Using Visual Basic to Create a

Graphical User Intertace for use
with Matlab

1 Why GUI?

One of the problems associated with using software in a course is that some
time must be devoted to learning to use the software. This fact implies that
there will be less time devoted to the material being covered. A graphical
user interface (GUI) makes an application easier to use and therefore leaves
more time for learning the topic at hand.

In this paper we will discuss how to create a GUI for Matlab using Visual
Basic. In the next section we discuss how to create a GUI using native Matlab
commands, following that is a section on creating GUI’s with Visual Basic,
and finally a section describing how to interface to Matlab from Visual Basic
using the dynamic data exchange (DDE).

2 Why not GUI in Matlab?

As one would suspect from the title of the paper, this section will be relatively
short. The main purpose of including this material is to convince the reader
that Visual Basic is probably the better way to go.

The main drawbacks to creating a GUI in native Matlab are :

e The commands are complex.

e Placing a control requires the programmer to compute its location.

Revising the GUI requires the recomputation of all the positions of all
the objects in it.

The only way to check your progress is to run the commands and see
the results. This fact slows the development process.

These pitfalls are all aspects of the one major disadvantage of using Matlab
to create a GUI: the creation of a visual object is being done non-visually.
Here’s a partial GUI for using the MATLAB spline command.

= Fagies Mo 0
Fis Edt 'Wirdowr Hulp

Figure 1: A Graphical User Interface

Here are the commands that are necessary to put the controls in their
places. There are no commands associated with the controls.

compBtn = uicontrol(’style’,’push’,...
’position’,[410 150 100 25],...
’string’,’Compute’, ...
’callback’,’a command goes here’);

clearBtn = uicontrol(’style’,’push’,...
'position’, [410 100 100 25],...

’string’,’Clear’, ...
’callback’,’a command goes here’);

quitBtn = uicontrol(’style’,’push’,...
‘position’,[410 50 100 25],...
’string’,’Quit’, ...
’callback’,’a command goes here’);

radio(1)

uicontrol(’style’,’radio’,...
'position’,[290 150 100 25],...
’string’,’sin(x)’,...
’callback’,’a command goes here’);

radio(2)

uicontrol(’style’,’radio’,...
'position’,[290 100 100 25],...
’string’,’cos(x)’,...
’callback’,’a command goes here’);

radio(3) = uicontrol(’style’,’radio’,...
’position’,[290 50 100 25],...
’string’,’exp(x)’,...

’callback’,’a command goes here’);

leftEnd = uicontrol(’style’,’edit’,...
'position’,[170 150 100 25],...
’string’,’’,..
’callback’,’a command goes here’);

rightEnd = uicontrol(’style’,’edit’,...
'position’,[170 100 100 25],...
’string’,’’,..

’callback’,’a command goes here’);

numKnots = uicontrol(’style’,’edit’,...
'position’,[170 50 100 25],...
’string’,’’, ...
’callback’,’a command goes here’);

3

labell = uicontrol(’style’,’text’,...
'position’,[50 150 100 25],...
’string’,’Left Endpoint’,...
’callback’,’a command goes here’);
label2 = uicontrol(’style’,’text’,...
’position’,[50 100 100 25],...
’string’,’Right Endpoint’,...
’callback’,’a command goes here’);
label3 = uicontrol(’style’,’text’,...

'position’,[50 50 100 25],...
’string’,’How many knots?’,...
’callback’,’a command goes here’);

This is a relatively uncomplicated GUI, although one would be hard
pressed to discern this fact from the amount of code required to create it!

3 Why Visual Basic?

In this section, we will attempt to give a feel for how Visual Basic works. The
presentation here suffers somewhat because it is static. To truly appreciate
the difference between designing a GUI visually and non-visually one should
get their hands on a copy of Visual Basic and try it out.

Visual Basic was designed for making GUI’s. Figure 2 is a screen shot
of a new Visual Basic project. The object in the center is called a form.
On the left is the toolbox and on the right is a box which contains all the
properties of the form. In the toolbox are items (referred to as controls) that
can be placed on the form. These controls include a command button, a
radio button, a text box, a label box, a picture box, and many other things.
Placing one of these items on the form is done by double clicking on the item
in the toolbox and then dragging it to the desired position.

‘#5 Project] - Microsoft Yisual Basic [design]
File Edit View Inzett HBun Toolz Addlne Help

: | Form1 Form

DrawSiyle 0- Solid
Drawifidth 1

Enabled True

FillCalar &HO0000000%
FillStyle 1 - Transparent
Fant M5 Sans Serif
FontTransparent True

FareColor EHB000007 28
Height 5370
HelpContext D 1]

lcon [leon]
KeyPreview False

Left 1380
LinkMode 0-Mone

LinkT opic Farmi

M axButtan True

MDIChild False
MinButton True
Mouzelcon [Mane] LI

m|cx|m| | =] >

Ed

L:[El

§|

1o

1010
oo

+1

“igw Form Wiew Code

Form1

Figure 2: Visual Basic Start-up Screen

In Figure 3, we see a text box that has been placed on the form. Notice
that the properties box showing on the right of the form is associated with
the text box. The form and every object that is placed on it has a properties
box. The appearance of an object can be manipulated by changing its prop-
erties. There are also other aspects of the object that can be controlled by
changing the properties. For example, usually the name property is changed
to something meaningful.

Once we have the form looking the way we want it, we can put together
the application. How do we make it do something? A GUI is event driven.
The flow of execution is dependent on the action the user takes. For example,
if the user presses a button on the GUI, the program handles that event.

‘75 Project] - Microsoft ¥isual Basic [design]
File Edit Yiew Inzert Bun Tools Addln: Help
[=]
[All: |Texl1 TextBox =1
— . HelpContext D 1] ;I
Ia_b| U [: HideSelection True
o0 Inde
v 0 .
d|e EEI a o Left 1320
=] i - Linkltem
=, - LinkMode 0-Mone
=] [| LinkTimeout 50
= o LirkT opic
B~ . Locked False
oo oo - MaxLength]
- Mouzelcon [Mane]
= (&S - MouzePainter 0 - Default
- = | N MultiLine False
. e = : Mame Textl
Tl = e | PagzwordChar
- ScrollB ars 0-Mone
-l o : T ablndex]
— o TabStop True
B Tag LI

11

“igw Form Wiew Code |

@ Form1 Form1

Figure 3: A Text Box

Each control has an event (possible more than one) that goes along with
it. To write an event handler for a control, the programmer double clicks
on that control to bring up a code window. The Basic code which handles
the event goes in it. It is also possible to add to the form a separate code
module which holds only subroutines and variable declarations. This feature
is particularly useful for adding routines that need to be used by more than
one control or that can be used by other applications.

In Figure 4, we see a simple GUI that acts as a front end to the Mat-
lab spline command. In Appendix A is the code for all the event handlers
in this application. This application also has a code module for handling
communication to Matlab. This topic is discussed in the next section.

W Splines

-15
[a]

Left
Endpaint

Right
Endpaint

Hows mary
Knots?

Figure 4: A Visual Basic GUI

4 DDE Basics

A DDE takes place between source and destination applications. In our
situation, the Visual Basic program is the destination and Matlab is the
source. The destination initiates a conversation with the source by supplying
a topic that the source recognizes. The conversation has three possible modes
: manual, automatic, and notify. We restrict ourselves to the manual mode.
In this mode the programmer explicitly controls when a conversation can
happen. Once the topic is known an item is exchanged. The details of this
transaction depend on what has been exchanged.

Matlab recognizes the topics System and Engine. Since the Engine is
the part of Matlab that does the work, this is the topic that the Visual
Basic program uses. The items that can be exchanged are EngEvalString,
EngStringResult, EngFigureResult, and a matrix name. The EngEvalString
item is used to send commands to Matlab. The EngStringResult is for bring-
ing the result of a comand back from Matlab and the EngFigureResult is for
getting a figure back from Matlab. A matrix can also be brought back from
Matlab. Data is received from Matlab by executing a LinkRequest and data
is sent to Matlab by executing a LinkPoke.

In Visual Basic, every control that can communicate via DDE has link
propeties. They are LinkTopic, LinkMode, LinkItem, and LinkTimeout (see
Figure 2). The LinkTopic is set to "Matlab | Engine” and the LinkMode is
set to 2 (manual). The LinkTimeout is left at its default value. The LinkItem
property is used when sending or receiving data. In Appendix B are three
routines for communicating with Matlab. The first routine is for moving a
number from a text box to Matlab, the second is for sending a command to
Matlab, and the last is for getting a figure back from Matlab. These routines
can be included in any application that needs to communicate to Matlab.

5 Conclusions

Visual Basic makes creating a graphical user interface painless and it is rel-
atively easy to communicate to Matlab via the dynamic data exchange. If
the reader is is interested in developing applications for Matlab, she should
consider the advantages of a GUIL If a GUI is deemed to be important then
she should consider creating the GUI with a product designed for the task :
Visual Basic.

6 References

[1] Norton, Peter Peter Norton’s Guide to Visual Basic 4, SAMS Publish-
ing, Indianapolis, IN

[2] Ezternal Interface Guide Supplement, The MathWorks, Inc. 1994
[8] Matlab Reference Guide, The MathWorks, Inc. 1992

7 Appendix A

Private Sub cmdCompute_Click()
’Sends data to MATLAB then issues commands
’to compute a spline interpolant to the data.

Dim left As String ’holds left end point
Dim right As String ’holds right end point
Dim numKnots As String ’holds number of knots
Dim command As String ’For sending to MATLAB

left = "a" 'poke the left point into a
right = "b" ‘poke the right point into b
numKnots = "n" ’poke the number of knots into n

Call sendNumber (txtLeftEnd, left)
Call sendNumber(txtRightEnd, right)
Call sendNumber (txtNumKnots, numKnots)

’Set up the knots for the spline
command = "x = a:(b-a)/(n-1):b"

’Need a textbox to link?

Call sendCommand(txtLeftEnd, command)

’Which function are we using?
Call whichFunction(txtLeftEnd)

‘points to evaluate the spline at
command = "xi = a: (b-a)/100 : b;"
Call sendCommand(txtLeftEnd, command)

’Call MATLAB m-file

command = "splineit"

Call sendCommand(txtLeftEnd, command)
Call getPicture(picPlotBox)

End Sub

Private Sub cmdClear_Click()
’clear out the stuff

Dim command As String ’to clear the plot
command = "clf"

Call sendCommand(txtLeftEnd, command)
Call getPicture(picPlotBox)
txtLeftEnd.Text = ""

txtRightEnd.Text = ""

txtNumKnots.Text = ""

isPlotReady = False

optFunc(0) .Value = True

End Sub

Private Sub optFunc_Click(Index As Integer)
"Which function do we pass to MATLAB?

If (Index = 0) Then
igSin = True
isCos False
isExp = False

ElseIf (Index = 1) Then
isSin = False
isCos = True
isExp = False

ElseIf (Index = 2) Then
isSin = False
isCos = False
isExp = True

End If

End Sub

10

Private Sub txtLeftEnd_Change()

’Check to see if the data is defined before
’we enable the compute button

If (txtNumKnots.Text = "") Then
cmdCompute.Enabled = False

Elself (txtLeftEnd.Text = "") Then
cmdCompute.Enabled = False

ElseIf (txtRightEnd.Text = "") Then
cmdCompute.Enabled = False

Else
cmdCompute.Enabled = True

End If

End Sub

Private Sub txtRightEnd_Change()

’Check to see if the data is defined before
'we enable the compute button

If (txtNumKnots.Text = "") Then
cmdCompute.Enabled = False

ElseIf (txtLeftEnd.Text = "") Then
cmdCompute.Enabled = False

ElseIf (txtRightEnd.Text = "") Then
cmdCompute.Enabled = False

Else
cmdCompute.Enabled = True

End If

End Sub

11

Private Sub txtNumKnots_Change()
’Check to see if the data is defined before
'we enable the compute button

If (txtNumKnots.Text = "") Then
cmdCompute.Enabled = False

ElseIf (txtLeftEnd.Text = "") Then
cmdCompute.Enabled = False

ElseIf (txtRightEnd.Text = "") Then
cmdCompute.Enabled = False

Else
cmdCompute.Enabled = True

End If

End Sub

Private Sub cmdQuit_Click()
End
End Sub

12

8 Appendix B

Public Sub sendNumber(textControl As Control, itemName As String)
’Send the contents of textControl to MATLAB. Store it in itemName.

Dim temp As String
’Save that string so

we can put it back later

temp = textControl.Text

"MATLAB needs a <LF>

on the datum

textControl.Text = textControl.Text & Chr(13)
'poke contents of text box into itemName

textControl.LinkMode

=0

textControl.LinkTopic = "MATLAB|Engine"

textControl.LinkItem
textControl.LinkMode
textControl.LinkPoke
textControl.LinkMode
’put the number back

itemName
= 2

=0
the way we found it

textControl.Text = temp

End Sub

Public Sub getPicture(pictureBox As Control)

’Let’s go get the plot

pictureBox.LinkMode

we made in MATLAB

=0

pictureBox.LinkTopic = "MATLAB|Engine"
’This is the way to get a picture back.
pictureBox.LinkItem = "EngFigureResult"

pictureBox.LinkMode

=2

’LinkRequest asks for data.
pictureBox.LinkRequest

pictureBox.LinkMode

End Sub

=0

13

Public Sub sendCommand(textControl As Control, MatCom As String)
’This subroutine sends a command to MATLAB for execution.

On Error GoTo startMatlab ’Make sure Matlab is running
textControl.LinkMode = 0 ’don’t talk to MATLAB yet
textControl.LinkTopic = "MATLAB|Engine" ’the topic
textControl.LinkMode = 2 ’Open a channel
textControl.LinkExecute MatCom ’tell MATLAB what to do
textControl.LinkMode = 0 ’Close the channel

Exit Sub

startMatlab:
’This code will start up Matlab.

If (Err.Number = 282) Then
I = Shell("c:\matlab\bin\matlab.exe", vbMinimizedNoFocus)
I = DoEvents()

End If

End Sub

14

