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Multiresolution S-Transform-Based Fuzzy
Recognition System for Power Quality Events
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Abstract—The paper proposes a novel fuzzy pattern recogni-
tion system for power quality disturbances. It is a two-stage system
in which a mulitersolution S-transform is used to generate a set
of optimal feature vectors in the first stage. The multiresolution
S-transform is based on a variable width analysis window, which
changes with frequency according to a user-defined function. Thus,
the resolution in time or the related resolution in frequency is a
general function of the frequency and two parameters, which can
be chosen according to signal characteristics. The multiresolution
S-transform can be seen either as a phase-corrected version of the
wavelet transform or a variable window short time Fourier trans-
form that simultaneously localizes both real and imaginary spectra
of the signal. The features obtained from S-transform analysis of
the power quality disturbance signals are much more amenable for
pattern recognition purposes unlike the currently available wavelet
transform techniques. In stage two, a fuzzy logic-based pattern
recognition system is used to classify the various disturbance wave-
forms generated due to power quality violations. The fuzzy ap-
proach is found to be very simple and classification accuracy is
more than 98% in most cases of power quality disturbances.

Index Terms—Fuzzy logic, multiresolution analysis, pattern
recognition, power quality, S-transform, short time Fourier
transform, variable window, wavelet transform.

I. INTRODUCTION

THE quality of electric power has become an increasing
concern for electric utilities and their customers over

the last decade. Poor quality is attributed due to the various
power line disturbances like voltage sag, swell, impulsive, and
oscillatory transients, multiple notches, momentary interrup-
tions, harmonics, and voltage flicker, etc. In order to improve
the quality of electrical power, it is customary to continuously
record the disturbance waveforms using power-monitoring
instruments. Unfortunately, most of these recorders rely on
visual inspection of data record creating an unprecedented
volume of data to be inspected by engineers.

The Fourier transform (FT) [1] has been used as an analyzing
tool for extracting the frequency contents of the recorded sig-
nals. However, due to constant bandwidth, the FT is not an effi-
cient technique for capturing short-term transients like impulses
and oscillatory transients in a power system.

Also, the time-evolving effects of the frequency in nonsta-
tionary signals have not been considered in FT analysis. Al-
though the short time Fourier transform (STFT) can partly al-
leviate the problem, it has the limitation of fixed window width
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chosen apriori and this imposes limitations for the analysis of
low-frequency and high-frequency nonstationary signals at the
same time. In contrast to Fourier transform-based technologies,
the wavelet transform [2]–[7] uses short windows at high fre-
quencies and long windows at low frequencies; thus closely
monitoring the characteristics of nonstationary signals. These
characteristics of the wavelet transform provide an automated
detection, localization, and classification of power quality dis-
turbance waveforms.

Although wavelet multiresolution analysis combined with a
large number of neural networks provides efficient classification
of power quality (PQ) events, the time-domain featured distur-
bances, such as sags, swells, etc. may not easily be classified [8],
[9]. In addition, if an important disturbance frequency compo-
nent is not precisely extracted by the wavelet transform, which
consists of octave band-pass filters, the classification accuracy
may also be limited. This paper, therefore, presents a general-
ized S-transform derived from STFT [10] for the detection, lo-
calization of PQ disturbance signals. The S-transform is essen-
tially a variable window STFT whose window width varies in-
versely with the frequency. The S-transform produces a time-
frequency representation of a time varying signal by uniquely
combining the frequency dependent resolution with simultane-
ously localizing the real and imaginary spectra. The S-transform
is similar to the wavelet transform but with a phase correction
and here both the amplitude and phase spectrum of the signal are
obtained. Since the S-transform provides the local spectrum of a
signal, the time averaging of the local spectrum gives the Fourier
transform. The S-transform of a PQ disturbance signal provides
contours, which closely resemble the disturbance pattern unlike
the wavelet transform, and hence, the features extracted from
it are very suitable for developing highly efficient and accurate
classification scheme. Further, the S-transform analysis of time
varying signal yields all of the quantifiable parameters for local-
ization, detection, and quantification of the signal. This paper
also presents the design of a simple fuzzy-based classification
scheme using the features from the S-transform and the clas-
sification accuracy is very high even in the presence of random
noise. Several simulated PQ waveforms are tested using this new
classifier.

II. MULTIRESOLUTION S-TRANSFORM

The Fourier transform of a time varying signal is given
by

(1)
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The spectrum is referred to as the “time-averaged
spectrum.” If the signal is multiplied point by point with
window function , then the resulting spectrum is

(2)

The S-transform is obtained by defining a particular window
function in the form of a normalized Gaussian as

(3)

and then allowing the Gaussian to be a function of translation
and dilation (window width) . The window width is made

proportional to the inverse of frequency and is chosen as

(4)

If , denotes S-transform and for ,
denotes a STFT. A typical value of b varies between 0.333 to
5, giving different frequency resolutions. For low frequencies, a
higher value of b is chosen and for high frequencies, lower value
of b is chosen to provide suitable frequency resolutions.

The FT of the window function is obtained as

(5)

S-transform produces a multiresolution analysis like a bank of
filters with a constant relative bandwidth (constant analysis).
The analysis window is Gaussian and

(6)

Therefore

(7)

Substituting (3) and (4) in (2), we get the S-transform of
as

(8)

Since is complex, it can also be written as

(9)

where is amplitude S-spectrum and is the phase
S-spectrum. It can be noted that the S-transform improves the
STFT in that it has a better resolution in phase space (i.e., a
more narrow time window for higher frequencies) giving a fun-
damentally more sound time frequency representation. The dis-
crete version of the S-transform is calculated by taking the ad-
vantage of the efficiency of the fast Fourier transform (FFT) and
the convolution theorem. The discrete Fourier transform of the
sampled signal , is

(10)

and discrete version of the S-transform of is obtained as
(by letting and )

(11)

where

(12)

, , , and , and total
number of samples.

The discrete inverse of S-transform is obtained as

(13)

The computation of the multiresolution S-transform is very ef-
ficient using convolution theorem and FFT. The computational
steps are outlined as follows.

1) Denote , , , and as , , , and ,
respectively, for all of the computations.

2) Obtain discrete Fourier transform of the original
time-varying signal , with points and sample in-
terval , using FFT routine from (10).

3) Compute the localizing Gaussian for the required
frequency using (12).

4) Shift the spectrum to for the frequency
by using convolution theorem.

5) Determine .
6) Compute inverse Fourier transform of from to

to give the row of corresponding to the frequency
.

7) Repeat steps 3, 4, and 5 until all of the rows of
corresponding to all discrete frequencies have been ob-
tained.

The total number of operations for computing S-transform is
.

The multiresolution S-transform output is a complex matrix,
the rows of which are the frequencies and the columns are the
time values. Each column thus represents the “local spectrum”
for that point in time. Also, frequency-time contours having the
same amplitude spectrum are obtained to detect, and localize
power disturbance events. A mesh three-dimensional (3-D) of
the S-transform output yields frequency-time, amplitude-time,
and frequency-amplitude plots. The original software code de-
veloped by Stockwell [10] in Matlab has been modified by the
authors for power quality waveform studies.

To illustrate the use of multiresolution S-transform for non-
stationary signal analysis, a 50% voltage sag of three-cycles du-
ration is created for a pure sinusoidal voltage waveform in a
data window of eight cycles (using a sampling rate of 32 sam-
ples/cycle). The time-frequency contours and 3-D mesh for the
signal shown in Fig. 1(a) are shown in Fig. 1(b) and (c), respec-
tively. From the 3-D plot, one can find the magnitude, frequency,
and time informations to detect, localize, and visually classify
the event. Also, it is observed that the increase or decrease of
the signal magnitude can be deduced from the innermost (or the
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Fig. 1. (a) Fifty-percent voltage sag. (b) S-transform contours of 50% voltage
sag. (c) 3-D S-transform plot of 50% voltage sag.

lowest level) contour. Similar plots are shown for three-cycle
duration voltage swell in a pure sinusoidal voltage waveform in
Fig. 2. In all of the plots, the frequency magnitude is nor-
malized with respect to the sampling frequency and is given
by . From these results, it is quite obvious that in case of
S-transform output, one can detect, localize, and quantify the
disturbance completely. However, the wavelet transform alone
cannot give all of the information which is extracted from the
S-transform and requires the use of Fourier transform [8], [9]
for quantifications of the signal magnitude, total harmonic dis-
tortions, etc.

III. S-TRANSFORM ANALYSIS OF PQ EVENTS

The various power quality disturbance signals considered for
the S-transform analysis are voltage sag, swell, interruption, os-
cillatory transients, spike (single and multiple), notch (single
and multiple). These signals are simulated using Matlab code
and are mixed with random white noise of zero mean having
signal to noise ratio (SNR) varying from 50 to 20 dB. For a
typical noise of dB, the peak noise magnitude is
3.5% of the peak signal magnitude. The sampling frequency
of 1.6 kHz is chosen for the PQ event analysis in this paper.
Figs. 3–10 show the time-frequency contours of some of the

Fig. 2. (a) Fifty-percent voltage swell. (b) S-transform contours of 50%
voltage swell. (c) 3-D S-transform plot of 50% voltage swell.

typical PQ disturbances (sag, swell, transient, spike, and notch)
and these contours clearly reveal the nature of the disturbances
in the presence of noise. For example, Fig. 3(a) presents the ac-
tual signal showing nearly three-cycles voltage sag. In Fig. 3(b),
the normalized time-frequency contour obtained from S-trans-
form is shown. This contour gives the maximum output of the
normalized frequency-time graph, although other contours are
generated showing the pattern of a contour magnitude reduction
during voltage sag. Fig. 3(c) gives the magnitude-time spectrum
obtained by searching rows of S-transform matrix.

This figure clearly shows the voltage sag amplitude and
the time of its occurrence. In Fig. 3(d), the normalized
frequency-time plot is shown, which gives the maximum
frequency content of the voltage signal shown in Fig. 3(a).
Figs. 3–10(a)–(d) show similar plots as in Fig. 3 obtained from
the S-transform analysis. The time-frequency contours of the
S-transform output shows a decrease or increase in magni-
tude for voltage sag and swell, and multiple high-frequency
contours in case of transients, which provide a better visual
classification strategy in comparison to the wavelet transform
(similar to time versus rms or peak value of voltage). The
magnitude versus time graph in Figs. 3–5 quantify the sag,
swell, and interruption. In all other cases like notches, voltage,
and oscillatory transients, etc., there is either a fall or rise from
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Fig. 3. Voltage sag.

Fig. 4. Voltage interruption.

Fig. 5. Voltage swell.

the normal value in the magnitude versus time graph (graph
of Figs. 6, 7, and 10). In analyzing oscillatory transients,

Fig. 6. Voltage transient.

Fig. 7. Multiple notches.

Fig. 8. Voltage spike.

voltage impulses, etc., it will be useful to get S-transform
output for another window width . component in the
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Fig. 9. Voltage harmonics.

Fig. 10. Switching transient.

power quality disturbance waveform. The S-transform output
at different frequency resolutions will be required for classi-
fication of high-frequency transients, impulses, notches, etc.,
since it yields some more parameters for discriminating various
types of transient disturbances. It is observed that the standard
deviation of second contour at is an important parameter
to distinguish between transients, impulses, and notches.

IV. PQ DISTURBANCE RECOGNITION SYSTEM

Power quality disturbance recognition is a difficult problem,
because it involves a broad range of disturbance categories
and varying degree of irregularities. Description of PQ events
considered for recognition is outlined in Section III. The
generalized S-transform generates the time frequency con-
tours, which clearly display the disturbance pattern for visual
inspection. These contours provide features, which can be used
by a fuzzy logic or neural network-based pattern recognition
systems for classifying these disturbance frequency regions for
amplitude frequency and amplitude time plots.

The following important features are used for pattern classi-
fication:

1) The standard deviation with
2) , with where , ,

are standard deviations of contours 1, 2, 3 designated
as , , , respectively.

3) An amplitude factor is obtained as

(14)

where
max (max (abs(s))) with PQD;
min (max (abs(s'))) with PQD;
max (max (abs(s))) with no PQD;
min (max (abs(s'))) with no PQD;
power quality disturbance;
S-transform matrix (complex);
transpose of S-transform matrix.

4) instant of occurrence of the disturbance (obtained
from the first peak of the time-frequency contour );

5) duration of occurrence of the disturbance (duration
between two peaks of contour ).

The standard deviations of the time-frequency representa-
tions of the signal in the form of contours can be considered as
a measure of the energy for a signal with zero mean. Instead of
taking all of the contours to give overall measure of standard
deviation, only the most significant contour is chosen for
classification of the disturbance in this paper. The amplitude
factor provides the accurate quantification of signal mag-
nitudes during short-duration steady-state power frequency
disturbance events. However, this factor is also very significant
as it is able to distinguish transient events, steady state events,
and harmonic distortions. To illustrate the relative values of
these features, several typical PQ events like voltage sag, swell,
interruption, transients, spike, notch, etc., are simulated using
Matlab code and a random noise level of 3.5% of the signal is
added to all of these disturbances. Table I shows the features at
two different window widths ( and ).

The features described in Table I are used to convert the visual
recognition of these time graphs to an automated pattern recog-
nition system by using fuzzy logic or neural network approach.
From the table, it is quite obvious that for low-frequency and
power frequency steady state disturbances (voltage sag, swell,
interruption, and harmonics) , are small and less than 0.05.
In case of oscillatory transients, both , , where
as in case of spikes and notches and .
The amplitude factor clearly distinguishes steady state power
frequency voltage disturbances and harmonics from the tran-
sients in that its value quantifies the type of disturbance. For
example, for voltage sag of 10% in the presence of 30 dB noise,

and for 90% sag, . With noise level of
40 dB, , for 10% sag and for 90% sag. Sim-
ilarly, for voltage swell of 90% and for 10% swell

. After analyzing these features, an automated distur-
bance recognition system is presented below.

V. FUZZY RECOGNITION OF POWER QUALITY EVENTS

Although the neural network classifiers for PQ event recog-
nition have been extensively studied by several researchers,
the fuzzy logic-based recognition scheme offers a very simple
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TABLE I
MULTIRESOLUTION S-TRANSFORM FEATURES FOR FUZZY

RECOGNITION SYSTEM

but accurate classification strategy of the PQ events unlike the
wavelet-based neural classifier (12 neural networks are used)
[6] or fuzzy neural classifiers [7] (180 rules are used), the
S-transform-based fuzzy classifier is constructed with just 15
to 20 rules. The trapezoidal membership functions are used to
fuzzifying the features (or ) and . Figs. 11–13 show
the fuzzy sets , , , , , , , and for the
above features. The following fuzzy rule base is used:

R1: If is and is , then ;
R2: If is and is , then ;
R3: If is and is , then ;
R4: If is and is , then ;
R5: If is and is , then ;
R6: If is and is , then ;
R7: If is and is , then ;
R8: If is and is , then ;
R9: If is and is , then ;
R10: If is and is , then ;
R11: If is and is , then ;
R12: If is and is , then ;
R13: If is and is , then ;
R14: If is and is , then .

From the above fuzzy rule base, the strength of each rule
is evaluated by Zadeh’s AND or product

rules. In case where there are several rules having the same
consequent part, Zadeh’s OR rules is used. For example, if a
product rule is used for firing strength calculation

For th rule (15)

where is the membership grade of the th feature with respect
to the th fuzzy set. Finally, the rules having the same conse-
quent are combined using OR rule to yield the resultant firing

Fig. 11. Membership functions of standard deviation of contour 1 for b = 5.

Fig. 12. Membership functions of standard deviation of contour 1 for b = 1=3.

strength of the rules as , , , , , .
Here, the suffix N, SA, SW, etc., denote the class of the wave-
form like normal, sag, swell, etc. The maximum of the above
firing strengths is found as

(16)

The value of in the above string, which becomes is
the waveform class. Although 14 rules were adequate for clas-
sifying some of the important power quality violations, many
other rules may be required for practical waveforms and wave-
forms corrupted with large amounts of noise. The duration of the
disturbance signal can be used to identify whether the dis-
turbance class belongs to instantaneous, momentary, or tempo-
rary category. The classification results are presented in Table II
for different noise levels in the signal varying from 40 to 20
dB. The total number of simulated events is nearly 800 and the
number of events belonging to each class is 100.

As seen from Table II, the classification accuracy for 20-dB
noise is found to be lowest and as the noise level reduced to
30 dB, the classification accuracy improves considerably and is
96.5% average.

VI. DISCUSSIONS

From Figs. 1–3, the S-transform contours and associated
magnitude versus sampling counts and normalized frequency
versus amplitudes clearly reveal the nature of steady state power
quality disturbance patterns. This is due to the fact that the
S-transform uses the FFT routine to generate the contours of the
disturbance signals. Unlike the wavelet transform, these patterns
are easier to classify by simply using a couple of features
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Fig. 13. Membership functions of amplitude factor �(b = 1=3).

TABLE II
S-TRANSFORM CLASSIFICATION RESULTS

like the standard deviation and amplitude factor. Figs. 4–8
show the generalized S-transform contours for PQ violations
like transients, notches, and impulses of short durations. These
violations are clearly illustrated, as frequency changes in the
contour and, thus, localization of these disturbances and optimal
features obtained from them have been used with a fuzzy
logic-basedinferencingschemetoprovideaccurateclassification
of the power quality disturbance waveforms. Once the fuzzy
recognition system provides the class of the disturbance of a
given PQ event, the next step is to obtain the exact time and
duration of occurrence along with other detailed informations
like the magnitudes, phase angles, frequency, total harmonic
distortions if any, etc. The features and provide the
instant of occurrence and duration of the power disturbance
event, respectively. Other parameters of interest can easily be
obtained from the S-transform power disturbance recognition
program developed by the authors. Thus, the overall advantage
of the S-transform-based fuzzy recognition system over the
wavelet one can be summarized as the following.

1) All of the important parameters of a power quality distur-
bance signal like its amplitude, frequency, total harmonic
distortion, phase, time of occurrence, duration, and its
class can be obtained from the S-transform output only.
For oscillatory transients, both positive and negative peak
magnitudes along with peak-to-peak deviations can also
be obtained from the S-transform-based power quality
assessment software. In case of wavelet transform, a FFT
procedure needs to be performed on the signal to ob-
tain several signal parameters in addition to the wavelet
coefficients.

2) The classification accuracy of a wavelet-based recogni-
tion system may be limited if an important disturbance
frequency component has not been precisely extracted
by using multiresolution wavelet analysis.

3) The wavelet transform-based recognition system is highly
sensitive to the presence of noise, and misclassification
occurs beyond a noise level of 1.2% [7], [11] and in
case of S-transform, the results are found to be quite
satisfactory up to a noise level of nearly 3.5%.

VII. CONCLUSION

This paper has proposed a new approach for detection, lo-
calization, and classification of power quality disturbances in a
power distribution system. The generalized S-transform with a
variable window as a function of PQ signal frequency is used to
generate contours and feature vectors for pattern classifications.
Unlike the wavelet transform techniques, the new classifier pro-
vides a complete characterization of both steady state and tran-
sient PQ signals using fuzzy logic-based decision systems. The
fuzzy PQ classifier uses 14 rules based on trapezoidal member-
ship functions for most of the PQ disturbance events with an
accuracy rate close to 98% average.
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