation (8.6.2). Subrracting the two voltage
equations,

(e + ify) = (&7 + i)

Al =
’ Zps
or
A1k=(e:+l+jf’;+l){ ot
’ Zoy g7 want

Assuming that the phase angles of the scheduled voltage and EX*' are

equal, then,

_ (6:*" + Jf:“) {|E,:\(schedulod)
Zyy B3

The corresponding correction in the reactive pcwer is

8QsF = —Im{(E5)*al,

If the new reactive power

Q:H = Q@ + AQ*

is within the capability limits of the reactive source, then the new bus
current is

P» - jQ';+l
(E5)*
P

-1

ALY

k+1
I =
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1 I A

If Q4+'is not within the reactive capability, the appropriate limit replaces
the caleulated value in the determination of the bus current.  The new
bus current is used in subsequent bus voltage calculations.

Voltage control at a remote bus

It is the practice in the operation of many power systems to control the
voltage at a bus other than the terminal of a reactive source.  This makes
it necessary in the load flow solution to determine a reactive power at
bus p that will hold the voltage magnitude specified for bus ¢, as shown
in Fig. 8.11.

A procedure developed to accomplish this assumes a scheduled volt-
age magnitude for bus p. A reasonable first approximation is

{lljpl(schcdultd)’(m = |Eq‘(schcdulcd)

During the iterative solution the reactive power at bus p is calculated
in the usual manner using this assumed scheduled voltage. After the
calculation of the voltage at bus ¢, however, the deviation from the sched-
uled voltage magnitude is determined from

A !’1‘q|k = ‘qu(ucheduled) - |E0k|

where K is the calculated bus voltage. If the value of A|F,|* is greater
than a specified tolerance, the scheduled voltage for bus p is reestimated
from

{IE 5l aebeautey ' = {1 Epliscneauteay | + AlE,

This procedure has been employed in the Gauss-Seidel method using
Yyus. During the iterative solution a change in the assumed scheduled
voltage at bus p does not affect immediately the calculated voltage at
bus ¢. It is necessary, therefore, to complete a number of iterations
before reestimating the scheduled voltage for bus p. Tests have shown
that five iterations are required to obtain sufficiently accurate changes in
the calculated voltage at bus ¢ for reestimating a new scheduled voltage
for bus p. A voltage tolerance of 0.005 per unit provides acceptable
results.

An alternate procedure is to change {[/o|wencduteay }¥7' by a small
specified amount each iteration until the magnitude of 4|E,|* is less than
the tolerance.

k

P

_f Iqu(ocheduled) Fig.8.11 Singleline dia-

@ } } { gram of reactive power
source and remote volt-

Q @ @ @ age controlled bus.
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8.7 Representation of transformers
Fixed tap setting transformers

A transformer with off-nominal turns ratios can be vepresented by its
impedance, or admittance, connected in series with an ideal autotrans-
former as shown in Fig. 8.12a.  An equivalent » ¢ireurt can be obtained
from this representation 1o be used in load flow studies. The elements of
the cywivaient r cireuit, then, can be treared in the same manner as line
elements.

The parameters of the equivalent = cireuit, snown i Fig. 8.12b, can
be derived by equating the terminal currents of the iransiormer with cor-
responding currents of the equivalent = circuit.  Av bus p the terminal
current [, of the transformer, shown in Fig. 8.124, is
I, = ‘;-’

where a is the turns ratio of the ideal autotransformer and 7y, the current
flowing from ¢ to ¢, is

g = (Ev — EQyp

(a)

IP Iq

5 c L2 § ?(x—%m
= L <+ -
(&) - = (c) = -

Fig. 8.12 Transformer representations. (a) Equivalent circuit; (b) equiva-
lent r circuit; (c) equivalent x circuit with parameters expressed in terms of
admittance and off-nominal turns ratios.
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Therefore,
7 -~

I, = (B — L) ’7 (8.7.1)
Since

K
];( = r

a
equation (8.7.1) becomes

v\ Ypa 79

I, = (F,— al,) oy (8.7.2)

Similarly, the terminal current 7, at bus g is
I, = (Eq — E)ype (8.7.3)
Substituting for F,, cquation (8.7.3) becomes

Yre

Iy = (aBq — I;) * (8.7.4)

The corresponding terminal currents for the equivalent = circuit
shown in Fig. 8.12b are

I,=(E,— E)A + L,B (8.7.5)
I, =(E, — E,)A + ELC (8.7.6)
Letting 2, = 0 and £, = 1 in equation (8.7.2),
I, = — Ype

a

Letting £, = 0 and E, = 1 in equation (8.7.5),
I,=-4
Since the terminal currents for the transformer and its equivalent =

circuit must be equal,

A = Iz (8.7.7)
a

Similarly, substituting £, = 0 and E, = 1 in both equations (8.7.4)
and (8.7.6),

Iy = Ype and I, =44+C

Again, since the terminal currents for the transformer and its equivalent
must be equal,

Yo = A+ C
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Substituting for A from equation (8.7.7) and solving for C,

% Ypa

Upa — —~
a

1
I — =) ¥
[

Fquating the current from equations (8.7.2) and (8.7.5) and substituting
for A4 from (8.7.7),

]

(Ey —ak) ™ = (1, — )T 4 ELB
a- a

Solving for B,

. o\ Yra . v\ Yra
(137> - 0134) P - (ﬁn - ’,,,) 7
B = —
F,
B W ra _ W
ot 7

If

1 /1
— 1 Y py
{1 (1

The equivalent = circuit with its parameters expressed in terms of the
turns ratio a and the transformer admittance are shown in 1g. 8.12¢.

When the off-nominal turns ratio is represented at bus p for a trans-
former connecting p wnd 4. the self-admittance at bus p is

. U 1 /1
Vap = AT g —(-— ~ 1) Yro
T\

a

Yy
= Ypr e o RS Y,

3
a?
The mutual admittance from p to g is

. Y pa
Yoo = —
a

The self-ndmittance at bus ¢ is

. Yap ]
Yoo =40 - -+ ”(IU' A Yen <1 - ;) Yap
=Y F Y e

and ix unchanged. The mntual admittanee from ¢ to p is

. Yap
Vip = ——
a
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The equivalent = circuit shown in Fig. 8.12¢ can be used also in the
methods employing the bus impedance matrix. The elements of Zgpg
are calculated with the equivalent impedance of a/y, from p to ¢. If
in load dow calculations the elements of Zgis do not include the effect of
shunt connections to ground, the total eurrents at buses p and ¢, respee-
tively, are

P, —7 1/1
Ip = = "J'("Jf — ypE, — - (" - 1) tipdsp
a

AL 3
]np a y

P —JQ . 1 ,
1«1 = '"q"];*_"? - yql"c - (1 - (;) ymba

q

Tap changing under load transformers

In the representation of tap changing under load (TCUL) transformers,
1t 1s necessary to change the turns ratio to obtain the desired magnitude
of voltage at a specified bus. This can be accomplished by changing the
turns ratio by a small increment Aa once in any iteration when the voltage
magnitude of bus ¢ is such that

o +
”1'“1,\’ - 1bq|(scheduled= > e

The standard change in tap setting of TCUL transformers is = 5 percent
per step. This value has proved satisfactory for Aa since it vbviates, in
general, additional iterations to obtain a voltage solution. It i1s not
necessary to check the voltage magnitude of those buses controlled by
TCUL transformers every iteration. Performing this check in alternate
iterations has proved sufficient. A voltage magnitude tolerance e of
0.01 per unit has given acceptable results.

The self-admittance Y ,, and the mutual admittances Y,, = }',, must
be recalculated for every change in the tap setting of the transformer con-
necting buses p and ¢. In the Gauss and Gauss-Seidel iterative methods
using Ypys the parameters L, YL,, YL, and KL, must be recom-
puted also. These calculations must be made before continuing the
iterative solution.

Also, the elements of Zgs must be modified for every change in
tap setting. These changes can be effected by adding a new element
from bus p to ¢ such that the series impedance of the = equivalent is

(a + Aa)zp,

where a is the original turns ratio and Aa is the change. Let bz, be the

impedance of the element to be added, as shown in Fig. 8.13. Then,
abz?

A =—2
(@ + Aa)z, Qzpg + bzpg
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® s

P
|

AL A
L——‘J\’\'\'r“"_" Fig. 8.13 Element added to network to reflect

bzpg change in transformer tap setting

_i_;@

Solving for bz,
p 2y
ala + Aa:

bzpy = — Zpg
p
Aa ¥

The change in tap setting of any transiormer requires that every
element of the Zgrs matrix be recomputed. To avoid these extensive
calculations an alternative equivalent can be used, in which the series
impedance is made equal to the original transformer impedance and the
shunt elements are varied to correspond tc tap changes {Gupta and
Humphrey-Davies, 1961).

Letting A = y,, and equating the corresponding terminal currents
from equations (8.7.2) and (8.7.5) for the transformer and its equivalent,
respectively, then

(Ep — Egype + E.B = (E, — ak, 1—

Solving for B,

qu

- - nd 1
B l(ﬁ,, — abq) — (Ep - Eq)yw} }‘_'
“p

a?
)92
; a K, Ynpq
<1 _ 1) ,(1 + 1) — P%“] Upa (8.7.8)
a a 11,,[

Similarly, equating the terminal currents [, irom equations (8.7.4) and
(8.7.6) with A = y,,

Il
e
N

2.
|

(Eq - Ep)ypq + EQC = (aEa - EP) %

Solving for C,

1
C = l(aE« — E) Yoa _ (Eq = E)ypej 7
a E,

1\ YpeE> -
=(1 -2 8.7.9
( a) E, B.79)
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The shunt admittances, (8.7.8) and (8.7.9), at buses p and ¢, respectively,
are a function of the voltages /£, and ;. The bus loading equations are,

then,

Py —jQ X 1 1 £, .
I, = LE—;T_” — yplip — <E - 1) [(; + 1) - E;] Ypol'p

Py —4Q o1 .
Iq"'—qE*] q_quq“<1 _";>qu’»

q

Phase shifting transformers

A phase shifting transformer can be represented in Joad flow studies by
its impedance, or admittance, connected in series with an ideal auto-
transformer having a complex turns ratio, as shown in Fig. 8.14.. Then

the terminal voltages £, and 4, are related by

K, .

z. =.a, + jb,

Since there is no power loss in an ideal autotransformer,
Eyi, = El,

It follows from equations (8.7.10) and (8.7.11) that

iy E}
ie B}
I
a, — jb.
Since
tg = (Ee — EQYse
then
i = (B, — B —2
a, — jb,
Substituting for E, from equation (8.7.10),
G = (B — (@ + jb)Eq} — 22—,
Pf ? a12 + bl2

| |
- ¢ VW]
e Fig. 8.14 Phase

pr tag former representation.

(8.7.10)

(8.7.11)

(8.7.12)

trans-
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Similarly, the transformer current at bus g, 1,,, is
Too = (Fg — E)p
Substituting again for

] SR . y
T = [(as + JO) I, — F) a_:_jb

When a phase shifting transformer is connected hetween buses p
and g, the sclf-admittance at bus p can be determined by letting £, equal
to one per unit and short circuiting all other network buses. Then

Yop = tpitip - - lp o 0 0+ g

Substituting for 7, from equation (8.7.12), and since

Tp1 = Up

Tp2 = Ypo

pn = Ypn

then

Yoo = tp1 + Up + PR ol

The current flowing out of bus ¢ to bus p is —4,,. Therefore the mutual
admittance is

Yop = —1ig
Then
Yir = —Upalis

and from cquation (8.7.10),

. Y pa
AP | . A
" a, + jb,

Similarly, letting /£, equal one per unit and short circuiting all other net-
work buses, the self-admittance at bus q is

Yor=dg +dea =+ F it -+« 4 g

or

Vi Fla * - Hep s * o

The current flowing out of bus p to bus q is 7,.. Thercfore the mutual
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admittance is

Yoo = 15
Then
1,
Vo, =
Py a, — ]'b,

and therefore

= Im (g, By
a, — jb,

Yoo
Since E, = 0, then

Yre
Y= ——"—
pPe a, — Jb,
The complex turns ratio for a specified angular displacement and tap
setting can be calculated from

a, + jb, = a(cos § + 7 sin 8)
where
E, = aEl|

If the phase shift from bus p to bus s is positive, that is, if the sign of 8
is plus, then the voltage at bus p leads the voltage at bus s.

8.8 Tie line control

In studies involving several interconnected power systems, the load flow
solution must satisfy a specified net power interchange for each system.
The first step in the procedure of solving the problem is to calculate a
voltage solution for the entire system, with an assumed generation
schedule for each system. Next, using this voltage solution, the indi-
vidual tie line flows are calculated and algebraically summed by system to
determine the actual net power interchanges. Then, the actual and
scheduled power interchanges for each system are compared to determine
the adjustments that must be made in the assumed generation schedules.

A practical means of effecting the necessary changes in system genera-
tion is to select one generator in each system as a regulating generator.
Each regulating generator is adjusted to satisfy the specified net power
interchange. Thus, for system A4, shown in Fig. 8.15, the actual net
power interchange is

PTk:P;1+P);>2-P};3+P‘;‘4
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Sysﬁem D P
N\
T Pn GR i’img)l
\ /
) System A
\j \ — - N
System c “““"’ B Pe
\ o~
i \\“'R ,
T 1| P
\ - ,
\\ ~

Gr) Regulating generator

Fig. 8.15 Simplified representation of interconnected
power systems.

The difference between the actuai aund scheduled interchanges is
APTk = PT (scheduled: PTk

The new estimate of the power output for the regulating generator of
system 4 is

Pk+l — Pk

(reg) (reg)

+ AP*

Similar calculations are made for the other systems and a new iterative
voltage solution is obtained. The process is repeated until all AP7* are
less than or equal to a specified tolerance. A tolerance of 5 megawatts
is usually acceptable.

8.9 Comparison of methods

An evaluation of the methods for obtaining a load flow solution must
include the following:

1. The computing time required to process system input data in order

to obtain the parameters for the iterative calculation

Computer programming and storage requirements

Iterative solution time

4. The computing time required to modify network data and to effect
system operating changes

[
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The first step in all load flow methods is the coding of the network
and the fermation of the appropriate network matrix. In the bus frame
of reference the assignment of numbers to buses and tc the corresponding
terminals of the network elements provides adequate information to
describe the network connections. In the loop frame of reference it is
necessary also to identify the basie loops of the network.

The bus admittance matrix can be formed by a simuple and straight-
forward procedure because mutuai coupling is not wvolved. A diagonal
element Y, of this matrix is equal to the sum of the admittances of the
network elements connected to bus p.  An off-diagonal element Y, is
equal to the negative of the admittance of the network element connecting
bus p to bus ¢. Moreover, since the bus admittance matrix 1s sparse,
that is, a large number of elements are zero, relatively few elements have
to be calculated.

With the bus admittance matrix it is possible to conserve computer
storage because it is not necessary to store the zero elements. One way
in which this can be accomplished is to store the nonzero elements along
with a list of bus numbers corresponding to the rows and columns of
the matrix.

The formation of the bus impedance matrix requires either a matrix
inversion, nonsingular transformations, or the use of the algorithm.
Unlike the bus admittance matrix, the bus impedance matrix is a full
matrix that has no zero elements except in the row and column associated
with the reference bus. Consequently, for a 101 bus system, of which
one bus is the reference, 20,000 words of computer storage would be
required to store the entire complex matrix. Since the bus impedance
matrix is symmetrical, only the diagonal elements and half the off-
diagonal elements need to be stored. This reduces the storage require-
ment to 10,100 words. In contrast, a 101 bus system with an average of
four lines per bus would require only 1,000 words of computer memory to
store all nonzero complex elements of the bus admittance matrix. Taking
advantage of symmetry would reduce the storage to 600 words. In
addition, space for the bus numbering list would be required.

The formation of the loop admittance matrix involves a matrix
inversion, using either the loop impedance matrix obtained by a singular
transformation or the augmented loop admittance matrix obtained by a
nonsingular transformation. As an alternative the bus impedance matrix
can be formed and then the algorithm can be used to obtain the loop
admittance matrix. The loop admittance matrix is a full matrix.

Test computer programs were developed in order to evaluate the
effectiveness of the methods presented for the load flow solution. These
programs were used to obtain load flow solutions on actual power systems
and to obtain relative solution times.
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The computer time required to perform the iterative solution depends
on the following:

1. The number of logical and srthmetic operations required to com-
plete an iteration

2. The rate of convergence of the sslution technique

3. The size and characteristics of the pewer system

As compared with the Gauss-Serde method. the Gauss method using
either the bus admittance matrix >r the hos impedance mutrix requires
additional iterations to obtain u snlution. Since the time per iteration
for these twa methods is abeut the same, the Gauss method was not
evaluated in detail. The relaxation method using the bus admittance
matrix also required more iterations plus additional time per iteration
and therefore was not studied i detail.

In the development of the computer programs for the Gauss-Seidel
and Newton-Raphson methods using the bus admittance matrix, advan-
tage was taken of the sparsity of the network matrix in order to reduce
the number of arithmetic operations per iteration. The Gauss-Seidel
method was programmed using rectangular coordinates. and the Newton-
Raphson method was programmed using polar coordinates.

The times per iteration obtained for the principal methods presented
are shown in Fig. 8.16. The Gauss-Seidel method using the bus admit-
tance matrix requires the fewest number of arithmetic operations to
complete an iteration. This 1s because of the sparsity of the network
matrix and the simplicity of the solution technique. Consequently,
this method requires the least time per iteration. The Newton-Raphson
method using the bus admittance matrix also takes advantage of the
sparsity of the network matrix in order to reduce the number of arithmetic
operations. However, the computation of the elements of the Jacobian
for each iteration requires additional computer time. The time per itera-
tion in both these methods increases directly as the number of buses of
the network, because the number of nonzero elements added to the
network matrix for each new bus is approximately the same.

The Gauss-Seidel method using the bus impedance matrix requires
a relatively simple solution procedure. However, the time per iteration
for this method is greater and varies approximately with the square of
the number of buses, because the bus impedance matrix is a full matrix.

The Gauss method using the loop admittance matrix requires addi-
tional arithmetic and logical operations to relate bus and loop quantities
during the iterative solution. The time per iteration also varies approxi-
mately with the square of the number of buses, because the loop admit-
tance matrix is a full matrix.
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The rate of convergence of the Gauss-Seidel method using the bus
admittance matrix is slow, requiring a relatively greater number of
iterations to obtain a solution than the Newton-Raphson method and the
methods using the bus impedance or loop admittance matrices. In
addition, the number of iterations for the Gauss-Seidel method increased
directly as the number of buses of the network, whereas the number of
iterations for the other methods remained relatively constant, inde-
pendent of system size. A significant increase in the rate of convergence
can be obtained for the Gauss-Seidel method using the bus admittance
m:trix by applying acceleration factors.

The optimum values of acceleration factors for a load flow solution
are difficult to calculate; however, they can be determined empirically.
The selection of values for « and 8, the acceleration factors for the real
and imaginary components of voltage, depends on the characteristics of
the network and the method of solution. The effectiveness of different
acceleration factors on the rate of convergence for the principal methods
presented is shown in Fig. 8.17. A system of 30 buses and 41 lines was
used for this analysis.

The tolerance required to obtain a solution varies with the different
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methods  The slower converging Gauss-Seidel method asing the bus
admittance matrix required relatively smaller voliage tolerances to
obtain comparable accuracy with that obtained by the methods using the
bus impedance or loop admittance matrices. A voltage tolerance of
0.0001 per unit for both the real and 1maginarv components of voltage
was used in the tests. For the Gauss-Seidel method usirg the bus
mmpedance matrix a voltage tolerance of 0.001 per anit provided com-
parable results. A voltage foierance of 00! per anit produced the
required accuracy for the (riuss method using the icop admittance
matrix

The Newton-Raphson method using the hus admittanee matrix has
the advantage that the tolerances are specified fir the net real and reac-
tive powers at a bus. The tolerances, therefore are given directly in
quantities that are meaningful to the engineer who specifies the desired
accuracy. Tolerances of 0.001 per unit for the real and reactive bus
pouwers were used in the test caleulations and produced comparable results.
The number of iterations for different size systems along with the accelera-
tion factors and tolerances used for each method are sammarized
Table 8.18. The nitial bus voltages were assumed equal to 1.0 + )0
for all tests performed.

The time required for the iterative solution was least for the Newtorn-

100! : — .
80 } —— B il
YBUS - }
2 Gauss - Seidel l
2
§ (411 E————— i . Lo
3
5
3 :
'g 40— e + -
2
; | ‘
20 t Zgus —+ [ 1 — YBUS S
Gauss - Seidel I Newton - Raphson ‘
P
J- __,___———:b:}‘}‘\ Yi00p |
0 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Acceleration factors

Fig.8.17 Effect of acceleration factors on the rate of convergence for
load flow solutions.
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Table 8.18 Number of iterations for load flow solutions

Number Ysus Yaus Zgus Yroor
of huses Gauss-Seidelt Newton-Raphson} Gouss-Serdel§ Fauss
14 24 4 5 4
30 33 4 5 4
57 59 4 [ 6
92 80 4 K] 7
113 92 4 5 -

+ Acceleration factors of 1.7 and 1.7 and tolerances of 0.0001 and 0.0001
per unit used for real and imaginary components of voltage.
+ Tolerances of 0.001 and 0.001 per unit used for real and reactive bus

pOWErS.

No acceleration.

§ Tolerances of 0.001 and 0.001 per unit used for real and imaginary
components of voltage. No acceleration.
€ Tolerances of 0.01 and 0.01 per unit used for real and imaginary
components of voltage. No acceleration.

40

Time units

Ypus
Newton -Raphson
40 80
Number of buses

120

Fig. 8.18 Time for iter-
ative solution not in-
cluding the effects of
voltage controlled buses.
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Raphson method usimg the bus admittance matrix. The total iterative
solution times for *he principal methods are shown in Fig. 8.18. Voltage
controlled buses were not represented in these initial tests.

When voltage controiled buses are represented, the Gauss-Seidel
method using the bus admittance matrix usually requires fewer iterations
to obtaina solutiui  Hewever. u few more iterations usually are required
for the Newton-Ruphsor method using the bus admittance matrix and
the Gauss-Seide! wm=thod asing the hus impedance matrix. The time
per iteration foi the {rauss-Reidel method using the bus admitrance or
bus impedanee mutrix inereases as 1 result of the added compututions
The time per iteration fur the Newton-Raphson method decreases shghtly.
because the nuruber of arithmetic operations is reduced for the voltage
controlled buses.  The total iterative solution times for the principz!
methods when automatic voltage controlled buses are represented are
shown in Fig. 8.19.

When a series of load flow solutions representing various systern
conditions are tc be obtained. it is necessary to revise system data before
proceeding from case to case. Network changes such as the additicn

i
i
60 . ‘
I
|
|
s |
5 Ypus *
g O e Gauss - Seidel
Q H
'
/;
20— 1
f
l ‘
Yous |
Neuwton - Raphson |
| Fig. 8.19 Time for iter-
J ative solution including
0 0 80 120 the effects of voltaze

Number of buses controlled buses.
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and removal of lines and transformers require that the netweork marrix
be modited
When the bus admittance matrix i~ nged, it is necessury to rocom e

only thesr ciemaents of the matnx that are assoetited with ire fertiog-

coes crorransformers thar e berng changed. Beenuse selinely
TOWRLSTON CIeTents are assocted with any one D, Botwesic chnres

Tecved samaphy and quoeksys s However, o0 order 1o ey vh

TN hor IAUEIN HIS neces<ry Tooase Che ool sk
Cogee vt vesadt inadding s onew Dnkomake osaeessear e wl s
Loents e setwork madnix be meaiiieds An sigorithie wonad oo i

S aened o order to provide w nresns of modiiving the fospudot e

mesetoetion of imial vahies 1or bus voltages can have o+ marked
effect wno~olution time. When a <eries of load flow ealeabatons e per-
; “reousnad procedure s to use e final eale:
~ themttal voltages for the next case. Thes tene 0 pehien

Es

ced higs s inges o1

She ranber of tterations, particulariy when there wre oniv mmer chonges
NoSVSTenL conditlons,

Pl compnter time requere L for o foned ow sofutien o depenids

e e speed of the digitd eoraer and ts clicieney an the P

Preme wmts used i the comparison. shereiore, woadd die

irem one digital compaeer toanother, Tgenersd however,
vect e o s equal to about 1osee forwomed i <ize compuater aned 1o
B e v less o a lurge-seale compizer,

8.10  Description of load flowc program

nroesscce load flow computer programs ineorporate many iitematie

Dot o Taetlitate their use in poawver system plunning, operating.
ol e nnection studiess The prineipal objectives of these feaiures

Cand teominimize

Somaximunm use of the compurer’s caput

S manual operations requiired by the enwneer in specifving

cbonoscwning svstem data for the nitiad and saheequent Towd floaw

T American Eleetrie Power Load Flow Program consists of an
wrated <et of computer programs to perform load How caleulitions
andassoeinnnd data processing. The principal components of this

IEINRICE ST SR TS N

Input

The Sy program provides the ability to read into the computer the
peewer svatem data for o load fow ealeulation. This data is converted

proper computer representation and stored in memory in the
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The information recuired for a loud flow sclution is divided into three
ourts First is the base duti which deseribes o apletely the network snd
vperating conditions of the power system. This data includes line and
transformer impedances, goneranien, foads  fransformer taps. statie
tanees, s el as information pertaining

capacitor and shunt reactci oni

o the swing machine and the ©clrwe regade vy enpambty of the svsiem.

To teiiitate data preparie o poaver systor eeshines e dentitied by

wetpd power plant ard aebesaties sy en ptereinnretien stadies

SLVOIVIIE TWo o D e 4 cued ooterehinnge

Sl case saimber and

schedules are required. o
control STatenments whien e fe segiles oo i eneritions for the eal-

culation of a series f load 1w~ Fmallv b < e data cequirest to

effect changes in the sy=ten repros atatiog el coerating conditions for
the caleulation of subseqrent cnses

Data assembly
The data assembly progen orev ces awd civeks data and performe all
computations preliniary v the copanive s icnb b, L the preparas

tion of data this progran: assigus hits parabe s i Wentines the vorous

recany el sl

facilities with each svstem o o

Foltage and power flow caleulatiorn

The program for the voitage cod power o cndealanon perforras th
iterative caleulation to obtain bas woltages ol then uses Thesd vistiages

to compute line and transtormer wadings.

Qutput

The output program uses sy<trm and stifien names together with
assigned bus numbers to idertify the load flow resnlts - The first mrorma-
tion printed includes the study tirle, load fevel case number, remarks.
and study totals. Next. the e bne Bows wand torads ure printed for cact
svstem represented in the <tudy  Anexample »f thie output listing -1 this
information is shown in Fig. 8.20.

Detailed results are printed then for each syvstem.  First, transtormer
tap settings and voltage data are histed for the ~system, follnwed by the
static capacitor and shunt rexetor information. Fually, station condi-
tions and line flows are printed.  For line flows a plus value indicates a
flow out of a bus and a minus value indicates 1 flow into a bus.  An
example of the output of this information is shown in Fig. 8.21.

Syvstem changes

The system change program provides w nieans of automatically effecting
data changes in the caleulation of a series of bad flow eases, The das
changes that can be made are divided e rao Tvpes, network change -
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Fig. 8.22 Sequence of computer operations for the American Electric Power
Load Flow Program.
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and operating changes. Network changes include line and transformer
additions. remsovals, or impedance modifications. Operating changes
include changes in generation, loads, tap settings, capacitor, and reactors
as well as revisions in the voltage schedule, regulating capabiiity. and
interchange schedule.

Data recording and retrieval

The data recording and retrieval program prevides a means of preserving
selected case data on an auxiliary storage device for later retrieval and
use in studying alternate system conditions.

The sequence in which these programs are used to cuiculate a series
of load flow cases is shown in Fig. 8.22.

Digital computers have provided the ability to obtain load flow solu-
tions for very large interconnected systems. Interconnection studies
involving the generation and transmission facilities of a dozen or more
electric companies supplying major portions of twelve or mnre states are
a continuing and important part of power system planning. Studies of
this magnitude require representation of 1,000 or more buses and 2,000
or more lines and transformers.

Problems

8.1 The load flow data for the sample power system shown in Fig. 8.23
1s given in Tables 8.19 and 8.20. The voltage magnitude at bus 2
1 to be maintained at 1.03 per unit. The maximum and minimum
reactive power limits of the generator at bus 2 are 35 and 0 mega-
vars, respectively. With bus 1 as the slack use the following
methods to obtain a load flow solution:
a. Gauss-Seidel using Ygrs with acceleration factors of 1.4 and

1.4 and voltage tolerances of 0.001 and 0.001 per unit

b. Newton-Raphson using Ygcs in rectangular coordinates with

@

| @ Fig. 8.23 Sample power system for Prob.
8.1.
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8.2

8.3

Computer methods in power system analysis

tolerances of 0.01 per unit for the changes in real and reactive
bus powers

¢. Gauss-Seidel using Z gy 5 with voltage tolerances of 0.01 and 0.01
per unit

With tolerances of 0.01 per unit for the changes in real and reactive

bus powers, obtain a load flow selution for the sample system shown

in Fig. 8.23 using the following methods:

a. Newton-Raphson using Yjzrs in rectangular coordinates.
Assume the off-diagonai elements of the submatrices .Jy, J,, Js.
and J of the Jacobian to be zero.

Newton-Raphson using Y ys in polar coordinates.
Newton-Raphson using Yjpzys in polar coordinates. Assume
the submatrices J, and J; of the Jacobian to be zero.

Compare the convergence characteristics of these techniques and

that of the method used in Prob. 8.1, part b.

Add to the sample system shown in Fig. 8.23 a second circuit from

bus 1 to bus 3 with an impedance of 0.02~4- 70.06. Assume a fixed

reactive generation of 25 megavars at bus 2 instead of maintaining

voltage at that bus. Using the data given in Tables 8.19 and 8.20,

obtain a load flow solution by the Gauss method using Yioopr. Let

the loop voltage tolerances be 0.01 and 0.01.

Table 8.19 Impedances for sample
system for Prob. 8.1

Bus code Impedance Line charging
P Zpq Yno/2
1-2 0.08 + j0.24 0
1-3 0.02 + j0.06 0
2-3 0.06 4 jO.18 0

Table 8.20 Scheduled generation and loads and assumed bus
voltages for sample system for Prob. 8.1

Generation Load
Bus code Assumed
P bus voltage Megawatts Megavars Megawatts Megavars
1 1.05 + ;0 0 0 0 0
2 1.0 4,0 20 0 50 20
3 1.0 +;0 0 0 60 25
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The sample power system shown in Fig. 8.24 is composed of a tap
changing under load transformer with an impedance of 0 + j0.03.
The load at bus 2 is 200 megawatts and 100 megavars. Let bus 1
be the slack and its voltage be 1.0 + jO per unit. Assume an initial
tap setting of 1.0 and determine the required tap setting to hold a
voltage magnitude of 1.0 per unit, within +0.005 per unit, at bus 2.
Use the Gauss-Seidel method with Ygrs and a 3¢ percent step per
iteration for the tap change.

Fig. 8.24 Sample power system for
Prob. 8.4.

The load flow data for the sample power system shown in Fig. 8.25
is given in Tables 8.21 and 8.22. The voltage magnitude at bus 2
is to be held at 1.0 per unit by means of the synchronous condenser
at bus 3. The maximum and minimum reactive power limits of the
condenser are 50 and —10 megavars, respectively. With bus 1 as
the slack, use the Gauss-Seidel method and the bus admittance
matrix to obtain a load flow solution. Use voltage tolerances of
0.001 and 0.001 per unit and acceleration factors of 1.4 and 1.4.

©

®

! @ Fig. 8.25 Sample power system
for Prab. 8.5.

Table 8.21 Impedances for sample
system for Prob. 8.5

Bus code Impedance  Line charging
P Zpq Ypo/2
1-2 0 + 70.05 0
1-3 0 + ;0.10 0
2-3 0 + j0.05 0
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Table 8.22 Scheduled generation and loads and assiumed bus
voltages for sample system for Prob. 8.5

Generation Load
< rode Assumed ST s e
» bus voltage Megawalts Megavars Meacwalls Megarars
i 1.03 + ;0 0 0 U 0
2 1.00 + ;0 0 0 200 100
3 1 00 + ;0 0 0 [t il
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chapter 9
Numerical solutionof

differential equations-

9.1 Introduction

Many complex physical systems are deseribed by differerntial equations
for which a solution cannot be determined in analytical form. However.
techniques are available to obtain approximate solutions of such differ-
ential equations, or sets of equations. by numerical methods. Thus
the solution of differential equations is another important phase in numeri-
cal analysis.

In general, methods of numerical integration employ a step-byv-step
process to determine a series of values for each dependent variable cor-
responding to a selected set of values of the independent variable. The
usual procedure is to select values of the independent variable at fxed
intervals. The accuracy of a solution by numerical integration depends
both on the method chosen and the size of the interval. Some of the
methods frequently used are described in the following sections.

9.2 Numerical methods for solution
of differential equations

Euler’s method

Given the first-order differential equation

d

s (9.2.1)
dr

where r is the independent variable and y is the dependent variable. the
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- axe Fig. 9.1 Graph of the
- ! Lo x  function for solution of a
differential equation.

solution of equation (9.2.1) will be in the form
y = g(z,¢) (9.2.2)

where ¢ is a constant determined from specified initial conditions. The
curve representing equation (9.2.2) is shown in Fig. 9.1. Since this is a
smooth curve, short segments can be assumed to be straight lines. Thus,
at a particular point (z,y0) on this curve,

dy
Ay ~ E‘OA.I

d ) .
where d'y 10 is the slope of the curve at the point (ze,yo) and is obtained
T !

by substituting zo and y, in equation (9.2.1). Hence, given the initial
values zo and yo a new value of y can be determined for a specified Az.
Letting h = Az, then

dy |
Y1 = Yo + Ay or Y1 =Y+ | h
dz 10

where Ay is the increment of y corresponding to the increment of z.
In turn, a second value of y can be determined by
dy
y: = Y1 + @ 1 h
where

dy

dr 1

= f(-’Clyyx)
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i Fig. 9.2 Graph of ap-
e e proximate solution of o
‘ e e o X differential equation b~
Euler’s method.

This process can be continued using

=yt W

$T T gl

w—-y;“rqﬂ h
dz 3

to provide a table of x and y values for the integral solution of cquatior
(9.2.1). This method is llustrated in Fig. 9.2.

The modified Euler method

In the application of Fuler’s method. a value of dy, dx ealeulated at the
beginning of the interval ix assumed to apply over the entire intervid
An improvement can be obtained by calculating the new value of y for
zy as before:

ny=zot+h

dy

0 __ A

W=yt ok

and using these new values r, and y,” in equation (9.2.1) to calculate the

. d . .
approximate value of d_y , at the end of the interval. 1.e.,
I

dy |

d’l"’l =f<117y10‘)
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Then, an improved value ¥ can be found by using the average of

dy: dy @
170 and 2z h as follows:
dy| , dypo
o delo " dr i
¥y o= Yo + '——2“—'

Using z1 and yi. a third approximation y;*’ can be ubtained by the same
process:

dy | dy
b 9
(?) dr o dxil

And a fourth:

w) gy
&) dzl®  dzll
2

This process can be continued until two consecutive estimates for y are
equal within the desired tolerance. The entire process is then repeated
to obtain y,. The improved accuracy obtained with this modification of
Euler’s method is illustrated i Fig. 9.3.

Euler’s method can be applied for the solution of simultaneous dif-
ferential equations. Given the two equations

dy
JI - fl(x,y,z)
dz
;1; - f?(x)y:z)

with the initial values z, yo, and zo, the new value y; will be

dy
dJ1 = Yo + d_:c o h
where

d
di o = J1(Zo,y0,20)

Similarly
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e hmeed

n

Xq %

Fig. 9.3 Graph of approximate solution of a differen-
tial equation by the modified Euler method.

where

dz

a0 f2(To,y0,20)

For the next increment, the values r, = zo + h, y,, and z, are used to
determine y, and z.. In the modified Euler method y; and 2, are used to

evaluate the derivatives at z, for estimating the second approximations
h 2%

¥y’ and 2",
Picard’s method of successive approximations

The basis of Picard’s method is to determine a solution by approximating
y as a function of z over a given range of x values, that is,

y =~ g(x)

This expression is evaluated by directly substituting values of x to obtain
corresponding values for y. Given the differential equation (9.2.1),

dy = f(z,y) dx
and integrating between corresponding limits for z and y.

[rdy = [T @) de
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then

= v = [ @y de

or

n=vot [y de 9.2.3)

The integral term represents the change in y resulting from the change in
r from xo to x;. A solution can be obtained by evaluating the indicated
integral by a method of successive approximations.

The first approximation for y as a function of £ can be obtained by
replacing y under the integral with y,, the initial given value, that is,

v’ =+ [ Gy dr

and performing the indicated integration. This new value of y may now
be substituted in equation (9.2.3) to obtain a second approximation for
y, that is,

W=yt [ fayd) do

The process may be repeated as many times as necessary to obtain the
desired accuracy.

However, evaluating the integral may be complicated even though
one of the variables is assumed fixed. This difficulty and the need to
perform many integrations restrict the application of this method.

Picard’s method can be applied to the solution of simultaneous equa-
tions such as

d
=y
d
(}_IZ = fQ(I:yvz)

by using the formulas
Y1 = Yo + j:lfl(x,yo,zo) dzx
2y = 2o + /:fz(x,yo,zo) dx

The Runge-Kutta method

In the Runge-Kutta method the changes in the values of the dependent
variable are caleulated from a given set of formulas that are expressed in
terms of the derivative evuluated at predetermined points. Since each



Chapter 9 Numerical solution of differential equations 349

value of 4 is uniquely determined by the formulas, this method does not
require repeated approximations as in the modified Euler method or
successive integrations as in Picard’s method.

The formulas are derived by using an approximation to replace a
truncated Taylor’s series expansion. The Runge-Kutts second-order
approxvmation can be written in the form

Y1 = ne b kg 4+ agk, (9.2.4)
where
kl = {(I.yo)h

kg = f(I(s -+ b1h~ Yo + b2kl)h

and the coefficients a;, as, by, and b, are to be determined. First, expand
flze + bih. yo + boky) in a Taylor's series about {(zaue}; then,

[ af 9 ’
ke = {f(xo,y0) +b1£§0h+bzk1£[0+ e " b

Substituting for k; and two terms of the series for ks in equation (9.2.4),
the approximation becomes

of . af
Y1 = ye + (a1 + a2)f(2o,y0)h + asby 5; 0 k= 4 ashyfirya) 37/ 0 h?
(9.2.5)
The Taylor’s series expansion of y about {ze,ya) is
_dy d'y R .
y1=yo+d10 +(*i—202+"' (9.2.6)
Since
y dtyi _ of:
gz o = J(@oye)  and Tl = 35 0 f(l'o yo)
equation (9.2.6) becomes
h? -
Y1 = Yo + f(o,yo)h + —f |0~2 + —f f(ro yo) : (9.2.7)

Equating coefficients of equations (9.2.5) and (9.2.7), then

01+ag =1
a2b1=}/2
G:bz=}/2

Selecting an arbitrary value for a,,

01=}/2
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then

dqg = }/2
bl = 1
i‘)z =1

Substituting these values in equation (9.2.4), the Runge-Kutta second-
order approximation formula is

J1 = Yo + %kx + VZkz

where k, = f(xo,y0)h
ko = f(zo + h, yo + k)R

Hence,
Ay = 24(k1 + ko)

The application of the Runge-Kutta method for a second-order
approximation requires the computation of k; and k.. The error in this
approximation is of the order h® because the series was truncated after
the second-order terms.

The general Runge-Kutta fourth-order approximation formula 1s

Y1 = Yo + alkl -+ a2k2 + aska + a(k{ (928)

where k; = f(xo,y0)h
ks = f(zo + bih, yo + bak1)h
'3 = f(xo + bsh, yo + bika)h
ki = f(zo + bsh, yo + beks)h

Following the same procedure used for the second-order approximation,
the coefficients in equation (9.2.8) are determined:

(11:}6
a» = 2§
as = %¢
a, = 1§
and

b= %
by = 3
by = 1%
bq:&é
bs =1
be = 1
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Substituting these values in equation (9.2.8), the Runge-Kutta fourth-
order approximation becomes

Y1 = o+ Salks + 2k, + 2k + k)

where k) = f(xo,yo)h

ki |
'Cy= In‘t-;‘l/o*;z h

h

2
b= T h Tlc_;}
Hg o= ] I()'T'z’yo‘i‘Q :

ke = f(xo + h. yo + ka)h

Thus, the calculation of Ay with this formula requires the computation
Of kl, kz. k;, and k4 and

Ay = La(ky + 2ky + 2ks + ky)

The error in this approximation is of the order A*.
Runge-Kutta fourth-order approximation formulas for simultaneous
differential equations of the form

dy
i f(x,y,2)
dz
i g(z.y,2)
are

Y1 = Yo+ }{3(161 +2k2 + Qka + k4)
2 20 + }/ﬁ(ll + 21, + 213 -+ 14)

where k; = f(zo,y0,20)h
l
kz=f($€o+ = Yo+ — 20+_1)h

ka"f(-"o-f' = Yo + 1Zo+ )

ke = f(zo + h, yo + ks, zo + la)h
L = g(zo,y0,20)h

z=g(xo+-»yo+ 2o+ )

o~

l;= (Io+ = Yo + ’Zo+ )
Iy = g(xo + h, yo+kz, 2o + l3)h
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Predictor-corrector methods

Methods that are based on extrapolation, or integration ahead, and
1iteration for the solution of the differential equation

d .
W f(z.y) (9.2.9)
dr

are called predictor-corrector methods. The general procedure in a
predictor-corrector method is to advance from the point (2,7} to the
peint (Tp.1,Yn41) by means of a formula that does not include the unknown

. . . d .
derivative at the latter point; then, to determine dfy | . from the differ-
I n e

ential equation and to correct yn+1 by the application of a more accurate
formula.

A simple type of predictor formula is that in Euler’s method, i.e.,
Ynet = Yn + Yoh (9.2.10)
where

L dy
J"—dx"

A corrector formula is not used in Euler's method. However, in the
modified Euler method an approximate value of ya1 is obtained from the
predictor formula (9.2.10) and this value is substituted in the differential
equation (9.2.9) to determine y.,,. Then, a more accurate value for
Yn-1 is obtained by means of the corrector formula

/ N
Uret = Yo F Wosr T 92 5 (9.2.11)

This value is substituted in the differential equation (9.2.9) to obtain a
better estimate for y,,,, which in turn is substituted in equation (9.2.11)
for a more accurate y.;. This iterative process is continued until two
successive calculations of yai1 from equation (9.2.11) yield the same
value within the desired tolerance.

The classic predictor-corrector method is that of Milne. Milne’s
predictor and corrector formulas, respectively, are

4h
y‘no-il = Yn—_s + —g (2?!:._2 - y;_.x + 2y:|)

and

h ’ ’
Yne1 = Yn—o1 g (yn—l -+ 4y:. + yn+l)
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where

7 :
Ynir = [@asr, 00

The start of the compuraiicn requires four copseeurive known values of y.
These may be calculated by the Runge-Kutts or some other numerical
method before applying  Milne's predicter-corrector formulas. The
error in this method 1s of the order A%

In general, it is desirable to choose A sutheiently small so that only a
few iterations are required to obtain any v, . to the desired accuracy.

These methods ¢can be extended for the numerical solution of simul-
taneous differential equations. The predictor and corrector formulas
are applied independently to each differertia. envation as though 1t were
a single equation. However, substitution of values for all the dependent
variables into each differential equation is required to estimate the
derivatives at (Zny1,¥ne1)-

9.3 Solution of higher-order differential equations

The techniques previously described for the =oiution of first-order differ-
ential equations can be applied alsu to the sciution of higher-order differ-
ential equations by the introduction of auxiliary variables. For example,
given the second-order differential equation
ay . dy
a-—+b—+cy=0
dzr? dz v

v : 4 :

~% . this equation can be written
dx ®

as two simultaneous first-order differential equations:

and the initial conditions, xs, ys and

dy
2 =Y
dy  dy' by' + cy
drt  dz a

One of the methods previously described can be employed to solve these
two first-order differential equations simultanecusly.

In a similar manner, any equation ur system of equations of higher
order can be reduced to a system of equations of the first order.

9.4 Examples of numerical
solution of differential equations

The solution of a differential equation will be illustrated by calculating
the current for a series RL circuit.
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t=10 R

¥

—_—

-
.‘ i

»mQ L

i

i.

circuit.

Problem

taver the BL eircult in Fig. 9.4 where the voltage applied by
the switeh e

e{t) = 5t 0<t<0.2

ety =1 t> 0.2

the resistance, in ohms, is

R =1+ 3¢

and the inductance, in henrys, is

L =1

Iind the current in the circuit by each of the following methods:

a. Euler’s

b. The modified Euler

¢.  Runge-Kutta fourth-order approximation
d. Milne's

e. Picard’s

Solution

The differential equation of the circuit is

di

L
dt

+ Ri = e(t)
Substituting for R and L, then,

"
4 3 = elt)
dt

Fig. 9.4 Representation of an RL

elosing

The initial conditions at { = 0 are e, = 0 and i, = 0. The interval

selected for the independent variable is A1 = 0.025.
a. The equations for Euler’s method are

di
dtin
1’n+1 = 1:,. + A'Im

At At
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where
di
— | = en — (1 + 34
d In ( )
L o . . ) .de
Substituting the initial values in the differential equaticr, T 0 wnd
dt

Ato = 0. Hence. the current 73 = 0. At {4, = 0.025, ¢; = 0125 and

di | .

=1 o=0125 — 1 - 3020 = 0123
dt '

Afy = (0.125)0.025 = 0.00313

Then,

13 = 0 4+ 0.00313 = 0.00313

The tabulated results for this solution are shown in Table 9.1.
b. The equations for the modified Euler method are

. di
aY == | At
10 =t ALY
di ‘ di O
dtIm = df n+t
A‘l‘;l) = —'2_— At

(1 N (1
1’7-4)—1 = 1n + A’lfl)

]

Table 9.1 Solution by Euler’s method

Time Voltage Current
K . di: di ) .
n tn €n I = ta_y + o1 At A (1 4+ 341,
0 0.000 0.000 0.00000 G 00000
1 0.025 0.125 0.00000 0. 12500
2 0.050 0.250 0.00313 0.24687
3 0.075 0.375 0.00930 0.36570
4 0.100 0.500 0.01844 0.48154
5 0.125 0.625 0.03048 0. 59444
6 0.150 0.750 0.04534 0.70438
7 0.175 0.875 0.06295 0.81130
8 0.200 1.000 0.08323 0.91504
9 0.225 1.000 0.10611 0.89031
10 0.250 1.000 0.12837 0.86528
11 0.275 1.000 0.15000 0.83988
12 0.300 1.000 0.17100
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where

dii(o) § 0 y2) (0
&;"+1 = eay1 — {1 + 3020000

Substituting the initial values e = 0 and ¢, = 0 in the differential

equation,

di

dro

and, therefore,

ALY =0
=0

Substituting in the differential equation 7; = 0 and ¢, = 0.125,

d? (0 . o
oo = 0125 — {1+ 3(0)%0 = 0125
and

0.125 40
ALY = <—~ ;+ )o.oza = 0.00156
Then,

Y =0+ 0.00156 = 0.00156

In solving the example by this method, no iteration was performed;

hence ‘%

Table 9.2.

Table 9.2 Solution by the modified Euler method

vi1 = tny1. The solution obtained by this method is shown in

1

Volt-  Cur-
Time age rent di di 1(0)

nin €n 1n dt n any ns1 i dt In+1 AT
0. 0.000 0.000 0.00000 0.00000 0.00000 0.125 0.00000 0.12500 0 00156
10,025 0.125 0.00156 0 12344 0. 00309 0.250 0.00465 0.24535 0.00461
2 0.050 0.250 0.00617 0.24383 0 00610 0. 375 0.01227 0.36272 0.00758
3 0.075 0.375 0.01375 0.36124¢ 0.00903 0.500 0.02278 0.47718 0.01048
4 0.100 0.500 0.02423 0.47573 0.01189 0.625 0.03612 0.58874 0.01331
5,0.125 0.625 0.03754 0.58730 0.01468 0.750 0.05222 0.69735 0.01606
61 0.150 0.750 0.05360 0.69594 0.01740 0.875 0.07100 0.80293 0.01874
710,175 0.875 0.07234 0.80152 0.02004 1.000 0.09238 0.90525 0.02133
8. 0.200 1.000 0.09367 0.90386 0.02260 1.000 0.11627 0.87901 0.02229
Y 0.225 1.000 0.11596 0.87936 0.02198 1.000 0.13794 0.85419 0.02167
101 0.250 1.000 0.13763 0 85455 0.02136 1.000 0.15899 0.82895 0.02104
11:0.275 1.000 0.15867 0.52935 0.02073 1.000 0.17940 0.80328 0.02041
12 ‘ 0.300 1.000 0.17908
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¢. The equations used for the Runge-Kutta method to solve

x ) — (1 + 3
il )1

are

kl = ;é(lln) - (1 + 27"111\)":’ A

{ Dy r‘ : 3 7~ . kl : - . kl
ko = ‘(' {ta + AL 2) ~ {l + (Asn -+ 2~) ](z" + 5) AL
, [ £ kY ko
k, = (. Nt w3l + 2 4
3 I(’ \! + A[ ) |4 + o \ -+ 2) ] (1 2)

ko = feitn + Al — {1 -+ 3{1, + k3)2|(1n + ks)} AL

7‘n+1 =1, + Aty
where e(t,) = en

en + €n
e(ta + AL/2) = —_Er—ff

elts + Al = ensy
Substituting the initial values to solve for ky,
kh=0
Solving for k,,

0+ 0.125
ks = {i?;’ S+ 3(0)210} 0.025 = 0.00156

Solving for ks,

0 + 0.125 00156\27 0.001:
ky = l—-LOQ - [1 + 3(9921—5’) ]0—0(_;@] 0.025 = 0.00154

&

Solving for ky,

ko= {0+ 0.125 — [1 + 3(0.00154)%0.00154]0.025 = 0.00309
Then,

Aiy = 14(0 + 0.00312 + 0.00308 + 0.00309) = 0.00155

and
11 = 15 + Aip = 0 4+ 0.00155 = 0.00155
The solution obtained by this method is shown in Table 9.3.
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d. The predictor and corrector formulas for Milne’s method are

. . 1 L . "
t’(l.izl = tn—3 T —5. (2tn——2 - 1’:1—1 + 21’1:)

) y At . »
gl = tnog + g (o, + 40, + 1.,
where

v
1, =

Q.|Q..
o~ -

and

di
d_:L = €n — (1 + 31:..2)1:,.
The required starting values were obtained from the Runge-Kutta solu-
tion, where

io = 0

7y = 0.00155

1, = 0.00615

13 = 0.01372

Substituting these in the differential equation, then
i =0

il = 0.12345

1, = 0.24385

i, = 0.36127

Starting at {, = 0.100 and substituting in the predictor formula, the first
estimate for 7, is

Y = 0 + 44(0.025)[2(0.12345) — 0.24385 + 2(0.36127)] = 0.02418
Substituting e, = 0.500 and ¢, = 0.02418 in the differential equation,
1, = 0.500 — [1 + 3(0.02418)2]0.02418 = 0.47578

Substituting in the corrector formula,

0.02
1, = 0.00615 + ——3—5 [0.24385 + 4(0.36127) + 0.47578] = 0.02419

The predicted and corrected values differ only by one in the fifth decimal
place and thus no iteration is required. The results for subsequent steps
are given in Table 9.4. At ¢y, the predicted value of current was 0.11742.
whereas the corrected value was 0.11639. An iteration was performed
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Tauble 9.4 Solution by Milne’s method

Current Clurrent
i Time  Voltage (predicted) B icorrected’
L Y €n in i t
== —
4 0100  0.500  0.02418  0.47578 O 02419
£ 70125 0.625  0.03748  0.58736  0.0374%
6 0150 0750  0.05353  0.69601 0 05353
T .0.175  0.875  0.07226  0.80161  0.07226
~0.200 1.000 0.09359  0.90395  0.09358
W 0.225  1.000  0.11742  0.87772  0.11639
: 0.8788%  0.11640%
10 10.250 1.000 0.13543  0.85712  0.13755
| 0.85464  0.13753%
11 0.275 1.000 0.16021 0.82745 0.15911
@ 0.82881  0.15912t
12 ©0.300 1.000 0.17894  0.80387  0.17898
i 0.80382  0.17898%

t Second corrected value obtained by iteration.

by substituting this corrected value in the differential equation to obtain
iy = 0.87888. This in turn was used in the corrector formula to obtain
the second estimate for 7, = 0.11640, which checks the previous cor-

rected value. An iteration was performed in all subsequent steps to

assure the desired accuracy.

e. The equation used for Picard’s method to generate an approximating

function for 7, near 7o = 0, 1s

[ =1+ [o‘ (e(t) — i — 31%) dt

Substituting e(t) = 5¢ and the initial value 7o = 0,

| 512
w = [latdt = =

Then, substituting ¥ for ¢ in the integral equation,

i = [ (s

8

t? 5¢8
_ 5t* 375 )dt
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Continuing,
' 512 5t8  375t¢ 37507 1258 \
1'"‘=f0<5z——+°—— T o Va

26 8 7 8 /
5t 5 5t 3750

2 6 24 56

tf . atr At att 375t8 3TAE A
[lor =2 420 2 20 L2

0 26 24 R 7

5 %6 T m w6 T
Terminating this series after the fourth-degree terni. theg

TR YA 1A
T2 et
If this function is used to approximate t correct to four decimal places
with the first neglected term as an approximation of the rruncation error,
then

5

t
— < 0.00005
24

3 log t < log 0.00120
log t < 9.415836 — 10
t <0.2605

This 1s the limiting value of ¢ for which the approximating function iz
valid. However, in this example the function can be used to obrain y
only for the range 0 < ¢ < 0.2, because for ¢t > 0.2, ¢if) = 1. Conse-
quently, another approximating function must be determined for the
range 0.2 < ¢t < 0.3 as follows:

i = 0.09367 + /0‘2 (1 — 1 — 3% dt
i = 0.09367 + [, {1 — 0.09367 — 3(0.09367)*1 at
= 0.09367 + 0.90386(t — 0.2)
i = 0.09367 + [, {1 — 0.09367 — 0.90386it — 0.2)
— 3(0.09367 + 0.90386(t — 0.2)°} d’
= 0.09367 + 0.90386 j0‘2 {1 — 1.07897(¢ — 0.2)

— 0.76198(t — 0.2)? — 2.45089(t — 0.2)%} dt

- o (t—0.2)7
= 0.09367 + 0.90386 { (t — 0.2) — 1.07897 9

—_— )3
— 0.76198 - :) 2 _ ) 45089 —

o
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Table 9.5 Solution by
Picard’s method

!
| Time Voltage Current
i

no in en ta
—f
U 0 0
1, 0.025  0.125  0.00155
2 0 0.050 0.250  0.00615
3 0.075 0.375  0.01372
. 0.100  0.500  0.02419
3 0.125  0.625  0.03749
6 0.150 0.750  0.05354
7 0.175 0.875  0.07229
S 0.200 1.000  0.09367
9 0.225 1.000 0.11596
10 0.250 1.000 0.13764
11 0.275 1.000  0.15868
12 0.300 1.000 0.17910
Finally,

{3 = 0.09367 + 0.90386(t — 0.2) — 0.48762(¢t — 0.2)2
— 0.05420(¢t — 0.2)® — 0.30611(t — 0.2)* + 0.86646(¢t — 0.2)* - - -

Terminating the series, the approximating function is

1 = 0.09367 + 0.90386(¢ — 0.2) — 0.48762(¢t — 0.2)?
— 0.05420(¢t — 0.2)® — 0.30611(¢t — 0.2)*

For 7 correct to four decimal places, since

0.86646(t — 0.2)% < 0.00005
(t —0.2) < 0.14198

this function is valid for the range 0.2 <t < 0.342.
The values obtained by Picard’s method are shown in Table 9.5.

9.5 Comparison of methods

In the solution of a differential equation a functional relation between the
dependent variable y and the independent variable z is sought to satisfy
the differential equation. An analytical solution is difficult and for some
problems impossible to obtain. Numerical methods are used to obtain a
solution by (1) expressing y as some function of the independent variable
z from which approximate values of y can be obtained by direct substitu-
tion, or (2) expressing an approximate relation between successive values
of y determined for selected values of . Picard’s method is a numerical
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method of the first type. The methods of Euler, Runge-Kutta, and
Milne are exaniples of the second type.

The prineipsi difhculties that arise from methods approximating y
by a function. sueh as Picard’s method. occur in the repeated explicit
integrations that niust be performed to obtain a satisfactery function.
Hence these methods are impractical in most cases and are seldem used.

The methads of the second type require simple arithmetic operations
and thus are wppheatle for a computer solution of differential equations.
In general. the <impler reiations require the use of smaller mntervals for
the independent variable whereas the more complex methods capy employ
relatively larger intervals without sacrificing the accuracy of the sclution.
Euler’'s method is the simplest, but unless a very small interval is used it
is too inaccurate to be practical. The modified method of Euler is also
simple to apply and has the additional advantage that systematic check-
ing 1s inherent in the process of obtaining improved estimates for y. This
method is of limited accuracy, however, and requires the use of small
intervals for the independent variable. The Runge-Ikutta method
requires a larger number of arithmetic operations. but the results are
more accurate.

AMilne's predictor-corrector method is less laboricus than is the
Runge-Kutta method and has comparable accuracy of order A>. How-
ever, Milne's method requires four starting values for the dependent
variable that must be obtained by some other method, such as the
modified Euler or Runge-Kutta method, that is self-starting. For a
computer application this requires programming a numerical method
for starting the solution as well as Milne’s method for continuing the
solution. The use of different formulas for predicting and then correcting
a value of y provides a systematic process for checking us well as cor-
recting the initial estimate. If the difference between the predicted and
corrected values is significant, the interval can be reduced. This capa-
bility in the Milne method is not available in the Runge-Kutta method.

Problems
9.1 Solve the differential equation

i
dz y

for 0 < x < 0.3, with the interval equal to 0.05 and initial values
7o = 0 and yo = 1, by the following numerical methods:

a. Euler’s

b. The modified Euler

c. Picard’s
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d. Runge-Kutta fourth-order approximation
e. Milne’s, using starting values ohiamed from the Runge-Kutta
method

9.2 Solve by the modified Euler methixi the simultaneous d:fferential
equations
dz
dt
dy _

dt 2

for 0 < ¢ < 1.0, with the intervai equal to 0.2 and initisd values
fo=0,z, =0, and y. = 1.

9.3 Solve by the Runge-Kutta fourth-order approximation the second-
order differential equation

y' =y +

for 0 < z < 0.4, with the iuterval equal to 0.1 and initial values
o =10, ys = 1, and yy = 0.
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chapter 10
Transient stability siudies

10.1 Introduction

Transient stability studies provide information related to the capability
of a power system to remain in synchronism during major disturbances
resulting from either the loss of generating or transmission facilities,
sudden or sustained load changes. or momentary faults. Specifically.
these studies provide the changes in the voltages, currents, powers.
speeds, and torques of the machines of the power system, as well as the
changes in system voltages and power flows, during and immediately
following a disturbance. The degree of stability of a power system is an
important factor in the planning of new facilities. In order to provide the
reliability required by the dependence on continuous electric service,
it is necessary that power systems be designed to be stable under any
conceivable disturbance.

The ac network analyzer was used for transient stability studies to
obtain the operating performance of the power network during a disturb-
ance. The step-by-step calculations describing the operation of the
machines were performed manually. The use of the digital computer to
perform all computation for both the network and the machines was a
natural extension of the digital load flow studies that proved so successful.

The performance of the power system during the transient period
can be obtained from the network performance equations. The perform-
ance equation using the bus frame of reference in either the impedance
or admittance form -has been used in transient stability calculations.

In transient stability studies a load flow calculation is made first to
obtain system conditions prior to the disturbance. In this calculation
the network is composed of system buses, transmission lines, and trans-
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formers. The network representation for transient stability studies
includes, in addition to these components, equivalent eireuits for machines
und static impedances or admittanees to pround for loads.  Afrer the
loud flow calculation, therefore, the impedance or admittance matrix of
the network must be modified to refleet the changes in the representation
of the network.

The operating characteristies of synchronous and induction machines
are described by sets of differential equations.  The number of differ-
ential equutions required for w machine depends on the detal needed to
represent accurately the muchine performance.  I'wo first-order differ-
ential equations are required for the simplest representation of a syn-
chronous machine.

A transient stability analysis is performed by combining a solution
of the algebraic equations deseribing the network with a numerieal solu-
tion of the differential equations.  The solution of the network equations
retains the identity of the system and thereby provides access to system
voltages and currents during the transient period.  The modified TSuler
and Runge-Kutta methods have been applied to the solution of the differ-
ential equations in transient stability studies.

10.2 Swing equation

In order to determine the angular displacement between the machines of
a power system during transient conditions, it is necessary to solve the
differential equation describing the motion of the machine rotors. The
net torque acting on the rotor of a machine, from the laws of mechanics
related to rotating bodies, is

2
T = WgR « (10.2.1)

where 7' = algebraic sum of all torques, ft-1b

WR? = moment of inertia, 1b-ft?
g = acceleration due to gravity, equal to 32.2 ft/sec?®
a = mechanical angular acceleration, rad/sec?

The electrical angle 6, is equal to the product of the mechanical angle 6.
and the number of pairs of poles 2/2, that is,

6. = 250"‘ (10.2.2)

The frequency f in cycles per second is

- Prpm

=5

(10.2.3)



Chapter 10 Transient stability studies 367

Then from equations (10.2.2) and (10.2.3) the electrical angle in radians is

60,
6, = —f Om (10.2.4)
rpm
The electrical angular position 8, in radians, of the rotor with respect to a
synchronously rotating reference axis is

§ = 0, — wdl
where wo = rated synchronous speed, rad/sce
{ = time, sec
Then, the angular velocity or slip with respect to the reference axis is
ds  dé,
a A T
and the angular acceleration is
d*s d*8,
ar ~ dr

Taking the second derivative of equation (10.2.4) and substituting,
d*s  60f d%.,

dt*  rpm dt?
where

%0,

dr

Then, substituting into equation (10.2.1), the net torque is
p - WE? rpm d%
g 60f dt?
It is desirable to express the torque in per unit. The base torque is
defined as the torque required to develop rated power at rated speed,

that is,
base kva < ")30 >
0.746

or (rp__m)
60
where the base torque is in foot-pounds. Therefore, the torque in per
unit is
WR? 2r (_r_‘pm)’ 0.746
g [ \60 550 d%
base kva dt?

Base torque =

T=

(10.2.5)
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The inertia constant If of a machine is defined as the kinetic energy at
rated speed in kilowatt seconds per kilovolt-ampere.  The kinetic energy
in foot-pounds is

L 1 WRr* |
Kinetic energy = - wo?
2 g
where
_ ,_Tpm
“0 T T80

and rpm is the rated speed. Therefore

1 WER? (2r)? <r_pﬂ>2 0.746

2 BY
0= 00

base kva

Substituting.in equation (10.2.5),
= (10.2.6)

The torques acting on the rotor of a generator inelude the meehanieal
input torque from the prime mover, torques due to rotational losses
(friction, windage, and core losses), electrical output torques, and damp-
ing torques due to prime mover, generator, and power system.  The
electrical and mechanical torques acting on the rotor of @ motor are of
opposite sign and are aoresult of the eleetrieal input and meehanieal load.
Neglecting damping and rotational losses, the wceelerating torque 7' ix

Te=Tn—T.

where T, = mechanical torque

T. = electrical air gap torque
Thus equation (10.2.6) becomes
H d*

;j—,a—ﬁ =Tn—T. (10.2.7)

Since the torque and power in per unit are equal for small deviations in
speed, equation (10.2.7) becomes
ax* «f

a == P

|

where P, = mechanical power
P, = electrical air gap power

It
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This second-order differential equation can be written as two simultaneous
first-order equations:

d*  dw rf
= — = m Pe
de? dt H P )
and
ds  db.
T (10.2.8)

Since the rated synchronous speed in radians per second is 2rf, equation
(10.2.8) becomes
dé

=y =2
dt ® ™

10.3 Machine equations
Synchronous machines

In transient stability studies, particularly those involving short periods
of analysis in the order of a second or less, a synchronous machine can be
represented by a voltage source, in back of transient reactance, that is
constant in magnitude but changes its angular position. This repre-
sentation neglects the effect of saliency and assumes constant flux
linkages and a small change in speed. The voltage back of transicnt
reactance is determined from

El = ]‘:z + T(.I( +‘}I;11

where /7 = voltage back of transient reactance

E. = machine terminal voltage

I = machine terminal current

re = armature resistance

T, = transient reactance
The representation of the synchronous machine used for network solu-
tions and the corresponding phasor diagram are shown in Fig. 10.1.

Salieney and ehanges in field flux linkages can be taken into account

by representing the effects of the three-phase ac guantities of a syn-
chronous machine by components aeting along the direct and quadrature
axes. The direct axis is along the eenterline of the machine pole and the
quadrature axis leads the direct axis by 90 electrical degrees. The posi-
tion of the quadrature axis ean be determined by ealeulating a fictitious
voltage Toeated on this axis.  This is a voltage back of quadrature-axis

i
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(5) NI

Fig.10.1 Simplified representation
of a synchronous machine. (a)
Equivalent circuit; (b) phasor dia-
gram.

synchronous reactance and is determined from
Eq = El + 7'a[t -+ ]‘qul

where I, = voltage back of quadrature-axis synchronous reactance
z, = quadrature-axis synchronous reactance

The representation of the synchronous machine used for network solu-
tions and the corresponding phasor diagram are shown in Fig. 10.2.

The sinusoidal flux produced by the field current acts along the direct
axis. The voltage induced by field current lags this flux by 90° and,
therefore, is on the quadrature axis.  This voltage ean be determined by
adding to the terminal voltage £2, the voltage drop across the armature
resistance and the voltage drops representing the demagnetizing effects
along the direet and quadrature axes.  Then negleeting saturation,

Er = B+ rdo + jrala + j2

where IZ; = voltage proportional to ficld current

za = direct-axis synchronous reactance

z, = quadrature-axis synchronous reactance

I4 = direct-axis component of machine terminal current

I, = quadrature-axis component of machine terminal current
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The phasor diagram showing Ey as well as the voltage back of transient
reactance is shown in Fig. 10.3.

The quadrature component of voltage back of transient reactance
from the phasor dingram is
E= 1, = (e, — a4

q

where £, is the voltage proportional to the field flux linkages resulting
from the combined effect of the field and armature currents.  Since the
field flux linkages do not change instantancously following a disturbance,
L7 also does not change instantancously. The rate of change of /£, along
the quadrature axis is dependent on the field voltage controlled by the
regulator and exciter, the voltage proportional to the field current, and
the direct-axis transient open circuit time constant and is given by

dFE; 1

ki S § SR
dt T;,O("* D

If

where E;4 = term representing the field voltage acting along the quadra-
ture axis ‘

T,, = direct-axis transient open circuit time constant

i

(a)

(h)

Fig. 10.2 Representation of a synchronous machine for
determining E,. (a) Equivalent circuit; (b) phasor
diagram.



372 Computer methods in power system analysis

. r
}(Iq"xd )1’{\

-~ .

-~ \fe/"fe’ac
T~y

s

Fig. 10.3 Phasor diagram for determining the quadrature-axis compornent
of voltage behind transient reactance.

Induction machines

In power system transient stability studies loads, including induction
motors, usually can be represented adequately by shunt impedances.
However, in studies involving large indurtion motor loads it 1x necessary
frequently to represent the induction motors in a more detailed manner.
Induction motors are used extensively in industrial processes and can
have significant effects on the transient response of a power system.

A reasonable linear representation of an induction machine can be
obtained by taking into account the effects of mechanical transients and
rotor clectrical transients. The effects of stator clectrical transients
on system response usually can be neglected. The equivalent circuit
shown in Fig. 10.4 has been used to represent the transient behavior of
an induction motor including the cffects of mechanical transients und
rotor electrical transients with a single time constant.

The differential equation deseribing the rate of ehange of the voltage
behind transient reactance X' is
dr’

1
—_— = —2 B - — ) — 9 - X
dt J 1|'f3 '['0 {] ](X Y )[‘l

where the rotor open circuit time constant 7' in seconds is

T, + T

T =
T 2nfr,
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’

i induction machine for transient analyais.
|

Ty X
T n
Fl:/ @ Fig. 10.4 Simplified representation of an

and the terminal current is

. " 1
Ie = (I50— 1) ————;
Te + .
The reactances X and X’ can be obtained from the conventional
steady state cquivalent circuit of an induction machine as shown in
Fig. 10.5, where

r, is the stator resistance in per unit

z, is the stator reactance in per unit

r. is the rotor resistance in per unit

z, is the rotor reactance in per unif

Tm is the magnetizing reactance in per unit
s is the rotor slip in per unit

The resistances and reactances are all on the same kva base. The ratio
of the base voltages of the stator and rotor is equal to the open circuit
voltage ratio at standstill.  The per unit slip is

_ Synchronous speed — actual speed

s
Synchronous speed

Since the rotor resistance r, is small compared with the reactances, it can
be neglected in the caleulation of X and X’. From the steady state
cquivalent circuit, then, the open circuit reactance is approximately

N=r+rt.

The blocked rotor reactance is approximately

. TmIr

« ! = '1:‘ + A

Tm + T,

r x, x,
e AT T —,
—_—
! I
T, sas

E, Xm < Fig. 10.5 Steady state positive
‘ sequence equivalent circuit of
. an induction machine.
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10.1  Power system equations

Representation of loads

Power system loads, other than motors represented by equivadent eir-
cuits, can be treated in several wavs during the transient period. The
commonly used representations are cither static impedanee or admittanee
to ground, constant current at fixed power fuetor, constant real and reac-
tive power, or a combination of these representations.

The constunt power lond is cither cqual to the scheduled real and
reactive bus load or is a percentage of the specilied values in the case of a
combined representation. The parameters associated  with  static
impedance and constant current representations are obtained from the
scheduled bus loads and the bus voltages calculated from a load flow
solution for the power system prior to a disturbance.  The initial value
of the current for a constant current representation is obtained from

P, - JQL»

i

[p0=

where Pr, and @, are the scheduled bus loads and £, is the ealculated
bus voltage. The current [/, flows from bus p to ground, that is, to
bus 0. The magnitude and power factor angle of [, remain constant.

The static admittance y,o, used to represent the load at bus p, can
he obtained from

(]—'p — Eo)ym = I

where I7, is the calculated bus voltage and £y is the ground voltage, equal
to zero.  Therefore

(10.4.1)

Ypo =

E,
Multiplying both the dividend and divisor of equation (10.4.1) by £}
and separating the real and imaginary components,

PLP QLp

—— d Doy = ——i—
ep? + fp? an 7 ex’ + [yt

gpo =

where

Ypo = §po — Jbso

Network performance equations

The network performance equations used for load flow caleulations can
be applied to describe the performance of the network during a transient



Chapter 10 Transient stability studies 375

period (Stagg, Gabrielle, Moore, and Hohenstein, 1959). Using the bus
admittance matrix with ground as reference, the voltage equation for
bus p is

i, = I JQ”)L" Z Y Lopolis (10.4.2)

q=1
q#p

The term P, — jQ,/E} in equation (10.4.2) represents the load current
at bus p. For the constant current load representation

Lp T JWy ]‘Qp

@ Mwl/G A 6

where ¢, is the power factor angle and 6% is the angle of voltage with
respect to the reference.  When the constant power is used to represent
the load, (P, — jQ,)L, will be constant but the bus voltage E, will
change every iteration.  When the load at bus p is represented by a
static admittance to ground, the impressed current at the bus is zero and
therefore

(PP —'jQp)Lr _

7

In using equation (10.4.2) to describe the performance of the net-
work for a transient analysis, the parameters must be modified to include
the effects of the equivalent elements required to represent synchronous
and induction machines and loads. The line parameters Y L,, must be
modified for the new elements and an additional line parameter must be
calculated for each new network clement. The system shown in Fig.
10.6, which was used also to illustrate the load flow solution techniques
in Sec. 8.3, has two machines and a load at each bus. Representing all
loads as static admittances to ground, the voltage equation for bus 1 is

Ey = —YLuly — YLuEs — YLuE. — YLioEs

where Y L1y = Yi2l,

YIJlB = YIJLl

YLI( YI‘LI
The elements Y1a, Y13, and Yy from the bus admittance matrix of the
network are the same as in the load flow representation. However,

1

Ly = o
T Ya

where

Yie = yi2 4+ y1s + y1e + %10
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Fig. 10.6 Single line diagram of power system for transient analysis.

includes the static admittance representing the load. Since I/q is zero,
the line parameter ¥ Ly does not have to be caleulated.
The voltage equation for bus 2 is

Ez = —YL“.El it YLuEs - YLMES - YL':a/L‘B

where bus 8 is a new bus. In this case the diagonal admittance element
for bus 2 is

Yo = Y + Y25 + Yas + Y20 + Y28

where 20 is the static admittance representing the load and yay is the
machine equivalent admittance. The formulas for the Gauss-Seidel
iterative solution of the network shown in Iig. 10.6 are, then,

E'{+l = ""'YLu]i‘zk - YL131':3" - YL“]’qu

I’/v‘;-’.l = —YI421E§+1 - YIIQ,’,I’;‘5k - y{/gf,/'l'sk - Y[/z”l':n
]D‘:-H' = _YL31]§‘,;+l - Y[J:gsl'/‘g,k

E‘:+l.= - YL41E‘{+1 il YL45]§'6" - YL471':7
E§+l = - YLszE‘{*l - YL53]§§+1
E:'H' = —YLME:.PI - YL6415‘:+1

The initial bus voltages are obtained from the load flow solution
prior to the disturbance. The initial voltages for the new buses 7 and 8
are obtained from the cquivalent circuit representing the machines.
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Subsequent voltages for these buses are caleulated from the differential
equaticns describing the performance of the machines.

During the iterative caleulation the magnitudes and phase angles «f
the bus voltages behind the machine equivalent admittances are held
constant. If a three-phase fault is simulated, the voltage of the faulted
bus is set to zero and held constant.

If the bus impedance matrix is used for a transient stability study,
ground is usually taken as reference because all network bus voltages,
except at the faulted bus, change during the transient period (Brown,
Happ, Person, and Young, 1965).  To eliminate the need to modify the
bus impedance matrix for a change in the reference bus, ground is used
also as reference in the prefault load flow calculation.

When ground is used as reference for the load flow caleulation and the
loads are represented solely as current sources, the bus impedance matrix
will include only the eapacitor, reactor, and line charging clements to
ground.  In this case the bus impedance matrix is ill-conditioned and
convergence of the solution usually is not obtained.  On the other hand,
if the loads are represented solely as impedances to ground to improve
the convergence characteristie, then these impedances and the bus
impedance matrix must be modified during the iterative solution for
changes in bus voltages.  To overcome this diffieulty only a portion
of each bus load is represented as an impedance to ground. The remain-
ing portion of the load can be represented as o enrrent souree which varies
with the bus voltage so that the total bus current satisfies the scheduled
Joad power.

After the load flow solution is obtained, the bus impedance matrix
must be modified to include the new network elements representing the
machines and to account for changes in the representation of loads.
These modifications can be made by using the algorithm deseribed in
Seex. 4.2 and 4.3, Fach clement representing a machine is a branch to a
new bus, and each element representing o Joad ehange is alink to ground.

“The iteration formula for the performance of the network during the
transient period using ground as reference is

B = Z Zods  p=1,2, ... .n
= P

where 2is the number of network buses, m is the number of buses hehind
the equivalent machine impedances, and bus fis the faulted bus. The
current vector [, is composed of load enrrents from either the constant
current or constant power representation and the currents obtained from
machine equivalent cireuits,

In the application of the bus impedance matrix, only those rows and
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columns corresponding to machines, constant power, and constant
current sources need to be retained for the network solution.  All rows
and columns would have to be maintained, however, if system voltages
and power flows are required during the transient caleulations.

The procedures described using the bus impedance and admittance
matrices aund representing each machine as a voltage behind the machine
impedance is an application of Thevenin’s theorem. An alternate
method is to represent the machine as a current source between the
machine terminal bus and ground and in parallel with the machine
impedance. This is an application of Norton’s theorem (Shipley, Sato,
Coleman, and Watts, 1966). This eliminates the need to establish an
additional bus behind the impedance of each machine. The machine
currents are caleulated by using the internal machine voltages and the
machine impedances. These currents are held constant during the
network iterative solution.

10.5 Solution techniques

Preliminary calculations

The first step in a transient stability study s the load flow calculation to
obtain system conditions prior to the disturbance. Then the network
data must be modified to correspond to-the desired representation for.
transient analysis. In addition, the machine currents prior to the dis-
turbance are calculated from

_ Pu= 0.

T = i 1=1,2,...,m

where m is the number of machines and Py and @ are the scheduled or
calculated machine real and reactive terminal powers. The calculated
power for the machine at the slack bus and the terminal voltages are
obtained from the initial load flow solution.  Finally the voltages buek
of machine impedances must be calculated.

When the machine 7 is represented by a voltage source of constant
magnitude back of transient reactance, the voltage is obtained from

’ - !
'}.'10) = Iy + ralu + Jl‘d‘-fu
where
2 ’ . pt
Eio = ¢ + ifio

and I, is the initial value used in the solution of the differential equa-
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tions.  The initial internal voltage angle is

!
- f"(O)
iy = tan™! ==
c((n)

The initial speed wic, in radians per second is equal to 2xf where f is the
frequency in ecycles per second. The initial mechanical power input
P .o is equal to the electrical air-gap power P,; prior to the disturbance
which can be obtained from

P. = Pu =+ |Lui|*ra

where |I4]%r.; represents the stator losses.

When the effects of saliency and changes in field flux linkages are
taken into account a voltage back of quadrature-axis synchronous react-
ance is used to represent the machine. This voltage is calculated from

qu' = I+ ralu + ]'Iun

where

By = en + ifo

The initial internal voltage angle is then

fu

Coi

di0y = tan™!

As in the simplified representation, the initial speed is equal to 2rf and
the initial mechanical power is equal to /., the air-gap power.

The ealculations of the voltage proportional to field current £y and
the voltage proportional to field flux linkages I, ,, are required also for
this representation.  These voltages are obtained from

l';].‘ = ]‘:h + ’.rn[h‘ + j-tdi[d{ + jxqi]qi
and
Ern = Eu = (o — 23) L

where [, is the initial value used in the solution of the differential
equations. Finally, the initial field voltage 40 is equal to /7; if satura-
tion is neglected.

The next step is to change the system parameters to simulate a dis-
turbance. Loss of generation, load, or transmission facilities can be
effected by removing from the network the appropriate elements. A
three-phase fault can be simulated by setting the voltage at the faulted
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bus to zero. Then, the modified network equations are solved to obtain
system conditions at the instant after the disturbunee occurs.

The techniques deseribed for Joad flow xolutions ean be employed to
obtain the new bus voltages for the network.  In the iteraive =olution,
however, the buses back of machine impedances are treated Adifferently
depending on the machine representation. When the machine is repre-
sented by a voltage of constant magnitude back of transient reactance,
the internal machine bus voltage is held fixed during the entire iterative
process. When the machine is represented by the direet and quadrature
components, the internal machine bus voltage is held fixed during un
iteration. However, at the end of each iteration, the voltage £, must
be reevaluated to reflect the changes in the teeminal voltage Eu First
the new voltage for the internal bus is obtained by caleulating the new
machine terminal current from

1
k41 __ Yk k41 —_
L= (qu.' - Iy X ;
Tai ~t JTgi

Then the new component of current along the direct axis ix determined.
Finally the voltage back of quadrature-axis synchronous reactance is
computed from

k1 _ g L r ket
El = Eq{(()) + (@ — Tyl

where E;,-w, and 8,0, the angle of E,;, are held fixed.

When the network solution has been obtained, the machine terminal
current becomes the initial value for the solution of the differential cqua-
tions. It is used to calculate initind machine wir-gap power from

o %
Py = Re (I Ei)

when the magnitude of the voltage in back of transient reactance is held
fixed or from

P = Re (T Liyio)

when the effects of saliency and changes in field flux linkages are taken
into account. The initial voltage £ is obtained also from the network
solution at the instant after the disturbance.

Modified Euler method

When a machine is represented by a voltage of constant magnitude back
of transient reactance, it is necessary to solve two first-order differential
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equations to obtain the changes in the internal voltage angle & and
machine speed w;.  Thus for an m machine problem where all machines
are represented in the simplified manner, it is necessary to solve 2m simul-
tancous differential equations.  These equations are

18,
L’].{. = wiy — 2rf
(10.5.1)
e, LU .
d( = }[ (l mi T 1’..’(:;) 1= 1v 2! ey M

If no governor action is considered, [’ remains constant and
Pnu' = Pm-‘(n)

In the application of the modified Fuler method the initial estimates
of the internal voltage angles and machine speeds at time ¢ + At are
obtained from

0y — s |
5:‘<(+An - 6:(:) + di i
dw; !
w'® — b b Y e
Wiy = Wiy i Loy Al =12 ...,m

where the derivatives are evaluated from equations (10.5.1) and Pe
arce the machine powers at time £ When ¢ = 0, the machine powers
Doy are obtained from the network solution at the instant after the
disturhanee ocenrs,

Second estimates are obtained by evaluating the derivatives at time
t + af. This requires that initial estimates be determined for the
machine powers at time £ 4 Al These powers are obtained by caleulat-
ing new components of the internal voltage from

[
T T=Y3}
o o
SIN 8y an

e _ 4
Citran = II” 1

) v
fmcdn /l‘i

il

Then a network solution is obtained holding fixed the voltages at the
internal machine buses. When there is a three-phase fault on bus f, the
voltage I, also is held fixed at zero.  With the caleulated bus voltages
and the internal voltages, machine terminal currents can be calculated
from

1
Tai + del

vl(()) v 0) )
(.<:+An J‘(H-An /n(t+A1)
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Fig. 10.7 Transient calculations using the modified Euler method.
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and machine powers from

P = Re 110 a0 (Ei%s0) ")

tict+-An 430

The sccond estimates for the internal voltage angles and machine
speeds are obtained from

d(S.‘ ’ + dé.'
1y (83] dt ® dl (t+a0
6-(14 an = Oy + 2 -
dw; dw.‘ l
N N dr o AL 1D
( — { y =
Wieran = Wiy T 5 at t=12...,m
where
ds;
0 .
dr levsn T Witk a0 2rf
des =Ij_’(p,*p<m )
di le+sn 72 mi eift+30)
The final voltages at time ¢ 4+ At for the internal machine buses are
(1) _ 3 38
Citnan = |15] €08 8 ay
(1) _ 4’1/ . (1) .
jf“,rm = |I7] sin 8 a0 1=1,2...,m

| i

Calculate final estimates of voltages
behind machine impedances at t+ At

g m
€iiraary =V Ei1 008 80, ay

) Ty ay
fifrasey = 1E;V 8in 8i¢0 any
i=1,2....m

Not equal

Advance time
t+4t -t

Test

for time limit

S T

Equal or less Greater

Print results



384 Computer methods in power system analysis

Then the network equations are solved wguain to obtain the final system
voltages at time ¢+ Al The bus voltages are used along with the
internal voltages to obtain the machine cdrrents and powers and network:
power flows. The time is advanced by Al and a testis made to determine
if a switching operation is to be effected or the status of the faultisto
be changed. If an operation is scheduled, the appropriate chunges are
made in the network parameters or variables, or both.  Then the net-
work equations are solved to obtain system conditions at the instant
after the change oceurs. In this caleulation the internal voltages are
held fixed at the current values. Then estimates ure obtained for the
next time increment.  The processis repeated until € equals the maximum
time Tuax specified for the study.

The sequence of steps for transient analysis by the modified Iuler
method and the load flow solution by the Gauss-Seidel iterative method
using Yues is shown in g 10,7, Shown also arce the main steps of the
preliminary caleulations.  The procedure shown weasunmes that all =ystem
loads are represented as fixed impedances to ground.

When the effeets of suliency and the changes in field flux linkages are
to be ineluded in the representation of the muehines the Tollowing dilfer-
ential cquations must he solved simultuneously.

dé; .

vd—[ = Wiy T _)7l'f

dw; wf

= = (P, — P. (10.5.2
a =t ) e
e, 1
e (g — Fu  =1,2, ...,

dt T;o‘, ( fd 1 ) 2 lv ’ h

Again, if no governor action is considered, P, remains fixed and
P, = Pm‘(O)

If the effects of the exciter control system are not included, £z remains
constant and

R
/’-/4-' = E/a.'(m

If each machine of the system is described by equations (10.5.2), 3m
simultancous equations must be solved.

Runge-Kutta method

In the application of the Runge-Kutta fourth-order approximation, the
changes in the internal voltage angles and machine speeds, again for the
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simplified machine representation, are determined from

Adiian = ,"l'.'(/ﬂl.' A= 2 + 2l 4 I-"x,)
‘—\(v'rr/u\l\ N ll',(/). 1 2’:{, | '-)/:xy -4 /1,) ;o l, 2, . m.

1

The &'s and s are the changes in 8, and /. respectively, obtained using
derivatives evaluated at predetermined points. Then,

dicrvan = bin + Lolly 4 2k A 2k + k)

) 10.5.3
wiyan = winy + Vil A 20, A 20, 4 1) (10.5.3

The initial estimates of changes arce obtained from

fyiv= (wigy — 27f) Al

wf .
/11' = [}_ (])mx — [)”([)) Al = 1, :-). PR n

where wiy and Py are the machine speeds and air-gap powers at time t.
The seeond set of estimates of changes in 6, and w; are obtained from

[ t
1\’2{ = l(u‘;(() + T;) - QTrfl Al
[:, = ;‘}1: (I)m,' - P;})) Al I = 1, Q, ce e,y Mm

where P21 are the machine powers when the internal voltage angles are
Suny A+ (kg 2). Thins, before Ly can he ealeulated, new components for
the voltages for the internal machine buses must. he ealenlated from

ki,
o= D eos (6,<u + Y

ki
11y Vet 14 . .
f,-‘ ;I,‘-l sin (5.‘(/) + '()‘ 1= 1, .Z, e,

It

Then, the network equations are solved to obtain bus voltages for the
ealeulation of machine powers P2
The third set of estimates are obtained from

/\‘.1. = {(a‘,‘m -+ ljf) - 271’f, Al

ly = ik (Poi — P AL =12 m
3 lll my i 3 ) Sy e e e

where 722 are obtained from a second solution of the network equations
with the internal voltage angles cqual to 8 + (h2:/2) and the compo-
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nents of the voltages for the internal machine buses equal to

kol
SO 1 21
(/i = I’. COS <5.‘(¢} + ‘f)
Koy
202 . 2i . . )
f;() = ]‘,,. K11 <5.‘(¢) + ‘*) 1 = ], 2, e, Mm

The fourth estimates are obtained from

k4.‘ = {(w;(;) + l;,;) - 27I'j} At
li = %f‘ (Pni — P¥) AL i=1,2,...,m

where P¥ are obtained from a third solution of the network equations with
internal voltage angles equal to 8.y + Ay and voltuge components equal to

e:“” = [1&':' cos ((5;(1) + 1:3,')
fi® = |IL:| sin (§; + Eai)

The final estimates of the internal voltage angles and machine speeds
at time { + Al are obtained by substituting the &’s and (s into equations
(10.5.3). The internal voltage angles a0 are used to caleulate the
estimates for the components of voltages*for the internal machine buses
from

7 A

Ciurnn = |F5] cos Giapan
’ i
I

400 sin 6A(”,A1) v = 1 2, S, in

The network equations are solved then for the fourth time to obtain bus
voltages for the calculation of machine currents and powers and network
power flows. The time is advanced by At and a network solution 1s
obtained for any scheduled switching operation and change in the fault
condition. The process is repeated until ¢ equals the maximum time

Tnmx .

10.6 Cxample of transient stability calculations

The method for determining transient stability will be illustrated with
the sumple power system used in Sec. 8.5 for the load flow problem. In
this example the machines are represented by voltages of constant magni-
tudes behind direct-uxis transient reactances. Loads are represented
by fixed admittances to ground.
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@ T'@

17

Elm
South
Fig. 10.8 Sample system for transient stability calcula-
tions.
Problem

Using the bus admittance matrix and the Gauss-Seidel iterative method
for the solution of the network equations and the modified Euler method
for the solution of the swing equations:

a. Determine the cffects on the sample power system shown in Fig.
10.8 of a three-phase fault on bus 2 for a duration of 0.1 sec.
b.  Dectermine the effects of the fault on bus 2 for a duration of 0.2 sec.

Solution

The results of the load flow ealculation prior to the fault are given in
Table 10.1.  The inertia constants, direct-axis transient reactances, and
equivalent admittances of the generators at buses 1 and 2 in per unit
on a 100,000 kva base are given in Table 10.2.

Table 10.1  Bus voltages, generation, and loads from load flow
calewdation prior to fault

Generalion Load
Bus code Bus vollages
P E, Megawalts Megavars  Megawalls Megavars
1 1.06000 4+ ;70.00000 129.565 ~7.48%0 0.0 0.0
2 1.04621 — j0.05128 40.0 30.0 20.0 10.0
3 1.02032 — 70.08920 0.0 0.0 45.0 15.0
4 1.01917 — 70.00506 0.0 0.0 40.0 5.0
5 1.01209 — 70.10006 0.0 0.0 60.0 10.0
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Table 10.2 Inertia constants, direct-axis transient reactances, and
equivalent admittances for gencerators of sumple system

Dircel-azis transient Fquivalent
Bus code Inertia constant reactance admitlance
p-i H x-’J Ypi
1-6 50.0 0.25 0.0 — 74.00000
2-7 1.0 1.50 0.0 — 70.66667

a. The Guuss-Seidel iterative cquations describing the performance of
the network, using the bus code numbers given in Fig, 109, are

IL"IHJ = ‘—‘Y[/”l'z"zk — YLl:;/',':;k - Y[,].;/‘,'(,

IS = — Y L% — Yl — YL lld — YLtk — Y Lol
B = YL EAY — YLl — Y Ly

1’;’:+1 = _YI/42/;§+1 - YIM,]/';‘;\;-'-I - )/[/.“,l','j,k

1f§+l = - YL5211’5+1 - y[JG.‘I'J";yl

The line parameters YL, for these equations can be obtained from the
elements of the bus admittance matrix used for the load flow solution
prior to the disturbance and the equivalent admittances for machines
and loads.

T@

T ® T ® -

|
J

I_

!

! 1
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1H

Fig.10.9 Representation of sample system for transient stability
calculations.
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The line parameters are obtained from the equation

1
YLPq = YIWLT' = Ym <Y7>

The modified line parameter for element 1-2 is

1
YLis = Y|l 7/
" "’ (Yn + ym>
—5. 115.0000
YLy = 5.00000 + j15.00000

6.25000 — 722.69500
= —0.67074 — j0.03560

where Y,; and Y. are clements in the bus admittance matrix and yy,
is the equivalent admittance representing the machine at bus 1, which is
given in Table 10.2. The remaining line parameters for bus 1 arc
obtained from the equations

1
YL, =Y (———)
" 1 Y+ yis

1
YLis = Vig| —
' ' (YH + 1/16>

where

Yie = —y1s

The line parameter for element 2-1 is obtained from

1
YLy=Yy|lo7————
" " (Yn + Yeor + y20>

where Y, and Y, are clements in the bus admittance matrix; y.7 1s the
equivalent admittance representing the machine at bus 2 and yio is the
equivalent admittance to ground representing the load at bus 2. The
equation for the load equivalent admittance is

Ypo = Pry, — jQup
7 e’ + f5F
and for bus 2

B 0.20 — 50.10
T (1.04621)2 4- (0.05128)¢
= 0.18228 — j0.09114

Y20
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where the bus voltage is obtained from the load flow solution and is
given in Table 10.1.  The line parameter Y Ly is

—5.00000 - j15.00000

Y Loy =
1101562 — 733.17281
= —0.45235 — 70.00052

The Y Ly,'s for all elements are given in Table 10.3.

The voltages behind the equivalent admittances representing the
machines are obtained from the equation
E=FEi+jcde i{=n+1,n+2 ..., n4+m
where
Pu‘ - j(Jil

LY
and n is the number of buses of the network an