
MATLAB® 7
Function Reference: Volume 1 (A-E)

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Function Reference

© COPYRIGHT 1984–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology,
SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The
MathWorks, the L-shaped membrane logo, Embedded MATLAB, and PolySpace are
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
December 1996 First printing For MATLAB 5.0 (Release 8)
June 1997 Online only Revised for MATLAB 5.1 (Release 9)
October 1997 Online only Revised for MATLAB 5.2 (Release 10)
January 1999 Online only Revised for MATLAB 5.3 (Release 11)
June 1999 Second printing For MATLAB 5.3 (Release 11)
June 2001 Online only Revised for MATLAB 6.1 (Release 12.1)
July 2002 Online only Revised for 6.5 (Release 13)
June 2004 Online only Revised for 7.0 (Release 14)
September 2006 Online only Revised for 7.3 (Release 2006b)
September 2007 Online only Revised for 7.5 (Release 2007b)

Contents

Functions — By Category

1
Desktop Tools and Development Environment 1-3

Startup and Shutdown . 1-3
Command Window and History . 1-4
Help for Using MATLAB . 1-5
Workspace, Search Path, and File Operations 1-6
Programming Tools . 1-8
System . 1-11

Mathematics . 1-13
Arrays and Matrices . 1-14
Linear Algebra . 1-19
Elementary Math . 1-23
Polynomials . 1-28
Interpolation and Computational Geometry 1-28
Cartesian Coordinate System Conversion 1-31
Nonlinear Numerical Methods . 1-31
Specialized Math . 1-35
Sparse Matrices . 1-36
Math Constants . 1-39

Data Analysis . 1-41
Basic Operations . 1-41
Descriptive Statistics . 1-41
Filtering and Convolution . 1-42
Interpolation and Regression . 1-42
Fourier Transforms . 1-43
Derivatives and Integrals . 1-43
Time Series Objects . 1-44
Time Series Collections . 1-47

Programming and Data Types . 1-49
Data Types . 1-49
Data Type Conversion . 1-58
Operators and Special Characters . 1-60

v

String Functions . 1-63
Bit-wise Functions . 1-66
Logical Functions . 1-66
Relational Functions . 1-67
Set Functions . 1-67
Date and Time Functions . 1-68
Programming in MATLAB . 1-68

File I/O . 1-76
File Name Construction . 1-76
Opening, Loading, Saving Files . 1-77
Memory Mapping . 1-77
Low-Level File I/O . 1-77
Text Files . 1-78
XML Documents . 1-79
Spreadsheets . 1-79
Scientific Data . 1-80
Audio and Audio/Video . 1-81
Images . 1-83
Internet Exchange . 1-84

Graphics . 1-86
Basic Plots and Graphs . 1-86
Plotting Tools . 1-87
Annotating Plots . 1-87
Specialized Plotting . 1-88
Bit-Mapped Images . 1-92
Printing . 1-92
Handle Graphics . 1-93

3-D Visualization . 1-97
Surface and Mesh Plots . 1-97
View Control . 1-99
Lighting . 1-101
Transparency . 1-101
Volume Visualization . 1-102

Creating Graphical User Interfaces 1-104
Predefined Dialog Boxes . 1-104
Deploying User Interfaces . 1-105
Developing User Interfaces . 1-105
User Interface Objects . 1-106

vi Contents

Finding Objects from Callbacks . 1-107
GUI Utility Functions . 1-107
Controlling Program Execution . 1-108

External Interfaces . 1-109
Dynamic Link Libraries . 1-109
Java . 1-110
Component Object Model and ActiveX 1-111
Web Services . 1-113
Serial Port Devices . 1-113

Functions — Alphabetical List

2

Index

vii

viii Contents

1

Functions — By Category

Desktop Tools and Development
Environment (p. 1-3)

Startup, Command Window, help,
editing and debugging, tuning, other
general functions

Mathematics (p. 1-13) Arrays and matrices, linear algebra,
other areas of mathematics

Data Analysis (p. 1-41) Basic data operations, descriptive
statistics, covariance and correlation,
filtering and convolution, numerical
derivatives and integrals, Fourier
transforms, time series analysis

Programming and Data Types
(p. 1-49)

Function/expression evaluation,
program control, function handles,
object oriented programming, error
handling, operators, data types,
dates and times, timers

File I/O (p. 1-76) General and low-level file I/O, plus
specific file formats, like audio,
spreadsheet, HDF, images

Graphics (p. 1-86) Line plots, annotating graphs,
specialized plots, images, printing,
Handle Graphics

3-D Visualization (p. 1-97) Surface and mesh plots, view control,
lighting and transparency, volume
visualization

1 Functions — By Category

Creating Graphical User Interfaces
(p. 1-104)

GUIDE, programming graphical
user interfaces

External Interfaces (p. 1-109) Interfaces to DLLs, Java, COM and
ActiveX, Web services, and serial
port devices, and C and Fortran
routines

1-2

Desktop Tools and Development Environment

Desktop Tools and Development Environment

Startup and Shutdown (p. 1-3) Startup and shutdown options,
preferences

Command Window and History
(p. 1-4)

Control Command Window and
History, enter statements and run
functions

Help for Using MATLAB (p. 1-5) Command line help, online
documentation in the Help browser,
demos

Workspace, Search Path, and File
Operations (p. 1-6)

Work with files, MATLAB search
path, manage variables

Programming Tools (p. 1-8) Edit and debug M-files, improve
performance, source control, publish
results

System (p. 1-11) Identify current computer, license,
product version, and more

Startup and Shutdown

exit Terminate MATLAB (same as quit)

finish MATLAB termination M-file

matlab (UNIX) Start MATLAB (UNIX systems)

matlab (Windows) Start MATLAB (Windows systems)

matlabrc MATLAB startup M-file for
single-user systems or system
administrators

prefdir Directory containing preferences,
history, and layout files

preferences Open Preferences dialog box for
MATLAB and related products

1-3

1 Functions — By Category

quit Terminate MATLAB

startup MATLAB startup M-file for
user-defined options

Command Window and History

clc Clear Command Window

commandhistory Open Command History window, or
select it if already open

commandwindow Open Command Window, or select it
if already open

diary Save session to file

dos Execute DOS command and return
result

format Set display format for output

home Move cursor to upper-left corner of
Command Window

matlabcolon (matlab:) Run specified function via hyperlink

more Control paged output for Command
Window

perl Call Perl script using appropriate
operating system executable

system Execute operating system command
and return result

unix Execute UNIX command and return
result

1-4

Desktop Tools and Development Environment

Help for Using MATLAB

builddocsearchdb Build searchable documentation
database

demo Access product demos via Help
browser

doc Reference page in Help browser

docopt Web browser for UNIX platforms

docsearch Open Help browser Search pane
and search for specified term

echodemo Run M-file demo step-by-step in
Command Window

help Help for MATLAB functions in
Command Window

helpbrowser Open Help browser to access all
online documentation and demos

helpwin Provide access to M-file help for all
functions

info Information about contacting The
MathWorks

lookfor Search for keyword in all help
entries

playshow Run M-file demo (deprecated; use
echodemo instead)

support Open MathWorks Technical Support
Web page

web Open Web site or file in Web browser
or Help browser

whatsnew Release Notes for MathWorks
products

1-5

1 Functions — By Category

Workspace, Search Path, and File Operations

Workspace (p. 1-6) Manage variables

Search Path (p. 1-6) View and change MATLAB search
path

File Operations (p. 1-7) View and change files and directories

Workspace

assignin Assign value to variable in specified
workspace

clear Remove items from workspace,
freeing up system memory

evalin Execute MATLAB expression in
specified workspace

exist Check existence of variable, function,
directory, or Java class

openvar Open workspace variable in Array
Editor or other tool for graphical
editing

pack Consolidate workspace memory

uiimport Open Import Wizard to import data

which Locate functions and files

workspace Open Workspace browser to manage
workspace

Search Path

addpath Add directories to MATLAB search
path

genpath Generate path string

partialpath Partial pathname description

1-6

Desktop Tools and Development Environment

path View or change MATLAB directory
search path

path2rc Save current MATLAB search path
to pathdef.m file

pathdef Directories in MATLAB search path

pathsep Path separator for current platform

pathtool Open Set Path dialog box to view
and change MATLAB path

restoredefaultpath Restore default MATLAB search
path

rmpath Remove directories from MATLAB
search path

savepath Save current MATLAB search path
to pathdef.m file

File Operations
See also “File I/O” on page 1-76 functions.

cd Change working directory

copyfile Copy file or directory

delete Remove files or graphics objects

dir Directory listing

exist Check existence of variable, function,
directory, or Java class

fileattrib Set or get attributes of file or
directory

filebrowser Current Directory browser

isdir Determine whether input is a
directory

lookfor Search for keyword in all help
entries

1-7

1 Functions — By Category

ls Directory contents on UNIX system

matlabroot Root directory of MATLAB
installation

mkdir Make new directory

movefile Move file or directory

pwd Identify current directory

recycle Set option to move deleted files to
recycle folder

rehash Refresh function and file system
path caches

rmdir Remove directory

toolboxdir Root directory for specified toolbox

type Display contents of file

web Open Web site or file in Web browser
or Help browser

what List MATLAB files in current
directory

which Locate functions and files

Programming Tools

Edit and Debug M-Files (p. 1-9) Edit and debug M-files

Improve Performance and Tune
M-Files (p. 1-9)

Improve performance and find
potential problems in M-files

Source Control (p. 1-10) Interface MATLAB with source
control system

Publishing (p. 1-10) Publish M-file code and results

1-8

Desktop Tools and Development Environment

Edit and Debug M-Files

clipboard Copy and paste strings to and from
system clipboard

datatipinfo Produce short description of input
variable

dbclear Clear breakpoints

dbcont Resume execution

dbdown Change local workspace context
when in debug mode

dbquit Quit debug mode

dbstack Function call stack

dbstatus List all breakpoints

dbstep Execute one or more lines from
current breakpoint

dbstop Set breakpoints

dbtype List M-file with line numbers

dbup Change local workspace context

debug List M-file debugging functions

edit Edit or create M-file

keyboard Input from keyboard

Improve Performance and Tune M-Files

memory Help for memory limitations

mlint Check M-files for possible problems

mlintrpt Run mlint for file or directory,
reporting results in browser

pack Consolidate workspace memory

profile Profile execution time for function

1-9

1 Functions — By Category

profsave Save profile report in HTML format

rehash Refresh function and file system
path caches

sparse Create sparse matrix

zeros Create array of all zeros

Source Control

checkin Check files into source control
system (UNIX)

checkout Check files out of source control
system (UNIX)

cmopts Name of source control system

customverctrl Allow custom source control system
(UNIX)

undocheckout Undo previous checkout from source
control system (UNIX)

verctrl Source control actions (Windows)

Publishing

grabcode MATLAB code from M-files
published to HTML

notebook Open M-book in Microsoft Word
(Windows)

publish Publish M-file containing cells,
saving output to file of specified type

1-10

Desktop Tools and Development Environment

System

Operating System Interface (p. 1-11) Exchange operating system
information and commands with
MATLAB

MATLAB Version and License
(p. 1-12)

Information about MATLAB version
and license

Operating System Interface

clipboard Copy and paste strings to and from
system clipboard

computer Information about computer on
which MATLAB is running

dos Execute DOS command and return
result

getenv Environment variable

hostid MATLAB server host identification
number

maxNumCompThreads Controls maximum number of
computational threads

perl Call Perl script using appropriate
operating system executable

setenv Set environment variable

system Execute operating system command
and return result

unix Execute UNIX command and return
result

winqueryreg Item from Microsoft Windows
registry

1-11

1 Functions — By Category

MATLAB Version and License

ismac Determine whether running
Macintosh OS X versions of
MATLAB

ispc Determine whether PC (Windows)
version of MATLAB

isstudent Determine whether Student Version
of MATLAB

isunix Determine whether UNIX version of
MATLAB

javachk Generate error message based on
Java feature support

license Return license number or perform
licensing task

prefdir Directory containing preferences,
history, and layout files

usejava Determine whether Java feature is
supported in MATLAB

ver Version information for MathWorks
products

verLessThan Compare toolbox version to specified
version string

version Version number for MATLAB

1-12

Mathematics

Mathematics

Arrays and Matrices (p. 1-14) Basic array operators and operations,
creation of elementary and
specialized arrays and matrices

Linear Algebra (p. 1-19) Matrix analysis, linear equations,
eigenvalues, singular values,
logarithms, exponentials,
factorization

Elementary Math (p. 1-23) Trigonometry, exponentials and
logarithms, complex values,
rounding, remainders, discrete math

Polynomials (p. 1-28) Multiplication, division, evaluation,
roots, derivatives, integration,
eigenvalue problem, curve fitting,
partial fraction expansion

Interpolation and Computational
Geometry (p. 1-28)

Interpolation, Delaunay
triangulation and tessellation,
convex hulls, Voronoi diagrams,
domain generation

Cartesian Coordinate System
Conversion (p. 1-31)

Conversions between Cartesian and
polar or spherical coordinates

Nonlinear Numerical Methods
(p. 1-31)

Differential equations, optimization,
integration

Specialized Math (p. 1-35) Airy, Bessel, Jacobi, Legendre, beta,
elliptic, error, exponential integral,
gamma functions

Sparse Matrices (p. 1-36) Elementary sparse matrices,
operations, reordering algorithms,
linear algebra, iterative methods,
tree operations

Math Constants (p. 1-39) Pi, imaginary unit, infinity,
Not-a-Number, largest and smallest
positive floating point numbers,
floating point relative accuracy

1-13

1 Functions — By Category

Arrays and Matrices

Basic Information (p. 1-14) Display array contents, get array
information, determine array type

Operators (p. 1-15) Arithmetic operators

Elementary Matrices and Arrays
(p. 1-16)

Create elementary arrays of different
types, generate arrays for plotting,
array indexing, etc.

Array Operations (p. 1-17) Operate on array content, apply
function to each array element, find
cumulative product or sum, etc.

Array Manipulation (p. 1-17) Create, sort, rotate, permute,
reshape, and shift array contents

Specialized Matrices (p. 1-18) Create Hadamard, Companion,
Hankel, Vandermonde, Pascal
matrices, etc.

Basic Information

disp Display text or array

display Display text or array (overloaded
method)

isempty Determine whether array is empty

isequal Test arrays for equality

isequalwithequalnans Test arrays for equality, treating
NaNs as equal

isfinite Array elements that are finite

isfloat Determine whether input is
floating-point array

isinf Array elements that are infinite

isinteger Determine whether input is integer
array

1-14

Mathematics

islogical Determine whether input is logical
array

isnan Array elements that are NaN

isnumeric Determine whether input is numeric
array

isscalar Determine whether input is scalar

issparse Determine whether input is sparse

isvector Determine whether input is vector

length Length of vector

max Largest elements in array

min Smallest elements in array

ndims Number of array dimensions

numel Number of elements in array or
subscripted array expression

size Array dimensions

Operators

+ Addition

+ Unary plus

- Subtraction

- Unary minus

* Matrix multiplication

^ Matrix power

\ Backslash or left matrix divide

/ Slash or right matrix divide

’ Transpose

.’ Nonconjugated transpose

.* Array multiplication (element-wise)

1-15

1 Functions — By Category

.^ Array power (element-wise)

.\ Left array divide (element-wise)

./ Right array divide (element-wise)

Elementary Matrices and Arrays

blkdiag Construct block diagonal matrix
from input arguments

diag Diagonal matrices and diagonals of
matrix

eye Identity matrix

freqspace Frequency spacing for frequency
response

ind2sub Subscripts from linear index

linspace Generate linearly spaced vectors

logspace Generate logarithmically spaced
vectors

meshgrid Generate X and Y arrays for 3-D plots

ndgrid Generate arrays for N-D functions
and interpolation

ones Create array of all ones

rand Uniformly distributed
pseudorandom numbers

randn Normally distributed random
numbers

sub2ind Single index from subscripts

zeros Create array of all zeros

1-16

Mathematics

Array Operations

See “Linear Algebra” on page 1-19 and “Elementary Math” on page 1-23 for
other array operations.

accumarray Construct array with accumulation

arrayfun Apply function to each element of
array

bsxfun Apply element-by-element binary
operation to two arrays with
singleton expansion enabled

cast Cast variable to different data type

cross Vector cross product

cumprod Cumulative product

cumsum Cumulative sum

dot Vector dot product

idivide Integer division with rounding
option

kron Kronecker tensor product

prod Product of array elements

sum Sum of array elements

tril Lower triangular part of matrix

triu Upper triangular part of matrix

Array Manipulation

blkdiag Construct block diagonal matrix
from input arguments

cat Concatenate arrays along specified
dimension

circshift Shift array circularly

1-17

1 Functions — By Category

diag Diagonal matrices and diagonals of
matrix

end Terminate block of code, or indicate
last array index

flipdim Flip array along specified dimension

fliplr Flip matrix left to right

flipud Flip matrix up to down

horzcat Concatenate arrays horizontally

inline Construct inline object

ipermute Inverse permute dimensions of N-D
array

permute Rearrange dimensions of N-D array

repmat Replicate and tile array

reshape Reshape array

rot90 Rotate matrix 90 degrees

shiftdim Shift dimensions

sort Sort array elements in ascending or
descending order

sortrows Sort rows in ascending order

squeeze Remove singleton dimensions

vectorize Vectorize expression

vertcat Concatenate arrays vertically

Specialized Matrices

compan Companion matrix

gallery Test matrices

hadamard Hadamard matrix

hankel Hankel matrix

1-18

Mathematics

hilb Hilbert matrix

invhilb Inverse of Hilbert matrix

magic Magic square

pascal Pascal matrix

rosser Classic symmetric eigenvalue test
problem

toeplitz Toeplitz matrix

vander Vandermonde matrix

wilkinson Wilkinson’s eigenvalue test matrix

Linear Algebra

Matrix Analysis (p. 1-19) Compute norm, rank, determinant,
condition number, etc.

Linear Equations (p. 1-20) Solve linear systems, least
squares, LU factorization, Cholesky
factorization, etc.

Eigenvalues and Singular Values
(p. 1-21)

Eigenvalues, eigenvectors, Schur
decomposition, Hessenburg
matrices, etc.

Matrix Logarithms and Exponentials
(p. 1-22)

Matrix logarithms, exponentials,
square root

Factorization (p. 1-22) Cholesky, LU, and QR factorizations,
diagonal forms, singular value
decomposition

Matrix Analysis

cond Condition number with respect to
inversion

condeig Condition number with respect to
eigenvalues

1-19

1 Functions — By Category

det Matrix determinant

norm Vector and matrix norms

normest 2-norm estimate

null Null space

orth Range space of matrix

rank Rank of matrix

rcond Matrix reciprocal condition number
estimate

rref Reduced row echelon form

subspace Angle between two subspaces

trace Sum of diagonal elements

Linear Equations

chol Cholesky factorization

cholinc Sparse incomplete Cholesky and
Cholesky-Infinity factorizations

cond Condition number with respect to
inversion

condest 1-norm condition number estimate

funm Evaluate general matrix function

ilu Sparse incomplete LU factorization

inv Matrix inverse

linsolve Solve linear system of equations

lscov Least-squares solution in presence
of known covariance

lsqnonneg Solve nonnegative least-squares
constraints problem

lu LU matrix factorization

1-20

Mathematics

luinc Sparse incomplete LU factorization

pinv Moore-Penrose pseudoinverse of
matrix

qr Orthogonal-triangular
decomposition

rcond Matrix reciprocal condition number
estimate

Eigenvalues and Singular Values

balance Diagonal scaling to improve
eigenvalue accuracy

cdf2rdf Convert complex diagonal form to
real block diagonal form

condeig Condition number with respect to
eigenvalues

eig Find eigenvalues and eigenvectors

eigs Find largest eigenvalues and
eigenvectors of sparse matrix

gsvd Generalized singular value
decomposition

hess Hessenberg form of matrix

ordeig Eigenvalues of quasitriangular
matrices

ordqz Reorder eigenvalues in QZ
factorization

ordschur Reorder eigenvalues in Schur
factorization

poly Polynomial with specified roots

polyeig Polynomial eigenvalue problem

1-21

1 Functions — By Category

rsf2csf Convert real Schur form to complex
Schur form

schur Schur decomposition

sqrtm Matrix square root

ss2tf Convert state-space filter
parameters to transfer function
form

svd Singular value decomposition

svds Find singular values and vectors

Matrix Logarithms and Exponentials

expm Matrix exponential

logm Matrix logarithm

sqrtm Matrix square root

Factorization

balance Diagonal scaling to improve
eigenvalue accuracy

cdf2rdf Convert complex diagonal form to
real block diagonal form

chol Cholesky factorization

cholinc Sparse incomplete Cholesky and
Cholesky-Infinity factorizations

cholupdate Rank 1 update to Cholesky
factorization

gsvd Generalized singular value
decomposition

ilu Sparse incomplete LU factorization

lu LU matrix factorization

1-22

Mathematics

luinc Sparse incomplete LU factorization

planerot Givens plane rotation

qr Orthogonal-triangular
decomposition

qrdelete Remove column or row from QR
factorization

qrinsert Insert column or row into QR
factorization

qrupdate

qz QZ factorization for generalized
eigenvalues

rsf2csf Convert real Schur form to complex
Schur form

svd Singular value decomposition

Elementary Math

Trigonometric (p. 1-24) Trigonometric functions with results
in radians or degrees

Exponential (p. 1-25) Exponential, logarithm, power, and
root functions

Complex (p. 1-26) Numbers with real and imaginary
components, phase angles

Rounding and Remainder (p. 1-27) Rounding, modulus, and remainder

Discrete Math (e.g., Prime Factors)
(p. 1-27)

Prime factors, factorials,
permutations, rational fractions,
least common multiple, greatest
common divisor

1-23

1 Functions — By Category

Trigonometric

acos Inverse cosine; result in radians

acosd Inverse cosine; result in degrees

acosh Inverse hyperbolic cosine

acot Inverse cotangent; result in radians

acotd Inverse cotangent; result in degrees

acoth Inverse hyperbolic cotangent

acsc Inverse cosecant; result in radians

acscd Inverse cosecant; result in degrees

acsch Inverse hyperbolic cosecant

asec Inverse secant; result in radians

asecd Inverse secant; result in degrees

asech Inverse hyperbolic secant

asin Inverse sine; result in radians

asind Inverse sine; result in degrees

asinh Inverse hyperbolic sine

atan Inverse tangent; result in radians

atan2 Four-quadrant inverse tangent

atand Inverse tangent; result in degrees

atanh Inverse hyperbolic tangent

cos Cosine of argument in radians

cosd Cosine ofo argument in degrees

cosh Hyperbolic cosine

cot Cotangent of argument in radians

cotd Cotangent of argument in degrees

coth Hyperbolic cotangent

csc Cosecant of argument in radians

1-24

Mathematics

cscd Cosecant of argument in degrees

csch Hyperbolic cosecant

hypot Square root of sum of squares

sec Secant of argument in radians

secd Secant of argument in degrees

sech Hyperbolic secant

sin Sine of argument in radians

sind Sine of argument in degrees

sinh Hyperbolic sine of argument in
radians

tan Tangent of argument in radians

tand Tangent of argument in degrees

tanh Hyperbolic tangent

Exponential

exp Exponential

expm1 Compute exp(x)-1 accurately for
small values of x

log Natural logarithm

log10 Common (base 10) logarithm

log1p Compute log(1+x) accurately for
small values of x

log2 Base 2 logarithm and dissect
floating-point numbers into
exponent and mantissa

nextpow2 Next higher power of 2

nthroot Real nth root of real numbers

pow2 Base 2 power and scale floating-point
numbers

1-25

1 Functions — By Category

reallog Natural logarithm for nonnegative
real arrays

realpow Array power for real-only output

realsqrt Square root for nonnegative real
arrays

sqrt Square root

Complex

abs Absolute value and complex
magnitude

angle Phase angle

complex Construct complex data from real
and imaginary components

conj Complex conjugate

cplxpair Sort complex numbers into complex
conjugate pairs

i Imaginary unit

imag Imaginary part of complex number

isreal Determine whether input is real
array

j Imaginary unit

real Real part of complex number

sign Signum function

unwrap Correct phase angles to produce
smoother phase plots

1-26

Mathematics

Rounding and Remainder

ceil Round toward infinity

fix Round toward zero

floor Round toward minus infinity

idivide Integer division with rounding
option

mod Modulus after division

rem Remainder after division

round Round to nearest integer

Discrete Math (e.g., Prime Factors)

factor Prime factors

factorial Factorial function

gcd Greatest common divisor

isprime Array elements that are prime
numbers

lcm Least common multiple

nchoosek Binomial coefficient or all
combinations

perms All possible permutations

primes Generate list of prime numbers

rat, rats Rational fraction approximation

1-27

1 Functions — By Category

Polynomials

conv Convolution and polynomial
multiplication

deconv Deconvolution and polynomial
division

poly Polynomial with specified roots

polyder Polynomial derivative

polyeig Polynomial eigenvalue problem

polyfit Polynomial curve fitting

polyint Integrate polynomial analytically

polyval Polynomial evaluation

polyvalm Matrix polynomial evaluation

residue Convert between partial fraction
expansion and polynomial
coefficients

roots Polynomial roots

Interpolation and Computational Geometry

Interpolation (p. 1-29) Data interpolation, data gridding,
polynomial evaluation, nearest point
search

Delaunay Triangulation and
Tessellation (p. 1-30)

Delaunay triangulation and
tessellation, triangular surface and
mesh plots

Convex Hull (p. 1-30) Plot convex hull, plotting functions

Voronoi Diagrams (p. 1-30) Plot Voronoi diagram, patch graphics
object, plotting functions

Domain Generation (p. 1-31) Generate arrays for 3-D plots, or for
N-D functions and interpolation

1-28

Mathematics

Interpolation

dsearch Search Delaunay triangulation for
nearest point

dsearchn N-D nearest point search

griddata Data gridding

griddata3 Data gridding and hypersurface
fitting for 3-D data

griddatan Data gridding and hypersurface
fitting (dimension >= 2)

interp1 1-D data interpolation (table lookup)

interp1q Quick 1-D linear interpolation

interp2 2-D data interpolation (table lookup)

interp3 3-D data interpolation (table lookup)

interpft 1-D interpolation using FFT method

interpn N-D data interpolation (table lookup)

meshgrid Generate X and Y arrays for 3-D plots

mkpp Make piecewise polynomial

ndgrid Generate arrays for N-D functions
and interpolation

padecoef Padé approximation of time delays

pchip Piecewise Cubic Hermite
Interpolating Polynomial (PCHIP)

ppval Evaluate piecewise polynomial

spline Cubic spline data interpolation

tsearchn N-D closest simplex search

unmkpp Piecewise polynomial details

1-29

1 Functions — By Category

Delaunay Triangulation and Tessellation

delaunay Delaunay triangulation

delaunay3 3-D Delaunay tessellation

delaunayn N-D Delaunay tessellation

dsearch Search Delaunay triangulation for
nearest point

dsearchn N-D nearest point search

tetramesh Tetrahedron mesh plot

trimesh Triangular mesh plot

triplot 2-D triangular plot

trisurf Triangular surface plot

tsearch Search for enclosing Delaunay
triangle

tsearchn N-D closest simplex search

Convex Hull

convhull Convex hull

convhulln N-D convex hull

patch Create patch graphics object

plot 2-D line plot

trisurf Triangular surface plot

Voronoi Diagrams

dsearch Search Delaunay triangulation for
nearest point

patch Create patch graphics object

plot 2-D line plot

1-30

Mathematics

voronoi Voronoi diagram

voronoin N-D Voronoi diagram

Domain Generation

meshgrid Generate X and Y arrays for 3-D plots

ndgrid Generate arrays for N-D functions
and interpolation

Cartesian Coordinate System Conversion

cart2pol Transform Cartesian coordinates to
polar or cylindrical

cart2sph Transform Cartesian coordinates to
spherical

pol2cart Transform polar or cylindrical
coordinates to Cartesian

sph2cart Transform spherical coordinates to
Cartesian

Nonlinear Numerical Methods

Ordinary Differential Equations
(IVP) (p. 1-32)

Solve stiff and nonstiff differential
equations, define the problem, set
solver options, evaluate solution

Delay Differential Equations
(p. 1-33)

Solve delay differential equations
with constant and general delays,
set solver options, evaluate solution

Boundary Value Problems (p. 1-33) Solve boundary value problems for
ordinary differential equations, set
solver options, evaluate solution

1-31

1 Functions — By Category

Partial Differential Equations
(p. 1-34)

Solve initial-boundary value
problems for parabolic-elliptic PDEs,
evaluate solution

Optimization (p. 1-34) Find minimum of single and
multivariable functions, solve
nonnegative least-squares constraint
problem

Numerical Integration (Quadrature)
(p. 1-34)

Evaluate Simpson, Lobatto, and
vectorized quadratures, evaluate
double and triple integrals

Ordinary Differential Equations (IVP)

decic Compute consistent initial conditions
for ode15i

deval Evaluate solution of differential
equation problem

ode15i Solve fully implicit differential
equations, variable order method

ode23, ode45, ode113, ode15s,
ode23s, ode23t, ode23tb

Solve initial value problems for
ordinary differential equations

odefile Define differential equation problem
for ordinary differential equation
solvers

odeget Ordinary differential equation
options parameters

odeset Create or alter options structure
for ordinary differential equation
solvers

odextend Extend solution of initial value
problem for ordinary differential
equation

1-32

Mathematics

Delay Differential Equations

dde23 Solve delay differential equations
(DDEs) with constant delays

ddeget Extract properties from delay
differential equations options
structure

ddesd Solve delay differential equations
(DDEs) with general delays

ddeset Create or alter delay differential
equations options structure

deval Evaluate solution of differential
equation problem

Boundary Value Problems

bvp4c Solve boundary value problems for
ordinary differential equations

bvp5c Solve boundary value problems for
ordinary differential equations

bvpget Extract properties from options
structure created with bvpset

bvpinit Form initial guess for bvp4c

bvpset Create or alter options structure of
boundary value problem

bvpxtend Form guess structure for extending
boundary value solutions

deval Evaluate solution of differential
equation problem

1-33

1 Functions — By Category

Partial Differential Equations

pdepe Solve initial-boundary value
problems for parabolic-elliptic PDEs
in 1-D

pdeval Evaluate numerical solution of PDE
using output of pdepe

Optimization

fminbnd Find minimum of single-variable
function on fixed interval

fminsearch Find minimum of unconstrained
multivariable function using
derivative-free method

fzero Find root of continuous function of
one variable

lsqnonneg Solve nonnegative least-squares
constraints problem

optimget Optimization options values

optimset Create or edit optimization options
structure

Numerical Integration (Quadrature)

dblquad Numerically evaluate double
integral

quad Numerically evaluate integral,
adaptive Simpson quadrature

quadgk Numerically evaluate integral,
adaptive Gauss-Kronrod quadrature

quadl Numerically evaluate integral,
adaptive Lobatto quadrature

1-34

Mathematics

quadv Vectorized quadrature

triplequad Numerically evaluate triple integral

Specialized Math

airy Airy functions

besselh Bessel function of third kind (Hankel
function)

besseli Modified Bessel function of first kind

besselj Bessel function of first kind

besselk Modified Bessel function of second
kind

bessely Bessel function of second kind

beta Beta function

betainc Incomplete beta function

betaln Logarithm of beta function

ellipj Jacobi elliptic functions

ellipke Complete elliptic integrals of first
and second kind

erf, erfc, erfcx, erfinv, erfcinv Error functions

expint Exponential integral

gamma, gammainc, gammaln Gamma functions

legendre Associated Legendre functions

psi Psi (polygamma) function

1-35

1 Functions — By Category

Sparse Matrices

Elementary Sparse Matrices (p. 1-36) Create random and nonrandom
sparse matrices

Full to Sparse Conversion (p. 1-37) Convert full matrix to sparse, sparse
matrix to full

Working with Sparse Matrices
(p. 1-37)

Test matrix for sparseness, get
information on sparse matrix,
allocate sparse matrix, apply
function to nonzero elements,
visualize sparsity pattern.

Reordering Algorithms (p. 1-37) Random, column, minimum degree,
Dulmage-Mendelsohn, and reverse
Cuthill-McKee permutations

Linear Algebra (p. 1-38) Compute norms, eigenvalues,
factorizations, least squares,
structural rank

Linear Equations (Iterative
Methods) (p. 1-38)

Methods for conjugate and
biconjugate gradients, residuals,
lower quartile

Tree Operations (p. 1-39) Elimination trees, tree plotting,
factorization analysis

Elementary Sparse Matrices

spdiags Extract and create sparse band and
diagonal matrices

speye Sparse identity matrix

sprand Sparse uniformly distributed
random matrix

sprandn Sparse normally distributed random
matrix

sprandsym Sparse symmetric random matrix

1-36

Mathematics

Full to Sparse Conversion

find Find indices and values of nonzero
elements

full Convert sparse matrix to full matrix

sparse Create sparse matrix

spconvert Import matrix from sparse matrix
external format

Working with Sparse Matrices

issparse Determine whether input is sparse

nnz Number of nonzero matrix elements

nonzeros Nonzero matrix elements

nzmax Amount of storage allocated for
nonzero matrix elements

spalloc Allocate space for sparse matrix

spfun Apply function to nonzero sparse
matrix elements

spones Replace nonzero sparse matrix
elements with ones

spparms Set parameters for sparse matrix
routines

spy Visualize sparsity pattern

Reordering Algorithms

amd Approximate minimum degree
permutation

colamd Column approximate minimum
degree permutation

1-37

1 Functions — By Category

colperm Sparse column permutation based
on nonzero count

dmperm Dulmage-Mendelsohn decomposition

ldl Block ldl’ factorization for Hermitian
indefinite matrices

randperm Random permutation

symamd Symmetric approximate minimum
degree permutation

symrcm Sparse reverse Cuthill-McKee
ordering

Linear Algebra

cholinc Sparse incomplete Cholesky and
Cholesky-Infinity factorizations

condest 1-norm condition number estimate

eigs Find largest eigenvalues and
eigenvectors of sparse matrix

ilu Sparse incomplete LU factorization

luinc Sparse incomplete LU factorization

normest 2-norm estimate

spaugment Form least squares augmented
system

sprank Structural rank

svds Find singular values and vectors

Linear Equations (Iterative Methods)

bicg Biconjugate gradients method

bicgstab Biconjugate gradients stabilized
method

1-38

Mathematics

cgs Conjugate gradients squared method

gmres Generalized minimum residual
method (with restarts)

lsqr LSQR method

minres Minimum residual method

pcg Preconditioned conjugate gradients
method

qmr Quasi-minimal residual method

symmlq Symmetric LQ method

Tree Operations

etree Elimination tree

etreeplot Plot elimination tree

gplot Plot nodes and links representing
adjacency matrix

symbfact Symbolic factorization analysis

treelayout Lay out tree or forest

treeplot Plot picture of tree

Math Constants

eps Floating-point relative accuracy

i Imaginary unit

Inf Infinity

intmax Largest value of specified integer
type

intmin Smallest value of specified integer
type

j Imaginary unit

1-39

1 Functions — By Category

NaN Not-a-Number

pi Ratio of circle’s circumference to its
diameter, π

realmax Largest positive floating-point
number

realmin Smallest positive normalized
floating-point number

1-40

Data Analysis

Data Analysis

Basic Operations (p. 1-41) Sums, products, sorting

Descriptive Statistics (p. 1-41) Statistical summaries of data

Filtering and Convolution (p. 1-42) Data preprocessing

Interpolation and Regression
(p. 1-42)

Data fitting

Fourier Transforms (p. 1-43) Frequency content of data

Derivatives and Integrals (p. 1-43) Data rates and accumulations

Time Series Objects (p. 1-44) Methods for timeseries objects

Time Series Collections (p. 1-47) Methods for tscollection objects

Basic Operations

cumprod Cumulative product

cumsum Cumulative sum

prod Product of array elements

sort Sort array elements in ascending or
descending order

sortrows Sort rows in ascending order

sum Sum of array elements

Descriptive Statistics

corrcoef Correlation coefficients

cov Covariance matrix

max Largest elements in array

mean Average or mean value of array

median Median value of array

1-41

1 Functions — By Category

min Smallest elements in array

mode Most frequent values in array

std Standard deviation

var Variance

Filtering and Convolution

conv Convolution and polynomial
multiplication

conv2 2-D convolution

convn N-D convolution

deconv Deconvolution and polynomial
division

detrend Remove linear trends

filter 1-D digital filter

filter2 2-D digital filter

Interpolation and Regression

interp1 1-D data interpolation (table lookup)

interp2 2-D data interpolation (table lookup)

interp3 3-D data interpolation (table lookup)

interpn N-D data interpolation (table lookup)

mldivide \, mrdivide / Left or right matrix division

polyfit Polynomial curve fitting

polyval Polynomial evaluation

1-42

Data Analysis

Fourier Transforms

abs Absolute value and complex
magnitude

angle Phase angle

cplxpair Sort complex numbers into complex
conjugate pairs

fft Discrete Fourier transform

fft2 2-D discrete Fourier transform

fftn N-D discrete Fourier transform

fftshift Shift zero-frequency component to
center of spectrum

fftw Interface to FFTW library run-time
algorithm tuning control

ifft Inverse discrete Fourier transform

ifft2 2-D inverse discrete Fourier
transform

ifftn N-D inverse discrete Fourier
transform

ifftshift Inverse FFT shift

nextpow2 Next higher power of 2

unwrap Correct phase angles to produce
smoother phase plots

Derivatives and Integrals

cumtrapz Cumulative trapezoidal numerical
integration

del2 Discrete Laplacian

diff Differences and approximate
derivatives

1-43

1 Functions — By Category

gradient Numerical gradient

polyder Polynomial derivative

polyint Integrate polynomial analytically

trapz Trapezoidal numerical integration

Time Series Objects

General Purpose (p. 1-44) Combine timeseries objects,
query and set timeseries object
properties, plot timeseries objects

Data Manipulation (p. 1-45) Add or delete data, manipulate
timeseries objects

Event Data (p. 1-46) Add or delete events, create new
timeseries objects based on event
data

Descriptive Statistics (p. 1-46) Descriptive statistics for timeseries
objects

General Purpose

get (timeseries) Query timeseries object property
values

getdatasamplesize Size of data sample in timeseries
object

getqualitydesc Data quality descriptions

isempty (timeseries) Determine whether timeseries
object is empty

length (timeseries) Length of time vector

plot (timeseries) Plot time series

set (timeseries) Set properties of timeseries object

size (timeseries) Size of timeseries object

1-44

Data Analysis

timeseries Create timeseries object

tsdata.event Construct event object for
timeseries object

tsprops Help on timeseries object
properties

tstool Open Time Series Tools GUI

Data Manipulation

addsample Add data sample to timeseries
object

ctranspose (timeseries) Transpose timeseries object

delsample Remove sample from timeseries
object

detrend (timeseries) Subtract mean or best-fit line and all
NaNs from time series

filter (timeseries) Shape frequency content of time
series

getabstime (timeseries) Extract date-string time vector into
cell array

getinterpmethod Interpolation method for timeseries
object

getsampleusingtime (timeseries) Extract data samples into new
timeseries object

idealfilter (timeseries) Apply ideal (noncausal) filter to
timeseries object

resample (timeseries) Select or interpolate timeseries
data using new time vector

setabstime (timeseries) Set times of timeseries object as
date strings

setinterpmethod Set default interpolation method for
timeseries object

1-45

1 Functions — By Category

synchronize Synchronize and resample two
timeseries objects using common
time vector

transpose (timeseries) Transpose timeseries object

vertcat (timeseries) Vertical concatenation of timeseries
objects

Event Data

addevent Add event to timeseries object

delevent Remove tsdata.event objects from
timeseries object

gettsafteratevent New timeseries object with samples
occurring at or after event

gettsafterevent New timeseries object with samples
occurring after event

gettsatevent New timeseries object with samples
occurring at event

gettsbeforeatevent New timeseries object with samples
occurring before or at event

gettsbeforeevent New timeseries object with samples
occurring before event

gettsbetweenevents New timeseries object with samples
occurring between events

Descriptive Statistics

iqr (timeseries) Interquartile range of timeseries
data

max (timeseries) Maximum value of timeseries data

mean (timeseries) Mean value of timeseries data

median (timeseries) Median value of timeseries data

1-46

Data Analysis

min (timeseries) Minimum value of timeseries data

std (timeseries) Standard deviation of timeseries
data

sum (timeseries) Sum of timeseries data

var (timeseries) Variance of timeseries data

Time Series Collections

General Purpose (p. 1-47) Query and set tscollection object
properties, plot tscollection
objects

Data Manipulation (p. 1-48) Add or delete data, manipulate
tscollection objects

General Purpose

get (tscollection) Query tscollection object property
values

isempty (tscollection) Determine whether tscollection
object is empty

length (tscollection) Length of time vector

plot (timeseries) Plot time series

set (tscollection) Set properties of tscollection
object

size (tscollection) Size of tscollection object

tscollection Create tscollection object

tstool Open Time Series Tools GUI

1-47

1 Functions — By Category

Data Manipulation

addsampletocollection Add sample to tscollection object

addts Add timeseries object to
tscollection object

delsamplefromcollection Remove sample from tscollection
object

getabstime (tscollection) Extract date-string time vector into
cell array

getsampleusingtime (tscollection) Extract data samples into new
tscollection object

gettimeseriesnames Cell array of names of timeseries
objects in tscollection object

horzcat (tscollection) Horizontal concatenation for
tscollection objects

removets Remove timeseries objects from
tscollection object

resample (tscollection) Select or interpolate data in
tscollection using new time vector

setabstime (tscollection) Set times of tscollection object as
date strings

settimeseriesnames Change name of timeseries object
in tscollection

vertcat (tscollection) Vertical concatenation for
tscollection objects

1-48

Programming and Data Types

Programming and Data Types

Data Types (p. 1-49) Numeric, character, structures, cell
arrays, and data type conversion

Data Type Conversion (p. 1-58) Convert one numeric type to another,
numeric to string, string to numeric,
structure to cell array, etc.

Operators and Special Characters
(p. 1-60)

Arithmetic, relational, and logical
operators, and special characters

String Functions (p. 1-63) Create, identify, manipulate, parse,
evaluate, and compare strings

Bit-wise Functions (p. 1-66) Perform set, shift, and, or, compare,
etc. on specific bit fields

Logical Functions (p. 1-66) Evaluate conditions, testing for true
or false

Relational Functions (p. 1-67) Compare values for equality, greater
than, less than, etc.

Set Functions (p. 1-67) Find set members, unions,
intersections, etc.

Date and Time Functions (p. 1-68) Obtain information about dates and
times

Programming in MATLAB (p. 1-68) M-files, function/expression
evaluation, program control,
function handles, object oriented
programming, error handling

Data Types

Numeric Types (p. 1-50) Integer and floating-point data

Characters and Strings (p. 1-51) Characters and arrays of characters

Structures (p. 1-52) Data of varying types and sizes
stored in fields of a structure

1-49

1 Functions — By Category

Cell Arrays (p. 1-53) Data of varying types and sizes
stored in cells of array

Function Handles (p. 1-54) Invoke a function indirectly via
handle

MATLAB Classes and Objects
(p. 1-55)

MATLAB object-oriented class
system

Java Classes and Objects (p. 1-55) Access Java classes through
MATLAB interface

Data Type Identification (p. 1-57) Determine data type of a variable

Numeric Types

arrayfun Apply function to each element of
array

cast Cast variable to different data type

cat Concatenate arrays along specified
dimension

class Create object or return class of object

find Find indices and values of nonzero
elements

intmax Largest value of specified integer
type

intmin Smallest value of specified integer
type

intwarning Control state of integer warnings

ipermute Inverse permute dimensions of N-D
array

isa Determine whether input is object
of given class

isequal Test arrays for equality

1-50

Programming and Data Types

isequalwithequalnans Test arrays for equality, treating
NaNs as equal

isfinite Array elements that are finite

isinf Array elements that are infinite

isnan Array elements that are NaN

isnumeric Determine whether input is numeric
array

isreal Determine whether input is real
array

isscalar Determine whether input is scalar

isvector Determine whether input is vector

permute Rearrange dimensions of N-D array

realmax Largest positive floating-point
number

realmin Smallest positive normalized
floating-point number

reshape Reshape array

squeeze Remove singleton dimensions

zeros Create array of all zeros

Characters and Strings

See “String Functions” on page 1-63 for all string-related functions.

cellstr Create cell array of strings from
character array

char Convert to character array (string)

eval Execute string containing MATLAB
expression

findstr Find string within another, longer
string

1-51

1 Functions — By Category

isstr Determine whether input is
character array

regexp, regexpi Match regular expression

sprintf Write formatted data to string

sscanf Read formatted data from string

strcat Concatenate strings horizontally

strcmp, strcmpi Compare strings

strings MATLAB string handling

strjust Justify character array

strmatch Find possible matches for string

strread Read formatted data from string

strrep Find and replace substring

strtrim Remove leading and trailing white
space from string

strvcat Concatenate strings vertically

Structures

arrayfun Apply function to each element of
array

cell2struct Convert cell array to structure array

class Create object or return class of object

deal Distribute inputs to outputs

fieldnames Field names of structure, or public
fields of object

getfield Field of structure array

isa Determine whether input is object
of given class

isequal Test arrays for equality

1-52

Programming and Data Types

isfield Determine whether input is
structure array field

isscalar Determine whether input is scalar

isstruct Determine whether input is
structure array

isvector Determine whether input is vector

orderfields Order fields of structure array

rmfield Remove fields from structure

setfield Set value of structure array field

struct Create structure array

struct2cell Convert structure to cell array

structfun Apply function to each field of scalar
structure

Cell Arrays

cell Construct cell array

cell2mat Convert cell array of matrices to
single matrix

cell2struct Convert cell array to structure array

celldisp Cell array contents

cellfun Apply function to each cell in cell
array

cellplot Graphically display structure of cell
array

cellstr Create cell array of strings from
character array

class Create object or return class of object

deal Distribute inputs to outputs

1-53

1 Functions — By Category

isa Determine whether input is object
of given class

iscell Determine whether input is cell
array

iscellstr Determine whether input is cell
array of strings

isequal Test arrays for equality

isscalar Determine whether input is scalar

isvector Determine whether input is vector

mat2cell Divide matrix into cell array of
matrices

num2cell Convert numeric array to cell array

struct2cell Convert structure to cell array

Function Handles

class Create object or return class of object

feval Evaluate function

func2str Construct function name string from
function handle

functions Information about function handle

function_handle (@) Handle used in calling functions
indirectly

isa Determine whether input is object
of given class

isequal Test arrays for equality

str2func Construct function handle from
function name string

1-54

Programming and Data Types

MATLAB Classes and Objects

class Create object or return class of object

fieldnames Field names of structure, or public
fields of object

inferiorto Establish inferior class relationship

isa Determine whether input is object
of given class

isobject Determine whether input is
MATLAB OOPs object

loadobj User-defined extension of load
function for user objects

methods Information on class methods

methodsview Information on class methods in
separate window

saveobj User-defined extension of save
function for user objects

subsasgn Subscripted assignment for objects

subsindex Subscripted indexing for objects

subsref Subscripted reference for objects

substruct Create structure argument for
subsasgn or subsref

superiorto Establish superior class relationship

Java Classes and Objects

cell Construct cell array

class Create object or return class of object

clear Remove items from workspace,
freeing up system memory

depfun List dependencies of M-file or P-file

1-55

1 Functions — By Category

exist Check existence of variable, function,
directory, or Java class

fieldnames Field names of structure, or public
fields of object

im2java Convert image to Java image

import Add package or class to current Java
import list

inmem Names of M-files, MEX-files, Java
classes in memory

isa Determine whether input is object
of given class

isjava Determine whether input is Java
object

javaaddpath Add entries to dynamic Java class
path

javaArray Construct Java array

javachk Generate error message based on
Java feature support

javaclasspath Set and get dynamic Java class path

javaMethod Invoke Java method

javaObject Construct Java object

javarmpath Remove entries from dynamic Java
class path

methods Information on class methods

methodsview Information on class methods in
separate window

usejava Determine whether Java feature is
supported in MATLAB

which Locate functions and files

1-56

Programming and Data Types

Data Type Identification

is* Detect state

isa Determine whether input is object
of given class

iscell Determine whether input is cell
array

iscellstr Determine whether input is cell
array of strings

ischar Determine whether item is character
array

isfield Determine whether input is
structure array field

isfloat Determine whether input is
floating-point array

isinteger Determine whether input is integer
array

isjava Determine whether input is Java
object

islogical Determine whether input is logical
array

isnumeric Determine whether input is numeric
array

isobject Determine whether input is
MATLAB OOPs object

isreal Determine whether input is real
array

isstr Determine whether input is
character array

isstruct Determine whether input is
structure array

1-57

1 Functions — By Category

validateattributes Check validity of array

who, whos List variables in workspace

Data Type Conversion

Numeric (p. 1-58) Convert data of one numeric type to
another numeric type

String to Numeric (p. 1-58) Convert characters to numeric
equivalent

Numeric to String (p. 1-59) Convert numeric to character
equivalent

Other Conversions (p. 1-59) Convert to structure, cell array,
function handle, etc.

Numeric

cast Cast variable to different data type

double Convert to double precision

int8, int16, int32, int64 Convert to signed integer

single Convert to single precision

typecast Convert data types without changing
underlying data

uint8, uint16, uint32, uint64 Convert to unsigned integer

String to Numeric

base2dec Convert base N number string to
decimal number

bin2dec Convert binary number string to
decimal number

cast Cast variable to different data type

1-58

Programming and Data Types

hex2dec Convert hexadecimal number string
to decimal number

hex2num Convert hexadecimal number string
to double-precision number

str2double Convert string to double-precision
value

str2num Convert string to number

unicode2native Convert Unicode characters to
numeric bytes

Numeric to String

cast Cast variable to different data type

char Convert to character array (string)

dec2base Convert decimal to base N number
in string

dec2bin Convert decimal to binary number
in string

dec2hex Convert decimal to hexadecimal
number in string

int2str Convert integer to string

mat2str Convert matrix to string

native2unicode Convert numeric bytes to Unicode
characters

num2str Convert number to string

Other Conversions

cell2mat Convert cell array of matrices to
single matrix

cell2struct Convert cell array to structure array

1-59

1 Functions — By Category

datestr Convert date and time to string
format

func2str Construct function name string from
function handle

logical Convert numeric values to logical

mat2cell Divide matrix into cell array of
matrices

num2cell Convert numeric array to cell array

num2hex Convert singles and doubles to IEEE
hexadecimal strings

str2func Construct function handle from
function name string

str2mat Form blank-padded character matrix
from strings

struct2cell Convert structure to cell array

Operators and Special Characters

Arithmetic Operators (p. 1-60) Plus, minus, power, left and right
divide, transpose, etc.

Relational Operators (p. 1-61) Equal to, greater than, less than or
equal to, etc.

Logical Operators (p. 1-61) Element-wise and short circuit and,
or, not

Special Characters (p. 1-62) Array constructors, line
continuation, comments, etc.

Arithmetic Operators

+ Plus

- Minus

1-60

Programming and Data Types

. Decimal point

= Assignment

* Matrix multiplication

/ Matrix right division

\ Matrix left division

^ Matrix power

’ Matrix transpose

.* Array multiplication (element-wise)

./ Array right division (element-wise)

.\ Array left division (element-wise)

.^ Array power (element-wise)

.’ Array transpose

Relational Operators

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to

~= Not equal to

Logical Operators
See also “Logical Functions” on page 1-66 for functions like xor, all, any, etc.

&& Logical AND

|| Logical OR

& Logical AND for arrays

1-61

1 Functions — By Category

| Logical OR for arrays

~ Logical NOT

Special Characters

: Create vectors, subscript arrays, specify for-loop iterations

() Pass function arguments, prioritize operators

[] Construct array, concatenate elements, specify multiple
outputs from function

{ } Construct cell array, index into cell array

. Insert decimal point, define structure field, reference methods
of object

.() Reference dynamic field of structure

.. Reference parent directory

... Continue statement to next line

, Separate rows of array, separate function input/output
arguments, separate commands

; Separate columns of array, suppress output from current
command

% Insert comment line into code

%{ %} Insert block of comments into code

! Issue command to operating system

’ ’ Construct character array

@ Construct function handle, reference class directory

1-62

Programming and Data Types

String Functions

Description of Strings in MATLAB
(p. 1-63)

Basics of string handling in
MATLAB

String Creation (p. 1-63) Create strings, cell arrays of strings,
concatenate strings together

String Identification (p. 1-64) Identify characteristics of strings

String Manipulation (p. 1-64) Convert case, strip blanks, replace
characters

String Parsing (p. 1-65) Formatted read, regular expressions,
locate substrings

String Evaluation (p. 1-65) Evaluate stated expression in string

String Comparison (p. 1-65) Compare contents of strings

Description of Strings in MATLAB

strings MATLAB string handling

String Creation

blanks Create string of blank characters

cellstr Create cell array of strings from
character array

char Convert to character array (string)

sprintf Write formatted data to string

strcat Concatenate strings horizontally

strvcat Concatenate strings vertically

1-63

1 Functions — By Category

String Identification

class Create object or return class of object

isa Determine whether input is object
of given class

iscellstr Determine whether input is cell
array of strings

ischar Determine whether item is character
array

isletter Array elements that are alphabetic
letters

isscalar Determine whether input is scalar

isspace Array elements that are space
characters

isstrprop Determine whether string is of
specified category

isvector Determine whether input is vector

validatestring Check validity of text string

String Manipulation

deblank Strip trailing blanks from end of
string

lower Convert string to lowercase

strjust Justify character array

strrep Find and replace substring

strtrim Remove leading and trailing white
space from string

upper Convert string to uppercase

1-64

Programming and Data Types

String Parsing

findstr Find string within another, longer
string

regexp, regexpi Match regular expression

regexprep Replace string using regular
expression

regexptranslate Translate string into regular
expression

sscanf Read formatted data from string

strfind Find one string within another

strread Read formatted data from string

strtok Selected parts of string

String Evaluation

eval Execute string containing MATLAB
expression

evalc Evaluate MATLAB expression with
capture

evalin Execute MATLAB expression in
specified workspace

String Comparison

strcmp, strcmpi Compare strings

strmatch Find possible matches for string

strncmp, strncmpi Compare first n characters of strings

1-65

1 Functions — By Category

Bit-wise Functions

bitand Bitwise AND

bitcmp Bitwise complement

bitget Bit at specified position

bitmax Maximum double-precision
floating-point integer

bitor Bitwise OR

bitset Set bit at specified position

bitshift Shift bits specified number of places

bitxor Bitwise XOR

swapbytes Swap byte ordering

Logical Functions

all Determine whether all array
elements are nonzero

and Find logical AND of array or scalar
inputs

any Determine whether any array
elements are nonzero

false Logical 0 (false)

find Find indices and values of nonzero
elements

isa Determine whether input is object
of given class

iskeyword Determine whether input is
MATLAB keyword

isvarname Determine whether input is valid
variable name

logical Convert numeric values to logical

1-66

Programming and Data Types

not Find logical NOT of array or scalar
input

or Find logical OR of array or scalar
inputs

true Logical 1 (true)

xor Logical exclusive-OR

See “Operators and Special Characters” on page 1-60 for logical operators.

Relational Functions

eq Test for equality

ge Test for greater than or equal to

gt Test for greater than

le Test for less than or equal to

lt Test for less than

ne Test for inequality

See “Operators and Special Characters” on page 1-60 for relational operators.

Set Functions

intersect Find set intersection of two vectors

ismember Array elements that are members
of set

issorted Determine whether set elements are
in sorted order

setdiff Find set difference of two vectors

setxor Find set exclusive OR of two vectors

union Find set union of two vectors

unique Find unique elements of vector

1-67

1 Functions — By Category

Date and Time Functions

addtodate Modify date number by field

calendar Calendar for specified month

clock Current time as date vector

cputime Elapsed CPU time

date Current date string

datenum Convert date and time to serial date
number

datestr Convert date and time to string
format

datevec Convert date and time to vector of
components

eomday Last day of month

etime Time elapsed between date vectors

now Current date and time

weekday Day of week

Programming in MATLAB

M-File Functions and Scripts
(p. 1-69)

Declare functions, handle
arguments, identify dependencies,
etc.

Evaluation of Expressions and
Functions (p. 1-70)

Evaluate expression in string, apply
function to array, run script file, etc.

Timer Functions (p. 1-71) Schedule execution of MATLAB
commands

Variables and Functions in Memory
(p. 1-72)

List files in memory, clear M-files
in memory, assign to variable in
nondefault workspace, refresh
caches

1-68

Programming and Data Types

Control Flow (p. 1-73) if-then-else, for loops, switch-case,
try-catch

Error Handling (p. 1-74) Generate warnings and errors, test
for and catch errors, retrieve most
recent error message

MEX Programming (p. 1-75) Compile MEX function from C
or Fortran code, list MEX-files in
memory, debug MEX-files

M-File Functions and Scripts

addOptional (inputParser) Add optional argument to
inputParser schema

addParamValue (inputParser) Add parameter-value argument to
inputParser schema

addRequired (inputParser) Add required argument to
inputParser schema

createCopy (inputParser) Create copy of inputParser object

depdir List dependent directories of M-file
or P-file

depfun List dependencies of M-file or P-file

echo Echo M-files during execution

end Terminate block of code, or indicate
last array index

function Declare M-file function

input Request user input

inputname Variable name of function input

inputParser Construct input parser object

mfilename Name of currently running M-file

namelengthmax Maximum identifier length

nargchk Validate number of input arguments

1-69

1 Functions — By Category

nargin, nargout Number of function arguments

nargoutchk Validate number of output
arguments

parse (inputParser) Parse and validate named inputs

pcode Create preparsed pseudocode file
(P-file)

script Script M-file description

syntax Two ways to call MATLAB functions

varargin Variable length input argument list

varargout Variable length output argument list

Evaluation of Expressions and Functions

ans Most recent answer

arrayfun Apply function to each element of
array

assert Generate error when condition is
violated

builtin Execute built-in function from
overloaded method

cellfun Apply function to each cell in cell
array

echo Echo M-files during execution

eval Execute string containing MATLAB
expression

evalc Evaluate MATLAB expression with
capture

evalin Execute MATLAB expression in
specified workspace

feval Evaluate function

1-70

Programming and Data Types

iskeyword Determine whether input is
MATLAB keyword

isvarname Determine whether input is valid
variable name

pause Halt execution temporarily

run Run script that is not on current
path

script Script M-file description

structfun Apply function to each field of scalar
structure

symvar Determine symbolic variables in
expression

tic, toc Measure performance using
stopwatch timer

Timer Functions

delete (timer) Remove timer object from memory

disp (timer) Information about timer object

get (timer) Timer object properties

isvalid (timer) Determine whether timer object is
valid

set (timer) Configure or display timer object
properties

start Start timer(s) running

startat Start timer(s) running at specified
time

stop Stop timer(s)

timer Construct timer object

timerfind Find timer objects

1-71

1 Functions — By Category

timerfindall Find timer objects, including
invisible objects

wait Wait until timer stops running

Variables and Functions in Memory

ans Most recent answer

assignin Assign value to variable in specified
workspace

datatipinfo Produce short description of input
variable

genvarname Construct valid variable name from
string

global Declare global variables

inmem Names of M-files, MEX-files, Java
classes in memory

isglobal Determine whether input is global
variable

mislocked Determine whether M-file or
MEX-file cannot be cleared from
memory

mlock Prevent clearing M-file or MEX-file
from memory

munlock Allow clearing M-file or MEX-file
from memory

namelengthmax Maximum identifier length

pack Consolidate workspace memory

persistent Define persistent variable

rehash Refresh function and file system
path caches

1-72

Programming and Data Types

Control Flow

break Terminate execution of for or while
loop

case Execute block of code if condition is
true

catch Specify how to respond to error in
try statement

continue Pass control to next iteration of for
or while loop

else Execute statements if condition is
false

elseif Execute statements if additional
condition is true

end Terminate block of code, or indicate
last array index

error Display message and abort function

for Execute block of code specified
number of times

if Execute statements if condition is
true

otherwise Default part of switch statement

return Return to invoking function

switch Switch among several cases, based
on expression

try Attempt to execute block of code, and
catch errors

while Repeatedly execute statements while
condition is true

1-73

1 Functions — By Category

Error Handling

addCause (MException) Append MException objects

assert Generate error when condition is
violated

catch Specify how to respond to error in
try statement

disp (MException) Display MException object

eq (MException) Compare MException objects for
equality

error Display message and abort function

ferror Query MATLAB about errors in file
input or output

getReport (MException) Get error message for exception

intwarning Control state of integer warnings

isequal (MException) Compare MException objects for
equality

last (MException) Last uncaught exception

lasterr Last error message

lasterror Last error message and related
information

lastwarn Last warning message

MException Construct MException object

ne (MException) Compare MException objects for
inequality

rethrow Reissue error

rethrow (MException) Reissue existing exception

throw (MException) Terminate function and issue
exception

1-74

Programming and Data Types

try Attempt to execute block of code, and
catch errors

warning Warning message

MEX Programming

dbmex Enable MEX-file debugging

inmem Names of M-files, MEX-files, Java
classes in memory

mex Compile MEX-function from C, C++,
or Fortran source code

mexext MEX-filename extension

1-75

1 Functions — By Category

File I/O

File Name Construction (p. 1-76) Get path, directory, filename
information; construct filenames

Opening, Loading, Saving Files
(p. 1-77)

Open files; transfer data between
files and MATLAB workspace

Memory Mapping (p. 1-77) Access file data via memory map
using MATLAB array indexing

Low-Level File I/O (p. 1-77) Low-level operations that use a file
identifier

Text Files (p. 1-78) Delimited or formatted I/O to text
files

XML Documents (p. 1-79) Documents written in Extensible
Markup Language

Spreadsheets (p. 1-79) Excel and Lotus 1-2-3 files

Scientific Data (p. 1-80) CDF, FITS, HDF formats

Audio and Audio/Video (p. 1-81) General audio functions;
SparcStation, WAVE, AVI files

Images (p. 1-83) Graphics files

Internet Exchange (p. 1-84) URL, FTP, zip, tar, and e-mail

To see a listing of file formats that are readable from MATLAB, go to file
formats.

File Name Construction

filemarker Character to separate file name and
internal function name

fileparts Parts of file name and path

filesep Directory separator for current
platform

fullfile Build full filename from parts

1-76

File I/O

tempdir Name of system’s temporary
directory

tempname Unique name for temporary file

Opening, Loading, Saving Files

daqread Read Data Acquisition Toolbox (.daq)
file

filehandle Construct file handle object

importdata Load data from disk file

load Load workspace variables from disk

open Open files based on extension

save Save workspace variables to disk

uiimport Open Import Wizard to import data

winopen Open file in appropriate application
(Windows)

Memory Mapping

disp (memmapfile) Information about memmapfile
object

get (memmapfile) Memmapfile object properties

memmapfile Construct memmapfile object

Low-Level File I/O

fclose Close one or more open files

feof Test for end-of-file

ferror Query MATLAB about errors in file
input or output

1-77

1 Functions — By Category

fgetl Read line from file, discarding
newline character

fgets Read line from file, keeping newline
character

fopen Open file, or obtain information
about open files

fprintf Write formatted data to file

fread Read binary data from file

frewind Move file position indicator to
beginning of open file

fscanf Read formatted data from file

fseek Set file position indicator

ftell File position indicator

fwrite Write binary data to file

Text Files

csvread Read comma-separated value file

csvwrite Write comma-separated value file

dlmread Read ASCII-delimited file of numeric
data into matrix

dlmwrite Write matrix to ASCII-delimited file

textread Read data from text file; write to
multiple outputs

textscan Read formatted data from text file
or string

1-78

File I/O

XML Documents

xmlread Parse XML document and return
Document Object Model node

xmlwrite Serialize XML Document Object
Model node

xslt Transform XML document using
XSLT engine

Spreadsheets

Microsoft Excel Functions (p. 1-79) Read and write Microsoft Excel
spreadsheet

Lotus 1-2-3 Functions (p. 1-79) Read and write Lotus WK1
spreadsheet

Microsoft Excel Functions

xlsfinfo Determine whether file contains
Microsoft Excel (.xls) spreadsheet

xlsread Read Microsoft Excel spreadsheet
file (.xls)

xlswrite Write Microsoft Excel spreadsheet
file (.xls)

Lotus 1-2-3 Functions

wk1finfo Determine whether file contains
1-2-3 WK1 worksheet

wk1read Read Lotus 1-2-3 WK1 spreadsheet
file into matrix

wk1write Write matrix to Lotus 1-2-3 WK1
spreadsheet file

1-79

1 Functions — By Category

Scientific Data

Common Data Format (CDF)
(p. 1-80)

Work with CDF files

Flexible Image Transport System
(p. 1-80)

Work with FITS files

Hierarchical Data Format (HDF)
(p. 1-81)

Work with HDF files

Band-Interleaved Data (p. 1-81) Work with band-interleaved files

Common Data Format (CDF)

cdfepoch Construct cdfepoch object for
Common Data Format (CDF) export

cdfinfo Information about Common Data
Format (CDF) file

cdfread Read data from Common Data
Format (CDF) file

cdfwrite Write data to Common Data Format
(CDF) file

todatenum Convert CDF epoch object to
MATLAB datenum

Flexible Image Transport System

fitsinfo Information about FITS file

fitsread Read data from FITS file

1-80

File I/O

Hierarchical Data Format (HDF)

hdf Summary of MATLAB HDF4
capabilities

hdf5 Summary of MATLAB HDF5
capabilities

hdf5info Information about HDF5 file

hdf5read Read HDF5 file

hdf5write Write data to file in HDF5 format

hdfinfo Information about HDF4 or
HDF-EOS file

hdfread Read data from HDF4 or HDF-EOS
file

hdftool Browse and import data from HDF4
or HDF-EOS files

Band-Interleaved Data

multibandread Read band-interleaved data from
binary file

multibandwrite Write band-interleaved data to file

Audio and Audio/Video

General (p. 1-82) Create audio player object, obtain
information about multimedia files,
convert to/from audio signal

SPARCstation-Specific Sound
Functions (p. 1-82)

Access NeXT/SUN (.au) sound files

1-81

1 Functions — By Category

Microsoft WAVE Sound Functions
(p. 1-83)

Access Microsoft WAVE (.wav) sound
files

Audio/Video Interleaved (AVI)
Functions (p. 1-83)

Access Audio/Video interleaved
(.avi) sound files

General

audioplayer Create audio player object

audiorecorder Create audio recorder object

beep Produce beep sound

lin2mu Convert linear audio signal to
mu-law

mmfileinfo Information about multimedia file

mmreader Create multimedia reader object for
reading video files

mu2lin Convert mu-law audio signal to
linear

read Read video frame data from
multimedia reader object

sound Convert vector into sound

soundsc Scale data and play as sound

SPARCstation-Specific Sound Functions

aufinfo Information about NeXT/SUN (.au)
sound file

auread Read NeXT/SUN (.au) sound file

auwrite Write NeXT/SUN (.au) sound file

1-82

File I/O

Microsoft WAVE Sound Functions

wavfinfo Information about Microsoft WAVE
(.wav) sound file

wavplay Play recorded sound on PC-based
audio output device

wavread Read Microsoft WAVE (.wav) sound
file

wavrecord Record sound using PC-based audio
input device

wavwrite Write Microsoft WAVE (.wav) sound
file

Audio/Video Interleaved (AVI) Functions

addframe Add frame to Audio/Video
Interleaved (AVI) file

avifile Create new Audio/Video Interleaved
(AVI) file

aviinfo Information about Audio/Video
Interleaved (AVI) file

aviread Read Audio/Video Interleaved (AVI)
file

close (avifile) Close Audio/Video Interleaved (AVI)
file

movie2avi Create Audio/Video Interleaved
(AVI) movie from MATLAB movie

Images

exifread Read EXIF information from JPEG
and TIFF image files

im2java Convert image to Java image

1-83

1 Functions — By Category

imfinfo Information about graphics file

imread Read image from graphics file

imwrite Write image to graphics file

Internet Exchange

URL, Zip, Tar, E-Mail (p. 1-84) Send e-mail, read from given URL,
extract from tar or zip file, compress
and decompress files

FTP Functions (p. 1-84) Connect to FTP server, download
from server, manage FTP files, close
server connection

URL, Zip, Tar, E-Mail

gunzip Uncompress GNU zip files

gzip Compress files into GNU zip files

sendmail Send e-mail message to address list

tar Compress files into tar file

untar Extract contents of tar file

unzip Extract contents of zip file

urlread Read content at URL

urlwrite Save contents of URL to file

zip Compress files into zip file

FTP Functions

ascii Set FTP transfer type to ASCII

binary Set FTP transfer type to binary

1-84

File I/O

cd (ftp) Change current directory on FTP
server

close (ftp) Close connection to FTP server

delete (ftp) Remove file on FTP server

dir (ftp) Directory contents on FTP server

ftp Connect to FTP server, creating FTP
object

mget Download file from FTP server

mkdir (ftp) Create new directory on FTP server

mput Upload file or directory to FTP server

rename Rename file on FTP server

rmdir (ftp) Remove directory on FTP server

1-85

1 Functions — By Category

Graphics

Basic Plots and Graphs (p. 1-86) Linear line plots, log and semilog
plots

Plotting Tools (p. 1-87) GUIs for interacting with plots

Annotating Plots (p. 1-87) Functions for and properties of titles,
axes labels, legends, mathematical
symbols

Specialized Plotting (p. 1-88) Bar graphs, histograms, pie charts,
contour plots, function plotters

Bit-Mapped Images (p. 1-92) Display image object, read and
write graphics file, convert to movie
frames

Printing (p. 1-92) Printing and exporting figures to
standard formats

Handle Graphics (p. 1-93) Creating graphics objects, setting
properties, finding handles

Basic Plots and Graphs

box Axes border

errorbar Plot error bars along curve

hold Retain current graph in figure

LineSpec Line specification string syntax

loglog Log-log scale plot

plot 2-D line plot

plot3 3-D line plot

plotyy 2-D line plots with y-axes on both
left and right side

polar Polar coordinate plot

1-86

Graphics

semilogx, semilogy Semilogarithmic plots

subplot Create axes in tiled positions

Plotting Tools

figurepalette Show or hide figure palette

pan Pan view of graph interactively

plotbrowser Show or hide figure plot browser

plotedit Interactively edit and annotate plots

plottools Show or hide plot tools

propertyeditor Show or hide property editor

rotate3d Rotate 3-D view using mouse

showplottool Show or hide figure plot tool

zoom Turn zooming on or off or magnify
by factor

Annotating Plots

annotation Create annotation objects

clabel Contour plot elevation labels

datacursormode Enable or disable interactive data
cursor mode

datetick Date formatted tick labels

gtext Mouse placement of text in 2-D view

legend Graph legend for lines and patches

line Create line object

rectangle Create 2-D rectangle object

texlabel Produce TeX format from character
string

1-87

1 Functions — By Category

title Add title to current axes

xlabel, ylabel, zlabel Label x-, y-, and z-axis

Specialized Plotting

Area, Bar, and Pie Plots (p. 1-88) 1-D, 2-D, and 3-D graphs and charts

Contour Plots (p. 1-89) Unfilled and filled contours in 2-D
and 3-D

Direction and Velocity Plots (p. 1-89) Comet, compass, feather and quiver
plots

Discrete Data Plots (p. 1-89) Stair, step, and stem plots

Function Plots (p. 1-89) Easy-to-use plotting utilities for
graphing functions

Histograms (p. 1-90) Plots for showing distributions of
data

Polygons and Surfaces (p. 1-90) Functions to generate and plot
surface patches in two or more
dimensions

Scatter/Bubble Plots (p. 1-91) Plots of point distributions

Animation (p. 1-91) Functions to create and play movies
of plots

Area, Bar, and Pie Plots

area Filled area 2-D plot

bar, barh Plot bar graph (vertical and
horizontal)

bar3, bar3h Plot 3-D bar chart

pareto Pareto chart

pie Pie chart

pie3 3-D pie chart

1-88

Graphics

Contour Plots

contour Contour plot of matrix

contour3 3-D contour plot

contourc Low-level contour plot computation

contourf Filled 2-D contour plot

ezcontour Easy-to-use contour plotter

ezcontourf Easy-to-use filled contour plotter

Direction and Velocity Plots

comet 2-D comet plot

comet3 3-D comet plot

compass Plot arrows emanating from origin

feather Plot velocity vectors

quiver Quiver or velocity plot

quiver3 3-D quiver or velocity plot

Discrete Data Plots

stairs Stairstep graph

stem Plot discrete sequence data

stem3 Plot 3-D discrete sequence data

Function Plots

ezcontour Easy-to-use contour plotter

ezcontourf Easy-to-use filled contour plotter

ezmesh Easy-to-use 3-D mesh plotter

1-89

1 Functions — By Category

ezmeshc Easy-to-use combination
mesh/contour plotter

ezplot Easy-to-use function plotter

ezplot3 Easy-to-use 3-D parametric curve
plotter

ezpolar Easy-to-use polar coordinate plotter

ezsurf Easy-to-use 3-D colored surface
plotter

ezsurfc Easy-to-use combination
surface/contour plotter

fplot Plot function between specified
limits

Histograms

hist Histogram plot

histc Histogram count

rose Angle histogram plot

Polygons and Surfaces

convhull Convex hull

cylinder Generate cylinder

delaunay Delaunay triangulation

delaunay3 3-D Delaunay tessellation

delaunayn N-D Delaunay tessellation

dsearch Search Delaunay triangulation for
nearest point

dsearchn N-D nearest point search

ellipsoid Generate ellipsoid

1-90

Graphics

fill Filled 2-D polygons

fill3 Filled 3-D polygons

inpolygon Points inside polygonal region

pcolor Pseudocolor (checkerboard) plot

polyarea Area of polygon

rectint Rectangle intersection area

ribbon Ribbon plot

slice Volumetric slice plot

sphere Generate sphere

tsearch Search for enclosing Delaunay
triangle

tsearchn N-D closest simplex search

voronoi Voronoi diagram

waterfall Waterfall plot

Scatter/Bubble Plots

plotmatrix Scatter plot matrix

scatter Scatter plot

scatter3 3-D scatter plot

Animation

frame2im Convert movie frame to indexed
image

getframe Capture movie frame

im2frame Convert image to movie frame

1-91

1 Functions — By Category

movie Play recorded movie frames

noanimate Change EraseMode of all objects to
normal

Bit-Mapped Images

frame2im Convert movie frame to indexed
image

im2frame Convert image to movie frame

im2java Convert image to Java image

image Display image object

imagesc Scale data and display image object

imfinfo Information about graphics file

imformats Manage image file format registry

imread Read image from graphics file

imwrite Write image to graphics file

ind2rgb Convert indexed image to RGB
image

Printing

frameedit Edit print frames for Simulink and
Stateflow block diagrams

hgexport Export figure

orient Hardcopy paper orientation

print, printopt Print figure or save to file and
configure printer defaults

printdlg Print dialog box

1-92

Graphics

printpreview Preview figure to print

saveas Save figure or Simulink block
diagram using specified format

Handle Graphics

Finding and Identifying Graphics
Objects (p. 1-93)

Find and manipulate graphics
objects via their handles

Object Creation Functions (p. 1-94) Constructors for core graphics
objects

Plot Objects (p. 1-94) Property descriptions for plot objects

Figure Windows (p. 1-95) Control and save figures

Axes Operations (p. 1-96) Operate on axes objects

Operating on Object Properties
(p. 1-96)

Query, set, and link object properties

Finding and Identifying Graphics Objects

allchild Find all children of specified objects

ancestor Ancestor of graphics object

copyobj Copy graphics objects and their
descendants

delete Remove files or graphics objects

findall Find all graphics objects

findfigs Find visible offscreen figures

findobj Locate graphics objects with specific
properties

gca Current axes handle

gcbf Handle of figure containing object
whose callback is executing

1-93

1 Functions — By Category

gcbo Handle of object whose callback is
executing

gco Handle of current object

get Query object properties

ishandle Is object handle valid

propedit Open Property Editor

set Set object properties

Object Creation Functions

axes Create axes graphics object

figure Create figure graphics object

hggroup Create hggroup object

hgtransform Create hgtransform graphics object

image Display image object

light Create light object

line Create line object

patch Create patch graphics object

rectangle Create 2-D rectangle object

root object Root object properties

surface Create surface object

text Create text object in current axes

uicontextmenu Create context menu

Plot Objects

Annotation Arrow Properties Define annotation arrow properties

Annotation Doublearrow Properties Define annotation doublearrow
properties

1-94

Graphics

Annotation Ellipse Properties Define annotation ellipse properties

Annotation Line Properties Define annotation line properties

Annotation Rectangle Properties Define annotation rectangle
properties

Annotation Textarrow Properties Define annotation textarrow
properties

Annotation Textbox Properties Define annotation textbox properties

Areaseries Properties Define areaseries properties

Barseries Properties Define barseries properties

Contourgroup Properties Define contourgroup properties

Errorbarseries Properties Define errorbarseries properties

Image Properties Define image properties

Lineseries Properties Define lineseries properties

Quivergroup Properties Define quivergroup properties

Scattergroup Properties Define scattergroup properties

Stairseries Properties Define stairseries properties

Stemseries Properties Define stemseries properties

Surfaceplot Properties Define surfaceplot properties

Figure Windows

clf Clear current figure window

close Remove specified figure

closereq Default figure close request function

drawnow Flushes event queue and updates
figure window

gcf Current figure handle

hgload Load Handle Graphics object
hierarchy from file

1-95

1 Functions — By Category

hgsave Save Handle Graphics object
hierarchy to file

newplot Determine where to draw graphics
objects

opengl Control OpenGL rendering

refresh Redraw current figure

saveas Save figure or Simulink block
diagram using specified format

Axes Operations

axis Axis scaling and appearance

box Axes border

cla Clear current axes

gca Current axes handle

grid Grid lines for 2-D and 3-D plots

ishold Current hold state

makehgtform Create 4-by-4 transform matrix

Operating on Object Properties

get Query object properties

linkaxes Synchronize limits of specified 2-D
axes

linkprop Keep same value for corresponding
properties

refreshdata Refresh data in graph when data
source is specified

set Set object properties

1-96

3-D Visualization

3-D Visualization

Surface and Mesh Plots (p. 1-97) Plot matrices, visualize functions of
two variables, specify colormap

View Control (p. 1-99) Control the camera viewpoint,
zooming, rotation, aspect ratio, set
axis limits

Lighting (p. 1-101) Add and control scene lighting

Transparency (p. 1-101) Specify and control object
transparency

Volume Visualization (p. 1-102) Visualize gridded volume data

Surface and Mesh Plots

Creating Surfaces and Meshes
(p. 1-97)

Visualizing gridded and triangulated
data as lines and surfaces

Domain Generation (p. 1-98) Gridding data and creating arrays

Color Operations (p. 1-98) Specifying, converting, and
manipulating color spaces,
colormaps, colorbars, and
backgrounds

Colormaps (p. 1-99) Built-in colormaps you can use

Creating Surfaces and Meshes

hidden Remove hidden lines from mesh plot

mesh, meshc, meshz Mesh plots

peaks Example function of two variables

surf, surfc 3-D shaded surface plot

surface Create surface object

surfl Surface plot with colormap-based
lighting

1-97

1 Functions — By Category

tetramesh Tetrahedron mesh plot

trimesh Triangular mesh plot

triplot 2-D triangular plot

trisurf Triangular surface plot

Domain Generation

griddata Data gridding

meshgrid Generate X and Y arrays for 3-D plots

Color Operations

brighten Brighten or darken colormap

caxis Color axis scaling

colorbar Colorbar showing color scale

colordef Set default property values to
display different color schemes

colormap Set and get current colormap

colormapeditor Start colormap editor

ColorSpec Color specification

graymon Set default figure properties for
grayscale monitors

hsv2rgb Convert HSV colormap to RGB
colormap

rgb2hsv Convert RGB colormap to HSV
colormap

rgbplot Plot colormap

shading Set color shading properties

spinmap Spin colormap

1-98

3-D Visualization

surfnorm Compute and display 3-D surface
normals

whitebg Change axes background color

Colormaps

contrast Grayscale colormap for contrast
enhancement

View Control

Controlling the Camera Viewpoint
(p. 1-99)

Orbiting, dollying, pointing, rotating
camera positions and setting fields
of view

Setting the Aspect Ratio and Axis
Limits (p. 1-100)

Specifying what portions of axes to
view and how to scale them

Object Manipulation (p. 1-100) Panning, rotating, and zooming
views

Selecting Region of Interest (p. 1-101) Interactively identifying rectangular
regions

Controlling the Camera Viewpoint

camdolly Move camera position and target

cameratoolbar Control camera toolbar
programmatically

camlookat Position camera to view object or
group of objects

camorbit Rotate camera position around
camera target

campan Rotate camera target around camera
position

1-99

1 Functions — By Category

campos Set or query camera position

camproj Set or query projection type

camroll Rotate camera about view axis

camtarget Set or query location of camera
target

camup Set or query camera up vector

camva Set or query camera view angle

camzoom Zoom in and out on scene

makehgtform Create 4-by-4 transform matrix

view Viewpoint specification

viewmtx View transformation matrices

Setting the Aspect Ratio and Axis Limits

daspect Set or query axes data aspect ratio

pbaspect Set or query plot box aspect ratio

xlim, ylim, zlim Set or query axis limits

Object Manipulation

pan Pan view of graph interactively

reset Reset graphics object properties to
their defaults

rotate Rotate object in specified direction

rotate3d Rotate 3-D view using mouse

selectmoveresize Select, move, resize, or copy axes and
uicontrol graphics objects

zoom Turn zooming on or off or magnify
by factor

1-100

3-D Visualization

Selecting Region of Interest

dragrect Drag rectangles with mouse

rbbox Create rubberband box for area
selection

Lighting

camlight Create or move light object in camera
coordinates

diffuse Calculate diffuse reflectance

light Create light object

lightangle Create or position light object in
spherical coordinates

lighting Specify lighting algorithm

material Control reflectance properties of
surfaces and patches

specular Calculate specular reflectance

Transparency

alim Set or query axes alpha limits

alpha Set transparency properties for
objects in current axes

alphamap Specify figure alphamap
(transparency)

1-101

1 Functions — By Category

Volume Visualization

coneplot Plot velocity vectors as cones in 3-D
vector field

contourslice Draw contours in volume slice planes

curl Compute curl and angular velocity
of vector field

divergence Compute divergence of vector field

flow Simple function of three variables

interpstreamspeed Interpolate stream-line vertices from
flow speed

isocaps Compute isosurface end-cap
geometry

isocolors Calculate isosurface and patch colors

isonormals Compute normals of isosurface
vertices

isosurface Extract isosurface data from volume
data

reducepatch Reduce number of patch faces

reducevolume Reduce number of elements in
volume data set

shrinkfaces Reduce size of patch faces

slice Volumetric slice plot

smooth3 Smooth 3-D data

stream2 Compute 2-D streamline data

stream3 Compute 3-D streamline data

streamline Plot streamlines from 2-D or 3-D
vector data

streamparticles Plot stream particles

streamribbon 3-D stream ribbon plot from vector
volume data

1-102

3-D Visualization

streamslice Plot streamlines in slice planes

streamtube Create 3-D stream tube plot

subvolume Extract subset of volume data set

surf2patch Convert surface data to patch data

volumebounds Coordinate and color limits for
volume data

1-103

1 Functions — By Category

Creating Graphical User Interfaces

Predefined Dialog Boxes (p. 1-104) Dialog boxes for error, user input,
waiting, etc.

Deploying User Interfaces (p. 1-105) Launch GUIs, create the handles
structure

Developing User Interfaces (p. 1-105) Start GUIDE, manage application
data, get user input

User Interface Objects (p. 1-106) Create GUI components

Finding Objects from Callbacks
(p. 1-107)

Find object handles from within
callbacks functions

GUI Utility Functions (p. 1-107) Move objects, wrap text

Controlling Program Execution
(p. 1-108)

Wait and resume based on user input

Predefined Dialog Boxes

dialog Create and display dialog box

errordlg Create and open error dialog box

export2wsdlg Export variables to workspace

helpdlg Create and open help dialog box

inputdlg Create and open input dialog box

listdlg Create and open list-selection dialog
box

msgbox Create and open message box

printdlg Print dialog box

printpreview Preview figure to print

questdlg Create and open question dialog box

uigetdir Open standard dialog box for
selecting a directory

1-104

Creating Graphical User Interfaces

uigetfile Open standard dialog box for
retrieving files

uigetpref Open dialog box for retrieving
preferences

uiopen Open file selection dialog box with
appropriate file filters

uiputfile Open standard dialog box for saving
files

uisave Open standard dialog box for saving
workspace variables

uisetcolor Open standard dialog box for setting
object’s ColorSpec

uisetfont Open standard dialog box for setting
object’s font characteristics

waitbar Open waitbar

warndlg Open warning dialog box

Deploying User Interfaces

guidata Store or retrieve GUI data

guihandles Create structure of handles

movegui Move GUI figure to specified location
on screen

openfig Open new copy or raise existing copy
of saved figure

Developing User Interfaces

addpref Add preference

getappdata Value of application-defined data

getpref Preference

1-105

1 Functions — By Category

ginput Graphical input from mouse or
cursor

guidata Store or retrieve GUI data

guide Open GUI Layout Editor

inspect Open Property Inspector

isappdata True if application-defined data
exists

ispref Test for existence of preference

rmappdata Remove application-defined data

rmpref Remove preference

setappdata Specify application-defined data

setpref Set preference

uigetpref Open dialog box for retrieving
preferences

uisetpref Manage preferences used in
uigetpref

waitfor Wait for condition before resuming
execution

waitforbuttonpress Wait for key press or mouse-button
click

User Interface Objects

menu Generate menu of choices for user
input

uibuttongroup Create container object to exclusively
manage radio buttons and toggle
buttons

uicontextmenu Create context menu

uicontrol Create user interface control object

1-106

Creating Graphical User Interfaces

uimenu Create menus on figure windows

uipanel Create panel container object

uipushtool Create push button on toolbar

uitoggletool Create toggle button on toolbar

uitoolbar Create toolbar on figure

Finding Objects from Callbacks

findall Find all graphics objects

findfigs Find visible offscreen figures

findobj Locate graphics objects with specific
properties

gcbf Handle of figure containing object
whose callback is executing

gcbo Handle of object whose callback is
executing

GUI Utility Functions

align Align user interface controls
(uicontrols) and axes

getpixelposition Get component position in pixels

listfonts List available system fonts

selectmoveresize Select, move, resize, or copy axes and
uicontrol graphics objects

setpixelposition Set component position in pixels

textwrap Wrapped string matrix for given
uicontrol

uistack Reorder visual stacking order of
objects

1-107

1 Functions — By Category

Controlling Program Execution

uiresume, uiwait Control program execution

1-108

External Interfaces

External Interfaces

Dynamic Link Libraries (p. 1-109) Access functions stored in external
shared library (.dll) files

Java (p. 1-110) Work with objects constructed from
Java API and third-party class
packages

Component Object Model and
ActiveX (p. 1-111)

Integrate COM components into
your application

Web Services (p. 1-113) Communicate between applications
over a network using SOAP and
WSDL

Serial Port Devices (p. 1-113) Read and write to devices connected
to your computer’s serial port

See also MATLAB C and Fortran API Reference for functions you can use
in external routines that interact with MATLAB programs and the data in
MATLAB workspaces.

Dynamic Link Libraries

calllib Call function in external library

libfunctions Information on functions in external
library

libfunctionsview Create window displaying
information on functions in external
library

libisloaded Determine whether external library
is loaded

libpointer Create pointer object for use with
external libraries

libstruct Construct structure as defined in
external library

1-109

1 Functions — By Category

loadlibrary Load external library into MATLAB

unloadlibrary Unload external library from
memory

Java

class Create object or return class of object

fieldnames Field names of structure, or public
fields of object

import Add package or class to current Java
import list

inspect Open Property Inspector

isa Determine whether input is object
of given class

isjava Determine whether input is Java
object

ismethod Determine whether input is object
method

isprop Determine whether input is object
property

javaaddpath Add entries to dynamic Java class
path

javaArray Construct Java array

javachk Generate error message based on
Java feature support

javaclasspath Set and get dynamic Java class path

javaMethod Invoke Java method

javaObject Construct Java object

javarmpath Remove entries from dynamic Java
class path

methods Information on class methods

1-110

External Interfaces

methodsview Information on class methods in
separate window

usejava Determine whether Java feature is
supported in MATLAB

Component Object Model and ActiveX

actxcontrol Create ActiveX control in figure
window

actxcontrollist List all currently installed ActiveX
controls

actxcontrolselect Open GUI to create ActiveX control

actxGetRunningServer Get handle to running instance of
Automation server

actxserver Create COM server

addproperty Add custom property to object

class Create object or return class of object

delete (COM) Remove COM control or server

deleteproperty Remove custom property from object

enableservice Enable, disable, or report status of
Automation server

eventlisteners List of events attached to listeners

events List of events control can trigger

Execute Execute MATLAB command in
server

Feval (COM) Evaluate MATLAB function in
server

fieldnames Field names of structure, or public
fields of object

get (COM) Get property value from interface, or
display properties

1-111

1 Functions — By Category

GetCharArray Get character array from server

GetFullMatrix Get matrix from server

GetVariable Get data from variable in server
workspace

GetWorkspaceData Get data from server workspace

inspect Open Property Inspector

interfaces List custom interfaces to COM server

invoke Invoke method on object or interface,
or display methods

isa Determine whether input is object
of given class

iscom Is input COM object

isevent Is input event

isinterface Is input COM interface

ismethod Determine whether input is object
method

isprop Determine whether input is object
property

load (COM) Initialize control object from file

MaximizeCommandWindow Open server window on Windows
desktop

methods Information on class methods

methodsview Information on class methods in
separate window

MinimizeCommandWindow Minimize size of server window

move Move or resize control in parent
window

propedit (COM) Open built-in property page for
control

PutCharArray Store character array in server

1-112

External Interfaces

PutFullMatrix Store matrix in server

PutWorkspaceData Store data in server workspace

Quit (COM) Terminate MATLAB server

registerevent Register event handler with control’s
event

release Release interface

save (COM) Serialize control object to file

set (COM) Set object or interface property to
specified value

unregisterallevents Unregister all events for control

unregisterevent Unregister event handler with
control’s event

Web Services

callSoapService Send SOAP message off to endpoint

createClassFromWsdl Create MATLAB object based on
WSDL file

createSoapMessage Create SOAP message to send to
server

parseSoapResponse Convert response string from SOAP
server into MATLAB data types

Serial Port Devices

clear (serial) Remove serial port object from
MATLAB workspace

delete (serial) Remove serial port object from
memory

disp (serial) Serial port object summary
information

1-113

1 Functions — By Category

fclose (serial) Disconnect serial port object from
device

fgetl (serial) Read line of text from device and
discard terminator

fgets (serial) Read line of text from device and
include terminator

fopen (serial) Connect serial port object to device

fprintf (serial) Write text to device

fread (serial) Read binary data from device

fscanf (serial) Read data from device, and format
as text

fwrite (serial) Write binary data to device

get (serial) Serial port object properties

instrcallback Event information when event
occurs

instrfind Read serial port objects from memory
to MATLAB workspace

instrfindall Find visible and hidden serial port
objects

isvalid (serial) Determine whether serial port
objects are valid

length (serial) Length of serial port object array

load (serial) Load serial port objects and variables
into MATLAB workspace

readasync Read data asynchronously from
device

record Record data and event information
to file

save (serial) Save serial port objects and variables
to MAT-file

serial Create serial port object

1-114

External Interfaces

serialbreak Send break to device connected to
serial port

set (serial) Configure or display serial port
object properties

size (serial) Size of serial port object array

stopasync Stop asynchronous read and write
operations

1-115

1 Functions — By Category

1-116

2

Functions — Alphabetical
List

Arithmetic Operators + - * / \ ^ ’
Relational Operators < > <= >= == ~=
Logical Operators: Elementwise & | ~
Logical Operators: Short-circuit && ||
Special Characters [] () {} = ’ , ; : % ! @
colon (:)
abs
accumarray
acos
acosd
acosh
acot
acotd
acoth
acsc
acscd
acsch
actxcontrol
actxcontrollist
actxcontrolselect
actxGetRunningServer
actxserver
addCause (MException)
addevent
addframe
addOptional (inputParser)

2 Functions — Alphabetical List

addParamValue (inputParser)
addpath
addpref
addproperty
addRequired (inputParser)
addsample
addsampletocollection
addtodate
addts
airy
align
alim
all
allchild
alpha
alphamap
amd
ancestor
and
angle
annotation
Annotation Arrow Properties
Annotation Doublearrow Properties
Annotation Ellipse Properties
Annotation Line Properties
Annotation Rectangle Properties
Annotation Textarrow Properties
Annotation Textbox Properties
ans
any
area
Areaseries Properties
arrayfun
ascii
asec
asecd
asech

2-2

asin
asind
asinh
assert
assignin
atan
atan2
atand
atanh
audioplayer
audiorecorder
aufinfo
auread
auwrite
avifile
aviinfo
aviread
axes
Axes Properties
axis
balance
bar, barh
bar3, bar3h
Barseries Properties
base2dec
beep
besselh
besseli
besselj
besselk
bessely
beta
betainc
betaln
bicg
bicgstab
bin2dec

2-3

2 Functions — Alphabetical List

binary
bitand
bitcmp
bitget
bitmax
bitor
bitset
bitshift
bitxor
blanks
blkdiag
box
break
brighten
builddocsearchdb
builtin
bsxfun
bvp4c
bvp5c
bvpget
bvpinit
bvpset
bvpxtend
calendar
calllib
callSoapService
camdolly
cameratoolbar
camlight
camlookat
camorbit
campan
campos
camproj
camroll
camtarget
camup

2-4

camva
camzoom
cart2pol
cart2sph
case
cast
cat
catch
caxis
cd
cd (ftp)
cdf2rdf
cdfepoch
cdfinfo
cdfread
cdfwrite
ceil
cell
cell2mat
cell2struct
celldisp
cellfun
cellplot
cellstr
cgs
char
checkin
checkout
chol
cholinc
cholupdate
circshift
cla
clabel
class
clc
clear

2-5

2 Functions — Alphabetical List

clear (serial)
clf
clipboard
clock
close
close (avifile)
close (ftp)
closereq
cmopts
colamd
colmmd
colorbar
colordef
colormap
colormapeditor
ColorSpec
colperm
comet
comet3
commandhistory
commandwindow
compan
compass
complex
computer
cond
condeig
condest
coneplot
conj
continue
contour
contour3
contourc
contourf
Contourgroup Properties
contourslice

2-6

contrast
conv
conv2
convhull
convhulln
convn
copyfile
copyobj
corrcoef
cos
cosd
cosh
cot
cotd
coth
cov
cplxpair
cputime
createClassFromWsdl
createCopy (inputParser)
createSoapMessage
cross
csc
cscd
csch
csvread
csvwrite
ctranspose (timeseries)
cumprod
cumsum
cumtrapz
curl
customverctrl
cylinder
daqread
daspect
datacursormode

2-7

2 Functions — Alphabetical List

datatipinfo
date
datenum
datestr
datetick
datevec
dbclear
dbcont
dbdown
dblquad
dbmex
dbquit
dbstack
dbstatus
dbstep
dbstop
dbtype
dbup
dde23
ddeadv
ddeexec
ddeget
ddeinit
ddepoke
ddereq
ddesd
ddeset
ddeterm
ddeunadv
deal
deblank
debug
dec2base
dec2bin
dec2hex
decic
deconv

2-8

del2
delaunay
delaunay3
delaunayn
delete
delete (COM)
delete (ftp)
delete (serial)
delete (timer)
deleteproperty
delevent
delsample
delsamplefromcollection
demo
depdir
depfun
det
detrend
detrend (timeseries)
deval
diag
dialog
diary
diff
diffuse
dir
dir (ftp)
disp
disp (memmapfile)
disp (MException)
disp (serial)
disp (timer)
display
divergence
dlmread
dlmwrite
dmperm

2-9

2 Functions — Alphabetical List

doc
docopt
docsearch
dos
dot
double
dragrect
drawnow
dsearch
dsearchn
echo
echodemo
edit
eig
eigs
ellipj
ellipke
ellipsoid
else
elseif
enableservice
end
eomday
eps
eq
eq (MException)
erf, erfc, erfcx, erfinv, erfcinv
error
errorbar
Errorbarseries Properties
errordlg
etime
etree
etreeplot
eval
evalc
evalin

2-10

eventlisteners
events
Execute
exifread
exist
exit
exp
expint
expm
expm1
export2wsdlg
eye
ezcontour
ezcontourf
ezmesh
ezmeshc
ezplot
ezplot3
ezpolar
ezsurf
ezsurfc
factor
factorial
false
fclose
fclose (serial)
feather
feof
ferror
feval
Feval (COM)
fft
fft2
fftn
fftshift
fftw
fgetl

2-11

2 Functions — Alphabetical List

fgetl (serial)
fgets
fgets (serial)
fieldnames
figure
Figure Properties
figurepalette
fileattrib
filebrowser
File Formats
filemarker
fileparts
filehandle
filesep
fill
fill3
filter
filter (timeseries)
filter2
find
findall
findfigs
findobj
findstr
finish
fitsinfo
fitsread
fix
flipdim
fliplr
flipud
floor
flops
flow
fminbnd
fminsearch
fopen

2-12

fopen (serial)
for
format
fplot
fprintf
fprintf (serial)
frame2im
frameedit
fread
fread (serial)
freqspace
frewind
fscanf
fscanf (serial)
fseek
ftell
ftp
full
fullfile
func2str
function
function_handle (@)
functions
funm
fwrite
fwrite (serial)
fzero
gallery
gamma, gammainc, gammaln
gca
gcbf
gcbo
gcd
gcf
gco
ge
genpath

2-13

2 Functions — Alphabetical List

genvarname
get
get (COM)
get (memmapfile)
get (serial)
get (timer)
get (timeseries)
get (tscollection)
getabstime (timeseries)
getabstime (tscollection)
getappdata
GetCharArray
getdatasamplesize
getenv
getfield
getframe
GetFullMatrix
getinterpmethod
getpixelposition
getpref
getqualitydesc
getReport (MException)
getsampleusingtime (timeseries)
getsampleusingtime (tscollection)
gettimeseriesnames
gettsafteratevent
gettsafterevent
gettsatevent
gettsbeforeatevent
gettsbeforeevent
gettsbetweenevents
GetVariable
GetWorkspaceData
ginput
global
gmres
gplot

2-14

grabcode
gradient
graymon
grid
griddata
griddata3
griddatan
gsvd
gt
gtext
guidata
guide
guihandles
gunzip
gzip
hadamard
hankel
hdf
hdf5
hdf5info
hdf5read
hdf5write
hdfinfo
hdfread
hdftool
help
helpbrowser
helpdesk
helpdlg
helpwin
hess
hex2dec
hex2num
hgexport
hggroup
Hggroup Properties
hgload

2-15

2 Functions — Alphabetical List

hgsave
hgtransform
Hgtransform Properties
hidden
hilb
hist
histc
hold
home
horzcat
horzcat (tscollection)
hostid
hsv2rgb
hypot
i
idealfilter (timeseries)
idivide
if
ifft
ifft2
ifftn
ifftshift
ilu
im2frame
im2java
imag
image
Image Properties
imagesc
imfinfo
imformats
import
importdata
imread
imwrite
ind2rgb
ind2sub

2-16

Inf
inferiorto
info
inline
inmem
inpolygon
input
inputdlg
inputname
inputParser
inspect
instrcallback
instrfind
instrfindall
int2str
int8, int16, int32, int64
interfaces
interp1
interp1q
interp2
interp3
interpft
interpn
interpstreamspeed
intersect
intmax
intmin
intwarning
inv
invhilb
invoke
ipermute
iqr (timeseries)
is*
isa
isappdata
iscell

2-17

2 Functions — Alphabetical List

iscellstr
ischar
iscom
isdir
isempty
isempty (timeseries)
isempty (tscollection)
isequal
isequal (MException)
isequalwithequalnans
isevent
isfield
isfinite
isfloat
isglobal
ishandle
ishold
isinf
isinteger
isinterface
isjava
iskeyword
isletter
islogical
ismac
ismember
ismethod
isnan
isnumeric
isobject
isocaps
isocolors
isonormals
isosurface
ispc
ispref
isprime

2-18

isprop
isreal
isscalar
issorted
isspace
issparse
isstr
isstrprop
isstruct
isstudent
isunix
isvalid (serial)
isvalid (timer)
isvarname
isvector
j
javaaddpath
javaArray
javachk
javaclasspath
javaMethod
javaObject
javarmpath
keyboard
kron
last (MException)
lasterr
lasterror
lastwarn
lcm
ldl
ldivide, rdivide
le
legend
legendre
length
length (serial)

2-19

2 Functions — Alphabetical List

length (timeseries)
length (tscollection)
libfunctions
libfunctionsview
libisloaded
libpointer
libstruct
license
light
Light Properties
lightangle
lighting
lin2mu
line
Line Properties
Lineseries Properties
LineSpec
linkaxes
linkprop
linsolve
linspace
listdlg
listfonts
load
load (COM)
load (serial)
loadlibrary
loadobj
log
log10
log1p
log2
logical
loglog
logm
logspace
lookfor

2-20

lower
ls
lscov
lsqnonneg
lsqr
lt
lu
luinc
magic
makehgtform
mat2cell
mat2str
material
matlabcolon (matlab:)
matlabrc
matlabroot
matlab (UNIX)
matlab (Windows)
max
max (timeseries)
MaximizeCommandWindow
maxNumCompThreads
mean
mean (timeseries)
median
median (timeseries)
memmapfile
memory
MException
menu
mesh, meshc, meshz
meshgrid
methods
methodsview
mex
mexext
mfilename

2-21

2 Functions — Alphabetical List

mget
min
min (timeseries)
MinimizeCommandWindow
minres
mislocked
mkdir
mkdir (ftp)
mkpp
mldivide \, mrdivide /
mlint
mlintrpt
mlock
mmfileinfo
mmreader
mod
mode
more
move
movefile
movegui
movie
movie2avi
mput
msgbox
mtimes
mu2lin
multibandread
multibandwrite
munlock
namelengthmax
NaN
nargchk
nargin, nargout
nargoutchk
native2unicode
nchoosek

2-22

ndgrid
ndims
ne
ne (MException)
newplot
nextpow2
nnz
noanimate
nonzeros
norm
normest
not
notebook
now
nthroot
null
num2cell
num2hex
num2str
numel
nzmax
ode15i
ode23, ode45, ode113, ode15s, ode23s, ode23t, ode23tb
odefile
odeget
odeset
odextend
ones
open
openfig
opengl
openvar
optimget
optimset
or
ordeig
orderfields

2-23

2 Functions — Alphabetical List

ordqz
ordschur
orient
orth
otherwise
pack
padecoef
pagesetupdlg
pan
pareto
parse (inputParser)
parseSoapResponse
partialpath
pascal
patch
Patch Properties
path
path2rc
pathdef
pathsep
pathtool
pause
pbaspect
pcg
pchip
pcode
pcolor
pdepe
pdeval
peaks
perl
perms
permute
persistent
pi
pie
pie3

2-24

pinv
planerot
playshow
plot
plot (timeseries)
plot3
plotbrowser
plotedit
plotmatrix
plottools
plotyy
pol2cart
polar
poly
polyarea
polyder
polyeig
polyfit
polyint
polyval
polyvalm
pow2
power
ppval
prefdir
preferences
primes
print, printopt
printdlg
printpreview
prod
profile
profsave
propedit
propedit (COM)
propertyeditor
psi

2-25

2 Functions — Alphabetical List

publish
PutCharArray
PutFullMatrix
PutWorkspaceData
pwd
qmr
qr
qrdelete
qrinsert
qrupdate
quad
quadgk
quadl
quadv
questdlg
quit
Quit (COM)
quiver
quiver3
Quivergroup Properties
qz
rand
randn
randperm
rank
rat, rats
rbbox
rcond
read
readasync
real
reallog
realmax
realmin
realpow
realsqrt
record

2-26

rectangle
Rectangle Properties
rectint
recycle
reducepatch
reducevolume
refresh
refreshdata
regexp, regexpi
regexprep
regexptranslate
registerevent
rehash
release
rem
removets
rename
repmat
resample (timeseries)
resample (tscollection)
reset
reshape
residue
restoredefaultpath
rethrow
rethrow (MException)
return
rgb2hsv
rgbplot
ribbon
rmappdata
rmdir
rmdir (ftp)
rmfield
rmpath
rmpref
root object

2-27

2 Functions — Alphabetical List

Root Properties
roots
rose
rosser
rot90
rotate
rotate3d
round
rref
rsf2csf
run
save
save (COM)
save (serial)
saveas
saveobj
savepath
scatter
scatter3
Scattergroup Properties
schur
script
sec
secd
sech
selectmoveresize
semilogx, semilogy
sendmail
serial
serialbreak
set
set (COM)
set (serial)
set (timer)
set (timeseries)
set (tscollection)
setabstime (timeseries)

2-28

setabstime (tscollection)
setappdata
setdiff
setenv
setfield
setinterpmethod
setpixelposition
setpref
setstr
settimeseriesnames
setxor
shading
shiftdim
showplottool
shrinkfaces
sign
sin
sind
single
sinh
size
size (serial)
size (timeseries)
size (tscollection)
slice
smooth3
sort
sortrows
sound
soundsc
spalloc
sparse
spaugment
spconvert
spdiags
specular
speye

2-29

2 Functions — Alphabetical List

spfun
sph2cart
sphere
spinmap
spline
spones
spparms
sprand
sprandn
sprandsym
sprank
sprintf
spy
sqrt
sqrtm
squeeze
ss2tf
sscanf
stairs
Stairseries Properties
start
startat
startup
std
std (timeseries)
stem
stem3
Stemseries Properties
stop
stopasync
str2double
str2func
str2mat
str2num
strcat
strcmp, strcmpi
stream2

2-30

stream3
streamline
streamparticles
streamribbon
streamslice
streamtube
strfind
strings
strjust
strmatch
strncmp, strncmpi
strread
strrep
strtok
strtrim
struct
struct2cell
structfun
strvcat
sub2ind
subplot
subsasgn
subsindex
subspace
subsref
substruct
subvolume
sum
sum (timeseries)
superiorto
support
surf, surfc
surf2patch
surface
Surface Properties
Surfaceplot Properties
surfl

2-31

2 Functions — Alphabetical List

surfnorm
svd
svds
swapbytes
switch
symamd
symbfact
symmlq
symmmd
symrcm
symvar
synchronize
syntax
system
tan
tand
tanh
tar
tempdir
tempname
tetramesh
texlabel
text
Text Properties
textread
textscan
textwrap
throw (MException)
throwAsCaller (MException)
tic, toc
timer
timerfind
timerfindall
timeseries
title
todatenum
toeplitz

2-32

toolboxdir
trace
transpose (timeseries)
trapz
treelayout
treeplot
tril
trimesh
triplequad
triplot
trisurf
triu
true
try
tscollection
tsdata.event
tsearch
tsearchn
tsprops
tstool
type
typecast
uibuttongroup
Uibuttongroup Properties
uicontextmenu
Uicontextmenu Properties
uicontrol
Uicontrol Properties
uigetdir
uigetfile
uigetpref
uiimport
uimenu
Uimenu Properties
uint8, uint16, uint32, uint64
uiopen
uipanel

2-33

2 Functions — Alphabetical List

Uipanel Properties
uipushtool
Uipushtool Properties
uiputfile
uiresume, uiwait
uisave
uisetcolor
uisetfont
uisetpref
uistack
uitoggletool
Uitoggletool Properties
uitoolbar
Uitoolbar Properties
undocheckout
unicode2native
union
unique
unix
unloadlibrary
unmkpp
unregisterallevents
unregisterevent
untar
unwrap
unzip
upper
urlread
urlwrite
usejava
validateattributes
validatestring
vander
var
var (timeseries)
varargin
varargout

2-34

vectorize
ver
verctrl
verLessThan
version
vertcat
vertcat (timeseries)
vertcat (tscollection)
view
viewmtx
volumebounds
voronoi
voronoin
wait
waitbar
waitfor
waitforbuttonpress
warndlg
warning
waterfall
wavfinfo
wavplay
wavread
wavrecord
wavwrite
web
weekday
what
whatsnew
which
while
whitebg
who, whos
wilkinson
winopen
winqueryreg
wk1finfo

2-35

2 Functions — Alphabetical List

wk1read
wk1write
workspace
xlabel, ylabel, zlabel
xlim, ylim, zlim
xlsfinfo
xlsread
xlswrite
xmlread
xmlwrite
xor
xslt
zeros
zip
zoom

2-36

Arithmetic Operators + - * / \ ^ ’

Purpose Matrix and array arithmetic

Syntax A+B
A-B
A*B
A.*B
A/B
A./B
A\B
A.\B
A^B
A.^B
A'
A.'

Description MATLAB has two different types of arithmetic operations. Matrix
arithmetic operations are defined by the rules of linear algebra.
Array arithmetic operations are carried out element by element, and
can be used with multidimensional arrays. The period character
(.) distinguishes the array operations from the matrix operations.
However, since the matrix and array operations are the same for
addition and subtraction, the character pairs .+ and .- are not used.

+ Addition or unary plus. A+B adds A and B. A and B must have
the same size, unless one is a scalar. A scalar can be added
to a matrix of any size.

- Subtraction or unary minus. A-B subtracts B from A. A and B
must have the same size, unless one is a scalar. A scalar can
be subtracted from a matrix of any size.

2-37

Arithmetic Operators + - * / \ ^ ’

* Matrix multiplication. C = A*B is the linear algebraic product
of the matrices A and B. More precisely,

C i j A i k B k j
k

n
(,) (,) (,)=

=
∑

1

For nonscalar A and B, the number of columns of A must equal
the number of rows of B. A scalar can multiply a matrix of
any size.

.* Array multiplication. A.*B is the element-by-element product
of the arrays A and B. A and B must have the same size, unless
one of them is a scalar.

/ Slash or matrix right division. B/A is roughly the same as
B*inv(A). More precisely, B/A = (A'\B')'. See the reference
page for mrdivide for more information.

./ Array right division. A./B is the matrix with elements
A(i,j)/B(i,j). A and B must have the same size, unless one
of them is a scalar.

\ Backslash or matrix left division. If A is a square matrix, A\B
is roughly the same as inv(A)*B, except it is computed in a
different way. If A is an n-by-n matrix and B is a column vector
with n components, or a matrix with several such columns,
then X = A\B is the solution to the equation AX = B computed
by Gaussian elimination. A warning message is displayed if A
is badly scaled or nearly singular. See the reference page for
mldivide for more information.

2-38

Arithmetic Operators + - * / \ ^ ’

If A is an m-by-n matrix with m ~= n and B is a column vector
with m components, or a matrix with several such columns,
then X = A\B is the solution in the least squares sense to the
under- or overdetermined system of equations AX = B. The
effective rank, k, of A is determined from the QR decomposition
with pivoting (see “Algorithm” on page 2-2183 for details). A
solution X is computed that has at most k nonzero components
per column. If k < n, this is usually not the same solution
as pinv(A)*B, which is the least squares solution with the

smallest norm X .

.\ Array left division. A.\B is the matrix with elements
B(i,j)/A(i,j). A and B must have the same size, unless one
of them is a scalar.

^ Matrix power. X^p is X to the power p, if p is a scalar. If p is
an integer, the power is computed by repeated squaring. If the
integer is negative, X is inverted first. For other values of p,
the calculation involves eigenvalues and eigenvectors, such
that if [V,D] = eig(X), then X^p = V*D.^p/V.

If x is a scalar and P is a matrix, x^P is x raised to the matrix
power P using eigenvalues and eigenvectors. X^P, where X and
P are both matrices, is an error.

.^ Array power. A.^B is the matrix with elements A(i,j) to the
B(i,j) power. A and B must have the same size, unless one of
them is a scalar.

' Matrix transpose. A' is the linear algebraic transpose of A. For
complex matrices, this is the complex conjugate transpose.

.' Array transpose. A.' is the array transpose of A. For complex
matrices, this does not involve conjugation.

2-39

Arithmetic Operators + - * / \ ^ ’

Nondouble
Data Type
Support

This section describes the arithmetic operators’ support for data types
other than double.

Data Type single

You can apply any of the arithmetic operators to arrays of type single
and MATLAB returns an answer of type single. You can also combine
an array of type double with an array of type single, and the result
has type single.

Integer Data Types

You can apply most of the arithmetic operators to real arrays of the
following integer data types:

• int8 and uint8

• int16 and uint16

• int32 and uint32

All operands must have the same integer data type and MATLAB
returns an answer of that type.

Note The arithmetic operators do not support operations on the data
types int64 or uint64. Except for the unary operators +A and A.',
the arithmetic operators do not support operations on complex arrays
of any integer data type.

For example,

x = int8(3) + int8(4);
class(x)

ans =

int8

2-40

Arithmetic Operators + - * / \ ^ ’

The following table lists the binary arithmetic operators that you can
apply to arrays of the same integer data type. In the table, A and B are
arrays of the same integer data type and c is a scalar of type double or
the same type as A and B.

Operation Support when A and B Have Same Integer Type

+A, -A Yes

A+B, A+c,
c+B

Yes

A-B, A-c,
c-B

Yes

A.*B Yes

A*c, c*B Yes

A*B No

A/c, c/B Yes

A.\B, A./B Yes

A\B, A/B No

A.^B Yes, if B has nonnegative integer values.

c^k Yes, for a scalar c and a nonnegative scalar integer k,
which have the same integer data type or one of which
has type double

A.', A' Yes

Combining Integer Data Types with Type Double

For the operations that support integer data types, you can combine a
scalar or array of an integer data type with a scalar, but not an array,
of type double and the result has the same integer data type as the
input of integer type. For example,

y = 5 + int32(7);
class(y)

2-41

Arithmetic Operators + - * / \ ^ ’

ans =

int32

However, you cannot combine an array of an integer data type with
either of the following:

• A scalar or array of a different integer data type

• A scalar or array of type single

The section “Numeric Types”, under “Data Types” in the MATLAB
Programming documentation, provides more information about
operations on nondouble data types.

Remarks The arithmetic operators have M-file function equivalents, as shown:

Binary addition A+B plus(A,B)

Unary plus +A uplus(A)

Binary subtraction A-B minus(A,B)

Unary minus -A uminus(A)

Matrix
multiplication

A*B mtimes(A,B)

Arraywise
multiplication

A.*B times(A,B)

Matrix right
division

A/B mrdivide(A,B)

Arraywise right
division

A./B rdivide(A,B)

Matrix left division A\B mldivide(A,B)

Arraywise left
division

A.\B ldivide(A,B)

2-42

Arithmetic Operators + - * / \ ^ ’

Matrix power A^B mpower(A,B)

Arraywise power A.^B power(A,B)

Complex transpose A' ctranspose(A)

Matrix transpose A.' transpose(A)

Note For some toolboxes, the arithmetic operators are overloaded,
that is, they perform differently in the context of that toolbox. To see
the toolboxes that overload a given operator, type help followed by
the operator name. For example, type help plus. The toolboxes that
overload plus (+) are listed. For information about using the operator in
that toolbox, see the documentation for the toolbox.

Examples Here are two vectors, and the results of various matrix and array
operations on them, printed with format rat.

Matrix Operations Array Operations

x 1

2

3

y 4

5

6

x' 1 2 3 y' 4 5 6

x+y 5

7

9

x-y -3

-3

-3

x + 2 3

4

5

x-2 -1

0

1

2-43

Arithmetic Operators + - * / \ ^ ’

Matrix Operations Array Operations

x * y Error x.*y 4

10

18

x'*y 32 x'.*y Error

x*y' 4 5 6

8 10 12

12 15 18

x.*y' Error

x*2 2

4

6

x.*2 2

4

6

x\y 16/7 x.\y 4

5/2

2

2\x 1/2

1

3/2

2./x 2

1

2/3

x/y 0 0 1/6

0 0 1/3

0 0 1/2

x./y 1/4

2/5

1/2

x/2 1/2

1

3/2

x./2 1/2

1

3/2

2-44

Arithmetic Operators + - * / \ ^ ’

Matrix Operations Array Operations

x^y Error x.^y 1

32

729

x^2 Error x.^2 1

4

9

2^x Error 2.^x 2

4

8

(x+i*y)' 1 - 4i 2 - 5i
3 - 6i

(x+i*y).' 1 + 4i 2 + 5i
3 + 6i

Diagnostics • From matrix division, if a square A is singular,

Warning: Matrix is singular to working precision.

• From elementwise division, if the divisor has zero elements,

Warning: Divide by zero.

Matrix division and elementwise division can produce NaNs or Infs
where appropriate.

• If the inverse was found, but is not reliable,

Warning: Matrix is close to singular or badly scaled.
Results may be inaccurate. RCOND = xxx

• From matrix division, if a nonsquare A is rank deficient,

2-45

Arithmetic Operators + - * / \ ^ ’

Warning: Rank deficient, rank = xxx tol = xxx

See Also mldivide, mrdivide, chol, det, inv, lu, orth, permute, ipermute, qr,
rref

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, SIAM, Philadelphia, 1999.

[2] Davis, T.A., UMFPACK Version 4.6 User Guide
(http://www.cise.ufl.edu/research/sparse/umfpack),
Dept. of Computer and Information Science and Engineering, Univ.
of Florida, Gainesville, FL, 2002.

[3] Davis, T. A., CHOLMOD Version 1.0 User Guide
(http://www.cise.ufl.edu/research/sparse/cholmod),
Dept. of Computer and Information Science and Engineering, Univ.
of Florida, Gainesville, FL, 2005.

2-46

http://www.netlib.org/lapack/lug/lapack_lug.html
http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse/cholmod

Relational Operators < > <= >= == ~=

Purpose Relational operations

Syntax A < B
A > B
A <= B
A >= B
A == B
A ~= B

Description The relational operators are <, >, <=, >=, ==, and ~=. Relational
operators perform element-by-element comparisons between two arrays.
They return a logical array of the same size, with elements set to
logical 1 (true) where the relation is true, and elements set to logical
0 (false) where it is not.

The operators <, >, <=, and >= use only the real part of their operands for
the comparison. The operators == and ~= test real and imaginary parts.

To test if two strings are equivalent, use strcmp, which allows vectors of
dissimilar length to be compared.

Note For some toolboxes, the relational operators are overloaded, that
is, they perform differently in the context of that toolbox. To see the
toolboxes that overload a given operator, type help followed by the
operator name. For example, type help lt. The toolboxes that overload
lt (<) are listed. For information about using the operator in that
toolbox, see the documentation for the toolbox.

Examples If one of the operands is a scalar and the other a matrix, the scalar
expands to the size of the matrix. For example, the two pairs of
statements

X = 5; X >= [1 2 3; 4 5 6; 7 8 10]
X = 5*ones(3,3); X >= [1 2 3; 4 5 6; 7 8 10]

produce the same result:

2-47

Relational Operators < > <= >= == ~=

ans =

1 1 1
1 1 0
0 0 0

See Also all, any, find, strcmp

Logical Operators: Elementwise & | ~, Logical Operators:
Short-circuit && ||

2-48

Logical Operators: Elementwise & | ~

Purpose Elementwise logical operations on arrays

Syntax A & B
A | B
~A

Description The symbols &, |, and ~ are the logical array operators AND, OR, and NOT.
They work element by element on arrays, with logical 0 representing
false, and logical 1 or any nonzero element representing true. The
logical operators return a logical array with elements set to 1 (true)
or 0 (false), as appropriate.

The & operator does a logical AND, the | operator does a logical OR, and
~A complements the elements of A. The function xor(A,B) implements
the exclusive OR operation. The truth table for these operators and
functions is shown below.

Inputs and or not xor

A B A & B A | B ~A xor(A,B)

0 0 0 0 1 0

0 1 0 1 1 1

1 0 0 1 0 1

1 1 1 1 0 0

The precedence for the logical operators with respect to each other is

Operator Operation Priority

~ NOT Highest

& Elementwise AND

| Elementwise OR

&& Short-circuit AND

|| Short-circuit OR Lowest

2-49

Logical Operators: Elementwise & | ~

Remarks MATLAB always gives the & operator precedence over the | operator.
Although MATLAB typically evaluates expressions from left to right,
the expression a|b&c is evaluated as a|(b&c). It is a good idea to use
parentheses to explicitly specify the intended precedence of statements
containing combinations of & and |.

These logical operators have M-file function equivalents, as shown.

Logical
Operation Equivalent Function

A & B and(A,B)

A | B or(A,B)

~A not(A)

Short-Circuiting in Elementwise Operators

When used in the context of an if or while expression, and only in
this context, the elementwise | and & operators use short-circuiting in
evaluating their expressions. That is, A|B and A&B ignore the second
operand, B, if the first operand, A, is sufficient to determine the result.

So, although the statement 1|[] evaluates to false, the same statement
evaluates to true when used in either an if or while expression:

A = 1; B = [];
if(A|B) disp 'The statement is true', end;

The statement is true

while the reverse logical expression, which does not short-circuit,
evaluates to false

if(B|A) disp 'The statement is true', end;

Another example of short-circuiting with elementwise operators shows
that a logical expression such as the following, which under most
circumstances is invalid due to a size mismatch between A and B,

A = [1 1]; B = [2 0 1];

2-50

Logical Operators: Elementwise & | ~

A|B % This generates an error.

works within the context of an if or while expression:

if (A|B) disp 'The statement is true', end;
The statement is true

Examples This example shows the logical OR of the elements in the vector u with
the corresponding elements in the vector v:

u = [0 0 1 1 0 1];
v = [0 1 1 0 0 1];
u | v

ans =
0 1 1 1 0 1

See Also all, any, find, logical, xor, true, false

Logical Operators: Short-circuit && ||

Relational Operators < > <= >= == ~=

2-51

Logical Operators: Short-circuit && ||

Purpose Logical operations, with short-circuiting capability

Syntax expr1 && expr2
expr1 || expr2

Description expr1 && expr2 represents a logical AND operation that employs
short-circuiting behavior. With short-circuiting, the second operand
expr2 is evaluated only when the result is not fully determined by the
first operand expr1. For example, if A = 0, then the following statement
evaluates to false, regardless of the value of B, so MATLAB does not
evaluate B:

A && B

These two expressions must each be a valid MATLAB statement that
evaluates to a scalar logical result.

expr1 || expr2 represents a logical OR operation that employs
short-circuiting behavior.

Note Always use the && and || operators when short-circuiting is
required. Using the elementwise operators (& and |) for short-circuiting
can yield unexpected results.

Examples In the following statement, it doesn’t make sense to evaluate the
relation on the right if the divisor, b, is zero. The test on the left is put
in to avoid generating a warning under these circumstances:

x = (b ~= 0) && (a/b > 18.5)

By definition, if any operands of an AND expression are false, the
entire expression must be false. So, if (b ~= 0) evaluates to false,
MATLAB assumes the entire expression to be false and terminates its
evaluation of the expression early. This avoids the warning that would
be generated if MATLAB were to evaluate the operand on the right.

2-52

Logical Operators: Short-circuit && ||

See Also all, any, find, logical, xor, true, false

Logical Operators: Elementwise & | ~

Relational Operators < > <= >= == ~=

2-53

Special Characters [] () {} = ’ , ; : % ! @

Purpose Special characters

Syntax []
{ }
()
=
'
.
.
.()
..
...
,
;
:
%
%{ %}
!
@

2-54

Special Characters [] () {} = ’ , ; : % ! @

Description [] Brackets are used to form vectors and matrices. [6.9 9.64
sqrt(-1)] is a vector with three elements separated by blanks.
[6.9, 9.64, i] is the same thing. [1+j 2-j 3] and [1 +j
2 -j 3] are not the same. The first has three elements, the
second has five.

[11 12 13; 21 22 23] is a 2-by-3 matrix. The semicolon ends
the first row.

Vectors and matrices can be used inside [] brackets. [A B;C]
is allowed if the number of rows of A equals the number of
rows of B and the number of columns of A plus the number
of columns of B equals the number of columns of C. This
rule generalizes in a hopefully obvious way to allow fairly
complicated constructions.

A = [] stores an empty matrix in A. A(m,:) = [] deletes
row m of A. A(:,n) = [] deletes column n of A. A(n) = []
reshapes A into a column vector and deletes the third element.

[A1,A2,A3...] = function assigns function output to
multiple variables.

For the use of [and] on the left of an “=” in multiple
assignment statements, see lu, eig, svd, and so on.

{ } Curly braces are used in cell array assignment statements. For
example, A(2,1) = {[1 2 3; 4 5 6]}, or A{2,2} = ('str').
See help paren for more information about { }.

2-55

Special Characters [] () {} = ’ , ; : % ! @

() Parentheses are used to indicate precedence in arithmetic
expressions in the usual way. They are used to enclose
arguments of functions in the usual way. They are also used
to enclose subscripts of vectors and matrices in a manner
somewhat more general than usual. If X and V are vectors,
then X(V) is [X(V(1)), X(V(2)), ..., X(V(n))]. The
components of V must be integers to be used as subscripts. An
error occurs if any such subscript is less than 1 or greater than
the size of X. Some examples are

• X(3) is the third element of X.

• X([1 2 3]) is the first three elements of X.

See help paren for more information about ().

If X has n components, X(n: 1:1) reverses them. The same
indirect subscripting works in matrices. If V has m components
and W has n components, then A(V,W) is the m-by-n matrix
formed from the elements of A whose subscripts are the
elements of V and W. For example, A([1,5],:) = A([5,1],:)
interchanges rows 1 and 5 of A.

= Used in assignment statements. B = A stores the elements of A
in B. == is the relational equals operator. See the Relational
Operators < > <= >= == ~= page.

' Matrix transpose. X' is the complex conjugate transpose of X.
X.' is the nonconjugate transpose.

Quotation mark. 'any text' is a vector whose components are
the ASCII codes for the characters. A quotation mark within
the text is indicated by two quotation marks.

. Decimal point. 314/100, 3.14, and .314e1 are all the same.

Element-by-element operations. These are obtained using .* ,
.^, ./, or .\. See the Arithmetic Operators page.

. Field access. S(m).f when S is a structure, accesses the
contents of field f of that structure.

2-56

Special Characters [] () {} = ’ , ; : % ! @

.(
)

Dynamic Field access. S.(df) when A is a structure, accesses
the contents of dynamic field df of that structure. Dynamic
field names are defined at runtime.

.. Parent directory. See cd.

... Continuation. Three or more periods at the end of a line
continue the current function on the next line. Three or more
periods before the end of a line cause MATLAB to ignore the
remaining text on the current line and continue the function on
the next line. This effectively makes a comment out of anything
on the current line that follows the three periods. See “Entering
Long Statements (Line Continuation)” for more information.

, Comma. Used to separate matrix subscripts and function
arguments. Used to separate statements in multistatement
lines. For multistatement lines, the comma can be replaced by
a semicolon to suppress printing.

; Semicolon. Used inside brackets to end rows. Used after an
expression or statement to suppress printing or to separate
statements.

: Colon. Create vectors, array subscripting, and for loop
iterations. See colon (:) for details.

% Percent. The percent symbol denotes a comment; it indicates
a logical end of line. Any following text is ignored. MATLAB
displays the first contiguous comment lines in a M-file in
response to a help command.

%{
%}

Percent-brace. The text enclosed within the %{ and %} symbols
is a comment block. Use these symbols to insert comments that
take up more than a single line in your M-file code. Any text
between these two symbols is ignored by MATLAB.

With the exception of whitespace characters, the %{ and %}
operators must appear alone on the lines that immediately
precede and follow the block of help text. Do not include any
other text on these lines.

2-57

Special Characters [] () {} = ’ , ; : % ! @

! Exclamation point. Indicates that the rest of the input line is
issued as a command to the operating system. See “Running
External Programs” for more information.

@ Function handle. MATLAB data type that is a handle to a
function. See function_handle (@) for details.

Remarks Some uses of special characters have M-file function equivalents, as
shown:

Horizontal
concatenation

[A,B,C...] horzcat(A,B,C...)

Vertical
concatenation

[A;B;C...] vertcat(A,B,C...)

Subscript reference A(i,j,k...)subsref(A,S). See help
subsref.

Subscript
assignment

A(i,j,k...)=
B

subsasgn(A,S,B). See help
subsasgn.

Note For some toolboxes, the special characters are overloaded, that
is, they perform differently in the context of that toolbox. To see the
toolboxes that overload a given character, type help followed by the
character name. For example, type help transpose. The toolboxes
that overload transpose (.') are listed. For information about using
the character in that toolbox, see the documentation for the toolbox.

See Also Arithmetic Operators + - * / \ ^ '

Relational Operators < > <= >= == ~=

Logical Operators: Elementwise & | ~,

2-58

colon (:)

Purpose Create vectors, array subscripting, and for-loop iterators

Description The colon is one of the most useful operators in MATLAB. It can create
vectors, subscript arrays, and specify for iterations.

The colon operator uses the following rules to create regularly spaced
vectors:

j:k is the same as [j,j+1,...,k]

j:k is empty if j > k

j:i:k is the same as [j,j+i,j+2i, ...,k]

j:i:k is empty if i == 0, if i > 0 and j > k, or if i < 0 and j < k

where i, j, and k are all scalars.

Below are the definitions that govern the use of the colon to pick
out selected rows, columns, and elements of vectors, matrices, and
higher-dimensional arrays:

A(:,j) is the jth column of A

A(i,:) is the ith row of A

A(:,:) is the equivalent two-dimensional array. For matrices this
is the same as A.

A(j:k) is A(j), A(j+1),...,A(k)

A(:,j:k) is A(:,j), A(:,j+1),...,A(:,k)

A(:,:,k) is the kth page of three-dimensional array A.

A(i,j,k,:)is a vector in four-dimensional array A. The vector includes
A(i,j,k,1), A(i,j,k,2), A(i,j,k,3), and so on.

A(:) is all the elements of A, regarded as a single column. On
the left side of an assignment statement, A(:) fills A,
preserving its shape from before. In this case, the right
side must contain the same number of elements as A.

2-59

colon (:)

Examples Using the colon with integers,

D = 1:4

results in

D =
1 2 3 4

Using two colons to create a vector with arbitrary real increments
between the elements,

E = 0:.1:.5

results in

E =
0 0.1000 0.2000 0.3000 0.4000 0.5000

The command

A(:,:,2) = pascal(3)

generates a three-dimensional array whose first page is all zeros.

A(:,:,1) =
0 0 0
0 0 0
0 0 0

A(:,:,2) =
1 1 1
1 2 3
1 3 6

Using a colon with characters to iterate a for-loop,

for x='a':'d',x,end

2-60

colon (:)

results in

x =
a

x =
b

x =
c

x =
d

See Also for, linspace, logspace, reshape

2-61

abs

Purpose Absolute value and complex magnitude

Syntax abs(X)

Description abs(X) returns an array Y such that each element of Y is the absolute
value of the corresponding element of X.

If X is complex, abs(X) returns the complex modulus (magnitude),
which is the same as

sqrt(real(X).^2 + imag(X).^2)

Examples abs(-5)
ans =

5

abs(3+4i)
ans =

5

See Also angle, sign, unwrap

2-62

accumarray

Purpose Construct array with accumulation

Syntax A = accumarray(subs, val)
A = accumarray(subs,val,sz)
A = accumarray(subs,val,sz,fun)
A = accumarray(subs,val,sz,fun,fillval)
A = accumarray(subs,val,sz,fun,fillval,issparse)
A = accumarray({subs1, subs2, ...}, val, ...)

Description A = accumarray(subs, val) creates an array A by accumulating
elements of the vector val using the subscript in subs. Each row of the
m-by-n matrix subs defines an N-dimensional subscript into the output
A. Each element of val has a corresponding row in subs. accumarray
collects all elements of val that correspond to identical subscripts in
subs, sums those values, and stores the result in the element of A that
corresponds to the subscript. Elements of A that are not referred to
by any row of subs contain zero.

If subs is a nonempty matrix with N>1 columns, then A is an
N-dimensional array of size max(subs,[],1). If subs is empty with
N>1 columns, then A is an N-dimensional empty array with size
0-by-0-by-...-by-0. subs can also be a column vector, in which case a
second column of ones is implied, and A is a column vector. subs must
contain positive integers.

subs can also be a cell vector with one or more elements, each element a
vector of positive integers. All the vectors must have the same length.
In this case, subs is treated as if the vectors formed columns of an index
matrix.

val must be a numeric, logical, or character vector with the same length
as the number of rows in subs. val can also be a scalar whose value is
repeated for all the rows of subs.

accumarray sums values from val using the default behavior of sum.

A = accumarray(subs,val,sz) creates an array A with size sz,
where sz is a vector of positive integers. If subs is nonempty with
N>1 columns, then sz must have N elements, where all(sz >=

2-63

accumarray

max(subs,[],1)). If subs is a nonempty column vector, then sz must
be [M 1], where M >= MAX(subs). Specify sz as [] for the default
behavior.

A = accumarray(subs,val,sz,fun) applies function fun to each
subset of elements of val. You must specify the fun input using the @
symbol (e.g., @sin). The function fun must accept a column vector and
return a numeric, logical, or character scalar, or a scalar cell. Return
value A has the same class as the values returned by fun. Specify fun
as [] for the default behavior. fun is @sum by default.

Note If the subscripts in subs are not sorted, fun should not depend on
the order of the values in its input data.

A = accumarray(subs,val,sz,fun,fillval) puts the scalar value
fillval in elements of A that are not referred to by any row of subs.
For example, if subs is empty, then A is repmat(fillval,sz). fillval
and the values returned by fun must belong to the same class.

A = accumarray(subs,val,sz,fun,fillval,issparse) creates an
array A that is sparse if the scalar input issparse is equal to logical 1
(i.e., true), or full if issparse is equal to logical 0 (false). A is full by
default. If issparse is true, then fillval must be zero or [], and val
and the output of fun must be double.

A = accumarray({subs1, subs2, ...}, val, ...) passes multiple
subs vectors in a cell array. You can use any of the four optional inputs
(sz, fun, fillval, or issparse) with this syntax.

Examples Example 1

Create a 5-by-1 vector, and sum values for repeated 1-dimensional
subscripts:

val = 101:105;
subs = [1; 2; 4; 2; 4]
subs =

2-64

accumarray

1 % Subscript 1 of result <= val(1)
2 % Subscript 2 of result <= val(2)
4 % Subscript 4 of result <= val(3)
2 % Subscript 2 of result <= val(4)
4 % Subscript 4 of result <= val(5)

A = accumarray(subs, val)
A =

101 % A(1) = val(1) = 101
206 % A(2) = val(2)+val(4) = 102+104 = 206

0 % A(3) = 0
208 % A(4) = val(3)+val(5) = 103+105 = 208

Example 2

Create a 2-by-3-by-2 array, and sum values for repeated
three-dimensional subscripts:

val = 101:105;
subs = [1 1 1; 2 1 2; 2 3 2; 2 1 2; 2 3 2];

A = accumarray(subs, val)
A(:,:,1) =

101 0 0
0 0 0

A(:,:,2) =
0 0 0

206 0 208

Example 3

Create a 2-by-3-by-2 array, and sum values natively:

val = 101:105;
subs = [1 1 1; 2 1 2; 2 3 2; 2 1 2; 2 3 2];

A = accumarray(subs, int8(val), [], @(x) sum(x,'native'))
A(:,:,1) =

101 0 0

2-65

accumarray

0 0 0
A(:,:,2) =

0 0 0
127 0 127

class(A)
ans =

int8

Example 4

Pass multiple subscript arguments in a cell array.

Create a 12-element vector V:

V = 101:112;

Create three 12-element vectors, one for each dimension of the resulting
array A. Note how the indices of these vectors determine which elements
of V are accumulated in A:

% index 1 index 6 => V(1)+V(6) => A(1,3,1)
% | |
rowsubs = [1 3 3 2 3 1 2 2 3 3 1 2];
colsubs = [3 4 2 1 4 3 4 2 2 4 3 4];
pagsubs = [1 1 2 2 1 1 2 1 1 1 2 2];
% |
% index 4 => V(4) => A(2,1,2)
%
% A(1,3,1) = V(1) + V(6) = 101 + 106 = 207
% A(2,1,2) = V(4) = 104

Call accumarray, passing the subscript vectors in a cell array:

A = accumarray({rowsubs colsubs pagsubs}, V)
A(:,:,1) =

0 0 207 0 % A(1,3,1) is 207
0 108 0 0
0 109 0 317

2-66

accumarray

A(:,:,2) =
0 0 111 0

104 0 0 219 % A(2,1,2) is 104
0 103 0 0

Example 5

Create an array with the max function, and fill all empty elements of
that array with NaN:

val = 101:105;
subs = [1 1; 2 1; 2 3; 2 1; 2 3];

A = accumarray(subs, val, [2 4], @max, NaN)
A =

101 NaN NaN NaN
104 NaN 105 NaN

Example 6

Create a sparse matrix using the prod function:

val = 101:105;
subs = [1 1; 2 1; 2 3; 2 1; 2 3];

A = accumarray(subs, val, [2 4], @prod, 0, true)
A =

(1,1) 101
(2,1) 10608
(2,3) 10815

Example 7

Count the number of subscripts for each bin:

val = 1;
subs = [1 1; 2 1; 2 3; 2 1; 2 3];

A = accumarray(subs, val, [2 4])
A =

2-67

accumarray

1 0 0 0
2 0 2 0

Example 8

Create a logical array that shows which bins have two or more values:

val = 101:105;
subs = [1 1; 2 1; 2 3; 2 1; 2 3];

A = accumarray(subs, val, [2 4], @(x) length(x) > 1)
A =

0 0 0 0
1 0 1 0

Example 9

Group values in a cell array:

val = 101:105;
subs = [1 1; 2 1; 2 3; 2 1; 2 3];

A = accumarray(subs, val, [2 4], @(x) {x})
A =

[101] [] [] []
[2x1 double] [] [2x1 double] []

A{2}
ans =

104
102

See Also full, sparse, sum

2-68

acos

Purpose Inverse cosine; result in radians

Syntax Y = acos(X)

Description Y = acos(X) returns the inverse cosine (arccosine) for each element of
X. For real elements of X in the domain , acos(X) is real and in
the range . For real elements of X outside the domain ,
acos(X) is complex.

The acos function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse cosine function over the domain .

x = -1:.05:1;
plot(x,acos(x)), grid on

2-69

acos

Definition The inverse cosine can be defined as

Algorithm acos uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc., business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also acosd, acosh, cos

2-70

http://www.netlib.org

acosd

Purpose Inverse cosine; result in degrees

Syntax Y = acosd(X)

Description Y = acosd(X) is the inverse cosine, expressed in degrees, of the
elements of X.

See Also cosd, acos

2-71

acosh

Purpose Inverse hyperbolic cosine

Syntax Y = acosh(X)

Description Y = acosh(X) returns the inverse hyperbolic cosine for each element
of X.

The acosh function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic cosine function over the domain .

x = 1:pi/40:pi;
plot(x,acosh(x)), grid on

Definition The hyperbolic inverse cosine can be defined as

2-72

acosh

Algorithm acosh uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc., business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also acos, cosh

2-73

http://www.netlib.org

acot

Purpose Inverse cotangent; result in radians

Syntax Y = acot(X)

Description Y = acot(X) returns the inverse cotangent (arccotangent) for each
element of X.

The acot function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse cotangent over the domains and
.

x1 = -2*pi:pi/30:-0.1;
x2 = 0.1:pi/30:2*pi;
plot(x1,acot(x1),x2,acot(x2)), grid on

Definition The inverse cotangent can be defined as

2-74

acot

Algorithm acot uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc., business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also cot, acotd, acoth

2-75

http://www.netlib.org

acotd

Purpose Inverse cotangent; result in degrees

Syntax Y = acosd(X)

Description Y = acosd(X) is the inverse cotangent, expressed in degrees, of the
elements of X.

See Also cotd, acot

2-76

acoth

Purpose Inverse hyperbolic cotangent

Syntax Y = acoth(X)

Description Y = acoth(X) returns the inverse hyperbolic cotangent for each
element of X.

The acoth function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic cotangent over the domains
and .

x1 = -30:0.1:-1.1;
x2 = 1.1:0.1:30;
plot(x1,acoth(x1),x2,acoth(x2)), grid on

Definition The hyperbolic inverse cotangent can be defined as

2-77

acoth

Algorithm acoth uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also acot, coth

2-78

http://www.netlib.org

acsc

Purpose Inverse cosecant; result in radians

Syntax Y = acsc(X)

Description Y = acsc(X) returns the inverse cosecant (arccosecant) for each
element of X.

The acsc function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse cosecant over the domains and
.

x1 = -10:0.01:-1.01;
x2 = 1.01:0.01:10;
plot(x1,acsc(x1),x2,acsc(x2)), grid on

2-79

acsc

Definition The inverse cosecant can be defined as

Algorithm acsc uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also csc, acscd, acsch

2-80

http://www.netlib.org

acscd

Purpose Inverse cosecant; result in degrees

Syntax Y = acscd(X)

Description Y = acscd(X) is the inverse cotangent, expressed in degrees, of the
elements of X.

See Also cscd, acsc

2-81

acsch

Purpose Inverse hyperbolic cosecant

Syntax Y = acsch(X)

Description Y = acsch(X) returns the inverse hyperbolic cosecant for each element
of X.

The acsch function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic cosecant over the domains
and .

x1 = -20:0.01:-1;
x2 = 1:0.01:20;
plot(x1,acsch(x1),x2,acsch(x2)), grid on

Definition The hyperbolic inverse cosecant can be defined as

2-82

acsch

Algorithm acsc uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also acsc, csch

2-83

http://www.netlib.org

actxcontrol

Purpose Create ActiveX control in figure window

Syntax h = actxcontrol('progid')
h = actxcontrol('progid','param1',value1,...)
h = actxcontrol('progid', position)
h = actxcontrol('progid', position, fig_handle)
h = actxcontrol('progid',position,fig_handle,event_handler)
h = actxcontrol('progid',position,fig_handle,event_handler,

'filename')

Description h = actxcontrol('progid') creates an ActiveX control in a figure
window. The type of control created is determined by the string
progid, the programmatic identifier (progid) for the control. (See the
documentation provided by the control vendor to get this string.) The
returned object, h, represents the default interface for the control.

Note that progid cannot be an ActiveX server because MATLAB cannot
insert ActiveX servers in a figure. See actxserver for use with ActiveX
servers.

h = actxcontrol('progid','param1',value1,...) creates an
ActiveX control using the optional parameter name/value pairs.
Parameter names include:

• position — MATLAB position vector specifying the control’s
position. The format is [left, bottom, width, height] using pixel units.

• parent — Handle to parent figure, model, or command window.

• callback — Name of event handler. Specify a single name to use the
same handler for all events. Specify a cell array of event name/event
handler pairs to handle specific events.

• filename — Sets the control’s initial conditions to those in the
previously saved control.

• licensekey — License key to create licensed ActiveX controls that
require design-time licenses. See “Deploying ActiveX Controls
Requiring Run-Time Licenses” for information on how to use controls
that require run-time licenses.

2-84

actxcontrol

For example:

h = actxcontrol('progid','position',[0 0 200 200],...
'parent',gcf,...
'callback',{`Click' 'myClickHandler';...
'DblClick' 'myDblClickHandler';...
'MouseDown' 'myMouseDownHandler'});

The following syntaxes are deprecated and will not become obsolete.
They are included for reference, but the above syntaxes are preferred.

h = actxcontrol('progid', position) creates an ActiveX control
having the location and size specified in the vector, position. The
format of this vector is

[x y width height]

The first two elements of the vector determine where the control is
placed in the figure window, with x and y being offsets, in pixels, from
the bottom left corner of the figure window to the same corner of the
control. The last two elements, width and height, determine the size
of the control itself.

The default position vector is [20 20 60 60].

h = actxcontrol('progid', position, fig_handle) creates an
ActiveX control at the specified position in an existing figure window.
This window is identified by the Handle Graphics handle, fig_handle.

The current figure handle is returned by the gcf command.

Note If the figure window designated by fig_handle is invisible, the
control is invisible. If you want the control you are creating to be
invisible, use the handle of an invisible figure window.

h = actxcontrol('progid',position,fig_handle,event_handler)
creates an ActiveX control that responds to events. Controls respond
to events by invoking an M-file function whenever an event (such

2-85

actxcontrol

as clicking a mouse button) is fired. The event_handler argument
identifies one or more M-file functions to be used in handling events
(see “Specifying Event Handlers” on page 2-86 below).

h =
actxcontrol('progid',position,fig_handle,event_handler,'filename')
creates an ActiveX control with the first four arguments, and sets its
initial state to that of a previously saved control. MATLAB loads the
initial state from the file specified in the string filename.

If you don’t want to specify an event_handler, you can use an empty
string ('') as the fourth argument.

The progid argument must match the progid of the saved control.

Specifying Event Handlers

There is more than one valid format for the event_handler argument.
Use this argument to specify one of the following:

• A different event handler routine for each event supported by the
control

• One common routine to handle selected events

• One common routine to handle all events

In the first case, use a cell array for the event_handler argument, with
each row of the array specifying an event and handler pair:

{'event' 'eventhandler'; 'event2' 'eventhandler2'; ...}

event can be either a string containing the event name or a numeric
event identifier (see Example 2 below), and eventhandler is a string
identifying the M-file function you want the control to use in handling
the event. Include only those events that you want enabled.

In the second case, use the same cell array syntax just described, but
specify the same eventhandler for each event. Again, include only
those events that you want enabled.

2-86

actxcontrol

In the third case, make event_handler a string (instead of a cell array)
that contains the name of the one M-file function that is to handle all
events for the control.

There is no limit to the number of event and handler pairs you can
specify in the event_handler cell array.

Event handler functions should accept a variable number of arguments.

Strings used in the event_handler argument are not case sensitive.

Note Although using a single handler for all events may be easier in
some cases, specifying an individual handler for each event creates
more efficient code that results in better performance.

Remarks If the control implements any custom interfaces, use the interfaces
function to list them, and the invoke function to get a handle to a
selected interface.

When you no longer need the control, call release to release the
interface and free memory and other resources used by the interface.
Note that releasing the interface does not delete the control itself. Use
the delete function to do this.

For more information on handling control events, see the section,
“Writing Event Handlers” in the External Interfaces documentation.

For an example event handler, see the file sampev.m in the
toolbox\matlab\winfun\comcli directory.

Note If you encounter problems creating Microsoft Forms 2.0 controls
in MATLAB or other non-VBA container applications, see “Using
Microsoft Forms 2.0 Controls” in the External Interfaces documentation.

2-87

actxcontrol

Examples Example 1 — Basic Control Methods

Start by creating a figure window to contain the control. Then create a
control to run a Microsoft Calendar application in the window. Position
the control at a [0 0] x-y offset from the bottom left of the figure
window, and make it the same size (600 x 500 pixels) as the figure
window.

f = figure('position', [300 300 600 500]);
cal = actxcontrol('mscal.calendar', [0 0 600 500], f)
cal =

COM.mscal.calendar

Call the get method on cal to list all properties of the calendar:

cal.get
BackColor: 2.1475e+009

Day: 23
DayFont: [1x1 Interface.Standard_OLE_Types.Font]

Value: '8/20/2001'
.
.

Read just one property to record today’s date:

date = cal.Value
date =

8/23/2001

Set the Day property to a new value:

cal.Day = 5;
date = cal.Value
date =

8/5/2001

Call invoke with no arguments to list all available methods:

meth = cal.invoke
meth =

2-88

actxcontrol

NextDay: 'HRESULT NextDay(handle)'
NextMonth: 'HRESULT NextMonth(handle)'
NextWeek: 'HRESULT NextWeek(handle)'
NextYear: 'HRESULT NextYear(handle)'

.

.

Invoke the NextWeek method to advance the current date by one week:

cal.NextWeek;
date = cal.Value
date =

8/12/2001

Call events to list all calendar events that can be triggered:

cal.events
ans =

Click = void Click()
DblClick = void DblClick()
KeyDown = void KeyDown(int16 KeyCode, int16 Shift)
KeyPress = void KeyPress(int16 KeyAscii)
KeyUp = void KeyUp(int16 KeyCode, int16 Shift)
BeforeUpdate = void BeforeUpdate(int16 Cancel)
AfterUpdate = void AfterUpdate()
NewMonth = void NewMonth()
NewYear = void NewYear()

Example 2 — Event Handling

The event_handler argument specifies how you want the control to
handle any events that occur. The control can handle all events with
one common handler function, selected events with a common handler
function, or each type of event can be handled by a separate function.

This command creates an mwsamp control that uses one event handler,
sampev, to respond to all events:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], ...

2-89

actxcontrol

gcf, 'sampev')

The next command also uses a common event handler, but will only
invoke the handler when selected events, Click and DblClick are fired:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], ...
gcf, {'Click' 'sampev'; 'DblClick' 'sampev'})

This command assigns a different handler routine to each event. For
example, Click is an event, and myclick is the routine that executes
whenever a Click event is fired:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], ...
gcf, {'Click', 'myclick'; 'DblClick' 'my2click'; ...
'MouseDown' 'mymoused'});

The next command does the same thing, but specifies the events using
numeric event identifiers:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], ...
gcf, {-600, 'myclick'; -601 'my2click'; -605 'mymoused'});

See the section, “Sample Event Handlers” in the External Interfaces
documentation for examples of event handler functions and how to
register them with MATLAB.

See Also actxserver, release, delete, save, load, interfaces

2-90

actxcontrollist

Purpose List all currently installed ActiveX controls

Syntax C = actxcontrollist

Description C = actxcontrollist returns a list of each control, including its name,
programmatic identifier (or ProgID), and filename, in output cell array
C.

Examples Here is an example of the information that might be returned for
several controls:

list = actxcontrollist;

for k = 1:2
sprintf(' Name = %s\n ProgID = %s\n File = %s\n', ...

list{k,:})
end

ans =
Name = ActiveXPlugin Object
ProgID = Microsoft.ActiveXPlugin.1
File = C:\WINNT\System32\plugin.ocx

ans =
Name = Adaptec CD Guide
ProgID = Adaptec.EasyCDGuide
File = D:\APPLIC~1\Adaptec\Shared\CDGuide\CDGuide.ocx

See Also actxcontrolselect, actxcontrol

2-91

actxcontrolselect

Purpose Open GUI to create ActiveX control

Syntax h = actxcontrolselect
[h, info] = actxcontrolselect

Description h = actxcontrolselect displays a graphical interface that lists all
ActiveX controls installed on the system and creates the one that you
select from the list. The function returns a handle h for the object. Use
the handle to identify this particular control object when calling other
MATLAB COM functions.

[h, info] = actxcontrolselect returns the handle h and also the
1-by-3 cell array info containing information about the control. The
information returned in the cell array shows the name, programmatic
identifier (or ProgID), and filename for the control.

2-92

actxcontrolselect

The actxcontrolselect interface has a selection panel at the left of
the window and a preview panel at the right. Click on one of the control
names in the selection panel to see a preview of the control displayed.
(If MATLAB cannot create the control, an error message is displayed in
the preview panel.) Select an item from the list and click the Create
button at the bottom.

Remarks Click the Properties button on the actxcontrolselect window to
enter nondefault values for properties when creating the control. You
can select which figure window to put the control in (Parent field),
where to position it in the window (X and Y fields), and what size to
make the control (Width and Height).

You can also register any events you want the control to respond to and
what event handling routines to use when any of these events fire. Do
this by entering the name of the appropriate event handling routine
to the right of the event, or clicking the Browse button to search for
the event handler file.

Note If you encounter problems creating Microsoft Forms 2.0 controls
in MATLAB or other non-VBA container applications, see “Using
Microsoft Forms 2.0 Controls” in the External Interfaces documentation.

2-93

actxcontrolselect

Examples Select Calendar Control 9.0 in the actxcontrolselect window and
then click Properties to open the window shown above. Enter new
values for the size of the control, setting Width to 500 and Height to
350, then click OK. Click Create in the actxcontrolselect window
to create the control.

The control appears in a MATLAB figure window and the
actxcontrolselect function returns these values:

h =
COM.mscal.calendar.7

info =
[1x20 char] 'MSCAL.Calendar.7' [1x41 char]

Expand the info cell array to show the control name, ProgID, and
filename:

info{:}
ans =

Calendar Control 9.0
ans =

MSCAL.Calendar.7
ans =

D:\Applications\MSOffice\Office\MSCAL.OCX

See Also actxcontrollist, actxcontrol

2-94

actxGetRunningServer

Purpose Get handle to running instance of Automation server

Syntax h = actxGetRunningServer('progid')

Description h = actxGetRunningServer('progid') gets a reference to a
running instance of the OLE Automation server, where progid is the
programmatic identifier of the Automation server object and h is the
handle to the server object’s default interface.

The function issues an error if the server specified by progid is not
currently running or if the server object is not registered. When there
are multiple instances of the Automation server already running, the
behavior of this function is controlled by the operating system.

Example h = actxGetRunningServer('Excel.Application')

See Also actxcontrol, actxserver

2-95

actxserver

Purpose Create COM server

Syntax h = actxserver('progid')
h = actxserver('progid', 'machine', 'machineName')
h = actxserver('progid', 'interface', 'interfaceName')
h = actxserver('progid', 'machine', 'machineName',

'interface', 'interfaceName')
h = actxserver('progid', machine)

Description h = actxserver('progid') creates a local OLE Automation server,
where progid is the programmatic identifier of the COM server, and h
is the handle of the server’s default interface.

Get progid from the control or server vendor’s documentation. To see
the progid values for MATLAB, refer to “Programmatic Identifiers” in
the MATLAB External Interfaces documentation.

h = actxserver('progid', 'machine', 'machineName') creates an
OLE Automation server on a remote machine, where machineName is a
string specifying the name of the machine on which to launch the server.

h = actxserver('progid', 'interface', 'interfaceName')
creates a Custom interface server, where interfaceName is a
string specifying the interface name of the COM object. Values for
interfaceName are

• IUnknown — Use the IUnknown interface.

• The Custom interface name

You must know the name of the interface and have the server vendor’s
documentation in order to use the interfaceName value. See “COM
Server Types” in the MATLAB External Interfaces documentation for
information about Custom COM servers and interfaces.

h = actxserver('progid', 'machine', 'machineName',
'interface', 'interfaceName') creates a Custom interface server on
a remote machine.

2-96

actxserver

The following syntaxes are deprecated and will not become obsolete.
They are included for reference, but the syntaxes described earlier are
preferred:

h = actxserver('progid', machine) creates a COM server running
on the remote system named by the machine argument. This can be an
IP address or a DNS name. Use this syntax only in environments that
support Distributed Component Object Model (DCOM).

Remarks For components implemented in a dynamic link library (DLL),
actxserver creates an in-process server. For components implemented
as an executable (EXE), actxserver creates an out-of-process server.
Out-of-process servers can be created either on the client system or on
any other system on a network that supports DCOM.

If the control implements any Custom interfaces, use the interfaces
function to list them, and the invoke function to get a handle to a
selected interface.

You can register events for COM servers.

Run
Microsoft
Excel
Example

This example creates an OLE Automation server, Microsoft Excel
version 9.0, and manipulates a workbook in the application:

% Create a COM server running Microsoft Excel

e = actxserver ('Excel.Application')

% e =

% COM.excel.application

% Make the Excel frame window visible

e.Visible = 1;

% Use the get method on the Excel object "e"

% to list all properties of the application:

e.get

% ans =

2-97

actxserver

% Application: [1x1Interface.Microsoft_Excel_9.0_

%Object_Library._Application]

% Creator: 'xlCreatorCode'

% Workbooks: [1x1 Interface.Microsoft_Excel_9.0_

%Object_Library.Workbooks]

% Caption: 'Microsoft Excel - Book1'

% CellDragAndDrop: 0

% ClipboardFormats: {3x1 cell}

% Cursor: 'xlNorthwestArrow'

% .

% .

% Create an interface "eWorkBooks"

eWorkbooks = e.Workbooks

% eWorkbooks =

% Interface.Microsoft_Excel_9.0_Object_Library.Workbooks

% List all methods for that interface

eWorkbooks.invoke

% ans =

% Add: 'handle Add(handle, [Optional]Variant)'

% Close: 'void Close(handle)'

% Item: 'handle Item(handle, Variant)'

% Open: 'handle Open(handle, string, [Optional]Variant)'

% OpenText: 'void OpenText(handle, string, [Optional]Variant)'

% Add a new workbook "w",

% also creating a new interface

w = eWorkbooks.Add

% w =

% Interface.Microsoft_Excel_9.0_Object_Library._Workbook

% Close Excel and delete the object

e.Quit;

2-98

actxserver

e.delete;

See Also actxcontrol, release, delete, save, load, interfaces

2-99

addCause (MException)

Purpose Append MException objects

Syntax new_ME = addCause(base_ME, cause_ME)
base_ME = addCause(base_ME, cause_ME)

Description new_ME = addCause(base_ME, cause_ME) creates a new MException
object new_ME from two existing MException objects, base_ME and
cause_ME. addCause constructs new_ME by making a copy of the base_ME
object and appending cause_ME to the cause property of that object.

If other errors have contributed to the exception currently being thrown,
you can add the MException objects that represent these errors to the
cause field of the current MException to provide further information
for diagnosing the error at hand. All objects of the MException class
have a property called cause which is defined as a vector of additional
MException objects that can be added onto a base object of that class.

base_ME = addCause(base_ME, cause_ME) modifies existing
MException object base_ME by appending cause_ME to the cause
property of that object.

Examples Example 1

This example attempts to assign data from array D. If D does not exist,
the code attempts to recreate D by loading it from a MAT-file. The code
constructs a new MException object new_ME to store the causes of the
first two errors, cause1_ME and cause2_ME:

try
x = D(1:25);

catch cause1_ME
try

filename = 'test204';
testdata = load(filename);
x = testdata.D(1:25)

catch cause2_ME
base_ME = MException('MATLAB:LoadErr', ...

'Unable to load from file %s', filename);

2-100

addCause (MException)

new_ME = addCause(base_ME, cause1_ME);
new_ME = addCause(new_ME, cause2_ME);
throw(new_ME);

end
end

When you run the code, MATLAB displays the following message:

??? Unable to load from file test204

There are two exceptions in the cause field of new_ME:

new_ME.cause
ans =

[1x1 MException]
[1x1 MException]

Examine the cause field of new_ME to see the related errors:

new_ME.cause{:}
ans =

MException object with properties:

identifier: 'MATLAB:UndefinedFunction'
message: 'Undefined function or method 'D' for input

arguments of type 'double'.'
stack: [0x1 struct]
cause: {}

ans =

MException object with properties:

identifier: 'MATLAB:load:couldNotReadFile'
message: 'Unable to read file test204: No such file

or directory.'
stack: [0x1 struct]
cause: {}

2-101

addCause (MException)

Example 2

This example attempts to open a file in a directory that is not on the
MATLAB path. It uses a nested try-catch block to give the user the
opportunity to extend the path. If the still cannot be found, the program
issues an exception with the first error appended to the second using
addCause:

function data = read_it(filename);
try

fid = fopen(filename, 'r');
data = fread(fid);

catch ME1
if strcmp(ME1.identifier, 'MATLAB:FileIO:InvalidFid')

msg = sprintf('\n%s%s%s', 'Cannot open file ', ...
filename, '. Try another location? ');

reply = input(msg, 's')
if reply(1) == 'y'

newdir = input('Enter directory name: ', 's');
else

throw(ME1);
end
addpath(newdir);
try

fid = fopen(filename, 'r');
data = fread(fid);

catch ME2
ME3 = addCause(ME2, ME1)
throw(ME3);

end
rmpath(newdir);

end
end
fclose(fid);

If you run this function in a try-catch block at the command line, you
can look at the MException object by assigning it to a variable (e) with
the catch command.

2-102

addCause (MException)

try
d = read_it('anytextfile.txt');

catch e
end

e
e =
MException object with properties:

identifier: 'MATLAB:FileIO:InvalidFid'
message: 'Invalid file identifier. Use fopen to

generate a valid file identifier.'
stack: [1x1 struct]
cause: {[1x1 MException]}

Cannot open file anytextfile.txt. Try another location?y
Enter directory name: xxxxxxx
Warning: Name is nonexistent or not a directory: xxxxxxx.
> In path at 110

In addpath at 89

See Also try, catch, error, assert, , MException, throw(MException),
rethrow(MException), throwAsCaller(MException),
getReport(MException), disp(MException), isequal(MException),
eq(MException), ne(MException), last(MException)

2-103

addevent

Purpose Add event to timeseries object

Syntax ts = addevent(ts,e)
ts = addevent(ts,Name,Time)

Description ts = addevent(ts,e) adds one or more tsdata.event objects, e, to
the timeseries object ts. e is either a single tsdata.event object or
an array of tsdata.event objects.

ts = addevent(ts,Name,Time) constructs one or more tsdata.event
objects and adds them to the Events property of ts. Name is a cell array
of event name strings. Time is a cell array of event times.

Examples Create a time-series object and add an event to this object.

%% Import the sample data
load count.dat

%% Create time-series object
count1=timeseries(count(:,1),1:24,'name', 'data');

%% Modify the time units to be 'hours' ('seconds' is default)
count1.TimeInfo.Units = 'hours';

%% Construct and add the first event at 8 AM
e1 = tsdata.event('AMCommute',8);

%% Specify the time units of the time
e1.Units = 'hours';

View the properties (EventData, Name, Time, Units, and StartDate)
of the event object.

get(e1)

MATLAB responds with

EventData: []

2-104

addevent

Name: 'AMCommute'
Time: 8

Units: 'hours'
StartDate: ''

%% Add the event to count1
count1 = addevent(count1,e1);

An alternative syntax for adding two events to the time series count1 is
as follows:

count1 = addevent(count1,{'AMCommute' 'PMCommute'},{8 18})

See Also timeseries, tsdata.event, tsprops

2-105

addframe

Purpose Add frame to Audio/Video Interleaved (AVI) file

Syntax aviobj = addframe(aviobj,frame)
aviobj = addframe(aviobj,frame1,frame2,frame3,...)
aviobj = addframe(aviobj,mov)
aviobj = addframe(aviobj,h)

Description aviobj = addframe(aviobj,frame) appends the data in frame to
the AVI file identified by aviobj, which was created by a previous
call to avifile. frame can be either an indexed image (m-by-n) or a
truecolor image (m-by-n-by-3) of double or uint8 precision. If frame is
not the first frame added to the AVI file, it must be consistent with the
dimensions of the previous frames.

addframe returns a handle to the updated AVI file object, aviobj. For
example, addframe updates the TotalFrames property of the AVI file
object each time it adds a frame to the AVI file.

aviobj = addframe(aviobj,frame1,frame2,frame3,...) adds
multiple frames to an AVI file.

aviobj = addframe(aviobj,mov) appends the frames contained in the
MATLAB movie mov to the AVI file aviobj. MATLAB movies that store
frames as indexed images use the colormap in the first frame as the
colormap for the AVI file, unless the colormap has been previously set.

aviobj = addframe(aviobj,h) captures a frame from the figure or
axis handle h and appends this frame to the AVI file. addframe renders
the figure into an offscreen array before appending it to the AVI file.
This ensures that the figure is written correctly to the AVI file even if
the figure is obscured on the screen by another window or screen saver.

Note If an animation uses XOR graphics, you must use getframe to
capture the graphics into a frame of a MATLAB movie. You can then
add the frame to an AVI movie using the addframe syntax aviobj =
addframe(aviobj,mov). See the example for an illustration.

2-106

addframe

Example This example calls addframe to add frames to the AVI file object aviobj.

fig=figure;
set(fig,'DoubleBuffer','on');
set(gca,'xlim',[-80 80],'ylim',[-80 80],...
'nextplot','replace','Visible','off')

aviobj = avifile('example.avi')

x = -pi:.1:pi;
radius = 0:length(x);
for i=1:length(x)
h = patch(sin(x)*radius(i),cos(x)*radius(i),...

[abs(cos(x(i))) 0 0]);
set(h,'EraseMode','xor');
frame = getframe(gca);
aviobj = addframe(aviobj,frame);

end

aviobj = close(aviobj);

See Also avifile, close, movie2avi

2-107

addOptional (inputParser)

Purpose Add optional argument to inputParser schema

Syntax p.addOptional(argname, default, validator)
addOptional(p, argname, default, validator)

Description p.addOptional(argname, default, validator) updates the schema
for inputParser object p by adding an optional argument, argname.
Specify the argument name in a string enclosed within single quotation
marks. The default input specifies the value to use when the optional
argument argname is not present in the actual inputs to the function.
The optional validator input is a handle to a function that MATLAB
uses during parsing to validate the input arguments. If the validator
function returns false or errors, the parsing fails and MATLAB throws
an error.

MATLAB parses parameter-value arguments after required arguments
and optional arguments.

addOptional(p, argname, default, validator) is functionally the
same as the syntax above.

Note For more information on the inputParser class, see Parsing
Inputs with inputParser in the MATLAB Programming documentation.

Examples Write an M-file function called publish_ip, based on the MATLAB
publish function, to illustrate the use of the inputParser class.

There are three calling syntaxes for this function:

publish_ip('script')
publish_ip('script', 'format')
publish_ip('script', options)

From these three syntaxes, you can see that there is one required
argument (script), one optional argument (format), and some number

2-108

addOptional (inputParser)

of optional arguments that are specified as parameter-value pairs
(options).

Begin writing the example publish_ip M-file by entering the following
two statements. The second statement calls the class constructor for
inputParser to create an instance of the class. This class instance, or
object, gives you access to all of the methods and properties of the class:

function x = publish_ip(script, varargin)
p = inputParser; % Create an instance of the class.

Following the constructor, add this block of code to the M-file.
This code uses the addRequired(inputParser), addOptional, and
addParamValue(inputParser) methods to define the input arguments
to the function:

p.addRequired('script', @ischar);
p.addOptional('format', 'html', ...

@(x)any(strcmpi(x,{'html','ppt','xml','latex'})));
p.addParamValue('outputDir', pwd, @ischar);
p.addParamValue('maxHeight', [], @(x)x>0 && mod(x,1)==0);
p.addParamValue('maxWidth', [], @(x)x>0 && mod(x,1)==0);

Also add the next two lines to the M-file. The Parameters property of
inputParser lists all of the arguments that belong to the object p:

disp 'The input parameters for this program are
disp(p.Parameters)'

Save the M-file using the Save option on the MATLAB File menu, and
then run it to see the following list displayed:

The input parameters for this program are
'format'
'maxHeight'
'maxWidth'
'outputDir'
'script'

2-109

addOptional (inputParser)

See Also inputParser, addRequired(inputParser),
addParamValue(inputParser), parse(inputParser),
createCopy(inputParser)

2-110

addParamValue (inputParser)

Purpose Add parameter-value argument to inputParser schema

Syntax p.addParamValue(argname, default, validator)
addParamValue(p, argname, default, validator)

Description p.addParamValue(argname, default, validator) updates the
schema for inputParser object p by adding a parameter-value
argument, argname. Specify the argument name in a string enclosed
within single quotation marks. The default input specifies the value
to use when the optional argument name is not present in the actual
inputs to the function. The optional validator is a handle to a function
that MATLAB uses during parsing to validate the input arguments. If
the validator function returns false or errors, the parsing fails and
MATLAB throws an error.

MATLAB parses parameter-value arguments after required arguments
and optional arguments.

addParamValue(p, argname, default, validator) is functionally
the same as the syntax above.

Note For more information on the inputParser class, see Parsing
Inputs with inputParser in the MATLAB Programming documentation.

Examples Write an M-file function called publish_ip, based on the MATLAB
publish function, to illustrate the use of the inputParser class. There
are three calling syntaxes for this function:

publish_ip('script')
publish_ip('script', 'format')
publish_ip('script', options)

From these calling syntaxes, you can see that there is one required
argument (script), one optional argument (format), and a number
of optional arguments that are specified as parameter-value pairs
(options).

2-111

addParamValue (inputParser)

Begin writing the example publish_ip M-file by entering the following
two statements. Call the class constructor for inputParser to create an
instance of the class. This class instance, or object, gives you access to
all of the methods and properties of the class:

function x = publish_ip(script, varargin)
p = inputParser; % Create an instance of the class.

After calling the constructor, add the following lines to the
M-file. This code uses the addRequired(inputParser),
addOptional(inputParser), and addParamValue methods to define the
input arguments to the function:

p.addRequired('script', @ischar);
p.addOptional('format', 'html', ...

@(x)any(strcmpi(x,{'html','ppt','xml','latex'})));
p.addParamValue('outputDir', pwd, @ischar);
p.addParamValue('maxHeight', [], @(x)x>0 && mod(x,1)==0);
p.addParamValue('maxWidth', [], @(x)x>0 && mod(x,1)==0);

Also add the next two lines to the M-file. The Parameters property of
inputParser lists all of the arguments that belong to the object p:

disp 'The input parameters for this program are
disp(p.Parameters)'

Save the M-file using the Save option on the MATLAB File menu, and
then run it to see the following list displayed:

The input parameters for this program are
'format'
'maxHeight'
'maxWidth'
'outputDir'
'script'

2-112

addParamValue (inputParser)

See Also inputParser, addRequired(inputParser),
addOptional(inputParser), parse(inputParser),
createCopy(inputParser)

2-113

addpath

Purpose Add directories to MATLAB search path

GUI
Alternatives

As an alternative to the addpath function, use File > Set Path to open
the Set Path dialog box.

Syntax addpath('directory')
addpath('dir','dir2','dir3' ...)
addpath('dir','dir2','dir3' ...'-flag')
addpath dir1 dir2 dir3 ... -flag

Description addpath('directory') adds the specified directory to the top (also
called front) of the current MATLAB search path. Use the full
pathname for directory.

addpath('dir','dir2','dir3' ...) adds all the specified directories
to the top of the path. Use the full pathname for each dir.

addpath('dir','dir2','dir3' ...'-flag') adds the specified
directories to either the top or bottom of the path, depending on the
value of flag.

flag Argument Result

0 or begin Add specified directories to the top of the
path

1 or end Add specified directories to the bottom (also
called end) of the path

addpath dir1 dir2 dir3 ... -flag is the unquoted form of the
syntax.

Remarks To recursively add subdirectories of your directory in addition to the
directory itself, run

addpath(genpath('directory'))

2-114

addpath

Use addpath statements in your startup.m file to use the modified path
in future sessions. For details, see “Modifying the Path in a startup.m
File” in the MATLAB Desktop Tools and Development Environment
Documentation.

Examples For the current path, viewed by typing path,

MATLABPATH
c:\matlab\toolbox\general
c:\matlab\toolbox\ops
c:\matlab\toolbox\strfun

you can add c:/matlab/mymfiles to the front of the path by typing

addpath('c:/matlab/mymfiles')

Verify that the files were added to the path by typing

path

and MATLAB returns

MATLABPATH
c:\matlab\mymfiles
c:\matlab\toolbox\general
c:\matlab\toolbox\ops
c:\matlab\toolbox\strfun

You can also use genpath in conjunction with addpath to add
subdirectories to the path from the command line. For example, to add
/control and its subdirectories to the path, use

addpath(genpath(fullfile(matlabroot,'toolbox/control')))

See Also genpath, path, pathdef, pathsep, pathtool, rehash,
restoredefaultpath, rmpath, savepath, startup

“Search Path” in the MATLAB Desktop Tools and Development
Environment Documentation

2-115

addpref

Purpose Add preference

Syntax addpref('group','pref',val)
addpref('group',{'pref1','pref2',...'prefn'},{val1,val2,

...valn})

Description addpref('group','pref',val) creates the preference specified by
group and pref and sets its value to val. It is an error to add a
preference that already exists.

group labels a related collection of preferences. You can choose any
name that is a legal variable name, and is descriptive enough to be
unique, e.g. 'ApplicationOnePrefs'. The input argument pref
identifies an individual preference in that group, and must be a legal
variable name.

addpref('group',{'pref1','pref2',...'prefn'},{val1,val2,...valn})
creates the preferences specified by the cell array of names 'pref1',
'pref2',...,'prefn', setting each to the corresponding value.

Note Preference values are persistent and maintain their values
between MATLAB sessions. Where they are stored is system dependent.

Examples This example adds a preference called version to the mytoolbox group
of preferences and sets its value to the string 1.0.

addpref('mytoolbox','version','1.0')

See Also getpref, ispref, rmpref, setpref, uigetpref, uisetpref

2-116

addproperty

Purpose Add custom property to object

Syntax h.addproperty('propertyname')
addproperty(h, 'propertyname')

Description h.addproperty('propertyname') adds the custom property specified
in the string, propertyname, to the object or interface, h. Use set to
assign a value to the property.

addproperty(h, 'propertyname') is an alternate syntax for the same
operation.

Examples Create an mwsamp control and add a new property named Position to
it. Assign an array value to the property:

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f);
h.get

Label: 'Label'
Radius: 20

h.addproperty('Position');
h.Position = [200 120];
h.get

Label: 'Label'
Radius: 20

Position: [200 120]

h.get('Position')
ans =

200 120

Delete the custom Position property:

h.deleteproperty('Position');
h.get

Label: 'Label'
Radius: 20

2-117

addproperty

See Also deleteproperty, get, set, inspect

2-118

addRequired (inputParser)

Purpose Add required argument to inputParser schema

Syntax p.addRequired(argname, validator)
addRequired(p, argname, validator)

Description p.addRequired(argname, validator) updates the schema for
inputParser object p by adding a required argument, argname. Specify
the argument name in a string enclosed within single quotation marks.
The optional validator is a handle to a function that MATLAB uses
during parsing to validate the input arguments. If the validator function
returns false or errors, the parsing fails and MATLAB throws an error.

MATLAB parses required arguments before optional or parameter-value
arguments.

addRequired(p, argname, validator) is functionally the same as
the syntax above.

Note For more information on the inputParser class, see Parsing
Inputs with inputParser in the MATLAB Programming documentation.

Examples Write an M-file function called publish_ip, based on the MATLAB
publish function, to illustrate the use of the inputParser class. There
are three calling syntaxes for this function:

publish_ip('script')
publish_ip('script', 'format')
publish_ip('script', options)

From these calling syntaxes, you can see that there is one required
argument (script), one optional argument (format), and a number
of optional arguments that are specified as parameter-value pairs
(options).

Begin writing the example publish_ip M-file by entering the following
two statements. Call the class constructor for inputParser to create an

2-119

addRequired (inputParser)

instance of the class. This class instance, or object, gives you access to
all of the methods and properties of the class:

function x = publish_ip(script, varargin)
p = inputParser; % Create an instance of the class.

After calling the constructor, add the following lines to the M-file.
This code uses the addRequired, addOptional(inputParser), and
addParamValue(inputParser) methods to define the input arguments
to the function:

p.addRequired('script', @ischar);
p.addOptional('format', 'html', ...

@(x)any(strcmpi(x,{'html','ppt','xml','latex'})));
p.addParamValue('outputDir', pwd, @ischar);
p.addParamValue('maxHeight', [], @(x)x>0 && mod(x,1)==0);
p.addParamValue('maxWidth', [], @(x)x>0 && mod(x,1)==0);

Also add the next two lines to the M-file. The Parameters property of
inputParser lists all of the arguments that belong to the object p:

disp 'The input parameters for this program are
disp(p.Parameters)'

Save the M-file using the Save option on the MATLAB File menu, and
then run it to see the following list displayed:

The input parameters for this program are
'format'
'maxHeight'
'maxWidth'
'outputDir'
'script'

See Also inputParser, addOptional(inputParser),
addParamValue(inputParser), parse(inputParser),
createCopy(inputParser)

2-120

addsample

Purpose Add data sample to timeseries object

Syntax ts = addsample(ts,'Field1',Value1,'Field2',Value2,...)
ts = addsample(ts,s)

Description ts = addsample(ts,'Field1',Value1,'Field2',Value2,...) adds
one or more data samples to the timeseries object ts, where one field
must specify Time and another must specify Data. You can also specify
the following optional property-value pairs:

• 'Quality' — Array of data quality codes

• 'OverwriteFlag' — Logical value that controls whether to overwrite
a data sample at the same time with the new sample you are adding
to your timeseries object. When set to true, the new sample
overwrites the old sample at the same time.

ts = addsample(ts,s) adds one or more new samples stored in a
structure s to the timeseries object ts. You must define the fields
of the structure s before passing it as an argument to addsample by
assigning values to the following optional s fields:

• s.data

• s.time

• s.quality

• s.overwriteflag

Remarks A time-series data sample consists of one or more values recorded at a
specific time. The number of data samples in a time series is the same
as the length of the time vector.

The Time value must be a valid time vector.

Suppose that N is the number of samples. The sample size of each
time series is given by SampleSize = getsamplesize(ts). When

2-121

addsample

ts.IsTimeFirst is true, the size of the data is N-by-SampleSize. When
ts.IsTimeFirst is false, the size of the data is SampleSize-by-N.

Examples Add a data value of 420 at time 3.

ts = ts.addsample('Time',3,'Data',420);

Add a data value of 420 at time 3 and specify quality code 1 for this data
value. Set the flag to overwrite an existing value at time 3.

ts = ts.addsample('Data',3.2,'Quality',1,'OverwriteFlag',...
true,'Time',3);

See Also delsample, getdatasamplesize, tsprops

2-122

addsampletocollection

Purpose Add sample to tscollection object

Syntax tsc = addsampletocollection(tsc,'time',Time,TS1Name,TS1Data,
TSnName,TSnData)

Description tsc =
addsampletocollection(tsc,'time',Time,TS1Name,TS1Data,
TSnName,TSnData) adds data samples TSnData to the collection
member TSnName in the tscollection object tsc at one or more Time
values. Here, TSnName is the string that represents the name of a time
series in tsc, and TSnData is an array containing data samples.

Remarks If you do not specify data samples for a time-series member in tsc,
that time-series member will contain missing data at the times given
by Time (for numerical time-series data), NaN values, or (for logical
time-series data) false values.

When a time-series member requires Quality values, you can specify
data quality codes together with the data samples by using the following
syntax:

tsc = addsampletocollection(tsc,'time',time,TS1Name,...
ts1cellarray,TS2Name,ts2cellarray,...)

Specify data in the first cell array element and Quality in the second
cell array element.

Note If a time-series member already has Quality values but you only
provide data samples, 0s are added to the existing Quality array at
the times given by Time.

Examples The following example shows how to create a tscollection that
consists of two timeseries objects, where one timeseries does not
have quality codes and the other does. The final step of the example
adds a sample to the tscollection.

2-123

addsampletocollection

1 Create two timeseries objects, ts1 and ts2.

ts1 = timeseries([1.1 2.9 3.7 4.0 3.0],1:5,...
'name','acceleration');

ts2 = timeseries([3.2 4.2 6.2 8.5 1.1],1:5,...
'name','speed');

2 Define a dictionary of quality codes and descriptions for ts2.

ts2.QualityInfo.Code = [0 1];
ts2.QualityInfo.Description = {'bad','good'};

3 Assign a quality of code of 1, which is equivalent to 'good', to each
data value in ts2.

ts2.Quality = ones(5,1);

4 Create a time-series collection tsc, which includes time series ts1
and ts2.

tsc = tscollection({ts1,ts2});

5 Add a data sample to the collection tsc at 3.5 seconds.

tsc = addsampletocollection(tsc,'time',3.5,'acceleration',10,
'speed',{5 1});

The cell array for the timeseries object 'speed' specifies both the
data value 5 and the quality code 1.

Note If you do not specify a quality code when adding a data sample
to a time series that has quality codes, then the lowest quality code is
assigned to the new sample by default.

See Also delsamplefromcollection, tscollection, tsprops

2-124

addtodate

Purpose Modify date number by field

Syntax R = addtodate(D, Q, F)

Description R = addtodate(D, Q, F) adds quantity Q to the indicated date field F
of a scalar serial date number D, returning the updated date number R.

The quantity Q to be added must be a double scalar whole number, and
can be either positive or negative. The date field F must be a 1-by-N
character array equal to one of the following: 'year', 'month', or 'day'.

If the addition to the date field causes the field to roll over, MATLAB
adjusts the next more significant fields accordingly. Adding a negative
quantity to the indicated date field rolls back the calender on the
indicated field. If the addition causes the field to roll back, MATLAB
adjusts the next less significant fields accordingly.

Examples Adding 20 days to the given date in late December causes the calendar
to roll over to January of the next year:

R = addtodate(datenum('12/24/1984 12:45'), 20, 'day');

datestr(R)
ans =

13-Jan-1985 12:45:00

See Also date, datenum, datestr, datevec

2-125

addts

Purpose Add timeseries object to tscollection object

Syntax tsc = addts(tsc,ts)
tsc = addts(tsc,ts)
tsc = addts(tsc,ts,Name)
tsc = addts(tsc,Data,Name)

Description tsc = addts(tsc,ts) adds the timeseries object ts to tscollection
object tsc.

tsc = addts(tsc,ts) adds a cell array of timeseries objects ts to
the tscollection tsc.

tsc = addts(tsc,ts,Name) adds a cell array of timeseries objects
ts to tscollection tsc. Name is a cell array of strings that gives the
names of the timeseries objects in ts.

tsc = addts(tsc,Data,Name) creates a new timeseries object from
Data with the name Name and adds it to the tscollection object tsc.
Data is a numerical array and Name is a string.

Remarks The timeseries objects you add to the collection must have the same
time vector as the collection. That is, the time vectors must have the
same time values and units.

Suppose that the time vector of a timeseries object is associated with
calendar dates. When you add this timeseries to a collection with a
time vector without calendar dates, the time vectors are compared based
on the units and the values relative to the StartDate property. For
more information about properties, see the timeseries reference page.

Examples The following example shows how to add a time series to a time-series
collection:

1 Create two timeseries objects, ts1 and ts2.

ts1 = timeseries([1.1 2.9 3.7 4.0 3.0],1:5,...
'name','acceleration');

2-126

addts

ts2 = timeseries([3.2 4.2 6.2 8.5 1.1],1:5,...
'name','speed');

2 Create a time-series collection tsc, which includes ts1.

tsc = tscollection(ts1);

3 Add ts2 to the tsc collection.

tsc = addts(tsc, ts2);

4 To view the members of tsc, type

tsc

at the MATLAB prompt. MATLAB responds with

Time Series Collection Object: unnamed

Time vector characteristics

Start time 1 seconds
End time 5 seconds

Member Time Series Objects:

acceleration
speed

The members of tsc are listed by name at the bottom: acceleration
and speed. These are the Name properties of the timeseries objects
ts1 and ts2, respectively.

See Also removets, tscollection

2-127

airy

Purpose Airy functions

Syntax W = airy(Z)
W = airy(k,Z)
[W,ierr] = airy(k,Z)

Definition The Airy functions form a pair of linearly independent solutions to

The relationship between the Airy and modified Bessel functions is

where

Description W = airy(Z) returns the Airy function, , for each element of
the complex array Z.

W = airy(k,Z) returns different results depending on the value of k.

k Returns

0 The same result as airy(Z)

1 The derivative,

2-128

airy

k Returns

2 The Airy function of the second kind,

3 The derivative,

[W,ierr] = airy(k,Z) also returns completion flags in an array the
same size as W.

ierr Description

0 airy successfully computed the Airy function
for this element.

1 Illegal arguments

2 Overflow. Returns Inf

3 Some loss of accuracy in argument reduction

4 Unacceptable loss of accuracy, Z too large

5 No convergence. Returns NaN

See Also besseli, besselj, besselk, bessely

References [1] Amos, D. E., “A Subroutine Package for Bessel Functions of
a Complex Argument and Nonnegative Order,” Sandia National
Laboratory Report, SAND85-1018, May, 1985.

[2] Amos, D. E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

2-129

align

Purpose Align user interface controls (uicontrols) and axes

Syntax align(HandleList,'HorizontalAlignment','VerticalAlignment')
Positions = align(HandleList,'HorizontalAlignment',

'VerticalAlignment')
Positions = align(CurPositions,'HorizontalAlignment',

'VerticalAlignment')

Description align(HandleList,'HorizontalAlignment','VerticalAlignment')
aligns the uicontrol and axes objects in HandleList, a vector
of handles, according to the options HorizontalAlignment and
VerticalAlignment. The following table shows the possible values for
HorizontalAlignment and VerticalAlignment.

Argument Possible Values

HorizontalAlignment None, Left, Center, Right, Distribute,
Fixed

VerticalAlignment None, Top, Middle, Bottom, Distribute,
Fixed

All alignment options align the objects within the bounding box that
encloses the objects. Distribute and Fixed align objects to the bottom
left of the bounding box. Distribute evenly distributes the objects
while Fixed distributes the objects with a fixed distance (in points)
between them.

If you use Fixed for Horizontal Alignment or Vertical Alignment,
then you must specify the distance, in points, as an extra argument.
These are some examples:

align(HandleList,'Fixed',Distance,'VerticalAlignment')

distributes the specified components Distance points horizontally and
aligns them vertically as specified.

align(HandleList,'HorizontalAlignment','Fixed',Distance)

2-130

align

aligns the specified components horizontally as specified and distributes
them Distance points vertically.

align(HandleList,'Fixed','HorizontalDistance',...
'Fixed','VerticalDistance')

distributes the specified components HorizontalDistance points
horizontally and distributes them VerticalDistance points vertically.

Note 72 points equals 1 inch.

Positions = align(HandleList,'HorizontalAlignment',
'VerticalAlignment') returns updated positions for the specified
objects as a vector of Position vectors. The position of the objects on
the figure does not change.

Positions = align(CurPositions,'HorizontalAlignment',
'VerticalAlignment') returns updated positions for the objects whose
positions are contained in CurPositions, where CurPositions is a
vector of Position vectors. The position of the objects on the figure
does not change.

2-131

alim

Purpose Set or query axes alpha limits

Syntax alpha_limits = alim
alim([amin amax])
alim_mode = alim('mode')
alim('alim_mode')
alim(axes_handle,...)

Description alpha_limits = alim returns the alpha limits (the axes ALim property)
of the current axes.

alim([amin amax]) sets the alpha limits to the specified values. amin
is the value of the data mapped to the first alpha value in the alphamap,
and amax is the value of the data mapped to the last alpha value in the
alphamap. Data values in between are linearly interpolated across the
alphamap, while data values outside are clamped to either the first or
last alphamap value, whichever is closest.

alim_mode = alim('mode') returns the alpha limits mode (the axes
ALimMode property) of the current axes.

alim('alim_mode') sets the alpha limits mode on the current axes.
alim_mode can be

• auto — MATLAB automatically sets the alpha limits based on the
alpha data of the objects in the axes.

• manual — MATLAB does not change the alpha limits.

alim(axes_handle,...) operates on the specified axes.

See Also alpha, alphamap, caxis

Axes ALim and ALimMode properties

Patch FaceVertexAlphaData property

Image and surface AlphaData properties

Transparency for related functions

2-132

alim

“Transparency” in 3-D Visualization for examples

2-133

all

Purpose Determine whether all array elements are nonzero

Syntax B = all(A)
B = all(A, dim)

Description B = all(A) tests whether all the elements along various dimensions of
an array are nonzero or logical 1 (true).

If A is a vector, all(A) returns logical 1 (true) if all the elements are
nonzero and returns logical 0 (false) if one or more elements are zero.

If A is a matrix, all(A) treats the columns of A as vectors, returning a
row vector of logical 1’s and 0’s.

If A is a multidimensional array, all(A) treats the values along the
first nonsingleton dimension as vectors, returning a logical condition
for each vector.

B = all(A, dim) tests along the dimension of A specified by scalar dim.

Examples Given

A = [0.53 0.67 0.01 0.38 0.07 0.42 0.69]

then B = (A < 0.5) returns logical 1 (true) only where A is less than
one half:

0 0 1 1 1 1 0

The all function reduces such a vector of logical conditions to a single
condition. In this case, all(B) yields 0.

2-134

all

This makes all particularly useful in if statements:

if all(A < 0.5)
do something

end

where code is executed depending on a single condition, not a vector
of possibly conflicting conditions.

Applying the all function twice to a matrix, as in all(all(A)), always
reduces it to a scalar condition.

all(all(eye(3)))
ans =

0

See Also any, logical operators (elementwise and short-circuit), relational
operators, colon

Other functions that collapse an array’s dimensions include max, mean,
median, min, prod, std, sum, and trapz.

2-135

allchild

Purpose Find all children of specified objects

Syntax child_handles = allchild(handle_list)

Description child_handles = allchild(handle_list) returns the list of all
children (including ones with hidden handles) for each handle. If
handle_list is a single element, allchild returns the output in a
vector. Otherwise, the output is a cell array.

Examples Compare the results returned by these two statements.

get(gca,'Children')
allchild(gca)

See Also findall, findobj

2-136

alpha

Purpose Set transparency properties for objects in current axes

Syntax alpha
alpha(face_alpha)
alpha(alpha_data)
alpha(alpha_data)
alpha(alpha_data)
alpha(alpha_data_mapping)
alpha(object_handle,value)

Description alpha sets one of three transparency properties, depending on what
arguments you specify with the call to this function.

FaceAlpha

alpha(face_alpha) sets the FaceAlpha property of all image, patch,
and surface objects in the current axes. You can set face_alpha to

• A scalar — Set the FaceAlpha property to the specified value (for
images, set the AlphaData property to the specified value).

• 'flat' — Set the FaceAlpha property to flat.

• 'interp' — Set the FaceAlpha property to interp.

• 'texture' — Set the FaceAlpha property to texture.

• 'opaque' — Set the FaceAlpha property to 1.

• 'clear' — Set the FaceAlpha property to 0.

See for more information.

AlphaData (Surface Objects)

alpha(alpha_data) sets the AlphaData property of all surface objects
in the current axes. You can set alpha_data to

• A matrix the same size as CData — Set the AlphaData property to
the specified values.

• 'x' — Set the AlphaData property to be the same as XData.

2-137

alpha

• 'y' — Set the AlphaData property to be the same as YData.

• 'z' — Set the AlphaData property to be the same as ZData.

• 'color' — Set the AlphaData property to be the same as CData.

• 'rand' — Set the AlphaData property to a matrix of random values
equal in size to CData.

AlphaData (Image Objects)

alpha(alpha_data) sets the AlphaData property of all image objects in
the current axes. You can set alpha_data to

• A matrix the same size as CData — Set the AlphaData property to
the specified value.

• 'x' — Ignored.

• 'y' — Ignored.

• 'z' — Ignored.

• 'color' — Set the AlphaData property to be the same as CData.

• 'rand' — Set the AlphaData property to a matrix of random values
equal in size to CData.

FaceVertexAlphaData (Patch Objects)

alpha(alpha_data) sets the FaceVertexAlphaData property of all
patch objects in the current axes. You can set alpha_data to

• A matrix the same size as FaceVertexCData — Set the
FaceVertexAlphaData property to the specified value.

• 'x' — Set the FaceVertexAlphaData property to be the same as
Vertices(:,1).

• 'y' — Set the FaceVertexAlphaData property to be the same as
Vertices(:,2).

• 'z' — Set the FaceVertexAlphaData property to be the same as
Vertices(:,3).

2-138

alpha

• 'color' — Set the FaceVertexAlphaData property to be the same as
FaceVertexCData.

• 'rand' — Set the FaceVertexAlphaData property to random values.

See Mapping Data to Transparency for more information.

AlphaDataMapping

alpha(alpha_data_mapping) sets the AlphaDataMapping property of
all image, patch, and surface objects in the current axes. You can set
alpha_data_mapping to

• 'scaled' — Set the AlphaDataMapping property to scaled.

• 'direct' — Set the AlphaDataMapping property to direct.

• 'none' — Set the AlphaDataMapping property to none.

alpha(object_handle,value) sets the transparency property only on
the object identified by object_handle.

See Also alim, alphamap

Image: AlphaData, AlphaDataMapping

Patch: FaceAlpha, FaceVertexAlphaData, AlphaDataMapping

Surface: FaceAlpha, AlphaData, AlphaDataMapping

Transparency for related functions

“Transparency” in 3-D Visualization for examples

2-139

alphamap

Purpose Specify figure alphamap (transparency)

Syntax alphamap
alphamap(alpha_map)
alphamap('parameter')
alphamap('parameter',length)
alphamap('parameter',delta)
alphamap(figure_handle,...)
alpha_map = alphamap
alpha_map = alphamap(figure_handle)
alpha_map = alphamap('parameter')

Description alphamap enables you to set or modify a figure’s Alphamap property.
Unless you specify a figure handle as the first argument, alphamap
operates on the current figure.

alphamap(alpha_map) sets the AlphaMap of the current figure to the
specified m-by-1 array of alpha values.

alphamap('parameter') creates a new alphamap or modifies the
current alphamap. You can specify the following parameters:

• default — Set the AlphaMap property to the figure’s default
alphamap.

• rampup — Create a linear alphamap with increasing opacity (default
length equals the current alphamap length).

• rampdown — Create a linear alphamap with decreasing opacity
(default length equals the current alphamap length).

• vup — Create an alphamap that is opaque in the center and becomes
more transparent linearly towards the beginning and end (default
length equals the current alphamap length).

• vdown — Create an alphamap that is transparent in the center
and becomes more opaque linearly towards the beginning and end
(default length equals the current alphamap length).

2-140

alphamap

• increase — Modify the alphamap making it more opaque (default
delta is .1, which is added to the current values).

• decrease — Modify the alphamap making it more transparent
(default delta is .1, which is subtracted from the current values).

• spin — Rotate the current alphamap (default delta is 1; note that
delta must be an integer).

alphamap('parameter',length) creates a new alphamap with the
length specified by length (used with parameters rampup, rampdown,
vup, vdown).

alphamap('parameter',delta) modifies the existing alphamap
using the value specified by delta (used with parameters increase,
decrease, spin).

alphamap(figure_handle,...) performs the operation on the
alphamap of the figure identified by figure_handle.

alpha_map = alphamap returns the current alphamap.

alpha_map = alphamap(figure_handle) returns the current
alphamap from the figure identified by figure_handle.

alpha_map = alphamap('parameter') returns the alphamap modified
by the parameter, but does not set the AlphaMap property.

See Also alim, alpha

Image: AlphaData, AlphaDataMapping

Patch: FaceAlpha, FaceVertexAlphaData, AlphaDataMapping

Surface: FaceAlpha, AlphaData, AlphaDataMapping

Transparency for related functions

“Transparency” in 3-D Visualization for examples

2-141

amd

Purpose Approximate minimum degree permutation

Syntax P = amd(A)
P = amd(A,opts)

Description P = amd(A) returns the approximate minimum degree permutation
vector for the sparse matrix C = A + A'. The Cholesky factorization
of C(P,P) or A(P,P) tends to be sparser than that of C or A. The amd
function tends to be faster than symamd, and also tends to return better
orderings than symamd. Matrix A must be square. If A is a full matrix,
then amd(A) is equivalent to amd(sparse(A)).

P = amd(A,opts) allows additional options for the reordering. The
opts input is a structure with the two fields shown below. You only
need to set the fields of interest:

• dense — A nonnegative scalar value that indicates what is considered
to be dense. If A is n-by-n, then rows and columns with more than
max(16,(dense*sqrt(n))) entries in A + A' are considered to be
"dense" and are ignored during the ordering. MATLAB places these
rows and columns last in the output permutation. The default value
for this field is 10.0 if this option is not present.

• aggressive — A scalar value controlling aggressive absorption. If
this field is set to a nonzero value, then aggressive absorption is
performed. This is the default if this option is not present.

MATLAB performs an assembly tree post-ordering, which is typically
the same as an elimination tree post-ordering. It is not always identical
because of the approximate degree update used, and because “dense”
rows and columns do not take part in the post-order. It well-suited
for a subsequent chol operation, however, If you require a precise
elimination tree post-ordering, you can use the following code:

P = amd(S);
C = spones(S)+spones(S'); % Skip this line if S is already symmetric
[ignore, Q] = etree(C(P,P));
P = P(Q);

2-142

amd

Examples This example constructs a sparse matrix and computes a two Cholesky
factors: one of the original matrix and one of the original matrix
preordered by amd. Note how much sparser the Cholesky factor of the
preordered matrix is compared to the factor of the matrix in its natural
ordering:

A = gallery('wathen',50,50);
p = amd(A);
L = chol(A,'lower');
Lp = chol(A(p,p),'lower');

figure;
subplot(2,2,1); spy(A);
title('Sparsity structure of A');

subplot(2,2,2); spy(A(p,p));
title('Sparsity structure of AMD ordered A');

subplot(2,2,3); spy(L);
title('Sparsity structure of Cholesky factor of A');

subplot(2,2,4); spy(Lp);
title('Sparsity structure of Cholesky factor of AMD ordered A');

set(gcf,'Position',[100 100 800 700]);

See Also colamd, colperm, symamd, symrcm, /

References AMD Version 1.2 is written and copyrighted by Timothy A.
Davis, Patrick R. Amestoy, and Iain S. Duff. It is available at
http://www.cise.ufl.edu/research/sparse/amd.

The authors of the code for symamd are Stefan I. Larimore and
Timothy A. Davis (davis@cise.ufl.edu), University of Florida.
The algorithm was developed in collaboration with John Gilbert,
Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory.

2-143

http://www.cise.ufl.edu/research/sparse/amd

amd

Sparse Matrix Algorithms Research at the University of Florida:
http://www.cise.ufl.edu/research/sparse/

2-144

http://www.cise.ufl.edu/research/sparse/

ancestor

Purpose Ancestor of graphics object

Syntax p = ancestor(h,type)
p = ancestor(h,type,'toplevel')

Description p = ancestor(h,type) returns the handle of the closest ancestor of
h, if the ancestor is one of the types of graphics objects specified by
type. type can be:

• a string that is the name of a single type of object. For example,
'figure'

• a cell array containing the names of multiple objects. For example,
{'hgtransform','hggroup','axes'}

If MATLAB cannot find an ancestor of h that is one of the specified
types, then ancestor returns p as empty.

Note that ancestor returns p as empty but does not issue an error if h
is not the handle of a Handle Graphics object.

p = ancestor(h,type,'toplevel') returns the highest-level ancestor
of h, if this type appears in the type argument.

Examples Create some line objects and parent them to an hggroup object.

hgg = hggroup;
hgl = line(randn(5),randn(5),'Parent',hgg);

Now get the ancestor of the lines.

p = ancestor(hgg,{'figure','axes','hggroup'});
get(p,'Type')
ans =

hggroup

Now get the top-level ancestor

2-145

ancestor

p=ancestor(hgg,{'figure','axes','hggroup'},'toplevel');
get(p,'type')
ans =

figure

See Also findobj

2-146

and

Purpose Find logical AND of array or scalar inputs

Syntax A & B & ...
and(A, B)

Description A & B & ... performs a logical AND of all input arrays A, B, etc., and
returns an array containing elements set to either logical 1 (true)
or logical 0 (false). An element of the output array is set to 1 if all
input arrays contain a nonzero element at that same array location.
Otherwise, that element is set to 0.

Each input of the expression can be an array or can be a scalar value.
All nonscalar input arrays must have equal dimensions. If one or more
inputs are an array, then the output is an array of the same dimensions.
If all inputs are scalar, then the output is scalar.

If the expression contains both scalar and nonscalar inputs, then each
scalar input is treated as if it were an array having the same dimensions
as the other input arrays. In other words, if input A is a 3-by-5 matrix
and input B is the number 1, then B is treated as if it were a 3-by-5
matrix of ones.

and(A, B) is called for the syntax A & B when either A or B is an object.

Note The symbols & and && perform different operations in MATLAB.
The element-wise AND operator described here is &. The short-circuit
AND operator is &&.

Examples If matrix A is

0.4235 0.5798 0 0.7942 0
0.5155 0 0.7833 0.0592 0.8744
0.3340 0 0 0 0.0150
0.4329 0.6405 0.6808 0.0503 0

and matrix B is

2-147

and

0 1 0 1 0
1 1 1 0 1
0 1 1 1 0
0 1 0 0 1

then

A & B
ans =

0 1 0 1 0
1 0 1 0 1
0 0 0 0 0
0 1 0 0 0

See Also bitand, or, xor, not, any, all, logical operators, logical types, bitwise
functions

2-148

angle

Purpose Phase angle

Syntax P = angle(Z)

Description P = angle(Z) returns the phase angles, in radians, for each element of
complex array Z. The angles lie between .

For complex Z, the magnitude R and phase angle theta are given by

R = abs(Z)
theta = angle(Z)

and the statement

Z = R.*exp(i*theta)

converts back to the original complex Z.

Examples Z = [1 - 1i 2 + 1i 3 - 1i 4 + 1i
1 + 2i 2 - 2i 3 + 2i 4 - 2i
1 - 3i 2 + 3i 3 - 3i 4 + 3i
1 + 4i 2 - 4i 3 + 4i 4 - 4i]

P = angle(Z)

P =
-0.7854 0.4636 -0.3218 0.2450
1.1071 -0.7854 0.5880 -0.4636

-1.2490 0.9828 -0.7854 0.6435
1.3258 -1.1071 0.9273 -0.7854

Algorithm The angle function can be expressed as angle(z) = imag(log(z)) =
atan2(imag(z),real(z)).

See Also abs, atan2, unwrap

2-149

annotation

Purpose Create annotation objects

GUI
Alternatives

Create several types of annotations with the Figure Palette and modify
annotations with the Property Editor, components of the plotting tools.
Directly manipulate annotations in plot edit mode. For details, see “How
to Annotate Graphs” and “Working in Plot Edit Mode” in the MATLAB
Graphics documentation.

Syntax annotation(annotation_type)
annotation('line',x,y)
annotation('arrow',x,y)
annotation('doublearrow',x,y)
annotation('textarrow',x,y)
annotation('textbox',[x y w h])
annotation('ellipse',[x y w h])
annotation('rectangle',[x y w h])
annotation(figure_handle,...)
annotation(...,'PropertyName',PropertyValue,...)
anno_obj_handle = annotation(...)

Description annotation(annotation_type) creates the specified annotation type
using default values for all properties. annotation_type can be one of
the following strings:

• 'line'

• 'arrow'

• 'doublearrow' (two-headed arrow),

• 'textarrow' (arrow with attached text box),

• 'textbox'

• 'ellipse'

• 'rectangle'

2-150

annotation

annotation('line',x,y) creates a line annotation object that extends
from the point defined by x(1),y(1) to the point defined by x(2),y(2),
specified in normalized figure units.

annotation('arrow',x,y) creates an arrow annotation object that
extends from the point defined by x(1),y(1) to the point defined by
x(2),y(2), specified in normalized figure units.

annotation('doublearrow',x,y) creates a two-headed annotation
object that extends from the point defined by x(1),y(1) to the point
defined by x(2),y(2), specified in normalized figure units.

annotation('textarrow',x,y) creates a textarrow annotation object
that extends from the point defined by x(1),y(1) to the point defined
by x(2),y(2), specified in normalized figure units. The tail end of the
arrow is attached to an editable text box.

annotation('textbox',[x y w h]) creates an editable text box
annotation with its lower left corner at the point x,y, a width w, and a
height h, specified in normalized figure units. Specify x, y, w, and h in
a single vector.

To type in the text box, enable plot edit mode (plotedit) and
double-click within the box.

annotation('ellipse',[x y w h]) creates an ellipse annotation with
the lower left corner of the bounding rectangle at the point x,y, a width
w, and a height h, specified in normalized figure units. Specify x, y,
w, and h in a single vector.

annotation('rectangle',[x y w h]) creates a rectangle annotation
with the lower left corner of the rectangle at the point x,y, a width w,
and a height h, specified in normalized figure units. Specify x, y, w, and
h in a single vector.

annotation(figure_handle,...) creates the annotation in the
specified figure.

annotation(...,'PropertyName',PropertyValue,...) creates the
annotation and sets the specified properties to the specified values.

2-151

annotation

anno_obj_handle = annotation(...) returns the handle to the
annotation object that is created.

Annotation
Layer

All annotation objects are displayed in an overlay axes that covers the
figure. This layer is designed to display only annotation objects. You
should not parent objects to this axes nor set any properties of this axes.
See the See Also section for information on the properties of annotation
objects that you can set.

Objects in the Plotting Axes

You can create lines, text, rectangles, and ellipses in data coordinates
in the axes of a graph using the line, text, and rectangle functions.
These objects are not placed in the annotation axes and must be located
inside their parent axes.

Deleting Annotations

Existing annotations persist on a plot when you replace its data. This
might not be what you want to do. If it is not, or if you want to remove
annotation objects for any reason, you can do so manually, or sometimes
programmatically, in several ways:

• To manually delete, click the Edit Plot tool or invoke plottools,
select the annotation(s) you want to remove, and do one of the
following:

- Press the Delete key.

- Press the Backspace key.

- Select Clear from the Edit menu.

- Select Delete from the context menu (one annotation at a time).

• If you obtained a handle for the annotation when you created it, use
the delete function:

delete(anno_obj_handle)

There is no reliable way to obtain handles for annotations from a
figure’s property set; you must keep track of them yourself.

2-152

annotation

• To delete all annotations at once (as well as all plot contents), type

clf

Normalized Coordinates

By default, annotation objects use normalized coordinates to specify
locations within the figure. In normalized coordinates, the point 0,0
is always the lower left corner and the point 1,1 is always the upper
right corner of the figure window, regardless of the figure size and
proportions. Set the Units property of annotation objects to change
their coordinates from normalized to inches, centimeters, points,
pixels, or characters.

When their Units property is other than normalized, annotation
objects have absolute positions with respect to the figure’s origin, and
fixed sizes. Therefore, they will shift position with respect to axes when
you resize figures. When units are normalized, annotations shrink and
grow when you resize figures; this can cause lines of text in textbox
annotations to wrap. However, if you set the FontUnits property of an
annotation textbox object to normalized, the text changes size rather
than wraps if the textbox size changes.

You can use either the set command or the Inspector to change a
selected annotation object’s Units property:

set(gco,'Units','inches') % or
inspect(gco)

See Also Properties for the annotation objects Annotation Arrow Properties,
Annotation Doublearrow Properties, Annotation Ellipse
Properties, Annotation Line Properties, Annotation Rectangle
Properties, Annotation Textarrow Properties, Annotation
Textbox Properties

See “Annotating Graphs” and “Annotation Objects” for more information.

2-153

Annotation Arrow Properties

Purpose Define annotation arrow properties

Modifying
Properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Positioning Annotations in
Data Space” in the MATLAB Graphics documentation.

Annotation
Arrow
Property
Descriptions

Properties You Can Modify

This section lists the properties you can modify on an annotation arrow
object.

Color
ColorSpec

Color of the object. A three-element RGB vector or one of the
MATLAB predefined names, specifying the object’s color.

See the ColorSpec reference page for more information on
specifying color.

HeadLength
scalar value in points

Length of the arrowhead. Specify this property in points (1 point =
1/72 inch). See also HeadWidth.

HeadStyle
select string from list

Style of the arrowhead. Specify this property as one of the strings
from the following table.

2-154

Annotation Arrow Properties

Head Style
String Head

Head Style
String Head

none star4

plain rectangle

ellipse diamond

vback1 rose

vback2
(Default)

hypocycloid

vback3 astroid

cback1 deltoid

cback2

cback3

HeadWidth
scalar value in points

Width of the arrowhead. Specify this property in points (1 point =
1/72 inch). See also HeadLength.

LineStyle
{-} | -- | : | -. | none

2-155

Annotation Arrow Properties

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker at
each point but do not want the points connected with a line (see
the Marker property).

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of the
object with the first two elements of the vector defining the point
x, y in units normalized to the figure (when Units property is
normalized). The third and fourth elements specify the object’s
dx and dy, respectively, in units normalized to the figure.

Units
{normalized} | inches | centimeters | points | pixels

position units. MATLAB uses this property to determine the
units used by the Position property. All positions are measured

2-156

Annotation Arrow Properties

from the lower left corner of the figure window. Normalized units
interpret Position as a fraction of the width and height of the
parent axes. When you resize the axes, MATLAB modifies the
size of the object accordingly. pixels, inches, centimeters, and
points are absolute units (1 point = 1/72 inch).

X
vector [Xbegin Xend]

X-coordinates of the beginning and ending points for line. Specify
this property as a vector of x-axis (horizontal) values that specify
the beginning and ending points of the line, units normalized to
the figure.

Y
vector [Ybegin Yend]

Y-coordinates of the beginning and ending points for line. Specify
this property as a vector of y-axis (vertical) values that specify
the beginning and ending points of the line, units normalized to
the figure.

2-157

Annotation Doublearrow Properties

Purpose Define annotation doublearrow properties

Modifying
Properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Positioning Annotations in
Data Space” in the MATLAB Graphics documentation.

Annotation
Doublearrow
Property
Descriptions

Properties You Can Modify

This section lists the properties you can modify on an annotation
doublearrow object.

Color
ColorSpec

Color of the object. A three-element RGB vector or one of the
MATLAB predefined names, specifying the object’s color.

See the ColorSpec reference page for more information on
specifying color.

Head1Length
scalar value in points

Length of the first arrowhead. Specify this property in points (1
point = 1/72 inch). See also Head1Width.

The first arrowhead is located at the end defined by the point
x(1), y(1). See also the X and Y properties.

Head2Length
scalar value in points

Length of the second arrowhead. Specify this property in points (1
point = 1/72 inch). See also Head1Width.

2-158

Annotation Doublearrow Properties

The first arrowhead is located at the end defined by the point
x(end), y(end). See also the X and Y properties.

Head1Style
select string from list

Style of the first arrowhead. Specify this property as one of the
strings from the following table

Head2Style
select string from list

Style of the second arrowhead. Specify this property as one of the
strings from the following table.

Head Style
String Head

Head Style
String Head

none star4

plain rectangle

ellipse diamond

vback1 rose

vback2
(Default)

hypocycloid

vback3 astroid

cback1 deltoid

2-159

Annotation Doublearrow Properties

Head Style
String Head

Head Style
String Head

cback2

cback3

Head1Width
scalar value in points

Width of the first arrowhead. Specify this property in points (1
point = 1/72 inch). See also Head1Length.

Head2Width
scalar value in points

Width of the second arrowhead. Specify this property in points (1
point = 1/72 inch). See also Head2Length.

LineStyle
{-} | -- | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

2-160

Annotation Doublearrow Properties

You can use LineStyle none when you want to place a marker at
each point but do not want the points connected with a line (see
the Marker property).

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of the
object with the first two elements of the vector defining the point
x, y in units normalized to the figure (when Units property is
normalized). The third and fourth elements specify the object’s
dx and dy, respectively, in units normalized to the figure.

Units
{normalized} | inches | centimeters | points | pixels

position units. MATLAB uses this property to determine the
units used by the Position property. All positions are measured
from the lower left corner of the figure window. Normalized units
interpret Position as a fraction of the width and height of the
parent axes. When you resize the axes, MATLAB modifies the
size of the object accordingly. pixels, inches, centimeters, and
points are absolute units (1 point = 1/72 inch).

X
vector [Xbegin Xend]

X-coordinates of the beginning and ending points for line. Specify
this property as a vector of x-axis (horizontal) values that specify
the beginning and ending points of the line, units normalized to
the figure.

2-161

Annotation Doublearrow Properties

Y
vector [Ybegin Yend]

Y-coordinates of the beginning and ending points for line. Specify
this property as a vector of y-axis (vertical) values that specify
the beginning and ending points of the line, units normalized to
the figure.

2-162

Annotation Ellipse Properties

Purpose Define annotation ellipse properties

Modifying
Properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Positioning Annotations in
Data Space” in the MATLAB Graphics documentation.

Annotation
Ellipse
Property
Descriptions

Properties You Can Modify

This section lists the properties you can modify on an annotation ellipse
object.

EdgeColor
ColorSpec {[0 0 0]} | none |

Color of the object’s edges. A three-element RGB vector or one of
the MATLAB predefined names, specifying the edge color.

See the ColorSpec reference page for more information on
specifying color.

FaceColor
{flat} | none | ColorSpec

Color of filled areas. This property can be any of the following:

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for all
filled areas. See ColorSpec for more information on specifying
color.

• none — Do not draw faces. Note that EdgeColor is drawn
independently of FaceColor

• flat — The color of the filled areas is determined by the
figure colormap. See colormap for information on setting the
colormap.

2-163

Annotation Ellipse Properties

See the ColorSpec reference page for more information on
specifying color.

LineStyle
{-} | -- | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker at
each point but do not want the points connected with a line (see
the Marker property).

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of the
object with the first two elements of the vector defining the point
x, y in units normalized to the figure (when Units property is
normalized). The third and fourth elements specify the object’s
dx and dy, respectively, in units normalized to the figure.

2-164

Annotation Ellipse Properties

Units
{normalized} | inches | centimeters | points | pixels

position units. MATLAB uses this property to determine the
units used by the Position property. All positions are measured
from the lower left corner of the figure window. Normalized units
interpret Position as a fraction of the width and height of the
parent axes. When you resize the axes, MATLAB modifies the
size of the object accordingly. pixels, inches, centimeters, and
points are absolute units (1 point = 1/72 inch).

2-165

Annotation Line Properties

Purpose Define annotation line properties

Modifying
Properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Positioning Annotations in
Data Space” in the MATLAB Graphics documentation.

Annotation
Line
Property
Descriptions

Properties You Can Modify

This section lists the properties you can modify on an annotation line
object.

Color
ColorSpec

Color of the object. A three-element RGB vector or one of the
MATLAB predefined names, specifying the object’s color.

See the ColorSpec reference page for more information on
specifying color.

LineStyle
{-} | -- | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

2-166

Annotation Line Properties

Specifier
String Line Style

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker at
each point but do not want the points connected with a line (see
the Marker property).

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of the
object with the first two elements of the vector defining the point
x, y in units normalized to the figure (when Units property is
normalized). The third and fourth elements specify the object’s
dx and dy, respectively, in units normalized to the figure.

Units
{normalized} | inches | centimeters | points | pixels

position units. MATLAB uses this property to determine the
units used by the Position property. All positions are measured
from the lower left corner of the figure window. Normalized units
interpret Position as a fraction of the width and height of the
parent axes. When you resize the axes, MATLAB modifies the
size of the object accordingly. pixels, inches, centimeters, and
points are absolute units (1 point = 1/72 inch).

2-167

Annotation Line Properties

X
vector [Xbegin Xend]

X-coordinates of the beginning and ending points for line. Specify
this property as a vector of x-axis (horizontal) values that specify
the beginning and ending points of the line, units normalized to
the figure.

Y
vector [Ybegin Yend]

Y-coordinates of the beginning and ending points for line. Specify
this property as a vector of y-axis (vertical) values that specify
the beginning and ending points of the line, units normalized to
the figure.

2-168

Annotation Rectangle Properties

Purpose Define annotation rectangle properties

Modifying
Properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Positioning Annotations in
Data Space” in the MATLAB Graphics documentation.

Annotation
Rectangle
Property
Descriptions

Properties You Can Modify

This section lists the properties you can modify on an annotation
rectangle object.

EdgeColor
ColorSpec {[0 0 0]} | none |

Color of the object’s edges. A three-element RGB vector or one of
the MATLAB predefined names, specifying the edge color.

See the ColorSpec reference page for more information on
specifying color.

FaceAlpha
Scalar alpha value in range [0 1]

Transparency of object background. This property defines the
degree to which the object’s background color is transparent. A
value of 1 (the default) makes to color opaque, a value of 0 makes
the background completely transparent (i.e., invisible). The
default FaceAlpha is 1.

FaceColor
{flat} | none | ColorSpec

Color of filled areas. This property can be any of the following:

2-169

Annotation Rectangle Properties

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for all
filled areas. See ColorSpec for more information on specifying
color.

• none — Do not draw faces. Note that EdgeColor is drawn
independently of FaceColor

• flat — The color of the filled areas is determined by the
figure colormap. See colormap for information on setting the
colormap.

See the ColorSpec reference page for more information on
specifying color.

LineStyle
{-} | -- | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker at
each point but do not want the points connected with a line (see
the Marker property).

LineWidth
scalar

2-170

Annotation Rectangle Properties

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of the
object with the first two elements of the vector defining the point
x, y in units normalized to the figure (when Units property is
normalized). The third and fourth elements specify the object’s
dx and dy, respectively, in units normalized to the figure.

Units
{normalized} | inches | centimeters | points | pixels

position units. MATLAB uses this property to determine the
units used by the Position property. All positions are measured
from the lower left corner of the figure window. Normalized units
interpret Position as a fraction of the width and height of the
parent axes. When you resize the axes, MATLAB modifies the
size of the object accordingly. pixels, inches, centimeters, and
points are absolute units (1 point = 1/72 inch).

2-171

Annotation Textarrow Properties

Purpose Define annotation textarrow properties

Modifying
Properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Positioning Annotations in
Data Space” in the MATLAB Graphics documentation.

Annotation
Textarrow
Property
Descriptions

Properties You Can Modify

This section lists the properties you can modify on an annotation
textarrow object.

Color
ColorSpec Default: [0 0 0]

Color of the arrow, text and text border. A three-element RGB
vector or one of the MATLAB predefined names, specifying the
color of the arrow, the color of the text (TextColor property), and
the rectangle enclosing the text (TextEdgeColor property).

Setting the Color property also sets the TextColor and
TextEdgeColor properties to the same color. However, if the
value of the TextEdgeColor is none, it remains none and the text
box is not displayed. You can set TextColor or TextEdgeColor
independently without affecting other properties.

For example, if you want to create a textarrow with a red arrow
and black text in a black box, you must

1 Set the Color property to red — set(h,'Color','r')

2 Set the TextColor to black — set(h,'TextColor','k')

3 Set the TextEdgeColor to black .—
set(h,'TextEdgeColor','k')

2-172

Annotation Textarrow Properties

If you do not want display the text box, set the TextEdgeColor
to none.

See the ColorSpec reference page for more information on
specifying color.

FontAngle
{normal} | italic | oblique

Character slant. MATLAB uses this property to select a font from
those available on your particular system. Generally, setting this
property to italic or oblique selects a slanted font.

FontName
A name, such as Helvetica

Font family. A string specifying the name of the font to use for the
text. To display and print properly, this font must be supported on
your system. The default font is Helvetica.

FontSize
size in points

Approximate size of text characters. A value specifying the font
size to use in points. The default size is 10 (1 point = 1/72 inch).

FontUnits
{points} | normalized | inches | centimeters | pixels

Font size units. MATLAB uses this property to determine the
units used by the FontSize property. Normalized units interpret
FontSize as a fraction of the height of the parent axes. When
you resize the axes, MATLAB modifies the screen FontSize
accordingly. pixels, inches, centimeters, and points are
absolute units (1 point = 1/72 inch).

FontWeight
light | {normal} | demi | bold

2-173

Annotation Textarrow Properties

Weight of text characters. MATLAB uses this property to select a
font from those available on your system. Generally, setting this
property to bold or demi causes MATLAB to use a bold font.

HeadLength
scalar value in points

Length of the arrowhead. Specify this property in points (1 point =
1/72 inch). See also HeadWidth.

HeadStyle
select string from list

Style of the arrowhead. Specify this property as one of the strings
from the following table.

Head Style
String Head

Head Style
String Head

none star4

plain rectangle

ellipse diamond

vback1 rose

vback2
(Default)

hypocycloid

vback3 astroid

cback1 deltoid

2-174

Annotation Textarrow Properties

Head Style
String Head

Head Style
String Head

cback2

cback3

HeadWidth
scalar value in points

Width of the arrowhead. Specify this property in points (1 point =
1/72 inch). See also HeadLength.

HorizontalAlignment
{left} | center | right

Horizontal alignment of text. This property specifies the
horizontal justification of the text string. It determines where
MATLAB places the string with regard to the point specified
by the Position property. The following picture illustrates the
alignment options.

See the Extent property for related information.

Interpreter
latex | {tex} | none

2-175

Annotation Textarrow Properties

Interpret TEX instructions. This property controls whether
MATLAB interprets certain characters in the String property
as TEX instructions (default) or displays all characters literally.
The options are:

• latex — Supports the full LATEX markup language.

• tex — Supports a subset of plain TEX markup language. See
the String property for a list of supported TEX instructions.

• none — Displays literal characters.

LineStyle
{-} | -- | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker at
each point but do not want the points connected with a line (see
the Marker property).

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

2-176

Annotation Textarrow Properties

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of the
object with the first two elements of the vector defining the point
x, y in units normalized to the figure (when Units property is
normalized). The third and fourth elements specify the object’s
dx and dy, respectively, in units normalized to the figure.

String
string

The text string. Specify this property as a quoted string for
single-line strings, or as a cell array of strings, or a padded string
matrix for multiline strings. MATLAB displays this string at the
specified location. Vertical slash characters are not interpreted
as line breaks in text strings, and are drawn as part of the text
string. See Mathematical Symbols, Greek Letters, and TeX
Characters for an example.

When the text Interpreter property is set to Tex (the default),
you can use a subset of TeX commands embedded in the
string to produce special characters such as Greek letters and
mathematical symbols. The following table lists these characters
and the character sequences used to define them.

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\alpha α \upsilon υ \sim ~

\beta β \phi \leq ≤

\gamma γ \chi χ \infty ∞

\delta δ \psi ψ \clubsuit ♣

\epsilon ε \omega ω \diamondsuit ♦

\zeta ζ \Gamma \heartsuit ♥

2-177

Annotation Textarrow Properties

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\eta η \Delta \spadesuit ♠

\theta \Theta \leftrightarrow ↔

\vartheta \Lambda \leftarrow →

\iota ι \Xi \uparrow ↑

\kappa κ \Pi \rightarrow ↔

\lambda λ \Sigma \downarrow ↓

\mu µ \Upsilon \circ º

\nu ν \Phi \pm ±

\xi ξ \Psi \geq ≥

\pi π \Omega \propto ∝

\rho ρ \forall ∀ \partial ∂

\sigma σ \exists ∃ \bullet •
\varsigma ς \ni ∋ \div ÷

\tau τ \cong \neq ≠

\equiv ≡ \approx \aleph

\Im ℑ \Re ℜ \wp ℘

\otimes ⊗ \oplus ⊕ \oslash ∅

\cap ∩ \cup ∪ \supseteq ⊇

\supset ⊃ \subseteq ⊆ \subset ⊂

\int \in \o ο

\rfloor � \lceil � \nabla ∇

\lfloor � \cdot · \ldots ...

2-178

Annotation Textarrow Properties

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\perp ⊥ \neg ¬ \prime ´

\wedge ∧ \times x \0 ∅

\rceil � \surd √ \mid |

\vee ∨ \varpi ϖ \copyright ©

\langle ∠ \rangle ∠

You can also specify stream modifiers that control font type and
color. The first four modifiers are mutually exclusive. However,
you can use \fontname in combination with one of the other
modifiers:

TextBackgroundColor
ColorSpec Default: none

Color of text background rectangle. A three-element RGB vector or
one of the MATLAB predefined names, specifying the arrow color.

See the ColorSpec reference page for more information on
specifying color.

TextColor
ColorSpec Default: [0 0 0]

Color of text. A three-element RGB vector or one of the MATLAB
predefined names, specifying the arrow color.

See the ColorSpec reference page for more information on
specifying color. Setting the Color property also sets this property.

TextEdgeColor
ColorSpec or none Default: none

2-179

Annotation Textarrow Properties

Color of edge of text rectangle. A three-element RGB vector or
one of the MATLAB predefined names, specifying the color of the
rectangle that encloses the text.

See the ColorSpec reference page for more information on
specifying color. Setting the Color property also sets this property.

TextLineWidth
width in points

The width of the text rectangle edge. Specify this value in points (1
point = 1/72 inch). The default TextLineWidth is 0.5 points.

TextMargin
dimension in pixels default: 5

Space around text. Specify a value in pixels that defines the space
around the text string, but within the rectangle.

TextRotation
rotation angle in degrees (default = 0)

Text orientation. This property determines the orientation of the
text string. Specify values of rotation in degrees (positive angles
cause counterclockwise rotation). Angles are absolute and not
relative to previous rotations; a rotation of 0 degrees is always
horizontal.

Units
{normalized} | inches | centimeters | points | pixels

position units. MATLAB uses this property to determine the
units used by the Position property. All positions are measured
from the lower left corner of the figure window. Normalized units
interpret Position as a fraction of the width and height of the
parent axes. When you resize the axes, MATLAB modifies the
size of the object accordingly. pixels, inches, centimeters, and
points are absolute units (1 point = 1/72 inch).

2-180

Annotation Textarrow Properties

VerticalAlignment
top | cap | {middle} | baseline |
bottom

Vertical alignment of text. This property specifies the vertical
justification of the text string. It determines where MATLAB
places the string with regard to the value of the Position
property. The possible values mean

• top — Place the top of the string’ s Extent rectangle at the
specified y-position.

• cap — Place the string so that the top of a capital letter is at
the specified y-position.

• middle — Place the middle of the string at the specified
y-position.

• baseline — Place font baseline at the specified y-position.

• bottom — Place the bottom of the string’s Extent rectangle at
the specified y-position.

The following picture illustrates the alignment options.

2-181

Annotation Textarrow Properties

X
vector [Xbegin Xend]

X-coordinates of the beginning and ending points for line. Specify
this property as a vector of x-axis (horizontal) values that specify
the beginning and ending points of the line, units normalized to
the figure.

Y
vector [Ybegin Yend]

Y-coordinates of the beginning and ending points for line. Specify
this property as a vector of y-axis (vertical) values that specify
the beginning and ending points of the line, units normalized to
the figure.

2-182

Annotation Textbox Properties

Purpose Define annotation textbox properties

Modifying
Properties

You can set and query annotation object properties using the set
and get functions and the Property Editor (displayed with the
propertyeditor command).

Use the annotation function to create annotation objects and obtain
their handles. For an example of its use, see “Positioning Annotations in
Data Space” in the MATLAB Graphics documentation.

Annotation
Textbox
Property
Descriptions

Properties You Can Modify

This section lists the properties you can modify on an annotation
textbox object.

BackgroundColor
ColorSpec Default: none

Color of text background rectangle. A three-element RGB vector or
one of the MATLAB predefined names, specifying the arrow color.

See the ColorSpec reference page for more information on
specifying color.

Color
ColorSpec Default: [0 0 0]

Color of text. A three-element RGB vector or one of the MATLAB
predefined names, specifying the arrow color.

See the ColorSpec reference page for more information on
specifying color. Setting the Color property also sets this property.

EdgeColor
ColorSpec or none Default: none

Color of edge of text rectangle. A three-element RGB vector or
one of the MATLAB predefined names, specifying the color of the
rectangle that encloses the text.

2-183

Annotation Textbox Properties

See the ColorSpec reference page for more information on
specifying color. Setting the Color property also sets this property.

FaceAlpha
Scalar alpha value in range [0 1]

Transparency of object background. This property defines the
degree to which the object’s background color is transparent. A
value of 1 (the default) makes to color opaque, a value of 0 makes
the background completely transparent (i.e., invisible). The
default FaceAlpha is 1.

FitBoxToText
on | off

Automatically adjust text box width and height to fit text. When
this property is on (the default), MATLAB automatically resizes
textboxes to fit the x-extents and y-extents of the text strings they
contain. When it is off, text strings are wrapped to fit the width
of their textboxes, which can cause them to extend below the
bottom of the box.

If you resize a textbox in plot edit mode or change the width or
height of its position property directly, MATLAB sets the object’s
FitBoxToText property to 'off'. You can toggle this property
with set, with the Property Inspector, or in plot edit mode via
the object’s context menu.

FitHeightToText
on | off

Automatically adjust text box width and height to fit text.
MATLAB automatically wraps text strings to fit the width of the
text box. However, if the text string is long enough, it can extend
beyond the bottom of the text box.

2-184

Annotation Textbox Properties

Note The FitHeightToText property is obsolete. To control line
wrapping behavior in textboxes, use fitBoxToText instead.

When you set this mode to on, MATLAB automatically adjusts the
height of the text box to accommodate the string, doing so as you
create or edit the string.

The fit-size-to-text behavior turns off if you resize the text box
programmatically or manually in plot edit mode.

2-185

Annotation Textbox Properties

However, if you resize the text box from any other handles, the
position you set is honored without regard to how the text fits
the box.

FontAngle
{normal} | italic | oblique

Character slant. MATLAB uses this property to select a font from
those available on your particular system. Generally, setting this
property to italic or oblique selects a slanted font.

FontName
A name, such as Helvetica

Font family. A string specifying the name of the font to use for the
text. To display and print properly, this font must be supported on
your system. The default font is Helvetica.

2-186

Annotation Textbox Properties

FontSize
size in points

Approximate size of text characters. A value specifying the font
size to use in points. The default size is 10 (1 point = 1/72 inch).

FontUnits
{points} | normalized | inches | centimeters | pixels

Font size units. MATLAB uses this property to determine the
units used by the FontSize property. Normalized units interpret
FontSize as a fraction of the height of the parent axes. When
you resize the axes, MATLAB modifies the screen FontSize
accordingly. pixels, inches, centimeters, and points are
absolute units (1 point = 1/72 inch).

FontWeight
light | {normal} | demi | bold

Weight of text characters. MATLAB uses this property to select a
font from those available on your system. Generally, setting this
property to bold or demi causes MATLAB to use a bold font.

HorizontalAlignment
{left} | center | right

Horizontal alignment of text. This property specifies the
horizontal justification of the text string. It determines where
MATLAB places the string with regard to the point specified
by the Position property. The following picture illustrates the
alignment options.

2-187

Annotation Textbox Properties

See the Extent property for related information.

Interpreter
latex | {tex} | none

Interpret TEX instructions. This property controls whether
MATLAB interprets certain characters in the String property
as TEX instructions (default) or displays all characters literally.
The options are:

• latex — Supports the full LATEX markup language.

• tex — Supports a subset of plain TEX markup language. See
the String property for a list of supported TEX instructions.

• none — Displays literal characters.

LineStyle
{-} | -- | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker at
each point but do not want the points connected with a line (see
the Marker property).

LineWidth
scalar

2-188

Annotation Textbox Properties

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Margin
dimension in pixels default: 5

Space around text. Specify a value in pixels that defines the space
around the text string, but within the rectangle.

Position
four-element vector [x, y, width, height]

Size and location of the object. Specify the lower left corner of the
object with the first two elements of the vector defining the point
x, y in units normalized to the figure (when Units property is
normalized). The third and fourth elements specify the object’s
dx and dy, respectively, in units normalized to the figure.

String
string

The text string. Specify this property as a quoted string for
single-line strings, or as a cell array of strings, or a padded string
matrix for multiline strings. MATLAB displays this string at the
specified location. Vertical slash characters are not interpreted
as line breaks in text strings, and are drawn as part of the text
string. See Mathematical Symbols, Greek Letters, and TeX
Characters for an example.

When the text Interpreter property is set to Tex (the default),
you can use a subset of TeX commands embedded in the
string to produce special characters such as Greek letters and
mathematical symbols. The following table lists these characters
and the character sequences used to define them.

2-189

Annotation Textbox Properties

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\alpha α \upsilon υ \sim ~

\beta β \phi \leq ≤

\gamma γ \chi χ \infty ∞

\delta δ \psi ψ \clubsuit ♣

\epsilon ε \omega ω \diamondsuit ♦

\zeta ζ \Gamma \heartsuit ♥

\eta η \Delta \spadesuit ♠

\theta \Theta \leftrightarrow ↔

\vartheta \Lambda \leftarrow →

\iota ι \Xi \uparrow ↑

\kappa κ \Pi \rightarrow ↔

\lambda λ \Sigma \downarrow ↓

\mu µ \Upsilon \circ º

\nu ν \Phi \pm ±

\xi ξ \Psi \geq ≥

\pi π \Omega \propto ∝

\rho ρ \forall ∀ \partial ∂

\sigma σ \exists ∃ \bullet •
\varsigma ς \ni ∋ \div ÷

\tau τ \cong \neq ≠

\equiv ≡ \approx \aleph

\Im ℑ \Re ℜ \wp ℘

2-190

Annotation Textbox Properties

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\otimes ⊗ \oplus ⊕ \oslash ∅

\cap ∩ \cup ∪ \supseteq ⊇

\supset ⊃ \subseteq ⊆ \subset ⊂

\int \in \o ο

\rfloor � \lceil � \nabla ∇

\lfloor � \cdot · \ldots ...

\perp ⊥ \neg ¬ \prime ´

\wedge ∧ \times x \0 ∅

\rceil � \surd √ \mid |

\vee ∨ \varpi ϖ \copyright ©

\langle ∠ \rangle ∠

You can also specify stream modifiers that control font type and
color. The first four modifiers are mutually exclusive. However,
you can use \fontname in combination with one of the other
modifiers:

Units
{normalized} | inches | centimeters | points | pixels

position units. MATLAB uses this property to determine the
units used by the Position property. All positions are measured
from the lower left corner of the figure window. Normalized units
interpret Position as a fraction of the width and height of the
parent axes. When you resize the axes, MATLAB modifies the
size of the object accordingly. pixels, inches, centimeters, and
points are absolute units (1 point = 1/72 inch).

2-191

Annotation Textbox Properties

VerticalAlignment
top | cap | {middle} | baseline |
bottom

Vertical alignment of text. This property specifies the vertical
justification of the text string. It determines where MATLAB
places the string with regard to the value of the Position
property. The possible values mean

• top — Place the top of the string’ s Extent rectangle at the
specified y-position.

• cap — Place the string so that the top of a capital letter is at
the specified y-position.

• middle — Place the middle of the string at the specified
y-position.

• baseline — Place font baseline at the specified y-position.

• bottom — Place the bottom of the string’s Extent rectangle at
the specified y-position.

The following picture illustrates the alignment options.

2-192

ans

Purpose Most recent answer

Syntax ans

Description MATLAB creates the ans variable automatically when you specify no
output argument.

Examples The statement

2+2

is the same as

ans = 2+2

See Also display

2-193

any

Purpose Determine whether any array elements are nonzero

Syntax B = any(A)
B = any(A,dim)

Description B = any(A) tests whether any of the elements along various dimensions
of an array is a nonzero number or is logical 1 (true). any ignores
entries that are NaN (Not a Number).

If A is a vector, any(A) returns logical 1 (true) if any of the elements
of A is a nonzero number or is logical 1 (true), and returns logical 0
(false) if all the elements are zero.

If A is a matrix, any(A) treats the columns of A as vectors, returning a
row vector of logical 1’s and 0’s.

If A is a multidimensional array, any(A) treats the values along the
first nonsingleton dimension as vectors, returning a logical condition
for each vector.

B = any(A,dim) tests along the dimension of A specified by scalar dim.

Examples Example 1 – Reducing a Logical Vector to a Scalar Condition

Given

A = [0.53 0.67 0.01 0.38 0.07 0.42 0.69]

then B = (A < 0.5) returns logical 1 (true) only where A is less than
one half:

0 0 1 1 1 1 0

2-194

any

The any function reduces such a vector of logical conditions to a single
condition. In this case, any(B) yields logical 1.

This makes any particularly useful in if statements:

if any(A < 0.5)do something
end

where code is executed depending on a single condition, not a vector
of possibly conflicting conditions.

Example 2– Reducing a Logical Matrix to a Scalar Condition

Applying the any function twice to a matrix, as in any(any(A)), always
reduces it to a scalar condition.

any(any(eye(3)))
ans =

1

Example 3 – Testing Arrays of Any Dimension

You can use the following type of statement on an array of any
dimensions. This example tests a 3-D array to see if any of its elements
are greater than 3:

x = rand(3,7,5) * 5;

any(x(:) > 3)
ans =

1

or less than zero:

any(x(:) < 0)
ans =

0

See Also all, logical operators (elementwise and short-circuit), relational
operators, colon

2-195

any

Other functions that collapse an array’s dimensions include max, mean,
median, min, prod, std, sum, and trapz.

2-196

area

Purpose Filled area 2-D plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax area(Y)
area(X,Y)
area(...,basevalue)
area(...,'PropertyName',PropertyValue,...)
area(axes_handle,...)
h = area(...)
hpatches = area('v6',...)

Description An area graph displays elements in Y as one or more curves and fills the
area beneath each curve. When Y is a matrix, the curves are stacked
showing the relative contribution of each row element to the total height
of the curve at each x interval.

area(Y) plots the vector Y or the sum of each column in matrix Y. The
x-axis automatically scales to 1:size(Y,1).

area(X,Y) For vectors X and Y, area(X,Y) is the same as plot(X,Y)
except that the area between 0 and Y is filled. When Y is a matrix,
area(X,Y) plots the columns of Y as filled areas. For each X, the net
result is the sum of corresponding values from the columns of Y.

If X is a vector, length(X) must equal length(Y). If X is a matrix,
size(X) must equal size(Y).

2-197

area

area(...,basevalue) specifies the base value for the area fill.
The default basevalue is 0. See the BaseValue property for more
information.

area(...,'PropertyName',PropertyValue,...) specifies property
name and property value pairs for the patch graphics object created
by area.

area(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = area(...) returns handles of areaseries graphics objects.

Backward-Compatible Version

hpatches = area('v6',...) returns the handles of patch objects
instead of areaseries objects for compatibility with MATLAB 6.5 and
earlier.

Note The v6 option enables users of Version 7.x of MATLAB to create
FIG-files that previous versions can open. It is obsolete and will be
removed in a future version of MATLAB.

See Plot Objects and Backward Compatibility for more information.

Areaseries
Objects

Creating an area graph of an m-by-n matrix creates n areaseries objects
(i.e., one per column), whereas a 1-by-n vector creates one area object.

Some areaseries object properties that you set on an individual
areaseries object set the values for all areaseries objects in the graph.
See the property descriptions for information on specific properties.

Examples Stacked Area Graph

This example plots the data in the variable Y as an area graph. Each
subsequent column of Y is stacked on top of the previous data. The figure
colormap controls the coloring of the individual areas. You can explicitly
set the color of an area using the EdgeColor and FaceColor properties.

2-198

area

Y = [1, 5, 3;
3, 2, 7;
1, 5, 3;
2, 6, 1];

area(Y)
grid on
colormap summer
set(gca,'Layer','top')
title 'Stacked Area Plot'

Adjusting the Base Value

The area function uses a y-axis value of 0 as the base of the filled areas.
You can change this value by setting the area BaseValue property. For
example, negate one of the values of Y from the previous example and
replot the data.

2-199

area

Y(3,1) = -1; % Was 1
h = area(Y);
set(gca,'Layer','top')
grid on
colormap summer

The area graph now looks like this:

Adjusting the BaseValue property improves the appearance of the
graph:

set(h,'BaseValue',-2)

Setting the BaseValue property on one areaseries object sets the values
of all objects.

2-200

area

Specifying Colors and Line Styles

You can specify the colors of the filled areas and the type of lines used to
separate them.

h = area(Y,-2); % Set BaseValue via argument
set(h(1),'FaceColor',[.5 0 0])
set(h(2),'FaceColor',[.7 0 0])
set(h(3),'FaceColor',[1 0 0])
set(h,'LineStyle',':','LineWidth',2) % Set
all to same value

2-201

area

See Also bar, plot, sort

“Area, Bar, and Pie Plots” on page 1-88 for related functions

“Area Graphs” for more examples

Areaseries Properties for property descriptions

2-202

Areaseries Properties

Purpose Define areaseries properties

Modifying
Properties

You can set and query graphics object properties using the set and get
commands or with the property editor (propertyeditor).

Note that you cannot define default properties for areaseries objects.

See “Plot Objects” for more information on areaseries objects.

Areaseries
Property
Descriptions

This section provides a description of properties. Curly braces { } enclose
default values.

Annotation
hg.Annotation object Read Only

Control the display of areaseries objects in legends. The
Annotation property enables you to specify whether this
areaseries object is represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the areaseries
object is displayed in a figure legend:

IconDisplayStyle
Value

Purpose

on Include the areaseries object in a legend as
one entry, but not its children objects

off Do not include the areaseries or its children
in a legend (default)

children Include only the children of the areaseries as
separate entries in the legend

2-203

Areaseries Properties

Setting the IconDisplayStyle property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation','LegendInformation');
set(hLegendEntry,'IconDisplayStyle','children')

Using the IconDisplayStyle property

See “Controlling Legends” for more information and examples.

BaseValue
double: y-axis value

Value where filled area base is drawn. Specify the value along the
y-axis at which MATLAB draws the baseline of the bottommost
filled area.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BusyAction
cancel | {queue}

2-204

Areaseries Properties

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function
executing, callbacks invoked subsequently always attempt to
interrupt it.

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs
at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

• cancel — Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
string or function handle

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is over this object, but
not over another graphics object. See the HitTestArea property
for information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be

• A string that is a valid MATLAB expression

• The name of an M-file

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

2-205

Areaseries Properties

See “Function Handle Callbacks” for information on how to use
function handles to define the callbacks.

Children
array of graphics object handles

Children of this object. The handle of a patch object that is the
child of this object (whether visible or not).

Note that if a child object’s HandleVisibility property is set
to callback or off, its handle does not show up in this object’s
Children property unless you set the root ShowHiddenHandles
property to on:

set(0,'ShowHiddenHandles','on')

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs can be
displayed outside the axes plot box. This can occur if you create a
plot object, set hold to on, freeze axis scaling (axis manual), and
then create a larger plot object.

CreateFcn
string or function handle

Callback routine executed during object creation. This property
defines a callback that executes when MATLAB creates an object.
You must specify the callback during the creation of the object.
For example,

area(y,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function.

2-206

Areaseries Properties

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
string or function handle

Callback executed during object deletion. A callback that executes
when this object is deleted (e.g., this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

DisplayName
string (default is empty string)

String used by legend for this areaseries object. The legend
function uses the string defined by the DisplayName property to
label this areaseries object in the legend.

2-207

Areaseries Properties

• If you specify string arguments with the legend function,
DisplayName is set to this areaseries object’s corresponding
string and that string is used for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

See “Controlling Legends” for more examples.

EdgeColor
{[0 0 0]} | none | ColorSpec

Color of line that separates filled areas. You can set the color of
the edges of filled areas to a three-element RGB vector or one of
the MATLAB predefined names, including the string none. The
default edge color is black. See ColorSpec for more information
on specifying color.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase objects and their children. Alternative erase
modes are useful for creating animated sequences, where control
of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

2-208

Areaseries Properties

• normal — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none — Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing
with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of
the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color
if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

• background — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other
graphics objects that are behind the erased object, but the
erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB can mathematically combine
layers of colors (e.g., performing an XOR on a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

2-209

Areaseries Properties

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

FaceColor
{flat} | none | ColorSpec

Color of filled areas. This property can be any of the following:

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for all
filled areas. See ColorSpec for more information on specifying
color.

• none — Do not draw faces. Note that EdgeColor is drawn
independently of FaceColor

• flat — The color of the filled areas is determined by the
figure colormap. See colormap for information on setting the
colormap.

See the ColorSpec reference page for more information on
specifying color.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally accessing
objects that you need to protect for some reason.

• on — Handles are always visible when HandleVisibility is on.

• callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions

2-210

Areaseries Properties

invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

• off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity

2-211

Areaseries Properties

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. HitTest determines whether this object
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the objects that compose the area graph. If HitTest
is off, clicking this object selects the object below it (which is
usually the axes containing it).

HitTestArea
on | {off}

Select areaseries object on filled area or extent of graph. This
property enables you to select areaseries objects in two ways:

• Select by clicking bars (default).

• Select by clicking anywhere in the extent of the area plot.

When HitTestArea is off, you must click the bars to select the
bar object. When HitTestArea is on, you can select the bar
object by clicking anywhere within the extent of the bar graph
(i.e., anywhere within a rectangle that encloses all the bars).

Interruptible
{on} | off

2-212

Areaseries Properties

Callback routine interruption mode. The Interruptible property
controls whether an object’s callback can be interrupted by
callbacks invoked subsequently.

Only callbacks defined for the ButtonDownFcn property are
affected by the Interruptible property. MATLAB checks for
events that can interrupt a callback only when it encounters a
drawnow, figure, getframe, or pause command in the routine.
See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback
to interrupt callback routines originating from a bar property.
Note that MATLAB does not save the state of variables or the
display (e.g., the handle returned by the gca or gcf command)
when an interruption occurs.

LineStyle
{-} | -- | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker at
each point but do not want the points connected with a line (see
the Marker property).

2-213

Areaseries Properties

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of this object. This property contains the handle of the
object’s parent. The parent is normally the axes, hggroup, or
hgtransform object that contains the object.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection "handles" at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing four edge handles and four corner handles. When
SelectionHighlight is off, MATLAB does not draw the handles
except when in plot edit mode and objects are selected manually.

Tag
string

2-214

Areaseries Properties

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callbacks.
You can define Tag as any string.

For example, you might create an areaseries object and set the
Tag property.

t = area(Y,'Tag','area1')

When you want to access objects of a given type, you can use
findobj to find the object’s handle. The following statement
changes the FaceColor property of the object whose Tag is area1.

set(findobj('Tag','area1'),'FaceColor','red')

Type
string (read only)

Type of graphics object. This property contains a string that
identifies the class of the graphics object. For areaseries objects,
Type is ’hggroup’.

The following statement finds all the hggroup objects in the
current axes.

t = findobj(gca,'Type','hggroup');

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with this object. Assign this property
the handle of a uicontextmenu object created in the object’s
parent figure. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever
you right-click over the object.

2-215

Areaseries Properties

UserData
array

User-specified data. This property can be any data you want to
associate with this object (including cell arrays and structures).
The object does not set values for this property, but you can access
it using the set and get functions.

Visible
{on} | off

Visibility of this object and its children. By default, a new object’s
visibility is on. This means all children of the object are visible
unless the child object’s Visible property is set to off. Setting an
object’s Visible property to off prevents the object from being
displayed. However, the object still exists and you can set and
query its properties.

XData
vector or matrix

The x-axis values for a graph. The x-axis values for graphs
are specified by the X input argument. If XData is a vector,
length(XData) must equal length(YData) and must be
monotonic. If XData is a matrix, size(XData) must equal
size(YData) and each column must be monotonic.

You can use XData to define meaningful coordinates for an
underlying surface whose topography is being mapped. See
“Setting the Axis Limits on Contour Plots” on page 2-640 for more
information.

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify
XData (by setting the XData property or specifying the x input

2-216

Areaseries Properties

argument), MATLAB sets this property to manual and uses the
specified values to label the x-axis.

If you set XDataMode to auto after having specified XData,
MATLAB resets the x-axis ticks to 1:size(YData,1) or to the
column indices of the ZData, overwriting any previous values for
XData.

XDataSource
string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change XData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
vector or matrix

2-217

Areaseries Properties

Area plot data. YData contains the data plotted as filled areas (the
Y input argument). If YData is a vector, area creates a single filled
area whose upper boundary is defined by the elements of YData.
If YData is a matrix, area creates one filled area per column,
stacking each on the previous plot.

The input argument Y in the area function calling syntax assigns
values to YData.

YDataSource
string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change YData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

2-218

arrayfun

Purpose Apply function to each element of array

Syntax A = arrayfun(fun, S)
A = arrayfun(fun, S, T, ...)
[A, B, ...] = arrayfun(fun, S, ...)
[A, ...] = arrayfun(fun, S, ..., 'param1', value1, ...)

Description A = arrayfun(fun, S) applies the function specified by fun to each
element of array S, and returns the results in array A. The value A
returned by arrayfun is the same size as S, and the (I,J,...)th
element of A is equal to fun(S(I,J,...)). The first input argument
fun is a function handle to a function that takes one input argument
and returns a scalar value. fun must return values of the same class
each time it is called.

If fun is bound to more than one built-in or M-file (that is, if it
represents a set of overloaded functions), then the class of the values
that arrayfun actually provides as input arguments to fun determines
which functions are executed.

The order in which arrayfun computes elements of A is not specified
and should not be relied upon.

A = arrayfun(fun, S, T, ...) evaluates fun using elements of the
arrays S, T, ... as input arguments. The (I,J,...)th element of A is
equal to fun(S(I,J,...), T(I,J,...), ...). All input arguments
must be of the same size.

[A, B, ...] = arrayfun(fun, S, ...) evaluates fun, which is a
function handle to a function that returns multiple outputs, and returns
arrays A, B, ..., each corresponding to one of the output arguments
of fun. arrayfun calls fun each time with as many outputs as there
are in the call to arrayfun. fun can return output arguments having
different classes, but the class of each output must be the same each
time fun is called.

[A, ...] = arrayfun(fun, S, ..., 'param1', value1, ...)
enables you to specify optional parameter name and value pairs.

2-219

arrayfun

Parameters recognized by arrayfun are shown below. Enclose each
parameter name with single quotes.

Parameter Name Parameter Value

UniformOutput A logical 1 (true) or 0 (false), indicating
whether or not the outputs of fun can
be returned without encapsulation in a
cell array.

If true (the default), fun must return
scalar values that can be concatenated
into an array. These values can also be a
cell array. If false, arrayfun returns a
cell array (or multiple cell arrays), where
the (I,J,...)th cell contains the value
fun(S(I,J,...), ...).

ErrorHandler A function handle, specifying the
function that arrayfun is to call if the
call to fun fails. If an error handler is not
specified, arrayfun rethrows the error
from the call to fun.

Remarks MATLAB provides two functions that are similar to arrayfun; these
are structfun and cellfun. With structfun, you can apply a given
function to all fields of one or more structures. With cellfun, you apply
the function to all cells of one or more cell arrays.

Examples Example 1 — Operating on a Single Input.

Create a 1-by-15 structure array with fields f1 and f2, each field
containing an array of a different size. Make each f1 field be unequal to
the f2 field at that same array index:

for k=1:15
s(k).f1 = rand(k+3,k+7) * 10;
s(k).f2 = rand(k+3,k+7) * 10;

2-220

arrayfun

end

Set three f1 fields to be equal to the f2 field at that array index:

s(3).f2 = s(3).f1;
s(9).f2 = s(9).f1;
s(12).f2 = s(12).f1;

Use arrayfun to compare the fields at each array index. This compares
the array of s(1).f1 with that of s(1).f2, the array of s(2).f1 with
that of s(2).f2, and so on through the entire structure array.

The first argument in the call to arrayfun is an anonymous function.
Anonymous functions return a function handle, which is the required
first input to arrayfun:

z = arrayfun(@(x)isequal(x.f1, x.f2), s)
z =

0 0 1 0 0 0 0 0 1 0 0 1 0 0 0

Example 2 — Operating on Multiple Inputs.

This example performs the same array comparison as in the previous
example, except that it compares the some field of more than one
structure array rather than different fields of the same structure array.
This shows how you can use more than one array input with arrayfun.

Make copies of array s, created in the last example, to arrays t and u.

t = s; u = s;

Make one element of structure array t unequal to the same element of
s. Do the same with structure array u:

t(4).f1(12)=0;
u(14).f1(6)=0;

Compare field f1 of the three arrays s, t, and u:

z = arrayfun(@(a,b,c)isequal(a.f1, b.f1, c.f1), s, t, u)
z =

2-221

arrayfun

1 1 1 0 1 1 1 1 1 1 1 1 1 0 1

Example 3 — Generating Nonuniform Output.

Generate a 1-by-3 structure array s having random matrices in field f1:

rand('state', 0);
s(1).f1 = rand(7,4) * 10;
s(2).f1 = rand(3,7) * 10;
s(3).f1 = rand(5,5) * 10;

Find the maximum for each f1 vector. Because the output is nonscalar,
specify the UniformOutput option as false:

sMax = arrayfun(@(x) max(x.f1), s, 'UniformOutput', false)
sMax =

[1x4 double] [1x7 double] [1x5 double]

sMax{:}
ans =

9.5013 9.2181 9.3547 8.1317
ans =

2.7219 9.3181 8.4622 6.7214 8.3812 8.318 7.0947
ans =

6.8222 8.6001 8.9977 8.1797 8.385

Find the mean for each f1 vector:

sMean = arrayfun(@(x) mean(x.f1), s, ...
'UniformOutput', false)

sMean =
[1x4 double] [1x7 double] [1x5 double]

sMean{:}
ans =

6.2628 6.2171 5.4231 3.3144
ans =

1.6209 7.079 5.7696 4.6665 5.1301 5.7136 4.8099
ans =

2-222

arrayfun

3.8195 5.8816 6.9128 4.9022 5.9541

Example 4 — Assigning to More Than One Output Variable.

The next example uses the lu function on the same structure array,
returning three outputs from arrayfun:

[l u p] = arrayfun(@(x)lu(x.f1), s, 'UniformOutput', false)
l =

[7x4 double] [3x3 double] [5x5 double]
u =

[4x4 double] [3x7 double] [5x5 double]
p =

[7x7 double] [3x3 double] [5x5 double]

l{3}
ans =

1 0 0 0 0
0.44379 1 0 0 0
0.79398 0.79936 1 0 0
0.27799 0.066014 -0.77517 1 0
0.28353 0.85338 0.29223 0.67036 1

u{3}
ans =

6.8222 3.7837 8.9977 3.4197 3.0929
0 6.9209 4.2232 1.3796 7.0124
0 0 -4.0708 -0.40607 -2.3804
0 0 0 6.8232 2.1729
0 0 0 0 -0.35098

p{3}
ans =

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0
0 1 0 0 0

2-223

arrayfun

See Also structfun, cellfun, spfun, function_handle, cell2mat

2-224

ascii

Purpose Set FTP transfer type to ASCII

Syntax ascii(f)

Description ascii(f) sets the download and upload FTP mode to ASCII, which
converts new lines, where f was created using ftp. Use this function for
text files only, including HTML pages and Rich Text Format (RTF) files.

Examples Connect to the MathWorks FTP server, and display the FTP object.

tmw=ftp('ftp.mathworks.com');
disp(tmw)
FTP Object

host: ftp.mathworks.com
user: anonymous
dir: /

mode: binary

Note that the FTP object defaults to binary mode.

Use the ascii function to set the FTP mode to ASCII, and use the disp
function to display the FTP object.

ascii(tmw)
disp(tmw)
FTP Object

host: ftp.mathworks.com
user: anonymous
dir: /

mode: ascii

Note that the FTP object is now set to ASCII mode.

See Also ftp, binary

2-225

asec

Purpose Inverse secant; result in radians

Syntax Y = asec(X)

Description Y = asec(X) returns the inverse secant (arcsecant) for each element
of X.

The asec function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse secant over the domains and .

x1 = -5:0.01:-1;
x2 = 1:0.01:5;
plot(x1,asec(x1),x2,asec(x2)), grid on

2-226

asec

Definition The inverse secant can be defined as

Algorithm asec uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also asecd, asech, sec

2-227

http://www.netlib.org

asecd

Purpose Inverse secant; result in degrees

Syntax Y = asecd(X)

Description Y = asecd(X) is the inverse secant, expressed in degrees, of the
elements of X.

See Also secd, asec

2-228

asech

Purpose Inverse hyperbolic secant

Syntax Y = asech(X)

Description Y = asech(X) returns the inverse hyperbolic secant for each element
of X.

The asech function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic secant over the domain .

x = 0.01:0.001:1;
plot(x,asech(x)), grid on

Definition The hyperbolic inverse secant can be defined as

2-229

asech

Algorithm asech uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also asec, sech

2-230

http://www.netlib.org

asin

Purpose Inverse sine; result in radians

Syntax Y = asin(X)

Description Y = asin(X) returns the inverse sine (arcsine) for each element of
X. For real elements of X in the domain , asin(X) is in the
range . For real elements of x outside the range ,
asin(X) is complex.

The asin function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse sine function over the domain .

x = -1:.01:1;
plot(x,asin(x)), grid on

2-231

asin

Definition The inverse sine can be defined as

Algorithm asin uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also asind, asinh, sin, sind, sinh

2-232

http://www.netlib.org

asind

Purpose Inverse sine; result in degrees

Syntax

Description Y = asind(X) is the inverse sine, expressed in degrees, of the elements
of X.

See Also asin, asinh, sin, sind, sinh

2-233

asinh

Purpose Inverse hyperbolic sine

Syntax Y = asinh(X)

Description Y = asinh(X) returns the inverse hyperbolic sine for each element of X.

The asinh function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse hyperbolic sine function over the domain .

x = -5:.01:5;
plot(x,asinh(x)), grid on

Definition The hyperbolic inverse sine can be defined as

2-234

asinh

Algorithm asinh uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also asin, asind, sin, sinh, sind

2-235

http://www.netlib.org

assert

Purpose Generate error when condition is violated

Syntax assert(expression)
assert(expression, 'errmsg')
assert(expression, 'errmsg', value1, value2, ...)
assert(expression, 'msg_id', 'errmsg', value1, value2, ...)

Description assert(expression) evaluates expression and, if it is false, displays
the error message: Assertion Failed.

assert(expression, 'errmsg') evaluates expression and, if it is
false, displays the string contained in errmsg. This string must be
enclosed in single quotation marks. When errmsg is the last input
to assert, MATLAB displays it literally, without performing any
substitutions on the characters in errmsg.

assert(expression, 'errmsg', value1, value2, ...) evaluates
expression and, if it is false, displays the formatted string contained
in errmsg. The errmsg string can include escape sequences such as \t
or \n, as well as any of the C language conversion operators supported
by the sprintf function (e.g., %s or %d). Additional arguments
value1, value2, etc. provide values that correspond to and replace
the conversion operators.

See “Formatting Strings” in the MATLAB Programming documentation
for more detailed information on using string formatting commands.

MATLAB makes substitutions for escape sequences and conversion
operators in errmsg in the same way that it does for the sprintf
function.

assert(expression, 'msg_id', 'errmsg', value1, value2, ...)
evaluates expression and, if it is false, displays the formatted string
errmsg, also tagging the error with the message identifier msg_id. See
in the MATLAB Programming documentation for information.

Examples This function tests input arguments using assert:

function write2file(varargin)

2-236

assert

min_inputs = 3;
assert(nargin >= min_inputs, ...

'You must call function %s with at least %d inputs', ...
mfilename, min_inputs)

infile = varargin{1};
assert(ischar(infile), ...

'First argument must be a filename.')
assert(exist(infile)~=0, 'File %s not found.', infile)

fid = fopen(infile, 'w');
assert(fid > 0, 'Cannot open file %s for writing', infile)

fwrite(fid, varargin{2}, varargin{3});

See Also error, eval, sprintf

2-237

assignin

Purpose Assign value to variable in specified workspace

Syntax assignin(ws, 'var', val)

Description assignin(ws, 'var', val) assigns the value val to the variable var
in the workspace ws. var is created if it doesn’t exist. ws can have a
value of 'base' or 'caller' to denote the MATLAB base workspace or
the workspace of the caller function.

The assignin function is particularly useful for these tasks:

• Exporting data from a function to the MATLAB workspace

• Within a function, changing the value of a variable that is defined
in the workspace of the caller function (such as a variable in the
function argument list)

Remarks The MATLAB base workspace is the workspace that is seen from
the MATLAB command line (when not in the debugger). The caller
workspace is the workspace of the function that called the M-file. Note
that the base and caller workspaces are equivalent in the context of an
M-file that is invoked from the MATLAB command line.

Examples This example creates a dialog box for the image display function,
prompting a user for an image name and a colormap name. The
assignin function is used to export the user-entered values to the
MATLAB workspace variables imfile and cmap.

prompt = {'Enter image name:','Enter colormap name:'};
title = 'Image display - assignin example';
lines = 1;
def = {'my_image','hsv'};
answer = inputdlg(prompt,title,lines,def);
assignin('base','imfile',answer{1});
assignin('base','cmap',answer{2});

2-238

assignin

See Also evalin

2-239

atan

Purpose Inverse tangent; result in radians

Syntax Y = atan(X)

Description Y = atan(X) returns the inverse tangent (arctangent) for each element
of X. For real elements of X, atan(X) is in the range .

The atan function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Examples Graph the inverse tangent function over the domain .

x = -20:0.01:20;
plot(x,atan(x)), grid on

Definition The inverse tangent can be defined as

2-240

atan

Algorithm atan uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also atan2, tan, atand, atanh

2-241

http://www.netlib.org

atan2

Purpose Four-quadrant inverse tangent

Syntax P = atan2(Y,X)

Description P = atan2(Y,X) returns an array P the same size as X and Y containing
the element-by-element, four-quadrant inverse tangent (arctangent) of
the real parts of Y and X. Any imaginary parts of the inputs are ignored.

Elements of P lie in the closed interval [-pi,pi], where pi is the
MATLAB floating-point representation of . atan uses sign(Y) and
sign(X) to determine the specific quadrant.

atan2(Y,X) contrasts with atan(Y/X), whose results are limited to the
interval , or the right side of this diagram.

Examples Any complex number is converted to polar coordinates with

r = abs(z)
theta = atan2(imag(z),real(z))

For example,

z = 4 + 3i;
r = abs(z)
theta = atan2(imag(z),real(z))

2-242

atan2

r =
5

theta =
0.6435

This is a common operation, so MATLAB provides a function, angle(z),
that computes theta = atan2(imag(z),real(z)).

To convert back to the original complex number

z = r *exp(i *theta)
z =

4.0000 + 3.0000i

Algorithm atan2 uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also angle, atan, atanh

2-243

http://www.netlib.org

atand

Purpose Inverse tangent; result in degrees

Syntax Y = atand(X)

Description Y = atand(X) is the inverse tangent, expressed in degrees, of the
elements of X.

See Also tand, atan

2-244

atanh

Purpose Inverse hyperbolic tangent

Syntax Y = atanh(X)

Description The atanh function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = atanh(X) returns the inverse hyperbolic tangent for each element
of X.

Examples Graph the inverse hyperbolic tangent function over the domain
.

x = -0.99:0.01:0.99;
plot(x,atanh(x)), grid on

Definition The hyperbolic inverse tangent can be defined as

2-245

atanh

Algorithm atanh uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also atan2, atan, tanh

2-246

http://www.netlib.org

audioplayer

Purpose Create audio player object

Syntax player = audioplayer(Y, Fs)
player = audioplayer(Y, Fs, nBits)
player = audioplayer(Y, Fs, nBits, ID)
player = audioplayer(R)
player = audioplayer(R, ID)

Description
Note To use all of the features of the audio player object, your system
needs a properly installed and configured sound card with 8- and 16-bit
I/O, two channels, and support for sampling rates of up to 48 kHz.

player = audioplayer(Y, Fs) creates an audio player object for
signal Y, using sample rate Fs. The function returns player, a handle
to the audio player object. The audio player object supports methods
and properties that you can use to control how the audio data is played.

The input signal Y can be a vector or two-dimensional array containing
single, double, int8, uint8, or int16 MATLAB data types. Fs is the
sampling rate in Hz to use for playback. Valid values for Fs depend on
the specific audio hardware installed. Typical values supported by most
sound cards are 8000, 11025, 22050, and 44100 Hz.

player = audioplayer(Y, Fs, nBits) creates an audio player object
and uses nBits bits per sample for floating point signal Y. Valid values
for nBits are 8, 16, and 24 on Windows, 8 and 16 on UNIX. The default
number of bits per sample for floating point signals is 16.

player = audioplayer(Y, Fs, nBits, ID) creates an audio player
object using audio device identifier ID for output. If ID equals -1, the
default output device will be used. This option is only available on
Windows.

player = audioplayer(R) creates an audio player object using audio
recorder object R.

2-247

audioplayer

player = audioplayer(R, ID) creates an audio player object from
audio recorder object R using audio device identifier ID for output. This
option is only available on Windows.

Remarks

The value range of the input sample depends on the MATLAB data
type. The following table lists these ranges.

Data Type Input Sample Value Range

int8 -128 to 127

uint8 0 to 255

int16 -32768 to 32767

single -1 to 1

double -1 to 1

Example Load a sample audio file of Handel’s Hallelujah Chorus, create an audio
player object, and play back only the first three seconds. y contains
the audio samples and Fs is the sampling rate. You can use any of the
audioplayer functions listed above on the player:

load handel;
player = audioplayer(y, Fs);
play(player,[1 (get(player, 'SampleRate')*3)]);

To stop the playback, use this command:

stop(player); % Equivalent to player.stop

Methods After you create an audio player object, you can use the methods listed
below on that object. player represents a handle to the audio player
object.

2-248

audioplayer

Method Description

play(player)

play(player, start)

play(player, [start stop])

play(player, range)

Starts playback from the
beginning and plays to the
end of audio player object player.
Play audio from the sample
indicated by start to the end, or
from the sample indicated by start
up to the sample indicated by stop.
The values of start and stop can
also be specified in a two-element
vector range.

playblocking(player)

playblocking(player,
start)

playblocking(player,
[start stop])

playblocking(player,
range)

Same as play, but does not return
control until playback completes.

stop(player) Stops playback.

pause(player) Pauses playback.

resume(player) Restarts playback from where
playback was paused.

isplaying(player) Indicates whether playback is in
progress. If 0, playback is not
in progress. If 1, playback is in
progress.

display(player)

disp(player)

get(player)

Displays all property information
about audio player player.

2-249

audioplayer

Properties Audio player objects have the properties listed below. To set a
user-settable property, use this syntax:

set(player, 'property1', value,'property2',value,...)

To view a read-only property,

get(player,'property') % Displays 'property' setting.

Property Description Type

Type Name of the object’s class. Read-only

SampleRate Sampling frequency in Hz. User-settable

BitsPerSample Number of bits per sample. Read-only

NumberOfChannels Number of channels. Read-only

TotalSamples Total length, in samples, of the
audio data.

Read-only

Running Status of the audio player
('on' or 'off').

Read-only

CurrentSample Current sample being played
by the audio output device (if it
is not playing, CurrentSample
is the next sample to be played
with play or resume).

Read-only

UserData User data of any type. User-settable

Tag User-specified object label
string.

User-settable

For information on using the following four properties, see Creating
Timer Callback Functions in the MATLAB documentation. Note that
for audio player object callbacks, eventStruct (event) is currently
empty ([]).

2-250

audioplayer

Property Description Type

TimerFcn Handle to a user-specified
callback function that is
executed repeatedly (at
TimerPeriod intervals) during
playback.

User-settable

TimerPeriod Time, in seconds, between
TimerFcn callbacks.

User-settable

StartFcn Handle to a user-specified
callback function that is
executed once when playback
starts.

User-settable

StopFcn Handle to a user-specified
callback function that is
executed once when playback
stops.

User-settable

See Also audiorecorder, sound, wavplay, wavwrite, wavread, get, set, methods

2-251

audiorecorder

Purpose Create audio recorder object

Syntax y = audiorecorder
y = audiorecorder(Fs, nbits, nchans)
y = audiorecorder(Fs, nbits, channels, id)

Description
Note To use all of the features of the audiorecorder object, your system
must have a properly installed and configured sound card with 8- and
16-bit I/O and support for sampling rates of up to 48 kHz.

y = audiorecorder creates an 8000 Hz, 8-bit, 1 channel audiorecorder
object. y is a handle to the object. The audiorecorder object supports
methods and properties that you can use to record audio data.

y = audiorecorder(Fs, nbits, nchans) creates an audiorecorder
object using the sampling rate Fs (in Hz), the sample size nbits, and
the number of channelsnchans. Fs can be any sampling rate supported
by the audio hardware. Common sampling rates are 8000, 11025,
22050, and 44100 (only 44100, 48000, and 96000 on a Macintosh). The
value of nbits must be 8, 16, or 24, on Windows, and 8 or 16 on UNIX.
The number of channels, nchans must be 1 (mono) or 2 (stereo).

y = audiorecorder(Fs, nbits, channels, id) creates an
audiorecorder object using the audio device specified by its id for input.
If id equals -1, the default input device will be used. This option is
only available on Windows.

Examples Example 1

Using a microphone, record your voice, using a sample rate of 44100 Hz,
16 bits per sample, and one channel. Speak into the microphone, then
pause the recording. Play back what you’ve recorded so far. Record
some more, then stop the recording. Finally, return the recorded data to
MATLAB as an int16 array.

r = audiorecorder(44100, 16, 1);

2-252

audiorecorder

record(r); % speak into microphone...
pause(r);
p = play(r); % listen
resume(r); % speak again
stop(r);
p = play(r); % listen to complete recording
mySpeech = getaudiodata(r, 'int16'); % get data as int16 array

Remarks The current implementation of audiorecorder is not intended for long,
high-sample-rate recording because it uses system memory for storage
and does not use disk buffering. When large recordings are attempted,
MATLAB performance may degrade.

Methods After you create an audiorecorder object, you can use the methods
listed below on that object. y represents the name of the returned
audiorecorder object

Method Description

record(y)

record(y,length)

Starts recording.

Records for length number of seconds.

recordblocking(y,length) Same as record, but does not return
control until recording completes.

stop(y) Stops recording.

pause(y) Pauses recording.

resume(y) Restarts recording from where
recording was paused.

isrecording(y) Indicates the status of recording. If
0, recording is not in progress. If 1,
recording is in progress.

play(y) Creates an audioplayer, plays the
recorded audio data, and returns a
handle to the created audioplayer.

2-253

audiorecorder

Method Description

getplayer(y) Creates an audioplayer and returns a
handle to the created audioplayer.

getaudiodata(y)

getaudiodata(y,'type')

Returns the recorded audio data to
the MATLAB workspace. type is a
string containing the desired data
type. Supported data types are double,
single, int16, int8, or uint8. If type
is omitted, it defaults to 'double'.
For double and single, the array
contains values between -1 and 1. For
int8, values are between -128 to 127.
For uint8, values are from 0 to 255.
For int16, values are from -32768 to
32767. If the recording is in mono, the
returned array has one column. If it is
in stereo, the array has two columns,
one for each channel.

display(y)

disp(y)

get(y)

Displays all property information
about audio recorder y.

Properties Audio recorder objects have the properties listed below. To set a
user-settable property, use this syntax:

set(y, 'property1', value,'property2',value,...)

To view a read-only property,

get(y,'property') %displays 'property' setting.

2-254

audiorecorder

Property Description Type

Type Name of the object’s class. Read-only

SampleRate Sampling frequency in Hz. Read-only

BitsPerSample Number of bits per recorded
sample.

Read-only

NumberOfChannels Number of channels of
recorded audio.

Read-only

TotalSamples Total length, in samples, of
the recording.

Read-only

Running Status of the audio recorder
('on' or 'off').

Read-only

CurrentSample Current sample being
recorded by the audio
output device (if it is not
recording, currentsample
is the next sample to be
recorded with record or
resume).

Read-only

UserData User data of any type. User-settable

For information on using the following four properties, see Creating
Timer Callback Functions in the MATLAB documentation. Note that
for audio object callbacks, eventStruct (event) is currently empty
([]).

TimerFcn Handle to a user-specified
callback function that is
executed repeatedly (at
TimerPeriod intervals)
during recording.

User-settable

TimerPeriod Time, in seconds, between
TimerFcn callbacks.

User-settable

2-255

audiorecorder

Property Description Type

StartFcn Handle to a user-specified
callback function that
is executed once when
recording starts.

User-settable

StopFcn Handle to a user-specified
callback function that
is executed once when
recording stops.

User-settable

NumberOfBuffers Number of buffers used
for recording (you should
adjust this only if you have
skips, dropouts, etc., in your
recording).

User-settable

BufferLength Length in seconds of buffer
(you should adjust this only
if you have skips, dropouts,
etc., in your recording).

User-settable

Tag User-specified object label
string.

User-settable

See Also audioplayer, wavread, wavrecord, wavwrite, get, set, methods

2-256

aufinfo

Purpose Information about NeXT/SUN (.au) sound file

Syntax [m d] = aufinfo(aufile)

Description [m d] = aufinfo(aufile) returns information about the contents of
the AU sound file specified by the string aufile.

m is the string 'Sound (AU) file', if filename is an AU file.
Otherwise, it contains an empty string ('').

d is a string that reports the number of samples in the file and the
number of channels of audio data. If filename is not an AU file, it
contains the string 'Not an AU file'.

See Also auread

2-257

auread

Purpose Read NeXT/SUN (.au) sound file

Graphical
Interface

As an alternative to auread, use the Import Wizard. To activate the
Import Wizard, select Import data from the File menu.

Syntax y = auread('aufile')
[y,Fs,bits] = auread('aufile')
[...] = auread('aufile',N)
[...] = auread('aufile',[N1 N2])
siz = auread('aufile','size')

Description y = auread('aufile') loads a sound file specified by the string
aufile, returning the sampled data in y. The .au extension is appended
if no extension is given. Amplitude values are in the range [-1,+1].
auread supports multichannel data in the following formats:

• 8-bit mu-law

• 8-, 16-, and 32-bit linear

• Floating-point

[y,Fs,bits] = auread('aufile') returns the sample rate (Fs) in
Hertz and the number of bits per sample (bits) used to encode the
data in the file.

[...] = auread('aufile',N) returns only the first N samples from
each channel in the file.

[...] = auread('aufile',[N1 N2]) returns only samples N1
through N2 from each channel in the file.

siz = auread('aufile','size') returns the size of the audio data
contained in the file in place of the actual audio data, returning the
vector siz = [samples channels].

See Also auwrite, wavread

2-258

auwrite

Purpose Write NeXT/SUN (.au) sound file

Syntax auwrite(y,'aufile')
auwrite(y,Fs,'aufile')
auwrite(y,Fs,N,'aufile')
auwrite(y,Fs,N,'method','aufile')

Description auwrite(y,'aufile') writes a sound file specified by the string
aufile. The data should be arranged with one channel per column.
Amplitude values outside the range [-1,+1] are clipped prior to
writing. auwrite supports multichannel data for 8-bit mu-law and 8-
and 16-bit linear formats.

auwrite(y,Fs,'aufile') specifies the sample rate of the data in Hertz.

auwrite(y,Fs,N,'aufile') selects the number of bits in the encoder.
Allowable settings are N = 8 and N = 16.

auwrite(y,Fs,N,'method','aufile') allows selection of the encoding
method, which can be either mu or linear. Note that mu-law files must
be 8-bit. By default, method = 'mu'.

See Also auread, wavwrite

2-259

avifile

Purpose Create new Audio/Video Interleaved (AVI) file

Syntax aviobj = avifile(filename)
aviobj = avifile(filename, 'Param1', Val1, 'Param2', Val2,

...)

Description aviobj = avifile(filename) creates an avifile object, giving it
the name specified in filename, using default values for all avifile
object properties. AVI is a file format for storing audio and video data.
If filename does not include an extension, avifile appends .avi to the
filename. To close all open AVI files, use the clear mex command.

avifile returns a handle to an AVI file object aviobj. You use this
object to refer to the AVI file in other functions. An AVI file object
supports properties and methods that control aspects of the AVI file
created.

aviobj = avifile(filename, 'Param1', Val1, 'Param2',
Val2,...) creates an avifile object with the property values specified
by parameter/value pairs. This table lists available parameters.

Parameter Value Default

'colormap' An m-by-3 matrix defining the
colormap to be used for indexed
AVI movies, where m must be no
greater than 256 (236 if using
Indeo compression). You must
set this parameter before calling
addframe, unless you are using
addframe with the MATLAB
movie syntax.

There is
no default
colormap.

'compression' A text string specifying the
compression codec to use.

2-260

avifile

Parameter Value Default

On Windows:
'Indeo3'
'Indeo5'
'Cinepak'
'MSVC'
'RLE'
'None'

On UNIX:
'None'

'Indeo5' on
Windows.
'None' on
UNIX.

To use a custom compression
codec, specify the four-character
code that identifies the codec
(typically included in the codec
documentation). The addframe
function reports an error if
it cannot find the specified
custom compressor. You must
set this parameter before calling
addframe.

'fps' A scalar value specifying the
speed of the AVI movie in frames
per second (fps).

15 fps

'keyframe' For compressors that support
temporal compression, this is the
number of key frames per second.

2.1429 key
frames per
second.

2-261

avifile

Parameter Value Default

'quality' A number between 0 and 100.
This parameter has no effect on
uncompressed movies. Higher
quality numbers result in higher
video quality and larger file
sizes. Lower quality numbers
result in lower video quality and
smaller file sizes. You must set
this parameter before calling
addframe.

75

'videoname' A descriptive name for the video
stream. This parameter must be
no greater than 64 characters
long and must be set before using
addframe.

The default is
the filename.

You can also use structure syntax (also called dot notation) to set
avifile object properties. The property name must be typed in full,
however it is not case sensitive. For example, to set the quality
property to 100, use the following syntax:

aviobj = avifile('myavifile');
aviobj.quality = 100;

All the field names of an avifile object are the same as the parameter
names listed in the table, except for the keyframe parameter. To set this
property using dot notation, specify the KeyFramePerSec property. For
example, to change the value of keyframe to 2.5, type

aviobj.KeyFramePerSec = 2.5;

Example This example shows how to use the avifile function to create the AVI
file example.avi.

fig=figure;
set(fig,'DoubleBuffer','on');

2-262

avifile

set(gca,'xlim',[-80 80],'ylim',[-80 80],...
'NextPlot','replace','Visible','off')

mov = avifile('example.avi')
x = -pi:.1:pi;
radius = 0:length(x);
for k=1:length(x)
h = patch(sin(x)*radius(k),cos(x)*radius(k),...

[abs(cos(x(k))) 0 0]);
set(h,'EraseMode','xor');
F = getframe(gca);
mov = addframe(mov,F);

end
mov = close(mov);

See Also addframe, close, movie2avi

2-263

aviinfo

Purpose Information about Audio/Video Interleaved (AVI) file

Syntax fileinfo = aviinfo(filename)

Description fileinfo = aviinfo(filename) returns a structure whose fields
contain information about the AVI file specified in the string filename.
If filename does not include an extension, then .avi is used. The
file must be in the current working directory or in a directory on the
MATLAB path.

The set of fields in the fileinfo structure is shown below.

Field Name Description

AudioFormat String containing the name of the format
used to store the audio data, if audio data
is present

AudioRate Integer indicating the sample rate in
Hertz of the audio stream, if audio data
is present

Filename String specifying the name of the file

FileModDate String containing the modification date of
the file

FileSize Integer indicating the size of the file in
bytes

FramesPerSecond Integer indicating the desired frames per
second

Height Integer indicating the height of the AVI
movie in pixels

ImageType String indicating the type of image. Either
'truecolor' for a truecolor (RGB) image,
or 'indexed' for an indexed image.

2-264

aviinfo

Field Name Description

NumAudioChannels Integer indicating the number of channels
in the audio stream, if audio data is
present

NumFrames Integer indicating the total number of
frames in the movie

NumColormapEntries Integer specifying the number of colormap
entries. For a truecolor image, this value
is 0 (zero).

Quality Number between 0 and 100 indicating
the video quality in the AVI file. Higher
quality numbers indicate higher video
quality; lower quality numbers indicate
lower video quality. This value is not
always set in AVI files and therefore can
be inaccurate.

VideoCompression String containing the compressor used to
compress the AVI file. If the compressor
is not Microsoft Video 1, Run Length
Encoding (RLE), Cinepak, or Intel Indeo,
aviinfo returns the four-character code
that identifies the compressor.

Width Integer indicating the width of the AVI
movie in pixels

See also avifile, aviread

2-265

aviread

Purpose Read Audio/Video Interleaved (AVI) file

Syntax mov = aviread(filename)
mov = aviread(filename, index)

Description mov = aviread(filename) reads the AVI movie filename into the
MATLAB movie structure mov. If filename does not include an
extension, then .avi is used. Use the movie function to view the movie
mov. On UNIX, filename must be an uncompressed AVI file.

mov has two fields, cdata and colormap. The content of these fields
varies depending on the type of image.

Image Type cdata Field colormap Field

Truecolor Height-by-width-by-3
array of uint8 values

Empty

Indexed Height-by-width
array of uint8 values

m-by-3 array of
double values

aviread supports 8-bit frames, for indexed and grayscale images, 16-bit
grayscale images, or 24-bit truecolor images. Note, however, that movie
only accepts 8-bit image frames; it does not accept 16-bit grayscale
image frames.

mov = aviread(filename, index) reads only the frames specified by
index. index can be a single index or an array of indices into the video
stream. In AVI files, the first frame has the index value 1, the second
frame has the index value 2, and so on.

Note If you are using MATLAB on a Windows platform, consider using
the new mmreader function, which adds support for more video formats
and codecs.

See also avifile, aviinfo, mmreader, movie

2-266

axes

Purpose Create axes graphics object

GUI
Alternatives

To create a figure select New > Figure from the MATLAB Desktop
or a figure’s File menu. To add an axes to a figure, click one of the
New Subplots icons in the Figure Palette, and slide right to select an
arrangement of new axes. For details, see “Plotting Tools — Interactive
Plotting” in the MATLAB Graphics documentation.

Syntax axes
axes('PropertyName',propertyvalue,...)
axes(h)
h = axes(...)

Description axes is the low-level function for creating axes graphics objects.

axes creates an axes graphics object in the current figure using default
property values.

axes('PropertyName',propertyvalue,...) creates an axes object
having the specified property values. MATLAB uses default values for
any properties that you do not explicitly define as arguments.

axes(h) makes existing axes h the current axes and brings the figure
containing it into focus. It also makes h the first axes listed in the
figure’s Children property and sets the figure’s CurrentAxes property
to h. The current axes is the target for functions that draw image, line,
patch, rectangle, surface, and text graphics objects.

If you want to make an axes the current axes without changing the
state of the parent figure, set the CurrentAxes property of the figure
containing the axes:

set(figure_handle,'CurrentAxes',axes_handle)

2-267

axes

This is useful if you want a figure to remain minimized or stacked below
other figures, but want to specify the current axes.

h = axes(...) returns the handle of the created axes object.

Remarks MATLAB automatically creates an axes, if one does not already exist,
when you issue a command that creates a graph.

The axes function accepts property name/property value pairs,
structure arrays, and cell arrays as input arguments (see the set
and get commands for examples of how to specify these data types).
These properties, which control various aspects of the axes object, are
described in the Axes Properties section.

Use the set function to modify the properties of an existing axes or the
get function to query the current values of axes properties. Use the gca
command to obtain the handle of the current axes.

The axis (not axes) function provides simplified access to commonly
used properties that control the scaling and appearance of axes.

While the basic purpose of an axes object is to provide a coordinate
system for plotted data, axes properties provide considerable control
over the way MATLAB displays data.

Stretch-to-Fill

By default, MATLAB stretches the axes to fill the axes position
rectangle (the rectangle defined by the last two elements in the
Position property). This results in graphs that use the available
space in the rectangle. However, some 3-D graphs (such as a sphere)
appear distorted because of this stretching, and are better viewed with
a specific three-dimensional aspect ratio.

Stretch-to-fill is active when the DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode are all
auto (the default). However, stretch-to-fill is turned off when the
DataAspectRatio, PlotBoxAspectRatio, or CameraViewAngle is
user-specified, or when one or more of the corresponding modes is set to
manual (which happens automatically when you set the corresponding
property value).

2-268

axes

This picture shows the same sphere displayed both with and without
the stretch-to-fill. The dotted lines show the axes rectangle.

When stretch-to-fill is disabled, MATLAB sets the size of the axes to
be as large as possible within the constraints imposed by the Position
rectangle without introducing distortion. In the picture above, the
height of the rectangle constrains the axes size.

Examples Zooming

Zoom in using aspect ratio and limits:

sphere
set(gca,'DataAspectRatio',[1 1 1],...

'PlotBoxAspectRatio',[1 1 1],'ZLim',[-0.6 0.6])

Zoom in and out using the CameraViewAngle:

sphere
set(gca,'CameraViewAngle',get(gca,'CameraViewAngle')-5)
set(gca,'CameraViewAngle',get(gca,'CameraViewAngle')+5)

Note that both examples disable the MATLAB stretch-to-fill behavior.

2-269

axes

Positioning the Axes

The axes Position property enables you to define the location of the
axes within the figure window. For example,

h = axes('Position',position_rectangle)

creates an axes object at the specified position within the current figure
and returns a handle to it. Specify the location and size of the axes with
a rectangle defined by a four-element vector,

position_rectangle = [left, bottom, width, height];

The left and bottom elements of this vector define the distance from
the lower left corner of the figure to the lower left corner of the rectangle.
The width and height elements define the dimensions of the rectangle.
You specify these values in units determined by the Units property. By
default, MATLAB uses normalized units where (0,0) is the lower left
corner and (1.0,1.0) is the upper right corner of the figure window.

You can define multiple axes in a single figure window:

axes('position',[.1 .1 .8 .6])
mesh(peaks(20));
axes('position',[.1 .7 .8 .2])
pcolor([1:10;1:10]);

In this example, the first plot occupies the bottom two-thirds of the
figure, and the second occupies the top third.

2-270

axes

Object
Hierarchy

2-271

axes

Setting Default Properties

You can set default axes properties on the figure and root levels:

set(0,'DefaultAxesPropertyName',PropertyValue,...)
set(gcf,'DefaultAxesPropertyName',PropertyValue,...)

where PropertyName is the name of the axes property and
PropertyValue is the value you are specifying. Use set and get to
access axes properties.

See Also axis, cla, clf, figure, gca, grid, subplot, title, xlabel, ylabel,
zlabel, view

“Axes Operations” on page 1-96 for related functions

“Axes Properties” for more examples

See “Types of Graphics Objects” for information on core, group, plot, and
annotation objects.

2-272

Axes Properties

Purpose Axes properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Editor is an interactive tool that enables you to see and
change object property values.

• The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see Setting Default Property
Values.

Axes
Property
Descriptions

This section lists property names along with the types of values each
accepts. Curly braces { } enclose default values.

ActivePositionProperty
{outerposition} | position

Use OuterPosition or Position property for resize.
ActivePositionProperty specifies which property MATLAB
uses to determine the size of the axes when the figure is resized
(interactively or during a printing or exporting operation).

See OuterPosition and Position for related properties.

See Automatic Axes Resize for a discussion of how to use axes
positioning properties.

ALim
[amin, amax]

Alpha axis limits. A two-element vector that determines how
MATLAB maps the AlphaData values of surface, patch, and
image objects to the figure’s alphamap. amin is the value of the
data mapped to the first alpha value in the alphamap, and amax
is the value of the data mapped to the last alpha value in the
alphamap. Data values in between are linearly interpolated

2-273

Axes Properties

across the alphamap, while data values outside are clamped to
either the first or last alphamap value, whichever is closest.

When ALimMode is auto (the default), MATLAB assigns amin the
minimum data value and amax the maximum data value in the
graphics object’s AlphaData. This maps AlphaData elements with
minimum data values to the first alphamap entry and those with
maximum data values to the last alphamap entry. Data values in
between are mapped linearly to the values

If the axes contains multiple graphics objects, MATLAB
sets ALim to span the range of all objects’ AlphaData (or
FaceVertexAlphaData for patch objects).

See the alpha function reference page for additional information.

ALimMode
{auto} | manual

Alpha axis limits mode. In auto mode, MATLAB sets the ALim
property to span the AlphaData limits of the graphics objects
displayed in the axes. If ALimMode is manual, MATLAB does not
change the value of ALim when the AlphaData limits of axes
children change. Setting the ALim property sets ALimMode to
manual.

AmbientLightColor
ColorSpec

The background light in a scene. Ambient light is a directionless
light that shines uniformly on all objects in the axes. However, if
there are no visible light objects in the axes, MATLAB does not
use AmbientLightColor. If there are light objects in the axes, the
AmbientLightColor is added to the other light sources.

AspectRatio
(Obsolete)

2-274

Axes Properties

This property produces a warning message when queried or
changed. It has been superseded by the DataAspectRatio[Mode]
and PlotBoxAspectRatio[Mode] properties.

BeingDeleted
on | {off}

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

See the close and delete function reference pages for related
information.

Box
on | {off}

Axes box mode. This property specifies whether to enclose the
axes extent in a box for 2-D views or a cube for 3-D views. The
default is to not display the box.

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback executing,
callback invoked subsequently always attempt to interrupt it.
If the Interruptible property of the object whose callback is

2-275

Axes Properties

executing is set to on (the default), then interruption occurs at the
next point where the event queue is processed.

If the Interruptible property is off, the BusyAction property
(of the object owning the executing callback) determines how
MATLAB handles the event. The choices are

• cancel — Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is within the axes,
but not over another graphics object parented to the axes. For
3-D views, the active area is defined by a rectangle that encloses
the axes.

See the figure’s SelectionType property to determine whether
modifier keys were also pressed.

Set this property to a function handle that references the callback.
The function must define at least two input arguments (handle
of axes associated with the button down event and an event
structure, which is empty for this property)

See Function Handle Callbacks for information on how to use
function handles to define the callback function.

Some Plotting Functions Reset the ButtonDownFcn

Most MATLAB plotting functions clear the axes and reset a
number of axes properties, including the ButtonDownFcn before

2-276

Axes Properties

plotting data. If you want to create an interface that enables users
to plot data interactively, consider using a control device such
as a push button (uicontrol), which is not affected by plotting
functions. See “Example — Using Function Handles in GUIs”
for an example.

If you must use the axes ButtonDownFcn to plot data, then you
should use low-level functions such as line patch, and surface
and manage the process with the figure and axes NextPlot
properties.

See “High-Level Versus Low-Level” for information on how
plotting functions behave.

See “Preparing Figures and Axes for Graphics” for more
information.

Camera Properties

See View Control with the Camera Toolbar for information related to
the Camera properties

CameraPosition
[x, y, z] axes coordinates

The location of the camera. This property defines the position
from which the camera views the scene. Specify the point in axes
coordinates.

If you fix CameraViewAngle, you can zoom in and out on the scene
by changing the CameraPosition, moving the camera closer to the
CameraTarget to zoom in and farther away from the CameraTarget
to zoom out. As you change the CameraPosition, the amount of
perspective also changes, if Projection is perspective. You can
also zoom by changing the CameraViewAngle; however, this does
not change the amount of perspective in the scene.

2-277

Axes Properties

CameraPositionMode
{auto} | manual

Auto or manual CameraPosition. When set to auto, MATLAB
automatically calculates the CameraPosition such that the
camera lies a fixed distance from the CameraTarget along the
azimuth and elevation specified by view. Setting a value for
CameraPosition sets this property to manual.

CameraTarget
[x, y, z] axes coordinates

Camera aiming point. This property specifies the location in
the axes that the camera points to. The CameraTarget and the
CameraPosition define the vector (the view axis) along which
the camera looks.

CameraTargetMode
{auto} | manual

Auto or manual CameraTarget placement. When this property is
auto, MATLAB automatically positions the CameraTarget at the
centroid of the axes plot box. Specifying a value for CameraTarget
sets this property to manual.

CameraUpVector
[x, y, z] axes coordinates

Camera rotation. This property specifies the rotation of the
camera around the viewing axis defined by the CameraTarget
and the CameraPosition properties. Specify CameraUpVector
as a three-element array containing the x, y, and z components
of the vector. For example, [0 1 0] specifies the positive y-axis
as the up direction.

The default CameraUpVector is [0 0 1], which defines the
positive z-axis as the up direction.

2-278

Axes Properties

CameraUpVectorMode
auto} | manual

Default or user-specified up vector. When CameraUpVectorMode
is auto, MATLAB uses a value of [0 0 1] (positive z-direction
is up) for 3-D views and [0 1 0] (positive y-direction is up) for
2-D views. Setting a value for CameraUpVector sets this property
to manual.

CameraViewAngle
scalar greater than 0 and less than or equal to 180 (angle in
degrees)

The field of view. This property determines the camera field of
view. Changing this value affects the size of graphics objects
displayed in the axes, but does not affect the degree of perspective
distortion. The greater the angle, the larger the field of view, and
the smaller objects appear in the scene.

CameraViewAngleMode
{auto} | manual

Auto or manual CameraViewAngle. When in auto mode, MATLAB
sets CameraViewAngle to the minimum angle that captures the
entire scene (up to 180°).

The following table summarizes MATLAB automatic camera
behavior.

2-279

Axes Properties

CameraViewAngle Camera Target Camera Position Behavior

auto auto auto CameraTarget is set
to plot box centroid,
CameraViewAngle
is set to capture
entire scene,
CameraPosition
is set along the view
axis.

auto auto manual CameraTarget is set
to plot box centroid,
CameraViewAngle is
set to capture entire
scene.

auto manual auto CameraViewAngle
is set to capture
entire scene,
CameraPosition
is set along the view
axis.

auto manual manual CameraViewAngle is
set to capture entire
scene.

manual auto auto CameraTarget is set
to plot box centroid,
CameraPosition is
set along the view
axis.

manual auto manual CameraTarget is set
to plot box centroid

2-280

Axes Properties

CameraViewAngle Camera Target Camera Position Behavior

manual manual auto CameraPosition is
set along the view
axis.

manual manual manual All camera
properties are
user-specified.

Children
vector of graphics object handles

. A vector containing the handles of all graphics objects rendered
within the axes (whether visible or not). The graphics objects that
can be children of axes are image, light, line, patch, rectangle,
surface, and text. You can change the order of the handles and
thereby change the stacking of the objects on the display.

The text objects used to label the x-, y-, and z-axes and the title are
also children of axes, but their HandleVisibility properties are
set to off. This means their handles do not show up in the axes
Children property unless you set the Root ShowHiddenHandles
property to on.

When an object’s HandleVisibility property is set to off, it is not
listed in its parent’s Children property. See HandleVisibility
for more information.

CLim
[cmin, cmax]

Color axis limits. A two-element vector that determines how
MATLAB maps the CData values of surface and patch objects
to the figure’s colormap. cmin is the value of the data mapped
to the first color in the colormap, and cmax is the value of the
data mapped to the last color in the colormap. Data values in
between are linearly interpolated across the colormap, while data

2-281

Axes Properties

values outside are clamped to either the first or last colormap
color, whichever is closest.

When CLimMode is auto (the default), MATLAB assigns cmin the
minimum data value and cmax the maximum data value in the
graphics object’s CData. This maps CData elements with minimum
data value to the first colormap entry and with maximum data
value to the last colormap entry.

If the axes contains multiple graphics objects, MATLAB sets CLim
to span the range of all objects’ CData.

See the caxis function reference page for related information.

CLimMode
{auto} | manual

Color axis limits mode. In auto mode, MATLAB sets the CLim
property to span the CData limits of the graphics objects displayed
in the axes. If CLimMode is manual, MATLAB does not change
the value of CLim when the CData limits of axes children change.
Setting the CLim property sets this property to manual.

Clipping
{on} | off

This property has no effect on axes.

Color
{none} | ColorSpec

Color of the axes back planes. Setting this property to none means
the axes is transparent and the figure color shows through. A
ColorSpec is a three-element RGB vector or one of the MATLAB
predefined names. Note that while the default value is none, the
matlabrc.m file may set the axes color to a specific color.

ColorOrder
m-by-3 matrix of RGB values

2-282

Axes Properties

Colors to use for multiline plots. ColorOrder is an m-by-3 matrix
of RGB values that define the colors used by the plot and plot3
functions to color each line plotted. If you do not specify a line
color with plot and plot3, these functions cycle through the
ColorOrder to obtain the color for each line plotted. To obtain
the current ColorOrder, which may be set during startup, get
the property value:

get(gca,'ColorOrder')

Note that if the axes NextPlot property is set to replace (the
default), high-level functions like plot reset the ColorOrder
property before determining the colors to use. If you want
MATLAB to use a ColorOrder that is different from the default,
set NextPlot to replacechildren. You can also specify your own
default ColorOrder.

CreateFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Callback function executed during object creation. A callback
function that executes when MATLAB creates an axes object.
You must define this property as a default value for axes. For
example, the statement

set(0,'DefaultAxesCreateFcn',@ax_create)

defines a default value on the Root level that sets axes properties
whenever you (or MATLAB) create an axes.

function ax_create(src,evnt)
set(src,'Color','b',...
'XLim',[1 10],...
'YLim',[0 100])

end

2-283

Axes Properties

MATLAB executes this function after setting all properties for the
axes. Setting the CreateFcn property on an existing axes object
has no effect.

The handle of the object whose CreateFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is also accessible through the Root CallbackObject property,
which can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

CurrentPoint
2-by-3 matrix

Location of last button click, in axes data units. A 2-by-3 matrix
containing the coordinates of two points defined by the location of
the pointer when the mouse was last clicked. MATLAB returns
the coordinates with respect to the requested axes.

Clicking Within the Axes — Orthogonal Projection

The two points lie on the line that is perpendicular to the plane of
the screen and passes through the pointer. This is true for both
2-D and 3-D views.

The 3-D coordinates are the points, in the axes coordinate system,
where this line intersects the front and back surfaces of the axes
volume (which is defined by the axes x, y, and z limits).

The returned matrix is of the form:

2-284

Axes Properties

where front defines the point nearest to the camera position.
Therefore, if cp is the matrix returned by the CurrentPoint
property, then the first row,

cp(1,:)

specifies the point nearest the viewer and the second row,

cp(2,:)

specifies the point furthest from the viewer.

Clicking Outside the Axes — Orthogonal Projection

When you click outside the axes volume, but within the figure,
the values returned are:

• Back point — a point in the plane of the camera target (which
is perpendicular to the viewing axis).

• Front point — a point in the camera position plane (which is
perpendicular to the viewing axis).

These points lie on a line that passes through the pointer and is
perpendicular to the camera target and camera position planes.

Clicking Within the Axes — Perspective Projection

The values of the current point when using perspective project
can be different from the same point in orthographic projection
because the shape of the axes volume can be different.

Clicking Outside the Axes — Perspective Projection

Clicking outside of the axes volume causes the front point to be
returned as the current camera position at all times. Only the
back point updates with the coordinates of a point that lies on a
line extending from the camera position through the pointer and
intersecting the camera target at the point.

2-285

Axes Properties

Related Information

See Defining Scenes with Camera Graphics for information on
the camera properties.

See View Projection Types for information on orthogonal and
perspective projections.

DataAspectRatio
[dx dy dz]

Relative scaling of data units. A three-element vector controlling
the relative scaling of data units in the x, y, and z directions. For
example, setting this property t o [1 2 1] causes the length of one
unit of data in the x direction to be the same length as two units
of data in the y direction and one unit of data in the z direction.

Note that the DataAspectRatio property interacts with the
PlotBoxAspectRatio, XLimMode, YLimMode, and ZLimMode
properties to control how MATLAB scales the x-, y-, and z-axis.
Setting the DataAspectRatio will disable the stretch-to-fill
behavior if DataAspectRatioMode, PlotBoxAspectRatioMode,
and CameraViewAngleMode are all auto. The following
table describes the interaction between properties when
stretch-to-fill behavior is disabled.

X-, Y-, Z-Limits DataAspect Ratio
PlotBox
AspectRatio Behavior

auto auto auto Limits chosen to
span data range in
all dimensions.

2-286

Axes Properties

X-, Y-, Z-Limits DataAspect Ratio
PlotBox
AspectRatio Behavior

auto auto manual Limits chosen to
span data range
in all dimensions.
DataAspectRatio is
modified to achieve
the requested
PlotBoxAspectRatio
within the limits
selected by
MATLAB.

auto manual auto Limits chosen to
span data range
in all dimensions.
PlotBoxAspectRatio
is modified
to achieve
the requested
DataAspectRatio
within the limits
selected by
MATLAB.

auto manual manual Limits chosen to
completely fit and
center the plot
within the requested
PlotBoxAspectRatio
given the requested
DataAspectRatio
(this may produce
empty space
around 2 of the 3
dimensions).

2-287

Axes Properties

X-, Y-, Z-Limits DataAspect Ratio
PlotBox
AspectRatio Behavior

manual auto auto Limits are
honored. The
DataAspectRatio
and
PlotBoxAspectRatio
are modified as
necessary.

manual auto manual Limits and
PlotBoxAspectRatio
are honored. The
DataAspectRatio
is modified as
necessary.

manual manual auto Limits and
DataAspectRatio
are honored. The
PlotBoxAspectRatio
is modified as
necessary.

1 manual

2 auto

manual manual The 2 automatic
limits are selected
to honor the
specified aspect
ratios and limit. See
"Examples."

2 or 3 manual manual manual Limits and
DataAspectRatio
are honored; the
PlotBoxAspectRatio
is ignored.

See “Understanding Axes Aspect Ratio” for more information.

2-288

Axes Properties

DataAspectRatioMode
{auto} | manual

User or MATLAB controlled data scaling. This property controls
whether the values of the DataAspectRatio property are user
defined or selected automatically by MATLAB. Setting values
for the DataAspectRatio property automatically sets this
property to manual. Changing DataAspectRatioMode to manual
disables the stretch-to-fill behavior if DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode are all
auto.

DeleteFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Delete axes callback function. A callback function that executes
when the axes object is deleted (e.g., when you issue a delete or
clf command). MATLAB executes the routine before destroying
the object’s properties so the callback can query these values.

The handle of the object whose DeleteFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is also accessible through the Root CallbackObject property,
which can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DrawMode
{normal} | fast

Rendering mode. This property controls the way MATLAB
renders graphics objects displayed in the axes when the figure
Renderer property is painters.

2-289

Axes Properties

• normal mode draws objects in back to front ordering based on
the current view in order to handle hidden surface elimination
and object intersections.

• fast mode draws objects in the order in which you specify the
drawing commands, without considering the relationships of
the objects in three dimensions. This results in faster rendering
because it requires no sorting of objects according to location
in the view, but can produce undesirable results because it
bypasses the hidden surface elimination and object intersection
handling provided by normal DrawMode.

When the figure Renderer is zbuffer, DrawMode is ignored, and
hidden surface elimination and object intersection handling are
always provided.

FontAngle
{normal} | italic | oblique

Select italic or normal font. This property selects the character
slant for axes text. normal specifies a nonitalic font. italic and
oblique specify italic font.

FontName
A name such as Courier or the string FixedWidth

Font family name. The font family name specifying the font to use
for axes labels. To display and print properly, FontName must be
a font that your system supports. Note that the x-, y-, and z-axis
labels are not displayed in a new font until you manually reset
them (by setting the XLabel, YLabel, and ZLabel properties or by
using the xlabel, ylabel, or zlabel command). Tick mark labels
change immediately.

Specifying a Fixed-Width Font

If you want an axes to use a fixed-width font that looks good in
any locale, you should set FontName to the string FixedWidth:

2-290

Axes Properties

set(axes_handle,'FontName','FixedWidth')

This eliminates the need to hardcode the name of a fixed-width
font, which might not display text properly on systems that do not
use ASCII character encoding (such as in Japan, where multibyte
character sets are used). A properly written MATLAB application
that needs to use a fixed-width font should set FontName to
FixedWidth (note that this string is case sensitive) and rely
on FixedWidthFontName to be set correctly in the end user’s
environment.

End users can adapt a MATLAB application to different locales or
personal environments by setting the root FixedWidthFontName
property to the appropriate value for that locale from startup.m.

Note that setting the root FixedWidthFontName property causes
an immediate update of the display to use the new font.

FontSize
Font size specified in FontUnits

Font size. An integer specifying the font size to use for axes labels
and titles, in units determined by the FontUnits property. The
default point size is 12. The x-, y-, and z-axis text labels are not
displayed in a new font size until you manually reset them (by
setting the XLabel, YLabel, or ZLabel properties or by using the
xlabel, ylabel, or zlabel command). Tick mark labels change
immediately.

FontUnits
{points} | normalized | inches | centimeters | pixels

Units used to interpret the FontSize property. When set to
normalized, MATLAB interprets the value of FontSize as a
fraction of the height of the axes. For example, a normalized
FontSize of 0.1 sets the text characters to a font whose height
is one tenth of the axes’ height. The default units (points), are
equal to 1/72 of an inch.

2-291

Axes Properties

Note that if you are setting both the FontSize and the FontUnits
in one function call, you must set the FontUnits property first so
that MATLAB can correctly interpret the specified FontSize.

FontWeight
{normal} | bold | light | demi

Select bold or normal font. The character weight for axes text.
The x-, y-, and z-axis text labels are not displayed in bold until you
manually reset them (by setting the XLabel, YLabel, and ZLabel
properties or by using the xlabel, ylabel, or zlabel commands).
Tick mark labels change immediately.

GridLineStyle
- | - -| {:} | -. | none

Line style used to draw grid lines. The line style is a string
consisting of a character, in quotes, specifying solid lines (-),
dashed lines (--), dotted lines(:), or dash-dot lines (-.). The default
grid line style is dotted. To turn on grid lines, use the grid
command.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally drawing into or
deleting a figure that contains only user interface devices (such as
a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from

2-292

Axes Properties

command-line users, while allowing callback routines to have
complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all
times. This may be necessary when a callback routine invokes
a function that might potentially damage the GUI (such as
evaluating a user-typed string) and so temporarily hides its own
handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the Root’s CurrentFigure property,
objects do not appear in the Root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

You can set the Root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties).

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

HitTest
{on} | off

Selectable by mouse click. HitTest determines if the axes can
become the current object (as returned by the gco command and
the figure CurrentObject property) as a result of a mouse click

2-293

Axes Properties

on the axes. If HitTest is off, clicking the axes selects the object
below it (which is usually the figure containing it).

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether an axes callback routine can be interrupted by
subsequently invoked callback routines. Only callback routines
defined for the ButtonDownFcn are affected by the Interruptible
property. MATLAB checks for events that can interrupt a callback
routine only when it encounters a drawnow, figure, getframe,
or pause command in the routine. See the BusyAction property
for related information.

Setting Interruptible to on allows any graphics object’s callback
routine to interrupt callback routines originating from an axes
property. Note that MATLAB does not save the state of variables
or the display (e.g., the handle returned by the gca or gcf
command) when an interruption occurs.

Layer
{bottom} | top

Draw axis lines below or above graphics objects. This property
determines if axis lines and tick marks are drawn on top or below
axes children objects for any 2-D view (i.e., when you are looking
along the x-, y-, or z-axis). This is useful for placing grid lines
and tick marks on top of images.

LineStyleOrder
LineSpec (default: a solid line ’-’)

Order of line styles and markers used in a plot. This property
specifies which line styles and markers to use and in what order
when creating multiple-line plots. For example,

set(gca,'LineStyleOrder', '-*|:|o')

2-294

Axes Properties

sets LineStyleOrder to solid line with asterisk marker, dotted
line, and hollow circle marker. The default is (-), which specifies a
solid line for all data plotted. Alternatively, you can create a cell
array of character strings to define the line styles:

set(gca,'LineStyleOrder',{'-*',':','o'})

MATLAB supports four line styles, which you can specify any
number of times in any order. MATLAB cycles through the line
styles only after using all colors defined by the ColorOrder
property. For example, the first eight lines plotted use the
different colors defined by ColorOrder with the first line style.
MATLAB then cycles through the colors again, using the second
line style specified, and so on.

You can also specify line style and color directly with the plot
and plot3 functions or by altering the properties of theline or
lineseries objects after creating the graph.

High-Level Functions and LineStyleOrder

Note that, if the axes NextPlot property is set to replace (the
default), high-level functions like plot reset the LineStyleOrder
property before determining the line style to use. If you want
MATLAB to use a LineStyleOrder that is different from the
default, set NextPlot to replacechildren.

Specifying a Default LineStyleOrder

You can also specify your own default LineStyleOrder. For
example, this statement

set(0,'DefaultAxesLineStyleOrder',{'-*',':','o'})

creates a default value for the axes LineStyleOrder that is not
reset by high-level plotting functions.

2-295

Axes Properties

LineWidth
line width in points

Width of axis lines. This property specifies the width, in points, of
the x-, y-, and z-axis lines. The default line width is 0.5 points (1
point = 1/72 inch).

MinorGridLineStyle
- | - -| {:} | -. | none

Line style used to draw minor grid lines. The line style is a string
consisting of one or more characters, in quotes, specifying solid
lines (-), dashed lines (--), dotted lines (:), or dash-dot lines (-.).
The default minor grid line style is dotted. To turn on minor grid
lines, use the grid minor command.

NextPlot
add | {replace} | replacechildren

Where to draw the next plot. This property determines how
high-level plotting functions draw into an existing axes.

• add — Use the existing axes to draw graphics objects.

• replace — Reset all axes properties except Position to their
defaults and delete all axes children before displaying graphics
(equivalent to cla reset).

• replacechildren — Remove all child objects, but do not reset
axes properties (equivalent to cla).

The newplot function simplifies the use of the NextPlot property
and is used by M-file functions that draw graphs using only
low-level object creation routines. See the M-file pcolor.m for an
example. Note that figure graphics objects also have a NextPlot
property.

OuterPosition
four-element vector

2-296

Axes Properties

Position of axes including labels, title, and a margin. A
four-element vector specifying a rectangle that locates the outer
bounds of the axes, including axis labels, the title, and a margin.
The vector is defined as follows:

[left bottom width height]

where left and bottom define the distance from the lower-left
corner of the figure window to the lower-left corner of the
rectangle. width and height are the dimensions of the rectangle

The following picture shows the region defined by the
OuterPosition enclosed in a yellow rectangle.

When ActivePositionProperty is set to OuterPosition (the
default), none of the text is clipped when you resize the figure.

2-297

Axes Properties

The default value of [0 0 1 1] (normalized units) includes the
interior of the figure.

All measurements are in units specified by the Units property.

See the TightInset property for related information.

See “Automatic Axes Resize” for a discussion of how to use axes
positioning properties.

Parent
figure or uipanel handle

Axes parent. The handle of the axes’ parent object. The parent of
an axes object is the figure in which it is displayed or the uipanel
object that contains it. The utility function gcf returns the handle
of the current axes Parent. You can reparent axes to other figure
or uipanel objects.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

PlotBoxAspectRatio
[px py pz]

Relative scaling of axes plot box. A three-element vector
controlling the relative scaling of the plot box in the x, y, and z
directions. The plot box is a box enclosing the axes data region as
defined by the x-, y-, and z-axis limits.

Note that the PlotBoxAspectRatio property interacts with
the DataAspectRatio, XLimMode, YLimMode, and ZLimMode
properties to control the way graphics objects are displayed in the
axes. Setting the PlotBoxAspectRatio disables stretch-to-fill
behavior, if DataAspectRatioMode, PlotBoxAspectRatioMode,
and CameraViewAngleMode are all auto.

2-298

Axes Properties

PlotBoxAspectRatioMode
{auto} | manual

User or MATLAB controlled axis scaling. This property controls
whether the values of the PlotBoxAspectRatio property are user
defined or selected automatically by MATLAB. Setting values
for the PlotBoxAspectRatio property automatically sets this
property to manual. Changing the PlotBoxAspectRatioMode to
manual disables stretch-to-fill behavior if DataAspectRatioMode,
PlotBoxAspectRatioMode, and CameraViewAngleMode are all
auto.

Position
four-element vector

Position of axes. A four-element vector specifying a rectangle that
locates the axes within its parent container (figure or uipanel).
The vector is of the form

[left bottom width height]

where left and bottom define the distance from the lower-left
corner of the container to the lower-left corner of the rectangle.
width and height are the dimensions of the rectangle. All
measurements are in units specified by the Units property.

When axes stretch-to-fill behavior is enabled (when
DataAspectRatioMode, PlotBoxAspectRatioMode, and
CameraViewAngleMode are all auto), the axes are stretched to fill
the Position rectangle. When stretch-to-fill is disabled, the axes
are made as large as possible, while obeying all other properties,
without extending outside the Position rectangle.

See the OuterPosition poperty for related information.

See “Automatic Axes Resize” for a discussion of how to use axes
positioning properties.

2-299

Axes Properties

Projection
{orthographic} | perspective

Type of projection. This property selects between two projection
types:

• orthographic — This projection maintains the correct relative
dimensions of graphics objects with regard to the distance a
given point is from the viewer. Parallel lines in the data are
drawn parallel on the screen.

• perspective — This projection incorporates foreshortening,
which allows you to perceive depth in 2-D representations of 3-D
objects. Perspective projection does not preserve the relative
dimensions of objects; a distant line segment is displayed
smaller than a nearer line segment of the same length. Parallel
lines in the data may not appear parallel on screen.

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection “handles” at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that the axes has been selected.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing four edge handles and four corner handles. When
SelectionHighlight is off, MATLAB does not draw the handles.

Tag
string

2-300

Axes Properties

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callback
routines.

For example, suppose you want to direct all graphics output from
an M-file to a particular axes, regardless of user actions that may
have changed the current axes. To do this, identify the axes with
a Tag:

axes('Tag','Special Axes')

Then make that axes the current axes before drawing by searching
for the Tag with findobj:

axes(findobj('Tag','Special Axes'))

TickDir
in | out

Direction of tick marks. For 2-D views, the default is to direct tick
marks inward from the axis lines; 3-D views direct tick marks
outward from the axis line.

TickDirMode
{auto} | manual

Automatic tick direction control. In auto mode, MATLAB directs
tick marks inward for 2-D views and outward for 3-D views. When
you specify a setting for TickDir, MATLAB sets TickDirMode to
manual. In manual mode, MATLAB does not change the specified
tick direction.

TickLength
[2DLength 3DLength]

2-301

Axes Properties

Length of tick marks. A two-element vector specifying the length
of axes tick marks. The first element is the length of tick marks
used for 2-D views and the second element is the length of tick
marks used for 3-D views. Specify tick mark lengths in units
normalized relative to the longest of the visible X-, Y-, or Z-axis
annotation lines.

TightInset
[left bottom right top] Read only

Margins added to Position to include text labels. The values of this
property are the distances between the bounds of the Position
property and the extent of the axes text labels and title. When
added to the Position width and height values, the TightInset
defines the tightest bounding box that encloses the axes and it’s
labels and title.

See “Automatic Axes Resize” for more information.

Title
handle of text object

Axes title. The handle of the text object that is used for the axes
title. You can use this handle to change the properties of the title
text or you can set Title to the handle of an existing text object.
For example, the following statement changes the color of the
current title to red:

set(get(gca,'Title'),'Color','r')

To create a new title, set this property to the handle of the text
object you want to use:

set(gca,'Title',text('String','New Title','Color','r'))

However, it is generally simpler to use the title command to
create or replace an axes title:

title('New Title','Color','r') % Make text color red

2-302

Axes Properties

title({'This title','has 2 lines'}) % Two line title

Type
string (read only)

Type of graphics object. This property contains a string that
identifies the class of graphics object. For axes objects, Type is
always set to 'axes'.

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with the axes. Assign this property the
handle of a uicontextmenu object created in the axes’ parent
figure. Use the uicontextmenu function to create the context
menu. MATLAB displays the context menu whenever you
right-click over the axes.

Units
inches | centimeters | {normalized} | points | pixels
| characters

Axes position units. The units used to interpret the Position
property. All units are measured from the lower left corner of
the figure window.

Note The Units property controls the positioning of the axes
within the figure. This property does not affect the data units
used for graphing. See the axes XLim, YLim, and ZLim properties
to set the limits of each axis data units.

• normalized units map the lower left corner of the figure
window to (0,0) and the upper right corner to (1.0, 1.0).

• inches, centimeters, and points are absolute units (one point
equals 1/72 of an inch).

2-303

Axes Properties

• Character units are defined by characters from the default
system font; the width of one character is the width of the letter
x, and the height of one character is the distance between the
baselines of two lines of text.

When specifying the units as property/value pairs during object
creation, you must set the Units property before specifying the
properties that you want to use these units.

UserData
matrix

User-specified data. This property can be any data you want to
associate with the axes object. The axes does not use this property,
but you can access it using the set and get functions.

View
Obsolete

The functionality provided by the View property is now controlled
by the axes camera properties — CameraPosition, CameraTarget,
CameraUpVector, and CameraViewAngle. See the view command.

Visible
{on} | off

Visibility of axes. By default, axes are visible. Setting this
property to off prevents axis lines, tick marks, and labels from
being displayed. The Visible property does not affect children
of axes.

XAxisLocation
top | {bottom}

Location of x-axis tick marks and labels. This property controls
where MATLAB displays the x-axis tick marks and labels. Setting
this property to top moves the x-axis to the top of the plot from
its default position at the bottom. This property applies to 2–D
views only.

2-304

Axes Properties

YAxisLocation
right | {left}

Location of y-axis tick marks and labels. This property controls
where MATLAB displays the y-axis tick marks and labels. Setting
this property to right moves the y-axis to the right side of the plot
from its default position on the left side. This property applies to
2–D views only. See the plotyy function for a simple way to use
two y-axes.

Properties That Control the X-, Y-, or Z-Axis

XColor
YColor
ZColor

ColorSpec

Color of axis lines. A three-element vector specifying an RGB
triple, or a predefined MATLAB color string. This property
determines the color of the axis lines, tick marks, tick mark
labels, and the axis grid lines of the respective x-, y-, and z-axis.
The default color axis color is black. SeeColorSpec for details on
specifying colors.

XDir
YDir
ZDir

{normal} | reverse

Direction of increasing values. A mode controlling the direction of
increasing axis values. Axes form a right-hand coordinate system.
By default,

• x-axis values increase from left to right. To reverse the direction
of increasing x values, set this property to reverse.

set(gca,'XDir','reverse')

2-305

Axes Properties

• y-axis values increase from bottom to top (2-D view) or front to
back (3-D view). To reverse the direction of increasing y values,
set this property to reverse.

set(gca,'YDir','reverse')

• z-axis values increase pointing out of the screen (2-D view)
or from bottom to top (3-D view). To reverse the direction of
increasing z values, set this property to reverse.

set(gca,'ZDir','reverse')

XGrid
YGrid
ZGrid

on | {off}

Axis gridline mode. When you set any of these properties to
on, MATLAB draws grid lines perpendicular to the respective
axis (i.e., along lines of constant x, y, or z values). Use the grid
command to set all three properties on or off at once.

set(gca,'XGrid','on')

XLabel
YLabel
ZLabel

handle of text object

Axis labels. The handle of the text object used to label the x-, y-,
or z-axis, respectively. To assign values to any of these properties,
you must obtain the handle to the text string you want to use as a
label. This statement defines a text object and assigns its handle
to the XLabel property:

set(get(gca,'XLabel'),'String','axis label')

2-306

Axes Properties

MATLAB places the string 'axis label' appropriately for an
x-axis label. Any text object whose handle you specify as an
XLabel, YLabel, or ZLabel property is moved to the appropriate
location for the respective label.

Alternatively, you can use the xlabel, ylabel, and zlabel
functions, which generally provide a simpler means to label axis
lines.

Note that using a bitmapped font (e.g., Courier is usually a
bitmapped font) might cause the labels to be rotated improperly.
As a workaround, use a TrueType font (e.g., Courier New) for axis
labels. See your system documentation to determine the types of
fonts installed on your system.

XLim
YLim
ZLim

[minimum maximum]

Axis limits. A two-element vector specifying the minimum
and maximum values of the respective axis. These values are
determined by the data you are plotting.

Changing these properties affects the scale of the x-, y-, or
z-dimension as well as the placement of labels and tick marks on
the axis. The default values for these properties are [0 1].

See the axis, datetick, xlim, ylim, and zlim commands to set
these properties.

XLimMode
YLimMode
ZLimMode

{auto} | manual

MATLAB or user-controlled limits. The axis limits mode
determines whether MATLAB calculates axis limits based on the

2-307

Axes Properties

data plotted (i.e., the XData, YData, or ZData of the axes children)
or uses the values explicitly set with the XLim, YLim, or ZLim
property, in which case, the respective limits mode is set to manual.

XMinorGrid
YMinorGrid
ZMinorGrid

on | {off}

Enable or disable minor gridlines. When set to on, MATLAB
draws gridlines aligned with the minor tick marks of the
respective axis. Note that you do not have to enable minor ticks
to display minor grids.

XMinorTick
YMinorTick
ZMinorTick

on | {off}

Enable or disable minor tick marks. When set to on, MATLAB
draws tick marks between the major tick marks of the respective
axis. MATLAB automatically determines the number of minor
ticks based on the space between the major ticks.

XScale
YScale
ZScale

{linear} | log

Axis scaling. Linear or logarithmic scaling for the respective axis.
See also loglog, semilogx, and semilogy.

XTick
YTick
ZTick

vector of data values locating tick marks

Tick spacing. A vector of x-, y-, or z-data values that determine
the location of tick marks along the respective axis. If you do

2-308

Axes Properties

not want tick marks displayed, set the respective property to
the empty vector, []. These vectors must contain monotonically
increasing values.

XTickLabel
YTickLabel
ZTickLabel

string

Tick labels. A matrix of strings to use as labels for tick marks
along the respective axis. These labels replace the numeric labels
generated by MATLAB. If you do not specify enough text labels
for all the tick marks, MATLAB uses all of the labels specified,
then reuses the specified labels.

For example, the statement

set(gca,'XTickLabel',{'One';'Two';'Three';'Four'})

labels the first four tick marks on the x-axis and then reuses the
labels until all ticks are labeled.

Labels can be specified as cell arrays of strings, padded string
matrices, string vectors separated by vertical slash characters, or
as numeric vectors (where each number is implicitly converted
to the equivalent string using num2str). All of the following are
equivalent:

set(gca,'XTickLabel',{'1';'10';'100'})
set(gca,'XTickLabel','1|10|100')
set(gca,'XTickLabel',[1;10;100])
set(gca,'XTickLabel',['1 ';'10 ';'100'])

Note that tick labels do not interpret TeX character sequences
(however, the Title, XLabel, YLabel, and ZLabel properties do).

2-309

Axes Properties

XTickMode
YTickMode
ZTickMode

{auto} | manual

MATLAB or user-controlled tick spacing. The axis tick modes
determine whether MATLAB calculates the tick mark spacing
based on the range of data for the respective axis (auto mode) or
uses the values explicitly set for any of the XTick, YTick, and
ZTick properties (manual mode). Setting values for the XTick,
YTick, or ZTick properties sets the respective axis tick mode to
manual.

XTickLabelMode
YTickLabelMode
ZTickLabelMode

{auto} | manual

MATLAB or user-determined tick labels. The axis tick mark
labeling mode determines whether MATLAB uses numeric tick
mark labels that span the range of the plotted data (auto mode)
or uses the tick mark labels specified with the XTickLabel,
YTickLabel, or ZTickLabel property (manual mode). Setting
values for the XTickLabel, YTickLabel, or ZTickLabel property
sets the respective axis tick label mode to manual.

2-310

axis

Purpose Axis scaling and appearance

Syntax axis([xmin xmax ymin ymax])
axis([xmin xmax ymin ymax zmin zmax cmin cmax])
v = axis
axis auto
axis manual
axis tight
axis fill
axis ij
axis xy
axis equal
axis image
axis square
axis vis3d
axis normal
axis off
axis on
axis(axes_handles,...)
[mode,visibility,direction] = axis('state')

Description axis manipulates commonly used axes properties. (See Algorithm
section.)

axis([xmin xmax ymin ymax]) sets the limits for the x- and y-axis
of the current axes.

axis([xmin xmax ymin ymax zmin zmax cmin cmax]) sets the x-, y-,
and z-axis limits and the color scaling limits (see caxis) of the current
axes.

v = axis returns a row vector containing scaling factors for the x-, y-,
and z-axis. v has four or six components depending on whether the
current axes is 2-D or 3-D, respectively. The returned values are the
current axes XLim, Ylim, and ZLim properties.

axis auto sets MATLAB to its default behavior of computing the
current axes limits automatically, based on the minimum and maximum
values of x, y, and z data. You can restrict this automatic behavior to

2-311

axis

a specific axis. For example, axis 'auto x' computes only the x-axis
limits automatically; axis 'auto yz' computes the y- and z-axis limits
automatically.

axis manual and axis(axis) freezes the scaling at the current limits, so
that if hold is on, subsequent plots use the same limits. This sets the
XLimMode, YLimMode, and ZLimMode properties to manual.

axis tight sets the axis limits to the range of the data.

axis fill sets the axis limits and PlotBoxAspectRatio so that
the axes fill the position rectangle. This option has an effect only if
PlotBoxAspectRatioMode or DataAspectRatioMode is manual.

axis ij places the coordinate system origin in the upper left corner.
The i-axis is vertical, with values increasing from top to bottom. The
j-axis is horizontal with values increasing from left to right.

axis xy draws the graph in the default Cartesian axes format with
the coordinate system origin in the lower left corner. The x-axis is
horizontal with values increasing from left to right. The y-axis is
vertical with values increasing from bottom to top.

axis equal sets the aspect ratio so that the data units are the same
in every direction. The aspect ratio of the x-, y-, and z-axis is adjusted
automatically according to the range of data units in the x, y, and z
directions.

axis image is the same as axis equal except that the plot box fits
tightly around the data.

axis square makes the current axes region square (or cubed when
three-dimensional). MATLAB adjusts the x-axis, y-axis, and z-axis so
that they have equal lengths and adjusts the increments between data
units accordingly.

axis vis3d freezes aspect ratio properties to enable rotation of 3-D
objects and overrides stretch-to-fill.

axis normal automatically adjusts the aspect ratio of the axes and the
relative scaling of the data units so that the plot fits the figure’s shape
as well as possible.

2-312

axis

axis off turns off all axis lines, tick marks, and labels.

axis on turns on all axis lines, tick marks, and labels.

axis(axes_handles,...) applies the axis command to the specified
axes. For example, the following statements

h1 = subplot(221);
h2 = subplot(222);
axis([h1 h2],'square')

set both axes to square.

[mode,visibility,direction] = axis('state') returns three
strings indicating the current setting of axes properties:

Output
Argument Strings Returned

mode 'auto' | 'manual'

visibility 'on' | 'off'

direction 'xy' | 'ij'

mode is auto if XLimMode, YLimMode, and ZLimMode are all set to auto. If
XLimMode, YLimMode, or ZLimMode is manual, mode is manual.

Keywords to axis can be combined, separated by a space (e.g., axis
tight equal). These are evaluated from left to right, so subsequent
keywords can overwrite properties set by prior ones.

Remarks You can create an axes (and a figure for it) if none exists with the axis
command. However, if you specify non-default limits or formatting for
the axes when doing this, such as [4 8 2 9], square, equal, or image,
the property is ignored because there are no axis limits to adjust in the
absence of plotted data. To use axis in this manner, you can set hold
on to keep preset axes limits from being overridden.

2-313

axis

Examples The statements

x = 0:.025:pi/2;
plot(x,tan(x),'-ro')

use the automatic scaling of the y-axis based on ymax = tan(1.57),
which is well over 1000:

The right figure shows a more satisfactory plot after typing

axis([0 pi/2 0 5])

2-314

axis

Algorithm When you specify minimum and maximum values for the x-, y-, and
z-axes, axis sets the XLim, Ylim, and ZLim properties for the current
axes to the respective minimum and maximum values in the argument
list. Additionally, the XLimMode, YLimMode, and ZLimMode properties for
the current axes are set to manual.

axis auto sets the current axes XLimMode, YLimMode, and ZLimMode
properties to 'auto'.

axis manual sets the current axes XLimMode, YLimMode, and ZLimMode
properties to 'manual'.

The following table shows the values of the axes properties set by axis
equal, axis normal, axis square, and axis image.

2-315

axis

Axes Property or
Behavior axis equal

axis
normal axis square axis image

DataAspectRatio property [1 1 1] not set not set [1 1 1]

DataAspectRatioMode
property

manual auto auto manual

PlotBoxAspectRatio
property

[3 4 4] not set [1 1 1] auto

PlotBoxAspectRatioMode
property

manual auto manual auto

Stretch-to-fill behavior; disabled active disabled disabled

See Also axes, grid, subplot, xlim, ylim, zlim

Properties of axes graphics objects

“Axes Operations” on page 1-96 for related functions

For aspect ratio behavior, see in the axes properties reference page.

2-316

balance

Purpose Diagonal scaling to improve eigenvalue accuracy

Syntax [T,B] = balance(A)
[S,P,B] = balance(A)
B = balance(A)
B = balance(A,'noperm')

Description [T,B] = balance(A) returns a similarity transformation T such that
B = T\A*T, and B has, as nearly as possible, approximately equal row
and column norms. T is a permutation of a diagonal matrix whose
elements are integer powers of two to prevent the introduction of
roundoff error. If A is symmetric, then B == A and T is the identity
matrix.

[S,P,B] = balance(A) returns the scaling vector S and the
permutation vector P separately. The transformation T and balanced
matrix B are obtained from A, S, and P by T(:,P) = diag(S) and
B(P,P) = diag(1./S)*A*diag(S).

B = balance(A) returns just the balanced matrix B.

B = balance(A,'noperm') scales A without permuting its rows and
columns.

Remarks Nonsymmetric matrices can have poorly conditioned eigenvalues.
Small perturbations in the matrix, such as roundoff errors, can lead to
large perturbations in the eigenvalues. The condition number of the
eigenvector matrix,

cond(V) = norm(V)*norm(inv(V))

where

[V,T] = eig(A)

relates the size of the matrix perturbation to the size of the eigenvalue
perturbation. Note that the condition number of A itself is irrelevant
to the eigenvalue problem.

2-317

balance

Balancing is an attempt to concentrate any ill conditioning of the
eigenvector matrix into a diagonal scaling. Balancing usually cannot
turn a nonsymmetric matrix into a symmetric matrix; it only attempts
to make the norm of each row equal to the norm of the corresponding
column.

Note The MATLAB eigenvalue function, eig(A), automatically
balances A before computing its eigenvalues. Turn off the balancing
with eig(A,'nobalance').

Examples This example shows the basic idea. The matrix A has large elements
in the upper right and small elements in the lower left. It is far from
being symmetric.

A = [1 100 10000; .01 1 100; .0001 .01 1]
A =

1.0e+04 *
0.0001 0.0100 1.0000
0.0000 0.0001 0.0100
0.0000 0.0000 0.0001

Balancing produces a diagonal matrix T with elements that are powers
of two and a balanced matrix B that is closer to symmetric than A.

[T,B] = balance(A)
T =

1.0e+03 *
2.0480 0 0

0 0.0320 0
0 0 0.0003

B =
1.0000 1.5625 1.2207
0.6400 1.0000 0.7813
0.8192 1.2800 1.0000

2-318

balance

To see the effect on eigenvectors, first compute the eigenvectors of A,
shown here as the columns of V.

[V,E] = eig(A); V
V =

-1.0000 0.9999 0.9937
0.0050 0.0100 -0.1120
0.0000 0.0001 0.0010

Note that all three vectors have the first component the largest. This
indicates V is badly conditioned; in fact cond(V) is 8.7766e+003. Next,
look at the eigenvectors of B.

[V,E] = eig(B); V
V =

-0.8873 0.6933 0.0898
0.2839 0.4437 -0.6482
0.3634 0.5679 -0.7561

Now the eigenvectors are well behaved and cond(V) is 1.4421. The ill
conditioning is concentrated in the scaling matrix; cond(T) is 8192.

This example is small and not really badly scaled, so the computed
eigenvalues of A and B agree within roundoff error; balancing has little
effect on the computed results.

Algorithm Inputs of Type Double

For inputs of type double, balance uses the linear algebra package
(LAPACK) routines DGEBAL (real) and ZGEBAL (complex). If you request
the output T, balance also uses the LAPACK routines DGEBAK (real)
and ZGEBAK (complex).

Inputs of Type Single

For inputs of type single, balance uses the LAPACK routines SGEBAL
(real) and CGEBAL (complex). If you request the output T, balance also
uses the LAPACK routines SGEBAK (real) and CGEBAK (complex).

2-319

balance

Limitations Balancing can destroy the properties of certain matrices; use it with
some care. If a matrix contains small elements that are due to roundoff
error, balancing might scale them up to make them as significant as the
other elements of the original matrix.

See Also eig

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, SIAM, Philadelphia, 1999.

2-320

http://www.netlib.org/lapack/lug/lapack_lug.html

bar, barh

Purpose Plot bar graph (vertical and horizontal)

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs in
plot edit mode with the Property Editor. For details, see “Plotting Tools
— Interactive Plotting” in the MATLAB Graphics documentation and
“Creating Plots from the Workspace Browser” in the MATLAB Desktop
Tools documentation.

Syntax bar(Y)
bar(x,Y)
bar(...,width)
bar(...,'style')
bar(...,'bar_color')
bar(axes_handle,...)
barh(axes_handle,...)
h = bar(...)
barh(...)
h = barh(...)
hpatches = bar('v6',...)
hpatches = barh('v6',...)

Description A bar graph displays the values in a vector or matrix as horizontal or
vertical bars.

bar(Y) draws one bar for each element in Y. If Y is a matrix, bar groups
the bars produced by the elements in each row. The x-axis scale ranges
from 1 up to length(Y) when Y is a vector, and 1 to size(Y,1), which
is the number of rows, when Y is a matrix. The default is to scale the
x-axis to the highest x-tick on the plot, (a multiple of 10, 100, etc.). If
you want the x-axis scale to end exactly at the last bar, you can use the
default, and then, for example, type

2-321

bar, barh

set(gca,'xlim',[1 length(Y)])

at the MATLAB prompt.

bar(x,Y) draws a bar for each element in Y at locations specified in
x, where x is a vector defining the x-axis intervals for the vertical
bars. The x-values can be nonmonotonic, but cannot contain duplicate
values. If Y is a matrix, bar groups the elements of each row in Y at
corresponding locations in x.

bar(...,width) sets the relative bar width and controls the separation
of bars within a group. The default width is 0.8, so if you do not specify
x, the bars within a group have a slight separation. If width is 1, the
bars within a group touch one another.

bar(...,'style') specifies the style of the bars. 'style' is 'grouped'
or 'stacked'. 'group' is the default mode of display.

• 'grouped' displays m groups of n vertical bars, where m is the
number of rows and n is the number of columns in Y. The group
contains one bar per column in Y.

• 'stacked' displays one bar for each row in Y. The bar height is
the sum of the elements in the row. Each bar is multicolored, with
colors corresponding to distinct elements and showing the relative
contribution each row element makes to the total sum.

bar(...,'bar_color') displays all bars using the color specified by
the single-letter abbreviation 'r', 'g', 'b', 'c', 'm', 'y', 'k', or 'w'.

bar(axes_handle,...) and barh(axes_handle,...) plot into the
axes with the handle axes_handle instead of into the current axes (gca).

h = bar(...) returns a vector of handles to barseries graphics objects,
one for each created. When Y is a matrix, bar creates one barseries
graphics object per column in Y.

barh(...) and h = barh(...) create horizontal bars. Y determines
the bar length. The vector x is a vector defining the y-axis intervals for
horizontal bars. The x-values can be nonmonotonic, but cannot contain
duplicate values.

2-322

bar, barh

Backward-Compatible Versions

hpatches = bar('v6',...) and hpatches = barh('v6',...)
return the handles of patch objects instead of barseries objects for
compatibility with MATLAB 6.5 and earlier. See patch object properties
for a discussion of the properties you can set to control the appearance
of these bar graphs.

Note The v6 option enables users of Version 7.x of MATLAB to create
FIG-files that previous versions can open. It is obsolete and will be
removed in a future version of MATLAB.

See

Plot Objects and Backward Compatibility for more information.

Barseries
Objects

Creating a bar graph of an m-by-n matrix creates m groups of n barseries
objects. Each barseries object contains the data for corresponding x
values of each bar group (as indicated by the coloring of the bars).

Note that some barseries object properties set on an individual barseries
object set the values for all barseries objects in the graph. See the
barseries property descriptions for information on specific properties.

Examples Single Series of Data

This example plots a bell-shaped curve as a bar graph and sets the
colors of the bars to red.

x = -2.9:0.2:2.9;
bar(x,exp(-x.*x),'r')

2-323

bar, barh

Bar Graph Options

This example illustrates some bar graph options.

Y = round(rand(5,3)*10);
subplot(2,2,1)
bar(Y,'group')
title 'Group'
subplot(2,2,2)
bar(Y,'stack')
title 'Stack'
subplot(2,2,3)
barh(Y,'stack')
title 'Stack'
subplot(2,2,4)
bar(Y,1.5)
title 'Width = 1.5'

2-324

bar, barh

Setting Properties with Multiobject Graphs

This example creates a graph that displays three groups of bars and
contains five barseries objects. Since all barseries objects in a graph
share the same baseline, you can set values using any barseries object’s
BaseLine property. This example uses the first handle returned in h.

Y = randn(3,5);
h = bar(Y);
set(get(h(1),'BaseLine'),'LineWidth',2,'LineStyle',':')
colormap summer % Change the color scheme

2-325

bar, barh

See Also bar3, ColorSpec, patch, stairs, hist

“Area, Bar, and Pie Plots” on page 1-88 for related functions

Barseries Properties

“Bar and Area Graphs” for more examples

2-326

bar3, bar3h

Purpose Plot 3-D bar chart

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see “Plotting
Tools — Interactive Plotting” in the MATLAB Graphics documentation
and “Creating Graphics from the Workspace Browser” in the MATLAB
Desktop Tools documentation.

Syntax bar3(Y)
bar3(x,Y)
bar3(...,width)
bar3(...,'style')
bar3(...,LineSpec)
bar3(axes_handle,...)
h = bar3(...)
bar3h(...)
h = bar3h(...)

Description bar3 and bar3h draw three-dimensional vertical and horizontal bar
charts.

bar3(Y) draws a three-dimensional bar chart, where each element in Y
corresponds to one bar. When Y is a vector, the x-axis scale ranges from
1 to length(Y). When Y is a matrix, the x-axis scale ranges from 1 to
size(Y,2), which is the number of columns, and the elements in each
row are grouped together.

bar3(x,Y) draws a bar chart of the elements in Y at the locations
specified in x, where x is a vector defining the y-axis intervals for
vertical bars. The x-values can be nonmonotonic, but cannot contain
duplicate values. If Y is a matrix, bar3 clusters elements from the

2-327

bar3, bar3h

same row in Y at locations corresponding to an element in x. Values of
elements in each row are grouped together.

bar3(...,width) sets the width of the bars and controls the separation
of bars within a group. The default width is 0.8, so if you do not specify
x, bars within a group have a slight separation. If width is 1, the bars
within a group touch one another.

bar3(...,'style') specifies the style of the bars. 'style' is
'detached', 'grouped', or 'stacked'. 'detached' is the default
mode of display.

• 'detached' displays the elements of each row in Y as separate blocks
behind one another in the x direction.

• 'grouped' displays n groups of m vertical bars, where n is the
number of rows and m is the number of columns in Y. The group
contains one bar per column in Y.

• 'stacked' displays one bar for each row in Y. The bar height is
the sum of the elements in the row. Each bar is multicolored, with
colors corresponding to distinct elements and showing the relative
contribution each row element makes to the total sum.

bar3(...,LineSpec) displays all bars using the color specified by
LineSpec.

bar3(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = bar3(...) returns a vector of handles to patch graphics objects,
one for each created. bar3 creates one patch object per column in Y.
When Y is a matrix, bar3 creates one patch graphics object per column
in Y.

bar3h(...) and h = bar3h(...) create horizontal bars. Y determines
the bar length. The vector x is a vector defining the y-axis intervals
for horizontal bars.

2-328

bar3, bar3h

Examples This example creates six subplots showing the effects of different
arguments for bar3. The data Y is a 7-by-3 matrix generated using
the cool colormap:

Y = cool(7);
subplot(3,2,1)
bar3(Y,'detached')
title('Detached')
subplot(3,2,2)
bar3(Y,0.25,'detached')
title('Width = 0.25')
subplot(3,2,3)
bar3(Y,'grouped')
title('Grouped')
subplot(3,2,4)
bar3(Y,0.5,'grouped')
title('Width = 0.5')
subplot(3,2,5)
bar3(Y,'stacked')
title('Stacked')
subplot(3,2,6)
bar3(Y,0.3,'stacked')
title('Width = 0.3')
colormap([1 0 0;0 1 0;0 0 1])

2-329

bar3, bar3h

2-330

bar3, bar3h

See Also bar, LineSpec, patch

“Area, Bar, and Pie Plots” on page 1-88 for related functions

“Bar and Area Graphs” for more examples

2-331

Barseries Properties

Purpose Define barseries properties

Modifying
Properties

You can set and query graphics object properties using the set and get
commands or the Property Editor (propertyeditor).

Note that you cannot define default properties for barseries objects.

See “Plot Objects” for more information on barseries objects.

Barseries
Property
Descriptions

This section provides a description of properties. Curly braces { } enclose
default values.

Annotation
hg.Annotation object Read Only

Control the display of barseries objects in legends. The Annotation
property enables you to specify whether this barseries object is
represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the barseries
object is displayed in a figure legend:

IconDisplayStyle
Value

Purpose

on Include the barseries object in a legend as
one entry, but not its children objects

off Do not include the barseries or its children
in a legend (default)

children Include only the children of the barseries as
separate entries in the legend

2-332

Barseries Properties

Setting the IconDisplayStyle property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation','LegendInformation');
set(hLegendEntry,'IconDisplayStyle','children')

Using the IconDisplayStyle property

See “Controlling Legends” for more information and examples.

BarLayout
{grouped} | stacked

Specify grouped or stacked bars. Grouped bars display m groups
of n vertical bars, where m is the number of rows and n is the
number of columns in the input argument Y. The group contains
one bar per column in Y.

Stacked bars display one bar for each row in the input argument
Y. The bar height is the sum of the elements in the row. Each bar
is multicolored, with colors corresponding to distinct elements
and showing the relative contribution each row element makes to
the total sum.

BarWidth
scalar in range [0 1]

Width of individual bars. BarWidth specifies the relative bar
width and controls the separation of bars within a group. The
default width is 0.8, so if you do not specify x, the bars within a
group have a slight separation. If width is 1, the bars within a
group touch one another.

BaseLine
handle of baseline

2-333

Barseries Properties

Handle of the baseline object. This property contains the handle of
the line object used as the baseline. You can set the properties of
this line using its handle. For example, the following statements
create a bar graph, obtain the handle of the baseline from the
barseries object, and then set line properties that make the
baseline a dashed, red line.

bar_handle = bar(randn(10,1));
baseline_handle = get(bar_handle,'BaseLine');
set(baseline_handle,'LineStyle','--','Color','red')

BaseValue
double: y-axis value

Value where baseline is drawn. You can specify the value along
the y-axis (vertical bars) or x-axis (horizontal bars) at which
MATLAB draws the baseline.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BusyAction
cancel | {queue}

2-334

Barseries Properties

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function
executing, callbacks invoked subsequently always attempt to
interrupt it.

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs
at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

• cancel — Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
string or function handle

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is over this object, but
not over another graphics object. See the HitTestArea property
for information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be

• A string that is a valid MATLAB expression

• The name of an M-file

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

2-335

Barseries Properties

See “Function Handle Callbacks” for information on how to use
function handles to define the callbacks.

Children
array of graphics object handles

Children of this object. The handle of a patch object that is the
child of this object (whether visible or not).

Note that if a child object’s HandleVisibility property is set
to callback or off, its handle does not show up in this object’s
Children property unless you set the root ShowHiddenHandles
property to on:

set(0,'ShowHiddenHandles','on')

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs can be
displayed outside the axes plot box. This can occur if you create a
plot object, set hold to on, freeze axis scaling (axis manual), and
then create a larger plot object.

CreateFcn
string or function handle

Callback routine executed during object creation. This property
defines a callback that executes when MATLAB creates an object.
You must specify the callback during the creation of the object.
For example,

area(y,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function.

2-336

Barseries Properties

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
string or function handle

Callback executed during object deletion. A callback that executes
when this object is deleted (e.g., this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

DisplayName
string (default is empty string)

String used by legend for this barseries object. The legend
function uses the string defined by the DisplayName property to
label this barseries object in the legend.

2-337

Barseries Properties

• If you specify string arguments with the legend function,
DisplayName is set to this barseries object’s corresponding
string and that string is used for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

See “Controlling Legends” for more examples.

EdgeColor
{[0 0 0]} | none | ColorSpec

Color of line that separates filled areas. You can set the color of
the edges of filled areas to a three-element RGB vector or one of
the MATLAB predefined names, including the string none. The
default edge color is black. See ColorSpec for more information
on specifying color.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase objects and their children. Alternative erase
modes are useful for creating animated sequences, where control
of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

2-338

Barseries Properties

• normal — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none — Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing
with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of
the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color
if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

• background — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other
graphics objects that are behind the erased object, but the
erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB can mathematically combine
layers of colors (e.g., performing an XOR on a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

2-339

Barseries Properties

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

FaceColor
{flat} | none | ColorSpec

Color of filled areas. This property can be any of the following:

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for all
filled areas. See ColorSpec for more information on specifying
color.

• none — Do not draw faces. Note that EdgeColor is drawn
independently of FaceColor

• flat — The color of the filled areas is determined by the
figure colormap. See colormap for information on setting the
colormap.

See the ColorSpec reference page for more information on
specifying color.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally accessing
objects that you need to protect for some reason.

• on — Handles are always visible when HandleVisibility is on.

• callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions

2-340

Barseries Properties

invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

• off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity

2-341

Barseries Properties

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. HitTest determines whether this object
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the objects that compose the area graph. If HitTest
is off, clicking this object selects the object below it (which is
usually the axes containing it).

HitTestArea
on | {off}

Select barseries object on bars or area of extent. This property
enables you to select barseries objects in two ways:

• Select by clicking bars (default).

• Select by clicking anywhere in the extent of the bar graph.

When HitTestArea is off, you must click the bars to select the
barseries object. When HitTestArea is on, you can select the
barseries object by clicking anywhere within the extent of the bar
graph (i.e., anywhere within a rectangle that encloses all the bars).

Interruptible
{on} | off

2-342

Barseries Properties

Callback routine interruption mode. The Interruptible property
controls whether an object’s callback can be interrupted by
callbacks invoked subsequently.

Only callbacks defined for the ButtonDownFcn property are
affected by the Interruptible property. MATLAB checks for
events that can interrupt a callback only when it encounters a
drawnow, figure, getframe, or pause command in the routine.
See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback
to interrupt callback routines originating from a bar property.
Note that MATLAB does not save the state of variables or the
display (e.g., the handle returned by the gca or gcf command)
when an interruption occurs.

LineStyle
{-} | -- | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker at
each point but do not want the points connected with a line (see
the Marker property).

2-343

Barseries Properties

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of this object. This property contains the handle of the
object’s parent. The parent is normally the axes, hggroup, or
hgtransform object that contains the object.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection "handles" at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing four edge handles and four corner handles. When
SelectionHighlight is off, MATLAB does not draw the handles
except when in plot edit mode and objects are selected manually.

ShowBaseLine
{on} | off

2-344

Barseries Properties

Turn baseline display on or off. This property determines whether
bar plots display a baseline from which the bars are drawn. By
default, the baseline is displayed.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callbacks.

For example, you might create a barseries object and set the Tag
property:

t = bar(Y,'Tag','bar1')

When you want to access the barseries object, you can use findobj
to find the barseries object’s handle. The following statement
changes the FaceColor property of the object whose Tag is bar1.

set(findobj('Tag','bar1'),'FaceColor','red')

Type
string (read only)

Type of graphics object. This property contains a string that
identifies the class of the graphics object. For barseries objects,
Type is hggroup.

The following statement finds all the hggroup objects in the
current axes.

t = findobj(gca,'Type','hggroup');

UIContextMenu
handle of a uicontextmenu object

2-345

Barseries Properties

Associate a context menu with this object. Assign this property
the handle of a uicontextmenu object created in the object’s
parent figure. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever
you right-click over the object.

UserData
array

User-specified data. This property can be any data you want to
associate with this object (including cell arrays and structures).
The object does not set values for this property, but you can access
it using the set and get functions.

Visible
{on} | off

Visibility of this object and its children. By default, a new object’s
visibility is on. This means all children of the object are visible
unless the child object’s Visible property is set to off. Setting an
object’s Visible property to off prevents the object from being
displayed. However, the object still exists and you can set and
query its properties.

XData
array

Location of bars. The x-axis intervals for the vertical bars or
y-axis intervals for horizontal bars (as specified by the x input
argument). If YData is a vector, XData must be the same size.
If YData is a matrix, the length of XData must be equal to the
number of rows in YData.

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify
XData (by setting the XData property or specifying the x input

2-346

Barseries Properties

argument), MATLAB sets this property to manual and uses the
specified values to label the x-axis.

If you set XDataMode to auto after having specified XData,
MATLAB resets the x-axis ticks to 1:size(YData,1) or to the
column indices of the ZData, overwriting any previous values for
XData.

XDataSource
string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change XData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
scalar, vector, or matrix

2-347

Barseries Properties

Bar plot data. YData contains the data plotted as bars (the Y input
argument). Each value in YData is represented by a bar in the bar
graph. If XYData is a matrix, the bar function creates a "group" or
a "stack" of bars for each column in the matrix. See “Bar Graph
Options” in the bar, barh reference page for examples of grouped
and stacked bar graphs.

The input argument Y in the bar function calling syntax assigns
values to YData.

YDataSource
string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change YData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

2-348

Barseries Properties

Note If you change one data source property to a variable that contains
data of a different dimension, you might cause the function to generate
a warning and not render the graph until you have changed all data
source properties to appropriate values.

2-349

base2dec

Purpose Convert base N number string to decimal number

Syntax d = base2dec('strn', base)

Description d = base2dec('strn', base) converts the string number strn of the
specified base into its decimal (base 10) equivalent. base must be an
integer between 2 and 36. If 'strn' is a character array, each row is
interpreted as a string in the specified base.

Examples The expression base2dec('212',3) converts 2123 to decimal, returning
23.

See Also dec2base

2-350

beep

Purpose Produce beep sound

Syntax beep
beep on
beep off
s = beep

Description beep produces your computer’s default beep sound.

beep on turns the beep on.

beep off turns the beep off.

s = beep returns the current beep mode (on or off).

2-351

besselh

Purpose Bessel function of third kind (Hankel function)

Syntax H = besselh(nu,K,Z)
H = besselh(nu,Z)
H = besselh(nu,K,Z,1)
[H,ierr] = besselh(...)

Definitions The differential equation

where is a nonnegative constant, is called Bessel’s equation, and its
solutions are known as Bessel functions. and form a
fundamental set of solutions of Bessel’s equation for noninteger .

is a second solution of Bessel’s equation – linearly independent
of – defined by

The relationship between the Hankel and Bessel functions is

where is besselj, and is bessely.

Description H = besselh(nu,K,Z) computes the Hankel function , where
K = 1 or 2, for each element of the complex array Z. If nu and Z are
arrays of the same size, the result is also that size. If either input is a
scalar, besselh expands it to the other input’s size. If one input is a row

2-352

besselh

vector and the other is a column vector, the result is a two-dimensional
table of function values.

H = besselh(nu,Z) uses K = 1.

H = besselh(nu,K,Z,1) scales by exp(-i*Z) if K = 1, and by
exp(+i*Z) if K = 2.

[H,ierr] = besselh(...) also returns completion flags in an array
the same size as H.

ierr Description

0 besselh successfully computed the Hankel function for
this element.

1 Illegal arguments.

2 Overflow. Returns Inf.

3 Some loss of accuracy in argument reduction.

4 Unacceptable loss of accuracy, Z or nu too large.

5 No convergence. Returns NaN.

Examples This example generates the contour plots of the modulus and phase of

the Hankel function shown on page 359 of [1] Abramowitz and
Stegun, Handbook of Mathematical Functions.

It first generates the modulus contour plot

[X,Y] = meshgrid(-4:0.025:2,-1.5:0.025:1.5);
H = besselh(0,1,X+i*Y);
contour(X,Y,abs(H),0:0.2:3.2), hold on

2-353

besselh

then adds the contour plot of the phase of the same function.

contour(X,Y,(180/pi)*angle(H),-180:10:180); hold off

2-354

besselh

See Also besselj, bessely, besseli, besselk

References [1] Abramowitz, M., and I.A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards, Applied Math. Series #55,
Dover Publications, 1965.

2-355

besseli

Purpose Modified Bessel function of first kind

Syntax I = besseli(nu,Z)
I = besseli(nu,Z,1)
[I,ierr] = besseli(...)

Definitions The differential equation

where is a real constant, is called the modified Bessel’s equation, and
its solutions are known as modified Bessel functions.

and form a fundamental set of solutions of the modified
Bessel’s equation for noninteger . is defined by

where is the gamma function.

is a second solution, independent of . It can be computed
using besselk.

Description I = besseli(nu,Z) computes the modified Bessel function of the first
kind, , for each element of the array Z. The order nu need not
be an integer, but must be real. The argument Z can be complex. The
result is real where Z is positive.

If nu and Z are arrays of the same size, the result is also that size. If
either input is a scalar, it is expanded to the other input’s size. If one
input is a row vector and the other is a column vector, the result is a
two-dimensional table of function values.

2-356

besseli

I = besseli(nu,Z,1) computes
besseli(nu,Z).*exp(-abs(real(Z))).

[I,ierr] = besseli(...) also returns completion flags in an array
the same size as I.

ierr Description

0 besseli successfully computed the modified Bessel
function for this element.

1 Illegal arguments.

2 Overflow. Returns Inf.

3 Some loss of accuracy in argument reduction.

4 Unacceptable loss of accuracy, Z or nu too large.

5 No convergence. Returns NaN.

Examples Example 1

format long
z = (0:0.2:1)';

besseli(1,z)

ans =
0

0.10050083402813
0.20402675573357
0.31370402560492
0.43286480262064
0.56515910399249

Example 2

besseli(3:9,(0:.2,10)',1) generates the entire table on page 423 of
[1] Abramowitz and Stegun, Handbook of Mathematical Functions

2-357

besseli

Algorithm The besseli functions use a Fortran MEX-file to call a library
developed by D.E. Amos [3] [4].

See Also airy, besselh, besselj, besselk, bessely

References [1] Abramowitz, M., and I.A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards, Applied Math. Series #55,
Dover Publications, 1965, sections 9.1.1, 9.1.89, and 9.12, formulas
9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable:
Theory and Technique, Hod Books, 1983, section 5.5.

[3] Amos, D.E., “A Subroutine Package for Bessel Functions of a
Complex Argument and Nonnegative Order,” Sandia National
Laboratory Report, SAND85-1018, May, 1985.

[4] Amos, D.E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

2-358

besselj

Purpose Bessel function of first kind

Syntax J = besselj(nu,Z)
J = besselj(nu,Z,1)
[J,ierr] = besselj(nu,Z)

Definition The differential equation

where is a real constant, is called Bessel’s equation, and its solutions
are known as Bessel functions.

and form a fundamental set of solutions of Bessel’s
equation for noninteger . is defined by

where is the gamma function.

is a second solution of Bessel’s equation that is linearly
independent of . It can be computed using bessely.

Description J = besselj(nu,Z) computes the Bessel function of the first kind,
, for each element of the array Z. The order nu need not be an

integer, but must be real. The argument Z can be complex. The result
is real where Z is positive.

If nu and Z are arrays of the same size, the result is also that size. If
either input is a scalar, it is expanded to the other input’s size. If one
input is a row vector and the other is a column vector, the result is a
two-dimensional table of function values.

2-359

besselj

J = besselj(nu,Z,1) computes
besselj(nu,Z).*exp(-abs(imag(Z))).

[J,ierr] = besselj(nu,Z) also returns completion flags in an array
the same size as J.

ierr Description

0 besselj successfully computed the Bessel function
for this element.

1 Illegal arguments.

2 Overflow. Returns Inf.

3 Some loss of accuracy in argument reduction.

4 Unacceptable loss of accuracy, Z or nu too large.

5 No convergence. Returns NaN.

Remarks The Bessel functions are related to the Hankel functions, also called
Bessel functions of the third kind,

where is besselh, is besselj, and is bessely.
The Hankel functions also form a fundamental set of solutions to
Bessel’s equation (see besselh).

Examples Example 1

format long
z = (0:0.2:1)';

besselj(1,z)

2-360

besselj

ans =
0

0.09950083263924
0.19602657795532
0.28670098806392
0.36884204609417
0.44005058574493

Example 2

besselj(3:9,(0:.2:10)') generates the entire table on page 398 of [1]
Abramowitz and Stegun, Handbook of Mathematical Functions.

Algorithm The besselj function uses a Fortran MEX-file to call a library
developed by D.E. Amos [3] [4].

References [1] Abramowitz, M., and I.A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards, Applied Math. Series #55,
Dover Publications, 1965, sections 9.1.1, 9.1.89, and 9.12, formulas
9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable:
Theory and Technique, Hod Books, 1983, section 5.5.

[3] Amos, D.E., “A Subroutine Package for Bessel Functions of a
Complex Argument and Nonnegative Order,” Sandia National
Laboratory Report, SAND85-1018, May, 1985.

[4] Amos, D.E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

See Also besselh, besseli, besselk, bessely

2-361

besselk

Purpose Modified Bessel function of second kind

Syntax K = besselk(nu,Z)
K = besselk(nu,Z,1)
[K,ierr] = besselk(...)

Definitions The differential equation

where is a real constant, is called the modified Bessel’s equation, and
its solutions are known as modified Bessel functions.

A solution of the second kind can be expressed as

where and form a fundamental set of solutions of the
modified Bessel’s equation for noninteger

and is the gamma function. is independent of .

can be computed using besseli.

Description K = besselk(nu,Z) computes the modified Bessel function of the
second kind, , for each element of the array Z. The order nu need
not be an integer, but must be real. The argument Z can be complex.
The result is real where Z is positive.

2-362

besselk

If nu and Z are arrays of the same size, the result is also that size. If
either input is a scalar, it is expanded to the other input’s size. If one
input is a row vector and the other is a column vector, the result is a
two-dimensional table of function values.

K = besselk(nu,Z,1) computes besselk(nu,Z).*exp(Z).

[K,ierr] = besselk(...) also returns completion flags in an array
the same size as K.

ierr Description

0 besselk successfully computed the modified Bessel
function for this element.

1 Illegal arguments.

2 Overflow. Returns Inf.

3 Some loss of accuracy in argument reduction.

4 Unacceptable loss of accuracy, Z or nu too large.

5 No convergence. Returns NaN.

Examples Example 1

format long
z = (0:0.2:1)';

besselk(1,z)

ans =
Inf

4.77597254322047
2.18435442473269
1.30283493976350
0.86178163447218
0.60190723019723

2-363

besselk

Example 2

besselk(3:9,(0:.2:10)',1) generates part of the table on page 424 of
[1] Abramowitz and Stegun, Handbook of Mathematical Functions.

Algorithm The besselk function uses a Fortran MEX-file to call a library
developed by D.E. Amos [3][4].

References [1] Abramowitz, M., and I.A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards, Applied Math. Series #55,
Dover Publications, 1965, sections 9.1.1, 9.1.89, and 9.12, formulas
9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable:
Theory and Technique, Hod Books, 1983, section 5.5.

[3] Amos, D.E., “A Subroutine Package for Bessel Functions of a
Complex Argument and Nonnegative Order,” Sandia National
Laboratory Report, SAND85-1018, May, 1985.

[4] Amos, D.E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

See Also airy, besselh, besseli, besselj, bessely

2-364

bessely

Purpose Bessel function of second kind

Syntax Y = bessely(nu,Z)
Y = bessely(nu,Z,1)
[Y,ierr] = bessely(nu,Z)

Definition The differential equation

where is a real constant, is called Bessel’s equation, and its solutions
are known as Bessel functions.

A solution of the second kind can be expressed as

where and form a fundamental set of solutions of
Bessel’s equation for noninteger

and is the gamma function. is linearly independent of
.

can be computed using besselj.

Description Y = bessely(nu,Z) computes Bessel functions of the second kind,
, for each element of the array Z. The order nu need not be an

integer, but must be real. The argument Z can be complex. The result
is real where Z is positive.

2-365

bessely

If nu and Z are arrays of the same size, the result is also that size. If
either input is a scalar, it is expanded to the other input’s size. If one
input is a row vector and the other is a column vector, the result is a
two-dimensional table of function values.

Y = bessely(nu,Z,1) computes
bessely(nu,Z).*exp(-abs(imag(Z))).

[Y,ierr] = bessely(nu,Z) also returns completion flags in an array
the same size as Y.

ierr Description

0 bessely successfully computed the Bessel function
for this element.

1 Illegal arguments.

2 Overflow. Returns Inf.

3 Some loss of accuracy in argument reduction.

4 Unacceptable loss of accuracy, Z or nu too large.

5 No convergence. Returns NaN.

Remarks The Bessel functions are related to the Hankel functions, also called
Bessel functions of the third kind,

where is besselh, is besselj, and is bessely.
The Hankel functions also form a fundamental set of solutions to
Bessel’s equation (see besselh).

2-366

bessely

Examples Example 1

format long
z = (0:0.2:1)';

bessely(1,z)

ans =
-Inf

-3.32382498811185
-1.78087204427005
-1.26039134717739
-0.97814417668336
-0.78121282130029

Example 2

bessely(3:9,(0:.2:10)') generates the entire table on page 399 of [1]
Abramowitz and Stegun, Handbook of Mathematical Functions.

Algorithm The bessely function uses a Fortran MEX-file to call a library
developed by D. E Amos [3] [4].

References [1] Abramowitz, M., and I.A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards, Applied Math. Series #55,
Dover Publications, 1965, sections 9.1.1, 9.1.89, and 9.12, formulas
9.1.10 and 9.2.5.

[2] Carrier, Krook, and Pearson, Functions of a Complex Variable:
Theory and Technique, Hod Books, 1983, section 5.5.

[3] Amos, D.E., “A Subroutine Package for Bessel Functions of a
Complex Argument and Nonnegative Order,” Sandia National
Laboratory Report, SAND85-1018, May, 1985.

[4] Amos, D.E., “A Portable Package for Bessel Functions of a Complex
Argument and Nonnegative Order,” Trans. Math. Software, 1986.

2-367

bessely

See Also besselh, besseli, besselj, besselk

2-368

beta

Purpose Beta function

Syntax B = beta(Z,W)

Definition The beta function is

where is the gamma function.

Description B = beta(Z,W) computes the beta function for corresponding elements
of arrays Z and W. The arrays must be real and nonnegative. They must
be the same size, or either can be scalar.

Examples In this example, which uses integer arguments,

beta(n,3)
= (n-1)!*2!/(n+2)!
= 2/(n*(n+1)*(n+2))

is the ratio of fairly small integers, and the rational format is able to
recover the exact result.

format rat
beta((0:10)',3)

ans =

1/0
1/3
1/12
1/30
1/60
1/105
1/168
1/252

2-369

beta

1/360
1/495
1/660

Algorithm beta(z,w) = exp(gammaln(z)+gammaln(w)-gammaln(z+w))

See Also betainc, betaln, gammaln

2-370

betainc

Purpose Incomplete beta function

Syntax I = betainc(X,Z,W)
I = betainc(X,Z,tail)

Definition The incomplete beta function is

where , the beta function, is defined as

and is the gamma function.

Description I = betainc(X,Z,W) computes the incomplete beta function for
corresponding elements of the arrays X, Z, and W. The elements of X must
be in the closed interval . The arrays Z and W must be nonnegative
and real. All arrays must be the same size, or any of them can be scalar.

I = betainc(X,Z,tail) specifies the tail of the incomplete beta
function. Choices are:

'lower' (the default) Computes the integral from 0 to x

'upper' Computes the integral from x to 1

These functions are related as follows:

1-betainc(X,Z,W) = betainc(X,Z,W,'upper')

Note that especially when the upper tail value is close to 0, it is more
accurate to use the 'upper' option than to subtract the 'lower' value
from 1.

2-371

betainc

Examples format long
betainc(.5,(0:10)',3)

ans =
1.00000000000000
0.87500000000000
0.68750000000000
0.50000000000000
0.34375000000000
0.22656250000000
0.14453125000000
0.08984375000000
0.05468750000000
0.03271484375000
0.01928710937500

See Also beta, betaln

2-372

betaln

Purpose Logarithm of beta function

Syntax L = betaln(Z,W)

Description L = betaln(Z,W) computes the natural logarithm of the beta function
log(beta(Z,W)), for corresponding elements of arrays Z and W, without
computing beta(Z,W). Since the beta function can range over very large
or very small values, its logarithm is sometimes more useful.

Z and W must be real and nonnegative. They must be the same size, or
either can be scalar.

Examples x = 510
betaln(x,x)

ans =
-708.8616

-708.8616 is slightly less than log(realmin). Computing beta(x,x)
directly would underflow (or be denormal).

Algorithm betaln(z,w) = gammaln(z)+gammaln(w)-gammaln(z+w)

See Also beta, betainc, gammaln

2-373

bicg

Purpose Biconjugate gradients method

Syntax x = bicg(A,b)
bicg(A,b,tol)
bicg(A,b,tol,maxit)
bicg(A,b,tol,maxit,M)
bicg(A,b,tol,maxit,M1,M2)
bicg(A,b,tol,maxit,M1,M2,x0)
[x,flag] = bicg(A,b,...)
[x,flag,relres] = bicg(A,b,...)
[x,flag,relres,iter] = bicg(A,b,...)
[x,flag,relres,iter,resvec] = bicg(A,b,...)

Description x = bicg(A,b) attempts to solve the system of linear equations A*x =
b for x. The n-by-n coefficient matrix A must be square and should be
large and sparse. The column vector b must have length n. A can be
a function handle afun such that afun(x,'notransp') returns A*x
and afun(x,'transp') returns A'*x. See “Function Handles” in the
MATLAB Programming documentation for more information.

“Parameterizing Functions Called by Function Functions”, in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the function afun, as well as the preconditioner
function mfun described below, if necessary.

If bicg converges, it displays a message to that effect. If bicg fails
to converge after the maximum number of iterations or halts for any
reason, it prints a warning message that includes the relative residual
norm(b-A*x)/norm(b) and the iteration number at which the method
stopped or failed.

bicg(A,b,tol) specifies the tolerance of the method. If tol is [], then
bicg uses the default, 1e-6.

bicg(A,b,tol,maxit) specifies the maximum number of iterations. If
maxit is [], then bicg uses the default, min(n,20).

bicg(A,b,tol,maxit,M) and bicg(A,b,tol,maxit,M1,M2) use
the preconditioner M or M = M1*M2 and effectively solve the system

2-374

bicg

inv(M)*A*x = inv(M)*b for x. If M is [] then bicg applies
no preconditioner. M can be a function handle mfun such that
mfun(x,'notransp') returns M\x and mfun(x,'transp') returns M'\x.

bicg(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is [],
then bicg uses the default, an all-zero vector.

[x,flag] = bicg(A,b,...) also returns a convergence flag.

Flag Convergence

0 bicg converged to the desired tolerance tol within
maxit iterations.

1 bicg iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 bicg stagnated. (Two consecutive iterates were the
same.)

4 One of the scalar quantities calculated during bicg
became too small or too large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if the flag output is specified.

[x,flag,relres] = bicg(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = bicg(A,b,...) also returns the iteration
number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = bicg(A,b,...) also returns a
vector of the residual norms at each iteration including norm(b-A*x0).

Examples Example 1

n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);

2-375

bicg

b = sum(A,2);
tol = 1e-8;
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);

x = bicg(A,b,tol,maxit,M1,M2);

displays this message:

bicg converged at iteration 9 to a solution with relative
residual 5.3e-009

Example 2

This example replaces the matrix A in Example 1 with a handle to a
matrix-vector product function afun. The example is contained in an
M-file run_bicg that

• Calls bicg with the function handle @afun as its first argument.

• Contains afun as a nested function, so that all variables in run_bicg
are available to afun.

The following shows the code for run_bicg:

function x1 = run_bicg
n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);
tol = 1e-8;
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);
x1 = bicg(@afun,b,tol,maxit,M1,M2);

function y = afun(x,transp_flag)
if strcmp(transp_flag,'transp') % y = A'*x

2-376

bicg

y = 4 * x;
y(1:n-1) = y(1:n-1) - 2 * x(2:n);
y(2:n) = y(2:n) - x(1:n-1);

elseif strcmp(transp_flag,'notransp') % y = A*x
y = 4 * x;
y(2:n) = y(2:n) - 2 * x(1:n-1);
y(1:n-1) = y(1:n-1) - x(2:n);

end
end

end

When you enter

x1=run_bicg;

MATLAB displays the message

bicg converged at iteration 9 to a solution with ...
relative residual
5.3e-009

Example 3

This example demonstrates the use of a preconditioner. Start with A
= west0479, a real 479-by-479 sparse matrix, and define b so that the
true solution is a vector of all ones.

load west0479;
A = west0479;
b = sum(A,2);

You can accurately solve A*x = b using backslash since A is not so
large.

x = A \ b;
norm(b-A*x) / norm(b)

ans =
8.3154e-017

2-377

bicg

Now try to solve A*x = b with bicg.

[x,flag,relres,iter,resvec] = bicg(A,b)

flag =
1

relres =
1

iter =
0

The value of flag indicates that bicg iterated the default 20 times
without converging. The value of iter shows that the method
behaved so badly that the initial all-zero guess was better than all the
subsequent iterates. The value of relres supports this: relres =
norm(b-A*x)/norm(b) = norm(b)/norm(b) = 1. You can confirm that
the unpreconditioned method oscillates rather wildly by plotting the
relative residuals at each iteration.

semilogy(0:20,resvec/norm(b),'-o')
xlabel('Iteration Number')
ylabel('Relative Residual')

2-378

bicg

Now, try an incomplete LU factorization with a drop tolerance of 1e-5
for the preconditioner.

[L1,U1] = luinc(A,1e-5);
Warning: Incomplete upper triangular factor has 1 zero diagonal.

It cannot be used as a preconditioner for an iterative
method.

nnz(A), nnz(L1), nnz(U1)

ans =
1887

ans =
5562

ans =
4320

2-379

bicg

The zero on the main diagonal of the upper triangular U1 indicates that
U1 is singular. If you try to use it as a preconditioner,

[x,flag,relres,iter,resvec] = bicg(A,b,1e-6,20,L1,U1)

flag =
2

relres =
1

iter =
0

resvec =
7.0557e+005

the method fails in the very first iteration when it tries to solve a system
of equations involving the singular U1 using backslash. bicg is forced to
return the initial estimate since no other iterates were produced.

Try again with a slightly less sparse preconditioner.

[L2,U2] = luinc(A,1e-6);

nnz(L2), nnz(U2)

ans =
6231

ans =
4559

This time U2 is nonsingular and may be an appropriate preconditioner.

[x,flag,relres,iter,resvec] = bicg(A,b,1e-15,10,L2,U2)

flag =
0

relres =
2.8664e-016

iter =

2-380

bicg

8

and bicg converges to within the desired tolerance at iteration number
8. Decreasing the value of the drop tolerance increases the fill-in of the
incomplete factors but also increases the accuracy of the approximation
to the original matrix. Thus, the preconditioned system becomes closer
to inv(U)*inv(L)*L*U*x = inv(U)*inv(L)*b, where L and U are the
true LU factors, and closer to being solved within a single iteration.

The next graph shows the progress of bicg using six different
incomplete LU factors as preconditioners. Each line in the graph is
labeled with the drop tolerance of the preconditioner used in bicg.

References [1] Barrett, R., M. Berry, T.F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

2-381

bicg

See Also bicgstab, cgs, gmres, ilu, lsqr, luinc, minres, pcg, qmr, symmlq,
function_handle (@), mldivide (\)

2-382

bicgstab

Purpose Biconjugate gradients stabilized method

Syntax x = bicgstab(A,b)
bicgstab(A,b,tol)
bicgstab(A,b,tol,maxit)
bicgstab(A,b,tol,maxit,M)
bicgstab(A,b,tol,maxit,M1,M2)
bicgstab(A,b,tol,maxit,M1,M2,x0)
[x,flag] = bicgstab(A,b,...)
[x,flag,relres] = bicgstab(A,b,...)
[x,flag,relres,iter] = bicgstab(A,b,...)
[x,flag,relres,iter,resvec] = bicgstab(A,b,...)

Description x = bicgstab(A,b) attempts to solve the system of linear equations
A*x=b for x. The n-by-n coefficient matrix A must be square and should
be large and sparse. The column vector b must have length n. A can be
a function handle afun such that afun(x) returns A*x. See “Function
Handles” in the MATLAB Programming documentation for more
information.

“Parameterizing Functions Called by Function Functions”, in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the function afun, as well as the preconditioner
function mfun described below, if necessary.

If bicgstab converges, a message to that effect is displayed. If bicgstab
fails to converge after the maximum number of iterations or halts
for any reason, a warning message is printed displaying the relative
residual norm(b-A*x)/norm(b) and the iteration number at which the
method stopped or failed.

bicgstab(A,b,tol) specifies the tolerance of the method. If tol is [],
then bicgstab uses the default, 1e-6.

bicgstab(A,b,tol,maxit) specifies the maximum number of
iterations. If maxit is [], then bicgstab uses the default, min(n,20).

bicgstab(A,b,tol,maxit,M) and bicgstab(A,b,tol,maxit,M1,M2)
use preconditioner M or M = M1*M2 and effectively solve the system

2-383

bicgstab

inv(M)*A*x = inv(M)*b for x. If M is [] then bicgstab applies no
preconditioner. M can be a function handle mfun such that mfun(x)
returns M\x.

bicgstab(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0
is [], then bicgstab uses the default, an all zero vector.

[x,flag] = bicgstab(A,b,...) also returns a convergence flag.

Flag Convergence

0 bicgstab converged to the desired tolerance tol
within maxit iterations.

1 bicgstab iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 bicgstab stagnated. (Two consecutive iterates were
the same.)

4 One of the scalar quantities calculated during
bicgstab became too small or too large to continue
computing.

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if the flag output is specified.

[x,flag,relres] = bicgstab(A,b,...) also returns the relative
residual norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = bicgstab(A,b,...) also returns the
iteration number at which x was computed, where 0 <= iter <= maxit.
iter can be an integer + 0.5, indicating convergence halfway through
an iteration.

[x,flag,relres,iter,resvec] = bicgstab(A,b,...) also returns
a vector of the residual norms at each half iteration, including
norm(b-A*x0).

2-384

bicgstab

Example Example 1

This example first solves Ax = b by providing A and the preconditioner
M1 directly as arguments.

A = gallery('wilk',21);
b = sum(A,2);
tol = 1e-12;
maxit = 15;
M1 = diag([10:-1:1 1 1:10]);

x = bicgstab(A,b,tol,maxit,M1);

displays the message

bicgstab converged at iteration 12.5 to a solution with relative
residual 6.7e-014

Example 2

This example replaces the matrix A in Example 1 with a handle to a
matrix-vector product function afun, and the preconditioner M1 with a
handle to a backsolve function mfun. The example is contained in an
M-file run_bicgstab that

• Calls bicgstab with the function handle @afun as its first argument.

• Contains afun and mfun as nested functions, so that all variables in
run_bicgstab are available to afun and mfun.

The following shows the code for run_bicgstab:

function x1 = run_bicgstab
n = 21;
A = gallery('wilk',n);
b = sum(A,2);
tol = 1e-12;
maxit = 15;
M1 = diag([10:-1:1 1 1:10]);
x1 = bicgstab(@afun,b,tol,maxit,@mfun);

2-385

bicgstab

function y = afun(x)
y = [0; x(1:n-1)] + ...

[((n-1)/2:-1:0)'; (1:(n-1)/2)'].*x + ...
[x(2:n); 0];

end

function y = mfun(r)
y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)'];

end
end

When you enter

x1 = run_bicgstab;

MATLAB displays the message

bicgstab converged at iteration 12.5 to a solution with relative
residual 6.7e-014

Example 3

This examples demonstrates the use of a preconditioner. Start with A
= west0479, a real 479-by-479 sparse matrix, and define b so that the
true solution is a vector of all ones.

load west0479;
A = west0479;
b = sum(A,2);
[x,flag] = bicgstab(A,b)

flag is 1 because bicgstab does not converge to the default tolerance
1e-6 within the default 20 iterations.

[L1,U1] = luinc(A,1e-5);
[x1,flag1] = bicgstab(A,b,1e-6,20,L1,U1)

2-386

bicgstab

flag1 is 2 because the upper triangular U1 has a zero on its diagonal.
This causes bicgstab to fail in the first iteration when it tries to solve
a system such as U1*y = r using backslash.

[L2,U2] = luinc(A,1e-6);
[x2,flag2,relres2,iter2,resvec2] = bicgstab(A,b,1e-15,10,L2,U2)

flag2 is 0 because bicgstab converges to the tolerance of 3.1757e-016
(the value of relres2) at the sixth iteration (the value of iter2) when
preconditioned by the incomplete LU factorization with a drop tolerance
of 1e-6. resvec2(1) = norm(b) and resvec2(13) = norm(b-A*x2).
You can follow the progress of bicgstab by plotting the relative
residuals at the halfway point and end of each iteration starting from
the initial estimate (iterate number 0).

semilogy(0:0.5:iter2,resvec2/norm(b),'-o')
xlabel('iteration number')
ylabel('relative residual')

2-387

bicgstab

References [1] Barrett, R., M. Berry, T.F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

[2] van der Vorst, H.A., "BI-CGSTAB: A fast and smoothly converging
variant of BI-CG for the solution of nonsymmetric linear systems,"
SIAM J. Sci. Stat. Comput., March 1992, Vol. 13, No. 2, pp. 631-644.

See Also bicg, cgs, gmres, lsqr, luinc, minres, pcg, qmr, symmlq,
function_handle (@), mldivide (\)

2-388

bin2dec

Purpose Convert binary number string to decimal number

Syntax bin2dec(binarystr)

Description bin2dec(binarystr) interprets the binary string binarystr and
returns the equivalent decimal number.

bin2dec ignores any space (' ') characters in the input string.

Examples Binary 010111 converts to decimal 23:

bin2dec('010111')
ans =

23

Because space characters are ignored, this string yields the same result:

bin2dec(' 010 111 ')
ans =

23

See Also dec2bin

2-389

binary

Purpose Set FTP transfer type to binary

Syntax binary(f)

Description binary(f) sets the FTP download and upload mode to binary, which
does not convert new lines, where f was created using ftp. Use this
function when downloading or uploading any nontext file, such as an
executable or ZIP archive.

Examples Connect to the MathWorks FTP server, and display the FTP object.

tmw=ftp('ftp.mathworks.com');
disp(tmw)
FTP Object

host: ftp.mathworks.com
user: anonymous
dir: /

mode: binary

Note that the FTP object defaults to binary mode.

Use the ascii function to set the FTP mode to ASCII, and use the disp
function to display the FTP object.

ascii(tmw)
disp(tmw)
FTP Object

host: ftp.mathworks.com
user: anonymous
dir: /

mode: ascii

Note that the FTP object is now set to ASCII mode.

Use the binary function to set the FTP mode to binary, and use the
disp function to display the FTP object.

binary(tmw)

2-390

binary

disp(tmw)
FTP Object

host: ftp.mathworks.com
user: anonymous
dir: /

mode: binary

Note that the FTP object’s mode is again set to binary.

See Also ftp, ascii

2-391

bitand

Purpose Bitwise AND

Syntax C = bitand(A, B)

Description C = bitand(A, B) returns the bitwise AND of arguments A and B,
where A and B are unsigned integers or arrays of unsigned integers.

Examples Example 1

The five-bit binary representations of the integers 13 and 27 are 01101
and 11011, respectively. Performing a bitwise AND on these numbers
yields 01001, or 9:

C = bitand(uint8(13), uint8(27))
C =

9

Example 2

Create a truth table for a logical AND operation:

A = uint8([0 1; 0 1]);
B = uint8([0 0; 1 1]);

TT = bitand(A, B)
TT =

0 0
0 1

See Also bitcmp, bitget, bitmax, bitor, bitset, bitshift, bitxor

2-392

bitcmp

Purpose Bitwise complement

Syntax C = bitcmp(A)
C = bitcmp(A, n)

Description C = bitcmp(A) returns the bitwise complement of A, where A is an
unsigned integer or an array of unsigned integers.

C = bitcmp(A, n) returns the bitwise complement of A as an n-bit
unsigned integer C. Input A may not have any bits set higher than n
(that is, A may not have a value greater than 2^n-1). The value of n can
be no greater than the number of bits in the unsigned integer class of
A. For example, if the class of A is uint32, then n must be a positive
integer less than 32.

Examples Example 1

With eight-bit arithmetic, the one’s complement of 01100011 (decimal
99) is 10011100 (decimal 156):

C = bitcmp(uint8(99))
C =

156

Example 2

The complement of hexadecimal A5 (decimal 165) is 5A:

x = hex2dec('A5')
x =

165

dec2hex(bitcmp(x, 8))
ans =
5A

Next, find the complement of hexadecimal 000000A5:

dec2hex(bitcmp(x, 32))

2-393

bitcmp

ans =
FFFFFF5A

See Also bitand, bitget, bitmax, bitor, bitset, bitshift, bitxor

2-394

bitget

Purpose Bit at specified position

Syntax C = bitget(A, bit)

Description C = bitget(A, bit) returns the value of the bit at position bit in
A. Operand A must be an unsigned integer or an array of unsigned
integers, and bit must be a number between 1 and the number of bits
in the unsigned integer class of A (e.g., 32 for the uint32 class).

Examples Example 1

The dec2bin function converts decimal numbers to binary. However, you
can also use the bitget function to show the binary representation of a
decimal number. Just test successive bits from most to least significant:

disp(dec2bin(13))
1101

C = bitget(uint8(13), 4:-1:1)
C =

1 1 0 1

Example 2

Prove that intmax sets all the bits to 1:

a = intmax('uint8');
if all(bitget(a, 1:8))

disp('All the bits have value 1.')
end

All the bits have value 1.

See Also bitand, bitcmp, bitmax, bitor, bitset, bitshift, bitxor

2-395

bitmax

Purpose Maximum double-precision floating-point integer

Syntax bitmax

Description bitmax returns the maximum unsigned double-precision floating-point
integer for your computer. It is the value when all bits are set, namely

the value .

Note Instead of integer-valued double-precision variables, use unsigned
integers for bit manipulations and replace bitmax with intmax.

Examples Display in different formats the largest floating point integer and the
largest 32 bit unsigned integer:

format long e
bitmax
ans =

9.007199254740991e+015

intmax('uint32')
ans =

4294967295

format hex
bitmax
ans =

433fffffffffffff

intmax('uint32')
ans =

ffffffff

In the second bitmax statement, the last 13 hex digits of bitmax
are f, corresponding to 52 1’s (all 1’s) in the mantissa of the binary

2-396

bitmax

representation. The first 3 hex digits correspond to the sign bit 0 and
the 11 bit biased exponent 10000110011 in binary (1075 in decimal),
and the actual exponent is (1075-1023) = 52. Thus the binary value of
bitmax is 1.111...111 x 2^52 with 52 trailing 1’s, or 2^53-1.

See Also bitand, bitcmp, bitget, bitor, bitset, bitshift, bitxor

2-397

bitor

Purpose Bitwise OR

Syntax C = bitor(A, B)

Description C = bitor(A, B) returns the bitwise OR of arguments A and B, where
A and B are unsigned integers or arrays of unsigned integers.

Examples Example 1

The five-bit binary representations of the integers 13 and 27 are 01101
and 11011, respectively. Performing a bitwise OR on these numbers
yields 11111, or 31.

C = bitor(uint8(13), uint8(27))
C =

31

Example 2

Create a truth table for a logical OR operation:

A = uint8([0 1; 0 1]);
B = uint8([0 0; 1 1]);

TT = bitor(A, B)
TT =

0 1
1 1

See Also bitand, bitcmp, bitget, bitmax, bitset, bitshift, bitxor

2-398

bitset

Purpose Set bit at specified position

Syntax C = bitset(A, bit)
C = bitset(A, bit, v)

Description C = bitset(A, bit) sets bit position bit in A to 1 (on). A must be an
unsigned integer or an array of unsigned integers, and bit must be a
number between 1 and the number of bits in the unsigned integer class
of A (e.g., 32 for the uint32 class).

C = bitset(A, bit, v) sets the bit at position bit to the value v,
which must be either 0 or 1.

Examples Example 1

Setting the fifth bit in the five-bit binary representation of the integer 9
(01001) yields 11001, or 25:

C = bitset(uint8(9), 5)
C =

25

Example 2

Repeatedly subtract powers of 2 from the largest uint32 value:

a = intmax('uint32')
for k = 1:32

a = bitset(a, 32-k+1, 0)
end

See Also bitand, bitcmp, bitget, bitmax, bitor, bitshift, bitxor

2-399

bitshift

Purpose Shift bits specified number of places

Syntax C = bitshift(A, k)
C = bitshift(A, k, n)

Description C = bitshift(A, k) returns the value of A shifted by k bits. Input
argument A must be an unsigned integer or an array of unsigned
integers. Shifting by k is the same as multiplication by 2^k. Negative
values of k are allowed and this corresponds to shifting to the right, or
dividing by 2^abs(k) and truncating to an integer. If the shift causes C
to overflow the number of bits in the unsigned integer class of A, then
the overflowing bits are dropped.

C = bitshift(A, k, n) causes any bits that overflow n bits to be
dropped. The value of n must be less than or equal to the length in bits
of the unsigned integer class of A (e.g., n <= 32 for uint32).

Instead of using bitshift(A, k, 8) or another power of 2 for n,
consider using bitshift(uint8(A), k) or the appropriate unsigned
integer class for A.

Examples Example 1

Shifting 1100 (12, decimal) to the left two bits yields 110000 (48,
decimal).

C = bitshift(12, 2)
C =

48

Example 2

Repeatedly shift the bits of an unsigned 16 bit value to the left until all
the nonzero bits overflow. Track the progress in binary:

a = intmax('uint16');
disp(sprintf(...

'Initial uint16 value %5d is %16s in binary', ...
a, dec2bin(a)))

2-400

bitshift

for k = 1:16
a = bitshift(a, 1);
disp(sprintf(...

'Shifted uint16 value %5d is %16s in binary',...
a, dec2bin(a)))

end

See Also bitand, bitcmp, bitget, bitmax, bitor, bitset, bitxor, fix

2-401

bitxor

Purpose Bitwise XOR

Syntax C = bitxor(A, B)

Description C = bitxor(A, B) returns the bitwise XOR of arguments A and B,
where A and B are unsigned integers or arrays of unsigned integers.

Examples Example 1

The five-bit binary representations of the integers 13 and 27 are 01101
and 11011, respectively. Performing a bitwise XOR on these numbers
yields 10110, or 22.

C = bitxor(uint8(13), uint8(27))
C =

22

Example 2

Create a truth table for a logical XOR operation:

A = uint8([0 1; 0 1]);
B = uint8([0 0; 1 1]);

TT = bitxor(A, B)
TT =

0 1
1 0

See Also bitand, bitcmp, bitget, bitmax, bitor, bitset, bitshift

2-402

blanks

Purpose Create string of blank characters

Syntax blanks(n)

Description blanks(n) is a string of n blanks.

Examples blanks is useful with the display function. For example,

disp(['xxx' blanks(20) 'yyy'])

displays twenty blanks between the strings 'xxx' and 'yyy'.

disp(blanks(n)') moves the cursor down n lines.

See Also clc, format, home

2-403

blkdiag

Purpose Construct block diagonal matrix from input arguments

Syntax out = blkdiag(a,b,c,d,...)

Description out = blkdiag(a,b,c,d,...), where a, b, c, d, ... are matrices,
outputs a block diagonal matrix of the form

The input matrices do not have to be square, nor do they have to be of
equal size.

See Also diag, horzcat, vertcat

2-404

box

Purpose Axes border

Syntax box on
box off
box
box(axes_handle,...)

Description box on displays the boundary of the current axes.

box off does not display the boundary of the current axes.

box toggles the visible state of the current axes boundary.

box(axes_handle,...) uses the axes specified by axes_handle instead
of the current axes.

Algorithm The box function sets the axes Box property to on or off.

See Also axes, grid

“Axes Operations” on page 1-96 for related functions

2-405

break

Purpose Terminate execution of for or while loop

Syntax break

Description break terminates the execution of a for or while loop. Statements in
the loop that appear after the break statement are not executed.

In nested loops, break exits only from the loop in which it occurs.
Control passes to the statement that follows the end of that loop.

Remarks break is not defined outside a for or while loop. Use return in this
context instead.

Examples The example below shows a while loop that reads the contents of the
file fft.m into a MATLAB character array. A break statement is used
to exit the while loop when the first empty line is encountered. The
resulting character array contains the M-file help for the fft program.

fid = fopen('fft.m','r');
s = '';
while ~feof(fid)

line = fgetl(fid);
if isempty(line), break, end
s = strvcat(s,line);

end
disp(s)

See Also for, while, end, continue, return

2-406

brighten

Purpose Brighten or darken colormap

Syntax brighten(beta)
brighten(h,beta)
newmap = brighten(beta)
newmap = brighten(cmap,beta)

Description brighten increases or decreases the color intensities in a colormap.
The modified colormap is brighter if 0 < beta < 1 and darker if 1
< beta < 0.

brighten(beta) replaces the current colormap with a brighter or
darker colormap of essentially the same colors. brighten(beta),
followed by brighten(-beta), where beta < 1, restores the original
map.

brighten(h,beta) brightens all objects that are children of the figure
having the handle h.

newmap = brighten(beta) returns a brighter or darker version of the
current colormap without changing the display.

newmap = brighten(cmap,beta) returns a brighter or darker version
of the colormap cmap without changing the display.

Examples Brighten and then darken the current colormap:

beta = .5; brighten(beta);
beta = -.5; brighten(beta);

Algorithm The values in the colormap are raised to the power of gamma, where
gamma is

brighten has no effect on graphics objects defined with true color.

2-407

brighten

See Also colormap, rgbplot

“Color Operations” on page 1-98 for related functions

“Altering Colormaps” for more information

2-408

builddocsearchdb

Purpose Build searchable documentation database

Syntax builddocsearchdb help_location

Description builddocsearchdb help_location builds a searchable database
of user-added HTML and related help files in the specified help
location. The help_location argument is the full path to the directory
containing the help files. The database enables the Help browser to
search for content within the help files.

builddocsearchdb creates a directory named helpsearch under
help_location. The helpsearch directory contains the search
database files. Add the location of the helpsearch directory to your
info.xml file.

The helpsearch directory works only with the version of MATLAB
used to create it.

For a full discussion of this process, refer to “Adding HTML Help Files
for Your Own Toolboxes to the Help Browser”.

Examples Build a search database for the documentation files found at
D:\work\mytoolbox\help.

builddocsearchdb D:\work\mytoolbox\help

See Also doc, help

2-409

builtin

Purpose Execute built-in function from overloaded method

Syntax builtin(function, x1, ..., xn)
[y1, ..., yn] = builtin(function, x1, ..., xn)

Description builtin is used in methods that overload built-in functions to execute
the original built-in function. If function is a string containing the
name of a built-in function, then

builtin(function, x1, ..., xn) evaluates the specified function
at the given arguments x1 through xn. The function argument must
be a string containing a valid function name. function cannot be a
function handle.

[y1, ..., yn] = builtin(function, x1, ..., xn) returns
multiple output arguments.

Remarks builtin(...) is the same as feval(...) except that it calls the original
built-in version of the function even if an overloaded one exists. (For
this to work you must never overload builtin.)

See Also feval

2-410

bsxfun

Purpose Apply element-by-element binary operation to two arrays with singleton
expansion enabled

Syntax C = bsxfun(fun,A,B)

Description C = bsxfun(fun,A,B) applies an element-by-element binary operation
to arrays A and B, with singleton expansion enabled. fun is a function
handle, and can either be an M-file function or one of the following
built-in functions:

@plus Plus

@minus Minus

@times Array multiply

@rdivide Right array divide

@ldivide Left array divide

@power Array power

@max Binary maximum

@min Binary minimum

@rem Remainder after division

@mod Modulus after division

@atan2 Four quadrant inverse tangent

@hypot Square root of sum of squares

@eq Equal

@ne Not equal

@lt Less than

@le Less than or equal to

@gt Greater than

@ge Greater than or equal to

2-411

bsxfun

@and Element-wise logical AND

@or Element-wise logical OR

@xor Logical exclusive OR

If an M-file function is specified, it must be able to accept either two
column vectors of the same size, or one column vector and one scalar,
and return as output a column vector of the size as the input values.

Each dimension of A and B must either be equal to each other, or equal
to 1. Whenever a dimension of A or B is singleton (equal to 1), the array
is virtually replicated along the dimension to match the other array.
The array may be diminished if the corresponding dimension of the
other array is 0.

The size of the output array C is equal to:
max(size(A),size(B)).*(size(A)>0 & size(B)>0).

Examples In this example, bsxfun is used to subtract the column means from
the matrix A.

A = magic(5);
A = bsxfun(@minus, A, mean(A))
A =

4 11 -12 -5 2
10 -8 -6 1 3
-9 -7 0 7 9
-3 -1 6 8 -10
-2 5 12 -11 -4

See Also repmat, arrayfun

2-412

bvp4c

Purpose Solve boundary value problems for ordinary differential equations

Syntax sol = bvp4c(odefun,bcfun,solinit)
sol = bvp4c(odefun,bcfun,solinit,options)
solinit = bvpinit(x, yinit, params)

Arguments odefun A function handle that evaluates the differential
equations . It can have the form

dydx = odefun(x,y)
dydx = odefun(x,y,parameters)

where x is a scalar corresponding to , and y is a column
vector corresponding to . parameters is a vector of
unknown parameters. The output dydx is a column
vector.

bcfun A function handle that computes the residual in the
boundary conditions. For two-point boundary value
conditions of the form , bcfun can have
the form

res = bcfun(ya,yb)
res = bcfun(ya,yb,parameters)

where ya and yb are column vectors corresponding to
and . parameters is a vector of unknown

parameters. The output res is a column vector.

See “Multipoint Boundary Value Problems” on page
2-416 for a description of bcfun for multipoint boundary
value problems.

solinit A structure containing the initial guess for a solution.
You create solinit using the function bvpinit. solinit
has the following fields.

2-413

bvp4c

x Ordered nodes of the initial mesh.
Boundary conditions are imposed at =
solinit.x(1) and = solinit.x(end).

y Initial guess for the solution such that
solinit.y(:,i) is a guess for the
solution at the node solinit.x(i).

parameters Optional. A vector that provides an
initial guess for unknown parameters.

The structure can have any name, but the fields must be
named x, y, and parameters. You can form solinit with
the helper function bvpinit. See bvpinit for details.

options Optional integration argument. A structure you create
using the bvpset function. See bvpset for details.

Description sol = bvp4c(odefun,bcfun,solinit) integrates a system of ordinary
differential equations of the form

on the interval [a,b] subject to two-point boundary value conditions

odefun and bcfun are function handles. See “Function Handles” in the
MATLAB Programming documentation for more information.

“Parameterizing Functions Called by Function Functions” in the
MATLAB mathematics documentation, explains how to provide
additional parameters to the function odefun, as well as the boundary
condition function bcfun, if necessary.

bvp4c can also solve multipoint boundary value problems. See
“Multipoint Boundary Value Problems” on page 2-416. You can use the
function bvpinit to specify the boundary points, which are stored in
the input argument solinit. See the reference page for bvpinit for
more information.

2-414

bvp4c

The bvp4c solver can also find unknown parameters for problems
of the form

where corresponds to parameters. You provide bvp4c an initial
guess for any unknown parameters in solinit.parameters. The
bvp4c solver returns the final values of these unknown parameters
in sol.parameters.

bvp4c produces a solution that is continuous on [a,b] and has a
continuous first derivative there. Use the function deval and the
output sol of bvp4c to evaluate the solution at specific points xint in
the interval [a,b].

sxint = deval(sol,xint)

The structure sol returned by bvp4c has the following fields:

sol.x Mesh selected by bvp4c

sol.y Approximation to at the mesh points of
sol.x

sol.yp Approximation to at the mesh points of
sol.x

sol.parameters Values returned by bvp4c for the unknown
parameters, if any

sol.solver ’bvp4c’

The structure sol can have any name, and bvp4c creates the fields x,
y, yp, parameters, and solver.

sol = bvp4c(odefun,bcfun,solinit,options) solves as above with
default integration properties replaced by the values in options, a
structure created with the bvpset function. See bvpset for details.

2-415

bvp4c

solinit = bvpinit(x, yinit, params) forms the initial guess solinit
with the vector params of guesses for the unknown parameters.

Singular Boundary Value Problems

bvp4c solves a class of singular boundary value problems, including
problems with unknown parameters p, of the form

The interval is required to be [0, b] with b > 0. Often such problems
arise when computing a smooth solution of ODEs that result from
partial differential equations (PDEs) due to cylindrical or spherical
symmetry. For singular problems, you specify the (constant) matrix
S as the value of the 'SingularTerm' option of bvpset, and odefun
evaluates only f(x, y, p). The boundary conditions must be consistent
with the necessary condition and the initial guess should
satisfy this condition.

Multipoint Boundary Value Problems

bvp4c can solve multipoint boundary value problems where

are boundary points in the interval
. The points represent interfaces that divide
into regions. bvp4c enumerates the regions from left to right

(from a to b), with indices starting from 1. In region k, ,
bvp4c evaluates the derivative as

yp = odefun(x, y, k)

In the boundary conditions function

bcfun(yleft, yright)

yleft(:, k) is the solution at the left boundary of . Similarly,
yright(:, k) is the solution at the right boundary of region k. In
particular,

2-416

bvp4c

yleft(:, 1) = y(a)

and

yright(:, end) = y(b)

When you create an initial guess with

solinit = bvpinit(xinit, yinit),

use double entries in xinit for each interface point. See the reference
page for bvpinit for more information.

If yinit is a function, bvpinit calls y = yinit(x, k) to get an initial
guess for the solution at x in region k. In the solution structure sol
returned by bpv4c, sol.x has double entries for each interface point.
The corresponding columns of sol.y contain the left and right solution
at the interface, respectively.

For an example of solving a three-point boundary value problem, type
threebvp at the MATLAB command prompt to run a demonstration.

Note The bvp5c function is used exactly like bvp4c, with the exception
of the meaning of error tolerances between the two solvers. If S(x)
approximates the solution y(x), bvp4c controls the residual |S’(x) -
f(x,S(x))|. This controls indirectly the true error |y(x) - S(x)|. bvp5c
controls the true error directly. bvp5c is more efficient than bvp4c for
small error tolerances.

Examples Example 1

Boundary value problems can have multiple solutions and one purpose
of the initial guess is to indicate which solution you want. The
second-order differential equation

2-417

bvp4c

has exactly two solutions that satisfy the boundary conditions

Prior to solving this problem with bvp4c, you must write the differential
equation as a system of two first-order ODEs

Here and . This system has the required form

The function and the boundary conditions are coded in MATLAB
as functions twoode and twobc.

function dydx = twoode(x,y)
dydx = [y(2)

-abs(y(1))];

function res = twobc(ya,yb)
res = [ya(1)

yb(1) + 2];

Form a guess structure consisting of an initial mesh of five equally
spaced points in [0,4] and a guess of constant values and

with the command

solinit = bvpinit(linspace(0,4,5),[1 0]);

Now solve the problem with

sol = bvp4c(@twoode,@twobc,solinit);

2-418

bvp4c

Evaluate the numerical solution at 100 equally spaced points and plot
with

x = linspace(0,4);
y = deval(sol,x);
plot(x,y(1,:));

You can obtain the other solution of this problem with the initial guess

solinit = bvpinit(linspace(0,4,5),[-1 0]);

2-419

bvp4c

Example 2

This boundary value problem involves an unknown parameter. The task
is to compute the fourth () eigenvalue of Mathieu’s equation

Because the unknown parameter is present, this second-order
differential equation is subject to three boundary conditions

It is convenient to use subfunctions to place all the functions required
by bvp4c in a single M-file.

function mat4bvp

2-420

bvp4c

lambda = 15;
solinit = bvpinit(linspace(0,pi,10),@mat4init,lambda);
sol = bvp4c(@mat4ode,@mat4bc,solinit);

fprintf('The fourth eigenvalue is approximately %7.3f.\n',...
sol.parameters)

xint = linspace(0,pi);
Sxint = deval(sol,xint);
plot(xint,Sxint(1,:))
axis([0 pi -1 1.1])
title('Eigenfunction of Mathieu''s equation.')
xlabel('x')
ylabel('solution y')
% --
function dydx = mat4ode(x,y,lambda)
q = 5;
dydx = [y(2)

-(lambda - 2*q*cos(2*x))*y(1)];
% --
function res = mat4bc(ya,yb,lambda)
res = [ya(2)

yb(2)
ya(1)-1];

% --
function yinit = mat4init(x)
yinit = [cos(4*x)

-4*sin(4*x)];

The differential equation (converted to a first-order system) and the
boundary conditions are coded as subfunctions mat4ode and mat4bc,
respectively. Because unknown parameters are present, these functions
must accept three input arguments, even though some of the arguments
are not used.

The guess structure solinit is formed with bvpinit. An initial guess
for the solution is supplied in the form of a function mat4init. We chose

2-421

bvp4c

because it satisfies the boundary conditions and has the
correct qualitative behavior (the correct number of sign changes). In the
call to bvpinit, the third argument (lambda = 15) provides an initial
guess for the unknown parameter .

After the problem is solved with bvp4c, the field sol.parameters
returns the value , and the plot shows the eigenfunction
associated with this eigenvalue.

Algorithms bvp4c is a finite difference code that implements the three-stage
Lobatto IIIa formula. This is a collocation formula and the collocation
polynomial provides a C1-continuous solution that is fourth-order

2-422

bvp4c

accurate uniformly in [a,b]. Mesh selection and error control are based
on the residual of the continuous solution.

References [1] Shampine, L.F., M.W. Reichelt, and J. Kierzenka, “Solving Boundary
Value Problems for Ordinary Differential Equations in MATLAB with
bvp4c,” available at http://www.mathworks.com/bvp_tutorial

See Also function_handle (@), bvp5c,bvpget, bvpinit, bvpset, bvpxtend, deval

2-423

http://www.mathworks.com/bvp_tutorial

bvp5c

Purpose Solve boundary value problems for ordinary differential equations

Syntax sol = bvp5c(odefun,bcfun,solinit)
sol = bvp5c(odefun,bcfun,solinit,options)
solinit = bvpinit(x, yinit, params)

Arguments odefun A function handle that evaluates the differential
equations . It can have the form

dydx = odefun(x,y)
dydx = odefun(x,y,parameters)

where x is a scalar corresponding to , and y is a column
vector corresponding to . parameters is a vector of
unknown parameters. The output dydx is a column
vector.

bcfun A function handle that computes the residual in the
boundary conditions. For two-point boundary value
conditions of the form , bcfun can have
the form

res = bcfun(ya,yb)
res = bcfun(ya,yb,parameters)

where ya and yb are column vectors corresponding to
and . parameters is a vector of unknown

parameters. The output res is a column vector.

solinit A structure containing the initial guess for a solution.
You create solinit using the function bvpinit. solinit
has the following fields.

x Ordered nodes of the initial mesh.
Boundary conditions are imposed at =
solinit.x(1) and = solinit.x(end).

2-424

bvp5c

y Initial guess for the solution such that
solinit.y(:,i) is a guess for the
solution at the node solinit.x(i).

parameters Optional. A vector that provides an
initial guess for unknown parameters.

The structure can have any name, but the fields must be
named x, y, and parameters. You can form solinit with
the helper function bvpinit. See bvpinit for details.

options Optional integration argument. A structure you create
using the bvpset function. See bvpset for details.

Description sol = bvp5c(odefun,bcfun,solinit) integrates a system of ordinary
differential equations of the form

on the interval [a,b] subject to two-point boundary value conditions

odefun and bcfun are function handles. See “Function Handles” in the
MATLAB Programming documentation for more information.

“Parameterizing Functions Called by Function Functions” in the
MATLAB mathematics documentation, explains how to provide
additional parameters to the function odefun, as well as the boundary
condition function bcfun, if necessary. You can use the function bvpinit
to specify the boundary points, which are stored in the input argument
solinit. See the reference page for bvpinit for more information.

The bvp5c solver can also find unknown parameters for problems
of the form

2-425

bvp5c

where corresponds to parameters. You provide bvp5c an initial
guess for any unknown parameters in solinit.parameters. The
bvp5c solver returns the final values of these unknown parameters
in sol.parameters.

bvp5c produces a solution that is continuous on [a,b] and has a
continuous first derivative there. Use the function deval and the
output sol of bvp5c to evaluate the solution at specific points xint in
the interval [a,b].

sxint = deval(sol,xint)

The structure sol returned by bvp5c has the following fields:

sol.x Mesh selected by bvp5c

sol.y Approximation to at the mesh points of
sol.x

sol.parameters Values returned by bvp5c for the unknown
parameters, if any

sol.solver ’bvp5c’

The structure sol can have any name, and bvp5c creates the fields x, y,
parameters, and solver.

sol = bvp5c(odefun,bcfun,solinit,options) solves as above with
default integration properties replaced by the values in options, a
structure created with the bvpset function. See bvpset for details.

solinit = bvpinit(x, yinit, params) forms the initial guess solinit
with the vector params of guesses for the unknown parameters.

2-426

bvp5c

Note The bvp5c function is used exactly like bvp4c, with the exception
of the meaning of error tolerances between the two solvers. If S(x)
approximates the solution y(x), bvp4c controls the residual |S’(x) -
f(x,S(x))|. This controls indirectly the true error |y(x) - S(x)|. bvp5c
controls the true error directly. bvp5c is more efficient than bvp4c for
small error tolerances.

Singular Boundary Value Problems

bvp5c solves a class of singular boundary value problems, including
problems with unknown parameters p, of the form

The interval is required to be [0, b] with b > 0. Often such problems
arise when computing a smooth solution of ODEs that result from
partial differential equations (PDEs) due to cylindrical or spherical
symmetry. For singular problems, you specify the (constant) matrix
S as the value of the 'SingularTerm' option of bvpset, and odefun
evaluates only f(x, y, p). The boundary conditions must be consistent
with the necessary condition and the initial guess should
satisfy this condition.

Algorithms bvp5c is a finite difference code that implements the four-stage
Lobatto IIIa formula. This is a collocation formula and the collocation
polynomial provides a C1-continuous solution that is fifth-order
accurate uniformly in [a,b]. The formula is implemented as an
implicit Runge-Kutta formula. bvp5c solves the algebraic equations
directly; bvp4c uses analytical condensation. bvp4c handles unknown
parameters directly; while bvp5c augments the system with trivial
differential equations for unknown parameters.

References [1] Shampine, L.F., M.W. Reichelt, and J. Kierzenka “Solving Boundary
Value Problems for Ordinary Differential Equations in MATLAB with

2-427

bvp5c

bvp4c” http://www.mathworks.com/bvp_tutorial. Note that this
tutorial uses the bvp4c function, however in most cases the solvers can
be used interchangeably.

See Also function_handle (@), bvp4c, bvpget, bvpinit, bvpset, bvpxtend,
deval

2-428

http://www.mathworks.com/bvp_tutorial

bvpget

Purpose Extract properties from options structure created with bvpset

Syntax val = bvpget(options,'name')
val = bvpget(options,'name',default)

Description val = bvpget(options,'name') extracts the value of the named
property from the structure options, returning an empty matrix if
the property value is not specified in options. It is sufficient to type
only the leading characters that uniquely identify the property. Case is
ignored for property names. [] is a valid options argument.

val = bvpget(options,'name',default) extracts the named property
as above, but returns val = default if the named property is not
specified in options. For example,

val = bvpget(opts,'RelTol',1e-4);

returns val = 1e-4 if the RelTol is not specified in opts.

See Also bvp4c, bvp5c, bvpinit, bvpset, deval

2-429

bvpinit

Purpose Form initial guess for bvp4c

Syntax solinit = bvpinit(x,yinit)
solinit = bvpinit(x,yinit,parameters)
solinit = bvpinit(sol,[anew bnew])
solinit = bvpinit(sol,[anew bnew],parameters)

Description solinit = bvpinit(x,yinit) forms the initial guess for the boundary
value problem solver bvp4c.

x is a vector that specifies an initial mesh. If you want to solve the
boundary value problem (BVP) on , then specify x(1) as and
x(end) as . The function bvp4c adapts this mesh to the solution, so a
guess like xb=nlinspace(a,b,10) often suffices. However, in difficult
cases, you should place mesh points where the solution changes rapidly.
The entries of x must be in

• Increasing order if

• Decreasing order if

For two-point boundary value problems, the entries of x must be
distinct. That is, if , the entries must satisfy x(1) < x(2) < ... <
x(end). If , the entries must satisfy x(1) > x(2) > ... > x(end)

For multipoint boundary value problem, you can specify the points in
at which the boundary conditions apply, other than the endpoints

a and b, by repeating their entries in x. For example, if you set

x = [0, 0.5, 1, 1, 1.5, 2];

the boundary conditions apply at three points: the endpoints 0 and
2, and the repeated entry 1. In general, repeated entries represent
boundary points between regions in . In the preceding example,
the repeated entry 1 divides the interval [0,2] into two regions: [0,1]
and [1,2].

yinit is a guess for the solution. It can be either a vector, or a function:

2-430

bvpinit

• Vector – For each component of the solution, bvpinit replicates
the corresponding element of the vector as a constant guess across
all mesh points. That is, yinit(i) is a constant guess for the ith
component yinit(i,:) of the solution at all the mesh points in x.

• Function – For a given mesh point, the guess function must return a
vector whose elements are guesses for the corresponding components
of the solution. The function must be of the form

y = guess(x)

where x is a mesh point and y is a vector whose length is the same as
the number of components in the solution. For example, if the guess
function is an M-file function, bvpinit calls

y(:,j) = guess(x(j))

at each mesh point.

For multipoint boundary value problems, the guess function must
be of the form

y = guess(x, k)

where y an initial guess for the solution at x in region k. The function
must accept the input argument k, which is provided for flexibility
in writing the guess function. However, the function is not required
to use k.

solinit = bvpinit(x,yinit,parameters) indicates that the
boundary value problem involves unknown parameters. Use the vector
parameters to provide a guess for all unknown parameters.

solinit is a structure with the following fields. The structure can have
any name, but the fields must be named x, y, and parameters.

2-431

bvpinit

x Ordered nodes of the initial mesh.

y Initial guess for the solution with solinit.y(:,i)
a guess for the solution at the node solinit.x(i).

parameters Optional. A vector that provides an initial guess
for unknown parameters.

solinit = bvpinit(sol,[anew bnew]) forms an initial guess on
the interval [anew bnew] from a solution sol on an interval .
The new interval must be larger than the previous one, so either
anew <=a <b <= bnew or anew >=a >b >= bnew. The solution sol is
extrapolated to the new interval. If sol contains parameters, they are
copied to solinit.

solinit = bvpinit(sol,[anew bnew],parameters) forms solinit
as described above, but uses parameters as a guess for unknown
parameters in solinit.

See Also @ (function_handle), bvp4c,bvp5c, bvpget, bvpset, bvpxtend, deval

2-432

bvpset

Purpose Create or alter options structure of boundary value problem

Syntax options = bvpset('name1',value1,'name2',value2,...)
options = bvpset(oldopts,'name1',value1,...)
options = bvpset(oldopts,newopts)
bvpset

Description options = bvpset('name1',value1,'name2',value2,...) creates a
structure options that you can supply to the boundary value problem
solver bvp4c, in which the named properties have the specified
values. Any unspecified properties retain their default values. For
all properties, it is sufficient to type only the leading characters that
uniquely identify the property. bvpset ignores case for property names.

options = bvpset(oldopts,'name1',value1,...) alters an existing
options structure oldopts. This overwrites any values in oldopts that
are specified using name/value pairs and returns the modified structure
as the output argument.

options = bvpset(oldopts,newopts) combines an existing options
structure oldopts with a new options structure newopts. Any values
set in newopts overwrite the corresponding values in oldopts.

bvpset with no input arguments displays all property names and their
possible values, indicating defaults with braces {}.

You can use the function bvpget to query the options structure for the
value of a specific property.

BVP
Properties

bvpset enables you to specify properties for the boundary value problem
solver bvp4c. There are several categories of properties that you can set:

• “Error Tolerance Properties” on page 2-434

• “Vectorization” on page 2-435

• “Analytical Partial Derivatives” on page 2-436

• “Singular BVPs” on page 2-439

2-433

bvpset

• “Mesh Size Property” on page 2-439

• “Solution Statistic Property” on page 2-440

Error Tolerance Properties

Because bvp4c uses a collocation formula, the numerical solution
is based on a mesh of points at which the collocation equations are
satisfied. Mesh selection and error control are based on the residual of
this solution, such that the computed solution is the exact solution
of a perturbed problem . On each
subinterval of the mesh, a norm of the residual in the ith component
of the solution, res(i), is estimated and is required to be less than or
equal to a tolerance. This tolerance is a function of the relative and
absolute tolerances, RelTol and AbsTol, defined by the user.

The following table describes the error tolerance properties.

2-434

bvpset

BVP Error Tolerance Properties

Property Value Description

RelTol Positive
scalar
{1e-3}

A relative error tolerance that applies to all
components of the residual vector. It is a
measure of the residual relative to the size
of . The default, 1e-3, corresponds
to 0.1% accuracy.

The computed solution is the exact
solution of .
On each subinterval of the mesh, the
residual satisfies

AbsTol Positive
scalar or
vector
{1e-6}

Absolute error tolerances that apply to the
corresponding components of the residual
vector. AbsTol(i) is a threshold below which
the values of the corresponding components
are unimportant. If a scalar value is
specified, it applies to all components.

Vectorization

The following table describes the BVP vectorization property.
Vectorization of the ODE function used by bvp4c differs from the
vectorization used by the ODE solvers:

• For bvp4c, the ODE function must be vectorized with respect to the
first argument as well as the second one, so that F([x1 x2 ...],[y1
y2 ...]) returns [F(x1,y1) F(x2,y2)...].

• bvp4c benefits from vectorization even when analytical Jacobians
are provided. For stiff ODE solvers, vectorization is ignored when
analytical Jacobians are used.

2-435

bvpset

Vectorization Properties

Property Value Description

Vectorized on | {off} Set on to inform bvp4c that you have
coded the ODE function F so that
F([x1 x2 ...],[y1 y2 ...]) returns
[F(x1,y1) F(x2,y2) ...]. That
is, your ODE function can pass to
the solver a whole array of column
vectors at once. This enables the
solver to reduce the number of function
evaluations and may significantly
reduce solution time.

With the MATLAB array notation,
it is typically an easy matter to
vectorize an ODE function. In the
shockbvp example shown previously,
the shockODE function has been
vectorized using colon notation into
the subscripts and by using the array
multiplication (.*) operator.

function dydx = shockODE(x,y,e)
pix = pi*x;
dydx = [y(2,:)...
-x/e.*y(2,:)-pi^2*cos(pix)-
pix/e.*sin(pix)];

Analytical Partial Derivatives

By default, the bvp4c solver approximates all partial derivatives
with finite differences. bvp4c can be more efficient if you provide
analytical partial derivatives of the differential equations,

2-436

bvpset

and analytical partial derivatives, and , of the
boundary conditions. If the problem involves unknown parameters,
you must also provide partial derivatives, and , with
respect to the parameters.

The following table describes the analytical partial derivatives
properties.

2-437

bvpset

BVP Analytical Partial Derivative Properties

Property Value Description

FJacobian Function
handle

Handle to a function that computes
the analytical partial derivatives
of . When solving

, set this property
to @fjac if dfdy = fjac(x,y)

evaluates the Jacobian .
If the problem involves unknown
parameters , [dfdy,dfdp] =
fjac(x,y,p) must also return
the partial derivative . For
problems with constant partial
derivatives, set this property to
the value of dfdy or to a cell array
{dfdy,dfdp}.

See “Function Handles” in
the MATLAB Programming
documentation for more
information.

BCJacobian Function
handle

Handle to a function that
computes the analytical partial
derivatives of .
For boundary conditions

, set this property
to @bcjac if [dbcdya,dbcdyb]
= bcjac(ya,yb) evaluates the
partial derivatives ,
and . If the problem
involves unknown parameters

, [dbcdya,dbcdyb,dbcdp] =
bcjac(ya,yb,p) must also return
the partial derivative .
For problems with constant partial
derivatives, set this property to
a cell array {dbcdya,dbcdyb} or
{dbcdya,dbcdyb,dbcdp}.

2-438

bvpset

Singular BVPs

bvp4c can solve singular problems of the form

posed on the interval where . For such problems, specify the
constant matrix as the value of SingularTerm. For equations of this
form, odefun evaluates only the term, where represents
unknown parameters, if any.

Singular BVP Property

Property Value Description

SingularTerm Constant
matrix

Singular term of singular BVPs.
Set to the constant matrix for
equations of the form

posed on the interval
where .

Mesh Size Property

bvp4c solves a system of algebraic equations to determine the numerical
solution to a BVP at each of the mesh points. The size of the algebraic
system depends on the number of differential equations (n) and the
number of mesh points in the current mesh (N). When the allowed
number of mesh points is exhausted, the computation stops, bvp4c
displays a warning message and returns the solution it found so far.
This solution does not satisfy the error tolerance, but it may provide an

2-439

bvpset

excellent initial guess for computations restarted with relaxed error
tolerances or an increased value of NMax.

The following table describes the mesh size property.

BVP Mesh Size Property

Property Value Description

NMax positive integer
{floor(1000/n)}

Maximum number of mesh
points allowed when solving
the BVP, where n is the number
of differential equations in the
problem. The default value
of NMax limits the size of the
algebraic system to about 1000
equations. For systems of a
few differential equations, the
default value of NMax should be
sufficient to obtain an accurate
solution.

Solution Statistic Property

The Stats property lets you view solution statistics.

The following table describes the solution statistics property.

2-440

bvpset

BVP Solution Statistic Property

Property Value Description

Stats on | {off} Specifies whether statistics about
the computations are displayed.
If the stats property is on, after
solving the problem, bvp4c displays:

• The number of points in the mesh

• The maximum residual of the
solution

• The number of times it called
the differential equation function
odefun to evaluate

• The number of times it called
the boundary condition
function bcfun to evaluate

Example To create an options structure that changes the relative error tolerance
of bvp4c from the default value of 1e-3 to 1e-4, enter

options = bvpset('RelTol', 1e-4);

To recover the value of 'RelTol' from options, enter

bvpget(options, 'RelTol')

ans =

1.0000e-004

See Also @ (function_handle), bvp4c,bvp5c, bvpget, bvpinit, deval

2-441

bvpxtend

Purpose Form guess structure for extending boundary value solutions

Syntax solinit = bvpxtend(sol,xnew,ynew)
solinit = bvpxtend(sol,xnew,extrap)
solinit = bvpxtend(sol,xnew)
solinit = bvpxtend(sol,xnew,ynew,pnew)
solinit = bvpxtend(sol,xnew,extrap,pnew)

Description solinit = bvpxtend(sol,xnew,ynew) uses solution sol computed on
[a,b] to form a solution guess for the interval extended to xnew. The
extension point xnew must be outside the interval [a,b], but on either
side. The vector ynew provides an initial guess for the solution at xnew.

solinit = bvpxtend(sol,xnew,extrap) forms the guess at xnew by
extrapolating the solution sol. extrap is a string that determines the
extrapolation method. extrap has three possible values:

• 'constant' — ynew is a value nearer to end point of solution in sol.

• 'linear' — ynew is a value at xnew of linear interpolant to the value
and slope at the nearer end point of solution in sol.

• 'solution' — ynew is the value of (cubic) solution in sol at xnew.

The value of extrap is case-insensitive and only the leading, unique
portion needs to be specified.

solinit = bvpxtend(sol,xnew) uses the extrapolating solution where
extrap is 'constant'. If there are unknown parameters, values
present in sol are used as the initial guess for parameters in solinit.

solinit = bvpxtend(sol,xnew,ynew,pnew) specifies a different guess
pnew. pnew can be used with extrapolation, using the syntax solinit
= bvpxtend(sol,xnew,extrap,pnew). To modify parameters without
changing the interval, use [] as place holder for xnew and ynew.

See Also bvp4c, bvp5c, bvpinit

2-442

calendar

Purpose Calendar for specified month

Syntax c = calendar
c = calendar(d)
c = calendar(y, m)

Description c = calendar returns a 6-by-7 matrix containing a calendar for the
current month. The calendar runs Sunday (first column) to Saturday.

c = calendar(d), where d is a serial date number or a date string,
returns a calendar for the specified month.

c = calendar(y, m), where y and m are integers, returns a calendar
for the specified month of the specified year.

Examples The command

calendar(1957,10)

reveals that the Space Age began on a Friday (on October 4, 1957, when
Sputnik 1 was launched).

Oct 1957
S M Tu W Th F S
0 0 1 2 3 4 5
6 7 8 9 10 11 12

13 14 15 16 17 18 19
20 21 22 23 24 25 26
27 28 29 30 31 0 0
0 0 0 0 0 0 0

See Also datenum

2-443

calllib

Purpose Call function in external library

Syntax [x1, ..., xN] = calllib('libname', 'funcname', arg1, ...,
argN)

Description [x1, ..., xN] = calllib('libname', 'funcname', arg1, ...,
argN) calls the function funcname in library libname, passing input
arguments arg1 through argN. calllib returns output values obtained
from function funcname in x1 through XN.

If you used an alias when initially loading the library, then you must
use that alias for the libname argument.

Ways to Call calllib

The following examples show ways calls to calllib. By using
libfunctionsview, you determined that the addStructByRef function
in the shared library shrlibsample requires a pointer to a c_struct
data type as its argument.

Load the library:

addpath([matlabroot '\extern\examples\shrlib'])
loadlibrary shrlibsample shrlibsample.h

Create a MATLAB structure and use libstruct to create a C structure
of the proper type (c_struct here):

struct.p1 = 4; struct.p2 = 7.3; struct.p3 = -290;
[res,st] = calllib('shrlibsample','addStructByRef',...
libstruct('c_struct',struct));

Let MATLAB convert struct to the proper type of C structure:

[res,st] = calllib('shrlibsample','addStructByRef',struct);

Pass an empty array to libstruct and assign the values from your
C function:

[res,st] = calllib('shrlibsample','addStructByRef',...

2-444

calllib

libstruct('c_struct',[]);

Let MATLAB create the proper type of structure and assign values
from your C function:

[res,st] = calllib('shrlibsample','addStructByRef',[]);

Examples This example calls functions from the libmx library to test the value
stored in y:

hfile = [matlabroot '\extern\include\matrix.h'];
loadlibrary('libmx', hfile)

y = rand(4, 7, 2);

calllib('libmx', 'mxGetNumberOfElements', y)
ans =

56

calllib('libmx', 'mxGetClassID', y)
ans =

mxDOUBLE_CLASS

unloadlibrary libmx

See Also loadlibrary, libfunctions, libfunctionsview, libpointer,
libstruct, libisloaded, unloadlibrary

See Passing Arguments for information on defining the correct data
types for library function arguments.

2-445

callSoapService

Purpose Send SOAP message off to endpoint

Syntax callSoapService(endpoint, soapAction, message)

Description callSoapService(endpoint, soapAction, message) sends message,
a Java document object model (DOM), to the soapAction service at
the endpoint.

Example message = createSoapMessage(...

'urn:xmethods-delayed-quotes','getQuote',{'GOOG'},{'symbol'},...

{'{http://www.w3.org/2001/XMLSchema}string'},'rpc')

response = callSoapService('http://64.124.140.30:9090/soap',...

'urn:xmethods-delayed-quotes#getQuote',message)

price = parseSoapResponse(response)

See Also createClassFromWsdl, CreateSoapMessage, parseSoapResponse

2-446

camdolly

Purpose Move camera position and target

Syntax camdolly(dx,dy,dz)
camdolly(dx,dy,dz,'targetmode')
camdolly(dx,dy,dz,'targetmode','coordsys')
camdolly(axes_handle,...)

Description camdolly moves the camera position and the camera target by the
specified amounts.

camdolly(dx,dy,dz) moves the camera position and the camera target
by the specified amounts (see Coordinate Systems).

camdolly(dx,dy,dz,'targetmode') The targetmode argument can
take on two values that determine how MATLAB moves the camera:

• movetarget (default) — Move both the camera and the target.

• fixtarget — Move only the camera.

camdolly(dx,dy,dz,'targetmode','coordsys') The coordsys
argument can take on three values that determine how MATLAB
interprets dx, dy, and dz:

Coordinate Systems

• camera (default) — Move in the camera’s coordinate system. dx
moves left/right, dy moves down/up, and dz moves along the viewing
axis. The units are normalized to the scene.

For example, setting dx to 1 moves the camera to the right, which
pushes the scene to the left edge of the box formed by the axes
position rectangle. A negative value moves the scene in the other
direction. Setting dz to 0.5 moves the camera to a position halfway
between the camera position and the camera target.

• pixels — Interpret dx and dy as pixel offsets. dz is ignored.

• data — Interpret dx, dy, and dz as offsets in axes data coordinates.

2-447

camdolly

camdolly(axes_handle,...) operates on the axes identified by the
first argument, axes_handle. When you do not specify an axes handle,
camdolly operates on the current axes.

Remarks camdolly sets the axes CameraPosition andCameraTarget properties,
which in turn causes the CameraPositionMode and CameraTargetMode
properties to be set to manual.

Examples This example moves the camera along the x- and y-axes in a series of
steps.

surf(peaks)
axis vis3d
t = 0:pi/20:2*pi;
dx = sin(t)./40;
dy = cos(t)./40;
for i = 1:length(t);

camdolly(dx(i),dy(i),0)
drawnow

end

See Also axes, campos, camproj, camtarget, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Controlling the Camera Viewpoint” on page 1-99 for related functions

See “Defining Scenes with Camera Graphics” for more information on
camera properties.

2-448

cameratoolbar

Purpose Control camera toolbar programmatically

Syntax cameratoolbar
cameratoolbar('NoReset')
cameratoolbar('SetMode',mode)
cameratoolbar('SetCoordSys',coordsys)
cameratoolbar('Show')
cameratoolbar('Hide')
cameratoolbar('Toggle')
cameratoolbar('ResetCameraAndSceneLight')
cameratoolbar('ResetCamera')
cameratoolbar('ResetSceneLight')
cameratoolbar('ResetTarget')
mode = cameratoolbar('GetMode')
paxis = cameratoolbar('GetCoordsys')
vis = cameratoolbar('GetVisible')
cameratoolbar(fig,...)
h = cameratoolbar
cameratoolbar('Close')

Description cameratoolbar creates a new toolbar that enables interactive
manipulation of the axes camera and light when users drag the mouse
on the figure window. Several axes camera properties are set when
the toolbar is initialized.

cameratoolbar('NoReset') creates the toolbar without setting any
camera properties.

cameratoolbar('SetMode',mode) sets the toolbar mode (depressed
button). mode can be 'orbit', 'orbitscenelight', 'pan', 'dollyhv',
'dollyfb', 'zoom', 'roll', 'nomode'.

cameratoolbar('SetCoordSys',coordsys) sets the principal axis of
the camera motion. coordsys can be: 'x', 'y', 'z', 'none'.

cameratoolbar('Show') shows the toolbar on the current figure.

cameratoolbar('Hide') hides the toolbar on the current figure.

cameratoolbar('Toggle') toggles the visibility of the toolbar.

2-449

cameratoolbar

cameratoolbar('ResetCameraAndSceneLight') resets the current
camera and scenelight.

cameratoolbar('ResetCamera') resets the current camera.

cameratoolbar('ResetSceneLight') resets the current scenelight.

cameratoolbar('ResetTarget') resets the current camera target.

mode = cameratoolbar('GetMode') returns the current mode.

paxis = cameratoolbar('GetCoordsys') returns the current
principal axis.

vis = cameratoolbar('GetVisible') returns the visibility of the
toolbar (1 if visible, 0 if not visible).

cameratoolbar(fig,...) specifies the figure to operate on by passing
the figure handle as the first argument.

h = cameratoolbar returns the handle to the toolbar.

cameratoolbar('Close') removes the toolbar from the current figure.

Note that, in general, the use of OpenGL hardware improves rendering
performance.

See Also rotate3d, zoom

2-450

camlight

Purpose Create or move light object in camera coordinates

Syntax camlight('headlight')
camlight('right')
camlight('left')
camlight
camlight(az,el)
camlight(...,'style')
camlight(light_handle,...)
light_handle = camlight(...)

Description camlight('headlight') creates a light at the camera position.

camlight('right') creates a light right and up from camera.

camlight('left') creates a light left and up from camera.

camlight with no arguments is the same as camlight('right').

camlight(az,el) creates a light at the specified azimuth (az) and
elevation (el) with respect to the camera position. The camera target is
the center of rotation and az and el are in degrees.

camlight(...,'style') The style argument can take on two values:

• local (default) — The light is a point source that radiates from the
location in all directions.

• infinite — The light shines in parallel rays.

camlight(light_handle,...) uses the light specified in
light_handle.

light_handle = camlight(...) returns the light’s handle.

Remarks camlight sets the light object Position and Style properties. A light
created with camlight will not track the camera. In order for the light
to stay in a constant position relative to the camera, you must call
camlight whenever you move the camera.

2-451

camlight

Examples This example creates a light positioned to the left of the camera and
then repositions the light each time the camera is moved:

surf(peaks)
axis vis3d
h = camlight('left');
for i = 1:20;
camorbit(10,0)
camlight(h,'left')
drawnow;

end

See Also light, lightangle

“Lighting” on page 1-101 for related functions

“Lighting as a Visualization Tool” for more information on using lights

2-452

camlookat

Purpose Position camera to view object or group of objects

Syntax camlookat(object_handles)
camlookat(axes_handle)
camlookat

Description camlookat(object_handles) views the objects identified in the vector
object_handles. The vector can contain the handles of axes children.

camlookat(axes_handle) views the objects that are children of the
axes identified by axes_handle.

camlookat views the objects that are in the current axes.

Remarks camlookat moves the camera position and camera target while
preserving the relative view direction and camera view angle. The
object (or objects) being viewed roughly fill the axes position rectangle.

camlookat sets the axes CameraPosition and CameraTarget properties.

Examples This example creates three spheres at different locations and then
progressively positions the camera so that each sphere is the object
around which the scene is composed:

[x y z] = sphere;
s1 = surf(x,y,z);
hold on
s2 = surf(x+3,y,z+3);
s3 = surf(x,y,z+6);
daspect([1 1 1])
view(30,10)
camproj perspective
camlookat(gca) % Compose the scene around the current axes
pause(2)
camlookat(s1) % Compose the scene around sphere s1
pause(2)
camlookat(s2) % Compose the scene around sphere s2
pause(2)

2-453

camlookat

camlookat(s3) % Compose the scene around sphere s3
pause(2)
camlookat(gca)

See Also campos, camtarget

“Controlling the Camera Viewpoint” on page 1-99 for related functions

“Defining Scenes with Camera Graphics” for more information

2-454

camorbit

Purpose Rotate camera position around camera target

Syntax camorbit(dtheta,dphi)
camorbit(dtheta,dphi,'coordsys')
camorbit(dtheta,dphi,'coordsys','direction')
camorbit(axes_handle,...)

Description camorbit(dtheta,dphi) rotates the camera position around the camera
target by the amounts specified in dtheta and dphi (both in degrees).
dtheta is the horizontal rotation and dphi is the vertical rotation.

camorbit(dtheta,dphi,'coordsys') The coordsys argument
determines the center of rotation. It can take on two values:

• data (default) — Rotate the camera around an axis defined by the
camera target and the direction (default is the positive z direction).

• camera — Rotate the camera about the point defined by the camera
target.

camorbit(dtheta,dphi,'coordsys','direction') The direction
argument, in conjunction with the camera target, defines the axis
of rotation for the data coordinate system. Specify direction as a
three-element vector containing the x, y, and z components of the
direction or one of the characters, x, y, or z, to indicate [1 0 0], [0 1
0], or [0 0 1] respectively.

camorbit(axes_handle,...) operates on the axes identified by the
first argument, axes_handle. When you do not specify an axes handle,
camorbit operates on the current axes.

Examples Compare rotation in the two coordinate systems with these for loops.
The first rotates the camera horizontally about a line defined by the
camera target point and a direction that is parallel to the y-axis.
Visualize this rotation as a cone formed with the camera target at the
apex and the camera position forming the base:

surf(peaks)

2-455

camorbit

axis vis3d
for i=1:36
camorbit(10,0,'data',[0 1 0])
drawnow

end

Rotation in the camera coordinate system orbits the camera around the
axes along a circle while keeping the center of a circle at the camera
target.

surf(peaks)
axis vis3d
for i=1:36
camorbit(10,0,'camera')
drawnow

end

See Also axes, axis('vis3d'), camdolly, campan, camzoom, camroll

“Controlling the Camera Viewpoint” on page 1-99 for related functions

“Defining Scenes with Camera Graphics” for more information

2-456

campan

Purpose Rotate camera target around camera position

Syntax campan(dtheta,dphi)
campan(dtheta,dphi,'coordsys')
campan(dtheta,dphi,'coordsys','direction')
campan(axes_handle,...)

Description campan(dtheta,dphi) rotates the camera target around the camera
position by the amounts specified in dtheta and dphi (both in degrees).
dtheta is the horizontal rotation and dphi is the vertical rotation.

campan(dtheta,dphi,'coordsys') The coordsys argument
determines the center of rotation. It can take on two values:

• data (default) — Rotate the camera target around an axis defined
by the camera position and the direction (default is the positive
z direction)

• camera — Rotate the camera about the point defined by the camera
target.

campan(dtheta,dphi,'coordsys','direction') The direction
argument, in conjunction with the camera position, defines the axis
of rotation for the data coordinate system. Specify direction as a
three-element vector containing the x, y, and z components of the
direction or one of the characters, x, y, or z, to indicate [1 0 0], [0 1
0], or [0 0 1] respectively.

campan(axes_handle,...) operates on the axes identified by the first
argument, axes_handle. When you do not specify an axes handle,
campan operates on the current axes.

See Also axes, camdolly, camorbit, camtarget, camzoom, camroll

“Controlling the Camera Viewpoint” on page 1-99 for related functions

“Defining Scenes with Camera Graphics” for more information

2-457

campos

Purpose Set or query camera position

Syntax campos
campos([camera_position])
campos('mode')
campos('auto')
campos('manual')
campos(axes_handle,...)

Description campos with no arguments returns the camera position in the current
axes.

campos([camera_position]) sets the position of the camera in
the current axes to the specified value. Specify the position as a
three-element vector containing the x-, y-, and z-coordinates of the
desired location in the data units of the axes.

campos('mode') returns the value of the camera position mode, which
can be either auto (the default) or manual.

campos('auto') sets the camera position mode to auto.

campos('manual') sets the camera position mode to manual.

campos(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, campos operates on the current axes.

Remarks campos sets or queries values of the axes CameraPosition and
CameraPositionMode properties. The camera position is the point in the
Cartesian coordinate system of the axes from which you view the scene.

Examples This example moves the camera along the x-axis in a series of steps:

surf(peaks)
axis vis3d off
for x = -200:5:200

campos([x,5,10])
drawnow

2-458

campos

end

See Also axis, camproj, camtarget, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Controlling the Camera Viewpoint” on page 1-99 for related functions

“Defining Scenes with Camera Graphics” for more information

2-459

camproj

Purpose Set or query projection type

Syntax camproj
camproj('projection_type')
camproj(axes_handle,...)

Description The projection type determines whether MATLAB uses a perspective or
orthographic projection for 3-D views.

camproj with no arguments returns the projection type setting in the
current axes.

camproj('projection_type') sets the projection type in the current
axes to the specified value. Possible values for projection_type are
orthographic and perspective.

camproj(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, camproj operates on the current axes.

Remarks camproj sets or queries values of the axes object Projection property.

See Also campos, camtarget, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Controlling the Camera Viewpoint” on page 1-99 for related functions

“Defining Scenes with Camera Graphics” for more information

2-460

camroll

Purpose Rotate camera about view axis

Syntax camroll(dtheta)
camroll(axes_handle,dtheta)

Description camroll(dtheta) rotates the camera around the camera viewing axis
by the amounts specified in dtheta (in degrees). The viewing axis is
defined by the line passing through the camera position and the camera
target.

camroll(axes_handle,dtheta) operates on the axes identified by the
first argument, axes_handle. When you do not specify an axes handle,
camroll operates on the current axes.

Remarks camroll sets the axes CameraUpVector property and thereby also sets
the CameraUpVectorMode property to manual.

See Also axes, axis('vis3d'), camdolly, camorbit, camzoom, campan

“Controlling the Camera Viewpoint” on page 1-99 for related functions

“Defining Scenes with Camera Graphics” for more information

2-461

camtarget

Purpose Set or query location of camera target

Syntax camtarget
camtarget([camera_target])
camtarget('mode')
camtarget('auto')
camtarget('manual')
camtarget(axes_handle,...)

Description The camera target is the location in the axes that the camera points to.
The camera remains oriented toward this point regardless of its position.

camtarget with no arguments returns the location of the camera target
in the current axes.

camtarget([camera_target]) sets the camera target in the current axes
to the specified value. Specify the target as a three-element vector
containing the x-, y-, and z-coordinates of the desired location in the
data units of the axes.

camtarget('mode') returns the value of the camera target mode, which
can be either auto (the default) or manual.

camtarget('auto') sets the camera target mode to auto.

camtarget('manual') sets the camera target mode to manual.

camtarget(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, camtarget operates on the current axes.

Remarks camtarget sets or queries values of the axes object CameraTarget and
CameraTargetMode properties.

When the camera target mode is auto, MATLAB positions the camera
target at the center of the axes plot box.

Examples This example moves the camera position and the camera target along
the x-axis in a series of steps:

2-462

camtarget

surf(peaks);
axis vis3d
xp = linspace(-150,40,50);
xt = linspace(25,50,50);
for i=1:50

campos([xp(i),25,5]);
camtarget([xt(i),30,0])
drawnow

end

See Also axis, camproj, campos, camup, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Controlling the Camera Viewpoint” on page 1-99 for related functions

“Defining Scenes with Camera Graphics” for more information

2-463

camup

Purpose Set or query camera up vector

Syntax camup
camup([up_vector])
camup('mode')
camup('auto')
camup('manual')
camup(axes_handle,...)

Description The camera up vector specifies the direction that is oriented up in the
scene.

camup with no arguments returns the camera up vector setting in the
current axes.

camup([up_vector]) sets the up vector in the current axes to the
specified value. Specify the up vector as x, y, and z components. See
Remarks.

camup('mode') returns the current value of the camera up vector mode,
which can be either auto (the default) or manual.

camup('auto') sets the camera up vector mode to auto. In auto mode,
MATLAB uses a value for the up vector of [0 1 0] for 2-D views. This
means the z-axis points up.

camup('manual') sets the camera up vector mode to manual. In manual
mode, MATLAB does not change the value of the camera up vector.

camup(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, camup operates on the current axes.

Remarks camup sets or queries values of the axes object CameraUpVector and
CameraUpVectorMode properties.

Specify the camera up vector as the x-, y-, and z-coordinates of a point
in the axes coordinate system that forms the directed line segment
PQ, where P is the point (0,0,0) and Q is the specified x-, y-, and
z-coordinates. This line always points up. The length of the line PQ has

2-464

camup

no effect on the orientation of the scene. This means a value of [0 0 1]
produces the same results as [0 0 25].

See Also axis, camproj, campos, camtarget, camva

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Controlling the Camera Viewpoint” on page 1-99 for related functions

“Defining Scenes with Camera Graphics” for more information

2-465

camva

Purpose Set or query camera view angle

Syntax camva
camva(view_angle)
camva('mode')
camva('auto')
camva('manual')
camva(axes_handle,...)

Description The camera view angle determines the field of view of the camera.
Larger angles produce a smaller view of the scene. You can implement
zooming by changing the camera view angle.

camva with no arguments returns the camera view angle setting in
the current axes.

camva(view_angle) sets the view angle in the current axes to the
specified value. Specify the view angle in degrees.

camva('mode') returns the current value of the camera view angle
mode, which can be either auto (the default) or manual. See Remarks.

camva('auto') sets the camera view angle mode to auto.

camva('manual') sets the camera view angle mode to manual. See
Remarks.

camva(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, camva operates on the current axes.

Remarks camva sets or queries values of the axes object CameraViewAngle and
CameraViewAngleMode properties.

When the camera view angle mode is auto, MATLAB adjusts the
camera view angle so that the scene fills the available space in the
window. If you move the camera to a different position, MATLAB
changes the camera view angle to maintain a view of the scene that fills
the available area in the window.

2-466

camva

Setting a camera view angle or setting the camera view angle to manual
disables the MATLAB stretch-to-fill feature (stretching of the axes
to fit the window). This means setting the camera view angle to its
current value,

camva(camva)

can cause a change in the way the graph looks. See the Remarks section
of the axes reference page for more information.

Examples This example creates two pushbuttons, one that zooms in and another
that zooms out.

uicontrol('Style','pushbutton',...
'String','Zoom In',...
'Position',[20 20 60 20],...
'Callback','if camva <= 1;return;else;camva(camva-1);end');

uicontrol('Style','pushbutton',...
'String','Zoom Out',...
'Position',[100 20 60 20],...
'Callback','if camva >= 179;return;else;camva(camva+1);end');

Now create a graph to zoom in and out on:

surf(peaks);

Note the range checking in the callback statements. This keeps the
values for the camera view angle in the range greater than zero and
less than 180.

See Also axis, camproj, campos, camup, camtarget

The axes properties CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle, Projection

“Controlling the Camera Viewpoint” on page 1-99 for related functions

“Defining Scenes with Camera Graphics” for more information

2-467

camzoom

Purpose Zoom in and out on scene

Syntax camzoom(zoom_factor)
camzoom(axes_handle,...)

Description camzoom(zoom_factor) zooms in or out on the scene depending on the
value specified by zoom_factor. If zoom_factor is greater than 1, the
scene appears larger; if zoom_factor is greater than zero and less than
1, the scene appears smaller.

camzoom(axes_handle,...) operates on the axes identified by the
first argument, axes_handle. When you do not specify an axes handle,
camzoom operates on the current axes.

Remarks camzoom sets the axes CameraViewAngle property, which in turn
causes the CameraViewAngleMode property to be set to manual. Note
that setting the CameraViewAngle property disables the MATLAB
stretch-to-fill feature (stretching of the axes to fit the window). This
may result in a change to the aspect ratio of your graph. See the axes
function for more information on this behavior.

See Also axes, camdolly, camorbit, campan, camroll, camva

“Controlling the Camera Viewpoint” on page 1-99 for related functions

“Defining Scenes with Camera Graphics” for more information

2-468

cart2pol

Purpose Transform Cartesian coordinates to polar or cylindrical

Syntax [THETA,RHO,Z] = cart2pol(X,Y,Z)
[THETA,RHO] = cart2pol(X,Y)

Description [THETA,RHO,Z] = cart2pol(X,Y,Z) transforms three-dimensional
Cartesian coordinates stored in corresponding elements of arrays X, Y,
and Z, into cylindrical coordinates. THETA is a counterclockwise angular
displacement in radians from the positive x-axis, RHO is the distance
from the origin to a point in the x-y plane, and Z is the height above the
x-y plane. Arrays X, Y, and Z must be the same size (or any can be scalar).

[THETA,RHO] = cart2pol(X,Y) transforms two-dimensional Cartesian
coordinates stored in corresponding elements of arrays X and Y into
polar coordinates.

Algorithm The mapping from two-dimensional Cartesian coordinates to polar
coordinates, and from three-dimensional Cartesian coordinates to
cylindrical coordinates is

See Also cart2sph, pol2cart, sph2cart

2-469

cart2sph

Purpose Transform Cartesian coordinates to spherical

Syntax [THETA,PHI,R] = cart2sph(X,Y,Z)

Description [THETA,PHI,R] = cart2sph(X,Y,Z) transforms Cartesian coordinates
stored in corresponding elements of arrays X, Y, and Z into spherical
coordinates. Azimuth THETA and elevation PHI are angular
displacements in radians measured from the positive x-axis, and the x-y
plane, respectively; and R is the distance from the origin to a point.

Arrays X, Y, and Z must be the same size.

Algorithm The mapping from three-dimensional Cartesian coordinates to spherical
coordinates is

The notation for spherical coordinates is not standard. For the cart2sph
function, the angle PHI is measured from the x-y plane. Notice that if
PHI = 0 then the point is in the x-y plane and if PHI = pi/2 then the
point is on the positive z-axis.

See Also cart2pol, pol2cart, sph2cart

2-470

case

Purpose Execute block of code if condition is true

Syntax switch switch_expr
case case_expr

statement, ..., statement
case {case_expr1, case_expr2, case_expr3, ...}

statement, ..., statement
otherwise

statement, ..., statement
end

Description case is part of the switch statement syntax which allows for conditional
execution. A particular case consists of the case statement itself
followed by a case expression and one or more statements.

case case_expr compares the value of the expression switch_expr
declared in the preceding switch statement with one or more values
in case_expr, and executes the block of code that follows if any of the
comparisons yield a true result.

You typically use multiple case statements in the evaluation of a single
switch statement. The block of code associated with a particular case
statement is executed only if its associated case expression (case_expr)
is the first to match the switch expression (switch_expr).

To enter more than one case expression in a switch statement, put the
expressions in a cell array, as shown above.

Examples To execute a certain block of code based on what the string, method,
is set to,

method = 'Bilinear';

switch lower(method)
case {'linear','bilinear'}

disp('Method is linear')
case 'cubic'

2-471

case

disp('Method is cubic')
case 'nearest'

disp('Method is nearest')
otherwise

disp('Unknown method.')
end

Method is linear

See Also switch, otherwise, end, if, else, elseif, while

2-472

cast

Purpose Cast variable to different data type

Syntax B = cast(A, newclass)

Description B = cast(A, newclass) casts A to class newclass. A must be
convertible to class newclass. newclass must be the name of one of the
built in data types.

Examples a = int8(5);
b = cast(a,'uint8');
class(b)

ans =

uint8

See Also class

2-473

cat

Purpose Concatenate arrays along specified dimension

Syntax C = cat(dim, A, B)
C = cat(dim, A1, A2, A3, A4, ...)

Description C = cat(dim, A, B)concatenates the arrays A and B along dim.

C = cat(dim, A1, A2, A3, A4, ...)concatenates all the input
arrays (A1, A2, A3, A4, and so on) along dim.

cat(2, A, B) is the same as [A, B], and cat(1, A, B) is the same
as [A; B].

Remarks When used with comma-separated list syntax, cat(dim, C{:}) or
cat(dim, C.field) is a convenient way to concatenate a cell or
structure array containing numeric matrices into a single matrix.

Examples Given

A = B =
1 2 5 6
3 4 7 8

concatenating along different dimensions produces

The commands

2-474

cat

A = magic(3); B = pascal(3);
C = cat(4, A, B);

produce a 3-by-3-by-1-by-2 array.

See Also num2cell

The special character []

2-475

catch

Purpose Specify how to respond to error in try statement

Syntax catch ME
catch

Description catch ME marks the start of a catch block in a try-catch statement.
It returns object ME, which is an instance of the MATLAB class
MException. This object contains information about an error caught
in the preceding try block and can be useful in helping your program
respond to the error appropriately.

A try-catch statement is a programming device that enables you to
define how certain errors are to be handled in your program. This
bypasses the default MATLAB error-handling mechanism when these
errors are detected. The try-catch statement consists of two blocks of
MATLAB code, a try block and a catch block, delimited by the keywords
try, catch, and end:

try
MATLAB commands % Try block

catch ME
MATLAB commands % Catch block

end

Each of these blocks consists of one or more MATLAB commands. The
try block is just another piece of your program code; the commands in
this block execute just like any other part of your program. Any errors
MATLAB encounters in the try block are dealt with by the respective
catch block. This is where you write your error-handling code. If the
try block executes without error, MATLAB skips the catch block
entirely. If an error occurs while executing the catch block, the program
terminates unless this error is caught by another try-catch block.

catch marks the start of a catch block but does not return an
MException object. You can obtain the error string that was generated
by calling the lasterror function.

2-476

catch

Specifying the try, catch, and end commands, as well as the
commands that make up the try and catch blocks, on separate lines
is recommended. If you combine any of these components on the same
line, separate them with commas:

try, surf, catch ME, ME.stack, end
ans =

file: 'matlabroot\toolbox\matlab\graph3d\surf.m'
name: 'surf'
line: 54

Examples The catch block in this example checks to see if the specified file could
not be found. If this is the case, the program allows for the possibility
that a common variation of the filename extension (e.g., jpeg instead
of jpg) was used by retrying the operation with a modified extension.
This is done using a try-catch statement that is nested within the
original try-catch.

function d_in = read_image(filename)
file_format = regexp(filename, '(?<=\.)\w+$', 'match');

try
fid = fopen(filename, 'r');
d_in = fread(fid);

catch ME1
% Get last segment of the error message identifier.
idSegLast = regexp(ME1.identifier, '(?<=:)\w+$', 'match');

% Did the read fail because the file could not be found?
if strcmp(idSegLast, 'InvalidFid') && ~exist(filename, 'file')

% Yes. Try modifying the filename extension.
switch file_format
case 'jpg' % Change jpg to jpeg

filename = regexprep(filename, '(?<=\.)\w+$', 'jpeg');
case 'jpeg' % Change jpeg to jpg

filename = regexprep(filename, '(?<=\.)\w+$', 'jpg');

2-477

catch

case 'tif' % Change tif to tiff
filename = regexprep(filename, '(?<=\.)\w+$', 'tiff');

case 'tiff' % Change tiff to tif
filename = regexprep(filename, '(?<=\.)\w+$', 'tif');

otherwise
disp(sprintf('File %s not found', filename));
rethrow(ME1);

end

% Try again, with modifed filenames.
try

fid = fopen(filename, 'r');
d_in = fread(fid);

catch ME2
disp(sprintf('Unable to access file %s', filename));
ME2 = addCause(ME2, ME1);
rethrow(ME2)

end
end

end

See Also try, rethrow, end, lasterror, eval, evalin

2-478

caxis

Purpose Color axis scaling

Syntax caxis([cmin cmax])
caxis auto
caxis manual
caxis(caxis) freeze
v = caxis
caxis(axes_handle,...)

Description caxis controls the mapping of data values to the colormap. It affects any
surfaces, patches, and images with indexed CData and CDataMapping
set to scaled. It does not affect surfaces, patches, or images with true
color CData or with CDataMapping set to direct.

caxis([cmin cmax]) sets the color limits to specified minimum and
maximum values. Data values less than cmin or greater than cmax map
to cmin and cmax, respectively. Values between cmin and cmax linearly
map to the current colormap.

caxis auto lets MATLAB compute the color limits automatically using
the minimum and maximum data values. This is the default behavior.
Color values set to Inf map to the maximum color, and values set to
-Inf map to the minimum color. Faces or edges with color values set to
NaN are not drawn.

caxis manual and caxis(caxis) freeze the color axis scaling at the
current limits. This enables subsequent plots to use the same limits
when hold is on.

v = caxis returns a two-element row vector containing the [cmin
cmax] currently in use.

caxis(axes_handle,...) uses the axes specified by axes_handle
instead of the current axes.

Remarks caxis changes the CLim and CLimMode properties of axes graphics
objects.

2-479

caxis

How Color Axis Scaling Works

Surface, patch, and image graphics objects having indexed CData and
CDataMapping set to scaled map CData values to colors in the figure
colormap each time they render. CData values equal to or less than cmin
map to the first color value in the colormap, and CData values equal to or
greater than cmax map to the last color value in the colormap. MATLAB
performs the following linear transformation on the intermediate values
(referred to as C below) to map them to an entry in the colormap (whose
length is m, and whose row index is referred to as index below).

index = fix((C-cmin)/(cmax-cmin)*m)+1

Examples Create (X,Y,Z) data for a sphere and view the data as a surface.

[X,Y,Z] = sphere;
C = Z;
surf(X,Y,Z,C)

Values of C have the range [-1 1]. Values of C near -1 are assigned
the lowest values in the colormap; values of C near 1 are assigned the
highest values in the colormap.

To map the top half of the surface to the highest value in the color table,
use

caxis([-1 0])

To use only the bottom half of the color table, enter

caxis([-1 3])

which maps the lowest CData values to the bottom of the colormap, and
the highest values to the middle of the colormap (by specifying a cmax
whose value is equal to cmin plus twice the range of the CData).

The command

caxis auto

2-480

caxis

resets axis scaling back to autoranging and you see all the colors in
the surface. In this case, entering

caxis

returns

[-1 1]

Adjusting the color axis can be useful when using images with scaled
color data. For example, load the image data and colormap for Cape
Cod, Massachusetts.

load cape

This command loads the image’s data X and the image’s colormap map
into the workspace. Now display the image with CDataMapping set to
scaled and install the image’s colormap.

image(X,'CDataMapping','scaled')colormap(map)

MATLAB sets the color limits to span the range of the image data,
which is 1 to 192:

caxis
ans =

1 192

The blue color of the ocean is the first color in the colormap and is
mapped to the lowest data value (1). You can effectively move sea level
by changing the lower color limit value. For example,

2-481

caxis

See Also axes, axis, colormap, get, mesh, pcolor, set, surf

The CLim and CLimMode properties of axes graphics objects

The Colormap property of figure graphics objects

“Color Operations” on page 1-98 for related functions

2-482

caxis

“Axes Color Limits — the CLim Property” for more examples

2-483

cd

Purpose Change working directory

Graphical
Interface

As an alternative to the cd function, use the current directory field

in the MATLAB desktop toolbar.

Syntax cd
w = cd
cd('directory')
cd('..')
cd directory

Description cd displays the current working directory.

w = cd assigns the current working directory to w.

cd('directory') sets the current working directory to directory. Use
the full pathname for directory. On UNIX platforms, the character ~
is interpreted as the user’s root directory.

cd('..') changes the current working directory to the directory above
it.

cd directory or cd .. is the unquoted form of the syntax.

Examples On UNIX

cd('/usr/local/matlab/toolbox/control/ctrldemos')

changes the current working directory to ctrldemos for the Control
System Toolbox.

On Windows

cd('c:/matlab/toolbox/control/ctrldemos')

changes the current working directory to ctrldemos for the Control
System Toolbox. Then typing

2-484

cd

cd ..

changes the current working directory to control, and typing

cd ..

again, changes the current working directory to toolbox.

On any platform, use cd with the matlabroot function to change to a
directory relative to the directory in which MATLAB is installed. For
example

cd([matlabroot '/toolbox/control/ctrldemos'])

changes the current working directory to ctrldemos for the Control
System Toolbox.

See Also dir, fileparts, mfilename, path, pwd, what

2-485

cd (ftp)

Purpose Change current directory on FTP server

Syntax cd(f)
cd(f,'dirname')
cd(f,'..')

Description cd(f) Displays the current directory on the FTP server f, where f was
created using ftp.

cd(f,'dirname') Changes the current directory on the FTP server
f to dirname, where f was created using ftp. After running cd, the
object f remembers the current directory on the FTP server. You can
then perform file operations functions relative to f using the methods
delete, dir, mget, mkdir, mput, rename, and rmdir.

cd(f,'..') changes the current directory on the FTP server f to the
directory above the current one.

Examples Connect to the MathWorks FTP server.

tmw=ftp('ftp.mathworks.com');

View the contents.

dir(tmw)

Change the current directory to pub.

cd(tmw,'pub');

View the contents of pub.

dir(tmw)

See Also dir (ftp), ftp

2-486

cdf2rdf

Purpose Convert complex diagonal form to real block diagonal form

Syntax [V,D] = cdf2rdf(V,D)
[V,D] = cdf2rdf(V,D)

Description If the eigensystem [V,D] = eig(X) has complex eigenvalues appearing
in complex-conjugate pairs, cdf2rdf transforms the system so D is in
real diagonal form, with 2-by-2 real blocks along the diagonal replacing
the complex pairs originally there. The eigenvectors are transformed
so that

X = V*D/V

continues to hold. The individual columns of V are no longer
eigenvectors, but each pair of vectors associated with a 2-by-2 block in
D spans the corresponding invariant vectors.

Examples The matrix

X =
1 2 3
0 4 5
0 -5 4

has a pair of complex eigenvalues.

[V,D] = eig(X)

V =

1.0000 -0.0191 - 0.4002i -0.0191 + 0.4002i
0 0 - 0.6479i 0 + 0.6479i
0 0.6479 0.6479

D =

1.0000 0 0

2-487

cdf2rdf

0 4.0000 + 5.0000i 0
0 0 4.0000 - 5.0000i

Converting this to real block diagonal form produces

[V,D] = cdf2rdf(V,D)

V =

1.0000 -0.0191 -0.4002
0 0 -0.6479
0 0.6479 0

D =

1.0000 0 0
0 4.0000 5.0000
0 -5.0000 4.0000

Algorithm The real diagonal form for the eigenvalues is obtained from the complex
form using a specially constructed similarity transformation.

See Also eig, rsf2csf

2-488

cdfepoch

Purpose Construct cdfepoch object for Common Data Format (CDF) export

Syntax E = cdfepoch(date)

Description E = cdfepoch(date) constructs a cdfepoch object, where date is a
valid string (datestr), a number (datenum) representing a date, or a
cdfepoch object.

When writing data to a CDF using cdfwrite, use cdfepoch to convert
MATLAB formatted dates to CDF formatted dates. The MATLAB
cdfepoch object simulates the CDFEPOCH data type in CDF files.

Use the todatenum function to convert a cdfepoch object into a
MATLAB serial date number.

Note A CDF epoch is the number of milliseconds since 1-Jan-0000.
MATLAB datenums are the number of days since 0-Jan-0000.

See Also cdfinfo, cdfread, cdfwrite, datenum

2-489

cdfinfo

Purpose Information about Common Data Format (CDF) file

Syntax info = cdfinfo(filename)

Description info = cdfinfo(filename) returns information about the Common
Data Format (CDF) file specified in the string filename.

Note Because cdfinfo creates temporary files, the current working
directory must be writeable.

The return value, info, is a structure that contains the fields listed
alphabetically in the following table.

Field Description

FileModDate Text string indicating the date the file was
last modified

Filename Text string specifying the name of the file

FileSettings Structure array containing library settings
used to create the file

FileSize Double scalar specifying the size of the file,
in bytes

Format Text string specifying the file format

FormatVersion Text string specifying the version of the CDF
library used to create the file

GlobalAttributes Structure array that contains one field for
each global attribute. The name of each field
corresponds to the name of an attribute. The
data in each field, contained in a cell array,
represents the entry values for that attribute.

2-490

cdfinfo

Field Description

Subfiles Filenames containing the CDF file’s data, if
it is a multifile CDF

VariableAttributes Structure array that contains one field for
each variable attribute. The name of each
field corresponds to the name of an attribute.
The data in each field is contained in a n-by-2
cell array, where n is the number of variables.
The first column of this cell array contains the
variable names associated with the entries.
The second column contains the entry values.

2-491

cdfinfo

Field Description

N-by-6 cell array, where N is the number of
variables, containing information about the
variables in the file. The columns present the
following information:

Column
1

Text string specifying name of
variable

Column
2

Double array specifying the
dimensions of the variable, as
returned by the size function

Column
3

Double scalar specifying the
number of records assigned for the
variable

Column
4

Text string specifying the data type
of the variable, as stored in the
CDF file

Column
5

Text string specifying the record
and dimension variance settings
for the variable. The single
T or F to the left of the slash
designates whether values vary
by record. The zero or more T or
F letters to the right of the slash
designate whether values vary at
each dimension. Here are some
examples.

T/ (scalar variable

F/T (one-dimensional variable)

T/TFF (three-dimensional variable)

Variables

Column
6

Text string specifying the sparsity
of the variable’s records, with these
possible values:

'Full' 'Sparse (padded)'
'Sparse (nearest)'

2-492

cdfinfo

Note Attribute names returned by cdfinfo might not match the
names of the attributes in the CDF file exactly. Attribute names can
contain characters that are illegal in MATLAB field names. cdfinfo
removes illegal characters that appear at the beginning of attributes
and replaces other illegal characters with underscores (’_’). When
cdfinfo modifies an attribute name, it appends the attribute’s internal
number to the end of the field name. For example, the attribute name
Variable%Attribute becomes Variable_Attribute_013.

Examples info = cdfinfo('example.cdf')
info =

Filename: 'example.cdf'
FileModDate: '09-Mar-2001 15:45:22'

FileSize: 1240
Format: 'CDF'

FormatVersion: '2.7.0'
FileSettings: [1x1 struct]

Subfiles: {}
Variables: {5x6 cell}

GlobalAttributes: [1x1 struct]
VariableAttributes: [1x1 struct]

info.Variables
ans =

'Time' [1x2 double] [24] 'epoch' 'T/' 'Full'
'Longitude' [1x2 double] [1] 'int8' 'F/FT' 'Full'
'Latitude' [1x2 double] [1] 'int8' 'F/TF' 'Full'
'Data' [1x3 double] [1] 'double' 'T/TTT' 'Full'
'multidim' [1x4 double] [1] 'uint8' 'T/TTTT' 'Full'

See Also cdfread

2-493

cdfread

Purpose Read data from Common Data Format (CDF) file

Syntax data = cdfread(filename)
data = cdfread(filename, param1, val1, param2, val2, ...)
[data, info] = cdfread(filename, ...)

Description data = cdfread(filename) reads all the data from the Common
Data Format (CDF) file specified in the string filename. CDF data
sets typically contain a set of variables, of a specific data type, each
with an associated set of records. The variable might represent time
values with each record representing a specific time that an observation
was recorded. cdfread returns all the data in a cell array where
each column represents a variable and each row represents a record
associated with a variable. If the variables have varying numbers of
associated records, cdfread pads the rows to create a rectangular cell
array, using pad values defined in the CDF file.

Note Because cdfread creates temporary files, the current working
directory must be writeable.

data = cdfread(filename, param1, val1, param2, val2, ...)
reads data from the file, where param1, param2, and so on, can be any of
the following parameters.

Parameter Value

'Records' A vector specifying which records to read. Record numbers
are zero-based. cdfread returns a cell array with the
same number of rows as the number of records read and
as many columns as there are variables.

2-494

cdfread

Parameter Value

'Variables' A 1-by-n or n-by-1 cell array specifying the names of the
variables to read from the file. n must be less than or
equal to the total number of variables in the file. cdfread
returns a cell array with the same number of columns as
the number of variables read, and a row for each record
read.

'Slices' An m-by-3 array, where each row specifies where to start
reading along a particular dimension of a variable, the
skip interval to use on that dimension (every item, every
other item, etc.), and the total number of values to read
on that dimension. m must be less than or equal to the
number of dimensions of the variable. If m is less than
the total number of dimensions, cdfread reads every
value from the unspecified dimensions ([0 1 n], where
n is the total number of elements in the dimension.
Note: Because the 'Slices' parameter describes how to
process a single variable, it must be used in conjunction
with the 'Variables' parameter.

2-495

cdfread

Parameter Value

'ConvertEpochToDatenum' A Boolean value that determines whether cdfread
automatically converts CDF epoch data types to MATLAB
serial date numbers. If set to false (the default), cdfread
wraps epoch values in MATLABcdfepoch objects.
Note: For better performance when reading large data
sets, set this parameter to true.

'CombineRecords' A Boolean value that determines how cdfread returns
the CDF data sets read from the file. If set to false
(the default), cdfread stores the data in an m-by-n
cell array, where m is the number of records and n
is the number of variables requested. If set to true,
cdfread combines all records for a particular variable
into one cell in the output cell array. In this cell, cdfread
stores scalar data as a column array. cdfread extends
the dimensionality of nonscalar and string data. For
example, instead of creating 1000 elements containing
20-by-30 arrays for each record, cdfread stores all
the records in one cell as a 1000-by-20-by-30 array
Note: If you use the 'Records' parameter
to specify which records to read, you cannot
use the 'CombineRecords' parameter.
Note: When using the 'Variable' parameter to
read one variable, if the 'CombineRecords' parameter is
true, cdfread returns the data as an M-by-N numeric or
character array; it does not put the data into a cell array.

[data, info] = cdfread(filename, ...) returns details about the
CDF file in the info structure.

Note To maximize performance, specify both the
'ConvertEpochToDatenum' and 'CombineRecords' parameters, setting
their values to 'true'.

2-496

cdfread

Examples Read all the data from a CDF file.

data = cdfread('example.cdf');

Read the data from the variable 'Time'.

data = cdfread('example.cdf', 'Variable', {'Time'});

Read the first value in the first dimension, the second value in
the second dimension, the first and third values in the third
dimension, and all values in the remaining dimension of the variable
'multidimensional'.

data = cdfread('example.cdf', ...
'Variable', {'multidimensional'}, ...
'Slices', [0 1 1; 1 1 1; 0 2 2]);

This is similar to reading the whole variable into data and then using
matrix indexing, as in the following.

data{1}(1, 2, [1 3], :)

Collapse the records from a data set and convert CDF epoch data types
to MATLAB serial date numbers.

data = cdfread('example.cdf', ...
'CombineRecords', true, ...
'ConvertEpochToDatenum', true);

See Also cdfepoch, cdfinfo, cdfwrite

For more information about using this function, see “Common Data
Format (CDF) Files”.

2-497

cdfwrite

Purpose Write data to Common Data Format (CDF) file

Syntax cdfwrite(filename,variablelist)
cdfwrite(...,'PadValues',padvals)
cdfwrite(...,'GlobalAttributes',gattrib)
cdfwrite(..., 'VariableAttributes', vattrib)
cdfwrite(...,'WriteMode',mode)
cdfwrite(...,'Format',format)

Description cdfwrite(filename,variablelist) writes out a Common Data
Format (CDF) file, specified in filename. The filename input is a
string enclosed in single quotes. The variablelist argument is a cell
array of ordered pairs, each of which comprises a CDF variable name (a
string) and the corresponding CDF variable value. To write out multiple
records for a variable, put the values in a cell array where each element
in the cell array represents a record.

Note Because cdfwrite creates temporary files, both the destination
directory for the file and the current working directory must be
writeable.

cdfwrite(...,'PadValues',padvals) writes out pad values for given
variable names. padvals is a cell array of ordered pairs, each of which
comprises a variable name (a string) and a corresponding pad value.
Pad values are the default values associated with the variable when
an out-of-bounds record is accessed. Variable names that appear in
padvals must appear in variablelist.

cdfwrite(...,'GlobalAttributes',gattrib) writes the structure
gattrib as global metadata for the CDF file. Each field of the structure
is the name of a global attribute. The value of each field contains the
value of the attribute. To write out multiple values for an attribute,
put the values in a cell array where each element in the cell array
represents a record.

2-498

cdfwrite

Note To specify a global attribute name that is illegal in MATLAB,
create a field called 'CDFAttributeRename' in the attribute structure.
The value of this field must have a value that is a cell array of ordered
pairs. The ordered pair consists of the name of the original attribute, as
listed in the GlobalAttributes structure, and the corresponding name
of the attribute to be written to the CDF file.

cdfwrite(..., 'VariableAttributes', vattrib) writes the
structure vattrib as variable metadata for the CDF. Each field of
the struct is the name of a variable attribute. The value of each field
should be an M-by-2 cell array where M is the number of variables with
attributes. The first element in the cell array should be the name of the
variable and the second element should be the value of the attribute
for that variable.

Note To specify a variable attribute name that is illegal in MATLAB,
create a field called 'CDFAttributeRename' in the attribute structure.
The value of this field must have a value that is a cell array of ordered
pairs. The ordered pair consists of the name of the original attribute, as
listed in the VariableAttributes struct, and the corresponding name
of the attribute to be written to the CDF file. If you are specifying a
variable attribute of a CDF variable that you are renaming, the name of
the variable in the VariableAttributes structure must be the same
as the renamed variable.

cdfwrite(...,'WriteMode',mode), where mode is either 'overwrite'
or 'append', indicates whether or not the specified variables should be
appended to the CDF file if the file already exists. By default, cdfwrite
overwrites existing variables and attributes.

cdfwrite(...,'Format',format), where format is either 'multifile'
or 'singlefile', indicates whether or not the data is written out as a
multifile CDF. In a multifile CDF, each variable is stored in a separate

2-499

cdfwrite

file with the name *.vN, where N is the number of the variable that is
written out to the CDF. By default, cdfwrite writes out a single file
CDF. When 'WriteMode' is set to 'Append', the 'Format' option is
ignored, and the format of the preexisting CDF is used.

Examples Write out a file 'example.cdf' containing a variable 'Longitude' with
the value [0:360].

cdfwrite('example', {'Longitude', 0:360});

Write out a file 'example.cdf' containing variables 'Longitude' and
'Latitude' with the variable 'Latitude' having a pad value of 10 for
all out-of-bounds records that are accessed.

cdfwrite('example', {'Longitude', 0:360, 'Latitude', 10:20}, ...

'PadValues', {'Latitude', 10});

Write out a file 'example.cdf', containing a variable 'Longitude'
with the value [0:360], and with a variable attribute of 'validmin'
with the value 10.

varAttribStruct.validmin = {'longitude' [10]};

cdfwrite('example', {'Longitude' 0:360}, 'VarAttribStruct', ...

varAttribStruct);

See Also cdfread, cdfinfo, cdfepoch

2-500

ceil

Purpose Round toward infinity

Syntax B = ceil(A)

Description B = ceil(A) rounds the elements of A to the nearest integers greater
than or equal to A. For complex A, the imaginary and real parts are
rounded independently.

Examples a = [-1.9, -0.2, 3.4, 5.6, 7, 2.4+3.6i]

a =
Columns 1 through 4
-1.9000 -0.2000 3.4000 5.6000

Columns 5 through 6
7.0000 2.4000 + 3.6000i

ceil(a)

ans =
Columns 1 through 4
-1.0000 0 4.0000 6.0000

Columns 5 through 6
7.0000 3.0000 + 4.0000i

See Also fix, floor, round

2-501

cell

Purpose Construct cell array

Syntax c = cell(n)
c = cell(m, n)
c = cell([m, n])
c = cell(m, n, p,...)
c = cell([m n p ...])
c = cell(size(A))
c = cell(javaobj)

Description c = cell(n) creates an n-by-n cell array of empty matrices. An error
message appears if n is not a scalar.

c = cell(m, n) or c = cell([m, n]) creates an m-by-n cell array of
empty matrices. Arguments m and n must be scalars.

c = cell(m, n, p,...) or c = cell([m n p ...]) creates an
m-by-n-by-p-... cell array of empty matrices. Arguments m, n, p,... must
be scalars.

c = cell(size(A)) creates a cell array the same size as A containing
all empty matrices.

c = cell(javaobj) converts a Java array or Java object javaobj into
a MATLAB cell array. Elements of the resulting cell array will be of the
MATLAB type (if any) closest to the Java array elements or Java object.

Remarks This type of cell is not related to “cell mode,” a MATLAB feature used in
debugging and publishing.

Examples This example creates a cell array that is the same size as another array,
A.

A = ones(2,2)

A =
1 1
1 1

2-502

cell

c = cell(size(A))

c =
[] []
[] []

The next example converts an array of java.lang.String objects into a
MATLAB cell array.

strArray = java_array('java.lang.String', 3);
strArray(1) = java.lang.String('one');
strArray(2) = java.lang.String('two');
strArray(3) = java.lang.String('three');

cellArray = cell(strArray)
cellArray =

'one'
'two'
'three'

See Also num2cell, ones, rand, randn, zeros

2-503

cell2mat

Purpose Convert cell array of matrices to single matrix

Syntax m = cell2mat(c)

Description m = cell2mat(c) converts a multidimensional cell array c with
contents of the same data type into a single matrix, m. The contents of c
must be able to concatenate into a hyperrectangle. Moreover, for each
pair of neighboring cells, the dimensions of the cells’ contents must
match, excluding the dimension in which the cells are neighbors.

The example shown below combines matrices in a 3-by-2 cell array into
a single 60-by-50 matrix:

cell2mat(c)

Remarks The dimensionality (or number of dimensions) of m will match the
highest dimensionality contained in the cell array.

cell2mat is not supported for cell arrays containing cell arrays or
objects.

Examples Combine the matrices in four cells of cell array C into the single matrix,
M:

C = {[1] [2 3 4]; [5; 9] [6 7 8; 10 11 12]}

2-504

cell2mat

C =
[1] [1x3 double]
[2x1 double] [2x3 double]

C{1,1} C{1,2}
ans = ans =

1 2 3 4

C{2,1} C{2,2}
ans = ans =

5 6 7 8
9 10 11 12

M = cell2mat(C)
M =

1 2 3 4
5 6 7 8
9 10 11 12

See Also mat2cell, num2cell

2-505

cell2struct

Purpose Convert cell array to structure array

Syntax s = cell2struct(c, fields, dim)

Description s = cell2struct(c, fields, dim) creates a structure array s from
the information contained within cell array c.

The fields argument specifies field names for the structure array.
fields can be a character array or a cell array of strings.

The dim argument controls which axis of the cell array is to be used
in creating the structure array. The length of c along the specified
dimension must match the number of fields named in fields. In other
words, the following must be true.

size(c,dim) == length(fields) % If fields is a cell array
size(c,dim) == size(fields,1) % If fields is a char array

Examples The cell array c in this example contains information on trees. The
three columns of the array indicate the common name, genus, and
average height of a tree.

c = {'birch', 'betula', 65; 'maple', 'acer', 50}
c =

'birch' 'betula' [65]
'maple' 'acer' [50]

To put this information into a structure with the fields name, genus, and
height, use cell2struct along the second dimension of the 2-by-3
cell array.

fields = {'name', 'genus', 'height'};
s = cell2struct(c, fields, 2);

This yields the following 2-by-1 structure array.

s(1) s(2)
ans = ans =

name: 'birch' name: 'maple'

2-506

cell2struct

genus: 'betula' genus: 'acer'
height: 65 height: 50

See Also struct2cell, cell, iscell, struct, isstruct, fieldnames, dynamic
field names

2-507

celldisp

Purpose Cell array contents

Syntax celldisp(C)
celldisp(C, name)

Description celldisp(C) recursively displays the contents of a cell array.

celldisp(C, name) uses the string name for the display instead of the
name of the first input (or ans).

Examples Use celldisp to display the contents of a 2-by-3 cell array:

C = {[1 2] 'Tony' 3+4i; [1 2;3 4] -5 'abc'};
celldisp(C)

C{1,1} =
1 2

C{2,1} =
1 2
3 4

C{1,2} =
Tony

C{2,2} =
-5

C{1,3} =
3.0000+ 4.0000i

C{2,3} =
abc

See Also cellplot

2-508

cellfun

Purpose Apply function to each cell in cell array

Syntax A = cellfun(fun, C)
A = cellfun(fun, C, D, ...)
[A, B, ...] = cellfun(fun, C, ...)
[A, ...] = cellfun(fun, C, ..., 'param1', value1, ...)
A = cellfun('fname', C)
A = cellfun('size', C, k)
A = cellfun('isclass', C, 'classname')

Description A = cellfun(fun, C) applies the function specified by fun to the
contents of each cell of cell array C, and returns the results in array
A. The value A returned by cellfun is the same size as C, and the
(I,J,...)th element of A is equal to fun(C{I,J,...}). The first input
argument fun is a function handle to a function that takes one input
argument and returns a scalar value. fun must return values of the
same class each time it is called. The order in which cellfun computes
elements of A is not specified and should not be relied upon.

If fun is bound to more than one built-in or M-file (that is, if it
represents a set of overloaded functions), then the class of the values
that cellfun actually provides as input arguments to fun determines
which functions are executed.

A = cellfun(fun, C, D, ...) evaluates fun using the contents of
the cells of cell arrays C, D, ... as input arguments. The (I,J,...)th
element of A is equal to fun(C{I,J,...}, D{I,J,...}, ...). All
input arguments must be of the same size and shape.

[A, B, ...] = cellfun(fun, C, ...) evaluates fun, which is a
function handle to a function that returns multiple outputs, and returns
arrays A, B, ..., each corresponding to one of the output arguments of
fun. cellfun calls fun each time with as many outputs as there are in
the call to cellfun. fun can return output arguments having different
classes, but the class of each output must be the same each time fun
is called.

[A, ...] = cellfun(fun, C, ..., 'param1', value1, ...)
enables you to specify optional parameter name and value pairs.

2-509

cellfun

Parameters recognized by cellfun are shown below. Enclose each
parameter name with single quotes.

Parameter Name Parameter Value

UniformOutput Logical 1 (true) or 0 (false), indicating
whether or not the outputs of fun can be
returned without encapsulation in a cell
array. See “UniformOutput Parameter” on
page 2-510 below.

ErrorHandler Function handle, specifying the function that
cellfun is to call if the call to fun fails. See
“ErrorHandler Parameter” on page 2-510
below.

UniformOutput Parameter

If you set the UniformOutput parameter to true (the default), fun must
return scalar values that can be concatenated into an array. These
values can also be a cell array.

If UniformOutput is false, cellfun returns a cell array (or multiple
cell arrays), where the (I,J,...)th cell contains the value

fun(C{I,J,...}, ...)

ErrorHandler Parameter

MATLAB calls the function represented by the ErrorHandler
parameter with two input arguments:

• A structure having three fields, named identifier, message,
and index, respectively containing the identifier of the error that
occurred, the text of the error message, and a linear index into the
input array or arrays for which the error occurred

• The set of input arguments for which the call to the function failed

The error handling function must either rethrow the error that was
caught, or it must return the output values from the call to fun. Error

2-510

cellfun

handling functions that do not rethrow the error must have the same
number of outputs as fun. MATLAB places these output values in the
output variables used in the call to arrayfun.

Shown here is an example of a simple error handling function, errorfun:

function [A, B] = errorfun(S, varargin)
warning(S.identifier, S.message);
A = NaN; B = NaN;

If 'UniformOutput' is set to logical 1 (true), the outputs of the error
handler must be scalars and of the same data type as the outputs of
function fun.

If you do not specify an error handler, cellfun rethrows the error.

Backward Compatibility

The following syntaxes are also accepted for backward compatibility:

A = cellfun('fname', C) applies the function fname to the elements
of cell array C and returns the results in the double array A. Each
element of A contains the value returned by fname for the corresponding
element in C. The output array A is the same size as the cell array C.

These functions are supported:

Function Return Value

isempty true for an empty cell element

islogical true for a logical cell element

isreal true for a real cell element

length Length of the cell element

ndims Number of dimensions of the cell element

prodofsize Number of elements in the cell element

A = cellfun('size', C, k) returns the size along the kth dimension
of each element of C.

2-511

cellfun

A = cellfun('isclass', C, 'classname') returns logical 1 (true)
for each element of C that matches classname. This function syntax
returns logical 0 (false) for objects that are a subclass of classname.

Note For the previous three syntaxes, if C contains objects, cellfun does
not call any overloaded versions of MATLAB functions corresponding
to the above strings.

Examples Compute the mean of several data sets:

C = {1:10, [2; 4; 6], []};

Cmeans = cellfun(@mean, C)
Cmeans =

5.5000 4.0000 NaN

Compute the size of these data sets:

[Cnrows, Cncols] = cellfun(@size, C)
Cnrows =

1 3 0
Cncols =

10 1 0

Again compute the size, but with UniformOutput set to false:

Csize = cellfun(@size, C, 'UniformOutput', false)
Csize =

[1x2 double] [1x2 double] [1x2 double]

Csize{:}
ans =

1 10
ans =

3 1
ans =

2-512

cellfun

0 0

Find the positive values in several data sets.

C = {randn(10,1), randn(20,1), randn(30,1)};

Cpositives = cellfun(@(x) x(x>0), C, 'UniformOutput',false)
Cpositives =

[6x1 double] [11x1 double] [15x1 double]

Cpositives{:}
ans =

0.1253
0.2877
1.1909
etc.

ans =
0.7258
2.1832
0.1139
etc.

ans =
0.6900
0.8156
0.7119
etc.

Compute the covariance between several pairs of data sets:

C = {randn(10,1), randn(20,1), randn(30,1)};
D = {randn(10,1), randn(20,1), randn(30,1)};

CDcovs = cellfun(@cov, C, D, 'UniformOutput', false)
CDcovs =

[2x2 double] [2x2 double] [2x2 double]

CDcovs{:}
ans =

2-513

cellfun

0.7353 -0.2148
-0.2148 0.6080

ans =
0.5743 -0.2912

-0.2912 0.8505
ans =

0.7130 0.1750
0.1750 0.6910

See Also arrayfun, spfun, function_handle, cell2mat

2-514

cellplot

Purpose Graphically display structure of cell array

Syntax cellplot(c)
cellplot(c, 'legend')
handles = cellplot(c)

Description cellplot(c) displays a figure window that graphically represents
the contents of c. Filled rectangles represent elements of vectors and
arrays, while scalars and short text strings are displayed as text.

cellplot(c, 'legend') places a colorbar next to the plot labelled to
identify the data types in c.

handles = cellplot(c) displays a figure window and returns a vector
of surface handles.

Limitations The cellplot function can display only two-dimensional cell arrays.

Examples Consider a 2-by-2 cell array containing a matrix, a vector, and two text
strings:

c{1,1} = '2-by-2';
c{1,2} = 'eigenvalues of eye(2)';
c{2,1} = eye(2);
c{2,2} = eig(eye(2));

The command cellplot(c) produces

2-515

cellplot

2-516

cellstr

Purpose Create cell array of strings from character array

Syntax c = cellstr(S)

Description c = cellstr(S) places each row of the character array S into separate
cells of c. Any trailing spaces in the rows of S are removed.

Use the char function to convert back to a string matrix.

Examples Given the string matrix

S = ['abc '; 'defg'; 'hi ']

S =
abc
defg
hi

whos S
Name Size Bytes Class
S 3x4 24 char array

The following command returns a 3-by-1 cell array.

c = cellstr(S)

c =
'abc'
'defg'
'hi'

whos c
Name Size Bytes Class
c 3x1 294 cell array

See Also iscellstr, strings, char, isstrprop

2-517

cgs

Purpose Conjugate gradients squared method

Syntax x = cgs(A,b)
cgs(A,b,tol)
cgs(A,b,tol,maxit)
cgs(A,b,tol,maxit,M)
cgs(A,b,tol,maxit,M1,M2)
cgs(A,b,tol,maxit,M1,M2,x0)
[x,flag] = cgs(A,b,...)
[x,flag,relres] = cgs(A,b,...)
[x,flag,relres,iter] = cgs(A,b,...)
[x,flag,relres,iter,resvec] = cgs(A,b,...)

Description x = cgs(A,b) attempts to solve the system of linear equations A*x = b
for x. The n-by-n coefficient matrix A must be square and should be large
and sparse. The column vector b must have length n. A can be a function
handle afun such that afun(x) returns A*x. See “Function Handles” in
the MATLAB Programming documentation for more information.

“Parameterizing Functions Called by Function Functions”, in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the function afun, as well as the preconditioner
function mfun described below, if necessary.

If cgs converges, a message to that effect is displayed. If cgs fails to
converge after the maximum number of iterations or halts for any
reason, a warning message is printed displaying the relative residual
norm(b-A*x)/norm(b) and the iteration number at which the method
stopped or failed.

cgs(A,b,tol) specifies the tolerance of the method, tol. If tol is [],
then cgs uses the default, 1e-6.

cgs(A,b,tol,maxit) specifies the maximum number of iterations,
maxit. If maxit is [] then cgs uses the default, min(n,20).

cgs(A,b,tol,maxit,M) and cgs(A,b,tol,maxit,M1,M2) use the
preconditioner M or M = M1*M2 and effectively solve the system
inv(M)*A*x = inv(M)*b for x. If M is [] then cgs applies no

2-518

cgs

preconditioner. M can be a function handle mfun such that mfun(x)
returns M\x.

cgs(A,b,tol,maxit,M1,M2,x0) specifies the initial guess x0. If x0 is
[], then cgs uses the default, an all-zero vector.

[x,flag] = cgs(A,b,...) returns a solution x and a flag that
describes the convergence of cgs.

Flag Convergence

0 cgs converged to the desired tolerance tol
within maxit iterations.

1 cgs iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 cgs stagnated. (Two consecutive iterates were
the same.)

4 One of the scalar quantities calculated during
cgs became too small or too large to continue
computing.

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if the flag output is specified.

[x,flag,relres] = cgs(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, then relres <= tol.

[x,flag,relres,iter] = cgs(A,b,...) also returns the iteration
number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = cgs(A,b,...) also returns a vector
of the residual norms at each iteration, including norm(b-A*x0).

Examples Example

A = gallery('wilk',21);
b = sum(A,2);

2-519

cgs

tol = 1e-12; maxit = 15;
M1 = diag([10:-1:1 1 1:10]);
x = cgs(A,b,tol,maxit,M1);

displays the message

cgs converged at iteration 13 to a solution with relative residual
1.3e-016

Example 2

This example replaces the matrix A in Example 1 with a handle to a
matrix-vector product function afun, and the preconditioner M1 with a
handle to a backsolve function mfun. The example is contained in an
M-file run_cgs that

• Calls cgs with the function handle @afun as its first argument.

• Contains afun as a nested function, so that all variables in run_cgs
are available to afun and myfun.

The following shows the code for run_cgs:

function x1 = run_cgs
n = 21;
A = gallery('wilk',n);
b = sum(A,2);
tol = 1e-12; maxit = 15;
x1 = cgs(@afun,b,tol,maxit,@mfun);

function y = afun(x)
y = [0; x(1:n-1)] + ...

[((n-1)/2:-1:0)'; (1:(n-1)/2)'].*x + ...
[x(2:n); 0];

end

function y = mfun(r)
y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)'];

end

2-520

cgs

end

When you enter

x1 = run_cgs

MATLAB returns

cgs converged at iteration 13 to a solution with relative residual
1.3e-016

Example 3

load west0479
A = west0479
b = sum(A,2)
[x,flag] = cgs(A,b)

flag is 1 because cgs does not converge to the default tolerance 1e-6
within the default 20 iterations.

[L1,U1] = luinc(A,1e-5)
[x1,flag1] = cgs(A,b,1e-6,20,L1,U1)

flag1 is 2 because the upper triangular U1 has a zero on its diagonal,
and cgs fails in the first iteration when it tries to solve a system such
as U1*y = r for y with backslash.

[L2,U2] = luinc(A,1e-6)
[x2,flag2,relres2,iter2,resvec2] = cgs(A,b,1e-15,10,L2,U2)

flag2 is 0 because cgs converges to the tolerance of 6.344e-16 (the
value of relres2) at the fifth iteration (the value of iter2) when
preconditioned by the incomplete LU factorization with a drop tolerance
of 1e-6. resvec2(1) = norm(b) and resvec2(6) = norm(b-A*x2).
You can follow the progress of cgs by plotting the relative residuals at
each iteration starting from the initial estimate (iterate number 0) with

semilogy(0:iter2,resvec2/norm(b),'-o')
xlabel('iteration number')

2-521

cgs

ylabel('relative residual')

See Also bicg, bicgstab, gmres, lsqr, luinc, minres, pcg, qmr, symmlq

function_handle (@), mldivide (\)

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

[2] Sonneveld, Peter, “CGS: A fast Lanczos-type solver for nonsymmetric
linear systems,” SIAM J. Sci. Stat. Comput., January 1989, Vol. 10,
No. 1, pp. 36-52.

2-522

char

Purpose Convert to character array (string)

Syntax S = char(X)
S = char(C)
S = char(t1, t2, t3, ...)

Description S = char(X) converts the array X that contains nonnegative integers
representing character codes into a MATLAB character array. The
actual characters displayed depend on the character encoding scheme
for a given font. The result for any elements of X outside the range from
0 to 65535 is not defined (and can vary from platform to platform). Use
double to convert a character array into its numeric codes.

S = char(C), when C is a cell array of strings, places each element of C
into the rows of the character array s. Use cellstr to convert back.

S = char(t1, t2, t3, ...) forms the character array S containing
the text strings T1, T2, T3, ... as rows, automatically padding each
string with blanks to form a valid matrix. Each text parameter, Ti, can
itself be a character array. This allows the creation of arbitrarily large
character arrays. Empty strings are significant.

Examples To print a 3-by-32 display of the printable ASCII characters,

ascii = char(reshape(32:127, 32, 3)')
ascii =

!"#$%&'()*+,-./0123456789:;<=>?
@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_
'abcdefghijklmnopqrstuvwxyz{|}~

See Also ischar, isletter, isspace, isstrprop, cellstr, iscellstr, get, set,
strings, strvcat, text

2-523

checkin

Purpose Check files into source control system (UNIX)

GUI
Alternatives

As an alternative to the checkin function, use File > Source
Control > Check In in the Editor/Debugger, Simulink, or Stateflow,
or in the context menu of the Current Directory browser. For more
information, see “Checking Files Into the Source Control System on
UNIX”.

Syntax checkin('filename','comments','comment_text')
checkin({'filename1','filename2'},'comments','comment_text')
checkin('filename','comments', 'comment_text','option',

'value')

Description checkin('filename','comments','comment_text') checks in the file
named filename to the source control system. Use the full path for
filename and include the file extension. You must save the file before
checking it in, but the file can be open or closed. The comment_text
argument is a MATLAB string containing checkin comments for the
source control system. You must supply comments and comment_text.

checkin({'filename1','filename2'},'comments','comment_text')
checks in the files filename1 through filenamen to the source control
system. Use the full paths for the files and include file extensions.
Comments apply to all files checked in.

checkin('filename','comments',
'comment_text','option','value') provides
additional checkin options. For multiple filenames, use an array of
strings instead of filename, that is, {'filename1','filename2',...}.
Options apply to all filenames. The option and value arguments are
shown in the following table.

2-524

checkin

option
Argument

value
Argument Purpose

'force' 'on' filename is checked in even if the file
has not changed since it was checked
out.

'force' 'off'
(default)

filename is not checked in if there
were no changes since checkout.

'lock' 'on' filename is checked in with
comments, and is automatically
checked out.

'lock' 'off'
(default)

filename is checked in with
comments but does not remain
checked out.

Examples Check In a File

Typing

checkin('/myserver/mymfiles/clock.m','comments',...
'Adjustment for leapyear')

checks the file /myserver/mymfiles/clock.m into the source control
system, with the comment Adjustment for leapyear.

Check In Multiple Files

Typing

checkin({'/myserver/mymfiles/clock.m', ...
'/myserver/mymfiles/calendar.m'},'comments',...
'Adjustment for leapyear')

checks the two files into the source control system, using the same
comment for each.

2-525

checkin

Check In a File and Keep It Checked Out

Typing

checkin('/myserver/mymfiles/clock.m','comments',...
'Adjustment for leapyear','lock','on')

checks the file /myserver/mymfiles/clock.m into the source control
system and keeps the file checked out.

See Also checkout, cmopts, undocheckout

For Windows platforms, use verctrl.

2-526

checkout

Purpose Check files out of source control system (UNIX)

GUI
Alternatives

As an alternative to the checkout function, select Source
Control > Check Out from the File menu in the Editor/Debugger,
Simulink, or Stateflow, or in the context menu of the Current Directory
browser. For details, see “Checking Files Out of the Source Control
System on UNIX”.

Syntax checkout('filename')
checkout({'filename1','filename2', ...})
checkout('filename','option','value',...)

Description checkout('filename') checks out the file named filename from the
source control system. Use the full path for filename and include the
file extension. The file can be open or closed when you use checkout.

checkout({'filename1','filename2', ...}) checks out the files
named filename1 through filenamen from the source control system.
Use the full paths for the files and include the file extensions.

checkout('filename','option','value',...) provides additional
checkout options. For multiple filenames, use an array of strings
instead of filename, that is, {'filename1','filename2', ...}.
Options apply to all filenames. The option and value arguments are
shown in the following table.

option Argument value Argument Purpose

'force' 'on' The checkout is
forced, even if you
already have the
file checked out.
This is effectively
an undocheckout
followed by a
checkout.

2-527

checkout

option Argument value Argument Purpose

'force' 'off' (default) Prevents you from
checking out the file
if you already have it
checked out.

'lock' 'on' (default) The checkout gets
the file, allows you to
write to it, and locks
the file so that access
to the file for others is
read only.

'lock' 'off' The checkout gets a
read-only version of
the file, allowing
another user to
check out the file
for updating. You do
not have to check the
file in after checking
it out with this option.

’revision’ ’version_num’ Checks out the
specified revision
of the file.

If you end the MATLAB session, the file remains checked out. You can
check in the file from within MATLAB during a later session, or directly
from your source control system.

Examples Check Out a File

Typing

checkout('/myserver/mymfiles/clock.m')

2-528

checkout

checks out the file /myserver/mymfiles/clock.m from the source
control system.

Check Out Multiple Files

Typing

checkout({'/myserver/mymfiles/clock.m',...
'/myserver/mymfiles/calendar.m'})

checks out /matlab/mymfiles/clock.m and
/matlab/mymfiles/calendar.m from the source control
system.

Force a Checkout, Even If File Is Already Checked Out

Typing

checkout('/myserver/mymfiles/clock.m','force','on')

checks out /matlab/mymfiles/clock.m even if clock.m is already
checked out to you.

Check Out Specified Revision of File

Typing

checkout('/matlab/mymfiles/clock.m','revision','1.1')

checks out revision 1.1 of clock.m.

See Also checkin, cmopts, undocheckout, customverctrl

For Windows platforms, use verctrl.

2-529

chol

Purpose Cholesky factorization

Syntax R = chol(A)
L = chol(A,'lower')
[R,p] = chol(A)
[L,p] = chol(A,'lower')
[R,p,S] = chol(A)
[R,p,s] = chol(A,'vector')
[L,p,s] = chol(A,'lower','vector')

Description R = chol(A) produces an upper triangular matrix R from the diagonal
and upper triangle of matrix A, satisfying the equation R'*R=A. The
lower triangle is assumed to be the (complex conjugate) transpose of the
upper triangle. Matrix A must be positive definite; otherwise, MATLAB
displays an error message.

L = chol(A,'lower') produces a lower triangular matrix L from the
diagonal and lower triangle of matrix A, satisfying the equation L*L'=A.
When A is sparse, this syntax of chol is typically faster. Matrix A must
be positive definite; otherwise MATLAB displays an error message.

[R,p] = chol(A) for positive definite A, produces an upper triangular
matrix R from the diagonal and upper triangle of matrix A, satisfying
the equation R'*R=A and p is zero. If A is not positive definite, then p
is a positive integer and MATLAB does not generate an error. When
A is full, R is an upper triangular matrix of order q=p-1 such that
R'*R=A(1:q,1:q). When A is sparse, R is an upper triangular matrix
of size q-by-n so that the L-shaped region of the first q rows and first q
columns of R'*R agree with those of A.

[L,p] = chol(A,'lower') for positive definite A, produces a lower
triangular matrix L from the diagonal and lower triangle of matrix A,
satisfying the equation L'*L=A and p is zero. If A is not positive definite,
then p is a positive integer and MATLAB does not generate an error.
When A is full, L is a lower triangular matrix of order q=p-1 such that
L'*L=A(1:q,1:q). When A is sparse, L is a lower triangular matrix of
size q-by-n so that the L-shaped region of the first q rows and first q
columns of L'*L agree with those of A.

2-530

chol

[R,p,S] = chol(A), when A is sparse, returns a permutation matrix
S. Note that the preordering S may differ from that obtained from amd
since chol will slightly change the ordering for increased performance.
When p=0, R is an upper triangular matrix such that R'*R=S'*A*S.
When p is not zero, R is an upper triangular matrix of size q-by-n so
that the L-shaped region of the first q rows and first q columns of R'*R
agree with those of S'*A*S. The factor of S'*A*S tends to be sparser
than the factor of A.

[R,p,s] = chol(A,'vector') returns the permutation information as
a vector s such that A(s,s)=R'*R, when p=0. You can use the 'matrix'
option in place of 'vector' to obtain the default behavior.

[L,p,s] = chol(A,'lower','vector') uses only the diagonal and
the lower triangle of A and returns a lower triangular matrix L and
a permutation vector s such that A(s,s)=L*L', when p=0. As above,
you can use the 'matrix' option in place of 'vector' to obtain a
permutation matrix.

For sparse A, CHOLMOD is used to compute the Cholesky factor.

Note Using chol is preferable to using eig for determining positive
definiteness.

Examples The binomial coefficients arranged in a symmetric array create an
interesting positive definite matrix.

n = 5;
X = pascal(n)
X =

1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 70

2-531

chol

It is interesting because its Cholesky factor consists of the same
coefficients, arranged in an upper triangular matrix.

R = chol(X)
R =

1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1

Destroy the positive definiteness (and actually make the matrix
singular) by subtracting 1 from the last element.

X(n,n) = X(n,n)-1

X =
1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 69

Now an attempt to find the Cholesky factorization fails.

Algorithm For full matrices X, chol uses the LAPACK routines listed in the
following table.

Real Complex

X double DPOTRF ZPOTRF

X single SPOTRF CPOTRF

For sparse matrices, MATLAB uses CHOLMOD to compute the
Cholesky factor.

2-532

chol

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, SIAM, Philadelphia, 1999.

[2] Davis, T. A., CHOLMOD Version 1.0 User Guide
(http://www.cise.ufl.edu/research/sparse/cholmod),
Dept. of Computer and Information Science and Engineering, Univ.
of Florida, Gainesville, FL, 2005.

See Also cholinc, cholupdate

2-533

http://www.netlib.org/lapack/lug/lapack_lug.html
http://www.cise.ufl.edu/research/sparse/cholmod

cholinc

Purpose Sparse incomplete Cholesky and Cholesky-Infinity factorizations

Syntax R = cholinc(X,droptol)
R = cholinc(X,options)
R = cholinc(X,'0')
[R,p] = cholinc(X,'0')
R = cholinc(X,'inf')

Description cholinc produces two different kinds of incomplete Cholesky
factorizations: the drop tolerance and the 0 level of fill-in factorizations.
These factors may be useful as preconditioners for a symmetric positive
definite system of linear equations being solved by an iterative method
such as pcg (Preconditioned Conjugate Gradients). cholinc works only
for sparse matrices.

R = cholinc(X,droptol) performs the incomplete Cholesky
factorization of X, with drop tolerance droptol.

R = cholinc(X,options) allows additional options to the incomplete
Cholesky factorization. options is a structure with up to three fields:

droptol Drop tolerance of the incomplete factorization

michol Modified incomplete Cholesky

rdiag Replace zeros on the diagonal of R

Only the fields of interest need to be set.

droptol is a non-negative scalar used as the drop tolerance for the
incomplete Cholesky factorization. This factorization is computed by
performing the incomplete LU factorization with the pivot threshold
option set to 0 (which forces diagonal pivoting) and then scaling the
rows of the incomplete upper triangular factor, U, by the square root
of the diagonal entries in that column. Since the nonzero entries
U(i,j) are bounded below by droptol*norm(X(:,j)) (see luinc), the
nonzero entries R(i,j) are bounded below by the local drop tolerance
droptol*norm(X(:,j))/R(i,i).

2-534

cholinc

Setting droptol = 0 produces the complete Cholesky factorization,
which is the default.

michol stands for modified incomplete Cholesky factorization. Its value
is either 0 (unmodified, the default) or 1 (modified). This performs the
modified incomplete LU factorization of X and scales the returned upper
triangular factor as described above.

rdiag is either 0 or 1. If it is 1, any zero diagonal entries of the upper
triangular factor R are replaced by the square root of the local drop
tolerance in an attempt to avoid a singular factor. The default is 0.

R = cholinc(X,'0') produces the incomplete Cholesky factor of a real
sparse matrix that is symmetric and positive definite using no fill-in.
The upper triangular R has the same sparsity pattern as triu(X),
although R may be zero in some positions where X is nonzero due to
cancellation. The lower triangle of X is assumed to be the transpose of
the upper. Note that the positive definiteness of X does not guarantee
the existence of a factor with the required sparsity. An error message
results if the factorization is not possible. If the factorization is
successful, R'*R agrees with X over its sparsity pattern.

[R,p] = cholinc(X,'0') with two output arguments, never produces
an error message. If R exists, p is 0. If R does not exist, then p is a
positive integer and R is an upper triangular matrix of size q-by-n where
q = p-1. In this latter case, the sparsity pattern of R is that of the
q-by-n upper triangle of X. R'*R agrees with X over the sparsity pattern
of its first q rows and first q columns.

R = cholinc(X,'inf') produces the Cholesky-Infinity factorization.
This factorization is based on the Cholesky factorization, and
additionally handles real positive semi-definite matrices. It may be
useful for finding a solution to systems which arise in interior-point
methods. When a zero pivot is encountered in the ordinary Cholesky
factorization, the diagonal of the Cholesky-Infinity factor is set to Inf
and the rest of that row is set to 0. This forces a 0 in the corresponding
entry of the solution vector in the associated system of linear equations.
In practice, X is assumed to be positive semi-definite so even negative
pivots are replaced with a value of Inf.

2-535

cholinc

Remarks The incomplete factorizations may be useful as preconditioners
for solving large sparse systems of linear equations. A single 0 on
the diagonal of the upper triangular factor makes it singular. The
incomplete factorization with a drop tolerance prints a warning message
if the upper triangular factor has zeros on the diagonal. Similarly, using
the rdiag option to replace a zero diagonal only gets rid of the symptoms
of the problem, but it does not solve it. The preconditioner may not be
singular, but it probably is not useful, and a warning message is printed.

The Cholesky-Infinity factorization is meant to be used within
interior-point methods. Otherwise, its use is not recommended.

Examples Example 1

Start with a symmetric positive definite matrix, S.

S = delsq(numgrid('C',15));

S is the two-dimensional, five-point discrete negative Lapacian on the
grid generated by numgrid(’C’,15).

Compute the Cholesky factorization and the incomplete Cholesky
factorization of level 0 to compare the fill-in. Make S singular by zeroing
out a diagonal entry and compute the (partial) incomplete Cholesky
factorization of level 0.

C = chol(S);
R0 = cholinc(S,'0');
S2 = S; S2(101,101) = 0;
[R,p] = cholinc(S2,'0');

Fill-in occurs within the bands of S in the complete Cholesky factor, but
none in the incomplete Cholesky factor. The incomplete factorization
of the singular S2 stopped at row p = 101 resulting in a 100-by-139
partial factor.

D1 = (R0'*R0).*spones(S)-S;
D2 = (R'*R).*spones(S2)-S2;

2-536

cholinc

D1 has elements of the order of eps, showing that R0'*R0 agrees with S
over its sparsity pattern. D2 has elements of the order of eps over its
first 100 rows and first 100 columns, D2(1:100,:) and D2(:,1:100).

Example 2

The first subplot below shows that cholinc(S,0), the incomplete
Cholesky factor with a drop tolerance of 0, is the same as the Cholesky
factor of S. Increasing the drop tolerance increases the sparsity of the
incomplete factors, as seen below.

2-537

cholinc

Unfortunately, the sparser factors are poor approximations, as is seen
by the plot of drop tolerance versus norm(R'*R-S,1)/norm(S,1) in
the next figure.

2-538

cholinc

Example 3

The Hilbert matrices have (i,j) entries 1/(i+j-1) and are theoretically
positive definite:

H3 = hilb(3)
H3 =

1.0000 0.5000 0.3333
0.5000 0.3333 0.2500
0.3333 0.2500 0.2000

R3 = chol(H3)
R3 =

1.0000 0.5000 0.3333
0 0.2887 0.2887
0 0 0.0745

In practice, the Cholesky factorization breaks down for larger matrices:

H20 = sparse(hilb(20));

2-539

cholinc

[R,p] = chol(H20);
p =

14

For hilb(20), the Cholesky factorization failed in the computation
of row 14 because of a numerically zero pivot. You can use the
Cholesky-Infinity factorization to avoid this error. When a zero pivot is
encountered, cholinc places an Inf on the main diagonal, zeros out the
rest of the row, and continues with the computation:

Rinf = cholinc(H20,'inf');

In this case, all subsequent pivots are also too small, so the remainder
of the upper triangular factor is:

full(Rinf(14:end,14:end))
ans =

Inf 0 0 0 0 0 0
0 Inf 0 0 0 0 0
0 0 Inf 0 0 0 0
0 0 0 Inf 0 0 0
0 0 0 0 Inf 0 0
0 0 0 0 0 Inf 0
0 0 0 0 0 0 Inf

Limitations cholinc works on square sparse matrices only. For cholinc(X,'0')
and cholinc(X,'inf'), X must be real.

Algorithm R = cholinc(X,droptol) is obtained from [L,U] =
luinc(X,options), where options.droptol = droptol and
options.thresh = 0. The rows of the uppertriangular U are scaled
by the square root of the diagonal in that row, and this scaled factor
becomes R.

R = cholinc(X,options) is produced in a similar manner, except the
rdiag option translates into the udiag option and the milu option takes
the value of the michol option.

2-540

cholinc

R = cholinc(X,'0') is based on the “KJI” variant of the Cholesky
factorization. Updates are made only to positions which are nonzero
in the upper triangle of X.

R = cholinc(X,'inf') is based on the algorithm in Zhang [2].

See Also chol, ilu, luinc, pcg

References [1] Saad, Yousef, Iterative Methods for Sparse Linear Systems, PWS
Publishing Company, 1996. Chapter 10, “Preconditioning Techniques”

[2] Zhang, Yin, Solving Large-Scale Linear Programs by Interior-Point
Methods Under the MATLAB Environment, Department of Mathematics
and Statistics, University of Maryland Baltimore County, Technical
Report TR96-01

2-541

cholupdate

Purpose Rank 1 update to Cholesky factorization

Syntax R1 = cholupdate(R,x)
R1 = cholupdate(R,x,'+')
R1 = cholupdate(R,x,'-')
[R1,p] = cholupdate(R,x,'-')

Description R1 = cholupdate(R,x) where R = chol(A) is the original Cholesky
factorization of A, returns the upper triangular Cholesky factor of A +
x*x', where x is a column vector of appropriate length. cholupdate
uses only the diagonal and upper triangle of R. The lower triangle of R
is ignored.

R1 = cholupdate(R,x,'+') is the same as R1 = cholupdate(R,x).

R1 = cholupdate(R,x,'-') returns the Cholesky factor of A - x*x'.
An error message reports when R is not a valid Cholesky factor or when
the downdated matrix is not positive definite and so does not have
a Cholesky factorization.

[R1,p] = cholupdate(R,x,'-') will not return an error message. If p
is 0, R1 is the Cholesky factor of A - x*x’. If p is greater than 0, R1 is
the Cholesky factor of the original A. If p is 1, cholupdate failed because
the downdated matrix is not positive definite. If p is 2, cholupdate
failed because the upper triangle of R was not a valid Cholesky factor.

Remarks cholupdate works only for full matrices.

Example A = pascal(4)
A =

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

R = chol(A)
R =

2-542

cholupdate

1 1 1 1
0 1 2 3
0 0 1 3
0 0 0 1

x = [0 0 0 1]';

This is called a rank one update to A since rank(x*x') is 1:

A + x*x'
ans =

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 21

Instead of computing the Cholesky factor with R1 = chol(A + x*x'),
we can use cholupdate:

R1 = cholupdate(R,x)
R1 =

1.0000 1.0000 1.0000 1.0000
0 1.0000 2.0000 3.0000
0 0 1.0000 3.0000
0 0 0 1.4142

Next destroy the positive definiteness (and actually make the matrix
singular) by subtracting 1 from the last element of A. The downdated
matrix is:

A - x*x'
ans =

1 1 1 1
1 2 3 4

2-543

cholupdate

1 3 6 10
1 4 10 19

Compare chol with cholupdate:

R1 = chol(A-x*x')
??? Error using ==> chol
Matrix must be positive definite.
R1 = cholupdate(R,x,'-')
??? Error using ==> cholupdate
Downdated matrix must be positive definite.

However, subtracting 0.5 from the last element of A produces a positive
definite matrix, and we can use cholupdate to compute its Cholesky
factor:

x = [0 0 0 1/sqrt(2)]';
R1 = cholupdate(R,x,'-')
R1 =

1.0000 1.0000 1.0000 1.0000
0 1.0000 2.0000 3.0000
0 0 1.0000 3.0000
0 0 0 0.7071

Algorithm cholupdate uses the algorithms from the LINPACK subroutines ZCHUD
and ZCHDD. cholupdate is useful since computing the new Cholesky

factor from scratch is an algorithm, while simply updating the

existing factor in this way is an algorithm.

See Also chol, qrupdate

References [1] Dongarra, J.J., J.R. Bunch, C.B. Moler, and G.W. Stewart, LINPACK
Users’ Guide, SIAM, Philadelphia, 1979.

2-544

circshift

Purpose Shift array circularly

Syntax B = circshift(A,shiftsize)

Description B = circshift(A,shiftsize) circularly shifts the values in the array, A,
by shiftsize elements. shiftsize is a vector of integer scalars where
the n-th element specifies the shift amount for the n-th dimension
of array A. If an element in shiftsize is positive, the values of A are
shifted down (or to the right). If it is negative, the values of A are shifted
up (or to the left). If it is 0, the values in that dimension are not shifted.

Example Circularly shift first dimension values down by 1.

A = [1 2 3;4 5 6; 7 8 9]
A =

1 2 3
4 5 6
7 8 9

B = circshift(A,1)
B =

7 8 9
1 2 3
4 5 6

Circularly shift first dimension values down by 1 and second dimension
values to the left by 1.

B = circshift(A,[1 -1]);
B =

8 9 7
2 3 1
5 6 4

See Also fftshift, shiftdim

2-545

cla

Purpose Clear current axes

GUI
Alternatives

Remove axes and clear objects from them in plot edit mode. For
details, see “Working in Plot Edit Mode” in the MATLAB Graphics
documentation.

Syntax cla
cla reset
cla(ax)
cla(ax,'reset')

Description cla deletes from the current axes all graphics objects whose handles
are not hidden (i.e., their HandleVisibility property is set to on).

cla reset deletes from the current axes all graphics objects regardless
of the setting of their HandleVisibility property and resets all axes
properties, except Position and Units, to their default values.

cla(ax) or cla(ax,'reset') clears the single axes with handle ax.

Remarks The cla command behaves the same way when issued on the command
line as it does in callback routines — it does not recognize the
HandleVisibility setting of callback. This means that when issued
from within a callback routine, cla deletes only those objects whose
HandleVisibility property is set to on.

See Also clf, hold, newplot, reset

“Axes Operations” on page 1-96 for related functions

2-546

clabel

Purpose Contour plot elevation labels

Syntax clabel(C,h)
clabel(C,h,v)
clabel(C,h,'manual')
clabel(C)
clabel(C,v)
clabel(C,'manual')
text_handles = clabel(...)
clabel(...,'PropertyName',propertyvalue,...)
clabel(...'LabelSpacing',points)

Description The clabel function adds height labels to a 2-D contour plot.

clabel(C,h) rotates the labels and inserts them in the contour lines.
The function inserts only those labels that fit within the contour,
depending on the size of the contour.

clabel(C,h,v) creates labels only for those contour levels given in
vector v, then rotates the labels and inserts them in the contour lines.

clabel(C,h,'manual') places contour labels at locations you select
with a mouse. Press the left mouse button (the mouse button on a
single-button mouse) or the space bar to label a contour at the closest
location beneath the center of the cursor. Press the Return key while
the cursor is within the figure window to terminate labeling. The labels
are rotated and inserted in the contour lines.

clabel(C) adds labels to the current contour plot using the contour
array C output from contour. The function labels all contours displayed
and randomly selects label positions.

clabel(C,v) labels only those contour levels given in vector v.

clabel(C,'manual') places contour labels at locations you select with
a mouse.

text_handles = clabel(...) returns the handles of text objects
created by clabel. The UserData properties of the text objects contain
the contour values displayed. If you call clabel without the h argument,

2-547

clabel

text_handles also contains the handles of line objects used to create
the '+' symbols.

clabel(...,'PropertyName',propertyvalue,...) enables you to
specify text object property/value pairs for the label strings. (See Text
Properties.)

clabel(...'LabelSpacing',points) specifies the spacing between
labels on the same contour line, in units of points (72 points equal one
inch).

Remarks When the syntax includes the argument h, this function rotates the
labels and inserts them in the contour lines (see Examples). Otherwise,
the labels are displayed upright and a '+' indicates which contour line
the label is annotating.

Examples Generate, draw, and label a simple contour plot.

[x,y] = meshgrid(-2:.2:2);
z = x.^exp(-x.^2-y.^2);
[C,h] = contour(x,y,z);
clabel(C,h);

2-548

clabel

Label a contour plot with label spacing set to 72 points (one inch).

[x,y,z] = peaks;
[C,h] = contour(x,y,z);
clabel(C,h,'LabelSpacing',72)

2-549

clabel

Label a contour plot with 15 point red text.

[x,y,z] = peaks;
[C,h] = contour(x,y,z);
clabel(C,h,'FontSize',15,'Color','r','Rotation',0)

2-550

clabel

Label a contour plot with upright text and '+' symbols indicating which
contour line each label annotates.

[x,y,z] = peaks;
C = contour(x,y,z);
clabel(C)

2-551

clabel

See Also contour, contourc, contourf

“Annotating Plots” on page 1-87 for related functions

“Drawing Text in a Box” for an example that illustrates the use of
contour labels

2-552

class

Purpose Create object or return class of object

Syntax str = class(object)
obj = class(s, 'class_name')
obj = class(s, 'class_name', parent1, parent2, ...)
obj = class(struct([]), 'class_name', parent1, parent2, ...)

Description str = class(object) returns a string specifying the class of object.

The following table lists the object class names that can be returned.
All except the last one are MATLAB classes.

logical Logical array of true and false values

char Character array

int8 8-bit signed integer array

uint8 8-bit unsigned integer array

int16 16-bit signed integer array

uint16 16-bit unsigned integer array

int32 32-bit signed integer array

uint32 32-bit unsigned integer array

int64 64-bit signed integer array

uint64 64-bit unsigned integer array

single Single-precision floating-point number array

double Double-precision floating-point number array

cell Cell array

struct Structure array

function handle Array of values for calling functions indirectly

’class_name’ Custom MATLAB object class or Java class

2-553

class

obj = class(s, 'class_name') creates an object of MATLAB class
'class_name' using structure s as a template. This syntax is valid only
in a function named class_name.m in a directory named @class_name
(where 'class_name' is the same as the string passed in to class).

obj = class(s, 'class_name', parent1, parent2, ...) creates
an object of MATLAB class 'class_name' that inherits the methods
and fields of the parent objects parent1, parent2, and so on. Structure
s is used as a template for the object.

obj = class(struct([]), 'class_name', parent1, parent2,
...) creates an object of MATLAB class 'class_name' that inherits
the methods and fields of the parent objects parent1, parent2, and so
on. Specifying the empty structure struct([]) as the first argument
ensures that the object created contains no fields other than those that
are inherited from the parent objects.

Examples To return in nameStr the name of the class of Java object j,

nameStr = class(j)

To create a user-defined MATLAB object of class polynom,

p = class(p, 'polynom')

See Also inferiorto, isa, superiorto

The “Classes and Objects” and the “Calling Java from MATLAB”
chapters in MATLAB Programming and Data Types documentation.

2-554

clc

Purpose Clear Command Window

GUI
Alternatives

As an alternative to the clc function, select Edit > Clear Command
Window in the MATLAB desktop.

Syntax clc

Description clc clears all input and output from the Command Window display,
giving you a “clean screen.”

After using clc, you cannot use the scroll bar to see the history of
functions, but you still can use the up arrow to recall statements from
the command history.

Examples Use clc in an M-file to always display output in the same starting
position on the screen.

See Also clear, clf, close, home

2-555

clear

Purpose Remove items from workspace, freeing up system memory

Graphical
Interface

As an alternative to the clear function, use Edit > Clear Workspace
in the MATLAB desktop.

Syntax clear
clear name
clear name1 name2 name3 ...
clear global name
clear -regexp expr1 expr2 ...
clear global -regexp expr1 expr2 ...
clear keyword
clear('name1','name2','name3',...)

Description clear removes all variables from the workspace. This frees up system
memory.

clear name removes just the M-file or MEX-file function or variable
name from the workspace. You can use wildcards (*) to remove items
selectively. For example, clear my* removes any variables whose
names begin with the string my. It removes debugging breakpoints in
M-files and reinitializes persistent variables, since the breakpoints for
a function and persistent variables are cleared whenever the M-file is
changed or cleared. If name is global, it is removed from the current
workspace, but left accessible to any functions declaring it global. If
name has been locked by mlock, it remains in memory.

Use a partial path to distinguish between different overloaded
versions of a function. For example, clear polynom/display clears
only the display method for polynom objects, leaving any other
implementations in memory.

clear name1 name2 name3 ... removes name1, name2, and name3
from the workspace.

clear global name removes the global variable name. If name is global,
clear name removes name from the current workspace, but leaves it

2-556

clear

accessible to any functions declaring it global. Use clear global name
to completely remove a global variable.

clear -regexp expr1 expr2 ... clears all variables that match any
of the regular expressions expr1, expr2, etc. This option only clears
variables.

clear global -regexp expr1 expr2 ... clears all global variables
that match any of the regular expressions expr1, expr2, etc.

clear keyword clears the items indicated by keyword.

Keyword Items Cleared

all Removes all variables, functions, and MEX-files
from memory, leaving the workspace empty. Using
clear all removes debugging breakpoints in
M-files and reinitializes persistent variables, since
the breakpoints for a function and persistent
variables are cleared whenever the M-file is
changed or cleared. When issued from the
Command Window prompt, also removes the Java
packages import list.

classes The same as clear all, but also clears MATLAB
class definitions. If any objects exist outside the
workspace (for example, in user data or persistent
variables in a locked M-file), a warning is issued
and the class definition is not cleared. Issue a
clear classes function if the number or names of
fields in a class are changed.

functions Clears all the currently compiled M-functions
and MEX-functions from memory. Using clear
function removes debugging breakpoints in
the function M-file and reinitializes persistent
variables, since the breakpoints for a function and
persistent variables are cleared whenever the
M-file is changed or cleared.

2-557

clear

Keyword Items Cleared

global Clears all global variables from the workspace.

import Removes the Java packages import list. It can only
be issued from the Command Window prompt. It
cannot be used in a function.

java The same as clear all, but also clears the
definitions of all Java classes defined by files on
the Java dynamic class path (see “The Java Class
Path” in the External Interfaces documentation).
If any java objects exist outside the workspace (for
example, in user data or persistent variables in a
locked M-file), a warning is issued and the Java
class definition is not cleared. Issue a clear java
command after modifying any files on the Java
dynamic class path.

variables Clears all variables from the workspace.

clear('name1','name2','name3',...) is the function form of the
syntax. Use this form when the variable name or function name is
stored in a string.

Remarks When you use clear in a function, it has the following effect on items in
your function and base workspaces:

• clear name — If name is the name of a function, the function is
cleared in both the function workspace and in your base workspace.

• clear functions — All functions are cleared in both the function
workspace and in your base workspace.

• clear global — All global variables are cleared in both the function
workspace and in your base workspace.

• clear all — All functions, global variables, and classes are cleared
in both the function workspace and in your base workspace.

2-558

clear

Limitations clear does not affect the amount of memory allocated to the MATLAB
process under UNIX.

The clear function does not clear Simulink models. Use close instead.

Examples Given a workspace containing the following variables

Name Size Bytes Class

c 3x4 1200 cell array
frame 1x1 java.awt.Frame
gbl1 1x1 8 double array (global)
gbl2 1x1 8 double array (global)
xint 1x1 1 int8 array

you can clear a single variable, xint, by typing

clear xint

To clear all global variables, type

clear global
whos

Name Size Bytes Class

c 3x4 1200 cell array
frame 1x1 java.awt.Frame

Using regular expressions, clear those variables with names that begin
with Mon, Tue, or Wed:

clear('-regexp', '^Mon|^Tue|^Wed');

To clear all compiled M- and MEX-functions from memory, type clear
functions. In the case shown below, clear functions was unable to
clear one M-file function from memory, testfun, because the function is
locked.

clear functions % Attempt to clear all functions.

2-559

clear

inmem

ans =
'testfun' % One M-file function remains in memory.

mislocked testfun
ans =

1 % This function is locked in memory.

Once you unlock the function from memory, you can clear it.

munlock testfun
clear functions

inmem
ans =

Empty cell array: 0-by-1

See Also clc, close, import, inmem, load, mlock, munlock, pack, persistent,
save, who, whos, workspace

2-560

clear (serial)

Purpose Remove serial port object from MATLAB workspace

Syntax clear obj

Arguments obj A serial port object or an array of serial port objects.

Description clear obj removes obj from the MATLAB workspace.

Remarks If obj is connected to the device and it is cleared from the workspace,
then obj remains connected to the device. You can restore obj to the
workspace with the instrfind function. A serial port object connected
to the device has a Status property value of open.

To disconnect obj from the device, use the fclose function. To remove
obj from memory, use the delete function. You should remove invalid
serial port objects from the workspace with clear.

Example This example creates the serial port object s, copies s to a new variable
scopy, and clears s from the MATLAB workspace. s is then restored to
the workspace with instrfind and is shown to be identical to scopy.

s = serial('COM1');
scopy = s;
clear s
s = instrfind;
isequal(scopy,s)
ans =

1

See Also Functions

delete, fclose, instrfind, isvalid

Properties

Status

2-561

clf

Purpose Clear current figure window

GUI
Alternatives

Use Clear Figure from the figure window’s File menu to clear the
contents of a figure. You can also create a desktop shortcut to clear
the current figure with one mouse click. See “Shortcuts for MATLAB
— Easily Run a Group of Statements” in the MATLAB Desktop
Environment documentation.

Syntax clf('reset')
clf(fig)
clf(fig,'reset')
figure_handle = clf(...)

Description clf deletes from the current figure all graphics objects whose handles
are not hidden (i.e., their HandleVisibility property is set to on).

clf('reset') deletes from the current figure all graphics objects
regardless of the setting of their HandleVisibility property and resets
all figure properties except Position, Units, PaperPosition, and
PaperUnits to their default values.

clf(fig) or clf(fig,'reset') clears the single figure with handle fig.

figure_handle = clf(...) returns the handle of the figure. This
is useful when the figure IntegerHandle property is off because the
noninteger handle becomes invalid when the reset option is used (i.e.,
IntegerHandle is reset to on, which is the default).

Remarks The clf command behaves the same way when issued on the command
line as it does in callback routines — it does not recognize the
HandleVisibility setting of callback. This means that when issued
from within a callback routine, clf deletes only those objects whose
HandleVisibility property is set to on.

See Also cla, clc, hold, reset

“Figure Windows” on page 1-95 for related functions

2-562

clipboard

Purpose Copy and paste strings to and from system clipboard

Graphical
Interface

As an alternative to clipboard, use the Import Wizard. To use
the Import Wizard to copy data from the clipboard, select Paste to
Workspace from the Edit menu.

Syntax clipboard('copy', data)
str = clipboard('paste')
data = clipboard('pastespecial')

Description clipboard('copy', data) sets the clipboard contents to data. If data
is not a character array, the clipboard uses mat2str to convert it to
a string.

str = clipboard('paste') returns the current contents of the
clipboard as a string or as an empty string (' '), if the current clipboard
contents cannot be converted to a string.

data = clipboard('pastespecial') returns the current contents of
the clipboard as an array using uiimport.

Note Requires an active X display on UNIX, and Java elsewhere.

See Also load, uiimport

2-563

clock

Purpose Current time as date vector

Syntax c = clock

Description c = clock returns a 6-element date vector containing the current date
and time in decimal form:

c = [year month day hour minute seconds]

The first five elements are integers. The seconds element is accurate
to several digits beyond the decimal point. The statement fix(clock)
rounds to integer display format.

Remarks When timing the duration of an event, use the tic and toc functions
instead of clock or etime. These latter two functions are based on the
system time which can be adjusted periodically by the operating system
and thus might not be reliable in time comparison operations.

See Also cputime, datenum, datevec, etime, tic, toc

2-564

close

Purpose Remove specified figure

Syntax close
close(h)
close name
close all
close all hidden
status = close(...)

Description close deletes the current figure or the specified figure(s). It optionally
returns the status of the close operation.

close deletes the current figure (equivalent to close(gcf)).

close(h) deletes the figure identified by h. If h is a vector or matrix,
clse deletes all figures identified by h.

close name deletes the figure with the specified name.

close all deletes all figures whose handles are not hidden.

close all hidden deletes all figures including those with hidden
handles.

status = close(...) returns 1 if the specified windows have been
deleted and 0 otherwise.

Remarks The close function works by evaluating the specified figure’s
CloseRequestFcn property with the statement

eval(get(h,'CloseRequestFcn'))

The default CloseRequestFcn, closereq, deletes the current figure
using delete(get(0,'CurrentFigure')). If you specify multiple
figure handles, close executes each figure’s CloseRequestFcn in turn.
If MATLAB encounters an error that terminates the execution of a
CloseRequestFcn, the figure is not deleted. Note that using your
computer’s window manager (i.e., the Close menu item) also calls the
figure’s CloseRequestFcn.

2-565

close

If a figure’s handle is hidden (i.e., the figure’s HandleVisibility
property is set to callback or off and the root ShowHiddenHandles
property is set to on), you must specify the hidden option when trying
to access a figure using the all option.

To delete all figures unconditionally, use the statements

set(0,'ShowHiddenHandles','on')
delete(get(0,'Children'))

The delete function does not execute the figure’s CloseRequestFcn; it
simply deletes the specified figure.

The figure CloseRequestFcn allows you to either delay or abort the
closing of a figure once the close function has been issued. For example,
you can display a dialog box to see if the user really wants to delete the
figure or save and clean up before closing.

See Also delete, figure, gcf

The figure HandleVisibility property

The root ShowHiddenHandles property

“Figure Windows” on page 1-95 for related functions

2-566

close (avifile)

Purpose Close Audio/Video Interleaved (AVI) file

Syntax aviobj = close(aviobj)

Description aviobj = close(aviobj) finishes writing and closes the AVI file
associated with aviobj, which is an AVI file object created using the
avifile function.

See Also avifile, addframe, movie2avi

2-567

close (ftp)

Purpose Close connection to FTP server

Syntax close(f)

Description close(f) closes the connection to the FTP server, represented by object
f, which was created using ftp. Be sure to use close after completing
work on the server. If you do not run close, the connection will be
terminated automatically either because of the server’s time-out feature
or by exiting MATLAB.

Examples Connect to the MathWorks FTP server and then disconnect.

tmw=ftp('ftp.mathworks.com');
close(tmw)

See Also ftp

2-568

closereq

Purpose Default figure close request function

Syntax closereq

Description closereq deletes the current figure.

See Also The figure CloseRequestFcn property

“Figure Windows” on page 1-95 for related functions

2-569

cmopts

Purpose Name of source control system

GUI
Alternatives

As an alternative to cmopts, select
File > Preferences > General > Source Control to
view the currently selected source control system.

Syntax cmopts

Description cmopts displays the name of the source control system you selected
using preferences, which is one of the following:

• clearcase (UNIX only)

• customverctrl (UNIX only)

• cvs (UNIX only)

• pvcs (UNIX only, used for PVCS and ChangeMan)

• rcs (UNIX only)

• sourcesafe (Windows only)

If you have not selected a source control system, cmopts displays

none

For more information, see “Specify Source Control System in MATLAB”
for PC platforms, and “Specifying the Source Control System on UNIX”
for UNIX platforms in the MATLAB Desktop Tools and Development
Environment documentation.

Examples Type

cmopts

and MATLAB returns

ans =
Microsoft Visual SourceSafe

2-570

cmopts

which is the source control system specified in preferences.

See Also checkin, checkout, customverctrl, verctrl

2-571

colamd

Purpose Column approximate minimum degree permutation

Syntax p = colamd(S)

Description p = colamd(S) returns the column approximate minimum degree
permutation vector for the sparse matrix S. For a non-symmetric matrix
S, S(:,p) tends to have sparser LU factors than S. The Cholesky
factorization of S(:,p)' * S(:,p) also tends to be sparser than that
of S'*S.

knobs is a two-element vector. If S is m-by-n, then rows with more
than (knobs(1))*n entries are ignored. Columns with more than
(knobs(2))*m entries are removed prior to ordering, and ordered last in
the output permutation p. If the knobs parameter is not present, then
knobs(1) = knobs(2) = spparms('wh_frac').

stats is an optional vector that provides data about the ordering and
the validity of the matrix S.

stats(1) Number of dense or empty rows ignored by
colamd

stats(2) Number of dense or empty columns ignored by
colamd

stats(3) Number of garbage collections performed on the
internal data structure used by colamd (roughly
of size 2.2*nnz(S) + 4*m + 7*n integers)

stats(4) 0 if the matrix is valid, or 1 if invalid

stats(5) Rightmost column index that is unsorted or
contains duplicate entries, or 0 if no such
column exists

2-572

colamd

stats(6) Last seen duplicate or out-of-order row index in
the column index given by stats(5), or 0 if no
such row index exists

stats(7) Number of duplicate and out-of-order row
indices

Although, MATLAB built-in functions generate valid sparse matrices,
a user may construct an invalid sparse matrix using the MATLAB C
or Fortran APIs and pass it to colamd. For this reason, colamd verifies
that S is valid:

• If a row index appears two or more times in the same column, colamd
ignores the duplicate entries, continues processing, and provides
information about the duplicate entries in stats(4:7).

• If row indices in a column are out of order, colamd sorts each column
of its internal copy of the matrix S (but does not repair the input
matrix S), continues processing, and provides information about the
out-of-order entries in stats(4:7).

• If S is invalid in any other way, colamd cannot continue. It prints an
error message, and returns no output arguments (p or stats) .

The ordering is followed by a column elimination tree post-ordering.

Note colamd tends to be faster than colmmd and tends to return a
better ordering.

Examples The Harwell-Boeing collection of sparse matrices and the MATLAB
demos directory include a test matrix west0479. It is a matrix of order
479 resulting from a model due to Westerberg of an eight-stage chemical
distillation column. The spy plot shows evidence of the eight stages.
The colamd ordering scrambles this structure.

load west0479

2-573

colamd

A = west0479;
p = colamd(A);
subplot(1,2,1), spy(A,4), title('A')
subplot(1,2,2), spy(A(:,p),4), title('A(:,p)')

Comparing the spy plot of the LU factorization of the original matrix
with that of the reordered matrix shows that minimum degree reduces
the time and storage requirements by better than a factor of 2.8. The
nonzero counts are 16777 and 5904, respectively.

spy(lu(A),4)
spy(lu(A(:,p)),4)

2-574

colamd

See Also colperm, spparms, symamd, symrcm

References [1] The authors of the code for “colamd” are Stefan I. Larimore
and Timothy A. Davis (davis@cise.ufl.edu), University of Florida.
The algorithm was developed in collaboration with John Gilbert,
Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory.
Sparse Matrix Algorithms Research at the University of Florida:
http://www.cise.ufl.edu/research/sparse/

2-575

http://www.cise.ufl.edu/research/sparse/%0D

colmmd

Purpose Sparse column minimum degree permutation

Syntax p = colmmd(S)

Note colmmd is obsolete and will be removed from a future version
of MATLAB. Use colamd instead.

Description p = colmmd(S) returns the column minimum degree permutation
vector for the sparse matrix S. For a nonsymmetric matrix S, this is
a column permutation p such that S(:,p) tends to have sparser LU
factors than S.

The colmmd permutation is automatically used by \ and / for the
solution of nonsymmetric and symmetric indefinite sparse linear
systems.

Use spparms to change some options and parameters associated with
heuristics in the algorithm.

Algorithm The minimum degree algorithm for symmetric matrices is described in
the review paper by George and Liu [1]. For nonsymmetric matrices,
the MATLAB minimum degree algorithm is new and is described in the
paper by Gilbert, Moler, and Schreiber [2]. It is roughly like symmetric
minimum degree for A'*A, but does not actually form A'*A.

Each stage of the algorithm chooses a vertex in the graph of A'*A of
lowest degree (that is, a column of A having nonzero elements in common
with the fewest other columns), eliminates that vertex, and updates the
remainder of the graph by adding fill (that is, merging rows). If the
input matrix S is of size m-by-n, the columns are all eliminated and the
permutation is complete after n stages. To speed up the process, several
heuristics are used to carry out multiple stages simultaneously.

See Also colamd, colperm, lu, spparms, symamd, symmmd, symrcm

The arithmetic operator \

2-576

colmmd

References [1] George, Alan and Liu, Joseph, “The Evolution of the Minimum
Degree Ordering Algorithm,” SIAM Review, 1989, 31:1-19.

[2] Gilbert, John R., Cleve Moler, and Robert Schreiber, “Sparse
Matrices in MATLAB: Design and Implementation,” SIAM Journal on
Matrix Analysis and Applications 13, 1992, pp. 333-356.

2-577

colorbar

Purpose Colorbar showing color scale

GUI
Alternatives

Add a colorbar to a plot with the colorbar tool on the figure toolbar,
or use Insert —> Colorbar from the figure menu. Use the Property
Editor to modify the position, font and other properties of a legend. .
For details, see “Working in Plot Edit Mode” in the MATLAB Graphics
documentation.

Syntax colorbar
colorbar(...,'peer',axes_handle)
colorbar(...,'location')
colorbar(...,'PropertyName',propertyvalue)
cbar_axes = colorbar(...)
colorbar(axes_handle)

Description The colorbar function displays the current colormap in the current
figure and resizes the current axes to accommodate the colorbar.

colorbar adds a new vertical colorbar on the right side of the current
axes. If a colorbar exists in that location, colorbar replaces it with a
new one. If a colorbar exists at a nondefault location, it is retained
along with the new colorbar

colorbar(...,'peer',axes_handle) creates a colorbar associated
with the axes axes_handle instead of the current axes.

colorbar(...,'location') adds a colorbar in the specified orientation
with respect to the axes. If a colorbar exists at the location specified,
it is replaced. Any colorbars not occupying the specified location are
retained. Possible values for location are

North Inside plot box near top

South Inside bottom

East Inside right

West Inside left

2-578

colorbar

NorthOutside Outside plot box near top

SouthOutside Outside bottom

EastOutside Outside right

WestOutside Outside left

Using one of the ...Outside values for location ensures that the
colorbar does not overlap the plot, whereas overlaps can occur when you
specify any of the other four values.

colorbar(...,'PropertyName',propertyvalue) specifies property
names and values for the axes object used to create the colorbar. See
axes properties for a description of the properties you can set. The
location property applies only to colorbars and legends, not to axes.

cbar_axes = colorbar(...) returns a handle to the colorbar, which is
an axes graphics object that contains one additional property, Location.

Backward-Compatible Version

h = colorbar('v6',...) creates a colorbar compatible with MATLAB
6.5 and earlier. It returns the handles of patch objects instead of a
colorbar object.

colorbar(axes_handle) adds the colorbar to the axes axes_handle in
the default (right) orientation. As in Version 6 and earlier releases, no
new axes is created.

Note The v6 option enables users of Version 7.x of MATLAB to create
FIG-files that previous versions can open. It is obsolete and will be
removed in a future version of MATLAB.

See Plot Objects and Backward Compatibility for more information.

Remarks You can use colorbar with 2-D and 3-D plots.

2-579

colorbar

Examples Example 1

Display a colorbar beside the axes and use descriptive text strings as
y-tick labels. Note that labels will repeat cyclically when the number
of y-ticks is greater than the number of labels, and not all labels will
appear if there are fewer y-ticks than labels you have specified. Also
note that when colorbars are horizontal, their ticks and labels are
governed by the XTick property rather than the YTick property. For
more information, see “Labeling Colorbar Ticks”.

surf(peaks(30))
colorbar('YTickLabel',...

{'Freezing','Cold','Cool','Neutral',...
'Warm','Hot','Burning','Nuclear'})

Example 2

Display a horizontal colorbar beneath the axes of a filled contour plot:

contourf(peaks(60))

2-580

colorbar

colormap cool
colorbar('location','southoutside')

See Also colormap

“Color Operations” on page 1-98 for related functions

2-581

colordef

Purpose Set default property values to display different color schemes

Syntax colordef white
colordef black
colordef none
colordef(fig,color_option)
h = colordef('new',color_option)

Description colordef enables you to select either a white or black background for
graphics display. It sets axis lines and labels so that they contrast with
the background color.

colordef white sets the axis background color to white, the axis lines
and labels to black, and the figure background color to light gray.

colordef black sets the axis background color to black, the axis lines
and labels to white, and the figure background color to dark gray.

colordef none sets the figure coloring to that used by MATLAB
Version 4. The most noticeable difference is that the axis background
is set to 'none', making the axis background and figure background
colors the same. The figure background color is set to black.

colordef(fig,color_option) sets the color scheme of the figure
identified by the handle fig to one of the color options 'white',
'black', or 'none'. When you use this syntax to apply colordef to an
existing figure, the figure must have no graphic content. If it does, you
should first clear it (via clf) before using this form of the command.

h = colordef('new',color_option) returns the handle to a new
figure created with the specified color options (i.e., 'white', 'black', or
'none'). This form of the command is useful for creating GUIs when
you may want to control the default environment. The figure is created
with 'visible','off' to prevent flashing.

Remarks colordef affects only subsequently drawn figures, not those currently
on the display. This is because colordef works by setting default
property values (on the root or figure level). You can list the currently
set default values on the root level with the statement

2-582

colordef

get(0,'defaults')

You can remove all default values using the reset command:

reset(0)

See the get and reset references pages for more information.

See Also whitebg, clf

“Color Operations” on page 1-98 for related functions

2-583

colormap

Purpose Set and get current colormap

GUI
Alternatives

Select a built-in colormap with the Property Editor. To modify the
current colormap, use the Colormap Editor, accessible from Edit —>
Colormap on the figure menu.

Syntax colormap(map)
colormap('default')
cmap = colormap

Description A colormap is an m-by-3 matrix of real numbers between 0.0 and 1.0.
Each row is an RGB vector that defines one color. The kth row of the
colormap defines the kth color, where map(k,:) = [r(k) g(k) b(k)])
specifies the intensity of red, green, and blue.

colormap(map) sets the colormap to the matrix map. If any values in
map are outside the interval [0 1], MATLAB returns the error Colormap
must have values in [0,1].

colormap('default') sets the current colormap to the default
colormap.

cmap = colormap retrieves the current colormap. The values returned
are in the interval [0 1].

Specifying Colormaps

M-files in the color directory generate a number of colormaps. Each
M-file accepts the colormap size as an argument. For example,

colormap(hsv(128))

creates an hsv colormap with 128 colors. If you do not specify a size,
MATLAB creates a colormap the same size as the current colormap.

Supported Colormaps

MATLAB supports a number of built-in colormaps, illustrated
and described below. In addition to specifying built-in colormaps

2-584

colormap

programmatically, you can use the Colormap menu in the Figure
Properties pane of the Plot Tools GUI to select one interactively.

The named built-in colormaps are the following:

• autumn varies smoothly from red, through orange, to yellow.

• bone is a grayscale colormap with a higher value for the blue
component. This colormap is useful for adding an “electronic” look
to grayscale images.

• colorcube contains as many regularly spaced colors in RGB
colorspace as possible, while attempting to provide more steps of
gray, pure red, pure green, and pure blue.

• cool consists of colors that are shades of cyan and magenta. It varies
smoothly from cyan to magenta.

• copper varies smoothly from black to bright copper.

2-585

colormap

• flag consists of the colors red, white, blue, and black. This colormap
completely changes color with each index increment.

• gray returns a linear grayscale colormap.

• hot varies smoothly from black through shades of red, orange, and
yellow, to white.

• hsv varies the hue component of the hue-saturation-value color
model. The colors begin with red, pass through yellow, green, cyan,
blue, magenta, and return to red. The colormap is particularly
appropriate for displaying periodic functions. hsv(m) is the same
as hsv2rgb([h ones(m,2)]) where h is the linear ramp, h =
(0:m 1)'/m.

• jet ranges from blue to red, and passes through the colors cyan,
yellow, and orange. It is a variation of the hsv colormap. The jet
colormap is associated with an astrophysical fluid jet simulation
from the National Center for Supercomputer Applications. See the
“Examples” on page 2-586 section.

• lines produces a colormap of colors specified by the axes ColorOrder
property and a shade of gray.

• pink contains pastel shades of pink. The pink colormap provides
sepia tone colorization of grayscale photographs.

• prism repeats the six colors red, orange, yellow, green, blue, and
violet.

• spring consists of colors that are shades of magenta and yellow.

• summer consists of colors that are shades of green and yellow.

• white is an all white monochrome colormap.

• winter consists of colors that are shades of blue and green.

Examples The images and colormaps demo, imagedemo, provides an introduction
to colormaps. Select Color Spiral from the menu. This uses the pcolor
function to display a 16-by-16 matrix whose elements vary from 0 to 255
in a rectilinear spiral. The hsv colormap starts with red in the center,

2-586

colormap

then passes through yellow, green, cyan, blue, and magenta before
returning to red at the outside end of the spiral. Selecting Colormap
Menu gives access to a number of other colormaps.

The rgbplot function plots colormap values. Try rgbplot(hsv),
rgbplot(gray), and rgbplot(hot).

The following commands display the flujet data using the jet
colormap.

load flujet
image(X)
colormap(jet)

The demos directory contains a CAT scan image of a human spine. To
view the image, type the following commands:

load spine
image(X)

2-587

colormap

colormap bone

Algorithm Each figure has its own Colormap property. colormap is an M-file that
sets and gets this property.

See Also brighten, caxis, colormapeditor, colorbar, contrast, hsv2rgb,
pcolor, rgb2hsv, rgbplot

The Colormap property of figure graphics objects

“Color Operations” on page 1-98 for related functions

“Coloring Mesh and Surface Plots” for more information about
colormaps and other coloring methods

2-588

colormapeditor

Purpose Start colormap editor

Syntax colormapeditor

Description colormapeditor displays the current figure’s colormap as a strip of
rectangular cells in the colormap editor. Node pointers are colored cells
below the colormap strip that indicate points in the colormap where
the rate of the variation of R, G, and B values changes. You can also
work in the HSV colorspace by setting the Interpolating Colorspace
selector to HSV.

You can also start the colormap editor by selecting Colormap from
the Edit menu.

Node Pointer Operations

You can select and move node pointers to change a range of colors in
the colormap. The color of a node pointer remains constant as you move
it, but the colormap changes by linearly interpolating the RGB values
between nodes.

Change the color at a node by double-clicking the node pointer.
MATLAB displays a color picker from which you can select a new color.
After you select a new color at a node, MATLAB reinterpolates the
colors in between nodes.

Operation How to Perform

Add a node Click below the corresponding cell in
the colormap strip.

Select a node Left-click the node.

Select multiple nodes Adjacent: left-click first node,
Shift+click the last node.

Nonadjacent: left-click first node,
Ctrl+click subsequent nodes.

2-589

colormapeditor

Operation How to Perform

Move a node Select and drag with the mouse or
select and use the left and right arrow
keys.

Move multiple nodes Select multiple nodes and use the left
and right arrow keys to move nodes as
a group. Movement stops when one of
the selected nodes hits an unselected
node or an end node.

Delete a node Select the node and then press the
Delete key, or select Delete from the
Edit menu, or type Ctrl+x.

Delete multiple nodes Select the nodes and then press the
Delete key, or select Delete from the
Edit menu, or type Ctrl+x.

Display color picker for a
node

Double-click the node pointer.

Current Color Info

When you put the mouse over a color cell or node pointer, the colormap
editor displays the following information about that colormap element:

• The element’s index in the colormap

• The value from the graphics object color data that is mapped to the
node’s color (i.e., data from the CData property of any image, patch,
or surface objects in the figure)

• The color’s RGB and HSV color value

2-590

colormapeditor

Interpolating Colorspace

The colorspace determines what values are used to calculate the colors
of cells between nodes. For example, in the RGB colorspace, internode
colors are calculated by linearly interpolating the red, green, and blue
intensity values from one node to the next. Switching to the HSV
colorspace causes the colormap editor to recalculate the colors between
nodes using the hue, saturation, and value components of the color
definition.

Note that when you switch from one colorspace to another, the color
editor preserves the number, color, and location of the node pointers,
which can cause the colormap to change.

2-591

colormapeditor

Interpolating in HSV. Since hue is conceptually mapped about a
color circle, the interpolation between hue values can be ambiguous.
To minimize this ambiguity, the interpolation uses the shortest
distance around the circle. For example, interpolating between
two nodes, one with hue of 2 (slightly orange red) and another
with a hue of 356 (slightly magenta red), does not result in hues
3,4,5...353,354,355 (orange/red-yellow-green-cyan-blue-magenta/red).
Taking the shortest distance around the circle gives 357,358,1,2
(orange/red-red-magenta/red).

Color Data Min and Max

The Color Data Min and Color Data Max text fields enable you to
specify values for the axes CLim property. These values change the
mapping of object color data (the CData property of images, patches, and
surfaces) to the colormap. See “Axes Color Limits — the CLim Property”
for discussion and examples of how to use this property.

Examples This example modifies a default MATLAB colormap so that ranges of
data values are displayed in specific ranges of color. The graph is a slice
plane illustrating a cross section of fluid flow through a jet nozzle. See
the slice reference page for more information on this type of graph.

Example Objectives

The objectives are as follows:

• Regions of flow from left to right (positive data) are mapped to colors
from yellow through orange to dark red. Yellow is slowest and dark
red is the fastest moving fluid.

• Regions that have a speed close to zero are colored green.

• Regions where the fluid is actually moving right to left (negative
data) are shades of blue (darker blue is faster).

The following picture shows the desired coloring of the slice plane. The
colorbar shows the data to color mapping.

2-592

colormapeditor

Running the Example

Note If you are viewing this documentation in the MATLAB help
browser, you can display the graph used in this example by running this
M-file from the MATLAB editor (select Run from the Debug menu).

Initially, the default colormap (jet) colored the slice plane, as illustrated
in the following picture. Note that this example uses a colormap that is
48 elements to display wider bands of color (the default is 64 elements).

2-593

colormapeditor

1 Start the colormap editor using the colormapeditor command. The
color map editor displays the current figure’ s colormap, as shown
in the following picture.

2-594

colormapeditor

2 Since we want the regions of left-to-right flow (positive speed) to
range from yellow to dark red, we can delete the cyan node pointer.
To do this, first select it by clicking with the left mouse button and
press Delete. The colormap now looks like this.

2-595

colormapeditor

The Immediate Apply box is checked, so the graph displays the
results of the changes made to the colormap.

2-596

colormapeditor

3 We want the fluid speed values around zero to stand out, so we need
to find the color cell where the negative-to-positive transition occurs.
Dragging the cursor over the color strip enables you to read the data
values in the Current Color Info panel.

In this case, cell 10 is the first positive value, so we click below that
cell and create a node pointer. Double-clicking the node pointer
displays the color picker. Set the color of this node to green.

2-597

colormapeditor

The graph continues to update to the modified colormap.

2-598

colormapeditor

4 In the current state, the colormap colors are interpolated from the
green node to the yellowish node about 20 cells away. We actually
want only the single cell that is centered around zero to be colored
green. To limit the color green to one cell, move the blue and yellow
node pointers next to the green pointer.

2-599

colormapeditor

5 Before making further adjustments to the colormap, we need to move
the green cell so that it is centered around zero. Use the colorbar to
locate the green cell.

2-600

colormapeditor

To recenter the green cell around zero, select the blue, green, and
yellow node pointers (left-click blue, Shift+click yellow) and move
them as a group using the left arrow key. Watch the colorbar in the
figure window to see when the green color is centered around zero.

2-601

colormapeditor

The slice plane now has the desired range of colors for negative, zero,
and positive data.

2-602

colormapeditor

6 Increase the orange-red coloring in the slice by moving the red node
pointer toward the yellow node.

2-603

colormapeditor

7 Darken the endpoints to bring out more detail in the extremes of the
data. Double-click the end nodes to display the color picker. Set the
red endpoint to the RGB value [50 0 0] and set the blue endpoint to
the RGB value [0 0 50].

The slice plane coloring now matches the example objectives.

2-604

colormapeditor

Saving the Modified Colormap

You can save the modified colormap using the colormap function or the
figure Colormap property.

After you have applied your changes, save the current figure colormap
in a variable:

mycmap = get(fig,'Colormap'); % fig is figure
handle or use gcf

To use this colormap in another figure, set that figure’s Colormap
property:

set(new_fig,'Colormap',mycmap)

To save your modified colormap in a MAT-file, use the save command to
save the mycmap workspace variable:

save('MyColormaps','mycmap')

2-605

colormapeditor

To use your saved colormap in another MATLAB session, load the
variable into the workspace and assign the colormap to the figure:

load('MyColormaps','mycmap')
set(fig,'Colormap',mycmap)

See Also colormap, get, load, save, set

Color Operations for related functions

See “Colormaps” for more information on using MATLAB colormaps.

2-606

ColorSpec

Purpose Color specification

Description ColorSpec is not a function; it refers to the three ways in which you
specify color in MATLAB:

• RGB triple

• Short name

• Long name

The short names and long names are MATLAB strings that specify
one of eight predefined colors. The RGB triple is a three-element row
vector whose elements specify the intensities of the red, green, and blue
components of the color; the intensities must be in the range [0 1]. The
following table lists the predefined colors and their RGB equivalents.

RGB Value Short Name Long Name

[1 1 0] y yellow

[1 0 1] m magenta

[0 1 1] c cyan

[1 0 0] r red

[0 1 0] g green

[0 0 1] b blue

[1 1 1] w white

[0 0 0] k black

Remarks The eight predefined colors and any colors you specify as RGB values
are not part of a figure’s colormap, nor are they affected by changes to
the figure’s colormap. They are referred to as fixed colors, as opposed
to colormap colors.

Some high-level functions (for example, scatter) accept a colorspec as
an input argument and use it to set the CData of graphic objects they

2-607

ColorSpec

create. When using such functions, take care not to specify a colorspec
in a property/value pair that sets CData; values for CData are always
n-length vectors or n-by-3 matrices, where n is the length of XData and
YData, never strings.

Examples To change the background color of a figure to green, specify the color
with a short name, a long name, or an RGB triple. These statements
generate equivalent results:

whitebg('g')
whitebg('green')
whitebg([0 1 0]);

You can use ColorSpec anywhere you need to define a color. For
example, this statement changes the figure background color to pink:

set(gcf,'Color',[1,0.4,0.6])

See Also bar, bar3, colordef, colormap, fill, fill3, whitebg

“Color Operations” on page 1-98 for related functions

2-608

colperm

Purpose Sparse column permutation based on nonzero count

Syntax j = colperm(S)

Description j = colperm(S) generates a permutation vector j such that the
columns of S(:,j) are ordered according to increasing count of nonzero
entries. This is sometimes useful as a preordering for LU factorization;
in this case use lu(S(:,j)).

If S is symmetric, then j = colperm(S) generates a permutation j so
that both the rows and columns of S(j,j) are ordered according to
increasing count of nonzero entries. If S is positive definite, this is
sometimes useful as a preordering for Cholesky factorization; in this
case use chol(S(j,j)).

Algorithm The algorithm involves a sort on the counts of nonzeros in each column.

Examples The n-by-n arrowhead matrix

A = [ones(1,n); ones(n-1,1) speye(n-1,n-1)]

has a full first row and column. Its LU factorization, lu(A), is almost
completely full. The statement

j = colperm(A)

returns j = [2:n 1]. So A(j,j) sends the full row and column to the
bottom and the rear, and lu(A(j,j)) has the same nonzero structure
as A itself.

On the other hand, the Bucky ball example,

B = bucky

has exactly three nonzero elements in each row and column, so j
= colperm(B) is the identity permutation and is no help at all for
reducing fill-in with subsequent factorizations.

2-609

colperm

See Also chol, colamd, lu, spparms, symamd, symrcm

2-610

comet

Purpose 2-D comet plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax comet(y)
comet(x,y)
comet(x,y,p)
comet(axes_handle,...)

Description A comet graph is an animated graph in which a circle (the comet head)
traces the data points on the screen. The comet body is a trailing
segment that follows the head. The tail is a solid line that traces the
entire function.

comet(y) displays a comet graph of the vector y.

comet(x,y) displays a comet graph of vector y versus vector x.

comet(x,y,p) specifies a comet body of length p*length(y). p defaults
to 0.1.

comet(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

Remarks The trace left by comet is created by using an EraseMode of none, which
means you cannot print the graph (you get only the comet head), and it
disappears if you cause a redraw (e.g., by resizing the window).

2-611

comet

Examples Create a simple comet graph:

t = 0:.01:2*pi;
x = cos(2*t).*(cos(t).^2);
y = sin(2*t).*(sin(t).^2);
comet(x,y);

See Also comet3

“Direction and Velocity Plots” on page 1-89 for related functions

2-612

comet3

Purpose 3-D comet plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax comet3(z)
comet3(x,y,z)
comet3(x,y,z,p)
comet3(axes_handle,...)

Description A comet plot is an animated graph in which a circle (the comet head)
traces the data points on the screen. The comet body is a trailing
segment that follows the head. The tail is a solid line that traces the
entire function.

comet3(z) displays a 3-D comet graph of the vector z.

comet3(x,y,z) displays a comet graph of the curve through the points
[x(i),y(i),z(i)].

comet3(x,y,z,p) specifies a comet body of length p*length(y).

comet3(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

Remarks The trace left by comet3 is created by using an EraseMode of none,
which means you cannot print the graph (you get only the comet head),
and it disappears if you cause a redraw (e.g., by resizing the window).

2-613

comet3

Examples Create a 3-D comet graph.

t = -10*pi:pi/250:10*pi;
comet3((cos(2*t).^2).*sin(t),(sin(2*t).^2).*cos(t),t);

See Also comet

“Direction and Velocity Plots” on page 1-89 for related functions

2-614

commandhistory

Purpose Open Command History window, or select it if already open

GUI
Alternatives

As an alternative to commandhistory, select Desktop > Command
History to open it, or Window > Command History to select it.

Syntax commandhistory

Description commandhistory opens the MATLAB Command History window when
it is closed, and selects the Command History window when it is open.
The Command History window presents a log of the statements most
recently run in the Command Window.

See Also diary, prefdir, startup

MATLAB Desktop Tools and Development Environment Documentation

• “Recalling Previous Lines”

• “Command History Window”

2-615

commandwindow

Purpose Open Command Window, or select it if already open

GUI
Alternatives

As an alternative to commandwindow, select Desktop > Command
Window to open it, or Window > Command Window to select it.

Syntax commandwindow

Description commandwindow opens the MATLAB Command Window when it is
closed, and selects the Command Window when it is open.

Remarks To determine the number of columns and rows that display in the
Command Window, given its current size, use

get(0,'CommandWindowSize')

The number of columns is based on the width of the Command Window.
With the matrix display width preference set to 80 columns, the number
of columns is always 80.

See Also commandhistory, input, inputdlg

MATLAB Desktop Tools and Development Environment documentation

• “Opening and Arranging Tools”

• “Running Functions and Programs, and Entering Variables”

• “Preferences for the Command Window”

2-616

compan

Purpose Companion matrix

Syntax A = compan(u)

Description A = compan(u) returns the corresponding companion matrix whose
first row is -u(2:n)/u(1), where u is a vector of polynomial coefficients.
The eigenvalues of compan(u) are the roots of the polynomial.

Examples The polynomial has a
companion matrix given by

u = [1 0 -7 6]
A = compan(u)
A =

0 7 -6
1 0 0
0 1 0

The eigenvalues are the polynomial roots:

eig(compan(u))

ans =
-3.0000
2.0000
1.0000

This is also roots(u).

See Also eig, poly, polyval, roots

2-617

compass

Purpose Plot arrows emanating from origin

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax compass(U,V)
compass(Z)
compass(...,LineSpec)
compass(axes_handle,...)
h = compass(...)

Description A compass graph displays the vectors with components (U,V) as arrows
emanating from the origin. U, V, and Z are in Cartesian coordinates and
plotted on a circular grid.

compass(U,V) displays a compass graph having n arrows, where n is
the number of elements in U or V. The location of the base of each arrow
is the origin. The location of the tip of each arrow is a point relative to
the base and determined by [U(i),V(i)].

compass(Z) displays a compass graph having n arrows, where n is the
number of elements in Z. The location of the base of each arrow is the
origin. The location of the tip of each arrow is relative to the base as
determined by the real and imaginary components of Z. This syntax is
equivalent to compass(real(Z),imag(Z)).

compass(...,LineSpec) draws a compass graph using the line type,
marker symbol, and color specified by LineSpec.

compass(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

2-618

compass

h = compass(...) returns handles to line objects.

Examples Draw a compass graph of the eigenvalues of a matrix.

Z = eig(randn(20,20));
compass(Z)

See Also feather, LineSpec, quiver, rose

“Direction and Velocity Plots” on page 1-89 for related functions

“Compass Plots” for another example

2-619

complex

Purpose Construct complex data from real and imaginary components

Syntax c = complex(a,b)

Description c = complex(a,b) creates a complex output, c, from the two real
inputs.

c = a + bi

The output is the same size as the inputs, which must be scalars or
equally sized vectors, matrices, or multi-dimensional arrays.

Note If b is all zeros, c is complex and the value of all its imaginary
components is 0. In contrast, the result of the addition a+0i returns a
strictly real result.

The following describes when a and b can have different data types, and
the resulting data type of the output c:

• If either of a or b has type single, c has type single.

• If either of a or b has an integer data type, the other must have the
same integer data type or type scalar double, and c has the same
integer data type.

c = complex(a) for real a returns the complex result c with real part
a and 0 as the value of all imaginary components. Even though the
value of all imaginary components is 0, c is complex and isreal(c)
returns false.

The complex function provides a useful substitute for expressions such
as

a + i*b or a + j*b

2-620

complex

in cases when the names “i” and “j” may be used for other variables
(and do not equal), when a and b are not single or double, or
when b is all zero.

Example Create complex uint8 vector from two real uint8 vectors.

a = uint8([1;2;3;4])
b = uint8([2;2;7;7])
c = complex(a,b)
c =

1.0000 + 2.0000i
2.0000 + 2.0000i
3.0000 + 7.0000i
4.0000 + 7.0000i

See Also abs, angle, conj, i, imag, isreal, j, real

2-621

computer

Purpose Information about computer on which MATLAB is running

Syntax str = computer
[str,maxsize] = computer
[str,maxsize,endian] = computer

Description str = computer returns the string str with the computer type on
which MATLAB is running.

[str,maxsize] = computer returns the integer maxsize, which
contains the maximum number of elements allowed in an array with
this version of MATLAB.

[str,maxsize,endian] = computer also returns either ’L’ for little
endian byte ordering or ’B’ for big endian byte ordering.

The list of supported computers changes as new computers are added
and others become obsolete. A typical list follows.

32–bit Platforms

str Computer ispc isunix ismac

GLNX86 GNU Linux on x86 0 1 0

MAC Apple Macintosh OS X on PPC 0 1 1

MACI Apple Macintosh OS X on x86 0 1 1

PCWIN Microsoft Windows on x86 1 0 0

64–bit Platforms

str Computer ispc isunix ismac

GLNXA64 GNU Linux on x86_64 0 1 0

2-622

computer

64–bit Platforms (Continued)

str Computer ispc isunix ismac

PCWIN64 Microsoft Windows on x64 1 0 0

SOL64 Sun Solaris on SPARC 0 1 0

See Also getenv, setenv, ispc, isunix, ismac

2-623

cond

Purpose Condition number with respect to inversion

Syntax c = cond(X)
c = cond(X,p)

Description The condition number of a matrix measures the sensitivity of the
solution of a system of linear equations to errors in the data. It gives
an indication of the accuracy of the results from matrix inversion and
the linear equation solution. Values of cond(X) and cond(X,p) near 1
indicate a well-conditioned matrix.

c = cond(X) returns the 2-norm condition number, the ratio of the
largest singular value of X to the smallest.

c = cond(X,p) returns the matrix condition number in p-norm:

norm(X,p) * norm(inv(X),p

If p is... Then cond(X,p) returns the...

1 1-norm condition number

2 2-norm condition number

’fro’ Frobenius norm condition number

inf Infinity norm condition number

Algorithm The algorithm for cond (when p = 2) uses the singular value
decomposition, svd.

See Also condeig, condest, norm, normest, rank, rcond, svd

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, SIAM, Philadelphia, 1999.

2-624

http://www.netlib.org/lapack/lug/lapack_lug.html

condeig

Purpose Condition number with respect to eigenvalues

Syntax c = condeig(A)
[V,D,s] = condeig(A)

Description c = condeig(A) returns a vector of condition numbers for the
eigenvalues of A. These condition numbers are the reciprocals of the
cosines of the angles between the left and right eigenvectors.

[V,D,s] = condeig(A) is equivalent to

[V,D] = eig(A);
s = condeig(A);

Large condition numbers imply that A is near a matrix with multiple
eigenvalues.

See Also balance, cond, eig

2-625

condest

Purpose 1-norm condition number estimate

Syntax c = condest(A)
c = condest(A,t)
[c,v] = condest(A)

Description c = condest(A) computes a lower bound C for the 1-norm condition
number of a square matrix A.

c = condest(A,t) changes t, a positive integer parameter equal to
the number of columns in an underlying iteration matrix. Increasing
the number of columns usually gives a better condition estimate but
increases the cost. The default is t = 2, which almost always gives an
estimate correct to within a factor 2.

[c,v] = condest(A) also computes a vector v which is an
approximate null vector if c is large. v satisfies norm(A*v,1) =
norm(A,1)*norm(v,1)/c.

Note condest invokes rand. If repeatable results are required then
invoke rand('state',j), for some j, before calling this function.

This function is particularly useful for sparse matrices.

Algorithm condest is based on the 1-norm condition estimator of Hager [1] and a
block oriented generalization of Hager’s estimator given by Higham and
Tisseur [2]. The heart of the algorithm involves an iterative search to

estimate without computing . This is posed as the convex,
but nondifferentiable, optimization problem

subject to

See Also cond, norm, normest

2-626

condest

Reference [1] William W. Hager, “Condition Estimates,” SIAM J. Sci. Stat.
Comput. 5, 1984, 311-316, 1984.

[2] Nicholas J. Higham and Françoise Tisseur, “A Block Algorithm
for Matrix 1-Norm Estimation with an Application to 1-Norm
Pseudospectra, “SIAM J. Matrix Anal. Appl., Vol. 21, 1185-1201, 2000.

2-627

coneplot

Purpose Plot velocity vectors as cones in 3-D vector field

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax coneplot(X,Y,Z,U,V,W,Cx,Cy,Cz)
coneplot(U,V,W,Cx,Cy,Cz)
coneplot(...,s)
coneplot(...,color)
coneplot(...,'quiver')
coneplot(...,'method')
coneplot(X,Y,Z,U,V,W,'nointerp')
coneplot(axes_handle,...)
h = coneplot(...)

Description coneplot(X,Y,Z,U,V,W,Cx,Cy,Cz) plots velocity vectors as cones
pointing in the direction of the velocity vector and having a length
proportional to the magnitude of the velocity vector.

• X, Y, Z define the coordinates for the vector field.

• U, V, W define the vector field. These arrays must be the same size,
monotonic, and 3-D plaid (such as the data produced by meshgrid).

• Cx, Cy, Cz define the location of the cones in the vector field. The
section “Specifying Starting Points for Stream Plots” in Visualization
Techniques provides more information on defining starting points.

2-628

coneplot

coneplot(U,V,W,Cx,Cy,Cz) (omitting the X, Y, and Z arguments)
assumes [X,Y,Z] = meshgrid(1:n,1:m,1:p), where [m,n,p]=
size(U).

coneplot(...,s) MATLAB automatically scales the cones to fit the
graph and then stretches them by the scale factor s. If you do not
specify a value for s, MATLAB uses a value of 1. Use s = 0 to plot the
cones without automatic scaling.

coneplot(...,color) interpolates the array color onto the vector
field and then colors the cones according to the interpolated values. The
size of the color array must be the same size as the U, V, W arrays. This
option works only with cones (i.e., not with the quiver option).

coneplot(...,'quiver') draws arrows instead of cones (see quiver3
for an illustration of a quiver plot).

coneplot(...,'method') specifies the interpolation method to use.
method can be linear, cubic, or nearest. linear is the default. (See
interp3 for a discussion of these interpolation methods.)

coneplot(X,Y,Z,U,V,W,'nointerp') does not interpolate the positions
of the cones into the volume. The cones are drawn at positions defined
by X, Y, Z and are oriented according to U, V, W. Arrays X, Y, Z, U, V, W
must all be the same size.

coneplot(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = coneplot(...) returns the handle to the patch object used to
draw the cones. You can use the set command to change the properties
of the cones.

Remarks coneplot automatically scales the cones to fit the graph, while keeping
them in proportion to the respective velocity vectors.

It is usually best to set the data aspect ratio of the axes before calling
coneplot. You can set the ratio using the daspect command.

daspect([1,1,1])

2-629

coneplot

Examples This example plots the velocity vector cones for vector volume data
representing the motion of air through a rectangular region of space.
The final graph employs a number of enhancements to visualize the
data more effectively:

• Cone plots indicate the magnitude and direction of the wind velocity.

• Slice planes placed at the limits of the data range provide a visual
context for the cone plots within the volume.

• Directional lighting provides visual cues to the orientation of the
cones.

• View adjustments compose the scene to best reveal the information
content of the data by selecting the view point, projection type, and
magnification.

1. Load and Inspect Data

The winds data set contains six 3-D arrays: u, v, and w specify the
vector components at each of the coordinates specified in x, y, and
z. The coordinates define a lattice grid structure where the data is
sampled within the volume.

It is useful to establish the range of the data to place the slice planes
and to specify where you want the cone plots (min, max).

load wind
xmin = min(x(:));
xmax = max(x(:));
ymin = min(y(:));
ymax = max(y(:));
zmin = min(z(:));

2. Create the Cone Plot

• Decide where in data space you want to plot cones. This example
selects the full range of x and y in eight steps and the range 3 to 15 in
four steps in z (linspace, meshgrid).

2-630

coneplot

• Use daspect to set the data aspect ratio of the axes before calling
coneplot so MATLAB can determine the proper size of the cones.

• Draw the cones, setting the scale factor to 5 to make the cones larger
than the default size.

• Set the coloring of each cone (FaceColor, EdgeColor).

daspect([2,2,1])
xrange = linspace(xmin,xmax,8);
yrange = linspace(ymin,ymax,8);
zrange = 3:4:15;
[cx cy cz] = meshgrid(xrange,yrange,zrange);
hcones = coneplot(x,y,z,u,v,w,cx,cy,cz,5);
set(hcones,'FaceColor','red','EdgeColor','none')

3. Add the Slice Planes

• Calculate the magnitude of the vector field (which represents wind
speed) to generate scalar data for the slice command.

• Create slice planes along the x-axis at xmin and xmax, along the
y-axis at ymax, and along the z-axis at zmin.

• Specify interpolated face color so the slice coloring indicates wind
speed, and do not draw edges (hold, slice, FaceColor, EdgeColor).

hold on
wind_speed = sqrt(u.^2 + v.^2 + w.^2);
hsurfaces = slice(x,y,z,wind_speed,[xmin,xmax],ymax,zmin);
set(hsurfaces,'FaceColor','interp','EdgeColor','none')
hold off

4. Define the View

• Use the axis command to set the axis limits equal to the range of
the data.

• Orient the view to azimuth = 30 and elevation = 40. (rotate3d is a
useful command for selecting the best view.)

2-631

coneplot

• Select perspective projection to provide a more realistic looking
volume (camproj).

• Zoom in on the scene a little to make the plot as large as possible
(camzoom).

axis tight; view(30,40); axis off
camproj perspective; camzoom(1.5)

5. Add Lighting to the Scene

The light source affects both the slice planes (surfaces) and the cone
plots (patches). However, you can set the lighting characteristics of
each independently:

• Add a light source to the right of the camera and use Phong lighting
to give the cones and slice planes a smooth, three-dimensional
appearance (camlight, lighting).

• Increase the value of the AmbientStrength property for each slice
plane to improve the visibility of the dark blue colors. (Note that
you can also specify a different colormap to change the coloring of
the slice planes.)

• Increase the value of the DiffuseStrength property of the cones to
brighten particularly those cones not showing specular reflections.

camlight right; lighting phong
set(hsurfaces,'AmbientStrength',.6)
set(hcones,'DiffuseStrength',.8)

2-632

coneplot

See Also isosurface, patch, reducevolume, smooth3, streamline, stream2,
stream3, subvolume

“Volume Visualization” on page 1-102 for related functions

2-633

conj

Purpose Complex conjugate

Syntax ZC = conj(Z)

Description ZC = conj(Z) returns the complex conjugate of the elements of Z.

Algorithm If Z is a complex array:

conj(Z) = real(Z) - i*imag(Z)

See Also i, j, imag, real

2-634

continue

Purpose Pass control to next iteration of for or while loop

Syntax continue

Description continue passes control to the next iteration of the for or while loop
in which it appears, skipping any remaining statements in the body of
the loop. The same holds true for continue statements in nested loops.
That is, execution continues at the beginning of the loop in which the
continue statement was encountered.

Examples The example below shows a continue loop that counts the lines of
code in the file magic.m, skipping all blank lines and comments. A
continue statement is used to advance to the next line in magic.m
without incrementing the count whenever a blank line or comment
line is encountered.

fid = fopen('magic.m','r');
count = 0;
while ~feof(fid)

line = fgetl(fid);
if isempty(line) | strncmp(line,'%',1)

continue
end
count = count + 1;

end
disp(sprintf('%d lines',count));

See Also for, while, end, break, return

2-635

contour

Purpose Contour plot of matrix

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see “Plotting
Tools — Interactive Plotting” in the MATLAB Graphics documentation
and “Creating Graphics from the Workspace Browser” in the MATLAB
Desktop Tools documentation.

Syntax contour(Z)
contour(Z,n)
contour(Z,v)
contour(X,Y,Z)
contour(X,Y,Z,n)
contour(X,Y,Z,v)
contour(...,LineSpec)
contour(ax,...)
[C,h] = contour(...)
[C,h] = contour('v6',...)

Description A contour plot displays isolines of matrix Z. Label the contour lines
using clabel.

contour(Z) draws a contour plot of matrix Z, where Z is interpreted as
heights with respect to the x-y plane. Z must be at least a 2-by-2 matrix
that contains at least two different values. The number of contour levels
and the values of the contour levels are chosen automatically based on
the minimum and maximum values of Z. The ranges of the x- and y-axis
are [1:n] and [1:m], where [m,n] = size(Z).

contour(Z,n) draws a contour plot of matrix Z with n contour levels.

contour(Z,v) draws a contour plot of matrix Z with contour lines at the
data values specified in vector v. The number of contour levels is equal

2-636

contour

to length(v). To draw a single contour of level i, use contour(Z,[i
i]).

contour(X,Y,Z), contour(X,Y,Z,n), and contour(X,Y,Z,v) draw
contour plots of Z. X and Y specify the x- and y-axis limits. When X and
Y are matrices, they must be the same size as Z, in which case they
specify a surface, as defined by the surf function. X and Y must be
monotonically increasing.

If X or Y is irregularly spaced, contour calculates contours using a
regularly spaced contour grid, and then transforms the data to X or Y.

contour(...,LineSpec) draws the contours using the line type and
color specified by LineSpec. contour ignores marker symbols.

contour(ax,...) plots into axes ax instead of gca.

[C,h] = contour(...) returns a contour matrix, C, derived from the
matrix returned by the low-level contourc function, and a handle, h, to
a contourgroup object. clabel uses the contour matrix C to create the
labels. (See descriptions of contourgroup properties.)

Backward Compatible Version

[C,h] = contour('v6',...) returns the contour matrix C (see
contourc) and a vector of handles, h, to graphics objects. clabel uses
the contour matrix C to create the labels. When called with the 'v6' flag,
contour creates patch graphics objects, unless you specify a LineSpec,
in which case contour creates line graphics objects. In this case, contour
lines are not mapped to colors in the figure colormap, but are colored
using the colors defined in the axes ColorOrder property. If you do not
specify a LineSpec argument, the figure colormap (colormap) and the
color limits (caxis) control the color of the contour lines (patch objects).

Note The v6 option enables users of Version 7.x of MATLAB to create
FIG-files that previous versions can open. It is obsolete and will be
removed in a future version of MATLAB.

2-637

contour

See Plot Objects and Backward Compatibility for more information.

Remarks Use contourgroup object properties to control the contour plot
appearance.

The following diagram illustrates the parent-child relationship in
contour plots.

Examples Contour Plot of a Function

To view a contour plot of the function

over the range -2 ≤ x ≤ 2, -2 ≤ y ≤ 3, create matrix Z using the statements

[X,Y] = meshgrid(-2:.2:2,-2:.2:3);
Z = X.*exp(-X.^2-Y.^2);

Then, generate a contour plot of Z.

2-638

contour

• Display contour labels by setting the ShowText property to on.

• Label every other contour line by setting the TextStep property to
twice the contour interval (i.e., two times the LevelStep property).

• Use a smoothly varying colormap.

[C,h] = contour(X,Y,Z);
set(h,'ShowText','on','TextStep',get(h,'LevelStep')*2)
colormap cool

Smoothing Contour Data

Use interp2 to create smoother contours. Also set the contour label
text BackgroundColor to a light yellow and the EdgeColor to light gray.

2-639

contour

Z = peaks;
[C,h] = contour(interp2(Z,4));
text_handle = clabel(C,h);
set(text_handle,'BackgroundColor',[1 1 .6],...

'Edgecolor',[.7 .7 .7])

Setting the Axis Limits on Contour Plots

Suppose, for example, your data represents a region that is 1000
meters in the x dimension and 3000 meters in the y dimension. Use the
following statements to set the axis limits correctly:

Z = rand(24,36); % assume data is a 24-by-36 matrix
X = linspace(0,1000,size(Z,2));

2-640

contour

Y = linspace(0,3000,size(Z,1));
[c,h] = contour(X,Y,Z);
axis equal tight % set the axes aspect ratio

See Also contour3, contourc, contourf, contourslice

See Contourgroup Properties for property descriptions.

2-641

contour3

Purpose 3-D contour plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see “Plotting
Tools — Interactive Plotting” in the MATLAB Graphics documentation
and “Creating Graphics from the Workspace Browser” in the MATLAB
Desktop Tools documentation.

Syntax contour3(Z)
contour3(Z,n)
contour3(Z,v)
contour3(X,Y,Z)
contour3(X,Y,Z,n)
contour3(X,Y,Z,v)
contour3(...,LineSpec)
contour3(axes_handle,...)
[C,h] = contour3(...)

Description contour3 creates a 3-D contour plot of a surface defined on a
rectangular grid.

contour3(Z) draws a contour plot of matrix Z in a 3-D view. Z is
interpreted as heights with respect to the x-y plane. Z must be at least a
2-by-2 matrix that contains at least two different values. The number of
contour levels and the values of contour levels are chosen automatically.
The ranges of the x- and y-axis are [1:n] and [1:m], where [m,n] =
size(Z).

contour3(Z,n) draws a contour plot of matrix Z with n contour levels in
a 3-D view.

contour3(Z,v) draws a contour plot of matrix Z with contour lines at
the values specified in vector v. The number of contour levels is equal to
length(v). To draw a single contour of level i, use contour(Z,[i i]).

2-642

contour3

contour3(X,Y,Z), contour3(X,Y,Z,n), and contour3(X,Y,Z,v) use X
and Y to define the x- and y-axis limits. If X is a matrix, X(1,:) defines
the x-axis. If Y is a matrix, Y(:,1) defines the y-axis. When X and Y are
matrices, they must be the same size as Z, in which case they specify a
surface as surf does.

contour3(...,LineSpec) draws the contours using the line type and
color specified by LineSpec.

contour3(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

[C,h] = contour3(...) returns the contour matrix C, as described in
the function contourc and a column vector h, containing handles to
graphics objects. contour3 creates patch graphics objects unless you
specify LineSpec, in which case contour3 creates line graphics objects.

Remarks If X or Y is irregularly spaced, contour3 calculates contours using a
regularly spaced contour grid, and then transforms the data to X or Y.

If you do not specify LineSpec, colormap and caxis control the color.

contour3(...) works the same as contour(...) with these
exceptions:

• The contours are drawn at their corresponding Z level.

• Multiple patch objects are created instead of a contourgroup.

• Calling contour3 with trailing property-value pairs is not allowed.

Examples Plot the three-dimensional contour of a function and superimpose a
surface plot to enhance visualization of the function.

[X,Y] = meshgrid([-2:.25:2]);
Z = X.*exp(-X.^2-Y.^2);
contour3(X,Y,Z,30)
surface(X,Y,Z,'EdgeColor',[.8 .8 .8],'FaceColor','none')
grid off
view(-15,25)

2-643

contour3

colormap cool

See Also contour, contourc, meshc, meshgrid, surfc

“Contour Plots” on page 1-89 category for related functions

“Contour Plots” section for more examples

2-644

contourc

Purpose Low-level contour plot computation

Syntax C = contourc(Z)
C = contourc(Z,n)
C = contourc(Z,v)
C = contourc(x,y,Z)
C = contourc(x,y,Z,n)
C = contourc(x,y,Z,v)

Description contourc calculates the contour matrix C used by contour, contour3,
and contourf. The values in Z determine the heights of the contour
lines with respect to a plane. The contour calculations use a regularly
spaced grid determined by the dimensions of Z.

C = contourc(Z) computes the contour matrix from data in matrix Z,
where Z must be at least a 2-by-2 matrix. The contours are isolines
in the units of Z. The number of contour lines and the corresponding
values of the contour lines are chosen automatically.

C = contourc(Z,n) computes contours of matrix Z with n contour
levels.

C = contourc(Z,v) computes contours of matrix Z with contour lines
at the values specified in vector v. The length of v determines the
number of contour levels. To compute a single contour of level i, use
contourc(Z,[i i]).

C = contourc(x,y,Z), C = contourc(x,y,Z,n), and C =
contourc(x,y,Z,v) compute contours of Z using vectors x and y to
determine the x- and y-axis limits. x and y must be monotonically
increasing.

Remarks C is a two-row matrix specifying all the contour lines. Each contour
line defined in matrix C begins with a column that contains the value
of the contour (specified by v and used by clabel), and the number of
(x,y) vertices in the contour line. The remaining columns contain the
data for the (x,y) pairs.

C = [value1xdata(1)xdata(2)..value2xdata(1)xdata(2)...;

2-645

contourc

dim1ydata(1)ydata(2)...dim2 ydata(1)ydata(2)...]

Specifying irregularly spaced x and y vectors is not the same as
contouring irregularly spaced data. If x or y is irregularly spaced,
contourc calculates contours using a regularly spaced contour grid,
then transforms the data to x or y.

See Also clabel, contour, contour3, contourf

“Contour Plots” on page 1-89 for related functions

“The Contouring Algorithm” for more information

2-646

contourf

Purpose Filled 2-D contour plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see “Plotting
Tools — Interactive Plotting” in the MATLAB Graphics documentation
and “Creating Graphics from the Workspace Browser” in the MATLAB
Desktop Tools documentation.

Syntax contourf(Z)
contourf(Z,n)
contourf(Z,v)
contourf(X,Y,Z)
contourf(X,Y,Z,n)
contourf(X,Y,Z,v)
contourf(axes_handle,...)
C = contourf(...)
[C,h] = contourf(...)
[C,h,CF] = contourf(...)

Description A filled contour plot displays isolines calculated from matrix Z and fills
the areas between the isolines using constant colors. The color of the
filled areas depends on the current figure’s colormap. NaNs in the Z-data
leave white holes with black borders in the contour plot. The function
creates and optionally returns a handle to a Contourgroup Properties
object containing the filled contours.

contourf(Z) draws a contour plot of matrix Z, where Z is interpreted as
heights with respect to a plane. Z must be at least a 2-by-2 matrix that
contains at least two different values. The number of contour lines and
the values of the contour lines are chosen automatically.

contourf(Z,n) draws a contour plot of matrix Z with n contour levels.

2-647

contourf

contourf(Z,v) draws a contour plot of matrix Z with contour levels
at the values specified in vector v. When you use the contourf(Z,v)
syntax to specify a vector of contour levels (v must increase
monotonically), contour regions with Z-values less than v(1) are not
filled (they are rendered in white). To fill such regions with a color,
make v(1) less than or equal to the minimum Z-data value.

contourf(X,Y,Z), contourf(X,Y,Z,n), and contourf(X,Y,Z,v)
produce contour plots of Z using X and Y to determine the x- and y-axis
limits. When X and Y are matrices, they must be the same size as Z,
in which case they specify a surface as surf does. X and Y must be
monotonically increasing.

contourf(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

C = contourf(...) returns the contour matrix C as calculated by the
function contourc and used by clabel.

[C,h] = contourf(...) also returns a handle h for the contourgroup
object.

Backward-Compatible Version

[C,h,CF] = contourf(...) returns the contour matrix C as calculated
by the function contourc and used by clabel, a vector of handles
h to patch graphics objects (instead of a contourgroup object, for
compatibility with MATLAB 6.5 and earlier) and a contour matrix CF
for the filled areas.

Note The v6 option enables users of Version 7.x of MATLAB to create
FIG-files that previous versions can open. It is obsolete and will be
removed in a future version of MATLAB.

See Plot Objects and Backward Compatibility for more information.

Remarks If X or Y is irregularly spaced, contourf calculates contours using a
regularly spaced contour grid, and then transforms the data to X or Y.

2-648

contourf

Examples Create a filled contour plot of the peaks function.

[C,h] = contourf(peaks(20),10);
colormap autumn

See Also clabel, contour, contour3, contourc, quiver

“Contour Plots” on page 1-89 for related functions

2-649

Contourgroup Properties

Purpose Define contourgroup properties

Modifying
Properties

You can set and query graphics object properties using the set and get
commands or the Property Editor (propertyeditor).

Note that you cannot define default properties for contourgroup objects.

See “Plot Objects” for more information on contourgroup objects.

Contourgroup
Property
Descriptions

This section provides a description of properties. Curly braces { } enclose
default values.

Annotation
hg.Annotation object Read Only

Control the display of contourgroup objects in legends. The
Annotation property enables you to specify whether this
contourgroup object is represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can
set its IconDisplayStyle property to control whether the
contourgroup object is displayed in a figure legend:

IconDisplayStyle
Value

Purpose

on Include the contourgroup object in a legend
as one entry, but not its children objects

off Do not include the contourgroup or its
children in a legend (default)

children Include only the children of the contourgroup
as separate entries in the legend

2-650

Contourgroup Properties

Setting the IconDisplayStyle property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation','LegendInformation');
set(hLegendEntry,'IconDisplayStyle','children')

Using the IconDisplayStyle property

See “Controlling Legends” for more information and examples.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function
executing, callbacks invoked subsequently always attempt to
interrupt it.

2-651

Contourgroup Properties

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs
at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

• cancel — Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
string or function handle

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is over this object, but
not over another graphics object. See the HitTestArea property
for information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be

• A string that is a valid MATLAB expression

• The name of an M-file

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

See “Function Handle Callbacks” for information on how to use
function handles to define the callbacks.

Children
array of graphics object handles

2-652

Contourgroup Properties

Children of this object. The handle of a patch object that is the
child of this object (whether visible or not).

Note that if a child object’s HandleVisibility property is set
to callback or off, its handle does not show up in this object’s
Children property unless you set the root ShowHiddenHandles
property to on:

set(0,'ShowHiddenHandles','on')

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs can be
displayed outside the axes plot box. This can occur if you create a
plot object, set hold to on, freeze axis scaling (axis manual), and
then create a larger plot object.

ContourMatrix
2-by-n matrix Read Only

A two-row matrix specifying all the contour lines. Each contour
line defined in the ContourMatrix begins with a column that
contains the value of the contour (specified by the LevelList
property and is used by clabel), and the number of (x,y) vertices
in the contour line. The remaining columns contain the data for
the (x,y) pairs:

C = [value1 xdata(1) xdata(2)...value2 xdata(1) xdata(2)...;
dim1 ydata(1) ydata(2)... dim2 ydata(1) ydata(2)...]

That is,

C = [C(1) C(2)...C(I)...C(N)]

where N is the number of contour levels, and

C(i) = [level(i) x(1) x(2)...x(numel(i));

2-653

Contourgroup Properties

numel(i) y(1) y(2)...y(numel(i))];

For further information, see The Contouring Algorithm.

CreateFcn
string or function handle

Callback routine executed during object creation. This property
defines a callback that executes when MATLAB creates an object.
You must specify the callback during the creation of the object.
For example,

area(y,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function.

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
string or function handle

Callback executed during object deletion. A callback that executes
when this object is deleted (e.g., this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values.

2-654

Contourgroup Properties

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

DisplayName
string (default is empty string)

String used by legend for this contourgroup object. The legend
function uses the string defined by the DisplayName property to
label this contourgroup object in the legend.

• If you specify string arguments with the legend function,
DisplayName is set to this contourgroup object’s corresponding
string and that string is used for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

See “Controlling Legends” for more examples.

EraseMode
{normal} | none | xor | background

2-655

Contourgroup Properties

Erase mode. This property controls the technique MATLAB uses
to draw and erase objects and their children. Alternative erase
modes are useful for creating animated sequences, where control
of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

• normal — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none — Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing
with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of
the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color
if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

• background — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other
graphics objects that are behind the erased object, but the
erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB can mathematically combine

2-656

Contourgroup Properties

layers of colors (e.g., performing an XOR on a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

Fill
{off} | on

Color spaces between contour lines. By default, contour draws
only the contour lines of the surface. If you set Fill to on, contour
colors the regions in between the contour lines according to the
Z-value of the region and changes the contour lines to black.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally accessing
objects that you need to protect for some reason.

• on — Handles are always visible when HandleVisibility is on.

• callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions
invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

2-657

Contourgroup Properties

• off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

2-658

Contourgroup Properties

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. HitTest determines whether this object
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the objects that compose the area graph. If HitTest
is off, clicking this object selects the object below it (which is
usually the axes containing it).

HitTestArea
on | {off}

Select the object by clicking lines or area of extent. This property
enables you to select plot objects in two ways:

• Select by clicking lines or markers (default).

• Select by clicking anywhere in the extent of the plot.

When HitTestArea is off, you must click th eobject’s lines or
markers (excluding the baseline, if any) to select the object. When
HitTestArea is on, you can select this object by clicking anywhere
within the extent of the plot (i.e., anywhere within a rectangle
that encloses it).

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether an object’s callback can be interrupted by
callbacks invoked subsequently.

2-659

Contourgroup Properties

Only callbacks defined for the ButtonDownFcn property are
affected by the Interruptible property. MATLAB checks for
events that can interrupt a callback only when it encounters a
drawnow, figure, getframe, or pause command in the routine.
See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback
to interrupt callback routines originating from a bar property.
Note that MATLAB does not save the state of variables or the
display (e.g., the handle returned by the gca or gcf command)
when an interruption occurs.

LabelSpacing
distance in points (default = 144)

Spacing between labels on each contour line. When you display
contour line labels using either the ShowText property or the
clabel command, the labels are spaced 144 points (2 inches)
apart on each line. You can specify the spacing by setting the
LabelSpacing property to a value in points. If the length of an
individual contour line is less than the specified value, MATLAB
displays only one contour label on that line.

LevelList
vector of ZData-values

Values at which contour lines are drawn. When the LevelListMode
property is auto, the contour function automatically chooses
contour values that span the range of values in ZData (the input
argument Z). You can set this property to the values at which
you want contour lines drawn.

To specify the contour interval (space between contour lines) use
the LevelStep property.

LevelListMode
{auto} | manual

2-660

Contourgroup Properties

User-specified or autogenerated LevelList values. By default, the
contour function automatically generates the values at which
contours are drawn. If you set this property to manual, contour
does not change the values in LevelList as you change the values
of ZData.

LevelStep
scalar

Spacing of contour lines. The contour function draws contour
lines at regular intervals determined by the value of LevelStep.
When the LevelStepMode property is set to auto, contour
determines the contour interval automatically based on the ZData.

LevelStepMode
{auto} | manual

User-specified or autogenerated LevelStep values. By default,
the contour function automatically determines a value for the
LevelStep property. If you set this property to manual, contour
does not change the value of LevelStep as you change the values
of ZData.

LineColor
{auto} | ColorSpec | none

Color of the contour lines. This property determines how MATLAB
colors the contour lines.

• auto— Each contour line is a single color determined by its
contour value, the figure colormap, and the color axis (caxis).

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for
edges. The default edge color is black. See ColorSpec for more
information on specifying color.

• none — No contour lines are drawn.

2-661

Contourgroup Properties

LineStyle
{-} | -- | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker at
each point but do not want the points connected with a line (see
the Marker property).

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of this object. This property contains the handle of the
object’s parent. The parent is normally the axes, hggroup, or
hgtransform object that contains the object.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

2-662

Contourgroup Properties

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection "handles" at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing four edge handles and four corner handles. When
SelectionHighlight is off, MATLAB does not draw the handles
except when in plot edit mode and objects are selected manually.

ShowText
on | {off}

Display labels on contour lines. When you set this property to
on, MATLAB displays text labels on each contour line indicating
the contour value. See also LevelList, clabel, and the example
“Contour Plot of a Function” on page 2-638.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callbacks.
You can define Tag as any string.

2-663

Contourgroup Properties

For example, you might create an areaseries object and set the
Tag property.

t = area(Y,'Tag','area1')

When you want to access objects of a given type, you can use
findobj to find the object’s handle. The following statement
changes the FaceColor property of the object whose Tag is area1.

set(findobj('Tag','area1'),'FaceColor','red')

TextList
vector of contour values

Contour values to label. This property contains the contour values
where text labels are placed. By default, these values are the
same as those contained in the LevelList property, which define
where the contour lines are drawn. Note that there must be an
equivalent contour line to display a text label.

For example, the following statements create and label a contour
plot:

[c,h]=contour(peaks);
clabel(c,h)

You can get the LevelList property to see the contour line values:

get(h,'LevelList')

Suppose you want to view the contour value 4.375 instead of the
value of 4 that the contour function used. To do this, you need to
set both the LevelList and TextList properties:

set(h,'LevelList',[-6 -4 -2 0 2 4.375 6 8],...
'TextList',[-6 -4 -2 0 2 4.375 6 8])

See the example “Contour Plot of a Function” on page 2-638 for
additional information.

2-664

Contourgroup Properties

TextListMode
{auto} | manual

User-specified or auto TextList values. When this property is set
to auto, MATLAB sets the TextList property equal to the values
of the LevelList property (i.e., a text label for each contour line).
When this property is set to manual, MATLAB does not set the
values of the TextList property. Note that specifying values for
the TextList property causes the TextListMode property to be
set to manual.

TextStep
scalar

Determines which contour line have numeric labels. The contour
function labels contour lines at regular intervals which are
determined by the value of the TextStep property. When the
TextStepMode property is set to auto, contour labels every
contour line when the ShowText property is on. See “Contour
Plot of a Function” on page 2-638 for an example that uses the
TextStep property.

TextStepMode
{auto} | manual

User-specified or autogenerated TextStep values. By default,
the contour function automatically determines a value for the
TextStep property. If you set this property to manual, contour
does not change the value of TextStep as you change the values of
ZData.

Type
string (read only)

Type of graphics object. This property contains a string that
identifies the class of graphics object. For contourgroup objects,
Type is ’hggroup’. This statement finds all the hggroup objects in
the current axes.

2-665

Contourgroup Properties

t = findobj(gca,'Type','hggroup');

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with this object. Assign this property
the handle of a uicontextmenu object created in the object’s
parent figure. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever
you right-click over the object.

UserData
array

User-specified data. This property can be any data you want to
associate with this object (including cell arrays and structures).
The object does not set values for this property, but you can access
it using the set and get functions.

Visible
{on} | off

Visibility of this object and its children. By default, a new object’s
visibility is on. This means all children of the object are visible
unless the child object’s Visible property is set to off. Setting an
object’s Visible property to off prevents the object from being
displayed. However, the object still exists and you can set and
query its properties.

XData
vector or matrix

The x-axis values for a graph. The x-axis values for graphs
are specified by the X input argument. If XData is a vector,
length(XData) must equal length(YData) and must be
monotonic. If XData is a matrix, size(XData) must equal
size(YData) and each column must be monotonic.

2-666

Contourgroup Properties

You can use XData to define meaningful coordinates for an
underlying surface whose topography is being mapped. See
“Setting the Axis Limits on Contour Plots” on page 2-640 for more
information.

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify
XData (by setting the XData property or specifying the x input
argument), MATLAB sets this property to manual and uses the
specified values to label the x-axis.

If you set XDataMode to auto after having specified XData,
MATLAB resets the x-axis ticks to 1:size(YData,1) or to the
column indices of the ZData, overwriting any previous values for
XData.

XDataSource
string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change XData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

2-667

Contourgroup Properties

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
scalar, vector, or matrix

Y-axis limits. This property determines the y-axis limits used in
the contour plot. If you do not specify a Y argument, the contour
function calculates y-axis limits based on the size of the input
argument Z.

YData can be either a matrix equal in size to ZData or a vector
equal in length to the number of columns in ZData.

Use YData to define meaningful coordinates for the underlying
surface whose topography is being mapped. See “Setting the Axis
Limits on Contour Plots” on page 2-640 for more information.

YDataMode
{auto} | manual

Use automatic or user-specified y-axis values. In auto mode (the
default) the contour function automatically determines the y-axis
limits. If you set this property to manual, specify a value for
YData, or specify a Y argument, then contour sets this property to
manual and does not change the axis limits.

YDataSource
string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData.

2-668

Contourgroup Properties

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change YData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

ZData
matrix

Contour data. This property contains the data from which the
contour lines are generated (specified as the input argument
Z). ZData must be at least a 2-by-2 matrix. The number of
contour levels and the values of the contour levels are chosen
automatically based on the minimum and maximum values of
ZData. The limits of the x- and y-axis are [1:n] and [1:m], where
[m,n] = size(ZData).

ZDataSource
string (MATLAB variable)

Link ZData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
ZData.

2-669

Contourgroup Properties

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change ZData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

2-670

contourslice

Purpose Draw contours in volume slice planes

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax contourslice(X,Y,Z,V,Sx,Sy,Sz)
contourslice(X,Y,Z,V,Xi,Yi,Zi)
contourslice(V,Sx,Sy,Sz)
contourslice(V,Xi,Yi,Zi)
contourslice(...,n)
contourslice(...,cvals)
contourslice(...,[cv cv])
contourslice(...,'method')
contourslice(axes_handle,...)
h = contourslice(...)

Description contourslice(X,Y,Z,V,Sx,Sy,Sz) draws contours in the x-, y-, and
z-axis aligned planes at the points in the vectors Sx, Sy, Sz. The
arrays X, Y, and Z define the coordinates for the volume V and must
be monotonic and 3-D plaid (such as the data produced by meshgrid).
The color at each contour is determined by the volume V, which must
be an m-by-n-by-p volume array.

contourslice(X,Y,Z,V,Xi,Yi,Zi) draws contours through the volume
V along the surface defined by the 2-D arrays Xi,Yi,Zi. The surface
should lie within the bounds of the volume.

contourslice(V,Sx,Sy,Sz) and contourslice(V,Xi,Yi,Zi)
(omitting the X, Y, and Z arguments) assume [X,Y,Z] =
meshgrid(1:n,1:m,1:p), where [m,n,p]= size(v).

2-671

contourslice

contourslice(...,n) draws n contour lines per plane, overriding the
automatic value.

contourslice(...,cvals) draws length(cval) contour lines per
plane at the values specified in vector cvals.

contourslice(...,[cv cv]) computes a single contour per plane at
the level cv.

contourslice(...,'method') specifies the interpolation method to
use. method can be linear, cubic, or nearest. nearest is the default
except when the contours are being drawn along the surface defined
by Xi, Yi, Zi, in which case linear is the default. (See interp3 for a
discussion of these interpolation methods.)

contourslice(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = contourslice(...) returns a vector of handles to patch objects
that are used to implement the contour lines.

Examples This example uses the flow data set to illustrate the use of contoured
slice planes. (Type doc flow for more information on this data set.)
Notice that this example

• Specifies a vector of length = 9 for Sx, an empty vector for the Sy,
and a scalar value (0) for Sz. This creates nine contour plots along
the x direction in the y-z plane, and one in the x-y plane at z = 0.

• Uses linspace to define a 10-element vector of linearly spaced values
from -8 to 2. This vector specifies that 10 contour lines be drawn,
one at each element of the vector.

• Defines the view and projection type (camva, camproj, campos).

• Sets figure (gcf) and axes (gca) characteristics.

[x y z v] = flow;
h = contourslice(x,y,z,v,[1:9],[],[0],linspace(-8,2,10));
axis([0,10,-3,3,-3,3]); daspect([1,1,1])
camva(24); camproj perspective;

2-672

contourslice

campos([-3,-15,5])
set(gcf,'Color',[.5,.5,.5],'Renderer','zbuffer')
set(gca,'Color','black','XColor','white', ...
'YColor','white','ZColor','white')

box on

This example draws contour slices along a spherical surface within
the volume.

[x,y,z] = meshgrid(-2:.2:2,-2:.25:2,-2:.16:2);
v = x.*exp(-x.^2-y.^2-z.^2); % Create volume data

2-673

contourslice

[xi,yi,zi] = sphere; % Plane to contour
contourslice(x,y,z,v,xi,yi,zi)
view(3)

See Also isosurface, slice, smooth3, subvolume, reducevolume

“Volume Visualization” on page 1-102 for related functions

2-674

contrast

Purpose Grayscale colormap for contrast enhancement

Syntax cmap = contrast(X)
cmap = contrast(X,m)

Description The contrast function enhances the contrast of an image. It creates
a new gray colormap, cmap, that has an approximately equal intensity
distribution. All three elements in each row are identical.

cmap = contrast(X) returns a gray colormap that is the same length
as the current colormap.

cmap = contrast(X,m) returns an m-by-3 gray colormap.

Examples Add contrast to the clown image defined by X.

load clown;
cmap = contrast(X);
image(X);
colormap(cmap);

See Also brighten, colormap, image

“Colormaps” on page 1-99 for related functions

2-675

conv

Purpose Convolution and polynomial multiplication

Syntax w = conv(u,v)

Description w = conv(u,v) convolves vectors u and v. Algebraically, convolution is
the same operation as multiplying the polynomials whose coefficients
are the elements of u and v.

Definition Let m = length(u) and n = length(v) . Then w is the vector of length
m+n-1 whose kth element is

The sum is over all the values of j which lead to legal subscripts for
u(j) and v(k+1-j), specifically j = max(1,k+1-n): min(k,m). When
m = n, this gives

w(1) = u(1)*v(1)
w(2) = u(1)*v(2)+u(2)*v(1)
w(3) = u(1)*v(3)+u(2)*v(2)+u(3)*v(1)
...
w(n) = u(1)*v(n)+u(2)*v(n-1)+ ... +u(n)*v(1)
...
w(2*n-1) = u(n)*v(n)

Algorithm The convolution theorem says, roughly, that convolving two sequences
is the same as multiplying their Fourier transforms. In order to make
this precise, it is necessary to pad the two vectors with zeros and ignore
roundoff error. Thus, if

X = fft([x zeros(1,length(y)-1)])

and

Y = fft([y zeros(1,length(x)-1)])

then conv(x,y) = ifft(X.*Y)

2-676

conv

See Also conv2, convn, deconv, filter

convmtx and xcorr in the Signal Processing Toolbox

2-677

conv2

Purpose 2-D convolution

Syntax C = conv2(A,B)
C = conv2(hcol,hrow,A)
C = conv2(...,'shape')

Description C = conv2(A,B) computes the two-dimensional convolution of matrices
A and B. If one of these matrices describes a two-dimensional finite
impulse response (FIR) filter, the other matrix is filtered in two
dimensions.

The size of C in each dimension is equal to the sum of the corresponding
dimensions of the input matrices, minus one. That is, if the size
of A is [ma,na] and the size of B is [mb,nb], then the size of C is
[ma+mb-1,na+nb-1].

The indices of the center element of B are defined as floor(([mb
nb]+1)/2).

C = conv2(hcol,hrow,A) convolves A first with the vector hcol along
the rows and then with the vector hrow along the columns. If hcol is
a column vector and hrow is a row vector, this case is the same as C
= conv2(hcol*hrow,A).

C = conv2(...,'shape') returns a subsection of the two-dimensional
convolution, as specified by the shape parameter:

full Returns the full two-dimensional convolution
(default).

same Returns the central part of the convolution of the
same size as A.

valid Returns only those parts of the convolution that
are computed without the zero-padded edges.
Using this option, C has size [ma-mb+1,na-nb+1]
when all(size(A) >= size(B)). Otherwise conv2
returns [].

2-678

conv2

Note If any of A, B, hcol, and hrow are empty, then C is an empty
matrix [].

Algorithm conv2 uses a straightforward formal implementation of the
two-dimensional convolution equation in spatial form. If and are
functions of two discrete variables, and , then the formula for the
two-dimensional convolution of and is

In practice however, conv2 computes the convolution for finite intervals.

Note that matrix indices in MATLAB always start at 1 rather than 0.
Therefore, matrix elements A(1,1), B(1,1), and C(1,1) correspond to
mathematical quantities a (0,0), b (0,0), and c (0,0).

Examples Example 1

For the 'same' case, conv2 returns the central part of the convolution.
If there are an odd number of rows or columns, the “center” leaves one
more at the beginning than the end.

This example first computes the convolution of A using the default
('full') shape, then computes the convolution using the 'same'
shape. Note that the array returned using 'same' corresponds to the
underlined elements of the array returned using the default shape.

A = rand(3);
B = rand(4);
C = conv2(A,B) % C is 6-by-6

C =
0.1838 0.2374 0.9727 1.2644 0.7890 0.3750
0.6929 1.2019 1.5499 2.1733 1.3325 0.3096
0.5627 1.5150 2.3576 3.1553 2.5373 1.0602

2-679

conv2

0.9986 2.3811 3.4302 3.5128 2.4489 0.8462
0.3089 1.1419 1.8229 2.1561 1.6364 0.6841
0.3287 0.9347 1.6464 1.7928 1.2422 0.5423

Cs = conv2(A,B,'same') % Cs is the same size as A: 3-by-3
Cs =

2.3576 3.1553 2.5373
3.4302 3.5128 2.4489
1.8229 2.1561 1.6364

Example 2

In image processing, the Sobel edge finding operation is a
two-dimensional convolution of an input array with the special matrix

s = [1 2 1; 0 0 0; -1 -2 -1];

These commands extract the horizontal edges from a raised pedestal.

A = zeros(10);
A(3:7,3:7) = ones(5);
H = conv2(A,s);
mesh(H)

2-680

conv2

Transposing the filter s extracts the vertical edges of A.

V = conv2(A,s');
figure, mesh(V)

2-681

conv2

This figure combines both horizontal and vertical edges.

figure
mesh(sqrt(H.^2 + V.^2))

2-682

conv2

See Also conv, convn, filter2

xcorr2 in the Signal Processing Toolbox

2-683

convhull

Purpose Convex hull

Syntax K = convhull(x,y)
K = convhull(x,y,options)
[K,a] = convhull(...)

Description K = convhull(x,y) returns indices into the x and y vectors of the
points on the convex hull.

convhull uses Qhull.

K = convhull(x,y,options) specifies a cell array of strings options
to be used in Qhull via convhulln. The default option is {'Qt'}.

If options is [], the default options are used. If options is {''}, no
options will be used, not even the default. For more information on
Qhull and its options, see http://www.qhull.org.

[K,a] = convhull(...) also returns the area of the convex hull.

Visualization Use plot to plot the output of convhull.

Examples Example 1

xx = -1:.05:1; yy = abs(sqrt(xx));
[x,y] = pol2cart(xx,yy);
k = convhull(x,y);
plot(x(k),y(k),'r-',x,y,'b+')

2-684

http://www.qhull.org

convhull

Example 2

The following example illustrates the options input for convhull. The
following commands

X = [0 0 0 1];
Y = [0 1e-10 0 1];
K = convhull(X,Y)

return a warning.

Warning: qhull precision warning:
The initial hull is narrow (cosine of min. angle is
0.9999999999999998).
A coplanar point may lead to a wide facet. Options 'QbB' (scale
to unit box)
or 'Qbb' (scale last coordinate) may remove this warning. Use 'Pp'
to skip

2-685

convhull

this warning.

To suppress this warning, use the option 'Pp'. The following command
passes the option 'Pp', along with the default 'Qt', to convhull.

K = convhull(X,Y,{'Qt','Pp'})

K =

2
1
4
2

Algorithm convhull is based on Qhull [1]. For information about Qhull,
see http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

See Also convhulln, delaunay, plot, polyarea, voronoi

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, “The Quickhull
Algorithm for Convex Hulls,” ACM Transactions on Mathematical
Software, Vol. 22, No. 4, Dec. 1996, p. 469-483. Available in
PDF format at http://www.acm.org/pubs/citations/journals
/toms/1996-22-4/p469-barber.

[2] National Science and Technology Research Center for Computation
and Visualization of Geometric Structures (The Geometry Center),
University of Minnesota, 1993.

2-686

http://www.qhull.org/
http://www.qhull.org/COPYING.txt
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/

convhulln

Purpose N-D convex hull

Syntax K = convhulln(X)
K = convulln(X, options)
[K, v] = convhulln(...)

Description K = convhulln(X) returns the indices K of the points in X that comprise
the facets of the convex hull of X. X is an m-by-n array representing m
points in N-dimensional space. If the convex hull has p facets then
K is p-by-n.

convhulln uses Qhull.

K = convulln(X, options) specifies a cell array of strings options to
be used as options in Qhull. The default options are:

• {'Qt'} for 2-, 3-. and 4-dimensional input

• {'Qt','Qx'} for 5-dimensional input and higher.

If options is [], the default options are used. If options is {''}, no
options are used, not even the default. For more information on Qhull
and its options, see http://www.qhull.org/.

[K, v] = convhulln(...) also returns the volume v of the convex
hull.

Visualization Plotting the output of convhulln depends on the value of n:

• For n = 2, use plot as you would for convhull.

• For n = 3, you can use trisurf to plot the output. The calling
sequence is

K = convhulln(X);
trisurf(K,X(:,1),X(:,2),X(:,3))

For more control over the color of the facets, use patch to plot
the output. For an example, see “Tessellation and Interpolation

2-687

http://www.qhull.org/

convhulln

of Scattered Data in Higher Dimensions” in the MATLAB
documentation.

• You cannot plot convhulln output for n > 3.

Example The following example illustrates the options input for convhulln.
The following commands

X = [0 0; 0 1e-10; 0 0; 1 1];
K = convhulln(X)

return a warning.

Warning: qhull precision warning:
The initial hull is narrow
(cosine of min. angle is 0.9999999999999998).
A coplanar point may lead to a wide facet.
Options 'QbB' (scale to unit box) or 'Qbb'
(scale last coordinate) may remove this warning.
Use 'Pp' to skip this warning.

To suppress the warning, use the option 'Pp'. The following command
passes the option 'Pp', along with the default 'Qt', to convhulln.

K = convhulln(X,{'Qt','Pp'})

K =

1 4
1 2
4 2

Algorithm convhulln is based on Qhull [1]. For information about Qhull,
see http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

See Also convhull, delaunayn, dsearchn, tsearchn, voronoin

2-688

http://www.qhull.org/
http://www.qhull.org/COPYING.txt

convhulln

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, “The Quickhull
Algorithm for Convex Hulls,” ACM Transactions on Mathematical
Software, Vol. 22, No. 4, Dec. 1996, p. 469-483.

2-689

convn

Purpose N-D convolution

Syntax C = convn(A,B)
C = convn(A,B,'shape')

Description C = convn(A,B) computes the N-dimensional convolution of the arrays
A and B. The size of the result is size(A)+size(B)-1.

C = convn(A,B,'shape') returns a subsection of the N-dimensional
convolution, as specified by the shape parameter:

'full' Returns the full N-dimensional convolution
(default).

'same' Returns the central part of the result that is the
same size as A.

'valid' Returns only those parts of the convolution that
can be computed without assuming that the array
A is zero-padded. The size of the result is

max(size(A)-size(B) + 1, 0)

See Also conv, conv2

2-690

copyfile

Purpose Copy file or directory

Graphical
Interface

In the Current Directory browser, select Edit > Copy, then Paste.
See details.

Syntax copyfile('source','destination')
copyfile('source','destination','f')
[status,message,messageid] = copyfile('source','destination',

'f')

Description copyfile('source','destination') copies the file or directory,
source (and all its contents) to the file or directory, destination, where
source and destination are the absolute or relative pathnames for the
directory or file. If source is a directory, destination cannot be a file.
If source is a directory, copyfile copies the contents of source, not the
directory itself. To rename a file or directory when copying it, make
destination a different name than source. If destination already
exists, copyfile replaces it without warning. Use the wildcard * at the
end of source to copy all matching files. Note that the read-only and
archive attributes of source are not preserved in destination.

copyfile('source','destination','f') copies source to
destination, regardless of the read-only attribute of destination.

[status,message,messageid] =
copyfile('source','destination','f') copies
source to destination, returning the status, a message, and the
MATLAB error message ID (see error and lasterror). Here, status is
1 for success and 0 for error. Only one output argument is required and
the f input argument is optional.

Remarks The * wildcard in a path string is supported. Current behavior of
copyfile differs between UNIX and Windows when using the wildcard
* or copying directories.

The timestamp given to the destination file is identical to that taken
from the source file.

2-691

copyfile

Examples Copy File in Current Directory, Assigning a New Name to It

To make a copy of a file myfun.m in the current directory, assigning it
the name myfun2.m, type

copyfile('myfun.m','myfun2.m')

Copy File to Another Directory

To copy myfun.m to the directory d:/work/myfiles, keeping the same
filename, type

copyfile('myfun.m','d:/work/myfiles')

Copy All Matching Files by Using a Wildcard

To copy all files in the directory myfiles whose names begin with my to
the directory newprojects, where newprojects is at the same level as
the current directory, type

copyfile('myfiles/my*','../newprojects')

Copy Directory and Return Status

In this example, all files and subdirectories in the current directory’s
myfiles directory are copied to the directory d:/work/myfiles. Note
that before running the copyfile function, d:/work does not contain
the directory myfiles. It is created because myfiles is appended to
destination in the copyfile function:

[s,mess,messid]=copyfile('myfiles','d:/work/myfiles')
s =

1

mess =
''

messid =
''

The message returned indicates that copyfile was successful.

2-692

copyfile

Copy File to Read-Only Directory

Copy myfile.m from the current directory to d:/work/restricted,
where restricted is a read-only directory:

copyfile('myfile.m','d:/work/restricted','f')

After the copy, myfile.m exists in d:/work/restricted.

See Also cd, delete, dir, fileattrib, filebrowser, fileparts, mkdir,
movefile, rmdir

2-693

copyobj

Purpose Copy graphics objects and their descendants

Syntax new_handle = copyobj(h,p)

Description copyobj creates copies of graphics objects. The copies are identical
to the original objects except the copies have different values for
their Parent property and a new handle. The new parent must be
appropriate for the copied object (e.g., you can copy a line object only to
another axes object).

new_handle = copyobj(h,p) copies one or more graphics objects
identified by h and returns the handle of the new object or a vector
of handles to new objects. The new graphics objects are children of
the graphics objects specified by p.

Remarks h and p can be scalars or vectors. When both are vectors, they must be
the same length, and the output argument, new_handle, is a vector of
the same length. In this case, new_handle(i) is a copy of h(i) with
its Parent property set to p(i).

When h is a scalar and p is a vector, h is copied once to each of the
parents in p. Each new_handle(i) is a copy of h with its Parent
property set to p(i), and length(new_handle) equals length(p).

When h is a vector and p is a scalar, each new_handle(i) is a copy of
h(i) with its Parent property set to p. The length of new_handle equals
length(h).

Graphics objects are arranged as a hierarchy. See “Handle Graphics
Objects” for more information.

Examples Copy a surface to a new axes within a different figure.

h = surf(peaks);
colormap hot
figure % Create a new figure
axes % Create an axes object in the figure
new_handle = copyobj(h,gca);

2-694

copyobj

colormap hot
view(3)
grid on

Note that while the surface is copied, the colormap (figure property),
view, and grid (axes properties) are not copies.

See Also findobj, gcf, gca, gco, get, set

Parent property for all graphics objects

“Finding and Identifying Graphics Objects” on page 1-93 for related
functions

2-695

corrcoef

Purpose Correlation coefficients

Syntax R = corrcoef(X)
R = corrcoef(x,y)
[R,P]=corrcoef(...)
[R,P,RLO,RUP]=corrcoef(...)
[...]=corrcoef(...,'param1',val1,'param2',val2,...)

Description R = corrcoef(X) returns a matrix R of correlation coefficients
calculated from an input matrix X whose rows are observations and
whose columns are variables. The matrix R = corrcoef(X) is related
to the covariance matrix C = cov(X) by

corrcoef(X) is the zeroth lag of the normalized covariance function,
that is, the zeroth lag of xcov(x,'coeff') packed into a square array.

R = corrcoef(x,y) where x and y are column vectors is the same as
corrcoef([x y]). If x and y are not column vectors, corrcoef converts
them to column vectors. For example, in this case R=corrcoef(x,y) is
equivalent to R=corrcoef([x(:) y(:)]).

[R,P]=corrcoef(...) also returns P, a matrix of p-values for testing
the hypothesis of no correlation. Each p-value is the probability of
getting a correlation as large as the observed value by random chance,
when the true correlation is zero. If P(i,j) is small, say less than 0.05,
then the correlation R(i,j) is significant.

[R,P,RLO,RUP]=corrcoef(...) also returns matrices RLO and RUP,
of the same size as R, containing lower and upper bounds for a 95%
confidence interval for each coefficient.

[...]=corrcoef(...,'param1',val1,'param2',val2,...) specifies
additional parameters and their values. Valid parameters are the
following.

2-696

corrcoef

’alpha’ A number between 0 and 1 to specify a confidence
level of 100*(1 - alpha)%. Default is 0.05 for 95%
confidence intervals.

’rows’ Either 'all' (default) to use all rows,
'complete' to use rows with no NaN values, or
'pairwise' to compute R(i,j) using rows with
no NaN values in either column i or j.

The p-value is computed by transforming the correlation to create a
t statistic having n-2 degrees of freedom, where n is the number of
rows of X. The confidence bounds are based on an asymptotic normal
distribution of 0.5*log((1+R)/(1-R)), with an approximate variance
equal to 1/(n-3). These bounds are accurate for large samples when
X has a multivariate normal distribution. The 'pairwise' option can
produce an R matrix that is not positive definite.

Examples Generate random data having correlation between column 4 and the
other columns.

x = randn(30,4); % Uncorrelated data
x(:,4) = sum(x,2); % Introduce correlation.
[r,p] = corrcoef(x) % Compute sample correlation and p-values.
[i,j] = find(p<0.05); % Find significant correlations.
[i,j] % Display their (row,col) indices.

r =
1.0000 -0.3566 0.1929 0.3457

-0.3566 1.0000 -0.1429 0.4461
0.1929 -0.1429 1.0000 0.5183
0.3457 0.4461 0.5183 1.0000

p =
1.0000 0.0531 0.3072 0.0613
0.0531 1.0000 0.4511 0.0135
0.3072 0.4511 1.0000 0.0033
0.0613 0.0135 0.0033 1.0000

2-697

corrcoef

ans =
4 2
4 3
2 4
3 4

See Also cov, mean, median, std, var

xcorr, xcov in the Signal Processing Toolbox

2-698

cos

Purpose Cosine of argument in radians

Syntax Y = cos(X)

Description The cos function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = cos(X) returns the circular cosine for each element of X.

Examples Graph the cosine function over the domain .

x = -pi:0.01:pi;
plot(x,cos(x)), grid on

The expression cos(pi/2) is not exactly zero but a value the size of
the floating-point accuracy, eps, because pi is only a floating-point
approximation to the exact value of .

2-699

cos

Definition The cosine can be defined as

Algorithm cos uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also cosd, cosh, acos, acosd, acosh

2-700

http://www.netlib.org

cosd

Purpose Cosine ofo argument in degrees

Syntax Y = cosd(X)

Description Y = cosd(X) is the cosine of the elements of X, expressed in degrees.
For odd integers n, cosd(n*90) is exactly zero, whereas cos(n*pi/2)
reflects the accuracy of the floating point value of pi.

See Also cos, cosh, acos, acosd, acosh

2-701

cosh

Purpose Hyperbolic cosine

Syntax Y = cosh(X)

Description The cosh function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = cosh(X) returns the hyperbolic cosine for each element of X.

Examples Graph the hyperbolic cosine function over the domain .

x = -5:0.01:5;
plot(x,cosh(x)), grid on

Definition The hyperbolic cosine can be defined as

2-702

cosh

Algorithm cosh uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also acos, acosh, cos

2-703

http://www.netlib.org

cot

Purpose Cotangent of argument in radians

Syntax Y = cot(X)

Description The cot function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = cot(X) returns the cotangent for each element of X.

Examples Graph the cotangent the domains and

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,cot(x1),x2,cot(x2)), grid on

Definition The cotangent can be defined as

2-704

cot

Algorithm cot uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also cotd, coth, acot, acotd, acoth

2-705

http://www.netlib.org

cotd

Purpose Cotangent of argument in degrees

Syntax Y = cotd(X)

Description Y = cotd(X) is the cotangent of the elements of X, expressed in degrees.
For integers n, cotd(n*180) is infinite, whereas cot(n*pi) is large but
finite, reflecting the accuracy of the floating point value of pi.

See Also cot, coth, acot, acotd, acoth

2-706

coth

Purpose Hyperbolic cotangent

Syntax Y = coth(X)

Description The coth function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = coth(X) returns the hyperbolic cotangent for each element of X.

Examples Graph the hyperbolic cotangent over the domains and

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,coth(x1),x2,coth(x2)), grid on

Definition The hyperbolic cotangent can be defined as

2-707

coth

Algorithm coth uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also acot, acoth, cot

2-708

http://www.netlib.org

cov

Purpose Covariance matrix

Syntax cov(x)
cov(x) or cov(x,y)
cov(x,1) or cov(x,y,1)

Description cov(x), if X is a vector, returns the variance. For matrices, where each
row is an observation, and each column is a variable, cov(X) is the
covariance matrix. diag(cov(X)) is a vector of variances for each
column, and sqrt(diag(cov(X))) is a vector of standard deviations.
cov(X,Y), where X and Y are matrices with the same number of
elements, is equivalent to cov([X(:) Y(:)]).

cov(x) or cov(x,y) normalizes by N-1, if N>1, where N is the number
of observations. This makes cov(X) the best unbiased estimate of the
covariance matrix if the observations are from a normal distribution.
For N=1, cov normalizes by N.

cov(x,1) or cov(x,y,1) normalizes by N and produces the second
moment matrix of the observations about their mean. cov(X,Y,0) is
the same as cov(X,Y) and cov(X,0) is the same as cov(X).

Remarks cov removes the mean from each column before calculating the result.

The covariance function is defined as

where is the mathematical expectation and .

Examples Consider A = [-1 1 2 ; -2 3 1 ; 4 0 3]. To obtain a vector of
variances for each column of A:

v = diag(cov(A))'
v =

10.3333 2.3333 1.0000

Compare vector v with covariance matrix C:

2-709

cov

C =
10.3333 -4.1667 3.0000
-4.1667 2.3333 -1.5000
3.0000 -1.5000 1.0000

The diagonal elements C(i,i) represent the variances for the columns
of A. The off-diagonal elements C(i,j) represent the covariances of
columns i and j.

See Also corrcoef, mean, median, std, var

xcorr, xcov in the Signal Processing Toolbox

2-710

cplxpair

Purpose Sort complex numbers into complex conjugate pairs

Syntax B = cplxpair(A)
B = cplxpair(A,tol)
B = cplxpair(A,[],dim)
B = cplxpair(A,tol,dim)

Description B = cplxpair(A) sorts the elements along different dimensions of a
complex array, grouping together complex conjugate pairs.

The conjugate pairs are ordered by increasing real part. Within a pair,
the element with negative imaginary part comes first. The purely
real values are returned following all the complex pairs. The complex
conjugate pairs are forced to be exact complex conjugates. A default
tolerance of 100*eps relative to abs(A(i)) determines which numbers
are real and which elements are paired complex conjugates.

If A is a vector, cplxpair(A) returns A with complex conjugate pairs
grouped together.

If A is a matrix, cplxpair(A) returns A with its columns sorted and
complex conjugates paired.

If A is a multidimensional array, cplxpair(A) treats the values along
the first non-singleton dimension as vectors, returning an array of
sorted elements.

B = cplxpair(A,tol) overrides the default tolerance.

B = cplxpair(A,[],dim) sorts A along the dimension specified by
scalar dim.

B = cplxpair(A,tol,dim) sorts A along the specified dimension and
overrides the default tolerance.

Diagnostics If there are an odd number of complex numbers, or if the complex
numbers cannot be grouped into complex conjugate pairs within the
tolerance, cplxpair generates the error message

Complex numbers can't be paired.

2-711

cputime

Purpose Elapsed CPU time

Syntax cputime

Description cputime returns the total CPU time (in seconds) used by MATLAB
from the time it was started. This number can overflow the internal
representation and wrap around.

Remarks Although it is possible to measure performance using the cputime
function, it is recommended that you use the tic and toc functions
for this purpose exclusively. See Using tic and toc Versus the cputime
Function in the MATLAB Programming documentation for more
information.

Examples The following code returns the CPU time used to run surf(peaks(40)).

t = cputime; surf(peaks(40)); e = cputime-t

e =
0.4667

See Also clock, etime, tic, toc

2-712

createClassFromWsdl

Purpose Create MATLAB object based on WSDL file

Syntax createClassFromWsdl('source')

Description createClassFromWsdl('source') creates a MATLAB object based on
a Web Services Description Language (WSDL) application program
interface (API). The source argument specifies a URL or path to
a WSDL API, which defines Web service methods, arguments, and
transactions. It returns the name of the new class.

Based on the WSDL API, the createClassFromWsdl function creates
a new folder in the current directory. The folder contains an M-file
for each Web service method. In addition, two default M-files are
created: the object’s display method (display.m) and its constructor
(servicename.m).

For example, if myWebService offers two methods (method1 and
method2), the createClassFromWsdl function creates

• @myWebService folder in the current directory

• method1.m — M-file for method1

• method2.m — M-file for method2

• display.m — Default M-file for display method

• myWebService.m — Default M-file for the myWebService MATLAB
object

Remarks For more information about WSDL and Web services, see the following
resources:

• World Wide Web Consortium (W3C) WSDL specification

• W3C SOAP specification

• XMethods

2-713

createClassFromWsdl

Example The following example calls a Web service that returns the stock price
for an stock symbol.

cd(tempdir)
% Create a class for the Web service
% provided by xmethods.net
url = 'http://services.xmethods.net/soap/

urn:xmethods-delayed-quotes.wsdl';
createClassFromWsdl(url);
% Instantiate the object
service = StockQuoteService;
% getQuote returns the price of a stock
getQuote(service, 'GOOG');

See Also callSoapService, createSoapMessage, parseSoapResponse

2-714

createCopy (inputParser)

Purpose Create copy of inputParser object

Syntax p.createCopy
createCopy(p)

Description p.createCopy creates a copy of inputParser object p. Because the
inputParser class uses handle semantics, a normal assignment
statement does not create a copy.

createCopy(p) is functionally the same as the syntax above.

Note For more information on the inputParser class, see Parsing
Inputs with inputParser in the MATLAB Programming documentation.

Examples Write an M-file function called publish_ip, based on the MATLAB
publish function, to illustrate the use of the inputParser class.
Construct an instance of inputParser and assign it to variable p:

function publish_ip(script, varargin)
p = inputParser; % Create an instance of the inputParser class.

Add arguments to the schema. See the reference pages for the
addRequired, addOptional, and addParamValue methods for help with
this:

p.addRequired('script', @ischar);
p.addOptional('format', 'html', ...

@(x)any(strcmpi(x,{'html','ppt','xml','latex'})));
p.addParamValue('outputDir', pwd, @ischar);
p.addParamValue('maxHeight', [], @(x)x>0 && mod(x,1)==0);
p.addParamValue('maxWidth', [], @(x)x>0 && mod(x,1)==0);

Make a copy of object p, assigning it to variable x. Use the Parameters
property of inputParser to list the arguments belonging to each object:

disp(' ')

2-715

createCopy (inputParser)

disp 'The input parameters for object p are'
disp(p.Parameters')

x = p.createCopy;

disp(' ')
disp 'The input parameters for the copy of object p are'
disp(x.Parameters')

Save the M-file using the Save option on the MATLAB File menu,
and then run it:

publish_ip('ipscript.m', 'ppt', 'maxWidth', 500, 'MAXHeight', 300);

The input parameters for object p are
'format'
'maxHeight'
'maxWidth'
'outputDir'
'script'

The input parameters for the copy of object p are
'format'
'maxHeight'
'maxWidth'
'outputDir'
'script'

See Also inputParser, addRequired(inputParser),
addOptional(inputParser), addParamValue(inputParser),
parse(inputParser)

2-716

createSoapMessage

Purpose Create SOAP message to send to server

Syntax createSoapMessage(namespace, method, values, names, types,
style)

Description createSoapMessage(namespace, method, values, names, types,
style) creates a SOAP message. values, names, and types are
cell arrays. names defaults to dummy names and types defaults to
unspecified. The optional style argument specifies 'document' or
'rpc' messages; rpc is the default.

Example message = createSoapMessage(...
'urn:xmethods-delay-quotes',...
'getQuote', ...
{'GOOG'}, ...
{'symbol'}, ...
{'http://www.w3.org/2001/XMLSchema}string'}, ...
'rpc');

response = callSoapService(...
'http://64.124.140.30:9090/soap', ...
'urn:xmethods-delayed-quotes#getQuote' ...
message);

price = parseSoapResponse(response)

See Also callSoapService, createClassFromWsdl, parseSoapResponse

2-717

cross

Purpose Vector cross product

Syntax C = cross(A,B)
C = cross(A,B,dim)

Description C = cross(A,B) returns the cross product of the vectors A and B.
That is, C = A x B. A and B must be 3-element vectors. If A and B are
multidimensional arrays, cross returns the cross product of A and B
along the first dimension of length 3.

C = cross(A,B,dim) where A and B are multidimensional arrays,
returns the cross product of A and B in dimension dim. A and B must
have the same size, and both size(A,dim) and size(B,dim) must be 3.

Remarks To perform a dot (scalar) product of two vectors of the same size, use
c = dot(a,b).

Examples The cross and dot products of two vectors are calculated as shown:

a = [1 2 3];
b = [4 5 6];
c = cross(a,b)

c =
-3 6 -3

d = dot(a,b)

d =
32

See Also dot

2-718

csc

Purpose Cosecant of argument in radians

Syntax Y = csc(x)

Description The csc function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = csc(x) returns the cosecant for each element of x.

Examples Graph the cosecant over the domains and .

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,csc(x1),x2,csc(x2)), grid on

2-719

csc

Definition The cosecant can be defined as

Algorithm csc uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also cscd, csch, acsc, acscd, acsch

2-720

http://www.netlib.org

cscd

Purpose Cosecant of argument in degrees

Syntax Y = cscd(X)

Description Y = cscd(X) is the cosecant of the elements of X, expressed in degrees.
For integers n, cscd(n*180) is infinite, whereas csc(n*pi) is large but
finite, reflecting the accuracy of the floating point value of pi.

See Also csc, csch, acsc, acscd, acsch

2-721

csch

Purpose Hyperbolic cosecant

Syntax Y = csch(x)

Description The csch function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = csch(x) returns the hyperbolic cosecant for each element of x.

Examples Graph the hyperbolic cosecant over the domains and
.

x1 = -pi+0.01:0.01:-0.01;
x2 = 0.01:0.01:pi-0.01;
plot(x1,csch(x1),x2,csch(x2)), grid on

Definition The hyperbolic cosecant can be defined as

2-722

csch

Algorithm csch uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also acsc, acsch, csc

2-723

http://www.netlib.org

csvread

Purpose Read comma-separated value file

Syntax M = csvread(filename)
M = csvread(filename, row, col)
M = csvread(filename, row, col, range)

Description M = csvread(filename) reads a comma-separated value formatted
file, filename. The filename input is a string enclosed in single quotes.
The result is returned in M. The file can only contain numeric values.

M = csvread(filename, row, col) reads data from the
comma-separated value formatted file starting at the specified row and
column. The row and column arguments are zero based, so that row=0
and col=0 specify the first value in the file.

M = csvread(filename, row, col, range) reads only the range
specified. Specify range using the notation [R1 C1 R2 C2] where
(R1,C1) is the upper left corner of the data to be read and (R2,C2) is the
lower right corner. You can also specify the range using spreadsheet
notation, as in range = 'A1..B7'.

Remarks csvread fills empty delimited fields with zero. Data files having lines
that end with a nonspace delimiter, such as a semicolon, produce a
result that has an additional last column of zeros.

csvread imports any complex number as a whole into a complex
numeric field, converting the real and imaginary parts to the specified
numeric type. Valid forms for a complex number are

Form Example

–<real>–<imag>i|j 5.7-3.1i

–<imag>i|j -7j

Embedded white-space in a complex number is invalid and is regarded
as a field delimiter.

2-724

csvread

Examples Given the file csvlist.dat that contains the comma-separated values

02, 04, 06, 08, 10, 12
03, 06, 09, 12, 15, 18
05, 10, 15, 20, 25, 30
07, 14, 21, 28, 35, 42
11, 22, 33, 44, 55, 66

To read the entire file, use

csvread('csvlist.dat')

ans =

2 4 6 8 10 12
3 6 9 12 15 18
5 10 15 20 25 30
7 14 21 28 35 42

11 22 33 44 55 66

To read the matrix starting with zero-based row 2, column 0, and assign
it to the variable m,

m = csvread('csvlist.dat', 2, 0)

m =

5 10 15 20 25 30
7 14 21 28 35 42

11 22 33 44 55 66

To read the matrix bounded by zero-based (2,0) and (3,3) and assign
it to m,

m = csvread('csvlist.dat', 2, 0, [2,0,3,3])

m =

2-725

csvread

5 10 15 20
7 14 21 28

See Also csvwrite, dlmread, textscan, wk1read, file formats, importdata,
uiimport

2-726

csvwrite

Purpose Write comma-separated value file

Syntax csvwrite(filename,M)
csvwrite(filename,M,row,col)

Description csvwrite(filename,M) writes matrix M into filename as
comma-separated values. The filename input is a string enclosed in
single quotes.

csvwrite(filename,M,row,col) writes matrix M into filename
starting at the specified row and column offset. The row and column
arguments are zero based, so that row=0 and C=0 specify the first value
in the file.

Remarks csvwrite terminates each line with a line feed character and no
carriage return.

Examples The following example creates a comma-separated value file from the
matrix m.

m = [3 6 9 12 15; 5 10 15 20 25; ...
7 14 21 28 35; 11 22 33 44 55];

csvwrite('csvlist.dat',m)
type csvlist.dat

3,6,9,12,15
5,10,15,20,25
7,14,21,28,35
11,22,33,44,55

The next example writes the matrix to the file, starting at a column
offset of 2.

csvwrite('csvlist.dat',m,0,2)
type csvlist.dat

2-727

csvwrite

,,3,6,9,12,15
,,5,10,15,20,25
,,7,14,21,28,35
,,11,22,33,44,55

See Also csvread, dlmwrite, wk1write,file formats, importdata, uiimport

2-728

ctranspose (timeseries)

Purpose Transpose timeseries object

Syntax ts1 = ctranspose(ts)

Description ts1 = ctranspose(ts) returns a new timeseries object ts1 with
IsTimeFirst value set to the opposite of what it is for ts. For example,
if ts has the first data dimension aligned with the time vector, ts1
has the last data dimension aligned with the time vector as a result of
this operation.

Remarks The ctranspose function that is overloaded for timeseries objects does
not transpose the data. Instead, this function changes whether the first
or the last dimension of the data is aligned with the time vector.

Note To transpose the data, you must transpose the Data property
of the timeseries object. For example, you can use the syntax
ctranspose(ts.Data) or (ts.Data)'. Data must be a 2-D array.

Consider a timeseries object with 10 samples with the property
IsTimeFirst = True. When you transpose this object, the data size is
changed from 10-by-1 to 1-by-1-by-10. Note that the first dimension of
the Data property is shown explicitly.

The following table summarizes how MATLAB displays the size for
Data property of the timeseries object (up to three dimensions) before
and after transposing.

Data Size Before and After Transposing

Size of Original Data Size of Transposed Data

N-by-1 1-by-1-by-N

2-729

ctranspose (timeseries)

Data Size Before and After Transposing (Continued)

Size of Original Data Size of Transposed Data

N-by-M M-by-1-by-N

N-by-M-by-L M-by-L-by-N

Examples Suppose that a timeseries object ts has ts.data size 10-by-3-by-2
and its time vector has a length of 10. The IsTimeFirst property of
ts is set to true, which means that the first dimension of the data is
aligned with the time vector. ctranspose(ts) modifies ts such that
the last dimension of the data is now aligned with the time vector. This
permutes the data such that the size of ts.Data becomes 3-by-2-by-10.

See Also transpose (timeseries), tsprops

2-730

cumprod

Purpose Cumulative product

Syntax B = cumprod(A)
B = cumprod(A,dim)

Description B = cumprod(A) returns the cumulative product along different
dimensions of an array.

If A is a vector, cumprod(A) returns a vector containing the cumulative
product of the elements of A.

If A is a matrix, cumprod(A) returns a matrix the same size as A
containing the cumulative products for each column of A.

If A is a multidimensional array, cumprod(A) works on the first
nonsingleton dimension.

B = cumprod(A,dim) returns the cumulative product of the elements
along the dimension of A specified by scalar dim. For example,
cumprod(A,1) increments the first (row) index, thus working along
the rows of A.

Examples cumprod(1:5)
ans =

1 2 6 24 120

A = [1 2 3; 4 5 6];

cumprod(A)
ans =

1 2 3
4 10 18

cumprod(A,2)
ans =

1 2 6
4 20 120

2-731

cumprod

See Also cumsum, prod, sum

2-732

cumsum

Purpose Cumulative sum

Syntax B = cumsum(A)
B = cumsum(A,dim)

Description B = cumsum(A) returns the cumulative sum along different dimensions
of an array.

If A is a vector, cumsum(A) returns a vector containing the cumulative
sum of the elements of A.

If A is a matrix, cumsum(A) returns a matrix the same size as A
containing the cumulative sums for each column of A.

If A is a multidimensional array, cumsum(A) works on the first
nonsingleton dimension.

B = cumsum(A,dim) returns the cumulative sum of the elements along
the dimension of A specified by scalar dim. For example, cumsum(A,1)
works across the first dimension (the rows).

Examples cumsum(1:5)
ans =

[1 3 6 10 15]

A = [1 2 3; 4 5 6];

cumsum(A)
ans =

1 2 3
5 7 9

cumsum(A,2)
ans =

1 3 6
4 9 15

See Also cumprod, prod, sum

2-733

cumtrapz

Purpose Cumulative trapezoidal numerical integration

Syntax Z = cumtrapz(Y)
Z = cumtrapz(X,Y)
Z = cumtrapz(X,Y,dim) or cumtrapz(Y,dim)

Description Z = cumtrapz(Y) computes an approximation of the cumulative
integral of Y via the trapezoidal method with unit spacing. To compute
the integral with other than unit spacing, multiply Z by the spacing
increment. Input Y can be complex.

For vectors, cumtrapz(Y) is a vector containing the cumulative integral
of Y.

For matrices, cumtrapz(Y) is a matrix the same size as Y with the
cumulative integral over each column.

For multidimensional arrays, cumtrapz(Y) works across the first
nonsingleton dimension.

Z = cumtrapz(X,Y) computes the cumulative integral of Y with respect
to X using trapezoidal integration. X and Y must be vectors of the
same length, or X must be a column vector and Y an array whose first
nonsingleton dimension is length(X). cumtrapz operates across this
dimension. Inputs X and Y can be complex.

If X is a column vector and Y an array whose first nonsingleton dimension
is length(X), cumtrapz(X,Y) operates across this dimension.

Z = cumtrapz(X,Y,dim) or cumtrapz(Y,dim) integrates across the
dimension of Y specified by scalar dim. The length of X must be the
same as size(Y,dim).

Example Example 1

Y = [0 1 2; 3 4 5];

cumtrapz(Y,1)
ans =
0 0 0

2-734

cumtrapz

1.5000 2.5000 3.5000

cumtrapz(Y,2)
ans =
0 0.5000 2.0000

0 3.5000 8.0000

Example 2

This example uses two complex inputs:

z = exp(1i*pi*(0:100)/100);

ct = cumtrapz(z,1./z);
ct(end)
ans =

0.0000 + 3.1411i

See Also cumsum, trapz

2-735

curl

Purpose Compute curl and angular velocity of vector field

Syntax [curlx,curly,curlz,cav] = curl(X,Y,Z,U,V,W)
[curlx,curly,curlz,cav] = curl(U,V,W)
[curlz,cav]= curl(X,Y,U,V)
[curlz,cav]= curl(U,V)
[curlx,curly,curlz] = curl(...), curlx,curly] = curl(...)
cav = curl(...)

Description [curlx,curly,curlz,cav] = curl(X,Y,Z,U,V,W) computes the curl
and angular velocity perpendicular to the flow (in radians per time unit)
of a 3-D vector field U, V, W. The arrays X, Y, Z define the coordinates for U,
V, W and must be monotonic and 3-D plaid (as if produced by meshgrid).

[curlx,curly,curlz,cav] = curl(U,V,W) assumes X, Y, and Z are
determined by the expression

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

[curlz,cav]= curl(X,Y,U,V) computes the curl z-component and the
angular velocity perpendicular to z (in radians per time unit) of a 2-D
vector field U, V. The arrays X, Y define the coordinates for U, V and must
be monotonic and 2-D plaid (as if produced by meshgrid).

[curlz,cav]= curl(U,V) assumes X and Y are determined by the
expression

[X Y] = meshgrid(1:n,1:m)

where [m,n] = size(U).

[curlx,curly,curlz] = curl(...), curlx,curly] = curl(...)
returns only the curl.

cav = curl(...) returns only the curl angular velocity.

Examples This example uses colored slice planes to display the curl angular
velocity at specified locations in the vector field.

2-736

curl

load wind
cav = curl(x,y,z,u,v,w);
slice(x,y,z,cav,[90 134],[59],[0]);
shading interp
daspect([1 1 1]); axis tight
colormap hot(16)
camlight

This example views the curl angular velocity in one plane of the volume
and plots the velocity vectors (quiver) in the same plane.

load wind
k = 4;
x = x(:,:,k); y = y(:,:,k); u = u(:,:,k); v = v(:,:,k);
cav = curl(x,y,u,v);
pcolor(x,y,cav); shading interp
hold on;
quiver(x,y,u,v,'y')

2-737

curl

hold off
colormap copper

See Also streamribbon, divergence

“Volume Visualization” on page 1-102 for related functions

“Example — Displaying Curl with Stream Ribbons” for another example

2-738

customverctrl

Purpose Allow custom source control system (UNIX)

Syntax customerverctrl

Description customerverctrl function is for customers who want to integrate
a source control system that is not supported with MATLAB.
When using this function, conform to the structure of one of
the supported version control systems, for example, RCS. For
examples, see the files clearcase.m, cvs.m, pvcs.m, and rcs.m in
matlabroot\toolbox\matlab\verctrl.

See Also checkin, checkout, cmopts, undocheckout

For Windows platforms, use verctrl.

2-739

cylinder

Purpose Generate cylinder

Syntax [X,Y,Z] = cylinder
[X,Y,Z] = cylinder(r)
[X,Y,Z] = cylinder(r,n)
cylinder(axes_handle,...)
cylinder(...)

Description cylinder generates x-, y-, and z-coordinates of a unit cylinder. You can
draw the cylindrical object using surf or mesh, or draw it immediately
by not providing output arguments.

[X,Y,Z] = cylinder returns the x-, y-, and z-coordinates of a cylinder
with a radius equal to 1. The cylinder has 20 equally spaced points
around its circumference.

[X,Y,Z] = cylinder(r) returns the x-, y-, and z-coordinates of a
cylinder using r to define a profile curve. cylinder treats each element
in r as a radius at equally spaced heights along the unit height of
the cylinder. The cylinder has 20 equally spaced points around its
circumference.

[X,Y,Z] = cylinder(r,n) returns the x-, y-, and z-coordinates of a
cylinder based on the profile curve defined by vector r. The cylinder has
n equally spaced points around its circumference.

cylinder(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

cylinder(...), with no output arguments, plots the cylinder using
surf.

2-740

cylinder

Remarks cylinder treats its first argument as a profile curve. The resulting
surface graphics object is generated by rotating the curve about the
x-axis, and then aligning it with the z-axis.

Examples Create a cylinder with randomly colored faces.

cylinder
axis square
h = findobj('Type','surface');
set(h,'CData',rand(size(get(h,'CData'))))

Generate a cylinder defined by the profile function 2+sin(t).

t = 0:pi/10:2*pi;

2-741

cylinder

[X,Y,Z] = cylinder(2+cos(t));
surf(X,Y,Z)
axis square

See Also sphere, surf

“Polygons and Surfaces” on page 1-90 for related functions

2-742

daqread

Purpose Read Data Acquisition Toolbox (.daq) file

Syntax data = daqread('filename')
[data, time] = daqread(...)
[data, time, abstime] = daqread(...)
[data, time, abstime, events] = daqread(...)
[data, time, abstime, events, daqinfo] = daqread(...)
data = daqread(...,'Param1', Val1,...)
daqinfo = daqread('filename','info')

Description data = daqread('filename') reads all the data from the Data
Acquisition Toolbox (.daq) file specified by filename. daqread returns
data, an m-by-n data matrix, where m is the number of samples and
n is the number of channels. If data includes data from multiple
triggers, the data from each trigger is separated by a NaN. If you set the
OutputFormat property to tscollection, daqread returns a time series
collection object. See below for more information.

[data, time] = daqread(...) returns time/value pairs. time is an
m-by-1 vector, the same length as data, that contains the relative time
for each sample. Relative time is measured with respect to the first
trigger that occurs.

[data, time, abstime] = daqread(...) returns the absolute time of
the first trigger. abstime is returned as a clock vector.

[data, time, abstime, events] = daqread(...) returns a log of events.
events is a structure containing event information. If you specify either
theSamples, Time, or Triggers parameters (see below), the events
structure contains only the specified events.

[data, time, abstime, events, daqinfo] = daqread(...) returns a
structure, daqinfo, that contains two fields: ObjInfo and HwInfo.
ObjInfo is a structure containing property name/property value pairs
and HwInfo is a structure containing hardware information. The entire
event log is returned to daqinfo.ObjInfo.EventLog.

2-743

daqread

data = daqread(...,'Param1', Val1,...) specifies the amount
of data returned and the format of the data, using the following
parameters.

Parameter Description

Samples Specify the sample range.

Time Specify the relative time range.

Triggers Specify the trigger range.

Channels Specify the channel range. Channel names can be
specified as a cell array.

DataFormat Specify the data format as doubles (default) or
native.

TimeFormat Specify the time format as vector (default) or
matrix.

OutputFormat Specify the output format as matrix (the default)
or tscollection. When you specify tscollection,
daqread only returns data.

The Samples, Time, and Triggers properties are mutually exclusive;
that is, either Samples, Triggers or Time can be defined at once.

daqinfo = daqread('filename','info') returns metadata from the file
in the daqinfo structure, without incurring the overhead of reading the
data from the file as well. The daqinfo structure contains two fields:

daqinfo.ObjInfo
a structure containing parameter/value pairs for the data
acquisition object used to create the file, filename. Note: The
UserData property value is not restored.

daqinfo.HwInfo
a structure containing hardware information. The entire event
log is returned to daqinfo.ObjInfo.EventLog.

2-744

daqread

Remarks More About .daq Files

• The format used by daqread to return data, relative time, absolute
time, and event information is identical to the format used by the
getdata function that is part of Data Acquisition Toolbox. For more
information, see the Data Acquisition Toolbox documentation.

• If data from multiple triggers is read, then the size of the resulting
data array is increased by the number of triggers issued because
each trigger is separated by a NaN.

• ObjInfo.EventLog always contains the entire event log regardless of
the value specified by Samples, Time, or Triggers.

• The UserData property value is not restored when you return device
object (ObjInfo) information.

• When reading a .daq file, the daqread function does not return
property values that were specified as a cell array.

• Data Acquisition Toolbox (.daq) files are created by specifying a value
for the LogFileName property (or accepting the default value), and
configuring the LoggingMode property to Disk or Disk&Memory.

More About Time Series Collection Object Returned

When OutputFormat is set to tscollection, daqread returns a time
series collection object. This times series collection object contains an
absolute time series object for each channel in the file. The following
describes how daqread sets some of the properties of the times series
collection object and the time series objects.

• The time property of the time series collection object is set to the
value of the InitialTriggerTime property specified in the file.

• The name property of each time series object is set to the value of the
Name property of a channel in the file. If this name cannot be used as
a time series object name, daqread sets the name to 'Channel' with
the HwChannel property of the channel appended.

2-745

daqread

• The value of the Units property of the time series object depends on
the value of the DataFormat parameter. If the DataFormat parameter
is set to 'double', daqread sets the DataInfo property of each time
series object in the collection to the value of the Units property of the
corresponding channel in the file. If the DataFormat parameter is
set to 'native', daqread sets the Units property to 'native’. See
the Data Acquisition Toolbox documentation for more information
on these properties.

• Each time series object will have tsdata.event objects attached
corresponding to the log of events associated with the channel.

If daqread returns data from multiple triggers, the data from each
trigger is separated by a NaN in the time series data. This increases the
length of data and time vectors in the time series object by the number
of triggers.

Examples Use Data Acquisition Toolbox to acquire data. The analog input object,
ai, acquires one second of data for four channels, and saves the data to
the output file data.daq.

ai = analoginput('nidaq','Dev1');
chans = addchannel(ai,0:3);
set(ai,'SampleRate',1000)
ActualRate = get(ai,'SampleRate');
set(ai,'SamplesPerTrigger, ActualRate)
set(ai,'LoggingMode','Disk&Memory')
set(ai,'LogFileName','data.daq')
start(ai)

After the data has been collected and saved to a disk file, you can
retrieve the data and other acquisition-related information using
daqread. To read all the sample-time pairs from data.daq:

[data,time] = daqread('data.daq');

To read samples 500 to 1000 for all channels from data.daq:

2-746

daqread

data = daqread('data.daq','Samples',[500 1000]);

To read only samples 1000 to 2000 of channel indices 2, 4 and 7 in
native format from the file, data.daq:

data = daqread('data.daq', 'Samples', [1000 2000],...
'Channels', [2 4 7], 'DataFormat', 'native');

To read only the data which represents the first and second triggers on
all channels from the file, data.daq:

[data, time] = daqread('data.daq', 'Triggers', [1 2]);

To obtain the channel property information from data.daq:

daqinfo = daqread('data.daq','info');
chaninfo = daqinfo.ObjInfo.Channel;

To obtain a list of event types and event data contained by data.daq:

daqinfo = daqread('data.daq','info');
events = daqinfo.ObjInfo.EventLog;
event_type = {events.Type};
event_data = {events.Data};

To read all the data from the file data.daq and return it as a time
series collection object:

data = daqread('data.daq','OutputFormat','tscollection');

See Also Functions

timeseries, tscollection

For more information about using this function, see the Data Acquisition
Toolbox documentation.

2-747

daspect

Purpose Set or query axes data aspect ratio

Syntax daspect
daspect([aspect_ratio])
daspect('mode')
daspect('auto')
daspect('manual')
daspect(axes_handle,...)

Description The data aspect ratio determines the relative scaling of the data units
along the x-, y-, and z-axes.

daspect with no arguments returns the data aspect ratio of the current
axes.

daspect([aspect_ratio]) sets the data aspect ratio in the current
axes to the specified value. Specify the aspect ratio as three relative
values representing the ratio of the x-, y-, and z-axis scaling (e.g., [1 1
3] means one unit in x is equal in length to one unit in y and three
units in z).

daspect('mode') returns the current value of the data aspect ratio
mode, which can be either auto (the default) or manual. See Remarks.

daspect('auto') sets the data aspect ratio mode to auto.

daspect('manual') sets the data aspect ratio mode to manual.

daspect(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, daspect operates on the current axes.

Remarks daspect sets or queries values of the axes object DataAspectRatio and
DataAspectRatioMode properties.

When the data aspect ratio mode is auto, MATLAB adjusts the data
aspect ratio so that each axis spans the space available in the figure
window. If you are displaying a representation of a real-life object,
you should set the data aspect ratio to [1 1 1] to produce the correct
proportions.

2-748

daspect

Setting a value for data aspect ratio or setting the data aspect ratio
mode to manual disables the MATLAB stretch-to-fill feature (stretching
of the axes to fit the window). This means setting the data aspect ratio
to a value, including its current value,

daspect(daspect)

can cause a change in the way the graphs look. See the Remarks section
of the axes description for more information.

Examples The following surface plot of the function is useful to
illustrate the data aspect ratio. First plot the function over the range –2
≤ x ≤ 2, –2 ≤ y ≤ 2,

[x,y] = meshgrid([-2:.2:2]);
z = x.*exp(-x.^2 - y.^2);
surf(x,y,z)

2-749

daspect

Querying the data aspect ratio shows how MATLAB has drawn the
surface.

daspect
ans =

4 4 1

Setting the data aspect ratio to [1 1 1] produces a surface plot with
equal scaling along each axis.

daspect([1 1 1])

See Also axis, pbaspect, xlim, ylim, zlim

The axes properties DataAspectRatio, PlotBoxAspectRatio, XLim,
YLim, ZLim

“Setting the Aspect Ratio and Axis Limits” on page 1-100 for related
functions

“Understanding Axes Aspect Ratio” for more information

2-750

datacursormode

Purpose Enable or disable interactive data cursor mode

GUI
Alternatives

Use the Data Cursor tool to label x, y, and z values on graphs and
surfaces. For details, see Data Cursor — Displaying Data Values
Interactively in the MATLAB Graphics documentation.

Syntax datacursormode on
datacursormode off
datacursormode
datacursormode(figure_handle,...)
dcm_obj = datacursormode(figure_handle)

Description datacursormode on enables data cursor mode on the current figure.

datacursormode off disables data cursor mode on the current figure.

datacursormode toggles data cursor mode on the current figure.

datacursormode(figure_handle,...) enables or disables data cursor
mode on the specified figure.

dcm_obj = datacursormode(figure_handle) returns the figure’s data
cursor mode object, which enables you to customize the data cursor. See
“Data Cursor Mode Object” on page 2-751.

Data
Cursor
Mode
Object

The data cursor mode object has properties that enable you to controls
certain aspects of the data cursor. You can use the set and get
commands and the returned object (dcm_obj in the above syntax) to set
and query property values.

Data Cursor Mode Properties

Enable
on | off

Specifies whether this mode is currently enabled on the figure.

SnapToDataVertex
on | off

2-751

datacursormode

Specifies whether the data cursor snaps to the nearest data value
or is located at the actual pointer position.

DisplayStyle
datatip | window

Determines how the data is displayed.

• datatip displays cursor information in a yellow text box next
to a marker indicating the actual data point being displayed.

• window displays cursor information in a floating window within
the figure.

Updatefcn
function handle

This property references a function that customizes the text
appearing in the data cursor. The function handle must reference
a function that has two implicit arguments (these arguments
are automatically passed to the function by MATLAB when the
function executes). For example, the following function definition
line uses the required arguments:

function output_txt = myfunction(obj,event_obj)
% obj Currently not used (empty)
% event_obj Handle to event object
% output_txt Data cursor text string (string or cell array of
% strings).

event_obj is an object having the following read-only properties.

• Target — Handle of the object the data cursor is referencing
(the object on which the user clicked).

• Position — An array specifying the x, y, (and z for 3-D graphs)
coordinates of the cursor.

You can query these properties within your function. For example,

pos = get(event_obj,'Position');

2-752

datacursormode

returns the coordinates of the cursor.

See Function Handles for more information on creating a function
handle.

See “Change Data Cursor Text” on page 2-755 for an example.

Data Cursor Method

You can use the getCursorInfo function with the data cursor mode
object (dcm_obj in the above syntax) to obtain information about the
data cursor. For example,

info_struct = getCursorInfo(dcm_obj);

returns a vector of structures, one for each data cursor on the graph.
Each structure has the following fields:

• Target — The handle of the graphics object containing the data point.

• Position — An array specifying the x, y, (and z) coordinates of the
cursor.

Line and lineseries objects have an additional field:

• DataIndex — A scalar index into the data arrays that correspond to
the nearest data point. The value is the same for each array.

Examples This example creates a plot and enables data cursor mode from the
command line.

surf(peaks)
datacursormode on
% Click mouse on surface to display data cursor

Setting Data Cursor Mode Options

This example enables data cursor mode on the current figure and sets
data cursor mode options. The following statements

• Create a graph

2-753

datacursormode

• Toggle data cursor mode to on

• Save the data cursor mode object to specify options and get the
handle of the line to which the datatip is attached

fig = figure;
z = peaks;
plot(z(:,30:35))
dcm_obj = datacursormode(fig);
set(dcm_obj,'DisplayStyle','datatip',...
'SnapToDataVertex','off','Enable','on')

% Click on line to place datatip

c_info = getCursorInfo(dcm_obj);
set(c_info.Target,'LineWidth',2) % Make
selected line wider

2-754

datacursormode

Change Data Cursor Text

This example shows you how to customize the text that is displayed by
the data cursor. Suppose you want to replace the text displayed in the
datatip and data window with “Time:” and “Amplitude:”

function doc_datacursormode
fig = figure;
a = -16; t = 0:60;
plot(t,sin(a*t))
dcm_obj = datacursormode(fig);
set(dcm_obj,'UpdateFcn',@myupdatefcn)

% Click on line to select data point

function txt = myupdatefcn(empt,event_obj)
pos = get(event_obj,'Position');
txt = {['Time: ',num2str(pos(1))],...
['Amplitude: ',num2str(pos(2))]};

2-755

datatipinfo

Purpose Produce short description of input variable

Syntax datatipinfo(var)

Description datatipinfo(var) displays a short description of a variable, similar to
what is displayed in a datatip in the MATLAB debugger.

Examples Get datatip information for a 5-by-5 matrix:

A = rand(5);

datatipinfo(A)
A: 5x5 double =

0.4445 0.3567 0.7458 0.0767 0.4400
0.7962 0.6575 0.3918 0.8289 0.9746
0.5641 0.9808 0.0265 0.4838 0.6722
0.9099 0.9653 0.2508 0.4859 0.4054
0.2857 0.5198 0.7383 0.9301 0.9604

Get datatip information for a 50-by-50 matrix. For this larger matrix,
datatipinfo displays just the size and data type:

A = rand(50);

datatipinfo(A)
A: 50x50 double

Also for multidimensional matrices, datatipinfo displays just the size
and data type:

A = rand(5);
A(:,:,2) = A(:,:,1);

datatipinfo(A)
A: 5x5x2 double

See Also debug

2-756

date

Purpose Current date string

Syntax str = date

Description str = date returns a string containing the date in dd-mmm-yyyy format.

See Also clock, datenum, now

2-757

datenum

Purpose Convert date and time to serial date number

Syntax N = datenum(V)
N = datenum(S, F)
N = datenum(S, F, P)
N = datenum([S, P, F])
N = datenum(Y, M, D)
N = datenum(Y, M, D, H, MN, S)
N = datenum(S)
N = datenum(S, P)

Description datenum is one of three conversion functions that enable you to express
dates and times in any of three formats in MATLAB: a string (or date
string), a vector of date and time components (or date vector), or as
a numeric offset from a known date in time (or serial date number).
Here is an example of a date and time expressed in the three MATLAB
formats:

Date String: '24-Oct-2003 12:45:07'
Date Vector: [2003 10 24 12 45 07]
Serial Date Number: 7.3188e+005

A serial date number represents the whole and fractional number
of days from a specific date and time, where datenum('Jan-1-0000
00:00:00') returns the number 1. (The year 0000 is merely a reference
point and is not intended to be interpreted as a real year in time.)

N = datenum(V) converts one or more date vectors V to serial date
numbers N. Input V can be an m-by-6 or m-by-3 matrix containing m full
or partial date vectors respectively. A full date vector has six elements,
specifying year, month, day, hour, minute, and second, in that order. A
partial date vector has three elements, specifying year, month, and day,
in that order. Each element of V must be a positive double-precision
number. datenum returns a column vector of m date numbers, where m is
the total number of date vectors in V.

N = datenum(S, F) converts one or more date strings S to serial date
numbers N using format string F to interpret each date string. Input S

2-758

datenum

can be a one-dimensional character array or cell array of date strings.
All date strings in S must have the same format, and that format must
match one of the date string formats shown in the help for the datestr
function. datenum returns a column vector of m date numbers, where m
is the total number of date strings in S. MATLAB considers date string
years that are specified with only two characters (e.g., '79') to fall
within 100 years of the current year.

See the datestr reference page to find valid string values for F. These
values are listed in Table 1 in the column labeled “Dateform String.”
You can use any string from that column except for those that include
the letter Q in the string (for example, ’QQ-YYYY’). Certain formats may
not contain enough information to compute a date number. In these
cases, hours, minutes, seconds, and milliseconds default to 0, the month
defaults to January, the day to 1, and the year to the current year.

N = datenum(S, F, P) converts one or more date strings S to date
numbers N using format F and pivot year P. The pivot year is used in
interpreting date strings that have the year specified as two characters.
It is the starting year of the 100-year range in which a two-character
date string year resides. The default pivot year is the current year
minus 50 years.

N = datenum([S, P, F]) is the same as the syntax shown above, except
the order of the last two arguments are switched.

N = datenum(Y, M, D) returns the serial date numbers for
corresponding elements of the Y, M, and D (year, month, day) arrays.
Y, M, and D must be arrays of the same size (or any can be a scalar)
of type double. You can also specify the input arguments as a date
vector, [Y M D].

For this and the following syntax, values outside the normal range of
each array are automatically carried to the next unit. Values outside
the normal range of each array are automatically carried to the next
unit. For example, month values greater than 12 are carried to years.
Month values less than 1 are set to be 1. All other units can wrap and
have valid negative values.

2-759

datenum

N = datenum(Y, M, D, H, MN, S) returns the serial date numbers
for corresponding elements of the Y, M, D, H, MN, and S (year, month,
day, hour, minute, and second) array values. datenum does not accept
milliseconds in a separate input, but as a fractional part of the seconds
(S) input. Inputs Y, M, D, H, MN, and S must be arrays of the same size
(or any can be a scalar) of type double. You can also specify the input
arguments as a date vector, [Y M D H MN S].

N = datenum(S) converts date string S into a serial date number.
String S must be in one of the date formats 0, 1, 2, 6, 13, 14, 15, 16, or
23, as defined in the reference page for the datestr function. MATLAB
considers date string years that are specified with only two characters
(e.g., '79') to fall within 100 years of the current year. If the format of
date string S is known, use the syntax N = datenum(S, F).

N = datenum(S, P) converts date string S, using pivot year P. If the
format of date string S is known, use the syntax N = datenum(S, F,
P).

Note The last two calling syntaxes are provided for backward
compatibility and are significantly slower than the syntaxes that
include a format argument F.

Examples Convert a date string to a serial date number:

n = datenum('19-May-2001', 'dd-mmm-yyyy')

n =
730990

Specifying year, month, and day, convert a date to a serial date number:

n = datenum(2001, 12, 19)

n =
731204

2-760

datenum

Convert a date vector to a serial date number:

format bank
datenum('March 28, 2005 3:37:07.033 PM')
ans =

732399.65

Convert a date string to a serial date number using the default pivot
year:

n = datenum('12-jun-17', 'dd-mmm-yy')

n =
736858

Convert the same date string to a serial date number using 1400 as
the pivot year:

n = datenum('12-jun-17', 'dd-mmm-yy', 1400)

n =
517712

Specify format 'dd.mm.yyyy' to be used in interpreting a nonstandard
date string:

n = datenum('19.05.2000', 'dd.mm.yyyy')

n =
730625

See Also datestr, datevec, date, clock, now, datetick

2-761

datestr

Purpose Convert date and time to string format

Syntax S = datestr(V)
S = datestr(N)
S = datestr(D, F)
S = datestr(S1, F, P)
S = datestr(..., 'local')

Description datestr is one of three conversion functions that enable you to express
dates and times in any of three formats in MATLAB: a string (or date
string), a vector of date and time components (or date vector), or as
a numeric offset from a known date in time (or serial date number).
Here is an example of a date and time expressed in the three MATLAB
formats:

Date String: '24-Oct-2003 12:45:07'
Date Vector: [2003 10 24 12 45 07]
Serial Date Number: 7.3188e+005

A serial date number represents the whole and fractional number
of days from 1-Jan-0000 to a specific date. The year 0000 is merely
a reference point and is not intended to be interpreted as a real year
in time.

S = datestr(V) converts one or more date vectors V to date strings S.
Input V must be an m-by-6 matrix containing m full (six-element) date
vectors. Each element of V must be a positive double-precision number.
datestr returns a column vector of m date strings, where m is the total
number of date vectors in V.

S = datestr(N) converts one or more serial date numbers N to date
strings S. Input argument N can be a scalar, vector, or multidimensional
array of positive double-precision numbers. datestr returns a column
vector of m date strings, where m is the total number of date numbers
in N.

S = datestr(D, F) converts one or more date vectors, serial date
numbers, or date strings D into the same number of date strings S.

2-762

datestr

Input argument F is a format number or string that determines the
format of the date string output. Valid values for F are given in the
table Standard MATLAB Date Format Definitions on page 2-763, below.
Input F may also contain a free-form date format string consisting of
format tokens shown in the table Free-Form Date Format Specifiers
on page 2-766, below.

Date strings with 2-character years are interpreted to be within the 100
years centered around the current year.

S = datestr(S1, F, P) converts date string S1 to date string S,
applying format F to the output string, and using pivot year P as the
starting year of the 100-year range in which a two-character year
resides. The default pivot year is the current year minus 50 years. All
date strings in S1 must have the same format.

S = datestr(..., 'local') returns the string in a localized format.
The default is US English (’en_US’). This argument must come last
in the argument sequence.

Note The vectorized calling syntax can offer significant performance
improvement for large arrays.

Standard MATLAB Date Format Definitions

dateform
(number) dateform (string) Example

0 'dd-mmm-yyyy
HH:MM:SS'

01-Mar-2000 15:45:17

1 'dd-mmm-yyyy' 01-Mar-2000

2 'mm/dd/yy' 03/01/00

3 'mmm' Mar

4 'm' M

2-763

datestr

Standard MATLAB Date Format Definitions (Continued)

dateform
(number) dateform (string) Example

5 'mm' 03

6 'mm/dd' 03/01

7 'dd' 01

8 'ddd' Wed

9 'd' W

10 'yyyy' 2000

11 'yy' 00

12 'mmmyy' Mar00

13 'HH:MM:SS' 15:45:17

14 'HH:MM:SS PM' 3:45:17 PM

15 'HH:MM' 15:45

16 'HH:MM PM' 3:45 PM

17 'QQ-YY' Q1-01

18 'QQ' Q1

19 'dd/mm' 01/03

20 'dd/mm/yy' 01/03/00

21 'mmm.dd,yyyy
HH:MM:SS'

Mar.01,2000 15:45:17

22 'mmm.dd,yyyy' Mar.01,2000

23 'mm/dd/yyyy' 03/01/2000

24 'dd/mm/yyyy' 01/03/2000

25 'yy/mm/dd' 00/03/01

26 'yyyy/mm/dd' 2000/03/01

2-764

datestr

Standard MATLAB Date Format Definitions (Continued)

dateform
(number) dateform (string) Example

27 'QQ-YYYY' Q1-2001

28 'mmmyyyy' Mar2000

29 (ISO
8601)

'yyyy-mm-dd' 2000-03-01

30 (ISO
8601)

'yyyymmddTHHMMSS' 20000301T154517

31 'yyyy-mm-dd HH:MM:SS' 2000-03-01 15:45:17

Note dateform numbers 0, 1, 2, 6, 13, 14, 15, 16, and 23 produce a
string suitable for input to datenum or datevec. Other date string
formats do not work with these functions unless you specify a date form
in the function call.

Note For date formats that specify only a time (i.e., dateform numbers
13, 14, 15, and 16), MATLAB sets the date to January 1 of the current
year.

Time formats like 'h:m:s', 'h:m:s.s', 'h:m pm', ... can also be part
of the input array S. If you do not specify a format string F, or if you
specify F as -1, the date string format defaults to the following:

1 If S contains date information only, e.g., 01-Mar-1995

16 If S contains time information only, e.g., 03:45 PM

0 If S is a date vector, or a string that contains both date
and time information, e.g., 01-Mar-1995 03:45

2-765

datestr

The following table shows the string symbols to use in specifying a
free-form format for the output date string. MATLAB interprets these
symbols according to your computer’s language setting and the current
MATLAB language setting.

Note You cannot use more than one format specifier for any date or
time field. For example, datestr(n, 'dddd dd mmmm') specifies two
formats for the day of the week, and thus returns an error.

Free-Form Date Format Specifiers

Symbol Interpretation Example

yyyy Show year in full. 1990, 2002

yy Show year in two digits. 90, 02

mmmm Show month using full
name.

March, December

mmm Show month using first
three letters.

Mar, Dec

mm Show month in two digits. 03, 12

m Show month using
capitalized first letter.

M, D

dddd Show day using full name. Monday, Tuesday

ddd Show day using first three
letters.

Mon, Tue

dd Show day in two digits. 05, 20

d Show day using
capitalized first letter.

M, T

2-766

datestr

Free-Form Date Format Specifiers (Continued)

Symbol Interpretation Example

HH Show hour in two digits
(no leading zeros when
free-form specifier AM or
PM is used (see last entry
in this table)).

05, 5 AM

MM Show minute in two
digits.

12, 02

SS Show second in two digits. 07, 59

FFF Show millisecond in three
digits.

.057

AM or PM Append AM or PM to date
string (see note below).

3:45:02 PM

Note Free-form specifiers AM and PM from the table above are identical.
They do not influence which characters are displayed following the time
(AM versus PM), but only whether or not they are displayed. MATLAB
selects AM or PM based on the time entered.

Remarks A vector of three or six numbers could represent either a single date
vector, or a vector of individual serial date numbers. For example,
the vector [2000 12 15 11 45 03] could represent either 11:45:03
on December 15, 2000 or a vector of date numbers 2000, 12, 15,
etc.. MATLAB uses the following general rule in interpreting vectors
associated with dates:

• A 3- or 6-element vector having a first element within an approximate
range of 500 greater than or less than the current year is considered
by MATLAB to be a date vector. Otherwise, it is considered to be
a vector of serial date numbers.

2-767

datestr

To specify dates outside of this range as a date vector, first convert the
vector to a serial date number using the datenum function as shown
here:

datestr(datenum([1400 12 15 11 45 03]), ...
'mmm.dd,yyyy HH:MM:SS')

ans =
Dec.15,1400 11:45:03

Examples Return the current date and time in a string using the default format, 0:

datestr(now)

ans =
28-Mar-2005 15:36:23

Reformat the date and time, and also show milliseconds:

dt = datestr(now, 'mmmm dd, yyyy HH:MM:SS.FFF AM')
dt =

March 28, 2005 3:37:07.952 PM

Format the same showing only the date and in the mm/dd/yy format.
Note that you can specify this format either by number or by string.

datestr(now, 2) -or- datestr(now, 'mm/dd/yy')

ans =
03/28/05

Display the returned date string using your own format made up of
symbols shown in the Free-Form Date Format Specifiers on page 2-766
table above.

datestr(now, 'dd.mm.yyyy')

ans =
28.03.2005

2-768

datestr

Convert a nonstandard date form into a standard MATLAB date form
by first converting to a date number and then to a string:

datestr(datenum('28.03.2005', 'dd.mm.yyyy'), 2)

ans =
03/28/05

See Also datenum, datevec, date, clock, now, datetick

2-769

datetick

Purpose Date formatted tick labels

Syntax datetick(tickaxis)
datetick(tickaxis,dateform)
datetick(...,'keeplimits')
datetick(...,'keepticks')
datetick(axes_handle,...)

Description datetick(tickaxis) labels the tick lines of an axis using dates,
replacing the default numeric labels. tickaxis is the string 'x', 'y', or
'z'. The default is 'x'. datetick selects a label format based on the
minimum and maximum limits of the specified axis.

datetick(tickaxis,dateform) formats the labels according to the
integer dateform (see table). To produce correct results, the data for the
specified axis must be serial date numbers (as produced by datenum).

dateform (number) dateform (string) Example

0 ’dd-mmm-yyyy
HH:MM:SS’

01-Mar-2000 15:45:17

1 ’dd-mmm-yyyy’ 01-Mar-2000

2 ’mm/dd/yy’ 03/01/00

3 ’mmm’ Mar

4 ’m’ M

5 ’mm’ 03

6 ’mm/dd’ 03/01

7 ’dd’ 01

8 ’ddd’ Wed

9 ’d’ W

10 ’yyyy’ 2000

11 ’yy’ 00

2-770

datetick

dateform (number) dateform (string) Example

12 ’mmmyy’ Mar00

13 ’HH:MM:SS’ 15:45:17

14 ’HH:MM:SS PM’ 3:45:17 PM

15 ’HH:MM’ 15:45

16 ’HH:MM PM’ 3:45 PM

17 ’QQ-YY’ Q1 01

18 ’QQ’ Q1

19 ’dd/mm' 01/03

20 ’dd/mm/yy’ 01/03/00

21 ’mmm.dd.yyyy
HH:MM:SS’

Mar.01,2000
15:45:17

22 ’mmm.dd.yyyy' Mar.01.2000

23 ’mm/dd/yyyy’ 03/01/2000

24 ’dd/mm/yyyy’ 01/03/2000

25 ’yy/mm/dd’ 00/03/01

26 ’yyyy/mm/dd’ 2000/03/01

27 ’QQ-YYYY’ Q1-2001

28 ’mmmyyyy’ Mar2000

datetick(...,'keeplimits') changes the tick labels to date-based
labels while preserving the axis limits.

datetick(...,'keepticks') changes the tick labels to date-based
labels without changing their locations.

You can use both keeplimits and keepticks in the same call to
datetick.

datetick(axes_handle,...) uses the axes specified by the handle ax
instead of the current axes.

2-771

datetick

Remarks datetick calls datestr to convert date numbers to date strings.

To change the tick spacing and locations, set the appropriate axes
property (i.e., XTick, YTick, or ZTick) before calling datetick.

Example Consider graphing population data based on the 1990 U.S. census:

t = (1900:10:1990)'; % Time interval
p = [75.995 91.972 105.711 123.203 131.669 ...
150.697 179.323 203.212 226.505 249.633]'; % Population

plot(datenum(t,1,1),p) % Convert years to date numbers and plot
grid on
datetick('x',11) % Replace x-axis ticks with 2-digit year
labels

2-772

datetick

See Also The axes properties XTick, YTick, and ZTick

datenum, datestr

“Annotating Plots” on page 1-87 for related functions

2-773

datevec

Purpose Convert date and time to vector of components

Syntax V = datevec(N)
V = datevec(S, F)
V = datevec(S, F, P)
V = datevec(S, P, F)
[Y, M, D, H, MN, S] = datevec(...)
V = datevec(S)
V = datevec(S, P)

Description datevec is one of three conversion functions that enable you to express
dates and times in any of three formats in MATLAB: a string (or date
string), a vector of date and time components (or date vector), or as
a numeric offset from a known date in time (or serial date number).
Here is an example of a date and time expressed in the three MATLAB
formats:

Date String: '24-Oct-2003 12:45:07'
Date Vector: [2003 10 24 12 45 07]
Serial Date Number: 7.3188e+005

A serial date number represents the whole and fractional number
of days from 1-Jan-0000 to a specific date. The year 0000 is merely
a reference point and is not intended to be interpreted as a real year
in time.

V = datevec(N) converts one or more date numbers N to date vectors V.
Input argument N can be a scalar, vector, or multidimensional array of
positive date numbers. datevec returns an m-by-6 matrix containing m
date vectors, where m is the total number of date numbers in N.

V = datevec(S, F) converts one or more date strings S to date vectors
V using format string F to interpret the date strings in S. Input argument
S can be a cell array of strings or a character array where each row
corresponds to one date string. All of the date strings in S must have the
same format which must be composed of date format symbols according
to the table “Free-Form Date Format Specifiers” in the datestr help.

2-774

datevec

Formats with 'Q' are not accepted by datevec. datevec returns an
m-by-6 matrix of date vectors, where m is the number of date strings in S.

Certain formats may not contain enough information to compute a date
vector. In those cases, hours, minutes, and seconds default to 0, days
default to 1, months default to January, and years default to the current
year. Date strings with two character years are interpreted to be within
the 100 years centered around the current year.

V = datevec(S, F, P) converts the date string S to a date vector V
using date format F and pivot year P. The pivot year is the starting year
of the 100-year range in which a two-character year resides. The default
pivot year is the current year minus 50 years.

V = datevec(S, P, F) is the same as the syntax shown above, except
the order of the last two arguments are switched.

[Y, M, D, H, MN, S] = datevec(...) takes any of the two syntaxes
shown above and returns the components of the date vector as
individual variables. datevec does not return milliseconds in a separate
output, but as a fractional part of the seconds (S) output.

V = datevec(S) converts date string S to date vector V. Input argument
S must be in one of the date formats 0, 1, 2, 6, 13, 14, 15, 16, or 23 as
defined in the reference page for the datestr function. This calling
syntax is provided for backward compatibility, and is significantly
slower than the syntax which specifies the format string. If the format
is known, the V = datevec(S, F) syntax is recommended.

V = datevec(S, P) converts the date string S using pivot year P. If the
format is known, the V = datevec(S, F, P) or V = datevec(S, P,
F) syntax should be used.

Note If more than one input argument is used, the first argument must
be a date string or array of date strings.

When creating your own date vector, you need not make the components
integers. Any components that lie outside their conventional ranges

2-775

datevec

affect the next higher component (so that, for instance, the anomalous
June 31 becomes July 1). A zeroth month, with zero days, is allowed.

Note The vectorized calling syntax can offer significant performance
improvement for large arrays.

Examples Obtain a date vector using a string as input:

format short g

datevec('March 28, 2005 3:37:07.952 PM')
ans =

2005 3 28 15 37 7.952

Obtain a date vector using a serial date number as input:

t = datenum('March 28, 2005 3:37:07.952 PM')
t =

7.324e+005

datevec(t)
ans =

2005 3 28 15 37 7.952

Assign elements of the returned date vector:

[y, m, d, h, mn, s] = datevec('March 28, 2005 3:37:07.952 PM');

sprintf('Date: %d/%d/%d Time: %d:%d:%2.3f\n', m, d, y, h, mn, s)

ans =

Date: 3/28/2005 Time: 15:37:7.952

2-776

datevec

Use free-form date format 'dd.mm.yyyy' to indicate how you want a
nonstandard date string interpreted:

datevec('28.03.2005', 'dd.mm.yyyy')

ans = 2005 3 28 0 0 0

See Also datenum, datestr, date, clock, now, datetick

2-777

dbclear

Purpose Clear breakpoints

GUI
Alternatives

In the Editor/Debugger, click to clear a breakpoint, or to clear all
breakpoints. For details, see “Disabling and Clearing Breakpoints”.

Syntax dbclear all
dbclear in mfile ...
dbclear if error ...
dbclear if warning ...
dbclear if naninf
dbclear if infnan

Description dbclear all removes all breakpoints in all M-files, as well as
breakpoints set for errors, caught errors, caught error identifiers,
warnings, warning identifiers, and naninf/infnan.

dbclear in mfile ... formats are listed here:

Format Action

dbclear in mfile Removes all breakpoints in mfile.

dbclear in mfile at
lineno

Removes the breakpoint set at line number lineno in
mfile.

dbclear in mfile at
lineno@

Removes the breakpoint set in the anonymous function at
line number lineno in mfile.

dbclear in mfile at
lineno@n

Removes the breakpoint set in the nthe anonymous
function at line number lineno in mfile.

dbclear in mfile at
subfun

Removes all breakpoints in subfunction subfun in mfile.

dbclear if error ... formats are listed here:

2-778

dbclear

Format Action

dbclear if error Removes the breakpoints set using the dbstop if error
and dbstop if error identifier statements.

dbclear if error
identifier

Removes the breakpoint set using dbstop if error
identifier for the specified identifier. Running this
produces an error if dbstop if error or dbstop if
error all is set.

dbclear if caught error Removes the breakpoints set using the dbstop if caught
error and dbstop if caught error identifier
statements.

dbclear if caught error
identifier

Removes the breakpoints set using the dbstop if caught
error identifier statement for the specified identifier.
Running this produces an error if dbstop if caught
error or dbstop if caught error all is set.

dbclear if warning ... formats are listed here:

dbclear if warning Removes the breakpoints set using the dbstop if
warning and dbstop if warning identifier statements.

dbclear if warning
identifier

Removes the breakpoint set using dbstop if warning
identifier for the specified identifier. Running this
produces an error if dbstop if warning or dbstop if
warning all is set.

dbclear if naninf removes the breakpoint set by dbstop if naninf
or dbstop if infnan.

dbclear if infnan removes the breakpoint set by dbstop if infnan
or dbstop if naninf.

Remarks The at and in keywords are optional.

In the syntax, mfile can be an M-file, or the path to a function within
a file. For example

dbclear in foo>myfun

2-779

dbclear

clears the breakpoint at the myfun function in the file foo.m.

See Also dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype,
dbup, partialpath

2-780

dbcont

Purpose Resume execution

GUI
Alternatives

Select Debug > Continue from most desktop tools, or in the
Editor/Debugger, click .

Syntax dbcont

Description dbcont resumes execution of an M-file from a breakpoint. Execution
continues until another breakpoint is encountered, a pause condition is
met, an error occurs, or MATLAB returns to the base workspace prompt.

Note If you want to edit an M-file as a result of debugging, it is best to
first quit debug mode and then edit and save changes to the M-file. If
you edit an M-file while paused in debug mode, you can get unexpected
results when you resume execution of the file and the results might
not be reliable.

See Also dbclear, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype,
dbup

2-781

dbdown

Purpose Change local workspace context when in debug mode

GUI
Alternatives

Use the Stack field in the Editor/Debugger or Workspace
browser.

Syntax dbdown

Description dbdown changes the current workspace context to the workspace of the
called M-file when a breakpoint is encountered. You must have issued
the dbup function at least once before you issue this function. dbdown is
the opposite of dbup.

Multiple dbdown functions change the workspace context to each
successively executed M-file on the stack until the current workspace
context is the current breakpoint. It is not necessary, however, to move
back to the current breakpoint to continue execution or to step to the
next line.

See Also dbclear, dbcont, dbquit, dbstack, dbstatus, dbstep, dbstop, dbtype,
dbup

2-782

dblquad

Purpose Numerically evaluate double integral

Syntax q = dblquad(fun,xmin,xmax,ymin,ymax)
q = dblquad(fun,xmin,xmax,ymin,ymax,tol)
q = dblquad(fun,xmin,xmax,ymin,ymax,tol,method)

Description q = dblquad(fun,xmin,xmax,ymin,ymax) calls the quad function to
evaluate the double integral fun(x,y) over the rectangle xmin <= x
<= xmax, ymin <= y <= ymax. fun is a function handle. See “Function
Handles” in the MATLAB Programming documentation for more
information. fun(x,y) must accept a vector x and a scalar y and return
a vector of values of the integrand.

“Parameterizing Functions Called by Function Functions” in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the function fun, if necessary.

q = dblquad(fun,xmin,xmax,ymin,ymax,tol) uses a tolerance tol
instead of the default, which is 1.0e-6.

q = dblquad(fun,xmin,xmax,ymin,ymax,tol,method) uses the
quadrature function specified as method, instead of the default
quad. Valid values for method are @quadl or the function handle of a
user-defined quadrature method that has the same calling sequence
as quad and quadl.

Example Pass M-file function handle @integrnd to dblquad:

Q = dblquad(@integrnd,pi,2*pi,0,pi);

where the M-file integrnd.m is

function z = integrnd(x, y)
z = y*sin(x)+x*cos(y);

Pass anonymous function handle F to dblquad:

F = @(x,y)y*sin(x)+x*cos(y);
Q = dblquad(F,pi,2*pi,0,pi);

2-783

dblquad

The integrnd function integrates y*sin(x)+x*cos(y) over the square
pi <= x <= 2*pi, 0 <= y <= pi. Note that the integrand can be
evaluated with a vector x and a scalar y.

Nonsquare regions can be handled by setting the integrand to zero
outside of the region. For example, the volume of a hemisphere is

dblquad(@(x,y)sqrt(max(1-(x.^2+y.^2),0)), -1, 1, -1, 1)

or

dblquad(@(x,y)sqrt(1-(x.^2+y.^2)).*(x.^2+y.^2<=1), -1, 1, -1, 1)

See Also quad, quadgk, quadl, triplequad, function_handle (@), “Anonymous
Functions”

2-784

dbmex

Purpose Enable MEX-file debugging

Syntax dbmex on
dbmex off
dbmex stop

Description dbmex on enables MEX-file debugging for UNIX platforms. It is not
supported on the Sun Solaris platform. To use this option, first start
MATLAB from within a debugger by typing matlab -Ddebugger, where
debugger is the name of the debugger.

dbmex off disables MEX-file debugging.

dbmex stop returns to the debugger prompt.

Remarks On Sun Solaris platforms, dbmex is not supported.
See the Technical Support solution 1-17Z0R at
http://www.mathworks.com/support/solutions/data/1-17Z0R.html
for an alternative method of debugging.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop,
dbtype, dbup

2-785

http://www.mathworks.com/support/solutions/data/1-17Z0R.html

dbquit

Purpose Quit debug mode

GUI
Alternative

From most desktop tools, select Debug > Exit Debug Mode, or in the
Editor/Debugger, click .

Syntax dbquit
dbquit('all')
dbquit all

Description dbquit terminates debug mode. The Command Window then displays
the standard prompt (>>). The M-file being processed is not completed
and no results are returned. All breakpoints remain in effect. As an
alternative to dbquit, press Shift+F5.

If you debug file1 and step into file2, running dbquit terminates
debugging for both files. However, if you debug file3 and also debug
file4, running dbquit terminates debugging for file4, but file3
remains in debug mode until you run dbquit again.

dbquit('all') or the command form, dbquit all, ends debugging
for all files at once.

Examples This example illustrates the use of dbquit relative to dbquit('all').
Set breakpoints in and run file1 and file2:

>> dbstop in file1
>> dbstop in file2
>> file1
K>> file2
K>> dbstack

MATLAB returns

K>> dbstack
In file1 at 11
In file2 at 22

If you use the dbquit syntax

2-786

dbquit

K>> dbquit

MATLAB ends debugging for file2 but file1 is still in debug mode
as shown here

K>> dbstack
in file1 at 11

Run dbquit again to exit debug mode for file1.

Alternatively, dbquit('all') ends debugging for both files at once:

K>> dbstack
In file1 at 11
In file2 at 22

dbquit('all')
dbstack

returns no result.

See Also dbclear, dbcont, dbdown, dbstack, dbstatus, dbstep, dbstop, dbtype,
dbup

2-787

dbstack

Purpose Function call stack

GUI
Alternatives

Use the Stack field in the Editor/Debugger or Workspace
browser.

Syntax dbstack
dbstack(n)
dbstack('-completenames')
[ST,I] = dbstack

Description dbstack displays the line numbers and M-file names of the function
calls that led to the current breakpoint, listed in the order in which they
were executed. The line number of the most recently executed function
call (at which the current breakpoint occurred) is listed first, followed
by its calling function, which is followed by its calling function, and so
on, until the topmost M-file function is reached. Each line number is a
hyperlink you can click to go directly to that line in the Editor/Debugger.
The notation functionname>subfunctionname is used to describe the
subfunction location.

dbstack(n) omits from the display the first n frames. This is useful
when issuing a dbstack from within, say, an error handler.

dbstack('-completenames') outputs the “complete name“ (the absolute
file name and the entire sequence of functions that nests the function in
the stack frame) of each function in the stack.

Either none, one, or both n and '-completenames' can appear. If both
appear, the order is irrelevant.

[ST,I] = dbstack returns the stack trace information in an m-by-1
structure ST with the fields

file The file in which the function appears. This
field will be the empty string if there is no file.

name Function name within the file.

line Function line number.

2-788

dbstack

The current workspace index is returned in I.

If you step past the end of an M-file, then dbstack returns a negative
line number value to identify that special case. For example, if the last
line to be executed is line 15, then the dbstack line number is 15 before
you execute that line and -15 afterwards.

Examples dbstack

In /usr/local/matlab/toolbox/matlab/cond.m at line 13
In test1.m at line 2
In test.m at line 3

See Also dbclear, dbcont, dbdown, dbquit, dbstatus, dbstep, dbstop, dbtype,
dbup, evalin, mfilename, whos

MATLAB Desktop Tools and Development Environment Documentation

• “Editing and Debugging M-Files”

• “Examining Values”

2-789

dbstatus

Purpose List all breakpoints

GUI
Alternative

Breakpoint line numbers are displayed graphically via the breakpoint
icons when the file is open in the Editor/Debugger.

Syntax dbstatus
dbstatus mfile
dbstatus('-completenames')
s = dbstatus(...)

Description dbstatus lists all the breakpoints in effect including errors, caught
errors, warnings, and naninfs.

dbstatus mfile displays a list of the line numbers for which
breakpoints are set in the specified M-file, where mfile is an M-file
function name or a MATLAB relative partial pathname. Each line
number is a hyperlink you can click to go directly to that line in the
Editor/Debugger.

dbstatus('-completenames') displays, for each breakpoint, the
absolute filename and the sequence of functions that nest the function
containing the breakpoint.

s = dbstatus(...) returns breakpoint information in an m-by-1
structure with the fields listed in the following table. Use this
syntax to save breakpoint status and restore it at a later time using
dbstop(s)—see dbstop for an example.

name Function name.

file Full pathname for file containing breakpoints.

line Vector of breakpoint line numbers.

anonymous Vector of integers representing the anonymous
functions in the line field. For example, 2 means
the second anonymous function in that line. A
value of 0 means the breakpoint is at the start of
the line, not in an anonymous function.

2-790

dbstatus

expression Cell vector of breakpoint conditional expression
strings corresponding to lines in the line field.

cond Condition string ('error', 'caught error',
'warning', or 'naninf').

identifier When cond is 'error', 'caught error', or
'warning', a cell vector of MATLAB message
identifier strings for which the particular cond
state is set.

Use dbstatus class/function, dbstatus private/function, or
dbstatus class/private/function to determine the status for methods,
private functions, or private methods (for a class named class).

In all forms you can further qualify the function name with a
subfunction name, as in dbstatus function>subfunction.

Remarks In the syntax, mfile can be an M-file, or the path to a function within
a file. For example

Breakpoint for foo>mfun is on line 9

means there is a breakpoint at the myfun subfunction, which is line
9 in the file foo.m.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstep, dbstop, dbtype,
dbup, error, partialpath, warning

2-791

dbstep

Purpose Execute one or more lines from current breakpoint

GUI
Alternatives

As an alternative to dbstep, you can select Debug > Step or Step
In in most desktop tools, or click the Step or Step In buttons on the
Editor/Debugger toolbar.

Syntax dbstep
dbstep nlines
dbstep in
dbstep out

Description This function allows you to debug an M-file by following its execution
from the current breakpoint. At a breakpoint, the dbstep function steps
through execution of the current M-file one line at a time or at the rate
specified by nlines.

dbstep executes the next executable line of the current M-file. dbstep
steps over the current line, skipping any breakpoints set in functions
called by that line.

dbstep nlines executes the specified number of executable lines.

dbstep in steps to the next executable line. If that line contains a call
to another M-file function, execution will step to the first executable line
of the called M-file function. If there is no call to an M-file on that line,
dbstep in is the same as dbstep.

dbstep out runs the rest of the function and stops just after leaving
the function.

For all forms, MATLAB also stops execution at any breakpoint it
encounters.

2-792

dbstep

Note If you want to edit an M-file as a result of debugging, it is best to
first quit debug mode and then edit and save changes to the M-file. If
you edit an M-file while paused in debug mode, you can get unexpected
results when you resume execution of the file and the results might
not be reliable.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstop, dbtype,
dbup

2-793

dbstop

Purpose Set breakpoints

GUI
Alternative

Use the Debug menu in most desktop tools, or the context menu in
Editor/Debugger. See details.

Syntax dbstop in mfile ...
dbstop in nonmfile
dbstop if error ...
dbstop if warning ...
dbstop if naninf
dbstop if infnan
dbstop(s)

Description dbstop in mfile ... formats are listed here:

Format Action Additional Information

dbstop in mfile Temporarily stops execution
of running mfile at the
first executable line, putting
MATLAB in debug mode.
mfile must be in a directory
that is on the search path, or
in the current directory. mfile
can be an M-file, or the path to
a function (subfun) within the
file, using the notation mfile
> subfun. The in keyword is
optional.

If you have graphical
debugging enabled, the
MATLAB Debugger opens
with a breakpoint at the first
executable line of mfile. You
can then use the debugging
utilities, review the workspace,
or issue any valid MATLAB
function. Use dbcont or dbstep
to resume execution of mfile.
Use dbquit to exit from debug
mode.

2-794

dbstop

Format Action Additional Information

dbstop in mfile at
lineno

Temporarily stops execution
of running mfile just prior
to execution of the line whose
number is lineno, putting
MATLAB in debug mode. If
that line is not executable,
execution stops and the
breakpoint is set at the next
executable line following
lineno. mfile must be in
a directory that is on the
search path, or in the current
directory. The at keyword is
optional.

If you have graphical debugging
enabled, MATLAB opens mfile
with a breakpoint at line
lineno. When execution stops,
you can use the debugging
utilities, review the workspace,
or issue any valid MATLAB
function. Use dbcont or dbstep
to resume execution of mfile.
Use dbquit to exit from debug
mode

dbstop in mfile at
lineno@

Stops just after any call to the
first anonymous function in the
specified line number in mfile.

dbstop in mfile at
lineno@n

Stops just after any call to the
nthe anonymous function in the
specified line number in mfile.

dbstop in mfile at
subfun

Temporarily stops execution
of running mfile just prior to
execution of the subfunction
subfun, putting MATLAB in
debug mode. mfile must be
in a directory that is on the
search path, or in the current
directory.

If you have graphical debugging
enabled, MATLAB opens mfile
with a breakpoint at the
subfunction subfun. You
can then use the debugging
utilities, review the workspace,
or issue any valid MATLAB
function. Use dbcont or dbstep
to resume execution of mfile.
Use dbquit to exit from debug
mode.

2-795

dbstop

Format Action Additional Information

dbstop in mfile
at lineno if
expression

Temporarily stops execution
of running mfile, just prior
to execution of the line
whose number is lineno,
putting MATLAB in debug
mode. Execution stops
only if expression evaluates
to true. expression is
evaluated (as if by eval), in
mfile’s workspace when the
breakpoint is encountered,
and must evaluate to a scalar
logical value (1 or 0 for true
or false). If that line is not
executable, execution stops
and the breakpoint is set
at the next executable line
following lineno. mfile must
be in a directory that is on the
search path, or in the current
directory.

If you have graphical debugging
enabled, MATLAB opens mfile
with a breakpoint at line
lineno. When execution stops,
you can use the debugging
utilities, review the workspace,
or issue any valid MATLAB
function. Use dbcont or dbstep
to resume execution of mfile.
Use dbquit to exit from debug
mode.

dbstop in mfile
at lineno@ if
expression

Stops just after any call to the
first anonymous function in
the specified line number in
mfile if expression evaluates
to logical 1 (true).

dbstop in mfile
at lineno@n if
expression

Stops just after any call to the
nthe anonymous function in
the specified line number in
mfile if expression evaluates
to logical 1 (true).

2-796

dbstop

Format Action Additional Information

dbstop in mfile if
expression

Temporarily stops execution
of running mfile, at the
first executable line, putting
MATLAB in debug mode.
Execution stops only if
expression evaluates to
logical 1 (true). expression
is evaluated (as if by eval),
in mfile’s workspace when
the breakpoint is encountered,
and must evaluate to a scalar
logical value (0 or 1 for true
or false). mfile must be in a
directory on the search path, or
in the current directory

If you have graphical debugging
enabled, MATLAB opens mfile
with a breakpoint at the first
executable line of mfile. You
can then use the debugging
utilities, review the workspace,
or issue any valid MATLAB
function. Use dbcont or dbstep
to resume execution of mfile.
Use dbquit to exit from debug
mode.

dbstop in mfile
at subfun if
expression

Temporarily stops execution
of running mfile, just prior to
execution of the subfunction
subfun, putting MATLAB in
debug mode. Execution stops
only if expression evaluates
to logical 1 (true). expression
is evaluated (as if by eval),
in mfile’s workspace when
the breakpoint is encountered,
and must evaluate to a scalar
logical value (0 or 1 for true
or false). mfile must be in a
directory on the search path, or
in the current directory

If you have graphical debugging
enabled, MATLAB opens mfile
with a breakpoint at the
subfunction specified by
subfun. You can then use the
debugging utilities, review the
workspace, or issue any valid
MATLAB function. Use dbcont
or dbstep to resume execution
of mfile. Use dbquit to exit
from debug mode.

dbstop in nonmfile temporarily stops execution of the running
M-file at the point where nonmfile is called. This puts MATLAB in
debug mode, where nonmfile is, for example, a built-in or MDL-file.
MATLAB issues a warning because it cannot actually stop in the file;

2-797

dbstop

rather MATLAB stops prior to the file’s execution. Once stopped,
you can examine values and code around that point in the execution.
Use dbstop in nonmfile with caution because the debugger stops in
M-files it uses for running and debugging if they contain nonmfile. As
a result, some debugging features do not operate as expected, such as
typing help functionname at the K>> prompt.

dbstop if error ... formats are listed here:

Format Action

dbstop if error Stops execution when any M-file you subsequently run produces
a run-time error, putting MATLAB in debug mode, paused at the
line that generated the error. The errors that stop execution do not
include run-time errors that are detected within a try...catch
block. You cannot resume execution after an uncaught run-time
error. Use dbquit to exit from debug mode.

dbstop if error
identifier

Stops execution when any M-file you subsequently run produces a
run-time error whose message identifier is identifier, putting
MATLAB in debug mode, paused at the line that generated the
error. The errors that stop execution do not include run-time errors
that are detected within a try...catch block. You cannot resume
execution after an uncaught run-time error. Use dbquit to exit
from debug mode.

dbstop if caught
error

Stops execution when any M-file you subsequently run produces a
run-time error, putting MATLAB in debug mode, paused at the line
in the try portion of the block that generated the error. The errors
that stop execution are those detected within a try...catch block.

dbstop if caught
error identifier

Stops execution when any M-file you subsequently run produces a
run-time error whose message identifier is identifier, putting
MATLAB in debug mode, paused at the line in the try portion of
the block that generated the error. The errors that stop execution
are those detected within a try...catch block.

dbstop if warning ... formats are listed here:

2-798

dbstop

Format Action

dbstop if warning Stops execution when any M-file you subsequently run produces
a run-time warning, putting MATLAB in debug mode, paused at
the line that generated the warning. Use dbcont or dbstep to
resume execution.

dbstop if warning
identifier

Stops execution when any M-file you subsequently run produces a
runtime warning whose message identifier is identifier, putting
MATLAB in debug mode, paused at the line that generated the
warning. Use dbcont or dbstep to resume execution.

dbstop if naninf or dbstop if infnan stops execution when any
M-file you subsequently run produces an infinite value (Inf) or a
value that is not a number (NaN) as a result of an operator, function
call, or scalar assignment, putting MATLAB in debug mode, paused
immediately after the line where Inf or NaN was encountered. For
convenience, you can use either naninf or infnan—they perform in
exactly the same manner. Use dbcont or dbstep to resume execution.
Use dbquit to exit from debug mode.

dbstop(s) restores breakpoints previously saved to the structure s
using s=dbstatus. The files for which the breakpoints have been saved
need to be on the search path or in the current directory. In addition,
because the breakpoints are assigned by line number, the lines in the
file need to be the same as when the breakpoints were saved, or the
results are unpredictable. See the example “Restore Saved Breakpoints”
on page 2-802 and dbstatus for more information.

Remarks Note that MATLAB could become nonresponsive if it stops at a
breakpoint while displaying a modal dialog box or figure that your
M-file creates. In that event, use Ctrl+C to go the MATLAB prompt.

To open the M-file in the Editor/Debugger when execution reaches a
breakpoint, select Debug > Open M-Files When Debugging.

To stop at each pass through a for loop, do not set the breakpoint at
the for statement. For example, in

2-799

dbstop

for n = 1:10
m = n+1;

end

MATLAB executes the for statement only once, which is efficient.
Therefore, when you set a breakpoint at the for statement and step
through the file, you only stop at the for statement once. Instead place
the breakpoint at the next line, m=n+1 to stop at each pass through
the loop.

Examples The file buggy, used in these examples, consists of three lines.

function z = buggy(x)
n = length(x);
z = (1:n)./x;

Stop at First Executable Line

The statements

dbstop in buggy
buggy(2:5)

stop execution at the first executable line in buggy:

n = length(x);

The function

dbstep

advances to the next line, at which point you can examine the value of n.

Stop if Error

Because buggy only works on vectors, it produces an error if the input x
is a full matrix. The statements

dbstop if error
buggy(magic(3))

2-800

dbstop

produce

??? Error using ==> ./
Matrix dimensions must agree.
Error in ==> c:\buggy.m
On line 3 ==> z = (1:n)./x;
K>>

and put MATLAB in debug mode.

Stop if InfNaN

In buggy, if any of the elements of the input x is zero, a division by
zero occurs. The statements

dbstop if naninf
buggy(0:2)

produce

Warning: Divide by zero.
> In c:\buggy.m at line 3
K>>

and put MATLAB in debug mode.

Stop at Function in File

In this example, MATLAB stops at the newTemp function in the M-file
yearlyAvgs:

dbstop in yearlyAvgs>newTemp

Stop at Non M-File

In this example, MATLAB stops at the built-in function clear when
you run myfile.m.

dbstop in clear; myfile

MATLAB issues a warning, but permits the stop:

2-801

dbstop

Warning: MATLAB debugger can only stop in M-files, and
"m_interpreter>clear" is not an M-file.
Instead, the debugger will stop at the point right before
"m_interpreter>clear" is called.

Execution stops in myfile at the point where the clear function is
called.

Restore Saved Breakpoints

1 Set breakpoints in myfile as follows:

dbstop at 12 in myfile
dbstop if error

2 Running dbstatus shows

Breakpoint for myfile is on line 12.
Stop if error.

3 Save the breakpoints to the structure s, and then save s to the
MAT-file myfilebrkpnts.

s = dbstatus
save myfilebrkpnts s

Use s=dbstatus('completenames') to save absolute pathnames
and the breakpoint function nesting sequence.

4 At this point, you can end the debugging session and clear all
breakpoints, or even end the MATLAB session.

When you want to restore the breakpoints, be sure all of the files
containing the breakpoints are on the search path or in the current
directory. Then load the MAT-file, which adds s to the workspace,
and restore the breakpoints as follows:

load myfilebrkpnts
dbstop(s)

2-802

dbstop

5 Verify the breakpoints by running dbstatus, which shows

dbstop at 12 in myfile
dbstop if error

If you made changes to myfile after saving the breakpoints, the
results from restoring the breakpoints are not predictable. For
example, if you added a new line prior to line 12 in myfile, the
breakpoint will now be set at the new line 12.

See Also assignin, break, dbclear, dbcont, dbdown, dbquit, dbstack,
dbstatus, dbstep, dbtype, dbup, evalin, keyboard, partialpath,
return, whos

2-803

dbtype

Purpose List M-file with line numbers

GUI
Alternatives

As an alternative to the dbtype function, you can see an M-file with line
numbers by opening it in the Editor/Debugger.

Syntax dbtype mfilename
dbtype mfilename start:end

Description The dbtype command is used to list an M-file with line numbers, which
is helpful when setting breakpoints with dbstop.

dbtype mfilename displays the contents of the specified M-file, with
the line number preceding each line. mfilename must be the full
pathname of an M-file, or a MATLAB relative partial pathname.

dbtype mfilename start:end displays the portion of the M-file
specified by a range of line numbers from start to end.

You cannot use dbtype for built-in functions.

Examples To see only the input and output arguments for a function, that is, the
first line of the M-file, use the syntax

dbtype mfilename 1

For example,

dbtype fileparts 1

returns

1 function [path, fname, extension,version] = fileparts(name)

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop,
dbup, partialpath

2-804

dbup

Purpose Change local workspace context

GUI
Alternatives

As an alternative to the dbup function, you can select a different
workspace from the Stack field in the Editor/Debugger toolbar.

Syntax dbup

Description This function allows you to examine the calling M-file to determine
what led to the arguments’ being passed to the called function.

dbup changes the current workspace context, while the user is in the
debug mode, to the workspace of the calling M-file.

Multiple dbup functions change the workspace context to each previous
calling M-file on the stack until the base workspace context is reached.
(It is not necessary, however, to move back to the current breakpoint to
continue execution or to step to the next line.)

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop,
dbtype

2-805

dde23

Purpose Solve delay differential equations (DDEs) with constant delays

Syntax sol = dde23(ddefun,lags,history,tspan)
sol = dde23(ddefun,lags,history,tspan,options)

Arguments ddefun Function handle that evaluates the
right side of the differential equations

.
The function must have the form

dydt = ddefun(t,y,Z)

where t corresponds to the current ,
y is a column vector that approximates

, and Z(:,j) approximates
for delay = lags(j). The output
is a column vector corresponding to

.

lags Vector of constant, positive delays .

history Specify history in one of three ways:

• A function of such that y = history(t)

returns the solution for as a
column vector

• A constant column vector, if is
constant

• The solution sol from a previous
integration, if this call continues that
integration

2-806

dde23

tspan Interval of integration as a vector [t0,tf]
with t0 < tf.

options Optional integration argument. A structure
you create using the ddeset function. See
ddeset for details.

Description sol = dde23(ddefun,lags,history,tspan) integrates the system
of DDEs

on the interval , where are constant, positive delays

and . ddefun is a function handle. See “Function Handles” in
the MATLAB Programming documentation for more information.

“Parameterizing Functions Called by Function Functions” in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the function ddefun, if necessary.

dde23 returns the solution as a structure sol. Use the auxiliary
function deval and the output sol to evaluate the solution at specific
points tint in the interval tspan = [t0,tf].

yint = deval(sol,tint)

The structure sol returned by dde23 has the following fields.

sol.x Mesh selected by dde23

sol.y Approximation to at the mesh points in
sol.x.

sol.yp Approximation to at the mesh points in
sol.x

sol.solver Solver name, 'dde23'

2-807

dde23

sol = dde23(ddefun,lags,history,tspan,options) solves as above
with default integration properties replaced by values in options, an
argument created with ddeset. See ddeset and “Initial Value Problems
for DDEs” in the MATLAB documentation for details.

Commonly used options are scalar relative error tolerance 'RelTol'
(1e-3 by default) and vector of absolute error tolerances 'AbsTol' (all
components are 1e-6 by default).

Use the 'Jumps' option to solve problems with discontinuities in
the history or solution. Set this option to a vector that contains the
locations of discontinuities in the solution prior to t0 (the history) or in
coefficients of the equations at known values of after t0.

Use the 'Events' option to specify a function that dde23 calls to find
where functions vanish. This
function must be of the form

[value,isterminal,direction] = events(t,y,Z)

and contain an event function for each event to be tested. For the kth
event function in events:

• value(k) is the value of the kth event function.

• isterminal(k) = 1 if you want the integration to terminate at a
zero of this event function and 0 otherwise.

• direction(k) = 0 if you want dde23 to compute all zeros of this
event function, +1 if only zeros where the event function increases,
and -1 if only zeros where the event function decreases.

If you specify the 'Events' option and events are detected, the output
structure sol also includes fields:

2-808

dde23

sol.xe Row vector of locations of all events, i.e., times
when an event function vanished

sol.ye Matrix whose columns are the solution values
corresponding to times in sol.xe

sol.ie Vector containing indices that specify which event
occurred at the corresponding time in sol.xe

Examples This example solves a DDE on the interval [0, 5] with lags 1 and 0.2.
The function ddex1de computes the delay differential equations, and
ddex1hist computes the history for t <= 0.

Note The demo ddex1 contains the complete code for this example. To
see the code in an editor, click the example name, or type edit ddex1 at
the command line. To run the example type ddex1 at the command line.

sol = dde23(@ddex1de,[1, 0.2],@ddex1hist,[0, 5]);

This code evaluates the solution at 100 equally spaced points in the
interval [0,5], then plots the result.

tint = linspace(0,5);
yint = deval(sol,tint);
plot(tint,yint);

ddex1 shows how you can code this problem using subfunctions. For
more examples see ddex2.

Algorithm dde23 tracks discontinuities and integrates with the explicit
Runge-Kutta (2,3) pair and interpolant of ode23. It uses iteration to
take steps longer than the lags.

See Also ddesd, ddeget, ddeset, deval, function_handle (@)

2-809

dde23

References [1] Shampine, L.F. and S. Thompson, “Solving DDEs in MATLAB,
“Applied Numerical Mathematics, Vol. 37, 2001, pp. 441-458.

[2] Kierzenka, J., L.F. Shampine, and S. Thompson, “Solving
Delay Differential Equations with DDE23,” available at
www.mathworks.com/dde_tutorial.

2-810

http://www.mathworks.com/dde_tutorial

ddeadv

Purpose Set up advisory link

Syntax rc = ddeadv(channel,item,callback,upmtx,format,timeout)

Note Use COM, as described in COM Support in MATLAB. The
ddeadv function will be removed in a future version of MATLAB.

Description rc = ddeadv(channel,item,callback,upmtx,format,timeout)
sets up an advisory link between MATLAB and a server application.
When the data identified by the item argument changes, the string
specified by the callback argument is passed to the eval function and
evaluated. If the advisory link is a hot link, DDE modifies upmtx, the
update matrix, to reflect the data in item.

If you omit optional arguments that are not at the end of the argument
list, you must substitute the empty matrix for the missing argument(s).

If successful, ddeadv returns 1 in variable, rc. Otherwise it returns 0.

Arguments channel Conversation channel from ddeinit.

item String specifying the DDE item name for the
advisory link. Changing the data identified by
item at the server triggers the advisory link.

callback String specifying the callback that is evaluated
on update notification. Changing the data
identified by item at the server causes
callback to get passed to the eval function to
be evaluated.

2-811

ddeadv

upmtx (optional) String specifying the name of a matrix that
holds data sent with an update notification. If
upmtx is included, changing item at the server
causes upmtx to be updated with the revised
data. Specifying upmtx creates a hot link.
Omitting upmtx or specifying it as an empty
string creates a warm link. If upmtx exists in
the workspace, its contents are overwritten. If
upmtx does not exist, it is created.

format (optional) Two-element array specifying the format of the
data to be sent on update. The first element
specifies the Windows clipboard format to use
for the data. The only currently supported
format is cf_text, which corresponds to a
value of 1. The second element specifies the
type of the resultant matrix. Valid types are
numeric (the default, which corresponds to a
value of 0) and string (which corresponds to a
value of 1). The default format array is [1 0].

timeout (optional) Scalar specifying the time-out limit for this
operation. timeout is specified in milliseconds.
(1000 milliseconds = 1 second). If advisory link
is not established within timeout milliseconds,
the function fails. The default value of timeout
is three seconds.

Examples Set up a hot link between a range of cells in Excel (Row 1, Column 1
through Row 5, Column 5) and the matrix x. If successful, display the
matrix:

rc = ddeadv(channel, 'r1c1:r5c5', 'disp(x)', 'x');

Communication with Excel must have been established previously with
a ddeinit command.

2-812

ddeadv

See Also ddeexec, ddeinit, ddepoke, ddereq, ddeterm, ddeunadv

2-813

ddeexec

Purpose Send string for execution

Syntax rc = ddeexec(channel,command,item,timeout)

Note Use COM, as described in COM Support in MATLAB. The
ddeexec function will be removed in a future version of MATLAB.

Description rc = ddeexec(channel,command,item,timeout) sends a string for
execution to another application via an established DDE conversation.
Specify the string as the command argument.

If you omit optional arguments that are not at the end of the argument
list, you must substitute the empty matrix for the missing argument(s).

If successful, ddeexec returns 1 in variable, rc. Otherwise it returns 0.

Arguments channel Conversation channel from ddeinit.

command String specifying the command to be executed.

item (optional) String specifying the DDE item name for
execution. This argument is not used for many
applications. If your application requires this
argument, it provides additional information for
command. Consult your server documentation for
more information.

timeout (optional) Scalar specifying the time-out limit for this
operation. timeout is specified in milliseconds.
(1000 milliseconds = 1 second). The default value
of timeout is three seconds.

Examples Given the channel assigned to a conversation, send a command to Excel:

rc = ddeexec(channel,'[formula.goto("r1c1")]')

2-814

ddeexec

Communication with Excel must have been established previously with
a ddeinit command.

See Also ddeadv, ddeinit, ddepoke, ddereq, ddeterm, ddeunadv

2-815

ddeget

Purpose Extract properties from delay differential equations options structure

Syntax val = ddeget(options,'name')
val = ddeget(options,'name',default)

Description val = ddeget(options,'name') extracts the value of the named
property from the structure options, returning an empty matrix if
the property value is not specified in options. It is sufficient to type
only the leading characters that uniquely identify the property. Case is
ignored for property names. [] is a valid options argument.

val = ddeget(options,'name',default) extracts the named property
as above, but returns val = default if the named property is not
specified in options. For example,

val = ddeget(opts,'RelTol',1e-4);

returns val = 1e-4 if the RelTol is not specified in opts.

See Also dde23, ddesd, ddeset

2-816

ddeinit

Purpose Initiate Dynamic Data Exchange (DDE) conversation

Syntax
Note Use COM, as described in COM Support in MATLAB. The ddeinit
function will be removed in a future version of MATLAB.

channel = ddeinit('service','topic')

Description channel = ddeinit('service','topic') returns a channel handle
assigned to the conversation, which is used with other MATLAB DDE
functions. 'service' is a string specifying the service or application
name for the conversation. 'topic' is a string specifying the topic for
the conversation.

Examples To initiate a conversation with Excel for the spreadsheet 'stocks.xls':

channel = ddeinit('excel','stocks.xls')

channel =
0.00

See Also ddeadv, ddeexec, ddepoke, ddereq, ddeterm, ddeunadv

2-817

ddepoke

Purpose Send data to application

Syntax rc = ddepoke(channel,item,data,format,timeout)

Note Use COM, as described in COM Support in MATLAB. The
ddepoke function will be removed in a future version of MATLAB.

Description rc = ddepoke(channel,item,data,format,timeout) sends data to
an application via an established DDE conversation. ddepoke formats
the data matrix as follows before sending it to the server application:

• String matrices are converted, element by element, to characters and
the resulting character buffer is sent.

• Numeric matrices are sent as tab-delimited columns and
carriage-return, line-feed delimited rows of numbers. Only the real
part of nonsparse matrices are sent.

If you omit optional arguments that are not at the end of the argument
list, you must substitute the empty matrix for the missing argument(s).

If successful, ddepoke returns 1 in variable, rc. Otherwise it returns 0.

Arguments channel Conversation channel from ddeinit.

item String specifying the DDE item for the data
sent. Item is the server data entity that is to
contain the data sent in the data argument.

data Matrix containing the data to send.

2-818

ddepoke

format (optional) Scalar specifying the format of the data
requested. The value indicates the Windows
clipboard format to use for the data transfer.
The only format currently supported is
cf_text, which corresponds to a value of 1.

timeout (optional) Scalar specifying the time-out limit for
this operation. timeout is specified in
milliseconds. (1000 milliseconds = 1 second).
The default value of timeout is three seconds.

Examples Assume that a conversation channel with Excel has previously been
established with ddeinit. To send a 5-by-5 identity matrix to Excel,
placing the data in Row 1, Column 1 through Row 5, Column 5:

rc = ddepoke(channel, 'r1c1:r5c5', eye(5));

See Also ddeadv, ddeexec, ddeinit, ddereq, ddeterm, ddeunadv

2-819

ddereq

Purpose Request data from application

Syntax data = ddereq(channel,item,format,timeout)

Note Use COM, as described in COM Support in MATLAB. The ddereq
function will be removed in a future version of MATLAB.

Description data = ddereq(channel,item,format,timeout) requests data from
a server application via an established DDE conversation. ddereq
returns a matrix containing the requested data or an empty matrix if
the function is unsuccessful.

If you omit optional arguments that are not at the end of the argument
list, you must substitute the empty matrix for the missing argument(s).

If successful, ddereq returns a matrix containing the requested data in
variable, data. Otherwise, it returns an empty matrix.

Arguments channel Conversation channel from ddeinit.

item String specifying the server application’s DDE
item name for the data requested.

2-820

ddereq

format (optional) Two-element array specifying the format of
the data requested. The first element specifies
the Windows clipboard format to use. The
only currently supported format is cf_text,
which corresponds to a value of 1. The second
element specifies the type of the resultant
matrix. Valid types are numeric (the default,
which corresponds to 0) and string (which
corresponds to a value of 1). The default format
array is [1 0].

timeout (optional) Scalar specifying the time-out limit for this
operation. timeout is specified in milliseconds.
(1000 milliseconds = 1 second). The default
value of timeout is three seconds.

Examples Assume that you have an Excel spreadsheet stocks.xls. This
spreadsheet contains the prices of three stocks in row 3 (columns 1
through 3) and the number of shares of these stocks in rows 6 through 8
(column 2). Initiate conversation with Excel with the command

channel = ddeinit('excel','stocks.xls')

DDE functions require the rxcy reference style for Excel worksheets.
In Excel terminology the prices are in r3c1:r3c3 and the shares in
r6c2:r8c2.

Request the prices from Excel:

prices = ddereq(channel,'r3c1:r3c3')

prices =
42.50
15.00
78.88

Next, request the number of shares of each stock:

2-821

ddereq

shares = ddereq(channel, 'r6c2:r8c2')

shares =
100.00
500.00
300.00

See Also ddeadv, ddeexec, ddeinit, ddepoke, ddeterm, ddeunadv

2-822

ddesd

Purpose Solve delay differential equations (DDEs) with general delays

Syntax sol = ddesd(ddefun,delays,history,tspan)
sol = ddesd(ddefun,delays,history,tspan,options)

Arguments ddefun Function handle that evaluates the
right side of the differential equations

.
The function must have the form

dydt = ddefun(t,y,Z)

where t corresponds to the current , y is a
column vector that approximates , and
Z(:,j) approximates for delay
given as component of delays(t,y). The
output is a column vector corresponding to

.

delays Function handle that returns a column vector of
delays . The delays can depend on both
and . ddesd imposes the requirement that

by using min(,).

If all the delay functions have the form

, you can set the argument

delays to a constant vector delays .
With delay functions of this form, ddesd is used
exactly like dde23.

2-823

ddesd

history Specify history in one of three ways:

• A function of such that y = history(t)

returns the solution for as a
column vector

• A constant column vector, if is constant

• The solution sol from a previous integration,
if this call continues that integration

tspan Interval of integration as a vector [t0,tf] with
t0 < tf.

options Optional integration argument. A structure you
create using the ddeset function. See ddeset
for details.

Description sol = ddesd(ddefun,delays,history,tspan) integrates the system
of DDEs

on the interval , where delays can depend on both and

, and . Inputs ddefun and delays are function handles.
See “Function Handles” in the MATLAB Programming documentation
for more information.

“Parameterizing Functions Called by Function Functions” in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the functions ddefun, delays, and history,
if necessary.

ddesd returns the solution as a structure sol. Use the auxiliary
function deval and the output sol to evaluate the solution at specific
points tint in the interval tspan = [t0,tf].

yint = deval(sol,tint)

2-824

ddesd

The structure sol returned by ddesd has the following fields.

sol.x Mesh selected by ddesd

sol.y Approximation to at the mesh points in
sol.x.

sol.yp Approximation to at the mesh points in
sol.x

sol.solver Solver name, 'ddesd'

sol = ddesd(ddefun,delays,history,tspan,options) solves as
above with default integration properties replaced by values in options,
an argument created with ddeset. See ddeset and “Initial Value
Problems for DDEs” in the MATLAB documentation for details.

Commonly used options are scalar relative error tolerance 'RelTol'
(1e-3 by default) and vector of absolute error tolerances 'AbsTol' (all
components are 1e-6 by default).

Use the 'Events' option to specify a function that ddesd calls to find
where functions vanish. This
function must be of the form

[value,isterminal,direction] = events(t,y,Z)

and contain an event function for each event to be tested. For the kth
event function in events:

• value(k) is the value of the kth event function.

• isterminal(k) = 1 if you want the integration to terminate at a
zero of this event function and 0 otherwise.

• direction(k) = 0 if you want ddesd to compute all zeros of this
event function, +1 if only zeros where the event function increases,
and -1 if only zeros where the event function decreases.

2-825

ddesd

If you specify the 'Events' option and events are detected, the output
structure sol also includes fields:

sol.xe Row vector of locations of all events, i.e., times
when an event function vanished

sol.ye Matrix whose columns are the solution values
corresponding to times in sol.xe

sol.ie Vector containing indices that specify which event
occurred at the corresponding time in sol.xe

Examples The equation

sol = ddesd(@ddex1de,@ddex1delays,@ddex1hist,[0,5]);

solves a DDE on the interval [0,5] with delays specified by the function
ddex1delays and differential equations computed by ddex1de. The
history is evaluated for by the function ddex1hist. The solution is
evaluated at 100 equally spaced points in [0,5]:

tint = linspace(0,5);
yint = deval(sol,tint);

and plotted with

plot(tint,yint);

This problem involves constant delays. The delay function has the form

function d = ddex1delays(t,y)
%DDEX1DELAYS Delays for using with DDEX1DE.
d = [t - 1

t - 0.2];

The problem can also be solved with the syntax corresponding to
constant delays

delays = [1, 0.2];

2-826

ddesd

sol = ddesd(@ddex1de,delays,@ddex1hist,[0, 5]);

or using dde23:

sol = dde23(@ddex1de,delays,@ddex1hist,[0, 5]);

For more examples of solving delay differential equations see ddex2
and ddex3.

See Also dde23, ddeget, ddeset, deval, function_handle (@)

References [1] Shampine, L.F., “Solving ODEs and DDEs with Residual Control,”
Applied Numerical Mathematics, Vol. 52, 2005, pp. 113-127.

2-827

ddeset

Purpose Create or alter delay differential equations options structure

Syntax options = ddeset('name1',value1,'name2',value2,...)
options = ddeset(oldopts,'name1',value1,...)
options = ddeset(oldopts,newopts)
ddeset

Description options = ddeset('name1',value1,'name2',value2,...) creates
an integrator options structure options in which the named properties
have the specified values. Any unspecified properties have default
values. It is sufficient to type only the leading characters that uniquely
identify the property. ddeset ignores case for property names.

options = ddeset(oldopts,'name1',value1,...) alters an existing
options structure oldopts. This overwrites any values in oldopts that
are specified using name/value pairs and returns the modified structure
as the output argument.

options = ddeset(oldopts,newopts) combines an existing options
structure oldopts with a new options structure newopts. Any values
set in newopts overwrite the corresponding values in oldopts.

ddeset with no input arguments displays all property names and their
possible values, indicating defaults with braces {}.

You can use the function ddeget to query the options structure for the
value of a specific property.

DDE
Properties

The following sections describe the properties that you can set using
ddeset. There are several categories of properties:

• Error control

• Solver output

• Step size

• Event location

• Discontinuities

2-828

ddeset

Error Control Properties

At each step, solvers dde23 and ddesd estimate an error e. dde23
estimates the local truncation error, and ddesd estimates the residual.
In either case, this error must be less than or equal to the acceptable
error, which is a function of the specified relative tolerance, RelTol, and
the specified absolute tolerance, AbsTol.

|e(i)| ≤ max(RelTol*abs(y(i)),AbsTol(i))

For routine problems, dde23 and ddesd deliver accuracy roughly
equivalent to the accuracy you request. They deliver less accuracy
for problems integrated over “long” intervals and problems that are
moderately unstable. Difficult problems may require tighter tolerances
than the default values. For relative accuracy, adjust RelTol. For the
absolute error tolerance, the scaling of the solution components is
important: if |y| is somewhat smaller than AbsTol, the solver is not
constrained to obtain any correct digits in y. You might have to solve a
problem more than once to discover the scale of solution components.

Roughly speaking, this means that you want RelTol correct digits in all
solution components except those smaller than thresholds AbsTol(i).
Even if you are not interested in a component y(i) when it is small,
you may have to specify AbsTol(i) small enough to get some correct
digits in y(i) so that you can accurately compute more interesting
components

The following table describes the error control properties.

2-829

ddeset

DDE Error Control Properties

Property Value Description

RelTol Positive
scalar {1e-3}

A relative error tolerance that applies to all components
of the solution vector y. It is a measure of the error
relative to the size of each solution component. Roughly,
it controls the number of correct digits in all solution
components except those smaller than thresholds
AbsTol(i). The default, 1e-3, corresponds to 0.1%
accuracy.

The estimated error in each integration step satisfies
|e(i)|max(RelTol*abs(y(i)), AbsTol(i)).

AbsTol Positive
scalar or
vector {1e-6}

Absolute error tolerances that apply to the individual
components of the solution vector. AbsTol(i) is a
threshold below which the value of the ith solution
component is unimportant. The absolute error
tolerances determine the accuracy when the solution
approaches zero. Even if you are not interested in a
component y(i) when it is small, you may have to
specify AbsTol(i) small enough to get some correct
digits in y(i) so that you can accurately compute more
interesting components.

If AbsTol is a vector, the length of AbsTol must be the
same as the length of the solution vector y. If AbsTol is
a scalar, the value applies to all components of y.

NormControl on | {off} Control error relative to norm of solution. Set
this property on to request that the solvers control
the error in each integration step with norm(e)<=
max(RelTol*norm(y),AbsTol). By default, solvers
dde23 and ddesd use a more stringent component-wise
error control.

2-830

ddeset

Solver Output Properties

You can use the solver output properties to control the output that the
solvers generate.

DDE Solver Output Properties

Property Value Description

OutputFcn Function
handle
{@odeplot}

The output function is a function that the solver calls
after every successful integration step. To specify
an output function, set 'OutputFcn' to a function
handle. For example,

options = ddeset('OutputFcn',...
@myfun)

sets ’OutputFcn’ to @myfun, a handle to the function
myfun. See “Function Handles” in the MATLAB
Programming documentation for more information.

The output function must be of the form

status = myfun(t,y,flag)

“Parameterizing Functions Called by Function
Functions” in the MATLAB Mathematics
documentation, explains how to provide additional
parameters to myfun, if necessary.

The solver calls the specified output function with
the following flags. Note that the syntax of the call
differs with the flag. The function must respond
appropriately:

2-831

ddeset

DDE Solver Output Properties (Continued)

Property Value Description

• init — The solver calls myfun(tspan,y0,'init')
before beginning the integration to allow the output
function to initialize. tspan is the input argument
to solvers dde23 and ddesd. y0 is the initial value of
the solution, either from history(t0) or specified
in the initialY option.

• {none} — The solver calls status = myfun(t,y)
after each integration step on which output is
requested. t contains points where output was
generated during the step, and y is the numerical
solution at the points in t. If t is a vector, the ith
column of y corresponds to the ith element of t.

myfun must return a status output value of 0 or 1.
If literal > status, the solver halts integration. You
can use this mechanism, for instance, to implement
a Stop button.

• done — The solver calls myfun([],[],'done')
when integration is complete to allow the output
function to perform any cleanup chores.

You can use these general purpose output functions
or you can edit them to create your own. Type
help functionname at the command line for more
information.

• odeplot – time series plotting (default when you
call the solver with no output argument and you
have not specified an output function)

• odephas2 – two-dimensional phase plane plotting

• odephas3 – three-dimensional phase plane plotting

• odeprint – print solution as the solver computes it

2-832

ddeset

DDE Solver Output Properties (Continued)

Property Value Description

OutputSel Vector of
indices

Vector of indices specifying which components of the
solution vector the dde23 or ddesd solver passes to
the output function. For example, if you want to use
the odeplot output function, but you want to plot
only the first and third components of the solution,
you can do this using

options = ddeset...
('OutputFcn',@odeplot,...
'OutputSel',[1 3]);

By default, the solver passes all components of the
solution to the output function.

Stats on | {off} Specifies whether the solver should display statistics
about its computations. By default, Stats is off. If it
is on, after solving the problem the solver displays:

• The number of successful steps

• The number of failed attempts

• The number of times the DDE function was called

Step Size Properties

The step size properties let you specify the size of the first step the
solver tries, potentially helping it to better recognize the scale of the
problem. In addition, you can specify bounds on the sizes of subsequent
time steps.

The following table describes the step size properties.

2-833

ddeset

DDE Step Size Properties

Property Value Description

InitialStep Positive scalar Suggested initial step size. InitialStep sets an
upper bound on the magnitude of the first step size
the solver tries. If you do not set InitialStep, the
solver bases the initial step size on the slope of the
solution at the initial time tspan(1). The initial step
size is limited by the shortest delay. If the slope of
all solution components is zero, the procedure might
try a step size that is much too large. If you know
this is happening or you want to be sure that the
solver resolves important behavior at the start of the
integration, help the code start by providing a suitable
InitialStep.

2-834

ddeset

DDE Step Size Properties (Continued)

Property Value Description

Upper bound on solver step size. If the differential
equation has periodic coefficients or solutions, it may
be a good idea to set MaxStep to some fraction (such
as 1/4) of the period. This guarantees that the solver
does not enlarge the time step too much and step over
a period of interest. Do not reduce MaxStep:

• When the solution does not appear to be accurate
enough. Instead, reduce the relative error tolerance
RelTol, and use the solution you just computed
to determine appropriate values for the absolute
error tolerance vector AbsTol. (See “Error Control
Properties” on page 2-829 for a description of the
error tolerance properties.)

MaxStep Positive scalar
{0.1*
abs(t0-tf)}

• To make sure that the solver doesn’t step over
some behavior that occurs only once during the
simulation interval. If you know the time at which
the change occurs, break the simulation interval
into two pieces and call the solver (dde23 or ddesd)
twice. If you do not know the time at which the
change occurs, try reducing the error tolerances
RelTol and AbsTol. Use MaxStep as a last resort.

Event Location Property

In some DDE problems, the times of specific events are important.
While solving a problem, the dde23 and ddesd solvers can detect such
events by locating transitions to, from, or through zeros of user-defined
functions.

The following table describes the Events property.

2-835

ddeset

DDE Events Property

String Value Description

Events Function
handle

Handle to a function that includes one or more event
functions. See “Function Handles” in the MATLAB
Programming documentation for more information. The
function is of the form

[value,isterminal,direction] =
events(t,y,Z)

value, isterminal, and direction are vectors for which
the ith element corresponds to the ith event function:

2-836

ddeset

DDE Events Property (Continued)

String Value Description

• value(i) is the value of the ith event function.

• isterminal(i) = 1 if you want the integration to
terminate at a zero of this event function, and 0
otherwise.

• direction(i) = 0 if you want the solver (dde23 or
ddesd) to locate all zeros (the default), +1 if only zeros
where the event function is increasing, and -1 if only
zeros where the event function is decreasing.

If you specify an events function and events are
detected, the solver returns three additional fields in
the solution structure sol:

• sol.xe is a row vector of times at which events occur.

• sol.ye is a matrix whose columns are the solution
values corresponding to times in sol.xe.

• sol.ie is a vector containing indices that specify which
event occurred at the corresponding time in sol.xe.

For examples that use an event function while solving
ordinary differential equation problems, see “Example:
Simple Event Location” (ballode) and “Example:
Advanced Event Location” (orbitode), in the MATLAB
Mathematics documentation.

Discontinuity Properties

Solvers dde23 and ddesd can solve problems with discontinuities in the
history or in the coefficients of the equations. The following properties
enable you to provide these solvers with a different initial value, and,
for dde23, locations of known discontinuities. See “Discontinuities” in
the MATLAB Mathematics documentation for more information.

2-837

ddeset

The following table describes the discontinuity properties.

DDE Discontinuity Properties

String Value Description

Jumps Vector Location of discontinuities. Points where
the history or solution may have a jump
discontinuity in a low-order derivative. This
applies only to the dde23 solver.

InitialY Vector Initial value of solution. By default the initial
value of the solution is the value returned by
history at the initial point. Supply a different
initial value as the value of the InitialY
property.

Example To create an options structure that changes the relative error tolerance
of the solver from the default value of 1e-3 to 1e-4, enter

options = ddeset('RelTol', 1e-4);

To recover the value of 'RelTol' from options, enter

ddeget(options, 'RelTol')

ans =

1.0000e-004

See Also dde23, ddesd, ddeget, function_handle (@)

2-838

ddeterm

Purpose Terminate Dynamic Data Exchange (DDE) conversation

Syntax
Note Use COM, as described in COM Support in MATLAB. The
ddeterm function will be removed in a future version of MATLAB.

rc = ddeterm(channel)

Description rc = ddeterm(channel) accepts a channel handle returned by a
previous call to ddeinit that established the DDE conversation.
ddeterm terminates this conversation. rc is a return code where 0
indicates failure and 1 indicates success.

Examples To close a conversation channel previously opened with ddeinit:

rc = ddeterm(channel)

rc =
1.00

See Also ddeadv, ddeexec, ddeinit, ddepoke, ddereq, ddeunadv

2-839

ddeunadv

Purpose Release advisory link

Syntax rc = ddeunadv(channel,item,format,timeout)

Note Use COM, as described in COM Support in MATLAB. The
ddeunadv function will be removed in a future version of MATLAB.

Description rc = ddeunadv(channel,item,format,timeout) releases the advisory
link between MATLAB and the server application established by an
earlier ddeadv call. The channel, item, and format must be the same
as those specified in the call to ddeadv that initiated the link. If you
include the timeout argument but accept the default format, you must
specify format as an empty matrix.

If successful, ddeunadv returns 1 in variable, rc. Otherwise it returns 0.

Arguments channel Conversation channel from ddeinit.

item String specifying the DDE item name for the
advisory link. Changing the data identified by
item at the server triggers the advisory link.

format (optional) Two-element array. This must be the same as
the format argument for the corresponding
ddeadv call.

timeout (optional) Scalar specifying the time-out limit for this
operation. timeout is specified in milliseconds.
(1000 milliseconds = 1 second). The default value
of timeout is three seconds.

Example To release an advisory link established previously with ddeadv:

rc = ddeunadv(channel, 'r1c1:r5c5')
rc =

2-840

ddeunadv

1.00

See Also ddeadv, ddeexec, ddeinit, ddepoke, ddereq, ddeterm

2-841

deal

Purpose Distribute inputs to outputs

Note As of MATLAB Version 7.0, you can access the contents of
cell arrays and structure fields without using the deal function. See
Example 3, below.

Syntax [Y1, Y2, Y3, ...] = deal(X)
[Y1, Y2, Y3, ...] = deal(X1, X2, X3, ...)
[S.field] = deal(X)
[X{:}] = deal(A.field)
[Y1, Y2, Y3, ...] = deal(X{:})
[Y1, Y2, Y3, ...] = deal(S.field)

Description [Y1, Y2, Y3, ...] = deal(X) copies the single input to all the
requested outputs. It is the same as Y1 = X, Y2 = X, Y3 = X, ...

[Y1, Y2, Y3, ...] = deal(X1, X2, X3, ...) is the same as Y1 =
X1; Y2 = X2; Y3 = X3; ...

Remarks deal is most useful when used with cell arrays and structures via
comma-separated list expansion. Here are some useful constructions:

[S.field] = deal(X) sets all the fields with the name field in the
structure array S to the value X. If S doesn’t exist, use [S(1:m).field]
= deal(X).

[X{:}] = deal(A.field) copies the values of the field with
name field to the cell array X. If X doesn’t exist, use [X{1:m}] =
deal(A.field).

[Y1, Y2, Y3, ...] = deal(X{:}) copies the contents of the cell
array X to the separate variables Y1, Y2, Y3, ...

[Y1, Y2, Y3, ...] = deal(S.field) copies the contents of the
fields with the name field to separate variables Y1, Y2, Y3, ...

2-842

deal

Examples Example 1 — Assign Data From a Cell Array

Use deal to copy the contents of a 4-element cell array into four
separate output variables.

C = {rand(3) ones(3,1) eye(3) zeros(3,1)};
[a,b,c,d] = deal(C{:})

a =
0.9501 0.4860 0.4565
0.2311 0.8913 0.0185
0.6068 0.7621 0.8214

b =
1
1
1

c =
1 0 0
0 1 0
0 0 1

d =
0
0
0

Example 2 — Assign Data From Structure Fields

Use deal to obtain the contents of all the name fields in a structure
array:

A.name = 'Pat'; A.number = 176554;
A(2).name = 'Tony'; A(2).number = 901325;
[name1,name2] = deal(A(:).name)

name1 =
Pat

2-843

deal

name2 =
Tony

Example 3 — Doing the Same Without deal

As of MATLAB Version 7.0, you can, in most cases, access the contents
of cell arrays and structure fields without using the deal function.
The two commands shown below perform the same operation as those
used in the previous two examples, except that these commands do
not require deal.

[a,b,c,d] = C{:}
[name1,name2] = A(:).name

See Also cell, iscell, celldisp, struct, isstruct, fieldnames, isfield,
orderfields, rmfield, cell2struct, struct2cell

2-844

deblank

Purpose Strip trailing blanks from end of string

Syntax str = deblank(str)
c = deblank(c)

Description str = deblank(str) removes all trailing whitespace and null
characters from the end of character string str. A whitespace is any
character for which the isspace function returns logical 1 (true).

c = deblank(c) when c is a cell array of strings, applies deblank to
each element of c.

The deblank function is useful for cleaning up the rows of a character
array.

Examples Example 1 – Removing Trailing Blanks From a String

Compose a string str that contains space, tab, and null characters:

NL = char(0); TAB = char(9);
str = [NL 32 TAB NL 'AB' 32 NL 'CD' NL 32 TAB NL 32];

Display all characters of the string between | symbols:

['|' str '|']
ans =

| AB CD |

Remove trailing whitespace and null characters, and redisplay the
string:

newstr = deblank(str);

['|' newstr '|']
ans =

| AB CD|

2-845

deblank

Example 2– Removing Trailing Blanks From a Cell Array of
Strings

A{1,1} = 'MATLAB ';
A{1,2} = 'SIMULINK ';
A{2,1} = 'Toolboxes ';
A{2,2} = 'The MathWorks ';
A =

'MATLAB ' 'SIMULINK '
'Toolboxes ' 'The MathWorks '

deblank(A)
ans =

'MATLAB' 'SIMULINK'
'Toolboxes' 'The MathWorks'

See Also strjust, strtrim

2-846

debug

Purpose List M-file debugging functions

GUI
Alternatives

Use the Debug menu in most desktop tools, or use the Editor/Debugger.

Syntax debug

Description debug lists M-file debugging functions.

Use debugging functions (listed in the See Also section) to help you
identify problems in your M-files. Set breakpoints using dbstop.
When MATLAB encounters a breakpoint during execution, it enters
debug mode, the Editor/Debugger becomes active, and the prompt in
the Command Window changes to a K>>. Any MATLAB command is
allowed at the prompt. To resume execution, use dbcont or dbstep. To
exit from debug mode, use dbquit.

To open the M-File in the Editor/Debugger when execution reaches a
breakpoint, select Debug > Open M-Files When Debugging.

See Also dbclear, dbcont, dbdown, dbquit, dbstack, dbstatus, dbstep, dbstop,
dbtype, dbup, evalin, whos

“Finding Errors, Debugging, and Correcting M-Files” in the MATLAB
Desktop Tools and Development Environment documentation

2-847

dec2base

Purpose Convert decimal to base N number in string

Syntax str = dec2base(d, base)
str = dec2base(d, base, n)

Description str = dec2base(d, base) converts the nonnegative integer d to the
specified base. d must be a nonnegative integer smaller than 2^52, and
base must be an integer between 2 and 36. The returned argument
str is a string.

str = dec2base(d, base, n) produces a representation with at least
n digits.

Examples The expression dec2base(23, 2) converts 2310 to base 2, returning
the string '10111'.

See Also base2dec

2-848

dec2bin

Purpose Convert decimal to binary number in string

Syntax str = dec2bin(d)
str = dec2bin(d,n)

Description returns the

str = dec2bin(d) binary representation of d as a string. d must be a
nonnegative integer smaller than 2^52.

str = dec2bin(d,n) produces a binary representation with at least n
bits.

Examples Decimal 23 converts to binary 010111:

dec2bin(23)
ans =

10111

See Also bin2dec, dec2hex

2-849

dec2hex

Purpose Convert decimal to hexadecimal number in string

Syntax str = dec2hex(d)
str = dec2hex(d, n)

Description str = dec2hex(d) converts the decimal integer d to its hexadecimal
representation stored in a MATLAB string. d must be a nonnegative
integer smaller than 2^52.

str = dec2hex(d, n) produces a hexadecimal representation with
at least n digits.

Examples To convert decimal 1023 to hexadecimal,

dec2hex(1023)

ans =
3FF

See Also dec2bin, format, hex2dec, hex2num

2-850

decic

Purpose Compute consistent initial conditions for ode15i

Syntax [y0mod,yp0mod] = decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0)
[y0mod,yp0mod] = decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0,

options)
[y0mod,yp0mod,resnrm] = decic(odefun,t0,y0,fixed_y0,yp0,

fixed_yp0...)

Description [y0mod,yp0mod] = decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0)
uses the inputs y0 and yp0 as initial guesses for an iteration to find
output values that satisfy the requirement ,
i.e., y0mod and yp0mod are consistent initial conditions. odefun is a
function handle. See “Function Handles” in the MATLAB Programming
documentation for more information. The function decic changes
as few components of the guesses as possible. You can specify that
decic holds certain components fixed by setting fixed_y0(i) = 1 if
no change is permitted in the guess for y0(i) and 0 otherwise. decic
interprets fixed_y0 = [] as allowing changes in all entries. fixed_yp0
is handled similarly.

“Parameterizing Functions Called by Function Functions” in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the function odefun, if necessary.

You cannot fix more than length(y0) components. Depending on the
problem, it may not be possible to fix this many. It also may not be
possible to fix certain components of y0 or yp0. It is recommended that
you fix no more components than necessary.

[y0mod,yp0mod] =
decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0,options) computes
as above with default tolerances for consistent initial conditions,
AbsTol and RelTol, replaced by the values in options, a structure
you create with the odeset function.

[y0mod,yp0mod,resnrm] =
decic(odefun,t0,y0,fixed_y0,yp0,fixed_yp0...) returns the

2-851

decic

norm of odefun(t0,y0mod,yp0mod) as resnrm. If the norm seems
unduly large, use options to decrease RelTol (1e-3 by default).

Examples These demos provide examples of the use of decic in solving implicit
ODEs: ihb1dae, iburgersode.

See Also ode15i, odeget, odeset, function_handle (@)

2-852

deconv

Purpose Deconvolution and polynomial division

Syntax [q,r] = deconv(v,u)

Description [q,r] = deconv(v,u) deconvolves vector u out of vector v, using long
division. The quotient is returned in vector q and the remainder in
vector r such that v = conv(u,q)+r .

If u and v are vectors of polynomial coefficients, convolving them is
equivalent to multiplying the two polynomials, and deconvolution is
polynomial division. The result of dividing v by u is quotient q and
remainder r.

Examples If

u = [1 2 3 4]
v = [10 20 30]

the convolution is

c = conv(u,v)
c =

10 40 100 160 170 120

Use deconvolution to recover u:

[q,r] = deconv(c,u)
q =

10 20 30
r =

0 0 0 0 0 0

This gives a quotient equal to v and a zero remainder.

Algorithm deconv uses the filter primitive.

See Also conv, residue

2-853

del2

Purpose Discrete Laplacian

Syntax L = del2(U)
-L = del2(U)
L = del2(U,h)
L = del2(U,hx,hy)
L = del2(U,hx,hy,hz,...)

Definition If the matrix U is regarded as a function evaluated at the point
on a square grid, then 4*del2(U) is a finite difference approximation of
Laplace’s differential operator applied to , that is:

where:

in the interior. On the edges, the same formula is applied to a cubic
extrapolation.

For functions of more variables , del2(U) is an
approximation,

where is the number of variables in .

Description L = del2(U) where U is a rectangular array is a discrete approximation
of

2-854

del2

The matrix L is the same size as U with each element equal to the
difference between an element of U and the average of its four neighbors.

-L = del2(U) when U is an multidimensional array, returns an
approximation of

where is ndims(u).

L = del2(U,h) where H is a scalar uses H as the spacing between points
in each direction (h=1 by default).

L = del2(U,hx,hy) when U is a rectangular array, uses the spacing
specified by hx and hy. If hx is a scalar, it gives the spacing between
points in the x-direction. If hx is a vector, it must be of length size(u,2)
and specifies the x-coordinates of the points. Similarly, if hy is a scalar,
it gives the spacing between points in the y-direction. If hy is a vector,
it must be of length size(u,1) and specifies the y-coordinates of the
points.

L = del2(U,hx,hy,hz,...) where U is multidimensional uses the
spacing given by hx, hy, hz, ...

Remarks MATLAB computes the boundaries of the grid by extrapolating the
second differences from the interior. The algorithm used for this
computation can be seen in the del2 M-file code. To view this code, type

type del2

Examples The function

2-855

del2

has

For this function, 4*del2(U) is also 4.

[x,y] = meshgrid(-4:4,-3:3);
U = x.*x+y.*y
U =

25 18 13 10 9 10 13 18 25
20 13 8 5 4 5 8 13 20
17 10 5 2 1 2 5 10 17
16 9 4 1 0 1 4 9 16
17 10 5 2 1 2 5 10 17
20 13 8 5 4 5 8 13 20
25 18 13 10 9 10 13 18 25

V = 4*del2(U)
V =

4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4

See Also diff, gradient

2-856

delaunay

Purpose Delaunay triangulation

Syntax TRI = delaunay(x,y)
TRI = delaunay(x,y,options)

Definition Given a set of data points, the Delaunay triangulation is a set of
lines connecting each point to its natural neighbors. The Delaunay
triangulation is related to the Voronoi diagram — the circle
circumscribed about a Delaunay triangle has its center at the vertex of
a Voronoi polygon.

Description TRI = delaunay(x,y) for the data points defined by vectors x and
y, returns a set of triangles such that no data points are contained
in any triangle’s circumscribed circle. Each row of the m-by-3 matrix
TRI defines one such triangle and contains indices into x and y. If the
original data points are collinear or x is empty, the triangles cannot be
computed and delaunay returns an empty matrix.

delaunay uses Qhull.

TRI = delaunay(x,y,options) specifies a cell array of strings
options to be used in Qhull via delaunayn. The default options are
{'Qt','Qbb','Qc'}.

If options is [], the default options are used. If options is {''}, no
options are used, not even the default. For more information on Qhull
and its options, see http://www.qhull.org.

2-857

http://www.qhull.org

delaunay

Remarks The Delaunay triangulation is used by: griddata (to interpolate
scattered data), voronoi (to compute the voronoi diagram), and is
useful by itself to create a triangular grid for scattered data points.

The functions dsearch and tsearch search the triangulation to find
nearest neighbor points or enclosing triangles, respectively.

Visualization Use one of these functions to plot the output of delaunay:

triplot Displays the triangles defined in the m-by-3 matrix
TRI. See Example 1.

trisurf Displays each triangle defined in the m-by-3 matrix
TRI as a surface in 3-D space. To see a 2-D surface,
you can supply a vector of some constant value for the
third dimension. For example

trisurf(TRI,x,y,zeros(size(x)))

See Example 2.

trimesh Displays each triangle defined in the m-by-3 matrix
TRI as a mesh in 3-D space. To see a 2-D surface, you
can supply a vector of some constant value for the
third dimension. For example,

trimesh(TRI,x,y,zeros(size(x)))

produces almost the same result as triplot, except
in 3-D space. See Example 2.

Examples Example 1

Plot the Delaunay triangulation for 10 randomly generated points.

rand('state',0);
x = rand(1,10);
y = rand(1,10);

2-858

delaunay

TRI = delaunay(x,y);
subplot(1,2,1),...
triplot(TRI,x,y)
axis([0 1 0 1]);
hold on;
plot(x,y,'or');
hold off

Compare the Voronoi diagram of the same points:

[vx, vy] = voronoi(x,y,TRI);
subplot(1,2,2),...
plot(x,y,'r+',vx,vy,'b-'),...
axis([0 1 0 1])

Example 2

Create a 2-D grid then use trisurf to plot its Delaunay triangulation
in 3-D space by using 0s for the third dimension.

[x,y] = meshgrid(1:15,1:15);

2-859

delaunay

tri = delaunay(x,y);
trisurf(tri,x,y,zeros(size(x)))

Next, generate peaks data as a 15-by-15 matrix, and use that data with
the Delaunay triangulation to produce a surface in 3-D space.

z = peaks(15);
trisurf(tri,x,y,z)

2-860

delaunay

You can use the same data with trimesh to produce a mesh in 3-D space.

trimesh(tri,x,y,z)

2-861

delaunay

Example 3

The following example illustrates the options input for delaunay.

x = [-0.5 -0.5 0.5 0.5];
y = [-0.5 0.5 0.5 -0.5];

The command

T = delaunay(X);

returns the following error message.

??? qhull input error: can not scale last coordinate. Input is
cocircular

or cospherical. Use option 'Qz' to add a point at infinity.

The error message indicates that you should add 'Qz' to the default
Qhull options.

2-862

delaunay

tri = delaunay(x,y,{'Qt','Qbb','Qc','Qz'})

tri =

3 2 1
3 4 1

Algorithm delaunay is based on Qhull [1]. For information about Qhull,
see http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

See Also delaunay3, delaunay, dsearch, griddata, plot, triplot, trimesh,
trisurf, tsearch, voronoi

References [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, “The Quickhull
Algorithm for Convex Hulls,” ACM Transactions on Mathematical
Software, Vol. 22, No. 4, Dec. 1996, p. 469-483.

2-863

http://www.qhull.org/
http://www.qhull.org/COPYING.txt

delaunay3

Purpose 3-D Delaunay tessellation

Syntax T = delaunay3(x,y,z)
T = delaunay3(x,y,z,options)

Description T = delaunay3(x,y,z) returns an array T, each row of which contains
the indices of the points in (x,y,z) that make up a tetrahedron in the
tessellation of (x,y,z). T is a numtes-by-4 array where numtes is the
number of facets in the tessellation. x, y, and z are vectors of equal
length. If the original data points are collinear or x, y, and z define an
insufficient number of points, the triangles cannot be computed and
delaunay3 returns an empty matrix.

delaunay3 uses Qhull.

T = delaunay3(x,y,z,options) specifies a cell array of strings
options to be used in Qhull via delaunay3. The default options are
{'Qt','Qbb','Qc'}.

If options is [], the default options are used. If options is {''}, no
options are used, not even the default. For more information on Qhull
and its options, see http://www.qhull.org.

Visualization Use tetramesh to plot delaunay3 output. tetramesh displays the
tetrahedrons defined in T as mesh. tetramesh uses the default
transparency parameter value 'FaceAlpha' = 0.9.

Examples Example 1

This example generates a 3-dimensional Delaunay tessellation, then
uses tetramesh to plot the tetrahedrons that form the corresponding
simplex. camorbit rotates the camera position to provide a meaningful
view of the figure.

d = [-1 1];
[x,y,z] = meshgrid(d,d,d); % A cube
x = [x(:);0];
y = [y(:);0];
z = [z(:);0];

2-864

http://www.qhull.org

delaunay3

% [x,y,z] are corners of a cube plus the center.
Tes = delaunay3(x,y,z)

Tes =

9 1 5 6
3 9 1 5
2 9 1 6
2 3 9 4
2 3 9 1
7 9 5 6
7 3 9 5
8 7 9 6
8 2 9 6
8 2 9 4
8 3 9 4
8 7 3 9

X = [x(:) y(:) z(:)];
tetramesh(Tes,X);camorbit(20,0)

2-865

delaunay3

Example 2

The following example illustrates the options input for delaunay3.

X = [-0.5 -0.5 -0.5 -0.5 0.5 0.5 0.5 0.5];
Y = [-0.5 -0.5 0.5 0.5 -0.5 -0.5 0.5 0.5];
Z = [-0.5 0.5 -0.5 0.5 -0.5 0.5 -0.5 0.5];

The command

T = delaunay3(X);

returns the following error message.

??? qhull input error: can not scale last coordinate. Input is
cocircular

2-866

delaunay3

or cospherical. Use option 'Qz' to add a point at infinity.

The error message indicates that you should add 'Qz' to the default
Qhull options.

T = delaunay3(X, Y, Z, {'Qt', 'Qbb', 'Qc', 'Qz'})

T =

4 3 5 1
4 2 5 1
4 7 3 5
4 7 8 5
4 6 2 5
4 6 8 5

Algorithm delaunay3 is based on Qhull [1]. For information about Qhull,
see http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

See Also delaunay, delaunayn

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, “The Quickhull
Algorithm for Convex Hulls,” ACM Transactions on Mathematical
Software, Vol. 22, No. 4, Dec. 1996, p. 469-483.

2-867

http://www.qhull.org/
http://www.qhull.org/COPYING.txt

delaunayn

Purpose N-D Delaunay tessellation

Syntax T = delaunayn(X)
T = delaunayn(X, options)

Description T = delaunayn(X) computes a set of simplices such that no data
points of X are contained in any circumspheres of the simplices. The
set of simplices forms the Delaunay tessellation. X is an m-by-n array
representing m points in n-dimensional space. T is a numt-by-(n+1)
array where each row contains the indices into X of the vertices of the
corresponding simplex.

delaunayn uses Qhull.

T = delaunayn(X, options) specifies a cell array of strings options
to be used as options in Qhull. The default options are:

• {'Qt','Qbb','Qc'} for 2- and 3-dimensional input

• {'Qt','Qbb','Qc','Qx'} for 4 and higher-dimensional input

If options is [], the default options used. If options is {''}, no options
are used, not even the default. For more information on Qhull and its
options, see http://www.qhull.org.

Visualization Plotting the output of delaunayn depends of the value of n:

• For n = 2, use triplot, trisurf, or trimesh as you would for
delaunay.

• For n = 3, use tetramesh as you would for delaunay3.

For more control over the color of the facets, use patch to plot
the output. For an example, see “Tessellation and Interpolation
of Scattered Data in Higher Dimensions” in the MATLAB
documentation.

• You cannot plot delaunayn output for n > 3.

2-868

http://www.qhull.org

delaunayn

Examples Example 1

This example generates an n-dimensional Delaunay tessellation, where
n = 3.

d = [-1 1];
[x,y,z] = meshgrid(d,d,d); % A cube
x = [x(:);0];
y = [y(:);0];
z = [z(:);0];
% [x,y,z] are corners of a cube plus the center.
X = [x(:) y(:) z(:)];
Tes = delaunayn(X)

Tes =
9 1 5 6
3 9 1 5
2 9 1 6
2 3 9 4
2 3 9 1
7 9 5 6
7 3 9 5
8 7 9 6
8 2 9 6
8 2 9 4
8 3 9 4
8 7 3 9

You can use tetramesh to visualize the tetrahedrons that form the
corresponding simplex. camorbit rotates the camera position to provide
a meaningful view of the figure.

tetramesh(Tes,X);camorbit(20,0)

2-869

delaunayn

Example 2

The following example illustrates the options input for delaunayn.

X = [-0.5 -0.5 -0.5;...
-0.5 -0.5 0.5;...
-0.5 0.5 -0.5;...
-0.5 0.5 0.5;...
0.5 -0.5 -0.5;...
0.5 -0.5 0.5;...
0.5 0.5 -0.5;...
0.5 0.5 0.5];

The command

T = delaunayn(X);

2-870

delaunayn

returns the following error message.

??? qhull input error: can not scale last coordinate. Input is cocircular
or cospherical. Use option ’Qz’ to add a point at infinity.

This suggests that you add 'Qz' to the default options.

T = delaunayn(X,{'Qt','Qbb','Qc','Qz'});

To visualize this answer you can use the tetramesh function:

tetramesh(T,X)

2-871

delaunayn

Algorithm delaunayn is based on Qhull [1]. For information about Qhull,
see http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

See Also convhulln, delaunayn, delaunay3, tetramesh, voronoin

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, “The Quickhull
Algorithm for Convex Hulls,” ACM Transactions on Mathematical
Software, Vol. 22, No. 4, Dec. 1996, p. 469-483.

2-872

http://www.qhull.org/
http://www.qhull.org/COPYING.txt

delete

Purpose Remove files or graphics objects

Graphical
Interface

As an alternative to the delete function, you can delete files using the
“Current Directory Browser”, as described in the Desktop Tools and
Development Environment documentation.

Syntax delete filename
delete(h)
delete('filename')

Description delete filename deletes the named file from the disk. The filename
may include an absolute pathname or a pathname relative to the
current directory. The filename may also include wildcards, (*).

delete(h) deletes the graphics object with handle h. The function
deletes the object without requesting verification even if the object is a
window.

delete('filename') is the function form of delete. Use this form
when the filename is stored in a string.

Note MATLAB does not ask for confirmation when you enter the
delete command. To avoid accidentally losing files or graphics objects
that you need, make sure that you have accurately specified the items
you want deleted.

Remarks The action that the delete function takes on deleted files depends upon
the setting of the MATLAB recycle state. If you set the recycle state
to on, MATLAB moves deleted files to your recycle bin or temporary
directory. With the recycle state set to off (the default), deleted files
are permanently removed from the system.

To set the recycle state for all MATLAB sessions, use the Preferences
dialog box. Open the Preferences dialog and select General. To
enable or disable recycling, click Move files to the recycle bin or
Delete files permanently. See “General Preferences for MATLAB”

2-873

delete

in the Desktop Tools and Development Environment documentation
for more information.

The delete function deletes files and handles to graphics objects only.
Use the rmdir function to delete directories.

Examples To delete all files with a .mat extension in the ../mytests/ directory,
type

delete('../mytests/*.mat')

To delete a directory, use rmdir rather than delete:

rmdir mydirectory

See Also recycle, dir, edit, fileparts, mkdir, rmdir, type

2-874

delete (COM)

Purpose Remove COM control or server

Syntax h.delete
delete(h)

Description h.delete releases all interfaces derived from the specified COM server
or control, and then deletes the server or control itself. This is different
from releasing an interface, which releases and invalidates only that
interface.

delete(h) is an alternate syntax for the same operation.

Examples Create a Microsoft Calender application. Then create a TitleFont
interface and use it to change the appearance of the font of the
calendar’s title:

f = figure('position',[300 300 500 500]);
cal = actxcontrol('mscal.calendar', [0 0 500 500], f);

TFont = cal.TitleFont
TFont =

Interface.Standard_OLE_Types.Font

TFont.Name = 'Viva BoldExtraExtended';
TFont.Bold = 0;

When you’re finished working with the title font, release the TitleFont
interface:

TFont.release;

Now create a GridFont interface and use it to modify the size of the
calendar’s date numerals:

GFont = cal.GridFont
GFont =

Interface.Standard_OLE_Types.Font

2-875

delete (COM)

GFont.Size = 16;

When you’re done, delete the cal object and the figure window. Deleting
the cal object also releases all interfaces to the object (e.g., GFont):

cal.delete;
delete(f);
clear f;

Note that, although the object and interfaces themselves have been
destroyed, the variables assigned to them still reside in the MATLAB
workspace until you remove them with clear:

whos
Name Size Bytes Class

GFont 1x1 0 handle
TFone 1x1 0 handle
cal 1x1 0 handle

Grand total is 3 elements using 0 bytes

See Also release, save, load, actxcontrol, actxserver

2-876

delete (ftp)

Purpose Remove file on FTP server

Syntax delete(f,'filename')

Description delete(f,'filename') removes the file filename from the current
directory of the FTP server f, where f was created using ftp.

Examples Connect to server testsite.

test=ftp('ftp.testsite.com')

Change the current directory to testdir and view the contents.

cd(test,'testdir');
dir(test)

See Also ftp

2-877

delete (serial)

Purpose Remove serial port object from memory

Syntax delete(obj)

Arguments obj A serial port object or an array of serial port objects.

Description delete(obj) removes obj from memory.

Remarks When you delete obj, it becomes an invalid object. Because you cannot
connect an invalid serial port object to the device, you should remove it
from the workspace with the clear command. If multiple references
to obj exist in the workspace, then deleting one reference invalidates
the remaining references.

If obj is connected to the device, it has a Status property value of
open. If you issue delete while obj is connected, then the connection
is automatically broken. You can also disconnect obj from the device
with the fclose function.

If you use the help command to display help for delete, then you need
to supply the pathname shown below.

help serial/delete

Example This example creates the serial port object s, connects s to the device,
writes and reads text data, disconnects s from the device, removes s
from memory using delete, and then removes s from the workspace
using clear.

s = serial('COM1');
fopen(s)
fprintf(s,'*IDN?')
idn = fscanf(s);
fclose(s)
delete(s)
clear s

2-878

delete (serial)

See Also Functions

clear, fclose, isvalid

Properties

Status

2-879

delete (timer)

Purpose Remove timer object from memory

Syntax delete(obj)

Description delete(obj) removes the timer object, obj, from memory. If obj is an
array of timer objects, delete removes all the objects from memory.

When you delete a timer object, it becomes invalid and cannot be
reused. Use the clear command to remove invalid timer objects from
the workspace.

If multiple references to a timer object exist in the workspace, deleting
the timer object invalidates the remaining references. Use the clear
command to remove the remaining references to the object from the
workspace.

See Also clear, isvalid(timer), timer

2-880

deleteproperty

Purpose Remove custom property from object

Syntax h.deleteproperty('propertyname')
deleteproperty(h, 'propertyname')

Description h.deleteproperty('propertyname') deletes the property specified in
the string propertyname from the custom properties belonging to object
or interface, h.

deleteproperty(h, 'propertyname') is an alternate syntax for the
same operation.

Note You can only delete properties that have been created with
addproperty.

Examples Create an mwsamp control and add a new property named Position to
it. Assign an array value to the property:

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f);
h.get

Label: 'Label'
Radius: 20

h.addproperty('Position');
h.Position = [200 120];
h.get

Label: 'Label'
Radius: 20

Position: [200 120]

Delete the custom Position property:

h.deleteproperty('Position');
h.get

Label: 'Label'

2-881

deleteproperty

Radius: 20

See Also addproperty, get, set, inspect

2-882

delevent

Purpose Remove tsdata.event objects from timeseries object

Syntax ts = delevent(ts,event)
ts = delevent(ts,events)
ts = delevent(ts,event,n)

Description ts = delevent(ts,event) removes the tsdata.event object from the
ts.events property, where event is an event name string.

ts = delevent(ts,events) removes the tsdata.event object from the
ts.events property, where events is a cell array of event name strings.

ts = delevent(ts,event,n) removes the nth tsdata.event object
from the ts.events property. event is the name of the tsdata.event
object.

Examples The following example shows how to remove an event from a
timeseries object:

1 Create a time series.

ts = timeseries(rand(5,4))

2 Create an event object called 'test' such that the event occurs at
time 3.

e = tsdata.event('test',3)

3 Add the event object to the time series ts.

ts = addevent(ts,e)

4 Remove the event object from the time series ts.

ts = delevent(ts,'test')

See Also addevent, timeseries, tsdata.event, tsprops

2-883

delsample

Purpose Remove sample from timeseries object

Syntax ts = delsample(ts,'Index',N)
ts = delsample(ts,'Value',Time)

Description ts = delsample(ts,'Index',N) deletes samples from the timeseries
object ts. N specifies the indices of the ts time vector that correspond to
the samples you want to delete.

ts = delsample(ts,'Value',Time) deletes samples from the
timeseries object ts. Time specifies the time values that correspond to
the samples you want to delete.

See Also addsample

2-884

delsamplefromcollection

Purpose Remove sample from tscollection object

Syntax tsc = delsamplefromcollection(tsc,'Index',N)
tsc = delsamplefromcollection(tsc,'Value',Time)

Description tsc = delsamplefromcollection(tsc,'Index',N) deletes samples
from the tscollection object tsc. N specifies the indices of the tsc time
vector that correspond to the samples you want to delete.

tsc = delsamplefromcollection(tsc,'Value',Time) deletes
samples from the tscollection object tsc. Time specifies the time
values that correspond to the samples you want to delete.

See Also addsampletocollection, tscollection

2-885

demo

Purpose Access product demos via Help browser

GUI
Alternatives

As an alternative to the demo function, you can select Help > Demos
from any desktop tool, or click the Demos tab when the Help browser
is open.

Syntax demo
demo subtopic
demo subtopic category
demo('subtopic', 'category')

Description demo opens the Demos pane in the Help browser, listing demos for
all installed products. The Help browser product filter preference
applies to the demos listed, so installed products (and their categories)
appear only if selected in the product filter. In the left pane, expand
the listing for a product area (for example, MATLAB). Within that
product area, expand the listing for a product or product category (for
example, MATLAB Programming). Select a specific demo from the
list (for example, Square Wave from Sine Waves). In the right pane,
view instructions for using the demo. For more information, see the
topic “Demos in the Help Browser” in the MATLAB Desktop Tools and
Development Environment documentation. To run a demo from the
command line, type the demo name. To run an M-file demo, open it in
the Editor/Debugger and run it using Cell > Evaluate Current Cell
and Advance, or run echodemo followed by the demo name.

demo subtopic opens the Demos pane in the Help browser with the
specified subtopic expanded. Subtopics are matlab, toolbox, simulink,
blockset, and links and targets. If no products in subtopic are
installed, or if none are selected in the Help browser product filter
preference, an error page appears.

demo subtopic category opens the Demos pane in the Help browser
to the specified product or category within the subtopic. The demo
function uses the full name displayed in the Demo pane for category.
If the product specified by category is not installed, or is not selected in
the Help browser product filter preference, an error page appears.

2-886

demo

demo('subtopic', 'category') is the function form of the syntax.
Use this form when subtopic or category is more than one word.

This illustration shows the result of running

demo matlab graphics

and then selecting the Square Wave from Sine Waves example.

2-887

demo

2-888

demo

Examples Accessing Toolbox Demos

To find the demos relating to Communications Toolbox, type

demo toolbox communications

The Help browser opens to the Demos pane with the Toolbox subtopic
expanded and with the Communications product highlighted and
expanded to show the available demos.

Accessing Simulink Demos

To access the demos within Simulink, type

demo simulink automotive

The Demos pane opens with the Simulink subtopic and Automotive
category expanded.

Function Form of demo

To access the Simulink Parameter Estimation demos, run

demo('simulink', 'simulink parameter estimation')

which displays

2-889

demo

2-890

demo

Running a Demo from the Command Line

Type

vibes

to run a visualization demonstration showing an animated L-shaped
membrane.

Running an M-File Demo from the Command Line

Type

quake

to run an earthquake data demo. Not much appears to happen because
quake is an M-file demo and executes from start to end without stopping.
Verify this by viewing the M-file, quake.m, for example, by typing

edit quake

The first line, that is, the H1 line for quake, is

%% Loma Prieta Earthquake

The %% indicates that quake is an M-file demo. To step through the
demo cell-by-cell, from the Editor/Debugger select Cell > Evaluate
Current Cell and Advance.

Alternatively, run

echodemo quake

and the quake demo runs step-by-step in the Command Window.

See Also echodemo, grabcode, help, helpbrowser, helpwin, lookfor

2-891

depdir

Purpose List dependent directories of M-file or P-file

Syntax list = depdir('file_name')
[list, prob_files, prob_sym,

prob_strings] = depdir('file_name')
[...] = depdir('file_name1', 'file_name2',...)

Description The depdir function lists the directories of all the functions that a
specified M-file or P-file needs to operate. This function is useful for
finding all the directories that need to be included with a run-time
application and for determining the run-time path.

list = depdir('file_name') creates a cell array of strings containing
the directories of all the M-files and P-files that file_name.m or
file_name.p uses. This includes the second-level files that are called
directly by file_name, as well as the third-level files that are called by
the second-level files, and so on.

[list, prob_files, prob_sym, prob_strings] =
depdir('file_name') creates three additional cell arrays
containing information about any problems with the depdir
search. prob_files contains filenames that depdir was unable to
parse. prob_sym contains symbols that depdir was unable to find.
prob_strings contains callback strings that depdir was unable to
parse.

[...] = depdir('file_name1', 'file_name2',...) performs the
same operation for multiple files. The dependent directories of all files
are listed together in the output cell arrays.

Example list = depdir('mesh')

See Also depfun

2-892

depfun

Purpose List dependencies of M-file or P-file

Syntax list = depfun('fun')
[list, builtins, classes] = depfun('fun')
[list, builtins, classes, prob_files, prob_sym, eval_strings,

... called_from, java_classes] = depfun('fun')
[...] = depfun('fun1', 'fun2',...)
[...] = depfun({'fun1', 'fun2', ...})
[...] = depfun('fig_file')
[...] = depfun(..., options)

Description The depfun function lists the paths of all files a specified M-file or P-file
needs to operate.

Note It cannot be guaranteed that depfun will find every dependent
file. Some dependent files can be hidden in callbacks, or can be
constructed dynamically for evaluation, for example. Also note that the
list of functions returned by depfun often includes extra files that would
never be called if the specified function were actually evaluated.

list = depfun('fun') creates a cell array of strings containing
the paths of all the files that function fun uses. This includes the
second-level files that are called directly by fun, and the third-level files
that are called by the second-level files, and so on.

Function fun must be on the MATLAB path, as determined by the
which function. If the MATLAB path contains any relative directories,
then files in those directories will also have a relative path.

Note If MATLAB returns a parse error for any of the input functions, or
if the prob_files output below is nonempty, then the rest of the output
of depfun might be incomplete. You should correct the problematic files
and invoke depfun again.

2-893

depfun

[list, builtins, classes] = depfun('fun') creates three cell
arrays containing information about dependent functions. list
contains the paths of all the files that function fun and its subordinates
use. builtins contains the built-in functions that fun and its
subordinates use. classes contains the MATLAB classes that fun and
its subordinates use.

[list, builtins, classes, prob_files, prob_sym,
eval_strings,... called_from, java_classes] =
depfun('fun') creates additional cell arrays or structure arrays
containing information about any problems with the depfun search
and about where the functions in list are invoked. The additional
outputs are

• prob_files — Indicates which files depfun was unable to parse,
find, or access. Parsing problems can arise from MATLAB syntax
errors. prob_files is a structure array having these fields:

- name (path to the file)

- listindex (index of the file in list)

- errmsg (problems encountered)

• unused — This is a placeholder for an output argument that is not
fully implemented at this time. MATLAB returns an empty structure
array for this output.

• called_from — Cell array of the same length as list that indicates
which functions call other functions. This cell array is arranged so
that the following statement returns all functions in function fun
that invoke the function list{i}:

list(called_from{i})

• java_classes — Cell array of Java class names used by fun and
its subordinate functions.

2-894

depfun

[...] = depfun('fun1', 'fun2',...) performs the same operation
for multiple functions. The dependent functions of all files are listed
together in the output arrays.

[...] = depfun({'fun1', 'fun2', ...}) performs the same
operation, but on a cell array of functions. The dependent functions of
all files are listed together in the output array.

[...] = depfun('fig_file') looks for dependent functions among
the callback strings of the GUI elements that are defined in the figure
file named fig_file.

[...] = depfun(..., options) modifies the depfun operation
according to the options specified (see table below).

Option Description

'-all' Computes all possible left-side arguments and
displays the results in the report(s). Only the
specified arguments are returned.

'-calltree' Returns a call list in place of a called_from
list. This is derived from the called_from list
as an extra step.

'-expand' Includes both indices and full paths in the call
or called_from list.

'-print', 'file' Prints a full report to file.

'-quiet' Displays only error and warning messages, and
not a summary report.

'-toponly' Examines only the files listed explicitly as input
arguments. It does not examine the files on
which they depend.

'-verbose' Outputs additional internal messages.

Examples list = depfun('mesh'); % Files mesh.m depends on
list = depfun('mesh','-toponly') % Files mesh.m depends on
directly

2-895

depfun

[list,builtins,classes] = depfun('gca');

See Also depdir

2-896

det

Purpose Matrix determinant

Syntax d = det(X)

Description d = det(X) returns the determinant of the square matrix X. If X
contains only integer entries, the result d is also an integer.

Remarks Using det(X) == 0 as a test for matrix singularity is appropriate
only for matrices of modest order with small integer entries. Testing
singularity using abs(det(X)) <= tolerance is not recommended as
it is difficult to choose the correct tolerance. The function cond(X) can
check for singular and nearly singular matrices.

Algorithm The determinant is computed from the triangular factors obtained by
Gaussian elimination

[L,U] = lu(A)
s = det(L) % This is always +1 or -1
det(A) = s*prod(diag(U))

Examples The statement A = [1 2 3; 4 5 6; 7 8 9]

produces

A =
1 2 3
4 5 6
7 8 9

This happens to be a singular matrix, so d = det(A) produces d = 0.
Changing A(3,3) with A(3,3) = 0 turns A into a nonsingular matrix.
Now d = det(A) produces d = 27.

See Also cond, condest, inv, lu, rref

The arithmetic operators \, /

2-897

detrend

Purpose Remove linear trends

Syntax y = detrend(x)
y = detrend(x,'constant')
y = detrend(x,'linear',bp)

Description detrend removes the mean value or linear trend from a vector or
matrix, usually for FFT processing.

y = detrend(x) removes the best straight-line fit from vector x and
returns it in y. If x is a matrix, detrend removes the trend from each
column.

y = detrend(x,'constant') removes the mean value from vector x or,
if x is a matrix, from each column of the matrix.

y = detrend(x,'linear',bp) removes a continuous, piecewise linear
trend from vector x or, if x is a matrix, from each column of the matrix.
Vector bp contains the indices of the breakpoints between adjacent
linear segments. The breakpoint between two segments is defined as
the data point that the two segments share.

detrend(x,'linear'), with no breakpoint vector specified, is the same
as detrend(x).

Example sig = [0 1 -2 1 0 1 -2 1 0]; % signal with no linear trend
trend = [0 1 2 3 4 3 2 1 0]; % two-segment linear trend

2-898

detrend

x = sig+trend; % signal with added trend
y = detrend(x,'linear',5) % breakpoint at 5th element

y =

-0.0000
1.0000

-2.0000
1.0000
0.0000
1.0000

-2.0000
1.0000

-0.0000

Note that the breakpoint is specified to be the fifth element, which is
the data point shared by the two segments.

Algorithm detrend computes the least-squares fit of a straight line (or composite
line for piecewise linear trends) to the data and subtracts the resulting
function from the data. To obtain the equation of the straight-line fit,
use polyfit.

See Also polyfit

2-899

detrend (timeseries)

Purpose Subtract mean or best-fit line and all NaNs from time series

Syntax ts = detrend(ts1,method)
ts = detrend(ts1,Method,Index)

Description ts = detrend(ts1,method) subtracts either a mean or a best-fit line
from time-series data, usually for FFT processing. Method is a string
that specifies the detrend method and has two possible values:

• 'constant' — Subtracts the mean

• 'linear' — Subtracts the best-fit line

ts = detrend(ts1,Method,Index) uses the optional Index
integer array to specify the columns or rows to detrend. When
ts.IsTimeFirst is true, Index specifies one or more data columns.
When ts.IsTimeFirst is false, Index specifies one or more data rows.

Remarks You cannot apply detrend to time-series data with more than two
dimensions.

2-900

deval

Purpose Evaluate solution of differential equation problem

Syntax sxint = deval(sol,xint)
sxint = deval(xint,sol)
sxint = deval(sol,xint,idx)
sxint = deval(xint,sol,idx)
[sxint, spxint] = deval(...)

Description sxint = deval(sol,xint) and sxint = deval(xint,sol) evaluate
the solution of a differential equation problem. sol is a structure
returned by one of these solvers:

• An initial value problem solver (ode45, ode23, ode113, ode15s,
ode23s, ode23t, ode23tb, ode15i)

• A delay differential equations solver (dde23 or ddesd),

• The boundary value problem solver (bvp4c).

xint is a point or a vector of points at which you want the solution. The
elements of xint must be in the interval [sol.x(1),sol.x(end)]. For
each i, sxint(:,i) is the solution at xint(i).

sxint = deval(sol,xint,idx) and sxint = deval(xint,sol,idx)
evaluate as above but return only the solution components with indices
listed in the vector idx.

[sxint, spxint] = deval(...) also returns spxint, the value of the
first derivative of the polynomial interpolating the solution.

Note For multipoint boundary value problems, the solution obtained by
bvp4c might be discontinuous at the interfaces. For an interface point
xc, deval returns the average of the limits from the left and right of xc.
To get the limit values, set the xint argument of deval to be slightly
smaller or slightly larger than xc.

2-901

deval

Example This example solves the system using ode45, and
evaluates and plots the first component of the solution at 100 points in
the interval [0,20].

sol = ode45(@vdp1,[0 20],[2 0]);
x = linspace(0,20,100);
y = deval(sol,x,1);
plot(x,y);

See Also ODE solvers: ode45, ode23, ode113, ode15s, ode23s, ode23t, ode23tb,
ode15i

DDE solvers: dde23, ddesd

BVP solver: bvp4c

2-902

diag

Purpose Diagonal matrices and diagonals of matrix

Syntax X = diag(v,k)
X = diag(v)
v = diag(X,k)
v = diag(X)

Description X = diag(v,k) when v is a vector of n components, returns a square
matrix X of order n+abs(k), with the elements of v on the kth diagonal.
k = 0 represents the main diagonal, k > 0 above the main diagonal,
and k < 0 below the main diagonal.

X = diag(v) puts v on the main diagonal, same as above with k = 0.

v = diag(X,k) for matrix X, returns a column vector v formed from the
elements of the kth diagonal of X.

v = diag(X) returns the main diagonal of X, same as above with k = 0 .

Remarks (diag(X)) is a diagonal matrix.

sum(diag(X)) is the trace of X.

diag([]) generates an empty matrix, ([]).

diag(m-by-1,k) generates a matrix of size m+abs(k)-by-m+abs(k).

2-903

diag

diag(1-by-n,k) generates a matrix of size n+abs(k)-by-n+abs(k).

Examples The statement

diag(-m:m)+diag(ones(2*m,1),1)+diag(ones(2*m,1),-1)

produces a tridiagonal matrix of order 2*m+1.

See Also spdiags, tril, triu, blkdiag

2-904

dialog

Purpose Create and display dialog box

Syntax h = dialog('PropertyName',PropertyValue,...)

Description h = dialog('PropertyName',PropertyValue,...) returns a handle
to a dialog box. This function creates a figure graphics object and sets
the figure properties recommended for dialog boxes. You can specify any
valid figure property value except DockControls, which is always off.

Note By default, the dialog box is modal. A modal dialog box prevents
the user from interacting with other windows before responding. For
more information, see WindowStyle in the MATLAB Figure Properties.

See Also errordlg, helpdlg, inputdlg, listdlg, msgbox, questdlg, warndlg

figure, uiwait, uiresume

“Predefined Dialog Boxes” on page 1-104 for related functions

2-905

diary

Purpose Save session to file

Syntax diary
diary('filename')
diary off
diary on
diary filename

Description The diary function creates a log of keyboard input and the resulting text
output, with some exceptions (see “Remarks” on page 2-906 for details).
The output of diary is an ASCII file, suitable for searching in, printing,
inclusion in most reports and other documents. If you do not specify
filename, MATLAB creates a file named diary in the current directory.

diary toggles diary mode on and off. To see the status of diary, type
get(0,'Diary'). MATLAB returns either on or off indicating the
diary status.

diary('filename') writes a copy of all subsequent keyboard input and
the resulting output (except it does not include graphics) to the named
file, where filename is the full pathname or filename is in the current
MATLAB directory. If the file already exists, output is appended to the
end of the file. You cannot use a filename called off or on. To see the
name of the diary file, use get(0,'DiaryFile').

diary off suspends the diary.

diary on resumes diary mode using the current filename, or the default
filename diary if none has yet been specified.

diary filename is the unquoted form of the syntax.

Remarks Because the output of diary is plain text, the file does not exactly
mirror input and output from the Command Window:

• Output does not include graphics (figure windows).

• Syntax highlighting and font preferences are not preserved.

2-906

diary

• Hidden components of Command Window output such as hyperlink
information generated with matlab: are shown in plain text. For
example, if you enter the following statement

str = sprintf('%s%s', ...
'', ...
'Generate magic square');

disp(str)

MATLAB displays

However, the diary file, when viewed in a text editor, shows

str = sprintf('%s%s', ...
'', ...
'Generate magic square');

disp(str)
Generate magic square

If you view the output of diary in the Command Window, the
Command Window interprets the <a href ...> statement and
displays it as a hyperlink.

• Viewing the output of diary in a console window might produce
different results compared to viewing diary output in the desktop
Command Window. One example is using the \r option for the
fprintf function; using the \n option might alleviate that problem.

See Also evalc

“Command History Window” in the MATLAB Desktop Tools and
Development Environment documentation

2-907

diff

Purpose Differences and approximate derivatives

Syntax Y = diff(X)
Y = diff(X,n)
Y = diff(X,n,dim)

Description Y = diff(X) calculates differences between adjacent elements of X.

If X is a vector, then diff(X) returns a vector, one element shorter than
X, of differences between adjacent elements:

[X(2)-X(1) X(3)-X(2) ... X(n)-X(n-1)]

If X is a matrix, then diff(X) returns a matrix of row differences:

[X(2:m,:)-X(1:m-1,:)]

In general, diff(X) returns the differences calculated along the first
non-singleton (size(X,dim) > 1) dimension of X.

Y = diff(X,n) applies diff recursively n times, resulting in the nth
difference. Thus, diff(X,2) is the same as diff(diff(X)).

Y = diff(X,n,dim) is the nth difference function calculated along the
dimension specified by scalar dim. If order n equals or exceeds the
length of dimension dim, diff returns an empty array.

Remarks Since each iteration of diff reduces the length of X along dimension
dim, it is possible to specify an order n sufficiently high to reduce dim to
a singleton (size(X,dim) = 1) dimension. When this happens, diff
continues calculating along the next nonsingleton dimension.

Examples The quantity diff(y)./diff(x) is an approximate derivative.

x = [1 2 3 4 5];
y = diff(x)
y =

1 1 1 1

2-908

diff

z = diff(x,2)
z =

0 0 0

Given,

A = rand(1,3,2,4);

diff(A) is the first-order difference along dimension 2.

diff(A,3,4) is the third-order difference along dimension 4.

See Also gradient, prod, sum

2-909

diffuse

Purpose Calculate diffuse reflectance

Syntax R = diffuse(Nx,Ny,Nz,S)

Description R = diffuse(Nx,Ny,Nz,S) returns the reflectance of a surface with
normal vector components [Nx,Ny,Nz]. S specifies the direction to the
light source. You can specify these directions as three vectors[x,y,z] or
two vectors [Theta Phi (in spherical coordinates).

Lambert’s Law: R = cos(PSI) where PSI is the angle between the
surface normal and light source.

See Also specular, surfnorm, surfl

“Lighting as a Visualization Tool”

2-910

dir

Purpose Directory listing

Graphical
Interface

As an alternative to the dir function, use the “Current Directory
Browser”.

Syntax dir
dir name
files = dir('dirname')

Description dir lists the files in the current working directory. Results are not
sorted, but presented in the order returned by the operating system.

dir name lists the specified files. The name argument can be a
pathname, filename, or can include both. You can use absolute and
relative pathnames and wildcards (*).

files = dir('dirname') returns the list of files in the specified
directory (or the current directory, if dirname is not specified) to an
m-by-1 structure with the fields.

Fieldname Description Data Type

name Filename char array

date Modification date
timestamp

char array

bytes Number of bytes allocated
to the file

double

isdir 1 if name is a directory; 0
if not

logical

datenum Modification date as
serial date number

double

Remarks Listing Drives

On Windows, obtain a list of drives available using the DOS net use
command. In the Command Window, run

2-911

dir

dos('net use')

Or run

[s,r] = dos('net use')

to return the results to the character array r.

DOS Filenames

The MATLAB dir function is consistent with the Microsoft Windows
OS dir command in that both support short filenames generated by
DOS. For example, both of the following commands are equivalent in
both Windows and MATLAB:

dir long_matlab_mfile_name.m
long_matlab_mfile_name.m

dir long_m~1.m
long_matlab_m-file_name.m

Examples List Directory Contents

To view the contents of the matlab/audiovideo directory, type

dir(fullfile(matlabroot, 'toolbox/matlab/audiovideo'))

Using Wildcard and File Extension

To view the MAT files in your current working directory that include
the term java, type

dir *java*.mat

MATLAB returns all filenames that match this specification:

java_array.mat javafrmobj.mat testjava.mat

Using Relative Pathname

To view the M-files in the MATLAB audiovideo directory, type

2-912

dir

dir(fullfile(matlabroot,'toolbox/matlab/audiovideo/*.m'))

MATLAB returns

Contents.m aviinfo.m render_uimgraudiotoolbar.m

audiodevinfo.m aviread.m sound.m

audioplayerreg.m lin2mu.m soundsc.m

audiorecorderreg.m mmcompinfo.m wavfinfo.m

audiouniquename.m mmfileinfo.m wavplay.m

aufinfo.m movie2avi.m wavread.m

auread.m mu2lin.m wavrecord.m

auwrite.m prefspanel.m wavwrite.m

avifinfo.m render_fullaudiotoolbar.m

Returning File List to Structure

To return the list of files to the variable av_files, type

av_files = dir(fullfile(matlabroot, ...
'toolbox/matlab/audiovideo/*.m'))

MATLAB returns the information in a structure array.

av_files =
24x1 struct array with fields:

name
date
bytes
isdir
datenum

Index into the structure to access a particular item. For example,

av_files(3).name
ans =

audioplayerreg.m

See Also cd, copyfile, delete, fileattrib, filebrowser, fileparts, genpath,
isdir, ls, matlabroot, mkdir, mfilename, movefile, rmdir, type, what

2-913

dir (ftp)

Purpose Directory contents on FTP server

Syntax dir(f,'dirname')
d=dir(...)

Description dir(f,'dirname') lists the files in the specified directory, dirname,
on the FTP server f, where f was created using ftp. If dirname is
unspecified, dir lists the files in the current directory of f.

d=dir(...) returns the results in an m-by-1 structure with the
following fields for each file:

Fieldname Description Data Type

name Filename char array

date Modification date
timestamp

char array

bytes Number of bytes allocated
to the file

double

isdir 1 if name is a directory; 0
if not

logical

datenum Modification date as serial
date number

char array

Examples Connect to the MathWorks FTP server and view the contents.

tmw=ftp('ftp.mathworks.com');
dir(tmw)

README incoming matlab outgoing pub pubs

Change to the directory pub/pentium.

cd(tmw,'pub/pentium')

2-914

dir (ftp)

View the contents of that directory.

dir(tmw)

. Intel_resp.txt NYT_2.txt

.. Intel_support.txt NYT_Dec14.uu

Andy_Grove.txt Intel_white.ps New_York_Times.txt

Associated_Press.txt MathWorks_press.txt Nicely_1.txt

CNN.html Mathisen.txt Nicely_2.txt

Coe.txt Moler_1.txt Nicely_3.txt

Cygnus.txt Moler_2.txt Pratt.txt

EE_Times.txt Moler_3.txt README.txt

FAQ.txt Moler_4.txt SPSS.txt

IBM_study.txt Moler_5.txt Smith.txt

Intel_FAX.txt Moler_6.ps p87test.txt

Intel_fix.txt Moler_7.txt p87test.zip

Intel_replace.txt Myths.txt test

Or return the results to the structure m.

m=dir(tmw)

m =

37x1 struct array with fields:
name
date
bytes
isdir
datanum

View element 17.

m(17)

ans =

name: 'Moler_1.txt'

2-915

dir (ftp)

date: '1995 Mar 27'
bytes: 3427
isdir: 0

datenum: 728745

See Also ftp, mkdir (ftp), rmdir (ftp)

2-916

disp

Purpose Display text or array

Syntax disp(X)

Description disp(X) displays an array, without printing the array name. If X
contains a text string, the string is displayed.

Another way to display an array on the screen is to type its name, but
this prints a leading "X=," which is not always desirable.

Note that disp does not display empty arrays.

Examples One use of disp in an M-file is to display a matrix with column labels:

disp(' Corn Oats Hay')
disp(rand(5,3))

which results in

Corn Oats Hay
0.2113 0.8474 0.2749
0.0820 0.4524 0.8807
0.7599 0.8075 0.6538
0.0087 0.4832 0.4899
0.8096 0.6135 0.7741

You can also use the disp command to display a hyperlink in the
Command Window. Include the full hypertext string on a single line
as input to disp.

disp('The MathWorks Web Site')

generates this hyperlink in the Command Window:

The MathWorks Web Site

Click on this link to display The MathWorks home page in a MATLAB
Web browser.

2-917

http://www.mathworks.com

disp

See Also format, int2str, matlabcolon, num2str, rats, sprintf

2-918

disp (memmapfile)

Purpose Information about memmapfile object

Syntax disp(obj)

Description disp(obj) displays all properties and their values for memmapfile
object obj.

MATLAB also displays this information when you construct a
memmapfile object or set any of the object’s property values, provided
you do not terminate the command to do so with a semicolon.

Examples Construct an object m of class memmapfile:

m = memmapfile('records.dat', ...
'Offset', 2048, ...
'Format', { ...

'int16' [2 2] 'model'; ...
'uint32' [1 1] 'serialno'; ...
'single' [1 3] 'expenses'});

Use disp to display all the object’s current properties:

disp(m)
Filename: 'd:\matlab\mfiles\records.dat'
Writable: false

Offset: 2048
Format: {'int16' [2 2] 'model'

'uint32' [1 1] 'serialno'
'single' [1 3] 'expenses'}

Repeat: Inf
Data: 753x1 struct array with fields:

model
serialno
expenses

See Also memmapfile, get(memmapfile)

2-919

disp (MException)

Purpose Display MException object

Syntax disp(ME)
disp(ME.property)

Description disp(ME) displays all properties (fields) of MException object ME.

disp(ME.property) displays the specified property of MException
object ME.

Examples Using the surf command without input arguments throws an exception.
Use disp to display the identifier, message, stack, and cause
properties of the MException object:

try
surf

catch ME
disp(ME)

end

MException object with properties:

identifier: 'MATLAB:nargchk:notEnoughInputs'
message: 'Not enough input arguments.'

stack: [1x1 struct]
cause: {}

Display only the stack property:

disp(ME.stack)
file: 'X:\bat\Akernel\perfect\matlab\toolbox\matlab\

graph3d\surf.m'
name: 'surf'
line: 54

See Also try, catch, error, assert, MException, getReport(MException),
throw(MException), rethrow(MException),

2-920

disp (MException)

throwAsCaller(MException), addCause(MException),
isequal(MException), eq(MException), ne(MException),
last(MException),

2-921

disp (serial)

Purpose Serial port object summary information

Syntax obj
disp(obj)

Arguments obj A serial port object or an array of serial port objects.

Description obj or disp(obj) displays summary information for obj.

Remarks In addition to the syntax shown above, you can display summary
information for obj by excluding the semicolon when:

• Creating a serial port object

• Configuring property values using the dot notation

Use the display summary to quickly view the communication settings,
communication state information, and information associated with read
and write operations.

Example The following commands display summary information for the serial
port object s.

s = serial('COM1')
s.BaudRate = 300
s

2-922

disp (timer)

Purpose Information about timer object

Syntax disp(obj)
obj

Description disp(obj) displays summary information for the timer object, obj.

If obj is an array of timer objects, disp outputs a table of summary
information about the timer objects in the array.

obj, that is, typing the object name alone, does the same as disp(obj)

In addition to the syntax shown above, you can display summary
information for obj by excluding the semicolon when

• Creating a timer object, using the timer function

• Configuring property values using the dot notation

Examples The following commands display summary information for timer object
t.

t = timer

Timer Object: timer-1

Timer Settings
ExecutionMode: singleShot

Period: 1
BusyMode: drop
Running: off

Callbacks
TimerFcn: []
ErrorFcn: []
StartFcn: []
StopFcn: []

2-923

disp (timer)

This example shows the format of summary information displayed for
an array of timer objects.

t2 = timer;
disp(timerfind)

Timer Object Array
Timer Object Array

Index: ExecutionMode: Period: TimerFcn: Name:
1 singleShot 1 '' timer-1
2 singleShot 1 '' timer-2

See Also timer, get(timer)

2-924

display

Purpose Display text or array (overloaded method)

Syntax display(X)

Description display(X) prints the value of a variable or expression, X. MATLAB
calls display(X) when it interprets a variable or expression, X, that is
not terminated by a semicolon. For example, sin(A) calls display,
while sin(A); does not.

If X is an instance of a MATLAB class, then MATLAB calls the display
method of that class, if such a method exists. If the class has no display
method or if X is not an instance of a MATLAB class, then the MATLAB
built-in display function is called.

Examples A typical implementation of display calls disp to do most of the work
and looks like this.

function display(X)
if isequal(get(0,'FormatSpacing'),'compact')

disp([inputname(1) ' =']);
disp(X)

else
disp(' ')
disp([inputname(1) ' =']);
disp(' ');
disp(X)

end

The expression magic(3), with no terminating semicolon, calls this
function as display(magic(3)).

magic(3)

ans =

8 1 6
3 5 7
4 9 2

2-925

display

As an example of a class display method, the function below
implements the display method for objects of the MATLAB class
polynom.

function display(p)
% POLYNOM/DISPLAY Command window display of a polynom
disp(' ');
disp([inputname(1),' = '])
disp(' ');
disp([' ' char(p)])
disp(' ');

The statement

p = polynom([1 0 -2 -5])

creates a polynom object. Since the statement is not terminated with
a semicolon, the MATLAB interpreter calls display(p), resulting in
the output

p =

x^3 - 2*x - 5

See Also disp, ans, sprintf, special characters

2-926

divergence

Purpose Compute divergence of vector field

Syntax div = divergence(X,Y,Z,U,V,W)
div = divergence(U,V,W)
div = divergence(X,Y,U,V)
div = divergence(U,V)

Description div = divergence(X,Y,Z,U,V,W) computes the divergence of a 3-D
vector field U, V, W. The arrays X, Y, Z define the coordinates for U, V, W
and must be monotonic and 3-D plaid (as if produced by meshgrid).

div = divergence(U,V,W) assumes X, Y, and Z are determined by the
expression

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

div = divergence(X,Y,U,V) computes the divergence of a 2-D vector
field U, V. The arrays X, Y define the coordinates for U, V and must be
monotonic and 2-D plaid (as if produced by meshgrid).

div = divergence(U,V) assumes X and Y are determined by the
expression

[X Y] = meshgrid(1:n,1:m)

where [m,n] = size(U).

Examples This example displays the divergence of vector volume data as slice
planes, using color to indicate divergence.

load wind
div = divergence(x,y,z,u,v,w);
slice(x,y,z,div,[90 134],[59],[0]);
shading interp
daspect([1 1 1])
camlight

2-927

divergence

See Also streamtube, curl, isosurface

“Volume Visualization” on page 1-102 for related functions

“Example — Displaying Divergence with Stream Tubes” for another
example

2-928

dlmread

Purpose Read ASCII-delimited file of numeric data into matrix

Graphical
Interface

As an alternative to dlmread, use the Import Wizard. To activate the
Import Wizard, select Import data from the File menu.

Syntax M = dlmread(filename)
M = dlmread(filename, delimiter)
M = dlmread(filename, delimiter, R, C)
M = dlmread(filename, delimiter, range)

Description M = dlmread(filename) reads from the ASCII-delimited numeric
data file filename to output matrix M. The filename input is a string
enclosed in single quotes. The delimiter separating data elements is
inferred from the formatting of the file. Comma (,) is the default
delimiter.

M = dlmread(filename, delimiter) reads numeric data from the
ASCII-delimited file filename, using the specified delimiter. Use \t
to specify a tab delimiter.

Note When a delimiter is inferred from the formatting of the file,
consecutive whitespaces are treated as a single delimiter. By contrast, if
a delimiter is specified by the delimiter input, any repeated delimiter
character is treated as a separate delimiter.

M = dlmread(filename, delimiter, R, C) reads numeric data from
the ASCII-delimited file filename, using the specified delimiter. The
values R and C specify the row and column where the upper left corner
of the data lies in the file. R and C are zero based, so that R=0, C=0
specifies the first value in the file, which is the upper left corner.

2-929

dlmread

Note dlmread reads numeric data only. The file being read may contain
nonnumeric data, but this nonnumeric data cannot be within the range
being imported.

M = dlmread(filename, delimiter, range) reads the range specified
by range = [R1 C1 R2 C2] where (R1,C1) is the upper left corner of
the data to be read and (R2,C2) is the lower right corner. You can also
specify the range using spreadsheet notation, as in range = 'A1..B7'.

Remarks If you want to specify an R, C, or range input, but not a delimiter, set
the delimiter argument to the empty string, (two consecutive single
quotes with no spaces in between, ''). For example,

M = dlmread('myfile.dat', '', 5, 2)

Using this syntax enables you to specify the starting row and column
or range to read while having dlmread treat repeated whitespaces as a
single delimiter.

dlmread fills empty delimited fields with zero. Data files having lines
that end with a nonspace delimiter, such as a semicolon, produce a
result that has an additional last column of zeros.

dlmread imports any complex number as a whole into a complex
numeric field, converting the real and imaginary parts to the specified
numeric type. Valid forms for a complex number are

Form Example

–<real>–<imag>i|j 5.7-3.1i

–<imag>i|j -7j

Embedded white-space in a complex number is invalid and is regarded
as a field delimiter.

2-930

dlmread

Examples Example 1

Export the 5-by-8 matrix M to a file, and read it with dlmread, first with
no arguments other than the filename:

rand('state', 0); M = rand(5,8); M = floor(M * 100);
dlmwrite('myfile.txt', M, 'delimiter', '\t')

dlmread('myfile.txt')
ans =

95 76 61 40 5 20 1 41
23 45 79 93 35 19 74 84
60 1 92 91 81 60 44 52
48 82 73 41 0 27 93 20
89 44 17 89 13 19 46 67

Now read a portion of the matrix by specifying the row and column of
the upper left corner:

dlmread('myfile.txt', '\t', 2, 3)
ans =

91 81 60 44 52
41 0 27 93 20
89 13 19 46 67

This time, read a different part of the matrix using a range specifier:

dlmread('myfile.txt', '\t', 'C1..G4')
ans =

61 40 5 20 1
79 93 35 19 74
92 91 81 60 44
73 41 0 27 93

Example 2

Export matrix M to a file, and then append an additional matrix to the
file that is offset one row below the first:

M = magic(3);

2-931

dlmread

dlmwrite('myfile.txt', [M*5 M/5], ' ')

dlmwrite('myfile.txt', rand(3), '-append', ...
'roffset', 1, 'delimiter', ' ')

type myfile.txt

80 10 15 65 3.2 0.4 0.6 2.6
25 55 50 40 1 2.2 2 1.6
45 35 30 60 1.8 1.4 1.2 2.4
20 70 75 5 0.8 2.8 3 0.2

0.99008 0.49831 0.32004
0.78886 0.21396 0.9601
0.43866 0.64349 0.72663

When dlmread imports these two matrices from the file, it pads the
smaller matrix with zeros:

dlmread('myfile.txt')
40.0000 5.0000 30.0000 1.6000 0.2000 1.2000
15.0000 25.0000 35.0000 0.6000 1.0000 1.4000
20.0000 45.0000 10.0000 0.8000 1.8000 0.4000
0.6038 0.0153 0.9318 0 0 0
0.2722 0.7468 0.4660 0 0 0
0.1988 0.4451 0.4187 0 0 0

See Also dlmwrite, textscan, csvread, csvwrite, wk1read, wk1write

2-932

dlmwrite

Purpose Write matrix to ASCII-delimited file

Syntax dlmwrite(filename, M)
dlmwrite(filename, M, 'D')
dlmwrite(filename, M, 'D', R, C)
dlmwrite(filename, M, 'attrib1', value1, 'attrib2', value2,

...)
dlmwrite(filename, M, '-append')
dlmwrite(filename, M, '-append', attribute-value list)

Description dlmwrite(filename, M) writes matrix M into an ASCII format file
using the default delimiter (,) to separate matrix elements. The data is
written starting at the first column of the first row in the destination
file, filename. The filename input is a string enclosed in single quotes.

dlmwrite(filename, M, 'D') writes matrix M into an ASCII format
file, using delimiter D to separate matrix elements. The data is written
starting at the first column of the first row in the destination file,
filename. A comma (,) is the default delimiter. Use \t to produce
tab-delimited files.

dlmwrite(filename, M, 'D', R, C) writes matrix M into an ASCII
format file, using delimiter D to separate matrix elements. The data is
written starting at row R and column C in the destination file, filename.
R and C are zero based, so that R=0, C=0 specifies the first value in the
file, which is the upper left corner.

dlmwrite(filename, M, 'attrib1', value1, 'attrib2', value2,
...) is an alternate syntax to those shown above, in which you specify
any number of attribute-value pairs in any order in the argument list.
Each attribute must be immediately followed by a corresponding value
(see the table below).

Attribute Value

delimiter Delimiter string to be used in separating
matrix elements

2-933

dlmwrite

Attribute Value

newline Character(s) to use in terminating each line
(see table below)

roffset Offset, in rows, from the top of the destination
file to where matrix data is to be written.
Offset is zero based.

coffset Offset, in columns, from the left side of the
destination file to where matrix data is to be
written. Offset is zero based.

precision Numeric precision to use in writing data to
the file. Specify the number of significant
digits or a C-style format string starting in
%, such as '%10.5f'.

This table shows which values you can use when setting the newline
attribute.

Line Terminator Description

’pc’ PC terminator (implies carriage return/line
feed (CR/LF))

’unix’ UNIX terminator (implies line feed (LF))

dlmwrite(filename, M, '-append') appends the matrix to the file. If
you do not specify '-append', dlmwrite overwrites any existing data
in the file.

dlmwrite(filename, M, '-append', attribute-value list) is the
same as the syntax shown above, but accepts a list of attribute-value
pairs. You can place the '-append' flag in the argument list anywhere
between attribute-value pairs, but not in between an attribute
and its value.

Remarks The resulting file is readable by spreadsheet programs.

2-934

dlmwrite

Examples Example 1

Export matrix M to a file delimited by the tab character and using a
precision of six significant digits:

dlmwrite('myfile.txt', M, 'delimiter', '\t', ...
'precision', 6)

type myfile.txt

0.893898 0.284409 0.582792 0.432907
0.199138 0.469224 0.423496 0.22595
0.298723 0.0647811 0.515512 0.579807
0.661443 0.988335 0.333951 0.760365

Example 2

Export matrix M to a file using a precision of six decimal places and the
conventional line terminator for the PC platform:

dlmwrite('myfile.txt', m, 'precision', '%.6f', ...
'newline', 'pc')

type myfile.txt

16.000000,2.000000,3.000000,13.000000
5.000000,11.000000,10.000000,8.000000
9.000000,7.000000,6.000000,12.000000
4.000000,14.000000,15.000000,1.000000

Example 3

Export matrix M to a file, and then append an additional matrix to the
file that is offset one row below the first:

M = magic(3);
dlmwrite('myfile.txt', [M*5 M/5], ' ')

dlmwrite('myfile.txt', rand(3), '-append', ...
'roffset', 1, 'delimiter', ' ')

type myfile.txt

2-935

dlmwrite

80 10 15 65 3.2 0.4 0.6 2.6
25 55 50 40 1 2.2 2 1.6
45 35 30 60 1.8 1.4 1.2 2.4
20 70 75 5 0.8 2.8 3 0.2

0.99008 0.49831 0.32004
0.78886 0.21396 0.9601
0.43866 0.64349 0.72663

When dlmread imports these two matrices from the file, it pads the
smaller matrix with zeros:

dlmread('myfile.txt')
40.0000 5.0000 30.0000 1.6000 0.2000 1.2000
15.0000 25.0000 35.0000 0.6000 1.0000 1.4000
20.0000 45.0000 10.0000 0.8000 1.8000 0.4000
0.6038 0.0153 0.9318 0 0 0
0.2722 0.7468 0.4660 0 0 0
0.1988 0.4451 0.4187 0 0 0

See Also dlmread, csvwrite, csvread, wk1write, wk1read

2-936

dmperm

Purpose Dulmage-Mendelsohn decomposition

Syntax p = dmperm(A)
[p,q,r,s,cc,rr] = dmperm(A)

Description p = dmperm(A) finds a vector p such that p(j) = i if column j is
matched to row i, or zero if column j is unmatched. If A is a square
matrix with full structural rank, p is a maximum matching row
permutation and A(p,:) has a zero-free diagonal. The structural rank
of A is sprank(A) = sum(p>0).

[p,q,r,s,cc,rr] = dmperm(A) where A need not be square or full
structural rank, finds the Dulmage-Mendelsohn decomposition of A. p
and q are row and column permutation vectors, respectively, such that
A(p,q) has a block upper triangular form. r and s are index vectors
indicating the block boundaries for the fine decomposition. cc and rr
are vectors of length five indicating the block boundaries of the coarse
decomposition.

C = A(p,q) is split into a 4-by-4 set of coarse blocks:

A11 A12 A13 A14
0 0 A23 A24
0 0 0 A34
0 0 0 A44

where A12, A23, and A34 are square with zero-free diagonals.
The columns of A11 are the unmatched columns, and the rows
of A44 are the unmatched rows. Any of these blocks can be
empty. In the coarse decomposition, the (i,j)th block is
C(rr(i):rr(i+1)-1,cc(j):cc(j+1)-1). For a linear system,

• [A11 A12] is the underdetermined part of the system—it is always
rectangular and with more columns and rows, or 0-by-0,

• A23 is the well-determined part of the system—it is always square,
and

2-937

dmperm

• [A34 ; A44] is the overdetermined part of the system—it is always
rectangular with more rows than columns, or 0-by-0.

The structural rank of A is sprank(A) = rr(4)-1, which is
an upper bound on the numerical rank of A. sprank(A) =
rank(full(sprand(A))) with probability 1 in exact arithmetic.

The A23 submatrix is further subdivided into block upper triangular
form via the fine decomposition (the strongly connected components
of A23). If A is square and structurally nonsingular, A23 is the entire
matrix.

C(r(i):r(i+1)-1,s(j):s(j+1)-1) is the (i,j)th block of the fine
decomposition. The (1,1) block is the rectangular block [A11 A12],
unless this block is 0-by-0. The (b,b) block is the rectangular block
[A34 ; A44], unless this block is 0-by-0, where b = length(r)-1.
All other blocks of the form C(r(i):r(i+1)-1,s(i):s(i+1)-1) are
diagonal blocks of A23, and are square with a zero-free diagonal.

Remarks If A is a reducible matrix, the linear system Ax=b can be solved by
permuting A to a block upper triangular form, with irreducible diagonal
blocks, and then performing block backsubstitution. Only the diagonal
blocks of the permuted matrix need to be factored, saving fill and
arithmetic in the blocks above the diagonal.

In graph theoretic terms, dmperm finds a maximum-size matching in the
bipartite graph of A, and the diagonal blocks of A(p,q) correspond to
the strong Hall components of that graph. The output of dmperm can
also be used to find the connected or strongly connected components
of an undirected or directed graph. For more information see Pothen
and Fan [1].

dmperm uses CSparse [2].

References [1] Pothen, Alex and Chin-Ju Fan “Computing the Block Triangular
Form of a Sparse Matrix” ACM Transactions on Mathematical Software
Vol 16, No. 4 Dec. 1990, pp. 303-324.

2-938

dmperm

[2] T.A. Davis Direct Methods for for Sparse Linear
Systems. SIAM, Philadelphia: 2006. Software available
at:http://www.cise.ufl.edu/research/sparse/CSparse.

See Also sprank

2-939

http://www.cise.ufl.edu/research/sparse/CSparse

doc

Purpose Reference page in Help browser

GUI
Alternatives

As an alternative to the doc function, use the Help browser Search for
field. Type the function name and click Go.

Syntax doc
doc functionname
doc toolboxname
doc toolboxname/functionname
doc classname.methodname

Description doc opens the Help browser, if it is not already running, or brings
the window to the top, displaying the Contents pane when the Help
browser is already open.

doc functionname displays the reference page for the MATLAB function
functionname in the Help browser. For example, you are looking
at the reference page for the doc function. Here functionname can
be a function, block, property, method, or object. If functionname is
overloaded, that is, if functionname appears in multiple directories
on the MATLAB search path, doc displays the reference page for the
first functionname on the search path and displays a hyperlinked list
of the other functions and their directories in the MATLAB Command
Window. Overloaded functions within the same product are not listed
— use the overloaddirectory form of the syntax. If a reference page
for functionname does not exist, doc displays its M-file help in the
Help browser. The doc function is intended only for help files supplied
by The MathWorks, and is not supported for use with HTML files you
create yourself.

doc toolboxname displays the roadmap page for toolboxname in
the Help browser, which provides a summary of the most pertinent
documentation for that product.

doc toolboxname/functionname displays the reference page for the
functionname that belongs to the specified toolboxname, in the Help
browser. This is useful for overloaded functions.

2-940

doc

doc classname.methodname displays the reference page for the
methodname that is a member of classname.

Note If there is a function called name as well as a toolbox called name,
the roadmap page for the toolbox called name displays. To see the
reference page for the function called name, use doc toolboxname/name,
where toolboxname is the name of the toolbox in which the function
name resides. For example, doc matlab displays the roadmap page for
MATLAB (that is, the matlab toolbox), while doc matlab/matlabunix
displays the reference page for the matlab startup function for UNIX,
which is in MATLAB.

Examples Type doc abs to display the reference page for the abs function. If
Simulink and Signal Processing Toolbox are installed and on the search
path, the Command Window lists hyperlinks for the abs function in
those products:

doc signal/abs
doc simulink/abs

Type doc signal/abs to display the reference page for the abs function
in Signal Processing Toolbox.

Type doc signal to display the roadmap page for Signal Processing
Toolbox.

Type doc serial.get to display the reference page for the get method
located in the serial directory of MATLAB. This syntax is required
because there is at least one other get function in MATLAB.

See Also docopt, docsearch, help, helpbrowser, lookfor, type, web

“Help for Using MATLAB” in the MATLAB Desktop Tools and
Development Environment documentation.

2-941

docopt

Purpose Web browser for UNIX platforms

Syntax docopt
doccmd = docopt

Description docopt displays the Web browser used with MATLAB on non-Macintosh
UNIX platforms, with the default being netscape (for Netscape). For
non-Macintosh UNIX platforms, you can modify the docopt.m file to
specify the Web browser MATLAB uses. The Web browser is used with
the web function and its -browser option. It is also used for links to
external Web sites from the Help.

doccmd = docopt returns a string containing the command that web
-browser uses to invoke a Web browser.

To change the browser, edit the docopt.m file and change line 51. For
example,

50 elseif isunix % UNIX
51 % doccmd = '';

Remove the comment symbol. In the quote, enter the command that
starts your Web browser, and save the file. For example,

51 doccmd = 'mozilla';

specifies Mozilla as the Web browser MATLAB uses.

See Also doc, edit, helpbrowser, web

2-942

docsearch

Purpose Open Help browser Search pane and search for specified term

GUI
Alternatives

As an alternative to the docsearch function, select Desktop > Help,
type in the Search for field, and click Go.

Syntax docsearch
docsearch word
docsearch('word1 word2 ...')
docsearch('"word1 word2" ...')
docsearch('wo*rd ...')
docsearch('word1 word2 BOOLEANOP word3')

Description docsearch opens the Help browser to the Search Results pane, or if
the Help browser is already open to that pane, brings it to the top.

docsearch word executes a Help browser full-text search for word,
displaying results in the Help browser Search Results pane. If word is
a functionname or blockname, the first entry in Search Results is the
reference page, or reference pages for overloaded functions.

docsearch('word1 word2 ...') executes a Help browser full-text
search for pages containing word1 and word2 and any other specified
words, displaying results in the Help browser Search Results pane.

docsearch('"word1 word2" ...') executes a Help browser full-text
search for pages containing the exact phrase word1 word2 and any
other specified words, displaying results in the Help browser Search
Results pane.

docsearch('wo*rd ...') executes a Help browser full-text search for
pages containing words that begin with wo and end with rd, and any
other specified words, displaying results in the Help browser Search
Results pane. This is also called a wildcard or partial word search. You
can use a wildcard symbol (*) multiple times within a word. You cannot
use the wildcard symbol within an exact phrase. You must use at least
two letters or digits with a wildcard symbol.

docsearch('word1 word2 BOOLEANOP word3') executes a Help
browser full-text search for the term word1 word2 BOOLEANOP word3,

2-943

docsearch

where BOOLEANOP is a Boolean operator (AND, NOT, OR) used to refine
the search. docsearch evaluates NOTs first, then ORs, and finally ANDs.
Results display in the Help browser Search Results pane.

Examples docsearch plot finds all pages that contain the word plot.

docsearch('plot tools') finds all pages that contain the words plot
and tools anywhere in the page.

docsearch('"plot tools"') finds all pages that contain the exact
phrase plot tools.

docsearch('plot* tools') finds all pages that contain the word tools
and the word plot or variations of plot, such as plotting, and plots.

docsearch('"plot tools" NOT "time series"') finds all pages
that contain the exact phrase plot tools, but only if the pages do not
contain the exact phrase time series.

See Also builddocsearchdb, doc, helpbrowser

“Search Documentation and Demos with the Help Browser” in the
MATLAB Desktop Tools and Development Environment documentation

2-944

dos

Purpose Execute DOS command and return result

Syntax dos command
status = dos('command')
[status,result] = dos('command')
[status,result] = dos('command','-echo')

Description dos command calls upon the shell to execute the given command for
Windows systems.

status = dos('command') returns completion status to the status
variable.

[status,result] = dos('command') in addition to completion status,
returns the result of the command to the result variable.

[status,result] = dos('command','-echo') forces the output to the
Command Window, even though it is also being assigned into a variable.

Both console (DOS) programs and Windows programs may be executed,
but the syntax causes different results based on the type of programs.
Console programs have stdout and their output is returned to the
result variable. They are always run in an iconified DOS or Command
Prompt Window except as noted below. Console programs never execute
in the background. Also, MATLAB will always wait for the stdout
pipe to close before continuing execution. Windows programs may be
executed in the background as they have no stdout.

The ampersand, &, character has special meaning. For console programs
this causes the console to open. Omitting this character will cause
console programs to run iconically. For Windows programs, appending
this character will cause the application to run in the background.
MATLAB will continue processing.

2-945

dos

Note Running dos with a command that relies upon the current directory
will fail when the current directory is specified using a UNC pathname.
This is because DOS does not support UNC pathnames. In that
event, MATLAB returns this error: ??? Error using ==> dos DOS
commands may not be executed when the current directory is
a UNC pathname. To work around this limitation, change the directory
to a mapped drive prior to running dos or a function that calls dos.

Examples The following example performs a directory listing, returning a zero
(success) in s and the string containing the listing in w.

[s, w] = dos('dir');

To open the DOS 5.0 editor in a DOS window

dos('edit &')

To open the notepad editor and return control immediately to MATLAB

dos('notepad file.m &')

The next example returns a one in s and an error message in w because
foo is not a valid shell command.

[s, w] = dos('foo')

This example echoes the results of the dir command to the Command
Window as it executes as well as assigning the results to w.

[s, w] = dos('dir', '-echo');

See Also ! (exclamation point), perl, system, unix, winopen

“Running External Programs” in the MATLAB Desktop Tools and
Development Environment documentation

2-946

dot

Purpose Vector dot product

Syntax C = dot(A,B)
C = dot(A,B,dim)

Description C = dot(A,B) returns the scalar product of the vectors A and B. A and
B must be vectors of the same length. When A and B are both column
vectors, dot(A,B) is the same as A'*B.

For multidimensional arrays A and B, dot returns the scalar product
along the first non-singleton dimension of A and B. A and B must have
the same size.

C = dot(A,B,dim) returns the scalar product of A and B in the
dimension dim.

Examples The dot product of two vectors is calculated as shown:

a = [1 2 3]; b = [4 5 6];
c = dot(a,b)

c =
32

See Also cross

2-947

double

Purpose Convert to double precision

Syntax double(x)

Description double(x) returns the double-precision value for X. If X is already a
double-precision array, double has no effect.

Remarks double is called for the expressions in for, if, and while loops if the
expression isn’t already double-precision. double should be overloaded
for any object when it makes sense to convert it to a double-precision
value.

2-948

dragrect

Purpose Drag rectangles with mouse

Syntax [finalrect] = dragrect(initialrect)
[finalrect] = dragrect(initialrect,stepsize)

Description [finalrect] = dragrect(initialrect) tracks one or more rectangles
anywhere on the screen. The n-by-4 matrix initialrect defines the
rectangles. Each row of initialrect must contain the initial rectangle
position as [left bottom width height] values. dragrect returns the
final position of the rectangles in finalrect.

[finalrect] = dragrect(initialrect,stepsize) moves the
rectangles in increments of stepsize. The lower left corner of the first
rectangle is constrained to a grid of size equal to stepsize starting at
the lower left corner of the figure, and all other rectangles maintain
their original offset from the first rectangle.

[finalrect] = dragrect(...) returns the final positions of the
rectangles when the mouse button is released. The default step size is 1.

Remarks dragrect returns immediately if a mouse button is not currently
pressed. Use dragrect in a ButtonDownFcn, or from the command line
in conjunction with waitforbuttonpress, to ensure that the mouse
button is down when dragrect is called. dragrect returns when you
release the mouse button.

If the drag ends over a figure window, the positions of the rectangles
are returned in that figure’s coordinate system. If the drag ends over a
part of the screen not contained within a figure window, the rectangles
are returned in the coordinate system of the figure over which the drag
began.

Note You cannot use normalized figure units with dragrect.

2-949

dragrect

Example Drag a rectangle that is 50 pixels wide and 100 pixels in height.

waitforbuttonpress
point1 = get(gcf,'CurrentPoint') % button down detected
rect = [point1(1,1) point1(1,2) 50 100]
[r2] = dragrect(rect)

See Also rbbox, waitforbuttonpress

“Selecting Region of Interest” on page 1-101 for related functions

2-950

drawnow

Purpose Flushes event queue and updates figure window

Syntax drawnow
drawnow expose
drawnow update

Description drawnow causes figure windows and their children to update and flushes
the system event queue. Any callbacks generated by incoming events
(e.g. mouse or key events) are dispatched before drawnow returns.

drawnow expose causes only graphics objects to refresh, if needed. It
does not allow callbacks to execute and does not process other events in
the queue.

drawnow update causes only non-graphics objects to refresh, if needed.
It does not allow callbacks to execute and does not process other events
in the queue.

You can combine the expose and update options to obtain both effects.

drawnow expose update

Other Events That Cause Event Queue Processing

Other events that cause MATLAB to flush the event queue and draw
the figure includes:

• Returning to the MATLAB prompt

• Executing the following functions

- figure

- getframe

- input

- keyboard

- pause

• Functions that wait for user input (i.e., waitforbuttonpress,
waitfor, ginput)

2-951

drawnow

Examples Using drawnow in a loop causes the display to update while the loop
executes:

t = 0:pi/20:2*pi;
y = exp(sin(t));
h = plot(t,y,'YDataSource','y');
for k = 1:.1:10
y = exp(sin(t.*k));
refreshdata(h,'caller') % Evaluate y in the function workspace
drawnow; pause(.1)

end

See Also waitfor, waitforbuttonpress

“Figure Windows” on page 1-95 for related functions

2-952

dsearch

Purpose Search Delaunay triangulation for nearest point

Syntax K = dsearch(x,y,TRI,xi,yi)
K = dsearch(x,y,TRI,xi,yi,S)

Description K = dsearch(x,y,TRI,xi,yi) returns the index into x and y of the
nearest point to the point (xi,yi). dsearch requires a triangulation TRI
of the points x,y obtained using delaunay. If xi and yi are vectors, K is
a vector of the same size.

K = dsearch(x,y,TRI,xi,yi,S) uses the sparse matrix S instead of
computing it each time:

S = sparse(TRI(:,[1 1 2 2 3 3]),TRI(:,[2 3 1 3 1 2]),1,nxy,nxy)

where nxy = prod(size(x)).

See Also delaunay, tsearch, voronoi

2-953

dsearchn

Purpose N-D nearest point search

Syntax k = dsearchn(X,T,XI)
k = dsearchn(X,T,XI,outval)
k = dsearchn(X,XI)
[k,d] = dsearchn(X,...)

Description k = dsearchn(X,T,XI) returns the indices k of the closest points in
X for each point in XI. X is an m-by-n matrix representing m points in
n-dimensional space. XI is a p-by-n matrix, representing p points
in n-dimensional space. T is a numt-by-n+1 matrix, a tessellation of
the data X generated by delaunayn. The output k is a column vector
of length p.

k = dsearchn(X,T,XI,outval) returns the indices k of the closest
points in X for each point in XI, unless a point is outside the convex hull.
If XI(J,:) is outside the convex hull, then K(J) is assigned outval, a
scalar double. Inf is often used for outval. If outval is [], then k is
the same as in the case k = dsearchn(X,T,XI).

k = dsearchn(X,XI) performs the search without using a tessellation.
With large X and small XI, this approach is faster and uses much less
memory.

[k,d] = dsearchn(X,...) also returns the distances d to the closest
points. d is a column vector of length p.

Algorithm dsearchn is based on Qhull [1]. For information about Qhull,
see http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

See Also tsearch, dsearch, tsearchn, griddatan, delaunayn

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa,
“The Quickhull Algorithm for Convex Hulls,” ACM
Transactions on Mathematical Software, Vol. 22, No.
4, Dec. 1996, p. 469-483. Available in PDF format at
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/.

2-954

http://www.qhull.org/
http://www.qhull.org/COPYING.txt
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/

echo

Purpose Echo M-files during execution

Syntax echo on
echo off
echo
echo fcnname on
echo fcnname off
echo fcnname
echo on all
echo off all

Description The echo command controls the echoing of M-files during execution.
Normally, the commands in M-files are not displayed on the screen
during execution. Command echoing is useful for debugging or for
demonstrations, allowing the commands to be viewed as they execute.

The echo command behaves in a slightly different manner for script
files and function files. For script files, the use of echo is simple; echoing
can be either on or off, in which case any script used is affected.

echo on Turns on the echoing of commands in all script
files

echo off Turns off the echoing of commands in all script
files

echo Toggles the echo state

With function files, the use of echo is more complicated. If echo is
enabled on a function file, the file is interpreted, rather than compiled.
Each input line is then displayed as it is executed. Since this results in
inefficient execution, use echo only for debugging.

echo fcnname on Turns on echoing of the named function file

echo fcnname
off

Turns off echoing of the named function file

echo fcnname Toggles the echo state of the named function file

2-955

echo

echo on all Sets echoing on for all function files

echo off all Sets echoing off for all function files

See Also function

2-956

echodemo

Purpose Run M-file demo step-by-step in Command Window

GUI
Alternatives

As an alternative to the echodemo function, select the demo in the Help
browser Demos tab and click the Run in the Command Window link.

Syntax echodemo filename
echodemo('filename', cellindex)

Description echodemo filename runs the M-file demo filename step-by-step in the
Command Window. At each step, follow links in the Command Window
to proceed. Depending on the size of the Command Window, you might
have to scroll up to see the links. The script filename was created in
the Editor/Debugger using cells. (The associated HTML demo file for
filename that appears in the Help browser Demos pane was created
using the MATLAB cell publishing feature.) The link to filename also
shows the current cell number, n, and the total number of cells, m, as
n/m, and when clicked, opens filename in the Editor/Debugger. To end
the demo, click the Stop link.

echodemo('filename', cellindex) runs the M-file type demo
filename, starting with the cell number specified by cellindex.
Because steps prior to cellindex are not run, this statement might
produce an error or unexpected result, depending on the demo.

Note M-file demos run as scripts. Therefore, the variables are part of
the base workspace, which could result in problems if you have any
variables of the same name. For more information, see “Running Demos
and Base Workspace Variables” in the Desktop Tools and Development
Environment documentation.

Examples echodemo quake runs the MATLAB Loma Prieta Earthquake demo.

echodemo ('quake', 6) runs the MATLAB Loma Prieta Earthquake
demo, starting at cell 6.

2-957

echodemo

echodemo ('intro', 3) produces an error because cell 3 of the
MATLAB demo intro requires data created when cells 1 and 2 run.

See Also demo, helpbrowser

2-958

edit

Purpose Edit or create M-file

GUI
Alternatives

As an alternative to the edit function, select File > New or Open in
the MATLAB desktop or any desktop tool.

Syntax edit
edit fun.m
edit file.ext
edit fun1 fun2 fun3 ...
edit class/fun
edit private/fun
edit class/private/fun
edit('my file.m')

Description edit opens a new editor window.

edit fun.m opens the M-file fun.m in the default editor. Note that
fun.m can be a MATLAB partialpath or a complete path. If fun.m
does not exist, a prompt appears asking if you want to create a new
file titled fun.m. After you click Yes, the Editor/Debugger creates a
blank file titled fun.m. If you do not want the prompt to appear in this
situation, select that check box in the prompt. Then when you type edit
fun.m, where fun.m did not previously exist, a new file called fun.m
is automatically opened in the Editor/Debugger. To make the prompt
appear, specify it in preferences for Prompt.

edit file.ext opens the specified file.

edit fun1 fun2 fun3 ... opens fun1.m, fun2.m, fun3.m, and so on,
in the default editor.

edit class/fun, or edit private/fun, or edit class/private/fun
edit a method, private function, or private method for the class named
class.

edit('my file.m') opens the M-file my file.m in the default editor.
This form of the edit function is useful when a filename contains a
space, for example, because you cannot use the command form in such
a case.

2-959

edit

Remarks To specify the default editor for MATLAB, select Preferences from the
File menu. On the Editor/Debugger pane, select MATLAB editor or
specify another.

UNIX Users

If you run MATLAB with the -nodisplay startup option, or run
without the DISPLAY environment variable set, edit uses the External
Editor command. It does not use the MATLAB Editor/Debugger,
but instead uses the default editor defined for your system in
matlabroot/X11/app-defaults/Matlab.

You can specify the editor that the edit function uses or specify editor
options by adding the following line to your own.Xdefaults file, located
in ~home:

matlab*externalEditorCommand: $EDITOR -option $FILE

where

• $EDITOR is the name of your default editor, for example, emacs;
leaving it as $EDITOR means your default system editor will be used.

• -option is a valid option flag you can include for the specified editor.

• $FILE means the filename you type with the edit command will
open in the specified editor.

For example,

emacs $FILE

means that when you type edit foo, the file foo will open in the emacs
editor.

After adding the line to your.Xdefaults file, you must run the following
before starting MATLAB:

xrdb -merge ~home/.Xdefaults

See Also open, type

2-960

eig

Purpose Find eigenvalues and eigenvectors

Syntax d = eig(A)
d = eig(A,B)
[V,D] = eig(A)
[V,D] = eig(A,'nobalance')
[V,D] = eig(A,B)
[V,D] = eig(A,B,flag)

Description d = eig(A) returns a vector of the eigenvalues of matrix A.

d = eig(A,B) returns a vector containing the generalized eigenvalues,
if A and B are square matrices.

Note If S is sparse and symmetric, you can use d = eig(S) to returns
the eigenvalues of S. If S is sparse but not symmetric, or if you want to
return the eigenvectors of S, use the function eigs instead of eig.

[V,D] = eig(A) produces matrices of eigenvalues (D) and eigenvectors
(V) of matrix A, so that A*V = V*D. Matrix D is the canonical form of A —
a diagonal matrix with A’s eigenvalues on the main diagonal. Matrix V
is the modal matrix — its columns are the eigenvectors of A.

If W is a matrix such that W'*A = D*W', the columns of W are the left
eigenvectors of A. Use [W,D] = eig(A.'); W = conj(W) to compute
the left eigenvectors.

[V,D] = eig(A,'nobalance') finds eigenvalues and eigenvectors
without a preliminary balancing step. This may give more accurate
results for certain problems with unusual scaling. Ordinarily, balancing
improves the conditioning of the input matrix, enabling more accurate
computation of the eigenvectors and eigenvalues. However, if a matrix
contains small elements that are really due to roundoff error, balancing
may scale them up to make them as significant as the other elements
of the original matrix, leading to incorrect eigenvectors. Use the

2-961

eig

nobalance option in this event. See the balance function for more
details.

[V,D] = eig(A,B) produces a diagonal matrix D of generalized
eigenvalues and a full matrix V whose columns are the corresponding
eigenvectors so that A*V = B*V*D .

[V,D] = eig(A,B,flag) specifies the algorithm used to compute
eigenvalues and eigenvectors. flag can be:

’chol’ Computes the generalized eigenvalues of A and
B using the Cholesky factorization of B. This
is the default for symmetric (Hermitian) A and
symmetric (Hermitian) positive definite B.

’qz’ Ignores the symmetry, if any, and uses the
QZ algorithm as it would for nonsymmetric
(non-Hermitian) A and B.

Note For eig(A), the eigenvectors are scaled so that the norm of each
is 1.0. For eig(A,B), eig(A,'nobalance'), and eig(A,B,flag), the
eigenvectors are not normalized.

Also note that if A is symmetric, eig(A,'nobalance') ignores the
nobalance option since A is already balanced.

Remarks The eigenvalue problem is to determine the nontrivial solutions of the
equation

where is an n-by-n matrix, is a length n column vector, and is a
scalar. The n values of that satisfy the equation are the eigenvalues,
and the corresponding values of are the right eigenvectors. In
MATLAB, the function eig solves for the eigenvalues , and optionally
the eigenvectors .

2-962

eig

The generalized eigenvalue problem is to determine the nontrivial
solutions of the equation

where both and are n-by-n matrices and is a scalar. The values
of that satisfy the equation are the generalized eigenvalues and the
corresponding values of are the generalized right eigenvectors.

If is nonsingular, the problem could be solved by reducing it to a
standard eigenvalue problem

Because can be singular, an alternative algorithm, called the QZ
method, is necessary.

When a matrix has no repeated eigenvalues, the eigenvectors are
always independent and the eigenvector matrix V diagonalizes the
original matrix A if applied as a similarity transformation. However, if a
matrix has repeated eigenvalues, it is not similar to a diagonal matrix
unless it has a full (independent) set of eigenvectors. If the eigenvectors
are not independent then the original matrix is said to be defective.
Even if a matrix is defective, the solution from eig satisfies A*X = X*D.

Examples The matrix

B = [3 -2 -.9 2*eps
-2 4 1 -eps
-eps/4 eps/2 -1 0
-.5 -.5 .1 1];

has elements on the order of roundoff error. It is an example for which
the nobalance option is necessary to compute the eigenvectors correctly.
Try the statements

[VB,DB] = eig(B)
B*VB - VB*DB
[VN,DN] = eig(B,'nobalance')

2-963

eig

B*VN - VN*DN

Algorithm Inputs of Type Double

For inputs of type double, MATLAB uses the following LAPACK
routines to compute eigenvalues and eigenvectors.

Case Routine

Real symmetric A DSYEV

Real nonsymmetric A:

• With preliminary balance step DGEEV (with the scaling factor
SCLFAC = 2 in DGEBAL, instead of
the LAPACK default value of 8)

• d = eig(A,'nobalance') DGEHRD, DHSEQR

• [V,D] = eig(A,'nobalance') DGEHRD, DORGHR, DHSEQR, DTREVC

Hermitian A ZHEEV

Non-Hermitian A:

• With preliminary balance step ZGEEV (with SCLFAC = 2 instead
of 8 in ZGEBAL)

• d = eig(A,'nobalance') ZGEHRD, ZHSEQR

• [V,D] = eig(A,'nobalance') ZGEHRD, ZUNGHR, ZHSEQR, ZTREVC

Real symmetric A, symmetric
positive definite B.

DSYGV

Special case: eig(A,B,'qz')
for real A, B (same as real
nonsymmetric A, real general B)

DGGEV

Real nonsymmetric A, real
general B

DGGEV

Complex Hermitian A,
Hermitian positive definite
B.

ZHEGV

2-964

eig

Case Routine

Special case: eig(A,B,'qz') for
complex A or B (same as complex
non-Hermitian A, complex B)

ZGGEV

Complex non-Hermitian A,
complex B

ZGGEV

Inputs of Type Single

For inputs of type single, MATLAB uses the following LAPACK
routines to compute eigenvalues and eigenvectors.

Case Routine

Real symmetric A SSYEV

Real nonsymmetric A:

• With preliminary balance step SGEEV (with the scaling factor
SCLFAC = 2 in SGEBAL, instead of
the LAPACK default value of 8)

• d = eig(A,'nobalance') SGEHRD, SHSEQR

• [V,D] = eig(A,'nobalance') SGEHRD, SORGHR, SHSEQR, STREVC

Hermitian A CHEEV

Non-Hermitian A:

• With preliminary balance step CGEEV

• d = eig(A,'nobalance') CGEHRD, CHSEQR

• [V,D] = eig(A,'nobalance') CGEHRD, CUNGHR, CHSEQR, CTREVC

Real symmetric A, symmetric
positive definite B.

CSYGV

Special case: eig(A,B,'qz')
for real A, B (same as real
nonsymmetric A, real general B)

SGGEV

2-965

eig

Case Routine

Real nonsymmetric A, real
general B

SGGEV

Complex Hermitian A, Hermitian
positive definite B.

CHEGV

Special case: eig(A,B,'qz') for
complex A or B (same as complex
non-Hermitian A, complex B)

CGGEV

Complex non-Hermitian A,
complex B

CGGEV

See Also balance, condeig, eigs, hess, qz, schur

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, SIAM, Philadelphia, 1999.

2-966

http://www.netlib.org/lapack/lug/lapack_lug.html

eigs

Purpose Find largest eigenvalues and eigenvectors of sparse matrix

Syntax d = eigs(A)
[V,D] = eigs(A)
[V,D,flag] = eigs(A)
eigs(A,B)
eigs(A,k)
eigs(A,B,k)
eigs(A,k,sigma)
eigs(A,B,k,sigma)
eigs(A,K,sigma,opts)
eigs(A,B,k,sigma,opts)
eigs(Afun,n,...)

Description d = eigs(A) returns a vector of A’s six largest magnitude eigenvalues.
A must be a square matrix, and should be large and sparse.

[V,D] = eigs(A) returns a diagonal matrix D of A’s six largest
magnitude eigenvalues and a matrix V whose columns are the
corresponding eigenvectors.

[V,D,flag] = eigs(A) also returns a convergence flag. If flag is 0
then all the eigenvalues converged; otherwise not all converged.

eigs(A,B) solves the generalized eigenvalue problem A*V == B*V*D.
B must be symmetric (or Hermitian) positive definite and the same
size as A. eigs(A,[],...) indicates the standard eigenvalue problem
A*V == V*D.

eigs(A,k) and eigs(A,B,k) return the k largest magnitude
eigenvalues.

eigs(A,k,sigma) and eigs(A,B,k,sigma) return k eigenvalues based
on sigma, which can take any of the following values:

2-967

eigs

scalar (real
or complex,
including 0)

The eigenvalues closest to sigma. If A is a function,
Afun must return Y = (A-sigma*B)\x (i.e., Y = A\x
when sigma = 0). Note, B need only be symmetric
(Hermitian) positive semi-definite.

’lm’ Largest magnitude (default).

’sm’ Smallest magnitude. Same as sigma = 0. If A is a
function, Afun must return Y = A\x. Note, B need
only be symmetric (Hermitian) positive semi-definite.

For real symmetric problems, the following are also options:

’la’ Largest algebraic ('lr' in MATLAB 5)

’sa’ Smallest algebraic ('sr' in MATLAB 5)

’be’ Both ends (one more from high end if k is odd)

For nonsymmetric and complex problems, the following are also
options:

’lr’ Largest real part

’sr’ Smallest real part

’li’ Largest imaginary part

’si’ Smallest imaginary part

Note The syntax eigs(A,k,...) is not valid when A is scalar. To pass a
value for k, you must specify B as the second argument and k as the third
(eigs(A,B,k,...)). If necessary, you can set B equal to [], the default.

eigs(A,K,sigma,opts) and eigs(A,B,k,sigma,opts) specify an
options structure. Default values are shown in brackets ({}).

2-968

eigs

Parameter Description Values

options.issym 1 if A or A-sigma*B
represented by Afun is
symmetric, 0 otherwise.

[{0} | 1]

options.isreal 1 if A or A-sigma*B
represented by Afun is
real, 0 otherwise.

[0 | {1}]

options.tol Convergence: Ritz estimate
residual <= tol*norm(A).

[scalar |
{eps}]

options.maxit Maximum number of
iterations.

[integer |
{300}]

options.p Number of Lanczos
basis vectors.
p >= 2k (p >= 2k+1 real
nonsymmetric) advised. p
must satisfy k < p <= n
for real symmetric,
k+1 < p <= n otherwise.
Note: If you do not specify a p
value, the default algorithm
uses at least 20 Lanczos
vectors.

[integer |
{2*k}]

options.v0 Starting vector. Randomly
generated by
ARPACK

options.disp Diagnostic information
display level.

[0 | {1} | 2]

options.cholB 1 if B is really its Cholesky
factor chol(B), 0 otherwise.

[{0} | 1]

options.permB Permutation vector permB
if sparse B is really
chol(B(permB,permB)).

[permB | {1:n}]

2-969

eigs

eigs(Afun,n,...) accepts the function handle Afun instead of the
matrix A. See “Function Handles” in the MATLAB Programming
documentation for more information. Afun must accept an input vector
of size n.

y = Afun(x) should return:

A*x if sigma is not specified, or is a string other than
'sm'

A\x if sigma is 0 or 'sm'

(A-sigma*I)\x if sigma is a nonzero scalar (standard eigenvalue
problem). I is an identity matrix of the same
size as A.

(A-sigma*B)\x if sigma is a nonzero scalar (generalized
eigenvalue problem)

“Parameterizing Functions Called by Function Functions” in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the function Afun, if necessary.

The matrix A, A-sigma*I or A-sigma*B represented by Afun is assumed
to be real and nonsymmetric unless specified otherwise by opts.isreal
and opts.issym. In all the eigs syntaxes, eigs(A,...) can be replaced
by eigs(Afun,n,...).

Remarks d = eigs(A,k) is not a substitute for

d = eig(full(A))
d = sort(d)
d = d(end-k+1:end)

but is most appropriate for large sparse matrices. If the problem fits
into memory, it may be quicker to use eig(full(A)).

Algorithm eigs provides the reverse communication required by the Fortran
library ARPACK, namely the routines DSAUPD, DSEUPD, DNAUPD, DNEUPD,
ZNAUPD, and ZNEUPD.

2-970

eigs

Examples Example 1

A = delsq(numgrid('C',15));
d1 = eigs(A,5,'sm')

returns

Iteration 1: a few Ritz values of the 20-by-20 matrix:
0
0
0
0
0

Iteration 2: a few Ritz values of the 20-by-20 matrix:
1.8117
2.0889
2.8827
3.7374
7.4954

Iteration 3: a few Ritz values of the 20-by-20 matrix:
1.8117
2.0889
2.8827
3.7374
7.4954

d1 =

0.5520
0.4787
0.3469
0.2676
0.1334

2-971

eigs

Example 2

This example replaces the matrix A in example 1 with a handle to a
function dnRk. The example is contained in an M-file run_eigs that

• Calls eigs with the function handle @dnRk as its first argument.

• Contains dnRk as a nested function, so that all variables in run_eigs
are available to dnRk.

The following shows the code for run_eigs:

function d2 = run_eigs
n = 139;
opts.issym = 1;
R = 'C';
k = 15;
d2 = eigs(@dnRk,n,5,'sm',opts);

function y = dnRk(x)
y = (delsq(numgrid(R,k))) \ x;

end
end

Example 3

west0479 is a real 479-by-479 sparse matrix with both real and pairs of
complex conjugate eigenvalues. eig computes all 479 eigenvalues. eigs
easily picks out the largest magnitude eigenvalues.

This plot shows the 8 largest magnitude eigenvalues of west0479 as
computed by eig and eigs.

load west0479
d = eig(full(west0479))
dlm = eigs(west0479,8)
[dum,ind] = sort(abs(d));
plot(dlm,'k+')
hold on
plot(d(ind(end-7:end)),'ks')

2-972

eigs

hold off
legend('eigs(west0479,8)','eig(full(west0479))')

Example 4

A = delsq(numgrid('C',30)) is a symmetric positive definite matrix
of size 632 with eigenvalues reasonably well-distributed in the interval
(0 8), but with 18 eigenvalues repeated at 4. The eig function computes
all 632 eigenvalues. It computes and plots the six largest and smallest
magnitude eigenvalues of A successfully with:

A = delsq(numgrid('C',30));
d = eig(full(A));
[dum,ind] = sort(abs(d));
dlm = eigs(A);
dsm = eigs(A,6,'sm');

2-973

eigs

subplot(2,1,1)
plot(dlm,'k+')
hold on
plot(d(ind(end:-1:end-5)),'ks')
hold off
legend('eigs(A)','eig(full(A))',3)
set(gca,'XLim',[0.5 6.5])

subplot(2,1,2)
plot(dsm,'k+')
hold on
plot(d(ind(1:6)),'ks')
hold off
legend('eigs(A,6,''sm'')','eig(full(A))',2)
set(gca,'XLim',[0.5 6.5])

2-974

eigs

However, the repeated eigenvalue at 4 must be handled more carefully.
The call eigs(A,18,4.0) to compute 18 eigenvalues near 4.0 tries
to find eigenvalues of A - 4.0*I. This involves divisions of the form
1/(lambda - 4.0), where lambda is an estimate of an eigenvalue of A.
As lambda gets closer to 4.0, eigs fails. We must use sigma near but not
equal to 4 to find those 18 eigenvalues.

sigma = 4 - 1e-6
[V,D] = eigs(A,18,sigma)

The plot shows the 20 eigenvalues closest to 4 that were computed
by eig, along with the 18 eigenvalues closest to 4 - 1e-6 that were
computed by eigs.

2-975

eigs

See Also eig, svds, function_handle (@)

References [1] Lehoucq, R.B. and D.C. Sorensen, “Deflation Techniques for an
Implicitly Re-Started Arnoldi Iteration,” SIAM J. Matrix Analysis and
Applications, Vol. 17, 1996, pp. 789-821.

[2] Lehoucq, R.B., D.C. Sorensen, and C. Yang, ARPACK Users’ Guide:
Solution of Large-Scale Eigenvalue Problems with Implicitly Restarted
Arnoldi Methods, SIAM Publications, Philadelphia, 1998.

[3] Sorensen, D.C., “Implicit Application of Polynomial Filters in a
k-Step Arnoldi Method,” SIAM J. Matrix Analysis and Applications,
Vol. 13, 1992, pp. 357-385.

2-976

ellipj

Purpose Jacobi elliptic functions

Syntax [SN,CN,DN] = ellipj(U,M)
[SN,CN,DN] = ellipj(U,M,tol)

Definition The Jacobi elliptic functions are defined in terms of the integral:

Then

Some definitions of the elliptic functions use the modulus instead of
the parameter . They are related by

The Jacobi elliptic functions obey many mathematical identities; for a
good sample, see [1].

Description [SN,CN,DN] = ellipj(U,M) returns the Jacobi elliptic functions SN,
CN, and DN, evaluated for corresponding elements of argument U and
parameter M. Inputs U and M must be the same size (or either can be
scalar).

[SN,CN,DN] = ellipj(U,M,tol) computes the Jacobi elliptic functions
to accuracy tol. The default is eps; increase this for a less accurate but
more quickly computed answer.

Algorithm ellipj computes the Jacobi elliptic functions using the method of the
arithmetic-geometric mean [1]. It starts with the triplet of numbers:

2-977

ellipj

ellipj computes successive iterates with

Next, it calculates the amplitudes in radians using:

being careful to unwrap the phases correctly. The Jacobian elliptic
functions are then simply:

Limitations The ellipj function is limited to the input domain . Map
other values of M into this range using the transformations described in
[1], equations 16.10 and 16.11. U is limited to real values.

See Also ellipke

References [1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical
Functions, Dover Publications, 1965, 17.6.

2-978

ellipke

Purpose Complete elliptic integrals of first and second kind

Syntax K = ellipke(M)
[K,E] = ellipke(M)
[K,E] = ellipke(M,tol)

Definition The complete elliptic integral of the first kind [1] is

where , the elliptic integral of the first kind, is

The complete elliptic integral of the second kind

is

Some definitions of K and E use the modulus instead of the parameter
. They are related by

Description K = ellipke(M) returns the complete elliptic integral of the first kind
for the elements of M.

[K,E] = ellipke(M) returns the complete elliptic integral of the first
and second kinds.

2-979

ellipke

[K,E] = ellipke(M,tol) computes the complete elliptic integral to
accuracy tol. The default is eps; increase this for a less accurate but
more quickly computed answer.

Algorithm ellipke computes the complete elliptic integral using the method of
the arithmetic-geometric mean described in [1], section 17.6. It starts
with the triplet of numbers

ellipke computes successive iterations of , , and with

stopping at iteration when , within the tolerance specified by
eps. The complete elliptic integral of the first kind is then

Limitations ellipke is limited to the input domain .

See Also ellipj

References [1] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical
Functions, Dover Publications, 1965, 17.6.

2-980

ellipsoid

Purpose Generate ellipsoid

Syntax [x,y,z] = ellipsoid(xc,yc,zc,xr,yr,zr,n)
[x,y,z] = ellipsoid(xc,yc,zc,xr,yr,zr)
ellipsoid(axes_handle,...)
ellipsoid(...)

Description [x,y,z] = ellipsoid(xc,yc,zc,xr,yr,zr,n) generates a surface
mesh described by three n+1-by-n+1 matrices, enabling surf(x,y,z)
to plot an ellipsoid with center (xc,yc,zc) and semi-axis lengths
(xr,yr,zr).

[x,y,z] = ellipsoid(xc,yc,zc,xr,yr,zr) uses n = 20.

ellipsoid(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

ellipsoid(...) with no output arguments plots the ellipsoid as a
surface.

Algorithm ellipsoid generates the data using the following equation:

Note that ellipsoid(0,0,0, .5,.5,.5) is equivalent to a unit sphere.

2-981

ellipsoid

Example Generate ellipsoid with size and proportions of a standard U.S. football:

[x, y, z] = ellipsoid(0,0,0,5.9,3.25,3.25,30);
surfl(x, y, z)
colormap copper
axis equal

See Also cylinder, sphere, surf

“Polygons and Surfaces” on page 1-90 for related functions

2-982

else

Purpose Execute statements if condition is false

Syntax if expression, statements1, else statements2, end

Description if expression, statements1, else statements2, end evaluates
expression and, if the evaluation yields logical 1 (true) or a nonzero
result, executes one or more MATLAB commands denoted here as
statements1 or, if the evaluation yields logical 0 (false), executes the
commands in statements2. else is used to delineate the alternate
block of statements..

A true expression has either a logical 1 (true) or nonzero value. For
nonscalar expressions, (for example, “if (matrix A is less than matrix
B)”), true means that every element of the resulting matrix has a true
or nonzero value.

Expressions usually involve relational operations such as (count <
limit) or isreal(A). Simple expressions can be combined by logical
operators (&,|,~) into compound expressions such as (count < limit)
& ((height - offset) >= 0).

See “Program Control Statements” in the MATLAB Programming
documentation for more information on controlling the flow of your
program code.

Examples In this example, if both of the conditions are not satisfied, then the
student fails the course.

if ((attendance >= 0.90) & (grade_average >= 60))
pass = 1;

else
fail = 1;

end;

See Also if, elseif, end, for, while, switch, break, return, relational
operators, logical operators (elementwise and short-circuit)

2-983

elseif

Purpose Execute statements if additional condition is true

Syntax if expression1, statements1, elseif expression2,
statements2,

end

Description if expression1, statements1, elseif expression2,
statements2, end evaluates expression1 and, if the evaluation
yields logical 1 (true) or a nonzero result, executes one or more
MATLAB commands denoted here as statements1. If expression1
is false, MATLAB evaluates the elseif expression, expression2.
If expression2 evaluates to true or a nonzero result, executes the
commands in statements2.

A true expression has either a logical 1 (true) or nonzero value. For
nonscalar expressions, (for example, is matrix A less then matrix B),
true means that every element of the resulting matrix has a true or
nonzero value.

Expressions usually involve relational operations such as (count <
limit) or isreal(A). Simple expressions can be combined by logical
operators (&,|,~) into compound expressions such as (count < limit)
& ((height - offset) >= 0).

See “Program Control Statements” in the MATLAB Programming
documentation for more information on controlling the flow of your
program code.

Remarks elseif , with a space between the else and the if, differs from elseif,
with no space. The former introduces a new, nested if, which must have
a matching end. The latter is used in a linear sequence of conditional
statements with only one terminating end.

The two segments shown below produce identical results. Exactly one of
the four assignments to x is executed, depending upon the values of the
three logical expressions, A, B, and C.

if A if A
x = a x = a

2-984

elseif

else elseif B
if B x = b

x = b elseif C
else x = c

if C else
x = c x = d

else end
x = d

end
end

end

Examples Here is an example showing if, else, and elseif.

for m = 1:k
for n = 1:k

if m == n
a(m,n) = 2;

elseif abs(m-n) == 2
a(m,n) = 1;

else
a(m,n) = 0;

end
end

end

For k=5 you get the matrix

a =

2 0 1 0 0
0 2 0 1 0
1 0 2 0 1
0 1 0 2 0
0 0 1 0 2

See Also if, else, end, for, while, switch, break, return, relational operators,
logical operators (elementwise and short-circuit)

2-985

enableservice

Purpose Enable, disable, or report status of Automation server

Syntax state = enableservice('AutomationServer',enable)
state = enableservice('AutomationServer')
enableservice('DDEServer',enable)

Note Use COM, as described in COM Support in MATLAB. The
enableservice('DDEServer',enable) syntax will be removed in a
future version of MATLAB.

Description state = enableservice('AutomationServer',enable) enables or
disables the MATLAB Automation server.

If enable is logical 1 (true), enableservice converts an existing
MATLAB session into an Automation server. If enable is logical 0
(false), enableservice disables the MATLAB Automation server.

state indicates the previous state of the Automation server. If state
= 1, MATLAB was an Automation server. If state is logical 0 (false),
MATLAB was not an Automation server.

state = enableservice('AutomationServer') returns the current
state of the Automation server. If state is logical 1 (true), MATLAB
is an Automation server.

enableservice('DDEServer',enable) enables the MATLAB DDE
server. You cannot disable a DDE server once it has been enabled.
Therefore, the only allowed value for enable is logical 1 (true).

Examples Enable an Automation Server Example

Enable the Automation server in the current MATLAB session:

state = enableservice('AutomationServer',true);

Next, show the current state of the MATLAB session:

state = enableservice('AutomationServer')

2-986

enableservice

MATLAB displays state = 1 (true), showing that MATLAB is an
Automation server.

Finally, enable the Automation server and show the previous state by
typing

state = enableservice('AutomationServer',true)

MATLAB displays state = 1 (true), showing that MATLAB previously
was an Automation server.

Note the previous state may be the same as the current state. As seen
in this case, state = 1 shows MATLAB was, and still is, an Automation
server.

2-987

end

Purpose Terminate block of code, or indicate last array index

Syntax end

Description end is used to terminate for, while, switch, try, and if statements.
Without an end statement, for, while, switch, try, and if wait for
further input. Each end is paired with the closest previous unpaired
for, while, switch, try, or if and serves to delimit its scope.

end also marks the termination of an M-file function, although in most
cases, it is optional. end statements are required only in M-files that
employ one or more nested functions. Within such an M-file, every
function (including primary, nested, private, and subfunctions) must be
terminated with an end statement. You can terminate any function
type with end, but doing so is not required unless the M-file contains a
nested function.

The end function also serves as the last index in an indexing expression.
In that context, end = (size(x,k)) when used as part of the kth index.
Examples of this use are X(3:end) and X(1,1:2:end-1). When using
end to grow an array, as in X(end+1)=5, make sure X exists first.

You can overload the end statement for a user object by defining an
end method for the object. The end method should have the calling
sequence end(obj,k,n), where obj is the user object, k is the index in
the expression where the end syntax is used, and n is the total number
of indices in the expression. For example, consider the expression

A(end-1,:)

MATLAB will call the end method defined for A using the syntax

end(A,1,2)

Examples This example shows end used with the for and if statements.

for k = 1:n
if a(k) == 0
a(k) = a(k) + 2;

2-988

end

end
end

In this example, end is used in an indexing expression.

A = magic(5)

A =

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

B = A(end,2:end)

B =

18 25 2 9

See Also break, for, if, return, switch, try, while

2-989

eomday

Purpose Last day of month

Syntax E = eomday(Y, M)

Description E = eomday(Y, M) returns the last day of the year and month given
by corresponding elements of arrays Y and M.

Examples Because 1996 is a leap year, the statement eomday(1996,2) returns 29.

To show all the leap years in this century, try:

y = 1900:1999;
E = eomday(y, 2);
y(find(E == 29))

ans =
Columns 1 through 6

1904 1908 1912 1916 1920 1924

Columns 7 through 12
1928 1932 1936 1940 1944 1948

Columns 13 through 18
1952 1956 1960 1964 1968 1972

Columns 19 through 24
1976 1980 1984 1988 1992 1996

See Also datenum, datevec, weekday

2-990

eps

Purpose Floating-point relative accuracy

Syntax eps
d = eps(X)
eps('double')
eps('single')

Description eps returns the distance from 1.0 to the next largest double-precision
number, that is eps = 2^(-52).

d = eps(X) is the positive distance from abs(X) to the next larger in
magnitude floating point number of the same precision as X. X may be
either double precision or single precision. For all X,

eps(X) = eps(-X) = eps(abs(X))

eps('double') is the same as eps or eps(1.0).

eps('single') is the same as eps(single(1.0)) or single(2^-23).

Except for numbers whose absolute value is smaller than realmin , if
2^E <= abs(X) < 2^(E+1), then

eps(X) = 2^(E-23) if isa(X,'single')
eps(X) = 2^(E-52) if isa(X,'double')

For all X of class double such that abs(X) <= realmin, eps(X) =
2^(-1074). Similarly, for all X of class single such that abs(X) <=
realmin('single'), eps(X) = 2^(-149).

Replace expressions of the form

if Y < eps * ABS(X)

with

if Y < eps(X)

Examples double precision
eps(1/2) = 2^(-53)

2-991

eps

eps(1) = 2^(-52)
eps(2) = 2^(-51)
eps(realmax) = 2^971
eps(0) = 2^(-1074)

if(abs(x)) <= realmin, eps(x) = 2^(-1074)
eps(realmin/2) = 2^(-1074)
eps(realmin/16) = 2^(-1074)
eps(Inf) = NaN
eps(NaN) = NaN

single precision
eps(single(1/2)) = 2^(-24)
eps(single(1)) = 2^(-23)
eps(single(2)) = 2^(-22)
eps(realmax('single')) = 2^104
eps(single(0)) = 2^(-149)
eps(realmin('single')/2) = 2^(-149)
eps(realmin('single')/16) = 2^(-149)
if(abs(x)) <= realmin('single'), eps(x) = 2^(-149)
eps(single(Inf)) = single(NaN)
eps(single(NaN)) = single(NaN)

See Also realmax, realmin

2-992

eq

Purpose Test for equality

Syntax A == B
eq(A, B)

Description A == B compares each element of array A for equality with the
corresponding element of array B, and returns an array with elements
set to logical 1 (true) where A and B are equal, or logical 0 (false)
where they are not equal. Each input of the expression can be an array
or a scalar value.

If both A and B are scalar (i.e., 1-by-1 matrices), then MATLAB returns
a scalar value.

If both A and B are nonscalar arrays, then these arrays must have
the same dimensions, and MATLAB returns an array of the same
dimensions as A and B.

If one input is scalar and the other a nonscalar array, then the scalar
input is treated as if it were an array having the same dimensions as
the nonscalar input array. In other words, if input A is the number 100,
and B is a 3-by-5 matrix, then A is treated as if it were a 3-by-5 matrix
of elements, each set to 100. MATLAB returns an array of the same
dimensions as the nonscalar input array.

eq(A, B) is called for the syntax A == B when either A or B is an object.

Examples Create two 6-by-6 matrices, A and B, and locate those elements of A that
are equal to the corresponding elements of B:

A = magic(6);
B = repmat(magic(3), 2, 2);

A == B
ans =

0 1 1 0 0 0
1 0 1 0 0 0
0 1 1 0 0 0
1 0 0 0 0 0

2-993

eq

0 1 0 0 0 0
1 0 0 0 0 0

See Also ne, le, ge, lt, gt, relational operators

2-994

eq (MException)

Purpose Compare MException objects for equality

Syntax eObj1 == eObj2

Description eObj1 == eObj2 tests scalar MException objects eObj1 and eObj2 for
equality, returning logical 1 (true) if the two objects are identical,
otherwise returning logical 0 (false).

See Also try, catch, error, assert, MException, isequal(MException),
ne(MException), getReport(MException), disp(MException),
throw(MException), rethrow(MException),
throwAsCaller(MException), addCause(MException),
last(MException)

2-995

erf, erfc, erfcx, erfinv, erfcinv

Purpose Error functions

Syntax Y = erf(X)
Y = erfc(X)
Y = erfcx(X)
X = erfinv(Y)
X = erfcinv(Y)

Definition The error function erf(X) is twice the integral of the Gaussian
distribution with 0 mean and variance of .

The complementary error function erfc(X) is defined as

The scaled complementary error function erfcx(X) is defined as

For large X, erfcx(X) is approximately

Description Y = erf(X) returns the value of the error function for each element
of real array X.

Y = erfc(X) computes the value of the complementary error function.

Y = erfcx(X) computes the value of the scaled complementary error
function.

X = erfinv(Y) returns the value of the inverse error function for each
element of Y. Elements of Y must be in the interval [-1 1]. The function
erfinv satisfies for and .

2-996

erf, erfc, erfcx, erfinv, erfcinv

X = erfcinv(Y) returns the value of the inverse of the complementary
error function for each element of Y. Elements of Y must be in the
interval [0 2]. The function erfcinv satisfies for

and .

Remarks The relationship between the complementary error function erfc and
the standard normal probability distribution returned by the Statistics
Toolbox function normcdf is

The relationship between the inverse complementary error function
erfcinv and the inverse standard normal probability distribution
returned by the Statistics Toolbox function norminv is

Examples erfinv(1) is Inf

erfinv(-1) is -Inf.

For abs(Y) > 1, erfinv(Y) is NaN.

Algorithms For the error functions, the MATLAB code is a translation of a
Fortran program by W. J. Cody, Argonne National Laboratory,
NETLIB/SPECFUN, March 19, 1990. The main computation evaluates
near-minimax rational approximations from [1].

For the inverse of the error function, rational approximations accurate
to approximately six significant digits are used to generate an initial
approximation, which is then improved to full accuracy by one step
of Halley’s method.

References [1] Cody, W. J., “Rational Chebyshev Approximations for the Error
Function,” Math. Comp., pgs. 631-638, 1969

2-997

error

Purpose Display message and abort function

Syntax error('message')
error('message', a1, a2, ...)
error('message_id', 'message')
error('message_id', 'message', a1, a2, ...)
error(message_struct)

Description error('message') displays an error message and returns control to the
keyboard. The error message contains the input string message.

The error command has no effect if message is an empty string.

error('message', a1, a2, ...) displays a message string that
contains formatting conversion characters, such as those used with the
MATLAB sprintf function. Each conversion character in message is
converted to one of the values a1, a2, ... in the argument list.

Note MATLAB converts special characters (like \n and %d) in the error
message string only when you specify more than one input argument
with error. See Example 3 below.

error('message_id', 'message') attaches a unique message
identifier, or message_id, to the error message. The identifier enables
you to better identify the source of an error. See and in the MATLAB
documentation for more information on the message_id argument and
how to use it.

error('message_id', 'message', a1, a2, ...) includes formatting
conversion characters in message, and the character translations a1,
a2,

error(message_struct) accepts a scalar error structure input
message_struct with at least one of the fields message, identifier,
and stack. (See the help for lasterror for more information on these
fields.) If the message_struct input includes a stack field, then the
stack field of the error will be set according to the contents of the stack

2-998

error

input. As a special case, if message_struct is an empty structure, no
action is taken and error returns without exiting from the M-file.

Remarks In addition to the message_id and message, the error function also
determines where the error occurred, and provides this information
using the stack field of the structure returned by lasterror. The
stack field contains a structure array in the same format as the output
of dbstack. This stack points to the line, function, and M-file in which
the error occurred.

Examples Example 1

The error function provides an error return from M-files:

function foo(x,y)
if nargin ~= 2

error('Wrong number of input arguments')
end

The returned error message looks like this:

foo(pi)

??? Error using ==> foo
Wrong number of input arguments

Example 2

Specify a message identifier and error message string with error:

error('MyToolbox:angleTooLarge', ...
'The angle specified must be less than 90 degrees.');

In your error handling code, use lasterror to determine the message
identifier and error message string for the failing operation:

err = lasterror;

err.message

2-999

error

ans =
The angle specified must be less than 90 degrees.

err.identifier
ans =

MyToolbox:angleTooLarge

If this error is thrown from code in an M-file, you can find the M-file
name, function, and line number using the stack field of the structure
returned by lasterror:

err.stack
ans =

file: 'd:\mytools\plotshape.m'
name: 'check_angles'
line: 26

Example 3

MATLAB converts special characters (like \n and %d) in the error
message string only when you specify more than one input argument
with error. In the single-argument case shown below, \n is taken to
mean backslash-n. It is not converted to a newline character:

error('In this case, the newline \n is not converted.')
??? In this case, the newline \n is not converted.

But, when more than one argument is specified, MATLAB does convert
special characters. This holds true regardless of whether the additional
argument supplies conversion values or is a message identifier:

error('ErrorTests:convertTest', ...
'In this case, the newline \n is converted.')

??? In this case, the newline
is converted.

See Also lasterror, rethrow, errordlg, warning, lastwarn, warndlg, dbstop,
disp, sprintf

2-1000

errorbar

Purpose Plot error bars along curve

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax errorbar(Y,E)
errorbar(X,Y,E)
errorbar(X,Y,L,U)
errorbar(...,LineSpec)
h = errorbar(...)
hlines = errorbar('v6',...)

Description Error bars show the confidence level of data or the deviation along
a curve.

errorbar(Y,E) plots Y and draws an error bar at each element of Y. The
error bar is a distance of E(i) above and below the curve so that each
bar is symmetric and 2*E(i) long.

errorbar(X,Y,E) plots Y versus X with symmetric error bars 2*E(i)
long. X, Y, E must be the same size. When they are vectors, each
error bar is a distance of E(i) above and below the point defined by
(X(i),Y(i)). When they are matrices, each error bar is a distance of
E(i,j) above and below the point defined by (X(i,j),Y(i,j)).

errorbar(X,Y,L,U) plots X versus Y with error bars L(i)+U(i) long
specifying the lower and upper error bars. X, Y, L, and U must be the
same size. When they are vectors, each error bar is a distance of L(i)
below and U(i) above the point defined by (X(i),Y(i)). When they
are matrices, each error bar is a distance of L(i,j) below and U(i,j)
above the point defined by (X(i,j),Y(i,j)).

2-1001

errorbar

errorbar(...,LineSpec) uses the color and linestyle specified by the
string 'LineSpec'. The color is applied to the data line and error bars.
The linestyle and marker are applied to the data line only. See plot for
examples of styles.

h = errorbar(...) returns handles to the errorbarseries objects
created. errorbar creates one object for vector input arguments and
one object per column for matrix input arguments. See errorbarseries
properties for more information.

Backward-Compatible Version

hlines = errorbar('v6',...) returns the handles of line objects
instead of errorbarseries objects for compatibility with MATLAB 6.5
and earlier.

Note The v6 option enables users of Version 7.x of MATLAB to create
FIG-files that previous versions can open. It is obsolete and will be
removed in a future version of MATLAB.

See Plot Objects and Backward Compatibility for more information.

Remarks When the arguments are all matrices, errorbar draws one line per
matrix column. If X and Y are vectors, they specify one curve.

Examples Draw symmetric error bars that are two standard deviation units in
length.

X = 0:pi/10:pi;
Y = sin(X);
E = std(Y)*ones(size(X));
errorbar(X,Y,E)

2-1002

errorbar

See Also LineSpec, plot, std, corrcoef

“Basic Plots and Graphs” on page 1-86 and ConfidenceBounds for
related functions

See Errorbarseries Properties for property descriptions

2-1003

Errorbarseries Properties

Purpose Define errorbarseries properties

Modifying
Properties

You can set and query graphics object properties using the set and get
commands or the Property editor (propertyeditor).

Note that you cannot define default property values for errorbarseries
objects. See “Plot Objects” for more information on errorbarseries
objects.

Errorbarseries
Property
Descriptions

This section provides a description of properties. Curly braces { } enclose
default values.

Annotation
hg.Annotation object Read Only

Control the display of errorbarseries objects in legends. The
Annotation property enables you to specify whether this
errorbarseries object is represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can
set its IconDisplayStyle property to control whether the
errorbarseries object is displayed in a figure legend:

IconDisplayStyle
Value

Purpose

on Include the errorbarseries object in a legend
as one entry, but not its children objects

2-1004

Errorbarseries Properties

IconDisplayStyle
Value

Purpose

off Do not include the errorbarseries or its
children in a legend (default)

children Include only the children of the
errorbarseries as separate entries in
the legend

Setting the IconDisplayStyle property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation','LegendInformation');
set(hLegendEntry,'IconDisplayStyle','children')

Using the IconDisplayStyle property

See “Controlling Legends” for more information and examples.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to

2-1005

Errorbarseries Properties

be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function
executing, callbacks invoked subsequently always attempt to
interrupt it.

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs
at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

• cancel — Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
string or function handle

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is over this object, but
not over another graphics object. See the HitTestArea property
for information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be

• A string that is a valid MATLAB expression

2-1006

Errorbarseries Properties

• The name of an M-file

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

See “Function Handle Callbacks” for information on how to use
function handles to define the callbacks.

Children
array of graphics object handles

Children of this object. The handle of a patch object that is the
child of this object (whether visible or not).

Note that if a child object’s HandleVisibility property is set
to callback or off, its handle does not show up in this object’s
Children property unless you set the root ShowHiddenHandles
property to on:

set(0,'ShowHiddenHandles','on')

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs can be
displayed outside the axes plot box. This can occur if you create a
plot object, set hold to on, freeze axis scaling (axis manual), and
then create a larger plot object.

Color
ColorSpec

Color of the object. A three-element RGB vector or one of the
MATLAB predefined names, specifying the object’s color.

2-1007

Errorbarseries Properties

See the ColorSpec reference page for more information on
specifying color.

CreateFcn
string or function handle

Not available on errorbarseries objects.

DeleteFcn
string or function handle

Callback executed during object deletion. A callback that executes
when this object is deleted (e.g., this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

DisplayName
string (default is empty string)

String used by legend for this errorbarseries object. The legend
function uses the string defined by the DisplayName property to
label this errorbarseries object in the legend.

• If you specify string arguments with the legend function,
DisplayName is set to this errorbarseries object’s corresponding
string and that string is used for the legend.

2-1008

Errorbarseries Properties

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

See “Controlling Legends” for more examples.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase objects and their children. Alternative erase
modes are useful for creating animated sequences, where control
of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

• normal — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none — Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing
with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing

2-1009

Errorbarseries Properties

the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of
the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color
if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

• background — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other
graphics objects that are behind the erased object, but the
erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB can mathematically combine
layers of colors (e.g., performing an XOR on a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for

2-1010

Errorbarseries Properties

preventing command-line users from accidentally accessing
objects that you need to protect for some reason.

• on — Handles are always visible when HandleVisibility is on.

• callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions
invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

• off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility

2-1011

Errorbarseries Properties

settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. HitTest determines whether this object
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the objects that compose the area graph. If HitTest
is off, clicking this object selects the object below it (which is
usually the axes containing it).

HitTestArea
on | {off}

Select the object by clicking lines or area of extent. This property
enables you to select plot objects in two ways:

• Select by clicking lines or markers (default).

• Select by clicking anywhere in the extent of the plot.

When HitTestArea is off, you must click th eobject’s lines or
markers (excluding the baseline, if any) to select the object. When

2-1012

Errorbarseries Properties

HitTestArea is on, you can select this object by clicking anywhere
within the extent of the plot (i.e., anywhere within a rectangle
that encloses it).

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether an object’s callback can be interrupted by
callbacks invoked subsequently.

Only callbacks defined for the ButtonDownFcn property are
affected by the Interruptible property. MATLAB checks for
events that can interrupt a callback only when it encounters a
drawnow, figure, getframe, or pause command in the routine.
See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback
to interrupt callback routines originating from a bar property.
Note that MATLAB does not save the state of variables or the
display (e.g., the handle returned by the gca or gcf command)
when an interruption occurs.

LData
array equal in size to XData and YData

Errorbar length below data point. The errorbar function uses
this data to determine the length of the errorbar below each data
point. Specify these values in data units. See also UData.

LDataSource
string (MATLAB variable)

Link LData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
LData.

2-1013

Errorbarseries Properties

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change LData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

LineStyle
{-} | -- | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker at
each point but do not want the points connected with a line (see
the Marker property).

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

2-1014

Errorbarseries Properties

Marker
character (see table)

Marker symbol. The Marker property specifies the type of markers
that are displayed at plot vertices. You can set values for the
Marker property independently from the LineStyle property.
Supported markers include those shown in the following table.

Marker Specifier Description

+ Plus sign

o Circle

* Asterisk

. Point

x Cross

s Square

d Diamond

^ Upward-pointing triangle

v Downward-pointing triangle

> Right-pointing triangle

< Left-pointing triangle

p Five-pointed star (pentagram)

h Six-pointed star (hexagram)

none No marker (default)

MarkerEdgeColor
ColorSpec | none | {auto}

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles). ColorSpec defines the color to use. none

2-1015

Errorbarseries Properties

specifies no color, which makes nonfilled markers invisible. auto
sets MarkerEdgeColor to the same color as the Color property.

MarkerFaceColor
ColorSpec | {none} | auto

Marker face color. The fill color for markers that are closed shapes
(circle, square, diamond, pentagram, hexagram, and the four
triangles). ColorSpec defines the color to use. none makes the
interior of the marker transparent, allowing the background to
show through. auto sets the fill color to the axes color, or to the
figure color if the axes Color property is set to none (which is the
factory default for axes objects).

MarkerSize
size in points

Marker size. A scalar specifying the size of the marker in points.
The default value for MarkerSize is 6 points (1 point = 1/72 inch).
Note that MATLAB draws the point marker (specified by the '.'
symbol) at one-third the specified size.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of this object. This property contains the handle of the
object’s parent. The parent is normally the axes, hggroup, or
hgtransform object that contains the object.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection "handles" at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this

2-1016

Errorbarseries Properties

property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing selection handles on the curve and error bars. When
SelectionHighlight is off, MATLAB does not draw the handles.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callbacks.

For example, you might create an errorbarseries object and set
the Tag property:

t = errorbar(Y,E,'Tag','errorbar1')

When you want to access the errorbarseries object, you can use
findobj to find the errorbarseries object’s handle.

The following statement changes the MarkerFaceColor property
of the object whose Tag is errorbar1.

set(findobj('Tag','errorbar1'),'MarkerFaceColor','red')

Type
string (read only)

2-1017

Errorbarseries Properties

Type of graphics object. This property contains a string that
identifies the class of the graphics object. For errorbarseries
objects, Type is ’hggroup’. The following statement finds all the
hggroup objects in the current axes.

t = findobj(gca,'Type','hggroup');

UData
array equal in size to XData and YData

Errorbar length above data point. The errorbar function uses
this data to determine the length of the errorbar above each data
point. Specify these values in data units.

UDataSource
string (MATLAB variable)

Link UData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
UData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change UData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with the errorbarseries object. Assign
this property the handle of a uicontextmenu object created in the
errorbarseries object’s parent figure. Use the uicontextmenu

2-1018

Errorbarseries Properties

function to create the context menu. MATLAB displays the
context menu whenever you right-click over the errorbarseries
object.

UserData
array

User-specified data. This property can be any data you want to
associate with the errorbarseries object (including cell arrays and
structures). The errorbarseries object does not set values for this
property, but you can access it using the set and get functions.

Visible
{on} | off

Visibility of errorbarseries object and its children. By default,
errorbarseries object visibility is on. This means all children of the
errorbarseries object are visible unless the child object’s Visible
property is set to off. Setting an errorbarseries object’s Visible
property to off also makes its children invisible.

XData
array

X-coordinates of the curve. The errorbar function plots a curve
using the x-axis coordinates in the XData array. XData must be
the same size as YData.

If you do not specify XData (i.e., the input argument x), the
errorbar function uses the indices of YData to create the curve.
See the XDataMode property for related information.

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify XData
(by setting the XData property or specifying the input argument
x), the errorbar function sets this property to manual.

2-1019

Errorbarseries Properties

If you set XDataMode to auto after having specified XData, the
errorbar function resets the x tick-mark labels to the indices
of the YData.

XDataSource
string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change XData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
scalar, vector, or matrix

Data defining curve. YData contains the data defining the curve.
If YData is a matrix, the errorbar function displays a curve with
error bars for each column in the matrix.

2-1020

Errorbarseries Properties

The input argument Y in the errorbar function calling syntax
assigns values to YData.

YDataSource
string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change YData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

2-1021

errordlg

Purpose Create and open error dialog box

Syntax h = errordlg
h = errordlg(errorstring)
h = errordlg(errorstring,dlgname)
h = errordlg(errorstring,dlgname,createmode)

Description h = errordlg creates and displays a dialog box with title Error
Dialog that contains the string This is the default error string.
The errordlg function returns the handle of the dialog box in h.

h = errordlg(errorstring) displays a dialog box with title Error
Dialog that contains the string errorstring.

h = errordlg(errorstring,dlgname) displays a dialog box with
titledlgname that contains the string errorstring.

h = errordlg(errorstring,dlgname,createmode) specifies whether
the error dialog box is modal or nonmodal. Optionally, it can also
specify an interpreter for errorstring and dlgname. The createmode
argument can be a string or a structure.

If createmode is a string, it must be one of the values shown in the
following table.

createmode Value Description

modal Replaces the error dialog box having the
specified Title, that was last created or
clicked on, with a modal error dialog box as
specified. All other error dialog boxes with
the same title are deleted. The dialog box
which is replaced can be either modal or
nonmodal.

2-1022

errordlg

createmode Value Description

non-modal (default) Creates a new nonmodal error dialog box
with the specified parameters. Existing
error dialog boxes with the same title are
not deleted.

replace Replaces the error dialog box having the
specified Title, that was last created or
clicked on, with a nonmodal error dialog
boxbox as specified. All other error dialog
boxes with the same title are deleted. The
dialog box which is replaced can be either
modal or nonmodal.

Note A modal dialog box prevents the user from interacting with other
windows before responding. To block MATLAB program execution as
well, use theuiwait function. For more information about modal dialog
boxes, see WindowStyle in theFigure Properties.

If CreateMode is a structure, it can have fields WindowStyle and
Interpreter. WindowStyle must be one of the options shown in the
table above. Interpreter is one of the strings 'tex' or 'none'. The
default value for Interpreter is 'none'.

Remarks MATLAB sizes the dialog box to fit the string 'errorstring'. The
error dialog box has an OK push button and remains on the screen until
you press the OK button or the Return key. After pressing the button,
the error dialog box disappears.

The appearance of the dialog box depends on the platform you use.

Examples The function

errordlg('File not found','File Error');

2-1023

errordlg

displays this dialog box:

See Also dialog, helpdlg, inputdlg, listdlg, msgbox, questdlg, warndlg

figure, uiwait, uiresume

“Predefined Dialog Boxes” on page 1-104 for related functions

2-1024

etime

Purpose Time elapsed between date vectors

Syntax e = etime(t2, t1)

Description e = etime(t2, t1) returns the time in seconds between vectors t1
and t2. The two vectors must be six elements long, in the format
returned by clock:

T = [Year Month Day Hour Minute Second]

Remarks When timing the duration of an event, use the tic and toc functions
instead of clock or etime. These latter two functions are based on the
system time which can be adjusted periodically by the operating system
and thus might not be reliable in time comparison operations.

The etime function measures time elapsed between two points in time,
and does not take into account differences in those points brought about
by daylight savings time or changes in time zone.

Examples Calculate how long a 2048-point real FFT takes.

x = rand(2048, 1);
t = clock; fft(x); etime(clock, t)
ans =

0.4167

Limitations As currently implemented, the etime function fails across month and
year boundaries. Since etime is an M-file, you can modify the code to
work across these boundaries if needed.

See Also clock, cputime, tic, toc

2-1025

etree

Purpose Elimination tree

Syntax p = etree(A)
p = etree(A,'col')
p = etree(A,'sym')
[p,q] = etree(...)

Description p = etree(A) returns an elimination tree for the square symmetric
matrix whose upper triangle is that of A. p(j) is the parent of column j
in the tree, or 0 if j is a root.

p = etree(A,'col') returns the elimination tree of A'*A.

p = etree(A,'sym') is the same as p = etree(A).

[p,q] = etree(...) also returns a postorder permutation q of the tree.

See Also treelayout, treeplot, etreeplot

2-1026

etreeplot

Purpose Plot elimination tree

Syntax etreeplot(A)
etreeplot(A,nodeSpec,edgeSpec)

Description etreeplot(A) plots the elimination tree of A (or A+A', if non-symmetric).

etreeplot(A,nodeSpec,edgeSpec) allows optional parameters
nodeSpec and edgeSpec to set the node or edge color, marker, and
linestyle. Use '' to omit one or both.

See Also etree, treeplot, treelayout

2-1027

eval

Purpose Execute string containing MATLAB expression

Syntax eval(expression)
[a1, a2, a3, ...] = eval(function(b1, b2, b3, ...))

Description eval(expression) executes expression, a string containing any valid
MATLAB expression. You can construct expression by concatenating
substrings and variables inside square brackets:

expression = [string1, int2str(var), string2, ...]

[a1, a2, a3, ...] = eval(function(b1, b2, b3, ...)) executes
function with arguments b1, b2, b3, ..., and returns the results
in the specified output variables.

Remarks Using the eval output argument list is recommended over including
the output arguments in the expression string. The first syntax
below avoids strict checking by the MATLAB parser and can produce
untrapped errors and other unexpected behavior. Use the second syntax
instead:

% Not recommended
eval('[a1, a2, a3, ...] = function(var)')

% Recommended syntax
[a1, a2, a3, ...] = eval('function(var)')

Examples Example 1 – Working with a Series of Files

Load MAT-files August1.mat to August10.mat into the MATLAB
workspace:

for d=1:10
s = ['load August' int2str(d) '.mat']
eval(s)

end

These are the strings being evaluated:

2-1028

eval

s =
load August1.mat

s =
load August2.mat

s =
load August3.mat

- etc. -

Example 2 – Assigning to Variables with Generated Names

Generate variable names that are unique in the MATLAB workspace
and assign a value to each using eval:

for k = 1:5
t = clock;
pause(uint8(rand * 10));
v = genvarname('time_elapsed', who);
eval([v ' = etime(clock,t)'])
end

As this code runs, eval creates a unique statement for each assignment:

time_elapsed =
5.0070

time_elapsed1 =
2.0030

time_elapsed2 =
7.0010

time_elapsed3 =
8.0010

time_elapsed4 =
3.0040

Example 3 – Evaluating a Returned Function Name

The following command removes a figure by evaluating its
CloseRequestFcn property as returned by get.

eval(get(h,'CloseRequestFcn'))

2-1029

eval

See Also evalc, evalin, assignin, feval, catch, lasterror, try

2-1030

evalc

Purpose Evaluate MATLAB expression with capture

Syntax T = evalc(S)
[T, X, Y, Z, ...] = evalc(S)

Description T = evalc(S) is the same as eval(S) except that anything that
would normally be written to the command window, except for error
messages, is captured and returned in the character array T (lines in T
are separated by \n characters).

[T, X, Y, Z, ...] = evalc(S) is the same as [X, Y, Z, ...] =
eval(S) except that any output is captured into T.

Remark When you are using evalc, diary, more, and input are disabled.

See Also eval, evalin, assignin, feval, diary, input, more

2-1031

evalin

Purpose Execute MATLAB expression in specified workspace

Syntax evalin(ws, expression)
[a1, a2, a3, ...] = evalin(ws, expression)

Description evalin(ws, expression) executes expression, a string containing
any valid MATLAB expression, in the context of the workspace ws. ws
can have a value of 'base' or 'caller' to denote the MATLAB base
workspace or the workspace of the caller function. You can construct
expression by concatenating substrings and variables inside square
brackets:

expression = [string1, int2str(var), string2,...]

[a1, a2, a3, ...] = evalin(ws, expression) executes
expression and returns the results in the specified output variables.
Using the evalin output argument list is recommended over including
the output arguments in the expression string:

evalin(ws,'[a1, a2, a3, ...] = function(var)')

The above syntax avoids strict checking by the MATLAB parser and can
produce untrapped errors and other unexpected behavior.

Remarks The MATLAB base workspace is the workspace that is seen from
the MATLAB command line (when not in the debugger). The caller
workspace is the workspace of the function that called the M-file. Note,
the base and caller workspaces are equivalent in the context of an M-file
that is invoked from the MATLAB command line.

If you use evalin('caller', ws) in the MATLAB debugger after
having changed your local workspace context with dbup or dbdown,
MATLAB evaluates the expression in the context of the function that is
one level up in the stack from your current workspace context.

Examples This example extracts the value of the variable var in the MATLAB
base workspace and captures the value in the local variable v:

2-1032

evalin

v = evalin('base', 'var');

Limitation evalin cannot be used recursively to evaluate an expression.
For example, a sequence of the form evalin('caller',
'evalin(''caller'', ''x'')') doesn’t work.

See Also assignin, eval, evalc, feval, catch, lasterror, try

2-1033

eventlisteners

Purpose List of events attached to listeners

Syntax C = h.eventlisteners
C = eventlisteners(h)

Description C = h.eventlisteners lists any events, along with their event handler
routines, that have been registered with control, h. The function returns
cell array of strings C, with each row containing the name of a registered
event and the handler routine for that event. If the control has no
registered events, then eventlisteners returns an empty cell array.

Events and their event handler routines must be registered in order for
the control to respond to them. You can register events either when
you create the control, using actxcontrol, or at any time afterwards,
using registerevent.

C = eventlisteners(h) is an alternate syntax for the same operation.

Examples mwsamp Control Example

Create an mwsamp control, registering only the Click event.
eventlisteners returns the name of the event and its event handler
routine, myclick:

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', ...

[0 0 200 200], f, ...
{'Click' 'myclick'});

h.eventlisteners
ans =

'click' 'myclick'

Register two more events: DblClick and MouseDown. eventlisteners
returns the names of the three registered events along with their
respective handler routines:

h.registerevent({'DblClick', 'my2click'; ...
'MouseDown' 'mymoused'});

2-1034

eventlisteners

h.eventlisteners
ans =

'click' 'myclick'
'dblclick' 'my2click'
'mousedown' 'mymoused'

Now unregister all events for the control. eventlisteners returns
an empty cell array, indicating that no events have been registered
for the control:

h.unregisterallevents

h.eventlisteners
ans =

{}

Excel Workbook Example

excel = actxserver('Excel.Application');
wbs = excel.Workbooks;
wb = wbs.Add;
wb.registerevent({'Activate' 'EvtActivateHandler'})
wb.eventlisteners

ans =

'Activate' 'EvtActivateHandler'

See Also events, registerevent, unregisterevent, unregisterallevents,
isevent

2-1035

events

Purpose List of events control can trigger

Syntax S = h.events
S = events(h)

Description S = h.events returns structure array S containing all events, both
registered and unregistered, known to the control, and the function
prototype used when calling the event handler routine. For each array
element, the structure field is the event name and the contents of that
field is the function prototype for that event’s handler.

S = events(h) is an alternate syntax for the same operation.

Examples List Control Events Example

Create an mwsamp control and list all events:

f = figure ('position', [100 200 200 200]);
h = actxcontrol ('mwsamp.mwsampctrl.2', [0 0 200 200], f);

h.events
Click = void Click()
DblClick = void DblClick()
MouseDown = void MouseDown(int16 Button, int16 Shift,

Variant x, Variant y)

Assign the output to a variable and get one field of the returned
structure:

ev = h.events;

ev.MouseDown
ans =

void MouseDown(int16 Button, int16 Shift, ...
Variant x, Variant y)

List Excel Workbook Events Example

Open Excel and list all events for a Workbook object:

2-1036

events

excel = actxserver('Excel.Application');
wbs = excel.Workbooks;
wb = wbs.Add;
wb.events

MATLAB displays all events supported by the Workbook object.

Open = void Open()
Activate = void Activate()
Deactivate = void Deactivate()
BeforeClose = void BeforeClose(bool Cancel)

.

.

See Also isevent, eventlisteners, registerevent, unregisterevent,
unregisterallevents

2-1037

Execute

Purpose Execute MATLAB command in server

Syntax MATLAB Client

result = h.Execute('command')
result = Execute(h, 'command')
result = invoke(h, 'Execute', 'command')

Method Signature

BSTR Execute([in] BSTR command)

Visual Basic Client

Execute(command As String) As String

Description The Execute function executes the MATLAB statement specified by the
string command in the MATLAB Automation server attached to handle h.

The server returns output from the command in the string, result. The
result string also contains any warning or error messages that might
have been issued by MATLAB as a result of the command.

Note that if you terminate the MATLAB command string with a
semicolon and there are no warnings or error messages, result might
be returned empty.

Remarks If you want to be able to display output from Execute in the client
window, you must specify an output variable (i.e., result in the above
syntax statements).

Server function names, like Execute, are case sensitive when used with
dot notation (the first syntax shown).

All three versions of the MATLAB client syntax perform the same
operation.

Examples Execute the MATLAB version function in the server and return the
output to the MATLAB client.

2-1038

Execute

MATLAB Client

h = actxserver('matlab.application');
server_version = h.Execute('version')
server_version =
ans =

6.5.0.180913a (R13)

Visual Basic .NET Client

Dim Matlab As Object
Dim server_version As String
Matlab = CreateObject("matlab.application")
server_version = Matlab.Execute("version")

See Also Feval, PutFullMatrix, GetFullMatrix, PutCharArray, GetCharArray

2-1039

exifread

Purpose Read EXIF information from JPEG and TIFF image files

Syntax output = exifread(filename)

Description output = exifread(filename) reads the Exchangeable Image File
Format (EXIF) data from the file specified by the string filename.
filename must specify a JPEG or TIFF image file. output is a structure
containing metadata values about the image or images in imagefile.

Note exifread returns all EXIF tags and does not process them in
any way.

EXIF is a standard used by digital camera manufacturers to store
information in the image file, such as, the make and model of a camera,
the time the picture was taken and digitized, the resolution of the image,
exposure time, and focal length. For more information about EXIF and
the meaning of metadata attributes, see http://www.exif.org/.

See Also imfinfo, imread

2-1040

http://www.exif.org/

exist

Purpose Check existence of variable, function, directory, or Java class

Graphical
Interface

As an alternative to the exist function, use the Workspace Browser or
the Current Directory Browser.

Syntax exist name
exist name kind
A = exist('name','kind')

Description exist name returns the status of name:

0 If name does not exist.

1 If name is a variable in the workspace.

2 If name is an M-file on your MATLAB search path. It also
returns 2 when name is the full pathname to a file or the name
of an ordinary file on your MATLAB search path.

3 If name is a MEX- or DLL-file on your MATLAB search path.

4 If name is an MDL-file on your MATLAB search path.

5 If name is a built-in MATLAB function.

6 If name is a P-file on your MATLAB search path.

7 If name is a directory.

8 If name is a Java class. (exist returns 0 if you start MATLAB
with the -nojvm option.)

exist name kind returns the status of name for the specified kind. If
name of type kind does not exist, it returns 0. The kind argument may
be one of the following:

builtin Checks only for built-in functions.

class Checks only for Java classes.

dir Checks only for directories.

2-1041

exist

file Checks only for files or directories.

var Checks only for variables.

If name belongs to more than one category (e.g., if there are both an
M-file and variable of the given name) and you do not specify a kind
argument, exist returns one value according to the order of evaluation
shown in the table below. For example, if name matches both a directory
and M-file name, exist returns 7, identifying it as a directory.

Order of
Evaluation Return Value Type of Entity

1 1 Variable

2 5 Built-in

3 7 Directory

4 3 MEX or DLL-file

5 4 MDL-file

6 6 P-file

7 2 M-file

8 8 Java class

A = exist('name','kind') is the function form of the syntax.

Remarks If name specifies a filename, that filename may include an extension
to preclude conflicting with other similar filenames. For example,
exist('file.ext').

If name specifies a filename, MATLAB attempts to locate the file,
examines the filename extension, and determines the value to return
based on the extension alone. MATLAB does not examine the contents
or internal structure of the file.

You can specify a partial path to a directory or file. A partial pathname
is a pathname relative to the MATLAB path that contains only the
trailing one or more components of the full pathname. For example,

2-1042

exist

both of the following commands return 2, identifying mkdir.m as an
M-file. The first uses a partial pathname:

exist('matlab/general/mkdir.m')
exist([matlabroot '/toolbox/matlab/general/mkdir.m'])

If a file or directory is not on the search path, then name must specify
either a full pathname, a partial pathname relative to MATLABPATH,
a partial pathname relative to your current directory, or the file or
directory must reside in your current working directory.

If name is a Java class, then exist('name') returns an 8. However, if
name is a Java class file, then exist('name') returns a 2.

Remarks To check for the existence of more than one variable, use the ismember
function. For example,

a = 5.83;
c = 'teststring';
ismember({'a','b','c'},who)

ans =

1 0 1

Examples This example uses exist to check whether a MATLAB function is a
built-in function or a file:

type = exist('plot')
type =
5

This indicates that plot is a built-in function.

In the next example, exist returns 8 on the Java class, Welcome, and
returns 2 on the Java class file, Welcome.class:

exist Welcome
ans =

2-1043

exist

8

exist javaclasses/Welcome.class
ans =

2

indicates there is a Java class Welcome and a Java class file
Welcome.class.

The following example indicates that testresults is both a variable in
the workspace and a directory on the search path:

exist('testresults','var')
ans =

1
exist('testresults','dir')
ans =

7

See Also assignin, computer, dir, evalin, help, inmem, isfield, isempty,
lookfor, mfilename, partialpath, what, which, who

2-1044

exit

Purpose Terminate MATLAB (same as quit)

GUI
Alternatives

As an alternative to the exit function, select File > Exit MATLAB or
click the Close box in the MATLAB desktop.

Syntax exit

Description exit terminates the current MATLAB session after running finish.m,
if the file finish.m exists. It performs the same as quit and takes
the same termination options, such as force. For more information,
see quit.

See Also quit, finish

2-1045

exp

Purpose Exponential

Syntax Y = exp(X)

Description The exp function is an elementary function that operates element-wise
on arrays. Its domain includes complex numbers.

Y = exp(X) returns the exponential for each element of X.
For complex , it returns the complex exponential

.

Remark Use expm for matrix exponentials.

See Also expm, log, log10, expint

2-1046

expint

Purpose Exponential integral

Syntax Y = expint(X)

Definitions The exponential integral computed by this function is defined as

Another common definition of the exponential integral function is the
Cauchy principal value integral

which, for real positive x, is related to expint as

Description Y = expint(X) evaluates the exponential integral for each element of X.

References [1] Abramowitz, M. and I. A. Stegun. Handbook of Mathematical
Functions. Chapter 5, New York: Dover Publications, 1965.

2-1047

expm

Purpose Matrix exponential

Syntax Y = expm(X)

Description Y = expm(X) raises the constant to the matrix power X.

Although it is not computed this way, if X has a full set of eigenvectors V
with corresponding eigenvalues D, then

[V,D] = EIG(X) and EXPM(X) = V*diag(exp(diag(D)))/V

Use exp for the element-by-element exponential.

Algorithm expm uses the Padé approximation with scaling and squaring. See
reference [3], below.

Note The expmdemo1, expmdemo2, and expmdemo3 demos illustrate
the use of Padé approximation, Taylor series approximation, and
eigenvalues and eigenvectors, respectively, to compute the matrix
exponential. References [1] and [2] describe and compare many
algorithms for computing a matrix exponential.

Examples This example computes and compares the matrix exponential of A and
the exponential of A.

A = [1 1 0
0 0 2
0 0 -1];

expm(A)
ans =

2.7183 1.7183 1.0862
0 1.0000 1.2642
0 0 0.3679

2-1048

expm

exp(A)
ans =

2.7183 2.7183 1.0000
1.0000 1.0000 7.3891
1.0000 1.0000 0.3679

Notice that the diagonal elements of the two results are equal. This
would be true for any triangular matrix. But the off-diagonal elements,
including those below the diagonal, are different.

See Also exp, expm1, funm, logm, eig, sqrtm

References [1] Golub, G. H. and C. F. Van Loan, Matrix Computation, p. 384, Johns
Hopkins University Press, 1983.

[2] Moler, C. B. and C. F. Van Loan, “Nineteen Dubious Ways to Compute
the Exponential of a Matrix,” SIAM Review 20, 1978, pp. 801-836.

[3] Higham, N. J., “The Scaling and Squaring Method for the Matrix
Exponential Revisited,” SIAM J. Matrix Anal. Appl., 26(4) (2005), pp.
1179-1193.

2-1049

expm1

Purpose Compute exp(x)-1 accurately for small values of x

Syntax y = expm1(x)

Description y = expm1(x) computes exp(x)-1, compensating for the roundoff in
exp(x).

For small x, expm1(x) is approximately x, whereas exp(x)-1 can be
zero.

See Also exp, expm, log1p

2-1050

export2wsdlg

Purpose Export variables to workspace

Syntax export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport)
export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title)
export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title,selected)
export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title,selected,helpfunction)
export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title,selected,helpfunction,functionlist)
hdialog = export2wsdlg(...)
[hdialog,ok_pressed] = export2wsdlg(...)

Description export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport) creates a dialog with a series of check boxes and edit
fields. checkboxlabels is a cell array of labels for the check boxes.
defaultvariablenames is a cell array of strings that serve as a basis for
variable names that appear in the edit fields. itemstoexport is a cell
array of the values to be stored in the variables. If there is only one item
to export, export2wsdlg creates a text control instead of a check box.

Note By default, the dialog box is modal. A modal dialog box prevents
the user from interacting with other windows before responding.

export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title) creates the dialog with title as its title.

export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title,selected) creates the dialog allowing the user
to control which check boxes are checked. selected is a logical array
whose length is the same as checkboxlabels. True indicates that the
check box should initially be checked, false unchecked.

2-1051

export2wsdlg

export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title,selected,helpfunction) creates the dialog
with a help button. helpfunction is a callback that displays help.

export2wsdlg(checkboxlabels,defaultvariablenames,
itemstoexport,title,selected,helpfunction,functionlist)
creates a dialog that enables the user to pass in functionlist, a
cell array of functions and optional arguments that calculate, then
return the value to export. functionlist should be the same length
as checkboxlabels.

hdialog = export2wsdlg(...) returns the handle of the dialog.

[hdialog,ok_pressed] = export2wsdlg(...) sets ok_pressed to
true if the OK button is pressed, or false otherwise. If two return
arguments are requested, hdialog is [] and the function does not
return until the dialog is closed.

The user can edit the text fields to modify the default variable names. If
the same name appears in multiple edit fields, export2wsdlg creates
a structure using that name. It then uses the defaultvariablenames
as fieldnames for that structure.

The lengths of checkboxlabels, defaultvariablenames,
itemstoexport and selected must all be equal.

The strings in defaultvariablenames must be unique.

Examples This example creates a dialog box that enables the user to save the
variables sumA and/or meanA to the workspace. The dialog box title is
Save Sums to Workspace.

A = randn(10,1);
checkLabels = {'Save sum of A to variable named:' ...

'Save mean of A to variable named:'};
varNames = {'sumA','meanA'};
items = {sum(A),mean(A)};
export2wsdlg(checkLabels,varNames,items,...

'Save Sums to Workspace');

2-1052

eye

Purpose Identity matrix

Syntax Y = eye(n)
Y = eye(m,n)
eye([m n])
Y = eye(size(A))
eye(m, n, classname)
eye([m,n],classname)

Description Y = eye(n) returns the n-by-n identity matrix.

Y = eye(m,n) or eye([m n]) returns an m-by-n matrix with 1’s on the
diagonal and 0’s elsewhere.

Note The size inputs m and n should be nonnegative integers. Negative
integers are treated as 0.

Y = eye(size(A)) returns an identity matrix the same size as A.

eye(m, n, classname) or eye([m,n],classname) is an m-by-n
matrix with 1’s of class classname on the diagonal and zeros of class
classname elsewhere. classname is a string specifying the data type
of the output. classname can have the following values: 'double',
'single', 'int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32',
'int64', or 'uint64'.

Example: x = eye(2,3,'int8');

Limitations The identity matrix is not defined for higher-dimensional arrays. The
assignment y = eye([2,3,4]) results in an error.

See Also ones, rand, randn, zeros

2-1053

ezcontour

Purpose Easy-to-use contour plotter

Syntax ezcontour(fun)
ezcontour(fun,domain)
ezcontour(...,n)
ezcontour(axes_handle,...)
h = ezcontour(...)

Description ezcontour(fun) plots the contour lines of fun(x,y) using the contour
function. fun is plotted over the default domain: -2π < x < 2π, -2π <
y < 2π.

fun can be a function handle for an M-file function or an anonymous
function (see “Function Handles” and “Anonymous Functions”) or a
string (see Remarks).

ezcontour(fun,domain) plots fun(x,y) over the specified domain.
domain can be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a
2-by-1 vector [min, max] (where min < x < max, min < y < max).

ezcontour(...,n) plots fun over the default domain using an n-by-n
grid. The default value for n is 60.

ezcontour(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = ezcontour(...) returns the handles to contour objects in h.

ezcontour automatically adds a title and axis labels.

Remarks Passing the Function as a String

Array multiplication, division, and exponentiation are always implied
in the string expression you pass to ezcontour. For example, the
MATLAB syntax for a contour plot of the expression

sqrt(x.^2 + y.^2)

2-1054

ezcontour

is written as

ezcontour('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezcontour.

If the function to be plotted is a function of the variables u and v (rather
than x and y), the domain endpoints umin, umax, vmin, and vmax are
sorted alphabetically. Thus, ezcontour('u^2 - v^3',[0,1],[3,6])
plots the contour lines for u2 - v3 over 0 < u < 1, 3 < v < 6.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezcontour.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezcontour(fh)

When using function handles, you must use the array power, array
multiplication, and array division operators (.^, .*, ./) since
ezcontour does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example, k in myfun:

function z = myfun(x,y,k)
z = x.^k - y.^k - 1;

then use an anonymous function to specify that parameter:

ezcontour(@(x,y)myfun(x,y,2))

Examples The following mathematical expression defines a function of two
variables, x and y.

2-1055

ezcontour

ezcontour requires a function handle argument that expresses this
function using MATLAB syntax. This example uses an anonymous
function, which you can define in the command window without
creating an M-file.

f=@(x,y) 3*(1-x).^2.*exp(-(x.^2) - (y+1).^2) ...
- 10*(x/5 - x.^3 - y.^5).*exp(-x.^2-y.^2) ...
- 1/3*exp(-(x+1).^2 - y.^2);

For convenience, this function is written on three lines. The MATLAB
peaks function evaluates this expression for different sizes of grids.

Pass the function handle f to ezcontour along with a domain ranging
from -3 to 3 in both x and y and specify a computational grid of 49-by-49:

ezcontour(f,[-3,3],49)

2-1056

ezcontour

In this particular case, the title is too long to fit at the top of the graph,
so MATLAB abbreviates the string.

See Also contour, ezcontourf, ezmesh, ezmeshc, ezplot, ezplot3, ezpolar,
ezsurf, ezsurfc, function_handle

“Contour Plots” on page 1-89 for related functions

2-1057

ezcontourf

Purpose Easy-to-use filled contour plotter

Syntax ezcontourf(fun)
ezcontourf(fun,domain)
ezcontourf(...,n)
ezcontourf(axes_handle,...)
h = ezcontourf(...)

Description ezcontourf(fun) plots the contour lines of fun(x,y)using the
contourf function. fun is plotted over the default domain: -2π < x <
2π, -2π < y < 2π.

fun can be a function handle for an M-file function or an anonymous
function (see “Function Handles” and Anonymous Functions) or a string
(see Remarks).

ezcontourf(fun,domain) plots fun(x,y) over the specified domain.
domain can be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a
2-by-1 vector [min, max], where min < x < max, min < y < max).

ezcontourf(...,n) plots fun over the default domain using an n-by-n
grid. The default value for n is 60.

ezcontourf(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = ezcontourf(...) returns the handles to contour objects in h.

ezcontourf automatically adds a title and axis labels.

Remarks Passing the Function as a String

Array multiplication, division, and exponentiation are always implied
in the string expression you pass to ezcontourf. For example, the
MATLAB syntax for a filled contour plot of the expression

sqrt(x.^2 + y.^2);

2-1058

ezcontourf

is written as

ezcontourf('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezcontourf.

If the function to be plotted is a function of the variables u and v (rather
than x and y), then the domain endpoints umin, umax, vmin, and vmax are
sorted alphabetically. Thus, ezcontourf('u^2 - v^3',[0,1],[3,6])
plots the contour lines for u2 - v3 over 0 < u < 1, 3 < v < 6.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezcontourf.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezcontourf(fh)

When using function handles, you must use the array power, array
multiplication, and array division operators (.^, .*, ./) since
ezcontourf does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example, k in myfun:

function z = myfun(x,y,k)
z = x.^k - y.^k - 1;

then you can use an anonymous function to specify that parameter:

ezcontourf(@(x,y)myfun(x,y,2))

Examples The following mathematical expression defines a function of two
variables, x and y.

2-1059

ezcontourf

ezcontourf requires a string argument that expresses this function
using MATLAB syntax to represent exponents, natural logs, etc. This
function is represented by the string

f = ['3*(1-x)^2*exp(-(x^2)-(y+1)^2)',...
'- 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2)',...
'- 1/3*exp(-(x+1)^2 - y^2)'];

For convenience, this string is written on three lines and concatenated
into one string using square brackets.

Pass the string variable f to ezcontourf along with a domain ranging
from -3 to 3 and specify a grid of 49-by-49:

ezcontourf(f,[-3,3],49)

2-1060

ezcontourf

In this particular case, the title is too long to fit at the top of the graph,
so MATLAB abbreviates the string.

See Also contourf, ezcontour, ezmesh, ezmeshc, ezplot, ezplot3, ezpolar,
ezsurf, ezsurfc, function_handle

“Contour Plots” on page 1-89 for related functions

2-1061

ezmesh

Purpose Easy-to-use 3-D mesh plotter

Syntax ezmesh(fun)
ezmesh(fun,domain)
ezmesh(funx,funy,funz)
ezmesh(funx,funy,funz,[smin,smax,tmin,tmax])
ezmesh(funx,funy,funz,[min,max]
ezmesh(...,n)
ezmesh(...,'circ')
ezmesh(axes_handle,...)
h = ezmesh(...)

Description ezmesh(fun) creates a graph of fun(x,y) using the mesh function. fun
is plotted over the default domain: -2π < x < 2π, -2π < y < 2π.

fun can be a function handle for an M-file function or an anonymous
function (see “Function Handles” and Anonymous Functions) or a string
(see the Remarks section).

ezmesh(fun,domain) plots fun over the specified domain. domain can
be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector
[min, max] (where min < x < max, min < y < max).

ezmesh(funx,funy,funz) plots the parametric surface funx(s,t),
funy(s,t), and funz(s,t) over the square: -2π < s < 2π, -2π < t < 2π.

ezmesh(funx,funy,funz,[smin,smax,tmin,tmax]) or
ezmesh(funx,funy,funz,[min,max]) plots the parametric surface
using the specified domain.

ezmesh(...,n) plots fun over the default domain using an n-by-n grid.
The default value for n is 60.

ezmesh(...,'circ') plots fun over a disk centered on the domain.

ezmesh(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

2-1062

ezmesh

h = ezmesh(...) returns the handle to a surface object in h.

Remarks Passing the Function as a String

Array multiplication, division, and exponentiation are always implied
in the string expression you pass to ezmesh. For example, the MATLAB
syntax for a mesh plot of the expression

sqrt(x.^2 + y.^2);

is written as

ezmesh('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezmesh.

If the function to be plotted is a function of the variables u and v (rather
than x and y), then the domain endpoints umin, umax, vmin, and vmax
are sorted alphabetically. Thus, ezmesh('u^2 - v^3',[0,1],[3,6])
plots u2 - v3 over 0 < u < 1, 3 < v < 6.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezmesh.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezmesh(fh)

Note that when using function handles, you must use the array power,
array multiplication, and array division operators (.^, .*, ./) since
ezmesh does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example k in myfun:

function z = myfun(x,y,k)
z = x.^k - y.^k - 1;

2-1063

ezmesh

then you can use an anonymous function to specify that parameter:

ezmesh(@(x,y)myfun(x,y,2))

Examples This example visualizes the function

with a mesh plot drawn on a 40-by-40 grid. The mesh lines are set to a
uniform blue color by setting the colormap to a single color:

fh = @(x,y) x.*exp(-x.^2-y.^2);
ezmesh(fh,40)
colormap([0 0 1])

2-1064

ezmesh

See Also ezmeshc, function_handle, mesh

“Function Plots” on page 1-89 for related functions

2-1065

ezmeshc

Purpose Easy-to-use combination mesh/contour plotter

Syntax ezmeshc(fun)
ezmeshc(fun,domain)
ezmeshc(funx,funy,funz)
ezmeshc(funx,funy,funz,[smin,smax,tmin,tmax])
ezmeshc(funx,funy,funz,[min,max])
ezmeshc(...,n)
ezmeshc(...,'circ')
ezmesh(axes_handle,...)
h = ezmeshc(...)

Description ezmeshc(fun) creates a graph of fun(x,y) using the meshc function.
fun is plotted over the default domain -2π < x < 2π, -2π < y < 2π.

fun can be a function handle for an M-file function or an anonymous
function (see “Function Handles” and “Anonymous Functions”) or a
string (see the Remarks section).

ezmeshc(fun,domain) plots fun over the specified domain. domain can
be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector
[min, max] (where min < x < max, min < y < max).

ezmeshc(funx,funy,funz) plots the parametric surface funx(s,t),
funy(s,t), and funz(s,t) over the square: -2π < s < 2π, -2π < t < 2π.

ezmeshc(funx,funy,funz,[smin,smax,tmin,tmax]) or
ezmeshc(funx,funy,funz,[min,max]) plots the parametric surface
using the specified domain.

ezmeshc(...,n) plots fun over the default domain using an n-by-n
grid. The default value for n is 60.

ezmeshc(...,'circ') plots fun over a disk centered on the domain.

ezmesh(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = ezmeshc(...) returns the handle to a surface object in h.

2-1066

ezmeshc

Remarks Passing the Function as a String

Array multiplication, division, and exponentiation are always implied in
the string expression you pass to ezmeshc. For example, the MATLAB
syntax for a mesh/contour plot of the expression

sqrt(x.^2 + y.^2);

is written as

ezmeshc('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezmeshc.

If the function to be plotted is a function of the variables u and v (rather
than x and y), then the domain endpoints umin, umax, vmin, and vmax
are sorted alphabetically. Thus, ezmeshc('u^2 - v^3',[0,1],[3,6])
plots u2 - v3 over 0 < u < 1, 3 < v < 6.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezmeshc.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezmeshc(fh)

Note that when using function handles, you must use the array power,
array multiplication, and array division operators (.^, .*, ./) since
ezmeshc does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example k in myfun:

function z = myfun(x,y,k)
z = x.^k - y.^k - 1;

then you can use an anonymous function to specify that parameter:

ezmeshc(@(x,y)myfun(x,y,2))

2-1067

ezmeshc

Examples Create a mesh/contour graph of the expression

over the domain -5 < x < 5, -2*pi < y < 2*pi:

ezmeshc('y/(1 + x^2 + y^2)',[-5,5,-2*pi,2*pi])

Use the mouse to rotate the axes to better observe the contour lines
(this picture uses a view of azimuth = -65.5 and elevation = 26)

See Also ezmesh, ezsurfc, function_handle, meshc

2-1068

ezmeshc

“Function Plots” on page 1-89 for related functions

2-1069

ezplot

Purpose Easy-to-use function plotter

Syntax ezplot(fun)
ezplot(fun,[min,max])
ezplot(fun2)
ezplot(fun2,[xmin,xmax,ymin,ymax])
ezplot(fun2,[min,max])
ezplot(funx,funy)
ezplot(funx,funy,[tmin,tmax])
ezplot(...,figure_handle)
ezplot(axes_handle,...)
h = ezplot(...)

Description ezplot(fun) plots the expression fun(x) over the default domain -2π <
x < 2π.

fun can be a function handle for an M-file function or an anonymous
function (see “Function Handles” and Anonymous Functions) or a string
(see the Remarks section).

ezplot(fun,[min,max]) plots fun(x) over the domain: min < x < max.

For implicitly defined functions, fun2(x,y):

ezplot(fun2) plots fun2(x,y) = 0 over the default domain -2π < x <
2π, -2π < y < 2π.

ezplot(fun2,[xmin,xmax,ymin,ymax]) plots fun2(x,y) = 0 over
xmin < x < xmax and ymin < y < ymax.

ezplot(fun2,[min,max]) plots fun2(x,y) = 0 over min < x < max
and min < y < max.

ezplot(funx,funy) plots the parametrically defined planar curve
funx(t) and funy(t) over the default domain 0 < t < 2π.

2-1070

ezplot

ezplot(funx,funy,[tmin,tmax]) plots funx(t) and funy(t) over
tmin < t < tmax.

ezplot(...,figure_handle) plots the given function over the specified
domain in the figure window identified by the handle figure.

ezplot(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = ezplot(...) returns the handle to a line objects in h.

Remarks Passing the Function as a String

Array multiplication, division, and exponentiation are always implied in
the expression you pass to ezplot. For example, the MATLAB syntax
for a plot of the expression

x.^2 - y.^2

which represents an implicitly defined function, is written as

ezplot('x^2 - y^2')

That is, x^2 is interpreted as x.^2 in the string you pass to ezplot.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezplot,

fh = @(x,y) sqrt(x.^2 + y.^2 - 1);
ezplot(fh)
axis equal

which plots a circle. Note that when using function handles, you must
use the array power, array multiplication, and array division operators
(.^, .*, ./) since ezplot does not alter the syntax, as in the case
with string inputs.

2-1071

ezplot

Passing Additional Arguments

If your function has additional parameters, for example k in myfun:

function z = myfun(x,y,k)
z = x.^k - y.^k - 1;

then you can use an anonymous function to specify that parameter:

ezplot(@(x,y)myfun(x,y,2))

Examples This example plots the implicitly defined function

x2 - y4 = 0

over the domain [-2π, 2π]:

ezplot('x^2-y^4')

2-1072

ezplot

See Also ezplot3, ezpolar, function_handle, plot

“Function Plots” on page 1-89 for related functions

2-1073

ezplot3

Purpose Easy-to-use 3-D parametric curve plotter

Syntax ezplot3(funx,funy,funz)
ezplot3(funx,funy,funz,[tmin,tmax])
ezplot3(...,'animate')
ezplot3(axes_handle,...)
h = ezplot3(...)

Description ezplot3(funx,funy,funz) plots the spatial curve funx(t), funy(t),
and funz(t) over the default domain 0 < t < 2π.

funx, funy, and funz can be function handles for M-file functions or
an anonymous functions (see “Function Handles” and “Anonymous
Functions”) or strings (see the Remarks section).

ezplot3(funx,funy,funz,[tmin,tmax]) plots the curve funx(t),
funy(t), and funz(t) over the domain tmin < t < tmax.

ezplot3(...,'animate') produces an animated trace of the spatial
curve.

ezplot3(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = ezplot3(...) returns the handle to the plotted objects in h.

Remarks Passing the Function as a String

Array multiplication, division, and exponentiation are always implied in
the expression you pass to ezplot3. For example, the MATLAB syntax
for a plot of the expression

x = s./2, y = 2.*s, z = s.^2;

which represents a parametric function, is written as

ezplot3('s/2','2*s','s^2')

2-1074

ezplot3

That is, s/2 is interpreted as s./2 in the string you pass to ezplot3.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezplot3.

fh1 = @(s) s./2; fh2 = @(s) 2.*s; fh3 = @(s) s.^2;
ezplot3(fh1,fh2,fh3)

Note that when using function handles, you must use the array power,
array multiplication, and array division operators (.^, .*, ./) since
ezplot does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example k in myfuntk:

function s = myfuntk(t,k)
s = t.^k.*sin(t);

then you can use an anonymous function to specify that parameter:

ezplot3(@cos,@(t)myfuntk(t,1),@sqrt)

Examples This example plots the parametric curve

over the domain [0,6π]:

ezplot3('sin(t)','cos(t)','t',[0,6*pi])

2-1075

ezplot3

See Also ezplot, ezpolar, function_handle, plot3

“Function Plots” on page 1-89 for related functions

2-1076

ezpolar

Purpose Easy-to-use polar coordinate plotter

Syntax ezpolar(fun)
ezpolar(fun,[a,b])
ezpolar(axes_handle,...)
h = ezpolar(...)

Description ezpolar(fun) plots the polar curve rho = fun(theta) over the default
domain 0 < theta < 2π.

fun can be a function handle for an M-file function or an anonymous
function (see “Function Handles” and “Function Handles”) or a string
(see the Remarks section).

ezpolar(fun,[a,b]) plots fun for a < theta < b.

ezpolar(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = ezpolar(...) returns the handle to a line object in h.

Remarks Passing the Function as a String

Array multiplication, division, and exponentiation are always implied in
the expression you pass to ezpolar. For example, the MATLAB syntax
for a plot of the expression

t.^2.*cos(t)

which represents an implicitly defined function, is written as

ezpolar('t^2*cos(t)')

That is, t^2 is interpreted as t.^2 in the string you pass to ezpolar.

2-1077

ezpolar

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezpolar.

fh = @(t) t.^2.*cos(t);
ezpolar(fh)

Note that when using function handles, you must use the array power,
array multiplication, and array division operators (.^, .*, ./) since
ezpolar does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example k1 and k2 in
myfun:

function s = myfun(t,k1,k2)
s = sin(k1*t).*cos(k2*t);

then you can use an anonymous function to specify the parameters:

ezpolar(@(t)myfun(t,2,3))

Examples This example creates a polar plot of the function

1 + cos(t)

over the domain [0, 2π]:

ezpolar('1+cos(t)')

2-1078

ezpolar

See Also ezplot, ezplot3, function_handle, plot, plot3, polar

“Function Plots” on page 1-89 for related functions

2-1079

ezsurf

Purpose Easy-to-use 3-D colored surface plotter

Syntax ezsurf(fun)
ezsurf(fun,domain)
ezsurf(funx,funy,funz)
ezsurf(funx,funy,funz,[smin,smax,tmin,tmax])
ezsurf(funx,funy,funz,[min,max]
ezsurf(...,n)
ezsurf(...,'circ')
ezsurf(axes_handle,...)
h = ezsurf(...)

Description ezsurf(fun) creates a graph of fun(x,y) using the surf function. fun
is plotted over the default domain: -2π < x < 2π, -2π < y < 2π.

fun can be a function handle for an M-file function or an anonymous
function (see “Function Handles” and “Anonymous Functions”) or a
string (see the Remarks section).

ezsurf(fun,domain) plots fun over the specified domain. domain can
be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector
[min, max] (where min < x < max, min < y < max).

ezsurf(funx,funy,funz) plots the parametric surface funx(s,t),
funy(s,t), and funz(s,t) over the square: -2π < s < 2π, -2π < t < 2π.

ezsurf(funx,funy,funz,[smin,smax,tmin,tmax]) or
ezsurf(funx,funy,funz,[min,max]) plots the parametric surface
using the specified domain.

ezsurf(...,n) plots fun over the default domain using an n-by-n grid.
The default value for n is 60.

ezsurf(...,'circ') plots fun over a disk centered on the domain.

ezsurf(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

2-1080

ezsurf

h = ezsurf(...) returns the handle to a surface object in h.

Remarks ezsurf and ezsurfc do not accept complex inputs.

Passing the Function as a String

Array multiplication, division, and exponentiation are always implied in
the expression you pass to ezmesh. For example, the MATLAB syntax
for a surface plot of the expression

sqrt(x.^2 + y.^2);

is written as

ezsurf('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezsurf.

If the function to be plotted is a function of the variables u and v (rather
than x and y), then the domain endpoints umin, umax, vmin, and vmax
are sorted alphabetically. Thus, ezsurf('u^2 - v^3',[0,1],[3,6])
plots u2 - v3 over 0 < u < 1, 3 < v < 6.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezsurf.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezsurf(fh)

Note that when using function handles, you must use the array power,
array multiplication, and array division operators (.^, .*, ./) since
ezsurf does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example k in myfun:

function z = myfun(x,y,k1,k2,k3)
z = x.*(y.^k1)./(x.^k2 + y.^k3);

2-1081

ezsurf

then you can use an anonymous function to specify that parameter:

ezsurf(@(x,y)myfun(x,y,2,2,4))

Examples ezsurf does not graph points where the mathematical function is not
defined (these data points are set to NaNs, which MATLAB does not plot).
This example illustrates this filtering of singularities/discontinuous
points by graphing the function

over the default domain -2π < x < 2π, -2π < y < 2π:

ezsurf('real(atan(x+i*y))')

2-1082

ezsurf

Using surf to plot the same data produces a graph without filtering of
discontinuities (as well as requiring more steps):

[x,y] = meshgrid(linspace(-2*pi,2*pi,60));
z = real(atan(x+i.*y));
surf(x,y,z)

Note also that ezsurf creates graphs that have axis labels, a title, and
extend to the axis limits.

See Also ezmesh, ezsurfc, function_handle, surf

“Function Plots” on page 1-89 for related functions

2-1083

ezsurfc

Purpose Easy-to-use combination surface/contour plotter

Syntax ezsurfc(fun)
ezsurfc(fun,domain)
ezsurfc(funx,funy,funz)
ezsurfc(funx,funy,funz,[smin,smax,tmin,tmax])
ezsurfc(funx,funy,funz,[min,max]
ezsurfc(...,n)
ezsurfc(...,'circ')
ezsurfc(axes_handle,...)
h = ezsurfc(...)

Description ezsurfc(fun) creates a graph of fun(x,y) using the surfc function.
The function fun is plotted over the default domain: -2π < x < 2π, -2π <
y < 2π.

fun can be a function handle for an M-file function or an anonymous
function (see “Function Handles” and “Anonymous Functions”) or a
string (see the Remarks section).

ezsurfc(fun,domain) plots fun over the specified domain. domain can
be either a 4-by-1 vector [xmin, xmax, ymin, ymax] or a 2-by-1 vector
[min, max] (where min < x < max, min < y < max).

ezsurfc(funx,funy,funz) plots the parametric surface funx(s,t),
funy(s,t), and funz(s,t) over the square: -2π < s < 2π, -2π < t < 2π.

ezsurfc(funx,funy,funz,[smin,smax,tmin,tmax]) or
ezsurfc(funx,funy,funz,[min,max]) plots the parametric surface
using the specified domain.

ezsurfc(...,n) plots f over the default domain using an n-by-n grid.
The default value for n is 60.

ezsurfc(...,'circ') plots f over a disk centered on the domain.

2-1084

ezsurfc

ezsurfc(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = ezsurfc(...) returns the handles to the graphics objects in h.

Remarks ezsurf and ezsurfc do not accept complex inputs.

Passing the Function as a String

Array multiplication, division, and exponentiation are always implied in
the expression you pass to ezsurfc. For example, the MATLAB syntax
for a surface/contour plot of the expression

sqrt(x.^2 + y.^2);

is written as

ezsurfc('sqrt(x^2 + y^2)')

That is, x^2 is interpreted as x.^2 in the string you pass to ezsurfc.

If the function to be plotted is a function of the variables u and v (rather
than x and y), then the domain endpoints umin, umax, vmin, and vmax
are sorted alphabetically. Thus, ezsurfc('u^2 - v^3',[0,1],[3,6])
plots u2 - v3 over 0 < u < 1, 3 < v < 6.

Passing a Function Handle

Function handle arguments must point to functions that use MATLAB
syntax. For example, the following statements define an anonymous
function and pass the function handle fh to ezsurfc.

fh = @(x,y) sqrt(x.^2 + y.^2);
ezsurf(fh)

Note that when using function handles, you must use the array power,
array multiplication, and array division operators (.^, .*, ./) since
ezsurfc does not alter the syntax, as in the case with string inputs.

Passing Additional Arguments

If your function has additional parameters, for example k in myfun:

2-1085

ezsurfc

function z = myfun(x,y,k1,k2,k3)
z = x.*(y.^k1)./(x.^k2 + y.^k3);

then you can use an anonymous function to specify that parameter:

ezsurfc(@(x,y)myfun(x,y,2,2,4))

Examples Create a surface/contour plot of the expression

over the domain -5 < x < 5, -2*pi < y < 2*pi, with a computational grid
of size 35-by-35:

ezsurfc('y/(1 + x^2 + y^2)',[-5,5,-2*pi,2*pi],35)

Use the mouse to rotate the axes to better observe the contour lines
(this picture uses a view of azimuth = -65.5 and elevation = 26).

2-1086

ezsurfc

See Also ezmesh, ezmeshc, ezsurf, function_handle, surfc

“Function Plots” on page 1-89 for related functions

2-1087

Index

Index& 2-49 2-52
’ 2-37
* 2-37
+ 2-37
- 2-37
/ 2-37
: 2-59
< 2-47
> 2-47
@ 2-1330
\ 2-37
^ 2-37
| 2-49 2-52
~ 2-49 2-52
&& 2-52
== 2-47
]) 2-58
|| 2-52
~= 2-47
1-norm 2-2273 2-2684
2-norm (estimate of) 2-2275

A
abs 2-62
absolute accuracy

BVP 2-435
DDE 2-830
ODE 2-2320

absolute value 2-62
Accelerator

Uimenu property 2-3513
accumarray 2-63
accuracy

of linear equation solution 2-624
of matrix inversion 2-624

acos 2-69
acosd 2-71
acosh 2-72
acot 2-74

acotd 2-76
acoth 2-77
acsc 2-79
acscd 2-81
acsch 2-82
activelegend 1-87 2-2498
actxcontrol 2-84
actxcontrollist 2-91
actxcontrolselect 2-92
actxserver 2-96
Adams-Bashforth-Moulton ODE solver 2-2308
addCause, MException method 2-100
addevent 2-104
addframe

AVI files 2-106
addition (arithmetic operator) 2-37
addOptional

inputParser object 2-108
addParamValue

inputParser object 2-111
addpath 2-114
addpref function 2-116
addproperty 2-117
addRequired

inputParser object 2-119
addressing selected array elements 2-59
addsample 2-121
addsampletocollection 2-123
addtodate 2-125
addts 2-126
adjacency graph 2-938
airy 2-128
Airy functions

relationship to modified Bessel
functions 2-128

align function 2-130
aligning scattered data

multi-dimensional 2-2260
two-dimensional 2-1465

ALim, Axes property 2-273

Index-1

Index

all 2-134
allchild function 2-136
allocation of storage (automatic) 2-3779
AlphaData

image property 2-1633
surface property 2-3201
surfaceplot property 2-3224

AlphaDataMapping
image property 2-1634
patch property 2-2403
surface property 2-3201
surfaceplot property 2-3224

AmbientLightColor, Axes property 2-274
AmbientStrength

Patch property 2-2404
Surface property 2-3202
surfaceplot property 2-3225

amd 2-142 2-1895
analytical partial derivatives (BVP) 2-436
analyzer

code 2-2189
and 2-147
and (M-file function equivalent for &) 2-50
AND, logical

bit-wise 2-392
angle 2-149
annotating graphs

deleting annotations 2-152
in plot edit mode 2-2499

Annotation
areaseries property 2-203
contourgroup property 2-650
errorbarseries property 2-1004
hggroup property 2-1547 2-1569
image property 2-1634
line property 2-332 2-1955
lineseries property 2-1970
Patch property 2-2404
quivergroup property 2-2643
rectangle property 2-2703

scattergroup property 2-2851
stairseries property 2-3022
stemseries property 2-3056
Surface property 2-3202
surfaceplot property 2-3225
text property 2-3308

annotationfunction 2-150
ans 2-193
anti-diagonal 2-1492
any 2-194
arccosecant 2-79
arccosine 2-69
arccotangent 2-74
arcsecant 2-226
arcsine 2-231
arctangent 2-240

four-quadrant 2-242
arguments, M-file

checking number of inputs 2-2251
checking number of outputs 2-2255
number of input 2-2253
number of output 2-2253
passing variable numbers of 2-3651

arithmetic operations, matrix and array
distinguished 2-37

arithmetic operators
reference 2-37

array
addressing selected elements of 2-59
displaying 2-917
left division (arithmetic operator) 2-39
maximum elements of 2-2112
mean elements of 2-2118
median elements of 2-2121
minimum elements of 2-2161
multiplication (arithmetic operator) 2-38
of all ones 2-2339
of all zeros 2-3779
of random numbers 2-2667 2-2672
power (arithmetic operator) 2-39

Index-2

Index

product of elements 2-2568
removing first n singleton dimensions

of 2-2918
removing singleton dimensions of 2-3009
reshaping 2-2769
right division (arithmetic operator) 2-38
shift circularly 2-545
shifting dimensions of 2-2918
size of 2-2932
sorting elements of 2-2946
structure 2-1417 2-2791 2-2905
sum of elements 2-3181
swapping dimensions of 2-1774 2-2473
transpose (arithmetic operator) 2-39

arrayfun 2-219
arrays

detecting empty 2-1787
editing 2-3747
maximum size of 2-622
opening 2-2340

arrays, structure
field names of 2-1128

arrowhead matrix 2-609
ASCII

delimited files
writing 2-933

ASCII data
converting sparse matrix after loading

from 2-2959
reading 2-929
reading from disk 2-2010
saving to disk 2-2827

ascii function 2-225
asec 2-226
asecd 2-228
asech 2-229
asin 2-231
asind 2-233
asinh 2-234
aspect ratio of axes 2-748 2-2437

assert 2-236
assignin 2-238
atan 2-240
atan2 2-242
atand 2-244
atanh 2-245
.au files

reading 2-258
writing 2-259

audio
saving in AVI format 2-260
signal conversion 2-1948 2-2234

audioplayer 1-82 2-247
audiorecorder 1-82 2-252
aufinfo 2-257
auread 2-258
AutoScale

quivergroup property 2-2644
AutoScaleFactor

quivergroup property 2-2644
autoselection of OpenGL 2-1165
auwrite 2-259
average of array elements 2-2118
average,running 2-1207
avi 2-260
avifile 2-260
aviinfo 2-264
aviread 2-266
axes 2-267

editing 2-2499
setting and querying data aspect ratio 2-748
setting and querying limits 2-3751
setting and querying plot box aspect

ratio 2-2437
Axes

creating 2-267
defining default properties 2-272
fixed-width font 2-290
property descriptions 2-273

axis 2-311

Index-3

Index

axis crossing. See zero of a function
azimuth (spherical coordinates) 2-2975
azimuth of viewpoint 2-3668

B
BackFaceLighting

Surface property 2-3203
surfaceplot property 2-3227

BackFaceLightingpatch property 2-2406
BackgroundColor

annotation textbox property 2-183
Text property 2-3309

BackGroundColor
Uicontrol property 2-3467

badly conditioned 2-2684
balance 2-317
BarLayout

barseries property 2-333
BarWidth

barseries property 2-333
base to decimal conversion 2-350
base two operations

conversion from decimal to binary 2-849
logarithm 2-2029
next power of two 2-2269

base2dec 2-350
BaseLine

barseries property 2-333
stem property 2-3057

BaseValue
areaseries property 2-204
barseries property 2-334
stem property 2-3057

beep 2-351
BeingDeleted

areaseries property 2-204
barseries property 2-334
contour property 2-651
errorbar property 2-1005

group property 2-1133 2-1635 2-3310
hggroup property 2-1548
hgtransform property 2-1570
light property 2-1938
line property 2-1956
lineseries property 2-1971
quivergroup property 2-2644
rectangle property 2-2704
scatter property 2-2852
stairseries property 2-3023
stem property 2-3057
surface property 2-3204
surfaceplot property 2-3227
transform property 2-2406
Uipushtool property 2-3548
Uitoggletool property 2-3579
Uitoolbar property 2-3592

Bessel functions
first kind 2-359
modified, first kind 2-356
modified, second kind 2-362
second kind 2-365

Bessel functions, modified
relationship to Airy functions 2-128

Bessel’s equation
(defined) 2-359
modified (defined) 2-356

besseli 2-356
besselj 2-359
besselk 2-362
bessely 2-365
beta 2-369
beta function

(defined) 2-369
incomplete (defined) 2-371
natural logarithm 2-373

betainc 2-371
betaln 2-373
bicg 2-374
bicgstab 2-383

Index-4

Index

BiConjugate Gradients method 2-374
BiConjugate Gradients Stabilized method 2-383
big endian formats 2-1257
bin2dec 2-389
binary

data
writing to file 2-1342

files
reading 2-1292

mode for opened files 2-1256
binary data

reading from disk 2-2010
saving to disk 2-2827

binary function 2-390
binary to decimal conversion 2-389
bisection search 2-1352
bit depth

querying 2-1653
bit-wise operations

AND 2-392
get 2-395
OR 2-398
set bit 2-399
shift 2-400
XOR 2-402

bitand 2-392
bitcmp 2-393
bitget 2-395
bitmaps

writing 2-1676
bitmax 2-396
bitor 2-398
bitset 2-399
bitshift 2-400
bitxor 2-402
blanks 2-403

removing trailing 2-845
blkdiag 2-404
BMP files

writing 2-1676

bold font
TeX characters 2-3332

boundary value problems 2-442
box 2-405
Box, Axes property 2-275
braces, curly (special characters) 2-55
brackets (special characters) 2-55
break 2-406
breakpoints

listing 2-790
removing 2-778
resuming execution from 2-781
setting in M-files 2-794

brighten 2-407
browser

for help 2-1532
bsxfun 2-411
bubble plot (scatter function) 2-2846
Buckminster Fuller 2-3280
builtin 1-70 2-410
BusyAction

areaseries property 2-204
Axes property 2-275
barseries property 2-334
contour property 2-651
errorbar property 2-1006
Figure property 2-1134
hggroup property 2-1549
hgtransform property 2-1571
Image property 2-1636
Light property 2-1938
line property 2-1957
Line property 2-1971
patch property 2-2406
quivergroup property 2-2645
rectangle property 2-2705
Root property 2-2795
scatter property 2-2853
stairseries property 2-3024
stem property 2-3058

Index-5

Index

Surface property 2-3204
surfaceplot property 2-3227
Text property 2-3311
Uicontextmenu property 2-3452
Uicontrol property 2-3467
Uimenu property 2-3514
Uipushtool property 2-3548
Uitoggletool property 2-3580
Uitoolbar property 2-3592

ButtonDownFcn
area series property 2-205
Axes property 2-276
barseries property 2-335
contour property 2-652
errorbar property 2-1006
Figure property 2-1134
hggroup property 2-1549
hgtransform property 2-1571
Image property 2-1636
Light property 2-1939
Line property 2-1957
lineseries property 2-1972
patch property 2-2407
quivergroup property 2-2645
rectangle property 2-2705
Root property 2-2795
scatter property 2-2853
stairseries property 2-3024
stem property 2-3058
Surface property 2-3205
surfaceplot property 2-3228
Text property 2-3311
Uicontrol property 2-3468

BVP solver properties
analytical partial derivatives 2-436
error tolerance 2-434
Jacobian matrix 2-436
mesh 2-439
singular BVPs 2-439
solution statistics 2-440

vectorization 2-435
bvp4c 2-413
bvp5c 2-424
bvpget 2-429
bvpinit 2-430
bvpset 2-433
bvpxtend 2-442

C
caching

MATLAB directory 2-2430
calendar 2-443
call history 2-2575
CallBack

Uicontextmenu property 2-3453
Uicontrol property 2-3469
Uimenu property 2-3515

CallbackObject, Root property 2-2795
calllib 2-444
callSoapService 2-446
camdolly 2-447
camera

dollying position 2-447
moving camera and target postions 2-447
placing a light at 2-451
positioning to view objects 2-453
rotating around camera target 1-99 2-455

2-457
rotating around viewing axis 2-461
setting and querying position 2-458
setting and querying projection type 2-460
setting and querying target 2-462
setting and querying up vector 2-464
setting and querying view angle 2-466

CameraPosition, Axes property 2-277
CameraPositionMode, Axes property 2-278
CameraTarget, Axes property 2-278
CameraTargetMode, Axes property 2-278
CameraUpVector, Axes property 2-278

Index-6

Index

CameraUpVectorMode, Axes property 2-279
CameraViewAngle, Axes property 2-279
CameraViewAngleMode, Axes property 2-279
camlight 2-451
camlookat 2-453
camorbit 2-455
campan 2-457
campos 2-458
camproj 2-460
camroll 2-461
camtarget 2-462
camup 2-464
camva 2-466
camzoom 2-468
CaptureMatrix, Root property 2-2795
CaptureRect, Root property 2-2796
cart2pol 2-469
cart2sph 2-470
Cartesian coordinates 2-469 to 2-470 2-2509

2-2975
case 2-471

in switch statement (defined) 2-3266
lower to upper 2-3625
upper to lower 2-2041

cast 2-473
cat 2-474
catch 2-476
caxis 2-479
Cayley-Hamilton theorem 2-2529
cd 2-484
cd (ftp) function 2-486
CData

Image property 2-1637
scatter property 2-2854
Surface property 2-3206
surfaceplot property 2-3229
Uicontrol property 2-3470
Uipushtool property 2-3549
Uitoggletool property 2-3580

CDataMapping

Image property 2-1639
patch property 2-2409
Surface property 2-3207
surfaceplot property 2-3229

CDataMode
surfaceplot property 2-3230

CDatapatch property 2-2407
CDataSource

scatter property 2-2854
surfaceplot property 2-3230

cdf2rdf 2-487
cdfepoch 2-489
cdfinfo 2-490
cdfread 2-494
cdfwrite 2-498
ceil 2-501
cell 2-502
cell array

conversion to from numeric array 2-2282
creating 2-502
structure of, displaying 2-515

cell2mat 2-504
cell2struct 2-506
celldisp 2-508
cellfun 2-509
cellplot 2-515
cgs 2-518
char 1-51 1-59 1-63 2-523
characters

conversion, in format specification
string 2-1279 2-2998

escape, in format specification string 2-1280
2-2998

check boxes 2-3460
Checked, Uimenu property 2-3515
checkerboard pattern (example) 2-2760
checkin 2-524

examples 2-525
options 2-524

checkout 2-527

Index-7

Index

examples 2-528
options 2-527

child functions 2-2570
Children

areaseries property 2-206
Axes property 2-281
barseries property 2-336
contour property 2-652
errorbar property 2-1007
Figure property 2-1135
hggroup property 2-1549
hgtransform property 2-1572
Image property 2-1639
Light property 2-1939
Line property 2-1958
lineseries property 2-1972
patch property 2-2410
quivergroup property 2-2646
rectangle property 2-2706
Root property 2-2796
scatter property 2-2855
stairseries property 2-3025
stem property 2-3059
Surface property 2-3207
surfaceplot property 2-3231
Text property 2-3313
Uicontextmenu property 2-3453
Uicontrol property 2-3470
Uimenu property 2-3516
Uitoolbar property 2-3593

chol 2-530
Cholesky factorization 2-530

(as algorithm for solving linear
equations) 2-2185

lower triangular factor 2-2394
minimum degree ordering and

(sparse) 2-3279
preordering for 2-609

cholinc 2-534
cholupdate 2-542

circle
rectangle function 2-2698

circshift 2-545
cla 2-546
clabel 2-547
class 2-553
class, object. See object classes
classes

field names 2-1128
loaded 2-1701

clc 2-555 2-562
clear 2-556

serial port I/O 2-561
clearing

Command Window 2-555
items from workspace 2-556
Java import list 2-558

clf 2-562
ClickedCallback

Uipushtool property 2-3549
Uitoggletool property 2-3581

CLim, Axes property 2-281
CLimMode, Axes property 2-282
clipboard 2-563
Clipping

areaseries property 2-206
Axes property 2-282
barseries property 2-336
contour property 2-653
errrobar property 2-1007
Figure property 2-1136
hggroup property 2-1550
hgtransform property 2-1572
Image property 2-1640
Light property 2-1939
Line property 2-1958
lineseries property 2-1973
quivergroup property 2-2646
rectangle property 2-2706
Root property 2-2796

Index-8

Index

scatter property 2-2855
stairseries property 2-3025
stem property 2-3059
Surface property 2-3207
surfaceplot property 2-3231
Text property 2-3313
Uicontrol property 2-3470

Clippingpatch property 2-2410
clock 2-564
close 2-565

AVI files 2-567
close (ftp) function 2-568
CloseRequestFcn, Figure property 2-1136
closest point search 2-954
closest triangle search 2-3415
closing

files 2-1091
MATLAB 2-2633

cmapeditor 2-589
cmopts 2-570
code

analyzer 2-2189
colamd 2-572
colmmd 2-576
colon operator 2-59
Color

annotation arrow property 2-154
annotation doublearrow property 2-158
annotation line property 2-166
annotation textbox property 2-183
Axes property 2-282
errorbar property 2-1007
Figure property 2-1138
Light property 2-1939
Line property 2-1959
lineseries property 2-1973
quivergroup property 2-2647
stairseries property 2-3025
stem property 2-3060
Text property 2-3313

textarrow property 2-172
color of fonts, see also FontColor property 2-3332
colorbar 2-578
colormap 2-584

editor 2-589
Colormap, Figure property 2-1138
colormaps

converting from RGB to HSV 1-98 2-2781
plotting RGB components 1-98 2-2782

ColorOrder, Axes property 2-282
ColorSpec 2-607
colperm 2-609
COM

object methods
actxcontrol 2-84
actxcontrollist 2-91
actxcontrolselect 2-92
actxserver 2-96
addproperty 2-117
delete 2-875
deleteproperty 2-881
eventlisteners 2-1034
events 2-1036
get 1-111 2-1397
inspect 2-1717
invoke 2-1771
iscom 2-1785
isevent 2-1796
isinterface 2-1808
ismethod 2-1817
isprop 2-1839
load 2-2015
move 2-2215
propedit 2-2578
registerevent 2-2749
release 2-2754
save 2-2835
set 1-113 2-2891
unregisterallevents 2-3609
unregisterevent 2-3612

Index-9

Index

server methods
Execute 2-1038
Feval 2-1100

combinations of n elements 2-2259
combs 2-2259
comet 2-611
comet3 2-613
comma (special characters) 2-57
command syntax 2-1528 2-3285
Command Window

clearing 2-555
cursor position 1-4 2-1592
get width 2-616

commandhistory 2-615
commands

help for 2-1527 2-1537
system 1-4 1-11 2-3288
UNIX 2-3605

commandwindow 2-616
comments

block of 2-57
common elements. See set operations,

intersection
compan 2-617
companion matrix 2-617
compass 2-618
complementary error function

(defined) 2-996
scaled (defined) 2-996

complete elliptic integral
(defined) 2-979
modulus of 2-977 2-979

complex 2-620 2-1625
exponential (defined) 2-1046
logarithm 2-2026 to 2-2027
numbers 2-1601
numbers, sorting 2-2946 2-2950
phase angle 2-149
sine 2-2926
unitary matrix 2-2603

See also imaginary
complex conjugate 2-634

sorting pairs of 2-711
complex data

creating 2-620
complex numbers, magnitude 2-62
complex Schur form 2-2869
compression

lossy 2-1680
computer 2-622
computer MATLAB is running on 2-622
concatenation

of arrays 2-474
cond 2-624
condeig 2-625
condest 2-626
condition number of matrix 2-624 2-2684

improving 2-317
coneplot 2-628
conj 2-634
conjugate, complex 2-634

sorting pairs of 2-711
connecting to FTP server 2-1322
contents.m file 2-1528
context menu 2-3449
continuation (..., special characters) 2-57
continue 2-635
continued fraction expansion 2-2678
contour

and mesh plot 2-1066
filled plot 2-1058
functions 2-1054
of mathematical expression 2-1055
with surface plot 2-1084

contour3 2-642
contourc 2-645
contourf 2-647
ContourMatrix

contour property 2-653
contours

Index-10

Index

in slice planes 2-671
contourslice 2-671
contrast 2-675
conv 2-676
conv2 2-678
conversion

base to decimal 2-350
binary to decimal 2-389
Cartesian to cylindrical 2-469
Cartesian to polar 2-469
complex diagonal to real block diagonal 2-487
cylindrical to Cartesian 2-2509
decimal number to base 2-842 2-848
decimal to binary 2-849
decimal to hexadecimal 2-850
full to sparse 2-2956
hexadecimal to decimal 2-1541
integer to string 2-1731
lowercase to uppercase 2-3625
matrix to string 2-2081
numeric array to cell array 2-2282
numeric array to logical array 2-2030
numeric array to string 2-2284
partial fraction expansion to

pole-residue 2-2771
polar to Cartesian 2-2509
pole-residue to partial fraction

expansion 2-2771
real to complex Schur form 2-2824
spherical to Cartesian 2-2975
string matrix to cell array 2-517
string to numeric array 2-3082
uppercase to lowercase 2-2041
vector to character string 2-523

conversion characters in format specification
string 2-1279 2-2998

convex hulls
multidimensional vizualization 2-687
two-dimensional visualization 2-684

convhull 2-684

convhulln 2-687
convn 2-690
convolution 2-676

inverse. See deconvolution
two-dimensional 2-678

coordinate system and viewpoint 2-3668
coordinates

Cartesian 2-469 to 2-470 2-2509 2-2975
cylindrical 2-469 to 2-470 2-2509
polar 2-469 to 2-470 2-2509
spherical 2-2975

coordinates. 2-469
See also conversion

copyfile 2-691
copyobj 2-694
corrcoef 2-696
cos 2-699
cosd 2-701
cosecant

hyperbolic 2-722
inverse 2-79
inverse hyperbolic 2-82

cosh 2-702
cosine 2-699

hyperbolic 2-702
inverse 2-69
inverse hyperbolic 2-72

cot 2-704
cotangent 2-704

hyperbolic 2-707
inverse 2-74
inverse hyperbolic 2-77

cotd 2-706
coth 2-707
cov 2-709
cplxpair 2-711
cputime 2-712
createClassFromWsdl 2-713
createcopy

inputParser object 2-715

Index-11

Index

CreateFcn
areaseries property 2-206
Axes property 2-283
barseries property 2-336
contour property 2-654
errorbar property 2-1008
Figure property 2-1139
group property 2-1572
hggroup property 2-1550
Image property 2-1640
Light property 2-1940
Line property 2-1959
lineseries property 2-1973
patch property 2-2410
quivergroup property 2-2647
rectangle property 2-2707
Root property 2-2796
scatter property 2-2855
stairseries property 2-3026
stemseries property 2-3060
Surface property 2-3208
surfaceplot property 2-3231
Text property 2-3313
Uicontextmenu property 2-3453
Uicontrol property 2-3471
Uimenu property 2-3516
Uipushtool property 2-3550
Uitoggletool property 2-3581
Uitoolbar property 2-3593

createSoapMessage 2-717
creating your own MATLAB functions 2-1328
cross 2-718
cross product 2-718
csc 2-719
cscd 2-721
csch 2-722
csvread 2-724
csvwrite 2-727
ctranspose (M-file function equivalent for

\q) 2-43

ctranspose (timeseries) 2-729
cubic interpolation 2-1747 2-1750 2-1753 2-2447

piecewise Hermite 2-1737
cubic spline interpolation

one-dimensional 2-1737 2-1747 2-1750
2-1753

cumprod 2-731
cumsum 2-733
cumtrapz 2-734
cumulative

product 2-731
sum 2-733

curl 2-736
curly braces (special characters) 2-55
current directory 2-2596

changing 2-484
CurrentAxes 2-1140
CurrentAxes, Figure property 2-1140
CurrentCharacter, Figure property 2-1140
CurrentFigure, Root property 2-2796
CurrentMenu, Figure property (obsolete) 2-1141
CurrentObject, Figure property 2-1141
CurrentPoint

Axes property 2-284
Figure property 2-1142

cursor images
reading 2-1665

cursor position 1-4 2-1592
Curvature, rectangle property 2-2708
curve fitting (polynomial) 2-2521
customverctrl 2-739
Cuthill-McKee ordering, reverse 2-3269 2-3280
cylinder 2-740
cylindrical coordinates 2-469 to 2-470 2-2509

D
daqread 2-743
daspect 2-748
data

Index-12

Index

ASCII
reading from disk 2-2010

ASCII, saving to disk 2-2827
binary

writing to file 2-1342
binary, saving to disk 2-2827
computing 2-D stream lines 1-102 2-3090
computing 3-D stream lines 1-102 2-3092
formatted

reading from files 2-1308
writing to file 2-1278

formatting 2-1278 2-2996
isosurface from volume data 2-1831
reading binary from disk 2-2010
reading from files 2-3338
reducing number of elements in 1-102 2-2723
smoothing 3-D 1-102 2-2944
writing to strings 2-2996

data aspect ratio of axes 2-748
data types

complex 2-620
data, aligning scattered

multi-dimensional 2-2260
two-dimensional 2-1465

data, ASCII
converting sparse matrix after loading

from 2-2959
DataAspectRatio, Axes property 2-286
DataAspectRatioMode, Axes property 2-289
datatipinfo 2-756
date 2-757
date and time functions 2-990
date string

format of 2-762
date vector 2-775
datenum 2-758
datestr 2-762
datevec 2-774
dbclear 2-778
dbcont 2-781

dbdown 2-782
dblquad 2-783
dbmex 2-785
dbquit 2-786
dbstack 2-788
dbstatus 2-790
dbstep 2-792
dbstop 2-794
dbtype 2-804
dbup 2-805
DDE solver properties

error tolerance 2-829
event location 2-835
solver output 2-831
step size 2-833

dde23 2-806
ddeget 2-816
ddephas2 output function 2-832
ddephas3 output function 2-832
ddeplot output function 2-832
ddeprint output function 2-832
ddesd 2-823
ddeset 2-828
deal 2-842
deblank 2-845
debugging

changing workspace context 2-782
changing workspace to calling M-file 2-805
displaying function call stack 2-788
M-files 2-1880 2-2570
MEX-files on UNIX 2-785
removing breakpoints 2-778
resuming execution from breakpoint 2-792
setting breakpoints in 2-794
stepping through lines 2-792

dec2base 2-842 2-848
dec2bin 2-849
dec2hex 2-850
decic function 2-851
decimal number to base conversion 2-842 2-848

Index-13

Index

decimal point (.)
(special characters) 2-56
to distinguish matrix and array

operations 2-37
decomposition

Dulmage-Mendelsohn 2-937
"economy-size" 2-2603 2-3257
orthogonal-triangular (QR) 2-2603
Schur 2-2869
singular value 2-2677 2-3257

deconv 2-853
deconvolution 2-853
definite integral 2-2615
del operator 2-854
del2 2-854
delaunay 2-857
Delaunay tessellation

3-dimensional vizualization 2-864
multidimensional vizualization 2-868

Delaunay triangulation
vizualization 2-857

delaunay3 2-864
delaunayn 2-868
delete 2-873 2-875

serial port I/O 2-878
timer object 2-880

delete (ftp) function 2-877
DeleteFcn

areaseries property 2-207
Axes property 2-289
barseries property 2-337
contour property 2-654
errorbar property 2-1008
Figure property 2-1143
hggroup property 2-1551
hgtransform property 2-1573
Image property 2-1640
Light property 2-1941
lineseries property 2-1974
quivergroup property 2-2647

Root property 2-2797
scatter property 2-2856
stairseries property 2-3026
stem property 2-3061
Surface property 2-3208
surfaceplot property 2-3232
Text property 2-3314 2-3317
Uicontextmenu property 2-3454 2-3472
Uimenu property 2-3517
Uipushtool property 2-3551
Uitoggletool property 2-3582
Uitoolbar property 2-3594

DeleteFcn, line property 2-1960
DeleteFcn, rectangle property 2-2708
DeleteFcnpatch property 2-2411
deleteproperty 2-881
deleting

files 2-873
items from workspace 2-556

delevent 2-883
delimiters in ASCII files 2-929 2-933
delsample 2-884
delsamplefromcollection 2-885
demo 2-886
demos

in Command Window 2-957
density

of sparse matrix 2-2270
depdir 2-892
dependence, linear 2-3173
dependent functions 2-2570
depfun 2-893
derivative

approximate 2-908
polynomial 2-2518

det 2-897
detecting

alphabetic characters 2-1812
empty arrays 2-1787
global variables 2-1802

Index-14

Index

logical arrays 2-1813
members of a set 2-1815
objects of a given class 2-1779
positive, negative, and zero array

elements 2-2925
sparse matrix 2-1848

determinant of a matrix 2-897
detrend 2-898
detrend (timeseries) 2-900
deval 2-901
diag 2-903
diagonal 2-903

anti- 2-1492
k-th (illustration) 2-3398
main 2-903
sparse 2-2961

dialog 2-905
dialog box

error 2-1022
help 2-1535
input 2-1706
list 2-2005
message 2-2228
print 1-92 1-104 2-2559
question 1-104 2-2631
warning 2-3692

diary 2-906
Diary, Root property 2-2797
DiaryFile, Root property 2-2797
diff 2-908
differences

between adjacent array elements 2-908
between sets 2-2903

differential equation solvers
defining an ODE problem 2-2311

ODE boundary value problems 2-413 2-424
adjusting parameters 2-433
extracting properties 2-429
extracting properties of 2-1026 to 2-1027

2-3395 to 2-3396
forming initial guess 2-430

ODE initial value problems 2-2297
adjusting parameters of 2-2318
extracting properties of 2-2317

parabolic-elliptic PDE problems 2-2455
diffuse 2-910
DiffuseStrength

Surface property 2-3209
surfaceplot property 2-3232

DiffuseStrengthpatch property 2-2411
digamma function 2-2580
dimension statement (lack of in

MATLAB) 2-3779
dimensions

size of 2-2932
Diophantine equations 2-1382
dir 2-911
dir (ftp) function 2-914
direct term of a partial fraction expansion 2-2771
directories 2-484

adding to search path 2-114
checking existence of 2-1041
copying 2-691
creating 2-2172
listing contents of 2-911
listing MATLAB files in 2-3718
listing, on UNIX 2-2042
MATLAB

caching 2-2430
removing 2-2787
removing from search path 2-2792
See also directory, search path

directory 2-911
changing on FTP server 2-486
listing for FTP server 2-914

Index-15

Index

making on FTP server 2-2175
MATLAB location 2-2092
root 2-2092
temporary system 2-3296
See also directories

directory, changing 2-484
directory, current 2-2596
disconnect 2-568
discontinuities, eliminating (in arrays of phase

angles) 2-3621
discontinuities, plotting functions with 2-1082
discontinuous problems 2-1254
disp 2-917

memmapfile object 2-919
serial port I/O 2-922
timer object 2-923

disp, MException method 2-920
display 2-925
display format 2-1265
displaying output in Command Window 2-2213
DisplayName

areaseries property 2-207
barseries property 2-337
contourgroup property 2-655
errorbarseries property 2-1008
hggroup property 2-1551
hgtransform property 2-1573
image property 2-1641
Line property 2-1961
lineseries property 2-1974
Patch property 2-2411
quivergroup property 2-2648
rectangle property 2-2709
scattergroup property 2-2856
stairseries property 2-3027
stemseries property 2-3061
surface property 2-3209
surfaceplot property 2-3233
text property 2-3315

distribution

Gaussian 2-996
division

array, left (arithmetic operator) 2-39
array, right (arithmetic operator) 2-38
by zero 2-1694
matrix, left (arithmetic operator) 2-38
matrix, right (arithmetic operator) 2-38
of polynomials 2-853

divisor
greatest common 2-1382

dll libraries
MATLAB functions

calllib 2-444
libfunctions 2-1921
libfunctionsview 2-1923
libisloaded 2-1925
libpointer 2-1927
libstruct 2-1929
loadlibrary 2-2018
unloadlibrary 2-3607

dlmread 2-929
dlmwrite 2-933
dmperm 2-937
Dockable, Figure property 2-1144
docsearch 2-943
documentation

displaying online 2-1532
dolly camera 2-447
dos 2-945

UNC pathname error 2-946
dot 2-947
dot product 2-718 2-947
dot-parentheses (special characters 2-57
double 1-58 2-948
double click, detecting 2-1167
double integral

numerical evaluation 2-783
DoubleBuffer, Figure property 2-1144
downloading files from FTP server 2-2160
dragrect 2-949

Index-16

Index

drawing shapes
circles and rectangles 2-2698

DrawMode, Axes property 2-289
drawnow 2-951
dsearch 2-953
dsearchn 2-954
Dulmage-Mendelsohn decomposition 2-937
dynamic fields 2-57

E
echo 2-955
Echo, Root property 2-2797
echodemo 2-957
edge finding, Sobel technique 2-680
EdgeAlpha

patch property 2-2412
surface property 2-3210
surfaceplot property 2-3233

EdgeColor
annotation ellipse property 2-163
annotation rectangle property 2-169
annotation textbox property 2-183
areaseries property 2-208
barseries property 2-338
patch property 2-2413
Surface property 2-3211
surfaceplot property 2-3234
Text property 2-3316

EdgeColor, rectangle property 2-2710
EdgeLighting

patch property 2-2413
Surface property 2-3211
surfaceplot property 2-3235

editable text 2-3460
editing

M-files 2-959
eig 2-961
eigensystem

transforming 2-487

eigenvalue
accuracy of 2-961
complex 2-487
matrix logarithm and 2-2035
modern approach to computation of 2-2514
of companion matrix 2-617
problem 2-962 2-2519
problem, generalized 2-962 2-2519
problem, polynomial 2-2519
repeated 2-963
Wilkinson test matrix and 2-3738

eigenvalues
effect of roundoff error 2-317
improving accuracy 2-317

eigenvector
left 2-962
matrix, generalized 2-2664
right 2-962

eigs 2-967
elevation (spherical coordinates) 2-2975
elevation of viewpoint 2-3668
ellipj 2-977
ellipke 2-979
ellipsoid 1-90 2-981
elliptic functions, Jacobian

(defined) 2-977
elliptic integral

complete (defined) 2-979
modulus of 2-977 2-979

else 2-983
elseif 2-984
Enable

Uicontrol property 2-3472
Uimenu property 2-3518
Uipushtool property 2-3551
Uitogglehtool property 2-3583

end 2-988
end caps for isosurfaces 2-1821
end of line, indicating 2-57
end-of-file indicator 2-1096

Index-17

Index

eomday 2-990
eps 2-991
eq 2-993
eq, MException method 2-995
equal arrays

detecting 2-1790 2-1794
equal sign (special characters) 2-56
equations, linear

accuracy of solution 2-624
EraseMode

areaseries property 2-208
barseries property 2-338
contour property 2-655
errorbar property 2-1009
hggroup property 2-1552
hgtransform property 2-1574
Image property 2-1642
Line property 2-1962
lineseries property 2-1975
quivergroup property 2-2649
rectangle property 2-2710
scatter property 2-2857
stairseries property 2-3028
stem property 2-3062
Surface property 2-3212
surfaceplot property 2-3235
Text property 2-3317

EraseModepatch property 2-2414
error 2-998

roundoff. See roundoff error
error function

complementary 2-996
(defined) 2-996
scaled complementary 2-996

error message
displaying 2-998
Index into matrix is negative or zero 2-2031
retrieving last generated 2-1885 2-1892

error messages
Out of memory 2-2374

error tolerance
BVP problems 2-434
DDE problems 2-829
ODE problems 2-2319

errorbars 2-1001
errordlg 2-1022
ErrorMessage, Root property 2-2797
errors

in file input/output 2-1097
MException class 2-995

addCause 2-100
constructor 2-2131
disp 2-920
eq 2-995
getReport 2-1431
isequal 2-1793
last 2-1883
ne 2-2265
rethrow 2-2778
throw 2-3365
throwAsCaller 2-3368

ErrorType, Root property 2-2798
escape characters in format specification

string 2-1280 2-2998
etime 2-1025
etree 2-1026
etreeplot 2-1027
eval 2-1028
evalc 2-1031
evalin 2-1032
event location (DDE) 2-835
event location (ODE) 2-2326
eventlisteners 2-1034
events 2-1036
examples

calculating isosurface normals 2-1828
contouring mathematical expressions 2-1055
isosurface end caps 2-1821
isosurfaces 2-1832
mesh plot of mathematical function 2-1064

Index-18

Index

mesh/contour plot 2-1068
plotting filled contours 2-1059
plotting function of two variables 2-1072
plotting parametric curves 2-1075
polar plot of function 2-1078
reducing number of patch faces 2-2720
reducing volume data 2-2723
subsampling volume data 2-3178
surface plot of mathematical function 2-1082
surface/contour plot 2-1086

Excel spreadsheets
loading 2-3756

exclamation point (special characters) 2-58
Execute 2-1038
executing statements repeatedly 2-1262 2-3725
execution

improving speed of by setting aside
storage 2-3779

pausing M-file 2-2436
resuming from breakpoint 2-781
time for M-files 2-2570

exifread 2-1040
exist 2-1041
exit 2-1045
exp 2-1046
expint 2-1047
expm 2-1048
expm1 2-1050
exponential 2-1046

complex (defined) 2-1046
integral 2-1047
matrix 2-1048

exponentiation
array (arithmetic operator) 2-39
matrix (arithmetic operator) 2-39

export2wsdlg 2-1051
extension, filename

.m 2-1328

.mat 2-2827
Extent

Text property 2-3318
Uicontrol property 2-3473

eye 2-1053
ezcontour 2-1054
ezcontourf 2-1058
ezmesh 2-1062
ezmeshc 2-1066
ezplot 2-1070
ezplot3 2-1074
ezpolar 2-1077
ezsurf 2-1080
ezsurfc 2-1084

F
F-norm 2-2273
FaceAlpha

annotation textbox property 2-184
FaceAlphapatch property 2-2415
FaceAlphasurface property 2-3213
FaceAlphasurfaceplot property 2-3236
FaceColor

annotation ellipse property 2-163
annotation rectangle property 2-169
areaseries property 2-210
barseries property 2-340
Surface property 2-3214
surfaceplot property 2-3237

FaceColor, rectangle property 2-2711
FaceColorpatch property 2-2416
FaceLighting

Surface property 2-3214
surfaceplot property 2-3238

FaceLightingpatch property 2-2416
faces, reducing number in patches 1-102 2-2719
Faces,patch property 2-2417
FaceVertexAlphaData, patch property 2-2418
FaceVertexCData,patch property 2-2418
factor 2-1088
factorial 2-1089

Index-19

Index

factorization 2-2603
LU 2-2058
QZ 2-2520 2-2664
See also decomposition

factorization, Cholesky 2-530
(as algorithm for solving linear

equations) 2-2185
minimum degree ordering and

(sparse) 2-3279
preordering for 2-609

factors, prime 2-1088
false 2-1090
fclose 2-1091

serial port I/O 2-1092
feather 2-1094
feof 2-1096
ferror 2-1097
feval 2-1098
Feval 2-1100
fft 2-1105
FFT. See Fourier transform
fft2 2-1110
fftn 2-1111
fftshift 2-1113
fftw 2-1115
FFTW 2-1108
fgetl 2-1120

serial port I/O 2-1121
fgets 2-1124

serial port I/O 2-1125
field names of a structure, obtaining 2-1128
fieldnames 2-1128
fields, noncontiguous, inserting data into 2-1342
fields, of structures

dynamic 2-57
fig files

annotating for printing 2-1289
figure 2-1130
Figure

creating 2-1130

defining default properties 2-1132
properties 2-1133
redrawing 1-96 2-2726

figure windows, displaying 2-1220
figurepalette 1-87 2-1184
figures

annotating 2-2499
opening 2-2340
saving 2-2838

Figures
updating from M-file 2-951

file
extension, getting 2-1196
modification date 2-911
position indicator

finding 2-1321
setting 2-1319
setting to start of file 2-1307

file formats
getting list of supported formats 2-1655
reading 2-743 2-1663
writing 2-1675

file size
querying 2-1653

fileattrib 2-1186
filebrowser 2-1192
filehandle 2-1198
filemarker 2-1195
filename

building from parts 2-1325
parts 2-1196
temporary 2-3297

filename extension
.m 2-1328
.mat 2-2827

fileparts 2-1196
files 2-1091

ASCII delimited
reading 2-929
writing 2-933

Index-20

Index

beginning of, rewinding to 2-1307 2-1660
checking existence of 2-1041
closing 2-1091
contents, listing 2-3423
copying 2-691
deleting 2-873
deleting on FTP server 2-877
end of, testing for 2-1096
errors in input or output 2-1097
Excel spreadsheets

loading 2-3756
fig 2-2838
figure, saving 2-2838
finding position within 2-1321
getting next line 2-1120
getting next line (with line

terminator) 2-1124
listing

in directory 2-3718
names in a directory 2-911

listing contents of 2-3423
locating 2-3722
mdl 2-2838
mode when opened 2-1256
model, saving 2-2838
opening 2-1257 2-2340

in Web browser 1-5 1-8 2-3712
opening in Windows applications 2-3739
path, getting 2-1196
pathname for 2-3722
reading

binary 2-1292
data from 2-3338
formatted 2-1308

reading data from 2-743
reading image data from 2-1663
rewinding to beginning of 2-1307 2-1660
setting position within 2-1319
size, determining 2-913

sound
reading 2-258 2-3706
writing 2-259 to 2-260 2-3711

startup 2-2090
version, getting 2-1196
.wav

reading 2-3706
writing 2-3711

WK1
loading 2-3743
writing to 2-3745

writing binary data to 2-1342
writing formatted data to 2-1278
writing image data to 2-1675
See also file

filesep 2-1199
fill 2-1200
Fill

contour property 2-657
fill3 2-1203
filter 2-1206

digital 2-1206
finite impulse response (FIR) 2-1206
infinite impulse response (IIR) 2-1206
two-dimensional 2-678

filter (timeseries) 2-1209
filter2 2-1212
find 2-1214
findall function 2-1219
findfigs 2-1220
finding 2-1214

sign of array elements 2-2925
zero of a function 2-1348
See also detecting

findobj 2-1221
findstr 2-1224
finish 2-1225
finish.m 2-2633
FIR filter 2-1206

Index-21

Index

FitBoxToText, annotation textbox
property 2-184

FitHeightToText
annotation textbox property 2-184

fitsinfo 2-1226
fitsread 2-1235
fix 2-1237
fixed-width font

axes 2-290
text 2-3319
uicontrols 2-3474

FixedColors, Figure property 2-1145
FixedWidthFontName, Root property 2-2798
flints 2-2234
flipdim 2-1238
fliplr 2-1239
flipud 2-1240
floating-point

integer, maximum 2-396
floating-point arithmetic, IEEE

smallest postive number 2-2693
floor 2-1242
flops 2-1243
flow control

break 2-406
case 2-471
end 2-988
error 2-999
for 2-1262
keyboard 2-1880
otherwise 2-2373
return 2-2780
switch 2-3266
while 2-3725

fminbnd 2-1245
fminsearch 2-1250
font

fixed-width, axes 2-290
fixed-width, text 2-3319
fixed-width, uicontrols 2-3474

FontAngle
annotation textbox property 2-186
Axes property 2-290
Text property 2-173 2-3319
Uicontrol property 2-3474

FontName
annotation textbox property 2-186
Axes property 2-290
Text property 2-3319
textarrow property 2-173
Uicontrol property 2-3474

fonts
bold 2-173 2-187 2-3320
italic 2-173 2-186 2-3319
specifying size 2-3320
TeX characters

bold 2-3332
italics 2-3332
specifying family 2-3332
specifying size 2-3332

units 2-173 2-187 2-3320
FontSize

annotation textbox property 2-187
Axes property 2-291
Text property 2-3320
textarrow property 2-173
Uicontrol property 2-3475

FontUnits
Axes property 2-291
Text property 2-3320
Uicontrol property 2-3475

FontWeight
annotation textbox property 2-187
Axes property 2-292
Text property 2-3320
textarrow property 2-173
Uicontrol property 2-3475

fopen 2-1255
serial port I/O 2-1260

for 2-1262

Index-22

Index

ForegroundColor
Uicontrol property 2-3476
Uimenu property 2-3518

format 2-1265
precision when writing 2-1292
reading files 2-1309
specification string, matching file data

to 2-3013
Format 2-2798
formats

big endian 2-1257
little endian 2-1257

FormatSpacing, Root property 2-2799
formatted data

reading from file 2-1308
writing to file 2-1278

formatting data 2-2996
Fourier transform

algorithm, optimal performance of 2-1108
2-1611 2-1613 2-2269

as method of interpolation 2-1752
convolution theorem and 2-676
discrete, n-dimensional 2-1111
discrete, one-dimensional 2-1105
discrete, two-dimensional 2-1110
fast 2-1105
inverse, n-dimensional 2-1615
inverse, one-dimensional 2-1611
inverse, two-dimensional 2-1613
shifting the zero-frequency component

of 2-1114
fplot 2-1273 2-1288
fprintf 2-1278

displaying hyperlinks with 2-1283
serial port I/O 2-1285

fraction, continued 2-2678
fragmented memory 2-2374
frame2im 2-1288
frames 2-3460
frames for printing 2-1289

fread 2-1292
serial port I/O 2-1302

freqspace 2-1306
frequency response

desired response matrix
frequency spacing 2-1306

frequency vector 2-2038
frewind 2-1307
fscanf 2-1308

serial port I/O 2-1315
fseek 2-1319
ftell 2-1321
FTP

connecting to server 2-1322
ftp function 2-1322
full 2-1324
fullfile 2-1325
func2str 2-1326
function 2-1328
function handle 2-1330
function handles

overview of 2-1330
function syntax 2-1528 2-3285
functions 2-1333

call history 2-2575
call stack for 2-788
checking existence of 2-1041
clearing from workspace 2-556
finding using keywords 2-2039
help for 2-1527 2-1537
in memory 2-1701
locating 2-3722
pathname for 2-3722
that work down the first non-singleton

dimension 2-2918
funm 2-1337
fwrite 2-1342

serial port I/O 2-1344
fzero 2-1348

Index-23

Index

G
gallery 2-1354
gamma function

(defined) 2-1377
incomplete 2-1377
logarithm of 2-1377
logarithmic derivative 2-2580

Gauss-Kronrod quadrature 2-2624
Gaussian distribution function 2-996
Gaussian elimination

(as algorithm for solving linear
equations) 2-1767 2-2186

Gauss Jordan elimination with partial
pivoting 2-2822

LU factorization 2-2058
gca 2-1379
gcbf function 2-1380
gcbo function 2-1381
gcd 2-1382
gcf 2-1384
gco 2-1385
ge 2-1386
generalized eigenvalue problem 2-962 2-2519
generating a sequence of matrix names (M1

through M12) 2-1029
genpath 2-1388
genvarname 2-1390
geodesic dome 2-3280
get 1-111 2-1394 2-1397

memmapfile object 2-1399
serial port I/O 2-1402
timer object 2-1404

get (timeseries) 2-1406
get (tscollection) 2-1407
getabstime (timeseries) 2-1408
getabstime (tscollection) 2-1410
getappdata function 2-1412
getdatasamplesize 2-1415
getenv 2-1416
getfield 2-1417

getframe 2-1419
image resolution and 2-1420

getinterpmethod 2-1425
getpixelposition 2-1426
getpref function 2-1428
getqualitydesc 2-1430
getReport, MException method 2-1431
getsampleusingtime (timeseries) 2-1432
getsampleusingtime (tscollection) 2-1433
gettimeseriesnames 2-1434
gettsafteratevent 2-1435
gettsafterevent 2-1436
gettsatevent 2-1437
gettsbeforeatevent 2-1438
gettsbeforeevent 2-1439
gettsbetweenevents 2-1440
GIF files

writing 2-1676
ginput function 2-1445
global 2-1447
global variable

defining 2-1447
global variables, clearing from workspace 2-556
gmres 2-1449
golden section search 2-1248
Goup

defining default properties 2-1567
gplot 2-1455
grabcode function 2-1457
gradient 2-1459
gradient, numerical 2-1459
graph

adjacency 2-938
graphics objects

Axes 2-267
Figure 2-1130
getting properties 2-1394
Image 2-1626
Light 2-1936
Line 2-1949

Index-24

Index

Patch 2-2395
resetting properties 1-100 2-2768
Root 1-94 2-2794
setting properties 1-94 1-96 2-2887
Surface 1-94 1-97 2-3196
Text 1-94 2-3303
uicontextmenu 2-3449
Uicontrol 2-3459
Uimenu 1-107 2-3510

graphics objects, deleting 2-873
graphs

editing 2-2499
graymon 2-1462
greatest common divisor 2-1382
Greek letters and mathematical symbols 2-177

2-189 2-3330
grid 2-1463

aligning data to a 2-1465
grid arrays

for volumetric plots 2-2145
multi-dimensional 2-2260

griddata 2-1465
griddata3 2-1469
griddatan 2-1472
GridLineStyle, Axes property 2-292
group

hggroup function 2-1544
gsvd 2-1475
gt 2-1481
gtext 2-1483
guidata function 2-1484
guihandles function 2-1487
GUIs, printing 2-2553
gunzip 2-1488 2-1490

H
H1 line 2-1529 to 2-1530
hadamard 2-1491
Hadamard matrix 2-1491

subspaces of 2-3173
handle graphics

hgtransform 2-1563
handle graphicshggroup 2-1544
HandleVisibility

areaseries property 2-210
Axes property 2-292
barseries property 2-340
contour property 2-657
errorbar property 2-1010
Figure property 2-1145
hggroup property 2-1553
hgtransform property 2-1576
Image property 2-1643
Light property 2-1941
Line property 2-1963
lineseries property 2-1976
patch property 2-2420
quivergroup property 2-2650
rectangle property 2-2711
Root property 2-2799
stairseries property 2-3029
stem property 2-3063
Surface property 2-3215
surfaceplot property 2-3238
Text property 2-3321
Uicontextmenu property 2-3455
Uicontrol property 2-3476
Uimenu property 2-3518
Uipushtool property 2-3552
Uitoggletool property 2-3583
Uitoolbar property 2-3595

hankel 2-1492
Hankel matrix 2-1492
HDF

appending to when saving
(WriteMode) 2-1680

compression 2-1679
setting JPEG quality when writing 2-1680

HDF files

Index-25

Index

writing images 2-1676
HDF4

summary of capabilities 2-1493
HDF5

high-level access 2-1495
summary of capabilities 2-1495

HDF5 class
low-level access 2-1495

hdf5info 2-1498
hdf5read 2-1500
hdf5write 2-1502
hdfinfo 2-1506
hdfread 2-1514
hdftool 2-1526
Head1Length

annotation doublearrow property 2-158
Head1Style

annotation doublearrow property 2-159
Head1Width

annotation doublearrow property 2-160
Head2Length

annotation doublearrow property 2-158
Head2Style

annotation doublearrow property 2-159
Head2Width

annotation doublearrow property 2-160
HeadLength

annotation arrow property 2-154
textarrow property 2-174

HeadStyle
annotation arrow property 2-154
textarrow property 2-174

HeadWidth
annotation arrow property 2-155
textarrow property 2-175

Height
annotation ellipse property 2-164

help 2-1527
contents file 2-1528
creating for M-files 2-1529

keyword search in functions 2-2039
online 2-1527

Help browser 2-1532
accessing from doc 2-940

Help Window 2-1537
helpbrowser 2-1532
helpdesk 2-1534
helpdlg 2-1535
helpwin 2-1537
Hermite transformations, elementary 2-1382
hess 2-1538
Hessenberg form of a matrix 2-1538
hex2dec 2-1541
hex2num 2-1542
hidden 2-1581
Hierarchical Data Format (HDF) files

writing images 2-1676
hilb 2-1582
Hilbert matrix 2-1582

inverse 2-1770
hist 2-1583
histc 2-1587
HitTest

areaseries property 2-212
Axes property 2-293
barseries property 2-342
contour property 2-659
errorbar property 2-1012
Figure property 2-1147
hggroup property 2-1555
hgtransform property 2-1577
Image property 2-1645
Light property 2-1943
Line property 2-1963
lineseries property 2-1978
Patch property 2-2421
quivergroup property 2-2652
rectangle property 2-2712
Root property 2-2799
scatter property 2-2860

Index-26

Index

stairseries property 2-3031
stem property 2-3065
Surface property 2-3216
surfaceplot property 2-3240
Text property 2-3322
Uicontrol property 2-3477
Uipushtool property 2-3553
Uitoggletool property 2-3584
Uitoolbarl property 2-3596

HitTestArea
areaseries property 2-212
barseries property 2-342
contour property 2-659
errorbar property 2-1012
quivergroup property 2-2652
scatter property 2-2860
stairseries property 2-3031
stem property 2-3065

hold 2-1590
home 2-1592
HorizontalAlignment

Text property 2-3323
textarrow property 2-175
textbox property 2-187
Uicontrol property 2-3477

horzcat 2-1593
horzcat (M-file function equivalent for [,]) 2-58
horzcat (tscollection) 2-1595
hostid 2-1596
Householder reflections (as algorithm for solving

linear equations) 2-2187
hsv2rgb 2-1597
HTML

in Command Window 2-2085
save M-file as 2-2583

HTML browser
in MATLAB 2-1532

HTML files
opening 1-5 1-8 2-3712

hyperbolic

cosecant 2-722
cosecant, inverse 2-82
cosine 2-702
cosine, inverse 2-72
cotangent 2-707
cotangent, inverse 2-77
secant 2-2876
secant, inverse 2-229
sine 2-2930
sine, inverse 2-234
tangent 2-3293
tangent, inverse 2-245

hyperlink
displaying in Command Window 2-917

hyperlinks
in Command Window 2-2085

hyperplanes, angle between 2-3173
hypot 2-1598

I
i 2-1601
icon images

reading 2-1665
idealfilter (timeseries) 2-1602
identity matrix 2-1053

sparse 2-2972
idivide 2-1605
IEEE floating-point arithmetic

smallest positive number 2-2693
if 2-1607
ifft 2-1611
ifft2 2-1613
ifftn 2-1615
ifftshift 2-1617
IIR filter 2-1206
ilu 2-1618
im2java 2-1623
imag 2-1625
image 2-1626

Index-27

Index

Image
creating 2-1626
properties 2-1633

image types
querying 2-1653

images
file formats 2-1663 2-1675
reading data from files 2-1663
returning information about 2-1652
writing to files 2-1675

Images
converting MATLAB image to Java

Image 2-1623
imagesc 2-1649
imaginary 2-1625

part of complex number 2-1625
unit (sqrt(\xd0 1)) 2-1601 2-1860
See also complex

imfinfo
returning file information 2-1652

imformats 2-1655
import 2-1658
importdata 2-1660
importing

Java class and package names 2-1658
imread 2-1663
imwrite 2-1675
incomplete beta function

(defined) 2-371
incomplete gamma function

(defined) 2-1377
ind2sub 2-1690
Index into matrix is negative or zero (error

message) 2-2031
indexing

logical 2-2030
indicator of file position 2-1307
indices, array

of sorted elements 2-2947
Inf 2-1694

inferiorto 2-1696
infinity 2-1694

norm 2-2273
info 2-1697
information

returning file information 2-1652
inheritance, of objects 2-554
inline 2-1698
inmem 2-1701
inpolygon 2-1703
input 2-1705

checking number of M-file arguments 2-2251
name of array passed as 2-1710
number of M-file arguments 2-2253
prompting users for 2-1705 2-2138

inputdlg 2-1706
inputname 2-1710
inputParser 2-1711
inspect 2-1717
installation, root directory of 2-2092
instrcallback 2-1724
instrfind 2-1726
instrfindall 2-1728

example of 2-1729
int2str 2-1731
integer

floating-point, maximum 2-396
IntegerHandle

Figure property 2-1147
integration

polynomial 2-2525
quadrature 2-2615 2-2619

interfaces 2-1734
interp1 2-1736
interp1q 2-1744
interp2 2-1746
interp3 2-1750
interpft 2-1752
interpn 2-1753
interpolated shading and printing 2-2554

Index-28

Index

interpolation
cubic method 2-1465 2-1736 2-1746 2-1750

2-1753
cubic spline method 2-1736 2-1746 2-1750

2-1753
FFT method 2-1752
linear method 2-1736 2-1746 2-1750 2-1753
multidimensional 2-1753
nearest neighbor method 2-1465 2-1736

2-1746 2-1750 2-1753
one-dimensional 2-1736
three-dimensional 2-1750
trilinear method 2-1465
two-dimensional 2-1746

Interpreter
Text property 2-3323
textarrow property 2-175
textbox property 2-188

interpstreamspeed 2-1756
Interruptible

areaseries property 2-212
Axes property 2-294
barseries property 2-342
contour property 2-659
errorbar property 2-1013
Figure property 2-1147
hggroup property 2-1555
hgtransform property 2-1577
Image property 2-1645
Light property 2-1943
Line property 2-1964
lineseries property 2-1978
patch property 2-2421
quivergroup property 2-2652
rectangle property 2-2713
Root property 2-2799
scatter property 2-2861
stairseries property 2-3031
stem property 2-3065
Surface property 2-3216 2-3240

Text property 2-3325
Uicontextmenu property 2-3456
Uicontrol property 2-3477
Uimenu property 2-3519
Uipushtool property 2-3553
Uitoggletool property 2-3584
Uitoolbar property 2-3596

intersect 2-1760
intmax 2-1761
intmin 2-1762
intwarning 2-1763
inv 2-1767
inverse

cosecant 2-79
cosine 2-69
cotangent 2-74
Fourier transform 2-1611 2-1613 2-1615
Hilbert matrix 2-1770
hyperbolic cosecant 2-82
hyperbolic cosine 2-72
hyperbolic cotangent 2-77
hyperbolic secant 2-229
hyperbolic sine 2-234
hyperbolic tangent 2-245
of a matrix 2-1767
secant 2-226
sine 2-231
tangent 2-240
tangent, four-quadrant 2-242

inversion, matrix
accuracy of 2-624

InvertHardCopy, Figure property 2-1148
invhilb 2-1770
invoke 2-1771
involutary matrix 2-2394
ipermute 2-1774
iqr (timeseries) 2-1775
is* 2-1777
isa 2-1779
isappdata function 2-1781

Index-29

Index

iscell 2-1782
iscellstr 2-1783
ischar 2-1784
iscom 2-1785
isdir 2-1786
isempty 2-1787
isempty (timeseries) 2-1788
isempty (tscollection) 2-1789
isequal 2-1790
isequal, MException method 2-1793
isequalwithequalnans 2-1794
isevent 2-1796
isfield 2-1798
isfinite 2-1800
isfloat 2-1801
isglobal 2-1802
ishandle 2-1804
isinf 2-1806
isinteger 2-1807
isinterface 2-1808
isjava 2-1809
iskeyword 2-1810
isletter 2-1812
islogical 2-1813
ismac 2-1814
ismember 2-1815
ismethod 2-1817
isnan 2-1818
isnumeric 2-1819
isobject 2-1820
isocap 2-1821
isonormals 2-1828
isosurface 2-1831

calculate data from volume 2-1831
end caps 2-1821
vertex normals 2-1828

ispc 2-1836
ispref function 2-1837
isprime 2-1838
isprop 2-1839

isreal 2-1840
isscalar 2-1843
issorted 2-1844
isspace 2-1847 2-1850
issparse 2-1848
isstr 2-1849
isstruct 2-1853
isstudent 2-1854
isunix 2-1855
isvalid 2-1856

timer object 2-1857
isvarname 2-1858
isvector 2-1859
italics font

TeX characters 2-3332

J
j 2-1860
Jacobi rotations 2-2994
Jacobian elliptic functions

(defined) 2-977
Jacobian matrix (BVP) 2-436
Jacobian matrix (ODE) 2-2328

generating sparse numerically 2-2329
2-2331

specifying 2-2328 2-2331
vectorizing ODE function 2-2329 to 2-2331

Java
class names 2-558 2-1658
objects 2-1809

Java Image class
creating instance of 2-1623

Java import list
adding to 2-1658
clearing 2-558

Java version used by MATLAB 2-3661
java_method 2-1865 2-1872
java_object 2-1874
javaaddath 2-1861

Index-30

Index

javachk 2-1866
javaclasspath 2-1868
javarmpath 2-1876
joining arrays. See concatenation
Joint Photographic Experts Group (JPEG)

writing 2-1676
JPEG

setting Bitdepth 2-1680
specifying mode 2-1680

JPEG comment
setting when writing a JPEG image 2-1680

JPEG files
parameters that can be set when

writing 2-1680
writing 2-1676

JPEG quality
setting when writing a JPEG image 2-1680

2-1685
setting when writing an HDF image 2-1680

jvm
version used by MATLAB 2-3661

K
K>> prompt

keyboard function 2-1880
keyboard 2-1880
keyboard mode 2-1880

terminating 2-2780
KeyPressFcn

Uicontrol property 2-3479
KeyPressFcn, Figure property 2-1149
KeyReleaseFcn, Figure property 2-1150
keyword search in functions 2-2039
keywords

iskeyword function 2-1810
kron 2-1881
Kronecker tensor product 2-1881

L
Label, Uimenu property 2-3520
labeling

axes 2-3749
matrix columns 2-917
plots (with numeric values) 2-2284

LabelSpacing
contour property 2-660

Laplacian 2-854
largest array elements 2-2112
last, MException method 2-1883
lasterr 2-1885
lasterror 2-1888
lastwarn 2-1892
LaTeX, see TeX 2-177 2-189 2-3330
Layer, Axes property 2-294
Layout Editor

starting 2-1486
lcm 2-1894
LData

errorbar property 2-1013
LDataSource

errorbar property 2-1013
ldivide (M-file function equivalent for .\) 2-42
le 2-1902
least common multiple 2-1894
least squares

polynomial curve fitting 2-2521
problem, overdetermined 2-2482

legend 2-1904
properties 2-1910
setting text properties 2-1910

legendre 2-1913
Legendre functions

(defined) 2-1913
Schmidt semi-normalized 2-1913

length 2-1917
serial port I/O 2-1918

length (timeseries) 2-1919
length (tscollection) 2-1920

Index-31

Index

LevelList
contour property 2-660

LevelListMode
contour property 2-660

LevelStep
contour property 2-661

LevelStepMode
contour property 2-661

libfunctions 2-1921
libfunctionsview 2-1923
libisloaded 2-1925
libpointer 2-1927
libstruct 2-1929
license 2-1932
light 2-1936
Light

creating 2-1936
defining default properties 2-1630 2-1937
positioning in camera coordinates 2-451
properties 2-1938

Light object
positioning in spherical coordinates 2-1946

lightangle 2-1946
lighting 2-1947
limits of axes, setting and querying 2-3751
line 2-1949

editing 2-2499
Line

creating 2-1949
defining default properties 2-1954
properties 2-1955 2-1970

line numbers in M-files 2-804
linear audio signal 2-1948 2-2234
linear dependence (of data) 2-3173
linear equation systems

accuracy of solution 2-624
solving overdetermined 2-2605 to 2-2606

linear equation systems, methods for solving
Cholesky factorization 2-2185
Gaussian elimination 2-2186

Householder reflections 2-2187
matrix inversion (inaccuracy of) 2-1767

linear interpolation 2-1736 2-1746 2-1750 2-1753
linear regression 2-2521
linearly spaced vectors, creating 2-2004
LineColor

contour property 2-661
lines

computing 2-D stream 1-102 2-3090
computing 3-D stream 1-102 2-3092
drawing stream lines 1-102 2-3094

LineSpec 1-86 2-1987
LineStyle

annotation arrow property 2-155
annotation doublearrow property 2-160
annotation ellipse property 2-164
annotation line property 2-166
annotation rectangle property 2-170
annotation textbox property 2-188
areaseries property 2-213
barseries property 2-343
contour property 2-662
errorbar property 2-1014
Line property 2-1965
lineseries property 2-1979
patch property 2-2422
quivergroup property 2-2653
rectangle property 2-2713
stairseries property 2-3032
stem property 2-3066
surface object 2-3217
surfaceplot object 2-3240
text object 2-3325
textarrow property 2-176

LineStyleOrder
Axes property 2-294

LineWidth
annotation arrow property 2-156
annotation doublearrow property 2-161
annotation ellipse property 2-164

Index-32

Index

annotation line property 2-167
annotation rectangle property 2-170
annotation textbox property 2-188
areaseries property 2-214
Axes property 2-296
barseries property 2-344
contour property 2-662
errorbar property 2-1014
Line property 2-1965
lineseries property 2-1979
Patch property 2-2422
quivergroup property 2-2653
rectangle property 2-2713
scatter property 2-2861
stairseries property 2-3032
stem property 2-3067
Surface property 2-3217
surfaceplot property 2-3241
text object 2-3326
textarrow property 2-176

linkaxes 2-1993
linkprop 2-1997
links

in Command Window 2-2085
linsolve 2-2001
linspace 2-2004
lint tool for checking problems 2-2189
list boxes 2-3461

defining items 2-3484
ListboxTop, Uicontrol property 2-3479
listdlg 2-2005
listfonts 2-2008
little endian formats 2-1257
load 2-2010 2-2015

serial port I/O 2-2016
loadlibrary 2-2018
loadobj 2-2024
Lobatto IIIa ODE solver 2-422 2-427
local variables 2-1328 2-1447
locking M-files 2-2200

log 2-2026
saving session to file 2-906

log10 [log010] 2-2027
log1p 2-2028
log2 2-2029
logarithm

base ten 2-2027
base two 2-2029
complex 2-2026 to 2-2027
natural 2-2026
of beta function (natural) 2-373
of gamma function (natural) 2-1378
of real numbers 2-2691
plotting 2-2032

logarithmic derivative
gamma function 2-2580

logarithmically spaced vectors, creating 2-2038
logical 2-2030
logical array

converting numeric array to 2-2030
detecting 2-1813

logical indexing 2-2030
logical operations

AND, bit-wise 2-392
OR, bit-wise 2-398
XOR 2-3776
XOR, bit-wise 2-402

logical operators 2-49 2-52
logical OR

bit-wise 2-398
logical tests 2-1779

all 2-134
any 2-194
See also detecting

logical XOR 2-3776
bit-wise 2-402

loglog 2-2032
logm 2-2035
logspace 2-2038
lookfor 2-2039

Index-33

Index

lossy compression
writing JPEG files with 2-1680

Lotus WK1 files
loading 2-3743
writing 2-3745

lower 2-2041
lower triangular matrix 2-3398
lowercase to uppercase 2-3625
ls 2-2042
lscov 2-2043
lsqnonneg 2-2048
lsqr 2-2051
lt 2-2056
lu 2-2058
LU factorization 2-2058

storage requirements of (sparse) 2-2288
luinc 2-2066

M
M-file

debugging 2-1880
displaying during execution 2-955
function 2-1328
function file, echoing 2-955
naming conventions 2-1328
pausing execution of 2-2436
programming 2-1328
script 2-1328
script file, echoing 2-955

M-files
checking existence of 2-1041
checking for problems 2-2189
clearing from workspace 2-556
creating

in MATLAB directory 2-2430
cyclomatic complexity of 2-2189
debugging with profile 2-2570
deleting 2-873
editing 2-959

line numbers, listing 2-804
lint tool 2-2189
listing names of in a directory 2-3718
locking (preventing clearing) 2-2200
McCabe complexity of 2-2189
opening 2-2340
optimizing 2-2570
problems, checking for 2-2189
save to HTML 2-2583
setting breakpoints 2-794
unlocking (allowing clearing) 2-2246

M-Lint
function 2-2189
function for entire directory 2-2196
HTML report 2-2196

machine epsilon 2-3727
magic 2-2073
magic squares 2-2073
Margin

annotation textbox property 2-189
text object 2-3328

Marker
Line property 2-1965
lineseries property 2-1979
marker property 2-1015
Patch property 2-2422
quivergroup property 2-2653
scatter property 2-2862
stairseries property 2-3032
stem property 2-3067
Surface property 2-3217
surfaceplot property 2-3241

MarkerEdgeColor
errorbar property 2-1015
Line property 2-1966
lineseries property 2-1980
Patch property 2-2423
quivergroup property 2-2654
scatter property 2-2862
stairseries property 2-3033

Index-34

Index

stem property 2-3068
Surface property 2-3218
surfaceplot property 2-3242

MarkerFaceColor
errorbar property 2-1016
Line property 2-1966
lineseries property 2-1980
Patch property 2-2424
quivergroup property 2-2654
scatter property 2-2863
stairseries property 2-3033
stem property 2-3068
Surface property 2-3218
surfaceplot property 2-3242

MarkerSize
errorbar property 2-1016
Line property 2-1967
lineseries property 2-1981
Patch property 2-2424
quivergroup property 2-2655
stairseries property 2-3034
stem property 2-3068
Surface property 2-3219
surfaceplot property 2-3243

mass matrix (ODE) 2-2332
initial slope 2-2333 to 2-2334
singular 2-2333
sparsity pattern 2-2333
specifying 2-2333
state dependence 2-2333

MAT-file 2-2827
converting sparse matrix after loading

from 2-2959
MAT-files 2-2010

listing for directory 2-3718
mat2cell 2-2078
mat2str 2-2081
material 2-2083
MATLAB

directory location 2-2092

installation directory 2-2092
quitting 2-2633
startup 2-2090
version number, comparing 2-3659
version number, displaying 2-3653

matlab : function 2-2085
matlab (UNIX command) 2-2094
matlab (Windows command) 2-2107
matlab function for UNIX 2-2094
matlab function for Windows 2-2107
MATLAB startup file 2-3042
matlab.mat 2-2010 2-2827
matlabcolon function 2-2085
matlabrc 2-2090
matlabroot 2-2092
$matlabroot 2-2092
matrices

preallocation 2-3779
matrix 2-37

addressing selected rows and columns
of 2-59

arrowhead 2-609
companion 2-617
complex unitary 2-2603
condition number of 2-624 2-2684
condition number, improving 2-317
converting to formatted data file 2-1278
converting to from string 2-3012
converting to vector 2-59
decomposition 2-2603
defective (defined) 2-963
detecting sparse 2-1848
determinant of 2-897
diagonal of 2-903
Dulmage-Mendelsohn decomposition 2-937
evaluating functions of 2-1337
exponential 2-1048
flipping left-right 2-1239
flipping up-down 2-1240
Hadamard 2-1491 2-3173

Index-35

Index

Hankel 2-1492
Hermitian Toeplitz 2-3388
Hessenberg form of 2-1538
Hilbert 2-1582
identity 2-1053
inverse 2-1767
inverse Hilbert 2-1770
inversion, accuracy of 2-624
involutary 2-2394
left division (arithmetic operator) 2-38
lower triangular 2-3398
magic squares 2-2073 2-3181
maximum size of 2-622
modal 2-961
multiplication (defined) 2-38
orthonormal 2-2603
Pascal 2-2394 2-2528
permutation 2-2058 2-2603
poorly conditioned 2-1582
power (arithmetic operator) 2-39
pseudoinverse 2-2482
reading files into 2-929
reduced row echelon form of 2-2822
replicating 2-2760
right division (arithmetic operator) 2-38
rotating 90\xfb 2-2811
Schur form of 2-2824 2-2869
singularity, test for 2-897
sorting rows of 2-2950
sparse. See sparse matrix
specialized 2-1354
square root of 2-3006
subspaces of 2-3173
test 2-1354
Toeplitz 2-3388
trace of 2-903 2-3390
transpose (arithmetic operator) 2-39
transposing 2-56
unimodular 2-1382
unitary 2-3257

upper triangular 2-3405
Vandermonde 2-2523
Wilkinson 2-2965 2-3738
writing as binary data 2-1342
writing formatted data to 2-1308
writing to ASCII delimited file 2-933
writing to spreadsheet 2-3745
See also array

Matrix
hgtransform property 2-1578

matrix functions
evaluating 2-1337

matrix names, (M1 through M12) generating a
sequence of 2-1029

matrix power. See matrix, exponential
max 2-2112
max (timeseries) 2-2113
Max, Uicontrol property 2-3480
MaxHeadSize

quivergroup property 2-2655
maximum matching 2-937
MDL-files

checking existence of 2-1041
mean 2-2118
mean (timeseries) 2-2119
median 2-2121
median (timeseries) 2-2122
median value of array elements 2-2121
memmapfile 2-2124
memory 2-2130

clearing 2-556
minimizing use of 2-2374
variables in 2-3731

menu (of user input choices) 2-2138
menu function 2-2138
MenuBar, Figure property 2-1153
mesh plot

tetrahedron 2-3298
mesh size (BVP) 2-439
meshc 1-97 2-2140

Index-36

Index

meshgrid 2-2145
MeshStyle, Surface property 2-3219
MeshStyle, surfaceplot property 2-3243
meshz 1-97 2-2140
message

error See error message 2-3695
warning See warning message 2-3695

methods 2-2147
inheritance of 2-554
locating 2-3722

methodsview 2-2149
mex 2-2151
mex build script

switches 2-2152
-ada <sfcn.ads> 2-2153
-<arch> 2-2152
-argcheck 2-2153
-c 2-2153
-compatibleArrayDims 2-2153
-cxx 2-2153
-D<name> 2-2153
-D<name>=<value> 2-2154
-f <optionsfile> 2-2154
-fortran 2-2154
-g 2-2154
-h[elp] 2-2154
-I<pathname> 2-2154
-inline 2-2154
-L<directory> 2-2155
-l<name> 2-2154
-largeArrayDims 2-2155
-n 2-2155
<name>=<value> 2-2156
-O 2-2155
-outdir <dirname> 2-2155
-output <resultname> 2-2155
@<rsp_file> 2-2152
-setup 2-2155
-U<name> 2-2156
-v 2-2156

MEX-files
clearing from workspace 2-556
debugging on UNIX 2-785
listing for directory 2-3718

MException
constructor 2-995 2-2131
methods

addCause 2-100
disp 2-920
eq 2-995
getReport 2-1431
isequal 2-1793
last 2-1883
ne 2-2265
rethrow 2-2778
throw 2-3365
throwAsCaller 2-3368

mexext 2-2158
mfilename 2-2159
mget function 2-2160
Microsoft Excel files

loading 2-3756
min 2-2161
min (timeseries) 2-2162
Min, Uicontrol property 2-3480
MinColormap, Figure property 2-1153
minimum degree ordering 2-3279
MinorGridLineStyle, Axes property 2-296
minres 2-2166
minus (M-file function equivalent for -) 2-42
mislocked 2-2171
mkdir 2-2172
mkdir (ftp) 2-2175
mkpp 2-2176
mldivide (M-file function equivalent for \) 2-42
mlint 2-2189
mlintrpt 2-2196

suppressing messages 2-2199
mlock 2-2200
mmfileinfo 2-2201

Index-37

Index

mmreader 2-2204
mod 2-2208
modal matrix 2-961
mode 2-2210
mode objects

pan, using 2-2379
rotate3d, using 2-2815
zoom, using 2-3784

models
opening 2-2340
saving 2-2838

modification date
of a file 2-911

modified Bessel functions
relationship to Airy functions 2-128

modulo arithmetic 2-2208
MonitorPosition

Root property 2-2799
Moore-Penrose pseudoinverse 2-2482
more 2-2213 2-2234
move 2-2215
movefile 2-2217
movegui function 2-2220
movie 2-2222
movie2avi 2-2225
movies

exporting in AVI format 2-260
mpower (M-file function equivalent for ^) 2-43
mput function 2-2227
mrdivide (M-file function equivalent for /) 2-42
msgbox 2-2228
mtimes 2-2230
mtimes (M-file function equivalent for *) 2-42
mu-law encoded audio signals 2-1948 2-2234
multibandread 2-2235
multibandwrite 2-2240
multidimensional arrays 2-1917

concatenating 2-474
interpolation of 2-1753
longest dimension of 2-1917

number of dimensions of 2-2262
rearranging dimensions of 2-1774 2-2473
removing singleton dimensions of 2-3009
reshaping 2-2769
size of 2-2932
sorting elements of 2-2946
See also array

multiple
least common 2-1894

multiplication
array (arithmetic operator) 2-38
matrix (defined) 2-38
of polynomials 2-676

multistep ODE solver 2-2308
munlock 2-2246

N
Name, Figure property 2-1154
namelengthmax 2-2248
naming conventions

M-file 2-1328
NaN 2-2249
NaN (Not-a-Number) 2-2249

returned by rem 2-2756
nargchk 2-2251
nargoutchk 2-2255
native2unicode 2-2257
ndgrid 2-2260
ndims 2-2262
ne 2-2263
ne, MException method 2-2265
nearest neighbor interpolation 2-1465 2-1736

2-1746 2-1750 2-1753
newplot 2-2266
NextPlot

Axes property 2-296
Figure property 2-1154

nextpow2 2-2269
nnz 2-2270

Index-38

Index

no derivative method 2-1254
noncontiguous fields, inserting data into 2-1342
nonzero entries

specifying maximum number of in sparse
matrix 2-2956

nonzero entries (in sparse matrix)
allocated storage for 2-2288
number of 2-2270
replacing with ones 2-2986
vector of 2-2272

nonzeros 2-2272
norm 2-2273

1-norm 2-2273 2-2684
2-norm (estimate of) 2-2275
F-norm 2-2273
infinity 2-2273
matrix 2-2273
pseudoinverse and 2-2482 2-2484
vector 2-2273

normal vectors, computing for volumes 2-1828
NormalMode

Patch property 2-2424
Surface property 2-3219
surfaceplot property 2-3243

normest 2-2275
not 2-2276
not (M-file function equivalent for ~) 2-50
notebook 2-2277
now 2-2278
nthroot 2-2279
null 2-2280
null space 2-2280
num2cell 2-2282
num2hex 2-2283
num2str 2-2284
number

of array dimensions 2-2262
numbers

imaginary 2-1625
NaN 2-2249

plus infinity 2-1694
prime 2-2539
random 2-2667 2-2672
real 2-2690
smallest positive 2-2693

NumberTitle, Figure property 2-1155
numel 2-2286
numeric format 2-1265
numeric precision

format reading binary data 2-1292
numerical differentiation formula ODE

solvers 2-2309
numerical evaluation

double integral 2-783
triple integral 2-3400

nzmax 2-2288

O
object

determining class of 2-1779
inheritance 2-554

object classes, list of predefined 2-553 2-1779
objects

Java 2-1809
ODE file template 2-2312
ODE solver properties

error tolerance 2-2319
event location 2-2326
Jacobian matrix 2-2328
mass matrix 2-2332
ode15s 2-2334
solver output 2-2321
step size 2-2325

ODE solvers
backward differentiation formulas 2-2334
numerical differentiation formulas 2-2334
obtaining solutions at specific times 2-2296
variable order solver 2-2334

ode15i function 2-2289

Index-39

Index

odefile 2-2311
odeget 2-2317
odephas2 output function 2-2323
odephas3 output function 2-2323
odeplot output function 2-2323
odeprint output function 2-2323
odeset 2-2318
odextend 2-2336
off-screen figures, displaying 2-1220
OffCallback

Uitoggletool property 2-3585
%#ok 2-2191
OnCallback

Uitoggletool property 2-3586
one-step ODE solver 2-2308
ones 2-2339
online documentation, displaying 2-1532
online help 2-1527
open 2-2340
openfig 2-2344
OpenGL 2-1161

autoselection criteria 2-1165
opening

files in Windows applications 2-3739
opening files 2-1257
openvar 2-2351
operating system

MATLAB is running on 2-622
operating system command 1-4 1-11 2-3288
operating system command, issuing 2-58
operators

arithmetic 2-37
logical 2-49 2-52
overloading arithmetic 2-43
overloading relational 2-47
relational 2-47 2-2030
symbols 2-1527

optimget 2-2353
optimization parameters structure 2-2353 to

2-2354

optimizing M-file execution 2-2570
optimset 2-2354
or 2-2358
or (M-file function equivalent for |) 2-50
ordeig 2-2360
orderfields 2-2363
ordering

minimum degree 2-3279
reverse Cuthill-McKee 2-3269 2-3280

ordqz 2-2366
ordschur 2-2368
orient 2-2370
orth 2-2372
orthogonal-triangular decomposition 2-2603
orthographic projection, setting and

querying 2-460
orthonormal matrix 2-2603
otherwise 2-2373
Out of memory (error message) 2-2374
OuterPosition

Axes property 2-296
output

checking number of M-file arguments 2-2255
controlling display format 2-1265
in Command Window 2-2213
number of M-file arguments 2-2253

output points (ODE)
increasing number of 2-2321

output properties (DDE) 2-831
output properties (ODE) 2-2321

increasing number of output points 2-2321
overdetermined equation systems,

solving 2-2605 to 2-2606
overflow 2-1694
overloading

arithmetic operators 2-43
relational operators 2-47
special characters 2-58

Index-40

Index

P
P-files

checking existence of 2-1041
pack 2-2374
padecoef 2-2376
pagesetupdlg 2-2377
paging

of screen 2-1529
paging in the Command Window 2-2213
pan mode objects 2-2379
PaperOrientation, Figure property 2-1155
PaperPosition, Figure property 2-1155
PaperPositionMode, Figure property 2-1156
PaperSize, Figure property 2-1156
PaperType, Figure property 2-1156
PaperUnits, Figure property 2-1158
parametric curve, plotting 2-1074
Parent

areaseries property 2-214
Axes property 2-298
barseries property 2-344
contour property 2-662
errorbar property 2-1016
Figure property 2-1158
hggroup property 2-1556
hgtransform property 2-1578
Image property 2-1645
Light property 2-1943
Line property 2-1967
lineseries property 2-1981
Patch property 2-2424
quivergroup property 2-2655
rectangle property 2-2713
Root property 2-2800
scatter property 2-2863
stairseries property 2-3034
stem property 2-3068
Surface property 2-3220
surfaceplot property 2-3244
Text property 2-3329

Uicontextmenu property 2-3457
Uicontrol property 2-3481
Uimenu property 2-3521
Uipushtool property 2-3554
Uitoggletool property 2-3586
Uitoolbar property 2-3597

parentheses (special characters) 2-56
parse

inputParser object 2-2388
parseSoapResponse 2-2391
partial fraction expansion 2-2771
partialpath 2-2392
pascal 2-2394
Pascal matrix 2-2394 2-2528
patch 2-2395
Patch

converting a surface to 1-103 2-3194
creating 2-2395
defining default properties 2-2401
properties 2-2403
reducing number of faces 1-102 2-2719
reducing size of face 1-102 2-2921

path 2-2429
adding directories to 2-114
building from parts 2-1325
current 2-2429
removing directories from 2-2792
viewing 2-2434

path2rc 2-2431
pathdef 2-2432
pathname

partial 2-2392
toolbox directory 1-8 2-3389

pathnames
of functions or files 2-3722
relative 2-2392

pathsep 2-2433
pathtool 2-2434
pause 2-2436
pauses, removing 2-778

Index-41

Index

pausing M-file execution 2-2436
pbaspect 2-2437
PBM

parameters that can be set when
writing 2-1680

PBM files
writing 2-1676

pcg 2-2443
pchip 2-2447
pcode 2-2450
pcolor 2-2451
PCX files

writing 2-1677
PDE. See Partial Differential Equations
pdepe 2-2455
pdeval 2-2467
percent sign (special characters) 2-57
percent-brace (special characters) 2-57
perfect matching 2-937
period (.), to distinguish matrix and array

operations 2-37
period (special characters) 2-56
perl 2-2470
perl function 2-2470
Perl scripts in MATLAB 1-4 1-11 2-2470
perms 2-2472
permutation

matrix 2-2058 2-2603
of array dimensions 2-2473
random 2-2676

permutations of n elements 2-2472
permute 2-2473
persistent 2-2474
persistent variable 2-2474
perspective projection, setting and

querying 2-460
PGM

parameters that can be set when
writing 2-1680

PGM files

writing 2-1677
phase angle, complex 2-149
phase, complex

correcting angles 2-3618
pi 2-2477
pie 2-2478
pie3 2-2480
pinv 2-2482
planerot 2-2485
platform MATLAB is running on 2-622
playshow function 2-2486
plot 2-2487

editing 2-2499
plot (timeseries) 2-2494
plot box aspect ratio of axes 2-2437
plot editing mode

overview 2-2500
Plot Editor

interface 2-2500 2-2577
plot, volumetric

generating grid arrays for 2-2145
slice plot 1-91 1-102 2-2938

PlotBoxAspectRatio, Axes property 2-298
PlotBoxAspectRatioMode, Axes property 2-299
plotedit 2-2499
plotting

2-D plot 2-2487
3-D plot 1-86 2-2495
contours (a 2-1054
contours (ez function) 2-1054
ez-function mesh plot 2-1062
feather plots 2-1094
filled contours 2-1058
function plots 2-1273
functions with discontinuities 2-1082
histogram plots 2-1583
in polar coordinates 2-1077
isosurfaces 2-1831
loglog plot 2-2032
mathematical function 2-1070

Index-42

Index

mesh contour plot 2-1066
mesh plot 1-97 2-2140
parametric curve 2-1074
plot with two y-axes 2-2506
ribbon plot 1-91 2-2784
rose plot 1-90 2-2807
scatter plot 2-2502
scatter plot, 3-D 1-91 2-2848
semilogarithmic plot 1-87 2-2879
stem plot, 3-D 1-89 2-3053
surface plot 1-97 2-3188
surfaces 1-90 2-1080
velocity vectors 2-628
volumetric slice plot 1-91 1-102 2-2938
. See visualizing

plus (M-file function equivalent for +) 2-42
PNG

writing options for 2-1682
alpha 2-1682
background color 2-1682
chromaticities 2-1683
gamma 2-1683
interlace type 2-1683
resolution 2-1684
significant bits 2-1683
transparency 2-1684

PNG files
writing 2-1677

PNM files
writing 2-1677

Pointer, Figure property 2-1158
PointerLocation, Root property 2-2800
PointerShapeCData, Figure property 2-1159
PointerShapeHotSpot, Figure property 2-1159
PointerWindow, Root property 2-2801
pol2cart 2-2509
polar 2-2511
polar coordinates 2-2509

computing the angle 2-149
converting from Cartesian 2-469

converting to cylindrical or Cartesian 2-2509
plotting in 2-1077

poles of transfer function 2-2771
poly 2-2513
polyarea 2-2516
polyder 2-2518
polyeig 2-2519
polyfit 2-2521
polygamma function 2-2580
polygon

area of 2-2516
creating with patch 2-2395
detecting points inside 2-1703

polyint 2-2525
polynomial

analytic integration 2-2525
characteristic 2-2513 to 2-2514 2-2805
coefficients (transfer function) 2-2771
curve fitting with 2-2521
derivative of 2-2518
division 2-853
eigenvalue problem 2-2519
evaluation 2-2526
evaluation (matrix sense) 2-2528
make piecewise 2-2176
multiplication 2-676

polyval 2-2526
polyvalm 2-2528
poorly conditioned

matrix 2-1582
poorly conditioned eigenvalues 2-317
pop-up menus 2-3461

defining choices 2-3484
Portable Anymap files

writing 2-1677
Portable Bitmap (PBM) files

writing 2-1676
Portable Graymap files

writing 2-1677
Portable Network Graphics files

Index-43

Index

writing 2-1677
Portable pixmap format

writing 2-1677
Position

annotation ellipse property 2-164
annotation line property 2-167
annotation rectangle property 2-171
arrow property 2-156
Axes property 2-299
doubletarrow property 2-161
Figure property 2-1159
Light property 2-1943
Text property 2-3329
textarrow property 2-177
textbox property 2-189
Uicontextmenu property 2-3457
Uicontrol property 2-3481
Uimenu property 2-3521

position indicator in file 2-1321
position of camera

dollying 2-447
position of camera, setting and querying 2-458
Position, rectangle property 2-2714
PostScript

default printer 2-2546
levels 1 and 2 2-2546
printing interpolated shading 2-2554

pow2 2-2530
power 2-2531

matrix. See matrix exponential
of real numbers 2-2694
of two, next 2-2269

power (M-file function equivalent for .^) 2-43
PPM

parameters that can be set when
writing 2-1680

PPM files
writing 2-1677

ppval 2-2532
pragma

%#ok 2-2191
preallocation

matrix 2-3779
precision 2-1265

reading binary data writing 2-1292
prefdir 2-2534
preferences 2-2538

opening the dialog box 2-2538
prime factors 2-1088

dependence of Fourier transform on 2-1108
2-1110 to 2-1111

prime numbers 2-2539
primes 2-2539
print frames 2-1289
printdlg 1-92 1-104 2-2559
printdlg function 2-2559
printer

default for linux and unix 2-2546
printer drivers

GhostScript drivers 2-2542
interploated shading 2-2554
MATLAB printer drivers 2-2542

printframe 2-1289
PrintFrame Editor 2-1289
printing

borders 2-1289
fig files with frames 2-1289
GUIs 2-2553
interpolated shading 2-2554
on MS-Windows 2-2553
with a variable filename 2-2556
with nodisplay 2-2549
with noFigureWindows 2-2549
with non-normal EraseMode 2-1963 2-2415

2-2711 2-3213 2-3318
with print frames 2-1291

printing figures
preview 1-93 1-104 2-2560

printing tips 2-2552
printing, suppressing 2-57

Index-44

Index

printpreview 1-93 1-104 2-2560
prod 2-2568
product

cumulative 2-731
Kronecker tensor 2-1881
of array elements 2-2568
of vectors (cross) 2-718
scalar (dot) 2-718

profile 2-2570
profsave 2-2576
projection type, setting and querying 2-460
ProjectionType, Axes property 2-300
prompting users for input 2-1705 2-2138
propedit 2-2577 to 2-2578
proppanel 1-87 2-2579
pseudoinverse 2-2482
psi 2-2580
publish function 2-2582
push buttons 2-3461
PutFullMatrix 2-2589
pwd 2-2596

Q
qmr 2-2597
qr 2-2603
QR decomposition 2-2603

deleting column from 2-2608
qrdelete 2-2608
qrinsert 2-2610
qrupdate 2-2612
quad 2-2615
quadgk 2-2619
quadl 2-2625
quadrature 2-2615 2-2619
quadv 2-2628
questdlg 1-104 2-2631
questdlg function 2-2631
quit 2-2633
quitting MATLAB 2-2633

quiver 2-2636
quiver3 2-2640
quotation mark

inserting in a string 2-1283
qz 2-2664
QZ factorization 2-2520 2-2664

R
radio buttons 2-3461
rand 2-2667
randn 2-2672
random

numbers 2-2667 2-2672
permutation 2-2676
sparse matrix 2-2992 to 2-2993
symmetric sparse matrix 2-2994

randperm 2-2676
range space 2-2372
rank 2-2677
rank of a matrix 2-2677
RAS files

parameters that can be set when
writing 2-1685

writing 2-1677
RAS image format

specifying color order 2-1685
writing alpha data 2-1685

Raster image files
writing 2-1677

rational fraction approximation 2-2678
rbbox 1-101 2-2682 2-2726
rcond 2-2684
rdivide (M-file function equivalent for ./) 2-42
read 2-2685
readasync 2-2687
reading

binary files 2-1292
data from files 2-3338
formatted data from file 2-1308

Index-45

Index

formatted data from strings 2-3012
readme files, displaying 1-5 2-1786 2-3721
real 2-2690
real numbers 2-2690
reallog 2-2691
realmax 2-2692
realmin 2-2693
realpow 2-2694
realsqrt 2-2695
rearranging arrays

converting to vector 2-59
removing first n singleton dimensions 2-2918
removing singleton dimensions 2-3009
reshaping 2-2769
shifting dimensions 2-2918
swapping dimensions 2-1774 2-2473

rearranging matrices
converting to vector 2-59
flipping left-right 2-1239
flipping up-down 2-1240
rotating 90\xfb 2-2811
transposing 2-56

record 2-2696
rectangle

properties 2-2703
rectangle function 2-2698

rectint 2-2716
RecursionLimit

Root property 2-2801
recycle 2-2717
reduced row echelon form 2-2822
reducepatch 2-2719
reducevolume 2-2723
reference page

accessing from doc 2-940
refresh 2-2726
regexprep 2-2742
regexptranslate 2-2746
registerevent 2-2749
regression

linear 2-2521
regularly spaced vectors, creating 2-59 2-2004
rehash 2-2752
relational operators 2-47 2-2030
relative accuracy

BVP 2-435
DDE 2-830
norm of DDE solution 2-830
norm of ODE solution 2-2320
ODE 2-2320

release 2-2754
rem 2-2756
removets 2-2757
rename function 2-2759
renderer

OpenGL 2-1161
painters 2-1160
zbuffer 2-1160

Renderer, Figure property 2-1160
RendererMode, Figure property 2-1164
repeatedly executing statements 2-1262 2-3725
replicating a matrix 2-2760
repmat 2-2760
resample (timeseries) 2-2762
resample (tscollection) 2-2765
reset 2-2768
reshape 2-2769
residue 2-2771
residues of transfer function 2-2771
Resize, Figure property 2-1165
ResizeFcn, Figure property 2-1166
restoredefaultpath 2-2775
rethrow 2-2776
rethrow, MException method 2-2778
return 2-2780
reverse Cuthill-McKee ordering 2-3269 2-3280
rewinding files to beginning of 2-1307 2-1660
RGB, converting to HSV 1-98 2-2781
rgb2hsv 2-2781
rgbplot 2-2782

Index-46

Index

ribbon 2-2784
right-click and context menus 2-3449
rmappdata function 2-2786
rmdir 2-2787
rmdir (ftp) function 2-2790
rmfield 2-2791
rmpath 2-2792
rmpref function 2-2793
RMS. See root-mean-square
rolling camera 2-461
root 1-94 2-2794
root directory 2-2092
root directory for MATLAB 2-2092
Root graphics object 1-94 2-2794
root object 2-2794
root, see rootobject 1-94 2-2794
root-mean-square

of vector 2-2273
roots 2-2805
roots of a polynomial 2-2513 to 2-2514 2-2805
rose 2-2807
Rosenbrock

banana function 2-1252
ODE solver 2-2309

rosser 2-2810
rot90 2-2811
rotate 2-2812
rotate3d 2-2815
rotate3d mode objects 2-2815
rotating camera 2-455
rotating camera target 1-99 2-457
Rotation, Text property 2-3329
rotations

Jacobi 2-2994
round 2-2821

to nearest integer 2-2821
towards infinity 2-501
towards minus infinity 2-1242
towards zero 2-1237

roundoff error

characteristic polynomial and 2-2514
convolution theorem and 2-676
effect on eigenvalues 2-317
evaluating matrix functions 2-1339
in inverse Hilbert matrix 2-1770
partial fraction expansion and 2-2772
polynomial roots and 2-2805
sparse matrix conversion and 2-2960

rref 2-2822
rrefmovie 2-2822
rsf2csf 2-2824
rubberband box 1-101 2-2682
run 2-2826
Runge-Kutta ODE solvers 2-2308
running average 2-1207

S
save 2-2827 2-2835

serial port I/O 2-2836
saveas 2-2838
saveobj 2-2842
savepath 2-2844
saving

ASCII data 2-2827
session to a file 2-906
workspace variables 2-2827

scalar product (of vectors) 2-718
scaled complementary error function

(defined) 2-996
scatter 2-2845
scatter3 2-2848
scattered data, aligning

multi-dimensional 2-2260
two-dimensional 2-1465

scattergroup
properties 2-2851

Schmidt semi-normalized Legendre
functions 2-1913

schur 2-2869

Index-47

Index

Schur decomposition 2-2869
Schur form of matrix 2-2824 2-2869
screen, paging 2-1529
ScreenDepth, Root property 2-2801
ScreenPixelsPerInch, Root property 2-2802
ScreenSize, Root property 2-2802
script 2-2872
scrolling screen 2-1529
search path 2-2792

adding directories to 2-114
MATLAB’s 2-2429
modifying 2-2434
viewing 2-2434

search, string 2-1224
sec 2-2873
secant 2-2873

hyperbolic 2-2876
inverse 2-226
inverse hyperbolic 2-229

secd 2-2875
sech 2-2876
Selected

areaseries property 2-214
Axes property 2-300
barseries property 2-344
contour property 2-663
errorbar property 2-1016
Figure property 2-1167
hggroup property 2-1556
hgtransform property 2-1578
Image property 2-1646
Light property 2-1944
Line property 2-1967
lineseries property 2-1981
Patch property 2-2425
quivergroup property 2-2655
rectangle property 2-2714
Root property 2-2803
scatter property 2-2863
stairseries property 2-3034

stem property 2-3069
Surface property 2-3220
surfaceplot property 2-3244
Text property 2-3330
Uicontrol property 2-3482

selecting areas 1-101 2-2682
SelectionHighlight

areaseries property 2-214
Axes property 2-300
barseries property 2-344
contour property 2-663
errorbar property 2-1017
Figure property 2-1167
hggroup property 2-1556
hgtransform property 2-1578
Image property 2-1646
Light property 2-1944
Line property 2-1967
lineseries property 2-1981
Patch property 2-2425
quivergroup property 2-2656
rectangle property 2-2714
scatter property 2-2863
stairseries property 2-3034
stem property 2-3069
Surface property 2-3220
surfaceplot property 2-3244
Text property 2-3330
Uicontrol property 2-3483

SelectionType, Figure property 2-1167
selectmoveresize 2-2878
semicolon (special characters) 2-57
sendmail 2-2882
Separator

Uipushtool property 2-3555
Uitoggletool property 2-3586

Separator, Uimenu property 2-3521
sequence of matrix names (M1 through M12)

generating 2-1029
serial 2-2884

Index-48

Index

serialbreak 2-2886
server (FTP)

connecting to 2-1322
server variable 2-1100
session

saving 2-906
set 1-113 2-2887 2-2891

serial port I/O 2-2892
timer object 2-2895

set (timeseries) 2-2898
set (tscollection) 2-2899
set operations

difference 2-2903
exclusive or 2-2915
intersection 2-1760
membership 2-1815
union 2-3601
unique 2-3603

setabstime (timeseries) 2-2900
setabstime (tscollection) 2-2901
setappdata 2-2902
setdiff 2-2903
setenv 2-2904
setfield 2-2905
setinterpmethod 2-2907
setpixelposition 2-2909
setpref function 2-2912
setstr 2-2913
settimeseriesnames 2-2914
setxor 2-2915
shading 2-2916
shading colors in surface plots 1-98 2-2916
shared libraries

MATLAB functions
calllib 2-444
libfunctions 2-1921
libfunctionsview 2-1923
libisloaded 2-1925
libpointer 2-1927
libstruct 2-1929
loadlibrary 2-2018
unloadlibrary 2-3607

shell script 1-4 1-11 2-3288 2-3605
shiftdim 2-2918
shifting array

circular 2-545
ShowArrowHead

quivergroup property 2-2656
ShowBaseLine

barseries property 2-344
ShowHiddenHandles, Root property 2-2803
showplottool 2-2919
ShowText

contour property 2-663
shrinkfaces 2-2921
shutdown 2-2633
sign 2-2925
signum function 2-2925
simplex search 2-1254
Simpson’s rule, adaptive recursive 2-2617
Simulink

printing diagram with frames 2-1289
version number, comparing 2-3659
version number, displaying 2-3653

sin 2-2926
sind 2-2928
sine 2-2926

hyperbolic 2-2930
inverse 2-231
inverse hyperbolic 2-234

single 2-2929
single quote (special characters) 2-56
singular value

Index-49

Index

decomposition 2-2677 2-3257
largest 2-2273
rank and 2-2677

sinh 2-2930
size

array dimesions 2-2932
serial port I/O 2-2935

size (timeseries) 2-2936
size (tscollection) 2-2937
size of array dimensions 2-2932
size of fonts, see also FontSize property 2-3332
size vector 2-2769
SizeData

scatter property 2-2864
skipping bytes (during file I/O) 2-1342
slice 2-2938
slice planes, contouring 2-671
sliders 2-3462
SliderStep, Uicontrol property 2-3483
smallest array elements 2-2161
smooth3 2-2944
smoothing 3-D data 1-102 2-2944
soccer ball (example) 2-3280
solution statistics (BVP) 2-440
sort 2-2946
sorting

array elements 2-2946
complex conjugate pairs 2-711
matrix rows 2-2950

sortrows 2-2950
sound 2-2953 to 2-2954

converting vector into 2-2953 to 2-2954
files

reading 2-258 2-3706
writing 2-259 2-3711

playing 1-83 2-3704
recording 1-83 2-3709
resampling 1-83 2-3704
sampling 1-83 2-3709

source control on UNIX platforms

checking out files
function 2-527

source control system
viewing current system 2-570

source control systems
checking in files 2-524
undo checkout 1-10 2-3599

spalloc 2-2955
sparse 2-2956
sparse matrix

allocating space for 2-2955
applying function only to nonzero elements

of 2-2973
density of 2-2270
detecting 2-1848
diagonal 2-2961
finding indices of nonzero elements of 2-1214
identity 2-2972
minimum degree ordering of 2-576
number of nonzero elements in 2-2270
permuting columns of 2-609
random 2-2992 to 2-2993
random symmetric 2-2994
replacing nonzero elements of with

ones 2-2986
results of mixed operations on 2-2957
solving least squares linear system 2-2604
specifying maximum number of nonzero

elements 2-2956
vector of nonzero elements 2-2272
visualizing sparsity pattern of 2-3003

sparse storage
criterion for using 2-1324

spaugment 2-2958
spconvert 2-2959
spdiags 2-2961
special characters

descriptions 2-1527
overloading 2-58

specular 2-2971

Index-50

Index

SpecularColorReflectance
Patch property 2-2425
Surface property 2-3220
surfaceplot property 2-3244

SpecularExponent
Patch property 2-2426
Surface property 2-3221
surfaceplot property 2-3245

SpecularStrength
Patch property 2-2426
Surface property 2-3221
surfaceplot property 2-3245

speye 2-2972
spfun 2-2973
sph2cart 2-2975
sphere 2-2976
sphereical coordinates

defining a Light position in 2-1946
spherical coordinates 2-2975
spinmap 2-2978
spline 2-2979
spline interpolation (cubic)

one-dimensional 2-1737 2-1747 2-1750
2-1753

Spline Toolbox 2-1742
spones 2-2986
spparms 2-2987
sprand 2-2992
sprandn 2-2993
sprandsym 2-2994
sprank 2-2995
spreadsheets

loading WK1 files 2-3743
loading XLS files 2-3756
reading into a matrix 2-929
writing from matrix 2-3745
writing matrices into 2-933

sprintf 2-2996
sqrt 2-3005
sqrtm 2-3006

square root
of a matrix 2-3006
of array elements 2-3005
of real numbers 2-2695

squeeze 2-3009
sscanf 2-3012
stack, displaying 2-788
standard deviation 2-3043
start

timer object 2-3039
startat

timer object 2-3040
startup 2-3042
startup file 2-3042
startup files 2-2090
State

Uitoggletool property 2-3587
Stateflow

printing diagram with frames 2-1289
static text 2-3462
std 2-3043
std (timeseries) 2-3045
stem 2-3047
stem3 2-3053
step size (DDE)

initial step size 2-834
upper bound 2-835

step size (ODE) 2-833 2-2325
initial step size 2-2325
upper bound 2-2325

stop
timer object 2-3075

stopasync 2-3076
stopwatch timer 2-3370
storage

allocated for nonzero entries (sparse) 2-2288
sparse 2-2956

storage allocation 2-3779
str2cell 2-517
str2double 2-3078

Index-51

Index

str2func 2-3079
str2mat 2-3081
str2num 2-3082
strcat 2-3084
stream lines

computing 2-D 1-102 2-3090
computing 3-D 1-102 2-3092
drawing 1-102 2-3094

stream2 2-3090
stream3 2-3092
stretch-to-fill 2-268
strfind 2-3122
string

comparing one to another 2-3086 2-3128
converting from vector to 2-523
converting matrix into 2-2081 2-2284
converting to lowercase 2-2041
converting to numeric array 2-3082
converting to uppercase 2-3625
dictionary sort of 2-2950
finding first token in 2-3140
searching and replacing 2-3139
searching for 2-1224

String
Text property 2-3330
textarrow property 2-177
textbox property 2-189
Uicontrol property 2-3484

string matrix to cell array conversion 2-517
strings 2-3124

converting to matrix (formatted) 2-3012
inserting a quotation mark in 2-1283
writing data to 2-2996

strjust 1-52 1-64 2-3126
strmatch 2-3127
strread 2-3131
strrep 1-52 1-64 2-3139
strtok 2-3140
strtrim 2-3143
struct 2-3144

struct2cell 2-3149
structfun 2-3150
structure array

getting contents of field of 2-1417
remove field from 2-2791
setting contents of a field of 2-2905

structure arrays
field names of 2-1128

structures
dynamic fields 2-57

strvcat 2-3153
Style

Light property 2-1944
Uicontrol property 2-3486

sub2ind 2-3155
subfunction 2-1328
subplot 2-3157
subplots

assymetrical 2-3162
suppressing ticks in 2-3165

subsasgn 1-55 2-3170
subscripts

in axis title 2-3386
in text strings 2-3334

subsindex 2-3172
subspace 1-20 2-3173
subsref 1-55 2-3174
subsref (M-file function equivalent for

A(i,j,k...)) 2-58
substruct 2-3176
subtraction (arithmetic operator) 2-37
subvolume 2-3178
sum 2-3181

cumulative 2-733
of array elements 2-3181

sum (timeseries) 2-3184
superiorto 2-3186
superscripts

in axis title 2-3386
in text strings 2-3334

Index-52

Index

support 2-3187
surf2patch 2-3194
surface 2-3196
Surface

and contour plotter 2-1084
converting to a patch 1-103 2-3194
creating 1-94 1-97 2-3196
defining default properties 2-2702 2-3200
plotting mathematical functions 2-1080
properties 2-3201 2-3224

surface normals, computing for volumes 2-1828
surfl 2-3251
surfnorm 2-3255
svd 2-3257
svds 2-3260
swapbytes 2-3264
switch 2-3266
symamd 2-3268
symbfact 2-3272
symbols

operators 2-1527
symbols in text 2-177 2-189 2-3330
symmlq 2-3274
symmmd 2-3279
symrcm 2-3280
synchronize 2-3283
syntax 2-1528
syntax, command 2-3285
syntax, function 2-3285
syntaxes

of M-file functions, defining 2-1328
system 2-3288

UNC pathname error 2-3288
system directory, temporary 2-3296

T
table lookup. See interpolation
Tag

areaseries property 2-214

Axes property 2-300
barseries property 2-345
contour property 2-663
errorbar property 2-1017
Figure property 2-1168
hggroup property 2-1556
hgtransform property 2-1579
Image property 2-1646
Light property 2-1944
Line property 2-1968
lineseries property 2-1982
Patch property 2-2426
quivergroup property 2-2656
rectangle property 2-2714
Root property 2-2803
scatter property 2-2864
stairseries property 2-3035
stem property 2-3069
Surface property 2-3221
surfaceplot property 2-3245
Text property 2-3335
Uicontextmenu property 2-3457
Uicontrol property 2-3486
Uimenu property 2-3522
Uipushtool property 2-3555
Uitoggletool property 2-3587
Uitoolbar property 2-3597

Tagged Image File Format (TIFF)
writing 2-1678

tan 2-3290
tand 2-3292
tangent 2-3290

four-quadrant, inverse 2-242
hyperbolic 2-3293
inverse 2-240
inverse hyperbolic 2-245

tanh 2-3293
tar 2-3295
target, of camera 2-462
tcpip 2-3627

Index-53

Index

tempdir 2-3296
tempname 2-3297
temporary

files 2-3297
system directory 2-3296

tensor, Kronecker product 2-1881
terminating MATLAB 2-2633
test matrices 2-1354
test, logical. See logical tests and detecting
tetrahedron

mesh plot 2-3298
tetramesh 2-3298
TeX commands in text 2-177 2-189 2-3330
text 2-3303

editing 2-2499
subscripts 2-3334
superscripts 2-3334

Text
creating 1-94 2-3303
defining default properties 2-3307
fixed-width font 2-3319
properties 2-3308

text mode for opened files 2-1256
TextBackgroundColor

textarrow property 2-179
TextColor

textarrow property 2-179
TextEdgeColor

textarrow property 2-179
TextLineWidth

textarrow property 2-180
TextList

contour property 2-664
TextListMode

contour property 2-665
TextMargin

textarrow property 2-180
textread 1-78 2-3338
TextRotation, textarrow property 2-180
textscan 1-78 2-3344

TextStep
contour property 2-665

TextStepMode
contour property 2-665

textwrap 2-3364
throw, MException method 2-3365
throwAsCaller, MException method 2-3368
TickDir, Axes property 2-301
TickDirMode, Axes property 2-301
TickLength, Axes property 2-301
TIFF

compression 2-1685
encoding 2-1681
ImageDescription field 2-1685
maxvalue 2-1681
parameters that can be set when

writing 2-1685
resolution 2-1686
writemode 2-1686
writing 2-1678

TIFF image format
specifying compression 2-1685

tiling (copies of a matrix) 2-2760
time

CPU 2-712
elapsed (stopwatch timer) 2-3370
required to execute commands 2-1025

time and date functions 2-990
timer

properties 2-3371
timer object 2-3371

timerfind
timer object 2-3378

timerfindall
timer object 2-3380

times (M-file function equivalent for .*) 2-42
timeseries 2-3382
timestamp 2-911
title 2-3385

with superscript 2-3386

Index-54

Index

Title, Axes property 2-302
todatenum 2-3387
toeplitz 2-3388
Toeplitz matrix 2-3388
toggle buttons 2-3462
token 2-3140

See also string
Toolbar

Figure property 2-1169
Toolbox

Spline 2-1742
toolbox directory, pathname 1-8 2-3389
toolboxdir 2-3389
TooltipString

Uicontrol property 2-3486
Uipushtool property 2-3555
Uitoggletool property 2-3587

trace 2-3390
trace of a matrix 2-903 2-3390
trailing blanks

removing 2-845
transform

hgtransform function 2-1563
transform, Fourier

discrete, n-dimensional 2-1111
discrete, one-dimensional 2-1105
discrete, two-dimensional 2-1110
inverse, n-dimensional 2-1615
inverse, one-dimensional 2-1611
inverse, two-dimensional 2-1613
shifting the zero-frequency component

of 2-1114
transformation

See also conversion 2-487
transformations

elementary Hermite 2-1382
transmitting file to FTP server 1-85 2-2227
transpose

array (arithmetic operator) 2-39
matrix (arithmetic operator) 2-39

transpose (M-file function equivalent for
.\q) 2-43

transpose (timeseries) 2-3391
trapz 2-3393
treelayout 2-3395
treeplot 2-3396
triangulation

2-D plot 2-3402
tricubic interpolation 2-1465
tril 2-3398
trilinear interpolation 2-1465
trimesh 2-3399
triple integral

numerical evaluation 2-3400
triplequad 2-3400
triplot 2-3402
trisurf 2-3404
triu 2-3405
true 2-3406
truth tables (for logical operations) 2-49
try 2-3407
tscollection 2-3410
tsdata.event 2-3413
tsearch 2-3414
tsearchn 2-3415
tsprops 2-3416
tstool 2-3422
type 2-3423
Type

areaseries property 2-215
Axes property 2-303
barseries property 2-345
contour property 2-665
errorbar property 2-1017
Figure property 2-1169
hggroup property 2-1557
hgtransform property 2-1579
Image property 2-1647
Light property 2-1944
Line property 2-1968

Index-55

Index

lineseries property 2-1982
Patch property 2-2427
quivergroup property 2-2657
rectangle property 2-2715
Root property 2-2803
scatter property 2-2864
stairseries property 2-3035
stem property 2-3070
Surface property 2-3221
surfaceplot property 2-3246
Text property 2-3335
Uicontextmenu property 2-3458
Uicontrol property 2-3486
Uimenu property 2-3522
Uipushtool property 2-3555
Uitoggletool property 2-3587
Uitoolbar property 2-3597

typecast 2-3424

U
UData

errorbar property 2-1018
quivergroup property 2-2658

UDataSource
errorbar property 2-1018
quivergroup property 2-2658

Uibuttongroup
defining default properties 2-3432

uibuttongroup function 2-3428
Uibuttongroup Properties 2-3432
uicontextmenu 2-3449
UiContextMenu

Uicontrol property 2-3487
Uipushtool property 2-3555
Uitoggletool property 2-3588
Uitoolbar property 2-3598

UIContextMenu
areaseries property 2-215
Axes property 2-303

barseries property 2-345
contour property 2-666
errorbar property 2-1018
Figure property 2-1170
hggroup property 2-1557
hgtransform property 2-1579
Image property 2-1647
Light property 2-1945
Line property 2-1968
lineseries property 2-1982
Patch property 2-2427
quivergroup property 2-2657
rectangle property 2-2715
scatter property 2-2865
stairseries property 2-3036
stem property 2-3070
Surface property 2-3221
surfaceplot property 2-3246
Text property 2-3336

Uicontextmenu Properties 2-3451
uicontrol 2-3459
Uicontrol

defining default properties 2-3465
fixed-width font 2-3474
types of 2-3459

Uicontrol Properties 2-3465
uicontrols

printing 2-2553
uigetdir 2-3490
uigetfile 2-3495
uigetpref function 2-3505
uiimport 2-3509
uimenu 2-3510
Uimenu

creating 1-107 2-3510
defining default properties 2-3512
Properties 2-3512

Uimenu Properties 2-3512
uint16 2-3523
uint32 2-3523

Index-56

Index

uint64 2-3523
uint8 2-1732 2-3523
uiopen 2-3525
Uipanel

defining default properties 2-3529
uipanel function 2-3527
Uipanel Properties 2-3529
uipushtool 2-3545
Uipushtool

defining default properties 2-3547
Uipushtool Properties 2-3547
uiputfile 2-3557
uiresume 2-3566
uisave 2-3568
uisetcolor function 2-3571
uisetfont 2-3572
uisetpref function 2-3574
uistack 2-3575
uitoggletool 2-3576
Uitoggletool

defining default properties 2-3578
Uitoggletool Properties 2-3578
uitoolbar 2-3589
Uitoolbar

defining default properties 2-3591
Uitoolbar Properties 2-3591
uiwait 2-3566
uminus (M-file function equivalent for unary

\xd0) 2-42
UNC pathname error and dos 2-946
UNC pathname error and system 2-3288
unconstrained minimization 2-1250
undefined numerical results 2-2249
undocheckout 2-3599
unicode2native 2-3600
unimodular matrix 2-1382
union 2-3601
unique 2-3603
unitary matrix (complex) 2-2603
Units

annotation ellipse property 2-165
annotation rectangle property 2-171
arrow property 2-156
Axes property 2-303
doublearrow property 2-161
Figure property 2-1170
line property 2-167
Root property 2-2804
Text property 2-3335
textarrow property 2-180
textbox property 2-191
Uicontrol property 2-3487

unix 2-3605
UNIX

Web browser 2-942
unloadlibrary 2-3607
unlocking M-files 2-2246
unmkpp 2-3608
unregisterallevents 2-3609
unregisterevent 2-3612
untar 2-3616
unwrap 2-3618
unzip 2-3623
up vector, of camera 2-464
updating figure during M-file execution 2-951
uplus (M-file function equivalent for unary

+) 2-42
upper 2-3625
upper triangular matrix 2-3405
uppercase to lowercase 2-2041
url

opening in Web browser 1-5 1-8 2-3712
urlread 2-3626
urlwrite 2-3628
usejava 2-3630
UserData

areaseries property 2-216
Axes property 2-304
barseries property 2-346
contour property 2-666

Index-57

Index

errorbar property 2-1019
Figure property 2-1171
hggroup property 2-1557
hgtransform property 2-1580
Image property 2-1647
Light property 2-1945
Line property 2-1968
lineseries property 2-1983
Patch property 2-2427
quivergroup property 2-2657
rectangle property 2-2715
Root property 2-2804
scatter property 2-2865
stairseries property 2-3036
stem property 2-3070
Surface property 2-3222
surfaceplot property 2-3246
Text property 2-3336
Uicontextmenu property 2-3458
Uicontrol property 2-3487
Uimenu property 2-3522
Uipushtool property 2-3556
Uitoggletool property 2-3588
Uitoolbar property 2-3598

V
validateattributes 2-3632
validatestring 2-3639
Value, Uicontrol property 2-3488
vander 2-3645
Vandermonde matrix 2-2523
var 2-3646
var (timeseries) 2-3647
varargin 2-3649
varargout 2-3651
variable numbers of M-file arguments 2-3651
variable-order solver (ODE) 2-2334
variables

checking existence of 2-1041

clearing from workspace 2-556
global 2-1447
graphical representation of 2-3747
in workspace 2-3747
listing 2-3731
local 2-1328 2-1447
name of passed 2-1710
opening 2-2340 2-2351
persistent 2-2474
saving 2-2827
sizes of 2-3731

VData
quivergroup property 2-2658

VDataSource
quivergroup property 2-2659

vector
dot product 2-947
frequency 2-2038
length of 2-1917
product (cross) 2-718

vector field, plotting 2-628
vectorize 2-3652
vectorizing ODE function (BVP) 2-436
vectors, creating

logarithmically spaced 2-2038
regularly spaced 2-59 2-2004

velocity vectors, plotting 2-628
ver 2-3653
verctrl function (Windows) 2-3655
verLessThan 2-3659
version 2-3661
version numbers

comparing 2-3659
displaying 2-3653

vertcat 2-3663
vertcat (M-file function equivalent for [2-58
vertcat (timeseries) 2-3665
vertcat (tscollection) 2-3666
VertexNormals

Patch property 2-2427

Index-58

Index

Surface property 2-3222
surfaceplot property 2-3246

VerticalAlignment, Text property 2-3336
VerticalAlignment, textarrow property 2-181
VerticalAlignment, textbox property 2-192
Vertices, Patch property 2-2427
video

saving in AVI format 2-260
view 2-3667

azimuth of viewpoint 2-3668
coordinate system defining 2-3668
elevation of viewpoint 2-3668

view angle, of camera 2-466
View, Axes property (obsolete) 2-304
viewing

a group of object 2-453
a specific object in a scene 2-453

viewmtx 2-3670
Visible

areaseries property 2-216
Axes property 2-304
barseries property 2-346
contour property 2-666
errorbar property 2-1019
Figure property 2-1171
hggroup property 2-1558
hgtransform property 2-1580
Image property 2-1647
Light property 2-1945
Line property 2-1968
lineseries property 2-1983
Patch property 2-2427
quivergroup property 2-2657
rectangle property 2-2715
Root property 2-2804
scatter property 2-2865
stairseries property 2-3036
stem property 2-3070
Surface property 2-3222
surfaceplot property 2-3247

Text property 2-3337
Uicontextmenu property 2-3458
Uicontrol property 2-3488
Uimenu property 2-3522
Uipushtool property 2-3556
Uitoggletool property 2-3588
Uitoolbar property 2-3598

visualizing
cell array structure 2-515
sparse matrices 2-3003

volumes
calculating isosurface data 2-1831
computing 2-D stream lines 1-102 2-3090
computing 3-D stream lines 1-102 2-3092
computing isosurface normals 2-1828
contouring slice planes 2-671
drawing stream lines 1-102 2-3094
end caps 2-1821
reducing face size in isosurfaces 1-102

2-2921
reducing number of elements in 1-102 2-2723

voronoi 2-3677
Voronoi diagrams

multidimensional vizualization 2-3683
two-dimensional vizualization 2-3677

voronoin 2-3683

W
wait

timer object 2-3687
waitbar 2-3688
waitfor 2-3690
waitforbuttonpress 2-3691
warndlg 2-3692
warning 2-3695
warning message (enabling, suppressing, and

displaying) 2-3695
waterfall 2-3699
.wav files

Index-59

Index

reading 2-3706
writing 2-3711

waverecord 2-3709
wavfinfo 2-3703
wavplay 1-83 2-3704
wavread 2-3703 2-3706
wavrecord 1-83 2-3709
wavwrite 2-3711
WData

quivergroup property 2-2659
WDataSource

quivergroup property 2-2660
web 2-3712
Web browser

displaying help in 2-1532
pointing to file or url 1-5 1-8 2-3712
specifying for UNIX 2-942

weekday 2-3716
well conditioned 2-2684
what 2-3718
whatsnew 2-3721
which 2-3722
while 2-3725
white space characters, ASCII 2-1847 2-3140
whitebg 2-3729
who, whos

who 2-3731
wilkinson 2-3738
Wilkinson matrix 2-2965 2-3738
WindowButtonDownFcn, Figure property 2-1171
WindowButtonMotionFcn, Figure

property 2-1172
WindowButtonUpFcn, Figure property 2-1173
Windows Paintbrush files

writing 2-1677
WindowScrollWheelFcn, Figure property 2-1173
WindowStyle, Figure property 2-1176
winopen 2-3739
winqueryreg 2-3740
WK1 files

loading 2-3743
writing from matrix 2-3745

wk1finfo 2-3742
wk1read 2-3743
wk1write 2-3745
workspace 2-3747

changing context while debugging 2-782
2-805

clearing items from 2-556
consolidating memory 2-2374
predefining variables 2-3042
saving 2-2827
variables in 2-3731
viewing contents of 2-3747

workspace variables
reading from disk 2-2010

writing
binary data to file 2-1342
formatted data to file 2-1278

WVisual, Figure property 2-1178
WVisualMode, Figure property 2-1180

X
X

annotation arrow property 2-157 2-161
annotation line property 2-168
textarrow property 2-182

X Windows Dump files
writing 2-1678

x-axis limits, setting and querying 2-3751
XAxisLocation, Axes property 2-304
XColor, Axes property 2-305
XData

areaseries property 2-216
barseries property 2-346
contour property 2-666
errorbar property 2-1019
Image property 2-1647
Line property 2-1969

Index-60

Index

lineseries property 2-1983
Patch property 2-2428
quivergroup property 2-2660
scatter property 2-2865
stairseries property 2-3036
stem property 2-3071
Surface property 2-3222
surfaceplot property 2-3247

XDataMode
areaseries property 2-216
barseries property 2-346
contour property 2-667
errorbar property 2-1019
lineseries property 2-1983
quivergroup property 2-2661
stairseries property 2-3037
stem property 2-3071
surfaceplot property 2-3247

XDataSource
areaseries property 2-217
barseries property 2-347
contour property 2-667
errorbar property 2-1020
lineseries property 2-1984
quivergroup property 2-2661
scatter property 2-2866
stairseries property 2-3037
stem property 2-3071
surfaceplot property 2-3247

XDir, Axes property 2-305
XDisplay, Figure property 2-1180
XGrid, Axes property 2-306
xlabel 1-88 2-3749
XLabel, Axes property 2-306
xlim 2-3751
XLim, Axes property 2-307
XLimMode, Axes property 2-307
XLS files

loading 2-3756
xlsfinfo 2-3754

xlsread 2-3756
xlswrite 2-3766
XMinorGrid, Axes property 2-308
xmlread 2-3770
xmlwrite 2-3775
xor 2-3776
XOR, printing 2-209 2-339 2-656 2-1010 2-1575

2-1643 2-1963 2-1976 2-2415 2-2650 2-2711
2-2858 2-3029 2-3063 2-3213 2-3236 2-3318

XScale, Axes property 2-308
xslt 2-3777
XTick, Axes property 2-308
XTickLabel, Axes property 2-309
XTickLabelMode, Axes property 2-310
XTickMode, Axes property 2-310
XVisual, Figure property 2-1181
XVisualMode, Figure property 2-1183
XWD files

writing 2-1678
xyz coordinates . See Cartesian coordinates

Y
Y

annotation arrow property 2-157 2-162 2-168
textarrow property 2-182

y-axis limits, setting and querying 2-3751
YAxisLocation, Axes property 2-305
YColor, Axes property 2-305
YData

areaseries property 2-217
barseries property 2-347
contour property 2-668
errorbar property 2-1020
Image property 2-1648
Line property 2-1969
lineseries property 2-1984
Patch property 2-2428
quivergroup property 2-2662
scatter property 2-2866

Index-61

Index

stairseries property 2-3038
stem property 2-3072
Surface property 2-3222
surfaceplot property 2-3248

YDataMode
contour property 2-668
quivergroup property 2-2662
surfaceplot property 2-3248

YDataSource
areaseries property 2-218
barseries property 2-348
contour property 2-668
errorbar property 2-1021
lineseries property 2-1985
quivergroup property 2-2662
scatter property 2-2867
stairseries property 2-3038
stem property 2-3072
surfaceplot property 2-3248

YDir, Axes property 2-305
YGrid, Axes property 2-306
ylabel 1-88 2-3749
YLabel, Axes property 2-306
ylim 2-3751
YLim, Axes property 2-307
YLimMode, Axes property 2-307
YMinorGrid, Axes property 2-308
YScale, Axes property 2-308
YTick, Axes property 2-308
YTickLabel, Axes property 2-309
YTickLabelMode, Axes property 2-310
YTickMode, Axes property 2-310

Z
z-axis limits, setting and querying 2-3751

ZColor, Axes property 2-305
ZData

contour property 2-669
Line property 2-1969
lineseries property 2-1985
Patch property 2-2428
quivergroup property 2-2663
scatter property 2-2867
stemseries property 2-3073
Surface property 2-3223
surfaceplot property 2-3249

ZDataSource
contour property 2-669
lineseries property 2-1985 2-3073
scatter property 2-2867
surfaceplot property 2-3249

ZDir, Axes property 2-305
zero of a function, finding 2-1348
zeros 2-3779
ZGrid, Axes property 2-306
zip 2-3781
zlabel 1-88 2-3749
zlim 2-3751
ZLim, Axes property 2-307
ZLimMode, Axes property 2-307
ZMinorGrid, Axes property 2-308
zoom 2-3783
zoom mode objects 2-3784
ZScale, Axes property 2-308
ZTick, Axes property 2-308
ZTickLabel, Axes property 2-309
ZTickLabelMode, Axes property 2-310
ZTickMode, Axes property 2-310

Index-62

MATLAB® 7
Function Reference: Volume 2 (F-O)

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Function Reference

© COPYRIGHT 1984–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology,
SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The
MathWorks, the L-shaped membrane logo, Embedded MATLAB, and PolySpace are
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
December 1996 First printing For MATLAB 5.0 (Release 8)
June 1997 Online only Revised for MATLAB 5.1 (Release 9)
October 1997 Online only Revised for MATLAB 5.2 (Release 10)
January 1999 Online only Revised for MATLAB 5.3 (Release 11)
June 1999 Second printing For MATLAB 5.3 (Release 11)
June 2001 Online only Revised for MATLAB 6.1 (Release 12.1)
July 2002 Online only Revised for 6.5 (Release 13)
June 2004 Online only Revised for 7.0 (Release 14)
September 2006 Online only Revised for 7.3 (Release 2006b)
September 2007 Online only Revised for 7.5 (Release 2007b)

Contents

Functions — By Category

1
Desktop Tools and Development Environment 1-3

Startup and Shutdown . 1-3
Command Window and History . 1-4
Help for Using MATLAB . 1-5
Workspace, Search Path, and File Operations 1-6
Programming Tools . 1-8
System . 1-11

Mathematics . 1-13
Arrays and Matrices . 1-14
Linear Algebra . 1-19
Elementary Math . 1-23
Polynomials . 1-28
Interpolation and Computational Geometry 1-28
Cartesian Coordinate System Conversion 1-31
Nonlinear Numerical Methods . 1-31
Specialized Math . 1-35
Sparse Matrices . 1-36
Math Constants . 1-39

Data Analysis . 1-41
Basic Operations . 1-41
Descriptive Statistics . 1-41
Filtering and Convolution . 1-42
Interpolation and Regression . 1-42
Fourier Transforms . 1-43
Derivatives and Integrals . 1-43
Time Series Objects . 1-44
Time Series Collections . 1-47

Programming and Data Types . 1-49
Data Types . 1-49
Data Type Conversion . 1-58
Operators and Special Characters . 1-60

v

String Functions . 1-63
Bit-wise Functions . 1-66
Logical Functions . 1-66
Relational Functions . 1-67
Set Functions . 1-67
Date and Time Functions . 1-68
Programming in MATLAB . 1-68

File I/O . 1-76
File Name Construction . 1-76
Opening, Loading, Saving Files . 1-77
Memory Mapping . 1-77
Low-Level File I/O . 1-77
Text Files . 1-78
XML Documents . 1-79
Spreadsheets . 1-79
Scientific Data . 1-80
Audio and Audio/Video . 1-81
Images . 1-83
Internet Exchange . 1-84

Graphics . 1-86
Basic Plots and Graphs . 1-86
Plotting Tools . 1-87
Annotating Plots . 1-87
Specialized Plotting . 1-88
Bit-Mapped Images . 1-92
Printing . 1-92
Handle Graphics . 1-93

3-D Visualization . 1-97
Surface and Mesh Plots . 1-97
View Control . 1-99
Lighting . 1-101
Transparency . 1-101
Volume Visualization . 1-102

Creating Graphical User Interfaces 1-104
Predefined Dialog Boxes . 1-104
Deploying User Interfaces . 1-105
Developing User Interfaces . 1-105
User Interface Objects . 1-106

vi Contents

Finding Objects from Callbacks . 1-107
GUI Utility Functions . 1-107
Controlling Program Execution . 1-108

External Interfaces . 1-109
Dynamic Link Libraries . 1-109
Java . 1-110
Component Object Model and ActiveX 1-111
Web Services . 1-113
Serial Port Devices . 1-113

Functions — Alphabetical List

2

Index

vii

viii Contents

1

Functions — By Category

Desktop Tools and Development
Environment (p. 1-3)

Startup, Command Window, help,
editing and debugging, tuning, other
general functions

Mathematics (p. 1-13) Arrays and matrices, linear algebra,
other areas of mathematics

Data Analysis (p. 1-41) Basic data operations, descriptive
statistics, covariance and correlation,
filtering and convolution, numerical
derivatives and integrals, Fourier
transforms, time series analysis

Programming and Data Types
(p. 1-49)

Function/expression evaluation,
program control, function handles,
object oriented programming, error
handling, operators, data types,
dates and times, timers

File I/O (p. 1-76) General and low-level file I/O, plus
specific file formats, like audio,
spreadsheet, HDF, images

Graphics (p. 1-86) Line plots, annotating graphs,
specialized plots, images, printing,
Handle Graphics

3-D Visualization (p. 1-97) Surface and mesh plots, view control,
lighting and transparency, volume
visualization

1 Functions — By Category

Creating Graphical User Interfaces
(p. 1-104)

GUIDE, programming graphical
user interfaces

External Interfaces (p. 1-109) Interfaces to DLLs, Java, COM and
ActiveX, Web services, and serial
port devices, and C and Fortran
routines

1-2

Desktop Tools and Development Environment

Desktop Tools and Development Environment

Startup and Shutdown (p. 1-3) Startup and shutdown options,
preferences

Command Window and History
(p. 1-4)

Control Command Window and
History, enter statements and run
functions

Help for Using MATLAB (p. 1-5) Command line help, online
documentation in the Help browser,
demos

Workspace, Search Path, and File
Operations (p. 1-6)

Work with files, MATLAB search
path, manage variables

Programming Tools (p. 1-8) Edit and debug M-files, improve
performance, source control, publish
results

System (p. 1-11) Identify current computer, license,
product version, and more

Startup and Shutdown

exit Terminate MATLAB (same as quit)

finish MATLAB termination M-file

matlab (UNIX) Start MATLAB (UNIX systems)

matlab (Windows) Start MATLAB (Windows systems)

matlabrc MATLAB startup M-file for
single-user systems or system
administrators

prefdir Directory containing preferences,
history, and layout files

preferences Open Preferences dialog box for
MATLAB and related products

1-3

1 Functions — By Category

quit Terminate MATLAB

startup MATLAB startup M-file for
user-defined options

Command Window and History

clc Clear Command Window

commandhistory Open Command History window, or
select it if already open

commandwindow Open Command Window, or select it
if already open

diary Save session to file

dos Execute DOS command and return
result

format Set display format for output

home Move cursor to upper-left corner of
Command Window

matlabcolon (matlab:) Run specified function via hyperlink

more Control paged output for Command
Window

perl Call Perl script using appropriate
operating system executable

system Execute operating system command
and return result

unix Execute UNIX command and return
result

1-4

Desktop Tools and Development Environment

Help for Using MATLAB

builddocsearchdb Build searchable documentation
database

demo Access product demos via Help
browser

doc Reference page in Help browser

docopt Web browser for UNIX platforms

docsearch Open Help browser Search pane
and search for specified term

echodemo Run M-file demo step-by-step in
Command Window

help Help for MATLAB functions in
Command Window

helpbrowser Open Help browser to access all
online documentation and demos

helpwin Provide access to M-file help for all
functions

info Information about contacting The
MathWorks

lookfor Search for keyword in all help
entries

playshow Run M-file demo (deprecated; use
echodemo instead)

support Open MathWorks Technical Support
Web page

web Open Web site or file in Web browser
or Help browser

whatsnew Release Notes for MathWorks
products

1-5

1 Functions — By Category

Workspace, Search Path, and File Operations

Workspace (p. 1-6) Manage variables

Search Path (p. 1-6) View and change MATLAB search
path

File Operations (p. 1-7) View and change files and directories

Workspace

assignin Assign value to variable in specified
workspace

clear Remove items from workspace,
freeing up system memory

evalin Execute MATLAB expression in
specified workspace

exist Check existence of variable, function,
directory, or Java class

openvar Open workspace variable in Array
Editor or other tool for graphical
editing

pack Consolidate workspace memory

uiimport Open Import Wizard to import data

which Locate functions and files

workspace Open Workspace browser to manage
workspace

Search Path

addpath Add directories to MATLAB search
path

genpath Generate path string

partialpath Partial pathname description

1-6

Desktop Tools and Development Environment

path View or change MATLAB directory
search path

path2rc Save current MATLAB search path
to pathdef.m file

pathdef Directories in MATLAB search path

pathsep Path separator for current platform

pathtool Open Set Path dialog box to view
and change MATLAB path

restoredefaultpath Restore default MATLAB search
path

rmpath Remove directories from MATLAB
search path

savepath Save current MATLAB search path
to pathdef.m file

File Operations
See also “File I/O” on page 1-76 functions.

cd Change working directory

copyfile Copy file or directory

delete Remove files or graphics objects

dir Directory listing

exist Check existence of variable, function,
directory, or Java class

fileattrib Set or get attributes of file or
directory

filebrowser Current Directory browser

isdir Determine whether input is a
directory

lookfor Search for keyword in all help
entries

1-7

1 Functions — By Category

ls Directory contents on UNIX system

matlabroot Root directory of MATLAB
installation

mkdir Make new directory

movefile Move file or directory

pwd Identify current directory

recycle Set option to move deleted files to
recycle folder

rehash Refresh function and file system
path caches

rmdir Remove directory

toolboxdir Root directory for specified toolbox

type Display contents of file

web Open Web site or file in Web browser
or Help browser

what List MATLAB files in current
directory

which Locate functions and files

Programming Tools

Edit and Debug M-Files (p. 1-9) Edit and debug M-files

Improve Performance and Tune
M-Files (p. 1-9)

Improve performance and find
potential problems in M-files

Source Control (p. 1-10) Interface MATLAB with source
control system

Publishing (p. 1-10) Publish M-file code and results

1-8

Desktop Tools and Development Environment

Edit and Debug M-Files

clipboard Copy and paste strings to and from
system clipboard

datatipinfo Produce short description of input
variable

dbclear Clear breakpoints

dbcont Resume execution

dbdown Change local workspace context
when in debug mode

dbquit Quit debug mode

dbstack Function call stack

dbstatus List all breakpoints

dbstep Execute one or more lines from
current breakpoint

dbstop Set breakpoints

dbtype List M-file with line numbers

dbup Change local workspace context

debug List M-file debugging functions

edit Edit or create M-file

keyboard Input from keyboard

Improve Performance and Tune M-Files

memory Help for memory limitations

mlint Check M-files for possible problems

mlintrpt Run mlint for file or directory,
reporting results in browser

pack Consolidate workspace memory

profile Profile execution time for function

1-9

1 Functions — By Category

profsave Save profile report in HTML format

rehash Refresh function and file system
path caches

sparse Create sparse matrix

zeros Create array of all zeros

Source Control

checkin Check files into source control
system (UNIX)

checkout Check files out of source control
system (UNIX)

cmopts Name of source control system

customverctrl Allow custom source control system
(UNIX)

undocheckout Undo previous checkout from source
control system (UNIX)

verctrl Source control actions (Windows)

Publishing

grabcode MATLAB code from M-files
published to HTML

notebook Open M-book in Microsoft Word
(Windows)

publish Publish M-file containing cells,
saving output to file of specified type

1-10

Desktop Tools and Development Environment

System

Operating System Interface (p. 1-11) Exchange operating system
information and commands with
MATLAB

MATLAB Version and License
(p. 1-12)

Information about MATLAB version
and license

Operating System Interface

clipboard Copy and paste strings to and from
system clipboard

computer Information about computer on
which MATLAB is running

dos Execute DOS command and return
result

getenv Environment variable

hostid MATLAB server host identification
number

maxNumCompThreads Controls maximum number of
computational threads

perl Call Perl script using appropriate
operating system executable

setenv Set environment variable

system Execute operating system command
and return result

unix Execute UNIX command and return
result

winqueryreg Item from Microsoft Windows
registry

1-11

1 Functions — By Category

MATLAB Version and License

ismac Determine whether running
Macintosh OS X versions of
MATLAB

ispc Determine whether PC (Windows)
version of MATLAB

isstudent Determine whether Student Version
of MATLAB

isunix Determine whether UNIX version of
MATLAB

javachk Generate error message based on
Java feature support

license Return license number or perform
licensing task

prefdir Directory containing preferences,
history, and layout files

usejava Determine whether Java feature is
supported in MATLAB

ver Version information for MathWorks
products

verLessThan Compare toolbox version to specified
version string

version Version number for MATLAB

1-12

Mathematics

Mathematics

Arrays and Matrices (p. 1-14) Basic array operators and operations,
creation of elementary and
specialized arrays and matrices

Linear Algebra (p. 1-19) Matrix analysis, linear equations,
eigenvalues, singular values,
logarithms, exponentials,
factorization

Elementary Math (p. 1-23) Trigonometry, exponentials and
logarithms, complex values,
rounding, remainders, discrete math

Polynomials (p. 1-28) Multiplication, division, evaluation,
roots, derivatives, integration,
eigenvalue problem, curve fitting,
partial fraction expansion

Interpolation and Computational
Geometry (p. 1-28)

Interpolation, Delaunay
triangulation and tessellation,
convex hulls, Voronoi diagrams,
domain generation

Cartesian Coordinate System
Conversion (p. 1-31)

Conversions between Cartesian and
polar or spherical coordinates

Nonlinear Numerical Methods
(p. 1-31)

Differential equations, optimization,
integration

Specialized Math (p. 1-35) Airy, Bessel, Jacobi, Legendre, beta,
elliptic, error, exponential integral,
gamma functions

Sparse Matrices (p. 1-36) Elementary sparse matrices,
operations, reordering algorithms,
linear algebra, iterative methods,
tree operations

Math Constants (p. 1-39) Pi, imaginary unit, infinity,
Not-a-Number, largest and smallest
positive floating point numbers,
floating point relative accuracy

1-13

1 Functions — By Category

Arrays and Matrices

Basic Information (p. 1-14) Display array contents, get array
information, determine array type

Operators (p. 1-15) Arithmetic operators

Elementary Matrices and Arrays
(p. 1-16)

Create elementary arrays of different
types, generate arrays for plotting,
array indexing, etc.

Array Operations (p. 1-17) Operate on array content, apply
function to each array element, find
cumulative product or sum, etc.

Array Manipulation (p. 1-17) Create, sort, rotate, permute,
reshape, and shift array contents

Specialized Matrices (p. 1-18) Create Hadamard, Companion,
Hankel, Vandermonde, Pascal
matrices, etc.

Basic Information

disp Display text or array

display Display text or array (overloaded
method)

isempty Determine whether array is empty

isequal Test arrays for equality

isequalwithequalnans Test arrays for equality, treating
NaNs as equal

isfinite Array elements that are finite

isfloat Determine whether input is
floating-point array

isinf Array elements that are infinite

isinteger Determine whether input is integer
array

1-14

Mathematics

islogical Determine whether input is logical
array

isnan Array elements that are NaN

isnumeric Determine whether input is numeric
array

isscalar Determine whether input is scalar

issparse Determine whether input is sparse

isvector Determine whether input is vector

length Length of vector

max Largest elements in array

min Smallest elements in array

ndims Number of array dimensions

numel Number of elements in array or
subscripted array expression

size Array dimensions

Operators

+ Addition

+ Unary plus

- Subtraction

- Unary minus

* Matrix multiplication

^ Matrix power

\ Backslash or left matrix divide

/ Slash or right matrix divide

’ Transpose

.’ Nonconjugated transpose

.* Array multiplication (element-wise)

1-15

1 Functions — By Category

.^ Array power (element-wise)

.\ Left array divide (element-wise)

./ Right array divide (element-wise)

Elementary Matrices and Arrays

blkdiag Construct block diagonal matrix
from input arguments

diag Diagonal matrices and diagonals of
matrix

eye Identity matrix

freqspace Frequency spacing for frequency
response

ind2sub Subscripts from linear index

linspace Generate linearly spaced vectors

logspace Generate logarithmically spaced
vectors

meshgrid Generate X and Y arrays for 3-D plots

ndgrid Generate arrays for N-D functions
and interpolation

ones Create array of all ones

rand Uniformly distributed
pseudorandom numbers

randn Normally distributed random
numbers

sub2ind Single index from subscripts

zeros Create array of all zeros

1-16

Mathematics

Array Operations

See “Linear Algebra” on page 1-19 and “Elementary Math” on page 1-23 for
other array operations.

accumarray Construct array with accumulation

arrayfun Apply function to each element of
array

bsxfun Apply element-by-element binary
operation to two arrays with
singleton expansion enabled

cast Cast variable to different data type

cross Vector cross product

cumprod Cumulative product

cumsum Cumulative sum

dot Vector dot product

idivide Integer division with rounding
option

kron Kronecker tensor product

prod Product of array elements

sum Sum of array elements

tril Lower triangular part of matrix

triu Upper triangular part of matrix

Array Manipulation

blkdiag Construct block diagonal matrix
from input arguments

cat Concatenate arrays along specified
dimension

circshift Shift array circularly

1-17

1 Functions — By Category

diag Diagonal matrices and diagonals of
matrix

end Terminate block of code, or indicate
last array index

flipdim Flip array along specified dimension

fliplr Flip matrix left to right

flipud Flip matrix up to down

horzcat Concatenate arrays horizontally

inline Construct inline object

ipermute Inverse permute dimensions of N-D
array

permute Rearrange dimensions of N-D array

repmat Replicate and tile array

reshape Reshape array

rot90 Rotate matrix 90 degrees

shiftdim Shift dimensions

sort Sort array elements in ascending or
descending order

sortrows Sort rows in ascending order

squeeze Remove singleton dimensions

vectorize Vectorize expression

vertcat Concatenate arrays vertically

Specialized Matrices

compan Companion matrix

gallery Test matrices

hadamard Hadamard matrix

hankel Hankel matrix

1-18

Mathematics

hilb Hilbert matrix

invhilb Inverse of Hilbert matrix

magic Magic square

pascal Pascal matrix

rosser Classic symmetric eigenvalue test
problem

toeplitz Toeplitz matrix

vander Vandermonde matrix

wilkinson Wilkinson’s eigenvalue test matrix

Linear Algebra

Matrix Analysis (p. 1-19) Compute norm, rank, determinant,
condition number, etc.

Linear Equations (p. 1-20) Solve linear systems, least
squares, LU factorization, Cholesky
factorization, etc.

Eigenvalues and Singular Values
(p. 1-21)

Eigenvalues, eigenvectors, Schur
decomposition, Hessenburg
matrices, etc.

Matrix Logarithms and Exponentials
(p. 1-22)

Matrix logarithms, exponentials,
square root

Factorization (p. 1-22) Cholesky, LU, and QR factorizations,
diagonal forms, singular value
decomposition

Matrix Analysis

cond Condition number with respect to
inversion

condeig Condition number with respect to
eigenvalues

1-19

1 Functions — By Category

det Matrix determinant

norm Vector and matrix norms

normest 2-norm estimate

null Null space

orth Range space of matrix

rank Rank of matrix

rcond Matrix reciprocal condition number
estimate

rref Reduced row echelon form

subspace Angle between two subspaces

trace Sum of diagonal elements

Linear Equations

chol Cholesky factorization

cholinc Sparse incomplete Cholesky and
Cholesky-Infinity factorizations

cond Condition number with respect to
inversion

condest 1-norm condition number estimate

funm Evaluate general matrix function

ilu Sparse incomplete LU factorization

inv Matrix inverse

linsolve Solve linear system of equations

lscov Least-squares solution in presence
of known covariance

lsqnonneg Solve nonnegative least-squares
constraints problem

lu LU matrix factorization

1-20

Mathematics

luinc Sparse incomplete LU factorization

pinv Moore-Penrose pseudoinverse of
matrix

qr Orthogonal-triangular
decomposition

rcond Matrix reciprocal condition number
estimate

Eigenvalues and Singular Values

balance Diagonal scaling to improve
eigenvalue accuracy

cdf2rdf Convert complex diagonal form to
real block diagonal form

condeig Condition number with respect to
eigenvalues

eig Find eigenvalues and eigenvectors

eigs Find largest eigenvalues and
eigenvectors of sparse matrix

gsvd Generalized singular value
decomposition

hess Hessenberg form of matrix

ordeig Eigenvalues of quasitriangular
matrices

ordqz Reorder eigenvalues in QZ
factorization

ordschur Reorder eigenvalues in Schur
factorization

poly Polynomial with specified roots

polyeig Polynomial eigenvalue problem

1-21

1 Functions — By Category

rsf2csf Convert real Schur form to complex
Schur form

schur Schur decomposition

sqrtm Matrix square root

ss2tf Convert state-space filter
parameters to transfer function
form

svd Singular value decomposition

svds Find singular values and vectors

Matrix Logarithms and Exponentials

expm Matrix exponential

logm Matrix logarithm

sqrtm Matrix square root

Factorization

balance Diagonal scaling to improve
eigenvalue accuracy

cdf2rdf Convert complex diagonal form to
real block diagonal form

chol Cholesky factorization

cholinc Sparse incomplete Cholesky and
Cholesky-Infinity factorizations

cholupdate Rank 1 update to Cholesky
factorization

gsvd Generalized singular value
decomposition

ilu Sparse incomplete LU factorization

lu LU matrix factorization

1-22

Mathematics

luinc Sparse incomplete LU factorization

planerot Givens plane rotation

qr Orthogonal-triangular
decomposition

qrdelete Remove column or row from QR
factorization

qrinsert Insert column or row into QR
factorization

qrupdate

qz QZ factorization for generalized
eigenvalues

rsf2csf Convert real Schur form to complex
Schur form

svd Singular value decomposition

Elementary Math

Trigonometric (p. 1-24) Trigonometric functions with results
in radians or degrees

Exponential (p. 1-25) Exponential, logarithm, power, and
root functions

Complex (p. 1-26) Numbers with real and imaginary
components, phase angles

Rounding and Remainder (p. 1-27) Rounding, modulus, and remainder

Discrete Math (e.g., Prime Factors)
(p. 1-27)

Prime factors, factorials,
permutations, rational fractions,
least common multiple, greatest
common divisor

1-23

1 Functions — By Category

Trigonometric

acos Inverse cosine; result in radians

acosd Inverse cosine; result in degrees

acosh Inverse hyperbolic cosine

acot Inverse cotangent; result in radians

acotd Inverse cotangent; result in degrees

acoth Inverse hyperbolic cotangent

acsc Inverse cosecant; result in radians

acscd Inverse cosecant; result in degrees

acsch Inverse hyperbolic cosecant

asec Inverse secant; result in radians

asecd Inverse secant; result in degrees

asech Inverse hyperbolic secant

asin Inverse sine; result in radians

asind Inverse sine; result in degrees

asinh Inverse hyperbolic sine

atan Inverse tangent; result in radians

atan2 Four-quadrant inverse tangent

atand Inverse tangent; result in degrees

atanh Inverse hyperbolic tangent

cos Cosine of argument in radians

cosd Cosine ofo argument in degrees

cosh Hyperbolic cosine

cot Cotangent of argument in radians

cotd Cotangent of argument in degrees

coth Hyperbolic cotangent

csc Cosecant of argument in radians

1-24

Mathematics

cscd Cosecant of argument in degrees

csch Hyperbolic cosecant

hypot Square root of sum of squares

sec Secant of argument in radians

secd Secant of argument in degrees

sech Hyperbolic secant

sin Sine of argument in radians

sind Sine of argument in degrees

sinh Hyperbolic sine of argument in
radians

tan Tangent of argument in radians

tand Tangent of argument in degrees

tanh Hyperbolic tangent

Exponential

exp Exponential

expm1 Compute exp(x)-1 accurately for
small values of x

log Natural logarithm

log10 Common (base 10) logarithm

log1p Compute log(1+x) accurately for
small values of x

log2 Base 2 logarithm and dissect
floating-point numbers into
exponent and mantissa

nextpow2 Next higher power of 2

nthroot Real nth root of real numbers

pow2 Base 2 power and scale floating-point
numbers

1-25

1 Functions — By Category

reallog Natural logarithm for nonnegative
real arrays

realpow Array power for real-only output

realsqrt Square root for nonnegative real
arrays

sqrt Square root

Complex

abs Absolute value and complex
magnitude

angle Phase angle

complex Construct complex data from real
and imaginary components

conj Complex conjugate

cplxpair Sort complex numbers into complex
conjugate pairs

i Imaginary unit

imag Imaginary part of complex number

isreal Determine whether input is real
array

j Imaginary unit

real Real part of complex number

sign Signum function

unwrap Correct phase angles to produce
smoother phase plots

1-26

Mathematics

Rounding and Remainder

ceil Round toward infinity

fix Round toward zero

floor Round toward minus infinity

idivide Integer division with rounding
option

mod Modulus after division

rem Remainder after division

round Round to nearest integer

Discrete Math (e.g., Prime Factors)

factor Prime factors

factorial Factorial function

gcd Greatest common divisor

isprime Array elements that are prime
numbers

lcm Least common multiple

nchoosek Binomial coefficient or all
combinations

perms All possible permutations

primes Generate list of prime numbers

rat, rats Rational fraction approximation

1-27

1 Functions — By Category

Polynomials

conv Convolution and polynomial
multiplication

deconv Deconvolution and polynomial
division

poly Polynomial with specified roots

polyder Polynomial derivative

polyeig Polynomial eigenvalue problem

polyfit Polynomial curve fitting

polyint Integrate polynomial analytically

polyval Polynomial evaluation

polyvalm Matrix polynomial evaluation

residue Convert between partial fraction
expansion and polynomial
coefficients

roots Polynomial roots

Interpolation and Computational Geometry

Interpolation (p. 1-29) Data interpolation, data gridding,
polynomial evaluation, nearest point
search

Delaunay Triangulation and
Tessellation (p. 1-30)

Delaunay triangulation and
tessellation, triangular surface and
mesh plots

Convex Hull (p. 1-30) Plot convex hull, plotting functions

Voronoi Diagrams (p. 1-30) Plot Voronoi diagram, patch graphics
object, plotting functions

Domain Generation (p. 1-31) Generate arrays for 3-D plots, or for
N-D functions and interpolation

1-28

Mathematics

Interpolation

dsearch Search Delaunay triangulation for
nearest point

dsearchn N-D nearest point search

griddata Data gridding

griddata3 Data gridding and hypersurface
fitting for 3-D data

griddatan Data gridding and hypersurface
fitting (dimension >= 2)

interp1 1-D data interpolation (table lookup)

interp1q Quick 1-D linear interpolation

interp2 2-D data interpolation (table lookup)

interp3 3-D data interpolation (table lookup)

interpft 1-D interpolation using FFT method

interpn N-D data interpolation (table lookup)

meshgrid Generate X and Y arrays for 3-D plots

mkpp Make piecewise polynomial

ndgrid Generate arrays for N-D functions
and interpolation

padecoef Padé approximation of time delays

pchip Piecewise Cubic Hermite
Interpolating Polynomial (PCHIP)

ppval Evaluate piecewise polynomial

spline Cubic spline data interpolation

tsearchn N-D closest simplex search

unmkpp Piecewise polynomial details

1-29

1 Functions — By Category

Delaunay Triangulation and Tessellation

delaunay Delaunay triangulation

delaunay3 3-D Delaunay tessellation

delaunayn N-D Delaunay tessellation

dsearch Search Delaunay triangulation for
nearest point

dsearchn N-D nearest point search

tetramesh Tetrahedron mesh plot

trimesh Triangular mesh plot

triplot 2-D triangular plot

trisurf Triangular surface plot

tsearch Search for enclosing Delaunay
triangle

tsearchn N-D closest simplex search

Convex Hull

convhull Convex hull

convhulln N-D convex hull

patch Create patch graphics object

plot 2-D line plot

trisurf Triangular surface plot

Voronoi Diagrams

dsearch Search Delaunay triangulation for
nearest point

patch Create patch graphics object

plot 2-D line plot

1-30

Mathematics

voronoi Voronoi diagram

voronoin N-D Voronoi diagram

Domain Generation

meshgrid Generate X and Y arrays for 3-D plots

ndgrid Generate arrays for N-D functions
and interpolation

Cartesian Coordinate System Conversion

cart2pol Transform Cartesian coordinates to
polar or cylindrical

cart2sph Transform Cartesian coordinates to
spherical

pol2cart Transform polar or cylindrical
coordinates to Cartesian

sph2cart Transform spherical coordinates to
Cartesian

Nonlinear Numerical Methods

Ordinary Differential Equations
(IVP) (p. 1-32)

Solve stiff and nonstiff differential
equations, define the problem, set
solver options, evaluate solution

Delay Differential Equations
(p. 1-33)

Solve delay differential equations
with constant and general delays,
set solver options, evaluate solution

Boundary Value Problems (p. 1-33) Solve boundary value problems for
ordinary differential equations, set
solver options, evaluate solution

1-31

1 Functions — By Category

Partial Differential Equations
(p. 1-34)

Solve initial-boundary value
problems for parabolic-elliptic PDEs,
evaluate solution

Optimization (p. 1-34) Find minimum of single and
multivariable functions, solve
nonnegative least-squares constraint
problem

Numerical Integration (Quadrature)
(p. 1-34)

Evaluate Simpson, Lobatto, and
vectorized quadratures, evaluate
double and triple integrals

Ordinary Differential Equations (IVP)

decic Compute consistent initial conditions
for ode15i

deval Evaluate solution of differential
equation problem

ode15i Solve fully implicit differential
equations, variable order method

ode23, ode45, ode113, ode15s,
ode23s, ode23t, ode23tb

Solve initial value problems for
ordinary differential equations

odefile Define differential equation problem
for ordinary differential equation
solvers

odeget Ordinary differential equation
options parameters

odeset Create or alter options structure
for ordinary differential equation
solvers

odextend Extend solution of initial value
problem for ordinary differential
equation

1-32

Mathematics

Delay Differential Equations

dde23 Solve delay differential equations
(DDEs) with constant delays

ddeget Extract properties from delay
differential equations options
structure

ddesd Solve delay differential equations
(DDEs) with general delays

ddeset Create or alter delay differential
equations options structure

deval Evaluate solution of differential
equation problem

Boundary Value Problems

bvp4c Solve boundary value problems for
ordinary differential equations

bvp5c Solve boundary value problems for
ordinary differential equations

bvpget Extract properties from options
structure created with bvpset

bvpinit Form initial guess for bvp4c

bvpset Create or alter options structure of
boundary value problem

bvpxtend Form guess structure for extending
boundary value solutions

deval Evaluate solution of differential
equation problem

1-33

1 Functions — By Category

Partial Differential Equations

pdepe Solve initial-boundary value
problems for parabolic-elliptic PDEs
in 1-D

pdeval Evaluate numerical solution of PDE
using output of pdepe

Optimization

fminbnd Find minimum of single-variable
function on fixed interval

fminsearch Find minimum of unconstrained
multivariable function using
derivative-free method

fzero Find root of continuous function of
one variable

lsqnonneg Solve nonnegative least-squares
constraints problem

optimget Optimization options values

optimset Create or edit optimization options
structure

Numerical Integration (Quadrature)

dblquad Numerically evaluate double
integral

quad Numerically evaluate integral,
adaptive Simpson quadrature

quadgk Numerically evaluate integral,
adaptive Gauss-Kronrod quadrature

quadl Numerically evaluate integral,
adaptive Lobatto quadrature

1-34

Mathematics

quadv Vectorized quadrature

triplequad Numerically evaluate triple integral

Specialized Math

airy Airy functions

besselh Bessel function of third kind (Hankel
function)

besseli Modified Bessel function of first kind

besselj Bessel function of first kind

besselk Modified Bessel function of second
kind

bessely Bessel function of second kind

beta Beta function

betainc Incomplete beta function

betaln Logarithm of beta function

ellipj Jacobi elliptic functions

ellipke Complete elliptic integrals of first
and second kind

erf, erfc, erfcx, erfinv, erfcinv Error functions

expint Exponential integral

gamma, gammainc, gammaln Gamma functions

legendre Associated Legendre functions

psi Psi (polygamma) function

1-35

1 Functions — By Category

Sparse Matrices

Elementary Sparse Matrices (p. 1-36) Create random and nonrandom
sparse matrices

Full to Sparse Conversion (p. 1-37) Convert full matrix to sparse, sparse
matrix to full

Working with Sparse Matrices
(p. 1-37)

Test matrix for sparseness, get
information on sparse matrix,
allocate sparse matrix, apply
function to nonzero elements,
visualize sparsity pattern.

Reordering Algorithms (p. 1-37) Random, column, minimum degree,
Dulmage-Mendelsohn, and reverse
Cuthill-McKee permutations

Linear Algebra (p. 1-38) Compute norms, eigenvalues,
factorizations, least squares,
structural rank

Linear Equations (Iterative
Methods) (p. 1-38)

Methods for conjugate and
biconjugate gradients, residuals,
lower quartile

Tree Operations (p. 1-39) Elimination trees, tree plotting,
factorization analysis

Elementary Sparse Matrices

spdiags Extract and create sparse band and
diagonal matrices

speye Sparse identity matrix

sprand Sparse uniformly distributed
random matrix

sprandn Sparse normally distributed random
matrix

sprandsym Sparse symmetric random matrix

1-36

Mathematics

Full to Sparse Conversion

find Find indices and values of nonzero
elements

full Convert sparse matrix to full matrix

sparse Create sparse matrix

spconvert Import matrix from sparse matrix
external format

Working with Sparse Matrices

issparse Determine whether input is sparse

nnz Number of nonzero matrix elements

nonzeros Nonzero matrix elements

nzmax Amount of storage allocated for
nonzero matrix elements

spalloc Allocate space for sparse matrix

spfun Apply function to nonzero sparse
matrix elements

spones Replace nonzero sparse matrix
elements with ones

spparms Set parameters for sparse matrix
routines

spy Visualize sparsity pattern

Reordering Algorithms

amd Approximate minimum degree
permutation

colamd Column approximate minimum
degree permutation

1-37

1 Functions — By Category

colperm Sparse column permutation based
on nonzero count

dmperm Dulmage-Mendelsohn decomposition

ldl Block ldl’ factorization for Hermitian
indefinite matrices

randperm Random permutation

symamd Symmetric approximate minimum
degree permutation

symrcm Sparse reverse Cuthill-McKee
ordering

Linear Algebra

cholinc Sparse incomplete Cholesky and
Cholesky-Infinity factorizations

condest 1-norm condition number estimate

eigs Find largest eigenvalues and
eigenvectors of sparse matrix

ilu Sparse incomplete LU factorization

luinc Sparse incomplete LU factorization

normest 2-norm estimate

spaugment Form least squares augmented
system

sprank Structural rank

svds Find singular values and vectors

Linear Equations (Iterative Methods)

bicg Biconjugate gradients method

bicgstab Biconjugate gradients stabilized
method

1-38

Mathematics

cgs Conjugate gradients squared method

gmres Generalized minimum residual
method (with restarts)

lsqr LSQR method

minres Minimum residual method

pcg Preconditioned conjugate gradients
method

qmr Quasi-minimal residual method

symmlq Symmetric LQ method

Tree Operations

etree Elimination tree

etreeplot Plot elimination tree

gplot Plot nodes and links representing
adjacency matrix

symbfact Symbolic factorization analysis

treelayout Lay out tree or forest

treeplot Plot picture of tree

Math Constants

eps Floating-point relative accuracy

i Imaginary unit

Inf Infinity

intmax Largest value of specified integer
type

intmin Smallest value of specified integer
type

j Imaginary unit

1-39

1 Functions — By Category

NaN Not-a-Number

pi Ratio of circle’s circumference to its
diameter, π

realmax Largest positive floating-point
number

realmin Smallest positive normalized
floating-point number

1-40

Data Analysis

Data Analysis

Basic Operations (p. 1-41) Sums, products, sorting

Descriptive Statistics (p. 1-41) Statistical summaries of data

Filtering and Convolution (p. 1-42) Data preprocessing

Interpolation and Regression
(p. 1-42)

Data fitting

Fourier Transforms (p. 1-43) Frequency content of data

Derivatives and Integrals (p. 1-43) Data rates and accumulations

Time Series Objects (p. 1-44) Methods for timeseries objects

Time Series Collections (p. 1-47) Methods for tscollection objects

Basic Operations

cumprod Cumulative product

cumsum Cumulative sum

prod Product of array elements

sort Sort array elements in ascending or
descending order

sortrows Sort rows in ascending order

sum Sum of array elements

Descriptive Statistics

corrcoef Correlation coefficients

cov Covariance matrix

max Largest elements in array

mean Average or mean value of array

median Median value of array

1-41

1 Functions — By Category

min Smallest elements in array

mode Most frequent values in array

std Standard deviation

var Variance

Filtering and Convolution

conv Convolution and polynomial
multiplication

conv2 2-D convolution

convn N-D convolution

deconv Deconvolution and polynomial
division

detrend Remove linear trends

filter 1-D digital filter

filter2 2-D digital filter

Interpolation and Regression

interp1 1-D data interpolation (table lookup)

interp2 2-D data interpolation (table lookup)

interp3 3-D data interpolation (table lookup)

interpn N-D data interpolation (table lookup)

mldivide \, mrdivide / Left or right matrix division

polyfit Polynomial curve fitting

polyval Polynomial evaluation

1-42

Data Analysis

Fourier Transforms

abs Absolute value and complex
magnitude

angle Phase angle

cplxpair Sort complex numbers into complex
conjugate pairs

fft Discrete Fourier transform

fft2 2-D discrete Fourier transform

fftn N-D discrete Fourier transform

fftshift Shift zero-frequency component to
center of spectrum

fftw Interface to FFTW library run-time
algorithm tuning control

ifft Inverse discrete Fourier transform

ifft2 2-D inverse discrete Fourier
transform

ifftn N-D inverse discrete Fourier
transform

ifftshift Inverse FFT shift

nextpow2 Next higher power of 2

unwrap Correct phase angles to produce
smoother phase plots

Derivatives and Integrals

cumtrapz Cumulative trapezoidal numerical
integration

del2 Discrete Laplacian

diff Differences and approximate
derivatives

1-43

1 Functions — By Category

gradient Numerical gradient

polyder Polynomial derivative

polyint Integrate polynomial analytically

trapz Trapezoidal numerical integration

Time Series Objects

General Purpose (p. 1-44) Combine timeseries objects,
query and set timeseries object
properties, plot timeseries objects

Data Manipulation (p. 1-45) Add or delete data, manipulate
timeseries objects

Event Data (p. 1-46) Add or delete events, create new
timeseries objects based on event
data

Descriptive Statistics (p. 1-46) Descriptive statistics for timeseries
objects

General Purpose

get (timeseries) Query timeseries object property
values

getdatasamplesize Size of data sample in timeseries
object

getqualitydesc Data quality descriptions

isempty (timeseries) Determine whether timeseries
object is empty

length (timeseries) Length of time vector

plot (timeseries) Plot time series

set (timeseries) Set properties of timeseries object

size (timeseries) Size of timeseries object

1-44

Data Analysis

timeseries Create timeseries object

tsdata.event Construct event object for
timeseries object

tsprops Help on timeseries object
properties

tstool Open Time Series Tools GUI

Data Manipulation

addsample Add data sample to timeseries
object

ctranspose (timeseries) Transpose timeseries object

delsample Remove sample from timeseries
object

detrend (timeseries) Subtract mean or best-fit line and all
NaNs from time series

filter (timeseries) Shape frequency content of time
series

getabstime (timeseries) Extract date-string time vector into
cell array

getinterpmethod Interpolation method for timeseries
object

getsampleusingtime (timeseries) Extract data samples into new
timeseries object

idealfilter (timeseries) Apply ideal (noncausal) filter to
timeseries object

resample (timeseries) Select or interpolate timeseries
data using new time vector

setabstime (timeseries) Set times of timeseries object as
date strings

setinterpmethod Set default interpolation method for
timeseries object

1-45

1 Functions — By Category

synchronize Synchronize and resample two
timeseries objects using common
time vector

transpose (timeseries) Transpose timeseries object

vertcat (timeseries) Vertical concatenation of timeseries
objects

Event Data

addevent Add event to timeseries object

delevent Remove tsdata.event objects from
timeseries object

gettsafteratevent New timeseries object with samples
occurring at or after event

gettsafterevent New timeseries object with samples
occurring after event

gettsatevent New timeseries object with samples
occurring at event

gettsbeforeatevent New timeseries object with samples
occurring before or at event

gettsbeforeevent New timeseries object with samples
occurring before event

gettsbetweenevents New timeseries object with samples
occurring between events

Descriptive Statistics

iqr (timeseries) Interquartile range of timeseries
data

max (timeseries) Maximum value of timeseries data

mean (timeseries) Mean value of timeseries data

median (timeseries) Median value of timeseries data

1-46

Data Analysis

min (timeseries) Minimum value of timeseries data

std (timeseries) Standard deviation of timeseries
data

sum (timeseries) Sum of timeseries data

var (timeseries) Variance of timeseries data

Time Series Collections

General Purpose (p. 1-47) Query and set tscollection object
properties, plot tscollection
objects

Data Manipulation (p. 1-48) Add or delete data, manipulate
tscollection objects

General Purpose

get (tscollection) Query tscollection object property
values

isempty (tscollection) Determine whether tscollection
object is empty

length (tscollection) Length of time vector

plot (timeseries) Plot time series

set (tscollection) Set properties of tscollection
object

size (tscollection) Size of tscollection object

tscollection Create tscollection object

tstool Open Time Series Tools GUI

1-47

1 Functions — By Category

Data Manipulation

addsampletocollection Add sample to tscollection object

addts Add timeseries object to
tscollection object

delsamplefromcollection Remove sample from tscollection
object

getabstime (tscollection) Extract date-string time vector into
cell array

getsampleusingtime (tscollection) Extract data samples into new
tscollection object

gettimeseriesnames Cell array of names of timeseries
objects in tscollection object

horzcat (tscollection) Horizontal concatenation for
tscollection objects

removets Remove timeseries objects from
tscollection object

resample (tscollection) Select or interpolate data in
tscollection using new time vector

setabstime (tscollection) Set times of tscollection object as
date strings

settimeseriesnames Change name of timeseries object
in tscollection

vertcat (tscollection) Vertical concatenation for
tscollection objects

1-48

Programming and Data Types

Programming and Data Types

Data Types (p. 1-49) Numeric, character, structures, cell
arrays, and data type conversion

Data Type Conversion (p. 1-58) Convert one numeric type to another,
numeric to string, string to numeric,
structure to cell array, etc.

Operators and Special Characters
(p. 1-60)

Arithmetic, relational, and logical
operators, and special characters

String Functions (p. 1-63) Create, identify, manipulate, parse,
evaluate, and compare strings

Bit-wise Functions (p. 1-66) Perform set, shift, and, or, compare,
etc. on specific bit fields

Logical Functions (p. 1-66) Evaluate conditions, testing for true
or false

Relational Functions (p. 1-67) Compare values for equality, greater
than, less than, etc.

Set Functions (p. 1-67) Find set members, unions,
intersections, etc.

Date and Time Functions (p. 1-68) Obtain information about dates and
times

Programming in MATLAB (p. 1-68) M-files, function/expression
evaluation, program control,
function handles, object oriented
programming, error handling

Data Types

Numeric Types (p. 1-50) Integer and floating-point data

Characters and Strings (p. 1-51) Characters and arrays of characters

Structures (p. 1-52) Data of varying types and sizes
stored in fields of a structure

1-49

1 Functions — By Category

Cell Arrays (p. 1-53) Data of varying types and sizes
stored in cells of array

Function Handles (p. 1-54) Invoke a function indirectly via
handle

MATLAB Classes and Objects
(p. 1-55)

MATLAB object-oriented class
system

Java Classes and Objects (p. 1-55) Access Java classes through
MATLAB interface

Data Type Identification (p. 1-57) Determine data type of a variable

Numeric Types

arrayfun Apply function to each element of
array

cast Cast variable to different data type

cat Concatenate arrays along specified
dimension

class Create object or return class of object

find Find indices and values of nonzero
elements

intmax Largest value of specified integer
type

intmin Smallest value of specified integer
type

intwarning Control state of integer warnings

ipermute Inverse permute dimensions of N-D
array

isa Determine whether input is object
of given class

isequal Test arrays for equality

1-50

Programming and Data Types

isequalwithequalnans Test arrays for equality, treating
NaNs as equal

isfinite Array elements that are finite

isinf Array elements that are infinite

isnan Array elements that are NaN

isnumeric Determine whether input is numeric
array

isreal Determine whether input is real
array

isscalar Determine whether input is scalar

isvector Determine whether input is vector

permute Rearrange dimensions of N-D array

realmax Largest positive floating-point
number

realmin Smallest positive normalized
floating-point number

reshape Reshape array

squeeze Remove singleton dimensions

zeros Create array of all zeros

Characters and Strings

See “String Functions” on page 1-63 for all string-related functions.

cellstr Create cell array of strings from
character array

char Convert to character array (string)

eval Execute string containing MATLAB
expression

findstr Find string within another, longer
string

1-51

1 Functions — By Category

isstr Determine whether input is
character array

regexp, regexpi Match regular expression

sprintf Write formatted data to string

sscanf Read formatted data from string

strcat Concatenate strings horizontally

strcmp, strcmpi Compare strings

strings MATLAB string handling

strjust Justify character array

strmatch Find possible matches for string

strread Read formatted data from string

strrep Find and replace substring

strtrim Remove leading and trailing white
space from string

strvcat Concatenate strings vertically

Structures

arrayfun Apply function to each element of
array

cell2struct Convert cell array to structure array

class Create object or return class of object

deal Distribute inputs to outputs

fieldnames Field names of structure, or public
fields of object

getfield Field of structure array

isa Determine whether input is object
of given class

isequal Test arrays for equality

1-52

Programming and Data Types

isfield Determine whether input is
structure array field

isscalar Determine whether input is scalar

isstruct Determine whether input is
structure array

isvector Determine whether input is vector

orderfields Order fields of structure array

rmfield Remove fields from structure

setfield Set value of structure array field

struct Create structure array

struct2cell Convert structure to cell array

structfun Apply function to each field of scalar
structure

Cell Arrays

cell Construct cell array

cell2mat Convert cell array of matrices to
single matrix

cell2struct Convert cell array to structure array

celldisp Cell array contents

cellfun Apply function to each cell in cell
array

cellplot Graphically display structure of cell
array

cellstr Create cell array of strings from
character array

class Create object or return class of object

deal Distribute inputs to outputs

1-53

1 Functions — By Category

isa Determine whether input is object
of given class

iscell Determine whether input is cell
array

iscellstr Determine whether input is cell
array of strings

isequal Test arrays for equality

isscalar Determine whether input is scalar

isvector Determine whether input is vector

mat2cell Divide matrix into cell array of
matrices

num2cell Convert numeric array to cell array

struct2cell Convert structure to cell array

Function Handles

class Create object or return class of object

feval Evaluate function

func2str Construct function name string from
function handle

functions Information about function handle

function_handle (@) Handle used in calling functions
indirectly

isa Determine whether input is object
of given class

isequal Test arrays for equality

str2func Construct function handle from
function name string

1-54

Programming and Data Types

MATLAB Classes and Objects

class Create object or return class of object

fieldnames Field names of structure, or public
fields of object

inferiorto Establish inferior class relationship

isa Determine whether input is object
of given class

isobject Determine whether input is
MATLAB OOPs object

loadobj User-defined extension of load
function for user objects

methods Information on class methods

methodsview Information on class methods in
separate window

saveobj User-defined extension of save
function for user objects

subsasgn Subscripted assignment for objects

subsindex Subscripted indexing for objects

subsref Subscripted reference for objects

substruct Create structure argument for
subsasgn or subsref

superiorto Establish superior class relationship

Java Classes and Objects

cell Construct cell array

class Create object or return class of object

clear Remove items from workspace,
freeing up system memory

depfun List dependencies of M-file or P-file

1-55

1 Functions — By Category

exist Check existence of variable, function,
directory, or Java class

fieldnames Field names of structure, or public
fields of object

im2java Convert image to Java image

import Add package or class to current Java
import list

inmem Names of M-files, MEX-files, Java
classes in memory

isa Determine whether input is object
of given class

isjava Determine whether input is Java
object

javaaddpath Add entries to dynamic Java class
path

javaArray Construct Java array

javachk Generate error message based on
Java feature support

javaclasspath Set and get dynamic Java class path

javaMethod Invoke Java method

javaObject Construct Java object

javarmpath Remove entries from dynamic Java
class path

methods Information on class methods

methodsview Information on class methods in
separate window

usejava Determine whether Java feature is
supported in MATLAB

which Locate functions and files

1-56

Programming and Data Types

Data Type Identification

is* Detect state

isa Determine whether input is object
of given class

iscell Determine whether input is cell
array

iscellstr Determine whether input is cell
array of strings

ischar Determine whether item is character
array

isfield Determine whether input is
structure array field

isfloat Determine whether input is
floating-point array

isinteger Determine whether input is integer
array

isjava Determine whether input is Java
object

islogical Determine whether input is logical
array

isnumeric Determine whether input is numeric
array

isobject Determine whether input is
MATLAB OOPs object

isreal Determine whether input is real
array

isstr Determine whether input is
character array

isstruct Determine whether input is
structure array

1-57

1 Functions — By Category

validateattributes Check validity of array

who, whos List variables in workspace

Data Type Conversion

Numeric (p. 1-58) Convert data of one numeric type to
another numeric type

String to Numeric (p. 1-58) Convert characters to numeric
equivalent

Numeric to String (p. 1-59) Convert numeric to character
equivalent

Other Conversions (p. 1-59) Convert to structure, cell array,
function handle, etc.

Numeric

cast Cast variable to different data type

double Convert to double precision

int8, int16, int32, int64 Convert to signed integer

single Convert to single precision

typecast Convert data types without changing
underlying data

uint8, uint16, uint32, uint64 Convert to unsigned integer

String to Numeric

base2dec Convert base N number string to
decimal number

bin2dec Convert binary number string to
decimal number

cast Cast variable to different data type

1-58

Programming and Data Types

hex2dec Convert hexadecimal number string
to decimal number

hex2num Convert hexadecimal number string
to double-precision number

str2double Convert string to double-precision
value

str2num Convert string to number

unicode2native Convert Unicode characters to
numeric bytes

Numeric to String

cast Cast variable to different data type

char Convert to character array (string)

dec2base Convert decimal to base N number
in string

dec2bin Convert decimal to binary number
in string

dec2hex Convert decimal to hexadecimal
number in string

int2str Convert integer to string

mat2str Convert matrix to string

native2unicode Convert numeric bytes to Unicode
characters

num2str Convert number to string

Other Conversions

cell2mat Convert cell array of matrices to
single matrix

cell2struct Convert cell array to structure array

1-59

1 Functions — By Category

datestr Convert date and time to string
format

func2str Construct function name string from
function handle

logical Convert numeric values to logical

mat2cell Divide matrix into cell array of
matrices

num2cell Convert numeric array to cell array

num2hex Convert singles and doubles to IEEE
hexadecimal strings

str2func Construct function handle from
function name string

str2mat Form blank-padded character matrix
from strings

struct2cell Convert structure to cell array

Operators and Special Characters

Arithmetic Operators (p. 1-60) Plus, minus, power, left and right
divide, transpose, etc.

Relational Operators (p. 1-61) Equal to, greater than, less than or
equal to, etc.

Logical Operators (p. 1-61) Element-wise and short circuit and,
or, not

Special Characters (p. 1-62) Array constructors, line
continuation, comments, etc.

Arithmetic Operators

+ Plus

- Minus

1-60

Programming and Data Types

. Decimal point

= Assignment

* Matrix multiplication

/ Matrix right division

\ Matrix left division

^ Matrix power

’ Matrix transpose

.* Array multiplication (element-wise)

./ Array right division (element-wise)

.\ Array left division (element-wise)

.^ Array power (element-wise)

.’ Array transpose

Relational Operators

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to

~= Not equal to

Logical Operators
See also “Logical Functions” on page 1-66 for functions like xor, all, any, etc.

&& Logical AND

|| Logical OR

& Logical AND for arrays

1-61

1 Functions — By Category

| Logical OR for arrays

~ Logical NOT

Special Characters

: Create vectors, subscript arrays, specify for-loop iterations

() Pass function arguments, prioritize operators

[] Construct array, concatenate elements, specify multiple
outputs from function

{ } Construct cell array, index into cell array

. Insert decimal point, define structure field, reference methods
of object

.() Reference dynamic field of structure

.. Reference parent directory

... Continue statement to next line

, Separate rows of array, separate function input/output
arguments, separate commands

; Separate columns of array, suppress output from current
command

% Insert comment line into code

%{ %} Insert block of comments into code

! Issue command to operating system

’ ’ Construct character array

@ Construct function handle, reference class directory

1-62

Programming and Data Types

String Functions

Description of Strings in MATLAB
(p. 1-63)

Basics of string handling in
MATLAB

String Creation (p. 1-63) Create strings, cell arrays of strings,
concatenate strings together

String Identification (p. 1-64) Identify characteristics of strings

String Manipulation (p. 1-64) Convert case, strip blanks, replace
characters

String Parsing (p. 1-65) Formatted read, regular expressions,
locate substrings

String Evaluation (p. 1-65) Evaluate stated expression in string

String Comparison (p. 1-65) Compare contents of strings

Description of Strings in MATLAB

strings MATLAB string handling

String Creation

blanks Create string of blank characters

cellstr Create cell array of strings from
character array

char Convert to character array (string)

sprintf Write formatted data to string

strcat Concatenate strings horizontally

strvcat Concatenate strings vertically

1-63

1 Functions — By Category

String Identification

class Create object or return class of object

isa Determine whether input is object
of given class

iscellstr Determine whether input is cell
array of strings

ischar Determine whether item is character
array

isletter Array elements that are alphabetic
letters

isscalar Determine whether input is scalar

isspace Array elements that are space
characters

isstrprop Determine whether string is of
specified category

isvector Determine whether input is vector

validatestring Check validity of text string

String Manipulation

deblank Strip trailing blanks from end of
string

lower Convert string to lowercase

strjust Justify character array

strrep Find and replace substring

strtrim Remove leading and trailing white
space from string

upper Convert string to uppercase

1-64

Programming and Data Types

String Parsing

findstr Find string within another, longer
string

regexp, regexpi Match regular expression

regexprep Replace string using regular
expression

regexptranslate Translate string into regular
expression

sscanf Read formatted data from string

strfind Find one string within another

strread Read formatted data from string

strtok Selected parts of string

String Evaluation

eval Execute string containing MATLAB
expression

evalc Evaluate MATLAB expression with
capture

evalin Execute MATLAB expression in
specified workspace

String Comparison

strcmp, strcmpi Compare strings

strmatch Find possible matches for string

strncmp, strncmpi Compare first n characters of strings

1-65

1 Functions — By Category

Bit-wise Functions

bitand Bitwise AND

bitcmp Bitwise complement

bitget Bit at specified position

bitmax Maximum double-precision
floating-point integer

bitor Bitwise OR

bitset Set bit at specified position

bitshift Shift bits specified number of places

bitxor Bitwise XOR

swapbytes Swap byte ordering

Logical Functions

all Determine whether all array
elements are nonzero

and Find logical AND of array or scalar
inputs

any Determine whether any array
elements are nonzero

false Logical 0 (false)

find Find indices and values of nonzero
elements

isa Determine whether input is object
of given class

iskeyword Determine whether input is
MATLAB keyword

isvarname Determine whether input is valid
variable name

logical Convert numeric values to logical

1-66

Programming and Data Types

not Find logical NOT of array or scalar
input

or Find logical OR of array or scalar
inputs

true Logical 1 (true)

xor Logical exclusive-OR

See “Operators and Special Characters” on page 1-60 for logical operators.

Relational Functions

eq Test for equality

ge Test for greater than or equal to

gt Test for greater than

le Test for less than or equal to

lt Test for less than

ne Test for inequality

See “Operators and Special Characters” on page 1-60 for relational operators.

Set Functions

intersect Find set intersection of two vectors

ismember Array elements that are members
of set

issorted Determine whether set elements are
in sorted order

setdiff Find set difference of two vectors

setxor Find set exclusive OR of two vectors

union Find set union of two vectors

unique Find unique elements of vector

1-67

1 Functions — By Category

Date and Time Functions

addtodate Modify date number by field

calendar Calendar for specified month

clock Current time as date vector

cputime Elapsed CPU time

date Current date string

datenum Convert date and time to serial date
number

datestr Convert date and time to string
format

datevec Convert date and time to vector of
components

eomday Last day of month

etime Time elapsed between date vectors

now Current date and time

weekday Day of week

Programming in MATLAB

M-File Functions and Scripts
(p. 1-69)

Declare functions, handle
arguments, identify dependencies,
etc.

Evaluation of Expressions and
Functions (p. 1-70)

Evaluate expression in string, apply
function to array, run script file, etc.

Timer Functions (p. 1-71) Schedule execution of MATLAB
commands

Variables and Functions in Memory
(p. 1-72)

List files in memory, clear M-files
in memory, assign to variable in
nondefault workspace, refresh
caches

1-68

Programming and Data Types

Control Flow (p. 1-73) if-then-else, for loops, switch-case,
try-catch

Error Handling (p. 1-74) Generate warnings and errors, test
for and catch errors, retrieve most
recent error message

MEX Programming (p. 1-75) Compile MEX function from C
or Fortran code, list MEX-files in
memory, debug MEX-files

M-File Functions and Scripts

addOptional (inputParser) Add optional argument to
inputParser schema

addParamValue (inputParser) Add parameter-value argument to
inputParser schema

addRequired (inputParser) Add required argument to
inputParser schema

createCopy (inputParser) Create copy of inputParser object

depdir List dependent directories of M-file
or P-file

depfun List dependencies of M-file or P-file

echo Echo M-files during execution

end Terminate block of code, or indicate
last array index

function Declare M-file function

input Request user input

inputname Variable name of function input

inputParser Construct input parser object

mfilename Name of currently running M-file

namelengthmax Maximum identifier length

nargchk Validate number of input arguments

1-69

1 Functions — By Category

nargin, nargout Number of function arguments

nargoutchk Validate number of output
arguments

parse (inputParser) Parse and validate named inputs

pcode Create preparsed pseudocode file
(P-file)

script Script M-file description

syntax Two ways to call MATLAB functions

varargin Variable length input argument list

varargout Variable length output argument list

Evaluation of Expressions and Functions

ans Most recent answer

arrayfun Apply function to each element of
array

assert Generate error when condition is
violated

builtin Execute built-in function from
overloaded method

cellfun Apply function to each cell in cell
array

echo Echo M-files during execution

eval Execute string containing MATLAB
expression

evalc Evaluate MATLAB expression with
capture

evalin Execute MATLAB expression in
specified workspace

feval Evaluate function

1-70

Programming and Data Types

iskeyword Determine whether input is
MATLAB keyword

isvarname Determine whether input is valid
variable name

pause Halt execution temporarily

run Run script that is not on current
path

script Script M-file description

structfun Apply function to each field of scalar
structure

symvar Determine symbolic variables in
expression

tic, toc Measure performance using
stopwatch timer

Timer Functions

delete (timer) Remove timer object from memory

disp (timer) Information about timer object

get (timer) Timer object properties

isvalid (timer) Determine whether timer object is
valid

set (timer) Configure or display timer object
properties

start Start timer(s) running

startat Start timer(s) running at specified
time

stop Stop timer(s)

timer Construct timer object

timerfind Find timer objects

1-71

1 Functions — By Category

timerfindall Find timer objects, including
invisible objects

wait Wait until timer stops running

Variables and Functions in Memory

ans Most recent answer

assignin Assign value to variable in specified
workspace

datatipinfo Produce short description of input
variable

genvarname Construct valid variable name from
string

global Declare global variables

inmem Names of M-files, MEX-files, Java
classes in memory

isglobal Determine whether input is global
variable

mislocked Determine whether M-file or
MEX-file cannot be cleared from
memory

mlock Prevent clearing M-file or MEX-file
from memory

munlock Allow clearing M-file or MEX-file
from memory

namelengthmax Maximum identifier length

pack Consolidate workspace memory

persistent Define persistent variable

rehash Refresh function and file system
path caches

1-72

Programming and Data Types

Control Flow

break Terminate execution of for or while
loop

case Execute block of code if condition is
true

catch Specify how to respond to error in
try statement

continue Pass control to next iteration of for
or while loop

else Execute statements if condition is
false

elseif Execute statements if additional
condition is true

end Terminate block of code, or indicate
last array index

error Display message and abort function

for Execute block of code specified
number of times

if Execute statements if condition is
true

otherwise Default part of switch statement

return Return to invoking function

switch Switch among several cases, based
on expression

try Attempt to execute block of code, and
catch errors

while Repeatedly execute statements while
condition is true

1-73

1 Functions — By Category

Error Handling

addCause (MException) Append MException objects

assert Generate error when condition is
violated

catch Specify how to respond to error in
try statement

disp (MException) Display MException object

eq (MException) Compare MException objects for
equality

error Display message and abort function

ferror Query MATLAB about errors in file
input or output

getReport (MException) Get error message for exception

intwarning Control state of integer warnings

isequal (MException) Compare MException objects for
equality

last (MException) Last uncaught exception

lasterr Last error message

lasterror Last error message and related
information

lastwarn Last warning message

MException Construct MException object

ne (MException) Compare MException objects for
inequality

rethrow Reissue error

rethrow (MException) Reissue existing exception

throw (MException) Terminate function and issue
exception

1-74

Programming and Data Types

try Attempt to execute block of code, and
catch errors

warning Warning message

MEX Programming

dbmex Enable MEX-file debugging

inmem Names of M-files, MEX-files, Java
classes in memory

mex Compile MEX-function from C, C++,
or Fortran source code

mexext MEX-filename extension

1-75

1 Functions — By Category

File I/O

File Name Construction (p. 1-76) Get path, directory, filename
information; construct filenames

Opening, Loading, Saving Files
(p. 1-77)

Open files; transfer data between
files and MATLAB workspace

Memory Mapping (p. 1-77) Access file data via memory map
using MATLAB array indexing

Low-Level File I/O (p. 1-77) Low-level operations that use a file
identifier

Text Files (p. 1-78) Delimited or formatted I/O to text
files

XML Documents (p. 1-79) Documents written in Extensible
Markup Language

Spreadsheets (p. 1-79) Excel and Lotus 1-2-3 files

Scientific Data (p. 1-80) CDF, FITS, HDF formats

Audio and Audio/Video (p. 1-81) General audio functions;
SparcStation, WAVE, AVI files

Images (p. 1-83) Graphics files

Internet Exchange (p. 1-84) URL, FTP, zip, tar, and e-mail

To see a listing of file formats that are readable from MATLAB, go to file
formats.

File Name Construction

filemarker Character to separate file name and
internal function name

fileparts Parts of file name and path

filesep Directory separator for current
platform

fullfile Build full filename from parts

1-76

File I/O

tempdir Name of system’s temporary
directory

tempname Unique name for temporary file

Opening, Loading, Saving Files

daqread Read Data Acquisition Toolbox (.daq)
file

filehandle Construct file handle object

importdata Load data from disk file

load Load workspace variables from disk

open Open files based on extension

save Save workspace variables to disk

uiimport Open Import Wizard to import data

winopen Open file in appropriate application
(Windows)

Memory Mapping

disp (memmapfile) Information about memmapfile
object

get (memmapfile) Memmapfile object properties

memmapfile Construct memmapfile object

Low-Level File I/O

fclose Close one or more open files

feof Test for end-of-file

ferror Query MATLAB about errors in file
input or output

1-77

1 Functions — By Category

fgetl Read line from file, discarding
newline character

fgets Read line from file, keeping newline
character

fopen Open file, or obtain information
about open files

fprintf Write formatted data to file

fread Read binary data from file

frewind Move file position indicator to
beginning of open file

fscanf Read formatted data from file

fseek Set file position indicator

ftell File position indicator

fwrite Write binary data to file

Text Files

csvread Read comma-separated value file

csvwrite Write comma-separated value file

dlmread Read ASCII-delimited file of numeric
data into matrix

dlmwrite Write matrix to ASCII-delimited file

textread Read data from text file; write to
multiple outputs

textscan Read formatted data from text file
or string

1-78

File I/O

XML Documents

xmlread Parse XML document and return
Document Object Model node

xmlwrite Serialize XML Document Object
Model node

xslt Transform XML document using
XSLT engine

Spreadsheets

Microsoft Excel Functions (p. 1-79) Read and write Microsoft Excel
spreadsheet

Lotus 1-2-3 Functions (p. 1-79) Read and write Lotus WK1
spreadsheet

Microsoft Excel Functions

xlsfinfo Determine whether file contains
Microsoft Excel (.xls) spreadsheet

xlsread Read Microsoft Excel spreadsheet
file (.xls)

xlswrite Write Microsoft Excel spreadsheet
file (.xls)

Lotus 1-2-3 Functions

wk1finfo Determine whether file contains
1-2-3 WK1 worksheet

wk1read Read Lotus 1-2-3 WK1 spreadsheet
file into matrix

wk1write Write matrix to Lotus 1-2-3 WK1
spreadsheet file

1-79

1 Functions — By Category

Scientific Data

Common Data Format (CDF)
(p. 1-80)

Work with CDF files

Flexible Image Transport System
(p. 1-80)

Work with FITS files

Hierarchical Data Format (HDF)
(p. 1-81)

Work with HDF files

Band-Interleaved Data (p. 1-81) Work with band-interleaved files

Common Data Format (CDF)

cdfepoch Construct cdfepoch object for
Common Data Format (CDF) export

cdfinfo Information about Common Data
Format (CDF) file

cdfread Read data from Common Data
Format (CDF) file

cdfwrite Write data to Common Data Format
(CDF) file

todatenum Convert CDF epoch object to
MATLAB datenum

Flexible Image Transport System

fitsinfo Information about FITS file

fitsread Read data from FITS file

1-80

File I/O

Hierarchical Data Format (HDF)

hdf Summary of MATLAB HDF4
capabilities

hdf5 Summary of MATLAB HDF5
capabilities

hdf5info Information about HDF5 file

hdf5read Read HDF5 file

hdf5write Write data to file in HDF5 format

hdfinfo Information about HDF4 or
HDF-EOS file

hdfread Read data from HDF4 or HDF-EOS
file

hdftool Browse and import data from HDF4
or HDF-EOS files

Band-Interleaved Data

multibandread Read band-interleaved data from
binary file

multibandwrite Write band-interleaved data to file

Audio and Audio/Video

General (p. 1-82) Create audio player object, obtain
information about multimedia files,
convert to/from audio signal

SPARCstation-Specific Sound
Functions (p. 1-82)

Access NeXT/SUN (.au) sound files

1-81

1 Functions — By Category

Microsoft WAVE Sound Functions
(p. 1-83)

Access Microsoft WAVE (.wav) sound
files

Audio/Video Interleaved (AVI)
Functions (p. 1-83)

Access Audio/Video interleaved
(.avi) sound files

General

audioplayer Create audio player object

audiorecorder Create audio recorder object

beep Produce beep sound

lin2mu Convert linear audio signal to
mu-law

mmfileinfo Information about multimedia file

mmreader Create multimedia reader object for
reading video files

mu2lin Convert mu-law audio signal to
linear

read Read video frame data from
multimedia reader object

sound Convert vector into sound

soundsc Scale data and play as sound

SPARCstation-Specific Sound Functions

aufinfo Information about NeXT/SUN (.au)
sound file

auread Read NeXT/SUN (.au) sound file

auwrite Write NeXT/SUN (.au) sound file

1-82

File I/O

Microsoft WAVE Sound Functions

wavfinfo Information about Microsoft WAVE
(.wav) sound file

wavplay Play recorded sound on PC-based
audio output device

wavread Read Microsoft WAVE (.wav) sound
file

wavrecord Record sound using PC-based audio
input device

wavwrite Write Microsoft WAVE (.wav) sound
file

Audio/Video Interleaved (AVI) Functions

addframe Add frame to Audio/Video
Interleaved (AVI) file

avifile Create new Audio/Video Interleaved
(AVI) file

aviinfo Information about Audio/Video
Interleaved (AVI) file

aviread Read Audio/Video Interleaved (AVI)
file

close (avifile) Close Audio/Video Interleaved (AVI)
file

movie2avi Create Audio/Video Interleaved
(AVI) movie from MATLAB movie

Images

exifread Read EXIF information from JPEG
and TIFF image files

im2java Convert image to Java image

1-83

1 Functions — By Category

imfinfo Information about graphics file

imread Read image from graphics file

imwrite Write image to graphics file

Internet Exchange

URL, Zip, Tar, E-Mail (p. 1-84) Send e-mail, read from given URL,
extract from tar or zip file, compress
and decompress files

FTP Functions (p. 1-84) Connect to FTP server, download
from server, manage FTP files, close
server connection

URL, Zip, Tar, E-Mail

gunzip Uncompress GNU zip files

gzip Compress files into GNU zip files

sendmail Send e-mail message to address list

tar Compress files into tar file

untar Extract contents of tar file

unzip Extract contents of zip file

urlread Read content at URL

urlwrite Save contents of URL to file

zip Compress files into zip file

FTP Functions

ascii Set FTP transfer type to ASCII

binary Set FTP transfer type to binary

1-84

File I/O

cd (ftp) Change current directory on FTP
server

close (ftp) Close connection to FTP server

delete (ftp) Remove file on FTP server

dir (ftp) Directory contents on FTP server

ftp Connect to FTP server, creating FTP
object

mget Download file from FTP server

mkdir (ftp) Create new directory on FTP server

mput Upload file or directory to FTP server

rename Rename file on FTP server

rmdir (ftp) Remove directory on FTP server

1-85

1 Functions — By Category

Graphics

Basic Plots and Graphs (p. 1-86) Linear line plots, log and semilog
plots

Plotting Tools (p. 1-87) GUIs for interacting with plots

Annotating Plots (p. 1-87) Functions for and properties of titles,
axes labels, legends, mathematical
symbols

Specialized Plotting (p. 1-88) Bar graphs, histograms, pie charts,
contour plots, function plotters

Bit-Mapped Images (p. 1-92) Display image object, read and
write graphics file, convert to movie
frames

Printing (p. 1-92) Printing and exporting figures to
standard formats

Handle Graphics (p. 1-93) Creating graphics objects, setting
properties, finding handles

Basic Plots and Graphs

box Axes border

errorbar Plot error bars along curve

hold Retain current graph in figure

LineSpec Line specification string syntax

loglog Log-log scale plot

plot 2-D line plot

plot3 3-D line plot

plotyy 2-D line plots with y-axes on both
left and right side

polar Polar coordinate plot

1-86

Graphics

semilogx, semilogy Semilogarithmic plots

subplot Create axes in tiled positions

Plotting Tools

figurepalette Show or hide figure palette

pan Pan view of graph interactively

plotbrowser Show or hide figure plot browser

plotedit Interactively edit and annotate plots

plottools Show or hide plot tools

propertyeditor Show or hide property editor

rotate3d Rotate 3-D view using mouse

showplottool Show or hide figure plot tool

zoom Turn zooming on or off or magnify
by factor

Annotating Plots

annotation Create annotation objects

clabel Contour plot elevation labels

datacursormode Enable or disable interactive data
cursor mode

datetick Date formatted tick labels

gtext Mouse placement of text in 2-D view

legend Graph legend for lines and patches

line Create line object

rectangle Create 2-D rectangle object

texlabel Produce TeX format from character
string

1-87

1 Functions — By Category

title Add title to current axes

xlabel, ylabel, zlabel Label x-, y-, and z-axis

Specialized Plotting

Area, Bar, and Pie Plots (p. 1-88) 1-D, 2-D, and 3-D graphs and charts

Contour Plots (p. 1-89) Unfilled and filled contours in 2-D
and 3-D

Direction and Velocity Plots (p. 1-89) Comet, compass, feather and quiver
plots

Discrete Data Plots (p. 1-89) Stair, step, and stem plots

Function Plots (p. 1-89) Easy-to-use plotting utilities for
graphing functions

Histograms (p. 1-90) Plots for showing distributions of
data

Polygons and Surfaces (p. 1-90) Functions to generate and plot
surface patches in two or more
dimensions

Scatter/Bubble Plots (p. 1-91) Plots of point distributions

Animation (p. 1-91) Functions to create and play movies
of plots

Area, Bar, and Pie Plots

area Filled area 2-D plot

bar, barh Plot bar graph (vertical and
horizontal)

bar3, bar3h Plot 3-D bar chart

pareto Pareto chart

pie Pie chart

pie3 3-D pie chart

1-88

Graphics

Contour Plots

contour Contour plot of matrix

contour3 3-D contour plot

contourc Low-level contour plot computation

contourf Filled 2-D contour plot

ezcontour Easy-to-use contour plotter

ezcontourf Easy-to-use filled contour plotter

Direction and Velocity Plots

comet 2-D comet plot

comet3 3-D comet plot

compass Plot arrows emanating from origin

feather Plot velocity vectors

quiver Quiver or velocity plot

quiver3 3-D quiver or velocity plot

Discrete Data Plots

stairs Stairstep graph

stem Plot discrete sequence data

stem3 Plot 3-D discrete sequence data

Function Plots

ezcontour Easy-to-use contour plotter

ezcontourf Easy-to-use filled contour plotter

ezmesh Easy-to-use 3-D mesh plotter

1-89

1 Functions — By Category

ezmeshc Easy-to-use combination
mesh/contour plotter

ezplot Easy-to-use function plotter

ezplot3 Easy-to-use 3-D parametric curve
plotter

ezpolar Easy-to-use polar coordinate plotter

ezsurf Easy-to-use 3-D colored surface
plotter

ezsurfc Easy-to-use combination
surface/contour plotter

fplot Plot function between specified
limits

Histograms

hist Histogram plot

histc Histogram count

rose Angle histogram plot

Polygons and Surfaces

convhull Convex hull

cylinder Generate cylinder

delaunay Delaunay triangulation

delaunay3 3-D Delaunay tessellation

delaunayn N-D Delaunay tessellation

dsearch Search Delaunay triangulation for
nearest point

dsearchn N-D nearest point search

ellipsoid Generate ellipsoid

1-90

Graphics

fill Filled 2-D polygons

fill3 Filled 3-D polygons

inpolygon Points inside polygonal region

pcolor Pseudocolor (checkerboard) plot

polyarea Area of polygon

rectint Rectangle intersection area

ribbon Ribbon plot

slice Volumetric slice plot

sphere Generate sphere

tsearch Search for enclosing Delaunay
triangle

tsearchn N-D closest simplex search

voronoi Voronoi diagram

waterfall Waterfall plot

Scatter/Bubble Plots

plotmatrix Scatter plot matrix

scatter Scatter plot

scatter3 3-D scatter plot

Animation

frame2im Convert movie frame to indexed
image

getframe Capture movie frame

im2frame Convert image to movie frame

1-91

1 Functions — By Category

movie Play recorded movie frames

noanimate Change EraseMode of all objects to
normal

Bit-Mapped Images

frame2im Convert movie frame to indexed
image

im2frame Convert image to movie frame

im2java Convert image to Java image

image Display image object

imagesc Scale data and display image object

imfinfo Information about graphics file

imformats Manage image file format registry

imread Read image from graphics file

imwrite Write image to graphics file

ind2rgb Convert indexed image to RGB
image

Printing

frameedit Edit print frames for Simulink and
Stateflow block diagrams

hgexport Export figure

orient Hardcopy paper orientation

print, printopt Print figure or save to file and
configure printer defaults

printdlg Print dialog box

1-92

Graphics

printpreview Preview figure to print

saveas Save figure or Simulink block
diagram using specified format

Handle Graphics

Finding and Identifying Graphics
Objects (p. 1-93)

Find and manipulate graphics
objects via their handles

Object Creation Functions (p. 1-94) Constructors for core graphics
objects

Plot Objects (p. 1-94) Property descriptions for plot objects

Figure Windows (p. 1-95) Control and save figures

Axes Operations (p. 1-96) Operate on axes objects

Operating on Object Properties
(p. 1-96)

Query, set, and link object properties

Finding and Identifying Graphics Objects

allchild Find all children of specified objects

ancestor Ancestor of graphics object

copyobj Copy graphics objects and their
descendants

delete Remove files or graphics objects

findall Find all graphics objects

findfigs Find visible offscreen figures

findobj Locate graphics objects with specific
properties

gca Current axes handle

gcbf Handle of figure containing object
whose callback is executing

1-93

1 Functions — By Category

gcbo Handle of object whose callback is
executing

gco Handle of current object

get Query object properties

ishandle Is object handle valid

propedit Open Property Editor

set Set object properties

Object Creation Functions

axes Create axes graphics object

figure Create figure graphics object

hggroup Create hggroup object

hgtransform Create hgtransform graphics object

image Display image object

light Create light object

line Create line object

patch Create patch graphics object

rectangle Create 2-D rectangle object

root object Root object properties

surface Create surface object

text Create text object in current axes

uicontextmenu Create context menu

Plot Objects

Annotation Arrow Properties Define annotation arrow properties

Annotation Doublearrow Properties Define annotation doublearrow
properties

1-94

Graphics

Annotation Ellipse Properties Define annotation ellipse properties

Annotation Line Properties Define annotation line properties

Annotation Rectangle Properties Define annotation rectangle
properties

Annotation Textarrow Properties Define annotation textarrow
properties

Annotation Textbox Properties Define annotation textbox properties

Areaseries Properties Define areaseries properties

Barseries Properties Define barseries properties

Contourgroup Properties Define contourgroup properties

Errorbarseries Properties Define errorbarseries properties

Image Properties Define image properties

Lineseries Properties Define lineseries properties

Quivergroup Properties Define quivergroup properties

Scattergroup Properties Define scattergroup properties

Stairseries Properties Define stairseries properties

Stemseries Properties Define stemseries properties

Surfaceplot Properties Define surfaceplot properties

Figure Windows

clf Clear current figure window

close Remove specified figure

closereq Default figure close request function

drawnow Flushes event queue and updates
figure window

gcf Current figure handle

hgload Load Handle Graphics object
hierarchy from file

1-95

1 Functions — By Category

hgsave Save Handle Graphics object
hierarchy to file

newplot Determine where to draw graphics
objects

opengl Control OpenGL rendering

refresh Redraw current figure

saveas Save figure or Simulink block
diagram using specified format

Axes Operations

axis Axis scaling and appearance

box Axes border

cla Clear current axes

gca Current axes handle

grid Grid lines for 2-D and 3-D plots

ishold Current hold state

makehgtform Create 4-by-4 transform matrix

Operating on Object Properties

get Query object properties

linkaxes Synchronize limits of specified 2-D
axes

linkprop Keep same value for corresponding
properties

refreshdata Refresh data in graph when data
source is specified

set Set object properties

1-96

3-D Visualization

3-D Visualization

Surface and Mesh Plots (p. 1-97) Plot matrices, visualize functions of
two variables, specify colormap

View Control (p. 1-99) Control the camera viewpoint,
zooming, rotation, aspect ratio, set
axis limits

Lighting (p. 1-101) Add and control scene lighting

Transparency (p. 1-101) Specify and control object
transparency

Volume Visualization (p. 1-102) Visualize gridded volume data

Surface and Mesh Plots

Creating Surfaces and Meshes
(p. 1-97)

Visualizing gridded and triangulated
data as lines and surfaces

Domain Generation (p. 1-98) Gridding data and creating arrays

Color Operations (p. 1-98) Specifying, converting, and
manipulating color spaces,
colormaps, colorbars, and
backgrounds

Colormaps (p. 1-99) Built-in colormaps you can use

Creating Surfaces and Meshes

hidden Remove hidden lines from mesh plot

mesh, meshc, meshz Mesh plots

peaks Example function of two variables

surf, surfc 3-D shaded surface plot

surface Create surface object

surfl Surface plot with colormap-based
lighting

1-97

1 Functions — By Category

tetramesh Tetrahedron mesh plot

trimesh Triangular mesh plot

triplot 2-D triangular plot

trisurf Triangular surface plot

Domain Generation

griddata Data gridding

meshgrid Generate X and Y arrays for 3-D plots

Color Operations

brighten Brighten or darken colormap

caxis Color axis scaling

colorbar Colorbar showing color scale

colordef Set default property values to
display different color schemes

colormap Set and get current colormap

colormapeditor Start colormap editor

ColorSpec Color specification

graymon Set default figure properties for
grayscale monitors

hsv2rgb Convert HSV colormap to RGB
colormap

rgb2hsv Convert RGB colormap to HSV
colormap

rgbplot Plot colormap

shading Set color shading properties

spinmap Spin colormap

1-98

3-D Visualization

surfnorm Compute and display 3-D surface
normals

whitebg Change axes background color

Colormaps

contrast Grayscale colormap for contrast
enhancement

View Control

Controlling the Camera Viewpoint
(p. 1-99)

Orbiting, dollying, pointing, rotating
camera positions and setting fields
of view

Setting the Aspect Ratio and Axis
Limits (p. 1-100)

Specifying what portions of axes to
view and how to scale them

Object Manipulation (p. 1-100) Panning, rotating, and zooming
views

Selecting Region of Interest (p. 1-101) Interactively identifying rectangular
regions

Controlling the Camera Viewpoint

camdolly Move camera position and target

cameratoolbar Control camera toolbar
programmatically

camlookat Position camera to view object or
group of objects

camorbit Rotate camera position around
camera target

campan Rotate camera target around camera
position

1-99

1 Functions — By Category

campos Set or query camera position

camproj Set or query projection type

camroll Rotate camera about view axis

camtarget Set or query location of camera
target

camup Set or query camera up vector

camva Set or query camera view angle

camzoom Zoom in and out on scene

makehgtform Create 4-by-4 transform matrix

view Viewpoint specification

viewmtx View transformation matrices

Setting the Aspect Ratio and Axis Limits

daspect Set or query axes data aspect ratio

pbaspect Set or query plot box aspect ratio

xlim, ylim, zlim Set or query axis limits

Object Manipulation

pan Pan view of graph interactively

reset Reset graphics object properties to
their defaults

rotate Rotate object in specified direction

rotate3d Rotate 3-D view using mouse

selectmoveresize Select, move, resize, or copy axes and
uicontrol graphics objects

zoom Turn zooming on or off or magnify
by factor

1-100

3-D Visualization

Selecting Region of Interest

dragrect Drag rectangles with mouse

rbbox Create rubberband box for area
selection

Lighting

camlight Create or move light object in camera
coordinates

diffuse Calculate diffuse reflectance

light Create light object

lightangle Create or position light object in
spherical coordinates

lighting Specify lighting algorithm

material Control reflectance properties of
surfaces and patches

specular Calculate specular reflectance

Transparency

alim Set or query axes alpha limits

alpha Set transparency properties for
objects in current axes

alphamap Specify figure alphamap
(transparency)

1-101

1 Functions — By Category

Volume Visualization

coneplot Plot velocity vectors as cones in 3-D
vector field

contourslice Draw contours in volume slice planes

curl Compute curl and angular velocity
of vector field

divergence Compute divergence of vector field

flow Simple function of three variables

interpstreamspeed Interpolate stream-line vertices from
flow speed

isocaps Compute isosurface end-cap
geometry

isocolors Calculate isosurface and patch colors

isonormals Compute normals of isosurface
vertices

isosurface Extract isosurface data from volume
data

reducepatch Reduce number of patch faces

reducevolume Reduce number of elements in
volume data set

shrinkfaces Reduce size of patch faces

slice Volumetric slice plot

smooth3 Smooth 3-D data

stream2 Compute 2-D streamline data

stream3 Compute 3-D streamline data

streamline Plot streamlines from 2-D or 3-D
vector data

streamparticles Plot stream particles

streamribbon 3-D stream ribbon plot from vector
volume data

1-102

3-D Visualization

streamslice Plot streamlines in slice planes

streamtube Create 3-D stream tube plot

subvolume Extract subset of volume data set

surf2patch Convert surface data to patch data

volumebounds Coordinate and color limits for
volume data

1-103

1 Functions — By Category

Creating Graphical User Interfaces

Predefined Dialog Boxes (p. 1-104) Dialog boxes for error, user input,
waiting, etc.

Deploying User Interfaces (p. 1-105) Launch GUIs, create the handles
structure

Developing User Interfaces (p. 1-105) Start GUIDE, manage application
data, get user input

User Interface Objects (p. 1-106) Create GUI components

Finding Objects from Callbacks
(p. 1-107)

Find object handles from within
callbacks functions

GUI Utility Functions (p. 1-107) Move objects, wrap text

Controlling Program Execution
(p. 1-108)

Wait and resume based on user input

Predefined Dialog Boxes

dialog Create and display dialog box

errordlg Create and open error dialog box

export2wsdlg Export variables to workspace

helpdlg Create and open help dialog box

inputdlg Create and open input dialog box

listdlg Create and open list-selection dialog
box

msgbox Create and open message box

printdlg Print dialog box

printpreview Preview figure to print

questdlg Create and open question dialog box

uigetdir Open standard dialog box for
selecting a directory

1-104

Creating Graphical User Interfaces

uigetfile Open standard dialog box for
retrieving files

uigetpref Open dialog box for retrieving
preferences

uiopen Open file selection dialog box with
appropriate file filters

uiputfile Open standard dialog box for saving
files

uisave Open standard dialog box for saving
workspace variables

uisetcolor Open standard dialog box for setting
object’s ColorSpec

uisetfont Open standard dialog box for setting
object’s font characteristics

waitbar Open waitbar

warndlg Open warning dialog box

Deploying User Interfaces

guidata Store or retrieve GUI data

guihandles Create structure of handles

movegui Move GUI figure to specified location
on screen

openfig Open new copy or raise existing copy
of saved figure

Developing User Interfaces

addpref Add preference

getappdata Value of application-defined data

getpref Preference

1-105

1 Functions — By Category

ginput Graphical input from mouse or
cursor

guidata Store or retrieve GUI data

guide Open GUI Layout Editor

inspect Open Property Inspector

isappdata True if application-defined data
exists

ispref Test for existence of preference

rmappdata Remove application-defined data

rmpref Remove preference

setappdata Specify application-defined data

setpref Set preference

uigetpref Open dialog box for retrieving
preferences

uisetpref Manage preferences used in
uigetpref

waitfor Wait for condition before resuming
execution

waitforbuttonpress Wait for key press or mouse-button
click

User Interface Objects

menu Generate menu of choices for user
input

uibuttongroup Create container object to exclusively
manage radio buttons and toggle
buttons

uicontextmenu Create context menu

uicontrol Create user interface control object

1-106

Creating Graphical User Interfaces

uimenu Create menus on figure windows

uipanel Create panel container object

uipushtool Create push button on toolbar

uitoggletool Create toggle button on toolbar

uitoolbar Create toolbar on figure

Finding Objects from Callbacks

findall Find all graphics objects

findfigs Find visible offscreen figures

findobj Locate graphics objects with specific
properties

gcbf Handle of figure containing object
whose callback is executing

gcbo Handle of object whose callback is
executing

GUI Utility Functions

align Align user interface controls
(uicontrols) and axes

getpixelposition Get component position in pixels

listfonts List available system fonts

selectmoveresize Select, move, resize, or copy axes and
uicontrol graphics objects

setpixelposition Set component position in pixels

textwrap Wrapped string matrix for given
uicontrol

uistack Reorder visual stacking order of
objects

1-107

1 Functions — By Category

Controlling Program Execution

uiresume, uiwait Control program execution

1-108

External Interfaces

External Interfaces

Dynamic Link Libraries (p. 1-109) Access functions stored in external
shared library (.dll) files

Java (p. 1-110) Work with objects constructed from
Java API and third-party class
packages

Component Object Model and
ActiveX (p. 1-111)

Integrate COM components into
your application

Web Services (p. 1-113) Communicate between applications
over a network using SOAP and
WSDL

Serial Port Devices (p. 1-113) Read and write to devices connected
to your computer’s serial port

See also MATLAB C and Fortran API Reference for functions you can use
in external routines that interact with MATLAB programs and the data in
MATLAB workspaces.

Dynamic Link Libraries

calllib Call function in external library

libfunctions Information on functions in external
library

libfunctionsview Create window displaying
information on functions in external
library

libisloaded Determine whether external library
is loaded

libpointer Create pointer object for use with
external libraries

libstruct Construct structure as defined in
external library

1-109

1 Functions — By Category

loadlibrary Load external library into MATLAB

unloadlibrary Unload external library from
memory

Java

class Create object or return class of object

fieldnames Field names of structure, or public
fields of object

import Add package or class to current Java
import list

inspect Open Property Inspector

isa Determine whether input is object
of given class

isjava Determine whether input is Java
object

ismethod Determine whether input is object
method

isprop Determine whether input is object
property

javaaddpath Add entries to dynamic Java class
path

javaArray Construct Java array

javachk Generate error message based on
Java feature support

javaclasspath Set and get dynamic Java class path

javaMethod Invoke Java method

javaObject Construct Java object

javarmpath Remove entries from dynamic Java
class path

methods Information on class methods

1-110

External Interfaces

methodsview Information on class methods in
separate window

usejava Determine whether Java feature is
supported in MATLAB

Component Object Model and ActiveX

actxcontrol Create ActiveX control in figure
window

actxcontrollist List all currently installed ActiveX
controls

actxcontrolselect Open GUI to create ActiveX control

actxGetRunningServer Get handle to running instance of
Automation server

actxserver Create COM server

addproperty Add custom property to object

class Create object or return class of object

delete (COM) Remove COM control or server

deleteproperty Remove custom property from object

enableservice Enable, disable, or report status of
Automation server

eventlisteners List of events attached to listeners

events List of events control can trigger

Execute Execute MATLAB command in
server

Feval (COM) Evaluate MATLAB function in
server

fieldnames Field names of structure, or public
fields of object

get (COM) Get property value from interface, or
display properties

1-111

1 Functions — By Category

GetCharArray Get character array from server

GetFullMatrix Get matrix from server

GetVariable Get data from variable in server
workspace

GetWorkspaceData Get data from server workspace

inspect Open Property Inspector

interfaces List custom interfaces to COM server

invoke Invoke method on object or interface,
or display methods

isa Determine whether input is object
of given class

iscom Is input COM object

isevent Is input event

isinterface Is input COM interface

ismethod Determine whether input is object
method

isprop Determine whether input is object
property

load (COM) Initialize control object from file

MaximizeCommandWindow Open server window on Windows
desktop

methods Information on class methods

methodsview Information on class methods in
separate window

MinimizeCommandWindow Minimize size of server window

move Move or resize control in parent
window

propedit (COM) Open built-in property page for
control

PutCharArray Store character array in server

1-112

External Interfaces

PutFullMatrix Store matrix in server

PutWorkspaceData Store data in server workspace

Quit (COM) Terminate MATLAB server

registerevent Register event handler with control’s
event

release Release interface

save (COM) Serialize control object to file

set (COM) Set object or interface property to
specified value

unregisterallevents Unregister all events for control

unregisterevent Unregister event handler with
control’s event

Web Services

callSoapService Send SOAP message off to endpoint

createClassFromWsdl Create MATLAB object based on
WSDL file

createSoapMessage Create SOAP message to send to
server

parseSoapResponse Convert response string from SOAP
server into MATLAB data types

Serial Port Devices

clear (serial) Remove serial port object from
MATLAB workspace

delete (serial) Remove serial port object from
memory

disp (serial) Serial port object summary
information

1-113

1 Functions — By Category

fclose (serial) Disconnect serial port object from
device

fgetl (serial) Read line of text from device and
discard terminator

fgets (serial) Read line of text from device and
include terminator

fopen (serial) Connect serial port object to device

fprintf (serial) Write text to device

fread (serial) Read binary data from device

fscanf (serial) Read data from device, and format
as text

fwrite (serial) Write binary data to device

get (serial) Serial port object properties

instrcallback Event information when event
occurs

instrfind Read serial port objects from memory
to MATLAB workspace

instrfindall Find visible and hidden serial port
objects

isvalid (serial) Determine whether serial port
objects are valid

length (serial) Length of serial port object array

load (serial) Load serial port objects and variables
into MATLAB workspace

readasync Read data asynchronously from
device

record Record data and event information
to file

save (serial) Save serial port objects and variables
to MAT-file

serial Create serial port object

1-114

External Interfaces

serialbreak Send break to device connected to
serial port

set (serial) Configure or display serial port
object properties

size (serial) Size of serial port object array

stopasync Stop asynchronous read and write
operations

1-115

1 Functions — By Category

1-116

2

Functions — Alphabetical
List

Arithmetic Operators + - * / \ ^ ’
Relational Operators < > <= >= == ~=
Logical Operators: Elementwise & | ~
Logical Operators: Short-circuit && ||
Special Characters [] () {} = ’ , ; : % ! @
colon (:)
abs
accumarray
acos
acosd
acosh
acot
acotd
acoth
acsc
acscd
acsch
actxcontrol
actxcontrollist
actxcontrolselect
actxGetRunningServer
actxserver
addCause (MException)
addevent
addframe
addOptional (inputParser)

2 Functions — Alphabetical List

addParamValue (inputParser)
addpath
addpref
addproperty
addRequired (inputParser)
addsample
addsampletocollection
addtodate
addts
airy
align
alim
all
allchild
alpha
alphamap
amd
ancestor
and
angle
annotation
Annotation Arrow Properties
Annotation Doublearrow Properties
Annotation Ellipse Properties
Annotation Line Properties
Annotation Rectangle Properties
Annotation Textarrow Properties
Annotation Textbox Properties
ans
any
area
Areaseries Properties
arrayfun
ascii
asec
asecd
asech

2-2

asin
asind
asinh
assert
assignin
atan
atan2
atand
atanh
audioplayer
audiorecorder
aufinfo
auread
auwrite
avifile
aviinfo
aviread
axes
Axes Properties
axis
balance
bar, barh
bar3, bar3h
Barseries Properties
base2dec
beep
besselh
besseli
besselj
besselk
bessely
beta
betainc
betaln
bicg
bicgstab
bin2dec

2-3

2 Functions — Alphabetical List

binary
bitand
bitcmp
bitget
bitmax
bitor
bitset
bitshift
bitxor
blanks
blkdiag
box
break
brighten
builddocsearchdb
builtin
bsxfun
bvp4c
bvp5c
bvpget
bvpinit
bvpset
bvpxtend
calendar
calllib
callSoapService
camdolly
cameratoolbar
camlight
camlookat
camorbit
campan
campos
camproj
camroll
camtarget
camup

2-4

camva
camzoom
cart2pol
cart2sph
case
cast
cat
catch
caxis
cd
cd (ftp)
cdf2rdf
cdfepoch
cdfinfo
cdfread
cdfwrite
ceil
cell
cell2mat
cell2struct
celldisp
cellfun
cellplot
cellstr
cgs
char
checkin
checkout
chol
cholinc
cholupdate
circshift
cla
clabel
class
clc
clear

2-5

2 Functions — Alphabetical List

clear (serial)
clf
clipboard
clock
close
close (avifile)
close (ftp)
closereq
cmopts
colamd
colmmd
colorbar
colordef
colormap
colormapeditor
ColorSpec
colperm
comet
comet3
commandhistory
commandwindow
compan
compass
complex
computer
cond
condeig
condest
coneplot
conj
continue
contour
contour3
contourc
contourf
Contourgroup Properties
contourslice

2-6

contrast
conv
conv2
convhull
convhulln
convn
copyfile
copyobj
corrcoef
cos
cosd
cosh
cot
cotd
coth
cov
cplxpair
cputime
createClassFromWsdl
createCopy (inputParser)
createSoapMessage
cross
csc
cscd
csch
csvread
csvwrite
ctranspose (timeseries)
cumprod
cumsum
cumtrapz
curl
customverctrl
cylinder
daqread
daspect
datacursormode

2-7

2 Functions — Alphabetical List

datatipinfo
date
datenum
datestr
datetick
datevec
dbclear
dbcont
dbdown
dblquad
dbmex
dbquit
dbstack
dbstatus
dbstep
dbstop
dbtype
dbup
dde23
ddeadv
ddeexec
ddeget
ddeinit
ddepoke
ddereq
ddesd
ddeset
ddeterm
ddeunadv
deal
deblank
debug
dec2base
dec2bin
dec2hex
decic
deconv

2-8

del2
delaunay
delaunay3
delaunayn
delete
delete (COM)
delete (ftp)
delete (serial)
delete (timer)
deleteproperty
delevent
delsample
delsamplefromcollection
demo
depdir
depfun
det
detrend
detrend (timeseries)
deval
diag
dialog
diary
diff
diffuse
dir
dir (ftp)
disp
disp (memmapfile)
disp (MException)
disp (serial)
disp (timer)
display
divergence
dlmread
dlmwrite
dmperm

2-9

2 Functions — Alphabetical List

doc
docopt
docsearch
dos
dot
double
dragrect
drawnow
dsearch
dsearchn
echo
echodemo
edit
eig
eigs
ellipj
ellipke
ellipsoid
else
elseif
enableservice
end
eomday
eps
eq
eq (MException)
erf, erfc, erfcx, erfinv, erfcinv
error
errorbar
Errorbarseries Properties
errordlg
etime
etree
etreeplot
eval
evalc
evalin

2-10

eventlisteners
events
Execute
exifread
exist
exit
exp
expint
expm
expm1
export2wsdlg
eye
ezcontour
ezcontourf
ezmesh
ezmeshc
ezplot
ezplot3
ezpolar
ezsurf
ezsurfc
factor
factorial
false
fclose
fclose (serial)
feather
feof
ferror
feval
Feval (COM)
fft
fft2
fftn
fftshift
fftw
fgetl

2-11

2 Functions — Alphabetical List

fgetl (serial)
fgets
fgets (serial)
fieldnames
figure
Figure Properties
figurepalette
fileattrib
filebrowser
File Formats
filemarker
fileparts
filehandle
filesep
fill
fill3
filter
filter (timeseries)
filter2
find
findall
findfigs
findobj
findstr
finish
fitsinfo
fitsread
fix
flipdim
fliplr
flipud
floor
flops
flow
fminbnd
fminsearch
fopen

2-12

fopen (serial)
for
format
fplot
fprintf
fprintf (serial)
frame2im
frameedit
fread
fread (serial)
freqspace
frewind
fscanf
fscanf (serial)
fseek
ftell
ftp
full
fullfile
func2str
function
function_handle (@)
functions
funm
fwrite
fwrite (serial)
fzero
gallery
gamma, gammainc, gammaln
gca
gcbf
gcbo
gcd
gcf
gco
ge
genpath

2-13

2 Functions — Alphabetical List

genvarname
get
get (COM)
get (memmapfile)
get (serial)
get (timer)
get (timeseries)
get (tscollection)
getabstime (timeseries)
getabstime (tscollection)
getappdata
GetCharArray
getdatasamplesize
getenv
getfield
getframe
GetFullMatrix
getinterpmethod
getpixelposition
getpref
getqualitydesc
getReport (MException)
getsampleusingtime (timeseries)
getsampleusingtime (tscollection)
gettimeseriesnames
gettsafteratevent
gettsafterevent
gettsatevent
gettsbeforeatevent
gettsbeforeevent
gettsbetweenevents
GetVariable
GetWorkspaceData
ginput
global
gmres
gplot

2-14

grabcode
gradient
graymon
grid
griddata
griddata3
griddatan
gsvd
gt
gtext
guidata
guide
guihandles
gunzip
gzip
hadamard
hankel
hdf
hdf5
hdf5info
hdf5read
hdf5write
hdfinfo
hdfread
hdftool
help
helpbrowser
helpdesk
helpdlg
helpwin
hess
hex2dec
hex2num
hgexport
hggroup
Hggroup Properties
hgload

2-15

2 Functions — Alphabetical List

hgsave
hgtransform
Hgtransform Properties
hidden
hilb
hist
histc
hold
home
horzcat
horzcat (tscollection)
hostid
hsv2rgb
hypot
i
idealfilter (timeseries)
idivide
if
ifft
ifft2
ifftn
ifftshift
ilu
im2frame
im2java
imag
image
Image Properties
imagesc
imfinfo
imformats
import
importdata
imread
imwrite
ind2rgb
ind2sub

2-16

Inf
inferiorto
info
inline
inmem
inpolygon
input
inputdlg
inputname
inputParser
inspect
instrcallback
instrfind
instrfindall
int2str
int8, int16, int32, int64
interfaces
interp1
interp1q
interp2
interp3
interpft
interpn
interpstreamspeed
intersect
intmax
intmin
intwarning
inv
invhilb
invoke
ipermute
iqr (timeseries)
is*
isa
isappdata
iscell

2-17

2 Functions — Alphabetical List

iscellstr
ischar
iscom
isdir
isempty
isempty (timeseries)
isempty (tscollection)
isequal
isequal (MException)
isequalwithequalnans
isevent
isfield
isfinite
isfloat
isglobal
ishandle
ishold
isinf
isinteger
isinterface
isjava
iskeyword
isletter
islogical
ismac
ismember
ismethod
isnan
isnumeric
isobject
isocaps
isocolors
isonormals
isosurface
ispc
ispref
isprime

2-18

isprop
isreal
isscalar
issorted
isspace
issparse
isstr
isstrprop
isstruct
isstudent
isunix
isvalid (serial)
isvalid (timer)
isvarname
isvector
j
javaaddpath
javaArray
javachk
javaclasspath
javaMethod
javaObject
javarmpath
keyboard
kron
last (MException)
lasterr
lasterror
lastwarn
lcm
ldl
ldivide, rdivide
le
legend
legendre
length
length (serial)

2-19

2 Functions — Alphabetical List

length (timeseries)
length (tscollection)
libfunctions
libfunctionsview
libisloaded
libpointer
libstruct
license
light
Light Properties
lightangle
lighting
lin2mu
line
Line Properties
Lineseries Properties
LineSpec
linkaxes
linkprop
linsolve
linspace
listdlg
listfonts
load
load (COM)
load (serial)
loadlibrary
loadobj
log
log10
log1p
log2
logical
loglog
logm
logspace
lookfor

2-20

lower
ls
lscov
lsqnonneg
lsqr
lt
lu
luinc
magic
makehgtform
mat2cell
mat2str
material
matlabcolon (matlab:)
matlabrc
matlabroot
matlab (UNIX)
matlab (Windows)
max
max (timeseries)
MaximizeCommandWindow
maxNumCompThreads
mean
mean (timeseries)
median
median (timeseries)
memmapfile
memory
MException
menu
mesh, meshc, meshz
meshgrid
methods
methodsview
mex
mexext
mfilename

2-21

2 Functions — Alphabetical List

mget
min
min (timeseries)
MinimizeCommandWindow
minres
mislocked
mkdir
mkdir (ftp)
mkpp
mldivide \, mrdivide /
mlint
mlintrpt
mlock
mmfileinfo
mmreader
mod
mode
more
move
movefile
movegui
movie
movie2avi
mput
msgbox
mtimes
mu2lin
multibandread
multibandwrite
munlock
namelengthmax
NaN
nargchk
nargin, nargout
nargoutchk
native2unicode
nchoosek

2-22

ndgrid
ndims
ne
ne (MException)
newplot
nextpow2
nnz
noanimate
nonzeros
norm
normest
not
notebook
now
nthroot
null
num2cell
num2hex
num2str
numel
nzmax
ode15i
ode23, ode45, ode113, ode15s, ode23s, ode23t, ode23tb
odefile
odeget
odeset
odextend
ones
open
openfig
opengl
openvar
optimget
optimset
or
ordeig
orderfields

2-23

2 Functions — Alphabetical List

ordqz
ordschur
orient
orth
otherwise
pack
padecoef
pagesetupdlg
pan
pareto
parse (inputParser)
parseSoapResponse
partialpath
pascal
patch
Patch Properties
path
path2rc
pathdef
pathsep
pathtool
pause
pbaspect
pcg
pchip
pcode
pcolor
pdepe
pdeval
peaks
perl
perms
permute
persistent
pi
pie
pie3

2-24

pinv
planerot
playshow
plot
plot (timeseries)
plot3
plotbrowser
plotedit
plotmatrix
plottools
plotyy
pol2cart
polar
poly
polyarea
polyder
polyeig
polyfit
polyint
polyval
polyvalm
pow2
power
ppval
prefdir
preferences
primes
print, printopt
printdlg
printpreview
prod
profile
profsave
propedit
propedit (COM)
propertyeditor
psi

2-25

2 Functions — Alphabetical List

publish
PutCharArray
PutFullMatrix
PutWorkspaceData
pwd
qmr
qr
qrdelete
qrinsert
qrupdate
quad
quadgk
quadl
quadv
questdlg
quit
Quit (COM)
quiver
quiver3
Quivergroup Properties
qz
rand
randn
randperm
rank
rat, rats
rbbox
rcond
read
readasync
real
reallog
realmax
realmin
realpow
realsqrt
record

2-26

rectangle
Rectangle Properties
rectint
recycle
reducepatch
reducevolume
refresh
refreshdata
regexp, regexpi
regexprep
regexptranslate
registerevent
rehash
release
rem
removets
rename
repmat
resample (timeseries)
resample (tscollection)
reset
reshape
residue
restoredefaultpath
rethrow
rethrow (MException)
return
rgb2hsv
rgbplot
ribbon
rmappdata
rmdir
rmdir (ftp)
rmfield
rmpath
rmpref
root object

2-27

2 Functions — Alphabetical List

Root Properties
roots
rose
rosser
rot90
rotate
rotate3d
round
rref
rsf2csf
run
save
save (COM)
save (serial)
saveas
saveobj
savepath
scatter
scatter3
Scattergroup Properties
schur
script
sec
secd
sech
selectmoveresize
semilogx, semilogy
sendmail
serial
serialbreak
set
set (COM)
set (serial)
set (timer)
set (timeseries)
set (tscollection)
setabstime (timeseries)

2-28

setabstime (tscollection)
setappdata
setdiff
setenv
setfield
setinterpmethod
setpixelposition
setpref
setstr
settimeseriesnames
setxor
shading
shiftdim
showplottool
shrinkfaces
sign
sin
sind
single
sinh
size
size (serial)
size (timeseries)
size (tscollection)
slice
smooth3
sort
sortrows
sound
soundsc
spalloc
sparse
spaugment
spconvert
spdiags
specular
speye

2-29

2 Functions — Alphabetical List

spfun
sph2cart
sphere
spinmap
spline
spones
spparms
sprand
sprandn
sprandsym
sprank
sprintf
spy
sqrt
sqrtm
squeeze
ss2tf
sscanf
stairs
Stairseries Properties
start
startat
startup
std
std (timeseries)
stem
stem3
Stemseries Properties
stop
stopasync
str2double
str2func
str2mat
str2num
strcat
strcmp, strcmpi
stream2

2-30

stream3
streamline
streamparticles
streamribbon
streamslice
streamtube
strfind
strings
strjust
strmatch
strncmp, strncmpi
strread
strrep
strtok
strtrim
struct
struct2cell
structfun
strvcat
sub2ind
subplot
subsasgn
subsindex
subspace
subsref
substruct
subvolume
sum
sum (timeseries)
superiorto
support
surf, surfc
surf2patch
surface
Surface Properties
Surfaceplot Properties
surfl

2-31

2 Functions — Alphabetical List

surfnorm
svd
svds
swapbytes
switch
symamd
symbfact
symmlq
symmmd
symrcm
symvar
synchronize
syntax
system
tan
tand
tanh
tar
tempdir
tempname
tetramesh
texlabel
text
Text Properties
textread
textscan
textwrap
throw (MException)
throwAsCaller (MException)
tic, toc
timer
timerfind
timerfindall
timeseries
title
todatenum
toeplitz

2-32

toolboxdir
trace
transpose (timeseries)
trapz
treelayout
treeplot
tril
trimesh
triplequad
triplot
trisurf
triu
true
try
tscollection
tsdata.event
tsearch
tsearchn
tsprops
tstool
type
typecast
uibuttongroup
Uibuttongroup Properties
uicontextmenu
Uicontextmenu Properties
uicontrol
Uicontrol Properties
uigetdir
uigetfile
uigetpref
uiimport
uimenu
Uimenu Properties
uint8, uint16, uint32, uint64
uiopen
uipanel

2-33

2 Functions — Alphabetical List

Uipanel Properties
uipushtool
Uipushtool Properties
uiputfile
uiresume, uiwait
uisave
uisetcolor
uisetfont
uisetpref
uistack
uitoggletool
Uitoggletool Properties
uitoolbar
Uitoolbar Properties
undocheckout
unicode2native
union
unique
unix
unloadlibrary
unmkpp
unregisterallevents
unregisterevent
untar
unwrap
unzip
upper
urlread
urlwrite
usejava
validateattributes
validatestring
vander
var
var (timeseries)
varargin
varargout

2-34

vectorize
ver
verctrl
verLessThan
version
vertcat
vertcat (timeseries)
vertcat (tscollection)
view
viewmtx
volumebounds
voronoi
voronoin
wait
waitbar
waitfor
waitforbuttonpress
warndlg
warning
waterfall
wavfinfo
wavplay
wavread
wavrecord
wavwrite
web
weekday
what
whatsnew
which
while
whitebg
who, whos
wilkinson
winopen
winqueryreg
wk1finfo

2-35

2 Functions — Alphabetical List

wk1read
wk1write
workspace
xlabel, ylabel, zlabel
xlim, ylim, zlim
xlsfinfo
xlsread
xlswrite
xmlread
xmlwrite
xor
xslt
zeros
zip
zoom

2-36

factor

Purpose Prime factors

Syntax f = factor(n)

Description f = factor(n) returns a row vector containing the prime factors of n.

Examples f = factor(123)
f =

3 41

See Also isprime, primes

2-1088

factorial

Purpose Factorial function

Syntax factorial(N)

Description factorial(N), for scalar N, is the product of all the integers from 1 to
N, i.e. prod(1:n). When N is an N-dimensional array, factorial(N) is
the factorial for each element of N.

Since double precision numbers only have about 15 digits, the answer is
only accurate for n <= 21. For larger n, the answer will have the right
magnitude, and is accurate for the first 15 digits.

See Also prod

2-1089

false

Purpose Logical 0 (false)

Syntax false
false(n)
false(m, n)
false(m, n, p, ...)
false(size(A))

Description false is shorthand for logical(0).

false(n) is an n-by-n matrix of logical zeros.

false(m, n) or false([m, n]) is an m-by-n matrix of logical zeros.

false(m, n, p, ...) or false([m n p ...]) is an
m-by-n-by-p-by-... array of logical zeros.

Note The size inputs m, n, p, ... should be nonnegative integers.
Negative integers are treated as 0.

false(size(A)) is an array of logical zeros that is the same size as
array A.

Remarks false(n) is much faster and more memory efficient than
logical(zeros(n)).

See Also true, logical

2-1090

fclose

Purpose Close one or more open files

Syntax status = fclose(fid)
status = fclose('all')

Description status = fclose(fid) closes the specified file if it is open, returning 0
if successful and -1 if unsuccessful. Argument fid is a file identifier
associated with an open file. (See fopen for a complete description of
fid).

If fid does not represent an open file, or if it is equal to 0, 1, or 2, then
fclose throws an error.

status = fclose('all') closes all open files (except standard input,
output, and error), returning 0 if successful and -1 if unsuccessful.

See Also ferror, fopen, fprintf, fread, frewind, fscanf, fseek, ftell, fwrite

2-1091

fclose (serial)

Purpose Disconnect serial port object from device

Syntax fclose(obj)

Arguments obj A serial port object or an array of serial port objects.

Description fclose(obj) disconnects obj from the device.

Remarks If obj was successfully disconnected, then the Status property is
configured to closed and the RecordStatus property is configured to
off. You can reconnect obj to the device using the fopen function.

An error is returned if you issue fclose while data is being written
asynchronously. In this case, you should abort the write operation with
the stopasync function, or wait for the write operation to complete.

If you use the help command to display help for fclose, then you need
to supply the pathname shown below.

help serial/fclose

Example This example creates the serial port object s, connects s to the device,
writes and reads text data, and then disconnects s from the device
using fclose.

s = serial('COM1');
fopen(s)
fprintf(s, '*IDN?')
idn = fscanf(s);
fclose(s)

At this point, the device is available to be connected to a serial port
object. If you no longer need s, you should remove from memory with
the delete function, and remove it from the workspace with the clear
command.

2-1092

fclose (serial)

See Also Functions

clear, delete, fopen, stopasync

Properties

RecordStatus, Status

2-1093

feather

Purpose Plot velocity vectors

GUI
Alternatives

Use the Plot Selector to graph selected variables in the Workspace
Browser and the Plot Catalog, accessed from the Figure Palette.
Directly manipulate graphs in plot edit mode, and modify them using
the Property Editor. For details, see “Working in Plot Edit Mode”, and
“The Figure Palette” in the MATLAB Graphics documentation, and
also Creating Graphics from the Workspace Browser in the MATLAB
Desktop documentation.

Syntax feather(U,V)
feather(Z)
feather(...,LineSpec)
feather(axes_handle,...)
h = feather(...)

Description A feather plot displays vectors emanating from equally spaced points
along a horizontal axis. You express the vector components relative to
the origin of the respective vector.

feather(U,V) displays the vectors specified by U and V, where U
contains the x components as relative coordinates, and V contains the y
components as relative coordinates.

feather(Z) displays the vectors specified by the complex numbers in Z.
This is equivalent to feather(real(Z),imag(Z)).

feather(...,LineSpec) draws a feather plot using the line type,
marker symbol, and color specified by LineSpec.

feather(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = feather(...) returns the handles to line objects in h.

2-1094

feather

Examples Create a feather plot showing the direction of theta.

theta = (-90:10:90)*pi/180;
r = 2*ones(size(theta));
[u,v] = pol2cart(theta,r);
feather(u,v);

See Also compass, LineSpec, rose

“Direction and Velocity Plots” on page 1-89 for related functions

2-1095

feof

Purpose Test for end-of-file

Syntax eofstat = feof(fid)

Description eofstat = feof(fid) returns 1 if the end-of-file indicator for the file
fid has been set and 0 otherwise. (See fopen for a complete description
of fid.)

The end-of-file indicator is set when there is no more input from the file.

See Also fopen

2-1096

ferror

Purpose Query MATLAB about errors in file input or output

Syntax message = ferror(fid)
message = ferror(fid, 'clear')
[message,errnum] = ferror(...)

Description message = ferror(fid) returns the error string message. Argument
fid is a file identifier associated with an open file (see fopen for a
complete description of fid).

message = ferror(fid, 'clear') clears the error indicator for the
specified file.

[message,errnum] = ferror(...) returns the error status number
errnum of the most recent file I/O operation associated with the specified
file.

If the most recent I/O operation performed on the specified file was
successful, the value of message is empty and ferror returns an errnum
value of 0.

A nonzero errnum indicates that an error occurred in the most recent
file I/O operation. The value of message is a string that can contain
information about the nature of the error. If the message is not helpful,
consult the C run-time library manual for your host operating system
for further details.

See Also fclose, fopen, fprintf, fread, fscanf, fseek, ftell, fwrite

2-1097

feval

Purpose Evaluate function

Syntax [y1, y2, ...] = feval(fhandle, x1, ..., xn)
[y1, y2, ...] = feval(function, x1, ..., xn)

Description [y1, y2, ...] = feval(fhandle, x1, ..., xn) evaluates the
function handle, fhandle, using arguments x1 through xn. If the
function handle is bound to more than one built-in or M-file, (that is,
it represents a set of overloaded functions), then the data type of the
arguments x1 through xn determines which function is dispatched to.

Note It is not necessary to use feval to call a function by means of a
function handle. This is explained in “Calling a Function Using Its
Handle” in the MATLAB Programming documentation.

[y1, y2, ...] = feval(function, x1, ..., xn). If function is a
quoted string containing the name of a function (usually defined by an
M-file), then feval(function, x1, ..., xn) evaluates that function
at the given arguments. The function parameter must be a simple
function name; it cannot contain path information.

Remarks The following two statements are equivalent.

[V,D] = eig(A)
[V,D] = feval(@eig, A)

Examples The following example passes a function handle, fhandle, in a call to
fminbnd. The fhandle argument is a handle to the humps function.

fhandle = @humps;
x = fminbnd(fhandle, 0.3, 1);

The fminbnd function uses feval to evaluate the function handle that
was passed in.

2-1098

feval

function [xf, fval, exitflag, output] = ...
fminbnd(funfcn, ax, bx, options, varargin)

.

.

.
fx = feval(funfcn, x, varargin{:});

See Also assignin, function_handle, functions, builtin, eval, evalin

2-1099

Feval (COM)

Purpose Evaluate MATLAB function in server

Syntax MATLAB Client
result = h.Feval('functionname', numout, arg1, arg2, ...)
result = Feval(h, 'functionname', numout, arg1, arg2, ...)
result = invoke(h, 'Feval', 'functionname', numout, ...
arg1, arg2, ...)

Method Signatures
HRESULT Feval([in] BSTR functionname, [in] long nargout,
[out] VARIANT* result, [in, optional] VARIANT arg1, arg2, ...)

Visual Basic Client
Feval(String functionname, long numout,
arg1, arg2, ...) As Object

Description Feval executes the MATLAB function specified by the string
functionname in the Automation server attached to handle h.

Indicate the number of outputs to be returned by the function in a
1-by-1 double array, numout. The server returns output from the
function in the cell array, result.

You can specify as many as 32 input arguments to be passed to the
function. These arguments follow numout in the Feval argument
list. There are four ways to pass an argument to the function being
evaluated.

Passing Mechanism Description

Pass the value itself To pass any numeric or string value, specify the value in the
Feval argument list:

a = h.Feval('sin', 1, -pi:0.01:pi);

2-1100

Feval (COM)

Passing Mechanism Description

Pass a client variable To pass an argument that is assigned to a variable in the
client, specify the variable name alone:

x = -pi:0.01:pi;
a = h.Feval('sin', 1, x);

Reference a server variable To reference a variable that is defined in the server, specify
the variable name followed by an equals (=) sign:

h.PutWorkspaceData('x', 'base', -pi:0.01:pi);
a = h.Feval('sin', 1, 'x=');

Note that the server variable is not reassigned.

Remarks If you want output from Feval to be displayed at the client window,
you must assign a returned value.

Server function names, like Feval, are case sensitive when using the
first two syntaxes shown in the Syntax section.

There is no difference in the operation of the three syntaxes shown
above for the MATLAB client.

Examples Passing Arguments — MATLAB Client

This section contains a number of examples showing how to use Feval
to execute MATLAB commands on a MATLAB Automation server.

• Concatenate two strings in the server by passing the input strings
in a call to strcat through Feval (strcat deletes trailing spaces;
use leading spaces):

h = actxserver('matlab.application');
a = h.Feval('strcat', 1, 'hello', ' world')
a =

'hello world'

2-1101

Feval (COM)

• Perform the same concatenation, passing a string and a local variable
clistr that contains the second string:

clistr = ' world';
a = h.Feval('strcat', 1, 'hello', clistr)
a =

'hello world'

• This next example is different in that the variable srvstr is defined
in the server, not the client. Putting an equals sign after a variable
name (e.g., srvstr=) indicates that it a server variable, and that
MATLAB should not expect the variable to be defined on the client:

% Define the variable srvstr on the server.

h.PutCharArray('srvstr', 'base', ' world')

% Pass the name of the server variable using 'name=' syntax

a = h.Feval('strcat', 1, 'hello', 'srvstr=')

a =

'hello world'

Visual Basic .NET Client

Here are the same examples shown above, but written for a Visual Basic
.NET client. These examples return the same strings as shown above.

• Pass the two strings to the MATLAB function strcat on the server:

Dim Matlab As Object
Dim out As Object
Matlab = CreateObject("matlab.application")
out = Matlab.Feval("strcat", 1, "hello", " world")

• Define clistr locally and pass this variable:

Dim clistr As String
clistr = " world"
out = Matlab.Feval("strcat", 1, "hello", clistr)

2-1102

Feval (COM)

• Pass the name of a variable defined on the server:

Matlab.PutCharArray("srvstr", "base", " world")
out = Matlab.Feval("strcat", 1, "hello", "srvstr=")

Feval Return Values — MATLAB Client. Feval returns data from the
evaluated function in a cell array. The cell array has one row for every
return value. You can control how many values are returned using the
second input argument to Feval, as shown in this example.

The second argument in the following example specifies that Feval
return three outputs from the fileparts function. As is the case here,
you can request fewer than the maximum number of return values for
a function (fileparts can return up to four):

a = h.Feval('fileparts', 3, 'd:\work\ConsoleApp.cpp')
a =

'd:\work'
'ConsoleApp'
'.cpp'

Convert the returned values from the cell array a to char arrays:

a{:}
ans =
d:\work

ans =
ConsoleApp

ans =
.cpp

Feval Return Values — Visual Basic .NET Client

Here is the same example, but coded in Visual Basic. Define the
argument returned by Feval as an Object.

Dim Matlab As Object

Dim out As Object

2-1103

Feval (COM)

Matlab = CreateObject("matlab.application")

out = Matlab.Feval("fileparts", 3, "d:\work\ConsoleApp.cpp")

See Also Execute, PutFullMatrix, GetFullMatrix, PutCharArray,
GetCharArray

2-1104

fft

Purpose Discrete Fourier transform

Syntax Y = fft(X)
Y = fft(X,n)
Y = fft(X,[],dim)
Y = fft(X,n,dim)

Definition The functions X = fft(x) and x = ifft(X) implement the transform
and inverse transform pair given for vectors of length by:

where

is an th root of unity.

Description Y = fft(X) returns the discrete Fourier transform (DFT) of vector X,
computed with a fast Fourier transform (FFT) algorithm.

If X is a matrix, fft returns the Fourier transform of each column of
the matrix.

If X is a multidimensional array, fft operates on the first nonsingleton
dimension.

Y = fft(X,n) returns the n-point DFT. If the length of X is less than n,
X is padded with trailing zeros to length n. If the length of X is greater
than n, the sequence X is truncated. When X is a matrix, the length of
the columns are adjusted in the same manner.

2-1105

fft

Y = fft(X,[],dim) and Y = fft(X,n,dim) applies the FFT operation
across the dimension dim.

Examples A common use of Fourier transforms is to find the frequency components
of a signal buried in a noisy time domain signal. Consider data sampled
at 1000 Hz. Form a signal containing a 50 Hz sinusoid of amplitude 0.7
and 120 Hz sinusoid of amplitude 1 and corrupt it with some zero-mean
random noise:

Fs = 1000; % Sampling frequency
T = 1/Fs; % Sample time
L = 1000; % Length of signal
t = (0:L-1)*T; % Time vector
% Sum of a 50 Hz sinusoid and a 120 Hz sinusoid
x = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t);
y = x + 2*randn(size(t)); % Sinusoids plus noise
plot(Fs*t(1:50),y(1:50))
title('Signal Corrupted with Zero-Mean Random Noise')
xlabel('time (milliseconds)')

2-1106

fft

It is difficult to identify the frequency components by looking at the
original signal. Converting to the frequency domain, the discrete
Fourier transform of the noisy signal y is found by taking the fast
Fourier transform (FFT):

NFFT = 2^nextpow2(L); % Next power of 2 from length of y
Y = fft(y,NFFT)/L;
f = Fs/2*linspace(0,1,NFFT/2);

% Plot single-sided amplitude spectrum.
plot(f,2*abs(Y(1:NFFT/2)))
title('Single-Sided Amplitude Spectrum of y(t)')
xlabel('Frequency (Hz)')
ylabel('|Y(f)|')

The main reason the amplitudes are not exactly at 0.7 and 1 is because
of the noise. Several executions of this code (including recomputation
of y) will produce different approximations to 0.7 and 1. The other
reason is that you have a finite length signal. Increasing L from 1000 to

2-1107

fft

10000 in the example above will produce much better approximations
on average.

Algorithm The FFT functions (fft, fft2, fftn, ifft, ifft2, ifftn) are based on a
library called FFTW [3],[4]. To compute an -point DFT when is
composite (that is, when), the FFTW library decomposes
the problem using the Cooley-Tukey algorithm [1], which first computes

transforms of size , and then computes transforms of size
. The decomposition is applied recursively to both the - and
-point DFTs until the problem can be solved using one of several

machine-generated fixed-size "codelets." The codelets in turn use several
algorithms in combination, including a variation of Cooley-Tukey [5],
a prime factor algorithm [6], and a split-radix algorithm [2]. The
particular factorization of is chosen heuristically.

When is a prime number, the FFTW library first decomposes an
-point problem into three ()-point problems using Rader’s

algorithm [7]. It then uses the Cooley-Tukey decomposition described
above to compute the ()-point DFTs.

For most , real-input DFTs require roughly half the computation
time of complex-input DFTs. However, when has large prime factors,
there is little or no speed difference.

The execution time for fft depends on the length of the transform. It is
fastest for powers of two. It is almost as fast for lengths that have only
small prime factors. It is typically several times slower for lengths that
are prime or which have large prime factors.

Note You might be able to increase the speed of fft using the utility
function fftw, which controls how MATLAB optimizes the algorithm
used to compute an FFT of a particular size and dimension.

2-1108

fft

Data Type
Support

fft supports inputs of data types double and single. If you call fft
with the syntax y = fft(X, ...), the output y has the same data
type as the input X.

See Also fft2, fftn, fftw, fftshift, ifft

dftmtx, filter, and freqz in the Signal Processing Toolbox

References [1] Cooley, J. W. and J. W. Tukey, “An Algorithm for the Machine
Computation of the Complex Fourier Series,”Mathematics of
Computation, Vol. 19, April 1965, pp. 297-301.

[2] Duhamel, P. and M. Vetterli, “Fast Fourier Transforms: A Tutorial
Review and a State of the Art,” Signal Processing, Vol. 19, April 1990,
pp. 259-299.

[3] FFTW (http://www.fftw.org)

[4] Frigo, M. and S. G. Johnson, “FFTW: An Adaptive Software
Architecture for the FFT,”Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing, Vol. 3, 1998, pp. 1381-1384.

[5] Oppenheim, A. V. and R. W. Schafer, Discrete-Time Signal
Processing, Prentice-Hall, 1989, p. 611.

[6] Oppenheim, A. V. and R. W. Schafer, Discrete-Time Signal
Processing, Prentice-Hall, 1989, p. 619.

[7] Rader, C. M., “Discrete Fourier Transforms when the Number of
Data Samples Is Prime,” Proceedings of the IEEE, Vol. 56, June 1968,
pp. 1107-1108.

2-1109

http://www.fftw.org

fft2

Purpose 2-D discrete Fourier transform

Syntax Y = fft2(X)
Y = fft2(X,m,n)

Description Y = fft2(X) returns the two-dimensional discrete Fourier transform
(DFT) of X, computed with a fast Fourier transform (FFT) algorithm.
The result Y is the same size as X.

Y = fft2(X,m,n) truncates X, or pads X with zeros to create an m-by-n
array before doing the transform. The result is m-by-n.

Algorithm fft2(X) can be simply computed as

fft(fft(X).').'

This computes the one-dimensional DFT of each column X, then of each
row of the result. The execution time for fft depends on the length of
the transform. It is fastest for powers of two. It is almost as fast for
lengths that have only small prime factors. It is typically several times
slower for lengths that are prime or which have large prime factors.

Note You might be able to increase the speed of fft2 using the utility
function fftw, which controls how MATLAB optimizes the algorithm
used to compute an FFT of a particular size and dimension.

Data Type
Support

fft2 supports inputs of data types double and single. If you call fft2
with the syntax y = fft2(X, ...), the output y has the same data
type as the input X.

See Also fft, fftn, fftw, fftshift, ifft2

2-1110

fftn

Purpose N-D discrete Fourier transform

Syntax Y = fftn(X)
Y = fftn(X,siz)

Description Y = fftn(X) returns the discrete Fourier transform (DFT) of X,
computed with a multidimensional fast Fourier transform (FFT)
algorithm. The result Y is the same size as X.

Y = fftn(X,siz) pads X with zeros, or truncates X, to create a
multidimensional array of size siz before performing the transform.
The size of the result Y is siz.

Algorithm fftn(X) is equivalent to

Y = X;
for p = 1:length(size(X))

Y = fft(Y,[],p);
end

This computes in-place the one-dimensional fast Fourier transform
along each dimension of X. The execution time for fft depends on the
length of the transform. It is fastest for powers of two. It is almost
as fast for lengths that have only small prime factors. It is typically
several times slower for lengths that are prime or which have large
prime factors.

Note You might be able to increase the speed of fftn using the utility
function fftw, which controls how MATLAB optimizes the algorithm
used to compute an FFT of a particular size and dimension.

Data Type
Support

fftn supports inputs of data types double and single. If you call fftn
with the syntax y = fftn(X, ...), the output y has the same data
type as the input X.

2-1111

fftn

See Also fft, fft2, fftn, fftw, ifftn

2-1112

fftshift

Purpose Shift zero-frequency component to center of spectrum

Syntax Y = fftshift(X)
Y = fftshift(X,dim)

Description Y = fftshift(X) rearranges the outputs of fft, fft2, and fftn by
moving the zero-frequency component to the center of the array. It
is useful for visualizing a Fourier transform with the zero-frequency
component in the middle of the spectrum.

For vectors, fftshift(X) swaps the left and right halves of X. For
matrices, fftshift(X) swaps the first quadrant with the third and the
second quadrant with the fourth.

For higher-dimensional arrays, fftshift(X) swaps “half-spaces” of X
along each dimension.

Y = fftshift(X,dim) applies the fftshift operation along the
dimension dim.

2-1113

fftshift

Note ifftshift will undo the results of fftshift. If the matrix X
contains an odd number of elements, ifftshift(fftshift(X)) must
be done to obtain the original X. Simply performing fftshift(X) twice
will not produce X.

Examples For any matrix X

Y = fft2(X)

has Y(1,1) = sum(sum(X)); the zero-frequency component of the signal
is in the upper-left corner of the two-dimensional FFT. For

Z = fftshift(Y)

this zero-frequency component is near the center of the matrix.

See Also circshift, fft, fft2, fftn, ifftshift

2-1114

fftw

Purpose Interface to FFTW library run-time algorithm tuning control

Syntax fftw('planner', method)
method = fftw('planner')
str = fftw('dwisdom')
str = fftw('swisdom')
fftw('dwisdom', str)
fftw('swisdom', str)

Description fftw enables you to optimize the speed of the MATLAB FFT functions
fft, ifft, fft2, ifft2, fftn, and ifftn. You can use fftw to set options
for a tuning algorithm that experimentally determines the fastest
algorithm for computing an FFT of a particular size and dimension
at run time. MATLAB records the optimal algorithm in an internal
data base and uses it to compute FFTs of the same size throughout the
current session. The tuning algorithm is part of the FFTW library that
MATLAB uses to compute FFTs.

fftw('planner', method) sets the method by which the tuning
algorithm searches for a good FFT algorithm when the dimension of
the FFT is not a power of 2. You can specify method to be one of the
following. The default method is estimate:

• 'estimate'

• 'measure'

• 'patient'

• 'exhaustive'

• 'hybrid'

When you call fftw('planner', method), the next time you call one of
the FFT functions, such as fft, the tuning algorithm uses the specified
method to optimize the FFT computation. Because the tuning involves
trying different algorithms, the first time you call an FFT function,
it might run more slowly than if you did not call fftw. However,

2-1115

fftw

subsequent calls to any of the FFT functions, for a problem of the same
size, often run more quickly than they would without using fftw.

Note The FFT functions only use the optimal FFT algorithm during
the current MATLAB session. “Reusing Optimal FFT Algorithms” on
page 2-1118 explains how to reuse the optimal algorithm in a future
MATLAB session.

If you set the method to 'estimate', the FFTW library does not use
run-time tuning to select the algorithms. The resulting algorithms
might not be optimal.

If you set the method to 'measure', the FFTW library experiments
with many different algorithms to compute an FFT of a given size and
chooses the fastest. Setting the method to 'patient' or 'exhaustive'
has a similar result, but the library experiments with even more
algorithms so that the tuning takes longer the first time you call an
FFT function. However, subsequent calls to FFT functions are faster
than with 'measure'.

If you set 'planner' to 'hybrid', MATLAB

• Sets method to 'measure' method for FFT dimensions 8192 or
smaller.

• Sets method to 'estimate' for FFT dimensions greater than 8192.

method = fftw('planner') returns the current planner method.

str = fftw('dwisdom') returns the information in the FFTW library’s
internal double-precision database as a string. The string can be saved
and then later reused in a subsequent MATLAB session using the next
syntax.

str = fftw('swisdom') returns the information in the FFTW library’s
internal single-precision database as a string.

2-1116

fftw

fftw('dwisdom', str) loads fftw wisdom represented by the string
str into the FFTW library’s internal double-precision wisdom database.
fftw('dwisdom','') or fftw('dwisdom',[]) clears the internal
wisdom database.

fftw('swisdom', str) loads fftw wisdom represented by the string
str into the FFTW library’s internal single-precision wisdom database.
fftw('swisdom','') or fftw('swisdom',[]) clears the internal
wisdom database.

Note on large powers of 2 For FFT dimensions that are powers of
2, between 214 and 222, MATLAB uses special preloaded information in
its internal database to optimize the FFT computation. No tuning is
performed when the dimension of the FTT is a power of 2, unless you
clear the database using the command fftw('wisdom', []).

For more information about the FFTW library, see
http://www.fftw.org.

Example Comparison of Speed for Different Planner Methods

The following example illustrates the run times for different settings
of planner. The example first creates some data and applies fft to it
using the default method, estimate.

t=0:.001:5;
x = sin(2*pi*50*t)+sin(2*pi*120*t);
y = x + 2*randn(size(t));

tic; Y = fft(y,1458); toc
Elapsed time is 0.000400 seconds.

If you execute the commands

tic; Y = fft(y,1458); toc

2-1117

http://www.fftw.org

fftw

a second time, MATLAB reports the elapsed time as essentially 0.
To measure the elapsed time more accurately, you can execute the
command Y = fft(y,1458) 1000 times in a loop.

tic; for k=1:1000
Y = fft(y,1458);
end; toc
Elapsed time is 0.098355 seconds.

This tells you that it takes approximately 1/1000 of a second to execute
fft(y, 1458) a single time.

For comparison, set planner to patient. Since this planner explores
possible algorithms more thoroughly than hybrid, the first time you
run fft, it takes longer to compute the results.

fftw('planner','patient')
tic;Y = fft(y,1458);toc
Elapsed time is 0.000387 seconds.

However, the next time you call fft, it runs approximately 10 times
faster than before you ran the method patient.

tic;for k=1:1000
Y=fft(y,1458);
end;toc
Elapsed time is 0.097793 seconds.

Reusing Optimal FFT Algorithms

In order to use the optimized FFT algorithm in a future MATLAB
session, first save the “wisdom” using the command

str = fftw('wisdom')

You can save str for a future session using the command

save str

The next time you open MATLAB, load str using the command

2-1118

fftw

load str

and then reload the “wisdom” into the FFTW database using the
command

fftw('wisdom', str)

See Also fft, fft2, fftn, ifft, ifft2, ifftn, fftshift.

2-1119

fgetl

Purpose Read line from file, discarding newline character

Syntax tline = fgetl(fid)

Description tline = fgetl(fid) returns the next line of the file associated with
the file identifier fid. If fgetl encounters the end-of-file indicator,
it returns -1. (See fopen for a complete description of fid.) fgetl is
intended for use with files that contain newline characters.

MATLAB reads characters using the encoding scheme associated with
the file. See fopen for more information.

The returned string tline does not include the line terminator(s) with
the text line. To obtain the line terminators, use fgets.

Examples The example reads every line of the M-file fgetl.m.

fid=fopen('fgetl.m');
while 1

tline = fgetl(fid);
if ~ischar(tline), break, end
disp(tline)

end
fclose(fid);

See Also fgets

2-1120

fgetl (serial)

Purpose Read line of text from device and discard terminator

Syntax tline = fgetl(obj)
[tline,count] = fgetl(obj)
[tline,count,msg] = fgetl(obj)

Arguments obj A serial port object.

tline Text read from the instrument, excluding the
terminator.

count The number of values read, including the terminator.

msg A message indicating if the read operation was
unsuccessful.

Description tline = fgetl(obj) reads one line of text from the device connected to
obj, and returns the data to tline. The returned data does not include
the terminator with the text line. To include the terminator, use fgets.

[tline,count] = fgetl(obj) returns the number of values read to
count.

[tline,count,msg] = fgetl(obj) returns a warning message to msg
if the read operation was unsuccessful.

Remarks Before you can read text from the device, it must be connected to obj
with the fopen function. A connected serial port object has a Status
property value of open. An error is returned if you attempt to perform a
read operation while obj is not connected to the device.

If msg is not included as an output argument and the read operation was
not successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of
values read – including the terminator – each time fgetl is issued.

If you use the help command to display help for fgetl, then you need to
supply the pathname shown below.

2-1121

fgetl (serial)

help serial/fgetl

Rules for Completing a Read Operation with fgetl

A read operation with fgetl blocks access to the MATLAB command
line until:

• The terminator specified by the Terminator property is reached.

• The time specified by the Timeout property passes.

• The input buffer is filled.

Example Create the serial port object s, connect s to a Tektronix TDS 210
oscilloscope, and write the RS232? command with the fprintf function.
RS232? instructs the scope to return serial port communications
settings.

s = serial('COM1');
fopen(s)
fprintf(s,'RS232?')

Because the default value for the ReadAsyncMode property is
continuous, data is automatically returned to the input buffer.

s.BytesAvailable
ans =

17

Use fgetl to read the data returned from the previous write operation,
and discard the terminator.

settings = fgetl(s)
settings =
9600;0;0;NONE;LF
length(settings)
ans =

16

2-1122

fgetl (serial)

Disconnect s from the scope, and remove s from memory and the
workspace.

fclose(s)
delete(s)
clear s

See Also Functions

fgets, fopen

Properties

BytesAvailable, InputBufferSize, ReadAsyncMode, Status,
Terminator, Timeout, ValuesReceived

2-1123

fgets

Purpose Read line from file, keeping newline character

Syntax tline = fgets(fid)
tline = fgets(fid, nchar)

Description tline = fgets(fid) returns the next line of the file associated with
file identifier fid. If fgets encounters the end-of-file indicator, it
returns -1. (See fopen for a complete description of fid.) fgets is
intended for use with files that contain newline characters.

MATLAB reads characters using the encoding scheme associated with
the file. See fopen for more information.

The returned string tline includes the line terminators associated
with the text line. To obtain the string without the line terminators,
use fgetl.

tline = fgets(fid, nchar) returns at most nchar characters of the
next line. No additional characters are read after the line terminators
or an end-of-file.

See Also fgetl

2-1124

fgets (serial)

Purpose Read line of text from device and include terminator

Syntax tline = fgets(obj)
[tline,count] = fgets(obj)
[tline,count,msg] = fgets(obj)

Arguments obj A serial port object.

tline Text read from the instrument, including the terminator.

count The number of bytes read, including the terminator.

msg A message indicating if the read operation was
unsuccessful.

Description tline = fgets(obj) reads one line of text from the device connected
to obj, and returns the data to tline. The returned data includes the
terminator with the text line. To exclude the terminator, use fgetl.

[tline,count] = fgets(obj) returns the number of values read to
count.

[tline,count,msg] = fgets(obj) returns a warning message to msg
if the read operation was unsuccessful.

Remarks Before you can read text from the device, it must be connected to obj
with the fopenfunction. A connected serial port object has a Status
property value of open. An error is returned if you attempt to perform a
read operation while obj is not connected to the device.

If msg is not included as an output argument and the read operation was
not successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of
values read – including the terminator – each time fgets is issued.

If you use the help command to display help for fgets, then you need to
supply the pathname shown below.

2-1125

fgets (serial)

help serial/fgets

Rules for Completing a Read Operation with fgets

A read operation with fgets blocks access to the MATLAB command
line until:

• The terminator specified by the Terminator property is reached.

• The time specified by the Timeout property passes.

• The input buffer is filled.

Example Create the serial port object s, connect s to a Tektronix TDS 210
oscilloscope, and write the RS232? command with the fprintf function.
RS232? instructs the scope to return serial port communications
settings.

s = serial('COM1');
fopen(s)
fprintf(s,'RS232?')

Because the default value for the ReadAsyncMode property is
continuous, data is automatically returned to the input buffer.

s.BytesAvailable
ans =

17

Use fgets to read the data returned from the previous write operation,
and include the terminator.

settings = fgets(s)
settings =
9600;0;0;NONE;LF
length(settings)
ans =

17

2-1126

fgets (serial)

Disconnect s from the scope, and remove s from memory and the
workspace.

fclose(s)
delete(s)
clear s

See Also Functions

fgetl, fopen

Properties

BytesAvailable, BytesAvailableFcn, InputBufferSize, Status,
Terminator, Timeout, ValuesReceived

2-1127

fieldnames

Purpose Field names of structure, or public fields of object

Syntax names = fieldnames(s)
names = fieldnames(obj)
names = fieldnames(obj, '-full')

Description names = fieldnames(s) returns a cell array of strings containing the
structure field names associated with the structure s.

names = fieldnames(obj) returns a cell array of strings containing
the names of the public data fields associated with obj, which is a
MATLAB, COM, or Java object.

names = fieldnames(obj, '-full') returns a cell array of strings
containing the name, type, attributes, and inheritance of each field
associated with obj, which is a MATLAB, COM, or Java object.

Examples Given the structure

mystr(1,1).name = 'alice';
mystr(1,1).ID = 0;
mystr(2,1).name = 'gertrude';
mystr(2,1).ID = 1

the command n = fieldnames(mystr) yields

n =
'name'
'ID'

In another example, if f is an object of Java class java.awt.Frame, the
command fieldnames(f) lists the properties of f.

f = java.awt.Frame;

fieldnames(f)
ans =

'WIDTH'

2-1128

fieldnames

'HEIGHT'
'PROPERTIES'
'SOMEBITS'
'FRAMEBITS'
'ALLBITS'

.

.

See Also setfield, getfield, isfield, orderfields, rmfield, “Using Dynamic
Field Names”

2-1129

figure

Purpose Create figure graphics object

Syntax figure
figure('PropertyName',propertyvalue,...)
figure(h)
h = figure(...)

Description figure creates figure graphics objects. Figure objects are the individual
windows on the screen in which MATLAB displays graphical output.

figure creates a new figure object using default property values.

figure('PropertyName',propertyvalue,...) creates a new figure
object using the values of the properties specified. MATLAB uses default
values for any properties that you do not explicitly define as arguments.

figure(h) does one of two things, depending on whether or not a figure
with handle h exists. If h is the handle to an existing figure, figure(h)
makes the figure identified by h the current figure, makes it visible,
and raises it above all other figures on the screen. The current figure
is the target for graphics output. If h is not the handle to an existing
figure, but is an integer, figure(h) creates a figure and assigns it the
handle h. figure(h) where h is not the handle to a figure, and is not an
integer, is an error.

h = figure(...) returns the handle to the figure object.

Remarks To create a figure object, MATLAB creates a new window whose
characteristics are controlled by default figure properties (both factory
installed and user defined) and properties specified as arguments. See
the properties section for a description of these properties.

You can specify properties as property name/property value pairs,
structure arrays, and cell arrays (see the set and get reference pages
for examples of how to specify these data types).

Use set to modify the properties of an existing figure or get to query
the current values of figure properties.

2-1130

figure

The gcf command returns the handle to the current figure and is useful
as an argument to the set and get commands.

Figures can be docked in the desktop. The Dockable property
determines whether you can dock the figure.

Making a Figure Current

The current figure is the target for graphics output. There are two ways
to make a figure h the current figure.

• Make the figure h current, visible, and displayed on top of other
figures:

figure(h)

• Make the figure h current, but do not change its visibility or stacking
with respect to other figures:

set(0,'CurrentFigure',h)

Examples Specifying Figure Size and Screen Location

To create a figure window that is one quarter the size of your screen and
is positioned in the upper left corner, use the root object’s ScreenSize
property to determine the size. ScreenSize is a four-element vector:
[left, bottom, width, height]:

scrsz = get(0,'ScreenSize');
figure('Position',[1 scrsz(4)/2 scrsz(3)/2 scrsz(4)/2])

Specifying the Figure Window Title

You can add your own title to a figure by setting the Name property and
you can turn off the figure number with the NumberTitle property:

figure('Name','Simulation Plot Window','NumberTitle','off')

See the Properties section for a description of all figure properties.

2-1131

figure

Object
Hierarchy

Setting Default Properties

You can set default figure properties only on the root level.

set(0,'DefaultFigureProperty',PropertyValue...)

where Property is the name of the figure property and PropertyValue
is the value you are specifying. Use set and get to access figure
properties.

See Also axes, uicontrol, uimenu, close, clf, gcf, rootobject

“Object Creation Functions” on page 1-94 for related functions

Figure Properties descriptions of all figure properties

See “Figure Properties” in the MATLAB Graphics User Guide for more
information on figures.

2-1132

Figure Properties

Purpose Figure properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• “The Property Editor” is an interactive tool that enables you to see
and change object property values.

• The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see “Setting Default Property
Values”.

Figure
Property
Descriptions

This section lists property names along with the type of values each
accepts. Curly braces { } enclose default values.

Alphamap
m-by-1 matrix of alpha values

Figure alphamap. This property is an m-by-1 array of non-NaN
alpha values. MATLAB accesses alpha values by their row
number. For example, an index of 1 specifies the first alpha
value, an index of 2 specifies the second alpha value, and so on.
Alphamaps can be any length. The default alphamap contains 64
values that progress linearly from 0 to 1.

Alphamaps affect the rendering of surface, image, and patch
objects, but do not affect other graphics objects.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

2-1133

Figure Properties

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions may not
need to perform actions on objects that are going to be deleted,
and therefore, can check the object’s BeingDeleted property
before acting.

BusyAction
cancel | {queue}

Callback function interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callback functions. If there is a callback
function executing, callback functions invoked subsequently
always attempt to interrupt it. If the Interruptible property of
the object whose callback is executing is set to on (the default),
then interruption occurs at the next point where the event
queue is processed. If the Interruptible property is off, the
BusyAction property (of the object owning the executing callback)
determines how MATLAB handles the event. The choices are

• cancel — Discard the event that attempted to execute a second
callback function.

• queue — Queue the event that attempted to execute a second
callback function until the current callback finishes.

ButtonDownFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Button press callback function. A callback function that executes
whenever you press a mouse button while the pointer is in the
figure window, but not over a child object (i.e., uicontrol, uipanel,
axes, or axes child). Define the ButtonDownFcn as a function
handle. The function must define at least two input arguments
(handle of figure associated with the mouse button press and an
empty event structure)

2-1134

Figure Properties

See the figure’s SelectionType property to determine whether
modifier keys were also pressed.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

Using the ButtonDownFcn

This example, creates a figure and defines a function handle
callback for the ButtonDownFcn property. When the user
Ctrl-clicks the figure, the callback creates a new figure having
the same callback.

Click to view in editor — This link opens the MATLAB editor with
the following example.

Click to run example — Ctrl-click the figure to create a new figure.

fh_cb = @newfig; % Create function handle for newfig function

figure('ButtonDownFcn',fh_cb);

function newfig(src,evnt)

if strcmp(get(src,'SelectionType'),'alt')

figure('ButtonDownFcn',fh_cb)

else

disp('Use control-click to create a new figure')

end

end

Children
vector of handles

Children of the figure. A vector containing the handles of all axes,
user-interface objects displayed within the figure. You can change
the order of the handles and thereby change the stacking of the
objects on the display.

2-1135

Figure Properties

When an object’s HandleVisibility property is set to off, it is not
listed in its parent’s Children property. See HandleVisibility
for more information.

Clipping
{on} | off

This property has no effect on figures.

CloseRequestFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Function executed on figure close. This property defines a function
that MATLAB executes whenever you issue the close command
(either a close(figure_handle) or a close all), when you close
a figure window from the computer’s window manager menu, or
when you quit MATLAB.

The CloseRequestFcn provides a mechanism to intervene in the
closing of a figure. It allows you to, for example, display a dialog
box to ask a user to confirm or cancel the close operation or to
prevent users from closing a figure that contains a GUI.

The basic mechanism is

• A user issues the close command from the command line,
by closing the window from the computer’s window manager
menu, or by quitting MATLAB.

• The close operation executes the function defined by the figure
CloseRequestFcn. The default function is named closereq
and is predefined as

if isempty(gcbf)
if length(dbstack) == 1

warning('MATLAB:closereq', ...
'Calling closereq from the command line is now obsolete

end

2-1136

Figure Properties

close force
else

delete(gcbf);
end

These statements unconditionally delete the current figure,
destroying the window. closereq takes advantage of the fact that
the close command makes all figures specified as arguments the
current figure before calling the respective close request function.

Note that closereq honors the user’s ShowHiddenHandles setting
during figure deletion. This means that hidden figures are not
deleted.

Redefining the CloseRequestFcn

Define the CloseRequestFcn as a function handle. For example,

set(gcf,'CloseRequestFcn',@my_closefcn)

Where @my_closefcn is a function handle referencing function
my_closefcn.

Unless the close request function calls delete or close,
MATLAB never closes the figure. (Note that you can always call
delete(figure_handle) from the command line if you have
created a window with a nondestructive close request function.)

A useful application of the close request function is to display a
question dialog box asking the user to confirm the close operation.
The following function illustrates how to do this.

Click to view in editor — This link opens the MATLAB editor with
the following example.

Click to run example — Ctrl-click the figure to create a new figure.

function my_closereq(src,evnt)

2-1137

Figure Properties

% User-defined close request function
% to display a question dialog box

selection = questdlg('Close This Figure?',...
'Close Request Function',...
'Yes','No','Yes');

switch selection,
case 'Yes',

delete(gcf)
case 'No'
return

end
end

Now create a figure using the yourCloseRequestFcn:

figure('CloseRequestFcn',@my_closereq)

To make this function your default close request function, set a
default value on the root level.

set(0,'DefaultFigureCloseRequestFcn',@my_closereq)

MATLAB then uses this setting for the CloseRequestFcn of all
subsequently created figures.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

Color
ColorSpec

Background color. This property controls the figure window
background color. You can specify a color using a three-element
vector of RGB values or one of the MATLAB predefined names.
See ColorSpec for more information.

Colormap
m-by-3 matrix of RGB values

2-1138

Figure Properties

Figure colormap. This property is an m-by-3 array of red, green,
and blue (RGB) intensity values that define m individual colors.
MATLAB accesses colors by their row number. For example, an
index of 1 specifies the first RGB triplet, an index of 2 specifies
the second RGB triplet, and so on.

Number of Colors Allowed

Colormaps can be any length (up to 256 only on MS-Windows),
but must be three columns wide. The default figure colormap
contains 64 predefined colors.

Objects That Use Colormaps

Colormaps affect the rendering of surface, image, and patch
objects, but generally do not affect other graphics objects. See
colormap and ColorSpec for more information.

CreateFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Callback function executed during figure creation. This property
defines a callback function that executes when MATLAB creates a
figure object. You must define this property as a default value on
the root level. For example, the statement

set(0,'DefaultFigureCreateFcn',@fig_create)

defines a default value on the root level that causes all figures
created to execute the setup function fig_create, which is
defined below:

function fig_create(src,evnt)
set(src,'Color',[.2 .1 .5],...

'IntegerHandle','off',...
'MenuBar','none',...
'ToolBar','none')

2-1139

Figure Properties

end

MATLAB executes the create function after setting all properties
for the figure. Setting this property on an existing figure object
has no effect.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

CurrentAxes
handle of current axes

Target axes in this figure. MATLAB sets this property to the
handle of the figure’s current axes (i.e., the handle returned by
the gca command when this figure is the current figure). In all
figures for which axes children exist, there is always a current
axes. The current axes does not have to be the topmost axes, and
setting an axes to be the CurrentAxes does not restack it above
all other axes.

You can make an axes current using the axes and
set commands. For example, axes(axes_handle) and
set(gcf,'CurrentAxes',axes_handle) both make the axes
identified by the handle axes_handle the current axes. In
addition, axes(axes_handle) restacks the axes above all other
axes in the figure.

If a figure contains no axes, get(gcf,'CurrentAxes') returns
the empty matrix. Note that the gca function actually creates an
axes if one does not exist.

CurrentCharacter
single character

2-1140

Figure Properties

Last key pressed. MATLAB sets this property to the last key
pressed in the figure window. CurrentCharacter is useful for
obtaining user input.

CurrentMenu
(Obsolete)

This property produces a warning message when queried. It has
been superseded by the root CallbackObject property.

CurrentObject
object handle

Handle of current object. MATLAB sets this property to the
handle of the last object clicked on by the mouse. This object is
the front-most object in the view. You can use this property to
determine which object a user has selected. The function gco
provides a convenient way to retrieve the CurrentObject of the
CurrentFigure.

Note that the HitTest property controls whether an object can
become the CurrentObject.

Hidden Handle Objects

Clicking on an object whose HandleVisibility property is set
to off (such as axis labels and title) causes the CurrentObject
property to be set to empty []. To avoid returning an empty
value when users click on hidden objects, set the hidden object’s
HitTest property to off.

Mouse Over

Note that cursor motion over objects does not update the
CurrentObject; you must click on objects to update this property.
See the CurrentPoint property for related information.

2-1141

Figure Properties

CurrentPoint
two-element vector: [x-coordinate, y-coordinate]

Location of last button click in this figure. MATLAB sets this
property to the location of the pointer at the time of the most
recent mouse button press. MATLAB updates this property
whenever you press the mouse button while the pointer is in the
figure window.

Note that if you select a point in the figure and then use the
values returned by the CurrentPoint property to plot that point,
there can be differences in the position due to round off errors.

CurrentPoint and Cursor Motion

In addition to the behavior described above, MATLAB updates
CurrentPoint before executing callback routines defined for
the figure WindowButtonMotionFcn and WindowButtonUpFcn
properties. This enables you to query CurrentPoint from these
callback routines. It behaves like this:

• If there is no callback routine defined for the
WindowButtonMotionFcn or the WindowButtonUpFcn,
then MATLAB updates the CurrentPoint only when the mouse
button is pressed down within the figure window.

• If there is a callback routine defined for the
WindowButtonMotionFcn, then MATLAB updates the
CurrentPoint just before executing the callback. Note that
the WindowButtonMotionFcn executes only within the figure
window unless the mouse button is pressed down within
the window and then held down while the pointer is moved
around the screen. In this case, the routine executes (and the
CurrentPoint is updated) anywhere on the screen until the
mouse button is released.

• If there is a callback routine defined for the WindowButtonUpFcn,
MATLAB updates the CurrentPoint just before executing

2-1142

Figure Properties

the callback. Note that the WindowButtonUpFcn executes only
while the pointer is within the figure window unless the mouse
button is pressed down initially within the window. In this case,
releasing the button anywhere on the screen triggers callback
execution, which is preceded by an update of the CurrentPoint.

The figure CurrentPoint is updated only when certain events
occur, as previously described. In some situations, (such as when
the WindowButtonMotionFcn takes a long time to execute and the
pointer is moved very rapidly) the CurrentPoint may not reflect
the actual location of the pointer, but rather the location at the
time when the WindowButtonMotionFcn began execution.

The CurrentPoint is measured from the lower left corner of the
figure window, in units determined by the Units property.

The root PointerLocation property contains the location of the
pointer updated synchronously with pointer movement. However,
the location is measured with respect to the screen, not a figure
window.

See uicontrol for information on how this property is set when
you click a uicontrol object.

DeleteFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Delete figure callback function. A callback function that executes
when the figure object is deleted (e.g., when you issue a delete
or a close command). MATLAB executes the function before
destroying the object’s properties so these values are available
to the callback routine.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

2-1143

Figure Properties

The handle of the object whose DeleteFcn is being executed is
accessible through the root CallbackObject property, which you
can query using gcbo.

See also the figure CloseRequestFcn property

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DockControls
{on} | off

Displays controls used to dock figure. This property determines
whether the figure enables the Desktop menu item and the dock
figure button in the titlebar that allow you to dock the figure into
the MATLAB desktop.

By default, the figure docking controls are visible. If you set this
property to off, the Desktop menu item that enables you to dock
the figure is disabled and the figure dock button is not displayed.

See also the WindowStyle property for more information on
docking figure.

DoubleBuffer
{on} | off

Flash-free rendering for simple animations. Double buffering
is the process of drawing to an off-screen pixel buffer and then
blitting the buffer contents to the screen once the drawing
is complete. Double buffering generally produces flash-free
rendering for simple animations (such as those involving lines, as
opposed to objects containing large numbers of polygons). Use
double buffering with the animated objects’ EraseMode property
set to normal. Use the set command to disable double buffering.

set(figure_handle,'DoubleBuffer','off')

2-1144

Figure Properties

Double buffering works only when the figure Renderer property
is set to painters.

FileName
String

GUI FIG-filename. GUIDE stores the name of the FIG-file used to
save the GUI layout in this property.

FixedColors
m-by-3 matrix of RGB values (read only)

Noncolormap colors. Fixed colors define all colors appearing in
a figure window that are not obtained from the figure colormap.
These colors include axis lines and labels, the colors of line, text,
uicontrol, and uimenu objects, and any colors that you explicitly
define, for example, with a statement like

set(gcf,'Color',[0.3,0.7,0.9])

Fixed color definitions reside in the system color table and do not
appear in the figure colormap. For this reason, fixed colors can
limit the number of simultaneously displayed colors if the number
of fixed colors plus the number of entries in the figure colormap
exceed your system’s maximum number of colors.

(See the root ScreenDepth property for information on
determining the total number of colors supported on your system.
See the MinColorMap property for information on how MATLAB
shares colors between applications.)

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally drawing into or

2-1145

Figure Properties

deleting a figure that contains only user interface devices (such as
a dialog box).

Handles are always visible when HandleVisibility is on.

Callback Visibility

Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

Visibility Off

Setting HandleVisibility to off makes handles invisible at all
times. This may be necessary when a callback routine invokes
a function that might potentially damage the GUI (such as
evaluating a user-typed string), and so temporarily hides its own
handles during the execution of that function.

Visibility and Handles Returned by Other Functions

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigureproperty, objects
do not appear in the root’s CallbackObject property or in the
figure’s CurrentObject property, and axes do not appear in their
parent’s CurrentAxes property.

Making All Handles Visible

2-1146

Figure Properties

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties).

Validity of Hidden Handles

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

HitTest
{on} | off

Selectable by mouse click. HitTest determines if the figure can
become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the figure. If HitTest is off, clicking the figure sets the
CurrentObject to the empty matrix.

IntegerHandle
{on} | off

Figure handle mode. Figure object handles are integers by
default. When creating a new figure, MATLAB uses the lowest
integer that is not used by an existing figure. If you delete a
figure, its integer handle can be reused.

If you set this property to off, MATLAB assigns nonreusable
real-number handles (e.g., 67.0001221) instead of integers. This
feature is designed for dialog boxes where removing the handle
from integer values reduces the likelihood of inadvertently
drawing into the dialog box.

Interruptible
{on} | off

2-1147

Figure Properties

Callback routine interruption mode. The Interruptible property
controls whether a figure callback function can be interrupted by
subsequently invoked callbacks.

How callbacks are interrupted

MATLAB checks for queued events that can interrupt a callback
function only when it encounters a call to drawnow, figure,
getframe, or pause in the executing callback function. When one
of these functions is executed, MATLAB processes all pending
events, including executing all waiting callback functions. The
interrupted callback then resumes execution.

What property callbacks are interruptible

Only callback functions defined for the ButtonDownFcn,
KeyPressFcn, KeyReleaseFcn, WindowButtonDownFcn,
WindowButtonMotionFcn, WindowButtonUpFcn , and
WindowScrollWheelFcn are affected by the Interruptible
property.

See the BusyAction property for related information.

InvertHardcopy
{on} | off

Change hardcopy to black objects on white background. This
property affects only printed output. Printing a figure having a
background color (Color property) that is not white results in
poor contrast between graphics objects and the figure background
and also consumes a lot of printer toner.

When InvertHardCopy is on, MATLAB eliminates this effect by
changing the color of the figure and axes to white and the axis
lines, tick marks, axis labels, etc., to black. lines, text, and the
edges of patches and surfaces might be changed, depending on
the print command options specified.

2-1148

Figure Properties

If you set InvertHardCopy to off, the printed output matches the
colors displayed on the screen.

See print for more information on printing MATLAB figures.

KeyPressFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Key press callback function. A callback function invoked by a key
press that occurs while the figure window has focus. Define the
KeyPressFcn as a function handle. The function must define at
least two input arguments (handle of figure associated with key
release and an event structure)

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

When there is no callback specified for this property (which is the
default state), MATLAB passes any key presses to the command
window. However, when you define a callback for this property,
the figure retains focus with each key press and executes the
specified callback with each key press.

KeyPressFcn Event Structure

When the callback is a function handle, MATLAB passes a
structure to the callback function that contains the following
fields.

Field Contents

Character The character displayed as a result of the key(s)
pressed.

2-1149

Figure Properties

Field Contents

Modifier This field is a cell array that contains the names
of one or more modifier keys that the user
pressed (i.e., control, alt, shift). On Macintosh
computers, MATLAB can also return command

Key The key pressed (lower case label on key)

Some key combinations do not define a value for the Character
field.

Using the KeyPressFcn

This example, creates a figure and defines a function handle
callback for the KeyPressFcn property. When the “e” key is
pressed, the callback exports the figure as an EPS file. When
Ctrl-t is pressed, the callback exports the figure as a TIFF file.

function figure_keypress

figure('KeyPressFcn',@printfig);

function printfig(src,evnt)

if evnt.Character == 'e'

print ('-deps',['-f' num2str(src)])

elseif length(evnt.Modifier) == 1 & strcmp(evnt.Modifier{:},'control') & evnt.Key == 't'

print ('-dtiff','-r200',['-f' num2str(src)])

end

end

KeyReleaseFcn
functional handle, or cell array containing function handle and
additional arguments, string (not recommended)

Key release callback function. A callback function invoked by a key
release that occurs while the figure window has focus. Define the
KeyReleaseFcn as a function handle. The function must define at

2-1150

Figure Properties

least two input arguments (handle of figure associated with key
release and an event structure)

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

KeyReleaseFcn Event Structure

When the callback is a function handle, MATLAB passes a
structure as the second argument to the callback function that
contains the following fields.

Field Contents

Character The character displayed as a result of the key(s)
released.

Modifier This field is a cell array that contains the names
of one or more modifier keys that the user
releases (i.e., control, alt, shift, or empty if no
modifier keys were released). On Macintosh
computers, MATLAB can also return command

Key The lower case label on key that was released.

Some key combinations do not define a value for the Character
field.

Properties Affected by the KeyReleaseFcn

When a callback is defined for the KeyReleaseFcn property,
MATLAB updates the CurrentCharacter, CurrentKey, and
CurrentModifier figure properties just before executing the
callback.

Multiple Key Presses Events and a Single Key Release
Event

2-1151

Figure Properties

Consider a figure having callbacks defined for both the
KeyPressFcn and KeyReleaseFcn. In the case where a user
presses multiple keys, one after another, MATLAB generates
repeated KeyPressFcn events only for the last key pressed.

For example, suppose you press and hold down the a key, then
press and hold down the s key. MATLAB generates repeated
KeyPressFcn events for the a key until the s key is pressed, at
which point MATLAB generates repeated KeyPressFcn events for
the s key. If the s key is then released, a KeyReleaseFcn event
is generated for the s key, but no new KeyPressFcn events are
generated for the a key. When you then release the a key, the
KeyReleaseFcn again executes.

The KeyReleaseFcn behavior is such that its callback is executed
every time a key is released while the figure is in focus, regardless
of what KeyPressFcns are generated.

Modifier Keys

When the user presses and releases a key and a modifier key,
the modifier key is returned in the event structure Modifier
field. If a modifier key is the only key pressed and released, it is
not returned in the event structure of the KeyReleaseFcn, but is
returned in the event structure of the KeyPressFcn.

Explore the Results

Click to view in editor — This link opens the MATLAB editor with
the following example.

Click to run example — Press and release various key
combinations while the figure has focus to see the data returned
in the event structure.

The following code, creates a figure and defines a function handle
callback for the KeyReleaseFcn property. The callback simply

2-1152

Figure Properties

displays the values returned by the event structure and enables
you to explore the KeyReleaseFcn behavior when you release
various key combinations.

function key_releaseFcn

figure('KeyReleaseFcn',@cb)

function cb(src,evnt)

if ~isempty(evnt.Modifier)

for ii = 1:length(evnt.Modifier)

out = sprintf('Character: %c\nModifier: %s\nKey: %s\n',evnt.Character,evnt.Mod

disp(out)

end

else

out = sprintf('Character: %c\nModifier: %s\nKey: %s\n',evnt.Character,'No modifie

disp(out)

end

end

end

MenuBar
none | {figure}

Enable-disable figure menu bar. This property enables you to
display or hide the menu bar that MATLAB places at the top of a
figure window. The default (figure) is to display the menu bar.

This property affects only built-in menus. Menus defined with the
uimenu command are not affected by this property.

If you start MATLAB with the nojvm option, figures do not
display the menu bar because most items require Java figures.

MinColormap
scalar (default = 64)

Minimum number of color table entries used. This property
specifies the minimum number of system color table entries used

2-1153

Figure Properties

by MATLAB to store the colormap defined for the figure (see
the ColorMap property). In certain situations, you may need to
increase this value to ensure proper use of colors.

For example, suppose you are running color-intensive applications
in addition to MATLAB and have defined a large figure colormap
(e.g., 150 to 200 colors). MATLAB may select colors that are close
but not exact from the existing colors in the system color table
because there are not enough slots available to define all the
colors you specified.

To ensure that MATLAB uses exactly the colors you define in
the figure colormap, set MinColorMap equal to the length of the
colormap.

set(gcf,'MinColormap',length(get(gcf,'ColorMap')))

Note that the larger the value of MinColorMap, the greater the
likelihood that other windows (including other MATLAB figure
windows) will be displayed in false colors.

Name
string

Figure window title. This property specifies the title displayed in
the figure window. By default, Name is empty and the figure title
is displayed as Figure 1, Figure 2, and so on. When you set
this parameter to a string, the figure title becomes Figure 1:
<string>. See the NumberTitle property.

NextPlot
new | {add} | replace | replacechildren

How to add next plot. NextPlot determines which figure MATLAB
uses to display graphics output. If the value of the current figure is

• new — Create a new figure to display graphics (unless an
existing parent is specified in the graphing function as a
property/value pair).

2-1154

Figure Properties

• add — Use the current figure to display graphics (the default).

• replace — Reset all figure properties except Position to
their defaults and delete all figure children before displaying
graphics (equivalent to clf reset).

• replacechildren — Remove all child objects, but do not reset
figure properties (equivalent to clf).

The newplot function provides an easy way to handle the
NextPlot property. Also see the NextPlot axes property and
“Controlling Graphics Output” for more information.

NumberTitle
{on} | off (GUIDE default off)

Figure window title number. This property determines whether
the string Figure No. N (where N is the figure number) is
prefixed to the figure window title. See the Name property.

PaperOrientation
{portrait} | landscape

Horizontal or vertical paper orientation. This property determines
how printed figures are oriented on the page. portrait orients
the longest page dimension vertically; landscape orients the
longest page dimension horizontally. See the orient command
for more detail.

PaperPosition
four-element rect vector

Location on printed page. A rectangle that determines the location
of the figure on the printed page. Specify this rectangle with a
vector of the form

rect = [left, bottom, width, height]

where left specifies the distance from the left side of the
paper to the left side of the rectangle and bottom specifies

2-1155

Figure Properties

the distance from the bottom of the page to the bottom of the
rectangle. Together these distances define the lower left corner
of the rectangle. width and height define the dimensions of the
rectangle. The PaperUnits property specifies the units used to
define this rectangle.

PaperPositionMode
auto | {manual}

WYSIWYG printing of figure. In manual mode, MATLAB honors
the value specified by the PaperPosition property. In auto mode,
MATLAB prints the figure the same size as it appears on the
computer screen, centered on the page.

See the Pixels per Inch Solution for information on specifying a
pixels per inch resolution setting for MATLAB figures. Doing so
might be necessary to obtain a printed figure that is the same size
as it is on screen.

PaperSize
[width height]

Paper size. This property contains the size of the current
PaperType, measured in PaperUnits. See PaperType to select
standard paper sizes.

PaperType
Select a value from the following table.

Selection of standard paper size. This property sets the PaperSize
to one of the following standard sizes.

Property Value Size (Width x Height)

usletter (default) 8.5-by-11 inches

uslegal 11-by-14 inches

tabloid 11-by-17 inches

2-1156

Figure Properties

Property Value Size (Width x Height)

A0 841-by-1189mm

A1 594-by-841mm

A2 420-by-594mm

A3 297-by-420mm

A4 210-by-297mm

A5 148-by-210mm

B0 1029-by-1456mm

B1 728-by-1028mm

B2 514-by-728mm

B3 364-by-514mm

B4 257-by-364mm

B5 182-by-257mm

arch-A 9-by-12 inches

arch-B 12-by-18 inches

arch-C 18-by-24 inches

arch-D 24-by-36 inches

arch-E 36-by-48 inches

A 8.5-by-11 inches

B 11-by-17 inches

C 17-by-22 inches

D 22-by-34 inches

E 34-by-43 inches

Note that you may need to change the PaperPosition property
in order to position the printed figure on the new paper size.

2-1157

Figure Properties

One solution is to use normalized PaperUnits, which enables
MATLAB to automatically size the figure to occupy the same
relative amount of the printed page, regardless of the paper size.

PaperUnits
normalized | {inches} | centimeters | points

Hardcopy measurement units. This property specifies the units
used to define the PaperPosition and PaperSize properties.
All units are measured from the lower left corner of the page.
normalized units map the lower left corner of the page to (0, 0)
and the upper right corner to (1.0, 1.0). inches, centimeters, and
points are absolute units (one point equals 1/72 of an inch).

If you change the value of PaperUnits, it is good practice to
return it to its default value after completing your computation so
as not to affect other functions that assume PaperUnits is set to
the default value.

Parent
handle

Handle of figure’s parent. The parent of a figure object is the root
object. The handle to the root is always 0.

Pointer

crosshair | {arrow} | watch | topl |
topr | botl | botr | circle | cross |
fleur | left | right | top | bottom |
fullcrosshair | ibeam | custom

Pointer symbol selection. This property determines the symbol
used to indicate the pointer (cursor) position in the figure window.
Setting Pointer to custom allows you to define your own pointer
symbol. See the PointerShapeCData property and “Specifying the
Figure Pointer” for more information.

2-1158

Figure Properties

PointerShapeCData
16-by-16 matrix

User-defined pointer. This property defines the pointer that
is used when you set the Pointer property to custom. It is a
16-by-16 element matrix defining the 16-by-16 pixel pointer using
the following values:

• 1 — Color pixel black.

• 2 — Color pixel white.

• NaN — Make pixel transparent (underlying screen shows
through).

Element (1,1) of the PointerShapeCData matrix corresponds to
the upper left corner of the pointer. Setting the Pointer property
to one of the predefined pointer symbols does not change the
value of the PointerShapeCData. Computer systems supporting
32-by-32 pixel pointers fill only one quarter of the available
pixmap.

PointerShapeHotSpot
two-element vector

Pointer active area. A two-element vector specifying the row and
column indices in the PointerShapeCData matrix defining the
pixel indicating the pointer location. The location is contained in
the CurrentPoint property and the root object’s PointerLocation
property. The default value is element (1,1), which is the upper
left corner.

Position
four-element vector

Figure position. This property specifies the size and location on
the screen of the figure window. Specify the position rectangle
with a four-element vector of the form:

rect = [left, bottom, width, height]

2-1159

Figure Properties

where left and bottom define the distance from the lower left
corner of the screen to the lower left corner of the figure window.
width and height define the dimensions of the window. See
the Units property for information on the units used in this
specification. The left and bottom elements can be negative on
systems that have more than one monitor.

Position of Docked Figures

If the figure is docked in the MATLAB desktop, then the Position
property is specified with respect to the figure group container
instead of the screen.

Moving and Resizing Figures

You can use the get function to obtain this property and determine
the position of the figure and you can use the set function to
resize and move the figure to a new location. You cannot set the
figure Position when it is docked.

Note that on MS-Windows systems, figure windows cannot be
less than 104 pixels wide, regardless of the value of the Position
property.

Renderer
painters | zbuffer | OpenGL

Rendering method used for screen and printing This property
enables you to select the method used to render MATLAB
graphics. The choices are

• painters — The original rendering method used by MATLAB
is faster when the figure contains only simple or small graphics
objects.

• zbuffer — MATLAB draws graphics objects faster and more
accurately because objects are colored on a per-pixel basis and
MATLAB renders only those pixels that are visible in the scene

2-1160

Figure Properties

(thus eliminating front-to-back sorting errors). Note that this
method can consume a lot of system memory if MATLAB is
displaying a complex scene.

• OpenGL — OpenGL is a renderer that is available on many
computer systems. This renderer is generally faster than
painters or zbuffer and in some cases enables MATLAB to
access graphics hardware that is available on some systems.

Hardware vs. Software OpenGL Implementations

There are two kinds of OpenGL implementations — hardware
and software.

The hardware implementation makes use of special graphics
hardware to increase performance and is therefore significantly
faster than the software version. Many computers have this
special hardware available as an option or may come with this
hardware right out of the box.

Software implementations of OpenGL are much like the ZBuffer
renderer that is available on MATLAB Version 5.0 and later;
however, OpenGL generally provides superior performance to
ZBuffer.

OpenGL Availability

OpenGL is available on all computers that run MATLAB.
MATLAB automatically finds hardware accelerated versions of
OpenGl if such versions are available. If the hardware accelerated
version is not available, then MATLAB uses the software version
(except on Macintosh systems, which do not support software
OpenGL).

The following software versions are available:

• On UNIX systems, MATLAB uses the software version of
OpenGL that is included in the MATLAB distribution.

2-1161

Figure Properties

• On MS-Windows, OpenGL is available as part of the operating
system. If you experience problems with OpenGL, contact your
graphics driver vendor to obtain the latest qualified version
of OpenGL.

• On Macintosh systems. software OpenGL is not available.

MATLAB issues a warning if it cannot find a usable OpenGL
library.

Selecting Hardware Accelerated or Software OpenGL

MATLAB enables you to switch between hardware accelerated
and software OpenGL. However, MS-Windows and Unix systems
behave differently:

• On MS-Windows systems, you can toggle between software and
hardware versions any time during the MATLAB session.

• On UNIX systems, you must set the OpenGL version before
MATLAB initializes OpenGL. Therefore, you cannot issue the
opengl info command or create graphs before you call opengl
software. To re-enable hardware accelerated OpenGL, you
must restart MATLAB.

• On Macintosh systems. software OpenGL is not available.

If you do not want to use hardware OpenGL, but do want to use
object transparency, you can issue the following command.

opengl software

This command forces MATLAB to use software OpenGL. Software
OpenGL is useful if your hardware accelerated version of OpenGL
does not function correctly and you want to use image, patch, or
surface transparency, which requires the OpenGL renderer. To
reenable hardware OpenGL, use the command

opengl hardware

2-1162

Figure Properties

on MS-Windows systems or restart MATLAB on UNIX systems.

By default, MATLAB uses hardware accelerated OpenGL.

See the opengl reference page for additional information

Determining What Version You Are Using

To determine the version and vendor of the OpenGL library that
MATLAB is using on your system, type the following command
at the MATLAB prompt:

opengl info

The returned information contains a line that indicates if
MATLAB is using software (Software = true) or hardware
accelerated (Software = false) OpenGL.

This command also returns a string of extensions to the OpenGL
specification that are available with the particular library
MATLAB is using. This information is helpful to The MathWorks,
so please include this information if you need to report bugs.

Note that issuing the opengl info command causes MATLAB to
initialize OpenGL.

OpenGL vs. Other MATLAB Renderers

There are some differences between drawings created with
OpenGL and those created with the other renderers. The OpenGL
specific differences include

• OpenGL does not do colormap interpolation. If you create a
surface or patch using indexed color and interpolated face or
edge coloring, OpenGL interpolates the colors through the RGB
color cube instead of through the colormap.

2-1163

Figure Properties

• OpenGL does not support the phong value for the FaceLighting
and EdgeLighting properties of surfaces and patches.

• OpenGL does not support logarithmic-scale axes.

• OpenGL and Zbuffer renderers display objects sorted in front
to back order, as seen on the monitor, and lines always draw in
front of faces when at the same location on the plane of the
monitor. Painters sorts by child order (order specified).

If You Are Having Problems

Consult the OpenGL Technical Note if you are having problems
using OpenGL. This technical note contains a wealth of
information on MATLAB renderers.

RendererMode
{auto} | manual

Automatic or user selection of renderer. This property enables you
to specify whether MATLAB should choose the Renderer based
on the contents of the figure window, or whether the Renderer
should remain unchanged.

When the RendererMode property is set to auto, MATLAB selects
the rendering method for printing as well as for screen display
based on the size and complexity of the graphics objects in the
figure.

For printing, MATLAB switches to zbuffer at a greater scene
complexity than for screen rendering because printing from a
Z-buffered figure can be considerably slower than one using the
painters rendering method, and can result in large PostScript
files. However, the output does always match what is on the
screen. The same holds true for OpenGL: the output is the same
as that produced by the ZBuffer renderer — a bitmap with a
resolution determined by the print command’s -r option.

2-1164

http://www.mathworks.com/support/tech-notes/1200/1201.html

Figure Properties

Criteria for Autoselection of OpenGL Renderer

When the RendererMode property is set to auto, MATLAB uses
the following criteria to determine whether to select the OpenGL
renderer:

If the opengl autoselection mode is autoselect, MATLAB selects
OpenGL if

• The host computer has OpenGL installed and is in True Color
mode (OpenGL does not fully support 8-bit color mode).

• The figure contains no logarithmic axes (logarithmic axes are
not supported in OpenGL).

• MATLAB would select zbuffer based on figure contents.

• Patch objects’ faces have no more than three vertices (some
OpenGL implementations of patch tessellation are unstable).

• The figure contains less than 10 uicontrols (OpenGL clipping
around uicontrols is slow).

• No line objects use markers (drawing markers is slow).

• Phong lighting is not specified (OpenGL does not support
Phong lighting; if you specify Phong lighting, MATLAB uses
the ZBuffer renderer).

Or

• Figure objects use transparency (OpenGL is the only MATLAB
renderer that supports transparency).

When the RendererMode property is set to manual, MATLAB does
not change the Renderer, regardless of changes to the figure
contents.

Resize
{on} | off

2-1165

Figure Properties

Window resize mode. This property determines if you can resize
the figure window with the mouse. on means you can resize the
window, off means you cannot. When Resize is off, the figure
window does not display any resizing controls (such as boxes at
the corners), to indicate that it cannot be resized.

ResizeFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Window resize callback function. MATLAB executes the specified
callback function whenever you resize the figure window and also
when the figure is created. You can query the figure’s Position
property to determine the new size and position of the figure.
During execution of the callback routine, the handle to the figure
being resized is accessible only through the root CallbackObject
property, which you can query using gcbo.

You can use ResizeFcn to maintain a GUI layout that is not
directly supported by the MATLAB Position/Units paradigm.

For example, consider a GUI layout that maintains an object
at a constant height in pixels and attached to the top of the
figure, but always matches the width of the figure. The following
ResizeFcn accomplishes this; it keeps the uicontrol whose Tag is
'StatusBar' 20 pixels high, as wide as the figure, and attached to
the top of the figure. Note the use of the Tag property to retrieve
the uicontrol handle, and the gcbo function to retrieve the figure
handle. Also note the defensive programming regarding figure
Units, which the callback requires to be in pixels in order to work
correctly, but which the callback also restores to their previous
value afterwards.

u = findobj('Tag','StatusBar');
fig = gcbo;
old_units = get(fig,'Units');
set(fig,'Units','pixels');
figpos = get(fig,'Position');

2-1166

Figure Properties

upos = [0, figpos(4) - 20, figpos(3), 20];
set(u,'Position',upos);
set(fig,'Units',old_units);

You can change the figure Position from within the ResizeFcn
callback; however, the ResizeFcn is not called again as a result.

Note that the print command can cause the ResizeFcn to be
called if the PaperPositionMode property is set to manual and
you have defined a resize function. If you do not want your resize
function called by print, set the PaperPositionMode to auto.

See “Introduction” for an example of how to implement a resize
function for a GUI.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

Selected
on | off

Is object selected? This property indicates whether the figure is
selected. You can, for example, define the ButtonDownFcn to set
this property, allowing users to select the object with the mouse.

SelectionHighlight
{on} | off

figures do not indicate selection.

SelectionType
{normal} | extend | alt | open

Mouse selection type. MATLAB maintains this property to provide
information about the last mouse button press that occurred
within the figure window. This information indicates the type of
selection made. Selection types are actions that are generally
associated with particular responses from the user interface

2-1167

Figure Properties

software (e.g., single-clicking a graphics object places it in move or
resize mode; double-clicking a filename opens it, etc.).

The physical action required to make these selections varies
on different platforms. However, all selection types exist on all
platforms.

Selection
Type MS-Windows X-Windows

Normal Click left mouse
button.

Click left mouse
button.

Extend Shift - click left
mouse button or click
both left and right
mouse buttons.

Shift - click left mouse
button or click

middle mouse button.

Alternate Control - click left
mouse button or click
right mouse button.

Control - click left
mouse button or click

right mouse button.

Open Double-click any
mouse button.

Double-click any
mouse button.

Note that the ListBox style of uicontrols sets the figure
SelectionType property to normal to indicate a single mouse
click or to open to indicate a double mouse click. See uicontrol
for information on how this property is set when you click a
uicontrol object.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as

2-1168

Figure Properties

global variables or pass them as arguments between callback
routines.

For example, suppose you want to direct all graphics output from
an M-file to a particular figure, regardless of user actions that
may have changed the current figure. To do this, identify the
figure with a Tag.

figure('Tag','Plotting Figure')

Then make that figure the current figure before drawing by
searching for the Tag with findobj.

figure(findobj('Tag','Plotting Figure'))

Toolbar
none | {auto} | figure

Control display of figure toolbar. The Toolbar property enables
you to control whether MATLAB displays the default figure
toolbar on figures. There are three possible values:

• none — do not display the figure toolbar

• auto — display the figure toolbar, but remove it if a uicontrol is
added to the figure

• figure — display the figure toolbar

Note that this property affects only the figure toolbar; other
toolbars (e.g., the Camera Toolbar or Plot Edit Toolbar) are not
affected. Selecting Figure Toolbar from the figure View menu
sets this property to figure.

If you start MATLAB with the nojvm option, figures do not
display the toolbar because most tool require Java figures.

Type
string (read only)

2-1169

Figure Properties

Object class. This property identifies the kind of graphics object.
For figures, Type is always the string 'figure'.

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with the figure. Assign this property the
handle of a uicontextmenu object created in the figure. Use the
uicontextmenu function to create the context menu. MATLAB
displays the context menu whenever you right-click over the
figure.

Units

{pixels} | normalized | inches |
centimeters | points | characters

Units of measurement. This property specifies the units MATLAB
uses to interpret size and location data. All units are measured
from the lower left corner of the window.

• normalized units map the lower left corner of the figure
window to (0,0) and the upper right corner to (1.0,1.0).

• inches, centimeters, and points are absolute units (one point
equals 1/72 of an inch).

• The size of a pixel depends on screen resolution.

• characters units are defined by characters from the default
system font; the width of one character is the width of the
letter x, the height of one character is the distance between the
baselines of two lines of text.

This property affects the CurrentPoint and Position properties.
If you change the value of Units, it is good practice to return it
to its default value after completing your computation so as not
to affect other functions that assume Units is set to the default
value.

2-1170

Figure Properties

When specifying the units as property/value pairs during object
creation, you must set the Units property before specifying the
properties that you want to use these units.

UserData
matrix

User-specified data. You can specify UserData as any matrix you
want to associate with the figure object. The object does not use
this data, but you can access it using the set and get commands.

Visible
{on} | off

Object visibility. The Visible property determines whether an
object is displayed on the screen. If the Visible property of a
figure is off, the entire figure window is invisible.

A note about using the window button properties
Your window button callback functions might need to update the
display by calling drawnow or pause, which causes MATLAB to
process all events in the queue. Processing the event queue can
cause your window button callback functions to be reentered. For
example, a drawnow in the WindowButtonDownFcn might result in
the WindowButtonDownFcn being called again before the first call
has finished. You should design your code to handle reentrancy
and you should not depend on global variables that might change
state during reentrance.

You can use the Interruptible and BusyAction figure properties
to control how events interact.

WindowButtonDownFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Button press callback function. Use this property to define a
callback that MATLAB executes whenever you press a mouse

2-1171

Figure Properties

button while the pointer is in the figure window. See the
WindowButtonMotionFcn property for an example.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

WindowButtonMotionFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Mouse motion callback function. Use this property to define a
callback that MATLAB executes whenever you move the pointer
within the figure window. Define the WindowButtonMotionFcn as
a function handle. The function must define at least two input
arguments (handle of figure associated with key release and an
event structure).

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

Example using all window button properties

Click to view in editor — This example enables you to use mouse
motion to draw lines. It uses all three window button functions.

Click to run example — Click the left mouse button in the axes
and move the cursor, left-click to define the line end point,
right-click to end drawing mode.

Note On some computer systems, the WindowButtonMotionFcn
is executed when a figure is created even though there has been
no mouse motion within the figure.

2-1172

Figure Properties

WindowButtonUpFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Button release callback function. Use this property to define a
callback that MATLAB executes whenever you release a mouse
button. Define the WindowButtonUpFcn as a function handle. The
function must define at least two input arguments (handle of
figure associated with key release and an event structure)

The button up event is associated with the figure window in which
the preceding button down event occurred. Therefore, the pointer
need not be in the figure window when you release the button to
generate the button up event.

If the callback routines defined by WindowButtonDownFcn or
WindowButtonMotionFcn contain drawnow commands or call other
functions that contain drawnow commands and the Interruptible
property is set to off, the WindowButtonUpFcn might not be called.
You can prevent this problem by setting Interruptible to on.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

WindowScrollWheelFcn
string, functional handle, or cell array containing function handle
and additional arguments

Respond to mouse scroll wheel. Use this property to define a
callback that MATLAB executes when the mouse wheel is scrolled
while the figure has focus. MATLAB executes the callback with
each single mouse wheel click.

Note that it is possible for another object to capture the event
from MATLAB. For example, if the figure contains Java or
ActiveX control objects that are listening for mouse scroll wheel

2-1173

Figure Properties

events, then these objects can consume the events and prevent
the WindowScrollWheelFcn from executing.

There is no default callback defined for this property.

WindowScrollWheelFcn Event Structure

When the callback is a function handle, MATLAB passes a
structure to the callback function that contains the following
fields.

Field Contents

VerticalScrollCountA positive or negative integer that indicates the
number of scroll wheel clicks. Positive values
indicate clicks of the wheel scrolled in the down
direction. Negative values indicate clicks of the
wheel scrolled in the up direction.

VerticalScrollAmountThe current system setting for the number
of lines that are scrolled for each click of the
scroll wheel. If the mouse property setting
for scrolling is set to One screen at a time,
VerticalScrollAmount returns a value of 1.

2-1174

Figure Properties

Effects On Other Properties

• CurrentObject property — mouse scrolling does not update
this figure property

• CurrentPoint property — if there is no callback defined for
the WindowScrollWheelFcn property, then MATLAB does
not update the CurrentPoint property as the scroll wheel
is turned. However, if there is a callback defined for the
WindowScrollWheelFcn property, then MATLAB updates the
CurrentPoint property just before executing the callback.
This enables you to determine the point at which the mouse
scrolling occurred.

• HitTest property — the WindowScrollWheelFcn callback
executes regardless of the setting of the figure HitTest
property.

• SelectionType property — the WindowScrollWheelFcn
callback has no effect on this property.

Values Returned by VerticalScrollCount

When a user moves the mouse scroll wheel by one click, MATLAB
increments the count by +/- 1, depending on the direction of the
scroll (scroll down being positive). When MATLAB calls the
WindowScrollWheelFcn callback, the counter is reset. In most
cases, this means that the absolute value of the returned value
is 1. However, if the WindowScrollWheelFcn callback takes a
long enough time to return and/or the user spins the scroll wheel
very fast, then the returned value can have an absolute value
greater than one.

The actual value returned by VerticalScrollCount is the
algebraic sum of all scroll wheel clicks that occurred since last
processed. This enables your callback to respond correctly to the
user’s action.

Example

2-1175

Figure Properties

Click to view in editor — This example creates a graph of a
function and enables you to use the mouse scroll wheel to change
the range over which a mathematical function is evaluated and
update the graph to reflect the new limits as you turn the scroll
wheel.

Click to run example — Mouse over the figure and scroll your
mouse wheel.

Related Information

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

WindowStyle
{normal} | modal | docked

Normal, modal, or dockable window behavior. When WindowStyle
is set to modal:

• The figure window traps all keyboard and mouse events over
all MATLAB windows as long as they are visible.

• Windows belonging to applications other than MATLAB are
unaffected.

• Modal figures remain stacked above all normal figures and the
MATLAB command window.

• When multiple modal windows exist, the most recently created
window keeps focus and stays above all other windows until it
becomes invisible, or is returned to WindowStyle normal , or
is deleted. At that time, focus reverts to the window that last
had focus.

Use modal figures to create dialog boxes that force the user
to respond without being able to interact with other windows.
Typing Control C while the figure has focus causes all figures

2-1176

Figure Properties

with WindowStyle modal to revert to WindowStyle normal ,
allowing you to type at the command line.

Invisible Modal Figures

Figures with WindowStyle modal and Visible off do not behave
modally until they are made visible, so it is acceptable to hide a
modal window instead of destroying it when you want to reuse it.

Changing Modes

You can change the WindowStyle of a figure at any time, including
when the figure is visible and contains children. However, on
some systems this may cause the figure to flash or disappear and
reappear, depending on the windowing system’s implementation
of normal and modal windows. For best visual results, you should
set WindowStyle at creation time or when the figure is invisible.

Window Decorations on Modal Figures

Modal figures do not display uimenu children, built-in menus,
or toolbars but it is not an error to create uimenus in a modal
figure or to change WindowStyle to modal on a figure with uimenu
children. The uimenu objects exist and their handles are retained
by the figure. If you reset the figure’s WindowStyle to normal, the
uimenus are displayed.

Docked WindowStyle

When WindowStyle is set to docked, the figure is docked in the
desktop or a document window. When you issue the following
command,

set(figure_handle,'WindowStyle','docked')

MATLAB docks the figure identified by figure_handle and sets
the DockControls property to on, if it was off.

2-1177

Figure Properties

Note that if WindowStyle is docked, you cannot set the
DockControls property to off.

The value of the WindowStyle property is not changed by calling
reset on a figure.

WVisual
identifier string (MS Windows only)

Specify pixel format for figure. MATLAB automatically selects a
pixel format for figures based on your current display settings, the
graphics hardware available on your system, and the graphical
content of the figure.

Usually, MATLAB chooses the best pixel format to use in any
given situation. However, in cases where graphics objects are
not rendered correctly, you might be able select a different pixel
format and improve results. See for more information.

Querying Available Pixel Formats on Window Systems

You can determine what pixel formats are available on your
system for use with MATLAB using the following statement:

set(gcf,'WVisual')

MATLAB returns a list of the currently available pixel formats
for the current figure. For example, the following are the first
three entries from a typical list.

01 (RGB 16 bits(05 06 05 00) zdepth 24, Hardware Accelerated,
Opengl, GDI, Window)

02 (RGB 16 bits(05 06 05 00) zdepth 24, Hardware Accelerated,
Opengl, Double Buffered, Window)

03 (RGB 16 bits(05 06 05 00) zdepth 24, Hardware Accelerated,
Opengl, Double Buffered, Window)

2-1178

Figure Properties

Use the number at the beginning of the string to specify which
pixel format to use. For example,

set(gcf,'WVisual','02')

specifies the second pixel format in the list above. Note that pixel
formats might differ on your system.

Understanding the WVisual String

The string returned by querying the WVisual property provide
information on the pixel format. For example,

• RGB 16 bits(05 06 05 00) – indicates true color with 16-bit
resolution (5 bits for red, 6 bits for green, 5 bits for blue, and 0
for alpha (transparency). MATLAB requires true color.

• zdepth 24 – indicates 24-bit resolution for sorting object’s front
to back position on the screen. Selecting pixel formats with
higher (24 or 32) zdepth might solve sorting problems.

• Hardware Accelerated – some graphics functions may be
performed by hardware for increased speed. If there are
incompatibilities between your particular graphic hardware
and MATLAB, select a pixel format in which the term Generic
appears instead of Hardware Accelerated.

• Opengl – supports OpenGL. See for more information.

• GDI – supports for Windows 2-D graphics interface.

• Double Buffered – support for double buffering with the
OpenGL renderer. Note that the figure DoubleBuffer property
applies only to the painters renderer.

• Bitmap – support for rendering into a bitmap (as opposed to
drawing in the window)

• Window – support for rendering into a window

Pixel Formats and OpenGL

2-1179

Figure Properties

If you are experiencing problems using hardware OpenGL on your
system, you can try using generic OpenGL, which is implemented
in software. To do this, first instruct MATLAB to use the software
version of OpenGL with the following statement.

opengl software

Then allow MATLAB to select best pixel format to use.

See the Renderer property for more information on how MATLAB
uses OpenGL.

WVisualMode
auto | manual (MS Windows only)

Auto or manual selection of pixel format. VisualMode can take
on two values — auto (the default) and manual. In auto mode,
MATLAB selects the best pixel format to use based on your
computer system and the graphical content of the figure. In
manual mode, MATLAB does not change the visual from the one
currently in use. Setting the WVisual property sets this property
to manual.

XDisplay
display identifier (UNIX only)

Contains the display used for MATLAB. You can query this
property to determine the name of the display that MATLAB is
using. For example, if MATLAB is running on a system called
mycomputer, querying XDisplay returns a string of the following
form:

get(gcf,'XDisplay')
ans
mycomputer:0.0

Setting XDisplay on Motif

2-1180

Figure Properties

If your computer uses Motif-based figures, you can specify the
display MATLAB uses for a figure by setting the value of the
figure’s XDisplay property. For example, to display the current
figure on a system called fred, use the command

set(gcf,'XDisplay','fred:0.0')

XVisual
visual identifier (UNIX only)

Select visual used by MATLAB. You can select the visual used by
MATLAB by setting the XVisual property to the desired visual
ID. This can be useful if you want to test your application on an
8-bit or grayscale visual. To see what visuals are available on your
system, use the UNIX xdpyinfo command. From MATLAB, type

!xdpyinfo

The information returned contains a line specifying the visual ID.
For example,

visual id: 0x23

To use this visual with the current figure, set the XVisual
property to the ID.

set(gcf,'XVisual','0x23')

To see which of the available visuals MATLAB can use, call set
on the XVisual property:

set(gcf,'XVisual')

The following typical output shows the visual being used (in curly
brackets) and other possible visuals. Note that MATLAB requires
a TrueColor visual.

{ 0x23 (TrueColor, depth 24, RGB mask 0xff0000 0xff00 0x00ff) }

0x24 (TrueColor, depth 24, RGB mask 0xff0000 0xff00 0x00ff)

2-1181

Figure Properties

0x25 (TrueColor, depth 24, RGB mask 0xff0000 0xff00 0x00ff)

0x26 (TrueColor, depth 24, RGB mask 0xff0000 0xff00 0x00ff)

0x27 (TrueColor, depth 24, RGB mask 0xff0000 0xff00 0x00ff)

0x28 (TrueColor, depth 24, RGB mask 0xff0000 0xff00 0x00ff)

0x29 (TrueColor, depth 24, RGB mask 0xff0000 0xff00 0x00ff)

0x2a (TrueColor, depth 24, RGB mask 0xff0000 0xff00 0x00ff)

You can also use the glxinfo Unix command to see what visuals
are available for use with the OpenGL renderer. From MATLAB,
type

!glxinfo

After providing information about the implementation of OpenGL
on your system, glxinfo returns a table of visuals. The partial
listing below shows typical output.

visual x bf lv rg d st colorbuffer ax dp st accumbuffer ms cav

id dep cl sp sz l ci b ro r g b a bf th cl r g b a ns b eat

-

0x23 24 tc 0 24 0 r y . 8 8 8 8 0 0 0 0 0 0 0 0 0 None

0x24 24 tc 0 24 0 r . . 8 8 8 8 0 0 0 0 0 0 0 0 0 None

0x25 24 tc 0 24 0 r y . 8 8 8 8 0 24 8 0 0 0 0 0 0 None

0x26 24 tc 0 24 0 r . . 8 8 8 8 0 24 8 0 0 0 0 0 0 None

0x27 24 tc 0 24 0 r y . 8 8 8 8 0 0 0 16 16 16 0 0 0 Slow

The third column is the class of visual. tc means a true color
visual. Note that some visuals may be labeled Slow under the
caveat column. Such visuals should be avoided.

To determine which visual MATLAB will use by default with the
OpenGL renderer, use the MATLAB opengl info command. The
returned entry for the visual might look like the following.

Visual = 0x23 (TrueColor, depth 24, RGB mask 0xff0000 0xff00 0x00ff)

2-1182

Figure Properties

Experimenting with a different TrueColor visual may improve
certain rendering problems.

XVisualMode
auto | manual

Auto or manual selection of visual. VisualMode can take on
two values — auto (the default) and manual. In auto mode,
MATLAB selects the best visual to use based on the number of
colors, availability of the OpenGL extension, etc. In manual mode,
MATLAB does not change the visual from the one currently in
use. Setting the XVisual property sets this property to manual.

2-1183

figurepalette

Purpose Show or hide figure palette

GUI
Alternatives

Click the larger Plotting Tools icon on the figure toolbar to

collectively enable plotting tools, and the smaller icon to collectively
disable them. Open or close the Figure Palette tool from the figure’s
View menu. For details, see “The Figure Palette” in the MATLAB
Graphics documentation.

Syntax figurepalette('show')
figurepalette('hide')
figurepalette('toggle')
figurepalette(figure_handle,...)

Description figurepalette('show') displays the palette on the current figure.

figurepalette('hide') hides the palette on the current figure.

figurepalette('toggle') or figurepalette toggles the visibility of
the palette on the current figure.

figurepalette(figure_handle,...) shows or hides the palette on the
figure specified by figure_handle.

2-1184

figurepalette

See Also plottools, plotbrowser, propertyeditor

2-1185

fileattrib

Purpose Set or get attributes of file or directory

Syntax fileattrib
fileattrib('name')
fileattrib('name','attrib')
fileattrib('name','attrib','users')
fileattrib('name','attrib','users','s')
[status,message,messageid] = fileattrib('name','attrib',

'users','s')

Description The fileattrib function is like the DOS attrib command or the UNIX
chmod command.

fileattrib displays the attributes for the current directory. Values
are as follows.

Value Description

0 Attribute is off

1 Attribute is set (on)

NaN Attribute does not apply

fileattrib('name') displays the attributes for name, where name
is the absolute or relative pathname for a directory or file. Use the
wildcard * at the end of name to view attributes for all matching files.

fileattrib('name','attrib') sets the attribute for name, where name
is the absolute or relative pathname for a directory or file. Specify the +
qualifier before the attribute to set it, and specify the - qualifier before
the attribute to clear it. Use the wildcard * at the end of name to set
attributes for all matching files. Values for attrib are as follows.

2-1186

fileattrib

Value for
attrib Description

a Archive (Windows only)

h Hidden file (Windows only)

s System file (Windows only)

w Write access (Windows and UNIX)

x Executable (UNIX only)

For example, fileattrib('myfile.m','+w') makes myfile.m a
writable file.

fileattrib('name','attrib','users') sets the attribute for name,
where name is the absolute or relative pathname for a directory or
file, and defines which users are affected by attrib, where users is
applicable only for UNIX systems. For more information about these
attributes, see UNIX reference information for chmod. The default value
for users is u. Values for users are

Value for
users Description

a All users

g Group of users

o All other users

u Current user

fileattrib('name','attrib','users','s') sets the attribute for
name, where name is the absolute or relative pathname for a file or a
directory and its contents, and defines which users are affected by
attrib. Here the s specifies that attrib be applied to all contents of
name, where name is a directory.

[status,message,messageid] =
fileattrib('name','attrib','users','s') sets
the attribute for name, returning the status, a message, and the

2-1187

fileattrib

MATLAB error message ID (see error and lasterror). Here, status is
1 for success and is 0 for error. If attrib, users, and s are not specified,
and status is 1, message is a structure containing the file attributes
and messageid is blank. If status is 0, messageid contains the error. If
you use a wildcard * at the end of name, mess will be a structure.

Examples Get Attributes of File

To view the attributes of myfile.m, type

fileattrib('myfile.m')

MATLAB returns

Name: 'd:/work/myfile.m'
archive: 0
system: 0
hidden: 0

directory: 0
UserRead: 1

UserWrite: 0
UserExecute: 1

GroupRead: NaN
GroupWrite: NaN

GroupExecute: NaN
OtherRead: NaN

OtherWrite: NaN
OtherExecute: NaN

UserWrite is 0, meaning myfile.m is read only. The Group and Other
values are NaN because they do not apply to the current operating
system, Windows.

Set File Attribute

To make myfile.m become writable, type

fileattrib('myfile.m','+w')

2-1188

fileattrib

Running fileattrib('myfile.m') now shows UserWrite to be 1.

Set Attributes for Specified Users

To make the directory d:/work/results be a read-only directory for
all users, type

fileattrib('d:/work/results','-w','a')

The - preceding the write attribute, w, specifies that write status is
removed.

Set Multiple Attributes for Directory and Its Contents

To make the directory d:/work/results and all its contents be read
only and be hidden, on Windows, type

fileattrib('d:/work/results','+h-w','','s')

Because users is not applicable on Windows systems, its value is empty.
Here, s applies the attribute to the contents of the specified directory.

Return Status and Structure of Attributes

To return the attributes for the directory results to a structure, type

[stat,mess]=fileattrib('results')

MATLAB returns

stat =
1

mess =
Name: 'd:\work\results'

archive: 0
system: 0
hidden: 0

directory: 1
UserRead: 1

UserWrite: 1
UserExecute: 1

2-1189

fileattrib

GroupRead: NaN
GroupWrite: NaN

GroupExecute: NaN
OtherRead: NaN

OtherWrite: NaN
OtherExecute: NaN

The operation was successful as indicated by the status, stat, being 1.
The structure mess contains the file attributes. Access the attribute
values in the structure. For example, typing

mess.Name

returns the path for results

ans =
d:\work\results

Return Attributes with Wildcard for Name

Return the attributes for all files in the current directory whose names
begin with new.

[stat,mess]=fileattrib('new*')

MATLAB returns

stat =
1

mess =
1x3 struct array with fields:

Name
archive
system
hidden
directory
UserRead
UserWrite

2-1190

fileattrib

UserExecute
GroupRead
GroupWrite
GroupExecute
OtherRead
OtherWrite
OtherExecute

The results indicate there are three matching files. To view the
filenames, type

mess.Name

MATLAB returns

ans =
d:\work\results\newname.m

ans =
d:\work\results\newone.m

ans =
d:\work\results\newtest.m

To view just the first filename, type

mess(1).Name

ans =
d:\work\results\newname.m

See Also copyfile, cd, dir, filebrowser, fileparts, ls, mfilename, mkdir,
movefile, rmdir

2-1191

filebrowser

Purpose Current Directory browser

GUI
Alternatives

As an alternative to the filebrowser function, select
Desktop > Current Directory in the MATLAB desktop.

Syntax filebrowser

Description filebrowser displays the “Current Directory Browser”.

See Also cd, copyfile, fileattrib, ls, mkdir, movefile, pwd, rmdir

2-1192

File Formats

Purpose Readable file formats

Description This table shows the file formats that MATLAB is capable of reading.

File Format Extension File Content
Read
Command Returns

MAT Saved MATLAB
workspace

load Variables in the
file

CSV Comma-separated
numbers

csvread Double array

DLM Delimited text dlmread Double array

Text

TAB Tab-separated text dlmread Double array

CDF Data in Common Data
Format

cdfread Cell array of CDF
records

FITS Flexible Image
Transport System data

fitsread Primary or
extension table
data

HDF4 Data in Hierarchical
Data Format, version 4

hdfread HDF or HDF-EOS
data set

Scientific Data

HDF5 Data in Hierarchical
Data Format, version 5

hdf5read HDF5 data set

XLS Excel worksheet xlsread Double or cell
array

Spreadsheet

WK1 Lotus 123 worksheet wk1read Double or cell
array

2-1193

File Formats

File Format Extension File Content
Read
Command Returns

TIFF TIFF image imread True color,
grayscale, or
indexed image(s)

PNG PNG image imread True color,
grayscale, or
indexed image

HDF4 HDF4 image imread True color,
grayscale, or
indexed image(s)

BMP BMP image imread True color or
indexed image

JPEG JPEG image imread True color or
grayscale image

GIF GIF image imread Indexed image

PCX PCX image imread Indexed image

XWD XWD image imread Indexed image

CUR Cursor image imread Indexed image

Image

ICO Icon image imread Indexed image

AU NeXT/SUN sound auread Sound data and
sample rate

Audio file

WAV Microsoft WAVE sound wavread Sound data and
sample rate

Movie AVI Audio/video aviread MATLAB movie

See Also fscanf, fread, textread, importdata

2-1194

filemarker

Purpose Character to separate file name and internal function name

Syntax M = filemarker

Description M = filemarker returns the character that separates a file and a
within-file function name.

Examples On Windows, for example, filemarker returns the ’>’ character:

filemarker
ans =

>

You can use the following command on any platform to get the help text
for subfunction pdeodes defined in M-file pdepe.m:

helptext = help(['pdepe' filemarker 'pdeodes'])

helptext =
PDEODES Assemble the difference equations and

evaluate the time derivative for the ODE system.

See Also filesep

2-1195

fileparts

Purpose Parts of file name and path

Syntax [pathstr, name, ext, versn] = fileparts(filename)

Description [pathstr, name, ext, versn] = fileparts(filename) returns the
path, filename, extension, and version for the specified file. filename
is a string enclosed in single quotes. The returned ext field contains a
dot (.) before the file extension.

The fileparts function is platform dependent.

You can reconstruct the file from the parts using

fullfile(pathstr,[name ext versn])

Examples Return the pieces of a file specification string to the separate string
outputs pathstr, name, ext, and versn. The full file specification is

file = '\home\user4\matlab\classpath.txt';

Note that the character used to separate the segments of a pathname
is dependent on the operating system you are currently running on.
In this example, it is the backslash (\) character which is used as a
separator on Windows systems. You can use the filesep function as
shown below to insert the correct separator character:

sep = filesep;
file = ['' sep 'home' sep 'user4' sep 'matlab' sep ...

'classpath.txt' ''];

Now use fileparts to return the path, filename, user name, and file
version, if there is one:

[pathstr, name, ext, versn] = fileparts(file)

pathstr =
\home\user4\matlab

2-1196

fileparts

name =
classpath

ext =
.txt

versn =
''

See Also fullfile

2-1197

filehandle

Purpose Construct file handle object

Syntax output = filehandle(arglist)

Description output = filehandle(arglist) this file is a place-holder for now.

Example

See Also dialog, errordlg, helpdlg, listdlg, msgbox, questdlg, warndlg

figure, uiwait, uiresume

“Predefined Dialog Boxes” on page 1-104 for related functions

2-1198

filesep

Purpose Directory separator for current platform

Syntax f = filesep

Description f = filesep returns the platform-specific file separator character. The
file separator is the character that separates individual directory names
in a path string.

Examples On the PC,

iofun_dir = ['toolbox' filesep 'matlab' filesep 'iofun']

iofun_dir =

toolbox\matlab\iofun

On a UNIX system,

iodir = ['toolbox' filesep 'matlab' filesep 'iofun']

iodir =

toolbox/matlab/iofun

See Also fullfile, fileparts, pathsep

2-1199

fill

Purpose Filled 2-D polygons

Syntax fill(X,Y,C)
fill(X,Y,ColorSpec)
fill(X1,Y1,C1,X2,Y2,C2,...)
fill(...,'PropertyName',PropertyValue)
h = fill(...)

Description The fill function creates colored polygons.

fill(X,Y,C) creates filled polygons from the data in X and Y with
vertex color specified by C. C is a vector or matrix used as an index into
the colormap. If C is a row vector, length(C) must equal size(X,2) and
size(Y,2); if C is a column vector, length(C) must equal size(X,1)
and size(Y,1). If necessary, fill closes the polygon by connecting
the last vertex to the first.

fill(X,Y,ColorSpec) fills two-dimensional polygons specified by X
and Y with the color specified by ColorSpec.

fill(X1,Y1,C1,X2,Y2,C2,...) specifies multiple two-dimensional
filled areas.

fill(...,'PropertyName',PropertyValue) allows you to specify
property names and values for a patch graphics object.

h = fill(...) returns a vector of handles to patch graphics objects,
one handle per patch object.

Remarks If X or Y is a matrix, and the other is a column vector with the same
number of elements as rows in the matrix, fill replicates the column
vector argument to produce a matrix of the required size. fill forms a
vertex from corresponding elements in X and Y and creates one polygon
from the data in each column.

2-1200

fill

The type of color shading depends on how you specify color in the
argument list. If you specify color using ColorSpec, fill generates
flat-shaded polygons by setting the patch object’s FaceColor property
to the corresponding RGB triple.

If you specify color using C, fill scales the elements of C by the values
specified by the axes property CLim. After scaling C, C indexes the
current colormap.

If C is a row vector, fill generates flat-shaded polygons where each
element determines the color of the polygon defined by the respective
column of the X and Y matrices. Each patch object’s FaceColor property
is set to 'flat'. Each row element becomes the CData property value
for the nth patch object, where n is the corresponding column in X or Y.

If C is a column vector or a matrix, fill uses a linear interpolation
of the vertex colors to generate polygons with interpolated colors. It
sets the patch graphics object FaceColor property to 'interp' and
the elements in one column become the CData property value for the
respective patch object. If C is a column vector, fill replicates the
column vector to produce the required sized matrix.

Examples Create a red octagon.

t = (1/16:1/8:1)'*2*pi;
x = sin(t);
y = cos(t);
fill(x,y,'r')
axis square

2-1201

fill

See Also axis, caxis, colormap, ColorSpec, fill3, patch

“Polygons and Surfaces” on page 1-90 for related functions

2-1202

fill3

Purpose Filled 3-D polygons

Syntax fill3(X,Y,Z,C)
fill3(X,Y,Z,ColorSpec)
fill3(X1,Y1,Z1,C1,X2,Y2,Z2,C2,...)
fill3(...,'PropertyName',PropertyValue)
h = fill3(...)

Description The fill3 function creates flat-shaded and Gouraud-shaded polygons.

fill3(X,Y,Z,C) fills three-dimensional polygons. X, Y, and Z triplets
specify the polygon vertices. If X, Y, or Z is a matrix, fill3 creates n
polygons, where n is the number of columns in the matrix. fill3 closes
the polygons by connecting the last vertex to the first when necessary.

C specifies color, where C is a vector or matrix of indices into the current
colormap. If C is a row vector, length(C) must equal size(X,2) and
size(Y,2); if C is a column vector, length(C) must equal size(X,1)
and size(Y,1).

fill3(X,Y,Z,ColorSpec) fills three-dimensional polygons defined by
X, Y, and Z with color specified by ColorSpec.

fill3(X1,Y1,Z1,C1,X2,Y2,Z2,C2,...) specifies multiple filled
three-dimensional areas.

fill3(...,'PropertyName',PropertyValue) allows you to set values
for specific patch properties.

h = fill3(...) returns a vector of handles to patch graphics objects,
one handle per patch.

Algorithm If X, Y, and Z are matrices of the same size, fill3 forms a vertex from
the corresponding elements of X, Y, and Z (all from the same matrix
location), and creates one polygon from the data in each column.

2-1203

fill3

If X, Y, or Z is a matrix, fill3 replicates any column vector argument to
produce matrices of the required size.

If you specify color using ColorSpec, fill3 generates flat-shaded
polygons and sets the patch object FaceColor property to an RGB triple.

If you specify color using C, fill3 scales the elements of C by the axes
property CLim, which specifies the color axis scaling parameters, before
indexing the current colormap.

If C is a row vector, fill3 generates flat-shaded polygons and sets
the FaceColor property of the patch objects to 'flat'. Each element
becomes the CData property value for the respective patch object.

If C is a column vector or a matrix, fill3 generates polygons with
interpolated colors and sets the patch object FaceColor property to
'interp'. fill3 uses a linear interpolation of the vertex colormap
indices when generating polygons with interpolated colors. The
elements in one column become the CData property value for the
respective patch object. If C is a column vector, fill3 replicates the
column vector to produce the required sized matrix.

Examples Create four triangles with interpolated colors.

X = [0 1 1 2;1 1 2 2;0 0 1 1];
Y = [1 1 1 1;1 0 1 0;0 0 0 0];
Z = [1 1 1 1;1 0 1 0;0 0 0 0];
C = [0.5000 1.0000 1.0000 0.5000;

1.0000 0.5000 0.5000 0.1667;
0.3330 0.3330 0.5000 0.5000];

fill3(X,Y,Z,C)

2-1204

fill3

See Also axis, caxis, colormap, ColorSpec, fill, patch

“Polygons and Surfaces” on page 1-90 for related functions

2-1205

filter

Purpose 1-D digital filter

Syntax y = filter(b,a,X)
[y,zf] = filter(b,a,X)
[y,zf] = filter(b,a,X,zi)
y = filter(b,a,X,zi,dim)
[...] = filter(b,a,X,[],dim)

Description The filter function filters a data sequence using a digital filter which
works for both real and complex inputs. The filter is a direct form II
transposed implementation of the standard difference equation (see
“Algorithm”).

y = filter(b,a,X) filters the data in vector X with the filter described
by numerator coefficient vector b and denominator coefficient vector a.
If a(1) is not equal to 1, filter normalizes the filter coefficients by
a(1). If a(1) equals 0, filter returns an error.

If X is a matrix, filter operates on the columns of X. If X is a
multidimensional array, filter operates on the first nonsingleton
dimension.

[y,zf] = filter(b,a,X) returns the final conditions, zf, of the filter
delays. If X is a row or column vector, output zf is a column vector of
max(length(a),length(b))-1. If X is a matrix, zf is an array of such
vectors, one for each column of X, and similarly for multidimensional
arrays.

[y,zf] = filter(b,a,X,zi) accepts initial conditions, zi, and returns
the final conditions, zf, of the filter delays. Input zi is a vector of
length max(length(a),length(b))-1, or an array with the leading
dimension of size max(length(a),length(b))-1 and with remaining
dimensions matching those of X.

y = filter(b,a,X,zi,dim) and [...] = filter(b,a,X,[],dim)
operate across the dimension dim.

2-1206

filter

Example You can use filter to find a running average without using a for loop.
This example finds the running average of a 16-element vector, using
a window size of 5.

data = [1:0.2:4]';
windowSize = 5;
filter(ones(1,windowSize)/windowSize,1,data)

ans =
0.2000
0.4400
0.7200
1.0400
1.4000
1.6000
1.8000
2.0000
2.2000
2.4000
2.6000
2.8000
3.0000
3.2000
3.4000
3.6000

Algorithm The filter function is implemented as a direct form II transposed
structure,

2-1207

filter

or

y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb)
- a(2)*y(n-1) - ... - a(na+1)*y(n-na)

where n-1 is the filter order, which handles both FIR and IIR filters [1],
na is the feedback filter order, and nb is the feedforward filter order.

The operation of filter at sample is given by the time domain
difference equations

The input-output description of this filtering operation in the
-transform domain is a rational transfer function,

See Also filter2

filtfilt, filtic in the Signal Processing Toolbox

References [1] Oppenheim, A. V. and R.W. Schafer. Discrete-Time Signal
Processing, Englewood Cliffs, NJ: Prentice-Hall, 1989, pp. 311-312.

2-1208

filter (timeseries)

Purpose Shape frequency content of time series

Syntax ts2 = filter(ts1,b,a)
ts2 = filter(ts1,b,a,Index)

Description ts2 = filter(ts1,b,a) applies the transfer function filter

to the data in the timeseries object ts1.

b and a are the coefficient arrays of the transfer function numerator and
denominator, respectively.

ts2 = filter(ts1,b,a,Index) uses the optional Index integer array
to specify the columns or rows to filter. When ts.IsTimeFirst is true,
Index specifies one or more data columns. When ts.IsTimeFirst is
false, Index specifies one or more data rows.

Remarks The time-series data must be uniformly sampled to use this filter.

The following function

y = filter(b,a,x)

creates filtered data y by processing the data in vector x with the filter
described by vectors a and b.

The filter function is a general tapped delay-line filter, described by
the difference equation

Here, n is the index of the current sample, Na is the order of the
polynomial described by vector a, and Nb is the order of the polynomial
described by vector b. The output y(n) is a linear combination of current
and previous inputs, x(n) x(n-1)..., and previous outputs, y(n-1) y(n-2)... .

You use the discrete filter to shape the data by applying a transfer
function to the input signal.

2-1209

filter (timeseries)

Depending on your objectives, the transfer function you choose might
alter both the amplitude and the phase of the variations in the data at
different frequencies to produce either a smoother or a rougher output.

In digital signal processing (DSP), it is customary to write transfer

functions as rational expressions in and to order the numerator and

denominator terms in ascending powers of .

Taking the z-transform of the difference equation

results in the transfer function

where Y(z) is the z-transform of the filtered output y(n). The coefficients
b and a are unchanged by the z-transform.

Examples Consider the following transfer function:

You will apply this transfer function to the data in count.dat.

1 Load the matrix count into the workspace.

load count.dat;

2 Create a time-series object based on this matrix.

count1=timeseries(count(:,1),[1:24]);

2-1210

filter (timeseries)

3 Enter the coefficients of the denominator ordered in ascending

powers of to represent .

a = [1 0.2];

4 Enter the coefficients of the numerator to represent .

b = [2 3];

5 Call the filter function.

filter_count = filter(count1,b,a)

6 Compare the original data and the shaped data with an overlaid plot
of the two curves:

plot(count1,'-.'), grid on, hold on
plot(filter_count,'-')
legend('Original Data','Shaped Data',2)

See Also idealfilter (timeseries), timeseries, tsprops

2-1211

filter2

Purpose 2-D digital filter

Syntax Y = filter2(h,X)
Y = filter2(h,X,shape)

Description Y = filter2(h,X) filters the data in X with the two-dimensional FIR
filter in the matrix h. It computes the result, Y, using two-dimensional
correlation, and returns the central part of the correlation that is the
same size as X.

Y = filter2(h,X,shape) returns the part of Y specified by the shape
parameter. shape is a string with one of these values:

’full’ Returns the full two-dimensional correlation. In this case, Y
is larger than X.

’same’ (default) Returns the central part of the correlation. In this
case, Y is the same size as X.

’valid’ Returns only those parts of the correlation that are computed
without zero-padded edges. In this case, Y is smaller than X.

Remarks Two-dimensional correlation is equivalent to two-dimensional
convolution with the filter matrix rotated 180 degrees. See the
Algorithm section for more information about how filter2 performs
linear filtering.

Algorithm Given a matrix X and a two-dimensional FIR filter h, filter2 rotates
your filter matrix 180 degrees to create a convolution kernel. It then
calls conv2, the two-dimensional convolution function, to implement the
filtering operation.

filter2 uses conv2 to compute the full two-dimensional convolution of
the FIR filter with the input matrix. By default, filter2 then extracts
the central part of the convolution that is the same size as the input

2-1212

filter2

matrix, and returns this as the result. If the shape parameter specifies
an alternate part of the convolution for the result, filter2 returns
the appropriate part.

See Also conv2, filter

2-1213

find

Purpose Find indices and values of nonzero elements

Syntax ind = find(X)
ind = find(X, k)
ind = find(X, k, 'first')
ind = find(X, k, 'last')
[row,col] = find(X, ...)
[row,col,v] = find(X, ...)

Description ind = find(X) locates all nonzero elements of array X, and returns the
linear indices of those elements in vector ind. If X is a row vector, then
ind is a row vector; otherwise, ind is a column vector. If X contains no
nonzero elements or is an empty array, then ind is an empty array.

ind = find(X, k) or ind = find(X, k, 'first') returns at most
the first k indices corresponding to the nonzero entries of X. k must be a
positive integer, but it can be of any numeric data type.

ind = find(X, k, 'last') returns at most the last k indices
corresponding to the nonzero entries of X.

[row,col] = find(X, ...) returns the row and column indices of the
nonzero entries in the matrix X. This syntax is especially useful when
working with sparse matrices. If X is an N-dimensional array with N
> 2, col contains linear indices for the columns. For example, for a
5-by-7-by-3 array X with a nonzero element at X(4,2,3), find returns
4 in row and 16 in col. That is, (7 columns in page 1) + (7 columns in
page 2) + (2 columns in page 3) = 16.

[row,col,v] = find(X, ...) returns a column or row vector v of the
nonzero entries in X, as well as row and column indices. If X is a logical
expression, then v is a logical array. Output v contains the non-zero
elements of the logical array obtained by evaluating the expression
X. For example,

A= magic(4)
A =

16 2 3 13
5 11 10 8

2-1214

find

9 7 6 12
4 14 15 1

[r,c,v]= find(A>10);

r', c', v'
ans =

1 2 4 4 1 3
ans =

1 2 2 3 4 4
ans =

1 1 1 1 1 1

Here the returned vector v is a logical array that contains the nonzero
elements of N where

N=(A>10)

Examples Example 1

X = [1 0 4 -3 0 0 0 8 6];
indices = find(X)

returns linear indices for the nonzero entries of X.

indices =
1 3 4 8 9

Example 2

You can use a logical expression to define X. For example,

find(X > 2)

returns linear indices corresponding to the entries of X that are greater
than 2.

ans =
3 8 9

2-1215

find

Example 3

The following find command

X = [3 2 0; -5 0 7; 0 0 1];
[r,c,v] = find(X)

returns a vector of row indices of the nonzero entries of X

r =
1
2
1
2
3

a vector of column indices of the nonzero entries of X

c =
1
1
2
3
3

and a vector containing the nonzero entries of X.

v =
3

-5
2
7
1

Example 4

The expression

[r,c,v] = find(X>2)

2-1216

find

returns a vector of row indices of the nonzero entries of X

r =
1
2

a vector of column indices of the nonzero entries of X

c =
1
3

and a logical array that contains the non zero elements of N where
N=(X>2).

v =
1
1

Recall that when you use find on a logical expression, the output vector
v does not contain the nonzero entries of the input array. Instead,
it contains the nonzero values returned after evaluating the logical
expression.

Example 5

Some operations on a vector

x = [11 0 33 0 55]';

find(x)
ans =

1
3
5

find(x == 0)
ans =

2

2-1217

find

4

find(0 < x & x < 10*pi)
ans =

1

Example 6

For the matrix

M = magic(3)
M =

8 1 6
3 5 7
4 9 2

find(M > 3, 4)

returns the indices of the first four entries of M that are greater than 3.

ans =
1
3
5
6

Example 7

If X is a vector of all zeros, find(X) returns an empty matrix. For
example,

indices = find([0;0;0])
indices =

Empty matrix: 0-by-1

See Also nonzeros, sparse, colon, logical operators (elementwise and
short-circuit), relational operators, ind2sub

2-1218

findall

Purpose Find all graphics objects

Syntax object_handles = findall(handle_list)
object_handles = findall(handle_list,'property','value',...)

Description object_handles = findall(handle_list) returns the handles,
including hidden handles, of all objects in the hierarchy under the
objects identified in handle_list.

object_handles =
findall(handle_list,'property','value',...) returns
the handles of all objects in the hierarchy under the objects
identified in handle_list that have the specified properties set to
the specified values.

Remarks findall is similar to findobj, except that it finds objects even if their
HandleVisibility is set to off.

Examples plot(1:10)
xlabel xlab
a = findall(gcf)
b = findobj(gcf)
c = findall(b,'Type','text') % return the xlabel handle twice
d = findobj(b,'Type','text') % can't find the xlabel handle

See Also allchild, findobj

2-1219

findfigs

Purpose Find visible offscreen figures

Syntax findfigs

Description findfigs finds all visible figure windows whose display area is off the
screen and positions them on the screen.

A window appears to MATLAB to be offscreen when its display area
(the area not covered by the window’s title bar, menu bar, and toolbar)
does not appear on the screen.

This function is useful when you are bringing an application from a
larger monitor to a smaller one (or one with lower resolution). Windows
visible on the larger monitor may appear offscreen on a smaller monitor.
Using findfigs ensures that all windows appear on the screen.

See Also “Finding and Identifying Graphics Objects” on page 1-93 for related
functions.

2-1220

findobj

Purpose Locate graphics objects with specific properties

Syntax h = findobj
h = findobj('PropertyName',PropertyValue,...)
h =
findobj('PropertyName',PropertyValue,'-logicaloperator',

PropertyName',PropertyValue,...)
h = findobj('-regexp','PropertyName','regexp',...)
h = findobj('-property','PropertyName')
h = findobj(objhandles,...)
h = findobj(objhandles,'-depth',d,...)
h = findobj(objhandles,'flat','PropertyName',PropertyValue,

...)

Description findobj locates graphics objects and returns their handles. You can
limit the search to objects with particular property values and along
specific branches of the hierarchy.

h = findobj returns the handles of the root object and all its
descendants.

h = findobj('PropertyName',PropertyValue,...) returns the
handles of all graphics objects having the property PropertyName, set to
the value PropertyValue. You can specify more than one property/value
pair, in which case, findobj returns only those objects having all
specified values.

h =
findobj('PropertyName',PropertyValue,'-logicaloperator',
PropertyName',PropertyValue,...) applies the logical operator to
the property value matching. Possible values for -logicaloperator are:

• -and

• -or

• -xor

• -not

2-1221

findobj

See the Examples section for examples of how to use these operators.
See “Logical Operators” for an explanation of logical operators.

h = findobj('-regexp','PropertyName','regexp',...) matches
objects using regular expressions as if the value of the property
PropertyName was passed to the regexp function as

regexp(PropertyValue,'regexp')

If a match occurs, findobj returns the object’s handle. See the regexp
function for information on how MATLAB uses regular expressions.

h = findobj('-property','PropertyName') finds all objects having
the specified property.

h = findobj(objhandles,...) restricts the search to objects listed in
objhandles and their descendants.

h = findobj(objhandles,'-depth',d,...) specified the depth of
the search. The depth argument d controls how many levels under the
handles in objhandles are traversed. Specifying d as inf to get the
default behavior of all levels. Specify d as 0 to get the same behavior as
using the flat argument.

h =
findobj(objhandles,'flat','PropertyName',PropertyValue,...)
restricts the search to those objects listed in objhandles and does not
search descendants.

Remarks findobj returns an error if a handle refers to a nonexistent graphics
object.

findobj correctly matches any legal property value. For example,

findobj('Color','r')

finds all objects having a Color property set to red, r, or [1 0 0].

When a graphics object is a descendant of more than one object
identified in objhandles, MATLAB searches the object each time

2-1222

findobj

findobj encounters its handle. Therefore, implicit references to a
graphics object can result in its handle being returned multiple times.

Examples Find all line objects in the current axes:

h = findobj(gca,'Type','line')

Find all objects having a Label set to 'foo' and a String set to 'bar':

h = findobj('Label','foo','-and','String','bar');

Find all objects whose String is not 'foo' and is not 'bar':

h = findobj('-not','String','foo','-not','String','bar');

Find all objects having a String set to 'foo' and a Tag set to 'button
one' and whose Color is not 'red' or 'blue':

h = findobj('String','foo','-and','Tag','button one',...
'-and','-not',{'Color','red','-or','Color','blue'})

Find all objects for which you have assigned a value to the Tag property
(that is, the value is not the empty string ''):

h = findobj('-regexp','Tag','[^'']')

Find all children of the current figure that have their BackgroundColor
property set to a certain shade of gray ([.7 .7 .7]). Note that this
statement also searches the current figure for the matching property
value pair.

h = findobj(gcf,'-depth',1,'BackgroundColor',[.7 .7 .7])

See Also copyobj, gcf, gca, gcbo, gco, get, regexp, set

See “Example — Using Logical Operators and Regular Expression”
for more examples.

“Finding and Identifying Graphics Objects” on page 1-93 for related
functions

2-1223

findstr

Purpose Find string within another, longer string

Syntax k = findstr(str1, str2)

Description k = findstr(str1, str2) searches the longer of the two input strings
for any occurrences of the shorter string, returning the starting index of
each such occurrence in the double array k. If no occurrences are found,
then findstr returns the empty array, [].

The search performed by findstr is case sensitive. Any leading and
trailing blanks in either input string are explicitly included in the
comparison.

Unlike the strfind function, the order of the input arguments to
findstr is not important. This can be useful if you are not certain
which of the two input strings is the longer one.

Examples s = 'Find the starting indices of the shorter string.';

findstr(s, 'the')
ans =

6 30

findstr('the', s)
ans =

6 30

See Also strfind, strmatch, strtok, strcmp, strncmp, strcmpi, strncmpi,
regexp, regexpi, regexprep

2-1224

finish

Purpose MATLAB termination M-file

Description When MATLAB quits, it runs a script called finish.m, if the script
exists and is on the MATLAB search path or in the current directory.
This is a file you create yourself that instructs MATLAB to perform any
final tasks just prior to terminating. For example, you might want to
save the data in your workspace to a MAT-file before MATLAB exits.

finish.m is invoked whenever you do one of the following:

• Click the Close box in the MATLAB desktop on Windows or the
UNIX equivalent

• Select Exit MATLAB from the desktop File menu

• Type quit or exit at the Command Window prompt

Remarks When using Handle Graphics in finish.m, use uiwait, waitfor, or
drawnow so that figures are visible. See the reference pages for these
functions for more information.

Examples Two sample finish.m files are provided with MATLAB in
matlabroot/toolbox/local. Use them to help you create your own
finish.m, or rename one of the files to finish.m and add it to the
path to use it:

• finishsav.m — Saves the workspace to a MAT-file when MATLAB
quits.

• finishdlg.m — Displays a dialog allowing you to cancel quitting and
saves the workspace. See also the MATLAB general preference for
confirmation dialogs for quitting.

See Also quit, exit, startup

“Quitting MATLAB” in the MATLAB Desktop Tools and Development
Environment documentation

2-1225

fitsinfo

Purpose Information about FITS file

Syntax info = fitsinfo(filename)

Description info = fitsinfo(filename) returns the structure, info, with fields
that contain information about the contents of a Flexible Image
Transport System (FITS) file. filename is a string enclosed in single
quotes that specifies the name of the FITS file.

The info structure contains the following fields, listed in the order
they appear in the structure. In addition, the info structure can also
contain information about any number of optional file components,
called extensions in FITS terminology. For more information, see “FITS
File Extensions” on page 2-1227.

Field Name Description Return Type

Filename Name of the file String

FileModDate File modification date String

FileSize Size of the file in bytes Double

Contents List of extensions in the file in
the order that they occur

Cell array of
strings

PrimaryData Information about the primary
data in the FITS file

Structure array

PrimaryData

The PrimaryData field is a structure that describes the primary data
in the file. The following table lists the fields in the order they appear
in the structure.

Field Name Description Return Type

DataType Precision of the data String

Size Array containing the size of
each dimension

Double array

2-1226

fitsinfo

Field Name Description Return Type

DataSize Size of the primary data in bytes Double

MissingDataValue Value used to represent
undefined data

Double

Intercept Value, used with Slope,
to calculate actual pixel
values from the array
pixel values, using the
equation: actual_value
= Slope*array_value +
Intercept

Double

Slope Value, used with Intercept,
to calculate actual pixel
values from the array
pixel values, using the
equation: actual_value
= Slope*array_value +
Intercept

Double

Offset Number of bytes from beginning
of the file to the location of the
first data value

Double

Keywords A number-of-keywords-by-3
cell array containing keywords,
values, and comments of the
header in each column

Cell array of
strings

FITS File
Extensions

A FITS file can also include optional extensions. If the file contains any
of these extensions, the info structure can contain these additional
fields.

• AsciiTable — Numeric information in tabular format, stored as
ASCII characters

2-1227

fitsinfo

• BinaryTable — Numeric information in tabular format, stored in
binary representation

• Image — A multidimensional array of pixels

• Unknown — Nonstandard extension

AsciiTable Extension

The AsciiTable structure contains the following fields, listed in the
order they appear in the structure.

Field Name Description Return Type

Rows Number of rows in the table Double

RowSize Number of characters in each
row

Double

NFields Number of fields in each row Double array

FieldFormat A 1-by-NFields cell containing
formats in which each field
is encoded. The formats are
FORTRAN-77 format codes.

Cell array of
strings

FieldPrecision A 1-by-NFields cell containing
precision of the data in each field

Cell array of
strings

FieldWidth A 1-by-NFields array containing
the number of characters in each
field

Double array

FieldPos A 1-by-NFields array of
numbers representing the
starting column for each field

Double array

DataSize Size of the data in the table in
bytes

Double

MissingDataValue A 1-by-NFields array of
numbers used to represent
undefined data in each field

Cell array of
strings

2-1228

fitsinfo

Field Name Description Return Type

Intercept A 1-by-NFields array of
numbers used along with Slope
to calculate actual data values
from the array data values using
the equation: actual_value =
Slope*array_value+Intercept

Double array

Slope A 1-by-NFields array of
numbers used with Intercept
to calculate true data values
from the array data values using
the equation: actual_value =
Slope*array_value+Intercept

Double array

Offset Number of bytes from beginning
of the file to the location of the
first data value in the table

Double

Keywords A number-of-keywords-by-3
cell array containing all
the Keywords, Values and
Comments in the ASCII table
header

Cell array of
strings

BinaryTable Extension

The BinaryTable structure contains the following fields, listed in the
order they appear in the structure.

Field Name Description Return Type

Rows Number of rows in the table Double

RowSize Number of bytes in each row Double

NFields Number of fields in each row Double

2-1229

fitsinfo

Field Name Description Return Type

FieldFormat A 1-by-NFields cell array
containing the data type of the
data in each field. The data
type is represented by a FITS
binary table format code.

Cell array of
strings

FieldPrecision A 1-by-NFields cell containing
precision of the data in each
field

Cell array of
strings

FieldSize A 1-by-NFields array, where
each element contains the
number of values in the Nth
field

Double array

DataSize Size of the data in the Binary
Table, in bytes. Includes any
data past the main table.

Double

MissingDataValue An 1-by-NFields array of
numbers used to represent
undefined data in each field

Cell array of
double

Intercept A 1-by-NFields array of
numbers used along with
Slope to calculate actual
data values from the array
data values using the
equation: actual_value =
slope*array_value+Intercept

Double array

Slope A 1-by-NFields array of
numbers used with Intercept to
calculate true data values from
the array data values using the
equation: actual_value =
Slope*array_value+Intercept

Double array

2-1230

fitsinfo

Field Name Description Return Type

Offset Number of bytes from beginning
of the file to the location of the
first data value

Double

ExtensionSize Size of any data past the main
table, in bytes

Double

ExtensionOffset Number of bytes from the
beginning of the file to any data
past the main table

Double

Keywords A number-of-keywords-by-3
cell array containing all
the Keywords, values, and
comments in the Binary Table
header

Cell array of
strings

Image Extension

The Image structure contains the following fields, listed in the order
they appear in the structure.

Field Name Description Return Type

DataType Precision of the data String

Size Array containing sizes of each
dimension

Double array

DataSize Size of the data in the Image
extension in bytes

Double

Offset Number of bytes from the
beginning of the file to the first
data value

Double

MissingDataValue Value used to represent
undefined data

Double

2-1231

fitsinfo

Field Name Description Return Type

Intercept Value, used with Slope,
to calculate actual pixel
values from the array
pixel values, using the
equation: actual_value =
Slope*array_value+Intercept

Double

Slope Value, used with Intercept,
to calculate actual pixel
values from the array
pixel values, using the
equation: actual_value
= Slope*array_value +
Intercept

Double

Keywords A number-of-keywords-by-3
cell array containing all
the Keywords, values, and
comments in the Binary Table
header

Cell array of
strings

Unknown Structure

The Unknown structure contains the following fields, listed in the order
they appear in the structure.

Field Name Description Return Type

DataType Precision of the data String

Size Sizes of each dimension Double array

DataSize Size of the data in nonstandard
extensions, in bytes

Double

Offset Number of bytes from beginning
of the file to the first data value

Double

2-1232

fitsinfo

Field Name Description Return Type

MissingDataValue Representation of undefined
data

Double

Intercept Value, used with Slope,
to calculate actual data
values from the array
data values, using the
equation: actual_value =
Slope*array_value+Intercept

Double

Slope Value, used with Intercept,
to calculate actual data
values from the array
data values, using the
equation: actual_value =
Slope*array_value+Intercept

Double

Keywords A number-of-keywords-by-3
cell array containing all
the Keywords, values, and
comments in the Binary Table
header

Cell array of
strings

Example Use fitsinfo to obtain information about the FITS file tst0012.fits.
In addition to its primary data, the file also contains an example of the
extensions BinaryTable, Unknown, Image, and AsciiTable.

S = fitsinfo('tst0012.fits');
S =

Filename: [1x71 char]
FileModDate: '12-Mar-2001 18:37:46'

FileSize: 109440
Contents: {'Primary' 'Binary Table' 'Unknown'

'Image' 'ASCII Table'}
PrimaryData: [1x1 struct]
BinaryTable: [1x1 struct]

2-1233

fitsinfo

Unknown: [1x1 struct]
Image: [1x1 struct]

AsciiTable: [1x1 struct]

The PrimaryData field describes the data in the file. For example, the
Size field indicates the data is a 102-by-109 matrix.

S.PrimaryData
DataType: 'single'

Size: [102 109]
DataSize: 44472

MissingDataValue: []
Intercept: 0

Slope: 1
Offset: 2880

Keywords: {25x3 cell}

The AsciiTable field describes the AsciiTable extension. For example,
using the FieldWidth and FieldPos fields you can determine the length
and location of each field within a row.

S.AsciiTable

ans =

Rows: 53

RowSize: 59

NFields: 8

FieldFormat: {'A9' 'F6.2' 'I3' 'E10.4' 'D20.15' 'A5' 'A1' 'I4'}

FieldPrecision: {1x8 cell}

FieldWidth: [9 6.2000 3 10.4000 20.1500 5 1 4]

FieldPos: [1 11 18 22 33 54 54 55]

DataSize: 3127

MissingDataValue: {'*' '---.--' ' *' [] '*' '*' '*' ''}

Intercept: [0 0 -70.2000 0 0 0 0 0]

Slope: [1 1 2.1000 1 1 1 1 1]

Offset: 103680

Keywords: {65x3 cell}

See Also fitsread

2-1234

fitsread

Purpose Read data from FITS file

Syntax data = fitsread(filename)
data = fitsread(filename, extname)
data = fitsread(filename, extname, index)
data = fitsread(filename, 'raw')

Description data = fitsread(filename) reads the primary data of the Flexible
Image Transport System (FITS) file specified by filename. Undefined
data values are replaced by NaN. Numeric data are scaled by the slope
and intercept values and are always returned in double precision. The
filename argument is a string enclosed in single quotes.

data = fitsread(filename, extname) reads data from a FITS file
according to the data array or extension specified in extname. You can
specify only one extname. The valid choices for extname are shown in
the following table.

Data Arrays or Extensions

extname Description

’primary’ Read data from the primary data array.

’table’ Read data from the ASCII Table extension.

’bintable’ Read data from the Binary Table extension.

’image’ Read data from the Image extension.

’unknown’ Read data from the Unknown extension.

data = fitsread(filename, extname, index) is the same as the
above syntax, except that if there is more than one of the specified
extension type extname in the file, then only the one at the specified
index is read.

data = fitsread(filename, 'raw') reads the primary or extension
data of the FITS file, but, unlike the above syntaxes, does not replace

2-1235

fitsread

undefined data values with NaN and does not scale the data. The data
returned has the same class as the data stored in the file.

Example Read FITS file tst0012.fits into a 109-by-102 matrix called data.

data = fitsread('tst0012.fits');

whos data
Name Size Bytes Class

data 109x102 88944 double array

Here is the beginning of the data read from the file.

data(1:5,1:6)
ans =

135.200 134.9436 134.1752 132.8980 131.1165 128.8378
137.568 134.9436 134.1752 132.8989 131.1167 126.3343

135.9946 134.9437 134.1752 132.8989 131.1185 128.1711
134.0093 134.9440 134.1749 132.8983 131.1201 126.3349
131.5855 134.9439 134.1749 132.8989 131.1204 126.3356

Read only the Binary Table extension from the file.

data = fitsread('tst0012.fits', 'bintable')

data =

Columns 1 through 4

{11x1 cell} [11x1 int16] [11x3 uint8] [11x2 double]

Columns 5 through 9

[11x3 cell] {11x1 cell} [11x1 int8] {11x1 cell} [11x3 int32]

Columns 10 through 13

[11x2 int32] [11x2 single] [11x1 double] [11x1 uint8]

See Also fitsinfo

2-1236

fix

Purpose Round toward zero

Syntax B = fix(A)

Description B = fix(A) rounds the elements of A toward zero, resulting in an array
of integers. For complex A, the imaginary and real parts are rounded
independently.

Examples a = [-1.9, -0.2, 3.4, 5.6, 7.0, 2.4+3.6i]

a =
Columns 1 through 4
-1.9000 -0.2000 3.4000 5.6000

Columns 5 through 6
7.0000 2.4000 + 3.6000i

fix(a)

ans =
Columns 1 through 4
-1.0000 0 3.0000 5.0000

Columns 5 through 6
7.0000 2.0000 + 3.0000i

See Also ceil, floor, round

2-1237

flipdim

Purpose Flip array along specified dimension

Syntax B = flipdim(A,dim)

Description B = flipdim(A,dim) returns A with dimension dim flipped.

When the value of dim is 1, the array is flipped row-wise down. When
dim is 2, the array is flipped columnwise left to right. flipdim(A,1) is
the same as flipud(A), and flipdim(A,2) is the same as fliplr(A).

Examples flipdim(A,1) where

A =

1 4
2 5
3 6

produces

3 6
2 5
1 4

See Also fliplr, flipud, permute, rot90

2-1238

fliplr

Purpose Flip matrix left to right

Syntax B = fliplr(A)

Description B = fliplr(A) returns A with columns flipped in the left-right
direction, that is, about a vertical axis.

If A is a row vector, then fliplr(A) returns a vector of the same length
with the order of its elements reversed. If A is a column vector, then
fliplr(A) simply returns A.

Examples If A is the 3-by-2 matrix,

A =
1 4
2 5
3 6

then fliplr(A) produces

4 1
5 2
6 3

If A is a row vector,

A =
1 3 5 7 9

then fliplr(A) produces

9 7 5 3 1

Limitations The array being operated on cannot have more than two dimensions.
This limitation exists because the axis upon which to flip a
multidimensional array would be undefined.

See Also flipdim, flipud, rot90

2-1239

flipud

Purpose Flip matrix up to down

Syntax B = flipud(A)

Description B = flipud(A) returns A with rows flipped in the up-down direction,
that is, about a horizontal axis.

If A is a column vector, then flipud(A) returns a vector of the same
length with the order of its elements reversed. If A is a row vector, then
flipud(A) simply returns A.

Examples If A is the 3-by-2 matrix,

A =
1 4
2 5
3 6

then flipud(A) produces

3 6
2 5
1 4

If A is a column vector,

A =
3
5
7

then flipud(A) produces

A =
7
5
3

2-1240

flipud

Limitations The array being operated on cannot have more than two dimensions.
This limitation exists because the axis upon which to flip a
multidimensional array would be undefined.

See Also flipdim, fliplr, rot90

2-1241

floor

Purpose Round toward minus infinity

Syntax B = floor(A)

Description B = floor(A) rounds the elements of A to the nearest integers less
than or equal to A. For complex A, the imaginary and real parts are
rounded independently.

Examples a = [-1.9, -0.2, 3.4, 5.6, 7.0, 2.4+3.6i]

a =
Columns 1 through 4
-1.9000 -0.2000 3.4000 5.6000

Columns 5 through 6
7.0000 2.4000 + 3.6000i

floor(a)

ans =
Columns 1 through 4
-2.0000 -1.0000 3.0000 5.0000

Columns 5 through 6
7.0000 2.0000 + 3.0000i

See Also ceil, fix, round

2-1242

flops

Purpose Count floating-point operations

Description This is an obsolete function. With the incorporation of LAPACK in
MATLAB version 6, counting floating-point operations is no longer
practical.

2-1243

flow

Purpose Simple function of three variables

Syntax v = flow
v = flow(n)
v = flow(x,y,z)
[x,y,z,v] = flow(...)

Description flow, a function of three variables, generates fluid-flow data that is
useful for demonstrating slice, interp3, and other functions that
visualize scalar volume data.

v = flow produces a 50-by-25-by-25 array.

v = flow(n) produces a 2n-by-n-by-n array.

v = flow(x,y,z) evaluates the speed profile at the points x, y, and z.

[x,y,z,v] = flow(...) returns the coordinates as well as the volume
data.

See Also slice, interp3

“Volume Visualization” on page 1-102 for related functions

See “Example — Slicing Fluid Flow Data” for an example that uses
flow.

2-1244

fminbnd

Purpose Find minimum of single-variable function on fixed interval

Syntax x = fminbnd(fun,x1,x2)
x = fminbnd(fun,x1,x2,options)
[x,fval] = fminbnd(...)
[x,fval,exitflag] = fminbnd(...)
[x,fval,exitflag,output] = fminbnd(...)

Description fminbnd finds the minimum of a function of one variable within a fixed
interval.

x = fminbnd(fun,x1,x2) returns a value x that is a local minimizer
of the function that is described in fun in the interval x1 < x < x2.
fun is a function handle. See “Function Handles” in the MATLAB
Programming documentation for more information.

“Parameterizing Functions Called by Function Functions” in the
MATLAB Mathematics documentation, explains how to pass additional
parameters to your objective function fun.

x = fminbnd(fun,x1,x2,options) minimizes with the optimization
parameters specified in the structure options. You can define these
parameters using the optimset function. fminbnd uses these options
structure fields:

Display Level of display. 'off' displays no output; 'iter'
displays output at each iteration; 'final' displays
just the final output; 'notify' (default) displays
output only if the function does not converge.

FunValCheck Check whether objective function values are valid.
'on' displays an error when the objective function
returns a value that is complex or NaN. 'off'
displays no error.

MaxFunEvals Maximum number of function evaluations allowed.

MaxIter Maximum number of iterations allowed.

2-1245

fminbnd

OutputFcn User-defined function that is called at each iteration.
See “Output Function” in the Optimization Toolbox
for more information.

PlotFcns User-defined plot function that is called at each
iteration. See “Plot Functions” in the Optimization
Toolbox for more information.

TolX Termination tolerance on x.

[x,fval] = fminbnd(...) returns the value of the objective function
computed in fun at x.

[x,fval,exitflag] = fminbnd(...) returns a value exitflag that
describes the exit condition of fminbnd:

1 fminbnd converged to a solution x based on
options.TolX.

0 Maximum number of function evaluations or
iterations was reached.

-1 Algorithm was terminated by the output function.

-2 Bounds are inconsistent (x1 > x2).

[x,fval,exitflag,output] = fminbnd(...) returns a structure
output that contains information about the optimization:

output.algorithmAlgorithm used

output.funcCountNumber of function evaluations

output.iterationsNumber of iterations

output.message Exit message

Arguments fun is the function to be minimized. fun accepts a scalar x and returns
a scalar f, the objective function evaluated at x. The function fun can
be specified as a function handle for an M-file function

2-1246

fminbnd

x = fminbnd(@myfun,x1,x2);

where myfun.m is an M-file function such as

function f = myfun(x)
f = ... % Compute function value at x.

or as a function handle for an anonymous function:

x = fminbnd(@(x) sin(x*x),x1,x2);

Other arguments are described in the syntax descriptions above.

Examples x = fminbnd(@cos,3,4) computes to a few decimal places and gives
a message on termination.

[x,fval,exitflag] = ...
fminbnd(@cos,3,4,optimset('TolX',1e-12,'Display','off'))

computes to about 12 decimal places, suppresses output, returns the
function value at x, and returns an exitflag of 1.

The argument fun can also be a function handle for an anonymous
function. For example, to find the minimum of the function

on the interval (0,2), create an anonymous
function f

f = @(x)x.^3-2*x-5;

Then invoke fminbnd with

x = fminbnd(f, 0, 2)

The result is

x =
0.8165

The value of the function at the minimum is

2-1247

fminbnd

y = f(x)

y =
-6.0887

If fun is parameterized, you can use anonymous functions to capture
the problem-dependent parameters. For example, suppose you want to
minimize the objective function myfun defined by the following M-file
function.

function f = myfun(x,a)
f = (x - a)^2;

Note that myfun has an extra parameter a, so you cannot pass it directly
to fminbind. To optimize for a specific value of a, such as a = 1.5.

1 Assign the value to a.

a = 1.5; % define parameter first

2 Call fminbnd with a one-argument anonymous function that captures
that value of a and calls myfun with two arguments:

x = fminbnd(@(x) myfun(x,a),0,1)

Algorithm fminbnd is an M-file. The algorithm is based on golden section search
and parabolic interpolation. Unless the left endpoint x1 is very close to
the right endpoint x2, fminbnd never evaluates fun at the endpoints,
so fun need only be defined for x in the interval x1 < x < x2. If the
minimum actually occurs at x1 or x2, fminbnd returns an interior point
at a distance of no more than 2*TolX from x1 or x2, where TolX is the
termination tolerance. See [1] or [2] for details about the algorithm.

Limitations The function to be minimized must be continuous. fminbnd may only
give local solutions.

fminbnd often exhibits slow convergence when the solution is on a
boundary of the interval.

2-1248

fminbnd

fminbnd only handles real variables.

See Also fminsearch, fzero, optimset, function_handle (@), anonymous
function

References [1] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods
for Mathematical Computations, Prentice-Hall, 1976.

[2] Brent, Richard. P., Algorithms for Minimization without Derivatives,
Prentice-Hall, Englewood Cliffs, New Jersey, 1973

2-1249

fminsearch

Purpose Find minimum of unconstrained multivariable function using
derivative-free method

Syntax x = fminsearch(fun,x0)
x = fminsearch(fun,x0,options)
[x,fval] = fminsearch(...)
[x,fval,exitflag] = fminsearch(...)
[x,fval,exitflag,output] = fminsearch(...)

Description fminsearch finds the minimum of a scalar function of several variables,
starting at an initial estimate. This is generally referred to as
unconstrained nonlinear optimization.

x = fminsearch(fun,x0) starts at the point x0 and finds a local
minimum x of the function described in fun. x0 can be a scalar, vector,
or matrix. fun is a function handle. See “Function Handles” in the
MATLAB Programming documentation for more information.

“Parameterizing Functions Called by Function Functions” in the
MATLAB Mathematics documentation, explains how to pass additional
parameters to your objective function fun. See also “Example 2” on page
2-1351 and “Example 3” on page 2-1351 below.

x = fminsearch(fun,x0,options) minimizes with the optimization
parameters specified in the structure options. You can define these
parameters using the optimset function. fminsearch uses these
options structure fields:

Display Level of display. 'off' displays no output; 'iter'
displays output at each iteration; 'final' displays
just the final output; 'notify' (default) displays
output only if the function does not converge.

FunValCheck Check whether objective function values are valid.
'on' displays an error when the objective function
returns a value that is complex, Inf or NaN. 'off'
(the default) displays no error.

MaxFunEvals Maximum number of function evaluations allowed

2-1250

fminsearch

MaxIter Maximum number of iterations allowed

OutputFcn User-defined function that is called at each
iteration. See “Output Function” in the
Optimization Toolbox for more information.

PlotFcns User-defined plot function that is called at each
iteration. See “Plot Functions” in the Optimization
Toolbox for more information.

TolFun Termination tolerance on the function value

TolX Termination tolerance on x

[x,fval] = fminsearch(...) returns in fval the value of the
objective function fun at the solution x.

[x,fval,exitflag] = fminsearch(...) returns a value exitflag
that describes the exit condition of fminsearch:

1 fminsearch converged to a solution x.

0 Maximum number of function evaluations or
iterations was reached.

-1 Algorithm was terminated by the output function.

[x,fval,exitflag,output] = fminsearch(...) returns a structure
output that contains information about the optimization:

output.algorithmAlgorithm used

output.funcCountNumber of function evaluations

output.iterationsNumber of iterations

output.message Exit message

Arguments fun is the function to be minimized. It accepts an input x and returns a
scalar f, the objective function evaluated at x. The function fun can be
specified as a function handle for an M-file function

2-1251

fminsearch

x = fminsearch(@myfun, x0)

where myfun is an M-file function such as

function f = myfun(x)
f = ... % Compute function value at x

or as a function handle for an anonymous function, such as

x = fminsearch(@(x)sin(x^2), x0);

Other arguments are described in the syntax descriptions above.

Examples Example 1

A classic test example for multidimensional minimization is the
Rosenbrock banana function

The minimum is at (1,1) and has the value 0. The traditional starting
point is (-1.2,1). The anonymous function shown here defines the
function and returns a function handle called banana:

banana = @(x)100*(x(2)-x(1)^2)^2+(1-x(1))^2;

Pass the function handle to fminsearch:

[x,fval] = fminsearch(banana,[-1.2, 1])

This produces

x =

1.0000 1.0000

fval =

8.1777e-010

2-1252

fminsearch

This indicates that the minimizer was found to at least four decimal
places with a value near zero.

Example 2

If fun is parameterized, you can use anonymous functions to capture
the problem-dependent parameters. For example, suppose you want to
minimize the objective function myfun defined by the following M-file
function.

function f = myfun(x,a)
f = x(1)^2 + a*x(2)^2;

Note that myfun has an extra parameter a, so you cannot pass it directly
to fminsearch. To optimize for a specific value of a, such as a = 1.5.

1 Assign the value to a.

a = 1.5; % define parameter first

2 Call fminsearch with a one-argument anonymous function that
captures that value of a and calls myfun with two arguments:

x = fminsearch(@(x) myfun(x,a),[0,1])

Example 3

You can modify the first example by adding a parameter a to the second
term of the banana function:

This changes the location of the minimum to the point [a,a^2]. To
minimize this function for a specific value of a, for example a = sqrt(2),
create a one-argument anonymous function that captures the value of a.

a = sqrt(2);
banana = @(x)100*(x(2)-x(1)^2)^2+(a-x(1))^2;

Then the statement

2-1253

fminsearch

[x,fval] = fminsearch(banana, [-1.2, 1], ...
optimset('TolX',1e-8));

seeks the minimum [sqrt(2), 2] to an accuracy higher than the
default on x.

Algorithm fminsearch uses the simplex search method of [1]. This is a direct
search method that does not use numerical or analytic gradients.

If n is the length of x, a simplex in n-dimensional space is characterized
by the n+1 distinct vectors that are its vertices. In two-space, a simplex
is a triangle; in three-space, it is a pyramid. At each step of the search,
a new point in or near the current simplex is generated. The function
value at the new point is compared with the function’s values at the
vertices of the simplex and, usually, one of the vertices is replaced by
the new point, giving a new simplex. This step is repeated until the
diameter of the simplex is less than the specified tolerance.

Limitations fminsearch can often handle discontinuity, particularly if it does not
occur near the solution. fminsearch may only give local solutions.

fminsearch only minimizes over the real numbers, that is, must only
consist of real numbers and must only return real numbers. When

has complex variables, they must be split into real and imaginary
parts.

See Also fminbnd, optimset, function_handle (@), anonymous function

References [1] Lagarias, J.C., J. A. Reeds, M. H. Wright, and P. E. Wright,
“Convergence Properties of the Nelder-Mead Simplex Method in Low
Dimensions,” SIAM Journal of Optimization, Vol. 9 Number 1, pp.
112-147, 1998.

2-1254

fopen

Purpose Open file, or obtain information about open files

Syntax fid = fopen(filename)
fid = fopen(filename, permission)
fid = fopen(filename, permission_tmode)
[fid, message] = fopen(filename, permission)
[fid, message] = fopen(filename, permission, machineformat)
[fid, message] = fopen(filename, permission, machineformat,

encoding)
fids = fopen('all')
[filename, permission, machineformat, encoding] = fopen(fid)

Description fid = fopen(filename) opens the file filename for read access. (On
Windows systems, fopen opens files for binary read access.) The
filename argument is a string enclosed in single quotes. It can be a
MATLABPATH relative partial pathname if the file is opened for reading
only. A relative path is always searched for first with respect to the
current directory. If it is not found, and reading only is specified or
implied, then fopen does an additional search of the MATLABPATH.

fid is a scalar MATLAB integer, called a file identifier. You use the
fid as the first argument to other file input/output routines. If fopen
cannot open the file, it returns -1. Two file identifiers are automatically
available and need not be opened. They are fid=1 (standard output)
and fid=2 (standard error).

fid = fopen(filename, permission) opens the file filename in the
specified permission. The permission argument can be any of the
following:

Permission Specifiers

Permission Description

’r’ Open file for reading (default).

’w’ Open file, or create new file, for writing;
discard existing contents, if any.

2-1255

fopen

Permission Specifiers (Continued)

Permission Description

’a’ Open file, or create new file, for writing;
append data to the end of the file.

’r+’ Open file for reading and writing.

’w+’ Open file, or create new file, for reading
and writing; discard existing contents,
if any.

’a+’ Open file, or create new file, for reading
and writing; append data to the end of
the file.

’A’ Append without automatic flushing;
used with tape drives.

’W’ Write without automatic flushing; used
with tape drives.

Note If the file is opened in update mode ('+'), an input command
like fread, fscanf, fgets, or fgetl cannot be immediately followed by
an output command like fwrite or fprintf without an intervening
fseek or frewind. The reverse is also true: that is, an output command
like fwrite or fprintf cannot be immediately followed by an input
command like fread, fscanf, fgets, or fgetl without an intervening
fseek or frewind.

fid = fopen(filename, permission_tmode) on Windows systems,
opens the file in text mode instead of binary mode (the default). The
permission_tmode argument consists of any of the specifiers shown in
the Permission Specifiers on page 2-1255 table above, followed by the
letter t, for example 'rt' or 'wt+. On UNIX, text and binary mode
are the same.

2-1256

fopen

Binary and Text Modes

Mode Behavior

Binary No characters are given special treatment.

Text On a read operation, whenever MATLAB
encounters a carriage return followed by a newline
character, it removes the carriage return from the
input. On a write or append operation, MATLAB
inserts a carriage return before any newline
character.

[fid, message] = fopen(filename, permission) opens a file as
above. If it cannot open the file, fid equals -1 and message contains a
system-dependent error message. If fopen successfully opens a file, the
value of message is empty.

[fid, message] = fopen(filename, permission, machineformat)
opens the file with the specified permission and treats data read
using fread or data written using fwrite as having a format given by
machineformat. machineformat is one of the following strings:

Full Precision Support

’ieee be’
or ’b’

IEEE floating point with big-endian byte ordering

’ieee le’
or ’l’

IEEE floating point with little-endian byte ordering

’ieee-be.l64’
or ’s’

IEEE floating point with big-endian byte ordering and
64-bit long data type

’ieee-le.l64’
or ’a’

IEEE floating point with little-endian byte ordering and
64-bit long data type

’native’ or
’n’

Numeric format of the machine on which MATLAB is
running (the default)

2-1257

fopen

Full Precision Support (Continued)

’vaxd’ or ’d’ VAX D floating point and VAX ordering

’vaxg’ or ’g’ VAX G floating point and VAX ordering

Limited Precision Support: (double or equivalent)

’cray’ or ’c’ Cray floating point with big-endian byte ordering

[fid, message] = fopen(filename, permission, machineformat,
encoding) opens the specified file using the specified permission
and machineformat. encoding is a string that specifies the
character encoding scheme associated with the file. It must
be the empty string ('') or a name or alias for an encoding
scheme. Some examples are 'UTF-8', 'latin1', 'US-ASCII', and
'Shift_JIS'. For common names and aliases, see the Web site
http://www.iana.org/assignments/character-sets. If encoding is
unspecified or is the empty string (''), MATLAB’s default encoding
scheme is used.

fids = fopen('all') returns a row vector containing the file
identifiers of all open files, not including 1 and 2 (standard output and
standard error). The number of elements in the vector is equal to the
number of open files.

[filename, permission, machineformat, encoding] =
fopen(fid) returns the filename, permission, machineformat, and
encoding values used by MATLAB when it opened the file associated
with identifier fid. MATLAB does not determine these output values by
reading information from the opened file. For any of these parameters
that were not specified when the file was opened, MATLAB returns its
default value. The encoding string is a standard character encoding
scheme name that may not be the same as the encoding argument used
in the call to fopen that opened the file. An invalid fid returns empty
strings for all output arguments.

2-1258

http://www.iana.org/assignments/character-sets

fopen

The 'W' and 'A' modes do not automatically perform a flush of the
current output buffer after output operations.

Examples The example uses fopen to open a file and then passes the fid returned
by fopen to other file I/O functions to read data from the file and then
close the file.

fid = fopen('fgetl.m');
while 1

tline = fgetl(fid);
if ~ischar(tline), break, end
disp(tline)

end
fclose(fid);

See Also fclose, ferror, fprintf, fread, fscanf, fseek, ftell, fwrite

2-1259

fopen (serial)

Purpose Connect serial port object to device

Syntax fopen(obj)

Arguments obj A serial port object or an array of serial port objects.

Description fopen(obj) connects obj to the device.

Remarks Before you can perform a read or write operation, obj must be connected
to the device with the fopen function. When obj is connected to the
device:

• Data remaining in the input buffer or the output buffer is flushed.

• The Status property is set to open.

• The BytesAvailable, ValuesReceived, ValuesSent, and
BytesToOutput properties are set to 0.

An error is returned if you attempt to perform a read or write operation
while obj is not connected to the device. You can connect only one serial
port object to a given device.

Some properties are read-only while the serial port object is open
(connected), and must be configured before using fopen. Examples
include InputBufferSize and OutputBufferSize. Refer to the property
reference pages to determine which properties have this constraint.

The values for some properties are verified only after obj is connected
to the device. If any of these properties are incorrectly configured, then
an error is returned when fopen is issued and obj is not connected to
the device. Properties of this type include BaudRate, and are associated
with device settings.

If you use the help command to display help for fopen, then you need to
supply the pathname shown below.

help serial/fopen

2-1260

fopen (serial)

Example This example creates the serial port object s, connects s to the device
using fopen, writes and reads text data, and then disconnects s from
the device.

s = serial('COM1');
fopen(s)
fprintf(s,'*IDN?')
idn = fscanf(s);
fclose(s)

See Also Functions

fclose

Properties

BytesAvailable, BytesToOutput, Status, ValuesReceived,
ValuesSent

2-1261

for

Purpose Execute block of code specified number of times

Syntax for x=initval:endval, statements, end
for x=initval:stepval:endval, statements, end

Description for x=initval:endval, statements, end repeatedly executes one
or more MATLAB statements in a loop. Loop counter variable x is
initialized to value initval at the start of the first pass through the
loop, and automatically increments by 1 each time through the loop.
The program makes repeated passes through statements until either
x has incremented to the value endval, or MATLAB encounters a
break, or return instruction, thus forcing an immediately exit of the
loop. If MATLAB encounters a continue statement in the loop code,
it immediately exits the current pass at the location of the continue
statement, skipping any remaining code in that pass, and begins
another pass at the start of the loop statements with the value of the
loop counter incremented by 1.

The values initval and endval must be real numbers or arrays of real
numbers, or can also be calls to functions that return the same. The
value assigned to x is often used in the code within the loop, however it
is recommended that you do not assign to x in the loop code.

for x=initval:stepval:endval, statements, end is the same
as the above syntax, except that loop counter x is incremented (or
decremented when stepval is negative) by the value stepval on each
iteration through the loop. The value stepval must be a real number or
can also be a call to a function that returns a real number.

The general format is

for variable = initval:endval
statement
...
statement

end

2-1262

for

The scope of the for statement is always terminated with a matching
end.

See “Program Control Statements” in the MATLAB Programming
documentation for more information on controlling the flow of your
program code.

Remarks It is recommended that you do not assign to the loop control variable
while in the body of a loop. If you do assign to a variable that has the
same name as the loop control variable (see k in the example below),
then the value of that variable alternates between the value assigned
by the for statement at the start of each loop iteration and the value
explicitly assigned to it in the loop code:

for k=1:2
disp(sprintf(' At the start of the loop, k = %d', k))
k = 10;
disp(sprintf(' Following the assignment, k = %d\n', k))

end

At the start of the loop, k = 1
Following the assignment, k = 10

At the start of the loop, k = 2
Following the assignment, k = 10

Examples Assume k has already been assigned a value. Create the Hilbert matrix,
using zeros to preallocate the matrix to conserve memory:

a = zeros(k,k) % Preallocate matrix
for m = 1:k

for n = 1:k
a(m,n) = 1/(m+n -1);

end
end

Step s with increments of -0.1:

2-1263

for

for s = 1.0: -0.1: 0.0,..., end

Step s with values 1, 5, 8, and 17:

for s = [1,5,8,17], ..., end

Successively set e to the unit n-vectors:

for e = eye(n), ..., end

The line

for V = A, ..., end

has the same effect as

for k = 1:n, V = A(:,k); ..., end

except k is also set here.

See Also end, while, break, continue, return, if, switch, colon

2-1264

format

Purpose Set display format for output

Graphical
Interface

As an alternative to format, use preferences. Select Preferences from
the File menu in the MATLAB desktop and use Command Window
preferences.

Syntax format
format type
format('type')

Description Use the format function to control the output format of numeric values
displayed in the Command Window.

Note The format function affects only how numbers are displayed, not
how MATLAB computes or saves them.

format by itself, changes the output format to the default appropriate
for the class of the variable currently being used. For floating-point
variables, for example, the default is format short (i.e., 5-digit scaled,
fixed-point values).

format type changes the format to the specified type. The tables
shown below list the allowable values for type.

format('type') is the function form of the syntax.

The tables below show the allowable values for type, and provides an
example for each type using pi.

Use these format types to switch between different output display
formats for floating-point variables.

2-1265

format

Type Result

short Scaled fixed point format, with 4 digits after the decimal
point. For example, 3.1416

long Scaled fixed point format with 14 to 15 digits after the
decimal point for double; and 7 digits after the decimal
point for single. For example, 3.14159265358979

short e Floating point format, with 4 digits after the decimal
point. For example, 3.1416e+000

long e Floating point format, with 14 to 15 digits after the
decimal point for double; and 7 digits after the decimal
point for single. For example, 3.141592653589793e+000

short g Best of fixed or floating point, with 4 digits after the
decimal point. For example, 3.1416

long g Best of fixed or floating point, with 14 to 15 digits after
the decimal point for double; and 7 digits after the
decimal point for single. For example, 3.14159265358979

short
eng

Engineering format that has 4 digits after the decimal
point, and a power that is a multiple of three. For
example, 3.1416e+000

long eng Engineering format that has exactly 16 significant digits
and a power that is a multiple of three. For example,
3.14159265358979e+000

Use these format types to switch between different output display
formats for all numeric variables.

Value for
type Result

+ +, -, blank

bank Fixed dollars and cents. For example, 3.14

2-1266

format

Value for
type Result

hex Hexadecimal (hexadecimal representation of a
binary double-precision number). For example,
400921fb54442d18

rat Ratio of small integers. For example, 355/113

2-1267

format

Use these format types to affect the spacing in the display of all
variables.

Value for
type Result Example

compact Suppresses excess line feeds to show
more output in a single screen. Contrast
with loose.

theta
= pi/2
theta =

1.5708

loose Adds linefeeds to make output more
readable. Contrast with compact.

theta
= pi/2

theta =

1.5708

Remarks Computations on floating-point variables, namely single or double,
are done in appropriate floating-point precision, no matter how those
variables are displayed. Computations on integer variables are done
natively in integer.

MATLAB always displays integer variables to the appropriate number
of digits for the class. For example, MATLAB uses three digits to display
numbers of type int8 (i.e., -128:127). Setting format to short or long
does not affect the display of integer variables.

The specified format applies only to the current MATLAB session. To
maintain a format across sessions, use MATLAB preferences.

To see which type is currently in use, type

get(0,'Format')

To see if compact or loose formatting is currently selected, type

get(0,'FormatSpacing').

2-1268

format

Examples Example 1

Change the format to long by typing

format long

View the result for the value of pi by typing

pi
ans =

3.14159265358979

View the current format by typing

get(0,'format')
ans =

long

Set the format to short e by typing

format short e

or use the function form of the syntax

format('short','e')

Example 2

When the format is set to short, both pi and single(pi) display as
5-digit values:

format short

pi
ans =

3.1416

single(pi)
ans =

3.1416

2-1269

format

Now set format to long, and pi displays a 15-digit value while
single(pi) display an 8-digit value:

format long

pi
ans =

3.14159265358979

single(pi)
ans =

3.1415927

Example 3

Set the format to its default, and display the maximum values for
integers and real numbers in MATLAB:

format

intmax('uint64')
ans =

18446744073709551615

realmax
ans =

1.7977e+308

Now change the format to hexadecimal, and display these same values:

format hex

intmax('uint64')
ans =

ffffffffffffffff

realmax
ans =

7fefffffffffffff

2-1270

format

The hexadecimal display corresponds to the internal representation
of the value. It is not the same as the hexadecimal notation in the C
programming language.

Example 4

This example illustrates the short eng and long eng formats. The
value assigned to variable A increases by a multiple of 10 each time
through the for loop.

A = 5.123456789;

for k=1:10
disp(A)
A = A * 10;

end

The values displayed for A are shown here. The power of 10 is always a
multiple of 3. The value itself is expressed in 5 or more digits for the
short eng format, and in exactly 15 digits for long eng:

format short eng format long eng

5.1235e+000 5.12345678900000e+000
51.2346e+000 51.2345678900000e+000

512.3457e+000 512.345678900000e+000
5.1235e+003 5.12345678900000e+003

51.2346e+003 51.2345678900000e+003
512.3457e+003 512.345678900000e+003

5.1235e+006 5.12345678900000e+006
51.2346e+006 51.2345678900000e+006

512.3457e+006 512.345678900000e+006
5.1235e+009 5.12345678900000e+009

Algorithms If the largest element of a matrix is larger than 103 or smaller than 10-3,
MATLAB applies a common scale factor for the short and long formats.
The function format + displays +, -, and blank characters for positive,
negative, and zero elements. format hex displays the hexadecimal

2-1271

format

representation of a binary double-precision number. format rat uses a
continued fraction algorithm to approximate floating-point values by
ratios of small integers. See rat.m for the complete code.

See Also disp, display, isnumeric, isfloat, isinteger, floor, sprintf,
fprintf, num2str, rat, spy

2-1272

fplot

Purpose Plot function between specified limits

Syntax fplot(fun,limits)
fplot(fun,limits,LineSpec)
fplot(fun,limits,tol)
fplot(fun,limits,tol,LineSpec)
fplot(fun,limits,n)
fplot(fun,lims,...)
fplot(axes_handle,...)
[X,Y] = fplot(fun,limits,...)

Description fplot plots a function between specified limits. The function must be of
the form y = f(x), where x is a vector whose range specifies the limits,
and y is a vector the same size as x and contains the function’s value
at the points in x (see the first example). If the function returns more
than one value for a given x, then y is a matrix whose columns contain
each component of f(x) (see the second example).

fplot(fun,limits) plots fun between the limits specified by limits.
limits is a vector specifying the x-axis limits ([xmin xmax]), or the x-
and y-axes limits, ([xmin xmax ymin ymax]).

fun must be

• The name of an M-file function

• A string with variable x that may be passed to eval, such as
'sin(x)', 'diric(x,10)', or '[sin(x),cos(x)]'

• A function handle for an M-file function or an anonymous function
(see “Function Handles” and “Anonymous Functions” for more
information)

The function f(x) must return a row vector for each element of vector
x. For example, if f(x) returns [f1(x),f2(x),f3(x)] then for input
[x1;x2] the function should return the matrix

f1(x1) f2(x1) f3(x1)
f1(x2) f2(x2) f3(x2)

2-1273

fplot

fplot(fun,limits,LineSpec) plots fun using the line specification
LineSpec.

fplot(fun,limits,tol) plots fun using the relative error tolerance
tol (the default is 2e-3, i.e., 0.2 percent accuracy).

fplot(fun,limits,tol,LineSpec) plots fun using the relative error
tolerance tol and a line specification that determines line type, marker
symbol, and color. See LineSpec for more information.

fplot(fun,limits,n) with n >= 1 plots the function with a minimum
of n+1 points. The default n is 1. The maximum step size is restricted
to be (1/n)*(xmax-xmin).

fplot(fun,lims,...) accepts combinations of the optional arguments
tol, n, and LineSpec, in any order.

fplot(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

[X,Y] = fplot(fun,limits,...) returns the abscissas and ordinates
for fun in X and Y. No plot is drawn on the screen; however, you can
plot the function using plot(X,Y).

Remarks fplot uses adaptive step control to produce a representative graph,
concentrating its evaluation in regions where the function’s rate of
change is the greatest.

Examples Plot the hyperbolic tangent function from -2 to 2:

fnch = @tanh;
fplot(fnch,[-2 2])

2-1274

fplot

Create an M-file, myfun, that returns a two-column matrix:

function Y = myfun(x)
Y(:,1) = 200*sin(x(:))./x(:);
Y(:,2) = x(:).^2;

Create a function handle pointing to myfun:

fh = @myfun;

Plot the function with the statement

fplot(fh,[-20 20])

2-1275

fplot

Additional Example

This example passes function handles to fplot, one created from a
MATLAB function and the other created from an anonymous function.

hmp = @humps;
subplot(2,1,1);fplot(hmp,[0 1])
sn = @(x) sin(1./x);
subplot(2,1,2);fplot(sn,[.01 .1])

2-1276

fplot

See Also eval, ezplot, feval, LineSpec, plot

“Function Plots” on page 1-89 for related functions

“Plotting Mathematical Functions” for more examples

2-1277

fprintf

Purpose Write formatted data to file

Syntax count = fprintf(fid, format, A, ...)

Description count = fprintf(fid, format, A, ...) formats the data in the real
part of matrix A (and in any additional matrix arguments) under control
of the specified format string, and writes it to the file associated with file
identifier fid. fprintf returns a count of the number of bytes written.

Argument fid is an integer file identifier obtained from fopen. (It can
also be 1 for standard output (the screen) or 2 for standard error. See
fopen for more information.) Omitting fid causes output to appear on
the screen.

See “Formatting Strings” in the MATLAB Programming documentation
for more detailed information on using string formatting commands.

Format String

The format argument is a string containing ordinary characters and/or
C language conversion specifications. A conversion specification controls
the notation, alignment, significant digits, field width, and other aspects
of output format. The format string can contain escape characters to
represent nonprinting characters such as newline characters and tabs.

Conversion specifications begin with the % character and contain these
optional and required elements:

• Flags (optional)

• Width and precision fields (optional)

• A subtype specifier (optional)

• Conversion character (required)

You specify these elements in the following order:

2-1278

fprintf

Flags

You can control the alignment of the output using any of these optional
flags.

Character Description Example

Minus sign () Left-justifies the converted
argument in its field

%-5.2d

Plus sign (+) Always prints a sign character (+ or
)

%+5.2d

Space character Inserts a space before the value % 5.2d

Zero (0) Pads with zeros rather than spaces %05.2d

Field Width and Precision Specifications

You can control the width and precision of the output by including these
options in the format string.

Character Description Example

Field
width

A digit string specifying the minimum
number of digits to be printed

%6f

Precision A digit string including a period (.)
specifying the number of digits to be printed
to the right of the decimal point

%6.2f

Conversion Characters

Conversion characters specify the notation of the output.

2-1279

fprintf

Specifier Description

%c Single character

%d Decimal notation (signed)

%e Exponential notation (using a lowercase e as in
3.1415e+00)

%E Exponential notation (using an uppercase E as in
3.1415E+00)

%f Fixed-point notation

%g The more compact of %e or %f, as defined in [2].
Insignificant zeros do not print.

%G Same as %g, but using an uppercase E

%i Decimal notation (signed)

%o Octal notation (unsigned)

%s String of characters

%u Decimal notation (unsigned)

%x Hexadecimal notation (using lowercase letters a–f)

%X Hexadecimal notation (using uppercase letters A–F)

Conversion characters %o, %u, %x, and %X support subtype specifiers.
See Remarks for more information.

Escape Characters

This table lists the escape character sequences you use to specify
nonprinting characters in a format specification.

Character Description

\b Backspace

\f Form feed

\n New line

2-1280

fprintf

Character Description

\r Carriage return

\t Horizontal tab

\\ Backslash

\'' or ''

(two single quotes)

Single quotation mark

%% Percent character

Remarks When writing text to a file on Windows, it is recommended that you
open the file in write-text mode (e.g., fopen(file_id, 'wt')). This
ensures that lines in the file are terminated in such a way as to be
compatible with all applications that might use the file.

MATLAB writes characters using the encoding scheme associated with
the file. See fopen for more information.

The fprintf function behaves like its ANSI C language namesake with
these exceptions and extensions:

• If you use fprintf to convert a MATLAB double into an integer,
and the double contains a value that cannot be represented as an
integer (for example, it contains a fraction), MATLAB ignores the
specified conversion and outputs the value in exponential format. To
successfully perform this conversion, use the fix, floor, ceil, or
round function to change the value in the double into a value that
can be represented as an integer before passing it to sprintf.

• The following nonstandard subtype specifiers are supported for the
conversion characters %o, %u, %x, and %X.

2-1281

fprintf

b The underlying C data type is a double rather than an
unsigned integer. For example, to print a double-precision
value in hexadecimal, use a format like '%bx'.

t The underlying C data type is a float rather than an
unsigned integer.

For example, to print a double value in hexadecimal, use the format
'%bx'.

• The fprintf function is vectorized for nonscalar arguments. The
function recycles the format string through the elements of A
(columnwise) until all the elements are used up. The function
then continues in a similar manner through any additional matrix
arguments.

Note fprintf displays negative zero (-0) differently on some platforms,
as shown in the following table.

Conversion Character

Platform %e or %E %f %g or %G

PC 0.000000e+000 0.000000 0

Others -0.000000e+00 -0.000000 -0

Examples Example 1

Create a text file called exp.txt containing a short table of the
exponential function. (On Windows platforms, it is recommended that
you use fopen with the mode set to 'wt' to open a text file for writing.)

x = 0:.1:1;
y = [x; exp(x)];
fid = fopen('exp.txt', 'wt');
fprintf(fid, '%6.2f %12.8f\n', y);

2-1282

fprintf

fclose(fid)

Now examine the contents of exp.txt:

type exp.txt
0.00 1.00000000
0.10 1.10517092

...
1.00 2.71828183

Example 2

The command

fprintf(...
'A unit circle has circumference %g radians.\n', 2*pi)

displays a line on the screen:

A unit circle has circumference 6.283186 radians.

Example 3

To insert a single quotation mark in a string, use two single quotation
marks together. For example,

fprintf(1,'It''s Friday.\n')

displays on the screen

It's Friday.

Example 4

Use fprintf to display a hyperlink on the screen. For example,

site = '"http://www.mathworks.com"';
title = 'The MathWorks Web Site';
fprintf(['' title ''])

creates the hyperlink

2-1283

fprintf

The Mathworks Web Site

in the Command Window. Click on this link to display The MathWorks
home page in a MATLAB Web browser.

Example 5

The commands

B = [8.8 7.7; 8800 7700]
fprintf(1, 'X is %6.2f meters or %8.3f mm\n', 9.9, 9900, B)

display the lines

X is 9.90 meters or 9900.000 mm
X is 8.80 meters or 8800.000 mm
X is 7.70 meters or 7700.000 mm

Example 6

Explicitly convert MATLAB double-precision variables to integer values
for use with an integer conversion specifier. For instance, to convert
signed 32-bit data to hexadecimal format,

a = [6 10 14 44];
fprintf('%9X\n', a + (a<0)*2^32)

6
A
E

2C

See Also disp, fclose, ferror, fopen, fread, fscanf, fseek, ftell, fwrite

References [1] Kernighan, B.W., and D.M. Ritchie, The C Programming Language,
Second Edition, Prentice-Hall, Inc., 1988.

[2] ANSI specification X3.159-1989: “Programming Language C,” ANSI,
1430 Broadway, New York, NY 10018.

2-1284

http://www.mathworks.com

fprintf (serial)

Purpose Write text to device

Syntax fprintf(obj,'cmd')
fprintf(obj,'format','cmd')
fprintf(obj,'cmd','mode')
fprintf(obj,'format','cmd','mode')

Arguments obj A serial port object.

'cmd' The string written to the device.

'format' C language conversion specification.

'mode' Specifies whether data is written synchronously or
asynchronously.

Description fprintf(obj,'cmd') writes the string cmd to the device connected to
obj. The default format is %s\n. The write operation is synchronous
and blocks the command line until execution is complete.

fprintf(obj,'format','cmd') writes the string using the format
specified by format. format is a C language conversion specification.
Conversion specifications involve the % character and the conversion
characters d, i, o, u, x, X, f, e, E, g, G, c, and s. Refer to the sprintf file
I/O format specifications or a C manual for more information.

fprintf(obj,'cmd','mode') writes the string with command line
access specified by mode. If mode is sync, cmd is written synchronously
and the command line is blocked. If mode is async, cmd is written
asynchronously and the command line is not blocked. If mode is not
specified, the write operation is synchronous.

fprintf(obj,'format','cmd','mode') writes the string using the
specified format. If mode is sync, cmd is written synchronously. If mode
is async, cmd is written asynchronously.

Remarks Before you can write text to the device, it must be connected to obj
with the fclose function. A connected serial port object has a Status

2-1285

fprintf (serial)

property value of open. An error is returned if you attempt to perform a
write operation while obj is not connected to the device.

The ValuesSent property value is increased by the number of values
written each time fprintf is issued.

An error occurs if the output buffer cannot hold all the data to
be written. You can specify the size of the output buffer with the
OutputBufferSize property.

If you use the help command to display help for fprintf, then you need
to supply the pathname shown below.

help serial/fprintf

Synchronous Versus Asynchronous Write Operations

By default, text is written to the device synchronously and the command
line is blocked until the operation completes. You can perform an
asynchronous write by configuring the mode input argument to be
async. For asynchronous writes:

• The BytesToOutput property value is continuously updated to reflect
the number of bytes in the output buffer.

• The M-file callback function specified for the OutputEmptyFcn
property is executed when the output buffer is empty.

You can determine whether an asynchronous write operation is in
progress with the TransferStatus property.

Synchronous and asynchronous write operations are discussed in more
detail in Controlling Access to the MATLAB Command Line.

Rules for Completing a Write Operation with fprintf

A synchronous or asynchronous write operation using fprintf
completes when:

• The specified data is written.

2-1286

fprintf (serial)

• The time specified by the Timeout property passes.

Additionally, you can stop an asynchronous write operation with the
stopasync function.

Rules for Writing the Terminator

All occurrences of \n in cmd are replaced with the Terminator property
value. Therefore, when using the default format %s\n, all commands
written to the device will end with this property value. The terminator
required by your device will be described in its documentation.

Example Create the serial port object s, connect s to a Tektronix TDS 210
oscilloscope, and write the RS232? command with the fprintf function.
RS232? instructs the scope to return serial port communications
settings.

s = serial('COM1');
fopen(s)
fprintf(s,'RS232?')

Because the default format for fprintf is %s\n, the terminator specified
by the Terminator property was automatically written. However, in
some cases you might want to suppress writing the terminator. To do so,
you must explicitly specify a format for the data that does not include
the terminator, or configure the terminator to empty.

fprintf(s,'%s','RS232?')

See Also Functions

fopen, fwrite, stopasync

Properties

BytesToOutput, OutputBufferSize, OutputEmptyFcn,
Status,TransferStatus, ValuesSent

2-1287

frame2im

Purpose Convert movie frame to indexed image

Syntax [X,Map] = frame2im(F)

Description [X,Map] = frame2im(F) converts the single movie frame F into the
indexed image X and associated colormap Map. The functions getframe
and im2frame create a movie frame. If the frame contains true-color
data, then Map is empty.

See Also getframe, im2frame, movie

“Bit-Mapped Images” on page 1-92 for related functions

2-1288

frameedit

Purpose Edit print frames for Simulink and Stateflow block diagrams

Syntax frameedit
frameedit filename

Description frameedit starts the PrintFrame Editor, a graphical user interface
you use to create borders for Simulink and Stateflow block diagrams.
With no argument, frameedit opens the PrintFrame Editor window
with a new file.

frameedit filename opens the PrintFrame Editor window with the
specified filename, where filename is a figure file (.fig) previously
created and saved using frameedit.

2-1289

frameedit

Remarks This illustrates the main features of the PrintFrame Editor.

2-1290

frameedit

Closing the PrintFrame Editor

To close the PrintFrame Editor window, click the close box in the
upper right corner, or select Close from the File menu.

Printing Simulink Block Diagrams with Print Frames

Select Print from the Simulink File menu. Check the Frame box and
supply the filename for the print frame you want to use. Click OK in
the Print dialog box.

Getting Help for the PrintFrame Editor

For further instructions on using the PrintFrame Editor, select
PrintFrame Editor Help from the Help menu in the PrintFrame
Editor.

2-1291

fread

Purpose Read binary data from file

Syntax A = fread(fid)
A = fread(fid, count)
A = fread(fid, count, precision)
A = fread(fid, count, precision, skip)
A = fread(fid, count, precision, skip, machineformat)
[A, count] = fread(...)

Description A = fread(fid) reads data in binary format from the file specified
by fid into matrix A. Open the file using fopen before calling fread.
The fid argument is the integer file identifier obtained from the fopen
operation. MATLAB reads the file from beginning to end, and then
positions the file pointer at the end of the file (see feof for details).

Note fread is intended primarily for binary data. When reading text
files, use the fgetl function.

A = fread(fid, count) reads the number of elements specified by
count. At the end of the fread, MATLAB sets the file pointer to the next
byte to be read. A subsequent fread will begin at the location of the file
pointer. See “Specifying the Number of Elements” on page 2-1293, below.

Note In the following syntaxes, the count and skip arguments are
optional. For example, fread(fid, precision) is a valid syntax.

A = fread(fid, count, precision) reads the file according to
the data format specified by the string precision. This argument
commonly contains a data type specifier such as int or float, followed
by an integer giving the size in bits. See “Specifying precision” on page
2-1293 and “Specifying Output Format” on page 2-1295, below.

2-1292

fread

A = fread(fid, count, precision, skip) includes an optional
skip argument that specifies the number of bytes to skip after each
precision value is read. If precision specifies a bit format like 'bitN'
or 'ubitN', the skip argument is interpreted as the number of bits to
skip. See “Specifying a Skip Value” on page 2-1296, below.

A = fread(fid, count, precision, skip, machineformat) treats
the data read as having a format given by machineformat. You can
obtain the machineformat argument from the output of the fopen
function. See fopen for possible values for machineformat.

[A, count] = fread(...) returns the data read from the file in A, and
the number of elements successfully read in count.

Specifying the Number of Elements

Valid options for count are

n Reads n elements into a column vector.

inf Reads to the end of the file, resulting in a column vector
containing the same number of elements as are in the
file. If using inf results in an "out of memory" error,
specify a numeric count value.

[m,n] Reads enough elements to fill an m-by-n matrix, filling in
elements in column order, padding with zeros if the file
is too small to fill the matrix. n can be specified as inf,
but m cannot.

Specifying precision

Any of the strings in the following table, either the MATLAB version or
their C or Fortran equivalent, can be used for precision. If precision
is not specified, MATLAB uses the default, which is 'uint8'.

MATLAB C or Fortran Interpretation

’schar’ ’signed char’ Signed integer; 8 bits

’uchar’ ’unsigned char’ Unsigned integer; 8 bits

2-1293

fread

MATLAB C or Fortran Interpretation

’int8’ ’integer*1’ Integer; 8 bits

’int16’ ’integer*2’ Integer; 16 bits

’int32’ ’integer*4’ Integer; 32 bits

’int64’ ’integer*8’ Integer; 64 bits

’uint8’ ’integer*1’ Unsigned integer; 8 bits

’uint16’ ’integer*2’ Unsigned integer; 16 bits

’uint32’ ’integer*4’ Unsigned integer; 32 bits

’uint64’ ’integer*8’ Unsigned integer; 64 bits

’float32’ ’real*4’ Floating-point; 32 bits

’float64’ ’real*8’ Floating-point; 64 bits

’double’ ’real*8’ Floating-point; 64 bits

The following platform-dependent formats are also supported, but they
are not guaranteed to be the same size on all platforms.

MATLAB C or Fortran Interpretation

’char’ ’char*1’ Character

’short’ ’short’ Integer; 16 bits

’int’ ’int’ Integer; 32 bits

’long’ ’long’ Integer; 32 or 64 bits

’ushort’ ’unsigned short’ Unsigned integer; 16 bits

’uint’ ’unsigned int’ Unsigned integer; 32 bits

’ulong’ ’unsigned long’ Unsigned integer; 32 or 64 bits

’float’ ’float’ Floating-point; 32 bits

2-1294

fread

Note If the format is 'char' or 'char*1', MATLAB reads characters
using the encoding scheme associated with the file. See fopen for more
information.

The following formats map to an input stream of bits rather than bytes.

MATLAB
C or
Fortran Interpretation

’bitN’ - Signed integer; N bits (1 ≤ N ≤ 64)

’ubitN’ - Unsigned integer; N bits (1 ≤ N ≤ 64)

Specifying Output Format

By default, numeric and character values are returned in class double
arrays. To return these values stored in classes other than double,
create your format argument by first specifying your source format,
then following it with the characters “=>,” and finally specifying your
destination format. You are not required to use the exact name of a
MATLAB class type for destination. (See class for details). fread
translates the name to the most appropriate MATLAB class type. If the
source and destination formats are the same, the following shorthand
notation can be used.

*source

which means

source=>source

For example, '*uint16' is the same as 'uint16=>uint16'.

2-1295

fread

Note You can also use the *source notation with an input stream
that is specified as a number of bits (e.g., bit4 or ubit18). MATLAB
translates this into an output type that is a signed or unsigned integer
(depending on the input type), and that is large enough to hold all of the
bits in the source format. For example, *ubit18 does not translate to
ubit18=>ubit18, but instead to ubit18=>uint32.

This table shows some example precision format strings.

’uint8=>uint8’ Read in unsigned 8-bit integers and save them in
an unsigned 8-bit integer array.

’*uint8’ Shorthand version of the above.

’bit4=>int8’ Read in signed 4-bit integers packed in bytes and
save them in a signed 8-bit array. Each 4-bit
integer becomes an 8-bit integer.

’double=>real*4’ Read in doubles, convert, and save as a 32-bit
floating-point array.

Specifying a Skip Value

When skip is used, the precision string can contain a positive integer
repetition factor of the form 'N*', which prefixes the source format
specification, such as '40*uchar'.

Note Do not confuse the asterisk (*) used in the repetition factor
with the asterisk used as precision format shorthand. The format
string '40*uchar' is equivalent to '40*uchar=>double', not
'40*uchar=>uchar'.

When skip is specified, fread reads in, at most, a repetition factor
number of values (default is 1), skips the amount of input specified
by the skip argument, reads in another block of values, again skips

2-1296

fread

input, and so on, until count number of values have been read. If
a skip argument is not specified, the repetition factor is ignored.
Use the repetition factor with the skip argument to extract data in
noncontiguous fields from fixed-length records.

Remarks If the input stream is bytes and fread reaches the end of file (see feof)
in the middle of reading the number of bytes required for an element,
the partial result is ignored. However, if the input stream is bits, then
the partial result is returned as the last value. If an error occurs before
reaching the end of file, only full elements read up to that point are used.

Examples Example 1

The file alphabet.txt contains the 26 letters of the English alphabet,
all capitalized. Open the file for read access with fopen, and read the
first five elements into output c. Because a precision has not been
specified, MATLAB uses the default precision of uint8, and the output
is numeric:

fid = fopen('alphabet.txt', 'r');
c = fread(fid, 5)'
c =

65 66 67 68 69
fclose(fid);

This time, specify that you want each element read as an unsigned 8-bit
integer and output as a character. (Using a precision of 'char=>char'
or '*char' will produce the same result):

fid = fopen('alphabet.txt', 'r');
c = fread(fid, 5, 'uint8=>char')'
c =

ABCDE
fclose(fid);

When you leave out the optional count argument, MATLAB reads the
file to the end, A through Z:

2-1297

fread

fid = fopen('alphabet.txt', 'r');
c = fread(fid, '*char')'
c =

ABCDEFGHIJKLMNOPQRSTUVWXYZ
fclose(fid);

The fopen function positions the file pointer at the start of the file.
So the first fread in this example reads the first five elements in the
file, and then repositions the file pointer at the beginning of the next
element. For this reason, the next fread picks up where the previous
fread left off, at the character F.

fid = fopen('alphabet.txt', 'r');
c1 = fread(fid, 5, '*char');
c2 = fread(fid, 8, '*char');
c3 = fread(fid, 5, '*char');
fclose(fid);

sprintf('%c', c1, ' * ', c2, ' * ', c3)
ans =

ABCDE * FGHIJKLM * NOPQR

Skip two elements between each read by specifying a skip argument
of 2:

fid = fopen('alphabet.txt', 'r');
c = fread(fid, '*char', 2); % Skip 2 bytes per read
fclose(fid);

sprintf('%c', c)
ans =

ADGJMPSVY

Example 2

This command displays the complete M-file containing this fread help
entry:

type fread.m

2-1298

fread

To simulate this command using fread, enter the following:

fid = fopen('fread.m', 'r');
F = fread(fid, '*char')';
fclose(fid);

In the example, the fread command assumes the default size, 'inf',
and precision '*char' (the same as 'char=>char'). fread reads the
entire file. To display the result as readable text, the column vector is
transposed to a row vector.

Example 3

As another example,

s = fread(fid, 120, '40*uchar=>uchar', 8);

reads in 120 bytes in blocks of 40, each separated by 8 bytes. Note
that the class type of s is 'uint8' since it is the appropriate class
corresponding to the destination format 'uchar'. Also, since 40 evenly
divides 120, the last block read is a full block, which means that a final
skip is done before the command is finished. If the last block read is not
a full block, then fread does not finish with a skip.

See fopen for information about reading big and little-endian files.

Example 4

Invoke the fopen function with just an fid input argument to obtain
the machine format for the file. You can see that this file was written in
IEEE floating point with little-endian byte ordering ('ieee-le') format:

fid = fopen('A1.dat', 'r');

[fname, mode, mformat] = fopen(fid);
mformat
mformat =

ieee-le

Use the MATLAB format function (not related to the machine format
type) to have MATLAB display output using hexadecimal:

2-1299

fread

format hex

Now use the machineformat input with fread to read the data from the
file using the same format:

x = fread(fid, 6, 'uint64', 'ieee-le')
x =

4260800000002000
0000000000000000
4282000000180000
0000000000000000
42ca5e0000258000
42f0000464d45200

fclose(fid);

Change the machine format to IEEE floating point with big-endian byte
ordering ('ieee-be') and verify that you get different results:

fid = fopen('A1.dat', 'r');
x = fread(fid, 6, 'uint64', 'ieee-be')
x =

4370000008400000
0000000000000000
4308000200100000
0000000000000000
4352c0002f0d0000
43c022a6a3000000

fclose(fid);

Example 5

This example reads some Japanese text from a file that uses the
Shift-JIS character encoding scheme. It creates a string of Unicode
characters, str, and displays the string. Note that the computer must
be configured to display Japanese (e.g., a Japanese Windows machine)
for the output of disp(str) to be correct.

fid = fopen('japanese.txt', 'r', 'n', 'Shift_JIS');
str = fread(fid, '*char')';

2-1300

fread

fclose(fid);
disp(str);

See Also fgetl, fscanf, fwrite, fprintf, fopen, fclose, fseek, ftell, feof

2-1301

fread (serial)

Purpose Read binary data from device

Syntax A = fread(obj)
A = fread(obj,size,'precision')
[A,count] = fread(...)
[A,count,msg] = fread(...)

Arguments obj A serial port object.

size The number of values to read.

'precision' The number of bits read for each value, and the
interpretation of the bits as character, integer, or
floating-point values.

A Binary data returned from the device.

count The number of values read.

msg A message indicating if the read operation was
unsuccessful.

Description A = fread(obj) and A = fread(obj,size) read binary data from the
device connected to obj, and returns the data to A. The maximum
number of values to read is specified by size. If size is not specified,
the maximum number of values to read is determined by the object’s
InputBufferSize property. Valid options for size are:

n Read at most n values into a column vector.

[m,n] Read at most m-by-n values filling an m–by–n
matrix in column order.

size cannot be inf, and an error is returned if the specified number
of values cannot be stored in the input buffer. You specify the size, in
bytes, of the input buffer with the InputBufferSize property. A value
is defined as a byte multiplied by the precision (see below).

2-1302

fread (serial)

A = fread(obj,size,'precision') reads binary data with precision
specified by precision.

precision controls the number of bits read for each value and the
interpretation of those bits as integer, floating-point, or character
values. If precision is not specified, uchar (an 8-bit unsigned
character) is used. By default, numeric values are returned in
double-precision arrays. The supported values for precision are listed
below in Remarks.

[A,count] = fread(...) returns the number of values read to count.

[A,count,msg] = fread(...) returns a warning message to msg if the
read operation was unsuccessful.

Remarks Before you can read data from the device, it must be connected to obj
with the fopen function. A connected serial port object has a Status
property value of open. An error is returned if you attempt to perform a
read operation while obj is not connected to the device.

If msg is not included as an output argument and the read operation was
not successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of
values read, each time fread is issued.

If you use the help command to display help for fread, then you need to
supply the pathname shown below.

help serial/fread

Rules for Completing a Binary Read Operation

A read operation with fread blocks access to the MATLAB command
line until:

• The specified number of values are read.

• The time specified by the Timeout property passes.

2-1303

fread (serial)

Note The Terminator property is not used for binary read operations.

Supported Precisions

The supported values for precision are listed below.

Data Type Precision Interpretation

uchar 8-bit unsigned character

schar 8-bit signed character

Character

char 8-bit signed or unsigned character

int8 8-bit integer

int16 16-bit integer

int32 32-bit integer

uint8 8-bit unsigned integer

uint16 16-bit unsigned integer

uint32 32-bit unsigned integer

short 16-bit integer

int 32-bit integer

long 32- or 64-bit integer

ushort 16-bit unsigned integer

uint 32-bit unsigned integer

Integer

ulong 32- or 64-bit unsigned integer

2-1304

fread (serial)

Data Type Precision Interpretation

single 32-bit floating point

float32 32-bit floating point

float 32-bit floating point

double 64-bit floating point

Floating-point

float64 64-bit floating point

See Also Functions

fgetl, fgets, fopen, fscanf

Properties

BytesAvailable, BytesAvailableFcn, InputBufferSize, Status,
Terminator, ValuesReceived

2-1305

freqspace

Purpose Frequency spacing for frequency response

Syntax [f1,f2] = freqspace(n)
[f1,f2] = freqspace([m n])
[x1,y1] = freqspace(...,'meshgrid')
f = freqspace(N)
f = freqspace(N,'whole')

Description freqspace returns the implied frequency range for equally spaced
frequency responses. freqspace is useful when creating desired
frequency responses for various one- and two-dimensional applications.

[f1,f2] = freqspace(n) returns the two-dimensional frequency
vectors f1 and f2 for an n-by-n matrix.

For n odd, both f1 and f2 are [-n+1:2:n-1]/n.

For n even, both f1 and f2 are [-n:2:n-2]/n.

[f1,f2] = freqspace([m n]) returns the two-dimensional frequency
vectors f1 and f2 for an m-by-n matrix.

[x1,y1] = freqspace(...,'meshgrid') is equivalent to

[f1,f2] = freqspace(...);
[x1,y1] = meshgrid(f1,f2);

f = freqspace(N) returns the one-dimensional frequency vector f
assuming N evenly spaced points around the unit circle. For N even or
odd, f is (0:2/N:1). For N even, freqspace therefore returns (N+2)/2
points. For N odd, it returns (N+1)/2 points.

f = freqspace(N,'whole') returns N evenly spaced points around the
whole unit circle. In this case, f is 0:2/N:2*(N-1)/N.

See Also meshgrid

2-1306

frewind

Purpose Move file position indicator to beginning of open file

Syntax frewind(fid)

Description frewind(fid) sets the file position indicator to the beginning of the file
specified by fid, an integer file identifier obtained from fopen.

Remarks Rewinding a fid associated with a tape device might not work even
though frewind does not generate an error message.

See Also fclose, ferror, fopen, fprintf, fread, fscanf, fseek, ftell, fwrite

2-1307

fscanf

Purpose Read formatted data from file

Syntax A = fscanf(fid, format)
[A,count] = fscanf(fid, format, size)

Description A = fscanf(fid, format) reads data from the file specified by fid,
converts it according to the specified format string, and returns it
in matrix A. Argument fid is an integer file identifier obtained from
fopen. format is a string specifying the format of the data to be read.
See "Remarks" for details.

[A,count] = fscanf(fid, format, size) reads the amount of data
specified by size, converts it according to the specified format string,
and returns it along with a count of values successfully read. size is an
argument that determines how much data is read. Valid options are

n Read at most n numbers, characters, or strings.

inf Read to the end of the file.

[m,n] Read at most (m*n) numbers, characters, or strings. Fill a
matrix of at most m rows in column order. n can be inf,
but m cannot.

Characteristics of the output matrix A depend on the values read from
the file and on the size argument. If fscanf reads only numbers, and if
size is not of the form [m,n], matrix A is a column vector of numbers.
If fscanf reads only characters or strings, and if size is not of the form
[m,n], matrix A is a row vector of characters. See the Remarks section
for more information.

fscanf differs from its C language namesake fscanf() in an important
respect — it is vectorized to return a matrix argument. The format
string is cycled through the file until the first of these conditions occurs:

• The format string fails to match the data in the file

• The amount of data specified by size is read

• The end of the file is reached

2-1308

fscanf

Remarks When MATLAB reads a specified file, it attempts to match the data in
the file to the format string. If a match occurs, the data is written into
the output matrix. If a partial match occurs, only the matching data is
written to the matrix, and the read operation stops.

The format string consists of ordinary characters and/or conversion
specifications. Conversion specifications indicate the type of data to
be matched and involve the character %, optional width fields, and
conversion characters, organized as shown below.

Add one or more of these characters between the % and the conversion
character:

An asterisk
(*)

Skip over the matched value. If %*d, then the value that
matches d is ignored and is not stored.

A digit
string

Maximum field width. For example, %10d.

A letter The size of the receiving object, for example, h for short,
as in %hd for a short integer, or l for long, as in %ld for a
long integer, or %lg for a double floating-point number.

Valid conversion characters are

%c Sequence of characters; number specified by field width

%d Base 10 integers

%e, %f, %g Floating-point numbers

%i Defaults to base 10 integers. Data starting with 0 is
read as base 8. Data starting with 0x or 0X is read as
base 16.

2-1309

fscanf

%o Signed octal integer

%s A series of non-white-space characters

%u Signed decimal integer

%x Signed hexadecimal integer

[...] Sequence of characters (scanlist)

Format specifiers %e, %f, and %g accept the text 'inf', '-inf', 'nan',
and '-nan'. This text is not case sensitive. The fscanf function
converts these to the numeric representation of Inf, -Inf, NaN, and
-NaN.

Use %c to read space characters or %s to skip all white space. MATLAB
skips over any ordinary characters that are used in the format specifier
(see Example 2 below).

MATLAB reads characters using the encoding scheme associated with
the file. See fopen for more information. If the format string contains
ordinary characters, MATLAB matches each of those characters with
a character read from the file after converting both to the MATLAB
internal representation of characters.

For more information about format strings, refer to the scanf() and
fscanf() routines in a C language reference manual.

Output Characteristics: Only Numeric Values Read

Format characters that cause fscanf to read numbers from the file are
%d, %e, %f, %g, %i, %o, %u, and %x. When fscanf reads only numbers
from the file, the elements of the output matrix A are numbers.

When there is no size argument or the size argument is inf, fscanf
reads to the end of the file. The output matrix is a column vector with
one element for each number read from the input.

When the size argument is a scalar n, fscanf reads at most n numbers
from the file. The output matrix is a column vector with one element for
each number read from the input.

2-1310

fscanf

When the size argument is a matrix [m,n], fscanf reads at most
(m*n) numbers from the file. The output matrix contains at most m rows
and n columns. fscanf fills the output matrix in column order, using
as many columns as it needs to contain all the numbers read from the
input. Any unfilled elements in the final column contain zeros.

Output Characteristics: Only Character Values Read

The format characters that cause fscanf to read characters and strings
from the file are %c and %s. When fscanf reads only characters and
strings from the file, the elements of the output matrix A are characters.
When fscanf reads a string from the input, the output matrix includes
one element for each character in the string.

When there is no size argument or the size argument is inf, fscanf
reads to the end of the file. The output matrix is a row vector with one
element for each character read from the input.

When the size argument is a scalar n, fscanf reads at most n character
or string values from the file. The output matrix is a row vector with
one element for each character read from the input. When string values
are read from the input, the output matrix can contain more than
n columns.

When the size argument is a matrix [m,n], fscanf reads at most
(m*n) character or string values from the file. The output matrix
contains at most m rows. fscanf fills the output matrix in column order,
using as many columns as it needs to contain all the characters read
from the input. When string values are read from the input, the output
matrix can contain more than n columns. Any unfilled elements in the
final column contain char(0).

Output Characteristics: Both Numeric and Character Values
Read

When fscanf reads a combination of numbers and either characters
or strings from the file, the elements of the output matrix A are
numbers. This is true even when a format specifier such as '%*d %s'
tells MATLAB to ignore numbers in the input string and output only
characters or strings. When fscanf reads a string from the input, the

2-1311

fscanf

output matrix includes one element for each character in the string. All
characters are converted to their numeric equivalents in the output
matrix.

When there is no size argument or the size argument is inf, fscanf
reads to the end of the file. The output matrix is a column vector with
one element for each character read from the input.

When the size argument is a scalar n, fscanf reads at most n number,
character, or string values from the file. The output matrix contains at
most n rows. fscanf fills the output matrix in column order, using as
many columns as it needs to represent all the numbers and characters
read from the input. When string values are read from the input, the
output matrix can contain more than one column. Any unfilled elements
in the final column contain zeros.

When the size argument is a matrix [m,n], fscanf reads at most (m*n)
number, character, or string values from the file. The output matrix
contains at most m rows. fscanf fills the output matrix in column order,
using as many columns as it needs to represent all the numbers and
characters read from the input. When string values are read from the
input, the output matrix can contain more than n columns. Any unfilled
elements in the final column contain zeros.

Note This section applies only when fscanf actually reads a
combination of numbers and either characters or strings from the
file. Even if the format string has both format characters that would
result in numbers (such as %d) and format characters that would
result in characters or strings (such as %s), fscanf might actually
read only numbers or only characters or strings. If fscanf reads only
numbers, see “Output Characteristics: Only Numeric Values Read” on
page 2-1310. If fscanf reads only characters or strings, see “Output
Characteristics: Only Character Values Read” on page 2-1311.

2-1312

fscanf

Examples Example 1

An example in fprintf generates a text file called exp.txt that looks
like this:

0.00 1.00000000
0.10 1.10517092
...
1.00 2.71828183

Read this file back into a two-column MATLAB matrix:

fid = fopen('exp.txt', 'r');
a = fscanf(fid, '%g %g', [2 inf]) % It has two rows now.
a = a';
fclose(fid)

Example 2

Start with a file temp.dat that contains temperature readings:

78 F 72 F 64 F 66 F 49 F

Open the file using fopen and read it with fscanf. If you include
ordinary characters (such as the degree (°) and Farrenheit (F) symbols
used here) in the conversion string, fscanf skips over those characters
when reading the string:

fid = fopen('temps.dat', 'r');

degrees = char(176)
degrees =

fscanf(fid, ['%d' degrees 'F'])
ans =

78
72
64
66
49

2-1313

fscanf

See Also fgetl, fgets, fread, fprintf, fscanf, input, sscanf, textread

2-1314

fscanf (serial)

Purpose Read data from device, and format as text

Syntax A = fscanf(obj)
A = fscanf(obj,'format')
A = fscanf(obj,'format',size)
[A,count] = fscanf(...)
[A,count,msg] = fscanf(...)

Arguments obj A serial port object.

'format' C language conversion specification.

size The number of values to read.

A Data read from the device and formatted as text.

count The number of values read.

msg A message indicating if the read operation was
unsuccessful.

Description A = fscanf(obj) reads data from the device connected to obj, and
returns it to A. The data is converted to text using the %c format.

A = fscanf(obj,'format') reads data and converts it according to
format. format is a C language conversion specification. Conversion
specifications involve the % character and the conversion characters d,
i, o, u, x, X, f, e, E, g, G, c, and s. Refer to the sscanf file I/O format
specifications or a C manual for more information.

A = fscanf(obj,'format',size) reads the number of values specified
by size. Valid options for size are:

n Read at most n values into a column vector.

[m,n] Read at most m-by-n values filling an m–by–n matrix
in column order.

2-1315

fscanf (serial)

size cannot be inf, and an error is returned if the specified number of
values cannot be stored in the input buffer. If size is not of the form
[m,n], and a character conversion is specified, then A is returned as a
row vector. You specify the size, in bytes, of the input buffer with the
InputBufferSize property. An ASCII value is one byte.

[A,count] = fscanf(...) returns the number of values read to count.

[A,count,msg] = fscanf(...) returns a warning message to msg if
the read operation did not complete successfully.

Remarks Before you can read data from the device, it must be connected to obj
with the fopen function. A connected serial port object has a Status
property value of open. An error is returned if you attempt to perform a
read operation while obj is not connected to the device.

If msg is not included as an output argument and the read operation was
not successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of
values read – including the terminator – each time fscanf is issued.

If you use the help command to display help for fscanf, then you need
to supply the pathname shown below.

help serial/fscanf

Rules for Completing a Read Operation with fscanf

A read operation with fscanf blocks access to the MATLAB command
line until:

• The terminator specified by the Terminator property is read.

• The time specified by the Timeout property passes.

• The number of values specified by size is read.

• The input buffer is filled (unless size is specified)

2-1316

fscanf (serial)

Example Create the serial port object s and connect s to a Tektronix TDS 210
oscilloscope, which is displaying sine wave.

s = serial('COM1');
fopen(s)

Use the fprintf function to configure the scope to measure the
peak-to-peak voltage of the sine wave, return the measurement type,
and return the peak-to-peak voltage.

fprintf(s,'MEASUREMENT:IMMED:TYPE PK2PK')
fprintf(s,'MEASUREMENT:IMMED:TYPE?')
fprintf(s,'MEASUREMENT:IMMED:VALUE?')

Because the default value for the ReadAsyncMode property is
continuous, data associated with the two query commands is
automatically returned to the input buffer.

s.BytesAvailable
ans =

21

Use fscanf to read the measurement type. The operation will complete
when the first terminator is read.

meas = fscanf(s)
meas =
PK2PK

Use fscanf to read the peak-to-peak voltage as a floating-point number,
and exclude the terminator.

pk2pk = fscanf(s,'%e',14)
pk2pk =

2.0200

Disconnect s from the scope, and remove s from memory and the
workspace.

2-1317

fscanf (serial)

fclose(s)
delete(s)
clear s

See Also Functions

fgetl, fgets, fopen, fread, strread

Properties

BytesAvailable, BytesAvailableFcn, InputBufferSize, Status,
Terminator, Timeout

2-1318

fseek

Purpose Set file position indicator

Syntax status = fseek(fid, offset, origin)

Description status = fseek(fid, offset, origin) repositions the file position
indicator in the file with the given fid to the byte with the specified
offset relative to origin.

For a file having n bytes, the bytes are numbered from 0 to n-1. The
position immediately following the last byte is the end-of-file, or eof,
position. You would seek to the eof position if you wanted to add data
to the end of a file.

This figure represents a file having 12 bytes, numbered 0 through 11.
The first command shown seeks to the ninth byte of data in the file.
The second command seeks just past the end of the file data, to the
eof position.

fseek does not seek beyond the end of file eof position. If you attempt
to seek beyond eof, MATLAB returns an error status.

Arguments fid An integer file identifier obtained from fopen

offset A value that is interpreted as follows,

offset >
0

Move position indicator offset bytes
toward the end of the file.

offset =
0

Do not change position.

2-1319

fseek

offset <
0

Move position indicator offset bytes
toward the beginning of the file.

origin A string whose legal values are

’bof’ -1: Beginning of file

’cof’ 0: Current position in file

’eof’ 1: End of file

status A returned value that is 0 if the fseek operation is
successful and -1 if it fails. If an error occurs, use the
function ferror to get more information.

Examples This example opens the file test1.dat, seeks to the 20th byte, reads
fifty 32-bit unsigned integers into variable A, and closes the file. It then
opens a second file, test2.dat, seeks to the end-of-file position, appends
the data in A to the end of this file, and closes the file.

fid = fopen('test1.dat', 'r');
fseek(fid, 19, 'bof');
A = fread(fid, 50, 'uint32');
fclose(fid);

fid = fopen('test2.dat', 'r+');
fseek(fid, 0, 'eof');
fwrite(fid, A, 'uint32');
fclose(fid);

See Also fopen, fclose, ferror, fprintf, fread, fscanf, ftell, fwrite

2-1320

ftell

Purpose File position indicator

Syntax position = ftell(fid)

Description position = ftell(fid) returns the location of the file position
indicator for the file specified by fid, an integer file identifier obtained
from fopen. The position is a nonnegative, zero-based integer
specified in bytes from the beginning of the file. A returned value of -1
for position indicates that the query was unsuccessful; use ferror to
determine the nature of the error.

Remarks ftell is likely to return an invalid position when all of the following
are true. This is due to the way in which the Microsoft Windows C
library currently handles its ftell and fgetpos commands:

• The file you are currently operating on is an ASCII text file.

• The file was written on a UNIX-based system, or uses the UNIX-style
line terminator: a line feed (with no carriage return) at the end of
each line of text. (This is the default output format for MATLAB
functions dlmwrite and csvwrite.)

• You are reading the file on a Windows system.

• You opened the file with the fopen function with mode set to 'rt'.

• The ftell command is directly preceded by an fgets or fgetl
command.

Note that this does not affect the ability to accurately read from and
write to this type of file from MATLAB.

See Also fclose, ferror, fopen, fprintf, fread, fscanf, fseek, fwrite

2-1321

ftp

Purpose Connect to FTP server, creating FTP object

Syntax f = ftp('host','username','password')

Description f = ftp('host','username','password') connects to the FTP server,
host, creating the FTP object, f. If a username and password are not
required for an anonymous connection, only use the host argument.
Specify an alternate port by separating it from host using a colon
(:). After running ftp, perform file operation functions on the FTP
object, f, using methods such as cd and others listed under "See Also."
When you’re finished using the server, run close (ftp) to close the
connection.

FTP is not a secure protocol; others can see your username and
password.

The ftp function is based on code from the Apache Jakarta Project.

Examples Connect Without Username

Connect to ftp.mathworks.com, which does not require a username or
password. Assign the resulting FTP object to tmw. You can access this
FTP site to experiment with the FTP functions.

tmw=ftp('ftp.mathworks.com')

MATLAB returns

tmw =
FTP Object
host: ftp.mathworks.com
user: anonymous
dir: /

mode: binary

Connect to Specified Port

To connect to port 34, type

tmw=ftp('ftp.mathworks.com:34')

2-1322

ftp

Connect with Username

Connect to ftp.testsite.com and assign the resulting FTP object to
test.

test=ftp('ftp.testsite.com','myname','mypassword')

MATLAB returns

test =
FTP Object
host: ftp.testsite.com
user: myname
dir: /

mode: binary
myname@ftp.testsite.com
/

See Also ascii, binary, cd (ftp), close (ftp), delete (ftp), dir (ftp),
mget, mkdir (ftp), mput, rename, rmdir (ftp)

2-1323

full

Purpose Convert sparse matrix to full matrix

Syntax A = full(S)

Description A = full(S) converts a sparse matrix S to full storage organization. If
S is a full matrix, it is left unchanged. If A is full, issparse(A) is 0.

Remarks Let X be an m-by-n matrix with nz = nnz(X) nonzero entries. Then
full(X) requires space to store m*n real numbers while sparse(X)
requires space to store nz real numbers and (nz+n) integers.

On most computers, a real number requires twice as much storage
as an integer. On such computers, sparse(X) requires less storage
than full(X) if the density, nnz/prod(size(X)), is less than one
third. Operations on sparse matrices, however, require more execution
time per element than those on full matrices, so density should be
considerably less than two-thirds before sparse storage is used.

Examples Here is an example of a sparse matrix with a density of about
two-thirds. sparse(S) and full(S) require about the same number
of bytes of storage.

S = sparse(+(rand(200,200) < 2/3));
A = full(S);
whos
Name Size Bytes Class

A 200X200 320000 double array
S 200X200 318432 double array (sparse)

See Also issparse, sparse

2-1324

fullfile

Purpose Build full filename from parts

Syntax f = fullfile(dir1, dir2, ..., filename)

Description f = fullfile(dir1, dir2, ..., filename) builds a full file
specification f from the directories and filename specified. Input
arguments dir1, dir2, etc. and filename are each a string enclosed in
single quotes. The output of the fullfile command is conceptually
equivalent to

f = [dir1 filesep dir2 filesep ... filesep filename]

except that care is taken to handle the cases when the directories begin
or end with a directory separator.

Examples To create the full filename from a disk name, directories, and filename,

f = fullfile('C:', 'Applications', 'matlab', 'myfun.m')
f =
C:\Applications\matlab\myfun.m

The following examples both produce the same result on UNIX, but only
the second one works on all platforms.

fullfile(matlabroot, 'toolbox/matlab/general/Contents.m')
fullfile(matlabroot, 'toolbox', 'matlab', 'general', ...

'Contents.m')

See Also fileparts, filesep, path, pathsep, genpath

2-1325

func2str

Purpose Construct function name string from function handle

Syntax func2str(fhandle)

Description func2str(fhandle) constructs a string s that holds the name of the
function to which the function handle fhandle belongs.

When you need to perform a string operation, such as compare or
display, on a function handle, you can use func2str to construct a
string bearing the function name.

The func2str command does not operate on nonscalar function handles.
Passing a nonscalar function handle to func2str results in an error.

Examples Example 1

Convert a sin function handle to a string:

fhandle = @sin;

func2str(fhandle)
ans =

sin

Example 2

The catcherr function shown here accepts function handle and data
arguments and attempts to evaluate the function through its handle. If
the function fails to execute, catcherr uses sprintf to display an error
message giving the name of the failing function. The function name
must be a string for sprintf to display it. The code derives the function
name from the function handle using func2str:

function catcherr(func, data)
try

ans = func(data);
disp('Answer is:');
ans

catch

2-1326

func2str

disp(sprintf('Error executing function ''%s''\n', ...
func2str(func)))

end

The first call to catcherr passes a handle to the round function and
a valid data argument. This call succeeds and returns the expected
answer. The second call passes the same function handle and an
improper data type (a MATLAB structure). This time, round fails,
causing catcherr to display an error message that includes the failing
function name:

catcherr(@round, 5.432)
ans =
Answer is 5

xstruct.value = 5.432;
catcherr(@round, xstruct)
Error executing function "round"

See Also function_handle, str2func, functions

2-1327

function

Purpose Declare M-file function

Syntax function [out1, out2, ...] = funname(in1, in2, ...)

Description function [out1, out2, ...] = funname(in1, in2, ...) defines
function funname that accepts inputs in1, in2, etc. and returns outputs
out1, out2, etc.

You add new functions to the MATLAB vocabulary by expressing them
in terms of existing functions. The existing commands and functions
that compose the new function reside in a text file called an M-file.

M-files can be either scripts or functions. Scripts are simply files
containing a sequence of MATLAB statements. Functions make use of
their own local variables and accept input arguments.

The name of an M-file begins with an alphabetic character and has a
filename extension of .m. The M-file name, less its extension, is what
MATLAB searches for when you try to use the script or function.

A line at the top of a function M-file contains the syntax definition. The
name of a function, as defined in the first line of the M-file, should be
the same as the name of the file without the .m extension.

The variables within the body of the function are all local variables.

A subfunction,visible only to the other functions in the same file, is
created by defining a new function with the function keyword after the
body of the preceding function or subfunction. Subfunctions are not
visible outside the file where they are defined.

You can terminate any function with an end statement but, in most
cases, this is optional. end statements are required only in M-files that
employ one or more nested functions. Within such an M-file, every
function (including primary, nested, private, and subfunctions) must be
terminated with an end statement. You can terminate any function
type with end, but doing so is not required unless the M-file contains a
nested function.

Functions normally return when the end of the function is reached. Use
a return statement to force an early return.

2-1328

function

When MATLAB does not recognize a function by name, it searches
for a file of the same name on disk. If the function is found,
MATLAB compiles it into memory for subsequent use. The section
“Determining Which Function Is Called” in the MATLAB Programming
documentation explains how MATLAB interprets variable and function
names that you enter, and also covers the precedence used in function
dispatching.

When you call an M-file function from the command line or from within
another M-file, MATLAB parses the function and stores it in memory.
The parsed function remains in memory until cleared with the clear
command or you quit MATLAB. The pcode command performs the
parsing step and stores the result on the disk as a P-file to be loaded
later.

Examples Example 1

The existence of a file on disk called stat.m containing this code defines
a new function called stat that calculates the mean and standard
deviation of a vector:

function [mean,stdev] = stat(x)
n = length(x);
mean = sum(x)/n;
stdev = sqrt(sum((x-mean).^2/n));

Example 2

avg is a subfunction within the file stat.m:

function [mean,stdev] = stat(x)
n = length(x);
mean = avg(x,n);
stdev = sqrt(sum((x-avg(x,n)).^2)/n);

function mean = avg(x,n)
mean = sum(x)/n;

See Also nargin, nargout, pcode, varargin, varargout, what

2-1329

function_handle (@)

Purpose Handle used in calling functions indirectly

Syntax handle = @functionname
handle = @(arglist)anonymous_function

Description handle = @functionname returns a handle to the specified MATLAB
function.

A function handle is a MATLAB value that provides a means of calling
a function indirectly. You can pass function handles in calls to other
functions (often called function functions). You can also store function
handles in data structures for later use (for example, as Handle
Graphics callbacks). A function handle is one of the standard MATLAB
data types.

At the time you create a function handle, the function you specify must
be on the MATLAB path and in the current scope. This condition
does not apply when you evaluate the function handle. You can, for
example, execute a subfunction from a separate (out-of-scope) M-file
using a function handle as long as the handle was created within the
subfunction’s M-file (in-scope).

handle = @(arglist)anonymous_function constructs an anonymous
function and returns a handle to that function. The body of the
function, to the right of the parentheses, is a single MATLAB statement
or command. arglist is a comma-separated list of input arguments.
Execute the function by calling it by means of the function handle,
handle.

Remarks The function handle is a standard MATLAB data type. As such, you can
manipulate and operate on function handles in the same manner as on
other MATLAB data types. This includes using function handles in
structures and cell arrays:

S.a = @sin; S.b = @cos; S.c = @tan;
C = {@sin, @cos, @tan};

2-1330

function_handle (@)

However, standard matrices or arrays of function handles are not
supported:

A = [@sin, @cos, @tan]; % This is not supported

For nonoverloaded functions, subfunctions, and private functions,
a function handle references just the one function specified in the
@functionname syntax. When you evaluate an overloaded function
by means of its handle, the arguments the handle is evaluated with
determine the actual function that MATLAB dispatches to.

Use isa(h, 'function_handle') to see if variable h is a function
handle.

Examples Example 1 — Constructing a Handle to a Named Function

The following example creates a function handle for the humps function
and assigns it to the variable fhandle.

fhandle = @humps;

Pass the handle to another function in the same way you would pass
any argument. This example passes the function handle just created to
fminbnd, which then minimizes over the interval [0.3, 1].

x = fminbnd(fhandle, 0.3, 1)
x =

0.6370

The fminbnd function evaluates the @humps function handle. A small
portion of the fminbnd M-file is shown below. In line 1, the funfcn input
parameter receives the function handle @humps that was passed in. The
statement, in line 113, evaluates the handle.

1 function [xf,fval,exitflag,output] = ...
fminbnd(funfcn,ax,bx,options,varargin)

.

.

.

2-1331

function_handle (@)

113 fx = funfcn(x,varargin{:});

Example 2 — Constructing a Handle to an Anonymous
Function

The statement below creates an anonymous function that finds the
square of a number. When you call this function, MATLAB assigns the
value you pass in to variable x, and then uses x in the equation x.^2:

sqr = @(x) x.^2;

The @ operator constructs a function handle for this function, and
assigns the handle to the output variable sqr. As with any function
handle, you execute the function associated with it by specifying the
variable that contains the handle, followed by a comma-separated
argument list in parentheses. The syntax is

fhandle(arg1, arg2, ..., argN)

To execute the sqr function defined above, type

a = sqr(5)
a =

25

Because sqr is a function handle, you can pass it in an argument list
to other functions. The code shown here passes the sqr anonymous
function to the MATLAB quad function to compute its integral from
zero to one:

quad(sqr, 0, 1)
ans =

0.3333

See Also str2func, func2str, functions, isa

2-1332

functions

Purpose Information about function handle

Syntax S = functions(funhandle)

Description S = functions(funhandle) returns, in MATLAB structure S, the
function name, type, filename, and other information for the function
handle stored in the variable funhandle.

functions does not operate on nonscalar function handles. Passing a
nonscalar function handle to functions results in an error.

Caution The functions function is provided for querying and
debugging purposes. Because its behavior may change in subsequent
releases, you should not rely upon it for programming purposes.

This table lists the standard fields of the return structure.

Field Name Field Description

function Function name

type Function type (e.g., simple, overloaded)

file The file to be executed when the function handle is
evaluated with a nonoverloaded data type

Remarks For handles to functions that overload one of the standard MATLAB
data types, like double or char, the structure returned by functions
contains an additional field named methods. The methods field is a
substructure containing one field name for each MATLAB class that
overloads the function. The value of each field is the path and name of
the file that defines the method.

Examples Example 1

To obtain information on a function handle for the poly function, type

2-1333

functions

f = functions(@poly)
f =

function: 'poly'
type: 'simple'
file: '$matlabroot\toolbox\matlab\polyfun\poly.m'

(The term $matlabroot used in this example stands for the file
specification of the directory in which MATLAB software is installed for
your system. Your output will display this file specification.)

Access individual fields of the returned structure using dot selection
notation:

f.type
ans =

simple

Example 2

The function get_handles returns function handles for a subfunction
and private function in output arguments s and p respectively:

function [s, p] = get_handles
s = @mysubfun;
p = @myprivatefun;
%
function mysubfun
disp 'Executing subfunction mysubfun'

Call get_handles to obtain the two function handles, and then pass
each to the functions function. MATLAB returns information in a
structure having the fields function, type, file, and parentage. The
file field contains the file specification for the subfunction or private
function:

[fsub fprv] = get_handles;

functions(fsub)
ans =

2-1334

functions

function: 'mysubfun'
type: 'scopedfunction'
file: 'c:\matlab\get_handles.m'

parentage: {'mysubfun' 'get_handles'}

functions(fprv)
ans =

function: 'myprivatefun'
type: 'scopedfunction'
file: 'c:\matlab\private\myprivatefun.m'

parentage: {'myprivatefun'}

Example 3

In this example, the function get_handles_nested.m contains a nested
function nestfun. This function has a single output which is a function
handle to the nested function:

function handle = get_handles_nested(A)
nestfun(A);

function y = nestfun(x)
y = x + 1;
end

handle = @nestfun;
end

Call this function to get the handle to the nested function. Use this
handle as the input to functions to return the information shown here.
Note that the function field of the return structure contains the names
of the nested function and the function in which it is nested in the
format. Also note that functions returns a workspace field containing
the variables that are in context at the time you call this function by
its handle:

fh = get_handles_nested(5);

fhinfo = functions(fh)

2-1335

functions

fhinfo =
function: 'get_handles_nested/nestfun'

type: 'nested'
file: 'c:\matlab\get_handles_nested.m'

workspace: [1x1 struct]

fhinfo.workspace
ans =

handle: @get_handles_nested/nestfun
A: 5

See Also function_handle

2-1336

funm

Purpose Evaluate general matrix function

Syntax F = funm(A,fun)
F = funm(A, fun, options)
[F, exitflag] = funm(...)
[F, exitflag, output] = funm(...)

Description F = funm(A,fun) evaluates the user-defined function fun at the square
matrix argument A. F = fun(x, k) must accept a vector x and an
integer k, and return a vector f of the same size of x, where f(i) is
the kth derivative of the function fun evaluated at x(i). The function
represented by fun must have a Taylor series with an infinite radius of
convergence, except for fun = @log, which is treated as a special case.

You can also use funm to evaluate the special functions listed in the
following table at the matrix A.

Function Syntax for Evaluating Function at Matrix A

exp funm(A, @exp)

log funm(A, @log)

sin funm(A, @sin)

cos funm(A, @cos)

sinh funm(A, @sinh)

cosh funm(A, @cosh)

For matrix square roots, use sqrtm(A) instead. For matrix exponentials,
which of expm(A) or funm(A, @exp) is the more accurate depends on
the matrix A.

“Parameterizing Functions Called by Function Functions”, in the
online MATLAB Mathematics documentation, explains how to provide
additional parameters to the function fun, if necessary.

F = funm(A, fun, options) sets the algorithm’s parameters to the
values in the structure options. The following table lists the fields
of options.

2-1337

funm

Field Description Values

options.TolBlk Level of display 'off' (default), 'on',
'verbose'

options.TolTay Tolerance for blocking
Schur form

Positive scalar. The
default is eps.

options.MaxTerms Maximum number of
Tayor series terms

Positive integer. The
default is 250.

options.MaxSqrt When computing a
logarithm, maximum
number of square roots
computed in inverse
scaling and squaring
method.

Positive integer. The
default is 100.

options.Ord Specifies the ordering
of the Schur form T.

A vector of
length length(A).
options.Ord(i) is the
index of the block into
which T(i,i) is placed.
The default is [].

[F, exitflag] = funm(...) returns a scalar exitflag that describes
the exit condition of funm. exitflag can have the following values:

• 0 — The algorithm was successful.

• 1 — One or more Taylor series evaluations did not converge. However,
the computed value of F might still be accurate.

[F, exitflag, output] = funm(...) returns a structure output
with the following fields:

2-1338

funm

Field Description

output.terms Vector for which output.terms(i) is the number
of Taylor series terms used when evaluating the
ith block, or, in the case of the logarithm, the
number of square roots.

output.ind Cell array for which the (i,j) block of the
reordered Schur factor T is T(output.ind{i},
output.ind{j}).

output.ord Ordering of the Schur form, as passed to
ordschur

output.T Reordered Schur form

If the Schur form is diagonal then output =
struct('terms',ones(n,1),'ind',{1:n}).

Examples Example 1

The following command computes the matrix sine of the 3-by-3 magic
matrix.

F=funm(magic(3), @sin)

F =

-0.3850 1.0191 0.0162
0.6179 0.2168 -0.1844
0.4173 -0.5856 0.8185

Example 2

The statements

S = funm(X,@sin);
C = funm(X,@cos);

produce the same results to within roundoff error as

2-1339

funm

E = expm(i*X);
C = real(E);
S = imag(E);

In either case, the results satisfy S*S+C*C = I, where I =
eye(size(X)).

Example 3

To compute the function exp(x) + cos(x) at A with one call to funm,
use

F = funm(A,@fun_expcos)

where fun_expcos is the following M-file function.

function f = fun_expcos(x, k)
% Return kth derivative of exp + cos at X.

g = mod(ceil(k/2),2);
if mod(k,2)

f = exp(x) + sin(x)*(-1)^g;
else

f = exp(x) + cos(x)*(-1)^g;
end

Algorithm The algorithm funm uses is described in [1].

See Also expm, logm, sqrtm, function_handle (@)

References [1] Davies, P. I. and N. J. Higham, “A Schur-Parlett algorithm for
computing matrix functions,” SIAM J. Matrix Anal. Appl., Vol. 25,
Number 2, pp. 464-485, 2003.

[2] Golub, G. H. and C. F. Van Loan, Matrix Computation, Third Edition,
Johns Hopkins University Press, 1996, p. 384.

2-1340

funm

[3] Moler, C. B. and C. F. Van Loan, “Nineteen Dubious Ways to
Compute the Exponential of a Matrix, Twenty-Five Years Later” SIAM
Review 20, Vol. 45, Number 1, pp. 1-47, 2003.

2-1341

fwrite

Purpose Write binary data to file

Syntax count = fwrite(fid, A)
count = fwrite(fid, A, precision)
count = fwrite(fid, A, precision, skip)
count = fwrite(fid, A, precision, skip, machineformat)

Description count = fwrite(fid, A) writes the elements of matrix A to the
specified file. The data is written to the file in column order, and a
count is kept of the number of elements written successfully.

fid is an integer file identifier obtained from fopen, or 1 for standard
output or 2 for standard error.

count = fwrite(fid, A, precision) writes the elements of matrix
A to the specified file, translating MATLAB values to the specified
precision.

precision controls the form and size of the result. See fread for a list
of allowed precisions. If precision is not specified, MATLAB uses the
default, which is 'uint8'. For 'bitN' or 'ubitN' precisions, fwrite
sets all bits in A when the value is out of range. If the precision is
'char' or 'char*1', MATLAB writes characters using the encoding
scheme associated with the file. See fopen for more information.

count = fwrite(fid, A, precision, skip) includes an optional
skip argument that specifies the number of bytes to skip before each
precision value is written. With the skip argument present, fwrite
skips and writes one value, skips and writes another value, etc.,
until all of A is written. If precision is a bit format like 'bitN' or
'ubitN', skip is specified in bits. This is useful for inserting data into
noncontiguous fields in fixed-length records.

count = fwrite(fid, A, precision, skip, machineformat) treats
the data written as having a format given by machineformat. You can
obtain the machineformat argument from the output of the fopen
function. See fopen for possible values for machineformat.

2-1342

fwrite

Remarks You cannot view or type the contents of the file you are writing with
fwrite until you close the file with the fclose function.

Examples Example 1

This example creates a 100-byte binary file containing the 25 elements
of the 5-by-5 magic square, stored as 4-byte integers:

fid = fopen('magic5.bin', 'wb');
fwrite(fid, magic(5), 'integer*4')

Example 2

This example takes a string of Unicode characters, str, which contains
Japanese text, and writes the string into a file using the Shift-JIS
character encoding scheme:

fid = fopen('japanese_out.txt', 'w', 'n', 'Shift_JIS');
fwrite(fid, str, 'char');
fclose(fid);

See Also fclose, ferror, fopen, fprintf, fread, fscanf, fseek, ftell

2-1343

fwrite (serial)

Purpose Write binary data to device

Syntax fwrite(obj,A)
fwrite(obj,A,'precision')
fwrite(obj,A,'mode')
fwrite(obj,A,'precision','mode')

Arguments obj A serial port object.

A The binary data written to the device.

'precision' The number of bits written for each value, and the
interpretation of the bits as character, integer, or
floating-point values.

'mode' Specifies whether data is written synchronously or
asynchronously.

Description fwrite(obj,A) writes the binary data A to the device connected to obj.

fwrite(obj,A,'precision') writes binary data with precision
specified by precision.

precision controls the number of bits written for each value and the
interpretation of those bits as integer, floating-point, or character
values. If precision is not specified, uchar (an 8-bit unsigned
character) is used. The supported values for precision are listed below
in Remarks.

fwrite(obj,A,'mode') writes binary data with command line access
specified by mode. If mode is sync, A is written synchronously and the
command line is blocked. If mode is async, A is written asynchronously
and the command line is not blocked. If mode is not specified, the write
operation is synchronous.

fwrite(obj,A,'precision','mode') writes binary data with precision
specified by precision and command line access specified by mode.

2-1344

fwrite (serial)

Remarks Before you can write data to the device, it must be connected to obj with
the fopen function. A connected serial port object has a Status property
value of open. An error is returned if you attempt to perform a write
operation while obj is not connected to the device.

The ValuesSent property value is increased by the number of values
written each time fwrite is issued.

An error occurs if the output buffer cannot hold all the data to
be written. You can specify the size of the output buffer with the
OutputBufferSize property.

If you use the help command to display help for fwrite, then you need
to supply the pathname shown below.

help serial/fwrite

Synchronous Versus Asynchronous Write Operations

By default, data is written to the device synchronously and the
command line is blocked until the operation completes. You can perform
an asynchronous write by configuring the mode input argument to be
async. For asynchronous writes:

• The BytesToOutput property value is continuously updated to reflect
the number of bytes in the output buffer.

• The M-file callback function specified for the OutputEmptyFcn
property is executed when the output buffer is empty.

You can determine whether an asynchronous write operation is in
progress with the TransferStatus property.

Synchronous and asynchronous write operations are discussed in more
detail in Writing Data.

Rules for Completing a Write Operation with fwrite

A binary write operation using fwrite completes when:

• The specified data is written.

2-1345

fwrite (serial)

• The time specified by the Timeout property passes.

Note The Terminator property is not used with binary write
operations.

Supported Precisions

The supported values for precision are listed below.

Data Type Precision Interpretation

uchar 8-bit unsigned character

schar 8-bit signed character

Character

char 8-bit signed or unsigned character

int8 8-bit integer

int16 16-bit integer

int32 32-bit integer

uint8 8-bit unsigned integer

uint16 16-bit unsigned integer

uint32 32-bit unsigned integer

short 16-bit integer

int 32-bit integer

long 32- or 64-bit integer

ushort 16-bit unsigned integer

uint 32-bit unsigned integer

Integer

ulong 32- or 64-bit unsigned integer

2-1346

fwrite (serial)

Data Type Precision Interpretation

single 32-bit floating point

float32 32-bit floating point

float 32-bit floating point

double 64-bit floating point

Floating-point

float64 64-bit floating point

See Also Functions

fopen, fprintf

Properties

BytesToOutput, OutputBufferSize, OutputEmptyFcn, Status,
Timeout, TransferStatus, ValuesSent

2-1347

fzero

Purpose Find root of continuous function of one variable

Syntax x = fzero(fun,x0)
x = fzero(fun,x0,options)
[x,fval] = fzero(...)
[x,fval,exitflag] = fzero(...)
[x,fval,exitflag,output] = fzero(...)

Description x = fzero(fun,x0) tries to find a zero of fun near x0, if x0 is a scalar.
fun is a function handle. See “Function Handles” in the MATLAB
Programming documentation for more information. The value x
returned by fzero is near a point where fun changes sign, or NaN if
the search fails. In this case, the search terminates when the search
interval is expanded until an Inf, NaN, or complex value is found.

“Parameterizing Functions Called by Function Functions” in the
MATLAB Mathematics documentation, explains how to pass additional
parameters to your objective function fun. See also “Example 2” on page
2-1351 and “Example 3” on page 2-1351 below.

If x0 is a vector of length two, fzero assumes x0 is an interval where the
sign of fun(x0(1)) differs from the sign of fun(x0(2)). An error occurs
if this is not true. Calling fzero with such an interval guarantees fzero
will return a value near a point where fun changes sign.

x = fzero(fun,x0,options) minimizes with the optimization
parameters specified in the structure options. You can define these
parameters using the optimset function. fzero uses these options
structure fields:

2-1348

fzero

Display Level of display. 'off' displays no output; 'iter'
displays output at each iteration; 'final' displays
just the final output; 'notify' (default) displays
output only if the function does not converge.

FunValCheck Check whether objective function values are valid.
'on' displays an error when the objective function
returns a value that is complex or NaN. 'off' (the
default) displays no error.

OutputFcn User-defined function that is called at each iteration.
See “Output Function” in the Optimization Toolbox
for more information.

PlotFcns User-defined plot function that is called at each
iteration. See “Plot Functions” in the Optimization
Toolbox for more information.

TolX Termination tolerance on x

[x,fval] = fzero(...) returns the value of the objective function
fun at the solution x.

[x,fval,exitflag] = fzero(...) returns a value exitflag that
describes the exit condition of fzero:

1 Function converged to a solution x.

-1 Algorithm was terminated by the output function.

-3 NaN or Inf function value was encountered during search for
an interval containing a sign change.

-4 Complex function value was encountered during search for
an interval containing a sign change.

-5 fzero might have converged to a singular point.

-6 fzero can not detect a change in sign of the function.

[x,fval,exitflag,output] = fzero(...) returns a structure
output that contains information about the optimization:

2-1349

fzero

output.algorithm Algorithm used

output.funcCount Number of function evaluations

output.intervaliterationsNumber of iterations taken to find an interval

output.iterations Number of zero-finding iterations

output.message Exit message

Note For the purposes of this command, zeros are considered to be
points where the function actually crosses, not just touches, the x-axis.

Arguments fun is the function whose zero is to be computed. It accepts a vector
x and returns a scalar f, the objective function evaluated at x. The
function fun can be specified as a function handle for an M-file function

x = fzero(@myfun,x0);

where myfun is an M-file function such as

function f = myfun(x)
f = ... % Compute function value at x

or as a function handle for an anonymous function:

x = fzero(@(x)sin(x*x),x0);

Other arguments are described in the syntax descriptions above.

Examples Example 1

Calculate by finding the zero of the sine function near 3.

x = fzero(@sin,3)
x =

3.1416

2-1350

fzero

Example 2

To find the zero of cosine between 1 and 2

x = fzero(@cos,[1 2])
x =

1.5708

Note that cos(1) and cos(2) differ in sign.

Example 3

To find a zero of the function

write an anonymous function f:

f = @(x)x.^3-2*x-5;

Then find the zero near 2:

z = fzero(f,2)
z =

2.0946

Because this function is a polynomial, the statement roots([1 0 -2
-5]) finds the same real zero, and a complex conjugate pair of zeros.

2.0946
-1.0473 + 1.1359i
-1.0473 - 1.1359i

If fun is parameterized, you can use anonymous functions to capture
the problem-dependent parameters. For example, suppose you want to
minimize the objective function myfun defined by the following M-file
function.

function f = myfun(x,a)
f = cos(a*x);

2-1351

fzero

Note that myfun has an extra parameter a, so you cannot pass it directly
to fzero. To optimize for a specific value of a, such as a = 2.

1 Assign the value to a.

a = 2; % define parameter first

2 Call fzero with a one-argument anonymous function that captures
that value of a and calls myfun with two arguments:

x = fzero(@(x) myfun(x,a),0.1)

Algorithm The fzero command is an M-file. The algorithm, which was originated
by T. Dekker, uses a combination of bisection, secant, and inverse
quadratic interpolation methods. An Algol 60 version, with some
improvements, is given in [1]. A Fortran version, upon which the fzero
M-file is based, is in [2].

Limitations The fzero command finds a point where the function changes sign. If
the function is continuous, this is also a point where the function has
a value near zero. If the function is not continuous, fzero may return
values that are discontinuous points instead of zeros. For example,
fzero(@tan,1) returns 1.5708, a discontinuous point in tan.

Furthermore, the fzero command defines a zero as a point where the
function crosses the x-axis. Points where the function touches, but
does not cross, the x-axis are not valid zeros. For example, y = x.^2
is a parabola that touches the x-axis at 0. Because the function never
crosses the x-axis, however, no zero is found. For functions with no valid
zeros, fzero executes until Inf, NaN, or a complex value is detected.

See Also roots, fminbnd, optimset, function_handle (@), “Anonymous
Functions”

References [1] Brent, R., Algorithms for Minimization Without Derivatives,
Prentice-Hall, 1973.

2-1352

fzero

[2] Forsythe, G. E., M. A. Malcolm, and C. B. Moler, Computer Methods
for Mathematical Computations, Prentice-Hall, 1976.

2-1353

gallery

Purpose Test matrices

Syntax [A,B,C,...] = gallery(matname,P1,P2,...)
[A,B,C,...] = gallery(matname,P1,P2,...,classname)
gallery(3)
gallery(5)

Description [A,B,C,...] = gallery(matname,P1,P2,...) returns the test
matrices specified by the quoted string matname. The matname input is
the name of a matrix family selected from the table below. P1,P2,...
are input parameters required by the individual matrix family. The
number of optional parameters P1,P2,... used in the calling syntax
varies from matrix to matrix. The exact calling syntaxes are detailed in
the individual matrix descriptions below.

[A,B,C,...] = gallery(matname,P1,P2,...,classname) produces
a matrix of class classname. The classname input is a quoted string
that must be either 'single' or 'double'. If classname is not specified,
then the class of the matrix is determined from those arguments among
P1,P2,... that do not specify dimensions or select an option. If any of
these arguments is of class single then the matrix is single; otherwise
the matrix is double.

gallery(3) is a badly conditioned 3-by-3 matrix and gallery(5) is an
interesting eigenvalue problem.

The gallery holds over fifty different test matrix functions useful for
testing algorithms and other purposes.

Test Matrices

binomial cauchy chebspec chebvand

chow circul clement compar

condex cycol dorr dramadah

fiedler forsythe frank gearmat

gcdmat grcar hanowa house

2-1354

gallery

Test Matrices

invhess invol ipjfact jordbloc

kahan kms krylov lauchli

lehmer leslie lesp lotkin

minij moler neumann orthog

parter pei poisson prolate

randcolu randcorr randhess randjorth

rando randsvd redheff riemann

ris smoke toeppd tridiag

triw wathen wilk

binomial — Multiple of involutory matrix

A = gallery('binomial',n) returns an n-by-n matrix,with integer
entries such that A^2 = 2^(n-1)*eye(n).

Thus, B = A*2^((1-n)/2) is involutory, that is, B^2 = eye(n).

cauchy — Cauchy matrix

C = gallery('cauchy',x,y) returns an n-by-n matrix,
C(i,j) = 1/(x(i)+y(j)). Arguments x and y are vectors of length n.
If you pass in scalars for x and y, they are interpreted as vectors 1:x
and 1:y.

C = gallery('cauchy',x) returns the same as above with y = x.
That is, the command returns C(i,j) = 1/(x(i)+x(j)).

Explicit formulas are known for the inverse and determinant of a
Cauchy matrix. The determinant det(C) is nonzero if x and y both have
distinct elements. C is totally positive if 0 < x(1) <... < x(n) and
0 < y(1) < ... < y(n).

2-1355

gallery

chebspec — Chebyshev spectral differentiation matrix

C = gallery('chebspec',n,switch) returns a Chebyshev spectral
differentiation matrix of order n. Argument switch is a variable that
determines the character of the output matrix. By default, switch = 0.

For switch = 0 (“no boundary conditions”), C is nilpotent (C^n = 0) and
has the null vector ones(n,1). The matrix C is similar to a Jordan
block of size n with eigenvalue zero.

For switch = 1, C is nonsingular and well-conditioned, and its
eigenvalues have negative real parts.

The eigenvector matrix of the Chebyshev spectral differentiation matrix
is ill-conditioned.

chebvand — Vandermonde-like matrix for the Chebyshev
polynomials

C = gallery('chebvand',p) produces the (primal) Chebyshev
Vandermonde matrix based on the vector of points p, which define
where the Chebyshev polynomial is calculated.

C = gallery('chebvand',m,p) where m is scalar, produces a
rectangular version of the above, with m rows.

If p is a vector, then where is the
Chebyshev polynomial of degree i-1. If p is a scalar, then p equally
spaced points on the interval [0,1] are used to calculate C.

chow — Singular Toeplitz lower Hessenberg matrix

A = gallery('chow',n,alpha,delta) returns A such that

A = H(alpha) + delta*eye(n), where and
argument n is the order of the Chow matrix. Default value for scalars
alpha and delta are 1 and 0, respectively.

H(alpha) has p = floor(n/2) eigenvalues that are equal to zero. The
rest of the eigenvalues are equal to 4*alpha*cos(k*pi/(n+2))^2,
k=1:n-p.

2-1356

gallery

circul — Circulant matrix

C = gallery('circul',v) returns the circulant matrix whose first
row is the vector v.

A circulant matrix has the property that each row is obtained from the
previous one by cyclically permuting the entries one step forward. It is
a special Toeplitz matrix in which the diagonals “wrap around.”

If v is a scalar, then C = gallery('circul',1:v).

The eigensystem of C (n-by-n) is known explicitly: If t is an nth root of

unity, then the inner product of v and is an
eigenvalue of C and w(n:-1:1) is an eigenvector.

clement — Tridiagonal matrix with zero diagonal entries

A = gallery('clement',n,sym) returns an n-by-n tridiagonal matrix
with zeros on its main diagonal and known eigenvalues. It is singular if
order n is odd. About 64 percent of the entries of the inverse are zero.
The eigenvalues include plus and minus the numbers n-1, n-3, n-5,
..., as well as (for odd n) a final eigenvalue of 1 or 0.

Argument sym determines whether the Clement matrix is symmetric.
For sym = 0 (the default) the matrix is nonsymmetric, while for
sym = 1, it is symmetric.

compar — Comparison matrices

A = gallery('compar',A,1) returns A with each diagonal element
replaced by its absolute value, and each off-diagonal element replaced
by minus the absolute value of the largest element in absolute value in
its row. However, if A is triangular compar(A,1) is too.

gallery('compar',A) is diag(B) - tril(B,-1) - triu(B,1), where
B = abs(A). compar(A) is often denoted by M(A) in the literature.

gallery('compar',A,0) is the same as gallery('compar',A).

2-1357

gallery

condex — Counter-examples to matrix condition number
estimators

A = gallery('condex',n,k,theta) returns a “counter-example”
matrix to a condition estimator. It has order n and scalar parameter
theta (default 100).

The matrix, its natural size, and the estimator to which it applies are
specified by k:

k = 1 4-by-4 LINPACK

k = 2 3-by-3 LINPACK

k = 3 arbitrary LINPACK (rcond) (independent of
theta)

k = 4 n >= 4 LAPACK (RCOND) (default). It is
the inverse of this matrix that is a
counter-example.

If n is not equal to the natural size of the matrix, then the matrix is
padded out with an identity matrix to order n.

cycol — Matrix whose columns repeat cyclically

A = gallery('cycol',[m n],k) returns an m-by-n matrix with
cyclically repeating columns, where one “cycle” consists of randn(m,k).
Thus, the rank of matrix A cannot exceed k, and k must be a scalar.

Argument k defaults to round(n/4), and need not evenly divide n.

A = gallery('cycol',n,k), where n is a scalar, is the same as
gallery('cycol',[n n],k).

dorr — Diagonally dominant, ill-conditioned, tridiagonal
matrix

[c,d,e] = gallery('dorr',n,theta) returns the vectors defining
an n-by-n, row diagonally dominant, tridiagonal matrix that is
ill-conditioned for small nonnegative values of theta. The default
value of theta is 0.01. The Dorr matrix itself is the same as
gallery('tridiag',c,d,e).

2-1358

gallery

A = gallery('dorr',n,theta) returns the matrix itself, rather than
the defining vectors.

dramadah — Matrix of zeros and ones whose inverse has
large integer entries

A = gallery('dramadah',n,k) returns an n-by-n matrix of 0’s and 1’s
for which mu(A) = norm(inv(A),'fro') is relatively large, although
not necessarily maximal. An anti-Hadamard matrix A is a matrix with
elements 0 or 1 for which mu(A) is maximal.

n and k must both be scalars. Argument k determines the character of
the output matrix:

k = 1 Default. A is Toeplitz, with abs(det(A)) = 1, and
mu(A) > c(1.75)^n, where c is a constant. The inverse
of A has integer entries.

k = 2 A is upper triangular and Toeplitz. The inverse of A has
integer entries.

k = 3 A has maximal determinant among lower Hessenberg
(0,1) matrices. det(A) = the nth Fibonacci number.
A is Toeplitz. The eigenvalues have an interesting
distribution in the complex plane.

fiedler — Symmetric matrix

A = gallery('fiedler',c), where c is a length n vector, returns the
n-by-n symmetric matrix with elements abs(n(i)-n(j)). For scalar c,
A = gallery('fiedler',1:c).

Matrix A has a dominant positive eigenvalue and all the other
eigenvalues are negative.

Explicit formulas for inv(A) and det(A) are given in [Todd, J., Basic
Numerical Mathematics, Vol. 2: Numerical Algebra, Birkhauser, Basel,
and Academic Press, New York, 1977, p. 159] and attributed to Fiedler.
These indicate that inv(A) is tridiagonal except for nonzero (1,n) and
(n,1) elements.

2-1359

gallery

forsythe — Perturbed Jordan block

A = gallery('forsythe',n,alpha,lambda) returns the n-by-n matrix
equal to the Jordan block with eigenvalue lambda, excepting that
A(n,1) = alpha. The default values of scalars alpha and lambda are
sqrt(eps) and 0, respectively.

The characteristic polynomial of A is given by:

det(A-t*I) = (lambda-t)^N - alpha*(-1)^n.

frank — Matrix with ill-conditioned eigenvalues

F = gallery('frank',n,k) returns the Frank matrix of order n. It
is upper Hessenberg with determinant 1. If k = 1, the elements are
reflected about the anti-diagonal (1,n) — (n,1). The eigenvalues of
F may be obtained in terms of the zeros of the Hermite polynomials.
They are positive and occur in reciprocal pairs; thus if n is odd, 1 is
an eigenvalue. F has floor(n/2) ill-conditioned eigenvalues — the
smaller ones.

gcdmat — Greatest common divisor matrix

A = gallery('gcdmat',n) returns the n-by-n matrix with (i,j)
entry gcd(i,j). Matrix A is symmetric positive definite, and A.^r is
symmetric positive semidefinite for all nonnegative r.

gearmat — Gear matrix

A = gallery('gearmat',n,i,j) returns the n-by-n matrix with ones
on the sub- and super-diagonals, sign(i) in the (1,abs(i)) position,
sign(j) in the (n,n+1-abs(j)) position, and zeros everywhere else.
Arguments i and j default to n and -n, respectively.

Matrix A is singular, can have double and triple eigenvalues, and can
be defective.

All eigenvalues are of the form 2*cos(a) and the eigenvectors are of
the form [sin(w+a), sin(w+2*a), ..., sin(w+n*a)], where a and w
are given in Gear, C. W., “A Simple Set of Test Matrices for Eigenvalue
Programs,” Math. Comp., Vol. 23 (1969), pp. 119-125.

2-1360

gallery

grcar — Toeplitz matrix with sensitive eigenvalues

A = gallery('grcar',n,k) returns an n-by-n Toeplitz matrix with -1s
on the subdiagonal, 1s on the diagonal, and k superdiagonals of 1s. The
default is k = 3. The eigenvalues are sensitive.

hanowa — Matrix whose eigenvalues lie on a vertical line
in the complex plane

A = gallery('hanowa',n,d) returns an n-by-n block 2-by-2 matrix
of the form:

[d*eye(m) -diag(1:m)
diag(1:m) d*eye(m)]

Argument n is an even integer n=2*m. Matrix A has complex eigenvalues
of the form d ± k*i, for 1 <= k <= m. The default value of d is -1.

house — Householder matrix

[v,beta,s] = gallery('house',x,k) takes x, an n-element column
vector, and returns V and beta such that H*x = s*e1. In this
expression, e1 is the first column of eye(n), abs(s) = norm(x), and H
= eye(n) - beta*V*V' is a Householder matrix.

k determines the sign of s:

k = 0 sign(s) = -sign(x(1)) (default)

k = 1 sign(s) = sign(x(1))

k = 2 sign(s) = 1 (x must be real)

If x is complex, then sign(x) = x./abs(x) when x is nonzero.

If x = 0, or if x = alpha*e1 (alpha >= 0) and either k = 1 or k = 2,
then V = 0, beta = 1, and s = x(1). In this case, H is the identity
matrix, which is not strictly a Householder matrix.

[v, beta] = gallery('house',x) takes x, a scalar or n-element
column vector, and returns v and beta such that eye(n,n) -

2-1361

gallery

beta*v*v' is a Householder matrix. A Householder matrix H satisfies
the relationship

H*x = -sign(x(1))*norm(x)*e1

where e1 is the first column of eye(n,n). Note that if x is complex, then
sign(x) exp(i*arg(x)) (which equals x./abs(x) when x is nonzero).

If x = 0, then v = 0 and beta = 1.

invhess — Inverse of an upper Hessenberg matrix

A = gallery('invhess',x,y), where x is a length n vector and y is
a length n-1 vector, returns the matrix whose lower triangle agrees
with that of ones(n,1)*x' and whose strict upper triangle agrees with
that of [1 y]*ones(1,n).

The matrix is nonsingular if x(1) ~= 0 and x(i+1) ~= y(i) for all i,
and its inverse is an upper Hessenberg matrix. Argument y defaults to
-x(1:n-1).

If x is a scalar, invhess(x) is the same as invhess(1:x).

invol — Involutory matrix

A = gallery('invol',n) returns an n-by-n involutory (A*A =
eye(n)) and ill-conditioned matrix. It is a diagonally scaled version
of hilb(n).

B = (eye(n)-A)/2 and B = (eye(n)+A)/2 are idempotent (B*B = B).

ipjfact — Hankel matrix with factorial elements

[A,d] = gallery('ipjfact',n,k) returns A, an n-by-n Hankel
matrix, and d, the determinant of A, which is known explicitly. If k =
0 (the default), then the elements of A are A(i,j) = (i+j)! If k = 1,
then the elements of A are A(i,j) 1/(i+j).

Note that the inverse of A is also known explicitly.

jordbloc — Jordan block

A = gallery('jordbloc',n,lambda) returns the n-by-n Jordan block
with eigenvalue lambda. The default value for lambda is 1.

2-1362

gallery

kahan — Upper trapezoidal matrix

A = gallery('kahan',n,theta,pert) returns an upper trapezoidal
matrix that has interesting properties regarding estimation of condition
and rank.

If n is a two-element vector, then A is n(1)-by-n(2); otherwise, A is
n-by-n. The useful range of theta is 0 < theta < pi, with a default
value of 1.2.

To ensure that the QR factorization with column pivoting does not
interchange columns in the presence of rounding errors, the diagonal
is perturbed by pert*eps*diag([n:-1:1]). The default pert is 25,
which ensures no interchanges for gallery('kahan',n) up to at least n
= 90 in IEEE arithmetic.

kms — Kac-Murdock-Szego Toeplitz matrix

A = gallery('kms',n,rho) returns the n-by-n Kac-Murdock-Szego
Toeplitz matrix such that A(i,j) = rho^(abs(i-j)), for real rho.

For complex rho, the same formula holds except that elements below
the diagonal are conjugated. rho defaults to 0.5.

The KMS matrix A has these properties:

• An LDL’ factorization with L inv(gallery('triw',n,-rho,1))',
and D(i,i) (1-abs(rho)^2)*eye(n), except D(1,1) = 1.

• Positive definite if and only if 0 < abs(rho) < 1.

• The inverse inv(A) is tridiagonal.

krylov — Krylov matrix

B = gallery('krylov',A,x,j) returns the Krylov matrix

[x, Ax, A^2x, ..., A^(j-1)x]

where A is an n-by-n matrix and x is a length n vector. The defaults are
x ones(n,1), and j = n.

2-1363

gallery

B = gallery('krylov',n) is the same as
gallery('krylov',(randn(n)).

lauchli — Rectangular matrix

A = gallery('lauchli',n,mu) returns the (n+1)-by-n matrix

[ones(1,n); mu*eye(n)]

The Lauchli matrix is a well-known example in least squares and other
problems that indicates the dangers of forming A'*A. Argument mu
defaults to sqrt(eps).

lehmer — Symmetric positive definite matrix

A = gallery('lehmer',n) returns the symmetric positive definite
n-by-n matrix such that A(i,j) = i/j for j >= i.

The Lehmer matrix A has these properties:

• A is totally nonnegative.

• The inverse inv(A) is tridiagonal and explicitly known.

• The order n <= cond(A) <= 4*n*n.

leslie —

L = gallery('leslie',a,b) is the n-by-n matrix from the Leslie
population model with average birth numbers a(1:n) and survival
rates b(1:n-1). It is zero, apart from the first row (which contains the
a(i)) and the first subdiagonal (which contains the b(i)). For a valid
model, the a(i) are nonnegative and the b(i) are positive and bounded
by 1, i.e., 0 < b(i) <= 1.

L = gallery('leslie',n) generates the Leslie matrix with a =
ones(n,1), b = ones(n-1,1).

lesp — Tridiagonal matrix with real, sensitive eigenvalues

A = gallery('lesp',n) returns an n-by-n matrix whose eigenvalues
are real and smoothly distributed in the interval approximately
[-2*N-3.5, -4.5].

2-1364

gallery

The sensitivities of the eigenvalues increase exponentially as the
eigenvalues grow more negative. The matrix is similar to the
symmetric tridiagonal matrix with the same diagonal entries and
with off-diagonal entries 1, via a similarity transformation with D =
diag(1!,2!,...,n!).

lotkin — Lotkin matrix

A = gallery('lotkin',n) returns the Hilbert matrix with its
first row altered to all ones. The Lotkin matrix A is nonsymmetric,
ill-conditioned, and has many negative eigenvalues of small magnitude.
Its inverse has integer entries and is known explicitly.

minij — Symmetric positive definite matrix

A = gallery('minij',n) returns the n-by-n symmetric positive
definite matrix with A(i,j) = min(i,j).

The minij matrix has these properties:

• The inverse inv(A) is tridiagonal and equal to -1 times the second
difference matrix, except its (n,n) element is 1.

• Givens’ matrix, 2*A-ones(size(A)), has tridiagonal inverse and
eigenvalues 0.5*sec((2*r-1)*pi/(4*n))^2, where r=1:n.

• (n+1)*ones(size(A))-A has elements that are max(i,j) and a
tridiagonal inverse.

moler — Symmetric positive definite matrix

A = gallery('moler',n,alpha) returns the symmetric positive
definite n-by-n matrix U'*U, where U = gallery('triw',n,alpha).

For the default alpha = -1, A(i,j) = min(i,j)-2, and A(i,i) = i.
One of the eigenvalues of A is small.

neumann — Singular matrix from the discrete Neumann
problem (sparse)

C = gallery('neumann',n) returns the sparse n-by-n singular, row
diagonally dominant matrix resulting from discretizing the Neumann
problem with the usual five-point operator on a regular mesh.

2-1365

gallery

Argument n is a perfect square integer or a two-element
vector. C is sparse and has a one-dimensional null space with null
vector ones(n,1).

orthog — Orthogonal and nearly orthogonal matrices

Q = gallery('orthog',n,k) returns the kth type of matrix of order
n, where k > 0 selects exactly orthogonal matrices, and k < 0 selects
diagonal scalings of orthogonal matrices. Available types are:

k = 1 Q(i,j) = sqrt(2/(n+1)) * sin(i*j*pi/(n+1))

Symmetric eigenvector matrix for second difference
matrix. This is the default.

k = 2 Q(i,j) = 2/(sqrt(2*n+1)) *
sin(2*i*j*pi/(2*n+1))

Symmetric.

k = 3 Q(r,s) = exp(2*pi*i*(r-1)*(s-1)/n) / sqrt(n)

Unitary, the Fourier matrix. Q^4 is the identity. This is
essentially the same matrix as fft(eye(n))/sqrt(n)!

k = 4 Helmert matrix: a permutation of a lower Hessenberg
matrix, whose first row is ones(1:n)/sqrt(n).

k = 5 Q(i,j) = sin(2*pi*(i-1)*(j-1)/n) +
cos(2*pi*(i-1)*(j-1)/n)

Symmetric matrix arising in the Hartley transform.

k = 6 Q(i,j) = sqrt(2/n)*cos((i-1/2)*(j-1/2)*pi/n)

Symmetric matrix arising as a discrete cosine transform.

2-1366

gallery

k = -1 Q(i,j) = cos((i-1)*(j-1)*pi/(n-1))

Chebyshev Vandermonde-like matrix, based on extrema
of T(n-1).

k = -2 Q(i,j) = cos((i-1)*(j-1/2)*pi/n))

Chebyshev Vandermonde-like matrix, based on zeros of
T(n).

parter — Toeplitz matrix with singular values near pi

C = gallery('parter',n) returns the matrix C such that C(i,j) =
1/(i-j+0.5).

C is a Cauchy matrix and a Toeplitz matrix. Most of the singular values
of C are very close to pi.

pei — Pei matrix

A = gallery('pei',n,alpha), where alpha is a scalar, returns the
symmetric matrix alpha*eye(n) + ones(n). The default for alpha is
1. The matrix is singular for alpha equal to either 0 or -n.

poisson — Block tridiagonal matrix from Poisson’s equation
(sparse)

A = gallery('poisson',n) returns the block tridiagonal (sparse)
matrix of order n^2 resulting from discretizing Poisson’s equation with
the 5-point operator on an n-by-n mesh.

prolate — Symmetric, ill-conditioned Toeplitz matrix

A = gallery('prolate',n,w) returns the n-by-n prolate matrix with
parameter w. It is a symmetric Toeplitz matrix.

If 0 < w < 0.5 then A is positive definite

• The eigenvalues of A are distinct, lie in (0,1), and tend to cluster
around 0 and 1.

• The default value of w is 0.25.

2-1367

gallery

randcolu — Random matrix with normalized cols and
specified singular values

A = gallery('randcolu',n) is a random n-by-n matrix with columns
of unit 2-norm, with random singular values whose squares are from a
uniform distribution.

A'*A is a correlation matrix of the form produced by
gallery('randcorr',n).

gallery('randcolu',x) where x is an n-vector (n > 1), produces a
random n-by-n matrix having singular values given by the vector x. The
vector x must have nonnegative elements whose sum of squares is n.

gallery('randcolu',x,m) where m >= n, produces an m-by-n matrix.

gallery('randcolu',x,m,k) provides a further option:

k = 0 diag(x) is initially subjected to a random two-sided
orthogonal transformation, and then a sequence of
Givens rotations is applied (default).

k = 1 The initial transformation is omitted. This is much
faster, but the resulting matrix may have zero
entries.

For more information, see:

[1] Davies, P. I. and N. J. Higham, “Numerically Stable Generation
of Correlation Matrices and Their Factors,” BIT, Vol. 40, 2000, pp.
640-651.

randcorr — Random correlation matrix with specified
eigenvalues

gallery('randcorr',n) is a random n-by-n correlation matrix with
random eigenvalues from a uniform distribution. A correlation matrix
is a symmetric positive semidefinite matrix with 1s on the diagonal
(see corrcoef).

2-1368

gallery

gallery('randcorr',x) produces a random correlation matrix having
eigenvalues given by the vector x, where length(x) > 1. The vector x
must have nonnegative elements summing to length(x).

gallery('randcorr',x,k) provides a further option:

k = 0 The diagonal matrix of eigenvalues is initially
subjected to a random orthogonal similarity
transformation, and then a sequence of Givens
rotations is applied (default).

k = 1 The initial transformation is omitted. This is much
faster, but the resulting matrix may have some zero
entries.

For more information, see:

[1] Bendel, R. B. and M. R. Mickey, “Population Correlation Matrices for
Sampling Experiments,” Commun. Statist. Simulation Comput., B7,
1978, pp. 163-182.

[2] Davies, P. I. and N. J. Higham, “Numerically Stable Generation
of Correlation Matrices and Their Factors,” BIT, Vol. 40, 2000, pp.
640-651.

randhess — Random, orthogonal upper Hessenberg matrix

H = gallery('randhess',n) returns an n-by-n real, random,
orthogonal upper Hessenberg matrix.

H = gallery('randhess',x) if x is an arbitrary, real, length n vector
with n > 1, constructs H nonrandomly using the elements of x as
parameters.

Matrix H is constructed via a product of n-1 Givens rotations.

randjorth — Random J-orthogonal matrix

A = gallery('randjorth', n), for a positive integer n, produces a
random n-by-n J-orthogonal matrix A, where

2-1369

gallery

• J = blkdiag(eye(ceil(n/2)),-eye(floor(n/2)))

• cond(A) = sqrt(1/eps)

J-orthogonality means that A’*J*A = J. Such matrices are sometimes
called hyperbolic.

A = gallery('randjorth', n, m), for positive integers n and m,
produces a random (n+m)-by-(n+m) J-orthogonal matrix A, where

• J = blkdiag(eye(n),-eye(m))

• cond(A) = sqrt(1/eps)

A = gallery('randjorth',n,m,c,symm,method)

uses the following optional input arguments:

• c — Specifies cond(A) to be the scalar c.

• symm — Enforces symmetry if the scalar symm is nonzero.

• method — calls qr to perform the underlying orthogonal
transformations if the scalar method is nonzero. A call to qr is much
faster than the default method for large dimensions

rando — Random matrix composed of elements -1, 0 or 1

A = gallery('rando',n,k) returns a random n-by-n matrix with
elements from one of the following discrete distributions:

k = 1 A(i,j) = 0 or 1 with equal probability (default).

k = 2 A(i,j) = -1 or 1 with equal probability.

k = 3 A(i,j) = -1, 0 or 1 with equal probability.

Argument n may be a two-element vector, in which case the matrix
is n(1)-by-n(2).

2-1370

gallery

randsvd — Random matrix with preassigned singular values

A = gallery('randsvd',n,kappa,mode,kl,ku) returns a banded
(multidiagonal) random matrix of order n with cond(A) = kappa and
singular values from the distribution mode. If n is a two-element vector,
A is n(1)-by-n(2).

Arguments kl and ku specify the number of lower and upper
off-diagonals, respectively, in A. If they are omitted, a full matrix is
produced. If only kl is present, ku defaults to kl.

Distribution mode can be:

1 One large singular value.

2 One small singular value.

3 Geometrically distributed singular values (default).

4 Arithmetically distributed singular values.

5 Random singular values with uniformly distributed logarithm.

< 0 If mode is -1, -2, -3, -4, or -5, then randsvd treats mode as
abs(mode), except that in the original matrix of singular
values the order of the diagonal entries is reversed: small to
large instead of large to small.

Condition number kappa defaults to sqrt(1/eps). In the special case
where kappa < 0, A is a random, full, symmetric, positive definite
matrix with cond(A) = -kappa and eigenvalues distributed according
to mode. Arguments kl and ku, if present, are ignored.

A = gallery('randsvd',n,kappa,mode,kl,ku,method) specifies how
the computations are carried out. method = 0 is the default, while
method = 1 uses an alternative method that is much faster for large
dimensions, even though it uses more flops.

redheff — Redheffer’s matrix of 1s and 0s

A = gallery('redheff',n) returns an n-by-n matrix of 0’s and 1’s
defined by A(i,j) = 1, if j = 1 or if i divides j, and A(i,j) = 0
otherwise.

2-1371

gallery

The Redheffer matrix has these properties:

• (n-floor(log2(n)))-1 eigenvalues equal to 1

• A real eigenvalue (the spectral radius) approximately sqrt(n)

• A negative eigenvalue approximately -sqrt(n)

• The remaining eigenvalues are provably “small.”

• The Riemann hypothesis is true if and only if
for every epsilon > 0.

Barrett and Jarvis conjecture that “the small eigenvalues all lie inside
the unit circle abs(Z) = 1,” and a proof of this conjecture, together with
a proof that some eigenvalue tends to zero as n tends to infinity, would
yield a new proof of the prime number theorem.

riemann — Matrix associated with the Riemann hypothesis

A = gallery('riemann',n) returns an n-by-n matrix for which the
Riemann hypothesis is true if and only if

for every .

The Riemann matrix is defined by:

A = B(2:n+1,2:n+1)

where B(i,j) = i-1 if i divides j, and B(i,j) = -1 otherwise.

The Riemann matrix has these properties:

• Each eigenvalue e(i) satisfies abs(e(i)) <= m-1/m, where m = n+1.

• i <= e(i) <= i+1 with at most m-sqrt(m) exceptions.

• All integers in the interval (m/3, m/2] are eigenvalues.

2-1372

gallery

ris — Symmetric Hankel matrix

A = gallery('ris',n) returns a symmetric n-by-n Hankel matrix
with elements

A(i,j) = 0.5/(n-i-j+1.5)

The eigenvalues of A cluster around and . This matrix was
invented by F.N. Ris.

smoke — Complex matrix with a ’smoke ring’
pseudospectrum

A = gallery('smoke',n) returns an n-by-n matrix with 1’s on the
superdiagonal, 1 in the (n,1) position, and powers of roots of unity
along the diagonal.

A = gallery('smoke',n,1) returns the same except that element
A(n,1) is zero.

The eigenvalues of gallery('smoke',n,1) are the nth roots of unity;
those of gallery('smoke',n) are the nth roots of unity times 2^(1/n).

toeppd — Symmetric positive definite Toeplitz matrix

A = gallery('toeppd',n,m,w,theta) returns an n-by-n symmetric,
positive semi-definite (SPD) Toeplitz matrix composed of the sum of m
rank 2 (or, for certain theta, rank 1) SPD Toeplitz matrices. Specifically,

T = w(1)*T(theta(1)) + ... + w(m)*T(theta(m))

where T(theta(k)) has (i,j) element cos(2*pi*theta(k)*(i-j)).

By default: m = n, w = rand(m,1), and theta = rand(m,1).

toeppen — Pentadiagonal Toeplitz matrix (sparse)

P = gallery('toeppen',n,a,b,c,d,e) returns the n-by-n sparse,
pentadiagonal Toeplitz matrix with the diagonals: P(3,1) = a, P(2,1)
= b, P(1,1) = c, P(1,2) = d, and P(1,3) = e, where a, b, c, d, and e
are scalars.

2-1373

gallery

By default, (a,b,c,d,e) = (1,-10,0,10,1), yielding a matrix of
Rutishauser. This matrix has eigenvalues lying approximately on the
line segment 2*cos(2*t) + 20*i*sin(t).

tridiag — Tridiagonal matrix (sparse)

A = gallery('tridiag',c,d,e) returns the tridiagonal matrix with
subdiagonal c, diagonal d, and superdiagonal e. Vectors c and e must
have length(d)-1.

A = gallery('tridiag',n,c,d,e), where c, d, and e are all scalars,
yields the Toeplitz tridiagonal matrix of order n with subdiagonal
elements c, diagonal elements d, and superdiagonal elements e. This
matrix has eigenvalues

d + 2*sqrt(c*e)*cos(k*pi/(n+1))

where k = 1:n. (see [1].)

A = gallery('tridiag',n) is the same as A =
gallery('tridiag',n,-1,2,-1), which is a symmetric positive
definite M-matrix (the negative of the second difference matrix).

triw — Upper triangular matrix discussed by Wilkinson and
others

A = gallery('triw',n,alpha,k) returns the upper triangular
matrix with ones on the diagonal and alphas on the first k >= 0
superdiagonals.

Order n may be a 2-element vector, in which case the matrix is
n(1)-by-n(2) and upper trapezoidal.

Ostrowski [“On the Spectrum of a One-parametric Family of Matrices,”
J. Reine Angew. Math., 1954] shows that

cond(gallery('triw',n,2)) = cot(pi/(4*n))^2,

and, for large abs(alpha), cond(gallery('triw',n,alpha)) is
approximately abs(alpha)^n*sin(pi/(4*n-2)).

2-1374

gallery

Adding -2^(2-n) to the (n,1) element makes triw(n) singular, as does
adding -2^(1-n) to all the elements in the first column.

wathen — Finite element matrix (sparse, random entries)

A = gallery('wathen',nx,ny) returns a sparse, random, n-by-n finite
element matrix where n = 3*nx*ny + 2*nx + 2*ny + 1.

Matrix A is precisely the “consistent mass matrix” for a regular nx-by-ny
grid of 8-node (serendipity) elements in two dimensions. A is symmetric,
positive definite for any (positive) values of the “density,” rho(nx,ny),
which is chosen randomly in this routine.

A = gallery('wathen',nx,ny,1) returns a diagonally scaled matrix
such that

0.25 <= eig(inv(D)*A) <= 4.5

where D = diag(diag(A)) for any positive integers nx and ny and any
densities rho(nx,ny).

wilk — Various matrices devised or discussed by Wilkinson

[A,b] = gallery('wilk',n) returns a different matrix or linear
system depending on the value of n.

n = 3 Upper triangular system Ux=b illustrating
inaccurate solution.

n = 4 Lower triangular system Lx=b, ill-conditioned.

n = 5 hilb(6)(1:5,2:6)*1.8144. A symmetric positive
definite matrix.

n = 21 W21+, a tridiagonal matrix. eigenvalue problem.
For more detail, see [2].

See Also hadamard, hilb, invhilb, magic, wilkinson

References [1] The MATLAB gallery of test matrices is based upon the
work of Nicholas J. Higham at the Department of Mathematics,

2-1375

gallery

University of Manchester, Manchester, England. Additional
detail on these matrices is documented in The Test Matrix
Toolbox for MATLAB by N. J. Higham, September, 1995. This
report is available via anonymous ftp from The MathWorks at
http://www.mathworks.com/access/pub/testmatrix.ps or on the
Web at ftp://ftp.ma.man.ac.uk/pub/narep. Further background can
be found in the book Accuracy and Stability of Numerical Algorithms,
Nicholas J. Higham, SIAM, 1996.

[2] Wilkinson, J. H., The Algebraic Eigenvalue Problem, Oxford
University Press, London, 1965, p.308.

2-1376

http://www.mathworks.com/access/pub/testmatrix.ps
ftp://ftp.ma.man.ac.uk/pub/narep

gamma, gammainc, gammaln

Purpose Gamma functions

Syntax Y = gamma(A)
Y = gammainc(X,A)
Y = gammainc(X,A,tail)
Y = gammaln(A)

Definition The gamma function is defined by the integral:

The gamma function interpolates the factorial function. For integer n:

gamma(n+1) = n! = prod(1:n)

The incomplete gamma function is:

For any a>=0, gammainc(x,a) approaches 1 as x approaches infinity.
For small x and a, gammainc(x,a) is approximately equal to x^a, so
gammainc(0,0) = 1.

Description Y = gamma(A) returns the gamma function at the elements of A. A must
be real.

Y = gammainc(X,A) returns the incomplete gamma function of
corresponding elements of X and A. Arguments X and A must be real and
the same size (or either can be scalar).

Y = gammainc(X,A,tail) specifies the tail of the incomplete gamma
function when X is non-negative. The choices are for tail are 'lower'
(the default) and 'upper'. The upper incomplete gamma function is
defined as

1 - gammainc(x,a)

2-1377

gamma, gammainc, gammaln

Note When X is negative, Y can be inaccurate for abs(X)>A+1.

Y = gammaln(A) returns the logarithm of the gamma function,
gammaln(A) = log(gamma(A)). The gammaln command avoids the
underflow and overflow that may occur if it is computed directly using
log(gamma(A)).

Algorithm The computations of gamma and gammaln are based on algorithms
outlined in [1]. Several different minimax rational approximations are
used depending upon the value of A. Computation of the incomplete
gamma function is based on the algorithm in [2].

References [1] Cody, J., An Overview of Software Development for Special Functions,
Lecture Notes in Mathematics, 506, Numerical Analysis Dundee, G. A.
Watson (ed.), Springer Verlag, Berlin, 1976.

[2] Abramowitz, M. and I.A. Stegun, Handbook of Mathematical
Functions, National Bureau of Standards, Applied Math. Series #55,
Dover Publications, 1965, sec. 6.5.

2-1378

gca

Purpose Current axes handle

Syntax h = gca

Description h = gca returns the handle to the current axes for the current figure.
If no axes exists, MATLAB creates one and returns its handle. You
can use the statement

get(gcf,'CurrentAxes')

if you do not want MATLAB to create an axes if one does not already
exist.

Current Axes

The current axes is the target for graphics output when you create axes
children. The current axes is typically the last axes used for plotting
or the last axes clicked on by the mouse. Graphics commands such as
plot, text, and surf draw their results in the current axes. Changing
the current figure also changes the current axes.

See Also axes, cla, gcf, findobj

figure CurrentAxes property

“Finding and Identifying Graphics Objects” on page 1-93 for related
functions

2-1379

gcbf

Purpose Handle of figure containing object whose callback is executing

Syntax fig = gcbf

Description fig = gcbf returns the handle of the figure that contains the object
whose callback is currently executing. This object can be the figure
itself, in which case, gcbf returns the figure’s handle.

When no callback is executing, gcbf returns the empty matrix, [].

The value returned by gcbf is identical to the figure output argument
returned by gcbo.

See Also gcbo, gco, gcf, gca

2-1380

gcbo

Purpose Handle of object whose callback is executing

Syntax h = gcbo
[h,figure] = gcbo

Description h = gcbo returns the handle of the graphics object whose callback is
executing.

[h,figure] = gcbo returns the handle of the current callback object
and the handle of the figure containing this object.

Remarks MATLAB stores the handle of the object whose callback is executing in
the root CallbackObject property. If a callback interrupts another
callback, MATLAB replaces the CallbackObject value with the handle
of the object whose callback is interrupting. When that callback
completes, MATLAB restores the handle of the object whose callback
was interrupted.

The root CallbackObject property is read only, so its value is always
valid at any time during callback execution. The root CurrentFigure
property, and the figure CurrentAxes and CurrentObject properties
(returned by gcf, gca, and gco, respectively) are user settable, so they
can change during the execution of a callback, especially if that callback
is interrupted by another callback. Therefore, those functions are not
reliable indicators of which object’s callback is executing.

When you write callback routines for the CreateFcn and DeleteFcn of
any object and the figure ResizeFcn, you must use gcbo since those
callbacks do not update the root’s CurrentFigure property, or the
figure’s CurrentObject or CurrentAxes properties; they only update
the root’s CallbackObject property.

When no callbacks are executing, gcbo returns [] (an empty matrix).

See Also gca, gcf, gco, rootobject

“Finding and Identifying Graphics Objects” on page 1-93 for related
functions.

2-1381

gcd

Purpose Greatest common divisor

Syntax G = gcd(A,B)
[G,C,D] = gcd(A,B)

Description G = gcd(A,B) returns an array containing the greatest common
divisors of the corresponding elements of integer arrays A and B. By
convention, gcd(0,0) returns a value of 0; all other inputs return
positive integers for G.

[G,C,D] = gcd(A,B) returns both the greatest common divisor array
G, and the arrays C and D, which satisfy the equation: A(i).*C(i)
+ B(i).*D(i) = G(i). These are useful for solving Diophantine
equations and computing elementary Hermite transformations.

Examples The first example involves elementary Hermite transformations.

For any two integers a and b there is a 2-by-2 matrix E with integer
entries and determinant = 1 (a unimodular matrix) such that:

E * [a;b] = [g,0],

where g is the greatest common divisor of a and b as returned by the
command [g,c,d] = gcd(a,b).

The matrix E equals:

c d
-b/g a/g

In the case where a = 2 and b = 4:

[g,c,d] = gcd(2,4)
g =

2
c =

1
d =

0

2-1382

gcd

So that

E =
1 0

-2 1

In the next example, we solve for x and y in the Diophantine equation
30x + 56y = 8.

[g,c,d] = gcd(30,56)
g =

2
c =

-13
d =

7

By the definition, for scalars c and d:

30(-13) + 56(7) = 2,

Multiplying through by 8/2:

30(-13*4) + 56(7*4) = 8

Comparing this to the original equation, a solution can be read by
inspection:

x = (-13*4) = -52; y = (7*4) = 28

See Also lcm

References [1] Knuth, Donald, The Art of Computer Programming, Vol. 2,
Addison-Wesley: Reading MA, 1973. Section 4.5.2, Algorithm X.

2-1383

gcf

Purpose Current figure handle

Syntax h = gcf

Description h = gcf returns the handle of the current figure. The current figure is
the figure window in which graphics commands such as plot, title,
and surf draw their results. If no figure exists, MATLAB creates one
and returns its handle. You can use the statement

get(0,'CurrentFigure')

if you do not want MATLAB to create a figure if one does not already
exist.

See Also clf, figure, gca

Root CurrentFigure property

“Finding and Identifying Graphics Objects” on page 1-93 for related
functions

2-1384

gco

Purpose Handle of current object

Syntax h = gco
h = gco(figure_handle)

Description h = gco returns the handle of the current object.

h = gco(figure_handle) returns the value of the current object for
the figure specified by figure_handle.

Remarks The current object is the last object clicked on, excluding uimenus. If the
mouse click did not occur over a figure child object, the figure becomes
the current object. MATLAB stores the handle of the current object in
the figure’s CurrentObject property.

The CurrentObject of the CurrentFigure does not always indicate
the object whose callback is being executed. Interruptions of callbacks
by other callbacks can change the CurrentObject or even the
CurrentFigure. Some callbacks, such as CreateFcn and DeleteFcn,
and uimenu Callback, intentionally do not update CurrentFigure or
CurrentObject.

gcbo provides the only completely reliable way to retrieve the
handle to the object whose callback is executing, at any point in the
callback function, regardless of the type of callback or of any previous
interruptions.

Examples This statement returns the handle to the current object in figure
window 2:

h = gco(2)

See Also gca, gcbo, gcf

The root object description

“Finding and Identifying Graphics Objects” on page 1-93 for related
functions

2-1385

ge

Purpose Test for greater than or equal to

Syntax A >= B
ge(A, B)

Description A >= B compares each element of array A with the corresponding
element of array B, and returns an array with elements set to logical 1
(true) where A is greater than or equal to B, or set to logical 0 (false)
where A is less than B. Each input of the expression can be an array or
a scalar value.

If both A and B are scalar (i.e., 1-by-1 matrices), then MATLAB returns
a scalar value.

If both A and B are nonscalar arrays, then these arrays must have
the same dimensions, and MATLAB returns an array of the same
dimensions as A and B.

If one input is scalar and the other a nonscalar array, then the scalar
input is treated as if it were an array having the same dimensions as
the nonscalar input array. In other words, if input A is the number 100,
and B is a 3-by-5 matrix, then A is treated as if it were a 3-by-5 matrix
of elements, each set to 100. MATLAB returns an array of the same
dimensions as the nonscalar input array.

ge(A, B) is called for the syntax A >= B when either A or B is an object.

Examples Create two 6-by-6 matrices, A and B, and locate those elements of A that
are greater than or equal to the corresponding elements of B:

A = magic(6);
B = repmat(3*magic(3), 2, 2);

A >= B
ans =

1 0 0 1 1 1
0 1 0 1 1 1
1 0 0 1 1 1
0 1 1 0 1 0

2-1386

ge

1 0 1 1 0 0
0 1 1 1 0 1

See Also gt, eq, le, lt, ne, “Relational Operators”

2-1387

genpath

Purpose Generate path string

Syntax genpath
genpath directory
p = genpath('directory')

Description genpath returns a path string formed by recursively adding all the
directories below matlabroot/toolbox.

genpath directory returns a path string formed by recursively adding
all the directories below directory. This path string does not include
directories named private or directories that begin with the character @.

p = genpath('directory') returns the path string to variable, p.

Examples You generate a path that includes matlabroot/toolbox/images and all
directories below that with the following command:

p = genpath(fullfile(matlabroot,'toolbox','images'))

p =

matlabroot\toolbox\images;matlabroot\toolbox\images\
images;matlabroot\toolbox\images\images\ja;
matlabroot\toolbox\images\imdemos;matlabroot\
toolbox\images\imdemos\ja;

You can also use genpath in conjunction with addpath to add
subdirectories to the path from the command line. The following
example adds the /control directory and its subdirectories to the
current path.

% Display the current path
path

MATLABPATH

K:\toolbox\matlab\general
K:\toolbox\matlab\ops

2-1388

genpath

K:\toolbox\matlab\lang
K:\toolbox\matlab\elmat
K:\toolbox\matlab\elfun

:
:
:

% Use GENPATH to add /control and its subdirectories
addpath(genpath('K:/toolbox/control'))

% Display the new path
path

MATLABPATH

K:\toolbox\control
K:\toolbox\control\ctrlutil
K:\toolbox\control\control
K:\toolbox\control\ctrlguis
K:\toolbox\control\ctrldemos
K:\toolbox\matlab\general
K:\toolbox\matlab\ops
K:\toolbox\matlab\lang
K:\toolbox\matlab\elmat
K:\toolbox\matlab\elfun

:
:
:

See Also addpath, path, pathdef, pathsep, pathtool, rehash,
restoredefaultpath, rmpath, savepath

“Search Path” in the MATLAB Desktop Tools and Development
Environment documentation

2-1389

genvarname

Purpose Construct valid variable name from string

Syntax varname = genvarname(str)
varname = genvarname(str, exclusions)

Description varname = genvarname(str) constructs a string varname that is
similar to or the same as the str input, and can be used as a valid
variable name. str can be a single character array or a cell array of
strings. If str is a cell array of strings, genvarname returns a cell
array of strings in varname. The strings in a cell array returned by
genvarname are guaranteed to be different from each other.

varname = genvarname(str, exclusions) returns a valid variable
name that is different from any name listed in the exclusions input.
The exclusions input can be a single character array or a cell array
of strings. Specify the function who in the exclusions character array
to create a variable name that will be unique in the current MATLAB
workapace (see “Example 4” on page 2-1392, below).

Note genvarname returns a string that can be used as a variable name.
It does not create a variable in the MATLAB workspace. You cannot,
therefore, assign a value to the output of genvarname.

Remarks A valid MATLAB variable name is a character string of letters, digits,
and underscores, such that the first character is a letter, and the
length of the string is less than or equal to the value returned by the
namelengthmax function. Any string that exceeds namelengthmax is
truncated in the varname output. See “Example 6” on page 2-1393,
below.

The variable name returned by genvarname is not guaranteed to
be different from other variable names currently in the MATLAB
workspace unless you use the exclusions input in the manner shown
in “Example 4” on page 2-1392, below.

2-1390

genvarname

If you use genvarname to generate a field name for a structure,
MATLAB does create a variable for the structure and field in the
MATLAB workspace. See “Example 3” on page 2-1391, below.

If the str input contains any whitespace characters, genvarname
removes then and capitalizes the next alphabetic character in str. If
str contains any nonalphanumeric characters, genvarname translates
these characters into their hexadecimal value.

Examples Example 1

Create four similar variable name strings that do not conflict with
each other:

v = genvarname({'A', 'A', 'A', 'A'})
v =

'A' 'A1' 'A2' 'A3'

Example 2

Read a column header hdr from worksheet trial2 in Excel spreadsheet
myproj_apr23:

[data hdr] = xlsread('myproj_apr23.xls', 'trial2');

Make a variable name from the text of the column header that will not
conflict with other names:

v = genvarname(['Column ' hdr{1,3}]);

Assign data taken from the spreadsheet to the variable in the MATLAB
workspace:

eval([v '= data(1:7, 3);']);

Example 3

Collect readings from an instrument once every minute over the period
of an hour into different fields of a structure. genvarname not only
generates unique fieldname strings, but also creates the structure and
fields in the MATLAB workspace:

2-1391

genvarname

for k = 1:60

record.(genvarname(['reading' datestr(clock, 'HHMMSS')])) = takeReading;

pause(60)

end

After the program ends, display the recorded data from the workspace:

record
record =

reading090446: 27.3960
reading090546: 23.4890
reading090646: 21.1140
reading090746: 23.0730
reading090846: 28.5650

.

.

.

Example 4

Generate variable names that are unique in the MATLAB workspace by
putting the output from the who function in the exclusions list.

for k = 1:5
t = clock;
pause(uint8(rand * 10));
v = genvarname('time_elapsed', who);
eval([v ' = etime(clock,t)'])
end

As this code runs, you can see that the variables created by genvarname
are unique in the workspace:

time_elapsed =
5.0070

time_elapsed1 =
2.0030

time_elapsed2 =
7.0010

2-1392

genvarname

time_elapsed3 =
8.0010

time_elapsed4 =
3.0040

After the program completes, use the who function to view the workspace
variables:

who

k time_elapsed time_elapsed2 time_elapsed4
t time_elapsed1 time_elapsed3 v

Example 5

If you try to make a variable name from a MATLAB keyword,
genvarname creates a variable name string that capitalizes the keyword
and precedes it with the letter x:

v = genvarname('global')
v =

xGlobal

Example 6

If you enter a string that is longer than the value returned by the
namelengthmax function, genvarname truncates the resulting variable
name string:

namelengthmax

ans =

63

vstr = genvarname(sprintf('%s%s', ...

'This name truncates because it contains ', ...

'more than the maximum number of characters'))

vstr =

ThisNameTruncatesBecauseItContainsMoreThanTheMaximumNumberOfCha

See Also isvarname, iskeyword, isletter, namelengthmax, who, regexp

2-1393

get

Purpose Query object properties

Syntax get(h)
get(h,'PropertyName')
<m-by-n value cell array> = get(H,pn)
a = get(h)
a = get(0,'Factory')
a = get(0,'FactoryObjectTypePropertyName')
a = get(h,'Default')
a = get(h,'DefaultObjectTypePropertyName')

Description get(h) returns all properties of the graphics object identified by the
handle h and their current values.

get(h,'PropertyName') returns the value of the property
'PropertyName' of the graphics object identified by h.

<m-by-n value cell array> = get(H,pn) returns n property values
for m graphics objects in the m-by-n cell array, where m = length(H)
and n is equal to the number of property names contained in pn.

a = get(h) returns a structure whose field names are the object’s
property names and whose values are the current values of the
corresponding properties. h must be a scalar. If you do not specify an
output argument, MATLAB displays the information on the screen.

a = get(0,'Factory') returns the factory-defined values of all
user-settable properties. a is a structure array whose field names are
the object property names and whose field values are the values of the
corresponding properties. If you do not specify an output argument,
MATLAB displays the information on the screen.

a = get(0,'FactoryObjectTypePropertyName') returns the
factory-defined value of the named property for the specified object type.
The argument FactoryObjectTypePropertyName is the word Factory
concatenated with the object type (e.g., Figure) and the property name
(e.g., Color).

FactoryFigureColor a = get(h,'Default') returns all default values
currently defined on object h. a is a structure array whose field names

2-1394

get

are the object property names and whose field values are the values of
the corresponding properties. If you do not specify an output argument,
MATLAB displays the information on the screen.

a = get(h,'DefaultObjectTypePropertyName') returns the
factory-defined value of the named property for the specified object type.
The argument DefaultObjectTypePropertyName is the word Default
concatenated with the object type (e.g., Figure) and the property name
(e.g., Color).

DefaultFigureColor

Examples You can obtain the default value of the LineWidth property for line
graphics objects defined on the root level with the statement

get(0,'DefaultLineLineWidth')
ans =

0.5000

To query a set of properties on all axes children, define a cell array
of property names:

props = {'HandleVisibility', 'Interruptible';
'SelectionHighlight', 'Type'};

output = get(get(gca,'Children'),props);

The variable output is a cell array of dimension
length(get(gca,'Children')-by-4.

For example, type

patch;surface;text;line
output = get(get(gca,'Children'),props)
output =
'on' 'on' 'on' 'line'
'on' 'off' 'on' 'text'
'on' 'on' 'on' 'surface'
'on' 'on' 'on' 'patch'

2-1395

get

See Also findobj, gca, gcf, gco, set

Handle Graphics Properties

“Finding and Identifying Graphics Objects” on page 1-93 for related
functions

2-1396

get (COM)

Purpose Get property value from interface, or display properties

Syntax V = h.get
V = h.get('propertyname')
V = get(h, ...)

Description V = h.get returns a list of all properties and their values for the object
or interface, h.

If V is empty, either there are no properties in the object, or MATLAB
cannot read the object’s type library. Refer to the COM vendor’s
documentation. For Automation objects, if the vendor provides
documentation for a specific property, use the V = get(h, ...) syntax
to call it.

V = h.get('propertyname') returns the value of the property
specified in the string, propertyname.

V = get(h, ...) is an alternate syntax for the same operation.

Remarks The meaning and type of the return value is dependent upon the specific
property being retrieved. The object’s documentation should describe
the specific meaning of the return value. MATLAB may convert the
data type of the return value. See “Handling COM Data in MATLAB”
in the External Interfaces documentation for a description of how
MATLAB converts COM data types.

Examples Create a COM server running Microsoft Excel:

e = actxserver ('Excel.Application');

Retrieve a single property value:

e.Path
ans =

D:\Applications\MSOffice\Office

Retrieve a list of all properties for the CommandBars interface:

2-1397

get (COM)

c = e.CommandBars.get
ans =

Application: [1x1
Interface.excel.application.CommandBars.Application]

Creator: 1.4808e+009
ActionControl: []
ActiveMenuBar: [1x1

Interface.excel.application.CommandBars.ActiveMenuBar]
Count: 94

DisplayTooltips: 1
DisplayKeysInTooltips: 0

LargeButtons: 0
MenuAnimationStyle: 'msoMenuAnimationNone'

Parent: [1x1
Interface.excel.application.CommandBars.Parent]

AdaptiveMenus: 0
DisplayFonts: 1

See Also set, inspect, isprop, addproperty, deleteproperty

2-1398

get (memmapfile)

Purpose Memmapfile object properties

Syntax s = get(obj)
val = get(obj, prop)

Description s = get(obj) returns the values of all properties of the memmapfile
object obj in structure array s. Each property retrieved from the object
is represented by a field in the output structure. The name and contents
of each field are the same as the name and value of the property it
represents.

Note Although property names of a memmapfile object are not case
sensitive, field names of the output structure returned by get (named
the same as the properties they represent) are case sensitive.

val = get(obj, prop) returns the value(s) of one or more properties
specified by prop. The prop input can be a quoted string or a cell array
of quoted strings, each containing a property name. If the latter is true,
get returns the property values in a cell array.

Examples You can use the get method of the memmapfile class to return
information on any or all of the object’s properties. Specify one or more
property names to get the values of specific properties.

This example returns the values of the Offset, Repeat, and Format
properties for a memmapfile object. Start by constructing the object:

m = memmapfile('records.dat', ...
'Offset', 2048, ...
'Format', { ...

'int16' [2 2] 'model'; ...
'uint32' [1 1] 'serialno'; ...
'single' [1 3] 'expenses'});

2-1399

get (memmapfile)

Use the get method to return the specified property values in a 1-by-3
cell array m_props:

m_props = get(m, {'Offset', 'Repeat', 'Format'})
m_props =

[2048] [Inf] {3x3 cell}

m_props{3}
ans =

'int16' [1x2 double] 'model'
'uint32' [1x2 double] 'serialno'
'single' [1x2 double] 'expenses'

Another way to return the same information is to use the
objname.property syntax:

m_props = {m.Offset, m.Repeat, m.Format}
m_props =

[2048] [Inf] {3x3 cell}

To return the values for all properties with get, pass just the object
name:

s = get(m)
Filename: 'd:\matlab\mfiles\records.dat'
Writable: 0

Offset: 2048
Format: {3x3 cell}
Repeat: Inf

Data: [753 1]

To see just the Format field of the returned structure, type

s.Format
ans =

'int16' [1x2 double] 'model'
'uint32' [1x2 double] 'serialno'
'single' [1x2 double] 'expenses'

2-1400

get (memmapfile)

See Also memmapfile, disp(memmapfile)

2-1401

get (serial)

Purpose Serial port object properties

Syntax get(obj)
out = get(obj)
out = get(obj,'PropertyName')

Arguments obj A serial port object or an array of serial port
objects.

'PropertyName' A property name or a cell array of property
names.

out A single property value, a structure of property
values, or a cell array of property values.

Description get(obj) returns all property names and their current values to the
command line for obj.

out = get(obj) returns the structure out where each field name is the
name of a property of obj, and each field contains the value of that
property.

out = get(obj,'PropertyName') returns the value out of the property
specified by PropertyName for obj. If PropertyName is replaced by a
1-by-n or n-by-1 cell array of strings containing property names, then
get returns a 1-by-n cell array of values to out. If obj is an array
of serial port objects, then out will be a m-by-n cell array of property
values where m is equal to the length of obj and n is equal to the
number of properties specified.

Remarks Refer to Displaying Property Names and Property Values for a list of
serial port object properties that you can return with get.

When you specify a property name, you can do so without regard to
case, and you can make use of property name completion. For example,
if s is a serial port object, then these commands are all valid.

out = get(s,'BaudRate');

2-1402

get (serial)

out = get(s,'baudrate');
out = get(s,'BAUD');

If you use the help command to display help for get, then you need to
supply the pathname shown below.

help serial/get

Example This example illustrates some of the ways you can use get to return
property values for the serial port object s.

s = serial('COM1');
out1 = get(s);
out2 = get(s,{'BaudRate','DataBits'});
get(s,'Parity')
ans =
none

See Also Functions

set

2-1403

get (timer)

Purpose Timer object properties

Syntax get(obj)
V = get(obj)
V = get(obj,'PropertyName')

Description get(obj) displays all property names and their current values for the
timer object obj. obj must be a single timer object.

V = get(obj) returns a structure, V, where each field name is the
name of a property of obj and each field contains the value of that
property. If obj is an M-by-1 vector of timer objects, V is an M-by-1
array of structures.

V = get(obj,'PropertyName') returns the value, V, of the timer object
property specified in PropertyName.

If PropertyName is a 1-by-N or N-by-1 cell array of strings containing
property names, V is a 1-by-N cell array of values. If obj is a vector of
timer objects, V is an M-by-N cell array of property values where M is
equal to the length of obj and N is equal to the number of properties
specified.

Examples t = timer;
get(t)

AveragePeriod: NaN
BusyMode: 'drop'
ErrorFcn: ''

ExecutionMode: 'singleShot'
InstantPeriod: NaN

Name: 'timer-1'
ObjectVisibility: 'on'

Period: 1
Running: 'off'

StartDelay: 1
StartFcn: ''
StopFcn: ''

Tag: ''

2-1404

get (timer)

TasksExecuted: 0
TasksToExecute: Inf

TimerFcn: ''
Type: 'timer'

UserData: []
get(t, {'StartDelay','Period'})
ans =

[0] [1]

See Also timer, set(timer)

2-1405

get (timeseries)

Purpose Query timeseries object property values

Syntax value = get(ts,'PropertyName')
get(ts)

Description value = get(ts,'PropertyName') returns the value of the specified
property of the timeseries object. The following syntax is equivalent:

value = ts.PropertyName

get(ts) displays all properties and values of the time series ts.

See Also set (timeseries), timeseries, tsprops

2-1406

get (tscollection)

Purpose Query tscollection object property values

Syntax value = get(tsc,'PropertyName')

Description value = get(tsc,'PropertyName') returns the value of the specified
property of the tscollection object tsc. The following syntax is
equivalent:

value = tsc.PropertyName

get(tsc) displays all properties and values of the tscollection object
tsc.

See Also set (tscollection), tscollection

2-1407

getabstime (timeseries)

Purpose Extract date-string time vector into cell array

Syntax getabstime(ts)

Description getabstime(ts) extracts the time vector from the timeseries object
ts as a cell array of date strings. To define the time vector relative to a
calendar date, set the TimeInfo.StartDate property of the timeseries
object. When the TimeInfo.StartDate format is a valid datestr
format, the output strings from getabstime have the same format.

Examples The following example shows how to extract a time vector as a cell array
of date strings from a timeseries object.

1 Create a timeseries object.

ts = timeseries([3 6 8 0 10]);

The default time vector for ts is [0 1 2 3 4], which starts at 0 and
increases in 1-second increments. The length of the time vector is
equal to the length of the data.

2 Set the StartDate property.

ts.TimeInfo.StartDate = '10/27/2005 07:05:36';

3 Extract the time vector.

getabstime(ts)

ans =

'27-Oct-2005 07:05:36'
'27-Oct-2005 07:05:37'
'27-Oct-2005 07:05:38'
'27-Oct-2005 07:05:39'
'27-Oct-2005 07:05:40'

2-1408

getabstime (timeseries)

4 Change the date-string format of the time vector.

ts.TimeInfo.Format = 'mm/dd/yy'

5 Extract the time vector with the new date-string format.

getabstime(ts)

ans =

'10/27/05'
'10/27/05'
'10/27/05'
'10/27/05'
'10/27/05'

See Also setabstime (timeseries), timeseries, tsprops

2-1409

getabstime (tscollection)

Purpose Extract date-string time vector into cell array

Syntax getabstime(tsc)

Description getabstime(tsc) extracts the time vector from the tscollection
object tsc as a cell array of date strings. To define the time vector
relative to a calendar date, set the TimeInfo.StartDate property of
the time-series collection. When the TimeInfo.StartDate format is a
valid datestr format, the output strings from getabstime have the
same format.

Examples 1 Create a tscollection object.

tsc = tscollection(timeseries([3 6 8 0 10]));

2 Set the StartDate property.

tsc.TimeInfo.StartDate = '10/27/2005 07:05:36';

3 Extract a vector of absolute time values.

getabstime(tsc)

ans =

'27-Oct-2005 07:05:36'
'27-Oct-2005 07:05:37'
'27-Oct-2005 07:05:38'
'27-Oct-2005 07:05:39'
'27-Oct-2005 07:05:40'

4 Change the date-string format of the time vector.

tsc.TimeInfo.Format = 'mm/dd/yy';

5 Extract the time vector with the new date-string format.

getabstime(tsc)

2-1410

getabstime (tscollection)

ans =

'10/27/05'
'10/27/05'
'10/27/05'
'10/27/05'
'10/27/05'

See Also datestr, setabstime (tscollection), tscollection

2-1411

getappdata

Purpose Value of application-defined data

Syntax value = getappdata(h,name)
values = getappdata(h)

Description value = getappdata(h,name) gets the value of the application-defined
data with the name specified by name, in the object with handle h. If
the application-defined data does not exist, MATLAB returns an empty
matrix in value.

values = getappdata(h) returns all application-defined data for the
object with handle h.

See Also setappdata, rmappdata, isappdata

2-1412

GetCharArray

Purpose Get character array from server

Syntax MATLAB Client
string = h.GetCharArray('varname', 'workspace')
string = GetCharArray(h, 'varname', 'workspace')
string = invoke(h, 'GetCharArray', 'varname', 'workspace')

Method Signature
HRESULT GetCharArray ([in] BSTR varName, [in] BSTR Workspace,
[out, retval] BSTR *mlString)

Visual Basic Client
GetCharArray(varname As String, workspace As String) As String

Description GetCharArray gets the character array stored in the variable varname
from the specified workspace of the server attached to handle h and
returns it in string. The workspace argument can be either base or
global.

Remarks If you want output from GetCharArray to be displayed at the client
window, you must specify an output variable (e.g., string).

Server function names, like GetCharArray, are case sensitive when
using the first syntax shown.

There is no difference in the operation of the three syntaxes shown
above for the MATLAB client.

Examples Assign a string to variable str in the base workspace of the server using
PutCharArray. Read it back in the client with GetCharArray.

MATLAB Client

h = actxserver('matlab.application');
h.PutCharArray('str', 'base', ...

'He jests at scars that never felt a wound.');
S = h.GetCharArray('str', 'base')
S =

He jests at scars that never felt a wound.

2-1413

GetCharArray

Visual Basic .NET Client

This example uses the Visual Basic MsgBox command to control flow
between MATLAB and the Visual Basic Client.

Dim Matlab As Object
Dim S As String
Matlab = CreateObject("matlab.application")
MsgBox("In MATLAB, type" & vbCrLf _

& "str='new string';")

Open the MATLAB window, then type

str='new string';

Click Ok.

Try
S = Matlab.GetCharArray("str", "base")
MsgBox("str = " & S)

Catch ex As Exception
MsgBox("You did not set 'str' in MATLAB")

End Try

The Visual Basic MsgBox displays what you typed in MATLAB.

See Also PutCharArray, GetWorkspaceData, PutWorkspaceData, GetVariable,
Execute

2-1414

getdatasamplesize

Purpose Size of data sample in timeseries object

Syntax getdatasamplesize(ts)

Description getdatasamplesize(ts) returns the size of each data sample in a
timeseries object.

Remarks A time-series data sample consists of one or more scalar values recorded
at a specific time. The number of data samples in is the same as the
length of the time vector.

Examples The following example shows how to get the size of a data sample in a
timeseries object.

1 Load a 24-by-3 data array.

load count.dat

2 Create a timeseries object with 24 time values.

count_ts = timeseries(count,[1:24],'Name','VehicleCount')

3 Get the size of the data sample for this timeseries object.

getdatasamplesize(count_ts)

ans =

1 3

The size of each data sample in count_ts is 1-by-3, which means that
each data sample is stored as a row with three values.

See Also addsample, size (timeseries), tsprops

2-1415

getenv

Purpose Environment variable

Syntax getenv 'name'
N = getenv('name')

Description getenv 'name' searches the underlying operating system’s
environment list for a string of the form name=value, where name is
the input string. If found, MATLAB returns the string value. If the
specified name cannot be found, an empty matrix is returned.

N = getenv('name') returns value to the variable N.

Examples os = getenv('OS')

os =
Windows_NT

See Also setenv, computer, pwd, ver, path

2-1416

getfield

Purpose Field of structure array

Syntax f = getfield(s,'field')
f = getfield(s, {i,j}, 'field', {k})

Description f = getfield(s,'field'), where s is a 1-by-1 structure, returns
the contents of the specified field. This is equivalent to the syntax f
= s.field.

If s is a structure having dimensions greater than 1-by-1, getfield
returns the first of all output values requested in the call. That is, for
structure array s(m,n), getfield returns f = s(1,1).field.

f = getfield(s, {i,j}, 'field', {k}) returns the contents of the
specified field. This is equivalent to the syntax f = s(i,j).field(k).
All subscripts must be passed as cell arrays — that is, they must be
enclosed in curly braces (similar to{i,j} and {k} above). Pass field
references as strings.

Remarks In many cases, you can use dynamic field names in place of the
getfield and setfield functions. Dynamic field names express
structure fields as variable expressions that MATLAB evaluates at
run-time. See Solution 1-19QWG for information about using dynamic
field names versus the getfield and setfield functions.

Examples Given the structure

mystr(1,1).name = 'alice';
mystr(1,1).ID = 0;
mystr(2,1).name = 'gertrude';
mystr(2,1).ID = 1

Then the command f = getfield(mystr, {2,1}, 'name') yields

f =
gertrude

2-1417

getfield

To list the contents of all name (or other) fields, embed getfield in
a loop.

for k = 1:2
name{k} = getfield(mystr, {k,1}, 'name');

end
name

name =

'alice' 'gertrude'

The following example starts out by creating a structure using the
standard structure syntax. It then reads the fields of the structure,
using getfield with variable and quoted field names and additional
subscripting arguments.

class = 5; student = 'John_Doe';
grades(class).John_Doe.Math(10,21:30) = ...

[85, 89, 76, 93, 85, 91, 68, 84, 95, 73];

Use getfield to access the structure fields.

getfield(grades, {class}, student, 'Math', {10,21:30})

ans =
85 89 76 93 85 91 68 84 95 73

See Also setfield, fieldnames, isfield, orderfields, rmfield, “Using
Dynamic Field Names”

2-1418

getframe

Purpose Capture movie frame

Syntax getframe
F = getframe
F = getframe(h)
F = getframe(h,rect)

Description getframe returns a movie frame. The frame is a snapshot (pixmap) of
the current axes or figure.

F = getframe gets a frame from the current axes.

F = getframe(h) gets a frame from the figure or axes identified by
handle h.

F = getframe(h,rect) specifies a rectangular area from which to
copy the pixmap. rect is relative to the lower left corner of the figure
or axes h, in pixel units. rect is a four-element vector in the form
[left bottom width height], where width and height define the
dimensions of the rectangle.

getframe returns a movie frame, which is a structure having two fields:

• cdata — The image data stored as a matrix of uint8 values. The
dimensions of F.cdata are height-by-width-by-3.

• colormap — The colormap stored as an n-by-3 matrix of doubles.
F.colormap is empty on true color systems.

To capture an image, use this approach:

F = getframe(gcf);
image(F.cdata)
colormap(F.colormap)

Remarks getframe is usually used in a for loop to assemble an array of movie
frames for playback using movie. For example,

for j = 1:n plotting commands
F(j) = getframe;

2-1419

getframe

end
movie(F)

If you are capturing frames of a plot that takes a long time to generate
or are repeatedly calling getframe in a loop, make sure that your
computer’s screen saver does not activate and that your monitor does
not turn off for the duration of the capture; otherwise one or more of
the captured frames can contain graphics from your screen saver or
nothing at all.

Note In situations where MATLAB is running on a virtual desktop
that is not currently visible on your monitor, calls to getframe will
complete, but will capture a region on your monitor that corresponds
to the position occupied by the figure or axes on the hidden desktop.
Therefore, make sure that the window to be captured by getframe
exists on the currently active desktop.

Capture Regions

Note that F = getframe returns the contents of the current axes,
exclusive of the axis labels, title, or tick labels. F = getframe(gcf)
captures the entire interior of the current figure window. To capture
the figure window menu, use the form F = getframe(h,rect) with a
rectangle sized to include the menu.

Resolution of Captured Frames

The resolution of the framed image depends on the size of the axes in
pixels when getframe is called. As the getframe command takes a
snapshot of the screen, if the axes is small in size (e.g., because you
have restricted the view to a window within the axes), getframe will
capture fewer screen pixels, and the captured image might have poor
resolution if enlarged for display.

Examples Make the peaks function vibrate.

Z = peaks; surf(Z)

2-1420

getframe

axis tight
set(gca,'nextplot','replacechildren');
for j = 1:20

surf(sin(2*pi*j/20)*Z,Z)
F(j) = getframe;

end
movie(F,20) % Play the movie twenty times

See Also frame2im, image, im2frame, movie

“Bit-Mapped Images” on page 1-92 for related functions

2-1421

GetFullMatrix

Purpose Get matrix from server

Syntax MATLAB Client
[xreal ximag] = h.GetFullMatrix('varname', 'workspace',
zreal, zimag)
[xreal ximag] = GetFullMatrix(h, 'varname', 'workspace',
zreal, zimag)
[xreal ximag] = invoke(h, 'GetFullMatrix', 'varname', 'workspace',
zreal, zimag)

Method Signature
GetFullMatrix([in] BSTR varname,
[in] BSTR workspace, [in, out] SAFEARRAY(double) *pr,
[in, out] SAFEARRAY(double) *pi)

Visual Basic Client
GetFullMatrix(varname As String, workspace As String,
[out] XReal As Double, [out] XImag As Double

Note GetFullMatrix works only with values of type double. Use
GetVariable or GetWorkspaceData for other types.

Description GetFullMatrix gets the matrix stored in the variable varname from the
specified workspace of the server attached to handle h and returns the
real part in xreal and the imaginary part in ximag. The workspace
argument can be either base or global.

The zreal and zimag arguments are matrices of the same size as the
real and imaginary matrices (xreal and ximag) being returned from
the server. The zreal and zimag matrices are commonly set to zero
(see example below).

Remarks If you want output from GetFullMatrix to be displayed at the client
window, you must specify one or both output variables (e.g., xreal
and/or ximag).

2-1422

GetFullMatrix

Server function names, like GetFullMatrix, are case sensitive when
using the first syntax shown.

There is no difference in the operation of the three syntaxes shown
above for the MATLAB client.

For VBScript clients, use the GetWorkspaceData and PutWorkspaceData
functions to pass numeric data to and from the MATLAB workspace.
These functions use the variant data type instead of safearray, which
is not supported by VBScript.

Examples Assign a 5-by-5 real matrix to the variable M in the base workspace of
the server, and then read it back with GetFullMatrix.

MATLAB Client

h = actxserver('matlab.application');
h.PutFullMatrix('M','base',rand(5),zeros(5));

MReal = h.GetFullMatrix('M','base',zeros(5),zeros(5))
MReal =

0.9501 0.7621 0.6154 0.4057 0.0579
0.2311 0.4565 0.7919 0.9355 0.3529
0.6068 0.0185 0.9218 0.9169 0.8132
0.4860 0.8214 0.7382 0.4103 0.0099
0.8913 0.4447 0.1763 0.8936 0.1389

Visual Basic .NET Client

This example uses the Visual Basic MsgBox command to control flow
between MATLAB and the Visual Basic Client.

Dim MatLab As Object
Dim Result As String
Dim XReal(4, 4) As Double
Dim XImag(4, 4) As Double
Dim i, j As Integer

MatLab = CreateObject("matlab.application")
Result = MatLab.Execute("M = rand(5);")

2-1423

GetFullMatrix

MsgBox("In MATLAB, type" & vbCrLf _
& "M(3,4)")

Open the MATLAB window and type

M(3,4)

Click Ok.

MatLab.GetFullMatrix("M", "base", XReal, XImag)
i = 2 %0-based array
j = 3

MsgBox("XReal(" & i + 1 & "," & j + 1 & ")" & _
" = " & XReal(i, j))

Click Ok to close and terminate MATLAB.

See Also PutFullMatrix, GetWorkspaceData, PutWorkspaceData, GetVariable,
Execute

2-1424

getinterpmethod

Purpose Interpolation method for timeseries object

Syntax getinterpmethod(ts)

Description getinterpmethod(ts) returns the interpolation method as a string that
is used by the timeseries object ts. Predefined interpolation methods
are 'zoh' (zero-order hold) and 'linear' (linear interpolation). The
method strings are case sensitive.

Examples 1 Create a timeseries object.

ts = timeseries(rand(5));

2 Get the interpolation method for this object.

getinterpmethod(ts)

ans =

linear

See Also setinterpmethod, timeseries, tsprops

2-1425

getpixelposition

Purpose Get component position in pixels

Syntax position = getpixelposition(handle)
position = getpixelposition(handle,recursive)

Description position = getpixelposition(handle) gets the position, in pixel
units, of the component with handle handle. The position is returned
as a four-element vector that specifies the location and size of the
component: [distance from left, distance from bottom, width, height].

position = getpixelposition(handle,recursive) gets the position
as above. If recursive is true, the returned position is relative to the
parent figure of handle.

Example This example creates a push button within a panel, and then retrieves
its position, in pixels, relative to the panel.

f = figure('Position',[300 300 300 200]);
p = uipanel('Position',[.2 .2 .6 .6];
h1 = uicontrol(p,'Style','PushButton','Units','Normalized',...

'String','Push Button','Position',[.1 .1 .5 .2]);
pos1 = getpixelposition(h1)

pos1 =
18.6000 12.6000 88.0000 23.2000

2-1426

getpixelposition

The following statement retrieves the position of the push button, in
pixels, relative to the figure.

pos1 = getpixelposition(h1,true)

pos1 =
79.6000 53.6000 88.0000 23.2000

See Also setpixelposition, uicontrol, uipanel

2-1427

getpref

Purpose Preference

Syntax getpref('group','pref')
getpref('group','pref',default)
getpref('group',{'pref1','pref2',...'prefn'})
getpref('group',{'pref1',...'prefn'},{default1,...defaultn})
getpref('group')
getpref

Description getpref('group','pref') returns the value for the preference
specified by group and pref. It is an error to get a preference that
does not exist.

group labels a related collection of preferences. You can choose any
name that is a legal variable name, and is descriptive enough to be
unique, e.g. 'ApplicationOnePrefs'. The input argument pref
identifies an individual preference in that group, and must be a legal
variable name.

getpref('group','pref',default) returns the current value if the
preference specified by group and pref exists. Otherwise creates the
preference with the specified default value and returns that value.

getpref('group',{'pref1','pref2',...'prefn'}) returns a cell
array containing the values for the preferences specified by group and
the cell array of preference names. The return value is the same size as
the input cell array. It is an error if any of the preferences do not exist.

getpref('group',{'pref1',...'prefn'},{default1,...defaultn})
returns a cell array with the current values of the preferences specified
by group and the cell array of preference names. Any preference that
does not exist is created with the specified default value and returned.

getpref('group') returns the names and values of all preferences in
the group as a structure.

getpref returns all groups and preferences as a structure.

2-1428

getpref

Note Preference values are persistent and maintain their values
between MATLAB sessions. Where they are stored is system dependent.

Examples Example 1

addpref('mytoolbox','version','1.0')
getpref('mytoolbox','version')

ans =
1.0

Example 2

rmpref('mytoolbox','version')
getpref('mytoolbox','version','1.0');
getpref('mytoolbox','version')

ans =
1.0

See Also addpref, ispref, rmpref, setpref, uigetpref, uisetpref

2-1429

getqualitydesc

Purpose Data quality descriptions

Syntax getqualitydesc(ts)

Description getqualitydesc(ts) returns a cell array of data quality descriptions
based on the Quality values you assigned to a timeseries object ts.

Examples 1 Create a timeseries object with Data, Time, and Quality values,
respectively.

ts = timeseries([3; 4.2; 5; 6.1; 8], 1:5, [1; 0; 1; 0; 1]);

2 Set the QualityInfo property, consisting of Code and Description.

ts.QualityInfo.Code = [0 1];
ts.QualityInfo.Description = {'good' 'bad'};

3 Get the data quality description strings for ts.

getqualitydesc(ts)

ans =

'bad'
'good'
'bad'
'good'
'bad'

See Also tsprops

2-1430

getReport (MException)

Purpose Get error message for exception

Syntax Report = getReport(ME)

Description Report = getReport(ME) returns a formatted message string based on
the current exception (represented by MException object ME) and that
uses the same format as errors thrown by internal MATLAB code. The
message string returned by getReport is the same as the error message
displayed by MATLAB when it throws the exception.

Examples Using the surf command without input arguments throws an exception.
The catch function captures the exception in MException object ME. Use
getReport to obtain the error text in the same format that MATLAB
uses:

try
surf

catch ME
getReport(ME)

end

ans =
??? Error using ==> surf at 54
Not enough input arguments.

See Also try, catch, error, assert, MException, disp(MException),
throw(MException), rethrow(MException),
throwAsCaller(MException), addCause(MException),
isequal(MException), eq(MException), ne(MException),
last(MException),

2-1431

getsampleusingtime (timeseries)

Purpose Extract data samples into new timeseries object

Syntax ts2 = getsampleusingtime(ts1,Time)
ts2 = getsampleusingtime(ts1,StartTime,EndTime)

Description ts2 = getsampleusingtime(ts1,Time) returns a new timeseries
object ts2 with a single sample corresponding to the time Time in ts1.

ts2 = getsampleusingtime(ts1,StartTime,EndTime) returns a new
timeseries object ts2 with samples between the times StartTime and
EndTime in ts1.

Remarks When the time vector in ts1 is numeric, StartTime and EndTime must
also be numeric. When the times in ts1 are date strings and the
StartTime and EndTime values are numeric, then the StartTime and
EndTime values are treated as datenum values.

See Also timeseries

2-1432

getsampleusingtime (tscollection)

Purpose Extract data samples into new tscollection object

Syntax tsc2 = getsampleusingtime(tsc1,Time)
tsc2 = getsampleusingtime(tsc1,StartTime,EndTime)

Description tsc2 = getsampleusingtime(tsc1,Time) returns a new
tscollection tsc2 with a single sample corresponding to Time in tsc1.

tsc2 = getsampleusingtime(tsc1,StartTime,EndTime) returns a
new tscollection tsc2 with samples between the times StartTime
and EndTime in tsc1.

Remarks When the time vector in ts1 is numeric, StartTime and EndTime must
also be numeric. When the times in ts1 are date strings and the
StartTime and EndTime values are numeric, then the StartTime and
EndTime values are treated as datenum values.

See Also tscollection

2-1433

gettimeseriesnames

Purpose Cell array of names of timeseries objects in tscollection object

Syntax names = gettimeseriesnames(tsc)

Description names = gettimeseriesnames(tsc) returns names of timeseries
objects in a tscollection object tsc. names is a cell array of strings.

Examples 1 Create timeseries objects a and b.

a = timeseries(rand(1000,1),'name','position');
b = timeseries(rand(1000,1),'name','response');

2 Create a tscollection object that includes these two time series.

tsc = tscollection({a,b});

3 Get the names of the timeseries objects in tsc.

names = gettimeseriesnames(tsc)

names =

'position' 'response'

See Also timeseries, tscollection, tsprops

2-1434

gettsafteratevent

Purpose New timeseries object with samples occurring at or after event

Syntax ts1 = gettsafteratevent(ts,event)
ts1 = gettsafteratevent(ts,event,n)

Description ts1 = gettsafteratevent(ts,event) returns a new timeseries
object ts1 with samples occurring at and after an event in ts, where
event can be either a tsdata.event object or a string. When event is a
tsdata.event object, the time defined by event is used. When event
is a string, the first tsdata.event object in the Events property of the
time series ts that matches the event name specifies the time.

ts1 = gettsafteratevent(ts,event,n) returns a new timeseries
object ts1 with samples at and after an event in ts, where n is the
number of the event occurrence with a matching event name.

Remarks When the timeseries object ts contains date strings and event uses
numeric time, the time selected by the event is treated as a date that is
calculated relative to the StartDate property in ts.TimeInfo.

When ts uses numeric time and event uses calendar dates, the
time selected by the event is treated as a numeric value that is not
associated with a calendar date.

See Also gettsafterevent, gettsbeforeevent, gettsbetweenevents,
tsdata.event, tsprops

2-1435

gettsafterevent

Purpose New timeseries object with samples occurring after event

Syntax ts1 = gettsafterevent(ts,event)
ts1 = ttsafterevent(ts,event,n)

Description ts1 = gettsafterevent(ts,event) returns a new timeseries
object ts1 with samples occurring after an event in ts, where event
can be either a tsdata.event object or a string. When event is a
tsdata.event object, the time defined by event is used. When event
is a string, the first tsdata.event object in the Events property of ts
that matches the event name specifies the time.

ts1 = ttsafterevent(ts,event,n) returns a new timeseries object
ts1 with samples occurring after an event in time series ts, where n is
the number of the event occurrence with a matching event name.

Remarks When the timeseries object ts contains date strings and event uses
numeric time, the time selected by the event is treated as a date that is
calculated relative to the StartDate property in ts.TimeInfo.

When ts uses numeric time and event uses calendar dates, the
time selected by the event is treated as a numeric value that is not
associated with a calendar date.

See Also gettsafteratevent, gettsbeforeevent, gettsbetweenevents,
tsdata.event, tsprops

2-1436

gettsatevent

Purpose New timeseries object with samples occurring at event

Syntax ts1 = gettsatevent(ts,event)
ts1 = gettsatevent(ts,event,n)

Description ts1 = gettsatevent(ts,event) returns a new timeseries object ts1
with samples occurring at an event in ts, where event can be either
a tsdata.event object or a string. When event is a tsdata.event
object, the time defined by event is used. When event is a string, the
first tsdata.event object in the Events property of ts that matches
the event name specifies the time.

ts1 = gettsatevent(ts,event,n) returns a new time series ts1 with
samples occurring at an event in time series ts, where n is the number
of the event occurrence with a matching event name.

Remarks When the timeseries object ts contains date strings and event uses
numeric time, the time selected by the event is treated as a date that is
calculated relative to the StartDate property in the ts.TimeInfo.

When ts uses numeric time and event uses calendar dates, the
time selected by the event is treated as a numeric value that is not
associated with a calendar date.

See Also gettsafterevent, gettsafteratevent, gettsbeforeevent,
gettsbetweenevents, tsdata.event, tsprops

2-1437

gettsbeforeatevent

Purpose New timeseries object with samples occurring before or at event

Syntax ts1 = gettsbeforeatevent(ts,event)
ts1 = gettsbeforeatevent(ts,event,n)

Description ts1 = gettsbeforeatevent(ts,event) returns a new timeseries
object ts1 with samples occurring at and before an event in ts, where
event can be either a tsdata.event object or a string. When event is a
tsdata.event object, the time defined by event is used. When event
is a string, the first tsdata.event object in the Events property of ts
that matches the event name specifies the time.

ts1 = gettsbeforeatevent(ts,event,n) returns a new timeseries
object ts1 with samples occurring at and before an event in time series
ts, where n is the number of the event occurrence with a matching
event name.

Remarks When the timeseries object ts contains date strings and event uses
numeric time, the time selected by the event is treated as a date that is
calculated relative to the StartDate property in ts.TimeInfo.

When ts uses numeric time and event uses calendar dates, the
time selected by the event is treated as a numeric value that is not
associated with a calendar date.

See Also gettsafterevent, gettsbeforeevent, gettsbetweenevents,
tsdata.event, tsprops

2-1438

gettsbeforeevent

Purpose New timeseries object with samples occurring before event

Syntax ts1 = gettsbeforeevent(ts,event)
ts1 = gettsbeforeevent(ts,event,n)

Description ts1 = gettsbeforeevent(ts,event) returns a new timeseries object
ts1 with samples occurring before an event in ts, where event can be
either a tsdata.event object or a string. When event is a tsdata.event
object, the time defined by event is used. When event is a string, the
first tsdata.event object in the Events property of ts that matches
the event name specifies the time.

ts1 = gettsbeforeevent(ts,event,n) returns a new timeseries
object ts1 with samples occurring before an event in ts, where n is the
number of the event occurrence with a matching event name.

Remarks When the timeseries object ts contains date strings and event uses
numeric time, the time selected by the event is treated as a date that is
calculated relative to the StartDate property in ts.TimeInfo.

When ts uses numeric time and event uses calendar dates, the
time selected by the event is treated as a numeric value that is not
associated with a calendar date.

See Also gettsafterevent, gettsbeforeatevent, gettsbetweenevents,
tsdata.event, tsprops

2-1439

gettsbetweenevents

Purpose New timeseries object with samples occurring between events

Syntax ts1 = gettsbetweenevents(ts,event1,event2)
ts1 = gettsbetweenevents(ts,event1,event2,n1,n2)

Description ts1 = gettsbetweenevents(ts,event1,event2) returns a new
timeseries object ts1 with samples occurring between events in ts,
where event1 and event2 can be either a tsdata.event object or a
string. When event1 and event2 are tsdata.event objects, the time
defined by the events is used. When event1 and event2 are strings, the
first tsdata.event object in the Events property of ts that matches
the event names specifies the time.

ts1 = gettsbetweenevents(ts,event1,event2,n1,n2) returns a
new timeseries object ts1 with samples occurring between events
in ts, where n1 and n2 are the nth occurrences of the events with
matching event names.

Remarks When the timeseries object ts contains date strings and event uses
numeric time, the time selected by the event is treated as a date that is
calculated relative to the StartDate property in ts.TimeInfo.

When ts uses numeric time and event uses calendar dates, the
time selected by the event is treated as a numeric value that is not
associated with a calendar date.

See Also gettsafterevent, gettsbeforeevent, tsdata.event, tsprops

2-1440

GetVariable

Purpose Get data from variable in server workspace

Syntax MATLAB Client
D = h.GetVariable('varname', 'workspace')
D = GetVariable(h, 'varname', 'workspace')
D = invoke(h, 'GetVariable', 'varname', 'workspace')

Method Signature
HRESULT GetVariable([in] BSTR varname, [in] BSTR workspace,
[out, retval] VARIANT* pdata)

Visual Basic Client
GetVariable(varname As String, workspace As String) As Object

Description GetVariable returns the data stored in the specified variable from
the specified workspace of the server. Each syntax in the MATLAB
Client section produce the same result. Note that the dot notation
(h.GetVariable) is case sensitive.

varname from the specified workspace of the server that is attached to
handle h. The workspace argument can be either base or global.

varname — the name of the variable whose data is returned

workspace — the workspace containing the variable can be either:

• base is the base workspace of the server

• global is the global workspace of the server (see global for more
information about how to access variables in the global workspace).

Note GetVariable works on all MATLAB data types except sparse
arrays, structures, and function handles.

Remarks You can use GetVariable in place of GetWorkspaceData, GetFullMatrix
and GetCharArray to get data stored in workspace variables when you

2-1441

GetVariable

need a result returned explicitly (which might be required by some
scripting languages).

Examples This example assigns a cell array to the variable C1 in the base
workspace of the server, and then read it back with GetVariable,
assigning it to a new variable C2.

MATLAB Client

h = actxserver('matlab.application');

h.PutWorkspaceData('C1', 'base', {25.72, 'hello', rand(4)});

C2 = h.GetVariable('C1','base')

C2 =

[25.7200] 'hello' [4x4 double]

Visual Basic .NET Client

Dim Matlab As Object
Dim Result As String
Dim C2 As Object
Matlab = CreateObject("matlab.application")
Result = Matlab.Execute("C1 = {25.72, 'hello', rand(4)};")
C2 = Matlab.GetVariable("C1", "base")
MsgBox("Second item in cell array: " & C2(0, 1))

The Visual Basic Client example creates a message box displaying the
second element in the cell array, which is the string hello.

See Also GetWorkspaceData, PutWorkspaceData, GetFullMatrix,
PutFullMatrix, GetCharArray, PutCharArray, Execute

2-1442

GetWorkspaceData

Purpose Get data from server workspace

Syntax MATLAB Client
D = h.GetWorkspaceData('varname', 'workspace')
D = GetWorkspaceData(h, 'varname', 'workspace')
D = invoke(h, 'GetWorkspaceData', 'varname', 'workspace')

Method Signature
HRESULT GetWorkspaceData([in] BSTR varname, [in] BSTR workspace,
[out] VARIANT* pdata)

Visual Basic Client
GetWorkspaceData(varname As String, workspace As String) As Object

Description GetWorkspaceData gets the data stored in the variable varname from
the specified workspace of the server attached to handle h and returns
it in output argument D. The workspace argument can be either base
or global.

Note GetWorkspaceData works on all MATLAB data types except
sparse arrays, structures, and function handles.

Remarks You can use GetWorkspaceData in place of GetFullMatrix and
GetCharArray to get numeric and character array data respectively.

If you want output from GetWorkspaceData to be displayed at the client
window, you must specify an output variable.

Server function names, like GetWorkspaceData, are case sensitive when
using the first syntax shown.

There is no difference in the operation of the three syntaxes shown
above for the MATLAB client.

The GetWorkspaceData and PutWorkspaceData functions pass numeric
data as a variant data type. These functions are especially useful for

2-1443

GetWorkspaceData

VBScript clients as VBScript does not support the safearray data type
used by GetFullMatrix and PutFullMatrix.

Examples Assign a cell array to variable C1 in the base workspace of the server,
and then read it back with GetWorkspaceData.

MATLAB Client

h = actxserver('matlab.application');
h.PutWorkspaceData('C1', 'base', ...

{25.72, 'hello', rand(4)});
C2 = h.GetWorkspaceData('C1', 'base')

C2 =
[25.7200] 'hello' [4x4 double]

Visual Basic .NET Client

This example uses the Visual Basic MsgBox command to control flow
between MATLAB and the Visual Basic Client.

Dim Matlab, C2 As Object
Dim Result As String
Matlab = CreateObject("matlab.application")
Result = MatLab.Execute("C1 = {25.72, 'hello', rand(4)};")
MsgBox("In MATLAB, type" & vbCrLf & "C1")
Matlab.GetWorkspaceData("C1", "base", C2)
MsgBox("second value of C1 = " & C2(0, 1))

See Also PutWorkspaceData, GetFullMatrix, PutFullMatrix, GetCharArray,
PutCharArray, GetVariable, Execute

2-1444

ginput

Purpose Graphical input from mouse or cursor

Syntax [x,y] = ginput(n)
[x,y] = ginput
[x,y,button] = ginput(...)

Description ginput enables you to select points from the figure using the mouse for
cursor positioning. The figure must have focus before ginput receives
input.

[x,y] = ginput(n) enables you to select n points from the current
axes and returns the x- and y-coordinates in the column vectors x and
y, respectively. Press the Return key to terminate the input before
entering n points.

[x,y] = ginput gathers an unlimited number of points until you press
the Return key.

Note Clicking an axes makes that axes the current axes. Although you
may set the current axes before calling ginput, whichever axes the user
clicks becomes the current axes and ginput returns points relative to
that axes. For example, if a user selects points from multiple axes, the
results returned are relative to the different axes’ coordinate systems.

[x,y,button] = ginput(...) returns the x-coordinates, the
y-coordinates, and the button or key designation. button is a vector of
integers indicating which mouse buttons you pressed (1 for left, 2 for
middle, 3 for right), or ASCII numbers indicating which keys on the
keyboard you pressed.

Examples Pick 10 two-dimensional points from the figure window.

[x,y] = ginput(10)

2-1445

ginput

Position the cursor with the mouse. Enter data points by pressing a
mouse button or a key on the keyboard. To terminate input before
entering 10 points, press the Return key.

See Also gtext

“Interactive Plotting” for an example

“Developing User Interfaces” on page 1-105 for related functions

2-1446

global

Purpose Declare global variables

Syntax global X Y Z

Description global X Y Z defines X, Y, and Z as global in scope.

Ordinarily, each MATLAB function, defined by an M-file, has its own
local variables, which are separate from those of other functions, and
from those of the base workspace. However, if several functions, and
possibly the base workspace, all declare a particular name as global,
they all share a single copy of that variable. Any assignment to that
variable, in any function, is available to all the functions declaring it
global.

If the global variable does not exist the first time you issue the global
statement, it is initialized to the empty matrix.

If a variable with the same name as the global variable already exists
in the current workspace, MATLAB issues a warning and changes the
value of that variable to match the global.

Remarks Use clear global variable to clear a global variable from the global
workspace. Use clear variable to clear the global link from the
current workspace without affecting the value of the global.

To use a global within a callback, declare the global, use it, then clear
the global link from the workspace. This avoids declaring the global
after it has been referenced. For example,

cbstr = sprintf('%s, %s, %s, %s, %s', ...
'global MY_GLOBAL', ...
'MY_GLOBAL = 100', ...
'disp(MY_GLOBAL)', ...
'MY_GLOBAL = MY_GLOBAL+1', ...
'clear MY_GLOBAL');

uicontrol('style', 'pushbutton', 'CallBack', cbstr, ...
'string', 'count')

2-1447

global

There is no function form of the global command (i.e., you cannot use
parentheses and quote the variable names).

Examples Here is the code for the functions tic and toc (some comments
abridged). These functions manipulate a stopwatch-like timer. The
global variable TICTOC is shared by the two functions, but it is invisible
in the base workspace or in any other functions that do not declare it.

function tic
% TIC Start a stopwatch timer.
% TIC; any stuff; TOC
% prints the time required.
% See also: TOC, CLOCK.
global TICTOC
TICTOC = clock;

function t = toc
% TOC Read the stopwatch timer.
% TOC prints the elapsed time since TIC was used.
% t = TOC; saves elapsed time in t, does not print.
% See also: TIC, ETIME.
global TICTOC
if nargout < 1

elapsed_time = etime(clock, TICTOC)
else

t = etime(clock, TICTOC);
end

See Also clear, isglobal, who

2-1448

gmres

Purpose Generalized minimum residual method (with restarts)

Syntax x = gmres(A,b)
gmres(A,b,restart)
gmres(A,b,restart,tol)
gmres(A,b,restart,tol,maxit)
gmres(A,b,restart,tol,maxit,M)
gmres(A,b,restart,tol,maxit,M1,M2)
gmres(A,b,restart,tol,maxit,M1,M2,x0)
[x,flag] = gmres(A,b,...)
[x,flag,relres] = gmres(A,b,...)
[x,flag,relres,iter] = gmres(A,b,...)
[x,flag,relres,iter,resvec] = gmres(A,b,...)

Description x = gmres(A,b) attempts to solve the system of linear equations A*x
= b for x. The n-by-n coefficient matrix A must be square and should
be large and sparse. The column vector b must have length n. A can be
a function handle afun such that afun(x) returns A*x. See “Function
Handles” in the MATLAB Programming documentation for more
information. For this syntax, gmres does not restart; the maximum
number of iterations is min(n,10).

“Parameterizing Functions Called by Function Functions”, in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the function afun, as well as the preconditioner
function mfun described below, if necessary.

If gmres converges, a message to that effect is displayed. If gmres fails
to converge after the maximum number of iterations or halts for any
reason, a warning message is printed displaying the relative residual
norm(b-A*x)/norm(b) and the iteration number at which the method
stopped or failed.

gmres(A,b,restart) restarts the method every restart
inner iterations. The maximum number of outer iterations is
min(n/restart,10). The maximum number of total iterations is
restart*min(n/restart,10). If restart is n or [], then gmres does
not restart and the maximum number of total iterations is min(n,10).

2-1449

gmres

gmres(A,b,restart,tol) specifies the tolerance of the method. If tol
is [], then gmres uses the default, 1e-6.

gmres(A,b,restart,tol,maxit) specifies the maximum number
of outer iterations, i.e., the total number of iterations does not
exceed restart*maxit. If maxit is [] then gmres uses the default,
min(n/restart,10). If restart is n or [], then the maximum number
of total iterations is maxit (instead of restart*maxit).

gmres(A,b,restart,tol,maxit,M) and
gmres(A,b,restart,tol,maxit,M1,M2) use preconditioner M or M =
M1*M2 and effectively solve the system inv(M)*A*x = inv(M)*b for x.
If M is [] then gmres applies no preconditioner. M can be a function
handle mfun such that mfun(x) returns M\x.

gmres(A,b,restart,tol,maxit,M1,M2,x0) specifies the first initial
guess. If x0 is [], then gmres uses the default, an all-zero vector.

[x,flag] = gmres(A,b,...) also returns a convergence flag:

flag = 0 gmres converged to the desired tolerance tol within
maxit outer iterations.

flag = 1 gmres iterated maxit times but did not converge.

flag = 2 Preconditioner M was ill-conditioned.

flag = 3 gmres stagnated. (Two consecutive iterates were the
same.)

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if the flag output is specified.

[x,flag,relres] = gmres(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = gmres(A,b,...) also returns both the outer
and inner iteration numbers at which x was computed, where 0 <=
iter(1) <= maxit and 0 <= iter(2) <= restart.

2-1450

gmres

[x,flag,relres,iter,resvec] = gmres(A,b,...) also returns
a vector of the residual norms at each inner iteration, including
norm(b-A*x0).

Examples Example 1

A = gallery('wilk',21);
b = sum(A,2);
tol = 1e-12;
maxit = 15;
M1 = diag([10:-1:1 1 1:10]);

x = gmres(A,b,10,tol,maxit,M1);

displays the following message:

gmres(10) converged at outer iteration 2 (inner iteration 9) to
a solution with relative residual 3.3e-013

Example 2

This example replaces the matrix A in Example 1 with a handle to a
matrix-vector product function afun, and the preconditioner M1 with a
handle to a backsolve function mfun. The example is contained in an
M-file run_gmres that

• Calls gmres with the function handle @afun as its first argument.

• Contains afun and mfun as nested functions, so that all variables in
run_gmres are available to afun and mfun.

The following shows the code for run_gmres:

function x1 = run_gmres
n = 21;
A = gallery('wilk',n);
b = sum(A,2);
tol = 1e-12; maxit = 15;
x1 = gmres(@afun,b,10,tol,maxit,@mfun);

2-1451

gmres

function y = afun(x)
y = [0; x(1:n-1)] + ...

[((n-1)/2:-1:0)'; (1:(n-1)/2)'].*x + ...
[x(2:n); 0];

end

function y = mfun(r)
y = r ./ [((n-1)/2:-1:1)'; 1; (1:(n-1)/2)'];

end
end

When you enter

x1 = run_gmres;

MATLAB displays the message

gmres(10) converged at outer iteration 2 (inner iteration 9) to
a solution with relative residual 3.3e-013

Example 3

load west0479
A = west0479
b = sum(A,2)
[x,flag] = gmres(A,b,5)

flag is 1 because gmres does not converge to the default tolerance 1e-6
within the default 10 outer iterations.

[L1,U1] = luinc(A,1e-5);
[x1,flag1] = gmres(A,b,5,1e-6,5,L1,U1);

flag1 is 2 because the upper triangular U1 has a zero on its diagonal,
and gmres fails in the first iteration when it tries to solve a system such
as U1*y = r for y using backslash.

[L2,U2] = luinc(A,1e-6);

2-1452

gmres

tol = 1e-15;
[x4,flag4,relres4,iter4,resvec4] = gmres(A,b,4,tol,5,L2,U2);
[x6,flag6,relres6,iter6,resvec6] = gmres(A,b,6,tol,3,L2,U2);
[x8,flag8,relres8,iter8,resvec8] = gmres(A,b,8,tol,3,L2,U2);

flag4, flag6, and flag8 are all 0 because gmres converged when
restarted at iterations 4, 6, and 8 while preconditioned by the
incomplete LU factorization with a drop tolerance of 1e-6. This is
verified by the plots of outer iteration number against relative residual.
A combined plot of all three clearly shows the restarting at iterations 4
and 6. The total number of iterations computed may be more for lower
values of restart, but the number of length n vectors stored is fewer,
and the amount of work done in the method decreases proportionally.

See Also bicg, bicgstab, cgs, lsqr, ilu, luinc, minres, pcg, qmr, symmlq

2-1453

gmres

function_handle (@), mldivide (\)

References Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

Saad, Youcef and Martin H. Schultz, “GMRES: A generalized minimal
residual algorithm for solving nonsymmetric linear systems,” SIAM J.
Sci. Stat. Comput., July 1986, Vol. 7, No. 3, pp. 856-869.

2-1454

gplot

Purpose Plot nodes and links representing adjacency matrix

Syntax gplot(A,Coordinates)
gplot(A,Coordinates,LineSpec)

Description The gplot function graphs a set of coordinates using an adjacency
matrix.

gplot(A,Coordinates) plots a graph of the nodes defined in
Coordinates according to the n-by-n adjacency matrix A, where n is
the number of nodes. Coordinates is an n-by-2 matrix, where n is the
number of nodes and each coordinate pair represents one node.

gplot(A,Coordinates,LineSpec) plots the nodes using the line type,
marker symbol, and color specified by LineSpec.

Remarks For two-dimensional data, Coordinates(i,:) = [x(i) y(i)]
denotes node i, and Coordinates(j,:) = [x(j)y(j)] denotes node
j. If node i and node j are connected, A(i,j) or A(j,i) is nonzero;
otherwise, A(i,j) and A(j,i) are zero.

Examples To draw half of a Bucky ball with asterisks at each node,

k = 1:30;
[B,XY] = bucky;
gplot(B(k,k),XY(k,:),'-*')
axis square

2-1455

gplot

See Also LineSpec, sparse, spy

“Tree Operations” on page 1-39 for related functions

2-1456

grabcode

Purpose MATLAB code from M-files published to HTML

Syntax grabcode('name.html')
grabcode('urlname')
codeString = grabcode('name.html')

Description grabcode('name.html') copies MATLAB code from the file name.html
and pastes it into an untitled document in the Editor/Debugger. Use
grabcode to get MATLAB code from demos or other published M-files
when the M-file source code is not readily available. The file name.html
was created by publishing name.m, an M-file containing cells. The
MATLAB code from name.m is included at the end of name.html as
HTML comments.

grabcode('urlname') copies MATLAB code from the urlname location
and pastes it into an untitled document in the Editor/Debugger.

codeString = grabcode('name.html') get MATLAB code from the
file name.html and assigns it the variable codeString.

Examples Run

sineWaveString = grabcode('d:/mymfiles/sine_wave_.html')

and MATLAB displays

sineWaveString =

%% Simple Sine Wave Plot

%% Part One: Calculate Sine Wave
% Define the range |x|.
% Calculate the sine |y| over that range.
x = 0:.01:6*pi;
y = sin(x);

%% Part Two: Plot Sine Wave
% Graph the result.

2-1457

grabcode

plot(x,y)

See Also demo, publish

2-1458

gradient

Purpose Numerical gradient

Syntax FX = gradient(F)
[FX,FY] = gradient(F)
[FX,FY,FZ,...] = gradient(F)
[...] = gradient(F,h)
[...] = gradient(F,h1,h2,...)

Definition The gradient of a function of two variables, , is defined as

and can be thought of as a collection of vectors pointing in the
direction of increasing values of . In MATLAB, numerical gradients
(differences) can be computed for functions with any number of
variables. For a function of variables, ,

Description FX = gradient(F) where F is a vector returns the one-dimensional
numerical gradient of F. FX corresponds to , the differences in x
(horizontal) direction.

[FX,FY] = gradient(F) where F is a matrix returns the and
components of the two-dimensional numerical gradient. FX corresponds
to , the differences in (horizontal) direction. FY corresponds
to , the differences in the (vertical) direction. The spacing
between points in each direction is assumed to be one.

[FX,FY,FZ,...] = gradient(F) where F has N dimensions returns
the N components of the gradient of F. There are two ways to control
the spacing between values in F:

• A single spacing value, h, specifies the spacing between points in
every direction.

2-1459

gradient

• N spacing values (h1,h2,...) specifies the spacing for each dimension
of F. Scalar spacing parameters specify a constant spacing for each
dimension. Vector parameters specify the coordinates of the values
along corresponding dimensions of F. In this case, the length of the
vector must match the size of the corresponding dimension.

Note The first output FX is always the gradient along the 2nd dimension
of F, going across columns. The second output FY is always the gradient
along the 1st dimension of F, going across rows. For the third output FZ
and the outputs that follow, the Nth output is the gradient along the
Nth dimension of F.

[...] = gradient(F,h) where h is a scalar uses h as the spacing
between points in each direction.

[...] = gradient(F,h1,h2,...) with N spacing parameters
specifies the spacing for each dimension of F.

Examples The statements

v = -2:0.2:2;
[x,y] = meshgrid(v);
z = x .* exp(-x.^2 - y.^2);
[px,py] = gradient(z,.2,.2);
contour(v,v,z), hold on, quiver(v,v,px,py), hold off

produce

2-1460

gradient

Given,

F(:,:,1) = magic(3); F(:,:,2) = pascal(3);
gradient(F)

takes dx = dy = dz = 1.

[PX,PY,PZ] = gradient(F,0.2,0.1,0.2)

takes dx = 0.2, dy = 0.1, and dz = 0.2.

See Also del2, diff

2-1461

graymon

Purpose Set default figure properties for grayscale monitors

Syntax graymon

Description graymon sets defaults for graphics properties to produce more legible
displays for grayscale monitors.

See Also axes, figure

“Color Operations” on page 1-98 for related functions

2-1462

grid

Purpose Grid lines for 2-D and 3-D plots

GUI
Alternative

To control the presence and appearance of grid lines on a graph, use

the Property Editor, one of the plotting tools . For details, see The
Property Editor in the MATLAB Graphics documentation.

Syntax grid on
grid off
grid
grid(axes_handle,...)
grid minor

Description The grid function turns the current axes’ grid lines on and off.

grid on adds major grid lines to the current axes.

grid off removes major and minor grid lines from the current axes.

grid toggles the major grid visibility state.

grid(axes_handle,...) uses the axes specified by axes_handle
instead of the current axes.

Algorithm grid sets the XGrid, YGrid, and ZGrid properties of the axes.

grid minor sets the XMinorGrid, YMinorGrid, and ZMinorGrid
properties of the axes.

You can set the grid lines for just one axis using the set command and
the individual property. For example,

set(axes_handle,'XGrid','on')

turns on only x-axis grid lines.

You can set grid line width with the axes LineWidth property.

See Also box, axes, set

The properties of axes objects

2-1463

grid

“Axes Operations” on page 1-96 for related functions

2-1464

griddata

Purpose Data gridding

Syntax ZI = griddata(x,y,z,XI,YI)
[XI,YI,ZI] = griddata(x,y,z,XI,YI)
[...] = griddata(...,method)
[...] = griddata(...,method,options)

Description ZI = griddata(x,y,z,XI,YI) fits a surface of the form z = f(x,y)
to the data in the (usually) nonuniformly spaced vectors (x,y,z).
griddata interpolates this surface at the points specified by (XI,YI) to
produce ZI. The surface always passes through the data points. XI and
YI usually form a uniform grid (as produced by meshgrid).

XI can be a row vector, in which case it specifies a matrix with constant
columns. Similarly, YI can be a column vector, and it specifies a matrix
with constant rows.

[XI,YI,ZI] = griddata(x,y,z,XI,YI) returns the interpolated
matrix ZI as above, and also returns the matrices XI and YI formed
from row vector XI and column vector yi. These latter are the same as
the matrices returned by meshgrid.

[...] = griddata(...,method) uses the specified interpolation
method:

’linear’ Triangle-based linear interpolation (default)

’cubic’ Triangle-based cubic interpolation

’nearest’ Nearest neighbor interpolation

’v4’ MATLAB 4 griddata method

The method defines the type of surface fit to the data. The 'cubic' and
'v4' methods produce smooth surfaces while 'linear' and 'nearest'
have discontinuities in the first and zero’th derivatives, respectively. All
the methods except 'v4' are based on a Delaunay triangulation of the
data. If method is [], then the default 'linear' method is used.

2-1465

griddata

[...] = griddata(...,method,options) specifies a cell array of
strings options to be used in Qhull via delaunayn. If options is [],
the default delaunayn options are used. If options is {''}, no options
are used, not even the default.

Occasionally, griddata might return points on or very near the convex
hull of the data as NaNs. This is because roundoff in the computations
sometimes makes it difficult to determine if a point near the boundary
is in the convex hull.

Remarks XI and YI can be matrices, in which case griddata returns the values
for the corresponding points (XI(i,j),YI(i,j)). Alternatively, you
can pass in the row and column vectors xi and yi, respectively. In
this case, griddata interprets these vectors as if they were matrices
produced by the command meshgrid(xi,yi).

Examples Sample a function at 100 random points between ±2.0:

rand('seed',0)
x = rand(100,1)*4-2; y = rand(100,1)*4-2;
z = x.*exp(-x.^2-y.^2);

x, y, and z are now vectors containing nonuniformly sampled data.
Define a regular grid, and grid the data to it:

ti = -2:.25:2;
[XI,YI] = meshgrid(ti,ti);
ZI = griddata(x,y,z,XI,YI);

Plot the gridded data along with the nonuniform data points used to
generate it:

mesh(XI,YI,ZI), hold
plot3(x,y,z,'o'), hold off

2-1466

griddata

Algorithm The griddata(...,'v4') command uses the method documented
in [2]. The other griddata methods are based on a Delaunay
triangulation of the data that uses Qhull [1]. For information about
Qhull, see http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

See Also delaunay, griddata3, griddatan, interp2, meshgrid

References [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa,
“The Quickhull Algorithm for Convex Hulls,” ACM
Transactions on Mathematical Software, Vol. 22, No.
4, Dec. 1996, p. 469-483. Available in PDF format at
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/.

[2] Sandwell, David T., “Biharmonic Spline Interpolation of GEOS-3
and SEASAT Altimeter Data”, Geophysical Research Letters, 14, 2,
139-142,1987.

2-1467

http://www.qhull.org/
http://www.qhull.org/COPYING.txt

griddata

[3] Watson, David E., Contouring: A Guide to the Analysis and Display
of Spatial Data, Tarrytown, NY: Pergamon (Elsevier Science, Inc.):
1992.

2-1468

griddata3

Purpose Data gridding and hypersurface fitting for 3-D data

Syntax w = griddata3(x,y,z,v,xi,yi,zi)
w = griddata3(x,y,z,v,xi,yi,zi,method)
w = griddata3(x,y,z,v,xi,yi,zi,method,options)

Description w = griddata3(x,y,z,v,xi,yi,zi) fits a hypersurface of the form
to the data in the (usually) nonuniformly spaced

vectors (x, y, z, v). griddata3 interpolates this hypersurface at the
points specified by (xi,yi,zi) to produce w. w is the same size as xi,
yi, and zi.

(xi,yi,zi) is usually a uniform grid (as produced by meshgrid) and is
where griddata3 gets its name.

w = griddata3(x,y,z,v,xi,yi,zi,method) defines the type of
surface that is fit to the data, where method is either:

’linear’ Tesselation-based linear interpolation (default)

’nearest’ Nearest neighbor interpolation

If method is [], the default 'linear' method is used.

w = griddata3(x,y,z,v,xi,yi,zi,method,options) specifies a cell
array of strings options to be used in Qhull via delaunayn.

If options is [], the default options are used. If options is {''}, no
options are used, not even the default.

Examples Create vectors x, y, and z containing nonuniformly sampled data:

rand('state',0);
x = 2*rand(5000,1)-1;
y = 2*rand(5000,1)-1;
z = 2*rand(5000,1)-1;
v = x.^2 + y.^2 + z.^2;

Define a regular grid, and grid the data to it:

2-1469

griddata3

d = -0.8:0.05:0.8;
[xi,yi,zi] = meshgrid(d,d,d);
w = griddata3(x,y,z,v,xi,yi,zi);

Since it is difficult to visualize 4D data sets, use isosurface at 0.8:

p = patch(isosurface(xi,yi,zi,w,0.8));
isonormals(xi,yi,zi,w,p);
set(p,'FaceColor','blue','EdgeColor','none');
view(3), axis equal, axis off, camlight, lighting phong

Algorithm The griddata3 methods are based on a Delaunay triangulation
of the data that uses Qhull [1]. For information about Qhull,
see http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

2-1470

http://www.qhull.org/
http://www.qhull.org/COPYING.txt

griddata3

See Also delaunayn, griddata, griddatan, meshgrid

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, “The Quickhull
Algorithm for Convex Hulls,” ACM Transactions on Mathematical
Software, Vol. 22, No. 4, Dec. 1996, p. 469-483. Available in PDF
format at http://www.acm.org/pubs/citations/journals/toms/
1996-22-4/p469-barber/.

2-1471

http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/

griddatan

Purpose Data gridding and hypersurface fitting (dimension >= 2)

Syntax yi = griddatan(X,y,xi)
yi = griddatan(x,y,z,v,xi,yi,zi,method)

Description yi = griddatan(X,y,xi) fits a hyper-surface of the form
to the data in the (usually) nonuniformly-spaced vectors (X, y).
griddatan interpolates this hyper-surface at the points specified by xi
to produce yi. xi can be nonuniform.

X is of dimension m-by-n, representing m points in n-dimensional space. y
is of dimension m-by-1, representing m values of the hyper-surface (X).
xi is a vector of size p-by-n, representing p points in the n-dimensional
space whose surface value is to be fitted. yi is a vector of length p

approximating the values (xi). The hypersurface always goes through
the data points (X,y). xi is usually a uniform grid (as produced by
meshgrid).

yi = griddatan(x,y,z,v,xi,yi,zi,method) defines the type of
surface fit to the data, where 'method' is one of:

’linear’ Tessellation-based linear interpolation (default)

’nearest’ Nearest neighbor interpolation

All the methods are based on a Delaunay tessellation of the data.

If method is [], the default 'linear' method is used.

yi = griddatan(x,y,z,v,xi,yi,zi,method,options) specifies a cell
array of strings options to be used in Qhull via delaunayn.

If options is [], the default options are used. If options is {''}, no
options are used, not even the default.

Examples rand('state',0)
X = 2*rand(5000,3)-1;
Y = sum(X.^2,2);
d = -0.8:0.05:0.8;

2-1472

griddatan

[y0,x0,z0] = ndgrid(d,d,d);
XI = [x0(:) y0(:) z0(:)];
YI = griddatan(X,Y,XI);

Since it is difficult to visualize 4D data sets, use isosurface at 0.8:

YI = reshape(YI, size(x0));
p = patch(isosurface(x0,y0,z0,YI,0.8));
isonormals(x0,y0,z0,YI,p);
set(p,'FaceColor','blue','EdgeColor','none');
view(3), axis equal, axis off, camlight, lighting phong

Algorithm The griddatan methods are based on a Delaunay triangulation
of the data that uses Qhull [1]. For information about Qhull,
see http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

2-1473

http://www.qhull.org/
http://www.qhull.org/COPYING.txt

griddatan

See Also delaunayn, griddata, griddata3, meshgrid

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, “The Quickhull
Algorithm for Convex Hulls,” ACM Transactions on Mathematical
Software, Vol. 22, No. 4, Dec. 1996, p. 469-483. Available in
PDF format at http://www.acm.org/pubs/citations/journals/
toms/1996-22-4/p469-barber/.

2-1474

http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/

gsvd

Purpose Generalized singular value decomposition

Syntax [U,V,X,C,S] = gsvd(A,B)
sigma = gsvd(A,B)

Description [U,V,X,C,S] = gsvd(A,B) returns unitary matrices U and V, a
(usually) square matrix X, and nonnegative diagonal matrices C and S
so that

A = U*C*X'
B = V*S*X'
C'*C + S'*S = I

A and B must have the same number of columns, but may have different
numbers of rows. If A is m-by-p and B is n-by-p, then U is m-by-m, V is
n-by-n and X is p-by-q where q = min(m+n,p).

sigma = gsvd(A,B) returns the vector of generalized singular values,
sqrt(diag(C'*C)./diag(S'*S)).

The nonzero elements of S are always on its main diagonal. If m >= p
the nonzero elements of C are also on its main diagonal. But if m < p,
the nonzero diagonal of C is diag(C,p-m). This allows the diagonal
elements to be ordered so that the generalized singular values are
nondecreasing.

gsvd(A,B,0), with three input arguments and either m or n >= p,
produces the “economy-sized“decomposition where the resulting U
and V have at most p columns, and C and S have at most p rows. The
generalized singular values are diag(C)./diag(S).

When B is square and nonsingular, the generalized singular values,
gsvd(A,B), are equal to the ordinary singular values, svd(A/B), but
they are sorted in the opposite order. Their reciprocals are gsvd(B,A).

In this formulation of the gsvd, no assumptions are made about the
individual ranks of A or B. The matrix X has full rank if and only if the
matrix [A;B] has full rank. In fact, svd(X) and cond(X) are equal to
svd([A;B]) and cond([A;B]). Other formulations, eg. G. Golub and

2-1475

gsvd

C. Van Loan [1], require that null(A) and null(B) do not overlap and
replace X by inv(X) or inv(X').

Note, however, that when null(A) and null(B) do overlap, the nonzero
elements of C and S are not uniquely determined.

Examples Example 1

The matrices have at least as many rows as columns.

A = reshape(1:15,5,3)
B = magic(3)
A =

1 6 11
2 7 12
3 8 13
4 9 14
5 10 15

B =
8 1 6
3 5 7
4 9 2

The statement

[U,V,X,C,S] = gsvd(A,B)

produces a 5-by-5 orthogonal U, a 3-by-3 orthogonal V, a 3-by-3
nonsingular X,

X =
2.8284 -9.3761 -6.9346

-5.6569 -8.3071 -18.3301
2.8284 -7.2381 -29.7256

and

C =
0.0000 0 0

2-1476

gsvd

0 0.3155 0
0 0 0.9807
0 0 0
0 0 0

S =
1.0000 0 0

0 0.9489 0
0 0 0.1957

Since A is rank deficient, the first diagonal element of C is zero.

The economy sized decomposition,

[U,V,X,C,S] = gsvd(A,B,0)

produces a 5-by-3 matrix U and a 3-by-3 matrix C.

U =
0.5700 -0.6457 -0.4279

-0.7455 -0.3296 -0.4375
-0.1702 -0.0135 -0.4470
0.2966 0.3026 -0.4566
0.0490 0.6187 -0.4661

C =
0.0000 0 0

0 0.3155 0
0 0 0.9807

The other three matrices, V, X, and S are the same as those obtained
with the full decomposition.

The generalized singular values are the ratios of the diagonal elements
of C and S.

sigma = gsvd(A,B)
sigma =

0.0000
0.3325

2-1477

gsvd

5.0123

These values are a reordering of the ordinary singular values

svd(A/B)
ans =

5.0123
0.3325
0.0000

Example 2

The matrices have at least as many columns as rows.

A = reshape(1:15,3,5)
B = magic(5)
A =

1 4 7 10 13
2 5 8 11 14
3 6 9 12 15

B =
17 24 1 8 15

23 5 7 14 16
4 6 13 20 22

10 12 19 21 3
11 18 25 2 9

The statement

[U,V,X,C,S] = gsvd(A,B)

produces a 3-by-3 orthogonal U, a 5-by-5 orthogonal V, a 5-by-5
nonsingular X and

C =
0 0 0.0000 0 0
0 0 0 0.0439 0
0 0 0 0 0.7432

2-1478

gsvd

S =
1.0000 0 0 0 0

0 1.0000 0 0 0
0 0 1.0000 0 0
0 0 0 0.9990 0
0 0 0 0 0.6690

In this situation, the nonzero diagonal of C is diag(C,2). The
generalized singular values include three zeros.

sigma = gsvd(A,B)
sigma =

0
0

0.0000
0.0439
1.1109

Reversing the roles of A and B reciprocates these values, producing two
infinities.

gsvd(B,A)
ans =

1.0e+016 *

0.0000
0.0000
4.4126

Inf
Inf

Algorithm The generalized singular value decomposition uses the C-S
decomposition described in [1], as well as the built-in svd and qr
functions. The C-S decomposition is implemented in a subfunction in
the gsvd M-file.

Diagnostics The only warning or error message produced by gsvd itself occurs when
the two input arguments do not have the same number of columns.

2-1479

gsvd

See Also qr, svd

References [1] Golub, Gene H. and Charles Van Loan, Matrix Computations, Third
Edition, Johns Hopkins University Press, Baltimore, 1996

2-1480

gt

Purpose Test for greater than

Syntax A > B
gt(A, B)

Description A > B compares each element of array A with the corresponding element
of array B, and returns an array with elements set to logical 1 (true)
where A is greater than B, or set to logical 0 (false) where A is less
than or equal to B. Each input of the expression can be an array or a
scalar value.

If both A and B are scalar (i.e., 1-by-1 matrices), then MATLAB returns
a scalar value.

If both A and B are nonscalar arrays, then these arrays must have
the same dimensions, and MATLAB returns an array of the same
dimensions as A and B.

If one input is scalar and the other a nonscalar array, then the scalar
input is treated as if it were an array having the same dimensions as
the nonscalar input array. In other words, if input A is the number 100,
and B is a 3-by-5 matrix, then A is treated as if it were a 3-by-5 matrix
of elements, each set to 100. MATLAB returns an array of the same
dimensions as the nonscalar input array.

gt(A, B) is called for the syntax A>B when either A or B is an object.

Examples Create two 6-by-6 matrices, A and B, and locate those elements of A that
are greater than the corresponding elements of B:

A = magic(6);
B = repmat(3*magic(3), 2, 2);

A > B
ans =

1 0 0 1 1 1
0 1 0 1 1 1
1 0 0 1 0 1
0 1 1 0 1 0

2-1481

gt

1 0 1 1 0 0
0 1 1 1 0 1

See Also lt, ge, le, ne, eq, “Relational Operators”

2-1482

gtext

Purpose Mouse placement of text in 2-D view

Syntax gtext('string')
gtext({'string1','string2','string3',...})
gtext({'string1';'string2';'string3';...})
h = gtext(...)

Description gtext displays a text string in the current figure window after you
select a location with the mouse.

gtext('string') waits for you to press a mouse button or keyboard
key while the pointer is within a figure window. Pressing a mouse
button or any key places 'string' on the plot at the selected location.

gtext({'string1','string2','string3',...}) places all strings
with one click, each on a separate line.

gtext({'string1';'string2';'string3';...}) places one string
per click, in the sequence specified.

h = gtext(...) returns the handle to a text graphics object that is
placed on the plot at the location you select.

Remarks As you move the pointer into a figure window, the pointer becomes
crosshairs to indicate that gtext is waiting for you to select a location.
gtext uses the functions ginput and text.

Examples Place a label on the current plot:

gtext('Note this divergence!')

See Also ginput, text

“Annotating Plots” on page 1-87 for related functions

2-1483

guidata

Purpose Store or retrieve GUI data

Syntax guidata(object_handle,data)
data = guidata(object_handle)

Description guidata(object_handle,data) stores the variable data as GUI data.
If object_handle is not a figure handle, then the object’s parent figure
is used. data can be any MATLAB variable, but is typically a structure,
which enables you to add new fields as required.

guidata can manage only one variable at any time. Subsequent calls
to guidata(object_handle,data) overwrite the previously created
version of GUI data.

Note for GUIDE Users GUIDE uses guidata to store and maintain
the handles structure. From a GUIDE-generated GUI M-file, do not
use guidata to store any data other than handles. If you do, you may
overwrite the handles structure and your GUI will not work. If you
need to store other data with your GUI, you can add it to the handles
structure. See GUI Data in the MATLAB documentation.

data = guidata(object_handle) returns previously stored data, or
an empty matrix if nothing has been stored.

To change the data managed by guidata:

1 Get a copy of the data with the command data =
guidata(object_handle).

2 Make the desired changes to data.

3 Save the changed version of data with the command
guidata(object_handle,data).

guidata provides application developers with a convenient interface to
a figure’s application data:

2-1484

guidata

• You do not need to create and maintain a hard-coded property name
for the application data throughout your source code.

• You can access the data from within a subfunction callback routine
using the component’s handle (which is returned by gcbo), without
needing to find the figure’s handle.

If you are not using GUIDE, guidata is particularly useful in
conjunction with guihandles, which creates a structure containing the
handles of all the components in a GUI.

Examples In this example, guidata is used to save a structure on a GUI figure’s
application data from within the initialization section of the application
M-file. This structure is initially created by guihandles and then used
to save additional data as well.

% create structure of handles
myhandles = guihandles(figure_handle);
% add some additional data
myhandles.numberOfErrors = 0;
% save the structure
guidata(figure_handle,myhandles)

You can recall the data from within a subfunction callback routine and
then save the structure again:

% get the structure in the subfunction
myhandles = guidata(gcbo);
myhandles.numberOfErrors = myhandles.numberOfErrors + 1;
% save the changes to the structure
guidata(gcbo,myhandles)

See Also guide, guihandles, getappdata, setappdata

2-1485

guide

Purpose Open GUI Layout Editor

Syntax guide
guide('filename.fig')
guide('fullpath')
guide(HandleList)

Description guide initiates the GUI design environment (GUIDE) tools that allow
you to create or edit GUIs interactively.

guide opens the GUIDE Quick Start dialog where you can choose to
open a previously created GUI or create a new one using one of the
provided templates.

guide('filename.fig') opens the FIG-file named filename.fig for
editing if it is on the MATLAB path.

guide('fullpath') opens the FIG-file at fullpath even if it is not on
the MATLAB path.

guide(HandleList) opens the content of each of the figures in
HandleList in a separate copy of the GUIDE design environment.

See Also inspect

Creating GUIs

2-1486

guihandles

Purpose Create structure of handles

Syntax handles = guihandles(object_handle)
handles = guihandles

Description handles = guihandles(object_handle) returns a structure
containing the handles of the objects in a figure, using the value of their
Tag properties as the fieldnames, with the following caveats:

• Objects are excluded if their Tag properties are empty, or are not
legal variable names.

• If several objects have the same Tag, that field in the structure
contains a vector of handles.

• Objects with hidden handles are included in the structure.

handles = guihandles returns a structure of handles for the current
figure.

See Also guidata, guide, getappdata, setappdata

2-1487

gunzip

Purpose Uncompress GNU zip files

Syntax gunzip(files)
gunzip(files,outputdir)
gunzip(url, ...)
filenames = gunzip(...)

Description gunzip(files) uncompresses GNU zip files from the list of files
specified in files. Directories recursively gunzip all of their content.
The output files have the same name, excluding the extension .gz, and
are written to the same directory as the input files.

files is a string or cell array of strings containing a list of files or
directories. Individual files that are on the MATLAB path can be
specified as partial pathnames. Otherwise an individual file can be
specified relative to the current directory or with an absolute path.
Directories must be specified relative to the current directory or with
absolute paths. On UNIX systems, directories can also start with ~/ or
~username/, which expands to the current user’s home directory or the
specified user’s home directory, respectively. The wildcard character *
can be used when specifying files or directories, except when relying on
the MATLAB path to resolve a filename or partial pathname.

gunzip(files,outputdir) writes the gunzipped file into the directory
outputdir. outputdir is created if it does not exist.

gunzip(url, ...) extracts the GNU zip contents from an Internet
universal resource locator (URL). The URL must include the protocol
type (e.g., 'http://'). The URL is downloaded to the temp directory
and deleted.

filenames = gunzip(...) gunzips the files and returns the relative
pathnames of the gunzipped files in the string cell array filenames.

Examples To gunzip all .gz files in the current directory,

gunzip('*.gz');

2-1488

gunzip

To gunzip Cleve Moler’s “Numerical Computing with MATLAB”
examples to the output directory ncm:

url ='http://www.mathworks.com/moler/ncm.tar.gz';
gunzip(url,'ncm')
untar('ncm/ncm.tar','ncm')

See Also gzip, tar, untar, unzip, zip

2-1489

gzip

Purpose Compress files into GNU zip files

Syntax gzip(files)
gzip(files,outputdir)
filenames = gzip(...)

Description gzip(files) creates GNU zip files from the list of files specified in
files. Directories recursively gzip all their contents. Each output
gzipped file is written to the same directory as the input file and with
the file extension .gz.

files is a string or cell array of strings containing a list of files or
directories to gzip. Individual files that are on the MATLAB path can
be specified as partial pathnames. Otherwise an individual file can be
specified relative to the current directory or with an absolute path.
Directories must be specified relative to the current directory or with
absolute paths. On UNIX systems, directories can also start with ~/ or
~username/, which expands to the current user’s home directory or the
specified user’s home directory, respectively. The wildcard character *
can be used when specifying files or directories, except when relying on
the MATLAB path to resolve a filename or partial pathname.

gzip(files,outputdir) writes the gzipped files into the directory
outputdir. outputdir is created if it does not exist.

filenames = gzip(...) gzips the files and returns the relative
pathnames of all gzipped files in the string cell array filenames.

Example To gzip all .m and .mat files in the current directory and store the
results in the directory archive,

gzip({'*.m','*.mat'},'archive');

See Also gunzip, tar, untar, unzip, zip

2-1490

hadamard

Purpose Hadamard matrix

Syntax H = hadamard(n)

Description H = hadamard(n) returns the Hadamard matrix of order n.

Definition Hadamard matrices are matrices of 1’s and -1’s whose columns are
orthogonal,

H'*H = n*I

where [n n]=size(H) and I = eye(n,n) ,.

They have applications in several different areas, including
combinatorics, signal processing, and numerical analysis, [1], [2].

An n-by-n Hadamard matrix with n > 2 exists only if rem(n,4) = 0. This
function handles only the cases where n, n/12, or n/20 is a power of 2.

Examples The command hadamard(4) produces the 4-by-4 matrix:

1 1 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 -1 1

See Also compan, hankel, toeplitz

References [1] Ryser, H. J., Combinatorial Mathematics, John Wiley and Sons,
1963.

[2] Pratt, W. K., Digital Signal Processing, John Wiley and Sons, 1978.

2-1491

hankel

Purpose Hankel matrix

Syntax H = hankel(c)
H = hankel(c,r)

Description H = hankel(c) returns the square Hankel matrix whose first column is
c and whose elements are zero below the first anti-diagonal.

H = hankel(c,r) returns a Hankel matrix whose first column is c and
whose last row is r. If the last element of c differs from the first element
of r, the last element of c prevails.

Definition A Hankel matrix is a matrix that is symmetric and constant across the
anti-diagonals, and has elements h(i,j) = p(i+j-1), where vector
p = [c r(2:end)] completely determines the Hankel matrix.

Examples A Hankel matrix with anti-diagonal disagreement is

c = 1:3; r = 7:10;
h = hankel(c,r)
h =

1 2 3 8
2 3 8 9
3 8 9 10

p = [1 2 3 8 9 10]

See Also hadamard, toeplitz, kron

2-1492

hdf

Purpose Summary of MATLAB HDF4 capabilities

Description MATLAB provides a set of low-level functions that enable you to access
the HDF4 library developed by the National Center for Supercomputing
Applications (NCSA). For information about HDF4, go to the HDF Web
page at http://www.hdfgroup.org.

Note For information about MATLAB HDF5 capabilities, which is a
completely separate, incompatible format, see hdf5.

The following table lists all the HDF4 application programming
interfaces (APIs) supported by MATLAB with the name of the MATLAB
function used to access the API. To use these functions, you must be
familiar with the HDF library. For more information about using these
MATLAB functions, see Working with Scientific Data Formats.

Application
Programming
Interface Description

MATLAB
Function

Annotations Stores, manages, and retrieves
text used to describe an HDF
file or any of the data structures
contained in the file.

hdfan

General Raster
Images

Stores, manages, and retrieves
raster images, their dimensions
and palettes. It can also
manipulate unattached palettes.

Note: Use the MATLAB
functions imread and imwrite
with HDF raster image formats.

hdfdf24,
hdfdfr8

2-1493

http://www.hdfgroup.org

hdf

Application
Programming
Interface Description

MATLAB
Function

HDF-EOS Provides functions to read
HDF-EOS grid (GD), point (PT),
and swath (SW) data.

hdfgd, hdfpt,
hdfsw

HDF Utilities Provides functions to open and
close HDF files and handle
errors.

hdfh, hdfhd,
hdfhe

MATLAB HDF
Utilitie

Provides utility functions that
help you work with HDF files in
the MATLAB environment.

hdfml

Scientific Data Stores, manages, and retrieves
multidimensional arrays of
character or numeric data,
along with their dimensions and
attributes.

hdfsd

V Groups Creates and retrieves groups of
other HDF data objects, such as
raster images or V data.

hdfv

V Data Stores, manages, and retrieves
multivariate data stored as
records in a table.

hdfvf, hdfvh,
hdfvs

See Also hdfinfo,hdfread, hdftool, imread

2-1494

hdf5

Purpose Summary of MATLAB HDF5 capabilities

Description MATLAB provides both high-level and low-level access to HDF5 files.
The high-level access functions make it easy to read a data set from an
HDF5 file or write a variable from the MATLAB workspace into an
HDF5 file. The MATLAB low-level interface provides direct access to
the more than 200 functions in the HDF5 library. MATLAB currently
supports version HDF5-1.6.5 of the library.

Note For information about MATLAB HDF4 capabilities, which is a
completely separate, incompatible format, see hdf.

The following sections provide an overview of both this high- and
low-level access. To use these MATLAB functions, you must be familiar
with HDF5 programming concepts and, when using the low-level
functions, details about the functions in the library. To get this
information, go to the HDF Web page at http://www.hdfgroup.org.

High-level Access

MATLAB includes three functions that provide high-level access to
HDF5 files:

• hdf5info

• hdf5read

• hdf5write

Using these functions you can read data and metadata from an HDF5
file and write data from the MATLAB workspace to a file in HDF5
format. For more information about these functions, see their individual
reference pages.

Low-level Access

MATLAB provides direct access to the over 200 functions in the HDF5
Library. Using these functions, you can read and write complex

2-1495

http://www.hdfgroup.org

hdf5

datatypes, utilize HDF5 data subsetting capabilities, and take
advantage of other features present in the HDF5 library.

The HDF5 library organizes the routines in the library into interfaces.
MATLAB organizes the corresponding MATLAB functions into class
directories that match these HDF5 library interfaces. For example, the
MATLAB functions for the HDF5 Attribute Interface are in the @H5A
class directory.

The following table lists all the HDF5 library interfaces in alphabetical
order by name. The table includes the name of the associated MATLAB
class directory.

HDF5
Library
Interface

MATLAB Class
Directory Description

Attribute @H5A Manipulate metadata associated
with data sets or groups

Dataset @H5D Manipulate multidimensional
arrays of data elements, together
with supporting metadata

Dataspace @H5S Define and work with data
spaces, which describe the the
dimensionality of a data set

Datatype @H5T Define the type of variable that is
stored in a data set

Error @H5E Handle errors

File @H5F Access files

Filters and
Compression

@H5Z Create inline data filters and data
compression

Group @H5G Organize objects in a file; analogous
to a directory structure

Identifier @H5I Manipulate HDF5 object identifiers

2-1496

hdf5

HDF5
Library
Interface

MATLAB Class
Directory Description

Library @H5 General-purpose functions for use
with the entire HDF5 library, such
as initialization

MATLAB @H5ML MATLAB utility functions that are
not part of the HDF5 library itself.

Property @H5P Manipulate object property lists

Reference @H5R Manipulate HDF5 references,
which are like UNIX links or
Windows shortcuts

In most cases, the syntax of the MATLAB function is identical to the
syntax of the HDF5 library function. To get detailed information about
the MATLAB syntax of an HDF5 library function, view the help for the
individual MATLAB function, as follows:

help @H5F/open

To view a list of all the MATLAB HDF5 functions in a particular
interface, type:

help imagesci/@H5F

See Also hdf, hdf5info, hdf5read, hdf5write

2-1497

hdf5info

Purpose Information about HDF5 file

Syntax fileinfo = hdf5info(filename)
fileinfo = hdf5info(...,'ReadAttributes',BOOL)
[...] = hdf5info(..., 'V71Dimensions', BOOL)

Description fileinfo = hdf5info(filename) returns a structure fileinfo whose
fields contain information about the contents of the HDF5 file filename.
filename is a string that specifies the name of the HDF5 file.

fileinfo = hdf5info(...,'ReadAttributes',BOOL) specifies
whether hdf5info returns the values of the attributes or just
information describing the attributes. By default, hdf5info reads in
attribute values (BOOL = true).

[...] = hdf5info(..., 'V71Dimensions', BOOL) specifies whether
to report the dimensions of data sets and attributes as they were
returned in previous versions of hdf5info (MATLAB 7.1 [R14SP3] and
earlier). If BOOL is true, hdf5info swaps the first two dimensions of the
data set. This behavior was intended to account for the difference in how
HDF5 and MATLAB express array dimenions. HDF5 describes data set
dimensions in row-major order; MATLAB stores data in column-major
order. However, swapping these dimensions may not correctly reflect the
intent of the data in the file and may invalidate metadata. When BOOL
is false (the default), hdf5info returns data dimensions that correctly
reflect the data ordering as it is written in the file—each dimension in
the output variable matches the same dimension in the file.

Note If you use the 'V71Dimensions' parameter and intend on passing
the fileinfo structure returned to the hdf5read function, you should
also specify the 'V71Dimensions' parameters with hdf5read. If you
do not, hdf5read uses the new behavior when reading the data set and
certain metadata returned by hdf5info does not match the actual data
returned by hdf5read.

2-1498

hdf5info

Examples fileinfo = hdf5info('example.h5')

fileinfo =

Filename: 'example.h5'
LibVersion: '1.4.5'

Offset: 0
FileSize: 8172

GroupHierarchy: [1x1 struct]

To get more information about the contents of the HDF5 file, look at the
GroupHierarchy field in the fileinfo structure returned by hdf5info.

toplevel = fileinfo.GroupHierarchy

toplevel =

Filename: [1x64 char]
Name: '/'

Groups: [1x2 struct]
Datasets: []

Datatypes: []
Links: []

Attributes: [1x2 struct]

To probe further into the file hierarchy, keep examining the Groups field.

See also hdf5read, hdf5write

2-1499

hdf5read

Purpose Read HDF5 file

Syntax data = hdf5read(filename,datasetname)
attr = hdf5read(filename,attributename)
[data, attr] = hdf5read(...,'ReadAttributes',BOOL)
data = hdf5read(hinfo)
[...] = hdf5read(..., 'V71Dimensions', BOOL)

Description data = hdf5read(filename,datasetname) reads all the data in the
data set datasetname that is stored in the HDF5 file filename and
returns it in the variable data. To determine the names of data sets in
an HDF5 file, use the hdf5info function.

The return value, data, is a multidimensional array. hdf5read maps
HDF5 data types to native MATLAB data types, whenever possible.
If it cannot represent the data using MATLAB data types, hdf5read
uses one of the HDF5 data type objects. For example, if an HDF5 file
contains a data set made up of an enumerated data type, hdf5read
uses the hdf5.h5enum object to represent the data in the MATLAB
workspace. The hdf5.h5enum object has data members that store the
enumerations (names), their corresponding values, and the enumerated
data. For more information about the HDF5 data type objects, see the
hdf5 reference page.

attr = hdf5read(filename,attributename) reads all the metadata in
the attribute attributename, stored in the HDF5 file filename, and
returns it in the variable attr. To determine the names of attributes in
an HDF5 file, use the hdf5info function.

[data, attr] = hdf5read(...,'ReadAttributes',BOOL) reads all
the data, as well as all of the associated attribute information contained
within that data set. By default, BOOL is false.

data = hdf5read(hinfo) reads all of the data in the data set specified
in the structure hinfo and returns it in the variable data. The hinfo
structure is extracted from the output returned by hdf5info, which
specifies an HDF5 file and a specific data set.

2-1500

hdf5read

[...] = hdf5read(..., 'V71Dimensions', BOOL) specifies whether
to change the majority of data sets read from the file. If BOOL is true,
hdf5read permutes the first two dimensions of the data set, as it did in
previous releases (MATLAB 7.1 [R14SP3] and earlier). This behavior
was intended to account for the difference in how HDF5 and MATLAB
express array dimensions. HDF5 describes data set dimensions in
row-major order; MATLAB stores data in column-major order. However,
permuting these dimensions may not correctly reflect the intent of the
data and may invalidate metadata. When BOOL is false (the default),
the data dimensions correctly reflect the data ordering as it is written
in the file — each dimension in the output variable matches the same
dimension in the file.

Examples Use hdf5info to get information about an HDF5 file and then use
hdf5read to read a data set, using the information structure (hinfo)
returned by hdf5info to specify the data set.

hinfo = hdf5info('example.h5');
dset = hdf5read(hinfo.GroupHierarchy.Groups(2).Datasets(1));

See Also hdf5, hdf5info, hdf5write

2-1501

hdf5write

Purpose Write data to file in HDF5 format

Syntax hdf5write(filename,location,dataset)
hdf5write(filename,details,dataset)
hdf5write(filename,details,attribute)
hdf5write(filename, details1, dataset1, details2, dataset2,

...)
hdf5write(filename,...,'WriteMode',mode,...)
hdf5write(..., 'V71Dimensions', BOOL)

Description hdf5write(filename,location,dataset) writes the data dataset to
the HDF5 file, filename. If filename does not exist, hdf5write creates
it. If filename exists, hdf5write overwrites the existing file, by default,
but you can also append data to an existing file using an optional syntax.

location defines where to write the data set in the file. HDF5 files
are organized in a hierarchical structure similar to a UNIX directory
structure. location is a string that resembles a UNIX path.

hdf5write maps the data in dataset to HDF5 data types according to
rules outlined below.

hdf5write(filename,details,dataset) writes dataset to filename
using the values in the details structure. For a data set, the details
structure can contain the following fields.

Field Name Description Data Type

Location Location of the data set in
the file

Character array

Name Name to attach to the
data set

Character array

hdf5write(filename,details,attribute) writes the metadata
attribute to filename using the values in the details structure. For
an attribute, the details structure can contain following fields.

2-1502

hdf5write

Field Name Description Data Type

AttachedTo Location of the object this
attribute modifies

Structure array

AttachType Identifies what kind
of object this attribute
modifies; possible
values are 'group' and
'dataset'

Character array

Name Name to attach to the
data set

Character array

hdf5write(filename, details1, dataset1, details2,
dataset2,...) writes multiple data sets and associated attributes
to filename in one operation. Each data set and attribute must have
an associated details structure.

hdf5write(filename,...,'WriteMode',mode,...) specifies whether
hdf5write overwrites the existing file (the default) or appends data sets
and attributes to the file. Possible values for mode are 'overwrite'
and 'append'.

hdf5write(..., 'V71Dimensions', BOOL) specifies whether to
change the majority of data sets written to the file. If BOOL is true,
hdf5write permutes the first two dimensions of the data set, as it did
in previous releases (MATLAB 7.1 [R14SP3] and earlier). This behavior
was intended to account for the difference in how HDF5 and MATLAB
express array dimensions. HDF5 describes data set dimensions in
row-major order; MATLAB stores data in column-major order. However,
permuting these dimensions may not correctly reflect the intent of the
data and may invalidate metadata. When BOOL is false (the default),
the data written to the file correctly reflects the data ordering of the
data sets — each dimension in the file’s data sets matches the same
dimension in the corresponding MATLAB variable.

2-1503

hdf5write

Data Type
Mappings

The following table lists how hdf5write maps the data type from the
workspace into an HDF5 file. If the data in the workspace that is being
written to the file is a MATLAB data type, hdf5write uses the following
rules when translating MATLAB data into HDF5 data objects.

MATLAB Data Type HDF5 Data Set or Attribute

Numeric Corresponding HDF5 native data type. For example, if the
workspace data type is uint8, the hdf5write function writes
the data to the file as 8-bit integers. The size of the HDF5
dataspace is the same size as the MATLAB array.

String Single, null-terminated string

Cell array of strings Multiple, null-terminated strings, each the same length. Length
is determined by the length of the longest string in the cell
array. The size of the HDF5 dataspace is the same size as the
cell array.

Cell array of numeric
data

Numeric array, the same dimensions as the cell array. The
elements of the array must all have the same size and type. The
data type is determined by the first element in the cell array.

Structure array HDF5 compound type. Individual fields in the structure
employ the same data translation rules for individual data
types. For example, a cell array of strings becomes a multiple,
null-terminated strings.

HDF5 objects If the data being written to the file is composed of HDF5 objects,
hdf5write uses the same data type when writing to the file. For
all HDF5 objects, except HDF5.h5enum objects, the dataspace
has the same dimensions as the array of HDF5 objects passed to
the function. For HDF5.h5enum objects, the size and dimensions
of the data set in the HDF5 file is the same as the object’s Data
field.

Examples Write a 5-by-5 data set of uint8 values to the root group.

hdf5write('myfile.h5', '/dataset1', uint8(magic(5)))

2-1504

hdf5write

Write a 2-by-2 string data set in a subgroup.

dataset = {'north', 'south'; 'east', 'west'};
hdf5write('myfile2.h5', '/group1/dataset1.1', dataset);

Write a data set and attribute to an existing group.

dset = single(rand(10,10));
dset_details.Location = '/group1/dataset1.2';
dset_details.Name = 'Random';

attr = 'Some random data';
attr_details.Name = 'Description';
attr_details.AttachedTo = '/group1/dataset1.2/Random';
attr_details.AttachType = 'dataset';

hdf5write('myfile2.h5', dset_details, dset, ...
attr_details, attr, 'WriteMode', 'append');

Write a data set using objects.

dset = hdf5.h5array(magic(5));
hdf5write('myfile3.h5', '/g1/objects', dset);

See Also hdf5, hdf5read, hdf5info

2-1505

hdfinfo

Purpose Information about HDF4 or HDF-EOS file

Syntax S = hdfinfo(filename)
S = hdfinfo(filename,mode)

Description S = hdfinfo(filename) returns a structure S whose fields contain
information about the contents of an HDF4 or HDF-EOS file. filename
is a string that specifies the name of the HDF4 file.

S = hdfinfo(filename,mode) reads the file as an HDF4 file, if mode
is 'hdf', or as an HDF-EOS file, if mode is 'eos'. If mode is 'eos',
only HDF-EOS data objects are queried. To retrieve information on the
entire contents of a file containing both HDF4 and HDF-EOS objects,
mode must be 'hdf'.

Note hdfinfo can be used on Version 4.x HDF files or Version 2.x
HDF-EOS files. To get information about an HDF5 file, use hdf5info.

The set of fields in the returned structure S depends on the individual
file. Fields that can be present in the S structure are shown in the
following table.

Mode Field Name Description Return Type

HDF Attributes Attributes of the data
set

Structure
array

Description Annotation
description

Cell array

Filename Name of the file String

Label Annotation label Cell array

Raster8 Description of 8-bit
raster images

Structure
array

2-1506

hdfinfo

Mode Field Name Description Return Type

Raster24 Description of 24-bit
raster images

Structure
array

SDS Description of
scientific data sets

Structure
array

Vdata Description of Vdata
sets

Structure
array

Vgroup Description of
Vgroups

Structure
array

EOS Filename Name of the file String

Grid Grid data Structure
array

Point Point data Structure
array

Swath Swath data Structure
array

Those fields in the table above that contain structure arrays are further
described in the tables shown below.

Fields Common to Returned Structure Arrays

Structure arrays returned by hdfinfo contain some common fields.
These are shown in the table below. Not all structure arrays will contain
all of these fields.

Field Name Description Data Type

Attributes Data set attributes. Contains
fields Name and Value.

Structure array

Description Annotation description Cell array

Filename Name of the file String

Label Annotation label Cell array

2-1507

hdfinfo

Field Name Description Data Type

Name Name of the data set String

Rank Number of dimensions of the
data set

Double

Ref Data set reference number Double

Type Type of HDF or HDF-EOS
object

String

Fields Specific to Certain Structures

Structure arrays returned by hdfinfo also contain fields that are
unique to each structure. These are shown in the tables below.

Fields of the Attribute Structure

Field Name Description Data Type

Name Attribute name String

Value Attribute value or description Numeric or string

Fields of the Raster8 and Raster24 Structures

Field Name Description Data Type

HasPalette 1 (true) if the image has an
associated palette, otherwise 0
(false) (8-bit only)

Logical

Height Height of the image, in pixels Number

Interlace Interlace mode of the image
(24-bit only)

String

2-1508

hdfinfo

Fields of the Raster8 and Raster24 Structures (Continued)

Field Name Description Data Type

Name Name of the image String

Width Width of the image, in pixels Number

Fields of the SDS Structure

Field Name Description Data Type

DataType Data precision String

Dims Dimensions of the data
set. Contains fields Name,
DataType, Size, Scale, and
Attributes. Scale is an array
of numbers to place along
the dimension and demarcate
intervals in the data set.

Structure array

Index Index of the SDS Number

Fields of the Vdata Structure

Field Name Description Data Type

DataAttributes Attributes of the entire data
set. Contains fields Name and
Value.

Structure array

Class Class name of the data set String

Fields Fields of the Vdata. Contains
fields Name and Attributes.

Structure array

2-1509

hdfinfo

Fields of the Vdata Structure (Continued)

Field Name Description Data Type

NumRecords Number of data set records Double

IsAttribute 1 (true) if Vdata is an
attribute, otherwise 0 (false)

Logical

Fields of the Vgroup Structure

Field Name Description Data Type

Class Class name of the data set String

Raster8 Description of the 8-bit
raster image

Structure array

Raster24 Description of the 24-bit
raster image

Structure array

SDS Description of the Scientific
Data sets

Structure array

Tag Tag of this Vgroup Number

Vdata Description of the Vdata
sets

Structure array

Vgroup Description of the Vgroups Structure array

Fields of the Grid Structure

Field Name Description Data Type

Columns Number of columns in the
grid

Number

2-1510

hdfinfo

Fields of the Grid Structure (Continued)

Field Name Description Data Type

DataFields Description of the data
fields in each Grid field
of the grid. Contains
fields Name, Rank, Dims,
NumberType, FillValue,
and TileDims.

Structure array

LowerRight Lower right corner location,
in meters

Number

Origin Code Origin code for the grid Number

PixRegCode Pixel registration code Number

Projection Projection code, zone code,
sphere code, and projection
parameters of the grid.
Contains fields ProjCode,
ZoneCode, SphereCode, and
ProjParam.

Structure

Rows Number of rows in the grid Number

UpperLeft Upper left corner location,
in meters

Number

Fields of the Point Structure

Field Name Description Data Type

Level Description of each level
of the point. Contains
fields Name, NumRecords,
FieldNames, DataType, and
Index.

Structure

2-1511

hdfinfo

Fields of the Swath Structure

Field Name Description Data Type

DataFields Data fields in the swath.
Contains fields Name, Rank,
Dims, NumberType, and
FillValue.

Structure array

GeolocationFieldsGeolocation fields in the
swath. Contains fields Name,
Rank, Dims, NumberType, and
FillValue.

Structure array

IdxMapInfo Relationship between
indexed elements of the
geolocation mapping.
Contains fields Map and
Size.

Structure

MapInfo Relationship between data
and geolocation fields.
Contains fields Map, Offset,
and Increment.

Structure

Examples To retrieve information about the file example.hdf,

fileinfo = hdfinfo('example.hdf')

fileinfo =
Filename: 'example.hdf'

SDS: [1x1 struct]
Vdata: [1x1 struct]

And to retrieve information from this about the scientific data set in
example.hdf,

sds_info = fileinfo.SDS

2-1512

hdfinfo

sds_info =
Filename: 'example.hdf'

Type: 'Scientific Data Set'
Name: 'Example SDS'
Rank: 2

DataType: 'int16'
Attributes: []

Dims: [2x1 struct]
Label: {}

Description: {}
Index: 0

See Also hdfread, hdf

2-1513

hdfread

Purpose Read data from HDF4 or HDF-EOS file

Syntax data = hdfread(filename, datasetname)
data = hdfread(hinfo.fieldname)
data = hdfread(...,param1,value1,param2,value2,...)
[data,map] = hdfread(...)

Description data = hdfread(filename, datasetname) returns all the data in
the data set specified by datasetname from the HDF4 or HDF-EOS
file specified by filename. To determine the name of a data set in an
HDF4 file, use the hdfinfo function.

Note hdfread can be used on Version 4.x HDF files or Version 2.x
HDF-EOS files. To read data from and HDF5 file, use hdf5read.

data = hdfread(hinfo.fieldname) returns all the data in the data set
specified by hinfo.fieldname, where hinfo is the structure returned
by the hdfinfo function and fieldname is the name of a field in the
structure that relates to a particular type of data set. For example, to
read an HDF scientific data set, specify the SDS field, as in hinfo.SDS.
To read HDF V data, specify the Vdata field, as in hinfo.Vdata.
hdfread can get the name of the HDF file from these structures.

data = hdfread(...,param1,value1,param2,value2,...) returns
subsets of the data according to the specified parameter and value
pairs. See the tables below to find the valid parameters and values for
different types of data sets.

[data,map] = hdfread(...) returns the image data and the colormap
map for an 8-bit raster image.

Subsetting
Parameters

The following tables show the subsetting parameters that can be used
with the hdfread function for certain types of HDF4 data. These data
types are

2-1514

hdfread

• HDF Scientific Data (SD)

• HDF Vdata (V)

• HDF-EOS Grid Data

• HDF-EOS Point Data

• HDF-EOS Swath Data

Note the following:

• If a parameter requires multiple values, the values must be stored
in a cell array. For example, the 'Index' parameter requires three
values: start, stride, and edge. Enclose these values in curly
braces as a cell array.

hdfread(dataset_name, 'Index', {start,stride,edge})

• All values that are indices are 1-based.

Subsetting Parameters for HDF Scientific Data (SD) Data Sets

When you are working with HDF SD files, hdfread supports the
parameters listed in this table.

2-1515

hdfread

Parameter Description

'Index' Three-element cell array, {start,stride,edge}, specifying the
location, range, and values to be read from the data set

• start — A 1-based array specifying the position in the file to begin
reading

Default: 1, start at the first element of each dimension. The values
specified must not exceed the size of any dimension of the data set.

• stride — A 1-based array specifying the interval between the
values to read

Default: 1, read every element of the data set.

• edge — A 1-based array specifying the length of each dimension
to read

Default: An array containing the lengths of the corresponding
dimensions

For example, this code reads the data set Example SDS from the HDF
file example.hdf. The 'Index' parameter specifies that hdfread start
reading data at the beginning of each dimension, read until the end
of each dimension, but only read every other data value in the first
dimension.

hdfread('example.hdf','Example SDS', ...
'Index', {[], [2 1], []})

Subsetting Parameters for HDF Vdata Sets

When you are working with HDF Vdata files, hdfread supports these
parameters.

2-1516

hdfread

Parameter Description

'Fields' Text string specifying the name of the data set field to be read from.
When specifying multiple field names, use a comma-separated list.

'FirstRecord' 1-based number specifying the record from which to begin reading

'NumRecords' Number specifying the total number of records to read

For example, this code reads the Vdata set Example Vdata from the
HDF file example.hdf.

hdfread('example.hdf', 'Example Vdata', 'FirstRecord', 400,...

'NumRecords', 50)

Subsetting Parameters for HDF-EOS Grid Data

When you are working with HDF-EOS grid data, hdfread supports
three types of parameters:

• Required parameters

• Optional parameters

• Mutually exclusive parameters — You can only specify one of these
parameters in a call to hdfread, and you cannot use these parameters
in combination with any optional parameter.

Parameter Description

Required Parameter

'Fields' String naming the data set field to be read. You can specify only one
field name for a Grid data set.

Mutually Exclusive Optional Parameters

2-1517

hdfread

Parameter Description

'Index' Three-element cell array, {start,stride,edge}, specifying the
location, range, and values to be read from the data set

start — An array specifying the position in the file to begin reading

Default: 1, start at the first element of each dimension. The values
must not exceed the size of any dimension of the data set.

stride — An array specifying the interval between the values to
read

Default: 1, read every element of the data set.

edge — An array specifying the length of each dimension to read

Default: An array containing the lengths of the corresponding
dimensions

'Interpolate' Two-element cell array, {longitude,latitude}, specifying the
longitude and latitude points that define a region for bilinear
interpolation. Each element is an N-length vector specifying
longitude and latitude coordinates.

'Pixels' Two-element cell array, {longitude,latitude}, specifying the
longitude and latitude coordinates that define a region. Each
element is an N-length vector specifying longitude and latitude
coordinates. This region is converted into pixel rows and columns
with the origin in the upper left corner of the grid.

Note: This is the pixel equivalent of reading a 'Box' region.

'Tile' Vector specifying the coordinates of the tile to read, for HDF-EOS
Grid files that support tiles

Optional Parameters

'Box' Two-element cell array, {longitude,latitude}, specifying the
longitude and latitude coordinates that define a region. longitude
and latitude are each two-element vectors specifying longitude
and latitude coordinates.

2-1518

hdfread

Parameter Description

'Time' Two-element cell array, [start stop], where start and stop are
numbers that specify the start and end-point for a period of time

'Vertical' Two-element cell array, {dimension, range}

dimension — String specifying the name of the data set field to be
read from. You can specify only one field name for a Grid data set.

range — Two-element array specifying the minimum and maximum
range for the subset. If dimension is a dimension name, then range
specifies the range of elements to extract. If dimension is a field
name, then range specifies the range of values to extract.

'Vertical' subsetting can be used alone or in conjunction with
'Box' or 'Time'. To subset a region along multiple dimensions,
vertical subsetting can be used up to eight times in one call to
hdfread.

For example,

hdfread(grid_dataset, 'Fields', fieldname, ...
'Vertical', {dimension, [min, max]})

Subsetting Parameters for HDF-EOS Point Data

When you are working with HDF-EOS Point data, hdfread has two
required parameters and three optional parameters.

Parameter Description

Required Parameters

'Fields' String naming the data set field to be read. For multiple field
names, use a comma-separated list.

'Level' 1-based number specifying which level to read from in an HDF-EOS
Point data set

Optional Parameters

2-1519

hdfread

Parameter Description

'Box' Two-element cell array, {longitude,latitude}, specifying the
longitude and latitude coordinates that define a region. longitude
and latitude are each two-element vectors specifying longitude
and latitude coordinates.

'RecordNumbers' Vector specifying the record numbers to read

'Time' Two-element cell array, [start stop], where start and stop are
numbers that specify the start and endpoint for a period of time

For example,

hdfread(point_dataset, 'Fields', {field1, field2}, ...

'Level', level, 'RecordNumbers', [1:50, 200:250])

Subsetting Parameters for HDF-EOS Swath Data

When you are working with HDF-EOS Swath data, hdfread supports
three types of parameters:

• Required parameters

• Optional parameters

• Mutually exclusive

You can only use one of the mutually exclusive parameters in a call to
hdfread, and you cannot use these parameters in combination with any
optional parameter.

Parameter Description

Required Parameter

'Fields' String naming the data set field to be read. You can specify only one
field name for a Swath data set.

Mutually Exclusive Optional Parameters

2-1520

hdfread

Parameter Description

'Index' Three-element cell array, {start,stride,edge}, specifying the
location, range, and values to be read from the data set

• start — An array specifying the position in the file to begin
reading

Default: 1, start at the first element of each dimension. The
values must not exceed the size of any dimension of the data set.

• stride — An array specifying the interval between the values
to read

Default: 1, read every element of the data set.

• edge — An array specifying the length of each dimension to read

Default: An array containing the lengths of the corresponding
dimensions

'Time' Three-element cell array, {start, stop, mode}, where start and
stop specify the beginning and the endpoint for a period of time,
and mode is a string defining the criterion for the inclusion of a
cross track in a region. The cross track is within a region if any of
these conditions is met:

• Its midpoint is within the box (mode='midpoint').

• Either endpoint is within the box (mode='endpoint').

• Any point is within the box (mode='anypoint').

Optional Parameters

2-1521

hdfread

Parameter Description

'Box' Three-element cell array, {longitude, latitude, mode}
specifying the longitude and latitude coordinates that define a
region. longitude and latitude are two-element vectors that
specify longitude and latitude coordinates. mode is a string defining
the criterion for the inclusion of a cross track in a region. The cross
track is within a region if any of these conditions is met:

• Its midpoint is within the box (mode='midpoint').

• Either endpoint is within the box (mode='endpoint').

• Any point is within the box (mode='anypoint').

'ExtMode' String specifying whether geolocation fields and data fields must
be in the same swath (mode='internal'), or can be in different
swaths (mode='external')

Note: mode is only used when extracting a time period or a region.

'Vertical' Two-element cell array, {dimension, range}

• dimension is a string specifying either a dimension name or field
name to subset the data by.

• range is a two-element vector specifying the minimum and
maximum range for the subset. If dimension is a dimension
name, then range specifies the range of elements to extract. If
dimension is a field name, then range specifies the range of
values to extract.

'Vertical' subsetting can be used alone or in conjunction with
'Box' or 'Time'. To subset a region along multiple dimensions,
vertical subsetting can be used up to eight times in one call to
hdfread.

For example,

hdfread('example.hdf', swath_dataset, 'Fields', fieldname, ...

2-1522

hdfread

'Time', {start, stop, 'midpoint'})

Examples Example 1

Specify the name of the HDF file and the name of the data set. This
example reads a data set named 'Example SDS' from a sample HDF
file.

data = hdfread('example.hdf', 'Example SDS')

Example 2

Use data returned by hdfinfo to specify the data set to read.

1 Call hdfinfo to retrieve information about the contents of the HDF
file.

fileinfo = hdfinfo('example.hdf')
fileinfo =

Filename: 'N:\toolbox\matlab\demos\example.hdf'
SDS: [1x1 struct]

Vdata: [1x1 struct]

2 Extract the structure containing information about the particular
data set you want to import from the data returned by hdfinfo. The
example uses the structure in the SDS field to retrieve a scientific
data set.

sds_info = fileinfo.SDS
sds_info =

Filename: 'N:\toolbox\matlab\demos\example.hdf'
Type: 'Scientific Data Set'
Name: 'Example SDS'
Rank: 2

DataType: 'int16'
Attributes: []

Dims: [2x1 struct]
Label: {}

2-1523

hdfread

Description: {}
Index: 0

3 You can pass this structure to hdfread to import the data in the data
set.

data = hdfread(sds_info)

Example 3

You can use the information returned by hdfinfo to check the size of
the data set.

sds_info.Dims.Size
ans =

16
ans =

5

Using the 'index' parameter with hdfread, you can read a subset of
the data in the data set. This example specifies a starting index of [3
3], an interval of 1 between values ([] meaning the default value of 1),
and a length of 10 rows and 2 columns.

data = hdfread(sds_info, 'Index', {[3 3],[],[10 2]});

data(:,1)
ans =

7
8
9

10
11
12
13
14
15
16

2-1524

hdfread

data(:,2)
ans =

8
9

10
11
12
13
14
15
16
17

Example 4

This example uses the Vdata field from the information returned by
hdfinfo to read two fields of the data, Idx and Temp.

info = hdfinfo('example.hdf');

data = hdfread(info.Vdata,...
'Fields',{'Idx','Temp'})

data =
[1x10 int16]
[1x10 int16]

index = data{1,1};
temp = data{2,1};

temp(1:6)
ans =

0 12 3 5 10 -1

See Also hdfinfo, hdf

2-1525

hdftool

Purpose Browse and import data from HDF4 or HDF-EOS files

Syntax hdftool
hdftool(filename)
h = hdftool(...)

Description hdftool starts the HDF Import Tool, a graphical user interface used
to browse the contents of HDF4 and HDF-EOS files and import data
and subsets of data from these files. To open an HDF4 or HDF-EOS file,
select Open from the File menu. You can open multiple files in the
HDF Import Tool by selecting Open from the File menu.

hdftool(filename) opens the HDF4 or HDF-EOS file specified by
filename in the HDF Import Tool.

h = hdftool(...) returns a handle h to the HDF Import Tool. To close
the tool from the command line, use close(h).

Example hdftool('example.hdf');

See Also hdf, hdfinfo, hdfread, uiimport

2-1526

help

Purpose Help for MATLAB functions in Command Window

GUI
Alternatives

Use the Help browser Contents for a product to view Functions
— Alphabetical List or Functions — By Category, or run doc
functionname to view more extensive help for a function in the Help
browser.

Syntax help
help /
help functionname
help modelname.mdl
help toolboxname
help toolboxname/functionname
help classname.methodname
help classname
help syntax
t = help('topic')

Description help lists all primary help topics in the Command Window. Each main
help topic corresponds to a directory name on the MATLAB search path.

help / lists all operators and special characters, along with their
descriptions.

help functionname displays M-file help, which is a brief description
and the syntax for functionname, in the Command Window. The output
includes a link to doc functionname, which displays the reference page
in the Help browser, often providing additional information. Output
also includes see also links, which display help in the Command Window
for related functions. If functionname is overloaded, that is, appears in
multiple directories on the search path, help displays the M-file help
for the first functionname found on the search path, and displays a
hyperlinked list of the overloaded functions and their directories. If
functionname is also the name of a toolbox, help also displays a list
of subdirectories and hyperlinked list of functions in the toolbox, as
defined in the Contents.m file for the toolbox.

2-1527

help

help modelname.mdl displays the complete description for the
MDL-file modelname as defined in Model Properties > Description.
If Simulink is installed, you do not need to specify the .mdl extension.

help toolboxname displays the Contents.m file for the specified
directory named toolboxname, where Contents.m contains a list and
corresponding description of M-files in toolboxname — see the Remarks
topic, “Creating Contents Files for Your Own M-File Directories” on
page 2-1530. It is not necessary to give the full pathname of the
directory; the last component, or the last several components, are
sufficient. If toolboxname is also a function name, help also displays
the M-file help for the function toolboxname.

help toolboxname/functionname displays the M-file help for the
functionname that resides in the toolboxname directory. Use this form
to get direct help for an overloaded function.

help classname.methodname displays help for the method methodname
of the fully qualified class classname. If you do not know the fully
qualified class for the method, use class(obj), where methodname is of
the same class as the object obj.

help classname displays help for the fully qualified class classname.

help syntax displays M-file help describing the syntax used in
MATLAB commands and functions.

t = help('topic') returns the help text for topic as a string, with
each line separated by /n, where topic is any allowable argument for
help.

Note M-file help displayed in the Command Window uses all uppercase
characters for the function and variable names to make them stand out
from the rest of the text. When typing function names, however, use
lowercase characters. Some functions for interfacing to Java do use
mixed case; the M-file help accurately reflects that and you should use
mixed case when typing them. For example, the javaObject function
uses mixed case.

2-1528

help

Remarks To prevent long descriptions from scrolling off the screen before you have
time to read them, enter more on, and then enter the help statement.

Creating Online Help for Your Own M-Files

The MATLAB help system, like MATLAB itself, is highly extensible.
You can write help descriptions for your own M-files and toolboxes
using the same self-documenting method that MATLAB M-files and
toolboxes use.

The help function lists all help topics by displaying the first line (the
H1 line) of the contents files in each directory on the MATLAB search
path. The contents files are the M-files named Contents.m within
each directory.

Typing helptopic , where topic is a directory name, displays the
comment lines in the Contents.m file located in that directory. If a
contents file does not exist, help displays the H1 lines of all the files
in the directory.

Typing help topic, where topic is a function name, displays help for
the function by listing the first contiguous comment lines in the M-file
topic.m.

Create self-documenting online help for your own M-files by entering
text on one or more contiguous comment lines, beginning with the
second line of the file (first line if it is a script). For example, the
function soundspeed.m begins with

function c=soundspeed(s,t,p)
% soundspeed computes the speed of sound in water
% where c is the speed of sound in water in m/s

t = 0:.1:35;

When you execute help soundspeed, MATLAB displays

soundspeed computes the speed of sound in water
where c is the speed of sound in water in m/s

2-1529

help

These lines are the first block of contiguous comment lines. After the
first contiguous comment lines, enter an executable statement or blank
line, which effectively ends the help section. Any later comments in the
M-file do not appear when you type help for the function.

The first comment line in any M-file (the H1 line) is special. It should
contain the function name and a brief description of the function. The
lookfor function searches and displays this line, and help displays
these lines in directories that do not contain a Contents.m file. For the
soundspeed example, the H1 line is

% soundspeed computes speed of sound in water

Use the “Help Report” to help you create and manage M-file help for
your own files.

Creating Contents Files for Your Own M-File Directories

A Contents.m file is provided for each M-file directory included with
the MATLAB software. If you create directories in which to store your
own M-files, it is a good practice to create Contents.m files for them,
too. Use the “Contents Report” to help you create and maintain your
own Contents.m files.

Examples help close displays help for the close function.

help database/close displays help for the close function in Database
Toolbox.

help datafeed displays help for Datafeed Toolbox.

help database lists the functions in Database Toolbox and displays
help for the database function, because there are a function and a
toolbox called database.

help general lists all functions in the directory
matlabroot/toolbox/matlab/general. This illustrates how
to specify a relative partial pathname rather than a full pathname.

help f14_dap displays the description of the Simulink f14_dap.mdl
model file (Simulink must be installed.).

2-1530

help

t = help('close') gets help for the function close and stores it as a
string in t.

See Also class, doc, docsearch, helpbrowser, helpwin, lookfor, more,
partialpath, path, what, which, whos

2-1531

helpbrowser

Purpose Open Help browser to access all online documentation and demos

GUI
Alternatives

As an alternative to the helpbrowser function, select Desktop > Help
or click the Help button on the toolbar in the MATLAB desktop.

Syntax helpbrowser

Description helpbrowser displays the Help browser, providing direct access to a
comprehensive library of online documentation, including reference
pages and user guides. If the Help browser was previously opened in
the current session, helpbrowser shows the last page viewed; otherwise
it shows the Begin Here page. For details, see the “Help Browser
Overview” topic in the MATLAB Desktop Tools and Development
Environment documentation.

2-1532

helpbrowser

See Also builddocsearchdb, doc, docopt, docsearch, help, helpdesk, helpwin,
lookfor, web

2-1533

helpdesk

Purpose Open Help browser

Syntax helpdesk

Description helpdesk displays the Help browser and shows the “Begin Here” page.
In previous releases, helpdesk displayed the Help Desk, which was
the precursor to the Help browser. In a future release, the helpdesk
function will be phased out — use the doc or helpbrowser function
instead.

See Also doc, helpbrowser

2-1534

helpdlg

Purpose Create and open help dialog box

Syntax helpdlg
helpdlg('helpstring')
helpdlg('helpstring','dlgname')
h = helpdlg(...)

Description helpdlg creates a nonmodal help dialog box or brings the named help
dialog box to the front.

Note A nonmodal dialog box enables the user to interact with other
windows before responding. For more information, see WindowStyle in
the MATLAB Figure Properties.

helpdlg displays a dialog box named 'Help Dialog' containing the
string 'This is the default help string.'

helpdlg('helpstring') displays a dialog box named 'Help Dialog'
containing the string specified by 'helpstring'.

helpdlg('helpstring','dlgname') displays a dialog box named
'dlgname' containing the string 'helpstring'.

h = helpdlg(...) returns the handle of the dialog box.

Remarks MATLAB wraps the text in 'helpstring' to fit the width of the dialog
box. The dialog box remains on your screen until you press the OK
button or the Enter key. After either of these actions, the help dialog
box disappears.

Examples The statement

helpdlg('Choose 10 points from the figure','Point Selection');

displays this dialog box:

2-1535

helpdlg

See Also dialog, errordlg, inputdlg, listdlg, msgbox, questdlg, warndlg

figure, uiwait, uiresume

“Predefined Dialog Boxes” on page 1-104 for related functions

2-1536

helpwin

Purpose Provide access to M-file help for all functions

Syntax helpwin
helpwin topic

Description helpwin lists topics for groups of functions in the Help browser. It
shows brief descriptions of the topics and provides links to display
M-file help for the functions in the Help browser. You cannot follow
links in the helpwin list of functions if MATLAB is busy (for example,
running a program).

helpwin topic displays help information for the topic in the Help
browser. If topic is a directory, it displays all functions in the directory.
If topic is a function, helpwin displays M-file help for that function in
the Help browser. From the page, you can access a list of directories
(Default Topics link) as well as the reference page help for the function
(Go to online doc link). You cannot follow links in the helpwin list of
functions if MATLAB is busy (for example, running a program).

Examples Typing

helpwin datafun

displays the functions in the datafun directory and a brief description
of each.

Typing

helpwin fft

displays the M-file help for the fft function in the Help browser.

See Also doc, docopt, help, helpbrowser, lookfor, web

2-1537

hess

Purpose Hessenberg form of matrix

Syntax H = hess(A)
[P,H] = hess(A)
[AA,BB,Q,Z] = HESS(A,B)

Description H = hess(A) finds H, the Hessenberg form of matrix A.

[P,H] = hess(A) produces a Hessenberg matrix H and a unitary matrix
P so that A = P*H*P' and P'*P = eye(size(A)) .

[AA,BB,Q,Z] = HESS(A,B) for square matrices A and B, produces
an upper Hessenberg matrix AA, an upper triangular matrix BB, and
unitary matrices Q and Z such that Q*A*Z = AA and Q*B*Z = BB.

Definition A Hessenberg matrix is zero below the first subdiagonal. If the matrix
is symmetric or Hermitian, the form is tridiagonal. This matrix has
the same eigenvalues as the original, but less computation is needed
to reveal them.

Examples H is a 3-by-3 eigenvalue test matrix:

H =
-149 -50 -154
537 180 546
-27 -9 -25

Its Hessenberg form introduces a single zero in the (3,1) position:

hess(H) =
-149.0000 42.2037 -156.3165
-537.6783 152.5511 -554.9272

0 0.0728 2.4489

Algorithm Inputs of Type Double

For inputs of type double, hess uses the following LAPACK routines to
compute the Hessenberg form of a matrix:

2-1538

hess

Matrix A Routine

Real symmetric DSYTRD

DSYTRD, DORGTR, (with output P)

Real
nonsymmetric

DGEHRD

DGEHRD, DORGHR (with output P)

Complex
Hermitian

ZHETRD

ZHETRD, ZUNGTR (with output P)

Complex
non-Hermitian

ZGEHRD

ZGEHRD, ZUNGHR (with output P)

Inputs of Type Single

For inputs of type single, hess uses the following LAPACK routines
to compute the Hessenberg form of a matrix:

Matrix A Routine

Real symmetric SSYTRD

SSYTRD, DORGTR, (with output P)

Real
nonsymmetric

SGEHRD

SGEHRD, SORGHR (with output P)

Complex
Hermitian

CHETRD

CHETRD, CUNGTR (with output P)

Complex
non-Hermitian

CGEHRD

CGEHRD, CUNGHR (with output P)

See Also eig, qz, schur

References Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,

2-1539

hess

A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, SIAM, Philadelphia, 1999.

2-1540

http://www.netlib.org/lapack/lug/lapack_lug.html

hex2dec

Purpose Convert hexadecimal number string to decimal number

Syntax d = hex2dec('hex_value')

Description d = hex2dec('hex_value') converts hex_value to its floating-point
integer representation. The argument hex_value is a hexadecimal
integer stored in a MATLAB string. The value of hex_value must be
smaller than hexadecimal 10,000,000,000,000.

If hex_value is a character array, each row is interpreted as a
hexadecimal string.

Examples hex2dec('3ff')

ans =

1023

For a character array S,

S =
0FF
2DE
123
hex2dec(S)

ans =

255
734
291

See Also dec2hex, format, hex2num, sprintf

2-1541

hex2num

Purpose Convert hexadecimal number string to double-precision number

Syntax n = hex2num(S)

Description n = hex2num(S), where S is a 16 character string representing a
hexadecimal number, returns the IEEE double-precision floating-point
number n that it represents. Fewer than 16 characters are padded on
the right with zeros. If S is a character array, each row is interpreted as
a double-precision number.

NaNs, infinities and denorms are handled correctly.

Example hex2num('400921fb54442d18')

returns Pi.

hex2num('bff')

returns

ans =

-1

See Also num2hex, hex2dec, sprintf, format

2-1542

hgexport

Purpose Export figure

GUI
Alternative

Use the File —> Saveas on the figure window menu to access the
Export Setup GUI. Use Edit —> Copy Figure to copy the figure’s
contents to your system’s clipboard. For details, see How to Print or
Export in the MATLAB Graphics documentation.

Syntax hgexport(h,filename)
hgexport(h,'-clipboard')

Description hgexport(h,filename) writes figure h to the file filename.

hgexport(h,'-clipboard') writes figure h to the Windows clipboard.

The format in which the figure is exported is determined by which
renderer you use. The Painters renderer generates a metafile. The
ZBuffer and OpenGL renderers generate a bitmap.

See Also print

2-1543

hggroup

Purpose Create hggroup object

Syntax

Description An hggroup object can be the parent of any axes children except light
objects, as well as other hggroup objects. You can use hggroup objects
to form a group of objects that can be treated as a single object with
respect to the following cases:

• Visible — Setting the hggroup object’s Visible property also sets
each child object’s Visible property to the same value.

• Selectable — Setting each hggroup child object’s HitTest property to
off enables you to select all children by clicking any child object.

• Current object — Setting each hggroup child object’s HitTest
property to off enables the hggroup object to become the current
object when any child object is picked. See the next section for an
example.

Examples This example defines a callback for the ButtonDownFcn property of an
hggroup object. In order for the hggroup to receive the mouse button
down event that executes the ButtonDownFcn callback, the HitTest
properties of all the line objects must be set to off. The event is then
passed up the hierarchy to the hggroup.

The following function creates a random set of lines that are parented
to an hggroup object. The subfunction set_lines defines a callback
that executes when the mouse button is pressed over any of the lines.
The callback simply increases the widths of all the lines by 1 with each
button press.

Note If you are using the MATLAB help browser, you can run this
example or open it in the MATLAB editor.

function doc_hggroup

2-1544

hggroup

hg = hggroup('ButtonDownFcn',@set_lines);
hl = line(randn(5),randn(5),'HitTest','off','Parent',hg);

function set_lines(cb,eventdata)
hl = get(cb,'Children');% cb is handle of hggroup object
lw = get(hl,'LineWidth');% get current line widths
set(hl,{'LineWidth'},num2cell([lw{:}]+1,[5,1])')

Note that selecting any one of the lines selects all the lines. (To select
an object, enable plot edit mode by selecting Plot Edit from the Tools
menu.)

Instance Diagram for This Example

The following diagram shows the object hierarchy created by this
example.

Hggroup
Properties

Setting Default Properties

You can set default hggroup properties on the axes, figure, and root
levels.

set(0,'DefaultHggroupProperty',PropertyValue...)
set(gcf,'DefaultHggroupProperty',PropertyValue...)
set(gca,'DefaultHggroupProperty',PropertyValue...)

where Property is the name of the hggroup property whose default
value you want to set and PropertyValue is the value you are
specifying. Use set and get to access the hggroup properties.

2-1545

hggroup

See Also hgtransform

“Group Objects” for more information and examples.

“Function Handle Callbacks” for information on how to use function
handles to define callbacks.

Hggroup Properties for property descriptions

2-1546

Hggroup Properties

Purpose Hggroup properties

Modifying
Properties

You can set and query graphics object properties using the set and
get commands.

To change the default values of properties, see “Setting Default Property
Values”.

See “Group Objects” for general information on this type of object.

Hggroup
Property
Descriptions

This section provides a description of properties. Curly braces { } enclose
default values.

Annotation
hg.Annotation object Read Only

Control the display of hggroup objects in legends. The Annotation
property enables you to specify whether this hggroup object is
represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the hggroup
object is displayed in a figure legend:

IconDisplayStyle
Value

Purpose

on Include the hggroup object in a legend as one
entry, but not its children objects

2-1547

Hggroup Properties

IconDisplayStyle
Value

Purpose

off Do not include the hggroup or its children
in a legend (default)

children Include only the children of the hggroup as
separate entries in the legend

Setting the IconDisplayStyle property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation','LegendInformation');
set(hLegendEntry,'IconDisplayStyle','children')

Using the IconDisplayStyle property

See “Controlling Legends” for more information and examples.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine whether objects are
in the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the
delete function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore can check the object’s BeingDeleted
property before acting.

2-1548

Hggroup Properties

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function
executing, callbacks invoked subsequently always attempt to
interrupt it.

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs
at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

• cancel — Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Button press callback function. A callback function that executes
whenever you press a mouse button while the pointer is over the
children of the hggroup object. Define the ButtonDownFcn as a
function handle. The function must define at least two input
arguments (handle of figure associated with the mouse button
press and an empty event structure).

See “Function Handle Callbacks” for information on how to use
function handles to define the callbacks.

Children
array of graphics object handles

2-1549

Hggroup Properties

Children of the hggroup object. An array containing the handles of
all objects parented to the hggroup object (whether visible or not).

Note that if a child object’s HandleVisibility property is set
to callback or off, its handle does not appear in the hggroup
Children property unless you set the Root ShowHiddenHandles
property to on:

set(0,'ShowHiddenHandles','on')

Clipping
{on} | off

Clipping mode. MATLAB clips stairs plots to the axes plot box
by default. If you set Clipping to off, lines might be displayed
outside the axes plot box.

CreateFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Callback executed during object creation. This property defines
a callback function that executes when MATLAB creates an
hggroup object. You must define this property as a default value
for hggroup objects or in a call to the hggroup function to create a
new hggroup object. For example, the statement

set(0,'DefaulthggroupCreateFcn',@myCreateFcn)

defines a default value on the root level that applies to every
hggroup object created in that MATLAB session. Whenever you
create an hggroup object, the function associated with the function
handle @myCreateFcn executes.

MATLAB executes the callback after setting all the hggroup
object’s properties. Setting the CreateFcn property on an existing
hggroup object has no effect.

2-1550

Hggroup Properties

The handle of the object whose CreateFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is also accessible through the root CallbackObject property,
which you can query using gcbo.

See Function Handle Callbacks for information on how to use
function handles to define the callback function.

DeleteFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Callback executed during object deletion. A callback function
that executes when the hggroup object is deleted (e.g., this might
happen when you issue a delete command on the hggroup object,
its parent axes, or the figure containing it). MATLAB executes the
callback before destroying the object’s properties so the callback
routine can query these values.

The handle of the object whose DeleteFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is accessible through the root CallbackObject property,
which you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

DisplayName
string (default is empty string)

String used by legend for this hggroup object. The legend function
uses the string defined by the DisplayName property to label this
hggroup object in the legend.

2-1551

Hggroup Properties

• If you specify string arguments with the legend function,
DisplayName is set to this hggroup object’s corresponding string
and that string is used for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

See “Controlling Legends” for more examples.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase hggroup child objects. Alternative erase modes
are useful for creating animated sequences, where control of
the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

• normal — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none — Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing

2-1552

Hggroup Properties

with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of
the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color
if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

• background — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other
graphics objects that are behind the erased object, but the
erased object is always properly colored.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB may mathematically combine
layers of colors (e.g., performing an XOR of a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

HandleVisibility
{on} | callback | off

2-1553

Hggroup Properties

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally accessing the
hggroup object.

• on — Handles are always visible when HandleVisibility is on.

• callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions
invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

• off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

2-1554

Hggroup Properties

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

HitTest
{on} | off

Pickable by mouse click. HitTest determines whether the hggroup
object can become the current object (as returned by the gco
command and the figure CurrentObject property) as a result of
a mouse click on the hggroup child objects. Note that to pick the
hggroup object, its children must have their HitTest property
set to off.

If the hggroup object’s HitTest is off, clicking it picks the object
behind it.

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether an hggroup object callback can be interrupted by
callbacks invoked subsequently.

Only callbacks defined for the ButtonDownFcn property are
affected by the Interruptible property. MATLAB checks for
events that can interrupt a callback only when it encounters a
drawnow, figure, getframe, or pause command in the routine.
See the BusyAction property for related information.

2-1555

Hggroup Properties

Setting Interruptible to on allows any graphics object’s callback
to interrupt callback routines originating from an hggroup
property. Note that MATLAB does not save the state of variables
or the display (e.g., the handle returned by the gca or gcf
command) when an interruption occurs.

Parent
axes handle

Parent of hggroup object. This property contains the handle of the
hggroup object’s parent object. The parent of an hggroup object is
the axes, hggroup, or hgtransform object that contains it.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection handles at the corners and midpoints of hggroup
child objects if the SelectionHighlight property is also on (the
default).

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing selection handles on the hggroup child objects. When
SelectionHighlight is off, MATLAB does not draw the handles.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics

2-1556

Hggroup Properties

programs that would otherwise need to define object handles as
global variables or pass them as arguments between callbacks.

For example, you might create an hggroup object and set the
Tag property:

t = hggroup('Tag','group1')

When you want to access the object, you can use findobj to find
its handle. For example,

h = findobj('Tag','group1');

Type
string (read only)

Type of graphics object. This property contains a string that
identifies the class of graphics object. For hggroup objects, Type is
'hggroup'. The following statement finds all the hggroup objects
in the current axes.

t = findobj(gca,'Type','hggroup');

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with the hggroup object. Assign this
property the handle of a uicontextmenu object created in the
hggroup object’s figure. Use the uicontextmenu function to create
the context menu. MATLAB displays the context menu whenever
you right-click the hggroup object.

UserData
array

User-specified data. This property can be any data you want
to associate with the hggroup object (including cell arrays and
structures). The hggroup object does not set values for this
property, but you can access it using the set and get functions.

2-1557

Hggroup Properties

Visible
{on} | off

Visibility of hggroup object and its children. By default, hggroup
object visibility is on. This means all children of the hggroup are
visible unless the child object’s Visible property is set to off.
Setting an hggroup object’s Visible property to off also makes
its children invisible.

2-1558

hgload

Purpose Load Handle Graphics object hierarchy from file

GUI
Alternative

Use the File —> Open on the figure window menu to access figure
files with the Open dialog.

Syntax h = hgload('filename')
[h,old_prop_values] = hgload(...,property_structure)
hgload(...,'all')

Description h = hgload('filename') loads Handle Graphics objects and its
children if any from the FIG-file specified by filename and returns
handles to the top-level objects. If filename contains no extension, then
MATLAB adds the .fig extension.

[h,old_prop_values] = hgload(...,property_structure)
overrides the properties on the top-level objects stored in the FIG-file
with the values in property_structure, and returns their previous
values in old_prop_values.

property_structure must be a structure having field names that
correspond to property names and values that are the new property
values.

old_prop_values is a cell array equal in length to h, containing the old
values of the overridden properties for each object. Each cell contains a
structure having field names that are property names, each of which
contains the original value of each property that has been changed. Any
property specified in property_structure that is not a property of a
top-level object in the FIG-file is not included in old_prop_values.

hgload(...,'all') overrides the default behavior, which does not
reload nonserializable objects saved in the file. These objects include
the default toolbars and default menus.

Nonserializable objects (such as the default toolbars and the default
menus) are normally not reloaded because they are loaded from
different files at figure creation time. This allows revisions of the
default menus and toolbars to occur without affecting existing FIG-files.

2-1559

hgload

Passing the string all to hgload ensures that any nonserializable
objects contained in the file are also reloaded.

Note that, by default, hgsave excludes nonserializable objects from the
FIG-file unless you use the all flag.

See Also hgsave, open

“Figure Windows” on page 1-95 for related functions

2-1560

hgsave

Purpose Save Handle Graphics object hierarchy to file

GUI
Alternative

Use the File —> Saveas on the figure window menu to access the
Export Setup GUI. For details, see How to Print or Export in the
MATLAB Graphics documentation.

Syntax hgsave('filename')
hgsave(h,'filename')
hgsave(...,'all')
hgsave(...,'-v6')

Description hgsave('filename') saves the current figure to a file named filename.

hgsave(h,'filename') saves the objects identified by the array of
handles h to a file named filename. If you do not specify an extension
for filename, then MATLAB adds the extension .fig. If h is a vector,
none of the handles in h may be ancestors or descendents of any other
handles in h.

hgsave(...,'all') overrides the default behavior, which does not
save nonserializable objects. Nonserializable objects include the default
toolbars and default menus. This allows revisions of the default menus
and toolbars to occur without affecting existing FIG-files and also
reduces the size of FIG-files. Passing the string all to hgsave ensures
that nonserializable objects are also saved.

Note: the default behavior of hgload is to ignore nonserializable objects
in the file at load time. This behavior can be overwritten using the
all argument with hgload.

hgsave(...,'-v6') saves the FIG-file in a format that can be loaded
by versions prior to MATLAB 7.

Full Backward Compatibility

When creating a figure you want to save and use in a MATLAB version
prior to MATLAB 7, use the 'v6' option with the plotting function and
the '-v6' option for hgsave. Check the reference page for the plotting
function you are using for more information.

2-1561

hgsave

See “Plot Objects and Backward Compatibility” for more information.

See Also hgload, open, save

“Figure Windows” on page 1-95 for related functions

2-1562

hgtransform

Purpose Create hgtransform graphics object

Syntax h = hgtransform
h = hgtransform('PropertyName',propertyvalue,...)

Description h = hgtransform creates an hgtransform object and returns its handle.

h = hgtransform('PropertyName',propertyvalue,...) creates an
hgtransform object with the property value settings specified in the
argument list.

Hgtransform objects can contain other objects and thereby enable you
to treat the hgtransform and its children as a single entity with respect
to visibility, size, orientation, etc. You can group objects together by
parenting them to a single hgtransform object (i.e., setting the object’s
Parent property to the hgtransform object’s handle). For example,

h = hgtransform;
surface('Parent',h,...)

The primary advantage of parenting objects to an hgtransform object
is that it provides the ability to perform transforms (e.g., translation,
scaling, rotation, etc.) on the child objects in unison.

The parent of an hgtransform object is either an axes object or another
hgtransform.

Although you cannot see an hgtransform object, setting its Visible
property to off makes all its children invisible as well.

Exceptions and Limitations

• An hgtransform object can be the parent of any number axes children
objects belonging to the same axes, with the exception of light objects.

• hgtransform objects can never be the parent of axes objects and
therefore can contain objects only from a single axes.

• hgtransform objects can be the parent of other hgtransform objects
within the same axes.

2-1563

hgtransform

• You cannot transform image objects because images are not true 3-D
objects. Texture mapping the image data to a surface CData enables
you to produce the effect of transforming an image in 3-D space.

Note Many plotting functions clear the axes (i.e., remove axes
children) before drawing the graph. Clearing the axes also deletes any
hgtransform objects in the axes.

More Information

• The references in the “See Also” on page 2-1568 section for
information on types of transforms

• The “Examples” on page 2-1564 section provides examples that
illustrate the use of transforms.

Examples Transforming a Group of Objects

This example shows how to create a 3-D star with a group of surface
objects parented to a single hgtransform object. The hgtransform object
is then rotated about the z-axis while its size is scaled.

Note If you are using the MATLAB help browser, you can run this
example or open it in the MATLAB editor.

1 Create an axes and adjust the view. Set the axes limits to prevent
auto limit selection during scaling.

ax = axes('XLim',[-1.5 1.5],'YLim',[-1.5 1.5],...
'ZLim',[-1.5 1.5]);

view(3); grid on; axis equal

2 Create the objects you want to parent to the hgtransform object.

[x y z] = cylinder([.2 0]);

2-1564

hgtransform

h(1) = surface(x,y,z,'FaceColor','red');
h(2) = surface(x,y,-z,'FaceColor','green');
h(3) = surface(z,x,y,'FaceColor','blue');
h(4) = surface(-z,x,y,'FaceColor','cyan');
h(5) = surface(y,z,x,'FaceColor','magenta');
h(6) = surface(y,-z,x,'FaceColor','yellow');

3 Create an hgtransform object and parent the surface objects to it.

t = hgtransform('Parent',ax);
set(h,'Parent',t)

4 Select a renderer and show the objects.

set(gcf,'Renderer','opengl')
drawnow

5 Initialize the rotation and scaling matrix to the identity matrix (eye).

Rz = eye(4);
Sxy = Rz;

6 Form the z-axis rotation matrix and the scaling matrix. Rotate 360
degrees (2*pi radians) and scale by using the increasing values of r.

for r = 1:.1:2*pi
% Z-axis rotation matrix
Rz = makehgtform('zrotate',r);
% Scaling matrix
Sxy = makehgtform('scale',r/4);
% Concatenate the transforms and
% set the hgtransform Matrix property

set(t,'Matrix',Rz*Sxy)
drawnow

end
pause(1)

7 Reset to the original orientation and size using the identity matrix.

2-1565

hgtransform

set(t,'Matrix',eye(4))

Transforming Objects Independently

This example creates two hgtransform objects to illustrate how each
can be transformed independently within the same axes. One of the
hgtransform objects has been moved (by translation) away from the
origin.

Note If you are using the MATLAB help browser, you can run this
example or open it in the MATLAB editor.

1 Create and set up the axes object that will be the parent of both
hgtransform objects. Set the limits to accommodate the translated
object.

ax = axes('XLim',[-2 1],'YLim',[-2 1],'ZLim',[-1 1]);
view(3); grid on; axis equal

2 Create the surface objects to group.

[x y z] = cylinder([.3 0]);
h(1) = surface(x,y,z,'FaceColor','red');
h(2) = surface(x,y,-z,'FaceColor','green');
h(3) = surface(z,x,y,'FaceColor','blue');
h(4) = surface(-z,x,y,'FaceColor','cyan');
h(5) = surface(y,z,x,'FaceColor','magenta');
h(6) = surface(y,-z,x,'FaceColor','yellow');

3 Create the hgtransform objects and parent them to the same axes.

t1 = hgtransform('Parent',ax);
t2 = hgtransform('Parent',ax);

4 Set the renderer to use OpenGL.

set(gcf,'Renderer','opengl')

2-1566

hgtransform

5 Parent the surfaces to hgtransform t1, then copy the surface objects
and parent the copies to hgtransform t2.

set(h,'Parent',t1)
h2 = copyobj(h,t2);

6 Translate the second hgtransform object away from the first
hgtransform object and display the result.

Txy = makehgtform('translate',[-1.5 -1.5 0]);
set(t2,'Matrix',Txy)
drawnow

7 Rotate both hgtransform objects in opposite directions. Hgtransform
t2 has already been translated away from the origin, so to rotate it
about its z-axis you must first translate it to its original position. You
can do this with the identity matrix (eye).

% rotate 10 times (2pi radians = 1 rotation)
for r = 1:.1:20*pi
% Form z-axis rotation matrix
Rz = makehgtform('zrotate',r);
% Set transforms for both hgtransform objects
set(t1,'Matrix',Rz)
set(t2,'Matrix',Txy*inv(Rz)*I)
drawnow

end

Setting
Default
Properties

You can set default hgtransform properties on the axes, figure, and
root levels:

set(0,'DefaultHgtransformPropertyName',propertyvalue,...)
set(gcf,'DefaultHgtransformPropertyName',propertyvalue,...)
set(gca,'DefaultHgtransformPropertyName',propertyvalue,...)

where PropertyName is the name of the hgtransform property and
propertyvalue is the value you are specifying. Use set and get to
access hgtransform properties.

2-1567

hgtransform

See Also hggroup, makehgtform

For more information about transforms, see Tomas Moller and Eric
Haines, Real-Time Rendering, A K Peters, Ltd., 1999.

“Group Objects” for more information and examples.

Hgtransform Properties for property descriptions

2-1568

Hgtransform Properties

Purpose Hgtransform properties

Modifying
Properties

You can set and query graphics object properties using the set and
get commands.

To change the default values of properties, see “Setting Default Property
Values”.

See “Group Objects” for general information on this type of object.

Hgtransform
Property
Descriptions

This section provides a description of properties. Curly braces { } enclose
default values.

Annotation
hg.Annotation object Read Only

Control the display of hgtransform objects in legends. The
Annotation property enables you to specify whether this
hgtransform object is represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can
set its IconDisplayStyle property to control whether the
hgtransform object is displayed in a figure legend:

IconDisplayStyle
Value

Purpose

on Include the hgtransform object in a legend
as one entry, but not its children objects

2-1569

Hgtransform Properties

IconDisplayStyle
Value

Purpose

off Do not include the hgtransform or its
children in a legend (default)

children Include only the children of the hgtransform
as separate entries in the legend

Setting the IconDisplayStyle property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation','LegendInformation');
set(hLegendEntry,'IconDisplayStyle','children')

Using the IconDisplayStyle property

See “Controlling Legends” for more information and examples.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine whether objects are
in the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore can check the object’s BeingDeleted
property before acting.

2-1570

Hgtransform Properties

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callback functions. If there is a callback
executing, callbacks invoked subsequently always attempt to
interrupt it.

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs
at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

• cancel — Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Button press callback function. A callback function that executes
whenever you press a mouse button while the pointer is within the
extent of the hgtransform object, but not over another graphics
object. The extent of an hgtransform object is the smallest
rectangle that encloses all the children. Note that you cannot
execute the hgtransform object’s button down function if it has
no children.

Define the ButtonDownFcn as a function handle. The function
must define at least two input arguments (handle of figure
associated with the mouse button press and an empty event
structure).

2-1571

Hgtransform Properties

See “Function Handle Callbacks” for information on how to use
function handles to define the callbacks.

Children
array of graphics object handles

Children of the hgtransform object. An array containing the
handles of all graphics objects parented to the hgtransform object
(whether visible or not).

The graphics objects that can be children of an hgtransform are
images, lights, lines, patches, rectangles, surfaces, and text. You
can change the order of the handles and thereby change the
stacking of the objects on the display.

Note that if a child object’s HandleVisibility property is set to
callback or off, its handle does not show up in the hgtransform
Children property unless you set the Root ShowHiddenHandles
property to on.

Clipping
{on} | off

This property has no effect on hgtransform objects.

CreateFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Callback executed during object creation. This property defines
a callback function that executes when MATLAB creates an
hgtransform object. You must define this property as a default
value for hgtransform objects. For example, the statement

set(0,'DefaultHgtransformCreateFcn',@myCreateFcn)

defines a default value on the root level that applies to every
hgtransform object created in a MATLAB session. Whenever you

2-1572

Hgtransform Properties

create an hgtransform object, the function associated with the
function handle @myCreateFcn executes.

MATLAB executes the callback after setting all the hgtransform
object’s properties. Setting the CreateFcn property on an existing
hgtransform object has no effect.

The handle of the object whose CreateFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is accessible through the root CallbackObject property,
which you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Callback executed during object deletion. A callback function that
executes when the hgtransform object is deleted (e.g., this might
happen when you issue a delete command on the hgtransform
object, its parent axes, or the figure containing it). MATLAB
executes the callback before destroying the object’s properties so
the callback routine can query these values.

The handle of the object whose DeleteFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is accessible through the root CallbackObject property,
which can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

DisplayName
string (default is empty string)

2-1573

Hgtransform Properties

String used by legend for this hgtransform object. The legend
function uses the string defined by the DisplayName property to
label this hgtransform object in the legend.

• If you specify string arguments with the legend function,
DisplayName is set to this hgtransform object’s corresponding
string and that string is used for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

See “Controlling Legends” for more examples.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase hgtransform child objects (light objects have
no erase mode). Alternative erase modes are useful for creating
animated sequences, where control of the way individual objects
are redrawn is necessary to improve performance and obtain the
desired effect.

• normal — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,

2-1574

Hgtransform Properties

but do not perform a complete redraw and are therefore less
accurate.

• none — Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing
with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

• xor— Draw and erase the object by performing an exclusive OR
(XOR) with each pixel index of the screen behind it. Erasing
the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of
the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color
if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

• background — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other
graphics objects that are behind the erased object, but the
erased object is always properly colored.

Set the axes background color with the axes Color property.
Set the figure background color with the figure Color property.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB can mathematically combine
layers of colors (e.g., performing an XOR operation on a pixel color
and the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

2-1575

Hgtransform Properties

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally accessing the
hgtransform object.

• on — Handles are always visible when HandleVisibility is on.

• callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions
invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

• off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,

2-1576

Hgtransform Properties

figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

HitTest
{on} | off

Pickable by mouse click. HitTest determines whether the
hgtransform object can become the current object (as returned
by the gco command and the figure CurrentObject property)
as a result of a mouse click within the limits of the hgtransform
object. If HitTest is off, clicking the hgtransform picks the object
behind it.

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible
property controls whether an hgtransform object callback can be
interrupted by callbacks invoked subsequently. Only callbacks
defined for the ButtonDownFcn property are affected by the
Interruptible property. MATLAB checks for events that can
interrupt a callback only when it encounters a drawnow, figure,

2-1577

Hgtransform Properties

getframe, or pause command in the routine. See the BusyAction
property for related information.

Setting Interruptible to on allows any graphics object’s callback
to interrupt callback routines originating from an hgtransform
property. Note that MATLAB does not save the state of variables
or the display (e.g., the handle returned by the gca or gcf
command) when an interruption occurs.

Matrix
4-by-4 matrix

Transformation matrix applied to hgtransform object and its
children. The hgtransform object applies the transformation
matrix to all its children.

See “Group Objects” for more information and examples.

Parent
figure handle

Parent of hgtransform object. This property contains the handle
of the hgtransform object’s parent object. The parent of an
hgtransform object is the axes, hggroup, or hgtransform object
that contains it.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection handles on all child objects of the hgtransform
if the SelectionHighlight property is also on (the default).

SelectionHighlight
{on} | off

2-1578

Hgtransform Properties

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by drawing
selection handles on the objects parented to the hgtransform.
When SelectionHighlight is off, MATLAB does not draw the
handles.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callbacks.

For example, you might create an hgtransform object and set the
Tag property:

t = hgtransform('Tag','subgroup1')

When you want to access the hgtransform object to add another
object, you can use findobj to find the hgtransform object’s
handle. The following statement adds a line to subgroup1
(assuming x and y are defined).

line('XData',x,'YData',y,'Parent',findobj('Tag','subgroup1'))

Type
string (read only)

Type of graphics object. This property contains a string that
identifies the class of graphics object. For hgtransform objects,
Type is set to ’hgtransform’. The following statement finds all the
hgtransform objects in the current axes.

t = findobj(gca,'Type','hgtransform');

UIContextMenu
handle of a uicontextmenu object

2-1579

Hgtransform Properties

Associate a context menu with the hgtransform object. Assign this
property the handle of a uicontextmenu object created in the
hgtransform object’s figure. Use the uicontextmenu function to
create the context menu. MATLAB displays the context menu
whenever you right-click over the extent of the hgtransform object.

UserData
array

User-specified data. This property can be any data you want to
associate with the hgtransform object (including cell arrays and
structures). The hgtransform object does not set values for this
property, but you can access it using the set and get functions.

Visible
{on} | off

Visibility of hgtransform object and its children. By default,
hgtransform object visibility is on. This means all children of the
hgtransform are visible unless the child object’s Visible property
is set to off. Setting an hgtransform object’s Visible property to
off also makes its children invisible.

2-1580

hidden

Purpose Remove hidden lines from mesh plot

Syntax hidden on
hidden off
hidden

Description Hidden line removal draws only those lines that are not obscured by
other objects in the field of view.

hidden on turns on hidden line removal for the current graph so lines
in the back of a mesh are hidden by those in front. This is the default
behavior.

hidden off turns off hidden line removal for the current graph.

hidden toggles the hidden line removal state.

Algorithm hidden on sets the FaceColor property of a surface graphics object to
the background Color of the axes (or of the figure if axes Color is none).

Examples Set hidden line removal off and on while displaying the peaks function.

mesh(peaks)
hidden off
hidden on

See Also shading, mesh

The surface properties FaceColor and EdgeColor

“Creating Surfaces and Meshes” on page 1-97 for related functions

2-1581

hilb

Purpose Hilbert matrix

Syntax H = hilb(n)

Description H = hilb(n) returns the Hilbert matrix of order n.

Definition The Hilbert matrix is a notable example of a poorly conditioned matrix
[1]. The elements of the Hilbert matrices are .

Examples Even the fourth-order Hilbert matrix shows signs of poor conditioning.

cond(hilb(4)) =
1.5514e+04

Note See the M-file for a good example of efficient MATLAB
programming where conventional for loops are replaced by vectorized
statements.

See Also invhilb

References [1] Forsythe, G. E. and C. B. Moler, Computer Solution of Linear
Algebraic Systems, Prentice-Hall, 1967, Chapter 19.

2-1582

hist

Purpose Histogram plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax n = hist(Y)
n = hist(Y,x)
n = hist(Y,nbins)
[n,xout] = hist(...)
hist(...)
hist(axes_handle,...)

Description A histogram shows the distribution of data values.

n = hist(Y) bins the elements in vector Y into 10 equally spaced
containers and returns the number of elements in each container as a
row vector. If Y is an m-by-p matrix, hist treats the columns of Y as
vectors and returns a 10-by-p matrix n. Each column of n contains
the results for the corresponding column of Y. No elements of Y can
be complex.

n = hist(Y,x) where x is a vector, returns the distribution of Y
among length(x) bins with centers specified by x. For example, if
x is a 5-element vector, hist distributes the elements of Y into five
bins centered on the x-axis at the elements in x, none of which can be
complex. Note: use histc if it is more natural to specify bin edges
instead of centers.

n = hist(Y,nbins) where nbins is a scalar, uses nbins number of bins.

2-1583

hist

[n,xout] = hist(...) returns vectors n and xout containing the
frequency counts and the bin locations. You can use bar(xout,n) to
plot the histogram.

hist(...) without output arguments produces a histogram plot of
the output described above. hist distributes the bins along the x-axis
between the minimum and maximum values of Y.

hist(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

Remarks All elements in vector Y or in one column of matrix Y are grouped
according to their numeric range. Each group is shown as one bin.

The histogram’s x-axis reflects the range of values in Y. The histogram’s
y-axis shows the number of elements that fall within the groups;
therefore, the y-axis ranges from 0 to the greatest number of elements
deposited in any bin. The x-range of the leftmost and rightmost
bins extends to include the entire data range in the case when the
user-specified range does not cover the data range. If you want a plot in
which this does not happen (that is, all bins have equal width), you can
create a histogram-like display using the bar command.

The hist function does not work with data that contain inf values.

The histogram is created with a patch graphics object. If you want to
change the color of the graph, you can set patch properties. See the
examples for more information. By default, the graph color is controlled
by the current colormap, which maps the bin color to the first color
in the colormap.

Examples Generate a bell-curve histogram from Gaussian data.

x = -2.9:0.1:2.9;
y = randn(10000,1);
hist(y,x)

2-1584

hist

Change the color of the graph so that the bins are red and the edges of
the bins are white.

h = findobj(gca,'Type','patch');
set(h,'FaceColor','r','EdgeColor','w')

2-1585

hist

See Also bar, ColorSpec, histc, mode, patch, rose, stairs

“Specialized Plotting” on page 1-88 for related functions

“Histograms” for examples

2-1586

histc

Purpose Histogram count

Syntax n = histc(x,edges)
n = histc(x,edges,dim)
[n,bin] = histc(...)

Description n = histc(x,edges) counts the number of values in vector x that
fall between the elements in the edges vector (which must contain
monotonically nondecreasing values). n is a length(edges) vector
containing these counts. No elements of x can be complex.

n(k) counts the value x(i) if edges(k) <= x(i) < edges(k+1). The
last bin counts any values of x that match edges(end). Values outside
the values in edges are not counted. Use -inf and inf in edges to
include all non-NaN values.

For matrices, histc(x,edges) returns a matrix of column histogram
counts. For N-D arrays, histc(x,edges) operates along the first
nonsingleton dimension.

n = histc(x,edges,dim) operates along the dimension dim.

[n,bin] = histc(...) also returns an index matrix bin. If x is a
vector, n(k) = sum(bin==k). bin is zero for out of range values. If x
is an M-by-N matrix, then

for j=1:N,
n(k,j) = sum(bin(:,j)==k);
end

To plot the histogram, use the bar command.

Examples Generate a cumulative histogram of a distribution.

Consider the following distribution:

x = -2.9:0.1:2.9;
y = randn(10000,1);
figure(1), hist(y,x)

2-1587

histc

Calculate number of elements in each bin

n_elements = histc(y,x);

Calculate the cumulative sum of these elements using cumsum

c_elements = cumsum(n_elements)

Plot the cumulative histogram

figure(2),bar(x,c_elements)

2-1588

histc

See Also hist, mode

“Specialized Plotting” on page 1-88 for related functions

2-1589

hold

Purpose Retain current graph in figure

Syntax hold on
hold off
hold all
hold
hold(axes_handle,...)

Description The hold function determines whether new graphics objects are added
to the graph or replace objects in the graph.

hold on retains the current plot and certain axes properties so that
subsequent graphing commands add to the existing graph.

hold off resets axes properties to their defaults before drawing new
plots. hold off is the default.

hold all holds the plot and the current line color and line style so
that subsequent plotting commands do not reset the ColorOrder and
LineStyleOrder property values to the beginning of the list. Plotting
commands continue cycling through the predefined colors and linestyles
from where the last plot stopped in the list.

hold toggles the hold state between adding to the graph and replacing
the graph.

hold(axes_handle,...) applies the hold to the axes identified by
the handle axes_handle.

Remarks Test the hold state using the ishold function.

Although the hold state is on, some axes properties change to
accommodate additional graphics objects. For example, the axes’ limits
increase when the data requires them to do so.

The hold function sets the NextPlot property of the current figure
and the current axes. If several axes objects exist in a figure window,
each axes has its own hold state. hold also creates an axes if one does
not exist.

2-1590

hold

hold on sets the NextPlot property of the current figure and axes to
add.

hold off sets the NextPlot property of the current axes to replace.

hold toggles the NextPlot property between the add and replace
states.

See Also axis, cla, ishold, newplot

The NextPlot property of axes and figure graphics objects

“Basic Plots and Graphs” on page 1-86 for related functions

2-1591

home

Purpose Move cursor to upper-left corner of Command Window

Syntax home

Description home moves the cursor to the upper-left corner of the Command Window.
You can use the scroll bar to see the history of previous functions.

Examples Use home in an M-file to return the cursor to the upper-left corner of
the screen.

See Also clc

2-1592

horzcat

Purpose Concatenate arrays horizontally

Syntax C = horzcat(A1, A2, ...)

Description C = horzcat(A1, A2, ...) horizontally concatenates matrices A1,
A2, and so on. All matrices in the argument list must have the same
number of rows.

horzcat concatenates N-dimensional arrays along the second
dimension. The first and remaining dimensions must match.

MATLAB calls C = horzcat(A1, A2,...) for the syntax C = [A1 A2
...] when any of A1, A2, etc., is an object.

Examples Create a 3-by-5 matrix, A, and a 3-by-3 matrix, B. Then horizontally
concatenate A and B.

A = magic(5); % Create 3-by-5 matrix, A
A(4:5,:) = []

A =

17 24 1 8 15
23 5 7 14 16
4 6 13 20 22

B = magic(3)*100 % Create 3-by-3 matrix, B

B =

800 100 600
300 500 700
400 900 200

C = horzcat(A, B) % Horizontally concatenate A and B

2-1593

horzcat

C =

17 24 1 8 15 800 100 600
23 5 7 14 16 300 500 700
4 6 13 20 22 400 900 200

See Also vertcat, cat

2-1594

horzcat (tscollection)

Purpose Horizontal concatenation for tscollection objects

Syntax tsc = horzcat(tsc1,tsc2,...)

Description tsc = horzcat(tsc1,tsc2,...) performs horizontal concatenation
for tscollection objects:

tsc = [tsc1 tsc2 ...]

This operation combines multiple tscollection objects, which must
have the same time vectors, into one tscollection containing
timeseries objects from all concatenated collections.

See Also tscollection, vertcat (tscollection)

2-1595

hostid

Purpose MATLAB server host identification number

Syntax id = hostid

Description id = hostid usually returns a single element cell array containing the
identifier as a string. UNIX systems may have more than one identifier.
In this case, hostid returns a cell array with an identifier in each cell.

2-1596

hsv2rgb

Purpose Convert HSV colormap to RGB colormap

Syntax M = hsv2rgb(H)
rgb_image = hsv2rgb(hsv_image)

Description M = hsv2rgb(H) converts a hue-saturation-value (HSV) colormap to
a red-green-blue (RGB) colormap. H is an m-by-3 matrix, where m is
the number of colors in the colormap. The columns of H represent hue,
saturation, and value, respectively. M is an m-by-3 matrix. Its columns
are intensities of red, green, and blue, respectively.

rgb_image = hsv2rgb(hsv_image) converts the HSV image to the
equivalent RGB image. HSV is an m-by-n-by-3 image array whose three
planes contain the hue, saturation, and value components for the image.
RGB is returned as an m-by-n-by-3 image array whose three planes
contain the red, green, and blue components for the image.

Remarks As H(:,1) varies from 0 to 1, the resulting color varies from red through
yellow, green, cyan, blue, and magenta, and returns to red. When
H(:,2) is 0, the colors are unsaturated (i.e., shades of gray). When
H(:,2) is 1, the colors are fully saturated (i.e., they contain no white
component). As H(:,3) varies from 0 to 1, the brightness increases.

The MATLAB hsv colormap uses hsv2rgb([huesaturationvalue])
where hue is a linear ramp from 0 to 1, and saturation and value
are all 1’s.

See Also brighten, colormap, rgb2hsv

“Color Operations” on page 1-98 for related functions

2-1597

hypot

Purpose Square root of sum of squares

Syntax c = hypot(a,b)

Description c = hypot(a,b) returns the element-wise result of the following
equation, computed to avoid underflow and overflow:

c = sqrt(abs(a).^2 + abs(b).^2)

Inputs a and b must follow these rules:

• Both a and b must be single- or double-precision, floating-point
arrays.

• The sizes of the a and b arrays must either be equal, or one a scalar
and the other nonscalar. In the latter case, hypot expands the scalar
input to match the size of the nonscalar input.

• If a or b is an empty array (0-by-N or N-by-0), the other must be
the same size or a scalar. The result c is an empty array having the
same size as the empty input(s).

hypot returns the following in output c, depending upon the types of
inputs:

• If the inputs to hypot are complex (w+xi and y+zi), then the
statement c = hypot(w+xi,y+zi) returns the positive real result

c = sqrt(abs(w).^2+abs(x).^2+abs(y).^2+abs(z).^2)

• If a or b is –Inf, hypot returns Inf.

• If neither a nor b is Inf, but one or both inputs is NaN, hypot returns
NaN.

• If all inputs are finite, the result is finite. The one exception
is when both inputs are very near the value of the MATLAB
constant realmax. The reason for this is that the equation c =

2-1598

hypot

hypot(realmax,realmax) is theoretically sqrt(2)*realmax, which
overflows to Inf.

Examples Example 1

To illustrate the difference between using the hypot function and coding
the basic hypot equation in M-code, create an anonymous function that
performs the same function as hypot, but without the consideration to
underflow and overflow that hypot offers:

myhypot = @(a,b)sqrt(abs(a).^2+abs(b).^2);

Find the upper limit at which your coded function returns a useful
value. You can see that this test function reaches its maximum at about
1e154, returning an infinite result at that point:

myhypot(1e153,1e153)
ans =

1.4142e+153

myhypot(1e154,1e154)
ans =

Inf

Do the same using the hypot function, and observe that hypot operates
on values up to about 1e308, which is approximately equal to the
value for realmax on your computer (the largest double-precision
floating-point number you can represent on a particular computer):

hypot(1e308,1e308)
ans =

1.4142e+308

hypot(1e309,1e309)
ans =

Inf

2-1599

hypot

Example 2

hypot(a,a) theoretically returns sqrt(2)*abs(a), as shown in this
example:

x = 1.271161e308;

y = x * sqrt(2)
y =

1.7977e+308

y = hypot(x,x)
y =

1.7977e+308

Algorithm hypot uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also sqrt, abs, norm

2-1600

http://www.netlib.org

i

Purpose Imaginary unit

Syntax i
a+bi
x+i*y

Description As the basic imaginary unit sqrt(-1), i is used to enter complex
numbers. Since i is a function, it can be overridden and used as a
variable. This permits you to use i as an index in for loops, etc.

If desired, use the character i without a multiplication sign as a suffix
in forming a complex numerical constant.

You can also use the character j as the imaginary unit.

Examples Z = 2+3i
Z = x+i*y
Z = r*exp(i*theta)

See Also conj, imag, j, real

2-1601

idealfilter (timeseries)

Purpose Apply ideal (noncausal) filter to timeseries object

Syntax ts2 = idealfilter(ts1,Interval,FilterType)
ts2 = idealfilter(ts1,Interval,FilterType,Index)

Description ts2 = idealfilter(ts1,Interval,FilterType) applies an ideal
filter of FilterType 'pass' or 'notch' to one or more frequency
intervals specified by Interval for the timeseries object ts1. You
specify several frequency intervals as an n-by-2 array of start and end
frequencies, where n represents the number of intervals.

ts2 = idealfilter(ts1,Interval,FilterType,Index) applies an
ideal filter and uses the optional Index integer array to specify the
columns or rows to filter. When ts.IsTimeFirst is set to true, Index
specifies one or more data columns. When ts.IsTimeFirst is set to
false, Index specifies one or more data rows.

Remarks When to Use the Ideal Filter

You use the ideal notch filter when you want to remove variations in a
specific frequency range. Alternatively, you use the ideal pass filter to
allow only the variations in a specific frequency range.

These filters are ideal in the sense that they are not realizable; an ideal
filter is noncausal and the ends of the filter amplitude are perfectly flat
in the frequency domain.

Requirement for Uniform Samples in Time

If the time-series data is sampled nonuniformly, filtering resamples
this data on a uniform time vector.

Interpolation of NaN Values

All NaNs in the time series are interpolated before filtering using the
interpolation method you assigned to the timeseries object.

Examples You will apply an ideal notch filter to the data in count.dat.

1 Load the matrix count into the workspace.

2-1602

idealfilter (timeseries)

load count.dat;

2 Create a timeseries object based on this matrix. The time vector
ranges from 1 to 24 seconds in 1-second intervals.

count1=timeseries(count(:,1),1:24);

3 Enter the frequency interval in hertz.

interval=[0.08 0.2];

4 Call the filter function:

idealfilter_count = idealfilter(count1,interval,'notch')

5 Compare the original data and the shaped data with an overlaid
plot of the two curves.

plot(count1,'-.'), grid on, hold on
plot(filter_count,'-')
legend('Original Data','Shaped Data',2)

2-1603

idealfilter (timeseries)

See Also filter (timeseries), timeseries

2-1604

idivide

Purpose Integer division with rounding option

Syntax C = idivide(A, B, opt)
C = idivide(A, B)
C = idivide(A, B, 'fix')
C = idivide(A, B, 'round')
C = idivide(A, B, 'floor')
C = idivide(A, B, 'ceil')

Description C = idivide(A, B, opt) is the same as A./B for integer classes except
that fractional quotients are rounded to integers using the optional
rounding mode specified by opt. The default rounding mode is 'fix'.
Inputs A and B must be real and must have the same dimensions unless
one is a scalar. At least one of the arguments A and B must belong to an
integer class, and the other must belong to the same integer class or be
a scalar double. The result C belongs to the integer class.

C = idivide(A, B) is the same as A./B except that fractional quotients
are rounded toward zero to the nearest integers.

C = idivide(A, B, 'fix') is the same as the syntax shown
immediately above.

C = idivide(A, B, 'round') is the same as A./B for integer classes.
Fractional quotients are rounded to the nearest integers.

C = idivide(A, B, 'floor') is the same as A./B except that
fractional quotients are rounded toward negative infinity to the nearest
integers.

C = idivide(A, B, 'ceil') is the same as A./B except that the
fractional quotients are rounded toward infinity to the nearest integers.

Examples a = int32([-2 2]);
b = int32(3);

idivide(a,b) % Returns [0 0]
idivide(a,b,'floor') % Returns [-1 0]
idivide(a,b,'ceil') % Returns [0 1]

2-1605

idivide

idivide(a,b,'round') % Returns [-1 1]

See Also ldivide, rdivide, mldivide, mrdivide

2-1606

if

Purpose Execute statements if condition is true

Syntax if expression, statements, end

Description if expression, statements, end evaluates expression and, if the
evaluation yields logical 1 (true) or a nonzero result, executes one or
more MATLAB commands denoted here as statements.

expression is a MATLAB expression, usually consisting of variables
or smaller expressions joined by relational operators (e.g., count <
limit), or logical functions (e.g., isreal(A)). Simple expressions can
be combined by logical operators (&&, ||, ~) into compound expressions
such as the following. MATLAB evaluates compound expressions from
left to right, adhering to operator precedence rules.

(count < limit) && ((height - offset) >= 0)

Nested if statements must each be paired with a matching end.

The if function can be used alone or with the else and elseif
functions. When using elseif and/or else within an if statement, the
general form of the statement is

if expression1
statements1

elseif expression2
statements2

else
statements3

end

See “Program Control Statements” in the MATLAB Programming
documentation for more information on controlling the flow of your
program code.

2-1607

if

Remarks Nonscalar Expressions

If the evaluated expression yields a nonscalar value, then every
element of this value must be true or nonzero for the entire expression
to be considered true. For example, the statement if (A < B) is true
only if each element of matrix A is less than its corresponding element
in matrix B. See Example 2, below.

Partial Evaluation of the expression Argument

Within the context of an if or while expression, MATLAB does not
necessarily evaluate all parts of a logical expression. In some cases it is
possible, and often advantageous, to determine whether an expression
is true or false through only partial evaluation.

For example, if A equals zero in statement 1 below, then the expression
evaluates to false, regardless of the value of B. In this case, there is no
need to evaluate B and MATLAB does not do so. In statement 2, if A is
nonzero, then the expression is true, regardless of B. Again, MATLAB
does not evaluate the latter part of the expression.

1) if (A && B) 2) if (A || B)

You can use this property to your advantage to cause MATLAB to
evaluate a part of an expression only if a preceding part evaluates to
the desired state. Here are some examples.

while (b ~= 0) && (a/b > 18.5)
if exist('myfun.m') && (myfun(x) >= y)
if iscell(A) && all(cellfun('isreal', A))

Empty Arrays

In most cases, using if on an empty array treats the array as false.
There are some conditions however under which if evaluates as true
on an empty array. Two examples of this, where A is equal to [], are

if all(A), do_something, end
if 1|A, do_something, end

2-1608

if

The latter expression is true because of short-circuiting, which causes
MATLAB to ignore the right side operand of an OR statement whenever
the left side evaluates to true.

Short-Circuiting Behavior

When used in the context of an if or while expression, and only in
this context, the element-wise | and & operators use short-circuiting in
evaluating their expressions. That is, A|B and A&B ignore the second
operand, B, if the first operand, A, is sufficient to determine the result.

See “Short-Circuiting in Elementwise Operators” for more information
on this.

Examples Example 1 - Simple if Statement

In this example, if both of the conditions are satisfied, then the student
passes the course.

if ((attendance >= 0.90) && (grade_average >= 60))
pass = 1;

end;

Example 2 - Nonscalar Expression

Given matrices A and B,

A = B =
1 0 1 1
2 3 3 4

Expression
Evaluates
As Because

A < B false A(1,1) is not less than B(1,1).

A < (B +
1)

true Every element of A is less than that same
element of B with 1 added.

2-1609

if

Expression
Evaluates
As Because

A & B false A(1,2) is false, and B is ignored due to
short-circuiting.

B < 5 true Every element of B is less than 5.

See Also else, elseif, end, for, while, switch, break, return, relational
operators, logical operators (elementwise and short-circuit),

2-1610

ifft

Purpose Inverse discrete Fourier transform

Syntax y = ifft(X)
y = ifft(X,n)
y = ifft(X,[],dim)
y = ifft(X,n,dim)
y = ifft(..., 'symmetric')
y = ifft(..., 'nonsymmetric')

Description y = ifft(X) returns the inverse discrete Fourier transform (DFT) of
vector X, computed with a fast Fourier transform (FFT) algorithm. If X
is a matrix, ifft returns the inverse DFT of each column of the matrix.

ifft tests X to see whether vectors in X along the active dimension
are conjugate symmetric. If so, the computation is faster and the
output is real. An N-element vector x is conjugate symmetric if
x(i) = conj(x(mod(N-i+1,N)+1)) for each element of x.

If X is a multidimensional array, ifft operates on the first non-singleton
dimension.

y = ifft(X,n) returns the n-point inverse DFT of vector X.

y = ifft(X,[],dim) and y = ifft(X,n,dim) return the inverse DFT
of X across the dimension dim.

y = ifft(..., 'symmetric') causes ifft to treat X as conjugate
symmetric along the active dimension. This option is useful when X is
not exactly conjugate symmetric, merely because of round-off error.

y = ifft(..., 'nonsymmetric') is the same as calling ifft(...)
without the argument 'nonsymmetric'.

For any X, ifft(fft(X)) equals X to within roundoff error.

Algorithm The algorithm for ifft(X) is the same as the algorithm for fft(X),
except for a sign change and a scale factor of n = length(X). As for
fft, the execution time for ifft depends on the length of the transform.
It is fastest for powers of two. It is almost as fast for lengths that have

2-1611

ifft

only small prime factors. It is typically several times slower for lengths
that are prime or which have large prime factors.

Note You might be able to increase the speed of ifft using the utility
function fftw, which controls how MATLAB optimizes the algorithm
used to compute an FFT of a particular size and dimension.

Data Type
Support

ifft supports inputs of data types double and single. If you call ifft
with the syntax y = ifft(X, ...), the output y has the same data
type as the input X.

See Also fft, fft2, ifft2, ifftn, ifftshift, fftw, ifft2, ifftn

dftmtx and freqz, in the Signal Processing Toolbox

2-1612

ifft2

Purpose 2-D inverse discrete Fourier transform

Syntax Y = ifft2(X)
Y = ifft2(X,m,n)
y = ifft2(..., 'symmetric')
y = ifft2(..., 'nonsymmetric')

Description Y = ifft2(X) returns the two-dimensional inverse discrete Fourier
transform (DFT) of X, computed with a fast Fourier transform (FFT)
algorithm. The result Y is the same size as X.

ifft2 tests X to see whether it is conjugate symmetric. If so, the
computation is faster and the output is real. An M-by-N matrix X
is conjugate symmetric if X(i,j) = conj(X(mod(M-i+1, M) + 1,
mod(N-j+1, N) + 1)) for each element of X.

Y = ifft2(X,m,n) returns the m-by-n inverse fast Fourier transform
of matrix X.

y = ifft2(..., 'symmetric') causes ifft2 to treat X as conjugate
symmetric. This option is useful when X is not exactly conjugate
symmetric, merely because of round-off error.

y = ifft2(..., 'nonsymmetric') is the same as calling ifft2(...)
without the argument 'nonsymmetric'.

For any X, ifft2(fft2(X)) equals X to within roundoff error.

Algorithm The algorithm for ifft2(X) is the same as the algorithm for fft2(X),
except for a sign change and scale factors of [m,n] = size(X). The
execution time for ifft2 depends on the length of the transform. It is
fastest for powers of two. It is almost as fast for lengths that have only
small prime factors. It is typically several times slower for lengths that
are prime or which have large prime factors.

2-1613

ifft2

Note You might be able to increase the speed of ifft2 using the utility
function fftw, which controls how MATLAB optimizes the algorithm
used to compute an FFT of a particular size and dimension.

Data Type
Support

ifft2 supports inputs of data types double and single. If you call
ifft2 with the syntax y = ifft2(X, ...), the output y has the same
data type as the input X.

See Also dftmtx and freqz in the Signal Processing Toolbox, and:

fft2, fftw, fftshift, ifft, ifftn, ifftshift

2-1614

ifftn

Purpose N-D inverse discrete Fourier transform

Syntax Y = ifftn(X)
Y = ifftn(X,siz)
y = ifftn(..., 'symmetric')
y = ifftn(..., 'nonsymmetric')

Description Y = ifftn(X) returns the n-dimensional inverse discrete Fourier
transform (DFT) of X, computed with a multidimensional fast Fourier
transform (FFT) algorithm. The result Y is the same size as X.

ifftn tests X to see whether it is conjugate symmetric. If so, the
computation is faster and the output is real. An N1-by-N2-by- ... Nk
array X is conjugate symmetric if

X(i1,i2, ...,ik) = conj(X(mod(N1-i1+1,N1)+1, mod(N2-i2+1,N2)+1,
... mod(Nk-ik+1,Nk)+1))

for each element of X.

Y = ifftn(X,siz) pads X with zeros, or truncates X, to create a
multidimensional array of size siz before performing the inverse
transform. The size of the result Y is siz.

y = ifftn(..., 'symmetric') causes ifftn to treat X as conjugate
symmetric. This option is useful when X is not exactly conjugate
symmetric, merely because of round-off error.

y = ifftn(..., 'nonsymmetric') is the same as calling ifftn(...)
without the argument 'nonsymmetric'.

Remarks For any X, ifftn(fftn(X)) equals X within roundoff error.

Algorithm ifftn(X) is equivalent to

Y = X;
for p = 1:length(size(X))

Y = ifft(Y,[],p);
end

2-1615

ifftn

This computes in-place the one-dimensional inverse DFT along each
dimension of X.

The execution time for ifftn depends on the length of the transform. It
is fastest for powers of two. It is almost as fast for lengths that have
only small prime factors. It is typically several times slower for lengths
that are prime or which have large prime factors.

Note You might be able to increase the speed of ifftn using the utility
function fftw, which controls how MATLAB optimizes the algorithm
used to compute an FFT of a particular size and dimension.

Data Type
Support

ifftn supports inputs of data types double and single. If you call
ifftn with the syntax y = ifftn(X, ...), the output y has the same
data type as the input X.

See Also fftn, fftw, ifft, ifft2, ifftshift

2-1616

ifftshift

Purpose Inverse FFT shift

Syntax ifftshift(X)
ifftshift(X,dim)

Description ifftshift(X) swaps the left and right halves of the vector X. For
matrices, ifftshift(X) swaps the first quadrant with the third and
the second quadrant with the fourth. If X is a multidimensional array,
ifftshift(X) swaps “half-spaces” of X along each dimension.

ifftshift(X,dim) applies the ifftshift operation along the
dimension dim.

Note ifftshift undoes the results of fftshift. If the matrix X
contains an odd number of elements, ifftshift(fftshift(X)) must
be done to obtain the original X. Simply performing fftshift(X) twice
will not produce X.

See Also fft, fft2, fftn, fftshift

2-1617

ilu

Purpose Sparse incomplete LU factorization

Syntax ilu(A,setup)
[L,U] = ilu(A,setup)
[L,U,P] = ilu(A,setup)

Description ilu produces a unit lower triangular matrix, an upper triangular
matrix, and a permutation matrix.

ilu(A,setup) computes the incomplete LU factorization of A. setup
is an input structure with up to five setup options. The fields must
be named exactly as shown in the table below. You can include any
number of these fields in the structure and define them in any order.
Any additional fields are ignored.

Field
Name Description

type Type of factorization. Values for type include:

• 'nofill'—Performs ILU factorization with 0 level of
fill in, known as ILU(0). With type set to 'nofill',
only the milu setup option is used; all other fields are
ignored.

• 'crout'—Performs the Crout version of ILU
factorization, known as ILUC. With type set to
'crout', only the droptol and milu setup options are
used; all other fields are ignored.

• 'ilutp' (default)—Performs ILU factorization with
threshold and pivoting.

If type is not specified, the ILU factorization with
pivoting ILUTP is performed. Pivoting is never performed
with type set to 'nofill' or 'crout'.

2-1618

ilu

Field
Name Description

droptol Drop tolerance of the incomplete LU factorization.
droptol is a non-negative scalar. The default value is 0,
which produces the complete LU factorization.

The nonzero entries of U satisfy

abs(U(i,j)) >= droptol*norm((A:,j)),

with the exception of the diagonal entries, which are
retained regardless of satisfying the criterion. The
entries of L are tested against the local drop tolerance
before being scaled by the pivot, so for nonzeros in L

abs(L(i,j)) >= droptol*norm(A(:,j))/U(j,j).

milu Modified incomplete LU factorization. Values for milu
include:

• 'row'—Produces the row-sum modified incomplete LU
factorization. Entries from the newly-formed column
of the factors are subtracted from the diagonal of the
upper triangular factor, U, preserving column sums.
That is, A*e = L*U*e, where e is the vector of ones.

• 'col'—Produces the column-sum modified incomplete
LU factorization. Entries from the newly-formed
column of the factors are subtracted from the diagonal
of the upper triangular factor, U, preserving column
sums. That is, e'*A = e'*L*U.

• 'off' (default)—No modified incomplete LU
factorization is produced.

2-1619

ilu

Field
Name Description

udiag If udiag is 1, any zeros on the diagonal of the upper
triangular factor are replaced by the local drop tolerance.
The default is 0.

thresh Pivot threshold between 0 (forces diagonal pivoting)
and 1, the default, which always chooses the maximum
magnitude entry in the column to be the pivot.

ilu(A,setup) returns L+U-speye(size(A)), where L is a unit lower
triangular matrix and U is an upper triangular matrix.

[L,U] = ilu(A,setup) returns a unit lower triangular matrix in L and
an upper triangular matrix in U.

[L,U,P] = ilu(A,setup) returns a unit lower triangular matrix in L,
an upper triangular matrix in U, and a permutation matrix in P.

Remarks These incomplete factorizations may be useful as preconditioners for
a system of linear equations being solved by iterative methods such
as BICG (BiConjugate Gradients), GMRES (Generalized Minimum
Residual Method).

Limitations ilu works on sparse square matrices only.

Examples Start with a sparse matrix and compute the LU factorization.

A = gallery('neumann', 1600) + speye(1600);
setup.type = 'crout';
setup.milu = 'row';
setup.droptol = 0.1;
[L,U] = ilu(A,setup);
e = ones(size(A,2),1);
norm(A*e-L*U*e)

ans =

2-1620

ilu

1.4251e-014

This shows that A and L*U, where L and U are given by the modified
Crout ILU, have the same row-sum.

Start with a sparse matrix and compute the LU factorization.

A = gallery('neumann', 1600) + speye(1600);
setup.type = 'nofill';
nnz(A)
ans =

7840

nnz(lu(A))
ans =

126478

nnz(ilu(A,setup))
ans =

7840

This shows that A has 7840 nonzeros, the complete LU factorization has
126478 nonzeros, and the incomplete LU factorization, with 0 level of
fill-in, has 7840 nonzeros, the same amount as A.

See Also bicg, cholinc,gmres,luinc

References [1] Saad, Yousef, Iterative Methods for Sparse Linear Systems, PWS
Publishing Company, 1996, Chapter 10 - Preconditioning Techniques.

2-1621

im2frame

Purpose Convert image to movie frame

Syntax f = im2frame(X,map)
f = im2frame(X)

Description f = im2frame(X,map) converts the indexed image X and associated
colormap map into a movie frame f. If X is a truecolor (m-by-n-by-3)
image, then map is optional and has no effect.

Typical usage:

M(1) = im2frame(X1,map);
M(2) = im2frame(X2,map);
...

M(n) = im2frame(Xn,map);
movie(M)

f = im2frame(X) converts the indexed image X into a movie frame f
using the current colormap if X contains an indexed image.

See Also frame2im, movie

“Bit-Mapped Images” on page 1-92 for related functions

2-1622

im2java

Purpose Convert image to Java image

Syntax jimage = im2java(I)
jimage = im2java(X,MAP)
jimage = im2java(RGB)

Description To work with a MATLAB image in the Java environment, you must
convert the image from its MATLAB representation into an instance of
the Java image class, java.awt.Image.

jimage = im2java(I) converts the intensity image I to an instance of
the Java image class, java.awt.Image.

jimage = im2java(X,MAP) converts the indexed image X, with
colormap MAP, to an instance of the Java image class, java.awt.Image.

jimage = im2java(RGB) converts the RGB image RGB to an instance of
the Java image class, java.awt.Image.

Class
Support

The input image can be of class uint8, uint16, or double.

Note Java requires uint8 data to create an instance of the Java image
class, java.awt.Image. If the input image is of class uint8, jimage
contains the same uint8 data. If the input image is of class double or
uint16, im2java makes an equivalent image of class uint8, rescaling
or offsetting the data as necessary, and then converts this uint8
representation to an instance of the Java image class, java.awt.Image.

Example This example reads an image into the MATLAB workspace and then
uses im2java to convert it into an instance of the Java image class.

I = imread('ngc6543a.jpg');
javaImage = im2java(I);
frame = javax.swing.JFrame;
icon = javax.swing.ImageIcon(javaImage);
label = javax.swing.JLabel(icon);

2-1623

im2java

frame.getContentPane.add(label);
frame.pack
frame.show

See Also “Bit-Mapped Images” on page 1-92 for related functions

2-1624

imag

Purpose Imaginary part of complex number

Syntax Y = imag(Z)

Description Y = imag(Z) returns the imaginary part of the elements of array Z.

Examples imag(2+3i)

ans =

3

See Also conj, i, j, real

2-1625

image

Purpose Display image object

GUI
Alternatives

To plot a selected matrix as an image use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
image characteristics in plot edit mode with the Property Editor. For
details, see Plotting Tools — Interactive Plotting in the MATLAB
Graphics documentation and Creating Graphics from the Workspace
Browser in the MATLAB Desktop Tools documentation.

Syntax image(C)
image(x,y,C)
image(x,y,C,'PropertyName',PropertyValue,...)
image('PropertyName',PropertyValue,...)
handle = image(...)

Description image creates an image graphics object by interpreting each element
in a matrix as an index into the figure’s colormap or directly as RGB
values, depending on the data specified.

The image function has two forms:

• A high-level function that calls newplot to determine where to draw
the graphics objects and sets the following axes properties:

- XLim and YLim to enclose the image

- Layer to top to place the image in front of the tick marks and
grid lines

- YDir to reverse

- View to [0 90]

2-1626

image

• A low-level function that adds the image to the current axes without
calling newplot. The low-level function argument list can contain
only property name/property value pairs.

You can specify properties as property name/property value pairs,
structure arrays, and cell arrays (see set and get for examples of how to
specify these data types).

image(C) displays matrix C as an image. Each element of C specifies
the color of a rectangular segment in the image.

image(x,y,C), where x and y are two-element vectors, specifies the
range of the x- and y-axis labels, but produces the same image as
image(C). This can be useful, for example, if you want the axis tick
labels to correspond to real physical dimensions represented by the
image.

image(x,y,C,'PropertyName',PropertyValue,...) is a high-level
function that also specifies property name/property value pairs. This
syntax calls newplot before drawing the image.

image('PropertyName',PropertyValue,...) is the low-level syntax
of the image function. It specifies only property name/property value
pairs as input arguments.

handle = image(...) returns the handle of the image object it creates.
You can obtain the handle with all forms of the image function.

Remarks Image data can be either indexed or true color. An indexed image stores
colors as an array of indices into the figure colormap. A true color image
does not use a colormap; instead, the color values for each pixel are
stored directly as RGB triplets. In MATLAB, the CData property of a
truecolor image object is a three-dimensional (m-by-n-by-3) array. This
array consists of three m-by-n matrices (representing the red, green, and
blue color planes) concatenated along the third dimension.

The imread function reads image data into MATLAB arrays from
graphics files in various standard formats, such as TIFF. You can write
MATLAB image data to graphics files using the imwrite function.

2-1627

image

imread and imwrite both support a variety of graphics file formats
and compression schemes.

When you read image data into MATLAB using imread, the data is
usually stored as an array of 8-bit integers. However, imread also
supports reading 16-bit-per-pixel data from TIFF and PNG files. These
are more efficient storage methods than the double-precision (64-bit)
floating-point numbers that MATLAB typically uses. However, it
is necessary for MATLAB to interpret 8-bit and 16-bit image data
differently from 64-bit data. This table summarizes these differences.

You cannot interactively pan or zoom outside the x-limits or y-limits of
an image, unless the axes limits are already been set outside the bounds
of the image, in which case there is no such restriction. If other objects
(such as lineseries) occupy the axes and extend beyond the bounds of
the image, you can pan or zoom to the bounds of the other objects, but
no further.

Image
Type

Double-Precision Data
(double Array)

8-Bit Data (uint8 Array)
16-Bit Data (uint16
Array)

Indexed
(colormap)

Image is stored as
a two-dimensional
(m-by-n) array of
integers in the range
[1, length(colormap)];
colormap is an m-by-3
array of floating-point
values in the range [0, 1].

Image is stored as a
two-dimensional (m-by-n)
array of integers in the
range [0, 255] (uint8)
or [0, 65535] (uint16);
colormap is an m-by-3
array of floating-point
values in the range [0, 1].

True color
(RGB)

Image is stored as
a three-dimensional
(m-by-n-by-3) array of
floating-point values in
the range [0, 1].

Image is stored as
a three-dimensional
(m-by-n-by-3) array of
integers in the range [0,
255] (uint8) or [0, 65535]
(uint16).

2-1628

image

Indexed Images

In an indexed image of class double, the value 1 points to the first row in
the colormap, the value 2 points to the second row, and so on. In a uint8
or uint16 indexed image, there is an offset; the value 0 points to the
first row in the colormap, the value 1 points to the second row, and so on.

If you want to convert a uint8 or uint16 indexed image to double, you
need to add 1 to the result. For example,

X64 = double(X8) + 1;

or

X64 = double(X16) + 1;

To convert from double to uint8 or uint16, you need to first subtract 1,
and then use round to ensure all the values are integers.

X8 = uint8(round(X64 - 1));

or

X16 = uint16(round(X64 - 1));

When you write an indexed image using imwrite, MATLAB
automatically converts the values if necessary.

Colormaps

Colormaps in MATLAB are always m-by-3 arrays of double-precision
floating-point numbers in the range [0, 1]. In most graphics file formats,
colormaps are stored as integers, but MATLAB does not support
colormaps with integer values. imread and imwrite automatically
convert colormap values when reading and writing files.

True Color Images

In a true color image of class double, the data values are floating-point
numbers in the range [0, 1]. In a true color image of class uint8, the
data values are integers in the range [0, 255], and for true color images
of class uint16 the data values are integers in the range [0, 65535].

2-1629

image

If you want to convert a true color image from one data type to the
other, you must rescale the data. For example, this statement converts
a uint8 true color image to double.

RGB64 = double(RGB8)/255;

or for uint16 images,

RGB64 = double(RGB16)/65535;

This statement converts a double true color image to uint8:

RGB8 = uint8(round(RGB64*255));

or to obtain uint16 images, type

RGB16 = uint16(round(RGB64*65535));

When you write a true color image using imwrite, MATLAB
automatically converts the values if necessary.

Object
Hierarchy

Setting Default Properties

You can set default image properties on the axes, figure, and root levels:

set(0,'DefaultImageProperty',PropertyValue...)
set(gcf,'DefaultImageProperty',PropertyValue...)
set(gca,'DefaultImageProperty',PropertyValue...)

2-1630

image

where Property is the name of the image property and PropertyValue
is the value you are specifying. Use set and get to access image
properties.

Example Example 1

Load a mat-file containing a photograph of a colorful primate. Display
the indexed image using its associated colormap.

load mandrill
figure('color','k')
image(X)
colormap(map)
axis off % Remove axis ticks and numbers
axis image % Set aspect ratio to obtain square pixels

Example 2

Load a JPEG image file of the Cat’s Eye Nebula from the Hubble Space
Telescope (image courtesy NASA). Display the original image using its
RGB color values (left) as a subplot. Create a linked subplot (same

2-1631

image

size and scale) to display the transformed intensity image as a heat
map (right).

figure
ax(1) = subplot(1,2,1);
rgb = imread('ngc6543a.jpg');
image(rgb); title('RGB image')
ax(2) = subplot(122);
im = mean(rgb,3);
image(im); title('Intensity Heat Map')
colormap(hot(256))
linkaxes(ax,'xy')
axis(ax,'image')

See Also imagesc, imfinfo, imread, imwrite, colormap, pcolor, newplot,
surface

“Displaying Bit-Mapped Images”

“Bit-Mapped Images” on page 1-92 for related functions

Image Properties for property descriptions

2-1632

Image Properties

Purpose Define image properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• “The Property Editor” is an interactive tool that enables you to see
and change object property values.

• The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see “Setting Default Property
Values”.

See “Core Graphics Objects” for general information about this type
of object.

Image
Properties

This section lists property names along with the types of values each
property accepts.

AlphaData
m-by-n matrix of double or uint8

The transparency data. A matrix of non-NaN values specifying the
transparency of each face or vertex of the object. The AlphaData
can be of class double or uint8.

MATLAB determines the transparency in one of three ways:

• Using the elements of AlphaData as transparency values
(AlphaDataMapping set to none)

• Using the elements of AlphaData as indices into the current
alphamap (AlphaDataMapping set to direct)

• Scaling the elements of AlphaData to range between the
minimum and maximum values of the axes ALim property
(AlphaDataMapping set to scaled, the default)

2-1633

Image Properties

AlphaDataMapping
{none} | direct| scaled

Transparency mapping method. This property determines how
MATLAB interprets indexed alpha data. It can be any of the
following:

• none — The transparency values of AlphaData are between 0
and 1 or are clamped to this range (the default).

• scaled — Transform the AlphaData to span the portion of
the alphamap indicated by the axes ALim property, linearly
mapping data values to alpha values.

• direct — Use the AlphaData as indices directly into the
alphamap. When not scaled, the data are usually integer
values ranging from 1 to length(alphamap). MATLAB maps
values less than 1 to the first alpha value in the alphamap, and
values greater than length(alphamap) to the last alpha value
in the alphamap. Values with a decimal portion are fixed to
the nearest, lower integer. If AlphaData is an array of uint8
integers, then the indexing begins at 0 (i.e., MATLAB maps a
value of 0 to the first alpha value in the alphamap).

Annotation
hg.Annotation object Read Only

Control the display of image objects in legends. The Annotation
property enables you to specify whether this image object is
represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the image
object is displayed in a figure legend:

2-1634

Image Properties

IconDisplayStyle
Value

Purpose

on Represent this image object in a legend
(default)

off Do not include this image object in a legend

children Same as on because image objects do not
have children

Setting the IconDisplayStyle property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to off:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation','LegendInformation');
set(hLegendEntry,'IconDisplayStyle','off')

Using the IconDisplayStyle property

See “Controlling Legends” for more information and examples.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

2-1635

Image Properties

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function
executing, callbacks invoked subsequently always attempt to
interrupt it.

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs
at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

• cancel — Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
string or function handle

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is over this object, but
not over another graphics object. See the HitTestArea property
for information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be

• A string that is a valid MATLAB expression

• The name of an M-file

• A function handle

2-1636

Image Properties

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

See “Function Handle Callbacks” for information on how to use
function handles to define the callbacks.

CData
matrix or m-by-n-by-3 array

The image data. A matrix or 3-D array of values specifying the
color of each rectangular area defining the image. image(C)
assigns the values of C to CData. MATLAB determines the
coloring of the image in one of three ways:

• Using the elements of CData as indices into the current
colormap (the default) (CDataMapping set to direct)

• Scaling the elements of CData to range between the values
min(get(gca,'CLim')) and max(get(gca,'CLim'))
(CDataMapping set to scaled)

• Interpreting the elements of CData directly as RGB values
(true color specification)

Note that the behavior of NaNs in image CData is not defined.
See the image AlphaData property for information on using
transparency with images.

A true color specification for CData requires an m-by-n-by-3 array
of RGB values. The first page contains the red component, the
second page the green component, and the third page the blue
component of each element in the image. RGB values range from
0 to 1. The following picture illustrates the relative dimensions of
CData for the two color models.

2-1637

Image Properties

If CData has only one row or column, the height or width
respectively is always one data unit and is centered about the
first YData or XData element respectively. For example, using a
4-by-1 matrix of random data,

C = rand(4,1);
image(C,'CDataMapping','scaled')
axis image

produces

2-1638

Image Properties

CDataMapping
scaled | {direct}

Direct or scaled indexed colors. This property determines whether
MATLAB interprets the values in CData as indices into the figure
colormap (the default) or scales the values according to the values
of the axes CLim property.

When CDataMapping is direct, the values of CData should be in
the range 1 to length(get(gcf,'Colormap')). If you use true
color specification for CData, this property has no effect.

Children
handles

2-1639

Image Properties

The empty matrix; image objects have no children.

Clipping
on | off

Clipping mode. By default, MATLAB clips images to the axes
rectangle. If you set Clipping to off, the image can be displayed
outside the axes rectangle. For example, if you create an image,
set hold to on, freeze axis scaling (with axis manual), and then
create a larger image, it extends beyond the axis limits.

CreateFcn
string or function handle

Callback routine executed during object creation. This property
defines a callback routine that executes when MATLAB creates
an image object. You must define this property as a default value
for images or in a call to the image function to create a new image
object. For example, the statement

set(0,'DefaultImageCreateFcn','axis image')

defines a default value on the root level that sets the aspect ratio
and the axis limits so the image has square pixels. MATLAB
executes this routine after setting all image properties. Setting
this property on an existing image object has no effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
string or function handle

Callback executed during object deletion. A callback that executes
when this object is deleted (e.g., this might happen when you issue

2-1640

Image Properties

a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

DisplayName
string (default is empty string)

String used by legend for this image object. The legend function
uses the string defined by the DisplayName property to label this
image object in the legend.

• If you specify string arguments with the legend function,
DisplayName is set to this image object’s corresponding string
and that string is used for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

2-1641

Image Properties

See “Controlling Legends” for more examples.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase objects and their children. Alternative erase
modes are useful for creating animated sequences, where control
of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

• normal — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none — Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing
with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of
the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color
if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

• background — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other
graphics objects that are behind the erased object, but the
erased object is always properly colored.

Printing with Nonnormal Erase Modes

2-1642

Image Properties

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB can mathematically combine
layers of colors (e.g., performing an XOR on a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally accessing
objects that you need to protect for some reason.

• on — Handles are always visible when HandleVisibility is on.

• callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions
invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

• off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

2-1643

Image Properties

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

2-1644

Image Properties

HitTest
{on} | off

Selectable by mouse click. HitTest determines whether this object
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the objects that compose the area graph. If HitTest
is off, clicking this object selects the object below it (which is
usually the axes containing it).

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether an object’s callback can be interrupted by
callbacks invoked subsequently.

Only callbacks defined for the ButtonDownFcn property are
affected by the Interruptible property. MATLAB checks for
events that can interrupt a callback only when it encounters a
drawnow, figure, getframe, or pause command in the routine.
See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback
to interrupt callback routines originating from a bar property.
Note that MATLAB does not save the state of variables or the
display (e.g., the handle returned by the gca or gcf command)
when an interruption occurs.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of this object. This property contains the handle of the
object’s parent. The parent is normally the axes, hggroup, or
hgtransform object that contains the object.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

2-1645

Image Properties

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection "handles" at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing four edge handles and four corner handles. When
SelectionHighlight is off, MATLAB does not draw the handles
except when in plot edit mode and objects are selected manually.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callbacks.
You can define Tag as any string.

For example, you might create an areaseries object and set the
Tag property.

t = area(Y,'Tag','area1')

When you want to access objects of a given type, you can use
findobj to find the object’s handle. The following statement
changes the FaceColor property of the object whose Tag is area1.

2-1646

Image Properties

set(findobj('Tag','area1'),'FaceColor','red')

Type
string (read only)

Type of graphics object. This property contains a string that
identifies the class of graphics object. For image objects, Type
is always ’image’.

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with this object. Assign this property
the handle of a uicontextmenu object created in the object’s
parent figure. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever
you right-click over the object.

UserData
array

User-specified data. This property can be any data you want to
associate with this object (including cell arrays and structures).
The object does not set values for this property, but you can access
it using the set and get functions.

Visible
{on} | off

Visibility of this object and its children. By default, a new object’s
visibility is on. This means all children of the object are visible
unless the child object’s Visible property is set to off. Setting an
object’s Visible property to off prevents the object from being
displayed. However, the object still exists and you can set and
query its properties.

XData
[1 size(CData,2)] by default

2-1647

Image Properties

Control placement of image along x-axis. A vector specifying
the locations of the centers of the elements CData(1,1) and
CData(m,n), where CData has a size of m-by-n. Element
CData(1,1) is centered over the coordinate defined by the first
elements in XData and YData. Element CData(m,n) is centered
over the coordinate defined by the last elements in XData and
YData. The centers of the remaining elements of CData are evenly
distributed between those two points.

The width of each CData element is determined by the expression

(XData(2)-XData(1))/(size(CData,2)-1)

You can also specify a single value for XData. In this case, image
centers the first element at this coordinate and centers each
following element one unit apart.

YData
[1 size(CData,1)] by default

Control placement of image along y-axis. A vector specifying
the locations of the centers of the elements CData(1,1) and
CData(m,n), where CData has a size of m-by-n. Element
CData(1,1) is centered over the coordinate defined by the first
elements in XData and YData. Element CData(m,n) is centered
over the coordinate defined by the last elements in XData and
YData. The centers of the remaining elements of CData are evenly
distributed between those two points.

The height of each CData element is determined by the expression

(YData(2)-YData(1))/(size(CData,1)-1)

You can also specify a single value for YData. In this case, image
centers the first element at this coordinate and centers each
following element one unit apart.

2-1648

imagesc

Purpose Scale data and display image object

GUI
Alternatives

To plot a selected matrix as an image use the Plot Selector in the
Workspace Browser, or use the Figure Palette Plot Catalog. Manipulate
image characteristics in plot edit mode with the Property Editor. For
details, see Plotting Tools — Interactive Plotting in the MATLAB
Graphics documentation and Creating Graphics from the Workspace
Browser in the MATLAB Desktop Tools documentation.

Syntax imagesc(C)
imagesc(x,y,C)
imagesc(...,clims)
h = imagesc(...)

Description The imagesc function scales image data to the full range of the current
colormap and displays the image. (See “Examples” on page 2-1650 for
an illustration.)

imagesc(C) displays C as an image. Each element of C corresponds to
a rectangular area in the image. The values of the elements of C are
indices into the current colormap that determine the color of each patch.

imagesc(x,y,C) displays C as an image and specifies the bounds of the
x- and y-axis with vectors x and y.

imagesc(...,clims) normalizes the values in C to the range specified
by clims and displays C as an image. clims is a two-element vector that
limits the range of data values in C. These values map to the full range
of values in the current colormap.

h = imagesc(...) returns the handle for an image graphics object.

2-1649

imagesc

Remarks x and y do not affect the elements in C; they only affect the annotation
of the axes. If length(x) > 2 or length(y) > 2, imagesc ignores all
except the first and last elements of the respective vector.

imagesc creates an image with CDataMapping set to scaled, and sets the
axes CLim property to the value passed in clims.

You cannot interactively pan or zoom outside the x-limits or y-limits
of an image.

Examples You can expand midrange color resolution by mapping low values to the
first color and high values to the last color in the colormap by specifying
color value limits (clims). If the size of the current colormap is 81-by-3,
the statements

clims = [10 60]
imagesc(C,clims)

map the data values in C to the colormap as shown in this illustration
and the code that follows:

In this example, the left image maps to the gray colormap using the
statements

2-1650

imagesc

load clown
imagesc(X)
colormap(gray)

The right image has values between 10 and 60 scaled to the full range
of the gray colormap using the statements

load clown
clims = [10 60];
imagesc(X,clims)
colormap(gray)

See Also image, imfinfo, imread, imwrite, colorbar, colormap, pcolor,
surface, surf

“Bit-Mapped Images” on page 1-92 for related functions

2-1651

imfinfo

Purpose Information about graphics file

Syntax info = imfinfo(filename,fmt)
info = imfinfo(filename)
info = imfino(URL,...)

Description info = imfinfo(filename,fmt) returns a structure, info, whose
fields contain information about an image in a graphics file. filename is
a string that specifies the name of the graphics file, and fmt is a string
that specifies the format of the file. The file must be in the current
directory or in a directory on the MATLAB path. If imfinfo cannot
find a file named filename, it looks for a file named filename.fmt.
The possible values for fmt are contained in the MATLAB file format
registry. To view of list of these formats, run the imformats command.

If filename is a TIFF, HDF, ICO, GIF, or CUR file containing more than
one image, info is a structure array with one element for each image
in the file. For example, info(3) would contain information about the
third image in the file.

info = imfinfo(filename) attempts to infer the format of the file
from its contents.

info = imfino(URL,...) reads the image from the specified Internet
URL. The URL must include the protocol type (e.g., http://)

Information Returned

The set of fields in info depends on the individual file and its format.
However, the first nine fields are always the same. This table lists these
common fields, in the order they appear in the structure, and describes
their values.

Field Value

Filename A string containing the name of the file; if the file is
not in the current directory, the string contains the
full pathname of the file.

2-1652

imfinfo

Field Value

FileModDate A string containing the date when the file was last
modified

FileSize An integer indicating the size of the file in bytes

Format A string containing the file format, as specified
by fmt; for JPEG and TIFF files, the three-letter
variant is returned.

FormatVersion A string or number describing the version of the
format

Width An integer indicating the width of the image in
pixels

Height An integer indicating the height of the image in
pixels

BitDepth An integer indicating the number of bits per pixel

ColorType A string indicating the type of image; either
'truecolor' for a truecolor RGB image,
'grayscale' for a grayscale intensity image, or
'indexed' for an indexed image

Example info = imfinfo('canoe.tif')

info =

Filename: [1x76 char]
FileModDate: '04-Dec-2000 13:57:55'

FileSize: 69708
Format: 'tif'

FormatVersion: []
Width: 346

Height: 207
BitDepth: 8

ColorType: 'indexed'

2-1653

imfinfo

FormatSignature: [73 73 42 0]
ByteOrder: 'little-endian'

NewSubFileType: 0
BitsPerSample: 8

Compression: 'PackBits'
PhotometricInterpretation: 'RGB Palette'

StripOffsets: [9x1 double]
SamplesPerPixel: 1

RowsPerStrip: 23
StripByteCounts: [9x1 double]

XResolution: 72
YResolution: 72

ResolutionUnit: 'Inch'
Colormap: [256x3 double]

PlanarConfiguration: 'Chunky'
TileWidth: []

TileLength: []
TileOffsets: []

TileByteCounts: []
Orientation: 1

FillOrder: 1
GrayResponseUnit: 0.0100

MaxSampleValue: 255
MinSampleValue: 0

Thresholding: 1

See Also imformats, imread, imwrite

“Bit-Mapped Images” on page 1-92 for related functions

2-1654

imformats

Purpose Manage image file format registry

Syntax imformats
formats = imformats
formats = imformats('fmt')
formats = imformats(format_struct)
formats = imformats('factory')

Description imformats displays a table of information listing all the values in the
MATLAB file format registry. This registry determines which file
formats are supported by the imfinfo, imread, and imwrite functions.

formats = imformats returns a structure containing all the values in
the MATLAB file format registry. The following tables lists the fields in
the order they appear in the structure.

Field Value

ext A cell array of strings that specify filename extensions
that are valid for this format

isa A string specifying the name of the function that
determines if a file is a certain format. This can also
be a function handle.

info A string specifying the name of the function that reads
information about a file. This can also be a function
handle.

read A string specifying the name of the function that reads
image data in a file. This can also be a function handle.

write A string specifying the name of the function that writes
MATLAB data to a file. This can also be a function
handle.

alpha Returns 1 if the format has an alpha channel, 0
otherwise

description A text description of the file format

2-1655

imformats

Note The values for the isa, info, read, and write fields must be
functions on the MATLAB search path or function handles.

formats = imformats('fmt') searches the known formats in the
MATLAB file format registry for the format associated with the
filename extension 'fmt'. If found, imformats returns a structure
containing the characteristics and function names associated with the
format. Otherwise, it returns an empty structure.

formats = imformats(format_struct) sets the MATLAB file format
registry to the values in format_struct. The output structure,
formats, contains the new registry settings.

Caution Using imformats to specify values in the MATLAB file format
registry can result in the inability to load any image files. To return
the file format registry to a working state, use imformats with the
'factory' setting.

formats = imformats('factory') resets the MATLAB file format
registry to the default format registry values. This removes any
user-specified settings.

Changes to the format registry do not persist between MATLAB
sessions. To have a format always available when you start MATLAB,
add the appropriate imformats command to the MATLAB startup file,
startup.m, located in $MATLAB/toolbox/local on UNIX systems, or
$MATLAB\toolbox\local on Windows systems.

Example formats = imformats;
formats(1)

ans =

ext: {'bmp'}

2-1656

imformats

isa: @isbmp
info: @imbmpinfo
read: @readbmp

write: @writebmp
alpha: 0

description: 'Windows Bitmap (BMP)'

See Also fileformats, imfinfo, imread, imwrite, path

“Bit-Mapped Images” on page 1-92 for related functions

2-1657

import

Purpose Add package or class to current Java import list

Syntax import package_name.*
import class_name
import cls_or_pkg_name1 cls_or_pkg_name2...
import
L = import

Description import package_name.* adds all the classes in package_name to the
current import list. Note that package_name must be followed by .*.

import class_name adds a single class to the current import list. Note
that class_name must be fully qualified (that is, it must include the
package name).

import cls_or_pkg_name1 cls_or_pkg_name2... adds all named
classes and packages to the current import list. Note that each class
name must be fully qualified, and each package name must be followed
by .*.

import with no input arguments displays the current import list,
without adding to it.

L = import with no input arguments returns a cell array of strings
containing the current import list, without adding to it.

The import command operates exclusively on the import list of the
function from which it is invoked. When invoked at the command
prompt, import uses the import list for the MATLAB command
environment. If import is used in a script invoked from a function, it
affects the import list of the function. If import is used in a script that
is invoked from the command prompt, it affects the import list for the
command environment.

The import list of a function is persistent across calls to that function
and is only cleared when the function is cleared.

To clear the current import list, use the following command.

clear import

2-1658

import

This command may only be invoked at the command prompt.
Attempting to use clear import within a function results in an error.

Remarks The only reason for using import is to allow your code to refer to each
imported class with the immediate class name only, rather than with the
fully qualified class name. import is particularly useful in streamlining
calls to constructors, where most references to Java classes occur.

Examples This example shows importing and using the single class,
java.lang.String, and two complete packages, java.util and
java.awt.

import java.lang.String
import java.util.* java.awt.*
f = Frame; % Create java.awt.Frame object
s = String('hello'); % Create java.lang.String object
methods Enumeration % List java.util.Enumeration methods

See Also clear, importdata

2-1659

importdata

Purpose Load data from disk file

Syntax importdata(filename)
A = importdata(filename)
A = importdata(filename,delimiter)
A = importdata(filename,delimiter,headerline)
[A D] = importdata(...)
[A D H] = importdata(...)
[...] = importdata('-pastespecial', ...)

Description importdata(filename) loads data from filename into the workspace.
The filename input is a string enclosed in single quotes.

A = importdata(filename) loads data from filename into structure A.

A = importdata(filename,delimiter) loads data from filename
using delimiter as the column separator. The delimiter argument
must be a string enclosed in single quotes. Use '\t' for tab. When
importing from an ASCII file, delimiter only separates numeric data.

A = importdata(filename,delimiter,headerline) where
headerline is a number that indicates on which line of the file the
header text is located, loads data from line headerline+1 to the end of
the file.

[A D] = importdata(...) returns the output structure in A, and the
delimiter character in D.

[A D H] = importdata(...) returns the output structure in A, the
delimiter character in D, and the line number of the header in H.

[...] = importdata('-pastespecial', ...) loads data from your
computer’s paste buffer rather than from a file.

Remarks importdata looks at the file extension to determine which helper
function to use. If it can recognize the file extension, importdata calls
the appropriate helper function, specifying the maximum number of
output arguments. If it cannot recognize the file extension, importdata
calls finfo to determine which helper function to use. If no helper

2-1660

importdata

function is defined for this file extension, importdata treats the file as
delimited text. importdata removes from the result empty outputs
returned from the helper function.

Examples Example 1 — A Simple Import

Import data from file ding.wav:

s = importdata('ding.wav')
s =

data: [11554x1 double]
fs: 22050

Example 2 — Importing with Delimiter and Header

Use importdata to read in a text file. The third input argument is
colheaders, which is the number of lines that belong to the header:

type 'myfile.txt'

Day1 Day2 Day3 Day4 Day5 Day6 Day7
95.01 76.21 61.54 40.57 5.79 20.28 1.53
23.11 45.65 79.19 93.55 35.29 19.87 74.68
60.68 1.85 92.18 91.69 81.32 60.38 44.51
48.60 82.14 73.82 41.03 0.99 27.22 93.18
89.13 44.47 17.63 89.36 13.89 19.88 46.60

Import from the file, specifying the space character as the delimiter and
1 row for the column header. Assign the output to variable M:

M = importdata('myfile.txt', ' ', 1);

Print out columns 3 and 5, including the header for those columns:

for k=3:2:5
M.colheaders(1,k)
M.data(:,k)
disp ' '

end

2-1661

importdata

ans =
'Day3'

ans =
61.5400
79.1900
92.1800
73.8200
17.6300

ans =
'Day5'

ans =
5.7900

35.2900
81.3200
0.9900

13.8900

See Also load

2-1662

imread

Purpose Read image from graphics file

Syntax A = imread(filename, fmt)
[X, map] = imread(...)
[...] = imread(filename)
[...] = imread(URL,...)
[...] = imread(..., idx) CUR or ICO
[A, map, alpha] = imread(...) CUR or ICO
[...] = imread(..., idx) GIF
[...] = imread(..., 'frames', idx) GIF
[...] = imread(..., ref) HDF4
[...] = imread(...,'BackgroundColor',BG) PNG
[A, map, alpha] = imread(...) PNG
[...] = imread(..., idx) TIFF
[...] = imread(..., 'PixelRegion', {ROWS, COLS}) TIFF

Description A = imread(filename, fmt) reads a grayscale or color image from the
file specified by the string filename. If the file is not in the current
directory, or in a directory on the MATLAB path, specify the full
pathname.

The text string fmt specifies the format of the file by its standard file
extension. For example, specify 'gif' for Graphics Interchange Format
files. To see a list of supported formats, with their file extensions, use
the imformats function. If imread cannot find a file named filename, it
looks for a file named filename.fmt.

The return value A is an array containing the image data. If the file
contains a grayscale image, A is an M-by-N array. If the file contains a
truecolor image, A is an M-by-N-by-3 array. For TIFF files containing
color images that use the CMYK color space, A is an M-by-N-by-4
array. See TIFF in the Format-Specific Information section for more
information.

The class of A depends on the bits-per-sample of the image data,
rounded to the next byte boundary. For example, imread returns
24-bit color data as an array of uint8 data because the sample size for

2-1663

imread

each color component is 8 bits. See “Remarks” on page 2-1664 for a
discussion of bitdepths, and see “Format-Specific Information” on page
2-1664 for more detail about supported bitdepths and sample sizes for
a particular format.

[X, map] = imread(...) reads the indexed image in filename into X
and its associated colormap into map. Colormap values in the image file
are automatically rescaled into the range [0,1].

[...] = imread(filename) attempts to infer the format of the file
from its content.

[...] = imread(URL,...) reads the image from an Internet URL.
The URL must include the protocol type (e.g., http://).

See the format-specific sections for additional syntaxes.

Remarks

Bitdepth is the number of bits used to represent each image pixel.
Bitdepth is calculated by multiplying the bits-per-sample with the
samples-per-pixel. Thus, a format that uses 8-bits for each color
component (or sample) and three samples per pixel has a bitdepth
of 24. Sometimes the sample size associated with a bitdepth can be
ambiguous: does a 48-bit bitdepth represent six 8-bit samples, four
12-bit samples, or three 16-bit samples? The following format-specific
sections provide sample size information to avoid this ambiguity.

Format-Specific
Information

The following sections provide information about the support for specific
formats, listed in alphabetical order by format name. These sections
include information about format-specific syntaxes, if they exist. The
following is a list of links to the various sections.

• “BMP — Windows Bitmap” on page 2-1665

• “CUR — Cursor File” on page 2-1665

• “GIF — Graphics Interchange Format” on page 2-1666

• “HDF4 — Hierarchical Data Format” on page 2-1667

• “ICO — Icon File” on page 2-1668

2-1664

imread

• “JPEG — Joint Photographic Experts Group” on page 2-1668

• “PBM — Portable Bitmap” on page 2-1668

• “PCX — Windows Paintbrush” on page 2-1668

• “PGM — Portable Graymap” on page 2-1669

• “PNG — Portable Network Graphics” on page 2-1669

• “PPM — Portable Pixmap” on page 2-1670

• “RAS — Sun Raster” on page 2-1671

• “TIFF — Tagged Image File Format” on page 2-1671

• “XWD — X Window Dump” on page 2-1673

BMP — Windows Bitmap

The following table lists the supported bitdepths, compression, and
output classes for BMP data.

Supported
Bitdepths

No
Compression

RLE
Compression

Output
Class

Notes

1-bit x – logical

4-bit x x uint8

8-bit x x uint8

16-bit x – uint8 1 sample/pixel

24-bit x – uint8 3 samples/pixel

32-bit x – uint8 3 samples/pixel
(1 byte padding)

CUR — Cursor File

The following table lists the supported bitdepths, compression, and
output classes for Cursor files and Icon files.

2-1665

imread

Supported
Bitdepths

No
Compression

Compression Output Class

1-bit x – logical

4-bit x – uint8

8-bit x – uint8

The following are format-specific syntaxes for Cursor files and Icon files.

[...] = imread(..., idx) CUR or ICO reads in one image from
a multi-image icon or cursor file. idx is an integer value that specifies
the order that the image appears in the file. For example, if idx is 3,
imread reads the third image in the file. If you omit this argument,
imread reads the first image in the file.

[A, map, alpha] = imread(...) CUR or ICO returns the AND
mask for the resource, which can be used to determine the transparency
information. For cursor files, this mask may contain the only useful
data.

Note By default, Microsoft Windows cursors are 32-by-32 pixels.
MATLAB pointers must be 16-by-16. You will probably need to scale
your image. If you have Image Processing Toolbox, you can use the
imresize function.

GIF — Graphics Interchange Format

The following table lists the supported bitdepths, compression, and
output classes for GIF files.

Supported
Bitdepths

No
Compression

Compression Output Class

1-bit x – logical

2-bit to 8-bit x – uint8

2-1666

imread

The following are format-specific syntaxes for GIF files.

[...] = imread(..., idx) GIF reads in one or more frames from
a multiframe (i.e., animated) GIF file. idx must be an integer scalar or
vector of integer values. For example, if idx is 3, imread reads the third
image in the file. If idx is 1:5, imread returns only the first five frames.

[...] = imread(..., 'frames', idx) GIF is the same as the
syntax above except that idx can be 'all'. In this case, all the frames
are read and returned in the order that they appear in the file.

Note Because of the way that GIF files are structured, all the frames
must be read when a particular frame is requested. Consequently, it is
much faster to specify a vector of frames or 'all' for idx than to call
imread in a loop when reading multiple frames from the same GIF file.

HDF4 — Hierarchical Data Format

The following table lists the supported bitdepths, compression, and
output classes for HDF4 files.

Supported
Bitdepths

Raster
Image
with
colormap

Raster
image
without
colormap

Output
Class

Notes

8-bit x x uint8

24-bit – – uint8 3
samples/pixel

The following are format-specific syntaxes for HDF4 files.

[...] = imread(..., ref) HDF4 reads in one image from a
multi-image HDF4 file. ref is an integer value that specifies the
reference number used to identify the image. For example, if ref is 12,
imread reads the image whose reference number is 12. (Note that in
an HDF4 file the reference numbers do not necessarily correspond to
the order of the images in the file. You can use imfinfo to match image

2-1667

imread

order with reference number.) If you omit this argument, imread reads
the first image in the file.

ICO — Icon File

See CUR – Cursor File

JPEG — Joint Photographic Experts Group

imread can read any baseline JPEG image as well as JPEG images with
some commonly used extensions. The following table lists the supported
bitdepths, compression, and output classes for JPEG files.

Supported
Bitdepths

Lossy
Compression

Lossless
Compression

Output
Class

Notes

8-bit x x uint8 Grayscale or
RGB

12-bit x x uint16 Grayscale

16-bit – x uint16 Grayscale

36-bit x x uint16 RGB
Three 12-bit
samples/pixel

PBM — Portable Bitmap

The following table lists the supported bitdepths, compression, and
output classes for PBM files.

Supported
Bitdepths

Raw Binary ASCII (Plain)
Encoded

Output Class

1-bit x x logical

PCX — Windows Paintbrush

The following table lists the supported bitdepths, compression, and
output classes for PCX files.

2-1668

imread

Supported
Bitdepths

Output Class Notes

1-bit logical Grayscale only

8-bit uint8 Grayscale or indexed

24-bit uint8 RGB
Three 8-bit
samples/pixel

PGM — Portable Graymap

The following table lists the supported bitdepths, compression, and
output classes for PGM files.

Supported
Bitdepths

Raw Binary ASCII (Plain)
Encoded

Output Class

Up to 16-bit x – uint8

Arbitrary – x

PNG — Portable Network Graphics

The following table lists the supported bitdepths, compression, and
output classes for PNG data.

Supported
Bitdepths

Output Class Notes

1-bit logical Grayscale

2-bit uint8 Grayscale

4-bit uint8 Grayscale

8-bit uint8 Grayscale or Indexed

16-bit uint16 Grayscale or Indexed

2-1669

imread

Supported
Bitdepths

Output Class Notes

24-bit uint8 RGB
Three 8-bit samples/pixel.

48-bit uint16 RGB
Three 16-bit samples/pixel.

The following are format-specific syntaxes for PNG files.

[...] = imread(...,'BackgroundColor',BG) PNG composites
any transparent pixels in the input image against the color specified
in BG. If BG is 'none', then no compositing is performed. If the input
image is indexed, BG must be an integer in the range [1,P] where P is
the colormap length. If the input image is grayscale, BG should be an
integer in the range [0,1]. If the input image is RGB, BG should be a
three-element vector whose values are in the range [0,1]. The string
'BackgroundColor' may be abbreviated.

[A, map, alpha] = imread(...) PNG returns the alpha channel if
one is present; otherwise alpha is []. Note that map may be empty if
the file contains a grayscale or truecolor image.

If the alpha output argument is specified, BG defaults to 'none', if not
specified by the user. Otherwise, if the PNG file contains a background
color chunk, that color is used as the default value for BG. If alpha is
not used and the file does not contain a background color chunk, then
the default value for BG is 1 for indexed images; 0 for grayscale images;
and [0 0 0] for truecolor images.

PPM — Portable Pixmap

The following table lists the supported bitdepths, compression, and
output classes for PPM files.

2-1670

imread

Supported
Bitdepths

Raw Binary ASCII (Plain)
Encoded

Output Class

Up to 16-bit x – uint8

Arbitrary – x

RAS — Sun Raster

The following table lists the supported bitdepths, compression, and
output classes for RAS files.

Supported
Bitdepths

Output Class Notes

1-bit logical Bitmap

8-bit uint8 Indexed

24-bit uint8 RGB
Three 8-bit samples/pixel

32-bit uint8 RGB with Alpha
Four 8-bit samples/pixel

TIFF — Tagged Image File Format

imread supports the following TIFF capabilities:

• Any number of samples-per-pixel

• CCITT group 3 and 4 FAX, Packbits, JPEG, LZW, Deflate,
ThunderScan compression, and uncompressed images

• Logical, grayscale, indexed color, truecolor and hyperspectral images

• RGB, CMYK, CIELAB, ICCLAB color spaces

• Data organized into tiles or scanlines

The following table lists the supported bit/sample and corresponding
output classes for TIFF files.

2-1671

imread

Bits-per-Sample Sample Format Output Class

1 integer logical

2 – 8 integer uint8

9 – 16 integer uint16

17 – 32 integer uint32

32 float single

33 – 64 integer uint64

64 float double

The following are format-specific syntaxes for TIFF files.

A = imread(...) returns color data that uses the RGB, CIELAB,
ICCLAB, or CMYK color spaces. If the color image uses the CMYK color
space, A is an M-by-N-by-4 array.

[...] = imread(..., idx) reads in one image from a multi-image
TIFF file. idx is an integer value that specifies the order in which the
image appears in the file. For example, if idx is 3, imread reads the
third image in the file. If you omit this argument, imread reads the
first image in the file.

[...] = imread(..., 'PixelRegion', {ROWS, COLS}) returns the
subimage specified by the boundaries in ROWS and COLS. For tiled TIFF
images, imread reads only the tiles that encompass the region specified
by ROWS and COLS, improving memory efficiency and performance. ROWS
and COLS must be either two or three element vectors. If two elements
are provided, they denote the 1-based indices [START STOP]. If three
elements are provided, the indices [START INCREMENT STOP] allow
image downsampling.

For TIFF files, imread can read color data represented in the RGB,
CIELAB, or ICCLAB color spaces. To determine which color space
is used, look at the value of the PhotometricInterpretation field
returned by imfinfo. Note, however, that if a file contains CIELAB
color data, imread converts it to ICCLAB before bringing it into the
MATLAB workspace. 8- or 16-bit TIFF CIELAB-encoded values use a

2-1672

imread

mixture of signed and unsigned data types that cannot be represented
as a single MATLAB array.

XWD — X Window Dump

The following table lists the supported bitdepths, compression, and
output classes for XWD files.

Supported
Bitdepths

ZPixmaps XYBitmaps XYPixmaps Output
Class

1-bit x – x logical

8-bit x – – uint8

Class
Support

For most image file formats, imread uses 8 or fewer bits per color plane
to store image pixels. The following table lists the class of the returned
array for the data types used by the file formats.

Data Type
Used in File Class of Array Returned by imread

1-bit per pixel logical

2- to 8-bits per
color plane

uint8

9- to 16-bit per
pixel

uint16 (BMP, JPEG, PNG, and TIFF)

For the 16-bit BMP packed format (5-6-5),
MATLAB returns uint8

Note For indexed images, imread always reads the colormap into an
array of class double, even though the image array itself may be of
class uint8 or uint16.

2-1673

imread

Examples This example reads the sixth image in a TIFF file.

[X,map] = imread('your_image.tif',6);

This example reads the fourth image in an HDF4 file.

info = imfinfo('your_hdf_file.hdf');
[X,map] = imread('your_hdf_file.hdf',info(4).Reference);

This example reads a 24-bit PNG image and sets any of its fully
transparent (alpha channel) pixels to red.

bg = [255 0 0];
A = imread('your_image.png','BackgroundColor',bg);

This example returns the alpha channel (if any) of a PNG image.

[A,map,alpha] = imread('your_image.png');

This example reads an ICO image, applies a transparency mask, and
then displays the image.

[a,b,c] = imread('your_icon.ico');
% Augment colormap for background color (white).
b2 = [b; 1 1 1];
% Create new image for display.
d = ones(size(a)) * (length(b2) - 1);
% Use the AND mask to mix the background and
% foreground data on the new image
d(c == 0) = a(c == 0);
% Display new image
image(uint8(d)), colormap(b2)

See Also double, fread, image, imfinfo, imformats, imwrite, uint8, uint16

“Bit-Mapped Images” on page 1-92 for related functions

2-1674

imwrite

Purpose Write image to graphics file

Syntax imwrite(A,filename,fmt)
imwrite(X,map,filename,fmt)
imwrite(...,filename)
imwrite(...,Param1,Val1,Param2,Val2...)

Description imwrite(A,filename,fmt) writes the image A to the file specified by
filename in the format specified by fmt.

A can be an M-by-N (grayscale image) or M-by-N-by-3 (truecolor image)
array. A cannot be an empty array. If the format specified is TIFF,
imwrite can also accept an M-by-N-by-4 array containing color data
that uses the CMYK color space. For information about the class of the
input array and the output image, see “Class Support” on page 2-1687.

filename is a string that specifies the name of the output file.

fmt can be any of the text strings listed in the table in “Supported
Formats” on page 2-1676. This list of supported formats is determined
by the MATLAB image file format registry. See imformats for more
information about this registry.

imwrite(X,map,filename,fmt) writes the indexed image in X and its
associated colormap map to filename in the format specified by fmt. If
X is of class uint8 or uint16, imwrite writes the actual values in the
array to the file. If X is of class double, the imwrite function offsets
the values in the array before writing, using uint8(X 1). The map
parameter must be a valid MATLAB colormap. Note that most image
file formats do not support colormaps with more than 256 entries.

imwrite(...,filename) writes the image to filename, inferring the
format to use from the filename’s extension. The extension must be one
of the values for fmt, listed in “Supported Formats” on page 2-1676.

imwrite(...,Param1,Val1,Param2,Val2...) specifies parameters
that control various characteristics of the output file for HDF, JPEG,
PBM, PGM, PNG, PPM, and TIFF files. For example, if you are writing
a JPEG file, you can specify the quality of the output image. For the

2-1675

imwrite

lists of parameters available for each format, see “Format-Specific
Parameters” on page 2-1678.

Supported
Formats

This table summarizes the types of images that imwrite can write.
The MATLAB file format registry determines which file formats are
supported. See imformats for more information about this registry.
Note that, for certain formats, imwrite may take additional parameters,
described in “Format-Specific Parameters” on page 2-1678.

Format Full Name Variants

'bmp' Windows
Bitmap
(BMP)

1-bit, 8-bit, and 24-bit uncompressed
images

'gif' Graphics
Interchange
Format
(GIF)

8-bit images

'hdf' Hierarchical
Data Format
(HDF4)

8-bit raster image data sets, with or
without associated colormap, 24-bit raster
image data sets; uncompressed or with
RLE or JPEG compression

'jpg' or
'jpeg'

Joint
Photographic
Experts
Group
(JPEG)

8-bit, 12-bit, and 16-bit Baseline JPEG
images

Note Indexed images are converted
to RGB before writing out JPEG files,
because the JPEG format does not support
indexed images.

pbm Portable
Bitmap
(PBM)

Any 1-bit PBM image, ASCII (plain) or
raw (binary) encoding

2-1676

imwrite

Format Full Name Variants

'pcx' Windows
Paintbrush
(PCX)

8-bit images

'pgm' Portable
Graymap
(PGM)

Any standard PGM image; ASCII (plain)
encoded with arbitrary color depth; raw
(binary) encoded with up to 16 bits per
gray value

'png' Portable
Network
Graphics
(PNG)

1-bit, 2-bit, 4-bit, 8-bit, and 16-bit
grayscale images; 8-bit and 16-bit
grayscale images with alpha channels;
1-bit, 2-bit, 4-bit, and 8-bit indexed
images; 24-bit and 48-bit truecolor
images; 24-bit and 48-bit truecolor images
with alpha channels

'pnm' Portable
Anymap
(PNM)

Any of the PPM/PGM/PBM formats,
chosen automatically

'ppm' Portable
Pixmap
(PPM)

Any standard PPM image. ASCII (plain)
encoded with arbitrary color depth; raw
(binary) encoded with up to 16 bits per
color component

'ras' Sun Raster
(RAS)

Any RAS image, including 1-bit bitmap,
8-bit indexed, 24-bit truecolor and 32-bit
truecolor with alpha

2-1677

imwrite

Format Full Name Variants

'tif' or
'tiff'

Tagged
Image File
Format
(TIFF)

Baseline TIFF images, including 1-bit,
8-bit, 16-bit, and 24-bit uncompressed
images; 1-bit, 8-bit, 16-bit, and 24-bit
images with packbits compression; 1-bit
images with CCITT 1D, Group 3, and
Group 4 compression; CIELAB, ICCLAB,
and CMYK images

'xwd' X Windows
Dump
(XWD)

8-bit ZPixmaps

Format-Specific
Parameters

The following tables list parameters that can be used with specific file
formats.

GIF-Specific Parameters

This table describes the available parameters for GIF files.

Parameter Values

'BackgroundColor' A scalar integer. This value specifies which index in the
colormap should be treated as the transparent color for the
image and is used for certain disposal methods in animated
GIFs. If X is uint8 or logical, then indexing starts at 0. If X is
double, then indexing starts at 1.

'Comment' A string or cell array of strings containing a comment to be
added to the image. For a cell array of strings, a carriage
return is added after each row.

'DelayTime' A scalar value between 0 and 655 inclusive, that specifies the
delay in seconds before displaying the next image.

'DisposalMethod' One of the following strings, which sets the disposal method
of an animated GIF: 'leaveInPlace', 'restoreBG',
'restorePrevious', or 'doNotSpecify'.

2-1678

imwrite

Parameter Values

'LoopCount' A finite integer between 0 and 65535 or the value Inf (the
default) which specifies the number of times to repeat the
animation. By default, the animation loops continuously. For a
value of 0, the animation will be played once. For a value of 1,
the animation will be played twice, etc.

'TransparentColor' A scalar integer. This value specifies which index in the
colormap should be treated as the transparent color for the
image. If X is uint8 or logical, then indexing starts at 0. If X
is double, then indexing starts at 1.

'WriteMode' One of these strings: 'overwrite' (the default) or 'append'.
In append mode, a single frame is added to the existing file.

HDF4-Specific Parameters

This table describes the available parameters for HDF4 files.

Parameter Values

'Compression' One of these strings:
'none' (the default)
'jpeg'(valid only for grayscale and RGB images)

'rle' (valid only for grayscale and indexed images)

2-1679

imwrite

Parameter Values

'Quality' A number between 0 and 100; this parameter applies only if
'Compression' is 'jpeg'.

Higher numbers mean higher quality (less image degradation due
to compression), but the resulting file size is larger. The default
value is 75.

'WriteMode' One of these strings:

'overwrite' (the default)

'append'

JPEG-Specific Parameters

This table describes the available parameters for JPEG files.

Parameter Values Default

'Bitdepth' A scalar value indicating desired bitdepth; for grayscale
images this can be 8, 12, or 16; for color images this
can be 8 or 12.

8 (grayscale)
and 8 bit per
plane for color
images

'Comment' A column vector cell array of strings or a character
matrix. Each row of input is written out as a comment
in the JPEG file.

Empty

'Mode' Specifies the type of compression used; value can be
either of these strings: 'lossy' or 'lossless'

'lossy'

'Quality' A number between 0 and 100; higher numbers
mean higher quality (less image degradation due to
compression), but the resulting file size is larger.

75

PBM-, PGM-, and PPM-Specific Parameters

This table describes the available parameters for PBM, PGM, and
PPM files.

2-1680

imwrite

Parameter Values Default

'Encoding' One of these strings: 'ASCII' for plain encoding
'rawbits' for binary encoding

'rawbits'

'MaxValue' A scalar indicating the maximum gray or color value.
Available only for PGM and PPM files.

For PBM files, this value is always 1.

Default is 65535
if image array is
'uint16'; 255
otherwise.

2-1681

imwrite

PNG-Specific Parameters

The following table lists the available parameters for PNG files, in
alphabetical order. In addition to these PNG parameters, you can use
any parameter name that satisfies the PNG specification for keywords;
that is, uses only printable characters, contains 80 or fewer characters,
and no contains no leading or trailing spaces. The value corresponding
to these user-specified parameters must be a string that contains no
control characters other than linefeed.

Parameter Values

'Alpha' A matrix specifying the transparency of each pixel individually.
The row and column dimensions must be the same as the data
array; they can be uint8, uint16, or double, in which case the
values should be in the range [0,1].

'Author' A string

'Background' The value specifies background color to be used when
compositing transparent pixels. For indexed images: an integer
in the range [1,P], where P is the colormap length. For grayscale
images: a scalar in the range [0,1]. For truecolor images: a
three-element vector in the range [0,1].

'bitdepth' A scalar value indicating desired bit depth.
For grayscale images this can be 1, 2, 4, 8, or 16.

For grayscale images with an alpha channel this can be 8 or 16.
For indexed images this can be 1, 2, 4, or 8.

For truecolor images with or without an alpha channel this can
be 8 or 16.

By default, imwrite uses 8 bits per pixel, if image is double or
uint8; 16 bits per pixel if image is uint16; 1 bit per pixel if
image is logical.

2-1682

imwrite

Parameter Values

'Chromaticities' An eight-element vector [wx wy rx ry gx gy bx by]
that specifies the reference white point and the primary
chromaticities

'Comment' A string

'Copyright' A string

'CreationTime' A string

'Description' A string

'Disclaimer' A string

'Gamma' A nonnegative scalar indicating the file gamma

'ImageModTime' A MATLAB serial date number (see the datenum function) or
a string convertible to a date vector via the datevec function.
Values should be in Coordinated Universal Time (UTC).

'InterlaceType' Either 'none' (the default) or 'adam7'

'ResolutionUnit' Either 'unknown' or 'meter'

'SignificantBits' A scalar or vector indicating how many bits in the data array
should be regarded as significant; values must be in the range
[1,BitDepth].

For indexed images: a three-element vector. For grayscale
images: a scalar. For grayscale images with an alpha channel:
a two-element vector. For truecolor images: a three-element
vector. For truecolor images with an alpha channel: a
four-element vector.

'Software' A string

'Source' A string

2-1683

imwrite

Parameter Values

'Transparency' This value is used to indicate transparency information only
when no alpha channel is used. Set to the value that indicates
which pixels should be considered transparent. (If the image
uses a colormap, this value represents an index number to the
colormap.)

For indexed images: a Q-element vector in the range [0,1],
where Q is no larger than the colormap length and each value
indicates the transparency associated with the corresponding
colormap entry. In most cases, Q = 1.

For grayscale images: a scalar in the range [0,1]. The value
indicates the grayscale color to be considered transparent.

For truecolor images: a three-element vector in the range
[0,1]. The value indicates the truecolor color to be considered
transparent.

Note You cannot specify 'Transparency' and 'Alpha' at the
same time.

'Warning' A string

'XResolution' A scalar indicating the number of pixels/unit in the horizontal
direction

'YResolution' A scalar indicating the number of pixels/unit in the vertical
direction

2-1684

imwrite

RAS-Specific Parameters

This table describes the available parameters for RAS files.

Parameter Values Default

'Alpha' A matrix specifying the transparency of each pixel
individually; the row and column dimensions must be
the same as the data array; can be uint8, uint16, or
double. Can only be used with truecolor images.

Empty
matrix ([])

'Type' One of these strings: 'standard' (uncompressed,
b-g-r color order with truecolor images) 'rgb' (like
'standard', but uses r-g-b color order for truecolor
images) 'rle' (run-length encoding of 1-bit and 8-bit
images)

'standard'

TIFF-Specific Parameters

This table describes the available parameters for TIFF files.

Parameter Values Default

'ColorSpace' Specifies one of the following color spaces used to
represent the color data. 'rgb' 'cielab' 'icclab'

See for more information about this parameter.

'rgb'

'Compression' One of these strings: 'none', 'packbits', 'ccitt',
'fax3', or 'fax4'

The 'ccitt', 'fax3', and 'fax4' compression schemes
are valid for binary images only.

'ccitt'
for binary
images;
'packbits'
for
nonbinary
images

'Description' Any string; fills in the ImageDescription field
returned by imfinfo

Empty

2-1685

imwrite

Parameter Values Default

'Resolution' A two-element vector containing the XResolution and
YResolution, or a scalar indicating both resolutions

72

'WriteMode' One of these strings: 'overwrite' 'append' 'overwrite'

L*a*b* Color Data

For TIFF files only, imwrite can write a color image that uses the
L*a*b* color space. The 1976 CIE L*a*b* specification defines numeric
values that represent luminance (L*) and chrominance (a* and b*)
information.

To store L*a*b* color data in a TIFF file, the values must be encoded to
fit into either 8-bit or 16-bit storage. imwrite can store L*a*b* color
data in a TIFF file using these encodings:

• 8-bit and 16-bit encodings defined by the TIFF specification, called
the CIELAB encodings

• 8-bit and 16-bit encodings defined by the International Color
Consortium, called ICCLAB encodings

The output class and encoding used by imwrite to store color data
depends on the class of the input array and the value you specify for
the TIFF-specific ColorSpace parameter. The following table explains
these options. (The 8-bit and 16-bit CIELAB encodings cannot be input
arrays because they use a mixture of signed and unsigned values and
cannot be represented as a single MATLAB array.)

Input Class and
Encoding

ColorSpace
Parameter
Value

Output Class and
Encoding

8-bit ICCLAB 1 ’icclab’ 8-bit ICCLAB

’cielab’ 8-bit CIELAB

16-bit ICCLAB 2 ’icclab’ 16-bit ICCLAB

2-1686

imwrite

Input Class and
Encoding

ColorSpace
Parameter
Value

Output Class and
Encoding

’cielab’ 16-bit CIELAB

Double-precision
1976 CIE L*a*b*
values 3

’icclab’ 8-bit ICCLAB

’cielab’ 8-bit CIELAB

1 8-bit ICCLAB represents values as integers in the range [0 255]. L*
values are multiplied by 255/100; 128 is added to both the a* and b*
values.
2 16-bit ICCLAB multiplies L* values by 65280/100 and represents the
values as integers in the range [0, 65280]. 32768 is added to both the a*
and b* values, which are represented as integers in the range [0,65535].
3 L* is in the dynamic range [0, 100]. a* and b* can take any value.
Setting a* and b* to 0 (zero) produces a neutral color (gray).

Class
Support

The input array A can be of class logical, uint8, uint16, or double.
Indexed images (X) can be of class uint8, uint16, or double; the
associated colormap, map, must be of class double. Input values must
be full (non-sparse).

The class of the image written to the file depends on the format
specified. For most formats, if the input array is of class uint8, imwrite
outputs the data as 8-bit values. If the input array is of class uint16
and the format supports 16-bit data (JPEG, PNG, and TIFF), imwrite
outputs the data as 16-bit values. If the format does not support 16-bit
values, imwrite issues an error. Several formats, such as JPEG and
PNG, support a parameter that lets you specify the bit depth of the
output data.

If the input array is of class double, and the image is a grayscale or
RGB color image, imwrite assumes the dynamic range is [0,1] and

2-1687

imwrite

automatically scales the data by 255 before writing it to the file as 8-bit
values.

If the input array is of class double, and the image is an indexed image,
imwrite converts the indices to zero-based indices by subtracting 1 from
each element, and then writes the data as uint8.

If the input array is of class logical, imwrite assumes the data is a
binary image and writes it to the file with a bit depth of 1, if the format
allows it. BMP, PNG, or TIFF formats accept binary images as input
arrays.

Example This example appends an indexed image X and its colormap map to an
existing uncompressed multipage HDF4 file.

imwrite(X,map,'your_hdf_file.hdf','Compression','none',...
'WriteMode','append')

See Also fwrite, getframe, imfinfo, imformats, imread

“Bit-Mapped Images” on page 1-92 for related functions

2-1688

ind2rgb

Purpose Convert indexed image to RGB image

Syntax RGB = ind2rgb(X,map)

Description RGB = ind2rgb(X,map) converts the matrix X and corresponding
colormap map to RGB (truecolor) format.

Class
Support

X can be of class uint8, uint16, or double. RGB is an m-by-n-by-3
array of class double.

See Also image

“Bit-Mapped Images” on page 1-92 for related functions

2-1689

ind2sub

Purpose Subscripts from linear index

Syntax [I,J] = ind2sub(siz,IND)
[I1,I2,I3,...,In] = ind2sub(siz,IND)

Description The ind2sub command determines the equivalent subscript values
corresponding to a single index into an array.

[I,J] = ind2sub(siz,IND) returns the matrices I and J containing
the equivalent row and column subscripts corresponding to each linear
index in the matrix IND for a matrix of size siz. siz is a 2-element
vector, where siz(1) is the number of rows and siz(2) is the number
of columns.

Note For matrices, [I,J] = ind2sub(size(A),find(A>5)) returns
the same values as [I,J] = find(A>5).

[I1,I2,I3,...,In] = ind2sub(siz,IND) returns n subscript arrays
I1,I2,...,In containing the equivalent multidimensional array
subscripts equivalent to IND for an array of size siz. siz is an n-element
vector that specifies the size of each array dimension.

Examples Example 1 — Two-Dimensional Matrices

The mapping from linear indexes to subscript equivalents for a 3-by-3
matrix is

2-1690

ind2sub

This code determines the row and column subscripts in a 3-by-3 matrix,
of elements with linear indices 3, 4, 5, 6.

IND = [3 4 5 6]
s = [3,3];
[I,J] = ind2sub(s,IND)

I =
3 1 2 3

J =
1 2 2 2

Example 2 — Three-Dimensional Matrices

The mapping from linear indexes to subscript equivalents for a
2-by-2-by-2 array is

2-1691

ind2sub

This code determines the subscript equivalents in a 2-by-2-by-2 array, of
elements whose linear indices 3, 4, 5, 6 are specified in the IND matrix.

IND = [3 4;5 6];
s = [2,2,2];
[I,J,K] = ind2sub(s,IND)

I =
1 2
1 2

J =
2 2
1 1

K =
1 1
2 2

Example 3 — Effects of Returning Fewer Outputs

When calling ind2sub for an N-dimensional matrix, you would typically
supply N output arguments in the call: one for each dimension of the
matrix. This example shows what happens when you return three, two,
and one output when calling ind2sub on a 3-dimensional matrix.

2-1692

ind2sub

The matrix is 2-by-2-by-2 and the linear indices are 1 through 8:

dims = [2 2 2];
indices = [1 2 3 4 5 6 7 8];

The 3-output call to ind2sub returns the expected subscripts for the
2-by-2-by-2 matrix:

[rowsub colsub pagsub] = ind2sub(dims, indices)
rowsub =

1 2 1 2 1 2 1 2
colsub =

1 1 2 2 1 1 2 2
pagsub =

1 1 1 1 2 2 2 2

If you specify only two outputs (row and column), ind2sub still returns
a subscript for each specified index, but drops the third dimension from
the matrix, returning subscripts for a 2-dimensional, 2-by-4 matrix
instead:

[rowsub colsub] = ind2sub(dims, indices)
rowsub =

1 2 1 2 1 2 1 2
colsub =

1 1 2 2 3 3 4 4

If you specify one output (row), ind2sub drops both the second and third
dimensions from the matrix, and returns subscripts for a 1-dimensional,
1-by-8 matrix instead:

[rowsub] = ind2sub(dims, indices)
rowsub =

1 2 3 4 5 6 7 8

See Also find, size, sub2ind

2-1693

Inf

Purpose Infinity

Syntax Inf
Inf('double')
Inf('single')
Inf(n)
Inf(m,n)
Inf(m,n,p,...)
Inf(...,classname)

Description Inf returns the IEEE arithmetic representation for positive infinity.
Infinity results from operations like division by zero and overflow, which
lead to results too large to represent as conventional floating-point
values.

Inf('double') is the same as Inf with no inputs.

Inf('single') is the single precision representation of Inf.

Inf(n) is an n-by-n matrix of Infs.

Inf(m,n) or inf([m,n]) is an m-by-n matrix of Infs.

Inf(m,n,p,...) or Inf([m,n,p,...]) is an m-by-n-by-p-by-... array
of Infs.

Note The size inputs m, n, p, ... should be nonnegative integers.
Negative integers are treated as 0.

Inf(...,classname) is an array of Infs of class specified by classname.
classname must be either 'single' or 'double'.

Examples 1/0, 1.e1000, 2^2000, and exp(1000) all produce Inf.

log(0) produces -Inf.

Inf-Inf and Inf/Inf both produce NaN (Not-a-Number).

2-1694

Inf

See Also isinf, NaN

2-1695

inferiorto

Purpose Establish inferior class relationship

Syntax inferiorto('class1', 'class2', ...)

Description The inferiorto function establishes a hierarchy that determines the
order in which MATLAB calls object methods.

inferiorto('class1', 'class2', ...) invoked within a class
constructor method (say myclass.m) indicates that myclass’s method
should not be invoked if a function is called with an object of class
myclass and one or more objects of class class1, class2, and so on.

Remarks Suppose A is of class 'class_a', B is of class 'class_b' and C is of
class 'class_c'. Also suppose the constructor class_c.m contains
the statement inferiorto('class_a'). Then e = fun(a, c) or e =
fun(c, a) invokes class_a/fun.

If a function is called with two objects having an unspecified
relationship, the two objects are considered to have equal precedence,
and the leftmost object’s method is called. So fun(b, c) calls
class_b/fun, while fun(c, b) calls class_c/fun.

See Also superiorto

2-1696

info

Purpose Information about contacting The MathWorks

Syntax info

Description info displays in the Command Window, information about contacting
The MathWorks.

See Also help, version

2-1697

inline

Purpose Construct inline object

Syntax inline(expr)
inline(expr,arg1,arg2,...)
inline(expr,n)

Description inline(expr) constructs an inline function object from the MATLAB
expression contained in the string expr. The input argument to the
inline function is automatically determined by searching expr for an
isolated lower case alphabetic character, other than i or j, that is not
part of a word formed from several alphabetic characters. If no such
character exists, x is used. If the character is not unique, the one closest
to x is used. If two characters are found, the one later in the alphabet is
chosen.

inline(expr,arg1,arg2,...) constructs an inline function whose
input arguments are specified by the strings arg1, arg2,....
Multicharacter symbol names may be used.

inline(expr,n) where n is a scalar, constructs an inline function whose
input arguments are x, P1, P2,

Remarks Three commands related to inline allow you to examine an inline
function object and determine how it was created.

char(fun) converts the inline function into a character array. This is
identical to formula(fun).

argnames(fun) returns the names of the input arguments of the inline
object fun as a cell array of strings.

formula(fun) returns the formula for the inline object fun.

A fourth command vectorize(fun) inserts a . before any ^, * or /’ in
the formula for fun. The result is a vectorized version of the inline
function.

Examples Example 1

This example creates a simple inline function to square a number.

2-1698

inline

g = inline('t^2')
g =

Inline function:
g(t) = t^2

You can convert the result to a string using the char function.

char(g)

ans =

t^2

Example 2

This example creates an inline function to represent the formula

. The resulting inline function can be evaluated with
the argnames and formula functions.

f = inline('3*sin(2*x.^2)')

f =
Inline function:
f(x) = 3*sin(2*x.^2)

argnames(f)

ans =
'x'

formula(f)
ans =

3*sin(2*x.^2)

2-1699

inline

Example 3

This call to inline defines the function f to be dependent on two
variables, alpha and x:

f = inline('sin(alpha*x)')

f =
Inline function:
f(alpha,x) = sin(alpha*x)

If inline does not return the desired function variables or if the
function variables are in the wrong order, you can specify the desired
variables explicitly with the inline argument list.

g = inline('sin(alpha*x)','x','alpha')

g =

Inline function:
g(x,alpha) = sin(alpha*x)

2-1700

inmem

Purpose Names of M-files, MEX-files, Java classes in memory

Syntax M = inmem
[M, X] = inmem
[M, X, J] = inmem
[...] = inmem('-completenames')

Description M = inmem returns a cell array of strings containing the names of the
M-files that are currently loaded.

[M, X] = inmem returns an additional cell array X containing the
names of the MEX-files that are currently loaded.

[M, X, J] = inmem also returns a cell array J containing the names
of the Java classes that are currently loaded.

[...] = inmem('-completenames') returns not only the names of
the currently loaded M- and MEX-files, but the path and filename
extension for each as well. No additional information is returned for
loaded Java classes.

Examples Example 1

This example lists the M-files that are required to run erf.

clear all; % Clear the workspace
erf(0.5);

M = inmem
M =

'erf'

Example 2

Generate a plot, and then find the M- and MEX-files that had been
loaded to perform this operation:

clear all

surf(peaks)

2-1701

inmem

[m x] = inmem('-completenames');

m(1:5)

ans =

'F:\matlab\toolbox\matlab\ops\ismember.m'

'F:\matlab\toolbox\matlab\datatypes\@opaque\double.m'

'F:\matlab\toolbox\matlab\datatypes\isfield.m'

'F:\matlab\toolbox\matlab\graphics\gcf.m'

'F:\matlab\toolbox\matlab\elmat\meshgrid.m'

x(1:end)

ans =

'F:\matlab\toolbox\matlab\graph2d\private\lineseriesmex.dll'

See Also clear

2-1702

inpolygon

Purpose Points inside polygonal region

Syntax IN = inpolygon(X,Y,xv,yv)
[IN ON] = inpolygon(X,Y,xv,yv)

Description IN = inpolygon(X,Y,xv,yv) returns a matrix IN the same size as
X and Y. Each element of IN is assigned the value 1 or 0 depending
on whether the point (X(p,q),Y(p,q)) is inside the polygonal region
whose vertices are specified by the vectors xv and yv. In particular:

IN(p,q) = 1 If (X(p,q),Y(p,q)) is inside the polygonal region or
on the polygon boundary

IN(p,q) = 0 If (X(p,q),Y(p,q)) is outside the polygonal region

[IN ON] = inpolygon(X,Y,xv,yv) returns a second matrix ON the
same size as X and Y. Each element of ON is assigned the value 1 or 0
depending on whether the point (X(p,q),Y(p,q)) is on the boundary
of the polygonal region whose vertices are specified by the vectors xv
and yv. In particular:

ON(p,q) = 1 If (X(p,q),Y(p,q)) is on the polygon boundary

ON(p,q) = 0 If (X(p,q),Y(p,q)) is inside or outside the polygon
boundary

Examples L = linspace(0,2.*pi,6); xv = cos(L)';yv = sin(L)';
xv = [xv ; xv(1)]; yv = [yv ; yv(1)];
x = randn(250,1); y = randn(250,1);
in = inpolygon(x,y,xv,yv);
plot(xv,yv,x(in),y(in),'r+',x(~in),y(~in),'bo')

2-1703

inpolygon

2-1704

input

Purpose Request user input

Syntax user_entry = input('prompt')
user_entry = input('prompt', 's')

Description The response to the input prompt can be any MATLAB expression,
which is evaluated using the variables in the current workspace.

user_entry = input('prompt') displays prompt as a prompt on
the screen, waits for input from the keyboard, and returns the value
entered in user_entry.

user_entry = input('prompt', 's') returns the entered string as a
text variable rather than as a variable name or numerical value.

Remarks If you press the Return key without entering anything, input returns
an empty matrix.

The text string for the prompt can contain one or more '\n' characters.
The '\n' means to skip to the next line. This allows the prompt string
to span several lines. To display just a backslash, use '\\'.

If you enter an invalid expression at the prompt, MATLAB displays the
relevant error message and then prompts you again to enter input.

Examples Press Return to select a default value by detecting an empty matrix:

reply = input('Do you want more? Y/N [Y]: ', 's');
if isempty(reply)

reply = 'Y';
end

See Also keyboard, menu, ginput, uicontrol

2-1705

inputdlg

Purpose Create and open input dialog box

Syntax answer = inputdlg(prompt)
answer = inputdlg(prompt,dlg_title)
answer = inputdlg(prompt,dlg_title,num_lines)
answer = inputdlg(prompt,dlg_title,num_lines,defAns)
answer = inputdlg(prompt,dlg_title,num_lines,defAns,options)

Description answer = inputdlg(prompt) creates a modal dialog box and returns
user input for multiple prompts in the cell array. prompt is a cell array
containing prompt strings.

Note A modal dialog box prevents the user from interacting with other
windows before responding. For more information, see WindowStyle in
the MATLAB Figure Properties.

Note inputdlg uses the uiwait function to suspend execution until the
user responds.

answer = inputdlg(prompt,dlg_title) dlg_title specifies a title
for the dialog box.

answer = inputdlg(prompt,dlg_title,num_lines) num_lines
specifies the number of lines for each user-entered value. num_lines
can be a scalar, column vector, or matrix.

• If num_lines is a scalar, it applies to all prompts.

• If num_lines is a column vector, each element specifies the number of
lines of input for a prompt.

• If num_lines is a matrix, it should be size m-by-2, where m is the
number of prompts on the dialog box. Each row refers to a prompt.

2-1706

inputdlg

The first column specifies the number of lines of input for a prompt.
The second column specifies the width of the field in characters.

answer = inputdlg(prompt,dlg_title,num_lines,defAns) defAns
specifies the default value to display for each prompt. defAns must
contain the same number of elements as prompt and all elements must
be strings.

answer =
inputdlg(prompt,dlg_title,num_lines,defAns,options) If
options is the string 'on', the dialog is made resizable in the
horizontal direction. If options is a structure, the fields shown in
the following table are recognized:

Field Description

Resize Can be 'on' or 'off' (default). If 'on', the window
is resizable horizontally.

WindowStyle Can be either 'normal' or 'modal' (default).

Interpreter Can be either 'none' (default) or 'tex'. If the value is
'tex', the prompt strings are rendered using LaTeX.

Example Example 1

Create a dialog box to input an integer and colormap name. Allow one
line for each value.

prompt = {'Enter matrix size:','Enter colormap name:'};
dlg_title = 'Input for peaks function';
num_lines = 1;
def = {'20','hsv'};
answer = inputdlg(prompt,dlg_title,num_lines,def);

2-1707

inputdlg

Example 2

Create a dialog box using the default options. Then use the options to
make it resizable and not modal, and to interpret the text using LaTeX.

prompt={'Enter the matrix size for x^2:',...
'Enter the colormap name:'};

name='Input for Peaks function';
numlines=1;
defaultanswer={'20','hsv'};
answer=inputdlg(prompt,name,numlines,defaultanswer);

options.Resize='on';
options.WindowStyle='normal';
options.Interpreter='tex';

answer=inputdlg(prompt,name,numlines,defaultanswer,options);

2-1708

inputdlg

See Also dialog, errordlg, helpdlg, listdlg, msgbox, questdlg, warndlg

figure, uiwait, uiresume

“Predefined Dialog Boxes” on page 1-104 for related functions

2-1709

inputname

Purpose Variable name of function input

Syntax inputname(argnum)

Description This command can be used only inside the body of a function.

inputname(argnum) returns the workspace variable name
corresponding to the argument number argnum. If the input argument
has no name (for example, if it is an expression instead of a variable),
the inputname command returns the empty string ('').

Examples Suppose the function myfun.m is defined as

function c = myfun(a,b)

disp(sprintf('First calling variable is "%s".', inputname(1))

Then

x = 5; y = 3; myfun(x,y)

produces

First calling variable is "x".

But

myfun(pi+1, pi-1)

produces

First calling variable is "".

See Also nargin, nargout, nargchk

2-1710

inputParser

Purpose Construct input parser object

Syntax p = inputParser

Description p = inputParser constructs an empty inputParser object. Use this
utility object to parse and validate input arguments to the functions
that you develop. The input parser object follows handle semantics; that
is, methods called on it affect the original object, not a copy of it.

MATLAB configures inputParser objects to recognize an input schema.
Use any of the following methods to create the schema for parsing a
particular function.

For more information on the inputParser class, see “Parsing Inputs
with inputParser” in the MATLAB Programming documentation.

Methods Method Description

addOptional Add an optional argument to the schema

addParamValue Add a parameter-value pair argument to the
schema

addRequired Add a required argument to the schema

createCopy Create a copy of the inputParser object

parse Parse and validate the named inputs

Properties Property Description

CaseSensitivity Enable or disable case-sensitive matching of
argument names

FunctionName Function name to be included in error
messages

KeepUnmatched Enable or disable errors on unmatched
arguments

2-1711

inputParser

Property Description

Parameters Names of arguments defined in inputParser
schema

Results Names and values of arguments passed in
function call that are in the schema for this
function

StructExpand Enable or disable passing arguments in a
structure

Unmatched Names and values of arguments passed in
function call that are not in the schema for
this function

UsingDefaults Names of arguments not passed in function
call that are given default values

Property
Descriptions

Properties of the inputParser class are described below.

CaseSensitivity

Purpose — Enable or disable case sensitive matching of argument
names

p.CaseSensitivity = TF enables or disables case-sensitivity when
matching entries in the argument list with argument names in
the schema. Set CaseSensitivity to logical 1 (true) to enable
case-sensitive matching, or to logical 0 (false) to disable it. By default,
case-sensitive matching is disabled.

FunctionName

Purpose — Function name to be included in error messages

p.FunctionName = name stores a function name that is to be included
in error messages that might be thrown in the process of validating
input arguments to the function. The name input is a string containing
the name of the function for which you are parsing inputs with
inputParser.

2-1712

inputParser

KeepUnmatched

Purpose — Enable or disable errors on unmatched arguments

p.KeepUnmatched = TF controls whether MATLAB throws an error
when the function being called is passed an argument that has not been
defined in the inputParser schema for this file. When this property is
set to logical 1 (true), MATLAB does not throw an error, but instead
stores the names and values of unmatched arguments in the Unmatched
property of object p. When KeepUnmatched is set to logical 0 (false),
MATLAB does throw an error whenever this condition is encountered
and the Unmatched property is not affected.

Parameters

Purpose — Names of arguments defined in inputParser schema

c = p.Parameters is a cell array of strings containing the names of
those arguments currently defined in the schema for the object. Each
row of the Parameters cell array is a string containing the full name of
a known argument.

Results

Purpose — Names and values of arguments passed in function call that
are in the schema for this function

arglist = p.Results is a structure containing the results of the most
recent parse of the input argument list. Each argument passed to the
function is represented by a field in the Results structure, and the
value of that argument is represented by the value of that field.

StructExpand

Purpose — Enable or disable passing arguments in a structure

p.StructExpand = TF, when set to logical 1 (true), tells MATLAB to
accept a structure as an input in place of individual parameter-value
arguments. If StructExpand is set to logical 0 (false), a structure is
treated as a regular, single input.

2-1713

inputParser

Unmatched

Purpose — Names and values of arguments passed in function call that
are not in the schema for this function

c = p.Unmatched is a structure array containing the names and values
of all arguments passed in a call to the function that are not included
in the schema for the function. Unmatched only contains this list of
the KeepUnmatched property is set to true. If KeepUnmatched is set
to false, MATLAB throws an error when unmatched arguments are
passed in the function call. The Unmatched structure has the same
format as the Results property of the inputParser class.

UsingDefaults

Purpose — Names of arguments not passed in function call that are
given default values

defaults = p.UsingDefaults is a cell array of strings containing
the names of those arguments that were not passed in the call to this
function and consequently are set to their default values.

Examples Write an M-file function called publish_ip, based on the MATLAB
publish function, to illustrate the use of the inputParser class.
Construct an instance of inputParser and assign it to variable p:

function publish_ip(script, varargin)
p = inputParser; % Create an instance of the inputParser class.

Add arguments to the schema. See the reference pages for the
addRequired, addOptional, and addParamValue methods for help with
this:

p.addRequired('script', @ischar);
p.addOptional('format', 'html', ...

@(x)any(strcmpi(x,{'html','ppt','xml','latex'})));
p.addParamValue('outputDir', pwd, @ischar);
p.addParamValue('maxHeight', [], @(x)x>0 && mod(x,1)==0);
p.addParamValue('maxWidth', [], @(x)x>0 && mod(x,1)==0);

2-1714

inputParser

Call the parse method of the object to read and validate each argument
in the schema:

p.parse(script, varargin{:});

Execution of the parse method validates each argument and also builds
a structure from the input arguments. The name of the structure is
Results, which is accessible as a property of the object. To get the value
of any input argument, type

p.Results.argname

Continuing with the publish_ip exercise, add the following lines to
your M-file:

% Parse and validate all input arguments.
p.parse(script, varargin{:});

% Display the value for maxHeight.
disp(sprintf('\nThe maximum height is %d.\n', p.Results.maxHeight))

% Display all arguments.
disp 'List of all arguments:'
disp(p.Results)

When you call the program, MATLAB assigns those values you pass in
the argument list to the appropriate fields of the Results structure.
Save the M-file and execute it at the MATLAB command prompt with
this command:

publish_ip('ipscript.m', 'ppt', 'outputDir', 'C:/matlab/test', ...
'maxWidth', 500, 'maxHeight', 300);

The maximum height is 300.

List of all arguments:
format: 'ppt'

maxHeight: 300

2-1715

inputParser

maxWidth: 500
outputDir: 'C:/matlab/test'

script: 'ipscript.m'

See Also addRequired(inputParser), addOptional(inputParser),
addParamValue(inputParser), parse(inputParser),
createCopy(inputParser), varargin, nargchk, nargin

2-1716

inspect

Purpose Open Property Inspector

Syntax inspect
inspect(h)
inspect([h1,h2,...])

Description inspect creates a separate Property Inspector window to enable the
display and modification of the properties of any object you select in the
figure window or Layout Editor. If no object is selected, the Property
Inspector is blank.

inspect(h) creates a Property Inspector window for the object whose
handle is h.

inspect([h1,h2,...]) displays properties that objects h1 and h2 have
in common, or a blank window if there are no such properties; any
number of objects can be inspected and edited in this way (for example,
handles returned by the bar command).

The Property Inspector has the following behaviors:

• Only one Property Inspector window is active at any given time;
when you inspect a new object, its properties replace those of the
object last inspected.

• When the Property Inspector is open and plot edit mode is on, clicking
any object in the figure window displays the properties of that object
(or set of objects) in the Property Inspector.

• When you select and inspect two or more objects of different types,
the Property Inspector only shows the properties that all objects have
in common.

• To change the value of any property, click on the property name
shown at the left side of the window, and then enter the new value
in the field at the right.

The Property Inspector provides two different views:

2-1717

inspect

• List view — properties are ordered alphabetically (default); this is
the only view available for annotation objects.

• Group view — properties are grouped under classified headings
(Handle Graphics objects only)

To view alphabetically, click the “AZ” Icon in the Property Inspector
toolbar. To see properties in groups, click

the “++” icon . When properties are grouped, the “-” and “+” icons are

enabled; click to expand all categories and click to collapse all
categories. You can also expand and collapse individual categories by
clicking on the “+” next to the category name. Some properties expand
and collapse

Notes To see a complete description of any property, right-click on
its name or value and select What’s This; a help window opens that
displays the reference page entry for it.

The Property Inspector displays most, but not all,
properties of Handle Graphics objects. For example,
the parent and children of HG objects are not shown.
inspect h displays a Property Inspector window that enables
modification of the string 'h', not the object whose handle is h.
If you modify properties at the MATLAB command line, you must
refresh the Property Inspector window to see the change reflected there.
Refresh the Property Inspector by reinvoking inspect on the object.

Examples Example 1

Create a surface mesh plot and view its properties with the Property
Inspector:

Z = peaks(30);
h = surf(Z)

2-1718

inspect

inspect(h)

Use the Property Inspector to change the FaceAlpha property from
1.0 to 0.4 (equivalent to the command set(h,'FaceAlpha',0.4)).
FaceAlpha controls the tranparency of patch faces.

2-1719

inspect

When you press Enter or click a different field, the FaceAlpha property
of the surface object is updated:

2-1720

inspect

Example 2

Create a serial port object for COM1 and use the Property Inspector to
peruse its properties:

s = serial('COM1');
inspect(s)

2-1721

inspect

Because COM objects do not define property groupings, only the
alphabetical list view of their properties is available.

Example 3

Create a COM Excel server and open a Property Inspector window
with inspect:

h = actxserver('excel.application');
inspect(h)

Scroll down until you see the CalculationInterruptKey property,
which by default is xlAnyKey. Click on the down-arrow in the right

2-1722

inspect

margin of the property inspector and select xlEscKey from the
drop-down menu, as shown below:

Check this field in the MATLAB command window using get to confirm
that it has changed:

get(h,'CalculationInterruptKey')

ans =
xlEscKey

See Also get, set, isprop, guide, addproperty, deleteproperty

2-1723

instrcallback

Purpose Event information when event occurs

Syntax instrcallback(obj,event)

Arguments obj An serial port object.

event The event that caused the callback to execute.

Description instrcallback(obj,event) displays a message that contains the event
type, the time the event occurred, and the name of the serial port object
that caused the event to occur.

For error events, the error message is also displayed. For pin status
events, the pin that changed value and its value are also displayed.

Remarks You should use instrcallback as a template from which you create
callback functions that suit your specific application needs.

Example The following example creates the serial port objects s, and configures
s to execute instrcallback when an output-empty event occurs. The
event occurs after the *IDN? command is written to the instrument.

s = serial('COM1');
set(s,'OutputEmptyFcn',@instrcallback)
fopen(s)
fprintf(s,'*IDN?','async')

The resulting display from instrcallback is shown below.

OutputEmpty event occurred at 08:37:49 for the object:
Serial-COM1.

Read the identification information from the input buffer and end the
serial port session.

idn = fscanf(s);
fclose(s)

2-1724

instrcallback

delete(s)
clear s

2-1725

instrfind

Purpose Read serial port objects from memory to MATLAB workspace

Syntax out = instrfind
out = instrfind('PropertyName',PropertyValue,...)
out = instrfind(S)
out = instrfind(obj,'PropertyName',PropertyValue,...)

Arguments 'PropertyName' A property name for obj.

PropertyValue A property value supported by PropertyName.

S A structure of property names and property values.

obj A serial port object, or an array of serial port objects.

out An array of serial port objects.

Description out = instrfind returns all valid serial port objects as an array to out.

out = instrfind('PropertyName',PropertyValue,...) returns an
array of serial port objects whose property names and property values
match those specified.

out = instrfind(S) returns an array of serial port objects whose
property names and property values match those defined in the
structure S. The field names of S are the property names, while the field
values are the associated property values.

out = instrfind(obj,'PropertyName',PropertyValue,...)
restricts the search for matching property name/property value pairs to
the serial port objects listed in obj.

Remarks Refer to “Displaying Property Names and Property Values” for a list of
serial port object properties that you can use with instrfind.

You must specify property values using the same format as the get
function returns. For example, if get returns the Name property value as
MyObject, instrfind will not find an object with a Name property value
of myobject. However, this is not the case for properties that have a

2-1726

instrfind

finite set of string values. For example, instrfind will find an object
with a Parity property value of Even or even.

You can use property name/property value string pairs, structures, and
cell array pairs in the same call to instrfind.

Example Suppose you create the following two serial port objects.

s1 = serial('COM1');
s2 = serial('COM2');
set(s2,'BaudRate',4800)
fopen([s1 s2])

You can use instrfind to return serial port objects based on property
values.

out1 = instrfind('Port','COM1');
out2 = instrfind({'Port','BaudRate'},{'COM2',4800});

You can also use instrfind to return cleared serial port objects to the
MATLAB workspace.

clear s1 s2
newobjs = instrfind

Instrument Object Array
Index: Type: Status: Name:
1 serial open Serial-COM1
2 serial open Serial-COM2

To close both s1 and s2

fclose(newobjs)

See Also Functions

clear, get

2-1727

instrfindall

Purpose Find visible and hidden serial port objects

Syntax out = instrfindall
out = instrfindall('P1',V1,...)
out = instrfindall(s)
out = instrfindall(objs,'P1',V1,...)

Arguments 'P1' Name of a serial port object property.

V1 Value allowed for corresponding P1.

s A structure of property names and property values.

objs An array of serial port objects.

out An array of returned serial port objects.

Description out = instrfindall finds all serial port objects, regardless of the
value of the objects’ ObjectVisibility property. The object or objects
are returned to out.

out = instrfindall('P1',V1,...) returns an array, out, of serial
port objects whose property names and corresponding property values
match those specified as arguments.

out = instrfindall(s) returns an array, out, of serial port objects
whose property names and corresponding property values match those
specified in the structure s, where the field names correspond to
property names and the field values correspond to the current value
of the respective property.

out = instrfindall(objs,'P1',V1,...) restricts the search for
objects with matching property name/value pairs to the serial port
objects listed in objs.

Note that you can use string property name/property value pairs,
structures, and cell array property name/property value pairs in the
same call to instrfindall.

2-1728

instrfindall

Remarks instrfindall differs from instrfind in that it finds objects whose
ObjectVisibility property is set to off.

Property values are case sensitive. You must specify property values
using the same format as that returned by the get function. For
example, if get returns the Name property value as 'MyObject',
instrfindall will not find an object with a Name property value of
'myobject'. However, this is not the case for properties that have a
finite set of string values. For example, instrfindall will find an
object with a Parity property value of 'Even' or 'even'.

Examples Suppose you create the following serial port objects:

s1 = serial('COM1');
s2 = serial('COM2');
set(s2,'ObjectVisibility','off')

Because object s2 has its ObjectVisibility set to 'off', it is not
visible to commands like instrfind:

instrfind

Serial Port Object : Serial-COM1

However, instrfindall finds all objects regardless of the value of
ObjectVisibility:

instrfindall

Instrument Object Array
Index: Type: Status: Name:
1 serial closed Serial-COM1
2 serial closed Serial-COM2

The following statements use instrfindall to return objects with
specific property settings, which are passed as cell arrays:

props = {'PrimaryAddress','SecondaryAddress};
vals = {2,0};

2-1729

instrfindall

obj = instrfindall(props,vals);

You can use instrfindall as an argument when you want to apply the
command to all objects, visible and invisible. For example, the following
statement makes all objects visible:

set(instrfindall,'ObjectVisibility','on')

See Also Functions

get, instrfind

Properties

ObjectVisibility

2-1730

int2str

Purpose Convert integer to string

Syntax str = int2str(N)

Description str = int2str(N) converts an integer to a string with integer format.
The input N can be a single integer or a vector or matrix of integers.
Noninteger inputs are rounded before conversion.

Examples int2str(2+3) is the string '5'.

One way to label a plot is

title(['case number ' int2str(n)])

For matrix or vector inputs, int2str returns a string matrix:

int2str(eye(3))

ans =

1 0 0
0 1 0
0 0 1

See Also fprintf, num2str, sprintf

2-1731

int8, int16, int32, int64

Purpose Convert to signed integer

Syntax I = int8(X)
I = int16(X)
I = int32(X)
I = int64(X)

Description I = int*(X) converts the elements of array X into signed integers. X
can be any numeric object (such as a double). The results of an int*
operation are shown in the next table.

Operation Output Range
Output
Type

Bytes
per
Element

Output
Class

int8 -128 to 127 Signed
8-bit
integer

1 int8

int16 -32,768 to 32,767 Signed
16-bit
integer

2 int16

int32 -2,147,483,648 to 2,147,483,647 Signed
32-bit
integer

4 int32

int64 -9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Signed
64-bit
integer

8 int64

double and single values are rounded to the nearest int* value on
conversion. A value of X that is above or below the range for an integer
class is mapped to one of the endpoints of the range. For example,

int16(40000)
ans =

32767

2-1732

int8, int16, int32, int64

If X is already a signed integer of the same class, then int* has no effect.

You can define or overload your own methods for int* (as you can for
any object) by placing the appropriately named method in an @int*
directory within a directory on your path. Type help datatypes for the
names of the methods you can overload.

Remarks Most operations that manipulate arrays without changing their
elements are defined for integer values. Examples are reshape, size,
the logical and relational operators, subscripted assignment, and
subscripted reference.

Some arithmetic operations are defined for integer arrays on interaction
with other integer arrays of the same class (e.g., where both operands
are int16). Examples of these operations are +, -, .*, ./, .\ and .^.
If at least one operand is scalar, then *, /, \, and ^ are also defined.
Integer arrays may also interact with scalar double variables, including
constants, and the result of the operation is an integer array of the same
class. Integer arrays saturate on overflow in arithmetic.

A particularly efficient way to initialize a large array is by specifying
the data type (i.e., class name) for the array in the zeros, ones, or eye
function. For example, to create a 100-by-100 int64 array initialized
to zero, type

I = zeros(100, 100, 'int64');

An easy way to find the range for any MATLAB integer type is to use
the intmin and intmax functions as shown here for int32:

intmin('int32') intmax('int32')
ans = ans =

-2147483648 2147483647

See Also double, single, uint8, uint16, uint32, uint64, intmax, intmin

2-1733

interfaces

Purpose List custom interfaces to COM server

Syntax C = h.interfaces
C = interfaces(h)

Description C = h.interfaces returns cell array of strings C listing all custom
interfaces implemented by the component in a specific COM server. The
server is designated by input argument, h, which is the handle returned
by the actxcontrol or actxserver function when creating that server.

C = interfaces(h) is an alternate syntax for the same operation.

Note interfaces only lists the custom interfaces; it does not return
any interfaces. Use the invoke function to return a handle to a specific
custom interface.

Examples Once you have created a COM server, you can query the server
component to see if any custom interfaces are implemented. Use the
interfaces function to return a list of all available custom interfaces:

h = actxserver('mytestenv.calculator')
h =

COM.mytestenv.calculator

customlist = h.interfaces
customlist =

ICalc1
ICalc2
ICalc3

To get a handle to the custom interface you want, use the invoke
function, specifying the handle returned by actxcontrol or actxserver
and also the name of the custom interface:

c1 = h.invoke('ICalc1')
c1 =

2-1734

interfaces

Interface.Calc_1.0_Type_Library.ICalc_Interface

You can now use this handle with most of the COM client functions to
access the properties and methods of the object through the selected
custom interface. For example, to list the properties available through
the ICalc1 interface, use

c1.get
background: 'Blue'

height: 10
width: 0

To list the methods, use

c1.invoke
Add = double Add(handle, double, double)
Divide = double Divide(handle, double, double)
Multiply = double Multiply(handle, double, double)
Subtract = double Subtract(handle, double, double)

Add and multiply numbers using the Add and Multiply methods of
the custom object c1:

sum = c1.Add(4, 7)
sum =

11

prod = c1.Multiply(4, 7)
prod =

28

See Also actxcontrol, actxserver, invoke, get

2-1735

interp1

Purpose 1-D data interpolation (table lookup)

Syntax yi = interp1(x,Y,xi)
yi = interp1(Y,xi)
yi = interp1(x,Y,xi,method)
yi = interp1(x,Y,xi,method,'extrap')
yi = interp1(x,Y,xi,method,extrapval)
pp = interp1(x,Y,method,'pp')

Description yi = interp1(x,Y,xi) interpolates to find yi, the values of the
underlying function Y at the points in the vector or array xi. x must
be a vector. Y can be a scalar, a vector, or an array of any dimension,
subject to the following conditions:

• If Y is a scalar or vector, it must have the same length as x. A scalar
value for Y is expanded to have the same length as x. xi can be a
scalar, a vector, or a multidimensional array, and yi has the same
size as xi.

• If Y is an array that is not a vector, the size of Y must have the form
[n,d1,d2,...,dk], where n is the length of x. The interpolation is
performed for each d1-by-d2-by-...-dk value in Y. The sizes of xi and
yi are related as follows:

- If xi is a scalar or vector, size(yi) equals [length(xi), d1,
d2, ..., dk].

- If xi is an array of size [m1,m2,...,mj], yi has size
[m1,m2,...,mj,d1,d2,...,dk].

yi = interp1(Y,xi) assumes that x = 1:N, where N is the length of Y
for vector Y, or size(Y,1) for matrix Y.

yi = interp1(x,Y,xi,method) interpolates using alternative
methods:

’nearest’ Nearest neighbor interpolation

’linear’ Linear interpolation (default)

2-1736

interp1

’spline’ Cubic spline interpolation

’pchip’ Piecewise cubic Hermite interpolation

’cubic’ (Same as ’pchip')

’v5cubic’ Cubic interpolation used in MATLAB 5. This method
does not extrapolate. Also, if x is not equally spaced,
'spline' is used/

For the 'nearest', 'linear', and 'v5cubic' methods,
interp1(x,Y,xi,method) returns NaN for any element of xi that is
outside the interval spanned by x. For all other methods, interp1
performs extrapolation for out of range values.

yi = interp1(x,Y,xi,method,'extrap') uses the specified method to
perform extrapolation for out of range values.

yi = interp1(x,Y,xi,method,extrapval) returns the scalar
extrapval for out of range values. NaN and 0 are often used for
extrapval.

pp = interp1(x,Y,method,'pp') uses the specified method to
generate the piecewise polynomial form (ppform) of Y. You can use
any of the methods in the preceding table, except for 'v5cubic'.
pp can then be evaluated via ppval. ppval(pp,xi) is the same as
interp1(x,Y,xi,method,'extrap').

The interp1 command interpolates between data points. It finds
values at intermediate points, of a one-dimensional function
that underlies the data. This function is shown below, along with the
relationship between vectors x, Y, xi, and yi.

2-1737

interp1

Interpolation is the same operation as table lookup. Described in table
lookup terms, the table is [x,Y] and interp1 looks up the elements of
xi in x, and, based upon their locations, returns values yi interpolated
within the elements of Y.

Note interp1q is quicker than interp1 on non-uniformly spaced data
because it does no input checking. For interp1q to work properly,
x must be a monotonically increasing column vector and Y must be a
column vector or matrix with length(X) rows. Type help interp1q at
the command line for more information.

Examples Example 1

Generate a coarse sine curve and interpolate over a finer abscissa.

x = 0:10;
y = sin(x);
xi = 0:.25:10;
yi = interp1(x,y,xi);
plot(x,y,'o',xi,yi)

2-1738

interp1

Example 2

The following multidimensional example creates 2-by-2 matrices of
interpolated function values, one matrix for each of the three functions
x2, x3, and x4.

x = [1:10]'; y = [x.^2, x.^3, x.^4];
xi = [1.5, 1.75; 7.5, 7.75];
yi = interp1(x,y,xi);

The result yi has size 2-by-2-by-3.

size(yi)

ans =

2 2 3

2-1739

interp1

Example 3

Here are two vectors representing the census years from 1900 to 1990
and the corresponding United States population in millions of people.

t = 1900:10:1990;
p = [75.995 91.972 105.711 123.203 131.669...

150.697 179.323 203.212 226.505 249.633];

The expression interp1(t,p,1975) interpolates within the census data
to estimate the population in 1975. The result is

ans =
214.8585

Now interpolate within the data at every year from 1900 to 2000, and
plot the result.

x = 1900:1:2000;
y = interp1(t,p,x,'spline');
plot(t,p,'o',x,y)

2-1740

interp1

Sometimes it is more convenient to think of interpolation in table
lookup terms, where the data are stored in a single table. If a portion of
the census data is stored in a single 5-by-2 table,

tab =
1950 150.697
1960 179.323
1970 203.212
1980 226.505
1990 249.633

then the population in 1975, obtained by table lookup within the matrix
tab, is

p = interp1(tab(:,1),tab(:,2),1975)
p =

214.8585

2-1741

interp1

Example 4

The following example uses the 'cubic' method to generate the
piecewise polynomial form (ppform) of Y, and then evaluates the result
using ppval.

x = 0:.2:pi; y = sin(x);
pp = interp1(x,y,'cubic','pp');
xi = 0:.1:pi;
yi = ppval(pp,xi);
plot(x,y,'ko'), hold on, plot(xi,yi,'r:'), hold off

Algorithm The interp1 command is a MATLAB M-file. The ’nearest' and
’linear' methods have straightforward implementations.

2-1742

interp1

For the ’spline' method, interp1 calls a function spline that uses
the functions ppval, mkpp, and unmkpp. These routines form a small
suite of functions for working with piecewise polynomials. spline uses
them to perform the cubic spline interpolation. For access to more
advanced features, see the spline reference page, the M-file help for
these functions, and the Spline Toolbox.

For the 'pchip' and 'cubic' methods, interp1 calls a function pchip
that performs piecewise cubic interpolation within the vectors x and y.
This method preserves monotonicity and the shape of the data. See the
pchip reference page for more information.

Interpolating Complex Data

For Real x and Complex Y. For interp1(x,Y,...) where x is real
and Y is complex, you can use any interp1 method except for 'pchip'.
The shape-preserving aspect of the 'pchip' algorithm involves the
signs of the slopes between the data points. Because there is no notion
of sign with complex data, it is impossible to talk about whether
a function is increasing or decreasing. Consequently, the 'pchip'
algorithm does not generalize to complex data.

The 'spline' method is often a good choice because piecewise
cubic splines are derived purely from smoothness conditions. The
second derivative of the interpolant must be continuous across the
interpolating points. This does not involve any notion of sign or shape
and so generalizes to complex data.

For Complex x. For interp1(x,Y,...) where x is complex and Y is
either real or complex, use the two-dimensional interpolation routine
interp2(REAL(x), IMAG(x),Y,...) instead.

See Also interp1q, interpft, interp2, interp3, interpn, pchip, spline

References [1] de Boor, C., A Practical Guide to Splines, Springer-Verlag, 1978.

2-1743

http://www.mathworks.com/access/helpdesk/help/toolbox/splines/

interp1q

Purpose Quick 1-D linear interpolation

Syntax yi = interp1q(x,Y,xi)

Description yi = interp1q(x,Y,xi) returns the value of the 1-D function Y at
the points of column vector xi using linear interpolation. The vector
x specifies the coordinates of the underlying interval. The length of
output yi is equal to the length of xi.

interp1q is quicker than interp1 on non-uniformly spaced data
because it does no input checking.

For interp1q to work properly,

• x must be a monotonically increasing column vector.

• Y must be a column vector or matrix with length(x) rows.

• xi must be a column vector

interp1q returns NaN for any values of xi that lie outside the
coordinates in x. If Y is a matrix, then the interpolation is performed for
each column of Y, in which case yi is length(xi)-by-size(Y,2).

Example Generate a coarse sine curve and interpolate over a finer abscissa.

x = 0:10';
y = sin(x);
xi = (0:.25:10)';
yi = interp1q(x,y,xi);
plot(x,y,'o',xi,yi)

2-1744

interp1q

See Also interp1, interp2, interp3, interpn

2-1745

interp2

Purpose 2-D data interpolation (table lookup)

Syntax ZI = interp2(X,Y,Z,XI,YI)
ZI = interp2(Z,XI,YI)
ZI = interp2(Z,ntimes)
ZI = interp2(X,Y,Z,XI,YI,method)
ZI = interp2(...,method, extrapval)

Description ZI = interp2(X,Y,Z,XI,YI) returns matrix ZI containing elements
corresponding to the elements of XI and YI and determined by
interpolation within the two-dimensional function specified by matrices
X, Y, and Z. X and Y must be monotonic, and have the same format
("plaid") as if they were produced by meshgrid. Matrices X and Y
specify the points at which the data Z is given. Out of range values
are returned as NaNs.

XI and YI can be matrices, in which case interp2 returns the values of
Z corresponding to the points (XI(i,j),YI(i,j)). Alternatively, you
can pass in the row and column vectors xi and yi, respectively. In this
case, interp2 interprets these vectors as if you issued the command
meshgrid(xi,yi).

ZI = interp2(Z,XI,YI) assumes that X = 1:n and Y = 1:m, where
[m,n] = size(Z).

ZI = interp2(Z,ntimes) expands Z by interleaving interpolates
between every element, working recursively for ntimes. interp2(Z) is
the same as interp2(Z,1).

ZI = interp2(X,Y,Z,XI,YI,method) specifies an alternative
interpolation method:

’nearest’ Nearest neighbor interpolation

’linear’ Linear interpolation (default)

2-1746

interp2

’spline’ Cubic spline interpolation

’cubic’ Cubic interpolation, as long as data is
uniformly-spaced. Otherwise, this method is the
same as 'spline'.

All interpolation methods require that X and Y be monotonic, and have
the same format (“plaid”) as if they were produced by meshgrid. If
you provide two monotonic vectors, interp2 changes them to a plaid
internally. Variable spacing is handled by mapping the given values in
X, Y, XI, and YI to an equally spaced domain before interpolating. For
faster interpolation when X and Y are equally spaced and monotonic,
use the methods '*linear', '*cubic', '*spline', or '*nearest'.

ZI = interp2(...,method, extrapval) specifies a method and a
scalar value for ZI outside of the domain created by X and Y. Thus, ZI
equals extrapval for any value of YI or XI that is not spanned by Y
or X respectively. A method must be specified to use extrapval. The
default method is 'linear'.

Remarks The interp2 command interpolates between data points. It finds
values of a two-dimensional function underlying the data at
intermediate points.

Interpolation is the same operation as table lookup. Described in table
lookup terms, the table is tab = [NaN,Y;X,Z] and interp2 looks up

2-1747

interp2

the elements of XI in X, YI in Y, and, based upon their location, returns
values ZI interpolated within the elements of Z.

Examples Example 1

Interpolate the peaks function over a finer grid.

[X,Y] = meshgrid(-3:.25:3);
Z = peaks(X,Y);
[XI,YI] = meshgrid(-3:.125:3);
ZI = interp2(X,Y,Z,XI,YI);
mesh(X,Y,Z), hold, mesh(XI,YI,ZI+15)
hold off
axis([-3 3 -3 3 -5 20])

Example 2

Given this set of employee data,

years = 1950:10:1990;
service = 10:10:30;

2-1748

interp2

wage = [150.697 199.592 187.625
179.323 195.072 250.287
203.212 179.092 322.767
226.505 153.706 426.730
249.633 120.281 598.243];

it is possible to interpolate to find the wage earned in 1975 by an
employee with 15 years’ service:

w = interp2(service,years,wage,15,1975)
w =

190.6287

See Also griddata, interp1, interp1q, interp3, interpn, meshgrid

2-1749

interp3

Purpose 3-D data interpolation (table lookup)

Syntax VI = interp3(X,Y,Z,V,XI,YI,ZI)
VI = interp3(V,XI,YI,ZI)
VI = interp3(V,ntimes)
VI = interp3(...,method)
VI = interp3(...,method,extrapval)

Description VI = interp3(X,Y,Z,V,XI,YI,ZI) interpolates to find VI, the values of
the underlying three-dimensional function V at the points in arrays XI,
YI and ZI. XI,YI, ZI must be arrays of the same size, or vectors. Vector
arguments that are not the same size, and have mixed orientations
(i.e. with both row and column vectors) are passed through meshgrid
to create the Y1, Y2, Y3 arrays. Arrays X, Y, and Z specify the points at
which the data V is given. Out of range values are returned as NaN.

VI = interp3(V,XI,YI,ZI) assumes X=1:N, Y=1:M, Z=1:P where
[M,N,P]=size(V).

VI = interp3(V,ntimes) expands V by interleaving interpolates
between every element, working recursively for ntimes iterations. The
command interp3(V) is the same as interp3(V,1).

VI = interp3(...,method) specifies alternative methods:

’nearest’ Nearest neighbor interpolation

’linear’ Linear interpolation (default)

’spline’ Cubic spline interpolation

’cubic’ Cubic interpolation, as long as data is
uniformly-spaced. Otherwise, this method is the
same as 'spline'.

VI = interp3(...,method,extrapval) specifies a method and a value
for VI outside of the domain created by X, Y and Z. Thus, VI equals
extrapval for any value of XI, YI or ZI that is not spanned by X, Y,
and Z, respectively. You must specify a method to use extrapval. The
default method is 'linear'.

2-1750

interp3

Discussion All the interpolation methods require that X,Y and Z be monotonic and
have the same format (“plaid”) as if they were created using meshgrid.
X, Y, and Z can be non-uniformly spaced. For faster interpolation
when X, Y, and Z are equally spaced and monotonic, use the methods
’*linear’, ’*cubic’, or ’*nearest’.

Examples To generate a coarse approximation of flow and interpolate over a
finer mesh:

[x,y,z,v] = flow(10);
[xi,yi,zi] = meshgrid(.1:.25:10, -3:.25:3, -3:.25:3);
vi = interp3(x,y,z,v,xi,yi,zi); % vi is 25-by-40-by-25
slice(xi,yi,zi,vi,[6 9.5],2,[-2 .2]), shading flat

See Also interp1, interp1q, interp2, interpn, meshgrid

2-1751

interpft

Purpose 1-D interpolation using FFT method

Syntax y = interpft(x,n)
y = interpft(x,n,dim)

Description y = interpft(x,n) returns the vector y that contains the value of the
periodic function x resampled to n equally spaced points.

If length(x) = m, and x has sample interval dx, then the new sample
interval for y is dy = dx*m/n. Note that n cannot be smaller than m.

If X is a matrix, interpft operates on the columns of X, returning a
matrix Y with the same number of columns as X, but with n rows.

y = interpft(x,n,dim) operates along the specified dimension.

Algorithm The interpft command uses the FFT method. The original vector x
is transformed to the Fourier domain using fft and then transformed
back with more points.

Examples Interpolate a triangle-like signal using an interpolation factor of 5.
First, set up signal to be interpolated:

y = [0 .5 1 1.5 2 1.5 1 .5 0 -.5 -1 -1.5 -2 -1.5 -1 -.5 0];
N = length(y);

Perform the interpolation:

L = 5;
M = N*L;
x = 0:L:L*N-1;
xi = 0:M-1;
yi = interpft(y,M);
plot(x,y,'o',xi,yi,'*')
legend('Original data','Interpolated data')

See Also interp1

2-1752

interpn

Purpose N-D data interpolation (table lookup)

Syntax VI = interpn(X1,X2,X3,...,V,Y1,Y2,Y3,...)
VI = interpn(V,Y1,Y2,Y3,...)
VI = interpn(V,ntimes)
VI = interpn(...,method)
VI = interpn(...,method,extrapval)

Description VI = interpn(X1,X2,X3,...,V,Y1,Y2,Y3,...) interpolates to
find VI, the values of the underlying multidimensional function V at
the points in the arrays Y1, Y2, Y3, etc. For an n-dimensional array
V, interpn is called with 2*N+1 arguments. Arrays X1, X2, X3, etc.
specify the points at which the data V is given. Out of range values are
returned as NaNs. Y1, Y2, Y3, etc. must be arrays of the same size, or
vectors. Vector arguments that are not the same size, and have mixed
orientations (i.e. with both row and column vectors) are passed through
ndgrid to create the Y1, Y2, Y3, etc. arrays. interpn works for all
n-dimensional arrays with 2 or more dimensions.

VI = interpn(V,Y1,Y2,Y3,...) interpolates as above, assuming
X1 = 1:size(V,1), X2 = 1:size(V,2), X3 = 1:size(V,3), etc.

VI = interpn(V,ntimes) expands V by interleaving interpolates
between each element, working recursively for ntimes iterations.
interpn(V) is the same as interpn(V,1).

VI = interpn(...,method) specifies alternative methods:

’nearest’ Nearest neighbor interpolation

’linear’ Linear interpolation (default)

’spline’ Cubic spline interpolation

’cubic’ Cubic interpolation, as long as data is
uniformly-spaced. Otherwise, this method is the
same as 'spline'.

VI = interpn(...,method,extrapval) specifies a method and a value
for VI outside of the domain created by X1, X2, Thus, VI equals

2-1753

interpn

extrapval for any value of Y1, Y2,... that is not spanned by X1, X2,...
respectively. You must specify a method to use extrapval. The default
method is 'linear'.

interpn requires that X1, X2, X3, ... be monotonic and plaid (as if they
were created using ndgrid). X1, X2, X3, and so on can be non-uniformly
spaced.

Discussion All the interpolation methods require that X1,X2, X3 ... be monotonic
and have the same format ("plaid") as if they were created using ndgrid.
X1,X2,X3,... and Y1, Y2, Y3, etc. can be non-uniformly spaced. For faster
interpolation when X1, X2, X3, etc. are equally spaced and monotonic,
use the methods ’*linear’, ’*cubic’, or ’*nearest’.

Examples Start by defining an anonymous function to compute :

f = @(x,y,z,t) t.*exp(-x.^2 - y.^2 - z.^2);

Build the lookup table by evaluating the function f on a grid constructed
by ndgrid:

[x,y,z,t] = ndgrid(-1:0.2:1,-1:0.2:1,-1:0.2:1,0:2:10);
v = f(x,y,z,t);

Now construct a finer grid:

[xi,yi,zi,ti] = ndgrid(-1:0.05:1,-1:0.08:1,-1:0.05:1, ...
0:0.5:10);

Compute the spline interpolation at xi, yi, zi, and ti:

vi = interpn(x,y,z,t,v,xi,yi,zi,ti,'spline');

Plot the interpolated function, and then create a movie from the plot:

nframes = size(ti, 4);
for j = 1:nframes

slice(yi(:,:,:,j), xi(:,:,:,j), zi(:,:,:,j), ...

2-1754

interpn

vi(:,:,:,j),0,0,0);
caxis([0 10]);
M(j) = getframe;

end
movie(M);

See Also interp1, interp2, interp3, ndgrid

2-1755

interpstreamspeed

Purpose Interpolate stream-line vertices from flow speed

Syntax interpstreamspeed(X,Y,Z,U,V,W,vertices)
interpstreamspeed(U,V,W,vertices)
interpstreamspeed(X,Y,Z,speed,vertices)
interpstreamspeed(speed,vertices)
interpstreamspeed(X,Y,U,V,vertices)
interpstreamspeed(U,V,vertices)
interpstreamspeed(X,Y,speed,vertices)
interpstreamspeed(speed,vertices)
interpstreamspeed(...,sf)
vertsout = interpstreamspeed(...)

Description interpstreamspeed(X,Y,Z,U,V,W,vertices) interpolates streamline
vertices based on the magnitude of the vector data U, V, W. The arrays X,
Y, Z define the coordinates for U, V, W and must be monotonic and 3-D
plaid (as if produced by meshgrid).

interpstreamspeed(U,V,W,vertices) assumes X, Y, and Z are
determined by the expression

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m n p] = size(U).

interpstreamspeed(X,Y,Z,speed,vertices) uses the 3-D array
speed for the speed of the vector field.

interpstreamspeed(speed,vertices) assumes X, Y, and Z are
determined by the expression

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m n p]=size(speed).

interpstreamspeed(X,Y,U,V,vertices) interpolates streamline
vertices based on the magnitude of the vector data U, V. The arrays X, Y
define the coordinates for U, V and must be monotonic and 2-D plaid (as
if produced by meshgrid).

2-1756

interpstreamspeed

interpstreamspeed(U,V,vertices) assumes X and Y are determined
by the expression

[X Y] = meshgrid(1:n,1:m)

where [M N]=size(U).

interpstreamspeed(X,Y,speed,vertices) uses the 2-D array speed
for the speed of the vector field.

interpstreamspeed(speed,vertices) assumes X and Y are
determined by the expression

[X Y] = meshgrid(1:n,1:m)

where [M,N]= size(speed).

interpstreamspeed(...,sf) uses sf to scale the magnitude of the
vector data and therefore controls the number of interpolated vertices.
For example, if sf is 3, then interpstreamspeed creates only one-third
of the vertices.

vertsout = interpstreamspeed(...) returns a cell array of vertex
arrays.

Examples This example draws streamlines using the vertices returned by
interpstreamspeed. Dot markers indicate the location of each vertex.
This example enables you to visualize the relative speeds of the flow
data. Streamlines having widely spaced vertices indicate faster flow;
those with closely spaced vertices indicate slower flow.

load wind
[sx sy sz] = meshgrid(80,20:1:55,5);
verts = stream3(x,y,z,u,v,w,sx,sy,sz);
iverts = interpstreamspeed(x,y,z,u,v,w,verts,.2);
sl = streamline(iverts);
set(sl,'Marker','.')
axis tight; view(2); daspect([1 1 1])

2-1757

interpstreamspeed

This example plots streamlines whose vertex spacing indicates the
value of the gradient along the streamline.

z = membrane(6,30);
[u v] = gradient(z);
[verts averts] = streamslice(u,v);
iverts = interpstreamspeed(u,v,verts,15);
sl = streamline(iverts);
set(sl,'Marker','.')
hold on; pcolor(z); shading interp
axis tight; view(2); daspect([1 1 1])

2-1758

interpstreamspeed

See Also stream2, stream3, streamline, streamslice, streamparticles

“Volume Visualization” on page 1-102 for related functions

2-1759

intersect

Purpose Find set intersection of two vectors

Syntax c = intersect(A, B)
c = intersect(A, B, 'rows')
[c, ia, ib] = intersect(a, b)

Description c = intersect(A, B) returns the values common to both A and B. In
set theoretic terms, this is A[[INTERSECT]] B. Inputs A and B can be
numeric or character vectors or cell arrays of strings. The resulting
vector is sorted in ascending order.

c = intersect(A, B, 'rows') when A and B are matrices with the
same number of columns returns the rows common to both A and B.

[c, ia, ib] = intersect(a, b) also returns column index vectors
ia and ib such that c = a(ia) and c = b(ib) (or c = a(ia,:) and
c = b(ib,:)).

Remarks Because NaN is considered to be not equal to itself, it is never included
in the result c.

Examples A = [1 2 3 6]; B = [1 2 3 4 6 10 20];
[c, ia, ib] = intersect(A, B);
disp([c; ia; ib])

1 2 3 6
1 2 3 4
1 2 3 5

See Also ismember, issorted, setdiff, setxor, union, unique

2-1760

intmax

Purpose Largest value of specified integer type

Syntax v = intmax
v = intmax('classname')

Description v = intmax is the largest positive value that can be represented in
MATLAB with a 32-bit integer. Any value larger than the value
returned by intmax saturates to the intmax value when cast to a 32-bit
integer.

v = intmax('classname') is the largest positive value in the integer
class classname. Valid values for the string classname are

'int8' 'int16' 'int32' 'int64'

'uint8' 'uint16' 'uint32' 'uint64'

intmax('int32') is the same as intmax with no arguments.

Examples Find the maximum value for a 64-bit signed integer:

v = intmax('int64')
v =

9223372036854775807

Convert this value to a 32-bit signed integer:

x = int32(v)
x =

2147483647

Compare the result with the default value returned by intmax:

isequal(x, intmax)
ans =

1

See Also intmin, realmax, realmin, int8, uint8, isa, class

2-1761

intmin

Purpose Smallest value of specified integer type

Syntax v = intmin
v = intmin('classname')

Description v = intmin is the smallest value that can be represented in MATLAB
with a 32-bit integer. Any value smaller than the value returned by
intmin saturates to the intmin value when cast to a 32-bit integer.

v = intmin('classname') is the smallest positive value in the integer
class classname. Valid values for the string classname are

'int8' 'int16' 'int32' 'int64'

'uint8' 'uint16' 'uint32' 'uint64'

intmin('int32') is the same as intmin with no arguments.

Examples Find the minimum value for a 64-bit signed integer:

v = intmin('int64')
v =
-9223372036854775808

Convert this value to a 32-bit signed integer:

x = int32(v)
x =

2147483647

Compare the result with the default value returned by intmin:

isequal(x, intmin)
ans =

1

See Also intmax, realmin, realmax, int8, uint8, isa, class

2-1762

intwarning

Purpose Control state of integer warnings

Syntax intwarning('action')
s = intwarning('action')
intwarning(s)
sOld = intwarning(sNew)

Description MATLAB has four types of integer warnings. The intwarning function
enables, disables, or returns information on these warnings:

• MATLAB:intConvertNaN — Warning on an attempt to convert NaN
(Not a Number) to an integer. The result of the operation is zero.

• MATLAB:intConvertNonIntVal — Warning on an attempt to convert
a non-integer value to an integer. The result is that the input value is
rounded to the nearest integer for that class.

• MATLAB:intConvertOverflow — Warning on overflow when
attempting to convert from a numeric class to an integer class. The
result is the maximum value for the target class.

• MATLAB:intMathOverflow — Warning on overflow when attempting
an integer arithmetic operation. The result is the maximum value for
the class of the input value. MATLAB also issues this warning when
NaN is computed (e.g., int8(0)/0).

intwarning('action') sets or displays the state of integer warnings
in MATLAB according to the string, action. There are three possible
actions, as shown here. The default state is 'off'.

Action Description

off Disable the display of integer warnings

on Enable the display of integer warnings

query Display the state of all integer warnings

s = intwarning('action') sets the state of integer warnings in
MATLAB according to the string action, and then returns the previous

2-1763

intwarning

state in a 4-by-1 structure array, s. The return structure array has
two fields: identifier and state.

intwarning(s) sets the state of integer warnings in MATLAB according
to the identifier and state fields in structure array s.

sOld = intwarning(sNew) sets the state of integer warnings in
MATLAB according to sNew, and then returns the previous state in
sOld.

Remarks
Caution Enabling the MATLAB:intMathOverflow warning slows down
integer arithmetic. It is recommended that you enable this particular
warning only when you need to diagnose unusual behavior in your code,
and disable it during normal program operation. The other integer
warnings listed here do not affect program performance.

Examples General Usage

Examples of the four types of integer warnings are shown here:

• MATLAB:intConvertNaN

Attempt to convert NaN (Not a Number) to an unsigned integer:

uint8(NaN);
Warning: NaN converted to uint8(0).

• MATLAB:intConvertNonIntVal

Attempt to convert a floating point number to an unsigned integer:

uint8(2.7);
Warning: Conversion rounded non-integer floating point

value to nearest uint8 value.

• MATLAB:intConvertOverflow

2-1764

intwarning

Attempt to convert a large unsigned integer to a signed integer, where
the operation overflows:

int8(uint8(200));
Warning: Out of range value converted to intmin('int8')

or intmax('int8').

• MATLAB:intMathOverflow

Attempt an integer arithmetic operation that overflows:

intmax('uint8') + 5;
Warning: Out of range value or NaN computed in
integer arithmetic.

Example 1

Check the initial state of integer warnings:

intwarning('query')
The state of warning 'MATLAB:intConvertNaN' is 'off'.
The state of warning 'MATLAB:intConvertNonIntVal' is 'off'.
The state of warning 'MATLAB:intConvertOverflow' is 'off'.
The state of warning 'MATLAB:intMathOverflow' is 'off'.

Convert a floating point value to an 8-bit unsigned integer. MATLAB
does the conversion, but that requires rounding the resulting value.
Because all integer warnings have been disabled, no warning is
displayed:

uint8(2.7)
ans =

3

Store this state in structure array iwState:

iwState = intwarning('query');

Change the state of the ConvertNonIntVal warning to 'on' by first
setting the state to 'on' in the iwState structure array, and then

2-1765

intwarning

loading iwState back into the internal integer warning settings for
your MATLAB session:

maxintwarn = 4;

for k = 1:maxintwarn
if strcmp(iwState(k).identifier, ...

'MATLAB:intConvertNonIntVal')
iwState(k).state = 'on';
intwarning(iwState);

end
end

Verify that the state of ConvertNonIntVal has changed:

intwarning('query')
The state of warning 'MATLAB:intConvertNaN' is 'off'.
The state of warning 'MATLAB:intConvertNonIntVal' is 'on'.
The state of warning 'MATLAB:intConvertOverflow' is 'off'.
The state of warning 'MATLAB:intMathOverflow' is 'off'.

Now repeat the conversion from floating point to integer. This time
MATLAB displays the warning:

uint8(2.7)
Warning: Conversion rounded non-integer floating point

value to nearest uint8 value.
ans =

3

See Also warning, lastwarn

2-1766

inv

Purpose Matrix inverse

Syntax Y = inv(X)

Description Y = inv(X) returns the inverse of the square matrix X. A warning
message is printed if X is badly scaled or nearly singular.

In practice, it is seldom necessary to form the explicit inverse of a
matrix. A frequent misuse of inv arises when solving the system of
linear equations . One way to solve this is with x = inv(A)*b.
A better way, from both an execution time and numerical accuracy
standpoint, is to use the matrix division operator x = A\b. This produces
the solution using Gaussian elimination, without forming the inverse.
See \ and / for further information.

Examples Here is an example demonstrating the difference between solving a
linear system by inverting the matrix with inv(A)*b and solving it
directly with A\b. A random matrix A of order 500 is constructed so
that its condition number, cond(A), is 1.e10, and its norm, norm(A),
is 1. The exact solution x is a random vector of length 500 and the
right-hand side is b = A*x. Thus the system of linear equations is badly
conditioned, but consistent.

On a 300 MHz, laptop computer the statements

n = 500;
Q = orth(randn(n,n));
d = logspace(0,-10,n);
A = Q*diag(d)*Q';
x = randn(n,1);
b = A*x;
tic, y = inv(A)*b; toc
err = norm(y-x)
res = norm(A*y-b)

produce

elapsed_time =

2-1767

inv

1.4320
err =

7.3260e-006
res =

4.7511e-007

while the statements

tic, z = A\b, toc
err = norm(z-x)
res = norm(A*z-b)

produce

elapsed_time =
0.6410

err =
7.1209e-006

res =
4.4509e-015

It takes almost two and one half times as long to compute the solution
with y = inv(A)*b as with z = A\b. Both produce computed solutions
with about the same error, 1.e-6, reflecting the condition number of
the matrix. But the size of the residuals, obtained by plugging the
computed solution back into the original equations, differs by several
orders of magnitude. The direct solution produces residuals on the order
of the machine accuracy, even though the system is badly conditioned.

The behavior of this example is typical. Using A\b instead of inv(A)*b
is two to three times as fast and produces residuals on the order of
machine accuracy, relative to the magnitude of the data.

Algorithm Inputs of Type Double

For inputs of type double, inv uses the following LAPACK routines to
compute the matrix inverse:

2-1768

inv

Matrix Routine

Real DLANGE, DGETRF, DGECON, DGETRI

Complex ZLANGE, ZGETRF, ZGECON, ZGETRI

Inputs of Type Single

For inputs of type single, inv uses the following LAPACK routines to
compute the matrix inverse:

Matrix Routine

Real SLANGE, SGETRF, SGECON, SGETRI

Complex CLANGE, CGETRF, CGECON, CGETRI

See Also det, lu, rref

The arithmetic operators \, /

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, SIAM, Philadelphia, 1999.

2-1769

http://www.netlib.org/lapack/lug/lapack_lug.html

invhilb

Purpose Inverse of Hilbert matrix

Syntax H = invhilb(n)

Description H = invhilb(n) generates the exact inverse of the exact Hilbert
matrix for n less than about 15. For larger n, invhilb(n) generates an
approximation to the inverse Hilbert matrix.

Limitations The exact inverse of the exact Hilbert matrix is a matrix whose elements
are large integers. These integers may be represented as floating-point
numbers without roundoff error as long as the order of the matrix, n,
is less than 15.

Comparing invhilb(n) with inv(hilb(n)) involves the effects of two
or three sets of roundoff errors:

• The errors caused by representing hilb(n)

• The errors in the matrix inversion process

• The errors, if any, in representing invhilb(n)

It turns out that the first of these, which involves representing fractions
like 1/3 and 1/5 in floating-point, is the most significant.

Examples invhilb(4) is

16 -120 240 -140
-120 1200 -2700 1680
240 -2700 6480 -4200

-140 1680 -4200 2800

See Also hilb

References [1] Forsythe, G. E. and C. B. Moler, Computer Solution of Linear
Algebraic Systems, Prentice-Hall, 1967, Chapter 19.

2-1770

invoke

Purpose Invoke method on object or interface, or display methods

Syntax S = h.invoke
S = h.invoke('methodname')
S = h.invoke('methodname', arg1, arg2, ...)
S = h.invoke('custominterfacename')
S = invoke(h, ...)

Description S = h.invoke returns structure array S containing a list of all methods
supported by the object or interface, h, along with the prototypes for
these methods.

If S is empty, either there are no properties or methods in the object,
or MATLAB cannot read the object’s type library. Refer to the COM
vendor’s documentation. For Automation objects, if the vendor
provides documentation for specific properties or methods, use the S =
invoke(h, ...) syntax to call them.

S = h.invoke('methodname') invokes the method specified in the
string methodname, and returns an output value, if any, in S. The data
type of the return value is dependent upon the specific method being
invoked and is determined by the specific control or server.

S = h.invoke('methodname', arg1, arg2, ...) invokes the method
specified in the string methodname with input arguments arg1, arg2,
etc.

S = h.invoke('custominterfacename') returns an Interface object
that serves as a handle to a custom interface implemented by the
COM component. The h argument is a handle to the COM object. The
custominterfacename argument is a quoted string returned by the
interfaces function.

S = invoke(h, ...) is an alternate syntax for the same operation.

Remarks If the method returns a COM interface, then invoke returns a
new MATLAB COM object that represents the interface returned.
See “Handling COM Data in MATLAB” in the External Interfaces

2-1771

invoke

documentation for a description of how MATLAB converts COM data
types.

Examples Example 1 — Invoking a Method

Create an mwsamp control and invoke its Redraw method:

f = figure ('position', [100 200 200 200]);
h = actxcontrol ('mwsamp.mwsampctrl.1', [0 0 200 200], f);

h.Radius = 100;
h.invoke('Redraw');

Here is a simpler way to use invoke. Just call the method directly,
passing the handle, and any arguments:

h.Redraw;

Call invoke with only the handle argument to display a list of all
mwsamp methods:

h.invoke
ans =

AboutBox = void AboutBox(handle)
Beep = void Beep(handle)
FireClickEvent = void FireClickEvent(handle)

.

.
etc.

Example 2 — Getting a Custom Interface

Once you have created a COM server, you can query the server
component to see if any custom interfaces are implemented. Use the
interfaces function to return a list of all available custom interfaces:

h = actxserver('mytestenv.calculator')
h =

COM.mytestenv.calculator

2-1772

invoke

customlist = h.interfaces
customlist =

ICalc1
ICalc2
ICalc3

To get a handle to the custom interface you want, use the invoke
function, specifying the handle returned by actxcontrol or actxserver
and also the name of the custom interface:

c1 = h.invoke('ICalc1')
c1 =

Interface.Calc_1.0_Type_Library.ICalc_Interface

You can now use this handle with most of the COM client functions to
access the properties and methods of the object through the selected
custom interface.

See Also methods, ismethod, interfaces

2-1773

ipermute

Purpose Inverse permute dimensions of N-D array

Syntax A = ipermute(B,order)

Description A = ipermute(B,order) is the inverse of permute. ipermute
rearranges the dimensions of B so that permute(A,order) will produce
B. B has the same values as A but the order of the subscripts needed to
access any particular element are rearranged as specified by order. All
the elements of order must be unique.

Remarks permute and ipermute are a generalization of transpose (.') for
multidimensional arrays.

Examples Consider the 2-by-2-by-3 array a:

a = cat(3,eye(2),2*eye(2),3*eye(2))

a(:,:,1) = a(:,:,2) =
1 0 2 0
0 1 0 2

a(:,:,3) =
3 0
0 3

Permuting and inverse permuting a in the same fashion restores the
array to its original form:

B = permute(a,[3 2 1]);
C = ipermute(B,[3 2 1]);
isequal(a,C)
ans=

1

See Also permute

2-1774

iqr (timeseries)

Purpose Interquartile range of timeseries data

Syntax ts_iqr = iqr(ts)
iqr(ts,'PropertyName1',PropertyValue1,...)

Description ts_iqr = iqr(ts) returns the interquartile range of ts.Data. When
ts.Data is a vector, ts_iqr is the difference between the 75th and the
25th percentiles of the ts.Data values. When ts.Data is a matrix,
ts_iqr is a row vector containing the interquartile range of each column
of ts.Data (when IsTimeFirst is true and the first dimension of ts is
aligned with time). For the N-dimensional ts.Data array, iqr always
operates along the first nonsingleton dimension of ts.Data.

iqr(ts,'PropertyName1',PropertyValue1,...) specifies the
following optional input arguments:

• 'MissingData' property has two possible values, 'remove' (default)
or 'interpolate', indicating how to treat missing data during the
calculation.

• 'Quality' values are specified by a vector of integers, indicating
which quality codes represent missing samples (for vector data) or
missing observations (for data arrays with two or more dimensions).

• 'Weighting' property has two possible
values, 'none' (default) or 'time'.
When you specify 'time', larger time values
correspond to larger weights.

Examples Create a time series with a missing value, represented by NaN.

ts = timeseries([3.0 NaN 5 6.1 8], 1:5);

Calculate the interquartile range of ts.Data after removing the missing
value from the calculation.

iqr(ts,'MissingData','remove')

2-1775

iqr (timeseries)

ans =

3.0500

See Also timeseries

2-1776

is*

Purpose Detect state

Description These functions detect the state of MATLAB entities:

isa Detect object of given MATLAB class or Java class

isappdata Determine if object has specific application-defined
data

iscell Determine if input is cell array

iscellstr Determine if input is cell array of strings

ischar Determine if input is character array

iscom Determine if input is Component Object Model (COM)
object

isdir Determine if input is directory

isempty Determine if input is empty array

isequal Determine if arrays are numerically equal

isequalwithequalnans Determine if arrays are numerically equal, treating
NaNs as equal

isevent Determine if input is object event

isfield Determine if input is MATLAB structure array field

isfinite Detect finite elements of array

isfloat Determine if input is floating-point array

isglobal Determine if input is global variable

ishandle Detect valid graphics object handles

ishold Determine if graphics hold state is on

isinf Detect infinite elements of array

isinteger Determine if input is integer array

isinterface Determine if input is Component Object Model (COM)
interface

2-1777

is*

isjava Determine if input is Java object

iskeyword Determine if input is MATLAB keyword

isletter Detect elements that are alphabetic letters

islogical Determine if input is logical array

ismember Detect members of specific set

ismethod Determine if input is object method

isnan Detect elements of array that are not a number (NaN)

isnumeric Determine if input is numeric array

isobject Determine if input is MATLAB OOPs object

ispc Determine if PC (Windows) version of MATLAB

isprime Detect prime elements of array

isprop Determine if input is object property

isreal Determine if all array elements are real numbers

isscalar Determine if input is scalar

issorted Determine if set elements are in sorted order

isspace Detect space characters in array

issparse Determine if input is sparse array

isstrprop Determine if string is of specified category

isstruct Determine if input is MATLAB structure array

isstudent Determine if Student Version of MATLAB

isunix Determine if UNIX version of MATLAB

isvarname Determine if input is valid variable name

isvector Determine if input is vector

See Also isa

2-1778

isa

Purpose Determine whether input is object of given class

Syntax K = isa(obj, 'class_name')

Description K = isa(obj, 'class_name') returns logical 1 (true) if obj is of class
(or a subclass of) class_name, and logical 0 (false) otherwise.

The argument obj is a MATLAB object or a Java object. The argument
class_name is the name of a MATLAB (predefined or user-defined) or a
Java class. Predefined MATLAB classes include

logical Logical array of true and false values

char Characters array

numeric Integer or floating-point array

integer Signed or unsigned integer array

int8 8-bit signed integer array

uint8 8-bit unsigned integer array

int16 16-bit signed integer array

uint16 16-bit unsigned integer array

int32 32-bit signed integer array

uint32 32-bit unsigned integer array

int64 64-bit signed integer array

uint64 64-bit unsigned integer array

float Single- or double-precision floating-point array

single Single-precision floating-point array

double Double-precision floating-point array

cell Cell array

struct Structure array

2-1779

isa

function_handle Function handle

’class_name’ Custom MATLAB object class or Java class

To check for a sparse array, use issparse. To check for a complex
array, use ~isreal.

Examples isa(rand(3,4),'double')
ans =

1

The following example creates an instance of the user-defined MATLAB
class named polynom. The isa function identifies the object as being
of the polynom class.

polynom_obj = polynom([1 0 -2 -5]);
isa(polynom_obj, 'polynom')
ans =

1

See Also class, is*

2-1780

isappdata

Purpose True if application-defined data exists

Syntax isappdata(h,name)

Description isappdata(h,name) returns 1 if application-defined data with the
specified name exists on the object specified by handle h, and returns
0 otherwise.

See Also getappdata, rmappdata, setappdata

2-1781

iscell

Purpose Determine whether input is cell array

Syntax tf = iscell(A)

Description tf = iscell(A) returns logical 1 (true) if A is a cell array and logical
0 (false) otherwise.

Examples A{1,1} = [1 4 3; 0 5 8; 7 2 9];
A{1,2} = 'Anne Smith';
A{2,1} = 3+7i;
A{2,2} = -pi:pi/10:pi;

iscell(A)

ans =

1

See Also cell, iscellstr, isstruct, isnumeric, islogical, isobject, isa, is*

2-1782

iscellstr

Purpose Determine whether input is cell array of strings

Syntax tf = iscellstr(A)

Description tf = iscellstr(A) returns logical 1 (true) if A is a cell array of strings
and logical 0 (false) otherwise. A cell array of strings is a cell array
where every element is a character array.

Examples A{1,1} = 'Thomas Lee';
A{1,2} = 'Marketing';
A{2,1} = 'Allison Jones';
A{2,2} = 'Development';

iscellstr(A)

ans =

1

See Also cellstr, iscell, isstrprop, strings, char, isstruct, isa, is*

2-1783

ischar

Purpose Determine whether item is character array

Syntax tf = ischar(A)

Description tf = ischar(A) returns logical 1 (true) if A is a character array and
logical 0 (false) otherwise.

Examples Given the following cell array,

C{1,1} = magic(3); % double array
C{1,2} = 'John Doe'; % char array
C{1,3} = 2 + 4i % complex double

C =

[3x3 double] 'John Doe' [2.0000+ 4.0000i]

ischar shows that only C{1,2} is a character array.

for k = 1:3
x(k) = ischar(C{1,k});
end

x

x =

0 1 0

See Also char, strings, isletter, isspace, isstrprop, iscellstr, isnumeric,
isa, is*

2-1784

iscom

Purpose Is input COM object

Syntax tf = h.iscom
tf = iscom(h)

Description tf = h.iscom returns logical 1 (true) if the input handle, h, is a COM
or ActiveX object. Otherwise, iscom returns logical 0 (false) .

tf = iscom(h) is an alternate syntax for the same operation.

Examples Create a COM server running Microsoft Excel. The actxserver
function returns a handle h to the server object. Testing this handle
with iscom returns true:

h = actxserver('excel.application');

h.iscom
ans =

1

Create an interface to workbooks, returning handle w. Testing this
handle with iscom returns false:

w = h.get('workbooks');

w.iscom
ans =

0

See Also isinterface

2-1785

isdir

Purpose Determine whether input is a directory

Syntax tf = isdir('A')

Description tf = isdir('A') returns logical 1 (true) if A is a directory and logical
0 (false) otherwise.

Examples Type

tf=isdir('mymfiles/results')

and MATLAB returns

tf =
1

indicating that mymfiles/results is a directory.

See Also dir, is*

2-1786

isempty

Purpose Determine whether array is empty

Syntax TF = isempty(A)

Description TF = isempty(A) returns logical 1 (true) if A is an empty array and
logical 0 (false) otherwise. An empty array has at least one dimension
of size zero, for example, 0-by-0 or 0-by-5.

Examples B = rand(2,2,2);
B(:,:,:) = [];

isempty(B)

ans = 1

See Also is*

2-1787

isempty (timeseries)

Purpose Determine whether timeseries object is empty

Syntax isempty(ts)

Description isempty(ts) returns a logical value for timeseries object ts, as
follows:

• 1 — When ts contains no data samples or ts.Data is empty.

• 0 — When ts contains data samples

See Also length (timeseries), size (timeseries), timeseries, tsprops

2-1788

isempty (tscollection)

Purpose Determine whether tscollection object is empty

Syntax isempty(tsc)

Description isempty(tsc) returns a logical value for tscollection object tsc,
as follows:

• 1 — When tsc contains neither timeseries members nor a time
vector

• 0 — When tsc contains either timeseries members or a time vector

See Also length (tscollection), size (tscollection), timeseries,
tscollection

2-1789

isequal

Purpose Test arrays for equality

Syntax tf = isequal(A, B, ...)

Description tf = isequal(A, B, ...) returns logical 1 (true) if the input arrays
have the same contents, and logical 0 (false) otherwise. Nonempty
arrays must be of the same data type and size.

Remarks When comparing structures, the order in which the fields of the
structures were created is not important. As long as the structures
contain the same fields, with corresponding fields set to equal values,
isequal considers the structures to be equal. See Example 2, below.

When comparing numeric values, isequal does not consider the data
type used to store the values in determining whether they are equal.
See Example 3, below.

NaNs (Not a Number), by definition, are not equal. Therefore, arrays
that contain NaN elements are not equal, and isequal returns
zero when comparing such arrays. See Example 4, below. Use the
isequalwithequalnans function when you want to test for equality
with NaNs treated as equal.

isequal recursively compares the contents of cell arrays and structures.
If all the elements of a cell array or structure are numerically equal,
isequal returns logical 1.

Examples Example 1

Given

A = B = C =
1 0 1 0 1 0
0 1 0 1 0 0

isequal(A,B,C) returns 0, and isequal(A,B) returns 1.

2-1790

isequal

Example 2

When comparing structures with isequal, the order in which the fields
of the structures were created is not important:

A.f1 = 25; A.f2 = 50
A =

f1: 25
f2: 50

B.f2 = 50; B.f1 = 25
B =

f2: 50
f1: 25

isequal(A, B)
ans =

1

Example 3

When comparing numeric values, the data types used to store the
values are not important:

A = [25 50]; B = [int8(25) int8(50)];

isequal(A, B)
ans =

1

Example 4

Arrays that contain NaN (Not a Number) elements cannot be equal,
since NaNs, by definition, are not equal:

A = [32 8 -29 NaN 0 5.7];
B = A;

isequal(A, B)
ans =

2-1791

isequal

0

See Also isequalwithequalnans, strcmp, isa, is*, relational operators

2-1792

isequal (MException)

Purpose Compare MException objects for equality

Syntax TF = isequal(eObj1, eObj2)

Description TF = isequal(eObj1, eObj2) tests MException objects eObj1 and
eObj2 for equality, returning logical 1 (true) if the two objects are
identical, otherwise returning logical 0 (false).

See Also try, catch, error, assert, MException, eq(MException),
ne(MException), getReport(MException), disp(MException),
throw(MException), rethrow(MException),
throwAsCaller(MException), addCause(MException),
last(MException),

2-1793

isequalwithequalnans

Purpose Test arrays for equality, treating NaNs as equal

Syntax tf = isequalwithequalnans(A, B, ...)

Description tf = isequalwithequalnans(A, B, ...) returns logical 1 (true) if
the input arrays are the same type and size and hold the same contents,
and logical 0 (false) otherwise. NaN (Not a Number) values are
considered to be equal to each other. Numeric data types and structure
field order do not have to match.

Remarks isequalwithequalnans is the same as isequal, except
isequalwithequalnans considers NaN (Not a Number) values to be
equal, and isequal does not.

isequalwithequalnans recursively compares the contents of cell arrays
and structures. If all the elements of a cell array or structure are
numerically equal, isequalwithequalnans returns logical 1.

Examples Arrays containing NaNs are handled differently by isequal and
isequalwithequalnans. isequal does not consider NaNs to be equal,
while isequalwithequalnans does.

A = [32 8 -29 NaN 0 5.7];
B = A;
isequal(A, B)
ans =

0

isequalwithequalnans(A, B)
ans =

1

The position of NaN elements in the array does matter. If they
are not in the same position in the arrays being compared, then
isequalwithequalnans returns zero.

A = [2 4 6 NaN 8]; B = [2 4 NaN 6 8];

2-1794

isequalwithequalnans

isequalwithequalnans(A, B)
ans =

0

See Also isequal, strcmp, isa, is*, relational operators

2-1795

isevent

Purpose Is input event

Syntax tf = h.isevent('name')
tf = isevent(h, 'name')

Description tf = h.isevent('name') returns logical 1 (true) if the specified
name is an event that can be recognized and responded to by object h.
Otherwise, isevent returns logical 0 (false) .

tf = isevent(h, 'name') is an alternate syntax for the same
operation.

Remarks The string specified in the name argument is not case sensitive.

For COM control objects, isevent returns the same value regardless
of whether the specified event is registered with the control or not. In
order for the control to respond to the event, you must first register the
event using either actxcontrol or registerevent.

Examples Test an Event Example

Create an mwsamp control and test to see if DblClick is an event
recognized by the control.

f = figure ('position', [100 200 200 200]);
h = actxcontrol ('mwsamp.mwsampctrl.2', [0 0 200 200], f);
h.isevent('DblClick')

MATLAB displays ans = 1 (true), showing that DblClick is an event.

Test a Method Example

Try the same test on Redraw, which is one of the control’s methods.

h.isevent('Redraw')

MATLAB displays ans = 0 (false), showing that Redraw is not an event.

Test an Excel Workbook Example

Create an Excel Workbook object.

2-1796

isevent

excel = actxserver('Excel.Application');
wbs = excel.Workbooks;
wb = wbs.Add;

Test the Activate event:

wb.isevent('Activate')

MATLAB displays ans = 1 (true), showing that Activate is an event.

Test Save :

wb.isevent('Save')

MATLAB displays ans = 0 (false), showing that Save is not an event;
it is a method.

See Also events, eventlisteners, registerevent, unregisterevent,
unregisterallevents

2-1797

isfield

Purpose Determine whether input is structure array field

Syntax tf = isfield(S, 'fieldname')
tf = isfield(S, C)

Description tf = isfield(S, 'fieldname') examines structure S to see if it
includes the field specified by the quoted string 'fieldname'. Output
tf is set to logical 1 (true) if S contains the field, or logical 0 (false) if
not. If S is not a structure array, isfield returns false.

tf = isfield(S, C) examines structure S for multiple fieldnames as
specified in cell array of strings C, and returns an array of logical values
to indicate which of these fields are part of the structure. Elements of
output array tf are set to a logical 1 (true) if the corresponding element
of C holds a fieldname that belongs to structure S. Otherwise, logical
0 (false) is returned in that element. In other words, if structure
S contains the field specified in C{m,n}, isfield returns a logical 1
(true) in tf(m,n).

Note isfield returns false if the field or fieldnames input is empty.

Examples Example 1 — Single Fieldname Syntax

Given the following MATLAB structure,

patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

isfield identifies billing as a field of that structure.

isfield(patient,'billing')
ans =

1

2-1798

isfield

Example 2 — Multiple Fieldname Syntax

Check structure S for any of four possible fieldnames. Only the first is
found, so the first element of the return value is set to true:

S = struct('one', 1, 'two', 2);

fields = isfield(S, {'two', 'pi', 'One', 3.14})
fields =

1 0 0 0

See Also fieldnames, setfield, getfield, orderfields, rmfield, struct,
isstruct, iscell, isa, is*, dynamic field names

2-1799

isfinite

Purpose Array elements that are finite

Syntax TF = isfinite(A)

Description TF = isfinite(A) returns an array the same size as A containing
logical 1 (true) where the elements of the array A are finite and logical
0 (false) where they are infinite or NaN. For a complex number z,
isfinite(z) returns 1 if both the real and imaginary parts of z are
finite, and 0 if either the real or the imaginary part is infinite or NaN.

For any real A, exactly one of the three quantities isfinite(A),
isinf(A), and isnan(A) is equal to one.

Examples a = [-2 -1 0 1 2];

isfinite(1./a)
Warning: Divide by zero.

ans =
1 1 0 1 1

isfinite(0./a)
Warning: Divide by zero.

ans =
1 1 0 1 1

See Also isinf, isnan, is*

2-1800

isfloat

Purpose Determine whether input is floating-point array

Syntax isfloat(A)

Description isfloat(A) returns a logical 1 (true) if A is a floating-point array and
a logical 0 (false) otherwise. The only floating-point data types in
MATLAB are single and double.

See Also isa, isinteger, double, single, isnumeric

2-1801

isglobal

Purpose Determine whether input is global variable

Note Support for the isglobal function will be removed in a future
release of MATLAB. See Remarks below.

Syntax tf = isglobal(A)

Description tf = isglobal(A) returns logical 1 (true) if A has been declared to be
a global variable in the context from which isglobal is called, and
logical 0 (false) otherwise.

Remarks isglobal is most commonly used in conjunction with conditional global
declaration. An alternate approach is to use a pair of variables, one
local and one declared global.

Instead of using

if condition
global x

end

x = some_value

if isglobal(x)
do_something

end

You can use

global gx
if condition

gx = some_value
else

x = some_value
end

2-1802

isglobal

if condition
do_something

end

If no other workaround is possible, you can replace the command

isglobal(variable)

with

~isempty(whos('global','variable'))

See Also global, isvarname, isa, is*

2-1803

ishandle

Purpose Is object handle valid

Syntax ishandle(h)

Description ishandle(h) returns an array containing 1’s where the elements of h
are valid graphics handles and 0’s where they are not.

See Also findobj, gca, gcf, gco, set

“Accessing Object Handles” for more information.

“Finding and Identifying Graphics Objects” on page 1-93 for related
functions

2-1804

ishold

Purpose Current hold state

Syntax ishold

Description ishold returns 1 if hold is on, and 0 if it is off. When hold is on,
the current plot and most axis properties are held so that subsequent
graphing commands add to the existing graph.

A state of hold on implies that both figure and axes NextPlot
properties are set to add.

See Also hold, newplot

“Controlling Graphics Output” for related information

“Axes Operations” on page 1-96 for related functions

2-1805

isinf

Purpose Array elements that are infinite

Syntax TF = isinf(A)

Description TF = isinf(A) returns an array the same size as A containing logical 1
(true) where the elements of A are +Inf or -Inf and logical 0 (false)
where they are not. For a complex number z, isinf(z) returns 1 if
either the real or imaginary part of z is infinite, and 0 if both the real
and imaginary parts are finite or NaN.

For any real A, exactly one of the three quantities isfinite(A),
isinf(A), and isnan(A) is equal to one.

Examples a = [-2 -1 0 1 2]

isinf(1./a)
Warning: Divide by zero.

ans =
0 0 1 0 0

isinf(0./a)
Warning: Divide by zero.

ans =
0 0 0 0 0

See Also isfinite, isnan, is*

2-1806

isinteger

Purpose Determine whether input is integer array

Syntax

Description isinteger(A) returns a logical 1 (true) if the array A has integer
data type and a logical 0 (false) otherwise. The integer data types
in MATLAB are

• int8

• uint8

• int16

• uint16

• int32

• uint32

• int64

• uint64

See Also isa, isnumeric, isfloat

2-1807

isinterface

Purpose Is input COM interface

Syntax tf = h.isinterface
tf = isinterface(h)

Description tf = h.isinterface returns logical 1 (true) if the input handle, h, is a
COM interface. Otherwise, isinterface returns logical 0 (false) .

tf = isinterface(h) is an alternate syntax for the same operation.

Examples Create a COM server running Microsoft Excel. The actxserver
function returns a handle h to the server object. Testing this handle
with isinterface returns false:

h = actxserver('excel.application');

h.isinterface
ans =

0

Create an interface to workbooks, returning handle w. Testing this
handle with isinterface returns true:

w = h.get('workbooks');

w.isinterface
ans =

1

See Also iscom, interfaces, get

2-1808

isjava

Purpose Determine whether input is Java object

Syntax tf = isjava(A)

Description tf = isjava(A) returns logical 1 (true) if A is a Java object, and logical
0 (false) otherwise.

Examples Create an instance of the Java Frame class and isjava indicates that it
is a Java object.

frame = java.awt.Frame('Frame A');

isjava(frame)

ans =

1

Note that, isobject, which tests for MATLAB objects, returns logical 0
(false).

isobject(frame)

ans =

0

See Also isobject, javaArray, javaMethod, javaObject, isa, is*

2-1809

iskeyword

Purpose Determine whether input is MATLAB keyword

Syntax tf = iskeyword('str')
iskeyword str
iskeyword

Description tf = iskeyword('str') returns logical 1 (true) if the string str is a
keyword in the MATLAB language and logical 0 (false) otherwise.

iskeyword str uses the MATLAB command format.

iskeyword returns a list of all MATLAB keywords.

Examples To test if the word while is a MATLAB keyword,

iskeyword while
ans =

1

To obtain a list of all MATLAB keywords,

iskeyword
'break'
'case'
'catch'
'classdef'
'continue'
'else'
'elseif'
'end'
'for'
'function'
'global'
'if'
'otherwise'
'parfor'
'persistent'
'return'

2-1810

iskeyword

'switch'
'try'
'while'

See Also isvarname, genvarname, is*

2-1811

isletter

Purpose Array elements that are alphabetic letters

Syntax tf = isletter('str')

Description tf = isletter('str') returns an array the same size as str
containing logical 1 (true) where the elements of str are letters of the
alphabet and logical 0 (false) where they are not.

Examples Find the letters in character array s.

s = 'A1,B2,C3';

isletter(s)
ans =

1 0 0 1 0 0 1 0

See Also ischar, isspace, isstrprop, iscellstr, isnumeric, char, strings,
isa, is*

2-1812

islogical

Purpose Determine whether input is logical array

Syntax tf = islogical(A)

Description tf = islogical(A) returns logical 1 (true) if A is a logical array and
logical 0 (false) otherwise.

Examples Given the following cell array,

C{1,1} = pi; % double
C{1,2} = 1; % double
C{1,3} = ispc; % logical
C{1,4} = magic(3) % double array

C =
[3.1416] [1] [1] [3x3 double]

islogical shows that only C{1,3} is a logical array.

for k = 1:4
x(k) = islogical(C{1,k});
end

x
x =

0 0 1 0

See Also logical, isnumeric, ischar, isreal, , logical operators (elementwise
and short-circuit), isa, is*

2-1813

ismac

Purpose Determine whether running Macintosh OS X versions of MATLAB

Syntax tf = ismac

Description tf = ismac returns logical 1 (true) for the Macintosh OS X versions
of MATLAB and logical 0 (false) otherwise.

See Also isunix, ispc, isstudent, is*

2-1814

ismember

Purpose Array elements that are members of set

Syntax tf = ismember(A, S)
tf = ismember(A, S, 'rows')
[tf, loc] = ismember(A, S, ...)

Description tf = ismember(A, S) returns a vector the same length as A, containing
logical 1 (true) where the elements of A are in the set S, and logical 0
(false) elsewhere. In set theory terms, k is 1 where A S. Inputs A and
S can be numeric or character arrays or cell arrays of strings.

tf = ismember(A, S, 'rows'), when A and S are matrices with the
same number of columns, returns a vector containing 1 where the rows
of A are also rows of S and 0 otherwise. You cannot use this syntax
if A or S is a cell array of strings.

[tf, loc] = ismember(A, S, ...) returns an array loc containing
the highest index in S for each element in A that is a member of S. For
those elements of A that do not occur in S, ismember returns 0.

Remarks Because NaN is considered to be not equal to anything, it is never a
member of any set.

Examples set = [0 2 4 6 8 10 12 14 16 18 20];
a = reshape(1:5, [5 1])

a =
1
2
3
4
5

ismember(a, set)
ans =
0

1

2-1815

ismember

0
1
0

set = [5 2 4 2 8 10 12 2 16 18 20 3];
[tf, index] = ismember(a, set);

index
index =

0
8

12
3
1

See Also issorted, intersect, setdiff, setxor, union, unique, is*

2-1816

ismethod

Purpose Determine whether input is object method

Syntax ismethod(h, 'name')

Description ismethod(h, 'name') returns a logical 1 (true) if the specified name is
a method that you can call on object h. Otherwise, ismethod returns
logical 0 (false).

Examples Create an Excel application and test to see if SaveWorkspace is a
method of the object. ismethod returns true:

h = actxserver ('Excel.Application');

ismethod(h, 'SaveWorkspace')
ans =

1

Try the same test on UsableWidth, which is a property. ismethod
returns false:

ismethod(h, 'UsableWidth')
ans =

0

See Also methods, methodsview, isprop, isevent, isobject, class, invoke

2-1817

isnan

Purpose Array elements that are NaN

Syntax TF = isnan(A)

Description TF = isnan(A) returns an array the same size as A containing logical
1 (true) where the elements of A are NaNs and logical 0 (false) where
they are not. For a complex number z, isnan(z) returns 1 if either the
real or imaginary part of z is NaN, and 0 if both the real and imaginary
parts are finite or Inf.

For any real A, exactly one of the three quantities isfinite(A),
isinf(A), and isnan(A) is equal to one.

Examples a = [-2 -1 0 1 2]

isnan(1./a)
Warning: Divide by zero.

ans =
0 0 0 0 0

isnan(0./a)
Warning: Divide by zero.

ans =
0 0 1 0 0

See Also isfinite, isinf, is*

2-1818

isnumeric

Purpose Determine whether input is numeric array

Syntax tf = isnumeric(A)

Description tf = isnumeric(A) returns logical 1 (true) if A is a numeric array
and logical 0 (false) otherwise. For example, sparse arrays and
double-precision arrays are numeric, while strings, cell arrays, and
structure arrays and logicals are not.

Examples Given the following cell array,

C{1,1} = pi; % double
C{1,2} = 'John Doe'; % char array
C{1,3} = 2 + 4i; % complex double
C{1,4} = ispc; % logical
C{1,5} = magic(3) % double array

C =
[3.1416] 'John Doe' [2.0000+ 4.0000i] [1][3x3 double]

isnumeric shows that all but C{1,2} and C{1,4} are numeric arrays.

for k = 1:5
x(k) = isnumeric(C{1,k});
end

x
x =

1 0 1 0 1

See Also isstrprop, isnan, isreal, isprime, isfinite, isinf, isa, is*

2-1819

isobject

Purpose Determine whether input is MATLAB OOPs object

Syntax tf = isobject(A)

Description tf = isobject(A) returns logical 1 (true) if A is a MATLAB object
and logical 0 (false) otherwise.

Examples Create an instance of the polynom class as defined in the section
“Example — A Polynomial Class” in the MATLAB Programming
documentation.

p = polynom([1 0 -2 -5])
p =

x^3 - 2*x - 5

isobject indicates that p is a MATLAB object.

isobject(p)
ans =

1

Note that isjava, which tests for Java objects in MATLAB, returns
false.

isjava(p)
ans =

0

See Also isjava, isstruct, iscell, ischar, isnumeric, islogical, ismethod,
isprop, isevent, methods, class, isa, is*

2-1820

isocaps

Purpose Compute isosurface end-cap geometry

Syntax fvc = isocaps(X,Y,Z,V,isovalue)
fvc = isocaps(V,isovalue)
fvc = isocaps(...,'enclose')
fvc = isocaps(...,'whichplane')
[f,v,c] = isocaps(...)
isocaps(...)

Description fvc = isocaps(X,Y,Z,V,isovalue) computes isosurface end-cap
geometry for the volume data V at isosurface value isovalue. The
arrays X, Y, and Z define the coordinates for the volume V.

The struct fvc contains the face, vertex, and color data for the end-caps
and can be passed directly to the patch command.

fvc = isocaps(V,isovalue) assumes the arrays X, Y, and Z are defined
as [X,Y,Z] = meshgrid(1:n,1:m,1:p) where [m,n,p] = size(V).

fvc = isocaps(...,'enclose') specifies whether the end-caps
enclose data values above or below the value specified in isovalue. The
string enclose can be either above (default) or below.

fvc = isocaps(...,'whichplane') specifies on which planes to draw
the end-caps. Possible values for whichplane are all (default), xmin,
xmax, ymin, ymax, zmin, or zmax.

[f,v,c] = isocaps(...) returns the face, vertex, and color data for
the end-caps in three arrays instead of the struct fvc.

isocaps(...) without output arguments draws a patch with the
computed faces, vertices, and colors.

Examples This example uses a data set that is a collection of MRI slices of a
human skull. It illustrates the use of isocaps to draw the end-caps on
this cutaway volume.

The red isosurface shows the outline of the volume (skull) and the
end-caps show what is inside of the volume.

2-1821

isocaps

The patch created from the end-cap data (p2) uses interpolated
face coloring, which means the gray colormap and the light sources
determine how it is colored. The isosurface patch (p1) used a flat red
face color, which is affected by the lights, but does not use the colormap.

load mri
D = squeeze(D);
D(:,1:60,:) = [];
p1 = patch(isosurface(D, 5),'FaceColor','red',...
'EdgeColor','none');

p2 = patch(isocaps(D, 5),'FaceColor','interp',...
'EdgeColor','none');

view(3); axis tight; daspect([1,1,.4])
colormap(gray(100))
camlight left; camlight; lighting gouraud
isonormals(D,p1)

2-1822

isocaps

See Also isosurface, isonormals, smooth3, subvolume, reducevolume,
reducepatch

“Isocaps Add Context to Visualizations” for more illustrations of isocaps

“Volume Visualization” on page 1-102 for related functions

2-1823

isocolors

Purpose Calculate isosurface and patch colors

Syntax nc = isocolors(X,Y,Z,C,vertices)
nc = isocolors(X,Y,Z,R,G,B,vertices)
nc = isocolors(C,vertices)
nc = isocolors(R,G,B,vertices)
nc = isocolors(...,PatchHandle)
isocolors(...,PatchHandle)

Description nc = isocolors(X,Y,Z,C,vertices) computes the colors of isosurface
(patch object) vertices (vertices) using color values C. Arrays X, Y, Z
define the coordinates for the color data in C and must be monotonic
vectors or 3-D plaid arrays (as if produced by meshgrid). The colors are
returned in nc. C must be 3-D (index colors).

nc = isocolors(X,Y,Z,R,G,B,vertices) uses R, G, B as the red,
green, and blue color arrays (true color).

nc = isocolors(C,vertices), and nc =
isocolors(R,G,B,vertices) assume X, Y, and Z are
determined by the expression

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m n p] = size(C).

nc = isocolors(...,PatchHandle) uses the vertices from the patch
identified by PatchHandle.

isocolors(...,PatchHandle) sets the FaceVertexCData property of
the patch specified by PatchHandle to the computed colors.

Examples Indexed Color Data

This example displays an isosurface and colors it with random data
using indexed color. (See “Interpolating in Indexed Color Versus
Truecolor” for information on how patch objects interpret color data.)

[x y z] = meshgrid(1:20,1:20,1:20);

2-1824

isocolors

data = sqrt(x.^2 + y.^2 + z.^2);
cdata = smooth3(rand(size(data)),'box',7);
p = patch(isosurface(x,y,z,data,10));
isonormals(x,y,z,data,p);
isocolors(x,y,z,cdata,p);
set(p,'FaceColor','interp','EdgeColor','none')
view(150,30); daspect([1 1 1]);axis tight
camlight; lighting phong;

True Color Data

This example displays an isosurface and colors it with true color (RGB)
data.

[x y z] = meshgrid(1:20,1:20,1:20);
data = sqrt(x.^2 + y.^2 + z.^2);
p = patch(isosurface(x,y,z,data,20));
isonormals(x,y,z,data,p);
[r g b] = meshgrid(20:-1:1,1:20,1:20);

2-1825

isocolors

isocolors(x,y,z,r/20,g/20,b/20,p);
set(p,'FaceColor','interp','EdgeColor','none')
view(150,30); daspect([1 1 1]);
camlight; lighting phong;

Modified True Color Data

This example uses isocolors to calculate the true color data using the
isosurface’s (patch object’s) vertices, but then returns the color data in
a variable (c) in order to modify the values. It then explicitly sets the
isosurface’s FaceVertexCData to the new data (1-c).

[x y z] = meshgrid(1:20,1:20,1:20);
data = sqrt(x.^2 + y.^2 + z.^2);
p = patch(isosurface(data,20));
isonormals(data,p);
[r g b] = meshgrid(20:-1:1,1:20,1:20);
c = isocolors(r/20,g/20,b/20,p);
set(p,'FaceVertexCData',1-c)

2-1826

isocolors

set(p,'FaceColor','interp','EdgeColor','none')
view(150,30); daspect([1 1 1]);
camlight; lighting phong;

See Also isosurface, isocaps, smooth3, subvolume, reducevolume,
reducepatch, isonormals

“Volume Visualization” on page 1-102 for related functions

2-1827

isonormals

Purpose Compute normals of isosurface vertices

Syntax n = isonormals(X,Y,Z,V,vertices)
n = isonormals(V,vertices)
n = isonormals(V,p) and n = isonormals(X,Y,Z,V,p)
n = isonormals(...,'negate')
isonormals(V,p) and isonormals(X,Y,Z,V,p)

Description n = isonormals(X,Y,Z,V,vertices) computes the normals of the
isosurface vertices from the vertex list, vertices, using the gradient of
the data V. The arrays X, Y, and Z define the coordinates for the volume
V. The computed normals are returned in n.

n = isonormals(V,vertices) assumes the arrays X, Y, and Z are
defined as [X,Y,Z] = meshgrid(1:n,1:m,1:p) where [m,n,p] =
size(V).

n = isonormals(V,p) and n = isonormals(X,Y,Z,V,p) compute
normals from the vertices of the patch identified by the handle p.

n = isonormals(...,'negate') negates (reverses the direction of)
the normals.

isonormals(V,p) and isonormals(X,Y,Z,V,p) set the
VertexNormals property of the patch identified by the handle p to the
computed normals rather than returning the values.

Examples This example compares the effect of different surface normals on the
visual appearance of lit isosurfaces. In one case, the triangles used to
draw the isosurface define the normals. In the other, the isonormals
function uses the volume data to calculate the vertex normals based on
the gradient of the data points. The latter approach generally produces
a smoother-appearing isosurface.

Define a 3-D array of volume data (cat, interp3):

data = cat(3, [0 .2 0; 0 .3 0; 0 0 0], ...
[.1 .2 0; 0 1 0; .2 .7 0],...
[0 .4 .2; .2 .4 0;.1 .1 0]);

2-1828

isonormals

data = interp3(data,3,'cubic');

Draw an isosurface from the volume data and add lights. This
isosurface uses triangle normals (patch, isosurface, view, daspect,
axis, camlight, lighting, title):

subplot(1,2,1)
p1 = patch(isosurface(data,.5),...
'FaceColor','red','EdgeColor','none');
view(3); daspect([1,1,1]); axis tight
camlight; camlight(-80,-10); lighting phong;
title('Triangle Normals')

Draw the same lit isosurface using normals calculated from the volume
data:

subplot(1,2,2)
p2 = patch(isosurface(data,.5),...

'FaceColor','red','EdgeColor','none');
isonormals(data,p2)
view(3); daspect([1 1 1]); axis tight
camlight; camlight(-80,-10); lighting phong;
title('Data Normals')

These isosurfaces illustrate the difference between triangle and data
normals:

2-1829

isonormals

See Also interp3, isosurface, isocaps, smooth3, subvolume, reducevolume,
reducepatch

“Volume Visualization” on page 1-102 for related functions

2-1830

isosurface

Purpose Extract isosurface data from volume data

Syntax fv = isosurface(X,Y,Z,V,isovalue)
fv = isosurface(V,isovalue)
fvc = isosurface(...,colors)
fv = isosurface(...,'noshare')
fv = isosurface(...,'verbose')
[f,v] = isosurface(...)
[f,v,c] = isosurface(...)
isosurface(...)

Description fv = isosurface(X,Y,Z,V,isovalue) computes isosurface data from
the volume data V at the isosurface value specified in isovalue. That
is, the isosurface connects points that have the specified value much the
way contour lines connect points of equal elevation.

The arrays X, Y, and Z define the coordinates for the volume V. The
structure fv contains the faces and vertices of the isosurface, which you
can pass directly to the patch command.

fv = isosurface(V,isovalue) assumes the arrays X, Y, and Z are
defined as [X,Y,Z] = meshgrid(1:n,1:m,1:p) where [m,n,p] =
size(V).

fvc = isosurface(...,colors) interpolates the array colors
onto the scalar field and returns the interpolated values in the
facevertexcdata field of the fvc structure. The size of the colors
array must be the same as V. The colors argument enables you to
control the color mapping of the isosurface with data different from that
used to calculate the isosurface (e.g., temperature data superimposed
on a wind current isosurface).

fv = isosurface(...,'noshare') does not create shared vertices.
This is faster, but produces a larger set of vertices.

fv = isosurface(...,'verbose') prints progress messages to the
command window as the computation progresses.

2-1831

isosurface

[f,v] = isosurface(...) or [f,v,c] = isosurface(...) returns
the faces and vertices (and faceVertexcCData) in separate arrays
instead of a struct.

isosurface(...) with no output arguments, creates a patch in the
current axes with the computed faces and vertices. If no current axes
exists, a new axes is created with a 3-D view and appropriate lighting.

Special Case Behavior — isosurface Called with No Output
Arguments

If there is no current axes and you call isosurface with without
assigning output arguments, MATLAB creates a new axes, sets it to a
3-D view, and adds lighting to the isosurface graph.

Remarks You can pass the fv structure created by isosurface directly to the
patch command, but you cannot pass the individual faces and vertices
arrays (f, v) to patch without specifying property names. For example,

patch(isosurface(X,Y,Z,V,isovalue))

or

[f,v] = isosurface(X,Y,Z,V,isovalue);
patch('Faces',f,'Vertices',v)

Examples Example 1

This example uses the flow data set, which represents the speed profile
of a submerged jet within an infinite tank (type help flow for more
information). The isosurface is drawn at the data value of -3. The
statements that follow the patch command prepare the isosurface for
lighting by

• Recalculating the isosurface normals based on the volume data
(isonormals)

• Setting the face and edge color (set, FaceColor, EdgeColor)

• Specifying the view (daspect, view)

2-1832

isosurface

• Adding lights (camlight, lighting)

[x,y,z,v] = flow;
p = patch(isosurface(x,y,z,v,-3));
isonormals(x,y,z,v,p)
set(p,'FaceColor','red','EdgeColor','none');
daspect([1 1 1])
view(3); axis tight
camlight
lighting gouraud

2-1833

isosurface

Example 2

Visualize the same flow data as above, but color-code the surface
to indicate magnitude along the X-axis. Use a sixth argument to
isosurface, which provides a means to overlay another data set by
coloring the resulting isosurface. The colors variable is a vector
containing a scalar value for each vertex in the isosurface, to be
portrayed with the current color map. In this case, it is one of the

2-1834

isosurface

variables that define the surface, but it could be entirely independent.
You can apply a different color scheme by changing the current figure
color map.

[x,y,z,v] = flow;
[faces,verts,colors] = isosurface(x,y,z,v,-3,x);
patch('Vertices', verts, 'Faces', faces, ...

'FaceVertexCData', colors, ...
'FaceColor','interp', ...
'edgecolor', 'interp');

view(30,-15);
axis vis3d;
colormap copper

See Also isonormals, shrinkfaces, smooth3, subvolume

“Connecting Equal Values with Isosurfaces” for more examples

“Volume Visualization” on page 1-102 for related functions

2-1835

ispc

Purpose Determine whether PC (Windows) version of MATLAB

Syntax tf = ispc

Description tf = ispc returns logical 1 (true) for the PC version of MATLAB and
logical 0 (false) otherwise.

See Also isunix, ismac, isstudent, is*

2-1836

ispref

Purpose Test for existence of preference

Syntax ispref('group','pref')
ispref('group')
ispref('group',{'pref1','pref2',...'prefn'})

Description ispref('group','pref') returns 1 if the preference specified by group
and pref exists, and 0 otherwise.

ispref('group') returns 1 if the GROUP exists, and 0 otherwise.

ispref('group',{'pref1','pref2',...'prefn'}) returns a logical
array the same length as the cell array of preference names, containing
1 where each preference exists, and 0 elsewhere.

Examples addpref('mytoolbox','version','1.0')
ispref('mytoolbox','version')

ans =
1.0

See Also addpref, getpref, rmpref, setpref, uigetpref, uisetpref

2-1837

isprime

Purpose Array elements that are prime numbers

Syntax TF = isprime(A)

Description TF = isprime(A) returns an array the same size as A containing logical
1 (true) for the elements of A which are prime, and logical 0 (false)
otherwise. A must contain only positive integers.

Examples c = [2 3 0 6 10]

c =
2 3 0 6 10

isprime(c)

ans =
1 1 0 0 0

See Also is*

2-1838

isprop

Purpose Determine whether input is object property

Syntax isprop(h, 'name')

Description isprop(h, 'name') returns logical 1 (true) if the specified name is a
property you can use with object h. Otherwise, isprop returns logical 0
(false).

Examples Create an Excel application and test to see if UsableWidth is a property
of the object. isprop returns true:

h = actxserver ('Excel.Application');

isprop(h, 'UsableWidth')
ans =

1

Try the same test on SaveWorkspace, which is a method, and isprop
returns false:

isprop(h, 'SaveWorkspace')
ans =

0

See Also get(COM), inspect, addproperty, deleteproperty, ismethod,
isevent, isobject, methods, class

2-1839

isreal

Purpose Determine whether input is real array

Syntax TF = isreal(A)

Description TF = isreal(A) returns logical 0 (false) if any element of array A
has an imaginary component, even if the value of that component is 0.
For logical, char, numeric, and function handle data types, isreal
returns logical 1 (true) otherwise.

Note For cell, struct, and object data types, isreal also returns
logical 0 (false).

~isreal(x) returns true for arrays that have at least one element with
an imaginary component. The value of that component can be 0.

Remarks If A is real, complex(A) returns a complex number whose imaginary
component is 0, and isreal(complex(A)) returns false. In contrast,
the addition A + 0i returns the real value A, and isreal(A + 0i)
returns true.

If B is real and A = complex(B), then A is a complex matrix and
isreal(A) returns false, while A(m:n) returns a real matrix and
isreal(A(m:n)) returns true.

Because MATLAB supports complex arithmetic, certain of its functions
can introduce significant imaginary components during the course of
calculations that appear to be limited to real numbers. Thus, you should
use isreal with discretion.

Examples Example 1

These examples use isreal to detect the presence or absence of
imaginary numbers in an array. Let

x = magic(3);
y = complex(x);

2-1840

isreal

isreal(x) returns true because no element of x has an imaginary
component.

isreal(x)
ans =

1

isreal(y) returns false, because every element of x has an imaginary
component, even though the value of the imaginary components is 0.

isreal(y)
ans =

0

This expression detects strictly real arrays, i.e., elements with 0-valued
imaginary components are treated as real.

~any(imag(y(:)))
ans =

1

Example 2

Given the following cell array,

C{1,1} = pi; % double
C{1,2} = 'John Doe'; % char array
C{1,3} = 2 + 4i; % complex double
C{1,4} = ispc; % logical
C{1,5} = magic(3) % double array
C{1,6} = complex(5,0) % complex double

C =
[3.1416] 'John Doe' [2.0000+ 4.0000i] [1] [3x3 double] [5]

isreal shows that all but C{1,3} and C{1,6} are real arrays.

for k = 1:6
x(k) = isreal(C{1,k});
end

2-1841

isreal

x
x =

1 1 0 1 1 0

See Also complex, isnumeric, isnan, isprime, isfinite, isinf, isa, is*

2-1842

isscalar

Purpose Determine whether input is scalar

Syntax TF = isscalar(A)

Description TF = isscalar(A) returns logical 1 (true) if A is a 1-by-1 matrix, and
logical 0 (false) otherwise.

The A argument can be a structure or cell array. It also be a MATLAB
object, as described in “Classes and Objects”, as long as that object
overloads the size function.

Examples Test matrix A and one element of the matrix:

A = rand(5);

isscalar(A)
ans =

0

isscalar(A(3,2))
ans =

1

See Also isvector, isempty, isnumeric, islogical, ischar, isa, is*

2-1843

issorted

Purpose Determine whether set elements are in sorted order

Syntax TF = issorted(A)
TF = issorted(A, 'rows')

Description TF = issorted(A) returns logical 1 (true) if the elements of A are in
sorted order, and logical 0 (false) otherwise. Input A can be a vector or
an N-by-1 or 1-by-N cell array of strings. A is considered to be sorted if A
and the output of sort(A) are equal.

TF = issorted(A, 'rows') returns logical 1 (true) if the rows of
two-dimensional matrix A are in sorted order, and logical 0 (false)
otherwise. Matrix A is considered to be sorted if A and the output of
sortrows(A) are equal.

Note Only the issorted(A) syntax supports A as a cell array of strings.

Remarks For character arrays, issorted uses ASCII, rather than alphabetical,
order.

You cannot use issorted on arrays of greater than two dimensions.

Examples Example 1 — Using issorted on a vector

A = [5 12 33 39 78 90 95 107 128 131];

issorted(A)
ans =

1

Example 2 — Using issorted on a matrix

A = magic(5)
A =

17 24 1 8 15
23 5 7 14 16

2-1844

issorted

4 6 13 20 22
10 12 19 21 3
11 18 25 2 9

issorted(A, 'rows')
ans =

0

B = sortrows(A)
B =

4 6 13 20 22
10 12 19 21 3
11 18 25 2 9
17 24 1 8 15
23 5 7 14 16

issorted(B)
ans =

1

Example 3 — Using issorted on a cell array

x = {'one'; 'two'; 'three'; 'four'; 'five'};
issorted(x)
ans =

0

y = sort(x)
y =

'five'
'four'
'one'
'three'
'two'

issorted(y)

2-1845

issorted

See Also sort, sortrows, ismember, unique, intersect, union, setdiff,
setxor, is*

2-1846

isspace

Purpose Array elements that are space characters

Syntax tf = isspace('str')

Description tf = isspace('str') returns an array the same size as 'str'
containing logical 1 (true) where the elements of str are ASCII white
spaces and logical 0 (false) where they are not. White spaces in ASCII
are space, newline, carriage return, tab, vertical tab, or formfeed
characters.

Examples isspace(' Find spa ces ')
Columns 1 through 13

1 1 0 0 0 0 1 0 0 0 1 0 0
Columns 14 through 15

0 1

See Also isletter, isstrprop, ischar, strings, isa, is*

2-1847

issparse

Purpose Determine whether input is sparse

Syntax TF = issparse(S)

Description TF = issparse(S) returns logical 1 (true) if the storage class of S is
sparse and logical 0 (false) otherwise.

See Also is*, sparse, full

2-1848

isstr

Purpose Determine whether input is character array

Note Use the ischar function in place of isstr. The isstr function
will be removed in a future version of MATLAB.

See Also ischar, isa, is*

2-1849

isstrprop

Purpose Determine whether string is of specified category

Syntax tf = isstrprop('str', 'category')

Description tf = isstrprop('str', 'category') returns a logical array the same
size as str containing logical 1 (true) where the elements of str belong
to the specified category, and logical 0 (false) where they do not.

The str input can be a character array, cell array, or any MATLAB
numeric type. If str is a cell array, then the return value is a cell array
of the same shape as str.

The category input can be any of the strings shown in the left column
below:

Category Description

alpha True for those elements of str that are alphabetic

alphanum True for those elements of str that are alphanumeric

cntrl True for those elements of str that are control
characters (for example, char(0:20))

digit True for those elements of str that are numeric digits

graphic True for those elements of str that are graphic
characters. These are all values that represent any
characters except for the following:

unassigned, space, line separator,
paragraph separator, control characters,
Unicode format control characters,
private user-defined characters,
Unicode surrogate characters,
Unicode other characters

lower True for those elements of str that are lowercase letters

print True for those elements of str that are graphic
characters, plus char(32)

2-1850

isstrprop

Category Description

punct True for those elements of str that are punctuation
characters

wspace True for those elements of str that are white-space
characters. This range includes the ANSI C definition
of white space, {' ','\t','\n','\r','\v','\f'}.

upper True for those elements of str that are uppercase
letters

xdigit True for those elements of str that are valid
hexadecimal digits

Remarks Numbers of type double are converted to int32 according to MATLAB
rules of double-to-integer conversion. Numbers of type int64 and
uint64 bigger than int32(inf) saturate to int32(inf).

MATLAB classifies the elements of the str input according to the
Unicode definition of the specified category. If the numeric value of an
element in the input array falls within the range that defines a Unicode
character category, then this element is classified as being of that
category. The set of Unicode character codes includes the set of ASCII
character codes, but also covers a large number of languages beyond the
scope of the ASCII set. The classification of characters is dependent on
the global location of the platform on which MATLAB is installed.

Examples Test for alphabetic characters in a string:

A = isstrprop('abc123def', 'alpha')
A =

1 1 1 0 0 0 1 1 1

Test for numeric digits in a string:

A = isstrprop('abc123def', 'digit')
A =

0 0 0 1 1 1 0 0 0

2-1851

isstrprop

Test for hexadecimal digits in a string:

A = isstrprop('abcd1234efgh', 'xdigit')
A =

1 1 1 1 1 1 1 1 1 1 0 0

Test for numeric digits in a character array:

A = isstrprop(char([97 98 99 49 50 51 101 102 103]), ...
'digit')

A =
0 0 0 1 1 1 0 0 0

Test for alphabetic characters in a two-dimensional cell array:

A = isstrprop({'abc123def';'456ghi789'}, 'alpha')
A =

[1x9 logical]
[1x9 logical]

A{:,:}
ans =

1 1 1 0 0 0 1 1 1
0 0 0 1 1 1 0 0 0

Test for white-space characters in a string:

A = isstrprop(sprintf('a bc\n'), 'wspace')
A =

0 1 0 0 1

See Also strings, ischar, isletter, isspace, iscellstr, isnumeric, isa, is*

2-1852

isstruct

Purpose Determine whether input is structure array

Syntax tf = isstruct(A)

Description tf = isstruct(A) returns logical 1 (true) if A is a MATLAB structure
and logical 0 (false) otherwise.

Examples patient.name = 'John Doe';
patient.billing = 127.00;
patient.test = [79 75 73; 180 178 177.5; 220 210 205];

isstruct(patient)

ans =

1

See Also struct, isfield, iscell, ischar, isobject, isnumeric, islogical,
isa, is*, dynamic field names

2-1853

isstudent

Purpose Determine whether Student Version of MATLAB

Syntax tf = isstudent

Description tf = isstudent returns logical 1 (true) for the Student Version of
MATLAB and logical 0 (false) for commercial versions.

See Also ver, version, license, ispc, isunix, is*

2-1854

isunix

Purpose Determine whether UNIX version of MATLAB

Syntax tf = isunix

Description tf = isunix returns logical 1 (true) for the UNIX version of MATLAB
and logical 0 (false) otherwise.

See Also ispc, ismac, isstudent, is*

2-1855

isvalid (serial)

Purpose Determine whether serial port objects are valid

Syntax out = isvalid(obj)

Arguments obj A serial port object or array of serial port objects.

out A logical array.

Description out = isvalid(obj) returns the logical array out, which contains a 0
where the elements of obj are invalid serial port objects and a 1 where
the elements of obj are valid serial port objects.

Remarks obj becomes invalid after it is removed from memory with the delete
function. Because you cannot connect an invalid serial port object to
the device, you should remove it from the workspace with the clear
command.

Example Suppose you create the following two serial port objects.

s1 = serial('COM1');
s2 = serial('COM1');

s2 becomes invalid after it is deleted.

delete(s2)

isvalid verifies that s1 is valid and s2 is invalid.

sarray = [s1 s2];
isvalid(sarray)
ans =

1 0

See Also Functions

clear, delete

2-1856

isvalid (timer)

Purpose Determine whether timer object is valid

Syntax out = isvalid(obj)

Description out = isvalid(obj) returns a logical array, out, that contains a 0
where the elements of obj are invalid timer objects and a 1 where the
elements of obj are valid timer objects.

An invalid timer object is an object that has been deleted and cannot
be reused. Use the clear command to remove an invalid timer object
from the workspace.

Examples Create a valid timer object.

t = timer;
out = isvalid(t)
out =

1

Delete the timer object, making it invalid.

delete(t)
out1 = isvalid(t)
out1 =

0

See Also timer, delete(timer)

2-1857

isvarname

Purpose Determine whether input is valid variable name

Syntax tf = isvarname 'str'
isvarname str

Description tf = isvarname 'str' returns logical 1 (true) if the string str is a
valid MATLAB variable name and logical 0 (false) otherwise. A valid
variable name is a character string of letters, digits, and underscores,
totaling not more than namelengthmax characters and beginning with
a letter.

MATLAB keywords are not valid variable names. Type the command
iskeyword with no input arguments to see a list of MATLAB keywords.

isvarname str uses the MATLAB command format.

Examples This variable name is valid:

isvarname foo
ans =

1

This one is not because it starts with a number:

isvarname 8th_column
ans =

0

If you are building strings from various pieces, place the construction
in parentheses.

d = date;

isvarname(['Monday_', d(1:2)])
ans =

1

See Also genvarname, isglobal, iskeyword, namelengthmax, is*

2-1858

isvector

Purpose Determine whether input is vector

Syntax TF = isvector(A)

Description TF = isvector(A) returns logical 1 (true) if A is a 1-by-N or N-by-1
vector where N >= 0, and logical 0 (false) otherwise.

The A argument can also be a MATLAB object, as described in “Classes
and Objects”, as long as that object overloads the size function.

Examples Test matrix A and its row and column vectors:

A = rand(5);

isvector(A)
ans =

0

isvector(A(3, :))
ans =

1

isvector(A(:, 2))
ans =

1

See Also isscalar, isempty, isnumeric, islogical, ischar, isa, is*

2-1859

j

Purpose Imaginary unit

Syntax j
x+yj
x+j*y

Description Use the character j in place of the character i, if desired, as the
imaginary unit.

As the basic imaginary unit sqrt(-1), j is used to enter complex
numbers. Since j is a function, it can be overridden and used as a
variable. This permits you to use j as an index in for loops, etc.

It is possible to use the character j without a multiplication sign as a
suffix in forming a numerical constant.

Examples Z = 2+3j
Z = x+j*y
Z = r*exp(j*theta)

See Also conj, i, imag, real

2-1860

javaaddpath

Purpose Add entries to dynamic Java class path

Syntax javaaddpath('dpath')
javaaddpath('dpath', '-end')

Description javaaddpath('dpath') adds one or more directories or JAR files to the
beginning of the current dynamic Java class path. dpath is a string
or cell array of strings containing the directory or JAR file. (See the
Remarks section for a description of static and dynamic Java paths.)

javaaddpath('dpath', '-end') adds one or more directories or files
to the end of the current dynamic Java path.

Remarks The Java path consists of two segments: a static path (read only at
startup) and a dynamic path. MATLAB always searches the static path
(defined in classpath.txt) before the dynamic path. Java classes on
the static path should not have dependencies on classes on the dynamic
path. Use javaclasspath to see the current static and dynamic Java
paths.

Use the clear java command to reload the classes defined on the
dynamic Java path. This is necessary if you add new Java classes or if
you modify existing Java classes on the dynamic path.

2-1861

javaaddpath

Path Type Description

Static Loaded at the start of each MATLAB session
from the file classpath.txt. The static Java
path offers better Java class loading performance
than the dynamic Java path. However, to modify
the static Java path you need to edit the file
classpath.txt and restart MATLAB.

Dynamic Loaded at any time during a MATLAB session
using the javaclasspath function. You can
define the dynamic path (using javaclasspath),
modify the path (using javaaddpath and
javarmpath), and refresh the Java class
definitions for all classes on the dynamic path
(using clear java) without restarting MATLAB.

Examples Create function to set initial dynamic Java class path:

function setdynpath
javaclasspath({

'C:\Work\Java\ClassFiles', ...
'C:\Work\JavaTest\curvefit.jar', ...
'C:\Work\JavaTest\timer.jar', ...
'C:\Work\JavaTest\patch.jar'});

% end of file

Call this function to set up your dynamic class path. Then, use the
javaclasspath function with no arguments to display all current static
and dynamic paths:

setdynpath;

javaclasspath

STATIC JAVA PATH

D:\Sys0\Java\util.jar

2-1862

javaaddpath

D:\Sys0\Java\widgets.jar
D:\Sys0\Java\beans.jar

.

.

DYNAMIC JAVA PATH

C:\Work\Java\ClassFiles
C:\Work\JavaTest\curvefit.jar
C:\Work\JavaTest\timer.jar
C:\Work\JavaTest\patch.jar

At some later time, add the following two entries to the dynamic path.
One entry specifies a directory and the other a Java Archive (JAR) file.
When you add a directory to the path, MATLAB includes all files in
that directory as part of the path:

javaaddpath({
'C:\Work\Java\Curvefit\Test', ...
'C:\Work\Java\mywidgets.jar'});

Use javaclasspath with just an output argument to return the
dynamic path alone:

p = javaclasspath
p =

'C:\Work\Java\ClassFiles'
'C:\Work\JavaTest\curvefit.jar'
'C:\Work\JavaTest\timer.jar'
'C:\Work\JavaTest\patch.jar'
'C:\Work\Java\Curvefit\Test'
'C:\Work\Java\mywidgets.jar'

Create an instance of the mywidgets class that is defined on the
dynamic path:

h = mywidgets.calendar;

2-1863

javaaddpath

If you modify one or more classes that are defined on the dynamic path,
you need to clear the former definition for those classes from MATLAB
memory. You can clear all dynamic Java class definitions from memory
using,

clear java

If you then create a new instance of one of these classes, MATLAB uses
the latest definition of the class to create the object.

Use javarmpath to remove a file or directory from the current dynamic
class path:

javarmpath('C:\Work\Java\mywidgets.jar');

Other Examples

Add a JAR file from an internet URL to your dynamic Java path:

javaaddpath http://www.example.com/my.jar

Add the current directory with the following statement:

javaaddpath(pwd)

See Also javaclasspath, javarmpath, clear

See “Bringing Java Classes and Methods into MATLAB” for more
information.

2-1864

javaArray

Purpose Construct Java array

Syntax javaArray('package_name.class_name',x1,...,xn)

Description javaArray('package_name.class_name',x1,...,xn) constructs an
empty Java array capable of storing objects of Java class, 'class_name'.
The dimensions of the array are x1 by ... by xn. You must include the
package name when specifying the class.

The array that you create with javaArray is equivalent to the array
that you would create with the Java code

A = new class_name[x1]...[xn];

Examples The following example constructs and populates a 4-by-5 array of
java.lang.Double objects.

dblArray = javaArray ('java.lang.Double', 4, 5);
for m = 1:4

for n = 1:5
dblArray(m,n) = java.lang.Double((m*10) + n);
end

end

dblArray

dblArray =
java.lang.Double[][]:

[11] [12] [13] [14] [15]
[21] [22] [23] [24] [25]
[31] [32] [33] [34] [35]
[41] [42] [43] [44] [45]

See Also javaObject, javaMethod, class, methodsview, isjava

2-1865

javachk

Purpose Generate error message based on Java feature support

Syntax javachk(feature)
javachk(feature, component)

Description javachk(feature) returns a generic error message if the specified
Java feature is not available in the current MATLAB session. If
it is available, javachk returns an empty matrix. Possible feature
arguments are shown in the following table.

Feature Description

'awt' Abstract Window Toolkit
components1 are available.

'desktop' The MATLAB interactive desktop
is running.

'jvm' The Java Virtual Machine is
running.

'swing' Swing components2 are available.

1. Java’s GUI components in the Abstract Window Toolkit

2. Java’s lightweight GUI components in the Java Foundation Classes

javachk(feature, component) works the same as the above syntax,
except that the specified component is also named in the error message.
(See the example below.)

Examples The following M-file displays an error with the message "CreateFrame
is not supported on this platform." when run in a MATLAB
session in which the AWT’s GUI components are not available. The
second argument to javachk specifies the name of the M-file, which is
then included in the error message generated by MATLAB.

2-1866

javachk

javamsg = javachk('awt', mfilename);
if isempty(javamsg)

myFrame = java.awt.Frame;
myFrame.setVisible(1);

else
error(javamsg);

end

See Also usejava

2-1867

javaclasspath

Purpose Set and get dynamic Java class path

Syntax javaclasspath
javaclasspath(dpath)
dpath = javaclasspath
spath = javaclasspath('-static')
jpath = javaclasspath('-all')
javaclasspath(statusmsg)

Description javaclasspath displays the static and dynamic segments of the Java
path. (See the Remarks section, below, for a description of static and
dynamic Java paths.)

javaclasspath(dpath) sets the dynamic Java path to one or more
directory or file specifications given in dpath, where dpath can be a
string or cell array of strings.

dpath = javaclasspath returns the dynamic segment of the Java path
in cell array, dpath. If no dynamic paths are defined, javaclasspath
returns an empty cell array.

spath = javaclasspath('-static') returns the static segment of
the Java path in cell array, spath. No path information is displayed
unless you specify an output variable. If no static paths are defined,
javaclasspath returns an empty cell array.

jpath = javaclasspath('-all') returns the entire Java path in cell
array, jpath. The returned cell array contains first the static segment
of the path, and then the dynamic segment. No path information is
displayed unless you specify an output variable. If no dynamic paths
are defined, javaclasspath returns an empty cell array.

javaclasspath(statusmsg) enables or disables the display of status
messages from the javaclasspath, javaaddpath, and javarmpath
functions. Values for the statusmsg argument are

2-1868

javaclasspath

statusmsg Description

'-v1' Display status messages while loading the Java path
from the file system

'-v0' Do not display status messages. This is the default.

Remarks The Java path consists of two segments: a static path and a dynamic
path. MATLAB always searches the static path before the dynamic
path. Java classes on the static path should not have dependencies
on classes on the dynamic path.

Path Type Description

Static Loaded at the start of each MATLAB session from the
file classpath.txt. The static Java path offers better
Java class loading performance than the dynamic Java
path. However, to modify the static Java path you need
to edit the file classpath.txt and restart MATLAB.

Dynamic Loaded at any time during a MATLAB session using the
javaclasspath function. You can define the dynamic
path (using javaclasspath), modify the path (using
javaaddpath and javarmpath), and refresh the Java
class definitions for all classes on the dynamic path
(using clear java) without restarting MATLAB.

Examples Create a function to set your initial dynamic Java class path:

function setdynpath
javaclasspath({

'C:\Work\Java\ClassFiles', ...
'C:\Work\JavaTest\curvefit.jar', ...
'C:\Work\JavaTest\timer.jar', ...
'C:\Work\JavaTest\patch.jar'});

% end of file

2-1869

javaclasspath

Call this function to set up your dynamic class path. Then, use the
javaclasspath function with no arguments to display all current static
and dynamic paths:

setdynpath;

javaclasspath

STATIC JAVA PATH

D:\Sys0\Java\util.jar
D:\Sys0\Java\widgets.jar
D:\Sys0\Java\beans.jar

.

.

DYNAMIC JAVA PATH

C:\Work\Java\ClassFiles
C:\Work\JavaTest\curvefit.jar
C:\Work\JavaTest\timer.jar
C:\Work\JavaTest\patch.jar

At some later time, add the following two entries to the dynamic path.
One entry specifies a directory and the other a Java Archive (JAR) file.
When you add a directory to the path, MATLAB includes all files in
that directory as part of the path:

javaaddpath({
'C:\Work\Java\Curvefit\Test', ...
'C:\Work\Java\mywidgets.jar'});

Use javaclasspath with just an output argument to return the
dynamic path alone:

p = javaclasspath
p =

2-1870

javaclasspath

'C:\Work\Java\ClassFiles'
'C:\Work\JavaTest\curvefit.jar'
'C:\Work\JavaTest\timer.jar'
'C:\Work\JavaTest\patch.jar'
'C:\Work\Java\Curvefit\Test'
'C:\Work\Java\mywidgets.jar'

Create an instance of the mywidgets class that is defined on the
dynamic path:

h = mywidgets.calendar;

If, at some time, you modify one or more classes that are defined on the
dynamic path, you will need to clear the former definition for those
classes from MATLAB memory. You can clear all dynamic Java class
definitions from memory using,

clear java

If you then create a new instance of one of these classes, MATLAB uses
the latest definition of the class to create the object.

Use javarmpath to remove a file or directory from the current dynamic
class path:

javarmpath('C:\Work\Java\mywidgets.jar');

See Also javaaddpath, javarmpath, clear

2-1871

javaMethod

Purpose Invoke Java method

Syntax javaMethod('method_name','class_name',x1,...,xn)
javaMethod('method_name',J,x1,...,xn)

Description javaMethod('method_name','class_name',x1,...,xn) invokes
the static method method_name in the class class_name, with the
argument list that matches x1,...,xn.

javaMethod('method_name',J,x1,...,xn) invokes the nonstatic
method method_name on the object J, with the argument list that
matches x1,...,xn.

Remarks Using the javaMethod function enables you to

• Use methods having names longer than 31 characters

• Specify the method you want to invoke at run-time, for example, as
input from an application user

The javaMethod function enables you to use methods having names
longer than 31 characters. This is the only way you can invoke such a
method in MATLAB. For example:

javaMethod('DataDefinitionAndDataManipulationTransactions', T);

With javaMethod, you can also specify the method to be invoked at
run-time. In this situation, your code calls javaMethod with a string
variable in place of the method name argument. When you use
javaMethod to invoke a static method, you can also use a string variable
in place of the class name argument.

Note Typically, you do not need to use javaMethod. The default
MATLAB syntax for invoking a Java method is somewhat simpler and
is preferable for most applications. Use javaMethod primarily for the
two cases described above.

2-1872

javaMethod

Examples To invoke the static Java method isNaN on class, java.lang.Double,
use

javaMethod('isNaN','java.lang.Double',2.2)

The following example invokes the nonstatic method setTitle, where
frameObj is a java.awt.Frame object.

frameObj = java.awt.Frame;
javaMethod('setTitle', frameObj, 'New Title');

See Also javaArray, javaObject, import, methods, isjava

2-1873

javaObject

Purpose Construct Java object

Syntax javaObject('class_name',x1,...,xn)

Description javaObject('class_name',x1,...,xn) invokes the Java constructor
for class ’class_name’ with the argument list that matches x1,...,xn,
to return a new object.

If there is no constructor that matches the class name and argument
list passed to javaObject, an error occurs.

Remarks Using the javaObject function enables you to

• Use classes having names with more than 31 consecutive characters

• Specify the class for an object at run-time, for example, as input from
an application user

The default MATLAB constructor syntax requires that no segment of
the input class name be longer than 31 characters. (A name segment,
is any portion of the class name before, between, or after a period.
For example, there are three segments in class, java.lang.String.)
Any class name segment that exceeds 31 characters is truncated by
MATLAB. In the rare case where you need to use a class name of this
length, you must use javaObject to instantiate the class.

The javaObject function also allows you to specify the Java class for
the object being constructed at run-time. In this situation, you call
javaObject with a string variable in place of the class name argument.

class = 'java.lang.String';
text = 'hello';
strObj = javaObject(class, text);

In the usual case, when the class to instantiate is known at development
time, it is more convenient to use the MATLAB constructor syntax. For
example, to create a java.lang.String object, you would use

2-1874

javaObject

strObj = java.lang.String('hello');

Note Typically, you will not need to use javaObject. The default
MATLAB syntax for instantiating a Java class is somewhat simpler and
is preferable for most applications. Use javaObject primarily for the
two cases described above.

Examples The following example constructs and returns a Java object of class
java.lang.String:

strObj = javaObject('java.lang.String','hello')

See Also javaArray, javaMethod, import, methods, fieldnames, isjava

2-1875

javarmpath

Purpose Remove entries from dynamic Java class path

Syntax javarmpath('dpath')
javarmpath dpath1 dpath2 ... dpathN
javarmpath(v1, v2, ..., vN)

Description javarmpath('dpath') removes a directory or file from the current
dynamic Java path. dpath is a string containing the directory or file
specification. (See the Remarks section, below, for a description of static
and dynamic Java paths.)

javarmpath dpath1 dpath2 ... dpathN removes those directories
and files specified by dpath1, dpath2, ..., dpathN from the dynamic
Java path. Each input argument is a string containing a directory or
file specification.

javarmpath(v1, v2, ..., vN) removes those directories and files
specified by v1, v2, ..., vN from the dynamic Java path. Each input
argument is a variable to which a directory or file specification is
assigned.

Remarks The Java path consists of two segments: a static path and a dynamic
path. MATLAB always searches the static path before the dynamic
path. Java classes on the static path should not have dependencies
on classes on the dynamic path.

2-1876

javarmpath

Path Type Description

Static Loaded at the start of each MATLAB session
from the file classpath.txt. The static
Java path offers better Java class loading
performance than the dynamic Java path.
However, to modify the static Java path you
need to edit the file classpath.txt and restart
MATLAB.

Dynamic Loaded at any time during a MATLAB
session using the javaclasspath function.
You can define the dynamic path (using
javaclasspath), modify the path (using
javaaddpath and javarmpath), and refresh
the Java class definitions for all classes on
the dynamic path (using clear java) without
restarting MATLAB.

Examples Create a function to set your initial dynamic Java class path:

function setdynpath
javaclasspath({

'C:\Work\Java\ClassFiles', ...
'C:\Work\JavaTest\curvefit.jar', ...
'C:\Work\JavaTest\timer.jar', ...
'C:\Work\JavaTest\patch.jar'});

% end of file

Call this function to set up your dynamic class path. Then, use the
javaclasspath function with no arguments to display all current static
and dynamic paths:

setdynpath;

javaclasspath

STATIC JAVA PATH

2-1877

javarmpath

D:\Sys0\Java\util.jar
D:\Sys0\Java\widgets.jar
D:\Sys0\Java\beans.jar

.

.

DYNAMIC JAVA PATH

C:\Work\Java\ClassFiles
C:\Work\JavaTest\curvefit.jar
C:\Work\JavaTest\timer.jar
C:\Work\JavaTest\patch.jar

At some later time, add the following two entries to the dynamic path.
One entry specifies a directory and the other a Java Archive (JAR) file.
When you add a directory to the path, MATLAB includes all files in
that directory as part of the path:

javaaddpath({
'C:\Work\Java\Curvefit\Test', ...
'C:\Work\Java\mywidgets.jar'});

Use javaclasspath with just an output argument to return the
dynamic path alone:

p = javaclasspath
p =

'C:\Work\Java\ClassFiles'
'C:\Work\JavaTest\curvefit.jar'
'C:\Work\JavaTest\timer.jar'
'C:\Work\JavaTest\patch.jar'
'C:\Work\Java\Curvefit\Test'
'C:\Work\Java\mywidgets.jar'

Create an instance of the mywidgets class that is defined on the
dynamic path:

2-1878

javarmpath

h = mywidgets.calendar;

If, at some time, you modify one or more classes that are defined on the
dynamic path, you will need to clear the former definition for those
classes from MATLAB memory. You can clear all dynamic Java class
definitions from memory using,

clear java

If you then create a new instance of one of these classes, MATLAB uses
the latest definition of the class to create the object.

Use javarmpath to remove a file or directory from the current dynamic
class path:

javarmpath('C:\Work\Java\mywidgets.jar');

See Also javaclasspath, javaaddpath, clear

2-1879

keyboard

Purpose Input from keyboard

Syntax keyboard

Description keyboard , when placed in an M-file, stops execution of the file and
gives control to the keyboard. The special status is indicated by a K
appearing before the prompt. You can examine or change variables;
all MATLAB commands are valid. This keyboard mode is useful for
debugging your M-files..

To terminate the keyboard mode, type the command

return

then press the Return key.

See Also dbstop, input, quit, pause, return

2-1880

kron

Purpose Kronecker tensor product

Syntax K = kron(X,Y)

Description K = kron(X,Y) returns the Kronecker tensor product of X and Y. The
result is a large array formed by taking all possible products between
the elements of X and those of Y. If X is m-by-n and Y is p-by-q, then
kron(X,Y) is m*p-by-n*q.

Examples If X is 2-by-3, then kron(X,Y) is

[X(1,1)*Y X(1,2)*Y X(1,3)*Y
X(2,1)*Y X(2,2)*Y X(2,3)*Y]

The matrix representation of the discrete Laplacian operator on a
two-dimensional, n-by-n grid is a n^2-by-n^2 sparse matrix. There are
at most five nonzero elements in each row or column. The matrix can
be generated as the Kronecker product of one-dimensional difference
operators with these statements:

I = speye(n,n);
E = sparse(2:n,1:n-1,1,n,n);
D = E+E'-2*I;
A = kron(D,I)+kron(I,D);

Plotting this with the spy function for n = 5 yields:

2-1881

kron

See Also hankel, toeplitz

2-1882

last (MException)

Purpose Last uncaught exception

Syntax ME = MException.last
MException.last('reset')

Description ME = MException.last displays the contents of the MException object
representing your most recent uncaught error. This is a static method
of the MException class; it is not a method of an MException class
object. Use this method from the MATLAB command line only, and
not within an M-file.

MException.last('reset') sets the identifier and message
properties of the most recent exception to the empty string, the stack
property to a 0-by-1 structure, and cause property to an empty cell
array.

last is not set in a try-catch statement.

Examples This example displays the last error that was caught during this
MATLAB session:

A = 25;
A(2)
??? Index exceeds matrix dimensions.

MException.last
ans =

MException object with properties:

identifier: 'MATLAB:badsubscript'
message: 'Index exceeds matrix dimensions.'

stack: [0x1 struct]
cause: {}

See Also try, catch, error, assert, MException, throw(MException),
rethrow(MException), throwAsCaller(MException),

2-1883

last (MException)

addCause(MException), getReport(MException), disp(MException),
isequal(MException), eq(MException), ne(MException)

2-1884

lasterr

Purpose Last error message

Note lasterr has been replaced by lasterror, but will be maintained
for backward compatibility.

Syntax msgstr = lasterr
[msgstr, msgid] = lasterr
lasterr('new_msgstr')
lasterr('new_msgstr', 'new_msgid')
[msgstr, msgid] = lasterr('new_msgstr', 'new_msgid')

Description msgstr = lasterr returns the last error message generated by
MATLAB.

[msgstr, msgid] = lasterr returns the last error in msgstr and
its message identifier in msgid. If the error was not defined with an
identifier, lasterr returns an empty string for msgid. See and in the
MATLAB Programming documentation for more information on the
msgid argument and how to use it.

lasterr('new_msgstr') sets the last error message to a new string,
new_msgstr, so that subsequent invocations of lasterr return the new
error message string. You can also set the last error to an empty string
with lasterr('').

lasterr('new_msgstr', 'new_msgid') sets the last error message
and its identifier to new strings new_msgstr and new_msgid,
respectively. Subsequent invocations of lasterr return the new error
message and message identifier.

[msgstr, msgid] = lasterr('new_msgstr', 'new_msgid') returns
the last error message and its identifier, also changing these values
so that subsequent invocations of lasterr return the message and
identifier strings specified by new_msgstr and new_msgid respectively.

2-1885

lasterr

Examples Example 1

Here is a function that examines the lasterr string and displays its
own message based on the error that last occurred. This example deals
with two cases, each of which is an error that can result from a matrix
multiply:

function matrix_multiply(A, B)

try

A * B

catch

errmsg = lasterr;

if(strfind(errmsg, 'Inner matrix dimensions'))

disp('** Wrong dimensions for matrix multiply')

else

if(strfind(errmsg, 'not defined for variables of class'))

disp('** Both arguments must be double matrices')

end

end

end

If you call this function with matrices that are incompatible for matrix
multiplication (e.g., the column dimension of A is not equal to the
row dimension of B), MATLAB catches the error and uses lasterr to
determine its source:

A = [1 2 3; 6 7 2; 0 -1 5];
B = [9 5 6; 0 4 9];

matrix_multiply(A, B)
** Wrong dimensions for matrix multiply

Example 2

Specify a message identifier and error message string with error:

error('MyToolbox:angleTooLarge', ...
'The angle specified must be less than 90 degrees.');

2-1886

lasterr

In your error handling code, use lasterr to determine the message
identifier and error message string for the failing operation:

[errmsg, msgid] = lasterr
errmsg =

The angle specified must be less than 90 degrees.
msgid =

MyToolbox:angleTooLarge

See Also error, lasterror, rethrow, warning, lastwarn

2-1887

lasterror

Purpose Last error message and related information

Syntax s = lasterror
s = lasterror(err)
s = lasterror('reset')

Description s = lasterror returns a structure s containing information about the
most recent error issued by MATLAB. The return structure contains
the following fields:

Fieldname Description

message Character array containing the text of the error
message.

identifier Character array containing the message identifier
of the error message. If the last error issued by
MATLAB had no message identifier, then the
identifier field is an empty character array.

stack Structure providing information on the location of
the error. The structure has fields file, name, and
line, and is the same as the structure returned by
the dbstack function. If lasterror returns no stack
information, stack is a 0-by-1 structure having the
same three fields.

Note The lasterror return structure might contain additional fields
in future versions of MATLAB.

The fields of the structure returned in stack are

2-1888

lasterror

Fieldname Description

file Name of the file in which the function generating the
error appears. This field is the empty string if there
is no file.

name Name of the function in which the error occurred. If
this is the primary function of the M-file, and the
function name differs from the M-file name, name is
set to the M-file name.

line M-file line number where the error occurred.

See in the MATLAB Programming documentation for more information
on the syntax and usage of message identifiers.

s = lasterror(err) sets the last error information to the error
message and identifier specified in the structure err. Subsequent
invocations of lasterror return this new error information. The
optional return structure s contains information on the previous error.

s = lasterror('reset') sets the last error information to the default
state. In this state, the message and identifier fields of the return
structure are empty strings, and the stack field is a 0-by-1 structure.

Examples Example 1

Save the following MATLAB code in an M-file called average.m:

function y = average(x)

% AVERAGE Mean of vector elements.

% AVERAGE(X), where X is a vector, is the mean of vector elements.

% Nonvector input results in an error.

check_inputs(x)

y = sum(x)/length(x); % The actual computation

function check_inputs(x)

[m,n] = size(x);

if (~((m == 1) || (n == 1)) || (m == 1 && n == 1))

error('AVG:NotAVector', 'Input must be a vector.')

2-1889

lasterror

end

Now run the function. Because this function requires vector input,
passing a scalar value to it forces an error. The error occurs in
subroutine check_inputs:

average(200)
??? Error using ==> average>check_inputs
Input must be a vector.

Error in ==> average at 5
check_inputs(x)

Get the three fields from lasterror:

err = lasterror
err =

message: [1x61 char]
identifier: 'AVG:NotAVector'

stack: [2x1 struct]

Display the text of the error message:

msg = err.message
msg =

Error using ==> average>check_inputs
Input must be a vector.

Display the fields containing the stack information. err.stack is
a 2-by-1 structure because it provides information on the failing
subroutine check_inputs and also the outer, primary function average:

st1 = err.stack(1,1)
st1 =

file: 'd:\matlab_test\average.m'
name: 'check_inputs'
line: 11

2-1890

lasterror

st2 = err.stack(2,1)
st2 =

file: 'd:\matlab_test\average.m'
name: 'average'
line: 5

Note As a rule, the name of your primary function should be the same
as the name of the M-file containing that function. If these names differ,
MATLAB uses the M-file name in the name field of the stack structure.

Example 2

lasterror is often used in conjunction with the rethrow function in
try-catch statements. For example,

try
do_something

catch
do_cleanup
rethrow(lasterror)

end

See Also try, catch, error, assert, MException, rethrow, lastwarn, dbstack

2-1891

lastwarn

Purpose Last warning message

Syntax msgstr = lastwarn
[msgstr, msgid] = lastwarn
lastwarn('new_msgstr')
lastwarn('new_msgstr', 'new_msgid')
[msgstr, msgid] = lastwarn('new_msgstr', 'new_msgid')

Description msgstr = lastwarn returns the last warning message generated by
MATLAB.

[msgstr, msgid] = lastwarn returns the last warning in msgstr and
its message identifier in msgid. If the warning was not defined with
an identifier, lastwarn returns an empty string for msgid. See and
“Warning Control” in the MATLAB Programming documentation for
more information on the msgid argument and how to use it.

lastwarn('new_msgstr') sets the last warning message to a new
string, new_msgstr, so that subsequent invocations of lastwarn return
the new warning message string. You can also set the last warning to
an empty string with lastwarn('').

lastwarn('new_msgstr', 'new_msgid') sets the last warning
message and its identifier to new strings new_msgstr and new_msgid,
respectively. Subsequent invocations of lastwarn return the new
warning message and message identifier.

[msgstr, msgid] = lastwarn('new_msgstr', 'new_msgid') returns
the last warning message and its identifier, also changing these values
so that subsequent invocations of lastwarn return the message and
identifier strings specified by new_msgstr and new_msgid, respectively.

Remarks lastwarn does not return warnings that are reported during the parsing
of MATLAB commands. (Warning messages that include the failing file
name and line number are parse-time warnings.)

2-1892

lastwarn

Examples Specify a message identifier and warning message string with warning:

warning('MATLAB:divideByZero', 'Divide by zero');

Use lastwarn to determine the message identifier and error message
string for the operation:

[warnmsg, msgid] = lastwarn
warnmsg =

Divide by zero
msgid =

MATLAB:divideByZero

See Also warning, error, lasterr, lasterror

2-1893

lcm

Purpose Least common multiple

Syntax L = lcm(A,B)

Description L = lcm(A,B) returns the least common multiple of corresponding
elements of arrays A and B. Inputs A and B must contain positive integer
elements and must be the same size (or either can be scalar).

Examples lcm(8,40)

ans =

40
lcm(pascal(3),magic(3))

ans =
8 1 6
3 10 21
4 9 6

See Also gcd

2-1894

ldl

Purpose Block ldl’ factorization for Hermitian indefinite matrices

Syntax L = ldl(A)
[L,D] = ldl(A)
[L,D,P] = ldl(A)
[L,D,p] = ldl(A,'vector')
[U,D,P] = ldl(A,'upper')
[U,D,p] = ldl(A,'upper','vector')
[U,D,P,S] = ldl(A)

Description L = ldl(A) returns only the "psychologically lower triangular matrix"
L as in the two-output form. The permutation information is lost, as is
the block diagonal factor D. By default, ldl references only the diagonal
and lower triangle of A, and assumes that the upper triangle is the
complex conjugate transpose of the lower triangle. Therefore [L,D,P]
= ldl(TRIL(A)) and [L,D,P] = ldl(A)both return the exact same
factors. Note, this syntax is not valid for sparse A.

[L,D] = ldl(A) stores a block diagonal matrix D and a "psychologically
lower triangular matrix" (i.e a product of unit lower triangular and
permutation matrices) in L such that A = L*D*L'. The block diagonal
matrix D has 1-by-1 and 2-by-2 blocks on its diagonal. Note, this syntax
is not valid for sparse A.

[L,D,P] = ldl(A) returns unit lower triangular matrix L, block
diagonal D, and permutation matrix P such that P'*A*P = L*D*L'. This
is equivalent to [L,D,P] = ldl(A,'matrix').

[L,D,p] = ldl(A,'vector') returns the permutation information as
a vector, p, instead of a matrix. The p output is a row vector such that
A(p,p) = L*D*L'.

[U,D,P] = ldl(A,'upper') references only the diagonal and upper
triangle of A and assumes that the lower triangle is the complex
conjugate transpose of the upper triangle. This syntax returns a unit
upper triangular matrix U such that P'*A*P = U'*D*U (assuming that
A is Hermitian, and not just upper triangular). Similarly, [L,D,P] =
ldl(A,'lower') gives the default behavior.

2-1895

ldl

[U,D,p] = ldl(A,'upper','vector') returns the
permutation information as a vector, p, as does [L,D,p] =
ldl(A,'lower','vector'). A must be a full matrix.

[U,D,P,S] = ldl(A) returns unit lower triangular matrix L, block
diagonal D, permutation matrix P, and scaling matrix S such that
P'*S*A*S*P = L*D*L'. This syntax is only available for real sparse
matrices, and only the lower triangle of A is referenced. ldl uses MA57
for sparse real symmetric A.

Examples These examples illustrate the use of the various forms of the ldl
function, including the one-, two-, and three-output form, and the use of
the vector and upper options. The topics covered are:

• “Example 1 — One-Output Form of ldl” on page 2-1897

• “Example 2 — Two-Output Form of ldl” on page 2-1897

• “Example 3 — Three Output Form of ldl” on page 2-1898

• “Example 4 — The Structure of D” on page 2-1898

• “Example 5 — Using the ’vector’ Option” on page 2-1899

• “Example 6 — Using the ’upper’ Option” on page 2-1899

• “Example 7 — linsolve and the Hermitian indefinite solver” on page
2-1900

Before running any of these examples, you will need to generate the
following positive definite and indefinite Hermitian matrices:

A = full(delsq(numgrid('L', 10)));
rand('state', 0);
B = rand(10);
M = [eye(10) B; B' zeros(10)];

The structure of M here is very common in optimization and fluid-flow
problems, and M is in fact indefinite. Note that the positive definite
matrix A must be full, as ldl does not accept sparse arguments.

2-1896

ldl

Example 1 — One-Output Form of ldl

The one-output form of ldl returns the psychologically unit
lower-triangular matrix as above. Note that this is a different matrix
from that which you would derive with the lu function, as lu just
returns what comes from LAPACK. Although ldl is also implemented
using LAPACK routines (ssytrf, dsytrf, chetrf, zhetrf), you must
decipher the output in ways that are lost when only one output is
returned:

Lm = ldl(M); Dm = Lm\(M/Lm');

fprintf(1, ...

'The error norm ||M - Lm*Dm*Lm''|| is %g\n', norm(M - Lm*Dm*Lm'));

You can apply the L output from this command to the input matrix to
recover D (approximately).

Example 2 — Two-Output Form of ldl

The two-output form of ldl returns L and D such that A-(L*D*L') is
small, L is "psychologically unit lower triangular" (i.e., a permuted unit
lower triangular matrix), and D is a block 2-by-2 diagonal. Note also
that, because A is positive definite, the diagonal of D is all positive:

[LA,DA] = ldl(A);
fprintf(1, ...
'The factorization error ||A - LA*DA*LA''|| is %g\n', ...
norm(A - LA*DA*LA'));
neginds = find(diag(DA) < 0)

Given a b, solve Ax=b using LA, DA:

bA = sum(A,2);
x = LA'\(DA\(LA\bA));
fprintf(...
'The absolute error norm ||x - ones(size(bA))|| is %g\n', ...
norm(x - ones(size(bA))));

2-1897

ldl

Example 3 — Three Output Form of ldl

The three output form returns the permutation matrix as well, so that
L is in fact unit lower triangular:

[Lm, Dm, Pm] = ldl(M);
fprintf(1, ...
'The error norm ||Pm''*M*Pm - Lm*Dm*Lm''|| is %g\n', ...
norm(Pm'*M*Pm - Lm*Dm*Lm'));
fprintf(1, ...
'The difference between Lm and tril(Lm) is %g\n', ...
norm(Lm - tril(Lm)));

Given b, solve Mx=b using Lm, Dm, and Pm:

bM = sum(M,2);
x = Pm*(Lm'\(Dm\(Lm\(Pm'*bM))));
fprintf(...
'The absolute error norm ||x - ones(size(b))|| is %g\n', ...
norm(x - ones(size(bM))));

Example 4 — The Structure of D

D is a block diagonal matrix with 1-by-1 blocks and 2-by-2 blocks. That
makes it a special case of a tridiagonal matrix. When the input matrix is
positive definite, D is almost always diagonal (depending on how definite
the matrix is). When the matrix is indefinite however, D may be diagonal
or it may express the block structure. For example, with A as above, DA
is diagonal. But if you shift A just a bit, you end up with an indefinite
matrix, and then you can compute a D that has the block structure.

figure; spy(DA); title('Structure of D from ldl(A)');
[Las, Das] = ldl(A - 4*eye(size(A)));
figure; spy(Das);
title('Structure of D from ldl(A - 4*eye(size(A)))');

2-1898

ldl

Example 5 — Using the ’vector’ Option

Like the lu function, ldl accepts an argument that determines whether
the function returns a permutation vector or permutation matrix. ldl
returns the latter by default. When you select 'vector', the function
executes faster and uses less memory. For this reason, specifying
the 'vector' option is recommended. Another thing to note is that
indexing is typically faster than multiplying for this kind of operation:

[Lm, Dm, pm] = ldl(M, 'vector');

fprintf(1, 'The error norm ||M(pm,pm) - Lm*Dm*Lm''|| is %g\n', ...

norm(M(pm,pm) - Lm*Dm*Lm'));

% Solve a system with this kind of factorization.

clear x;

x(pm,:) = Lm'\(Dm\(Lm\(bM(pm,:))));

fprintf('The absolute error norm ||x - ones(size(b))|| is %g\n', ...

norm(x - ones(size(bM))));

Example 6 — Using the ’upper’ Option

Like the chol function, ldl accepts an argument that determines which
triangle of the input matrix is referenced, and also whether ldl returns
a lower (L) or upper (L') triangular factor. For dense matrices, there are
no real savings with using the upper triangular version instead of the
lower triangular version:

Ml = tril(M);

[Lml, Dml, Pml] = ldl(Ml, 'lower'); % 'lower' is default behavior.

fprintf(1, ...

'The difference between Lml and Lm is %g\n', norm(Lml - Lm));

[Umu, Dmu, pmu] = ldl(triu(M), 'upper', 'vector');

fprintf(1, ...

'The difference between Umu and Lm'' is %g\n', norm(Umu - Lm'));

% Solve a system using this factorization.

clear x;

x(pm,:) = Umu\(Dmu\(Umu'\(bM(pmu,:))));

fprintf(...

2-1899

ldl

'The absolute error norm ||x - ones(size(b))|| is %g\n', ...

norm(x - ones(size(bM))));

When specifying both the 'upper' and 'vector' options, 'upper' must
precede 'vector' in the argument list.

Example 7 — linsolve and the Hermitian indefinite solver

When using the linsolve function, you may experience better
performance by exploiting the knowledge that a system has a symmetric
matrix. The matrices used in the examples above are a bit small to see
this so, for this example, generate a larger matrix. The matrix here
is symmetric positive definite, and below we will see that with each
bit of knowledge about the matrix, there is a corresponding speedup.
That is, the symmetric solver is faster than the general solver while the
symmetric positive definite solver is faster than the symmetric solver:

Abig = full(delsq(numgrid('L', 30)));
bbig = sum(Abig, 2);
LSopts.POSDEF = false;
LSopts.SYM = false;
tic; linsolve(Abig, bbig, LSopts); toc;
LSopts.SYM = true;
tic; linsolve(Abig, bbig, LSopts); toc;
LSopts.POSDEF = true;
tic; linsolve(Abig, bbig, LSopts); toc;

Algorithm ldl uses the LAPACK routines listed in the following table.

Real Complex

Double DSYTRF ZHETRF

Single SSYTRN CHETRF

See Also chol, lu, qr

2-1900

ldivide, rdivide

Purpose Left or right array division

Syntax ldivide(A,B)
A.\B
rdivide(A,B)
A./B

Description ldivide(A,B) and the equivalent A.\B divides each entry of B by the
corresponding entry of A. A and B must be arrays of the same size. A
scalar value for either A or B is expanded to an array of the same size
as the other.

rdivide(A,B) and the equivalent A./B divides each entry of A by the
corresponding entry of B. A and B must be arrays of the same size. A
scalar value for either A or B is expanded to an array of the same size
as the other.

Example A = [1 2 3;4 5 6];
B = ones(2, 3);
A.\B

ans =

1.0000 0.5000 0.3333
0.2500 0.2000 0.1667

See Also Arithmetic Operators, mldivide, mrdivide

2-1901

le

Purpose Test for less than or equal to

Syntax A <= B
le(A, B)

Description A <= B compares each element of array A with the corresponding
element of array B, and returns an array with elements set to logical
1 (true) where A is less than or equal to B, or set to logical 0 (false)
where A is greater than B. Each input of the expression can be an array
or a scalar value.

If both A and B are scalar (i.e., 1-by-1 matrices), then MATLAB returns
a scalar value.

If both A and B are nonscalar arrays, then these arrays must have
the same dimensions, and MATLAB returns an array of the same
dimensions as A and B.

If one input is scalar and the other a nonscalar array, then the scalar
input is treated as if it were an array having the same dimensions as
the nonscalar input array. In other words, if input A is the number 100,
and B is a 3-by-5 matrix, then A is treated as if it were a 3-by-5 matrix
of elements, each set to 100. MATLAB returns an array of the same
dimensions as the nonscalar input array.

le(A, B) is called for the syntax A < =B when either A or B is an object.

Examples Create two 6-by-6 matrices, A and B, and locate those elements of A that
are less than or equal to the corresponding elements of B:

A = magic(6);
B = repmat(3*magic(3), 2, 2);

A <= B
ans =

0 1 1 0 0 0
1 0 1 0 0 0
0 1 1 0 1 0
1 0 0 1 0 1

2-1902

le

0 1 0 0 1 1
1 0 0 0 1 0

See Also lt, eq, ge, gt, ne, Relational Operators

2-1903

legend

Purpose Graph legend for lines and patches

GUI
Alternatives

Add a legend to a selected axes on a graph with the Insert Legend tool

on the figure toolbar, or use Insert —> Legend from the figure
menu. Use the Property Editor to modify the position, font, and other
properties of a legend. For details, see Using Plot Edit Mode in the
MATLAB Graphics documentation.

Syntax legend('string1','string2',...)
legend(h,'string1','string2',...)
legend(M)
legend(h,M)
legend(M,'parameter_name','parameter_value',...)
legend(h,M,'parameter_name','parameter_value',...)
legend(axes_handle,...)
legend('off'), legend(axes_handle,'off')
legend('toggle'), legend(axes_handle,'toggle')
legend('hide'), legend(axes_handle,'hide')
legend('show'), legend(axes_handle,'show')
legend('boxoff'), legend(axes_handle,'boxoff')
legend('boxon'), legend(axes_handle,'boxon')
legend_handle = legend(...)
legend
legend(legend_handle)
legend(...,'Location',location)
legend(...,'Orientation','orientation')
[legend_h,object_h,plot_h,text_strings] = legend(...)
legend(li_object,string1,string2,string3)
legend(li_objects,M)
legend('v6',M,...)
legend('v6',AX)

Description legend places a legend on various types of graphs (line plots, bar
graphs, pie charts, etc.). For each line plotted, the legend shows a
sample of the line type, marker symbol, and color beside the text label

2-1904

legend

you specify. When plotting filled areas (patch or surface objects), the
legend contains a sample of the face color next to the text label.

The font size and font name for the legend strings match the axes
FontSize and FontName properties.

legend('string1','string2',...) displays a legend in the current
axes using the specified strings to label each set of data.

legend(h,'string1','string2',...) displays a legend on the plot
containing the objects identified by the handles in the vector h and
uses the specified strings to label the corresponding graphics object
(line, barseries, etc.).

legend(M) adds a legend containing the rows of the matrix or
cell array of strings M as labels. For matrices, this is the same as
legend(M(1,:),M(2,:),...).

legend(h,M) associates each row of the matrix or cell array of strings M
with the corresponding graphics object (patch or line) in the vector of
handles h.

legend(M,'parameter_name','parameter_value',...) and
legend(h,M,'parameter_name','parameter_value',...) allow
parameter/value pairs to be set when creating a legend (you can also
assign them with set or with the Property Editor or Property Inspector).
M must be a cell array of names. Legends inherit the properties of axes,
although not all of them are relevant to legend objects.

legend(axes_handle,...) displays the legend for the axes specified
by axes_handle.

legend('off'), legend(axes_handle,'off') removes the legend in
the current axes or the axes specified by axes_handle.

legend('toggle'), legend(axes_handle,'toggle') toggles the
legend on or off. If no legend exists for the current axes, one is created
using default strings.

The default string for an object is the value of the object’s DisplayName
property, if you have defined a value for DisplayName (which you can do
using the Property Editor or calling set). Otherwise, legend constructs

2-1905

legend

a string of the form data1, data2, etc. Setting display names is useful
when you are experimenting with legends and might forget how objects
in a lineseries, for example, are ordered.

When you specify legend strings in a legend command, their respective
DisplayNames are set to these strings. If you delete a legend and
then create a new legend without specifying labels for it, the values of
DisplayName are (re)used as label names. Naturally, the associated
plot objects must have a DisplayName property for this to happen: all
_series and _group plot objects have a DisplayName property; Handle
Graphics primitives, such as line and patch, do not.

legend('hide'), legend(axes_handle,'hide') makes the legend in
the current axes or the axes specified by axes_handle invisible.

legend('show'), legend(axes_handle,'show') makes the legend in
the current axes or the axes specified by axes_handle visible. A legend
is created if one did not exist previously. Legends created automatically
are limited to depict only the first 20 lines in the plot; if you need more
legend entries, you can manually create a legend for them all with
legend('string1','string2',...) syntax.

legend('boxoff'), legend(axes_handle,'boxoff') removes the
box from the legend in the current axes or the axes specified by
axes_handle, and makes its background transparent.

legend('boxon'), legend(axes_handle,'boxon') adds a box with
an opaque background to the legend in the current axes or the axes
specified by axes_handle.

You can also type the above six commands using the syntax

legend keyword

If the keyword is not recognized, it is used as legend text, creating a
legend or replacing the current legend.

legend_handle = legend(...) returns the handle to the legend on
the current axes, or [] if no legend exists.

2-1906

legend

legend with no arguments refreshes all the legends in the current
figure.

legend(legend_handle) refreshes the specified legend.

legend(...,'Location',location) uses location to determine
where to place the legend. location can be either a 1-by-4 position
vector ([left bottom width height]) or one of the following strings.

Specifier Location in Axes

North Inside plot box near top

South Inside bottom

East Inside right

West Inside left

NorthEast Inside top right (default)

NorthWest Inside top left

SouthEast Inside bottom right

SouthWest Inside bottom left

NorthOutside Outside plot box near top

SouthOutside Outside bottom

EastOutside Outside right

WestOutside Outside left

NorthEastOutside Outside top right

NorthWestOutside Outside top left

SouthEastOutside Outside bottom right

SouthWestOutside Outside bottom left

Best Least conflict with data in plot

BestOutside Least unused space outside plot

2-1907

legend

If the legend text does not fit in the 1-by-4 position vector, the position
vector is resized around the midpoint to fit the legend text given its
font and size, making the legend taller or wider. The location string
can be all lowercase and can be abbreviated by sentinel letter (e.g.,
N, NE, NEO, etc.). Using one of the ...Outside values for location
ensures that the legend does not overlap the plot, whereas overlaps can
occur when you specify any of the other cardinal values. The location
property applies to colorbars and legends, but not to axes.

Obsolete Location Values

The first column of the following table shows the now-obsolete specifiers
for legend locations that were in use prior to Version 7, along with a
description of the locations and their current equivalent syntaxes:

Obsolete
Specifier Location in Axes Current Specifier

-1 Outside axes on right side NorthEastOutside

0 Inside axes Best

1 Upper right corner of axes NorthEast

2 Upper left corner of axes NorthWest

3 Lower left corner of axes SouthWest

4 Lower right corner of axes SouthEast

legend(...,'Orientation','orientation') creates a legend with
the legend items arranged in the specified orientation. orientation
can be vertical (the default) or horizontal.

[legend_h,object_h,plot_h,text_strings] = legend(...) returns

• legend_h — Handle of the legend axes

• object_h — Handles of the line, patch, and text graphics objects
used in the legend

• plot_h — Handles of the lines and other objects used in the plot

2-1908

legend

• text_strings — Cell array of the text strings used in the legend

These handles enable you to modify the properties of the respective
objects.

legend(li_object,string1,string2,string3) creates a legend for
legendinfo objects li_objects with strings string1, etc.

legend(li_objects,M) creates a legend of legendinfo objects
li_objects, where M is a string matrix or cell array of strings
corresponding to the legendinfo objects.

Backward Compatibility

legend('v6',M,...), for a cell array of strings M, creates a legend
compatible with MATLAB 6.5 from the strings in M and any additional
inputs.

legend('v6',AX), for an axes handle AX, updates any Version 6 legends
and returns the legend handle.

The following calls to legend are passed to the Version 6 legend
mechanism to maintain backward compatibility:

legend('DeleteLegend')
legend('EditLegend',h)
legend('ShowLegendPlot',h)
legend('ResizeLegend')
legend('RestoreSize',hLegend)
legend('RecordSize',hPlot)

Note The v6 option enables users of Version 7.x of MATLAB to create
FIG-files that previous versions can open. It is obsolete and will be
removed in a future version of MATLAB.

Remarks legend associates strings with the objects in the axes in the same order
that they are listed in the axes Children property. By default, the
legend annotates the current axes.

2-1909

legend

MATLAB displays only one legend per axes. legend positions the legend
based on a variety of factors, such as what objects the legend obscures.

The properties that legends do not share with axes are

• Location

• Orientation

• EdgeColor

• TextColor

• Interpreter

• String

Legends for graphs that contain groups of objects such as lineseries,
barseries, contourgroups, etc. created by high-level plotting commands
such as plot, bar, contour, etc., by default display a single legend entry
for the entire group, regardless of how many member objects it contains.
However, you can customize such legends to show individual entries for
all or selected member objects and assign a unique DisplayName to any
of them. You control how groups appear in the legend by setting values
for their Annotation and DisplayName properties with M-code. For
information and examples about customizing legends in this manner,
see “Controlling Legends” in the MATLAB Graphics documentation.

You can specify EdgeColor and TextColor as RGB triplets or as
ColorSpecs. You cannot set these colors to 'none'. To hide the box
surrounding a legend, set the Box property to 'off'. To allow the
background to show through the legend box, set the legend’s Color
property to 'none', for example,

set(legend_handle, 'Box', 'off')
set(legend_handle, 'Color', 'none')

This is similar to the effect of the command legend boxoff, except that
boxoff also hides the legend’s border.

2-1910

legend

You can use a legend’s handle to set text properties for all the strings
in a legend at once with a cell array of strings, rather than looping
through each of them. See the last line of the example below, which
demonstrates setting a legend’s Interpreter property. In that example,
you could reset the String property of the legend as follows:

set(h,'String',{'cos(x)','sin(x)'})

See the documentation for Text Properties for additional details.

legend installs a figure ResizeFcn if there is not already a user-defined
ResizeFcn assigned to the figure. This ResizeFcn attempts to keep
the legend the same size.

Moving the Legend

Move the legend by pressing the left mouse button while the cursor
is over the legend and dragging the legend to a new location.
Double-clicking a label allows you to edit the label.

Example Add a legend to a graph showing a sine and cosine function:

x = -pi:pi/20:pi;
plot(x,cos(x),'-ro',x,sin(x),'-.b')
h = legend('cos_x','sin_x',2);
set(h,'Interpreter','none')

2-1911

legend

In this example, the plot command specifies a solid, red line ('-r') for
the cosine function and a dash-dot, blue line ('-.b') for the sine function.

See Also LineSpec, plot

“Adding a Legend to a Graph” for more information on using legends

“Annotating Plots” on page 1-87 for related functions

2-1912

legendre

Purpose Associated Legendre functions

Syntax P = legendre(n,X)
S = legendre(n,X,'sch')
N = legendre(n,X,'norm')

Definitions Associated Legendre Functions

The Legendre functions are defined by

where

is the Legendre polynomial of degree .

Schmidt Seminormalized Associated Legendre Functions

The Schmidt seminormalized associated Legendre functions are related

to the nonnormalized associated Legendre functions by

for

for .

Fully Normalized Associated Legendre Functions

The fully normalized associated Legendre functions are normalized
such that

2-1913

legendre

and are related to the unnormalized associated Legendre functions

by

Description P = legendre(n,X) computes the associated Legendre functions

of degree n and order m = 0,1,...,n, evaluated for each
element of X. Argument n must be a scalar integer, and X must contain
real values in the domain .

If X is a vector, then P is an (n+1)-by-q matrix, where q = length(X).
Each element P(m+1,i) corresponds to the associated Legendre function
of degree n and order m evaluated at X(i).

In general, the returned array P has one more dimension than X, and
each element P(m+1,i,j,k,...) contains the associated Legendre
function of degree n and order m evaluated at X(i,j,k,...). Note
that the first row of P is the Legendre polynomial evaluated at X, i.e.,
the case where m = 0.

S = legendre(n,X,'sch') computes the Schmidt seminormalized

associated Legendre functions .

N = legendre(n,X,'norm') computes the fully normalized associated

Legendre functions .

Examples Example 1

The statement legendre(2,0:0.1:0.2) returns the matrix

2-1914

legendre

x = 0 x = 0.1 x = 0.2

m = 0 -0.5000 -0.4850 -0.4400

m = 1 0 -0.2985 -0.5879

m = 2 3.0000 2.9700 2.8800

Example 2

Given,

X = rand(2,4,5);
n = 2;
P = legendre(n,X)

then

size(P)
ans =

3 2 4 5

and

P(:,1,2,3)
ans =

-0.2475
-1.1225
2.4950

is the same as

legendre(n,X(1,2,3))
ans =

-0.2475
-1.1225
2.4950

Algorithm legendre uses a three-term backward recursion relationship in m. This
recursion is on a version of the Schmidt seminormalized associated

2-1915

legendre

Legendre functions , which are complex spherical harmonics.
These functions are related to the standard Abramowitz and Stegun [1]

functions by

They are related to the Schmidt form given previously by

for

for

References [1] Abramowitz, M. and I. A. Stegun, Handbook of Mathematical
Functions, Dover Publications, 1965, Ch.8.

[2] Jacobs, J. A., Geomagnetism, Academic Press, 1987, Ch.4.

2-1916

length

Purpose Length of vector

Syntax n = length(X)

Description The statement length(X) is equivalent to max(size(X)) for nonempty
arrays and 0 for empty arrays.

n = length(X) returns the size of the longest dimension of X. If X is a
vector, this is the same as its length.

Examples x = ones(1,8);
n = length(x)

n =
8

x = rand(2,10,3);
n = length(x)

n =
10

See Also ndims, size

2-1917

length (serial)

Purpose Length of serial port object array

Syntax length(obj)

Arguments obj A serial port object or an array of serial port objects.

Description length(obj) returns the length of obj. It is equivalent to the command
max(size(obj)).

See Also Functions

size

2-1918

length (timeseries)

Purpose Length of time vector

Syntax length(ts)

Description length(ts) returns an integer that represents the length of the time
vector for the timeseries object ts. It returns 0 if ts is empty.

See Also isempty (timeseries), size (timeseries)

2-1919

length (tscollection)

Purpose Length of time vector

Syntax length(tsc)

Description length(tsc) returns an integer that represents the length of the time
vector for the tscollection object tsc.

See Also isempty (tscollection), size (tscollection), tscollection

2-1920

libfunctions

Purpose Information on functions in external library

Syntax m = libfunctions('libname')
m = libfunctions('libname', '-full')
libfunctions libname -full

Description m = libfunctions('libname') returns the names of all functions
defined in the external shared library, libname, that has been loaded
into MATLAB with the loadlibrary function. The return value, m,
is a cell array of strings.

If you used an alias when initially loading the library, then you must
use that alias for the libname argument.

m = libfunctions('libname', '-full') returns a full description of
the functions in the library, including function signatures. This includes
duplicate function names with different signatures. The return value, m,
is a cell array of strings.

libfunctions libname -full is the command format for this function.

Examples List the functions in the MATLAB libmx library:

hfile = [matlabroot '\extern\include\matrix.h'];

loadlibrary('libmx', hfile)

libfunctions libmx

Methods for class lib.libmx:

mxAddField mxGetFieldNumber mxIsLogicalScalarTrue

mxArrayToString mxGetImagData mxIsNaN

mxCalcSingleSubscript mxGetInf mxIsNumeric

mxCalloc mxGetIr mxIsObject

mxClearScalarDoubleFlag mxGetJc mxIsOpaque

mxCreateCellArray mxGetLogicals mxIsScalarDoubleFlagSet

. . .

. . .

2-1921

libfunctions

To list the functions along with their signatures, use the -full switch
with libfunctions:

libfunctions libmx -full

Methods for class lib.libmx:
[mxClassID, MATLAB array] mxGetClassID(MATLAB array)
[lib.pointer, MATLAB array] mxGetData(MATLAB array)
[MATLAB array, voidPtr] mxSetData(MATLAB array, voidPtr)
[uint8, MATLAB array] mxIsNumeric(MATLAB array)
[uint8, MATLAB array] mxIsCell(MATLAB array)
[lib.pointer, MATLAB array] mxGetPr(MATLAB array)
[MATLAB array, doublePtr] mxSetPr(MATLAB array, doublePtr)

.

.

unloadlibrary libmx

See Also loadlibrary, libfunctionsview, libpointer, libstruct, calllib,
libisloaded, unloadlibrary

2-1922

libfunctionsview

Purpose Create window displaying information on functions in external library

Syntax libfunctionsview libname
libfunctionsview libname

Description libfunctionsview libname displays the names of the functions in the
external shared library, libname, that has been loaded into MATLAB
with the loadlibrary function.

If you used an alias when initially loading the library, then you must
use that alias for the libname argument.

MATLAB creates a new window in response to the libfunctionsview
command. This window displays all of the functions defined in the
specified library. For each of these functions, the following information
is supplied:

• Data type returned by the function

• Name of the function

• Arguments passed to the function

An additional column entitled “Inherited From” is displayed at the far
right of the window. The information in this column is not useful for
external libraries.

libfunctionsview libname is the command format for this function.

Examples The following command opens the window shown below for the libmx
library:

libfunctionsview libmx

2-1923

libfunctionsview

See Also loadlibrary, libfunctions, libpointer, libstruct, calllib,
libisloaded, unloadlibrary

2-1924

libisloaded

Purpose Determine whether external library is loaded

Syntax libisloaded('libname')
libisloaded libname

Description libisloaded('libname') returns logical 1 (true) if the shared library
libname is loaded and logical 0 (false) otherwise.

libisloaded libname is the command format for this function.

If you used an alias when initially loading the library, then you must
use that alias for the libname argument.

Examples Example 1

Load the shrlibsample library and check to see if the load was
successful before calling one of its functions:

addpath([matlabroot '\extern\examples\shrlib'])

loadlibrary shrlibsample shrlibsample.h

if libisloaded('shrlibsample')

x = calllib('shrlibsample', 'addDoubleRef', 1.78, 5.42, 13.3)

end

Since the library is successfully loaded, the call to addDoubleRef works
as expected and returns

x =
20.5000

unloadlibrary shrlibsample

Example 2

Load the same library, this time giving it an alias. If you use
libisloaded with the library name, shrlibsample, it now returns
false. Since you loaded the library using an alias, all further references
to the library must also use that alias:

2-1925

libisloaded

addpath([matlabroot '\extern\examples\shrlib'])
loadlibrary shrlibsample shrlibsample.h alias lib

libisloaded shrlibsample
ans =

0

libisloaded lib
ans =

1

unloadlibrary lib

See Also loadlibrary, libfunctions, libfunctionsview, libpointer,
libstruct, calllib, unloadlibrary

2-1926

libpointer

Purpose Create pointer object for use with external libraries

Syntax p = libpointer
p = libpointer('type')
p = libpointer('type',value)

Description p = libpointer returns an empty (void) pointer.

p = libpointer('type') returns an empty pointer that contains a
reference to the specified data type. This type can be any MATLAB
numeric type, or a structure or enumerated type defined in an external
library that has been loaded into MATLAB with the loadlibrary
function. For valid types, see the table under “Primitive Types” in the
MATLAB External Interfaces documentation.

Note Using this syntax, p is a NULL pointer. You, therefore, must ensure
that any library function to which you pass p must be able to accept
a NULL pointer as an argument.

p = libpointer('type',value) returns a pointer to the specified data
type and initialized to the value supplied.

Remarks MATLAB automatically converts data passed to and from external
library functions to the data type expected by the external function.
The libpointer function enables you to convert your argument data
manually. This is an advanced feature available to experienced C
programmers. For more information about using pointer objects,
see “Creating References” in the MATLAB External Interfaces
documentation. Additional examples for using libpointer can be found
in “Reference Pointers” in the same documentation.

Examples This example passes an int16 pointer to a function that multiplies each
value in a matrix by its index. The function multiplyShort is defined
in the MATLAB sample shared library, shrlibsample.

2-1927

libpointer

Here is the C function:

void multiplyShort(short *x, int size)
{

int i;
for (i = 0; i < size; i++)
*x++ *= i;

}

Load the shrlibsample library. Create the matrix, v, and also a pointer
to it, pv:

addpath([matlabroot '\extern\examples\shrlib'])
loadlibrary shrlibsample shrlibsample.h

v = [4 6 8; 7 5 3];

pv = libpointer('int16Ptr', v);
get(pv, 'Value')
ans =

4 6 8
7 5 3

Now call the C function in the library, passing the pointer to v. If you
were to pass a copy of v, the results would be lost once the function
terminates. Passing a pointer to v enables you to get back the results:

calllib('shrlibsample', 'multiplyShort', pv, 6);
get(pv, 'Value')
ans =

0 12 32
7 15 15

unloadlibrary shrlibsample

See Also loadlibrary, libfunctions, libfunctionsview, libstruct, calllib,
libisloaded, unloadlibrary

2-1928

libstruct

Purpose Construct structure as defined in external library

Syntax s = libstruct('structtype')
s = libstruct('structtype',mlstruct)

Description s = libstruct('structtype') returns a libstruct object s that is a
MATLAB object designed to resemble a C structure of type specified by
structtype. The structure type, structtype, is defined in an external
library that must be loaded into MATLAB using the loadlibrary
function.

Note Using this syntax, s is a NULL pointer. You, therefore, must ensure
that any library function to which you pass s must be able to accept
a NULL pointer as an argument.

s = libstruct('structtype',mlstruct) returns a libstruct object
s with its fields initialized from MATLAB structure, mlstruct.

The libstruct function essentially creates a C-like structure that
you can pass to functions in an external library. You can handle this
structure in MATLAB as you would a true MATLAB structure.

What Data Types Are Available

To determine which MATLAB data types to use when passing
arguments to library functions, see the output of libfunctionsview or
libfunctions -full. These functions list all of the functions found in a
particular library along with a specification of the data types required
for each argument.

Examples This example performs a simple addition of the fields of a structure.
The function addStructFields is defined in the MATLAB sample
shared library, shrlibsample.

Here is the C function:

double addStructFields(struct c_struct st)

2-1929

libstruct

{
double t = st.p1 + st.p2 + st.p3;
return t;

}

Start by loading the shrlibsample library and creating MATLAB
structure, sm:

addpath([matlabroot '\extern\examples\shrlib'])
loadlibrary shrlibsample shrlibsample.h

sm.p1 = 476; sm.p2 = -299; sm.p3 = 1000;

Construct a libstruct object sc that uses the c_struct template:

sc = libstruct('c_struct', sm);

get(sc)
p1: 476
p2: -299
p3: 1000

Now call the function, passing the libstruct object, sc:

calllib('shrlibsample', 'addStructFields', sc)
ans =

1177

You must clear the libstruct object before unloading the library:

clear sc
unloadlibrary shrlibsample

Note In most cases, you can pass a MATLAB structure and MATLAB
automatically converts the argument to a C structure. See “Structures”
in the MATLAB External Interfaces documentation for more
information.

2-1930

libstruct

See Also loadlibrary, libfunctions, libfunctionsview, libpointer,
calllib, libisloaded, unloadlibrary

2-1931

license

Purpose Return license number or perform licensing task

Syntax license
license('inuse')
S = license('inuse')
S = license('inuse', feature)
license('test',feature)
license('test',feature,toggle)
result = license('checkout',feature)

Description license returns the license number for this MATLAB. The return value
is always a string but is not guaranteed to be a number. The following
table lists text strings that license can return.

String Description

'demo' MATLAB is a demonstration version

'student' MATLAB is the student version

'unknown' License number cannot be determined

license('inuse') returns a list of licenses checked out in the current
MATLAB session. In the list, products are listed alphabetically by their
license feature names, i.e., the text string used to identify products in
the INCREMENT lines in a License File (license.dat). Note that the
feature names returned in the list contain only lower-case characters.

S = license('inuse') returns an array of structures, where each
structure represents a checked-out license. The structures contains two
fields: feature and user. The feature field contains the license feature
name. The user field contains the username of the person who has the
license checked out.

S = license('inuse', feature) checks if the product specified by the
text string feature is checked out in the current MATLAB session. If
the product is checked out, the license function returns the product
name and the username of the person who has it checked out in the

2-1932

license

structure S. If the product is not currently checked out, the fields in the
structure are empty.

The feature string must be a license feature name, spelled exactly as
it appears in the INCREMENT lines in a License File. For example, the
string 'Identification_Toolbox' is the feature name for the System
Identification Toolbox. The feature string is not case-sensitive and
must not exceed 27 characters.

license('test',feature) tests if a license exists for the product
specified by the text string feature. The license command returns 1 if
the license exists and 0 if the license does not exist. The feature string
identifies a product, as described in the previous syntax.

Note Testing for a license only confirms that the license exists. It does
not confirm that the license can be checked out. For example, license
will return 1 if a license exists, even if the license has expired or if a
system administrator has excluded you from using the product in an
options file.

license('test',feature,toggle) enables or disables testing of the
product specified by the text string feature, depending on the value of
toggle. The parameter toggle can have either of two values:

'enable' The syntax license('test',feature) returns 1 if the
product license exists and 0 if the product license does
not exist.

'disable'The syntax license('test',feature) always returns 0
(product license does not exist) for the specified product.

Note Disabling a test for a particular product can impact other tests
for the existence of the license, not just tests performed using the
license command.

2-1933

license

result = license('checkout',feature) checks out a license for the
product identified by the text string feature. The license command
returns 1 if it could check out a license for the product and 0 if it could
not check out a license for the product.

Examples Get the license number for this MATLAB.

license

Get a list of licenses currently being used. Note that the products appear
in alphabetical order by their license feature name in the list returned.

license('inuse')

image_toolbox
map_toolbox
matlab

Get a list of licenses in use with information about who is using the
license.

S = license('inuse');

S(1)

ans =

feature: 'image_toolbox'
user: 'juser'

Determine if the license for MATLAB is currently in use.

S = license('inuse','MATLAB')

S =

feature: 'matlab'
user: 'jsmith'

2-1934

license

Determine if a license exists for the Mapping Toolbox.

license('test','map_toolbox')

ans =

1

Check out a license for the Control System Toolbox.

license('checkout','control_toolbox')

ans =

1

Determine if the license for the Control System Toolbox is checked out.

license('inuse')

control_toolbox
image_toolbox
map_toolbox
matlab

See Also isstudent

2-1935

light

Purpose Create light object

Syntax light('PropertyName',propertyvalue,...)
handle = light(...)

Description light creates a light object in the current axes. Lights affect only patch
and surface objects.

light('PropertyName',propertyvalue,...) creates a light object
using the specified values for the named properties. MATLAB parents
the light to the current axes unless you specify another axes with the
Parent property.

handle = light(...) returns the handle of the light object created.

Remarks You cannot see a light object per se, but you can see the effects of the
light source on patch and surface objects. You can also specify an
axes-wide ambient light color that illuminates these objects. However,
ambient light is visible only when at least one light object is present and
visible in the axes.

You can specify properties as property name/property value pairs,
structure arrays, and cell arrays (see set and get for examples of how
to specify these data types).

See also the patch and surface AmbientStrength, DiffuseStrength,
SpecularStrength, SpecularExponent, SpecularColorReflectance,
and VertexNormals properties. Also see the lighting and material
commands.

Examples Light the peaks surface plot with a light source located at infinity
and oriented along the direction defined by the vector [1 0 0], that
is, along the x-axis.

h = surf(peaks);
set(h,'FaceLighting','phong','FaceColor','interp',...

'AmbientStrength',0.5)
light('Position',[1 0 0],'Style','infinite');

2-1936

light

Object
Hierarchy

Setting Default Properties

You can set default light properties on the axes, figure, and root levels:

set(0,'DefaultLightProperty',PropertyValue...)
set(gcf,'DefaultLightProperty',PropertyValue...)
set(gca,'DefaultLightProperty',PropertyValue...)

where Property is the name of the light property and PropertyValue is
the value you are specifying. Use set and get to access light properties.

See Also lighting, material, patch, surface

“Lighting as a Visualization Tool” for more information about lighting

“Lighting” on page 1-101 for related functions

Light Properties for property descriptions

2-1937

Light Properties

Purpose Light properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The “The Property Editor” is an interactive tool that enables you to
see and change object property values.

• The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see “Setting Default Property
Values”.

See “Core Graphics Objects” for general information about this type
of object.

Light
Property
Descriptions

This section lists property names along with the type of values each
accepts.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions may not
need to perform actions on objects that are going to be deleted
and, therefore, can check the object’s BeingDeleted property
before acting.

BusyAction
cancel | {queue}

2-1938

Light Properties

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callback routines. If there is a callback
routine executing, callback routines invoked subsequently always
attempt to interrupt it. If the Interruptible property of the
object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is
processed. If the Interruptible property is off, the BusyAction
property (of the object owning the executing callback) determines
how MATLAB handles the event. The choices are

• cancel — Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
function handle

This property is not used on lights.

Children
handles

The empty matrix; light objects have no children.

Clipping
on | off

Clipping has no effect on light objects.

Color
ColorSpec

Color of light. This property defines the color of the light
emanating from the light object. Define it as a three-element
RGB vector or one of the MATLAB predefined names. See the
ColorSpec reference page for more information.

2-1939

Light Properties

CreateFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Callback function executed during object creation. A callback
function that executes when MATLAB creates a light object. You
must define this property as a default value for lights or in a call
to the light function to create a new light object. For example,
the following statement:

set(0,'DefaultLightCreateFcn',@light_create)

defines a default value for the line CreateFcn property on the root
level that sets the current figure colormap to gray and uses a
reddish light color whenever you create a light object.

function light_create(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property
set(src,'Color',[.9 .2 .2])
set(gcbf,'Colormap',gray)

end

MATLAB executes this function after setting all light properties.
Setting this property on an existing light object has no effect.
The function must define at least two input arguments (handle
of light object created and an event structure, which is empty
for this property).

The handle of the object whose CreateFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is also accessible through the root CallbackObject property,
which you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

2-1940

Light Properties

DeleteFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended

Delete light callback function. A callback function that executes
when you delete the light object (e.g., when you issue a delete
command or clear the axes cla or figure clf). For example, the
following function displays object property data before the object
is deleted.

function delete_fcn(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property

obj_tp = get(src,'Type');
disp([obj_tp, ' object deleted'])
disp('Its user data is:')
disp(get(src,'UserData'))

end

MATLAB executes the function before deleting the object’s
properties so these values are available to the callback function.
The function must define at least two input arguments (handle
of object being deleted and an event structure, which is empty
for this property)

The handle of the object whose DeleteFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is also accessible through the root CallbackObject property,
which you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in

2-1941

Light Properties

its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally drawing into or
deleting a figure that contains only user interface devices (such as
a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all
times. This may be necessary when a callback routine invokes
a function that might potentially damage the GUI (such as
evaluating a user-typed string), and so temporarily hides its own
handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties).

2-1942

Light Properties

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

HitTest
{on} | off

This property is not used by light objects.

Interruptible
{on} | off

Callback routine interruption mode. Light object callback routines
defined for the DeleteFcn property are not affected by the
Interruptible property.

Parent
handle of parent axes

Parent of light object. This property contains the handle of the
light object’s parent. The parent of a light object is the axes object
that contains it.

Note that light objects cannot be parented to hggroup or
hgtransform objects.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Position
[x,y,z] in axes data units

Location of light object. This property specifies a vector defining
the location of the light object. The vector is defined from the
origin to the specified x-, y-, and z-coordinates. The placement of
the light depends on the setting of the Style property:

2-1943

Light Properties

• If the Style property is set to local, Position specifies the
actual location of the light (which is then a point source that
radiates from the location in all directions).

• If the Style property is set to infinite, Position specifies the
direction from which the light shines in parallel rays.

Selected
on | off

This property is not used by light objects.

SelectionHighlight
{on} | off

This property is not used by light objects.

Style
{infinite} | local

Parallel or divergent light source. This property determines
whether MATLAB places the light object at infinity, in which
case the light rays are parallel, or at the location specified by the
Position property, in which case the light rays diverge in all
directions. See the Position property.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callback
routines. You can define Tag as any string.

Type
string (read only)

2-1944

Light Properties

Type of graphics object. This property contains a string that
identifies the class of graphics object. For light objects, Type is
always 'light'.

UIContextMenu
handle of a uicontextmenu object

This property is not used by light objects.

UserData
matrix

User-specified data. This property can be any data you want
to associate with the light object. The light does not use this
property, but you can access it using set and get.

Visible
{on} | off

Light visibility. While light objects themselves are not visible,
you can see the light on patch and surface objects. When you
set Visible to off, the light emanating from the source is not
visible. There must be at least one light object in the axes whose
Visible property is on for any lighting features to be enabled
(including the axes AmbientLightColor and patch and surface
AmbientStrength).

2-1945

lightangle

Purpose Create or position light object in spherical coordinates

Syntax lightangle(az,el)
light_handle = lightangle(az,el)
lightangle(light_handle,az,el)
[az,el] = lightangle(light_handle)

Description lightangle(az,el) creates a light at the position specified by azimuth
and elevation. az is the azimuthal (horizontal) rotation and el is the
vertical elevation (both in degrees). The interpretation of azimuth and
elevation is the same as that of the view command.

light_handle = lightangle(az,el) creates a light and returns the
handle of the light in light_handle.

lightangle(light_handle,az,el) sets the position of the light
specified by light_handle.

[az,el] = lightangle(light_handle) returns the azimuth and
elevation of the light specified by light_handle.

Remarks By default, when a light is created, its style is infinite. If the light
handle passed in to lightangle refers to a local light, the distance
between the light and the camera target is preserved as the position
is changed.

Examples surf(peaks)
axis vis3d
h = light;
for az = -50:10:50
lightangle(h,az,30)
drawnow

end

See Also light, camlight, view

“Lighting as a Visualization Tool” for more information about lighting

“Lighting” on page 1-101 for related functions

2-1946

lighting

Purpose Specify lighting algorithm

Syntax lighting flat
lighting gouraud
lighting phong
lighting none

Description lighting selects the algorithm used to calculate the effects of light
objects on all surface and patch objects in the current axes.

lighting flat selects flat lighting.

lighting gouraud selects gouraud lighting.

lighting phong selects phong lighting.

lighting none turns off lighting.

Remarks The surf, mesh, pcolor, fill, fill3, surface, and patch functions
create graphics objects that are affected by light sources. The lighting
command sets the FaceLighting and EdgeLighting properties of
surfaces and patches appropriately for the graphics object.

See Also light, material, patch, surface

“Lighting as a Visualization Tool” for more information about lighting

“Lighting” on page 1-101 for related functions

2-1947

lin2mu

Purpose Convert linear audio signal to mu-law

Syntax mu = lin2mu(y)

Description mu = lin2mu(y) converts linear audio signal amplitudes in the range
-1 ≤ Y ≤ 1 to mu-law encoded “flints” in the range 0 ≤ u ≤ 255.

See Also auwrite, mu2lin

2-1948

line

Purpose Create line object

Syntax line(X,Y)
line(X,Y,Z)
line(X,Y,Z,'PropertyName',propertyvalue,...)
line('XData',x,'YData',y,'ZData',z,...)
h = line(...)

Description line creates a line object in the current axes. You can specify the color,
width, line style, and marker type, as well as other characteristics.

The line function has two forms:

• Automatic color and line style cycling. When you specify matrix
coordinate data using the informal syntax (i.e., the first three
arguments are interpreted as the coordinates),

line(X,Y,Z)

MATLAB cycles through the axes ColorOrder and LineStyleOrder
property values the way the plot function does. However, unlike
plot, line does not call the newplot function.

• Purely low-level behavior. When you call line with only property
name/property value pairs,

line('XData',x,'YData',y,'ZData',z)

MATLAB draws a line object in the current axes using the default
line color (see the colordef function for information on color
defaults). Note that you cannot specify matrix coordinate data with
the low-level form of the line function.

line(X,Y) adds the line defined in vectors X and Y to the current axes.
If X and Y are matrices of the same size, line draws one line per column.

line(X,Y,Z) creates lines in three-dimensional coordinates.

2-1949

line

line(X,Y,Z,'PropertyName',propertyvalue,...) creates a line
using the values for the property name/property value pairs specified
and default values for all other properties.

See the LineStyle and Marker properties for a list of supported values.

line('XData',x,'YData',y,'ZData',z,...) creates a line in the
current axes using the property values defined as arguments. This is
the low-level form of the line function, which does not accept matrix
coordinate data as the other informal forms described above.

h = line(...) returns a column vector of handles corresponding to
each line object the function creates.

Remarks In its informal form, the line function interprets the first three
arguments (two for 2-D) as the X, Y, and Z coordinate data, allowing you
to omit the property names. You must specify all other properties as
name/value pairs. For example,

line(X,Y,Z,'Color','r','LineWidth',4)

The low-level form of the line function can have arguments that are
only property name/property value pairs. For example,

line('XData',x,'YData',y,'ZData',z,'Color','r','LineWidth',4)

Line properties control various aspects of the line object and are
described in the "Line Properties" section. You can also set and query
property values after creating the line using set and get.

You can specify properties as property name/property value pairs,
structure arrays, and cell arrays (see the set and get reference pages
for examples of how to specify these data types).

Unlike high-level functions such as plot, line does not respect the
settings of the figure and axes NextPlot properties. It simply adds line
objects to the current axes. However, axes properties that are under
automatic control, such as the axis limits, can change to accommodate
the line within the current axes.

Connecting the dots

2-1950

line

The coordinate data is interpreted as vectors of corresponding x, y, and
z values:

X = [x(1) x(2) x(3)...x(n)]
Y = [y(1) x(2) y(3)...y(n)]
Z = [z(1) z(2) x(3)...z(n)]

where a point is determined by the corresponding vector elements:

p1(x(i),y(i),z(i))

For example, to draw a line from the point located at x = .3 and y =
.4 and z = 1 to the point located at x = .7 and y = .9 and z = 1, use
the following data:

axis([0 1 0 1])
line([.3 .7],[.4 .9],[1 1],'Marker','.','LineStyle','-')

Examples This example uses the line function to add a shadow to plotted data.
First, plot some data and save the line’s handle:

t = 0:pi/20:2*pi;
hline1 = plot(t,sin(t),'k');

Next, add a shadow by offsetting the x-coordinates. Make the shadow
line light gray and wider than the default LineWidth:

hline2 = line(t+.06,sin(t),'LineWidth',4,'Color',[.8 .8 .8]);

Finally, pop the first line to the front:

set(gca,'Children',[hline1 hline2])

2-1951

line

Drawing Lines Interactively

You can use the ginput function to select points from a figure. For
example:

axis([0 1 0 1])
for n = 1:5
[x(n),y(n)] = ginput(1);

end
line(x,y)

The for loop enables you to select five points and build the x and
y arrays. Because line requires arrays of corresponding x and y
coordinates, you can just pass these arrays to the line function.

2-1952

line

Drawing with mouse motion

You can use the axes CurrentPoint property and the figure
WindowButtonDownFcn and WindowButtonMotionFcn properties to
select a point with a mouse click and draw a line to another point by
dragging the mouse, like a simple drawing program. The following
example illustrates a few useful techniques for doing this type of
interactive drawing.

Click to view in editor — This example enables you to click and drag
the cursor to draw lines.

Click to run example — Click the left mouse button in the axes and
move the cursor, left-click to define the line end point, right-click to
end drawing mode.

Input Argument Dimensions — Informal Form

This statement reuses the one-column matrix specified for ZData to
produce two lines, each having four points.

line(rand(4,2),rand(4,2),rand(4,1))

If all the data has the same number of columns and one row each,
MATLAB transposes the matrices to produce data for plotting. For
example,

line(rand(1,4),rand(1,4),rand(1,4))

is changed to

line(rand(4,1),rand(4,1),rand(4,1))

This also applies to the case when just one or two matrices have one
row. For example, the statement

line(rand(2,4),rand(2,4),rand(1,4))

is equivalent to

line(rand(4,2),rand(4,2),rand(4,1))

2-1953

line

Object
Hierarchy

Setting Default Properties

You can set default line properties on the axes, figure, and root levels:

set(0,'DefaultLinePropertyName',PropertyValue,...)
set(gcf,'DefaultLinePropertyName',PropertyValue,...)
set(gca,'DefaultLinePropertyName',PropertyValue,...)

Where PropertyName is the name of the line property and
PropertyValue is the value you are specifying. Use set and get to
access line properties.

See Also annotationaxes, newplot, plot, plot3

“Object Creation Functions” on page 1-94 for related functions

Line Properties for property descriptions

2-1954

Line Properties

Purpose Line properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The “The Property Editor” is an interactive tool that enables you to
see and change object property values.

• The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see “Setting Default Property
Values”.

See Core Graphics Objects for general information about this type of
object.

Line
Property
Descriptions

This section lists property names along with the type of values each
accepts. Curly braces { } enclose default values.

Annotation
hg.Annotation object Read Only

Control the display of line objects in legends. The Annotation
property enables you to specify whether this line object is
represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the line object
is displayed in a figure legend:

2-1955

Line Properties

IconDisplayStyle
Value

Purpose

on Represent this line object in a legend
(default)

off Do not include this line object in a legend

children Same as on because line objects do not have
children

Setting the IconDisplayStyle property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to off:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation','LegendInformation');
set(hLegendEntry,'IconDisplayStyle','off')

Using the IconDisplayStyle property

See “Controlling Legends” for more information and examples.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions may not
need to perform actions on objects that are going to be deleted

2-1956

Line Properties

and, therefore, can check the object’s BeingDeleted property
before acting.

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callback routines. If there is a callback
routine executing, callback routines invoked subsequently always
attempt to interrupt it. If the Interruptible property of the
object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is
processed. If the Interruptible property is off, the BusyAction
property (of the object owning the executing callback) determines
how MATLAB handles the event. The choices are

• cancel — Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Button press callback function. A callback function that executes
whenever you press a mouse button while the pointer is over the
line object.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

Set this property to a function handle that references the callback.
The function must define at least two input arguments (handle
of line associated with the button down event and an event
structure, which is empty for this property)

2-1957

Line Properties

The following example shows how to access the callback object’s
handle as well as the handle of the figure that contains the object
from the callback function.

function button_down(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property

sel_typ = get(gcbf,'SelectionType')
switch sel_typ

case 'normal'
disp('User clicked left-mouse button')
set(src,'Selected','on')

case 'extend'
disp('User did a shift-click')
set(src,'Selected','on')

case 'alt'
disp('User did a control-click')
set(src,'Selected','on')
set(src,'SelectionHighlight','off')

end
end

Suppose h is the handle of a line object and that the button_down
function is on your MATLAB path. The following statement
assigns the function above to the ButtonDownFcn:

set(h,'ButtonDownFcn',@button_down)

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

Children
vector of handles

The empty matrix; line objects have no children.

Clipping
{on} | off

2-1958

Line Properties

Clipping mode. MATLAB clips lines to the axes plot box by
default. If you set Clipping to off, lines are displayed outside
the axes plot box. This can occur if you create a line, set hold
to on, freeze axis scaling (set axis to manual), and then create
a longer line.

Color
ColorSpec

Line color. A three-element RGB vector or one of the MATLAB
predefined names, specifying the line color. See the ColorSpec
reference page for more information on specifying color.

CreateFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Callback function executed during object creation. A callback
function that executes when MATLAB creates a line object. You
must define this property as a default value for lines or in a call
to the line function to create a new line object. For example, the
statement

set(0,'DefaultLineCreateFcn',@line_create)

defines a default value for the line CreateFcn property on the root
level that sets the axes LineStyleOrder whenever you create a
line object. The callback function must be on your MATLAB path
when you execute the above statement.

function line_create(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property
axh = get(src,'Parent');
set(axh,'LineStyleOrder','-.|--')

end

MATLAB executes this function after setting all line properties.
Setting this property on an existing line object has no effect. The

2-1959

Line Properties

function must define at least two input arguments (handle of line
object created and an event structure, which is empty for this
property).

The handle of the object whose CreateFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is also accessible through the root CallbackObject property,
which you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Delete line callback function. A callback function that executes
when you delete the line object (e.g., when you issue a delete
command or clear the axes cla or figure clf). For example, the
following function displays object property data before the object
is deleted.

function delete_fcn(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property

obj_tp = get(src,'Type');
disp([obj_tp, ' object deleted'])
disp('Its user data is:')
disp(get(src,'UserData'))

end

MATLAB executes the function before deleting the object’s
properties so these values are available to the callback function.
The function must define at least two input arguments (handle of
line object being deleted and an event structure, which is empty
for this property)

2-1960

Line Properties

The handle of the object whose DeleteFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is also accessible through the root CallbackObject property,
which you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DisplayName
string (default is empty string)

String used by legend for this line object. The legend function
uses the string defined by the DisplayName property to label this
line object in the legend.

• If you specify string arguments with the legend function,
DisplayName is set to this line object’s corresponding string and
that string is used for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

See “Controlling Legends” for more examples.

The following code shows how to use the DisplayName property
from the command line or in an M-file.

t = 0:.1:2*pi;
a(:,1)=sin(t); a(:,2)=cos(t);

2-1961

Line Properties

h = plot(a);
set(h,{'DisplayName'},{'Sine','Cosine'}')
legend show

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB
uses to draw and erase line objects. Alternative erase modes
are useful for creating animated sequences, where control of
the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

• normal (the default) — Redraw the affected region of the
display, performing the three-dimensional analysis necessary
to ensure that all objects are rendered correctly. This mode
produces the most accurate picture, but is the slowest. The
other modes are faster, but do not perform a complete redraw
and are therefore less accurate.

• none — Do not erase the line when it is moved or destroyed.
While the object is still visible on the screen after erasing with
EraseMode none, you cannot print it, because MATLAB stores
no information about its former location.

• xor — Draw and erase the line by performing an exclusive OR
(XOR) with the color of the screen beneath it. This mode does
not damage the color of the objects beneath the line. However,
the line’s color depends on the color of whatever is beneath it
on the display.

• background — Erase the line by drawing it in the axes
background Color, or the figure background Color if the axes
Color is set to none. This damages objects that are behind the
erased line, but lines are always properly colored.

Printing with Nonnormal Erase Modes

2-1962

Line Properties

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB may mathematically combine
layers of colors (e.g., performing an XOR on a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

You can use the MATLAB getframe command or other screen
capture application to create an image of a figure containing
nonnormal mode objects.

HitTest
{on} | off

Selectable by mouse click. HitTest determines if the line can
become the current object (as returned by the gco command and
the figure CurrentObject property) as a result of a mouse click
on the line. If HitTest is off, clicking the line selects the object
below it (which may be the axes containing it).

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally drawing into or
deleting a figure that contains only user interface devices (such as
a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from

2-1963

Line Properties

command-line users, while allowing callback routines to have
complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all
times. This may be necessary when a callback routine invokes
a function that might potentially damage the GUI (such as
evaluating a user-typed string), and so temporarily hides its own
handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties).

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether a line callback routine can be interrupted by
subsequently invoked callback routines. Only callback routines
defined for the ButtonDownFcn are affected by the Interruptible

2-1964

Line Properties

property. MATLAB checks for events that can interrupt a callback
routine only when it encounters a drawnow, figure, getframe, or
pause command in the routine.

LineStyle
{-} | -- | : | -. | none

Line style. This property specifies the line style. Available line
styles are shown in the table.

Symbol Line Style

' ' Solid line (default)

'--' Dashed line

':' Dotted line

' .' Dash-dot line

'none' No line

You can use LineStyle none when you want to place a marker at
each point but do not want the points connected with a line (see
the Marker property).

LineWidth
scalar

The width of the line object. Specify this value in points (1 point =
1/72 inch). The default LineWidth is 0.5 points.

Marker
character (see table)

Marker symbol. The Marker property specifies marks that display
at data points. You can set values for the Marker property
independently from the LineStyle property. Supported markers
include those shown in the table.

2-1965

Line Properties

Marker Specifier Description

'+' Plus sign

'o' Circle

'*' Asterisk

'.' Point

'x' Cross

'square' or 's' Square

'diamond' or 'd' Diamond

'^' Upward-pointing triangle

'v' Downward-pointing triangle

'>' Right-pointing triangle

'<' Left-pointing triangle

'pentagram' or 'p' Five-pointed star (pentagram)

'hexagram' or 'h' Six-pointed star (hexagram)

'none' No marker (default)

MarkerEdgeColor
ColorSpec | none | {auto}

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles). ColorSpec defines the color to use. none
specifies no color, which makes nonfilled markers invisible. auto
sets MarkerEdgeColor to the same color as the line’s Color
property.

MarkerFaceColor
ColorSpec | {none} | auto

Marker face color. The fill color for markers that are closed
shapes (circle, square, diamond, pentagram, hexagram, and the

2-1966

Line Properties

four triangles). ColorSpec defines the color to use. none makes
the interior of the marker transparent, allowing the background
to show through. auto sets the fill color to the axes color, or the
figure color, if the axes Color property is set to none (which is the
factory default for axes).

MarkerSize
size in points

Marker size. A scalar specifying the size of the marker, in points.
The default value for MarkerSize is six points (1 point = 1/72
inch). Note that MATLAB draws the point marker (specified by
the '.' symbol) at one-third the specified size.

Parent
handle of axes, hggroup, or hgtransform

Parent of line object. This property contains the handle of the
line object’s parent. The parent of a line object is the axes that
contains it. You can reparent line objects to other axes, hggroup,
or hgtransform objects.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | off

Is object selected? When this property is on. MATLAB displays
selection handles if the SelectionHighlight property is also
on. You can, for example, define the ButtonDownFcn to set this
property, allowing users to select the object with the mouse.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by drawing

2-1967

Line Properties

handles at each vertex. When SelectionHighlight is off,
MATLAB does not draw the handles.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callback
routines. You can define Tag as any string.

Type
string (read only)

Class of graphics object. For line objects, Type is always the string
'line'.

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with the line. Assign this property the
handle of a uicontextmenu object created in the same figure as the
line. Use the uicontextmenu function to create the context menu.
MATLAB displays the context menu whenever you right-click
over the line.

UserData
matrix

User-specified data. Any data you want to associate with the line
object. MATLAB does not use this data, but you can access it
using the set and get commands.

Visible
{on} | off

2-1968

Line Properties

Line visibility. By default, all lines are visible. When set to off,
the line is not visible, but still exists, and you can get and set
its properties.

XData
vector of coordinates

X-coordinates. A vector of x-coordinates defining the line. YData
and ZData must be the same length and have the same number
of rows. (See “Examples” on page 2-1951.)

YData
vector of coordinates

Y-coordinates. A vector of y-coordinates defining the line. XData
and ZData must be the same length and have the same number
of rows.

ZData
vector of coordinates

Z-coordinates. A vector of z-coordinates defining the line. XData
and YData must have the same number of rows.

2-1969

Lineseries Properties

Purpose Define lineseries properties

Modifying
Properties

You can set and query graphics object properties using the set and get
commands or with the property editor (propertyeditor).

See “Plot Objects” for more information on lineseries objects.

Note that you cannot define default properties for lineseries objects.

Lineseries
Property
Descriptions

This section lists property names along with the type of values each
accepts. Curly braces { } enclose default values.

Annotation
hg.Annotation object Read Only

Control the display of lineseries objects in legends. The Annotation
property enables you to specify whether this lineseries object is
represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the lineseries
object is displayed in a figure legend:

IconDisplayStyle
Value

Purpose

on Include the lineseries object in a legend as
one entry, but not its children objects

off Do not include the lineseries or its children
in a legend (default)

children Include only the children of the lineseries as
separate entries in the legend

2-1970

Lineseries Properties

Setting the IconDisplayStyle property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation','LegendInformation');
set(hLegendEntry,'IconDisplayStyle','children')

Using the IconDisplayStyle property

See “Controlling Legends” for more information and examples.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function
executing, callbacks invoked subsequently always attempt to
interrupt it.

2-1971

Lineseries Properties

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs
at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

• cancel — Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
string or function handle

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is over this object, but
not over another graphics object. See the HitTestArea property
for information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be

• A string that is a valid MATLAB expression

• The name of an M-file

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

See “Function Handle Callbacks” for information on how to use
function handles to define the callbacks.

Children
vector of handles

2-1972

Lineseries Properties

The empty matrix; line objects have no children.

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs can be
displayed outside the axes plot box. This can occur if you create a
plot object, set hold to on, freeze axis scaling (axis manual), and
then create a larger plot object.

Color
ColorSpec

Color of the object. A three-element RGB vector or one of the
MATLAB predefined names, specifying the object’s color.

See the ColorSpec reference page for more information on
specifying color.

CreateFcn
string or function handle

Callback routine executed during object creation. This property
defines a callback that executes when MATLAB creates an object.
You must specify the callback during the creation of the object.
For example,

area(y,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function.

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

2-1973

Lineseries Properties

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
string or function handle

Callback executed during object deletion. A callback that executes
when this object is deleted (e.g., this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

DisplayName
string (default is empty string)

String used by legend for this lineseries object. The legend
function uses the string defined by the DisplayName property to
label this lineseries object in the legend.

• If you specify string arguments with the legend function,
DisplayName is set to this lineseries object’s corresponding
string and that string is used for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object

2-1974

Lineseries Properties

based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

See “Controlling Legends” for more examples.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase objects and their children. Alternative erase
modes are useful for creating animated sequences, where control
of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

• normal — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none — Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing
with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of

2-1975

Lineseries Properties

the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color
if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

• background — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other
graphics objects that are behind the erased object, but the
erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB can mathematically combine
layers of colors (e.g., performing an XOR on a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally accessing
objects that you need to protect for some reason.

2-1976

Lineseries Properties

• on — Handles are always visible when HandleVisibility is on.

• callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions
invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

• off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

2-1977

Lineseries Properties

Handle Validity

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. HitTest determines whether this object
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the objects that compose the area graph. If HitTest
is off, clicking this object selects the object below it (which is
usually the axes containing it).

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether an object’s callback can be interrupted by
callbacks invoked subsequently.

Only callbacks defined for the ButtonDownFcn property are
affected by the Interruptible property. MATLAB checks for
events that can interrupt a callback only when it encounters a
drawnow, figure, getframe, or pause command in the routine.
See the BusyAction property for related information.

2-1978

Lineseries Properties

Setting Interruptible to on allows any graphics object’s callback
to interrupt callback routines originating from a bar property.
Note that MATLAB does not save the state of variables or the
display (e.g., the handle returned by the gca or gcf command)
when an interruption occurs.

LineStyle
{-} | -- | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker at
each point but do not want the points connected with a line (see
the Marker property).

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Marker
character (see table)

Marker symbol. The Marker property specifies the type of markers
that are displayed at plot vertices. You can set values for the

2-1979

Lineseries Properties

Marker property independently from the LineStyle property.
Supported markers include those shown in the following table.

Marker Specifier Description

+ Plus sign

o Circle

* Asterisk

. Point

x Cross

s Square

d Diamond

^ Upward-pointing triangle

v Downward-pointing triangle

> Right-pointing triangle

< Left-pointing triangle

p Five-pointed star (pentagram)

h Six-pointed star (hexagram)

none No marker (default)

MarkerEdgeColor
ColorSpec | none | {auto}

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles). ColorSpec defines the color to use. none
specifies no color, which makes nonfilled markers invisible. auto
sets MarkerEdgeColor to the same color as the Color property.

MarkerFaceColor
ColorSpec | {none} | auto

2-1980

Lineseries Properties

Marker face color. The fill color for markers that are closed shapes
(circle, square, diamond, pentagram, hexagram, and the four
triangles). ColorSpec defines the color to use. none makes the
interior of the marker transparent, allowing the background to
show through. auto sets the fill color to the axes color, or to the
figure color if the axes Color property is set to none (which is the
factory default for axes objects).

MarkerSize
size in points

Marker size. A scalar specifying the size of the marker in points.
The default value for MarkerSize is 6 points (1 point = 1/72 inch).
Note that MATLAB draws the point marker (specified by the '.'
symbol) at one-third the specified size.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of this object. This property contains the handle of the
object’s parent. The parent is normally the axes, hggroup, or
hgtransform object that contains the object.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection "handles" at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

2-1981

Lineseries Properties

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing four edge handles and four corner handles. When
SelectionHighlight is off, MATLAB does not draw the handles
except when in plot edit mode and objects are selected manually.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callbacks.
You can define Tag as any string.

For example, you might create an areaseries object and set the
Tag property.

t = area(Y,'Tag','area1')

When you want to access objects of a given type, you can use
findobj to find the object’s handle. The following statement
changes the FaceColor property of the object whose Tag is area1.

set(findobj('Tag','area1'),'FaceColor','red')

Type
string (read only)

Class of graphics object. For lineseries objects, Type is always
the string line.

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with this object. Assign this property
the handle of a uicontextmenu object created in the object’s
parent figure. Use the uicontextmenu function to create the

2-1982

Lineseries Properties

context menu. MATLAB displays the context menu whenever
you right-click over the object.

UserData
array

User-specified data. This property can be any data you want to
associate with this object (including cell arrays and structures).
The object does not set values for this property, but you can access
it using the set and get functions.

Visible
{on} | off

Visibility of this object and its children. By default, a new object’s
visibility is on. This means all children of the object are visible
unless the child object’s Visible property is set to off. Setting an
object’s Visible property to off prevents the object from being
displayed. However, the object still exists and you can set and
query its properties.

XData
vector or matrix

The x-axis values for a graph. The x-axis values for graphs
are specified by the X input argument. If XData is a vector,
length(XData) must equal length(YData) and must be
monotonic. If XData is a matrix, size(XData) must equal
size(YData) and each column must be monotonic.

You can use XData to define meaningful coordinates for an
underlying surface whose topography is being mapped. See
“Setting the Axis Limits on Contour Plots” on page 2-640 for more
information.

XDataMode
{auto} | manual

2-1983

Lineseries Properties

Use automatic or user-specified x-axis values. If you specify
XData (by setting the XData property or specifying the x input
argument), MATLAB sets this property to manual and uses the
specified values to label the x-axis.

If you set XDataMode to auto after having specified XData,
MATLAB resets the x-axis ticks to 1:size(YData,1) or to the
column indices of the ZData, overwriting any previous values for
XData.

XDataSource
string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change XData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
vector or matrix of coordinates

2-1984

Lineseries Properties

Y-coordinates. A vector of y-coordinates defining the values along
the y-axis for the graph. XData and ZData must be the same
length and have the same number of rows.

YDataSource
string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change YData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

ZData
vector of coordinates

Z-coordinates. A vector defining the z-coordinates for the graph.
XData and YData must be the same length and have the same
number of rows.

ZDataSource
string (MATLAB variable)

2-1985

Lineseries Properties

Link ZData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
ZData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change ZData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

2-1986

LineSpec

Purpose Line specification string syntax

GUI
Alternative

To modify the style, width, and color of lines on a graph, use the

Property Editor, one of the plotting tools . For details, see The
Property Editor in the MATLAB Graphics documentation.

Description This page describes how to specify the properties of lines used for
plotting. MATLAB gives you control over these graphic characteristics:

• Line style

• Line width

• Color

• Marker type

• Marker size

• Marker face and edge coloring (for filled markers)

You indicate the line styles, marker types, and colors you want to display
to MATLAB using string specifiers, detailed in the following tables:

Line Style Specifiers

Specifier Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

2-1987

LineSpec

Marker Specifiers

Specifier Marker Type

+ Plus sign

o Circle

* Asterisk

. Point

x Cross

'square' or s Square

'diamond' or d Diamond

^ Upward-pointing triangle

v Downward-pointing triangle

> Right-pointing triangle

< Left-pointing triangle

'pentagram' or p Five-pointed star (pentagram)

'hexagram' or h Six-pointed star (hexagram)

Color Specifiers

Specifier Color

r Red

g Green

b Blue

c Cyan

m Magenta

y Yellow

2-1988

LineSpec

Specifier Color

k Black

w White

All high-level plotting functions (except for the ez... family of
function-plotting functions) accept a LineSpec argument that defines
three components used to specify lines:

• Line style

• Marker symbol

• Color

For example,

plot(x,y,'-.or')

plots y versus x using a dash-dot line (-.), places circular markers (o)
at the data points, and colors both line and marker red (r). Specify the
components (in any order) as a quoted string after the data arguments.
Note that linespecs are single strings, not property-value pairs.

Plotting Data Points with No Line

If you specify a marker, but not a line style, MATLAB plots only the
markers. For example,

plot(x,y,'d')

Related
Properties

When using the plot and plot3 functions, you can also specify other
characteristics of lines using graphics properties:

• LineWidth — Specifies the width (in points) of the line

• MarkerEdgeColor — Specifies the color of the marker or the
edge color for filled markers (circle, square, diamond, pentagram,
hexagram, and the four triangles)

2-1989

LineSpec

• MarkerFaceColor — Specifies the color of the face of filled markers

• MarkerSize — Specifies the size of the marker in points

In addition, you can specify the LineStyle, Color, and Marker
properties instead of using the symbol string. This is useful if you
want to specify a color that is not in the list by using RGB values. See
Line Properties for details on these properties and ColorSpec for more
information on color.

Examples Plot the sine function over three different ranges using different line
styles, colors, and markers.

t = 0:pi/20:2*pi;
plot(t,sin(t),'-.r*')
hold on
plot(t,sin(t-pi/2),'--mo')
plot(t,sin(t-pi),':bs')
hold off

2-1990

LineSpec

Create a plot illustrating how to set line properties.

plot(t,sin(2*t),'-mo',...
'LineWidth',2,...
'MarkerEdgeColor','k',...
'MarkerFaceColor',[.49 1 .63],...
'MarkerSize',12)

2-1991

LineSpec

See Also line, plot, patch, set, surface, axes , Line Properties, ColorSpec

“Line Styles Used for Plotting — LineStyleOrder” for information about
defining an order for applying linestyles

“Types of Plots Available in MATLAB” for functions that use linespecs

“Basic Plots and Graphs” on page 1-86 for related functions

2-1992

linkaxes

Purpose Synchronize limits of specified 2-D axes

Syntax linkaxes(axes_handles)
linkaxes(axes_handles,'option')

Description Use linkaxes to synchronize the individual axis limits across several
figures or subplots within a figure. Calling linkaxes will make all
input axes have identical limits. Linking axes is most useful when you
want to zoom or pan in one subplot and display the same range of data
in another subplot.

linkaxes(axes_handles) links the x- and y-axis limits of the axes
specified in the vector axes_handles. You can link any number of
existing plots or subplots.

linkaxes(axes_handles,'option') links the axes’ axes_handles
according to the specified option. The option argument can be one of
the following strings:

x Link x-axis only

y Link y-axis only

xy Link x-axis and y-axis

off Remove linking

See the linkprop function for more advanced capabilities that allow
linking object properties on any graphics object.

Remarks The first axes provided to linkaxes determines the x-limits and y-limits
for all axes linked. This can cause plots to partly or entirely disappear if
their limits or scaling are very different. To override this behavior, after
calling linkaxes specify the limits of the axes that you wish to control
with the set command, as shown in Example 3, below.

Examples You can use interactive zooming or panning (selected from the figure
toolbar) to see the effect of axes linking. For example, pan in one
graph and notice how the x-axis also changes in the other. The axes

2-1993

linkaxes

will respond in the same way to zoom and pan directives typed in the
Command Window.

Example 1

This example creates two subplots and links the x-axis limits of the
two axes:

ax(1) = subplot(2,2,1);
plot(rand(1,10)*10,'Parent',ax(1));
ax(2) = subplot(2,2,2);
plot(rand(1,10)*100,'Parent',ax(2));
linkaxes(ax,'x');

Example 2

This example creates two figures and links the x-axis limits of the two
axes. The illustration shows the effect of manually panning the top
subplot:

load count.dat
figure; ax(1) = subplot(2,1,1);
h(1) = bar(ax(1),count(:,1),'g');
ax(2) = subplot(2,1,2);
h(2) = bar(ax(2),count(:,2),'b');
linkaxes(ax,'x');

Choose the Pan tool (Tools ⇒ Pan) and drag the top axes. Both axes
will pan in step in x, but only the top one pans in y.

2-1994

linkaxes

Example 3

Create two subplots containing data having different ranges. The first
axes handle passed to linkaxes determines the data range for all other
linked axes. In this example, calling set for the lower axes overrides
the x-limits established by the call to linkaxes:

a1 = subplot(2,1,1);

plot(randn(10,1)); % Plot 10 numbers on top

a2 = subplot(2,1,2);

plot(a2,randn(100,1)) % Plot 100 numbers below

linkaxes([a1 a2], 'x'); % Link the axes; subplot 2 now out of range

set(a2,'xlimmode','auto'); % Now both axes run from 1-100 in x

% You could also set(a2,'xlim',[1 100])

2-1995

linkaxes

See Also linkprop, zoom, pan

2-1996

linkprop

Purpose Keep same value for corresponding properties

Syntax hlink = linkprop(obj_handles,'PropertyName')
hlink = linkprop(obj_handles,{'PropertyName1','PropertyName2',...})

Description Use linkprop to maintain the same values for the corresponding
properties of different objects.

hlink = linkprop(obj_handles,'PropertyName') maintains the
same value for the property PropertyName on all objects whose handles
appear in obj_handles. linkprop returns the link object in hlink. See
“Link Object” on page 2-1997 for more information.

hlink =
linkprop(obj_handles,{'PropertyName1','PropertyName2',...})
maintains the same respective values for all properties passed as a cell
array on all objects whose handles appear in obj_handles.

Note that the linked properties of all linked objects are updated
immediately when linkprop is called. The first object in the list
(obj_handles) determines the property values for the rest of the objects.

Link
Object

The mechanism to link the properties of different graphics objects is
stored in the link object, which is returned by linkprop. Therefore,
the link object must exist within the context where you want property
linking to occur (such as in the base workspace if users are to interact
with the objects from the command line or figure tools).

The following list describes ways to maintain a reference to the link
object.

• Return the link object as an output argument from a function and
keep it in the base workspace while interacting with the linked
objects.

• Make the hlink variable global.

2-1997

linkprop

• Store the hlink variable in an object’s UserData property or in
application data. See the “Examples” on page 2-1998 section for an
example that uses application data.

Modifying
Link
Object

If you want to change either the graphics objects or the properties that
are linked, you need to use the link object methods designed for that
purpose. These methods are functions that operate only on link objects.
To use them, you must first create a link object using linkprop.

Method Purpose

addtarget Add specified graphics object to the link
object’s targets.

removetarget Remove specified graphics object from the link
object’s targets.

addprop Add specified property to the linked properties.

removeprop Remove specified property from the linked
properties.

Method Syntax
addtarget(hlink,obj_handles)
removetarget(hlink,obj_handles)
addprop(hlink,'PropertyName')
removeprop(hlink,'PropertyName')

Arguments

• hlink — Link object returned by linkprop

• obj_handles — One or more graphic object handles

• PropertyName — Name of a property common to all target objects

Examples This example creates four isosurface graphs of fluid flow data,
each displaying a different isovalue. The CameraPosition and
CameraUpVector properties of each subplot axes are linked so that the
user can rotate all subplots in unison.

2-1998

linkprop

After running the example, select Rotate 3D from the figure Tools
menu and observe how all subplots rotate together.

Note If you are using the MATLAB help browser, you can run this
example or open it in the MATLAB editor.

The property linking code is in step 3.

1 Define the data using the flow M-file and specify property values for
the isosurface (which is a patch object).

function linkprop_example
[x y z v] = flow;
isoval = [-3 -1 0 1];
props.FaceColor = [0 0 .5];
props.EdgeColor = 'none';
props.AmbientStrength = 1;
props.FaceLighting = 'gouraud';

2 Create four subplot axes and add an isosurface graph to each one.
Add a title and set viewing and lighting parameters using a local
function (set_view). (subplot, patch, isosurface, title, num2str)

for k = 1:4
h(k) = subplot(2,2,k);
patch(isosurface(x,y,z,v,isoval(k)),props)
title(h(k),['Isovalue = ',num2str(k)])
set_view(h(k))

end

3 Link the CameraPosition and CameraTarget properties of all subplot
axes. Since this example function will have completed execution
when the user is rotating the subplots, the link object is stored in
the first subplot axes application data. See setappdata for more
information on using application data.

2-1999

linkprop

hlink = linkprop(h,{'CameraPosition','CameraUpVector'});
key = 'graphics_linkprop';
% Store link object on first subplot axes
setappdata(h(1),key,hlink);

4 The following local function contains viewing and lighting commands
issued on each axes. It is called with the creation of each subplot
(view, axis, camlight).

function set_view(ax)
% Set the view and add lighting
view(ax,3); axis(ax,'tight','equal')
camlight left; camlight right
% Make axes invisible and title visible
axis(ax,'off')
set(get(ax,'title'),'Visible','on')

Linking an Additional Property

Suppose you want to add the axes PlotBoxAspectRatio to the linked
properties in the previous example. You can do this by modifying the
link object that is stored in the first subplot axes’ application data.

1 First click the first subplot axes to make it the current axes (since its
handle was saved only within the creating function). Then get the
link object’s handle from application data (getappdata).

hlink = getappdata(gca,'graphics_linkprop');

2 Use the addprop method to add a new property to the link object.

addprop(hlink,'PlotBoxAspectRatio')

Since hlink is a reference to the link object (i.e., not a copy), addprop
can change the object that is stored in application data.

See Also getappdata, linkaxes, setappdata

2-2000

linsolve

Purpose Solve linear system of equations

Syntax X = linsolve(A,B)
X = linsolve(A,B,opts)

Description X = linsolve(A,B) solves the linear system A*X = B using LU
factorization with partial pivoting when A is square and QR
factorization with column pivoting otherwise. The number of rows of
A must equal the number of rows of B. If A is m-by-n and B is m-by-k,
then X is n-by-k. linsolve returns a warning if A is square and ill
conditioned or if it is not square and rank deficient.

[X, R] = linsolve(A,B) suppresses these warnings and returns R,
which is the reciprocal of the condition number of A if A is square, or the
rank of A if A is not square.

X = linsolve(A,B,opts) solves the linear system A*X = B or A'*X
= B, using the solver that is most appropriate given the properties of
the matrix A, which you specify in opts. For example, if A is upper
triangular, you can set opts.UT = true to make linsolve use a solver
designed for upper triangular matrices. If A has the properties in opts,
linsolve is faster than mldivide, because linsolve does not perform
any tests to verify that A has the specified properties.

Notes If A does not have the properties that you specify in opts,
linsolve returns incorrect results and does not return an error
message. If you are not sure whether A has the specified properties,
use mldivide instead.
For small problems, there is no speed benefit in using linsolve on
triangular matrices as opposed to using the mldivide function.

The TRANSA field of the opts structure specifies the form of the linear
system you want to solve:

• If you set opts.TRANSA = false, linsolve(A,B,opts) solves A*X
= B.

2-2001

linsolve

• If you set opts.TRANSA = true, linsolve(A,B,opts) solves A'*X
= B.

The following table lists all the field of opts and their corresponding
matrix properties. The values of the fields of opts must be logical and
the default value for all fields is false.

Field Name Matrix Property

LT Lower triangular

UT Upper triangular

UHESS Upper Hessenberg

SYM Real symmetric or complex Hermitian

POSDEF Positive definite

RECT General rectangular

TRANSA Conjugate transpose — specifies whether the
function solves A*X = B or A'*X = B

The following table lists all combinations of field values in opts that are
valid for linsolve. A true/false entry indicates that linsolve accepts
either true or false.

LT UT UHESS SYM POSDEF RECT TRANSA

true false false false false true/false true/false

false true false false false true/false true/false

false false true false false false true/false

false false false true true/falsefalse true/false

false false false false false true/false true/false

Example The following code solves the system A'x = b for an upper triangular
matrix A using both mldivide and linsolve.

2-2002

linsolve

A = triu(rand(5,3)); x = [1 1 1 0 0]'; b = A'*x;
y1 = (A')\b
opts.UT = true; opts.TRANSA = true;
y2 = linsolve(A,b,opts)

y1 =

1.0000
1.0000
1.0000

0
0

y2 =

1.0000
1.0000
1.0000

0
0

Note If you are working with matrices having different properties, it
is useful to create an options structure for each type of matrix, such as
opts_sym. This way you do not need to change the fields whenever you
solve a system with a different type of matrix A.

See Also mldivide

2-2003

linspace

Purpose Generate linearly spaced vectors

Syntax y = linspace(a,b)
y = linspace(a,b,n)

Description The linspace function generates linearly spaced vectors. It is similar to
the colon operator ":", but gives direct control over the number of points.

y = linspace(a,b) generates a row vector y of 100 points linearly
spaced between and including a and b.

y = linspace(a,b,n) generates a row vector y of n points linearly
spaced between and including a and b.

See Also logspace

The colon operator :

2-2004

listdlg

Purpose Create and open list-selection dialog box

Syntax [Selection,ok] = listdlg('ListString',S)

Description [Selection,ok] = listdlg('ListString',S) creates a modal dialog
box that enables you to select one or more items from a list. Selection
is a vector of indices of the selected strings (in single selection mode,
its length is 1). Selection is [] when ok is 0. ok is 1 if you click the
OK button, or 0 if you click the Cancel button or close the dialog box.
Double-clicking on an item or pressing Return when multiple items are
selected has the same effect as clicking the OK button. The dialog box
has a Select all button (when in multiple selection mode) that enables
you to select all list items.

Inputs are in parameter/value pairs:

Parameter Description

'ListString' Cell array of strings that specify the list box
items.

'SelectionMode' String indicating whether one or many items
can be selected: 'single' or 'multiple' (the
default).

'ListSize' List box size in pixels, specified as a two-element
vector [width height]. Default is [160 300].

'InitialValue' Vector of indices of the list box items that are
initially selected. Default is 1, the first item.

'Name' String for the dialog box’s title. Default is ’’.

'PromptString' String matrix or cell array of strings that appears
as text above the list box. Default is {}.

'OKString' String for the OK button. Default is 'OK'.

'CancelString' String for the Cancel button. Default is ’Cancel’.

’uh' Uicontrol button height, in pixels. Default is 18.

2-2005

listdlg

Parameter Description

'fus' Frame/uicontrol spacing, in pixels. Default is 8.

'ffs' Frame/figure spacing, in pixels. Default is 8.

Note A modal dialog box prevents the user from interacting with other
windows before responding. For more information, see WindowStyle in
the MATLAB Figure Properties.

Example This example displays a dialog box that enables the user to select a
file from the current directory. The function returns a vector. Its first
element is the index to the selected file; its second element is 0 if no
selection is made, or 1 if a selection is made.

d = dir;
str = {d.name};
[s,v] = listdlg('PromptString','Select a file:',...

'SelectionMode','single',...
'ListString',str)

2-2006

listdlg

See Also dialog, errordlg, helpdlg, inputdlg, msgbox, questdlg, warndlg

dir, figure, uiwait, uiresume

“Predefined Dialog Boxes” on page 1-104 for related functions

2-2007

listfonts

Purpose List available system fonts

Syntax c = listfonts
c = listfonts(h)

Description c = listfonts returns sorted list of available system fonts.

c = listfonts(h) returns sorted list of available system fonts and
includes the FontName property of the object with handle h.

Examples Example 1

This example returns a list of available system fonts similar in format
to the one shown.

list = listfonts

list =
'Agency FB'
'Algerian'
'Arial'
...
'ZapfChancery'
'ZapfDingbats'
'ZWAdobeF'

Example 2

This example returns a list of available system fonts with the value of
theFontName property, for the object with handle h, sorted into the list.

h = uicontrol('Style','text','String','My Font','FontName','MyFont');
list = listfonts(h)

list =
'Agency FB'
'Algerian'
'Arial'
...

2-2008

listfonts

'MyFont'
...
'ZapfChancery'
'ZapfDingbats'
'ZWAdobeF'

See Also uisetfont

2-2009

load

Purpose Load workspace variables from disk

Syntax load
load filename
load filename X Y Z ...
load filename -regexp expr1 expr2 ...
load -ascii filename
load -mat filename
S = load('arg1', 'arg2', 'arg3', ...)

Description load loads all the variables from the MAT-file matlab.mat, if it exists,
or returns an error if the file doesn’t exist.

load filename loads all the variables from the file specified by
filename. filename is an unquoted string specifying a file name, and
can also include a file extension and a full or partial path name. If
filename has no extension, load looks for a file named filename.mat
and treats it as a binary MAT-file. If filename has an extension other
than .mat, load treats the file as ASCII data.

load filename X Y Z ... loads just the specified variables X, Y, Z,
etc. from the MAT-file. The wildcard '*' loads variables that match
a pattern (MAT-file only).

load filename -regexp expr1 expr2 ... loads those variables that
match any of the “Regular Expressions” given by expr1, expr1, etc.

load -ascii filename forces load to treat the file as an ASCII file,
regardless of file extension. If the file is not numeric text, load returns
an error. Use load -ascii only on files that have been created with
the save -ascii command.

load -mat filename forces load to treat the file as a MAT-file,
regardless of file extension. If the file is not a MAT-file, load returns
an error.

S = load('arg1', 'arg2', 'arg3', ...) calls load using MATLAB
function syntax, (as opposed to the MATLAB command syntax that
has been shown thus far). You can use function syntax with any form

2-2010

load

of the load command shown above, replacing arg1, arg2, etc. with the
arguments shown. For example,

S = load('myfile.mat', '-regexp', '^Mon', '^Tue')

To specify a command line option, such as -mat, with the functional
form, specify the option as a string argument, and include the hyphen.
For example,

load('myfile.dat', '-mat')

Function syntax enables you to assign values returned by load to an
output variable. You can also use function syntax when loading from a
file having a name that contains space characters, or a filename that is
stored in a variable.

If the file you are loading from is a MAT-file, then output S is a structure
containing fields that match the variables retrieved. If the file contains
ASCII data, then S is a double-precision array.

Remarks For information on any of the following topics related to saving to
MAT-files, see in the MATLAB Programming documentation:

• Previewing MAT-file contents

• Loading binary data

• Loading ASCII data

You can also use the Current Directory browser to view the contents of
a MAT-file without loading it — see “Viewing and Making Changes
to Directories”.

MATLAB saves numeric data in MAT-files in the native byte format.
The header of the MAT-file contains a 2-byte Endian Indicator that
MATLAB uses to determine the byte format when loading the MAT-file.
When MATLAB reads a MAT-file, it determines whether byte-swapping
needs to be performed by the state of this indicator.

2-2011

load

Examples Example 1 — Loading From a Binary MAT-file

To see what is in the MAT-file prior to loading it, use whos -file:

whos -file mydata.mat
Name Size Bytes Class

javArray 10x1 java.lang.Double[][]
spArray 5x5 84 double array (sparse)
strArray 2x5 678 cell array
x 3x2x2 96 double array
y 4x5 1230 cell array

Clear the workspace and load it from MAT-file mydata.mat:

clear
load mydata

whos
Name Size Bytes Class

javArray 10x1 java.lang.Double[][]
spArray 5x5 84 double array (sparse)
strArray 2x5 678 cell array
x 3x2x2 96 double array
y 4x5 1230 cell array

Example 2 — Loading a List of Variables

You can use a comma-separated list to pass the names of those variables
you want to load from a file. This example generates a comma-separated
list from a cell array

In this example, the file name is stored in a variable, saved_file. You
must call load using the function syntax of the command if you intend
to reference the file name through a variable:

saved_file = 'myfile.mat';
saved_file = 'ptarray.mat';
whos('-file', saved_file)

2-2012

load

Name Size Bytes Class

AName 1x24 48 char array
AVal 1x1 8 double array
BName 1x24 48 char array
BVal 1x1 8 double array
CVal 5x5 84 double array (sparse)
DArr 2x5 678 cell array

filevariables = {'AName', 'BVal', 'DArr'};
load(saved_file, filevariables{:});

The second part of this example generates a comma-separated list from
the name field of a structure array, and loads the first ten variables
from the specified file:

saved_file = 'myfile.mat';
vars = whos('-file', saved_file);
load(saved_file, vars(1:10).name);

Example 3 — Loading From an ASCII File

Create several 4-column matrices and save them to an ASCII file:

a = magic(4); b = ones(2, 4) * -5.7; c = [8 6 4 2];
save -ascii mydata.dat

Clear the workspace and load it from the file mydata.dat. If the
filename has an extension other than .mat, MATLAB assumes that
it is ASCII:

clear
load mydata.dat

MATLAB loads all data from the ASCII file, merges it into a single
matrix, and assigns the matrix to a variable named after the filename:

mydata

2-2013

load

mydata =
16.0000 2.0000 3.0000 13.0000
5.0000 11.0000 10.0000 8.0000
9.0000 7.0000 6.0000 12.0000
4.0000 14.0000 15.0000 1.0000

-5.7000 -5.7000 -5.7000 -5.7000
-5.7000 -5.7000 -5.7000 -5.7000
8.0000 6.0000 4.0000 2.0000

Example 4 — Using Regular Expressions

Using regular expressions, load from MAT-file mydata.mat those
variables with names that begin with Mon, Tue, or Wed:

load('mydata', '-regexp', '^Mon|^Tue|^Wed');

Here is another way of doing the same thing. In this case, there are
three separate expression arguments:

load('mydata', '-regexp', '^Mon', '^Tue', '^Wed');

See Also clear, fprintf, fscanf, partialpath, save, spconvert, who

2-2014

load (COM)

Purpose Initialize control object from file

Syntax h.load('filename')
load(h, 'filename')

Description h.load('filename') initializes the COM object associated with the
interface represented by the MATLAB COM object h from file specified
in the string filename. The file must have been created previously by
serializing an instance of the same control.

load(h, 'filename') is an alternate syntax for the same operation.

Note The COM load function is only supported for controls at this time.

Examples Create an mwsamp control and save its original state to the file mwsample:

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f);
h.save('mwsample')

Now, alter the figure by changing its label and the radius of the circle:

h.Label = 'Circle';
h.Radius = 50;
h.Redraw;

Using the load function, you can restore the control to its original state:

h.load('mwsample');
h.get
ans =

Label: 'Label'
Radius: 20

See Also save, actxcontrol, actxserver, release, delete

2-2015

load (serial)

Purpose Load serial port objects and variables into MATLAB workspace

Syntax load filename
load filename obj1 obj2...

Arguments filename The MAT-file name.

obj1 obj2... Serial port objects or arrays of serial port objects.

out A structure containing the specified serial port
objects.

Description load filename returns all variables from the MAT-file specified by
filename into the MATLAB workspace.

load filename obj1 obj2... returns the serial port objects specified
by obj1 obj2 ... from the MAT-file filename into the MATLAB
workspace.

out = load('filename','obj1','obj2',...) returns the specified
serial port objects from the MAT-file filename as a structure to out
instead of directly loading them into the workspace. The field names in
out match the names of the loaded serial port objects.

Remarks Values for read-only properties are restored to their default values upon
loading. For example, the Status property is restored to closed. To
determine if a property is read-only, examine its reference pages.

Example Suppose you create the serial port objects s1 and s2, configure a few
properties for s1, and connect both objects to their instruments:

s1 = serial('COM1');
s2 = serial('COM2');
set(s1,'Parity','mark','DataBits',7);
fopen(s1);
fopen(s2);

2-2016

load (serial)

Save s1 and s2 to the file MyObject.mat, and then load the objects
back into the workspace:

save MyObject s1 s2;
load MyObject s1;
load MyObject s2;

get(s1, {'Parity', 'DataBits'})
ans =

'mark' [7]
get(s2, {'Parity', 'DataBits'})
ans =

'none' [8]

See Also Functions

save

Properties

Status

2-2017

loadlibrary

Purpose Load external library into MATLAB

Syntax loadlibrary('shrlib', 'hfile')
loadlibrary('shrlib', @protofile)
loadlibrary('shrlib', ..., 'options')
loadlibrary shrlib hfile options

Description loadlibrary('shrlib', 'hfile') loads the functions defined in
header file hfile and found in shared library shrlib into MATLAB.

The hfile and shrlib file names are case sensitive. The name you use
in loadlibrary must use the same case as the file on your system.

On Windows systems, shrlib refers to the name of a dynamic link
library (.dll) file. On Linux systems, it refers to the name of a shared
object (.so) file. On Intel-based Macintosh, it refers to a dynamic
shared library (.dylib). See “File Extensions for Libraries” on page
2-2018 for more information.

loadlibrary('shrlib', @protofile) uses the prototype M-file
protofile in place of a header file in loading the library shrlib. The
string @protofile specifies a function handle to the prototype M-file.
(See the description of “Prototype M-Files” on page 2-2020 below).

Note The MATLAB Generic Shared Library interface does not support
library functions that have function pointer inputs.

File Extensions for Libraries

If you do not include a file extension with the shrlib argument,
loadlibrary attempts to find the library with either the appropriate
platform MEX-file extension or the appropriate platform library
extension (usually .dll, .so, or .dylib). See mex for a list of extensions.

If you do not include a file extension with the second argument, and
this argument is not a function handle, loadlibrary uses .h for the
extension.

2-2018

loadlibrary

loadlibrary('shrlib', ..., 'options') loads the library shrlib
with one or more of the following options.

Option Description

addheader
hfileN

Loads the functions defined in the additional
header file, hfileN. Note that each file specified by
addheader must be referenced by a corresponding
#include statement in the base header file.

Specify the string hfileN as a filename without
a file extension. MATLAB does not verify the
existence of the header files and ignores any that
are not needed.

You can specify as many additional header files as
you need using the syntax

loadlibrary shrlib hfile ...
addheader hfile1 ...
addheader hfile2 ... % and so on

alias name Associates the specified alias name with the
library. All subsequent calls to MATLAB
functions that reference this library must use this
alias until the library is unloaded.

includepath
path

Specifies an additional path in which to look for
included header files.

mfilename
mfile

Generates a prototype M-file mfile in the current
directory. You can use this file in place of a header
file when loading the library. (See the description
of “Prototype M-Files” on page 2-2020 below).

Only the alias option is available when loading using a prototype
M-file.

If you have more than one library file of the same name, load the first
using the library filename, and load the additional libraries using the
alias option.

2-2019

loadlibrary

loadlibrary shrlib hfile options is the command format for this
function.

Remarks How to Use the addheader Option

The addheader option enables you to add functions for MATLAB to
load from those listed in header files included in the base header file
(with a #include statement). For example, if your library header file
contains the statement:

#include header2.h

then to load the functions in header2.h, you need to use addheader in
the call to loadlibrary:

loadlibrary libname libname.h addheader header2.h

You can use the addheader option with a header file that lists function
prototypes for only the functions that are needed by your library, and
thereby avoid loading functions that you do not define in your library.
To do this, you might need to create a header file that contains a subset
of the functions listed in large header file.

addheader Syntax

When using addheader to specify which functions to load, ensure
that there are #include statements in the base header file for each
additional header file in the loadlibrary call. For example, to use the
following statement:

loadlibrary mylib mylib.h addheader header2.h

the file mylib.h must contain this statement:

#include header2.h

Prototype M-Files

When you use the mfilename option with loadlibrary, MATLAB
generates an M-file called a prototype file. This file can then be used on
subsequent calls to loadlibrary in place of a header file.

2-2020

loadlibrary

Like a header file, the prototype file supplies MATLAB with function
prototype information for the library. You can make changes to the
prototypes by editing this file and reloading the library.

Here are some reasons for using a prototype file, along with the changes
you would need to make to the file:

• You want to make temporary changes to signatures of the library
functions.

Edit the prototype file, changing the fcns.LHS or fcns.RHS field for
that function. This changes the types of arguments on the left hand
side or right hand side, respectively.

• You want to rename some of the library functions.

Edit the prototype file, defining the fcns.alias field for that
function.

• You expect to use only a small percentage of the functions in the
library you are loading.

Edit the prototype file, commenting out the unused functions. This
reduces the amount of memory required for the library.

• You need to specify a number of include files when loading a
particular library.

Specify the full list of include files (plus the mfilename option) in
the first call to loadlibrary. This puts all the information from
the include files into the prototype file. After that, specify just the
prototype file.

Examples Example 1

Use loadlibrary to load the MATLAB sample shared library,
shrlibsample:

addpath([matlabroot '\extern\examples\shrlib'])
loadlibrary shrlibsample shrlibsample.h

2-2021

loadlibrary

Example 2

Load sample library shrlibsample, giving it an alias name of lib.
Once you have set an alias, you need to use this name in all further
interactions with the library for this session:

addpath([matlabroot '\extern\examples\shrlib'])
loadlibrary shrlibsample shrlibsample.h alias lib

libfunctionsview lib

str = 'This was a Mixed Case string';
calllib('lib', 'stringToUpper', str)
ans =

THIS WAS A MIXED CASE STRING
unloadlibrary lib

Example 3

Load the library, specifying an additional path in which to search for
included header files:

addpath([matlabroot '\extern\examples\shrlib'])

loadlibrary('shrlibsample','shrlibsample.h','includepath', ...

fullfile(matlabroot , 'extern', 'include'));

Example 4

Load the libmx library and generate a prototype M-file containing the
prototypes defined in header file matrix.h:

hfile = [matlabroot '\extern\include\matrix.h'];
loadlibrary('libmx', hfile, 'mfilename', 'mxproto')

dir mxproto.m
mxproto.m

Edit the generated file mxproto.m and locate the function
'mxGetNumberOfDimensions'. Give it an alias of 'mxGetDims' by
adding this text to the line before fcnNum is incremented:

2-2022

loadlibrary

fcns.alias{fcnNum}='mxGetDims';

Here is the new function prototype. The change is shown in bold:

fcns.name{fcnNum}='mxGetNumberOfDimensions';
fcns.calltype{fcnNum}='cdecl';
fcns.LHS{fcnNum}='int32';
fcns.RHS{fcnNum}={'MATLAB array'};
fcns.alias{fcnNum}='mxGetDims'; % Alias defined
fcnNum=fcnNum+1; % Increment fcnNum

Unload the library and then reload it using the prototype M-file.

unloadlibrary libmx

loadlibrary('libmx', @mxproto)

Now call mxGetNumberOfDimensions using the alias function name:

y = rand(4, 7, 2);

calllib('libmx', 'mxGetDims', y)
ans =

3

unloadlibrary libmx

See Also libisloaded, unloadlibrary, libfunctions, libfunctionsview,
libpointer, libstruct, calllib

2-2023

loadobj

Purpose User-defined extension of load function for user objects

Syntax b = loadobj(a)

Description b = loadobj(a) extends the load function for user objects. When an
object is loaded from a MAT-file, the load function calls the loadobj
method for the object’s class if it is defined. The loadobj method must
have the calling syntax shown. The input argument a is the object as
loaded from the MAT-file or a structure created by load if the object
cannot be resolved, and the output argument b is the object that the
load function loads into the workspace.

The following steps describe how an object is loaded from a MAT-file
into the workspace:

1 The load function detects the object a in the MAT-file.

2 The load function looks in the current workspace for an object of the
same class as the object a. If there isn’t an object of the same class
in the workspace, load calls the default constructor, registering an
object of that class in the workspace. The default constructor is the
constructor function called with no input arguments.

3 The load function checks to see if the structure of the object a
matches the structure of the object registered in the workspace.
If the objects match, a is loaded. If the objects don’t match, load
converts a to a structure variable and issues a warning if no loadobj
method exists.

4 The load function calls the loadobj method for the object’s class if
it is defined. load passes the object a to the loadobj method as an
input argument. Note that the format of the object a is dependent
on the results of step 3 (object or structure). The output argument
of loadobj, b, is loaded into the workspace in place of the object
a and MATLAB issues no warning because the class’ loadobj
method is assumed to have converted the structure to a proper object
conforming to the current class definition.

2-2024

loadobj

See “The loadobj Method” for an example of a loadobj method.

Remarks loadobj can be overloaded only for user objects. load does not call
loadobj for built-in data types (such as double).

loadobj is invoked separately for each object in the MAT-file. The load
function recursively descends cell arrays and structures, applying the
loadobj method to each object encountered.

A child object inherits the loadobj method of its parent class. First
the child object’s loadobj method is called, then the parents loadobj
is called. Note that this behavior is different from that of the saveobj
method, which is not inherited from its parent.

See Also load, save, saveobj

2-2025

log

Purpose Natural logarithm

Syntax Y = log(X)

Description The log function operates element-wise on arrays. Its domain includes
complex and negative numbers, which may lead to unexpected results if
used unintentionally.

Y = log(X) returns the natural logarithm of the elements of X. For
complex or negative , where , the complex logarithm
is returned.

log(z) = log(abs(z)) + i*atan2(y,x)

Examples The statement abs(log(-1)) is a clever way to generate .

ans =

3.1416

See Also exp, log10, log2, logm, reallog

2-2026

log10

Purpose Common (base 10) logarithm

Syntax Y = log10(X)

Description The log10 function operates element-by-element on arrays. Its domain
includes complex numbers, which may lead to unexpected results if
used unintentionally.

Y = log10(X) returns the base 10 logarithm of the elements of X.

Examples log10(realmax) is 308.2547

and

log10(eps) is -15.6536

See Also exp, log, log2, logm

2-2027

log1p

Purpose Compute log(1+x) accurately for small values of x

Syntax y = log1p(x)

Description y = log1p(x) computes log(1+x), compensating for the roundoff in
1+x. log1p(x) is more accurate than log(1+x) for small values of x. For
small x, log1p(x) is approximately x, whereas log(1+x) can be zero.

See Also log, expm1

2-2028

log2

Purpose Base 2 logarithm and dissect floating-point numbers into exponent and
mantissa

Syntax Y = log2(X)
[F,E] = log2(X)

Description Y = log2(X) computes the base 2 logarithm of the elements of X.

[F,E] = log2(X) returns arrays F and E. Argument F is an array of
real values, usually in the range 0.5 <= abs(F) < 1. For real X, F
satisfies the equation: X = F.*2.^E. Argument E is an array of integers
that, for real X, satisfy the equation: X = F.*2.^E.

Remarks This function corresponds to the ANSI C function frexp() and the
IEEE floating-point standard function logb(). Any zeros in X produce F
= 0 and E = 0.

Examples For IEEE arithmetic, the statement [F,E] = log2(X) yields the values:

X F E

1 1/2 1

pi pi/4 2

-3 -3/4 2

eps 1/2 -51

realmax 1-eps/2 1024

realmin 1/2 -1021

See Also log, pow2

2-2029

logical

Purpose Convert numeric values to logical

Syntax K = logical(A)

Description K = logical(A) returns an array that can be used for logical indexing
or logical tests.

A(B), where B is a logical array that is the same size as A, returns the
values of A at the indices where the real part of B is nonzero.

A(B), where B is a logical array that is smaller than A, returns the
values of column vector A(:) at the indices where the real part of
column vector B(:) is nonzero.

Remarks Most arithmetic operations remove the logicalness from an array. For
example, adding zero to a logical array removes its logical characteristic.
A = +A is the easiest way to convert a logical array, A, to a numeric
double array.

Logical arrays are also created by the relational operators (==,<,>,~,
etc.) and functions like any, all, isnan, isinf, and isfinite.

Examples Given A = [1 2 3; 4 5 6; 7 8 9], the statement B =
logical(eye(3)) returns a logical array

B =
1 0 0
0 1 0
0 0 1

which can be used in logical indexing that returns A’s diagonal elements:

A(B)

ans =
1
5
9

2-2030

logical

However, attempting to index into A using the numeric array eye(3)
results in:

A(eye(3))

??? Subscript indices must either be real positive integers or

logicals.

See Also islogical, logical operators (elementwise and short-circuit),

2-2031

loglog

Purpose Log-log scale plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax loglog(Y)
loglog(X1,Y1,...)
loglog(X1,Y1,LineSpec,...)
loglog(...,'PropertyName',PropertyValue,...)
h = loglog(...)
hlines = loglog('v6',...)

Description loglog(Y) plots the columns of Y versus their index if Y contains
real numbers. If Y contains complex numbers, loglog(Y) and
loglog(real(Y),imag(Y)) are equivalent. loglog ignores the
imaginary component in all other uses of this function.

loglog(X1,Y1,...) plots all Xn versus Yn pairs. If only Xn or Yn is a
matrix, loglog plots the vector argument versus the rows or columns of
the matrix, depending on whether the vector’s row or column dimension
matches the matrix.

loglog(X1,Y1,LineSpec,...) plots all lines defined by the
Xn,Yn,LineSpec triples, where LineSpec determines line type, marker
symbol, and color of the plotted lines. You can mix Xn,Yn,LineSpec
triples with Xn,Yn pairs, for example,

loglog(X1,Y1,X2,Y2,LineSpec,X3,Y3)

2-2032

loglog

loglog(...,'PropertyName',PropertyValue,...) sets property
values for all lineseries graphics objects created by loglog. See the
line reference page for more information.

h = loglog(...) returns a column vector of handles to lineseries
graphics objects, one handle per line.

Backward-Compatible Version

hlines = loglog('v6',...) returns the handles to line objects
instead of lineseries objects.

Note The v6 option enables users of Version 7.x of MATLAB to create
FIG-files that previous versions can open. It is obsolete and will be
removed in a future version of MATLAB.

See Plot Objects and Backward Compatibility for more information.

Remarks If you do not specify a color when plotting more than one line, loglog
automatically cycles through the colors and line styles in the order
specified by the current axes.

If you attempt to add a loglog, semilogx, or semilogy plot to a linear
axis mode graph with hold on, the axis mode will remain as it is and
the new data will plot as linear.

Examples Create a simple loglog plot with square markers.

x = logspace(-1,2);
loglog(x,exp(x),'-s')
grid on

2-2033

loglog

See Also LineSpec, plot, semilogx, semilogy

“Basic Plots and Graphs” on page 1-86 for related functions

2-2034

logm

Purpose Matrix logarithm

Syntax L = logm(A)
[L, exitflag] = logm(A)

Description L = logm(A) is the principal matrix logarithm of A, the inverse of
expm(A). L is the unique logarithm for which every eigenvalue has
imaginary part lying strictly between -π and π. If A is singular or has
any eigenvalues on the negative real axis, the principal logarithm is
undefined. In this case, logm computes a non-principal logarithm and
returns a warning message.

[L, exitflag] = logm(A) returns a scalar exitflag that describes
the exit condition of logm:

• If exitflag = 0, the algorithm was successfully completed.

• If exitflag = 1, one or more Taylor series evaluations did not
converge. However, the computed value of L might still be accurate.

The input A can have class double or single.

Remarks If A is real symmetric or complex Hermitian, then so is logm(A).

Some matrices, like A = [0 1; 0 0], do not have any logarithms, real
or complex, so logm cannot be expected to produce one.

Limitations For most matrices:

logm(expm(A)) = A = expm(logm(A))

These identities may fail for some A. For example, if the computed
eigenvalues of A include an exact zero, then logm(A) generates infinity.
Or, if the elements of A are too large, expm(A) may overflow.

Examples Suppose A is the 3-by-3 matrix

1 1 0

2-2035

logm

0 0 2
0 0 -1

and Y = expm(A) is

Y =
2.7183 1.7183 1.0862

0 1.0000 1.2642
0 0 0.3679

Then A = logm(Y) produces the original matrix A.

Y =
1.0000 1.0000 0.0000

0 0 2.0000
0 0 -1.0000

But log(A) involves taking the logarithm of zero, and so produces

ans =
1.0000 0.5413 0.0826

-Inf 0 0.2345
-Inf -Inf -1.0000

Algorithm The algorithm logm uses is described in [1].

See Also expm, funm, sqrtm

References [1] Davies, P. I. and N. J. Higham, “A Schur-Parlett algorithm for
computing matrix functions,” SIAM J. Matrix Anal. Appl., Vol. 25,
Number 2, pp. 464-485, 2003.

[2] Cheng, S. H., N. J. Higham, C. S. Kenney, and A. J. Laub,
“Approximating the logarithm of a matrix to specified accuracy,” SIAM
J. Matrix Anal. Appl., Vol. 22, Number 4, pp. 1112-1125, 2001.

2-2036

logm

[3] Higham, N. J., “Evaluating Pade approximants of the matrix
logarithm,” SIAM J. Matrix Anal. Appl., Vol. 22, Number 4, pp.
1126-1135, 2001.

[4] Golub, G. H. and C. F. Van Loan, Matrix Computation, Johns
Hopkins University Press, 1983, p. 384.

[5] Moler, C. B. and C. F. Van Loan, “Nineteen Dubious Ways to Compute
the Exponential of a Matrix,” SIAM Review 20, 1978, pp. 801-836.

2-2037

logspace

Purpose Generate logarithmically spaced vectors

Syntax y = logspace(a,b)
y = logspace(a,b,n)
y = logspace(a,pi)

Description The logspace function generates logarithmically spaced vectors.
Especially useful for creating frequency vectors, it is a logarithmic
equivalent of linspace and the “:” or colon operator.

y = logspace(a,b) generates a row vector y of 50 logarithmically
spaced points between decades 10^a and 10^b.

y = logspace(a,b,n) generates n points between decades 10^a and
10^b.

y = logspace(a,pi) generates the points between 10^a and pi, which
is useful for digital signal processing where frequencies over this
interval go around the unit circle.

Remarks All the arguments to logspace must be scalars.

See Also linspace

The colon operator :

2-2038

lookfor

Purpose Search for keyword in all help entries

Syntax lookfor topic
lookfor topic -all

Description lookfor topic searches for the string topic in the first comment line
(the H1 line) of the help text in all M-files found on the MATLAB search
path. For all files in which a match occurs, lookfor displays the H1 line.

lookfor topic -all searches the entire first comment block of an
M-file looking for topic.

Examples For example

lookfor inverse

finds at least a dozen matches, including H1 lines containing "inverse
hyperbolic cosine," "two-dimensional inverse FFT," and "pseudoinverse."
Contrast this with

which inverse

or

what inverse

These functions run more quickly, but probably fail to find anything
because MATLAB does not have a function inverse.

In summary, what lists the functions in a given directory, which finds
the directory containing a given function or file, and lookfor finds all
functions in all directories that might have something to do with a
given keyword.

Even more extensive than the lookfor function is the find feature in
the Current Directory browser. It looks for all occurrences of a specified
word in all the M-files in the current directory. For instructions, see the
topic “Finding Files and Content Within Files” in the MATLAB Desktop
Tools and Development Environment documentation.

2-2039

lookfor

See Also dir, doc, filebrowser, findstr, help, helpdesk, helpwin, regexp,
what, which, who

2-2040

lower

Purpose Convert string to lowercase

Syntax t = lower('str')
B = lower(A)

Description t = lower('str') returns the string formed by converting any
uppercase characters in str to the corresponding lowercase characters
and leaving all other characters unchanged.

B = lower(A) when A is a cell array of strings, returns a cell array the
same size as A containing the result of applying lower to each string
within A.

Examples lower('MathWorks') is mathworks.

Remarks Character sets supported:

• PC: Windows Latin-1

• Other: ISO Latin-1 (ISO 8859-1)

See Also upper

2-2041

ls

Purpose Directory contents on UNIX system

Syntax ls

Description ls displays the results of the ls command on UNIX. On UNIX, ls
returns a character row vector of filenames separated by tab and
space characters. On Windows, ls returns an m-by-n character array
of filenames, where m is the number of filenames and n is the number
of characters in the longest filename found. Filenames shorter than n
characters are padded with space characters.

On UNIX, you can pass any flags to ls that your operating system
supports.

See Also dir

2-2042

lscov

Purpose Least-squares solution in presence of known covariance

Syntax x = lscov(A,b)
x = lscov(A,b,w)
x = lscov(A,b,V)
x = lscov(A,b,V,alg)
[x,stdx] = lscov(...)
[x,stdx,mse] = lscov(...)
[x,stdx,mse,S] = lscov(...)

Description x = lscov(A,b) returns the ordinary least squares solution to the
linear system of equations A*x = b, i.e., x is the n-by-1 vector that
minimizes the sum of squared errors (b - A*x)'*(b - A*x), where A
is m-by-n, and b is m-by-1. b can also be an m-by-k matrix, and lscov
returns one solution for each column of b. When rank(A) < n, lscov
sets the maximum possible number of elements of x to zero to obtain a
"basic solution".

x = lscov(A,b,w), where w is a vector length m of real positive
weights, returns the weighted least squares solution to the linear
system A*x = b, that is, x minimizes (b - A*x)'*diag(w)*(b - A*x).
w typically contains either counts or inverse variances.

x = lscov(A,b,V), where V is an m-by-m real symmetric positive
definite matrix, returns the generalized least squares solution to the
linear system A*x = b with covariance matrix proportional to V, that is,
x minimizes (b - A*x)'*inv(V)*(b - A*x).

More generally, V can be positive semidefinite, and lscov returns x that
minimizes e'*e, subject to A*x + T*e = b, where the minimization is
over x and e, and T*T' = V. When V is semidefinite, this problem has a
solution only if b is consistent with A and V (that is, b is in the column
space of [A T]), otherwise lscov returns an error.

By default, lscov computes the Cholesky decomposition of V and, in
effect, inverts that factor to transform the problem into ordinary least
squares. However, if lscov determines that V is semidefinite, it uses an
orthogonal decomposition algorithm that avoids inverting V.

2-2043

lscov

x = lscov(A,b,V,alg) specifies the algorithm used to compute x when
V is a matrix. alg can have the following values:

• 'chol' uses the Cholesky decomposition of V.

• 'orth' uses orthogonal decompositions, and is more appropriate
when V is ill-conditioned or singular, but is computationally more
expensive.

[x,stdx] = lscov(...) returns the estimated standard errors of
x. When A is rank deficient, stdx contains zeros in the elements
corresponding to the necessarily zero elements of x.

[x,stdx,mse] = lscov(...) returns the mean squared error.

[x,stdx,mse,S] = lscov(...) returns the estimated covariance
matrix of x. When A is rank deficient, S contains zeros in the rows and
columns corresponding to the necessarily zero elements of x. lscov
cannot return S if it is called with multiple right-hand sides, that is, if
size(B,2) > 1.

The standard formulas for these quantities, when A and V are full rank,
are

• x = inv(A'*inv(V)*A)*A'*inv(V)*B

• mse = B'*(inv(V) -
inv(V)*A*inv(A'*inv(V)*A)*A'*inv(V))*B./(m-n)

• S = inv(A'*inv(V)*A)*mse

• stdx = sqrt(diag(S))

However, lscov uses methods that are faster and more stable, and are
applicable to rank deficient cases.

lscov assumes that the covariance matrix of B is known only up to a
scale factor. mse is an estimate of that unknown scale factor, and lscov
scales the outputs S and stdx appropriately. However, if V is known to
be exactly the covariance matrix of B, then that scaling is unnecessary.

2-2044

lscov

To get the appropriate estimates in this case, you should rescale S and
stdx by 1/mse and sqrt(1/mse), respectively.

Algorithm The vector x minimizes the quantity (A*x-b)'*inv(V)*(A*x-b). The
classical linear algebra solution to this problem is

x = inv(A'*inv(V)*A)*A'*inv(V)*b

but the lscov function instead computes the QR decomposition of A
and then modifies Q by V.

Examples Example 1 — Computing Ordinary Least Squares

The MATLAB backslash operator (\) enables you to perform linear
regression by computing ordinary least-squares (OLS) estimates of the
regression coefficients. You can also use lscov to compute the same
OLS estimates. By using lscov, you can also compute estimates of the
standard errors for those coefficients, and an estimate of the standard
deviation of the regression error term:

x1 = [.2 .5 .6 .8 1.0 1.1]';
x2 = [.1 .3 .4 .9 1.1 1.4]';
X = [ones(size(x1)) x1 x2];
y = [.17 .26 .28 .23 .27 .34]';

a = X\y
a =

0.1203
0.3284

-0.1312

[b,se_b,mse] = lscov(X,y)
b =

0.1203
0.3284

-0.1312
se_b =

0.0643

2-2045

lscov

0.2267
0.1488

mse =
0.0015

Example 2 — Computing Weighted Least Squares

Use lscov to compute a weighted least-squares (WLS) fit by providing a
vector of relative observation weights. For example, you might want to
downweight the influence of an unreliable observation on the fit:

w = [1 1 1 1 1 .1]';

[bw,sew_b,msew] = lscov(X,y,w)
bw =

0.1046
0.4614

-0.2621
sew_b =

0.0309
0.1152
0.0814

msew =
3.4741e-004

Example 3 — Computing General Least Squares

Use lscov to compute a general least-squares (GLS) fit by providing
an observation covariance matrix. For example, your data may not
be independent:

V = .2*ones(length(x1)) + .8*diag(ones(size(x1)));

[bg,sew_b,mseg] = lscov(X,y,V)
bg =

0.1203
0.3284

-0.1312
sew_b =

2-2046

lscov

0.0672
0.2267
0.1488

mseg =
0.0019

Example 4 — Estimating the Coefficient Covariance Matrix

Compute an estimate of the coefficient covariance matrix for either
OLS, WLS, or GLS fits. The coefficient standard errors are equal to the
square roots of the values on the diagonal of this covariance matrix:

[b,se_b,mse,S] = lscov(X,y);

S
S =

0.0041 -0.0130 0.0075
-0.0130 0.0514 -0.0328
0.0075 -0.0328 0.0221

[se_b sqrt(diag(S))]
ans =

0.0643 0.0643
0.2267 0.2267
0.1488 0.1488

See Also lsqnonneg, qr

The arithmetic operator \

Reference [1] Strang, G., Introduction to Applied Mathematics,
Wellesley-Cambridge, 1986, p. 398.

2-2047

lsqnonneg

Purpose Solve nonnegative least-squares constraints problem

Syntax x = lsqnonneg(C,d)
x = lsqnonneg(C,d,x0)
x = lsqnonneg(C,d,x0,options)
[x,resnorm] = lsqnonneg(...)
[x,resnorm,residual] = lsqnonneg(...)
[x,resnorm,residual,exitflag] = lsqnonneg(...)
[x,resnorm,residual,exitflag,output] = lsqnonneg(...)
[x,resnorm,residual,exitflag,output,lambda] = lsqnonneg(...)

Description x = lsqnonneg(C,d) returns the vector x that minimizes norm(C*x-d)
subject to x >= 0. C and d must be real.

x = lsqnonneg(C,d,x0) uses x0 as the starting point if all x0 >= 0;
otherwise, the default is used. The default start point is the origin (the
default is used when x0==[] or when only two input arguments are
provided).

x = lsqnonneg(C,d,x0,options) minimizes with the optimization
parameters specified in the structure options. You can define these
parameters using the optimset function. lsqnonneg uses these
options structure fields:

Display Level of display. 'off' displays no output; 'final'
displays just the final output; 'notify' (default)
displays output only if the function does not converge.

TolX Termination tolerance on x.

OutputFcn User-defined function that is called at each iteration.
See “Output Function” in the Optimization Toolbox for
more information.

PlotFcns User-defined plot function that is called at each
iteration. See “Plot Functions” in the Optimization
Toolbox for more information.

2-2048

lsqnonneg

[x,resnorm] = lsqnonneg(...) returns the value of the squared
2-norm of the residual: norm(C*x-d)^2.

[x,resnorm,residual] = lsqnonneg(...) returns the residual,
d-C*x.

[x,resnorm,residual,exitflag] = lsqnonneg(...) returns a value
exitflag that describes the exit condition of lsqnonneg:

>0 Indicates that the function converged to a solution x.

0 Indicates that the iteration count was exceeded.
Increasing the tolerance (TolX parameter in options)
may lead to a solution.

[x,resnorm,residual,exitflag,output] = lsqnonneg(...) returns
a structure output that contains information about the operation:

output.algorithm The algorithm used

output.iterations The number of iterations taken

[x,resnorm,residual,exitflag,output,lambda] =
lsqnonneg(...) returns the dual vector (Lagrange multipliers) lambda,
where lambda(i)<=0 when x(i) is (approximately) 0, and lambda(i) is
(approximately) 0 when x(i)>0.

Examples Compare the unconstrained least squares solution to the lsqnonneg
solution for a 4-by-2 problem:

C = [
0.0372 0.2869
0.6861 0.7071
0.6233 0.6245
0.6344 0.6170];

d = [
0.8587
0.1781
0.0747

2-2049

lsqnonneg

0.8405];
[C\d lsqnonneg(C,d)] =

-2.5627 0
3.1108 0.6929

[norm(C*(C\d)-d) norm(C*lsqnonneg(C,d)-d)] =
0.6674 0.9118

The solution from lsqnonneg does not fit as well (has a larger residual),
as the least squares solution. However, the nonnegative least squares
solution has no negative components.

Algorithm lsqnonneg uses the algorithm described in [1]. The algorithm starts
with a set of possible basis vectors and computes the associated dual
vector lambda. It then selects the basis vector corresponding to the
maximum value in lambda in order to swap out of the basis in exchange
for another possible candidate. This continues until lambda <= 0.

See Also The arithmetic operator \, optimset

References [1] Lawson, C.L. and R.J. Hanson, Solving Least Squares Problems,
Prentice-Hall, 1974, Chapter 23, p. 161.

2-2050

lsqr

Purpose LSQR method

Syntax x = lsqr(A,b)
lsqr(A,b,tol)
lsqr(A,b,tol,maxit)
lsqr(A,b,tol,maxit,M)
lsqr(A,b,tol,maxit,M1,M2)
lsqr(A,b,tol,maxit,M1,M2,x0)
[x,flag] = lsqr(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres] = lsqr(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres,iter] = lsqr(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres,iter,resvec] = lsqr(A,b,tol,maxit,M1,M2,x0)
[x,flag,relres,iter,resvec,lsvec] = lsqr(A,b,tol,maxit,M1,M2,

x0)

Description x = lsqr(A,b) attempts to solve the system of linear equations A*x=b
for x if A is consistent, otherwise it attempts to solve the least squares
solution x that minimizes norm(b-A*x). The m-by-n coefficient matrix
A need not be square but it should be large and sparse. The column
vector b must have length m. A can be a function handle afun such that
afun(x,'notransp') returns A*x and afun(x,'transp') returns A'*x.
See “Function Handles” in the MATLAB Programming documentation
for more information.

“Parameterizing Functions Called by Function Functions”, in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the function afun, as well as the preconditioner
function mfun described below, if necessary.

If lsqr converges, a message to that effect is displayed. If lsqr fails
to converge after the maximum number of iterations or halts for any
reason, a warning message is printed displaying the relative residual
norm(b-A*x)/norm(b) and the iteration number at which the method
stopped or failed.

lsqr(A,b,tol) specifies the tolerance of the method. If tol is [], then
lsqr uses the default, 1e-6.

2-2051

lsqr

lsqr(A,b,tol,maxit) specifies the maximum number of iterations. If
maxit is [], then lsqr uses the default, min([m,n,20]).

lsqr(A,b,tol,maxit,M) and lsqr(A,b,tol,maxit,M1,M2) use
n-by-n preconditioner M or M = M1*M2 and effectively solve the system
A*inv(M)*y = b for y, where y = M*x. If M is [] then lsqr applies no
preconditioner. M can be a function mfun such that mfun(x,'notransp')
returns M\x and mfun(x,'transp') returns M'\x.

lsqr(A,b,tol,maxit,M1,M2,x0) specifies the n-by-1 initial guess. If
x0 is [], then lsqr uses the default, an all zero vector.

[x,flag] = lsqr(A,b,tol,maxit,M1,M2,x0) also returns a
convergence flag.

Flag Convergence

0 lsqr converged to the desired tolerance tol within maxit
iterations.

1 lsqr iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 lsqr stagnated. (Two consecutive iterates were the same.)

4 One of the scalar quantities calculated during lsqr became
too small or too large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if you specify the flag output.

[x,flag,relres] = lsqr(A,b,tol,maxit,M1,M2,x0) also returns
an estimate of the relative residual norm(b-A*x)/norm(b). If flag is
0, relres <= tol.

[x,flag,relres,iter] = lsqr(A,b,tol,maxit,M1,M2,x0) also
returns the iteration number at which x was computed, where 0 <=
iter <= maxit.

2-2052

lsqr

[x,flag,relres,iter,resvec] = lsqr(A,b,tol,maxit,M1,M2,x0)
also returns a vector of the residual norm estimates at each iteration,
including norm(b-A*x0).

[x,flag,relres,iter,resvec,lsvec] =
lsqr(A,b,tol,maxit,M1,M2,x0) also returns a vector of
estimates of the scaled normal equations residual at each iteration:
norm((A*inv(M))'*(B-A*X))/norm(A*inv(M),'fro'). Note that the
estimate of norm(A*inv(M),'fro') changes, and hopefully improves,
at each iteration.

Examples Example 1

n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);
tol = 1e-8;
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);

x = lsqr(A,b,tol,maxit,M1,M2);

displays the following message:

lsqr converged at iteration 11 to a solution with relative
residual 3.5e-009

Example 2

This example replaces the matrix A in Example 1 with a handle to a
matrix-vector product function afun. The example is contained in an
M-file run_lsqr that

• Calls lsqr with the function handle @afun as its first argument.

• Contains afun as a nested function, so that all variables in run_lsqr
are available to afun.

2-2053

lsqr

The following shows the code for run_lsqr:

function x1 = run_lsqr
n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);
tol = 1e-8;
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);
x1 = lsqr(@afun,b,tol,maxit,M1,M2);

function y = afun(x,transp_flag)
if strcmp(transp_flag,'transp') % y = A'*x

y = 4 * x;
y(1:n-1) = y(1:n-1) - 2 * x(2:n);
y(2:n) = y(2:n) - x(1:n-1);

elseif strcmp(transp_flag,'notransp') % y = A*x
y = 4 * x;
y(2:n) = y(2:n) - 2 * x(1:n-1);
y(1:n-1) = y(1:n-1) - x(2:n);

end
end

end

When you enter

x1=run_lsqr;

MATLAB displays the message

lsqr converged at iteration 11 to a solution with relative
residual 3.5e-009

See Also bicg, bicgstab, cgs, gmres, minres, norm, pcg, qmr, symmlq,
function_handle (@)

2-2054

lsqr

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

[2] Paige, C. C. and M. A. Saunders, "LSQR: An Algorithm for Sparse
Linear Equations And Sparse Least Squares," ACM Trans. Math. Soft.,
Vol.8, 1982, pp. 43-71.

2-2055

lt

Purpose Test for less than

Syntax A < B
lt(A, B)

Description A < B compares each element of array A with the corresponding element
of array B, and returns an array with elements set to logical 1 (true)
where A is less than B, or set to logical 0 (false) where A is greater
than or equal to B. Each input of the expression can be an array or a
scalar value.

If both A and B are scalar (i.e., 1-by-1 matrices), then MATLAB returns
a scalar value.

If both A and B are nonscalar arrays, then these arrays must have
the same dimensions, and MATLAB returns an array of the same
dimensions as A and B.

If one input is scalar and the other a nonscalar array, then the scalar
input is treated as if it were an array having the same dimensions as
the nonscalar input array. In other words, if input A is the number 100,
and B is a 3-by-5 matrix, then A is treated as if it were a 3-by-5 matrix
of elements, each set to 100. MATLAB returns an array of the same
dimensions as the nonscalar input array.

lt(A, B) is called for the syntax A < B when either A or B is an object.

Examples Create two 6-by-6 matrices, A and B, and locate those elements of A that
are less than the corresponding elements of B:

A = magic(6);
B = repmat(3*magic(3), 2, 2);

A < B
ans =

0 1 1 0 0 0
1 0 1 0 0 0
0 1 1 0 0 0
1 0 0 1 0 1

2-2056

lt

0 1 0 0 1 1
1 0 0 0 1 0

See Also gt, le, ge, ne, eq, “Relational Operators” in the MATLAB Programming
documentation

2-2057

lu

Purpose LU matrix factorization

Syntax Y = lu(A)
[L,U] = lu(A)
[L,U,P] = lu(A)
[L,U,P,Q] = lu(A)
[L,U,P,Q,R] = lu(A)
[...] = lu(A,'vector')
[...] = lu(A,thresh)
[...] = lu(A,thresh,'vector')

Description The lu function expresses a matrix A as the product of two essentially
triangular matrices, one of them a permutation of a lower triangular
matrix and the other an upper triangular matrix. The factorization
is often called the LU, or sometimes the LR, factorization. A can be
rectangular. For a full matrix A, lu uses the Linear Algebra Package
(LAPACK) routines described in “Algorithm” on page 2-2064.

Y = lu(A) returns matrix Y that, for sparse A, contains the strictly
lower triangular L, i.e., without its unit diagonal, and the upper
triangular U as submatrices. That is, if [L,U,P] = lu(A), then Y =
U+L-eye(size(A)). For nonsparse A, Y is the output from the LAPACK
dgetrf or zgetrf routine. The permutation matrix P is not returned.

[L,U] = lu(A) returns an upper triangular matrix in U and a permuted
lower triangular matrix in L such that A = L*U. Return value L is a
product of lower triangular and permutation matrices.

[L,U,P] = lu(A) returns an upper triangular matrix in U, a lower
triangular matrix L with a unit diagonal, and a permutation matrix P,
such that L*U = P*A. The statement lu(A,'matrix') returns identical
output values.

[L,U,P,Q] = lu(A) for sparse nonempty A, returns a unit lower
triangular matrix L, an upper triangular matrix U, a row permutation
matrix P, and a column reordering matrix Q, so that P*A*Q = L*U. This
syntax uses UMFPACK and is significantly more time and memory
efficient than the other syntaxes, even when used with colamd. If A

2-2058

lu

is empty or not sparse, lu displays an error message. The statement
lu(A,'matrix') returns identical output values.

[L,U,P,Q,R] = lu(A) returns unit lower triangular matrix L, upper
triangular matrix U, permutation matrices P and Q, and a diagonal
scaling matrix R so that P*(R\A)*Q = L*U for sparse non-empty A. This
uses UMFPACK as well. Typically, but not always, the row-scaling leads
to a sparser and more stable factorization. Note that this factorization
is the same as that used by sparse mldivide when UMFPACK is used.
The statement lu(A,'matrix') returns identical output values.

[...] = lu(A,'vector') returns the permutation information in two
row vectors p and q. You can specify from 1 to 5 outputs. Output p is
defined as A(p,:)=L*U, output q is defined as A(p,q)=L*U, and output R
is defined as R(:,p)\A(:,q)=L*U.

[...] = lu(A,thresh) controls pivoting in UMFPACK. This
syntax applies to sparse matrices only. The thresh input is a one-
or two-element vector of type single or double that defaults to [0.1,
0.001]. If A is a square matrix with a mostly symmetric structure
and mostly nonzero diagonal, UMFPACK uses a symmetric pivoting
strategy. For this strategy, the diagonal where

A(i,j) >= thresh(2) * max(abs(A(j:m,j)))

is selected. If the diagonal entry fails this test, a pivot entry below the
diagonal is selected, using thresh(1). In this case, L has entries with
absolute value 1/min(thresh) or less.

If A is not as described above, UMFPACK uses an asymmetric strategy.
In this case, the sparsest row i where

A(i,j) >= thresh(1) * max(abs(A(j:m,j)))

is selected. A value of 1.0 results in conventional partial pivoting.
Entries in L have an absolute value of 1/thresh(1) or less. The second
element of the thresh input vector is not used when UMFPACK uses
an asymmetric strategy.

2-2059

lu

Smaller values of thresh(1) and thresh(2) tend to lead to sparser
LU factors, but the solution can become inaccurate. Larger values
can lead to a more accurate solution (but not always), and usually
an increase in the total work and memory usage. The statement
lu(A,thresh,'matrix') returns identical output values.

[...] = lu(A,thresh,'vector') controls the pivoting strategy and
also returns the permutation information in row vectors, as described
above. The thresh input must precede 'vector' in the input argument
list.

Note In rare instances, incorrect factorization results in P*A*Q ≠ L*U.
Increase thresh, to a maximum of 1.0 (regular partial pivoting), and
try again.

Remarks Most of the algorithms for computing LU factorization are variants of
Gaussian elimination. The factorization is a key step in obtaining the
inverse with inv and the determinant with det. It is also the basis for
the linear equation solution or matrix division obtained with \ and /.

Arguments A Rectangular matrix to be factored.

thresh Pivot threshold for sparse matrices. Valid values are in
the interval [0,1]. If you specify the fourth output Q, the
default is 0.1. Otherwise, the default is 1.0.

L Factor of A. Depending on the form of the function, L is
either a unit lower triangular matrix, or else the product
of a unit lower triangular matrix with P'.

U Upper triangular matrix that is a factor of A.

P Row permutation matrix satisfying the equation L*U =
P*A, or L*U = P*A*Q. Used for numerical stability.

2-2060

lu

Q Column permutation matrix satisfying the equation
P*A*Q = L*U. Used to reduce fill-in in the sparse case.

R Row-scaling matrix

Examples Example 1

Start with

A = [1 2 3
4 5 6
7 8 0];

To see the LU factorization, call lu with two output arguments.

[L1,U] = lu(A)

L1 =
0.1429 1.0000 0
0.5714 0.5000 1.0000
1.0000 0 0

U =
7.0000 8.0000 0

0 0.8571 3.0000
0 0 4.5000

Notice that L1 is a permutation of a lower triangular matrix: if you
switch rows 2 and 3, and then switch rows 1 and 2, the resulting matrix
is lower triangular and has 1s on the diagonal. Notice also that U is
upper triangular. To check that the factorization does its job, compute
the product

L1*U

which returns the original A. The inverse of the example matrix, X =
inv(A), is actually computed from the inverses of the triangular factors

2-2061

lu

X = inv(U)*inv(L1)

Using three arguments on the left side to get the permutation matrix
as well,

[L2,U,P] = lu(A)

returns a truly lower triangular L2, the same value of U, and the
permutation matrix P.

L2 =

1.0000 0 0
0.1429 1.0000 0
0.5714 0.5000 1.0000

U =
7.0000 8.0000 0

0 0.8571 3.0000
0 0 4.5000

P =
0 0 1
1 0 0
0 1 0

Note that L2 = P*L1.

P*L1

ans =

1.0000 0 0
0.1429 1.0000 0
0.5714 0.5000 1.0000

To verify that L2*U is a permuted version of A, compute L2*U and
subtract it from P*A:

2-2062

lu

P*A - L2*U

ans =
0 0 0
0 0 0
0 0 0

In this case, inv(U)*inv(L) results in the permutation of inv(A) given
by inv(P)*inv(A).

The determinant of the example matrix is

d = det(A)

d = 27

It is computed from the determinants of the triangular factors

d = det(L)*det(U)

The solution to is obtained with matrix division

x = A\b

The solution is actually computed by solving two triangular systems

y = L\b
x = U\y

Example 2

The 1-norm of their difference is within roundoff error, indicating that
L*U = P*B*Q.

Generate a 60-by-60 sparse adjacency matrix of the connectivity graph
of the Buckminster-Fuller geodesic dome.

B = bucky;

Use the sparse matrix syntax with four outputs to get the row and
column permutation matrices.

2-2063

lu

[L,U,P,Q] = lu(B);

Apply the permutation matrices to B, and subtract the product of the
lower and upper triangular matrices.

Z = P*B*Q - L*U;
norm(Z,1)

ans =
7.9936e-015

Example 3

This example illustrates the benefits of using the 'vector' option. Note
how much memory is saved by using the lu(F,'vector') syntax.

rand('state',0);
F = rand(1000,1000);
g = sum(F,2);
[L,U,P] = lu(F);
[L,U,p] = lu(F,'vector');
whos P p

Name Size Bytes Class Attributes
P 1000x1000 8000000 double
p 1x1000 8000 double

The following two statements are equivalent. The first typically
requires less time:

x = U\(L\(g(p,:)));
y = U\(L\(P*g));

Algorithm For full matrices X, lu uses the LAPACK routines listed in the following
table.

2-2064

lu

Real Complex

X double DGETRF ZGETRF

X single SGETRF CGETRF

For sparse X, with four outputs, lu uses UMFPACK routines. With
three or fewer outputs, lu uses its own sparse matrix routines.

See Also cond, det, inv, luinc, qr, rref

The arithmetic operators \ and /

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, SIAM, Philadelphia, 1999.

[2] Davis, T. A., UMFPACK Version 4.6 User Guide
(http://www.cise.ufl.edu/research/sparse/umfpack),
Dept. of Computer and Information Science and Engineering, Univ.
of Florida, Gainesville, FL, 2002.

2-2065

http://www.netlib.org/lapack/lug/lapack_lug.html
http://www.cise.ufl.edu/research/sparse/umfpack

luinc

Purpose Sparse incomplete LU factorization

Syntax luinc(A,'0')
luinc(A,droptol)
luinc(A,options)
[L,U] = luinc(A,0)
[L,U] = luinc(A,options)
[L,U,P] = luinc(...)

Description luinc produces a unit lower triangular matrix, an upper triangular
matrix, and a permutation matrix.

luinc(A,'0') computes the incomplete LU factorization of level 0 of a
square sparse matrix. The triangular factors have the same sparsity
pattern as the permutation of the original sparse matrix A, and
their product agrees with the permuted A over its sparsity pattern.
luinc(A,'0') returns the strict lower triangular part of the factor and
the upper triangular factor embedded within the same matrix. The
permutation information is lost, but nnz(luinc(A,'0')) = nnz(A),
with the possible exception of some zeros due to cancellation.

luinc(A,droptol) computes the incomplete LU factorization of any
sparse matrix using the drop tolerance specified by the non-negative
scalar droptol. The result is an approximation of the complete LU
factors returned by lu(A). For increasingly smaller values of the drop
tolerance, this approximation improves until the drop tolerance is 0, at
which time the complete LU factorization is produced, as in lu(A).

As each column j of the triangular incomplete factors is being computed,
the entries smaller in magnitude than the local drop tolerance (the
product of the drop tolerance and the norm of the corresponding column
of A)

droptol*norm(A(:,j))

are dropped from the appropriate factor.

The only exceptions to this dropping rule are the diagonal entries of the
upper triangular factor, which are preserved to avoid a singular factor.

2-2066

luinc

luinc(A,options) computes the factorization with up to four options.
These options are specified by fields of the input structure options.
The fields must be named exactly as shown in the table below. You can
include any number of these fields in the structure and define them in
any order. Any additional fields are ignored.

Field
Name Description

droptol Drop tolerance of the incomplete factorization.

milu If milu is 1, luinc produces the modified incomplete LU
factorization that subtracts the dropped elements in any
column from the diagonal element of the upper triangular
factor. The default value is 0.

udiag If udiag is 1, any zeros on the diagonal of the upper
triangular factor are replaced by the local drop tolerance.
The default is 0.

thresh Pivot threshold between 0 (forces diagonal pivoting)
and 1, the default, which always chooses the maximum
magnitude entry in the column to be the pivot. thresh is
described in greater detail in the lu reference page.

luinc(A,options) is the same as luinc(A,droptol) if options has
droptol as its only field.

[L,U] = luinc(A,0) returns the product of permutation matrices and
a unit lower triangular matrix in L and an upper triangular matrix in U.
The exact sparsity patterns of L, U, and A are not comparable but the
number of nonzeros is maintained with the possible exception of some
zeros in L and U due to cancellation:

nnz(L)+nnz(U) = nnz(A)+n, where A is n-by-n.

The product L*U agrees with A over its sparsity pattern.
(L*U).*spones(A)-A has entries of the order of eps.

2-2067

luinc

[L,U] = luinc(A,options) returns a permutation of a unit lower
triangular matrix in L and an upper triangular matrix in U. The product
L*U is an approximation to A. luinc(A,options) returns the strict
lower triangular part of the factor and the upper triangular factor
embedded within the same matrix. The permutation information is lost.

[L,U,P] = luinc(...) returns a unit lower triangular matrix in L, an
upper triangular matrix in U, and a permutation matrix in P.

[L,U,P] = luinc(A,'0') returns a unit lower triangular matrix in L,
an upper triangular matrix in U and a permutation matrix in P. L has
the same sparsity pattern as the lower triangle of permuted A

spones(L) = spones(tril(P*A))

with the possible exceptions of 1s on the diagonal of L where P*A may be
zero, and zeros in L due to cancellation where P*A may be nonzero. U
has the same sparsity pattern as the upper triangle of P*A

spones(U) = spones(triu(P*A))

with the possible exceptions of zeros in U due to cancellation where
P*A may be nonzero. The product L*U agrees within rounding
error with the permuted matrix P*A over its sparsity pattern.
(L*U).*spones(P*A)-P*A has entries of the order of eps.

[L,U,P] = luinc(A,options) returns a unit lower triangular matrix
in L, an upper triangular matrix in U, and a permutation matrix in P.
The nonzero entries of U satisfy

abs(U(i,j)) >= droptol*norm((A:,j)),

with the possible exception of the diagonal entries, which were retained
despite not satisfying the criterion. The entries of L were tested against
the local drop tolerance before being scaled by the pivot, so for nonzeros
in L

abs(L(i,j)) >= droptol*norm(A(:,j))/U(j,j).

The product L*U is an approximation to the permuted P*A.

2-2068

luinc

Remarks These incomplete factorizations may be useful as preconditioners for
solving large sparse systems of linear equations. The lower triangular
factors all have 1s along the main diagonal but a single 0 on the diagonal
of the upper triangular factor makes it singular. The incomplete
factorization with a drop tolerance prints a warning message if the
upper triangular factor has zeros on the diagonal. Similarly, using the
udiag option to replace a zero diagonal only gets rid of the symptoms
of the problem but does not solve it. The preconditioner may not be
singular, but it probably is not useful and a warning message is printed.

Limitations luinc(X,'0') works on square matrices only.

Examples Start with a sparse matrix and compute its LU factorization.

load west0479;
S = west0479;
[L,U] = lu(S);

Compute the incomplete LU factorization of level 0.

[L,U,P] = luinc(S,'0');
D = (L*U).*spones(P*S)-P*S;

spones(U) and spones(triu(P*S)) are identical.

2-2069

luinc

spones(L) and spones(tril(P*S)) disagree at 73 places on the
diagonal, where L is 1 and P*S is 0, and also at position (206,113),
where L is 0 due to cancellation, and P*S is -1. D has entries of the
order of eps.

[IL0,IU0,IP0] = luinc(S,0);
[IL1,IU1,IP1] = luinc(S,1e-10);

.

.

.

A drop tolerance of 0 produces the complete LU factorization. Increasing
the drop tolerance increases the sparsity of the factors (decreases the
number of nonzeros) but also increases the error in the factors, as seen
in the plot of drop tolerance versus norm(L*U-P*S,1)/norm(S,1) in the
second figure below.

2-2070

luinc

2-2071

luinc

Algorithm luinc(A,'0') is based on the “KJI” variant of the LU factorization
with partial pivoting. Updates are made only to positions which are
nonzero in A.

luinc(A,droptol) and luinc(A,options) are based on the
column-oriented lu for sparse matrices.

See Also bicg, cholinc,ilu, lu

References [1] Saad, Yousef, Iterative Methods for Sparse Linear Systems, PWS
Publishing Company, 1996, Chapter 10 - Preconditioning Techniques.

2-2072

magic

Purpose Magic square

Syntax M = magic(n)

Description M = magic(n) returns an n-by-n matrix constructed from the integers 1
through n^2 with equal row and column sums. The order n must be a
scalar greater than or equal to 3.

Remarks A magic square, scaled by its magic sum, is doubly stochastic.

Examples The magic square of order 3 is

M = magic(3)

M =

8 1 6
3 5 7
4 9 2

This is called a magic square because the sum of the elements in each
column is the same.

sum(M) =

15 15 15

And the sum of the elements in each row, obtained by transposing
twice, is the same.

sum(M')' =

15
15
15

This is also a special magic square because the diagonal elements have
the same sum.

2-2073

magic

sum(diag(M)) =

15

The value of the characteristic sum for a magic square of order n is

sum(1:n^2)/n

which, when n = 3, is 15.

Algorithm There are three different algorithms:

• n odd

• n even but not divisible by four

• n divisible by four

To make this apparent, type

for n = 3:20
A = magic(n);
r(n) = rank(A);

end

For n odd, the rank of the magic square is n. For n divisible by 4, the
rank is 3. For n even but not divisible by 4, the rank is n/2 + 2.

[(3:20)',r(3:20)']
ans =

3 3
4 3
5 5
6 5
7 7
8 3
9 9

10 7
11 11

2-2074

magic

12 3
13 13
14 9
15 15
16 3
17 17
18 11
19 19
20 3

Plotting A for n = 18, 19, 20 shows the characteristic plot for each
category.

Limitations If you supply n less than 3, magic returns either a nonmagic square, or
else the degenerate magic squares 1 and [].

See Also ones, rand

2-2075

makehgtform

Purpose Create 4-by-4 transform matrix

Syntax M = makehgtform
M = makehgtform('translate',[tx ty tz])
M = makehgtform('scale',s)
M = makehgtform('scale',[sx,sy,sz])
M = makehgtform('xrotate',t)
M = makehgtform('yrotate',t)
M = makehgtform('zrotate',t)
M = makehgtform('axisrotate',[ax,ay,az],t)

Description Use makehgtform to create transform matrices for translation, scaling,
and rotation of graphics objects. Apply the transform to graphics
objects by assigning the transform to the Matrix property of a parent
hgtransform object. See Examples for more information.

M = makehgtform returns an identity transform.

M = makehgtform('translate',[tx ty tz]) or M =
makehgtform(’translate’,tx,ty,tz) returns a transform that translates
along the x-axis by tx, along the y-axis by ty, and along the z-axis by tz.

M = makehgtform('scale',s) returns a transform that scales
uniformly along the x-, y-, and z-axes.

M = makehgtform('scale',[sx,sy,sz]) returns a transform that
scales along the x-axis by sx, along the y-axis by sy, and along the
z-axis by sz.

M = makehgtform('xrotate',t) returns a transform that rotates
around the x-axis by t radians.

M = makehgtform('yrotate',t) returns a transform that rotates
around the y-axis by t radians.

M = makehgtform('zrotate',t) returns a transform that rotates
around the z-axis by t radians.

M = makehgtform('axisrotate',[ax,ay,az],t) Rotate around axis
[ax ay az] by t radians.

2-2076

makehgtform

Note that you can specify multiple operations in one call to makehgtform
and MATLAB returns a transform matrix that is the result of
concatenating all specified operations. For example,

m = makehgtform('xrotate',pi/2,'yrotate',pi/2);

is the same as

m = makehgtform('xrotate',pi/2)*makehgtform('yrotate',pi/2);

See Also hgtransform

2-2077

mat2cell

Purpose Divide matrix into cell array of matrices

Syntax c = mat2cell(x, m, n)
c = mat2cell(x, d1, d2, ..., dn)
c = mat2cell(x, r)

Description c = mat2cell(x, m, n) divides the two-dimensional matrix x into
adjacent submatrices, each contained in a cell of the returned cell array
c. Vectors m and n specify the number of rows and columns, respectively,
to be assigned to the submatrices in c.

The example shown below divides a 60-by-50 matrix into six smaller
matrices. MATLAB returns the new matrices in a 3-by-2 cell array:

mat2cell(x, [10 20 30], [25 25])

The sum of the element values in m must equal the total number of rows
in x. And the sum of the element values in n must equal the number
of columns in x.

The elements of m and n determine the size of each cell in c by satisfying
the following formula for i = 1:length(m) and j = 1:length(n):

size(c{i,j}) == [m(i) n(j)]

2-2078

mat2cell

c = mat2cell(x, d1, d2, ..., dn) divides the multidimensional
array x and returns a multidimensional cell array of adjacent
submatrices of x. Each of the vector arguments d1 through dn should
sum to the respective dimension sizes of x such that, for p = 1:n,

size(x,p) == sum(dp)

The elements of d1 through dn determine the size of each cell in c by
satisfying the following formula for ip = 1:length(dp):

size(c{i1,i2,...,in}) == [d1(i1) d2(i2) ... dn(in)]

If x is an empty array, mat2cell returns an empty cell array. This
requires that all dn inputs that correspond to the zero dimensions of x
be equal to [].

For example,

a = rand(3,0,4);
c = mat2cell(a, [1 2], [], [2 1 1]);

c = mat2cell(x, r) divides an array x by returning a single-column
cell array containing full rows of x. The sum of the element values in
vector r must equal the number of rows of x.

The elements of r determine the size of each cell in c, subject to the
following formula for i = 1:length(r):

size(c{i},1) == r(i)

Remarks mat2cell supports all array types.

Examples Divide matrix X into 2-by-3 and 2-by-2 matrices contained in a cell array:

X = [1 2 3 4 5; 6 7 8 9 10; 11 12 13 14 15; 16 17 18 19 20]
X =

1 2 3 4 5
6 7 8 9 10

11 12 13 14 15

2-2079

mat2cell

16 17 18 19 20

C = mat2cell(X, [2 2], [3 2])
C =

[2x3 double] [2x2 double]
[2x3 double] [2x2 double]

C{1,1} C{1,2}
ans = ans =

1 2 3 4 5
6 7 8 9 10

C{2,1} C{2,2}
ans = ans =

11 12 13 14 15
16 17 18 19 20

See Also cell2mat, num2cell

2-2080

mat2str

Purpose Convert matrix to string

Syntax str = mat2str(A)
str = mat2str(A,n)
str = mat2str(A, 'class')
str = mat2str(A, n, 'class')

Description str = mat2str(A) converts matrix A into a string. This string is
suitable for input to the eval function such that eval(str) produces
the original matrix to within 15 digits of precision.

str = mat2str(A,n) converts matrix A using n digits of precision.

str = mat2str(A, 'class') creates a string with the name of the
class of A included. This option ensures that the result of evaluating str
will also contain the class information.

str = mat2str(A, n, 'class') uses n digits of precision and includes
the class information.

Limitations The mat2str function is intended to operate on scalar, vector,
or rectangular array inputs only. An error will result if A is a
multidimensional array.

Examples Example 1

Consider the matrix

x = [3.85 2.91; 7.74 8.99]
x =

3.8500 2.9100
7.7400 8.9900

The statement

A = mat2str(x)

produces

A =

2-2081

mat2str

[3.85 2.91;7.74 8.99]

where A is a string of 21 characters, including the square brackets,
spaces, and a semicolon.

eval(mat2str(x)) reproduces x.

Example 2

Create a 1-by-6 matrix of signed 16-bit integers, and then use mat2str
to convert the matrix to a 1-by-33 character array, A. Note that output
string A includes the class name, int16:

x1 = int16([-300 407 213 418 32 -125]);

A = mat2str(x1, 'class')
A =

int16([-300 407 213 418 32 -125])

class(A)
ans =

char

Evaluating the string A gives you an output x2 that is the same as the
original int16 matrix:

x2 = eval(A);

if isnumeric(x2) && isa(x2, 'int16') && all(x2 == x1)
disp 'Conversion back to int16 worked'

end

Conversion back to int16 worked

See Also num2str, int2str, str2num, sprintf, fprintf

2-2082

material

Purpose Control reflectance properties of surfaces and patches

Syntax material shiny
material dull
material metal
material([ka kd ks])
material([ka kd ks n])
material([ka kd ks n sc])
material default

Description material sets the lighting characteristics of surface and patch objects.

material shiny sets the reflectance properties so that the object has a
high specular reflectance relative to the diffuse and ambient light, and
the color of the specular light depends only on the color of the light
source.

material dull sets the reflectance properties so that the object
reflects more diffuse light and has no specular highlights, but the color
of the reflected light depends only on the light source.

material metal sets the reflectance properties so that the object has a
very high specular reflectance, very low ambient and diffuse reflectance,
and the color of the reflected light depends on both the color of the light
source and the color of the object.

material([ka kd ks]) sets the ambient/diffuse/specular strength of
the objects.

material([ka kd ks n]) sets the ambient/diffuse/specular strength
and specular exponent of the objects.

material([ka kd ks n sc]) sets the ambient/diffuse/specular
strength, specular exponent, and specular color reflectance of the
objects.

material default sets the ambient/diffuse/specular strength, specular
exponent, and specular color reflectance of the objects to their defaults.

2-2083

material

Remarks The material command sets the AmbientStrength,
DiffuseStrength, SpecularStrength, SpecularExponent,
and SpecularColorReflectance properties of all surface and patch
objects in the axes. There must be visible light objects in the axes for
lighting to be enabled. Look at the materal.m M-file to see the actual
values set (enter the command type material).

See Also light, lighting, patch, surface

Lighting as a Visualization Tool for more information on lighting

“Lighting” on page 1-101 for related functions

2-2084

matlabcolon (matlab:)

Purpose Run specified function via hyperlink

Syntax disp('hyperlink_text')

Description matlab: executes stmnt_1 through stmnt_n when you click (or press
Ctrl+Enter) in hyperlink_text. This must be used with another
function, such as disp, where disp creates and displays underlined
and colored hyperlink_text in the Command Window. Use disp,
error, fprintf, help, or warning functions to display the hyperlink.
The hyperlink_text is interpreted as HTML—you might need to use
HTML character entity references or ASCII values for some special
characters. Include the full hypertext string, from '<a href= to '
within a single line, that is, do not continue a long string on a new line.
No spaces are allowed after the opening < and before the closing >. A
single space is required between a and href.

Remarks The matlab: function behaves differently with diary, notebook, type,
and similar functions than might be expected. For example, if you enter
the following statement

disp('Generate magic square')

the diary file, when viewed in a text editor, shows

disp('Generate magic square')
Generate magic square

If you view the output of diary in the Command Window, the Command
Window interprets the <a href ...> statement and does display it
as a hyperlink.

Examples Single Function

The statement

disp('Generate magic square')

displays

2-2085

matlabcolon (matlab:)

in the Command Window. When you click the link Generate magic
square, MATLAB runs magic(4).

Multiple Functions

You can include multiple functions in the statement, such as

disp('Plot
x,y')

which displays

in the Command Window. When you click the link, MATLAB runs

x = 0:1:8;
y = sin(x);
plot(x,y)

Clicking the Hyperlink Again

After running the statements in the hyperlink Plot x,y defined in
the previous example, “Multiple Functions” on page 2-2086, you can
subsequently redefine x in the base workspace, for example, as

x = -2*pi:pi/16:2*pi;

If you then click the hyperlink, Plot x,y, it changes the current value
of x back to

0:1:8

because the matlab: statement defines x in the base workspace. In
the matlab: statement that displayed the hyperlink, Plot x,y, x was
defined as 0:1:8.

2-2086

matlabcolon (matlab:)

Presenting Options

Use multiple matlab: statements in an M-file to present options, such
as

disp('Disable feature')
disp('Enable feature')

The Command Window displays

and depending on which link is clicked, sets state to 0 or 1.

Special Characters

MATLAB correctly interprets most strings that includes special
characters, such as a greater than sign. For example, the following
statement includes a >

disp(' 0''">Positive

and generates the following hyperlink.

Some symbols might not be interpreted correctly and you might need to
use the HTML character entity reference for the symbol. For example,
an alternative way to run the same statement is to use the >
character entity reference instead of the > symbol:

disp(' 0''">Positive')

Instead of the HTML character entity reference, you can use the ASCII
value for the symbol. For example, the greater than sign, >, is ASCII
62. The above example becomes

disp('Positive')

Here are some values for common special characters.

2-2087

matlabcolon (matlab:)

Character
HTML Character Entity
Reference ASCII Value

> > 62

< < 60

& & 38

" " 34

For a list of all HTML character entity references, see
http://www.w3.org/.

Links from M-File Help

For functions you create, you can include matlab: links within the
M-file help, but you do not need to include a disp or similar statement
because the help function already includes it for displaying hyperlinks.
Use the links to display additional help in a browser when the user
clicks them. The M-file soundspeed contains the following statements:

function c=soundspeed(s,t,p)

% Speed of sound in water, using
% Wilson's
formula
% Where c is the speed of sound in water in m/s

etc.

Run help soundspeed and MATLAB displays the following in the
Command Window.

2-2088

http://www.w3.org/

matlabcolon (matlab:)

When you click the link Wilson's formula, MATLAB displays the
HTML page http://www.zu.edu in the Web browser. Note that this URL
is only an example and is invalid.

See Also disp, error, fprintf, input, run, warning

2-2089

matlabrc

Purpose MATLAB startup M-file for single-user systems or system
administrators

Description At startup time, MATLAB automatically executes the master M-file
matlabrc.m and, if it exists, startup.m. On multiuser or networked
systems, matlabrc.m is reserved for use by the system manager. The
file matlabrc.m invokes the file startup.m if it exists on the MATLAB
search path.

As an individual user, you can create a startup file in your own
MATLAB directory. Use the startup file to define physical constants,
engineering conversion factors, graphics defaults, or anything else you
want predefined in your workspace.

Algorithm Only matlabrc is actually invoked by MATLAB at startup. However,
matlabrc.m contains the statements

if exist('startup') == 2
startup

end

that invoke startup.m. Extend this process to create additional startup
M-files, if required.

Remarks You can also start MATLAB using options you define at the Command
Window prompt or in your Windows shortcut for MATLAB.

Examples Turning Off the Figure Window Toolbar

If you do not want the toolbar to appear in the figure window, remove
the comment marks from the following line in the matlabrc.m file, or
create a similar line in your own startup.m file.

% set(0,'defaultfiguretoolbar','none')

See Also matlabroot, quit, restoredefaultpath, startup

2-2090

matlabrc

Startup Options in the MATLAB Desktop Tools and Development
Environment documentation

2-2091

matlabroot

Purpose Root directory of MATLAB installation

Syntax matlabroot
rd = matlabroot

Description matlabroot returns the name of the directory in which the MATLAB
software is installed. In compiled M-code, it returns the path to the
executable. Use matlabroot to create a path to MATLAB and toolbox
directories that does not depend on a specific platform, MATLAB
version, or installation directory.

rd = matlabroot returns the name of the directory in which the
MATLAB software is installed and assigns it to rd.

Remarks matlabroot

Run

matlabroot

MATLAB returns, for example,

\\H:\Programs\matlab

matlabroot as Directory Name

The term matlabroot is sometimes used to represent the
directory where MATLAB files are installed and should not be
confused with the matlabroot function. For example, “save to
matlabroot/toolbox/local” means save to the toolbox/local
directory in the MATLAB root directory.

$matlabroot

Sometimes the term $matlabroot is used to represent the value
returned by the matlabroot function.

But in some files, such as info.xml and classpath.txt, $matlabroot,
the preceding $ is literal. MATLAB actually interprets $matlabroot

2-2092

matlabroot

as the full path to the MATLAB root directory. For example, including
the line

$matlabroot/toolbox/local/myfile.jar

in classpath.txt, adds myfile.jar, which is located in the
toolbox/local directory, to classpath.txt.

Examples fullfile(matlabroot,'toolbox','matlab','general')

produces a full path to the toolbox/matlab/general directory that is
correct for the platform it is executed on.

cd(matlabroot) changes the current working directory to the MATLAB
root directory.

addpath([matlabroot '/toolbox/local/myfiles']) adds the
directory myfiles to the MATLAB search path.

See Also ctfroot (in MATLAB Compiler), fullfile, partialpath, path,
toolboxdir

2-2093

matlab (UNIX)

Purpose Start MATLAB (UNIX systems)

Syntax matlab helpOption
matlab archOption
matlab dispOption
matlab modeOption
matlab mgrOption
matlab -c licensefile
matlab -r command
matlab -logfile filename
matlab -mwvisual visualid
matlab -nosplash
matlab -timing
matlab -debug
matlab -Ddebugger options

Note You can enter more than one of these options in the same
MATLAB command. If you use -Ddebugger to start MATLAB in debug
mode, the first option in the command must be -Ddebugger.

Description matlab is a Bourne shell script that starts the MATLAB executable.
(In this document, matlab refers to this script; MATLAB refers to
the application program). Before actually initiating the execution of
MATLAB, this script configures the run-time environment by

• Determining the MATLAB root directory

• Determining the host machine architecture

• Processing any command line options

• Reading the MATLAB startup file, .matlab7rc.sh

• Setting MATLAB environment variables

There are two ways in which you can control the way the matlab script
works:

2-2094

matlab (UNIX)

• By specifying command line options

• By assigning values in the MATLAB startup file, .matlab7rc.sh

Specifying Options at the Command Line

Options that you can enter at the command line are as follows:

matlab helpOption displays information that matches the specified
helpOption argument without starting MATLAB. helpOption can be
any one of the keywords shown in the table below. Enter only one
helpOption keyword in a matlab command.

Values for helpOption

Option Description

-help Display matlab command usage.

-h The same as -help.

-n Display all the final values of the environment
variables and arguments passed to the MATLAB
executable as well as other diagnostic information.

-e Display all environment variables and their values
just prior to exiting. This argument must have been
parsed before exiting for anything to be displayed. The
last possible exiting point is just before the MATLAB
image would have been executed and a status of 0 is
returned. If the exit status is not 0 on return, then the
variables and values may not be correct.

matlab archOption starts MATLAB and assumes that you are running
on the system architecture specified by arch, or using the MATLAB
version specified by variant, or both. The values for the archOption
argument are shown in the table below. Enter only one of these options
in a matlab command.

2-2095

matlab (UNIX)

Values for archOption

Option Description

-arch Run MATLAB assuming this architecture rather
than the actual architecture of the machine you
are using. Replace the term arch with a string
representing a recognized system architecture.

v=variant Execute the version of MATLAB found in
the directory bin/$ARCH/variant instead of
bin/$ARCH. Replace the term variant with a
string representing a MATLAB version.

v=arch/variant Execute the version of MATLAB found in
the directory bin/arch/variant instead of
bin/$ARCH. Replace the terms arch and variant
with strings representing a specific architecture
and MATLAB version.

matlab dispOption starts MATLAB using one of the display options
shown in the table below. Enter only one of these options in a matlab
command.

Values for dispOption

Option Description

-display xDisp Send X commands to X Window Server display
xDisp. This supersedes the value of the
DISPLAY environment variable.

-nodisplay Start the Java virtual machine, but do not
start the MATLAB desktop. Do not display
any X commands, and ignore the DISPLAY
environment variable,

matlab modeOption starts MATLAB without its usual desktop
component. Enter only one of the options shown below.

2-2096

matlab (UNIX)

Values for modeOption

Option Description

-desktop Allow the MATLAB desktop to be started by a
process without a controlling terminal. This
is usually a required command line argument
when attempting to start MATLAB from a
window manager menu or desktop icon.

-nodesktop Start MATLAB without its desktop. The Java
virtual machine (JVM) is started. Use the
current window to enter commands. Start any
desktop tools using command equivalents,
such as helpbrowser to open the Help browser.
MATLAB does not save statements to the
Command History.

-nojvm Start MATLAB without the Java virtual
machine (JVM). Use the current window to
enter commands. The MATLAB desktop does
not open and any tools that require Java, such
as the desktop tools, cannot be used. Also,
figures do not display the menu bar or toolbar.

matlab mgrOption starts MATLAB in the memory management mode
specified by mgrOption. Enter only one of the options shown below.

2-2097

matlab (UNIX)

Values for mgrOption

Option Description

-memmgr manager Set environment variable MATLAB_MEM_MGR to
manager. The manager argument can have
one of the following values:

• cache — The default.

• compact — This is useful for large models
or MATLAB code that uses many structure
or object variables. It is not helpful for
large arrays. (This option applies only to
32-bit architectures.)

• debug — Does memory integrity checking
and is useful for debugging memory
problems caused by user-created MEX
files.

-check_malloc The same as using ’-memmgr debug’.

matlab -c licensefile starts MATLAB using the specified license
file. The licensefile argument can have the form port@host or it
can be a colon-separated list of license filenames. This option causes
the LM_LICENSE_FILE and MLM_LICENSE_FILE environment variables to
be ignored.

matlab -r command starts MATLAB and executes the specified
MATLAB command.

matlab -logfile filename starts MATLAB and makes a copy of any
output to the command window in file log. This includes all crash
reports.

matlab -mwvisual visualid starts MATLAB and uses visualid as the
default X visual for figure windows. visualid is a hexadecimal number
that can be found using xdpyinfo.

2-2098

matlab (UNIX)

matlab -nosplash starts MATLAB but does not display the splash
screen during startup.

matlab -timing starts MATLAB and prints a summary of startup
time to the command window. This information is also recorded in a
timing log, the name of which is printed to the shell window in which
MATLAB is started. This option should be used only when working
with a Technical Support Representative from The MathWorks, Inc.

matlab -debug starts MATLAB and displays debugging information
that can be useful, especially for X based problems. This option should
be used only when working with a Technical Support Representative
from The MathWorks, Inc.

matlab -Ddebugger options starts MATLAB in debug mode, using the
named debugger (e.g., dbx, gdb, xdb, cvd). A full path can be specified
for debugger.

The options argument can include only those options that follow the
debugger name in the syntax of the actual debug command. For most
debuggers, there is a very limited number of such options. Options that
would normally be passed to the MATLAB executable should be used as
parameters of a command inside the debugger (like run). They should
not be used when running the MATLAB script.

If any other matlab command options are placed before the -Ddebugger
argument, they will be handled as if they were part of the options
after the -Ddebugger argument and will be treated as illegal options
by most debuggers. The MATLAB_DEBUG environment variable is set to
the filename part of the debugger argument.

To customize your debugging session, use a startup file. See your
debugger documentation for details.

Note For certain debuggers like gdb, the SHELL environment variable
is always set to /bin/sh.

2-2099

matlab (UNIX)

Specifying Options in the MATLAB Startup File

The .matlab7rc.sh shell script contains definitions for a number of
variables that the matlab script uses. These variables are defined
within the matlab script, but can be redefined in .matlab7rc.sh.
When invoked, matlab looks for the first occurrence of .matlab7rc.sh
in the current directory, in the home directory ($HOME), and in
the matlabroot/bin directory, where the template version of
.matlab7rc.sh is located.

You can edit the template file to redefine information used by the matlab
script. If you do not want your changes applied systemwide, copy the
edited version of the script to your current or home directory. Ensure
that you edit the section that applies to your machine architecture.

The following table lists the variables defined in the.matlab7rc.sh
file. See the comments in the .matlab7rc.sh file for more information
about these variables.

Variable
Definition and Standard Assignment
Behavior

ARCH The machine architecture.

The value ARCH passed with the -arch or
-arch/ext argument to the script is tried first,
then the value of the environment variable
MATLAB_ARCH is tried next, and finally it is
computed. The first one that gives a valid
architecture is used.

AUTOMOUNT_MAP Path prefix map for automounting.

The value set in .matlab7rc.sh (initially by
the installer) is used unless the value differs
from that determined by the script, in which
case the value in the environment is used.

2-2100

matlab (UNIX)

Variable
Definition and Standard Assignment
Behavior

DISPLAY The hostname of the X Window display
MATLAB uses for output.

The value of Xdisplay passed with the
-display argument to the script is used;
otherwise, the value in the environment is
used. DISPLAY is ignored by MATLAB if the
-nodisplay argument is passed.

LD_LIBRARY_PATH Final Load library path. The name
LD_LIBRARY_PATH is platform dependent.

The final value is normally a colon-separated
list of four sublists, each of which could
be empty. The first sublist is defined in
.matlab7rc.sh as LDPATH_PREFIX. The
second sublist is computed in the script and
includes directories inside the MATLAB root
directory and relevant Java directories. The
third sublist contains any nonempty value
of LD_LIBRARY_PATH from the environment
possibly augmented in .matlab7rc.sh. The
final sublist is defined in .matlab7rc.sh as
LDPATH_SUFFIX.

2-2101

matlab (UNIX)

Variable
Definition and Standard Assignment
Behavior

LM_LICENSE_FILE The FLEX lm license variable.

The license file value passed with the -c
argument to the script is used; otherwise it is
the value set in .matlab7rc.sh. In general,
the final value is a colon-separated list of
license files and/or port@host entries. The
shipping .matlab7rc.sh file starts out the
value by prepending LM_LICENSE_FILE in the
environment to a default license.file.

Later in the MATLAB script if the -c option
is not used, the matlabroot/etc directory
is searched for the files that start with
license.dat.DEMO. These files are assumed
to contain demo licenses and are added
automatically to the end of the current list.

MATLAB The MATLAB root directory.

The default computed by the script is
used unless MATLABdefault is reset in
.matlab7rc.sh.

Currently MATLABdefault is not reset in the
shipping .matlab7rc.sh.

MATLAB_DEBUG Normally set to the name of the debugger.

The -Ddebugger argument passed to the script
sets this variable. Otherwise, a nonempty value
in the environment is used.

2-2102

matlab (UNIX)

Variable
Definition and Standard Assignment
Behavior

MATLAB_JAVA The path to the root of the Java Runtime
Environment.

The default set in the script is used unless
MATLAB_JAVA is already set. Any nonempty
value from .matlab7rc.sh is used first, then
any nonempty value from the environment.
Currently there is no value set in the shipping
.matlab67rc.sh, so that environment alone is
used.

MATLAB_MEM_MGR Turns on MATLAB memory integrity checking.

The -check_malloc argument passed to the
script sets this variable to 'debug'. Otherwise,
a nonempty value set in .matlab7rc.sh is
used, or a nonempty value in the environment
is used. If a nonempty value is not found, the
variable is not exported to the environment.

MATLABPATH The MATLAB search path.

The final value is a colon-separated list with the
MATLABPATH from the environment prepended
to a list of computed defaults.

2-2103

matlab (UNIX)

Variable
Definition and Standard Assignment
Behavior

SHELL The shell to use when the “!” or unix command
is issued in MATLAB. This is taken from
the environment unless SHELL is reset in
.matlab7rc.sh.

Note that an additional environment variable
called MATLAB_SHELL takes precedence
over SHELL. MATLAB checks internally for
MATLAB_SHELL first and, if empty or not defined,
then checks SHELL. If SHELL is also empty or not
defined, MATLAB uses /bin/sh. The value of
MATLAB_SHELL should be an absolute path, i.e.
/bin/sh, not simply sh.

Currently, the shipping .matlab7rc.sh file
does not reset SHELL and also does not reference
or set MATLAB_SHELL.

TOOLBOX Path of the toolbox directory.

A nonempty value in the environment is
used first. Otherwise, matlabroot/toolbox,
computed by the script, is used unless TOOLBOX
is reset in .matlab7rc.sh. Currently TOOLBOX
is not reset in the shipping .matlab7rc.sh.

2-2104

matlab (UNIX)

Variable
Definition and Standard Assignment
Behavior

XAPPLRESDIR The X application resource directory.

A nonempty value in the environment
is used first unless XAPPLRESDIR is
reset in .matlab7rc.sh. Otherwise,
matlabroot/X11/app-defaults, computed by
the script, is used.

XKEYSYMDB The X keysym database file.

A nonempty value in the environment
is used first unless XKEYSYMDB is
reset in .matlab7rc.sh. Otherwise,
matlabroot/X11/app-defaults/XKeysymDB,
computed by the script, is used. The matlab
script determines the path of the MATLAB root
directory as one level up the directory tree from
the location of the script. Information in the
AUTOMOUNT_MAP variable is used to fix the path
so that it is correct to force a mount. This can
involve deleting part of the pathname from the
front of the MATLAB root path. The MATLAB
variable is then used to locate all files within
the MATLAB directory tree.

The matlab script determines the path of the MATLAB root directory
by looking up the directory tree from the matlabroot/bin directory
(where the matlab script is located). The MATLAB variable is then used
to locate all files within the MATLAB directory tree.

You can change the definition of MATLAB if, for example, you want to
run a different version of MATLAB or if, for some reason, the path
determined by the matlab script is not correct. (This can happen when
certain types of automounting schemes are used by your system.)

AUTOMOUNT_MAP is used to modify the MATLAB root directory path.
The pathname that is assigned to AUTOMOUNT_MAP is deleted from the

2-2105

matlab (UNIX)

front of the MATLAB root path. (It is unlikely that you will need to
use this option.)

See Also mex

“Startup Options” in the MATLAB Desktop Tools and Development
Environment documentation

2-2106

matlab (Windows)

Purpose Start MATLAB (Windows systems)

Syntax matlab helpOption
matlab mgrOption
matlab -automation
matlab -c licensefile
matlab -logfile filename
matlab -nosplash
matlab -noFigureWindows
matlab -r "statement"
matlab -regserver
matlab -sd "startdir"
matlab -timing
matlab -unregserver

Note You can enter more than one of these options in the same
MATLAB command.

Description matlab is a script that runs the main MATLAB executable. (In this
document, the term matlab refers to the script, and MATLAB refers
to the main executable). Before actually initiating the execution of
MATLAB, it configures the run-time environment by

• Determining the MATLAB root directory

• Determining the host machine architecture

• Selectively processing command line options with the rest passed to
MATLAB.

• Setting certain MATLAB environment variables

There are two ways in which you can control the way matlab works:

• By specifying command line options

• By setting environment variables before calling the program

2-2107

matlab (Windows)

Specifying Options at the Command Line

Options that you can enter at the command line are as follows:

matlab helpOption displays information that matches the specified
helpOption argument without starting MATLAB. helpOption can be
any one of the keywords shown in the table below. Enter only one
helpOption keyword in a matlab command.

Values for helpOption

Option Description

-help Display matlab command usage.

-h The same as -help.

-? The same as -help.

matlab mgrOption starts MATLAB in the memory management mode
specified by mgrOption. Enter only one of the options shown below.

2-2108

matlab (Windows)

Values for mgrOption

Option Description

-memmgr manager Set environment variable MATLAB_MEM_MGR to manager. The
manager argument can have one of the following values:

• cache — The default.

• fast — For large models or MATLAB code that uses many
structure or object variables. It is not helpful for large
arrays.

• debug — Does memory integrity checking and is useful for
debugging memory problems caused by user-created MEX
files.

-check_malloc The same as using ’-memmgr debug’.

matlab -automation starts MATLAB as an automation server. The
server window is minimized, and the MATLAB splash screen is not
displayed on startup.

matlab -c licensefile starts MATLAB using the specified license
file. The licensefile argument can have the form port@host.
This option causes the LM_LICENSE_FILE and MLM_LICENSE_FILE
environment variables to be ignored.

matlab -logfile filename starts MATLAB and makes a copy of any
output to the Command Window in filename. This includes all crash
reports.

matlab -nosplash starts MATLAB but does not display the splash
screen during startup.

matlab -noFigureWindows starts MATLAB but disables the display of
any figure windows in MATLAB.

matlab -r "statement" starts MATLAB and executes the specified
MATLAB statement. Any required file must be on the MATLAB path
or in the startup directory.

2-2109

matlab (Windows)

matlab -regserver registers MATLAB as a Component Object Model
(COM) server.

matlab -sd "startdir" specifies the startup directory for MATLAB
(the current directory in MATLAB after startup). When you do not
specify the -sd option, the startup directory is the directory from which
you ran matlab. For more information, see “Startup Directory (Folder)
on Windows Platforms”.

matlab -timing starts MATLAB and prints a summary of startup time
to the command window. This information is also recorded in a timing
log, the name of which is printed to the MATLAB Command Window.
This option should be used only when working with a Technical Support
Representative from The MathWorks.

matlab -unregserver removes all MATLAB COM server entries from
the registry.

Setting Environment Variables

You can set any of the following environment variables before starting
MATLAB.

Variable Name Description

LM_LICENSE_FILE This is the FLEX lm license variable. The license file
value passed with the -c argument to the script is
used; otherwise it is the value set in the environment.
The final value is a colon-separated list of license files
and/or port@host entries.

MATLAB_MEM_MGR This determines the type of memory manager used
by MATLAB. If not set in the environment, it is
controlled by passing its value via the ’-memmgr’
option. If no value is predefined, then MATLAB uses
’cache’.

2-2110

matlab (Windows)

See Also mex

“Startup Options” in the MATLAB Desktop Tools and Development
Environment documentation

2-2111

max

Purpose Largest elements in array

Syntax C = max(A)
C = max(A,B)
C = max(A,[],dim)
[C,I] = max(...)

Description C = max(A) returns the largest elements along different dimensions
of an array.

If A is a vector, max(A) returns the largest element in A.

If A is a matrix, max(A) treats the columns of A as vectors, returning a
row vector containing the maximum element from each column.

If A is a multidimensional array, max(A) treats the values along the
first non-singleton dimension as vectors, returning the maximum value
of each vector.

C = max(A,B) returns an array the same size as A and B with the
largest elements taken from A or B. The dimensions of A and B must
match, or they may be scalar.

C = max(A,[],dim) returns the largest elements along the dimension
of A specified by scalar dim. For example, max(A,[],1) produces the
maximum values along the first dimension (the rows) of A.

[C,I] = max(...) finds the indices of the maximum values of A, and
returns them in output vector I. If there are several identical maximum
values, the index of the first one found is returned.

Remarks For complex input A, max returns the complex number with the largest
complex modulus (magnitude), computed with max(abs(A)). Then
computes the largest phase angle with max(angle(x)), if necessary.

The max function ignores NaNs.

See Also isnan, mean, median, min, sort

2-2112

max (timeseries)

Purpose Maximum value of timeseries data

Syntax ts_max = max(ts)
ts_max = max(ts,'PropertyName1',PropertyValue1,...)

Description ts_max = max(ts) returns the maximum value in the time-series data.
When ts.Data is a vector, ts_max is the maximum value of ts.Data
values. When ts.Data is a matrix, ts_max is a row vector containing
the maximum value of each column of ts.Data (when IsTimeFirst
is true and the first dimension of ts is aligned with time). For the
N-dimensional ts.Data array, max always operates along the first
nonsingleton dimension of ts.Data.

ts_max = max(ts,'PropertyName1',PropertyValue1,...)
specifies the following optional input arguments:

• 'MissingData' property has two possible values, 'remove' (default)
or 'interpolate', indicating how to treat missing data during the
calculation.

• 'Quality' values are specified by a vector of integers, indicating
which quality codes represent missing samples (for vector data) or
missing observations (for data arrays with two or more dimensions).

• 'Weighting' property has two possible
values, 'none' (default) or 'time'.
When you specify 'time', larger time values
correspond to larger weights.

Examples The following example illustrates how to find the maximum values
in multivariate time-series data.

1 Load a 24-by-3 data array.

load count.dat

2 Create a timeseries object with 24 time values.

2-2113

max (timeseries)

count_ts = timeseries(count,[1:24],'Name','CountPerSecond')

3 Find the maximum in each data column for this timeseries object.

max(count_ts)

ans =

114 145 257

The maximum is found independently for each data column in the
timeseries object.

See Also iqr (timeseries), min (timeseries), median (timeseries), mean
(timeseries), std (timeseries), timeseries, var (timeseries)

2-2114

MaximizeCommandWindow

Purpose Open server window on Windows desktop

Syntax MATLAB Client
h.MaximizeCommandWindow
MaximizeCommandWindow(h)
invoke(h, 'MaximizeCommandWindow')

Method Signature
HRESULT MaximizeCommandWindow(void)

Visual Basic Client
MaximizeCommandWindow

Description MaximizeCommandWindow displays the window for the server attached
to handle h, and makes it the currently active window on the desktop.
If the server window was not in a minimized state to begin with, then
MaximizeCommandWindow does nothing.

Note MaximizeCommandWindow does not maximize the server window
to its maximum possible size on the desktop. It restores the window to
the size it had at the time it was minimized.

Remarks Server function names, like MaximizeCommandWindow, are case sensitive
when using the first syntax shown.

There is no difference in the operation of the three syntaxes shown
above for the MATLAB client.

Examples Create a COM server and minimize its window. Then maximize the
window and make it the currently active window.

MATLAB Client

h = actxserver('matlab.application');

2-2115

MaximizeCommandWindow

h.MinimizeCommandWindow;
% Now return the server window to its former state on
% the desktop and make it the currently active window.
h.MaximizeCommandWindow;

Visual Basic .NET Client

Dim Matlab As Object

Matlab = CreateObject("matlab.application")
Matlab.MinimizeCommandWindow

'Now return the server window to its former state on
'the desktop and make it the currently active window.

Matlab.MaximizeCommandWindow

See Also MinimizeCommandWindow

2-2116

maxNumCompThreads

Purpose Controls maximum number of computational threads

Syntax N = maxNumCompThreads
LASTN = maxNumCompThreads(N)
LASTN = maxNumCompThreads('automatic')

Description N = maxNumCompThreads returns the current maximum number of
computational threads N.

LASTN = maxNumCompThreads(N) sets the maximum number of
computational threads to N, and returns the previous maximum number
of computational threads, LASTN.

LASTN = maxNumCompThreads('automatic') sets the maximum
number of computational threads using what MATLAB determines to
be the most desirable. It additionally returns the previous maximum
number of computational threads, LASTN.

Currently, the maximum number of computational threads is equal to
the number of computational cores on your machine.

Note Unlike enabling multithreading using the Preferences panel,
setting the maximum number of computational threads using
maxNumCompThreads will not propagate to your next MATLAB session.

2-2117

mean

Purpose Average or mean value of array

Syntax M = mean(A)
M = mean(A,dim)

Description M = mean(A) returns the mean values of the elements along different
dimensions of an array.

If A is a vector, mean(A) returns the mean value of A.

If A is a matrix, mean(A) treats the columns of A as vectors, returning a
row vector of mean values.

If A is a multidimensional array, mean(A) treats the values along the
first non-singleton dimension as vectors, returning an array of mean
values.

M = mean(A,dim) returns the mean values for elements along the
dimension of A specified by scalar dim. For matrices, mean(A,2) is a
column vector containing the mean value of each row.

Examples A = [1 2 3; 3 3 6; 4 6 8; 4 7 7];
mean(A)
ans =

3.0000 4.5000 6.0000

mean(A,2)
ans =

2.0000
4.0000
6.0000
6.0000

See Also corrcoef, cov, max, median, min, mode, std, var

2-2118

mean (timeseries)

Purpose Mean value of timeseries data

Syntax ts_mn = mean(ts)
ts_mn = mean(ts,'PropertyName1',PropertyValue1,...)

Description ts_mn = mean(ts) returns the mean value of ts.Data. When ts.Data
is a vector, ts_mn is the mean value of ts.Data values. When ts.Data
is a matrix, ts_mn is a row vector containing the mean value of each
column of ts.Data (when IsTimeFirst is true and the first dimension
of ts is aligned with time). For the N-dimensional ts.Data array, mean
always operates along the first nonsingleton dimension of ts.Data.

ts_mn = mean(ts,'PropertyName1',PropertyValue1,...)
specifies the following optional input arguments:

• 'MissingData' property has two possible values, 'remove' (default)
or 'interpolate', indicating how to treat missing data during the
calculation.

• 'Quality' values are specified by a vector of integers, indicating
which quality codes represent missing samples (for vector data) or
missing observations (for data arrays with two or more dimensions).

• 'Weighting' property has two possible
values, 'none' (default) or 'time'.
When you specify 'time', larger time values
correspond to larger weights.

Examples The following example illustrates how to find the mean values in
multivariate time-series data.

1 Load a 24-by-3 data array.

load count.dat

2 Create a timeseries object with 24 time values.

count_ts = timeseries(count,[1:24],'Name','CountPerSecond')

2-2119

mean (timeseries)

3 Find the mean of each data column for this timeseries object.

mean(count_ts)

ans =

32.0000 46.5417 65.5833

The mean is found independently for each data column in the
timeseries object.

See Also iqr (timeseries), max (timeseries), min (timeseries), median
(timeseries), std (timeseries), timeseries, var (timeseries)

2-2120

median

Purpose Median value of array

Syntax M = median(A)
M = median(A,dim)

Description M = median(A) returns the median values of the elements along
different dimensions of an array.

If A is a vector, median(A) returns the median value of A.

If A is a matrix, median(A) treats the columns of A as vectors, returning
a row vector of median values.

If A is a multidimensional array, median(A) treats the values along the
first nonsingleton dimension as vectors, returning an array of median
values.

M = median(A,dim) returns the median values for elements along the
dimension of A specified by scalar dim.

Examples A = [1 2 4 4; 3 4 6 6; 5 6 8 8; 5 6 8 8];
median(A)

ans =

4 5 7 7

median(A,2)

ans =

3
5
7
7

See Also corrcoef, cov, max, mean, min, mode, std, var

2-2121

median (timeseries)

Purpose Median value of timeseries data

Syntax ts_med = median(ts)
ts_med = median(ts,'PropertyName1',PropertyValue1,...)

Description ts_med = median(ts) returns the median value of ts.Data. When
ts.Data is a vector, ts_med is the median value of ts.Data values.
When ts.Data is a matrix, ts_med is a row vector containing the median
value of each column of ts.Data (when IsTimeFirst is true and the
first dimension of ts is aligned with time). For the N-dimensional
ts.Data array, median always operates along the first nonsingleton
dimension of ts.Data.

ts_med = median(ts,'PropertyName1',PropertyValue1,...)
specifies the following optional input arguments:

• 'MissingData' property has two possible values, 'remove' (default)
or 'interpolate', indicating how to treat missing data during the
calculation.

• 'Quality' values are specified by a vector of integers, indicating
which quality codes represent missing samples (for vector data) or
missing observations (for data arrays with two or more dimensions).

• 'Weighting' property has two possible
values, 'none' (default) or 'time'.
When you specify 'time', larger time values
correspond to larger weights.

Examples The following example illustrates how to find the median values in
multivariate time-series data.

1 Load a 24-by-3 data array.

load count.dat

2 Create a timeseries object with 24 time values.

2-2122

median (timeseries)

count_ts = timeseries(count,[1:24],'Name','CountPerSecond')

3 Find the median of each data column for this timeseries object.

median(count_ts)

ans =

23.5000 36.0000 39.0000

The median is found independently for each data column in the
timeseries object.

See Also iqr (timeseries), max (timeseries), min (timeseries), mean
(timeseries), std (timeseries), timeseries, var (timeseries)

2-2123

memmapfile

Purpose Construct memmapfile object

Syntax m = memmapfile(filename)
m = memmapfile(filename, prop1, value1, prop2, value2, ...)

Description m = memmapfile(filename) constructs an object of the memmapfile
class that maps file filename to memory using the default property
values. The filename input is a quoted string that specifies the path
and name of the file to be mapped into memory. filename must
include a filename extension if the name of the file being mapped has
an extension. The filename argument cannot include any wildcard
characters (e.g., * or ?), is case sensitive on UNIX platforms, but is not
case sensitive on Windows.

m = memmapfile(filename, prop1, value1, prop2, value2, ...)
constructs an object of the memmapfile class that maps file filename
into memory and sets the properties of that object that are named in
the argument list (prop1, prop2, etc.) to the given values (value1,
value2, etc.). All property name arguments must be quoted strings
(e.g., 'Writable'). Any properties that are not specified are given their
default values.

Optional properties are shown in the table below and are described
in the sections that follow.

2-2124

memmapfile

Property Description Data Type Default

Format Format of the
contents of the
mapped region,
including data
type, array
shape, and
variable or field
name by which
to access the
data

char array or
N-by-3 cell
array

uint8

Offset Number of
bytes from
the start of
the file to the
start of the
mapped region.
This number
is zero-based.
That is, offset 0
represents the
start of the file.

double 0

Repeat Number of
times to apply
the specified
format to the
mapped region
of the file

double Inf

Writable Type of access
allowed to the
mapped region

logical false

There are three different ways you can specify a value for the Format
property. See the following sections in the MATLAB Programming
documentation for more information on this:

2-2125

memmapfile

•

•

•

Any of the following data types can be used when you specify a Format
value. The default type is uint8.

Format String Data Type Description

'int8' Signed 8-bit integers

'int16' Signed 16-bit integers

'int32' Signed 32-bit integers

'int64' Signed 64-bit integers

'uint8' Unsigned 8-bit integers

'uint16' Unsigned 16-bit integers

'uint32' Unsigned 32-bit integers

'uint64' Unsigned 64-bit integers

'single' 32-bit floating-point

'double' 64-bit floating-point

Remarks You can only map an existing file. You cannot create a new file and
map that file to memory in one operation. Use the MATLAB file I/O
functions to create the file before attempting to map it to memory.

Once memmapfile locates the file, MATLAB stores the absolute
pathname for the file internally, and then uses this stored path to locate
the file from that point on. This enables you to work in other directories
outside your current work directory and retain access to the mapped file.

Once a memmapfile object has been constructed, you can change the
value of any of its properties. Use the objname.property syntax in
assigning the new value. To set a new offset value for memory map
object m, type

2-2126

memmapfile

m.Offset = 2048;

Property names are not case sensitive. For example, MATLAB considers
m.Offset to be the same as m.offset.

Examples Example 1

To construct a map for the file records.dat that resides in your current
working directory, type the following:

m = memmapfile('records.dat');

MATLAB constructs an instance of the memmapfile class, assigns it to
the variable m, and maps the entire records.dat file to memory, setting
all properties of the object to their default values. In this example, the
command maps the entire file as a sequence of unsigned 8-bit integers
and gives the caller read-only access to its contents.

Example 2

To construct a map using nondefault values for the Offset, Format, and
Writable properties, type the following, enclosing all property names
in single quotation marks:

m = memmapfile('records.dat', ...
'Offset', 1024, ...
'Format', 'uint32', ...
'Writable', true);

Type the object name to see the current settings for all properties:

m

m =
Filename: 'd:\matlab\mfiles\records.dat'
Writable: true

Offset: 1024
Format: 'uint32'
Repeat: Inf

Data: 4778x1 uint32 array

2-2127

memmapfile

Example 3

Construct a memmapfile object for the entire file records.dat and
set the Format property for that object to uint64. Any read or write
operations made via the memory map will read and write the file
contents as a sequence of unsigned 64-bit integers:

m = memmapfile('records.dat', 'Format', 'uint64');

Example 4

Construct a memmapfile object for a region of records.dat such that
the contents of the region are handled by MATLAB as a 4-by-10-by-18
array of unsigned 32-bit integers, and can be referenced in the structure
of the returned object using the field name x:

m = memmapfile('records.dat', ...
'Offset', 1024, ...
'Format', {'uint32' [4 10 18] 'x'});

A = m.Data.x;

whos A
Name Size Bytes Class

A 4x10x18 2880 uint32 array

Grand total is 720 elements using 2880 bytes

Example 5

Map a 24 kilobyte file containing data of three different data types:
int16, uint32, and single. The int16 data is mapped as a 2-by-2
matrix that can be accessed using the field name model. The uint32
data is a scalar value accessed as field serialno. The single data is a
1-by-3 matrix named expenses.

Each of these fields belongs to the 800-by-1 structure array m.Data:

m = memmapfile('records.dat', ...
'Offset', 2048, ...

2-2128

memmapfile

'Format', { ...
'int16' [2 2] 'model'; ...
'uint32' [1 1] 'serialno'; ...
'single' [1 3] 'expenses'});

Example 6

Map a file region identical to that of the previous example, except repeat
the pattern of int16, uint32, and single data types only three times
within the mapped region of the file. Allow write access to the file by
setting the Writable property to true:

m = memmapfile('records.dat', ...
'Offset', 2048, ...
'Format', { ...

'int16' [2 2] 'model'; ...
'uint32' [1 1] 'serialno'; ...
'single' [1 3] 'expenses'}, ...

'Repeat', 3, ...
'Writable', true);

See Also disp(memmapfile), get(memmapfile)

2-2129

memory

Purpose Help for memory limitations

Description If the out of memory error message is encountered, there is no more
room in memory for new variables. You must free some space before
you can proceed. One way to free space is to use the clear function to
remove some of the variables residing in memory. Another is to issue
the pack command to compress data in memory. This opens larger
contiguous blocks of memory for you to use.

Here are some additional system-specific tips:

Windows: Increase virtual memory by using System in the Control
Panel.

UNIX: Ask your system manager to increase your swap space.

See Also clear, pack

The Technical Support Guide to Memory Management at
http://www.mathworks.com/support/tech-notes/1100/1106.html

2-2130

http://www.mathworks.com/support/tech-notes/1100/1106.html

MException

Purpose Construct MException object

Syntax ME = MException(identifier, msgstring)
ME = MException(identifier, msgformat, s1, s2, ...)

Description ME = MException(identifier, msgstring) constructs an object ME
of class MException and assigns an identifier and error message
msgstring to that object. This object then provides properties and
methods that you can use in generating or responding to errors in your
program code.

The identifer input is a message identifier string that you can
specify to uniquely identify the MException. The msgstring input is
a character string that informs the user about the cause of the error.
MATLAB displays this error message if the program aborts due to the
error.

ME = MException(identifier, msgformat, s1, s2, ...)
constructs an MException object where the error message is constructed
by the format string msgformat and additional string or scalar numeric
values s1, s2, etc. The msgformat argument differs from msgstring
(used in the previous syntax) in that it may contain escape sequences,
such as \t or \n, and C language conversion specifiers, such as %s and
%d that are supported by the sprintf function. Additional arguments
s1, s2, etc. provide the values that correspond to these conversion
specifiers. See the sprintf function reference page for more information
on valid conversion specifiers.

There are two ways to generate an error in your MATLAB code.
Although the latter method is more work, it can provide you with a
more extensible system for reporting and handling errors:

• Call the MATLAB error function.

• Construct an MException object, store identifying information in the
object, and use the throw or throwAsCaller methods of that object
to generate the error.

2-2131

MException

Properties The MException object has four properties: identifier, message,
stack, and cause.

Property Description

identifier Identifies the MException string.

message Formatted error message that is displayed.

stack Structure containing stack trace
information such as M-file function name
and line number where the MException
was thrown.

cause Cell array of MException that caused this
exception to be created.

Methods Method Description

AddCause Appends an MException to the cause field of
another MException.

eq Compares two MException objects for
equality.

getReport Returns a formatted message string based
on the current exception that uses the same
format as errors thrown by internal MATLAB
code.

isequal Compares two MException objects for
equality.

last Returns an MException object for the most
recently thrown exception.

ne Compares two MException objects for
inequality.

rethrow Reissues an exception that has been caught,
causing the program to stop.

2-2132

MException

Method Description

throw Issues an exception from the currently
running M-file.

throwAsCaller Issues an exception from the currently
running M-file, also omitting the current
stack frame from the stack field of the
MException.

Remarks When MATLAB encounters an error in its internal code or in your
own program code, it throws an exception. In this exception process,
MATLAB

• Interrupts the program at the point of the error.

• Constructs an object of the MException class.

• Records information about the error in that object.

• Displays this information at the user’s terminal.

• Aborts the program.

If your program code implements a try-catch mechanism to intercept
the error before MATLAB aborts the program, you can obtain access to
the MException object that MATLAB associates with this error instance
via the catch statement and then handle the condition based on the
records you can retrieve from the object.

Examples Example 1

If your message string requires formatting specifications, like those
available with the sprintf function, you can use this syntax for the
MException constructor:

ME = MException(identifier, formatstring, arg1, arg2, ...)

For example,

2-2133

MException

S = 'Accounts'; f1 = 'ClientName';
ME = MException('AcctError:Incomplete', ...

'Field ''%s.%s'' is not defined.', S, f1);

ME.message
ans =

Field 'Accounts.ClientName' is not defined.

Example 2

This example reads the contents of an image file. The attempt to open
and then read the file is done in a try block. If either the open or
read fails, the program catches the resulting exception and saves the
MException object in the variable ME1.

The catch block in this example checks to see if the specified file could
not be found. If this is the case, the program allows for the possibility
that a common variation of the filename extension (e.g., jpeg instead
of jpg) was used by retrying the operation with a modified extension.
This is done using a try-catch statement that is nested within the
original try-catch.

function d_in = read_image(filename)
file_format = regexp(filename, '(?<=\.)\w+$', 'match');

try
fid = fopen(filename, 'r');
d_in = fread(fid);

catch ME1
% Get last segment of the error message identifier.
idSegLast = regexp(ME1.identifier, '(?<=:)\w+$', 'match');

% Did the read fail because the file could not be found?
if strcmp(idSegLast, 'InvalidFid') && ...

~exist(filename, 'file')

% Yes. Try modifying the filename extension.
switch file_format

2-2134

MException

case 'jpg' % Change jpg to jpeg
filename = regexprep(filename, '(?<=\.)\w+$', 'jpeg');

case 'jpeg' % Change jpeg to jpg
filename = regexprep(filename, '(?<=\.)\w+$', 'jpg');

otherwise
disp(sprintf('File %s not found', filename));
rethrow(ME1);

end

% Try again, with modifed filenames.
try

fid = fopen(filename, 'r');
d_in = fread(fid);

catch ME2
disp(sprintf('Unable to access file %s', filename));
ME2 = addCause(ME2, ME1);
rethrow(ME2)

end
end

end

Example 3

This example attempts to open a file in a directory that is not on the
MATLAB path. It uses a nested try-catch block to give the user the
opportunity to extend the path. If the still cannot be found, the program
issues an exception with the first error appended to the second:

function data = read_it(filename);
try

fid = fopen(filename, 'r');
data = fread(fid);

catch ME1
if strcmp(ME1.identifier, 'MATLAB:FileIO:InvalidFid')

msg = sprintf('\n%s%s%s', 'Cannot open file ', ...
filename, '. Try another location? ');

reply = input(msg, 's')
if reply(1) == 'y'

2-2135

MException

newdir = input('Enter directory name: ', 's');
else

throw(ME1);
end
addpath(newdir);
try

fid = fopen(filename, 'r');
data = fread(fid);

c ME2
ME3 = addCause(ME2, ME1)
throw(ME3);

end
rmpath(newdir);

end
end
fclose(fid);

If you run this function in a try-catch block at the command line, you
can look at the MException object by assigning it to a variable (e) with
the catch command.

try
d = read_it('anytextfile.txt');

catch e
end

e
e =
MException object with properties:

identifier: 'MATLAB:FileIO:InvalidFid'
message: 'Invalid file identifier. Use fopen to

generate a valid file identifier.'
stack: [1x1 struct]
cause: {[1x1 MException]}

Cannot open file anytextfile.txt. Try another location?y

2-2136

MException

Enter directory name: xxxxxxx
Warning: Name is nonexistent or not a directory: xxxxxxx.
> In path at 110

In addpath at 89

See Also throw(MException), rethrow(MException),
throwAsCaller(MException), addCause(MException),
getReport(MException), disp(MException), isequal(MException),
eq(MException), ne(MException), last(MException), error, try,
catch

2-2137

menu

Purpose Generate menu of choices for user input

Syntax k = menu('mtitle','opt1','opt2',...,'optn')

Description k = menu('mtitle','opt1','opt2',...,'optn') displays the menu
whose title is in the string variable 'mtitle' and whose choices are
string variables 'opt1', 'opt2', and so on. menu returns thenumber
of the selected menu item.

If the user’s terminal provides a graphics capability, menu displays the
menu items as push buttons in a figure window (Example 1), otherwise
they will be given as a numbered list in the command window (Example
2).

Remarks To call menu from another ui object, set that object’s Interruptible
property to 'yes'. For more information, see the MATLAB Graphics
documentation.

Examples Example 1

k = menu('Choose a color','Red','Green','Blue') displays

2-2138

menu

After input is accepted, use k to control the color of a graph.

color = ['r','g','b']
plot(t,s,color(k))

Example 2

K = menu('Choose a color','Red','Blue','Green')

displays on the Command Window

----- Choose a color -----
1) Red
2) Blue
3) Green
Select a menu number:

The number entered by the user in response to the prompt is returned
as K (i.e. K = 2 implies that the user selected Blue).

See Also guide, input, uicontrol, uimenu

2-2139

mesh, meshc, meshz

Purpose Mesh plots

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax mesh(X,Y,Z)
mesh(Z)
mesh(...,C)
mesh(...,'PropertyName',PropertyValue,...)
mesh(axes_handles,...)
meshc(...)
meshz(...)
h = mesh(...)
hsurface = mesh('v6',...) hsurface = meshc('v6',...),

Description mesh, meshc, and meshz create wireframe parametric surfaces specified
by X, Y, and Z, with color specified by C.

mesh(X,Y,Z) draws a wireframe mesh with color determined by Z so
color is proportional to surface height. If X and Y are vectors, length(X)
= n and length(Y) = m, where [m,n] = size(Z). In this case, (X(j),
Y(i), Z(i,j)) are the intersections of the wireframe grid lines; X and
Y correspond to the columns and rows of Z, respectively. If X and Y
are matrices, (X(i,j), Y(i,j), Z(i,j)) are the intersections of the
wireframe grid lines.

mesh(Z) draws a wireframe mesh using X = 1:n and Y = 1:m, where
[m,n] = size(Z). The height, Z, is a single-valued function defined
over a rectangular grid. Color is proportional to surface height.

2-2140

mesh, meshc, meshz

mesh(...,C) draws a wireframe mesh with color determined by matrix
C. MATLAB performs a linear transformation on the data in C to obtain
colors from the current colormap. If X, Y, and Z are matrices, they must
be the same size as C.

mesh(...,'PropertyName',PropertyValue,...) sets the value of
the specified surface property. Multiple property values can be set with
a single statement.

mesh(axes_handles,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

meshc(...) draws a contour plot beneath the mesh.

meshz(...) draws a curtain plot (i.e., a reference plane) around the
mesh.

h = mesh(...), h = meshc(...), and h = meshz(...) return a handle to a
surfaceplot graphics object.

Backward-Compatible Version

hsurface = mesh('v6',...) hsurface = meshc('v6',...), and
hsurface = meshc(’v6’,...) returns the handles of surface objects instead
of surfaceplot objects for compatibility with MATLAB 6.5 and earlier.

Note The v6 option enables users of Version 7.x of MATLAB to create
FIG-files that previous versions can open. It is obsolete and will be
removed in a future version of MATLAB.

See Plot Objects and Backward Compatibility for more information.

Remarks mesh, meshc, and meshz do not accept complex inputs.

A mesh is drawn as a surface graphics object with the viewpoint
specified by view(3). The face color is the same as the background
color (to simulate a wireframe with hidden-surface elimination), or
none when drawing a standard see-through wireframe. The current
colormap determines the edge color. The hidden command controls the

2-2141

mesh, meshc, meshz

simulation of hidden-surface elimination in the mesh, and the shading
command controls the shading model.

Examples Produce a combination mesh and contour plot of the peaks surface:

[X,Y] = meshgrid(-3:.125:3);
Z = peaks(X,Y);
meshc(X,Y,Z);
axis([-3 3 -3 3 -10 5])

Generate the curtain plot for the peaks function:

[X,Y] = meshgrid(-3:.125:3);
Z = peaks(X,Y);

2-2142

mesh, meshc, meshz

meshz(X,Y,Z)

Algorithm The range of X, Y, and Z, or the current settings of the axes XLimMode,
YLimMode, and ZLimMode properties, determine the axis limits. axis
sets these properties.

The range of C, or the current settings of the axes CLim and CLimMode
properties (also set by the caxis function), determine the color scaling.
The scaled color values are used as indices into the current colormap.

The mesh rendering functions produce color values by mapping the z
data values (or an explicit color array) onto the current colormap. The
MATLAB default behavior is to compute the color limits automatically
using the minimum and maximum data values (also set using caxis

2-2143

mesh, meshc, meshz

auto). The minimum data value maps to the first color value in the
colormap and the maximum data value maps to the last color value
in the colormap. MATLAB performs a linear transformation on the
intermediate values to map them to the current colormap.

meshc calls mesh, turns hold on, and then calls contour and positions
the contour on the x-y plane. For additional control over the appearance
of the contours, you can issue these commands directly. You can combine
other types of graphs in this manner, for example surf and pcolor plots.

meshc assumes that X and Y are monotonically increasing. If X or Y
is irregularly spaced, contour3 calculates contours using a regularly
spaced contour grid, then transforms the data to X or Y.

See Also contour, hidden, meshgrid, surface, surf, surfc, surfl, waterfall

“Creating Surfaces and Meshes” on page 1-97 for related functions

Surfaceplot Properties for a list of surfaceplot properties

The functions axis, caxis, colormap, hold, shading, and view all set
graphics object properties that affect mesh, meshc, and meshz.

For a discussion of parametric surfaces plots, refer to surf.

2-2144

meshgrid

Purpose Generate X and Y arrays for 3-D plots

Syntax [X,Y] = meshgrid(x,y)
[X,Y] = meshgrid(x)
[X,Y,Z] = meshgrid(x,y,z)

Description [X,Y] = meshgrid(x,y) transforms the domain specified by vectors x
and y into arrays X and Y, which can be used to evaluate functions of
two variables and three-dimensional mesh/surface plots. The rows of
the output array X are copies of the vector x; columns of the output
array Y are copies of the vector y.

[X,Y] = meshgrid(x) is the same as [X,Y] = meshgrid(x,x).

[X,Y,Z] = meshgrid(x,y,z) produces three-dimensional arrays
used to evaluate functions of three variables and three-dimensional
volumetric plots.

Remarks The meshgrid function is similar to ndgrid except that the order of the
first two input and output arguments is switched. That is, the statement

[X,Y,Z] = meshgrid(x,y,z)

produces the same result as

[Y,X,Z] = ndgrid(y,x,z)

Because of this, meshgrid is better suited to problems in two- or
three-dimensional Cartesian space, while ndgrid is better suited to
multidimensional problems that aren’t spatially based.

meshgrid is limited to two- or three-dimensional Cartesian space.

Examples [X,Y] = meshgrid(1:3,10:14)

X =

1 2 3
1 2 3

2-2145

meshgrid

1 2 3
1 2 3
1 2 3

Y =

10 10 10
11 11 11
12 12 12
13 13 13
14 14 14

The following example shows how to use meshgrid to create a surface
plot of a function.

[X,Y] = meshgrid(-2:.2:2, -2:.2:2);
Z = X .* exp(-X.^2 - Y.^2);
surf(X,Y,Z)

See Also griddata, mesh, ndgrid, slice, surf

2-2146

methods

Purpose Information on class methods

Syntax m = methods('classname')
m = methods('object')
m = methods(..., '-full')

Description m = methods('classname') returns, in a cell array of strings, the
names of all methods for the MATLAB, COM, or Java class classname.

m = methods('object') returns the names of all methods for the
MATLAB, COM, or Java class of which object is an instance.

m = methods(..., '-full') returns the full description of the
methods defined for the class, including inheritance information
and, for COM and Java methods, attributes and signatures. For any
overloaded method, the returned array includes a description of each of
its signatures.

For MATLAB classes, inheritance information is returned only if that
class has been instantiated.

For some classes it may not be possible for MATLAB to know inherited
methods until after the class has been instantiated. In these cases,
methods -full displays only the methods defined by the class itself
until after the class has been instantiated. After an instance has been
created methods -full also shows inherited methods.

Examples List the methods of MATLAB class stock:

m = methods('stock')
m =

'display'
'get'
'set'
'stock'
'subsasgn'
'subsref'

Create a MathWorks sample COM control and list its methods:

2-2147

methods

h = actxcontrol('mwsamp.mwsampctrl.1', [0 0 200 200]);
methods(h)

Methods for class com.mwsamp.mwsampctrl.1:

AboutBox GetR8Array SetR8 move
Beep GetR8Vector SetR8Array propedit
FireClickEvent GetVariantArray SetR8Vector release
GetBSTR GetVariantVector addproperty save
GetBSTRArray Redraw delete send
GetI4 SetBSTR deleteproperty set
GetI4Array SetBSTRArray events
GetI4Vector SetI4 get
GetIDispatch SetI4Array invoke
GetR8 SetI4Vector load

Display a full description of all methods on Java object
java.awt.Dimension:

methods java.awt.Dimension -full

Dimension(java.awt.Dimension)
Dimension(int,int)
Dimension()
void wait() throws java.lang.InterruptedException

% Inherited from java.lang.Object
void wait(long,int) throws java.lang.InterruptedException

% Inherited from java.lang.Object
void wait(long) throws java.lang.InterruptedException

% Inherited from java.lang.Object
java.lang.Class getClass() % Inherited from java.lang.Object

.

.

See Also methodsview, invoke, ismethod, help, what, which

2-2148

methodsview

Purpose Information on class methods in separate window

Syntax methodsview packagename.classname
methodsview classname
methodsview(object)

Description methodsview packagename.classname displays information describing
the Java class classname that is available from the package of Java
classes packagename.

methodsview classname displays information describing the MATLAB,
COM, or imported Java class classname.

methodsview(object) displays information describing the object
instantiated from a COM or Java class.

MATLAB creates a new window in response to the methodsview
command. This window displays all the methods defined in the specified
class. For each of these methods, the following additional information
is supplied:

• Name of the method

• Method type qualifiers (for example, abstract or synchronized)

• Data type returned by the method

• Arguments passed to the method

• Possible exceptions thrown

• Parent of the specified class

Examples The following command lists information on all methods in the
java.awt.MenuItem class.

methodsview java.awt.MenuItem

2-2149

methodsview

MATLAB displays this information in a new window, as shown below

See Also methods, import, class, javaArray

2-2150

mex

Purpose Compile MEX-function from C, C++, or Fortran source code

Syntax mex -help
mex -setup
mex filenames
mex options filenames

Description mex -help displays the M-file help for mex.

mex -setup lets you select or change the default compiler.

mex filenames compiles and links one or more C, C++, or Fortran
source files specified in filenames into a shared library called a
MEX-file executable from MATLAB.

mex options filenames compiles and links one or more source files
specified in filenames using one or more of the specified command-line
options.

The MEX-file has a platform-dependent extension. Use the mexext
function to return the extension for the current machine or for all
supported platforms.

filenames can be any combination of source files, object files, and
library files. Include both the file name and the file extension in
filenames. A non-source-code filenames parameter is passed to the
linker without being compiled.

All valid command-line options are shown in the MEX Script Switches
on page 2-2152 table. These options are available on all platforms
except where noted.

mex also can build executable files for stand-alone MATLAB engine
and MAT-file applications. For more information, see “Engine/MAT
Stand-Alone Application Details” on page 2-2157.

You can run mex from the MATLAB Command Prompt, Windows
Command Prompt, or the UNIX shell. mex is a script named mex.bat
on Windows and mex on UNIX. It is located in the matlabroot/bin
directory.

2-2151

mex

The first file listed in filenames becomes the name of the resulting
MEX-file. You can list other source, object, or library files as additional
filenames parameters to satisfy external references.

mex uses an options file to specify variables and values that are passed
as arguments to the compiler, linker, and other tools (e.g., the resource
linker on Windows). Command-line options to mex may supplement or
override contents of the options file. For more information, see “Options
File Details” on page 2-2156. The default name for the options file is
mexopts.bat (Windows) or mexopts.sh (UNIX).

The setup option causes mex to search for installed compilers and allows
you to choose an options file as the default for future invocations of mex.

For a list of compilers supported with this
release, refer to Technical Note 1601 at
http://www.mathworks.com/support/tech-notes/1600/1601.html.

MEX Script Switches

Switch Function

@<rsp_file> (Windows only) Include the contents of
the text file <rsp_file> as command-line
arguments to mex.

-<arch> Build an output file for architecture
<arch>. To determine the value for <arch>,
type computer('arch') at the MATLAB
Command Prompt on the target machine.
Valid values for <arch> depend on the
architecture of the build platform.

2-2152

http://www.mathworks.com/support/tech-notes/1600/1601.html

mex

MEX Script Switches (Continued)

Switch Function

-ada <sfcn.ads> Use this option to compile a Simulink®

S-function written in Ada, where <sfcn.ads>
is the Package Specification for the S-function.
When this option is specified, only the -v
(verbose) and -g (debug) options are relevant.
All other options are ignored. For examples
and information on supported compilers
and other requirements, see README in the
simulink/ada/examples directory.

-argcheck (C functions only) Add argument checking.
This adds code so arguments passed
incorrectly to MATLAB API functions cause
assertion failures.

-c Compile only. Creates an object file, but not a
MEX-file.

-compatibleArrayDimsBuild a MEX-file using the MATLAB Version
7.2 array-handling API, which limits arrays
to 2^31-1 elements. This option is the default.
(See also the -largeArrayDims option.)

-cxx (UNIX only) Use the C++ linker to link the
MEX-file if the first source file is in C and
there are one or more C++ source or object
files. This option overrides the assumption
that the first source file in the list determines
which linker to use.

-D<name> Define a symbol name to the C preprocessor.
Equivalent to a #define <name> directive in
the source.

2-2153

mex

MEX Script Switches (Continued)

Switch Function

-D<name>=<value> Define a symbol name and value to the
C preprocessor. Equivalent to a #define
<name> <value> directive in the source.

-f <optionsfile> Specify location and name of options file to
use. Overrides the mex default-options-file
search mechanism.

-fortran (UNIX only) Specify that the gateway routine
is in Fortran. This option overrides the
assumption that the first source file in the list
determines which linker to use.

-g Create a MEX-file containing additional
symbolic information for use in debugging.
This option disables the mex default behavior
of optimizing built object code (see the -O
option).

-h[elp] Print help for mex.

-I<pathname> Add <pathname> to the list of directories to
search for #include files.

-inline Inline matrix accessor functions (mx*).
The generated MEX-function may not be
compatible with future versions of MATLAB.

-l<name> Link with object library. On Windows, <name>
expands to <name>.lib or lib<name>.lib
and on UNIX to lib<name>.so or
lib<name>.dylib.

2-2154

mex

MEX Script Switches (Continued)

Switch Function

-L<directory> Add <directory> to the list of directories
to search for libraries specified with the -l
option. On UNIX systems, you must also set
the run-time library path, as explained in
“Setting Run-Time Library Path”.

-largeArrayDims Build a MEX-file using the MATLAB
large-array-handling API. This API can
handle arrays with more than 2^31–1
elements when compiled on 64-bit platforms.
(See also the -compatibleArrayDims option.)

-n No execute mode. Print any commands that
mex would otherwise have executed, but do
not actually execute any of them.

-O Optimize the object code. Optimization is
enabled by default and by including this
option on the command line. If the -g option
appears without the -O option, optimization
is disabled.

-outdir <dirname> Place all output files in directory <dirname>.

-output
<resultname>

Create MEX-file named <resultname>.
The appropriate MEX-file extension is
automatically appended. Overrides the
default MEX-file naming mechanism.

-setup Interactively specify the compiler options file
to use as the default for future invocations of
mex by placing it in the user profile directory
(returned by the prefdir command). When
this option is specified, no other command-line
input is accepted.

2-2155

mex

MEX Script Switches (Continued)

Switch Function

-U<name> Remove any initial definition of the C
preprocessor symbol <name>. (Inverse of the
-D option.)

-v Verbose mode. Print the values for important
internal variables after the options file is
processed and all command-line arguments
are considered. Prints each compile step and
final link step fully evaluated.

<name>=<value> Supplement or override an options file
variable for variable <name>. This option is
processed after the options file is processed
and all command line arguments are
considered.

Remarks Options File Details

MATLAB provides template options files for the compilers
that are supported by mex. These templates are
located in the matlabroot\bin\win32\mexopts or the
matlabroot\bin\win64\mexopts directories on Windows, or the
matlabroot/bin directory on UNIX. These template options files are
used by the -setup option to define the selected default options file.

Override Option Details

Any variable specified in the options file can be overridden at the
command line by using the <name>=<value> command-line argument.
When using this command-line option, you may need to use the
shell’s quoting syntax to protect characters such as spaces, which
have a meaning in the shell syntax. On Windows, use double quotes
(e.g., COMPFLAGS="opt1 opt2") and on UNIX, use single quotes (e.g.,
CFLAGS='opt1 opt2').

2-2156

mex

It is common to use this option to supplement variables already
defined. To do this refer to the variable by prepending a $ (e.g.,
COMPFLAGS="$COMPFLAGS opt2" on Windows or CFLAGS='$CFLAGS
opt2' on UNIX).

Engine/MAT Stand-Alone Application Details

mex can build executable files for stand-alone MATLAB engine and
MAT-file applications. For these applications, mex does not use the
default options file; you must use the -f option to specify an options file.

The options files used to generate stand-alone MATLAB engine and
MAT-file executables are named *engmatopts.bat on Windows, or
engopts.sh and matopts.sh on UNIX, and are located in the same
directory as the template options files referred to above in Options File
Details.

Examples The following command compiles yprime.c:

mex yprime.c

When debugging, it is often useful to use verbose mode, as well as
include symbolic debugging information:

mex -v -g yprime.c

See Also computer, dbmex, inmem, loadlibrary, mexext, pcode, prefdir, system

2-2157

mexext

Purpose MEX-filename extension

Syntax ext = mexext
extlist = mexext('all')

Description ext = mexext returns the filename extension for the current platform.

extlist = mexext('all') returns a struct with fields arch and ext
describing MEX-file name extensions for the all platforms.

Remarks See Using MEX-Files for a table of file extensions.

Examples Find the MEX-file extension for the system you are currently working
on:

ext = mexext

ext =
mexw32

Find the MEX-file extension for a PowerPC Macintosh system:

extlist = mexext('all');

for k=1:length(extlist)
if strcmp(extlist(k).arch, 'mac')
disp(sprintf('Arch: %s Ext: %s', ...

extlist(k).arch, extlist(k).ext))
end, end

Arch: mac Ext: mexmac

See Also mex

2-2158

mfilename

Purpose Name of currently running M-file

Syntax mfilename
p = mfilename('fullpath')
c = mfilename('class')

Description mfilename returns a string containing the name of the most recently
invoked M-file. When called from within an M-file, it returns the name
of that M-file, allowing an M-file to determine its name, even if the
filename has been changed.

p = mfilename('fullpath') returns the full path and name of the
M-file in which the call occurs, not including the filename extension.

c = mfilename('class') in a method, returns the class of the method,
not including the leading @ sign. If called from a nonmethod, it yields
the empty string.

Remarks If mfilename is called with any argument other than the above two, it
behaves as if it were called with no argument.

When called from the command line, mfilename returns an empty
string.

To get the names of the callers of an M-file, use dbstack with an output
argument.

See Also dbstack, function, nargin, nargout, inputname

2-2159

mget

Purpose Download file from FTP server

Syntax mget(f,'filename')
mget(f,'dirname')
mget(...,'target')

Description mget(f,'filename') retrieves filename from the FTP server f into
the MATLAB current directory, where f was created using ftp.

mget(f,'dirname') retrieves the directory dirname and its contents
from the FTP server f into the MATLAB current directory, where f was
created using ftp. You can use a wildcard (*) in dirname.

mget(...,'target') retrieves the specified items from the FTP server
f, where f was created using ftp, into the local directory specified by
target, where target is an absolute pathname.

Examples Connect to an FTP server, change to the documents/rfc directory, and
retrieve the file rfc0959.txt into the current MATLAB directory.

ftpobj = ftp('nic.merit.edu');
cd(ftpobj, 'documents/rfc');

mget(ftpobj, 'rfc0959.txt')
ans =

'C:\work\rfc0959.txt'

See Also cd (ftp), ftp, mput

2-2160

min

Purpose Smallest elements in array

Syntax C = min(A)
C = min(A,B)
C = min(A,[],dim)
[C,I] = min(...)

Description C = min(A) returns the smallest elements along different dimensions
of an array.

If A is a vector, min(A) returns the smallest element in A.

If A is a matrix, min(A) treats the columns of A as vectors, returning a
row vector containing the minimum element from each column.

If A is a multidimensional array, min operates along the first
nonsingleton dimension.

C = min(A,B) returns an array the same size as A and B with the
smallest elements taken from A or B. The dimensions of A and B must
match, or they may be scalar.

C = min(A,[],dim) returns the smallest elements along the dimension
of A specified by scalar dim. For example, min(A,[],1) produces the
minimum values along the first dimension (the rows) of A.

[C,I] = min(...) finds the indices of the minimum values of A, and
returns them in output vector I. If there are several identical minimum
values, the index of the first one found is returned.

Remarks For complex input A, min returns the complex number with the largest
complex modulus (magnitude), computed with min(abs(A)). Then
computes the largest phase angle with min(angle(x)), if necessary.

The min function ignores NaNs.

See Also max, mean, median, sort

2-2161

min (timeseries)

Purpose Minimum value of timeseries data

Syntax ts_min = min(ts)
ts_min = min(ts,'PropertyName1',PropertyValue1,...)

Description ts_min = min(ts) returns the minimum value in the time-series data.
When ts.Data is a vector, ts_min is the minimum value of ts.Data
values. When ts.Data is a matrix, ts_min is a row vector containing
the minimum value of each column of ts.Data (when IsTimeFirst
is true and the first dimension of ts is aligned with time). For the
N-dimensional ts.Data array, min always operates along the first
nonsingleton dimension of ts.Data.

ts_min = min(ts,'PropertyName1',PropertyValue1,...)
specifies the following optional input arguments:

• 'MissingData' property has two possible values, 'remove' (default)
or 'interpolate', indicating how to treat missing data during the
calculation.

• 'Quality' values are specified by a vector of integers, indicating
which quality codes represent missing samples (for vector data) or
missing observations (for data arrays with two or more dimensions).

• 'Weighting' property has two possible
values, 'none' (default) or 'time'.
When you specify 'time', larger time values
correspond to larger weights.

Examples The following example illustrates how to find the minimum values in
multivariate time-series data.

1 Load a 24-by-3 data array.

load count.dat

2 Create a timeseries object with 24 time values.

2-2162

min (timeseries)

count_ts = timeseries(count,[1:24],'Name','CountPerSecond')

3 Find the minimum in each data column for this timeseries object.

min(count_ts)

ans =

7 9 7

The minimum is found independently for each data column in the
timeseries object.

See Also iqr (timeseries), max (timeseries), median (timeseries), mean
(timeseries), std (timeseries), timeseries, var (timeseries)

2-2163

MinimizeCommandWindow

Purpose Minimize size of server window

Syntax MATLAB Client
h.MinimizeCommandWindow
MinimizeCommandWindow(h)
invoke(h, 'MinimizeCommandWindow')

Method Signature
HRESULT MinimizeCommandWindow(void)

Visual Basic Client
MinimizeCommandWindow

Description MinimizeCommandWindow minimizes the window for the server attached
to handle h, and makes it inactive. If the server window was already
in a minimized state to begin with, then MinimizeCommandWindow does
nothing.

Remarks Server function names, like MinimizeCommandWindow, are case sensitive
when using the first syntax shown.

There is no difference in the operation of the three syntaxes shown
above for the MATLAB client.

Examples Create a COM server and minimize its window. Then maximize the
window and make it the currently active window.

MATLAB Client

h = actxserver('matlab.application');
h.MinimizeCommandWindow;
% Now return the server window to its former state on
% the desktop and make it the currently active window.
h.MaximizeCommandWindow;

2-2164

MinimizeCommandWindow

Visual Basic .NET Client

Create a COM server and minimize its window.

Dim Matlab As Object

Matlab = CreateObject("matlab.application")
Matlab.MinimizeCommandWindow

'Now return the server window to its former state on
'the desktop and make it the currently active window.

Matlab.MaximizeCommandWindow

See Also MaximizeCommandWindow

2-2165

minres

Purpose Minimum residual method

Syntax x = minres(A,b)
minres(A,b,tol)
minres(A,b,tol,maxit)
minres(A,b,tol,maxit,M)
minres(A,b,tol,maxit,M1,M2)
minres(A,b,tol,maxit,M1,M2,x0)
[x,flag] = minres(A,b,...)
[x,flag,relres] = minres(A,b,...)
[x,flag,relres,iter] = minres(A,b,...)
[x,flag,relres,iter,resvec] = minres(A,b,...)
[x,flag,relres,iter,resvec,resveccg] = minres(A,b,...)

Description x = minres(A,b) attempts to find a minimum norm residual solution x
to the system of linear equations A*x=b. The n-by-n coefficient matrix A
must be symmetric but need not be positive definite. It should be large
and sparse. The column vector b must have length n. A can be a function
handle afun such that afun(x) returns A*x. See “Function Handles” in
the MATLAB Programming documentation for more information.

“Parameterizing Functions Called by Function Functions”, in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the function afun, as well as the preconditioner
function mfun described below, if necessary.

If minres converges, a message to that effect is displayed. If minres
fails to converge after the maximum number of iterations or halts
for any reason, a warning message is printed displaying the relative
residual norm(b-A*x)/norm(b) and the iteration number at which the
method stopped or failed.

minres(A,b,tol) specifies the tolerance of the method. If tol is [],
then minres uses the default, 1e-6.

minres(A,b,tol,maxit) specifies the maximum number of iterations.
If maxit is [], then minres uses the default, min(n,20).

2-2166

minres

minres(A,b,tol,maxit,M) and minres(A,b,tol,maxit,M1,M2)
use symmetric positive definite preconditioner M or M = M1*M2 and
effectively solve the system inv(sqrt(M))*A*inv(sqrt(M))*y =
inv(sqrt(M))*b for y and then return x = inv(sqrt(M))*y. If M is []
then minres applies no preconditioner. M can be a function handle mfun,
such that mfun(x) returns M\x.

minres(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is
[], then minres uses the default, an all-zero vector.

[x,flag] = minres(A,b,...) also returns a convergence flag.

Flag Convergence

0 minres converged to the desired tolerance tol within
maxit iterations.

1 minres iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 minres stagnated. (Two consecutive iterates were
the same.)

4 One of the scalar quantities calculated during minres
became too small or too large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if the flag output is specified.

[x,flag,relres] = minres(A,b,...) also returns the relative
residual norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = minres(A,b,...) also returns the iteration
number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = minres(A,b,...) also returns
a vector of estimates of the minres residual norms at each iteration,
including norm(b-A*x0).

2-2167

minres

[x,flag,relres,iter,resvec,resveccg] = minres(A,b,...) also
returns a vector of estimates of the Conjugate Gradients residual norms
at each iteration.

Examples Example 1

n = 100; on = ones(n,1);
A = spdiags([-2*on 4*on -2*on],-1:1,n,n);
b = sum(A,2);
tol = 1e-10;
maxit = 50;
M1 = spdiags(4*on,0,n,n);

x = minres(A,b,tol,maxit,M1);
minres converged at iteration 49 to a solution with relative
residual 4.7e-014

Example 2

This example replaces the matrix A in Example 1 with a handle to a
matrix-vector product function afun. The example is contained in an
M-file run_minres that

• Calls minres with the function handle @afun as its first argument.

• Contains afun as a nested function, so that all variables in
run_minres are available to afun.

The following shows the code for run_minres:

function x1 = run_minres
n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -2*on],-1:1,n,n);
b = sum(A,2);
tol = 1e-10;
maxit = 50;
M = spdiags(4*on,0,n,n);
x1 = minres(@afun,b,tol,maxit,M);

2-2168

minres

function y = afun(x)
y = 4 * x;
y(2:n) = y(2:n) - 2 * x(1:n-1);
y(1:n-1) = y(1:n-1) - 2 * x(2:n);

end
end

When you enter

x1=run_minres;

MATLAB displays the message

minres converged at iteration 49 to a solution with relative
residual 4.7e-014

Example 3

Use a symmetric indefinite matrix that fails with pcg.

A = diag([20:-1:1, -1:-1:-20]);
b = sum(A,2); % The true solution is the vector of all ones.
x = pcg(A,b); % Errors out at the first iteration.

displays the following message:

pcg stopped at iteration 1 without converging to the desired
tolerance 1e-006 because a scalar quantity became too small or
too large to continue computing.
The iterate returned (number 0) has relative residual 1

However, minres can handle the indefinite matrix A.

x = minres(A,b,1e-6,40);
minres converged at iteration 39 to a solution with relative
residual 1.3e-007

See Also bicg, bicgstab, cgs, cholinc, gmres, lsqr, pcg, qmr, symmlq

2-2169

minres

function_handle (@), mldivide (\)

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

[2] Paige, C. C. and M. A. Saunders, “Solution of Sparse Indefinite
Systems of Linear Equations.” SIAM J. Numer. Anal., Vol.12, 1975,
pp. 617-629.

2-2170

mislocked

Purpose Determine whether M-file or MEX-file cannot be cleared from memory

Syntax mislocked
mislocked(fun)

Description mislocked by itself returns logical 1 (true) if the currently running
M-file or MEX-file is locked, and logical 0 (false) otherwise.

mislocked(fun) returns logical 1 (true) if the function named fun is
locked in memory, and logical 0 (false) otherwise. Locked M-files and
MEX-files cannot be removed with the clear function.

See Also mlock, munlock

2-2171

mkdir

Purpose Make new directory

Graphical
Interface

As an alternative to the mkdir function, you can click the New folder
button in the “Current Directory Browser” to add a directory.

Syntax mkdir('dirname')
mkdir('parentdir','dirname')
status = mkdir(...,'dirname')
[status,message,messageid] = mkdir(...,'dirname')

Description mkdir('dirname') creates the directory dirname in the current
directory, if dirname represents a relative path. Otherwise, dirname
represents an absolute path and mkdir attempts to create the absolute
directory dirname in the root of the current volume. An absolute path
starts with any one of the following: a Windows drive letter, a UNC
path '\\' string, or a UNIX '/' character.

mkdir('parentdir','dirname') creates the directory dirname in
the existing directory parentdir, where parentdir is an absolute or
relative pathname. If parentdir does not exist, MATLAB attempts to
create it. See the Remarks section below.

status = mkdir(...,'dirname') creates the specified directory and
returns a status of logical 1 if the operation was successful, or logical 0
if unsuccessful.

[status,message,messageid] = mkdir(...,'dirname') creates the
specified directory, and returns status, message string, and MATLAB
error message ID. The value given to status is logical 1 for success
and logical 0 for error.

See the help for error and lasterror for more information.)

Remarks If the dirname or parentdir argument specifies not only a directory
name, but also a directory path (e.g., ’mydir\xdir1\xdir2\targetdir'),
and this path includes one or more nonexistent directories (e.g., xdir1
and/or xdir2 in the path above), MATLAB attempts to create each

2-2172

mkdir

nonexistent parent directory, in turn, in the process of creating the
specified target directory.

Examples Create a Subdirectory in Current Directory

To create a subdirectory in the current directory called newdir, type

mkdir('newdir')

Create a Subdirectory in Specified Parent Directory

To create a subdirectory called newdir in the directory testdata, which
is at the same level as the current directory, type

mkdir('../testdata','newdir')

Return Status When Creating Directory

In this example, the first attempt to create newdir succeeds, returning
a status of 1, and no error or warning message or message identifier:

[s, mess, messid] = mkdir('../testdata', 'newdir')
s =

1
mess =

''
messid =

''

If you attempt to create the same directory again, mkdir again returns
a success status, and also a warning and message identifier informing
you that the directory already existed:

[s,mess,messid] = mkdir('../testdata','newdir')
s =

1
mess =

Directory "newdir" already exists.
messid =

MATLAB:MKDIR:DirectoryExists

2-2173

mkdir

See Also copyfile, cd, dir, fileattrib, filebrowser, fileparts, ls,
mfilename, movefile, rmdir

2-2174

mkdir (ftp)

Purpose Create new directory on FTP server

Syntax mkdir(f,'dirname')

Description mkdir(f,'dirname') creates the directory dirname in the current
directory of the FTP server f, where f was created using ftp, and where
dirname is a pathname relative to the current directory on f.

Examples Connect to server testsite, view the contents, and create the directory
newdir in the directory testdir.

test=ftp('ftp.testsite.com')
dir(test)
. .. otherfile.m testdir
mkdir(test,'testdir/newdir');
dir(test,'testdir)
. .. newdir

See Also dir (ftp), ftp, rmdir (ftp)

2-2175

mkpp

Purpose Make piecewise polynomial

Syntax pp = mkpp(breaks,coefs)
pp = mkpp(breaks,coefs,d)

Description pp = mkpp(breaks,coefs) builds a piecewise polynomial pp from its
breaks and coefficients. breaks is a vector of length L+1 with strictly
increasing elements which represent the start and end of each of
L intervals. coefs is an L-by-k matrix with each row coefs(i,:)
containing the coefficients of the terms, from highest to lowest exponent,
of the order k polynomial on the interval [breaks(i),breaks(i+1)].

pp = mkpp(breaks,coefs,d) indicates that the piecewise polynomial
pp is d-vector valued, i.e., the value of each of its coefficients is a vector
of length d. breaks is an increasing vector of length L+1. coefs is a
d-by-L-by-k array with coefs(r,i,:) containing the k coefficients of the
ith polynomial piece of the rth component of the piecewise polynomial.

Use ppval to evaluate the piecewise polynomial at specific points. Use
unmkpp to extract details of the piecewise polynomial.

Note. The order of a polynomial tells you the number of coefficients
used in its description. A kth order polynomial has the form

It has k coefficients, some of which can be 0, and maximum exponent
k-1. So the order of a polynomial is usually one greater than its degree.
For example, a cubic polynomial is of order 4.

Examples The first plot shows the quadratic polynomial

shifted to the interval [-8,-4]. The second plot shows its negative

2-2176

mkpp

but shifted to the interval [-4,0].

The last plot shows a piecewise polynomial constructed by alternating
these two quadratic pieces over four intervals. It also shows its
first derivative, which was constructed after breaking the piecewise
polynomial apart using unmkpp.

subplot(2,2,1)
cc = [-1/4 1 0];
pp1 = mkpp([-8 -4],cc);
xx1 = -8:0.1:-4;
plot(xx1,ppval(pp1,xx1),'k-')

subplot(2,2,2)
pp2 = mkpp([-4 0],-cc);
xx2 = -4:0.1:0;
plot(xx2,ppval(pp2,xx2),'k-')

subplot(2,1,2)
pp = mkpp([-8 -4 0 4 8],[cc;-cc;cc;-cc]);
xx = -8:0.1:8;
plot(xx,ppval(pp,xx),'k-')
[breaks,coefs,l,k,d] = unmkpp(pp);
dpp = mkpp(breaks,repmat(k-1:-1:1,d*l,1).*coefs(:,1:k-1),d);
hold on, plot(xx,ppval(dpp,xx),'r-'), hold off

2-2177

mkpp

See Also ppval, spline, unmkpp

2-2178

mldivide \, mrdivide /

Purpose Left or right matrix division

Syntax mldivide(A,B) A\B
mrdivide(B,A) B/A

Description mldivide(A,B) and the equivalent A\B perform matrix left division
(back slash). A and B must be matrices that have the same number of
rows, unless A is a scalar, in which case A\B performs element-wise
division — that is, A\B = A.\B.

If A is a square matrix, A\B is roughly the same as inv(A)*B, except it is
computed in a different way. If A is an n-by-n matrix and B is a column
vector with n elements, or a matrix with several such columns, then X
= A\B is the solution to the equation AX = B computed by Gaussian
elimination with partial pivoting (see “Algorithm” on page 2-2183 for
details). A warning message is displayed if A is badly scaled or nearly
singular.

If A is an m-by-n matrix with m ~= n and B is a column vector with m
components, or a matrix with several such columns, then X = A\B is
the solution in the least squares sense to the under- or overdetermined
system of equations AX = B. In other words, X minimizes norm(A*X -
B), the length of the vector AX - B. The rank k of A is determined from
the QR decomposition with column pivoting (see “Algorithm” on page
2-2183 for details). The computed solution X has at most k nonzero
elements per column. If k < n, this is usually not the same solution as
x = pinv(A)*B, which returns a least squares solution.

mrdivide(B,A) and the equivalent B/A perform matrix right division
(forward slash). B and A must have the same number of columns.

If A is a square matrix, B/A is roughly the same as B*inv(A). If A is an
n-by-n matrix and B is a row vector with n elements, or a matrix with
several such rows, then X = B/A is the solution to the equation XA =
B computed by Gaussian elimination with partial pivoting. A warning
message is displayed if A is badly scaled or nearly singular.

If B is an m-by-n matrix with m ~= n and A is a column vector with m
components, or a matrix with several such columns, then X = B/A is

2-2179

mldivide \, mrdivide /

the solution in the least squares sense to the under- or overdetermined
system of equations XA = B.

Note Matrix right division and matrix left division are related by the
equation B/A = (A'\B')'.

Least Squares Solutions

If the equation Ax = b does not have a solution (and A is not a square
matrix), x = A\b returns a least squares solution — in other words, a
solution that minimizes the length of the vector Ax - b, which is equal to
norm(A*x - b). See “Example 3” on page 2-2182 for an example of this.

Examples Example 1

Suppose that A and b are the following.

A = magic(3)

A =

8 1 6
3 5 7
4 9 2

b = [1;2;3]

b =

1
2
3

To solve the matrix equation Ax = b, enter

x=A\b

2-2180

mldivide \, mrdivide /

x =

0.0500
0.3000
0.0500

You can verify that x is the solution to the equation as follows.

A*x

ans =

1.0000
2.0000
3.0000

Example 2 — A Singular

If A is singular, A\b returns the following warning.

Warning: Matrix is singular to working precision.

In this case, Ax = b might not have a solution. For example,

A = magic(5);
A(:,1) = zeros(1,5); % Set column 1 of A to zeros
b = [1;2;5;7;7];
x = A\b
Warning: Matrix is singular to working precision.

ans =

NaN
NaN
NaN
NaN
NaN

2-2181

mldivide \, mrdivide /

If you get this warning, you can still attempt to solve Ax = b using the
pseudoinverse function pinv.

x = pinv(A)*b

x =

0
0.0209
0.2717
0.0808

-0.0321

The result x is least squares solution to Ax = b. To determine whether x
is a exact solution — that is, a solution for which Ax - b = 0 — simply
compute

A*x-b

ans =

-0.0603
0.6246

-0.4320
0.0141
0.0415

The answer is not the zero vector, so x is not an exact solution.

“Pseudoinverses”, in the online MATLAB Mathematics documentation,
provides more examples of solving linear systems using pinv.

Example 3

Suppose that

A = [1 0 0;1 0 0];
b = [1; 2];

2-2182

mldivide \, mrdivide /

Note that Ax = b cannot have a solution, because A*x has equal entries
for any x. Entering

x = A\b

returns the least squares solution

x =

1.5000
0
0

along with a warning that A is rank deficient. Note that x is not an
exact solution:

A*x-b

ans =

0.5000
-0.5000

Data Type
Support

When computing X = A\B or X = A/B, the matrices A and B can have
data type double or single. The following rules determine the data
type of the result:

• If both A and B have type double, X has type double.

• If either A or B has type single, X has type single.

Algorithm The specific algorithm used for solving the simultaneous linear
equations denoted by X = A\B and X = B/A depends upon the structure
of the coefficient matrix A. To determine the structure of A and select
the appropriate algorithm, MATLAB follows this precedence:

1 If A is sparse and diagonal, X is computed by dividing by the
diagonal elements of A.

2-2183

mldivide \, mrdivide /

2 If A is sparse, square, and banded, then banded solvers are used.
Band density is (# nonzeros in the band)/(# nonzeros in a full band).
Band density = 1.0 if there are no zeros on any of the three diagonals.

• If A is real and tridiagonal, i.e., band density = 1.0, and B is real
with only one column, X is computed quickly using Gaussian
elimination without pivoting.

• If the tridiagonal solver detects a need for pivoting, or if A or B is
not real, or if B has more than one column, but A is banded with
band density greater than the spparms parameter 'bandden'
(default = 0.5), then X is computed using the Linear Algebra
Package (LAPACK) routines in the following table.

Real Complex

A and B double DGBTRF, DGBTRS ZGBTRF, ZGBTRS

A or B single SGBTRF, SGBTRS CGBTRF, CGBTRS

3 If A is an upper or lower triangular matrix, then X is computed
quickly with a backsubstitution algorithm for upper triangular
matrices, or a forward substitution algorithm for lower triangular
matrices. The check for triangularity is done for full matrices by
testing for zero elements and for sparse matrices by accessing the
sparse data structure.

If A is a full matrix, computations are performed using the Basic
Linear Algebra Subprograms (BLAS) routines in the following table.

Real Complex

A and B double DTRSV, DTRSM ZTRSV, ZTRSM

A or B single STRSV, STRSM CTRSV, CTRSM

4 If A is a permutation of a triangular matrix, then X is computed
with a permuted backsubstitution algorithm.

2-2184

mldivide \, mrdivide /

5 If A is symmetric, or Hermitian, and has real positive diagonal
elements, then a Cholesky factorization is attempted (see chol). If A
is found to be positive definite, the Cholesky factorization attempt
is successful and requires less than half the time of a general
factorization. Nonpositive definite matrices are usually detected
almost immediately, so this check also requires little time.

If successful, the Cholesky factorization for full A is

A = R'*R

where R is upper triangular. The solution X is computed by solving
two triangular systems,

X = R\(R'\B)

Computations are performed using the LAPACK routines in the
following table.

Real Complex

A and B double DLANSY, DPOTRF,
DPOTRS, DPOCON

ZLANHE, ZPOTRF,
ZPOTRS, ZPOCON

A or B single SLANSY, SPOTRF,
SPOTRS,
SDPOCON

CLANHE, CPOTRF,
CPOTRS, CPOCON

6 If A is sparse, then MATLAB uses CHOLMOD to compute X. The
computations result in

P'*A*P = R'*R

where P is a permutation matrix generated by amd, and R is an upper
triangular matrix. In this case,

X = P*(R\(R'\(P'*B)))

2-2185

mldivide \, mrdivide /

7 if A is not sparse but is symmetric, and the Cholesky factorization
failed, then MATLAB solves the system using a symmetric,
indefinite factorization. That is, MATLAB computes the
factorization P'*A*P=L*D*L', and computes the solution X by
X=P*(L'\(D\(L\(P*B)))). Computations are performed using the
LAPACK routines in the following table:

Real Complex

A and B double DLANSY, DSYTRF,
DSYTRS, DSYCON

ZLANHE, ZHETRF,
ZHETRS, ZHECON

A or B single SLANSY, SSYTRF,
SSYTRS, SSYCON

CLANHE, CHETRF,
CHETRS, CHECON

8 If A is Hessenberg, but not sparse, it is reduced to an upper
triangular matrix and that system is solved via substitution.

9 If A is square and does not satisfy criteria 1 through 6, then a
general triangular factorization is computed by Gaussian elimination
with partial pivoting (see lu). This results in

A = L*U

where L is a permutation of a lower triangular matrix and U is
an upper triangular matrix. Then X is computed by solving two
permuted triangular systems.

X = U\(L\B)

If A is not sparse, computations are performed using the LAPACK
routines in the following table.

2-2186

mldivide \, mrdivide /

Real Complex

A and B double DLANGE, DGESV,
DGECON

ZLANGE, ZGESV,
ZGECON

A or B single SLANGE, SGESV,
SGECON

CLANGE, CGESV,
CGECON

If A is sparse, then UMFPACK is used to compute X. The computations
result in

P*(R\A)*Q = L*U

where

• P is a row permutation matrix

• R is a diagonal matrix that scales the rows of A

• Q is a column reordering matrix.

Then X = Q*(U\L\(P*(R\B))).

Note The factorization P*(R\A)*Q = L*U differs from the
factorization used by the function lu, which does not scale the rows
of A.

10 If A is not square, then Householder reflections are used to compute
an orthogonal-triangular factorization.

A*P = Q*R

where P is a permutation, Q is orthogonal and R is upper triangular
(see qr). The least squares solution X is computed with

X = P*(R\(Q'*B))

2-2187

mldivide \, mrdivide /

If A is sparse, MATLAB computes a least squares solution using the
sparse qr factorization of A.

If A is full, MATLAB uses the LAPACK routines listed in the following
table to compute these matrix factorizations.

Real Complex

A and B double DGEQP3,
DORMQR, DTRTRS

ZGEQP3, ZORMQR,
ZTRTRS

A or B single SGEQP3, SORMQR,
STRTRS

CGEQP3, CORMQR,
CTRTRS

Note To see information about choice of algorithm and storage
allocation for sparse matrices, set the spparms parameter 'spumoni'
= 1.

Note mldivide and mrdivide are not implemented for sparse matrices
A that are complex but not square.

See Also Arithmetic Operators, linsolve, ldivide, rdivide

2-2188

mlint

Purpose Check M-files for possible problems

GUI
Alternatives

From the Current Directory browser, select View > Directory Reports
> M-Lint Code Check Report on the menu bar. See also the automatic
“M-Lint Code Analyzer” in the Editor/Debugger.

Syntax mlint('filename')
inform=mlint('filename','-struct')
msg=mlint('filename','-string')
[inform,filepaths]=mlint('filename')
inform=mlint('filename','-id')
inform=mlint('filename','-fullpath')
inform=mlint('filename','-notok')
mlint('filename','-cyc')
%#ok

Description mlint('filename') displays M-Lint information about filename,
where the information reports potential problems and opportunities
for code improvement, referred to as suspicious constructs. The line
number in the message is a hyperlink that opens the file in the
Editor/Debugger, scrolled to that line. If filename is a cell array,
information is displayed for each file. For mlint(F1,F2,F3,...), where
each input is a character array, MATLAB displays information about
each input filename. You cannot combine cell arrays and character
arrays of filenames. Note that the exact text of the mlint messages is
subject to some change between versions.

inform=mlint('filename','-struct') returns the M-Lint information
in a structure array whose length is the number of suspicious constructs
found. The structure has the following fields:

Field Description

line Vector of line numbers to which the message
refers

2-2189

mlint

Field Description

column Two-column array of columns to which the
message applies, for each line

message Message describing the suspicious construct
that M-Lint caught

If multiple filenames are input, or if a cell array is input, inform will
contain a cell array of structures.

msg=mlint('filename','-string') returns the M-Lint information as
a string to the variable msg. If multiple filenames are input, or if a cell
array is input, msg will contain a string where each file’s information
is separated by 10 equal sign characters (=), a space, the filename, a
space, and 10 equal sign characters.

If the -struct or -string argument is omitted and an output argument
is specified, the default behavior is -struct. If the argument is omitted
and there are no output arguments, the default behavior is to display
the information to the command line.

[inform,filepaths]=mlint('filename') additionally returns
filepaths, the absolute paths to the filenames, in the same order as
they were input.

inform=mlint('filename','-id') requests the message ID from
M-Lint, where ID is a string of the form ABC.... When returned to a
structure, the output also has the id field, which is the ID associated
with the message.

inform=mlint('filename','-fullpath') assumes that the input
filenames are absolute paths, so that M-Lint does not try to locate them.

inform=mlint('filename','-notok') runs mlint for all lines in
filename, even those lines that end with the mlint suppression syntax,
%#ok.

mlint('filename','-cyc') displays the McCabe complexity (also
referred to as cyclomatic complexity) of each function in the file. Higher
McCabe complexity values indicate higher complexity, and there

2-2190

mlint

is some evidence to suggest that programs with higher complexity
values are more likely to contain errors. Frequently, you can lower the
complexity of a function by dividing it into smaller, simpler functions.
In general, smaller complexity values indicate programs that are easier
to understand and modify. Some people advocate splitting up programs
that have a complexity rating over 10.

%#ok at the end of a line in an M-file causes mlint to ignore those lines
in the file. MATLAB comments can follow the %#ok pragma. mlint
ignores specified messages 1 through n when %#ok<id1,id2,...idn>
appears at the end of the line.

Examples lengthofline.m is an example M-file with code that can be improved. It
is found in matlabroot/matlab/help/techdoc/matlab_env/examples.

mlint for a File with No Options

To run mlint on the example file, lengthofline, run

mlint(fullfile(matlabroot,'help','techdoc','matlab_env','examples','lengthofline'))

MATLAB displays M-Lint messages for lengthofline in the Command
Window:

L 22 (C 1-9): The value assigned here to variable 'nothandle' might never be used.

L 23 (C 12-15): NUMEL(x) is usually faster than PROD(SIZE(x)).

L 24 (C 5-11): 'notline' might be growing inside a loop. Consider preallocating for speed.

L 24 (C 44-49): Use STRCMPI(str1,str2) instead of using LOWER in a call to STRCMP.

L 28 (C 12-15): NUMEL(x) is usually faster than PROD(SIZE(x)).

L 34 (C 13-16): 'data' might be growing inside a loop. Consider preallocating for speed.

L 34 (C 24-31): Use dynamic fieldnames with structures instead of GETFIELD.

Type 'doc struct' for more information.

L 38 (C 29): Use || instead of | as the OR operator in (scalar) conditional statements.

L 39 (C 47): Use || instead of | as the OR operator in (scalar) conditional statements.

L 40 (C 47): Use || instead of | as the OR operator in (scalar) conditional statements.

L 42 (C 13-16): 'data' might be growing inside a loop. Consider preallocating for speed.

L 43 (C 13-15): 'dim' might be growing inside a loop. Consider preallocating for speed.

L 45 (C 13-15): 'dim' might be growing inside a loop.Consider preallocating for speed.

L 48 (C 52): There may be a parenthesis imbalance around here.

2-2191

mlint

L 48 (C 53): There may be a parenthesis imbalance around here.

L 48 (C 54): There may be a parenthesis imbalance around here.

L 48 (C 55): There may be a parenthesis imbalance around here.

L 49 (C 17): Terminate statement with semicolon to suppress output (in functions).

L 49 (C 23): Use of brackets [] is unnecessary. Use parentheses

to group, if needed.

For details about these messages and how to improve the code, see
“Making Changes Based on M-Lint Messages” in the MATLAB Desktop
Tools and Development Environment documentation.

mlint with Options to Show IDs and Return Results to a
Structure

To store the results to a structure and include message IDs, run

inform=mlint('lengthofline','-id')

MATLAB returns

inform =

14x1 struct array with fields:
message
line
column
id

To see values for the first message, run

inform(1)

MATLAB displays

ans =

message: 'The value assigned here to variable 'nothandle' might never be used.'

line: 22

column: [1 9]

2-2192

mlint

id: 'NASGU'

Here, NASGU is the ID for the message 'The value assigned here to
variable 'nothandle' might never be used.'.

Ignoring Messages on a Line with mlint

This examples shows how to instruct mlint to ignore lines, where these
are lines in the example M-file, lengthofline:

22 nothandle = ~ishandle(hline);

The M-Lint message is

L 22 (C 1-9): The value assigned here to variable 'nothandle' might never be used.

To suppress the message, add %#ok to the end of line 22 in the M-file:

22 nothandle = ~ishandle(hline); %#ok

When you run mlint for lengthofline, no messages are shown for line
22 because it contains the %#ok message suppression syntax.

Ignoring Specific Messages with mlint

When you add %#ok to a line, it suppresses all mlint messages for that
line. If there are multiple messages in a line and you want to suppress
some but not all of them, or if you want to suppress a specific message
but not all messages that might arise in the future due to changes you
make, use the %#ok syntax in conjunction with message IDs.

Run mlint with the -id option:

mlint('lengthofline','-id')

Results displayed to the Command Window show two messages for
line 34:

L 34 (C 13-16): AGROW: 'data' might be growing inside a loop.

Consider preallocating for speed.

L 34 (C 24-31): GFLD: Use dynamic fieldnames with structures instead of GETFIELD.

2-2193

mlint

Type 'doc struct' for more information.

To suppress only the first message about 'data' growing inside a loop,
use its message ID, GFLD, with the %#ok syntax as shown here:

data{nd} = getfield(flds,fdata{nd}); %#ok<GFLD>

When you run mlint for lengthofline, only one message now displays
for line 34.

To display multiple specific messages for a line, separate message IDs
with commas in the %#ok syntax:

data{nd} = getfield(flds,fdata{nd}); %#ok<GFLD,AGROW>

Now when you run mlint for lengthofline, no messages display for
line 34.

Displaying McCabe Complexity with mlint

To display the McCabe complexity of an M-File, runmlint with the -cyc
option, as shown in the following example:

mlint('lengthofline.m', '-cyc')

Results displayed in the Command Window show the McCabe
complexity of the file, followed by the M-File messages, as shown here:

L 1 (C 14-21): The McCabe complexity of 'lengthofline' is 12.

L 33 (C 18): Use || instead of | as the OR operator in (scalar) conditional statements.

L 34 (C 7): 'f' might be growing inside a loop. Consider preallocating for speed.

L 37 (C 23): Use && instead of & as the AND operator in (scalar) conditional statements.

L 38 (C 10): 'f' might be growing inside a loop. Consider preallocating for speed.

L 39 (C 27): Use || instead of | as the OR operator in (scalar) conditional statements.

L 39 (C 42): Use || instead of | as the OR operator in (scalar) conditional statements.

L 39 (C 51): Use && instead of & as the AND operator in (scalar) conditional statements.

L 39 (C 66): Use || instead of | as the OR operator in (scalar) conditional statements.

L 40 (C 10): 'f' might be growing inside a loop. Consider preallocating for speed.

L 42 (C 10): 'f' might be growing inside a loop. Consider preallocating for speed.

2-2194

mlint

See Also mlintrpt, profile

2-2195

mlintrpt

Purpose Run mlint for file or directory, reporting results in browser

GUI
Alternatives

From the Current Directory browser, select View > Directory
Reports > M-Lint Code Check Report on the menu toolbar. See also
the automatic “M-Lint Code Analyzer” in the Editor/Debugger.

Syntax mlintrpt
mlintrpt(filename,'file')
mlintrpt(dirname,'dir')
mlintrpt(filename,'file', 'fullpath_to_configname.txt')
mlintrpt(dirname,'dir', 'fullpath_to_configname.txt')

Description mlintrpt scans all M-files in the current directory for M-Lint messages
and reports the results in a MATLAB Web browser.

mlintrpt(filename,'file') scans the M-file filename for messages
and reports results. You can omit 'file' in this form of the syntax
because it is the default.

mlintrpt(dirname,'dir') scans the specified directory. Here,
dirname can be in the current directory or can be a full pathname.

mlintrpt(filename,'file', 'fullpath_to_configname.txt')
applies the M-Lint preference settings to enable or suppress
messages as specified in the file configname.txt; you must
specify the full pathname to configname.txt. For information
about creating a fullpath_to_configname.txt file, select
File > Preferences > M-Lint, and click Help.

mlintrpt(dirname,'dir', 'fullpath_to_configname.txt')
applies the M-Lint preference settings specified in the file
fullpath_to_configname.txt; you must specify the full pathname
to configname.txt.

Examples lengthofline.m is an example M-file with code that can be improved. It
is found in matlabroot/matlab/help/techdoc/matlab_env/examples.

2-2196

mlintrpt

Run Report for All Files in a Directory

Run

mlintrpt(fullfile(matlabroot,'help','techdoc','matlab_env','examples'),'dir')

and MATLAB displays a report of potential problems and improvements
for all M-files in the examples directory.

2-2197

mlintrpt

For details about these messages and how to improve the code, see
“Making Changes Based on M-Lint Messages” in the MATLAB Desktop
Tools and Development Environment documentation.

2-2198

mlintrpt

Run Report Using M-Lint Preference Settings

In File > Preferences > M-Lint, save preference settings to a file, for
example, MLintNoSemis.txt. To apply those settings when you run
mlintrpt, use the file option and supply the full path to the settings
filename as shown in this example:

mlintrpt('lengthofline.m', 'file', ...

'C:\WINNT\Profiles\me\Application Data\MathWorks\MATLAB\R2007a\MLintNoSemis.txt')

Alternatively, use fullfile if the settings file is stored in the
preferences directory:

mlintrpt('lengthofline.m', 'file', fullfile(prefdir,'MLintNoSemis.txt'))

Assuming that in that example MLintNoSemis.txt file, the setting for
Terminate statement with semicolon to suppress output has
been disabled, the results of mlintrpt for lengthofline do not show
that message for line 49.

When mlintrpt cannot locate the settings file, the first message in
the report is

0: Unable to open or read the configuration file

See Also mlint

2-2199

mlock

Purpose Prevent clearing M-file or MEX-file from memory

Syntax mlock

Description mlock locks the currently running M-file or MEX-file in memory so that
subsequent clear functions do not remove it.

Use the munlock function to return the file to its normal, clearable state.

Locking an M-file or MEX-file in memory also prevents any persistent
variables defined in the file from getting reinitialized.

Examples The function testfun begins with an mlock statement.

function testfun
mlock

.

.

When you execute this function, it becomes locked in memory. You can
check this using the mislocked function.

testfun

mislocked('testfun')
ans =

1

Using munlock, you unlock the testfun function in memory. Checking
its status with mislocked shows that it is indeed unlocked at this point.

munlock('testfun')

mislocked('testfun')
ans =

0

See Also mislocked, munlock, persistent

2-2200

mmfileinfo

Purpose Information about multimedia file

Syntax info = mmfileinfo(filename)

Description info = mmfileinfo(filename) returns a structure, info, with fields
containing information about the contents of the multimedia file
identified by filename. The filename input is a string enclosed in
single quotes.

Note mmfileinfo can be used only on Windows systems.

If filename is a URL, mmfileinfo might take a long time to return
because it must first download the file. For large files, downloading
can take several minutes. To avoid blocking the MATLAB command
line while this processing takes place, download the file before calling
mmfileinfo.

The info structure contains the following fields, listed in the order
they appear in the structure.

Field Description

Filename String indicating the name of the file

Duration Length of the file in seconds

Audio Structure containing information about
the audio data in the file. See “Audio Data”
on page 2-2202 for more information about
this data structure.

Video Structure containing information about
the video data in the file. See “Video Data”
on page 2-2202 for more information about
this data structure.

2-2201

mmfileinfo

Audio Data

The Audio structure contains the following fields, listed in the order
they appear in the structure. If the file does not contain audio data, the
fields in the structure are empty.

Field Description

Format Text string, indicating the audio format

NumberOfChannels Number of audio channels

Video Data

The Video structure contains the following fields, listed in the order
they appear in the structure.

Field Description

Format Text string, indicating the video format

Height Height of the video frame

Width Width of the video frame

Examples This example gets information about the contents of a file containing
audio data.

info = mmfileinfo('my_audio_data.mp3')

info =

Filename: 'my_audio_data.mp3'
Duration: 1.6030e+002

Audio: [1x1 struct]
Video: [1x1 struct]

To look at the information returned about the audio data in the file,
examine the fields in the Audio structure.

2-2202

mmfileinfo

audio_data = info.Audio

audio_data =

Format: 'MPEGLAYER3'
NumberOfChannels: 2

Because the file contains only audio data, the fields in the Video
structure are empty.

info.Video

ans =

Format: ''
Height: []
Width: []

2-2203

mmreader

Purpose Create multimedia reader object for reading video files

Syntax obj = mmreader(filename)
obj = mmreader(filename, 'P1', V1, 'P2', V2,...)

Description obj = mmreader(filename) constructs a multimedia reader object,
obj, that can read video data from a multimedia file. filename
is a string specifying the name of a multimedia file. There are no
restrictions on file extensions. By default, MATLAB looks for the
file filename on the MATLAB path. The file formats that mmreader
supports are AVI, MPG, MPEG, WMV, ASF, and ASX.

If the object cannot be constructed for any reason (for example, if the file
cannot be opened or does not exist, or if the file format is not recognized
or supported), MATLAB throws an error.

obj = mmreader(filename, 'P1', V1, 'P2', V2,...) constructs
a multimedia reader object, assigning values V1, V2, etc. to the specified
properties P1, P2, etc., respectively. If an invalid property name or
property value is specified, MATLAB throws an error and the object is
not created. Note that the property value pairs can be in any format
supported by the set function, i.e., parameter-value string pairs,
structures, or parameter-value cell array pairs. The mmreader object
supports the following properties.

Property Description Read-Only Default
Value

Duration Total length of file in
seconds

Yes

Name Name of the file from
which the reader
object was created

Yes

Path String containing the
full path to the file
associated with the
reader

Yes

2-2204

mmreader

Property Description Read-Only Default
Value

Tag Generic string for
the user to set

No ''

Type Classname of the
object

Yes mmreader

UserData Generic field for any
user-defined data

No []

BitsPerPixel Bits per pixel of the
video data

Yes

FrameRate Frame rate of the
video in frames per
second

Yes

Height Height of the video
frame in pixels

Yes

NumberOfFrames Total number of
frames in the video
stream

Yes

VideoFormat String indicating
the video format as
it is represented in
MATLAB, e.g., RGB24

Yes

Width Width of the video
frame in pixels

Yes

Remarks

Working with Variable Frame Rate Video

If the video file provided to mmreader is a variable frame rate file (as
with many Windows Media Video files), MATLAB shows a warning, as
in this hypothetical case:

2-2205

mmreader

>> obj = mmreader('VarFrameRate.wmv')
Warning: Unable to determine the number of frames in this file.

Summary of Multimedia Reader Object for 'VarFrameRate.wmv'.

Video Parameters: 23.98 frames per second, RGB24 1280x720.
Unable to determine video frames available.

Because the file VarFrameRate.wmv was encoded as a variable frame
rate video, the number of frames is not known when you construct the
mmreader object.

Attempting to Read Beyond the End of the File

You can still read from a variable frame rate file by specifying the
number of frames, but mmreader and read will behave slightly
differently depending on the context of the read request.

If you ask for a frame range beyond the end of the file, the system
generates an error. For example, suppose you attempt to read frame
3000 in a file that has only 2825 frames:

>> images = read(obj, 3000);
??? The frame range requested is beyond the end of the file.

If the requested frame range straddles the end of the file, the system
returns a warning as shown in the next example, where frames
2800–3000 are requested in a file that has only 2825 frames:

>> images = read(obj, [2800 3000]);
Warning: The end of file was reached before the
requested frames were read completely.
Frames 2800 through 2825 were returned.

Examples Construct a multimedia reader object associated with file
xylophone.mpg with the user tag property set to 'myreader1'.

readerobj = mmreader('xylophone.mpg', 'tag', 'myreader1');

2-2206

mmreader

Read in all the video frames.

vidFrames = read(readerobj);

Find out how many frames there are.

numFrames = get(readerobj, 'numberOfFrames');

Create a MATLAB movie struct from the video frames.

for k = 1 : numFrames
mov(k).cdata = vidFrames(:,:,:,k);
mov(k).colormap = [];

end

Play back the movie once at the video’s frame rate.

movie(mov, 1, readerobj.FrameRate);

See Also get, mmfileinfo, read, set

2-2207

mod

Purpose Modulus after division

Syntax M = mod(X,Y)

Description M = mod(X,Y) if Y ~= 0, returns X - n.*Y where n = floor(X./Y). If
Y is not an integer and the quotient X./Y is within roundoff error of an
integer, then n is that integer. The inputs X and Y must be real arrays
of the same size, or real scalars.

The following are true by convention:

• mod(X,0) is X

• mod(X,X) is 0

• mod(X,Y) for X~=Y and Y~=0 has the same sign as Y.

Remarks rem(X,Y) for X~=Y and Y~=0 has the same sign as X.

mod(X,Y) and rem(X,Y) are equal if X and Y have the same sign, but
differ by Y if X and Y have different signs.

The mod function is useful for congruence relationships:
x and y are congruent (mod m) if and only if mod(x,m) == mod(y,m).

Examples mod(13,5)
ans =

3

mod([1:5],3)
ans =

1 2 0 1 2

mod(magic(3),3)
ans =

2 1 0
0 2 1
1 0 2

2-2208

mod

See Also rem

2-2209

mode

Purpose Most frequent values in array

Syntax M = mode(X)
M = mode(X, dim)
[M,F] = mode(X, ...)
[M,F,C] = mode(X, ...)

Description M = mode(X) for vector X computes the sample mode M, (i.e., the most
frequently occurring value in X). If X is a matrix, then M is a row
vector containing the mode of each column of that matrix. If X is an
N-dimensional array, then M is the mode of the elements along the first
nonsingleton dimension of that array.

When there are multiple values occurring equally frequently, mode
returns the smallest of those values. For complex inputs, this is taken
to be the first value in a sorted list of values.

M = mode(X, dim) computes the mode along the dimension dim of X.

[M,F] = mode(X, ...) also returns array F, each element of which
represents the number of occurrences of the corresponding element of
M. The M and F output arrays are of equal size.

[M,F,C] = mode(X, ...) also returns cell array C, each element of
which is a sorted vector of all values that have the same frequency as
the corresponding element of M. All three output arrays M, F, and C are
of equal size.

Remarks The mode function is most useful with discrete or coarsely rounded
data. The mode for a continuous probability distribution is defined
as the peak of its density function. Applying the mode function to a
sample from that distribution is unlikely to provide a good estimate of
the peak; it would be better to compute a histogram or density estimate
and calculate the peak of that estimate. Also, the mode function is not
suitable for finding peaks in distributions having multiple modes.

Examples Example 1

Find the mode of the 3-by-4 matrix shown here:

2-2210

mode

X = [3 3 1 4; 0 0 1 1; 0 1 2 4]
X =

3 3 1 4
0 0 1 1
0 1 2 4

mode(X)
ans =

0 0 1 4

Find the mode along the second (row) dimension:

mode(X, 2)
ans =

3
0
0

Example 2

Find the mode of a continuous variable grouped into bins:

randn('state', 0); % Reset the random number generator

y = randn(1000,1);
edges = -6:.25:6;
[n,bin] = histc(y,edges);

m = mode(bin)
m =

22

edges([m, m+1])
ans =

-0.7500 -0.5000

hist(y,edges+.125)

2-2211

mode

See Also mean, median, hist, histc

2-2212

more

Purpose Control paged output for Command Window

Syntax more on
more off
more(n)
A = more(state)

Description more on enables paging of the output in the MATLAB Command
Window. MATLAB displays output one page at a time. Use the keys
defined in the table below to control paging.

more off disables paging of the output in the MATLAB Command
Window.

more(n) defines the length of a page to be n lines.

A = more(state) returns in A the number of lines that are currently
defined to be a page. The state input can be one of the quoted strings
'on' or 'off', or the number of lines to set as the new page length.

By default, the length of a page is equal to the number of lines available
for display in the MATLAB command window. Manually changing the
size of the command window adjusts the page length accordingly.

If you set the page length to a specific value, MATLAB uses that value
for the page size, regardless of the size of the command window. To
have MATLAB return to matching page size to window size, type more
off followed by more on.

To see the status of more, type get(0,'More'). MATLAB returns either
on or off indicating the more status. You can also set status for more
by using set(0,'More', 'status'), where 'status' is either 'on' or
'off'.

When you have enabled more and are examining output, you can do
the following.

2-2213

more

Press the... To...

Return key Advance to the next line of output.

Space bar Advance to the next page of output.

Q (for quit) key Terminate display of the text. Do not use
Ctrl+C to terminate more or you might
generate error messages in the Command
Window.

more is in the off state, by default.

See Also diary

2-2214

move

Purpose Move or resize control in parent window

Syntax V = h.move(position)
V = move(h, position)

Description V = h.move(position) moves the control to the position specified
by the position argument. When you use move with only the handle
argument, h, it returns a four-element vector indicating the current
position of the control.

V = move(h, position) is an alternate syntax for the same operation.

The position argument is a four-element vector specifying the position
and size of the control in the parent figure window. The elements of
the vector are

[x, y, width, height]

where x and y are offsets, in pixels, from the bottom left corner of the
figure window to the same corner of the control, and width and height
are the size of the control itself.

Examples This example moves the control:

f = figure('Position', [100 100 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.1', [0 0 200 200], f);
pos = h.move([50 50 200 200])
pos =

50 50 200 200

The next example resizes the control to always be centered in the
figure as you resize the figure window. Start by creating the script
resizectrl.m that contains

% Get the new position and size of the figure window
fpos = get(gcbo, 'position');

% Resize the control accordingly

2-2215

move

h.move([0 0 fpos(3) fpos(4)]);

Now execute the following in MATLAB or in an M-file:

f = figure('Position', [100 100 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.1', [0 0 200 200]);
set(f, 'ResizeFcn', 'resizectrl');

As you resize the figure window, notice that the circle moves so that it is
always positioned in the center of the window.

See Also set, get

2-2216

movefile

Purpose Move file or directory

Graphical
Interface

As an alternative to the movefile function, you can use the Current
Directory browser to move files and directories.

Syntax movefile('source')
movefile('source','destination')
movefile('source','destination','f')
[status,message,messageid]=movefile('source','destination',

'f')

Description movefile('source') moves the file or directory named source to the
current directory, where source is the absolute or relative pathname
for the directory or file. Use the wildcard * at the end of source to
move all matching files. Note that the archive attribute of source is
not preserved.

movefile('source','destination') moves the file or directory
named source to the location destination, where source and
destination are the absolute or relative pathnames for the directory or
files. To rename a file or directory when moving it, make destination
a different name than source. Use the wildcard * at the end of source
to move all matching files.

movefile('source','destination','f') moves the file or directory
named source to the location destination, regardless of the read-only
attribute of destination.

[status,message,messageid]=movefile('source','destination','f')
moves the file or directory named source to the location destination,
returning the status, a message, and the MATLAB error message ID
(see error and lasterror). Here, status is logical 1 for success
or logical 0 for error. Only one output argument is required
and the f input argument is optional.

The * wildcard in a path string is supported.

2-2217

movefile

Examples Move Source to Current Directory

To move the file myfiles/myfunction.m to the current directory, type

movefile('myfiles/myfunction.m')

If the current directory is projects/testcases and you want to move
projects/myfiles and its contents to the current directory, use ../ in
the source pathname to navigate up one level to get to the directory.

movefile('../myfiles')

Move All Matching Files by Using a Wildcard

To move all files in the directory myfiles whose names begin with my
to the current directory, type

movefile('myfiles/my*')

Move Source to Destination

To move the file myfunction.m from the current directory to the
directory projects, where projects and the current directory are at
the same level, type

movefile('myfunction.m','../projects')

Move Directory Down One Level

This example moves the a directory down a level. For example to move
the directory projects/testcases and all its contents down a level in
projects to projects/myfiles, type

movefile('projects/testcases','projects/myfiles/')

The directory testcases and its contents now appear in the directory
myfiles.

Rename When Moving File to Read-Only Directory

Move the file myfile.m from the current directory to
d:/work/restricted, assigning it the name test1.m, where
restricted is a read-only directory.

2-2218

movefile

movefile('myfile.m','d:/work/restricted/test1.m','f')

The read-only file myfile.m is no longer in the current directory. The
file test1.m is in d:/work/restricted and is read only.

Return Status When Moving Files

In this example, all files in the directory myfiles whose names start
with new are to be moved to the current directory. However, if new* is
accidentally written as nex*. As a result, the move is unsuccessful, as
seen in the status and messages returned:

[s,mess,messid]=movefile('myfiles/nex*')

s =
0

mess =

A duplicate filename exists, or the file cannot be found.

messid =

MATLAB:MOVEFILE:OSError

See Also cd, copyfile, delete, dir, fileattrib, filebrowser, ls, mkdir, rmdir

2-2219

movegui

Purpose Move GUI figure to specified location on screen

Syntax movegui(h,'position')
movegui('position')
movegui(h)
movegui

Description movegui(h,'position') moves the figure identified by handle h to the
specified screen location, preserving the figure’s size. The position
argument can be any of the following strings:

• north – top center edge of screen

• south – bottom center edge of screen

• east – right center edge of screen

• west – left center edge of screen

• northeast – top right corner of screen

• northwest – top left corner of screen

• southeast – bottom right corner of screen

• southwest – bottom left corner

• center – center of screen

• onscreen – nearest location with respect to current location that
is on screen

The position argument can also be a two-element vector [h,v], where
depending on sign, h specifies the figure’s offset from the left or right
edge of the screen, and v specifies the figure’s offset from the top or
bottom of the screen, in pixels. The following table summarizes the
possible values.

2-2220

movegui

h (for h >= 0)
offset of left side from left edge
of screen

h (for h < 0) offset of right side from right edge
of screen

v (for v >= 0) offset of bottom edge from bottom
of screen

v (for v < 0) offset of top edge from top of
screen

movegui('position') move the callback figure (gcbf) or the current
figure (gcf) to the specified position.

movegui(h) moves the figure identified by the handle h to the onscreen
position.

movegui moves the callback figure (gcbf) or the current figure (gcf)
to the onscreen position. This is useful as a string-based CreateFcn
callback for a saved figure. It ensures the figure appears on screen
when reloaded, regardless of its saved position.

Examples This example demonstrates the usefulness of movegui to ensure that
saved GUIs appear on screen when reloaded, regardless of the target
computer’s screen sizes and resolution. It creates a figure off the screen,
assigns movegui as its CreateFcn callback, then saves and reloads
the figure.

f = figure('Position',[10000,10000,400,300]);
set(f,'CreateFcn','movegui')
hgsave(f,'onscreenfig')
close(f)
f2 = hgload('onscreenfig');

See Also guide

"Creating GUIs" in the MATLAB documentation

2-2221

movie

Purpose Play recorded movie frames

Syntax movie
movie(M)
movie(M,n)
movie(M,n,fps)
movie(h,...)
movie(h,M,n,fps,loc)

Description movie plays the movie defined by a matrix whose columns are movie
frames (usually produced by getframe).

movie(M) plays the movie in matrix M once, using the current axes as
the default target. If you want to play the movie in the figure instead
of the axes, specify the figure handle (or gcf) as the first argument:
movie(figure_handle,...). M must be an array of movie frames
(usually from getframe).

movie(M,n) plays the movie n times. If n is negative, each cycle is
shown forward then backward. If n is a vector, the first element is the
number of times to play the movie, and the remaining elements make
up a list of frames to play in the movie.

For example, if M has four frames then n = [10 4 4 2 1] plays the
movie ten times, and the movie consists of frame 4 followed by frame 4
again, followed by frame 2 and finally frame 1.

movie(M,n,fps) plays the movie at fps frames per second. The default
is 12 frames per second. Computers that cannot achieve the specified
speed play as fast as possible.

movie(h,...) plays the movie centered in the figure or axes identified
by the handle h.

movie(h,M,n,fps,loc) specifies loc, a four-element location vector, [x
y 0 0], where the lower left corner of the movie frame is anchored (only
the first two elements in the vector are used). The location is relative to
the lower left corner of the figure or axes specified by handle h and in
units of pixels, regardless of the object’s Units property.

2-2222

movie

Remarks The movie function uses a default figure size of 560-by-420 and does
not resize figures to fit movies with larger or smaller frames. To
accommodate other frame sizes, you can resize the figure to fit the
movie, as shown in the second example below.

movie only accepts 8-bit image frames; it does not accept 16-bit
grayscale or 24–bit truecolor image frames.

You can abort a movie by typing Ctrl-C.

Examples Example 1: Animate the peaks function as you scale the values of Z:

Z = peaks; surf(Z);
axis tight
set(gca,'nextplot','replacechildren');
% Record the movie
for j = 1:20
surf(sin(2*pi*j/20)*Z,Z)
F(j) = getframe;

end
% Play the movie ten times
movie(F,10)

Example 2: Specify figure when calling movie to fit the movie to the
figure:

r = subplot(2,1,1)
Z = peaks; surf(Z);
axis tight
set(gca,'nextplot','replacechildren');

s = subplot(2,1,2)
Z = peaks; surf(Z);
axis tight
set(gca,'nextplot','replacechildren');
% Record the movie
for j = 1:20
axes(r)

2-2223

movie

surf(sin(2*pi*j/20)*Z,Z)
axes(s)
surf(sin(2*pi*(j+5)/20)*Z,Z)

F(j) = getframe(gcf);
pause(.0333)

end
% Play the movie; note that it does not fit the figure properly:
h2 = figure;
movie(F,10)
% Use the figure handle to make the frames fit:
movie(h2,F,10)

Example 3: With larger frames, first adjust the figure’s size to fit the
movie:

figure('position',[100 100 850 600])
Z = peaks; surf(Z);
axis tight
set(gca,'nextplot','replacechildren');
% Record the movie
for j = 1:20
surf(sin(2*pi*j/20)*Z,Z)
F(j) = getframe;

end
[h, w, p] = size(F(1).cdata); % use 1st frame to get dimensions
hf = figure;
% resize figure based on frame's w x h, and place at (150, 150)
set(hf, 'position', [150 150 w h]);
axis off
% tell movie command to place frames at bottom left
movie(hf,F,4,30,[0 0 0 0]);

See Also aviread, getframe, frame2im, im2frame

“Animation” on page 1-91 for related functions

See Example – Visualizing an FFT as a Movie for another example

2-2224

movie2avi

Purpose Create Audio/Video Interleaved (AVI) movie from MATLAB movie

Syntax movie2avi(mov,filename)
movie2avi(mov,filename,param,value,param,value...)

Description movie2avi(mov,filename) creates the AVI movie filename from the
MATLAB movie mov. The filename input is a string enclosed in single
quotes.

movie2avi(mov,filename,param,value,param,value...) creates the
AVI movie filename from the MATLAB movie mov using the specified
parameter settings.

Parameter Value Default

'colormap' An m-by-3 matrix defining the
colormap to be used for indexed
AVI movies, where m must be no
greater than 256 (236 if using
Indeo compression).

There is
no default
colormap.

'compression' A text string specifying the
compression codec to use.

On Windows:
'Indeo3'
'Indeo5'
'Cinepak'
'MSVC'
'RLE'
'None'

On UNIX:
'None'

'Indeo5' on
Windows.
'None' on
UNIX.

2-2225

movie2avi

Parameter Value Default

To use a custom compression
codec, specify the four-character
code that identifies the codec
(typically included in the codec
documentation). The addframe
function reports an error if it
can not find the specified custom
compressor.

'fps' A scalar value specifying the
speed of the AVI movie in frames
per second (fps).

15 fps

'keyframe' For compressors that support
temporal compression, this is the
number of key frames per second.

2 key frames
per second.

'quality' A number between 0 and 100 the
specifies the desired quality of the
output. Higher numbers result in
higher video quality and larger
file sizes. Lower numbers result
in lower video quality and smaller
file sizes. This parameter has no
effect on uncompressed movies.

75

'videoname' A descriptive name for the video
stream. This parameter must be
no greater than 64 characters
long.

The default is
the filename.

See Also avifile, aviread, aviinfo, movie

2-2226

mput

Purpose Upload file or directory to FTP server

Syntax mput(f,'filename')
mput(ftp,'directoryname')
mput(f,'wildcard')

Description mput(f,'filename') uploads filename from the MATLAB current
directory to the current directory of the FTP server f, where filename
is a file, and where f was created using ftp. You can use a wildcard
(*) in filename. MATLAB returns a cell array listing the full path to
the uploaded files on the server.

mput(ftp,'directoryname') uploads the directory directoryname
and its contents. MATLAB returns a cell array listing the full path to
the uploaded files on the server.

mput(f,'wildcard') uploads a set of files or directories specified by
a wildcard. MATLAB returns a cell array listing the full path to the
uploaded files on the server.

See Also ftp, mget, mkdir (ftp), rename

2-2227

msgbox

Purpose Create and open message box

Syntax h = msgbox(Message)
h = msgbox(Message,Title)
h = msgbox(Message,Title,Icon)
h = msgbox(Message,Title,'custom',IconData,IconCMap)
h = msgbox(...,CreateMode)

Description h = msgbox(Message) creates a message dialog box that automatically
wraps Message to fit an appropriately sized figure. Message is a string
vector, string matrix, or cell array. msgbox returns the handle of the
message box in h.

h = msgbox(Message,Title) specifies the title of the message box.

h = msgbox(Message,Title,Icon) specifies which icon to display
in the message box. Icon is 'none', 'error', 'help', 'warn', or
'custom'. The default is 'none'.

h = msgbox(Message,Title,'custom',IconData,IconCMap) defines
a customized icon. IconData contains image data defining the icon.
IconCMap is the colormap used for the image.

h = msgbox(...,CreateMode) specifies whether the message box is
modal or nonmodal. Optionally, it can also specify an interpreter for
Message and Title.

If CreateMode is a string, it must be one of the values shown in the
following table.

2-2228

msgbox

CreateMode
Value

Description

'modal' Replaces the message box having the specified
Title, that was last created or clicked on, with
a modal message box as specified. All other
message boxes with the same title are deleted.
The message box which is replaced can be either
modal or nonmodal.

'non-modal'
(default)

Creates a new nonmodal message box with the
specified parameters. Existing message boxes
with the same title are not deleted.

'replace' Replaces the message box having the specified
Title, that was last created or clicked on, with
a nonmodal message box as specified. All other
message boxes with the same title are deleted.
The message box which is replaced can be either
modal or nonmodal.

Note A modal dialog box prevents the user from interacting with other
windows before responding. To block MATLAB program execution as
well, use theuiwait function. For more information about modal dialog
boxes, see WindowStyle in the MATLABFigure Properties.

If CreateMode is a structure, it can have fields WindowStyle and
Interpreter. The WindowStyle field must be one of the values in the
table above. Interpreter is one of the strings'tex' or 'none'. The
default value for Interpreter is 'none'.

See Also dialog, errordlg, helpdlg, inputdlg, listdlg, questdlg, warndlg

figure, textwrap, uiwait, uiresume

“Predefined Dialog Boxes” on page 1-104 for related functions

2-2229

mtimes

Purpose Matrix multiplication

Syntax C = A*B

Description C = A*B is the linear algebraic product of the matrices A and B. If A is
an m-by-p and B is a p-by-n matrix, the i,j entry of C is defined by

The product C is an m-by-n matrix. For nonscalar A and B, the number
of columns of A must equal the number of rows of B. You can multiply
a scalar by a matrix of any size.

The preceding definition says that C(i,j) is the inner product of the
ith row of A with the jth column of B. You can write this definition
using the MATLAB colon operator as

C(i,j) = A(i,:)*B(:,j)

where A(i,:) is the ith row of A and B(:,j) is the jth row of B.

Note If A is an m-by-0 empty matrix and B is a 0-by-n empty matrix,
where m and n are positive integers, A*B is an m-by-n matrix of all zeros.

Examples Example 1

If A is a row vector and B is a column vector with the same number of
elements as A, A*B is simply the inner product of A and B. For example,

A = [5 3 2 6]

A =

5 3 2 6

2-2230

mtimes

B = [-4 9 0 1]'

B =

-4
9
0
1

A*B

ans =

13

Example 2

A = [1 3 5; 2 4 7]

A =

1 3 5
2 4 7

B = [-5 8 11; 3 9 21;4 0 8]

B =

-5 8 11
3 9 21
4 0 8

The product of A and B is

C = A*B

C =

24 35 114
30 52 162

2-2231

mtimes

Note that the second row of A is

A(2,:)

ans =

2 4 7

while the third column of B is

B(:,3)

ans =

11
21
8

The inner product of A(2,:) and B(:,3) is

A(2,:)*B(:,3)

ans =

162

which is the same as C(2,3).

Algorithm mtimes uses the following Basic Linear Algebra Subroutines (BLAS):

• DDOT

• DGEMV

• DGEMM

• DSYRK

• DSYRZK

2-2232

mtimes

For inputs of type single, mtimes using corresponding routines that
begin with “S” instead of “D”.

See Also Arithmetic Operators

2-2233

mu2lin

Purpose Convert mu-law audio signal to linear

Syntax y = mu2lin(mu)

Description y = mu2lin(mu) converts mu-law encoded 8-bit audio signals, stored
as “flints” in the range 0 ≤ mu ≤ 255, to linear signal amplitude in the
range -s < Y < s where s = 32124/32768 ~= .9803. The input mu is
often obtained using fread(...,'uchar') to read byte-encoded audio
files. "Flints" are MATLAB integers — floating-point numbers whose
values are integers.

See Also auread, lin2mu

2-2234

multibandread

Purpose Read band-interleaved data from binary file

Syntax X = multibandread(filename, size, precision, offset,
interleave, byteorder)

X = multibandread(...,subset1,subset2,subset3)

Description X = multibandread(filename, size, precision, offset,
interleave, byteorder) reads band-sequential (BSQ),
band-interleaved-by-line (BIL), or band-interleaved-by-pixel (BIP) data
from the binary file filename. The filename input is a string enclosed
in single quotes. This function defines band as the third dimension in a
3-D array, as shown in this figure.

You can use the parameters to multibandread to specify many aspects
of the read operation, such as which bands to read. See “Parameters” on
page 2-2235 for more information.

X is a 2-D array if only one band is read; otherwise it is 3-D. X is
returned as an array of data type double by default. Use the precision
parameter to map the data to a different data type.

X = multibandread(...,subset1,subset2,subset3) reads a subset
of the data in the file. You can use up to three subsetting parameters to
specify the data subset along row, column, and band dimensions. See
“Subsetting Parameters” on page 2-2237 for more information.

Parameters This table describes the arguments accepted by multibandread.

2-2235

multibandread

Argument Description

filename String containing the name of the file to be read.

size Three-element vector of integers consisting of
[height, width, N], where

• height is the total number of rows

• width is the total number of elements in each
row

• N is the total number of bands.

This will be the dimensions of the data if it is read
in its entirety.

precision String specifying the format of the data to be read,
such as 'uint8', 'double', 'integer*4', or any
of the other precisions supported by the fread
function.

Note: You can also use the precision parameter to
specify the format of the output data. For example,
to read uint8 data and output a uint8 array, specify
a precision of 'uint8=>uint8' (or '*uint8'). To
read uint8 data and output it in MATLAB in single
precision, specify 'uint8=>single'. See fread for
more information.

offset Scalar specifying the zero-based location of the first
data element in the file. This value represents the
number of bytes from the beginning of the file to
where the data begins.

2-2236

multibandread

Argument Description

interleave String specifying the format in which the data is
stored

• 'bsq’ — Band-Sequential

• 'bil'— Band-Interleaved-by-Line

• 'bip'— Band-Interleaved-by-Pixel

For more information about these interleave
methods, see the multibandwrite reference page.

byteorder String specifying the byte ordering (machine
format) in which the data is stored, such as

• 'ieee-le' — Little-endian

• 'ieee-be' — Big-endian

See fopen for a complete list of supported formats.

Subsetting
Parameters

You can specify up to three subsetting parameters. Each subsetting
parameter is a three-element cell array, {dim, method, index}, where

Parameter Description

dim Text string specifying the dimension to subset
along. It can have any of these values:

• 'Column'

• 'Row'

• 'Band'

2-2237

multibandread

Parameter Description

method Text string specifying the subsetting method. It
can have either of these values:

• 'Direct'

• 'Range'

If you leave out this element of the subset cell
array, multibandread uses 'Direct' as the
default.

index If method is 'Direct', index is a vector specifying
the indices to read along the Band dimension.

If method is 'Range', index is a three-element
vector of [start, increment, stop] specifying
the range and step size to read along the
dimension specified in dim. If index is a
two-element vector, multibandread assumes that
the value of increment is 1.

Examples Example 1

Setup initial parameters for a data set.

rows=3; cols=3; bands=5;
filename = tempname;

Define the data set.

fid = fopen(filename, 'w', 'ieee-le');
fwrite(fid, 1:rows*cols*bands, 'double');
fclose(fid);

Read every other band of the data using the Band-Sequential format.

im1 = multibandread(filename, [rows cols bands], ...
'double', 0, 'bsq', 'ieee-le', ...

2-2238

multibandread

{'Band', 'Range', [1 2 bands]})

Read the first two rows and columns of data using
Band-Interleaved-by-Pixel format.

im2 = multibandread(filename, [rows cols bands], ...
'double', 0, 'bip', 'ieee-le', ...
{'Row', 'Range', [1 2]}, ...
{'Column', 'Range', [1 2]})

Read the data using Band-Interleaved-by-Line format.

im3 = multibandread(filename, [rows cols bands], ...
'double', 0, 'bil', 'ieee-le')

Delete the file created in this example.

delete(filename);

Example 2

Read int16 BIL data from the FITS file tst0012.fits, starting at
byte 74880.

im4 = multibandread('tst0012.fits', [31 73 5], ...
'int16', 74880, 'bil', 'ieee-be', ...
{'Band', 'Range', [1 3]});

im5 = double(im4)/max(max(max(im4)));
imagesc(im5);

See Also fread, fwrite, multibandwrite

2-2239

multibandwrite

Purpose Write band-interleaved data to file

Syntax multibandwrite(data,filename,interleave)
multibandwrite(data,filename,interleave,start,totalsize)
multibandwrite(...,param,value...)

Description multibandwrite(data,filename,interleave) writes data, a two- or
three-dimensional numeric or logical array, to the binary file specified
by filename. The filename input is a string enclosed in single quotes.
The length of the third dimension of data determines the number of
bands written to the file. The bands are written to the file in the form
specified by interleave. See “Interleave Methods” on page 2-2242 for
more information about this argument.

If filename already exists, multibandwrite overwrites it unless you
specify the optional offset parameter. See the last alternate syntax for
multibandwrite for information about other optional parameters.

multibandwrite(data,filename,interleave,start,totalsize)
writes data to the binary file filename in chunks. In this syntax, data
is a subset of the complete data set.

start is a 1-by-3 array [firstrow firstcolumn firstband] that
specifies the location to start writing data. firstrow and firstcolumn
specify the location of the upper left image pixel. firstband gives the
index of the first band to write. For example, data(I,J,K) contains
the data for the pixel at [firstrow+I-1, firstcolumn+J-1] in the
(firstband+K-1)-th band.

totalsize is a 1-by-3 array, [totalrows,totalcolumns,totalbands],
which specifies the full, three-dimensional size of the data to be written
to the file.

2-2240

multibandwrite

Note In this syntax, you must call multibandwrite multiple times to
write all the data to the file. The first time it is called, multibandwrite
writes the complete file, using the fill value for all values outside the
data subset. In each subsequent call, multibandwrite overwrites these
fill values with the data subset in data. The parameters filename,
interleave, offset, and totalsize must remain constant throughout
the writing of the file.

multibandwrite(...,param,value...) writes the multiband data to
a file, specifying any of these optional parameter/value pairs.

Parameter Description

'precision' String specifying the form and size of each element
written to the file. See the help for fwrite for a
list of valid values. The default precision is the
class of the data.

'offset' The number of bytes to skip before the first
data element. If the file does not already exist,
multibandwrite writes ASCII null values to fill
the space. To specify a different fill value, use the
parameter 'fillvalue'.

This option is useful when you are writing a
header to the file before or after writing the data.
When writing the header to the file after the data
is written, open the file with fopen using 'r+'
permission.

2-2241

multibandwrite

Parameter Description

'machfmt' String to control the format in which the data is
written to the file. Typical values are 'ieee-le'
for little endian and 'ieee-be' for big endian. See
the help for fopen for a complete list of available
formats. The default machine format is the local
machine format.

'fillvalue' A number specifying the value to use in place
of missing data. 'fillvalue' can be a single
number, specifying the fill value for all missing
data, or a 1-by-Number-of-bands vector of
numbers specifying the fill value for each band.
This value is used to fill space when data is
written in chunks.

Interleave
Methods

interleave is a string that specifies how multibandwrite interleaves
the bands as it writes data to the file. If data is two-dimensional,
multibandwrite ignores the interleave argument. The following
table lists the supported methods and uses this example multiband file
to illustrate each method.

Supported methods of interleaving bands include those listed below.

2-2242

multibandwrite

Method String Description Example

Band-Interleaved-by-Line 'bil' Write an entire row
from each band AAAAABBBBBCCCCC

AAAAABBBBBCCCCC

AAAAABBBBBCCCCC

Band-Interleaved-by-Pixel 'bip' Write a pixel from
each band ABCABCABCABCABC...

Band-Sequential 'bsq' Write each band in
its entirety AAAAA

AAAAA

AAAAA

BBBBB

BBBBB

BBBBB

CCCCC

CCCCC

CCCCC

Examples
Note To run these examples successfully, you must be in a writable
directory.

Example 1

Write all data (interleaved by line) to the file in one call.

data = reshape(uint16(1:600), [10 20 3]);
multibandwrite(data,'data.bil','bil');

2-2243

multibandwrite

Example 2

Write the bands (interleaved by pixel) to the file in separate calls.

totalRows = size(data, 1);

totalColumns = size(data, 2);

totalBands = size(data, 3);

for i = 1:totalBands

bandData = data(:, :, i);

multibandwrite(bandData, 'data.bip', 'bip', [1 1 i],...

[totalColumns, totalRows, totalBands]);

end

Example 3

Write a single-band tiled image with one call for each tile. This
is only useful if a subset of each band is available at each call to
multibandwrite.

numBands = 1;

dataDims = [1024 1024 numBands];

data = reshape(uint32(1:(1024 * 1024 * numBands)), dataDims);

for band = 1:numBands

for row = 1:2

for col = 1:2

subsetRows = ((row - 1) * 512 + 1):(row * 512);

subsetCols = ((col - 1) * 512 + 1):(col * 512);

upperLeft = [subsetRows(1), subsetCols(1), band];

multibandwrite(data(subsetRows, subsetCols, band), ...

'banddata.bsq', 'bsq', upperLeft, dataDims);

end

end

2-2244

multibandwrite

end

See Also multibandread, fwrite, fread

2-2245

munlock

Purpose Allow clearing M-file or MEX-file from memory

Syntax munlock
munlock fun
munlock('fun')

Description munlock unlocks the currently running M-file or MEX-file in memory so
that subsequent clear functions can remove it.

munlock fun unlocks the M-file or MEX-file named fun from memory.
By default, these files are unlocked so that changes to the file are picked
up. Calls to munlock are needed only to unlock M-files or MEX-files
that have been locked with mlock.

munlock('fun') is the function form of munlock.

Examples The function testfun begins with an mlock statement.

function testfun
mlock

.

.

When you execute this function, it becomes locked in memory. You can
check this using the mislocked function.

testfun

mislocked testfun
ans =

1

Using munlock, you unlock the testfun function in memory. Checking
its status with mislocked shows that it is indeed unlocked at this point.

munlock testfun

mislocked testfun
ans =

2-2246

munlock

0

See Also mlock, mislocked, persistent

2-2247

namelengthmax

Purpose Maximum identifier length

Syntax len = namelengthmax

Description len = namelengthmax returns the maximum length allowed for
MATLAB identifiers. MATLAB identifiers are

• Variable names

• Function and subfunction names

• Structure fieldnames

• Object names

• M-file names

• MEX-file names

• MDL-file names

Rather than hard-coding a specific maximum name length into your
programs, use the namelengthmax function. This saves you the trouble
of having to update these limits should the identifier length change
in some future MATLAB release.

Examples Call namelengthmax to get the maximum identifier length:

maxid = namelengthmax
maxid =

63

See Also isvarname, genvarname

2-2248

NaN

Purpose Not-a-Number

Syntax NaN

Description NaN returns the IEEE arithmetic representation for Not-a-Number
(NaN). These result from operations which have undefined numerical
results.

NaN('double') is the same as NaN with no inputs.

NaN('single') is the single precision representation of NaN.

NaN(n) is an n-by-n matrix of NaNs.

NaN(m,n) or NaN([m,n]) is an m-by-n matrix of NaNs.

NaN(m,n,p,...) or NaN([m,n,p,...]) is an m-by-n-by-p-by-... array
of NaNs.

Note The size inputs m, n, p, ... should be nonnegative integers.
Negative integers are treated as 0.

NaN(...,classname) is an array of NaNs of class specified by classname.
classname must be either 'single' or 'double'.

Examples These operations produce NaN:

• Any arithmetic operation on a NaN, such as sqrt(NaN)

• Addition or subtraction, such as magnitude subtraction of infinities
as (+Inf)+(-Inf)

• Multiplication, such as 0*Inf

• Division, such as 0/0 and Inf/Inf

• Remainder, such as rem(x,y) where y is zero or x is infinity

2-2249

NaN

Remarks Because two NaNs are not equal to each other, logical operations
involving NaNs always return false, except ~= (not equal). Consequently,

NaN ~= NaN
ans =

1
NaN == NaN
ans =

0

and the NaNs in a vector are treated as different unique elements.

unique([1 1 NaN NaN])
ans =

1 NaN NaN

Use the isnan function to detect NaNs in an array.

isnan([1 1 NaN NaN])
ans =

0 0 1 1

See Also Inf, isnan

2-2250

nargchk

Purpose Validate number of input arguments

Syntax msgstring = nargchk(minargs, maxargs, numargs)
msgstring = nargchk(minargs, maxargs, numargs, 'string')
msgstruct = nargchk(minargs, maxargs, numargs, 'struct')

Description Use nargchk inside an M-file function to check that the desired number
of input arguments is specified in the call to that function.

msgstring = nargchk(minargs, maxargs, numargs) returns an error
message string msgstring if the number of inputs specified in the call
numargs is less than minargs or greater than maxargs. If numargs is
between minargs and maxargs (inclusive), nargchk returns an empty
matrix.

It is common to use the nargin function to determine the number of
input arguments specified in the call.

msgstring = nargchk(minargs, maxargs, numargs, 'string') is
essentially the same as the command shown above, as nargchk returns
a string by default.

msgstruct = nargchk(minargs, maxargs, numargs, 'struct')
returns an error message structure msgstruct instead of a string.
The fields of the return structure contain the error message string
and a message identifier. If numargs is between minargs and maxargs
(inclusive), nargchk returns an empty structure.

When too few inputs are supplied, the message string and identifier are

message: 'Not enough input arguments.'
identifier: 'MATLAB:nargchk:notEnoughInputs'

When too many inputs are supplied, the message string and identifier
are

message: 'Too many input arguments.'
identifier: 'MATLAB:nargchk:tooManyInputs'

2-2251

nargchk

Remarks nargchk is often used together with the error function. The error
function accepts either type of return value from nargchk: a message
string or message structure. For example, this command provides the
error function with a message string and identifier regarding which
error was caught:

error(nargchk(2, 4, nargin, 'struct'))

If nargchk detects no error, it returns an empty string or structure.
When nargchk is used with the error function, as shown here, this
empty string or structure is passed as an input to error. When error
receives an empty string or structure, it simply returns and no error is
generated.

Examples Given the function foo,

function f = foo(x, y, z)
error(nargchk(2, 3, nargin))

Then typing foo(1) produces

Not enough input arguments.

See Also nargoutchk, nargin, nargout, varargin, varargout, error

2-2252

nargin, nargout

Purpose Number of function arguments

Syntax nargin
nargin(fun)
nargout
nargout(fun)

Description In the body of a function M-file, nargin and nargout indicate how many
input or output arguments, respectively, a user has supplied. Outside
the body of a function M-file, nargin and nargout indicate the number
of input or output arguments, respectively, for a given function. The
number of arguments is negative if the function has a variable number
of arguments.

nargin returns the number of input arguments specified for a function.

nargin(fun) returns the number of declared inputs for the function
fun. If the function has a variable number of input arguments, nargin
returns a negative value. fun may be the name of a function, or the
name of “Function Handles” that map to specific functions.

nargout returns the number of output arguments specified for a
function.

nargout(fun) returns the number of declared outputs for the function
fun. fun may be the name of a function, or the name of “Function
Handles” that map to specific functions.

Examples This example shows portions of the code for a function called myplot,
which accepts an optional number of input and output arguments:

function [x0, y0] = myplot(x, y, npts, angle, subdiv)
% MYPLOT Plot a function.
% MYPLOT(x, y, npts, angle, subdiv)
% The first two input arguments are
% required; the other three have default values.
...

if nargin < 5, subdiv = 20; end
if nargin < 4, angle = 10; end

2-2253

nargin, nargout

if nargin < 3, npts = 25; end
...

if nargout == 0
plot(x, y)

else
x0 = x;
y0 = y;

end

See Also inputname, varargin, varargout, nargchk, nargoutchk

2-2254

nargoutchk

Purpose Validate number of output arguments

Syntax msgstring = nargoutchk(minargs, maxargs, numargs)
msgstring = nargoutchk(minargs, maxargs, numargs, 'string')
msgstruct = nargoutchk(minargs, maxargs, numargs, 'struct')

Description Use nargoutchk inside an M-file function to check that the desired
number of output arguments is specified in the call to that function.

msgstring = nargoutchk(minargs, maxargs, numargs) returns an
error message string msgstring if the number of outputs specified
in the call, numargs, is less than minargs or greater than maxargs.
If numargs is between minargs and maxargs (inclusive), nargoutchk
returns an empty matrix.

It is common to use the nargout function to determine the number of
output arguments specified in the call.

msgstring = nargoutchk(minargs, maxargs, numargs, 'string')
is essentially the same as the command shown above, as nargoutchk
returns a string by default.

msgstruct = nargoutchk(minargs, maxargs, numargs, 'struct')
returns an error message structure msgstruct instead of a string.
The fields of the return structure contain the error message string
and a message identifier. If numargs is between minargs and maxargs
(inclusive), nargoutchk returns an empty structure.

When too few outputs are supplied, the message string and identifier are

message: 'Not enough output arguments.'
identifier: 'MATLAB:nargoutchk:notEnoughOutputs'

When too many outputs are supplied, the message string and identifier
are

message: 'Too many output arguments.'
identifier: 'MATLAB:nargoutchk:tooManyOutputs'

2-2255

nargoutchk

Remarks nargoutchk is often used together with the error function. The
error function accepts either type of return value from nargoutchk:
a message string or message structure. For example, this command
provides the error function with a message string and identifier
regarding which error was caught:

error(nargoutchk(2, 4, nargout, 'struct'))

If nargoutchk detects no error, it returns an empty string or structure.
When nargoutchk is used with the error function, as shown here, this
empty string or structure is passed as an input to error. When error
receives an empty string or structure, it simply returns and no error is
generated.

Examples You can use nargoutchk to determine if an M-file has been called with
the correct number of output arguments. This example uses nargout
to return the number of output arguments specified when the function
was called. The function is designed to be called with one, two, or three
output arguments. If called with no arguments or more than three
arguments, nargoutchk returns an error message:

function [s, varargout] = mysize(x)
msg = nargoutchk(1, 3, nargout);
if isempty(msg)

nout = max(nargout, 1) - 1;
s = size(x);
for k = 1:nout, varargout(k) = {s(k)}; end

else
disp(msg)

end

See Also nargchk, nargout, nargin, varargout, varargin, error

2-2256

native2unicode

Purpose Convert numeric bytes to Unicode characters

Syntax unicodestr = native2unicode(bytes)
unicodestr = native2unicode(bytes, encoding)

Description unicodestr = native2unicode(bytes) takes a vector containing
numeric values in the range [0,255] and converts these values as a
stream of 8-bit bytes to Unicode characters. The stream of bytes is
assumed to be in MATLAB’s default character encoding scheme. Return
value unicodestr is a char vector that has the same general array
shape as bytes.

unicodestr = native2unicode(bytes, encoding) does the
conversion with the assumption that the byte stream is in the
character encoding scheme specified by the string encoding. encoding
must be the empty string ('') or a name or alias for an encoding
scheme. Some examples are 'UTF-8', 'latin1', 'US-ASCII', and
'Shift_JIS'. For common names and aliases, see the Web site
http://www.iana.org/assignments/character-sets. If encoding is
unspecified or is the empty string (''), MATLAB’s default encoding
scheme is used.

Note If bytes is a char vector, it is returned unchanged.

Examples This example begins with a vector of bytes in an unknown character
encoding scheme. The user-written function detect_encoding
determines the encoding scheme. If successful, it returns the encoding
scheme name or alias as a string. If unsuccessful, it throws an error.
The example calls native2unicode to convert the bytes to Unicode
characters.

try
enc = detect_encoding(bytes);
str = native2unicode(bytes, enc);
disp(str);

2-2257

http://www.iana.org/assignments/character-sets

native2unicode

catch
rethrow(lasterror);

end

Note that the computer must be configured to display text in a
language represented by the detected encoding scheme for the output of
disp(str) to be correct.

See Also unicode2native

2-2258

nchoosek

Purpose Binomial coefficient or all combinations

Syntax C = nchoosek(n,k)
C = nchoosek(v,k)

Description C = nchoosek(n,k) where n and k are nonnegative integers, returns
n!/((n–k)! k!). This is the number of combinations of n things taken
k at a time.

C = nchoosek(v,k), where v is a row vector of length n, creates a
matrix whose rows consist of all possible combinations of the n elements
of v taken k at a time. Matrix C contains n!/((n–k)! k!) rows and k
columns.

Inputs n, k, and v support classes of float double and float single.

Examples The command nchoosek(2:2:10,4) returns the even numbers from
two to ten, taken four at a time:

2 4 6 8
2 4 6 10
2 4 8 10
2 6 8 10
4 6 8 10

Limitations When C = nchoosek(n,k) has a large coefficient, a warning will be
produced indicating possible inexact results. In such cases, the result
is only accurate to 15 digits for double-precision inputs, or 8 digits for
single-precision inputs.

C = nchoosek(v,k) is only practical for situations where n is less
than about 15.

See Also perms

2-2259

ndgrid

Purpose Generate arrays for N-D functions and interpolation

Syntax [X1,X2,X3,...] = ndgrid(x1,x2,x3,...)
[X1,X2,...] = ndgrid(x)

Description [X1,X2,X3,...] = ndgrid(x1,x2,x3,...) transforms the domain
specified by vectors x1,x2,x3... into arrays X1,X2,X3... that can
be used for the evaluation of functions of multiple variables and
multidimensional interpolation. The ith dimension of the output array
Xi are copies of elements of the vector xi.

[X1,X2,...] = ndgrid(x) is the same as [X1,X2,...] =
ndgrid(x,x,...).

Examples Evaluate the function over the range
.

[X1,X2] = ndgrid(-2:.2:2, -2:.2:2);
Z = X1 .* exp(-X1.^2 - X2.^2);
mesh(Z)

2-2260

ndgrid

Remarks The ndgrid function is like meshgrid except that the order of the first
two input arguments are switched. That is, the statement

[X1,X2,X3] = ndgrid(x1,x2,x3)

produces the same result as

[X2,X1,X3] = meshgrid(x2,x1,x3)

Because of this, ndgrid is better suited to multidimensional problems
that aren’t spatially based, while meshgrid is better suited to problems
in two- or three-dimensional Cartesian space.

See Also meshgrid, interpn

2-2261

ndims

Purpose Number of array dimensions

Syntax n = ndims(A)

Description n = ndims(A) returns the number of dimensions in the array A. The
number of dimensions in an array is always greater than or equal to 2.
Trailing singleton dimensions are ignored. A singleton dimension is any
dimension for which size(A,dim) = 1.

Algorithm ndims(x) is length(size(x)).

See Also size

2-2262

ne

Purpose Test for inequality

Syntax A ~= B
ne(A, B)

Description A ~= B compares each element of array A with the corresponding
element of array B, and returns an array with elements set to logical 1
(true) where A and B are unequal, or logical 0 (false) where they are
equal. Each input of the expression can be an array or a scalar value.

If both A and B are scalar (i.e., 1-by-1 matrices), then MATLAB returns
a scalar value.

If both A and B are nonscalar arrays, then these arrays must have
the same dimensions, and MATLAB returns an array of the same
dimensions as A and B.

If one input is scalar and the other a nonscalar array, then the scalar
input is treated as if it were an array having the same dimensions as
the nonscalar input array. In other words, if input A is the number 100,
and B is a 3-by-5 matrix, then A is treated as if it were a 3-by-5 matrix
of elements, each set to 100. MATLAB returns an array of the same
dimensions as the nonscalar input array.

ne(A, B) is called for the syntax A ~= B when either A or B is an object.

Examples Create two 6-by-6 matrices, A and B, and locate those elements of A that
are not equal to the corresponding elements of B:

A = magic(6);
B = repmat(magic(3), 2, 2);

A ~= B
ans =

1 0 0 1 1 1
0 1 0 1 1 1
1 0 0 1 1 1
0 1 1 1 1 1
1 0 1 1 1 1

2-2263

ne

0 1 1 1 1 1

See Also eq, le, ge, lt, gt, relational operators

2-2264

ne (MException)

Purpose Compare MException objects for inequality

Syntax eObj1 ~= eObj2

Description eObj1 ~= eObj2 tests MException objects eObj1 and eObj2 for
inequality, returning logical 1 (true) if the two objects are not identical,
otherwise returning logical 0 (false).

See Also try, catch, , error, assert, MException, isequal(MException),
eq(MException), getReport(MException), disp(MException),
throw(MException), rethrow(MException),
throwAsCaller(MException), addCause(MException),
last(MException)

2-2265

newplot

Purpose Determine where to draw graphics objects

Syntax newplot
h = newplot
h = newplot(hsave)

Description newplot prepares a figure and axes for subsequent graphics commands.

h = newplot prepares a figure and axes for subsequent graphics
commands and returns a handle to the current axes.

h = newplot(hsave) prepares and returns an axes, but does not delete
any objects whose handles appear in hsave. If hsave is specified, the
figure and axes containing hsave are prepared for plotting instead
of the current axes of the current figure. If hsave is empty, newplot
behaves as if it were called without any inputs.

Remarks Use newplot at the beginning of high-level graphics M-files to determine
which figure and axes to target for graphics output. Calling newplot can
change the current figure and current axes. Basically, there are three
options when you are drawing graphics in existing figures and axes:

• Add the new graphics without changing any properties or deleting
any objects.

• Delete all existing objects whose handles are not hidden before
drawing the new objects.

• Delete all existing objects regardless of whether or not their handles
are hidden, and reset most properties to their defaults before drawing
the new objects (refer to the following table for specific information).

The figure and axes NextPlot properties determine how newplot
behaves. The following two tables describe this behavior with various
property values.

First, newplot reads the current figure’s NextPlot property and acts
accordingly.

2-2266

newplot

NextPlot What Happens

new Create a new figure and use it as the current
figure.

add Draw to the current figure without clearing
any graphics objects already present.

replacechildren Remove all child objects whose
HandleVisibility property is set to on
and reset figure NextPlot property to add.

This clears the current figure and is equivalent
to issuing the clf command.

replace Remove all child objects (regardless of the
setting of the HandleVisibility property) and
reset figure properties to their defaults, except

NextPlot is reset to add regardless of
user-defined defaults.

• Position, Units, PaperPosition, and
PaperUnits are not reset.

This clears and resets the current figure and is
equivalent to issuing the clf reset command.

After newplot establishes which figure to draw in, it reads the current
axes’ NextPlot property and acts accordingly.

NextPlot Description

add Draw into the current axes, retaining all
graphics objects already present.

2-2267

newplot

NextPlot Description

replacechildren Remove all child objects whose
HandleVisibility property is set to on,
but do not reset axes properties. This clears
the current axes like the cla command.

replace Remove all child objects (regardless of the
setting of the HandleVisibility property) and
reset axes properties to their defaults, except
Position and Units.

This clears and resets the current axes like the
cla reset command.

See Also axes, cla, clf, figure, hold, ishold, reset

The NextPlot property for figure and axes graphics objects

“Figure Windows” on page 1-95 for related functions

Controlling Graphics Output for more examples.

2-2268

nextpow2

Purpose Next higher power of 2

Syntax p = nextpow2(A)

Description p = nextpow2(A) returns the smallest power of two that is greater
than or equal to the absolute value of A. (That is, p that satisfies 2^p
>= abs(A)).

This function is useful for optimizing FFT operations, which are most
efficient when sequence length is an exact power of two.

If A is non-scalar, nextpow2 returns the smallest power of two greater
than or equal to length(A).

Examples For any integer n in the range from 513 to 1024, nextpow2(n) is 10.

For a 1-by-30 vector A, length(A) is 30 and nextpow2(A) is 5.

See Also fft, log2, pow2

2-2269

nnz

Purpose Number of nonzero matrix elements

Syntax n = nnz(X)

Description n = nnz(X) returns the number of nonzero elements in matrix X.

The density of a sparse matrix is nnz(X)/prod(size(X)).

Examples The matrix

w = sparse(wilkinson(21));

is a tridiagonal matrix with 20 nonzeros on each of three diagonals,
so nnz(w) = 60.

See Also find, isa, nonzeros, nzmax, size, whos

2-2270

noanimate

Purpose Change EraseMode of all objects to normal

Syntax noanimate(state,fig_handle)
noanimate(state)

Description noanimate(state,fig_handle) sets the EraseMode of all image, line,
patch, surface, and text graphics objects in the specified figure to
normal. state can be the following strings:

• 'save' — Set the values of the EraseMode properties to normal for
all the appropriate objects in the designated figure.

• 'restore' — Restore the EraseMode properties to the previous
values (i.e., the values before calling noanimate with the 'save'
argument).

noanimate(state) operates on the current figure.

noanimate is useful if you want to print the figure to a TIFF or JPEG
format.

See Also print

“Animation” on page 1-91 for related functions

2-2271

nonzeros

Purpose Nonzero matrix elements

Syntax s = nonzeros(A)

Description s = nonzeros(A) returns a full column vector of the nonzero elements
in A, ordered by columns.

This gives the s, but not the i and j, from [i,j,s] = find(A).
Generally,

length(s) = nnz(A) <= nzmax(A) <= prod(size(A))

See Also find, isa, nnz, nzmax, size, whos

2-2272

norm

Purpose Vector and matrix norms

Syntax n = norm(A)
n = norm(A,p)

Description The norm of a matrix is a scalar that gives some measure of the
magnitude of the elements of the matrix. The norm function calculates
several different types of matrix norms:

n = norm(A) returns the largest singular value of A, max(svd(A)).

n = norm(A,p) returns a different kind of norm, depending on the
value of p.

If p is... Then norm returns...

1 The 1-norm, or largest column sum of A,
max(sum(abs(A)).

2 The largest singular value (same as norm(A)).

inf The infinity norm, or largest row sum of A,
max(sum(abs(A'))).

'fro' The Frobenius-norm of matrix A,
sqrt(sum(diag(A'*A))).

When A is a vector:

norm(A,p) Returns sum(abs(A).^p)^(1/p), for any 1 <= p <= ∞.

norm(A) Returns norm(A,2).

norm(A,inf) Returns max(abs(A)).

norm(A,-inf) Returns min(abs(A)).

Remarks Note that norm(x) is the Euclidean length of a vector x. On the other
hand, MATLAB uses “length” to denote the number of elements
n in a vector. This example uses norm(x)/sqrt(n) to obtain the
root-mean-square (RMS) value of an n-element vector x.

2-2273

norm

x = [0 1 2 3]
x =

0 1 2 3

sqrt(0+1+4+9) % Euclidean length
ans =

3.7417

norm(x)
ans =

3.7417

n = length(x) % Number of elements
n =

4

rms = 3.7417/2 % rms = norm(x)/sqrt(n)
rms =

1.8708

See Also cond, condest, hypot, normest, rcond

2-2274

normest

Purpose 2-norm estimate

Syntax nrm = normest(S)
nrm = normest(S,tol)
[nrm,count] = normest(...)

Description This function is intended primarily for sparse matrices, although it
works correctly and may be useful for large, full matrices as well.

nrm = normest(S) returns an estimate of the 2-norm of the matrix S.

nrm = normest(S,tol) uses relative error tol instead of the default
tolerance 1.e-6. The value of tol determines when the estimate is
considered acceptable.

[nrm,count] = normest(...) returns an estimate of the 2-norm and
also gives the number of power iterations used.

Examples The matrix W = gallery('wilkinson',101) is a tridiagonal matrix.
Its order, 101, is small enough that norm(full(W)), which involves
svd(full(W)), is feasible. The computation takes 4.13 seconds (on
one computer) and produces the exact norm, 50.7462. On the other
hand, normest(sparse(W)) requires only 1.56 seconds and produces
the estimated norm, 50.7458.

Algorithm The power iteration involves repeated multiplication by the matrix S
and its transpose, S'. The iteration is carried out until two successive
estimates agree to within the specified relative tolerance.

See Also cond, condest, norm, rcond, svd

2-2275

not

Purpose Find logical NOT of array or scalar input

Syntax ~A
not(A)

Description ~A performs a logical NOT of input array A, and returns an array
containing elements set to either logical 1 (true) or logical 0 (false).
An element of the output array is set to 1 if the input array contains
a zero value element at that same array location. Otherwise, that
element is set to 0.

The input of the expression can be an array or can be a scalar value.
If the input is an array, then the output is an array of the same
dimensions. If the input is scalar, then the output is scalar.

not(A) is called for the syntax ~A when A is an object.

Example If matrix A is

0 29 0 36 0
23 34 35 0 39
0 24 31 27 0
0 29 0 0 34

then

~A
ans =

1 0 1 0 1
0 0 0 1 0
1 0 0 0 1
1 0 1 1 0

See Also bitcmp, and, or, xor, any, all, “Logical Operators”, “Logical Types”,
“Bit-Wise Functions”

2-2276

notebook

Purpose Open M-book in Microsoft Word (Windows)

Syntax notebook
notebook('filename')
notebook('-setup')

Description notebook starts Microsoft Word and creates a new M-book titled
Document 1.

notebook('filename') starts Microsoft Word and opens the M-book
filename, where filename is either in the MATLAB current directory
or is a full pathname. If filename does not exist, MATLAB creates a
new M-book titled filename. If the filename extension is not specified,
MATLAB assumes .doc.

notebook('-setup') runs an interactive setup function for Notebook.
It copies the Notebook template, m-book.dot, to the Microsoft Word
template directory, whose location MATLAB automatically determines
from the Windows system registry. Upon completion, MATLAB displays
a message indicating whether or not the setup was successful.

See Also MATLAB Desktop Tools and Development Environment documentation

• Notebook for Publishing to Word

• “Publishing to HTML, XML, LaTeX, Word, and PowerPoint Using
Cells”

2-2277

now

Purpose Current date and time

Syntax t = now

Description t = now returns the current date and time as a serial date number.
To return the time only, use rem(now,1). To return the date only, use
floor(now).

Examples t1 = now, t2 = rem(now,1)

t1 =

7.2908e+05

t2 =

0.4013

See Also clock, date, datenum

2-2278

nthroot

Purpose Real nth root of real numbers

Syntax y = nthroot(X, n)

Description y = nthroot(X, n) returns the real nth root of the elements of X. Both
X and n must be real and n must be a scalar. If X has negative entries,
n must be an odd integer.

Example nthroot(-2, 3)

returns the real cube root of -2.

ans =

-1.2599

By comparison,

(-2)^(1/3)

returns a complex cube root of -2.

ans =

0.6300 + 1.0911i

See Also power

2-2279

null

Purpose Null space

Syntax Z = null(A)
Z = null(A,'r')

Description Z = null(A) is an orthonormal basis for the null space of A obtained
from the singular value decomposition. That is, A*Z has negligible
elements, size(Z,2) is the nullity of A, and Z'*Z = I.

Z = null(A,'r') is a “rational” basis for the null space obtained from
the reduced row echelon form. A*Z is zero, size(Z,2) is an estimate
for the nullity of A, and, if A is a small matrix with integer elements,
the elements of the reduced row echelon form (as computed using rref)
are ratios of small integers.

The orthonormal basis is preferable numerically, while the rational
basis may be preferable pedagogically.

Example Example 1

Compute the orthonormal basis for the null space of a matrix A.

A = [1 2 3
1 2 3
1 2 3];

Z = null(A);
A*Z

ans =
1.0e-015 *

0.2220 0.2220
0.2220 0.2220
0.2220 0.2220

Z'*Z

ans =

2-2280

null

1.0000 -0.0000
-0.0000 1.0000

Example 2

Compute the 1-norm of the matrix A*Z and determine that it is within a
small tolerance.

norm(A*Z,1) < 1e-12
ans =

1

Example 3

Compute the rational basis for the null space of the same matrix A.

ZR = null(A,'r')

ZR =
-2 -3
1 0
0 1

A*ZR

ans =

0 0
0 0
0 0

See Also orth, rank, rref, svd

2-2281

num2cell

Purpose Convert numeric array to cell array

Syntax c = num2cell(A)
c = num2cell(A, dims)

Description c = num2cell(A) converts the matrix A into a cell array by placing
each element of A into a separate cell. Cell array c will be the same
size as matrix A.

c = num2cell(A, dims) converts the matrix A into a cell array by
placing the dimensions specified by dims into separate cells. C will be
the same size as A except that the dimensions matching dims will be 1.

Examples The statement

num2cell(A,2)

places the rows of A into separate cells. Similarly

num2cell(A,[1 3])

places the column-depth pages of A into separate cells.

See Also cat, mat2cell, cell2mat

2-2282

num2hex

Purpose Convert singles and doubles to IEEE hexadecimal strings

Syntax num2hex(X)

Description If X is a single or double precision array with n elements, num2hex(X)
is an n-by-8 or n-by-16 char array of the hexadecimal floating-point
representation. The same representation is printed with format hex.

Examples num2hex([1 0 0.1 -pi Inf NaN])

returns

ans =

3ff0000000000000
0000000000000000
3fb999999999999a
c00921fb54442d18
7ff0000000000000
fff8000000000000
num2hex(single([1 0 0.1 -pi Inf NaN]))

returns

ans =

3f800000
00000000
3dcccccd
c0490fdb
7f800000
ffc00000

See Also hex2num, dec2hex, format

2-2283

num2str

Purpose Convert number to string

Syntax str = num2str(A)
str = num2str(A, precision)
str = num2str(A, format)

Description The num2str function converts numbers to their string representations.
This function is useful for labeling and titling plots with numeric values.

str = num2str(A) converts array A into a string representation str
with roughly four digits of precision and an exponent if required.

str = num2str(A, precision) converts the array A into a string
representation str with maximum precision specified by precision.
Argument precision specifies the number of digits the output string
is to contain. The default is four.

str = num2str(A, format) converts array A using the supplied
format. (See fprintf for format string details.) By default, num2str
displays floating point values using '%11.4g' format (four significant
digits in exponential or fixed-point notation, whichever is shorter).

If the input array is integer-valued, num2str returns the exact string
representation of that integer. The term integer-valued includes large
floating-point numbers that lose precision due to limitations of the
hardware.

num2str removes any leading spaces from the output string. Thus,
num2str(42.67, '%10.2f') returns a 1-by-5 character array '42.67'.

Examples num2str(pi) is 3.142.

num2str(eps) is 2.22e-16.

num2str with a format of %10.5e\n returns a matrix of strings in
exponential format, having 5 decimal places, with each element
separated by a newline character:

x = rand(3) * 9999; % Create a 2-by-3 matrix.
x(3,:) = [];

2-2284

num2str

A = num2str(x, '%10.5e\n') % Convert to string array.
A =
6.87255e+003
1.55597e+003
8.55890e+003

3.46077e+003
1.91097e+003
4.90201e+003

See Also mat2str, int2str, str2num, sprintf, fprintf

2-2285

numel

Purpose Number of elements in array or subscripted array expression

Syntax n = numel(A)
n = numel(A, index1, index2, ... indexn)

Description n = numel(A) returns the number of elements, n, in array A.

n = numel(A, index1, index2, ... indexn) returns the number
of subscripted elements, n, in A(index1, index2, ..., indexn). To
handle the variable number of arguments, numel is typically written
with the header function n = numel(A, varargin), where varargin
is a cell array with elements index1, index2, ... indexn.

MATLAB implicitly calls the numel built-in function whenever an
expression generates a comma-separated list. This includes brace
indexing (i.e., A{index1,index2,...,indexN}), and dot indexing (i.e.,
A.fieldname).

Remarks It is important to note the significance of numel with regards to
the overloaded subsref and subsasgn functions. In the case of the
overloaded subsref function for brace and dot indexing (as described in
the last paragraph), numel is used to compute the number of expected
outputs (nargout) returned from subsref. For the overloaded subsasgn
function, numel is used to compute the number of expected inputs
(nargin) to be assigned using subsasgn. The nargin value for the
overloaded subsasgn function is the value returned by numel plus 2
(one for the variable being assigned to, and one for the structure array
of subscripts).

As a class designer, you must ensure that the value of n returned by
the built-in numel function is consistent with the class design for that
object. If n is different from either the nargout for the overloaded
subsref function or the nargin for the overloaded subsasgn function,
then you need to overload numel to return a value of n that is consistent
with the class’ subsref and subsasgn functions. Otherwise, MATLAB
produces errors when calling these functions.

2-2286

numel

Examples Create a 4-by-4-by-2 matrix. numel counts 32 elements in the matrix.

a = magic(4);
a(:,:,2) = a'

a(:,:,1) =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

a(:,:,2) =
16 5 9 4
2 11 7 14
3 10 6 15

13 8 12 1

numel(a)
ans =

32

See Also nargin, nargout, prod, size, subsasgn, subsref

2-2287

nzmax

Purpose Amount of storage allocated for nonzero matrix elements

Syntax n = nzmax(S)

Description n = nzmax(S) returns the amount of storage allocated for nonzero
elements.

If S is a sparse
matrix...

nzmax(S) is the number of storage locations
allocated for the nonzero elements in S.

If S is a full matrix... nzmax(S) = prod(size(S)).

Often, nnz(S) and nzmax(S) are the same. But if S is created by an
operation which produces fill-in matrix elements, such as sparse matrix
multiplication or sparse LU factorization, more storage may be allocated
than is actually required, and nzmax(S) reflects this. Alternatively,
sparse(i,j,s,m,n,nzmax) or its simpler form, spalloc(m,n,nzmax),
can set nzmax in anticipation of later fill-in.

See Also find, isa, nnz, nonzeros, size, whos

2-2288

ode15i

Purpose Solve fully implicit differential equations, variable order method

Syntax [T,Y] = ode15i(odefun,tspan,y0,yp0)
[T,Y] = ode15i(odefun,tspan,y0,yp0,options)
[T,Y,TE,YE,IE] = ode15i(odefun,tspan,y0,yp0,options...)
sol = ode15i(odefun,[t0 tfinal],y0,yp0,...)

Arguments The following table lists the input arguments for ode15i.

odefun A function handle that evaluates the left side of
the differential equations, which are of the form

. See “Function Handles” in the
MATLAB Programming documentation for more
information.

tspan A vector specifying the interval of integration, [t0,tf].
To obtain solutions at specific times (all increasing or all
decreasing), use tspan = [t0,t1,...,tf].

y0, yp0 Vectors of initial conditions for and respectively.

options Optional integration argument created using the odeset
function. See odeset for details.

The following table lists the output arguments for ode15i.

T Column vector of time points

Y Solution array. Each row in y corresponds to the solution
at a time returned in the corresponding row of t.

Description [T,Y] = ode15i(odefun,tspan,y0,yp0) with tspan = [t0 tf]

integrates the system of differential equations from
time t0 to tf with initial conditions y0 and yp0. odefun is a function
handle. Function ode15i solves ODEs and DAEs of index 1. The initial
conditions must be consistent, meaning that . You
can use the function decic to compute consistent initial conditions

2-2289

ode15i

close to guessed values. Function odefun(t,y,yp), for a scalar t and
column vectors y and yp, must return a column vector corresponding
to . Each row in the solution array Y corresponds to a
time returned in the column vector T. To obtain solutions at specific
times t0,t1,...,tf (all increasing or all decreasing), use tspan =
[t0,t1,...,tf].

“Parameterizing Functions Called by Function Functions”, in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the function odefun, if necessary.

[T,Y] = ode15i(odefun,tspan,y0,yp0,options) solves as above
with default integration parameters replaced by property values
specified in options, an argument created with the odeset function.
Commonly used options include a scalar relative error tolerance RelTol
(1e-3 by default) and a vector of absolute error tolerances AbsTol (all
components 1e-6 by default). See odeset for details.

[T,Y,TE,YE,IE] = ode15i(odefun,tspan,y0,yp0,options...)
with the 'Events' property in options set to a function events,
solves as above while also finding where functions of ,
called event functions, are zero. The function events is of the form
[value,isterminal,direction] = events(t,y,yp) and includes
the necessary event functions. Code the function events so that the ith
element of each output vector corresponds to the ith event. For the ith
event function in events:

• value(i) is the value of the function.

• isterminal(i) = 1 if the integration is to terminate at a zero of this
event function and 0 otherwise.

• direction(i) = 0 if all zeros are to be computed (the default), +1
if only the zeros where the event function increases, and -1 if only
the zeros where the event function decreases.

Output TE is a column vector of times at which events occur. Rows of
YE are the corresponding solutions, and indices in vector IE specify

2-2290

ode15i

which event occurred. See “Changing ODE Integration Properties” in
the MATLAB Mathematics documentation for more information.

sol = ode15i(odefun,[t0 tfinal],y0,yp0,...) returns a structure
that can be used with deval to evaluate the solution at any point
between t0 and tfinal. The structure sol always includes these fields:

sol.x Steps chosen by the solver. If you specify the Events
option and a terminal event is detected, sol.x(end)
contains the end of the step at which the event
occurred.

sol.y Each column sol.y(:,i) contains the solution at
sol.x(i).

If you specify the Events option and events are detected, sol also
includes these fields:

sol.xe Points at which events, if any, occurred. sol.xe(end)
contains the exact point of a terminal event, if any.

sol.ye Solutions that correspond to events in sol.xe.

sol.ie Indices into the vector returned by the function
specified in the Events option. The values indicate
which event the solver detected.

Options ode15i accepts the following parameters in options. For more
information, see odeset and Changing ODE Integration Properties
in the MATLAB documentation.

Error
control

RelTol, AbsTol, NormControl

Solver
output

OutputFcn, OutputSel, Refine, Stats

Event
location

Events

2-2291

ode15i

Step size MaxStep, InitialStep

Jacobian
matrix

Jacobian, JPattern, Vectorized

Solver Output

If you specify an output function as the value of the OutputFcn property,
the solver calls it with the computed solution after each time step.
Four output functions are provided: odeplot, odephas2, odephas3,
odeprint. When you call the solver with no output arguments, it calls
the default odeplot to plot the solution as it is computed. odephas2
and odephas3 produce two- and three-dimensional phase plane plots,
respectively. odeprint displays the solution components on the screen.
By default, the ODE solver passes all components of the solution to the
output function. You can pass only specific components by providing a
vector of indices as the value of the OutputSel property. For example,
if you call the solver with no output arguments and set the value of
OutputSel to [1,3], the solver plots solution components 1 and 3 as
they are computed.

Jacobian Matrices

The Jacobian matrices and are critical to reliability and
efficiency. You can provide these matrices as one of the following:

• Function of the form [dfdy,dfdyp] = FJAC(t,y,yp) that computes
the Jacobian matrices. If FJAC returns an empty matrix [] for either
dfdy or dfdyp, then ode15i approximates that matrix by finite
differences.

• Cell array of two constant matrices {dfdy,dfdyp}, either of which
could be empty.

Use odeset to set the Jacobian option to the function or cell array. If
you do not set the Jacobian option, ode15i approximates both Jacobian
matrices by finite differences.

For ode15i, Vectorized is a two-element cell array. Set the
first element to 'on' if odefun(t,[y1,y2,...],yp) returns

2-2292

ode15i

[odefun(t,y1,yp),odefun(t,y2,yp),...]. Set the second
element to 'on' if odefun(t,y,[yp1,yp2,...]) returns
[odefun(t,y,yp1),odefun(t,y,yp2),...]. The default value of
Vectorized is {'off','off'}.

For ode15i, JPattern is also a two-element sparse matrix cell array.
If or is a sparse matrix, set JPattern to the sparsity
patterns, {SPDY,SPDYP}. A sparsity pattern of is a sparse
matrix SPDY with SPDY(i,j) = 1 if component i of f(t,y,yp) depends
on component j of y, and 0 otherwise. Use SPDY = [] to indicate that

is a full matrix. Similarly for and SPDYP. The default
value of JPattern is {[],[]}.

Examples Example 1

This example uses a helper function decic to hold fixed the initial

value for and compute a consistent initial value for for
the Weissinger implicit ODE. The Weissinger function evaluates the
residual of the implicit ODE.

t0 = 1;
y0 = sqrt(3/2);
yp0 = 0;
[y0,yp0] = decic(@weissinger,t0,y0,1,yp0,0);

The example uses ode15i to solve the ODE, and then plots the
numerical solution against the analytical solution.

[t,y] = ode15i(@weissinger,[1 10],y0,yp0);
ytrue = sqrt(t.^2 + 0.5);
plot(t,y,t,ytrue,'o');

2-2293

ode15i

Other Examples

These demos provide examples of implicit ODEs: ihb1dae,
iburgersode.

See Also decic, deval, odeget, odeset, function_handle (@)

Other ODE initial value problem solvers: ode45, ode23, ode113,
ode15s, ode23s, ode23t, ode23tb

2-2294

ode23, ode45, ode113, ode15s, ode23s, ode23t,
ode23tb

Purpose Solve initial value problems for ordinary differential equations

Syntax [T,Y] = solver(odefun,tspan,y0)
[T,Y] = solver(odefun,tspan,y0,options)
[T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options)
sol = solver(odefun,[t0 tf],y0...)

where solver is one of ode45, ode23, ode113, ode15s, ode23s, ode23t,
or ode23tb.

2-2295

ode23, ode45, ode113, ode15s, ode23s, ode23t,
ode23tb

Arguments The following table describes the input arguments to the solvers.

odefun A function handle that evaluates the right side
of the differential equations. See “Function
Handles” in the MATLAB Programming
documentation for more information. All
solvers solve systems of equations in the form

or problems that involve a mass
matrix, . The ode23s
solver can solve only equations with constant
mass matrices. ode15s and ode23t can solve
problems with a mass matrix that is singular,
i.e., differential-algebraic equations (DAEs).

tspan A vector specifying the interval of integration,
[t0,tf]. The solver imposes the initial
conditions at tspan(1), and integrates
from tspan(1) to tspan(end). To obtain
solutions at specific times (all increasing or all
decreasing), use tspan = [t0,t1,...,tf].

For tspan vectors with two elements [t0 tf],
the solver returns the solution evaluated at
every integration step. For tspan vectors with
more than two elements, the solver returns
solutions evaluated at the given time points.
The time values must be in order, either
increasing or decreasing.

2-2296

ode23, ode45, ode113, ode15s, ode23s, ode23t,
ode23tb

Specifying tspan with more than two elements
does not affect the internal time steps that
the solver uses to traverse the interval from
tspan(1) to tspan(end). All solvers in the
ODE suite obtain output values by means of
continuous extensions of the basic formulas.
Although a solver does not necessarily step
precisely to a time point specified in tspan,
the solutions produced at the specified time
points are of the same order of accuracy as the
solutions computed at the internal time points.

Specifying tspan with more than two
elements has little effect on the efficiency of
computation, but for large systems, affects
memory management.

y0 A vector of initial conditions.

options Structure of optional parameters that change
the default integration properties. This is the
fourth input argument.

[t,y] =
solver(odefun,tspan,y0,options)

You can create options using the odeset
function. See odeset for details.

The following table lists the output arguments for the solvers.

T Column vector of time points

Y Solution array. Each row in y corresponds to the solution
at a time returned in the corresponding row of t.

Description [T,Y] = solver(odefun,tspan,y0) with tspan = [t0 tf] integrates
the system of differential equations from time t0 to tf

2-2297

ode23, ode45, ode113, ode15s, ode23s, ode23t,
ode23tb

with initial conditions y0. odefun is a function handle. See Function
Handles in the MATLAB Programming documentation for more
information. Function f = odefun(t,y), for a scalar t and a column
vector y, must return a column vector f corresponding to . Each
row in the solution array Y corresponds to a time returned in column
vector T. To obtain solutions at the specific times t0, t1,...,tf (all
increasing or all decreasing), use tspan = [t0,t1,...,tf].

“Parameterizing Functions Called by Function Functions”, in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the function fun, if necessary.

[T,Y] = solver(odefun,tspan,y0,options) solves as above with
default integration parameters replaced by property values specified in
options, an argument created with the odeset function. Commonly
used properties include a scalar relative error tolerance RelTol (1e-3
by default) and a vector of absolute error tolerances AbsTol (all
components are 1e-6 by default). If certain components of the solution
must be nonnegative, use the odeset function to set the NonNegative
property to the indices of these components. See odeset for details.

[T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options) solves
as above while also finding where functions of , called event
functions, are zero. For each event function, you specify whether the
integration is to terminate at a zero and whether the direction of
the zero crossing matters. Do this by setting the 'Events' property
to a function, e.g., events or @events, and creating a function
[value,isterminal,direction] = events(t,y). For the ith event
function in events,

• value(i) is the value of the function.

• isterminal(i) = 1, if the integration is to terminate at a zero of
this event function and 0 otherwise.

• direction(i) = 0 if all zeros are to be computed (the default), +1
if only the zeros where the event function increases, and -1 if only
the zeros where the event function decreases.

2-2298

ode23, ode45, ode113, ode15s, ode23s, ode23t,
ode23tb

Corresponding entries in TE, YE, and IE return, respectively, the time
at which an event occurs, the solution at the time of the event, and the
index i of the event function that vanishes.

sol = solver(odefun,[t0 tf],y0...) returns a structure that you
can use with deval to evaluate the solution at any point on the interval
[t0,tf]. You must pass odefun as a function handle. The structure
sol always includes these fields:

sol.x Steps chosen by the solver.

sol.y Each column sol.y(:,i) contains the solution
at sol.x(i).

sol.solver Solver name.

If you specify the Events option and events are detected, sol also
includes these fields:

sol.xe Points at which events, if any, occurred.
sol.xe(end) contains the exact point of a
terminal event, if any.

sol.ye Solutions that correspond to events in sol.xe.

sol.ie Indices into the vector returned by the function
specified in the Events option. The values
indicate which event the solver detected.

If you specify an output function as the value of the OutputFcn property,
the solver calls it with the computed solution after each time step.
Four output functions are provided: odeplot, odephas2, odephas3,
odeprint. When you call the solver with no output arguments, it calls
the default odeplot to plot the solution as it is computed. odephas2
and odephas3 produce two- and three-dimensional phase plane plots,
respectively. odeprint displays the solution components on the screen.
By default, the ODE solver passes all components of the solution to the
output function. You can pass only specific components by providing a
vector of indices as the value of the OutputSel property. For example,
if you call the solver with no output arguments and set the value of

2-2299

ode23, ode45, ode113, ode15s, ode23s, ode23t,
ode23tb

OutputSel to [1,3], the solver plots solution components 1 and 3 as
they are computed.

For the stiff solvers ode15s, ode23s, ode23t, and ode23tb, the Jacobian
matrix is critical to reliability and efficiency. Use odeset to set
Jacobian to @FJAC if FJAC(T,Y) returns the Jacobian or to the
matrix if the Jacobian is constant. If the Jacobian property
is not set (the default), is approximated by finite differences.
Set the Vectorized property ’on’ if the ODE function is coded so that
odefun(T,[Y1,Y2 ...]) returns [odefun(T,Y1),odefun(T,Y2) ...]. If

is a sparse matrix, set the JPattern property to the sparsity
pattern of , i.e., a sparse matrix S with S(i,j) = 1 if the
ith component of depends on the jth component of , and 0
otherwise.

The solvers of the ODE suite can solve problems of the form
, with time- and state-dependent mass matrix

. (The ode23s solver can solve only equations with constant mass
matrices.) If a problem has a mass matrix, create a function M =
MASS(t,y) that returns the value of the mass matrix, and use odeset
to set the Mass property to @MASS. If the mass matrix is constant, the
matrix should be used as the value of the Mass property. Problems with
state-dependent mass matrices are more difficult:

• If the mass matrix does not depend on the state variable and the
function MASS is to be called with one input argument, t, set the
MStateDependence property to ’none’.

• If the mass matrix depends weakly on , set MStateDependence to
’weak’ (the default); otherwise, set it to ’strong’. In either case, the
function MASS is called with the two arguments (t,y).

If there are many differential equations, it is important to exploit
sparsity:

• Return a sparse .

2-2300

ode23, ode45, ode113, ode15s, ode23s, ode23t,
ode23tb

• Supply the sparsity pattern of using the JPattern property
or a sparse using the Jacobian property.

• For strongly state-dependent , set MvPattern to a sparse
matrix S with S(i,j) = 1 if for any k, the (i,k) component of

depends on component j of , and 0 otherwise.

If the mass matrix is singular, then is a
system of differential algebraic equations. DAEs have solutions only
when is consistent, that is, if there is a vector such that

. The ode15s and ode23t solvers can
solve DAEs of index 1 provided that y0 is sufficiently close to being
consistent. If there is a mass matrix, you can use odeset to set the
MassSingular property to 'yes', 'no', or 'maybe'. The default value
of 'maybe' causes the solver to test whether the problem is a DAE.
You can provide yp0 as the value of the InitialSlope property. The
default is the zero vector. If a problem is a DAE, and y0 and yp0 are
not consistent, the solver treats them as guesses, attempts to compute
consistent values that are close to the guesses, and continues to solve
the problem. When solving DAEs, it is very advantageous to formulate
the problem so that is a diagonal matrix (a semi-explicit DAE).

Solver
Problem
Type

Order of
Accuracy When to Use

ode45 Nonstiff Medium Most of the time.
This should be the
first solver you try.

ode23 Nonstiff Low For problems
with crude error
tolerances or for
solving moderately
stiff problems.

2-2301

ode23, ode45, ode113, ode15s, ode23s, ode23t,
ode23tb

Solver
Problem
Type

Order of
Accuracy When to Use

ode113 Nonstiff Low to high For problems
with stringent
error tolerances
or for solving
computationally
intensive problems.

ode15s Stiff Low to medium If ode45 is slow
because the problem
is stiff.

ode23s Stiff Low If using crude error
tolerances to solve
stiff systems and
the mass matrix is
constant.

ode23t Moderately
Stiff

Low For moderately stiff
problems if you need
a solution without
numerical damping.

ode23tb Stiff Low If using crude error
tolerances to solve
stiff systems.

The algorithms used in the ODE solvers vary according to order of
accuracy [6] and the type of systems (stiff or nonstiff) they are designed
to solve. See “Algorithms” on page 2-2308 for more details.

Options Different solvers accept different parameters in the options list.
For more information, see odeset and “Changing ODE Integration
Properties” in the MATLAB Mathematics documentation.

2-2302

ode23, ode45, ode113, ode15s, ode23s, ode23t,
ode23tb

Parameters ode45 ode23 ode113 ode15s ode23s ode23t ode23tb

RelTol, AbsTol,
NormControl

√ √ √ √ √ √ √

OutputFcn,
OutputSel,
Refine, Stats

√ √ √ √ √ √ √

NonNegative √ √ √ √ * — √ * √ *

Events √ √ √ √ √ √ √

MaxStep,
InitialStep

√ √ √ √ √ √ √

Jacobian,
JPattern,
Vectorized

— — — √ √ √ √

Mass
MStateDependence
MvPattern
MassSingular

√
√
—
—

√
√
—
—

√
√
—
—

√
√
√
√

√
—
—
—

√
√
√
√

√
√
√
—

InitialSlope — — — √ — √ —

MaxOrder, BDF — — — √ — — —

Note You can use the NonNegative parameter with ode15s, ode23t,
and ode23tb only for those problems for which there is no mass matrix.

Examples Example 1

An example of a nonstiff system is the system of equations describing
the motion of a rigid body without external forces.

2-2303

ode23, ode45, ode113, ode15s, ode23s, ode23t,
ode23tb

To simulate this system, create a function rigid containing the
equations

function dy = rigid(t,y)
dy = zeros(3,1); % a column vector
dy(1) = y(2) * y(3);
dy(2) = -y(1) * y(3);
dy(3) = -0.51 * y(1) * y(2);

In this example we change the error tolerances using the odeset
command and solve on a time interval [0 12] with an initial condition
vector [0 1 1] at time 0.

options = odeset('RelTol',1e-4,'AbsTol',[1e-4 1e-4 1e-5]);
[T,Y] = ode45(@rigid,[0 12],[0 1 1],options);

Plotting the columns of the returned array Y versus T shows the solution

plot(T,Y(:,1),'-',T,Y(:,2),'-.',T,Y(:,3),'.')

2-2304

ode23, ode45, ode113, ode15s, ode23s, ode23t,
ode23tb

Example 2

An example of a stiff system is provided by the van der Pol equations in
relaxation oscillation. The limit cycle has portions where the solution
components change slowly and the problem is quite stiff, alternating
with regions of very sharp change where it is not stiff.

To simulate this system, create a function vdp1000 containing the
equations

function dy = vdp1000(t,y)
dy = zeros(2,1); % a column vector

2-2305

ode23, ode45, ode113, ode15s, ode23s, ode23t,
ode23tb

dy(1) = y(2);
dy(2) = 1000*(1 - y(1)^2)*y(2) - y(1);

For this problem, we will use the default relative and absolute
tolerances (1e-3 and 1e-6, respectively) and solve on a time interval of
[0 3000] with initial condition vector [2 0] at time 0.

[T,Y] = ode15s(@vdp1000,[0 3000],[2 0]);

Plotting the first column of the returned matrix Y versus T shows the
solution

plot(T,Y(:,1),'-o')

Example 3

This example solves an ordinary differential equation with
time-dependent terms.

2-2306

ode23, ode45, ode113, ode15s, ode23s, ode23t,
ode23tb

Consider the following ODE, with time-dependent parameters defined
only through the set of data points given in two vectors:

y'(t) + f(t)y(t) = g(t)

The initial condition is y(0) = 0, where the function f(t) is defined
through the n-by-1 vectors tf and f, and the function g(t) is defined
through the m-by-1 vectors tg and g.

First, define the time-dependent parameters f(t) and g(t) as the
following:

ft = linspace(0,5,25); % Generate t for f
f = ft.^2 - ft - 3; % Generate f(t)
gt = linspace(1,6,25); % Generate t for g
g = 3*sin(gt-0.25); % Generate g(t)

Write an M-file function to interpolate the data sets specified above to
obtain the value of the time-dependent terms at the specified time:

function dydt = myode(t,y,ft,f,gt,g)
f = interp1(ft,f,t); % Interpolate the data set (ft,f) at time t
g = interp1(gt,g,t); % Interpolate the data set (gt,g) at time t
dydt = -f.*y + g; % Evalute ODE at time t

Call the derivative function myode.m within the MATLAB ode45
function specifying time as the first input argument :

Tspan = [1 5]; % Solve from t=1 to t=5
IC = 1; % y(t=0) = 1
[T Y] = ode45(@(t,y) myode(t,y,ft,f,gt,g),TSPAN,IC); % Solve ODE

Plot the solution y(t) as a function of time:

plot(T, Y);
title('Plot of y as a function of time');
xlabel('Time'); ylabel('Y(t)');

2-2307

ode23, ode45, ode113, ode15s, ode23s, ode23t,
ode23tb

Algorithms ode45 is based on an explicit Runge-Kutta (4,5) formula, the
Dormand-Prince pair. It is a one-step solver – in computing y(tn),
it needs only the solution at the immediately preceding time point,
y(tn-1). In general, ode45 is the best function to apply as a first try for
most problems. [3]

ode23 is an implementation of an explicit Runge-Kutta (2,3) pair of
Bogacki and Shampine. It may be more efficient than ode45 at crude
tolerances and in the presence of moderate stiffness. Like ode45, ode23
is a one-step solver. [2]

2-2308

ode23, ode45, ode113, ode15s, ode23s, ode23t,
ode23tb

ode113 is a variable order Adams-Bashforth-Moulton PECE solver. It
may be more efficient than ode45 at stringent tolerances and when the
ODE file function is particularly expensive to evaluate. ode113 is a
multistep solver — it normally needs the solutions at several preceding
time points to compute the current solution. [7]

The above algorithms are intended to solve nonstiff systems. If they
appear to be unduly slow, try using one of the stiff solvers below.

ode15s is a variable order solver based on the numerical differentiation
formulas (NDFs). Optionally, it uses the backward differentiation
formulas (BDFs, also known as Gear’s method) that are usually less
efficient. Like ode113, ode15s is a multistep solver. Try ode15s when
ode45 fails, or is very inefficient, and you suspect that the problem is
stiff, or when solving a differential-algebraic problem. [9], [10]

ode23s is based on a modified Rosenbrock formula of order 2. Because
it is a one-step solver, it may be more efficient than ode15s at crude
tolerances. It can solve some kinds of stiff problems for which ode15s
is not effective. [9]

ode23t is an implementation of the trapezoidal rule using a “free”
interpolant. Use this solver if the problem is only moderately stiff and
you need a solution without numerical damping. ode23t can solve
DAEs. [10]

ode23tb is an implementation of TR-BDF2, an implicit Runge-Kutta
formula with a first stage that is a trapezoidal rule step and a second
stage that is a backward differentiation formula of order two. By
construction, the same iteration matrix is used in evaluating both
stages. Like ode23s, this solver may be more efficient than ode15s at
crude tolerances. [8], [1]

See Also deval, ode15i, odeget, odeset, function_handle (@)

References [1] Bank, R. E., W. C. Coughran, Jr., W. Fichtner, E. Grosse, D. Rose,
and R. Smith, “Transient Simulation of Silicon Devices and Circuits,”
IEEE Trans. CAD, 4 (1985), pp 436-451.

2-2309

ode23, ode45, ode113, ode15s, ode23s, ode23t,
ode23tb

[2] Bogacki, P. and L. F. Shampine, “A 3(2) pair of Runge-Kutta
formulas,” Appl. Math. Letters, Vol. 2, 1989, pp 1-9.

[3] Dormand, J. R. and P. J. Prince, “A family of embedded Runge-Kutta
formulae,” J. Comp. Appl. Math., Vol. 6, 1980, pp 19-26.

[4] Forsythe, G. , M. Malcolm, and C. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, New Jersey, 1977.

[5] Kahaner, D. , C. Moler, and S. Nash, Numerical Methods and
Software, Prentice-Hall, New Jersey, 1989.

[6] Shampine, L. F. , Numerical Solution of Ordinary Differential
Equations, Chapman & Hall, New York, 1994.

[7] Shampine, L. F. and M. K. Gordon, Computer Solution of Ordinary
Differential Equations: the Initial Value Problem, W. H. Freeman,
San Francisco, 1975.

[8] Shampine, L. F. and M. E. Hosea, “Analysis and Implementation of
TR-BDF2,” Applied Numerical Mathematics 20, 1996.

[9] Shampine, L. F. and M. W. Reichelt, “The MATLAB ODE Suite,”
SIAM Journal on Scientific Computing, Vol. 18, 1997, pp 1-22.

[10] Shampine, L. F., M. W. Reichelt, and J.A. Kierzenka, “Solving
Index-1 DAEs in MATLAB and Simulink,” SIAM Review, Vol. 41, 1999,
pp 538-552.

2-2310

odefile

Purpose Define differential equation problem for ordinary differential equation
solvers

Note This reference page describes the odefile and the syntax of
the ODE solvers used in MATLAB, Version 5. MATLAB, Version 6,
supports the odefile for backward compatibility, however the new
solver syntax does not use an ODE file. New functionality is available
only with the new syntax. For information about the new syntax, see
odeset or any of the ODE solvers.

Description odefile is not a command or function. It is a help entry that describes
how to create an M-file defining the system of equations to be solved.
This definition is the first step in using any of the MATLAB ODE
solvers. In MATLAB documentation, this M-file is referred to as an
odefile, although you can give your M-file any name you like.

You can use the odefile M-file to define a system of differential
equations in one of these forms

or

where:

• is a scalar independent variable, typically representing time.

• is a vector of dependent variables.

• is a function of and returning a column vector the same length
as .

• is a time-and-state-dependent mass matrix.

2-2311

odefile

The ODE file must accept the arguments t and y, although it does not
have to use them. By default, the ODE file must return a column vector
the same length as y.

All of the solvers of the ODE suite can solve ,
except ode23s, which can only solve problems with constant
mass matrices. The ode15s and ode23t solvers can solve some
differential-algebraic equations (DAEs) of the form .

Beyond defining a system of differential equations, you can specify an
entire initial value problem (IVP) within the ODE M-file, eliminating
the need to supply time and initial value vectors at the command line
(see “Examples” on page 2-2314).

To Use the ODE File Template

• Enter the command help odefile to display the help entry.

• Cut and paste the ODE file text into a separate file.

• Edit the file to eliminate any cases not applicable to your IVP.

• Insert the appropriate information where indicated. The definition
of the ODE system is required information.

switch flag
case '' % Return dy/dt = f(t,y).

varargout{1} = f(t,y,p1,p2);
case 'init' % Return default [tspan,y0,options].

[varargout{1:3}] = init(p1,p2);
case 'jacobian' % Return Jacobian matrix df/dy.

varargout{1} = jacobian(t,y,p1,p2);
case 'jpattern' % Return sparsity pattern matrix S.

varargout{1} = jpattern(t,y,p1,p2);
case 'mass' % Return mass matrix.

varargout{1} = mass(t,y,p1,p2);
case 'events' % Return [value,isterminal,direction].

[varargout{1:3}] = events(t,y,p1,p2);
otherwise

error(['Unknown flag ''' flag '''.']);

2-2312

odefile

end
% --
function dydt = f(t,y,p1,p2)
dydt = Insert a function of t and/or y, p1, and p2 here.>

% --
function [tspan,y0,options] = init(p1,p2)
tspan = <Insert tspan here.>;
y0 = <Insert y0 here.>;
options = <Insert options = odeset(...) or [] here.>;

% --
function dfdy = jacobian(t,y,p1,p2)
dfdy = <Insert Jacobian matrix here.>;

% --
function S = jpattern(t,y,p1,p2)
S = <Insert Jacobian matrix sparsity pattern here.>;

% --
function M = mass(t,y,p1,p2)
M = <Insert mass matrix here.>;

% --
function [value,isterminal,direction] = events(t,y,p1,p2)
value = <Insert event function vector here.>
isterminal = <Insert logical ISTERMINAL vector here.>;
direction = <Insert DIRECTION vector here.>;

Notes

1 The ODE file must accept t and y vectors from the ODE solvers and
must return a column vector the same length as y. The optional
input argument flag determines the type of output (mass matrix,
Jacobian, etc.) returned by the ODE file.

2 The solvers repeatedly call the ODE file to evaluate the system of
differential equations at various times. This is required information
– you must define the ODE system to be solved.

3 The switch statement determines the type of output required, so
that the ODE file can pass the appropriate information to the solver.
(See notes 4 - 9.)

2-2313

odefile

4 In the default initial conditions ('init') case, the ODE file returns
basic information (time span, initial conditions, options) to the solver.
If you omit this case, you must supply all the basic information on
the command line.

5 In the 'jacobian' case, the ODE file returns a Jacobian matrix to
the solver. You need only provide this case when you want to improve
the performance of the stiff solvers ode15s, ode23s, ode23t, and
ode23tb.

6 In the 'jpattern' case, the ODE file returns the Jacobian sparsity
pattern matrix to the solver. You need to provide this case only when
you want to generate sparse Jacobian matrices numerically for a
stiff solver.

7 In the 'mass' case, the ODE file returns a mass matrix to the solver.
You need to provide this case only when you want to solve a system in
the form .

8 In the 'events' case, the ODE file returns to the solver the values
that it needs to perform event location. When the Events property
is set to on, the ODE solvers examine any elements of the event
vector for transitions to, from, or through zero. If the corresponding
element of the logical isterminal vector is set to 1, integration will
halt when a zero-crossing is detected. The elements of the direction
vector are -1, 1, or 0, specifying that the corresponding event must be
decreasing, increasing, or that any crossing is to be detected.

9 An unrecognized flag generates an error.

Examples The van der Pol equation, , is equivalent
to a system of coupled first-order differential equations.

2-2314

odefile

The M-file

function out1 = vdp1(t,y)
out1 = [y(2); (1-y(1)^2)*y(2) - y(1)];

defines this system of equations (with).

To solve the van der Pol system on the time interval [0 20] with initial
values (at time 0) of y(1) = 2 and y(2) = 0, use

[t,y] = ode45('vdp1',[0 20],[2; 0]);
plot(t,y(:,1),'-',t,y(:,2),'-.')

To specify the entire initial value problem (IVP) within the M-file,
rewrite vdp1 as follows.

2-2315

odefile

function [out1,out2,out3] = vdp1(t,y,flag)
if nargin < 3 | isempty(flag)

out1 = [y(1).*(1-y(2).^2)-y(2); y(1)];
else

switch(flag)
case 'init' % Return tspan, y0, and options.

out1 = [0 20];
out2 = [2; 0];
out3 = [];

otherwise
error(['Unknown request ''' flag '''.']);

end
end

You can now solve the IVP without entering any arguments from the
command line.

[t,Y] = ode23('vdp1')

In this example the ode23 function looks to the vdp1 M-file to supply
the missing arguments. Note that, once you’ve called odeset to define
options, the calling syntax

[t,Y] = ode23('vdp1',[],[],options)

also works, and that any options supplied via the command line override
corresponding options specified in the M-file (see odeset).

See Also The MATLAB Version 5 help entries for the ODE solvers and their
associated functions: ode23, ode45, ode113, ode15s, ode23s, ode23t,
ode23tb, odeget, odeset

Type at the MATLAB command line:
more on, type function, more off. The Version 5
help follows the Version 6 help.

2-2316

odeget

Purpose Ordinary differential equation options parameters

Syntax o = odeget(options,'name')
o = odeget(options,'name',default)

Description o = odeget(options,'name') extracts the value of the property
specified by string 'name' from integrator options structure options,
returning an empty matrix if the property value is not specified in
options. It is only necessary to type the leading characters that
uniquely identify the property name. Case is ignored for property
names. The empty matrix [] is a valid options argument.

o = odeget(options,'name',default) returns o = default if the
named property is not specified in options.

Example Having constructed an ODE options structure,

options = odeset('RelTol',1e-4,'AbsTol',[1e-3 2e-3 3e-3]);

you can view these property settings with odeget.

odeget(options,'RelTol')
ans =

1.0000e-04

odeget(options,'AbsTol')
ans =

0.0010 0.0020 0.0030

See Also odeset

2-2317

odeset

Purpose Create or alter options structure for ordinary differential equation
solvers

Syntax options = odeset('name1',value1,'name2',value2,...)
options = odeset(oldopts,'name1',value1,...)
options = odeset(oldopts,newopts)
odeset

Description The odeset function lets you adjust the integration parameters of the
following ODE solvers.

For solving fully implicit differential equations:

ode15i

For solving initial value problems:

ode23, ode45, ode113, ode15s, ode23s, ode23t, ode23tb

See below for information about the integration parameters.

options = odeset('name1',value1,'name2',value2,...) creates
an options structure that you can pass as an argument to any of the
ODE solvers. In the resulting structure, options, the named properties
have the specified values. For example, 'name1' has the value value1.
Any unspecified properties have default values. It is sufficient to type
only the leading characters that uniquely identify a property name.
Case is ignored for property names.

options = odeset(oldopts,'name1',value1,...) alters an existing
options structure oldopts. This sets options equal to the existing
structure oldopts, overwrites any values in oldopts that are
respecified using name/value pairs, and adds any new pairs to the
structure. The modified structure is returned as an output argument.

options = odeset(oldopts,newopts) alters an existing options
structure oldopts by combining it with a new options structure
newopts. Any new options not equal to the empty matrix overwrite
corresponding options in oldopts.

2-2318

odeset

odeset with no input arguments displays all property names as well as
their possible and default values.

ODE
Properties

The following sections describe the properties that you can set using
odeset. The available properties depend on the ODE solver you are
using. There are several categories of properties:

• “Error Control Properties” on page 2-2319

• “Solver Output Properties” on page 2-2321

• “Step-Size Properties” on page 2-2325

• “Event Location Property” on page 2-2326

• “Jacobian Matrix Properties” on page 2-2328

• “Mass Matrix and DAE Properties” on page 2-2332

• “ode15s and ode15i-Specific Properties” on page 2-2334

Note This reference page describes the ODE properties for MATLAB,
Version 7. The Version 5 properties are supported only for backward
compatibility. For information on the Version 5 properties, type at the
MATLAB command line: more on, type odeset, more off.

Error
Control
Properties

At each step, the solver estimates the local error e in the ith component
of the solution. This error must be less than or equal to the acceptable
error, which is a function of the specified relative tolerance, RelTol, and
the specified absolute tolerance, AbsTol.

|e(i)| ≤ max(RelTol*abs(y(i)),AbsTol(i))

For routine problems, the ODE solvers deliver accuracy roughly
equivalent to the accuracy you request. They deliver less accuracy
for problems integrated over "long" intervals and problems that are
moderately unstable. Difficult problems may require tighter tolerances
than the default values. For relative accuracy, adjust RelTol. For the

2-2319

odeset

absolute error tolerance, the scaling of the solution components is
important: if |y| is somewhat smaller than AbsTol, the solver is not
constrained to obtain any correct digits in y. You might have to solve a
problem more than once to discover the scale of solution components.

Roughly speaking, this means that you want RelTol correct digits in all
solution components except those smaller than thresholds AbsTol(i).
Even if you are not interested in a component y(i) when it is small,
you may have to specify AbsTol(i) small enough to get some correct
digits in y(i) so that you can accurately compute more interesting
components.

The following table describes the error control properties. Further
information on each property is given following the table.

Property Value Description

RelTol Positive scalar
{1e-3}

Relative error tolerance that applies
to all components of the solution
vector y.

AbsTol Positive scalar
or vector {1e-6}

Absolute error tolerances that apply
to the individual components of the
solution vector.

NormControl on | {off} Control error relative to norm of
solution.

Description of Error Control Properties

RelTol — This tolerance is a measure of the error relative to the size
of each solution component. Roughly, it controls the number of correct
digits in all solution components, except those smaller than thresholds
AbsTol(i).

The default, 1e-3, corresponds to 0.1% accuracy.

AbsTol — AbsTol(i) is a threshold below which the value of the ith
solution component is unimportant. The absolute error tolerances
determine the accuracy when the solution approaches zero.

2-2320

odeset

If AbsTol is a vector, the length of AbsTol must be the same as the
length of the solution vector y. If AbsTol is a scalar, the value applies to
all components of y.

NormControl — Set this property on to request that the
solvers control the error in each integration step with
norm(e) <= max(RelTol*norm(y),AbsTol). By default the solvers use
a more stringent componentwise error control.

Solver
Output
Properties

The following table lists the solver output properties that control the
output that the solvers generate. Further information on each property
is given following the table.

Property Value Description

NonNegative Vector of
integers

Specifies which components of the
solution vector must be nonnegative.
The default value is [].

OutputFcn Function
handle

A function for the solver to call after
every successful integration step.

OutputSel Vector of indices Specifies which components of the
solution vector are to be passed to
the output function.

Refine Positive integer Increases the number of output
points by a factor of Refine.

Stats on | {off} Determines whether the solver
should display statistics about its
computations. By default, Stats is
off.

Description of Solver Output Properties

NonNegative — The NonNegative property is not available in ode23s,
ode15i. In ode15s, ode23t, and ode23tb, NonNegative is not available
for problems where there is a mass matrix.

2-2321

odeset

OutputFcn — To specify an output function, set 'OutputFcn' to a
function handle. For example,

options = odeset('OutputFcn',@myfun)

sets 'OutputFcn' to @myfun, a handle to the function myfun. See
“Function Handles” in the MATLAB Programming documentation for
more information.

The output function must be of the form

status = myfun(t,y,flag)

“Parameterizing Functions Called by Function Functions”, in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to myfun, if necessary.

The solver calls the specified output function with the following flags.
Note that the syntax of the call differs with the flag. The function must
respond appropriately:

Flag Description

init The solver calls myfun(tspan,y0,'init') before beginning
the integration to allow the output function to initialize.
tspan and y0 are the input arguments to the ODE solver.

2-2322

odeset

Flag Description

{[]} The solver calls status = myfun(t,y,[]) after each
integration step on which output is requested. t contains
points where output was generated during the step, and y
is the numerical solution at the points in t. If t is a vector,
the ith column of y corresponds to the ith element of t.

When length(tspan) > 2 the output is produced at every
point in tspan. When length(tspan) = 2 the output is
produced according to the Refine option.

myfun must return a status output value of 0 or 1. If
status = 1, the solver halts integration. You can use this
mechanism, for instance, to implement a Stop button.

done The solver calls myfun([],[],'done') when integration
is complete to allow the output function to perform any
cleanup chores.

You can use these general purpose output functions or you can edit
them to create your own. Type help function at the command line
for more information.

• odeplot — Time series plotting (default when you call the solver with
no output arguments and you have not specified an output function)

• odephas2 — Two-dimensional phase plane plotting

• odephas3 — Three-dimensional phase plane plotting

• odeprint — Print solution as it is computed

Note If you call the solver with no output arguments, the solver does
not allocate storage to hold the entire solution history.

OutputSel — Use OutputSel to specify which components of the
solution vector you want passed to the output function. For example, if

2-2323

odeset

you want to use the odeplot output function, but you want to plot only
the first and third components of the solution, you can do this using

options = ...
odeset('OutputFcn',@odeplot,'OutputSel',[1 3]);

By default, the solver passes all components of the solution to the
output function.

Refine — If Refine is 1, the solver returns solutions only at the end
of each time step. If Refine is n >1, the solver subdivides each time
step into n smaller intervals and returns solutions at each time point.
Refine does not apply when length(tspan)>2.

Note In all the solvers, the default value of Refine is 1. Within ode45,
however, the default is 4 to compensate for the solver’s large step sizes.
To override this and see only the time steps chosen by ode45, set Refine
to 1.

The extra values produced for Refine are computed by means of
continuous extension formulas. These are specialized formulas used by
the ODE solvers to obtain accurate solutions between computed time
steps without significant increase in computation time.

Stats — By default, Stats is off. If it is on, after solving the problem
the solver displays

• Number of successful steps

• Number of failed attempts

• Number of times the ODE function was called to evaluate f t y(,)

Solvers based on implicit methods, including ode23s, ode23t, ode23t,
ode15s, and ode15i, also display

2-2324

odeset

• Number of times that the partial derivatives matrix ∂ ∂f x/ was
formed

• Number of LU decompositions

• Number of solutions of linear systems

Step-Size
Properties

The step-size properties specify the size of the first step the solver tries,
potentially helping it to better recognize the scale of the problem. In
addition, you can specify bounds on the sizes of subsequent time steps.

The following table describes the step-size properties. Further
information on each property is given following the table.

Property Value Description

InitialStep Positive scalar Suggested initial step size.

MaxStep Positive scalar
{0.1*abs(t0-tf)}

Upper bound on solver step
size.

Description of Step-Size Properties

InitialStep — InitialStep sets an upper bound on the magnitude
of the first step size the solver tries. If you do not set InitialStep,
the initial step size is based on the slope of the solution at the initial
time tspan(1), and if the slope of all solution components is zero, the
procedure might try a step size that is much too large. If you know this
is happening or you want to be sure that the solver resolves important
behavior at the start of the integration, help the code start by providing
a suitable InitialStep.

MaxStep — If the differential equation has periodic coefficients or
solutions, it might be a good idea to set MaxStep to some fraction (such
as 1/4) of the period. This guarantees that the solver does not enlarge
the time step too much and step over a period of interest. Do not reduce
MaxStep for any of the following purposes:

2-2325

odeset

• To produce more output points. This can significantly slow down
solution time. Instead, use Refine to compute additional outputs by
continuous extension at very low cost.

• When the solution does not appear to be accurate enough. Instead,
reduce the relative error tolerance RelTol, and use the solution you
just computed to determine appropriate values for the absolute error
tolerance vector AbsTol. See “Error Control Properties” on page
2-2319 for a description of the error tolerance properties.

• To make sure that the solver doesn’t step over some behavior that
occurs only once during the simulation interval. If you know the
time at which the change occurs, break the simulation interval into
two pieces and call the solver twice. If you do not know the time at
which the change occurs, try reducing the error tolerances RelTol
and AbsTol. Use MaxStep as a last resort.

Event
Location
Property

In some ODE problems the times of specific events are important,
such as the time at which a ball hits the ground, or the time at which
a spaceship returns to the earth. While solving a problem, the ODE
solvers can detect such events by locating transitions to, from, or
through zeros of user-defined functions.

The following table describes the Events property. Further information
on each property is given following the table.

ODE Events Property

String Value Description

Events Function
handle

Handle to a function that includes
one or more event functions.

Description of Event Location Properties

Events — The function is of the form

[value,isterminal,direction] = events(t,y)

2-2326

odeset

value, isterminal, and direction are vectors for which the ith
element corresponds to the ith event function:

• value(i) is the value of the ith event function.

• isterminal(i) = 1 if the integration is to terminate at a zero of this
event function, otherwise, 0.

• direction(i) = 0 if all zeros are to be located (the default), +1 if
only zeros where the event function is increasing, and -1 if only zeros
where the event function is decreasing.

If you specify an events function and events are detected, the solver
returns three additional outputs:

• A column vector of times at which events occur

• Solution values corresponding to these times

• Indices into the vector returned by the events function. The values
indicate which event the solver detected.

If you call the solver as

[T,Y,TE,YE,IE] = solver(odefun,tspan,y0,options)

the solver returns these outputs as TE, YE, and IE respectively. If you
call the solver as

sol = solver(odefun,tspan,y0,options)

the solver returns these outputs as sol.xe, sol.ye, and sol.ie,
respectively.

For examples that use an event function, see “Example: Simple Event
Location” and “Example: Advanced Event Location” in the MATLAB
Mathematics documentation.

2-2327

odeset

Jacobian
Matrix
Properties

The stiff ODE solvers often execute faster if you provide additional

information about the Jacobian matrix ∂ ∂f y/ , a matrix of partial
derivatives of the function that defines the differential equations.

The Jacobian matrix properties pertain only to those solvers for stiff
problems (ode15s, ode23s, ode23t, ode23tb, and ode15i) for which the

Jacobian matrix ∂ ∂f y/ can be critical to reliability and efficiency. If
you do not provide a function to calculate the Jacobian, these solvers
approximate the Jacobian numerically using finite differences. In this
case, you might want to use the Vectorized or JPattern properties.

The following table describes the Jacobian matrix properties for all
implicit solvers except ode15i. Further information on each property is
given following the table. See Jacobian Properties for ode15i on page
2-2331 for ode15i-specific information.

Jacobian Properties for All Implicit Solvers Except ode15i

Property Value Description

Jacobian Function|handle
constant matrix

Matrix or function that
evaluates the Jacobian.

2-2328

odeset

Jacobian Properties for All Implicit Solvers Except ode15i
(Continued)

Property Value Description

JPattern Sparse matrix of
{0,1}

Generates a sparse Jacobian
matrix numerically.

Vectorized on | {off} Allows the solver to reduce
the number of function
evaluations required.

Description of Jacobian Properties

Jacobian — Supplying an analytical Jacobian often increases the speed
and reliability of the solution for stiff problems. Set this property to a

function FJac, where FJac(t,y) computes ∂ ∂f y/ , or to the constant

value of ∂ ∂f y/ .

The Jacobian for the stiff van der Pol problem example, described in the
MATLAB Mathematics documentation, can be coded as

function J = vdp1000jac(t,y)
J = [0 1

(-2000*y(1)*y(2)-1) (1000*(1-y(1)^2))];

JPattern — JPattern is a sparsity pattern with 1s where there might
be nonzero entries in the Jacobian.

Note If you specify Jacobian, the solver ignores any setting for
JPattern.

Set this property to a sparse matrix S with S(i,j) = 1 if component i

of f t y(,) depends on component j of y, and 0 otherwise. The solver
uses this sparsity pattern to generate a sparse Jacobian matrix
numerically. If the Jacobian matrix is large and sparse, this can greatly

2-2329

odeset

accelerate execution. For an example using the JPattern property, see
Example: Large, Stiff, Sparse Problem in the MATLAB Mathematics
documentation.

Vectorized — The Vectorized property allows the solver to reduce the
number of function evaluations required to compute all the columns of
the Jacobian matrix, and might significantly reduce solution time.

Set on to inform the solver that you have coded the ODE function F so
that F(t,[y1 y2 ...]) returns [F(t,y1) F(t,y2) ...]. This allows
the solver to reduce the number of function evaluations required to
compute all the columns of the Jacobian matrix, and might significantly
reduce solution time.

Note If you specify Jacobian, the solver ignores a setting of 'on' for
'Vectorized'.

With the MATLAB array notation, it is typically an easy matter to
vectorize an ODE function. For example, you can vectorize the stiff
van der Pol problem example, described in the MATLAB Mathematics
documentation, by introducing colon notation into the subscripts and by
using the array power (.^) and array multiplication (.*) operators.

function dydt = vdp1000(t,y)
dydt = [y(2,:); 1000*(1-y(1,:).^2).*y(2,:)-y(1,:)];

Note Vectorization of the ODE function used by the ODE solvers differs
from the vectorization used by the boundary value problem (BVP)
solver, bvp4c. For the ODE solvers, the ODE function is vectorized only
with respect to the second argument, while bvp4c requires vectorization
with respect to the first and second arguments.

The following table describes the Jacobian matrix properties for ode15i.

2-2330

odeset

Jacobian Properties for ode15i

Property Value Description

Jacobian Function
handle|Cell array
of constant values

Function that evaluates the
Jacobian or a cell array of
constant values.

JPattern Sparse matrices of
{0,1}

Generates a sparse Jacobian
matrix numerically.

Vectorized on | {off} Vectorized ODE function

Description of Jacobian Properties for ode15i

Jacobian — Supplying an analytical Jacobian often increases the speed
and reliability of the solution for stiff problems. Set this property to a
function

[dFdy, dFdp] = Fjac(t,y,yp)

or to a cell array of constant values { / ,(/) ’}∂ ∂ ∂ ∂F y F y .

JPattern — JPattern is a sparsity pattern with 1’s where there might
be nonzero entries in the Jacobian.

Set this property to {dFdyPattern, dFdypPattern}, the sparsity

patterns of ∂ ∂F y/ and ∂ ∂F y/ ’ , respectively.

Vectorized —

Set this property to {yVect, ypVect}. Setting yVect to 'on' indicates
that

F(t, [y1 y2 ...], yp)

returns

[F(t,y1,yp), F(t,y2,yp) ...]

Setting ypVect to 'on' indicates that

2-2331

odeset

F(t,y,[yp1 yp2 ...])

returns

[F(t,y,yp1) F(t,y,yp2) ...]

Mass
Matrix
and DAE
Properties

This section describes mass matrix and differential-algebraic equation
(DAE) properties, which apply to all the solvers except ode15i. These
properties are not applicable to ode15i and their settings do not affect
its behavior.

The solvers of the ODE suite can solve ODEs of the form

M t y y f t y(,) ’ (,)= (2-1)

with a mass matrix M t y(,) that can be sparse.

When M t y(,) is nonsingular, the equation above is equivalent to

y M f t y’ (,)= −1 and the ODE has a solution for any initial values y0

at t0 . The more general form (Equation 2-1) is convenient when you
express a model naturally in terms of a mass matrix. For large, sparse

M t y(,) , solving Equation 2-1 directly reduces the storage and run-time
needed to solve the problem.

When M t y(,) is singular, then M t y(,) times M t y y f t y(,) ’ (,)= is a
DAE. A DAE has a solution only when is consistent; that is, there

exists an initial slope yp0 such that M t y yp f t y(,) (,)0 0 0 0 0= . If y0 and

yp0 are not consistent, the solver treats them as guesses, attempts to
compute consistent values that are close to the guesses, and continues
to solve the problem. For DAEs of index 1, solving an initial value
problem with consistent initial conditions is much like solving an ODE.

The ode15s and ode23t solvers can solve DAEs of index 1. For examples
of DAE problems, see Example: Differential-Algebraic Problem, in the
MATLAB Mathematics documentation, and the examples amp1dae and
hb1dae.

2-2332

odeset

The following table describes the mass matrix and DAE properties.
Further information on each property is given following the table.

Mass Matrix and DAE Properties (Solvers Other Than ode15i)

Property Value Description

Mass Matrix |
function handle

Mass matrix or a function that
evaluates the mass matrix

M t y(,) .

MStateDependencenone |
{weak} |
strong

Dependence of the mass matrix
on y.

MvPattern Sparse matrix
∂ ∂((,)) /M t y v y sparsity pattern.

MassSingular yes | no |
{maybe}

Indicates whether the mass
matrix is singular.

InitialSlope Vector {zero vector}Vector representing the consistent

initial slope yp0 .

Description of Mass Matrix and DAE Properties

Mass — For problems of the form M t y f t y() ’ (,)= , set 'Mass' to a mass

matrix M. For problems of the form M t y f t y() ’ (,)= , set 'Mass' to a
function handle @Mfun, where Mfun(t,y) evaluates the mass matrix

M t y(,) . The ode23s solver can only solve problems with a constant
mass matrix M. When solving DAEs, using ode15s or ode23t, it is
advantageous to formulate the problem so thatM is a diagonal matrix (a
semiexplicit DAE).

For example problems, see “Example: Finite Element Discretization” in
the MATLAB Mathematics documentation, or the examples fem2ode
or batonode.

2-2333

odeset

MStateDependence — Set this property to none for problems

M t y f t y() ’ (,)= . Both weak and strong indicate M t y(,) , but weak
results in implicit solvers using approximations when solving algebraic
equations.

MvPattern — Set this property to a sparse matrix S with S(i,j) = 1 if, for

any k, the (i,k) component of M t y(,) depends on component j of y, and 0
otherwise. For use with the ode15s, ode23t, and ode23tb solvers when
MStateDependence is strong. See burgersode as an example.

MassSingular — Set this property to no if the mass matrix is not
singular and you are using either the ode15s or ode23t solver. The
default value of maybe causes the solver to test whether the problem is a

DAE, by testing whether M t y(,)0 0 is singular.

InitialSlope — Vector representing the consistent initial slope yp0 ,

where yp0 satisfies M t y y f t y(,) (,)0 0 0 0 0⋅ ′ = . The default is the zero
vector.

This property is for use with the ode15s and ode23t solvers when
solving DAEs.

ode15s
and
ode15i-Specific
Properties

ode15s is a variable-order solver for stiff problems. It is based on the
numerical differentiation formulas (NDFs). The NDFs are generally
more efficient than the closely related family of backward differentiation
formulas (BDFs), also known as Gear’s methods. The ode15s properties
let you choose among these formulas, as well as specifying the maximum
order for the formula used.

ode15i solves fully implicit differential equations of the form

f t y y(, ,)′ = 0

using the variable order BDF method.

The following table describes the ode15s and ode15i-specific properties.
Further information on each property is given following the table. Use
odeset to set these properties.

2-2334

odeset

ode15s and ode15i-Specific Properties

Property Value Description

MaxOrder 1 | 2 | 3 | 4 |
{5}

Maximum order formula used to
compute the solution.

BDF
(ode15s
only)

on | {off} Specifies whether you want to use the
BDFs instead of the default NDFs.

Description of ode15s and ode15i-Specific Properties

MaxOrder — Maximum order formula used to compute the solution.

BDF (ode15s only) — Set BDF on to have ode15s use the BDFs.

For both the NDFs and BDFs, the formulas of orders 1 and 2 are
A-stable (the stability region includes the entire left half complex
plane). The higher order formulas are not as stable, and the higher the
order the worse the stability. There is a class of stiff problems (stiff
oscillatory) that is solved more efficiently if MaxOrder is reduced (for
example to 2) so that only the most stable formulas are used.

See Also deval, odeget, ode45, ode23, ode23t, ode23tb, ode113, ode15s,
ode23s, function_handle (@)

2-2335

odextend

Purpose Extend solution of initial value problem for ordinary differential
equation

Syntax solext = odextend(sol, odefun, tfinal)
solext = odextend(sol, [], tfinal)
solext = odextend(sol, odefun, tfinal, yinit)
solext = odextend(sol, odefun, tfinal, [yinit, ypinit])
solext = odextend(sol, odefun, tfinal, yinit, options)

Description solext = odextend(sol, odefun, tfinal) extends the solution
stored in sol to an interval with upper bound tfinal for the
independent variable. odefun is a function handle. See “Function
Handles” in the MATLAB Programming documentation for more
information. sol is an ODE solution structure created using an ODE
solver. The lower bound for the independent variable in solext is the
same as in sol. If you created sol with an ODE solver other than
ode15i, the function odefun computes the right-hand side of the ODE
equation, which is of the form . If you created sol using
ode15i, the function odefun computes the left-hand side of the ODE
equation, which is of the form .

“Parameterizing Functions Called by Function Functions”, in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the function odefun, if necessary.

odextend extends the solution by integrating odefun from the upper
bound for the independent variable in sol to tfinal, using the same
ODE solver that created sol. By default, odextend uses

• The initial conditions y = sol.y(:, end) for the subsequent
integration

• The same integration properties and additional input arguments
the ODE solver originally used to compute sol. This information
is stored as part of the solution structure sol and is subsequently
passed to solext. Unless you want to change these values, you do
not need to pass them to odextend.

2-2336

odextend

solext = odextend(sol, [], tfinal) uses the same ODE function
that the ODE solver uses to compute sol to extend the solution. It is
not necessary to pass in odefun explicitly unless it differs from the
original ODE function.

solext = odextend(sol, odefun, tfinal, yinit) uses the column
vector yinit as new initial conditions for the subsequent integration,
instead of the vector sol.y(end).

Note To extend solutions obtained with ode15i, use the following
syntax, in which the column vector ypinit is the initial derivative of
the solution:

solext = odextend(sol, odefun, tfinal, [yinit, ypinit])

solext = odextend(sol, odefun, tfinal, yinit, options) uses
the integration properties specified in options instead of the options
the ODE solver originally used to compute sol. The new options are
then stored within the structure solext. See odeset for details on
setting options properties. Set yinit = [] as a placeholder to specify
the default initial conditions.

Example The following command

sol=ode45(@vdp1,[0 10],[2 0]);

uses ode45 to solve the system y' = vdp1(t,y), where vdp1 is an
example of an ODE function provided with MATLAB, on the interval [0
10]. Then, the commands

sol=odextend(sol,@vdp1,20);
plot(sol.x,sol.y(1,:));

extend the solution to the interval [0 20] and plot the first component
of the solution on [0 20].

2-2337

odextend

See Also deval, ode23, ode45, ode113, ode15s, ode23s, ode23t, ode23tb,
ode15i, odeset, odeget, deval, function_handle (@)

2-2338

ones

Purpose Create array of all ones

Syntax Y = ones(n)
Y = ones(m,n)
Y = ones([m n])
Y = ones(m,n,p,...)
Y = ones([m n p ...])
Y = ones(size(A))
ones(m, n,...,classname)
ones([m,n,...],classname)

Description Y = ones(n) returns an n-by-n matrix of 1s. An error message appears
if n is not a scalar.

Y = ones(m,n) or Y = ones([m n]) returns an m-by-n matrix of ones.

Y = ones(m,n,p,...) or Y = ones([m n p ...]) returns an
m-by-n-by-p-by-... array of 1s.

Note The size inputs m, n, p, ... should be nonnegative integers.
Negative integers are treated as 0.

Y = ones(size(A)) returns an array of 1s that is the same size as A.

ones(m, n,...,classname) or ones([m,n,...],classname) is an
m-by-n-by-... array of ones of data type classname. classname is a
string specifying the data type of the output. classname can have the
following values: 'double', 'single', 'int8', 'uint8', 'int16',
'uint16', 'int32', 'uint32', 'int64', or 'uint64'.

Example x = ones(2,3,'int8');

See Also eye, zeros, complex

2-2339

open

Purpose Open files based on extension

Syntax open('name')

Description open('name') opens the object specified by the string name. The specific
action taken upon opening depends on the type of object specified by
name.

name Action

DOC file (*.doc) Open document in Microsoft Word.

EXE file (*.exe) Run Microsoft Windows executable file.

Figure file (*.fig) Open figure in a MATLAB figure window.

HTML file
(*.html, *.htm)

Open HTML document in a separate window.

M-file (name.m) Open M-file name in M-file Editor.

MAT-file
(name.mat)

Open MAT-file and store variables in a structure
in the workspace.

Model (name.mdl) Open model name in Simulink.

P-file (name.p) Open the corresponding M-file, name.m, if it
exists, in the M-file Editor.

PDF file (*.pdf) Open PDF document in Adobe Acrobat.

PPT file (*.ppt) Open document in Microsoft PowerPoint.

Project file (*.prj) Open the project file in the MATLAB Compiler
Deployment Tool. If the MATLAB Compiler
or Deployment Tool is not installed, open the
project file in a text editor.

URL file (*.url) Open an Internet location in your default Web
browser

Variable Open array name in the Array Editor (the array
must be numeric).

2-2340

open

name Action

Other extensions
(name.xxx)

Open name.xxx by calling the helper function
openxxx, where openxxx is a user-defined
function.

No extension (name) Open name in the default editor. If name does
not exist, then open checks to see if name.mdl
or name.m is on the path or in the current
directory and, if so, opens the file returned by
which('name').

If more than one file with the specified filename name exists on the
MATLAB path, then open opens the file returned by which('name').

If no such file name exists, then open displays an error message.

You can create your own openxxx functions to set up handlers for new
file types. This does not apply to the file types shown in the table above.
open('filename.xxx') calls the openxxx function it finds on the
path. For example, create a function openlog if you want a handler for
opening files with file extension .log.

Examples Example 1 — Opening a File on the Path

To open the M-file copyfile.m, type

open copyfile.m

MATLAB opens the copyfile.m file that resides in
toolbox\matlab\general. If you have a copyfile.m file in
a directory that is before toolbox\matlab\general on the MATLAB
path, then open opens that file instead.

Example 2 — Opening a File Not on the Path

To open a file that is not on the MATLAB path, enter the complete file
specification. If no such file is found, then MATLAB displays an error
message.

open('D:\temp\data.mat')

2-2341

open

Example 3 — Specifying a File Without a File Extension

When you specify a file without including its file extension, MATLAB
determines which file to open for you. It does this by calling

which('filename')

In this example, open matrixdemos could open either an M-file or a
Simulink model of the same name, since both exist on the path.

dir matrixdemos.*

matrixdemos.m matrixdemos.mdl

Because the call which('matrixdemos') returns the name of the
Simulink model, open opens the matrixdemos model rather than the
M-file of that name.

open matrixdemos % Opens model matrixdemos.mdl

Example 4 — Opening a MAT-File

This example opens a MAT-file containing MATLAB data and then
keeps just one of the variables from that file. The others are overwritten
when ans is reused by MATLAB.

% Open a MAT-file containing miscellaneous data.
open D:\temp\data.mat

ans =

x: [3x2x2 double]
y: {4x5 cell}
k: 8

spArray: [5x5 double]
dblArray: [4x1 java.lang.Double[][]]
strArray: {2x5 cell}

% Keep the dblArray value by assigning it to a variable.

2-2342

open

dbl = ans.dblArray

dbl =

java.lang.Double[][]:
[5.7200] [6.7200] [7.7200]
[10.4400] [11.4400] [12.4400]
[15.1600] [16.1600] [17.1600]
[19.8800] [20.8800] [21.8800]

Example 5 — Using a User-Defined Handler Function

If you create an M-file function called opencht to handle files with
extension .cht, and then issue the command

open myfigure.cht

open calls your handler function with the following syntax:

opencht('myfigure.cht')

See Also edit, load, save, saveas, uiopen, which, file_formats, path

2-2343

openfig

Purpose Open new copy or raise existing copy of saved figure

Syntax openfig('filename.fig','new')
openfig('filename.fig','new','visible')
openfig('filename.fig','new','visible')
openfig('filename.fig','reuse')
openfig('filename.fig')
openfig(...,'PropertyName',PropertyValue,...)
figure_handle = openfig(...)

Description openfig is designed for use with GUI figures. Use this function to:

• Open the FIG-file creating the GUI and ensure it is displayed on
screen. This provides compatibility with different screen sizes and
resolutions.

• Control whether MATLAB displays one or multiple instances of the
GUI at any given time.

• Return the handle of the figure created, which is typically hidden
for GUI figures.

openfig('filename.fig','new') opens the figure contained in
the FIG-file, filename.fig, and ensures it is visible and positioned
completely on screen. You do not have to specify the full path to the
FIG-file as long as it is on your MATLAB path. The .fig extension
is optional.

openfig(’filename.fig’,’new’,’invisible’) or
openfig(’filename.fig’,’reuse’,’invisible’) opens the figure as in the
preceding example, while forcing the figure to be invisible.

openfig('filename.fig','new','visible') or
openfig('filename.fig','new','visible') opens the figure, while
forcing the figure to be visible.

openfig('filename.fig','reuse') opens the figure contained in the
FIG-file only if a copy is not currently open; otherwise openfig brings

2-2344

openfig

the existing copy forward, making sure it is still visible and completely
on screen.

openfig('filename.fig') is the same as
openfig('filename.fig','new').

openfig(...,'PropertyName',PropertyValue,...) opens the FIG-file
setting the specified figure properties before displaying the figure.

figure_handle = openfig(...) returns the handle to the figure.

Remarks If the FIG-file contains an invisible figure, openfig returns its handle
and leaves it invisible. The caller should make the figure visible when
appropriate.

See Also guide, guihandles, movegui, open, hgload, save

See Deploying User Interfaces in the MATLAB documentation for
related functions

2-2345

opengl

Purpose Control OpenGL rendering

Syntax opengl info
s = opengl('data')
opengl software
opengl hardware
opengl verbose
opengl quiet
opengl DriverBugWorkaround
opengl('DriverBugWorkaround',WorkaroundState)

Description The OpenGL autoselection mode applies when the RendererMode of the
figure is auto. Possible values for selection_mode are

• autoselect – allows OpenGL to be automatically selected if OpenGL
is available and if there is graphics hardware on the host machine.

• neverselect – disables autoselection of OpenGL.

• advise – prints a message to the command window if OpenGL
rendering is advised, but RenderMode is set to manual.

opengl, by itself, returns the current autoselection state.

Note that the autoselection state only specifies whether OpenGL should
or should not be considered for rendering; it does not explicitly set the
rendering to OpenGL. You can do this by setting the Renderer property
of the figure to OpenGL. For example,

set(figure_handle,'Renderer','OpenGL')

opengl info prints information with the version and vendor of the
OpenGL on your system. Also indicates wether your system is currently
using hardware of software OpenGL and the state of various driver bug
workarounds. Note that calling opengl info loads the OpenGL Library.

For example, the following output is generated on a Windows XP
computer that uses ATI Technologies graphics hardware:

2-2346

opengl

>> opengl info
Version = 1.3.4010 WinXP Release
Vendor = ATI Technologies Inc.
Renderer = RADEON 9600SE x86/SSE2
MaxTextureSize = 2048
Visual = 05 (RGB 16 bits(05 06 05 00) zdepth 16, Hardware
Accelerated, Opengl, Double Buffered, Window)
Software = false
of Extensions = 85
Driver Bug Workarounds:
OpenGLBitmapZbufferBug = 0
OpenGLWobbleTesselatorBug = 0
OpenGLLineSmoothingBug = 0
OpenGLDockingBug = 0
OpenGLClippedImageBug = 0

Note that different computer systems may not list all OpenGL bugs.

s = opengl('data') returns a structure containing the same data
that is displayed when you call opengl info, with the exception of
the driver bug workaround state.

opengl software forces MATLAB to use software OpenGL rendering
instead of hardware OpenGL. Note that Macintosh systems do not
support software OpenGL.

opengl hardware reverses the opengl software command and enables
MATLAB to use hardware OpenGL rendering if it is available. If your
computer does not have OpenGL hardware acceleration, MATLAB
automatically switches to software OpenGL rendering (except on
Macintosh systems, which do not support software OpenGL).

Note that on UNIX systems, the software or hardware options with the
opengl command works only if MATLAB has not yet used the OpenGL
renderer or you have not issued the opengl info command (which
attempts to load the OpenGL Library).

opengl verbose displays verbose messages about OpenGL initialization
(if OpenGL is not already loaded) and other runtime messages.

2-2347

opengl

opengl quiet disables verbose message setting.

opengl DriverBugWorkaround queries the state of the specified driver
bug workaround. Use the command opengl info to see a list of all
driver bug workarounds. See “Driver Bug Workarounds” on page 2-2348
for more information.

opengl('DriverBugWorkaround',WorkaroundState) sets the state of
the specified driver bug workaround. You can set WorkaroundState to
one of three values:

• 0 – Disable the specified DriverBugWorkaround (if enabled) and do
not allow MATLAB to autoselect this workaround.

• 1 – Enable the specified DriverBugWorkaround.

• -1 – Set the specified DriverBugWorkaround to autoselection mode,
which allows MATLAB to enable this workaround if the requisite
conditions exist.

Driver Bug
Workarounds

MATLAB enables various OpenGL driver bug workarounds when it
detects certain known problems with installed hardware. However,
because there are many versions of graphics drivers, you might
encounter situations when MATLAB does not enable a workaround that
would solve a problem you are having with OpenGL rendering.

This section describes the symptoms that each workaround is designed
to correct so you can decide if you want to try using one to fix an
OpenGL rendering problem.

Use the opengl info command to see what driver bug workarounds
are available on your computer.

Note These workarounds have not been tested under all driver
combinations and therefore might produce undesirable results under
certain conditions.

2-2348

opengl

OpenGLBitmapZbufferBug

Symptom: text with background color (including data tips) and text
displayed on image, patch, or surface objects is not visible when using
OpenGL renderer.

Possible side effect: text is always on top of other objects.

Command to enable:

opengl('OpenGLBitmapZbufferBug',1)

OpenGLWobbleTesselatorBug

Symptom: Rendering complex patch object causes segmentation
violation and returns a tesselator error message in the stack trace.

Command to enable:

opengl('OpenGLWobbleTesselatorBug',1)

OpenGLLineSmoothingBug

Symptom: Lines with a LineWidth greater than 3 look bad.

Command to enable:

opengl('OpenGLLineSmoothingBug',1)

OpenGLDockingBug

Symptom: MATLAB crashes when you dock a figure that has its
Renderer property set to opengl.

Command to enable:

opengl('OpenGLDockingBug',1)

2-2349

opengl

OpenGLClippedImageBug

Symptom: Images (as well as colorbar displays) do not display when
the Renderer property set to opengl.

Command to enable:

opengl('OpenGLClippedImageBug',1)

OpenGLEraseModeBug

Symptom: Graphics objects with EraseMode property set to non-normal
erase modes (xor, none, or background) do not draw when the figure
Renderer property is set to opengl.

Command to enable:

opengl('OpenGLEraseModeBug',1)

See Also Figure Renderer property for information on autoselection.

2-2350

openvar

Purpose Open workspace variable in Array Editor or other tool for graphical
editing

GUI
Alternatives

As an alternative to the openvar function, double-click a variable in the
Workspace browser.

Syntax openvar('name')

Description openvar('name') opens the workspace variable name in the Array
Editor for graphical editing, where name is a numeric array, string, or
cell array of strings.

MATLAB does not impose any limitation on the size of an array that
can be opened in the Array Editor. Array size is limited only by the
operating system or the amount of physical memory installed on your
system.

For some toolboxes, openvar instead opens a tool appropriate for
viewing or editing that type of object.

2-2351

openvar

See Also load, save, workspace

2-2352

optimget

Purpose Optimization options values

Syntax val = optimget(options,'param')
val = optimget(options,'param',default)

Description val = optimget(options,'param') returns the value of the specified
parameter in the optimization options structure options. You need
to type only enough leading characters to define the parameter name
uniquely. Case is ignored for parameter names.

val = optimget(options,'param',default) returns default if the
specified parameter is not defined in the optimization options structure
options. Note that this form of the function is used primarily by other
optimization functions.

Examples This statement returns the value of the Display optimization options
parameter in the structure called my_options.

val = optimget(my_options,'Display')

This statement returns the value of the Display optimization options
parameter in the structure called my_options (as in the previous
example) except that if the Display parameter is not defined, it returns
the value 'final'.

optnew = optimget(my_options,'Display','final');

See Also optimset, fminbnd, fminsearch, fzero, lsqnonneg

2-2353

optimset

Purpose Create or edit optimization options structure

Syntax options = optimset('param1',value1,'param2',value2,...)
optimset
options = optimset
options = optimset(optimfun)
options = optimset(oldopts,'param1',value1,...)
options = optimset(oldopts,newopts)

Description The function optimset creates an options structure that you can pass
as an input argument to the following four MATLAB optimization
functions:

• fminbnd

• fminsearch

• fzero

• lsqnonneg

You can use the options structure to change the default parameters
for these functions.

Note If you have purchased the Optimization Toolbox, you can also
use optimset to create an expanded options structure containing
additional options specifically designed for the functions provided
in that toolbox. See the reference page for the enhanced optimset
function in the Optimization Toolbox for more information about these
additional options.

options = optimset('param1',value1,'param2',value2,...)
creates an optimization options structure called options, in which the
specified parameters (param) have specified values. Any unspecified
parameters are set to [] (parameters with value [] indicate to use
the default value for that parameter when options is passed to the

2-2354

optimset

optimization function). It is sufficient to type only enough leading
characters to define the parameter name uniquely. Case is ignored
for parameter names.

optimset with no input or output arguments displays a complete list of
parameters with their valid values.

options = optimset (with no input arguments) creates an options
structure options where all fields are set to [].

options = optimset(optimfun) creates an options structure
options with all parameter names and default values relevant to the
optimization function optimfun.

options = optimset(oldopts,'param1',value1,...) creates a copy
of oldopts, modifying the specified parameters with the specified
values.

options = optimset(oldopts,newopts) combines an existing
options structure oldopts with a new options structure newopts.
Any parameters in newopts with nonempty values overwrite the
corresponding old parameters in oldopts.

Options The following table lists the available options for the MATLAB
optimization functions.

Option Value Description

Display 'off' | ’iter' |
{'final'} | 'notify'

Level of display. 'off'
displays no output; 'iter'
displays output at each
iteration; 'final' displays
just the final output;
'notify' displays output
only if the function does
not converge.

2-2355

optimset

Option Value Description

FunValCheck {'off'} | 'on' Check whether objective
function values are valid.
'on' displays an error
when the objective function
returns a value that is
complex or NaN. 'off'
displays no error.

MaxFunEvals positive integer Maximum number of
function evaluations
allowed.

MaxIter positive integer Maximum number of
iterations allowed.

OutputFcn function | {[]} User-defined function that
an optimization function
calls at each iteration. See
“Output Function” in the
Optimization Toolbox for
more information.

PlotFcns function | {[]} User-defined plot function
that an optimization
function calls at each
iteration. See “Plot
Functions” in the
Optimization Toolbox
for more information.

TolFun positive scalar Termination tolerance on
the function value.

TolX positive scalar Termination tolerance on
.

2-2356

optimset

Examples This statement creates an optimization options structure called
options in which the Display parameter is set to 'iter' and the
TolFun parameter is set to 1e-8.

options = optimset('Display','iter','TolFun',1e-8)

This statement makes a copy of the options structure called options,
changing the value of the TolX parameter and storing new values in
optnew.

optnew = optimset(options,'TolX',1e-4);

This statement returns an optimization options structure that contains
all the parameter names and default values relevant to the function
fminbnd.

optimset('fminbnd')

See Also optimset (Optimization Toolbox version), optimget, fminbnd,
fminsearch, fzero, lsqnonneg

2-2357

or

Purpose Find logical OR of array or scalar inputs

Syntax A | B | ...
or(A, B)

Description A | B | ... performs a logical OR of all input arrays A, B, etc., and
returns an array containing elements set to either logical 1 (true) or
logical 0 (false). An element of the output array is set to 1 if any
input arrays contain a nonzero element at that same array location.
Otherwise, that element is set to 0.

Each input of the expression can be an array or can be a scalar value.
All nonscalar input arrays must have equal dimensions. If one or more
inputs are an array, then the output is an array of the same dimensions.
If all inputs are scalar, then the output is scalar.

If the expression contains both scalar and nonscalar inputs, then each
scalar input is treated as if it were an array having the same dimensions
as the other input arrays. In other words, if input A is a 3-by-5 matrix
and input B is the number 1, then B is treated as if it were a 3-by-5
matrix of ones.

or(A, B) is called for the syntax A | B when either A or B is an object.

Note The symbols | and || perform different operations in MATLAB.
The element-wise OR operator described here is |. The short-circuit OR
operator is ||.

Example If matrix A is

0.4235 0.5798 0 0.7942 0
0.5155 0 0 0 0.8744

0 0 0 0.4451 0.0150
0.4329 0.6405 0.6808 0 0

and matrix B is

2-2358

or

0 1 0 1 0
1 1 0 0 1
0 0 0 1 0
0 1 0 0 1

then

A | B
ans =

1 1 0 1 0
1 1 0 0 1
0 0 0 1 1
1 1 1 0 1

See Also bitor, and, xor, not, any, all, logical operators, logical types, bitwise
functions

2-2359

ordeig

Purpose Eigenvalues of quasitriangular matrices

Syntax E = ordeig(T)
E = ordeig(AA,BB)

Description E = ordeig(T) takes a quasitriangular Schur matrix T, typically
produced by schur, and returns the vector E of eigenvalues in their
order of appearance down the diagonal of T.

E = ordeig(AA,BB) takes a quasitriangular matrix pair AA and BB,
typically produced by qz, and returns the generalized eigenvalues in
their order of appearance down the diagonal of AA-λ*BB.

ordeig is an order-preserving version of eig for use with ordschur and
ordqz. It is also faster than eig for quasitriangular matrices.

Examples Example 1

T=diag([1 -1 3 -5 2]);

ordeig(T) returns the eigenvalues of T in the same order they appear
on the diagonal.

ordeig(T)

ans =

1
-1
3

-5
2

eig(T), on the other hand, returns the eigenvalues in order of
increasing magnitude.

eig(T)

ans =

2-2360

ordeig

-5
-1
1
2
3

Example 2

A = rand(10);
[U, T] = schur(A);
abs(ordeig(T))

ans =

5.3786
0.7564
0.7564
0.7802
0.7080
0.7080
0.5855
0.5855
0.1445
0.0812

% Move eigenvalues with magnitude < 0.5 to the
% upper-left corner of T.
[U,T] = ordschur(U,T,abs(E)<0.5);
abs(ordeig(T))

ans =

0.1445
0.0812
5.3786
0.7564
0.7564
0.7802

2-2361

ordeig

0.7080
0.7080
0.5855
0.5855

See Also schur, qz, ordschur, ordqz, eig

2-2362

orderfields

Purpose Order fields of structure array

Syntax s = orderfields(s1)
s = orderfields(s1, s2)
s = orderfields(s1, c)
s = orderfields(s1, perm)
[s, perm] = orderfields(...)

Description s = orderfields(s1) orders the fields in s1 so that the new structure
array s has field names in ASCII dictionary order.

s = orderfields(s1, s2) orders the fields in s1 so that the new
structure array s has field names in the same order as those in s2.
Structures sl and s2 must have the same fields.

s = orderfields(s1, c) orders the fields in s1 so that the new
structure array s has field names in the same order as those in the
cell array of field name strings c. Structure s1 and cell array c must
contain the same field names.

s = orderfields(s1, perm) orders the fields in s1 so that the new
structure array s has fieldnames in the order specified by the indices in
permutation vector perm.

If s1 has N fieldnames, the elements of perm must be an arrangement of
the numbers from 1 to N. This is particularly useful if you have more
than one structure array that you would like to reorder in the same way.

[s, perm] = orderfields(...) returns a permutation vector
representing the change in order performed on the fields of the structure
array that results in s.

Remarks orderfields only orders top-level fields. It is not recursive.

Examples Create a structure s. Then create a new structure from s, but with
the fields ordered alphabetically:

s = struct('b', 2, 'c', 3, 'a', 1)
s =

2-2363

orderfields

b: 2
c: 3
a: 1

snew = orderfields(s)
snew =

a: 1
b: 2
c: 3

Arrange the fields of s in the order specified by the second (cell array)
argument of orderfields. Return the new structure in snew and the
permutation vector used to create it in perm:

[snew, perm] = orderfields(s, {'b', 'a', 'c'})
snew =

b: 2
a: 1
c: 3

perm =
1
3
2

Now create a new structure, s2, having the same fieldnames as s.
Reorder the fields using the permutation vector returned in the
previous operation:

s2 = struct('b', 3, 'c', 7, 'a', 4)
s2 =

b: 3
c: 7
a: 4

snew = orderfields(s2, perm)
snew =

b: 3
a: 4

2-2364

orderfields

c: 7

See Also struct, fieldnames, setfield, getfield, isfield, rmfield, “Using
Dynamic Field Names”

2-2365

ordqz

Purpose Reorder eigenvalues in QZ factorization

Syntax [AAS,BBS,QS,ZS] = ordqz(AA,BB,Q,Z,select)
[...] = ordqz(AA,BB,Q,Z,keyword)
[...] = ordqz(AA,BB,Q,Z,clusters)

Description [AAS,BBS,QS,ZS] = ordqz(AA,BB,Q,Z,select) reorders the QZ
factorizations Q*A*Z = AA and Q*B*Z = BB produced by the qz function
for a matrix pair (A,B). It returns the reordered pair (AAS,BBS)
and the cumulative orthogonal transformations QS and ZS such that
QS*A*ZS = AAS and QS*B*ZS = BBS. In this reordering, the selected
cluster of eigenvalues appears in the leading (upper left) diagonal blocks
of the quasitriangular pair (AAS,BBS), and the corresponding invariant
subspace is spanned by the leading columns of ZS. The logical vector
select specifies the selected cluster as E(select) where E is the vector
of eigenvalues as they appear along the diagonal of AA-λ*BB.

Note To extract E from AA and BB, use ordeig(BB), instead of eig.
This ensures that the eigenvalues in E occur in the same order as they
appear on the diagonal of AA-λ*BB.

[...] = ordqz(AA,BB,Q,Z,keyword) sets the selected cluster to
include all eigenvalues in the region specified by keyword:

keyword Selected Region

'lhp' Left-half plane (real(E) < 0)

'rhp' Right-half plane (real(E) > 0)

'udi' Interior of unit disk (abs(E) < 1)

'udo' Exterior of unit disk (abs(E) > 1)

[...] = ordqz(AA,BB,Q,Z,clusters) reorders multiple clusters at
once. Given a vector clusters of cluster indices commensurate with
E = ordeig(AA,BB), such that all eigenvalues with the same clusters

2-2366

ordqz

value form one cluster, ordqz sorts the specified clusters in descending
order along the diagonal of (AAS,BBS). The cluster with highest index
appears in the upper left corner.

Algorithm For full matrices AA and BB, qz uses the LAPACK routines listed in
the following table.

AA and BB Real AA or BB Complex

A and B double DTGSEN ZTGSEN

A or B single STGSEN CTGSEN

See Also ordeig, ordschur, qz

2-2367

ordschur

Purpose Reorder eigenvalues in Schur factorization

Syntax [US,TS] = ordschur(U,T,select)
[US,TS] = ordschur(U,T,keyword)
[US,TS] = ordschur(U,T,clusters)

Description [US,TS] = ordschur(U,T,select) reorders the Schur factorization
X = U*T*U' produced by the schur function and returns the reordered
Schur matrix TS and the cumulative orthogonal transformation US
such that X = US*TS*US'. In this reordering, the selected cluster of
eigenvalues appears in the leading (upper left) diagonal blocks of the
quasitriangular Schur matrix TS, and the corresponding invariant
subspace is spanned by the leading columns of US. The logical vector
select specifies the selected cluster as E(select) where E is the vector
of eigenvalues as they appear along T’s diagonal.

Note To extract E from T, use E = ordeig(T), instead of eig. This
ensures that the eigenvalues in E occur in the same order as they
appear on the diagonal of TS.

[US,TS] = ordschur(U,T,keyword) sets the selected cluster to include
all eigenvalues in one of the following regions:

keyword Selected Region

'lhp' Left-half plane (real(E) < 0)

'rhp' Right-half plane (real(E) > 0)

'udi' Interior of unit disk (abs(E) < 1)

'udo' Exterior of unit disk (abs(E) > 1)

[US,TS] = ordschur(U,T,clusters) reorders multiple clusters
at once. Given a vector clusters of cluster indices, commensurate
with E = ordeig(T), and such that all eigenvalues with the same
clusters value form one cluster, ordschur sorts the specified clusters

2-2368

ordschur

in descending order along the diagonal of TS, the cluster with highest
index appearing in the upper left corner.

Algorithm Input of Type Double

If U and T have type double, ordschur uses the LAPACK routines listed
in the following table to compute the Schur form of a matrix:

Matrix Type Routine

Real DTRSEN

Complex ZTRSEN

Input of Type Single

If U and T have type single, ordschur uses the LAPACK routines listed
in the following table to reorder the Schur form of a matrix:

Matrix Type Routine

Real STRSEN

Complex CTRSEN

See Also ordeig, ordqz, schur

2-2369

orient

Purpose Hardcopy paper orientation

GUI
Alternative

Use File —> Print Preview on the figure window menu to directly
manipulate print layout, paper size, headers, fonts and other properties
when printing figures. For details, see Using Print Preview in the
MATLAB Graphics documentation.

Syntax orient
orient landscape
orient portrait
orient tall
orient(fig_handle), orient(simulink_model)
orient(fig_handle,orientation), orient(simulink_model,

orientation)

Description orient returns a string with the current paper orientation: portrait,
landscape, or tall.

orient landscape sets the paper orientation of the current figure to
full-page landscape, orienting the longest page dimension horizontally.
The figure is centered on the page and scaled to fit the page with a
0.25 inch border.

orient portrait sets the paper orientation of the current figure to
portrait, orienting the longest page dimension vertically. The portrait
option returns the page orientation to the MATLAB default. (Note that
the result of using the portrait option is affected by changes you
make to figure properties. See the "Algorithm" section for more specific
information.)

orient tall maps the current figure to the entire page in portrait
orientation, leaving a 0.25 inch border.

orient(fig_handle), orient(simulink_model) returns the current
orientation of the specified figure or Simulink model.

orient(fig_handle,orientation),
orient(simulink_model,orientation) sets the

2-2370

orient

orientation for the specified figure or Simulink model to the specified
orientation (landscape, portrait, or tall).

Algorithm orient sets the PaperOrientation, PaperPosition, and PaperUnits
properties of the current figure. Subsequent print operations use these
properties. The result of using the portrait option can be affected by
default property values as follows:

• If the current figure PaperType is the same as the default figure
PaperType and the default figure PaperOrientation has been set
to landscape, then the orient portrait command uses the current
values of PaperOrientation and PaperPosition to place the figure
on the page.

• If the current figure PaperType is the same as the default figure
PaperType and the default figure PaperOrientation has been set
to landscape, then the orient portrait command uses the default
figure PaperPosition with the x, y and width, height values reversed
(i.e., [y,x,height,width]) to position the figure on the page.

• If the current figure PaperType is different from the default figure
PaperType, then the orient portrait command uses the current
figure PaperPosition with the x, y and width, height values reversed
(i.e., [y,x,height,width]) to position the figure on the page.

See Also print, printpreview, set

PaperOrientation, PaperPosition, PaperSize, PaperType, and
PaperUnits properties of figure graphics objects

“Printing” on page 1-92 for related functions

2-2371

orth

Purpose Range space of matrix

Syntax B = orth(A)

Description B = orth(A) returns an orthonormal basis for the range of A. The
columns of B span the same space as the columns of A, and the columns
of B are orthogonal, so that B'*B = eye(rank(A)). The number of
columns of B is the rank of A.

See Also null, svd, rank

2-2372

otherwise

Purpose Default part of switch statement

Syntax switch switch_expr
case case_expr

statement, ..., statement
case {case_expr1, case_expr2, case_expr3, ...}

statement, ..., statement
otherwise

statement, ..., statement
end

Description otherwise is part of the switch statement syntax, which allows
for conditional execution. The statements following otherwise are
executed only if none of the preceding case expressions (case_expr)
matches the switch expression (sw_expr).

Examples The general form of the switch statement is

switch sw_expr
case case_expr

statement
statement

case {case_expr1,case_expr2,case_expr3}
statement
statement

otherwise
statement
statement

end

See switch for more details.

See Also switch, case, end, if, else, elseif, while

2-2373

Index

Index& 2-49 2-52
’ 2-37
* 2-37
+ 2-37
- 2-37
/ 2-37
: 2-59
< 2-47
> 2-47
@ 2-1330
\ 2-37
^ 2-37
| 2-49 2-52
~ 2-49 2-52
&& 2-52
== 2-47
]) 2-58
|| 2-52
~= 2-47
1-norm 2-2273 2-2684
2-norm (estimate of) 2-2275

A
abs 2-62
absolute accuracy

BVP 2-435
DDE 2-830
ODE 2-2320

absolute value 2-62
Accelerator

Uimenu property 2-3513
accumarray 2-63
accuracy

of linear equation solution 2-624
of matrix inversion 2-624

acos 2-69
acosd 2-71
acosh 2-72
acot 2-74

acotd 2-76
acoth 2-77
acsc 2-79
acscd 2-81
acsch 2-82
activelegend 1-87 2-2498
actxcontrol 2-84
actxcontrollist 2-91
actxcontrolselect 2-92
actxserver 2-96
Adams-Bashforth-Moulton ODE solver 2-2308
addCause, MException method 2-100
addevent 2-104
addframe

AVI files 2-106
addition (arithmetic operator) 2-37
addOptional

inputParser object 2-108
addParamValue

inputParser object 2-111
addpath 2-114
addpref function 2-116
addproperty 2-117
addRequired

inputParser object 2-119
addressing selected array elements 2-59
addsample 2-121
addsampletocollection 2-123
addtodate 2-125
addts 2-126
adjacency graph 2-938
airy 2-128
Airy functions

relationship to modified Bessel
functions 2-128

align function 2-130
aligning scattered data

multi-dimensional 2-2260
two-dimensional 2-1465

ALim, Axes property 2-273

Index-1

Index

all 2-134
allchild function 2-136
allocation of storage (automatic) 2-3779
AlphaData

image property 2-1633
surface property 2-3201
surfaceplot property 2-3224

AlphaDataMapping
image property 2-1634
patch property 2-2403
surface property 2-3201
surfaceplot property 2-3224

AmbientLightColor, Axes property 2-274
AmbientStrength

Patch property 2-2404
Surface property 2-3202
surfaceplot property 2-3225

amd 2-142 2-1895
analytical partial derivatives (BVP) 2-436
analyzer

code 2-2189
and 2-147
and (M-file function equivalent for &) 2-50
AND, logical

bit-wise 2-392
angle 2-149
annotating graphs

deleting annotations 2-152
in plot edit mode 2-2499

Annotation
areaseries property 2-203
contourgroup property 2-650
errorbarseries property 2-1004
hggroup property 2-1547 2-1569
image property 2-1634
line property 2-332 2-1955
lineseries property 2-1970
Patch property 2-2404
quivergroup property 2-2643
rectangle property 2-2703

scattergroup property 2-2851
stairseries property 2-3022
stemseries property 2-3056
Surface property 2-3202
surfaceplot property 2-3225
text property 2-3308

annotationfunction 2-150
ans 2-193
anti-diagonal 2-1492
any 2-194
arccosecant 2-79
arccosine 2-69
arccotangent 2-74
arcsecant 2-226
arcsine 2-231
arctangent 2-240

four-quadrant 2-242
arguments, M-file

checking number of inputs 2-2251
checking number of outputs 2-2255
number of input 2-2253
number of output 2-2253
passing variable numbers of 2-3651

arithmetic operations, matrix and array
distinguished 2-37

arithmetic operators
reference 2-37

array
addressing selected elements of 2-59
displaying 2-917
left division (arithmetic operator) 2-39
maximum elements of 2-2112
mean elements of 2-2118
median elements of 2-2121
minimum elements of 2-2161
multiplication (arithmetic operator) 2-38
of all ones 2-2339
of all zeros 2-3779
of random numbers 2-2667 2-2672
power (arithmetic operator) 2-39

Index-2

Index

product of elements 2-2568
removing first n singleton dimensions

of 2-2918
removing singleton dimensions of 2-3009
reshaping 2-2769
right division (arithmetic operator) 2-38
shift circularly 2-545
shifting dimensions of 2-2918
size of 2-2932
sorting elements of 2-2946
structure 2-1417 2-2791 2-2905
sum of elements 2-3181
swapping dimensions of 2-1774 2-2473
transpose (arithmetic operator) 2-39

arrayfun 2-219
arrays

detecting empty 2-1787
editing 2-3747
maximum size of 2-622
opening 2-2340

arrays, structure
field names of 2-1128

arrowhead matrix 2-609
ASCII

delimited files
writing 2-933

ASCII data
converting sparse matrix after loading

from 2-2959
reading 2-929
reading from disk 2-2010
saving to disk 2-2827

ascii function 2-225
asec 2-226
asecd 2-228
asech 2-229
asin 2-231
asind 2-233
asinh 2-234
aspect ratio of axes 2-748 2-2437

assert 2-236
assignin 2-238
atan 2-240
atan2 2-242
atand 2-244
atanh 2-245
.au files

reading 2-258
writing 2-259

audio
saving in AVI format 2-260
signal conversion 2-1948 2-2234

audioplayer 1-82 2-247
audiorecorder 1-82 2-252
aufinfo 2-257
auread 2-258
AutoScale

quivergroup property 2-2644
AutoScaleFactor

quivergroup property 2-2644
autoselection of OpenGL 2-1165
auwrite 2-259
average of array elements 2-2118
average,running 2-1207
avi 2-260
avifile 2-260
aviinfo 2-264
aviread 2-266
axes 2-267

editing 2-2499
setting and querying data aspect ratio 2-748
setting and querying limits 2-3751
setting and querying plot box aspect

ratio 2-2437
Axes

creating 2-267
defining default properties 2-272
fixed-width font 2-290
property descriptions 2-273

axis 2-311

Index-3

Index

axis crossing. See zero of a function
azimuth (spherical coordinates) 2-2975
azimuth of viewpoint 2-3668

B
BackFaceLighting

Surface property 2-3203
surfaceplot property 2-3227

BackFaceLightingpatch property 2-2406
BackgroundColor

annotation textbox property 2-183
Text property 2-3309

BackGroundColor
Uicontrol property 2-3467

badly conditioned 2-2684
balance 2-317
BarLayout

barseries property 2-333
BarWidth

barseries property 2-333
base to decimal conversion 2-350
base two operations

conversion from decimal to binary 2-849
logarithm 2-2029
next power of two 2-2269

base2dec 2-350
BaseLine

barseries property 2-333
stem property 2-3057

BaseValue
areaseries property 2-204
barseries property 2-334
stem property 2-3057

beep 2-351
BeingDeleted

areaseries property 2-204
barseries property 2-334
contour property 2-651
errorbar property 2-1005

group property 2-1133 2-1635 2-3310
hggroup property 2-1548
hgtransform property 2-1570
light property 2-1938
line property 2-1956
lineseries property 2-1971
quivergroup property 2-2644
rectangle property 2-2704
scatter property 2-2852
stairseries property 2-3023
stem property 2-3057
surface property 2-3204
surfaceplot property 2-3227
transform property 2-2406
Uipushtool property 2-3548
Uitoggletool property 2-3579
Uitoolbar property 2-3592

Bessel functions
first kind 2-359
modified, first kind 2-356
modified, second kind 2-362
second kind 2-365

Bessel functions, modified
relationship to Airy functions 2-128

Bessel’s equation
(defined) 2-359
modified (defined) 2-356

besseli 2-356
besselj 2-359
besselk 2-362
bessely 2-365
beta 2-369
beta function

(defined) 2-369
incomplete (defined) 2-371
natural logarithm 2-373

betainc 2-371
betaln 2-373
bicg 2-374
bicgstab 2-383

Index-4

Index

BiConjugate Gradients method 2-374
BiConjugate Gradients Stabilized method 2-383
big endian formats 2-1257
bin2dec 2-389
binary

data
writing to file 2-1342

files
reading 2-1292

mode for opened files 2-1256
binary data

reading from disk 2-2010
saving to disk 2-2827

binary function 2-390
binary to decimal conversion 2-389
bisection search 2-1352
bit depth

querying 2-1653
bit-wise operations

AND 2-392
get 2-395
OR 2-398
set bit 2-399
shift 2-400
XOR 2-402

bitand 2-392
bitcmp 2-393
bitget 2-395
bitmaps

writing 2-1676
bitmax 2-396
bitor 2-398
bitset 2-399
bitshift 2-400
bitxor 2-402
blanks 2-403

removing trailing 2-845
blkdiag 2-404
BMP files

writing 2-1676

bold font
TeX characters 2-3332

boundary value problems 2-442
box 2-405
Box, Axes property 2-275
braces, curly (special characters) 2-55
brackets (special characters) 2-55
break 2-406
breakpoints

listing 2-790
removing 2-778
resuming execution from 2-781
setting in M-files 2-794

brighten 2-407
browser

for help 2-1532
bsxfun 2-411
bubble plot (scatter function) 2-2846
Buckminster Fuller 2-3280
builtin 1-70 2-410
BusyAction

areaseries property 2-204
Axes property 2-275
barseries property 2-334
contour property 2-651
errorbar property 2-1006
Figure property 2-1134
hggroup property 2-1549
hgtransform property 2-1571
Image property 2-1636
Light property 2-1938
line property 2-1957
Line property 2-1971
patch property 2-2406
quivergroup property 2-2645
rectangle property 2-2705
Root property 2-2795
scatter property 2-2853
stairseries property 2-3024
stem property 2-3058

Index-5

Index

Surface property 2-3204
surfaceplot property 2-3227
Text property 2-3311
Uicontextmenu property 2-3452
Uicontrol property 2-3467
Uimenu property 2-3514
Uipushtool property 2-3548
Uitoggletool property 2-3580
Uitoolbar property 2-3592

ButtonDownFcn
area series property 2-205
Axes property 2-276
barseries property 2-335
contour property 2-652
errorbar property 2-1006
Figure property 2-1134
hggroup property 2-1549
hgtransform property 2-1571
Image property 2-1636
Light property 2-1939
Line property 2-1957
lineseries property 2-1972
patch property 2-2407
quivergroup property 2-2645
rectangle property 2-2705
Root property 2-2795
scatter property 2-2853
stairseries property 2-3024
stem property 2-3058
Surface property 2-3205
surfaceplot property 2-3228
Text property 2-3311
Uicontrol property 2-3468

BVP solver properties
analytical partial derivatives 2-436
error tolerance 2-434
Jacobian matrix 2-436
mesh 2-439
singular BVPs 2-439
solution statistics 2-440

vectorization 2-435
bvp4c 2-413
bvp5c 2-424
bvpget 2-429
bvpinit 2-430
bvpset 2-433
bvpxtend 2-442

C
caching

MATLAB directory 2-2430
calendar 2-443
call history 2-2575
CallBack

Uicontextmenu property 2-3453
Uicontrol property 2-3469
Uimenu property 2-3515

CallbackObject, Root property 2-2795
calllib 2-444
callSoapService 2-446
camdolly 2-447
camera

dollying position 2-447
moving camera and target postions 2-447
placing a light at 2-451
positioning to view objects 2-453
rotating around camera target 1-99 2-455

2-457
rotating around viewing axis 2-461
setting and querying position 2-458
setting and querying projection type 2-460
setting and querying target 2-462
setting and querying up vector 2-464
setting and querying view angle 2-466

CameraPosition, Axes property 2-277
CameraPositionMode, Axes property 2-278
CameraTarget, Axes property 2-278
CameraTargetMode, Axes property 2-278
CameraUpVector, Axes property 2-278

Index-6

Index

CameraUpVectorMode, Axes property 2-279
CameraViewAngle, Axes property 2-279
CameraViewAngleMode, Axes property 2-279
camlight 2-451
camlookat 2-453
camorbit 2-455
campan 2-457
campos 2-458
camproj 2-460
camroll 2-461
camtarget 2-462
camup 2-464
camva 2-466
camzoom 2-468
CaptureMatrix, Root property 2-2795
CaptureRect, Root property 2-2796
cart2pol 2-469
cart2sph 2-470
Cartesian coordinates 2-469 to 2-470 2-2509

2-2975
case 2-471

in switch statement (defined) 2-3266
lower to upper 2-3625
upper to lower 2-2041

cast 2-473
cat 2-474
catch 2-476
caxis 2-479
Cayley-Hamilton theorem 2-2529
cd 2-484
cd (ftp) function 2-486
CData

Image property 2-1637
scatter property 2-2854
Surface property 2-3206
surfaceplot property 2-3229
Uicontrol property 2-3470
Uipushtool property 2-3549
Uitoggletool property 2-3580

CDataMapping

Image property 2-1639
patch property 2-2409
Surface property 2-3207
surfaceplot property 2-3229

CDataMode
surfaceplot property 2-3230

CDatapatch property 2-2407
CDataSource

scatter property 2-2854
surfaceplot property 2-3230

cdf2rdf 2-487
cdfepoch 2-489
cdfinfo 2-490
cdfread 2-494
cdfwrite 2-498
ceil 2-501
cell 2-502
cell array

conversion to from numeric array 2-2282
creating 2-502
structure of, displaying 2-515

cell2mat 2-504
cell2struct 2-506
celldisp 2-508
cellfun 2-509
cellplot 2-515
cgs 2-518
char 1-51 1-59 1-63 2-523
characters

conversion, in format specification
string 2-1279 2-2998

escape, in format specification string 2-1280
2-2998

check boxes 2-3460
Checked, Uimenu property 2-3515
checkerboard pattern (example) 2-2760
checkin 2-524

examples 2-525
options 2-524

checkout 2-527

Index-7

Index

examples 2-528
options 2-527

child functions 2-2570
Children

areaseries property 2-206
Axes property 2-281
barseries property 2-336
contour property 2-652
errorbar property 2-1007
Figure property 2-1135
hggroup property 2-1549
hgtransform property 2-1572
Image property 2-1639
Light property 2-1939
Line property 2-1958
lineseries property 2-1972
patch property 2-2410
quivergroup property 2-2646
rectangle property 2-2706
Root property 2-2796
scatter property 2-2855
stairseries property 2-3025
stem property 2-3059
Surface property 2-3207
surfaceplot property 2-3231
Text property 2-3313
Uicontextmenu property 2-3453
Uicontrol property 2-3470
Uimenu property 2-3516
Uitoolbar property 2-3593

chol 2-530
Cholesky factorization 2-530

(as algorithm for solving linear
equations) 2-2185

lower triangular factor 2-2394
minimum degree ordering and

(sparse) 2-3279
preordering for 2-609

cholinc 2-534
cholupdate 2-542

circle
rectangle function 2-2698

circshift 2-545
cla 2-546
clabel 2-547
class 2-553
class, object. See object classes
classes

field names 2-1128
loaded 2-1701

clc 2-555 2-562
clear 2-556

serial port I/O 2-561
clearing

Command Window 2-555
items from workspace 2-556
Java import list 2-558

clf 2-562
ClickedCallback

Uipushtool property 2-3549
Uitoggletool property 2-3581

CLim, Axes property 2-281
CLimMode, Axes property 2-282
clipboard 2-563
Clipping

areaseries property 2-206
Axes property 2-282
barseries property 2-336
contour property 2-653
errrobar property 2-1007
Figure property 2-1136
hggroup property 2-1550
hgtransform property 2-1572
Image property 2-1640
Light property 2-1939
Line property 2-1958
lineseries property 2-1973
quivergroup property 2-2646
rectangle property 2-2706
Root property 2-2796

Index-8

Index

scatter property 2-2855
stairseries property 2-3025
stem property 2-3059
Surface property 2-3207
surfaceplot property 2-3231
Text property 2-3313
Uicontrol property 2-3470

Clippingpatch property 2-2410
clock 2-564
close 2-565

AVI files 2-567
close (ftp) function 2-568
CloseRequestFcn, Figure property 2-1136
closest point search 2-954
closest triangle search 2-3415
closing

files 2-1091
MATLAB 2-2633

cmapeditor 2-589
cmopts 2-570
code

analyzer 2-2189
colamd 2-572
colmmd 2-576
colon operator 2-59
Color

annotation arrow property 2-154
annotation doublearrow property 2-158
annotation line property 2-166
annotation textbox property 2-183
Axes property 2-282
errorbar property 2-1007
Figure property 2-1138
Light property 2-1939
Line property 2-1959
lineseries property 2-1973
quivergroup property 2-2647
stairseries property 2-3025
stem property 2-3060
Text property 2-3313

textarrow property 2-172
color of fonts, see also FontColor property 2-3332
colorbar 2-578
colormap 2-584

editor 2-589
Colormap, Figure property 2-1138
colormaps

converting from RGB to HSV 1-98 2-2781
plotting RGB components 1-98 2-2782

ColorOrder, Axes property 2-282
ColorSpec 2-607
colperm 2-609
COM

object methods
actxcontrol 2-84
actxcontrollist 2-91
actxcontrolselect 2-92
actxserver 2-96
addproperty 2-117
delete 2-875
deleteproperty 2-881
eventlisteners 2-1034
events 2-1036
get 1-111 2-1397
inspect 2-1717
invoke 2-1771
iscom 2-1785
isevent 2-1796
isinterface 2-1808
ismethod 2-1817
isprop 2-1839
load 2-2015
move 2-2215
propedit 2-2578
registerevent 2-2749
release 2-2754
save 2-2835
set 1-113 2-2891
unregisterallevents 2-3609
unregisterevent 2-3612

Index-9

Index

server methods
Execute 2-1038
Feval 2-1100

combinations of n elements 2-2259
combs 2-2259
comet 2-611
comet3 2-613
comma (special characters) 2-57
command syntax 2-1528 2-3285
Command Window

clearing 2-555
cursor position 1-4 2-1592
get width 2-616

commandhistory 2-615
commands

help for 2-1527 2-1537
system 1-4 1-11 2-3288
UNIX 2-3605

commandwindow 2-616
comments

block of 2-57
common elements. See set operations,

intersection
compan 2-617
companion matrix 2-617
compass 2-618
complementary error function

(defined) 2-996
scaled (defined) 2-996

complete elliptic integral
(defined) 2-979
modulus of 2-977 2-979

complex 2-620 2-1625
exponential (defined) 2-1046
logarithm 2-2026 to 2-2027
numbers 2-1601
numbers, sorting 2-2946 2-2950
phase angle 2-149
sine 2-2926
unitary matrix 2-2603

See also imaginary
complex conjugate 2-634

sorting pairs of 2-711
complex data

creating 2-620
complex numbers, magnitude 2-62
complex Schur form 2-2869
compression

lossy 2-1680
computer 2-622
computer MATLAB is running on 2-622
concatenation

of arrays 2-474
cond 2-624
condeig 2-625
condest 2-626
condition number of matrix 2-624 2-2684

improving 2-317
coneplot 2-628
conj 2-634
conjugate, complex 2-634

sorting pairs of 2-711
connecting to FTP server 2-1322
contents.m file 2-1528
context menu 2-3449
continuation (..., special characters) 2-57
continue 2-635
continued fraction expansion 2-2678
contour

and mesh plot 2-1066
filled plot 2-1058
functions 2-1054
of mathematical expression 2-1055
with surface plot 2-1084

contour3 2-642
contourc 2-645
contourf 2-647
ContourMatrix

contour property 2-653
contours

Index-10

Index

in slice planes 2-671
contourslice 2-671
contrast 2-675
conv 2-676
conv2 2-678
conversion

base to decimal 2-350
binary to decimal 2-389
Cartesian to cylindrical 2-469
Cartesian to polar 2-469
complex diagonal to real block diagonal 2-487
cylindrical to Cartesian 2-2509
decimal number to base 2-842 2-848
decimal to binary 2-849
decimal to hexadecimal 2-850
full to sparse 2-2956
hexadecimal to decimal 2-1541
integer to string 2-1731
lowercase to uppercase 2-3625
matrix to string 2-2081
numeric array to cell array 2-2282
numeric array to logical array 2-2030
numeric array to string 2-2284
partial fraction expansion to

pole-residue 2-2771
polar to Cartesian 2-2509
pole-residue to partial fraction

expansion 2-2771
real to complex Schur form 2-2824
spherical to Cartesian 2-2975
string matrix to cell array 2-517
string to numeric array 2-3082
uppercase to lowercase 2-2041
vector to character string 2-523

conversion characters in format specification
string 2-1279 2-2998

convex hulls
multidimensional vizualization 2-687
two-dimensional visualization 2-684

convhull 2-684

convhulln 2-687
convn 2-690
convolution 2-676

inverse. See deconvolution
two-dimensional 2-678

coordinate system and viewpoint 2-3668
coordinates

Cartesian 2-469 to 2-470 2-2509 2-2975
cylindrical 2-469 to 2-470 2-2509
polar 2-469 to 2-470 2-2509
spherical 2-2975

coordinates. 2-469
See also conversion

copyfile 2-691
copyobj 2-694
corrcoef 2-696
cos 2-699
cosd 2-701
cosecant

hyperbolic 2-722
inverse 2-79
inverse hyperbolic 2-82

cosh 2-702
cosine 2-699

hyperbolic 2-702
inverse 2-69
inverse hyperbolic 2-72

cot 2-704
cotangent 2-704

hyperbolic 2-707
inverse 2-74
inverse hyperbolic 2-77

cotd 2-706
coth 2-707
cov 2-709
cplxpair 2-711
cputime 2-712
createClassFromWsdl 2-713
createcopy

inputParser object 2-715

Index-11

Index

CreateFcn
areaseries property 2-206
Axes property 2-283
barseries property 2-336
contour property 2-654
errorbar property 2-1008
Figure property 2-1139
group property 2-1572
hggroup property 2-1550
Image property 2-1640
Light property 2-1940
Line property 2-1959
lineseries property 2-1973
patch property 2-2410
quivergroup property 2-2647
rectangle property 2-2707
Root property 2-2796
scatter property 2-2855
stairseries property 2-3026
stemseries property 2-3060
Surface property 2-3208
surfaceplot property 2-3231
Text property 2-3313
Uicontextmenu property 2-3453
Uicontrol property 2-3471
Uimenu property 2-3516
Uipushtool property 2-3550
Uitoggletool property 2-3581
Uitoolbar property 2-3593

createSoapMessage 2-717
creating your own MATLAB functions 2-1328
cross 2-718
cross product 2-718
csc 2-719
cscd 2-721
csch 2-722
csvread 2-724
csvwrite 2-727
ctranspose (M-file function equivalent for

\q) 2-43

ctranspose (timeseries) 2-729
cubic interpolation 2-1747 2-1750 2-1753 2-2447

piecewise Hermite 2-1737
cubic spline interpolation

one-dimensional 2-1737 2-1747 2-1750
2-1753

cumprod 2-731
cumsum 2-733
cumtrapz 2-734
cumulative

product 2-731
sum 2-733

curl 2-736
curly braces (special characters) 2-55
current directory 2-2596

changing 2-484
CurrentAxes 2-1140
CurrentAxes, Figure property 2-1140
CurrentCharacter, Figure property 2-1140
CurrentFigure, Root property 2-2796
CurrentMenu, Figure property (obsolete) 2-1141
CurrentObject, Figure property 2-1141
CurrentPoint

Axes property 2-284
Figure property 2-1142

cursor images
reading 2-1665

cursor position 1-4 2-1592
Curvature, rectangle property 2-2708
curve fitting (polynomial) 2-2521
customverctrl 2-739
Cuthill-McKee ordering, reverse 2-3269 2-3280
cylinder 2-740
cylindrical coordinates 2-469 to 2-470 2-2509

D
daqread 2-743
daspect 2-748
data

Index-12

Index

ASCII
reading from disk 2-2010

ASCII, saving to disk 2-2827
binary

writing to file 2-1342
binary, saving to disk 2-2827
computing 2-D stream lines 1-102 2-3090
computing 3-D stream lines 1-102 2-3092
formatted

reading from files 2-1308
writing to file 2-1278

formatting 2-1278 2-2996
isosurface from volume data 2-1831
reading binary from disk 2-2010
reading from files 2-3338
reducing number of elements in 1-102 2-2723
smoothing 3-D 1-102 2-2944
writing to strings 2-2996

data aspect ratio of axes 2-748
data types

complex 2-620
data, aligning scattered

multi-dimensional 2-2260
two-dimensional 2-1465

data, ASCII
converting sparse matrix after loading

from 2-2959
DataAspectRatio, Axes property 2-286
DataAspectRatioMode, Axes property 2-289
datatipinfo 2-756
date 2-757
date and time functions 2-990
date string

format of 2-762
date vector 2-775
datenum 2-758
datestr 2-762
datevec 2-774
dbclear 2-778
dbcont 2-781

dbdown 2-782
dblquad 2-783
dbmex 2-785
dbquit 2-786
dbstack 2-788
dbstatus 2-790
dbstep 2-792
dbstop 2-794
dbtype 2-804
dbup 2-805
DDE solver properties

error tolerance 2-829
event location 2-835
solver output 2-831
step size 2-833

dde23 2-806
ddeget 2-816
ddephas2 output function 2-832
ddephas3 output function 2-832
ddeplot output function 2-832
ddeprint output function 2-832
ddesd 2-823
ddeset 2-828
deal 2-842
deblank 2-845
debugging

changing workspace context 2-782
changing workspace to calling M-file 2-805
displaying function call stack 2-788
M-files 2-1880 2-2570
MEX-files on UNIX 2-785
removing breakpoints 2-778
resuming execution from breakpoint 2-792
setting breakpoints in 2-794
stepping through lines 2-792

dec2base 2-842 2-848
dec2bin 2-849
dec2hex 2-850
decic function 2-851
decimal number to base conversion 2-842 2-848

Index-13

Index

decimal point (.)
(special characters) 2-56
to distinguish matrix and array

operations 2-37
decomposition

Dulmage-Mendelsohn 2-937
"economy-size" 2-2603 2-3257
orthogonal-triangular (QR) 2-2603
Schur 2-2869
singular value 2-2677 2-3257

deconv 2-853
deconvolution 2-853
definite integral 2-2615
del operator 2-854
del2 2-854
delaunay 2-857
Delaunay tessellation

3-dimensional vizualization 2-864
multidimensional vizualization 2-868

Delaunay triangulation
vizualization 2-857

delaunay3 2-864
delaunayn 2-868
delete 2-873 2-875

serial port I/O 2-878
timer object 2-880

delete (ftp) function 2-877
DeleteFcn

areaseries property 2-207
Axes property 2-289
barseries property 2-337
contour property 2-654
errorbar property 2-1008
Figure property 2-1143
hggroup property 2-1551
hgtransform property 2-1573
Image property 2-1640
Light property 2-1941
lineseries property 2-1974
quivergroup property 2-2647

Root property 2-2797
scatter property 2-2856
stairseries property 2-3026
stem property 2-3061
Surface property 2-3208
surfaceplot property 2-3232
Text property 2-3314 2-3317
Uicontextmenu property 2-3454 2-3472
Uimenu property 2-3517
Uipushtool property 2-3551
Uitoggletool property 2-3582
Uitoolbar property 2-3594

DeleteFcn, line property 2-1960
DeleteFcn, rectangle property 2-2708
DeleteFcnpatch property 2-2411
deleteproperty 2-881
deleting

files 2-873
items from workspace 2-556

delevent 2-883
delimiters in ASCII files 2-929 2-933
delsample 2-884
delsamplefromcollection 2-885
demo 2-886
demos

in Command Window 2-957
density

of sparse matrix 2-2270
depdir 2-892
dependence, linear 2-3173
dependent functions 2-2570
depfun 2-893
derivative

approximate 2-908
polynomial 2-2518

det 2-897
detecting

alphabetic characters 2-1812
empty arrays 2-1787
global variables 2-1802

Index-14

Index

logical arrays 2-1813
members of a set 2-1815
objects of a given class 2-1779
positive, negative, and zero array

elements 2-2925
sparse matrix 2-1848

determinant of a matrix 2-897
detrend 2-898
detrend (timeseries) 2-900
deval 2-901
diag 2-903
diagonal 2-903

anti- 2-1492
k-th (illustration) 2-3398
main 2-903
sparse 2-2961

dialog 2-905
dialog box

error 2-1022
help 2-1535
input 2-1706
list 2-2005
message 2-2228
print 1-92 1-104 2-2559
question 1-104 2-2631
warning 2-3692

diary 2-906
Diary, Root property 2-2797
DiaryFile, Root property 2-2797
diff 2-908
differences

between adjacent array elements 2-908
between sets 2-2903

differential equation solvers
defining an ODE problem 2-2311

ODE boundary value problems 2-413 2-424
adjusting parameters 2-433
extracting properties 2-429
extracting properties of 2-1026 to 2-1027

2-3395 to 2-3396
forming initial guess 2-430

ODE initial value problems 2-2297
adjusting parameters of 2-2318
extracting properties of 2-2317

parabolic-elliptic PDE problems 2-2455
diffuse 2-910
DiffuseStrength

Surface property 2-3209
surfaceplot property 2-3232

DiffuseStrengthpatch property 2-2411
digamma function 2-2580
dimension statement (lack of in

MATLAB) 2-3779
dimensions

size of 2-2932
Diophantine equations 2-1382
dir 2-911
dir (ftp) function 2-914
direct term of a partial fraction expansion 2-2771
directories 2-484

adding to search path 2-114
checking existence of 2-1041
copying 2-691
creating 2-2172
listing contents of 2-911
listing MATLAB files in 2-3718
listing, on UNIX 2-2042
MATLAB

caching 2-2430
removing 2-2787
removing from search path 2-2792
See also directory, search path

directory 2-911
changing on FTP server 2-486
listing for FTP server 2-914

Index-15

Index

making on FTP server 2-2175
MATLAB location 2-2092
root 2-2092
temporary system 2-3296
See also directories

directory, changing 2-484
directory, current 2-2596
disconnect 2-568
discontinuities, eliminating (in arrays of phase

angles) 2-3621
discontinuities, plotting functions with 2-1082
discontinuous problems 2-1254
disp 2-917

memmapfile object 2-919
serial port I/O 2-922
timer object 2-923

disp, MException method 2-920
display 2-925
display format 2-1265
displaying output in Command Window 2-2213
DisplayName

areaseries property 2-207
barseries property 2-337
contourgroup property 2-655
errorbarseries property 2-1008
hggroup property 2-1551
hgtransform property 2-1573
image property 2-1641
Line property 2-1961
lineseries property 2-1974
Patch property 2-2411
quivergroup property 2-2648
rectangle property 2-2709
scattergroup property 2-2856
stairseries property 2-3027
stemseries property 2-3061
surface property 2-3209
surfaceplot property 2-3233
text property 2-3315

distribution

Gaussian 2-996
division

array, left (arithmetic operator) 2-39
array, right (arithmetic operator) 2-38
by zero 2-1694
matrix, left (arithmetic operator) 2-38
matrix, right (arithmetic operator) 2-38
of polynomials 2-853

divisor
greatest common 2-1382

dll libraries
MATLAB functions

calllib 2-444
libfunctions 2-1921
libfunctionsview 2-1923
libisloaded 2-1925
libpointer 2-1927
libstruct 2-1929
loadlibrary 2-2018
unloadlibrary 2-3607

dlmread 2-929
dlmwrite 2-933
dmperm 2-937
Dockable, Figure property 2-1144
docsearch 2-943
documentation

displaying online 2-1532
dolly camera 2-447
dos 2-945

UNC pathname error 2-946
dot 2-947
dot product 2-718 2-947
dot-parentheses (special characters 2-57
double 1-58 2-948
double click, detecting 2-1167
double integral

numerical evaluation 2-783
DoubleBuffer, Figure property 2-1144
downloading files from FTP server 2-2160
dragrect 2-949

Index-16

Index

drawing shapes
circles and rectangles 2-2698

DrawMode, Axes property 2-289
drawnow 2-951
dsearch 2-953
dsearchn 2-954
Dulmage-Mendelsohn decomposition 2-937
dynamic fields 2-57

E
echo 2-955
Echo, Root property 2-2797
echodemo 2-957
edge finding, Sobel technique 2-680
EdgeAlpha

patch property 2-2412
surface property 2-3210
surfaceplot property 2-3233

EdgeColor
annotation ellipse property 2-163
annotation rectangle property 2-169
annotation textbox property 2-183
areaseries property 2-208
barseries property 2-338
patch property 2-2413
Surface property 2-3211
surfaceplot property 2-3234
Text property 2-3316

EdgeColor, rectangle property 2-2710
EdgeLighting

patch property 2-2413
Surface property 2-3211
surfaceplot property 2-3235

editable text 2-3460
editing

M-files 2-959
eig 2-961
eigensystem

transforming 2-487

eigenvalue
accuracy of 2-961
complex 2-487
matrix logarithm and 2-2035
modern approach to computation of 2-2514
of companion matrix 2-617
problem 2-962 2-2519
problem, generalized 2-962 2-2519
problem, polynomial 2-2519
repeated 2-963
Wilkinson test matrix and 2-3738

eigenvalues
effect of roundoff error 2-317
improving accuracy 2-317

eigenvector
left 2-962
matrix, generalized 2-2664
right 2-962

eigs 2-967
elevation (spherical coordinates) 2-2975
elevation of viewpoint 2-3668
ellipj 2-977
ellipke 2-979
ellipsoid 1-90 2-981
elliptic functions, Jacobian

(defined) 2-977
elliptic integral

complete (defined) 2-979
modulus of 2-977 2-979

else 2-983
elseif 2-984
Enable

Uicontrol property 2-3472
Uimenu property 2-3518
Uipushtool property 2-3551
Uitogglehtool property 2-3583

end 2-988
end caps for isosurfaces 2-1821
end of line, indicating 2-57
end-of-file indicator 2-1096

Index-17

Index

eomday 2-990
eps 2-991
eq 2-993
eq, MException method 2-995
equal arrays

detecting 2-1790 2-1794
equal sign (special characters) 2-56
equations, linear

accuracy of solution 2-624
EraseMode

areaseries property 2-208
barseries property 2-338
contour property 2-655
errorbar property 2-1009
hggroup property 2-1552
hgtransform property 2-1574
Image property 2-1642
Line property 2-1962
lineseries property 2-1975
quivergroup property 2-2649
rectangle property 2-2710
scatter property 2-2857
stairseries property 2-3028
stem property 2-3062
Surface property 2-3212
surfaceplot property 2-3235
Text property 2-3317

EraseModepatch property 2-2414
error 2-998

roundoff. See roundoff error
error function

complementary 2-996
(defined) 2-996
scaled complementary 2-996

error message
displaying 2-998
Index into matrix is negative or zero 2-2031
retrieving last generated 2-1885 2-1892

error messages
Out of memory 2-2374

error tolerance
BVP problems 2-434
DDE problems 2-829
ODE problems 2-2319

errorbars 2-1001
errordlg 2-1022
ErrorMessage, Root property 2-2797
errors

in file input/output 2-1097
MException class 2-995

addCause 2-100
constructor 2-2131
disp 2-920
eq 2-995
getReport 2-1431
isequal 2-1793
last 2-1883
ne 2-2265
rethrow 2-2778
throw 2-3365
throwAsCaller 2-3368

ErrorType, Root property 2-2798
escape characters in format specification

string 2-1280 2-2998
etime 2-1025
etree 2-1026
etreeplot 2-1027
eval 2-1028
evalc 2-1031
evalin 2-1032
event location (DDE) 2-835
event location (ODE) 2-2326
eventlisteners 2-1034
events 2-1036
examples

calculating isosurface normals 2-1828
contouring mathematical expressions 2-1055
isosurface end caps 2-1821
isosurfaces 2-1832
mesh plot of mathematical function 2-1064

Index-18

Index

mesh/contour plot 2-1068
plotting filled contours 2-1059
plotting function of two variables 2-1072
plotting parametric curves 2-1075
polar plot of function 2-1078
reducing number of patch faces 2-2720
reducing volume data 2-2723
subsampling volume data 2-3178
surface plot of mathematical function 2-1082
surface/contour plot 2-1086

Excel spreadsheets
loading 2-3756

exclamation point (special characters) 2-58
Execute 2-1038
executing statements repeatedly 2-1262 2-3725
execution

improving speed of by setting aside
storage 2-3779

pausing M-file 2-2436
resuming from breakpoint 2-781
time for M-files 2-2570

exifread 2-1040
exist 2-1041
exit 2-1045
exp 2-1046
expint 2-1047
expm 2-1048
expm1 2-1050
exponential 2-1046

complex (defined) 2-1046
integral 2-1047
matrix 2-1048

exponentiation
array (arithmetic operator) 2-39
matrix (arithmetic operator) 2-39

export2wsdlg 2-1051
extension, filename

.m 2-1328

.mat 2-2827
Extent

Text property 2-3318
Uicontrol property 2-3473

eye 2-1053
ezcontour 2-1054
ezcontourf 2-1058
ezmesh 2-1062
ezmeshc 2-1066
ezplot 2-1070
ezplot3 2-1074
ezpolar 2-1077
ezsurf 2-1080
ezsurfc 2-1084

F
F-norm 2-2273
FaceAlpha

annotation textbox property 2-184
FaceAlphapatch property 2-2415
FaceAlphasurface property 2-3213
FaceAlphasurfaceplot property 2-3236
FaceColor

annotation ellipse property 2-163
annotation rectangle property 2-169
areaseries property 2-210
barseries property 2-340
Surface property 2-3214
surfaceplot property 2-3237

FaceColor, rectangle property 2-2711
FaceColorpatch property 2-2416
FaceLighting

Surface property 2-3214
surfaceplot property 2-3238

FaceLightingpatch property 2-2416
faces, reducing number in patches 1-102 2-2719
Faces,patch property 2-2417
FaceVertexAlphaData, patch property 2-2418
FaceVertexCData,patch property 2-2418
factor 2-1088
factorial 2-1089

Index-19

Index

factorization 2-2603
LU 2-2058
QZ 2-2520 2-2664
See also decomposition

factorization, Cholesky 2-530
(as algorithm for solving linear

equations) 2-2185
minimum degree ordering and

(sparse) 2-3279
preordering for 2-609

factors, prime 2-1088
false 2-1090
fclose 2-1091

serial port I/O 2-1092
feather 2-1094
feof 2-1096
ferror 2-1097
feval 2-1098
Feval 2-1100
fft 2-1105
FFT. See Fourier transform
fft2 2-1110
fftn 2-1111
fftshift 2-1113
fftw 2-1115
FFTW 2-1108
fgetl 2-1120

serial port I/O 2-1121
fgets 2-1124

serial port I/O 2-1125
field names of a structure, obtaining 2-1128
fieldnames 2-1128
fields, noncontiguous, inserting data into 2-1342
fields, of structures

dynamic 2-57
fig files

annotating for printing 2-1289
figure 2-1130
Figure

creating 2-1130

defining default properties 2-1132
properties 2-1133
redrawing 1-96 2-2726

figure windows, displaying 2-1220
figurepalette 1-87 2-1184
figures

annotating 2-2499
opening 2-2340
saving 2-2838

Figures
updating from M-file 2-951

file
extension, getting 2-1196
modification date 2-911
position indicator

finding 2-1321
setting 2-1319
setting to start of file 2-1307

file formats
getting list of supported formats 2-1655
reading 2-743 2-1663
writing 2-1675

file size
querying 2-1653

fileattrib 2-1186
filebrowser 2-1192
filehandle 2-1198
filemarker 2-1195
filename

building from parts 2-1325
parts 2-1196
temporary 2-3297

filename extension
.m 2-1328
.mat 2-2827

fileparts 2-1196
files 2-1091

ASCII delimited
reading 2-929
writing 2-933

Index-20

Index

beginning of, rewinding to 2-1307 2-1660
checking existence of 2-1041
closing 2-1091
contents, listing 2-3423
copying 2-691
deleting 2-873
deleting on FTP server 2-877
end of, testing for 2-1096
errors in input or output 2-1097
Excel spreadsheets

loading 2-3756
fig 2-2838
figure, saving 2-2838
finding position within 2-1321
getting next line 2-1120
getting next line (with line

terminator) 2-1124
listing

in directory 2-3718
names in a directory 2-911

listing contents of 2-3423
locating 2-3722
mdl 2-2838
mode when opened 2-1256
model, saving 2-2838
opening 2-1257 2-2340

in Web browser 1-5 1-8 2-3712
opening in Windows applications 2-3739
path, getting 2-1196
pathname for 2-3722
reading

binary 2-1292
data from 2-3338
formatted 2-1308

reading data from 2-743
reading image data from 2-1663
rewinding to beginning of 2-1307 2-1660
setting position within 2-1319
size, determining 2-913

sound
reading 2-258 2-3706
writing 2-259 to 2-260 2-3711

startup 2-2090
version, getting 2-1196
.wav

reading 2-3706
writing 2-3711

WK1
loading 2-3743
writing to 2-3745

writing binary data to 2-1342
writing formatted data to 2-1278
writing image data to 2-1675
See also file

filesep 2-1199
fill 2-1200
Fill

contour property 2-657
fill3 2-1203
filter 2-1206

digital 2-1206
finite impulse response (FIR) 2-1206
infinite impulse response (IIR) 2-1206
two-dimensional 2-678

filter (timeseries) 2-1209
filter2 2-1212
find 2-1214
findall function 2-1219
findfigs 2-1220
finding 2-1214

sign of array elements 2-2925
zero of a function 2-1348
See also detecting

findobj 2-1221
findstr 2-1224
finish 2-1225
finish.m 2-2633
FIR filter 2-1206

Index-21

Index

FitBoxToText, annotation textbox
property 2-184

FitHeightToText
annotation textbox property 2-184

fitsinfo 2-1226
fitsread 2-1235
fix 2-1237
fixed-width font

axes 2-290
text 2-3319
uicontrols 2-3474

FixedColors, Figure property 2-1145
FixedWidthFontName, Root property 2-2798
flints 2-2234
flipdim 2-1238
fliplr 2-1239
flipud 2-1240
floating-point

integer, maximum 2-396
floating-point arithmetic, IEEE

smallest postive number 2-2693
floor 2-1242
flops 2-1243
flow control

break 2-406
case 2-471
end 2-988
error 2-999
for 2-1262
keyboard 2-1880
otherwise 2-2373
return 2-2780
switch 2-3266
while 2-3725

fminbnd 2-1245
fminsearch 2-1250
font

fixed-width, axes 2-290
fixed-width, text 2-3319
fixed-width, uicontrols 2-3474

FontAngle
annotation textbox property 2-186
Axes property 2-290
Text property 2-173 2-3319
Uicontrol property 2-3474

FontName
annotation textbox property 2-186
Axes property 2-290
Text property 2-3319
textarrow property 2-173
Uicontrol property 2-3474

fonts
bold 2-173 2-187 2-3320
italic 2-173 2-186 2-3319
specifying size 2-3320
TeX characters

bold 2-3332
italics 2-3332
specifying family 2-3332
specifying size 2-3332

units 2-173 2-187 2-3320
FontSize

annotation textbox property 2-187
Axes property 2-291
Text property 2-3320
textarrow property 2-173
Uicontrol property 2-3475

FontUnits
Axes property 2-291
Text property 2-3320
Uicontrol property 2-3475

FontWeight
annotation textbox property 2-187
Axes property 2-292
Text property 2-3320
textarrow property 2-173
Uicontrol property 2-3475

fopen 2-1255
serial port I/O 2-1260

for 2-1262

Index-22

Index

ForegroundColor
Uicontrol property 2-3476
Uimenu property 2-3518

format 2-1265
precision when writing 2-1292
reading files 2-1309
specification string, matching file data

to 2-3013
Format 2-2798
formats

big endian 2-1257
little endian 2-1257

FormatSpacing, Root property 2-2799
formatted data

reading from file 2-1308
writing to file 2-1278

formatting data 2-2996
Fourier transform

algorithm, optimal performance of 2-1108
2-1611 2-1613 2-2269

as method of interpolation 2-1752
convolution theorem and 2-676
discrete, n-dimensional 2-1111
discrete, one-dimensional 2-1105
discrete, two-dimensional 2-1110
fast 2-1105
inverse, n-dimensional 2-1615
inverse, one-dimensional 2-1611
inverse, two-dimensional 2-1613
shifting the zero-frequency component

of 2-1114
fplot 2-1273 2-1288
fprintf 2-1278

displaying hyperlinks with 2-1283
serial port I/O 2-1285

fraction, continued 2-2678
fragmented memory 2-2374
frame2im 2-1288
frames 2-3460
frames for printing 2-1289

fread 2-1292
serial port I/O 2-1302

freqspace 2-1306
frequency response

desired response matrix
frequency spacing 2-1306

frequency vector 2-2038
frewind 2-1307
fscanf 2-1308

serial port I/O 2-1315
fseek 2-1319
ftell 2-1321
FTP

connecting to server 2-1322
ftp function 2-1322
full 2-1324
fullfile 2-1325
func2str 2-1326
function 2-1328
function handle 2-1330
function handles

overview of 2-1330
function syntax 2-1528 2-3285
functions 2-1333

call history 2-2575
call stack for 2-788
checking existence of 2-1041
clearing from workspace 2-556
finding using keywords 2-2039
help for 2-1527 2-1537
in memory 2-1701
locating 2-3722
pathname for 2-3722
that work down the first non-singleton

dimension 2-2918
funm 2-1337
fwrite 2-1342

serial port I/O 2-1344
fzero 2-1348

Index-23

Index

G
gallery 2-1354
gamma function

(defined) 2-1377
incomplete 2-1377
logarithm of 2-1377
logarithmic derivative 2-2580

Gauss-Kronrod quadrature 2-2624
Gaussian distribution function 2-996
Gaussian elimination

(as algorithm for solving linear
equations) 2-1767 2-2186

Gauss Jordan elimination with partial
pivoting 2-2822

LU factorization 2-2058
gca 2-1379
gcbf function 2-1380
gcbo function 2-1381
gcd 2-1382
gcf 2-1384
gco 2-1385
ge 2-1386
generalized eigenvalue problem 2-962 2-2519
generating a sequence of matrix names (M1

through M12) 2-1029
genpath 2-1388
genvarname 2-1390
geodesic dome 2-3280
get 1-111 2-1394 2-1397

memmapfile object 2-1399
serial port I/O 2-1402
timer object 2-1404

get (timeseries) 2-1406
get (tscollection) 2-1407
getabstime (timeseries) 2-1408
getabstime (tscollection) 2-1410
getappdata function 2-1412
getdatasamplesize 2-1415
getenv 2-1416
getfield 2-1417

getframe 2-1419
image resolution and 2-1420

getinterpmethod 2-1425
getpixelposition 2-1426
getpref function 2-1428
getqualitydesc 2-1430
getReport, MException method 2-1431
getsampleusingtime (timeseries) 2-1432
getsampleusingtime (tscollection) 2-1433
gettimeseriesnames 2-1434
gettsafteratevent 2-1435
gettsafterevent 2-1436
gettsatevent 2-1437
gettsbeforeatevent 2-1438
gettsbeforeevent 2-1439
gettsbetweenevents 2-1440
GIF files

writing 2-1676
ginput function 2-1445
global 2-1447
global variable

defining 2-1447
global variables, clearing from workspace 2-556
gmres 2-1449
golden section search 2-1248
Goup

defining default properties 2-1567
gplot 2-1455
grabcode function 2-1457
gradient 2-1459
gradient, numerical 2-1459
graph

adjacency 2-938
graphics objects

Axes 2-267
Figure 2-1130
getting properties 2-1394
Image 2-1626
Light 2-1936
Line 2-1949

Index-24

Index

Patch 2-2395
resetting properties 1-100 2-2768
Root 1-94 2-2794
setting properties 1-94 1-96 2-2887
Surface 1-94 1-97 2-3196
Text 1-94 2-3303
uicontextmenu 2-3449
Uicontrol 2-3459
Uimenu 1-107 2-3510

graphics objects, deleting 2-873
graphs

editing 2-2499
graymon 2-1462
greatest common divisor 2-1382
Greek letters and mathematical symbols 2-177

2-189 2-3330
grid 2-1463

aligning data to a 2-1465
grid arrays

for volumetric plots 2-2145
multi-dimensional 2-2260

griddata 2-1465
griddata3 2-1469
griddatan 2-1472
GridLineStyle, Axes property 2-292
group

hggroup function 2-1544
gsvd 2-1475
gt 2-1481
gtext 2-1483
guidata function 2-1484
guihandles function 2-1487
GUIs, printing 2-2553
gunzip 2-1488 2-1490

H
H1 line 2-1529 to 2-1530
hadamard 2-1491
Hadamard matrix 2-1491

subspaces of 2-3173
handle graphics

hgtransform 2-1563
handle graphicshggroup 2-1544
HandleVisibility

areaseries property 2-210
Axes property 2-292
barseries property 2-340
contour property 2-657
errorbar property 2-1010
Figure property 2-1145
hggroup property 2-1553
hgtransform property 2-1576
Image property 2-1643
Light property 2-1941
Line property 2-1963
lineseries property 2-1976
patch property 2-2420
quivergroup property 2-2650
rectangle property 2-2711
Root property 2-2799
stairseries property 2-3029
stem property 2-3063
Surface property 2-3215
surfaceplot property 2-3238
Text property 2-3321
Uicontextmenu property 2-3455
Uicontrol property 2-3476
Uimenu property 2-3518
Uipushtool property 2-3552
Uitoggletool property 2-3583
Uitoolbar property 2-3595

hankel 2-1492
Hankel matrix 2-1492
HDF

appending to when saving
(WriteMode) 2-1680

compression 2-1679
setting JPEG quality when writing 2-1680

HDF files

Index-25

Index

writing images 2-1676
HDF4

summary of capabilities 2-1493
HDF5

high-level access 2-1495
summary of capabilities 2-1495

HDF5 class
low-level access 2-1495

hdf5info 2-1498
hdf5read 2-1500
hdf5write 2-1502
hdfinfo 2-1506
hdfread 2-1514
hdftool 2-1526
Head1Length

annotation doublearrow property 2-158
Head1Style

annotation doublearrow property 2-159
Head1Width

annotation doublearrow property 2-160
Head2Length

annotation doublearrow property 2-158
Head2Style

annotation doublearrow property 2-159
Head2Width

annotation doublearrow property 2-160
HeadLength

annotation arrow property 2-154
textarrow property 2-174

HeadStyle
annotation arrow property 2-154
textarrow property 2-174

HeadWidth
annotation arrow property 2-155
textarrow property 2-175

Height
annotation ellipse property 2-164

help 2-1527
contents file 2-1528
creating for M-files 2-1529

keyword search in functions 2-2039
online 2-1527

Help browser 2-1532
accessing from doc 2-940

Help Window 2-1537
helpbrowser 2-1532
helpdesk 2-1534
helpdlg 2-1535
helpwin 2-1537
Hermite transformations, elementary 2-1382
hess 2-1538
Hessenberg form of a matrix 2-1538
hex2dec 2-1541
hex2num 2-1542
hidden 2-1581
Hierarchical Data Format (HDF) files

writing images 2-1676
hilb 2-1582
Hilbert matrix 2-1582

inverse 2-1770
hist 2-1583
histc 2-1587
HitTest

areaseries property 2-212
Axes property 2-293
barseries property 2-342
contour property 2-659
errorbar property 2-1012
Figure property 2-1147
hggroup property 2-1555
hgtransform property 2-1577
Image property 2-1645
Light property 2-1943
Line property 2-1963
lineseries property 2-1978
Patch property 2-2421
quivergroup property 2-2652
rectangle property 2-2712
Root property 2-2799
scatter property 2-2860

Index-26

Index

stairseries property 2-3031
stem property 2-3065
Surface property 2-3216
surfaceplot property 2-3240
Text property 2-3322
Uicontrol property 2-3477
Uipushtool property 2-3553
Uitoggletool property 2-3584
Uitoolbarl property 2-3596

HitTestArea
areaseries property 2-212
barseries property 2-342
contour property 2-659
errorbar property 2-1012
quivergroup property 2-2652
scatter property 2-2860
stairseries property 2-3031
stem property 2-3065

hold 2-1590
home 2-1592
HorizontalAlignment

Text property 2-3323
textarrow property 2-175
textbox property 2-187
Uicontrol property 2-3477

horzcat 2-1593
horzcat (M-file function equivalent for [,]) 2-58
horzcat (tscollection) 2-1595
hostid 2-1596
Householder reflections (as algorithm for solving

linear equations) 2-2187
hsv2rgb 2-1597
HTML

in Command Window 2-2085
save M-file as 2-2583

HTML browser
in MATLAB 2-1532

HTML files
opening 1-5 1-8 2-3712

hyperbolic

cosecant 2-722
cosecant, inverse 2-82
cosine 2-702
cosine, inverse 2-72
cotangent 2-707
cotangent, inverse 2-77
secant 2-2876
secant, inverse 2-229
sine 2-2930
sine, inverse 2-234
tangent 2-3293
tangent, inverse 2-245

hyperlink
displaying in Command Window 2-917

hyperlinks
in Command Window 2-2085

hyperplanes, angle between 2-3173
hypot 2-1598

I
i 2-1601
icon images

reading 2-1665
idealfilter (timeseries) 2-1602
identity matrix 2-1053

sparse 2-2972
idivide 2-1605
IEEE floating-point arithmetic

smallest positive number 2-2693
if 2-1607
ifft 2-1611
ifft2 2-1613
ifftn 2-1615
ifftshift 2-1617
IIR filter 2-1206
ilu 2-1618
im2java 2-1623
imag 2-1625
image 2-1626

Index-27

Index

Image
creating 2-1626
properties 2-1633

image types
querying 2-1653

images
file formats 2-1663 2-1675
reading data from files 2-1663
returning information about 2-1652
writing to files 2-1675

Images
converting MATLAB image to Java

Image 2-1623
imagesc 2-1649
imaginary 2-1625

part of complex number 2-1625
unit (sqrt(\xd0 1)) 2-1601 2-1860
See also complex

imfinfo
returning file information 2-1652

imformats 2-1655
import 2-1658
importdata 2-1660
importing

Java class and package names 2-1658
imread 2-1663
imwrite 2-1675
incomplete beta function

(defined) 2-371
incomplete gamma function

(defined) 2-1377
ind2sub 2-1690
Index into matrix is negative or zero (error

message) 2-2031
indexing

logical 2-2030
indicator of file position 2-1307
indices, array

of sorted elements 2-2947
Inf 2-1694

inferiorto 2-1696
infinity 2-1694

norm 2-2273
info 2-1697
information

returning file information 2-1652
inheritance, of objects 2-554
inline 2-1698
inmem 2-1701
inpolygon 2-1703
input 2-1705

checking number of M-file arguments 2-2251
name of array passed as 2-1710
number of M-file arguments 2-2253
prompting users for 2-1705 2-2138

inputdlg 2-1706
inputname 2-1710
inputParser 2-1711
inspect 2-1717
installation, root directory of 2-2092
instrcallback 2-1724
instrfind 2-1726
instrfindall 2-1728

example of 2-1729
int2str 2-1731
integer

floating-point, maximum 2-396
IntegerHandle

Figure property 2-1147
integration

polynomial 2-2525
quadrature 2-2615 2-2619

interfaces 2-1734
interp1 2-1736
interp1q 2-1744
interp2 2-1746
interp3 2-1750
interpft 2-1752
interpn 2-1753
interpolated shading and printing 2-2554

Index-28

Index

interpolation
cubic method 2-1465 2-1736 2-1746 2-1750

2-1753
cubic spline method 2-1736 2-1746 2-1750

2-1753
FFT method 2-1752
linear method 2-1736 2-1746 2-1750 2-1753
multidimensional 2-1753
nearest neighbor method 2-1465 2-1736

2-1746 2-1750 2-1753
one-dimensional 2-1736
three-dimensional 2-1750
trilinear method 2-1465
two-dimensional 2-1746

Interpreter
Text property 2-3323
textarrow property 2-175
textbox property 2-188

interpstreamspeed 2-1756
Interruptible

areaseries property 2-212
Axes property 2-294
barseries property 2-342
contour property 2-659
errorbar property 2-1013
Figure property 2-1147
hggroup property 2-1555
hgtransform property 2-1577
Image property 2-1645
Light property 2-1943
Line property 2-1964
lineseries property 2-1978
patch property 2-2421
quivergroup property 2-2652
rectangle property 2-2713
Root property 2-2799
scatter property 2-2861
stairseries property 2-3031
stem property 2-3065
Surface property 2-3216 2-3240

Text property 2-3325
Uicontextmenu property 2-3456
Uicontrol property 2-3477
Uimenu property 2-3519
Uipushtool property 2-3553
Uitoggletool property 2-3584
Uitoolbar property 2-3596

intersect 2-1760
intmax 2-1761
intmin 2-1762
intwarning 2-1763
inv 2-1767
inverse

cosecant 2-79
cosine 2-69
cotangent 2-74
Fourier transform 2-1611 2-1613 2-1615
Hilbert matrix 2-1770
hyperbolic cosecant 2-82
hyperbolic cosine 2-72
hyperbolic cotangent 2-77
hyperbolic secant 2-229
hyperbolic sine 2-234
hyperbolic tangent 2-245
of a matrix 2-1767
secant 2-226
sine 2-231
tangent 2-240
tangent, four-quadrant 2-242

inversion, matrix
accuracy of 2-624

InvertHardCopy, Figure property 2-1148
invhilb 2-1770
invoke 2-1771
involutary matrix 2-2394
ipermute 2-1774
iqr (timeseries) 2-1775
is* 2-1777
isa 2-1779
isappdata function 2-1781

Index-29

Index

iscell 2-1782
iscellstr 2-1783
ischar 2-1784
iscom 2-1785
isdir 2-1786
isempty 2-1787
isempty (timeseries) 2-1788
isempty (tscollection) 2-1789
isequal 2-1790
isequal, MException method 2-1793
isequalwithequalnans 2-1794
isevent 2-1796
isfield 2-1798
isfinite 2-1800
isfloat 2-1801
isglobal 2-1802
ishandle 2-1804
isinf 2-1806
isinteger 2-1807
isinterface 2-1808
isjava 2-1809
iskeyword 2-1810
isletter 2-1812
islogical 2-1813
ismac 2-1814
ismember 2-1815
ismethod 2-1817
isnan 2-1818
isnumeric 2-1819
isobject 2-1820
isocap 2-1821
isonormals 2-1828
isosurface 2-1831

calculate data from volume 2-1831
end caps 2-1821
vertex normals 2-1828

ispc 2-1836
ispref function 2-1837
isprime 2-1838
isprop 2-1839

isreal 2-1840
isscalar 2-1843
issorted 2-1844
isspace 2-1847 2-1850
issparse 2-1848
isstr 2-1849
isstruct 2-1853
isstudent 2-1854
isunix 2-1855
isvalid 2-1856

timer object 2-1857
isvarname 2-1858
isvector 2-1859
italics font

TeX characters 2-3332

J
j 2-1860
Jacobi rotations 2-2994
Jacobian elliptic functions

(defined) 2-977
Jacobian matrix (BVP) 2-436
Jacobian matrix (ODE) 2-2328

generating sparse numerically 2-2329
2-2331

specifying 2-2328 2-2331
vectorizing ODE function 2-2329 to 2-2331

Java
class names 2-558 2-1658
objects 2-1809

Java Image class
creating instance of 2-1623

Java import list
adding to 2-1658
clearing 2-558

Java version used by MATLAB 2-3661
java_method 2-1865 2-1872
java_object 2-1874
javaaddath 2-1861

Index-30

Index

javachk 2-1866
javaclasspath 2-1868
javarmpath 2-1876
joining arrays. See concatenation
Joint Photographic Experts Group (JPEG)

writing 2-1676
JPEG

setting Bitdepth 2-1680
specifying mode 2-1680

JPEG comment
setting when writing a JPEG image 2-1680

JPEG files
parameters that can be set when

writing 2-1680
writing 2-1676

JPEG quality
setting when writing a JPEG image 2-1680

2-1685
setting when writing an HDF image 2-1680

jvm
version used by MATLAB 2-3661

K
K>> prompt

keyboard function 2-1880
keyboard 2-1880
keyboard mode 2-1880

terminating 2-2780
KeyPressFcn

Uicontrol property 2-3479
KeyPressFcn, Figure property 2-1149
KeyReleaseFcn, Figure property 2-1150
keyword search in functions 2-2039
keywords

iskeyword function 2-1810
kron 2-1881
Kronecker tensor product 2-1881

L
Label, Uimenu property 2-3520
labeling

axes 2-3749
matrix columns 2-917
plots (with numeric values) 2-2284

LabelSpacing
contour property 2-660

Laplacian 2-854
largest array elements 2-2112
last, MException method 2-1883
lasterr 2-1885
lasterror 2-1888
lastwarn 2-1892
LaTeX, see TeX 2-177 2-189 2-3330
Layer, Axes property 2-294
Layout Editor

starting 2-1486
lcm 2-1894
LData

errorbar property 2-1013
LDataSource

errorbar property 2-1013
ldivide (M-file function equivalent for .\) 2-42
le 2-1902
least common multiple 2-1894
least squares

polynomial curve fitting 2-2521
problem, overdetermined 2-2482

legend 2-1904
properties 2-1910
setting text properties 2-1910

legendre 2-1913
Legendre functions

(defined) 2-1913
Schmidt semi-normalized 2-1913

length 2-1917
serial port I/O 2-1918

length (timeseries) 2-1919
length (tscollection) 2-1920

Index-31

Index

LevelList
contour property 2-660

LevelListMode
contour property 2-660

LevelStep
contour property 2-661

LevelStepMode
contour property 2-661

libfunctions 2-1921
libfunctionsview 2-1923
libisloaded 2-1925
libpointer 2-1927
libstruct 2-1929
license 2-1932
light 2-1936
Light

creating 2-1936
defining default properties 2-1630 2-1937
positioning in camera coordinates 2-451
properties 2-1938

Light object
positioning in spherical coordinates 2-1946

lightangle 2-1946
lighting 2-1947
limits of axes, setting and querying 2-3751
line 2-1949

editing 2-2499
Line

creating 2-1949
defining default properties 2-1954
properties 2-1955 2-1970

line numbers in M-files 2-804
linear audio signal 2-1948 2-2234
linear dependence (of data) 2-3173
linear equation systems

accuracy of solution 2-624
solving overdetermined 2-2605 to 2-2606

linear equation systems, methods for solving
Cholesky factorization 2-2185
Gaussian elimination 2-2186

Householder reflections 2-2187
matrix inversion (inaccuracy of) 2-1767

linear interpolation 2-1736 2-1746 2-1750 2-1753
linear regression 2-2521
linearly spaced vectors, creating 2-2004
LineColor

contour property 2-661
lines

computing 2-D stream 1-102 2-3090
computing 3-D stream 1-102 2-3092
drawing stream lines 1-102 2-3094

LineSpec 1-86 2-1987
LineStyle

annotation arrow property 2-155
annotation doublearrow property 2-160
annotation ellipse property 2-164
annotation line property 2-166
annotation rectangle property 2-170
annotation textbox property 2-188
areaseries property 2-213
barseries property 2-343
contour property 2-662
errorbar property 2-1014
Line property 2-1965
lineseries property 2-1979
patch property 2-2422
quivergroup property 2-2653
rectangle property 2-2713
stairseries property 2-3032
stem property 2-3066
surface object 2-3217
surfaceplot object 2-3240
text object 2-3325
textarrow property 2-176

LineStyleOrder
Axes property 2-294

LineWidth
annotation arrow property 2-156
annotation doublearrow property 2-161
annotation ellipse property 2-164

Index-32

Index

annotation line property 2-167
annotation rectangle property 2-170
annotation textbox property 2-188
areaseries property 2-214
Axes property 2-296
barseries property 2-344
contour property 2-662
errorbar property 2-1014
Line property 2-1965
lineseries property 2-1979
Patch property 2-2422
quivergroup property 2-2653
rectangle property 2-2713
scatter property 2-2861
stairseries property 2-3032
stem property 2-3067
Surface property 2-3217
surfaceplot property 2-3241
text object 2-3326
textarrow property 2-176

linkaxes 2-1993
linkprop 2-1997
links

in Command Window 2-2085
linsolve 2-2001
linspace 2-2004
lint tool for checking problems 2-2189
list boxes 2-3461

defining items 2-3484
ListboxTop, Uicontrol property 2-3479
listdlg 2-2005
listfonts 2-2008
little endian formats 2-1257
load 2-2010 2-2015

serial port I/O 2-2016
loadlibrary 2-2018
loadobj 2-2024
Lobatto IIIa ODE solver 2-422 2-427
local variables 2-1328 2-1447
locking M-files 2-2200

log 2-2026
saving session to file 2-906

log10 [log010] 2-2027
log1p 2-2028
log2 2-2029
logarithm

base ten 2-2027
base two 2-2029
complex 2-2026 to 2-2027
natural 2-2026
of beta function (natural) 2-373
of gamma function (natural) 2-1378
of real numbers 2-2691
plotting 2-2032

logarithmic derivative
gamma function 2-2580

logarithmically spaced vectors, creating 2-2038
logical 2-2030
logical array

converting numeric array to 2-2030
detecting 2-1813

logical indexing 2-2030
logical operations

AND, bit-wise 2-392
OR, bit-wise 2-398
XOR 2-3776
XOR, bit-wise 2-402

logical operators 2-49 2-52
logical OR

bit-wise 2-398
logical tests 2-1779

all 2-134
any 2-194
See also detecting

logical XOR 2-3776
bit-wise 2-402

loglog 2-2032
logm 2-2035
logspace 2-2038
lookfor 2-2039

Index-33

Index

lossy compression
writing JPEG files with 2-1680

Lotus WK1 files
loading 2-3743
writing 2-3745

lower 2-2041
lower triangular matrix 2-3398
lowercase to uppercase 2-3625
ls 2-2042
lscov 2-2043
lsqnonneg 2-2048
lsqr 2-2051
lt 2-2056
lu 2-2058
LU factorization 2-2058

storage requirements of (sparse) 2-2288
luinc 2-2066

M
M-file

debugging 2-1880
displaying during execution 2-955
function 2-1328
function file, echoing 2-955
naming conventions 2-1328
pausing execution of 2-2436
programming 2-1328
script 2-1328
script file, echoing 2-955

M-files
checking existence of 2-1041
checking for problems 2-2189
clearing from workspace 2-556
creating

in MATLAB directory 2-2430
cyclomatic complexity of 2-2189
debugging with profile 2-2570
deleting 2-873
editing 2-959

line numbers, listing 2-804
lint tool 2-2189
listing names of in a directory 2-3718
locking (preventing clearing) 2-2200
McCabe complexity of 2-2189
opening 2-2340
optimizing 2-2570
problems, checking for 2-2189
save to HTML 2-2583
setting breakpoints 2-794
unlocking (allowing clearing) 2-2246

M-Lint
function 2-2189
function for entire directory 2-2196
HTML report 2-2196

machine epsilon 2-3727
magic 2-2073
magic squares 2-2073
Margin

annotation textbox property 2-189
text object 2-3328

Marker
Line property 2-1965
lineseries property 2-1979
marker property 2-1015
Patch property 2-2422
quivergroup property 2-2653
scatter property 2-2862
stairseries property 2-3032
stem property 2-3067
Surface property 2-3217
surfaceplot property 2-3241

MarkerEdgeColor
errorbar property 2-1015
Line property 2-1966
lineseries property 2-1980
Patch property 2-2423
quivergroup property 2-2654
scatter property 2-2862
stairseries property 2-3033

Index-34

Index

stem property 2-3068
Surface property 2-3218
surfaceplot property 2-3242

MarkerFaceColor
errorbar property 2-1016
Line property 2-1966
lineseries property 2-1980
Patch property 2-2424
quivergroup property 2-2654
scatter property 2-2863
stairseries property 2-3033
stem property 2-3068
Surface property 2-3218
surfaceplot property 2-3242

MarkerSize
errorbar property 2-1016
Line property 2-1967
lineseries property 2-1981
Patch property 2-2424
quivergroup property 2-2655
stairseries property 2-3034
stem property 2-3068
Surface property 2-3219
surfaceplot property 2-3243

mass matrix (ODE) 2-2332
initial slope 2-2333 to 2-2334
singular 2-2333
sparsity pattern 2-2333
specifying 2-2333
state dependence 2-2333

MAT-file 2-2827
converting sparse matrix after loading

from 2-2959
MAT-files 2-2010

listing for directory 2-3718
mat2cell 2-2078
mat2str 2-2081
material 2-2083
MATLAB

directory location 2-2092

installation directory 2-2092
quitting 2-2633
startup 2-2090
version number, comparing 2-3659
version number, displaying 2-3653

matlab : function 2-2085
matlab (UNIX command) 2-2094
matlab (Windows command) 2-2107
matlab function for UNIX 2-2094
matlab function for Windows 2-2107
MATLAB startup file 2-3042
matlab.mat 2-2010 2-2827
matlabcolon function 2-2085
matlabrc 2-2090
matlabroot 2-2092
$matlabroot 2-2092
matrices

preallocation 2-3779
matrix 2-37

addressing selected rows and columns
of 2-59

arrowhead 2-609
companion 2-617
complex unitary 2-2603
condition number of 2-624 2-2684
condition number, improving 2-317
converting to formatted data file 2-1278
converting to from string 2-3012
converting to vector 2-59
decomposition 2-2603
defective (defined) 2-963
detecting sparse 2-1848
determinant of 2-897
diagonal of 2-903
Dulmage-Mendelsohn decomposition 2-937
evaluating functions of 2-1337
exponential 2-1048
flipping left-right 2-1239
flipping up-down 2-1240
Hadamard 2-1491 2-3173

Index-35

Index

Hankel 2-1492
Hermitian Toeplitz 2-3388
Hessenberg form of 2-1538
Hilbert 2-1582
identity 2-1053
inverse 2-1767
inverse Hilbert 2-1770
inversion, accuracy of 2-624
involutary 2-2394
left division (arithmetic operator) 2-38
lower triangular 2-3398
magic squares 2-2073 2-3181
maximum size of 2-622
modal 2-961
multiplication (defined) 2-38
orthonormal 2-2603
Pascal 2-2394 2-2528
permutation 2-2058 2-2603
poorly conditioned 2-1582
power (arithmetic operator) 2-39
pseudoinverse 2-2482
reading files into 2-929
reduced row echelon form of 2-2822
replicating 2-2760
right division (arithmetic operator) 2-38
rotating 90\xfb 2-2811
Schur form of 2-2824 2-2869
singularity, test for 2-897
sorting rows of 2-2950
sparse. See sparse matrix
specialized 2-1354
square root of 2-3006
subspaces of 2-3173
test 2-1354
Toeplitz 2-3388
trace of 2-903 2-3390
transpose (arithmetic operator) 2-39
transposing 2-56
unimodular 2-1382
unitary 2-3257

upper triangular 2-3405
Vandermonde 2-2523
Wilkinson 2-2965 2-3738
writing as binary data 2-1342
writing formatted data to 2-1308
writing to ASCII delimited file 2-933
writing to spreadsheet 2-3745
See also array

Matrix
hgtransform property 2-1578

matrix functions
evaluating 2-1337

matrix names, (M1 through M12) generating a
sequence of 2-1029

matrix power. See matrix, exponential
max 2-2112
max (timeseries) 2-2113
Max, Uicontrol property 2-3480
MaxHeadSize

quivergroup property 2-2655
maximum matching 2-937
MDL-files

checking existence of 2-1041
mean 2-2118
mean (timeseries) 2-2119
median 2-2121
median (timeseries) 2-2122
median value of array elements 2-2121
memmapfile 2-2124
memory 2-2130

clearing 2-556
minimizing use of 2-2374
variables in 2-3731

menu (of user input choices) 2-2138
menu function 2-2138
MenuBar, Figure property 2-1153
mesh plot

tetrahedron 2-3298
mesh size (BVP) 2-439
meshc 1-97 2-2140

Index-36

Index

meshgrid 2-2145
MeshStyle, Surface property 2-3219
MeshStyle, surfaceplot property 2-3243
meshz 1-97 2-2140
message

error See error message 2-3695
warning See warning message 2-3695

methods 2-2147
inheritance of 2-554
locating 2-3722

methodsview 2-2149
mex 2-2151
mex build script

switches 2-2152
-ada <sfcn.ads> 2-2153
-<arch> 2-2152
-argcheck 2-2153
-c 2-2153
-compatibleArrayDims 2-2153
-cxx 2-2153
-D<name> 2-2153
-D<name>=<value> 2-2154
-f <optionsfile> 2-2154
-fortran 2-2154
-g 2-2154
-h[elp] 2-2154
-I<pathname> 2-2154
-inline 2-2154
-L<directory> 2-2155
-l<name> 2-2154
-largeArrayDims 2-2155
-n 2-2155
<name>=<value> 2-2156
-O 2-2155
-outdir <dirname> 2-2155
-output <resultname> 2-2155
@<rsp_file> 2-2152
-setup 2-2155
-U<name> 2-2156
-v 2-2156

MEX-files
clearing from workspace 2-556
debugging on UNIX 2-785
listing for directory 2-3718

MException
constructor 2-995 2-2131
methods

addCause 2-100
disp 2-920
eq 2-995
getReport 2-1431
isequal 2-1793
last 2-1883
ne 2-2265
rethrow 2-2778
throw 2-3365
throwAsCaller 2-3368

mexext 2-2158
mfilename 2-2159
mget function 2-2160
Microsoft Excel files

loading 2-3756
min 2-2161
min (timeseries) 2-2162
Min, Uicontrol property 2-3480
MinColormap, Figure property 2-1153
minimum degree ordering 2-3279
MinorGridLineStyle, Axes property 2-296
minres 2-2166
minus (M-file function equivalent for -) 2-42
mislocked 2-2171
mkdir 2-2172
mkdir (ftp) 2-2175
mkpp 2-2176
mldivide (M-file function equivalent for \) 2-42
mlint 2-2189
mlintrpt 2-2196

suppressing messages 2-2199
mlock 2-2200
mmfileinfo 2-2201

Index-37

Index

mmreader 2-2204
mod 2-2208
modal matrix 2-961
mode 2-2210
mode objects

pan, using 2-2379
rotate3d, using 2-2815
zoom, using 2-3784

models
opening 2-2340
saving 2-2838

modification date
of a file 2-911

modified Bessel functions
relationship to Airy functions 2-128

modulo arithmetic 2-2208
MonitorPosition

Root property 2-2799
Moore-Penrose pseudoinverse 2-2482
more 2-2213 2-2234
move 2-2215
movefile 2-2217
movegui function 2-2220
movie 2-2222
movie2avi 2-2225
movies

exporting in AVI format 2-260
mpower (M-file function equivalent for ^) 2-43
mput function 2-2227
mrdivide (M-file function equivalent for /) 2-42
msgbox 2-2228
mtimes 2-2230
mtimes (M-file function equivalent for *) 2-42
mu-law encoded audio signals 2-1948 2-2234
multibandread 2-2235
multibandwrite 2-2240
multidimensional arrays 2-1917

concatenating 2-474
interpolation of 2-1753
longest dimension of 2-1917

number of dimensions of 2-2262
rearranging dimensions of 2-1774 2-2473
removing singleton dimensions of 2-3009
reshaping 2-2769
size of 2-2932
sorting elements of 2-2946
See also array

multiple
least common 2-1894

multiplication
array (arithmetic operator) 2-38
matrix (defined) 2-38
of polynomials 2-676

multistep ODE solver 2-2308
munlock 2-2246

N
Name, Figure property 2-1154
namelengthmax 2-2248
naming conventions

M-file 2-1328
NaN 2-2249
NaN (Not-a-Number) 2-2249

returned by rem 2-2756
nargchk 2-2251
nargoutchk 2-2255
native2unicode 2-2257
ndgrid 2-2260
ndims 2-2262
ne 2-2263
ne, MException method 2-2265
nearest neighbor interpolation 2-1465 2-1736

2-1746 2-1750 2-1753
newplot 2-2266
NextPlot

Axes property 2-296
Figure property 2-1154

nextpow2 2-2269
nnz 2-2270

Index-38

Index

no derivative method 2-1254
noncontiguous fields, inserting data into 2-1342
nonzero entries

specifying maximum number of in sparse
matrix 2-2956

nonzero entries (in sparse matrix)
allocated storage for 2-2288
number of 2-2270
replacing with ones 2-2986
vector of 2-2272

nonzeros 2-2272
norm 2-2273

1-norm 2-2273 2-2684
2-norm (estimate of) 2-2275
F-norm 2-2273
infinity 2-2273
matrix 2-2273
pseudoinverse and 2-2482 2-2484
vector 2-2273

normal vectors, computing for volumes 2-1828
NormalMode

Patch property 2-2424
Surface property 2-3219
surfaceplot property 2-3243

normest 2-2275
not 2-2276
not (M-file function equivalent for ~) 2-50
notebook 2-2277
now 2-2278
nthroot 2-2279
null 2-2280
null space 2-2280
num2cell 2-2282
num2hex 2-2283
num2str 2-2284
number

of array dimensions 2-2262
numbers

imaginary 2-1625
NaN 2-2249

plus infinity 2-1694
prime 2-2539
random 2-2667 2-2672
real 2-2690
smallest positive 2-2693

NumberTitle, Figure property 2-1155
numel 2-2286
numeric format 2-1265
numeric precision

format reading binary data 2-1292
numerical differentiation formula ODE

solvers 2-2309
numerical evaluation

double integral 2-783
triple integral 2-3400

nzmax 2-2288

O
object

determining class of 2-1779
inheritance 2-554

object classes, list of predefined 2-553 2-1779
objects

Java 2-1809
ODE file template 2-2312
ODE solver properties

error tolerance 2-2319
event location 2-2326
Jacobian matrix 2-2328
mass matrix 2-2332
ode15s 2-2334
solver output 2-2321
step size 2-2325

ODE solvers
backward differentiation formulas 2-2334
numerical differentiation formulas 2-2334
obtaining solutions at specific times 2-2296
variable order solver 2-2334

ode15i function 2-2289

Index-39

Index

odefile 2-2311
odeget 2-2317
odephas2 output function 2-2323
odephas3 output function 2-2323
odeplot output function 2-2323
odeprint output function 2-2323
odeset 2-2318
odextend 2-2336
off-screen figures, displaying 2-1220
OffCallback

Uitoggletool property 2-3585
%#ok 2-2191
OnCallback

Uitoggletool property 2-3586
one-step ODE solver 2-2308
ones 2-2339
online documentation, displaying 2-1532
online help 2-1527
open 2-2340
openfig 2-2344
OpenGL 2-1161

autoselection criteria 2-1165
opening

files in Windows applications 2-3739
opening files 2-1257
openvar 2-2351
operating system

MATLAB is running on 2-622
operating system command 1-4 1-11 2-3288
operating system command, issuing 2-58
operators

arithmetic 2-37
logical 2-49 2-52
overloading arithmetic 2-43
overloading relational 2-47
relational 2-47 2-2030
symbols 2-1527

optimget 2-2353
optimization parameters structure 2-2353 to

2-2354

optimizing M-file execution 2-2570
optimset 2-2354
or 2-2358
or (M-file function equivalent for |) 2-50
ordeig 2-2360
orderfields 2-2363
ordering

minimum degree 2-3279
reverse Cuthill-McKee 2-3269 2-3280

ordqz 2-2366
ordschur 2-2368
orient 2-2370
orth 2-2372
orthogonal-triangular decomposition 2-2603
orthographic projection, setting and

querying 2-460
orthonormal matrix 2-2603
otherwise 2-2373
Out of memory (error message) 2-2374
OuterPosition

Axes property 2-296
output

checking number of M-file arguments 2-2255
controlling display format 2-1265
in Command Window 2-2213
number of M-file arguments 2-2253

output points (ODE)
increasing number of 2-2321

output properties (DDE) 2-831
output properties (ODE) 2-2321

increasing number of output points 2-2321
overdetermined equation systems,

solving 2-2605 to 2-2606
overflow 2-1694
overloading

arithmetic operators 2-43
relational operators 2-47
special characters 2-58

Index-40

Index

P
P-files

checking existence of 2-1041
pack 2-2374
padecoef 2-2376
pagesetupdlg 2-2377
paging

of screen 2-1529
paging in the Command Window 2-2213
pan mode objects 2-2379
PaperOrientation, Figure property 2-1155
PaperPosition, Figure property 2-1155
PaperPositionMode, Figure property 2-1156
PaperSize, Figure property 2-1156
PaperType, Figure property 2-1156
PaperUnits, Figure property 2-1158
parametric curve, plotting 2-1074
Parent

areaseries property 2-214
Axes property 2-298
barseries property 2-344
contour property 2-662
errorbar property 2-1016
Figure property 2-1158
hggroup property 2-1556
hgtransform property 2-1578
Image property 2-1645
Light property 2-1943
Line property 2-1967
lineseries property 2-1981
Patch property 2-2424
quivergroup property 2-2655
rectangle property 2-2713
Root property 2-2800
scatter property 2-2863
stairseries property 2-3034
stem property 2-3068
Surface property 2-3220
surfaceplot property 2-3244
Text property 2-3329

Uicontextmenu property 2-3457
Uicontrol property 2-3481
Uimenu property 2-3521
Uipushtool property 2-3554
Uitoggletool property 2-3586
Uitoolbar property 2-3597

parentheses (special characters) 2-56
parse

inputParser object 2-2388
parseSoapResponse 2-2391
partial fraction expansion 2-2771
partialpath 2-2392
pascal 2-2394
Pascal matrix 2-2394 2-2528
patch 2-2395
Patch

converting a surface to 1-103 2-3194
creating 2-2395
defining default properties 2-2401
properties 2-2403
reducing number of faces 1-102 2-2719
reducing size of face 1-102 2-2921

path 2-2429
adding directories to 2-114
building from parts 2-1325
current 2-2429
removing directories from 2-2792
viewing 2-2434

path2rc 2-2431
pathdef 2-2432
pathname

partial 2-2392
toolbox directory 1-8 2-3389

pathnames
of functions or files 2-3722
relative 2-2392

pathsep 2-2433
pathtool 2-2434
pause 2-2436
pauses, removing 2-778

Index-41

Index

pausing M-file execution 2-2436
pbaspect 2-2437
PBM

parameters that can be set when
writing 2-1680

PBM files
writing 2-1676

pcg 2-2443
pchip 2-2447
pcode 2-2450
pcolor 2-2451
PCX files

writing 2-1677
PDE. See Partial Differential Equations
pdepe 2-2455
pdeval 2-2467
percent sign (special characters) 2-57
percent-brace (special characters) 2-57
perfect matching 2-937
period (.), to distinguish matrix and array

operations 2-37
period (special characters) 2-56
perl 2-2470
perl function 2-2470
Perl scripts in MATLAB 1-4 1-11 2-2470
perms 2-2472
permutation

matrix 2-2058 2-2603
of array dimensions 2-2473
random 2-2676

permutations of n elements 2-2472
permute 2-2473
persistent 2-2474
persistent variable 2-2474
perspective projection, setting and

querying 2-460
PGM

parameters that can be set when
writing 2-1680

PGM files

writing 2-1677
phase angle, complex 2-149
phase, complex

correcting angles 2-3618
pi 2-2477
pie 2-2478
pie3 2-2480
pinv 2-2482
planerot 2-2485
platform MATLAB is running on 2-622
playshow function 2-2486
plot 2-2487

editing 2-2499
plot (timeseries) 2-2494
plot box aspect ratio of axes 2-2437
plot editing mode

overview 2-2500
Plot Editor

interface 2-2500 2-2577
plot, volumetric

generating grid arrays for 2-2145
slice plot 1-91 1-102 2-2938

PlotBoxAspectRatio, Axes property 2-298
PlotBoxAspectRatioMode, Axes property 2-299
plotedit 2-2499
plotting

2-D plot 2-2487
3-D plot 1-86 2-2495
contours (a 2-1054
contours (ez function) 2-1054
ez-function mesh plot 2-1062
feather plots 2-1094
filled contours 2-1058
function plots 2-1273
functions with discontinuities 2-1082
histogram plots 2-1583
in polar coordinates 2-1077
isosurfaces 2-1831
loglog plot 2-2032
mathematical function 2-1070

Index-42

Index

mesh contour plot 2-1066
mesh plot 1-97 2-2140
parametric curve 2-1074
plot with two y-axes 2-2506
ribbon plot 1-91 2-2784
rose plot 1-90 2-2807
scatter plot 2-2502
scatter plot, 3-D 1-91 2-2848
semilogarithmic plot 1-87 2-2879
stem plot, 3-D 1-89 2-3053
surface plot 1-97 2-3188
surfaces 1-90 2-1080
velocity vectors 2-628
volumetric slice plot 1-91 1-102 2-2938
. See visualizing

plus (M-file function equivalent for +) 2-42
PNG

writing options for 2-1682
alpha 2-1682
background color 2-1682
chromaticities 2-1683
gamma 2-1683
interlace type 2-1683
resolution 2-1684
significant bits 2-1683
transparency 2-1684

PNG files
writing 2-1677

PNM files
writing 2-1677

Pointer, Figure property 2-1158
PointerLocation, Root property 2-2800
PointerShapeCData, Figure property 2-1159
PointerShapeHotSpot, Figure property 2-1159
PointerWindow, Root property 2-2801
pol2cart 2-2509
polar 2-2511
polar coordinates 2-2509

computing the angle 2-149
converting from Cartesian 2-469

converting to cylindrical or Cartesian 2-2509
plotting in 2-1077

poles of transfer function 2-2771
poly 2-2513
polyarea 2-2516
polyder 2-2518
polyeig 2-2519
polyfit 2-2521
polygamma function 2-2580
polygon

area of 2-2516
creating with patch 2-2395
detecting points inside 2-1703

polyint 2-2525
polynomial

analytic integration 2-2525
characteristic 2-2513 to 2-2514 2-2805
coefficients (transfer function) 2-2771
curve fitting with 2-2521
derivative of 2-2518
division 2-853
eigenvalue problem 2-2519
evaluation 2-2526
evaluation (matrix sense) 2-2528
make piecewise 2-2176
multiplication 2-676

polyval 2-2526
polyvalm 2-2528
poorly conditioned

matrix 2-1582
poorly conditioned eigenvalues 2-317
pop-up menus 2-3461

defining choices 2-3484
Portable Anymap files

writing 2-1677
Portable Bitmap (PBM) files

writing 2-1676
Portable Graymap files

writing 2-1677
Portable Network Graphics files

Index-43

Index

writing 2-1677
Portable pixmap format

writing 2-1677
Position

annotation ellipse property 2-164
annotation line property 2-167
annotation rectangle property 2-171
arrow property 2-156
Axes property 2-299
doubletarrow property 2-161
Figure property 2-1159
Light property 2-1943
Text property 2-3329
textarrow property 2-177
textbox property 2-189
Uicontextmenu property 2-3457
Uicontrol property 2-3481
Uimenu property 2-3521

position indicator in file 2-1321
position of camera

dollying 2-447
position of camera, setting and querying 2-458
Position, rectangle property 2-2714
PostScript

default printer 2-2546
levels 1 and 2 2-2546
printing interpolated shading 2-2554

pow2 2-2530
power 2-2531

matrix. See matrix exponential
of real numbers 2-2694
of two, next 2-2269

power (M-file function equivalent for .^) 2-43
PPM

parameters that can be set when
writing 2-1680

PPM files
writing 2-1677

ppval 2-2532
pragma

%#ok 2-2191
preallocation

matrix 2-3779
precision 2-1265

reading binary data writing 2-1292
prefdir 2-2534
preferences 2-2538

opening the dialog box 2-2538
prime factors 2-1088

dependence of Fourier transform on 2-1108
2-1110 to 2-1111

prime numbers 2-2539
primes 2-2539
print frames 2-1289
printdlg 1-92 1-104 2-2559
printdlg function 2-2559
printer

default for linux and unix 2-2546
printer drivers

GhostScript drivers 2-2542
interploated shading 2-2554
MATLAB printer drivers 2-2542

printframe 2-1289
PrintFrame Editor 2-1289
printing

borders 2-1289
fig files with frames 2-1289
GUIs 2-2553
interpolated shading 2-2554
on MS-Windows 2-2553
with a variable filename 2-2556
with nodisplay 2-2549
with noFigureWindows 2-2549
with non-normal EraseMode 2-1963 2-2415

2-2711 2-3213 2-3318
with print frames 2-1291

printing figures
preview 1-93 1-104 2-2560

printing tips 2-2552
printing, suppressing 2-57

Index-44

Index

printpreview 1-93 1-104 2-2560
prod 2-2568
product

cumulative 2-731
Kronecker tensor 2-1881
of array elements 2-2568
of vectors (cross) 2-718
scalar (dot) 2-718

profile 2-2570
profsave 2-2576
projection type, setting and querying 2-460
ProjectionType, Axes property 2-300
prompting users for input 2-1705 2-2138
propedit 2-2577 to 2-2578
proppanel 1-87 2-2579
pseudoinverse 2-2482
psi 2-2580
publish function 2-2582
push buttons 2-3461
PutFullMatrix 2-2589
pwd 2-2596

Q
qmr 2-2597
qr 2-2603
QR decomposition 2-2603

deleting column from 2-2608
qrdelete 2-2608
qrinsert 2-2610
qrupdate 2-2612
quad 2-2615
quadgk 2-2619
quadl 2-2625
quadrature 2-2615 2-2619
quadv 2-2628
questdlg 1-104 2-2631
questdlg function 2-2631
quit 2-2633
quitting MATLAB 2-2633

quiver 2-2636
quiver3 2-2640
quotation mark

inserting in a string 2-1283
qz 2-2664
QZ factorization 2-2520 2-2664

R
radio buttons 2-3461
rand 2-2667
randn 2-2672
random

numbers 2-2667 2-2672
permutation 2-2676
sparse matrix 2-2992 to 2-2993
symmetric sparse matrix 2-2994

randperm 2-2676
range space 2-2372
rank 2-2677
rank of a matrix 2-2677
RAS files

parameters that can be set when
writing 2-1685

writing 2-1677
RAS image format

specifying color order 2-1685
writing alpha data 2-1685

Raster image files
writing 2-1677

rational fraction approximation 2-2678
rbbox 1-101 2-2682 2-2726
rcond 2-2684
rdivide (M-file function equivalent for ./) 2-42
read 2-2685
readasync 2-2687
reading

binary files 2-1292
data from files 2-3338
formatted data from file 2-1308

Index-45

Index

formatted data from strings 2-3012
readme files, displaying 1-5 2-1786 2-3721
real 2-2690
real numbers 2-2690
reallog 2-2691
realmax 2-2692
realmin 2-2693
realpow 2-2694
realsqrt 2-2695
rearranging arrays

converting to vector 2-59
removing first n singleton dimensions 2-2918
removing singleton dimensions 2-3009
reshaping 2-2769
shifting dimensions 2-2918
swapping dimensions 2-1774 2-2473

rearranging matrices
converting to vector 2-59
flipping left-right 2-1239
flipping up-down 2-1240
rotating 90\xfb 2-2811
transposing 2-56

record 2-2696
rectangle

properties 2-2703
rectangle function 2-2698

rectint 2-2716
RecursionLimit

Root property 2-2801
recycle 2-2717
reduced row echelon form 2-2822
reducepatch 2-2719
reducevolume 2-2723
reference page

accessing from doc 2-940
refresh 2-2726
regexprep 2-2742
regexptranslate 2-2746
registerevent 2-2749
regression

linear 2-2521
regularly spaced vectors, creating 2-59 2-2004
rehash 2-2752
relational operators 2-47 2-2030
relative accuracy

BVP 2-435
DDE 2-830
norm of DDE solution 2-830
norm of ODE solution 2-2320
ODE 2-2320

release 2-2754
rem 2-2756
removets 2-2757
rename function 2-2759
renderer

OpenGL 2-1161
painters 2-1160
zbuffer 2-1160

Renderer, Figure property 2-1160
RendererMode, Figure property 2-1164
repeatedly executing statements 2-1262 2-3725
replicating a matrix 2-2760
repmat 2-2760
resample (timeseries) 2-2762
resample (tscollection) 2-2765
reset 2-2768
reshape 2-2769
residue 2-2771
residues of transfer function 2-2771
Resize, Figure property 2-1165
ResizeFcn, Figure property 2-1166
restoredefaultpath 2-2775
rethrow 2-2776
rethrow, MException method 2-2778
return 2-2780
reverse Cuthill-McKee ordering 2-3269 2-3280
rewinding files to beginning of 2-1307 2-1660
RGB, converting to HSV 1-98 2-2781
rgb2hsv 2-2781
rgbplot 2-2782

Index-46

Index

ribbon 2-2784
right-click and context menus 2-3449
rmappdata function 2-2786
rmdir 2-2787
rmdir (ftp) function 2-2790
rmfield 2-2791
rmpath 2-2792
rmpref function 2-2793
RMS. See root-mean-square
rolling camera 2-461
root 1-94 2-2794
root directory 2-2092
root directory for MATLAB 2-2092
Root graphics object 1-94 2-2794
root object 2-2794
root, see rootobject 1-94 2-2794
root-mean-square

of vector 2-2273
roots 2-2805
roots of a polynomial 2-2513 to 2-2514 2-2805
rose 2-2807
Rosenbrock

banana function 2-1252
ODE solver 2-2309

rosser 2-2810
rot90 2-2811
rotate 2-2812
rotate3d 2-2815
rotate3d mode objects 2-2815
rotating camera 2-455
rotating camera target 1-99 2-457
Rotation, Text property 2-3329
rotations

Jacobi 2-2994
round 2-2821

to nearest integer 2-2821
towards infinity 2-501
towards minus infinity 2-1242
towards zero 2-1237

roundoff error

characteristic polynomial and 2-2514
convolution theorem and 2-676
effect on eigenvalues 2-317
evaluating matrix functions 2-1339
in inverse Hilbert matrix 2-1770
partial fraction expansion and 2-2772
polynomial roots and 2-2805
sparse matrix conversion and 2-2960

rref 2-2822
rrefmovie 2-2822
rsf2csf 2-2824
rubberband box 1-101 2-2682
run 2-2826
Runge-Kutta ODE solvers 2-2308
running average 2-1207

S
save 2-2827 2-2835

serial port I/O 2-2836
saveas 2-2838
saveobj 2-2842
savepath 2-2844
saving

ASCII data 2-2827
session to a file 2-906
workspace variables 2-2827

scalar product (of vectors) 2-718
scaled complementary error function

(defined) 2-996
scatter 2-2845
scatter3 2-2848
scattered data, aligning

multi-dimensional 2-2260
two-dimensional 2-1465

scattergroup
properties 2-2851

Schmidt semi-normalized Legendre
functions 2-1913

schur 2-2869

Index-47

Index

Schur decomposition 2-2869
Schur form of matrix 2-2824 2-2869
screen, paging 2-1529
ScreenDepth, Root property 2-2801
ScreenPixelsPerInch, Root property 2-2802
ScreenSize, Root property 2-2802
script 2-2872
scrolling screen 2-1529
search path 2-2792

adding directories to 2-114
MATLAB’s 2-2429
modifying 2-2434
viewing 2-2434

search, string 2-1224
sec 2-2873
secant 2-2873

hyperbolic 2-2876
inverse 2-226
inverse hyperbolic 2-229

secd 2-2875
sech 2-2876
Selected

areaseries property 2-214
Axes property 2-300
barseries property 2-344
contour property 2-663
errorbar property 2-1016
Figure property 2-1167
hggroup property 2-1556
hgtransform property 2-1578
Image property 2-1646
Light property 2-1944
Line property 2-1967
lineseries property 2-1981
Patch property 2-2425
quivergroup property 2-2655
rectangle property 2-2714
Root property 2-2803
scatter property 2-2863
stairseries property 2-3034

stem property 2-3069
Surface property 2-3220
surfaceplot property 2-3244
Text property 2-3330
Uicontrol property 2-3482

selecting areas 1-101 2-2682
SelectionHighlight

areaseries property 2-214
Axes property 2-300
barseries property 2-344
contour property 2-663
errorbar property 2-1017
Figure property 2-1167
hggroup property 2-1556
hgtransform property 2-1578
Image property 2-1646
Light property 2-1944
Line property 2-1967
lineseries property 2-1981
Patch property 2-2425
quivergroup property 2-2656
rectangle property 2-2714
scatter property 2-2863
stairseries property 2-3034
stem property 2-3069
Surface property 2-3220
surfaceplot property 2-3244
Text property 2-3330
Uicontrol property 2-3483

SelectionType, Figure property 2-1167
selectmoveresize 2-2878
semicolon (special characters) 2-57
sendmail 2-2882
Separator

Uipushtool property 2-3555
Uitoggletool property 2-3586

Separator, Uimenu property 2-3521
sequence of matrix names (M1 through M12)

generating 2-1029
serial 2-2884

Index-48

Index

serialbreak 2-2886
server (FTP)

connecting to 2-1322
server variable 2-1100
session

saving 2-906
set 1-113 2-2887 2-2891

serial port I/O 2-2892
timer object 2-2895

set (timeseries) 2-2898
set (tscollection) 2-2899
set operations

difference 2-2903
exclusive or 2-2915
intersection 2-1760
membership 2-1815
union 2-3601
unique 2-3603

setabstime (timeseries) 2-2900
setabstime (tscollection) 2-2901
setappdata 2-2902
setdiff 2-2903
setenv 2-2904
setfield 2-2905
setinterpmethod 2-2907
setpixelposition 2-2909
setpref function 2-2912
setstr 2-2913
settimeseriesnames 2-2914
setxor 2-2915
shading 2-2916
shading colors in surface plots 1-98 2-2916
shared libraries

MATLAB functions
calllib 2-444
libfunctions 2-1921
libfunctionsview 2-1923
libisloaded 2-1925
libpointer 2-1927
libstruct 2-1929
loadlibrary 2-2018
unloadlibrary 2-3607

shell script 1-4 1-11 2-3288 2-3605
shiftdim 2-2918
shifting array

circular 2-545
ShowArrowHead

quivergroup property 2-2656
ShowBaseLine

barseries property 2-344
ShowHiddenHandles, Root property 2-2803
showplottool 2-2919
ShowText

contour property 2-663
shrinkfaces 2-2921
shutdown 2-2633
sign 2-2925
signum function 2-2925
simplex search 2-1254
Simpson’s rule, adaptive recursive 2-2617
Simulink

printing diagram with frames 2-1289
version number, comparing 2-3659
version number, displaying 2-3653

sin 2-2926
sind 2-2928
sine 2-2926

hyperbolic 2-2930
inverse 2-231
inverse hyperbolic 2-234

single 2-2929
single quote (special characters) 2-56
singular value

Index-49

Index

decomposition 2-2677 2-3257
largest 2-2273
rank and 2-2677

sinh 2-2930
size

array dimesions 2-2932
serial port I/O 2-2935

size (timeseries) 2-2936
size (tscollection) 2-2937
size of array dimensions 2-2932
size of fonts, see also FontSize property 2-3332
size vector 2-2769
SizeData

scatter property 2-2864
skipping bytes (during file I/O) 2-1342
slice 2-2938
slice planes, contouring 2-671
sliders 2-3462
SliderStep, Uicontrol property 2-3483
smallest array elements 2-2161
smooth3 2-2944
smoothing 3-D data 1-102 2-2944
soccer ball (example) 2-3280
solution statistics (BVP) 2-440
sort 2-2946
sorting

array elements 2-2946
complex conjugate pairs 2-711
matrix rows 2-2950

sortrows 2-2950
sound 2-2953 to 2-2954

converting vector into 2-2953 to 2-2954
files

reading 2-258 2-3706
writing 2-259 2-3711

playing 1-83 2-3704
recording 1-83 2-3709
resampling 1-83 2-3704
sampling 1-83 2-3709

source control on UNIX platforms

checking out files
function 2-527

source control system
viewing current system 2-570

source control systems
checking in files 2-524
undo checkout 1-10 2-3599

spalloc 2-2955
sparse 2-2956
sparse matrix

allocating space for 2-2955
applying function only to nonzero elements

of 2-2973
density of 2-2270
detecting 2-1848
diagonal 2-2961
finding indices of nonzero elements of 2-1214
identity 2-2972
minimum degree ordering of 2-576
number of nonzero elements in 2-2270
permuting columns of 2-609
random 2-2992 to 2-2993
random symmetric 2-2994
replacing nonzero elements of with

ones 2-2986
results of mixed operations on 2-2957
solving least squares linear system 2-2604
specifying maximum number of nonzero

elements 2-2956
vector of nonzero elements 2-2272
visualizing sparsity pattern of 2-3003

sparse storage
criterion for using 2-1324

spaugment 2-2958
spconvert 2-2959
spdiags 2-2961
special characters

descriptions 2-1527
overloading 2-58

specular 2-2971

Index-50

Index

SpecularColorReflectance
Patch property 2-2425
Surface property 2-3220
surfaceplot property 2-3244

SpecularExponent
Patch property 2-2426
Surface property 2-3221
surfaceplot property 2-3245

SpecularStrength
Patch property 2-2426
Surface property 2-3221
surfaceplot property 2-3245

speye 2-2972
spfun 2-2973
sph2cart 2-2975
sphere 2-2976
sphereical coordinates

defining a Light position in 2-1946
spherical coordinates 2-2975
spinmap 2-2978
spline 2-2979
spline interpolation (cubic)

one-dimensional 2-1737 2-1747 2-1750
2-1753

Spline Toolbox 2-1742
spones 2-2986
spparms 2-2987
sprand 2-2992
sprandn 2-2993
sprandsym 2-2994
sprank 2-2995
spreadsheets

loading WK1 files 2-3743
loading XLS files 2-3756
reading into a matrix 2-929
writing from matrix 2-3745
writing matrices into 2-933

sprintf 2-2996
sqrt 2-3005
sqrtm 2-3006

square root
of a matrix 2-3006
of array elements 2-3005
of real numbers 2-2695

squeeze 2-3009
sscanf 2-3012
stack, displaying 2-788
standard deviation 2-3043
start

timer object 2-3039
startat

timer object 2-3040
startup 2-3042
startup file 2-3042
startup files 2-2090
State

Uitoggletool property 2-3587
Stateflow

printing diagram with frames 2-1289
static text 2-3462
std 2-3043
std (timeseries) 2-3045
stem 2-3047
stem3 2-3053
step size (DDE)

initial step size 2-834
upper bound 2-835

step size (ODE) 2-833 2-2325
initial step size 2-2325
upper bound 2-2325

stop
timer object 2-3075

stopasync 2-3076
stopwatch timer 2-3370
storage

allocated for nonzero entries (sparse) 2-2288
sparse 2-2956

storage allocation 2-3779
str2cell 2-517
str2double 2-3078

Index-51

Index

str2func 2-3079
str2mat 2-3081
str2num 2-3082
strcat 2-3084
stream lines

computing 2-D 1-102 2-3090
computing 3-D 1-102 2-3092
drawing 1-102 2-3094

stream2 2-3090
stream3 2-3092
stretch-to-fill 2-268
strfind 2-3122
string

comparing one to another 2-3086 2-3128
converting from vector to 2-523
converting matrix into 2-2081 2-2284
converting to lowercase 2-2041
converting to numeric array 2-3082
converting to uppercase 2-3625
dictionary sort of 2-2950
finding first token in 2-3140
searching and replacing 2-3139
searching for 2-1224

String
Text property 2-3330
textarrow property 2-177
textbox property 2-189
Uicontrol property 2-3484

string matrix to cell array conversion 2-517
strings 2-3124

converting to matrix (formatted) 2-3012
inserting a quotation mark in 2-1283
writing data to 2-2996

strjust 1-52 1-64 2-3126
strmatch 2-3127
strread 2-3131
strrep 1-52 1-64 2-3139
strtok 2-3140
strtrim 2-3143
struct 2-3144

struct2cell 2-3149
structfun 2-3150
structure array

getting contents of field of 2-1417
remove field from 2-2791
setting contents of a field of 2-2905

structure arrays
field names of 2-1128

structures
dynamic fields 2-57

strvcat 2-3153
Style

Light property 2-1944
Uicontrol property 2-3486

sub2ind 2-3155
subfunction 2-1328
subplot 2-3157
subplots

assymetrical 2-3162
suppressing ticks in 2-3165

subsasgn 1-55 2-3170
subscripts

in axis title 2-3386
in text strings 2-3334

subsindex 2-3172
subspace 1-20 2-3173
subsref 1-55 2-3174
subsref (M-file function equivalent for

A(i,j,k...)) 2-58
substruct 2-3176
subtraction (arithmetic operator) 2-37
subvolume 2-3178
sum 2-3181

cumulative 2-733
of array elements 2-3181

sum (timeseries) 2-3184
superiorto 2-3186
superscripts

in axis title 2-3386
in text strings 2-3334

Index-52

Index

support 2-3187
surf2patch 2-3194
surface 2-3196
Surface

and contour plotter 2-1084
converting to a patch 1-103 2-3194
creating 1-94 1-97 2-3196
defining default properties 2-2702 2-3200
plotting mathematical functions 2-1080
properties 2-3201 2-3224

surface normals, computing for volumes 2-1828
surfl 2-3251
surfnorm 2-3255
svd 2-3257
svds 2-3260
swapbytes 2-3264
switch 2-3266
symamd 2-3268
symbfact 2-3272
symbols

operators 2-1527
symbols in text 2-177 2-189 2-3330
symmlq 2-3274
symmmd 2-3279
symrcm 2-3280
synchronize 2-3283
syntax 2-1528
syntax, command 2-3285
syntax, function 2-3285
syntaxes

of M-file functions, defining 2-1328
system 2-3288

UNC pathname error 2-3288
system directory, temporary 2-3296

T
table lookup. See interpolation
Tag

areaseries property 2-214

Axes property 2-300
barseries property 2-345
contour property 2-663
errorbar property 2-1017
Figure property 2-1168
hggroup property 2-1556
hgtransform property 2-1579
Image property 2-1646
Light property 2-1944
Line property 2-1968
lineseries property 2-1982
Patch property 2-2426
quivergroup property 2-2656
rectangle property 2-2714
Root property 2-2803
scatter property 2-2864
stairseries property 2-3035
stem property 2-3069
Surface property 2-3221
surfaceplot property 2-3245
Text property 2-3335
Uicontextmenu property 2-3457
Uicontrol property 2-3486
Uimenu property 2-3522
Uipushtool property 2-3555
Uitoggletool property 2-3587
Uitoolbar property 2-3597

Tagged Image File Format (TIFF)
writing 2-1678

tan 2-3290
tand 2-3292
tangent 2-3290

four-quadrant, inverse 2-242
hyperbolic 2-3293
inverse 2-240
inverse hyperbolic 2-245

tanh 2-3293
tar 2-3295
target, of camera 2-462
tcpip 2-3627

Index-53

Index

tempdir 2-3296
tempname 2-3297
temporary

files 2-3297
system directory 2-3296

tensor, Kronecker product 2-1881
terminating MATLAB 2-2633
test matrices 2-1354
test, logical. See logical tests and detecting
tetrahedron

mesh plot 2-3298
tetramesh 2-3298
TeX commands in text 2-177 2-189 2-3330
text 2-3303

editing 2-2499
subscripts 2-3334
superscripts 2-3334

Text
creating 1-94 2-3303
defining default properties 2-3307
fixed-width font 2-3319
properties 2-3308

text mode for opened files 2-1256
TextBackgroundColor

textarrow property 2-179
TextColor

textarrow property 2-179
TextEdgeColor

textarrow property 2-179
TextLineWidth

textarrow property 2-180
TextList

contour property 2-664
TextListMode

contour property 2-665
TextMargin

textarrow property 2-180
textread 1-78 2-3338
TextRotation, textarrow property 2-180
textscan 1-78 2-3344

TextStep
contour property 2-665

TextStepMode
contour property 2-665

textwrap 2-3364
throw, MException method 2-3365
throwAsCaller, MException method 2-3368
TickDir, Axes property 2-301
TickDirMode, Axes property 2-301
TickLength, Axes property 2-301
TIFF

compression 2-1685
encoding 2-1681
ImageDescription field 2-1685
maxvalue 2-1681
parameters that can be set when

writing 2-1685
resolution 2-1686
writemode 2-1686
writing 2-1678

TIFF image format
specifying compression 2-1685

tiling (copies of a matrix) 2-2760
time

CPU 2-712
elapsed (stopwatch timer) 2-3370
required to execute commands 2-1025

time and date functions 2-990
timer

properties 2-3371
timer object 2-3371

timerfind
timer object 2-3378

timerfindall
timer object 2-3380

times (M-file function equivalent for .*) 2-42
timeseries 2-3382
timestamp 2-911
title 2-3385

with superscript 2-3386

Index-54

Index

Title, Axes property 2-302
todatenum 2-3387
toeplitz 2-3388
Toeplitz matrix 2-3388
toggle buttons 2-3462
token 2-3140

See also string
Toolbar

Figure property 2-1169
Toolbox

Spline 2-1742
toolbox directory, pathname 1-8 2-3389
toolboxdir 2-3389
TooltipString

Uicontrol property 2-3486
Uipushtool property 2-3555
Uitoggletool property 2-3587

trace 2-3390
trace of a matrix 2-903 2-3390
trailing blanks

removing 2-845
transform

hgtransform function 2-1563
transform, Fourier

discrete, n-dimensional 2-1111
discrete, one-dimensional 2-1105
discrete, two-dimensional 2-1110
inverse, n-dimensional 2-1615
inverse, one-dimensional 2-1611
inverse, two-dimensional 2-1613
shifting the zero-frequency component

of 2-1114
transformation

See also conversion 2-487
transformations

elementary Hermite 2-1382
transmitting file to FTP server 1-85 2-2227
transpose

array (arithmetic operator) 2-39
matrix (arithmetic operator) 2-39

transpose (M-file function equivalent for
.\q) 2-43

transpose (timeseries) 2-3391
trapz 2-3393
treelayout 2-3395
treeplot 2-3396
triangulation

2-D plot 2-3402
tricubic interpolation 2-1465
tril 2-3398
trilinear interpolation 2-1465
trimesh 2-3399
triple integral

numerical evaluation 2-3400
triplequad 2-3400
triplot 2-3402
trisurf 2-3404
triu 2-3405
true 2-3406
truth tables (for logical operations) 2-49
try 2-3407
tscollection 2-3410
tsdata.event 2-3413
tsearch 2-3414
tsearchn 2-3415
tsprops 2-3416
tstool 2-3422
type 2-3423
Type

areaseries property 2-215
Axes property 2-303
barseries property 2-345
contour property 2-665
errorbar property 2-1017
Figure property 2-1169
hggroup property 2-1557
hgtransform property 2-1579
Image property 2-1647
Light property 2-1944
Line property 2-1968

Index-55

Index

lineseries property 2-1982
Patch property 2-2427
quivergroup property 2-2657
rectangle property 2-2715
Root property 2-2803
scatter property 2-2864
stairseries property 2-3035
stem property 2-3070
Surface property 2-3221
surfaceplot property 2-3246
Text property 2-3335
Uicontextmenu property 2-3458
Uicontrol property 2-3486
Uimenu property 2-3522
Uipushtool property 2-3555
Uitoggletool property 2-3587
Uitoolbar property 2-3597

typecast 2-3424

U
UData

errorbar property 2-1018
quivergroup property 2-2658

UDataSource
errorbar property 2-1018
quivergroup property 2-2658

Uibuttongroup
defining default properties 2-3432

uibuttongroup function 2-3428
Uibuttongroup Properties 2-3432
uicontextmenu 2-3449
UiContextMenu

Uicontrol property 2-3487
Uipushtool property 2-3555
Uitoggletool property 2-3588
Uitoolbar property 2-3598

UIContextMenu
areaseries property 2-215
Axes property 2-303

barseries property 2-345
contour property 2-666
errorbar property 2-1018
Figure property 2-1170
hggroup property 2-1557
hgtransform property 2-1579
Image property 2-1647
Light property 2-1945
Line property 2-1968
lineseries property 2-1982
Patch property 2-2427
quivergroup property 2-2657
rectangle property 2-2715
scatter property 2-2865
stairseries property 2-3036
stem property 2-3070
Surface property 2-3221
surfaceplot property 2-3246
Text property 2-3336

Uicontextmenu Properties 2-3451
uicontrol 2-3459
Uicontrol

defining default properties 2-3465
fixed-width font 2-3474
types of 2-3459

Uicontrol Properties 2-3465
uicontrols

printing 2-2553
uigetdir 2-3490
uigetfile 2-3495
uigetpref function 2-3505
uiimport 2-3509
uimenu 2-3510
Uimenu

creating 1-107 2-3510
defining default properties 2-3512
Properties 2-3512

Uimenu Properties 2-3512
uint16 2-3523
uint32 2-3523

Index-56

Index

uint64 2-3523
uint8 2-1732 2-3523
uiopen 2-3525
Uipanel

defining default properties 2-3529
uipanel function 2-3527
Uipanel Properties 2-3529
uipushtool 2-3545
Uipushtool

defining default properties 2-3547
Uipushtool Properties 2-3547
uiputfile 2-3557
uiresume 2-3566
uisave 2-3568
uisetcolor function 2-3571
uisetfont 2-3572
uisetpref function 2-3574
uistack 2-3575
uitoggletool 2-3576
Uitoggletool

defining default properties 2-3578
Uitoggletool Properties 2-3578
uitoolbar 2-3589
Uitoolbar

defining default properties 2-3591
Uitoolbar Properties 2-3591
uiwait 2-3566
uminus (M-file function equivalent for unary

\xd0) 2-42
UNC pathname error and dos 2-946
UNC pathname error and system 2-3288
unconstrained minimization 2-1250
undefined numerical results 2-2249
undocheckout 2-3599
unicode2native 2-3600
unimodular matrix 2-1382
union 2-3601
unique 2-3603
unitary matrix (complex) 2-2603
Units

annotation ellipse property 2-165
annotation rectangle property 2-171
arrow property 2-156
Axes property 2-303
doublearrow property 2-161
Figure property 2-1170
line property 2-167
Root property 2-2804
Text property 2-3335
textarrow property 2-180
textbox property 2-191
Uicontrol property 2-3487

unix 2-3605
UNIX

Web browser 2-942
unloadlibrary 2-3607
unlocking M-files 2-2246
unmkpp 2-3608
unregisterallevents 2-3609
unregisterevent 2-3612
untar 2-3616
unwrap 2-3618
unzip 2-3623
up vector, of camera 2-464
updating figure during M-file execution 2-951
uplus (M-file function equivalent for unary

+) 2-42
upper 2-3625
upper triangular matrix 2-3405
uppercase to lowercase 2-2041
url

opening in Web browser 1-5 1-8 2-3712
urlread 2-3626
urlwrite 2-3628
usejava 2-3630
UserData

areaseries property 2-216
Axes property 2-304
barseries property 2-346
contour property 2-666

Index-57

Index

errorbar property 2-1019
Figure property 2-1171
hggroup property 2-1557
hgtransform property 2-1580
Image property 2-1647
Light property 2-1945
Line property 2-1968
lineseries property 2-1983
Patch property 2-2427
quivergroup property 2-2657
rectangle property 2-2715
Root property 2-2804
scatter property 2-2865
stairseries property 2-3036
stem property 2-3070
Surface property 2-3222
surfaceplot property 2-3246
Text property 2-3336
Uicontextmenu property 2-3458
Uicontrol property 2-3487
Uimenu property 2-3522
Uipushtool property 2-3556
Uitoggletool property 2-3588
Uitoolbar property 2-3598

V
validateattributes 2-3632
validatestring 2-3639
Value, Uicontrol property 2-3488
vander 2-3645
Vandermonde matrix 2-2523
var 2-3646
var (timeseries) 2-3647
varargin 2-3649
varargout 2-3651
variable numbers of M-file arguments 2-3651
variable-order solver (ODE) 2-2334
variables

checking existence of 2-1041

clearing from workspace 2-556
global 2-1447
graphical representation of 2-3747
in workspace 2-3747
listing 2-3731
local 2-1328 2-1447
name of passed 2-1710
opening 2-2340 2-2351
persistent 2-2474
saving 2-2827
sizes of 2-3731

VData
quivergroup property 2-2658

VDataSource
quivergroup property 2-2659

vector
dot product 2-947
frequency 2-2038
length of 2-1917
product (cross) 2-718

vector field, plotting 2-628
vectorize 2-3652
vectorizing ODE function (BVP) 2-436
vectors, creating

logarithmically spaced 2-2038
regularly spaced 2-59 2-2004

velocity vectors, plotting 2-628
ver 2-3653
verctrl function (Windows) 2-3655
verLessThan 2-3659
version 2-3661
version numbers

comparing 2-3659
displaying 2-3653

vertcat 2-3663
vertcat (M-file function equivalent for [2-58
vertcat (timeseries) 2-3665
vertcat (tscollection) 2-3666
VertexNormals

Patch property 2-2427

Index-58

Index

Surface property 2-3222
surfaceplot property 2-3246

VerticalAlignment, Text property 2-3336
VerticalAlignment, textarrow property 2-181
VerticalAlignment, textbox property 2-192
Vertices, Patch property 2-2427
video

saving in AVI format 2-260
view 2-3667

azimuth of viewpoint 2-3668
coordinate system defining 2-3668
elevation of viewpoint 2-3668

view angle, of camera 2-466
View, Axes property (obsolete) 2-304
viewing

a group of object 2-453
a specific object in a scene 2-453

viewmtx 2-3670
Visible

areaseries property 2-216
Axes property 2-304
barseries property 2-346
contour property 2-666
errorbar property 2-1019
Figure property 2-1171
hggroup property 2-1558
hgtransform property 2-1580
Image property 2-1647
Light property 2-1945
Line property 2-1968
lineseries property 2-1983
Patch property 2-2427
quivergroup property 2-2657
rectangle property 2-2715
Root property 2-2804
scatter property 2-2865
stairseries property 2-3036
stem property 2-3070
Surface property 2-3222
surfaceplot property 2-3247

Text property 2-3337
Uicontextmenu property 2-3458
Uicontrol property 2-3488
Uimenu property 2-3522
Uipushtool property 2-3556
Uitoggletool property 2-3588
Uitoolbar property 2-3598

visualizing
cell array structure 2-515
sparse matrices 2-3003

volumes
calculating isosurface data 2-1831
computing 2-D stream lines 1-102 2-3090
computing 3-D stream lines 1-102 2-3092
computing isosurface normals 2-1828
contouring slice planes 2-671
drawing stream lines 1-102 2-3094
end caps 2-1821
reducing face size in isosurfaces 1-102

2-2921
reducing number of elements in 1-102 2-2723

voronoi 2-3677
Voronoi diagrams

multidimensional vizualization 2-3683
two-dimensional vizualization 2-3677

voronoin 2-3683

W
wait

timer object 2-3687
waitbar 2-3688
waitfor 2-3690
waitforbuttonpress 2-3691
warndlg 2-3692
warning 2-3695
warning message (enabling, suppressing, and

displaying) 2-3695
waterfall 2-3699
.wav files

Index-59

Index

reading 2-3706
writing 2-3711

waverecord 2-3709
wavfinfo 2-3703
wavplay 1-83 2-3704
wavread 2-3703 2-3706
wavrecord 1-83 2-3709
wavwrite 2-3711
WData

quivergroup property 2-2659
WDataSource

quivergroup property 2-2660
web 2-3712
Web browser

displaying help in 2-1532
pointing to file or url 1-5 1-8 2-3712
specifying for UNIX 2-942

weekday 2-3716
well conditioned 2-2684
what 2-3718
whatsnew 2-3721
which 2-3722
while 2-3725
white space characters, ASCII 2-1847 2-3140
whitebg 2-3729
who, whos

who 2-3731
wilkinson 2-3738
Wilkinson matrix 2-2965 2-3738
WindowButtonDownFcn, Figure property 2-1171
WindowButtonMotionFcn, Figure

property 2-1172
WindowButtonUpFcn, Figure property 2-1173
Windows Paintbrush files

writing 2-1677
WindowScrollWheelFcn, Figure property 2-1173
WindowStyle, Figure property 2-1176
winopen 2-3739
winqueryreg 2-3740
WK1 files

loading 2-3743
writing from matrix 2-3745

wk1finfo 2-3742
wk1read 2-3743
wk1write 2-3745
workspace 2-3747

changing context while debugging 2-782
2-805

clearing items from 2-556
consolidating memory 2-2374
predefining variables 2-3042
saving 2-2827
variables in 2-3731
viewing contents of 2-3747

workspace variables
reading from disk 2-2010

writing
binary data to file 2-1342
formatted data to file 2-1278

WVisual, Figure property 2-1178
WVisualMode, Figure property 2-1180

X
X

annotation arrow property 2-157 2-161
annotation line property 2-168
textarrow property 2-182

X Windows Dump files
writing 2-1678

x-axis limits, setting and querying 2-3751
XAxisLocation, Axes property 2-304
XColor, Axes property 2-305
XData

areaseries property 2-216
barseries property 2-346
contour property 2-666
errorbar property 2-1019
Image property 2-1647
Line property 2-1969

Index-60

Index

lineseries property 2-1983
Patch property 2-2428
quivergroup property 2-2660
scatter property 2-2865
stairseries property 2-3036
stem property 2-3071
Surface property 2-3222
surfaceplot property 2-3247

XDataMode
areaseries property 2-216
barseries property 2-346
contour property 2-667
errorbar property 2-1019
lineseries property 2-1983
quivergroup property 2-2661
stairseries property 2-3037
stem property 2-3071
surfaceplot property 2-3247

XDataSource
areaseries property 2-217
barseries property 2-347
contour property 2-667
errorbar property 2-1020
lineseries property 2-1984
quivergroup property 2-2661
scatter property 2-2866
stairseries property 2-3037
stem property 2-3071
surfaceplot property 2-3247

XDir, Axes property 2-305
XDisplay, Figure property 2-1180
XGrid, Axes property 2-306
xlabel 1-88 2-3749
XLabel, Axes property 2-306
xlim 2-3751
XLim, Axes property 2-307
XLimMode, Axes property 2-307
XLS files

loading 2-3756
xlsfinfo 2-3754

xlsread 2-3756
xlswrite 2-3766
XMinorGrid, Axes property 2-308
xmlread 2-3770
xmlwrite 2-3775
xor 2-3776
XOR, printing 2-209 2-339 2-656 2-1010 2-1575

2-1643 2-1963 2-1976 2-2415 2-2650 2-2711
2-2858 2-3029 2-3063 2-3213 2-3236 2-3318

XScale, Axes property 2-308
xslt 2-3777
XTick, Axes property 2-308
XTickLabel, Axes property 2-309
XTickLabelMode, Axes property 2-310
XTickMode, Axes property 2-310
XVisual, Figure property 2-1181
XVisualMode, Figure property 2-1183
XWD files

writing 2-1678
xyz coordinates . See Cartesian coordinates

Y
Y

annotation arrow property 2-157 2-162 2-168
textarrow property 2-182

y-axis limits, setting and querying 2-3751
YAxisLocation, Axes property 2-305
YColor, Axes property 2-305
YData

areaseries property 2-217
barseries property 2-347
contour property 2-668
errorbar property 2-1020
Image property 2-1648
Line property 2-1969
lineseries property 2-1984
Patch property 2-2428
quivergroup property 2-2662
scatter property 2-2866

Index-61

Index

stairseries property 2-3038
stem property 2-3072
Surface property 2-3222
surfaceplot property 2-3248

YDataMode
contour property 2-668
quivergroup property 2-2662
surfaceplot property 2-3248

YDataSource
areaseries property 2-218
barseries property 2-348
contour property 2-668
errorbar property 2-1021
lineseries property 2-1985
quivergroup property 2-2662
scatter property 2-2867
stairseries property 2-3038
stem property 2-3072
surfaceplot property 2-3248

YDir, Axes property 2-305
YGrid, Axes property 2-306
ylabel 1-88 2-3749
YLabel, Axes property 2-306
ylim 2-3751
YLim, Axes property 2-307
YLimMode, Axes property 2-307
YMinorGrid, Axes property 2-308
YScale, Axes property 2-308
YTick, Axes property 2-308
YTickLabel, Axes property 2-309
YTickLabelMode, Axes property 2-310
YTickMode, Axes property 2-310

Z
z-axis limits, setting and querying 2-3751

ZColor, Axes property 2-305
ZData

contour property 2-669
Line property 2-1969
lineseries property 2-1985
Patch property 2-2428
quivergroup property 2-2663
scatter property 2-2867
stemseries property 2-3073
Surface property 2-3223
surfaceplot property 2-3249

ZDataSource
contour property 2-669
lineseries property 2-1985 2-3073
scatter property 2-2867
surfaceplot property 2-3249

ZDir, Axes property 2-305
zero of a function, finding 2-1348
zeros 2-3779
ZGrid, Axes property 2-306
zip 2-3781
zlabel 1-88 2-3749
zlim 2-3751
ZLim, Axes property 2-307
ZLimMode, Axes property 2-307
ZMinorGrid, Axes property 2-308
zoom 2-3783
zoom mode objects 2-3784
ZScale, Axes property 2-308
ZTick, Axes property 2-308
ZTickLabel, Axes property 2-309
ZTickLabelMode, Axes property 2-310
ZTickMode, Axes property 2-310

Index-62

MATLAB® 7
Function Reference: Volume 3 (P-Z)

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB Function Reference

© COPYRIGHT 1984–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, SimBiology,
SimHydraulics, SimEvents, and xPC TargetBox are registered trademarks and The
MathWorks, the L-shaped membrane logo, Embedded MATLAB, and PolySpace are
trademarks of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
December 1996 First printing For MATLAB 5.0 (Release 8)
June 1997 Online only Revised for MATLAB 5.1 (Release 9)
October 1997 Online only Revised for MATLAB 5.2 (Release 10)
January 1999 Online only Revised for MATLAB 5.3 (Release 11)
June 1999 Second printing For MATLAB 5.3 (Release 11)
June 2001 Online only Revised for MATLAB 6.1 (Release 12.1)
July 2002 Online only Revised for 6.5 (Release 13)
June 2004 Online only Revised for 7.0 (Release 14)
September 2006 Online only Revised for 7.3 (Release 2006b)
September 2007 Online only Revised for 7.5 (Release 2007b)

Contents

Functions — By Category

1
Desktop Tools and Development Environment 1-3

Startup and Shutdown . 1-3
Command Window and History . 1-4
Help for Using MATLAB . 1-5
Workspace, Search Path, and File Operations 1-6
Programming Tools . 1-8
System . 1-11

Mathematics . 1-13
Arrays and Matrices . 1-14
Linear Algebra . 1-19
Elementary Math . 1-23
Polynomials . 1-28
Interpolation and Computational Geometry 1-28
Cartesian Coordinate System Conversion 1-31
Nonlinear Numerical Methods . 1-31
Specialized Math . 1-35
Sparse Matrices . 1-36
Math Constants . 1-39

Data Analysis . 1-41
Basic Operations . 1-41
Descriptive Statistics . 1-41
Filtering and Convolution . 1-42
Interpolation and Regression . 1-42
Fourier Transforms . 1-43
Derivatives and Integrals . 1-43
Time Series Objects . 1-44
Time Series Collections . 1-47

Programming and Data Types . 1-49
Data Types . 1-49
Data Type Conversion . 1-58
Operators and Special Characters . 1-60

v

String Functions . 1-63
Bit-wise Functions . 1-66
Logical Functions . 1-66
Relational Functions . 1-67
Set Functions . 1-67
Date and Time Functions . 1-68
Programming in MATLAB . 1-68

File I/O . 1-76
File Name Construction . 1-76
Opening, Loading, Saving Files . 1-77
Memory Mapping . 1-77
Low-Level File I/O . 1-77
Text Files . 1-78
XML Documents . 1-79
Spreadsheets . 1-79
Scientific Data . 1-80
Audio and Audio/Video . 1-81
Images . 1-83
Internet Exchange . 1-84

Graphics . 1-86
Basic Plots and Graphs . 1-86
Plotting Tools . 1-87
Annotating Plots . 1-87
Specialized Plotting . 1-88
Bit-Mapped Images . 1-92
Printing . 1-92
Handle Graphics . 1-93

3-D Visualization . 1-97
Surface and Mesh Plots . 1-97
View Control . 1-99
Lighting . 1-101
Transparency . 1-101
Volume Visualization . 1-102

Creating Graphical User Interfaces 1-104
Predefined Dialog Boxes . 1-104
Deploying User Interfaces . 1-105
Developing User Interfaces . 1-105
User Interface Objects . 1-106

vi Contents

Finding Objects from Callbacks . 1-107
GUI Utility Functions . 1-107
Controlling Program Execution . 1-108

External Interfaces . 1-109
Dynamic Link Libraries . 1-109
Java . 1-110
Component Object Model and ActiveX 1-111
Web Services . 1-113
Serial Port Devices . 1-113

Functions — Alphabetical List

2

Index

vii

viii Contents

1

Functions — By Category

Desktop Tools and Development
Environment (p. 1-3)

Startup, Command Window, help,
editing and debugging, tuning, other
general functions

Mathematics (p. 1-13) Arrays and matrices, linear algebra,
other areas of mathematics

Data Analysis (p. 1-41) Basic data operations, descriptive
statistics, covariance and correlation,
filtering and convolution, numerical
derivatives and integrals, Fourier
transforms, time series analysis

Programming and Data Types
(p. 1-49)

Function/expression evaluation,
program control, function handles,
object oriented programming, error
handling, operators, data types,
dates and times, timers

File I/O (p. 1-76) General and low-level file I/O, plus
specific file formats, like audio,
spreadsheet, HDF, images

Graphics (p. 1-86) Line plots, annotating graphs,
specialized plots, images, printing,
Handle Graphics

3-D Visualization (p. 1-97) Surface and mesh plots, view control,
lighting and transparency, volume
visualization

1 Functions — By Category

Creating Graphical User Interfaces
(p. 1-104)

GUIDE, programming graphical
user interfaces

External Interfaces (p. 1-109) Interfaces to DLLs, Java, COM and
ActiveX, Web services, and serial
port devices, and C and Fortran
routines

1-2

Desktop Tools and Development Environment

Desktop Tools and Development Environment

Startup and Shutdown (p. 1-3) Startup and shutdown options,
preferences

Command Window and History
(p. 1-4)

Control Command Window and
History, enter statements and run
functions

Help for Using MATLAB (p. 1-5) Command line help, online
documentation in the Help browser,
demos

Workspace, Search Path, and File
Operations (p. 1-6)

Work with files, MATLAB search
path, manage variables

Programming Tools (p. 1-8) Edit and debug M-files, improve
performance, source control, publish
results

System (p. 1-11) Identify current computer, license,
product version, and more

Startup and Shutdown

exit Terminate MATLAB (same as quit)

finish MATLAB termination M-file

matlab (UNIX) Start MATLAB (UNIX systems)

matlab (Windows) Start MATLAB (Windows systems)

matlabrc MATLAB startup M-file for
single-user systems or system
administrators

prefdir Directory containing preferences,
history, and layout files

preferences Open Preferences dialog box for
MATLAB and related products

1-3

1 Functions — By Category

quit Terminate MATLAB

startup MATLAB startup M-file for
user-defined options

Command Window and History

clc Clear Command Window

commandhistory Open Command History window, or
select it if already open

commandwindow Open Command Window, or select it
if already open

diary Save session to file

dos Execute DOS command and return
result

format Set display format for output

home Move cursor to upper-left corner of
Command Window

matlabcolon (matlab:) Run specified function via hyperlink

more Control paged output for Command
Window

perl Call Perl script using appropriate
operating system executable

system Execute operating system command
and return result

unix Execute UNIX command and return
result

1-4

Desktop Tools and Development Environment

Help for Using MATLAB

builddocsearchdb Build searchable documentation
database

demo Access product demos via Help
browser

doc Reference page in Help browser

docopt Web browser for UNIX platforms

docsearch Open Help browser Search pane
and search for specified term

echodemo Run M-file demo step-by-step in
Command Window

help Help for MATLAB functions in
Command Window

helpbrowser Open Help browser to access all
online documentation and demos

helpwin Provide access to M-file help for all
functions

info Information about contacting The
MathWorks

lookfor Search for keyword in all help
entries

playshow Run M-file demo (deprecated; use
echodemo instead)

support Open MathWorks Technical Support
Web page

web Open Web site or file in Web browser
or Help browser

whatsnew Release Notes for MathWorks
products

1-5

1 Functions — By Category

Workspace, Search Path, and File Operations

Workspace (p. 1-6) Manage variables

Search Path (p. 1-6) View and change MATLAB search
path

File Operations (p. 1-7) View and change files and directories

Workspace

assignin Assign value to variable in specified
workspace

clear Remove items from workspace,
freeing up system memory

evalin Execute MATLAB expression in
specified workspace

exist Check existence of variable, function,
directory, or Java class

openvar Open workspace variable in Array
Editor or other tool for graphical
editing

pack Consolidate workspace memory

uiimport Open Import Wizard to import data

which Locate functions and files

workspace Open Workspace browser to manage
workspace

Search Path

addpath Add directories to MATLAB search
path

genpath Generate path string

partialpath Partial pathname description

1-6

Desktop Tools and Development Environment

path View or change MATLAB directory
search path

path2rc Save current MATLAB search path
to pathdef.m file

pathdef Directories in MATLAB search path

pathsep Path separator for current platform

pathtool Open Set Path dialog box to view
and change MATLAB path

restoredefaultpath Restore default MATLAB search
path

rmpath Remove directories from MATLAB
search path

savepath Save current MATLAB search path
to pathdef.m file

File Operations
See also “File I/O” on page 1-76 functions.

cd Change working directory

copyfile Copy file or directory

delete Remove files or graphics objects

dir Directory listing

exist Check existence of variable, function,
directory, or Java class

fileattrib Set or get attributes of file or
directory

filebrowser Current Directory browser

isdir Determine whether input is a
directory

lookfor Search for keyword in all help
entries

1-7

1 Functions — By Category

ls Directory contents on UNIX system

matlabroot Root directory of MATLAB
installation

mkdir Make new directory

movefile Move file or directory

pwd Identify current directory

recycle Set option to move deleted files to
recycle folder

rehash Refresh function and file system
path caches

rmdir Remove directory

toolboxdir Root directory for specified toolbox

type Display contents of file

web Open Web site or file in Web browser
or Help browser

what List MATLAB files in current
directory

which Locate functions and files

Programming Tools

Edit and Debug M-Files (p. 1-9) Edit and debug M-files

Improve Performance and Tune
M-Files (p. 1-9)

Improve performance and find
potential problems in M-files

Source Control (p. 1-10) Interface MATLAB with source
control system

Publishing (p. 1-10) Publish M-file code and results

1-8

Desktop Tools and Development Environment

Edit and Debug M-Files

clipboard Copy and paste strings to and from
system clipboard

datatipinfo Produce short description of input
variable

dbclear Clear breakpoints

dbcont Resume execution

dbdown Change local workspace context
when in debug mode

dbquit Quit debug mode

dbstack Function call stack

dbstatus List all breakpoints

dbstep Execute one or more lines from
current breakpoint

dbstop Set breakpoints

dbtype List M-file with line numbers

dbup Change local workspace context

debug List M-file debugging functions

edit Edit or create M-file

keyboard Input from keyboard

Improve Performance and Tune M-Files

memory Help for memory limitations

mlint Check M-files for possible problems

mlintrpt Run mlint for file or directory,
reporting results in browser

pack Consolidate workspace memory

profile Profile execution time for function

1-9

1 Functions — By Category

profsave Save profile report in HTML format

rehash Refresh function and file system
path caches

sparse Create sparse matrix

zeros Create array of all zeros

Source Control

checkin Check files into source control
system (UNIX)

checkout Check files out of source control
system (UNIX)

cmopts Name of source control system

customverctrl Allow custom source control system
(UNIX)

undocheckout Undo previous checkout from source
control system (UNIX)

verctrl Source control actions (Windows)

Publishing

grabcode MATLAB code from M-files
published to HTML

notebook Open M-book in Microsoft Word
(Windows)

publish Publish M-file containing cells,
saving output to file of specified type

1-10

Desktop Tools and Development Environment

System

Operating System Interface (p. 1-11) Exchange operating system
information and commands with
MATLAB

MATLAB Version and License
(p. 1-12)

Information about MATLAB version
and license

Operating System Interface

clipboard Copy and paste strings to and from
system clipboard

computer Information about computer on
which MATLAB is running

dos Execute DOS command and return
result

getenv Environment variable

hostid MATLAB server host identification
number

maxNumCompThreads Controls maximum number of
computational threads

perl Call Perl script using appropriate
operating system executable

setenv Set environment variable

system Execute operating system command
and return result

unix Execute UNIX command and return
result

winqueryreg Item from Microsoft Windows
registry

1-11

1 Functions — By Category

MATLAB Version and License

ismac Determine whether running
Macintosh OS X versions of
MATLAB

ispc Determine whether PC (Windows)
version of MATLAB

isstudent Determine whether Student Version
of MATLAB

isunix Determine whether UNIX version of
MATLAB

javachk Generate error message based on
Java feature support

license Return license number or perform
licensing task

prefdir Directory containing preferences,
history, and layout files

usejava Determine whether Java feature is
supported in MATLAB

ver Version information for MathWorks
products

verLessThan Compare toolbox version to specified
version string

version Version number for MATLAB

1-12

Mathematics

Mathematics

Arrays and Matrices (p. 1-14) Basic array operators and operations,
creation of elementary and
specialized arrays and matrices

Linear Algebra (p. 1-19) Matrix analysis, linear equations,
eigenvalues, singular values,
logarithms, exponentials,
factorization

Elementary Math (p. 1-23) Trigonometry, exponentials and
logarithms, complex values,
rounding, remainders, discrete math

Polynomials (p. 1-28) Multiplication, division, evaluation,
roots, derivatives, integration,
eigenvalue problem, curve fitting,
partial fraction expansion

Interpolation and Computational
Geometry (p. 1-28)

Interpolation, Delaunay
triangulation and tessellation,
convex hulls, Voronoi diagrams,
domain generation

Cartesian Coordinate System
Conversion (p. 1-31)

Conversions between Cartesian and
polar or spherical coordinates

Nonlinear Numerical Methods
(p. 1-31)

Differential equations, optimization,
integration

Specialized Math (p. 1-35) Airy, Bessel, Jacobi, Legendre, beta,
elliptic, error, exponential integral,
gamma functions

Sparse Matrices (p. 1-36) Elementary sparse matrices,
operations, reordering algorithms,
linear algebra, iterative methods,
tree operations

Math Constants (p. 1-39) Pi, imaginary unit, infinity,
Not-a-Number, largest and smallest
positive floating point numbers,
floating point relative accuracy

1-13

1 Functions — By Category

Arrays and Matrices

Basic Information (p. 1-14) Display array contents, get array
information, determine array type

Operators (p. 1-15) Arithmetic operators

Elementary Matrices and Arrays
(p. 1-16)

Create elementary arrays of different
types, generate arrays for plotting,
array indexing, etc.

Array Operations (p. 1-17) Operate on array content, apply
function to each array element, find
cumulative product or sum, etc.

Array Manipulation (p. 1-17) Create, sort, rotate, permute,
reshape, and shift array contents

Specialized Matrices (p. 1-18) Create Hadamard, Companion,
Hankel, Vandermonde, Pascal
matrices, etc.

Basic Information

disp Display text or array

display Display text or array (overloaded
method)

isempty Determine whether array is empty

isequal Test arrays for equality

isequalwithequalnans Test arrays for equality, treating
NaNs as equal

isfinite Array elements that are finite

isfloat Determine whether input is
floating-point array

isinf Array elements that are infinite

isinteger Determine whether input is integer
array

1-14

Mathematics

islogical Determine whether input is logical
array

isnan Array elements that are NaN

isnumeric Determine whether input is numeric
array

isscalar Determine whether input is scalar

issparse Determine whether input is sparse

isvector Determine whether input is vector

length Length of vector

max Largest elements in array

min Smallest elements in array

ndims Number of array dimensions

numel Number of elements in array or
subscripted array expression

size Array dimensions

Operators

+ Addition

+ Unary plus

- Subtraction

- Unary minus

* Matrix multiplication

^ Matrix power

\ Backslash or left matrix divide

/ Slash or right matrix divide

’ Transpose

.’ Nonconjugated transpose

.* Array multiplication (element-wise)

1-15

1 Functions — By Category

.^ Array power (element-wise)

.\ Left array divide (element-wise)

./ Right array divide (element-wise)

Elementary Matrices and Arrays

blkdiag Construct block diagonal matrix
from input arguments

diag Diagonal matrices and diagonals of
matrix

eye Identity matrix

freqspace Frequency spacing for frequency
response

ind2sub Subscripts from linear index

linspace Generate linearly spaced vectors

logspace Generate logarithmically spaced
vectors

meshgrid Generate X and Y arrays for 3-D plots

ndgrid Generate arrays for N-D functions
and interpolation

ones Create array of all ones

rand Uniformly distributed
pseudorandom numbers

randn Normally distributed random
numbers

sub2ind Single index from subscripts

zeros Create array of all zeros

1-16

Mathematics

Array Operations

See “Linear Algebra” on page 1-19 and “Elementary Math” on page 1-23 for
other array operations.

accumarray Construct array with accumulation

arrayfun Apply function to each element of
array

bsxfun Apply element-by-element binary
operation to two arrays with
singleton expansion enabled

cast Cast variable to different data type

cross Vector cross product

cumprod Cumulative product

cumsum Cumulative sum

dot Vector dot product

idivide Integer division with rounding
option

kron Kronecker tensor product

prod Product of array elements

sum Sum of array elements

tril Lower triangular part of matrix

triu Upper triangular part of matrix

Array Manipulation

blkdiag Construct block diagonal matrix
from input arguments

cat Concatenate arrays along specified
dimension

circshift Shift array circularly

1-17

1 Functions — By Category

diag Diagonal matrices and diagonals of
matrix

end Terminate block of code, or indicate
last array index

flipdim Flip array along specified dimension

fliplr Flip matrix left to right

flipud Flip matrix up to down

horzcat Concatenate arrays horizontally

inline Construct inline object

ipermute Inverse permute dimensions of N-D
array

permute Rearrange dimensions of N-D array

repmat Replicate and tile array

reshape Reshape array

rot90 Rotate matrix 90 degrees

shiftdim Shift dimensions

sort Sort array elements in ascending or
descending order

sortrows Sort rows in ascending order

squeeze Remove singleton dimensions

vectorize Vectorize expression

vertcat Concatenate arrays vertically

Specialized Matrices

compan Companion matrix

gallery Test matrices

hadamard Hadamard matrix

hankel Hankel matrix

1-18

Mathematics

hilb Hilbert matrix

invhilb Inverse of Hilbert matrix

magic Magic square

pascal Pascal matrix

rosser Classic symmetric eigenvalue test
problem

toeplitz Toeplitz matrix

vander Vandermonde matrix

wilkinson Wilkinson’s eigenvalue test matrix

Linear Algebra

Matrix Analysis (p. 1-19) Compute norm, rank, determinant,
condition number, etc.

Linear Equations (p. 1-20) Solve linear systems, least
squares, LU factorization, Cholesky
factorization, etc.

Eigenvalues and Singular Values
(p. 1-21)

Eigenvalues, eigenvectors, Schur
decomposition, Hessenburg
matrices, etc.

Matrix Logarithms and Exponentials
(p. 1-22)

Matrix logarithms, exponentials,
square root

Factorization (p. 1-22) Cholesky, LU, and QR factorizations,
diagonal forms, singular value
decomposition

Matrix Analysis

cond Condition number with respect to
inversion

condeig Condition number with respect to
eigenvalues

1-19

1 Functions — By Category

det Matrix determinant

norm Vector and matrix norms

normest 2-norm estimate

null Null space

orth Range space of matrix

rank Rank of matrix

rcond Matrix reciprocal condition number
estimate

rref Reduced row echelon form

subspace Angle between two subspaces

trace Sum of diagonal elements

Linear Equations

chol Cholesky factorization

cholinc Sparse incomplete Cholesky and
Cholesky-Infinity factorizations

cond Condition number with respect to
inversion

condest 1-norm condition number estimate

funm Evaluate general matrix function

ilu Sparse incomplete LU factorization

inv Matrix inverse

linsolve Solve linear system of equations

lscov Least-squares solution in presence
of known covariance

lsqnonneg Solve nonnegative least-squares
constraints problem

lu LU matrix factorization

1-20

Mathematics

luinc Sparse incomplete LU factorization

pinv Moore-Penrose pseudoinverse of
matrix

qr Orthogonal-triangular
decomposition

rcond Matrix reciprocal condition number
estimate

Eigenvalues and Singular Values

balance Diagonal scaling to improve
eigenvalue accuracy

cdf2rdf Convert complex diagonal form to
real block diagonal form

condeig Condition number with respect to
eigenvalues

eig Find eigenvalues and eigenvectors

eigs Find largest eigenvalues and
eigenvectors of sparse matrix

gsvd Generalized singular value
decomposition

hess Hessenberg form of matrix

ordeig Eigenvalues of quasitriangular
matrices

ordqz Reorder eigenvalues in QZ
factorization

ordschur Reorder eigenvalues in Schur
factorization

poly Polynomial with specified roots

polyeig Polynomial eigenvalue problem

1-21

1 Functions — By Category

rsf2csf Convert real Schur form to complex
Schur form

schur Schur decomposition

sqrtm Matrix square root

ss2tf Convert state-space filter
parameters to transfer function
form

svd Singular value decomposition

svds Find singular values and vectors

Matrix Logarithms and Exponentials

expm Matrix exponential

logm Matrix logarithm

sqrtm Matrix square root

Factorization

balance Diagonal scaling to improve
eigenvalue accuracy

cdf2rdf Convert complex diagonal form to
real block diagonal form

chol Cholesky factorization

cholinc Sparse incomplete Cholesky and
Cholesky-Infinity factorizations

cholupdate Rank 1 update to Cholesky
factorization

gsvd Generalized singular value
decomposition

ilu Sparse incomplete LU factorization

lu LU matrix factorization

1-22

Mathematics

luinc Sparse incomplete LU factorization

planerot Givens plane rotation

qr Orthogonal-triangular
decomposition

qrdelete Remove column or row from QR
factorization

qrinsert Insert column or row into QR
factorization

qrupdate

qz QZ factorization for generalized
eigenvalues

rsf2csf Convert real Schur form to complex
Schur form

svd Singular value decomposition

Elementary Math

Trigonometric (p. 1-24) Trigonometric functions with results
in radians or degrees

Exponential (p. 1-25) Exponential, logarithm, power, and
root functions

Complex (p. 1-26) Numbers with real and imaginary
components, phase angles

Rounding and Remainder (p. 1-27) Rounding, modulus, and remainder

Discrete Math (e.g., Prime Factors)
(p. 1-27)

Prime factors, factorials,
permutations, rational fractions,
least common multiple, greatest
common divisor

1-23

1 Functions — By Category

Trigonometric

acos Inverse cosine; result in radians

acosd Inverse cosine; result in degrees

acosh Inverse hyperbolic cosine

acot Inverse cotangent; result in radians

acotd Inverse cotangent; result in degrees

acoth Inverse hyperbolic cotangent

acsc Inverse cosecant; result in radians

acscd Inverse cosecant; result in degrees

acsch Inverse hyperbolic cosecant

asec Inverse secant; result in radians

asecd Inverse secant; result in degrees

asech Inverse hyperbolic secant

asin Inverse sine; result in radians

asind Inverse sine; result in degrees

asinh Inverse hyperbolic sine

atan Inverse tangent; result in radians

atan2 Four-quadrant inverse tangent

atand Inverse tangent; result in degrees

atanh Inverse hyperbolic tangent

cos Cosine of argument in radians

cosd Cosine ofo argument in degrees

cosh Hyperbolic cosine

cot Cotangent of argument in radians

cotd Cotangent of argument in degrees

coth Hyperbolic cotangent

csc Cosecant of argument in radians

1-24

Mathematics

cscd Cosecant of argument in degrees

csch Hyperbolic cosecant

hypot Square root of sum of squares

sec Secant of argument in radians

secd Secant of argument in degrees

sech Hyperbolic secant

sin Sine of argument in radians

sind Sine of argument in degrees

sinh Hyperbolic sine of argument in
radians

tan Tangent of argument in radians

tand Tangent of argument in degrees

tanh Hyperbolic tangent

Exponential

exp Exponential

expm1 Compute exp(x)-1 accurately for
small values of x

log Natural logarithm

log10 Common (base 10) logarithm

log1p Compute log(1+x) accurately for
small values of x

log2 Base 2 logarithm and dissect
floating-point numbers into
exponent and mantissa

nextpow2 Next higher power of 2

nthroot Real nth root of real numbers

pow2 Base 2 power and scale floating-point
numbers

1-25

1 Functions — By Category

reallog Natural logarithm for nonnegative
real arrays

realpow Array power for real-only output

realsqrt Square root for nonnegative real
arrays

sqrt Square root

Complex

abs Absolute value and complex
magnitude

angle Phase angle

complex Construct complex data from real
and imaginary components

conj Complex conjugate

cplxpair Sort complex numbers into complex
conjugate pairs

i Imaginary unit

imag Imaginary part of complex number

isreal Determine whether input is real
array

j Imaginary unit

real Real part of complex number

sign Signum function

unwrap Correct phase angles to produce
smoother phase plots

1-26

Mathematics

Rounding and Remainder

ceil Round toward infinity

fix Round toward zero

floor Round toward minus infinity

idivide Integer division with rounding
option

mod Modulus after division

rem Remainder after division

round Round to nearest integer

Discrete Math (e.g., Prime Factors)

factor Prime factors

factorial Factorial function

gcd Greatest common divisor

isprime Array elements that are prime
numbers

lcm Least common multiple

nchoosek Binomial coefficient or all
combinations

perms All possible permutations

primes Generate list of prime numbers

rat, rats Rational fraction approximation

1-27

1 Functions — By Category

Polynomials

conv Convolution and polynomial
multiplication

deconv Deconvolution and polynomial
division

poly Polynomial with specified roots

polyder Polynomial derivative

polyeig Polynomial eigenvalue problem

polyfit Polynomial curve fitting

polyint Integrate polynomial analytically

polyval Polynomial evaluation

polyvalm Matrix polynomial evaluation

residue Convert between partial fraction
expansion and polynomial
coefficients

roots Polynomial roots

Interpolation and Computational Geometry

Interpolation (p. 1-29) Data interpolation, data gridding,
polynomial evaluation, nearest point
search

Delaunay Triangulation and
Tessellation (p. 1-30)

Delaunay triangulation and
tessellation, triangular surface and
mesh plots

Convex Hull (p. 1-30) Plot convex hull, plotting functions

Voronoi Diagrams (p. 1-30) Plot Voronoi diagram, patch graphics
object, plotting functions

Domain Generation (p. 1-31) Generate arrays for 3-D plots, or for
N-D functions and interpolation

1-28

Mathematics

Interpolation

dsearch Search Delaunay triangulation for
nearest point

dsearchn N-D nearest point search

griddata Data gridding

griddata3 Data gridding and hypersurface
fitting for 3-D data

griddatan Data gridding and hypersurface
fitting (dimension >= 2)

interp1 1-D data interpolation (table lookup)

interp1q Quick 1-D linear interpolation

interp2 2-D data interpolation (table lookup)

interp3 3-D data interpolation (table lookup)

interpft 1-D interpolation using FFT method

interpn N-D data interpolation (table lookup)

meshgrid Generate X and Y arrays for 3-D plots

mkpp Make piecewise polynomial

ndgrid Generate arrays for N-D functions
and interpolation

padecoef Padé approximation of time delays

pchip Piecewise Cubic Hermite
Interpolating Polynomial (PCHIP)

ppval Evaluate piecewise polynomial

spline Cubic spline data interpolation

tsearchn N-D closest simplex search

unmkpp Piecewise polynomial details

1-29

1 Functions — By Category

Delaunay Triangulation and Tessellation

delaunay Delaunay triangulation

delaunay3 3-D Delaunay tessellation

delaunayn N-D Delaunay tessellation

dsearch Search Delaunay triangulation for
nearest point

dsearchn N-D nearest point search

tetramesh Tetrahedron mesh plot

trimesh Triangular mesh plot

triplot 2-D triangular plot

trisurf Triangular surface plot

tsearch Search for enclosing Delaunay
triangle

tsearchn N-D closest simplex search

Convex Hull

convhull Convex hull

convhulln N-D convex hull

patch Create patch graphics object

plot 2-D line plot

trisurf Triangular surface plot

Voronoi Diagrams

dsearch Search Delaunay triangulation for
nearest point

patch Create patch graphics object

plot 2-D line plot

1-30

Mathematics

voronoi Voronoi diagram

voronoin N-D Voronoi diagram

Domain Generation

meshgrid Generate X and Y arrays for 3-D plots

ndgrid Generate arrays for N-D functions
and interpolation

Cartesian Coordinate System Conversion

cart2pol Transform Cartesian coordinates to
polar or cylindrical

cart2sph Transform Cartesian coordinates to
spherical

pol2cart Transform polar or cylindrical
coordinates to Cartesian

sph2cart Transform spherical coordinates to
Cartesian

Nonlinear Numerical Methods

Ordinary Differential Equations
(IVP) (p. 1-32)

Solve stiff and nonstiff differential
equations, define the problem, set
solver options, evaluate solution

Delay Differential Equations
(p. 1-33)

Solve delay differential equations
with constant and general delays,
set solver options, evaluate solution

Boundary Value Problems (p. 1-33) Solve boundary value problems for
ordinary differential equations, set
solver options, evaluate solution

1-31

1 Functions — By Category

Partial Differential Equations
(p. 1-34)

Solve initial-boundary value
problems for parabolic-elliptic PDEs,
evaluate solution

Optimization (p. 1-34) Find minimum of single and
multivariable functions, solve
nonnegative least-squares constraint
problem

Numerical Integration (Quadrature)
(p. 1-34)

Evaluate Simpson, Lobatto, and
vectorized quadratures, evaluate
double and triple integrals

Ordinary Differential Equations (IVP)

decic Compute consistent initial conditions
for ode15i

deval Evaluate solution of differential
equation problem

ode15i Solve fully implicit differential
equations, variable order method

ode23, ode45, ode113, ode15s,
ode23s, ode23t, ode23tb

Solve initial value problems for
ordinary differential equations

odefile Define differential equation problem
for ordinary differential equation
solvers

odeget Ordinary differential equation
options parameters

odeset Create or alter options structure
for ordinary differential equation
solvers

odextend Extend solution of initial value
problem for ordinary differential
equation

1-32

Mathematics

Delay Differential Equations

dde23 Solve delay differential equations
(DDEs) with constant delays

ddeget Extract properties from delay
differential equations options
structure

ddesd Solve delay differential equations
(DDEs) with general delays

ddeset Create or alter delay differential
equations options structure

deval Evaluate solution of differential
equation problem

Boundary Value Problems

bvp4c Solve boundary value problems for
ordinary differential equations

bvp5c Solve boundary value problems for
ordinary differential equations

bvpget Extract properties from options
structure created with bvpset

bvpinit Form initial guess for bvp4c

bvpset Create or alter options structure of
boundary value problem

bvpxtend Form guess structure for extending
boundary value solutions

deval Evaluate solution of differential
equation problem

1-33

1 Functions — By Category

Partial Differential Equations

pdepe Solve initial-boundary value
problems for parabolic-elliptic PDEs
in 1-D

pdeval Evaluate numerical solution of PDE
using output of pdepe

Optimization

fminbnd Find minimum of single-variable
function on fixed interval

fminsearch Find minimum of unconstrained
multivariable function using
derivative-free method

fzero Find root of continuous function of
one variable

lsqnonneg Solve nonnegative least-squares
constraints problem

optimget Optimization options values

optimset Create or edit optimization options
structure

Numerical Integration (Quadrature)

dblquad Numerically evaluate double
integral

quad Numerically evaluate integral,
adaptive Simpson quadrature

quadgk Numerically evaluate integral,
adaptive Gauss-Kronrod quadrature

quadl Numerically evaluate integral,
adaptive Lobatto quadrature

1-34

Mathematics

quadv Vectorized quadrature

triplequad Numerically evaluate triple integral

Specialized Math

airy Airy functions

besselh Bessel function of third kind (Hankel
function)

besseli Modified Bessel function of first kind

besselj Bessel function of first kind

besselk Modified Bessel function of second
kind

bessely Bessel function of second kind

beta Beta function

betainc Incomplete beta function

betaln Logarithm of beta function

ellipj Jacobi elliptic functions

ellipke Complete elliptic integrals of first
and second kind

erf, erfc, erfcx, erfinv, erfcinv Error functions

expint Exponential integral

gamma, gammainc, gammaln Gamma functions

legendre Associated Legendre functions

psi Psi (polygamma) function

1-35

1 Functions — By Category

Sparse Matrices

Elementary Sparse Matrices (p. 1-36) Create random and nonrandom
sparse matrices

Full to Sparse Conversion (p. 1-37) Convert full matrix to sparse, sparse
matrix to full

Working with Sparse Matrices
(p. 1-37)

Test matrix for sparseness, get
information on sparse matrix,
allocate sparse matrix, apply
function to nonzero elements,
visualize sparsity pattern.

Reordering Algorithms (p. 1-37) Random, column, minimum degree,
Dulmage-Mendelsohn, and reverse
Cuthill-McKee permutations

Linear Algebra (p. 1-38) Compute norms, eigenvalues,
factorizations, least squares,
structural rank

Linear Equations (Iterative
Methods) (p. 1-38)

Methods for conjugate and
biconjugate gradients, residuals,
lower quartile

Tree Operations (p. 1-39) Elimination trees, tree plotting,
factorization analysis

Elementary Sparse Matrices

spdiags Extract and create sparse band and
diagonal matrices

speye Sparse identity matrix

sprand Sparse uniformly distributed
random matrix

sprandn Sparse normally distributed random
matrix

sprandsym Sparse symmetric random matrix

1-36

Mathematics

Full to Sparse Conversion

find Find indices and values of nonzero
elements

full Convert sparse matrix to full matrix

sparse Create sparse matrix

spconvert Import matrix from sparse matrix
external format

Working with Sparse Matrices

issparse Determine whether input is sparse

nnz Number of nonzero matrix elements

nonzeros Nonzero matrix elements

nzmax Amount of storage allocated for
nonzero matrix elements

spalloc Allocate space for sparse matrix

spfun Apply function to nonzero sparse
matrix elements

spones Replace nonzero sparse matrix
elements with ones

spparms Set parameters for sparse matrix
routines

spy Visualize sparsity pattern

Reordering Algorithms

amd Approximate minimum degree
permutation

colamd Column approximate minimum
degree permutation

1-37

1 Functions — By Category

colperm Sparse column permutation based
on nonzero count

dmperm Dulmage-Mendelsohn decomposition

ldl Block ldl’ factorization for Hermitian
indefinite matrices

randperm Random permutation

symamd Symmetric approximate minimum
degree permutation

symrcm Sparse reverse Cuthill-McKee
ordering

Linear Algebra

cholinc Sparse incomplete Cholesky and
Cholesky-Infinity factorizations

condest 1-norm condition number estimate

eigs Find largest eigenvalues and
eigenvectors of sparse matrix

ilu Sparse incomplete LU factorization

luinc Sparse incomplete LU factorization

normest 2-norm estimate

spaugment Form least squares augmented
system

sprank Structural rank

svds Find singular values and vectors

Linear Equations (Iterative Methods)

bicg Biconjugate gradients method

bicgstab Biconjugate gradients stabilized
method

1-38

Mathematics

cgs Conjugate gradients squared method

gmres Generalized minimum residual
method (with restarts)

lsqr LSQR method

minres Minimum residual method

pcg Preconditioned conjugate gradients
method

qmr Quasi-minimal residual method

symmlq Symmetric LQ method

Tree Operations

etree Elimination tree

etreeplot Plot elimination tree

gplot Plot nodes and links representing
adjacency matrix

symbfact Symbolic factorization analysis

treelayout Lay out tree or forest

treeplot Plot picture of tree

Math Constants

eps Floating-point relative accuracy

i Imaginary unit

Inf Infinity

intmax Largest value of specified integer
type

intmin Smallest value of specified integer
type

j Imaginary unit

1-39

1 Functions — By Category

NaN Not-a-Number

pi Ratio of circle’s circumference to its
diameter, π

realmax Largest positive floating-point
number

realmin Smallest positive normalized
floating-point number

1-40

Data Analysis

Data Analysis

Basic Operations (p. 1-41) Sums, products, sorting

Descriptive Statistics (p. 1-41) Statistical summaries of data

Filtering and Convolution (p. 1-42) Data preprocessing

Interpolation and Regression
(p. 1-42)

Data fitting

Fourier Transforms (p. 1-43) Frequency content of data

Derivatives and Integrals (p. 1-43) Data rates and accumulations

Time Series Objects (p. 1-44) Methods for timeseries objects

Time Series Collections (p. 1-47) Methods for tscollection objects

Basic Operations

cumprod Cumulative product

cumsum Cumulative sum

prod Product of array elements

sort Sort array elements in ascending or
descending order

sortrows Sort rows in ascending order

sum Sum of array elements

Descriptive Statistics

corrcoef Correlation coefficients

cov Covariance matrix

max Largest elements in array

mean Average or mean value of array

median Median value of array

1-41

1 Functions — By Category

min Smallest elements in array

mode Most frequent values in array

std Standard deviation

var Variance

Filtering and Convolution

conv Convolution and polynomial
multiplication

conv2 2-D convolution

convn N-D convolution

deconv Deconvolution and polynomial
division

detrend Remove linear trends

filter 1-D digital filter

filter2 2-D digital filter

Interpolation and Regression

interp1 1-D data interpolation (table lookup)

interp2 2-D data interpolation (table lookup)

interp3 3-D data interpolation (table lookup)

interpn N-D data interpolation (table lookup)

mldivide \, mrdivide / Left or right matrix division

polyfit Polynomial curve fitting

polyval Polynomial evaluation

1-42

Data Analysis

Fourier Transforms

abs Absolute value and complex
magnitude

angle Phase angle

cplxpair Sort complex numbers into complex
conjugate pairs

fft Discrete Fourier transform

fft2 2-D discrete Fourier transform

fftn N-D discrete Fourier transform

fftshift Shift zero-frequency component to
center of spectrum

fftw Interface to FFTW library run-time
algorithm tuning control

ifft Inverse discrete Fourier transform

ifft2 2-D inverse discrete Fourier
transform

ifftn N-D inverse discrete Fourier
transform

ifftshift Inverse FFT shift

nextpow2 Next higher power of 2

unwrap Correct phase angles to produce
smoother phase plots

Derivatives and Integrals

cumtrapz Cumulative trapezoidal numerical
integration

del2 Discrete Laplacian

diff Differences and approximate
derivatives

1-43

1 Functions — By Category

gradient Numerical gradient

polyder Polynomial derivative

polyint Integrate polynomial analytically

trapz Trapezoidal numerical integration

Time Series Objects

General Purpose (p. 1-44) Combine timeseries objects,
query and set timeseries object
properties, plot timeseries objects

Data Manipulation (p. 1-45) Add or delete data, manipulate
timeseries objects

Event Data (p. 1-46) Add or delete events, create new
timeseries objects based on event
data

Descriptive Statistics (p. 1-46) Descriptive statistics for timeseries
objects

General Purpose

get (timeseries) Query timeseries object property
values

getdatasamplesize Size of data sample in timeseries
object

getqualitydesc Data quality descriptions

isempty (timeseries) Determine whether timeseries
object is empty

length (timeseries) Length of time vector

plot (timeseries) Plot time series

set (timeseries) Set properties of timeseries object

size (timeseries) Size of timeseries object

1-44

Data Analysis

timeseries Create timeseries object

tsdata.event Construct event object for
timeseries object

tsprops Help on timeseries object
properties

tstool Open Time Series Tools GUI

Data Manipulation

addsample Add data sample to timeseries
object

ctranspose (timeseries) Transpose timeseries object

delsample Remove sample from timeseries
object

detrend (timeseries) Subtract mean or best-fit line and all
NaNs from time series

filter (timeseries) Shape frequency content of time
series

getabstime (timeseries) Extract date-string time vector into
cell array

getinterpmethod Interpolation method for timeseries
object

getsampleusingtime (timeseries) Extract data samples into new
timeseries object

idealfilter (timeseries) Apply ideal (noncausal) filter to
timeseries object

resample (timeseries) Select or interpolate timeseries
data using new time vector

setabstime (timeseries) Set times of timeseries object as
date strings

setinterpmethod Set default interpolation method for
timeseries object

1-45

1 Functions — By Category

synchronize Synchronize and resample two
timeseries objects using common
time vector

transpose (timeseries) Transpose timeseries object

vertcat (timeseries) Vertical concatenation of timeseries
objects

Event Data

addevent Add event to timeseries object

delevent Remove tsdata.event objects from
timeseries object

gettsafteratevent New timeseries object with samples
occurring at or after event

gettsafterevent New timeseries object with samples
occurring after event

gettsatevent New timeseries object with samples
occurring at event

gettsbeforeatevent New timeseries object with samples
occurring before or at event

gettsbeforeevent New timeseries object with samples
occurring before event

gettsbetweenevents New timeseries object with samples
occurring between events

Descriptive Statistics

iqr (timeseries) Interquartile range of timeseries
data

max (timeseries) Maximum value of timeseries data

mean (timeseries) Mean value of timeseries data

median (timeseries) Median value of timeseries data

1-46

Data Analysis

min (timeseries) Minimum value of timeseries data

std (timeseries) Standard deviation of timeseries
data

sum (timeseries) Sum of timeseries data

var (timeseries) Variance of timeseries data

Time Series Collections

General Purpose (p. 1-47) Query and set tscollection object
properties, plot tscollection
objects

Data Manipulation (p. 1-48) Add or delete data, manipulate
tscollection objects

General Purpose

get (tscollection) Query tscollection object property
values

isempty (tscollection) Determine whether tscollection
object is empty

length (tscollection) Length of time vector

plot (timeseries) Plot time series

set (tscollection) Set properties of tscollection
object

size (tscollection) Size of tscollection object

tscollection Create tscollection object

tstool Open Time Series Tools GUI

1-47

1 Functions — By Category

Data Manipulation

addsampletocollection Add sample to tscollection object

addts Add timeseries object to
tscollection object

delsamplefromcollection Remove sample from tscollection
object

getabstime (tscollection) Extract date-string time vector into
cell array

getsampleusingtime (tscollection) Extract data samples into new
tscollection object

gettimeseriesnames Cell array of names of timeseries
objects in tscollection object

horzcat (tscollection) Horizontal concatenation for
tscollection objects

removets Remove timeseries objects from
tscollection object

resample (tscollection) Select or interpolate data in
tscollection using new time vector

setabstime (tscollection) Set times of tscollection object as
date strings

settimeseriesnames Change name of timeseries object
in tscollection

vertcat (tscollection) Vertical concatenation for
tscollection objects

1-48

Programming and Data Types

Programming and Data Types

Data Types (p. 1-49) Numeric, character, structures, cell
arrays, and data type conversion

Data Type Conversion (p. 1-58) Convert one numeric type to another,
numeric to string, string to numeric,
structure to cell array, etc.

Operators and Special Characters
(p. 1-60)

Arithmetic, relational, and logical
operators, and special characters

String Functions (p. 1-63) Create, identify, manipulate, parse,
evaluate, and compare strings

Bit-wise Functions (p. 1-66) Perform set, shift, and, or, compare,
etc. on specific bit fields

Logical Functions (p. 1-66) Evaluate conditions, testing for true
or false

Relational Functions (p. 1-67) Compare values for equality, greater
than, less than, etc.

Set Functions (p. 1-67) Find set members, unions,
intersections, etc.

Date and Time Functions (p. 1-68) Obtain information about dates and
times

Programming in MATLAB (p. 1-68) M-files, function/expression
evaluation, program control,
function handles, object oriented
programming, error handling

Data Types

Numeric Types (p. 1-50) Integer and floating-point data

Characters and Strings (p. 1-51) Characters and arrays of characters

Structures (p. 1-52) Data of varying types and sizes
stored in fields of a structure

1-49

1 Functions — By Category

Cell Arrays (p. 1-53) Data of varying types and sizes
stored in cells of array

Function Handles (p. 1-54) Invoke a function indirectly via
handle

MATLAB Classes and Objects
(p. 1-55)

MATLAB object-oriented class
system

Java Classes and Objects (p. 1-55) Access Java classes through
MATLAB interface

Data Type Identification (p. 1-57) Determine data type of a variable

Numeric Types

arrayfun Apply function to each element of
array

cast Cast variable to different data type

cat Concatenate arrays along specified
dimension

class Create object or return class of object

find Find indices and values of nonzero
elements

intmax Largest value of specified integer
type

intmin Smallest value of specified integer
type

intwarning Control state of integer warnings

ipermute Inverse permute dimensions of N-D
array

isa Determine whether input is object
of given class

isequal Test arrays for equality

1-50

Programming and Data Types

isequalwithequalnans Test arrays for equality, treating
NaNs as equal

isfinite Array elements that are finite

isinf Array elements that are infinite

isnan Array elements that are NaN

isnumeric Determine whether input is numeric
array

isreal Determine whether input is real
array

isscalar Determine whether input is scalar

isvector Determine whether input is vector

permute Rearrange dimensions of N-D array

realmax Largest positive floating-point
number

realmin Smallest positive normalized
floating-point number

reshape Reshape array

squeeze Remove singleton dimensions

zeros Create array of all zeros

Characters and Strings

See “String Functions” on page 1-63 for all string-related functions.

cellstr Create cell array of strings from
character array

char Convert to character array (string)

eval Execute string containing MATLAB
expression

findstr Find string within another, longer
string

1-51

1 Functions — By Category

isstr Determine whether input is
character array

regexp, regexpi Match regular expression

sprintf Write formatted data to string

sscanf Read formatted data from string

strcat Concatenate strings horizontally

strcmp, strcmpi Compare strings

strings MATLAB string handling

strjust Justify character array

strmatch Find possible matches for string

strread Read formatted data from string

strrep Find and replace substring

strtrim Remove leading and trailing white
space from string

strvcat Concatenate strings vertically

Structures

arrayfun Apply function to each element of
array

cell2struct Convert cell array to structure array

class Create object or return class of object

deal Distribute inputs to outputs

fieldnames Field names of structure, or public
fields of object

getfield Field of structure array

isa Determine whether input is object
of given class

isequal Test arrays for equality

1-52

Programming and Data Types

isfield Determine whether input is
structure array field

isscalar Determine whether input is scalar

isstruct Determine whether input is
structure array

isvector Determine whether input is vector

orderfields Order fields of structure array

rmfield Remove fields from structure

setfield Set value of structure array field

struct Create structure array

struct2cell Convert structure to cell array

structfun Apply function to each field of scalar
structure

Cell Arrays

cell Construct cell array

cell2mat Convert cell array of matrices to
single matrix

cell2struct Convert cell array to structure array

celldisp Cell array contents

cellfun Apply function to each cell in cell
array

cellplot Graphically display structure of cell
array

cellstr Create cell array of strings from
character array

class Create object or return class of object

deal Distribute inputs to outputs

1-53

1 Functions — By Category

isa Determine whether input is object
of given class

iscell Determine whether input is cell
array

iscellstr Determine whether input is cell
array of strings

isequal Test arrays for equality

isscalar Determine whether input is scalar

isvector Determine whether input is vector

mat2cell Divide matrix into cell array of
matrices

num2cell Convert numeric array to cell array

struct2cell Convert structure to cell array

Function Handles

class Create object or return class of object

feval Evaluate function

func2str Construct function name string from
function handle

functions Information about function handle

function_handle (@) Handle used in calling functions
indirectly

isa Determine whether input is object
of given class

isequal Test arrays for equality

str2func Construct function handle from
function name string

1-54

Programming and Data Types

MATLAB Classes and Objects

class Create object or return class of object

fieldnames Field names of structure, or public
fields of object

inferiorto Establish inferior class relationship

isa Determine whether input is object
of given class

isobject Determine whether input is
MATLAB OOPs object

loadobj User-defined extension of load
function for user objects

methods Information on class methods

methodsview Information on class methods in
separate window

saveobj User-defined extension of save
function for user objects

subsasgn Subscripted assignment for objects

subsindex Subscripted indexing for objects

subsref Subscripted reference for objects

substruct Create structure argument for
subsasgn or subsref

superiorto Establish superior class relationship

Java Classes and Objects

cell Construct cell array

class Create object or return class of object

clear Remove items from workspace,
freeing up system memory

depfun List dependencies of M-file or P-file

1-55

1 Functions — By Category

exist Check existence of variable, function,
directory, or Java class

fieldnames Field names of structure, or public
fields of object

im2java Convert image to Java image

import Add package or class to current Java
import list

inmem Names of M-files, MEX-files, Java
classes in memory

isa Determine whether input is object
of given class

isjava Determine whether input is Java
object

javaaddpath Add entries to dynamic Java class
path

javaArray Construct Java array

javachk Generate error message based on
Java feature support

javaclasspath Set and get dynamic Java class path

javaMethod Invoke Java method

javaObject Construct Java object

javarmpath Remove entries from dynamic Java
class path

methods Information on class methods

methodsview Information on class methods in
separate window

usejava Determine whether Java feature is
supported in MATLAB

which Locate functions and files

1-56

Programming and Data Types

Data Type Identification

is* Detect state

isa Determine whether input is object
of given class

iscell Determine whether input is cell
array

iscellstr Determine whether input is cell
array of strings

ischar Determine whether item is character
array

isfield Determine whether input is
structure array field

isfloat Determine whether input is
floating-point array

isinteger Determine whether input is integer
array

isjava Determine whether input is Java
object

islogical Determine whether input is logical
array

isnumeric Determine whether input is numeric
array

isobject Determine whether input is
MATLAB OOPs object

isreal Determine whether input is real
array

isstr Determine whether input is
character array

isstruct Determine whether input is
structure array

1-57

1 Functions — By Category

validateattributes Check validity of array

who, whos List variables in workspace

Data Type Conversion

Numeric (p. 1-58) Convert data of one numeric type to
another numeric type

String to Numeric (p. 1-58) Convert characters to numeric
equivalent

Numeric to String (p. 1-59) Convert numeric to character
equivalent

Other Conversions (p. 1-59) Convert to structure, cell array,
function handle, etc.

Numeric

cast Cast variable to different data type

double Convert to double precision

int8, int16, int32, int64 Convert to signed integer

single Convert to single precision

typecast Convert data types without changing
underlying data

uint8, uint16, uint32, uint64 Convert to unsigned integer

String to Numeric

base2dec Convert base N number string to
decimal number

bin2dec Convert binary number string to
decimal number

cast Cast variable to different data type

1-58

Programming and Data Types

hex2dec Convert hexadecimal number string
to decimal number

hex2num Convert hexadecimal number string
to double-precision number

str2double Convert string to double-precision
value

str2num Convert string to number

unicode2native Convert Unicode characters to
numeric bytes

Numeric to String

cast Cast variable to different data type

char Convert to character array (string)

dec2base Convert decimal to base N number
in string

dec2bin Convert decimal to binary number
in string

dec2hex Convert decimal to hexadecimal
number in string

int2str Convert integer to string

mat2str Convert matrix to string

native2unicode Convert numeric bytes to Unicode
characters

num2str Convert number to string

Other Conversions

cell2mat Convert cell array of matrices to
single matrix

cell2struct Convert cell array to structure array

1-59

1 Functions — By Category

datestr Convert date and time to string
format

func2str Construct function name string from
function handle

logical Convert numeric values to logical

mat2cell Divide matrix into cell array of
matrices

num2cell Convert numeric array to cell array

num2hex Convert singles and doubles to IEEE
hexadecimal strings

str2func Construct function handle from
function name string

str2mat Form blank-padded character matrix
from strings

struct2cell Convert structure to cell array

Operators and Special Characters

Arithmetic Operators (p. 1-60) Plus, minus, power, left and right
divide, transpose, etc.

Relational Operators (p. 1-61) Equal to, greater than, less than or
equal to, etc.

Logical Operators (p. 1-61) Element-wise and short circuit and,
or, not

Special Characters (p. 1-62) Array constructors, line
continuation, comments, etc.

Arithmetic Operators

+ Plus

- Minus

1-60

Programming and Data Types

. Decimal point

= Assignment

* Matrix multiplication

/ Matrix right division

\ Matrix left division

^ Matrix power

’ Matrix transpose

.* Array multiplication (element-wise)

./ Array right division (element-wise)

.\ Array left division (element-wise)

.^ Array power (element-wise)

.’ Array transpose

Relational Operators

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

== Equal to

~= Not equal to

Logical Operators
See also “Logical Functions” on page 1-66 for functions like xor, all, any, etc.

&& Logical AND

|| Logical OR

& Logical AND for arrays

1-61

1 Functions — By Category

| Logical OR for arrays

~ Logical NOT

Special Characters

: Create vectors, subscript arrays, specify for-loop iterations

() Pass function arguments, prioritize operators

[] Construct array, concatenate elements, specify multiple
outputs from function

{ } Construct cell array, index into cell array

. Insert decimal point, define structure field, reference methods
of object

.() Reference dynamic field of structure

.. Reference parent directory

... Continue statement to next line

, Separate rows of array, separate function input/output
arguments, separate commands

; Separate columns of array, suppress output from current
command

% Insert comment line into code

%{ %} Insert block of comments into code

! Issue command to operating system

’ ’ Construct character array

@ Construct function handle, reference class directory

1-62

Programming and Data Types

String Functions

Description of Strings in MATLAB
(p. 1-63)

Basics of string handling in
MATLAB

String Creation (p. 1-63) Create strings, cell arrays of strings,
concatenate strings together

String Identification (p. 1-64) Identify characteristics of strings

String Manipulation (p. 1-64) Convert case, strip blanks, replace
characters

String Parsing (p. 1-65) Formatted read, regular expressions,
locate substrings

String Evaluation (p. 1-65) Evaluate stated expression in string

String Comparison (p. 1-65) Compare contents of strings

Description of Strings in MATLAB

strings MATLAB string handling

String Creation

blanks Create string of blank characters

cellstr Create cell array of strings from
character array

char Convert to character array (string)

sprintf Write formatted data to string

strcat Concatenate strings horizontally

strvcat Concatenate strings vertically

1-63

1 Functions — By Category

String Identification

class Create object or return class of object

isa Determine whether input is object
of given class

iscellstr Determine whether input is cell
array of strings

ischar Determine whether item is character
array

isletter Array elements that are alphabetic
letters

isscalar Determine whether input is scalar

isspace Array elements that are space
characters

isstrprop Determine whether string is of
specified category

isvector Determine whether input is vector

validatestring Check validity of text string

String Manipulation

deblank Strip trailing blanks from end of
string

lower Convert string to lowercase

strjust Justify character array

strrep Find and replace substring

strtrim Remove leading and trailing white
space from string

upper Convert string to uppercase

1-64

Programming and Data Types

String Parsing

findstr Find string within another, longer
string

regexp, regexpi Match regular expression

regexprep Replace string using regular
expression

regexptranslate Translate string into regular
expression

sscanf Read formatted data from string

strfind Find one string within another

strread Read formatted data from string

strtok Selected parts of string

String Evaluation

eval Execute string containing MATLAB
expression

evalc Evaluate MATLAB expression with
capture

evalin Execute MATLAB expression in
specified workspace

String Comparison

strcmp, strcmpi Compare strings

strmatch Find possible matches for string

strncmp, strncmpi Compare first n characters of strings

1-65

1 Functions — By Category

Bit-wise Functions

bitand Bitwise AND

bitcmp Bitwise complement

bitget Bit at specified position

bitmax Maximum double-precision
floating-point integer

bitor Bitwise OR

bitset Set bit at specified position

bitshift Shift bits specified number of places

bitxor Bitwise XOR

swapbytes Swap byte ordering

Logical Functions

all Determine whether all array
elements are nonzero

and Find logical AND of array or scalar
inputs

any Determine whether any array
elements are nonzero

false Logical 0 (false)

find Find indices and values of nonzero
elements

isa Determine whether input is object
of given class

iskeyword Determine whether input is
MATLAB keyword

isvarname Determine whether input is valid
variable name

logical Convert numeric values to logical

1-66

Programming and Data Types

not Find logical NOT of array or scalar
input

or Find logical OR of array or scalar
inputs

true Logical 1 (true)

xor Logical exclusive-OR

See “Operators and Special Characters” on page 1-60 for logical operators.

Relational Functions

eq Test for equality

ge Test for greater than or equal to

gt Test for greater than

le Test for less than or equal to

lt Test for less than

ne Test for inequality

See “Operators and Special Characters” on page 1-60 for relational operators.

Set Functions

intersect Find set intersection of two vectors

ismember Array elements that are members
of set

issorted Determine whether set elements are
in sorted order

setdiff Find set difference of two vectors

setxor Find set exclusive OR of two vectors

union Find set union of two vectors

unique Find unique elements of vector

1-67

1 Functions — By Category

Date and Time Functions

addtodate Modify date number by field

calendar Calendar for specified month

clock Current time as date vector

cputime Elapsed CPU time

date Current date string

datenum Convert date and time to serial date
number

datestr Convert date and time to string
format

datevec Convert date and time to vector of
components

eomday Last day of month

etime Time elapsed between date vectors

now Current date and time

weekday Day of week

Programming in MATLAB

M-File Functions and Scripts
(p. 1-69)

Declare functions, handle
arguments, identify dependencies,
etc.

Evaluation of Expressions and
Functions (p. 1-70)

Evaluate expression in string, apply
function to array, run script file, etc.

Timer Functions (p. 1-71) Schedule execution of MATLAB
commands

Variables and Functions in Memory
(p. 1-72)

List files in memory, clear M-files
in memory, assign to variable in
nondefault workspace, refresh
caches

1-68

Programming and Data Types

Control Flow (p. 1-73) if-then-else, for loops, switch-case,
try-catch

Error Handling (p. 1-74) Generate warnings and errors, test
for and catch errors, retrieve most
recent error message

MEX Programming (p. 1-75) Compile MEX function from C
or Fortran code, list MEX-files in
memory, debug MEX-files

M-File Functions and Scripts

addOptional (inputParser) Add optional argument to
inputParser schema

addParamValue (inputParser) Add parameter-value argument to
inputParser schema

addRequired (inputParser) Add required argument to
inputParser schema

createCopy (inputParser) Create copy of inputParser object

depdir List dependent directories of M-file
or P-file

depfun List dependencies of M-file or P-file

echo Echo M-files during execution

end Terminate block of code, or indicate
last array index

function Declare M-file function

input Request user input

inputname Variable name of function input

inputParser Construct input parser object

mfilename Name of currently running M-file

namelengthmax Maximum identifier length

nargchk Validate number of input arguments

1-69

1 Functions — By Category

nargin, nargout Number of function arguments

nargoutchk Validate number of output
arguments

parse (inputParser) Parse and validate named inputs

pcode Create preparsed pseudocode file
(P-file)

script Script M-file description

syntax Two ways to call MATLAB functions

varargin Variable length input argument list

varargout Variable length output argument list

Evaluation of Expressions and Functions

ans Most recent answer

arrayfun Apply function to each element of
array

assert Generate error when condition is
violated

builtin Execute built-in function from
overloaded method

cellfun Apply function to each cell in cell
array

echo Echo M-files during execution

eval Execute string containing MATLAB
expression

evalc Evaluate MATLAB expression with
capture

evalin Execute MATLAB expression in
specified workspace

feval Evaluate function

1-70

Programming and Data Types

iskeyword Determine whether input is
MATLAB keyword

isvarname Determine whether input is valid
variable name

pause Halt execution temporarily

run Run script that is not on current
path

script Script M-file description

structfun Apply function to each field of scalar
structure

symvar Determine symbolic variables in
expression

tic, toc Measure performance using
stopwatch timer

Timer Functions

delete (timer) Remove timer object from memory

disp (timer) Information about timer object

get (timer) Timer object properties

isvalid (timer) Determine whether timer object is
valid

set (timer) Configure or display timer object
properties

start Start timer(s) running

startat Start timer(s) running at specified
time

stop Stop timer(s)

timer Construct timer object

timerfind Find timer objects

1-71

1 Functions — By Category

timerfindall Find timer objects, including
invisible objects

wait Wait until timer stops running

Variables and Functions in Memory

ans Most recent answer

assignin Assign value to variable in specified
workspace

datatipinfo Produce short description of input
variable

genvarname Construct valid variable name from
string

global Declare global variables

inmem Names of M-files, MEX-files, Java
classes in memory

isglobal Determine whether input is global
variable

mislocked Determine whether M-file or
MEX-file cannot be cleared from
memory

mlock Prevent clearing M-file or MEX-file
from memory

munlock Allow clearing M-file or MEX-file
from memory

namelengthmax Maximum identifier length

pack Consolidate workspace memory

persistent Define persistent variable

rehash Refresh function and file system
path caches

1-72

Programming and Data Types

Control Flow

break Terminate execution of for or while
loop

case Execute block of code if condition is
true

catch Specify how to respond to error in
try statement

continue Pass control to next iteration of for
or while loop

else Execute statements if condition is
false

elseif Execute statements if additional
condition is true

end Terminate block of code, or indicate
last array index

error Display message and abort function

for Execute block of code specified
number of times

if Execute statements if condition is
true

otherwise Default part of switch statement

return Return to invoking function

switch Switch among several cases, based
on expression

try Attempt to execute block of code, and
catch errors

while Repeatedly execute statements while
condition is true

1-73

1 Functions — By Category

Error Handling

addCause (MException) Append MException objects

assert Generate error when condition is
violated

catch Specify how to respond to error in
try statement

disp (MException) Display MException object

eq (MException) Compare MException objects for
equality

error Display message and abort function

ferror Query MATLAB about errors in file
input or output

getReport (MException) Get error message for exception

intwarning Control state of integer warnings

isequal (MException) Compare MException objects for
equality

last (MException) Last uncaught exception

lasterr Last error message

lasterror Last error message and related
information

lastwarn Last warning message

MException Construct MException object

ne (MException) Compare MException objects for
inequality

rethrow Reissue error

rethrow (MException) Reissue existing exception

throw (MException) Terminate function and issue
exception

1-74

Programming and Data Types

try Attempt to execute block of code, and
catch errors

warning Warning message

MEX Programming

dbmex Enable MEX-file debugging

inmem Names of M-files, MEX-files, Java
classes in memory

mex Compile MEX-function from C, C++,
or Fortran source code

mexext MEX-filename extension

1-75

1 Functions — By Category

File I/O

File Name Construction (p. 1-76) Get path, directory, filename
information; construct filenames

Opening, Loading, Saving Files
(p. 1-77)

Open files; transfer data between
files and MATLAB workspace

Memory Mapping (p. 1-77) Access file data via memory map
using MATLAB array indexing

Low-Level File I/O (p. 1-77) Low-level operations that use a file
identifier

Text Files (p. 1-78) Delimited or formatted I/O to text
files

XML Documents (p. 1-79) Documents written in Extensible
Markup Language

Spreadsheets (p. 1-79) Excel and Lotus 1-2-3 files

Scientific Data (p. 1-80) CDF, FITS, HDF formats

Audio and Audio/Video (p. 1-81) General audio functions;
SparcStation, WAVE, AVI files

Images (p. 1-83) Graphics files

Internet Exchange (p. 1-84) URL, FTP, zip, tar, and e-mail

To see a listing of file formats that are readable from MATLAB, go to file
formats.

File Name Construction

filemarker Character to separate file name and
internal function name

fileparts Parts of file name and path

filesep Directory separator for current
platform

fullfile Build full filename from parts

1-76

File I/O

tempdir Name of system’s temporary
directory

tempname Unique name for temporary file

Opening, Loading, Saving Files

daqread Read Data Acquisition Toolbox (.daq)
file

filehandle Construct file handle object

importdata Load data from disk file

load Load workspace variables from disk

open Open files based on extension

save Save workspace variables to disk

uiimport Open Import Wizard to import data

winopen Open file in appropriate application
(Windows)

Memory Mapping

disp (memmapfile) Information about memmapfile
object

get (memmapfile) Memmapfile object properties

memmapfile Construct memmapfile object

Low-Level File I/O

fclose Close one or more open files

feof Test for end-of-file

ferror Query MATLAB about errors in file
input or output

1-77

1 Functions — By Category

fgetl Read line from file, discarding
newline character

fgets Read line from file, keeping newline
character

fopen Open file, or obtain information
about open files

fprintf Write formatted data to file

fread Read binary data from file

frewind Move file position indicator to
beginning of open file

fscanf Read formatted data from file

fseek Set file position indicator

ftell File position indicator

fwrite Write binary data to file

Text Files

csvread Read comma-separated value file

csvwrite Write comma-separated value file

dlmread Read ASCII-delimited file of numeric
data into matrix

dlmwrite Write matrix to ASCII-delimited file

textread Read data from text file; write to
multiple outputs

textscan Read formatted data from text file
or string

1-78

File I/O

XML Documents

xmlread Parse XML document and return
Document Object Model node

xmlwrite Serialize XML Document Object
Model node

xslt Transform XML document using
XSLT engine

Spreadsheets

Microsoft Excel Functions (p. 1-79) Read and write Microsoft Excel
spreadsheet

Lotus 1-2-3 Functions (p. 1-79) Read and write Lotus WK1
spreadsheet

Microsoft Excel Functions

xlsfinfo Determine whether file contains
Microsoft Excel (.xls) spreadsheet

xlsread Read Microsoft Excel spreadsheet
file (.xls)

xlswrite Write Microsoft Excel spreadsheet
file (.xls)

Lotus 1-2-3 Functions

wk1finfo Determine whether file contains
1-2-3 WK1 worksheet

wk1read Read Lotus 1-2-3 WK1 spreadsheet
file into matrix

wk1write Write matrix to Lotus 1-2-3 WK1
spreadsheet file

1-79

1 Functions — By Category

Scientific Data

Common Data Format (CDF)
(p. 1-80)

Work with CDF files

Flexible Image Transport System
(p. 1-80)

Work with FITS files

Hierarchical Data Format (HDF)
(p. 1-81)

Work with HDF files

Band-Interleaved Data (p. 1-81) Work with band-interleaved files

Common Data Format (CDF)

cdfepoch Construct cdfepoch object for
Common Data Format (CDF) export

cdfinfo Information about Common Data
Format (CDF) file

cdfread Read data from Common Data
Format (CDF) file

cdfwrite Write data to Common Data Format
(CDF) file

todatenum Convert CDF epoch object to
MATLAB datenum

Flexible Image Transport System

fitsinfo Information about FITS file

fitsread Read data from FITS file

1-80

File I/O

Hierarchical Data Format (HDF)

hdf Summary of MATLAB HDF4
capabilities

hdf5 Summary of MATLAB HDF5
capabilities

hdf5info Information about HDF5 file

hdf5read Read HDF5 file

hdf5write Write data to file in HDF5 format

hdfinfo Information about HDF4 or
HDF-EOS file

hdfread Read data from HDF4 or HDF-EOS
file

hdftool Browse and import data from HDF4
or HDF-EOS files

Band-Interleaved Data

multibandread Read band-interleaved data from
binary file

multibandwrite Write band-interleaved data to file

Audio and Audio/Video

General (p. 1-82) Create audio player object, obtain
information about multimedia files,
convert to/from audio signal

SPARCstation-Specific Sound
Functions (p. 1-82)

Access NeXT/SUN (.au) sound files

1-81

1 Functions — By Category

Microsoft WAVE Sound Functions
(p. 1-83)

Access Microsoft WAVE (.wav) sound
files

Audio/Video Interleaved (AVI)
Functions (p. 1-83)

Access Audio/Video interleaved
(.avi) sound files

General

audioplayer Create audio player object

audiorecorder Create audio recorder object

beep Produce beep sound

lin2mu Convert linear audio signal to
mu-law

mmfileinfo Information about multimedia file

mmreader Create multimedia reader object for
reading video files

mu2lin Convert mu-law audio signal to
linear

read Read video frame data from
multimedia reader object

sound Convert vector into sound

soundsc Scale data and play as sound

SPARCstation-Specific Sound Functions

aufinfo Information about NeXT/SUN (.au)
sound file

auread Read NeXT/SUN (.au) sound file

auwrite Write NeXT/SUN (.au) sound file

1-82

File I/O

Microsoft WAVE Sound Functions

wavfinfo Information about Microsoft WAVE
(.wav) sound file

wavplay Play recorded sound on PC-based
audio output device

wavread Read Microsoft WAVE (.wav) sound
file

wavrecord Record sound using PC-based audio
input device

wavwrite Write Microsoft WAVE (.wav) sound
file

Audio/Video Interleaved (AVI) Functions

addframe Add frame to Audio/Video
Interleaved (AVI) file

avifile Create new Audio/Video Interleaved
(AVI) file

aviinfo Information about Audio/Video
Interleaved (AVI) file

aviread Read Audio/Video Interleaved (AVI)
file

close (avifile) Close Audio/Video Interleaved (AVI)
file

movie2avi Create Audio/Video Interleaved
(AVI) movie from MATLAB movie

Images

exifread Read EXIF information from JPEG
and TIFF image files

im2java Convert image to Java image

1-83

1 Functions — By Category

imfinfo Information about graphics file

imread Read image from graphics file

imwrite Write image to graphics file

Internet Exchange

URL, Zip, Tar, E-Mail (p. 1-84) Send e-mail, read from given URL,
extract from tar or zip file, compress
and decompress files

FTP Functions (p. 1-84) Connect to FTP server, download
from server, manage FTP files, close
server connection

URL, Zip, Tar, E-Mail

gunzip Uncompress GNU zip files

gzip Compress files into GNU zip files

sendmail Send e-mail message to address list

tar Compress files into tar file

untar Extract contents of tar file

unzip Extract contents of zip file

urlread Read content at URL

urlwrite Save contents of URL to file

zip Compress files into zip file

FTP Functions

ascii Set FTP transfer type to ASCII

binary Set FTP transfer type to binary

1-84

File I/O

cd (ftp) Change current directory on FTP
server

close (ftp) Close connection to FTP server

delete (ftp) Remove file on FTP server

dir (ftp) Directory contents on FTP server

ftp Connect to FTP server, creating FTP
object

mget Download file from FTP server

mkdir (ftp) Create new directory on FTP server

mput Upload file or directory to FTP server

rename Rename file on FTP server

rmdir (ftp) Remove directory on FTP server

1-85

1 Functions — By Category

Graphics

Basic Plots and Graphs (p. 1-86) Linear line plots, log and semilog
plots

Plotting Tools (p. 1-87) GUIs for interacting with plots

Annotating Plots (p. 1-87) Functions for and properties of titles,
axes labels, legends, mathematical
symbols

Specialized Plotting (p. 1-88) Bar graphs, histograms, pie charts,
contour plots, function plotters

Bit-Mapped Images (p. 1-92) Display image object, read and
write graphics file, convert to movie
frames

Printing (p. 1-92) Printing and exporting figures to
standard formats

Handle Graphics (p. 1-93) Creating graphics objects, setting
properties, finding handles

Basic Plots and Graphs

box Axes border

errorbar Plot error bars along curve

hold Retain current graph in figure

LineSpec Line specification string syntax

loglog Log-log scale plot

plot 2-D line plot

plot3 3-D line plot

plotyy 2-D line plots with y-axes on both
left and right side

polar Polar coordinate plot

1-86

Graphics

semilogx, semilogy Semilogarithmic plots

subplot Create axes in tiled positions

Plotting Tools

figurepalette Show or hide figure palette

pan Pan view of graph interactively

plotbrowser Show or hide figure plot browser

plotedit Interactively edit and annotate plots

plottools Show or hide plot tools

propertyeditor Show or hide property editor

rotate3d Rotate 3-D view using mouse

showplottool Show or hide figure plot tool

zoom Turn zooming on or off or magnify
by factor

Annotating Plots

annotation Create annotation objects

clabel Contour plot elevation labels

datacursormode Enable or disable interactive data
cursor mode

datetick Date formatted tick labels

gtext Mouse placement of text in 2-D view

legend Graph legend for lines and patches

line Create line object

rectangle Create 2-D rectangle object

texlabel Produce TeX format from character
string

1-87

1 Functions — By Category

title Add title to current axes

xlabel, ylabel, zlabel Label x-, y-, and z-axis

Specialized Plotting

Area, Bar, and Pie Plots (p. 1-88) 1-D, 2-D, and 3-D graphs and charts

Contour Plots (p. 1-89) Unfilled and filled contours in 2-D
and 3-D

Direction and Velocity Plots (p. 1-89) Comet, compass, feather and quiver
plots

Discrete Data Plots (p. 1-89) Stair, step, and stem plots

Function Plots (p. 1-89) Easy-to-use plotting utilities for
graphing functions

Histograms (p. 1-90) Plots for showing distributions of
data

Polygons and Surfaces (p. 1-90) Functions to generate and plot
surface patches in two or more
dimensions

Scatter/Bubble Plots (p. 1-91) Plots of point distributions

Animation (p. 1-91) Functions to create and play movies
of plots

Area, Bar, and Pie Plots

area Filled area 2-D plot

bar, barh Plot bar graph (vertical and
horizontal)

bar3, bar3h Plot 3-D bar chart

pareto Pareto chart

pie Pie chart

pie3 3-D pie chart

1-88

Graphics

Contour Plots

contour Contour plot of matrix

contour3 3-D contour plot

contourc Low-level contour plot computation

contourf Filled 2-D contour plot

ezcontour Easy-to-use contour plotter

ezcontourf Easy-to-use filled contour plotter

Direction and Velocity Plots

comet 2-D comet plot

comet3 3-D comet plot

compass Plot arrows emanating from origin

feather Plot velocity vectors

quiver Quiver or velocity plot

quiver3 3-D quiver or velocity plot

Discrete Data Plots

stairs Stairstep graph

stem Plot discrete sequence data

stem3 Plot 3-D discrete sequence data

Function Plots

ezcontour Easy-to-use contour plotter

ezcontourf Easy-to-use filled contour plotter

ezmesh Easy-to-use 3-D mesh plotter

1-89

1 Functions — By Category

ezmeshc Easy-to-use combination
mesh/contour plotter

ezplot Easy-to-use function plotter

ezplot3 Easy-to-use 3-D parametric curve
plotter

ezpolar Easy-to-use polar coordinate plotter

ezsurf Easy-to-use 3-D colored surface
plotter

ezsurfc Easy-to-use combination
surface/contour plotter

fplot Plot function between specified
limits

Histograms

hist Histogram plot

histc Histogram count

rose Angle histogram plot

Polygons and Surfaces

convhull Convex hull

cylinder Generate cylinder

delaunay Delaunay triangulation

delaunay3 3-D Delaunay tessellation

delaunayn N-D Delaunay tessellation

dsearch Search Delaunay triangulation for
nearest point

dsearchn N-D nearest point search

ellipsoid Generate ellipsoid

1-90

Graphics

fill Filled 2-D polygons

fill3 Filled 3-D polygons

inpolygon Points inside polygonal region

pcolor Pseudocolor (checkerboard) plot

polyarea Area of polygon

rectint Rectangle intersection area

ribbon Ribbon plot

slice Volumetric slice plot

sphere Generate sphere

tsearch Search for enclosing Delaunay
triangle

tsearchn N-D closest simplex search

voronoi Voronoi diagram

waterfall Waterfall plot

Scatter/Bubble Plots

plotmatrix Scatter plot matrix

scatter Scatter plot

scatter3 3-D scatter plot

Animation

frame2im Convert movie frame to indexed
image

getframe Capture movie frame

im2frame Convert image to movie frame

1-91

1 Functions — By Category

movie Play recorded movie frames

noanimate Change EraseMode of all objects to
normal

Bit-Mapped Images

frame2im Convert movie frame to indexed
image

im2frame Convert image to movie frame

im2java Convert image to Java image

image Display image object

imagesc Scale data and display image object

imfinfo Information about graphics file

imformats Manage image file format registry

imread Read image from graphics file

imwrite Write image to graphics file

ind2rgb Convert indexed image to RGB
image

Printing

frameedit Edit print frames for Simulink and
Stateflow block diagrams

hgexport Export figure

orient Hardcopy paper orientation

print, printopt Print figure or save to file and
configure printer defaults

printdlg Print dialog box

1-92

Graphics

printpreview Preview figure to print

saveas Save figure or Simulink block
diagram using specified format

Handle Graphics

Finding and Identifying Graphics
Objects (p. 1-93)

Find and manipulate graphics
objects via their handles

Object Creation Functions (p. 1-94) Constructors for core graphics
objects

Plot Objects (p. 1-94) Property descriptions for plot objects

Figure Windows (p. 1-95) Control and save figures

Axes Operations (p. 1-96) Operate on axes objects

Operating on Object Properties
(p. 1-96)

Query, set, and link object properties

Finding and Identifying Graphics Objects

allchild Find all children of specified objects

ancestor Ancestor of graphics object

copyobj Copy graphics objects and their
descendants

delete Remove files or graphics objects

findall Find all graphics objects

findfigs Find visible offscreen figures

findobj Locate graphics objects with specific
properties

gca Current axes handle

gcbf Handle of figure containing object
whose callback is executing

1-93

1 Functions — By Category

gcbo Handle of object whose callback is
executing

gco Handle of current object

get Query object properties

ishandle Is object handle valid

propedit Open Property Editor

set Set object properties

Object Creation Functions

axes Create axes graphics object

figure Create figure graphics object

hggroup Create hggroup object

hgtransform Create hgtransform graphics object

image Display image object

light Create light object

line Create line object

patch Create patch graphics object

rectangle Create 2-D rectangle object

root object Root object properties

surface Create surface object

text Create text object in current axes

uicontextmenu Create context menu

Plot Objects

Annotation Arrow Properties Define annotation arrow properties

Annotation Doublearrow Properties Define annotation doublearrow
properties

1-94

Graphics

Annotation Ellipse Properties Define annotation ellipse properties

Annotation Line Properties Define annotation line properties

Annotation Rectangle Properties Define annotation rectangle
properties

Annotation Textarrow Properties Define annotation textarrow
properties

Annotation Textbox Properties Define annotation textbox properties

Areaseries Properties Define areaseries properties

Barseries Properties Define barseries properties

Contourgroup Properties Define contourgroup properties

Errorbarseries Properties Define errorbarseries properties

Image Properties Define image properties

Lineseries Properties Define lineseries properties

Quivergroup Properties Define quivergroup properties

Scattergroup Properties Define scattergroup properties

Stairseries Properties Define stairseries properties

Stemseries Properties Define stemseries properties

Surfaceplot Properties Define surfaceplot properties

Figure Windows

clf Clear current figure window

close Remove specified figure

closereq Default figure close request function

drawnow Flushes event queue and updates
figure window

gcf Current figure handle

hgload Load Handle Graphics object
hierarchy from file

1-95

1 Functions — By Category

hgsave Save Handle Graphics object
hierarchy to file

newplot Determine where to draw graphics
objects

opengl Control OpenGL rendering

refresh Redraw current figure

saveas Save figure or Simulink block
diagram using specified format

Axes Operations

axis Axis scaling and appearance

box Axes border

cla Clear current axes

gca Current axes handle

grid Grid lines for 2-D and 3-D plots

ishold Current hold state

makehgtform Create 4-by-4 transform matrix

Operating on Object Properties

get Query object properties

linkaxes Synchronize limits of specified 2-D
axes

linkprop Keep same value for corresponding
properties

refreshdata Refresh data in graph when data
source is specified

set Set object properties

1-96

3-D Visualization

3-D Visualization

Surface and Mesh Plots (p. 1-97) Plot matrices, visualize functions of
two variables, specify colormap

View Control (p. 1-99) Control the camera viewpoint,
zooming, rotation, aspect ratio, set
axis limits

Lighting (p. 1-101) Add and control scene lighting

Transparency (p. 1-101) Specify and control object
transparency

Volume Visualization (p. 1-102) Visualize gridded volume data

Surface and Mesh Plots

Creating Surfaces and Meshes
(p. 1-97)

Visualizing gridded and triangulated
data as lines and surfaces

Domain Generation (p. 1-98) Gridding data and creating arrays

Color Operations (p. 1-98) Specifying, converting, and
manipulating color spaces,
colormaps, colorbars, and
backgrounds

Colormaps (p. 1-99) Built-in colormaps you can use

Creating Surfaces and Meshes

hidden Remove hidden lines from mesh plot

mesh, meshc, meshz Mesh plots

peaks Example function of two variables

surf, surfc 3-D shaded surface plot

surface Create surface object

surfl Surface plot with colormap-based
lighting

1-97

1 Functions — By Category

tetramesh Tetrahedron mesh plot

trimesh Triangular mesh plot

triplot 2-D triangular plot

trisurf Triangular surface plot

Domain Generation

griddata Data gridding

meshgrid Generate X and Y arrays for 3-D plots

Color Operations

brighten Brighten or darken colormap

caxis Color axis scaling

colorbar Colorbar showing color scale

colordef Set default property values to
display different color schemes

colormap Set and get current colormap

colormapeditor Start colormap editor

ColorSpec Color specification

graymon Set default figure properties for
grayscale monitors

hsv2rgb Convert HSV colormap to RGB
colormap

rgb2hsv Convert RGB colormap to HSV
colormap

rgbplot Plot colormap

shading Set color shading properties

spinmap Spin colormap

1-98

3-D Visualization

surfnorm Compute and display 3-D surface
normals

whitebg Change axes background color

Colormaps

contrast Grayscale colormap for contrast
enhancement

View Control

Controlling the Camera Viewpoint
(p. 1-99)

Orbiting, dollying, pointing, rotating
camera positions and setting fields
of view

Setting the Aspect Ratio and Axis
Limits (p. 1-100)

Specifying what portions of axes to
view and how to scale them

Object Manipulation (p. 1-100) Panning, rotating, and zooming
views

Selecting Region of Interest (p. 1-101) Interactively identifying rectangular
regions

Controlling the Camera Viewpoint

camdolly Move camera position and target

cameratoolbar Control camera toolbar
programmatically

camlookat Position camera to view object or
group of objects

camorbit Rotate camera position around
camera target

campan Rotate camera target around camera
position

1-99

1 Functions — By Category

campos Set or query camera position

camproj Set or query projection type

camroll Rotate camera about view axis

camtarget Set or query location of camera
target

camup Set or query camera up vector

camva Set or query camera view angle

camzoom Zoom in and out on scene

makehgtform Create 4-by-4 transform matrix

view Viewpoint specification

viewmtx View transformation matrices

Setting the Aspect Ratio and Axis Limits

daspect Set or query axes data aspect ratio

pbaspect Set or query plot box aspect ratio

xlim, ylim, zlim Set or query axis limits

Object Manipulation

pan Pan view of graph interactively

reset Reset graphics object properties to
their defaults

rotate Rotate object in specified direction

rotate3d Rotate 3-D view using mouse

selectmoveresize Select, move, resize, or copy axes and
uicontrol graphics objects

zoom Turn zooming on or off or magnify
by factor

1-100

3-D Visualization

Selecting Region of Interest

dragrect Drag rectangles with mouse

rbbox Create rubberband box for area
selection

Lighting

camlight Create or move light object in camera
coordinates

diffuse Calculate diffuse reflectance

light Create light object

lightangle Create or position light object in
spherical coordinates

lighting Specify lighting algorithm

material Control reflectance properties of
surfaces and patches

specular Calculate specular reflectance

Transparency

alim Set or query axes alpha limits

alpha Set transparency properties for
objects in current axes

alphamap Specify figure alphamap
(transparency)

1-101

1 Functions — By Category

Volume Visualization

coneplot Plot velocity vectors as cones in 3-D
vector field

contourslice Draw contours in volume slice planes

curl Compute curl and angular velocity
of vector field

divergence Compute divergence of vector field

flow Simple function of three variables

interpstreamspeed Interpolate stream-line vertices from
flow speed

isocaps Compute isosurface end-cap
geometry

isocolors Calculate isosurface and patch colors

isonormals Compute normals of isosurface
vertices

isosurface Extract isosurface data from volume
data

reducepatch Reduce number of patch faces

reducevolume Reduce number of elements in
volume data set

shrinkfaces Reduce size of patch faces

slice Volumetric slice plot

smooth3 Smooth 3-D data

stream2 Compute 2-D streamline data

stream3 Compute 3-D streamline data

streamline Plot streamlines from 2-D or 3-D
vector data

streamparticles Plot stream particles

streamribbon 3-D stream ribbon plot from vector
volume data

1-102

3-D Visualization

streamslice Plot streamlines in slice planes

streamtube Create 3-D stream tube plot

subvolume Extract subset of volume data set

surf2patch Convert surface data to patch data

volumebounds Coordinate and color limits for
volume data

1-103

1 Functions — By Category

Creating Graphical User Interfaces

Predefined Dialog Boxes (p. 1-104) Dialog boxes for error, user input,
waiting, etc.

Deploying User Interfaces (p. 1-105) Launch GUIs, create the handles
structure

Developing User Interfaces (p. 1-105) Start GUIDE, manage application
data, get user input

User Interface Objects (p. 1-106) Create GUI components

Finding Objects from Callbacks
(p. 1-107)

Find object handles from within
callbacks functions

GUI Utility Functions (p. 1-107) Move objects, wrap text

Controlling Program Execution
(p. 1-108)

Wait and resume based on user input

Predefined Dialog Boxes

dialog Create and display dialog box

errordlg Create and open error dialog box

export2wsdlg Export variables to workspace

helpdlg Create and open help dialog box

inputdlg Create and open input dialog box

listdlg Create and open list-selection dialog
box

msgbox Create and open message box

printdlg Print dialog box

printpreview Preview figure to print

questdlg Create and open question dialog box

uigetdir Open standard dialog box for
selecting a directory

1-104

Creating Graphical User Interfaces

uigetfile Open standard dialog box for
retrieving files

uigetpref Open dialog box for retrieving
preferences

uiopen Open file selection dialog box with
appropriate file filters

uiputfile Open standard dialog box for saving
files

uisave Open standard dialog box for saving
workspace variables

uisetcolor Open standard dialog box for setting
object’s ColorSpec

uisetfont Open standard dialog box for setting
object’s font characteristics

waitbar Open waitbar

warndlg Open warning dialog box

Deploying User Interfaces

guidata Store or retrieve GUI data

guihandles Create structure of handles

movegui Move GUI figure to specified location
on screen

openfig Open new copy or raise existing copy
of saved figure

Developing User Interfaces

addpref Add preference

getappdata Value of application-defined data

getpref Preference

1-105

1 Functions — By Category

ginput Graphical input from mouse or
cursor

guidata Store or retrieve GUI data

guide Open GUI Layout Editor

inspect Open Property Inspector

isappdata True if application-defined data
exists

ispref Test for existence of preference

rmappdata Remove application-defined data

rmpref Remove preference

setappdata Specify application-defined data

setpref Set preference

uigetpref Open dialog box for retrieving
preferences

uisetpref Manage preferences used in
uigetpref

waitfor Wait for condition before resuming
execution

waitforbuttonpress Wait for key press or mouse-button
click

User Interface Objects

menu Generate menu of choices for user
input

uibuttongroup Create container object to exclusively
manage radio buttons and toggle
buttons

uicontextmenu Create context menu

uicontrol Create user interface control object

1-106

Creating Graphical User Interfaces

uimenu Create menus on figure windows

uipanel Create panel container object

uipushtool Create push button on toolbar

uitoggletool Create toggle button on toolbar

uitoolbar Create toolbar on figure

Finding Objects from Callbacks

findall Find all graphics objects

findfigs Find visible offscreen figures

findobj Locate graphics objects with specific
properties

gcbf Handle of figure containing object
whose callback is executing

gcbo Handle of object whose callback is
executing

GUI Utility Functions

align Align user interface controls
(uicontrols) and axes

getpixelposition Get component position in pixels

listfonts List available system fonts

selectmoveresize Select, move, resize, or copy axes and
uicontrol graphics objects

setpixelposition Set component position in pixels

textwrap Wrapped string matrix for given
uicontrol

uistack Reorder visual stacking order of
objects

1-107

1 Functions — By Category

Controlling Program Execution

uiresume, uiwait Control program execution

1-108

External Interfaces

External Interfaces

Dynamic Link Libraries (p. 1-109) Access functions stored in external
shared library (.dll) files

Java (p. 1-110) Work with objects constructed from
Java API and third-party class
packages

Component Object Model and
ActiveX (p. 1-111)

Integrate COM components into
your application

Web Services (p. 1-113) Communicate between applications
over a network using SOAP and
WSDL

Serial Port Devices (p. 1-113) Read and write to devices connected
to your computer’s serial port

See also MATLAB C and Fortran API Reference for functions you can use
in external routines that interact with MATLAB programs and the data in
MATLAB workspaces.

Dynamic Link Libraries

calllib Call function in external library

libfunctions Information on functions in external
library

libfunctionsview Create window displaying
information on functions in external
library

libisloaded Determine whether external library
is loaded

libpointer Create pointer object for use with
external libraries

libstruct Construct structure as defined in
external library

1-109

1 Functions — By Category

loadlibrary Load external library into MATLAB

unloadlibrary Unload external library from
memory

Java

class Create object or return class of object

fieldnames Field names of structure, or public
fields of object

import Add package or class to current Java
import list

inspect Open Property Inspector

isa Determine whether input is object
of given class

isjava Determine whether input is Java
object

ismethod Determine whether input is object
method

isprop Determine whether input is object
property

javaaddpath Add entries to dynamic Java class
path

javaArray Construct Java array

javachk Generate error message based on
Java feature support

javaclasspath Set and get dynamic Java class path

javaMethod Invoke Java method

javaObject Construct Java object

javarmpath Remove entries from dynamic Java
class path

methods Information on class methods

1-110

External Interfaces

methodsview Information on class methods in
separate window

usejava Determine whether Java feature is
supported in MATLAB

Component Object Model and ActiveX

actxcontrol Create ActiveX control in figure
window

actxcontrollist List all currently installed ActiveX
controls

actxcontrolselect Open GUI to create ActiveX control

actxGetRunningServer Get handle to running instance of
Automation server

actxserver Create COM server

addproperty Add custom property to object

class Create object or return class of object

delete (COM) Remove COM control or server

deleteproperty Remove custom property from object

enableservice Enable, disable, or report status of
Automation server

eventlisteners List of events attached to listeners

events List of events control can trigger

Execute Execute MATLAB command in
server

Feval (COM) Evaluate MATLAB function in
server

fieldnames Field names of structure, or public
fields of object

get (COM) Get property value from interface, or
display properties

1-111

1 Functions — By Category

GetCharArray Get character array from server

GetFullMatrix Get matrix from server

GetVariable Get data from variable in server
workspace

GetWorkspaceData Get data from server workspace

inspect Open Property Inspector

interfaces List custom interfaces to COM server

invoke Invoke method on object or interface,
or display methods

isa Determine whether input is object
of given class

iscom Is input COM object

isevent Is input event

isinterface Is input COM interface

ismethod Determine whether input is object
method

isprop Determine whether input is object
property

load (COM) Initialize control object from file

MaximizeCommandWindow Open server window on Windows
desktop

methods Information on class methods

methodsview Information on class methods in
separate window

MinimizeCommandWindow Minimize size of server window

move Move or resize control in parent
window

propedit (COM) Open built-in property page for
control

PutCharArray Store character array in server

1-112

External Interfaces

PutFullMatrix Store matrix in server

PutWorkspaceData Store data in server workspace

Quit (COM) Terminate MATLAB server

registerevent Register event handler with control’s
event

release Release interface

save (COM) Serialize control object to file

set (COM) Set object or interface property to
specified value

unregisterallevents Unregister all events for control

unregisterevent Unregister event handler with
control’s event

Web Services

callSoapService Send SOAP message off to endpoint

createClassFromWsdl Create MATLAB object based on
WSDL file

createSoapMessage Create SOAP message to send to
server

parseSoapResponse Convert response string from SOAP
server into MATLAB data types

Serial Port Devices

clear (serial) Remove serial port object from
MATLAB workspace

delete (serial) Remove serial port object from
memory

disp (serial) Serial port object summary
information

1-113

1 Functions — By Category

fclose (serial) Disconnect serial port object from
device

fgetl (serial) Read line of text from device and
discard terminator

fgets (serial) Read line of text from device and
include terminator

fopen (serial) Connect serial port object to device

fprintf (serial) Write text to device

fread (serial) Read binary data from device

fscanf (serial) Read data from device, and format
as text

fwrite (serial) Write binary data to device

get (serial) Serial port object properties

instrcallback Event information when event
occurs

instrfind Read serial port objects from memory
to MATLAB workspace

instrfindall Find visible and hidden serial port
objects

isvalid (serial) Determine whether serial port
objects are valid

length (serial) Length of serial port object array

load (serial) Load serial port objects and variables
into MATLAB workspace

readasync Read data asynchronously from
device

record Record data and event information
to file

save (serial) Save serial port objects and variables
to MAT-file

serial Create serial port object

1-114

External Interfaces

serialbreak Send break to device connected to
serial port

set (serial) Configure or display serial port
object properties

size (serial) Size of serial port object array

stopasync Stop asynchronous read and write
operations

1-115

1 Functions — By Category

1-116

2

Functions — Alphabetical
List

Arithmetic Operators + - * / \ ^ ’
Relational Operators < > <= >= == ~=
Logical Operators: Elementwise & | ~
Logical Operators: Short-circuit && ||
Special Characters [] () {} = ’ , ; : % ! @
colon (:)
abs
accumarray
acos
acosd
acosh
acot
acotd
acoth
acsc
acscd
acsch
actxcontrol
actxcontrollist
actxcontrolselect
actxGetRunningServer
actxserver
addCause (MException)
addevent
addframe
addOptional (inputParser)

2 Functions — Alphabetical List

addParamValue (inputParser)
addpath
addpref
addproperty
addRequired (inputParser)
addsample
addsampletocollection
addtodate
addts
airy
align
alim
all
allchild
alpha
alphamap
amd
ancestor
and
angle
annotation
Annotation Arrow Properties
Annotation Doublearrow Properties
Annotation Ellipse Properties
Annotation Line Properties
Annotation Rectangle Properties
Annotation Textarrow Properties
Annotation Textbox Properties
ans
any
area
Areaseries Properties
arrayfun
ascii
asec
asecd
asech

2-2

asin
asind
asinh
assert
assignin
atan
atan2
atand
atanh
audioplayer
audiorecorder
aufinfo
auread
auwrite
avifile
aviinfo
aviread
axes
Axes Properties
axis
balance
bar, barh
bar3, bar3h
Barseries Properties
base2dec
beep
besselh
besseli
besselj
besselk
bessely
beta
betainc
betaln
bicg
bicgstab
bin2dec

2-3

2 Functions — Alphabetical List

binary
bitand
bitcmp
bitget
bitmax
bitor
bitset
bitshift
bitxor
blanks
blkdiag
box
break
brighten
builddocsearchdb
builtin
bsxfun
bvp4c
bvp5c
bvpget
bvpinit
bvpset
bvpxtend
calendar
calllib
callSoapService
camdolly
cameratoolbar
camlight
camlookat
camorbit
campan
campos
camproj
camroll
camtarget
camup

2-4

camva
camzoom
cart2pol
cart2sph
case
cast
cat
catch
caxis
cd
cd (ftp)
cdf2rdf
cdfepoch
cdfinfo
cdfread
cdfwrite
ceil
cell
cell2mat
cell2struct
celldisp
cellfun
cellplot
cellstr
cgs
char
checkin
checkout
chol
cholinc
cholupdate
circshift
cla
clabel
class
clc
clear

2-5

2 Functions — Alphabetical List

clear (serial)
clf
clipboard
clock
close
close (avifile)
close (ftp)
closereq
cmopts
colamd
colmmd
colorbar
colordef
colormap
colormapeditor
ColorSpec
colperm
comet
comet3
commandhistory
commandwindow
compan
compass
complex
computer
cond
condeig
condest
coneplot
conj
continue
contour
contour3
contourc
contourf
Contourgroup Properties
contourslice

2-6

contrast
conv
conv2
convhull
convhulln
convn
copyfile
copyobj
corrcoef
cos
cosd
cosh
cot
cotd
coth
cov
cplxpair
cputime
createClassFromWsdl
createCopy (inputParser)
createSoapMessage
cross
csc
cscd
csch
csvread
csvwrite
ctranspose (timeseries)
cumprod
cumsum
cumtrapz
curl
customverctrl
cylinder
daqread
daspect
datacursormode

2-7

2 Functions — Alphabetical List

datatipinfo
date
datenum
datestr
datetick
datevec
dbclear
dbcont
dbdown
dblquad
dbmex
dbquit
dbstack
dbstatus
dbstep
dbstop
dbtype
dbup
dde23
ddeadv
ddeexec
ddeget
ddeinit
ddepoke
ddereq
ddesd
ddeset
ddeterm
ddeunadv
deal
deblank
debug
dec2base
dec2bin
dec2hex
decic
deconv

2-8

del2
delaunay
delaunay3
delaunayn
delete
delete (COM)
delete (ftp)
delete (serial)
delete (timer)
deleteproperty
delevent
delsample
delsamplefromcollection
demo
depdir
depfun
det
detrend
detrend (timeseries)
deval
diag
dialog
diary
diff
diffuse
dir
dir (ftp)
disp
disp (memmapfile)
disp (MException)
disp (serial)
disp (timer)
display
divergence
dlmread
dlmwrite
dmperm

2-9

2 Functions — Alphabetical List

doc
docopt
docsearch
dos
dot
double
dragrect
drawnow
dsearch
dsearchn
echo
echodemo
edit
eig
eigs
ellipj
ellipke
ellipsoid
else
elseif
enableservice
end
eomday
eps
eq
eq (MException)
erf, erfc, erfcx, erfinv, erfcinv
error
errorbar
Errorbarseries Properties
errordlg
etime
etree
etreeplot
eval
evalc
evalin

2-10

eventlisteners
events
Execute
exifread
exist
exit
exp
expint
expm
expm1
export2wsdlg
eye
ezcontour
ezcontourf
ezmesh
ezmeshc
ezplot
ezplot3
ezpolar
ezsurf
ezsurfc
factor
factorial
false
fclose
fclose (serial)
feather
feof
ferror
feval
Feval (COM)
fft
fft2
fftn
fftshift
fftw
fgetl

2-11

2 Functions — Alphabetical List

fgetl (serial)
fgets
fgets (serial)
fieldnames
figure
Figure Properties
figurepalette
fileattrib
filebrowser
File Formats
filemarker
fileparts
filehandle
filesep
fill
fill3
filter
filter (timeseries)
filter2
find
findall
findfigs
findobj
findstr
finish
fitsinfo
fitsread
fix
flipdim
fliplr
flipud
floor
flops
flow
fminbnd
fminsearch
fopen

2-12

fopen (serial)
for
format
fplot
fprintf
fprintf (serial)
frame2im
frameedit
fread
fread (serial)
freqspace
frewind
fscanf
fscanf (serial)
fseek
ftell
ftp
full
fullfile
func2str
function
function_handle (@)
functions
funm
fwrite
fwrite (serial)
fzero
gallery
gamma, gammainc, gammaln
gca
gcbf
gcbo
gcd
gcf
gco
ge
genpath

2-13

2 Functions — Alphabetical List

genvarname
get
get (COM)
get (memmapfile)
get (serial)
get (timer)
get (timeseries)
get (tscollection)
getabstime (timeseries)
getabstime (tscollection)
getappdata
GetCharArray
getdatasamplesize
getenv
getfield
getframe
GetFullMatrix
getinterpmethod
getpixelposition
getpref
getqualitydesc
getReport (MException)
getsampleusingtime (timeseries)
getsampleusingtime (tscollection)
gettimeseriesnames
gettsafteratevent
gettsafterevent
gettsatevent
gettsbeforeatevent
gettsbeforeevent
gettsbetweenevents
GetVariable
GetWorkspaceData
ginput
global
gmres
gplot

2-14

grabcode
gradient
graymon
grid
griddata
griddata3
griddatan
gsvd
gt
gtext
guidata
guide
guihandles
gunzip
gzip
hadamard
hankel
hdf
hdf5
hdf5info
hdf5read
hdf5write
hdfinfo
hdfread
hdftool
help
helpbrowser
helpdesk
helpdlg
helpwin
hess
hex2dec
hex2num
hgexport
hggroup
Hggroup Properties
hgload

2-15

2 Functions — Alphabetical List

hgsave
hgtransform
Hgtransform Properties
hidden
hilb
hist
histc
hold
home
horzcat
horzcat (tscollection)
hostid
hsv2rgb
hypot
i
idealfilter (timeseries)
idivide
if
ifft
ifft2
ifftn
ifftshift
ilu
im2frame
im2java
imag
image
Image Properties
imagesc
imfinfo
imformats
import
importdata
imread
imwrite
ind2rgb
ind2sub

2-16

Inf
inferiorto
info
inline
inmem
inpolygon
input
inputdlg
inputname
inputParser
inspect
instrcallback
instrfind
instrfindall
int2str
int8, int16, int32, int64
interfaces
interp1
interp1q
interp2
interp3
interpft
interpn
interpstreamspeed
intersect
intmax
intmin
intwarning
inv
invhilb
invoke
ipermute
iqr (timeseries)
is*
isa
isappdata
iscell

2-17

2 Functions — Alphabetical List

iscellstr
ischar
iscom
isdir
isempty
isempty (timeseries)
isempty (tscollection)
isequal
isequal (MException)
isequalwithequalnans
isevent
isfield
isfinite
isfloat
isglobal
ishandle
ishold
isinf
isinteger
isinterface
isjava
iskeyword
isletter
islogical
ismac
ismember
ismethod
isnan
isnumeric
isobject
isocaps
isocolors
isonormals
isosurface
ispc
ispref
isprime

2-18

isprop
isreal
isscalar
issorted
isspace
issparse
isstr
isstrprop
isstruct
isstudent
isunix
isvalid (serial)
isvalid (timer)
isvarname
isvector
j
javaaddpath
javaArray
javachk
javaclasspath
javaMethod
javaObject
javarmpath
keyboard
kron
last (MException)
lasterr
lasterror
lastwarn
lcm
ldl
ldivide, rdivide
le
legend
legendre
length
length (serial)

2-19

2 Functions — Alphabetical List

length (timeseries)
length (tscollection)
libfunctions
libfunctionsview
libisloaded
libpointer
libstruct
license
light
Light Properties
lightangle
lighting
lin2mu
line
Line Properties
Lineseries Properties
LineSpec
linkaxes
linkprop
linsolve
linspace
listdlg
listfonts
load
load (COM)
load (serial)
loadlibrary
loadobj
log
log10
log1p
log2
logical
loglog
logm
logspace
lookfor

2-20

lower
ls
lscov
lsqnonneg
lsqr
lt
lu
luinc
magic
makehgtform
mat2cell
mat2str
material
matlabcolon (matlab:)
matlabrc
matlabroot
matlab (UNIX)
matlab (Windows)
max
max (timeseries)
MaximizeCommandWindow
maxNumCompThreads
mean
mean (timeseries)
median
median (timeseries)
memmapfile
memory
MException
menu
mesh, meshc, meshz
meshgrid
methods
methodsview
mex
mexext
mfilename

2-21

2 Functions — Alphabetical List

mget
min
min (timeseries)
MinimizeCommandWindow
minres
mislocked
mkdir
mkdir (ftp)
mkpp
mldivide \, mrdivide /
mlint
mlintrpt
mlock
mmfileinfo
mmreader
mod
mode
more
move
movefile
movegui
movie
movie2avi
mput
msgbox
mtimes
mu2lin
multibandread
multibandwrite
munlock
namelengthmax
NaN
nargchk
nargin, nargout
nargoutchk
native2unicode
nchoosek

2-22

ndgrid
ndims
ne
ne (MException)
newplot
nextpow2
nnz
noanimate
nonzeros
norm
normest
not
notebook
now
nthroot
null
num2cell
num2hex
num2str
numel
nzmax
ode15i
ode23, ode45, ode113, ode15s, ode23s, ode23t, ode23tb
odefile
odeget
odeset
odextend
ones
open
openfig
opengl
openvar
optimget
optimset
or
ordeig
orderfields

2-23

2 Functions — Alphabetical List

ordqz
ordschur
orient
orth
otherwise
pack
padecoef
pagesetupdlg
pan
pareto
parse (inputParser)
parseSoapResponse
partialpath
pascal
patch
Patch Properties
path
path2rc
pathdef
pathsep
pathtool
pause
pbaspect
pcg
pchip
pcode
pcolor
pdepe
pdeval
peaks
perl
perms
permute
persistent
pi
pie
pie3

2-24

pinv
planerot
playshow
plot
plot (timeseries)
plot3
plotbrowser
plotedit
plotmatrix
plottools
plotyy
pol2cart
polar
poly
polyarea
polyder
polyeig
polyfit
polyint
polyval
polyvalm
pow2
power
ppval
prefdir
preferences
primes
print, printopt
printdlg
printpreview
prod
profile
profsave
propedit
propedit (COM)
propertyeditor
psi

2-25

2 Functions — Alphabetical List

publish
PutCharArray
PutFullMatrix
PutWorkspaceData
pwd
qmr
qr
qrdelete
qrinsert
qrupdate
quad
quadgk
quadl
quadv
questdlg
quit
Quit (COM)
quiver
quiver3
Quivergroup Properties
qz
rand
randn
randperm
rank
rat, rats
rbbox
rcond
read
readasync
real
reallog
realmax
realmin
realpow
realsqrt
record

2-26

rectangle
Rectangle Properties
rectint
recycle
reducepatch
reducevolume
refresh
refreshdata
regexp, regexpi
regexprep
regexptranslate
registerevent
rehash
release
rem
removets
rename
repmat
resample (timeseries)
resample (tscollection)
reset
reshape
residue
restoredefaultpath
rethrow
rethrow (MException)
return
rgb2hsv
rgbplot
ribbon
rmappdata
rmdir
rmdir (ftp)
rmfield
rmpath
rmpref
root object

2-27

2 Functions — Alphabetical List

Root Properties
roots
rose
rosser
rot90
rotate
rotate3d
round
rref
rsf2csf
run
save
save (COM)
save (serial)
saveas
saveobj
savepath
scatter
scatter3
Scattergroup Properties
schur
script
sec
secd
sech
selectmoveresize
semilogx, semilogy
sendmail
serial
serialbreak
set
set (COM)
set (serial)
set (timer)
set (timeseries)
set (tscollection)
setabstime (timeseries)

2-28

setabstime (tscollection)
setappdata
setdiff
setenv
setfield
setinterpmethod
setpixelposition
setpref
setstr
settimeseriesnames
setxor
shading
shiftdim
showplottool
shrinkfaces
sign
sin
sind
single
sinh
size
size (serial)
size (timeseries)
size (tscollection)
slice
smooth3
sort
sortrows
sound
soundsc
spalloc
sparse
spaugment
spconvert
spdiags
specular
speye

2-29

2 Functions — Alphabetical List

spfun
sph2cart
sphere
spinmap
spline
spones
spparms
sprand
sprandn
sprandsym
sprank
sprintf
spy
sqrt
sqrtm
squeeze
ss2tf
sscanf
stairs
Stairseries Properties
start
startat
startup
std
std (timeseries)
stem
stem3
Stemseries Properties
stop
stopasync
str2double
str2func
str2mat
str2num
strcat
strcmp, strcmpi
stream2

2-30

stream3
streamline
streamparticles
streamribbon
streamslice
streamtube
strfind
strings
strjust
strmatch
strncmp, strncmpi
strread
strrep
strtok
strtrim
struct
struct2cell
structfun
strvcat
sub2ind
subplot
subsasgn
subsindex
subspace
subsref
substruct
subvolume
sum
sum (timeseries)
superiorto
support
surf, surfc
surf2patch
surface
Surface Properties
Surfaceplot Properties
surfl

2-31

2 Functions — Alphabetical List

surfnorm
svd
svds
swapbytes
switch
symamd
symbfact
symmlq
symmmd
symrcm
symvar
synchronize
syntax
system
tan
tand
tanh
tar
tempdir
tempname
tetramesh
texlabel
text
Text Properties
textread
textscan
textwrap
throw (MException)
throwAsCaller (MException)
tic, toc
timer
timerfind
timerfindall
timeseries
title
todatenum
toeplitz

2-32

toolboxdir
trace
transpose (timeseries)
trapz
treelayout
treeplot
tril
trimesh
triplequad
triplot
trisurf
triu
true
try
tscollection
tsdata.event
tsearch
tsearchn
tsprops
tstool
type
typecast
uibuttongroup
Uibuttongroup Properties
uicontextmenu
Uicontextmenu Properties
uicontrol
Uicontrol Properties
uigetdir
uigetfile
uigetpref
uiimport
uimenu
Uimenu Properties
uint8, uint16, uint32, uint64
uiopen
uipanel

2-33

2 Functions — Alphabetical List

Uipanel Properties
uipushtool
Uipushtool Properties
uiputfile
uiresume, uiwait
uisave
uisetcolor
uisetfont
uisetpref
uistack
uitoggletool
Uitoggletool Properties
uitoolbar
Uitoolbar Properties
undocheckout
unicode2native
union
unique
unix
unloadlibrary
unmkpp
unregisterallevents
unregisterevent
untar
unwrap
unzip
upper
urlread
urlwrite
usejava
validateattributes
validatestring
vander
var
var (timeseries)
varargin
varargout

2-34

vectorize
ver
verctrl
verLessThan
version
vertcat
vertcat (timeseries)
vertcat (tscollection)
view
viewmtx
volumebounds
voronoi
voronoin
wait
waitbar
waitfor
waitforbuttonpress
warndlg
warning
waterfall
wavfinfo
wavplay
wavread
wavrecord
wavwrite
web
weekday
what
whatsnew
which
while
whitebg
who, whos
wilkinson
winopen
winqueryreg
wk1finfo

2-35

2 Functions — Alphabetical List

wk1read
wk1write
workspace
xlabel, ylabel, zlabel
xlim, ylim, zlim
xlsfinfo
xlsread
xlswrite
xmlread
xmlwrite
xor
xslt
zeros
zip
zoom

2-36

pack

Purpose Consolidate workspace memory

Syntax pack
pack filename
pack('filename')

Description pack frees up needed space by reorganizing information so that it only
uses the minimum memory required. All variables from your base and
global workspaces are preserved. Any persistent variables that are
defined at the time are set to their default value (the empty matrix, []).

MATLAB temporarily stores your workspace data in a file called
tp######.mat (where ###### is a numeric value) that is located in your
temporary directory. (You can use the command dir(tempdir) to see
the files in this directory).

pack filename frees space in memory, temporarily storing workspace
data in a file specified by filename. This file resides in your current
working directory and, unless specified otherwise, has a .mat file
extension.

pack('filename') is the function form of pack.

Remarks You can only run pack from the MATLAB command line.

If you specify a filename argument, that file must reside in a directory
for which you have write permission.

The pack function does not affect the amount of memory allocated to
the MATLAB process. You must quit MATLAB to free up this memory.

Since MATLAB uses a heap method of memory management, extended
MATLAB sessions may cause memory to become fragmented. When
memory is fragmented, there may be plenty of free space, but not
enough contiguous memory to store a new large variable.

If you get the Out of memory message from MATLAB, the pack function
may find you some free memory without forcing you to delete variables.

The pack function frees space by

2-2374

pack

• Saving all variables in the base and global workspaces to a temporary
file.

• Clearing all variables and functions from memory.

• Reloading the base and global workspace variables back from the
temporary file and then deleting the file.

If you use pack and there is still not enough free memory to proceed,
you must clear some variables. If you run out of memory often, you can
allocate larger matrices earlier in the MATLAB session and use these
system-specific tips:

• UNIX: Ask your system manager to increase your swap space.

• Windows: Increase virtual memory using the Windows Control Panel.

To maintain persistent variables when you run pack, use mlock in the
function.

Examples Change the current directory to one that is writable, run pack, and
return to the previous directory.

cwd = pwd;
cd(tempdir);
pack
cd(cwd)

See Also clear, memory

2-2375

padecoef

Purpose Padé approximation of time delays

Syntax [num,den] = padecoef(T,N)

Description [num,den] = padecoef(T,N) returns the Nth-order Padé
approximation of the continuous-time delay in transfer function form.
The row vectors num and den contain the numerator and denominator
coefficients in descending powers of . Both are Nth-order polynomials.

Class support for input :

float: double, single

Class
Support

Input support floating-point values of type single or double.

References [1] Golub, G. H. and C. F. Van Loan Matrix Computations Johns
Hopkins University Press, Baltimore: 1989, pp. 557-558.

See Also pade

2-2376

pagesetupdlg

Purpose Page setup dialog box

Syntax dlg = pagesetupdlg(fig)

Note This function is obsolete. Use printpreview instead.

Description dlg = pagesetupdlg(fig) creates a dialog box from which a set of
pagelayout properties for the figure window, fig, can be set.

pagesetupdlg implements the "Page Setup..." option in the Figure
File Menu.

pagesetupdlg supports setting the layout for a single figure. fig must
be a single figure handle, not a vector of figures or a simulink diagram.

2-2377

pagesetupdlg

See Also printdlg, printpreview, printopt

2-2378

pan

Purpose Pan view of graph interactively

GUI
Alternatives

Use the Pan tool on the figure toolbar to enable and disable pan
mode on a plot, or select Pan from the figure’s Tools menu. For details,
see “Panning — Shifting Your View of the Graph” in the MATLAB
Graphics documentation.

Syntax pan on
pan xon
pan yon
pan off
pan
pan(figure_handle,...)
h = pan(figure_handle)

Description pan on turns on mouse-based panning in the current figure.

pan xon turns on panning only in the x direction in the current figure.

pan yon turns on panning only in the y direction in the current figure.

pan off turns panning off in the current figure.

pan toggles the pan state in the current figure on or off.

pan(figure_handle,...) sets the pan state in the specified figure.

h = pan(figure_handle) returns the figure’s pan mode object for the
figure figure_handle for you to customize the mode’s behavior.

Using Pan Mode Objects

Access the following properties of pan mode objects via get and modify
some of them using set:

Enable 'on'|'off'

Specifies whether this figure mode is currently enabled on the figure.

Motion 'horizontal'|'vertical'|'both'

The type of panning enabled for the figure.

2-2379

pan

FigureHandle <handle>

The associated figure handle. This read-only property cannot be set.

ButtonDownFilter <function_handle>

The application can inhibit the panning operation under circumstances
the programmer defines, depending on what the callback returns. The
input function handle should reference a function with two implicit
arguments (similar to handle callbacks):

function [res] = myfunction(obj,event_obj)
% obj handle to the object that has been clicked on.
% event_obj handle to event object (empty in this release).
% res a logical flag to determine whether the pan
% operation should take place or the 'ButtonDownFcn'
% property of the object should take precedence.

ActionPreCallback <function_handle>

Set this callback to listen to when a pan operation will start. The
input function handle should reference a function with two implicit
arguments (similar to handle callbacks):

function myfunction(obj,event_obj)
% obj handle to the figure that has been clicked on.
% event_obj handle to event object.

The event object has the following read-only property:

Axes The handle of the axes that is being panned

ActionPostCallback <function_handle>

Set this callback to listen to when a pan operation has finished. The
input function handle should reference a function with two implicit
arguments (similar to handle callbacks):

function myfunction(obj,event_obj)

2-2380

pan

% obj handle to the figure that has been clicked on.
% event_obj handle to event object. The object has the same
% properties as the event_obj of the
% 'ActionPreCallback' callback.

flags = isAllowAxesPan(h,axes)

Calling the function isAllowAxesPan on the pan object, h, with a vector
of axes handles, axes, as input returns a logical array of the same
dimension as the axes handle vector, which indicates whether a pan
operation is permitted on the axes objects.

setAllowAxesPan(h,axes,flag)

Calling the function setAllowAxesPan on the pan object, h, with a
vector of axes handles, axes, and a logical scalar, flag, either allows or
disallows a pan operation on the axes objects.

info = getAxesPanMotion(h,axes)

Calling the function getAxesPanMotion on the pan object, h, with a
vector of axes handles, axes, as input will return a character cell array
of the same dimension as the axes handle vector, which indicates the
type of pan operation for each axes. Possible values for the type of
operation are 'horizontal', 'vertical' or 'both'.

setAxesPanMotion(h,axes,style)

Calling the function setAxesPanMotion on the pan object, h, with a
vector of axes handles, axes, and a character array, style, sets the style
of panning on each axes.

Examples Example 1 — Entering Pan Mode

Plot a graph and turn on Pan mode:

plot(magic(10));
pan on
% pan on the plot

2-2381

pan

Example 2 — Constrained Pan

Constrain pan to x-axis using set:

plot(magic(10));
h = pan;
set(h,'Motion','horizontal','Enable','on');
% pan on the plot in the horizontal direction.

Example 3 — Constrained Pan in Subplots

Create four axes as subplots and give each one a different panning
behavior:

ax1 = subplot(2,2,1);
plot(1:10);
h = pan;
ax2 = subplot(2,2,2);
plot(rand(3));
setAllowAxesPan(h,ax2,false);
ax3 = subplot(2,2,3);
plot(peaks);
setAxesPanMotion(h,ax3,'horizontal');
ax4 = subplot(2,2,4);
contour(peaks);
setAxesPanMotion(h,ax4,'vertical');
% pan on the plots.

Example 4 — Coding a ButtonDown Callback

Create a buttonDown callback for pan mode objects to trigger. Copy the
following code to a new M-file, execute it, and observe panning behavior:

function demo
% Allow a line to have its own 'ButtonDownFcn' callback.
hLine = plot(rand(1,10));
set(hLine,'ButtonDownFcn','disp(''This executes'')');
set(hLine,'Tag','DoNotIgnore');

2-2382

pan

h = pan;
set(h,'ButtonDownFilter',@mycallback);
set(h,'Enable','on');
% mouse click on the line
%
function [flag] = mycallback(obj,event_obj)
% If the tag of the object is 'DoNotIgnore', then return true.
objTag = get(obj,'Tag');
if strcmpi(objTag,'DoNotIgnore')

flag = true;
else

flag = false;
end

Example 5 — Coding Pre- and Post-Callback Behavior

Create callbacks for pre- and post-ButtonDown events for pan mode
objects to trigger. Copy the following code to a new M-file, execute it,
and observe panning behavior:

function demo
% Listen to pan events
plot(1:10);
h = pan;
set(h,'ActionPreCallback',@myprecallback);
set(h,'ActionPostCallback',@mypostcallback);
set(h,'Enable','on');
%
function myprecallback(obj,evd)
disp('A pan is about to occur.');
%
function mypostcallback(obj,evd)
newLim = get(evd.Axes,'XLim');
msgbox(sprintf('The new X-Limits are [%.2f %.2f].',newLim));

2-2383

pan

Example 6 — Creating a Context Menu for Pan Mode

Coding a context menu that lets the user to switch to Zoom mode by
right-clicking:

figure; plot(magic(10));
hCM = uicontextmenu;
hMenu = uimenu('Parent',hCM,'Label','Switch to zoom',...

'Callback','zoom(gcbf,''on'')');
hPan = pan(gcf);
set(hPan,'UIContextMenu',hCM);
pan('on')

You cannot add items to the built-in pan context menu, but you can
replace it with your own.

Remarks You can create a pan mode object once and use it to customize the
behavior of different axes, as Example 3 illustrates. You can also change
its callback functions on the fly.

When you assign different pan behaviors to different subplot axes
via a mode object and then link them using the linkaxes function,
the behavior of the axes you manipulate with the mouse carries over
to the linked axes, regardless of the behavior you previously set for
the other axes.

See Also zoom, linkaxes, rotate3d

“Object Manipulation” on page 1-100 for related functions

2-2384

pareto

Purpose Pareto chart

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax pareto(Y)
pareto(Y,names)
pareto(Y,X)
H = pareto(...)

Description Pareto charts display the values in the vector Y as bars drawn in
descending order. Values in Y must be nonnegative and not include
NaNs. Only the first 95% of the cumulative distribution is displayed.

pareto(Y) labels each bar with its element index in Y and also plots a
line displaying the cumulative sum of Y.

pareto(Y,names) labels each bar with the associated name in the
string matrix or cell array names.

pareto(Y,X) labels each bar with the associated value from X.

pareto(ax,..) plots a Pareto chart in existing axes ax rather than GCA.

H = pareto(...) returns a combination of patch and line object
handles.

Examples Example 1:

Examine the cumulative productivity of a group of programmers to
see how normal its distribution is:

2-2385

pareto

codelines = [200 120 555 608 1024 101 57 687];
coders =
{'Fred','Ginger','Norman','Max','Julia','Wally','Heidi','Pat'};
pareto(codelines, coders)
title('Lines of Code by Programmer')

Example 2:

Generate a vector, X, representing diagnostic codes with values from 1 to
10 indicating various faults on devices emerging from a production line:

X = min(round(abs(randn(100,1)*4))+1,10);

Plot a Pareto chart showing the frequency of failure for each diagnostic
code from the most to the least common:

pareto(hist(X))

2-2386

pareto

Remarks You can use pareto to display the output of hist, even for vectors that
include negative numbers. Because only the first 95 percent of values
are displayed, one or more of the smallest bars may not appear. If you
extend the Xlim of your chart, you can display all the values, but the
new bars will not be labeled.

See Also hist, bar

2-2387

parse (inputParser)

Purpose Parse and validate named inputs

Syntax p.parse(arglist)
parse(p, arglist)

Description p.parse(arglist) parses and validates the inputs named in arglist.

parse(p, arglist)is functionally the same as the syntax above.

Note For more information on the inputParser class, see Parsing
Inputs with inputParser in the MATLAB Programming documentation.

Examples Write an M-file function called publish_ip, based on the MATLAB
publish function, to illustrate the use of the inputParser class.
Construct an instance of inputParser and assign it to variable p:

function publish_ip(script, varargin)
p = inputParser; % Create an instance of the inputParser class.

Add arguments to the schema. See the reference pages for the
addRequired, addOptional, and addParamValue methods for help with
this:

p.addRequired('script', @ischar);
p.addOptional('format', 'html', ...

@(x)any(strcmpi(x,{'html','ppt','xml','latex'})));
p.addParamValue('outputDir', pwd, @ischar);
p.addParamValue('maxHeight', [], @(x)x>0 && mod(x,1)==0);
p.addParamValue('maxWidth', [], @(x)x>0 && mod(x,1)==0);

Call the parse method of the object to read and validate each argument
in the schema:

p.parse(script, varargin{:});

2-2388

parse (inputParser)

Execution of the parse method validates each argument and also builds
a structure from the input arguments. The name of the structure is
Results, which is accessible as a property of the object. To get the value
of any input argument, type

p.Results.argname

Continuing with the publish_ip exercise, add the following lines to
your M-file:

% Parse and validate all input arguments.
p.parse(script, varargin{:});

% Display the value for maxHeight.
disp(sprintf('\nThe maximum height is %d.\n', p.Results.maxHeight))

% Display all arguments.
disp 'List of all arguments:'
disp(p.Results)

When you call the program, MATLAB assigns those values you pass in
the argument list to the appropriate fields of the Results structure.
Save the M-file and execute it at the MATLAB command prompt with
this command:

publish_ip('ipscript.m', 'ppt', 'outputDir', 'C:/matlab/test', ...
'maxWidth', 500, 'maxHeight', 300);

The maximum height is 300.

List of all arguments:
format: 'ppt'

maxHeight: 300
maxWidth: 500

outputDir: 'C:/matlab/test'
script: 'ipscript.m'

2-2389

parse (inputParser)

See Also inputParser, addRequired(inputParser),
addOptional(inputParser), addParamValue(inputParser),
createCopy(inputParser)

2-2390

parseSoapResponse

Purpose Convert response string from SOAP server into MATLAB data types

Syntax parseSoapResponse(response)

Description parseSoapResponse(response) converts response, a string returned
by a SOAP server, into a cell array of appropriate MATLAB data types.

Example message = createSoapMessage(...

'urn:xmethods-delayed-quotes','getQuote',{'GOOG'},{'symbol'},...

{'{http://www.w3.org/2001/XMLSchema}string'},'rpc')

response = callSoapService('http://64.124.140.30:9090/soap',...

'urn:xmethods-delayed-quotes#getQuote',message)

price = parseSoapResponse(response)

See Also callSoapService, createClassFromWsdl, createSoapMessage

2-2391

partialpath

Purpose Partial pathname description

Description A partial pathname is a pathname relative to the MATLAB path,
matlabpath. It is used to locate private and method files, which are
usually hidden, or to restrict the search for files when more than one
file with the given name exists.

A partial pathname contains the last component, or last several
components, of the full pathname separated by /. For example,
matfun/trace, private/children, and demos/clown.mat are valid
partial pathnames. Specifying the @ in method directory names is
optional.

Partial pathnames make it easy to find a toolbox or MATLAB relative
files on your path, independent of the location where MATLAB is
installed.

Many commands accept partial pathnames instead of a full pathname.
Some of these commands are

help, type, load, exist, what, which, edit, dbtype,
dbstop, dbclear, fopen

Examples The following example uses a partial pathname:

what graph2d/@figobj

M-files in directory
matlabroot\toolbox\matlab\graph2d\@figobj

deselectall enddrag middrag subsref
doclick figobj set
doresize get subsasgn

P-files in directory
matlabroot\toolbox\matlab\graph2d\@figobj

deselectall enddrag middrag subsref

2-2392

partialpath

doclick figobj set
doresize get subsasgn

The @ in the class directory name @figobj is not necessary. You get the
same response from the following command:

what graph2d/figobj

See Also fileparts, matlabroot, path

2-2393

pascal

Purpose Pascal matrix

Syntax A = pascal(n)
A = pascal(n,1)
A = pascal(n,2)

Description A = pascal(n) returns the Pascal matrix of order n: a symmetric
positive definite matrix with integer entries taken from Pascal’s
triangle. The inverse of A has integer entries.

A = pascal(n,1) returns the lower triangular Cholesky factor (up to
the signs of the columns) of the Pascal matrix. It is involutary, that is,
it is its own inverse.

A = pascal(n,2) returns a transposed and permuted version of
pascal(n,1). A is a cube root of the identity matrix.

Examples pascal(4) returns

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

A = pascal(3,2) produces

A =
1 1 1

-2 -1 0
1 0 0

See Also chol

2-2394

patch

Purpose Create patch graphics object

Syntax patch(X,Y,C)
patch(X,Y,Z,C)
patch(FV)
patch(...'PropertyName',propertyvalue...)
patch('PropertyName',propertyvalue,...)
handle = patch(...)

Description patch is the low-level graphics function for creating patch graphics
objects. A patch object is one or more polygons defined by the
coordinates of its vertices. You can specify the coloring and lighting of
the patch. See “Creating 3-D Models with Patches” for more information
on using patch objects.

patch(X,Y,C) adds the filled two-dimensional patch to the current
axes. The elements of X and Y specify the vertices of a polygon. If X and
Y are matrices, MATLAB draws one polygon per column. C determines
the color of the patch. It can be a single ColorSpec, one color per face,
or one color per vertex (see “Remarks” on page 2-2396). If C is a 1-by-3
vector, it is assumed to be an RGB triplet, specifying a color directly.

patch(X,Y,Z,C) creates a patch in three-dimensional coordinates.

patch(FV) creates a patch using structure FV, which contains the
fields vertices, faces, and optionally facevertexcdata. These fields
correspond to the Vertices, Faces, and FaceVertexCData patch
properties.

patch(...'PropertyName',propertyvalue...) follows the X, Y, (Z),
and C arguments with property name/property value pairs to specify
additional patch properties.

patch('PropertyName',propertyvalue,...) specifies all properties
using property name/property value pairs. This form enables you to
omit the color specification because MATLAB uses the default face color
and edge color unless you explicitly assign a value to the FaceColor
and EdgeColor properties. This form also allows you to specify the
patch using the Faces and Vertices properties instead of x-, y-, and

2-2395

patch

z-coordinates. See the “Examples” on page 2-2399 section for more
information.

handle = patch(...) returns the handle of the patch object it creates.

Remarks Unlike high-level area creation functions, such as fill or area, patch
does not check the settings of the figure and axes NextPlot properties.
It simply adds the patch object to the current axes.

If the coordinate data does not define closed polygons, patch closes
the polygons. The data can define concave or intersecting polygons.
However, if the edges of an individual patch face intersect themselves,
the resulting face may or may not be completely filled. In that case, it is
better to break up the face into smaller polygons.

Specifying Patch Properties

You can specify properties as property name/property value pairs,
structure arrays, and cell arrays (see the set and get reference pages
for examples of how to specify these data types).

There are two patch properties that specify color:

• CData — Use when specifying x-, y-, and z-coordinates (XData, YData,
ZData).

• FaceVertexCData — Use when specifying vertices and connection
matrix (Vertices and Faces).

The CData and FaceVertexCData properties accept color data as indexed
or true color (RGB) values. See the CData and FaceVertexCData
property descriptions for information on how to specify color.

Indexed color data can represent either direct indices into the colormap
or scaled values that map the data linearly to the entire colormap
(see the caxis function for more information on this scaling). The
CDataMapping property determines how MATLAB interprets indexed
color data.

2-2396

patch

Color Data Interpretation

You can specify patch colors as

• A single color for all faces

• One color for each face, enabling flat coloring

• One color for each vertex, enabling interpolated coloring

The following tables summarize how MATLAB interprets color data
defined by the CData and FaceVertexCData properties.

2-2397

patch

Interpretation of the CData Property

[X,Y,Z]Data CData Required for Results Obtained

Dimensions Indexed
True
Color

m-by-n scalar 1-by-1-by-3 Use the single color specified for all patch
faces. Edges can be only a single color.

m-by-n 1-by-n

(n >= 4)

1-by-n-by-3 Use one color for each patch face. Edges can
be only a single color.

m-by-n m-by-n m-by-n-3 Assign a color to each vertex. Patch faces can
be flat (a single color) or interpolated. Edges
can be flat or interpolated.

Interpretation of the FaceVertexCData Property

Vertices Faces
FaceVertexCData
Required for Results Obtained

Dimensions Dimensions Indexed
True
Color

m-by-n k-by-3 scalar 1-by-3 Use the single color specified for
all patch faces. Edges can be
only a single color.

m-by-n k-by-3 k-by-1 k-by-3 Use one color for each patch
face. Edges can be only a single
color.

m-by-n k-by-3 m-by-1 m-by-3 Assign a color to each vertex.
Patch faces can be flat (a single
color) or interpolated. Edges can
be flat or interpolated.

2-2398

patch

Examples This example creates a patch object using two different methods:

• Specifying x-, y-, and z-coordinates and color data (XData, YData,
ZData, and CData properties)

• Specifying vertices, the connection matrix, and color data (Vertices,
Faces, FaceVertexCData, and FaceColor properties)

Specifying X, Y, and Z Coordinates

The first approach specifies the coordinates of each vertex. In this
example, the coordinate data defines two triangular faces, each having
three vertices. Using true color, the top face is set to white and the
bottom face to gray.

x = [0 0;0 1;1 1];
y = [1 1;2 2;2 1];
z = [1 1;1 1;1 1];
tcolor(1,1,1:3) = [1 1 1];
tcolor(1,2,1:3) = [.7 .7 .7];
patch(x,y,z,tcolor)

Notice that each face shares two vertices with the other face (V1-V4
and V3-V5).

2-2399

patch

Specifying Vertices and Faces

The Vertices property contains the coordinates of each unique vertex
defining the patch. The Faces property specifies how to connect these
vertices to form each face of the patch. For this example, two vertices
share the same location so you need to specify only four of the six
vertices. Each row contains the x-, y-, and z-coordinates of each vertex.

vert = [0 1 1;0 2 1;1 2 1;1 1 1];

There are only two faces, defined by connecting the vertices in the
order indicated.

fac = [1 2 3;1 3 4];

To specify the face colors, define a 2-by-3 matrix containing two RGB
color definitions.

tcolor = [1 1 1;.7 .7 .7];

With two faces and two colors, MATLAB can color each face with flat
shading. This means you must set the FaceColor property to flat, since
the faces/vertices technique is available only as a low-level function call
(i.e., only by specifying property name/property value pairs).

Create the patch by specifying the Faces, Vertices, and
FaceVertexCData properties as well as the FaceColor property.

patch('Faces',fac,'Vertices',vert,'FaceVertexCData',tcolor,...
'FaceColor','flat')

2-2400

patch

Specifying only unique vertices and their connection matrix can
reduce the size of the data for patches having many faces. See the
descriptions of the Faces, Vertices, and FaceVertexCData properties
for information on how to define them.

MATLAB does not require each face to have the same number of
vertices. In cases where they do not, pad the Faces matrix with NaNs.
To define a patch with faces that do not close, add one or more NaNs
to the row in the Vertices matrix that defines the vertex you do not
want connected.

Object
Hierarchy

Setting Default Properties

You can set default patch properties on the axes, figure, and root levels:

2-2401

patch

set(0,'DefaultPatchPropertyName',PropertyValue...)
set(gcf,'DefaultPatchPropertyName',PropertyValue...)
set(gca,'DefaultPatchPropertyName',PropertyValue...)

PropertyName is the name of the patch property and PropertyValue is
the value you are specifying. Use set and get to access patch properties.

See Also area, caxis, fill, fill3, isosurface, surface

“Object Creation Functions” on page 1-94 for related functions

Patch Properties for property descriptions

“Creating 3-D Models with Patches” for examples that use patches

2-2402

Patch Properties

Purpose Patch properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• “The Property Editor” is an interactive tool that enables you to see
and change object property values.

• The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see “Setting Default Property
Values”.

See “Core Graphics Objects” for general information about this type
of object.

Patch
Property
Descriptions

This section lists property names along with the type of values each
accepts. Curly braces { } enclose default values.

AlphaDataMapping
none| {scaled} | direct

Transparency mapping method. This property determines how
MATLAB interprets indexed alpha data. This property can be
any of the following:

• none — The transparency values of FaceVertexAlphaData are
between 0 and 1 or are clamped to this range.

• scaled — Transform the FaceVertexAlphaData to span the
portion of the alphamap indicated by the axes ALim property,
linearly mapping data values to alpha values. (scaled is the
default)

• direct — Use the FaceVertexAlphaData as indices directly
into the alphamap. When not scaled, the data are usually
integer values ranging from 1 to length(alphamap). MATLAB
maps values less than 1 to the first alpha value in the
alphamap, and values greater than length(alphamap) to the

2-2403

Patch Properties

last alpha value in the alphamap. Values with a decimal portion
are fixed to the nearest lower integer. If FaceVertexAlphaData
is an array of uint8 integers, then the indexing begins at 0
(i.e., MATLAB maps a value of 0 to the first alpha value in
the alphamap).

AmbientStrength
scalar >= 0 and <= 1

Strength of ambient light. This property sets the strength of
the ambient light, which is a nondirectional light source that
illuminates the entire scene. You must have at least one visible
light object in the axes for the ambient light to be visible. The
axes AmbientColor property sets the color of the ambient light,
which is therefore the same on all objects in the axes.

You can also set the strength of the diffuse and specular
contribution of light objects. See the DiffuseStrength and
SpecularStrength properties.

Annotation
hg.Annotation object Read Only

Control the display of patch objects in legends. The Annotation
property enables you to specify whether this patch object is
represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the patch
object is displayed in a figure legend:

2-2404

Patch Properties

IconDisplayStyle
Value

Purpose

on Represent this patch object in a legend
(default)

off Do not include this patch object in a legend

children Same as on because patch objects do not
have children

Setting the IconDisplayStyle property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to off:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation','LegendInformation');
set(hLegendEntry,'IconDisplayStyle','off')

Using the IconDisplayStyle property

See “Controlling Legends” for more information and examples.

Selecting which objects to display in legend

Some graphics functions create multiple objects. For example,
contour3 uses patch objects to create a 3D contour graph. You
can use the Annotation property set select a subset of the objects
for display in the legend.

[X,Y] = meshgrid(-2:.1:2);
[Cm hC] = contour3(X.*exp(-X.^2-Y.^2));
hA = get(hC,'Annotation');
hLL = get([hA{:}],'LegendInformation');
% Set the IconDisplayStyle property to display
% the first, fifth, and ninth patch in the legend
set([hLL{:}],{'IconDisplayStyle'},...

{'on','off','off','off','on','off','off','off','on'}')

2-2405

Patch Properties

% Assign DisplayNames for the three patch
that are displayed in the legend
set(hC([1,5,9]),{'DisplayName'},{'bottom','middle','top'}')
legend show

BackFaceLighting
unlit | lit | {reverselit}

Face lighting control. This property determines how faces are lit
when their vertex normals point away from the camera:

• unlit — Face is not lit.

• lit — Face is lit in normal way.

• reverselit — Face is lit as if the vertex pointed towards the
camera.

This property is useful for discriminating between the internal
and external surfaces of an object. See the Using MATLAB
Graphics manual for an example.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property) It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions may not
need to perform actions on objects that are going to be deleted,
and therefore, can check the object’s BeingDeleted property
before acting.

BusyAction
cancel | {queue}

2-2406

Patch Properties

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callback routines. If there is a callback
routine executing, callback routines invoked subsequently always
attempt to interrupt it. If the Interruptible property of the
object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is
processed. If the Interruptible property is off, the BusyAction
property (of the object owning the executing callback) determines
how MATLAB handles the event. The choices are

• cancel — Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended

Button press callback routine. A callback routine that executes
whenever you press a mouse button while the pointer is over the
patch object.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

Set this property to a function handle that references the callback.
You can also use a string that is a valid MATLAB expression or
the name of an M-file. The expressions execute in the MATLAB
workspace.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

CData
scalar, vector, or matrix

2-2407

Patch Properties

Patch colors. This property specifies the color of the patch. You
can specify color for each vertex, each face, or a single color for
the entire patch. The way MATLAB interprets CData depends
on the type of data supplied. The data can be numeric values
that are scaled to map linearly into the current colormap, integer
values that are used directly as indices into the current colormap,
or arrays of RGB values. RGB values are not mapped into the
current colormap, but interpreted as the colors defined. On true
color systems, MATLAB uses the actual colors defined by the
RGB triples.

The following two diagrams illustrate the dimensions of CData
with respect to the coordinate data arrays, XData, YData, and
ZData. The first diagram illustrates the use of indexed color.

The second diagram illustrates the use of true color. True color
requires m-by-n-by-3 arrays to define red, green, and blue
components for each color.

2-2408

Patch Properties

Note that if CData contains NaNs, MATLAB does not color the
faces.

See also the Faces, Vertices, and FaceVertexCData properties
for an alternative method of patch definition.

CDataMapping
{scaled} | direct

Direct or scaled color mapping. This property determines how
MATLAB interprets indexed color data used to color the patch.
(If you use true color specification for CData or FaceVertexCData,
this property has no effect.)

• scaled — Transform the color data to span the portion of
the colormap indicated by the axes CLim property, linearly
mapping data values to colors. See the caxis command for
more information on this mapping.

• direct — Use the color data as indices directly into the
colormap. When not scaled, the data are usually integer values

2-2409

Patch Properties

ranging from 1 to length(colormap). MATLAB maps values
less than 1 to the first color in the colormap, and values greater
than length(colormap) to the last color in the colormap.
Values with a decimal portion are fixed to the nearest lower
integer.

Children
matrix of handles

Always the empty matrix; patch objects have no children.

Clipping
{on} | off

Clipping to axes rectangle. When Clipping is on, MATLAB does
not display any portion of the patch outside the axes rectangle.

CreateFcn
string or function handle

Callback routine executed during object creation. This property
defines a callback routine that executes when MATLAB creates a
patch object. You must define this property as a default value for
patches or in a call to the patch function that creates a new object.

For example, the following statement creates a patch (assuming x,
y, z, and c are defined), and executes the function referenced by
the function handle @myCreateFcn.

patch(x,y,z,c,'CreateFcn',@myCreateFcn)

MATLAB executes the create function after setting all properties
for the patch created. Setting this property on an existing patch
object has no effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

2-2410

Patch Properties

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
string or function handle

Delete patch callback routine. A callback routine that executes
when you delete the patch object (e.g., when you issue a delete
command or clear the axes (cla) or figure (clf) containing the
patch). MATLAB executes the routine before deleting the object’s
properties so these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See Function Handle Callbacks for information on how to use
function handles to define the callback function.

DiffuseStrength
scalar >= 0 and <= 1

Intensity of diffuse light. This property sets the intensity of the
diffuse component of the light falling on the patch. Diffuse light
comes from light objects in the axes.

You can also set the intensity of the ambient and specular
components of the light on the patch object. See the
AmbientStrength and SpecularStrength properties.

DisplayName
string (default is empty string)

String used by legend for this patch object. The legend function
uses the string defined by the DisplayName property to label this
patch object in the legend.

2-2411

Patch Properties

• If you specify string arguments with the legend function,
DisplayName is set to this patch object’s corresponding string
and that string is used for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

See “Controlling Legends” for more examples.

EdgeAlpha
{scalar = 1} | flat | interp

Transparency of the edges of patch faces. This property can be
any of the following:

• scalar — A single non-NaN scalar value between 0 and 1
that controls the transparency of all the edges of the object.
1 (the default) means fully opaque and 0 means completely
transparent.

• flat — The alpha data (FaceVertexAlphaData) of each vertex
controls the transparency of the edge that follows it.

• interp — Linear interpolation of the alpha data
(FaceVertexAlphaData) at each vertex determines the
transparency of the edge.

2-2412

Patch Properties

Note that you cannot specify flat or interp EdgeAlpha without
first setting FaceVertexAlphaData to a matrix containing one
alpha value per face (flat) or one alpha value per vertex (interp).

EdgeColor
{ColorSpec} | none | flat | interp

Color of the patch edge. This property determines how MATLAB
colors the edges of the individual faces that make up the patch.

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for
edges. The default edge color is black. See ColorSpec for more
information on specifying color.

• none — Edges are not drawn.

• flat — The color of each vertex controls the color of the edge
that follows it. This means flat edge coloring is dependent on
the order in which you specify the vertices:

• interp— Linear interpolation of the CData or FaceVertexCData
values at the vertices determines the edge color.

EdgeLighting
{none} | flat | gouraud | phong

Algorithm used for lighting calculations. This property selects the
algorithm used to calculate the effect of light objects on patch
edges. Choices are

2-2413

Patch Properties

• none — Lights do not affect the edges of this object.

• flat — The effect of light objects is uniform across each edge
of the patch.

• gouraud — The effect of light objects is calculated at the
vertices and then linearly interpolated across the edge lines.

• phong — The effect of light objects is determined by
interpolating the vertex normals across each edge line and
calculating the reflectance at each pixel. Phong lighting
generally produces better results than Gouraud lighting, but
takes longer to render.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase patch objects. Alternative erase modes are
useful in creating animated sequences, where control of the way
individual objects redraw is necessary to improve performance
and obtain the desired effect.

• normal — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none — Do not erase the patch when it is moved or destroyed.
While the object is still visible on the screen after erasing with
EraseMode none, you cannot print it because MATLAB stores
no information about its former location.

• xor— Draw and erase the patch by performing an exclusive OR
(XOR) with each pixel index of the screen behind it. Erasing
the patch does not damage the color of the objects behind it.
However, patch color depends on the color of the screen behind
it and is correctly colored only when over the axes background

2-2414

Patch Properties

Color, or the figure background Color if the axes Color is set
to none.

• background — Erase the patch by drawing it in the axes
background Color, or the figure background Color if the axes
Color is set to none. This damages objects that are behind the
erased patch, but the patch is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen
than on paper. On screen, MATLAB may mathematically
combine layers of colors (e.g., perform an XOR of a pixel color
with that of the pixel behind it) and ignore three-dimensional
sorting to obtain greater rendering speed. However, these
techniques are not applied to the printed output.

You can use the MATLAB getframe command or other screen
capture application to create an image of a figure containing
nonnormal mode objects.

FaceAlpha
{scalar = 1} | flat | interp

Transparency of the patch face. This property can be any of the
following:

• A scalar — A single non-NaN value between 0 and 1 that
controls the transparency of all the faces of the object. 1
(the default) means fully opaque and 0 means completely
transparent (invisible).

• flat — The values of the alpha data (FaceVertexAlphaData)
determine the transparency for each face. The alpha data at
the first vertex determines the transparency of the entire face.

• interp — Bilinear interpolation of the alpha data
(FaceVertexAlphaData) at each vertex determines the
transparency of each face.

2-2415

Patch Properties

Note that you cannot specify flat or interp FaceAlpha without
first setting FaceVertexAlphaData to a matrix containing one
alpha value per face (flat) or one alpha value per vertex (interp).

FaceColor
{ColorSpec} | none | flat | interp

Color of the patch face. This property can be any of the following:

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for faces.
See ColorSpec for more information on specifying color.

• none — Do not draw faces. Note that edges are drawn
independently of faces.

• flat — The CData or FaceVertexCData property must contain
one value per face and determines the color for each face in the
patch. The color data at the first vertex determines the color
of the entire face.

• interp — Bilinear interpolation of the color at each
vertex determines the coloring of each face. The CData or
FaceVertexCData property must contain one value per vertex.

FaceLighting
{none} | flat | gouraud | phong

Algorithm used for lighting calculations. This property selects the
algorithm used to calculate the effect of light objects on patch
faces. Choices are

• none — Lights do not affect the faces of this object.

• flat — The effect of light objects is uniform across the faces of
the patch. Select this choice to view faceted objects.

• gouraud — The effect of light objects is calculated at the
vertices and then linearly interpolated across the faces. Select
this choice to view curved surfaces.

2-2416

Patch Properties

• phong — The effect of light objects is determined by
interpolating the vertex normals across each face and
calculating the reflectance at each pixel. Select this choice to
view curved surfaces. Phong lighting generally produces better
results than Gouraud lighting, but takes longer to render.

Faces
m-by-n matrix

Vertex connection defining each face. This property is the
connection matrix specifying which vertices in the Vertices
property are connected. The Faces matrix defines m faces with
up to n vertices each. Each row designates the connections for a
single face, and the number of elements in that row that are not
NaN defines the number of vertices for that face.

The Faces and Vertices properties provide an alternative way
to specify a patch that can be more efficient than using x, y, and
z coordinates in most cases. For example, consider the following
patch. It is composed of eight triangular faces defined by nine
vertices.

The corresponding Faces and Vertices properties are shown to
the right of the patch. Note how some faces share vertices with

2-2417

Patch Properties

other faces. For example, the fifth vertex (V5) is used six times,
once each by faces one, two, and three and six, seven, and eight.
Without sharing vertices, this same patch requires 24 vertex
definitions.

FaceVertexAlphaData
m-by-1 matrix

Face and vertex transparency data. The FaceVertexAlphaData
property specifies the transparency of patches that have been
defined by the Faces and Vertices properties. The interpretation
of the values specified for FaceVertexAlphaData depends on the
dimensions of the data.

FaceVertexAlphaData can be one of the following:

• A single value, which applies the same transparency to the
entire patch. The FaceAlpha property must be set to flat.

• An m-by-1 matrix (where m is the number of rows in the Faces
property), which specifies one transparency value per face. The
FaceAlpha property must be set to flat.

• An m-by-1 matrix (where m is the number of rows in the
Vertices property), which specifies one transparency value per
vertex. The FaceAlpha property must be set to interp.

The AlphaDataMapping property determines how MATLAB
interprets the FaceVertexAlphaData property values.

FaceVertexCData
matrix

Face and vertex colors. The FaceVertexCData property specifies
the color of patches defined by the Faces and Vertices properties.
You must also set the values of the FaceColor, EdgeColor,
MarkerFaceColor, or MarkerEdgeColor appropriately. The
interpretation of the values specified for FaceVertexCData
depends on the dimensions of the data.

2-2418

Patch Properties

For indexed colors, FaceVertexCData can be

• A single value, which applies a single color to the entire patch

• An n-by-1 matrix, where n is the number of rows in the Faces
property, which specifies one color per face

• An n-by-1 matrix, where n is the number of rows in the
Vertices property, which specifies one color per vertex

For true colors, FaceVertexCData can be

• A 1-by-3 matrix, which applies a single color to the entire patch

• An n-by-3 matrix, where n is the number of rows in the Faces
property, which specifies one color per face

• An n-by-3 matrix, where n is the number of rows in the
Vertices property, which specifies one color per vertex

The following diagram illustrates the various forms of the
FaceVertexCData property for a patch having eight faces and
nine vertices. The CDataMapping property determines how
MATLAB interprets the FaceVertexCData property when you
specify indexed colors.

2-2419

Patch Properties

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally drawing into or
deleting a figure that contains only user interface devices (such as
a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

2-2420

Patch Properties

Setting HandleVisibility to off makes handles invisible at all
times. This may be necessary when a callback routine invokes
a function that might potentially damage the GUI (such as
evaluating a user-typed string), and so temporarily hides its own
handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties).

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

HitTest
{on} | off

Selectable by mouse click. HitTest determines if the patch can
become the current object (as returned by the gco command and
the figure CurrentObject property) as a result of a mouse click on
the patch. If HitTest is off, clicking the patch selects the object
below it (which may be the axes containing it).

Interruptible
{on} | off

2-2421

Patch Properties

Callback routine interruption mode. The Interruptible property
controls whether a patch callback routine can be interrupted by
subsequently invoked callback routines. Only callback routines
defined for the ButtonDownFcn are affected by the Interruptible
property. MATLAB checks for events that can interrupt a callback
routine only when it encounters a drawnow, figure, getframe,
or pause command in the routine. See the BusyAction property
for related information.

LineStyle
{-} | -- | : | -. | none

Edge linestyle. This property specifies the line style of the patch
edges. The following table lists the available line styles.

Symbol Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker at
each point but do not want the points connected with a line (see
the Marker property).

LineWidth
scalar

Edge line width. The width, in points, of the patch edges (1 point
= 1/72 inch). The default LineWidth is 0.5 points.

Marker
character (see table)

2-2422

Patch Properties

Marker symbol. The Marker property specifies marks that locate
vertices. You can set values for the Marker property independently
from the LineStyle property. The following tables lists the
available markers.

Marker Specifier Description

+ Plus sign

o Circle

* Asterisk

. Point

x Cross

s Square

d Diamond

^ Upward-pointing triangle

v Downward-pointing triangle

> Right-pointing triangle

< Left-pointing triangle

p Five-pointed star (pentagram)

h Six-pointed star (hexagram)

none No marker (default)

MarkerEdgeColor
ColorSpec | none | {auto} | flat

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles).

• ColorSpec — Defines the color to use.

• none — Specifies no color, which makes nonfilled markers
invisible.

2-2423

Patch Properties

• auto — Sets MarkerEdgeColor to the same color as the
EdgeColor property.

MarkerFaceColor
ColorSpec | {none} | auto | flat

Marker face color. The fill color for markers that are closed shapes
(circle, square, diamond, pentagram, hexagram, and the four
triangles).

• ColorSpec — Defines the color to use.

• none — Makes the interior of the marker transparent, allowing
the background to show through.

• auto — Sets the fill color to the axes color, or the figure color,
if the axes Color property is set to none.

MarkerSize
size in points

Marker size. A scalar specifying the size of the marker, in points.
The default value for MarkerSize is 6 points (1 point = 1/72
inch). Note that MATLAB draws the point marker at 1/3 of the
specified size.

NormalMode
{auto} | manual

MATLAB generated or user-specified normal vectors. When this
property is auto, MATLAB calculates vertex normals based on the
coordinate data. If you specify your own vertex normals, MATLAB
sets this property to manual and does not generate its own data.
See also the VertexNormals property.

Parent
handle of axes, hggroup, or hgtransform

2-2424

Patch Properties

Parent of patch object. This property contains the handle of the
patch object’s parent. The parent of a patch object is the axes,
hggroup, or hgtransform object that contains it.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | {off}

Is object selected? When this property is on, MATLAB displays
selection handles or a dashed box (depending on the number of
faces) if the SelectionHighlight property is also on. You can, for
example, define the ButtonDownFcn to set this property, allowing
users to select the object with the mouse.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by

• Drawing handles at each vertex for a single-faced patch

• Drawing a dashed bounding box for a multifaced patch

When SelectionHighlight is off, MATLAB does not draw the
handles.

SpecularColorReflectance
scalar in the range 0 to 1

Color of specularly reflected light. When this property is 0, the
color of the specularly reflected light depends on both the color of
the object from which it reflects and the color of the light source.
When set to 1, the color of the specularly reflected light depends
only on the color of the light source (i.e., the light object Color
property). The proportions vary linearly for values in between.

2-2425

Patch Properties

SpecularExponent
scalar >= 1

Harshness of specular reflection. This property controls the size
of the specular spot. Most materials have exponents in the range
of 5 to 20.

SpecularStrength
scalar >= 0 and <= 1

Intensity of specular light. This property sets the intensity of the
specular component of the light falling on the patch. Specular
light comes from light objects in the axes.

You can also set the intensity of the ambient and diffuse
components of the light on the patch object. See the
AmbientStrength and DiffuseStrength properties.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callback
routines.

For example, suppose you use patch objects to create borders for
a group of uicontrol objects and want to change the color of the
borders in a uicontrol’s callback routine. You can specify a Tag
with the patch definition

patch(X,Y,'k','Tag','PatchBorder')

Then use findobj in the uicontrol’s callback routine to obtain the
handle of the patch and set its FaceColor property.

set(findobj('Tag','PatchBorder'),'FaceColor','w')

2-2426

Patch Properties

Type
string (read only)

Class of the graphics object. For patch objects, Type is always
the string 'patch'.

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with the patch. Assign this property
the handle of a uicontextmenu object created in the same figure
as the patch. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever
you right-click over the patch.

UserData
matrix

User-specified data. Any matrix you want to associate with the
patch object. MATLAB does not use this data, but you can access
it using set and get.

VertexNormals
matrix

Surface normal vectors. This property contains the vertex normals
for the patch. MATLAB generates this data to perform lighting
calculations. You can supply your own vertex normal data, even
if it does not match the coordinate data. This can be useful to
produce interesting lighting effects.

Vertices
matrix

Vertex coordinates. A matrix containing the x-, y-, z-coordinates
for each vertex. See the Faces property for more information.

Visible
{on} | off

2-2427

Patch Properties

Patch object visibility. By default, all patches are visible. When
set to off, the patch is not visible, but still exists, and you can
query and set its properties.

XData
vector or matrix

X-coordinates. The x-coordinates of the patch vertices. If XData
is a matrix, each column represents the x-coordinates of a single
face of the patch. In this case, XData, YData, and ZData must
have the same dimensions.

YData
vector or matrix

Y-coordinates. The y-coordinates of the patch vertices. If YData
is a matrix, each column represents the y-coordinates of a single
face of the patch. In this case, XData, YData, and ZData must
have the same dimensions.

ZData
vector or matrix

Z-coordinates. The z-coordinates of the patch vertices. If ZData
is a matrix, each column represents the z-coordinates of a single
face of the patch. In this case, XData, YData, and ZData must
have the same dimensions.

See Also patch

2-2428

path

Purpose View or change MATLAB directory search path

GUI
Alternatives

As an alternative to the path function, select File > Set Path to use the
Set Path dialog box.

Syntax path
path('newpath')
path(path,'newpath')
path('newpath',path)
p = path(...)

Description path displays the current MATLAB search path. The initial search path
list is defined by toolbox/local/pathdef.m.

path('newpath') changes the search path to newpath, where newpath
is a string array of directories.

path(path,'newpath') adds the newpath directory to the bottom of the
current search path. If newpath is already on the path, then path(path,
'newpath') moves newpath to the end of the path.

path('newpath',path) adds the newpath directory to the top of
the current search path. If newpath is already on the path, then
path('newpath', path) moves newpath to the beginning of the path.

p = path(...) returns the specified path in string variable p.

2-2429

path

Note Save any M-files you create and any MathWorks supplied M-files
that you edit in a directory that is not in the matlabroot/toolbox
directory tree. If you keep your files in matlabroot/toolbox
directories, they can be overwritten when you install a new version of
MATLAB. Also note that locations of files in the matlabroot/toolbox
directory tree are loaded and cached in memory at the beginning of
each MATLAB session to improve performance. If you save files to
matlabroot/toolbox directories using an external editor or add or
remove files from these directories using file system operations, run
rehash toolbox before you use the files in the current session. If you
make changes to existing files in matlabroot/toolbox directories using
an external editor, run clear functionname before you use the files in
the current session. For more information, see the rehash reference
page or the Toolbox Path Caching topic in the MATLAB Desktop Tools
and Development Environment documentation.

Examples Add a new directory to the search path on Windows.

path(path,'c:/tools/goodstuff')

Add a new directory to the search path on UNIX.

path(path,'/home/tools/goodstuff')

See Also addpath, cd, dir, genpath, matlabroot, partialpath, pathdef,
pathsep, pathtool, rehash, restoredefaultpath, rmpath, savepath,
startup, what

Search Path in the MATLAB Desktop Tools and Development
Environment documentation

2-2430

path2rc

Purpose Save current MATLAB search path to pathdef.m file

Syntax path2rc

Description path2rc runs savepath. The savepath function is replacing path2rc.
Use savepath instead of path2rc and replace instances of path2rc
with savepath.

2-2431

pathdef

Purpose Directories in MATLAB search path

GUI
Alternatives

As an alternative to the pathdef function, select File > Set Path to
use the Set Path dialog box.

Syntax pathdef

Description pathdef returns a string listing of the directories in the MATLAB search
path. Use path to view each directory in pathdef.m on a separate line.

When you start a new session, MATLAB creates the search path defined
in the pathdef.m file located in the MATLAB startup directory. If that
directory does not contain a pathdef.m file, MATLAB uses the search
path defined in matlabroot/toolbox/local/pathdef.m. It modifies
the search path using any path statements contained in the startup.m
file.

Make changes to the path using the Set Path dialog box and addpath
and rmpath. While you can edit pathdef.m directly, use caution so you
do not accidentally make MATLAB supplied directories unusable. Use
savepath to save pathdef.m, and to use that path in future sessions,
specify the MATLAB startup directory as its location.

See Also addpath, cd, dir, genpath, matlabroot, partialpath, path, pathsep,
pathtool, rehash, restoredefaultpath, rmpath, savepath, startup,
what

MATLAB Desktop Tools and Development Environment documentation
topics

• How MATLAB Finds the Search Path, pathdef.m

• Saving Settings to the Path

• Using the Path in Future Sessions

• Recovering from Problems with the Search Path

2-2432

pathsep

Purpose Path separator for current platform

Syntax c = pathsep

Description c = pathsep returns the path separator character for this platform.
The path separator is the character that separates directories in the
string returned by the matlabpath function.

Examples Extract each individual path from the string returned by matlabpath.
Use pathsep to define the path separator:

s = matlabpath;
p = 1;

while true
t = strtok(s(p:end), pathsep);
disp(sprintf('%s', t))
p = p + length(t) + 1;
if isempty(strfind(s(p:end),';')) break, end;

end

disp(sprintf('%s', s(p:end)))

Here is the output:

D:\Applications\matlabR14beta2\toolbox\matlab\general
D:\Applications\matlabR14beta2\toolbox\matlab\ops
D:\Applications\matlabR14beta2\toolbox\matlab\lang
D:\Applications\matlabR14beta2\toolbox\matlab\elmat
D:\Applications\matlabR14beta2\toolbox\matlab\elfun

.

.

.

See Also filesep, fullfile, fileparts

2-2433

pathtool

Purpose Open Set Path dialog box to view and change MATLAB path

GUI
Alternatives

As an alternative to the pathtool function, select File > Set Path
in the MATLAB desktop.

Syntax pathtool

Description pathtool opens the Set Path dialog box, a graphical user interface you
use to view and modify the MATLAB search path.

2-2434

pathtool

See Also addpath, cd, dir, genpath, matlabroot, partialpath, path, pathdef,
pathsep, rehash, restoredefaultpath, rmpath, savepath, startup,
what

Search Path topics, including Setting the Search Path, in the MATLAB
Desktop Tools and Development Environment documentation

2-2435

pause

Purpose Halt execution temporarily

Syntax pause
pause(n)
pause on
pause off

Description pause, by itself, causes M-files to stop and wait for you to press any
key before continuing.

pause(n) pauses execution for n seconds before continuing, where n can
be any nonnegative real number. The resolution of the clock is platform
specific. A fractional pause of 0.01 seconds should be supported on
most platforms.

Typing pause(inf) puts you into an infinite loop. To return to the
MATLAB prompt, type Ctrl+C.

pause on allows subsequent pause commands to pause execution.

pause off ensures that any subsequent pause or pause(n) statements
do not pause execution. This allows normally interactive scripts to run
unattended.

Remarks While MATLAB is paused, the following continue to execute:

• Repainting of figure windows, block diagrams, and Java windows

• HG callbacks from figure windows

• Event handling from Java windows

See Also drawnow

2-2436

pbaspect

Purpose Set or query plot box aspect ratio

Syntax pbaspect
pbaspect([aspect_ratio])
pbaspect('mode')
pbaspect('auto')
pbaspect('manual')
pbaspect(axes_handle,...)

Description The plot box aspect ratio determines the relative size of the x-, y-, and
z-axes.

pbaspect with no arguments returns the plot box aspect ratio of the
current axes.

pbaspect([aspect_ratio]) sets the plot box aspect ratio in the current
axes to the specified value. Specify the aspect ratio as three relative
values representing the ratio of the x-, y-, and z-axes size. For example,
a value of [1 1 1] (the default) means the plot box is a cube (although
with stretch-to-fill enabled, it may not appear as a cube). See Remarks.

pbaspect('mode') returns the current value of the plot box aspect ratio
mode, which can be either auto (the default) or manual. See Remarks.

pbaspect('auto') sets the plot box aspect ratio mode to auto.

pbaspect('manual') sets the plot box aspect ratio mode to manual.

pbaspect(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. If you do not specify an
axes handle, pbaspect operates on the current axes.

Remarks pbaspect sets or queries values of the axes object PlotBoxAspectRatio
and PlotBoxAspectRatioMode properties.

When the plot box aspect ratio mode is auto, MATLAB sets the ratio
to [1 1 1], but may change it to accommodate manual settings of
the data aspect ratio, camera view angle, or axis limits. See the axes
DataAspectRatio property for a table listing the interactions between
various properties.

2-2437

pbaspect

Setting a value for the plot box aspect ratio or setting the plot box
aspect ratio mode to manual disables the MATLAB stretch-to-fill feature
(stretching of the axes to fit the window). This means setting the plot
box aspect ratio to its current value,

pbaspect(pbaspect)

can cause a change in the way the graphs look. See the Remarks section
of the axes reference description, “Axes Aspect Ratio Properties” in the
3-D Visualization manual, and “Setting Aspect Ratio” in the MATLAB
Graphics manual for a discussion of stretch-to-fill.

Examples The following surface plot of the function is useful
to illustrate the plot box aspect ratio. First plot the function over the
range –2 ≤ x ≤ 2, –2 ≤ y ≤ 2,

[x,y] = meshgrid([-2:.2:2]);
z = x.*exp(-x.^2 - y.^2);
surf(x,y,z)

2-2438

pbaspect

Querying the plot box aspect ratio shows that the plot box is square.

pbaspect
ans =

1 1 1

It is also interesting to look at the data aspect ratio selected by
MATLAB.

daspect
ans =

4 4 1

To illustrate the interaction between the plot box and data aspect
ratios, set the data aspect ratio to [1 1 1] and again query the plot
box aspect ratio.

daspect([1 1 1])

2-2439

pbaspect

pbaspect
ans =

4 4 1

The plot box aspect ratio has changed to accommodate the specified
data aspect ratio. Now suppose you want the plot box aspect ratio to
be [1 1 1] as well.

pbaspect([1 1 1])

2-2440

pbaspect

Notice how MATLAB changed the axes limits because of the constraints
introduced by specifying both the plot box and data aspect ratios.

You can also use pbaspect to disable stretch-to-fill. For example,
displaying two subplots in one figure can give surface plots a squashed
appearance. Disabling stretch-to-fill,

upper_plot = subplot(211);
surf(x,y,z)
lower_plot = subplot(212);
surf(x,y,z)
pbaspect(upper_plot,'manual')

2-2441

pbaspect

See Also axis, daspect, xlim, ylim, zlim

The axes properties DataAspectRatio, PlotBoxAspectRatio, XLim,
YLim, ZLim

Setting Aspect Ratio in the MATLAB Graphics manual

Axes Aspect Ratio Properties in the 3-D Visualization manual

2-2442

pcg

Purpose Preconditioned conjugate gradients method

Syntax x = pcg(A,b)
pcg(A,b,tol)
pcg(A,b,tol,maxit)
pcg(A,b,tol,maxit,M)
pcg(A,b,tol,maxit,M1,M2)
pcg(A,b,tol,maxit,M1,M2,x0)
[x,flag] = pcg(A,b,...)
[x,flag,relres] = pcg(A,b,...)
[x,flag,relres,iter] = pcg(A,b,...)
[x,flag,relres,iter,resvec] = pcg(A,b,...)

Description x = pcg(A,b) attempts to solve the system of linear equations A*x=b
for x. The n-by-n coefficient matrix A must be symmetric and positive
definite, and should also be large and sparse. The column vector b must
have length n. A can be a function handle afun such that afun(x)
returns A*x. See Function Handles in the MATLAB Programming
documentation for more information.

“Parameterizing Functions Called by Function Functions”, in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the function afun, as well as the preconditioner
function mfun described below, if necessary.

If pcg converges, a message to that effect is displayed. If pcg fails to
converge after the maximum number of iterations or halts for any
reason, a warning message is printed displaying the relative residual
norm(b-A*x)/norm(b) and the iteration number at which the method
stopped or failed.

pcg(A,b,tol) specifies the tolerance of the method. If tol is [], then
pcg uses the default, 1e-6.

pcg(A,b,tol,maxit) specifies the maximum number of iterations. If
maxit is [], then pcg uses the default, min(n,20).

pcg(A,b,tol,maxit,M) and pcg(A,b,tol,maxit,M1,M2) use
symmetric positive definite preconditioner M or M = M1*M2 and

2-2443

pcg

effectively solve the system inv(M)*A*x = inv(M)*b for x. If M is []
then pcg applies no preconditioner. M can be a function handle mfun
such that mfun(x) returns M\x.

pcg(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is [],
then pcg uses the default, an all-zero vector.

[x,flag] = pcg(A,b,...) also returns a convergence flag.

Flag Convergence

0 pcg converged to the desired tolerance tol within maxit
iterations.

1 pcg iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 pcg stagnated. (Two consecutive iterates were the same.)

4 One of the scalar quantities calculated during pcg became
too small or too large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if the flag output is specified.

[x,flag,relres] = pcg(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = pcg(A,b,...) also returns the iteration
number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = pcg(A,b,...) also returns a vector
of the residual norms at each iteration including norm(b-A*x0).

Examples Example 1

n1 = 21;
A = gallery('moler',n1);
b1 = A*ones(n1,1);
tol = 1e-6;

2-2444

pcg

maxit = 15;
M = diag([10:-1:1 1 1:10]);
[x1,flag1,rr1,iter1,rv1] = pcg(A,b1,tol,maxit,M);

Alternatively, you can use the following parameterized matrix-vector
product function afun in place of the matrix A:

afun = @(x,n)gallery('moler',n)*x;
n2 = 21;
b2 = afun(ones(n2,1),n2);
[x2,flag2,rr2,iter2,rv2] = pcg(@(x)afun(x,n2),b2,tol,maxit,M);

Example 2

A = delsq(numgrid('C',25));
b = ones(length(A),1);
[x,flag] = pcg(A,b)

flag is 1 because pcg does not converge to the default tolerance of 1e-6
within the default 20 iterations.

R = cholinc(A,1e-3);
[x2,flag2,relres2,iter2,resvec2] = pcg(A,b,1e-8,10,R',R)

flag2 is 0 because pcg converges to the tolerance of 1.2e-9 (the value of
relres2) at the sixth iteration (the value of iter2) when preconditioned
by the incomplete Cholesky factorization with a drop tolerance of 1e-3.
resvec2(1) = norm(b) and resvec2(7) = norm(b-A*x2). You can
follow the progress of pcg by plotting the relative residuals at each
iteration starting from the initial estimate (iterate number 0).

semilogy(0:iter2,resvec2/norm(b),'-o')
xlabel('iteration number')
ylabel('relative residual')

2-2445

pcg

See Also bicg, bicgstab, cgs, cholinc, gmres, lsqr, minres, qmr, symmlq

function_handle (@), mldivide (\)

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

2-2446

pchip

Purpose Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)

Syntax yi = pchip(x,y,xi)
pp = pchip(x,y)

Description yi = pchip(x,y,xi) returns vector yi containing elements
corresponding to the elements of xi and determined by piecewise cubic
interpolation within vectors x and y. The vector x specifies the points
at which the data y is given. If y is a matrix, then the interpolation is
performed for each column of y and yi is length(xi)-by-size(y,2).

pp = pchip(x,y) returns a piecewise polynomial structure for use by
ppval. x can be a row or column vector. y is a row or column vector of
the same length as x, or a matrix with length(x) columns.

pchip finds values of an underlying interpolating function at
intermediate points, such that:

• On each subinterval , is the cubic Hermite
interpolant to the given values and certain slopes at the two
endpoints.

• interpolates , i.e., , and the first derivative
is continuous. is probably not continuous; there may

be jumps at the .

• The slopes at the are chosen in such a way that preserves
the shape of the data and respects monotonicity. This means that, on
intervals where the data are monotonic, so is ; at points where
the data has a local extremum, so does .

Note If is a matrix, satisfies the above for each column of .

2-2447

pchip

Remarks spline constructs in almost the same way pchip constructs
. However, spline chooses the slopes at the differently, namely

to make even continuous. This has the following effects:

• spline produces a smoother result, i.e. is continuous.

• spline produces a more accurate result if the data consists of values
of a smooth function.

• pchip has no overshoots and less oscillation if the data are not
smooth.

• pchip is less expensive to set up.

• The two are equally expensive to evaluate.

Examples x = -3:3;
y = [-1 -1 -1 0 1 1 1];
t = -3:.01:3;
p = pchip(x,y,t);
s = spline(x,y,t);
plot(x,y,'o',t,p,'-',t,s,'-.')
legend('data','pchip','spline',4)

2-2448

pchip

See Also interp1, spline, ppval

References [1] Fritsch, F. N. and R. E. Carlson, "Monotone Piecewise Cubic
Interpolation," SIAM J. Numerical Analysis, Vol. 17, 1980, pp.238-246.

[2] Kahaner, David, Cleve Moler, Stephen Nash, Numerical Methods
and Software, Prentice Hall, 1988.

2-2449

pcode

Purpose Create preparsed pseudocode file (P-file)

Syntax pcode fun
pcode *.m
pcode fun1 fun2 ...
pcode... -inplace

Description pcode fun parses the M-file fun.m into the P-file fun.p and puts it
into the current directory. The original M-file can be anywhere on the
search path.

pcode *.m creates P-files for all the M-files in the current directory.

pcode fun1 fun2 ... creates P-files for the listed functions.

pcode... -inplace creates P-files in the same directory as the
M-files. An error occurs if the files can’t be created.

2-2450

pcolor

Purpose Pseudocolor (checkerboard) plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax pcolor(C)
pcolor(X,Y,C)
pcolor(axes_handles,...)
h = pcolor(...)

Description A pseudocolor plot is a rectangular array of cells with colors determined
by C. MATLAB creates a pseudocolor plot using each set of four adjacent
points in C to define a surface rectangle (i.e., cell).

The default shading is faceted, which colors each cell with a single
color. The last row and column of C are not used in this case. With
shading interp, each cell is colored by bilinear interpolation of the
colors at its four vertices, using all elements of C.

The minimum and maximum elements of C are assigned the first and
last colors in the colormap. Colors for the remaining elements in C are
determined by a linear mapping from value to colormap element.

pcolor(C) draws a pseudocolor plot. The elements of C are linearly
mapped to an index into the current colormap. The mapping from C to
the current colormap is defined by colormap and caxis.

pcolor(X,Y,C) draws a pseudocolor plot of the elements of C at the
locations specified by X and Y. The plot is a logically rectangular,
two-dimensional grid with vertices at the points [X(i,j), Y(i,j)]. X
and Y are vectors or matrices that specify the spacing of the grid lines. If

2-2451

pcolor

X and Y are vectors, X corresponds to the columns of C and Y corresponds
to the rows. If X and Y are matrices, they must be the same size as C.

pcolor(axes_handles,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = pcolor(...) returns a handle to a surface graphics object.

Remarks A pseudocolor plot is a flat surface plot viewed from above.
pcolor(X,Y,C) is the same as viewing surf(X,Y,zeros(size(X)),C)
using view([0 90]).

When you use shading faceted or shading flat, the constant color of
each cell is the color associated with the corner having the smallest x-y
coordinates. Therefore, C(i,j) determines the color of the cell in the ith
row and jth column. The last row and column of C are not used.

When you use shading interp, each cell’s color results from a bilinear
interpolation of the colors at its four vertices, and all elements of C are
used.

Examples A Hadamard matrix has elements that are +1 and -1. A colormap with
only two entries is appropriate when displaying a pseudocolor plot of
this matrix.

pcolor(hadamard(20))
colormap(gray(2))
axis ij
axis square

2-2452

pcolor

A simple color wheel illustrates a polar coordinate system.

n = 6;
r = (0:n)'/n;
theta = pi*(-n:n)/n;
X = r*cos(theta);
Y = r*sin(theta);
C = r*cos(2*theta);
pcolor(X,Y,C)
axis equal tight

2-2453

pcolor

Algorithm The number of vertex colors for pcolor(C) is the same as the number
of cells for image(C). pcolor differs from image in that pcolor(C)
specifies the colors of vertices, which are scaled to fit the colormap;
changing the axes clim property changes this color mapping. image(C)
specifies the colors of cells and directly indexes into the colormap
without scaling. Additionally, pcolor(X,Y,C) can produce parametric
grids, which is not possible with image.

See Also caxis, image, mesh, shading, surf, view

2-2454

pdepe

Purpose Solve initial-boundary value problems for parabolic-elliptic PDEs in 1-D

Syntax sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan)
sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options)

Arguments m A parameter corresponding to the symmetry of
the problem. m can be slab = 0, cylindrical = 1, or
spherical = 2.

pdefun A handle to a function that defines the components
of the PDE.

icfun A handle to a function that defines the initial
conditions.

bcfun A handle to a function that defines the boundary
conditions.

xmesh A vector [x0, x1, ..., xn] specifying the points at
which a numerical solution is requested for every
value in tspan. The elements of xmesh must satisfy
x0 < x1 < ... < xn. The length of xmesh must
be >= 3.

tspan A vector [t0, t1, ..., tf] specifying the points
at which a solution is requested for every value
in xmesh. The elements of tspan must satisfy
t0 < t1 < ... < tf. The length of tspan must be
>= 3.

options Some options of the underlying ODE solver are
available in pdepe: RelTol, AbsTol, NormControl,
InitialStep, and MaxStep. In most cases, default
values for these options provide satisfactory
solutions. See odeset for details.

Description sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan) solves
initial-boundary value problems for systems of parabolic and elliptic
PDEs in the one space variable and time . pdefun, icfun, and

2-2455

pdepe

bcfun are function handles. See “Function Handles” in the MATLAB
Programming documentation for more information. The ordinary
differential equations (ODEs) resulting from discretization in space
are integrated to obtain approximate solutions at times specified in
tspan. The pdepe function returns values of the solution on a mesh
provided in xmesh.

“Parameterizing Functions Called by Function Functions”, in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the functions pdefun, icfun, or bcfun, if
necessary.

pdepe solves PDEs of the form:

(2-2)

The PDEs hold for and . The interval must
be finite. can be 0, 1, or 2, corresponding to slab, cylindrical, or
spherical symmetry, respectively. If , then must be >= 0.

In Equation 2-2, is a flux term and
is a source term. The coupling of the partial

derivatives with respect to time is restricted to multiplication by a
diagonal matrix . The diagonal elements of this
matrix are either identically zero or positive. An element that is
identically zero corresponds to an elliptic equation and otherwise to a
parabolic equation. There must be at least one parabolic equation. An
element of that corresponds to a parabolic equation can vanish at
isolated values of if those values of are mesh points. Discontinuities
in and/or due to material interfaces are permitted provided that a
mesh point is placed at each interface.

For and all , the solution components satisfy initial conditions
of the form

2-2456

pdepe

(2-3)

For all and either or , the solution components satisfy
a boundary condition of the form

(2-4)

Elements of are either identically zero or never zero. Note that the
boundary conditions are expressed in terms of the flux rather than

. Also, of the two coefficients, only can depend on .

In the call sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan):

• m corresponds to .

• xmesh(1) and xmesh(end) correspond to and .

• tspan(1) and tspan(end) correspond to and .

• pdefun computes the terms , , and (Equation 2-2). It has the form

[c,f,s] = pdefun(x,t,u,dudx)

The input arguments are scalars x and t and vectors u and dudx that
approximate the solution and its partial derivative with respect to

, respectively. c, f, and s are column vectors. c stores the diagonal
elements of the matrix (Equation 2-2).

• icfun evaluates the initial conditions. It has the form

u = icfun(x)

When called with an argument x, icfun evaluates and returns the
initial values of the solution components at x in the column vector u.

• bcfun evaluates the terms and of the boundary conditions
(Equation 2-4). It has the form

[pl,ql,pr,qr] = bcfun(xl,ul,xr,ur,t)

2-2457

pdepe

ul is the approximate solution at the left boundary xl = and ur is
the approximate solution at the right boundary xr = . pl and ql are
column vectors corresponding to and evaluated at xl, similarly
pr and qr correspond to xr. When and , boundedness
of the solution near requires that the flux vanish at .
pdepe imposes this boundary condition automatically and it ignores
values returned in pl and ql.

pdepe returns the solution as a multidimensional array sol.
= ui = sol(:,:,i) is an approximation to the ith component of the

solution vector . The element ui(j,k) = sol(j,k,i) approximates at
= (tspan(j),xmesh(k)).

ui = sol(j,:,i) approximates component i of the solution at time
tspan(j) and mesh points xmesh(:). Use pdeval to compute the

approximation and its partial derivative at points not included
in xmesh. See pdeval for details.

sol = pdepe(m,pdefun,icfun,bcfun,xmesh,tspan,options) solves
as above with default integration parameters replaced by values in
options, an argument created with the odeset function. Only some
of the options of the underlying ODE solver are available in pdepe:
RelTol, AbsTol, NormControl, InitialStep, and MaxStep. The defaults
obtained by leaving off the input argument options will generally be
satisfactory. See odeset for details.

Remarks • The arrays xmesh and tspan play different roles in pdepe.

tspan – The pdepe function performs the time integration with an
ODE solver that selects both the time step and formula dynamically.
The elements of tspan merely specify where you want answers and
the cost depends weakly on the length of tspan.

xmesh – Second order approximations to the solution are made on the
mesh specified in xmesh. Generally, it is best to use closely spaced
mesh points where the solution changes rapidly. pdepe does not
select the mesh in automatically. You must provide an appropriate
fixed mesh in xmesh. The cost depends strongly on the length of

2-2458

pdepe

xmesh. When , it is not necessary to use a fine mesh near
to account for the coordinate singularity.

• The time integration is done with ode15s. pdepe exploits the
capabilities of ode15s for solving the differential-algebraic equations
that arise when Equation 2-2 contains elliptic equations, and for
handling Jacobians with a specified sparsity pattern.

• After discretization, elliptic equations give rise to algebraic equations.
If the elements of the initial conditions vector that correspond to
elliptic equations are not "consistent" with the discretization, pdepe
tries to adjust them before beginning the time integration. For
this reason, the solution returned for the initial time may have a
discretization error comparable to that at any other time. If the mesh
is sufficiently fine, pdepe can find consistent initial conditions close
to the given ones. If pdepe displays a message that it has difficulty
finding consistent initial conditions, try refining the mesh.

No adjustment is necessary for elements of the initial conditions
vector that correspond to parabolic equations.

Examples Example 1. This example illustrates the straightforward formulation,
computation, and plotting of the solution of a single PDE.

This equation holds on an interval for times .

The PDE satisfies the initial condition

and boundary conditions

2-2459

pdepe

It is convenient to use subfunctions to place all the functions required
by pdepe in a single M-file.

function pdex1

m = 0;
x = linspace(0,1,20);
t = linspace(0,2,5);

sol = pdepe(m,@pdex1pde,@pdex1ic,@pdex1bc,x,t);
% Extract the first solution component as u.
u = sol(:,:,1);

% A surface plot is often a good way to study a solution.
surf(x,t,u)
title('Numerical solution computed with 20 mesh points.')
xlabel('Distance x')
ylabel('Time t')

% A solution profile can also be illuminating.
figure
plot(x,u(end,:))
title('Solution at t = 2')
xlabel('Distance x')
ylabel('u(x,2)')
% --
function [c,f,s] = pdex1pde(x,t,u,DuDx)
c = pi^2;
f = DuDx;
s = 0;
% --
function u0 = pdex1ic(x)
u0 = sin(pi*x);
% --
function [pl,ql,pr,qr] = pdex1bc(xl,ul,xr,ur,t)
pl = ul;
ql = 0;

2-2460

pdepe

pr = pi * exp(-t);
qr = 1;

In this example, the PDE, initial condition, and boundary conditions
are coded in subfunctions pdex1pde, pdex1ic, and pdex1bc.

The surface plot shows the behavior of the solution.

The following plot shows the solution profile at the final value of t (i.e.,
t = 2).

2-2461

pdepe

Example 2. This example illustrates the solution of a system of PDEs.
The problem has boundary layers at both ends of the interval. The
solution changes rapidly for small .

The PDEs are

where .

This equation holds on an interval for times .

2-2462

pdepe

The PDE satisfies the initial conditions

and boundary conditions

In the form expected by pdepe, the equations are

The boundary conditions on the partial derivatives of have to be
written in terms of the flux. In the form expected by pdepe, the left
boundary condition is

and the right boundary condition is

2-2463

pdepe

The solution changes rapidly for small . The program selects the step
size in time to resolve this sharp change, but to see this behavior in the
plots, the example must select the output times accordingly. There are
boundary layers in the solution at both ends of [0,1], so the example
places mesh points near 0 and 1 to resolve these sharp changes. Often
some experimentation is needed to select a mesh that reveals the
behavior of the solution.

function pdex4
m = 0;
x = [0 0.005 0.01 0.05 0.1 0.2 0.5 0.7 0.9 0.95 0.99 0.995 1];
t = [0 0.005 0.01 0.05 0.1 0.5 1 1.5 2];

sol = pdepe(m,@pdex4pde,@pdex4ic,@pdex4bc,x,t);
u1 = sol(:,:,1);
u2 = sol(:,:,2);

figure
surf(x,t,u1)
title('u1(x,t)')
xlabel('Distance x')
ylabel('Time t')

figure
surf(x,t,u2)
title('u2(x,t)')
xlabel('Distance x')
ylabel('Time t')
% --
function [c,f,s] = pdex4pde(x,t,u,DuDx)
c = [1; 1];
f = [0.024; 0.17] .* DuDx;
y = u(1) - u(2);

2-2464

pdepe

F = exp(5.73*y)-exp(-11.47*y);
s = [-F; F];
% --
function u0 = pdex4ic(x);
u0 = [1; 0];
% --
function [pl,ql,pr,qr] = pdex4bc(xl,ul,xr,ur,t)
pl = [0; ul(2)];
ql = [1; 0];
pr = [ur(1)-1; 0];
qr = [0; 1];

In this example, the PDEs, initial conditions, and boundary conditions
are coded in subfunctions pdex4pde, pdex4ic, and pdex4bc.

The surface plots show the behavior of the solution components.

2-2465

pdepe

See Also function_handle (@), pdeval, ode15s, odeset, odeget

References [1] Skeel, R. D. and M. Berzins, "A Method for the Spatial Discretization
of Parabolic Equations in One Space Variable," SIAM Journal on
Scientific and Statistical Computing, Vol. 11, 1990, pp.1-32.

2-2466

pdeval

Purpose Evaluate numerical solution of PDE using output of pdepe

Syntax [uout,duoutdx] = pdeval(m,x,ui,xout)

Arguments m Symmetry of the problem: slab = 0, cylindrical = 1,
spherical = 2. This is the first input argument used
in the call to pdepe.

xmesh A vector [x0, x1, ..., xn] specifying the points at which
the elements of ui were computed. This is the same
vector with which pdepe was called.

ui A vector sol(j,:,i) that approximates component i of

the solution at time and mesh points xmesh, where
sol is the solution returned by pdepe.

xout A vector of points from the interval [x0,xn] at which
the interpolated solution is requested.

Description [uout,duoutdx] = pdeval(m,x,ui,xout) approximates the solution

and its partial derivative at points from the interval
[x0,xn]. The pdeval function returns the computed values in uout and
duoutdx, respectively.

Note pdeval evaluates the partial derivative rather than
the flux . Although the flux is continuous, the partial derivative may
have a jump at a material interface.

See Also pdepe

2-2467

peaks

Purpose Example function of two variables

Syntax Z = peaks;
Z = peaks(n);
Z = peaks(V);
Z = peaks(X,Y);

peaks;
peaks(N);
peaks(V);
peaks(X,Y);

X,Y,Z] = peaks;
[X,Y,Z] = peaks(n);
[X,Y,Z] = peaks(V);

Description peaks is a function of two variables, obtained by translating and scaling
Gaussian distributions, which is useful for demonstrating mesh, surf,
pcolor, contour, and so on.

Z = peaks; returns a 49-by-49 matrix.

Z = peaks(n); returns an n-by-n matrix.

Z = peaks(V); returns an n-by-n matrix, where n = length(V).

Z = peaks(X,Y); evaluates peaks at the given X and Y (which must be
the same size) and returns a matrix the same size.

2-2468

peaks

peaks(...) (with no output argument) plots the peaks function with
surf.

[X,Y,Z] = peaks(...); returns two additional matrices, X and Y, for
parametric plots, for example, surf(X,Y,Z,del2(Z)). If not given as
input, the underlying matrices X and Y are

[X,Y] = meshgrid(V,V)

where V is a given vector, or V is a vector of length n with elements
equally spaced from -3 to 3. If no input argument is given, the default
n is 49.

See Also meshgrid, surf

2-2469

perl

Purpose Call Perl script using appropriate operating system executable

Syntax perl('perlfile')
perl('perlfile',arg1,arg2,...)
result = perl(...)

Description perl('perlfile') calls the Perl script perlfile, using the appropriate
operating system Perl executable. Perl is included with MATLAB on
Windows systems, and thus MATLAB users can run M-files containing
the perl function. On Unix systems, MATLAB just calls the Perl
interpreter that’s available with the OS

perl('perlfile',arg1,arg2,...) calls the Perl script perlfile,
using the appropriate operating system Perl executable, and passes the
arguments arg1, arg2, and so on, to perlfile.

result = perl(...) returns the results of attempted Perl call to
result.

Examples Given the Perl script, hello.pl

$input = $ARGV[0];
print "Hello $input.";

run the following statement in MATLAB

perl('hello.pl','World')

MATLAB returns

ans =
Hello World.

It is sometimes beneficial to use Perl scripts instead of MATLAB code.
The perl function allows you to run those scripts from within MATLAB.
Specific examples where you might choose to use a Perl script include

• Perl script already exists

2-2470

perl

• Perl script preprocesses data quickly, formatting it in a way more
easily read by MATLAB

• Perl has features not supported by MATLAB

See Also ! (exclamation point), dos, regexp, system, unix

2-2471

perms

Purpose All possible permutations

Syntax P = perms(v)

Description P = perms(v), where v is a row vector of length n, creates a matrix
whose rows consist of all possible permutations of the n elements of v.
Matrix P contains n! rows and n columns.

Examples The command perms(2:2:6) returns all the permutations of the
numbers 2, 4, and 6:

6 4 2
6 2 4
4 6 2
4 2 6
2 4 6
2 6 4

Limitations This function is only practical for situations where n is less than about
15.

See Also nchoosek, permute, randperm

2-2472

permute

Purpose Rearrange dimensions of N-D array

Syntax B = permute(A,order)

Description B = permute(A,order) rearranges the dimensions of A so that they are
in the order specified by the vector order. B has the same values of A
but the order of the subscripts needed to access any particular element
is rearranged as specified by order. All the elements of order must
be unique.

Remarks permute and ipermute are a generalization of transpose (.') for
multidimensional arrays.

Examples Given any matrix A, the statement

permute(A,[2 1])

is the same as A'.

For example:

A = [1 2; 3 4]; permute(A,[2 1])
ans =

1 3
2 4

The following code permutes a three-dimensional array:

X = rand(12,13,14);
Y = permute(X,[2 3 1]);
size(Y)
ans =

13 14 12

See Also ipermute, circshift

2-2473

persistent

Purpose Define persistent variable

Syntax persistent X Y Z

Description persistent X Y Z defines X, Y, and Z as variables that are local to the
function in which they are declared; yet their values are retained in
memory between calls to the function. Persistent variables are similar
to global variables because MATLAB creates permanent storage for
both. They differ from global variables in that persistent variables are
known only to the function in which they are declared. This prevents
persistent variables from being changed by other functions or from the
MATLAB command line.

Persistent variables are cleared when the M-file is cleared from memory
or when the M-file is changed. To keep an M-file in memory until
MATLAB quits, use mlock.

If the persistent variable does not exist the first time you issue the
persistent statement, it is initialized to the empty matrix.

It is an error to declare a variable persistent if a variable with the same
name exists in the current workspace. MATLAB also errors if you
declare any of a function’s input or output arguments as persistent
within that same function. For example, the following persistent
declaration is invalid:

function myfun(argA, argB, argC)
persistent argB

Remarks There is no function form of the persistent command (i.e., you cannot
use parentheses and quote the variable names).

Example This function prompts a user to enter a directory name to use in locating
one or more files. If the user has already entered this information, and
it requires no modification, they do not need to enter it again. This is
because the function stores it in a persistent variable (lastDir), and
offers it as the default selection. Here is the function definition:

2-2474

persistent

function find_file(file)
persistent lastDir

if isempty(lastDir)
prompt = 'Enter directory: ';

else
prompt = ['Enter directory[' lastDir ']: '];

end
response = input(prompt, 's');

if ~isempty(response)
dirName = response;

else
dirName = lastDir;

end

dir(strcat(dirName, file))
lastDir = dirName;

Execute the function twice. The first time, it prompts you to enter the
information and does not offer a default:

cd(matlabroot)

find_file('is*.m')
Enter directory: toolbox/matlab/strfun/

iscellstr.m ischar.m isletter.m isspace.m isstr.m
isstrprop.m

The second time, it does offer a default taken from the persistent
variable dirName:

find_file('is*.m')
Enter directory[toolbox/matlab/strfun/]:
toolbox/matlab/elmat/

2-2475

persistent

isempty.m isfinite.m isscalar.m
isequal.m isinf.m isvector.m
isequalwithequalnans.m isnan.m

See Also global, clear, mislocked, mlock, munlock, isempty

2-2476

pi

Purpose Ratio of circle’s circumference to its diameter, π

Syntax pi

Description pi returns the floating-point number nearest the value of π. The
expressions 4*atan(1) and imag(log(-1)) provide the same value.

Examples The expression sin(pi) is not exactly zero because pi is not exactly π.

sin(pi)

ans =

1.2246e-16

See Also ans, eps, i, Inf, j, NaN

2-2477

pie

Purpose Pie chart

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax pie(X)
pie(X,explode)
pie(...,labels)
pie(axes_handle,...)
h = pie(...)

Description pie(X) draws a pie chart using the data in X. Each element in X is
represented as a slice in the pie chart.

pie(X,explode) offsets a slice from the pie. explode is a vector or
matrix of zeros and nonzeros that correspond to X. A nonzero value
offsets the corresponding slice from the center of the pie chart, so that
X(i,j) is offset from the center if explode(i,j) is nonzero. explode
must be the same size as X.

pie(...,labels) specifies text labels for the slices. The number of
labels must equal the number of elements in X. For example,

pie(1:3,{'Taxes','Expenses','Profit'})

pie(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = pie(...) returns a vector of handles to patch and text graphics
objects.

2-2478

pie

Remarks The values in X are normalized via X/sum(X) to determine the area of
each slice of the pie. If sum(X) ≤ 1, the values in X directly specify the
area of the pie slices. MATLAB draws only a partial pie if sum(X) < 1.

Examples Emphasize the second slice in the chart by setting its corresponding
explode element to 1.

x = [1 3 0.5 2.5 2];
explode = [0 1 0 0 0];
pie(x,explode)
colormap jet

See Also pie3

2-2479

pie3

Purpose 3-D pie chart

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax pie3(X)
pie3(X,explode)
pie3(...,labels)
pie3(axes_handle,...)
h = pie3(...)

Description pie3(X) draws a three-dimensional pie chart using the data in X. Each
element in X is represented as a slice in the pie chart.

pie3(X,explode) specifies whether to offset a slice from the center
of the pie chart. X(i,j) is offset from the center of the pie chart if
explode(i,j) is nonzero. explode must be the same size as X.

pie3(...,labels) specifies text labels for the slices. The number of
labels must equal the number of elements in X. For example,

pie3(1:3,{'Taxes','Expenses','Profit'})

pie3(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = pie3(...) returns a vector of handles to patch, surface, and text
graphics objects.

2-2480

pie3

Remarks The values in X are normalized via X/sum(X) to determine the area of
each slice of the pie. If sum(X) ≤ 1, the values in X directly specify the
area of the pie slices. MATLAB draws only a partial pie if sum(X) < 1.

Examples Offset a slice in the pie chart by setting the corresponding explode
element to 1:

x = [1 3 0.5 2.5 2];
explode = [0 1 0 0 0];
pie3(x,explode)
colormap hsv

See Also pie

2-2481

pinv

Purpose Moore-Penrose pseudoinverse of matrix

Syntax B = pinv(A)
B = pinv(A,tol)

Definition The Moore-Penrose pseudoinverse is a matrix B of the same dimensions
as A' satisfying four conditions:

A*B*A = A
B*A*B = B
A*B is Hermitian
B*A is Hermitian

The computation is based on svd(A) and any singular values less than
tol are treated as zero.

Description B = pinv(A) returns the Moore-Penrose pseudoinverse of A.

B = pinv(A,tol) returns the Moore-Penrose pseudoinverse and
overrides the default tolerance, max(size(A))*norm(A)*eps.

Examples If A is square and not singular, then pinv(A) is an expensive way to
compute inv(A). If A is not square, or is square and singular, then
inv(A) does not exist. In these cases, pinv(A) has some of, but not all,
the properties of inv(A).

If A has more rows than columns and is not of full rank, then the
overdetermined least squares problem

minimize norm(A*x-b)

does not have a unique solution. Two of the infinitely many solutions are

x = pinv(A)*b

and

y = A\b

2-2482

pinv

These two are distinguished by the facts that norm(x) is smaller than
the norm of any other solution and that y has the fewest possible
nonzero components.

For example, the matrix generated by

A = magic(8); A = A(:,1:6)

is an 8-by-6 matrix that happens to have rank(A) = 3.

A =
64 2 3 61 60 6
9 55 54 12 13 51

17 47 46 20 21 43
40 26 27 37 36 30
32 34 35 29 28 38
41 23 22 44 45 19
49 15 14 52 53 11
8 58 59 5 4 62

The right-hand side is b = 260*ones(8,1),

b =
260
260
260
260
260
260
260
260

The scale factor 260 is the 8-by-8 magic sum. With all eight columns,
one solution to A*x = b would be a vector of all 1’s. With only six
columns, the equations are still consistent, so a solution exists, but it
is not all 1’s. Since the matrix is rank deficient, there are infinitely
many solutions. Two of them are

x = pinv(A)*b

2-2483

pinv

which is

x =
1.1538
1.4615
1.3846
1.3846
1.4615
1.1538

and

y = A\b

which produces this result.

Warning: Rank deficient, rank = 3 tol = 1.8829e-013.
y =

4.0000
5.0000

0
0
0

-1.0000

Both of these are exact solutions in the sense that norm(A*x-b) and
norm(A*y-b) are on the order of roundoff error. The solution x is special
because

norm(x) = 3.2817

is smaller than the norm of any other solution, including

norm(y) = 6.4807

On the other hand, the solution y is special because it has only three
nonzero components.

See Also inv, qr, rank, svd

2-2484

planerot

Purpose Givens plane rotation

Syntax [G,y] = planerot(x)

Description [G,y] = planerot(x) where x is a 2-component column vector, returns
a 2-by-2 orthogonal matrix G so that y = G*x has y(2) = 0.

Examples x = [3 4];
[G,y] = planerot(x')

G =
0.6000 0.8000

-0.8000 0.6000

y =
5
0

See Also qrdelete, qrinsert

2-2485

playshow

Purpose Run M-file demo (deprecated; use echodemo instead)

Syntax playshow filename

Description playshow filename runs filename, which is a demo. Replace playshow
filename with echodemo filename. Note that other arguments supported
by playshow are not supported by echodemo.

See Also demo, echodemo, helpbrowser

2-2486

plot

Purpose 2-D line plot

Contents

“GUI Alternatives” on page 2-2487

“Description” on page 2-2488

“Backward-Compatible Version” on page 2-2488

“Cycling Through Line Colors and Styles” on page 2-2489

“Prevent Resetting of Color and Styles with hold all” on page 2-2489

“Additional Information” on page 2-2490

“Specifying the Color and Size of Markers” on page 2-2490

“Specifying Tick-Mark Location and Labeling” on page 2-2491

“Adding Titles, Axis Labels, and Annotations” on page 2-2492

“See Also” on page 2-2493

GUI
Alternatives

Use the Plot Selector to graph selected variables in the Workspace
Browser and the Plot Catalog, accessed from the Figure Palette.
Directly manipulate graphs in plot edit mode, and modify them using
the Property Editor. For details, see Using Plot Edit Mode, and The
Figure Palette in the MATLAB Graphics documentation, and also
Creating Graphics from the Workspace Browser in the MATLAB
Desktop documentation.

Syntax plot(Y)
plot(X1,Y1,...)
plot(X1,Y1,LineSpec,...)
plot(...,'PropertyName',PropertyValue,...)
plot(axes_handle,...)
h = plot(...)

2-2487

plot

hlines = plot('v6',...)

Description plot(Y) plots the columns of Y versus their index if Y is a real number.
If Y is complex, plot(Y) is equivalent to plot(real(Y),imag(Y)). In
all other uses of plot, the imaginary component is ignored.

plot(X1,Y1,...) plots all lines defined by Xn versus Yn pairs. If only
Xn or Yn is a matrix, the vector is plotted versus the rows or columns of
the matrix, depending on whether the vector’s row or column dimension
matches the matrix. If Xn is a scalar and Yn is a vector, disconnected
line objects are created and plotted as discrete points vertically at Xn.

plot(X1,Y1,LineSpec,...) plots all lines defined by the
Xn,Yn,LineSpec triples, where LineSpec is a line specification
that determines line type, marker symbol, and color of the plotted
lines. You can mix Xn,Yn,LineSpec triples with Xn,Yn pairs:
plot(X1,Y1,X2,Y2,LineSpec,X3,Y3).

Note See LineSpec for a list of line style, marker, and color specifiers.

plot(...,'PropertyName',PropertyValue,...) sets properties to
the specified property values for all lineseries graphics objects created
by plot. (See the “Examples” on page 2-2490 section for examples.)

plot(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = plot(...) returns a column vector of handles to lineseries
graphics objects, one handle per line.

Backward-Compatible Version

hlines = plot('v6',...) returns the handles to line objects instead
of lineseries objects.

2-2488

plot

Note The v6 option enables users of Version 7.x of MATLAB to create
FIG-files that previous versions can open. It is obsolete and will be
removed in a future version of MATLAB.

See Plot Objects and Backward Compatibility for more information.

Remarks Cycling Through Line Colors and Styles

If you do not specify a color when plotting more than one line, plot
automatically cycles through the colors in the order specified by the
current axes ColorOrder property. After cycling through all the colors
defined by ColorOrder, plot then cycles through the line styles defined
in the axes LineStyleOrder property.

The default LineStyleOrder property has a single entry (a solid line
with no marker).

By default, MATLAB resets the ColorOrder and LineStyleOrder
properties each time you call plot. If you want the changes you make to
these properties to persist, you must define these changes as default
values. For example,

set(0,'DefaultAxesColorOrder',[0 0 0],...
'DefaultAxesLineStyleOrder','-|-.|--|:')

sets the default ColorOrder to use only the color black and sets the
LineStyleOrder to use solid, dash-dot, dash-dash, and dotted line
styles.

Prevent Resetting of Color and Styles with hold all

The all option to the hold command prevents the ColorOrder and
LineStyleOrder from being reset in subsequent plot commands. In the
following sequence of commands, MATLAB continues to cycle through
the colors defined by the axes ColorOrder property (see above).

plot(rand(12,2))
hold all

2-2489

plot

plot(randn(12,2))

Additional Information

• See Creating Line Plots and Annotating Graphs for more information
on plotting.

• See LineSpec for more information on specifying line styles and
colors.

Examples Specifying the Color and Size of Markers

You can also specify other line characteristics using graphics properties
(see line for a description of these properties):

• LineWidth — Specifies the width (in points) of the line.

• MarkerEdgeColor — Specifies the color of the marker or the
edge color for filled markers (circle, square, diamond, pentagram,
hexagram, and the four triangles).

• MarkerFaceColor — Specifies the color of the face of filled markers.

• MarkerSize — Specifies the size of the marker in units of points.

For example, these statements,

x = -pi:pi/10:pi;
y = tan(sin(x)) - sin(tan(x));
plot(x,y,'--rs','LineWidth',2,...

'MarkerEdgeColor','k',...
'MarkerFaceColor','g',...
'MarkerSize',10)

produce this graph.

2-2490

plot

Specifying Tick-Mark Location and Labeling

You can adjust the axis tick-mark locations and the labels appearing
at each tick. For example, this plot of the sine function relabels the
x-axis with more meaningful values:

x = -pi:.1:pi;
y = sin(x);
plot(x,y)
set(gca,'XTick',-pi:pi/2:pi)
set(gca,'XTickLabel',{'-pi','-pi/2','0','pi/2','pi'})

Now add axis labels and annotate the point -pi/4, sin(-pi/4).

2-2491

plot

Adding Titles, Axis Labels, and Annotations

MATLAB enables you to add axis labels and titles. For example, using
the graph from the previous example, add an x- and y-axis label:

xlabel('-\pi \leq \Theta \leq \pi')
ylabel('sin(\Theta)')
title('Plot of sin(\Theta)')
text(-pi/4,sin(-pi/4),'\leftarrow sin(-\pi\div4)',...

'HorizontalAlignment','left')

Now change the line color to red by first finding the handle of the line
object created by plot and then setting its Color property. In the same
statement, set the LineWidth property to 2 points.

set(findobj(gca,'Type','line','Color',[0 0 1]),...
'Color','red',...
'LineWidth',2)

2-2492

plot

See Also axis, bar, grid, hold, legend, line, LineSpec, loglog, plot3, plotyy,
semilogx, semilogy, subplot, title, xlabel, xlim, ylabel, ylim,
zlabel, zlim, stem

See the text String property for a list of symbols and how to display
them.

See the Plot Editor for information on plot annotation tools in the figure
window toolbar.

See “Basic Plots and Graphs” on page 1-86 for related functions.

2-2493

plot (timeseries)

Purpose Plot time series

Syntax plot(ts)
plot(tsc.tsname)
plot(function)

Description plot(ts) plots the time-series data against time and interpolates
values between samples by using either zero-order-hold ('zoh') or
linear interpolation.

plot(tsc.tsname) plots the timeseries object tsname that is part
of the tscollection tsc.

plot(function) accepts the modifiers used by the MATLAB plotting
utility for numerical arrays. These modifiers can be specified as
auxiliary inputs for modifying the appearance of the plot. See Examples
below.

Remarks Time-series events, when defined, are marked in the plot by a red
circular marker.

Examples plot(ts,'-r*') uses a regular line with the color red and marker '*'
to render the plot.

plot(ts,'ko','MarkerSize',3) uses black circular markers of size
3 to render the plot.

2-2494

plot3

Purpose 3-D line plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax plot3(X1,Y1,Z1,...)
plot3(X1,Y1,Z1,LineSpec,...)
plot3(...,'PropertyName',PropertyValue,...)
h = plot3(...)

Description The plot3 function displays a three-dimensional plot of a set of data
points.

plot3(X1,Y1,Z1,...), where X1, Y1, Z1 are vectors or matrices, plots
one or more lines in three-dimensional space through the points whose
coordinates are the elements of X1, Y1, and Z1.

plot3(X1,Y1,Z1,LineSpec,...) creates and displays all lines defined
by the Xn,Yn,Zn,LineSpec quads, where LineSpec is a line specification
that determines line style, marker symbol, and color of the plotted lines.

plot3(...,'PropertyName',PropertyValue,...) sets properties to
the specified property values for all line graphics objects created by
plot3.

h = plot3(...) returns a column vector of handles to lineseries
graphics objects, with one handle per object.

2-2495

plot3

Remarks If one or more of X1, Y1, Z1 is a vector, the vectors are plotted versus the
rows or columns of the matrix, depending whether the vectors’ lengths
equal the number of rows or the number of columns.

You can mix Xn,Yn,Zn triples with Xn,Yn,Zn,LineSpec quads, for
example,

plot3(X1,Y1,Z1,X2,Y2,Z2,LineSpec,X3,Y3,Z3)

See LineSpec and plot for information on line types and markers.

Examples Plot a three-dimensional helix.

t = 0:pi/50:10*pi;
plot3(sin(t),cos(t),t)
grid on
axis square

2-2496

plot3

See Also axis, bar3, grid, line, LineSpec, loglog, plot, semilogx, semilogy,
subplot

2-2497

plotbrowser

Purpose Show or hide figure plot browser

GUI
Alternatives

Click the larger Plotting Tools icon on the figure toolbar to

collectively enable plotting tools, and the smaller icon to collectively
disable them. Open or close the Plot Browser tool from the figure’s
View menu. For details, see “The Plot Browser” in the MATLAB
Graphics documentation.

Syntax plotbrowser('on')
plotbrowser('off')
plotbrowser('toggle')
plotbrowser
plotbrowser(figure_handle,...)

Description plotbrowser('on') displays the Plot Browser on the current figure.

plotbrowser('off') hides the Plot Browser on the current figure.

plotbrowser('toggle') or plotbrowser toggles the visibility of the
Plot Browser on the current figure.

plotbrowser(figure_handle,...) shows or hides the Plot Browser on
the figure specified by figure_handle.

See Also plottools, figurepalette, propertyeditor

2-2498

plotedit

Purpose Interactively edit and annotate plots

Syntax plotedit on
plotedit off
plotedit
plotedit(h)
plotedit('state')
plotedit(h,'state')

Description plotedit on starts plot edit mode for the current figure, allowing you
to use a graphical interface to annotate and edit plots easily. In plot edit
mode, you can label axes, change line styles, and add text, line, and
arrow annotations.

plotedit off ends plot mode for the current figure.

plotedit toggles the plot edit mode for the current figure.

plotedit(h) toggles the plot edit mode for the figure specified by figure
handle h.

plotedit('state') specifies the plotedit state for the current figure.
Values for state can be as shown.

Value for state Description

on Starts plot edit mode

off Ends plot edit mode

showtoolsmenu Displays the Tools menu in the
menu bar

hidetoolsmenu Removes the Tools menu from
the menu bar

Note hidetoolsmenu is intended for GUI developers who do not want
the Tools menu to appear in applications that use the figure window.

2-2499

plotedit

plotedit(h,'state') specifies the plotedit state for figure handle h.

Remarks Plot Editing Mode Graphical Interface Components

Examples Start plot edit mode for figure 2.

plotedit(2)

End plot edit mode for figure 2.

plotedit(2, 'off')

2-2500

plotedit

Hide the Tools menu for the current figure:

plotedit('hidetoolsmenu')

See Also axes, line, open, plot, print, saveas, text, propedit

2-2501

plotmatrix

Purpose Scatter plot matrix

Syntax plotmatrix(X,Y)
plotmatrix(...,'LineSpec')
[H,AX,BigAx,P] = plotmatrix(...)

Description plotmatrix(X,Y) scatter plots the columns of X against the columns of
Y. If X is p-by-m and Y is p-by-n, plotmatrix produces an n-by-m matrix
of axes. plotmatrix(Y) is the same as plotmatrix(Y,Y) except that
the diagonal is replaced by hist(Y(:,i)).

plotmatrix(...,'LineSpec') uses a LineSpec to create the scatter
plot. The default is '.'.

[H,AX,BigAx,P] = plotmatrix(...) returns a matrix of handles to
the objects created in H, a matrix of handles to the individual subaxes in
AX, a handle to a big (invisible) axes that frames the subaxes in BigAx,
and a matrix of handles for the histogram plots in P. BigAx is left as the
current axes so that a subsequent title, xlabel, or ylabel command
is centered with respect to the matrix of axes.

Examples Generate plots of random data.

x = randn(50,3); y = x*[-1 2 1;2 0 1;1 -2 3;]';
plotmatrix(y,'*r')

2-2502

plotmatrix

See Also scatter, scatter3

2-2503

plottools

Purpose Show or hide plot tools

GUI
Alternatives

Click the larger Plotting Tools icon on the figure toolbar to

collectively enable plotting tools, and the smaller icon to collectively
disable them. Individually select the Figure Palette, Plot Browser,
and Property Editor tools from the figure’s View menu. For details,
see “Plotting Tools — Interactive Plotting” in the MATLAB Graphics
documentation.

Syntax plottools('on')
plottools('off')
plottools
plottools(figure_handle,...)
plottools(...,'tool')

Description plottools('on') displays the Figure Palette, Plot Browser, and
Property Editor on the current figure, configured as you last used them.

plottools('off') hides the Figure Palette, Plot Browser, and Property
Editor on the current figure.

plottools with no arguments, is the same as plottools('on')

plottools(figure_handle,...) displays or hides the plot tools on the
specified figure instead of on the current figure.

2-2504

plottools

plottools(...,'tool') operates on the specified tool only. tool can
be one of the following strings:

• figurepalette

• plotbrowser

• propertyeditor

Note The first time you open the plotting tools, all three of them
appear, grouped around the current figure as shown above. If you
close, move, or undock any of the tools, MATLAB remembers the
configuration you left them in and restores it when you invoke the tools
for subsequent figures, both within and across MATLAB sessions.

See Also figurepalette, plotbrowser, propertyeditor

2-2505

plotyy

Purpose 2-D line plots with y-axes on both left and right side

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs in
plot edit mode with the Property Editor. For details, see “Plotting Tools
— Interactive Plotting” in the MATLAB Graphics documentation and
“Creating Plots from the Workspace Browser” in the MATLAB Desktop
Tools documentation.

Syntax plotyy(X1,Y1,X2,Y2)
plotyy(X1,Y1,X2,Y2,function)
plotyy(X1,Y1,X2,Y2,'function1','function2')
[AX,H1,H2] = plotyy(...)

Description plotyy(X1,Y1,X2,Y2) plots X1 versus Y1 with y-axis labeling on the
left and plots X2 versus Y2 with y-axis labeling on the right.

plotyy(X1,Y1,X2,Y2,function) uses the specified plotting function to
produce the graph.

function can be either a function handle or a string specifying plot,
semilogx, semilogy, loglog, stem, or any MATLAB function that
accepts the syntax

h = function(x,y)

For example,

plotyy(x1,y1,x2,y2,@loglog) % function handle
plotyy(x1,y1,x2,y2,'loglog') % string

Function handles enable you to access user-defined subfunctions and
can provide other advantages. See @ for more information on using
function handles.

2-2506

plotyy

plotyy(X1,Y1,X2,Y2,'function1','function2') uses
function1(X1,Y1) to plot the data for the left axis and
function2(X2,Y2) to plot the data for the right axis.

[AX,H1,H2] = plotyy(...) returns the handles of the two axes
created in AX and the handles of the graphics objects from each plot in
H1 and H2. AX(1) is the left axes and AX(2) is the right axes.

Examples This example graphs two mathematical functions using plot as the
plotting function. The two y-axes enable you to display both sets of data
on one graph even though relative values of the data are quite different.

x = 0:0.01:20;
y1 = 200*exp(-0.05*x).*sin(x);
y2 = 0.8*exp(-0.5*x).*sin(10*x);
[AX,H1,H2] = plotyy(x,y1,x,y2,'plot');

You can use the handles returned by plotyy to label the axes and set
the line styles used for plotting. With the axes handles you can specify
the YLabel properties of the left- and right-side y-axis:

set(get(AX(1),'Ylabel'),'String','Slow Decay')
set(get(AX(2),'Ylabel'),'String','Fast Decay')

Use the xlabel and title commands to label the x-axis and add a title:

xlabel('Time (\musec)')
title('Multiple Decay Rates')

Use the line handles to set the LineStyle properties of the left- and
right-side plots:

set(H1,'LineStyle','--')
set(H2,'LineStyle',':')

2-2507

plotyy

See Also plot, loglog, semilogx, semilogy, axes properties XAxisLocation,
YAxisLocation

See “Using Multiple X- and Y-Axes” for more information.

2-2508

pol2cart

Purpose Transform polar or cylindrical coordinates to Cartesian

Syntax [X,Y] = pol2cart(THETA,RHO)
[X,Y,Z] = pol2cart(THETA,RHO,Z)

Description [X,Y] = pol2cart(THETA,RHO) transforms the polar coordinate data
stored in corresponding elements of THETA and RHO to two-dimensional
Cartesian, or xy, coordinates. The arrays THETA and RHO must be the
same size (or either can be scalar). The values in THETA must be in
radians.

xyz, [X,Y,Z] = pol2cart(THETA,RHO,Z) transforms the cylindrical
coordinate data stored in corresponding elements of THETA, RHO, and Z
to three-dimensional Cartesian, or coordinates. The arrays THETA, RHO,
and Z must be the same size (or any can be scalar). The values in THETA
must be in radians.

Algorithm The mapping from polar and cylindrical coordinates to Cartesian
coordinates is:

2-2509

pol2cart

See Also cart2pol, cart2sph, sph2cart

2-2510

polar

Purpose Polar coordinate plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax polar(theta,rho)
polar(theta,rho,LineSpec)
polar(axes_handle,...)
h = polar(...)

Description The polar function accepts polar coordinates, plots them in a Cartesian
plane, and draws the polar grid on the plane.

polar(theta,rho) creates a polar coordinate plot of the angle theta
versus the radius rho. theta is the angle from the x-axis to the radius
vector specified in radians; rho is the length of the radius vector
specified in dataspace units.

polar(theta,rho,LineSpec) LineSpec specifies the line type, plot
symbol, and color for the lines drawn in the polar plot.

polar(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = polar(...) returns the handle of a line object in h.

Remarks Negative r values reflect through the origin, rotating by pi (since
(theta,r) transforms to (r*cos(theta), r*sin(theta))). If you
want different behavior, you can manipulate r prior to plotting. For
example, you can make r equal to max(0,r) or abs(r).

2-2511

polar

Examples Create a simple polar plot using a dashed red line:

t = 0:.01:2*pi;
polar(t,sin(2*t).*cos(2*t),'--r')

See Also cart2pol, compass, LineSpec, plot, pol2cart, rose

2-2512

poly

Purpose Polynomial with specified roots

Syntax p = poly(A)
p = poly(r)

Description p = poly(A) where A is an n-by-n matrix returns an n+1 element
row vector whose elements are the coefficients of the characteristic
polynomial, . The coefficients are ordered in descending
powers: if a vector c has n+1 components, the polynomial it represents

is

p = poly(r) where r is a vector returns a row vector whose elements
are the coefficients of the polynomial whose roots are the elements of r.

Remarks Note the relationship of this command to

r = roots(p)

which returns a column vector whose elements are the roots of the
polynomial specified by the coefficients row vector p. For vectors, roots
and poly are inverse functions of each other, up to ordering, scaling,
and roundoff error.

Examples MATLAB displays polynomials as row vectors containing the coefficients
ordered by descending powers. The characteristic equation of the matrix

A =

1 2 3
4 5 6
7 8 0

is returned in a row vector by poly:

p = poly(A)

p =

2-2513

poly

1 -6 -72 -27

The roots of this polynomial (eigenvalues of matrix A) are returned in
a column vector by roots:

r = roots(p)

r =

12.1229
-5.7345
-0.3884

Algorithm The algorithms employed for poly and roots illustrate an interesting
aspect of the modern approach to eigenvalue computation. poly(A)
generates the characteristic polynomial of A, and roots(poly(A)) finds
the roots of that polynomial, which are the eigenvalues of A. But both
poly and roots use eig, which is based on similarity transformations.
The classical approach, which characterizes eigenvalues as roots of the
characteristic polynomial, is actually reversed.

If A is an n-by-n matrix, poly(A) produces the coefficients c(1) through
c(n+1), with c(1) = 1, in

The algorithm is

z = eig(A);
c = zeros(n+1,1); c(1) = 1;
for j = 1:n

c(2:j+1) = c(2:j+1)-z(j)*c(1:j);
end

This recursion is easily derived by expanding the product.

2-2514

poly

It is possible to prove that poly(A) produces the coefficients in the
characteristic polynomial of a matrix within roundoff error of A. This is
true even if the eigenvalues of A are badly conditioned. The traditional
algorithms for obtaining the characteristic polynomial, which do not use
the eigenvalues, do not have such satisfactory numerical properties.

See Also conv, polyval, residue, roots

2-2515

polyarea

Purpose Area of polygon

Syntax A = polyarea(X,Y)
A = polyarea(X,Y,dim)

Description A = polyarea(X,Y) returns the area of the polygon specified by the
vertices in the vectors X and Y.

If X and Y are matrices of the same size, then polyarea returns the area
of polygons defined by the columns X and Y.

If X and Y are multidimensional arrays, polyarea returns the area of
the polygons in the first nonsingleton dimension of X and Y.

A = polyarea(X,Y,dim) operates along the dimension specified by
scalar dim.

Examples L = linspace(0,2.*pi,6); xv = cos(L)';yv = sin(L)';
xv = [xv ; xv(1)]; yv = [yv ; yv(1)];
A = polyarea(xv,yv);
plot(xv,yv); title(['Area = ' num2str(A)]); axis image

2-2516

polyarea

See Also convhull, inpolygon, rectint

2-2517

polyder

Purpose Polynomial derivative

Syntax k = polyder(p)
k = polyder(a,b)
[q,d] = polyder(b,a)

Description The polyder function calculates the derivative of polynomials,
polynomial products, and polynomial quotients. The operands a, b, and
p are vectors whose elements are the coefficients of a polynomial in
descending powers.

k = polyder(p) returns the derivative of the polynomial p.

k = polyder(a,b) returns the derivative of the product of the
polynomials a and b.

[q,d] = polyder(b,a) returns the numerator q and denominator d of
the derivative of the polynomial quotient b/a.

Examples The derivative of the product

is obtained with

a = [3 6 9];
b = [1 2 0];
k = polyder(a,b)
k =

12 36 42 18

This result represents the polynomial

See Also conv, deconv

2-2518

polyeig

Purpose Polynomial eigenvalue problem

Syntax [X,e] = polyeig(A0,A1,...Ap)
e = polyeig(A0,A1,..,Ap)
[X, e, s] = polyeig(A0,A1,..,AP)

Description [X,e] = polyeig(A0,A1,...Ap) solves the polynomial eigenvalue
problem of degree p

where polynomial degree p is a non-negative integer, and A0,A1,...Ap
are input matrices of order n. The output consists of a matrix X of size
n-by-n*p whose columns are the eigenvectors, and a vector e of length
n*p containing the eigenvalues.

If lambda is the jth eigenvalue in e, and x is the jth column of
eigenvectors in X, then (A0 + lambda*A1 + ... + lambda^p*Ap)*x
is approximately 0.

e = polyeig(A0,A1,..,Ap) is a vector of length n*p whose elements
are the eigenvalues of the polynomial eigenvalue problem.

[X, e, s] = polyeig(A0,A1,..,AP) also returns a vector s of length
p*n containing condition numbers for the eigenvalues. At least one of
A0 and AP must be nonsingular. Large condition numbers imply that
the problem is close to a problem with multiple eigenvalues.

Remarks Based on the values of p and n, polyeig handles several special cases:

• p = 0, or polyeig(A) is the standard eigenvalue problem: eig(A).

• p = 1, or polyeig(A,B) is the generalized eigenvalue problem:
eig(A,-B).

• n = 1, or polyeig(a0,a1,...ap) for scalars a0, a1 ..., ap is the standard
polynomial problem: roots([ap ... a1 a0]).

2-2519

polyeig

If both A0 and Ap are singular the problem is potentially ill-posed.
Theoretically, the solutions might not exist or might not be unique.
Computationally, the computed solutions might be inaccurate. If one,
but not both, of A0 and Ap is singular, the problem is well posed, but
some of the eigenvalues might be zero or infinite.

Note that scaling A0,A1,..,Ap to have norm(Ai) roughly equal 1 may
increase the accuracy of polyeig. In general, however, this cannot be
achieved. (See Tisseur [3] for more detail.)

Algorithm The polyeig function uses the QZ factorization to find intermediate
results in the computation of generalized eigenvalues. It uses
these intermediate results to determine if the eigenvalues are
well-determined. See the descriptions of eig and qz for more on this.

See Also condeig, eig, qz

References [1] Dedieu, Jean-Pierre Dedieu and Francoise Tisseur, “Perturbation
theory for homogeneous polynomial eigenvalue problems,” Linear
Algebra Appl., Vol. 358, pp. 71-94, 2003.

[2] Tisseur, Francoise and Karl Meerbergen, “The quadratic eigenvalue
problem,” SIAM Rev., Vol. 43, Number 2, pp. 235-286, 2001.

[3] Francoise Tisseur, “Backward error and condition of polynomial
eigenvalue problems” Linear Algebra Appl., Vol. 309, pp. 339-361, 2000.

2-2520

polyfit

Purpose Polynomial curve fitting

Syntax p = polyfit(x,y,n)
[p,S] = polyfit(x,y,n)
[p,S,mu] = polyfit(x,y,n)

Description p = polyfit(x,y,n) finds the coefficients of a polynomial p(x) of
degree n that fits the data, p(x(i)) to y(i), in a least squares sense.
The result p is a row vector of length n+1 containing the polynomial
coefficients in descending powers

[p,S] = polyfit(x,y,n) returns the polynomial coefficients p
and a structure S for use with polyval to obtain error estimates or
predictions. Structure S contains fields R, df, and normr, for the
triangular factor from a QR decomposition of the Vandermonde matrix
of X, the degrees of freedom, and the norm of the residuals, respectively.
If the data Y are random, an estimate of the covariance matrix of P is
(Rinv*Rinv')*normr^2/df, where Rinv is the inverse of R. If the errors
in the data y are independent normal with constant variance, polyval
produces error bounds that contain at least 50% of the predictions.

[p,S,mu] = polyfit(x,y,n) finds the coefficients of a polynomial in

where and . mu is the two-element vector
. This centering and scaling transformation improves the

numerical properties of both the polynomial and the fitting algorithm.

Examples This example involves fitting the error function, erf(x), by a polynomial
in x. This is a risky project because erf(x) is a bounded function, while
polynomials are unbounded, so the fit might not be very good.

2-2521

polyfit

First generate a vector of x points, equally spaced in the interval
; then evaluate erf(x) at those points.

x = (0: 0.1: 2.5)';
y = erf(x);

The coefficients in the approximating polynomial of degree 6 are

p = polyfit(x,y,6)

p =

0.0084 -0.0983 0.4217 -0.7435 0.1471 1.1064 0.0004

There are seven coefficients and the polynomial is

To see how good the fit is, evaluate the polynomial at the data points
with

f = polyval(p,x);

A table showing the data, fit, and error is

table = [x y f y-f]

table =

0 0 0.0004 -0.0004
0.1000 0.1125 0.1119 0.0006
0.2000 0.2227 0.2223 0.0004
0.3000 0.3286 0.3287 -0.0001
0.4000 0.4284 0.4288 -0.0004
...
2.1000 0.9970 0.9969 0.0001
2.2000 0.9981 0.9982 -0.0001
2.3000 0.9989 0.9991 -0.0003
2.4000 0.9993 0.9995 -0.0002

2-2522

polyfit

2.5000 0.9996 0.9994 0.0002

So, on this interval, the fit is good to between three and four digits.
Beyond this interval the graph shows that the polynomial behavior
takes over and the approximation quickly deteriorates.

x = (0: 0.1: 5)';
y = erf(x);
f = polyval(p,x);
plot(x,y,'o',x,f,'-')
axis([0 5 0 2])

Algorithm The polyfit M-file forms the Vandermonde matrix, , whose elements
are powers of .

2-2523

polyfit

It then uses the backslash operator, \, to solve the least squares problem

You can modify the M-file to use other functions of as the basis
functions.

See Also poly, polyval, roots

2-2524

polyint

Purpose Integrate polynomial analytically

Syntax polyint(p,k)
polyint(p)

Description polyint(p,k) returns a polynomial representing the integral of
polynomial p, using a scalar constant of integration k.

polyint(p) assumes a constant of integration k=0.

See Also polyder, polyval, polyvalm, polyfit

2-2525

polyval

Purpose Polynomial evaluation

Syntax y = polyval(p,x)
y = polyval(p,x,[],mu)
[y,delta] = polyval(p,x,S)
[y,delta] = polyval(p,x,S,mu)

Description y = polyval(p,x) returns the value of a polynomial of degree n
evaluated at x. The input argument p is a vector of length n+1 whose
elements are the coefficients in descending powers of the polynomial
to be evaluated.

x can be a matrix or a vector. In either case, polyval evaluates p at
each element of x.

y = polyval(p,x,[],mu) uses in place of . In this
equation, and . The centering and scaling
parameters mu = are optional output computed by polyfit.

[y,delta] = polyval(p,x,S) and [y,delta] = polyval(p,x,S,mu)
use the optional output structure S generated by polyfit to generate
error estimates, y±delta. If the errors in the data input to polyfit
are independent normal with constant variance, y±delta contains at
least 50% of the predictions.

Remarks The polyvalm(p,x) function, with x a matrix, evaluates the polynomial
in a matrix sense. See polyvalm for more information.

Examples The polynomial is evaluated at = 5, 7, and 9
with

p = [3 2 1];
polyval(p,[5 7 9])

which results in

2-2526

polyval

ans =

86 162 262

For another example, see polyfit.

See Also polyfit, polyvalm

2-2527

polyvalm

Purpose Matrix polynomial evaluation

Syntax Y = polyvalm(p,X)

Description Y = polyvalm(p,X) evaluates a polynomial in a matrix sense. This is
the same as substituting matrix X in the polynomial p.

Polynomial p is a vector whose elements are the coefficients of a
polynomial in descending powers, and X must be a square matrix.

Examples The Pascal matrices are formed from Pascal’s triangle of binomial
coefficients. Here is the Pascal matrix of order 4.

X = pascal(4)
X =

1 1 1 1
1 2 3 4
1 3 6 10
1 4 10 20

Its characteristic polynomial can be generated with the poly function.

p = poly(X)
p =

1 -29 72 -29 1

This represents the polynomial .

Pascal matrices have the curious property that the vector of coefficients
of the characteristic polynomial is palindromic; it is the same forward
and backward.

Evaluating this polynomial at each element is not very interesting.

polyval(p,X)
ans =

16 16 16 16
16 15 -140 -563
16 -140 -2549 -12089

2-2528

polyvalm

16 -563 -12089 -43779

But evaluating it in a matrix sense is interesting.

polyvalm(p,X)
ans =

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

The result is the zero matrix. This is an instance of the Cayley-Hamilton
theorem: a matrix satisfies its own characteristic equation.

See Also polyfit, polyval

2-2529

pow2

Purpose Base 2 power and scale floating-point numbers

Syntax X = pow2(Y)
X = pow2(F,E)

Description X = pow2(Y) returns an array X whose elements are 2 raised to the
power Y.

X = pow2(F,E) computes for corresponding elements
of F and E. The result is computed quickly by simply adding E to the
floating-point exponent of F. Arguments F and E are real and integer
arrays, respectively.

Remarks This function corresponds to the ANSI C function ldexp() and the
IEEE floating-point standard function scalbn().

Examples For IEEE arithmetic, the statement X = pow2(F,E) yields the values:

F E X
1/2 1 1
pi/4 2 pi
-3/4 2 -3
1/2 -51 eps
1-eps/2 1024 realmax
1/2 -1021 realmin

See Also log2, exp, hex2num, realmax, realmin

The arithmetic operators ^ and .^

2-2530

power

Purpose Array power

Syntax Z = X.^Y

Description Z = X.^Y denotes element-by-element powers. X and Y must have the
same dimensions unless one is a scalar. A scalar is expanded to an
array of the same size as the other input.

C = power(A,B) is called for the syntax 'A .^ B' when A or B is an
object.

Note that for a negative value X and a non-integer value Y, if the abs(Y)
is less than one, the power function returns the complex roots. To obtain
the remaining real roots, use the nthroot function.

See Also nthroot, realpow

2-2531

ppval

Purpose Evaluate piecewise polynomial

Syntax v = ppval(pp,xx)

Description v = ppval(pp,xx) returns the value of the piecewise polynomial f,
contained in pp, at the entries of xx. You can construct pp using the
functions interp1, pchip, spline, or the spline utility mkpp.

v is obtained by replacing each entry of xx by the value of f there. If f is
scalar-valued, v is of the same size as xx. xx may be N-dimensional.

If pp was constructed by pchip, spline, or mkpp using the orientation of
non-scalar function values specified for those functions, then:

If f is [D1,..,Dr]-valued, and xx is a vector of length N, then V has size
[D1,...,Dr, N], with V(:,...,:,J) the value of f at xx(J).

If f is [D1,..,Dr]-valued, and xx has size [N1,...,Ns], then V has size
[D1,...,Dr, N1,...,Ns], with V(:,...,:, J1,...,Js) the value of f
at xx(J1,...,Js).

If pp was constructed by interp1 using the orienatation of non-scalar
function values specified for that function, then:

If f is [D1,..,Dr]-valued, and xx is a vector of length N, then V has size
[N,D1,...,Dr], with V(J,:,...,:) the value of f at xx(J).

If f is [D1,..,Dr]-valued, and xx has size [N1,...,Ns], then V has size
[N1,...,Ns,D1,...,Dr], with V(J1,...,Js,:,...,:) the value of f
at xx(J1,...,Js).

Examples Compare the results of integrating the function cos

a = 0; b = 10;
int1 = quad(@cos,a,b)

int1 =
-0.5440

2-2532

ppval

with the results of integrating the piecewise polynomial pp that
approximates the cosine function by interpolating the computed values
x and y.

x = a:b;
y = cos(x);
pp = spline(x,y);
int2 = quad(@(x)ppval(pp,x),a,b)

int2 =
-0.5485

int1 provides the integral of the cosine function over the interval
[a,b], while int2 provides the integral over the same interval of the
piecewise polynomial pp.

See Also mkpp, spline, unmkpp

2-2533

prefdir

Purpose Directory containing preferences, history, and layout files

Syntax prefdir
d = prefdir
d = prefdir(1)

Description prefdir returns the directory that contains

• Preferences for MATLAB and related products (matlab.prf)

• Command history file (history.m)

• MATLAB shortcuts (shortcuts.xml)

• MATLAB desktop layout files (MATLABDesktop.xml and
Your_Saved_LayoutMATLABLayout.xml)

• Other related files

The directory might be in a hidden folder, for example,
myname/.matlab/R2007b. How to access hidden folders depends on
your platform:

• On Windows, in any folder window, select Tools > Folder Options.
Click the View tab, and under Advanced settings, select Show
hidden files and folders. Then you should be able to see the folder
returned by prefdir.

• On Macintosh platforms, in the Finder, select Go -> Go to Folder.
In the resulting dialog box, type the path returned by prefdir and
press Enter.

d = prefdir assigns to d the name of the directory containing
preferences and related files.

d = prefdir(1) creates a directory for preferences and related files if
one does not exist. If the directory does exist, the name is assigned to d.

2-2534

prefdir

Remarks The preferences directory MATLAB uses depends on the release.
The preference directory naming and preference migration practice
used from R13 through R14SP2 was changed starting in R14SP3 to
address backwards compatibility problems. The differences are relevant
primarily if you run multiple versions of MATLAB, and especially if one
version is prior to R14SP3:

• For R2007b back through and including R2006a, and R14SP3,
MATLAB uses the name of the release for the preference directory.
For example, it uses R2007b, R2007a, ... through R14SP3. When you
install R2007b, MATLAB migrates the files in the R2007a preferences
directory to the R2007b preferences directory. While running R2007b
through R14SP3, any changes made to files in those preferences
directories (R2007b through R14SP3) are used only in their respective
versions. As an example, commands you run in R2007b will not
appear in the Command History when you run R2007a, and so on.
The converse is also true.

• The R14 through R14SP2 releases all share the R14 preferences
directory. While running R14SP1, for example, any changes made to
files in the preferences directory, R14, are used when you run R14SP2
and R14. As another example, commands you run in R14 appear
in the Command History when you run R14SP2, and the converse
is also true. The preferences are not used when you run R14SP3 or
later versions because those versions each use their own preferences
directories.

• All R13 releases use the R13 preferences directory. While running
R13SP1, for example, any changes made to files in the preferences
directory, R13, are used when you run R13. As an example, commands
you run in R13 will appear in the Command History when you run
R13SP1, and the converse is true. The preferences are not used when
you run any R14 or later releases because R14 and later releases use
different preferences directories, and the converse is true.

• Upon startup, MATLAB 7.5 (R2007b) looks for and if found, uses
the R2007b preferences directory. If not found, MATLAB creates
an R2007b preferences directory. This happens when the R2007b

2-2535

prefdir

preferences directory is deleted. MATLAB then looks for the R2007a
preferences directory, and if found, migrates the R2007a preferences
to the R2007b preferences. If it does not find the R2007a preferences
directory, it uses the default preferences for R2007b. This process
also applies when starting MATLAB 7.3 through 7.1.

• If you want to use default preferences for R2007b, and do not
want MATLAB to migrate preferences from R2007a, the R2007b
preferences directory must exist but be empty when you start
MATLAB. If you want to maintain some of your R2007b preferences,
but restore the defaults for others, in the R2007b preferences
directory, delete the files for which you want the defaults to be
restored. One file you might want to maintain is history.m—for
more information about the file, see “Viewing Statements in the
Command History Window” in the MATLAB Desktop Tools and
Development Environment documentation.

Examples Run

prefdir

MATLAB returns

ans =

C:\WINNT\Profiles\my_user_name\MATHWORKS\Application Data\MathWorks\MATLAB\R2007b

Running dir for the directory shows these files and others for
MathWorks products:

. history.m

.. matlab.prf
cwdhistory.m MATLABDesktop.xml
shortcuts.xml MATLAB EditorDesktop.xml

In MATLAB, run cd(prefdir) to change to that directory.

On Windows platforms, go directly to the preferences directory in
Explorer by running winopen(prefdir).

2-2536

prefdir

See Also preferences, winopen

Fonts, Colors, and Other Preferences in the MATLAB Desktop Tools
and Development Environment documentation

2-2537

preferences

Purpose Open Preferences dialog box for MATLAB and related products

GUI
Alternatives

As an alternative to the preferences function, select
File > Preferences in the MATLAB desktop or any desktop tool.

Syntax preferences

Description preferences displays the Preferences dialog box, from which you can
make changes to options for MATLAB and related products.

See Also prefdir

Fonts, Colors, and Other Preferences in the MATLAB Desktop Tools
and Development Environment documentation

2-2538

primes

Purpose Generate list of prime numbers

Syntax p = primes(n)

Description p = primes(n) returns a row vector of the prime numbers less than
or equal to n. A prime number is one that has no factors other than
1 and itself.

Examples p = primes(37)

p = 2 3 5 7 11 13 17 19 23 29 31 37

See Also factor

2-2539

print, printopt

Purpose Print figure or save to file and configure printer defaults

Contents

“GUI Alternative” on page 2-2540

Syntax

“Description” on page 2-2540

“Printer Drivers” on page 2-2542

“Graphics Format Files” on page 2-2546

“Printing Options” on page 2-2549

“Paper Sizes” on page 2-2551

“Printing Tips” on page 2-2552

“Examples” on page 2-2555

“See Also” on page 2-2558

GUI
Alternative

Use File ⇒ Print on the figure window menu to access the Print dialog
and File ⇒ Print Preview to access the Print Preview GUI. For details,
see How to Print or Export in the MATLAB Graphics documentation.

Syntax print
print filename
print -ddriver
print -dformat
print -dformat filename
print -smodelname
print -options
print(...)
[pcmd,dev] = printopt

Description print and printopt produce hardcopy output. All arguments to the
print command are optional. You can use them in any combination
or order.

2-2540

print, printopt

print sends the contents of the current figure, including bitmap
representations of any user interface controls, to the printer using the
device and system printing command defined by printopt.

print filename directs the output to the PostScript file designated by
filename. If filename does not include an extension, print appends
an appropriate extension.

print -ddriver prints the figure using the specified printer driver,
(such as color PostScript). If you omit -ddriver, print uses the default
value stored in printopt.m. The “Printer Drivers” on page 2-2542 table
lists all supported device types.

print -dformat copies the figure to the system clipboard (Windows
only). To be valid, the format for this operation must be either -dmeta
(Windows Enhanced Metafile) or -dbitmap (Windows Bitmap).

print -dformat filename exports the figure to the specified file using
the specified graphics format, (such as TIFF). The table of “Graphics
Format Files” on page 2-2546 lists all supported graphics file formats.

print -smodelname prints the current Simulink model modelname.

print -options specifies print options that modify the action of the
print command. (For example, the -noui option suppresses printing of
user interface controls.) The Options section lists available options.

print(...) is the function form of print. It enables you to pass
variables for any input arguments. This form is useful for passing
filenames and handles. See Batch Processing for an example.

[pcmd,dev] = printopt returns strings containing the current
system-dependent printing command and output device. printopt is an
M-file used by print to produce the hardcopy output. You can edit the
M-file printopt.m to set your default printer type and destination.

pcmd and dev are platform-dependent strings. pcmd contains the
command that print uses to send a file to the printer. dev contains the
printer driver or graphics format option for the print command. Their
defaults are platform dependent.

2-2541

print, printopt

Platform System Printing Command Driver or Format

MAC and
UNIX

lpr r dps2

Windows COPY /B %s LPT1: dwin

Printer
Drivers

The table below shows the more widely used printer drivers supported
by MATLAB. If you do not specify a driver, MATLAB uses the default
setting shown in the previous table. For a list of all supported printer
drivers, type

print -d

at the MATLAB prompt. Some things to remember:

• As indicated in the “Description” on page 2-2540 section, the -d
switch either specifies a printer driver or a graphics file format:

- Specifying a printer driver without a filename or printer name
(the -P option) sends the output formatted by the specified driver
to your default printer, which may not be what you want to do.

Note On Windows, when you use the -P option to identify a
printer to use, if you specify any driver other than -dwin or
-dwinc, MATLAB writes the output to a file with an appropriate
extension but does not send it to the printer; you can then copy
that file to a printer.

- Specifying a -dmeta or a -dbitmap graphics format without a
filename places the graphic on the system clipboard, if possible
(Windows only).

- Specifying any other graphics format without a filename creates
a file in the current directory with a name such asfigureN.fmt,

2-2542

print, printopt

where N is 1, 2, 3, ... and fmt indicates the format type, for example
eps or png.

• Several of the drivers come from a product called Ghostscript,
which is shipped with MATLAB. The last column indicates when
Ghostscript is used.

• Some drivers are not available on all platforms. This is noted in the
first column of the table.

• If you specify a particular printer with the -P option and do not
specify a driver, a default driver for that printer is selected, either by
the operating system or by MATLAB, depending on the platform:

- On Windows, the driver associated with this particular printing
device is used

- On MAC and UNIX, the driver specified in printop.m is used

See Selecting the Printer in the Graphics documentation for more
information.

Printer Driver
print Command Option
String Ghostscript

Canon BubbleJet BJ10e -dbj10e Yes

Canon BubbleJet BJ200
color

-dbj200 Yes

Canon Color BubbleJet
BJC-70/BJC-600/BJC-4000

-dbjc600 Yes

Canon Color BubbleJet
BJC-800

-dbjc800 Yes

Epson and compatible 9-
or 24-pin dot matrix print
drivers

-depson Yes

2-2543

print, printopt

Printer Driver
print Command Option
String Ghostscript

Epson and compatible
9-pin with interleaved
lines (triple resolution)

-deps9high Yes

Epson LQ-2550 and
compatible; color (not
supported on HP-700)

-depsonc Yes

Fujitsu 3400/2400/1200 -depsonc Yes

HP DesignJet 650C
color (not supported on
Windows)

-ddnj650c Yes

HP DeskJet 500 -ddjet500 Yes

HP DeskJet 500C
(creates black and white
output)

-dcdjmono Yes

HP DeskJet 500C
(with 24 bit/pixel
color and high-quality
Floyd-Steinberg color
dithering) (not supported
on Windows)

-dcdjcolor Yes

HP DeskJet 500C/540C
color (not supported on
Windows)

-dcdj500 Yes

HP Deskjet 550C
color (not supported
on Windows)

-dcdj550 Yes

HP DeskJet and
DeskJet Plus

-ddeskjet Yes

HP LaserJet -dlaserjet Yes

2-2544

print, printopt

Printer Driver
print Command Option
String Ghostscript

HP LaserJet+ -dljetplus Yes

HP LaserJet IIP -dljet2p Yes

HP LaserJet III -dljet3 Yes

HP LaserJet 4.5L and
5P

-dljet4 Yes

HP LaserJet 5 and 6 -dpxlmono Yes

HP PaintJet color -dpaintjet Yes

HP PaintJet XL color -dpjxl Yes

HP PaintJet XL color -dpjetxl Yes

HP PaintJet XL300
color (not supported on
Windows)

-dpjxl300 Yes

HPGL for HP 7475A and
other compatible plotters.
(Renderer cannot be set to
Z-buffer.)

-dhpgl No

IBM 9-pin Proprinter -dibmpro Yes

PostScript black and
white

-dps No

PostScript color -dpsc No

PostScript Level 2 black
and white

-dps2 No

PostScript Level 2 color -dpsc2 No

Windows color (Windows
only)

-dwinc No

Windows monochrome
(Windows only)

-dwin No

2-2545

print, printopt

Note Generally, Level 2 PostScript files are smaller and are rendered
more quickly when printing than Level 1 PostScript files. However, not
all PostScript printers support Level 2, so determine the capabilities of
your printer before using those drivers. Level 2 PostScript is the default
for UNIX. You can change this default by editing the printopt.m file.
Likewise, if you want color PostScript to be the default instead of
black-and-white PostScript, edit the line in the printopt.m file that
reads dev = '-dps2'; to be dev = '-dpsc2';.

Graphics
Format
Files

To save your figure as a graphics-format file, specify a format switch
and filename. To set the resolution of the output file for a built-in
MATLAB format, use the -r switch. (For example, -r300 sets the
output resolution to 300 dots per inch.) The -r switch is also supported
for Windows Enhanced Metafiles, JPEG, TIFF and PNG files, but is not
supported for Ghostscript formats. For more information, see “Printing
and Exporting without a Display” on page 2-2549.

The table below shows the supported output formats for exporting from
MATLAB and the switch settings to use. In some cases, a format is
available both as a MATLAB output filter and as a Ghostscript output
filter. All formats except for EMF are supported on both the PC and
UNIX platforms.

Graphics Format

Bitmap
or
Vector

print Command
Option String

MATLAB or
Ghostscript

BMP monochrome
BMP

Bitmap -dbmpmono Ghostscript

BMP 24-bit BMP Bitmap -dbmp16m Ghostscript

BMP 8-bit
(256-color) BMP
(this format uses a
fixed colormap)

Bitmap -dbmp256 Ghostscript

2-2546

print, printopt

Graphics Format

Bitmap
or
Vector

print Command
Option String

MATLAB or
Ghostscript

BMP 24-bit Bitmap -dbmp MATLAB

EMF Vector -dmeta MATLAB

EPS black and
white

Vector -deps MATLAB

EPS color Vector -depsc MATLAB

EPS Level 2 black
and white

Vector -deps2 MATLAB

EPS Level 2 color Vector -depsc2 MATLAB

HDF 24-bit Bitmap -dhdf MATLAB

ILL (Adobe
Illustrator)

Vector -dill MATLAB

JPEG 24-bit Bitmap -djpeg MATLAB

PBM (plain format)
1-bit

Bitmap -dpbm Ghostscript

PBM (raw format)
1-bit

Bitmap -dpbmraw Ghostscript

PCX 1-bit Bitmap -dpcxmono Ghostscript

PCX 24-bit color
PCX file format,
three 8-bit planes

Bitmap -dpcx24b Ghostscript

PCX 8-bit newer
color PCX file
format (256-color)

Bitmap -dpcx256 Ghostscript

2-2547

print, printopt

Graphics Format

Bitmap
or
Vector

print Command
Option String

MATLAB or
Ghostscript

PCX Older color
PCX file format
(EGA/VGA,
16-color)

Bitmap -dpcx16 Ghostscript

PDF Color PDF file
format

Vector -dpdf Ghostscript

PGM Portable
Graymap (plain
format)

Bitmap -dpgm Ghostscript

PGM Portable
Graymap (raw
format)

Bitmap -dpgmraw Ghostscript

PNG 24-bit Bitmap -dpng MATLAB

PPM Portable
Pixmap (plain
format)

Bitmap -dppm Ghostscript

PPM Portable
Pixmap (raw
format)

Bitmap -dppmraw Ghostscript

TIFF 24-bit Bitmap -dtiff or -dtiffn MATLAB

TIFF preview for
EPS files

Bitmap -tiff

The TIFF image format is supported on all platforms by almost all
word processors for importing images. The -dtiffn variant writes an
uncompressed TIFF. JPEG is a lossy, highly compressed format that is
supported on all platforms for image processing and for inclusion into
HTML documents on the World Wide Web. To create these formats,
MATLAB renders the figure using the Z-buffer rendering method and
the resulting bitmap is then saved to the specified file.

2-2548

print, printopt

Printing and Exporting without a Display

On a UNIX platform (including Macintosh), where you can start
MATLAB in nodisplay mode (matlab -nodisplay), you can print
using most of the drivers you can use with a display and export to most
of the same file formats. The PostScript and Ghostscript devices all
function in nodisplay mode on UNIX. The graphic devices -djpeg,
-dpng, -dtiff (compressed TIFF bitmaps) and -tiff (EPS with TIFF
preview) work as well, but under nodisplay they use Ghostscript
to generate output instead of using the drivers built into MATLAB.
However, Ghostscript ignores the -r option when generating -djpeg,
-dpng, -dtiff and -tiff image files. This means that you cannot vary
the resolution of image files when running in nodisplay mode.

Naturally, the Windows-only -dwin and -dwinc output formats cannot
be used on UNIX or MAC with or without a display.

The same holds true on Windows with the -noFigureWindows startup
option. The -dwin, -dwinc, and -dsetup options operate as usual under
-noFigureWindows. However, the printpreview GUI does not function
in this mode.

The formats which you cannot generate in nodisplay mode on UNIX
and MAC are

• bitmap (-dbitmap) — Windows bitmap file (except for Simulink
models)

• bmp (-dbmp...) — Monochrome and color bitmaps

• hdf (-dhdf) — Hierarchical Data Format

• svg (-dsvg) — Scalable Vector Graphics file (except for Simulink
models)

• tiffn (-dtiffn) — TIFF image file, no compression

Printing
Options

This table summarizes options that you can specify for print. The
second column also shows which tutorial sections contain more detailed
information. The sections listed are located under Printing and
Exporting Figures with MATLAB.

2-2549

print, printopt

Option Description

-adobecset PostScript only. Use PostScript default character
set encoding. See Early PostScript 1 Printers.

-append PostScript only. Append figure to existing
PostScript file. See Settings That Are Driver
Specific.

-cmyk PostScript only. Print with CMYK colors instead
of RGB. See Setting CMYK Color.

-ddriver Printing only. Printer driver to use. See Drivers
table.

-dformat Exporting only. Graphics format to use. See
Graphics Format Files table.

-dsetup Windows only. Display the (platform-specific)
Print Setup dialog. Settings you make in it are
saved, but nothing is printed.

-fhandle Handle of figure to print. Note that you cannot
specify both this option and the -swindowtitle
option. See Which Figure Is Printed.

-loose PostScript and Ghostscript only. Use loose
bounding box for PostScript. See Producing
Uncropped Figures.

-noui Suppress printing of user interface controls. See
Excluding User Interface Controls.

-opengl Render using the OpenGL algorithm. Note that
you cannot specify this method in conjunction
with -zbuffer or -painters. See Selecting a
Renderer.

-painters Render using the Painter’s algorithm. Note that
you cannot specify this method in conjunction
with -zbuffer or -opengl. See Selecting a
Renderer.

2-2550

print, printopt

Option Description

-Pprinter Specify name of printer to use. See Selecting the
Printer.

-rnumber PostScript, JPEG, PNG, and Ghostscript only.
Specify resolution in dots per inch. Defaults to
90 for Simulink, 150 for figures in image formats
and when printing in Z-buffer or OpenGL
mode, screen resolution for metafiles, and 864
otherwise. Use -r0 to specify screen resolution.
See Setting the Resolution.

-swindowtitle Specify name of Simulink system window to
print. Note that you cannot specify both this
option and the -fhandle option. See Which
Figure Is Printed.

-v Windows only. Display the Windows Print dialog
box. The v stands for "verbose mode."

-zbuffer Render using the Z-buffer algorithm. Note that
you cannot specify this method in conjunction
with -opengl or -painters. See Selecting a
Renderer.

Paper
Sizes

MATLAB supports a number of standard paper sizes. You can select
from the following list by setting the PaperType property of the figure
or selecting a supported paper size from the Print dialog box.

Property Value Size (Width by Height)

usletter 8.5 by 11 inches

uslegal 11 by 14 inches

tabloid 11 by 17 inches

A0 841 by 1189 mm

A1 594 by 841 mm

2-2551

print, printopt

Property Value Size (Width by Height)

A2 420 by 594 mm

A3 297 by 420 mm

A4 210 by 297 mm

A5 148 by 210 mm

B0 1029 by 1456 mm

B1 728 by 1028 mm

B2 514 by 728 mm

B3 364 by 514 mm

B4 257 by 364 mm

B5 182 by 257 mm

arch-A 9 by 12 inches

arch-B 12 by 18 inches

arch-C 18 by 24 inches

arch-D 24 by 36 inches

arch-E 36 by 48 inches

A 8.5 by 11 inches

B 11 by 17 inches

C 17 by 22 inches

D 22 by 34 inches

E 34 by 43 inches

Printing
Tips

This section includes information about specific printing issues.

Figures with Resize Functions

The print command produces a warning when you print a figure
having a callback routine defined for the figure ResizeFcn. To avoid the

2-2552

print, printopt

warning, set the figure PaperPositionMode property to auto or select
Match Figure Screen Size in the File⇒Page Setup dialog box.

Troubleshooting MS Windows Printing

If you encounter problems such as segmentation violations, general
protection faults, or application errors, or the output does not appear as
you expect when using MS-Windows printer drivers, try the following:

• If your printer is PostScript compatible, print with one of the
MATLAB built-in PostScript drivers. There are various PostScript
device options that you can use with the print command: they all
start with -dps.

• The behavior you are experiencing might occur only with certain
versions of the print driver. Contact the print driver vendor for
information on how to obtain and install a different driver.

• Try printing with one of the MATLAB built-in Ghostscript devices.
These devices use Ghostscript to convert PostScript files into other
formats, such as HP LaserJet, PCX, Canon BubbleJet, and so on.

• Copy the figure as a Windows Enhanced Metafile using the
Edit-⇒Copy Figure menu item on the figure window menu or the
print -dmeta option at the command line. You can then import the
file into another application for printing.

You can set copy options in the figure’s File⇒Preferences⇒Copying
Options dialog box. The Windows Enhanced Metafile clipboard
format produces a better quality image than Windows Bitmap.

Printing MATLAB GUIs

You can generally obtain better results when printing a figure window
that contains MATLAB uicontrols by setting these key properties:

• Set the figure PaperPositionMode property to auto. This ensures
that the printed version is the same size as the onscreen version.
With PaperPositionMode set to auto MATLAB does not resize
the figure to fit the current value of the PaperPosition. This is
particularly important if you have specified a figure ResizeFcn,

2-2553

print, printopt

because if MATLAB resizes the figure during the print operation,
ResizeFcn is automatically called.

To set PaperPositionMode on the current figure, use the command

set(gcf,'PaperPositionMode','auto')

• Set the figure InvertHardcopy property to off. By default, MATLAB
changes the figure background color of printed output to white,
but does not change the color of uicontrols. If you have set the
background color, for example, to match the gray of the GUI devices,
you must set InvertHardcopy to off to preserve the color scheme.

To set InvertHardcopy on the current figure, use the command

set(gcf,'InvertHardcopy','off')

• Use a color device if you want lines and text that are in color on the
screen to be written to the output file as colored objects. Black and
white devices convert colored lines and text to black or white to
provide the best contrast with the background and to avoid dithering.

• Use the print command’s -loose option to prevent MATLAB
from using a bounding box that is tightly wrapped around objects
contained in the figure. This is important if you have intentionally
used space between uicontrols or axes and the edge of the figure and
you want to maintain this appearance in the printed output.

If you run code that adds uicontrols to a figure when the figure is
invisible, the controls will not print until the figure is made visible.

Notes on Printing Interpolated Shading with PostScript
Drivers

MATLAB can print surface objects (such as graphs created with surf or
mesh) using interpolated colors. However, only patch objects that are
composed of triangular faces can be printed using interpolated shading.

Printed output is always interpolated in RGB space, not in the colormap
colors. This means that if you are using indexed color and interpolated

2-2554

print, printopt

face coloring, the printed output can look different from what is
displayed on screen.

PostScript files generated for interpolated shading contain the color
information of the graphics object’s vertices and require the printer
to perform the interpolation calculations. This can take an excessive
amount of time and in some cases, printers might time out before
finishing the print job. One solution to this problem is to interpolate
the data and generate a greater number of faces, which can then be
flat shaded.

To ensure that the printed output matches what you see on the screen,
print using the -zbuffer option. To obtain higher resolution (for
example, to make text look better), use the -r option to increase the
resolution. There is, however, a tradeoff between the resolution and the
size of the created PostScript file, which can be quite large at higher
resolutions. The default resolution of 150 dpi generally produces good
results. You can reduce the size of the output file by making the figure
smaller before printing it and setting the figure PaperPositionMode to
auto, or by just setting the PaperPosition property to a smaller size.

Examples Specifying the Figure to Print

You can print a noncurrent figure by specifying the figure’s handle. If a
figure has the title "Figure 2", its handle is 2. The syntax is

print -fhandle

This example prints the figure whose handle is 2, regardless of which
figure is the current figure.

print -f2

Note You must use the -f option if the figure’s handle is hidden (i.e.,
its HandleVisibility property is set to off).

2-2555

print, printopt

This example saves the figure with the handle -f2 to a PostScript file
named Figure2, which can be printed later.

print -f2 -dps 'Figure2.ps'

If the figure uses noninteger handles, use the figure command to get
its value, and then pass it in as the first argument.

h = figure('IntegerHandle','off')
print h -depson

You can also pass a figure handle as a variable to the function form of
print. For example,

h = figure; plot(1:4,5:8)
print(h)

This example uses the function form of print to enable a filename to
be passed in as a variable.

filename = 'mydata';
print('-f3', '-dpsc', filename);

(Because a filename is specified, the figure will be printed to a file.)

Specifying the Model to Print

To print a noncurrent Simulink model, use the -s option with the title
of the window. For example, this command prints the Simulink window
titled f14.

print -sf14

If the window title includes any spaces, you must call the function form
rather than the command form of print. For example, this command
saves Simulink window title Thruster Control.

print('-sThruster Control')

2-2556

print, printopt

To print the current system, use

print -s

For information about issues specific to printing Simulink windows,
see the Simulink documentation.

Printing Figures at Screen Size

This example prints a surface plot with interpolated shading. Setting
the current figure’s (gcf) PaperPositionMode to auto enables you to
resize the figure window and print it at the size you see on the screen.
See Options and the previous section for information on the -zbuffer
and -r200 options.

surf(peaks)
shading interp
set(gcf,'PaperPositionMode','auto')
print -dpsc2 -zbuffer -r200

For additional details, see Printing Images in the MATLAB Graphics
documentation.

Batch Processing

You can use the function form of print to pass variables containing
file names. For example, this for loop uses filenames stored in a cell
array to create a series of graphs and prints each one with a different
file name.

fnames = {'file1', 'file2', 'file3'};
for k=1:length(fnames)

surf(peaks)
print('-dtiff','-r200',fnames{k})

end

Tiff Preview

The command

2-2557

print, printopt

print -depsc -tiff -r300 picture1

saves the current figure at 300 dpi, in a color Encapsulated PostScript
file named picture1.eps. The -tiff option creates a 72 dpi TIFF
preview, which many word processor applications can display on screen
after you import the EPS file. This enables you to view the picture
on screen within your word processor and print the document to a
PostScript printer using a resolution of 300 dpi.

See Also orient, figure

2-2558

printdlg

Purpose Print dialog box

Syntax printdlg
printdlg(fig)
printdlg('-crossplatform',fig)
printdlg('-setup',fig)

Description printdlg prints the current figure.

printdlg(fig) creates a modal dialog box from which you can print
the figure window identified by the handle fig. Note that uimenus
do not print.

printdlg('-crossplatform',fig) displays the standard
cross-platform MATLAB printing dialog rather than the built-in
printing dialog box for Microsoft Windows computers. Insert this option
before the fig argument.

printdlg('-setup',fig) forces the printing dialog to appear in a
setup mode. Here one can set the default printing options without
actually printing.

Note A modal dialog box prevents the user from interacting with other
windows before responding. For more information, see WindowStyle in
the MATLAB Figure Properties.

See Also pagesetupdlg, printpreview

2-2559

printpreview

Purpose Preview figure to print

Contents

“GUI Alternative” on page 2-2560

“Description” on page 2-2560

“Right Pane Controls” on page 2-2561

“The Layout Tab” on page 2-2562

“The Lines/Text Tab” on page 2-2563

“The Color Tab” on page 2-2564

“The Advanced Tab” on page 2-2566

“See Also” on page 2-2567

GUI
Alternative

Use File > Print Preview on the figure window menu to access the
Print Preview dialog box, described below. For details, see “Using Print
Preview” in the MATLAB Graphics documentation.

Syntax printpreview
printpreview(f)

Description printpreview displays a dialog box showing the figure in the currently
active figure window as it will print. A scaled version of the figure
displays in the right-hand pane of the GUI.

printpreview(f) displays a dialog box showing the figure having the
handle f as it will print.

Use the Print Preview dialog box, shown below, to control the layout
and appearance of figures before sending them to a printer or print file.
Controls are grouped into four tabbed panes: Layout, Lines/Text,
Color, and Advanced.

2-2560

printpreview

Right Pane Controls

You can position and scale plots on the printed page using the rulers
in the right-hand pane of the Print Preview dialog. Use the outer ruler
handlebars to change margins. Moving them changes plot proportions.
Use the center ruler handlebars to change the position of the plot on
the page. Plot proportions do not change, but you can move portions of

2-2561

printpreview

the plot off the paper. The buttons on that pane let you refresh the
plot, close the dialog (preserving all current settings), print the page
immediately, or obtain context-sensitive help. Use the Zoom box and
scroll bars to view and position page elements more precisely.

The Layout Tab

Use the Layout tab, shown above, to control the paper format and
placement of the plot on printed pages. The following table summarizes
the Layout options:

Group Option Description

Placement Auto Let MATLAB decide placement of
plot on page

Use manual... Specify position parameters for
plot on page

Top, Left, Width,
Height

Standard position parameters in
current units

Use defaults Revert to default position

Fill page Expand figure to fill printable area

Fix aspect ratio Correct height/width ratio

Center Center plot on printed page

Paper Format U.S. and ISO sheet size selector

Width, Height Sheet size in current units

Units Inches Use inches as units for dimensions
and positions

Centimeters Use centimeters as units for
dimensions and positions

Points Use points as units for dimensions
and positions

Orientation Portrait Upright paper orientation

2-2562

printpreview

Group Option Description

Landscape Sideways paper orientation

Rotated Currently the same as Landscape

The Lines/Text Tab

Use the Lines/Text tab, shown below, to control the line weights, font
characteristics, and headers for printed pages. The following table
summarizes the Lines/Text options:

2-2563

printpreview

Group Option Description

Lines Line
Width

Scale all lines by a percentage from 0
upward (100 being no change), print lines
at a specified point size, or default line
widths used on the plot

Min Width Smallest line width (in points) to use when
printing; defaults to 0.5 point

Text Font
Name

Select a system font for all text on plot, or
default to fonts currently used on the plot

Font Size Scale all text by a percentage from 0
upward (100 being no change), print text
at a specified point size, or default to this
used on the plotFont

Weight
Select Normal ... Bold font styling for all
text from drop-down menu or default to the
font weights used on the plot

Font
Angle

Select Normal, Italic or Oblique font
styling for all text from drop-down menu or
default to the font angles used on the plot

Header Header
Text

Type the text to appear on the header at
the upper left of printed pages, or leave
blank for no header

Date Style Select a date format to have today’s date
appear at the upper left of printed pages,
or none for no date

The Color Tab

Use the Color tab, shown below, to control how colors are printed for
lines and backgrounds. The following table summarizes the Color
options:

2-2564

printpreview

Group Option Description

Color Scale Black and
White

Select to print lines and text in black
and white, but use color for patches
and other objects

Gray Scale Convert colors to shades of gray on
printed pages

2-2565

printpreview

Group Option Description

Color Print everything in color, matching
colors on plot; select RGB (default) or
CMYK color model for printing

Background
Color

Same as
figure

Print the figure’s background color
as it is

Custom Select a color name, or type a
colorspec for the background; white
(default) implies no background color,
even on colored paper.

The Advanced Tab

Use the Advanced tab, shown below, to control finer details of printing,
such as limits and ticks, renderer, resolution, and the printing of
UIControls. The following table summarizes the Advanced options:

Group Option Description

Axes limits
and ticks

Recompute
limits and ticks

Redraw x- and y-axes ticks and
limits based on printed plot size
(default)

2-2566

printpreview

Group Option Description

Keep limits and
ticks

Use the x- and y-axes ticks and
limits shown on the plot when
printing the previewed figure

Miscellaneous Renderer Select a rendering algorithm for
printing: painters, zbuffer,
opengl, or auto (default)

Resolution Select resolution to print at in
dots per inch: 150, 300, 600, or
auto (default), or type in any
other positive value

Print
UIControls

Print all visible UIControls in
the figure (default), or uncheck
to exclude them from being
printed

See Also printdlg, pagesetupdlg

For more information, see How to Print or Export in the MATLAB
Graphics documentation.

2-2567

prod

Purpose Product of array elements

Syntax B = prod(A)
B = prod(A,dim)

Description B = prod(A) returns the products along different dimensions of an
array.

If A is a vector, prod(A) returns the product of the elements.

If A is a matrix, prod(A) treats the columns of A as vectors, returning
a row vector of the products of each column.

If A is a multidimensional array, prod(A) treats the values along the
first non-singleton dimension as vectors, returning an array of row
vectors.

B = prod(A,dim) takes the products along the dimension of A specified
by scalar dim.

Examples The magic square of order 3 is

M = magic(3)

M =
8 1 6
3 5 7
4 9 2

The product of the elements in each column is

prod(M) =

96 45 84

The product of the elements in each row can be obtained by:

prod(M,2) =

48

2-2568

prod

105
72

See Also cumprod, diff, sum

2-2569

profile

Purpose Profile execution time for function

GUI
Alternatives

As an alternative to the profile function, select Desktop > Profiler
to open the Profiler.

Syntax profile on
profile on -detail level
profile on -history
profile on -nohistory
profile on -timer clock
profile on -detail level -history -timer clock
profile off
profile resume
profile clear
profile viewer
S = profile('status')
stats = profile('info')

Description The profile function helps you debug and optimize M-files by tracking
their execution time. For each function in the M-file, profile records
information about execution time, number of calls, parent functions,
child functions, code line hit count, and code line execution time. Some
people use profile simply to see the child functions; see also depfun
for that purpose. To open the Profiler graphical user interface, use the
profile viewer syntax. Profile time is CPU time. The total time
reported by the Profiler is not the same as the time reported using the
tic and toc functions or the time you would observe using a stopwatch.
To change options, stop profiling and then start or resume profiling
with new options.

profile on starts the Profiler, clearing previously recorded profile
statistics.

profile on -detail level starts the Profiler, clearing previously
recorded profile statistics, and specifies the set of functions you want to
profile. The level applies to subsequent uses of profile or the Profiler,
until you change it. Allowable values for level are

2-2570

profile

• 'builtin'—Gathers information about M-functions, M-subfunctions,
and MEX-functions, plus built-in functions, such as eig.

• 'mmex'—Gathers information about M-functions, M-subfunctions,
and MEX-functions. This is the default value.

profile on -history starts the Profiler, clearing previously recorded
profile statistics, and records the exact sequence of function calls. The
profile function records up to 10,000 function entry and exit events.
For more than 10,000 events, profile continues to record other profile
statistics, but not the sequence of calls. By default, the history option
is not enabled.

profile on -nohistory starts the Profiler, clearing previously recorded
profile statistics, and disables further recording of the history (exact
sequence of function calls). Use the -nohistory option after having
previously set the -history option. All other profiling statistics
continue to accumulate.

profile on -timer clock starts the Profiler, clearing previously
recorded profile statistics, and specifies the type of time to use.
Allowable values for clock are

• 'cpu'—The Profiler uses compute time (the default).

• 'real'—The Profiler uses wall-clock time.

For example, cpu time for the pause function would be small, but real
time would account for the actual time paused.

profile on -detail level -history -timer clock starts the Profiler
using all of these specified options. Any order is acceptable, as is a
subset.

profile off stops the Profiler.

profile resume restarts the Profiler without clearing previously
recorded statistics.

profile clear clears the statistics recorded by profile.

2-2571

profile

profile viewer stops the Profiler and displays the results in the
Profiler window. For more information, see Profiling for Improving
Performance in the Desktop Tools and Development Environment
documentation.

S = profile('status') returns a structure containing information
about the current status of the Profiler. The table lists the fields in the
order they appear in the structure.

Field Values

ProfilerStatus 'on' or 'off'

DetailLevel 'mmex' or 'builtin'

Timer 'cpu' or 'real'

HistoryTracking 'on' or 'off'

stats = profile('info') stops the Profiler and displays a structure
containing the results. Use this function to access the data generated
by profile. The table lists the fields in the order they appear in the
structure.

Field Description

FunctionTable Structure array containing statistics about
each function called

FunctionHistory Array containing function call history

ClockPrecision Precision of profile’s time measurement

ClockSpeed Estimated clock speed of the CPU

Name Name of the profiler

The FunctionTable field is an array of structures, where each structure
contains information about one of the functions or subfunctions called
during execution. The following table lists these fields in the order
they appear in the structure.

2-2572

profile

Field Description

CompleteName Full path to FunctionName, including
subfunctions

FunctionName Function name; includes subfunctions

FileName Full path to FunctionName, with file extension,
excluding subfunctions

Type M-functions, MEX-functions, and many other
types of functions including M-subfunctions,
nested functions, and anonymous functions

NumCalls Number of times the function was called

TotalTime Total time spent in the function and its child
functions

TotalRecursiveTime No longer used.

Children FunctionTable indices to child functions

Parents FunctionTable indices to parent functions

ExecutedLines Array containing line-by-line details for the
function being profiled.

Column 1: Number of the line that executed.
If a line was not executed, it does not appear
in this matrix.

Column 2: Number of times the line was
executed

Column 3: Total time spent on that line.
Note: The sum of Column 3 entries does not
necessarily add up to the function’s TotalTime.

2-2573

profile

Field Description

IsRecursive BOOLEAN value: Logical 1 (true) if recursive,
otherwise logical 0 (false)

PartialData BOOLEAN value: Logical 1 (true) if function
was modified during profiling, for example by
being edited or cleared. In that event, data
was collected only up until the point when the
function was modified.

Examples Profile and Display Results

This example profiles the MATLAB magic command and then displays
the results in the Profiler window. The example then retrieves the
profile data on which the HTML display is based and uses the profsave
command to save the profile data in HTML form.

profile on
plot(magic(35))
profile viewer
p = profile('info');
profsave(p,'profile_results')

Profile and Save Results

Another way to save profile data is to store it in a MAT-file. This
example stores the profile data in a MAT-file, clears the profile data
from memory, and then loads the profile data from the MAT-file. This
example also shows a way to bring the reloaded profile data into the
Profiler graphical interface as live profile data, not as a static HTML
page.

p = profile('info');
save myprofiledata p
clear p
load myprofiledata
profview(0,p)

2-2574

profile

Profile and Show Results Including History

This example illustrates an effective way to view the results of profiling
when the history option is enabled. The history data describes the
sequence of functions entered and exited during execution. The profile
command returns history data in the FunctionHistory field of the
structure it returns. The history data is a 2-by-n array. The first row
contains Boolean values, where 0 means entrance into a function and
1 means exit from a function. The second row identifies the function
being entered or exited by its index in the FunctionTable field.
This example reads the history data and displays it in the MATLAB
Command Window.

profile on -history

plot(magic(4));

p = profile('info');

for n = 1:size(p.FunctionHistory,2)

if p.FunctionHistory(1,n)==0

str = 'entering function: ';

else

str = 'exiting function: ';

end

disp([str p.FunctionTable(p.FunctionHistory(2,n)).FunctionName])

end

See Also depdir, depfun, mlint, profsave

Profiling for Improving Performance in the MATLAB Desktop Tools and
Development Environment documentation

2-2575

profsave

Purpose Save profile report in HTML format

Syntax profsave
profsave(profinfo)
profsave(profinfo,dirname)

Description profsave executes the profile('info') function and saves the results
in HTML format. profsave creates a separate HTML file for each
function listed in the FunctionTable field of the structure returned by
profile. By default, profsave stores the HTML files in a subdirectory
of the current directory named profile_results.

profsave(profinfo) saves the profiling results, profinfo, in HTML
format. profinfo is a structure of profiling information returned by the
profile('info') function.

profsave(profinfo,dirname) saves the profiling results, profinfo,
in HTML format. profsave creates a separate HTML file for each
function listed in the FunctionTable field of profinfo and stores them
in the directory specified by dirname.

Examples Run profile and save the results.

profile on
plot(magic(5))
profile off
profsave(profile('info'),'myprofile_results')

See Also profile

Profiling for Improving Performance in the MATLAB Desktop Tools and
Development Environment documentation

2-2576

propedit

Purpose Open Property Editor

Syntax propedit
propedit(handle_list)

Description propedit starts the Property Editor, a graphical user interface to the
properties of graphics objects. If no current figure exists, propedit
will create one.

propedit(handle_list) edits the properties for the object (or objects)
in handle_list.

Starting the Property Editor enables plot editing mode for the figure.

See Also inspect, plotedit, propertyeditor

2-2577

propedit (COM)

Purpose Open built-in property page for control

Syntax h.propedit
propedit(h)

Description h.propedit requests the control to display its built-in property page.
Note that some controls do not have a built-in property page. For those
controls, this command fails.

propedit(h) is an alternate syntax for the same operation.

Examples Create a Microsoft Calendar control and display its property page:

cal = actxcontrol('mscal.calendar', [0 0 500 500]);
cal.propedit

See Also inspect, get

2-2578

propertyeditor

Purpose Show or hide property editor

GUI
Alternatives

Click the larger Plotting Tools icon on the figure toolbar to

collectively enable plotting tools, and the smaller icon to collectively
disable them. Open or close the Property Editor tool from the figure’s
View menu. For details, see “The Property Editor” in the MATLAB
Graphics documentation.

Syntax propertyeditor('on')
propertyeditor('off')
propertyeditor('toggle')
propertyeditor
propertyeditor(figure_handle,...)

Description propertyeditor('on') displays the Property Editor on the current
figure.

propertyeditor('off') hides the Property Editor on the current
figure.

propertyeditor('toggle') or propertyeditor toggles the visibility of
the property editor on the current figure.

propertyeditor(figure_handle,...) displays or hides the Property
Editor on the figure specified by figure_handle.

See Also plottools, plotbrowser, figurepalette, inspect

2-2579

psi

Purpose Psi (polygamma) function

Syntax Y = psi(X)
Y = psi(k,X)
Y = psi(k0:k1,X)

Description Y = psi(X) evaluates the function for each element of array X. X
must be real and nonnegative. The function, also known as the
digamma function, is the logarithmic derivative of the gamma function

Y = psi(k,X) evaluates the kth derivative of at the elements of X.
psi(0,X) is the digamma function, psi(1,X) is the trigamma function,
psi(2,X) is the tetragamma function, etc.

Y = psi(k0:k1,X) evaluates derivatives of order k0 through k1 at X.
Y(k,j) is the (k-1+k0)th derivative of , evaluated at X(j).

Examples Example 1

Use the psi function to calculate Euler’s constant, .

format long
-psi(1)
ans =

0.57721566490153

-psi(0,1)
ans =

0.57721566490153

2-2580

psi

Example 2

The trigamma function of 2, psi(1,2), is the same as .

format long
psi(1,2)
ans =

0.64493406684823

pi^2/6 - 1
ans =

0.64493406684823

Example 3

This code produces the first page of Table 6.1 in Abramowitz and
Stegun [1].

x = (1:.005:1.250)';
[x gamma(x) gammaln(x) psi(0:1,x)' x-1]

Example 4

This code produces a portion of Table 6.2 in [1].

psi(2:3,1:.01:2)'

See Also gamma, gammainc, gammaln

References [1] Abramowitz, M. and I. A. Stegun, Handbook of Mathematical
Functions, Dover Publications, 1965, Sections 6.3 and 6.4.

2-2581

publish

Purpose Publish M-file containing cells, saving output to file of specified type

GUI
Alternatives

As an alternative to the publish function, use the File > Publish To
menu items in the Editor/Debugger.

Syntax publish('script')
publish('script','format')
publish('script', options)
publish('function', options)

Description publish('script') runs the M-file script named script in the base
workspace one cell at a time, and saves the code, comments, and results
to an HTML output file. The output file is named script.html and is
stored, along with other supporting output files, in an html subdirectory
in script’s directory.

publish('script','format') runs the M-file script named script,
one cell at a time in the base workspace, and publishes the code,
comments, and results to an output file using the specified format.
Allowable values for format are html (the default), xml, latex for
LaTeX, doc for Microsoft Word documents, and ppt for Microsoft
PowerPoint documents. The output file is named script.format and is
stored, along with other supporting output files, in an html subdirectory
in script’s directory. The doc format requires the Microsoft Word
application, and the ppt format requires PowerPoint application. When
publishing to HTML, the M-file code is included at the end of published
HTML file as comments, even when the showCode option is set to false.
Because it is included as comments, it does not display in a Web browser.
Use the grabcode function to extract the code from the HTML file.

publish('script', options) publishes using the structure options,
which can contain any of the fields and corresponding value for each
field as shown in Options for publish on page 2-2583. Create and
save structures for the options you use regularly. For details about
the values, see and Publishing Images preferences in the online
documentation for MATLAB.

2-2582

publish

publish('function', options)publishes an M-file function using the
structure options. The evalCode field must be set to false to publish
a function. Publishing an M-file function essentially saves the M-file to
another format, such as HTML, which allows display with formatting in
a Web browser.

Options for publish

Field Allowable Values

format 'doc','html' (default), 'latex', 'ppt', 'xml'

stylesheet '' (default), XSL filename (used only when format is html,
latex, or xml)

outputDir '' (default, a subfolder named html), full pathname

imageFormat 'png' (default unless format is latex), 'epsc2' (default
when format is latex), any format supported by print when
figureSnapMethod is print, any format supported by imwrite
functions when figureSnapMethod is getframe.

figureSnapMethod 'print' (default),'getframe'

useNewFigure true (default), false

maxHeight [] (default), positive integer specifying number of pixels

maxWidth [] (default), positive integer specifying number of pixels

showCode true (default), false

evalCode true (default), false

catchError true (default, continues publishing and includes the error in the
published file), false (displays the error and publishing ends)

stopOnError true (default), false

2-2583

publish

Options for publish (Continued)

Field Allowable Values

createThumbnail true (default), false

maxOutputLines Inf (default), nonnegative integer specifying the maximum
number of output lines before truncation of output

Examples Publish to HTML Format

To publish the M-file script d:/mymfiles/sine_wave.m to HTML, run

publish('d:/mymfiles/sine_wave.m', 'html')

MATLAB runs the file and saves the code, comments, and results
to d:/mymfiles/html/sine_wave.html. Open that file in the Web
browser to view the published document.

Publish with Options

This example defines the structure options_doc_nocode,
publishes sine_wave.m using the defined options, and displays
the resulting file. The resulting file is a Word document,
d:/nocode_output/sine_wave.doc and includes results, but not
MATLAB code.

options_doc_nocode.format='doc'
options_doc_nocode.outputDir='d:/nocode_output'
options_doc_nocode.showCode=false
publish('d:/mymfiles/sine_wave.m',options_doc_nocode)
winopen('d:/nocode_output/sine_wave.doc')

Publish Function M-File (Save M-File as HTML)

This example defines the structure function_options, publishes the
function d:/collatzplot.m, and displays the resulting file, an HTML
document, d:/html/collatzplot.html.

2-2584

publish

function_options.format='html'
function_options.evalCode=false
publish('d:/collatzplot.m',function_options)
web('d:/html/collatzplot.html')

See Also grabcode, notebook, web, winopen

MATLAB Desktop Tools and Development Environment documentation,
specifically

• Publishing to HTML, XML, LaTeX, Word, and PowerPoint Using
Cells

• Defining Cells

2-2585

PutCharArray

Purpose Store character array in server

Syntax MATLAB Client
h.PutCharArray('varname', 'workspace', 'string')
PutCharArray(h, 'varname', 'workspace', 'string')
invoke(h, 'PutCharArray', 'varname', 'workspace', 'string')

Method Signature
PutCharArray([in] BSTR varname, [in] BSTR workspace,
[in] BSTR string)

Visual Basic Client
PutCharArray(varname As String, workspace As String,
string As String)

Description PutCharArray stores the character array in string in the specified
workspace of the server attached to handle h, assigning to it the variable
varname. The workspace argument can be either base or global.

Remarks The character array specified in the string argument can have any
dimensions. However, PutCharArray changes the dimensions to a
1–by-n column-wise representation, where n is the number of characters
in the array. Executing the following commands in MATLAB illustrates
this behavior:

h = actxserver('matlab.application');
chArr = ['abc'; 'def'; 'ghk']
chArr =
abc
def
ghk

h.PutCharArray('Foo', 'base', chArr)
tstArr = h.GetCharArray('Foo', 'base')
tstArr =
adgbehcfk

2-2586

PutCharArray

Server function names, like PutCharArray, are case sensitive when
using the dot notation syntax shown in the Syntax section.

There is no difference in the operation of the three syntaxes shown
above for the MATLAB client.

Examples Store string str in the base workspace of the server using
PutCharArray.

MATLAB Client

h = actxserver('matlab.application');
h.PutCharArray('str', 'base', ...

'He jests at scars that never felt a wound.')

S = h.GetCharArray('str', 'base')
S =

He jests at scars that never felt a wound.

Visual Basic .NET Client

This example uses the Visual Basic MsgBox command to control flow
between MATLAB and the Visual Basic Client.

Dim Matlab As Object
Try

Matlab = GetObject(, "matlab.application")
Catch e As Exception

Matlab = CreateObject("matlab.application")
End Try
MsgBox("MATLAB window created; now open it...")

Open the MATLAB window, then click Ok.

Matlab.PutCharArray("str", "base", _
"He jests at scars that never felt a wound.")

MsgBox("In MATLAB, type" & vbCrLf _
& "str")

2-2587

PutCharArray

In the MATLAB window type str; MATLAB displays

str =
He jests at scars that never felt a wound.

Click Ok.

MsgBox("closing MATLAB window...")

Click Ok to close and terminate MATLAB.

Matlab.Quit()

See Also GetCharArray, PutWorkspaceData, GetWorkspaceData, Execute

2-2588

PutFullMatrix

Purpose Store matrix in server

Syntax MATLAB Client
h.PutFullMatrix('varname', 'workspace', xreal, ximag)
PutFullMatrix(h, 'varname', 'workspace', xreal, ximag)
invoke(h, 'PutFullMatrix', 'varname', 'workspace',
xreal, ximag)

Method Signature
PutFullMatrix([in] BSTR varname, [in] BSTR workspace,

[in] SAFEARRAY(double) xreal, [in] SAFEARRAY(double) ximag)

Visual Basic Client
PutFullMatrix([in] varname As String, [in] workspace As String,

[in] xreal As Double, [in] ximag As Double)

Description PutFullMatrix stores a matrix in the specified workspace of the server
attached to handle h, assigning to it the variable varname. Enter the
real and imaginary parts of the matrix in the xreal and ximag input
arguments. The workspace argument can be either base or global.

Remarks The matrix specified in the xreal and ximag arguments cannot be
scalar, an empty array, or have more than two dimensions.

Server function names, like PutFullMatrix, are case sensitive when
using the first syntax shown.

There is no difference in the operation of the three syntaxes shown
above for the MATLAB client.

For VBScript clients, use the GetWorkspaceData and PutWorkspaceData
functions to pass numeric data to and from the MATLAB workspace.
These functions use the variant data type instead of safearray which
is not supported by VBScript.

2-2589

PutFullMatrix

Examples Writing to the Base Workspace Example

Assign a 5-by-5 real matrix to the variable M in the base workspace of
the server, and then read it back with GetFullMatrix. The real and
imaginary parts are passed in through separate arrays of doubles.

MATLAB Client

h = actxserver('matlab.application');
h.PutFullMatrix('M', 'base', rand(5), zeros(5))
% One output returns real, use two for real and imag
xreal = h.GetFullMatrix('M', 'base', zeros(5), zeros(5))
xreal =

0.9501 0.7621 0.6154 0.4057 0.0579
0.2311 0.4565 0.7919 0.9355 0.3529
0.6068 0.0185 0.9218 0.9169 0.8132
0.4860 0.8214 0.7382 0.4103 0.0099
0.8913 0.4447 0.1763 0.8936 0.1389

Visual Basic .NET Client

Dim MatLab As Object
Dim XReal(4, 4) As Double
Dim XImag(4, 4) As Double
Dim ZReal(4, 4) As Double
Dim ZImag(4, 4) As Double
Dim i, j As Integer

For i = 0 To 4
For j = 0 To 4
XReal(i, j) = Rnd() * 6
XImag(i, j) = 0
Next j

Next i

Matlab = CreateObject("matlab.application")
MatLab.PutFullMatrix("M", "base", XReal, XImag)
MatLab.GetFullMatrix("M", "base", ZReal, ZImag)

2-2590

PutFullMatrix

Writing to the Global Workspace Example

Write a matrix to the global workspace of the server and then examine
the server’s global workspace from the client.

MATLAB Client

h = actxserver('matlab.application');
h.PutFullMatrix('X', 'global', [1 3 5; 2 4 6], ...

[1 1 1; 1 1 1])
h.invoke('Execute', 'whos global')
ans =

Name Size Bytes Class
X 2x3 96 double array (global complex)

Grand total is 6 elements using 96 bytes

Visual Basic .NET Client

Dim MatLab As Object
Dim XReal(1, 2) As Double
Dim XImag(1, 2) As Double
Dim result As String
Dim i, j As Integer

For i = 0 To 1
For j = 0 To 2
XReal(i, j) = (j * 2 + 1) + i
XImag(i, j) = 1

Next j
Next i

Matlab = CreateObject("matlab.application")
MatLab.PutFullMatrix("X", "global", XReal, XImag)
result = Matlab.Execute("whos global")
MsgBox(result)

2-2591

PutFullMatrix

See Also GetFullMatrix, PutWorkspaceData, , GetWorkspaceDataExecute

2-2592

PutWorkspaceData

Purpose Store data in server workspace

Syntax MATLAB Client
h.PutWorkspaceData('varname', 'workspace', data)
PutWorkspaceData(h, 'varname', 'workspace', data)
invoke(h, 'PutWorkspaceData', 'varname', 'workspace', data)

Method Signature
PutWorkspaceData([in] BSTR varname, [in] BSTR workspace,
[in] VARIANT data)

Visual Basic Client
PutWorkspaceData(varname As String, workspace As String,
data As Object)

Description PutWorkspaceData stores data in the specified workspace of the
server attached to handle h, assigning to it the variable varname. The
workspace argument can be either base or global.

Note PutWorkspaceData works on all MATLAB data types except
sparse arrays, structure arrays, and function handles. Use the Execute
method for these data types.

Passing Character Arrays

MATLAB enables you to define 2-D character arrays such as the
following:

chArr = ['abc';'def';'ghk']
chArr =
abc
def
ghk

size(chArr)
ans =

3 3

2-2593

PutWorkspaceData

However, PutWorkspaceData does not preserve the dimensions of
character arrays when passing them to a COM server. 2-D arrays are
converted to 1-by-n arrays of characters, where n equals the number
of characters in the original array plus one newline character for each
row in the original array. This means that chArr above is converted to
a 1-by-12 array, but the newline characters make it display with three
rows in the MATLAB command window. For example,

h = actxserver('matlab.application');
h.PutWorkspaceData('Foo','base',chArr);
tstArr = h.GetWorkspaceData('Foo','base')
tstArr =
abc
def
ghk

size(tstArr)
ans =

1 12

Remarks You can use PutWorkspaceData in place of PutFullMatrix and
PutCharArray to pass numeric and character array data respectively to
the server.

Server function names, like PutWorkspaceData, are case sensitive when
using the first syntax shown.

There is no difference in the operation of the three syntaxes shown
above for the MATLAB client.

The GetWorkspaceData and PutWorkspaceData functions pass numeric
data as a variant data type. These functions are especially useful for
VBScript clients as VBScript does not support the safearray data type
used by GetFullMatrix and PutFullMatrix.

Examples Create an array in the client and assign it to variable A in the base
workspace of the server:

2-2594

PutWorkspaceData

MATLAB Client

h = actxserver('matlab.application');
for i = 0:6

data(i+1) = i * 15;
end
h.PutWorkspaceData('A', 'base', data)

Visual Basic .NET Client

This example uses the Visual Basic MsgBox command to control flow
between MATLAB and the Visual Basic Client.

Dim Matlab As Object
Dim data(6) As Double
Dim i As Integer
MatLab = CreateObject("matlab.application")
For i = 0 To 6

data(i) = i * 15
Next i
MatLab.PutWorkspaceData("A", "base", data)
MsgBox("In MATLAB, type" & vbCrLf & "A")

Open the MATLAB window and type A. MATLAB displays

A =
0 15 30 45 60 75 90

Click Ok to close and terminate MATLAB.

See Also GetWorkspaceData, PutFullMatrix, , GetFullMatrix, PutCharArray,
GetCharArrayExecute

See “Introduction” for more examples.

2-2595

pwd

Purpose Identify current directory

Graphical
Interface

As an alternative to the pwd function, use the “Current Directory Field”

in the MATLAB desktop toolbar.

Syntax pwd
s = pwd

Description pwd displays the current working directory.

s = pwd returns the current directory to the variable s.

On Windows platforms, go directly to the current working directory
using

winopen(pwd)

See Also cd, dir, fileparts, mfilename, path, what, winopen

2-2596

qmr

Purpose Quasi-minimal residual method

Syntax x = qmr(A,b)
qmr(A,b,tol)
qmr(A,b,tol,maxit)
qmr(A,b,tol,maxit,M)
qmr(A,b,tol,maxit,M1,M2)
qmr(A,b,tol,maxit,M1,M2,x0)
[x,flag] = qmr(A,b,...)
[x,flag,relres] = qmr(A,b,...)
[x,flag,relres,iter] = qmr(A,b,...)
[x,flag,relres,iter,resvec] = qmr(A,b,...)

Description x = qmr(A,b) attempts to solve the system of linear equations A*x=b
for x. The n-by-n coefficient matrix A must be square and should be
large and sparse. The column vector b must have length n. A can be
a function handle afun such that afun(x,'notransp') returns A*x
and afun(x,'transp') returns A'*x. See “Function Handles” in the
MATLAB Programming documentation for more information.

“Parameterizing Functions Called by Function Functions”, in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the function afun, as well as the preconditioner
function mfun described below, if necessary.

If qmr converges, a message to that effect is displayed. If qmr fails to
converge after the maximum number of iterations or halts for any
reason, a warning message is printed displaying the relative residual
norm(b-A*x)/norm(b) and the iteration number at which the method
stopped or failed.

qmr(A,b,tol) specifies the tolerance of the method. If tol is [], then
qmr uses the default, 1e-6.

qmr(A,b,tol,maxit) specifies the maximum number of iterations. If
maxit is [], then qmr uses the default, min(n,20).

qmr(A,b,tol,maxit,M) and qmr(A,b,tol,maxit,M1,M2) use
preconditioners M or M = M1*M2 and effectively solve the system

2-2597

qmr

inv(M)*A*x = inv(M)*b for x. If M is [] then qmr applies no
preconditioner. M can be a function handle mfun such that
mfun(x,'notransp') returns M\x and mfun(x,'transp') returns M'\x.

qmr(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is [],
then qmr uses the default, an all zero vector.

[x,flag] = qmr(A,b,...) also returns a convergence flag.

Flag Convergence

0 qmr converged to the desired tolerance tol within maxit
iterations.

1 qmr iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 The method stagnated. (Two consecutive iterates were
the same.)

4 One of the scalar quantities calculated during qmr became
too small or too large to continue computing.

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if the flag output is specified.

[x,flag,relres] = qmr(A,b,...) also returns the relative residual
norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = qmr(A,b,...) also returns the iteration
number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = qmr(A,b,...) also returns a vector
of the residual norms at each iteration, including norm(b-A*x0).

Examples Example 1

n = 100;
on = ones(n,1);

2-2598

qmr

A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);
tol = 1e-8; maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);
x = qmr(A,b,tol,maxit,M1,M2);

displays the message

qmr converged at iteration 9 to a solution...
with relative residual
5.6e-009

Example 2

This example replaces the matrix A in Example 1 with a handle to a
matrix-vector product function afun. The example is contained in an
M-file run_qmr that

• Calls qmr with the function handle @afun as its first argument.

• Contains afun as a nested function, so that all variables in run_qmr
are available to afun.

The following shows the code for run_qmr:

function x1 = run_qmr
n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);
tol = 1e-8;
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);
x1 = qmr(@afun,b,tol,maxit,M1,M2);

function y = afun(x,transp_flag)
if strcmp(transp_flag,'transp') % y = A'*x

2-2599

qmr

y = 4 * x;
y(1:n-1) = y(1:n-1) - 2 * x(2:n);
y(2:n) = y(2:n) - x(1:n-1);

elseif strcmp(transp_flag,'notransp') % y = A*x
y = 4 * x;
y(2:n) = y(2:n) - 2 * x(1:n-1);
y(1:n-1) = y(1:n-1) - x(2:n);

end
end

end

When you enter

x1=run_qmr;

MATLAB displays the message

qmr converged at iteration 9 to a solution with relative residual
5.6e-009

Example 3

load west0479;
A = west0479;
b = sum(A,2);
[x,flag] = qmr(A,b)

flag is 1 because qmr does not converge to the default tolerance 1e-6
within the default 20 iterations.

[L1,U1] = luinc(A,1e-5);
[x1,flag1] = qmr(A,b,1e-6,20,L1,U1)

flag1 is 2 because the upper triangular U1 has a zero on its diagonal,
and qmr fails in the first iteration when it tries to solve a system such as
U1*y = r for y using backslash.

[L2,U2] = luinc(A,1e-6);
[x2,flag2,relres2,iter2,resvec2] = qmr(A,b,1e-15,10,L2,U2)

2-2600

qmr

flag2 is 0 because qmr converges to the tolerance of 1.6571e-016 (the
value of relres2) at the eighth iteration (the value of iter2) when
preconditioned by the incomplete LU factorization with a drop tolerance
of 1e-6. resvec2(1) = norm(b) and resvec2(9) = norm(b-A*x2).
You can follow the progress of qmr by plotting the relative residuals at
each iteration starting from the initial estimate (iterate number 0).

semilogy(0:iter2,resvec2/norm(b),'-o')
xlabel('iteration number')
ylabel('relative residual')

See Also bicg, bicgstab, cgs, gmres, lsqr, luinc, minres, pcg, symmlq,
function_handle (@), mldivide (\)

2-2601

qmr

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

[2] Freund, Roland W. and Nöel M. Nachtigal, “QMR: A quasi-minimal
residual method for non-Hermitian linear systems,” SIAM Journal:
Numer. Math. 60, 1991, pp. 315-339.

2-2602

qr

Purpose Orthogonal-triangular decomposition

Syntax [Q,R] = qr(A) (full and sparse matrices)
[Q,R] = qr(A,0) (full and sparse matrices)
[Q,R,E] = qr(A) (full matrices)
[Q,R,E] = qr(A,0) (full matrices)
X = qr(A) (full matrices)
R = qr(A) (sparse matrices)
[C,R] = qr(A,B) (sparse matrices)
R = qr(A,0) (sparse matrices)
[C,R] = qr(A,B,0) (sparse matrices)

Description The qr function performs the orthogonal-triangular decomposition of
a matrix. This factorization is useful for both square and rectangular
matrices. It expresses the matrix as the product of a real complex
unitary matrix and an upper triangular matrix.

[Q,R] = qr(A) produces an upper triangular matrix R of the same
dimension as A and a unitary matrix Q so that A = Q*R. For sparse
matrices, Q is often nearly full. If [m n] = size(A), then Q is m-by-m
and R is m-by-n.

[Q,R] = qr(A,0) produces an “economy-size” decomposition. If
[m n] = size(A), and m > n, then qr computes only the first n columns
of Q and R is n-by-n. If m <= n, it is the same as [Q,R] = qr(A).

[Q,R,E] = qr(A) for full matrix A, produces a permutation matrix E,
an upper triangular matrix R with decreasing diagonal elements, and
a unitary matrix Q so that A*E = Q*R. The column permutation E is
chosen so that abs(diag(R)) is decreasing.

[Q,R,E] = qr(A,0) for full matrix A, produces an “economy-size”
decomposition in which E is a permutation vector, so that A(:,E) = Q*R.
The column permutation E is chosen so that abs(diag(R)) is decreasing.

X = qr(A) for full matrix A, returns the output of the LAPACK
subroutine DGEQRF or ZGEQRF. triu(qr(A)) is R.

2-2603

qr

R = qr(A) for sparse matrix A, produces only an upper triangular
matrix, R. The matrix R provides a Cholesky factorization for the matrix
associated with the normal equations,

R'*R = A'*A

This approach avoids the loss of numerical information inherent in the
computation of A'*A. It may be preferred to [Q,R] = qr(A) since Q is
always nearly full.

[C,R] = qr(A,B) for sparse matrix A, applies the orthogonal
transformations to B, producing C = Q'*B without computing Q. B and A
must have the same number of rows.

R = qr(A,0) and [C,R] = qr(A,B,0) for sparse matrix A, produce
“economy-size” results.

For sparse matrices, the Q-less QR factorization allows the solution
of sparse least squares problems

with two steps

[C,R] = qr(A,b)
x = R\c

If A is sparse but not square, MATLAB uses the two steps above for the
linear equation solving backslash operator, i.e., x = A\b.

Examples Example 1

Start with

A = [1 2 3
4 5 6
7 8 9

10 11 12]

2-2604

qr

This is a rank-deficient matrix; the middle column is the average of the
other two columns. The rank deficiency is revealed by the factorization:

[Q,R] = qr(A)

Q =

-0.0776 -0.8331 0.5444 0.0605
-0.3105 -0.4512 -0.7709 0.3251
-0.5433 -0.0694 -0.0913 -0.8317
-0.7762 0.3124 0.3178 0.4461

R =

-12.8841 -14.5916 -16.2992
0 -1.0413 -2.0826
0 0 0.0000
0 0 0

The triangular structure of R gives it zeros below the diagonal; the zero
on the diagonal in R(3,3) implies that R, and consequently A, does not
have full rank.

Example 2

This examples uses matrix A from the first example. The QR
factorization is used to solve linear systems with more equations than
unknowns. For example, let

b = [1;3;5;7]

The linear system represents four equations in only three
unknowns. The best solution in a least squares sense is computed by

x = A\b

which produces

Warning: Rank deficient, rank = 2, tol = 1.4594E-014

2-2605

qr

x =
0.5000

0
0.1667

The quantity tol is a tolerance used to decide if a diagonal element of R
is negligible. If [Q,R,E] = qr(A), then

tol = max(size(A))*eps*abs(R(1,1))

The solution x was computed using the factorization and the two steps

y = Q'*b;
x = R\y

The computed solution can be checked by forming . This equals
to within roundoff error, which indicates that even though the

simultaneous equations are overdetermined and rank
deficient, they happen to be consistent. There are infinitely many
solution vectors x; the QR factorization has found just one of them.

Algorithm Inputs of Type Double

For inputs of type double, qr uses the LAPACK routines listed in the
following table to compute the QR decomposition.

Syntax Real Complex

X = qr(A)
X = qr(A,0)

DGEQRF ZGEQRF

[Q,R] = qr(A)
[Q,R] = qr(A,0)

DGEQRF, DORGQR ZGEQRF, ZUNGQR

[Q,R,e] = qr(A)
[Q,R,e] = qr(A,0)

DGEQP3, DORGQR ZGEQP3, ZUNGQR

2-2606

qr

Inputs of Type Single

For inputs of type single, qr uses the LAPACK routines listed in the
following table to compute the QR decomposition.

Syntax Real Complex

R = qr(A)
R = qr(A,0)

SGEQRF CGEQRF

[Q,R] = qr(A)
[Q,R] = qr(A,0)

SGEQRF, SORGQR CGEQRF, CUNGQR

[Q,R,e] = qr(A)
[Q,R,e] = qr(A,0)

SGEQP3, SORGQR CGEQP3, CUNGQR

See Also lu, null, orth, qrdelete, qrinsert, qrupdate

The arithmetic operators \ and /

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, SIAM, Philadelphia, 1999.

2-2607

http://www.netlib.org/lapack/lug/lapack_lug.html

qrdelete

Purpose Remove column or row from QR factorization

Syntax [Q1,R1] = qrdelete(Q,R,j)
[Q1,R1] = qrdelete(Q,R,j,'col')
[Q1,R1] = qrdelete(Q,R,j,'row')

Description [Q1,R1] = qrdelete(Q,R,j) returns the QR factorization of the
matrix A1, where A1 is A with the column A(:,j) removed and [Q,R] =
qr(A) is the QR factorization of A.

[Q1,R1] = qrdelete(Q,R,j,'col') is the same as qrdelete(Q,R,j).

[Q1,R1] = qrdelete(Q,R,j,'row') returns the QR factorization of
the matrix A1, where A1 is A with the row A(j,:) removed and [Q,R] =
qr(A) is the QR factorization of A.

Examples A = magic(5);
[Q,R] = qr(A);
j = 3;
[Q1,R1] = qrdelete(Q,R,j,'row');

Q1 =
0.5274 -0.5197 -0.6697 -0.0578
0.7135 0.6911 0.0158 0.1142
0.3102 -0.1982 0.4675 -0.8037
0.3413 -0.4616 0.5768 0.5811

R1 =
32.2335 26.0908 19.9482 21.4063 23.3297

0 -19.7045 -10.9891 0.4318 -1.4873
0 0 22.7444 5.8357 -3.1977
0 0 0 -14.5784 3.7796

returns a valid QR factorization, although possibly different from

A2 = A;
A2(j,:) = [];
[Q2,R2] = qr(A2)

2-2608

qrdelete

Q2 =
-0.5274 0.5197 0.6697 -0.0578
-0.7135 -0.6911 -0.0158 0.1142
-0.3102 0.1982 -0.4675 -0.8037
-0.3413 0.4616 -0.5768 0.5811

R2 =
-32.2335 -26.0908 -19.9482 -21.4063 -23.3297

0 19.7045 10.9891 -0.4318 1.4873
0 0 -22.7444 -5.8357 3.1977
0 0 0 -14.5784 3.7796

Algorithm The qrdelete function uses a series of Givens rotations to zero out the
appropriate elements of the factorization.

See Also planerot, qr, qrinsert

2-2609

qrinsert

Purpose Insert column or row into QR factorization

Syntax [Q1,R1] = qrinsert(Q,R,j,x)
[Q1,R1] = qrinsert(Q,R,j,x,'col')
[Q1,R1] = qrinsert(Q,R,j,x,'row')

Description [Q1,R1] = qrinsert(Q,R,j,x) returns the QR factorization of the
matrix A1, where A1 is A = Q*R with the column x inserted before
A(:,j). If A has n columns and j = n+1, then x is inserted after the
last column of A.

[Q1,R1] = qrinsert(Q,R,j,x,'col') is the same as
qrinsert(Q,R,j,x).

[Q1,R1] = qrinsert(Q,R,j,x,'row') returns the QR factorization
of the matrix A1, where A1 is A = Q*R with an extra row, x, inserted
before A(j,:).

Examples A = magic(5);
[Q,R] = qr(A);
j = 3;
x = 1:5;
[Q1,R1] = qrinsert(Q,R,j,x,'row')

Q1 =
0.5231 0.5039 -0.6750 0.1205 0.0411 0.0225
0.7078 -0.6966 0.0190 -0.0788 0.0833 -0.0150
0.0308 0.0592 0.0656 0.1169 0.1527 -0.9769
0.1231 0.1363 0.3542 0.6222 0.6398 0.2104
0.3077 0.1902 0.4100 0.4161 -0.7264 -0.0150
0.3385 0.4500 0.4961 -0.6366 0.1761 0.0225

R1 =
32.4962 26.6801 21.4795 23.8182 26.0031

0 19.9292 12.4403 2.1340 4.3271
0 0 24.4514 11.8132 3.9931
0 0 0 20.2382 10.3392

2-2610

qrinsert

0 0 0 0 16.1948
0 0 0 0 0

returns a valid QR factorization, although possibly different from

A2 = [A(1:j-1,:); x; A(j:end,:)];
[Q2,R2] = qr(A2)

Q2 =
-0.5231 0.5039 0.6750 -0.1205 0.0411 0.0225
-0.7078 -0.6966 -0.0190 0.0788 0.0833 -0.0150
-0.0308 0.0592 -0.0656 -0.1169 0.1527 -0.9769
-0.1231 0.1363 -0.3542 -0.6222 0.6398 0.2104
-0.3077 0.1902 -0.4100 -0.4161 -0.7264 -0.0150
-0.3385 0.4500 -0.4961 0.6366 0.1761 0.0225

R2 =
-32.4962 -26.6801 -21.4795 -23.8182 -26.0031

0 19.9292 12.4403 2.1340 4.3271
0 0 -24.4514 -11.8132 -3.9931
0 0 0 -20.2382 -10.3392
0 0 0 0 16.1948
0 0 0 0 0

Algorithm The qrinsert function inserts the values of x into the jth column (row)
of R. It then uses a series of Givens rotations to zero out the nonzero
elements of R on and below the diagonal in the jth column (row).

See Also planerot, qr, qrdelete

2-2611

qrupdate

Description Rank 1 update to QR factorization

Syntax [Q1,R1] = qrupdate(Q,R,u,v)

Description [Q1,R1] = qrupdate(Q,R,u,v) when [Q,R] = qr(A) is the original
QR factorization of A, returns the QR factorization of A + u*v', where u
and v are column vectors of appropriate lengths.

Remarks qrupdate works only for full matrices.

Examples The matrix

mu = sqrt(eps)

mu =

1.4901e-08

A = [ones(1,4); mu*eye(4)];

is a well-known example in least squares that indicates the dangers of
forming A'*A. Instead, we work with the QR factorization – orthonormal
Q and upper triangular R.

[Q,R] = qr(A);

As we expect, R is upper triangular.

R =

-1.0000 -1.0000 -1.0000 -1.0000
0 0.0000 0.0000 0.0000
0 0 0.0000 0.0000
0 0 0 0.0000
0 0 0 0

2-2612

qrupdate

In this case, the upper triangular entries of R, excluding the first row,
are on the order of sqrt(eps).

Consider the update vectors

u = [-1 0 0 0 0]'; v = ones(4,1);

Instead of computing the rather trivial QR factorization of this rank
one update to A from scratch with

[QT,RT] = qr(A + u*v')

QT =

0 0 0 0 1
-1 0 0 0 0
0 -1 0 0 0
0 0 -1 0 0
0 0 0 -1 0

RT =

1.0e-007 *

-0.1490 0 0 0
0 -0.1490 0 0
0 0 -0.1490 0
0 0 0 -0.1490
0 0 0 0

we may use qrupdate.

[Q1,R1] = qrupdate(Q,R,u,v)

Q1 =

-0.0000 -0.0000 -0.0000 -0.0000 1.0000
1.0000 -0.0000 -0.0000 -0.0000 0.0000

2-2613

qrupdate

0.0000 1.0000 -0.0000 -0.0000 0.0000
0.0000 0.0000 1.0000 -0.0000 0.0000

-0.0000 -0.0000 -0.0000 1.0000 0.0000

R1 =

1.0e-007 *
0.1490 0.0000 0.0000 0.0000

0 0.1490 0.0000 0.0000
0 0 0.1490 0.0000
0 0 0 0.1490
0 0 0 0

Note that both factorizations are correct, even though they are different.

Algorithm qrupdate uses the algorithm in section 12.5.1 of the third edition of
Matrix Computations by Golub and van Loan. qrupdate is useful since,
if we take N = max(m,n), then computing the new QR factorization

from scratch is roughly an algorithm, while simply updating the

existing factors in this way is an algorithm.

References [1] Golub, Gene H. and Charles Van Loan, Matrix Computations, Third
Edition, Johns Hopkins University Press, Baltimore, 1996

See Also cholupdate, qr

2-2614

quad

Purpose Numerically evaluate integral, adaptive Simpson quadrature

Syntax q = quad(fun,a,b)
q = quad(fun,a,b,tol)
q = quad(fun,a,b,tol,trace)
[q,fcnt] = quad(...)

Description Quadrature is a numerical method used to find the area under the
graph of a function, that is, to compute a definite integral.

q = quad(fun,a,b) tries to approximate the integral of function fun
from a to b to within an error of 1e-6 using recursive adaptive Simpson
quadrature. fun is a function handle. See “Function Handles” in the
MATLAB Programming documentation for more information. Limits a
and b must be finite. The function y = fun(x) should accept a vector
argument x and return a vector result y, the integrand evaluated at
each element of x.

“Parameterizing Functions Called by Function Functions”, in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the function fun, if necessary.

q = quad(fun,a,b,tol) uses an absolute error tolerance tol instead
of the default which is 1.0e-6. Larger values of tol result in fewer
function evaluations and faster computation, but less accurate results.
In MATLAB version 5.3 and earlier, the quad function used a less
reliable algorithm and a default relative tolerance of 1.0e-3.

q = quad(fun,a,b,tol,trace) with non-zero trace shows the values
of [fcnt a b-a Q] during the recursion.

[q,fcnt] = quad(...) returns the number of function evaluations.

The function quadl may be more efficient with high accuracies and
smooth integrands.

2-2615

quad

The list below contains information to help you determine which
quadrature function in MATLAB to use:

• The quad function may be most efficient for low accuracies with
nonsmooth integrands.

• The quad function may be most efficient for low accuracies with
nonsmooth integrands.

• The quadl function may be more efficient than quad at higher
accuracies with smooth integrands.

• The quadgk function may be most efficient for high accuracies and
oscillatory integrands. It supports infinite intervals and can handle
moderate singularities at the endpoints. It also supports contour
integration along piecewise linear paths.

• The quadv function vectorizes quad for an array-valued fun.

• If the interval is infinite, [a,Inf), then for the integral of fun(x)
to exist, fun(x) must decay as x approaches infinity, and quadgk
requires it to decay rapidly. Special methods should be used for
oscillatory functions on infinite intervals, but quadgk can be used if
fun(x) decays fast enough.

• The quadgk function will integrate functions that are singular at
finite endpoints if the singularities are not too strong. For example, it
will integrate functions that behave at an endpoint c like log|x-c|
or |x-c|p for p >= -1/2. If the function is singular at points inside
(a,b), write the integral as a sum of integrals over subintervals
with the singular points as endpoints, compute them with quadgk,
and add the results.

Example To compute the integral

write an M-file function myfun that computes the integrand:

2-2616

quad

function y = myfun(x)
y = 1./(x.^3-2*x-5);

Then pass @myfun, a function handle to myfun, to quad, along with the
limits of integration, 0 to 2:

Q = quad(@myfun,0,2)

Q =

-0.4605

Alternatively, you can pass the integrand to quad as an anonymous
function handle F:

F = @(x)1./(x.^3-2*x-5);
Q = quad(F,0,2);

Algorithm quad implements a low order method using an adaptive recursive
Simpson’s rule.

Diagnostics quad may issue one of the following warnings:

'Minimum step size reached' indicates that the recursive interval
subdivision has produced a subinterval whose length is on the order of
roundoff error in the length of the original interval. A nonintegrable
singularity is possible.

'Maximum function count exceeded' indicates that the integrand
has been evaluated more than 10,000 times. A nonintegrable singularity
is likely.

'Infinite or Not-a-Number function value encountered'
indicates a floating point overflow or division by zero during the
evaluation of the integrand in the interior of the interval.

See Also dblquad, quadgk, quadl, quadv, trapz, triplequad, function_handle
(@), “Anonymous Functions”

2-2617

quad

References [1] Gander, W. and W. Gautschi, “Adaptive Quadrature – Revisited,”
BIT, Vol. 40, 2000, pp. 84-101. This document is also available at
http://www.inf.ethz.ch/personal/gander.

2-2618

http://www.inf.ethz.ch/personal/gander

quadgk

Purpose Numerically evaluate integral, adaptive Gauss-Kronrod quadrature

Syntax q = quadgk(fun,a,b)
[q,errbnd] = quadgk(fun,a,b,tol)
[q,errbnd] = quadgk(fun,a,b,param1,val1,param2,val2,...)

Description q = quadgk(fun,a,b) attempts to approximate the integral of a
scalar-valued function fun from a to b using high-order global adaptive
quadrature and default error tolerances. The function y = fun(x)
should accept a vector argument x and return a vector result y. The
integrand evaluated at each element of x. fun must be a function handle.
See “Function Handles” in the MATLAB Programming documentation
for more information. Limits a and b can be -Inf or Inf. If both are
finite, they can be complex. If at least one is complex, the integral is
approximated over a straight line path from a to b in the complex plane.

“Parameterizing Functions Called by Function Functions”, in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the function fun, if necessary.

[q,errbnd] = quadgk(fun,a,b,tol) returns an approximate bound
on the absolute error, |Q - I|, where I denotes the exact value of the
integral.

[q,errbnd] = quadgk(fun,a,b,param1,val1,param2,val2,...)
performs the integration with specified values of optional parameters.
The available parameters are

2-2619

quadgk

Parameter Description

'AbsTol' Absolute error
tolerance.

The default value of
'AbsTol' is 1.e-10
(double), 1.e-5
(single).

'RelTol' Relative error
tolerance.

The default value of
'RelTol' is 1.e-6
(double), 1.e-4
(single).

quadgk
attempts to satisfy
errbnd <= max(AbsTol,RelTol*|Q|).
This is absolute error
control when |Q| is
sufficiently small and
relative error control
when |Q| is larger. For
pure absolute error
control use 'AbsTol'
> 0 and'RelTol'= 0.
For pure relative error
control use 'AbsTol' =
0. Except when using
pure absolute error
control, the minimum
relative tolerance is
'RelTol' >= 100*eps(class(Q)).

2-2620

quadgk

Parameter Description

'Waypoints' Vector of integration
waypoints.

If fun(x) has
discontinuities in the
interval of integration,
the locations should
be supplied as a
'Waypoints' vector.
When a, b, and the
waypoints are all real,
the waypoints must
be supplied in strictly
increasing or strictly
decreasing order, and
only the waypoints
between a and b are
used. Waypoints
are not intended for
singularities in fun(x).
Singular points should be
handled by making them
endpoints of separate
integrations and adding
the results.

If a, b, or any entry of
the waypoints vector is
complex, the integration
is performed over a
sequence of straight line
paths in the complex
plane, from a to the first
waypoint, from the first
waypoint to the second,
and so forth, and finally
from the last waypoint to
b.

'MaxIntervalCount'Maximum number of
intervals allowed.

The default value is
650.

The
'MaxIntervalCount'
parameter limits the
number of intervals
that quadgk uses at any
one time after the first
iteration. A warning
is issued if quadgk
returns early because
f thi li it R ti l

2-2621

quadgk

The list below contains information to help you determine which
quadrature function in MATLAB to use:

• The quad function may be most efficient for low accuracies with
nonsmooth integrands.

• The quad function may be most efficient for low accuracies with
nonsmooth integrands.

• The quadl function may be more efficient than quad at higher
accuracies with smooth integrands.

• The quadgk function may be most efficient for high accuracies and
oscillatory integrands. It supports infinite intervals and can handle
moderate singularities at the endpoints. It also supports contour
integration along piecewise linear paths.

• The quadv function vectorizes quad for an array-valued fun.

• If the interval is infinite, [a,Inf), then for the integral of fun(x)
to exist, fun(x) must decay as x approaches infinity, and quadgk
requires it to decay rapidly. Special methods should be used for
oscillatory functions on infinite intervals, but quadgk can be used if
fun(x) decays fast enough.

• The quadgk function will integrate functions that are singular at
finite endpoints if the singularities are not too strong. For example, it
will integrate functions that behave at an endpoint c like log|x-c|
or |x-c|p for p >= -1/2. If the function is singular at points inside
(a,b), write the integral as a sum of integrals over subintervals
with the singular points as endpoints, compute them with quadgk,
and add the results.

Examples Integrand with a singularity at an integration end point

Write an M-file function myfun that computes the integrand:

function y = myfun(x)
y = exp(x).*log(x);

2-2622

quadgk

Then pass @myfun, a function handle to myfun, to quadgk, along with
the limits of integration, 0 to 1:

Q = quadgk(@myfun,0,1)

Q =

-1.3179

Alternatively, you can pass the integrand to quadgk as an anonymous
function handle F:

F = (@(x)exp(x).*log(x));
Q = quadgk(F,0,1);

Oscillatory integrand on a semi-infinite interval

Integrate over a semi-infinite interval with specified tolerances, and
return the approximate error bound:

[q,errbnd] = quadgk(@(x)x.^5.*exp(-x).*sin(x),0,inf,'RelTol',1e-8,'

q =

-15.0000

errbnd =

9.4386e-009

Contour integration around a pole

Use Waypoints to integrate around a pole using a piecewise linear
contour:

Q = quadgk(@(z)1./(2*z - 1),-1-i,-1-i,'Waypoints',[1-i,1+i,-1+i])

Q =

2-2623

quadgk

0.0000 + 3.1416i

Algorithm quadgk implements adaptive quadrature based on a Gauss-Kronrod
pair (15th and 7th order formulas).

Diagnostics quadgk may issue one of the following warnings:

'Minimum step size reached' indicates that interval subdivision
has produced a subinterval whose length is on the order of roundoff
error in the length of the original interval. A nonintegrable singularity
is possible.

'Reached the limit on the maximum number of intervals in
use' indicates that the integration was terminated before meeting the
tolerance requirements and that continuing the integration would
require more than MaxIntervalCount subintervals. The integral may
not exist, or it may be difficult to approximate numerically. Increasing
MaxIntervalCount usually does not help unless the tolerance
requirements were nearly met when the integration was previously
terminated.

'Infinite or Not-a-Number function value encountered'
indicates a floating point overflow or division by zero during the
evaluation of the integrand in the interior of the interval.

References [1] L.F. Shampine “Vectorized Adaptive Quadrature in MATLAB,”
Journal of Computational and Applied Mathematics, to appear.

See Also dblquad, quadquadl, quadv, triplequad, function_handle (@),
“Anonymous Functions”

2-2624

quadl

Purpose Numerically evaluate integral, adaptive Lobatto quadrature

Syntax q = quadl(fun,a,b)
q = quadl(fun,a,b,tol)
quadl(fun,a,b,tol,trace)
[q,fcnt] = quadl(...)

Description q = quadl(fun,a,b) approximates the integral of function fun from
a to b, to within an error of 10-6 using recursive adaptive Lobatto
quadrature. fun is a function handle. See “Function Handles” in the
MATLAB Programming documentation for more information. fun
accepts a vector x and returns a vector y, the function fun evaluated at
each element of x. Limits a and b must be finite.

“Parameterizing Functions Called by Function Functions”, in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the function fun, if necessary.

q = quadl(fun,a,b,tol) uses an absolute error tolerance of tol
instead of the default, which is 1.0e-6. Larger values of tol result in
fewer function evaluations and faster computation, but less accurate
results.

quadl(fun,a,b,tol,trace) with non-zero trace shows the values of
[fcnt a b-a q] during the recursion.

[q,fcnt] = quadl(...) returns the number of function evaluations.

Use array operators .*, ./ and .^ in the definition of fun so that it can
be evaluated with a vector argument.

The function quad may be more efficient with low accuracies or
nonsmooth integrands.

The list below contains information to help you determine which
quadrature function in MATLAB to use:

• The quad function may be most efficient for low accuracies with
nonsmooth integrands.

2-2625

quadl

• The quad function may be most efficient for low accuracies with
nonsmooth integrands.

• The quadl function may be more efficient than quad at higher
accuracies with smooth integrands.

• The quadgk function may be most efficient for high accuracies and
oscillatory integrands. It supports infinite intervals and can handle
moderate singularities at the endpoints. It also supports contour
integration along piecewise linear paths.

• The quadv function vectorizes quad for an array-valued fun.

• If the interval is infinite, [a,Inf), then for the integral of fun(x)
to exist, fun(x) must decay as x approaches infinity, and quadgk
requires it to decay rapidly. Special methods should be used for
oscillatory functions on infinite intervals, but quadgk can be used if
fun(x) decays fast enough.

• The quadgk function will integrate functions that are singular at
finite endpoints if the singularities are not too strong. For example, it
will integrate functions that behave at an endpoint c like log|x-c|
or |x-c|p for p >= -1/2. If the function is singular at points inside
(a,b), write the integral as a sum of integrals over subintervals
with the singular points as endpoints, compute them with quadgk,
and add the results.

Examples Pass M-file function handle @myfun to quadl:

Q = quadl(@myfun,0,2);

where the M-file myfun.m is

function y = myfun(x)
y = 1./(x.^3-2*x-5);

Pass anonymous function handle F to quadl:

F = @(x) 1./(x.^3-2*x-5);
Q = quadl(F,0,2);

2-2626

quadl

Algorithm quadl implements a high order method using an adaptive Gauss/Lobatto
quadrature rule.

Diagnostics quadl may issue one of the following warnings:

'Minimum step size reached' indicates that the recursive interval
subdivision has produced a subinterval whose length is on the order of
roundoff error in the length of the original interval. A nonintegrable
singularity is possible.

'Maximum function count exceeded' indicates that the integrand
has been evaluated more than 10,000 times. A nonintegrable singularity
is likely.

'Infinite or Not-a-Number function value encountered'
indicates a floating point overflow or division by zero during the
evaluation of the integrand in the interior of the interval.

See Also dblquad, quad, quadgk, triplequad, function_handle (@), “Anonymous
Functions”

References [1] Gander, W. and W. Gautschi, “Adaptive Quadrature – Revisited,”
BIT, Vol. 40, 2000, pp. 84-101. This document is also available at
http://www.inf.ethz.ch/personal/gander.

2-2627

http://www.inf.ethz.ch/personal/gander

quadv

Purpose Vectorized quadrature

Syntax Q = quadv(fun,a,b)
Q = quadv(fun,a,b,tol)
Q = quadv(fun,a,b,tol,trace)
[Q,fcnt] = quadv(...)

Description Q = quadv(fun,a,b) approximates the integral of the complex
array-valued function fun from a to b to within an error of 1.e-6 using
recursive adaptive Simpson quadrature. fun is a function handle. See
“Function Handles” in the MATLAB Programming documentation for
more information. The function Y = fun(x) should accept a scalar
argument x and return an array result Y, whose components are the
integrands evaluated at x. Limits a and b must be finite.

“Parameterizing Functions Called by Function Functions”, in the
MATLAB Mathematics documentation, explains how to provide
addition parameters to the function fun, if necessary.

Q = quadv(fun,a,b,tol) uses the absolute error tolerance tol for all
the integrals instead of the default, which is 1.e-6.

Note The same tolerance is used for all components, so the results
obtained with quadv are usually not the same as those obtained with
quad on the individual components.

Q = quadv(fun,a,b,tol,trace) with non-zero trace shows the values
of [fcnt a b-a Q(1)] during the recursion.

[Q,fcnt] = quadv(...) returns the number of function evaluations.

The list below contains information to help you determine which
quadrature function in MATLAB to use:

• The quad function may be most efficient for low accuracies with
nonsmooth integrands.

2-2628

quadv

• The quad function may be most efficient for low accuracies with
nonsmooth integrands.

• The quadl function may be more efficient than quad at higher
accuracies with smooth integrands.

• The quadgk function may be most efficient for high accuracies and
oscillatory integrands. It supports infinite intervals and can handle
moderate singularities at the endpoints. It also supports contour
integration along piecewise linear paths.

• The quadv function vectorizes quad for an array-valued fun.

• If the interval is infinite, [a,Inf), then for the integral of fun(x)
to exist, fun(x) must decay as x approaches infinity, and quadgk
requires it to decay rapidly. Special methods should be used for
oscillatory functions on infinite intervals, but quadgk can be used if
fun(x) decays fast enough.

• The quadgk function will integrate functions that are singular at
finite endpoints if the singularities are not too strong. For example, it
will integrate functions that behave at an endpoint c like log|x-c|
or |x-c|p for p >= -1/2. If the function is singular at points inside
(a,b), write the integral as a sum of integrals over subintervals
with the singular points as endpoints, compute them with quadgk,
and add the results.

Example For the parameterized array-valued function myarrayfun, defined by

function Y = myarrayfun(x,n)
Y = 1./((1:n)+x);

the following command integrates myarrayfun, for the parameter value
n = 10 between a = 0 and b = 1:

Qv = quadv(@(x)myarrayfun(x,10),0,1);

The resulting array Qv has 10 elements estimating Q(k) =
log((k+1)./(k)), for k = 1:10.

2-2629

quadv

The entries in Qv are slightly different than if you compute the integrals
using quad in a loop:

for k = 1:10
Qs(k) = quadv(@(x)myscalarfun(x,k),0,1);

end

where myscalarfun is:

function y = myscalarfun(x,k)
y = 1./(k+x);

See Also quad, quadgk, quadl, dblquad, triplequad, function_handle (@)

2-2630

questdlg

Purpose Create and open question dialog box

Syntax button = questdlg('qstring')
button = questdlg('qstring','title')
button = questdlg('qstring','title','default')
button = questdlg('qstring','title','str1','str2','default')
button = questdlg('qstring','title','str1','str2','str3',

'default')

Description button = questdlg('qstring') displays a modal dialog box
presenting the question 'qstring'. The dialog has three default
buttons, Yes, No, and Cancel. If the user presses one of these three
buttons, button is set to the name of the button pressed. If the user
presses the close button on the dialog, button is set to the empty string.
If the user presses the Return key, button is set to 'Yes'. 'qstring'
is a cell array or a string that automatically wraps to fit within the
dialog box.

Note A modal dialog box prevents the user from interacting with other
windows before responding. For more information, see WindowStyle in
the MATLAB Figure Properties.

button = questdlg('qstring','title') displays a question dialog
with 'title' displayed in the dialog’s title bar.

button = questdlg('qstring','title','default') specifies which
push button is the default in the event that the Return key is pressed.
'default' must be 'Yes', 'No', or 'Cancel'.

button =
questdlg('qstring','title','str1','str2','default')
creates a question dialog box with two push buttons labeled
'str1' and 'str2'. 'default' specifies the default button
selection and must be 'str1' or 'str2'.

2-2631

questdlg

button =
questdlg('qstring','title','str1','str2','str3','default')
creates a question dialog box with three push buttons labeled 'str1',
'str2', and 'str3'. 'default' specifies the default button selection
and must be 'str1', 'str2', or 'str3'.

In all cases where 'default' is specified, if 'default' is not set to one
of the button names, pressing the Enter key displays a warning and
the dialog remains open.

See Also dialog, errordlg, helpdlg, inputdlg, listdlg, msgbox, warndlg

figure, textwrap, uiwait, uiresume

“Predefined Dialog Boxes” on page 1-104 for related functions

2-2632

quit

Purpose Terminate MATLAB

GUI
Alternatives

As an alternative to the quit function, use the Close box or select File
> Exit MATLAB in the MATLAB desktop.

Syntax quit
quit cancel
quit force

Description quit displays a confirmation dialog box if the confirm upon quitting
preference is selected, and if confirmed or if the confirmation preference
is not selected, terminates MATLAB after running finish.m, if
finish.m exists. The workspace is not automatically saved by quit. To
save the workspace or perform other actions when quitting, create a
finish.m file to perform those actions. For example, you can display a
custom dialog box to confirm quitting using a finish.m file—see the
following examples for details. If an error occurs while finish.m is
running, quit is canceled so that you can correct your finish.m file
without losing your workspace.

quit cancel is for use in finish.m and cancels quitting. It has no effect
anywhere else.

quit force bypasses finish.m and terminates MATLAB. Use this to
override finish.m, for example, if an errant finish.m will not let you
quit.

Remarks When using Handle Graphics in finish.m, use uiwait, waitfor, or
drawnow so that figures are visible. See the reference pages for these
functions for more information.

If you want MATLAB to display the following
confirmation dialog box after running quit, select
File > Preferences > General > Confirmation Dialogs. Then select
the check box for Confirm before exiting MATLAB, and click OK.

2-2633

quit

Examples Two sample finish.m files are included with MATLAB. Use them
to help you create your own finish.m, or rename one of the files to
finish.m to use it.

• finishsav.m—Saves the workspace to a MAT-file when MATLAB
quits.

• finishdlg.m—Displays a dialog allowing you to cancel quitting; it
uses quit cancel and contains the following code:

button = questdlg('Ready to quit?', ...
'Exit Dialog','Yes','No','No');

switch button
case 'Yes',

disp('Exiting MATLAB');
%Save variables to matlab.mat
save

case 'No',
quit cancel;

end

See Also exit, finish, save, startup

2-2634

Quit (COM)

Purpose Terminate MATLAB server

Syntax MATLAB Client
h.Quit
Quit(h)
invoke(h, 'Quit')

Method Signature
void Quit(void)

Visual Basic Client
Quit

Description Quit terminates the MATLAB server session to which handle h is
attached.

Remarks Server function names, like Quit, are case sensitive when using the
first syntax shown.

There is no difference in the operation of the three syntaxes shown
above for the MATLAB client.

2-2635

quiver

Purpose Quiver or velocity plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax quiver(x,y,u,v)
quiver(u,v)
quiver(...,scale)
quiver(...,LineSpec)
quiver(...,LineSpec,'filled')
quiver(axes_handle,...)
h = quiver(...)
hlines = quiver('v6',...)

Description A quiver plot displays velocity vectors as arrows with components (u,v)
at the points (x,y).

For example, the first vector is defined by components u(1),v(1) and is
displayed at the point x(1),y(1).

quiver(x,y,u,v) plots vectors as arrows at the coordinates specified in
each corresponding pair of elements in x and y. The matrices x, y, u,
and v must all be the same size and contain corresponding position and
velocity components. However, x and y can also be vectors, as explained
in the next section. By default, the arrows are scaled to just not overlap,
but you can scale them to be longer or shorter if you want.

Expanding x- and y-Coordinates

MATLAB expands x and y if they are not matrices. This expansion is
equivalent to calling meshgrid to generate matrices from vectors:

2-2636

quiver

[x,y] = meshgrid(x,y);
quiver(x,y,u,v)

In this case, the following must be true:

length(x) = n and length(y) = m, where [m,n] = size(u) = size(v).

The vector x corresponds to the columns of u and v, and vector y
corresponds to the rows of u and v.

quiver(u,v) draws vectors specified by u and v at equally spaced
points in the x-y plane.

quiver(...,scale) automatically scales the arrows to fit within the
grid and then stretches them by the factor scale. scale = 2 doubles
their relative length, and scale = 0.5 halves the length. Use scale = 0
to plot the velocity vectors without automatic scaling. You can also tune
the length of arrows after they have been drawn by choosing the Plot

Edit tool, selecting the quivergroup object, opening the Property
Editor, and adjusting the Length slider.

quiver(...,LineSpec) specifies line style, marker symbol, and color
using any valid LineSpec. quiver draws the markers at the origin of
the vectors.

quiver(...,LineSpec,'filled') fills markers specified by LineSpec.

quiver(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = quiver(...) returns the handle to the quivergroup object.

Backward-Compatible Version

hlines = quiver('v6',...) returns the handles of line objects
instead of quivergroup objects for compatibility with MATLAB 6.5 and
earlier.

2-2637

quiver

Note The v6 option enables users of Version 7.x of MATLAB to create
FIG-files that previous versions can open. It is obsolete and will be
removed in a future version of MATLAB.

See Plot Objects and Backward Compatibility for more information.

Examples Showing the Gradient with Quiver Plots

Plot the gradient field of the function :

[X,Y] = meshgrid(-2:.2:2);
Z = X.*exp(-X.^2 - Y.^2);
[DX,DY] = gradient(Z,.2,.2);
contour(X,Y,Z)
hold on
quiver(X,Y,DX,DY)
colormap hsv
hold off

2-2638

quiver

See Also contour, LineSpec, plot, quiver3

“Direction and Velocity Plots” on page 1-89 for related functions

Two-Dimensional Quiver Plots for more examples

Quivergroup Properties for property descriptions

2-2639

quiver3

Purpose 3-D quiver or velocity plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax quiver3(x,y,z,u,v,w)
quiver3(z,u,v,w)
quiver3(...,scale)
quiver3(...,LineSpec)
quiver3(...,LineSpec,'filled')
quiver3(axes_handle,...)
h = quiver3(...)

Description A three-dimensional quiver plot displays vectors with components
(u,v,w) at the points (x,y,z).

quiver3(x,y,z,u,v,w) plots vectors with components (u,v,w) at the
points (x,y,z). The matrices x,y,z,u,v,w must all be the same size and
contain the corresponding position and vector components.

quiver3(z,u,v,w) plots the vectors at the equally spaced surface
points specified by matrix z. quiver3 automatically scales the vectors
based on the distance between them to prevent them from overlapping.

quiver3(...,scale) automatically scales the vectors to prevent them
from overlapping, and then multiplies them by scale. scale = 2 doubles
their relative length, and scale = 0.5 halves them. Use scale = 0 to
plot the vectors without the automatic scaling.

quiver3(...,LineSpec) specifies line type and color using any valid
LineSpec.

2-2640

quiver3

quiver3(...,LineSpec,'filled') fills markers specified by LineSpec.

quiver3(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes (gca).

h = quiver3(...) returns a vector of line handles.

Examples Plot the surface normals of the function .

[X,Y] = meshgrid(-2:0.25:2,-1:0.2:1);
Z = X.* exp(-X.^2 - Y.^2);
[U,V,W] = surfnorm(X,Y,Z);
quiver3(X,Y,Z,U,V,W,0.5);
hold on
surf(X,Y,Z);
colormap hsv
view(-35,45)
axis ([-2 2 -1 1 -.6 .6])
hold off

2-2641

quiver3

See Also axis, contour, LineSpec, plot, plot3, quiver, surfnorm, view

“Direction and Velocity Plots” on page 1-89 for related functions

Three-Dimensional Quiver Plots for more examples

2-2642

Quivergroup Properties

Purpose Define quivergroup properties

Modifying
Properties

You can set and query graphics object properties using the set and get
commands or the Property Editor (propertyeditor).

Note that you cannot define default properties for areaseries objects.

See Plot Objects for more information on quivergroup objects.

Quivergroup
Property
Descriptions

This section provides a description of properties. Curly braces { } enclose
default values.

Annotation
hg.Annotation object Read Only

Control the display of quivergroup objects in legends. The
Annotation property enables you to specify whether this
quivergroup object is represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can
set its IconDisplayStyle property to control whether the
quivergroup object is displayed in a figure legend:

IconDisplayStyle
Value

Purpose

on Include the quivergroup object in a legend as
one entry, but not its children objects

off Do not include the quivergroup or its
children in a legend (default)

children Include only the children of the quivergroup
as separate entries in the legend

2-2643

Quivergroup Properties

Setting the IconDisplayStyle property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation','LegendInformation');
set(hLegendEntry,'IconDisplayStyle','children')

Using the IconDisplayStyle property

See “Controlling Legends” for more information and examples.

AutoScale
{on} | off

Autoscale arrow length. Based on average spacing in the
x and y directions, AutoScale scales the arrow length to
fit within the grid-defined coordinate data and keeps the
arrows from overlapping. After autoscaling, quiver applies the
AutoScaleFactor to the arrow length.

AutoScaleFactor
scalar (default = 0.9)

User-specified scale factor. When AutoScale is on, the quiver
function applies this user-specified autoscale factor to the arrow
length. A value of 2 doubles the length of the arrows; 0.5 halves
the length.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called

2-2644

Quivergroup Properties

(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function
executing, callbacks invoked subsequently always attempt to
interrupt it.

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs
at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

• cancel — Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
string or function handle

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is over this object, but
not over another graphics object. See the HitTestArea property
for information about selecting objects of this type.

2-2645

Quivergroup Properties

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be

• A string that is a valid MATLAB expression

• The name of an M-file

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

See “Function Handle Callbacks” for information on how to use
function handles to define the callbacks.

Children
array of graphics object handles

Children of this object. The handle of a patch object that is the
child of this object (whether visible or not).

Note that if a child object’s HandleVisibility property is set
to callback or off, its handle does not show up in this object’s
Children property unless you set the root ShowHiddenHandles
property to on:

set(0,'ShowHiddenHandles','on')

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs can be
displayed outside the axes plot box. This can occur if you create a
plot object, set hold to on, freeze axis scaling (axis manual), and
then create a larger plot object.

2-2646

Quivergroup Properties

Color
ColorSpec

Color of the object. A three-element RGB vector or one of the
MATLAB predefined names, specifying the object’s color.

See the ColorSpec reference page for more information on
specifying color.

CreateFcn
string or function handle

Callback routine executed during object creation. This property
defines a callback that executes when MATLAB creates an object.
You must specify the callback during the creation of the object.
For example,

area(y,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function.

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
string or function handle

Callback executed during object deletion. A callback that executes
when this object is deleted (e.g., this might happen when you issue

2-2647

Quivergroup Properties

a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

DisplayName
string (default is empty string)

String used by legend for this quivergroup object. The legend
function uses the string defined by the DisplayName property to
label this quivergroup object in the legend.

• If you specify string arguments with the legend function,
DisplayName is set to this quivergroup object’s corresponding
string and that string is used for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

2-2648

Quivergroup Properties

See “Controlling Legends” for more examples.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase objects and their children. Alternative erase
modes are useful for creating animated sequences, where control
of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

• normal — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none — Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing
with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of
the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color
if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

• background — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other
graphics objects that are behind the erased object, but the
erased object is always properly colored.

Printing with Nonnormal Erase Modes

2-2649

Quivergroup Properties

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB can mathematically combine
layers of colors (e.g., performing an XOR on a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally accessing
objects that you need to protect for some reason.

• on — Handles are always visible when HandleVisibility is on.

• callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions
invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

• off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

2-2650

Quivergroup Properties

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

2-2651

Quivergroup Properties

HitTest
{on} | off

Selectable by mouse click. HitTest determines whether this object
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the objects that compose the area graph. If HitTest
is off, clicking this object selects the object below it (which is
usually the axes containing it).

HitTestArea
on | {off}

Select the object by clicking lines or area of extent. This property
enables you to select plot objects in two ways:

• Select by clicking lines or markers (default).

• Select by clicking anywhere in the extent of the plot.

When HitTestArea is off, you must click th eobject’s lines or
markers (excluding the baseline, if any) to select the object. When
HitTestArea is on, you can select this object by clicking anywhere
within the extent of the plot (i.e., anywhere within a rectangle
that encloses it).

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether an object’s callback can be interrupted by
callbacks invoked subsequently.

Only callbacks defined for the ButtonDownFcn property are
affected by the Interruptible property. MATLAB checks for
events that can interrupt a callback only when it encounters a
drawnow, figure, getframe, or pause command in the routine.
See the BusyAction property for related information.

2-2652

Quivergroup Properties

Setting Interruptible to on allows any graphics object’s callback
to interrupt callback routines originating from a bar property.
Note that MATLAB does not save the state of variables or the
display (e.g., the handle returned by the gca or gcf command)
when an interruption occurs.

LineStyle
{-} | -- | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker at
each point but do not want the points connected with a line (see
the Marker property).

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Marker
character (see table)

Marker symbol. The Marker property specifies the type of markers
that are displayed at plot vertices. You can set values for the

2-2653

Quivergroup Properties

Marker property independently from the LineStyle property.
Supported markers include those shown in the following table.

Marker Specifier Description

+ Plus sign

o Circle

* Asterisk

. Point

x Cross

s Square

d Diamond

^ Upward-pointing triangle

v Downward-pointing triangle

> Right-pointing triangle

< Left-pointing triangle

p Five-pointed star (pentagram)

h Six-pointed star (hexagram)

none No marker (default)

MarkerEdgeColor
ColorSpec | none | {auto}

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles). ColorSpec defines the color to use. none
specifies no color, which makes nonfilled markers invisible. auto
sets MarkerEdgeColor to the same color as the Color property.

MarkerFaceColor
ColorSpec | {none} | auto

2-2654

Quivergroup Properties

Marker face color. The fill color for markers that are closed shapes
(circle, square, diamond, pentagram, hexagram, and the four
triangles). ColorSpec defines the color to use. none makes the
interior of the marker transparent, allowing the background to
show through. auto sets the fill color to the axes color, or to the
figure color if the axes Color property is set to none (which is the
factory default for axes objects).

MarkerSize
size in points

Marker size. A scalar specifying the size of the marker in points.
The default value for MarkerSize is 6 points (1 point = 1/72 inch).
Note that MATLAB draws the point marker (specified by the '.'
symbol) at one-third the specified size.

MaxHeadSize
scalar (default = 0.2

Maximum size of arrowhead. A value determining the maximum
size of the arrowhead relative to the length of the arrow.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of this object. This property contains the handle of the
object’s parent. The parent is normally the axes, hggroup, or
hgtransform object that contains the object.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection "handles" at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this

2-2655

Quivergroup Properties

property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing four edge handles and four corner handles. When
SelectionHighlight is off, MATLAB does not draw the handles
except when in plot edit mode and objects are selected manually.

ShowArrowHead
{on} | off

Display arrowheads on vectors. When this property is on,
MATLAB draws arrowheads on the vectors displayed by quiver.
When you set this property to off, quiver draws the vectors as
lines without arrowheads.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callbacks.
You can define Tag as any string.

For example, you might create an areaseries object and set the
Tag property.

t = area(Y,'Tag','area1')

When you want to access objects of a given type, you can use
findobj to find the object’s handle. The following statement
changes the FaceColor property of the object whose Tag is area1.

2-2656

Quivergroup Properties

set(findobj('Tag','area1'),'FaceColor','red')

Type
string (read only)

Type of graphics object. This property contains a string that
identifies the class of the graphics object. For stem objects, Type
is 'hggroup'. This statement finds all the hggroup objects in
the current axes.

t = findobj(gca,'Type','hggroup');

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with this object. Assign this property
the handle of a uicontextmenu object created in the object’s
parent figure. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever
you right-click over the object.

UserData
array

User-specified data. This property can be any data you want to
associate with this object (including cell arrays and structures).
The object does not set values for this property, but you can access
it using the set and get functions.

Visible
{on} | off

Visibility of this object and its children. By default, a new object’s
visibility is on. This means all children of the object are visible
unless the child object’s Visible property is set to off. Setting an
object’s Visible property to off prevents the object from being
displayed. However, the object still exists and you can set and
query its properties.

2-2657

Quivergroup Properties

UData
matrix

One dimension of 2-D or 3-D vector components. UData, VData, and
WData, together specify the components of the vectors displayed
as arrows in the quiver graph. For example, the first vector is
defined by components UData(1),VData(1),WData(1).

UDataSource
string (MATLAB variable)

Link UData to MATLAB variable. Set this property to a MATLAB
variable that, by default, is evaluated in the base workspace to
generate the UData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change UData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to return data of a
different dimension, you might cause the function to generate a
warning and not render the graph until you have changed all data
source properties to appropriate values.

VData
matrix

2-2658

Quivergroup Properties

One dimension of 2-D or 3-D vector components. UData, VData and
WData (for 3-D) together specify the components of the vectors
displayed as arrows in the quiver graph. For example, the first
vector is defined by components UData(1),VData(1),WData(1).

VDataSource
string (MATLAB variable)

Link VData to MATLAB variable. Set this property to a MATLAB
variable that, by default, is evaluated in the base workspace to
generate the VData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change VData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to return data of a
different dimension, you might cause the function to generate a
warning and not render the graph until you have changed all data
source properties to appropriate values.

WData
matrix

One dimension of 2-D or 3-D vector components. UData, VData and
WData (for 3-D) together specify the components of the vectors
displayed as arrows in the quiver graph. For example, the first
vector is defined by components UData(1),VData(1),WData(1).

2-2659

Quivergroup Properties

WDataSource
string (MATLAB variable)

Link WData to MATLAB variable. Set this property to a MATLAB
variable that, by default, is evaluated in the base workspace to
generate the WData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change WData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to return data of a
different dimension, you might cause the function to generate a
warning and not render the graph until you have changed all data
source properties to appropriate values.

XData
vector or matrix

X-axis coordinates of arrows. The quiver function draws an
individual arrow at each x-axis location in the XData array.XData
can be either a matrix equal in size to all other data properties
or for 2-D, a vector equal in length to the number of columns in
UData or VData. That is, length(XData) == size(UData,2).

If you do not specify XData (i.e., the input argument X), the quiver
function uses the indices of UData to create the quiver graph. See
the XDataMode property for related information.

2-2660

Quivergroup Properties

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify XData
(by setting the XData property or specifying the input argument
X), the quiver function sets this property to manual.

If you set XDataMode to auto after having specified XData, the
quiver function resets the x tick-mark labels to the indices of the
U, V, and W data, overwriting any previous values.

XDataSource
string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change XData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

2-2661

Quivergroup Properties

YData
vector or matrix

Y-axis coordinates of arrows. The quiver function draws an
individual arrow at each y-axis location in the YData array. YData
can be either a matrix equal in size to all other data properties or
for 2-D, a vector equal in length to the number of rows in UData or
VData. That is, length(YData) == size(UData,1).

If you do not specify YData (i.e., the input argument Y), the quiver
function uses the indices of VData to create the quiver graph. See
the YDataMode property for related information.

The input argument y in the quiver function calling syntax
assigns values to YData.

YDataMode
{auto} | manual

Use automatic or user-specified y-axis values. If you specify YData
(by setting the YData property or specifying the input argument
Y), MATLAB sets this property to manual.

If you set YDataMode to auto after having specified YData,
MATLAB resets the y tick-mark labels to the indices of the U, V,
and W data, overwriting any previous values.

YDataSource
string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change YData.

2-2662

Quivergroup Properties

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

ZData
vector or matrix

Z-axis coordinates of arrows. The quiver function draws an
individual arrow at each z-axis location in the ZData array. ZData
must be a matrix equal in size to XData and YData.

The input argument z in the quiver3 function calling syntax
assigns values to ZData.

2-2663

qz

Purpose QZ factorization for generalized eigenvalues

Syntax [AA,BB,Q,Z] = qz(A,B)
[AA,BB,Q,Z,V,W] = qz(A,B)
qz(A,B,flag)

Description The qz function gives access to intermediate results in the computation
of generalized eigenvalues.

[AA,BB,Q,Z] = qz(A,B) for square matrices A and B, produces upper
quasitriangular matrices AA and BB, and unitary matrices Q and Z such
that Q*A*Z = AA, and Q*B*Z = BB. For complex matrices, AA and BB
are triangular.

[AA,BB,Q,Z,V,W] = qz(A,B) also produces matrices V and W whose
columns are generalized eigenvectors.

qz(A,B,flag) for real matrices A and B, produces one of two
decompositions depending on the value of flag:

'complex' Produces a possibly complex decomposition
with a triangular AA. For compatibility with
earlier versions, 'complex' is the default.

'real' Produces a real decomposition with a
quasitriangular AA, containing 1-by-1 and
2-by-2 blocks on its diagonal.

If AA is triangular, the diagonal elements of AA and BB,
and , are the generalized eigenvalues that satisfy

The eigenvalues produced by

are the ratios of the s and s.

2-2664

qz

If AA is triangular, the diagonal elements of AA and BB,

alpha = diag(AA)
beta = diag(BB)

are the generalized eigenvalues that satisfy

A*V*diag(beta) = B*V*diag(alpha)
diag(beta)*W'*A = diag(alpha)*W'*B

The eigenvalues produced by

lambda = eig(A,B)

are the element-wise ratios of alpha and beta.

lambda = alpha ./ beta

If AA is not triangular, it is necessary to further reduce the 2-by-2 blocks
to obtain the eigenvalues of the full system.

Algorithm For full matrices A and B, qz uses the LAPACK routines listed in the
following table.

A and B Real A or B Complex

A and B double DGGES, DTGEVC (if you
request the fifth output
V)

ZGGES, ZTGEVC (if you
request the fifth output
V)

A or B single SGGES, STGEVC (if you
request the fifth output
V)

CGGES, CTGEVC (if you
request the fifth output
V)

See Also eig

2-2665

qz

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, SIAM, Philadelphia, 1999.

2-2666

http://www.netlib.org/lapack/lug/lapack_lug.html

rand

Purpose Uniformly distributed pseudorandom numbers

Syntax Y = rand
Y = rand(n)
Y = rand(m,n)
Y = rand([m n])
Y = rand(m,n,p,...)
Y = rand([m n p...])
Y = rand(size(A))
rand(method,s)
s = rand(method)

Description Y = rand returns a pseudorandom, scalar value drawn from a uniform
distribution on the unit interval.

Y = rand(n) returns an n-by-n matrix of values derived as described
above.

Y = rand(m,n) or Y = rand([m n]) returns an m-by-n matrix of the
same.

Y = rand(m,n,p,...) or Y = rand([m n p...]) generates an
m-by-n-by-p-by-... array of the same.

Note The size inputs m, n, p, ... should be nonnegative integers.
Negative integers are treated as 0.

Y = rand(size(A)) returns an array that is the same size as A.

rand(method,s) causes rand to use the generator determined by
method, and initializes the state of that generator using the value of s.

The value of s is dependent upon which method is selected. If method
is set to 'state' or 'twister', then s must be either a scalar integer
value from 0 to 2^32-1 or the output of rand(method). If method is set
to 'seed', then s must be either a scalar integer value from 0 to 2^31-2
or the output of rand(method).

2-2667

rand

The rand and randn generators each maintain their own internal state
information. Initializing the state of one has no effect on the other.

Input argument method can be any of the strings shown in the table
below:

method Description

'twister' Use the Mersenne Twister algorithm by Nishimura
and Matsumoto (the default in MATLAB Versions 7.4
and later). This method generates double-precision
values in the closed interval [2^(-53), 1-2^(-53)],
with a period of (2^19937-1)/2.

'state' Use a modified version of Marsaglia’s subtract
with borrow algorithm (the default in MATLAB
versions 5 through 7.3). This method can generate
all the double-precision values in the closed interval
[2^(-53), 1-2^(-53)]. It theoretically can generate
over 2^1492 values before repeating itself.

'seed' Use a multiplicative congruential algorithm (the
default in MATLAB version 4). This method generates
double-precision values in the closed interval
[1/(2^31-1), 1-1/(2^31-1)], with a period of 2^31-2.

For a full description of the Mersenne twister algorithm, see

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

s = rand(method) returns in s the current internal state of the
generator selected by method. It does not change the generator being
used.

Remarks The sequence of numbers produced by rand is determined by the
internal state of the generator. Setting the generator to the same fixed
state enables you to repeat computations. Setting the generator to
different states leads to unique computations. It does not, however,
improve statistical properties.

2-2668

http://www.math.sci.hiroshima-u.ac.jp/%7Em-mat/MT/emt.html

rand

Because MATLAB resets the rand state at startup, rand generates
the same sequence of numbers in each session unless you change the
value of the state input.

Examples Example 1

Make a random choice between two equally probable alternatives:

if rand < .5
'heads'

else
'tails'

end

Example 2

Generate a 3-by-4 pseudorandom matrix:

R = rand(3,4)
R =

0.8147 0.9134 0.2785 0.9649
0.9058 0.6324 0.5469 0.1576
0.1270 0.0975 0.9575 0.9706

Example 3

Set rand to its default initial state:

rand('twister', 5489);

Initialize rand to a different state each time:

rand('twister', sum(100*clock));

Save the current state, generate 100 values, reset the state, and repeat
the sequence:

s = rand('twister');
u1 = rand(100);
rand('twister',s);

2-2669

rand

u2 = rand(100); % contains exactly the same values as u1

Example 4

Generate uniform integers on the set 1:n:

n = 75;
f = ceil(n.*rand(100,1));

f(1:10)
ans =

72
37
61
11
32
69
60
72
50
3

Example 5

Generate a uniform distribution of random numbers on a specified
interval [a,b]. To do this, multiply the output of rand by (b-a), then
add a. For example, to generate a 5-by-5 array of uniformly distributed
random numbers on the interval [10,50],

a = 10; b = 50;
x = a + (b-a) * rand(5)
x =

19.1591 49.8454 10.1854 25.9913 17.2739
46.5335 13.1270 40.9964 20.3948 20.5521
16.0951 27.7071 42.6921 42.0027 15.8216
43.0327 14.2661 44.7478 27.2566 15.4427
31.5337 48.4759 13.3774 46.4259 44.7717

2-2670

rand

References [1] Moler, C.B., “Numerical Computing with MATLAB,” SIAM, (2004),
336 pp. Available online at http://www.mathworks.com/moler.

[2] G. Marsaglia and A. Zaman “A New Class of Random Number
Generators,” Annals of Applied Probability, (1991), 3:462-480.

[3] Matsumoto, M. and Nishimura, T. “Mersenne Twister: A
623-Dimensionally Equidistributed Uniform Pseudorandom Number
Generator,” ACM Transactions on Modeling and Computer Simulation,
(1998), 8(1):3-30.

[4] Park, S.K. and Miller, K.W. “Random Number Generators: Good
Ones Are Hard to Find,” Communications of the ACM, (1988),
31(10):1192-1201

See Also randn, randperm, sprand, sprandn

2-2671

http://www.mathworks.com/moler

randn

Purpose Normally distributed random numbers

Syntax Y = randn
Y = randn(n)
Y = randn(m,n)
Y = randn([m n])
Y = randn(m,n,p,...)
Y = randn([m n p...])
Y = randn(size(A))
randn(method,s)
s = randn(method)

Description Y = randn returns a pseudorandom, scalar value drawn from a normal
distribution with mean 0 and standard deviation 1.

Y = randn(n) returns an n-by-n matrix of values derived as described
above.

Y = randn(m,n) or Y = randn([m n]) returns an m-by-n matrix of
the same.

Y = randn(m,n,p,...) or Y = randn([m n p...]) generates an
m-by-n-by-p-by-... array of the same.

Note The size inputs m, n, p, ... should be nonnegative integers.
Negative integers are treated as 0.

Y = randn(size(A)) returns an array that is the same size as A.

randn(method,s) causes randn to use the generator determined by
method, and initializes the state of that generator using the value of s.

The value of s is dependent upon which method is selected. If method
is set to 'state', then s must be either a scalar integer value from 0
to 2^32-1 or the output of rand(method). If method is set to 'seed',
then s must be either a scalar integer value from 0 to 2^31-2 or the

2-2672

randn

output of rand(method). To set the generator to its default initial state,
set s equal to zero.

The randn and rand generators each maintain their own internal state
information. Initializing the state of one has no effect on the other.

Input argument method can be either of the strings shown in the table
below:

method Description

'state' Use Marsaglia’s ziggurat algorithm (the default
in MATLAB versions 5 and later). The period is
approximately 2^64.

'seed' Use the polar algorithm (the default in MATLAB version
4). The period is approximately (2^31-1)*(pi/8).

s = randn(method) returns in s the current internal state of the
generator selected by method. It does not change the generator being
used.

Examples Example 1

R = randn(3,4) might produce

R =
1.1650 0.3516 0.0591 0.8717
0.6268 -0.6965 1.7971 -1.4462
0.0751 1.6961 0.2641 -0.7012

For a histogram of the randn distribution, see hist.

Example 2

Set randn to its default initial state:

randn('state', 0);

Initialize randn to a different state each time:

2-2673

randn

randn('state', sum(100*clock));

Save the current state, generate 100 values, reset the state, and repeat
the sequence:

s = randn('state');
u1 = randn(100);
randn('state',s);
u2 = randn(100); % Contains exactly the same values as u1.

Example 3

Generate a random distribution with a specific mean and variance .
To do this, multiply the output of randn by the standard deviation ,
and then add the desired mean. For example, to generate a 5-by-5
array of random numbers with a mean of .6 that are distributed with a
variance of 0.1,

x = .6 + sqrt(0.1) * randn(5)
x =

0.8713 0.4735 0.8114 0.0927 0.7672
0.9966 0.8182 0.9766 0.6814 0.6694
0.0960 0.8579 0.2197 0.2659 0.3085
0.1443 0.8251 0.5937 1.0475 -0.0864
0.7806 1.0080 0.5504 0.3454 0.5813

References [1] Moler, C.B., “Numerical Computing with MATLAB,” SIAM, (2004),
336 pp. Available online at http://www.mathworks.com/moler.

[2] Marsaglia, G. and Tsang, W.W., The Ziggurat Method for Generating
Random Variables,” Journal of Statistical Software, (2000), 5(8).
Available online at http://www.jstatsoft.org/v05/i08/.

[3] Marsaglia, G. and Tsang, W.W., “A Fast, Easily Implemented
Method for Sampling from Decreasing or Symmetric Unimodal Density
Functions,” SIAM Journal of Scientific and Statistical Computing,
(1984), 5(2):349-359.

2-2674

http://www.mathworks.com/moler
http://www.jstatsoft.org/v05/i08/

randn

[4] Knuth, D.E., “Seminumerical Algorithms,” Volume 2 of The Art of
Computer Programming, 3rd edition Addison-Wesley (1998).

See Also rand, randperm, sprand, sprandn

2-2675

randperm

Purpose Random permutation

Syntax p = randperm(n)

Description p = randperm(n) returns a random permutation of the integers 1:n.

Remarks The randperm function calls rand and therefore, changes rand’s state.

Examples randperm(6) might be the vector

[3 2 6 4 1 5]

or it might be some other permutation of 1:6.

See Also permute

2-2676

rank

Purpose Rank of matrix

Syntax k = rank(A)
k = rank(A,tol)

Description The rank function provides an estimate of the number of linearly
independent rows or columns of a full matrix.

k = rank(A) returns the number of singular values of A that are larger
than the default tolerance, max(size(A))*eps(norm(A)).

k = rank(A,tol) returns the number of singular values of A that are
larger than tol.

Remark Use sprank to determine the structural rank of a sparse matrix.

Algorithm There are a number of ways to compute the rank of a matrix. MATLAB
uses the method based on the singular value decomposition, or SVD. The
SVD algorithm is the most time consuming, but also the most reliable.

The rank algorithm is

s = svd(A);
tol = max(size(A))*eps(max(s));
r = sum(s > tol);

See Also sprank

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, SIAM, Philadelphia, 1999.

2-2677

http://www.netlib.org/lapack/lug/lapack_lug.html

rat, rats

Purpose Rational fraction approximation

Syntax [N,D] = rat(X)
[N,D] = rat(X,tol)
rat(X)
S = rats(X,strlen)
S = rats(X)

Description Even though all floating-point numbers are rational numbers, it is
sometimes desirable to approximate them by simple rational numbers,
which are fractions whose numerator and denominator are small
integers. The rat function attempts to do this. Rational approximations
are generated by truncating continued fraction expansions. The rats
function calls rat, and returns strings.

[N,D] = rat(X) returns arrays N and D so that N./D approximates X to
within the default tolerance, 1.e-6*norm(X(:),1).

[N,D] = rat(X,tol) returns N./D approximating X to within tol.

rat(X), with no output arguments, simply displays the continued
fraction.

S = rats(X,strlen) returns a string containing simple rational
approximations to the elements of X. Asterisks are used for elements
that cannot be printed in the allotted space, but are not negligible
compared to the other elements in X. strlen is the length of each string
element returned by the rats function. The default is strlen = 13,
which allows 6 elements in 78 spaces.

S = rats(X) returns the same results as those printed by MATLAB
with format rat.

Examples Ordinarily, the statement

s = 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + 1/7

produces

s =

2-2678

rat, rats

0.7595

However, with

format rat

or with

rats(s)

the printed result is

s =
319/420

This is a simple rational number. Its denominator is 420, the least
common multiple of the denominators of the terms involved in the
original expression. Even though the quantity s is stored internally
as a binary floating-point number, the desired rational form can be
reconstructed.

To see how the rational approximation is generated, the statement
rat(s) produces

1 + 1/(-4 + 1/(-6 + 1/(-3 + 1/(-5))))

And the statement

[n,d] = rat(s)

produces

n = 319, d = 420

The mathematical quantity is certainly not a rational number, but the
MATLAB quantity pi that approximates it is a rational number. pi is
the ratio of a large integer and 252:

14148475504056880/4503599627370496

2-2679

rat, rats

However, this is not a simple rational number. The value printed for pi
with format rat, or with rats(pi), is

355/113

This approximation was known in Euclid’s time. Its decimal
representation is

3.14159292035398

and so it agrees with pi to seven significant figures. The statement

rat(pi)

produces

3 + 1/(7 + 1/(16))

This shows how the 355/113 was obtained. The less accurate, but more
familiar approximation 22/7 is obtained from the first two terms of this
continued fraction.

Algorithm The rat(X) function approximates each element of X by a continued
fraction of the form

The s are obtained by repeatedly picking off the integer part and
then taking the reciprocal of the fractional part. The accuracy of the
approximation increases exponentially with the number of terms
and is worst when X = sqrt(2). For x = sqrt(2) , the error with k
terms is about 2.68*(.173)^k, so each additional term increases the
accuracy by less than one decimal digit. It takes 21 terms to get full
floating-point accuracy.

2-2680

rat, rats

See Also format

2-2681

rbbox

Purpose Create rubberband box for area selection

Syntax rbbox
rbbox(initialRect)
rbbox(initialRect,fixedPoint)
rbbox(initialRect,fixedPoint,stepSize)
finalRect = rbbox(...)

Description rbbox initializes and tracks a rubberband box in the current figure. It
sets the initial rectangular size of the box to 0, anchors the box at the
figure’s CurrentPoint, and begins tracking from this point.

rbbox(initialRect) specifies the initial location and size of the
rubberband box as [x y width height], where x and y define the
lower left corner, and width and height define the size. initialRect
is in the units specified by the current figure’s Units property, and
measured from the lower left corner of the figure window. The corner of
the box closest to the pointer position follows the pointer until rbbox
receives a button-up event.

rbbox(initialRect,fixedPoint) specifies the corner of the box that
remains fixed. All arguments are in the units specified by the current
figure’s Units property, and measured from the lower left corner of
the figure window. fixedPoint is a two-element vector, [x y]. The
tracking point is the corner diametrically opposite the anchored corner
defined by fixedPoint.

rbbox(initialRect,fixedPoint,stepSize) specifies how frequently
the rubberband box is updated. When the tracking point exceeds
stepSize figure units, rbbox redraws the rubberband box. The default
stepsize is 1.

finalRect = rbbox(...) returns a four-element vector, [x y width
height], where x and y are the x and y components of the lower left
corner of the box, and width and height are the dimensions of the box.

Remarks rbbox is useful for defining and resizing a rectangular region:

2-2682

rbbox

• For box definition, initialRect is [x y 0 0], where (x,y) is the
figure’s CurrentPoint.

• For box resizing, initialRect defines the rectangular region that
you resize (e.g., a legend). fixedPoint is the corner diametrically
opposite the tracking point.

rbbox returns immediately if a button is not currently pressed.
Therefore, you use rbbox with waitforbuttonpress so that the mouse
button is down when rbbox is called. rbbox returns when you release
the mouse button.

Examples Assuming the current view is view(2), use the current axes’
CurrentPoint property to determine the extent of the rectangle in
dataspace units:

k = waitforbuttonpress;
point1 = get(gca,'CurrentPoint'); % button down detected
finalRect = rbbox; % return figure units
point2 = get(gca,'CurrentPoint'); % button up detected
point1 = point1(1,1:2); % extract x and y
point2 = point2(1,1:2);
p1 = min(point1,point2); % calculate locations
offset = abs(point1-point2); % and dimensions
x = [p1(1) p1(1)+offset(1) p1(1)+offset(1) p1(1) p1(1)];
y = [p1(2) p1(2) p1(2)+offset(2) p1(2)+offset(2) p1(2)];
hold on
axis manual
plot(x,y) % redraw in dataspace units

See Also axis, dragrect, waitforbuttonpress

“View Control” on page 1-99 for related functions

2-2683

rcond

Purpose Matrix reciprocal condition number estimate

Syntax c = rcond(A)

Description c = rcond(A) returns an estimate for the reciprocal of the condition
of A in 1-norm using the LAPACK condition estimator. If A is well
conditioned, rcond(A) is near 1.0. If A is badly conditioned, rcond(A) is
near 0.0. Compared to cond, rcond is a more efficient, but less reliable,
method of estimating the condition of a matrix.

Algorithm For full matrices A, rcond uses the LAPACK routines listed in the
following table to compute the estimate of the reciprocal condition
number.

Real Complex

A double DLANGE, DGETRF,
DGECON

ZLANGE, ZGETRF,
ZGECON

A single SLANGE, SGETRF,
SGECON

CLANGE, CGETRF,
CGECON

See Also cond, condest, norm, normest, rank, svd

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, SIAM, Philadelphia, 1999.

2-2684

http://www.netlib.org/lapack/lug/lapack_lug.html

read

Purpose Read video frame data from multimedia reader object

Syntax video = read(obj)
video = read(obj, index)

Description video = read(obj) reads in video frames from the associated file.
video is an H-by-W-by-B-by-F matrix where H is the image frame
height, W is the image frame width, B is the number of bands in the
image (e.g., 3 for RGB), and F is the number of frames read in. The
default behavior is to read in all frames unless an index is specified.
The type of data returned is always UINT8 data representing RGB24
video frames.

video = read(obj, index) performs the same operation, but reads
only the frame(s) specified by index, where the first frame number is
1. index can be a single index, or a two-element array representing an
index range of the video stream.

For example, read only the first frame:

video = read(obj, 1);

Read the first 10 frames:

video = read(obj, [1 10]);

You can use Inf to represent the last frame in the file:

video = read(obj, Inf);

Read from frame 50 through the end of the file:

video = read(obj, [50 Inf]);

If an invalid index is specified, MATLAB throws an error.

Examples Construct a multimedia reader object associated with file
xylophone.mpg and with the user tag property set to 'myreader1'.

2-2685

read

readerobj = mmreader('xylophone.mpg', 'tag', 'myreader1');

Read in all video frames from the file.

vidFrames = read(readerobj);

Determine the number of frames in the file.

numFrames = get(readerobj, 'NumberOfFrames');

Create a MATLAB movie struct from the video frames.

for k = 1 : numFrames
mov(k).cdata = vidFrames(:,:,:,k);
mov(k).colormap = [];

end

Create a figure.

hf = figure;

Resize the figure based on the video’s width and height.

set(hf, 'position', [150 150 readerobj.Width readerobj.Height])

Play back the movie once at the video’s frame rate.

movie(hf, mov, 1, readerobj.FrameRate);

See Also get, mmreader, movie, set

2-2686

readasync

Purpose Read data asynchronously from device

Syntax readasync(obj)
readasync(obj,size)

Arguments obj A serial port object.

size The number of bytes to read from the device.

Description readasync(obj) initiates an asynchronous read operation.

readasync(obj,size) asynchronously reads, at most, the number of
bytes given by size. If size is greater than the difference between the
InputBufferSize property value and the BytesAvailable property
value, an error is returned.

Remarks Before you can read data, you must connect obj to the device with the
fopen function. A connected serial port object has a Status property
value of open. An error is returned if you attempt to perform a read
operation while obj is not connected to the device.

You should use readasync only when you configure the ReadAsyncMode
property to manual. readasync is ignored if used when ReadAsyncMode
is continuous.

The TransferStatus property indicates if an asynchronous read or
write operation is in progress. You can write data while an asynchronous
read is in progress because serial ports have separate read and write
pins. You can stop asynchronous read and write operations with the
stopasync function.

You can monitor the amount of data stored in the input buffer
with the BytesAvailable property. Additionally, you can use the
BytesAvailableFcn property to execute an M-file callback function
when the terminator or the specified amount of data is read.

2-2687

readasync

Rules for Completing an Asynchronous Read Operation

An asynchronous read operation with readasync completes when one
of these conditions is met:

• The terminator specified by the Terminator property is read.

• The time specified by the Timeout property passes.

• The specified number of bytes is read.

• The input buffer is filled (if size is not specified).

Because readasync checks for the terminator, this function can be
slow. To increase speed, you might want to configure ReadAsyncMode to
continuous and continuously return data to the input buffer as soon
as it is available from the device.

Example This example creates the serial port object s, connects s to a Tektronix
TDS 210 oscilloscope, configures s to read data asynchronously only
if readasync is issued, and configures the instrument to return the
peak-to-peak value of the signal on channel 1.

s = serial('COM1');
fopen(s)
s.ReadAsyncMode = 'manual';
fprintf(s,'Measurement:Meas1:Source CH1')
fprintf(s,'Measurement:Meas1:Type Pk2Pk')
fprintf(s,'Measurement:Meas1:Value?')

Begin reading data asynchronously from the instrument using
readasync. When the read operation is complete, return the data to the
MATLAB workspace using fscanf.

readasync(s)
s.BytesAvailable
ans =

15
out = fscanf(s)

2-2688

readasync

out =
2.0399999619E0
fclose(s)

See Also Functions

fopen, stopasync

Properties

BytesAvailable, BytesAvailableFcn, ReadAsyncMode, Status,
TransferStatus

2-2689

real

Purpose Real part of complex number

Syntax X = real(Z)

Description X = real(Z) returns the real part of the elements of the complex array
Z.

Examples real(2+3*i) is 2.

See Also abs, angle, conj, i, j, imag

2-2690

reallog

Purpose Natural logarithm for nonnegative real arrays

Syntax Y = reallog(X)

Description Y = reallog(X) returns the natural logarithm of each element in array
X. Array X must contain only nonnegative real numbers. The size of Y is
the same as the size of X.

Examples M = magic(4)

M =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

reallog(M)

ans =
2.7726 0.6931 1.0986 2.5649
1.6094 2.3979 2.3026 2.0794
2.1972 1.9459 1.7918 2.4849
1.3863 2.6391 2.7081 0

See Also log, realpow, realsqrt

2-2691

realmax

Purpose Largest positive floating-point number

Syntax n = realmax

Description n = realmax returns the largest floating-point number representable
on your computer. Anything larger overflows.

realmax('double') is the same as realmax with no arguments.

realmax('single') is the largest single precision floating point
number representable on your computer. Anything larger overflows
to single(Inf).

Examples realmax is one bit less than 21024 or about 1.7977e+308.

Algorithm The realmax function is equivalent to pow2(2-eps,maxexp), where
maxexp is the largest possible floating-point exponent.

Execute type realmax to see maxexp for various computers.

See Also eps, realmin, intmax

2-2692

realmin

Purpose Smallest positive normalized floating-point number

Syntax n = realmin

Description n = realmin returns the smallest positive normalized floating-point
number on your computer. Anything smaller underflows or is an IEEE
“denormal.”

REALMIN('double') is the same as REALMIN with no arguments.

REALMIN('single') is the smallest positive normalized single precision
floating point number on your computer.

Examples realmin is 2^(-1022) or about 2.2251e-308.

Algorithm The realmin function is equivalent to pow2(1,minexp) where minexp is
the smallest possible floating-point exponent.

Execute type realmin to see minexp for various computers.

See Also eps, realmax, intmin

2-2693

realpow

Purpose Array power for real-only output

Syntax Z = realpow(X,Y)

Description Z = realpow(X,Y) raises each element of array X to the power of its
corresponding element in array Y. Arrays X and Y must be the same size.
The range of realpow is the set of all real numbers, i.e., all elements of
the output array Z must be real.

Examples X = -2*ones(3,3)

X =
-2 -2 -2
-2 -2 -2
-2 -2 -2

Y = pascal(3)

ans =
1 1 1
1 2 3
1 3 6

realpow(X,Y)

ans =
-2 -2 -2
-2 4 -8
-2 -8 64

See Also reallog, realsqrt, .^ (array power operator)

2-2694

realsqrt

Purpose Square root for nonnegative real arrays

Syntax Y = realsqrt(X)

Description Y = realsqrt(X) returns the square root of each element of array X.
Array X must contain only nonnegative real numbers. The size of Y is
the same as the size of X.

Examples M = magic(4)

M =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

realsqrt(M)

ans =
4.0000 1.4142 1.7321 3.6056
2.2361 3.3166 3.1623 2.8284
3.0000 2.6458 2.4495 3.4641
2.0000 3.7417 3.8730 1.0000

See Also reallog, realpow, sqrt, sqrtm

2-2695

record

Purpose Record data and event information to file

Syntax record(obj)
record(obj,'switch')

Arguments obj A serial port object.

'switch' Switch recording capabilities on or off.

Description record(obj) toggles the recording state for obj.

record(obj,'switch') initiates or terminates recording for obj.
switch can be on or off. If switch is on, recording is initiated. If
switch is off, recording is terminated.

Remarks Before you can record information to disk, obj must be connected to
the device with the fopen function. A connected serial port object has
a Status property value of open. An error is returned if you attempt
to record information while obj is not connected to the device. Each
serial port object must record information to a separate file. Recording
is automatically terminated when obj is disconnected from the device
with fclose.

The RecordName and RecordMode properties are read-only while obj is
recording, and must be configured before using record.

For a detailed description of the record file format and the properties
associated with recording data and event information to a file, refer to
Debugging: Recording Information to Disk.

Example This example creates the serial port object s, connects s to the device,
configures s to record information to a file, writes and reads text data,
and then disconnects s from the device.

s = serial('COM1');
fopen(s)
s.RecordDetail = 'verbose';

2-2696

record

s.RecordName = 'MySerialFile.txt';
record(s,'on')
fprintf(s,'*IDN?')
out = fscanf(s);
record(s,'off')
fclose(s)

See Also Functions

fclose, fopen

Properties

RecordDetail, RecordMode, RecordName, RecordStatus, Status

2-2697

rectangle

Purpose Create 2-D rectangle object

Syntax

Description rectangle draws a rectangle with Position [0,0,1,1] and Curvature
[0,0] (i.e., no curvature).

rectangle('Position',[x,y,w,h]) draws the rectangle from the
point x,y and having a width of w and a height of h. Specify values in
axes data units.

Note that, to display a rectangle in the specified proportions, you need
to set the axes data aspect ratio so that one unit is of equal length along
both the x and y axes. You can do this with the command axis equal or
daspect([1,1,1]).

rectangle(...,'Curvature',[x,y]) specifies the curvature of the
rectangle sides, enabling it to vary from a rectangle to an ellipse. The
horizontal curvature x is the fraction of width of the rectangle that
is curved along the top and bottom edges. The vertical curvature y is
the fraction of the height of the rectangle that is curved along the left
and right edges.

The values of x and y can range from 0 (no curvature) to 1 (maximum
curvature). A value of [0,0] creates a rectangle with square sides.
A value of [1,1] creates an ellipse. If you specify only one value
for Curvature, then the same length (in axes data units) is curved
along both horizontal and vertical sides. The amount of curvature is
determined by the shorter dimension.

h = rectangle(...) returns the handle of the rectangle object created.

Remarks Rectangle objects are 2-D and can be drawn in an axes only if the view is
[0 90] (i.e., view(2)). Rectangles are children of axes and are defined
in coordinates of the axes data.

Examples This example sets the data aspect ratio to [1,1,1] so that the rectangle
is displayed in the specified proportions (daspect). Note that the

2-2698

rectangle

horizontal and vertical curvature can be different. Also, note the effects
of using a single value for Curvature.

rectangle('Position',[0.59,0.35,3.75,1.37],...
'Curvature',[0.8,0.4],...

'LineWidth',2,'LineStyle','--')
daspect([1,1,1])

Specifying a single value of [0.4] for Curvature produces

2-2699

rectangle

A Curvature of [1] produces a rectangle with the shortest side
completely round:

This example creates an ellipse and colors the face red.

rectangle('Position',[1,2,5,10],'Curvature',[1,1],...
'FaceColor','r')

daspect([1,1,1])
xlim([0,7])

2-2700

rectangle

ylim([1,13])

Object
Hierarchy

2-2701

rectangle

Setting Default Properties

You can set default rectangle properties on the axes, figure, and root
levels:

set(0,'DefaultRectangleProperty',PropertyValue...)
set(gcf,'DefaultRectangleProperty',PropertyValue...)
set(gca,'DefaultRectangleProperty',PropertyValue...)

where Property is the name of the rectangle property whose default
value you want to set and PropertyValue is the value you are
specifying. Use set and get to access the surface properties.

See Also line, patch, rectangle properties

“Object Creation Functions” on page 1-94 for related functions

See the annotation function for information about the rectangle
annotation object.

Rectangle Properties for property descriptions

2-2702

Rectangle Properties

Purpose Define rectangle properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• “The Property Editor” is an interactive tool that enables you to see
and change object property values.

• The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see “Setting Default Property
Values”.

See “Core Graphics Objects” for general information about this type
of object.

Rectangle
Property
Descriptions

This section lists property names along with the type of values each
accepts. Curly braces { } enclose default values.

Annotation
hg.Annotation object Read Only

Control the display of rectangle objects in legends. The Annotation
property enables you to specify whether this rectangle object is
represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the rectangle
object is displayed in a figure legend:

2-2703

Rectangle Properties

IconDisplayStyle
Value

Purpose

on Represent this rectangle object in a legend
(default)

off Do not include this rectangle object in a
legend

children Same as on because rectangle objects do not
have children

Setting the IconDisplayStyle property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to off:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation','LegendInformation');
set(hLegendEntry,'IconDisplayStyle','off')

Using the IconDisplayStyle property

See “Controlling Legends” for more information and examples.

BeingDeleted
on | {off} read only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions may not
need to perform actions on objects that are going to be deleted,

2-2704

Rectangle Properties

and therefore, can check the object’s BeingDeleted property
before acting.

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callback routines. If there is a callback
routine executing, callback routines invoked subsequently always
attempt to interrupt it. If the Interruptible property of the
object whose callback is executing is set to on (the default), then
interruption occurs at the next point where the event queue is
processed. If the Interruptible property is off, the BusyAction
property (of the object owning the executing callback) determines
how MATLAB handles the event. The choices are

• cancel — Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Button press callback function. A callback function that executes
whenever you press a mouse button while the pointer is over the
rectangle object.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

Set this property to a function handle that references the callback.
The function must define at least two input arguments (handle
of object associated with the button down event and an event
structure, which is empty for this property)

2-2705

Rectangle Properties

function button_down(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property

sel_typ = get(gcbf,'SelectionType')
switch sel_typ

case 'normal'
disp('User clicked left-mouse button')
set(src,'Selected','on')

case 'extend'
disp('User did a shift-click')
set(src,'Selected','on')

case 'alt'
disp('User did a control-click')
set(src,'Selected','on')
set(src,'SelectionHighlight','off')

end
end

Suppose h is the handle of a rectangle object and that the
button_down function is on your MATLAB path. The following
statement assigns the function above to the ButtonDownFcn:

set(h,'ButtonDownFcn',@button_down)

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

Children
vector of handles

The empty matrix; rectangle objects have no children.

Clipping
{on} | off

Clipping mode. MATLAB clips rectangles to the axes plot box
by default. If you set Clipping to off, rectangles are displayed
outside the axes plot box. This can occur if you create a rectangle,

2-2706

Rectangle Properties

set hold to on, freeze axis scaling (axis set to manual), and then
create a larger rectangle.

CreateFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Callback function executed during object creation. This property
defines a callback function that executes when MATLAB creates a
rectangle object. You must define this property as a default value
for rectangles or in a call to the rectangle function to create a
new rectangle object. For example, the statement

set(0,'DefaultRectangleCreateFcn',@rect_create)

defines a default value for the rectangle CreateFcn property on
the root level that sets the axes DataAspectRatio whenever you
create a rectangle object. The callback function must be on your
MATLAB path when you execute the above statement.

function rect_create(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property
axh = get(src,'Parent');
set(axh,'DataAspectRatio',[1,1,1]))

end

MATLAB executes this function after setting all rectangle
properties. Setting this property on an existing rectangle object
has no effect. The function must define at least two input
arguments (handle of object created and an event structure, which
is empty for this property).

The handle of the object whose CreateFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is also accessible through the root CallbackObject property,
which you can query using gcbo.

2-2707

Rectangle Properties

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

Curvature
one- or two-element vector [x,y]

Amount of horizontal and vertical curvature. This property
specifies the curvature of the rectangle sides, which enables the
shape of the rectangle to vary from rectangular to ellipsoidal. The
horizontal curvature x is the fraction of width of the rectangle that
is curved along the top and bottom edges. The vertical curvature
y is the fraction of the height of the rectangle that is curved along
the left and right edges.

The values of x and y can range from 0 (no curvature) to 1
(maximum curvature). A value of [0,0] creates a rectangle with
square sides. A value of [1,1] creates an ellipse. If you specify
only one value for Curvature, then the same length (in axes data
units) is curved along both horizontal and vertical sides. The
amount of curvature is determined by the shorter dimension.

DeleteFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Delete rectangle callback function. A callback function that
executes when you delete the rectangle object (e.g., when you
issue a delete command or clear the axes cla or figure clf). For
example, the following function displays object property data
before the object is deleted.

function delete_fcn(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property

obj_tp = get(src,'Type');
disp([obj_tp, ' object deleted'])
disp('Its user data is:')
disp(get(src,'UserData'))

2-2708

Rectangle Properties

end

MATLAB executes the function before deleting the object’s
properties so these values are available to the callback function.
The function must define at least two input arguments (handle
of object being deleted and an event structure, which is empty
for this property)

The handle of the object whose DeleteFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is also accessible through the root CallbackObject property,
which you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DisplayName
string (default is empty string)

String used by legend for this rectangle object. The legend
function uses the string defined by the DisplayName property to
label this rectangle object in the legend.

• If you specify string arguments with the legend function,
DisplayName is set to this rectangle object’s corresponding
string and that string is used for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

2-2709

Rectangle Properties

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

See “Controlling Legends” for more examples.

EdgeColor
{ColorSpec} | none

Color of the rectangle edges. This property specifies the color of
the rectangle edges as a color or specifies that no edges be drawn.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase rectangle objects. Alternative erase modes
are useful for creating animated sequences, where control of
the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

• normal (the default) — Redraw the affected region of the
display, performing the three-dimensional analysis necessary
to ensure that all objects are rendered correctly. This mode
produces the most accurate picture, but is the slowest. The
other modes are faster, but do not perform a complete redraw
and are therefore less accurate.

• none — Do not erase the rectangle when it is moved or
destroyed. While the object is still visible on the screen after
erasing with EraseMode none, you cannot print it because
MATLAB stores no information about its former location.

• xor — Draw and erase the rectangle by performing an exclusive
OR (XOR) with the color of the screen beneath it. This mode
does not damage the color of the objects beneath the rectangle.
However, the rectangle’s color depends on the color of whatever
is beneath it on the display.

• background — Erase the rectangle by drawing it in the axes
background Color, or the figure background Color if the axes

2-2710

Rectangle Properties

Color is set to none. This damages objects that are behind the
erased rectangle, but rectangles are always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all
objects is normal. This means graphics objects created with
EraseMode set to none, xor, or background can look different on
screen than on paper. On screen, MATLAB can mathematically
combine layers of colors (e.g., performing an XOR of a pixel color
with that of the pixel behind it) and ignore three-dimensional
sorting to obtain greater rendering speed. However, these
techniques are not applied to the printed output.

You can use the MATLAB getframe command or other screen
capture application to create an image of a figure containing
nonnormal mode objects.

FaceColor
ColorSpec | {none}

Color of rectangle face. This property specifies the color of the
rectangle face, which is not colored by default.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally drawing into or
deleting a figure that contains only user interface devices (such as
a dialog box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from

2-2711

Rectangle Properties

the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all
times. This may be necessary when a callback routine invokes
a function that might potentially damage the GUI (such as
evaluating a user-typed string), and so temporarily hides its own
handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

You can set the Root ShowHiddenHandles property to on to make
all handles visible regardless of their HandleVisibility settings
(this does not affect the values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

HitTest
{on} | off

Selectable by mouse click. HitTest determines if the rectangle can
become the current object (as returned by the gco command and
the figure CurrentObject property) as a result of a mouse click on

2-2712

Rectangle Properties

the rectangle. If HitTest is off, clicking the rectangle selects the
object below it (which may be the axes containing it).

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether a rectangle callback routine can be interrupted
by subsequently invoked callback routines. Only callback routines
defined for the ButtonDownFcn are affected by the Interruptible
property. MATLAB checks for events that can interrupt a callback
routine only when it encounters a drawnow, figure, getframe, or
pause command in the routine.

LineStyle
{-} | -- | : | -. | none

Line style of rectangle edge. This property specifies the line style
of the edges. The available line styles are

Symbol Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

LineWidth
scalar

The width of the rectangle edge line. Specify this value in points (1
point = 1/72 inch). The default LineWidth is 0.5 points.

Parent
handle of axes, hggroup, or hgtransform

2-2713

Rectangle Properties

Parent of rectangle object. This property contains the handle of
the rectangle object’s parent. The parent of a rectangle object is
the axes, hggroup, or hgtransform object that contains it.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Position
four-element vector [x,y,width,height]

Location and size of rectangle. This property specifies the location
and size of the rectangle in the data units of the axes. The point
defined by x, y specifies one corner of the rectangle, and width and
height define the size in units along the x-and y-axes respectively.

Selected
on | off

Is object selected? When this property is on MATLAB displays
selection handles if the SelectionHighlight property is also
on. You can, for example, define the ButtonDownFcn to set this
property, allowing users to select the object with the mouse.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by drawing
handles at each vertex. When SelectionHighlight is off,
MATLAB does not draw the handles.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as

2-2714

Rectangle Properties

global variables or pass them as arguments between callback
routines. You can define Tag as any string.

Type
string (read only)

Class of graphics object. For rectangle objects, Type is always
the string 'rectangle'.

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with the rectangle. Assign this property
the handle of a uicontextmenu object created in the same figure
as the rectangle. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever you
right-click over the rectangle.

UserData
matrix

User-specified data. Any data you want to associate with the
rectangle object. MATLAB does not use this data, but you can
access it using the set and get commands.

Visible
{on} | off

Rectangle visibility. By default, all rectangles are visible. When
set to off, the rectangle is not visible, but still exists, and you
can get and set its properties.

2-2715

rectint

Purpose Rectangle intersection area

Syntax area = rectint(A,B)

Description area = rectint(A,B) returns the area of intersection of the rectangles
specified by position vectors A and B.

If A and B each specify one rectangle, the output area is a scalar.

A and B can also be matrices, where each row is a position vector. area is
then a matrix giving the intersection of all rectangles specified by A with
all the rectangles specified by B. That is, if A is n-by-4 and B is m-by-4,
then area is an n-by-m matrix where area(i,j) is the intersection area
of the rectangles specified by the ith row of A and the jth row of B.

Note A position vector is a four-element vector [x,y,width,height],
where the point defined by x and y specifies one corner of the rectangle,
and width and height define the size in units along the x and y axes
respectively.

See Also polyarea

2-2716

recycle

Purpose Set option to move deleted files to recycle folder

Syntax S = recycle
S = recycle state
S = recycle('state')

Description S = recycle returns a character array S that shows the current state
of the MATLAB file recycling option. This state can be either on or off.
When file recycling is on, MATLAB moves all files that you delete with
the delete function to either the recycle bin on the PC or Macintosh, or
a temporary directory on UNIX. (To locate this directory on UNIX, see
the Remarks section below.) When file recycling is off, any files you
delete are actually removed from the system.

The default recycle state is off. You can turn recycling on for all
of your MATLAB sessions using the Preferences dialog box (Select
File > Preferences > General). Under the heading Default
behavior of the delete function select Move files to the Recycle
Bin.

S = recycle state sets the MATLAB recycle option to the given
state, either on or off. Return value S shows the previous recycle state.

S = recycle('state') is the function format for this command.

Remarks On UNIX systems, you can locate the system temporary directory by
entering the MATLAB function tempdir. The recycle directory is a
subdirectory of this temporary directory, and is named according to
the format

MATLAB_Files_<day>-<mo>-<yr>_<hr>_<min>_<sec>

For example, files recycled on a UNIX system at 2:09:28 in the afternoon
of November 9, 2004 would be copied to a directory named

/tmp/MATLAB_Files_09-Nov-2004_14_09_28

To set the recycle state for all MATLAB sessions, use the Preferences
dialog box. Open the Preferences dialog and select General. To

2-2717

recycle

enable or disable recycling, click Move files to the recycle bin or
Delete files permanently. See “General Preferences for MATLAB”
in the Desktop Tools and Development Environment documentation
for more information.

You can recycle files that are stored on your local computer system,
but not files that you access over a network connection. On Windows
systems, when you use the delete function on files accessed over a
network, MATLAB removes the file entirely.

Examples Start from a state where file recycling has been turned off. Check the
current recycle state:

recycle
ans =

off

Turn file recycling on. Delete a file and verify that it has been
transferred to the recycle bin or temporary folder:

recycle on;
delete myfile.txt

See Also delete, dir, ls, fileparts, mkdir, rmdir

2-2718

reducepatch

Purpose Reduce number of patch faces

Syntax nfv = reducepatch(p,r)
nfv = reducepatch(fv,r)
nfv = reducepatch(p) or nfv = reducepatch(fv)
reducepatch(...,'fast')
reducepatch(...,'verbose')
nfv = reducepatch(f,v,r)
[nf,nv] = reducepatch(...)

Description reducepatch(p,r) reduces the number of faces of the patch identified
by handle p, while attempting to preserve the overall shape of the
original object. MATLAB interprets the reduction factor r in one of
two ways depending on its value:

• If r is less than 1, r is interpreted as a fraction of the original number
of faces. For example, if you specify r as 0.2, then the number of faces
is reduced to 20% of the number in the original patch.

• If r is greater than or equal to 1, then r is the target number of faces.
For example, if you specify r as 400, then the number of faces is
reduced until there are 400 faces remaining.

nfv = reducepatch(p,r) returns the reduced set of faces and vertices
but does not set the Faces and Vertices properties of patch p. The
struct nfv contains the faces and vertices after reduction.

nfv = reducepatch(fv,r) performs the reduction on the faces and
vertices in the struct fv.

nfv = reducepatch(p) or nfv = reducepatch(fv) uses a reduction
value of 0.5.

reducepatch(...,'fast') assumes the vertices are unique and does
not compute shared vertices.

reducepatch(...,'verbose') prints progress messages to the
command window as the computation progresses.

2-2719

reducepatch

nfv = reducepatch(f,v,r) performs the reduction on the faces in f
and the vertices in v.

[nf,nv] = reducepatch(...) returns the faces and vertices in the
arrays nf and nv.

Remarks If the patch contains nonshared vertices, MATLAB computes shared
vertices before reducing the number of faces. If the faces of the patch
are not triangles, MATLAB triangulates the faces before reduction. The
faces returned are always defined as triangles.

The number of output triangles may not be exactly the number specified
with the reduction factor argument (r), particularly if the faces of the
original patch are not triangles.

Examples This example illustrates the effect of reducing the number of faces to
only 15% of the original value.

[x,y,z,v] = flow;
p = patch(isosurface(x,y,z,v,-3));
set(p,'facecolor','w','EdgeColor','b');
daspect([1,1,1])
view(3)
figure;
h = axes;
p2 = copyobj(p,h);
reducepatch(p2,0.15)
daspect([1,1,1])
view(3)

2-2720

reducepatch

2-2721

reducepatch

See Also isosurface, isocaps, isonormals, smooth3, subvolume, reducevolume

“Volume Visualization” on page 1-102 for related functions

Vector Field Displayed with Cone Plots for another example

2-2722

reducevolume

Purpose Reduce number of elements in volume data set

Syntax [nx,ny,nz,nv] = reducevolume(X,Y,Z,V,[Rx,Ry,Rz])
[nx,ny,nz,nv] = reducevolume(V,[Rx,Ry,Rz])
nv = reducevolume(...)

Description [nx,ny,nz,nv] = reducevolume(X,Y,Z,V,[Rx,Ry,Rz]) reduces the
number of elements in the volume by retaining every Rxth element in
the x direction, every Ryth element in the y direction, and every Rzth

element in the z direction. If a scalar R is used to indicate the amount
or reduction instead of a three-element vector, MATLAB assumes the
reduction to be [R R R].

The arrays X, Y, and Z define the coordinates for the volume V. The
reduced volume is returned in nv, and the coordinates of the reduced
volume are returned in nx, ny, and nz.

[nx,ny,nz,nv] = reducevolume(V,[Rx,Ry,Rz]) assumes the arrays
X, Y, and Z are defined as [X,Y,Z] = meshgrid(1:n,1:m,1:p), where
[m,n,p] = size(V).

nv = reducevolume(...) returns only the reduced volume.

Examples This example uses a data set that is a collection of MRI slices of a
human skull. This data is processed in a variety of ways:

• The 4-D array is squeezed (squeeze) into three dimensions and
then reduced (reducevolume) so that what remains is every fourth
element in the x and y directions and every element in the z direction.

• The reduced data is smoothed (smooth3).

• The outline of the skull is an isosurface generated as a patch (p1)
whose vertex normals are recalculated to improve the appearance
when lighting is applied (patch, isosurface, isonormals).

• A second patch (p2) with an interpolated face color draws the end
caps (FaceColor, isocaps).

• The view of the object is set (view, axis, daspect).

2-2723

reducevolume

• A 100-element grayscale colormap provides coloring for the end caps
(colormap).

• Adding a light to the right of the camera illuminates the object
(camlight, lighting).

load mri
D = squeeze(D);
[x,y,z,D] = reducevolume(D,[4,4,1]);
D = smooth3(D);
p1 = patch(isosurface(x,y,z,D, 5,'verbose'),...

'FaceColor','red','EdgeColor','none');
isonormals(x,y,z,D,p1);
p2 = patch(isocaps(x,y,z,D, 5),...

'FaceColor','interp','EdgeColor','none');
view(3); axis tight; daspect([1,1,.4])
colormap(gray(100))
camlight; lighting gouraud

See Also isosurface, isocaps, isonormals, smooth3, subvolume, reducepatch

2-2724

reducevolume

“Volume Visualization” on page 1-102 for related functions

2-2725

refresh

Purpose Redraw current figure

Syntax refresh
refresh(h)

Description refresh erases and redraws the current figure.

refresh(h) redraws the figure identified by h.

See Also “Figure Windows” on page 1-95 for related functions

2-2726

refreshdata

Purpose Refresh data in graph when data source is specified

Syntax refreshdata
refreshdata(figure_handle)
refreshdata(object_handles)
refreshdata(object_handles,'workspace')

Description refreshdata evaluates any data source properties (XDataSource,
YDataSource, or ZDataSource) on all objects in graphs in the current
figure. If the specified data source has changed, MATLAB updates the
graph to reflect this change.

Note that the variable assigned to the data source property must be in
the base workspace.

refreshdata(figure_handle) refreshes the data of the objects in the
specified figure.

refreshdata(object_handles) refreshes the data of the objects
specified in object_handles or the children of those objects. Therefore,
object_handles can contain figure, axes, or plot object handles.

refreshdata(object_handles,'workspace') enables you to specify
whether the data source properties are evaluated in the base workspace
or the workspace of the function in which refreshdata was called.
workspace is a string that can be

• base — Evaluate the data source properties in the base workspace.

• caller — Evaluate the data source properties in the workspace of
the function that called refreshdata.

Examples This example creates a contour plot and changes its data source. The
call to refreshdata causes the graph to update.

z = peaks(5);
[c h] = contour(z,'ZDataSource','z');
drawnow
pause(3) % Wait 3 seconds and the graph will update

2-2727

refreshdata

z = peaks(20);
refreshdata(h)

See Also The [X,Y,Z]DataSource properties of plot objects.

2-2728

regexp, regexpi

Purpose Match regular expression

Syntax regexp('str', 'expr')
[start_idx, end_idx, extents, matches, tokens, names,

splits] = regexp('str', 'expr')
[v1, v2, ...] = regexp('str', 'expr', q1, q2, ...)
[v1 v2 ...] = regexp('str', 'expr', ..., options)

Each of these syntaxes apply to both regexp and regexpi. The regexp
function is case sensitive in matching regular expressions to a string,
and regexpi is case insensitive.

Description The following descriptions apply to both regexp and regexpi:

regexp('str', 'expr') returns a row vector containing the starting
index of each substring of str that matches the regular expression
string expr. If no matches are found, regexp returns an empty array.
The str and expr arguments can also be cell arrays of strings. See
“Regular Expressions” in the MATLAB Programming documentation
for more information.

To specify more than one string to parse or more than one expression
to match, see the guidelines listed below under “Multiple Strings or
Expressions” on page 2-2733.

[start_idx, end_idx, extents, matches, tokens, names,
splits] = regexp('str', 'expr') returns up to six values, one for
each output variable you specify, and in the default order (as shown
in the table below).

Note The str and expr inputs are required and must be entered as the
first and second arguments, respectively. Any other input arguments
(all are described below) are optional and can be entered following the
two required inputs in any order.

2-2729

regexp, regexpi

[v1, v2, ...] = regexp('str', 'expr', q1, q2, ...) returns
up to six values, one for each output variable you specify, and ordered
according to the order of the qualifier arguments, q1, q2, etc.

Return Values for Regular Expressions

Default
Order Description Qualifier

1 Row vector containing the starting index of each substring of
str that matches expr.

start

2 Row vector containing the ending index of each substring of
str that matches expr.

end

3 Cell array containing the starting and ending indices of each
substring of str that matches a token in expr. (This is a
double array when used with 'once'.)

tokenExtents

4 Cell array containing the text of each substring of str that
matches expr. (This is a string when used with 'once'.)

match

5 Cell array of cell arrays of strings containing the text of each
token captured by regexp. (This is a cell array of strings
when used with 'once'.)

tokens

6 Structure array containing the name and text of each named
token captured by regexp. If there are no named tokens in
expr, regexp returns a structure array with no fields.

Field names of the returned structure are set to the token
names, and field values are the text of those tokens. Named
tokens are generated by the expression (?<tokenname>).

names

7 Cell array containing those parts of the input string that are
delimited by substrings returned when using the regexp
'match' option.

split

2-2730

regexp, regexpi

Tip When using the split option, regexp always returns one more
string than it does with the match option. Also, you can always put the
original input string back together from the substrings obtained from
both split and match. See “Example 4 — Splitting the Input String”
on page 2-2735.

[v1 v2 ...] = regexp('str', 'expr', ..., options) calls
regexp with one or more of the nondefault options listed in the following
table. These options must follow str and expr in the input argument
list.

Option Description

mode See the section on “Modes” on page 2-2731 below.

’once’ Return only the first match found.

’warnings’ Display any hidden warning messages issued by
MATLAB during the execution of the command. This
option only enables warnings for the one command
being executed. See Example 10.

Modes You can specify one or more of the following modes with the regexp,
regexpi, and regexprep functions. You can enable or disable any of
these modes using the mode specifier keyword (e.g., 'lineanchors') or
the mode flag (e.g., (?m)). Both are shown in the tables that follow. Use
the keyword to enable or disable the mode for the entire string being
parsed. Use the flag to both enable and disable the mode for selected
pieces of the string.

Case-Sensitivity Mode

Use the Case-Sensitivity mode to control whether or not MATLAB
considers letter case when matching an expression to a string. Example
6 illustrates the this mode.

2-2731

regexp, regexpi

Mode
Keyword Flag Description

’matchcase’ (?-i) Letter case must match when matching
patterns to a string. (The default for
regexp).

’ignorecase’ (?i) Do not consider letter case when
matching patterns to a string. (The
default for regexpi).

Dot Matching Mode

Use the Dot Matching mode to control whether or not MATLAB includes
the newline (\n) character when matching the dot (.) metacharacter in
a regular expression. Example 7 illustrates the Dot Matching mode.

Mode Keyword Flag Description

’dotall’ (?s) Match dot (’.’) in the pattern string
with any character. (This is the
default).

’dotexceptnewline’(?-s) Match dot in the pattern with any
character that is not a newline.

Anchor Type Mode

Use the Anchor Type mode to control whether MATLAB considers the ^
and $ metacharacters to represent the beginning and end of a string or
the beginning and end of a line. Example 8 illustrates the Anchor mode.

2-2732

regexp, regexpi

Mode
Keyword Flag Description

’stringanchors’ (?-m) Match the ^ and $ metacharacters
at the beginning and end of a string.
(This is the default).

’lineanchors’ (?m) Match the ^ and $ metacharacters at
the beginning and end of a line.

Spacing Mode

Use the Spacing mode to control how MATLAB interprets space
characters and comments within the string being parsed. Example 9
illustrates the Spacing mode.

Mode
Keyword Flag Description

’literalspacing’ (?-x) Parse space characters and comments
(the # character and any text to the
right of it) in the same way as any other
characters in the string. (This is the
default).

’freespacing’ (?x) Ignore spaces and comments when
parsing the string. (You must use
'\ ' and '\#' to match space and #
characters.)

Remarks See “Regular Expressions” in the MATLAB Programming
documentation for a listing of all regular expression elements supported
by MATLAB.

Multiple Strings or Expressions

Either the str or expr argument, or both, can be a cell array of strings,
according to the following guidelines:

2-2733

regexp, regexpi

• If str is a cell array of strings, then each of the regexp outputs is a
cell array having the same dimensions as str.

• If str is a single string but expr is a cell array of strings, then each
of the regexp outputs is a cell array having the same dimensions
as expr.

• If both str and expr are cell arrays of strings, these two cell arrays
must contain the same number of elements.

Examples Example 1 — Matching a Simple Pattern

Return a row vector of indices that match words that start with c,
end with t, and contain one or more vowels between them. Make the
matches insensitive to letter case (by using regexpi):

str = 'bat cat can car COAT court cut ct CAT-scan';
regexpi(str, 'c[aeiou]+t')
ans =

5 17 28 35

Example 2 — Parsing Multiple Input Strings

Return a cell array of row vectors of indices that match capital letters
and white spaces in the cell array of strings str:

str = {'Madrid, Spain' 'Romeo and Juliet' 'MATLAB is great'};

s1 = regexp(str, '[A-Z]');

s2 = regexp(str, '\s');

Capital letters, '[A-Z]', were found at these str indices:

s1{:}
ans =

1 9
ans =

1 11
ans =

1 2 3 4 5 6

2-2734

regexp, regexpi

Space characters, '\s', were found at these str indices:

s2{:}
ans =

8
ans =

6 10
ans =

7 10

Example 3 — Selecting Return Values

Return the text and the starting and ending indices of words containing
the letter x:

str = 'regexp helps you relax';
[m s e] = regexp(str, '\w*x\w*', 'match', 'start', 'end')
m =

'regexp' 'relax'
s =

1 18
e =

6 22

Example 4 — Splitting the Input String

Find the substrings delimited by the ^ character:

s1 = ['Use REGEXP to split ^this string into ' ...
'several ^individual pieces'];

s2 = regexp(s1, '\^', 'split');

s2(:)
ans =

'Use REGEXP to split '
'this string into several '
'individual pieces'

2-2735

regexp, regexpi

The split option returns those parts of the input string that are not
returned when using the 'match' option. Note that when you match the
beginning or ending characters in a string (as is done in this example),
the first (or last) return value is always an empty string:

str = 'She sells sea shells by the seashore.';

[matchstr splitstr] = regexp(str, '[Ss]h.', 'match', 'split')
matchstr =

'She' 'she' 'sho'
splitstr =

'' ' sells sea ' 'lls by the sea' 're.'

For any string that has been split, you can reassemble the pieces into
the initial string using the command

j = [splitstr; [matchstr {''}]]; [j{:}]

ans =
She sells sea shells by the seashore.

Example 5 — Using Tokens

Search a string for opening and closing HTML tags. Use the expression
<(\w+) to find the opening tag (e.g., '<tagname') and to create a token
for it. Use the expression </\1> to find another occurrence of the same
token, but formatted as a closing tag (e.g., '</tagname>'):

str = ['if <code>A</code> == x², ' ...
'disp(x)']

str =
if <code>A</code> == x², disp(x)

expr = '<(\w+).*?>.*?</\1>';

[tok mat] = regexp(str, expr, 'tokens', 'match');

tok{:}
ans =

2-2736

regexp, regexpi

'code'
ans =

'sup'
ans =

'em'

mat{:}
ans =

<code>A</code>
ans =

²
ans =

disp(x)

See “Tokens” in the MATLAB Programming documentation for
information on using tokens.

Example 6 — Using Named Capture

Enter a string containing two names, the first and last names being
in a different order:

str = sprintf('John Davis\nRogers, James')
str =

John Davis
Rogers, James

Create an expression that generates first and last name tokens,
assigning the names first and last to the tokens. Call regexp to get
the text and names of each token found:

expr = ...

'(?<first>\w+)\s+(?<last>\w+)|(?<last>\w+),\s+(?<first>\w+)';

[tokens names] = regexp(str, expr, 'tokens', 'names');

Examine the tokens cell array that was returned. The first and last
name tokens appear in the order in which they were generated: first
name–last name, then last name–first name:

2-2737

regexp, regexpi

tokens{:}
ans =

'John' 'Davis'
ans =

'Rogers' 'James'

Now examine the names structure that was returned. First and last
names appear in a more usable order:

names(:,1)
ans =

first: 'John'
last: 'Davis'

names(:,2)
ans =

first: 'James'
last: 'Rogers'

Example 7 — Using the Case-Sensitive Mode

Given a string that has both uppercase and lowercase letters,

str = 'A string with UPPERCASE and lowercase text.';

Use the regexp default mode (case-sensitive) to locate only the
lowercase instance of the word case:

regexp(str, 'case', 'match')
ans =

'case'

Now disable case-sensitive matching to find both instances of case:

regexp(str, 'case', 'ignorecase', 'match')
ans =

'CASE' 'case'

Match 5 letters that are followed by ’CASE’. Use the (?-i) flag to turn on
case-sensitivity for the first match and (?i) to turn it off for the second:

2-2738

regexp, regexpi

M = regexp(str, {'(?-i)\w{5}(?=CASE)', ...
'(?i)\w{5}(?=CASE)'}, 'match');

M{:}
ans =

'UPPER'
ans =

'UPPER' 'lower'

Example 8 — Using the Dot Matching Mode

Parse the following string that contains a newline (\n) character:

str = sprintf('abc\ndef')
str =

abc
def

When you use the default mode, dotall, MATLAB includes the newline
in the characters matched:

regexp(str, '.', 'match')
ans =

'a' 'b' 'c' [1x1 char] 'd' 'e' 'f'

When you use the dotexceptnewline mode, MATLAB skips the
newline character:

regexp(str, '.', 'match', 'dotexceptnewline')
ans =

'a' 'b' 'c' 'd' 'e' 'f'

Example 9 — Using the Anchor Type Mode

Given the following two-line string,

str = sprintf('%s\n%s', 'Here is the first line', ...
'followed by the second line')

str =
Here is the first line

2-2739

regexp, regexpi

followed by the second line

In stringanchors mode, MATLAB interprets the $ metacharacter as
an end-of-string specifier, and thus finds the last two words of the
entire string:

regexp(str, '\w+\W\w+$', 'match', 'stringanchors')
ans =

'second line'

While in lineanchors mode, MATLAB interprets $ as an end-of-line
specifier, and finds the last two words of each line:

regexp(str, '\w+\W\w+$', 'match', 'lineanchors')
ans =

'first line' 'second line'

Example 10 — Using the Freespacing Mode

Create a file called regexp_str.txt containing the following text.
Because the first line enables freespacing mode, MATLAB ignores all
spaces and comments that appear in the file:

(?x) # turn on freespacing.

This pattern matches a string with a repeated letter.

\w* # First, match any number of preceding word characters.

(# Mark a token.

\w # Match a word character.

) # Finish capturing said token.

\1 # Backreference to match what token #1 matched.

\w* # Finally, match the remainder of the word.

Here is the string to parse:

str = ['Looking for words with letters that ' ...

2-2740

regexp, regexpi

'appear twice in succession.'];

Use the pattern expression read from the file to find those words that
have consecutive matching letters:

patt = fileread('regexp_str.txt');
regexp(str, patt, 'match')
ans =

'Looking' 'letters' 'appear' 'succession'

Example 11 — Displaying Parsing Warnings

To help debug problems in parsing a string with regexp, regexpi, or
regexprep, use the ’warnings’ option to view all warning messages:

regexp('$.', '[a-]','warnings')
Warning: Unbound range.
[a-]

|

See Also regexprep, regexptranslate, strfind, findstr, strmatch, strcmp,
strcmpi, strncmp, strncmpi

2-2741

regexprep

Purpose Replace string using regular expression

Syntax s = regexprep('str', 'expr', 'repstr')
s = regexprep('str', 'expr', 'repstr' options)

Description s = regexprep('str', 'expr', 'repstr') replaces all occurrences
of the regular expression expr in string str with the string repstr. The
new string is returned in s. If no matches are found, return string s is
the same as input string str. You can use character representations
(e.g., '\t' for tab, or '\n' for newline) in replacement string
repstr. See “Regular Expressions” in the MATLAB Programming
documentation for more information.

If str is a cell array of strings, then the regexprep return value s is
always a cell array of strings having the same dimensions as str.

To specify more than one expression to match or more than one
replacement string, see the guidelines listed below under “Multiple
Expressions or Replacement Strings” on page 2-2743.

You can capture parts of the input string as tokens and then reuse them
in the replacement string. Specify the parts of the string to capture
using the (...) operator. Specify the tokens to use in the replacement
string using the operators $1, $2, $N to reference the first, second, and
Nth tokens captured. (See “Tokens” and the example “Using Tokens in
a Replacement String” in the MATLAB Programming documentation
for information on using tokens.)

s = regexprep('str', 'expr', 'repstr' options) By default,
regexprep replaces all matches and is case sensitive. You can use one
or more of the following options with regexprep.

Option Description

mode See mode descriptions on the regexp reference page.

N Replace only the Nth occurrence of expr in str.

’once’ Replace only the first occurrence of expr in str.

2-2742

regexprep

Option Description

’ignorecase’ Ignore case when matching and when replacing.

’preservecase’ Ignore case when matching (as with 'ignorecase'),
but override the case of replace characters with
the case of corresponding characters in str when
replacing.

’warnings’ Display any hidden warning messages issued by
MATLAB during the execution of the command.
This option only enables warnings for the one
command being executed.

Remarks See “Regular Expressions” in the MATLAB Programming
documentation for a listing of all regular expression metacharacters
supported by MATLAB.

Multiple Expressions or Replacement Strings

In the case of multiple expressions and/or replacement strings,
regexprep attempts to make all matches and replacements. The first
match is against the initial input string. Successive matches are against
the string resulting from the previous replacement.

The expr and repstr inputs follow these rules:

• If expr is a cell array of strings and repstr is a single string,
regexprep uses the same replacement string on each expression
in expr.

• If expr is a single string and repstr is a cell array of N strings,
regexprep attempts to make N matches and replacements.

• If both expr and repstr are cell arrays of strings, then expr and
repstr must contain the same number of elements, and regexprep
pairs each repstr element with its matching element in expr.

2-2743

regexprep

Examples Example 1 — Making a Case-Sensitive Replacement

Perform a case-sensitive replacement on words starting with m and
ending with y:

str = 'My flowers may bloom in May';
pat = 'm(\w*)y';
regexprep(str, pat, 'April')
ans =

My flowers April bloom in May

Replace all words starting with m and ending with y, regardless of case,
but maintain the original case in the replacement strings:

regexprep(str, pat, 'April', 'preservecase')
ans =

April flowers april bloom in April

Example 2 — Using Tokens In the Replacement String

Replace all variations of the words 'walk up' using the letters following
walk as a token. In the replacement string

str = 'I walk up, they walked up, we are walking up.';
pat = 'walk(\w*) up';
regexprep(str, pat, 'ascend$1')
ans =

I ascend, they ascended, we are ascending.

Example 3 — Operating on Multiple Strings

This example operates on a cell array of strings. It searches
for consecutive matching letters (e.g., 'oo') and uses a common
replacement value ('--') for all matches. The function returns a cell
array of strings having the same dimensions as the input cell array:

str = { ...
'Whose woods these are I think I know.' ; ...
'His house is in the village though;' ; ...
'He will not see me stopping here' ; ...
'To watch his woods fill up with snow.'};

2-2744

regexprep

a = regexprep(str, '(.)\1', '--', 'ignorecase')
a =

'Whose w--ds these are I think I know.'
'His house is in the vi--age though;'
'He wi-- not s-- me sto--ing here'
'To watch his w--ds fi-- up with snow.'

See Also regexp, regexpi, regexptranslate, strfind, findstr, strmatch,
strcmp, strcmpi, strncmp, strncmpi

2-2745

regexptranslate

Purpose Translate string into regular expression

Syntax s2 = regexptranslate(type, s1)

Description s2 = regexptranslate(type, s1) translates string s1 into a regular
expression string s2 that you can then use as input into one of the
MATLAB regular expression functions such as regexp. The type
input can be either one of the following strings that define the type of
translation to be performed. See “Regular Expressions” in the MATLAB
Programming documentation for more information.

Type Description

'escape' Translate all special characters (e.g., ’$’, ’.’, ’?’, ’[’) in
string s1 so that they are treated as literal characters
when used in the regexp and regexprep functions. The
translation inserts an escape character (’\’) before each
special character in s1. Return the new string in s2.

'wildcard' Translate all wildcard and ’.’ characters in string s1 so
that they are treated as literal wildcards and periods
when used in the regexp and regexprep functions. The
translation replaces all instances of ’*’ with ’.*’, all
instances of ’?’ with ’.’, and all instances of ’.’ with ’\.’.
Return the new string in s2.

Examples Example 1 — Using the ’escape’ Option

Because regexp interprets the sequence ’\n’ as a newline character, it
cannot locate the two consecutive characters ’\’ and ’n’ in this string:

str = 'The sequence \n generates a new line';
pat = '\n';

regexp(str, pat)
ans =

[]

2-2746

regexptranslate

To have regexp interpret the expression expr as the characters ’\’ and
’n’, first translate the expression using regexptranslate:

pat2 = regexptranslate('escape', pat)
pat2 =

\\n

regexp(str, pat2)
ans =

14

Example 2 — Using ’escape’ In a Replacement String

Replace the word ’walk’ with ’ascend’ in this string, treating the
characters ’$1’ as a token designator:

str = 'I walk up, they walked up, we are walking up.';
pat = 'walk(\w*) up';

regexprep(str, pat, 'ascend$1')
ans =

I ascend, they ascended, we are ascending.

Make another replacement on the same string, this time treating the
’$1’ as literal characters:

regexprep(str, pat, regexptranslate('escape', 'ascend$1'))
ans =

I ascend$1, they ascend$1, we are ascend$1.

Example 3 — Using the ’wildcard’ Option

Given the following string of filenames, pick out just the MAT-files. Use
regexptranslate to interpret the ’*’ wildcard as ’\w+’ instead of as
a regular expression quantifier:

files = ['test1.mat, myfile.mat, newfile.txt, ' ...
'jan30.mat, table3.xls'];

regexp(str, regexptranslate('wildcard', '*.mat'), 'match')
ans =

2-2747

regexptranslate

'test1.mat' 'myfile.mat' 'jan30.mat'

To see the translation, you can type

regexptranslate('wildcard','*.mat')
ans =

\w+\.mat

See Also regexp, regexpi, regexprep

2-2748

registerevent

Purpose Register event handler with control’s event

Syntax h.registerevent(event_handler)
registerevent(h, event_handler)

Description h.registerevent(event_handler) registers certain event handler
routines with their corresponding events. Once an event is registered,
the control responds to the occurrence of that event by invoking its event
handler routine. The event_handler argument can be either a string
that specifies the name of the event handler function, or a function
handle that maps to that function. Strings used in the event_handler
argument are not case sensitive.

registerevent(h, event_handler) is an alternate syntax for the
same operation.

You can either register events at the time you create the control (using
actxcontrol), or register them dynamically at any time after the
control has been created (using registerevent). The event_handler
argument specifies both events and event handlers (see "Writing Event
Handlers" in the External Interfaces documentation).

Examples Register Events Using Function Name Example

Create an mwsamp control and list all events associated with the control:

f = figure ('position', [100 200 200 200]);
h = actxcontrol ('mwsamp.mwsampctrl.2', [0 0 200 200], f);

h.events
ans =

Click = void Click()
DblClick = void DblClick()
MouseDown = void MouseDown(int16 Button, int16 Shift,

Variant x, Variant y)

Register all events with the same event handler routine, sampev. Use
eventlisteners to see the event handler used by each event:

2-2749

registerevent

h.registerevent('sampev');
h.eventlisteners
ans =

'click' 'sampev'
'dblclick' 'sampev'
'mousedown' 'sampev'

h.unregisterallevents;

Register the Click and DblClick events with the event handlers
myclick and my2click, respectively. Note that the strings in the
argument list are not case sensitive.

h.registerevent({'click' 'myclick'; ...
'dblclick' 'my2click'});

h.eventlisteners
ans =

'click' 'myclick'
'dblclick' 'my2click'

Register Events Using Function Handle Example

Register all events with the same event handler routine, sampev, but
use a function handle (@sampev) instead of the function name:

h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200]);
registerevent(h, @sampev);

Register Excel Workbook Events Example

Create an Excel Workbook object.

excel = actxserver('Excel.Application');
wbs = excel.Workbooks;
wb = wbs.Add;

Register all events with the same event handler routine,
AllEventHandler.

2-2750

registerevent

wb.registerevent('AllEventHandler')
wb.eventlisteners

MATLAB displays the list of all Workbook events, registered with
AllEventHandler.

ans =

'Open' 'AllEventHandler'
'Activate' 'AllEventHandler'
'Deactivate' 'AllEventHandler'
'BeforeClose' 'AllEventHandler'

.

.

See Also events, eventlisteners, unregisterevent, unregisterallevents,
isevent

2-2751

rehash

Purpose Refresh function and file system path caches

Syntax rehash
rehash path
rehash toolbox
rehash pathreset
rehash toolboxreset
rehash toolboxcache

Description rehash with no arguments updates the MATLAB list of known
files and classes for directories on the search path that are not in
matlabroot/toolbox. It compares the timestamps for loaded shadowed
functions (functions that have been called but not cleared in the current
session) against their timestamps on disk. It clears loaded functions
if the files on disk are newer. All of this normally happens each time
MATLAB displays the Command Window prompt. Therefore, use
rehash with no arguments only when you run an M-file that updates
another M-file, and the calling file needs to reuse the updated version
before it has finished running.

rehash path performs the same updates as rehash, but uses a different
technique for detecting the files and directories that require updates.
If you receive a warning during MATLAB startup notifying you that
MATLAB could not tell if a directory has changed and you encounter
problems with MATLAB using the most current versions of your M-files,
run rehash path.

rehash toolbox updates all directories in matlabroot/toolbox. Run
this when you add or remove files in matlabroot/toolbox during a
session by some means other than MATLAB tools.

rehash pathreset performs the same updates as rehash path, and also
ensures the known files and classes list follows precedence rules for
shadowed functions.

rehash toolboxreset performs the same updates as rehash toolbox,
and also ensures the known files and classes list follows precedence
rules for shadowed functions.

2-2752

rehash

rehash toolboxcache performs the same updates as rehash toolbox,
and also updates the cache file. This is the equivalent of clicking the
Update Toolbox Path Cache button in Preferences > General.

See Also addpath, clear, path, rmpath

“Toolbox Path Caching in MATLAB” in the MATLAB Desktop Tools and
Development Environment documentation

2-2753

release

Purpose Release interface

Syntax h.release
release(h)

Description h.release releases the interface and all resources used by the
interface. Each interface handle must be released when you are finished
manipulating its properties and invoking its methods. Once an interface
has been released, it is no longer valid. Subsequent operations on the
MATLAB object that represents that interface will result in errors.

release(h) is an alternate syntax for the same operation.

Note Releasing the interface does not delete the control itself (see
delete), since other interfaces on that object may still be active. See
Releasing Interfaces in the External Interfaces documentation for more
information.

Examples Create a Microsoft Calender application. Then create a TitleFont
interface and use it to change the appearance of the font of the
calendar’s title:

f = figure('position',[300 300 500 500]);
cal = actxcontrol('mscal.calendar', [0 0 500 500], f);

TFont = cal.TitleFont
TFont =

Interface.Standard_OLE_Types.Font

TFont.Name = 'Viva BoldExtraExtended';
TFont.Bold = 0;

When you’re finished working with the title font, release the TitleFont
interface:

2-2754

release

TFont.release;

Now create a GridFont interface and use it to modify the size of the
calendar’s date numerals:

GFont = cal.GridFont
GFont =

Interface.Standard_OLE_Types.Font

GFont.Size = 16;

When you’re done, delete the cal object and the figure window:

cal.delete;
delete(f);
clear f;

See Also delete, save, load, actxcontrol, actxserver

2-2755

rem

Purpose Remainder after division

Syntax R = rem(X,Y)

Description R = rem(X,Y) if Y ~= 0, returns X - n.*Y where n = fix(X./Y). If Y
is not an integer and the quotient X./Y is within roundoff error of an
integer, then n is that integer. The inputs X and Y must be real arrays
of the same size, or real scalars.

The following are true by convention:

• rem(X,0) is NaN

• rem(X,X) for X~=0 is 0

• rem(X,Y) for X~=Y and Y~=0 has the same sign as X.

Remarks mod(X,Y) for X~=Y and Y~=0 has the same sign as Y.

rem(X,Y) and mod(X,Y) are equal if X and Y have the same sign, but
differ by Y if X and Y have different signs.

The rem function returns a result that is between 0 and sign(X)*abs(Y).
If Y is zero, rem returns NaN.

See Also mod

2-2756

removets

Purpose Remove timeseries objects from tscollection object

Syntax tsc = removets(tsc,Name)

Description tsc = removets(tsc,Name) removes one or more timeseries objects
with the name specified in Name from the tscollection object tsc. Name
can either be a string or a cell array of strings.

Examples The following example shows how to remove a time series from a
tscollection.

1 Create two timeseries objects, ts1 and ts2.

ts1=timeseries([1.1 2.9 3.7 4.0 3.0],1:5,'name','acceleration');

ts2=timeseries([3.2 4.2 6.2 8.5 1.1],1:5,'name','speed');

2 Create a tscollection object tsc, which includes ts1 and ts2.

tsc=tscollection({ts1 ts2});

3 To view the members of tsc, type the following at the MATLAB
prompt:

tsc

MATLAB responds with

Time Series Collection Object: unnamed

Time vector characteristics

Start time 1 seconds
End time 5 seconds

Member Time Series Objects:

2-2757

removets

acceleration
speed

The members of tsc are listed by name at the bottom: acceleration
and speed. These are the Name properties of ts1 and ts2, respectively.

4 Remove ts2 from tsc.

tsc=removets(tsc,'speed');

5 To view the current members of tsc, type the following at the
MATLAB prompt:

tsc

MATLAB responds with

Time Series Collection Object: unnamed

Time vector characteristics

Start time 1 seconds
End time 5 seconds

Member Time Series Objects:
acceleration

The remaining member of tsc is acceleration. The timeseries speed
has been removed.

See Also addts, tscollection

2-2758

rename

Purpose Rename file on FTP server

Syntax rename(f,'oldname','newname')

Description rename(f,'oldname','newname') changes the name of the file
oldname to newname in the current directory of the FTP server f, where
f was created using ftp.

Examples Connect to server testsite, view the contents, and change the name
of testfile.m to showresults.m.

test=ftp('ftp.testsite.com');
dir(test)
. .. testfile.m
rename(test,'testfile.m','showresults.m')
dir(test)
. .. showresults.m

See Also dir (ftp), delete (ftp), ftp, mget, mput

2-2759

repmat

Purpose Replicate and tile array

Syntax B = repmat(A,m,n)
B = repmat(A,[m n])
B = repmat(A,[m n p...])

Description B = repmat(A,m,n) creates a large matrix B consisting of an m-by-n
tiling of copies of A. The size of B is [size(A,1)*m, (size(A,2)*n]. The
statement repmat(A,n) creates an n-by-n tiling.

B = repmat(A,[m n]) accomplishes the same result as repmat(A,m,n).

B = repmat(A,[m n p...]) produces a multidimensional array B
composed of copies of A. The size of B is [size(A,1)*m, size(A,2)*n,
size(A,3)*p, ...].

Remarks repmat(A,m,n), when A is a scalar, produces an m-by-n matrix filled with
A’s value and having A’s class. For certain values, you can achieve the
same results using other functions, as shown by the following examples:

• repmat(NaN,m,n) returns the same result as NaN(m,n).

• repmat(single(inf),m,n) is the same as inf(m,n,'single').

• repmat(int8(0),m,n) is the same as zeros(m,n,'int8').

• repmat(uint32(1),m,n) is the same as ones(m,n,'uint32').

• repmat(eps,m,n) is the same as eps(ones(m,n)).

Examples In this example, repmat replicates 12 copies of the second-order identity
matrix, resulting in a “checkerboard” pattern.

B = repmat(eye(2),3,4)

B =
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0

2-2760

repmat

0 1 0 1 0 1 0 1
1 0 1 0 1 0 1 0
0 1 0 1 0 1 0 1

The statement N = repmat(NaN,[2 3]) creates a 2-by-3 matrix of NaNs.

See Also bsxfun, NaN, Inf, ones, zeros

2-2761

resample (timeseries)

Purpose Select or interpolate timeseries data using new time vector

Syntax ts = resample(ts,Time)
ts = resample(ts,Time,interp_method)
ts = resample(ts,Time,interp_method,code)

Description ts = resample(ts,Time) resamples the timeseries object ts using
the new Time vector. When ts uses date strings and Time is numeric,
Time is treated as specified relative to the ts.TimeInfo.StartDate
property and in the same units that ts uses. The resample operation
uses the default interpolation method, which you can view by using
the getinterpmethod(ts) syntax.

ts = resample(ts,Time,interp_method) resamples the timeseries
object ts using the interpolation method given by the string
interp_method. Valid interpolation methods include 'linear' and
'zoh' (zero-order hold).

ts = resample(ts,Time,interp_method,code) resamples the
timeseries object ts using the interpolation method given by the string
interp_method. The integer code is a user-defined Quality code for
resampling, applied to all samples.

Examples The following example shows how to resample a timeseries object.

1 Create a timeseries object.

ts=timeseries([1.1 2.9 3.7 4.0 3.0],1:5,'Name','speed');

2 Transpose ts to make the data columnwise.

ts=transpose(ts)

MATLAB displays

Time Series Object: speed

Time vector characteristics

2-2762

resample (timeseries)

Length 5
Start time 1 seconds
End time 5 seconds

Data characteristics

Interpolation method linear
Size [5 1]
Data type double

Time Data Quality

1 1.1
2 2.9
3 3.7
4 4
5 3

Note that the interpolation method is set to linear, by default.

3 Resample ts using its default interpolation method.

res_ts=resample(ts,[1 1.5 3.5 4.5 4.9])

MATLAB displays the resampled time series as follows:

Time Series Object: speed

Time vector characteristics

Length 5
Start time 1 seconds
End time 4.900000e+000 seconds

2-2763

resample (timeseries)

Data characteristics

Interpolation method linear
Size [5 1]
Data type double

Time Data Quality

1 1.1
1.5 2
3.5 3.85
4.5 3.5
4.9 3.1

See Also getinterpmethod, setinterpmethod, synchronize, timeseries

2-2764

resample (tscollection)

Purpose Select or interpolate data in tscollection using new time vector

Syntax tsc = resample(tsc,Time)
tsc = resample(tsc,Time,interp_method)
tsc = resample(tsc,Time,interp_method,code)

Description tsc = resample(tsc,Time) resamples the tscollection object
tsc on the new Time vector. When tsc uses date strings and Time
is numeric, Time is treated as numerical specified relative to the
tsc.TimeInfo.StartDate property and in the same units that tsc uses.
The resample method uses the default interpolation method for each
time series member.

tsc = resample(tsc,Time,interp_method) resamples the
tscollection object tsc using the interpolation method given by the
string interp_method. Valid interpolation methods include 'linear'
and 'zoh' (zero-order hold).

tsc = resample(tsc,Time,interp_method,code) resamples the
tscollection object tsc using the interpolation method given by the
string interp_method. The integer code is a user-defined quality code
for resampling, applied to all samples.

Examples The following example shows how to resample a tscollection that
consists of two timeseries members.

1 Create two timeseries objects.

ts1=timeseries([1.1 2.9 3.7 4.0 3.0],1:5,'name','acceleration');

ts2=timeseries([3.2 4.2 6.2 8.5 1.1],1:5,'name','speed');

2 Create a tscollection tsc.

tsc=tscollection({ts1 ts2});

The time vector of the collection tsc is [1:5], which is the same as
for ts1 and ts2 (individually).

2-2765

resample (tscollection)

3 Get the interpolation method for acceleration by typing

tsc.acceleration

MATLAB responds with

Time Series Object: acceleration

Time vector characteristics

Length 5
Start time 1 seconds
End time 5 seconds

Data characteristics

Interpolation method linear
Size [1 1 5]
Data type double

4 Set the interpolation method for speed to zero-order hold by typing

setinterpmethod(tsc.speed,'zoh')

MATLAB responds with

Time Series Object: acceleration

Time vector characteristics

Length 5
Start time 1 seconds
End time 5 seconds

2-2766

resample (tscollection)

Data characteristics

Interpolation method zoh
Size [1 1 5]
Data type double

5 Resample the time-series collection tsc by individually resampling
each time-series member of the collection and using its interpolation
method.

res_tsc=resample(tsc,[1 1.5 3.5 4.5 4.9])

See Also getinterpmethod, setinterpmethod, tscollection

2-2767

reset

Purpose Reset graphics object properties to their defaults

Syntax reset(h)

Description reset(h) resets all properties having factory defaults on the object
identified by h. To see the list of factory defaults, use the statement

get(0,'factory')

If h is a figure, MATLAB does not reset Position, Units, Windowstyle,
or PaperUnits. If h is an axes, MATLAB does not reset Position and
Units.

Examples reset(gca) resets the properties of the current axes.

reset(gcf) resets the properties of the current figure.

See Also cla, clf, gca, gcf, hold

“Object Manipulation” on page 1-100 for related functions

2-2768

reshape

Purpose Reshape array

Syntax B = reshape(A,m,n)
B = reshape(A,m,n,p,...)
B = reshape(A,[m n p ...])
B = reshape(A,...,[],...)
B = reshape(A,siz)

Description B = reshape(A,m,n) returns the m-by-n matrix B whose elements are
taken column-wise from A. An error results if A does not have m*n
elements.

B = reshape(A,m,n,p,...) or B = reshape(A,[m n p ...]) returns
an n-dimensional array with the same elements as A but reshaped
to have the size m-by-n-by-p-by-.... The product of the specified
dimensions, m*n*p*..., must be the same as prod(size(A)).

B = reshape(A,...,[],...) calculates the length of the dimension
represented by the placeholder [], such that the product of the
dimensions equals prod(size(A)). The value of prod(size(A)) must
be evenly divisible by the product of the specified dimensions. You can
use only one occurrence of [].

B = reshape(A,siz) returns an n-dimensional array with the
same elements as A, but reshaped to siz, a vector representing the
dimensions of the reshaped array. The quantity prod(siz) must be the
same as prod(size(A)).

Examples Reshape a 3-by-4 matrix into a 2-by-6 matrix.

A =
1 4 7 10
2 5 8 11
3 6 9 12

B = reshape(A,2,6)

B =

2-2769

reshape

1 3 5 7 9 11
2 4 6 8 10 12

B = reshape(A,2,[])

B =
1 3 5 7 9 11
2 4 6 8 10 12

See Also shiftdim, squeeze

The colon operator :

2-2770

residue

Purpose Convert between partial fraction expansion and polynomial coefficients

Syntax [r,p,k] = residue(b,a)
[b,a] = residue(r,p,k)

Description The residue function converts a quotient of polynomials to pole-residue
representation, and back again.

[r,p,k] = residue(b,a) finds the residues, poles, and direct term of
a partial fraction expansion of the ratio of two polynomials, and

, of the form

where and are the jth elements of the input vectors b and a.

[b,a] = residue(r,p,k) converts the partial fraction expansion back
to the polynomials with coefficients in b and a.

Definition If there are no multiple roots, then

The number of poles n is

n = length(a)-1 = length(r) = length(p)

The direct term coefficient vector is empty if length(b) < length(a);
otherwise

length(k) = length(b)-length(a)+1

If p(j) = ... = p(j+m-1) is a pole of multiplicity m, then the
expansion includes terms of the form

2-2771

residue

Arguments b,a Vectors that specify the coefficients of the polynomials in
descending powers of

r Column vector of residues

p Column vector of poles

k Row vector of direct terms

Algorithm It first obtains the poles with roots. Next, if the fraction is nonproper,
the direct term k is found using deconv, which performs polynomial
long division. Finally, the residues are determined by evaluating the
polynomial with individual roots removed. For repeated roots, resi2
computes the residues at the repeated root locations.

Limitations Numerically, the partial fraction expansion of a ratio of polynomials
represents an ill-posed problem. If the denominator polynomial, ,
is near a polynomial with multiple roots, then small changes in the
data, including roundoff errors, can make arbitrarily large changes in
the resulting poles and residues. Problem formulations making use of
state-space or zero-pole representations are preferable.

Examples If the ratio of two polynomials is expressed as

then

b = [5 3 -2 7]
a = [-4 0 8 3]

2-2772

residue

and you can calculate the partial fraction expansion as

[r, p, k] = residue(b,a)

r =
-1.4167
-0.6653
1.3320

p =
1.5737

-1.1644
-0.4093

k =
-1.2500

Now, convert the partial fraction expansion back to polynomial
coefficients.

[b,a] = residue(r,p,k)

b =
-1.2500 -0.7500 0.5000 -1.7500

a =
1.0000 -0.0000 -2.0000 -0.7500

The result can be expressed as

Note that the result is normalized for the leading coefficient in the
denominator.

See Also deconv, poly, roots

2-2773

residue

References [1] Oppenheim, A.V. and R.W. Schafer, Digital Signal Processing,
Prentice-Hall, 1975, p. 56.

2-2774

restoredefaultpath

Purpose Restore default MATLAB search path

Syntax restoredefaultpath
restoredefaultpath; matlabrc

Description restoredefaultpath sets the search path to include only installed
products from The MathWorks. Run restoredefaultpath if you are
having problems with the search path. If restoredefaultpath seems
to correct the problem, run savepath. Start MATLAB again to be sure
the problem does not reappear.

restoredefaultpath; matlabrc sets the search path to include only
installed products from The MathWorks and corrects path problems
encountered during startup. Run restoredefaultpath; matlabrc if
you are having problems with the search path and restoredefaultpath
by itself does not correct the problem. After the problem seems to be
resolved, run savepath. Start MATLAB again to be sure the problem
does not reappear.

See Also addpath, path, pathdef, rmpath, savepath

Search Path in the MATLAB Desktop Tools and Development
Environment documentation

2-2775

rethrow

Purpose Reissue error

Syntax rethrow(err)

Description rethrow(err) reissues the error specified by err. The currently
running M-file terminates and control returns to the keyboard (or to
any enclosing catch block). The err argument must be a MATLAB
structure containing at least one of the following fields.

Fieldname Description

message Text of the error message

identifier Message identifier of the error message

stack Information about the error from the program stack

See "Message Identifiers" in the MATLAB documentation for more
information on the syntax and usage of message identifiers.

A convenient way to get a valid err structure for the last error issued is
by using the lasterror function.

Remarks The err input can contain the field stack, identical in format to the
output of the dbstack command. If the stack field is present, the stack
of the rethrown error will be set to that value. Otherwise, the stack will
be set to the line at which the rethrow occurs.

Examples rethrow is usually used in conjunction with try-catch statements to
reissue an error from a catch block after performing catch-related
operations. For example,

try
do_something

catch
do_cleanup
rethrow(lasterror)

end

2-2776

rethrow

See Also error, lasterror, try, catch, dbstop

2-2777

rethrow (MException)

Purpose Reissue existing exception

Syntax rethrow(ME)

Description rethrow(ME) terminates the currently running function, reissues an
exception that is based on MException object ME that has been caught
within a try-catch block, and returns control to the keyboard or to
any enclosing catch block.

rethrow differs from the throw and throwAsCaller methods in that it
does not modify the stack field. Call stack information in the ME object
is kept as it was when the exception was first thrown.

rethrow can only issue a previously caught exception. If an exception
that was not previously thrown is passed to the rethrow method,
MATLAB generates a new exception.

You might use rethrow from the catch part of a try-catch block, for
example, after performing some required cleanup tasks following an
error.

Examples This variation of the MATLAB surf function catches an error in the
input arguments, gives the user the opportunity to correct the error, and
rethrows the error if the user does not use that opportunity:

function surf2(varargin)
try

surf(varargin{:})
catch ME

ME.message % Display the error.
% Give user another try to enter input arguments.
newargs = input('\nEnter argument list: ','s');
if ~isempty(newargs)

surf(eval(newargs));
else
% If no response from user, rethrow the error.

rethrow(ME);
end

2-2778

rethrow (MException)

end

When asked to correct the error, the user presses Enter. MATLAB
rethrows the original error:

surf2
ans =
Not enough input arguments.

Enter argument list:
??? Error using ==> surf at 54
Not enough input arguments.

Error in ==> surf2 at 3
surf(varargin{:});

This time, the user enters valid input and MATLAB successfully
displays the output plot:

surf2
ans =
Not enough input arguments.

Enter argument list: peaks(30)

See Also try, catch, error, assert, MException, throw(MException),
throwAsCaller(MException), addCause(MException),
getReport(MException), disp(MException), isequal(MException),
eq(MException), ne(MException), last(MException)

2-2779

return

Purpose Return to invoking function

Syntax return

Description return causes a normal return to the invoking function or to the
keyboard. It also terminates keyboard mode.

Examples If the determinant function were an M-file, it might use a return
statement in handling the special case of an empty matrix, as follows:

function d = det(A)
%DET det(A) is the determinant of A.
if isempty(A)

d = 1;
return

else
...

end

See Also break, continue, disp, end, error, for, if, keyboard, switch, while

2-2780

rgb2hsv

Purpose Convert RGB colormap to HSV colormap

Syntax cmap = rgb2hsv(M)
hsv_image = rgb2hsv(rgb_image)

Description cmap = rgb2hsv(M) converts an RGB colormap M to an HSV colormap
cmap. Both colormaps are m-by-3 matrices. The elements of both
colormaps are in the range 0 to 1.

The columns of the input matrix M represent intensities of red, green,
and blue, respectively. The columns of the output matrix cmap represent
hue, saturation, and value, respectively.

hsv_image = rgb2hsv(rgb_image) converts the RGB image to the
equivalent HSV image. RGB is an m-by-n-by-3 image array whose three
planes contain the red, green, and blue components for the image. HSV
is returned as an m-by-n-by-3 image array whose three planes contain
the hue, saturation, and value components for the image.

See Also brighten, colormap, hsv2rgb, rgbplot

“Color Operations” on page 1-98 for related functions

2-2781

rgbplot

Purpose Plot colormap

Syntax rgbplot(cmap)

Description rgbplot(cmap) plots the three columns of cmap, where cmap is an
m-by-3 colormap matrix. rgbplot draws the first column in red, the
second in green, and the third in blue.

Examples Plot the RGB values of the copper colormap.

rgbplot(copper)

2-2782

rgbplot

See Also colormap

“Color Operations” on page 1-98 for related functions

2-2783

ribbon

Purpose Ribbon plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax ribbon(Y)
ribbon(X,Y)
ribbon(X,Y,width)
ribbon(axes_handle,...)
h = ribbon(...)

Description ribbon(Y) plots the columns of Y as separate three-dimensional
ribbons using X = 1:size(Y,1).

ribbon(X,Y) plots X versus the columns of Y as three-dimensional
strips. X and Y are vectors of the same size or matrices of the same
size. Additionally, X can be a row or a column vector, and Y a matrix
with length(X) rows.

ribbon(X,Y,width) specifies the width of the ribbons. The default
is 0.75.

ribbon(axes_handle,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = ribbon(...) returns a vector of handles to surface graphics
objects. ribbon returns one handle per strip.

Examples Create a ribbon plot of the peaks function.

[x,y] = meshgrid(-3:.5:3,-3:.1:3);

2-2784

ribbon

z = peaks(x,y);
ribbon(y,z)
colormap hsv

See Also plot, plot3, surface, waterfall

“Polygons and Surfaces” on page 1-90 for related functions

2-2785

rmappdata

Purpose Remove application-defined data

Syntax rmappdata(h,name)

Description rmappdata(h,name) removes the application-defined data name from
the object specified by handle h.

See Also getappdata, isappdata, setappdata

2-2786

rmdir

Purpose Remove directory

Graphical
Interface

As an alternative to the rmdir function, use the delete feature in the
“Current Directory Browser”.

Syntax rmdir('dirname')
rmdir('dirname','s')
[status, message, messageid] = rmdir('dirname','s')

Description rmdir('dirname') removes the directory dirname from the current
directory. If the directory is not empty, you must use the s argument. If
dirname is not in the current directory, specify the relative path to the
current directory or the full path for dirname.

rmdir('dirname','s') removes the directory dirname and its contents
from the current directory. This removes all subdirectories and files in
the current directory regardless of their write permissions.

[status, message, messageid] = rmdir('dirname','s') removes
the directory dirname and its contents from the current directory,
returning the status, a message, and the MATLAB error message ID
(see error and lasterror). Here, status is 1 for success and is 0 for
error, and message, messageid, and the s input argument are optional.

Remarks When attempting to remove multiple directories, either by including
a wildcard in the directory name or by specifying the 's' flag in the
rmdir command, MATLAB throws an error if it is unable remove all
directories to which the command applies. The error message contains
a listing of those directories and files that MATLAB could not remove.

Examples Remove Empty Directory

To remove myfiles from the current directory, where myfiles is empty,
type

rmdir('myfiles')

2-2787

rmdir

If the current directory is matlabr13/work, and myfiles is in
d:/matlabr13/work/project/, use the relative path to myfiles

rmdir('project/myfiles')

or the full path to myfiles

rmdir('d:/matlabr13/work/project/myfiles')

Remove Directory and All Contents

To remove myfiles, its subdirectories, and all files in the directories,
assuming myfiles is in the current directory, type

rmdir('myfiles','s')

Remove Directory and Return Results

To remove myfiles from the current directory, type

[stat, mess, id]=rmdir('myfiles')

MATLAB returns

stat =
0

mess =

The directory is not empty.

id =

MATLAB:RMDIR:OSError

indicating the directory myfiles is not empty.

To remove myfiles and its contents, run

[stat, mess]=rmdir('myfiles','s')

and MATLAB returns

2-2788

rmdir

stat =
1

mess =

''

indicating myfiles and its contents were removed.

See Also cd, copyfile, delete, dir, error, fileattrib, filebrowser,
lasterror, mkdir, movefile

2-2789

rmdir (ftp)

Purpose Remove directory on FTP server

Syntax rmdir(f,'dirname')

Description rmdir(f,'dirname') removes the directory dirname from the current
directory of the FTP server f, where f was created using ftp.

Examples Connect to server testsite, view the contents of testdir, and remove
the directory newdir from the directory testdir.

test=ftp('ftp.testsite.com');
cd(test,'testdir');
dir(test)
. .. newdir
dir(test,'newdir')
. ..
rmdir(test,'newdir');
dir(test,'testdir')
. ..

See Also cd (ftp), delete (ftp), dir (ftp), ftp, mkdir (ftp)

2-2790

rmfield

Purpose Remove fields from structure

Syntax s = rmfield(s, 'fieldname')
s = rmfield(s, fields)

Description s = rmfield(s, 'fieldname') removes the specified field from the
structure array s.

s = rmfield(s, fields) removes more than one field at a time.
fields is a character array of field names or cell array of strings.

See Also fieldnames, setfield, getfield, isfield, orderfields, “Using
Dynamic Field Names”

2-2791

rmpath

Purpose Remove directories from MATLAB search path

GUI
Alternatives

As an alternative to the rmpath function, use the Set Path dialog box.
To open it, select File > Set Path in the MATLAB desktop.

Syntax rmpath('directory')
rmpath directory

Description rmpath('directory') removes the specified directory from the current
MATLAB search path. Use the full pathname for directory.

rmpath directory is the command form of the syntax.

Examples Remove /usr/local/matlab/mytools from the search path.

rmpath /usr/local/matlab/mytools

See Also addpath, cd, dir, genpath, matlabroot, partialpath, path, pathdef,
pathsep, pathtool, rehash, restoredefaultpath, savepath, what

Search Path in the MATLAB Desktop Tools and Development
Environment documentation

2-2792

rmpref

Purpose Remove preference

Syntax rmpref('group','pref')
rmpref('group',{'pref1','pref2',...'prefn'})
rmpref('group')

Description rmpref('group','pref') removes the preference specified by group
and pref. It is an error to remove a preference that does not exist.

rmpref('group',{'pref1','pref2',...'prefn'}) removes each
preference specified in the cell array of preference names. It is an error
if any of the preferences do not exist.

rmpref('group') removes all the preferences for the specified group.
It is an error to remove a group that does not exist.

Examples addpref('mytoolbox','version','1.0')
rmpref('mytoolbox')

See Also addpref, getpref, ispref, setpref, uigetpref, uisetpref

2-2793

root object

Purpose Root object properties

Description The root is a graphics object that corresponds to the computer screen.
There is only one root object and it has no parent. The children of the
root object are figures.

The root object exists when you start MATLAB; you never have to
create it and you cannot destroy it. Use set and get to access the root
properties.

See Also diary, echo, figure, format, gcf, get, set

Object
Hierarchy

����

����	

��
 �����
��

2-2794

Root Properties

Purpose Root properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The “The Property Editor” is an interactive tool that enables you to
see and change object property values.

• The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see “Setting Default Property
Values”.

Root
Properties

This section lists property names along with the type of values each
accepts. Curly braces { } enclose default values.

BusyAction
cancel | {queue}

Not used by the root object.

ButtonDownFcn
string

Not used by the root object.

CallbackObject
handle (read only)

Handle of current callback’s object. This property contains the
handle of the object whose callback routine is currently executing.
If no callback routines are executing, this property contains the
empty matrix []. See also the gco command.

CaptureMatrix
(obsolete)

This property has been superseded by the getframe command.

2-2795

Root Properties

CaptureRect
(obsolete)

This property has been superseded by the getframe command.

Children
vector of handles

Handles of child objects. A vector containing the handles of
all nonhidden figure objects (see HandleVisibility for more
information). You can change the order of the handles and thereby
change the stacking order of the figures on the display.

Clipping
{on} | off

Clipping has no effect on the root object.

CommandWindowSize
[columns rows]

Current size of command window. This property contains the
size of the MATLAB command window in a two-element vector.
The first element is the number of columns wide and the second
element is the number of rows tall.

CreateFcn
The root does not use this property.

CurrentFigure
figure handle

Handle of the current figure window, which is the one most
recently created, clicked in, or made current with the statement

figure(h)

which restacks the figure to the top of the screen, or

set(0,'CurrentFigure',h)

2-2796

Root Properties

which does not restack the figures. In these statements, h is the
handle of an existing figure. If there are no figure objects,

get(0,'CurrentFigure')

returns the empty matrix. Note, however, that gcf always returns
a figure handle, and creates one if there are no figure objects.

DeleteFcn
string

This property is not used, because you cannot delete the root
object.

Diary
on | {off}

Diary file mode. When this property is on, MATLAB maintains
a file (whose name is specified by the DiaryFile property) that
saves a copy of all keyboard input and most of the resulting
output. See also the diary command.

DiaryFile
string

Diary filename. The name of the diary file. The default name is
diary.

Echo
on | {off}

Script echoing mode. When Echo is on, MATLAB displays each
line of a script file as it executes. See also the echo command.

ErrorMessage
string

Text of last error message. This property contains the last error
message issued by MATLAB.

2-2797

Root Properties

FixedWidthFontName
font name

Fixed-width font to use for axes, text, and uicontrols whose
FontName is set to FixedWidth. MATLAB uses the font name
specified for this property as the value for axes, text, and
uicontrol FontName properties when their FontName property is
set to FixedWidth. Specifying the font name with this property
eliminates the need to hardcode font names in MATLAB
applications and thereby enables these applications to run
without modification in locales where non-ASCII character sets
are required. In these cases, MATLAB attempts to set the value
of FixedWidthFontName to the correct value for a given locale.

MATLAB application developers should not change this property,
but should create axes, text, and uicontrols with FontName
properties set to FixedWidth when they want to use a fixed-width
font for these objects.

MATLAB end users can set this property if they do not want to
use the preselected value. In locales where Latin-based characters
are used, Courier is the default.

Format
short | {shortE} | long | longE | bank |
hex | + | rat

Output format mode. This property sets the format used to display
numbers. See also the format command.

• short — Fixed-point format with 5 digits

• shortE — Floating-point format with 5 digits

• shortG — Fixed- or floating-point format displaying as many
significant figures as possible with 5 digits

• long — Scaled fixed-point format with 15 digits

• longE — Floating-point format with 15 digits

2-2798

Root Properties

• longG — Fixed- or floating-point format displaying as many
significant figures as possible with 15 digits

• bank — Fixed-format of dollars and cents

• hex — Hexadecimal format

• + — Displays + and – symbols

• rat — Approximation by ratio of small integers

FormatSpacing
compact | {loose}

Output format spacing (see also format command).

• compact — Suppress extra line feeds for more compact display.

• loose — Display extra line feeds for a more readable display.

HandleVisibility
{on} | callback | off

This property is not useful on the root object.

HitTest
{on} | off

This property is not useful on the root object.

Interruptible
{on} | off

This property is not useful on the root object.

Language
string

System environment setting.

MonitorPosition
[x y width height;x y width height]

2-2799

Root Properties

Width and height of primary and secondary monitors, in pixels.
This property contains the width and height of each monitor
connnected to your computer. The x and y values for the primary
monitor are 0, 0 and the width and height of the monitor are
specified in pixels.

The secondary monitor position is specified as

x = primary monitor width + 1
y = primary monitor height + 1

Querying the value of the figure MonitorPosition on a
multiheaded system returns the position for each monitor on a
separate line.

v = get(0,'MonitorPosition')
v =
x y width height % Primary monitor
x y width height % Secondary monitor

Note that MATLAB sets the value of the ScreenSize property to
the combined size of the monitors.

Parent
handle

Handle of parent object. This property always contains the empty
matrix, because the root object has no parent.

PointerLocation
[x,y]

Current location of pointer. A vector containing the x- and
y-coordinates of the pointer position, measured from the lower
left corner of the screen. You can move the pointer by changing
the values of this property. The Units property determines the
units of this measurement.

2-2800

Root Properties

This property always contains the current pointer location, even
if the pointer is not in a MATLAB window. A callback routine
querying the PointerLocation can get a value different from
the location of the pointer when the callback was triggered. This
difference results from delays in callback execution caused by
competition for system resources.

On Macintosh platforms, you cannot change the pointer location
using the set command.

PointerWindow
handle (read only)

Handle of window containing the pointer. MATLAB sets this
property to the handle of the figure window containing the pointer.
If the pointer is not in a MATLAB window, the value of this
property is 0. A callback routine querying the PointerWindow can
get the wrong window handle if you move the pointer to another
window before the callback executes. This error results from
delays in callback execution caused by competition for system
resources.

RecursionLimit
integer

Number of nested M-file calls. This property sets a limit to the
number of nested calls to M-files MATLAB will make before
stopping (or potentially running out of memory). By default the
value is set to a large value. Setting this property to a smaller
value (something like 150, for example) should prevent MATLAB
from running out of memory and will instead cause MATLAB to
issue an error when the limit is reached.

ScreenDepth
bits per pixel

2-2801

Root Properties

Screen depth. The depth of the display bitmap (i.e., the number of
bits per pixel). The maximum number of simultaneously displayed
colors on the current graphics device is 2 raised to this power.

ScreenDepth supersedes the BlackAndWhite property. To override
automatic hardware checking, set this property to 1. This value
causes MATLAB to assume the display is monochrome. This
is useful if MATLAB is running on color hardware but is being
displayed on a monochrome terminal. Such a situation can cause
MATLAB to determine erroneously that the display is color.

ScreenPixelsPerInch
Display resolution

DPI setting for your display. This property contains the setting of
your display resolution specified in your system preferences.

ScreenSize
four-element rectangle vector (read only)

Screen size. A four-element vector,

[left,bottom,width,height]

that defines the display size. left and bottom are 0 for all Units
except pixels, in which case left and bottom are 1. width and
height are the screen dimensions in units specified by the Units
property.

Determining Screen Size

Note that the screen size in absolute units (e.g., inches) is
determined by dividing the number of pixels in width and height
by the screen DPI (see the ScreenPixelPerInch property). This
value is approximate and might not represent the actual size of
the screen.

2-2802

Root Properties

Note that the ScreenSize property is static. Its values are read
only at MATLAB startup and not updated if system display
settings change. Also, the values returned might not represent the
usable screen size for application developers due to the presence
of other GUIs, such as the Windows task bar.

Selected
on | off

This property has no effect on the root level.

SelectionHighlight
{on} | off

This property has no effect on the root level.

ShowHiddenHandles
on | {off}

Show or hide handles marked as hidden. When set to on, this
property disables handle hiding and exposes all object handles
regardless of the setting of an object’s HandleVisibility
property. When set to off, all objects so marked remain hidden
within the graphics hierarchy.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. While it
is not necessary to identify the root object with a tag (since its
handle is always 0), you can use this property to store any string
value that you can later retrieve using set.

Type
string (read only)

Class of graphics object. For the root object, Type is always
'root'.

2-2803

Root Properties

UIContextMenu
handle

This property has no effect on the root level.

Units

{pixels} | normalized | inches | centimeters
| points | characters

Unit of measurement. This property specifies the units MATLAB
uses to interpret size and location data. All units are measured
from the lower left corner of the screen. Normalized units map the
lower left corner of the screen to (0,0) and the upper right corner
to (1.0,1.0). inches, centimeters, and points are absolute units
(one point equals 1/72 of an inch). Characters are units defined
by characters from the default system font; the width of one unit
is the width of the letter x, the height of one character is the
distance between the baselines of two lines of text.

This property affects the PointerLocation and ScreenSize
properties. If you change the value of Units, it is good practice
to return it to its default value after completing your operation,
so as not to affect other functions that assume Units is set to
the default value.

UserData
matrix

User-specified data. This property can be any data you want
to associate with the root object. MATLAB does not use this
property, but you can access it using the set and get functions.

Visible
{on} | off

Object visibility. This property has no effect on the root object.

2-2804

roots

Purpose Polynomial roots

Syntax r = roots(c)

Description r = roots(c) returns a column vector whose elements are the roots
of the polynomial c.

Row vector c contains the coefficients of a polynomial, ordered in
descending powers. If c has n+1 components, the polynomial it

represents is .

Remarks Note the relationship of this function to p = poly(r), which returns
a row vector whose elements are the coefficients of the polynomial.
For vectors, roots and poly are inverse functions of each other, up to
ordering, scaling, and roundoff error.

Examples The polynomial is represented in MATLAB as

p = [1 -6 -72 -27]

The roots of this polynomial are returned in a column vector by

r = roots(p)

r =
12.1229
-5.7345
-0.3884

Algorithm The algorithm simply involves computing the eigenvalues of the
companion matrix:

A = diag(ones(n-1,1),-1);
A(1,:) = -c(2:n+1)./c(1);
eig(A)

2-2805

roots

It is possible to prove that the results produced are the exact
eigenvalues of a matrix within roundoff error of the companion matrix
A, but this does not mean that they are the exact roots of a polynomial
with coefficients within roundoff error of those in c.

See Also fzero, poly, residue

2-2806

rose

Purpose Angle histogram plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax rose(theta)
rose(theta,x)
rose(theta,nbins)
rose(axes_handle,...)
h = rose(...)
[tout,rout] = rose(...)

Description rose(theta) creates an angle histogram, which is a polar plot showing
the distribution of values grouped according to their numeric range,
showing the distribution of theta in 20 angle bins or less. The vector
theta, expressed in radians, determines the angle of each bin from the
origin. The length of each bin reflects the number of elements in theta
that fall within a group, which ranges from 0 to the greatest number of
elements deposited in any one bin.

rose(theta,x) uses the vector x to specify the number and the
locations of bins. length(x) is the number of bins and the values of x
specify the center angle of each bin. For example, if x is a five-element
vector, rose distributes the elements of theta in five bins centered
at the specified x values.

rose(theta,nbins) plots nbins equally spaced bins in the range [0,
2*pi]. The default is 20.

rose(axes_handle,...) plots into the axes with handle axes_handle
instead of the current axes (gca).

2-2807

rose

h = rose(...) returns the handles of the line objects used to create
the graph.

[tout,rout] = rose(...) returns the vectors tout and rout so
polar(tout,rout) generates the histogram for the data. This syntax
does not generate a plot.

Example Create a rose plot showing the distribution of 50 random numbers.

theta = 2*pi*rand(1,50);
rose(theta)

2-2808

rose

See Also compass, feather, hist, line, polar

“Histograms” on page 1-90 for related functions

Histograms in Polar Coordinates for another example

2-2809

rosser

Purpose Classic symmetric eigenvalue test problem

Syntax A = rosser

Description A = rosser returns the Rosser matrix. This matrix was a challenge
for many matrix eigenvalue algorithms. But LAPACK’s DSYEV routine
used in MATLAB has no trouble with it. The matrix is 8-by-8 with
integer elements. It has:

• A double eigenvalue

• Three nearly equal eigenvalues

• Dominant eigenvalues of opposite sign

• A zero eigenvalue

• A small, nonzero eigenvalue

Examples rosser

ans =

611 196 -192 407 -8 -52 -49 29
196 899 113 -192 -71 -43 -8 -44

-192 113 899 196 61 49 8 52
407 -192 196 611 8 44 59 -23
-8 -71 61 8 411 -599 208 208

-52 -43 49 44 -599 411 208 208
-49 -8 8 59 208 208 99 -911
29 -44 52 -23 208 208 -911 99

2-2810

rot90

Purpose Rotate matrix 90 degrees

Syntax B = rot90(A)
B = rot90(A,k)

Description B = rot90(A) rotates matrix A counterclockwise by 90 degrees.

B = rot90(A,k) rotates matrix A counterclockwise by k*90 degrees,
where k is an integer.

Examples The matrix

X =
1 2 3
4 5 6
7 8 9

rotated by 90 degrees is

Y = rot90(X)
Y =

3 6 9
2 5 8
1 4 7

See Also flipdim, fliplr, flipud

2-2811

rotate

Purpose Rotate object in specified direction

Syntax rotate(h,direction,alpha)
rotate(...,origin)

Description The rotate function rotates a graphics object in three-dimensional
space, according to the right-hand rule.

rotate(h,direction,alpha) rotates the graphics object h by alpha
degrees. direction is a two- or three-element vector that describes the
axis of rotation in conjunction with the origin.

rotate(...,origin) specifies the origin of the axis of rotation as a
three-element vector. The default origin is the center of the plot box.

Remarks The graphics object you want rotated must be a child of the same axes.
The object’s data is modified by the rotation transformation. This is in
contrast to view and rotate3d, which only modify the viewpoint.

The axis of rotation is defined by an origin and a point P relative to
the origin. P is expressed as the spherical coordinates [theta phi] or
as Cartesian coordinates.

2-2812

rotate

The two-element form for direction specifies the axis direction using
the spherical coordinates [theta phi]. theta is the angle in the x-y
plane counterclockwise from the positive x-axis. phi is the elevation of
the direction vector from the x-y plane.

The three-element form for direction specifies the axis direction using
Cartesian coordinates. The direction vector is the vector from the origin
to (X,Y,Z).

Examples Rotate a graphics object 180º about the x-axis.

h = surf(peaks(20));
rotate(h,[1 0 0],180)

Rotate a surface graphics object 45º about its center in the z direction.

h = surf(peaks(20));
zdir = [0 0 1];
center = [10 10 0];
rotate(h,zdir,45,center)

2-2813

rotate

Remarks rotate changes the Xdata, Ydata, and Zdata properties of the
appropriate graphics object.

See Also rotate3d, sph2cart, view

The axes CameraPosition, CameraTarget, CameraUpVector,
CameraViewAngle

“Object Manipulation” on page 1-100 for related functions

2-2814

rotate3d

Purpose Rotate 3-D view using mouse

GUI
Alternatives

Use the Rotate3D tool on the figure toolbar to enable and disable
rotate3D mode on a plot, or select Rotate 3D from the figure’s Tools
menu. For details, see “Rotate 3D — Interactive Rotation of 3-D Views”
in the MATLAB Graphics documentation.

Syntax rotate3d
rotate3d
rotate3d
rotate3d(figure_handle,...)
rotate3d(axes_handle,...)
h = rotate3d(figure_handle)

Description rotate3d on enables mouse-base rotation on all axes within the
current figure.

rotate3d off disables interactive axes rotation in the current figure.

rotate3d toggles interactive axes rotation in the current figure.

rotate3d(figure_handle,...) enables rotation within the specified
figure instead of the current figure.

rotate3d(axes_handle,...) enables rotation only in the specified
axes.

h = rotate3d(figure_handle) returns a rotate3d mode object for
figure figure_handle for you to customize the mode’s behavior.

Using Rotate Mode Objects

You access the following properties of rotate mode objects via get and
modify some of them using set:

FigureHandle <handle>

The associated figure handle. This read-only property cannot be set.

Enable 'on'|'off'

2-2815

rotate3d

Specifies whether this figure mode is currently enabled on the figure.

RotateStyle 'orbit'|'box'

Sets the method of rotation. 'orbit' rotates the entire axes; 'box'
rotates a plot-box outline of the axes.

ButtonDownFilter <function_handle>

The application can inhibit the rotate operation under circumstances
the programmer defines, depending on what the callback returns. The
input function handle should reference a function with two implicit
arguments (similar to handle callbacks):

function [res] = myfunction(obj,event_obj)
% OBJ handle to the object that has been clicked on.
% EVENT_OBJ handle to event object (empty in this release).
% RES a logical flag to determine whether the rotate

operation should take place or the
'ButtonDownFcn' property of the object should
take precedence.

ActionPreCallback <function_handle>

Set this callback to listen to when a rotate operation will start. The
input function handle should reference a function with two implicit
arguments (similar to handle callbacks):

function myfunction(obj,event_obj)
% obj handle to the figure that has been clicked on.
% event_obj handle to event object.

The event object has the following read-only property:

Axes The handle of the axes that is being rotated.

ActionPostCallback <function_handle>

2-2816

rotate3d

Set this callback to listen to when a rotate operation has finished. The
input function handle should reference a function with two implicit
arguments (similar to handle callbacks):

function myfunction(obj,event_obj)
% obj handle to the figure that has been clicked on.
% event_obj handle to event object. The object has the same

properties as the EVENT_OBJ of the
'ActionPreCallback' callback.

flags = isAllowAxesRotate(h,axes)

Calling the function isAllowAxesRotate on the rotate3d object, h, with
a vector of axes handles, axes, as input will return a logical array of the
same dimension as the axes handle vector which indicate whether a
rotate operation is permitted on the axes objects.

setAllowAxesRotate(h,axes,flag)

Calling the function setAllowAxesRotate on the rotate3d object, h,
with a vector of axes handles, axes, and a logical scalar, flag, will
either allow or disallow a rotate operation on the axes objects.

Examples Example 1

Simple 3-D rotation

surf(peaks);
rotate3d on
% rotate the plot using the mouse pointer.

Example 2

Rotate the plot using the "Plot Box" rotate style:

surf(peaks);
h = rotate3d;
set(h,'RotateStyle','box','Enable','on');
% Rotate the plot.

2-2817

rotate3d

Example 3

Create two axes as subplots and then prevent one from rotating:

ax1 = subplot(1,2,1);
surf(peaks);
h = rotate3d;
ax2 = subplot(1,2,2);
surf(membrane);
setAllowAxesRotate(h,ax2,false);
% rotate the plots.

Example 4

Create a buttonDown callback for rotate mode objects to trigger. Copy
the following code to a new M-file, execute it, and observe rotation
behavior:

function demo
% Allow a line to have its own 'ButtonDownFcn' callback.
hLine = plot(rand(1,10));
set(hLine,'ButtonDownFcn','disp(''This executes'')');
set(hLine,'Tag','DoNotIgnore');
h = rotate3d;
set(h,'ButtonDownFilter',@mycallback);
set(h,'Enable','on');
% mouse-click on the line
%
function [flag] = mycallback(obj,event_obj)
% If the tag of the object is 'DoNotIgnore', then return true.
objTag = get(obj,'Tag');
if strcmpi(objTag,'DoNotIgnore')

flag = true;
else

flag = false;
end

2-2818

rotate3d

Example 5

Create callbacks for pre- and post-buttonDown events for rotate3D
mode objects to trigger. Copy the following code to a new M-file, execute
it, and observe rotation behavior:

function demo
% Listen to rotate events
surf(peaks);
h = rotate3d;
set(h,'ActionPreCallback',@myprecallback);
set(h,'ActionPostCallback',@mypostcallback);
set(h,'Enable','on');
%
function myprecallback(obj,evd)
disp('A rotation is about to occur.');
%
function mypostcallback(obj,evd)
newView = round(get(evd.Axes,'View'));
msgbox(sprintf('The new view is [%d %d].',newView));

Remarks When enabled, rotate3d provides continuous rotation of axes and
the objects it contains through mouse movement. A numeric readout
appears in the lower left corner of the figure during rotation, showing
the current azimuth and elevation of the axes. Releasing the mouse
button removes the animated box and the readout.

You can also enable 3-D rotation from the figure Tools menu or the
figure toolbar.

You can create a rotate3D mode object once and use it to customize the
behavior of different axes, as example 3 illustrates. You can also change
its callback functions on the fly.

When you assign different 3-D rotation behaviors to different subplot
axes via a mode object and then link them using the linkaxes function,
the behavior of the axes you manipulate with the mouse will carry over

2-2819

rotate3d

to the linked axes, regardless of the behavior you previously set for
the other axes.

See Also camorbit, pan, rotate, view, zoom

Object Manipulation for related functions

2-2820

round

Purpose Round to nearest integer

Syntax Y = round(X)

Description Y = round(X) rounds the elements of X to the nearest integers. For
complex X, the imaginary and real parts are rounded independently.

Examples a = [-1.9, -0.2, 3.4, 5.6, 7.0, 2.4+3.6i]

a =

Columns 1 through 4

-1.9000 -0.2000 3.4000 5.6000

Columns 5 through 6

7.0000 2.4000 + 3.6000i

round(a)

ans =

Columns 1 through 4

-2.0000 0 3.0000 6.0000

Columns 5 through 6

7.0000 2.0000 + 4.0000i

See Also ceil, fix, floor

2-2821

rref

Purpose Reduced row echelon form

Syntax R = rref(A)
[R,jb] = rref(A)
[R,jb] = rref(A,tol)

Description R = rref(A) produces the reduced row echelon form of A using
Gauss Jordan elimination with partial pivoting. A default tolerance
of (max(size(A))*eps *norm(A,inf)) tests for negligible column
elements.

[R,jb] = rref(A) also returns a vector jb such that:

• r = length(jb) is this algorithm’s idea of the rank of A.

• x(jb) are the pivot variables in a linear system Ax = b.

• A(:,jb) is a basis for the range of A.

• R(1:r,jb) is the r-by-r identity matrix.

[R,jb] = rref(A,tol) uses the given tolerance in the rank tests.

Roundoff errors may cause this algorithm to compute a different value
for the rank than rank, orth and null.

Examples Use rref on a rank-deficient magic square:

A = magic(4), R = rref(A)

A =
16 2 3 13
5 11 10 8
9 7 6 12
4 14 15 1

R =
1 0 0 1
0 1 0 3

2-2822

rref

0 0 1 -3
0 0 0 0

See Also inv, lu, rank

2-2823

rsf2csf

Purpose Convert real Schur form to complex Schur form

Syntax [U,T] = rsf2csf(U,T)

Description The complex Schur form of a matrix is upper triangular with the
eigenvalues of the matrix on the diagonal. The real Schur form has the
real eigenvalues on the diagonal and the complex eigenvalues in 2-by-2
blocks on the diagonal.

[U,T] = rsf2csf(U,T) converts the real Schur form to the complex
form.

Arguments U and T represent the unitary and Schur forms of a matrix
A, respectively, that satisfy the relationships: A = U*T*U' and U'*U =
eye(size(A)). See schur for details.

Examples Given matrix A,

1 1 1 3
1 2 1 1
1 1 3 1

-2 1 1 4

with the eigenvalues

4.8121 1.9202 + 1.4742i 1.9202 + 1.4742i 1.3474

Generating the Schur form of A and converting to the complex Schur
form

[u,t] = schur(A);
[U,T] = rsf2csf(u,t)

yields a triangular matrix T whose diagonal (underlined here for
readability) consists of the eigenvalues of A.

U =

2-2824

rsf2csf

-0.4916 -0.2756 - 0.4411i 0.2133 + 0.5699i -0.3428

-0.4980 -0.1012 + 0.2163i -0.1046 + 0.2093i 0.8001

-0.6751 0.1842 + 0.3860i -0.1867 - 0.3808i -0.4260

-0.2337 0.2635 - 0.6481i 0.3134 - 0.5448i 0.2466

T =

4.8121 -0.9697 + 1.0778i -0.5212 + 2.0051i -1.0067

0 1.9202 + 1.4742i 2.3355 0.1117 + 1.6547i

0 0 1.9202 - 1.4742i 0.8002 + 0.2310i

0 0 0 1.3474

See Also schur

2-2825

run

Purpose Run script that is not on current path

Syntax run scriptname

Description run scriptname runs the MATLAB script specified by scriptname.
If scriptname contains the full pathname to the script file, then run
changes the current directory to be the one in which the script file
resides, executes the script, and sets the current directory back to what
it was. The script is run within the caller’s workspace.

run is a convenience function that runs scripts that are not currently on
the path. Typically, you just type the name of a script at the MATLAB
prompt to execute it. This works when the script is on your path. Use
the cd or addpath function to make a script executable by entering the
script name alone.

See Also cd, addpath

2-2826

save

Purpose Save workspace variables to disk

Graphical
Interface

As an alternative to the save function, select Save Workspace As from
the File menu in the MATLAB desktop, or use the Workspace browser.

Syntax save
save filename
save filename content
save filename options
save filename content options
save('filename', 'var1', 'var2', ...)

Description save stores all variables from the current MATLAB workspace in a
MATLAB-formatted file (MAT-file) named matlab.mat that resides in
the current working directory. Use the load function to retrieve data
stored in MAT-files. By default, MAT-files are double-precision, binary
files. You can create a MAT-file on one machine and then load it on
another machine using a different floating-point format, and retaining
as much accuracy and range as the different formats allow. MAT-files
can also be manipulated by other programs external to MATLAB.

save filename stores all variables in the current workspace in the file
filename. If you do not specify an extension to the filename, MATLAB
uses .mat. The file must be writable. To save to another directory, use a
full pathname for the filename.

save filename content stores only those variables specified by
content in file filename. If filename is not specified, MATLAB stores
the data in a file called matlab.mat. See the following table.

2-2827

save

Values for content Description

varlist Save only those variables that are in
varlist. You can use the * wildcard to
save only those variables that match the
specified pattern. For example, save('A*')
saves all variables that start with A.

-regexp exprlist Save those variables that match any of the
regular expressions in exprlist.

-struct s Save as individual variables all fields of the
scalar structure s.

-struct s fieldlist Save as individual variables only the
specified fields of structure s.

In this table, the terms varlist, exprlist, and fieldlist refer to one
or more variable names, regular expressions, or structure field names
separated by either spaces or commas, depending on whether you are
using the MATLAB command or function format. See the examples
below:

Command format:

save firstname lastname street town

Function format:

save('firstname', 'lastname', 'street', 'town')

save filename options stores all variables from the MATLAB
workspace in file filename according to one or more of the following
options. If filename is not specified, MATLAB stores the data in a file
called matlab.mat.

2-2828

save

Values for options Description

-append Add new variables to those already stored in
an existing MAT-file.

-format Save using the specified binary or ASCII
format. See the section on, “MAT-File Format
Options” on page 2-2829, below.

-version Save in a format that can be loaded into an
earlier version of MATLAB. See the section
on “Version Compatibility Options” on page
2-2830, below.

save filename content options stores only those variables specified
by content in file filename, also applying the specified options. If
filename is not specified, MATLAB stores the data in a file called
matlab.mat.

save('filename', 'var1', 'var2', ...) is the function form of
the syntax.

MAT-File Format Options

The following table lists the valid MAT-file format options.

MAT-file format
Options How Data Is Stored

-ascii Save data in 8-digit ASCII format.

-ascii -tabs Save data in 8-digit ASCII format
delimited with tabs.

-ascii -double Save data in 16-digit ASCII format.

-ascii -double -tabs Save data in 16-digit ASCII format
delimited with tabs.

-mat Binary MAT-file form (default).

2-2829

save

Version Compatibility Options

The following table lists version compatibility options. These options
enable you to save your workspace data to a MAT-file that can then
be loaded into an earlier version of MATLAB. The resulting MAT-file
supports only those data items and features that were available in this
earlier version of MATLAB. (See the second table below for what is
supported in each version.)

version
Option

Use When
Running ...

To Save a MAT-File That You Can Load
In ...

-v7.3 Version 7.3
or later

Version 7.3 or later

-v7 Version 7.3
or later

Versions 7.0 through 7.2 (or later)

-v6 Version 7 or
later

Versions 5 and 6 (or later)

-v4 Version 5 or
later

Versions 1 through 4 (or later)

The default version option is the value specified in the Preferences
dialog box. Select File > Preferences in the Command Window, click
General, and then MAT-Files to view or change the default.

The next table shows what data items and features are supported
in different versions of MATLAB. You can use this information to
determine which of the version compatibility options shown above to
use.

MATLAB
Versions

Data Items or Features Supported

4 and
earlier

Support for 2D double, character, and sparse

5 and 6 Version 4 capability plus support for ND arrays, structs,
and cells

2-2830

save

MATLAB
Versions

Data Items or Features Supported

7.0 through
7.2

Version 6 capability plus support for data compression
and Unicode character encoding

7.3 and
later

Version 7.2 capability plus support for data items
greater than or equal to 2GB

Remarks When working on 64-bit platforms, you can have data items in your
workspace that occupy more than 2 GB. To save data of this size, you
must use the HDF5-based version of the MATLAB MAT-file. Use the
v7.3 option to do this:

save -v7.3 myfile v1 v2

If you are running MATLAB on a 64-bit computer system and you
attempt to save a variable that is too large for a version 7 (or earlier)
MAT-file, that is, you save without using the -v7.3 option, MATLAB
skips that variable during the save operation and issues a warning
message to that effect.

If you are running MATLAB on a 32-bit computer system and attempt
to load a variable from a -v7.3 MAT-file that is too large to fit in 32–bit
address space, MATLAB skips that variable and issues a warning
message to that effect.

MAT-files saved with compression and Unicode encoding cannot be
loaded into versions of MATLAB prior to MATLAB Version 7.0. If you
save data to a MAT-file that you intend to load using MATLAB Version
6 or earlier, you must specify the -v6 option when saving. This disables
compression and Unicode encoding for that particular save operation.

If you want to save to a file that you can then load into a Version 4
MATLAB session, you must use the -v4 option when saving. When you
use this option, variables that are incompatible with MATLAB Version
4 are not saved to the MAT-file. For example, ND arrays, structs, cells,
etc. cannot be saved to a MATLAB Version 4 MAT-file. Also, variables
with names that are longer than 19 characters cannot be saved to a
MATLAB Version 4 MAT-file.

2-2831

save

For information on any of the following topics related to saving to
MAT-files, see in the MATLAB Programming documentation:

• Appending variables to an existing MAT-file

• Compressing data in the MAT-file

• Saving in ASCII format

• Saving in MATLAB Version 4 format

• Saving with Unicode character encoding

• Data storage requirements

• Saving from external programs

For information on saving figures, see the documentation for hgsave
and saveas. For information on exporting figures to other graphics
formats, see the documentation for print.

Examples Example 1

Save all variables from the workspace in binary MAT-file test.mat:

save test.mat

Example 2

Save variables p and q in binary MAT-file test.mat.

In this example, the file name is stored in a variable, savefile. You
must call save using the function syntax of the command if you intend
to reference the file name through a variable.

savefile = 'test.mat';
p = rand(1, 10);
q = ones(10);
save(savefile, 'p', 'q')

Example 3

Save the variables vol and temp in ASCII format to a file named june10:

2-2832

save

save('d:\mymfiles\june10','vol','temp','-ASCII')

Example 4

Save the fields of structure s1 as individual variables rather than as
an entire structure.

s1.a = 12.7; s1.b = {'abc', [4 5; 6 7]}; s1.c = 'Hello!';
save newstruct.mat -struct s1;
clear

Check what was saved to newstruct.mat:

whos -file newstruct.mat
Name Size Bytes Class

a 1x1 8 double array
b 1x2 158 cell array
c 1x6 12 char array

Grand total is 16 elements using 178 bytes

Read only the b field into the MATLAB workspace.

str = load('newstruct.mat', 'b')
str =

b: {'abc' [2x2 double]}

Example 5

Using regular expressions, save in MAT-file mydata.mat those variables
with names that begin with Mon, Tue, or Wed:

save('mydata', '-regexp', '^Mon|^Tue|^Wed');

Here is another way of doing the same thing. In this case, there are
three separate expression arguments:

save('mydata', '-regexp', '^Mon', '^Tue', '^Wed');

2-2833

save

Example 6

Save a 3000-by-3000 matrix uncompressed to file c1.mat, and
compressed to file c2.mat. The compressed file uses about one quarter
the disk space required to store the uncompressed data:

x = ones(3000);
y = uint32(rand(3000) * 100);

save -v6 c1 x y % Save without compression
save -v7 c2 x y % Save with compression

d1 = dir('c1.mat');
d2 = dir('c2.mat');

d1.bytes
ans =

45000240 % Size of the uncompressed data in bytes.
d2.bytes
ans =

11985283 % Size of the compressed data in bytes.

d2.bytes/d1.bytes
ans =

0.2663 % Ratio of compressed to uncompressed

See Also load, clear, diary, fprintf, fwrite, genvarname, who, whos,
workspace, regexp

2-2834

save (COM)

Purpose Serialize control object to file

Syntax h.save('filename')
save(h, 'filename')

Description h.save('filename') saves the COM control object, h, to the file
specified in the string, filename.

save(h, 'filename') is an alternate syntax for the same operation.

Note The COM save function is only supported for controls at this time.

Examples Create an mwsamp control and save its original state to the file mwsample:

f = figure('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f);
h.save('mwsample')

Now, alter the figure by changing its label and the radius of the circle:

h.Label = 'Circle';
h.Radius = 50;
h.Redraw;

Using the load function, you can restore the control to its original state:

h.load('mwsample');
h.get
ans =

Label: 'Label'
Radius: 20

See Also load, actxcontrol, actxserver, release, delete

2-2835

save (serial)

Purpose Save serial port objects and variables to MAT-file

Syntax save filename
save filename obj1 obj2...

Arguments filename The MAT-file name.

obj1
obj2...

Serial port objects or arrays of serial port objects.

Description save filename saves all MATLAB variables to the MAT-file filename.
If an extension is not specified for filename, then the .mat extension
is used.

save filename obj1 obj2... saves the serial port objects obj1
obj2... to the MAT-file filename.

Remarks You can use save in the functional form as well as the command form
shown above. When using the functional form, you must specify the
filename and serial port objects as strings. For example. to save the
serial port object s to the file MySerial.mat

s = serial('COM1');
save('MySerial','s')

Any data that is associated with the serial port object is not
automatically stored in the MAT-file. For example, suppose there is
data in the input buffer for obj. To save that data to a MAT-file, you
must bring it into the MATLAB workspace using one of the synchronous
read functions, and then save to the MAT-file using a separate variable
name. You can also save data to a text file with the record function.

You return objects and variables to the MATLAB workspace with the
load command. Values for read-only properties are restored to their
default values upon loading. For example, the Status property is
restored to closed. To determine if a property is read-only, examine
its reference pages.

2-2836

save (serial)

Example This example illustrates how to use the command and functional form
of save.

s = serial('COM1');
set(s,'BaudRate',2400,'StopBits',1)
save MySerial1 s
set(s,'BytesAvailableFcn',@mycallback)
save('MySerial2','s')

See Also Functions

load, record

Properties

Status

2-2837

saveas

Purpose Save figure or Simulink block diagram using specified format

GUI
Alternative

Use File —> Save As on the figure window menu to access the Save
As dialog, in which you can select a graphics format. For details, see
“Exporting in a Specific Graphics Format” in the MATLAB Graphics
documentation. Note that sizes of files written to image formats by this
GUI and by saveas can differ, due to disparate resolution settings.

Syntax saveas(h,'filename.ext')
saveas(h,'filename','format')

Description saveas(h,'filename.ext') saves the figure or Simulink block
diagram with the handle h to the file filename.ext. The format of the
file is determined by the extension, ext. Allowable values for ext are
listed in this table.

You can pass the handle of any Handle Graphics object to saveas, which
then saves the parent figure to the object you specified should h not be a
figure handle. This means that saveas cannot save a subplot without
also saving all subplots in its parent figure.

ext Value Format

ai Adobe Illustrator ‘88

bmp Windows bitmap

emf Enhanced metafile

eps EPS Level 1

fig MATLAB figure (invalid for Simulink block
diagrams)

jpg JPEG image (invalid for Simulink block diagrams)

m MATLAB M-file (invalid for Simulink block
diagrams)

pbm Portable bitmap

2-2838

saveas

ext Value Format

pcx Paintbrush 24-bit

pdf Portable Document Format

pgm Portable Graymap

png Portable Network Graphics

ppm Portable Pixmap

tif TIFF image, compressed

saveas(h,'filename','format') saves the figure or Simulink block
diagram with the handle h to the file called filename using the specified
format. The filename can have an extension, but the extension is not
used to define the file format. If no extension is specified, the standard
extension corresponding to the specified format is automatically
appended to the filename.

Allowable values for format are the extensions in the table above and
the device drivers and graphic formats supported by print. The drivers
and graphic formats supported by print include additional file formats
not listed in the table above. When using a print device type to specify
format for saveas, do not prefix it with -d.

Remarks You can use open to open files saved using saveas with an m or fig
extension. Other saveas and print formats are not supported by open.
Both the Save As and Export dialog boxes that you access from a
figure’s File menu use saveas with the format argument, and support
all device and file types listed above.

If you want to control the size or resolution of figures saved in image
(bitmapped) formats (such as BMP or JPG), use the print command and
specify dots-per-inch resolution with the r switch.

2-2839

saveas

Examples Example 1: Specify File Extension

Save the current figure that you annotated using the Plot Editor to a
file named pred_prey using the MATLAB fig format. This allows you
to open the file pred_prey.fig at a later time and continue editing it
with the Plot Editor.

saveas(gcf,'pred_prey.fig')

Example 2: Specify File Format but No Extension

Save the current figure, using Adobe Illustrator format, to the file logo.
Use the ai extension from the above table to specify the format. The file
created is logo.ai.

saveas(gcf,'logo', 'ai')

This is the same as using the Adobe Illustrator format from the print
devices table, which is -dill; use doc print or help print to see the
table for print device types. The file created is logo.ai. MATLAB
automatically appends the ai extension for an Illustrator format file
because no extension was specified.

saveas(gcf,'logo', 'ill')

Example 3: Specify File Format and Extension

Save the current figure to the file star.eps using the Level 2 Color
PostScript format. If you use doc print or help print, you can see from
the table for print device types that the device type for this format is
-dpsc2. The file created is star.eps.

saveas(gcf,'star.eps', 'psc2')

In another example, save the current Simulink block diagram to the file
trans.tiff using the TIFF format with no compression. From the
table for print device types, you can see that the device type for this
format is -dtiffn. The file created is trans.tiff.

2-2840

saveas

saveas(gcf,'trans.tiff', 'tiffn')

See Also hgsave, open, print

“Printing” on page 1-92 for related functions

Simulink users, see also save_system

2-2841

saveobj

Purpose User-defined extension of save function for user objects

Syntax B = saveobj(A)

Description B = saveobj(A) is called by the MATLAB save function when object
A is saved to a MAT-file. This call executes the saveobj method for
the object’s class, if such a method exists. The return value B is
subsequently used by save to populate the MAT-file.

When you issue a save command on an object, MATLAB looks for a
method called saveobj in the class directory. You can overload this
method to modify the object before the save operation. For example,
you could define a saveobj method that saves related data along with
the object.

Remarks saveobj can be overloaded only for user objects. save will not
call saveobj for a built-in datatype, such as double, even if
@double/saveobj exists.

saveobj will be separately invoked for each object to be saved.

A child object does not inherit the saveobj method of its parent class.
To implement saveobj for any class, including a class that inherits from
a parent, you must define a saveobj method within that class directory.

Examples The following example shows a saveobj method written for the
portfolio class. The method determines if a portfolio object has
already been assigned an account number from a previous save
operation. If not, saveobj calls getAccountNumber to obtain the
number and assigns it to the account_number field. The contents of b
is saved to the MAT-file.

function b = saveobj(a)
if isempty(a.account_number)

a.account_number = getAccountNumber(a);
end
b = a;

2-2842

saveobj

See Also save, load, loadobj

2-2843

savepath

Purpose Save current MATLAB search path to pathdef.m file

GUI
Alternatives

As an alternative to the savepath function, use the Set Path dialog box.
To open it, select File > Set Path in the MATLAB desktop.

Syntax savepath
savepath newfile

Description savepath saves the current MATLAB search path to pathdef.m. It
returns

0 If the file was saved successfully

1 If the save failed

savepath newfile saves the current MATLAB search path to newfile,
where newfile is in the current directory or is a relative or absolute
path.

Examples The statement

savepath myfiles/pathdef.m

saves the current search path to the file pathdef.m, which is located in
the myfiles directory in the MATLAB current directory.

Consider using savepath in your MATLAB finish.m file to save the
path when you exit MATLAB.

See Also addpath, cd, dir, finish, genpath, matlabroot, partialpath,
pathdef, pathsep, pathtool, rehash, restoredefaultpath, rmpath,
savepath, startup, what

Search Path in the MATLAB Desktop Tools and Development
Environment documentation

2-2844

scatter

Purpose Scatter plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax scatter(X,Y,S,C)
scatter(X,Y)
scatter(X,Y,S)
scatter(...,markertype)
scatter(...,'filled')
scatter(...,'PropertyName',propertyvalue)
scatter(axes_handles,...)
h = scatter(...)
hpatch = scatter('v6',...)

Description scatter(X,Y,S,C) displays colored circles at the locations specified by
the vectors X and Y (which must be the same size).

S determines the area of each marker (specified in points^2). S can be a
vector the same length as X and Y or a scalar. If S is a scalar, MATLAB
draws all the markers the same size. If S is empty, the default size
is used.

C determines the color of each marker. When C is a vector the same
length as X and Y, the values in C are linearly mapped to the colors in
the current colormap. When C is a length(X)-by-3 matrix, it specifies
the colors of the markers as RGB values. C can also be a color string
(see ColorSpec for a list of color string specifiers).

scatter(X,Y) draws the markers in the default size and color.

2-2845

scatter

scatter(X,Y,S) draws the markers at the specified sizes (S) with a
single color. This type of graph is also known as a bubble plot.

scatter(...,markertype) uses the marker type specified instead of
'o' (see LineSpec for a list of marker specifiers).

scatter(...,'filled') fills the markers.

scatter(...,'PropertyName',propertyvalue) creates the scatter
graph, applying the specified property settings. See scattergroup
properties for a description of properties.

scatter(axes_handles,...) plots into the axes object with handle
axes_handle instead of the current axes object (gca).

h = scatter(...) returns the handle of the scattergroup object
created.

Backward-Compatible Version

hpatch = scatter('v6',...) returns the handles to the patch
objects created by scatter (see Patch Properties for a list of properties
you can specify using the object handles and set).

Note The v6 option enables users of Version 7.x of MATLAB to create
FIG-files that previous versions can open. It is obsolete and will be
removed in a future version of MATLAB.

See Plot Objects and Backward Compatibility for more information.

Example load seamount
scatter(x,y,5,z)

2-2846

scatter

See Also scatter3, plot3

“Scatter/Bubble Plots” on page 1-91 for related functions

See Triangulation and Interpolation of Scatter Data for related
information.

See Scattergroup Properties for property descriptions.

2-2847

scatter3

Purpose 3-D scatter plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax scatter3(X,Y,Z,S,C)
scatter3(X,Y,Z)
scatter3(X,Y,Z,S)
scatter3(...,markertype)
scatter3(...,'filled')
scatter3(...,'PropertyName',propertyvalue)
h = scatter3(...)
hpatch = scatter3('v6',...)

Description scatter3(X,Y,Z,S,C) displays colored circles at the locations specified
by the vectors X, Y, and Z (which must all be the same size).

S determines the size of each marker (specified in points). S can be
a vector the same length as X, Y, and Z or a scalar. If S is a scalar,
MATLAB draws all the markers the same size.

C determines the colors of each marker. When C is a vector the same
length as X, Y, and Z, the values in C are linearly mapped to the colors in
the current colormap. When C is a length(X)-by-3 matrix, it specifies
the colors of the markers as RGB values. C can also be a color string
(see ColorSpec for a list of color string specifiers).

scatter3(X,Y,Z) draws the markers in the default size and color.

scatter3(X,Y,Z,S) draws markers at the specified sizes (S) in a single
color.

2-2848

scatter3

scatter3(...,markertype) uses the marker type specified instead of
’o’ (see LineSpec for a list of marker specifiers).

scatter3(...,'filled') fills the markers.

scatter3(...,'PropertyName',propertyvalue) creates the scatter
graph, applying the specified property settings. See scattergroup
properties for a description of properties.

h = scatter3(...) returns handles to the scattergroup objects
created by scatter3. See Scattergroup Properties for property
descriptions.

Backward-Compatible Version

hpatch = scatter3('v6',...) returns the handles to the patch
objects created by scatter3 (see Patch for a list of properties you can
specify using the object handles and set).

Note The v6 option enables users of Version 7.x of MATLAB to create
FIG-files that previous versions can open. It is obsolete and will be
removed in a future version of MATLAB.

See Plot Objects and Backward Compatibility for more information.

Remarks Use plot3 for single color, single marker size 3-D scatter plots.

Examples [x,y,z] = sphere(16);
X = [x(:)*.5 x(:)*.75 x(:)];
Y = [y(:)*.5 y(:)*.75 y(:)];
Z = [z(:)*.5 z(:)*.75 z(:)];
S = repmat([1 .75 .5]*10,prod(size(x)),1);
C = repmat([1 2 3],prod(size(x)),1);
scatter3(X(:),Y(:),Z(:),S(:),C(:),'filled'), view(-60,60)

2-2849

scatter3

See Also scatter, plot3

See Scattergroup Properties for property descriptions

“Scatter/Bubble Plots” on page 1-91 for related functions

2-2850

Scattergroup Properties

Purpose Define scattergroup properties

Modifying
Properties

You can set and query graphics object properties using the set and get
commands or the Property Editor (propertyeditor).

Note that you cannot define default property values for scattergroup
objects.

See Plot Objects for information on scattergroup objects.

Scattergroup
Property
Descriptions

This section provides a description of properties. Curly braces { } enclose
default values.

Annotation
hg.Annotation object Read Only

Control the display of scattergroup objects in legends. The
Annotation property enables you to specify whether this
scattergroup object is represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can
set its IconDisplayStyle property to control whether the
scattergroup object is displayed in a figure legend:

IconDisplayStyle
Value

Purpose

on Include the scattergroup object in a legend
as one entry, but not its children objects

2-2851

Scattergroup Properties

IconDisplayStyle
Value

Purpose

off Do not include the scattergroup or its
children in a legend (default)

children Include only the children of the scattergroup
as separate entries in the legend

Setting the IconDisplayStyle property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation','LegendInformation');
set(hLegendEntry,'IconDisplayStyle','children')

Using the IconDisplayStyle property

See “Controlling Legends” for more information and examples.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

2-2852

Scattergroup Properties

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function
executing, callbacks invoked subsequently always attempt to
interrupt it.

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs
at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

• cancel — Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
string or function handle

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is over this object, but
not over another graphics object. See the HitTestArea property
for information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be

• A string that is a valid MATLAB expression

• The name of an M-file

2-2853

Scattergroup Properties

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

See “Function Handle Callbacks” for information on how to use
function handles to define the callbacks.

CData
vector, m-by-3 matrix, ColorSpec

Color of markers. When CData is a vector the same length as XData
and YData, the values in CData are linearly mapped to the colors
in the current colormap. When CData is a length(XData)-by-3
matrix, it specifies the colors of the markers as RGB values.

CDataSource
string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB
variable that, by default, is evaluated in the base workspace to
generate the CData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change CData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

2-2854

Scattergroup Properties

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

Children
array of graphics object handles

Children of this object. The handle of a patch object that is the
child of this object (whether visible or not).

Note that if a child object’s HandleVisibility property is set
to callback or off, its handle does not show up in this object’s
Children property unless you set the root ShowHiddenHandles
property to on:

set(0,'ShowHiddenHandles','on')

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs can be
displayed outside the axes plot box. This can occur if you create a
plot object, set hold to on, freeze axis scaling (axis manual), and
then create a larger plot object.

CreateFcn
string or function handle

Callback routine executed during object creation. This property
defines a callback that executes when MATLAB creates an object.
You must specify the callback during the creation of the object.
For example,

area(y,'CreateFcn',@CallbackFcn)

2-2855

Scattergroup Properties

where @CallbackFcn is a function handle that references the
callback function.

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
string or function handle

Callback executed during object deletion. A callback that executes
when this object is deleted (e.g., this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

DisplayName
string (default is empty string)

2-2856

Scattergroup Properties

String used by legend for this scattergroup object. The legend
function uses the string defined by the DisplayName property to
label this scattergroup object in the legend.

• If you specify string arguments with the legend function,
DisplayName is set to this scattergroup object’s corresponding
string and that string is used for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

See “Controlling Legends” for more examples.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase objects and their children. Alternative erase
modes are useful for creating animated sequences, where control
of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

• normal — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

2-2857

Scattergroup Properties

• none — Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing
with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of
the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color
if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

• background — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other
graphics objects that are behind the erased object, but the
erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB can mathematically combine
layers of colors (e.g., performing an XOR on a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

2-2858

Scattergroup Properties

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally accessing
objects that you need to protect for some reason.

• on — Handles are always visible when HandleVisibility is on.

• callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions
invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

• off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in

2-2859

Scattergroup Properties

the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. HitTest determines whether this object
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the objects that compose the area graph. If HitTest
is off, clicking this object selects the object below it (which is
usually the axes containing it).

HitTestArea
on | {off}

2-2860

Scattergroup Properties

Select the object by clicking lines or area of extent. This property
enables you to select plot objects in two ways:

• Select by clicking lines or markers (default).

• Select by clicking anywhere in the extent of the plot.

When HitTestArea is off, you must click th eobject’s lines or
markers (excluding the baseline, if any) to select the object. When
HitTestArea is on, you can select this object by clicking anywhere
within the extent of the plot (i.e., anywhere within a rectangle
that encloses it).

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether an object’s callback can be interrupted by
callbacks invoked subsequently.

Only callbacks defined for the ButtonDownFcn property are
affected by the Interruptible property. MATLAB checks for
events that can interrupt a callback only when it encounters a
drawnow, figure, getframe, or pause command in the routine.
See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback
to interrupt callback routines originating from a bar property.
Note that MATLAB does not save the state of variables or the
display (e.g., the handle returned by the gca or gcf command)
when an interruption occurs.

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

2-2861

Scattergroup Properties

Marker
character (see table)

Marker symbol. The Marker property specifies the type of markers
that are displayed at plot vertices. You can set values for the
Marker property independently from the LineStyle property.
Supported markers include those shown in the following table.

Marker Specifier Description

+ Plus sign

o Circle

* Asterisk

. Point

x Cross

s Square

d Diamond

^ Upward-pointing triangle

v Downward-pointing triangle

> Right-pointing triangle

< Left-pointing triangle

p Five-pointed star (pentagram)

h Six-pointed star (hexagram)

none No marker (default)

MarkerEdgeColor
ColorSpec | none | {auto}

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles). ColorSpec defines the color to use. none

2-2862

Scattergroup Properties

specifies no color, which makes nonfilled markers invisible. auto
sets MarkerEdgeColor to the same color as the Color property.

MarkerFaceColor
ColorSpec | {none} | auto

Marker face color. The fill color for markers that are closed shapes
(circle, square, diamond, pentagram, hexagram, and the four
triangles). ColorSpec defines the color to use. none makes the
interior of the marker transparent, allowing the background to
show through. auto sets the fill color to the axes color, or to the
figure color if the axes Color property is set to none (which is the
factory default for axes objects).

Parent
handle of parent axes, hggroup, or hgtransform

Parent of this object. This property contains the handle of the
object’s parent. The parent is normally the axes, hggroup, or
hgtransform object that contains the object.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection "handles" at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

2-2863

Scattergroup Properties

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing four edge handles and four corner handles. When
SelectionHighlight is off, MATLAB does not draw the handles
except when in plot edit mode and objects are selected manually.

SizeData
square points

Size of markers in square points. This property specifies the area
of the marker in the scatter graph in units of points. Since there
are 72 points to one inch, to specify a marker that has an area of
one square inch you would use a value of 72^2.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callbacks.
You can define Tag as any string.

For example, you might create an areaseries object and set the
Tag property.

t = area(Y,'Tag','area1')

When you want to access objects of a given type, you can use
findobj to find the object’s handle. The following statement
changes the FaceColor property of the object whose Tag is area1.

set(findobj('Tag','area1'),'FaceColor','red')

Type
string (read only)

2-2864

Scattergroup Properties

Type of graphics object. This property contains a string that
identifies the class of the graphics object. For stemseries objects,
Type is ’hggroup’. The following statement finds all the hggroup
objects in the current axes.

t = findobj(gca,'Type','hggroup');

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with this object. Assign this property
the handle of a uicontextmenu object created in the object’s
parent figure. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever
you right-click over the object.

UserData
array

User-specified data. This property can be any data you want to
associate with this object (including cell arrays and structures).
The object does not set values for this property, but you can access
it using the set and get functions.

Visible
{on} | off

Visibility of this object and its children. By default, a new object’s
visibility is on. This means all children of the object are visible
unless the child object’s Visible property is set to off. Setting an
object’s Visible property to off prevents the object from being
displayed. However, the object still exists and you can set and
query its properties.

XData
array

X-coordinates of scatter markers. The scatter function draws
individual markers at each x-axis location in the XData array. The

2-2865

Scattergroup Properties

input argument x in the scatter function calling syntax assigns
values to XData.

XDataSource
string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change XData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
scalar, vector, or matrix

Y-coordinates of scatter markers. The scatter function draws
individual markers at each y-axis location in the YData array.

The input argument y in the scatter function calling syntax
assigns values to YData.

2-2866

Scattergroup Properties

YDataSource
string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change YData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

ZData
vector of coordinates

Z-coordinates. A vector defining the z-coordinates for the graph.
XData and YData must be the same length and have the same
number of rows.

ZDataSource
string (MATLAB variable)

2-2867

Scattergroup Properties

Link ZData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
ZData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change ZData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

2-2868

schur

Purpose Schur decomposition

Syntax T = schur(A)
T = schur(A,flag)
[U,T] = schur(A,...)

Description The schur command computes the Schur form of a matrix.

T = schur(A) returns the Schur matrix T.

T = schur(A,flag) for real matrix A, returns a Schur matrix T in one
of two forms depending on the value of flag:

'complex' T is triangular and is complex if A has complex
eigenvalues.

'real' T has the real eigenvalues on the diagonal and
the complex eigenvalues in 2-by-2 blocks on the
diagonal. 'real' is the default.

If A is complex, schur returns the complex Schur form in matrix T.
The complex Schur form is upper triangular with the eigenvalues of A
on the diagonal.

The function rsf2csf converts the real Schur form to the complex
Schur form.

[U,T] = schur(A,...) also returns a unitary matrix U so that A =
U*T*U' and U'*U = eye(size(A)).

Examples H is a 3-by-3 eigenvalue test matrix:

H = [-149 -50 -154
537 180 546
-27 -9 -25]

Its Schur form is

schur(H)

2-2869

schur

ans =
1.0000 -7.1119 -815.8706

0 2.0000 -55.0236
0 0 3.0000

The eigenvalues, which in this case are 1, 2, and 3, are on the diagonal.
The fact that the off-diagonal elements are so large indicates that this
matrix has poorly conditioned eigenvalues; small changes in the matrix
elements produce relatively large changes in its eigenvalues.

Algorithm Input of Type Double

If A has type double, schur uses the LAPACK routines listed in the
following table to compute the Schur form of a matrix:

Matrix A Routine

Real symmetric DSYTRD, DSTEQR

DSYTRD, DORGTR, DSTEQR (with output U)

Real nonsymmetric DGEHRD, DHSEQR

DGEHRD, DORGHR, DHSEQR (with output U)

Complex Hermitian ZHETRD, ZSTEQR

ZHETRD, ZUNGTR, ZSTEQR (with output U)

Non-Hermitian ZGEHRD, ZHSEQR

ZGEHRD, ZUNGHR, ZHSEQR (with output U)

Input of Type Single

If A has type single, schur uses the LAPACK routines listed in the
following table to compute the Schur form of a matrix:

2-2870

schur

Matrix A Routine

Real symmetric SSYTRD, SSTEQR

SSYTRD, SORGTR, SSTEQR (with output U)

Real nonsymmetric SGEHRD, SHSEQR

SGEHRD, SORGHR, SHSEQR (with output U)

Complex Hermitian CHETRD, CSTEQR

CHETRD, CUNGTR, CSTEQR (with output U)

Non-Hermitian CGEHRD, CHSEQR

CGEHRD, CUNGHR, CHSEQR (with output U)

See Also eig, hess, qz, rsf2csf

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, SIAM, Philadelphia, 1999.

2-2871

http://www.netlib.org/lapack/lug/lapack_lug.html

script

Purpose Script M-file description

Description A script file is an external file that contains a sequence of MATLAB
statements. By typing the filename, you can obtain subsequent
MATLAB input from the file. Script files have a filename extension
of .m and are often called M-files.

Scripts are the simplest kind of M-file. They are useful for automating
blocks of MATLAB commands, such as computations you have to
perform repeatedly from the command line. Scripts can operate on
existing data in the workspace, or they can create new data on which
to operate. Although scripts do not return output arguments, any
variables that they create remain in the workspace, so you can use them
in further computations. In addition, scripts can produce graphical
output using commands like plot.

Scripts can contain any series of MATLAB statements. They require no
declarations or begin/end delimiters.

Like any M-file, scripts can contain comments. Any text following
a percent sign (%) on a given line is comment text. Comments can
appear on lines by themselves, or you can append them to the end of
any executable line.

See Also echo, function, type

2-2872

sec

Purpose Secant of argument in radians

Syntax Y = sec(X)

Description The sec function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = sec(X) returns an array the same size as X containing the secant
of the elements of X.

Examples Graph the secant over the domains and
.

x1 = -pi/2+0.01:0.01:pi/2-0.01;
x2 = pi/2+0.01:0.01:(3*pi/2)-0.01;
plot(x1,sec(x1),x2,sec(x2)), grid on

2-2873

sec

The expression sec(pi/2) does not evaluate as infinite but as
the reciprocal of the floating-point accuracy eps, because pi is a
floating-point approximation to the exact value of .

Definition The secant can be defined as

Algorithm sec uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also secd, sech, asec, asecd, asech

2-2874

http://www.netlib.org

secd

Purpose Secant of argument in degrees

Syntax Y = secd(X)

Description Y = secd(X) is the secant of the elements of X, expressed in degrees.
For odd integers n, secd(n*90) is infinite, whereas sec(n*pi/2) is
large but finite, reflecting the accuracy of the floating point value of pi.

See Also sec, sech, asec, asecd, asech

2-2875

sech

Purpose Hyperbolic secant

Syntax Y = sech(X)

Description The sech function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = sech(X) returns an array the same size as X containing the
hyperbolic secant of the elements of X.

Examples Graph the hyperbolic secant over the domain

x = -2*pi:0.01:2*pi;
plot(x,sech(x)), grid on

2-2876

sech

Algorithm sech uses this algorithm.

Definition The secant can be defined as

Algorithm sec uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also asec, asech, sec

2-2877

http://www.netlib.org

selectmoveresize

Purpose Select, move, resize, or copy axes and uicontrol graphics objects

Syntax A = selectmoveresize
set(gca,'ButtonDownFcn','selectmoveresize')

Description selectmoveresize is useful as the callback routine for axes and
uicontrol button down functions. When executed, it selects the object
and allows you to move, resize, and copy it.

A = selectmoveresize returns a structure array containing

• A.Type: a string containing the action type, which can be Select,
Move, Resize, or Copy

• A.Handles: a list of the selected handles, or, for a Copy, an m-by-2
matrix containing the original handles in the first column and the
new handles in the second column

set(gca,'ButtonDownFcn','selectmoveresize') sets the
ButtonDownFcn property of the current axes to selectmoveresize:

See Also The ButtonDownFcn property of axes and uicontrol objects

“Object Manipulation” on page 1-100 for related functions

2-2878

semilogx, semilogy

Purpose Semilogarithmic plots

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax semilogx(Y)
semilogy(...)
semilogx(X1,Y1,...)
semilogx(X1,Y1,LineSpec,...)
semilogx(...,'PropertyName',PropertyValue,...)
h = semilogx(...)
h = semilogy(...)
hlines = semilogx('v6',...)

Description semilogx and semilogy plot data as logarithmic scales for the x- and
y-axis, respectively.

semilogx(Y) creates a plot using a base 10 logarithmic scale for the
x-axis and a linear scale for the y-axis. It plots the columns of Y versus
their index if Y contains real numbers. semilogx(Y) is equivalent to
semilogx(real(Y), imag(Y)) if Y contains complex numbers. semilogx
ignores the imaginary component in all other uses of this function.

semilogy(...) creates a plot using a base 10 logarithmic scale for the
y-axis and a linear scale for the x-axis.

semilogx(X1,Y1,...) plots all Xn versus Yn pairs. If only Xn or Yn
is a matrix, semilogx plots the vector argument versus the rows or

2-2879

semilogx, semilogy

columns of the matrix, depending on whether the vector’s row or column
dimension matches the matrix.

semilogx(X1,Y1,LineSpec,...) plots all lines defined by the
Xn,Yn,LineSpec triples. LineSpec determines line style, marker
symbol, and color of the plotted lines.

semilogx(...,'PropertyName',PropertyValue,...) sets property
values for all lineseries graphics objects created by semilogx.

h = semilogx(...) and h = semilogy(...) return a vector of
handles to lineseries graphics objects, one handle per line.

Backward-Compatible Version

hlines = semilogx('v6',...) and hlines = semilogy('v6',...)
return the handles to line objects instead of lineseries objects.

Note The v6 option enables users of Version 7.x of MATLAB to create
FIG-files that previous versions can open. It is obsolete and will be
removed in a future version of MATLAB.

See Plot Objects and Backward Compatibility for more information.

Remarks If you do not specify a color when plotting more than one line,
semilogx and semilogy automatically cycle through the colors and
line styles in the order specified by the current axes ColorOrder and
LineStyleOrder properties.

You can mix Xn,Yn pairs with Xn,Yn,LineSpec triples; for example,

semilogx(X1,Y1,X2,Y2,LineSpec,X3,Y3)

If you attempt to add a loglog, semilogx, or semilogy plot to a linear
axis mode graph with hold on, the axis mode will remain as it is and
the new data will plot as linear.

2-2880

semilogx, semilogy

Examples Create a simple semilogy plot.

x = 0:.1:10;
semilogy(x,10.^x)

See Also line, LineSpec, loglog, plot

“Basic Plots and Graphs” on page 1-86 for related functions

2-2881

sendmail

Purpose Send e-mail message to address list

Syntax sendmail('recipients','subject')
sendmail('recipients','subject','message','attachments')

Description sendmail('recipients','subject') sends e-mail to recipients
with the specified subject. For recipients, use a string for a single
address, or a cell array of strings for multiple addresses.

sendmail('recipients','subject','message','attachments')
sends message to recipients with the specified subject. For
recipients, use a string for a single address, or a cell array of strings
for multiple addresses. For message, use a string or cell array. When
message is a string, the text automatically wraps at 75 characters.
When message is a cell array, it does not wrap but rather each cell is
a new line. To force text to start on a new line in strings or cells, use
10, as shown in the “Example of sendmail with New Lines Specified”
on page 2-2883. Specify attachments as a cell array of files to send
along with message.

To use sendmail, you must set the preferences for your e-mail server
(Internet SMTP server) and your e-mail address must be set. MATLAB
tries to read the SMTP mail server from your system registry, but if it
cannot, it results in an error. In this event, identify the outgoing mail
server for your electronic mail application, which is usually listed in the
application’s preferences, or, consult your e-mail system administrator.
Then provide the information to MATLAB using

setpref('Internet','SMTP_Server','myserver.myhost.com');

If you cannot easily determine your e-mail server, try using mail, as in

setpref('Internet','SMTP_Server','mail');

which might work because mail is often a default for mail systems.

Similarly, if MATLAB cannot determine your e-mail address and
produces an error, specify your e-mail address using

2-2882

sendmail

setpref('Internet','E_mail','myaddress@example.com');

Note The sendmail function does not support e-mail servers that
require authentication.

Examples Example of sendmail with Two Attachments

sendmail('user@otherdomain.com',...
'Test subject','Test message',...
{'directory/attach1.html','attach2.doc'});

Example of sendmail with New Lines Specified

This mail message forces the message to start new lines after each 10.

sendmail('user@otherdomain.com','New subject', ...
['Line1 of message' 10 'Line2 of message' 10 ...
'Line3 of message' 10 'Line4 of message']);

The resulting message is

Line1 of message
Line2 of message
Line3 of message
Line4 of message

See Also getpref, setpref

2-2883

serial

Purpose Create serial port object

Syntax obj = serial('port')
obj = serial('port','PropertyName',PropertyValue,...)

Arguments 'port' The serial port name.

'PropertyName' A serial port property name.

PropertyValue A property value supported by PropertyName.

obj The serial port object.

Description obj = serial('port') creates a serial port object associated with the
serial port specified by port. If port does not exist, or if it is in use, you
will not be able to connect the serial port object to the device.

obj = serial('port','PropertyName',PropertyValue,...) creates
a serial port object with the specified property names and property
values. If an invalid property name or property value is specified, an
error is returned and the serial port object is not created.

Remarks When you create a serial port object, these property values are
automatically configured:

• The Type property is given by serial.

• The Name property is given by concatenating Serial with the port
specified in the serial function.

• The Port property is given by the port specified in the serial
function.

You can specify the property names and property values using any
format supported by the set function. For example, you can use
property name/property value cell array pairs. Additionally, you can
specify property names without regard to case, and you can make use

2-2884

serial

of property name completion. For example, the following commands
are all valid.

s = serial('COM1','BaudRate',4800);
s = serial('COM1','baudrate',4800);
s = serial('COM1','BAUD',4800);

Refer to Configuring Property Values for a list of serial port object
properties that you can use with serial.

Before you can communicate with the device, it must be connected to
obj with the fopen function. A connected serial port object has a Status
property value of open. An error is returned if you attempt a read or
write operation while the object is not connected to the device. You can
connect only one serial port object to a given serial port.

Example This example creates the serial port object s1 associated with the serial
port COM1.

s1 = serial('COM1');

The Type, Name, and Port properties are automatically configured.

get(s1,{'Type','Name','Port'})
ans =

'serial' 'Serial-COM1' 'COM1'

To specify properties during object creation

s2 = serial('COM2','BaudRate',1200,'DataBits',7);

See Also Functions

fclose, fopen

Properties

Name, Port, Status, Type

2-2885

serialbreak

Purpose Send break to device connected to serial port

Syntax serialbreak(obj)
serialbreak(obj,time)

Arguments obj A serial port object.

time The duration of the break, in milliseconds.

Description serialbreak(obj) sends a break of 10 milliseconds to the device
connected to obj.

serialbreak(obj,time) sends a break to the device with a duration,
in milliseconds, specified by time. Note that the duration of the break
might be inaccurate under some operating systems.

Remarks For some devices, the break signal provides a way to clear the hardware
buffer.

Before you can send a break to the device, it must be connected to obj
with the fopen function. A connected serial port object has a Status
property value of open. An error is returned if you attempt to send a
break while obj is not connected to the device.

serialbreak is a synchronous function, and blocks the command line
until execution is complete.

If you issue serialbreak while data is being asynchronously written,
an error is returned. In this case, you must call the stopasync function
or wait for the write operation to complete.

See Also Functions

fopen, stopasync

Properties

Status

2-2886

set

Purpose Set object properties

Syntax set(H,'PropertyName',PropertyValue,...)
set(H,a)
set(H,pn,pv,...)
set(H,pn,MxN_pv)
a = set(h)
a = set(h,'Default')
a = set(h,'DefaultObjectTypePropertyName')
pv = set(h,'PropertyName')

Description set(H,'PropertyName',PropertyValue,...) sets the named
properties to the specified values on the object(s) identified by H. H can
be a vector of handles, in which case set sets the properties’ values for
all the objects.

set(H,a) sets the named properties to the specified values on the
object(s) identified by H. a is a structure array whose field names are
the object property names and whose field values are the values of the
corresponding properties.

set(H,pn,pv,...) sets the named properties specified in the cell
array pn to the corresponding value in the cell array pv for all objects
identified in H.

set(H,pn,MxN_pv) sets n property values on each of m graphics objects,
where m = length(H) and n is equal to the number of property names
contained in the cell array pn. This allows you to set a given group of
properties to different values on each object.

a = set(h) returns the user-settable properties and possible values for
the object identified by h. a is a structure array whose field names are
the object’s property names and whose field values are the possible
values of the corresponding properties. If you do not specify an output
argument, MATLAB displays the information on the screen. h must
be scalar.

2-2887

set

a = set(h,'Default') returns the names of properties having default
values set on the object identified by h. set also returns the possible
values if they are strings. h must be scalar.

a = set(h,'DefaultObjectTypePropertyName') returns the possible
values of the named property for the specified object type, if the
values are strings. The argument DefaultObjectTypePropertyName
is the word Default concatenated with the object type (e.g., axes)
and the property name (e.g., CameraPosition). For example,
DefaultAxesCameraPosition. h must be scalar.

pv = set(h,'PropertyName') returns the possible values for the
named property. If the possible values are strings, set returns each in a
cell of the cell array pv. For other properties, set returns an empty cell
array. If you do not specify an output argument, MATLAB displays the
information on the screen. h must be scalar.

Remarks You can use any combination of property name/property value pairs,
structure arrays, and cell arrays in one call to set.

Setting Property Units

Note that if you are setting both the FontSize and the FontUnits
properties in one function call, you must set the FontUnits property
first so that MATLAB can correctly interpret the specified FontSize.
The same applies to figure and axes uints — always set the Units
property before setting properties whose values you want to be
interpreted in those units. For example,

f = figure('Units','characters',...
'Position',[30 30 120 35]);

Examples Set the Color property of the current axes to blue.

set(gca,'Color','b')

Change all the lines in a plot to black.

plot(peaks)
set(findobj('Type','line'),'Color','k')

2-2888

set

You can define a group of properties in a structure to better organize
your code. For example, these statements define a structure called
active, which contains a set of property definitions used for the
uicontrol objects in a particular figure. When this figure becomes the
current figure, MATLAB changes colors and enables the controls.

active.BackgroundColor = [.7 .7 .7];
active.Enable = 'on';
active.ForegroundColor = [0 0 0];

if gcf == control_fig_handle
set(findobj(control_fig_handle,'Type','uicontrol'),active)

end

You can use cell arrays to set properties to different values on each
object. For example, these statements define a cell array to set three
properties,

PropName(1) = {'BackgroundColor'};
PropName(2) = {'Enable'};
PropName(3) = {'ForegroundColor'};

These statements define a cell array containing three values for each of
three objects (i.e., a 3-by-3 cell array).

PropVal(1,1) = {[.5 .5 .5]};
PropVal(1,2) = {'off'};
PropVal(1,3) = {[.9 .9 .9]};
PropVal(2,1) = {[1 0 0]};
PropVal(2,2) = {'on'};
PropVal(2,3) = {[1 1 1]};
PropVal(3,1) = {[.7 .7 .7]};
PropVal(3,2) = {'on'};
PropVal(3,3) = {[0 0 0]};

Now pass the arguments to set,

set(H,PropName,PropVal)

2-2889

set

where length(H) = 3 and each element is the handle to a uicontrol.

Setting Different Values for the Same Property on Multiple
Objects

Suppose you want to set the value of the Tag property on five line
objects, each to a different value. Note how the value cell array needs to
be transposed to have the proper shape.

h = plot(rand(5));
set(h,{'Tag'},{'line1','line2','line3','line4','line5'}')

See Also findobj, gca, gcf, gco, gcbo, get

“Finding and Identifying Graphics Objects” on page 1-93 for related
functions

2-2890

set (COM)

Purpose Set object or interface property to specified value

Syntax h.set('pname', value)
h.set('pname1', value1, 'pname2', value2, ...)
set(h, ...)

Description h.set('pname', value) sets the property specified in the string pname
to the given value.

h.set('pname1', value1, 'pname2', value2, ...) sets each
property specified in the pname strings to the given value.

set(h, ...) is an alternate syntax for the same operation.

See “Handling COM Data in MATLAB” in the External Interfaces
documentation for information on how MATLAB converts workspace
matrices to COM data types.

Examples Create an mwsamp control and use set to change the Label and Radius
properties:

f = figure ('position', [100 200 200 200]);
h = actxcontrol ('mwsamp.mwsampctrl.1', [0 0 200 200], f);

h.set('Label', 'Click to fire event', 'Radius', 40);
h.invoke('Redraw');

Here is another way to do the same thing, only without set and invoke:

h.Label = 'Click to fire event';
h.Radius = 40;
h.Redraw;

See Also get, inspect, isprop, addproperty, deleteproperty

2-2891

set (serial)

Purpose Configure or display serial port object properties

Syntax set(obj)
props = set(obj)
set(obj,'PropertyName')
props = set(obj,'PropertyName')
set(obj,'PropertyName',PropertyValue,...)
set(obj,PN,PV)
set(obj,S)

Arguments obj A serial port object or an array of serial port
objects.

'PropertyName' A property name for obj.

PropertyValue A property value supported by PropertyName.

PN A cell array of property names.

PV A cell array of property values.

S A structure with property names and property
values.

props A structure array whose field names are the
property names for obj, or cell array of possible
values.

Description set(obj) displays all configurable properties values for obj. If a
property has a finite list of possible string values, then these values
are also displayed.

props = set(obj) returns all configurable properties and their
possible values for obj to props. props is a structure whose field names
are the property names of obj, and whose values are cell arrays of
possible property values. If the property does not have a finite set of
possible values, then the cell array is empty.

2-2892

set (serial)

set(obj,'PropertyName') displays the valid values for PropertyName
if it possesses a finite list of string values.

props = set(obj,'PropertyName') returns the valid values for
PropertyName to props. props is a cell array of possible string values
or an empty cell array if PropertyName does not have a finite list of
possible values.

set(obj,'PropertyName',PropertyValue,...) configures multiple
property values with a single command.

set(obj,PN,PV) configures the properties specified in the cell array of
strings PN to the corresponding values in the cell array PV. PN must be a
vector. PV can be m-by-n where m is equal to the number of serial port
objects in obj and n is equal to the length of PN.

set(obj,S) configures the named properties to the specified values for
obj. S is a structure whose field names are serial port object properties,
and whose field values are the values of the corresponding properties.

Remarks Refer to Configuring Property Values for a list of serial port object
properties that you can configure with set.

You can use any combination of property name/property value pairs,
structures, and cell arrays in one call to set. Additionally, you can
specify a property name without regard to case, and you can make use
of property name completion. For example, if s is a serial port object,
then the following commands are all valid.

set(s,'BaudRate')
set(s,'baudrate')
set(s,'BAUD')

If you use the help command to display help for set, then you need to
supply the pathname shown below.

help serial/set

2-2893

set (serial)

Examples This example illustrates some of the ways you can use set to configure
or return property values for the serial port object s.

s = serial('COM1');
set(s,'BaudRate',9600,'Parity','even')
set(s,{'StopBits','RecordName'},{2,'sydney.txt'})
set(s,'Parity')
[{none} | odd | even | mark | space]

See Also Functions

get

2-2894

set (timer)

Purpose Configure or display timer object properties

Syntax set(obj)
prop_struct = set(obj)
set(obj,'PropertyName')
prop_cell=set(obj,'PropertyName')
set(obj,'PropertyName',PropertyValue,...)
set(obj,S)
set(obj,PN,PV)

Description set(obj) displays property names and their possible values for all
configurable properties of timer object obj. obj must be a single timer
object.

prop_struct = set(obj) returns the property names and their
possible values for all configurable properties of timer object obj. obj
must be a single timer object. The return value, prop_struct, is a
structure whose field names are the property names of obj, and whose
values are cell arrays of possible property values or empty cell arrays if
the property does not have a finite set of possible string values.

set(obj,'PropertyName') displays the possible values for the
specified property, PropertyName, of timer object obj. obj must be a
single timer object.

prop_cell=set(obj,'PropertyName') returns the possible values for
the specified property, PropertyName, of timer object obj. obj must be a
single timer object. The returned array, prop_cell, is a cell array of
possible value strings or an empty cell array if the property does not
have a finite set of possible string values.

set(obj,'PropertyName',PropertyValue,...) configures the
property, PropertyName, to the specified value, PropertyValue, for
timer object obj. You can specify multiple property name/property
value pairs in a single statement. obj can be a single timer object or a
vector of timer objects, in which case set configures the property values
for all the timer objects specified.

2-2895

set (timer)

set(obj,S) configures the properties of obj, with the values specified
in S, where S is a structure whose field names are object property names.

set(obj,PN,PV) configures the properties specified in the cell array
of strings, PN, to the corresponding values in the cell array PV, for the
timer object obj. PN must be a vector. If obj is an array of timer objects,
PV can be an M-by-N cell array, where M is equal to the length of timer
object array and N is equal to the length of PN. In this case, each timer
object is updated with a different set of values for the list of property
names contained in PN.

Note When specifying parameter/value pairs, you can use any mixture
of strings, structures, and cell arrays in the same call to set.

Examples Create a timer object.

t = timer;

Display all configurable properties and their possible values.

set(t)

BusyMode: [{drop} | queue | error]

ErrorFcn: string -or- function handle -or- cell array

ExecutionMode: [{singleShot} | fixedSpacing | fixedDelay | fixedRate]

Name

ObjectVisibility: [{on} | off]

Period

StartDelay

StartFcn: string -or- function handle -or- cell array

StopFcn: string -or- function handle -or- cell array

Tag

TasksToExecute

TimerFcn: string -or- function handle -or- cell array

UserData

View the possible values of the ExecutionMode property.

2-2896

set (timer)

set(t, 'ExecutionMode')
[{singleShot} | fixedSpacing | fixedDelay | fixedRate]

Set the value of a specific timer object property.

set(t, 'ExecutionMode', 'FixedRate')

Set the values of several properties of the timer object.

set(t, 'TimerFcn', 'callbk', 'Period', 10)

Use a cell array to specify the names of the properties you want to set
and another cell array to specify the values of these properties.

set(t, {'StartDelay', 'Period'}, {30, 30})

See Also timer, get(timer)

2-2897

set (timeseries)

Purpose Set properties of timeseries object

Syntax set(ts,'Property',Value)
set(ts,'Property1',Value1,'Property2',Value2,...)
set(ts,'Property')
set(ts)

Description set(ts,'Property',Value) sets the property 'Property' of the
timeseries object ts to the value Value. The following syntax is
equivalent:

ts.Property = Value

set(ts,'Property1',Value1,'Property2',Value2,...) sets
multiple property values for ts with a single statement.

set(ts,'Property') displays values for the specified property of the
timeseries object ts.

set(ts) displays all properties and values of the timeseries object ts.

See Also get (timeseries)

2-2898

set (tscollection)

Purpose Set properties of tscollection object

Syntax set(tsc,'Property',Value)
set(tsc,'Property1',Value1,'Property2',Value2,...)
set(tsc,'Property')

Description set(tsc,'Property',Value) sets the property 'Property' of the
tscollection tsc to the value Value. The following syntax is
equivalent:

tsc.Property = Value

set(tsc,'Property1',Value1,'Property2',Value2,...) sets
multiple property values for tsc with a single statement.

set(tsc,'Property') displays values for the specified property in the
time-series collection tsc.

set(tsc) displays all properties and values of the tscollection object
tsc.

See Also get (tscollection)

2-2899

setabstime (timeseries)

Purpose Set times of timeseries object as date strings

Syntax ts = setabstime(ts,Times)
ts = setabstime(ts,Times,Format)

Description ts = setabstime(ts,Times) sets the times in ts to the date strings
specified in Times. Times must either be a cell array of strings, or a
char array containing valid date or time values in the same date format.

ts = setabstime(ts,Times,Format) explicitly specifies the
date-string format used in Times.

Examples 1 Create a time-series object.

ts = timeseries(rand(3,1))

2 Set the absolute time vector.

ts = setabstime(ts,{'12-DEC-2005 12:34:56',...
'12-DEC-2005 13:34:56','12-DEC-2005 14:34:56'})

See Also datestr, getabstime (timeseries), timeseries

2-2900

setabstime (tscollection)

Purpose Set times of tscollection object as date strings

Syntax tsc = setabstime(tsc,Times)
tsc = setabstime(tsc,Times,format)

Description tsc = setabstime(tsc,Times) sets the times in tsc using the date
strings Times. Times must be either a cell array of strings, or a char
array containing valid date or time values in the same date format.

tsc = setabstime(tsc,Times,format) specifies the date-string
format used in Times explicitly.

Examples 1 Create a tscollection object.

tsc = tscollection(timeseries(rand(3,1)))

2 Set the absolute time vector.

tsc = setabstime(tsc,{'12-DEC-2005 12:34:56',...
'12-DEC-2005 13:34:56','12-DEC-2005 14:34:56'})

See Also datestr, getabstime (tscollection), tscollection

2-2901

setappdata

Purpose Specify application-defined data

Syntax setappdata(h,'name',value)

Description setappdata(h,'name',value) sets application-defined data for the
object with handle h. The application-defined data, which is created
if it does not already exist, is assigned the specified name and value.
The value can be any type of data.

See Also getappdata, isappdata, rmappdata

2-2902

setdiff

Purpose Find set difference of two vectors

Syntax c = setdiff(A, B)
c = setdiff(A, B, 'rows')
[c,i] = setdiff(...)

Description c = setdiff(A, B) returns the values in A that are not in B. In set
theory terms, c = A - B. Inputs A and B can be numeric or character
vectors or cell arrays of strings. The resulting vector is sorted in
ascending order.

c = setdiff(A, B, 'rows'), when A and B are matrices with the
same number of columns, returns the rows from A that are not in B.

[c,i] = setdiff(...) also returns an index vector index such that
c = a(i) or c = a(i,:).

Remarks Because NaN is considered to be not equal to itself, it is always in the
result c if it is in A.

Examples A = magic(5);
B = magic(4);
[c, i] = setdiff(A(:), B(:));
c' = 17 18 19 20 21 22 23 24 25
i' = 1 10 14 18 19 23 2 6 15

See Also intersect, ismember, issorted, setxor, union, unique

2-2903

setenv

Purpose Set environment variable

Syntax setenv(name, value)
setenv(name)

Description setenv(name, value) sets the value of an environment variable
belonging to the underlying operating system. Inputs name and value
are both strings. If name already exists as an environment variable,
then setenv replaces its current value with the string given in value. If
name does not exist, setenv creates a new environment variable called
name and assigns value to it.

setenv(name) is equivalent to setenv(name, '') and assigns a null
value to the variable name. Under the Windows operating system, this
is equivalent to undefining the variable. On most UNIX-like platforms,
it is possible to have an environment variable defined as empty.

The maximum number of characters in name is 215 - 2 (or 32766). If
name contains the character =, setenv throws an error. The behavior of
environment variables with = in the name is not well-defined.

On all platforms, setenv passes the name and value strings to the
operating system unchanged. Special characters such as ;, /, :, $, %,
etc. are left unexpanded and intact in the variable value.

Values assigned to variables using setenv are picked up by any process
that is spawned using the MATLAB system, unix, dos or ! functions.
You can retrieve any value set with setenv by using getenv(name).

Examples % Set and retrieve a new value for the environment variable TEMP:

setenv('TEMP', 'C:\TEMP');
getenv('TEMP')

% Append the Perl\bin directory to your system PATH variable:

setenv('PATH', [getenv('PATH') ';D:\Perl\bin']);

See Also getenv, system, unix, dos, !

2-2904

setfield

Purpose Set value of structure array field

Syntax s = setfield(s, 'field', v)
s = setfield(s, {i,j}, 'field', {k}, v)

Description s = setfield(s, 'field', v), where s is a 1-by-1 structure, sets the
contents of the specified field to the value v. If field is not an existing
field in structure s, MATLAB creates that field and assigns the value v
to it. This is equivalent to the syntax s.field = v.

s = setfield(s, {i,j}, 'field', {k}, v) sets the contents of
the specified field to the value v. If field is not an existing field in
structure s, MATLAB creates that field and assigns the value v to it.
This is equivalent to the syntax s(i,j).field(k) = v. All subscripts
must be passed as cell arrays — that is, they must be enclosed in curly
braces (similar to {i,j} and {k} above). Pass field references as strings.

See “Naming conventions for Structure Field Names” for guidelines to
creating valid field names.

Remarks In many cases, you can use dynamic field names in place of the
getfield and setfield functions. Dynamic field names express
structure fields as variable expressions that MATLAB evaluates at
run-time. See Solution 1-19QWG for information about using dynamic
field names versus the getfield and setfield functions.

Examples Given the structure

mystr(1,1).name = 'alice';
mystr(1,1).ID = 0;
mystr(2,1).name = 'gertrude';
mystr(2,1).ID = 1;

You can change the name field of mystr(2,1) using

mystr = setfield(mystr, {2,1}, 'name', 'ted');
mystr(2,1).name

2-2905

setfield

ans =

ted

The following example sets fields of a structure using setfield with
variable and quoted field names and additional subscripting arguments.

class = 5; student = 'John_Doe';
grades_Doe = [85, 89, 76, 93, 85, 91, 68, 84, 95, 73];
grades = [];

grades = setfield(grades, {class}, student, 'Math', ...
{10, 21:30}, grades_Doe);

You can check the outcome using the standard structure syntax.

grades(class).John_Doe.Math(10, 21:30)

ans =

85 89 76 93 85 91 68 84 95 73

See Also getfield, fieldnames, isfield, orderfields, rmfield, “Using
Dynamic Field Names”

2-2906

setinterpmethod

Purpose Set default interpolation method for timeseries object

Syntax ts = setinterpmethod(ts,Method)
ts = setinterpmethod(ts,FHandle)
ts = setinterpmethod(ts,InterpObj),

Description ts = setinterpmethod(ts,Method) sets the default interpolation
method for timeseries object ts, where Method is a string. Method in
ts. Method is either 'linear' or 'zoh' (zero-order hold). For example:

ts = timeseries(rand(100,1),1:100);
ts = setinterpmethod(ts,'zoh');

ts = setinterpmethod(ts,FHandle) sets the default interpolation
method for timeseries object ts, where FHandle is a function handle
to the interpolation method defined by the function handle FHandle.
For example:

ts = timeseries(rand(100,1),1:100);
myFuncHandle = @(new_Time,Time,Data)...

interp1(Time,Data,new_Time,...
'linear','extrap');

ts = setinterpmethod(ts,myFuncHandle);
ts = resample(ts,[-5:0.1:10]);
plot(ts);

Note For FHandle, you must use three input arguments. The order of
input arguments must be new_Time, Time, and Data. The single output
argument must be the interpolated data only.

ts = setinterpmethod(ts,InterpObj), where InterpObj is a
tsdata.interpolation object that directly replaces the interpolation
object stored in ts. For example:

ts = timeseries(rand(100,1),1:100);

2-2907

setinterpmethod

myFuncHandle = @(new_Time,Time,Data)...
interp1(Time,Data,new_Time,...

'linear','extrap');
myInterpObj = tsdata.interpolation(myFuncHandle);
ts = setinterpmethod(ts,myInterpObj);

This method is case sensitive.

See Also getinterpmethod, timeseries, tsprops

2-2908

setpixelposition

Purpose Set component position in pixels

Syntax setpixelposition(handle,position)
setpixelposition(handle,position,recursive)

Description setpixelposition(handle,position) sets the position of the
component specified by handle, to the specified pixel position relative to
its parent. position is a four-element vector that specifies the location
and size of the component: [distance from left, distance from bottom,
width, height].

setpixelposition(handle,position,recursive) sets the position as
above. If recursive is true, the position is set relative to the parent
figure of handle.

Example This example first creates a push button within a panel.

f = figure('Position',[300 300 300 200]);
p = uipanel('Position',[.2 .2 .6 .6];
h1 = uicontrol(p,'Style','PushButton','Units','Nomalized',...

'String','Push Button','Position',[.1 .1 .5 .2]);

2-2909

setpixelposition

The example then retrieves the position of the push button and changes
its position with respect to the panel.

pos1 = getpixelposition(h1);
setpixelposition(h1,pos1 + [10 10 25 25]);

2-2910

setpixelposition

See Also getpixelposition, uicontrol, uipanel

2-2911

setpref

Purpose Set preference

Syntax setpref('group','pref',val)
setpref('group',{'pref1','pref2',...,'prefn'},{val1,val2,...,

valn})

Description setpref('group','pref',val) sets the preference specified by group
and pref to the value val. Setting a preference that does not yet exist
causes it to be created.

group labels a related collection of preferences. You can choose any
name that is a legal variable name, and is descriptive enough to be
unique, e.g., 'MathWorks_GUIDE_ApplicationPrefs'. The input
argument pref identifies an individual preference in that group, and
must be a legal variable name.

setpref('group',{'pref1','pref2',...,'prefn'},{val1,val2,...,valn})
sets each preference specified in the cell array of names to the
corresponding value.

Note Preference values are persistent and maintain their values
between MATLAB sessions. Where they are stored is system dependent.

Examples addpref('mytoolbox','version','0.0')
setpref('mytoolbox','version','1.0')
getpref('mytoolbox','version')

ans =
1.0

See Also addpref, getpref, ispref, rmpref, uigetpref, uisetpref

2-2912

setstr

Purpose Set string flag

Description This MATLAB 4 function has been renamed char in MATLAB 5.

2-2913

settimeseriesnames

Purpose Change name of timeseries object in tscollection

Syntax tsc = settimeseriesnames(tsc,old,new)

Description tsc = settimeseriesnames(tsc,old,new) replaces the old name of
timeseries object with the new name in tsc.

See Also tscollection

2-2914

setxor

Purpose Find set exclusive OR of two vectors

Syntax c = setxor(A, B)
c = setxor(A, B, 'rows')
[c, ia, ib] = setxor(...)

Description c = setxor(A, B) returns the values that are not in the intersection
of A and B. Inputs A and B can be numeric or character vectors or cell
arrays of strings. The resulting vector is sorted.

c = setxor(A, B, 'rows'), when A and B are matrices with the same
number of columns, returns the rows that are not in the intersection
of A and B.

[c, ia, ib] = setxor(...) also returns index vectors ia and ib
such that c is a sorted combination of the elements c = a(ia) and c =
b(ib) or, for row combinations, c = a(ia,:) and c = b(ib,:).

Examples a = [-1 0 1 Inf -Inf NaN];
b = [-2 pi 0 Inf];
c = setxor(a, b)

c =
-Inf -2.0000 -1.0000 1.0000 3.1416 NaN

See Also intersect, ismember, issorted, setdiff, union, unique

2-2915

shading

Purpose Set color shading properties

Syntax shading flat
shading faceted
shading interp
shading(axes_handle,...)

Description The shading function controls the color shading of surface and patch
graphics objects.

shading flat each mesh line segment and face has a constant color
determined by the color value at the endpoint of the segment or the
corner of the face that has the smallest index or indices.

shading faceted flat shading with superimposed black mesh lines.
This is the default shading mode.

shading interp varies the color in each line segment and face by
interpolating the colormap index or true color value across the line
or face.

shading(axes_handle,...) applies the shading type to the objects in
the axes specified by axes_handle, instead of the current axes.

Examples Compare a flat, faceted, and interpolated-shaded sphere.

subplot(3,1,1)
sphere(16)
axis square
shading flat
title('Flat Shading')

subplot(3,1,2)
sphere(16)
axis square
shading faceted
title('Faceted Shading')

subplot(3,1,3)

2-2916

shading

sphere(16)
axis square
shading interp
title('Interpolated Shading')

Algorithm shading sets the EdgeColor and FaceColor properties of all surface and
patch graphics objects in the current axes. shading sets the appropriate
values, depending on whether the surface or patch objects represent
meshes or solid surfaces.

See Also fill, fill3, hidden, mesh, patch, pcolor, surf

The EdgeColor and FaceColor properties for patch and surface
graphics objects.

“Color Operations” on page 1-98 for related functions

2-2917

shiftdim

Purpose Shift dimensions

Syntax B = shiftdim(X,n)
[B,nshifts] = shiftdim(X)

Description B = shiftdim(X,n) shifts the dimensions of X by n. When n is positive,
shiftdim shifts the dimensions to the left and wraps the n leading
dimensions to the end. When n is negative, shiftdim shifts the
dimensions to the right and pads with singletons.

[B,nshifts] = shiftdim(X) returns the array B with the same
number of elements as X but with any leading singleton dimensions
removed. A singleton dimension is any dimension for which
size(A,dim) = 1. nshifts is the number of dimensions that are
removed.

If X is a scalar, shiftdim has no effect.

Examples The shiftdim command is handy for creating functions that, like sum or
diff, work along the first nonsingleton dimension.

a = rand(1,1,3,1,2);
[b,n] = shiftdim(a); % b is 3-by-1-by-2 and n is 2.
c = shiftdim(b,-n); % c == a.
d = shiftdim(a,3); % d is 1-by-2-by-1-by-1-by-3.

See Also circshift, reshape, squeeze

2-2918

showplottool

Purpose Show or hide figure plot tool

GUI
Alternatives

Click the larger Plotting Tools icon on the figure toolbar to

collectively enable plotting tools, and the smaller icon to collectively
disable them. Individually select the Figure Palette, Plot Browser,
and Property Editor tools from the figure’s View menu. For details,
see “Plotting Tools — Interactive Plotting” in the MATLAB Graphics
documentation.

Syntax showplottool('tool')
showplottool('on','tool')
showplottool('off','tool')
showplottool('toggle','tool')
showplottool(figure_handle,...)

Description showplottool('tool') shows the specified plot tool on the current
figure. tool can be one of the following strings:

• figurepalette

• plotbrowser

• propertyeditor

2-2919

showplottool

showplottool('on','tool') shows the specified plot tool on the
current figure.

showplottool('off','tool') hides the specified plot tool on the
current figure.

showplottool('toggle','tool') toggles the visibility of the specified
plot tool on the current figure.

showplottool(figure_handle,...) operates on the specified figure
instead of the current figure.

Note When you dock, undock, resize, or reposition a plotting tool and
then close it, it will still be configured as you left it the next time you
open it. There is no command to reset plotting tools to their original,
default locations.

See Also figurepalette, plotbrowser, plottools, propertyeditor

2-2920

shrinkfaces

Purpose Reduce size of patch faces

Syntax shrinkfaces(p,sf)
nfv = shrinkfaces(p,sf)
nfv = shrinkfaces(fv,sf)
shrinkfaces(p)
nfv = shrinkfaces(f,v,sf)
[nf,nv] = shrinkfaces(...)

Description shrinkfaces(p,sf) shrinks the area of the faces in patch p to shrink
factor sf. A shrink factor of 0.6 shrinks each face to 60% of its original
area. If the patch contains shared vertices, MATLAB creates nonshared
vertices before performing the face-area reduction.

nfv = shrinkfaces(p,sf) returns the face and vertex data in the
struct nfv, but does not set the Faces and Vertices properties of patch
p.

nfv = shrinkfaces(fv,sf) uses the face and vertex data from the
struct fv.

shrinkfaces(p) and shrinkfaces(fv) (without specifying a shrink
factor) assume a shrink factor of 0.3.

nfv = shrinkfaces(f,v,sf) uses the face and vertex data from the
arrays f and v.

[nf,nv] = shrinkfaces(...) returns the face and vertex data in two
separate arrays instead of a struct.

Examples This example uses the flow data set, which represents the speed profile
of a submerged jet within an infinite tank (type help flow for more
information). Two isosurfaces provide a before and after view of the
effects of shrinking the face size.

• First reducevolume samples the flow data at every other point and
then isosurface generates the faces and vertices data.

2-2921

shrinkfaces

• The patch command accepts the face/vertex struct and draws the
first (p1) isosurface.

• Use the daspect, view, and axis commands to set up the view and
then add a title.

• The shrinkfaces command modifies the face/vertex data and passes
it directly to patch.

[x,y,z,v] = flow;
[x,y,z,v] = reducevolume(x,y,z,v,2);
fv = isosurface(x,y,z,v,-3);
p1 = patch(fv);
set(p1,'FaceColor','red','EdgeColor',[.5,.5,.5]);
daspect([1 1 1]); view(3); axis tight
title('Original')

figure
p2 = patch(shrinkfaces(fv,.3));
set(p2,'FaceColor','red','EdgeColor',[.5,.5,.5]);
daspect([1 1 1]); view(3); axis tight
title('After Shrinking')

2-2922

shrinkfaces

2-2923

shrinkfaces

See Also isosurface, patch, reducevolume, daspect, view, axis

“Volume Visualization” on page 1-102 for related functions

2-2924

sign

Purpose Signum function

Syntax Y = sign(X)

Description Y = sign(X) returns an array Y the same size as X, where each element
of Y is:

• 1 if the corresponding element of X is greater than zero

• 0 if the corresponding element of X equals zero

• -1 if the corresponding element of X is less than zero

For nonzero complex X, sign(X) = X./abs(X).

See Also abs, conj, imag, real

2-2925

sin

Purpose Sine of argument in radians

Syntax Y = sin(X)

Description The sin function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = sin(X) returns the circular sine of the elements of X.

Examples Graph the sine function over the domain .

x = -pi:0.01:pi;
plot(x,sin(x)), grid on

The expression sin(pi) is not exactly zero, but rather a value the size
of the floating-point accuracy eps, because pi is only a floating-point
approximation to the exact value of .

2-2926

sin

Definition The sine can be defined as

Algorithm sin uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also sind, sinh, asin, asind, asinh

2-2927

http://www.netlib.org

sind

Purpose Sine of argument in degrees

Syntax Y = sind(X)

Description Y = sind(X) is the sine of the elements of X, expressed in degrees. For
integers n, sind(n*180) is exactly zero, whereas sin(n*pi) reflects the
accuracy of the floating point value of pi.

See Also sin, sinh, asin, asind, asinh

2-2928

single

Purpose Convert to single precision

Syntax B = single(A)

Description B = single(A) converts the matrix A to single precision, returning
that value in B. A can be any numeric object (such as a double). If
A is already single precision, single has no effect. Single-precision
quantities require less storage than double-precision quantities, but
have less precision and a smaller range.

The single class is primarily meant to be used to store single-precision
values. Hence most operations that manipulate arrays without
changing their elements are defined. Examples are reshape, size, the
relational operators, subscripted assignment, and subscripted reference.

You can define your own methods for the single class by placing the
appropriately named method in an @single directory within a directory
on your path.

Examples a = magic(4);
b = single(a);

whos
Name Size Bytes Class

a 4x4 128 double array
b 4x4 64 single array

See Also double

2-2929

sinh

Purpose Hyperbolic sine of argument in radians

Syntax Y = sinh(X)

Description The sinh function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = sinh(X) returns the hyperbolic sine of the elements of X.

Examples Graph the hyperbolic sine function over the domain .

x = -5:0.01:5;
plot(x,sinh(x)), grid on

Definition The hyperbolic sine can be defined as

2-2930

sinh

Algorithm sinh uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also sin, sind, asin, asinh, asind

2-2931

http://www.netlib.org

size

Purpose Array dimensions

Syntax d = size(X)
[m,n] = size(X)
m = size(X,dim)
[d1,d2,d3,...,dn] = size(X),

Description d = size(X) returns the sizes of each dimension of array X in a vector d
with ndims(X) elements. If X is a scalar, which MATLAB regards as a
1-by-1 array, size(X) returns the vector [1 1].

[m,n] = size(X) returns the size of matrix X in separate variables
m and n.

m = size(X,dim) returns the size of the dimension of X specified by
scalar dim.

[d1,d2,d3,...,dn] = size(X), for n > 1, returns the sizes of the
dimensions of the array X in the variables d1,d2,d3,...,dn, provided the
number of output arguments n equals ndims(X). If n does not equal
ndims(X), the following exceptions hold:

n < ndims(X) di equals the size of the ith dimension of X for
, but dn equals the product of the sizes of

the remaining dimensions of X, that is, dimensions
n through ndims(X).

n > ndims(X) size returns ones in the “extra” variables, that is,
those corresponding to ndims(X)+1 through n.

Note For a Java array, size returns the length of the Java array as the
number of rows. The number of columns is always 1. For a Java array
of arrays, the result describes only the top level array.

Examples Example 1

The size of the second dimension of rand(2,3,4) is 3.

2-2932

size

m = size(rand(2,3,4),2)

m =
3

Here the size is output as a single vector.

d = size(rand(2,3,4))

d =
2 3 4

Here the size of each dimension is assigned to a separate variable.

[m,n,p] = size(rand(2,3,4))
m =

2

n =
3

p =
4

Example 2

If X = ones(3,4,5), then

[d1,d2,d3] = size(X)

d1 = d2 = d3 =
3 4 5

But when the number of output variables is less than ndims(X):

[d1,d2] = size(X)

d1 = d2 =
3 20

2-2933

size

The “extra” dimensions are collapsed into a single product.

If n > ndims(X), the “extra” variables all represent singleton
dimensions:

[d1,d2,d3,d4,d5,d6] = size(X)

d1 = d2 = d3 =
3 4 5

d4 = d5 = d6 =
1 1 1

See Also exist, length, numel, whos

2-2934

size (serial)

Purpose Size of serial port object array

Syntax d = size(obj)
[m,n] = size(obj)
[m1,m2,m3,...,mn] = size(obj)
m = size(obj,dim)

Arguments obj A serial port object or an array of serial port objects.

dim The dimension of obj.

d The number of rows and columns in obj.

m The number of rows in obj, or the length of the
dimension specified by dim.

n The number of columns in obj.

m1,m2,...,mn The length of the first N dimensions of obj.

Description d = size(obj) returns the two-element row vector d containing the
number of rows and columns in obj.

[m,n] = size(obj) returns the number of rows and columns in
separate output variables.

[m1,m2,m3,...,mn] = size(obj) returns the length of the first n
dimensions of obj.

m = size(obj,dim) returns the length of the dimension specified by
the scalar dim. For example, size(obj,1) returns the number of rows.

See Also Functions

length

2-2935

size (timeseries)

Purpose Size of timeseries object

Syntax size(ts)

Description size(ts) returns [n 1], where n is the length of the time vector for
timeseries object ts.

Remarks If you want the size of the whole data set, use the following syntax:

size(ts.data)

If you want the size of each data sample, use the following syntax:

getdatasamplesize(ts)

See Also getdatasamplesize, isempty (timeseries), length (timeseries)

2-2936

size (tscollection)

Purpose Size of tscollection object

Syntax size(tsc)

Description size(tsc) returns [n m], where n is the length of the time vector and
m is the number of tscollection members.

See Also length (tscollection), isempty (tscollection), tscollection

2-2937

slice

Purpose Volumetric slice plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax slice(V,sx,sy,sz)
slice(X,Y,Z,V,sx,sy,sz)
slice(V,XI,YI,ZI)
slice(X,Y,Z,V,XI,YI,ZI)
slice(...,'method')
slice(axes_handle,...)
h = slice(...)

Description slice displays orthogonal slice planes through volumetric data.

slice(V,sx,sy,sz) draws slices along the x, y, z directions in the
volume V at the points in the vectors sx, sy, and sz. V is an m-by-n-by-p
volume array containing data values at the default location X = 1:n,
Y = 1:m, Z = 1:p. Each element in the vectors sx, sy, and sz defines
a slice plane in the x-, y-, or z-axis direction.

slice(X,Y,Z,V,sx,sy,sz) draws slices of the volume V. X, Y, and Z
are three-dimensional arrays specifying the coordinates for V. X, Y,
and Z must be monotonic and orthogonally spaced (as if produced by
the function meshgrid). The color at each point is determined by 3-D
interpolation into the volume V.

slice(V,XI,YI,ZI) draws data in the volume V for the slices defined
by XI, YI, and ZI. XI, YI, and ZI are matrices that define a surface,
and the volume is evaluated at the surface points. XI, YI, and ZI must
all be the same size.

2-2938

slice

slice(X,Y,Z,V,XI,YI,ZI) draws slices through the volume V along
the surface defined by the arrays XI, YI, ZI.

slice(...,'method') specifies the interpolation method. 'method' is
'linear', 'cubic', or 'nearest'.

• linear specifies trilinear interpolation (the default).

• cubic specifies tricubic interpolation.

• nearest specifies nearest-neighbor interpolation.

slice(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes object (gca). The axes
clim property is set to span the finite values of V.

h = slice(...) returns a vector of handles to surface graphics
objects.

Remarks The color drawn at each point is determined by interpolation into the
volume V.

Examples Visualize the function

over the range –2 ≤ x ≤ 2, –2 ≤y ≤2, – 2 ≤ z ≤2:

[x,y,z] = meshgrid(-2:.2:2,-2:.25:2,-2:.16:2);
v = x.*exp(-x.^2-y.^2-z.^2);
xslice = [-1.2,.8,2]; yslice = 2; zslice = [-2,0];
slice(x,y,z,v,xslice,yslice,zslice)
colormap hsv

2-2939

slice

Slicing At Arbitrary Angles

You can also create slices that are oriented in arbitrary planes. To do
this,

• Create a slice surface in the domain of the volume (surf, linspace).

• Orient this surface with respect to the axes (rotate).

• Get the XData, YData, and ZData of the surface (get).

• Use this data to draw the slice plane within the volume.

For example, these statements slice the volume in the first example
with a rotated plane. Placing these commands within a for loop
“passes” the plane through the volume along the z-axis.

for i = -2:.5:2
hsp = surf(linspace(-2,2,20),linspace(-2,2,20),zeros(20)+i);

2-2940

slice

rotate(hsp,[1,-1,1],30)
xd = get(hsp,'XData');
yd = get(hsp,'YData');
zd = get(hsp,'ZData');
delete(hsp)
slice(x,y,z,v,[-2,2],2,-2) % Draw some volume boundaries
hold on
slice(x,y,z,v,xd,yd,zd)
hold off
axis tight
view(-5,10)
drawnow

end

The following picture illustrates three positions of the same slice surface
as it passes through the volume.

2-2941

slice

Slicing with a Nonplanar Surface

You can slice the volume with any surface. This example probes the
volume created in the previous example by passing a spherical slice
surface through the volume.

[xsp,ysp,zsp] = sphere;
slice(x,y,z,v,[-2,2],2,-2) % Draw some volume boundaries

for i = -3:.2:3
hsp = surface(xsp+i,ysp,zsp);
rotate(hsp,[1 0 0],90)
xd = get(hsp,'XData');
yd = get(hsp,'YData');
zd = get(hsp,'ZData');
delete(hsp)
hold on
hslicer = slice(x,y,z,v,xd,yd,zd);
axis tight
xlim([-3,3])
view(-10,35)
drawnow
delete(hslicer)
hold off

end

The following picture illustrates three positions of the spherical slice
surface as it passes through the volume.

2-2942

slice

See Also interp3, meshgrid

“Volume Visualization” on page 1-102 for related functions

Exploring Volumes with Slice Planes for more examples

2-2943

smooth3

Purpose Smooth 3-D data

Syntax

Description W = smooth3(V) smooths the input data V and returns the smoothed
data in W.

W = smooth3(V,'filter') filter determines the convolution kernel
and can be the strings

• 'gaussian'

• 'box' (default)

W = smooth3(V,'filter',size) sets the size of the convolution kernel
(default is [3 3 3]). If size is scalar, then size is interpreted as [size,
size, size].

W = smooth3(V,'filter',size,sd) sets an attribute of the
convolution kernel. When filter is gaussian, sd is the standard
deviation (default is .65).

Examples This example smooths some random 3-D data and then creates an
isosurface with end caps.

rand('seed',0)
data = rand(10,10,10);
data = smooth3(data,'box',5);
p1 = patch(isosurface(data,.5), ...

'FaceColor','blue','EdgeColor','none');
p2 = patch(isocaps(data,.5), ...

'FaceColor','interp','EdgeColor','none');
isonormals(data,p1)
view(3); axis vis3d tight
camlight; lighting phong

2-2944

smooth3

See Also isocaps, isonormals, isosurface, patch

“Volume Visualization” on page 1-102 for related functions

See Displaying an Isosurface for another example.

2-2945

sort

Purpose Sort array elements in ascending or descending order

Syntax B = sort(A)
B = sort(A,dim)
B = sort(...,mode)
[B,IX] = sort(A,...)

Description B = sort(A) sorts the elements along different dimensions of an array,
and arranges those elements in ascending order.

If A is a ... sort(A) ...

Vector Sorts the elements of A.

Matrix Sorts each column of A.

Multidimensional array Sorts A along the first non-singleton
dimension, and returns an array of sorted
vectors.

Cell array of strings Sorts the strings in ASCII dictionary order.

Integer, floating-point, logical, and character arrays are permitted.
Floating-point arrays can be complex. For elements of A with identical
values, the order of these elements is preserved in the sorted list.
When A is complex, the elements are sorted by magnitude, i.e., abs(A),
and where magnitudes are equal, further sorted by phase angle, i.e.,
angle(A), on the interval . If A includes any NaN elements, sort
places these at the high end.

B = sort(A,dim) sorts the elements along the dimension of A specified
by a scalar dim.

B = sort(...,mode) sorts the elements in the specified direction,
depending on the value of mode.

’ascend’ Ascending order (default)

’descend’ Descending order

2-2946

sort

[B,IX] = sort(A,...) also returns an array of indices IX, where
size(IX) == size(A). If A is a vector, B = A(IX). If A is an m-by-n
matrix, then each column of IX is a permutation vector of the
corresponding column of A, such that

for j = 1:n
B(:,j) = A(IX(:,j),j);

end

If A has repeated elements of equal value, the returned indices preserve
the original ordering.

Sorting Complex Entries

If A has complex entries r and s, sort orders them according to the
following rule: r appears before s in sort(A) if either of the following
hold:

• abs(r) < abs(s)

• abs(r) = abs(s) and angle(r)<angle(s)

where

For example,

v = [1 -1 i -i];
angle(v)

ans =

0 3.1416 1.5708 -1.5708
sort(v)

ans =

0 - 1.0000i 1.0000
0 + 1.0000i -1.0000

2-2947

sort

Note sort uses a different rule for ordering complex numbers than do
max and min, or the relational operators < and >. See the Relational
Operators reference page for more information.

Examples Example 1

This example sorts a matrix A in each dimension, and then sorts it a
third time, returning an array of indices for the sorted result.

A = [3 7 5
0 4 2];

sort(A,1)

ans =
0 4 2
3 7 5

sort(A,2)

ans =
3 5 7
0 2 4

[B,IX] = sort(A,2)

B =
3 5 7
0 2 4

IX =
1 3 2
1 3 2

Example 2

This example sorts each column of a matrix in descending order.

2-2948

sort

A = [3 7 5
6 8 3
0 4 2];

sort(A,1,'descend')

ans =
6 8 5
3 7 3
0 4 2

This is equivalent to

sort(A,'descend')

ans =
6 8 5
3 7 3
0 4 2

See Also issorted, max, mean, median, min, sortrows

2-2949

sortrows

Purpose Sort rows in ascending order

Syntax B = sortrows(A)
B = sortrows(A,column)
[B,index] = sortrows(A,...)

Description B = sortrows(A) sorts the rows of A in ascending order. Argument A
must be either a matrix or a column vector.

For strings, this is the familiar dictionary sort. When A is complex, the
elements are sorted by magnitude, and, where magnitudes are equal,
further sorted by phase angle on the interval .

B = sortrows(A,column) sorts the matrix based on the columns
specified in the vector column. If an element of column is positive,
MATLAB sorts the corresponding column of matrix A in ascending order;
if an element of column is negative, MATLAB sorts the corresponding
column in descending order. For example, sortrows(A,[2 -3]) sorts
the rows of A first in ascending order for the second column, and then by
descending order for the third column.

[B,index] = sortrows(A,...) also returns an index vector index.

If A is a column vector, then B = A(index). If A is an m-by-n matrix,
then B = A(index,:).

Examples Start with a mostly random matrix, A:

rand('state',0)
A = floor(rand(6,7) * 100);
A(1:4,1)=95; A(5:6,1)=76; A(2:4,2)=7; A(3,3)=73
A =

95 45 92 41 13 1 84
95 7 73 89 20 74 52
95 7 73 5 19 44 20
95 7 40 35 60 93 67
76 61 93 81 27 46 83
76 79 91 0 19 41 1

2-2950

sortrows

When called with only a single input argument, sortrows bases the
sort on the first column of the matrix. For any rows that have equal
elements in a particular column, (e.g., A(1:4,1) for this matrix), sorting
is based on the column immediately to the right, (A(1:4,2) in this case):

sortrows(A)
ans =

76 61 93 81 27 46 83
76 79 91 0 19 41 1
95 7 40 35 60 93 67
95 7 73 5 19 44 20
95 7 73 89 20 74 52
95 45 92 41 13 1 84

When called with two input arguments, sortrows bases the sort entirely
on the column specified in the second argument. Rows that have equal
elements in this column are sorted; rows with equal elements in other
columns are left in their original order:

sortrows(A,1)
ans =

76 61 93 81 27 46 83
76 79 91 0 19 41 1
95 45 92 41 13 1 84
95 7 73 89 20 74 52
95 7 73 5 19 44 20
95 7 40 35 60 93 67

This example specifies two columns to sort by: columns 1 and 7. This
tells sortrows to sort by column 1 first, and then for any rows with
equal values in column 1, to sort by column 7:

sortrows(A,[1 7])
ans =

76 79 91 0 19 41 1
76 61 93 81 27 46 83
95 7 73 5 19 44 20
95 7 73 89 20 74 52

2-2951

sortrows

95 7 40 35 60 93 67
95 45 92 41 13 1 84

Sort the matrix using the values in column 4 this time and in reverse
order:

sortrows(A, -4)
ans =

95 7 73 89 20 74 52
76 61 93 81 27 46 83
95 45 92 41 13 1 84
95 7 40 35 60 93 67
95 7 73 5 19 44 20
76 79 91 0 19 41 1

See Also issorted, sort

2-2952

sound

Purpose Convert vector into sound

Syntax sound(y,Fs)
sound(y)
sound(y,Fs,bits)

Description sound(y,Fs) sends the signal in vector y (with sample frequency
Fs) to the speaker on PC and most UNIX platforms. Values in y are
assumed to be in the range . Values outside that range
are clipped. Stereo sound is played on platforms that support it when
y is an n-by-2 matrix. The values in column 1 are assigned to the left
channel, and those in column 2 to the right.

Note The playback duration that results from setting Fs depends on
the sound card you have installed. Most sound cards support sample
frequencies of approximately 5-10 kHz to 44.1 kHz. Sample frequencies
outside this range can produce unexpected results.

sound(y) plays the sound at the default sample rate or 8192 Hz.

sound(y,Fs,bits) plays the sound using bits number of bits/sample,
if possible. Most platforms support bits = 8 or bits = 16.

Remarks MATLAB supports all Windows-compatible sound devices. Additional
sound acquisition and generation capability is available in the Data
Acquisition Toolbox. The toolbox functionality includes the ability to
buffer the acquisition so that you can analyze the data as it is being
acquired. See the examples on MATLAB sound acquisition and sound
generation.

See Also auread, auwrite, soundsc, audioplayer, wavread, wavwrite

2-2953

http://www.mathworks.com/access/helpdesk/help/toolbox/daq/daq.html
http://www.mathworks.com/products/demos/daq/acquiring_data/acquiring_data.html
http://www.mathworks.com/products/demos/shipping/daq/daqsong.html

soundsc

Purpose Scale data and play as sound

Syntax soundsc(y,Fs)
soundsc(y)
soundsc(y,Fs,bits)
soundsc(y,...,slim)

Description soundsc(y,Fs) sends the signal in vector y (with sample frequency Fs)
to the speaker on PC and most UNIX platforms. The signal y is scaled
to the range before it is played, resulting in a sound
that is played as loud as possible without clipping.

Note The playback duration that results from setting Fs depends on
the sound card you have installed. Most sound cards support sample
frequencies of approximately 5-10 kHz to 44.1 kHz. Sample frequencies
outside this range can produce unexpected results.

soundsc(y) plays the sound at the default sample rate or 8192 Hz.

soundsc(y,Fs,bits) plays the sound using bits number of bits/sample
if possible. Most platforms support bits = 8 or bits = 16.

soundsc(y,...,slim), where slim = [slow shigh], maps the values
in y between slow and shigh to the full sound range. The default value
is slim = [min(y) max(y)].

Remarks MATLAB supports all Windows-compatible sound devices.

See Also auread, auwrite, sound, wavread, wavwrite

2-2954

spalloc

Purpose Allocate space for sparse matrix

Syntax S = spalloc(m,n,nzmax)

Description S = spalloc(m,n,nzmax) creates an all zero sparse matrix S of
size m-by-n with room to hold nzmax nonzeros. The matrix can then
be generated column by column without requiring repeated storage
allocation as the number of nonzeros grows.

spalloc(m,n,nzmax) is shorthand for

sparse([],[],[],m,n,nzmax)

Examples To generate efficiently a sparse matrix that has an average of at most
three nonzero elements per column

S = spalloc(n,n,3*n);
for j = 1:n

S(:,j) = [zeros(n-3,1)' round(rand(3,1))']';end

2-2955

sparse

Purpose Create sparse matrix

Syntax S = sparse(A)
S = sparse(i,j,s,m,n,nzmax)
S = sparse(i,j,s,m,n)
S = sparse(i,j,s)
S = sparse(m,n)

Description The sparse function generates matrices in the MATLAB sparse storage
organization.

S = sparse(A) converts a full matrix to sparse form by squeezing out
any zero elements. If S is already sparse, sparse(S) returns S.

S = sparse(i,j,s,m,n,nzmax) uses vectors i, j, and s to generate
an m-by-n sparse matrix such that S(i(k),j(k)) = s(k), with space
allocated for nzmax nonzeros. Vectors i, j, and s are all the same
length. Any elements of s that are zero are ignored, along with the
corresponding values of i and j. Any elements of s that have duplicate
values of i and j are added together.

Note If any value in i or j is larger than the maximum integer size,
2^31-1, then the sparse matrix cannot be constructed.

To simplify this six-argument call, you can pass scalars for the argument
s and one of the arguments i or j—in which case they are expanded
so that i, j, and s all have the same length.

S = sparse(i,j,s,m,n) uses nzmax = length(s).

S = sparse(i,j,s) uses m = max(i) and n = max(j). The maxima
are computed before any zeros in s are removed, so one of the rows of
[i j s] might be [m n 0].

S = sparse(m,n) abbreviates sparse([],[],[],m,n,0). This
generates the ultimate sparse matrix, an m-by-n all zero matrix.

2-2956

sparse

Remarks All of the MATLAB built-in arithmetic, logical, and indexing operations
can be applied to sparse matrices, or to mixtures of sparse and full
matrices. Operations on sparse matrices return sparse matrices and
operations on full matrices return full matrices.

In most cases, operations on mixtures of sparse and full matrices return
full matrices. The exceptions include situations where the result of a
mixed operation is structurally sparse, for example, A.*S is at least
as sparse as S.

Examples S = sparse(1:n,1:n,1) generates a sparse representation of the n-by-n
identity matrix. The same S results from S = sparse(eye(n,n)), but
this would also temporarily generate a full n-by-n matrix with most of
its elements equal to zero.

B = sparse(10000,10000,pi) is probably not very useful, but is legal
and works; it sets up a 10000-by-10000 matrix with only one nonzero
element. Don’t try full(B); it requires 800 megabytes of storage.

This dissects and then reassembles a sparse matrix:

[i,j,s] = find(S);
[m,n] = size(S);
S = sparse(i,j,s,m,n);

So does this, if the last row and column have nonzero entries:

[i,j,s] = find(S);
S = sparse(i,j,s);

See Also diag, find, full, issparse, nnz, nonzeros, nzmax, spones, sprandn,
sprandsym, spy

The sparfun directory

2-2957

spaugment

Purpose Form least squares augmented system

Syntax S = spaugment(A,c)
S = spaugment(A)

Description S = spaugment(A,c) creates the sparse, square, symmetric indefinite
matrix S = [c*I A; A' 0]. The matrix S is related to the least squares
problem

min norm(b - A*x)

by

r = b - A*x
S * [r/c; x] = [b; 0]

The optimum value of the residual scaling factor c, involves
min(svd(A)) and norm(r), which are usually too expensive to compute.

S = spaugment(A) without a specified value of c, uses
max(max(abs(A)))/1000.

Note In previous versions of MATLAB, the augmented matrix was
used by sparse linear equation solvers, \ and /, for nonsquare problems.
Now, MATLAB performs a least squares solve using the qr factorization
of A instead.

See Also spparms

2-2958

spconvert

Purpose Import matrix from sparse matrix external format

Syntax S = spconvert(D)

Description spconvert is used to create sparse matrices from a simple sparse
format easily produced by non-MATLAB sparse programs. spconvert
is the second step in the process:

1 Load an ASCII data file containing [i,j,v] or [i,j,re,im] as rows
into a MATLAB variable.

2 Convert that variable into a MATLAB sparse matrix.

S = spconvert(D) converts a matrix D with rows containing [i,j,s]
or [i,j,r,s] to the corresponding sparse matrix. D must have an
nnz or nnz+1 row and three or four columns. Three elements per row
generate a real matrix and four elements per row generate a complex
matrix. A row of the form [m n 0] or [m n 0 0] anywhere in D can be
used to specify size(S). If D is already sparse, no conversion is done, so
spconvert can be used after D is loaded from either a MAT-file or an
ASCII file.

Examples Suppose the ASCII file uphill.dat contains

1 1 1.000000000000000
1 2 0.500000000000000
2 2 0.333333333333333
1 3 0.333333333333333
2 3 0.250000000000000
3 3 0.200000000000000
1 4 0.250000000000000
2 4 0.200000000000000
3 4 0.166666666666667
4 4 0.142857142857143
4 4 0.000000000000000

Then the statements

2-2959

spconvert

load uphill.dat
H = spconvert(uphill)

H =
(1,1) 1.0000
(1,2) 0.5000
(2,2) 0.3333
(1,3) 0.3333
(2,3) 0.2500
(3,3) 0.2000
(1,4) 0.2500
(2,4) 0.2000
(3,4) 0.1667
(4,4) 0.1429

recreate sparse(triu(hilb(4))), possibly with roundoff errors. In this
case, the last line of the input file is not necessary because the earlier
lines already specify that the matrix is at least 4-by-4.

2-2960

spdiags

Purpose Extract and create sparse band and diagonal matrices

Syntax B = spdiags(A)
[B,d] = spdiags(A)
B = spdiags(A,d)
A = spdiags(B,d,A)
A = spdiags(B,d,m,n)

Description The spdiags function generalizes the function diag. Four different
operations, distinguished by the number of input arguments, are
possible.

B = spdiags(A) extracts all nonzero diagonals from the m-by-n matrix
A. B is a min(m,n)-by-p matrix whose columns are the p nonzero
diagonals of A.

[B,d] = spdiags(A) returns a vector d of length p, whose integer
components specify the diagonals in A.

B = spdiags(A,d) extracts the diagonals specified by d.

A = spdiags(B,d,A) replaces the diagonals specified by d with the
columns of B. The output is sparse.

A = spdiags(B,d,m,n) creates an m-by-n sparse matrix by taking the
columns of B and placing them along the diagonals specified by d.

Note In this syntax, if a column of B is longer than the diagonal it is
replacing, and m >= n, spdiags takes elements of super-diagonals
from the lower part of the column of B, and elements of sub-diagonals
from the upper part of the column of B. However, if m < n , then
super-diagonals are from the upper part of the column of B, and
sub-diagonals from the lower part. (See “Example 5A” on page 2-2967
and “Example 5B” on page 2-2969, below).

Arguments The spdiags function deals with three matrices, in various
combinations, as both input and output.

2-2961

spdiags

A An m-by-n matrix, usually (but not necessarily) sparse, with
its nonzero or specified elements located on p diagonals.

B A min(m,n)-by-p matrix, usually (but not necessarily) full,
whose columns are the diagonals of A.

d A vector of length p whose integer components specify the
diagonals in A.

Roughly, A, B, and d are related by

for k = 1:p
B(:,k) = diag(A,d(k))

end

Some elements of B, corresponding to positions outside of A, are not
defined by these loops. They are not referenced when B is input and
are set to zero when B is output.

How the Diagonals of A are Listed in the Vector d

An m-by-n matrix A has m+n-1diagonals. These are specified in the
vector d using indices from -m+1 to n-1. For example, if A is 5-by-6, it
has 10 diagonals, which are specified in the vector d using the indices -4,
-3 , ... 4, 5. The following diagram illustrates this for a vector of all ones.

2-2962

spdiags

Examples Example 1

For the following matrix,

A=[0 5 0 10 0 0;...
0 0 6 0 11 0;...
3 0 0 7 0 12;...
1 4 0 0 8 0;...
0 2 5 0 0 9]

A =

0 5 0 10 0 0
0 0 6 0 11 0
3 0 0 7 0 12
1 4 0 0 8 0
0 2 5 0 0 9

the command

[B, d] =spdiags(A)

returns

B =

0 0 5 10
0 0 6 11
0 3 7 12
1 4 8 0
2 5 9 0

d =

-3
-2
1

2-2963

spdiags

3

The columns of the first output B contain the nonzero diagonals of A.
The second output d lists the indices of the nonzero diagonals of A, as
shown in the following diagram. See “How the Diagonals of A are Listed
in the Vector d” on page 2-2962.

Note that the longest nonzero diagonal in A is contained in column 3
of B. The other nonzero diagonals of A have extra zeros added to their
corresponding columns in B, to give all columns of B the same length.
For the nonzero diagonals below the main diagonal of A, extra zeros are
added at the tops of columns. For the nonzero diagonals above the main
diagonal of A, extra zeros are added at the bottoms of columns. This is
illustrated by the following diagram.

2-2964

spdiags

Example 2

This example generates a sparse tridiagonal representation of the
classic second difference operator on n points.

e = ones(n,1);
A = spdiags([e -2*e e], -1:1, n, n)

Turn it into Wilkinson’s test matrix (see gallery):

A = spdiags(abs(-(n-1)/2:(n-1)/2)',0,A)

Finally, recover the three diagonals:

B = spdiags(A)

Example 3

The second example is not square.

A = [11 0 13 0
0 22 0 24

2-2965

spdiags

0 0 33 0
41 0 0 44
0 52 0 0
0 0 63 0
0 0 0 74]

Here m =7, n = 4, and p = 3.

The statement [B,d] = spdiags(A) produces d = [-3 0 2]' and

B = [41 11 0
52 22 0
63 33 13
74 44 24]

Conversely, with the above B and d, the expression spdiags(B,d,7,4)
reproduces the original A.

Example 4

This example shows how spdiags creates the diagonals when the
columns of B are longer than the diagonals they are replacing.

B = repmat((1:6)',[1 7])

B =

1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 3 3 3 3 3 3
4 4 4 4 4 4 4
5 5 5 5 5 5 5
6 6 6 6 6 6 6

d = [-4 -2 -1 0 3 4 5];
A = spdiags(B,d,6,6);
full(A)

ans =

2-2966

spdiags

1 0 0 4 5 6
1 2 0 0 5 6
1 2 3 0 0 6
0 2 3 4 0 0
1 0 3 4 5 0
0 2 0 4 5 6

Example 5A

This example illustrates the use of the syntax A = spdiags(B,d,m,n),
under three conditions:

• m is equal to n

• m is greater than n

• m is less than n

The command used in this example is

A = full(spdiags(B, [-2 0 2], m, n))

where B is the 5-by-3 matrix shown below. The resulting matrix A
has dimensions m-by-n, and has nonzero diagonals at [-2 0 2] (a
sub-diagonal at -2, the main diagonal, and a super-diagonal at 2).

B =
1 6 11
2 7 12
3 8 13
4 9 14
5 10 15

The first and third columns of matrix B are used to create the sub- and
super-diagonals of A respectively. In all three cases though, these two
outer columns of B are longer than the resulting diagonals of A. Because
of this, only a part of the columns is used in A.

2-2967

spdiags

When m == n or m > n, spdiags takes elements of the super-diagonal
in A from the lower part of the corresponding column of B, and elements
of the sub-diagonal in A from the upper part of the corresponding
column of B.

When m < n, spdiags does the opposite, taking elements of the
super-diagonal in A from the upper part of the corresponding column
of B, and elements of the sub-diagonal in A from the lower part of the
corresponding column of B.

Part 1 — m is equal to n.

A = full(spdiags(B, [-2 0 2], 5, 5))
Matrix B Matrix A

1 6 11 6 0 13 0 0
2 7 12 0 7 0 14 0
3 8 13 == spdiags => 1 0 8 0 15
4 9 14 0 2 0 9 0
5 10 15 0 0 3 0 10

A(3,1), A(4,2), and A(5,3) are taken from the upper part of B(:,1).

A(1,3), A(2,4), and A(3,5) are taken from the lower part of B(:,3).

Part 2 — m is greater than n.

A = full(spdiags(B, [-2 0 2], 5, 4))
Matrix B Matrix A

1 6 11 6 0 13 0
2 7 12 0 7 0 14
3 8 13 == spdiags => 1 0 8 0
4 9 14 0 2 0 9
5 10 15 0 0 3 0

Same as in Part A.

2-2968

spdiags

Part 3 — m is less than n.

A = full(spdiags(B, [-2 0 2], 4, 5))
Matrix B Matrix A

1 6 11 6 0 11 0 0
2 7 12 0 7 0 12 0
3 8 13 == spdiags => 3 0 8 0 13
4 9 14 0 4 0 9 0
5 10 15

A(3,1) and A(4,2) are taken from the lower part of B(:,1).

A(1,3), A(2,4), and A(3,5) are taken from the upper part of B(:,3).

Example 5B

Extract the diagonals from the first part of this example back into a
column format using the command

B = spdiags(A)

You can see that in each case the original columns are restored (minus
those elements that had overflowed the super- and sub-diagonals of
matrix A).

Part 1.

Matrix A Matrix B

6 0 13 0 0 1 6 0
0 7 0 14 0 2 7 0
1 0 8 0 15 == spdiags => 3 8 13
0 2 0 9 0 0 9 14
0 0 3 0 10 0 10 15

Part 2.

Matrix A Matrix B

2-2969

spdiags

6 0 13 0 1 6 0
0 7 0 14 2 7 0
1 0 8 0 == spdiags => 3 8 13
0 2 0 9 0 9 14
0 0 3 0

Part 3.

Matrix A Matrix B

6 0 11 0 0 0 6 11
0 7 0 12 0 0 7 12
3 0 8 0 13 == spdiags => 3 8 13
0 4 0 9 0 4 9 0

See Also diag, speye

2-2970

specular

Purpose Calculate specular reflectance

Syntax R = specular(Nx,Ny,Nz,S,V)

Description R = specular(Nx,Ny,Nz,S,V) returns the reflectance of a surface with
normal vector components [Nx,Ny,Nz]. S and V specify the direction
to the light source and to the viewer, respectively. You can specify
these directions as three vectors[x,y,z] or two vectors [Theta Phi
(in spherical coordinates).

The specular highlight is strongest when the normal vector is in the
direction of (S+V)/2 where S is the source direction, and V is the view
direction.

The surface spread exponent can be specified by including a sixth
argument as in specular(Nx,Ny,Nz,S,V,spread).

2-2971

speye

Purpose Sparse identity matrix

Syntax S = speye(m,n)
S = speye(n)

Description S = speye(m,n) forms an m-by-n sparse matrix with 1s on the main
diagonal.

S = speye(n) abbreviates speye(n,n).

Examples I =s peye(1000) forms the sparse representation of the 1000-by-1000
identity matrix, which requires only about 16 kilobytes of storage.
This is the same final result as I = sparse(eye(1000,1000)), but
the latter requires eight megabytes for temporary storage for the full
representation.

See Also spalloc, spones, spdiags, sprand, sprandn

2-2972

spfun

Purpose Apply function to nonzero sparse matrix elements

Syntax f = spfun(fun,S)

Description The spfun function selectively applies a function to only the nonzero
elements of a sparse matrix S, preserving the sparsity pattern of the
original matrix (except for underflow or if fun returns zero for some
nonzero elements of S).

f = spfun(fun,S) evaluates fun(S) on the nonzero elements of S.
fun is a function handle. See “Function Handles” in the MATLAB
Programming documentation for more information.

“Parameterizing Functions Called by Function Functions” in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the function fun, if necessary.

Remarks Functions that operate element-by-element, like those in the elfun
directory, are the most appropriate functions to use with spfun.

Examples Given the 4-by-4 sparse diagonal matrix

S = spdiags([1:4]',0,4,4)

S =
(1,1) 1
(2,2) 2
(3,3) 3
(4,4) 4

Because fun returns nonzero values for all nonzero element of S, f =
spfun(@exp,S) has the same sparsity pattern as S.

f =
(1,1) 2.7183
(2,2) 7.3891
(3,3) 20.0855
(4,4) 54.5982

2-2973

spfun

whereas exp(S) has 1s where S has 0s.

full(exp(S))

ans =
2.7183 1.0000 1.0000 1.0000
1.0000 7.3891 1.0000 1.0000
1.0000 1.0000 20.0855 1.0000
1.0000 1.0000 1.0000 54.5982

See Also function_handle (@)

2-2974

sph2cart

Purpose Transform spherical coordinates to Cartesian

Syntax [x,y,z] = sph2cart(THETA,PHI,R)

Description [x,y,z] = sph2cart(THETA,PHI,R) transforms the corresponding
elements of spherical coordinate arrays to Cartesian, or xyz, coordinates.
THETA, PHI, and R must all be the same size. THETA and PHI are angular
displacements in radians from the positive x-axis and from the x-y
plane, respectively.

Algorithm The mapping from spherical coordinates to three-dimensional Cartesian
coordinates is

See Also cart2pol, cart2sph, pol2cart

2-2975

sphere

Purpose Generate sphere

Syntax sphere
sphere(n)
[X,Y,Z] = sphere(n)

Description The sphere function generates the x-, y-, and z-coordinates of a unit
sphere for use with surf and mesh.

sphere generates a sphere consisting of 20-by-20 faces.

sphere(n) draws a surf plot of an n-by-n sphere in the current figure.

[X,Y,Z] = sphere(n) returns the coordinates of a sphere in three
matrices that are (n+1)-by-(n+1) in size. You draw the sphere with
surf(X,Y,Z) or mesh(X,Y,Z).

Examples Generate and plot a sphere.

sphere
axis equal

2-2976

sphere

See Also cylinder, axis equal

“Polygons and Surfaces” on page 1-90 for related functions

2-2977

spinmap

Purpose Spin colormap

Syntax spinmap
spinmap(t)
spinmap(t,inc)
spinmap('inf')

Description The spinmap function shifts the colormap RGB values by some
incremental value. For example, if the increment equals 1, color 1
becomes color 2, color 2 becomes color 3, etc.

spinmap cyclically rotates the colormap for approximately five seconds
using an incremental value of 2.

spinmap(t) rotates the colormap for approximately 10*t seconds. The
amount of time specified by t depends on your hardware configuration
(e.g., if you are running MATLAB over a network).

spinmap(t,inc) rotates the colormap for approximately 10*t seconds
and specifies an increment inc by which the colormap shifts. When inc
is 1, the rotation appears smoother than the default (i.e., 2). Increments
greater than 2 are less smooth than the default. A negative increment
(e.g., –2) rotates the colormap in a negative direction.

spinmap('inf') rotates the colormap for an infinite amount of time.
To break the loop, press Ctrl+C.

See Also colormap, colormapeditor

“Color Operations” on page 1-98 for related functions

2-2978

spline

Purpose Cubic spline data interpolation

Syntax pp = spline(x,Y)
yy = spline(x,Y,xx)

Description pp = spline(x,Y) returns the piecewise polynomial form of the cubic
spline interpolant for later use with ppval and the spline utility unmkpp.
x must be a vector. Y can be a scalar, a vector, or an array of any
dimension, subject to the following conditions:

• If Y is a scalar or vector, it must have the same length as x. A scalar
value for x or Y is expanded to have the same length as the other. See
Exceptions (1) for an exception to this rule, in which the not-a-knot
end conditions are used.

• If Y is an array that is not a vector, the size of Y must have the form
[d1,d2,...,dk,n], where n is the length of x. The interpolation
is performed for each d1-by-d2-by-...-dk value in Y. See Exceptions
(2) for an exception to this rule.

yy = spline(x,Y,xx) is the same as yy = ppval(spline(x,Y),xx),
thus providing, in yy, the values of the interpolant at xx. xx can be a
scalar, a vector, or a multidimensional array. The sizes of xx and yy
are related as follows:

• If Y is a scalar or vector, yy has the same size as xx.

• If Y is an array that is not a vector,

- If xx is a scalar or vector, size(yy) equals [d1, d2, ..., dk,
length(xx)].

- If xx is an array of size [m1,m2,...,mj], size(yy) equals
[d1,d2,...,dk,m1,m2,...,mj].

2-2979

spline

Exceptions

1 If Y is a vector that contains two more values than x has entries,
the first and last value in Y are used as the endslopes for the cubic
spline. If Y is a vector, this means

• f(x) = Y(2:end-1)

• df(min(x)) = Y(1)

• df(max(x)) = Y(end)

2 If Y is a matrix or an N-dimensional array with size(Y,N) equal to
length(x)+2, the following hold:

• f(x(j)) matches the value Y(:,...,:,j+1) for j=1:length(x)

• Df(min(x)) matches Y(:,:,...:,1)

• Df(max(x)) matches Y(:,:,...:,end)

Note You can also perform spline interpolation using the interp1
function with the command interp1(x,y,xx,'spline'). Note that
while spline performs interpolation on rows of an input matrix,
interp1 performs interpolation on columns of an input matrix.

Examples Example 1

This generates a sine curve, then samples the spline over a finer mesh.

x = 0:10;
y = sin(x);
xx = 0:.25:10;
yy = spline(x,y,xx);
plot(x,y,'o',xx,yy)

2-2980

spline

Example 2

This illustrates the use of clamped or complete spline interpolation
where end slopes are prescribed. Zero slopes at the ends of an
interpolant to the values of a certain distribution are enforced.

x = -4:4;
y = [0 .15 1.12 2.36 2.36 1.46 .49 .06 0];
cs = spline(x,[0 y 0]);
xx = linspace(-4,4,101);
plot(x,y,'o',xx,ppval(cs,xx),'-');

2-2981

spline

Example 3

The two vectors

t = 1900:10:1990;
p = [75.995 91.972 105.711 123.203 131.669 ...

150.697 179.323 203.212 226.505 249.633];

represent the census years from 1900 to 1990 and the corresponding
United States population in millions of people. The expression

spline(t,p,2000)

uses the cubic spline to extrapolate and predict the population in the
year 2000. The result is

ans =
270.6060

2-2982

spline

Example 4

The statements

x = pi*[0:.5:2];
y = [0 1 0 -1 0 1 0;

1 0 1 0 -1 0 1];
pp = spline(x,y);
yy = ppval(pp, linspace(0,2*pi,101));
plot(yy(1,:),yy(2,:),'-b',y(1,2:5),y(2,2:5),'or'), axis equal

generate the plot of a circle, with the five data points y(:,2),...,y(:,6)
marked with o’s. Note that this y contains two more values (i.e., two
more columns) than does x, hence y(:,1) and y(:,end) are used as
endslopes.

2-2983

spline

Example 5

The following code generates sine and cosine curves, then samples the
splines over a finer mesh.

x = 0:.25:1;
Y = [sin(x); cos(x)];
xx = 0:.1:1;
YY = spline(x,Y,xx);
plot(x,Y(1,:),'o',xx,YY(1,:),'-'); hold on;
plot(x,Y(2,:),'o',xx,YY(2,:),':'); hold off;

Algorithm A tridiagonal linear system (with, possibly, several right sides) is being
solved for the information needed to describe the coefficients of the
various cubic polynomials which make up the interpolating spline.
spline uses the functions ppval, mkpp, and unmkpp. These routines

2-2984

spline

form a small suite of functions for working with piecewise polynomials.
For access to more advanced features, see the M-file help for these
functions and the Spline Toolbox.

See Also interp1, ppval, mkpp, pchip, unmkpp

References [1] de Boor, C., A Practical Guide to Splines, Springer-Verlag, 1978.

2-2985

spones

Purpose Replace nonzero sparse matrix elements with ones

Syntax R = spones(S)

Description R = spones(S) generates a matrix R with the same sparsity structure
as S, but with 1’s in the nonzero positions.

Examples c = sum(spones(S)) is the number of nonzeros in each column.

r = sum(spones(S'))' is the number of nonzeros in each row.

sum(c) and sum(r) are equal, and are equal to nnz(S).

See Also nnz, spalloc, spfun

2-2986

spparms

Purpose Set parameters for sparse matrix routines

Syntax spparms('key',value)
spparms
values = spparms
[keys,values] = spparms
spparms(values)
value = spparms('key')
spparms('default')
spparms('tight')

Description spparms('key',value) sets one or more of the tunable parameters
used in the sparse routines, particularly the minimum degree orderings,
colmmd and symmmd, and also within sparse backslash. In ordinary use,
you should never need to deal with this function.

The meanings of the key parameters are

'spumoni' Sparse Monitor flag:

0 Produces no diagnostic output, the default

1 Produces information about choice of algorithm
based on matrix structure, and about storage
allocation

2 Also produces very detailed information about the
sparse matrix algorithms

'thr_rel',
'thr_abs'

Minimum degree threshold is thr_rel*mindegree
+ thr_abs.

'exact_d' Nonzero to use exact degrees in minimum degree.
Zero to use approximate degrees.

'supernd' If positive, minimum degree amalgamates the
supernodes every supernd stages.

2-2987

spparms

'rreduce' If positive, minimum degree does row reduction
every rreduce stages.

'wh_frac' Rows with density > wh_frac are ignored in
colmmd.

'autommd' Nonzero to use minimum degree (MMD) orderings
with QR-based \ and /.

'autoamd' Nonzero to use colamd ordering with the UMFPACK
LU-based \ and /, and to use amd with CHOLMOD
Cholesky-based \ and /.

'piv_tol' Pivot tolerance used by the UMFPACK LU-based
\ and /.

'bandden' Band density used by LAPACK-based \ and /
for banded matrices. Band density is defined as
(# nonzeros in the band)/(# nonzeros in a full band).
If bandden = 1.0, never use band solver. If bandden
= 0.0, always use band solver. Default is 0.5.

'umfpack' Nonzero to use UMFPACK instead of the v4
LU-based solver in \ and /.

'sym_tol' Symmetric pivot tolerance used by UMFPACK.
See lu for more information about the role of the
symmetric pivot tolerance.

Note LU-based \ and / (UMFPACK) on square matrices use a modified
colamd or amd. Cholesky-based \ and / (CHOLMOD) on symmetric
positive definite matrices use amd. QR-based \ and / on rectangular
matrices use colmmd.

spparms, by itself, prints a description of the current settings.

values = spparms returns a vector whose components give the current
settings.

2-2988

spparms

[keys,values] = spparms returns that vector, and also returns a
character matrix whose rows are the keywords for the parameters.

spparms(values), with no output argument, sets all the parameters to
the values specified by the argument vector.

value = spparms('key') returns the current setting of one parameter.

spparms('default') sets all the parameters to their default settings.

spparms('tight') sets the minimum degree ordering parameters to
their tight settings, which can lead to orderings with less fill-in, but
which make the ordering functions themselves use more execution time.

The key parameters for default and tight settings are

Keyword Default Tight

values(1) 'spumoni' 0.0

values(2) 'thr_rel' 1.1 1.0

values(3) 'thr_abs' 1.0 0.0

values(4) 'exact_d' 0.0 1.0

values(5) 'supernd' 3.0 1.0

values(6) 'rreduce' 3.0 1.0

values(7) 'wh_frac' 0.5 0.5

values(8) 'autommd' 1.0

values(9) 'autoamd' 1.0

values(10) 'piv_tol' 0.1

values(11) 'bandden' 0.5

values(12) 'umfpack' 1.0

values(13) 'sym_tol' 0.001

2-2989

spparms

Notes Sparse A\b on Symmetric Positive Definite A

Sparse A\b on symmetric positive definite A uses CHOLMOD in
conjunction with the amd reordering routine.

The parameter 'autoamd' turns the amd reordering on or off within
the solver.

Sparse A\b on General Square A

Sparse A\b on general square A usually uses UMFPACK in conjunction
with amd or a modified colamd reordering routine.

The parameter 'umfpack' turns the use of the UMFPACK software
on or off within the solver.

If UMFPACK is used,

• The parameter 'piv_tol' controls pivoting within the solver.

• The parameter 'autoamd' turns amd and the modified colamd on or
off within the solver.

If UMFPACK is not used,

• An LU-based solver is used in conjunction with the colmmd reordering
routine.

• If UMFPACK is not used, then the parameter 'autommd' turns the
colmmd reordering routine on or off within the solver.

• If UMFPACK is not used and colmmd is used within the solver, then
the minimum degree parameters affect the reordering routine within
the solver.

Sparse A\b on Rectangular A

Sparse A\b on rectangular A uses a QR-based solve in conjunction with
the colmmd reordering routine.

The parameter 'autommd' turns the colmmd reordering on or off within
the solver.

2-2990

spparms

If colmmd is used within the solver, then the minimum degree
parameters affect the reordering routine within the solver.

See Also \, chol, lu, qr, colamd, colmmd, symmmd

References [1] Gilbert, John R., Cleve Moler, and Robert Schreiber, “Sparse
Matrices in MATLAB: Design and Implementation,” SIAM Journal on
Matrix Analysis and Applications, Vol. 13, 1992, pp. 333-356.

[2] Davis, T. A., UMFPACK Version 4.6 User Guide
(http://www.cise.ufl.edu/research/sparse/umfpack/),
Dept. of Computer and Information Science and Engineering, Univ.
of Florida, Gainesville, FL, 2002.

[3] Davis, T. A., CHOLMOD Version 1.0 User Guide
(http://www.cise.ufl.edu/research/sparse/cholmod),
Dept. of Computer and Information Science and Engineering, Univ.
of Florida, Gainesville, FL, 2005.

2-2991

http://www.cise.ufl.edu/research/sparse/umfpack
http://www.cise.ufl.edu/research/sparse/cholmod

sprand

Purpose Sparse uniformly distributed random matrix

Syntax R = sprand(S)
R = sprand(m,n,density)
R = sprand(m,n,density,rc)

Description R = sprand(S) has the same sparsity structure as S, but uniformly
distributed random entries.

R = sprand(m,n,density) is a random, m-by-n, sparse matrix with
approximately density*m*n uniformly distributed nonzero entries (0
<= density <= 1).

R = sprand(m,n,density,rc) also has reciprocal condition number
approximately equal to rc. R is constructed from a sum of matrices
of rank one.

If rc is a vector of length lr, where lr <= min(m,n), then R has rc
as its first lr singular values, all others are zero. In this case, R is
generated by random plane rotations applied to a diagonal matrix
with the given singular values. It has a great deal of topological and
algebraic structure.

sprand uses the internal state information set with the rand function.

See Also sprandn, sprandsym

2-2992

sprandn

Purpose Sparse normally distributed random matrix

Syntax R = sprandn(S)
R = sprandn(m,n,density)
R = sprandn(m,n,density,rc)

Description R = sprandn(S) has the same sparsity structure as S, but normally
distributed random entries with mean 0 and variance 1.

R = sprandn(m,n,density) is a random, m-by-n, sparse matrix with
approximately density*m*n normally distributed nonzero entries ((0
<= density <= 1).

R = sprandn(m,n,density,rc) also has reciprocal condition number
approximately equal to rc. R is constructed from a sum of matrices
of rank one.

If rc is a vector of length lr, where lr <= min(m,n), then R has rc
as its first lr singular values, all others are zero. In this case, R is
generated by random plane rotations applied to a diagonal matrix
with the given singular values. It has a great deal of topological and
algebraic structure.

sprandn uses the internal state information set with the randn function.

See Also sprand, sprandsym

2-2993

sprandsym

Purpose Sparse symmetric random matrix

Syntax R = sprandsym(S)
R = sprandsym(n,density)
R = sprandsym(n,density,rc)
R = sprandsym(n,density,rc,kind)

Description R = sprandsym(S) returns a symmetric random matrix whose lower
triangle and diagonal have the same structure as S. Its elements are
normally distributed, with mean 0 and variance 1.

R = sprandsym(n,density) returns a symmetric random, n-by-n,
sparse matrix with approximately density*n*n nonzeros; each entry is
the sum of one or more normally distributed random samples, and (0
<= density <= 1).

R = sprandsym(n,density,rc) returns a matrix with a reciprocal
condition number equal to rc. The distribution of entries is nonuniform;
it is roughly symmetric about 0; all are in .

If rc is a vector of length n, then R has eigenvalues rc. Thus, if rc is
a positive (nonnegative) vector then R is a positive definite matrix. In
either case, R is generated by random Jacobi rotations applied to a
diagonal matrix with the given eigenvalues or condition number. It has
a great deal of topological and algebraic structure.

R = sprandsym(n,density,rc,kind) returns a positive definite
matrix. Argument kind can be:

• 1 to generate R by random Jacobi rotation of a positive definite
diagonal matrix. R has the desired condition number exactly.

• 2 to generate an R that is a shifted sum of outer products. R has the
desired condition number only approximately, but has less structure.

• 3 to generate an R that has the same structure as the matrix S and
approximate condition number 1/rc. density is ignored.

See Also sprand, sprandn

2-2994

sprank

Purpose Structural rank

Syntax r = sprank(A)

Description r = sprank(A) is the structural rank of the sparse matrix A. For all
values of A,

sprank(A) >= rank(full(A))

In exact arithmetic, sprank(A) == rank(full(sprandn(A))) with
a probability of one.

Examples A = [1 0 2 0
2 0 4 0];

A = sparse(A);

sprank(A)

ans =
2

rank(full(A))

ans =
1

See Also dmperm

2-2995

sprintf

Purpose Write formatted data to string

Syntax [s, errmsg] = sprintf(format, A, ...)

Description [s, errmsg] = sprintf(format, A, ...) formats the data in
matrix A (and in any additional matrix arguments) under control of the
specified format string and returns it in the MATLAB string variable
s. The sprintf function returns an error message string errmsg if an
error occurred. errmsg is an empty matrix if no error occurred.

sprintf is the same as fprintf except that it returns the data in a
MATLAB string variable rather than writing it to a file.

See “Formatting Strings” in the MATLAB Programming documentation
for more detailed information on using string formatting commands.

Format String

The format argument is a string containing ordinary characters and/or
C language conversion specifications. A conversion specification controls
the notation, alignment, significant digits, field width, and other aspects
of output format. The format string can contain escape characters to
represent nonprinting characters such as newline characters and tabs.

Conversion specifications begin with the % character and contain these
optional and required elements:

• Flags (optional)

• Width and precision fields (optional)

• A subtype specifier (optional)

• Conversion character (required)

You specify these elements in the following order:

2-2996

sprintf

Flags

You can control the alignment of the output using any of these optional
flags.

Character Description Example

A minus sign (-) Left-justifies the
converted argument
in its field

% 5.2d

A plus sign (+) Always prints a sign
character (+ or –)

%+5.2d

Zero (0) Pad with zeros rather
than spaces.

%05.2f

Field Width and Precision Specifications

You can control the width and precision of the output by including these
options in the format string.

Character Description Example

Field width A digit string specifying the
minimum number of digits to
be printed.

%6f

Precision A digit string including a
period (.) specifying the
number of digits to be printed
to the right of the decimal
point

%6.2f

2-2997

sprintf

Conversion Characters

Conversion characters specify the notation of the output.

Specifier Description

%c Single character

%d Decimal notation (signed)

%e Exponential notation (using a lowercase e as in
3.1415e+00)

%E Exponential notation (using an uppercase E as in
3.1415E+00)

%f Fixed-point notation

%g The more compact of %e or %f, as defined in [2].
Insignificant zeros do not print.

%G Same as %g, but using an uppercase E

%o Octal notation (unsigned)

%s String of characters

%u Decimal notation (unsigned)

%x Hexadecimal notation (using lowercase letters a–f)

%X Hexadecimal notation (using uppercase letters A–F)

The following tables describe the nonalphanumeric characters found in
format specification strings.

Escape Characters

This table lists the escape character sequences you use to specify
non-printing characters in a format specification.

2-2998

sprintf

Character Description

\b Backspace

\f Form feed

\n New line

\r Carriage return

\t Horizontal tab

\\ Backslash

\’’”r ’”

(two single
quotes)

Single quotation mark

%% Percent character

Remarks The sprintf function behaves like its ANSI C language namesake with
these exceptions and extensions.

• If you use sprintf to convert a MATLAB double into an integer,
and the double contains a value that cannot be represented as an
integer (for example, it contains a fraction), MATLAB ignores the
specified conversion and outputs the value in exponential format. To
successfully perform this conversion, use the fix, floor, ceil, or
round functions to change the value in the double into a value that
can be represented as an integer before passing it to sprintf.

• The following nonstandard subtype specifiers are supported for the
conversion characters %o, %u, %x, and %X.

b The underlying C data type is a double rather than an
unsigned integer. For example, to print a double-precision
value in hexadecimal, use a format like '%bx'.

t The underlying C data type is a float rather than an unsigned
integer.

2-2999

sprintf

For example, to print a double value in hexadecimal use the format
'%bx'.

• The sprintf function is vectorized for nonscalar arguments. The
function recycles the format string through the elements of A
(columnwise) until all the elements are used up. The function
then continues in a similar manner through any additional matrix
arguments.

• If %s is used to print part of a nonscalar double argument, the
following behavior occurs:

a Successive values are printed as long as they are integers and
in the range of a valid character. The first invalid character
terminates the printing for this %s specifier and is used for a later
specifier. For example, pi terminates the string below and is
printed using %f format.

Str = [65 66 67 pi];
sprintf('%s %f', Str)
ans =
ABC 3.141593

b If the first value to print is not a valid character, then just that
value is printed for this %s specifier using an e conversion as a
warning to the user. For example, pi is formatted by %s below
in exponential notation, and 65, though representing a valid
character, is formatted as fixed-point (%f).

Str = [pi 65 66 67];
sprintf('%s %f %s', Str)
ans =
3.141593e+000 65.000000 BC

c One exception is zero, which is a valid character. If zero is found
first, %s prints nothing and the value is skipped. If zero is found
after at least one valid character, it terminates the printing for this
%s specifier and is used for a later specifier.

2-3000

sprintf

• sprintf prints negative zero and exponents differently on some
platforms, as shown in the following tables.

Negative Zero Printed with %e, %E, %f, %g, or %G

Display of Negative Zero

Platform %e or %E %f %g or %G

PC 0.000000e+000 0.000000 0

Others -0.000000e+00 -0.000000 -0

Exponents Printed with %e, %E, %g, or %G

Platform

Minimum
Digits in
Exponent Example

PC 3 1.23e+004

UNIX 2 1.23e+04

You can resolve this difference in exponents by postprocessing the
results of sprintf. For example, to make the PC output look like that of
UNIX, use

a = sprintf('%e', 12345.678);
if ispc, a = strrep(a, 'e+0', 'e+'); end

Examples Command Result

sprintf('%0.5g',(1+sqrt(5))/2)1.618

sprintf('%0.5g',1/eps) 4.5036e+15

sprintf('%15.5f',1/eps) 4503599627370496.00000

sprintf('%d',round(pi)) 3

2-3001

sprintf

Command Result

sprintf('%s','hello') hello

sprintf('The array is
%dx%d.',2,3)

The array is 2x3

sprintf('\n') Line termination character on all
platforms

See Also int2str, num2str, sscanf

References [1] Kernighan, B.W., and D.M. Ritchie, The C Programming Language,
Second Edition, Prentice-Hall, Inc., 1988.

[2] ANSI specification X3.159-1989: “Programming Language C,” ANSI,
1430 Broadway, New York, NY 10018.

2-3002

spy

Purpose Visualize sparsity pattern

Syntax spy(S)
spy(S,markersize)
spy(S,'LineSpec')
spy(S,'LineSpec',markersize)

Description plots the

spy(S) sparsity pattern of any matrix S.

spy(S,markersize), where markersize is an integer, plots the sparsity
pattern using markers of the specified point size.

spy(S,'LineSpec'), where LineSpec is a string, uses the specified
plot marker type and color.

spy(S,'LineSpec',markersize) uses the specified type, color, and
size for the plot markers.

S is usually a sparse matrix, but full matrices are acceptable, in which
case the locations of the nonzero elements are plotted.

Note spy replaces format +, which takes much more space to display
essentially the same information.

Examples This example plots the 60-by-60 sparse adjacency matrix of the
connectivity graph of the Buckminster Fuller geodesic dome. This
matrix also represents the soccer ball and the carbon-60 molecule.

B = bucky;
spy(B)

2-3003

spy

See Also find, gplot, LineSpec, symamd, symrcm

2-3004

sqrt

Purpose Square root

Syntax B = sqrt(X)

Description B = sqrt(X) returns the square root of each element of the array X.
For the elements of X that are negative or complex, sqrt(X) produces
complex results.

Remarks See sqrtm for the matrix square root.

Examples sqrt((-2:2)')
ans =

0 + 1.4142i
0 + 1.0000i
0

1.0000
1.4142

See Also sqrtm, realsqrt

2-3005

sqrtm

Purpose Matrix square root

Syntax X = sqrtm(A)
[X, resnorm] = sqrtm(A)
[X, alpha, condest] = sqrtm(A)

Description X = sqrtm(A) is the principal square root of the matrix A, i.e. X*X = A.

X is the unique square root for which every eigenvalue has nonnegative
real part. If A has any eigenvalues with negative real parts then a
complex result is produced. If A is singular then A may not have a
square root. A warning is printed if exact singularity is detected.

[X, resnorm] = sqrtm(A) does not print any warning, and returns the
residual, norm(A-X^2,'fro')/norm(A,'fro').

[X, alpha, condest] = sqrtm(A) returns a stability factor alpha
and an estimate condest of the matrix square root condition number
of X. The residual norm(A-X^2,'fro')/norm(A,'fro') is bounded
approximately by n*alpha*eps and the Frobenius norm relative
error in X is bounded approximately by n*alpha*condest*eps, where
n = max(size(A)).

Remarks If X is real, symmetric and positive definite, or complex, Hermitian and
positive definite, then so is the computed matrix square root.

Some matrices, like X = [0 1; 0 0], do not have any square roots, real
or complex, and sqrtm cannot be expected to produce one.

Examples Example 1

A matrix representation of the fourth difference operator is

X =
5 -4 1 0 0

-4 6 -4 1 0
1 -4 6 -4 1
0 1 -4 6 -4
0 0 1 -4 5

2-3006

sqrtm

This matrix is symmetric and positive definite. Its unique positive
definite square root, Y = sqrtm(X), is a representation of the second
difference operator.

Y =
2 -1 -0 -0 -0

-1 2 -1 0 -0
0 -1 2 -1 0

-0 0 -1 2 -1
-0 -0 -0 -1 2

Example 2

The matrix

X =
7 10

15 22

has four square roots. Two of them are

Y1 =
1.5667 1.7408
2.6112 4.1779

and

Y2 =
1 2
3 4

The other two are -Y1 and -Y2. All four can be obtained from the
eigenvalues and vectors of X.

[V,D] = eig(X);
D =

0.1386 0
0 28.8614

2-3007

sqrtm

The four square roots of the diagonal matrix D result from the four
choices of sign in

S =
–0.3723 0

0 –5.3723

All four Ys are of the form

Y = V*S/V

The sqrtm function chooses the two plus signs and produces Y1, even
though Y2 is more natural because its entries are integers.

See Also expm, funm, logm

2-3008

squeeze

Purpose Remove singleton dimensions

Syntax B = squeeze(A)

Description B = squeeze(A) returns an array B with the same elements as A, but
with all singleton dimensions removed. A singleton dimension is any
dimension for which size(A,dim) = 1. Two-dimensional arrays are
unaffected by squeeze; if A is a row or column vector or a scalar (1-by-1)
value, then B = A.

Examples Consider the 2-by-1-by-3 array Y = rand(2,1,3). This array has a
singleton column dimension — that is, there’s only one column per page.

Y =

Y(:,:,1) = Y(:,:,2) =
0.5194 0.0346
0.8310 0.0535

Y(:,:,3) =
0.5297
0.6711

The command Z = squeeze(Y) yields a 2-by-3 matrix:

Z =
0.5194 0.0346 0.5297
0.8310 0.0535 0.6711

Consider the 1-by-1-by-5 array mat=repmat(1,[1,1,5]). This array
has only one scalar value per page.

mat =

mat(:,:,1) = mat(:,:,2) =

1 1

2-3009

squeeze

mat(:,:,3) = mat(:,:,4) =

1 1

mat(:,:,5) =

1

The command squeeze(mat) yields a 5-by-1 matrix:

squeeze(mat)

ans =

1
1
1
1
1

size(squeeze(mat))

ans =

5 1

See Also reshape, shiftdim

2-3010

ss2tf

Purpose Convert state-space filter parameters to transfer function form

Syntax [b,a] = ss2tf(A,B,C,D,iu)

Description ss2tf converts a state-space representation of a given system to an
equivalent transfer function representation.

[b,a] = ss2tf(A,B,C,D,iu) returns the transfer function

of the system

from the iu-th input. Vector a contains the coefficients of the
denominator in descending powers of s. The numerator coefficients are
returned in array b with as many rows as there are outputs y. ss2tf
also works with systems in discrete time, in which case it returns the
z-transform representation.

The ss2tf function is part of the standard MATLAB language.

Algorithm The ss2tf function uses poly to find the characteristic polynomial
det(sI-A) and the equality:

2-3011

sscanf

Purpose Read formatted data from string

Syntax A = sscanf(s, format)
A = sscanf(s, format, size)
[A, count, errmsg, nextindex] = sscanf(...)

Description A = sscanf(s, format) reads data from the MATLAB string s,
converts it according to the specified format string, and returns it in
matrix A. format is a string specifying the format of the data to be read.
See "Remarks" for details. sscanf is the same as fscanf except that
it reads the data from a MATLAB string rather than reading it from a
file. If s is a character array with more than one row, sscanf reads the
characters in column order.

A = sscanf(s, format, size) reads the amount of data specified by
size and converts it according to the specified format string. size is an
argument that determines how much data is read. Valid options are

n Read at most n numbers, characters, or strings.

inf Read to the end of the input string.

[m,n] Read at most (m*n) numbers, characters, or strings. Fill
a matrix of at most m rows in column order. n can be inf,
but m cannot.

Characteristics of the output matrix A depend on the values read from
the input string and on the size argument. If sscanf reads only
numbers, and if size is not of the form [m,n], matrix A is a column
vector of numbers. If sscanf reads only characters or strings, and if
size is not of the form [m,n], matrix A is a row vector of characters.
See the Remarks section for more information.

sscanf differs from its C language namesake scanf() in an important
respect — it is vectorized to return a matrix argument. The format
string is cycled through the input string until the first of these
conditions occurs:

• The format string fails to match the data in the input string

2-3012

sscanf

• The amount of data specified by size is read

• The end of the string is reached

[A, count, errmsg, nextindex] = sscanf(...) reads data from
the MATLAB string (character array) s, converts it according to the
specified format string, and returns it in matrix A. count is an optional
output argument that returns the number of values successfully read.
errmsg is an optional output argument that returns an error message
string if an error occurred or an empty string if an error did not occur.
nextindex is an optional output argument specifying one more than the
number of characters scanned in s.

Remarks When MATLAB reads a specified string, it attempts to match the data
in the input string to the format string. If a match occurs, the data
is written into the output matrix. If a partial match occurs, only the
matching data is written to the matrix, and the read operation stops.

The format string consists of ordinary characters and/or conversion
specifications. Conversion specifications indicate the type of data to
be matched and involve the character %, optional width fields, and
conversion characters, organized as shown below:

Add one or more of these characters between the % and the conversion
character.

2-3013

sscanf

An asterisk (*) Skip over the matched value and do not store it in
the output matrix

A digit string Maximum field width

A letter The size of the receiving object; for example, h for
short, as in %hd for a short integer, or l for long,
as in %ld for a long integer or %lg for a double
floating-point number

Valid conversion characters are as shown.

%c Sequence of characters; number specified by field
width

%d Base 10 integers

%e, %f, %g Floating-point numbers

%i Defaults to signed base 10 integers. Data starting
with 0 is read as base 8. Data starting with 0x or 0X
is read as base 16.

%o Signed octal integer returned as unsigned

%s A series of non-white-space characters

%u Signed decimal integer

%x Signed hexadecimal integer returned as unsigned

[...] Sequence of characters (scanlist)

Format specifiers %e, %f, and %g accept the text 'inf', '-inf', 'nan',
and '-nan'. This text is not case sensitive. The sscanf function
converts these to the numeric representation of Inf, -Inf, NaN, and
-NaN.

Use %c to read space characters, or %s to skip all white space.

For more information about format strings, refer to the scanf() and
fscanf() routines in a C language reference manual.

2-3014

sscanf

Output Characteristics: Only Numeric Values Read

Format characters that cause sscanf to read numbers from the input
string are %d, %e, %f, %g, %i, %o, %u, and %x. When sscanf reads only
numbers from the input string, the elements of the output matrix A
are numbers.

When there is no size argument or the size argument is inf, sscanf
reads to the end of the input string. The output matrix is a column
vector with one element for each number read from the input.

When the size argument is a scalar n, sscanf reads at most n numbers
from the input string. The output matrix is a column vector with one
element for each number read from the input.

When the size argument is a matrix [m,n], sscanf reads at most (m*n)
numbers from the input string. The output matrix contains at most m
rows and n columns. sscanf fills the output matrix in column order,
using as many columns as it needs to contain all the numbers read from
the input. Any unfilled elements in the final column contain zeros.

Output Characteristics: Only Character Values Read

The format characters that cause sscanf to read characters and strings
from the input string are %c and %s. When sscanf reads only characters
and strings from the input string, the elements of the output matrix A
are characters. When sscanf reads a string from the input, the output
matrix includes one element for each character in the string.

When there is no size argument or the size argument is inf, sscanf
reads to the end of the input string. The output matrix is a row vector
with one element for each character read from the input.

When the size argument is a scalar n, sscanf reads at most n character
or string values from the input string. The output matrix is a row
vector with one element for each character read from the input. When
string values are read from the input, the output matrix can contain
more than n columns.

When the size argument is a matrix [m,n], sscanf reads at most
(m*n) character or string values from the input string. The output

2-3015

sscanf

matrix contains at most m rows. sscanf fills the output matrix in
column order, using as many columns as it needs to contain all the
characters read from the input. When string values are read from the
input, the output matrix can contain more than n columns. Any unfilled
elements in the final column contain char(0).

Output Characteristics: Both Numeric and Character Values
Read

When sscanf reads a combination of numbers and either characters or
strings from the input string, the elements of the output matrix A are
numbers. This is true even when a format specifier such as '%*d %s'
tells MATLAB to ignore numbers in the input string and output only
characters or strings. When sscanf reads a string from the input, the
output matrix includes one element for each character in the string. All
characters are converted to their numeric equivalents in the output
matrix.

When there is no size argument or the size argument is inf, sscanf
reads to the end of the input string. The output matrix is a column
vector with one element for each character read from the input.

When the size argument is a scalar n, sscanf reads at most n number,
character, or string values from the input string. The output matrix
contains at most n rows. sscanf fills the output matrix in column order,
using as many columns as it needs to represent all the numbers and
characters read from the input. When string values are read from
the input, the output matrix can contain more than one column. Any
unfilled elements in the final column contain zeros.

When the size argument is a matrix [m,n], sscanf reads at most
(m*n) number, character, or string values from the input string. The
output matrix contains at most m rows. sscanf fills the output matrix
in column order, using as many columns as it needs to represent all
the numbers and characters read from the input. When string values
are read from the input, the output matrix can contain more than n
columns. Any unfilled elements in the final column contain zeros.

2-3016

sscanf

Note This section applies only when sscanf actually reads a
combination of numbers and either characters or strings from the
input string. Even if the format string has both format characters that
would result in numbers (such as %d) and format characters that would
result in characters or strings (such as %s), sscanf might actually
read only numbers or only characters or strings. If sscanf reads only
numbers, see “Output Characteristics: Only Numeric Values Read” on
page 2-3015. If sscanf reads only characters or strings, see “Output
Characteristics: Only Character Values Read” on page 2-3015.

Examples Example 1

The statements

s = '2.7183 3.1416';
A = sscanf(s,'%f')

create a two-element vector containing poor approximations to e and pi.

Example 2

When using the %i conversion specifier, sscanf reads data starting with
0 as base 8 and returns the converted value as signed:

sscanf('-010', '%i')
ans =

-8

When using %o, on the other hand, sscanf returns the converted value
as unsigned:

sscanf('-010', '%o')
ans =

4.2950e+009

Example 3

Create character array A representing both character and numeric data:

2-3017

sscanf

A = ['abc 46 6 ghi'; 'def 7 89 jkl']
A =

abc 46 6 ghi
def 7 89 jkl

Read A into 2-by-N matrix B, ignoring the character data. As stated in
the Description section, sscanf reads the characters in A in column
order, filling matrix B in column order:

B = sscanf(A, '%*s %d %d %*s', [2, inf])
B =

476
869

If you want sscanf to return the numeric data in B in the same order as
in A, you can use this technique:

for k = 1:2
C(k,:) = sscanf(A(k, :)', '%*s %d %d %*s', [1, inf]);

end

C
C =

46 6
7 89

See Also eval, sprintf, textread

2-3018

stairs

Purpose Stairstep graph

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax stairs(Y)
stairs(X,Y)
stairs(...,LineSpec)
stairs(...,'PropertyName',propertyvalue)
stairs(axes_handle,...)
h = stairs(...)
[xb,yb] = stairs(Y,...)
hlines = stairs('v6',...)

Description Stairstep graphs are useful for drawing time-history graphs of digitally
sampled data.

stairs(Y) draws a stairstep graph of the elements of Y, drawing one
line per column for matrices. The axes ColorOrder property determines
the color of the lines.

When Y is a vector, the x-axis scale ranges from 1 to length(Y). When Y
is a matrix, the x-axis scale ranges from 1 to the number of rows in Y.

stairs(X,Y) plots the elements in Y at the locations specified in X.

X must be the same size as Y or, if Y is a matrix, X can be a row or
a column vector such that

length(X) = size(Y,1)

2-3019

stairs

stairs(...,LineSpec) specifies a line style, marker symbol, and color
for the graph. (See LineSpec for more information.)

stairs(...,'PropertyName',propertyvalue) creates the stairstep
graph, applying the specified property settings. See Stairseries
properties for a description of properties.

stairs(axes_handle,...) plots into the axes with the handle
axes_handle instead of into the current axes object (gca).

h = stairs(...) returns the handles of the stairseries objects
created (one per matrix column).

[xb,yb] = stairs(Y,...) does not draw graphs, but returns vectors
xb and yb such that plot(xb,yb) plots the stairstep graph.

Backward-Compatible Version

hlines = stairs('v6',...) returns the handles of line objects
instead of stairseries objects for compatibility with MATLAB 6.5 and
earlier.

Note The v6 option enables users of Version 7.x of MATLAB to create
FIG-files that previous versions can open. It is obsolete and will be
removed in a future version of MATLAB.

See Plot Objects and Backward Compatibility for more information.

Examples Create a stairstep plot of a sine wave.

x = linspace(-2*pi,2*pi,40);
stairs(x,sin(x))

2-3020

stairs

See Also bar, hist, stem

“Discrete Data Plots” on page 1-89 for related functions

Stairseries Properties for property descriptions

2-3021

Stairseries Properties

Purpose Define stairseries properties

Modifying
Properties

You can set and query graphics object properties using the set and get
commands or the Property Editor (propertyeditor).

Note that you cannot define default property values for stairseries
objects.

See Plot Objects for information on stairseries objects.

Stairseries
Property
Descriptions

This section provides a description of properties. Curly braces { } enclose
default values.

Annotation
hg.Annotation object Read Only

Control the display of stairseries objects in legends. The
Annotation property enables you to specify whether this
stairseries object is represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the stairseries
object is displayed in a figure legend:

IconDisplayStyle
Value

Purpose

on Include the stairseries object in a legend as
one entry, but not its children objects

2-3022

Stairseries Properties

IconDisplayStyle
Value

Purpose

off Do not include the stairseries or its children
in a legend (default)

children Include only the children of the stairseries
as separate entries in the legend

Setting the IconDisplayStyle property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation','LegendInformation');
set(hLegendEntry,'IconDisplayStyle','children')

Using the IconDisplayStyle property

See “Controlling Legends” for more information and examples.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

2-3023

Stairseries Properties

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function
executing, callbacks invoked subsequently always attempt to
interrupt it.

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs
at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

• cancel — Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
string or function handle

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is over this object, but
not over another graphics object. See the HitTestArea property
for information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be

• A string that is a valid MATLAB expression

• The name of an M-file

2-3024

Stairseries Properties

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

See “Function Handle Callbacks” for information on how to use
function handles to define the callbacks.

The expression executes in the MATLAB workspace.

See Function Handle Callbacks for information on how to use function
handles to define the callbacks.

Children
array of graphics object handles

Children of this object. The handle of a patch object that is the
child of this object (whether visible or not).

Note that if a child object’s HandleVisibility property is set
to callback or off, its handle does not show up in this object’s
Children property unless you set the root ShowHiddenHandles
property to on:

set(0,'ShowHiddenHandles','on')

Clipping
{on} | off

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs can be
displayed outside the axes plot box. This can occur if you create a
plot object, set hold to on, freeze axis scaling (axis manual), and
then create a larger plot object.

Color
ColorSpec

2-3025

Stairseries Properties

Color of the object. A three-element RGB vector or one of the
MATLAB predefined names, specifying the object’s color.

See the ColorSpec reference page for more information on
specifying color.

CreateFcn
string or function handle

Callback routine executed during object creation. This property
defines a callback that executes when MATLAB creates an object.
You must specify the callback during the creation of the object.
For example,

area(y,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function.

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
string or function handle

Callback executed during object deletion. A callback that executes
when this object is deleted (e.g., this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying

2-3026

Stairseries Properties

the object’s properties so the callback routine can query these
values.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

DisplayName
string (default is empty string)

String used by legend for this stairseries object. The legend
function uses the string defined by the DisplayName property to
label this stairseries object in the legend.

• If you specify string arguments with the legend function,
DisplayName is set to this stairseries object’s corresponding
string and that string is used for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

See “Controlling Legends” for more examples.

2-3027

Stairseries Properties

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase objects and their children. Alternative erase
modes are useful for creating animated sequences, where control
of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

• normal — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none — Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing
with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of
the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color
if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

• background — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other
graphics objects that are behind the erased object, but the
erased object is always properly colored.

Printing with Nonnormal Erase Modes

2-3028

Stairseries Properties

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB can mathematically combine
layers of colors (e.g., performing an XOR on a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally accessing
objects that you need to protect for some reason.

• on — Handles are always visible when HandleVisibility is on.

• callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions
invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

• off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

2-3029

Stairseries Properties

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

2-3030

Stairseries Properties

HitTest
{on} | off

Selectable by mouse click. HitTest determines whether this object
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the objects that compose the area graph. If HitTest
is off, clicking this object selects the object below it (which is
usually the axes containing it).

HitTestArea
on | {off}

Select the object by clicking lines or area of extent. This property
enables you to select plot objects in two ways:

• Select by clicking lines or markers (default).

• Select by clicking anywhere in the extent of the plot.

When HitTestArea is off, you must click th eobject’s lines or
markers (excluding the baseline, if any) to select the object. When
HitTestArea is on, you can select this object by clicking anywhere
within the extent of the plot (i.e., anywhere within a rectangle
that encloses it).

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether an object’s callback can be interrupted by
callbacks invoked subsequently.

Only callbacks defined for the ButtonDownFcn property are
affected by the Interruptible property. MATLAB checks for
events that can interrupt a callback only when it encounters a
drawnow, figure, getframe, or pause command in the routine.
See the BusyAction property for related information.

2-3031

Stairseries Properties

Setting Interruptible to on allows any graphics object’s callback
to interrupt callback routines originating from a bar property.
Note that MATLAB does not save the state of variables or the
display (e.g., the handle returned by the gca or gcf command)
when an interruption occurs.

LineStyle
{-} | -- | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker at
each point but do not want the points connected with a line (see
the Marker property).

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Marker
character (see table)

Marker symbol. The Marker property specifies the type of markers
that are displayed at plot vertices. You can set values for the

2-3032

Stairseries Properties

Marker property independently from the LineStyle property.
Supported markers include those shown in the following table.

Marker Specifier Description

+ Plus sign

o Circle

* Asterisk

. Point

x Cross

s Square

d Diamond

^ Upward-pointing triangle

v Downward-pointing triangle

> Right-pointing triangle

< Left-pointing triangle

p Five-pointed star (pentagram)

h Six-pointed star (hexagram)

none No marker (default)

MarkerEdgeColor
ColorSpec | none | {auto}

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles). ColorSpec defines the color to use. none
specifies no color, which makes nonfilled markers invisible. auto
sets MarkerEdgeColor to the same color as the Color property.

MarkerFaceColor
ColorSpec | {none} | auto

2-3033

Stairseries Properties

Marker face color. The fill color for markers that are closed shapes
(circle, square, diamond, pentagram, hexagram, and the four
triangles). ColorSpec defines the color to use. none makes the
interior of the marker transparent, allowing the background to
show through. auto sets the fill color to the axes color, or to the
figure color if the axes Color property is set to none (which is the
factory default for axes objects).

MarkerSize
size in points

Marker size. A scalar specifying the size of the marker in points.
The default value for MarkerSize is 6 points (1 point = 1/72 inch).
Note that MATLAB draws the point marker (specified by the '.'
symbol) at one-third the specified size.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of this object. This property contains the handle of the
object’s parent. The parent is normally the axes, hggroup, or
hgtransform object that contains the object.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection "handles" at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

2-3034

Stairseries Properties

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing four edge handles and four corner handles. When
SelectionHighlight is off, MATLAB does not draw the handles
except when in plot edit mode and objects are selected manually.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callbacks.
You can define Tag as any string.

For example, you might create an areaseries object and set the
Tag property.

t = area(Y,'Tag','area1')

When you want to access objects of a given type, you can use
findobj to find the object’s handle. The following statement
changes the FaceColor property of the object whose Tag is area1.

set(findobj('Tag','area1'),'FaceColor','red')

Type
string (read only)

Type of graphics object. This property contains a string that
identifies the class of the graphics object. For stairseries objects,
Type is ’hggroup’. The following statement finds all the hggroup
objects in the current axes object.

t = findobj(gca,'Type','hggroup');

2-3035

Stairseries Properties

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with this object. Assign this property
the handle of a uicontextmenu object created in the object’s
parent figure. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever
you right-click over the object.

UserData
array

User-specified data. This property can be any data you want to
associate with this object (including cell arrays and structures).
The object does not set values for this property, but you can access
it using the set and get functions.

Visible
{on} | off

Visibility of this object and its children. By default, a new object’s
visibility is on. This means all children of the object are visible
unless the child object’s Visible property is set to off. Setting an
object’s Visible property to off prevents the object from being
displayed. However, the object still exists and you can set and
query its properties.

XData
array

X-axis location of stairs. The stairs function uses XData to label
the x-axis. XData can be either a matrix equal in size to YData or a
vector equal in length to the number of rows in YData. That is,
length(XData) == size(YData,1).

If you do not specify XData (i.e., the input argument x), the stairs
function uses the indices of YData to create the stairstep graph.
See the XDataMode property for related information.

2-3036

Stairseries Properties

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify
XData (by setting the XData property or specifying the x input
argument), MATLAB sets this property to manual and uses the
specified values to label the x-axis.

If you set XDataMode to auto after having specified XData,
MATLAB resets the x-axis ticks to 1:size(YData,1) or to the
column indices of the ZData, overwriting any previous values for
XData.

XDataSource
string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change XData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

2-3037

Stairseries Properties

YData
scalar, vector, or matrix

Stairs plot data. YData contains the data plotted in the stairstep
graph. Each value in YData is represented by a marker in the
stairstep graph. If YData is a matrix, the stairs function creates
a line for each column in the matrix.

The input argument y in the stairs function calling syntax
assigns values to YData.

YDataSource
string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change YData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

2-3038

start

Purpose Start timer(s) running

Syntax start(obj)

Description start(obj) starts the timer running, represented by the timer object,
obj. If obj is an array of timer objects, start starts all the timers. Use
the timer function to create a timer object.

start sets the Running property of the timer object, obj, to 'on',
initiates TimerFcn callbacks, and executes the StartFcn callback.

The timer stops running if one of the following conditions apply:

• The first TimerFcn callback completes, if ExecutionMode is
'singleShot'.

• The number of TimerFcn callbacks specified in TasksToExecute have
been executed.

• The stop(obj) command is issued.

• An error occurred while executing a TimerFcn callback.

See Also timer, stop

2-3039

startat

Purpose Start timer(s) running at specified time

Syntax startat(obj,time)
startat(obj,S)
startat(obj,S,pivotyear)
startat(obj,Y,M,D)
startat(obj,[Y,M,D])
startat(obj,Y,M,D,H,MI,S)
startat(obj,[Y,M,D,H,MI,S])

Description startat(obj,time) starts the timer running, represented by the timer
object obj, at the time specified by the serial date number time. If obj
is an array of timer objects, startat starts all the timers running at the
specified time. Use the timer function to create the timer object.

startat sets the Running property of the timer object, obj, to 'on',
initiates TimerFcn callbacks, and executes the StartFcn callback.

The serial date number, time, indicates the number of days that have
elapsed since 1-Jan-0000 (starting at 1). See datenum for additional
information about serial date numbers.

startat(obj,S) starts the timer running at the time specified by the
date string S. The date string must use date format 0, 1, 2, 6, 13, 14,
15, 16, or 23, as defined by the datestr function. Date strings with
two-character years are interpreted to be within the 100 years centered
on the current year.

startat(obj,S,pivotyear) uses the specified pivot year as the
starting year of the 100-year range in which a two-character year
resides. The default pivot year is the current year minus 50 years.

startat(obj,Y,M,D) startat(obj,[Y,M,D]) start the timer at the
year (Y), month (M), and day (D) specified. Y, M, and D must be arrays of
the same size (or they can be a scalar).

startat(obj,Y,M,D,H,MI,S) startat(obj,[Y,M,D,H,MI,S]) start
the timer at the year (Y), month (M), day (D), hour (H), minute (MI), and
second (S) specified. Y, M, D, H, MI, and S must be arrays of the same size
(or they can be a scalar). Values outside the normal range of each array

2-3040

startat

are automatically carried to the next unit (for example, month values
greater than 12 are carried to years). Month values less than 1 are set
to be 1; all other units can wrap and have valid negative values.

The timer stops running if one of the following conditions apply:

• The number of TimerFcn callbacks specified in TasksToExecute have
been executed.

• The stop(obj) command is issued.

• An error occurred while executing a TimerFcn callback.

Examples This example uses a timer object to execute a function at a specified
time.

t1=timer('TimerFcn','disp(''it is 10 o''''clock'')');
startat(t1,'10:00:00');

This example uses a timer to display a message when an hour has
elapsed.

t2=timer('TimerFcn','disp(''It has been an hour now.'')');
startat(t2,now+1/24);

See Also datenum, datestr, now, timer, start, stop

2-3041

startup

Purpose MATLAB startup M-file for user-defined options

Syntax startup

Description startup automatically executes the master M-file matlabrc.m and, if
it exists, startup.m, when MATLAB starts. On multiuser or networked
systems, matlabrc.m is reserved for use by the system manager. The
file matlabrc.m invokes the file startup.m if it exists on the MATLAB
search path.

You can create a startup.m file in your own MATLAB startup directory.
The file can include physical constants, Handle Graphics defaults,
engineering conversion factors, or anything else you want predefined
in your workspace.

There are other ways to predefine aspects of MATLAB. See Startup
Options and About Preferences in the MATLAB Desktop Tools and
Development Environment documentation.

Algorithm Only matlabrc.m is actually invoked by MATLAB at startup. However,
matlabrc.m contains the statements

if exist('startup')==2
startup

end

that invoke startup.m. You can extend this process to create additional
startup M-files, if required.

See Also matlabrc, matlabroot, path, quit

2-3042

std

Purpose Standard deviation

Syntax s = std(X)
s = std(X,flag)
s = std(X,flag,dim)

Definition There are two common textbook definitions for the standard deviation
s of a data vector X.

where

and is the number of elements in the sample. The two forms of the
equation differ only in versus in the divisor.

Description s = std(X), where X is a vector, returns the standard deviation using
(1) above. The result s is the square root of an unbiased estimator of the
variance of the population from which X is drawn, as long as X consists
of independent, identically distributed samples.

If X is a matrix, std(X) returns a row vector containing the standard
deviation of the elements of each column of X. If X is a multidimensional
array, std(X) is the standard deviation of the elements along the first
nonsingleton dimension of X.

2-3043

std

s = std(X,flag) for flag = 0, is the same as std(X). For flag = 1,
std(X,1) returns the standard deviation using (2) above, producing the
second moment of the set of values about their mean.

s = std(X,flag,dim) computes the standard deviations along the
dimension of X specified by scalar dim. Set flag to 0 to normalize Y by
n-1; set flag to 1 to normalize by n.

Examples For matrix X

X =
1 5 9

7 15 22
s = std(X,0,1)
s =

4.2426 7.0711 9.1924
s = std(X,0,2)
s =

4.000
7.5056

See Also corrcoef, cov, mean, median, var

2-3044

std (timeseries)

Purpose Standard deviation of timeseries data

Syntax ts_std = std(ts)
ts_std = std(ts,'PropertyName1',PropertyValue1,...)

Description ts_std = std(ts) returns the standard deviation of the time-series
data. When ts.Data is a vector, ts_std is the standard deviation of
ts.Data values. When ts.Data is a matrix, ts_std is the standard
deviation of each column of ts.Data (when IsTimeFirst is true and
the first dimension of ts is aligned with time). For the N-dimensional
ts.Data array, std always operates along the first nonsingleton
dimension of ts.Data.

ts_std = std(ts,'PropertyName1',PropertyValue1,...)
specifies the following optional input arguments:

• 'MissingData' property has two possible values, 'remove' (default)
or 'interpolate', indicating how to treat missing data during the
calculation.

• 'Quality' values are specified by a vector of integers, indicating
which quality codes represent missing samples (for vector data) or
missing observations (for data arrays with two or more dimensions).

• 'Weighting' property has two possible
values, 'none' (default) or 'time'.
When you specify 'time', larger time values
correspond to larger weights.

Examples 1 Load a 24-by-3 data array.

load count.dat

2 Create a timeseries object with 24 time values.

count_ts = timeseries(count,1:24,'Name','CountPerSecond')

2-3045

std (timeseries)

3 Calculate the standard deviation of each data column for this
timeseries object.

std(count_ts)

ans =

25.3703 41.4057 68.0281

The standard deviation is calculated independently for each data
column in the timeseries object.

See Also iqr (timeseries), mean (timeseries), median (timeseries), var
(timeseries), timeseries

2-3046

stem

Purpose Plot discrete sequence data

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax stem(Y)
stem(X,Y)
stem(...,'fill')
stem(...,LineSpec)
stem(axes_handle,...)
h = stem(...)
hlines = stem('v6',...)

Description A two-dimensional stem plot displays data as lines extending from a
baseline along the x-axis. A circle (the default) or other marker whose
y-position represents the data value terminates each stem.

stem(Y) plots the data sequence Y as stems that extend from equally
spaced and automatically generated values along the x-axis. When Y is
a matrix, stem plots all elements in a row against the same x value.

stem(X,Y) plots X versus the columns of Y. X and Y must be vectors or
matrices of the same size. Additionally, X can be a row or a column
vector and Y a matrix with length(X) rows.

stem(...,'fill') specifies whether to color the circle at the end of
the stem.

stem(...,LineSpec) specifies the line style, marker symbol, and color
for the stem and top marker (the baseline is not affected). See LineSpec
for more information.

2-3047

stem

stem(axes_handle,...) plots into the axes object with the handle
axes_handle instead of into the current axes object (gca).

h = stem(...) returns a vector of stemseries object handles in h, one
handle per column of data in Y.

Backward-Compatible Version

hlines = stem('v6',...) returns the handles of line objects instead
of stemseries objects for compatibility with MATLAB 6.5 and earlier.

hlines contains the handles to three line graphics objects:

• hlines(1) — The marker symbol at the top of each stem

• hlines(2) — The stem line

• hlines(3) — The baseline handle

Note The v6 option enables users of Version 7.x of MATLAB to create
FIG-files that previous versions can open. It is obsolete and will be
removed in a future version of MATLAB.

See Plot Objects and Backward Compatibility for more information.

Examples Single Series of Data

This example creates a stem plot representing the cosine of 10 values
linearly spaced between 0 and 2π. Note that the line style of the
baseline is set by first getting its handle from the stemseries object’s
BaseLine property.

t = linspace(-2*pi,2*pi,10);
h = stem(t,cos(t),'fill','--');
set(get(h,'BaseLine'),'LineStyle',':')
set(h,'MarkerFaceColor','red')

2-3048

stem

The following diagram illustrates the parent-child relationship in the
previous stem plot. Note that the stemseries object contains two line
objects used to draw the stem lines and the end markers. The baseline
is a separate line object.

2-3049

stem

Two Series of Data on One Graph

The following example creates a stem plot from a two-column matrix.
In this case, the stem function creates two stemseries objects, one of
each column of data. Both objects’ handles are returned in the output
argument h.

• h(1) is the handle to the stemseries object plotting the expression
exp(-.07*x).*cos(x).

• h(2) is the handle to the stemseries object plotting the expression
exp(.05*x).*cos(x).

x = 0:25;
y = [exp(-.07*x).*cos(x);exp(.05*x).*cos(x)]';
h = stem(x,y);
set(h(1),'MarkerFaceColor','blue')
set(h(2),'MarkerFaceColor','red','Marker','square')

2-3050

stem

The following diagram illustrates the parent-child relationship in the
previous stem plot. Note that each column in the input matrix y results
in the creation of a stemseries object, which contains two line objects
(one for the stems and one for the markers). The baseline is shared
by both stemseries objects.

2-3051

stem

See Also bar, plot, stairs

Stemseries properties for property descriptions

2-3052

stem3

Purpose Plot 3-D discrete sequence data

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax stem3(Z)
stem3(X,Y,Z)
stem3(...,'fill')
stem3(...,LineSpec)
h = stem3(...)
hlines = stem3('v6',...)

Description Three-dimensional stem plots display lines extending from the x-y
plane. A circle (the default) or other marker symbol whose z-position
represents the data value terminates each stem.

stem3(Z) plots the data sequence Z as stems that extend from the x-y
plane. x and y are generated automatically. When Z is a row vector,
stem3 plots all elements at equally spaced x values against the same y
value. When Z is a column vector, stem3 plots all elements at equally
spaced y values against the same x value.

stem3(X,Y,Z) plots the data sequence Z at values specified by X and Y.
X, Y, and Z must all be vectors or matrices of the same size.

stem3(...,'fill') specifies whether to color the interior of the circle
at the end of the stem.

stem3(...,LineSpec) specifies the line style, marker symbol, and
color for the stems. See LineSpec for more information.

h = stem3(...) returns handles to stemseries graphics objects.

2-3053

stem3

Backward-Compatible Version

hlines = stem3('v6',...) returns the handles of line objects
instead of stemseries objects for compatibility with MATLAB 6.5 and
earlier.

Note The v6 option enables users of Version 7.x of MATLAB to create
FIG-files that previous versions can open. It is obsolete and will be
removed in a future version of MATLAB.

See Plot Objects and Backward Compatibility for more information.

Examples Create a three-dimensional stem plot to visualize a function of two
variables.

X = linspace(0,1,10);
Y = X./2;
Z = sin(X) + cos(Y);
stem3(X,Y,Z,'fill')
view(-25,30)

2-3054

stem3

See Also bar, plot, stairs, stem

“Discrete Data Plots” on page 1-89 for related functions

Stemseries Properties for descriptions of properties

Three-Dimensional Stem Plots for more examples

2-3055

Stemseries Properties

Purpose Define stemseries properties

Modifying
Properties

You can set and query graphics object properties using the set and get
commands or with the property editor (propertyeditor).

Note that you cannot define default properties for stemseries objects.

See Plot Objects for information on stemseries objects.

Stemseries
Property
Descriptions

This section provides a description of properties. Curly braces { } enclose
default values.

Annotation
hg.Annotation object Read Only

Control the display of stemseries objects in legends. The
Annotation property enables you to specify whether this
stemseries object is represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the stemseries
object is displayed in a figure legend:

IconDisplayStyle
Value

Purpose

on Include the stemseries object in a legend as
one entry, but not its children objects

off Do not include the stemseries or its children
in a legend (default)

children Include only the children of the stemseries
as separate entries in the legend

2-3056

Stemseries Properties

Setting the IconDisplayStyle property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to children, which causes each child object
to have an entry in the legend:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation','LegendInformation');
set(hLegendEntry,'IconDisplayStyle','children')

Using the IconDisplayStyle property

See “Controlling Legends” for more information and examples.

BaseLine
handle of baseline

Handle of the baseline object. This property contains the handle of
the line object used as the baseline. You can set the properties of
this line using its handle. For example, the following statements
create a stem plot, obtain the handle of the baseline from the
stemseries object, and then set line properties that make the
baseline a dashed, red line.

stem_handle = stem(randn(10,1));
baseline_handle = get(stem_handle,'BaseLine');
set(baseline_handle,'LineStyle','--','Color','red')

BaseValue
y-axis value

Y-axis value where baseline is drawn. You can specify the value
along the y-axis at which MATLAB draws the baseline.

BeingDeleted
on | {off} Read Only

2-3057

Stemseries Properties

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function
executing, callbacks invoked subsequently always attempt to
interrupt it.

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs
at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

• cancel — Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
string or function handle

2-3058

Stemseries Properties

Button press callback function. A callback that executes whenever
you press a mouse button while the pointer is over this object, but
not over another graphics object. See the HitTestArea property
for information about selecting objects of this type.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

This property can be

• A string that is a valid MATLAB expression

• The name of an M-file

• A function handle

Set this property to a function handle that references the callback.
The expressions execute in the MATLAB workspace.

See “Function Handle Callbacks” for information on how to use
function handles to define the callbacks.

Children
array of graphics object handles

Children of this object. The handle of a patch object that is the
child of this object (whether visible or not).

Note that if a child object’s HandleVisibility property is set
to callback or off, its handle does not show up in this object’s
Children property unless you set the root ShowHiddenHandles
property to on:

set(0,'ShowHiddenHandles','on')

Clipping
{on} | off

2-3059

Stemseries Properties

Clipping mode. MATLAB clips graphs to the axes plot box by
default. If you set Clipping to off, portions of graphs can be
displayed outside the axes plot box. This can occur if you create a
plot object, set hold to on, freeze axis scaling (axis manual), and
then create a larger plot object.

Color
ColorSpec

Color of stem lines. A three-element RGB vector or one of the
MATLAB predefined names, specifying the line color. See the
ColorSpec reference page for more information on specifying color.

For example, the following statement would produce a stem plot
with red lines.

h = stem(randn(10,1),'Color','r');

CreateFcn
string or function handle

Callback routine executed during object creation. This property
defines a callback that executes when MATLAB creates an object.
You must specify the callback during the creation of the object.
For example,

area(y,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function.

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

2-3060

Stemseries Properties

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
string or function handle

Callback executed during object deletion. A callback that executes
when this object is deleted (e.g., this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

DisplayName
string (default is empty string)

String used by legend for this stemseries object. The legend
function uses the string defined by the DisplayName property to
label this stemseries object in the legend.

• If you specify string arguments with the legend function,
DisplayName is set to this stemseries object’s corresponding
string and that string is used for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

2-3061

Stemseries Properties

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

See “Controlling Legends” for more examples.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase objects and their children. Alternative erase
modes are useful for creating animated sequences, where control
of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

• normal — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none — Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing
with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of
the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color

2-3062

Stemseries Properties

if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

• background — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other
graphics objects that are behind the erased object, but the
erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB can mathematically combine
layers of colors (e.g., performing an XOR on a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally accessing
objects that you need to protect for some reason.

• on — Handles are always visible when HandleVisibility is on.

2-3063

Stemseries Properties

• callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions
invoked from the command line. This provides a means to
protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

• off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity

2-3064

Stemseries Properties

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. HitTest determines whether this object
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the objects that compose the area graph. If HitTest
is off, clicking this object selects the object below it (which is
usually the axes containing it).

HitTestArea
on | {off}

Select the object by clicking lines or area of extent. This property
enables you to select plot objects in two ways:

• Select by clicking lines or markers (default).

• Select by clicking anywhere in the extent of the plot.

When HitTestArea is off, you must click th eobject’s lines or
markers (excluding the baseline, if any) to select the object. When
HitTestArea is on, you can select this object by clicking anywhere
within the extent of the plot (i.e., anywhere within a rectangle
that encloses it).

Interruptible
{on} | off

2-3065

Stemseries Properties

Callback routine interruption mode. The Interruptible property
controls whether an object’s callback can be interrupted by
callbacks invoked subsequently.

Only callbacks defined for the ButtonDownFcn property are
affected by the Interruptible property. MATLAB checks for
events that can interrupt a callback only when it encounters a
drawnow, figure, getframe, or pause command in the routine.
See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback
to interrupt callback routines originating from a bar property.
Note that MATLAB does not save the state of variables or the
display (e.g., the handle returned by the gca or gcf command)
when an interruption occurs.

LineStyle
{-} | -- | : | -. | none

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker at
each point but do not want the points connected with a line (see
the Marker property).

2-3066

Stemseries Properties

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Marker
character (see table)

Marker symbol. The Marker property specifies the type of markers
that are displayed at plot vertices. You can set values for the
Marker property independently from the LineStyle property.
Supported markers include those shown in the following table.

Marker Specifier Description

+ Plus sign

o Circle

* Asterisk

. Point

x Cross

s Square

d Diamond

^ Upward-pointing triangle

v Downward-pointing triangle

> Right-pointing triangle

< Left-pointing triangle

p Five-pointed star (pentagram)

h Six-pointed star (hexagram)

none No marker (default)

2-3067

Stemseries Properties

MarkerEdgeColor
ColorSpec | none | {auto}

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles). ColorSpec defines the color to use. none
specifies no color, which makes nonfilled markers invisible. auto
sets MarkerEdgeColor to the same color as the Color property.

MarkerFaceColor
ColorSpec | {none} | auto

Marker face color. The fill color for markers that are closed shapes
(circle, square, diamond, pentagram, hexagram, and the four
triangles). ColorSpec defines the color to use. none makes the
interior of the marker transparent, allowing the background to
show through. auto sets the fill color to the axes color, or to the
figure color if the axes Color property is set to none (which is the
factory default for axes objects).

MarkerSize
size in points

Marker size. A scalar specifying the size of the marker in points.
The default value for MarkerSize is 6 points (1 point = 1/72 inch).
Note that MATLAB draws the point marker (specified by the '.'
symbol) at one-third the specified size.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of this object. This property contains the handle of the
object’s parent. The parent is normally the axes, hggroup, or
hgtransform object that contains the object.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

2-3068

Stemseries Properties

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection "handles" at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing four edge handles and four corner handles. When
SelectionHighlight is off, MATLAB does not draw the handles
except when in plot edit mode and objects are selected manually.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callbacks.

For example, you might create a stemseries object and set the
Tag property:

t = stem(Y,'Tag','stem1')

When you want to access the stemseries object, you can use
findobj to find the stemseries object’s handle. The following
statement changes the MarkerFaceColor property of the object
whose Tag is stem1.

2-3069

Stemseries Properties

set(findobj('Tag','stem1'),'MarkerFaceColor','red')

Type
string (read only)

Type of graphics object. This property contains a string that
identifies the class of the graphics object. For stemseries objects,
Type is 'hggroup'. The following statement finds all the hggroup
objects in the current axes object.

t = findobj(gca,'Type','hggroup');

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with this object. Assign this property
the handle of a uicontextmenu object created in the object’s
parent figure. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever
you right-click over the object.

UserData
array

User-specified data. This property can be any data you want to
associate with this object (including cell arrays and structures).
The object does not set values for this property, but you can access
it using the set and get functions.

Visible
{on} | off

Visibility of this object and its children. By default, a new object’s
visibility is on. This means all children of the object are visible
unless the child object’s Visible property is set to off. Setting an
object’s Visible property to off prevents the object from being
displayed. However, the object still exists and you can set and
query its properties.

2-3070

Stemseries Properties

XData
array

X-axis location of stems. The stem function draws an individual
stem at each x-axis location in the XData array. XData can
be either a matrix equal in size to YData or a vector equal in
length to the number of rows in YData. That is, length(XData)
== size(YData,1). XData does not need to be monotonically
increasing.

If you do not specify XData (i.e., the input argument x), the stem
function uses the indices of YData to create the stem plot. See the
XDataMode property for related information.

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify
XData (by setting the XData property or specifying the x input
argument), MATLAB sets this property to manual and uses the
specified values to label the x-axis.

If you set XDataMode to auto after having specified XData,
MATLAB resets the x-axis ticks to 1:size(YData,1) or to the
column indices of the ZData, overwriting any previous values for
XData.

XDataSource
string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change XData.

2-3071

Stemseries Properties

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
scalar, vector, or matrix

Stem plot data. YData contains the data plotted as stems. Each
value in YData is represented by a marker in the stem plot. If
YData is a matrix, MATLAB creates a series of stems for each
column in the matrix.

The input argument y in the stem function calling syntax assigns
values to YData.

YDataSource
string (MATLAB variable)

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change YData.

2-3072

Stemseries Properties

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

ZData
vector of coordinates

Z-coordinates. A data defining the stems for 3-D stem graphs.
XData and YData (if specified) must be the same size.

ZDataSource
string (MATLAB variable)

Link ZData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
ZData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change ZData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

2-3073

Stemseries Properties

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

2-3074

stop

Purpose Stop timer(s)

Syntax stop(obj)

Description stop(obj) stops the timer, represented by the timer object, obj. If obj
is an array of timer objects, the stop function stops them all. Use the
timer function to create a timer object.

The stop function sets the Running property of the timer object, obj,
to 'off', halts further TimerFcn callbacks, and executes the StopFcn
callback.

See Also timer, start

2-3075

stopasync

Purpose Stop asynchronous read and write operations

Syntax stopasync(obj)

Arguments obj A serial port object or an array of serial port objects.

Description stopasync(obj) stops any asynchronous read or write operation that is
in progress for obj.

Remarks You can write data asynchronously using the fprintf or fwrite
function. You can read data asynchronously using the readasync
function, or by configuring the ReadAsyncMode property to
continuous. In-progress asynchronous operations are indicated by the
TransferStatus property.

If obj is an array of serial port objects and one of the objects cannot be
stopped, the remaining objects in the array are stopped and a warning
is returned. After an object stops:

• Its TransferStatus property is configured to idle.

• Its ReadAsyncMode property is configured to manual.

• The data in its output buffer is flushed.

Data in the input buffer is not flushed. You can return this data to the
MATLAB workspace using any of the synchronous read functions. If
you execute the readasync function, or configure the ReadAsyncMode
property to continuous, then the new data is appended to the existing
data in the input buffer.

See Also Functions

fprintf, fwrite, readasync

2-3076

stopasync

Properties

ReadAsyncMode, TransferStatus

2-3077

str2double

Purpose Convert string to double-precision value

Syntax X = str2double('str')
X = str2double(C)

Description X = str2double('str') converts the string str, which should be an
ASCII character representation of a real or complex scalar value, to
the MATLAB double-precision representation. The string can contain
digits, a comma (thousands separator), a decimal point, a leading + or -
sign, an e preceding a power of 10 scale factor, and an i for a complex
unit.

If str does not represent a valid scalar value, str2double returns NaN.

X = str2double(C) converts the strings in the cell array of strings C to
double precision. The matrix X returned will be the same size as C.

Examples Here are some valid str2double conversions.

str2double('123.45e7')
str2double('123 + 45i')
str2double('3.14159')
str2double('2.7i - 3.14')
str2double({'2.71' '3.1415'})
str2double('1,200.34')

See Also char, hex2num, num2str, str2num

2-3078

str2func

Purpose Construct function handle from function name string

Syntax str2func('str')

Description str2func('str') constructs a function handle fhandle for the function
named in the string 'str'.

You can create a function handle using either the @function syntax or
the str2func command. You can create an array of function handles
from strings by creating the handles individually with str2func, and
then storing these handles in a cellarray.

Examples Example 1

To convert the string, 'sin', into a handle for that function, type

fh = str2func('sin')
fh =

@sin

Example 2

If you pass a function name string in a variable, the function that
receives the variable can convert the function name to a function handle
using str2func. The example below passes the variable, funcname, to
function makeHandle, which then creates a function handle. Here is
the function M-file:

function fh = makeHandle(funcname)
fh = str2func(funcname);

This is the code that calls makdHandle to construct the function handle:

makeHandle('sin')
ans =

@sin

2-3079

str2func

Example 3

To call str2func on a cell array of strings, use the cellfun function.
This returns a cell array of function handles:

fh_array = cellfun(@str2func, {'sin' 'cos' 'tan'}, ...
'UniformOutput', false);

fh_array{2}(5)
ans =

0.2837

Example 4

In the following example, the myminbnd function expects to receive
either a function handle or string in the first argument. If you pass a
string, myminbnd constructs a function handle from it using str2func,
and then uses that handle in a call to fminbnd:

function myminbnd(fhandle, lower, upper)
if ischar(fhandle)

disp 'converting function string to function handle ...'
fhandle = str2func(fhandle);

end
fminbnd(fhandle, lower, upper)

Whether you call myminbnd with a function handle or function name
string, the function can handle the argument appropriately:

myminbnd('humps', 0.3, 1)
converting function string to function handle ...
ans =

0.6370

See Also function_handle, func2str, functions

2-3080

str2mat

Purpose Form blank-padded character matrix from strings

Syntax S = str2mat(T1, T2, T3, ...)

Description S = str2mat(T1, T2, T3, ...) forms the matrix S containing the
text strings T1, T2, T3, ... as rows. The function automatically
pads each string with blanks in order to form a valid matrix. Each text
parameter, Ti, can itself be a string matrix. This allows the creation of
arbitrarily large string matrices. Empty strings are significant.

Note This routine will become obsolete in a future version. Use char
instead.

Remarks str2mat differs from strvcat in that empty strings produce blank rows
in the output. In strvcat, empty strings are ignored.

Examples x = str2mat('36842', '39751', '38453', '90307');

whos x
Name Size Bytes Class

x 4x5 40 char array

x(2,3)

ans =

7

See Also char, strvcat

2-3081

str2num

Purpose Convert string to number

Syntax x = str2num('str')
[x status] = str2num('str')

Description x = str2num('str') converts the string str, which is an ASCII
character representation of a numeric value, to numeric representation.
str2num also converts string matrices to numeric matrices. If the input
string does not represent a valid number or matrix, str2num(str)
returns the empty matrix in x.

The input string can contain

• Digits

• A decimal point

• A leading + or - sign

• A letter e or d preceding a power of 10 scale factor

• A letter i or j indicating a complex or imaginary number.

[x status] = str2num('str') returns the status of the conversion in
logical status, where status equals logical 1 (true) if the conversion
succeeds, and logical 0 (false) otherwise. If the input string str does
not represent a valid number or matrix, MATLAB sets x to the empty
matrix. If the conversions fails, status is set to 0.

Space characters can be significant. For instance, str2num('1+2i')
and str2num('1 + 2i') produce x = 1+2i, while str2num('1 +2i')
produces x = [1 2i]. You can avoid these problems by using the
str2double function.

Note str2num uses the eval function to convert the input argument,
so side effects can occur if the string contains calls to functions. Use
str2double to avoid such side effects, or when the input to str2num
contains a string that represents a single number.

2-3082

str2num

Examples str2num('3.14159e0') is approximately π.

To convert a string matrix,

str2num(['1 2';'3 4'])

ans =

1 2
3 4

See Also num2str, hex2num, sscanf, sparse, special characters

2-3083

strcat

Purpose Concatenate strings horizontally

Syntax t = strcat(s1, s2, s3, ...)

Description t = strcat(s1, s2, s3, ...) horizontally concatenates
corresponding rows of the character arrays s1, s2, s3, etc. All input
arrays must have the same number of rows (or any can be a single
string). When the inputs are all character arrays, the output is also a
character array.

When any of the inputs is a cell array of strings, strcat returns a cell
array of strings formed by concatenating corresponding elements of s1,
s2, etc. The inputs must all have the same size (or any can be a scalar).
Any of the inputs can also be character arrays.

Trailing spaces in character array inputs are ignored and do not appear
in the output. This is not true for inputs that are cell arrays of strings.
Use the concatenation syntax [s1 s2 s3 ...] to preserve trailing
spaces.

Remarks strcat and matrix operation are different for strings that contain
trailing spaces:

a = 'hello '
b = 'goodbye'
strcat(a, b)
ans =
hellogoodbye
[a b]
ans =
hello goodbye

Examples Given two 1-by-2 cell arrays a and b,

a = b =
'abcde' 'fghi' 'jkl' 'mn'

the command t = strcat(a,b) yields

2-3084

strcat

t =
'abcdejkl' 'fghimn'

Given the 1-by-1 cell array c = {`Q'}, the command t =
strcat(a,b,c) yields

t =
'abcdejklQ' 'fghimnQ'

See Also strvcat, cat, cellstr

2-3085

strcmp, strcmpi

Purpose Compare strings

Syntax TF = strcmp('str1', 'str2')
TF = strcmp('str', C)
TF = strcmp(C1, C2)

Each of these syntaxes apply to both strcmp and strcmpi. The strcmp
function is case sensitive in matching strings, while strcmpi is not.

Description Although the following descriptions show only strcmp, they apply to
strcmpi as well. The two functions are the same except that strcmpi
compares strings without sensitivity to letter case:

TF = strcmp('str1', 'str2') compares the strings str1 and str2
and returns logical 1 (true) if they are identical, and returns logical
0 (false) otherwise. str1 and str2 can be character arrays of any
dimension, but strcmp does not return true unless the sizes of both
arrays are equal, and the contents of the two arrays are the same.

TF = strcmp('str', C) compares string str to the each element of
cell array C, where str is a character vector (or a 1-by-1 cell array) and
C is a cell array of strings. The function returns TF, a logical array that
is the same size as C and contains logical 1 (true) for those elements
of C that are a match, and logical 0 (false) for those elements that are
not. The order of the first two input arguments is not important.

TF = strcmp(C1, C2) compares each element of C1 to the same
element in C2, where C1 and C2 are equal-size cell arrays of strings.
Input C1 or C2 can also be a character array with the right number of
rows. The function returns TF, a logical array that is the same size as
C1 and C2, and contains logical 1 (true) for those elements of C1 and C2
that are a match, and logical 0 (false) for those elements that are not.

Remarks These functions are intended for comparison of character data. When
used to compare numeric data, they return logical 0.

Any leading and trailing blanks in either of the strings are explicitly
included in the comparison.

2-3086

strcmp, strcmpi

The value returned by strcmp and strcmpi is not the same as the C
language convention.

strcmp and strcmpi support international character sets.

Examples Example 1

Perform a simple comparison of two strings:

strcmp('Yes', 'No')
ans =

0
strcmp('Yes', 'Yes')
ans =

1

Example 2

Create 3 cell arrays of strings:

A = {'MATLAB','SIMULINK'; ...
'Toolboxes', 'The MathWorks'};

B = {'Handle Graphics', 'Real Time Workshop'; ...
'Toolboxes', 'The MathWorks'};

C = {'handle graphics', 'Signal Processing'; ...
' Toolboxes', 'The MATHWORKS'};

Compare cell arrays A and B with sensitivity to case:

strcmp(A, B)
ans =

0 0
1 1

Compare cell arrays B and C without sensitivity to case. Note that
'Toolboxes' doesn’t match because of the leading space characters in
C{2,1} that do not appear in B{2,1}:

2-3087

strcmp, strcmpi

strcmpi(B, C)
ans =

1 0
0 1

Example 3

Compare a string vector to a cell array of strings, a string vector to a
string array, and a string array to a cell array of strings.

Start by creating a cell array of strings, a string array containing
the same strings (plus padding space characters), and a string vector
containing one of the strings (plus padding).

cellArr = {'It was the best of times'; ...
'it was the worst of times'; ...
'it was the age of wisdom'; ...
'it was the age of foolishness'};

strArr = char(cellArr);

strVec = strArr(3,:)
strVec =

it was the age of wisdom

Remove the space padding from the string vector and compare it to the
cell array. MATLAB compares the string with each row of the cell array,
finding a match on the third row:

strcmp(deblank(strVec), cellArr)
ans =

0
0
1
0

Compare the string vector with the string array. Unlike the case above,
MATLAB does not compare the string vector with each row of the string

2-3088

strcmp, strcmpi

array. It compares the entire contents of one against the entire contents
of the other:

strcmp(strVec, strArr)
ans =

0

Lastly, compare each row of the four-row string array against the same
rows of the cell array. MATLAB finds them all to be equivalent. Note
that in this case you do not have to remove the space padding from
the string array:

strcmp(strArr, cellArr)
ans =

1
1
1
1

See Also strncmp, strncmpi, strmatch, strfind, findstr, regexp, regexpi,
regexprep, regexptranslate

2-3089

stream2

Purpose Compute 2-D streamline data

Syntax XY = stream2(x,y,u,v,startx,starty)
XY = stream2(u,v,startx,starty)
XY = stream2(...,options)

Description XY = stream2(x,y,u,v,startx,starty) computes streamlines from
vector data u and v. The arrays x and y define the coordinates for u and
v and must be monotonic and 2-D plaid (such as the data produced
by meshgrid). startx and starty define the starting positions of the
streamlines. The section "Specifying Starting Points for Stream Plots"
provides more information on defining starting points.

The returned value XY contains a cell array of vertex arrays.

XY = stream2(u,v,startx,starty) assumes the arrays x and y are
defined as [x,y] = meshgrid(1:n,1:m) where [m,n] = size(u).

XY = stream2(...,options) specifies the options used when creating
the streamlines. Define options as a one- or two-element vector
containing the step size or the step size and the maximum number
of vertices in a streamline:

[stepsize]

or

[stepsize, max_number_vertices]

If you do not specify a value, MATLAB uses the default:

• Step size = 0.1 (one tenth of a cell)

• Maximum number of vertices = 10000

Use the streamline command to plot the data returned by stream2.

Examples This example draws 2-D streamlines from data representing air
currents over regions of North America.

2-3090

stream2

load wind

[sx,sy] = meshgrid(80,20:10:50);

streamline(stream2(x(:,:,5),y(:,:,5),u(:,:,5),v(:,:,5),sx,sy));

See Also coneplot, stream3, streamline

“Volume Visualization” on page 1-102 for related functions

Specifying Starting Points for Stream Plots for related information

2-3091

stream3

Purpose Compute 3-D streamline data

Syntax XYZ = stream3(X,Y,Z,U,V,W,startx,starty,startz)
XYZ = stream3(U,V,W,startx,starty,startz)
XYZ = stream3(...,options)

Description XYZ = stream3(X,Y,Z,U,V,W,startx,starty,startz) computes
streamlines from vector data U, V, W. The arrays X, Y, Z define the
coordinates for U, V, W and must be monotonic and 3-D plaid (such as the
data produced by meshgrid). startx, starty, and startz define the
starting positions of the streamlines. The section "Specifying Starting
Points for Stream Plots" provides more information on defining starting
points.

The returned value XYZ contains a cell array of vertex arrays.

XYZ = stream3(U,V,W,startx,starty,startz) assumes the arrays
X, Y, and Z are defined as [X,Y,Z] = meshgrid(1:N,1:M,1:P) where
[M,N,P] = size(U).

XYZ = stream3(...,options) specifies the options used when
creating the streamlines. Define options as a one- or two-element
vector containing the step size or the step size and the maximum
number of vertices in a streamline:

[stepsize]

or

[stepsize, max_number_vertices]

If you do not specify values, MATLAB uses the default:

• Step size = 0.1 (one tenth of a cell)

• Maximum number of vertices = 10000

Use the streamline command to plot the data returned by stream3.

2-3092

stream3

Examples This example draws 3-D streamlines from data representing air
currents over regions of North America.

load wind
[sx sy sz] = meshgrid(80,20:10:50,0:5:15);
streamline(stream3(x,y,z,u,v,w,sx,sy,sz))
view(3)

See Also coneplot, stream2, streamline

“Volume Visualization” on page 1-102 for related functions

Specifying Starting Points for Stream Plots for related information

2-3093

streamline

Purpose Plot streamlines from 2-D or 3-D vector data

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax streamline(X,Y,Z,U,V,W,startx,starty,startz)
streamline(U,V,W,startx,starty,startz)
streamline(XYZ)
streamline(X,Y,U,V,startx,starty)
streamline(U,V,startx,starty)
streamline(XY)
streamline(...,options)
streamline(axes_handle,...)
h = streamline(...)

Description streamline(X,Y,Z,U,V,W,startx,starty,startz) draws
streamlines from 3-D vector data U, V, W. The arrays X, Y, Z define the
coordinates for U, V, W and must be monotonic and 3-D plaid (such as
the data produced by meshgrid). startx, starty, startz define the
starting positions of the streamlines. The section Specifying Starting
Points for Stream Plots provides more information on defining starting
points.

streamline(U,V,W,startx,starty,startz) assumes the arrays X,
Y, and Z are defined as [X,Y,Z] = meshgrid(1:N,1:M,1:P), where
[M,N,P] = size(U).

streamline(XYZ) assumes XYZ is a precomputed cell array of vertex
arrays (as produced by stream3).

2-3094

streamline

streamline(X,Y,U,V,startx,starty) draws streamlines from 2-D
vector data U, V. The arrays X, Y define the coordinates for U, V and must
be monotonic and 2-D plaid (such as the data produced by meshgrid).
startx and starty define the starting positions of the streamlines.
The output argument h contains a vector of line handles, one handle
for each streamline.

streamline(U,V,startx,starty) assumes the arrays X and Y are
defined as [X,Y] = meshgrid(1:N,1:M), where [M,N] = size(U).

streamline(XY) assumes XY is a precomputed cell array of vertex
arrays (as produced by stream2).

streamline(...,options) specifies the options used when creating
the streamlines. Define options as a one- or two-element vector
containing the step size or the step size and the maximum number
of vertices in a streamline:

[stepsize]

or

[stepsize, max_number_vertices]

If you do not specify values, MATLAB uses the default:

• Step size = 0.1 (one tenth of a cell)

• Maximum number of vertices = 1000

streamline(axes_handle,...) plots into the axes object with the
handle axes_handle instead of the into current axes object (gca).

h = streamline(...) returns a vector of line handles, one handle
for each streamline.

Examples This example draws streamlines from data representing air currents
over a region of North America. Loading the wind data set creates the
variables x, y, z, u, v, and w in the MATLAB workspace.

2-3095

streamline

The plane of streamlines indicates the flow of air from the west to
the east (the x-direction) beginning at x = 80 (which is close to
the minimum value of the x coordinates). The y- and z-coordinate
starting points are multivalued and approximately span the range of
these coordinates. meshgrid generates the starting positions of the
streamlines.

load wind
[sx,sy,sz] = meshgrid(80,20:10:50,0:5:15);
h = streamline(x,y,z,u,v,w,sx,sy,sz);
set(h,'Color','red')
view(3)

See Also coneplot, stream2, stream3, streamparticles

“Volume Visualization” on page 1-102 for related functions

Specifying Starting Points for Stream Plots for related information

Stream Line Plots of Vector Data for another example

2-3096

streamparticles

Purpose Plot stream particles

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax streamparticles(vertices)
streamparticles(vertices,n)
streamparticles(...,'PropertyName',PropertyValue,...)
streamparticles(line_handle,...)
h = streamparticles(...)

Description streamparticles(vertices) draws stream particles of a vector field.
Stream particles are usually represented by markers and can show the
position and velocity of a streamline. vertices is a cell array of 2-D or
3-D vertices (as if produced by stream2 or stream3).

streamparticles(vertices,n) uses n to determine how many stream
particles to draw. The ParticleAlignment property controls how n
is interpreted.

• If ParticleAlignment is set to off (the default) and n is greater
than 1, approximately n particles are drawn evenly spaced over the
streamline vertices.

If n is less than or equal to 1, n is interpreted as a fraction of the
original stream vertices; for example, if n is 0.2, approximately 20%
of the vertices are used.

n determines the upper bound for the number of particles drawn.
The actual number of particles can deviate from n by as much as a
factor of 2.

2-3097

streamparticles

• If ParticleAlignment is on, n determines the number of particles on
the streamline having the most vertices and sets the spacing on the
other streamlines to this value. The default value is n = 1.

streamparticles(...,'PropertyName',PropertyValue,...)
controls the stream particles using named properties and specified
values. Any unspecified properties have default values. MATLAB
ignores the case of property names.

Stream Particle Properties

Animate — Stream particle motion [nonnegative integer]

The number of times to animate the stream particles. The default is 0,
which does not animate. Inf animates until you enter Ctrl+C.

FrameRate — Animation frames per second [nonnegative integer]

This property specifies the number of frames per second for the
animation. Inf, the default, draws the animation as fast as possible.
Note that the speed of the animation might be limited by the speed of
the computer. In such cases, the value of FrameRate cannot necessarily
be achieved.

ParticleAlignment — Align particles with streamlines [on | {off}]

Set this property to on to draw particles at the beginning of each
streamline. This property controls how streamparticles interprets the
argument n (number of stream particles).

Stream particles are line objects. In addition to stream particle
properties, you can specify any line object property, such as Marker
and EraseMode. streamparticles sets the following line properties
when called.

Line Property Value Set by streamparticles

EraseMode xor

LineStyle none

Marker o

2-3098

streamparticles

Line Property Value Set by streamparticles

MarkerEdgeColor none

MarkerFaceColor red

You can override any of these properties by specifying a property
name and value as arguments to streamparticles. For example, this
statement uses RGB values to set the MarkerFaceColor to medium
gray:

streamparticles(vertices,'MarkerFaceColor',[.5 .5 .5])

streamparticles(line_handle,...) uses the line object identified
by line_handle to draw the stream particles.

h = streamparticles(...) returns a vector of handles to the line
objects it creates.

Examples This example combines streamlines with stream particle animation.
The interpstreamspeed function determines the vertices along the
streamlines where stream particles will be drawn during the animation,
thereby controlling the speed of the animation. Setting the axes
DrawMode property to fast provides faster rendering.

load wind

[sx sy sz] = meshgrid(80,20:1:55,5);

verts = stream3(x,y,z,u,v,w,sx,sy,sz);

sl = streamline(verts);

iverts = interpstreamspeed(x,y,z,u,v,w,verts,.025);

axis tight; view(30,30); daspect([1 1 .125])

camproj perspective; camva(8)

set(gca,'DrawMode','fast')

box on

streamparticles(iverts,35,'animate',10,'ParticleAlignment','on')

The following picture is a static view of the animation.

2-3099

streamparticles

This example uses the streamlines in the z = 5 plane to animate the
flow along these lines with streamparticles.

load wind
daspect([1 1 1]); view(2)
[verts averts] = streamslice(x,y,z,u,v,w,[],[],[5]);
sl = streamline([verts averts]);
axis tight off;
set(sl,'Visible','off')
iverts = interpstreamspeed(x,y,z,u,v,w,verts,.05);
set(gca,'DrawMode','fast','Position',[0 0 1 1],'ZLim',[4.9 5.1])
set(gcf,'Color','black')
streamparticles(iverts, 200, ...

'Animate',100,'FrameRate',40, ...
'MarkerSize',10,'MarkerFaceColor','yellow')

See Also interpstreamspeed, stream3, streamline

“Volume Visualization” on page 1-102 for related functions

Creating Stream Particle Animations for more details

Specifying Starting Points for Stream Plots for related information

2-3100

streamribbon

Purpose 3-D stream ribbon plot from vector volume data

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax streamribbon(X,Y,Z,U,V,W,startx,starty,startz)
streamribbon(U,V,W,startx,starty,startz)
streamribbon(vertices,X,Y,Z,cav,speed)
streamribbon(vertices,cav,speed)
streamribbon(vertices,twistangle)
streamribbon(...,width)
streamribbon(axes_handle,...)
h = streamribbon(...)

Description streamribbon(X,Y,Z,U,V,W,startx,starty,startz) draws stream
ribbons from vector volume data U, V, W. The arrays X, Y, Z define the
coordinates for U, V, W and must be monotonic and 3-D plaid (as if
produced by meshgrid). startx, starty, and startz define the starting
positions of the stream ribbons at the center of the ribbons. The section
Specifying Starting Points for Stream Plots provides more information
on defining starting points.

The twist of the ribbons is proportional to the curl of the vector field.
The width of the ribbons is calculated automatically.

Generally, you should set the DataAspectRatio (daspect) before calling
streamribbon.

streamribbon(U,V,W,startx,starty,startz) assumes X, Y, and Z
are determined by the expression

2-3101

streamribbon

[X,Y,Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

streamribbon(vertices,X,Y,Z,cav,speed) assumes precomputed
streamline vertices, curl angular velocity, and flow speed. vertices is a
cell array of streamline vertices (as produced by stream3). X, Y, Z, cav,
and speed are 3-D arrays.

streamribbon(vertices,cav,speed) assumes X, Y, and Z are
determined by the expression

[X,Y,Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(cav).

streamribbon(vertices,twistangle) uses the cell array of vectors
twistangle for the twist of the ribbons (in radians). The size of each
corresponding element of vertices and twistangle must be equal.

streamribbon(...,width) sets the width of the ribbons to width.

streamribbon(axes_handle,...) plots into the axes object with the
handle axes_handle instead of into the current axes object (gca).

h = streamribbon(...) returns a vector of handles (one per start
point) to surface objects.

Examples This example uses stream ribbons to indicate the flow in the wind
data set. Inputs include the coordinates, vector field components, and
starting location for the stream ribbons.

load wind
[sx sy sz] = meshgrid(80,20:10:50,0:5:15);
daspect([1 1 1])
streamribbon(x,y,z,u,v,w,sx,sy,sz);
%-----Define viewing and lighting
axis tight
shading interp;
view(3);

2-3102

streamribbon

camlight; lighting gouraud

This example uses precalculated vertex data (stream3), curl average

velocity (curl), and speed . Using precalculated data
enables you to use values other than those calculated from the single
data source. In this case, the speed is reduced by a factor of 10 compared
to the previous example.

2-3103

streamribbon

load wind
[sx sy sz] = meshgrid(80,20:10:50,0:5:15);
daspect([1 1 1])
verts = stream3(x,y,z,u,v,w,sx,sy,sz);
cav = curl(x,y,z,u,v,w);
spd = sqrt(u.^2 + v.^2 + w.^2).*.1;
streamribbon(verts,x,y,z,cav,spd);
%-----Define viewing and lighting
axis tight
shading interp
view(3)
camlight; lighting gouraud

2-3104

streamribbon

This example specifies a twist angle for the stream ribbon.

t = 0:.15:15;
verts = {[cos(t)' sin(t)' (t/3)']};
twistangle = {cos(t)'};
daspect([1 1 1])
streamribbon(verts,twistangle);
%-----Define viewing and lighting

2-3105

streamribbon

axis tight
shading interp;
view(3);
camlight; lighting gouraud

This example combines cone plots (coneplot) and stream ribbon plots
in one graph.

2-3106

streamribbon

%-----Define 3-D arrays x, y, z, u, v, w
xmin = -7; xmax = 7;
ymin = -7; ymax = 7;
zmin = -7; zmax = 7;
x = linspace(xmin,xmax,30);
y = linspace(ymin,ymax,20);
z = linspace(zmin,zmax,20);
[x y z] = meshgrid(x,y,z);
u = y; v = -x; w = 0*x+1;
daspect([1 1 1]);
[cx cy cz] = meshgrid(linspace(xmin,xmax,30),...
linspace(ymin,ymax,30),[-3 4]);

h = coneplot(x,y,z,u,v,w,cx,cy,cz,'quiver');
set(h,'color','k');
%-----Plot two sets of streamribbons
[sx sy sz] = meshgrid([-1 0 1],[-1 0 1],-6);
streamribbon(x,y,z,u,v,w,sx,sy,sz);
[sx sy sz] = meshgrid([1:6],[0],-6);
streamribbon(x,y,z,u,v,w,sx,sy,sz);
%-----Define viewing and lighting
shading interp
view(-30,10) ; axis off tight
camproj perspective; camva(66); camlookat;
camdolly(0,0,.5,'fixtarget')
camlight

2-3107

streamribbon

See Also curl, streamtube, streamline, stream3

“Volume Visualization” on page 1-102 for related functions

Displaying Curl with Stream Ribbons for another example

Specifying Starting Points for Stream Plots for related information

2-3108

streamslice

Purpose Plot streamlines in slice planes

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax streamslice(X,Y,Z,U,V,W,startx,starty,startz)
streamslice(U,V,W,startx,starty,startz)
streamslice(X,Y,U,V)
streamslice(U,V)
streamslice(...,density)
streamslice(...,'arrowsmode')
streamslice(...,'method')
streamslice(axes_handle,...)
h = streamslice(...)
[vertices arrowvertices] = streamslice(...)

Description streamslice(X,Y,Z,U,V,W,startx,starty,startz) draws
well-spaced streamlines (with direction arrows) from vector data U, V,
W in axis aligned x-, y-, z-planes starting at the points in the vectors
startx, starty, startz. (The section Specifying Starting Points for
Stream Plots provides more information on defining starting points.)
The arrays X, Y, Z define the coordinates for U, V, W and must be
monotonic and 3-D plaid (as if produced by meshgrid). U, V, W must be
m-by-n-by-p volume arrays.

Do not assume that the flow is parallel to the slice plane. For example,
in a stream slice at a constant z, the z component of the vector field W is
ignored when you are calculating the streamlines for that plane.

2-3109

streamslice

Stream slices are useful for determining where to start streamlines,
stream tubes, and stream ribbons. It is good practice is to set the axes
DataAspectRatio to [1 1 1] when using streamslice.

streamslice(U,V,W,startx,starty,startz) assumes X, Y, and Z
are determined by the expression

[X,Y,Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

streamslice(X,Y,U,V) draws well-spaced streamlines (with direction
arrows) from vector volume data U, V. The arrays X, Y define the
coordinates for U, V and must be monotonic and 2-D plaid (as if produced
by meshgrid).

streamslice(U,V) assumes X, Y, and Z are determined by the
expression

[X,Y,Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

streamslice(...,density) modifies the automatic spacing of the
streamlines. density must be greater than 0. The default value is 1;
higher values produce more streamlines on each plane. For example, 2
produces approximately twice as many streamlines, while 0.5 produces
approximately half as many.

streamslice(...,'arrowsmode') determines if direction arrows are
present or not. arrowmode can be

• arrows — Draw direction arrows on the streamlines (default).

• noarrows — Do not draw direction arrows.

streamslice(...,'method') specifies the interpolation method to
use. method can be

• linear — Linear interpolation (default)

2-3110

streamslice

• cubic — Cubic interpolation

• nearest — Nearest-neighbor interpolation

See interp3 for more information on interpolation methods.

streamslice(axes_handle,...) plots into the axes object with the
handle axes_handle instead of into the current axes object (gca).

h = streamslice(...) returns a vector of handles to the line objects
created.

[vertices arrowvertices] = streamslice(...) returns two cell
arrays of vertices for drawing the streamlines and the arrows. You
can pass these values to any of the streamline drawing functions
(streamline, streamribbon, streamtube).

Examples This example creates a stream slice in the wind data set at z = 5.

load wind
daspect([1 1 1])
streamslice(x,y,z,u,v,w,[],[],[5])
axis tight

2-3111

streamslice

This example uses streamslice to calculate vertex data for the
streamlines and the direction arrows. This data is then used by
streamline to plot the lines and arrows. Slice planes illustrating with

color the wind speed are drawn by slice in the same
planes.

load wind

2-3112

streamslice

daspect([1 1 1])
[verts averts] = streamslice(u,v,w,10,10,10);
streamline([verts averts])
spd = sqrt(u.^2 + v.^2 + w.^2);
hold on;
slice(spd,10,10,10);
colormap(hot)
shading interp
view(30,50); axis(volumebounds(spd));
camlight; material([.5 1 0])

2-3113

streamslice

This example superimposes contour lines on a surface and then uses
streamslice to draw lines that indicate the gradient of the surface.
interp2 is used to find the points for the lines that lie on the surface.

z = peaks;
surf(z)
shading interp
hold on

2-3114

streamslice

[c ch] = contour3(z,20); set(ch,'edgecolor','b')
[u v] = gradient(z);
h = streamslice(-u,-v);
set(h,'color','k')
for i=1:length(h);
zi = interp2(z,get(h(i),'xdata'),get(h(i),'ydata'));
set(h(i),'zdata',zi);

end
view(30,50); axis tight

2-3115

streamslice

See Also contourslice, slice, streamline, volumebounds

“Volume Visualization” on page 1-102 for related functions

Specifying Starting Points for Stream Plots for related information

2-3116

streamtube

Purpose Create 3-D stream tube plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax streamtube(X,Y,Z,U,V,W,startx,starty,startz)
streamtube(U,V,W,startx,starty,startz)
streamtube(vertices,X,Y,Z,divergence)
streamtube(vertices,divergence)
streamtube(vertices,width)
streamtube(vertices)
streamtube(...,[scale n])
streamtube(axes_handle,...)
h = streamtube(...z)

Description streamtube(X,Y,Z,U,V,W,startx,starty,startz) draws stream
tubes from vector volume data U, V, W. The arrays X, Y, Z define the
coordinates for U, V, W and must be monotonic and 3-D plaid (as if
produced by meshgrid). startx, starty, and startz define the starting
positions of the streamlines at the center of the tubes. The section
Specifying Starting Points for Stream Plots provides more information
on defining starting points.

The width of the tubes is proportional to the normalized divergence of
the vector field.

Generally, you should set the DataAspectRatio (daspect) before calling
streamtube.

streamtube(U,V,W,startx,starty,startz) assumes X, Y, and Z are
determined by the expression

2-3117

streamtube

[X,Y,Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(U).

streamtube(vertices,X,Y,Z,divergence) assumes precomputed
streamline vertices and divergence. vertices is a cell array of
streamline vertices (as produced by stream3). X, Y, Z, and divergence
are 3-D arrays.

streamtube(vertices,divergence) assumes X, Y, and Z are
determined by the expression

[X,Y,Z] = meshgrid(1:n,1:m,1:p)

where [m,n,p] = size(divergence).

streamtube(vertices,width) specifies the width of the tubes in the
cell array of vectors, width. The size of each corresponding element
of vertices and width must be equal. width can also be a scalar,
specifying a single value for the width of all stream tubes.

streamtube(vertices) selects the width automatically.

streamtube(...,[scale n]) scales the width of the tubes by scale.
The default is scale = 1. When the stream tubes are created, using
start points or divergence, specifying scale = 0 suppresses automatic
scaling. n is the number of points along the circumference of the tube.
The default is n = 20.

streamtube(axes_handle,...) plots into the axes object with the
handle axes_handle instead of into the current axes object (gca).

h = streamtube(...z) returns a vector of handles (one per start
point) to surface objects used to draw the stream tubes.

Examples This example uses stream tubes to indicate the flow in the wind data
set. Inputs include the coordinates, vector field components, and
starting location for the stream tubes.

load wind
[sx sy sz] = meshgrid(80,20:10:50,0:5:15);

2-3118

streamtube

daspect([1 1 1])
streamtube(x,y,z,u,v,w,sx,sy,sz);
%-----Define viewing and lighting
view(3)
axis tight
shading interp;
camlight; lighting gouraud

2-3119

streamtube

This example uses precalculated vertex data (stream3) and divergence
(divergence).

load wind
[sx sy sz] = meshgrid(80,20:10:50,0:5:15);
daspect([1 1 1])
verts = stream3(x,y,z,u,v,w,sx,sy,sz);
div = divergence(x,y,z,u,v,w);
streamtube(verts,x,y,z,-div);
%-----Define viewing and lighting
view(3)
axis tight
shading interp
camlight; lighting gouraud

2-3120

streamtube

See Also divergence, streamribbon, streamline, stream3

“Volume Visualization” on page 1-102 for related functions

Displaying Divergence with Stream Tubes for another example

Specifying Starting Points for Stream Plots for related information

2-3121

strfind

Purpose Find one string within another

Syntax k = strfind(str, pattern)
k = strfind(cellstr, pattern)

Description k = strfind(str, pattern) searches the string str for occurrences of
a shorter string, pattern, and returns the starting index of each such
occurrence in the double array k. If pattern is not found in str, or if
pattern is longer than str, then strfind returns the empty array [].

k = strfind(cellstr, pattern) searches each string in cell array
of strings cellstr for occurrences of a shorter string, pattern, and
returns the starting index of each such occurrence in cell array k. If
pattern is not found in a string or if pattern is longer then all strings
in the cell array, then strfind returns the empty array [], for that
string in the cell array.

The search performed by strfind is case sensitive. Any leading and
trailing blanks in pattern or in the strings being searched are explicitly
included in the comparison.

Examples Use strfind to find a two-letter pattern in string S:

S = 'Find the starting indices of the pattern string';
strfind(S, 'in')
ans =

2 15 19 45

strfind(S, 'In')
ans =

[]

strfind(S, ' ')
ans =

5 9 18 26 29 33 41

Use strfind on a cell array of strings:

2-3122

strfind

cstr = {'How much wood would a woodchuck chuck';
'if a woodchuck could chuck wood?'};

idx = strfind(cstr, 'wood');

idx{:,:}
ans =

10 23
ans =

6 28

This means that 'wood' occurs at indices 10 and 23 in the first string
and at indices 6 and 28 in the second.

See Also findstr, strmatch, strtok, strcmp, strncmp, strcmpi, strncmpi,
regexp, regexpi, regexprep

2-3123

strings

Purpose MATLAB string handling

Syntax S = 'Any Characters'
S = [S1 S2 ...]
S = strcat(S1, S2, ...)

Description S = 'Any Characters' creates a character array, or string. The string
is actually a vector whose components are the numeric codes for
the characters (the first 127 codes are ASCII). The actual characters
displayed depend on the character encoding scheme for a given font.
The length of S is the number of characters. A quotation within the
string is indicated by two quotes.

S = [S1 S2 ...] concatenates character arrays S1, S2, etc. into a new
character array, S.

S = strcat(S1, S2, ...) concatenates S1, S2, etc., which can be
character arrays or “Cell Arrays of Strings”. When the inputs are all
character arrays, the output is also a character array. When any of the
inputs is a cell array of strings, strcat returns a cell array of strings.

Trailing spaces in strcat character array inputs are ignored and do not
appear in the output. This is not true for strcat inputs that are cell
arrays of strings. Use the S = [S1 S2 ...] concatenation syntax,
shown above, to preserve trailing spaces.

S = char(X) can be used to convert an array that contains positive
integers representing numeric codes into a MATLAB character array.

X = double(S) converts the string to its equivalent double-precision
numeric codes.

A collection of strings can be created in either of the following two ways:

• As the rows of a character array via strvcat

• As a cell array of strings via the curly braces

You can convert between character array and cell array of strings using
char and cellstr. Most string functions support both types.

2-3124

strings

ischar(S) tells if S is a string variable. iscellstr(S) tells if S is a
cell array of strings.

Examples Create a simple string that includes a single quote.

msg = 'You''re right!'

msg =
You're right!

Create the string name using two methods of concatenation.

name = ['Thomas' ' R. ' 'Lee']
name = strcat('Thomas',' R.',' Lee')

Create a vertical array of strings.

C = strvcat('Hello','Yes','No','Goodbye')

C =
Hello
Yes
No
Goodbye

Create a cell array of strings.

S = {'Hello' 'Yes' 'No' 'Goodbye'}

S =
'Hello' 'Yes' 'No' 'Goodbye'

See Also char, isstrprop, cellstr, ischar, isletter, isspace, iscellstr,
strvcat, sprintf, sscanf, text, input

2-3125

strjust

Purpose Justify character array

Syntax T = strjust(S)
T = strjust(S, 'right')
T = strjust(S, 'left')
T = strjust(S, 'center')

Description T = strjust(S) or T = strjust(S, 'right') returns a right-justified
version of the character array S.

T = strjust(S, 'left') returns a left-justified version of S.

T = strjust(S, 'center') returns a center-justified version of S.

See Also deblank, strtrim

2-3126

strmatch

Purpose Find possible matches for string

Syntax x = strmatch(str, strarray)
x = strmatch(str, strarray, 'exact')

Description x = strmatch(str, strarray) looks through the rows of the character
array or cell array of strings strarray to find strings that begin with
the text contained in str, and returns the matching row indices.
Any trailing space characters in str or strarray are ignored when
matching. strmatch is fastest when strarray is a character array.

x = strmatch(str, strarray, 'exact') compares str with each
row of strarray, looking for an exact match of the entire strings. Any
trailing space characters in str or strarray are ignored when matching.

Examples The statement

x = strmatch('max', strvcat('max', 'minimax', 'maximum'))

returns x = [1; 3] since rows 1 and 3 begin with 'max'. The statement

x = strmatch('max', strvcat('max', 'minimax', 'maximum'),'exact')

returns x = 1, since only row 1 matches 'max' exactly.

See Also strcmp, strcmpi, strncmp, strncmpi, strfind, findstr, strvcat,
regexp, regexpi, regexprep

2-3127

strncmp, strncmpi

Purpose Compare first n characters of strings

Syntax TF = strncmp('str1', 'str2', n)
TF = strncmp('str', C, n)
TF = strncmp(C1, C2, n)

Each of these syntaxes apply to both strncmp and strncmpi. The
strncmp function is case sensitive in matching strings, while strncmpi
is not.

Description Although the following descriptions show only strncmp, they apply to
strncmpi as well. The two functions are the same except that strncmpi
compares strings without sensitivity to letter case:

TF = strncmp('str1', 'str2', n) compares the first n characters of
strings str1 and str2 and returns logical 1 (true) if they are identical,
and returns logical 0 (false) otherwise. str1 and str2 can be character
arrays of any dimension, but strncmp does not return true unless the
sizes of both arrays are equal, and the contents of the two arrays are
the same.

TF = strncmp('str', C, n) compares the first n characters of str to
the first n characters of each element of cell array C, where str is a
character vector (or a 1-by-1 cell array), and C is a cell array of strings.
The function returns TF, a logical array that is the same size as C and
contains logical 1 (true) for those elements of C that are a match, and
logical 0 (false) for those elements that are not. The order of the first
two input arguments is not important.

TF = strncmp(C1, C2, n) compares each element of C1 to the same
element in C2, where C1 and C2 are equal-size cell arrays of strings.
Input C1 or C2 can also be a character array with the right number of
rows. The function attempts to match only the first n characters of each
string. The function returns TF, a logical array that is the same size as
C1 and C2, and contains logical 1 (true) for those elements of C1 and C2
that are a match, and logical 0 (false) for those elements that are not.

2-3128

strncmp, strncmpi

Remarks These functions are intended for comparison of character data. When
used to compare numeric data, they return logical 0.

Any leading and trailing blanks in either of the strings are explicitly
included in the comparison.

The value returned by strncmp and strncmpi is not the same as the C
language convention.

strncmp and strncmpi support international character sets.

Examples Example 1

From a list of 10 MATLAB functions, find those that apply to using a
camera:

function_list = {'calendar' 'case' 'camdolly' 'circshift' ...

'caxis' 'camtarget' 'cast' 'camorbit' ...

'callib' 'cart2sph'};

strncmp(function_list, 'cam', 3)

ans =

0 0 1 0 0 1 0 1 0 0

function_list{strncmp(function_list, 'cam', 3)}

ans =

camdolly

ans =

camtarget

ans =

camorbit

Example 2

Create two 5-by-10 string arrays str1 and str2 that are equal except
for the element at row 4, column 3. Using linear indexing, this is
element 14:

str1 = ['AAAAAAAAAA'; 'BBBBBBBBBB'; 'CCCCCCCCCC'; ...
'DDDDDDDDDD'; 'EEEEEEEEEE']

2-3129

strncmp, strncmpi

str1 =
AAAAAAAAAA
BBBBBBBBBB
CCCCCCCCCC
DDDDDDDDDD
EEEEEEEEEE

str2 = str1;
str2(4,3) = '-'
str2 =

AAAAAAAAAA
BBBBBBBBBB
CCCCCCCCCC
DD-DDDDDDD
EEEEEEEEEE

Because MATLAB compares the arrays in linear order (that is, column
by column rather than row by row), strncmp finds only the first 13
elements to be the same:

str1 A B C D E A B C D E A B C D E
str2 A B C D E A B C D E A B C - E

|
element 14

strncmp(str1, str2, 13)
ans =

1

strncmp(str1, str2, 14)
ans =

0

See Also strcmp, strcmpi, strmatch, strfind, findstr, regexp, regexpi,
regexprep, regexptranslate

2-3130

strread

Purpose Read formatted data from string

Note The textscan function is intended as a replacement for both
strread and textread.

Syntax A = strread('str')
[A, B, ...] = strread('str')
[A, B, ...] = strread('str', 'format')
[A, B, ...] = strread('str', 'format', N)
[A, B, ...] = strread('str', 'format', N, param, value, ...)

Description A = strread('str') reads numeric data from input string str into a
1-by-N vector A, where N equals the number of whitespace-separated
numbers in str. Use this form only with strings containing numeric
data. See “Example 1” on page 2-3135 below.

[A, B, ...] = strread('str') reads numeric data from the string
input str into scalar output variables A, B, and so on. The number
of output variables must equal the number of whitespace-separated
numbers in str. Use this form only with strings containing numeric
data. See “Example 2” on page 2-3135 below.

[A, B, ...] = strread('str', 'format') reads data from str
into variables A, B, and so on using the specified format. The number
of output variables A, B, etc. must be equal to the number of format
specifiers (e.g., %s or %d) in the format argument. You can read all of
the data in str to a single output variable as long as you use only one
format specifier in the command. See “Example 4” on page 2-3136 and
“Example 5” on page 2-3136 below.

The table Formats for strread on page 2-3132 lists the valid format
specifiers. More information on using formats is available under
“Formats” on page 2-3134 in the Remarks section below.

[A, B, ...] = strread('str', 'format', N) reads data from str
reusing the format string N times, where N is an integer greater than
zero. If N is -1, strread reads the entire string. When str contains

2-3131

strread

only numeric data, you can set format to the empty string (''). See
“Example 3” on page 2-3136 below.

[A, B, ...] = strread('str', 'format', N, param, value,
...) customizes strread using param/value pairs, as listed in the table
Parameters and Values for strread on page 2-3133 below. When str
contains only numeric data, you can set format to the empty string ('').
The N argument is optional and may be omitted entirely. See “Example
7” on page 2-3137 below.

Formats for strread

Format Action Output

Literals

(ordinary
characters)

Ignore the matching characters.
For example, in a string that
has Dept followed by a number
(for department number), to
skip the Dept and read only
the number, use 'Dept' in the
format string.

None

%d Read a signed integer value. Double array

%u Read an integer value. Double array

%f Read a floating-point value. Double array

%s Read a white-space separated
string.

Cell array of strings

%q Read a double quoted string,
ignoring the quotes.

Cell array of strings

%c Read characters, including
white space.

Character array

%[...] Read the longest string
containing characters specified
in the brackets.

Cell array of strings

2-3132

strread

Formats for strread (Continued)

Format Action Output

%[^...] Read the longest nonempty
string containing characters
that are not specified in the
brackets.

Cell array of strings

%*... Ignore the characters following
*. See “Example 8” on page
2-3137 below.

No output

%w... Read field width specified by w.
The %f format supports %w.pf,
where w is the field width and p
is the precision.

Parameters and Values for strread

param value Action

whitespace * where * can be Treats vector of characters,
*, as white space. Default is
\b\r\n\t.

b
f
n
r
t
\\
\'' or ''
%%

Backspace

Form feed

New line

Carriage return

Horizontal tab

Backslash

Single quotation mark

Percent sign

2-3133

strread

Parameters and Values for strread (Continued)

param value Action

delimiter Delimiter character Specifies delimiter
character. Default is one or
more whitespace characters.

expchars Exponent
characters

Default is eEdD.

bufsize Positive integer Specifies the maximum
string length, in bytes.
Default is 4095.

commentstyle matlab Ignores characters after %.

commentstyle shell Ignores characters after #.

commentstyle c Ignores characters between
/* and */.

commentstyle c++ Ignores characters after //.

Remarks Delimiters

If your data uses a character other than a space as a delimiter, you must
use the strread parameter 'delimiter' to specify the delimiter. For
example, if the string str used a semicolon as a delimiter, you would
use this command:

[names, types, x, y, answer] = strread(str,'%s %s %f ...
%d %s','delimiter',';')

Formats

The format string determines the number and types of return
arguments. The number of return arguments must match the number
of conversion specifiers in the format string.

The strread function continues reading str until the entire string is
read. If there are fewer format specifiers than there are entities in str,

2-3134

strread

strread reapplies the format specifiers, starting over at the beginning.
See “Example 5” on page 2-3136 below.

The format string supports a subset of the conversion specifiers and
conventions of the C language fscanf routine. White-space characters
in the format string are ignored.

Preserving White-Space

If you want to preserve leading and trailing spaces in a string, use the
whitespace parameter as shown here:

str = ' An example of preserving spaces ';

strread(str, '%s', 'whitespace', '')
ans =

' An example of preserving spaces '

Examples Example 1

Read numeric data into a 1-by-5 vector:

a = strread('0.41 8.24 3.57 6.24 9.27')
a =

0.4100 8.2400 3.5700 6.2400 9.2700

Example 2

Read numeric data into separate scalar variables:

[a b c d e] = strread('0.41 8.24 3.57 6.24 9.27')
a =

0.4100
b =

8.2400
c =

3.5700
d =

6.2400
e =

9.2700

2-3135

strread

Example 3

Read the only first three numbers in the string, also formatting as
floating point:

a = strread('0.41 8.24 3.57 6.24 9.27', '%4.2f', 3)

a =
0.4100
8.2400
3.5700

Example 4

Truncate the data to one decimal digit by specifying format %3.1f.
The second specifier, %*1d, tells strread not to read in the remaining
decimal digit:

a = strread('0.41 8.24 3.57 6.24 9.27', '%3.1f %*1d')

a =
0.4000
8.2000
3.5000
6.2000
9.2000

Example 5

Read six numbers into two variables, reusing the format specifiers:

[a b] = strread('0.41 8.24 3.57 6.24 9.27 3.29', '%f %f')

a =
0.4100
3.5700
9.2700

b =
8.2400
6.2400

2-3136

strread

3.2900

Example 6

Read string and numeric data to two output variables. Ignore commas
in the input string:

str = 'Section 4, Page 7, Line 26';

[name value] = strread(str, '%s %d,')
name =

'Section'
'Page'
'Line'

value =
4
7

26

Example 7

Read the string used in the last example, but this time delimiting with
commas instead of spaces:

str = 'Section 4, Page 7, Line 26';

[a b c] = strread(str, '%s %s %s', 'delimiter', ',')
a =

'Section 4'
b =

'Page 7'
c =

'Line 26'

Example 8

Read selected portions of the input string:

str = '<table border=5 width="100%" cellspacing=0>';

[border width space] = strread(str, ...

2-3137

strread

'%*s%*s %c %*s "%4s" %*s %c', 'delimiter', '= ')
border =

5
width =

'100%'
space =

0

Example 9

Read the string into two vectors, restricting the Answer values to T and
F. Also note that two delimiters (comma and space) are used here:

str = 'Answer_1: T, Answer_2: F, Answer_3: F';

[a b] = strread(str, '%s %[TF]', 'delimiter', ', ')
a =

'Answer_1:'
'Answer_2:'
'Answer_3:'

b =
'T'
'F'
'F'

See Also textscan, textread, sscanf

2-3138

strrep

Purpose Find and replace substring

Syntax str = strrep(str1, str2, str3)

Description str = strrep(str1, str2, str3) replaces all occurrences of the
string str2 within string str1 with the string str3.

strrep(str1, str2, str3), when any of str1, str2, or str3 is a cell
array of strings, returns a cell array the same size as str1, str2, and
str3 obtained by performing a strrep using corresponding elements
of the inputs. The inputs must all be the same size (or any can be a
scalar cell). Any one of the strings can also be a character array with
the right number of rows.

Examples s1 = 'This is a good example.';
str = strrep(s1, 'good', 'great')
str =
This is a great example.
A =

'MATLAB' 'SIMULINK'
'Toolboxes' 'The MathWorks'

B =
'Handle Graphics' 'Real Time Workshop'
'Toolboxes' 'The MathWorks'

C =
'Signal Processing' 'Image Processing'
'MATLAB' 'SIMULINK'

strrep(A, B, C)
ans =

'MATLAB' 'SIMULINK'
'MATLAB' 'SIMULINK'

See Also strfind

2-3139

strtok

Purpose Selected parts of string

Syntax token = strtok('str')
token = strtok('str', delimiter)
[token, remain] = strtok('str', ...)

Description token = strtok('str') returns in token that part of the input
string str that precedes the first white-space character (the default
delimiter). Parsing of the string begins at the first nondelimiting (i.e.,
nonwhite-space) character and continues to the right until MATLAB
either locates a delimiter or reaches the end of the string. If no
delimiters are found in the body of the input string, then the entire
string (excluding any leading delimiting characters) is returned.

White-space characters include space (ASCII 32), tab (ASCII 9), and
carriage return (ASCII 13).

If str is a cell array of strings, token is a cell array of tokens.

token = strtok('str', delimiter) [4] is the same as the above
syntax except that you can specify one or more nondefault delimiters
in the character vector, delimiter. Ignoring any leading delimiters,
MATLAB returns in token that part of the input string that precedes
one of the characters from the given delimiter vector.

[token, remain] = strtok('str', ...) returns in remain a
substring of the input string that begins immediately after the token
substring and ends with the last character in str. If no delimiters are
found in the body of the input string, then the entire string (excluding
any leading delimiting characters) is returned in token, and remain is
an empty string ('').

If str is a cell array of strings, token is a cell array of tokens and
remain is a character array.

Examples Example 1

This example uses the default white-space delimiter:

s = ' This is a simple example.';

2-3140

strtok

[token, remain] = strtok(s)
token =

This
remain =

is a simple example.

Example 2

Take a string of HTML code and break it down into segments delimited
by the < and > characters. Write a while loop to parse the string and
print each segment:

s = sprintf('%s%s%s%s', ...
'<ul class=continued><li class=continued>', ...
'<pre>token = strtok', ...
'(''str'', delimiter)', ...
'token = strtok(''str'')');

remain = s;

while true
[str, remain] = strtok(remain, '<>');
if isempty(str), break; end
disp(sprintf('%s', str))
end

Here is the output:

ul class=continued
li class=continued
pre
a name="13474"
/a
token = strtok('str', delimiter)
a name="13475"
/a
token = strtok('str')

2-3141

strtok

Example 3

Using strtok on a cell array of strings returns a cell array of strings in
token and a character array in remain:

s = {'all in good time'; ...
'my dog has fleas'; ...
'leave no stone unturned'};

remain = s;

for k = 1:4
[token, remain] = strtok(remain);
token
end

Here is the output:

token =
'all'
'my'
'leave'

token =
'in'
'dog'
'no'

token =
'good'
'has'
'stone'

token =
'time'
'fleas'
'unturned'

See Also findstr, strmatch

2-3142

strtrim

Purpose Remove leading and trailing white space from string

Syntax S = strtrim(str)
C = strtrim(cstr)

Description S = strtrim(str) returns a copy of string str with all leading and
trailing white-space characters removed. A white-space character is one
for which the isspace function returns logical 1 (true).

C = strtrim(cstr) returns a copy of the cell array of strings cstr
with all leading and trailing white-space characters removed from each
string in the cell array.

Examples Remove the leading white-space characters (spaces and tabs) from str:

str = sprintf(' \t Remove leading white-space')
str =

Remove leading white-space

str = strtrim(str)
str =
Remove leading white-space

Remove leading and trailing white-space from the cell array of strings:

cstr = {' Trim leading white-space';
'Trim trailing white-space '};

cstr = strtrim(cstr)
cstr =

'Trim leading white-space'
'Trim trailing white-space'

See Also isspace, cellstr, deblank, strjust

2-3143

struct

Purpose Create structure array

Syntax s = struct('field1', values1, 'field2', values2, ...)
s = struct('field1', {}, 'field2', {}, ...)
s = struct
s = struct([])
s = struct(obj)

Description s = struct('field1', values1, 'field2', values2, ...) creates
a structure array with the specified fields and values. Each value input
(values1, values2, etc.), can either be a cell array or a scalar value.
Those that are cell arrays must all have the same dimensions.

The size of the resulting structure is the same size as the value cell
arrays, or 1-by-1 if none of the values is a cell array. Elements of the
value array inputs are placed into corresponding structure array
elements.

Note If any of the values fields is an empty cell array {}, MATLAB
creates an empty structure array in which all fields are also empty.

Structure field names must begin with a letter, and are case-sensitive.
The rest of the name may contain letters, numerals, and underscore
characters. Use the namelengthmax function to determine the maximum
length of a field name.

s = struct('field1', {}, 'field2', {}, ...) creates an empty
structure with fields field1, field2, ...

s = struct creates a 1-by-1 structure with no fields.

s = struct([]) creates an empty structure with no fields.

s = struct(obj) creates a structure identical to the underlying
structure in the object obj. The class information is lost.

2-3144

struct

Remarks Two Ways to Access Fields

The most common way to access the data in a structure is by specifying
the name of the field that you want to reference. Another means of
accessing structure data is to use dynamic field names. These names
express the field as a variable expression that MATLAB evaluates at
run-time.

Fields That Are Cell Arrays

To create fields that contain cell arrays, place the cell arrays within a
value cell array. For instance, to create a 1-by-1 structure, type

s = struct('strings',{{'hello','yes'}},'lengths',[5 3])
s =

strings: {'hello' 'yes'}
lengths: [5 3]

Specifying Cell Versus Noncell Values

When using the syntax

s = struct('field1', values1, 'field2', values2, ...)

the values inputs can be cell arrays or scalar values. For those values
that are specified as a cell array, MATLAB assigns each element
of values{m,n,...} to the corresponding field in each element of
structure s:

s(m,n,...).fieldN = valuesN{m,n,...}

For those values that are scalar, MATLAB assigns that single value to
the corresponding field for all elements of structure s:

s(m,n,...).fieldN = valuesN

See Example 3, below.

Examples Example 1

The command

2-3145

struct

s = struct('type', {'big','little'}, 'color', {'red'}, ...
'x', {3 4})

produces a structure array s:

s =
1x2 struct array with fields:

type
color
x

The value arrays have been distributed among the fields of s:

s(1)
ans =

type: 'big'
color: 'red'

x: 3
s(2)
ans =

type: 'little'
color: 'red'

x: 4

Example 2

Similarly, the command

a.b = struct('z', {});

produces an empty structure a.b with field z.

a.b
ans =

0x0 struct array with fields:
z

2-3146

struct

Example 3

This example initializes one field f1 using a cell array, and the other f2
using a scalar value:

s = struct('f1', {1 3; 2 4}, 'f2', 25)
s =
2x2 struct array with fields:

f1
f2

Field f1 in each element of s is assigned the corresponding value from
the cell array {1 3; 2 4}:

s.f1
ans =

1
ans =

2
ans =

3
ans =

4

Field f2 for all elements of s is assigned one common value because the
values input for this field was specified as a scalar:

s.f2
ans =

25
ans =

25
ans =

25
ans =

25

2-3147

struct

See Also isstruct, fieldnames, isfield, orderfields, getfield,
setfield, rmfield, substruct, deal, cell2struct, struct2cell,
namelengthmax, dynamic field names

2-3148

struct2cell

Purpose Convert structure to cell array

Syntax c = struct2cell(s)

Description c = struct2cell(s) converts the m-by-n structure s (with p fields) into
a p-by-m-by-n cell array c.

If structure s is multidimensional, cell array c has size [p size(s)].

Examples The commands

clear s, s.category = 'tree';
s.height = 37.4; s.name = 'birch';

create the structure

s =
category: 'tree'

height: 37.4000
name: 'birch'

Converting the structure to a cell array,

c = struct2cell(s)

c =
'tree'
[37.4000]
'birch'

See Also cell2struct, cell, iscell, struct, isstruct, fieldnames, “Using
Dynamic Field Names”

2-3149

structfun

Purpose Apply function to each field of scalar structure

Syntax A = structfun(fun, S)
[A, B, ...] = structfun(fun, S)
[A, ...] = structfun(fun, S, 'param1', value1, ...)

Description A = structfun(fun, S) applies the function specified by fun to each
field of scalar structure S, and returns the results in array A. fun is
a function handle to a function that takes one input argument and
returns a scalar value. Return value A is a column vector that has one
element for each field in input structure S. The Nth element of A is the
result of applying fun to the Nth field of S, and the order of the fields
is the same as that returned by a call to fieldnames. (A is returned as
one or more scalar structures when the UniformOutput option is set to
false. See the table below.))

fun must return values of the same class each time it is called. If fun is
a handle to an overloaded function, then structfun follows MATLAB
dispatching rules in calling the function.

[A, B, ...] = structfun(fun, S) returns arrays A, B, ..., each
array corresponding to one of the output arguments of fun. structfun
calls fun each time with as many outputs as there are in the call to
structfun. fun can return output arguments having different classes,
but the class of each output must be the same each time fun is called.

[A, ...] = structfun(fun, S, 'param1', value1, ...) enables
you to specify optional parameter name/parameter value pairs.
Parameters are

2-3150

structfun

Parameter Value

'UniformOutput' Logical value indicating whether or not
the outputs of fun can be returned without
encapsulation in a structure. The default value
is true.

If equal to logical 1 (true), fun must return scalar
values that can be concatenated into an array.
The outputs can be any of the following types:
numeric, logical, char, struct, or cell.

If equal to logical 0 (false), structfun returns
a scalar structure or multiple scalar structures
having fields that are the same as the fields of
the input structure S. The values in the output
structure fields are the results of calling fun on
the corresponding values in the input structure B.
In this case, the outputs can be of any data type.

'ErrorHandler' Function handle specifying the function MATLAB
is to call if the call to fun fails. MATLAB calls the
error handling function with the following input
arguments:

• A structure, with the fields 'identifier',
'message', and 'index', respectively
containing the identifier of the error that
occurred, the text of the error message, and
the number of the field (in the same order as
returned by field names) at which the error
occurred.

• The input argument at which the call to the
function failed.

The error handling function should either
rethrow an error or return the same number
of outputs as fun. These outputs are then
returned as the outputs of structfun. If
'UniformOutput' is true, the outputs of the
error handler must also be scalars of the same
type as the outputs of fun.

For example,

function [A, B] = errorFunc(S, ...
varargin)

warning(S.identifier, S.message);
A = NaN; B = NaN;

2-3151

structfun

Examples To create shortened weekday names from the full names, for example:
Create a structure with strings in several fields:

s.f1 = 'Sunday';
s.f2 = 'Monday';
s.f3 = 'Tuesday';
s.f4 = 'Wednesday';
s.f5 = 'Thursday';
s.f6 = 'Friday';
s.f7 = 'Saturday';

shortNames = structfun(@(x) (x(1:3)), s, ...
'UniformOutput', false);

See Also cellfun, arrayfun, function_handle, cell2mat, spfun

2-3152

strvcat

Purpose Concatenate strings vertically

Syntax S = strvcat(t1, t2, t3, ...)
S = strvcat(c)

Description S = strvcat(t1, t2, t3, ...) forms the character array S
containing the text strings (or string matrices) t1,t2,t3,... as rows.
Spaces are appended to each string as necessary to form a valid matrix.
Empty arguments are ignored.

S = strvcat(c) when c is a cell array of strings, passes each element
of c as an input to strvcat. Empty strings in the input are ignored.

Remarks If each text parameter, ti, is itself a character array, strvcat appends
them vertically to create arbitrarily large string matrices.

Examples The command strvcat('Hello','Yes') is the same as ['Hello';'Yes
'], except that strvcat performs the padding automatically.

t1 = 'first'; t2 = 'string'; t3 = 'matrix'; t4 = 'second';

S1 = strvcat(t1, t2, t3) S2 = strvcat(t4, t2, t3)

S1 = S2 =

first second
string string
matrix matrix

S3 = strvcat(S1, S2)

S3 =
first
string
matrix
second
string

2-3153

strvcat

matrix

See Also strcat, cat, int2str, mat2str, num2str, strings

2-3154

sub2ind

Purpose Single index from subscripts

Syntax IND = sub2ind(siz,I,J)
IND = sub2ind(siz,I1,I2,...,In)

Description The sub2ind command determines the equivalent single index
corresponding to a set of subscript values.

IND = sub2ind(siz,I,J) returns the linear index equivalent to the
row and column subscripts I and J for a matrix of size siz. siz is a
2-element vector, where siz(1) is the number of rows and siz(2) is the
number of columns.

IND = sub2ind(siz,I1,I2,...,In) returns the linear index
equivalent to the n subscripts I1,I2,...,In for an array of size siz. siz is
an n-element vector that specifies the size of each array dimension.

Examples Create a 3-by-4-by-2 array, A.

A = [17 24 1 8; 2 22 7 14; 4 6 13 20];
A(:,:,2) = A - 10

A(:,:,1) =

17 24 1 8
2 22 7 14
4 6 13 20

A(:,:,2) =

7 14 -9 -2
-8 12 -3 4
-6 -4 3 10

The value at row 2, column 1, page 2 of the array is -8.

A(2,1,2)

2-3155

sub2ind

ans =

-8

To convert A(2,1,2) into its equivalent single subscript, use sub2ind.

sub2ind(size(A),2,1,2)

ans =

14

You can now access the same location in A using the single subscripting
method.

A(14)

ans =

-8

See Also ind2sub, find, size

2-3156

subplot

Purpose Create axes in tiled positions

GUI
Alternatives

To add subplots to a figure, click one of the New Subplot icons in the
Figure Palette, and slide right to select an arrangement of subplots.
For details, see Plotting Tools — Interactive Plotting in the MATLAB
Graphics documentation.

Syntax h = subplot(m,n,p) or subplot(mnp)
subplot(m,n,p,'replace')
subplot(m,n,P)
subplot(h)
subplot('Position',[left bottom width height])
h = subplot(...)
subplot(m,n,p,'v6')

Description subplot divides the current figure into rectangular panes that are
numbered rowwise. Each pane contains an axes object. Subsequent
plots are output to the current pane.

h = subplot(m,n,p) or subplot(mnp) breaks the figure window
into an m-by-n matrix of small axes, selects the pth axes object for the
current plot, and returns the axes handle. The axes are counted along
the top row of the figure window, then the second row, etc. For example,

subplot(2,1,1), plot(income)
subplot(2,1,2), plot(outgo)

plots income on the top half of the window and outgo on the bottom
half. If the CurrentAxes is nested in a uipanel, the panel is used as

2-3157

subplot

the parent for the subplot instead of the current figure. The new axes
object becomes the current axes.

subplot(m,n,p,'replace') If the specified axes object already exists,
delete it and create a new axes.

subplot(m,n,P), where P is a vector, specifies an axes position that
covers all the subplot positions listed in P, including those spanned by P.
For example, subplot(2,3,[2 5]) creates subplots at positions 2 and
5 only (because there are no intervening locations in the grid), while
subplot(2,3,[2 6]) creates axes at positions 2, 3, 5, and 6.

subplot(h) makes the axes object with handle h current for subsequent
plotting commands.

subplot('Position',[left bottom width height]) creates an axes
at the position specified by a four-element vector. left, bottom, width,
and height are in normalized coordinates in the range from 0.0 to 1.0.

h = subplot(...) returns the handle to the new axes object.

Backward-Compatible Version

subplot(m,n,p,'v6') places the axes so that the plot boxes are
aligned, but does not prevent the labels and ticks from overlapping.
Saved subplots created with the v6 option are compatible with MATLAB
6.5 and earlier versions.

Use the subplot 'v6' option and save the figure with the 'v6' option
when you want to be able to load a FIG-file containing subplots into
MATLAB Version 6.5 or earlier.

Note The v6 option enables users of Version 7.x of MATLAB to create
FIG-files that previous versions can open. It is obsolete and will be
removed in a future version of MATLAB.

See Plot Objects and Backward Compatibility for more information.

2-3158

subplot

Remarks You can add subplots to GUIs as well as to figures. For information
about creating subplots in a GUIDE-generated GUI, see “Creating
Subplots” in the MATLAB Creating Graphical User Interfaces
documentation.

If a subplot specification causes a new axes object to overlap any
existing axes, subplot deletes the existing axes object and uicontrol
objects. However, if the subplot specification exactly matches the
position of an existing axes object, the matching axes object is not
deleted and it becomes the current axes.

subplot(1,1,1) or clf deletes all axes objects and returns to the
default subplot(1,1,1) configuration.

You can omit the parentheses and specify subplot as

subplot mnp

where m refers to the row, n refers to the column, and p specifies the
pane.

Be aware when creating subplots from scripts that the Position
property of subplots is not finalized until either

• A drawnow command is issued.

• MATLAB returns to await a user command.

That is, the value obtained for subplot i by the command

get(h(i),'position')

will not be correct until the script refreshes the plot or exits.

Special Case: subplot(111)

The command subplot(111) is not identical in behavior to
subplot(1,1,1) and exists only for compatibility with previous
releases. This syntax does not immediately create an axes object, but
instead sets up the figure so that the next graphics command executes a
clf reset (deleting all figure children) and creates a new axes object in

2-3159

subplot

the default position. This syntax does not return a handle, so it is an
error to specify a return argument. (MATLAB implements this behavior
by setting the figure’s NextPlot property to replace.)

Examples Upper and Lower Subplots with Titles

To plot income in the top half of a figure and outgo in the bottom half,

income = [3.2 4.1 5.0 5.6];
outgo = [2.5 4.0 3.35 4.9];
subplot(2,1,1); plot(income)
title('Income')
subplot(2,1,2); plot(outgo)
title('Outgo')

2-3160

subplot

Subplots in Quadrants

The following illustration shows four subplot regions and indicates the
command used to create each.

2-3161

subplot

Assymetrical Subplots

The following combinations produce asymmetrical arrangements of
subplots.

subplot(2,2,[1 3])

2-3162

subplot

subplot(2,2,2)
subplot(2,2,4)

You can also use the colon operator to specify multiple locations if they
are in sequence.

2-3163

subplot

subplot(2,2,1:2)
subplot(2,2,3)
subplot(2,2,4)

2-3164

subplot

Suppressing Axis Ticks

When you create many subplots in a figure, the axes tickmarks, which
are shown by default, can either be obliterated or can cause axes to
collapse, as the following code demonstrates:

figure
for i=1:12

subplot(12,1,i)
plot (sin(1:100)*10^(i-1))

end

2-3165

subplot

One way to get around this issue is to enlarge the figure to create
enough space to properly display the tick labels.

Another approach is to eliminate the clutter by suppressing xticks and
yticks for subplots as data are plotted into them. You can then label a
single axes if the subplots are stacked, as follows:

2-3166

subplot

figure
for i=1:12

subplot(12,1,i)
plot (sin(1:100)*10^(i-1))
set(gca,'xtick',[],'ytick',[])

end
% Reset the bottom subplot to have xticks
set(gca,'xtickMode', 'auto')

2-3167

subplot

See Also axes, cla, clf, figure, gca

“Basic Plots and Graphs” on page 1-86 for more information

2-3168

subplot

“Creating Subplots” in the MATLAB Creating Graphical User Interfaces
documentation describes adding subplots to GUIs.

2-3169

subsasgn

Purpose Subscripted assignment for objects

Syntax A = subsasgn(A, S, B)

Description A = subsasgn(A, S, B) is called for the syntax A(i)=B, A{i}=B, or
A.i=B when A is an object. S is a structure array with the fields

• type: A string containing '()', '{}', or '.', where '()' specifies
integer subscripts, '{}' specifies cell array subscripts, and '.'
specifies subscripted structure fields.

• subs: A cell array or string containing the actual subscripts.

Remarks subsasgn is designed to be used by the MATLAB interpreter to handle
indexed assignments to objects. Calling subsasgn directly as a function
is not recommended. If you do use subsasgn in this way, it conforms to
the formal MATLAB dispatching rules and can yield unexpected results.

In the assignment A(J,K,...) = B(M,N,...), subscripts J, K, M, N, etc.
may be scalar, vector, or array, provided that all of the following are true:

• The number of subscripts specified for B, excluding trailing subscripts
equal to 1, does not exceed ndims(B).

• The number of nonscalar subscripts specified for A equals the number
of nonscalar subscripts specified for B. For example, A(5, 1:4, 1,
2) = B(5:8) is valid because both sides of the equation use one
nonscalar subscript.

• The order and length of all nonscalar subscripts specified for A
matches the order and length of nonscalar subscripts specified for
B. For example, A(1:4, 3, 3:9) = B(5:8, 1:7) is valid because
both sides of the equation (ignoring the one scalar subscript 3) use a
4-element subscript followed by a 7-element subscript.

See the Remarks section of the numel reference page for information
concerning the use of numel with regards to the overloaded subsasgn
function.

2-3170

subsasgn

If A is an array of one of the fundamental MATLAB data types, then
assigning a value to A with indexed assignment calls the builtin
MATLAB subsasgn method. It does not call any subsasgn method
that you may have overloaded for that data type. For example, if A is
an array of type double, and there is an @double/subsasgn method on
your MATLAB path, the statement A(I) = B does not call this method,
but calls the MATLAB builtin subsasgn method instead.

Examples The syntax A(1:2,:)=B calls A=subsasgn(A,S,B) where S is a 1-by-1
structure with S.type='()' and S.subs = {1:2,':'}. A colon used as
a subscript is passed as the string ':'.

The syntax A{1:2}=B calls A=subsasgn(A,S,B) where S.type='{}'.

The syntax A.field=B calls subsasgn(A,S,B) where S.type='.' and
S.subs='field'.

These simple calls are combined in a straightforward way for more
complicated subscripting expressions. In such cases length(S) is the
number of subscripting levels. For instance, A(1,2).name(3:5)=B
calls A=subsasgn(A,S,B) where S is a 3-by-1 structure array with the
following values:

S(1).type='()' S(2).type='.' S(3).type='()'

S(1).subs={1,2} S(2).subs='name' S(3).subs={3:5}

See Also subsref, substruct

See “Handling Subscripted Assignment” for more information about
overloaded methods and subsasgn.

2-3171

subsindex

Purpose Subscripted indexing for objects

Syntax ind = subsindex(A)

Description ind = subsindex(A) is called for the syntax 'X(A)' when A is an
object. subsindex must return the value of the object as a zero-based
integer index. (ind must contain integer values in the range 0 to
prod(size(X))-1.) subsindex is called by the default subsref and
subsasgn functions, and you can call it if you overload these functions.

See Also subsasgn, subsref

2-3172

subspace

Purpose Angle between two subspaces

Syntax theta = subspace(A,B)

Description theta = subspace(A,B) finds the angle between two subspaces
specified by the columns of A and B. If A and B are column vectors of unit
length, this is the same as acos(A'*B).

Remarks If the angle between the two subspaces is small, the two spaces are
nearly linearly dependent. In a physical experiment described by some
observations A, and a second realization of the experiment described by
B, subspace(A,B) gives a measure of the amount of new information
afforded by the second experiment not associated with statistical errors
of fluctuations.

Examples Consider two subspaces of a Hadamard matrix, whose columns are
orthogonal.

H = hadamard(8);
A = H(:,2:4);
B = H(:,5:8);

Note that matrices A and B are different sizes — A has three columns
and B four. It is not necessary that two subspaces be the same size in
order to find the angle between them. Geometrically, this is the angle
between two hyperplanes embedded in a higher dimensional space.

theta = subspace(A,B)
theta =

1.5708

That A and B are orthogonal is shown by the fact that theta is equal
to .

theta - pi/2
ans =

0

2-3173

subsref

Purpose Subscripted reference for objects

Syntax B = subsref(A, S)

Description B = subsref(A, S) is called for the syntax A(i), A{i}, or A.i when A
is an object. S is a structure array with the fields

• type: A string containing '()', '{}', or '.', where '()' specifies
integer subscripts, '{}' specifies cell array subscripts, and '.'
specifies subscripted structure fields.

• subs: A cell array or string containing the actual subscripts.

Remarks subsref is designed to be used by the MATLAB interpreter to handle
indexed references to objects. Calling subsref directly as a function is
not recommended. If you do use subsref in this way, it conforms to the
formal MATLAB dispatching rules and can yield unexpected results.

See the Remarks section of the numel reference page for information
concerning the use of numel with regards to the overloaded subsref
function.

If A is an array of one of the fundamental MATLAB data types, then
referencing a value of A using an indexed reference calls the builtin
MATLAB subsref method. It does not call any subsref method that
you may have overloaded for that data type. For example, if A is an
array of type double, and there is an @double/subsref method on your
MATLAB path, the statement B = A(I) does not call this method, but
calls the MATLAB builtin subsref method instead.

Examples The syntax A(1:2,:) calls subsref(A,S) where S is a 1-by-1 structure
with S.type='()' and S.subs={1:2,':'}. A colon used as a subscript
is passed as the string ':'.

The syntax A{1:2} calls subsref(A,S) where S.type='{}' and
S.subs={1:2}.

The syntax A.field calls subsref(A,S) where S.type='.' and
S.subs='field'.

2-3174

subsref

These simple calls are combined in a straightforward way for more
complicated subscripting expressions. In such cases length(S) is the
number of subscripting levels. For instance, A(1,2).name(3:5) calls
subsref(A,S) where S is a 3-by-1 structure array with the following
values:

S(1).type='()' S(2).type='.' S(3).type='()'

S(1).subs={1,2} S(2).subs='name' S(3).subs={3:5}

See Also subsasgn, substruct

See “Handling Subscripted Reference” for more information about
overloaded methods and subsref.

2-3175

substruct

Purpose Create structure argument for subsasgn or subsref

Syntax S = substruct(type1, subs1, type2, subs2, ...)

Description S = substruct(type1, subs1, type2, subs2, ...) creates a
structure with the fields required by an overloaded subsref or
subsasgn method. Each type string must be one of '.', '()', or '{}'.
The corresponding subs argument must be either a field name (for the
'.' type) or a cell array containing the index vectors (for the '()' or
'{}' types).

The output S is a structure array containing the fields

• type: one of '.', '()', or '{}'

• subs: subscript values (field name or cell array of index vectors)

Examples To call subsref with parameters equivalent to the syntax

B = A(3,5).field

you can use

S = substruct('()', {3,5}, '.', 'field');
B = subsref(A, S);

The structure created by substruct in this example contains the
following:

S(1)

ans =

type: '()'
subs: {[3] [5]}

S(2)

2-3176

substruct

ans =

type: '.'
subs: 'field'

See Also subsasgn, subsref

2-3177

subvolume

Purpose Extract subset of volume data set

Syntax [Nx,Ny,Nz,Nv] = subvolume(X,Y,Z,V,limits)
[Nx,Ny,Nz,Nv] = subvolume(V,limits)
Nv = subvolume(...)

Description [Nx,Ny,Nz,Nv] = subvolume(X,Y,Z,V,limits) extracts a subset of
the volume data set V using the specified axis-aligned limits. limits =
[xmin,xmax,ymin, ymax,zmin,zmax] (Any NaNs in the limits indicate
that the volume should not be cropped along that axis.)

The arrays X, Y, and Z define the coordinates for the volume V. The
subvolume is returned in NV and the coordinates of the subvolume are
given in NX, NY, and NZ.

[Nx,Ny,Nz,Nv] = subvolume(V,limits) assumes the arrays X, Y,
and Z are defined as

[X,Y,Z] = meshgrid(1:N,1:M,1:P)

where [M,N,P] = size(V).

Nv = subvolume(...) returns only the subvolume.

Examples This example uses a data set that is a collection of MRI slices of a
human skull. The data is processed in a variety of ways:

• The 4-D array is squeezed (squeeze) into three dimensions and then
a subset of the data is extracted (subvolume).

• The outline of the skull is an isosurface generated as a patch (p1)
whose vertex normals are recalculated to improve the appearance
when lighting is applied (patch, isosurface, isonormals).

• A second patch (p2) with interpolated face color draws the end caps
(FaceColor, isocaps).

• The view of the object is set (view, axis, daspect).

2-3178

subvolume

• A 100-element grayscale colormap provides coloring for the end caps
(colormap).

• Adding lights to the right and left of the camera illuminates the
object (camlight, lighting).

load mri
D = squeeze(D);
[x,y,z,D] = subvolume(D,[60,80,nan,80,nan,nan]);
p1 = patch(isosurface(x,y,z,D, 5),...

'FaceColor','red','EdgeColor','none');
isonormals(x,y,z,D,p1);
p2 = patch(isocaps(x,y,z,D, 5),...

'FaceColor','interp','EdgeColor','none');
view(3); axis tight; daspect([1,1,.4])
colormap(gray(100))
camlight right; camlight left; lighting gouraud

2-3179

subvolume

See Also isocaps, isonormals, isosurface, reducepatch, reducevolume,
smooth3

“Volume Visualization” on page 1-102 for related functions

2-3180

sum

Purpose Sum of array elements

Syntax B = sum(A)
B = sum(A,dim)
B = sum(..., 'double')
B = sum(..., dim,'double')
B = sum(..., 'native')
B = sum(..., dim,'native')

Description B = sum(A) returns sums along different dimensions of an array.

If A is a vector, sum(A) returns the sum of the elements.

If A is a matrix, sum(A) treats the columns of A as vectors, returning a
row vector of the sums of each column.

If A is a multidimensional array, sum(A) treats the values along the first
non-singleton dimension as vectors, returning an array of row vectors.

B = sum(A,dim) sums along the dimension of A specified by scalar dim.
The dim input is an integer value from 1 to N, where N is the number
of dimensions in A. Set dim to 1 to compute the sum of each column,
2 to sum rows, etc.

B = sum(..., 'double') and B = sum(..., dim,'double') performs
additions in double-precision and return an answer of type double, even
if A has data type single or an integer data type. This is the default for
integer data types.

B = sum(..., 'native') and B = sum(..., dim,'native') performs
additions in the native data type of A and return an answer of the same
data type. This is the default for single and double.

Remarks sum(diag(X)) is the trace of X.

Examples The magic square of order 3 is

M = magic(3)
M =

2-3181

sum

8 1 6
3 5 7
4 9 2

This is called a magic square because the sums of the elements in each
column are the same.

sum(M) =
15 15 15

as are the sums of the elements in each row, obtained either by:

• Transposing

sum(M') =
15 15 15

• Using the dim argument

sum(M,1) =
15
15
15

transposing:

Nondouble
Data Type
Support

This section describes the support of sum for data types other than
double.

Data Type single

You can apply sum to an array of type single and MATLAB returns an
answer of type single. For example,

sum(single([2 5 8]})

ans =

15

2-3182

sum

class(ans)

ans =

single

Integer Data Types

When you apply sum to any of the following integer data types, MATLAB
returns an answer of type double:

• int8 and uint8

• int16 and uint16

• int32 and uint32

For example,

sum(single([2 5 8]});
class(ans)

ans =

single

If you want MATLAB to perform additions on an integer data type in
the same integer type as the input, use the syntax

sum(int8([2 5 8], 'native');
class(ans)

ans =

int8

See Also accumarray, cumsum, diff, isfloat, prod

2-3183

sum (timeseries)

Purpose Sum of timeseries data

Syntax ts_sm = sum(ts)
ts_sm = sum(ts,'PropertyName1',PropertyValue1,...)

Description ts_sm = sum(ts) returns the sum of the time-series data. When
ts.Data is a vector, ts_sm is the sum of ts.Data values. When ts.Data
is a matrix, ts_sm is a row vector containing the sum of each column of
ts.Data (when IsTimeFirst is true and the first dimension of ts is
aligned with time). For the N-dimensional ts.Data array, sum always
operates along the first nonsingleton dimension of ts.Data.

ts_sm = sum(ts,'PropertyName1',PropertyValue1,...) specifies
the following optional input arguments:

• 'MissingData' property has two possible values, 'remove' (default)
or 'interpolate', indicating how to treat missing data during the
calculation.

• 'Quality' values are specified by a vector of integers, indicating
which quality codes represent missing samples (for vector data) or
missing observations (for data arrays with two or more dimensions).

• 'Weighting' property has two possible
values, 'none' (default) or 'time'.
When you specify 'time', larger time values
correspond to larger weights.

Examples 1 Load a 24-by-3 data array.

load count.dat

2 Create a timeseries object with 24 time values.

count_ts = timeseries(count,1:24,'Name','CountPerSecond')

3 Calculate the sum of each data column for this timeseries object.

sum(count_ts)

2-3184

sum (timeseries)

ans =

768 1117 1574

The sum is calculated independently for each data column in the
timeseries object.

See Also iqr (timeseries), mean (timeseries), median (timeseries), std
(timeseries), var (timeseries), timeseries

2-3185

superiorto

Purpose Establish superior class relationship

Syntax superiorto('class1', 'class2', ...)

Description The superiorto function establishes a hierarchy that determines the
order in which MATLAB calls object methods.

superiorto('class1', 'class2', ...) invoked within a class
constructor method (say myclass.m) indicates that myclass’s method
should be invoked if a function is called with an object of class myclass
and one or more objects of class class1, class2, and so on.

Remarks Suppose A is of class 'class_a', B is of class 'class_b' and C is of
class 'class_c'. Also suppose the constructor class_c.m contains
the statement superiorto('class_a'). Then e = fun(a,c) or e =
fun(c,a) invokes class_c/fun.

If a function is called with two objects having an unspecified
relationship, the two objects are considered to have equal precedence,
and the leftmost object’s method is called. So fun(b,c) calls
class_b/fun, while fun(c,b) calls class_c/fun.

See Also inferiorto

2-3186

support

Purpose Open MathWorks Technical Support Web page

Syntax support

Description support opens the MathWorks Technical Support Web page,
http://www.mathworks.com/support, in the MATLAB Web browser.

This Web page contains resources including

• A search engine, including an option for solutions to common
problems

• Information about installation and licensing

• A patch archive for bug fixes you can download

• Other useful resources

See Also doc, web

2-3187

http://www.mathworks.com/support

surf, surfc

Purpose 3-D shaded surface plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax surf(Z)
surf(Z,C)
surf(X,Y,Z)
surf(X,Y,Z,C)
surf(...,'PropertyName',PropertyValue)
surf(axes_handles,...)
surfc(...)
h = surf(...)
hsurface = surf('v6',...)

Description Use surf and surfc to view mathematical functions over a rectangular
region. surf and surfc create colored parametric surfaces specified by
X, Y, and Z, with color specified by Z or C.

surf(Z) creates a a three-dimensional shaded surface from the z
components in matrix Z, using x = 1:n and y = 1:m, where [m,n] =
size(Z). The height, Z, is a single-valued function defined over a
geometrically rectangular grid. Z specifies the color data as well as
surface height, so color is proportional to surface height.

surf(Z,C) plots the height of Z, a single-valued function defined over a
geometrically rectangular grid, and uses matrix C, assumed to be the
same size as Z, to color the surface.

2-3188

surf, surfc

surf(X,Y,Z) creates a shaded surface using Z for the color data as well
as surface height. X and Y are vectors or matrices defining the x and
y components of a surface. If X and Y are vectors, length(X) = n and
length(Y) = m, where [m,n] = size(Z). In this case, the vertices of the
surface faces are (X(j), Y(i), Z(i,j)) triples.

surf(X,Y,Z,C) creates a shaded surface, with color defined by C.
MATLAB performs a linear transformation on this data to obtain colors
from the current colormap.

surf(...,'PropertyName',PropertyValue) specifies surface
properties along with the data.

surf(axes_handles,...) and surfc(axes_handles,...) plot into the axes
with handle axes_handle instead of the current axes (gca).

surfc(...) draws a contour plot beneath the surface.

h = surf(...) and h = surfc(...) return a handle to a surfaceplot
graphics object.

Backward-Compatible Version

hsurface = surf('v6',...) and hsurface = surfc(’v6’,...) return the
handles of surface objects instead of surfaceplot objects for compatibility
with MATLAB 6.5 and earlier.

Note The v6 option enables users of Version 7.x of MATLAB to create
FIG-files that previous versions can open. It is obsolete and will be
removed in a future version of MATLAB.

See Plot Objects and Backward Compatibility for more information.

Remarks surf and surfc do not accept complex inputs.

Algorithm Abstractly, a parametric surface is parameterized by two independent
variables, i and j, which vary continuously over a rectangle; for
example, 1 ≤ i ≤ m and 1 ≤ j ≤ n. The three functions x(i,j), y(i,j),

2-3189

surf, surfc

and z(i,j) specify the surface. When i and j are integer values,
they define a rectangular grid with integer grid points. The functions
x(i,j), y(i,j), and z(i,j) become three m-by-n matrices, X, Y, and Z.
Surface color is a fourth function, c(i,j), denoted by matrix C.

Each point in the rectangular grid can be thought of as connected to
its four nearest neighbors.

i-1,j
|

i,j-1 - i,j - i,j+1
|

i+1,j

This underlying rectangular grid induces four-sided patches on the
surface. To express this another way, [X(:) Y(:) Z(:)] returns a list
of triples specifying points in 3-space. Each interior point is connected
to the four neighbors inherited from the matrix indexing. Points on
the edge of the surface have three neighbors; the four points at the
corners of the grid have only two neighbors. This defines a mesh of
quadrilaterals or a quad-mesh.

Surface color can be specified in two different ways: at the vertices or at
the centers of each patch. In this general setting, the surface need not
be a single-valued function of x and y. Moreover, the four-sided surface
patches need not be planar. For example, you can have surfaces defined
in polar, cylindrical, and spherical coordinate systems.

The shading function sets the shading. If the shading is interp, C must
be the same size as X, Y, and Z; it specifies the colors at the vertices.
The color within a surface patch is a bilinear function of the local
coordinates. If the shading is faceted (the default) or flat, C(i,j)
specifies the constant color in the surface patch:

(i,j) - (i,j+1)
| C(i,j) |

(i+1,j) - (i+1,j+1)

2-3190

surf, surfc

In this case, C can be the same size as X, Y, and Z and its last row and
column are ignored. Alternatively, its row and column dimensions can
be one less than those of X, Y, and Z.

The surf and surfc functions specify the viewpoint using view(3).

The range of X, Y, and Z or the current setting of the axes XLimMode,
YLimMode, and ZLimMode properties (also set by the axis function)
determines the axis labels.

The range of C or the current setting of the axes CLim and CLimMode
properties (also set by the caxis function) determines the color scaling.
The scaled color values are used as indices into the current colormap.

Examples Display a surfaceplot and contour plot of the peaks surface.

[X,Y,Z] = peaks(30);
surfc(X,Y,Z)
colormap hsv
axis([-3 3 -3 3 -10 5])

2-3191

surf, surfc

Color a sphere with the pattern of +1s and -1s in a Hadamard matrix.

k = 5;
n = 2^k-1;
[x,y,z] = sphere(n);
c = hadamard(2^k);
surf(x,y,z,c);
colormap([1 1 0; 0 1 1])
axis equal

2-3192

surf, surfc

See Also axis, caxis, colormap, contour, delaunay, imagesc, mesh, pcolor,
shading, trisurf, view

Properties for surfaceplot graphics objects

“Creating Surfaces and Meshes” on page 1-97 for related functions

Representing a Matrix as a Surface for more examples

Coloring Mesh and Surface Plots for information about how to control
the coloring of surfaces

2-3193

surf2patch

Purpose Convert surface data to patch data

Syntax fvc = surf2patch(Z)
fvc = surf2patch(Z,C)
fvc = surf2patch(X,Y,Z)
fvc = surf2patch(X,Y,Z,C)
fvc = surf2patch(...,'triangles')
[f,v,c] = surf2patch(...)

Description fvc = surf2patch(h)

converts the geometry and color data from the surface object identified
by the handle h into patch format and returns the face, vertex, and
color data in the struct fvc. You can pass this struct directly to the
patch command.

fvc = surf2patch(Z) calculates the patch data from the surface’s
ZData matrix Z.

fvc = surf2patch(Z,C) calculates the patch data from the surface’s
ZData and CData matrices Z and C.

fvc = surf2patch(X,Y,Z) calculates the patch data from the surface’s
XData, YDataYData, and ZData matrices X, Y, and Z.

fvc = surf2patch(X,Y,Z,C) calculates the patch data from the
surface’s XData, YData, ZData, and CData matrices X, Y, Z, and C.

fvc = surf2patch(...,'triangles') creates triangular faces
instead of the quadrilaterals that compose surfaces.

[f,v,c] = surf2patch(...) returns the face, vertex, and color data
in the three arrays f, v, and c instead of a struct.

Examples The first example uses the sphere command to generate the XData,
YData, and ZData of a surface, which is then converted to a patch. Note
that the ZData (z) is passed to surf2patch as both the third and fourth
arguments — the third argument is the ZData and the fourth argument
is taken as the CData. This is because the patch command does not

2-3194

surf2patch

automatically use the z-coordinate data for the color data, as does the
surface command.

Also, because patch is a low-level command, you must set the view to
3-D and shading to faceted to produce the same results produced by
the surf command.

[x y z] = sphere;
patch(surf2patch(x,y,z,z));
shading faceted; view(3)

In the second example surf2patch calculates face, vertex, and color
data from a surface whose handle has been passed as an argument.

s = surf(peaks);
pause
patch(surf2patch(s));
delete(s)
shading faceted; view(3)

See Also patch, reducepatch, shrinkfaces, surface, surf

“Volume Visualization” on page 1-102 for related functions

2-3195

surface

Purpose Create surface object

Syntax surface(Z)
surface(Z,C)
surface(X,Y,Z)
surface(X,Y,Z,C)
surface(x,y,Z)
surface(...'PropertyName',PropertyValue,...)
h = surface(...)

Description surface is the low-level function for creating surface graphics objects.
Surfaces are plots of matrix data created using the row and column
indices of each element as the x- and y-coordinates and the value of
each element as the z-coordinate.

surface(Z) plots the surface specified by the matrix Z. Here, Z is a
single-valued function, defined over a geometrically rectangular grid.

surface(Z,C) plots the surface specified by Z and colors it according
to the data in C (see "Examples").

surface(X,Y,Z) uses C = Z, so color is proportional to surface height
above the x-y plane.

surface(X,Y,Z,C) plots the parametric surface specified by X, Y, and
Z, with color specified by C.

surface(x,y,Z), surface(x,y,Z,C) replaces the first two matrix
arguments with vectors and must have length(x) = n and length(y)
= m where [m,n] = size(Z). In this case, the vertices of the surface
facets are the triples (x(j),y(i),Z(i,j)). Note that x corresponds to
the columns of Z and y corresponds to the rows of Z. For a complete
discussion of parametric surfaces, see the surf function.

surface(...'PropertyName',PropertyValue,...) follows the X, Y,
Z, and C arguments with property name/property value pairs to specify
additional surface properties.

h = surface(...) returns a handle to the created surface object.

2-3196

surface

Remarks surface does not respect the settings of the figure and axes NextPlot
properties. It simply adds the surface object to the current axes.

If you do not specify separate color data (C), MATLAB uses the matrix
(Z) to determine the coloring of the surface. In this case, color is
proportional to values of Z. You can specify a separate matrix to color
the surface independently of the data defining the area of the surface.

You can specify properties as property name/property value pairs,
structure arrays, and cell arrays (see set and get for examples of how
to specify these data types).

surface provides convenience forms that allow you to omit the property
name for the XData, YData, ZData, and CData properties. For example,

surface('XData',X,'YData',Y,'ZData',Z,'CData',C)

is equivalent to

surface(X,Y,Z,C)

When you specify only a single matrix input argument,

surface(Z)

MATLAB assigns the data properties as if you specified

surface('XData',[1:size(Z,2)],...
'YData',[1:size(Z,1)],...
'ZData',Z,...
'CData',Z)

The axis, caxis, colormap, hold, shading, and view commands set
graphics properties that affect surfaces. You can also set and query
surface property values after creating them using the set and get
commands.

Example This example creates a surface using the peaks M-file to generate the
data, and colors it using the clown image. The ZData is a 49-by-49

2-3197

surface

element matrix, while the CData is a 200-by-320 matrix. You must
set the surface’s FaceColor to texturemap to use ZData and CData of
different dimensions.

load clown
surface(peaks,flipud(X),...

'FaceColor','texturemap',...
'EdgeColor','none',...
'CDataMapping','direct')

colormap(map)
view(-35,45)

2-3198

surface

Note the use of the surface(Z,C) convenience form combined with
property name/property value pairs.

Since the clown data (X) is typically viewed with the image command,
which MATLAB normally displays with 'ij' axis numbering and
direct CDataMapping, this example reverses the data in the vertical
direction using flipud and sets the CDataMapping property to direct.

2-3199

surface

Object
Hierarchy

Setting Default Properties

You can set default surface properties on the axes, figure, and root levels:

set(0,'DefaultSurfaceProperty',PropertyValue...)
set(gcf,'DefaultSurfaceProperty',PropertyValue...)
set(gca,'DefaultSurfaceProperty',PropertyValue...)

where Property is the name of the surface property whose default value
you want to set and PropertyValue is the value you are specifying. Use
set and get to access the surface properties.

See Also ColorSpec, patch, pcolor, surf

Representing a Matrix as a Surface for examples

“Creating Surfaces and Meshes” on page 1-97 and “Object Creation
Functions” on page 1-94 for related functions

Surface Properties for property descriptions

2-3200

Surface Properties

Purpose Surface properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Editor is an interactive tool that enables you to see and
change object property values.

• The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see Setting Default Property
Values.

See “Core Graphics Objects” for general information about this type
of object.

Surface
Property
Descriptions

This section lists property names along with the types of values each
accepts. Curly braces { } enclose default values.

AlphaData
m-by-n matrix of double or uint8

The transparency data. A matrix of non-NaN values specifying the
transparency of each face or vertex of the object. The AlphaData
can be of class double or uint8.

MATLAB determines the transparency in one of three ways:

• Using the elements of AlphaData as transparency values
(AlphaDataMapping set to none)

• Using the elements of AlphaData as indices into the current
alphamap (AlphaDataMapping set to direct)

• Scaling the elements of AlphaData to range between the
minimum and maximum values of the axes ALim property
(AlphaDataMapping set to scaled, the default)

AlphaDataMapping
none | direct | {scaled}

2-3201

Surface Properties

Transparency mapping method. This property determines how
MATLAB interprets indexed alpha data. This property can be
any of the following:

• none — The transparency values of AlphaData are between 0
and 1 or are clamped to this range (the default).

• scaled — Transform the AlphaData to span the portion of
the alphamap indicated by the axes ALim property, linearly
mapping data values to alpha values.

• direct — use the AlphaData as indices directly into the
alphamap. When not scaled, the data are usually integer
values ranging from 1 to length(alphamap). MATLAB maps
values less than 1 to the first alpha value in the alphamap,
and values greater than length(alphamap) to the last alpha
value in the alphamap. Values with a decimal portion are fixed
to the nearest lower integer. If AlphaData is an array of uint8
integers, then the indexing begins at 0 (i.e., MATLAB maps a
value of 0 to the first alpha value in the alphamap).

AmbientStrength
scalar >= 0 and <= 1

Strength of ambient light. This property sets the strength of
the ambient light, which is a nondirectional light source that
illuminates the entire scene. You must have at least one visible
light object in the axes for the ambient light to be visible. The
axes AmbientLightColor property sets the color of the ambient
light, which is therefore the same on all objects in the axes.

You can also set the strength of the diffuse and specular
contribution of light objects. See the surface DiffuseStrength
and SpecularStrength properties.

Annotation
hg.Annotation object Read Only

2-3202

Surface Properties

Control the display of surface objects in legends. The Annotation
property enables you to specify whether this surface object is
represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the surface
object is displayed in a figure legend:

IconDisplayStyle
Value

Purpose

on Represent this surface object in a legend
(default)

off Do not include this surface object in a legend

children Same as on because surface objects do not
have children

Setting the IconDisplayStyle property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to off:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation','LegendInformation');
set(hLegendEntry,'IconDisplayStyle','off')

Using the IconDisplayStyle property

See “Controlling Legends” for more information and examples.

BackFaceLighting
unlit | lit | reverselit

2-3203

Surface Properties

Face lighting control. This property determines how faces are lit
when their vertex normals point away from the camera.

• unlit — Face is not lit.

• lit — Face is lit in normal way.

• reverselit — Face is lit as if the vertex pointed towards the
camera.

This property is useful for discriminating between the internal
and external surfaces of an object. See “Back Face Lighting” for
an example.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions may not
need to perform actions on objects that are going to be deleted,
and therefore, can check the object’s BeingDeleted property
before acting.

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callback routines. If there is a callback
routine executing, callback routines invoked subsequently always
attempt to interrupt it. If the Interruptible property of the
object whose callback is executing is set to on (the default), then

2-3204

Surface Properties

interruption occurs at the next point where the event queue is
processed. If the Interruptible property is off, the BusyAction
property (of the object owning the executing callback) determines
how MATLAB handles the event. The choices are

• cancel — Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Button press callback function. A callback function that executes
whenever you press a mouse button while the pointer is over the
surface object.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

Set this property to a function handle that references the callback.
The function must define at least two input arguments (handle
of object associated with the button down event and an event
structure, which is empty for this property). For example, the
following function takes different action depending on what type
of selection was made:

function button_down(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property

sel_typ = get(gcbf,'SelectionType')
switch sel_typ

case 'normal'
disp('User clicked left-mouse button')
set(src,'Selected','on')

case 'extend'
disp('User did a shift-click')

2-3205

Surface Properties

set(src,'Selected','on')
case 'alt'

disp('User did a control-click')
set(src,'Selected','on')
set(src,'SelectionHighlight','off')

end
end

Suppose h is the handle of a surface object and that the
button_down function is on your MATLAB path. The following
statement assigns the function above to the ButtonDownFcn:

set(h,'ButtonDownFcn',@button_down)

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

CData
matrix (of type double)

Vertex colors. A matrix containing values that specify the color
at every point in ZData.

Mapping CData to a Colormap

You can specify color as indexed values or true color. Indexed color
data specifies a single value for each vertex. These values are
either scaled to map linearly into the current colormap (see caxis)
or interpreted directly as indices into the colormap, depending on
the setting of the CDataMapping property.

CData as True Color

True color defines an RGB value for each vertex. If the coordinate
data (XData, for example) are contained in m-by-n matrices, then
CData must be an m-by-n-3 array. The first page contains the red
components, the second the green components, and the third the
blue components of the colors.

2-3206

Surface Properties

Texturemapping the Surface FaceColor

If you set the FaceColor property to texturemap, CData does not
need to be the same size as ZData, but must be of type double
or uint8. In this case, MATLAB maps CData to conform to the
surface defined by ZData.

CDataMapping
{scaled} | direct

Direct or scaled color mapping. This property determines how
MATLAB interprets indexed color data used to color the surface.
(If you use true color specification for CData, this property has
no effect.)

• scaled — Transform the color data to span the portion of the
colormap indicated by the axes CLim property, linearly mapping
data values to colors. See the caxis reference page for more
information on this mapping.

• direct — Use the color data as indices directly into the
colormap. The color data should then be integer values ranging
from 1 to length(colormap). MATLAB maps values less than
1 to the first color in the colormap, and values greater than
length(colormap) to the last color in the colormap. Values
with a decimal portion are fixed to the nearest lower integer.

Children
matrix of handles

Always the empty matrix; surface objects have no children.

Clipping
{on} | off

Clipping to axes rectangle. When Clipping is on, MATLAB does
not display any portion of the surface that is outside the axes
rectangle.

2-3207

Surface Properties

CreateFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Callback function executed during object creation. This property
defines a callback function that executes when MATLAB creates a
surface object. You must define this property as a default value
for surfaces or set the CreateFcn property during object creation.

For example, the following statement creates a surface (assuming
x, y, z, and c are defined), and executes the function referenced by
the function handle @myCreateFcn.

surface(x,y,z,c,'CreateFcn',@myCreateFcn)

MATLAB executes this routine after setting all surface properties.
Setting this property on an existing surface object has no effect.

The handle of the object whose CreateFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is also accessible through the root CallbackObject property,
which you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Delete surface callback function. A callback function that executes
when you delete the surface object (e.g., when you issue a delete
command or clear the axes cla or figure clf). For example, the
following function displays object property data before the object
is deleted.

function delete_fcn(src,evnt)
% src - the object that is the source of the event

2-3208

Surface Properties

% evnt - empty for this property
obj_tp = get(src,'Type');
disp([obj_tp, ' object deleted'])
disp('Its user data is:')
disp(get(src,'UserData'))

end

MATLAB executes the function before deleting the object’s
properties so these values are available to the callback function.
The function must define at least two input arguments (handle
of object being deleted and an event structure, which is empty
for this property)

The handle of the object whose DeleteFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is also accessible through the root CallbackObject property,
which you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DiffuseStrength
scalar >= 0 and <= 1

Intensity of diffuse light. This property sets the intensity of the
diffuse component of the light falling on the surface. Diffuse light
comes from light objects in the axes.

You can also set the intensity of the ambient and specular
components of the light on the surface object. See the
AmbientStrength and SpecularStrength properties.

DisplayName
string (default is empty string)

String used by legend for this surface object. The legend function
uses the string defined by the DisplayName property to label this
surface object in the legend.

2-3209

Surface Properties

• If you specify string arguments with the legend function,
DisplayName is set to this surface object’s corresponding string
and that string is used for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

See “Controlling Legends” for more examples.

EdgeAlpha
{scalar = 1} | flat | interp

Transparency of the surface edges. This property can be any of
the following:

• scalar — A single non-Nan scalar value between 0 and 1
that controls the transparency of all the edges of the object.
1 (the default) means fully opaque and 0 means completely
transparent.

• flat — The alpha data (AlphaData) value for the first vertex of
the face determines the transparency of the edges.

• interp — Linear interpolation of the alpha data (AlphaData)
values at each vertex determines the transparency of the edge.

Note that you must specify AlphaData as a matrix equal in size to
ZData to use flat or interp EdgeAlpha.

2-3210

Surface Properties

EdgeColor
{ColorSpec} | none | flat | interp

Color of the surface edge. This property determines how MATLAB
colors the edges of the individual faces that make up the surface:

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for edges.
The default EdgeColor is black. See ColorSpec for more
information on specifying color.

• none — Edges are not drawn.

• flat — The CData value of the first vertex for a face determines
the color of each edge.

• interp — Linear interpolation of the CData values at the face
vertices determines the edge color.

EdgeLighting
{none} | flat | gouraud | phong

Algorithm used for lighting calculations. This property selects the
algorithm used to calculate the effect of light objects on surface
edges. Choices are

• none — Lights do not affect the edges of this object.

2-3211

Surface Properties

• flat — The effect of light objects is uniform across each edge
of the surface.

• gouraud — The effect of light objects is calculated at the
vertices and then linearly interpolated across the edge lines.

• phong — The effect of light objects is determined by
interpolating the vertex normals across each edge line and
calculating the reflectance at each pixel. Phong lighting
generally produces better results than Gouraud lighting, but
takes longer to render.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB
uses to draw and erase surface objects. Alternative erase modes
are useful for creating animated sequences, where control of
the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

• normal — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none — Do not erase the surface when it is moved or destroyed.
While the object is still visible on the screen after erasing with
EraseMode none, you cannot print it because MATLAB stores
no information about its former location.

• xor — Draw and erase the surface by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the surface does not damage the color of the objects behind
it. However, surface color depends on the color of the screen
behind it and is correctly colored only when over the axes
background Color, or the figure background Color if the axes
Color is set to none.

2-3212

Surface Properties

• background — Erase the surface by drawing it in the axes
background Color, or the figure background Color if the axes
Color is set to none. This damages objects that are behind the
erased object, but surface objects are always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB may mathematically combine
layers of colors (e.g., performing an XOR of a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

You can use the MATLAB getframe command or other screen
capture application to create an image of a figure containing
nonnormal mode objects.

FaceAlpha
{scalar = 1} | flat | interp | texturemap

Transparency of the surface faces. This property can be any of
the following:

• scalar — A single non-NaN scalar value between 0 and 1
that controls the transparency of all the faces of the object.
1 (the default) means fully opaque and 0 means completely
transparent (invisible).

• flat — The values of the alpha data (AlphaData) determine
the transparency for each face. The alpha data at the first
vertex determine the transparency of the entire face.

• interp — Bilinear interpolation of the alpha data (AlphaData)
at each vertex determines the transparency of each face.

• texturemap — Use transparency for the texture map.

2-3213

Surface Properties

Note that you must specify AlphaData as a matrix equal in size to
ZData to use flat or interp FaceAlpha.

FaceColor
ColorSpec | none | {flat} | interp | texturemap

Color of the surface face. This property can be any of the following:

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for faces.
See ColorSpec for more information on specifying color.

• none — Do not draw faces. Note that edges are drawn
independently of faces.

• flat — The values of CData determine the color for each face
of the surface. The color data at the first vertex determine the
color of the entire face.

• interp — Bilinear interpolation of the values at each vertex
(the CData) determines the coloring of each face.

• texturemap — Texture map the CData to the surface. MATLAB
transforms the color data so that it conforms to the surface.
(See the texture mapping example.)

FaceLighting
{none} | flat | gouraud | phong

Algorithm used for lighting calculations. This property selects
the algorithm used to calculate the effect of light objects on the
surface. Choices are

• none — Lights do not affect the faces of this object.

• flat — The effect of light objects is uniform across the faces of
the surface. Select this choice to view faceted objects.

• gouraud — The effect of light objects is calculated at the
vertices and then linearly interpolated across the faces. Select
this choice to view curved surfaces.

2-3214

Surface Properties

• phong — The effect of light objects is determined by
interpolating the vertex normals across each face and
calculating the reflectance at each pixel. Select this choice to
view curved surfaces. Phong lighting generally produces better
results than Gouraud lighting, but takes longer to render.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in its
parent’s list of children. This property is useful for preventing
command-line users from accidentally drawing into or deleting a
figure that contains only user interface devices (such as a dialog
box).

Handles are always visible when HandleVisibility is on.

Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

Setting HandleVisibility to off makes handles invisible at
all times. This might be necessary when a callback routine
invokes a function that could potentially damage the GUI (such as
evaluating a user-typed string), and so temporarily hides its own
handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

2-3215

Surface Properties

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties).

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

HitTest
{on} | off

Selectable by mouse click. HitTest determines if the surface can
become the current object (as returned by the gco command and
the figure CurrentObject property) as a result of a mouse click on
the surface. If HitTest is off, clicking on the surface selects the
object below it (which may be the axes containing it).

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether a surface callback routine can be interrupted by
subsequently invoked callback routines. Only callback routines
defined for the ButtonDownFcn are affected by the Interruptible
property. MATLAB checks for events that can interrupt a callback
routine only when it encounters a drawnow, figure, getframe,
or pause command in the routine. See the BusyAction property
for related information.

2-3216

Surface Properties

LineStyle
{-} | -- | : | -. | none

Edge line type. This property determines the line style used to
draw surface edges. The available line styles are shown in this
table.

Symbol Line Style

Solid line (default)

Dashed line

: Dotted line

. Dash-dot line

none No line

LineWidth
scalar

Edge line width. The width of the lines in points used to draw
surface edges. The default width is 0.5 points (1 point = 1/72 inch).

Marker
marker symbol (see table)

Marker symbol. The Marker property specifies symbols that are
displayed at vertices. You can set values for the Marker property
independently from the LineStyle property.

You can specify these markers.

Marker Specifier Description

+ Plus sign

o Circle

* Asterisk

2-3217

Surface Properties

Marker Specifier Description

. Point

x Cross

s Square

d Diamond

^ Upward-pointing triangle

v Downward-pointing triangle

> Right-pointing triangle

< Left-pointing triangle

p Five-pointed star (pentagram)

h Six-pointed star (hexagram)

none No marker (default)

MarkerEdgeColor
none | {auto} | flat | ColorSpec

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles).

• none specifies no color, which makes nonfilled markers
invisible.

• auto uses the same color as the EdgeColor property.

• flat uses the CData value of the vertex to determine the color
of the maker edge.

• ColorSpec defines a single color to use for the edge (see
ColorSpec for more information).

MarkerFaceColor
{none} | auto | flat | ColorSpec

2-3218

Surface Properties

Marker face color. The fill color for markers that are closed shapes
(circle, square, diamond, pentagram, hexagram, and the four
triangles).

• none makes the interior of the marker transparent, allowing
the background to show through.

• auto uses the axes Color for the marker face color.

• flat uses the CData value of the vertex to determine the color
of the face.

• ColorSpec defines a single color to use for all markers on the
surface (see ColorSpec for more information).

MarkerSize
size in points

Marker size. A scalar specifying the marker size, in points. The
default value for MarkerSize is 6 points (1 point = 1/72 inch).
Note that MATLAB draws the point marker at 1/3 the specified
marker size.

MeshStyle
{both} | row | column

Row and column lines. This property specifies whether to draw
all edge lines or just row or column edge lines.

• both draws edges for both rows and columns.

• row draws row edges only.

• column draws column edges only.

NormalMode
{auto} | manual

MATLAB generated or user-specified normal vectors. When this
property is auto, MATLAB calculates vertex normals based on the
coordinate data. If you specify your own vertex normals, MATLAB

2-3219

Surface Properties

sets this property to manual and does not generate its own data.
See also the VertexNormals property.

Parent
handle of axes, hggroup, or hgtransform

Parent of surface object. This property contains the handle of the
surface object’s parent. The parent of a surface object is the axes,
hggroup, or hgtransform object that contains it.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | {off}

Is object selected? When this property is on, MATLAB
displays a dashed bounding box around the surface if the
SelectionHighlight property is also on. You can, for example,
define the ButtonDownFcn to set this property, allowing users to
select the object with the mouse.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing a dashed bounding box around the surface. When
SelectionHighlight is off, MATLAB does not draw the handles.

SpecularColorReflectance
scalar in the range 0 to 1

Color of specularly reflected light. When this property is 0, the
color of the specularly reflected light depends on both the color of
the object from which it reflects and the color of the light source.
When set to 1, the color of the specularly reflected light depends
only on the color or the light source (i.e., the light object Color
property). The proportions vary linearly for values in between.

2-3220

Surface Properties

SpecularExponent
scalar >= 1

Harshness of specular reflection. This property controls the size
of the specular spot. Most materials have exponents in the range
of 5 to 20.

SpecularStrength
scalar >= 0 and <= 1

Intensity of specular light. This property sets the intensity of the
specular component of the light falling on the surface. Specular
light comes from light objects in the axes.

You can also set the intensity of the ambient and diffuse
components of the light on the surface object. See the
AmbientStrength and DiffuseStrength properties. Also see the
material function.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callback
routines. You can define Tag as any string.

Type
string (read only)

Class of the graphics object. The class of the graphics object. For
surface objects, Type is always the string 'surface'.

UIContextMenu
handle of a uicontextmenu object

2-3221

Surface Properties

Associate a context menu with the surface. Assign this property
the handle of a uicontextmenu object created in the same figure
as the surface. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever
you right-click over the surface.

UserData
matrix

User-specified data. Any matrix you want to associate with the
surface object. MATLAB does not use this data, but you can
access it using the set and get commands.

VertexNormals
vector or matrix

Surface normal vectors. This property contains the vertex normals
for the surface. MATLAB generates this data to perform lighting
calculations. You can supply your own vertex normal data, even
if it does not match the coordinate data. This can be useful to
produce interesting lighting effects.

Visible
{on} | off

Surface object visibility. By default, all surfaces are visible. When
set to off, the surface is not visible, but still exists, and you can
query and set its properties.

XData
vector or matrix

X-coordinates. The x-position of the surface points. If you specify
a row vector, surface replicates the row internally until it has the
same number of columns as ZData.

YData
vector or matrix

2-3222

Surface Properties

Y-coordinates. The y-position of the surface points. If you specify a
row vector, surface replicates the row internally until it has the
same number of rows as ZData.

ZData
matrix

Z-coordinates. The z-position of the surfaceplot data points. See
the Description section for more information.

2-3223

Surfaceplot Properties

Purpose Define surfaceplot properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Editor is an interactive tool that enables you to see and
change object property values.

• The set and get commands enable you to set and query the values of
properties.

Note that you cannot define default properties for surfaceplot objects.

See Plot Objects for information on surfaceplot objects.

Surfaceplot
Property
Descriptions

This section lists property names along with the types of values each
accepts. Curly braces { } enclose default values.

AlphaData
m-by-n matrix of double or uint8

The transparency data. A matrix of non-NaN values specifying the
transparency of each face or vertex of the object. The AlphaData
can be of class double or uint8.

MATLAB determines the transparency in one of three ways:

• Using the elements of AlphaData as transparency values
(AlphaDataMapping set to none)

• Using the elements of AlphaData as indices into the current
alphamap (AlphaDataMapping set to direct)

• Scaling the elements of AlphaData to range between the
minimum and maximum values of the axes ALim property
(AlphaDataMapping set to scaled, the default)

AlphaDataMapping
{none} | direct| scaled

2-3224

Surfaceplot Properties

Transparency mapping method. This property determines how
MATLAB interprets indexed alpha data. It can be any of the
following:

• none — The transparency values of AlphaData are between 0
and 1 or are clamped to this range (the default).

• scaled — Transform the AlphaData to span the portion of
the alphamap indicated by the axes ALim property, linearly
mapping data values to alpha values.

• direct — Use the AlphaData as indices directly into the
alphamap. When not scaled, the data are usually integer
values ranging from 1 to length(alphamap). MATLAB maps
values less than 1 to the first alpha value in the alphamap, and
values greater than length(alphamap) to the last alpha value
in the alphamap. Values with a decimal portion are fixed to
the nearest, lower integer. If AlphaData is an array of uint8
integers, then the indexing begins at 0 (i.e., MATLAB maps a
value of 0 to the first alpha value in the alphamap).

AmbientStrength
scalar >= 0 and <= 1

Strength of ambient light. This property sets the strength of
the ambient light, which is a nondirectional light source that
illuminates the entire scene. You must have at least one visible
light object in the axes for the ambient light to be visible. The
axes AmbientLightColor property sets the color of the ambient
light, which is therefore the same on all objects in the axes.

You can also set the strength of the diffuse and specular
contribution of light objects. See the surfaceplot
DiffuseStrength and SpecularStrength properties.

Annotation
hg.Annotation object Read Only

2-3225

Surfaceplot Properties

Control the display of surfaceplot objects in legends. The
Annotation property enables you to specify whether this
surfaceplot object is represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the surfaceplot
object is displayed in a figure legend:

IconDisplayStyle
Value

Purpose

on Represent this surfaceplot object in a legend
(default)

off Do not include this surfaceplot object in a
legend

children Same as on because surfaceplot objects do
not have children

Setting the IconDisplayStyle property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to off:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation','LegendInformation');
set(hLegendEntry,'IconDisplayStyle','off')

Using the IconDisplayStyle property

See “Controlling Legends” for more information and examples.

2-3226

Surfaceplot Properties

BackFaceLighting
unlit | lit | reverselit

Face lighting control. This property determines how faces are lit
when their vertex normals point away from the camera.

• unlit — Face is not lit.

• lit — Face is lit in normal way.

• reverselit — Face is lit as if the vertex pointed towards the
camera.

This property is useful for discriminating between the internal and
external surfaces of an object. See Back Face Lighting for an example.

BeingDeleted
on | {off} Read Only

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions might
not need to perform actions on objects if the objects are going to
be deleted, and therefore, can check the object’s BeingDeleted
property before acting.

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function

2-3227

Surfaceplot Properties

executing, callbacks invoked subsequently always attempt to
interrupt it.

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs
at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

• cancel — Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

ButtonDownFcn
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callbacks. If there is a callback function
executing, callbacks invoked subsequently always attempt to
interrupt it.

If the Interruptible property of the object whose callback is
executing is set to on (the default), then interruption occurs
at the next point where the event queue is processed. If the
Interruptible property is off, the BusyAction property (of the
object owning the executing callback) determines how MATLAB
handles the event. The choices are

• cancel — Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second
callback routine until the current callback finishes.

2-3228

Surfaceplot Properties

CData
matrix

Vertex colors. A matrix containing values that specify the color
at every point in ZData. If you set the FaceColor property to
texturemap, CData does not need to be the same size as ZData.
In this case, MATLAB maps CData to conform to the surfaceplot
defined by ZData.

You can specify color as indexed values or true color. Indexed
color data specifies a single value for each vertex. These values
are either scaled to map linearly into the current colormap (see
caxis) or interpreted directly as indices into the colormap,
depending on the setting of the CDataMapping property. Note
that any non-texture data passed as an input argument must
be of type double.

True color defines an RGB value for each vertex. If the coordinate
data (XData, for example) are contained in m-by-n matrices, then
CData must be an m-by-n-by-3 array. The first page contains the
red components, the second the green components, and the third
the blue components of the colors.

CDataMapping
{scaled} | direct

Direct or scaled color mapping. This property determines
how MATLAB interprets indexed color data used to color the
surfaceplot. (If you use true color specification for CData, this
property has no effect.)

• scaled — Transform the color data to span the portion of the
colormap indicated by the axes CLim property, linearly mapping
data values to colors. See the caxis reference page for more
information on this mapping.

• direct — Use the color data as indices directly into the
colormap. The color data should then be integer values ranging

2-3229

Surfaceplot Properties

from 1 to length(colormap). MATLAB maps values less than
1 to the first color in the colormap, and values greater than
length(colormap) to the last color in the colormap. Values
with a decimal portion are fixed to the nearest lower integer.

CDataMode
{auto} | manual

Use automatic or user-specified color data values. If you specify
CData, MATLAB sets this property to manual and uses the CData
values to color the surfaceplot.

If you set CDataMode to auto after having specified CData,
MATLAB resets the color data of the surfaceplot to that defined
by ZData, overwriting any previous values for CData.

CDataSource
string (MATLAB variable)

Link CData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
CData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change CData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

2-3230

Surfaceplot Properties

Note If you change one data source property to return data of a
different dimension, you might cause the function to generate a
warning and not render the graph until you have changed all data
source properties to appropriate values.

Children
matrix of handles

Always the empty matrix; surfaceplot objects have no children.

Clipping
{on} | off

Clipping to axes rectangle. When Clipping is on, MATLAB does
not display any portion of the surfaceplot that is outside the axes
rectangle.

CreateFcn
string or function handle

Callback routine executed during object creation. This property
defines a callback that executes when MATLAB creates an object.
You must specify the callback during the creation of the object.
For example,

area(y,'CreateFcn',@CallbackFcn)

where @CallbackFcn is a function handle that references the
callback function.

MATLAB executes this routine after setting all other object
properties. Setting this property on an existing object has no
effect.

2-3231

Surfaceplot Properties

The handle of the object whose CreateFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
string or function handle

Callback executed during object deletion. A callback that executes
when this object is deleted (e.g., this might happen when you issue
a delete command on the object, its parent axes, or the figure
containing it). MATLAB executes the callback before destroying
the object’s properties so the callback routine can query these
values.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
can be queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See the BeingDeleted property for related information.

DiffuseStrength
scalar >= 0 and <= 1

Intensity of diffuse light. This property sets the intensity of the
diffuse component of the light falling on the surface. Diffuse light
comes from light objects in the axes.

You can also set the intensity of the ambient and specular
components of the light on the object. See the AmbientStrength
and SpecularStrength properties.

2-3232

Surfaceplot Properties

DisplayName
string (default is empty string)

String used by legend for this surfaceplot object. The legend
function uses the string defined by the DisplayName property to
label this surfaceplot object in the legend.

• If you specify string arguments with the legend function,
DisplayName is set to this surfaceplot object’s corresponding
string and that string is used for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

See “Controlling Legends” for more examples.

EdgeAlpha
{scalar = 1} | flat | interp

Transparency of the patch and surface edges. This property can
be any of the following:

• scalar — A single non-Nan scalar value between 0 and 1
that controls the transparency of all the edges of the object.
1 (the default) means fully opaque and 0 means completely
transparent.

• flat — The alpha data (AlphaData) value for the first vertex of
the face determines the transparency of the edges.

2-3233

Surfaceplot Properties

• interp — Linear interpolation of the alpha data (AlphaData)
values at each vertex determines the transparency of the edge.

Note that you must specify AlphaData as a matrix equal in size to ZData
to use flat or interp EdgeAlpha.

EdgeColor
{ColorSpec} | none | flat | interp

Color of the surfaceplot edge. This property determines how
MATLAB colors the edges of the individual faces that make up
the surface:

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for edges.
The default EdgeColor is black. See ColorSpec for more
information on specifying color.

• none — Edges are not drawn.

• flat — The CData value of the first vertex for a face determines
the color of each edge.

• interp — Linear interpolation of the CData values at the face
vertices determines the edge color.

2-3234

Surfaceplot Properties

EdgeLighting
{none} | flat | gouraud | phong

Algorithm used for lighting calculations. This property selects
the algorithm used to calculate the effect of light objects on
surfaceplot edges. Choices are

• none — Lights do not affect the edges of this object.

• flat — The effect of light objects is uniform across each edge
of the surface.

• gouraud — The effect of light objects is calculated at the
vertices and then linearly interpolated across the edge lines.

• phong — The effect of light objects is determined by
interpolating the vertex normals across each edge line and
calculating the reflectance at each pixel. Phong lighting
generally produces better results than Gouraud lighting, but
takes longer to render.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB uses
to draw and erase objects and their children. Alternative erase
modes are useful for creating animated sequences, where control
of the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

• normal — Redraw the affected region of the display, performing
the three-dimensional analysis necessary to ensure that all
objects are rendered correctly. This mode produces the most
accurate picture, but is the slowest. The other modes are faster,
but do not perform a complete redraw and are therefore less
accurate.

• none — Do not erase objects when they are moved or destroyed.
While the objects are still visible on the screen after erasing

2-3235

Surfaceplot Properties

with EraseMode none, you cannot print these objects because
MATLAB stores no information about their former locations.

• xor — Draw and erase the object by performing an exclusive
OR (XOR) with each pixel index of the screen behind it. Erasing
the object does not damage the color of the objects behind it.
However, the color of the erased object depends on the color of
the screen behind it and it is correctly colored only when it is
over the axes background color (or the figure background color
if the axes Color property is set to none). That is, it isn’t erased
correctly if there are objects behind it.

• background — Erase the graphics objects by redrawing them
in the axes background color, (or the figure background color
if the axes Color property is set to none). This damages other
graphics objects that are behind the erased object, but the
erased object is always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects
is normal. This means graphics objects created with EraseMode
set to none, xor, or background can look different on screen than
on paper. On screen, MATLAB can mathematically combine
layers of colors (e.g., performing an XOR on a pixel color with that
of the pixel behind it) and ignore three-dimensional sorting to
obtain greater rendering speed. However, these techniques are
not applied to the printed output.

Set the axes background color with the axes Color property. Set
the figure background color with the figure Color property.

You can use the MATLAB getframe command or other screen
capture applications to create an image of a figure containing
nonnormal mode objects.

FaceAlpha
{scalar = 1} | flat | interp | texturemap

2-3236

Surfaceplot Properties

Transparency of the surfaceplot faces. This property can be any of
the following:

• scalar — A single non-NaN scalar value between 0 and 1
that controls the transparency of all the faces of the object.
1 (the default) means fully opaque and 0 means completely
transparent (invisible).

• flat — The values of the alpha data (AlphaData) determine
the transparency for each face. The alpha data at the first
vertex determine the transparency of the entire face.

• interp — Bilinear interpolation of the alpha data (AlphaData)
at each vertex determines the transparency of each face.

• texturemap — Use transparency for the texture map.

Note that you must specify AlphaData as a matrix equal in size to
ZData to use flat or interp FaceAlpha.

FaceColor
ColorSpec | none | {flat} | interp

Color of the surfaceplot face. This property can be any of the
following:

• ColorSpec — A three-element RGB vector or one of the
MATLAB predefined names, specifying a single color for faces.
See ColorSpec for more information on specifying color.

• none — Do not draw faces. Note that edges are drawn
independently of faces.

• flat — The values of CData determine the color for each face
of the surface. The color data at the first vertex determine the
color of the entire face.

• interp — Bilinear interpolation of the values at each vertex
(the CData) determines the coloring of each face.

2-3237

Surfaceplot Properties

• texturemap — Texture map the Cdata to the surface. MATLAB
transforms the color data so that it conforms to the surface.
(See the texture mapping example for surface.)

FaceLighting
{none} | flat | gouraud | phong

Algorithm used for lighting calculations. This property selects
the algorithm used to calculate the effect of light objects on the
surface. Choices are

• none — Lights do not affect the faces of this object.

• flat — The effect of light objects is uniform across the faces of
the surface. Select this choice to view faceted objects.

• gouraud — The effect of light objects is calculated at the
vertices and then linearly interpolated across the faces. Select
this choice to view curved surfaces.

• phong — The effect of light objects is determined by
interpolating the vertex normals across each face and
calculating the reflectance at each pixel. Select this choice to
view curved surfaces. Phong lighting generally produces better
results than Gouraud lighting, but takes longer to render.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally accessing
objects that you need to protect for some reason.

• on — Handles are always visible when HandleVisibility is on.

• callback — Setting HandleVisibility to callback causes
handles to be visible from within callback routines or functions
invoked by callback routines, but not from within functions
invoked from the command line. This provides a means to

2-3238

Surfaceplot Properties

protect GUIs from command-line users, while allowing callback
routines to have access to object handles.

• off — Setting HandleVisibility to off makes handles
invisible at all times. This might be necessary when a callback
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string) and so temporarily
hides its own handles during the execution of that function.

Functions Affected by Handle Visibility

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

Properties Affected by Handle Visibility

When a handle’s visibility is restricted using callback or off, the
object’s handle does not appear in its parent’s Children property,
figures do not appear in the root’s CurrentFigure property,
objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property, and axes do not appear in
their parent’s CurrentAxes property.

Overriding Handle Visibility

You can set the root ShowHiddenHandles property to on to
make all handles visible regardless of their HandleVisibility
settings (this does not affect the values of the HandleVisibility
properties). See also findall.

Handle Validity

Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties and pass it to any
function that operates on handles.

2-3239

Surfaceplot Properties

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

HitTest
{on} | off

Selectable by mouse click. HitTest determines whether this object
can become the current object (as returned by the gco command
and the figure CurrentObject property) as a result of a mouse
click on the objects that compose the area graph. If HitTest
is off, clicking this object selects the object below it (which is
usually the axes containing it).

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether an object’s callback can be interrupted by
callbacks invoked subsequently.

Only callbacks defined for the ButtonDownFcn property are
affected by the Interruptible property. MATLAB checks for
events that can interrupt a callback only when it encounters a
drawnow, figure, getframe, or pause command in the routine.
See the BusyAction property for related information.

Setting Interruptible to on allows any graphics object’s callback
to interrupt callback routines originating from a bar property.
Note that MATLAB does not save the state of variables or the
display (e.g., the handle returned by the gca or gcf command)
when an interruption occurs.

LineStyle
{-} | -- | : | -. | none

2-3240

Surfaceplot Properties

Line style. This property specifies the line style of the object.
Available line styles are shown in the following table.

Specifier
String Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

You can use LineStyle none when you want to place a marker at
each point but do not want the points connected with a line (see
the Marker property).

LineWidth
scalar

The width of linear objects and edges of filled areas. Specify this
value in points (1 point = 1/72 inch). The default LineWidth is 0.5
points.

Marker
character (see table)

Marker symbol. The Marker property specifies the type of markers
that are displayed at plot vertices. You can set values for the
Marker property independently from the LineStyle property.
Supported markers include those shown in the following table.

Marker Specifier Description

+ Plus sign

o Circle

2-3241

Surfaceplot Properties

Marker Specifier Description

* Asterisk

. Point

x Cross

s Square

d Diamond

^ Upward-pointing triangle

v Downward-pointing triangle

> Right-pointing triangle

< Left-pointing triangle

p Five-pointed star (pentagram)

h Six-pointed star (hexagram)

none No marker (default)

MarkerEdgeColor
none | {auto} | flat | ColorSpec

Marker edge color. The color of the marker or the edge color for
filled markers (circle, square, diamond, pentagram, hexagram,
and the four triangles).

• none specifies no color, which makes nonfilled markers
invisible.

• auto uses the same color as the EdgeColor property.

• flat uses the CData value of the vertex to determine the color
of the maker edge.

• ColorSpec defines a single color to use for the edge (see
ColorSpec for more information).

MarkerFaceColor
{none} | auto | flat | ColorSpec

2-3242

Surfaceplot Properties

Marker face color. The fill color for markers that are closed shapes
(circle, square, diamond, pentagram, hexagram, and the four
triangles).

• none makes the interior of the marker transparent, allowing
the background to show through.

• auto uses the axes Color for the marker face color.

• flat uses the CData value of the vertex to determine the color
of the face.

• ColorSpec defines a single color to use for all markers on the
surfaceplot (see ColorSpec for more information).

MarkerSize
size in points

Marker size. A scalar specifying the size of the marker in points.
The default value for MarkerSize is 6 points (1 point = 1/72 inch).
Note that MATLAB draws the point marker (specified by the '.'
symbol) at one-third the specified size.

MeshStyle
{both} | row | column

Row and column lines. This property specifies whether to draw
all edge lines or just row or column edge lines.

• both draws edges for both rows and columns.

• row draws row edges only.

• column draws column edges only.

NormalMode
{auto} | manual

MATLAB generated or user-specified normal vectors. When this
property is auto, MATLAB calculates vertex normals based on the
coordinate data. If you specify your own vertex normals, MATLAB

2-3243

Surfaceplot Properties

sets this property to manual and does not generate its own data.
See also the VertexNormals property.

Parent
handle of parent axes, hggroup, or hgtransform

Parent of this object. This property contains the handle of the
object’s parent. The parent is normally the axes, hggroup, or
hgtransform object that contains the object.

See “Objects That Can Contain Other Objects” for more
information on parenting graphics objects.

Selected
on | {off}

Is object selected? When you set this property to on, MATLAB
displays selection "handles" at the corners and midpoints if the
SelectionHighlight property is also on (the default). You
can, for example, define the ButtonDownFcn callback to set this
property to on, thereby indicating that this particular object
is selected. This property is also set to on when an object is
manually selected in plot edit mode.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is on, MATLAB indicates the selected state by
drawing four edge handles and four corner handles. When
SelectionHighlight is off, MATLAB does not draw the handles
except when in plot edit mode and objects are selected manually.

SpecularColorReflectance
scalar in the range 0 to 1

Color of specularly reflected light. When this property is 0, the
color of the specularly reflected light depends on both the color of
the object from which it reflects and the color of the light source.

2-3244

Surfaceplot Properties

When set to 1, the color of the specularly reflected light depends
only on the color or the light source (i.e., the light object Color
property). The proportions vary linearly for values in between.

SpecularExponent
scalar >= 1

Harshness of specular reflection. This property controls the size
of the specular spot. Most materials have exponents in the range
of 5 to 20.

SpecularStrength
scalar >= 0 and <= 1

Intensity of specular light. This property sets the intensity of the
specular component of the light falling on the surface. Specular
light comes from light objects in the axes.

You can also set the intensity of the ambient and diffuse
components of the light on the surfaceplot object. See the
AmbientStrength and DiffuseStrength properties. Also see the
material function.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callbacks.
You can define Tag as any string.

For example, you might create an areaseries object and set the
Tag property.

t = area(Y,'Tag','area1')

2-3245

Surfaceplot Properties

When you want to access objects of a given type, you can use
findobj to find the object’s handle. The following statement
changes the FaceColor property of the object whose Tag is area1.

set(findobj('Tag','area1'),'FaceColor','red')

Type
string (read only)

Class of the graphics object. The class of the graphics object. For
surfaceplot objects, Type is always the string 'surface'.

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with this object. Assign this property
the handle of a uicontextmenu object created in the object’s
parent figure. Use the uicontextmenu function to create the
context menu. MATLAB displays the context menu whenever
you right-click over the object.

UserData
array

User-specified data. This property can be any data you want to
associate with this object (including cell arrays and structures).
The object does not set values for this property, but you can access
it using the set and get functions.

VertexNormals
vector or matrix

Surfaceplot normal vectors. This property contains the vertex
normals for the surfaceplot. MATLAB generates this data to
perform lighting calculations. You can supply your own vertex
normal data, even if it does not match the coordinate data. This
can be useful to produce interesting lighting effects.

2-3246

Surfaceplot Properties

Visible
{on} | off

Visibility of this object and its children. By default, a new object’s
visibility is on. This means all children of the object are visible
unless the child object’s Visible property is set to off. Setting an
object’s Visible property to off prevents the object from being
displayed. However, the object still exists and you can set and
query its properties.

XData
vector or matrix

X-coordinates. The x-position of the surfaceplot data points. If you
specify a row vector, MATLAB replicates the row internally until
it has the same number of columns as ZData.

XDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify
XData (by setting the XData property or specifying the x input
argument), MATLAB sets this property to manual and uses the
specified values to label the x-axis.

If you set XDataMode to auto after having specified XData,
MATLAB resets the x-axis ticks to 1:size(YData,1) or to the
column indices of the ZData, overwriting any previous values for
XData.

XDataSource
string (MATLAB variable)

Link XData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
XData.

2-3247

Surfaceplot Properties

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change XData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

YData
vector or matrix

Y-coordinates. The y-position of the surfaceplot data points. If you
specify a row vector, MATLAB replicates the row internally until
it has the same number of rows as ZData.

YDataMode
{auto} | manual

Use automatic or user-specified x-axis values. If you specify XData,
MATLAB sets this property to manual.

If you set YDataMode to auto after having specified YData,
MATLAB resets the y-axis ticks and y-tick labels to the row
indices of the ZData, overwriting any previous values for YData.

YDataSource
string (MATLAB variable)

2-3248

Surfaceplot Properties

Link YData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
YData.

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change YData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

ZData
matrix

Z-coordinates. The z-position of the surfaceplot data points. See
the Description section for more information.

ZDataSource
string (MATLAB variable)

Link ZData to MATLAB variable. Set this property to a MATLAB
variable that is evaluated in the base workspace to generate the
ZData.

2-3249

Surfaceplot Properties

MATLAB reevaluates this property only when you set it.
Therefore, a change to workspace variables appearing in an
expression does not change ZData.

You can use the refreshdata function to force an update of the
object’s data. refreshdata also enables you to specify that the
data source variable be evaluated in the workspace of a function
from which you call refreshdata.

See the refreshdata reference page for more information.

Note If you change one data source property to a variable that
contains data of a different dimension, you might cause the
function to generate a warning and not render the graph until you
have changed all data source properties to appropriate values.

2-3250

surfl

Purpose Surface plot with colormap-based lighting

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax surfl(Z)
surfl(...,'light')
surfl(...,s)
surfl(X,Y,Z,s,k)
h = surfl(...)

Description The surfl function displays a shaded surface based on a combination of
ambient, diffuse, and specular lighting models.

surfl(Z) and surfl(X,Y,Z) create three-dimensional shaded surfaces
using the default direction for the light source and the default lighting
coefficients for the shading model. X, Y, and Z are vectors or matrices
that define the x, y, and z components of a surface.

surfl(...,'light') produces a colored, lighted surface using a
MATLAB light object. This produces results different from the default
lighting method, surfl(...,'cdata'), which changes the color data
for the surface to be the reflectance of the surface.

surfl(...,s) specifies the direction of the light source. s is a two- or
three-element vector that specifies the direction from a surface to a
light source. s = [sx sy sz] or s = [azimuth elevation]. The default s
is 45° counterclockwise from the current view direction.

surfl(X,Y,Z,s,k) specifies the reflectance constant. k is a
four-element vector defining the relative contributions of ambient light,

2-3251

surfl

diffuse reflection, specular reflection, and the specular shine coefficient.
k = [ka kd ks shine] and defaults to [.55,.6,.4,10].

h = surfl(...) returns a handle to a surface graphics object.

Remarks surfl does not accept complex inputs.

For smoother color transitions, use colormaps that have linear intensity
variations (e.g., gray, copper, bone, pink).

The ordering of points in the X, Y, and Z matrices defines the inside and
outside of parametric surfaces. If you want the opposite side of the
surface to reflect the light source, use surfl(X',Y',Z'). Because of the
way surface normal vectors are computed, surfl requires matrices that
are at least 3-by-3.

Examples View peaks using colormap-based lighting.

[x,y] = meshgrid(-3:1/8:3);
z = peaks(x,y);
surfl(x,y,z);
shading interp
colormap(gray);
axis([-3 3 -3 3 -8 8])

2-3252

surfl

To plot a lighted surface from a view direction other than the default,

view([10 10])
grid on
hold on
surfl(peaks)
shading interp
colormap copper
hold off

2-3253

surfl

See Also colormap, shading, light

“Creating Surfaces and Meshes” on page 1-97 for functions related to
surfaces

“Lighting” on page 1-101 for functions related to lighting

2-3254

surfnorm

Purpose Compute and display 3-D surface normals

Syntax surfnorm(Z)
surfnorm(X,Y,Z)
[Nx,Ny,Nz] = surfnorm(...)

Description The surfnorm function computes surface normals for the surface
defined by X, Y, and Z. The surface normals are unnormalized and valid
at each vertex. Normals are not shown for surface elements that face
away from the viewer.

surfnorm(Z) and surfnorm(X,Y,Z) plot a surface and its surface
normals. Z is a matrix that defines the z component of the surface. X
and Y are vectors or matrices that define the x and y components of
the surface.

[Nx,Ny,Nz] = surfnorm(...) returns the components of the
three-dimensional surface normals for the surface.

Remarks surfnorm does not accept complex inputs.

The direction of the normals is reversed by calling surfnorm with
transposed arguments:

surfnorm(X',Y',Z')

surfl uses surfnorm to compute surface normals when calculating
the reflectance of a surface.

2-3255

surfnorm

Algorithm The surface normals are based on a bicubic fit of the data in X, Y, and
Z. For each vertex, diagonal vectors are computed and crossed to form
the normal.

Examples Plot the normal vectors for a truncated cone.

[x,y,z] = cylinder(1:10);
surfnorm(x,y,z)
axis([-12 12 -12 12 -0.1 1])

See Also surf, quiver3

“Colormaps” on page 1-99 for related functions

2-3256

svd

Purpose Singular value decomposition

Syntax s = svd(X)
[U,S,V] = svd(X)
[U,S,V] = svd(X,0)
[U,S,V] = svd(X,'econ')

Description The svd command computes the matrix singular value decomposition.

s = svd(X) returns a vector of singular values.

[U,S,V] = svd(X) produces a diagonal matrix S of the same dimension
as X, with nonnegative diagonal elements in decreasing order, and
unitary matrices U and V so that X = U*S*V'.

[U,S,V] = svd(X,0) produces the “economy size” decomposition. If X
is m-by-n with m > n, then svd computes only the first n columns of U
and S is n-by-n.

[U,S,V] = svd(X,'econ') also produces the “economy size”
decomposition. If X is m-by-n with m >= n, it is equivalent to svd(X,0).
For m < n, only the first m columns of V are computed and S is m-by-m.

Examples For the matrix

X =
1 2
3 4
5 6
7 8

the statement

[U,S,V] = svd(X)

produces

U =
-0.1525 -0.8226 -0.3945 -0.3800

2-3257

svd

-0.3499 -0.4214 0.2428 0.8007
-0.5474 -0.0201 0.6979 -0.4614
-0.7448 0.3812 -0.5462 0.0407

S =
14.2691 0

0 0.6268
0 0
0 0

V =
-0.6414 0.7672
-0.7672 -0.6414

The economy size decomposition generated by

[U,S,V] = svd(X,0)

produces

U =
-0.1525 -0.8226
-0.3499 -0.4214
-0.5474 -0.0201
-0.7448 0.3812

S =
14.2691 0

0 0.6268
V =

-0.6414 0.7672
-0.7672 -0.6414

Algorithm svd uses the LAPACK routines listed in the following table to compute
the singular value decomposition.

2-3258

svd

Real Complex

X double DGESVD ZGESVD

X single SGESVD CGESVD

Diagnostics If the limit of 75 QR step iterations is exhausted while seeking a
singular value, this message appears:

Solution will not converge.

References [1] Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen, LAPACK User’s Guide
(http://www.netlib.org/lapack/lug/lapack_lug.html), Third
Edition, SIAM, Philadelphia, 1999.

2-3259

http://www.netlib.org/lapack/lug/lapack_lug.html

svds

Purpose Find singular values and vectors

Syntax s = svds(A)
s = svds(A,k)
s = svds(A,k,sigma)
s = svds(A,k,'L')
s = svds(A,k,sigma,options)
[U,S,V] = svds(A,...)
[U,S,V,flag] = svds(A,...)

Description s = svds(A) computes the six largest singular values and associated
singular vectors of matrix A. If A is m-by-n, svds(A) manipulates
eigenvalues and vectors returned by eigs(B), where B = [sparse(m,m)
A; A' sparse(n,n)], to find a few singular values and vectors of A.
The positive eigenvalues of the symmetric matrix B are the same as the
singular values of A.

s = svds(A,k) computes the k largest singular values and associated
singular vectors of matrix A.

s = svds(A,k,sigma) computes the k singular values closest to the
scalar shift sigma. For example, s = svds(A,k,0) computes the k
smallest singular values and associated singular vectors.

s = svds(A,k,'L') computes the k largest singular values (the
default).

s = svds(A,k,sigma,options) sets some parameters (see eigs):

Option Structure Fields and Descriptions

Field name Parameter Default

options.tol Convergence tolerance:
norm(AV-US,1)<=tol*norm(A,1)

1e-10

2-3260

svds

Option Structure Fields and Descriptions (Continued)

Field name Parameter Default

options.maxit Maximum number of iterations 300

options.disp Number of values displayed each
iteration

0

[U,S,V] = svds(A,...) returns three output arguments, and if A is
m-by-n:

• U is m-by-k with orthonormal columns

• S is k-by-k diagonal

• V is n-by-k with orthonormal columns

• U*S*V' is the closest rank k approximation to A

[U,S,V,flag] = svds(A,...) returns a convergence flag. If eigs
converged then norn(A*V-U*S,1) <= tol*norm(A,1) and flag is 0. If
eigs did not converge, then flag is 1.

Note svds is best used to find a few singular values of a large, sparse
matrix. To find all the singular values of such a matrix, svd(full(A))
will usually perform better than svds(A,min(size(A))).

Algorithm svds(A,k) uses eigs to find the k largest magnitude eigenvalues and
corresponding eigenvectors of B = [0 A; A' 0].

svds(A,k,0) uses eigs to find the 2k smallest magnitude eigenvalues
and corresponding eigenvectors of B = [0 A; A' 0], and then selects
the k positive eigenvalues and their eigenvectors.

Example west0479 is a real 479-by-479 sparse matrix. svd calculates all 479
singular values. svds picks out the largest and smallest singular values.

2-3261

svds

load west0479
s = svd(full(west0479))
sl = svds(west0479,4)
ss = svds(west0479,6,0)

These plots show some of the singular values of west0479 as computed
by svd and svds.

The largest singular value of west0479 can be computed a few different
ways:

svds(west0479,1) =
3.189517598808622e+05

max(svd(full(west0479))) =
3.18951759880862e+05

norm(full(west0479)) =
3.189517598808623e+05

and estimated:

2-3262

svds

normest(west0479) =
3.189385666549991e+05

See Also svd, eigs

2-3263

swapbytes

Purpose Swap byte ordering

Syntax Y = swapbytes(X)

Description Y = swapbytes(X) reverses the byte ordering of each element in array
X, converting little-endian values to big-endian (and vice versa). The
input array must contain all full, noncomplex, numeric elements.

Examples Example 1

Reverse the byte order for a scalar 32-bit value, changing hexadecimal
12345678 to 78563412:

A = uint32(hex2dec('12345678'));

B = dec2hex(swapbytes(A))
B =

78563412

Example 2

Reverse the byte order for each element of a 1-by-4 matrix:

X = uint16([0 1 128 65535])
X =

0 1 128 65535

Y = swapbytes(X);
Y =

0 256 32768 65535

Examining the output in hexadecimal notation shows the byte
swapping:

format hex

X, Y
X =

0000 0001 0080 ffff

2-3264

swapbytes

Y =
0000 0100 8000 ffff

Example 3

Create a three-dimensional array A of 16-bit integers and then swap
the bytes of each element:

format hex

A = uint16(magic(3) * 150);
A(:,:,2) = A * 40;

A
A(:,:,1) =

04b0 0096 0384
01c2 02ee 041a
0258 0546 012c

A(:,:,2) =
bb80 1770 8ca0
4650 7530 a410
5dc0 d2f0 2ee0

swapbytes(A)
ans(:,:,1) =

b004 9600 8403
c201 ee02 1a04
5802 4605 2c01

ans(:,:,2) =
80bb 7017 a08c
5046 3075 10a4
c05d f0d2 e02e

See Also typecast

2-3265

switch

Purpose Switch among several cases, based on expression

Syntax switch switch_expr
case case_expr

statement, ..., statement
case {case_expr1, case_expr2, case_expr3, ...}

statement, ..., statement
otherwise

statement, ..., statement
end

Discussion The switch statement syntax is a means of conditionally executing
code. In particular, switch executes one set of statements selected from
an arbitrary number of alternatives. Each alternative is called a case,
and consists of

• The case statement

• One or more case expressions

• One or more statements

In its basic syntax, switch executes the statements associated with the
first case where switch_expr == case_expr. When the case expression
is a cell array (as in the second case above), the case_expr matches if
any of the elements of the cell array matches the switch expression. If
no case expression matches the switch expression, then control passes
to the otherwise case (if it exists). After the case is executed, program
execution resumes with the statement after the end.

The switch_expr can be a scalar or a string. A scalar switch_expr
matches a case_expr if switch_expr==case_expr. A string
switch_expr matches a case_expr if strcmp(switch_expr,case_expr)
returns logical 1 (true).

2-3266

switch

Note for C Programmers Unlike the C language switch construct,
the MATLAB switch does not “fall through.” That is, switch executes
only the first matching case; subsequent matching cases do not execute.
Therefore, break statements are not used.

Examples To execute a certain block of code based on what the string, method,
is set to,

method = 'Bilinear';

switch lower(method)
case {'linear','bilinear'}

disp('Method is linear')
case 'cubic'

disp('Method is cubic')
case 'nearest'

disp('Method is nearest')
otherwise

disp('Unknown method.')
end

Method is linear

See Also case, otherwise, end, if, else, elseif, while

2-3267

symamd

Purpose Symmetric approximate minimum degree permutation

Syntax p = symamd(S)
p = symamd(S,knobs)
[p,stats] = symamd(...)

Description p = symamd(S) for a symmetric positive definite matrix S, returns
the permutation vector p such that S(p,p) tends to have a sparser
Cholesky factor than S. To find the ordering for S, symamd constructs a
matrix M such that spones(M'*M) = spones (S), and then computes p
= colamd(M). The symamd function may also work well for symmetric
indefinite matrices.

S must be square; only the strictly lower triangular part is referenced.

p = symamd(S,knobs) where knobs is a scalar. If S is n-by-n, rows and
columns with more than knobs*n entries are removed prior to ordering,
and ordered last in the output permutation p. If the knobs parameter is
not present, then knobs = spparms('wh_frac').

[p,stats] = symamd(...) produces the optional vector stats that
provides data about the ordering and the validity of the matrix S.

stats(1) Number of dense or empty rows ignored by symamd

stats(2) Number of dense or empty columns ignored by symamd

stats(3) Number of garbage collections performed on the
internal data structure used by symamd (roughly of
size 8.4*nnz(tril(S,-1)) + 9n integers)

stats(4) 0 if the matrix is valid, or 1 if invalid

stats(5) Rightmost column index that is unsorted or contains
duplicate entries, or 0 if no such column exists

stats(6) Last seen duplicate or out-of-order row index in the
column index given by stats(5), or 0 if no such row
index exists

stats(7) Number of duplicate and out-of-order row indices

2-3268

symamd

Although, MATLAB built-in functions generate valid sparse matrices,
a user may construct an invalid sparse matrix using the MATLAB C
or Fortran APIs and pass it to symamd. For this reason, symamd verifies
that S is valid:

• If a row index appears two or more times in the same column, symamd
ignores the duplicate entries, continues processing, and provides
information about the duplicate entries in stats(4:7).

• If row indices in a column are out of order, symamd sorts each column
of its internal copy of the matrix S (but does not repair the input
matrix S), continues processing, and provides information about the
out-of-order entries in stats(4:7).

• If S is invalid in any other way, symamd cannot continue. It prints an
error message, and returns no output arguments (p or stats).

The ordering is followed by a symmetric elimination tree post-ordering.

Note symamd tends to be faster than symmmd and tends to return a
better ordering.

Examples Here is a comparison of reverse Cuthill-McKee and minimum degree on
the Bucky ball example mentioned in the symrcm reference page.

B = bucky+4*speye(60);
r = symrcm(B);
p = symamd(B);
R = B(r,r);
S = B(p,p);
subplot(2,2,1), spy(R,4), title('B(r,r)')
subplot(2,2,2), spy(S,4), title('B(s,s)')
subplot(2,2,3), spy(chol(R),4), title('chol(B(r,r))')
subplot(2,2,4), spy(chol(S),4), title('chol(B(s,s))')

2-3269

symamd

Even though this is a very small problem, the behavior of both orderings
is typical. RCM produces a matrix with a narrow bandwidth which
fills in almost completely during the Cholesky factorization. Minimum
degree produces a structure with large blocks of contiguous zeros which
do not fill in during the factorization. Consequently, the minimum
degree ordering requires less time and storage for the factorization.

See Also colamd, colperm, spparms, symrcm

References The authors of the code for symamd are Stefan I. Larimore and
Timothy A. Davis (davis@cise.ufl.edu), University of Florida.
The algorithm was developed in collaboration with John Gilbert,

2-3270

symamd

Xerox PARC, and Esmond Ng, Oak Ridge National Laboratory.
Sparse Matrix Algorithms Research at the University of Florida:
http://www.cise.ufl.edu/research/sparse/

2-3271

http://www.cise.ufl.edu/research/sparse/

symbfact

Purpose Symbolic factorization analysis

Syntax count = symbfact(A)
count = symbfact(A,'sym')
count = symbfact(A,'col')
count = symbfact(A,'row')
count = symbfact(A,'lo')
[count,h,parent,post,R] = symbfact(...)
[count,h,parent,post,L] = symbfact(A,type,'lower')

Description count = symbfact(A) returns the vector of row counts of R=chol(A'*A).
symbfact should be much faster than chol(A).

count = symbfact(A,'sym') is the same as count = symbfact(A).

count = symbfact(A,'col') returns row counts of R=chol(A'*A)
(without forming it explicitly).

count = symbfact(A,'row') returns row counts of R=chol(A*A').

count = symbfact(A,'lo') is the same as count = symbfact(A)
and uses tril(A).

[count,h,parent,post,R] = symbfact(...) has several optional
return values.

The flop count for a subsequent Cholesky factorization is sum(count.^2)

Return
Value

Description

h Height of the elimination tree

parent The elimination tree itself

post Postordering of the elimination tree

R 0-1 matrix having the structure of chol(A) for the
symmetric case, chol(A'*A) for the 'col' case, or
chol(A*A') for the 'row' case.

2-3272

symbfact

symbfact(A) and symbfact(A,'sym') use the upper triangular part of
A (triu(A)) and assume the lower triangular part is the transpose of
the upper triangular part. symbfact(A,'lo') uses tril(A) instead.

[count,h,parent,post,L] = symbfact(A,type,'lower') where
type is one of 'sym','col', 'row', or'lo' returns a lower triangular
symbolic factor L=R'. This form is quicker and requires less memory.

See Also chol, etree, treelayout

2-3273

symmlq

Purpose Symmetric LQ method

Syntax x = symmlq(A,b)
symmlq(A,b,tol)
symmlq(A,b,tol,maxit)
symmlq(A,b,tol,maxit,M)
symmlq(A,b,tol,maxit,M1,M2)
symmlq(A,b,tol,maxit,M1,M2,x0)
[x,flag] = symmlq(A,b,...)
[x,flag,relres] = symmlq(A,b,...)
[x,flag,relres,iter] = symmlq(A,b,...)
[x,flag,relres,iter,resvec] = symmlq(A,b,...)
[x,flag,relres,iter,resvec,resveccg] = symmlq(A,b,...)

Description x = symmlq(A,b) attempts to solve the system of linear equations
A*x=b for x. The n-by-n coefficient matrix A must be symmetric but need
not be positive definite. It should also be large and sparse. The column
vector b must have length n. A can be a function handle afun such
that afun(x) returns A*x. See “Function Handles” in the MATLAB
Programming documentation for more information.

“Parameterizing Functions Called by Function Functions”, in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the function afun, as well as the preconditioner
function mfun described below, if necessary.

If symmlq converges, a message to that effect is displayed. If symmlq
fails to converge after the maximum number of iterations or halts
for any reason, a warning message is printed displaying the relative
residual norm(b-A*x)/norm(b) and the iteration number at which the
method stopped or failed.

symmlq(A,b,tol) specifies the tolerance of the method. If tol is [],
then symmlq uses the default, 1e-6.

symmlq(A,b,tol,maxit) specifies the maximum number of iterations.
If maxit is [], then symmlq uses the default, min(n,20).

2-3274

symmlq

symmlq(A,b,tol,maxit,M) and symmlq(A,b,tol,maxit,M1,M2) use
the symmetric positive definite preconditioner M or M = M1*M2 and
effectively solve the system inv(sqrt(M))*A*inv(sqrt(M))*y =
inv(sqrt(M))*b for y and then return x = in(sqrt(M))*y. If M is []
then symmlq applies no preconditioner. M can be a function handle mfun
such that mfun(x) returns M\x.

symmlq(A,b,tol,maxit,M1,M2,x0) specifies the initial guess. If x0 is
[], then symmlq uses the default, an all-zero vector.

[x,flag] = symmlq(A,b,...) also returns a convergence flag.

Flag Convergence

0 symmlq converged to the desired tolerance tol within
maxit iterations.

1 symmlq iterated maxit times but did not converge.

2 Preconditioner M was ill-conditioned.

3 symmlq stagnated. (Two consecutive iterates were the
same.)

4 One of the scalar quantities calculated during symmlq
became too small or too large to continue computing.

5 Preconditioner M was not symmetric positive definite.

Whenever flag is not 0, the solution x returned is that with minimal
norm residual computed over all the iterations. No messages are
displayed if the flag output is specified.

[x,flag,relres] = symmlq(A,b,...) also returns the relative
residual norm(b-A*x)/norm(b). If flag is 0, relres <= tol.

[x,flag,relres,iter] = symmlq(A,b,...) also returns the iteration
number at which x was computed, where 0 <= iter <= maxit.

[x,flag,relres,iter,resvec] = symmlq(A,b,...) also returns a
vector of estimates of the symmlq residual norms at each iteration,
including norm(b-A*x0).

2-3275

symmlq

[x,flag,relres,iter,resvec,resveccg] = symmlq(A,b,...) also
returns a vector of estimates of the conjugate gradients residual norms
at each iteration.

Examples Example 1

n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -2*on],-1:1,n,n);
b = sum(A,2);
tol = 1e-10;
maxit = 50; M1 = spdiags(4*on,0,n,n);

x = symmlq(A,b,tol,maxit,M1);
symmlq converged at iteration 49 to a solution with relative
residual 4.3e-015

Example 2

This example replaces the matrix A in Example 1 with a handle to a
matrix-vector product function afun. The example is contained in an
M-file run_symmlq that

• Calls symmlq with the function handle @afun as its first argument.

• Contains afun as a nested function, so that all variables in
run_symmlq are available to afun.

The following shows the code for run_symmlq:

function x1 = run_symmlq
n = 100;
on = ones(n,1);
A = spdiags([-2*on 4*on -on],-1:1,n,n);
b = sum(A,2);
tol = 1e-8;
maxit = 15;
M1 = spdiags([on/(-2) on],-1:0,n,n);
M2 = spdiags([4*on -on],0:1,n,n);

2-3276

symmlq

x1 = symmlq(@afun,b,tol,maxit,M1);

function y = afun(x)
y = 4 * x;
y(2:n) = y(2:n) - 2 * x(1:n-1);
y(1:n-1) = y(1:n-1) - 2 * x(2:n);

end
end

When you enter

x1=run_symmlq;

MATLAB displays the message

symmlq converged at iteration 49 to a solution with relative
residual 4.3e-015

Example 3

Use a symmetric indefinite matrix that fails with pcg.

A = diag([20:-1:1,-1:-1:-20]);
b = sum(A,2); % The true solution is the vector of all ones.
x = pcg(A,b); % Errors out at the first iteration.
pcg stopped at iteration 1 without converging to the desired
tolerance 1e-006 because a scalar quantity became too small or
too large to continue computing.
The iterate returned (number 0) has relative residual 1

However, symmlq can handle the indefinite matrix A.

x = symmlq(A,b,1e-6,40);
symmlq converged at iteration 39 to a solution with relative
residual 1.3e-007

See Also bicg, bicgstab, cgs, lsqr, gmres, minres, pcg, qmr

function_handle (@), mldivide (\)

2-3277

symmlq

References [1] Barrett, R., M. Berry, T. F. Chan, et al., Templates for the Solution
of Linear Systems: Building Blocks for Iterative Methods, SIAM,
Philadelphia, 1994.

[2] Paige, C. C. and M. A. Saunders, "Solution of Sparse Indefinite
Systems of Linear Equations." SIAM J. Numer. Anal., Vol.12, 1975,
pp. 617-629.

2-3278

symmmd

Purpose Sparse symmetric minimum degree ordering

Syntax p = symmmd(S)

Note symmmd is obsolete and will be removed from a future version
of MATLAB. Use symamd instead.

Description p = symmmd(S) returns a symmetric minimum degree ordering of S. For
a symmetric positive definite matrix S, this is a permutation p such
that S(p,p) tends to have a sparser Cholesky factor than S. Sometimes
symmmd works well for symmetric indefinite matrices too.

Algorithm The symmetric minimum degree algorithm is based on the column
minimum degree algorithm. In fact, symmmd(A) just creates a nonzero
structure K such that K'*K has the same nonzero structure as A and
then calls the column minimum degree code for K.

See Also colamd, colmmd, colperm, symamd, symrcm

References [1] Gilbert, John R., Cleve Moler, and Robert Schreiber, “Sparse
Matrices in MATLAB: Design and Implementation,” SIAM Journal on
Matrix Analysis and Applications 13, 1992, pp. 333-356.

2-3279

symrcm

Purpose Sparse reverse Cuthill-McKee ordering

Syntax r = symrcm(S)

Description r = symrcm(S) returns the symmetric reverse Cuthill-McKee ordering
of S. This is a permutation r such that S(r,r) tends to have its nonzero
elements closer to the diagonal. This is a good preordering for LU
or Cholesky factorization of matrices that come from long, skinny
problems. The ordering works for both symmetric and nonsymmetric S.

For a real, symmetric sparse matrix, S, the eigenvalues of S(r,r) are
the same as those of S, but eig(S(r,r)) probably takes less time to
compute than eig(S).

Algorithm The algorithm first finds a pseudoperipheral vertex of the graph of the
matrix. It then generates a level structure by breadth-first search and
orders the vertices by decreasing distance from the pseudoperipheral
vertex. The implementation is based closely on the SPARSPAK
implementation described by George and Liu.

Examples The statement

B = bucky;

uses an M-file in the demos toolbox to generate the adjacency graph
of a truncated icosahedron. This is better known as a soccer ball,
a Buckminster Fuller geodesic dome (hence the name bucky), or,
more recently, as a 60-atom carbon molecule. There are 60 vertices.
The vertices have been ordered by numbering half of them from one
hemisphere, pentagon by pentagon; then reflecting into the other
hemisphere and gluing the two halves together. With this numbering,
the matrix does not have a particularly narrow bandwidth, as the first
spy plot shows

subplot(1,2,1), spy(B), title('B')

The reverse Cuthill-McKee ordering is obtained with

2-3280

symrcm

p = symrcm(B);
R = B(p,p);

The spy plot shows a much narrower bandwidth.

subplot(1,2,2), spy(R), title('B(p,p)')

This example is continued in the reference pages for symamd.

The bandwidth can also be computed with

[i,j] = find(B);
bw = max(i-j) + 1;

The bandwidths of B and R are 35 and 12, respectively.

See Also colamd, colperm, symamd

References [1] George, Alan and Joseph Liu, Computer Solution of Large Sparse
Positive Definite Systems, Prentice-Hall, 1981.

[2] Gilbert, John R., Cleve Moler, and Robert Schreiber, “Sparse
Matrices in MATLAB: Design and Implementation,” SIAM Journal on
Matrix Analysis, 1992. A slightly expanded version is also available as
a technical report from the Xerox Palo Alto Research Center.

2-3281

symvar

Purpose Determine symbolic variables in expression

Syntax symvar 'expr'
s = symvar('expr')

Description symvar 'expr' searches the expression, expr, for identifiers other than
i, j, pi, inf, nan, eps, and common functions. symvar displays those
variables that it finds or, if no such variable exists, displays an empty
cell array, {}.

s = symvar('expr') returns the variables in a cell array of strings, s.
If no such variable exists, s is an empty cell array.

Examples symvar finds variables beta1 and x, but skips pi and the cos function.

symvar 'cos(pi*x - beta1)'

ans =

'beta1'
'x'

See Also findstr

2-3282

synchronize

Purpose Synchronize and resample two timeseries objects using common time
vector

Syntax [ts1 ts2] = synchronize(ts1,ts2,'SynchronizeMethod')

Description [ts1 ts2] = synchronize(ts1,ts2,'SynchronizeMethod') creates
two new timeseries objects by synchronizing ts1 and ts2 using a
common time vector. The string 'SynchronizeMethod' defines the
method for synchronizing the timeseries and can be one of the
following:

• 'Union' — Resample timeseries objects using a time vector that is
a union of the time vectors of ts1 and ts2 on the time range where
the two time vectors overlap.

• 'Intersection' — Resample timeseries objects on a time vector
that is the intersection of the time vectors of ts1 and ts2.

• 'Uniform' — Requires an additional argument as follows:

[ts1 ts2] = synchronize(ts1,ts2,'Uniform','Interval',value)

This method resamples time series on a uniform time vector, where
value specifies the time interval between the two samples. The
uniform time vector is the overlap of the time vectors of ts1 and ts2.
The interval units are assumed to be the smaller units of ts1 and ts2.

You can specify additional arguments by using property-value pairs:

• 'InterpMethod': Forces the specified interpolation method (over
the default method) for this synchronize operation. Can be either a
string, 'linear' or 'zoh', or a tsdata.interpolation object that
contains a user-defined interpolation method.

• 'QualityCode': Integer (between -128 and 127) used as the quality
code for both time series after the synchronization.

2-3283

synchronize

• 'KeepOriginalTimes': Logical value (true or false) indicating
whether the new time series should keep the original time values.
For example,

ts1 = timeseries([1 2],[datestr(now); datestr(now+1)]);
ts2 = timeseries([1 2],[datestr(now-1); datestr(now)]);

Note that ts1.timeinfo.StartDate is one day after
ts2.timeinfo.StartDate. If you use

[ts1 ts2] = synchronize(ts1,ts2,'union');

the ts1.timeinfo.StartDate is changed to match
ts2.TimeInfo.StartDate and ts1.Time changes to 1.

But if you use

[ts1 ts2] =
synchronize(ts1,ts2,'union','KeepOriginalTimes',true);

ts1.timeinfo.StartDate is unchanged and ts1.Time is still 0.

• 'tolerance': Real number used as the tolerance for differentiating
two time values when comparing the ts1 and ts2 time vectors. The
default tolerance is 1e-10. For example, when the sixth time value
in ts1 is 5+(1e-12) and the sixth time value in ts2 is 5-(1e-13),
both values are treated as 5 by default. To differentiate those two
times, you can set 'tolerance' to a smaller value such as 1e-15,
for example.

See Also timeseries

2-3284

syntax

Purpose Two ways to call MATLAB functions

Description You can call MATLAB functions using either command syntax or
function syntax, as described below.

Command Syntax

A function call in this syntax consists of the function name followed by
one or more arguments separated by spaces:

functionname arg1 arg2 ... argn

Command syntax does not allow you to obtain any values that might be
returned by the function. Attempting to assign output from the function
to a variable using command syntax generates an error. Use function
syntax instead.

Examples of command syntax:

save mydata.mat x y z
import java.awt.Button java.lang.String

Arguments are treated as string literals. See the examples below, under
“Argument Passing” on page 2-3286.

Function Syntax

A function call in this syntax consists of the function name followed
by one or more arguments separated by commas and enclosed in
parentheses:

functionname(arg1, arg2, ..., argn)

You can assign the output of the function to one or more output
values. When assigning to more than one output variable, separate the
variables by commas or spaces and enclose them in square brackets ([]):

[out1,out2,...,outn] = functionname(arg1, arg2, ..., argn)

Examples of function syntax:

2-3285

syntax

copyfile('srcfile', '..\mytests', 'writable')
[x1,x2,x3,x4] = deal(A{:})

Arguments are passed to the function by value. See the examples below,
under “Argument Passing” on page 2-3286.

Argument Passing

When calling a function using command syntax, MATLAB passes the
arguments as string literals. When using function syntax, arguments
are passed by value.

In the following example, assign a value to A and then call disp on
the variable to display the value passed. Calling disp with command
syntax passes the variable name, 'A':

A = pi;
disp A

A

while function syntax passes the value assigned to A:

A = pi;
disp(A)

3.1416

The next example passes two strings to strcmp for comparison. Calling
the function with command syntax compares the variable names,
'str1' and 'str2':

str1 = 'one'; str2 = 'one';
strcmp str1 str2
ans =

0 (unequal)

while function syntax compares the values assigned to the variables,
'one' and 'one':

str1 = 'one'; str2 = 'one';
strcmp(str1, str2)

2-3286

syntax

ans =
1 (equal)

Passing Strings

When using the function syntax to pass a string literal to a function,
you must enclose the string in single quotes, ('string'). For example,
to create a new directory called myapptests, use

mkdir('myapptests')

On the other hand, variables that contain strings do not need to be
enclosed in quotes:

dirname = 'myapptests';
mkdir(dirname)

See Also mlint

2-3287

system

Purpose Execute operating system command and return result

Syntax system('command')
[status, result] = system('command')

Description system('command') calls upon the operating system to run command,
for example dir or ls or a UNIX shell script, and directs the output to
MATLAB. If command runs successfully, ans is 0. If command fails or
does not exist on your operating system, ans is a nonzero value and
an explanatory message appears.

[status, result] = system('command') calls upon the operating
system to run command, and directs the output to MATLAB. If command
runs successfully, status is 0 and result contains the output from
command. If command fails or does not exist on your operating system,
status is a nonzero value and result contains an explanatory message.

Note Running system on Windows with a command that relies on the
current directory fails when the current directory is specified using a
UNC pathname because DOS does not support UNC pathnames. When
this happens, MATLAB returns the error:

??? Error using ==> system DOS commands may not be
executed when the current directory is a UNC pathname.

To work around this limitation, change the directory to a mapped drive
prior to running system or a function that calls system.

Examples On a Windows system, display the current directory by accessing the
operating system.

[status currdir] = system('cd')
status =

0
currdir =

2-3288

system

D:\work\matlab\test

See Also ! (bang), computer, dos, perl, unix, winopen

“Running External Programs” in the MATLAB Desktop Tools and
Development Environment documentation

2-3289

tan

Purpose Tangent of argument in radians

Syntax Y = tan(X)

Description The tan function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = tan(X) returns the circular tangent of each element of X.

Examples Graph the tangent function over the domain .

x = (-pi/2)+0.01:0.01:(pi/2)-0.01;
plot(x,tan(x)), grid on

The expression tan(pi/2) does not evaluate as infinite but as
the reciprocal of the floating point accuracy eps since pi is only a
floating-point approximation to the exact value of .

Definition The tangent can be defined as

2-3290

tan

Algorithm tan uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also tand, tanh, atan, atan2, atand, atanh

2-3291

http://www.netlib.org

tand

Purpose Tangent of argument in degrees

Syntax Y = tand(X)

Description Y = tand(X) is the tangent of the elements of X, expressed in degrees.
For odd integers n, tand(n*90) is infinite, whereas tan(n*pi/2) is
large but finite, reflecting the accuracy of the floating point value of pi.

See Also tan, tanh, atan, atan2, atand, atanh

2-3292

tanh

Purpose Hyperbolic tangent

Syntax Y = tanh(X)

Description The tanh function operates element-wise on arrays. The function’s
domains and ranges include complex values. All angles are in radians.

Y = tanh(X) returns the hyperbolic tangent of each element of X.

Examples Graph the hyperbolic tangent function over the domain .

x = -5:0.01:5;
plot(x,tanh(x)), grid on

Definition The hyperbolic tangent can be defined as

2-3293

tanh

Algorithm tanh uses FDLIBM, which was developed at SunSoft, a Sun
Microsystems, Inc. business, by Kwok C. Ng, and others. For
information about FDLIBM, see http://www.netlib.org.

See Also atan, atan2, tan

2-3294

http://www.netlib.org

tar

Purpose Compress files into tar file

Syntax tar(tarfilename,files)
tar(tarfilename,files,rootdir)
entrynames = tar(...)

Description tar(tarfilename,files) creates a tar file with the name
tarfilename from the list of files and directories specified in files.
Relative paths are stored in the tar file, but absolute paths are not.
Directories recursively include all of their content.

tarfilename is a string specifying the name of the tar file. The .tar
extension is appended to tarfilename if omitted. The tarfilename
extension can end in .tgz or .gz. In this case, tarfilename is gzipped.

files is a string or cell array of strings containing the list of files or
directories included in tarfilename. Individual files that are on the
MATLAB path can be specified as partial pathnames. Otherwise an
individual file can be specified relative to the current directory or with
an absolute path. Directories must be specified relative to the current
directory or with absolute paths. On UNIX systems, directories can
also start with ~/ or ~username/, which expands to the current user’s
home directory or the specified user’s home directory, respectively. The
wildcard character * can be used when specifying files or directories,
except when relying on the MATLAB path to resolve a filename or
partial pathname.

tar(tarfilename,files,rootdir) allows the path for files to be
specified relative to rootdir rather than the current directory.

entrynames = tar(...) returns a string cell array of the relative
path entry names contained in tarfilename.

Example Tar all files in the current directory to the file backup.tgz:

tar('backup.tgz','.');

See Also gzip, gunzip, untar, unzip, zip

2-3295

tempdir

Purpose Name of system’s temporary directory

Syntax tmp_dir = tempdir

Description tmp_dir = tempdir returns the name of the system’s temporary
directory, if one exists. This function does not create a new directory.

See “Opening Temporary Files and Directories” for more information.

See Also tempname

2-3296

tempname

Purpose Unique name for temporary file

Syntax tmp_nam = tempname

Description tmp_nam = tempname returns a unique string, tmp_nam, suitable for use
as a temporary filename.

Note The filename that tempname generates is not guaranteed to be
unique; however, it is likely to be so.

See “Opening Temporary Files and Directories” for more information.

See Also tempdir

2-3297

tetramesh

Purpose Tetrahedron mesh plot

Syntax tetramesh(T,X,c)
tetramesh(T,X)
h = tetramesh(...)
tetramesh(...,'param','value','param','value'...)

Description tetramesh(T,X,c) displays the tetrahedrons defined in the m-by-4
matrix T as mesh. T is usually the output of delaunayn. A row of T
contains indices into X of the vertices of a tetrahedron. X is an n-by-3
matrix, representing n points in 3 dimension. The tetrahedron colors
are defined by the vector C, which is used as indices into the current
colormap.

Note If T is the output of delaunay3, then X is the concatenation of the
delaunay3 input arguments x, y, z interpreted as column vectors, i.e.,
X = [x(:) y(:) z(:)].

tetramesh(T,X) uses C = 1:m as the color for the m tetrahedrons. Each
tetrahedron has a different color (modulo the number of colors available
in the current colormap).

h = tetramesh(...) returns a vector of tetrahedron handles. Each
element of h is a handle to the set of patches forming one tetrahedron.
You can use these handles to view a particular tetrahedron by turning
the patch 'Visible' property 'on' or 'off'.

tetramesh(...,'param','value','param','value'...) allows
additional patch property name/property value pairs to be used when
displaying the tetrahedrons. For example, the default transparency
parameter is set to 0.9. You can overwrite this value by using the
property name/property value pair ('FaceAlpha',value) where value
is a number between 0 and 1. See Patch Properties for information
about the available properties.

2-3298

tetramesh

Examples Generate a 3-dimensional Delaunay tessellation, then use tetramesh to
visualize the tetrahedrons that form the corresponding simplex.

d = [-1 1];
[x,y,z] = meshgrid(d,d,d); % A cube
x = [x(:);0];
y = [y(:);0];
z = [z(:);0];
% [x,y,z] are corners of a cube plus the center.
X = [x(:) y(:) z(:)];
Tes = delaunayn(X)

Tes =
9 1 5 6
3 9 1 5
2 9 1 6
2 3 9 4
2 3 9 1
7 9 5 6
7 3 9 5
8 7 9 6
8 2 9 6
8 2 9 4
8 3 9 4
8 7 3 9

tetramesh(Tes,X);camorbit(20,0)

2-3299

tetramesh

See Also delaunayn, patch, Patch Properties, trimesh, trisurf

2-3300

texlabel

Purpose Produce TeX format from character string

Syntax texlabel(f)
texlabel(f,'literal')

Description texlabel(f) converts the MATLAB expression f into the TeX
equivalent for use in text strings. It processes Greek variable names
(e.g., lambda, delta, etc.) into a string that is displayed as actual Greek
letters.

texlabel(f,'literal') prints Greek variable names as literals.

If the string is too long to fit into a figure window, then the center of the
expression is replaced with a tilde ellipsis (~~~).

Examples You can use texlabel as an argument to the title, xlabel, ylabel,
zlabel, and text commands. For example,

title(texlabel('sin(sqrt(x^2 + y^2))/sqrt(x^2 + y^2)'))

By default, texlabel translates Greek variable names to the equivalent
Greek letter. You can select literal interpretation by including the
literal argument. For example, compare these two commands.

text(.5,.5,...
texlabel('lambda12^(3/2)/pi - pi*delta^(2/3)'))

text(.25,.25,...
texlabel('lambda12^(3/2)/pi - pi*delta^(2/3)','literal'))

2-3301

texlabel

See Also text, title, xlabel, ylabel, zlabel, the text String property

“Annotating Plots” on page 1-87 for related functions

2-3302

text

Purpose Create text object in current axes

Syntax text(x,y,'string')
text(x,y,z,'string')
text(x,y,z,'string','PropertyName',PropertyValue....)
text('PropertyName',PropertyValue....)
h = text(...)

Description text is the low-level function for creating text graphics objects. Use
text to place character strings at specified locations.

text(x,y,'string') adds the string in quotes to the location specified
by the point (x,y).

text(x,y,z,'string') adds the string in 3-D coordinates.

text(x,y,z,'string','PropertyName',PropertyValue....) adds
the string in quotes to the location defined by the coordinates and uses
the values for the specified text properties. See the text property list
section at the end of this page for a list of text properties.

text('PropertyName',PropertyValue....) omits the coordinates
entirely and specifies all properties using property name/property value
pairs.

h = text(...) returns a column vector of handles to text objects,
one handle per object. All forms of the text function optionally return
this output argument.

See the String property for a list of symbols, including Greek letters.

Remarks Position Text Within the Axes

The default text units are the units used to plot data in the graph.
Specify the text location coordinates (the x, y, and z arguments) in the
data units of the current graph (see “Example”). You can use other units
to position the text by set the text Units property to normalized or one
of the nonrelative units (pixels, inches, centimeters, points).

2-3303

text

Note that the Axes Units property controls the positioning of the Axes
within the figure and is not related to the axes data units used for
graphing.

The Extent, VerticalAlignment, and HorizontalAlignment
properties control the positioning of the character string with regard
to the text location point.

If the coordinates are vectors, text writes the string at all locations
defined by the list of points. If the character string is an array the same
length as x, y, and z, text writes the corresponding row of the string
array at each point specified.

Multiline Text

When specifying strings for multiple text objects, the string can be

• A cell array of strings

• A padded string matrix

Each element of the specified string array creates a different text object.

When specifying the string for a single text object, cell arrays of strings
and padded string matrices result in a text object with a multiline
string, while vertical slash characters are not interpreted as separators
and result in a single line string containing vertical slashes.

Behavior of the Text Function

text is a low-level function that accepts property name/property value
pairs as input arguments. However, the convenience form,

text(x,y,z,'string')

is equivalent to

text('Position',[x,y,z],'String','string')

You can specify other properties only as property name/property value
pairs. See the text property list at the end of this page for a description

2-3304

text

of each property. You can specify properties as property name/property
value pairs, structure arrays, and cell arrays (see the set and get
reference pages for examples of how to specify these data types).

text does not respect the setting of the figure or axes NextPlot
property. This allows you to add text objects to an existing axes without
setting hold to on.

Examples The statements

plot(0:pi/20:2*pi,sin(0:pi/20:2*pi))
text(pi,0,' \leftarrow sin(\pi)','FontSize',18)

annotate the point at (pi,0) with the string sin(π)

2-3305

text

The statement

text(x,y,'\ite^{i\omega\tau} = cos(\omega\tau) + i sin(\omega\tau)')

uses embedded TeX sequences to produce

2-3306

text

Object
Hierarchy

Setting Default Properties

You can set default text properties on the axes, figure, and root levels:

set(0,'DefaulttextProperty',PropertyValue...)
set(gcf,'DefaulttextProperty',PropertyValue...)
set(gca,'DefaulttextProperty',PropertyValue...)

Where Property is the name of the text property and PropertyValue is
the value you are specifying. Use set and get to access text properties.

See Also annotation, gtext, int2str, num2str, title, xlabel, ylabel, zlabel,
strings

“Object Creation Functions” on page 1-94 for related functions

Text Properties for property descriptions

2-3307

Text Properties

Purpose Text properties

Modifying
Properties

You can set and query graphics object properties using the property
editor or the set and get commands.

• The Property Editor is an interactive tool that enables you to see and
change object property values.

• The set and get commands enable you to set and query the values of
properties.

To change the default values of properties, see Setting Default Property
Values.

See Core Objects for general information about this type of object.

Text
Property
Descriptions

This section lists property names along with the types of values each
accepts. Curly braces { } enclose default values.

Annotation
hg.Annotation object Read Only

Control the display of text objects in legends. The Annotation
property enables you to specify whether this text object is
represented in a figure legend.

Querying the Annotation property returns the handle of an
hg.Annotation object. The hg.Annotation object has a property
called LegendInformation, which contains an hg.LegendEntry
object.

Once you have obtained the hg.LegendEntry object, you can set
its IconDisplayStyle property to control whether the text object
is displayed in a figure legend:

2-3308

Text Properties

IconDisplayStyle
Value

Purpose

on Represent this text object in a legend
(default)

off Do not include this text object in a legend

children Same as on because text objects do not have
children

Setting the IconDisplayStyle property

These commands set the IconDisplayStyle of a graphics object
with handle hobj to off:

hAnnotation = get(hobj,'Annotation');
hLegendEntry = get(hAnnotation','LegendInformation');
set(hLegendEntry,'IconDisplayStyle','off')

Using the IconDisplayStyle property

See “Controlling Legends” for more information and examples.

BackgroundColor
ColorSpec | {none}

Color of text extent rectangle. This property enables you to define a
color for the rectangle that encloses the text Extent plus the text
Margin. For example, the following code creates a text object that
labels a plot and sets the background color to light green.

text(3*pi/4,sin(3*pi/4),...
['sin(3*pi/4) = ',num2str(sin(3*pi/4))],...
'HorizontalAlignment','center',...
'BackgroundColor',[.7 .9 .7]);

2-3309

Text Properties

For additional features, see the following properties:

• EdgeColor — Color of the rectangle’s edge (none by default).

• LineStyle — Style of the rectangle’s edge line (first set EdgeColor)

• LineWidth — Width of the rectangle’s edge line (first set EdgeColor)

• Margin — Increase the size of the rectangle by adding a margin to
the existing text extent rectangle. This margin is added to the text
extent rectangle to define the text background area that is enclosed
by the EdgeColor rectangle. Note that the text extent does not
change when you change the margin; only the rectangle displayed
when you set the EdgeColor property and the area defined by the
BackgroundColor change.

See also Drawing Text in a Box in the MATLAB Graphics documentation
for an example using background color with contour labels.

BeingDeleted
on | {off} read only

2-3310

Text Properties

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property) It remains set to on while the delete
function executes, after which the object no longer exists.

For example, an object’s delete function might call other functions
that act on a number of different objects. These functions may not
need to perform actions on objects that are going to be deleted,
and therefore can check the object’s BeingDeleted property before
acting.

BusyAction
cancel | {queue}

Callback routine interruption. The BusyAction property enables
you to control how MATLAB handles events that potentially
interrupt executing callback routines. If there is a callback routine
executing, callback routines invoked subsequently always attempt
to interrupt it. If the Interruptible property of the object whose
callback is executing is set to on (the default), then interruption
occurs at the next point where the event queue is processed. If the
Interruptible property is set to off, the BusyAction property
(of the object owning the executing callback) determines how
MATLAB handles the event. The choices are

• cancel — Discard the event that attempted to execute a second
callback routine.

• queue — Queue the event that attempted to execute a second callback
routine until the current callback finishes.

ButtonDownFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

2-3311

Text Properties

Button press callback function. A callback function that executes
whenever you press a mouse button while the pointer is over the
text object.

See the figure’s SelectionType property to determine if modifier
keys were also pressed.

Set this property to a function handle that references the callback.
The function must define at least two input arguments (handle
of object associated with the button down event and an event
structure, which is empty for this property). For example, the
following function takes different action depending on what type
of selection was made:

function button_down(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property

sel_typ = get(gcbf,'SelectionType')
switch sel_typ

case 'normal'
disp('User clicked left-mouse button')
set(src,'Selected','on')

case 'extend'
disp('User did a shift-click')
set(src,'Selected','on')

case 'alt'
disp('User did a control-click')
set(src,'Selected','on')
set(src,'SelectionHighlight','off')

end
end

Suppose h is the handle of a text object and that the button_down
function is on your MATLAB path. The following statement
assigns the function above to the ButtonDownFcn:

set(h,'ButtonDownFcn',@button_down)

2-3312

Text Properties

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

Children
matrix (read only)

The empty matrix; text objects have no children.

Clipping
on | {off}

Clipping mode. When Clipping is on, MATLAB does not display
any portion of the text that is outside the axes.

Color
ColorSpec

Text color. A three-element RGB vector or one of the predefined
names, specifying the text color. The default value for Color is
white. See ColorSpec for more information on specifying color.

CreateFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Callback function executed during object creation. A callback
function that executes when MATLAB creates a text object. You
must define this property as a default value for text or in a call
to the text function that creates a new text object. For example,
the statement

set(0,'DefaultTextCreateFcn',@text_create)

defines a default value on the root level that sets the figure
Pointer property to crosshairs whenever you create a text object.
The callback function must be on your MATLAB path when you
execute the above statement.

function text_create(src,evnt)

2-3313

Text Properties

% src - the object that is the source of the event
% evnt - empty for this property
set(gcbf,'Pointer','crosshair')

end

MATLAB executes this function after setting all text properties.
Setting this property on an existing text object has no effect. The
function must define at least two input arguments (handle of
object created and an event structure, which is empty for this
property).

The handle of the object whose CreateFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is also accessible through the root CallbackObject property,
which you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

DeleteFcn
functional handle, cell array containing function handle and
additional arguments, or string (not recommended)

Delete text callback function. A callback function that executes
when you delete the text object (e.g., when you issue a delete
command or clear the axes cla or figure clf). For example, the
following function displays object property data before the object
is deleted.

function delete_fcn(src,evnt)
% src - the object that is the source of the event
% evnt - empty for this property

obj_tp = get(src,'Type');
disp([obj_tp, ' object deleted'])
disp('Its user data is:')
disp(get(src,'UserData'))

end

2-3314

Text Properties

MATLAB executes the function before deleting the object’s
properties so these values are available to the callback function.
The function must define at least two input arguments (handle
of object being deleted and an event structure, which is empty
for this property)

The handle of the object whose DeleteFcn is being executed is
passed by MATLAB as the first argument to the callback function
and is also accessible through the root CallbackObject property,
which you can query using gcbo.

See Function Handle Callbacks for information on how to use
function handles to define the callback function.

DisplayName
string (default is empty string)

String used by legend for this text object. The legend function
uses the string defined by the DisplayName property to label this
text object in the legend.

• If you specify string arguments with the legend function,
DisplayName is set to this text object’s corresponding string
and that string is used for the legend.

• If DisplayName is empty, legend creates a string of the form,
['data' n], where n is the number assigned to the object
based on its location in the list of legend entries. However,
legend does not set DisplayName to this string.

• If you edit the string directly in an existing legend, DisplayName
is set to the edited string.

• If you specify a string for the DisplayName property and create
the legend using the figure toolbar, then MATLAB uses the
string defined by DisplayName.

• To add programmatically a legend that uses the DisplayName
string, call legend with the toggle or show option.

2-3315

Text Properties

See “Controlling Legends” for more examples.

EdgeColor
ColorSpec | {none}

Color of edge drawn around text extent rectangle plus margin. This
property enables you to specify the color of a box drawn around
the text Extent plus the text Margin. For example, the following
code draws a red rectangle around text that labels a plot.

text(3*pi/4,sin(3*pi/4),...
'\leftarrowsin(t) = .707',...
'EdgeColor','red');

For additional features, see the following properties:

• BackgroundColor — Color of the rectangle’s interior (none by default)

• LineStyle — Style of the rectangle’s edge line (first set EdgeColor)

• LineWidth — Width of the rectangle’s edge line (first set EdgeColor)

2-3316

Text Properties

• Margin — Increases the size of the rectangle by adding a margin to
the area defined by the text extent rectangle. This margin is added
to the text extent rectangle to define the text background area that
is enclosed by the EdgeColor rectangle. Note that the text extent
does not change when you change the margin; only the rectangle
displayed when you set the EdgeColor property and the area defined
by the BackgroundColor change.

Editing
on | {off}

Enable or disable editing mode. When this property is set to the
default off, you cannot edit the text string interactively (i.e., you
must change the String property to change the text). When this
property is set to on, MATLAB places an insert cursor at the end of
the text string and enables editing. To apply the new text string,

1 Press the Esc key.

2 Click in any figure window (including the current figure).

3 Reset the Editing property to off.

MATLAB then updates the String property to contain the new text
and resets the Editing property to off. You must reset the Editing
property to on to resume editing.

EraseMode
{normal} | none | xor | background

Erase mode. This property controls the technique MATLAB
uses to draw and erase text objects. Alternative erase modes
are useful for creating animated sequences where controlling
the way individual objects are redrawn is necessary to improve
performance and obtain the desired effect.

2-3317

Text Properties

• normal — Redraw the affected region of the display, performing the
three-dimensional analysis necessary to ensure that all objects are
rendered correctly. This mode produces the most accurate picture,
but is the slowest. The other modes are faster, but do not perform a
complete redraw and are therefore less accurate.

• none — Do not erase the text when it is moved or destroyed. While
the object is still visible on the screen after erasing with EraseMode
none, you cannot print it because MATLAB stores no information
about its former location.

• xor — Draw and erase the text by performing an exclusive OR (XOR)
with each pixel index of the screen beneath it. When the text is
erased, it does not damage the objects beneath it. However, when
text is drawn in xor mode, its color depends on the color of the screen
beneath it. It is correctly colored only when it is over axes background
Color, or the figure background Color if the axes Color is set to none.

• background — Erase the text by drawing it in the axes background
Color, or the figure background Color if the axes Color is set to none.
This damages objects that are behind the erased text, but text is
always properly colored.

Printing with Nonnormal Erase Modes

MATLAB always prints figures as if the EraseMode of all objects is set
to normal. This means graphics objects created with EraseMode set to
none, xor, or background can look differently on screen than on paper.
On screen, MATLAB may mathematically combine layers of colors (e.g.,
performing an XOR of a pixel color with that of the pixel behind it) and
ignore three-dimensional sorting to obtain greater rendering speed.
However, these techniques are not applied to the printed output.

You can use the MATLAB getframe command or other screen capture
application to create an image of a figure containing nonnormal mode
objects.

Extent
position rectangle (read only)

2-3318

Text Properties

Position and size of text. A four-element read-only vector that
defines the size and position of the text string

[left,bottom,width,height]

If the Units property is set to data (the default), left and bottom
are the x- and y-coordinates of the lower left corner of the text
Extent.

For all other values of Units, left and bottom are the distance
from the lower left corner of the axes position rectangle to the
lower left corner of the text Extent. width and height are the
dimensions of the Extent rectangle. All measurements are in
units specified by the Units property.

FontAngle
{normal} | italic | oblique

Character slant. MATLAB uses this property to select a font from
those available on your particular system. Generally, setting this
property to italic or oblique selects a slanted font.

FontName
A name, such as Courier, or the string FixedWidth

Font family. A string specifying the name of the font to use for the
text object. To display and print properly, this must be a font that
your system supports. The default font is Helvetica.

Specifying a Fixed-Width Font

If you want text to use a fixed-width font that looks good in any locale,
you should set FontName to the string FixedWidth:

set(text_handle,'FontName','FixedWidth')

This eliminates the need to hard-code the name of a fixed-width font,
which may not display text properly on systems that do not use ASCII
character encoding (such as in Japan where multibyte character sets

2-3319

Text Properties

are used). A properly written MATLAB application that needs to use
a fixed-width font should set FontName to FixedWidth (note that this
string is case sensitive) and rely on FixedWidthFontName to be set
correctly in the end user’s environment.

End users can adapt a MATLAB application to different locales or
personal environments by setting the root FixedWidthFontName
property to the appropriate value for that locale from startup.m.

Note that setting the root FixedWidthFontName property causes an
immediate update of the display to use the new font.

FontSize
size in FontUnits

Font size. A value specifying the font size to use for text in units
determined by the FontUnits property. The default point size is
10 (1 point = 1/72 inch).

FontWeight
light | {normal} | demi | bold

Weight of text characters. MATLAB uses this property to select a
font from those available on your particular system. Generally,
setting this property to bold or demi causes MATLAB to use
a bold font.

FontUnits
{points} | normalized | inches |
centimeters | pixels

Font size units. MATLAB uses this property to determine the
units used by the FontSize property. Normalized units interpret
FontSize as a fraction of the height of the parent axes. When
you resize the axes, MATLAB modifies the screen FontSize
accordingly. pixels, inches, centimeters, and points are
absolute units (1 point = 1/72 inch).

2-3320

Text Properties

Note that if you are setting both the FontSize and the FontUnits
in one function call, you must set the FontUnits property first so
that MATLAB can correctly interpret the specified FontSize.

HandleVisibility
{on} | callback | off

Control access to object’s handle by command-line users and GUIs.
This property determines when an object’s handle is visible in
its parent’s list of children. HandleVisibility is useful for
preventing command-line users from accidentally drawing into or
deleting a figure that contains only user interface devices (such as
a dialog box).

Handles are always visible when HandleVisibility is set to on.

Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

Setting HandleVisibility to off makes handles invisible at all
times. This may be necessary when a callback routine invokes
a function that might potentially damage the GUI (such as
evaluating a user-typed string), and so temporarily hides its own
handles during the execution of that function.

When a handle is not visible in its parent’s list of children, it
cannot be returned by functions that obtain handles by searching
the object hierarchy or querying handle properties. This includes
get, findobj, gca, gcf, gco, newplot, cla, clf, and close.

When a handle’s visibility is restricted using callback or off,

• The object’s handle does not appear in its parent’s Children property.

2-3321

Text Properties

• Figures do not appear in the root’s CurrentFigure property.

• Objects do not appear in the root’s CallbackObject property or in
the figure’s CurrentObject property.

• Axes do not appear in their parent’s CurrentAxes property.

You can set the root ShowHiddenHandles property to on to make all
handles visible regardless of their HandleVisibility settings (this
does not affect the values of the HandleVisibility properties).

Handles that are hidden are still valid. If you know an object’s handle,
you can set and get its properties, and pass it to any function that
operates on handles.

HitTest
{on} | off

Selectable by mouse click. HitTest determines if the text can
become the current object (as returned by the gco command and
the figure CurrentObject property) as a result of a mouse click
on the text. If HitTest is set to off, clicking the text selects the
object below it (which is usually the axes containing it).

For example, suppose you define the button down function of an
image (see the ButtonDownFcn property) to display text at the
location you click with the mouse.

First define the callback routine.

function bd_function
pt = get(gca,'CurrentPoint');
text(pt(1,1),pt(1,2),pt(1,3),...
'{\fontsize{20}\oplus} The spot to label',...
'HitTest','off')

Now display an image, setting its ButtonDownFcn property to the
callback routine.

2-3322

Text Properties

load earth
image(X,'ButtonDownFcn','bd_function'); colormap(map)

When you click the image, MATLAB displays the text string
at that location. With HitTest set to off, existing text cannot
intercept any subsequent button down events that occur over the
text. This enables the image’s button down function to execute.

HorizontalAlignment
{left} | center | right

Horizontal alignment of text. This property specifies the
horizontal justification of the text string. It determines where
MATLAB places the string with regard to the point specified
by the Position property. The following picture illustrates the
alignment options.

See the Extent property for related information.

Interpreter
latex | {tex} | none

Interpret TEX instructions. This property controls whether
MATLAB interprets certain characters in the String property
as TEX instructions (default) or displays all characters literally.
The options are:

• latex — Supports the full LATEX markup language.

• tex — Supports a subset of plain TEX markup language. See the
String property for a list of supported TEX instructions.

2-3323

Text Properties

• none — Displays literal characters.

Latex Interpreter

To enable the LaTEX interpreter for text objects, set the Interpreter
property to latex. For example, the following statement displays an
equation in a figure at the point [.5 .5], and enlarges the font to 16
points.

text('Interpreter','latex',...
'String','$$\int_0^x\!\int_y dF(u,v)$$',...
'Position',[.5 .5],...
'FontSize',16)

Information About Using TEX

The following references may be useful to people who are not familiar
with TEX.

2-3324

Text Properties

• Donald E. Knuth, The TEXbook, Addison Wesley, 1986.

• The TEX Users Group home page: http://www.tug.org

Interruptible
{on} | off

Callback routine interruption mode. The Interruptible property
controls whether a text callback routine can be interrupted
by subsequently invoked callback routines. Text objects have
three properties that define callback routines: ButtonDownFcn,
CreateFcn, and DeleteFcn. See the BusyAction property for
information on how MATLAB executes callback routines.

LineStyle
{-} | -- | : | -. | none

Edge line type. This property determines the line style used to
draw the edges of the text Extent. The available line styles are
shown in the following table.

Symbol Line Style

- Solid line (default)

-- Dashed line

: Dotted line

-. Dash-dot line

none No line

For example, the following code draws a red rectangle with a
dotted line style around text that labels a plot.

text(3*pi/4,sin(3*pi/4),...
'\leftarrowsin(t) = .707',...
'EdgeColor','red',...
'LineWidth',2,...

2-3325

http://www.tug.org

Text Properties

'LineStyle',':');

For additional features, see the following properties:

• BackgroundColor — Color of the rectangle’s interior (none by default)

• EdgeColor — Color of the rectangle’s edge (none by default)

• LineWidth — Width of the rectangle’s edge line (first set EdgeColor)

• Margin — Increases the size of the rectangle by adding a margin to
the existing text extent rectangle. This margin is added to the text
extent rectangle to define the text background area that is enclosed
by the EdgeColor rectangle. Note that the text extent does not
change when you change the margin; only the rectangle displayed
when you set the EdgeColor property and the area defined by the
BackgroundColor change.

LineWidth
scalar (points)

Width of line used to draw text extent rectangle. When you set the
text EdgeColor property to a color (the default is none), MATLAB

2-3326

Text Properties

displays a rectangle around the text Extent. Use the LineWidth
property to specify the width of the rectangle edge. For example,
the following code draws a red rectangle around text that labels a
plot and specifies a line width of 3 points:

text(3*pi/4,sin(3*pi/4),...
'\leftarrowsin(t) = .707',...
'EdgeColor','red',...
'LineWidth',3);

For additional features, see the following properties:

• BackgroundColor — Color of the rectangle’s interior (none by default)

• EdgeColor — Color of the rectangle’s edge (none by default)

• LineStyle — Style of the rectangle’s edge line (first set EdgeColor)

• Margin — Increases the size of the rectangle by adding a margin to
the existing text extent rectangle. This margin is added to the text
extent rectangle to define the text background area that is enclosed
by the EdgeColor rectangle. Note that the text extent does not
change when you change the margin; only the rectangle displayed

2-3327

Text Properties

when you set the EdgeColor property and the area defined by the
BackgroundColor change.

Margin
scalar (pixels)

Distance between the text extent and the rectangle edge. When
you specify a color for the BackgroundColor or EdgeColor text
properties, MATLAB draws a rectangle around the area defined
by the text Extent plus the value specified by the Margin. For
example, the following code displays a light green rectangle with
a 10-pixel margin.

text(5*pi/4,sin(5*pi/4),...
['sin(5*pi/4) = ',num2str(sin(5*pi/4))],...
'HorizontalAlignment','center',...
'BackgroundColor',[.7 .9 .7],...
'Margin',10);

For additional features, see the following properties:

2-3328

Text Properties

• BackgroundColor — Color of the rectangle’s interior (none by default)

• EdgeColor — Color of the rectangle’s edge (none by default)

• LineStyle — Style of the rectangle’s edge line (first set EdgeColor)

• LineWidth — Width of the rectangle’s edge line (first set EdgeColor)

See how margin affects text extent properties

This example enables you to change the values of the Margin property
and observe the effects on the BackgroundColor area and the
EdgeColor rectangle.

Click to view in editor — This link opens the MATLAB editor with the
following example.

Click to run example — Use your scroll wheel to vary the Margin.

Parent
handle of axes, hggroup, or hgtransform

Parent of text object. This property contains the handle of the text
object’s parent. The parent of a text object is the axes, hggroup, or
hgtransform object that contains it.

See Objects That Can Contain Other Objects for more information
on parenting graphics objects.

Position
[x,y,[z]]

Location of text. A two- or three-element vector, [x y [z]], that
specifies the location of the text in three dimensions. If you omit
the z value, it defaults to 0. All measurements are in units
specified by the Units property. Initial value is [0 0 0].

Rotation
scalar (default = 0)

2-3329

Text Properties

Text orientation. This property determines the orientation of the
text string. Specify values of rotation in degrees (positive angles
cause counterclockwise rotation).

Selected
on | {off}

Is object selected? When this property is set to on, MATLAB
displays selection handles if the SelectionHighlight property
is also set to on. You can, for example, define the ButtonDownFcn
to set this property, allowing users to select the object with the
mouse.

SelectionHighlight
{on} | off

Objects are highlighted when selected. When the Selected
property is set to on, MATLAB indicates the selected state by
drawing four edge handles and four corner handles. When
SelectionHighlight is set to off, MATLAB does not draw the
handles.

String
string

The text string. Specify this property as a quoted string for
single-line strings, or as a cell array of strings, or a padded string
matrix for multiline strings. MATLAB displays this string at the
specified location. Vertical slash characters are not interpreted
as line breaks in text strings, and are drawn as part of the text
string. See Mathematical Symbols, Greek Letters, and TeX
Characters for an example.

When the text Interpreter property is set to Tex (the default),
you can use a subset of TeX commands embedded in the
string to produce special characters such as Greek letters and
mathematical symbols. The following table lists these characters
and the character sequences used to define them.

2-3330

Text Properties

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\alpha α \upsilon υ \sim ~

\beta β \phi \leq ≤

\gamma γ \chi χ \infty ∞

\delta δ \psi ψ \clubsuit ♣

\epsilon ε \omega ω \diamondsuit ♦

\zeta ζ \Gamma \heartsuit ♥

\eta η \Delta \spadesuit ♠

\theta \Theta \leftrightarrow ↔

\vartheta \Lambda \leftarrow ←

\iota ι \Xi \uparrow ↑

\kappa κ \Pi \rightarrow →

\lambda λ \Sigma \downarrow ↓

\mu µ \Upsilon \circ º

\nu ν \Phi \pm ±

\xi ξ \Psi \geq ≥

\pi π \Omega \propto ∝

\rho ρ \forall ∀ \partial ∂

\sigma σ \exists ∃ \bullet •
\varsigma ς \ni ∋ \div ÷

\tau τ \cong \neq ≠

\equiv ≡ \approx \aleph

\Im ℑ \Re ℜ \wp ℘

2-3331

Text Properties

Character
Sequence Symbol

Character
Sequence Symbol

Character
Sequence Symbol

\otimes ⊗ \oplus ⊕ \oslash ∅

\cap ∩ \cup ∪ \supseteq ⊇

\supset ⊃ \subseteq ⊆ \subset ⊂

\int \in \o ο

\rfloor � \lceil � \nabla ∇

\lfloor � \cdot · \ldots ...

\perp ⊥ \neg ¬ \prime ´

\wedge ∧ \times x \0 ∅

\rceil � \surd √ \mid |

\vee ∨ \varpi ϖ \copyright ©

\langle ∠ \rangle ∠

You can also specify stream modifiers that control font type and
color. The first four modifiers are mutually exclusive. However,
you can use \fontname in combination with one of the other
modifiers:

• \bf — Bold font

• \it — Italic font

• \sl — Oblique font (rarely available)

• \rm — Normal font

• \fontname{fontname} — Specify the name of the font family to use.

• \fontsize{fontsize} — Specify the font size in FontUnits.

• \color(colorSpec) — Specify color for succeeding characters

2-3332

Text Properties

Stream modifiers remain in effect until the end of the string or only
within the context defined by braces { }.

Specifying Text Color in TeX Strings

Use the \color modifier to change the color of characters following it
from the previous color (which is black by default). Syntax is:

• \color{colorname} for the eight basic named colors (red, green,
yellow, magenta, blue, black, white), and plus the four Simulink
colors (gray, darkGreen, orange, and lightBlue)

Note that short names (one-letter abbreviations) for colors are not
supported by the \color modifier.

• \color[rgb]{r g b} to specify an RGB triplet with values between
0 and 1 as a cell array

For example,

text(.1,.5,['\fontsize{16}black {\color{magenta}magenta '...
'\color[rgb]{0 .5 .5}teal \color{red}red} black again'])

2-3333

Text Properties

Specifying Subscript and Superscript Characters

The subscript character “_” and the superscript character “^” modify the
character or substring defined in braces immediately following.

To print the special characters used to define the TeX strings when
Interpreter is Tex, prefix them with the backslash “\” character: \\,
\{, \} _, \^.

See the “Examples” on page 2-3305 in the text reference page for more
information.

When Interpreter is set to none, no characters in the String are
interpreted, and all are displayed when the text is drawn.

When Interpreter is set to latex, MATLAB provides a complete
LaTEX interpreter for text objects. See the Interpreter property for
more information.

2-3334

Text Properties

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This is
particularly useful when you are constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callback
routines. You can define Tag as any string.

Type
string (read only)

Class of graphics object. For text objects, Type is always the string
'text'.

Units
pixels | normalized | inches |
centimeters | points | {data}

Units of measurement. This property specifies the units MATLAB
uses to interpret the Extent and Position properties. All units
are measured from the lower left corner of the axes plot box.

• Normalized units map the lower left corner of the rectangle defined
by the axes to (0,0) and the upper right corner to (1.0,1.0).

• pixels, inches, centimeters, and points are absolute units (1
point = 1/72 inch).

• data refers to the data units of the parent axes as determined by
the data graphed (not the axes Units property, which controls the
positioning of the within the figure window).

If you change the value of Units, it is good practice to return it to its
default value after completing your computation so as not to affect other
functions that assume Units is set to the default value.

2-3335

Text Properties

UserData
matrix

User-specified data. Any data you want to associate with the text
object. MATLAB does not use this data, but you can access it
using set and get.

UIContextMenu
handle of a uicontextmenu object

Associate a context menu with the text. Assign this property the
handle of a uicontextmenu object created in the same figure as the
text. Use the uicontextmenu function to create the context menu.
MATLAB displays the context menu whenever you right-click
over the text.

VerticalAlignment
top | cap | {middle} | baseline |
bottom

Vertical alignment of text. This property specifies the vertical
justification of the text string. It determines where MATLAB
places the string with regard to the value of the Position
property. The possible values mean

• top — Place the top of the string’ s Extent rectangle at the specified
y-position.

• cap — Place the string so that the top of a capital letter is at the
specified y-position.

• middle — Place the middle of the string at the specified y-position.

• baseline — Place font baseline at the specified y-position.

• bottom — Place the bottom of the string’s Extent rectangle at the
specified y-position.

The following picture illustrates the alignment options.

2-3336

Text Properties

Visible
{on} | off

Text visibility. By default, all text is visible. When set to off,
the text is not visible, but still exists, and you can query and set
its properties.

2-3337

textread

Purpose Read data from text file; write to multiple outputs

Note The textscan function is intended as a replacement for both
textread and strread.

Graphical
Interface

As an alternative to textread, use the Import Wizard. To activate the
Import Wizard, select Import Data from the File menu.

Syntax [A,B,C,...] = textread('filename','format')
[A,B,C,...] = textread('filename','format',N)
[...] = textread(...,'param','value',...)

Description [A,B,C,...] = textread('filename','format') reads data from
the file 'filename' into the variables A,B,C, and so on, using the
specified format, until the entire file is read. The filename and format
inputs are strings, each enclosed in single quotes. textread is useful for
reading text files with a known format. textread handles both fixed
and free format files.

Note When reading large text files, reading from a specific point in a
file, or reading file data into a cell array rather than multiple outputs,
you might prefer to use the textscan function.

textread matches and converts groups of characters from the input.
Each input field is defined as a string of non-white-space characters
that extends to the next white-space or delimiter character, or to the
maximum field width. Repeated delimiter characters are significant,
while repeated white-space characters are treated as one.

The format string determines the number and types of return
arguments. The number of return arguments is the number of items
in the format string. The format string supports a subset of the
conversion specifiers and conventions of the C language fscanf routine.

2-3338

textread

Values for the format string are listed in the table below. White-space
characters in the format string are ignored.

format Action Output

Literals

(ordinary
characters)

Ignore the matching characters. For example, in a file
that has Dept followed by a number (for department
number), to skip the Dept and read only the number,
use 'Dept' in the format string.

None

%d Read a signed integer value. Double array

%u Read an integer value. Double array

%f Read a floating-point value. Double array

%s Read a white-space or delimiter-separated string. Cell array of
strings

%q Read a double quoted string, ignoring the quotes. Cell array of
strings

%c Read characters, including white space. Character array

%[...] Read the longest string containing characters
specified in the brackets.

Cell array of
strings

%[^...] Read the longest nonempty string containing
characters that are not specified in the brackets.

Cell array of
strings

%*...
instead of
%

Ignore the matching characters specified by *. No output

%w...
instead of
%

Read field width specified by w. The %f format
supports %w.pf, where w is the field width and p is
the precision.

[A,B,C,...] = textread('filename','format',N) reads the data,
reusing the format string N times, where N is an integer greater than
zero. If N is smaller than zero, textread reads the entire file.

2-3339

textread

[...] = textread(...,'param','value',...) customizes
textread using param/value pairs, as listed in the table below.

param value Action

' '\b
\n
\r
\t

Space

Backspace

Newline

Carriage return

Horizontal tab

bufsize Positive integer Specifies the maximum string length, in
bytes. Default is 4095.

commentstyle matlab Ignores characters after %.

commentstyle shell Ignores characters after #.

commentstyle c Ignores characters between /* and */.

commentstyle c++ Ignores characters after //.

delimiter One or more
characters

Act as delimiters between elements.
Default is none.

emptyvalue Scalar double Value given to empty cells when reading
delimited files. Default is 0.

endofline Single character or
'\r\n'

Character that denotes the end of a line.

Default is determined from file

expchars Exponent characters Default is eEdD.

headerlines Positive integer Ignores the specified number of lines at
the beginning of the file.

whitespace Any from the list
below:

Treats vector of characters as white
space. Default is ' \b\t'.

2-3340

textread

Note When textread reads a consecutive series of whitespace values,
it treats them as one white space. When it reads a consecutive series of
delimiter values, it treats each as a separate delimiter.

Remarks If you want to preserve leading and trailing spaces in a string, use the
whitespace parameter as shown here:

textread('myfile.txt', '%s', 'whitespace', '')
ans =

' An example of preserving spaces '

Examples Example 1 — Read All Fields in Free Format File Using %

The first line of mydata.dat is

Sally Level1 12.34 45 Yes

Read the first line of the file as a free format file using the % format.

[names, types, x, y, answer] = textread('mydata.dat', ...
'%s %s %f %d %s', 1)

returns

names =
'Sally'

types =
'Level1'

x =
12.34000000000000

y =
45

answer =
'Yes'

2-3341

textread

Example 2 — Read as Fixed Format File, Ignoring the
Floating Point Value

The first line of mydata.dat is

Sally Level1 12.34 45 Yes

Read the first line of the file as a fixed format file, ignoring the
floating-point value.

[names, types, y, answer] = textread('mydata.dat', ...
'%9c %5s %*f %2d %3s', 1)

returns

names =
Sally
types =

'Level1'
y =

45
answer =

'Yes'

%*f in the format string causes textread to ignore the floating point
value, in this case, 12.34.

Example 3 — Read Using Literal to Ignore Matching
Characters

The first line of mydata.dat is

Sally Type1 12.34 45 Yes

Read the first line of the file, ignoring the characters Type in the second
field.

[names, typenum, x, y, answer] = textread('mydata.dat', ...
'%s Type%d %f %d %s', 1)

2-3342

textread

returns

names =
'Sally'

typenum =
1

x =
12.34000000000000

y =
45

answer =
'Yes'

Type%d in the format string causes the characters Type in the second
field to be ignored, while the rest of the second field is read as a signed
integer, in this case, 1.

Example 4 — Specify Value to Fill Empty Cells

For files with empty cells, use the emptyvalue parameter. Suppose
the file data.csv contains:

1,2,3,4,,6
7,8,9,,11,12

Read the file using NaN to fill any empty cells:

data = textread('data.csv', '', 'delimiter', ',', ...
'emptyvalue', NaN);

Example 5 — Read M-File into a Cell Array of Strings

Read the file fft.m into cell array of strings.

file = textread('fft.m', '%s', 'delimiter', '\n', ...
'whitespace', '');

See Also textscan, dlmread, csvread, strread, fscanf

2-3343

textscan

Purpose Read formatted data from text file or string

Syntax C = textscan(fid, 'format')
C = textscan(fid, 'format', N)
C = textscan(fid, 'format', param, value, ...)
C = textscan(fid, 'format', N, param, value, ...)
C = textscan(str, ...)
[C, position] = textscan(...)

Description
Note Before reading a file with textscan, you must open the file with
the fopen function. fopen supplies the fid input required by textscan.
When you are finished reading from the file, you should close the file by
calling fclose(fid).

C = textscan(fid, 'format') reads data from an open text file
identified by file identifier fid into cell array C. MATLAB parses the
data into fields and converts it according to the conversion specifiers in
format. The format input is a string enclosed in single quotes. These
conversion specifiers determine the type of each cell in the output cell
array. The number of specifiers determines the number of cells in the
cell array.

C = textscan(fid, 'format', N) reads data from the file, reusing
the format conversion specifier N times, where N is a positive integer.
You can resume reading from the file after N cycles by calling textscan
again using the original fid.

C = textscan(fid, 'format', param, value, ...) reads data from
the file using nondefault parameter settings specified by one or more
pairs of param and value arguments. The section “User Configurable
Options” on page 2-3353 lists all valid parameter strings, value
descriptions, and defaults.

C = textscan(fid, 'format', N, param, value, ...) reads data
from the file, reusing the format conversion specifier N times, and using

2-3344

textscan

nondefault parameter settings specified by pairs of param and value
arguments.

C = textscan(str, ...) reads data from string str in exactly the
same way as it does when reading from a file. You can use the format,
N, and parameter/value arguments described above with this syntax.
Unlike when reading from a file, if you call textscan more than once on
the same string, it does not resume reading where the last call left off
but instead reads from the beginning of the string each time.

[C, position] = textscan(...) returns the location of the file or
string position as the second output argument. For a file, this is exactly
equivalent to calling ftell(fid) after making the call to textscan. For
a string, it indicates how many characters were read.

The Difference Between the textscan and textread Functions

The textscan function differs from textread in the following ways:

• The textscan function offers better performance than textread,
making it a better choice when reading large files.

• With textscan, you can start reading at any point in the file. Once
the file is open, (textscan requires that you open the file first), you
can fseek to any position in the file and begin the scan at that point.
The textread function requires that you start reading from the
beginning of the file.

• Subsequent textscan operations start reading the file at the point
where the last scan left off. The textread function always begins at
the start of the file, regardless of any prior textread operations.

• textscan returns a single cell array regardless of how many fields
you read. With textscan, you don’t need to match the number of
output arguments to the number of fields being read as you would
with textread.

• textscan offers more choices in how the data being read is converted.

• textscan offers more user-configurable options.

2-3345

textscan

Field Delimiters

The textscan function sees a text file as a collection of blocks. Each
block consists of a number of internally consistent fields. Each field
consists of a group of characters delimited by a field delimiter character.
Fields can span a number of rows. Each row is delimited by an
end-of-line (EOL) character sequence.

The default field delimiter is the white-space character, (i.e., any
character that returns true from a call to the isspace function).
You can set the delimiter to a different character by specifying
a 'delimiter' parameter in the textscan command (see “User
Configurable Options” on page 2-3353). If a nondefault delimiter
is specified, repeated delimiter characters are treated as separate
delimiters. When using the default delimiter, repeated white-space
characters are treated as a single delimiter.

The default end-of-line character sequence depends on which operating
system you are using. You can change the end-of-line setting to a
different character sequence by specifying an 'endofline' parameter
in the textscan command (see “User Configurable Options” on page
2-3353).

Conversion Specifiers

This table shows the conversion type specifiers supported by textscan.

SpecifierDescription

%n Read a number and convert to double.

%d Read a number and convert to int32.

%d8 Read a number and convert to int8.

%d16 Read a number and convert to int16.

%d32 Read a number and convert to int32.

%d64 Read a number and convert to int64.

%u Read a number and convert to uint32.

2-3346

textscan

SpecifierDescription

%u8 Read a number and convert to uint8.

%u16 Read a number and convert to uint16.

%u32 Read a number and convert to uint32.

%u64 Read a number and convert to uint64.

%f Read a number and convert to double.

%f32 Read a number and convert to single.

%f64 Read a number and convert to double.

%s Read a string.

%q Read a (possibly double-quoted) string.

%c Read one character, including white space.

%[...] Read characters that match characters between the
brackets. Stop reading at the first nonmatching character.
Use %[]...] to include] in the set.

%[^...] Read characters that do not match characters between the
brackets. Stop reading at the first matching character. Use
%[^]...] to exclude] from the set.

%*n... Ignore n characters of the field, where n is an integer less
than or equal to the number of characters in the field (e.g.,
%*4s).

Specifying Field Length

To read a certain number of characters or digits from a field, specify
that number directly following the percent sign. For example, if the file
you are reading contains the string

'Blackbird singing in the dead of night'

then the following command returns only five characters of the first
field:

2-3347

textscan

C = textscan(fid, '%5s', 1);
C{:}
ans =

'Black'

If you continue reading from the file, textscan resumes the operation
at the point in the string where you left off. It applies the next format
specifier to that portion of the field. For example, execute this command
on the same file:

C = textscan(fid, '%s %s', 1);

Note Spaces between the conversion specifiers are shown only to make
the example easier to read. They are not required.

textscan reads starting from where it left off and continues to the
next whitespace, returning 'bird'. The second %s reads the word
'singing'.

The results are

C{:}
ans =

'bird'
ans =

'singing'

Skipping Fields

To skip any field, put an asterisk directly after the percent sign.
MATLAB does not create an output cell for any fields that are skipped.

Refer to the example from the last section, where the file you are
reading contains the string

'Blackbird singing in the dead of night'

2-3348

textscan

Seek to the beginning of the file and reread the line, this time skipping
the second, fifth, and sixth fields:

fseek(fid, 0, -1);
C = textscan(fid, '%s %*s %s %s %*s %*s %s', 1);

C is a cell array of cell arrays, each containing a string. Piece together
the string and display it:

str = '';
for k = 1:length(C)

str = [str char(C{k}) ' '];
if k == 4, disp(str), end

end

Blackbird in the night

Skipping Literal Strings

In addition to skipping entire fields, you can have textscan skip
leading literal characters in a string. Reading a file containing the
following data,

Sally Level1 12.34
Joe Level2 23.54
Bill Level3 34.90

this command removes the substring 'Level' from the output and
converts the level number to a uint8:

C = textscan(fid, '%s Level%u8 %f');

This returns a cell array C with the second cell containing only the
unsigned integers:

C{1} = {'Sally'; 'Joe'; 'Bill'} class cell
C{2} = [1; 2; 3] class uint8
C{3} = [12.34; 23.54; 34.90] class double

2-3349

textscan

Specifying Numeric Field Length and Decimal Digits

With numeric fields, you can specify the number of digits to read in
the same manner described for strings in the section “Specifying Field
Length” on page 2-3347. The next example uses a file containing the line

'405.36801 551.94387 298.00752 141.90663'

This command returns the starting 7 digits of each number in the line.
Note that the decimal point counts as a digit.

C = textscan(fid, '%7f32 %*n');
C{:} =

[405.368; 551.943; 298.007; 141.906]

You can also control the number of digits that are read to the right of
the decimal point for any numeric field of type %f, %f32, or %f64. The
format specifier in this command uses a %9.1 prefix to cause textscan
to read the first 9 digits of each number, but only include 1 digit of the
decimal value in the number it returns:

C = textscan(fid, '%9.1f32 %*n');
C{:} =

[405.3; 551.9; 298.0; 141.9]

Conversion of Numeric Fields

This table shows how textscan interprets the numeric field specifiers.

Format
Specifier Action Taken

%n, %d, %u, %f,
and variants
thereof

Read to the first delimiter.

Example: %n reads '473.238 ' as 473.238.

2-3350

textscan

Format
Specifier Action Taken

%Nn, %Nd, %Nu,
%Nf, and variants
thereof

Read N digits (counting a decimal point as a digit),
or up to the first delimiter, whichever comes first.

Example: %5f32 reads '473.238 ' as 473.2.

Specifiers that
start with %N.Df

Read N digits (counting a decimal point as a digit),
or up to the first delimiter, whichever comes first.
Return D decimal digits in the output.

Example: %7.2f reads '473.238 ' as 473.23.

Conversion specifiers %n, %d, %u, %f, or any variant thereof (e.g., %d16)
return a K-by-1 MATLAB numeric vector of the type indicated by the
conversion specifier, where K is the number of times that specifier was
found in the file. textscan converts the numeric fields from the field
content to the output type according to the conversion specifier and
MATLAB rules regarding overflow and truncation. NaN, Inf, and -Inf
are converted according to applicable MATLAB rules.

textscan imports any complex number as a whole into a complex
numeric field, converting the real and imaginary parts to the specified
numeric type. Valid forms for a complex number are

Form Example

–<real>–<imag>i|j 5.7-3.1i

–<imag>i|j -7j

Embedded white-space in a complex number is invalid and is regarded
as a field delimiter.

Conversion of Strings

This table shows how textscan interprets the string field specifiers.

2-3351

textscan

Format
Specifier Action Taken

%s or %q Read to the first delimiter.

Example: %s reads ’summer ’ as ’summer’.

%Ns or %Nq Read N characters, or to the first delimiter, whichever
comes first.

Example: %3s reads ’summer ’ as ’sum’.

%[abc] Read those characters that match any character
specified within the brackets, stopping just before the
first character that does not match.

Example: %[mus] reads 'summer ' as 'summ'.

%N[abc] Read as many as N characters that match any
character specified within the brackets, stopping just
before the first character that does not match.

Example: %2[mus] reads 'summer' as 'su'.

%[^abc] Read those characters that do not match any
character specified within the brackets, stopping just
before the first character that does match.

Example: %[^xrg] reads 'summer ' as 'summe'.

%N[^abc] Read as many as N characters that do not match any
character specified within the brackets, stopping just
before the first character that does match.

Example: %2[^xrg] reads 'summer ' as 'su'.

Conversion specifiers %s, %q, %[...], and %[^...] return a K-by-1
MATLAB cell vector of strings, where K is the number of times that
specifier was found in the file. If you set the delimiter parameter
to a non-white-space character, or set the whitespace parameter
to '', textscan returns all characters in the string field, including
white-space. Otherwise each string terminates at the beginning of
white-space.

2-3352

textscan

Conversion of Characters

This table shows how textscan interprets the character field specifiers.

Format
Specifier Action Taken

%c Read one character.

Example: %c reads 'Let's go!' as 'L'.

%Nc Read N characters, including delimiter characters.

Example: %9c reads 'Let's go!' as 'Let's go!'.

Conversion specifier %Nc returns a K-by-N MATLAB character array,
where K is the number of times that specifier was found in the file.
textscan returns all characters, including white-space, but excluding
the delimiter.

Conversion of Empty Fields

An empty field in the text file is defined by two adjacent delimiters
indicating an empty set of characters, or, in all cases except %c,
white-space. The empty field is returned as NaN by default, but is user
definable. In addition, you may specify custom strings to be used as
empty values, in numeric fields only. textscan does not examine
nonnumeric fields for custom empty values. See “User Configurable
Options” on page 2-3353.

Note MATLAB represents integer NaN as zero. If textscan reads an
empty field that is assigned an integer format specifier (one that starts
with %d or %u), it returns the empty value as zero rather than as NaN.
(See the value returned in C{5} in Example 6 — Using a Nondefault
Empty Value.

User Configurable Options

This table shows the valid param-value options and their default
values. Parameter names are not case-sensitive.

2-3353

textscan

Parameter Value Default

BufSize Maximum string length in
bytes

4095

CollectOutput If true, MATLAB
concatenates consecutive
cells of the output that
have the same data type
into a single array.

0 (false)

CommentStyle Symbol(s) designating text
to be ignored (see “Values
for commentStyle” on page
2-3355, below)

None

Delimiter Delimiter characters Whitespace

EmptyValue Empty cell value in
delimited files

NaN

endOfLine End-of-line character Determined
from the file

expChars Exponent characters ’eEdD’

HeaderLines Number of lines to
skip. (This includes
the remainder of the
current line, unless you are
positioned at the beginning
of the file.)

0

MultipleDelimsAsOne If set to 1, textread treats
consecutive delimiters as a
single delimiter. If set to
0, textread treats them as
separate delimiters. Only
valid if the delimiter
option is specified.

0

2-3354

textscan

Parameter Value Default

ReturnOnError Behavior on failing to read
or convert (1=true, or 0)

1

TreatAsEmpty String(s) to be treated as
an empty value. A single
string or cell array of
strings can be used.

None

Whitespace White-space characters ' \b\t'

White-Space Characters

Leading white-space characters are not included in the processing
of any of the data fields. When processing numeric data, trailing
whitespace is also assumed to have no significance.

Values for commentStyle

Possible values for the commentStyle parameter are

Value Description Example

Single string, S Ignore any characters
that follow string S
and are on the same
line.

'%', '//'

Cell array of two
strings, C

Ignore any characters
that lie between the
opening and closing
strings in C.

{'/*', '*/'},
{'/%', '%/'}

Resuming a Text Scan

If textscan fails to convert a data field, it stops reading and returns
all fields read before the failure. When reading from a file, you can
resume reading from the same file by calling textscan again using the
same file identifier, fid. When reading from a string, the two-output
argument syntax enables you to resume reading from the string at the

2-3355

textscan

point where the last read terminated. The following command is an
example of how you can do this:

textscan(str(position+1:end), ...)

Remarks For information on how to use textscan to import large data sets, see
“Reading Files with Large Data Sets” in the MATLAB Programming
documentation.

Examples Example 1 — Reading Different Types of Data

Text file scan1.dat contains data in the following form:

Sally Level1 12.34 45 1.23e10 inf NaN Yes
Joe Level2 23.54 60 9e19 -inf 0.001 No
Bill Level3 34.90 12 2e5 10 100 No

Read each column into a variable:

fid = fopen('scan1.dat');
C = textscan(fid, '%s %s %f32 %d8 %u %f %f %s');
fclose(fid);

Note Spaces between the conversion specifiers are shown only to make
the example easier to read. They are not required.

textscan returns a 1-by-8 cell array C with the following cells:

C{1} = {'Sally'; 'Joe'; 'Bill'} class cell
C{2} = {'Level1'; 'Level2'; 'Level3'} class cell
C{3} = [12.34; 23.54; 34.9] class single
C{4} = [45; 60; 12] class int8
C{5} = [4294967295; 4294967295; 200000] class uint32
C{6} = [Inf; -Inf; 10] class double
C{7} = [NaN; 0.001; 100] class double
C{8} = {'Yes'; 'No'; 'No'} class cell

2-3356

textscan

The first two elements of C{5} are the maximum values for a 32-bit
unsigned integer, or intmax('uint32').

Example 2 — Reading All But One Field

Read the file as a fixed-format file, skipping the third field:

fid = fopen('scan1.dat');
C = textscan(fid, '%7c %6s %*f %d8 %u %f %f %s');
fclose(fid);

textscan returns a 1-by-8 cell array C with the following cells:

C{1} = ['Sally '; 'Joe '; 'Bill '] class char
C{2} = {'Level1'; 'Level2'; 'Level3'} class cell
C{3} = [45; 60; 12] class int8
C{4} = [4294967295; 4294967295; 200000] class uint32
C{5} = [Inf; -Inf; 10] class double
C{6} = [NaN; 0.001; 100] class double
C{7} = {'Yes'; 'No'; 'No'} class cell

Example 3 — Reading Only the First Field

Read the first column into a cell array, skipping the rest of the line:

fid = fopen('scan1.dat');
names = textscan(fid, '%s%*[^\n]');
fclose(fid);

textscan returns a 1-by-1 cell array names:

size(names)
ans =

1 1

The one cell contains

names{1} = {'Sally'; 'Joe'; 'Bill'} class cell

2-3357

textscan

Example 4 — Removing a Literal String in the Output

The second format specifier in this example, %sLevel, tells textscan
to read the second field from a line in the file, but to ignore the initial
string 'Level' within that field. All that is left of the field is a numeric
digit. textscan assigns the next specifier, %f, to that digit, converting
it to a double.

See C{2} in the results:

fid = fopen('scan1.dat');
C = textscan(fid, '%s Level%u8 %f32 %d8 %u %f %f %s');
fclose(fid);

textscan returns a 1-by-8 cell array, C, with cells

C{1} = {'Sally'; 'Joe'; 'Bill'} class cell
C{2} = [1; 2; 3] class uint8
C{3} = [12.34; 23.54; 34.90] class single
C{4} = [45; 60; 12] class int8
C{5} = [4294967295; 4294967295; 200000] class uint32
C{6} = [Inf; -Inf; 10] class double
C{7} = [NaN; 0.001; 100] class double
C{8} = {'Yes'; 'No'; 'No'} class cell

Example 5 — Using a Nondefault Delimiter and White-Space

Read the M-file into a cell array of strings:

fid = fopen('fft.m');
file = textscan(fid, '%s', 'delimiter', '\n', ...

'whitespace', '');
fclose(fid);

textscan returns a 1-by-1 cell array, file, that contains a 37-by-1 cell
array:

file =
{37x1 cell}

2-3358

textscan

Show some of the text from the first three lines of the file:

lines = file{1};

lines{1:3, :}

ans =

%FFT Discrete Fourier transform.

ans =

% FFT(X) is the discrete Fourier transform (DFT) of vector X. For

ans =

% matrices, the FFT operation is applied to each column. For N-D

Example 6 — Using a Nondefault Empty Value

Read files with empty cells, setting the emptyvalue parameter. The file
data.csv contains

1, 2, 3, 4, , 6
7, 8, 9, , 11, 12

Read the file as shown here, using -Inf in empty cells:

fid = fopen('data.csv');
C = textscan(fid, '%f%f%f%f%u32%f', 'delimiter', ',', ...

'emptyValue', -Inf);
fclose(fid);

textscan returns a 1-by-6 cell array C with the following cells:

C{1} = [1; 7] class double
C{2} = [2; 8] class double
C{3} = [3; 9] class double
C{4} = [4; NaN] class double
C{5} = [-Inf; 11] class uint32 (-Inf converted to 0)
C{6} = [6; 12] class double

Example 7 — Using Custom Empty Values and Comments

You have a file data.csv that contains the lines

2-3359

textscan

abc, 2, NA, 3, 4
// Comment Here
def, na, 5, 6, 7

Designate what should be treated as empty values and as comments.
Read in all other values from the file:

fid = fopen('data5.csv');
C = textscan(fid, '%s%n%n%n%n', 'delimiter', ',', ...

'treatAsEmpty', {'NA', 'na'}, ...
'commentStyle', '//');

fclose(fid);

This returns the following data in cell array C:

C{:}
ans =

'abc'
'def'

ans =
2

NaN
ans =

NaN
5

ans =
3
6

ans =
4
7

Example 8 — Reading From a String

Read in a string (quoted from Albert Einstein) using textscan:

str = ...

['Do not worry about your difficulties in Mathematics.' ...

'I can assure you mine are still greater.'];

2-3360

textscan

s = textscan(str, '%s', 'delimiter', '.');

s{:}

ans =

'Do not worry about your difficulties in Mathematics'

'I can assure you mine are still greater'

Example 9 — Handling Multiple Delimiters

This example takes a comma-separated list of names, the test pilots
known as the Mercury Seven, and uses textscan to return a list of
their names in a cell array. When some names are removed from the
input list, leaving multiple sequential delimiters, textscan, by default,
accounts for this. If you override that default by calling textscan with
the multipleDelimsAsOne option, textscan ignores the missing names.

Here is the full list of the astronauts:

Mercury7 = ...
'Shepard,Grissom,Glenn,Carpenter,Schirra,Cooper,Slayton';

Remove the names Grissom and Cooper from the input string, and
textscan, by default, does not treat the multiple delimiters as one, and
returns an empty string for each missing name:

Mercury7 = 'Shepard,,Glenn,Carpenter,Schirra,,Slayton';
names = textscan(Mercury7, '%s', 'delimiter', ',');
names{:}'
ans =

'Shepard' '' 'Glenn' 'Carpenter' 'Schirra' '' 'Slayton'

Using the same input string, but this time setting the
multipleDelimsAsOne switch, textscan ignores the multiple
delimiters:

names = textscan(Mercury7, '%s', 'delimiter', ',', ...
'multipledelimsasone', 1);

names{:}'

2-3361

textscan

ans =
'Shepard' 'Glenn' 'Carpenter' 'Schirra' 'Slayton'

Example 10 — Using the CollectOutput Switch

Shown below are the contents of a file wire_gage.txt. The first line
contains four column headers in text. The lines that follow that are
numeric data:

AWG | Area | Resistance | Diameter
0000 211600 0.049 0.46
000 167810 0.0618 0.40965
00 133080 0.078 0.3648
0 105530 0.0983 0.32485
1 83694 0.124 0.2893
2 66373 0.1563 0.25763
3 52634 0.197 0.22942
4 41742 0.2485 0.20431
5 33102 0.3133 0.18194
6 26250 0.3951 0.16202
7 20816 0.4982 0.14428
8 16509 0.6282 0.12849
9 13094 0.7921 0.11443
10 10381 0.9989 0.10189

When you read the file with textscan having the CollectOutput
switch set to zero, MATLAB returns each column of the numeric data in
a separate 44-by-1cell array:

format long g
fid = fopen('wire_gage.txt', 'r');

C_text = textscan(fid, '%s', 4, 'delimiter', '|');

C_data0 = textscan(fid, '%d %f %f %f', 'CollectOutput', 0)
C_data0 =

[44x1 int32] [44x1 double] [44x1 double] [44x1 double]

2-3362

textscan

Reading the file with CollectOutput set to one collects all data of a
common type, double in this case, into a single 44-by-3 cell array:

frewind(fid)

C_text = textscan(fid, '%s', 4, 'delimiter', '|');

C_data1 = textscan(fid, '%d %f %f %f', 'CollectOutput', 1)
C_data1 =

[44x1 int32] [44x3 double]

See Also dlmread, dlmwrite, xlswrite, fopen, fseek, importdata

2-3363

textwrap

Purpose Wrapped string matrix for given uicontrol

Syntax outstring = textwrap(h,instring)
[outstring,position]=textwrap(h,instring)

Description outstring = textwrap(h,instring) returns a wrapped string cell
array, outstring, that fits inside the uicontrol with handle h. instring
is a cell array, with each cell containing a single line of text. outstring
is the wrapped string matrix in cell array format. Each cell of the input
string is considered a paragraph.

[outstring,position]=textwrap(h,instring) returns the
recommended position of the uicontrol in the units of the uicontrol.
position considers the extent of the multiline text in the x and y
directions.

Example Place a text-wrapped string in a uicontrol:

pos = [10 10 100 10];

h = uicontrol('Style','Text','Position',pos);

string = {'This is a string for the uicontrol.',

'It should be correctly wrapped inside.'};

[outstring,newpos] = textwrap(h,string);

pos(4) = newpos(4);

set(h,'String',outstring,'Position',[pos(1),pos(2),pos(3)+10,po

s(4)])

See Also uicontrol

2-3364

throw (MException)

Purpose Terminate function and issue exception

Syntax throw(ME)

Description throw(ME) terminates the currently running function, issues an
exception based on MException object ME, and returns control to the
keyboard or to any enclosing catch block. A thrown MException
displays a message in the Command Window unless it is caught by
try-catch. throw also sets the MException stack field to the location
from which the throw method was called.

Examples Example 1

This example tests the output of M-file evaluate_plots and throws an
exception if it is not acceptable:

[minval, maxval] = evaluate_plots(p24, p28, p41);
if minval < lower_bound || maxval > upper_bound

ME = MException('VerifyOutput:OutOfBounds', ...
'Results are outside the allowable limits');

throw(ME);
end

Example 2

This example attempts to open a file in a directory that is not on the
MATLAB path. It uses a nested try-catch block to give the user the
opportunity to extend the path. If the still cannot be found, the program
issues an exception with the first error appended to the second:

function data = read_it(filename);
try

fid = fopen(filename, 'r');
data = fread(fid);

catch eObj1
if strcmp(eObj1.identifier, 'MATLAB:FileIO:InvalidFid')

msg = sprintf('\n%s%s%s', 'Cannot open file ', ...
filename, '. Try another location? ');

2-3365

throw (MException)

reply = input(msg, 's')
if reply(1) == 'y'

newdir = input('Enter directory name: ', 's');
else

throw(eObj1);
end
addpath(newdir);
try

fid = fopen(filename, 'r');
data = fread(fid);

catch eObj2
eObj3 = addCause(eObj2, eObj1)
throw(eObj3);

end
rmpath(newdir);

end
end
fclose(fid);

If you run this function in a try-catch block at the command line, you
can look at the MException object by assigning it to a variable (e) with
the catch command.

try
d = read_it('anytextfile.txt');

catch e
end

e
e =
MException object with properties:

identifier: 'MATLAB:FileIO:InvalidFid'
message: 'Invalid file identifier. Use fopen to

generate a valid file identifier.'
stack: [1x1 struct]
cause: {[1x1 MException]}

2-3366

throw (MException)

Cannot open file anytextfile.txt. Try another location?y
Enter directory name: xxxxxxx
Warning: Name is nonexistent or not a directory: xxxxxxx.
> In path at 110

In addpath at 89

See Also error, try, catch, assert, MException, rethrow(MException),
throwAsCaller(MException), addCause(MException),
getReport(MException), disp(MException), isequal(MException),
eq(MException), ne(MException), last(MException),

2-3367

throwAsCaller (MException)

Purpose Throw exception, as if from calling function

Syntax throwAsCaller(ME)

Description throwAsCaller(ME) throws an exception from the currently running
M-file based on MException object ME. MATLAB exits the currently
running function and returns control to either the keyboard or an
enclosing catch block in a calling function. Unlike the throw function,
MATLAB omits the current stack frame from the stack field of the
MException, thus making the exception look as if it is being thrown by
the caller of the function.

In some cases, it is not relevant to show the person running your
program the true location that generated an exception, but is better to
point to the calling function where the problem really lies. You might
also find throwAsCaller useful when you want to simplify the error
display, or when you have code that you do not want made public.

Examples The function klein_bottle, in this example, generates a Klein Bottle
figure by revolving the figure-eight curve defined by XYKLEIN. It
defines a few variables and calls the function draw_klein, which
executes three functions in a try-catch block. If there is an error, the
catch block issues an exception using either throw or throwAsCaller:

function klein_bottle(ab, pq)
rtr = [2 0.5 1];
box = [-3 3 -3 3 -2 2];
vue = [55 60];
draw_klein(ab, rtr, pq, box, vue)

function draw_klein(ab, rtr, pq, box, vue)
clf
try

tube('xyklein',ab, rtr, pq, box, vue);
shading interp
colormap(pink);

2-3368

throwAsCaller (MException)

catch ME
throw(ME)

% throwAsCaller(ME)
end

Call the klein_bottle function, passing an incorrect value for the
second argument. (The correct value would be a vector, such as [40
40].) Because the catch block issues the exception using throw,
MATLAB displays error messages for line 15 of function draw_klein,
and for line 5 of function klein_bottle:

klein_bottle(ab, pi)
??? Attempted to access pq(2); index out of bounds because

numel(pq)=1.

Error in ==> klein_bottle>draw_klein at 15
throw(ME);

Error in ==> klein_bottle at 5
draw_figure(ab, rtr, pq, box, vue)

Run the function again, this time changing the klein_bottle.m file so
that the catch block uses throwAsCaller instead of throw. This time,
MATLAB only displays the error at line 5 of the main program:

klein_bottle(ab, pi)
??? Attempted to access pq(2); index out of bounds because

numel(pq)=1.

Error in ==> klein_bottle at 5
draw_figure(ab, rtr, pq, box, vue)

See Also error, try, catch, assert, MException, throw(MException),
rethrow(MException), addCause(MException),
getReport(MException), disp(MException), isequal(MException),
eq(MException), ne(MException), last(MException)

2-3369

tic, toc

Purpose Measure performance using stopwatch timer

Syntax tic
any statements

toc
t = toc

Description tic starts a stopwatch timer.

toc prints the elapsed time since tic was used.

t = toc returns the elapsed time in t.

Remarks The tic and toc functions work together to measure elapsed time. tic
saves the current time that toc uses later to measure the elapsed time.
The sequence of commands

tic
operations
toc

measures the amount of time MATLAB takes to complete one or more
operations, and displays the time in seconds.

Examples This example measures how the time required to solve a linear system
varies with the order of a matrix.

for n = 1:100
A = rand(n,n);
b = rand(n,1);
tic
x = A\b;
t(n) = toc;

end
plot(t)

See Also clock, cputime, etime, profile

2-3370

timer

Purpose Construct timer object

Syntax T = timer
T = timer('PropertyName1', PropertyValue1, 'PropertyName2',

PropertyValue2,...)

Description T = timer constructs a timer object with default attributes.

T = timer('PropertyName1', PropertyValue1, 'PropertyName2',
PropertyValue2,...) constructs a timer object in which the given
property name/value pairs are set on the object. See “Timer Object
Properties” on page 2-3371 for a list of all the properties supported
by the timer object.

Note that the property name/property value pairs can be in any
format supported by the set function, i.e., property/value string pairs,
structures, and property/value cell array pairs.

Examples This example constructs a timer object with a timer callback function
handle, mycallback, and a 10 second interval.

t = timer('TimerFcn',@mycallback, 'Period', 10.0);

See Also delete(timer), disp(timer), get(timer), isvalid(timer),
set(timer), start, startat, stop, timerfind, timerfindall, wait

Timer
Object
Properties

The timer object supports the following properties that control its
attributes. The table includes information about the data type of each
property and its default value.

To view the value of the properties of a particular timer object, use
the get(timer) function. To set the value of the properties of a timer
object, use the set(timer) function.

2-3371

timer

Property Name Property Description
Data Types, Values, Defaults,
Access

Data
type

double

Default NaN

AveragePeriod Average time between
TimerFcn executions since
the timer started.

Note: Value is NaN until
timer executes two timer
callbacks.

Read
only

Always

Data
type

Enumerated string

Values 'drop'
'error'
'queue'

Default 'drop'

BusyMode Action taken when a timer
has to execute TimerFcn
before the completion
of previous execution of
TimerFcn.
'drop' — Do not execute

the function

'error' — Generate an
error

'queue' — Execute
function at next opportunity.

Read
only

While Running = 'on'

Data
type

Text string, function
handle, or cell array

Default None

ErrorFcn Function that the timer
executes when an error
occurs. This function
executes before the StopFcn.
See “Creating Callback
Functions” for more
information.

Read
only

Never

2-3372

timer

Property Name Property Description
Data Types, Values, Defaults,
Access

Data
type

Enumerated string

Values 'singleShot'
'fixedDelay'
'fixedRate'
'fixedSpacing'

Default 'singleShot'

ExecutionMode Determines how the timer
object schedules timer
events. See “Timer Object
Execution Modes” for more
information.

Read
only

While Running =
'on'

Data
type

double

Default NaN

InstantPeriod The time between the last
two executions of TimerFcn.

Read
only

Always

Data
type

Text string

Default 'timer-i', where i is
a number indicating
the ith timer object
created this session.
To reset i to 1, execute
the clear classes
command.

Name User-supplied name.

Read
only

Never

2-3373

timer

Property Name Property Description
Data Types, Values, Defaults,
Access

Data
type

Enumerated string

Values 'off'
'on'

Default 'on'

ObjectVisibility Provides a way for
application developers
to prevent end-user access
to the timer objects created
by their application. The
timerfind function does
not return an object whose
ObjectVisibility property
is set to 'off'. Objects
that are not visible are still
valid. If you have access
to the object (for example,
from within the M-file that
created it), you can set its
properties.

Read
only

Never

Data
type

double

Value Any number >= 0.001

Default 1.0

Period Specifies the delay, in
seconds, between executions
of TimerFcn.

Read
only

While Running = 'on'

Data
type

Enumerated string

Values 'off'
'on'

Default 'off'

Running Indicates whether the timer
is currently executing.

Read
only

Always

2-3374

timer

Property Name Property Description
Data Types, Values, Defaults,
Access

Data
type

double

Values Any number >= 0

Default 0

StartDelay Specifies the delay, in
seconds, between the start
of the timer and the first
execution of the function
specified in TimerFcn.

Read
only

While Running ='on'

Data
type

Text string, function
handle, or cell array

Default None

StartFcn Function the timer calls
when it starts. See “Creating
Callback Functions” for more
information.

Read
only

Never

2-3375

timer

Property Name Property Description
Data Types, Values, Defaults,
Access

Date
type

Text string, function
handle, or cell array

Default None

StopFcn Function the timer calls
when it stops. The timer
stops when

• You call the timer stop
function

• The timer finishes
executing TimerFcn,
i.e., the value of
TasksExecuted reaches
the limit set by
TasksToExecute.

• An error occurs
(The ErrorFcn is called
first, followed by the
StopFcn.)

See “Creating Callback
Functions” for more
information.

Read
only

Never

Data
type

Text string

Default Empty string ('')

Tag User supplied label.

Read
only

Never

2-3376

timer

Property Name Property Description
Data Types, Values, Defaults,
Access

Data
type

double

Values Any number > 0

Default 1

TasksToExecute Specifies the number of
times the timer should
execute the function
specified in the TimerFcn
property.

Read
only

Never

Data
type

double

Values Any number >= 0

Default 0

TasksExecuted The number of times the
timer has called TimerFcn
since the timer was started.

Read
only

Always

Data
type

Text string, function
handle, or cell array

Default None

TimerFcn Timer callback function.
See “Creating Callback
Functions” for more
information.

Read
only

Never

Data
type

Text string

Values 'timer'

Type Identifies the object type.

Read
only

Always

Data
type

User-defined

Default []

UserData User-supplied data.

Read
only

Never

2-3377

timerfind

Purpose Find timer objects

Syntax out = timerfind
out = timerfind('P1', V1, 'P2', V2,...)
out = timerfind(S)
out = timerfind(obj, 'P1', V1, 'P2', V2,...)

Description out = timerfind returns an array, out, of all the timer objects that
exist in memory.

out = timerfind('P1', V1, 'P2', V2,...) returns an array,
out, of timer objects whose property values match those passed as
parameter/value pairs, P1, V1, P2, V2. Parameter/value pairs may be
specified as a cell array.

out = timerfind(S) returns an array, out, of timer objects whose
property values match those defined in the structure, S. The field
names of S are timer object property names and the field values are
the corresponding property values.

out = timerfind(obj, 'P1', V1, 'P2', V2,...) restricts the
search for matching parameter/value pairs to the timer objects listed
in obj. obj can be an array of timer objects.

Note When specifying parameter/value pairs, you can use any mixture
of strings, structures, and cell arrays in the same call to timerfind.

Note that, for most properties, timerfind performs case-sensitive
searches of property values. For example, if the value of an object’s Name
property is 'MyObject', timerfind will not find a match if you specify
'myobject'. Use the get function to determine the exact format of a
property value. However, properties that have an enumerated list of
possible values are not case sensitive. For example, timerfind will find
an object with an ExecutionMode property value of 'singleShot' or
'singleshot'.

2-3378

timerfind

Examples These examples use timerfind to find timer objects with the specified
property values.

t1 = timer('Tag', 'broadcastProgress', 'Period', 5);

t2 = timer('Tag', 'displayProgress');

out1 = timerfind('Tag', 'displayProgress')

out2 = timerfind({'Period', 'Tag'}, {5, 'broadcastProgress'})

See Also get(timer), timer, timerfindall

2-3379

timerfindall

Purpose Find timer objects, including invisible objects

Syntax out = timerfindall
out = timerfindall('P1', V1, 'P2', V2,...)
out = timerfindall(S)
out = timerfindall(obj, 'P1', V1, 'P2', V2,...)

Description out = timerfindall returns an array, out, containing all the timer
objects that exist in memory, regardless of the value of the object’s
ObjectVisibility property.

out = timerfindall('P1', V1, 'P2', V2,...) returns an array,
out, of timer objects whose property values match those passed as
parameter/value pairs, P1, V1, P2, V2. Parameter/value pairs may be
specified as a cell array.

out = timerfindall(S) returns an array, out, of timer objects whose
property values match those defined in the structure, S. The field
names of S are timer object property names and the field values are
the corresponding property values.

out = timerfindall(obj, 'P1', V1, 'P2', V2,...) restricts the
search for matching parameter/value pairs to the timer objects listed
in obj. obj can be an array of timer objects.

Note When specifying parameter/value pairs, you can use any mixture
of strings, structures, and cell arrays in the same call to timerfindall.

Note that, for most properties, timerfindall performs case-sensitive
searches of property values. For example, if the value of an object’s
Name property is 'MyObject', timerfindall will not find a match if you
specify 'myobject'. Use the get function to determine the exact format
of a property value. However, properties that have an enumerated list of
possible values are not case sensitive. For example, timerfindall will
find an object with an ExecutionMode property value of 'singleShot'
or 'singleshot'.

2-3380

timerfindall

Examples Create several timer objects.

t1 = timer;
t2 = timer;
t3 = timer;

Set the ObjectVisibility property of one of the objects to 'off'.

t2.ObjectVisibility = 'off';

Use timerfind to get a listing of all the timer objects in memory. Note
that the listing does not include the timer object (timer-2) whose
ObjectVisibility property is set to 'off'.

timerfind

Timer Object Array

Index: ExecutionMode: Period: TimerFcn: Name:
1 singleShot 1 '' timer-1
2 singleShot 1 '' timer-3

Use timerfindall to get a listing of all the timer objects in memory.
This listing includes the timer object whose ObjectVisibility property
is set to 'off'.

timerfindall

Timer Object Array

Index: ExecutionMode: Period: TimerFcn: Name:
1 singleShot 1 '' timer-1
2 singleShot 1 '' timer-2
3 singleShot 1 '' timer-3

See Also get(timer), timer, timerfind

2-3381

timeseries

Purpose Create timeseries object

Syntax ts = timeseries
ts = timeseries(Data)
ts = timeseries(Name)
ts = timeseries(Data,Time)
ts = timeseries(Data,Time,Quality)
ts = timeseries(Data,...,'Parameter',Value,...)

Description ts = timeseries creates an empty time-series object.

ts = timeseries(Data) creates a time series with the specified Data.
ts has a default time vector that ranges from 0 to N-1 with a 1-second
interval, where N is the number of samples. The default name of the
timeseries object is 'unnamed'.

ts = timeseries(Name) creates an empty time series with the name
specified by a string Name. This name can differ from the time-series
variable name.

ts = timeseries(Data,Time) creates a time series with the specified
Data array and Time. When time values are date strings, you must
specify Time as a cell array of date strings.

ts = timeseries(Data,Time,Quality) creates a timeseries object.
The Quality attribute is an integer vector with values-128 to 127 that
specifies the quality in terms of codes defined by QualityInfo.Code.

ts = timeseries(Data,...,'Parameter',Value,...) creates a
timeseries object with optional parameter-value pairs after the
Data, Time, and Quality arguments. You can specify the following
parameters:

• Name — Time-series name entered as a string

• IsTimeFirst — Logical value (true or false) specifying whether
the first or last dimension of the data array is aligned with the time
vector. You can set this property when the data array is square and,
therefore, the dimension that is aligned with time is ambiguous.

2-3382

timeseries

• IsDatenum — Logical value (true or false) that when set to true
specifies that Time values are dates in the format of MATLAB serial
dates.

Remarks Definition: timeseries

The time-series object, called timeseries, is a MATLAB variable
that contains time-indexed data and properties in a single, coherent
structure. For example, in addition to data and time values, you can
also use the time-series object to store events, descriptive information
about data and time, data quality, and the interpolation method.

Definition: Data Sample

A time-series data sample consists of one or more values recorded at a
specific time. The number of data samples in a time series is the same
as the length of the time vector.

For example, suppose that ts.data has the size 5-by-4-by-3 and the
time vector has the length 5. Then, the number of samples is 5 and the
total number of data values is 5 x 4 x 3 = 60.

Notes About Quality

When Quality is a vector, it must have the same length as the time
vector. In this case, each Quality value applies to the corresponding
data sample. When Quality is an array, it must have the same size
as the data array. In this case, each Quality value applies to the
corresponding data value of the ts.data array.

Examples Example 1 — Using Default Time Vector

Create a timeseries object called 'LaunchData' that contains four
data sets, each stored as a column of length 5 and using the default
time vector:

b = timeseries(rand(5, 4),'Name','LaunchData')

2-3383

timeseries

Example 2 — Using Uniform Time Vector

Create a timeseries object containing a single data set of length 5 and
a time vector starting at 1 and ending at 5:

b = timeseries(rand(5,1),[1 2 3 4 5])

Example 3

Create a timeseries object called 'FinancialData' containing five
data points at a single time point:

b = timeseries(rand(1,5),1,'Name','FinancialData')

See Also addsample, tscollection, tsdata.event, tsprops

2-3384

title

Purpose Add title to current axes

GUI
Alternative

To create or modify a plot’s title from a GUI, use Insert Title from the

figure menu. Use the Property Editor, one of the plotting tools , to
modify the position, font, and other properties of a legend. For details,
see The Property Editor in the MATLAB Graphics documentation.

Syntax title('string')
title(fname)
title(...,'PropertyName',PropertyValue,...)
title(axes_handle,...)
h = title(...)

Description Each axes graphics object can have one title. The title is located at the
top and in the center of the axes.

title('string') outputs the string at the top and in the center of
the current axes.

title(fname) evaluates the function that returns a string and displays
the string at the top and in the center of the current axes.

title(...,'PropertyName',PropertyValue,...) specifies property
name and property value pairs for the text graphics object that title
creates. Do not use the 'String' text property to set the title string;
the content of the title should be given by the first argument.

title(axes_handle,...) adds the title to the specified axes.

h = title(...) returns the handle to the text object used as the title.

Examples Display today’s date in the current axes:

title(date)

Include a variable’s value in a title:

f = 70;
c = (f-32)/1.8;

2-3385

title

title(['Temperature is ',num2str(c),'C'])

Include a variable’s value in a title and set the color of the title to yellow:

n = 3;
title(['Case number #',int2str(n)],'Color','y')

Include Greek symbols in a title:

title('\ite^{\omega\tau} = cos(\omega\tau) + isin(\omega\tau)')

Include a superscript character in a title:

title('\alpha^2')

Include a subscript character in a title:

title('X_1')

The text object String property lists the available symbols.

Create a multiline title using a multiline cell array.

title({'First line';'Second line'})

Remarks title sets the Title property of the current axes graphics object to
a new text graphics object. See the text String property for more
information.

See Also gtext, int2str, num2str, text, xlabel, ylabel, zlabel

“Annotating Plots” on page 1-87 for related functions

Text Properties for information on setting parameter/value pairs in
titles

Adding Titles to Graphs for more information on ways to add titles

2-3386

todatenum

Purpose Convert CDF epoch object to MATLAB datenum

Syntax n = todatenum(obj)

Description n = todatenum(obj) converts the CDF epoch object ep_obj into a
MATLAB serial date number. Note that a CDF epoch is the number of
milliseconds since 01-Jan-0000 whereas a MATLAB datenum is the
number of days since 00-Jan-0000.

Examples Construct a CDF epoch object from a date string, and then convert the
object back into a MATLAB date string:

dstr = datestr(today)
dstr =

08-Oct-2003

obj = cdfepoch(dstr)
obj =

cdfepoch object:
08-Oct-2003 00:00:00

dstr2 = datestr(todatenum(obj))
dstr2 =

08-Oct-2003

See Also cdfepoch, cdfinfo, cdfread, cdfwrite, datenum

2-3387

toeplitz

Purpose Toeplitz matrix

Syntax T = toeplitz(c,r)
T = toeplitz(r)

Description A Toeplitz matrix is defined by one row and one column. A symmetric
Toeplitz matrix is defined by just one row. toeplitz generates Toeplitz
matrices given just the row or row and column description.

T = toeplitz(c,r) returns a nonsymmetric Toeplitz matrix T having
c as its first column and r as its first row. If the first elements of c and
r are different, a message is printed and the column element is used.

T = toeplitz(r) returns the symmetric or Hermitian Toeplitz matrix
formed from vector r, where r defines the first row of the matrix.

Examples A Toeplitz matrix with diagonal disagreement is

c = [1 2 3 4 5];
r = [1.5 2.5 3.5 4.5 5.5];
toeplitz(c,r)
Column wins diagonal conflict:
ans =

1.000 2.500 3.500 4.500 5.500
2.000 1.000 2.500 3.500 4.500
3.000 2.000 1.000 2.500 3.500
4.000 3.000 2.000 1.000 2.500
5.000 4.000 3.000 2.000 1.000

See Also hankel, kron

2-3388

toolboxdir

Purpose Root directory for specified toolbox

Syntax toolboxdir('tbxdirname')
s = toolboxdir('tbxdirname')
s = toolboxdir tbxdirname

Description toolboxdir('tbxdirname') returns a string that is the absolute path
to the specified toolbox, tbxdirname, where tbxdirname is the directory
name for the toolbox.

s = toolboxdir('tbxdirname') returns the absolute path to the
specified toolbox to the output argument, s.

s = toolboxdir tbxdirname is the command form of the syntax.

Remarks toolboxdir is particularly useful for MATLAB Compiler. The base
directory of all toolboxes installed with MATLAB is

matlabroot/toolbox/tbxdirname

However, in deployed mode, the base directories of the toolboxes are
different. toolboxdir returns the correct root directory, whether
running from MATLAB or from an application deployed with MATLAB
Compiler.

Example To obtain the pathname for Control System Toolbox, run

s = toolboxdir('control')

MATLAB returns

s = \\myhome\r2007b\matlab\toolbox\control

See Also matlabroot

ctfroot in MATLAB Compiler

2-3389

trace

Purpose Sum of diagonal elements

Syntax b = trace(A)

Description b = trace(A) is the sum of the diagonal elements of the matrix A.

Algorithm trace is a single-statement M-file.

t = sum(diag(A));

See Also det, eig

2-3390

transpose (timeseries)

Purpose Transpose timeseries object

Syntax ts1 = transpose(ts)

Description ts1 = transpose(ts) returns a new timeseries object ts1 with
IsTimeFirst value set to the opposite of what it is for ts. For example,
if ts has the first data dimension aligned with the time vector, ts1 has
the last data dimension aligned with the time vector.

Remarks The transpose function that is overloaded for the timeseries objects
does not transpose the data. Instead, this function changes whether the
first or the last dimension of the data is aligned with the time vector.

Note To transpose the data, you must transpose the Data property of the
time series. For example, you can use the syntax transpose(ts.Data)
or (ts.Data).'. Data must be a 2-D array.

Consider a time series with 10 samples with the property
IsTimeFirst = True. When you transpose this time series, the data
size is changed from 10-by-1 to 1-by-1-by-10. Note that the first
dimension of the Data property is shown explicitly.

The following table summarizes how MATLAB displays the size for
time-series data (up to three dimensions) before and after transposing.

Data Size Before and After Transposing

Size of Original Data Size of Transposed Data

N-by-1 1-by-1-by-N

2-3391

transpose (timeseries)

Data Size Before and After Transposing (Continued)

Size of Original Data Size of Transposed Data

N-by-M M-by-1-by-N

N-by-M-by-L M-by-L-by-N

Examples Suppose that a timeseries object ts has ts.Data size 10-by-3-by-2 and
its time vector has a length of 10. The IsTimeFirst property of ts is
set to true, which means that the first dimension of the data is aligned
with the time vector. transpose(ts) modifies the timeseries object
such that the last dimension of the data is now aligned with the time
vector. This permutes the data such that the size of ts.Data becomes
3-by-2-by-10.

See Also ctranspose (timeseries), tsprops

2-3392

trapz

Purpose Trapezoidal numerical integration

Syntax Z = trapz(Y)
Z = trapz(X,Y)
Z = trapz(...,dim)

Description Z = trapz(Y) computes an approximation of the integral of Y via the
trapezoidal method (with unit spacing). To compute the integral for
spacing other than one, multiply Z by the spacing increment. Input Y
can be complex.

If Y is a vector, trapz(Y) is the integral of Y.

If Y is a matrix,trapz(Y) is a row vector with the integral over each
column.

If Y is a multidimensional array, trapz(Y) works across the first
nonsingleton dimension.

Z = trapz(X,Y) computes the integral of Y with respect to X using
trapezoidal integration. Inputs X and Y can be complex.

If X is a column vector and Y an array whose first nonsingleton
dimension is length(X), trapz(X,Y) operates across this dimension.

Z = trapz(...,dim) integrates across the dimension of Y specified by
scalar dim. The length of X, if given, must be the same as size(Y,dim).

Examples Example 1

The exact value of is 2.

To approximate this numerically on a uniformly spaced grid, use

X = 0:pi/100:pi;
Y = sin(X);

Then both

Z = trapz(X,Y)

2-3393

trapz

and

Z = pi/100*trapz(Y)

produce

Z =
1.9998

Example 2

A nonuniformly spaced example is generated by

X = sort(rand(1,101)*pi);
Y = sin(X);
Z = trapz(X,Y);

The result is not as accurate as the uniformly spaced grid. One random
sample produced

Z =
1.9984

Example 3

This example uses two complex inputs:

z = exp(1i*pi*(0:100)/100);

trapz(z, 1./z)
ans =

0.0000 + 3.1411i

See Also cumsum, cumtrapz

2-3394

treelayout

Purpose Lay out tree or forest

Syntax [x,y] = treelayout(parent,post)
[x,y,h,s] = treelayout(parent,post)

Description [x,y] = treelayout(parent,post) lays out a tree or a forest. parent
is the vector of parent pointers, with 0 for a root. post is an optional
postorder permutation on the tree nodes. If you omit post, treelayout
computes it. x and y are vectors of coordinates in the unit square at
which to lay out the nodes of the tree to make a nice picture.

[x,y,h,s] = treelayout(parent,post) also returns the height of the
tree h and the number of vertices s in the top-level separator.

See Also etree, treeplot, etreeplot, symbfact

2-3395

treeplot

Purpose Plot picture of tree

Syntax treeplot(p)
treeplot(p,nodeSpec,edgeSpec)

Description treeplot(p) plots a picture of a tree given a vector of parent pointers,
with p(i) = 0 for a root.

treeplot(p,nodeSpec,edgeSpec) allows optional parameters
nodeSpec and edgeSpec to set the node or edge color, marker, and
linestyle. Use '' to omit one or both.

Examples To plot a tree with 12 nodes, call treeplot with a 12-element input
vector. The index of each element in the vector is shown adjacent to each
node in the figure below. (These indices are shown only for the point of
illustrating the example; they are not part of the treeplot output.)

To generate this plot, set the value of each element in the nodes vector
to the index of its parent, (setting the parent of the root node to zero).

2-3396

treeplot

The node marked 1 in the figure is represented by nodes(1) in the
input vector, and because this is the root node which has a parent of
zero, you set its value to zero:

nodes(1) = 0; % Root node

nodes(2) and nodes(8) are children of nodes(1), so set these elements
of the input vector to 1:

nodes(2) = 1; nodes(8) = 1;

nodes(5:7) are children of nodes(4), so set these elements to 4:

nodes(5) = 4; nodes(6) = 4; nodes(7) = 4;

Continue in this manner until each element of the vector identifies its
parent. For the plot shown above, the nodes vector now looks like this:

nodes = [0 1 2 2 4 4 4 1 8 8 10 10];

Now call treeplot to generate the plot:

treeplot(nodes)

See Also etree, etreeplot, treelayout

2-3397

tril

Purpose Lower triangular part of matrix

Syntax L = tril(X)
L = tril(X,k)

Description L = tril(X) returns the lower triangular part of X.

L = tril(X,k) returns the elements on and below the kth diagonal of
X. k = 0 is the main diagonal, k > 0 is above the main diagonal, and k
< 0 is below the main diagonal.

Examples tril(ones(4,4),-1)

ans =

0 0 0 0
1 0 0 0
1 1 0 0
1 1 1 0

See Also diag, triu

2-3398

trimesh

Purpose Triangular mesh plot

Syntax trimesh(Tri,X,Y,Z)
trimesh(Tri,X,Y,Z,C)
trimesh(...'PropertyName',PropertyValue...)
h = trimesh(...)

Description trimesh(Tri,X,Y,Z) displays triangles defined in the m-by-3 face
matrix Tri as a mesh. Each row of Tri defines a single triangular face
by indexing into the vectors or matrices that contain the X, Y, and Z
vertices.

trimesh(Tri,X,Y,Z,C) specifies color defined by C in the same manner
as the surf function. MATLAB performs a linear transformation on
this data to obtain colors from the current colormap.

trimesh(...'PropertyName',PropertyValue...) specifies
additional patch property names and values for the patch graphics
object created by the function.

h = trimesh(...) returns a handle to a patch graphics object.

Example Create vertex vectors and a face matrix, then create a triangular mesh
plot.

x = rand(1,50);
y = rand(1,50);
z = peaks(6*x-3,6*x-3);
tri = delaunay(x,y);
trimesh(tri,x,y,z)

See Also patch, tetramesh, triplot, trisurf, delaunay

“Creating Surfaces and Meshes” on page 1-97 for related functions

2-3399

triplequad

Purpose Numerically evaluate triple integral

Syntax triplequad(fun,xmin,xmax,ymin,ymax,zmin,zmax)
triplequad(fun,xmin,xmax,ymin,ymax,zmin,zmax,tol)
triplequad(fun,xmin,xmax,ymin,ymax,zmin,zmax,tol,method)

Description triplequad(fun,xmin,xmax,ymin,ymax,zmin,zmax) evaluates the
triple integral fun(x,y,z) over the three dimensional rectangular
region xmin <= x <= xmax, ymin <= y <= ymax, zmin <= z <= zmax.
fun is a function handle. See “Function Handles” in the MATLAB
Programming documentation for more information.fun(x,y,z) must
accept a vector x and scalars y and z, and return a vector of values of
the integrand.

“Parameterizing Functions Called by Function Functions”, in the
MATLAB Mathematics documentation, explains how to provide
additional parameters to the function fun, if necessary.

triplequad(fun,xmin,xmax,ymin,ymax,zmin,zmax,tol) uses a
tolerance tol instead of the default, which is 1.0e-6.

triplequad(fun,xmin,xmax,ymin,ymax,zmin,zmax,tol,method)
uses the quadrature function specified as method, instead of the default
quad. Valid values for method are @quadl or the function handle of a
user-defined quadrature method that has the same calling sequence
as quad and quadl.

Examples Pass M-file function handle @integrnd to triplequad:P

Q = triplequad(@integrnd,0,pi,0,1,-1,1);

where the M-file integrnd.m is

function f = integrnd(x,y,z)
f = y*sin(x)+z*cos(x);

Pass anonymous function handle F to triplequad:

F = @(x,y,z)y*sin(x)+z*cos(x);

2-3400

triplequad

Q = triplequad(F,0,pi,0,1,-1,1);

This example integrates y*sin(x)+z*cos(x) over the region
0 <= x <= pi, 0 <= y <= 1, -1 <= z <= 1. Note that the integrand
can be evaluated with a vector x and scalars y and z.

See Also dblquad, quad, quadgk, quadl, function handle (@), “Anonymous
Functions”

2-3401

triplot

Purpose 2-D triangular plot

Syntax triplot(TRI,x,y)
triplot(TRI,x,y,color)
h = triplot(...)
triplot(...,'param','value','param','value'...)

Description triplot(TRI,x,y) displays the triangles defined in the m-by-3 matrix
TRI. A row of TRI contains indices into the vectors x and y that define a
single triangle. The default line color is blue.

triplot(TRI,x,y,color) uses the string color as the line color. color
can also be a line specification. See ColorSpec for a list of valid color
strings. See LineSpec for information about line specifications.

h = triplot(...) returns a vector of handles to the displayed
triangles.

triplot(...,'param','value','param','value'...) allows
additional line property name/property value pairs to be used when
creating the plot. See Line Properties for information about the
available properties.

Examples This code plots the Delaunay triangulation for 10 randomly generated
points.

rand('state',7);
x = rand(1,10);
y = rand(1,10);
TRI = delaunay(x,y);
triplot(TRI,x,y,'red')

2-3402

triplot

See Also ColorSpec, delaunay, line, Line Properties, LineSpec, plot,
trimesh, trisurf

2-3403

trisurf

Purpose Triangular surface plot

Syntax trisurf(Tri,X,Y,Z)
trisurf(Tri,X,Y,Z,C)
trisurf(...'PropertyName',PropertyValue...)
h = trisurf(...)

Description trisurf(Tri,X,Y,Z) displays triangles defined in the m-by-3 face
matrix Tri as a surface. Each row of Tri defines a single triangular
face by indexing into the vectors or matrices that contain the X, Y,
and Z vertices.

trisurf(Tri,X,Y,Z,C) specifies color defined by C in the same manner
as the surf function. MATLAB performs a linear transformation on
this data to obtain colors from the current colormap.

trisurf(...'PropertyName',PropertyValue...) specifies
additional patch property names and values for the patch graphics
object created by the function.

h = trisurf(...) returns a patch handle.

Example Create vertex vectors and a face matrix, then create a triangular
surface plot.

x = rand(1,50);
y = rand(1,50);
z = peaks(6*x-3,6*x-3);
tri = delaunay(x,y);
trisurf(tri,x,y,z)

See Also patch, surf, tetramesh, trimesh, triplot, delaunay

“Creating Surfaces and Meshes” on page 1-97 for related functions

2-3404

triu

Purpose Upper triangular part of matrix

Syntax U = triu(X)
U = triu(X,k)

Description U = triu(X) returns the upper triangular part of X.

U = triu(X,k) returns the element on and above the kth diagonal of X.
k = 0 is the main diagonal, k > 0 is above the main diagonal, and k
< 0 is below the main diagonal.

Examples triu(ones(4,4),-1)

ans =

1 1 1 1
1 1 1 1
0 1 1 1
0 0 1 1

See Also diag, tril

2-3405

true

Purpose Logical 1 (true)

Syntax true
true(n)
true(m, n)
true(m, n, p, ...)
true(size(A))

Description true is shorthand for logical 1.

true(n) is an n-by-n matrix of logical ones.

true(m, n) or true([m, n]) is an m-by-n matrix of logical ones.

true(m, n, p, ...) or true([m n p ...]) is an m-by-n-by-p-by-...
array of logical ones.

Note The size inputs m, n, p, ... should be nonnegative integers.
Negative integers are treated as 0.

true(size(A)) is an array of logical ones that is the same size as
array A.

Remarks true(n) is much faster and more memory efficient than
logical(ones(n)).

See Also false, logical

2-3406

try

Purpose Attempt to execute block of code, and catch errors

Syntax try

Description try marks the start of a try block in a try-catch statement. If MATLAB
detects an error while executing code in the try block, it immediately
jumps to the start of the respective catch block and executes the error
handling code in that block.

A try-catch statement is a programming device that enables you to
define how certain errors are to be handled in your program. This
bypasses the default MATLAB error-handling mechanism when these
errors are detected. The try-catch statement consists of two blocks of
MATLAB code, a try block and a catch block, delimited by the keywords
try, catch, and end:

try
MATLAB commands % Try block

catch ME
MATLAB commands % Catch block

end

Each of these blocks consists of one or more MATLAB commands. The
try block is just another piece of your program code; the commands in
this block execute just like any other part of your program. Any errors
MATLAB encounters in the try block are dealt with by the respective
catch block. This is where you write your error-handling code. If the
try block executes without error, MATLAB skips the catch block
entirely. If an error occurs while executing the catch block, the program
terminates unless this error is caught by another try-catch block.

Specifying the try, catch, and end commands, as well as the
commands that make up the try and catch blocks, on separate lines
is recommended. If you combine any of these components on the same
line, separate them with commas:

try, surf, catch ME, ME.stack, end
ans =

2-3407

try

file: 'matlabroot\toolbox\matlab\graph3d\surf.m'
name: 'surf'
line: 54

Examples The catch block in this example checks to see if the specified file could
not be found. If this is the case, the program allows for the possibility
that a common variation of the filename extension (e.g., jpeg instead
of jpg) was used by retrying the operation with a modified extension.
This is done using a try-catch statement that is nested within the
original try-catch.

function d_in = read_image(filename)
file_format = regexp(filename, '(?<=\.)\w+$', 'match');

try
fid = fopen(filename, 'r');
d_in = fread(fid);

catch ME1
% Get last segment of the error message identifier.
idSegLast = regexp(ME1.identifier, '(?<=:)\w+$', 'match');

% Did the read fail because the file could not be found?
if strcmp(idSegLast, 'InvalidFid') && ~exist(filename, 'file')

% Yes. Try modifying the filename extension.
switch file_format
case 'jpg' % Change jpg to jpeg

filename = regexprep(filename, '(?<=\.)\w+$', 'jpeg');
case 'jpeg' % Change jpeg to jpg

filename = regexprep(filename, '(?<=\.)\w+$', 'jpg');
case 'tif' % Change tif to tiff

filename = regexprep(filename, '(?<=\.)\w+$', 'tiff');
case 'tiff' % Change tiff to tif

filename = regexprep(filename, '(?<=\.)\w+$', 'tif');
otherwise

disp(sprintf('File %s not found', filename));
rethrow(ME1);

2-3408

try

end

% Try again, with modifed filenames.
try

fid = fopen(filename, 'r');
d_in = fread(fid);

catch ME2
disp(sprintf('Unable to access file %s', filename));
ME2 = addCause(ME2, ME1);
rethrow(ME2)

end
end

end

See Also catch, rethrow, end, lasterror, eval, evalin

2-3409

tscollection

Purpose Create tscollection object

Syntax tsc = tscollection(TimeSeries)
tsc = tscollection(Time)
tsc = tscollection(Time,TimeSeries,'Parameter',Value,...)

Description tsc = tscollection(TimeSeries) creates a tscollection object
tsc with one or more timeseries objects already in the MATLAB
workspace. The argument TimeSeries can be a

• Single timeseries object

• Cell array of timeseries objects

tsc = tscollection(Time) creates an empty tscollection object
with the time vector Time. When time values are date strings, you must
specify Time as a cell array of date strings.

tsc = tscollection(Time,TimeSeries,'Parameter',Value,...)
creates a tscollection object with optional parameter-value pairs
you enter after the Time and TimeSeries arguments. You can specify
the following parameters:

• Name — String that specifies the name of this tscollection object

• IsDatenum — Logical value (true or false) that when set to true
specifies that the Time values are dates in the format of MATLAB
serial dates.

Remarks Definition: Time Series Collection

A time series collection object is a MATLAB variable that groups several
time series with a common time vector. The time series that you include
in the collection are called members of this collection.

2-3410

tscollection

Properties of Time Series Collection Objects

This table lists the properties of the tscollection object. You can
specify the Time, TimeSeries, and Name properties as input arguments
in the constructor.

Property Description

Name tscollection name as a string. This can differ from the
tscollection name in the MATLAB workspace.

Time When TimeInfo.StartDate is empty, values are
measured relative to 0 . When TimeInfo.StartDate is
defined, values represent date strings measured relative
to the StartDate.

The length of Time must be the same as the first or the
last dimension of Data for each collection .

TimeInfo Contains fields for contextual information about Time:

• Units — Time units with any of the following values:
'weeks', 'days', 'hours', 'minutes', 'seconds',
'milliseconds', 'microseconds', 'nanoseconds'

• Start — Start time

• End — End time (read only)

• Increment — Interval between subsequent time
values. NaN when times are not uniformly sampled.

• Length — Length of the time vector (read only)

• Format — String defining the date string display
format. See datestr.

• StartDate — Date string defining the reference date.
See setabstime (tscollection).

• UserData — Any additional user-defined information

2-3411

tscollection

Examples The following example shows how to create a tscollection object.

1 Import the sample data.

load count.dat

2 Create three timeseries objects to store each set of data:

count1 = timeseries(count(:,1),1:24,'name', 'ts1');
count2 = timeseries(count(:,2),1:24,'name', 'ts2');

3 Create a tscollection object named tsc and add to it two out of
three time series already in the MATLAB workspace, by using the
following syntax:

tsc = tscollection({count1 count2},'name','tsc')

See Also addts, datestr, setabstime (tscollection), timeseries, tsprops

2-3412

tsdata.event

Purpose Construct event object for timeseries object

Syntax e = tsdata.event(Name,Time)
e = tsdata.event(Name,Time,'Datenum')

Description e = tsdata.event(Name,Time) creates an event object with the
specified Name that occurs at the time Time. Time can either be a real
value or a date string.

e = tsdata.event(Name,Time,'Datenum') uses 'Datenum' to
indicate that the Time value is a serial date number generated by the
datenum function. The Time value is converted to a date string after
the event is created.

Remarks You add events by using the addevent method.

Fields of the tsdata.event object include the following:

• EventData — MATLAB array that stores any user-defined
information about the event

• Name — String that specifies the name of the event

• Time — Time value when this event occurs, specified as a real number

• Units — Time units

• StartDate — A reference date, specified in MATLAB datestr format.
StartDate is empty when you have a numerical (non-date-string)
time vector.

2-3413

tsearch

Purpose Search for enclosing Delaunay triangle

Syntax T = tsearch(x,y,TRI,xi,yi)

Description T = tsearch(x,y,TRI,xi,yi) returns an index into the rows of TRI for
each point in xi, yi. The tsearch command returns NaN for all points
outside the convex hull. Requires a triangulation TRI of the points x,y
obtained from delaunay.

See Also delaunay, delaunayn, dsearch, tsearchn

2-3414

tsearchn

Purpose N-D closest simplex search

Syntax t = tsearchn(X,TES,XI)
[t,P] = tsearchn(X,TES,XI)

Description t = tsearchn(X,TES,XI) returns the indices t of the enclosing simplex
of the Delaunay tessellation TES for each point in XI. X is an m-by-n
matrix, representing m points in N-dimensional space. XI is a p-by-n
matrix, representing p points in N-dimensional space. tsearchn returns
NaN for all points outside the convex hull of X. tsearchn requires a
tessellation TES of the points X obtained from delaunayn.

[t,P] = tsearchn(X,TES,XI) also returns the barycentric coordinate
P of XI in the simplex TES. P is a p-by-n+1 matrix. Each row of P is the
Barycentric coordinate of the corresponding point in XI. It is useful
for interpolation.

Algorithm tsearchn is based on Qhull [1]. For information about Qhull,
see http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

See Also delaunayn, griddatan, tsearch

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, “The Quickhull
Algorithm for Convex Hulls,” ACM Transactions on Mathematical
Software, Vol. 22, No. 4, Dec. 1996, p. 469-483.

2-3415

http://www.qhull.org/
http://www.qhull.org/COPYING.txt

tsprops

Purpose Help on timeseries object properties

Syntax help timeseries/tsprops

Description help timeseries/tsprops lists the properties of the timeseries
object and briefly describes each property.

Time Series Object Properties

Property Description

Data Time-series data, where each data sample corresponds to a
specific time.

The data can be a scalar, a vector, or a multidimensional array.
Either the first or last dimension of the data must be aligned
with Time.

By default, NaNs are used to represent missing or unspecified
data. Set the TreatNaNasMissing property to determine how
missing data is treated in calculations.

DataInfo Contains fields for storing contextual information about Data:

• Unit — String that specifies data units

• Interpolation — A tsdata.interpolation object that
specifies the interpolation method for this time series.

Fields of the tsdata.interpolation object include:

- Fhandle — Function handle to a user-defined interpolation
function

- Name — String that specifies the name of the interpolation
method. Predefined methods include 'linear' and 'zoh'
(zero-order hold). 'linear' is the default.

• UserData — Any user-defined information entered as a string

2-3416

tsprops

Time Series Object Properties (Continued)

Property Description

Events An array of tsdata.event objects that stores event information
for this time series. You add events by using the addevent
method.

Fields of the tsdata.event object include the following:

• EventData — Any user-defined information about the event

• Name — String that specifies the name of the event

• Time — Time value when this event occurs, specified as a real
number or a date string

• Units — Time units

• StartDate — A reference date specified in MATLAB
date-string format. StartDate is empty when you have a
numerical (non-date-string) time vector.

2-3417

tsprops

Time Series Object Properties (Continued)

Property Description

IsTimeFirst Logical value (true or false) specifies whether the first or last
dimension of the Data array is aligned with the time vector.

You can set this property when the Data array is square and it is
ambiguous which dimension is aligned with time. By default, the
first Data dimension that matches the length of the time vector is
aligned with the time vector.

When you set this property to:

• true — The first dimension of the data array
is aligned with the time vector. For example:
ts=timeseries(rand(3,3),1:3, 'IsTimeFirst',true);

• false — The last dimension of the data array
is aligned with the time vector. For example:
ts=timeseries(rand(3,3),1:3, 'IsTimeFirst',false);

After a time series is created, this property is read only.

Name Time-series name entered as a string. This name can differ from
the name of the time-series variable in the MATLAB workspace.

Quality An integer vector or array containing values -128 to 127
that specifies the quality in terms of codes defined by
QualityInfo.Code.

When Quality is a vector, it must have the same length as
the time vector. In this case, each Quality value applies to a
corresponding data sample.

When Quality is an array, it must have the same size as the
data array. In this case, each Quality value applies to the
corresponding value of the data array.

2-3418

tsprops

Time Series Object Properties (Continued)

Property Description

QualityInfo Provides a lookup table that converts numerical Quality codes to
readable descriptions. QualityInfo fields include the following:

• Code — Integer vector containing values -128 to 127 that
define the “dictionary” of quality codes, which you can assign
to each Data value by using the Quality property

• Description — Cell vector of strings, where each element
provides a readable description of the associated quality Code

• UserData — Stores any additional user-defined information

Lengths of Code and Description must match.

Time Array of time values.

When TimeInfo.StartDate is empty, the numerical Time
values are measured relative to 0 in specified units. When
TimeInfo.StartDate is defined, the time values are date strings
measured relative to the StartDate in specified units.

The length of Time must be the same as either the first or the
last dimension of Data.

2-3419

tsprops

Time Series Object Properties (Continued)

Property Description

TimeInfo Uses the following fields for storing contextual information about
Time:

• Units — Time units can have any of following values: 'weeks',
'days', 'hours', 'minutes', 'seconds', 'milliseconds',
'microseconds', or 'nanoseconds'

• Start — Start time

• End — End time (read only)

• Increment — Interval between two subsequent time values

• Length — Length of the time vector (read only)

• Format — String defining the date string display format.
See the MATLAB datestr function reference page for more
information.

• StartDate — Date string defining the reference date. See the
MATLAB setabstime (timeseries) function reference page
for more information.

• UserData — Stores any additional user-defined information

TreatNaNasMissing Logical value that specifies how to treat NaN values in Data:

• true — (Default) Treat all NaN values as missing data except
during statistical calculations.

• false — Include NaN values in statistical calculations, in
which case NaN values are propagated to the result.

2-3420

tsprops

See Also datestr, get (timeseries), set (timeseries), setabstime
(timeseries)

2-3421

tstool

Purpose Open Time Series Tools GUI

Syntax tstool
tstool(ts)
tstool(tsc)
tstool(sldata)
tstool(ModelDataLogs,'replace')

Description tstool starts the Time Series Tools GUI without loading any data.

tstool(ts) starts the Time Series Tools GUI and loads the time-series
object ts from the MATLAB workspace.

tstool(tsc) starts the Time Series Tools GUI and loads the
time-series collection object tsc from the MATLAB workspace.

tstool(sldata) starts the Time Series Tools GUI and loads the
logged-signal data sldata from a Simulink model. If a Simulink logged
signal Name property contains a /, the entire logged signal, including all
levels of the signal hierarchy, is not imported into Time Series Tools.

tstool(ModelDataLogs,'replace') replaces the logged-signal data
object ModelDataLogs in the Time Series Tools GUI with an updated
logged signal after you rerun the Simulink model. Use this command to
update the ModelDataLogs object in the Time Series Tools GUI if you
change the model or the logged-signal data settings.

See Also timeseries, tscollection

2-3422

type

Purpose Display contents of file

Syntax type('filename')
type filename

Description type('filename') displays the contents of the specified file in the
MATLAB Command Window. Use the full path for filename, or use a
MATLAB relative partial pathname.

If you do not specify a filename extension and there is no filename
file without an extension, the type function adds the .m extension
by default. The type function checks the directories specified in the
MATLAB search path, which makes it convenient for listing the
contents of M-files on the screen. Use type with more on to see the
listing one screen at a time.

type filename is the command form of the syntax.

Examples type('foo.bar') lists the contents of the file foo.bar.

type foo lists the contents of the file foo. If foo does not exist, type
foo lists the contents of the file foo.m.

See Also cd, dbtype, delete, dir, more, partialpath, path, what, who

2-3423

typecast

Purpose Convert data types without changing underlying data

Syntax Y = typecast(X, type)

Description Y = typecast(X, type) converts a numeric value in X to the data
type specified by type. Input X must be a full, noncomplex, numeric
scalar or vector. The type input is a string set to one of the following:
'uint8', 'int8', 'uint16', 'int16', 'uint32', 'int32', 'uint64',
'int64', 'single', or 'double'.

typecast is different from the MATLAB cast function in that it does
not alter the input data. typecast always returns the same number of
bytes in the output Y as were in the input X. For example, casting the
16-bit integer 1000 to uint8 with typecast returns the full 16 bits in
two 8-bit segments (3 and 232) thus keeping its original value (3*256
+ 232 = 1000). The cast function, on the other hand, truncates the
input value to 255.

The output of typecast can be formatted differently depending on what
system you use it on. Some computer systems store data starting with
its most significant byte (an ordering called big-endian), while others
start with the least significant byte (called little-endian).

Note MATLAB issues an error if X contains fewer values than are
needed to make an output value.

Examples Example 1

This example converts between data types of the same size:

typecast(uint8(255), 'int8')
ans =

-1

typecast(int16(-1), 'uint16')
ans =

2-3424

typecast

65535

Example 2

Set X to a 1-by-3 vector of 32-bit integers, then cast it to an 8-bit integer
type:

X = uint32([1 255 256])
X =

1 255 256

Running this on a little-endian system produces the following results.
Each 32-bit value is divided up into four 8-bit segments:

Y = typecast(X, 'uint8')
Y =

1 0 0 0 255 0 0 0 0 1 0 0

The third element of X, 256, exceeds the 8 bits that it is being converted
to in Y(9) and thus overflows to Y(10):

Y(9:12)
ans =

0 1 0 0

Note that length(Y) is equal to 4.*length(X). Also note the difference
between the output of typecast versus that of cast:

Z = cast(X, 'uint8')
Z =

1 255 255

Example 3

This example casts a smaller data type (uint8) into a larger one
(uint16). Displaying the numbers in hexadecimal format makes it
easier to see just how the data is being rearranged:

format hex
X = uint8([44 55 66 77])
X =

2-3425

typecast

2c 37 42 4d

The first typecast is done on a big-endian system. The four 8-bit
segments of the input data are combined to produce two 16-bit segments:

Y = typecast(X, 'uint16')
Y =

2c37 424d

The second is done on a little-endian system. Note the difference in
byte ordering:

Y = typecast(X, 'uint16')
Y =

372c 4d42

You can format the little-endian output into big-endian (and vice versa)
using the swapbytes function:

Y = swapbytes(typecast(X, 'uint16'))
Y =

2c37 424d

Example 4

This example attempts to make a 32-bit value from a vector of three
8-bit values. MATLAB issues an error because there are an insufficient
number of bytes in the input:

format hex

typecast(uint8([120 86 52]), 'uint32')
??? Too few input values to make output type.

Error in ==> typecast at 29
out = typecastc(in, datatype);

Repeat the example, but with a vector of four 8-bit values, and it returns
the expected answer:

2-3426

typecast

typecast(uint8([120 86 52 18]), 'uint32')
ans =

12345678

See Also cast, class, swapbytes

2-3427

uibuttongroup

Purpose Create container object to exclusively manage radio buttons and toggle
buttons

Syntax uibuttongroup('PropertyName1',Value1,'PropertyName2',Value2,
...)

handle = uibuttongroup(...)

Description A uibuttongroup groups components and manages exclusive selection
behavior for radio buttons and toggle buttons that it contains. It
can also contain other user interface controls, axes, uipanels, and
uibuttongroups. It cannot contain ActiveX controls.

uibuttongroup('PropertyName1',Value1,'PropertyName2',Value2,...)
creates a visible container component in the current figure window.
This component manages exclusive selection behavior for uicontrols of
style radiobutton and togglebutton.

Use the Parent property to specify the parent as a figure, uipanel, or
uibuttongroup. If you do not specify a parent, uibuttongroup adds the
button group to the current figure. If no figure exists, one is created.

See the Uibuttongroup Properties reference page for more information.

A uibuttongroup object can have axes, uicontrol, uipanel, and
uibuttongroup objects as children. However, only uicontrols of style
radiobutton and togglebutton are managed by the component.

For the children of a uibuttongroup object, the Position property is
interpreted relative to the button group. If you move the button group,
the children automatically move with it and maintain their positions
in the button group.

If you have a button group that contains a set of radio buttons and
toggle buttons and you want:

• An immediate action to occur when a radio button or toggle button is
selected, you must include the code to control the radio and toggle
buttons in the button group’s SelectionChangeFcn callback function,
not in the individual toggle button Callback functions. See the

2-3428

uibuttongroup

SelectionChangeFcn property and the example on this reference
page for more information.

• Another component such as a push button to base its action on the
selection, then that component’s Callback callback can get the
handle of the selected radio button or toggle button from the button
group’s SelectedObject property.

handle = uibuttongroup(...) creates a uibuttongroup object and
returns a handle to it in handle.

After creating a uibuttongroup, you can set and query its property
values using set and get. Run get(handle) to see a list of properties
and their current values. Run set(handle) to see a list of object
properties you can set and their legal values.

Examples This example creates a uibuttongroup with three radiobuttons. It
manages the radiobuttons with the SelectionChangeFcn callback,
selcbk.

When you select a new radio button, selcbk displays the uibuttongroup
handle on one line, the EventName, OldValue, and NewValue fields
of the event data structure on a second line, and the value of the
SelectedObject property on a third line.

% Create the button group.

h = uibuttongroup('visible','off','Position',[0 0 .2 1]);

% Create three radio buttons in the button group.

u0 = uicontrol('Style','Radio','String','Option 1',...

'pos',[10 350 100 30],'parent',h,'HandleVisibility','off');

u1 = uicontrol('Style','Radio','String','Option 2',...

'pos',[10 250 100 30],'parent',h,'HandleVisibility','off');

u2 = uicontrol('Style','Radio','String','Option 3',...

'pos',[10 150 100 30],'parent',h,'HandleVisibility','off');

% Initialize some button group properties.

set(h,'SelectionChangeFcn',@selcbk);

set(h,'SelectedObject',[]); % No selection

set(h,'Visible','on');

2-3429

uibuttongroup

For the SelectionChangeFcn callback, selcbk, the source and event
data structure arguments are available only if selcbk is called using a
function handle. See SelectionChangeFcn for more information.

function selcbk(source,eventdata)
disp(source);
disp([eventdata.EventName,' ',...

get(eventdata.OldValue,'String'),' ', ...
get(eventdata.NewValue,'String')]);

disp(get(get(source,'SelectedObject'),'String'));

If you click Option 2 with no option selected, the SelectionChangeFcn
callback, selcbk, displays:

3.0011

2-3430

uibuttongroup

SelectionChanged Option 2
Option 2

If you then click Option 1, the SelectionChangeFcn callback, selcbk,
displays:

3.0011

SelectionChanged Option 2 Option 1
Option 1

See Also uicontrol, uipanel

2-3431

Uibuttongroup Properties

Purpose Describe button group properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Inspector is an interactive tool that enables you to
see and change object property values. The Property inspector is
available from GUIDE, or use the inspect function at the command
line.

• The set and get functions enable you to set and query the values of
properties.

Uibuttongroup takes its default property values from uipanel. To
set a uibuttongroup default property value, set the default for the
corresponding uipanel property. Note that you can set no default values
for the uibuttongroup SelectedObject and SelectionChangeFcn
properties.

For more information about changing the default value of a property see
“Setting Default Property Values”. For an example, see the CreateFcn
property.

Uibuttongroup
Properties

This section describes all properties useful to uibuttongroup objects
and lists valid values. Curly braces { } enclose default values.

Property Name Description

BackgroundColor Color of the button group background

BorderType Type of border around the button group

BorderWidth Width of the button group border in pixels

BusyAction Interruption of other callback routines

ButtonDownFcn Button-press callback routine

Children All children of the button group

2-3432

Uibuttongroup Properties

Property Name Description

Clipping Clipping of child axes, panels, and button
groups to the button group. Does not affect
child user interface controls (uicontrol)

CreateFcn Callback routine executed during object
creation

DeleteFcn Callback routine executed during object
deletion

FontAngle Title font angle

FontName Title font name

FontSize Title font size

FontUnits Title font units

FontWeight Title font weight

ForegroundColor Title font color and color of 2-D border line

HandleVisibility Handle accessibility from command line and
GUIs

HighlightColor 3-D frame highlight color

Interruptible Callback routine interruption mode

Parent uibuttongroup object’s parent

Position Button group position relative to parent figure,
panel, or button group

ResizeFcn User-specified resize routine

Selected Whether object is selected

SelectedObject Currently selected uicontrol of style
radiobutton or togglebutton

SelectionChangeFcn Callback routine executed when the selected
radio button or toggle button changes

SelectionHighlight Object highlighted when selected

2-3433

Uibuttongroup Properties

Property Name Description

ShadowColor 3-D frame shadow color

Tag User-specified object identifier

Title Title string

TitlePosition Location of title string in relation to the button
group

Type Object class

UIContextMenu Associate context menu with the button group

Units Units used to interpret the position vector

UserData User-specified data

Visible Button group visibility

Note Controls the Visible property of child
axes, panels, and button groups. Does not
affect child user interface controls (uicontrol).

BackgroundColor
ColorSpec

Color of the uibuttongroup background. A three-element RGB
vector or one of the MATLAB predefined names, specifying the
background color. See the ColorSpec reference page for more
information on specifying color.

BorderType
none | {etchedin} | etchedout |
beveledin | beveledout | line

Border of the uibuttongroup area. Used to define the button group
area graphically. Etched and beveled borders provide a 3-D look.
Use the HighlightColor and ShadowColor properties to specify

2-3434

Uibuttongroup Properties

the border color of etched and beveled borders. A line border is
2-D. Use the ForegroundColor property to specify its color.

BorderWidth
integer

Width of the button group border. The width of the button group
borders in pixels. The default border width is 1 pixel. 3-D borders
wider than 3 may not appear correctly at the corners.

BusyAction
cancel | {queue}

Callback routine interruption. If a callback is executing and the
user triggers an event (such as a mouse click) on an object for
which a callback is defined, the callback associated with the new
event uses the value of BusyAction to decide whether or not to
attempt to interrupt the executing callback.

• If the value is cancel, the event is discarded and the second
callback does not execute.

• If the value is queue, and the Interruptible property of the
first callback is on, the second callback is added to the event
queue and executes in its turn after the first callback finishes
execution.

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback,
it interrupts an executing callback regardless of the value of
that object’s Interruptible property. See the Interruptible
property for information about controlling a callback’s
interruptibility.

ButtonDownFcn
string or function handle

2-3435

Uibuttongroup Properties

Button-press callback routine. A callback routine that executes
when you press a mouse button while the pointer is in a 5-pixel
wide border around the uibuttongroup. This is useful for
implementing actions to interactively modify object properties,
such as size and position, when they are clicked on (using the
selectmoveresize function, for example).

If you define this routine as a string, the string can be a valid
MATLAB expression or the name of an M-file. The expression
executes in the MATLAB workspace.

Children
vector of handles

Children of the uibuttongroup. A vector containing the handles
of all children of the uibuttongroup. Although a uibuttongroup
manages only uicontrols of style radiobutton and togglebutton,
its children can be axes, uipanels, uibuttongroups, and other
uicontrols. You can use this property to reorder the children.

Clipping
{on} | off

Clipping mode. By default, MATLAB clips a uibuttongroup’s
child axes, uipanels, and uibuttongroups to the uibuttongroup
rectangle. If you set Clipping to off, the axis, uipanel, or
uibuttongroup is displayed outside the button group rectangle.
This property does not affect child uicontrols which, by default,
can display outside the button group rectangle.

CreateFcn
string or function handle

Callback routine executed during object creation. The specified
function executes when MATLAB creates a uibuttongroup object.
MATLAB sets all property values for the uibuttongroup before
executing the CreateFcn callback so these values are available to

2-3436

Uibuttongroup Properties

the callback. Within the function, use gcbo to get the handle of
the uibuttongroup being created.

Setting this property on an existing uibuttongroup object has no
effect.

To define a default CreateFcn callback for all new uibuttongroups
you must define the same default for all uipanels. This default
applies unless you override it by specifying a different CreateFcn
callback when you call uibuttongroup. For example, the code

set(0,'DefaultUipanelCreateFcn','set(gcbo,...
''FontName'',''arial'',''FontSize'',12)')

creates a default CreateFcn callback that runs whenever you
create a new panel or button group. It sets the default font name
and font size of the uipanel or uibuttongroup title.

To override this default and create a button group whose
FontName and FontSize properties are set to different values, call
uibuttongroup with code similar to

hpt = uibuttongroup(...,'CreateFcn','set(gcbo,...
''FontName'',''times'',''FontSize'',14)')

Note To override a default CreateFcn callback you must provide
a new callback and not just provide different values for the
specified properties. This is because the CreateFcn callback runs
after the property values are set, and can override property values
you have set explicitly in the uibuttongroup call. In the example
above, if instead of redefining the CreateFcn property for this
uibuttongroup, you had explicitly set FontSize to 14, the default
CreateFcn callback would have set FontSize back to the system
dependent default.

2-3437

Uibuttongroup Properties

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

DeleteFcn
string or function handle

Callback routine executed during object deletion. A callback
routine that executes when you delete the uibuttongroup object
(e.g., when you issue a delete command or clear the figure
containing the uibuttongroup). MATLAB executes the routine
before destroying the object’s properties so these values are
available to the callback routine. The handle of the object whose
DeleteFcn is being executed is accessible only through the root
CallbackObject property, which you can query using gcbo.

FontAngle
{normal} | italic | oblique

Character slant used in the Title. MATLAB uses this property
to select a font from those available on your particular system.
Setting this property to italic or oblique selects a slanted
version of the font, when it is available on your system.

FontName
string

Font family used in the Title. The name of the font in which
to display the Title. To display and print properly, this must
be a font that your system supports. The default font is system
dependent. To eliminate the need to hard code the name of a
fixed-width font, which may not display text properly on systems
that do not use ASCII character encoding (such as in Japan), set
FontName to the string FixedWidth. This string value is case
insensitive.

set(uicontrol_handle,'FontName','FixedWidth')

This then uses the value of the root FixedWidthFontName
property, which can be set to the appropriate value for a locale

2-3438

Uibuttongroup Properties

from startup.m in the end user’s environment. Setting the root
FixedWidthFontName property causes an immediate update of
the display to use the new font.

FontSize
integer

Title font size. A number specifying the size of the font in which to
display the Title, in units determined by the FontUnits property.
The default size is system dependent.

FontUnits
inches | centimeters | normalized |
{points} |pixels

Title font size units. Normalized units interpret FontSize as
a fraction of the height of the uibuttongroup. When you resize
the uibuttongroup, MATLAB modifies the screen FontSize
accordingly. pixels, inches, centimeters, and points are
absolute units (1 point = 1/72 inch).

FontWeight
light | {normal} | demi | bold

Weight of characters in the title. MATLAB uses this property
to select a font from those available on your particular system.
Setting this property to bold causes MATLAB to use a bold version
of the font, when it is available on your system.

ForegroundColor
ColorSpec

Color used for title font and 2-D border line. A three-element
RGB vector or one of the MATLAB predefined names, specifying
the font or line color. See the ColorSpec reference page for more
information on specifying color.

HandleVisibility
{on} | callback | off

2-3439

Uibuttongroup Properties

Control access to object’s handle. This property determines when
an object’s handle is visible in its parent’s list of children. When
a handle is not visible in its parent’s list of children, it is not
returned by functions that obtain handles by searching the object
hierarchy or querying handle properties. This includes get,
findobj, gca, gcf, gco, newplot, cla, clf, and close. Neither is
the handle visible in the parent figure’s CurrentObject property.
Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

• Handles are always visible when HandleVisibility is on.

• Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

• Setting HandleVisibility to off makes handles invisible
at all times. This may be necessary when a callback routine
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string), and so temporarily
hides its own handles during the execution of that function.

Note Uicontrols of style radiobutton and togglebutton
that are managed by a uibuttongroup should not be accessed
outside the button group. Set the HandleVisibility of such
radio buttons and toggle buttons to off or callback to prevent
inadvertent access.

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties.

2-3440

Uibuttongroup Properties

HighlightColor
ColorSpec

3-D frame highlight color. A three-element RGB vector or one
of the MATLAB predefined names, specifying the highlight
color. See the ColorSpec reference page for more information
on specifying color.

Interruptible
{on} | off

Callback routine interruption mode. If a callback is executing and
the user triggers an event (such as a mouse click) on an object for
which a callback is defined, that callback attempts to interrupt
the first callback. MATLAB processes the callbacks according to
these factors:

• The Interruptible property of the object whose callback is
executing

• Whether the executing callback contains drawnow, figure,
getframe, pause, or waitfor statements

• The BusyAction property of the object whose callback is waiting
to execute

If the Interruptible property of the object whose callback is
executing is on (the default), the callback can be interrupted.
Whenever the callback calls one of the drawnow, figure,
getframe, pause, or waitfor functions, the function processes
any events in the event queue, including the waiting callback,
before performing its defined task.

If the Interruptible property of the object whose callback is
executing is off, the callback cannot be interrupted (except by
certain callbacks; see the note below). The BusyAction property
of the object whose callback is waiting to execute determines what
happens to the waiting callback.

2-3441

Uibuttongroup Properties

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback, it
interrupts an executing callback regardless of the value of that
object’s Interruptible property. The interrupting callback starts
execution at the next drawnow, figure, getframe, pause, or
waitfor statement. A figure’s WindowButtonDownFcn callback
routine, or an object’s ButtonDownFcn or Callback routine is
processed according to the rules described above.

Parent
handle

Uibuttongroup parent. The handle of the uibuttongroup’s parent
figure, uipanel, or uibuttongroup. You can move a uibuttongroup
object to another figure, uipanel, or uibuttongroup by setting this
property to the handle of the new parent.

Position
position rectangle

Size and location of uibuttongroup relative to parent. The
rectangle defined by this property specifies the size and location
of the button group within the parent figure window, uipanel, or
uibuttongroup. Specify Position as

[left bottom width height]

left and bottom are the distance from the lower-left corner of
the parent object to the lower-left corner of the uibuttongroup
object. width and height are the dimensions of the uibuttongroup
rectangle, including the title. All measurements are in units
specified by the Units property.

ResizeFcn
string or function handle

2-3442

Uibuttongroup Properties

Resize callback routine. MATLAB executes this callback routine
whenever a user resizes the uibuttongroup and the figure Resize
property is set to on, or in GUIDE, the Resize behavior option
is set to Other. You can query the uibuttongroup Position
property to determine its new size and position. During execution
of the callback routine, the handle to the figure being resized is
accessible only through the root CallbackObject property, which
you can query using gcbo.

You can use ResizeFcn to maintain a GUI layout that is not
directly supported by the MATLAB Position/Units paradigm.

For example, consider a GUI layout that maintains an object
at a constant height in pixels and attached to the top of the
figure, but always matches the width of the figure. The following
ResizeFcn accomplishes this; it keeps the uicontrol whose Tag is
'StatusBar' 20 pixels high, as wide as the figure, and attached to
the top of the figure. Note the use of the Tag property to retrieve
the uicontrol handle, and the gcbo function to retrieve the figure
handle. Also note the defensive programming regarding figure
Units, which the callback requires to be in pixels in order to work
correctly, but which the callback also restores to their previous
value afterwards.

u = findobj('Tag','StatusBar');
fig = gcbo;
old_units = get(fig,'Units');
set(fig,'Units','pixels');
figpos = get(fig,'Position');
upos = [0, figpos(4) - 20, figpos(3), 20];
set(u,'Position',upos);
set(fig,'Units',old_units);

You can change the figure Position from within the ResizeFcn
callback; however, the ResizeFcn is not called again as a result.

2-3443

Uibuttongroup Properties

Note that the print command can cause the ResizeFcn to be
called if the PaperPositionMode property is set to manual and
you have defined a resize function. If you do not want your resize
function called by print, set the PaperPositionMode to auto.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

Selected
on | off (read only)

Is object selected? This property indicates whether the button
group is selected. When this property is on, MATLAB displays
selection handles if the SelectionHighlight property is also on.
You can, for example, define the ButtonDownFcn function to set
this property, allowing users to select the object with the mouse.

SelectedObject
scalar handle

Currently selected radio button or toggle button uicontrol in the
managed group of components. Use this property to determine
the currently selected component or to initialize selection of one of
the radio buttons or toggle buttons. By default, SelectedObject
is set to the first uicontrol radio button or toggle button that
is added. Set it to [] if you want no selection. Note that
SelectionChangeFcn does not execute when this property is set
by the user.

SelectionChangeFcn
string or function handle

Callback routine executed when the selected radio button or toggle
button changes. If this routine is called as a function handle,
uibuttongroup passes it two arguments. The first argument,
source, is the handle of the uibuttongroup. The second argument,
eventdata, is an event data structure that contains the fields
shown in the following table.

2-3444

Uibuttongroup Properties

Event Data
Structure Field Description

EventName 'SelectionChanged'

OldValue Handle of the object selected before this
event. [] if none was selected.

NewValue Handle of the currently selected object.

If you have a button group that contains a set of radio buttons
and/or toggle buttons and you want an immediate action to
occur when a radio button or toggle button is selected, you must
include the code to control the radio and toggle buttons in the
button group’s SelectionChangeFcn callback function, not in the
individual toggle button Callback functions.

If you want another component such as a push button to base its
action on the selection, then that component’s Callback callback
can get the handle of the selected radio button or toggle button
from the button group’s SelectedObject property.

Note For GUIDE GUIs, hObject contains the handle of
the selected radio button or toggle button. See “Examples:
Programming GUIDE GUI Components” for more information.

SelectionHighlight
{on} | off

Object highlighted when selected. When the Selected property
is on, MATLAB indicates the selected state by drawing four edge
handles and four corner handles. When SelectionHighlight is
off, MATLAB does not draw the handles.

ShadowColor
ColorSpec

2-3445

Uibuttongroup Properties

3-D frame shadow color. ShadowColor is a three-element RGB
vector or one of the MATLAB predefined names, specifying
the shadow color. See the ColorSpec reference page for more
information on specifying color.

Tag
string

User-specified object identifier. The Tag property provides a means
to identify graphics objects with a user-specified label. You can
define Tag as any string.

With the findobj function, you can locate an object with a given
Tag property value. This saves you from defining object handles
as global variables. For example, this function call returns the
handles of all children (of the specified figures) that have the Tag
value 'FormatTb'.

h = findobj(figurehandles,'Tag','FormatTb')

Title
string

Title string. The text displayed in the button group title. You can
position the title using the TitlePosition property.

If the string value is specified as a cell array of strings or padded
string matrix, only the first string in the cell array or padded
string matrix is displayed; the rest are ignored. Vertical slash (’|’)
characters are not interpreted as line breaks and instead show up
in the text displayed in the uibuttongroup title.

Setting a property value to default, remove, or factory produces
the effect described in “Defining Default Values”. To set Title to
one of these words, you must precede the word with the backslash
character. For example,

hp = uibuttongroup(...,'Title','\Default');

2-3446

Uibuttongroup Properties

TitlePosition
{lefttop} | centertop | righttop |
leftbottom | centerbottom | rightbottom

Location ofthe title. This property determines the location of the
title string, in relation to the uibuttongroup.

Type
string (read-only)

Object class. This property identifies the kind of graphics
object. For uibuttongroup objects, Type is always the string
'uibuttongroup'.

UIContextMenu
handle

Associate a context menu with a uibuttongroup. Assign this
property the handle of a Uicontextmenu object. MATLAB displays
the context menu whenever you right-click the uibuttongroup.
Use the uicontextmenu function to create the context menu.

Units
inches | centimeters | {normalized} |
points | pixels | characters

Units of measurement. MATLAB uses these units to interpret
the Position property. For the button group itself, units are
measured from the lower-left corner of its parent figure window,
panel, or button group. For children of the button group, they are
measured from the lower-left corner of the button group.

• Normalized units map the lower-left corner of the button group
or figure window to (0,0) and the upper-right corner to (1.0,1.0).

• pixels, inches, centimeters, and points are absolute units
(1 point = 1/72 inch).

• Character units are characters using the default system font;
the width of one character is the width of the letter x, the

2-3447

Uibuttongroup Properties

height of one character is the distance between the baselines of
two lines of text.

If you change the value of Units, it is good practice to return it
to its default value after completing your computation so as not
to affect other functions that assume Units is set to the default
value.

UserData
matrix

User-specified data. Any data you want to associate with the
uibuttongroup object. MATLAB does not use this data, but you
can access it using set and get.

Visible
{on} | off

Uibuttongroup visibility. By default, a uibuttongroup object is
visible. When set to off, the uibuttongroup is not visible, but still
exists and you can query and set its properties.

Note The value of a uibuttongroup’s Visible property also
controls the Visible property of child axes, uipanels, and
uibuttongroups. This property does not affect the Visible
property of child uicontrols.

2-3448

uicontextmenu

Purpose Create context menu

Syntax handle = uicontextmenu('PropertyName',PropertyValue,...)

Description handle = uicontextmenu('PropertyName',PropertyValue,...)
creates a context menu, which is a menu that appears when the user
right-clicks on a graphics object. See the Uicontextmenu Properties
reference page for more information.

You create context menu items using the uimenu function. Menu items
appear in the order the uimenu statements appear. You associate a
context menu with an object using the UIContextMenu property for the
object and specifying the context menu’s handle as the property value.

Example These statements define a context menu associated with a line. When
the user right clicks or presses Alt+click anywhere on the line, the
menu appears. Menu items enable the user to change the line style.

% Define the context menu
cmenu = uicontextmenu;
% Define the line and associate it with the context menu
hline = plot(1:10, 'UIContextMenu', cmenu);
% Define callbacks for context menu items
cb1 = ['set(hline, ''LineStyle'', ''--'')'];
cb2 = ['set(hline, ''LineStyle'', '':'')'];
cb3 = ['set(hline, ''LineStyle'', ''-'')'];
% Define the context menu items
item1 = uimenu(cmenu, 'Label', 'dashed', 'Callback', cb1);
item2 = uimenu(cmenu, 'Label', 'dotted', 'Callback', cb2);
item3 = uimenu(cmenu, 'Label', 'solid', 'Callback', cb3);

When the user right clicks or presses Alt+click on the line, the context
menu appears, as shown in this figure:

2-3449

uicontextmenu

See Also uibuttongroup, uicontrol, uimenu, uipanel

2-3450

Uicontextmenu Properties

Purpose Describe context menu properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Inspector is an interactive tool that enables you to
see and change object property values. The Property inspector is
available from GUIDE, or use the inspect function at the command
line.

• The set and get functions enable you to set and query the values of
properties.

For more information about changing the default value of a property see
“Setting Default Property Values”. For an example, see the CreateFcn
property.

Uicontext-
menu
Properties

This section lists all properties useful to uicontextmenu objects along
with valid values and descriptions of their use. Curly braces {} enclose
default values.

Property Purpose

BusyAction Callback routine interruption

Callback Control action

Children The uimenus defined for the uicontextmenu

CreateFcn Callback routine executed during object
creation

DeleteFcn Callback routine executed during object
deletion

HandleVisibility Whether handle is accessible from command
line and GUIs

Interruptible Callback routine interruption mode

Parent Uicontextmenu object’s parent

2-3451

Uicontextmenu Properties

Property Purpose

Position Location of uicontextmenu when Visible is
set to on

Tag User-specified object identifier

Type Class of graphics object

UserData User-specified data

Visible Uicontextmenu visibility

BusyAction

cancel | {queue}

Callback routine interruption. If a callback is executing and the
user triggers an event (such as a mouse click) on an object for
which a callback is defined, the callback associated with the new
event uses the value of BusyAction to decide whether or not to
attempt to interrupt the executing callback.

• If the value is cancel, the event is discarded and the second
callback does not execute.

• If the value is queue, and the Interruptible property of the
first callback is on, the second callback is added to the event
queue and executes in its turn after the first callback finishes
execution.

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback,
it interrupts an executing callback regardless of the value of
that object’s Interruptible property. See the Interruptible
property for information about controlling a callback’s
interruptibility.

2-3452

Uicontextmenu Properties

Callback
string

Control action. A routine that executes whenever you right-click
an object for which a context menu is defined. The routine
executes immediately before the context menu is posted. Define
this routine as a string that is a valid MATLAB expression or
the name of an M-file. The expression executes in the MATLAB
workspace.

Children
matrix

The uimenu items defined for the uicontextmenu.

CreateFcn
string or function handle

Callback routine executed during object creation. The specified
function executes when MATLAB creates a uicontextmenu object.
MATLAB sets all property values for the uicontextmenu before
executing the CreateFcn callback so these values are available to
the callback. Within the function, use gcbo to get the handle of
the uicontextmenu being created.

Setting this property on an existing uicontextmenu object has no
effect.

You can define a default CreateFcn callback for all new
uicontextmenus. This default applies unless you override it
by specifying a different CreateFcn callback when you call
uicontextmenu. For example, the code

set(0,'DefaultUicontextmenuCreateFcn','set(gcbo,...
''Visible'',''on'')')

2-3453

Uicontextmenu Properties

creates a default CreateFcn callback that runs whenever you
create a new context menu. It sets the default Visible property
of a context menu.

To override this default and create a context menu whose Visible
property is set to a different value, call uicontextmenu with code
similar to

hpt = uicontextmenu(...,'CreateFcn','set(gcbo,...
''Visible'',''off'')')

Note To override a default CreateFcn callback you must provide
a new callback and not just provide different values for the
specified properties. This is because the CreateFcn callback
runs after the property values are set, and can override property
values you have set explicitly in the uicontextmenu call. In the
example above, if instead of redefining the CreateFcn property
for this uicontextmenu, you had explicitly set Visible to off,
the default CreateFcn callback would have set Visible back to
the default, i.e., on.

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

DeleteFcn
string or function handle

Delete uicontextmenu callback routine. A callback routine that
executes when you delete the uicontextmenu object (e.g., when
you issue a delete command or clear the figure containing the
uicontextmenu). MATLAB executes the routine before destroying
the object’s properties so these values are available to the callback
routine.

2-3454

Uicontextmenu Properties

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

HandleVisibility
{on} | callback | off

Control access to object’s handle. This property determines when
an object’s handle is visible in its parent’s list of children. When
a handle is not visible in its parent’s list of children, it is not
returned by functions that obtain handles by searching the object
hierarchy or querying handle properties. This includes get,
findobj, gca, gcf, gco, newplot, cla, clf, and close. Neither is
the handle visible in the parent figure’s CurrentObject property.
Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

• Handles are always visible when HandleVisibility is on.

• Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

• Setting HandleVisibility to off makes handles invisible
at all times. This may be necessary when a callback routine
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string), and so temporarily
hides its own handles during the execution of that function.

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility

2-3455

Uicontextmenu Properties

settings. This does not affect the values of the HandleVisibility
properties.

Interruptible
{on} | off

Callback routine interruption mode. If a callback is executing and
the user triggers an event (such as a mouse click) on an object for
which a callback is defined, that callback attempts to interrupt
the first callback. MATLAB processes the callbacks according to
these factors:

• The Interruptible property of the object whose callback is
executing

• Whether the executing callback contains drawnow, figure,
getframe, pause, or waitfor statements

• The BusyAction property of the object whose callback is
waiting to execute

If the Interruptible property of the object whose callback is
executing is on (the default), the callback can be interrupted.
Whenever the callback calls one of the drawnow, figure,
getframe, pause, or waitfor functions, the function processes
any events in the event queue, including the waiting callback,
before performing its defined task.

If the Interruptible property of the object whose callback is
executing is off, the callback cannot be interrupted (except by
certain callbacks; see the note below). The BusyAction property
of the object whose callback is waiting to execute determines what
happens to the callback.

2-3456

Uicontextmenu Properties

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback, it
interrupts an executing callback regardless of the value of that
object’s Interruptible property. The interrupting callback starts
execution at the next drawnow, figure, getframe, pause, or
waitfor statement. A figure’s WindowButtonDownFcn callback
routine, or an object’s ButtonDownFcn or Callback routine are
processed according to the rules described above.

Parent
handle

Uicontextmenu’s parent. The handle of the uicontextmenu’s
parent object. You can move a uicontextmenu object to another
figure, uipanel, or uibuttongroup by setting this property to the
handle of the new parent.

Position
vector

Uicontextmenu’s position. A two-element vector that defines the
location of a context menu posted by setting the Visible property
value to on. Specify Position as

[x y]

where vector elements represent the horizontal and vertical
distances in pixels from the bottom left corner of the figure
window, panel, or button group to the top left corner of the context
menu.

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This

2-3457

Uicontextmenu Properties

is particularly useful when constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callback
routines. You can define Tag as any string.

Type
string

Class of graphics object. For uicontextmenu objects, Type is
always the string 'uicontextmenu'.

UserData
matrix

User-specified data. Any data you want to associate with the
uicontextmenu object. MATLAB does not use this data, but you
can access it using set and get.

Visible
on | {off}

Uicontextmenu visibility. The Visible property can be used in
two ways:

• Its value indicates whether the context menu is currently
posted. While the context menu is posted, the property value is
on; when the context menu is not posted, its value is off.

• Its value can be set to on to force the posting of the context
menu. Similarly, setting the value to off forces the context
menu to be removed. When used in this way, the Position
property determines the location of the posted context menu.

2-3458

uicontrol

Purpose Create user interface control object

Syntax handle = uicontrol('PropertyName',PropertyValue,...)
handle = uicontrol(parent,'PropertyName',PropertyValue,...)
handle = uicontrol
uicontrol(uich)

Description uicontrol creates a uicontrol graphics objects (user interface controls),
which you use to implement graphical user interfaces.

handle = uicontrol('PropertyName',PropertyValue,...) creates
a uicontrol and assigns the specified properties and values to it. It
assigns the default values to any properties you do not specify. The
default uicontrol style is a pushbutton. The default parent is the
current figure. See the Uicontrol Properties reference page for more
information.

handle = uicontrol(parent,'PropertyName',PropertyValue,...)
creates a uicontrol in the object specified by the handle, parent. If you
also specify a different value for the Parent property, the value of the
Parent property takes precedence. parent can be the handle of a figure,
uipanel, or uibuttongroup.

handle = uicontrol creates a pushbutton in the current figure. The
uicontrol function assigns all properties their default values.

uicontrol(uich) gives focus to the uicontrol specified by the handle,
uich.

When selected, most uicontrol objects perform a predefined action.
MATLAB supports numerous styles of uicontrols, each suited for a
different purpose:

• Check boxes

• Editable text fields

• Frames

• List boxes

2-3459

uicontrol

• Pop-up menus

• Push buttons

• Radio buttons

• Sliders

• Static text labels

• Toggle buttons

For information on using these uicontrols within GUIDE, the MATLAB
GUI development environment, see Examples: Programming GUI
Components in the MATLAB Creating GUIs documentation

Specifying the Uicontrol Style

To create a specific type of uicontrol, set the Style property as one of
the following strings:

• 'checkbox' – Check boxes generate an action when selected.
These devices are useful when providing the user with a number of
independent choices. To activate a check box, click the mouse button
on the object. The state of the device is indicated on the display.

• 'edit' – Editable text fields enable users to enter or modify text
values. Use editable text when you want text as input. If Max-Min>1,
then multiple lines are allowed. For multi-line edit boxes, a vertical
scrollbar enables scrolling, as do the arrow keys.

• 'frame' – Frames are rectangles that provide a visual enclosure for
regions of a figure window. Frames can make a user interface easier
to understand by grouping related controls. Frames have no callback
routines associated with them. Only other uicontrols can appear
within frames.

Frames are opaque, not transparent, so the order in which you define
uicontrols is important in determining whether uicontrols within
a frame are covered by the frame or are visible. Stacking order
determines the order objects are drawn: objects defined first are
drawn first; objects defined later are drawn over existing objects. If

2-3460

uicontrol

you use a frame to enclose objects, you must define the frame before
you define the objects.

Note Most frames in existing GUIs can now be replaced with panels
(uipanel) or button groups (uibuttongroup). GUIDE continues
to support frames in those GUIs that contain them, but the frame
component does not appear in the GUIDE Layout Editor component
palette.

• 'listbox' – List boxes display a list of items and enable users to
select one or more items. The Min and Max properties control the
selection mode:

If Max-Min>1, then multiple selection is allowed.

If Max-Min<=1, then only single selection is allowed.

The Value property indicates selected entries and contains the indices
into the list of strings; a vector value indicates multiple selections.
MATLAB evaluates the list box’s callback routine after any mouse
button up event that changes the Value property. Therefore, you may
need to add a "Done" button to delay action caused by multiple clicks
on list items. List boxes differentiate between single and double
clicks and set the figure SelectionType property to normal or open
accordingly before evaluating the list box’s Callback property.

• 'popupmenu' – Pop-up menus (also known as drop-down menus or
combo boxes) open to display a list of choices when pressed. When not
open, a pop-up menu indicates the current choice. Pop-up menus are
useful when you want to provide users with a number of mutually
exclusive choices, but do not want to take up the amount of space that
a series of radio buttons requires.

• 'pushbutton' – Push buttons generate an action when pressed. To
activate a push button, click the mouse button on the push button.

• 'radiobutton' – Radio buttons are similar to check boxes, but are
intended to be mutually exclusive within a group of related radio

2-3461

uicontrol

buttons (i.e., only one is in a pressed state at any given time). To
activate a radio button, click the mouse button on the object. The
state of the device is indicated on the display. Note that your code
can implement mutually exclusive behavior for radio buttons.

• 'slider' – Sliders accept numeric input within a specific range
by enabling the user to move a sliding bar. Users move the bar by
pressing the mouse button and dragging the pointer over the bar,
or by clicking in the trough or on an arrow. The location of the bar
indicates a numeric value, which is selected by releasing the mouse
button. You can set the minimum, maximum, and current values of
the slider.

• 'text' – Static text boxes display lines of text. Static text is typically
used to label other controls, provide directions to the user, or indicate
values associated with a slider. Users cannot change static text
interactively and there is no way to invoke the callback routine
associated with it.

• 'togglebutton' – Toggle buttons are controls that execute callbacks
when clicked on and indicate their state, either on or off. Toggle
buttons are useful for building toolbars.

Remarks • The uicontrol function accepts property name/property value pairs,
structures, and cell arrays as input arguments and optionally returns
the handle of the created object. You can also set and query property
values after creating the object using the set and get functions.

• A uicontrol object is a child of a figure, uipanel, or uibuttongroup
and therefore does not require an axes to exist when placed in a
figure window, uipanel, or uibuttongroup.

• When MATLAB is paused and a uicontrol has focus, pressing a
keyboard key does not cause MATLAB to resume. Click anywhere
outside a uicontrol and then press any key. See the pause function
for more information.

2-3462

uicontrol

Examples Example 1

The following statement creates a push button that clears the current
axes when pressed.

h = uicontrol('Style', 'pushbutton', 'String', 'Clear',...
'Position', [20 150 100 70], 'Callback', 'cla');

This statement gives focus to the pushbutton.

uicontrol(h)

Example 2

You can create a uicontrol object that changes figure colormaps by
specifying a pop-up menu and supplying an M-file name as the object’s
Callback:

hpop = uicontrol('Style', 'popup',...
'String', 'hsv|hot|cool|gray',...
'Position', [20 320 100 50],...
'Callback', 'setmap');

The above call to uicontrol defines four individual choices in the menu:
hsv, hot, cool, and gray. You specify these choices with the String
property, separating the choices with the "|" character.

The Callback, in this case setmap, is the name of an M-file that
defines a more complicated set of instructions than a single MATLAB
command. setmap contains these statements:

val = get(hpop,'Value');
if val == 1

colormap(hsv)
elseif val == 2

colormap(hot)
elseif val == 3

colormap(cool)
elseif val == 4

colormap(gray)

2-3463

uicontrol

end

The Value property contains a number that indicates the selected
choice. The choices are numbered sequentially from one to four. The
setmap M-file can get and then test the contents of the Value property
to determine what action to take.

See Also textwrap, uibuttongroup, uimenu, uipanel

2-3464

Uicontrol Properties

Purpose Describe user interface control (uicontrol) properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Inspector is an interactive tool that enables you to
see and change object property values. The Property inspector is
available from GUIDE, or use the inspect function at the command
line.

• The set and get commands enable you to set and query the values of
properties

To change the default value of properties see “Setting Default Property
Values”. You can also set default uicontrol properties on the root and
figure levels:

set(0,'DefaultUicontrolProperty',PropertyValue...)
set(gcf,'DefaultUicontrolProperty',PropertyValue...)

where Property is the name of the uicontrol property whose default
value you want to set and PropertyValue is the value you are specifying
as the default. Use set and get to access uicontrol properties.

For information on using these uicontrols within GUIDE, the MATLAB
GUI development environment, see Programming GUI Components in
the MATLAB Creating GUIs documentation.

Uicontrol
Properties

This section lists all properties useful to uicontrol objects along with
valid values and descriptions of their use. Curly braces {} enclose
default values.

Property Purpose

BackgroundColor Object background color

BusyAction Callback routine interruption

ButtonDownFcn Button-press callback routine

Callback Control action

2-3465

Uicontrol Properties

Property Purpose

CData Truecolor image displayed on the control

Children Uicontrol objects have no children

CreateFcn Callback routine executed during object
creation

DeleteFcn Callback routine executed during object
deletion

Enable Enable or disable the uicontrol

FontAngle Character slant

FontName Font family

FontSize Font size

FontUnits Font size units

FontWeight Weight of text characters

ForegroundColor Color of text

HandleVisibility Whether handle is accessible from command
line and GUIs

HitTest Whether selectable by mouse click

HorizontalAlignment Alignment of label string

Interruptible Callback routine interruption mode

KeyPressFcn Key press callback routine

ListboxTop Index of top-most string displayed in list box

Max Maximum value (depends on uicontrol
object)

Min Minimum value (depends on uicontrol
object)

Parent Uicontrol object’s parent

Position Size and location of uicontrol object

2-3466

Uicontrol Properties

Property Purpose

Selected Whether object is selected

SelectionHighlight Object highlighted when selected

SliderStep Slider step size

String Uicontrol object label, also list box and
pop-up menu items

Style Type of uicontrol object

Tag User-specified object identifier

TooltipString Content of object’s tooltip

Type Class of graphics object

UIContextMenu Uicontextmenu object associated with the
uicontrol

Units Units to interpret position vector

UserData User-specified data

Value Current value of uicontrol object

Visible Uicontrol visibility

BackgroundColor
ColorSpec

Object background color. The color used to fill the uicontrol
rectangle. Specify a color using a three-element RGB vector
or one of the MATLAB predefined names. The default color
is determined by system settings. See ColorSpec for more
information on specifying color.

BusyAction
cancel | {queue}

Callback routine interruption. If a callback is executing and the
user triggers an event (such as a mouse click) on an object for

2-3467

Uicontrol Properties

which a callback is defined, the callback associated with the new
event uses the value of BusyAction to decide whether or not to
attempt to interrupt the executing callback.

• If the value is cancel, the event is discarded and the second
callback does not execute.

• If the value is queue, and the Interruptible property of the
first callback is on, the second callback is added to the event
queue and executes in its turn after the first callback finishes
execution.

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback, it
interrupts an executing callback regardless of the value of that
object’s Interruptible property. See the Interruptible property
for information about controlling a callback’s interruptibility.

ButtonDownFcn
string or function handle (GUIDE sets this property)

Button-press callback routine. A callback routine that can execute
when you press a mouse button while the pointer is on or near a
uicontrol. Specifically:

• If the uicontrol’s Enable property is set to on, the
ButtonDownFcn callback executes when you click the right or
left mouse button in a 5-pixel border around the uicontrol or
when you click the right mouse button on the control itself.

• If the uicontrol’s Enable property is set to inactive or off, the
ButtonDownFcn executes when you click the right or left mouse
button in the 5-pixel border or on the control itself.

This is useful for implementing actions to interactively modify
control object properties, such as size and position, when they are
clicked on (using selectmoveresize, for example).

2-3468

Uicontrol Properties

Define this routine as a string that is a valid MATLAB expression
or the name of an M-file. The expression executes in the MATLAB
workspace.

To add a ButtonDownFcn callback in GUIDE, select View
Callbacks from the Layout Editor View menu, then select
ButtonDownFcn. GUIDE sets this property to the appropriate
string and adds the callback to the M-file the next time you save
the GUI. Alternatively, you can set this property to the string
%automatic. The next time you save the GUI, GUIDE sets this
property to the appropriate string and adds the callback to the
M-file.

Use the Callback property to specify the callback routine that
executes when you activate the enabled uicontrol (e.g., click a
push button).

Callback
string or function handle (GUIDE sets this property)

Control action. A routine that executes whenever you activate the
uicontrol object (e.g., when you click on a push button or move a
slider). Define this routine as a string that is a valid MATLAB
expression or the name of an M-file. The expression executes in
the MATLAB workspace.

For examples of Callback callbacks for each style of component:

• For GUIDE GUIs, see “Examples: Programming GUIDE GUI
Components”.

• For programmatically created GUIs, see “Examples:
Programming GUI Components”.

Callback routines defined for static text do not execute because
no action is associated with these objects.

2-3469

Uicontrol Properties

To execute the callback routine for an edit text control, type in the
desired text and then do one of the following:

• Click another component, the menu bar, or the background
of the GUI.

• For a single line editable text box, press Enter.

• For a multiline editable text box, press Ctl+Enter.

CData
matrix

Truecolor image displayed on control. A three-dimensional matrix
of RGB values that defines a truecolor image displayed on a
control, which must be a push button or toggle button. Each
value must be between 0.0 and 1.0. Setting CData on a radio
button or checkbox will replace the default CData on these
controls. The control will continue to work as expected, but its
state is not reflected by its appearance when clicked.

For push buttons and toggle buttons, CData overlaps the
String. In the case of radio buttons and checkboxes, CData
takes precedence over String and, depending on its size, it can
displace the text.

Setting CData to [] restores the default CData for radio buttons
and checkboxes.

Children
matrix

The empty matrix; uicontrol objects have no children.

Clipping
{on} | off

This property has no effect on uicontrol objects.

2-3470

Uicontrol Properties

CreateFcn
string or function handle

Callback routine executed during object creation. The specified
function executes when MATLAB creates a uicontrol object.
MATLAB sets all property values for the uicontrol before
executing the CreateFcn callback so these values are available
to the callback. Within the function, use gcbo to get the handle
of the uicontrol being created.

Setting this property on an existing uicontrol object has no effect.

You can define a default CreateFcn callback for all new uicontrols.
This default applies unless you override it by specifying a different
CreateFcn callback when you call uicontrol. For example, the
code

set(0,'DefaultUicontrolCreateFcn','set(gcbo,...
''BackgroundColor'',''white'')')

creates a default CreateFcn callback that runs whenever you
create a new uicontrol. It sets the default background color of
all new uicontrols.

To override this default and create a uicontrol whose
BackgroundColor is set to a different value, call uicontrol with
code similar to

hpt = uicontrol(...,'CreateFcn','set(gcbo,...
''BackgroundColor'',''blue'')')

2-3471

Uicontrol Properties

Note To override a default CreateFcn callback you must provide
a new callback and not just provide different values for the
specified properties. This is because the CreateFcn callback runs
after the property values are set, and can override property values
you have set explicitly in the uicontrol call. In the example
above, if instead of redefining the CreateFcn property for this
uicontrol, you had explicitly set BackgroundColor to blue, the
default CreateFcn callback would have set BackgroundColor
back to the default, i.e., white.

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

DeleteFcn
string or function handle

Delete uicontrol callback routine. A callback routine that executes
when you delete the uicontrol object (e.g., when you issue a delete
command or clear the figure containing the uicontrol). MATLAB
executes the routine before destroying the object’s properties so
these values are available to the callback routine.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

Enable
{on} | inactive | off

Enable or disable the uicontrol. This property controls how
uicontrols respond to mouse button clicks, including which
callback routines execute.

2-3472

Uicontrol Properties

• on – The uicontrol is operational (the default).

• inactive – The uicontrol is not operational, but looks the same
as when Enable is on.

• off – The uicontrol is not operational and its image (set by the
Cdata property) is grayed out.

When you left-click on a uicontrol whose Enable property is on,
MATLAB performs these actions in this order:

1 Sets the figure’s SelectionType property.

2 Executes the uicontrol’s ClickedCallback routine.

3 Does not set the figure’s CurrentPoint property and does
not execute either the control’s ButtonDownFcn or the figure’s
WindowButtonDownFcn callback.

When you left-click on a uicontrol whose Enable property is off,
or when you right-click a uicontrol whose Enable property has
any value, MATLAB performs these actions in this order:

4 Sets the figure’s SelectionType property.

5 Sets the figure’s CurrentPoint property.

6 Executes the figure’s WindowButtonDownFcn callback.

Extent
position rectangle (read only)

Size of uicontrol character string. A four-element vector that
defines the size and position of the character string used to label
the uicontrol. It has the form:

[0,0,width,height]

The first two elements are always zero. width and height are
the dimensions of the rectangle. All measurements are in units
specified by the Units property.

2-3473

Uicontrol Properties

Since the Extent property is defined in the same units as the
uicontrol itself, you can use this property to determine proper
sizing for the uicontrol with regard to its label. Do this by

• Defining the String property and selecting the font using the
relevant properties.

• Getting the value of the Extent property.

• Defining the width and height of the Position property to be
somewhat larger than the width and height of the Extent.

For multiline strings, the Extent rectangle encompasses all the
lines of text. For single line strings, the Extent is returned as a
single line, even if the string wraps when displayed on the control.

FontAngle
{normal} | italic | oblique

Character slant. MATLAB uses this property to select a font from
those available on your particular system. Setting this property
to italic or oblique selects a slanted version of the font, when
it is available on your system.

FontName
string

Font family. The name of the font in which to display the String.
To display and print properly, this must be a font that your system
supports. The default font is system dependent.

To use a fixed-width font that looks good in any locale (and
displays properly in Japan, where multibyte character sets are
used), set FontName to the string FixedWidth (this string value
is case sensitive):

set(uicontrol_handle, 'FontName', 'FixedWidth')

This parameter value eliminates the need to hard code the name
of a fixed-width font, which may not display text properly on

2-3474

Uicontrol Properties

systems that do not use ASCII character encoding (such as in
Japan). A properly written MATLAB application that needs to
use a fixed-width font should set FontName to FixedWidth and
rely on the root FixedWidthFontName property to be set correctly
in the end user’s environment.

End users can adapt a MATLAB application to different locales or
personal environments by setting the root FixedWidthFontName
property to the appropriate value for that locale from startup.m.
Setting the root FixedWidthFontName property causes an
immediate update of the display to use the new font.

FontSize
size in FontUnits

Font size. A number specifying the size of the font in which to
display the String, in units determined by the FontUnits property.
The default point size is system dependent.

FontUnits
{points} | normalized | inches |
centimeters | pixels

Font size units. This property determines the units used by the
FontSize property. Normalized units interpret FontSize as
a fraction of the height of the uicontrol. When you resize the
uicontrol, MATLAB modifies the screen FontSize accordingly.
pixels, inches, centimeters, and points are absolute units (1
point = 1/72 inch).

FontWeight
light | {normal} | demi | bold

Weight of text characters. MATLAB uses this property to select a
font from those available on your particular system. Setting this
property to bold causes MATLAB to use a bold version of the font,
when it is available on your system.

2-3475

Uicontrol Properties

ForegroundColor
ColorSpec

Color of text. This property determines the color of the text
defined for the String property (the uicontrol label). Specify a
color using a three-element RGB vector or one of the MATLAB
predefined names. The default text color is black. See ColorSpec
for more information on specifying color.

HandleVisibility
{on} | callback | off

Control access to object’s handle. This property determines when
an object’s handle is visible in its parent’s list of children. When
a handle is not visible in its parent’s list of children, it is not
returned by functions that obtain handles by searching the object
hierarchy or querying handle properties. This includes get,
findobj, gca, gcf, gco, newplot, cla, clf, and close. Neither is
the handle visible in the parent figure’s CurrentObject property.
Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

• Handles are always visible when HandleVisibility is on.

• Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

• Setting HandleVisibility to off makes handles invisible
at all times. This may be necessary when a callback routine
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string), and so temporarily
hides its own handles during the execution of that function.

2-3476

Uicontrol Properties

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties.

Note Radio buttons and toggle buttons that are managed by a
uibuttongroup should not be accessed outside the button group.
Set the HandleVisibility of such radio buttons and toggle
buttons to off to prevent inadvertent access.

HitTest
{on} | off

Selectable by mouse click. This property has no effect on uicontrol
objects.

HorizontalAlignment
left | {center} | right

Horizontal alignment of label string. This property determines
the justification of the text defined for the String property (the
uicontrol label):

• left — Text is left justified with respect to the uicontrol.

• center — Text is centered with respect to the uicontrol.

• right — Text is right justified with respect to the uicontrol.

On Microsoft Windows systems, this property affects only edit
and text uicontrols.

Interruptible
{on} | off

Callback routine interruption mode. If a callback is executing and
the user triggers an event (such as a mouse click) on an object for

2-3477

Uicontrol Properties

which a callback is defined, that callback attempts to interrupt
the first callback. MATLAB processes the callbacks according to
these factors:

• The Interruptible property of the object whose callback is
executing

• Whether the executing callback contains drawnow, figure,
getframe, pause, or waitfor statements

• The BusyAction property of the object whose callback is
waiting to execute

If the Interruptible property of the object whose callback is
executing is on (the default), the callback can be interrupted.
Whenever the callback calls one of the drawnow, figure,
getframe, pause, or waitfor functions, the function processes
any events in the event queue, including the waiting callback,
before performing its defined task.

If the Interruptible property of the object whose callback is
executing is off, the callback cannot be interrupted (except by
certain callbacks; see the note below). The BusyAction property
of the object whose callback is waiting to execute determines what
happens to the callback.

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback, it
interrupts an executing callback regardless of the value of that
object’s Interruptible property. The interrupting callback starts
execution at the next drawnow, figure, getframe, pause, or
waitfor statement. A figure’s WindowButtonDownFcn callback
routine, or an object’s ButtonDownFcn or Callback routine are
processed according to the rules described above.

2-3478

Uicontrol Properties

KeyPressFcn
string or function handle

Key press callback function. A callback routine invoked by a key
press when the callback’s uicontrol object has focus. Focus is
denoted by a border or a dotted border, respectively, in UNIX and
Microsoft Windows. If no uicontrol has focus, the figure’s key
press callback function, if any, is invoked. KeyPressFcn can be a
function handle, the name of an M-file, or any legal MATLAB
expression.

If the specified value is the name of an M-file, the callback routine
can query the figure’s CurrentCharacter property to determine
what particular key was pressed and thereby limit the callback
execution to specific keys.

If the specified value is a function handle, the callback routine
can retrieve information about the key that was pressed from its
event data structure argument.

Examples:Event Data
Structure
Field Description a = Shift Shift/a

Character Character interpretation of
the key that was pressed.

'a' '=' '' 'A'

Modifier Current modifier, such as
'control', or an empty cell
array if there is no modifier

{1x0
cell}

{1x0
cell}

{'shift'}{'shift'}

Key Name of the key that was
pressed.

'a' 'equal' 'shift' 'a'

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

ListboxTop
scalar

2-3479

Uicontrol Properties

Index of top-most string displayed in list box. This property
applies only to the listbox style of uicontrol. It specifies which
string appears in the top-most position in a list box that is not
large enough to display all list entries. ListboxTop is an index
into the array of strings defined by the String property and must
have a value between 1 and the number of strings. Noninteger
values are fixed to the next lowest integer.

Max
scalar

Maximum value. This property specifies the largest value allowed
for the Value property. Different styles of uicontrols interpret
Max differently:

• Check boxes – Max is the setting of the Value property while
the check box is selected.

• Editable text – If Max - Min > 1, then editable text boxes accept
multiline input. If Max - Min <= 1, then editable text boxes
accept only single line input.

• List boxes – If Max - Min > 1, then list boxes allow multiple
item selection. If Max - Min <= 1, then list boxes do not allow
multiple item selection.

• Radio buttons – Max is the setting of the Value property when
the radio button is selected.

• Sliders – Max is the maximum slider value and must be greater
than the Min property. The default is 1.

• Toggle buttons – Max is the value of the Value property when
the toggle button is selected. The default is 1.

• Pop-up menus, push buttons, and static text do not use the
Max property.

Min
scalar

2-3480

Uicontrol Properties

Minimum value. This property specifies the smallest value
allowed for the Value property. Different styles of uicontrols
interpret Min differently:

• Check boxes – Min is the setting of the Value property while
the check box is not selected.

• Editable text – If Max - Min > 1, then editable text boxes accept
multiline input. If Max - Min <= 1, then editable text boxes
accept only single line input.

• List boxes – If Max - Min > 1, then list boxes allow multiple item
selection. If Max - Min <= 1, then list boxes allow only single
item selection.

• Radio buttons – Min is the setting of the Value property when
the radio button is not selected.

• Sliders – Min is the minimum slider value and must be less
than Max. The default is 0.

• Toggle buttons – Min is the value of the Value property when
the toggle button is not selected. The default is 0.

• Pop-up menus, push buttons, and static text do not use the
Min property.

Parent
handle

Uicontrol parent. The handle of the uicontrol’s parent object.
You can move a uicontrol object to another figure, uipanel, or
uibuttongroup by setting this property to the handle of the new
parent.

Position
position rectangle

Size and location of uicontrol. The rectangle defined by this
property specifies the size and location of the control within

2-3481

Uicontrol Properties

the parent figure window, uipanel, or uibuttongroup. Specify
Position as

[left bottom width height]

left and bottom are the distance from the lower-left corner of the
parent object to the lower-left corner of the uicontrol object. width
and height are the dimensions of the uicontrol rectangle. All
measurements are in units specified by the Units property.

On Microsoft Windows systems, the height of pop-up menus is
automatically determined by the size of the font. The value you
specify for the height of the Position property has no effect.

The width and height values determine the orientation of sliders.
If width is greater than height, then the slider is oriented
horizontally, If height is greater than width, then the slider is
oriented vertically.

Note The height of a pop-up menu is determined by the font size.
The height you set in the position vector is ignored. The height
element of the position vector is not changed.

On Mac platforms, the height of a horizontal slider is constrained.
If the height you set in the position vector exceeds this constraint,
the displayed height of the slider is the maximum allowed. The
height element of the position vector is not changed.

Selected
on | {off} (read only)

Is object selected. When this property is on, MATLAB displays
selection handles if the SelectionHighlight property is also
on. You can, for example, define the ButtonDownFcn to set this
property, allowing users to select the object with the mouse.

2-3482

Uicontrol Properties

SelectionHighlight
{on} | off

Object highlight when selected. When the Selected property is
on, MATLAB indicates the selected state by drawing four edge
handles and four corner handles. When SelectionHighlight is
off, MATLAB does not draw the handles.

SliderStep
[min_step max_step]

Slider step size. This property controls the amount the
slider Value changes when you click the mouse on the arrow
button (min_step) or on the slider trough (max_step). Specify
SliderStep as a two-element vector; each value must be in the
range [0, 1]. The actual step size is a function of the specified
SliderStep and the total slider range (Max - Min). The default,
[0.01 0.10], provides a 1 percent change for clicks on the arrow
button and a 10 percent change for clicks in the trough.

For example, if you create the following slider,

uicontrol('Style','slider','Min',1,'Max',7,...
'Value',2,'SliderStep',[0.1 0.6])

clicking on the arrow button moves the indicator by,

0.1*(7-1)
ans =

0.6000

and clicking in the trough moves the indicator by,

0.6*(7-1)
ans =

3.6000

Note that if the specified step size moves the slider to a value
outside the range, the indicator moves only to the Max or Min value.

2-3483

Uicontrol Properties

See also the Max, Min, and Value properties.

String
string

Uicontrol label, list box items, pop-up menu choices.

For check boxes, editable text, push buttons, radio buttons,
static text, and toggle buttons, the text displayed on the
object. For list boxes and pop-up menus, the set of entries or items
displayed in the object.

Note If you specify a numerical value for String, MATLAB
converts it to char but the result may not be what you expect. If
you have numerical data, you should first convert it to a string,
e.g., using num2str, before assigning it to the String property.

For uicontrol objects that display only one line of text
(check box, push button, radio button, toggle button), if the string
value is specified as a cell array of strings or padded string matrix,
only the first string of a cell array or of a padded string matrix
is displayed; the rest are ignored. Vertical slash (’|’) characters
are not interpreted as line breaks and instead show up in the
text displayed in the uicontrol.

For multiple line editable text or static text controls, line
breaks occur between each row of the string matrix, and each cell
of a cell array of strings. Vertical slash (’|’) characters and \n
characters are not interpreted as line breaks, and instead show
up in the text displayed in the uicontrol.

For multiple items on a list box or pop-up menu, you can
specify the items in any of the formats shown in the following
table.

2-3484

Uicontrol Properties

String Property
Format

Example

Cell array of strings {'one' 'two' 'three'}

Padded string
matrix

['one ';'two ';'three']

String vector
separated by
vertical slash (|)
characters

['one|two|three']

If you specify a component width that is too small to accommodate
one or more of the specified strings, MATLAB truncates those
strings with an ellipsis. Use the Value property to set the index of
the initial item selected.

For check boxes, push buttons, radio buttons, toggle
buttons, and the selected item in popup menus, when the
specified text is clipped because it is too long for the uicontrol, an
ellipsis (...) is appended to the text in the active GUI to indicate
that it has been clipped.

For push buttons and toggle buttons, CData overlaps the
String. In the case of radio buttons and checkboxes, CData
takes precedence over String and, depending on its size, can
displace the text.

For editable text, the String property value is set to the string
entered by the user.

2-3485

Uicontrol Properties

Reserved Words There are three reserved words: default,
remove, factory (case sensitive). If you want to use one of these
reserved words in the String property, you must precede it with
a backslash ('\') character. For example,

h = uicontrol('Style','edit','String','\default');

Style
{pushbutton} | togglebutton | radiobutton | checkbox |
edit | text | slider | frame | listbox | popupmenu

Style of uicontrol object to create. The Style property specifies the
kind of uicontrol to create. See the uicontrol Description section
for information on each type.

Tag
string (GUIDE sets this property)

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This
is particularly useful when constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callback
routines. You can define Tag as any string.

TooltipString
string

Content of tooltip for object. The TooltipString property specifies
the text of the tooltip associated with the uicontrol. When the
user moves the mouse pointer over the control and leaves it there,
the tooltip is displayed.

Type
string (read only)

2-3486

Uicontrol Properties

Class of graphics object. For uicontrol objects, Type is always the
string 'uicontrol'.

UIContextMenu
handle

Associate a context menu with uicontrol. Assign this property
the handle of a uicontextmenu object. MATLAB displays the
context menu whenever you right-click over the uicontrol. Use the
uicontextmenu function to create the context menu.

Units
{pixels} | normalized | inches | centimeters | points |
characters (GUIDE default: normalized)

Units of measurement. MATLAB uses these units to interpret the
Extent and Position properties. All units are measured from the
lower-left corner of the parent object.

• Normalized units map the lower-left corner of the parent object
to (0,0) and the upper-right corner to (1.0,1.0).

• pixels, inches, centimeters, and points are absolute units
(1 point = 1/72 inch).

• Character units are characters using the default system font;
the width of one character is the width of the letter x, the
height of one character is the distance between the baselines of
two lines of text.

If you change the value of Units, it is good practice to return it
to its default value after completing your computation so as not
to affect other functions that assume Units is set to the default
value.

UserData
matrix

2-3487

Uicontrol Properties

User-specified data. Any data you want to associate with the
uicontrol object. MATLAB does not use this data, but you can
access it using set and get.

Value
scalar or vector

Current value of uicontrol. The uicontrol style determines the
possible values this property can have:

• Check boxes set Value to Max when they are on (when selected)
and Min when off (not selected).

• List boxes set Value to a vector of indices corresponding to
the selected list entries, where 1 corresponds to the first item
in the list.

• Pop-up menus set Value to the index of the item selected, where
1 corresponds to the first item in the menu. The Examples
section shows how to use the Value property to determine
which item has been selected.

• Radio buttons set Value to Max when they are on (when
selected) and Min when off (not selected).

• Sliders set Value to the number indicated by the slider bar.

• Toggle buttons set Value to Max when they are down (selected)
and Min when up (not selected).

• Editable text, push buttons, and static text do not set this
property.

Set the Value property either interactively with the mouse or
through a call to the set function. The display reflects changes
made to Value.

Visible
{on} | off

2-3488

Uicontrol Properties

Uicontrol visibility. By default, all uicontrols are visible. When
set to off, the uicontrol is not visible, but still exists and you can
query and set its properties.

Note Setting Visible to off for uicontrols that are not displayed
initially in the GUI, can result in faster startup time for the GUI.

2-3489

uigetdir

Purpose Open standard dialog box for selecting a directory

Syntax uigetdir
directory_name = uigetdir
directory_name = uigetdir(start_path)
directory_name = uigetdir(start_path,dialog_title)

Description uigetdir displays a modal dialog box enabling the user to browse
through the directory structure and select a directory or type the name
of a directory. If the directory exists, uigetdir returns the selected path
when the user clicks OK. For Windows platforms, uigetdir opens a
dialog box in the base directory (the Windows desktop) with the current
directory selected. See “Remarks” on page 2-3491 for information about
UNIX and Mac platforms.

Note A modal dialog box prevents the user from interacting with other
windows before responding. To block MATLAB program execution as
well, use the uiwait function. For more information about modal dialog
boxes, see WindowStyle in the MATLAB Figure Properties.

directory_name = uigetdir returns the path to the selected directory
when the user clicks OK. If the user clicks Cancel or closes the dialog
window, directory_name is set to0.

directory_name = uigetdir(start_path) opens a dialog box with
the directory specified by start_path selected. If start_path is a valid
directory path, the dialog box opens in the specified directory.

If start_path is an empty string (''), the dialog box opens in the
current directory. If start_path is not a valid directory path, the dialog
box opens in the base directory. For Windows, this is the Windows
desktop. See “Remarks” on page 2-3491 for information about UNIX
and Mac platforms.

directory_name = uigetdir(start_path,dialog_title) opens
a dialog box with the specified title. On Windows platforms, the

2-3490

uigetdir

string replaces the default caption inside the dialog box for specifying
instructions to the user. The default dialog_title isSelect
Directory to Open. See “Remarks” on page 2-3491 for information
about UNIX and Mac platforms.

Note On Windows platforms, users can click the New Folder button
to add a new directory to the directory structure displayed. Users can
also drag and drop existing directories.

Remarks For Windows platforms, the dialog box is similar to those shown in the
“Examples” on page 2-3492 below.

For UNIX platforms, uigetdir opens a dialog box in the base directory
(the directory from which MATLAB is started) with the current
directory selected. The dialog_title string replaces the default title
of the dialog box. The dialog box is similar to the one shown in the
following figure.

2-3491

uigetdir

For Mac platforms,uigetdir opens a dialog box in the base directory (the
current directory) with the current directory open. The dialog_title
string, if any, is ignored. The dialog box is similar to the one shown in
the following figure.

Examples Example 1

The following statement displays directories on the C: drive.

dname = uigetdir('C:\');

The dialog box is shown in the following figure.

2-3492

uigetdir

If the user selects the directory Desktop, as shown in the figure, and
clicks OK, uigetdir returns

dname =
C:\WINNT\Profiles\All Users\Desktop

Example 2

The following statement uses the matlabroot command to display the
MATLAB root directory in the dialog box:

uigetdir(matlabroot,'MATLAB Root Directory')

2-3493

uigetdir

If the user selects the directory MATLAB6.5/notebook/pc, as shown in
the figure, uigetdir returns a string like

C:\MATLAB6.5\notebook\pc

assuming that MATLAB is installed on drive C:\.

See Also uigetfile, uiputfile

2-3494

uigetfile

Purpose Open standard dialog box for retrieving files

Syntax uigetfile
[FileName,PathName,FilterIndex] = uigetfile(FilterSpec)
[FileName,PathName,FilterIndex] = uigetfile(FilterSpec,

DialogTitle)
[FileName,PathName,FilterIndex] = uigetfile(FilterSpec,

DialogTitle,DefaultName)
[FileName,PathName,FilterIndex] = uigetfile(...,'MultiSelect',

selectmode)

Description uigetfile displays a modal dialog box that lists files in the current
directory and enables the user to select or type the name of a file to be
opened. If the filename is valid and if the file exists, uigetfile returns
the filename when the user clicks Open. Otherwise uigetfile displays
an appropriate error message from which control returns to the dialog
box. The user can then enter another filename or click Cancel. If the
user clicks Cancel or closes the dialog window, uigetdir returns 0.

Note A modal dialog box prevents the user from interacting with other
windows before responding. To block MATLAB program execution, use
the uiwait function. For more information about modal dialog boxes,
see WindowStyle in the MATLAB Figure Properties.

[FileName,PathName,FilterIndex] = uigetfile(FilterSpec)
displays only those files with extensions that match FilterSpec.
FilterSpec can be a string or a cell array of strings, and can include
the * wildcard. For example, '*.m' lists all the MATLAB M-files. A
FilterSpec string can also be a filename. In this case the filename
becomes the default filename and the file’s extension is used as the
default filter. If FilterSpec is a string, uigetfile appends 'All
Files' to the list of file types.

If FilterSpec is a cell array, the first column contains a list of file
extensions. The optional second column contains a corresponding list of

2-3495

uigetfile

descriptions. These descriptions replace standard descriptions in the
Files of type field. A description cannot be an empty string. “Example
2” on page 2-3499 and “Example 3” on page 2-3500 illustrate use of a
cell array as FilterSpec.

If FilterSpec is not specified, uigetfile uses the default list of file
types (i.e., all MATLAB files).

After the user clicks Open and if the filename exists,uigetfile returns
the name of the file in FileName and its path in PathName. If the user
clicks Cancel or closes the dialog window, FileName and PathName
are set to 0.

FilterIndex is the index of the filter selected in the dialog box.
Indexing starts at 1. If the user clicks Cancel or closes the dialog
window, FilterIndex is set to 0.

[FileName,PathName,FilterIndex] =
uigetfile(FilterSpec,DialogTitle) displays a dialog box that
has the title DialogTitle. To use the default file types and specify a
dialog title, enter

uigetfile('',DialogTitle)

Note For Mac platforms, DialogTitle is ignored.

[FileName,PathName,FilterIndex] =
uigetfile(FilterSpec,DialogTitle,DefaultName) displays a dialog
box in which the filename specified by DefaultName appears in the
File name field. DefaultName can also be a path or a path/filename. In
this case, uigetfile opens the dialog box in the directory specified by
the path. See “Example 6” on page 2-3503 . If the path does not include
a filename, it must end with a slash (/) or backslash (\) separator. For
example, 'C:\Work\'. Note that uigetfile recognizes both './' and
'../' as valid values. If the specified path does not exist, uigetfile
opens the dialog box in the current directory.

2-3496

uigetfile

[FileName,PathName,FilterIndex] =
uigetfile(...,'MultiSelect',selectmode) sets the multiselect
mode to specify if multiple file selection is enabled for the uigetfile
dialog. Valid values for selectmode are 'on' and 'off' (default). If
'MultiSelect' is 'on' and the user selects more than one file in the
dialog box, then FileName is a cell array of strings, each of which
represents the name of a selected file. Filenames in the cell array are in
the sort order native to your platform. Because multiple selections
are always in the same directory, PathName is always a string that
represents a single directory.

Remarks For Windows platforms, the dialog box is the Windows dialog box native
to your platform. Because of this, it may differ from those shown in
“Examples” on page 2-3498 below.

For UNIX platforms, the dialog box is similar to the one shown in the
following figure.

For Mac platforms, the dialog box is similar to the one shown in the
following figure.

2-3497

uigetfile

Examples Example 1

The following statement displays a dialog box that enables the user
to retrieve a file. The statement lists all MATLAB M-files within a
selected directory. The name and path of the selected file are returned
in FileName and PathName. Note that uigetfile appends All
Files(*.*) to the file types when FilterSpec is a string.

[FileName,PathName] = uigetfile('*.m','Select the M-file');

The dialog box is shown in the following figure.

2-3498

uigetfile

Example 2

To create a list of file types that appears in the Files of type list box,
separate the file extensions with semicolons, as in the following code.
Note that uigetfile displays a default description for each known file
type, such as "Simulink Models" for .mdl files.

[filename, pathname] = ...
uigetfile({'*.m';'*.mdl';'*.mat';'*.*'},'File Selector');

2-3499

uigetfile

Example 3

If you want to create a list of file types and give them descriptions that
are different from the defaults, use a cell array, as in the following
code. This example also associates multiple file types with the 'MATLAB
Files' description.

[filename, pathname] = uigetfile(...

{'*.m;*.fig;*.mat;*.mdl','MATLAB Files (*.m,*.fig,*.mat,*.mdl)';

'*.m', 'M-files (*.m)'; ...

'*.fig','Figures (*.fig)'; ...

'*.mat','MAT-files (*.mat)'; ...

'*.mdl','Models (*.mdl)'; ...

'*.*', 'All Files (*.*)'}, ...

'Pick a file');

2-3500

uigetfile

The first column of the cell array contains the file extensions, while the
second contains the descriptions you want to provide for the file types.
Note that the first entry of column one contains several extensions,
separated by semicolons, all of which are associated with the description
'MATLAB Files (*.m,*.fig,*.mat,*.mdl)'. The code produces the
dialog box shown in the following figure.

Example 4

The following code checks for the existence of the file and displays a
message about the result of the open operation.

[filename, pathname] = uigetfile('*.m', 'Pick an M-file');

2-3501

uigetfile

if isequal(filename,0)
disp('User selected Cancel')

else
disp(['User selected', fullfile(pathname, filename)])

end

Example 5

This example creates a list of file types and gives them descriptions that
are different from the defaults, then enables multiple file selection.
The user can select multiple files by holding down the Shift or Ctrl
key and clicking on a file.

[filename, pathname, filterindex] = uigetfile(...
{ '*.mat','MAT-files (*.mat)'; ...

'*.mdl','Models (*.mdl)'; ...
'*.*', 'All Files (*.*)'}, ...

2-3502

uigetfile

'Pick a file', ...
'MultiSelect', 'on');

Example 6

This example uses the DefaultName argument to specify a start path
and a default filename for the dialog box.

uigetfile({'*.jpg;*.tif;*.png;*.gif','All Image Files';...
'*.*','All Files' },'mytitle',...
'C:\Work\myfile.jpg')

2-3503

uigetfile

See Also uigetdir, uiputfile

2-3504

uigetpref

Purpose Open dialog box for retrieving preferences

Syntax value = uigetpref(group,pref,title,question,pref_choices)
[val,dlgshown] = uigetpref(...)

Description value = uigetpref(group,pref,title,question,pref_choices)
returns one of the strings in pref_choices, by doing one of the
following:

• Prompting the user with a multiple-choice question dialog box

• Returning a previous answer stored in the preferences database

By default, the dialog box is shown, with each choice on a different
pushbutton, and with a checkbox controlling whether the returned
value should be stored in preferences and automatically reused in
subsequent invocations.

If the user checks the checkbox before choosing one of the push buttons,
the push button choice is stored in preferences and returned in value.
Subsequent calls to uigetpref detect that the last choice was stored
in preferences, and return that choice immediately without displaying
the dialog.

If the user does not check the checkbox before choosing a pushbutton,
the selected preference is not stored in preferences. Rather, a special
value, 'ask', is stored, indicating that subsequent calls to uigetpref
should display the dialog box.

Note uigetpref uses the same preference database as addpref,
getpref, ispref, rmpref, and setpref. However, it registers the
preferences it sets in a separate list so that it, and uisetpref, can
distinguish those preferences that are being managed with uigetpref.

For preferences registered with uigetpref, you can use setpref and
uisetpref to explicitly change preference values to 'ask'.

2-3505

uigetpref

group and pref define the preference. If the preference does not already
exist, uigetpref creates it.

title defines the string displayed in the dialog box titlebar.

question is a descriptive paragraph displayed in the dialog, specified as
a string array or cell array of strings. This should contain the question
the user is being asked, and should be detailed enough to give the
user a clear understanding of their choice and its impact. uigetpref
inserts line breaks between rows of the string array, between elements
of the cell array of strings, or between ’|’ or newline characters in the
string vector.

pref_choices is either a string, cell array of strings, or ’|’-separated
strings specifying the strings to be displayed on the push buttons. Each
string element is displayed in a separate push button. The string on the
selected pushbutton is returned.

Make pref_choices a 2-by-n cell array of strings if the internal
preference values are different from the strings displayed on the
pushbuttons. The first row contains the preference strings, and the
second row contains the related pushbutton strings. Note that the
preference values are returned in value, not the button labels.

[val,dlgshown] = uigetpref(...) returns whether or not the
dialog was shown.

Additional arguments can be passed in as parameter-value pairs:

(...'CheckboxState',state) sets the initial state of the checkbox,
either checked or unchecked. state can be either 0 (unchecked) or 1
(checked). By default it is 0.

(...'CheckboxString',cbstr) sets the string cbstr on the checkbox.
By default it is 'Never show this dialog again'.

(...'HelpString',hstr) sets the string hstr on the help button. By
default the string is empty and there is no help button.

(...'HelpFcn',hfcn) sets the callback that is executed when the help
button is pressed. By default it is doc('uigetpref'). Note that if there
is no 'HelpString' option, a button is not created.

2-3506

uigetpref

(...'ExtraOptions',eo)creates extra buttons which are not mapped
to any preference settings. eo can be a string or a cell array of strings.
By default it is {} and no extra buttons are created. If the user chooses
one of these buttons, the dialog is closed and the string is returned in
value.

(...'DefaultButton',dbstr) sets the string value dbstr that is
returned if the dialog is closed. By default, it is the first button. Note
that dbstr does not have to correspond to a preference or ExtraOption.

Note If the preference does not already exist in the preference database,
uigetpref creates it. Preference values are persistent and maintain
their values between MATLAB sessions. Where they are stored is
system dependent.

Examples This example creates the following preference dialog for the
'savefigurebeforeclosing' preference in the 'mygraphics' group.

It uses the cell array {'always','never';'Yes','No'} to define the
preference values as 'always' and 'never', and their corresponding
button labels as 'Yes' and 'No'.

[selectedButton,dlgShown]=uigetpref('mygraphics',... % Group

'savefigurebeforeclosing',... % Preference

'Closing Figure',... % Window title

{'Do you want to save your figure before closing?'

2-3507

uigetpref

''

'You can save your figure manually by typing ''hgsave(gcf)'''},...

{'always','never';'Yes','No'},... % Values and button strings

'ExtraOptions','Cancel',... % Additional button

'DefaultButton','Cancel',... % Default choice

'HelpString','Help',... % String for Help button

'HelpFcn','doc(''closereq'');') % Callback for Help button

See Also addpref, getpref, ispref, rmpref, setpref, uisetpref

2-3508

uiimport

Purpose Open Import Wizard to import data

Syntax uiimport
uiimport(filename)
uiimport('-file')
uiimport('-pastespecial')
S = uiimport(...)

Description uiimport starts the Import Wizard in the current directory, presenting
options to load data from a file or the clipboard.

uiimport(filename) starts the Import Wizard, opening the file
specified in filename. The Import Wizard displays a preview of the
data in the file.

uiimport('-file') works as above but presents the file selection
dialog first.

uiimport('-pastespecial') works as above but presents the
clipboard contents first.

S = uiimport(...) works as above with resulting variables stored as
fields in the struct S.

Note For ASCII data, you must verify that the Import Wizard correctly
identified the column delimiter.

See Also load, clipboard

2-3509

uimenu

Purpose Create menus on figure windows

Syntax handle = uimenu('PropertyName',PropertyValue,...)
handle = uimenu(parent,'PropertyName',PropertyValue,...)

Description uimenu creates a hierarchy of menus and submenus that are displayed
in the figure window’s menu bar. You also use uimenu to create menu
items for context menus.

handle = uimenu('PropertyName',PropertyValue,...) creates a
menu in the current figure’s menu bar using the values of the specified
properties and assigns the menu handle to handle.

See the Uimenu Properties reference page for more information.

handle = uimenu(parent,'PropertyName',PropertyValue,...)
creates a submenu of a parent menu or a menu item on a context menu
specified by parent and assigns the menu handle to handle. If parent
refers to a figure instead of another uimenu object or a uicontextmenu,
MATLAB creates a new menu on the referenced figure’s menu bar.

Remarks MATLAB adds the new menu to the existing menu bar. If the figure
does not have a menu bar, MATLAB creates one. Each menu choice
can itself be a menu that displays its submenu when selected. uimenu
accepts property name/property value pairs, as well as structures and
cell arrays of properties as input arguments.

The uimenu Callback property defines the action taken when you
activate the created menu item.

Uimenus only appear in figures whose Window Style is normal. If a
figure containing uimenu children is changed to modal, the uimenu
children still exist and are contained in the Children list of the figure,
but are not displayed until the WindowStyle is changed to normal.

The value of the figure MenuBar property affects the content of the
figure menu bar. When MenuBar is figure, a set of built-in menus
precedes any user-created uimenus on the menu bar (MATLAB controls
the built-in menus and their handles are not available to the user).

2-3510

uimenu

When MenuBar is none, uimenus are the only items on the menu bar
(that is, the built-in menus do not appear).

You can set and query property values after creating the menu using
set and get.

Examples This example creates a menu labeled Workspace whose choices allow
users to create a new figure window, save workspace variables, and
exit out of MATLAB. In addition, it defines an accelerator key for the
Quit option.

f = uimenu('Label','Workspace');
uimenu(f,'Label','New Figure','Callback','figure');
uimenu(f,'Label','Save','Callback','save');
uimenu(f,'Label','Quit','Callback','exit',...

'Separator','on','Accelerator','Q');

See Also uicontrol, uicontextmenu, gcbo, set, get, figure

2-3511

Uimenu Properties

Purpose Describe menu properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Inspector is an interactive tool that enables you to
see and change object property values. The Property inspector is
available from GUIDE, or use the inspect function at the command
line.

• The set and get commands enable you to set and query the values of
properties

You can set default Uimenu properties on the root, figure and menu
levels:

set(0,'DefaultUimenuPropertyName',PropertyValue...)
set(gcf,'DefaultUimenuPropertyName',PropertyValue...)
set(menu_handle,'DefaultUimenuPropertyName',PropertyValue...)

Where PropertyName is the name of the Uimenu property and
PropertyValue is the value you specify as the default for that property.

For more information about changing the default value of property see
“Setting Default Property Values”

Uimenu
Properties

This section lists all properties useful to uimenu objects along with valid
values and instructions for their use. Curly braces { } enclose default
values.

Property Name Property Description

Accelerator Keyboard equivalent

BusyAction Callback routine interruption

Callback Control action

Checked Menu check indicator

Children Handles of submenus

2-3512

Uimenu Properties

Property Name Property Description

CreateFcn Callback routine executed during object
creation

DeleteFcn Callback routine executed during object
deletion

Enable Enable or disable the uimenu

ForegroundColor Color of text

HandleVisibility Whether handle is accessible from command
line and GUIs

Interruptible Callback routine interruption mode

Label Menu label

Parent Uimenu object’s parent

Position Relative uimenu position

Separator Separator line mode

Tag User-specified object identifier

Type Class of graphics object

UserData User-specified data

Visible Uimenu visibility

Accelerator
character

Keyboard equivalent. An alphabetic character specifying the
keyboard equivalent for the menu item. This allows users to select
a particular menu choice by pressing the specified character in
conjunction with another key, instead of selecting the menu item
with the mouse. The key sequence is platform specific:

2-3513

Uimenu Properties

• For Microsoft Windows systems, the sequence is
Ctrl+Accelerator. These keys are reserved for default menu
items: c, v, and x.

• For UNIX systems, the sequence is Ctrl+Accelerator. These
keys are reserved for default menu items: o, p, s, and w.

You can define an accelerator only for menu items that do not
have children menus. Accelerators work only for menu items
that directly execute a callback routine, not items that bring up
other menus.

Note that the menu item does not have to be displayed (e.g., a
submenu) for the accelerator key to work. However, the window
focus must be in the figure when the key sequence is entered.

To remove an accelerator, set Accelerator to an empty string, ''.

BusyAction
cancel | {queue}

Callback routine interruption. If a callback is executing and the
user triggers an event (such as a mouse click) on an object for
which a callback is defined, the callback associated with the new
event uses the value of BusyAction to decide whether or not to
attempt to interrupt the executing callback.

• If the value is cancel, the event is discarded and the second
callback does not execute.

• If the value is queue, and the Interruptible property of the
first callback is on, the second callback is added to the event
queue and executes in its turn after the first callback finishes
execution.

2-3514

Uimenu Properties

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback,
it interrupts an executing callback regardless of the value of
that object’s Interruptible property. See theInterruptible
property for information about controlling a callback’s
interruptibility.

Callback
string or function handle

Menu action. A callback routine that executes whenever you
select the menu. Define this routine as a string that is a valid
MATLAB expression or the name of an M-file. The expression
executes in the MATLAB workspace.

A menu with children (submenus) executes its callback routine
before displaying the submenus. A menu without children
executes its callback routine when you release the mouse button
(i.e., on the button up event).

Checked
on | {off}

Menu check indicator. Setting this property to on places a check
mark next to the corresponding menu item. Setting it to off
removes the check mark. You can use this feature to create
menus that indicate the state of a particular option. For example,
suppose you have a menu item called Show axes that toggles the
visibility of an axes between visible and invisible each time the
user selects the menu item. If you want a check to appear next to
the menu item when the axes are visible, add the following code to
the callback for the Show axes menu item:

if strcmp(get(gcbo, 'Checked'),'on')
set(gcbo, 'Checked', 'off');

else

2-3515

Uimenu Properties

set(gcbo, 'Checked', 'on');
end

This changes the value of the Checked property of the menu item
from on to off or vice versa each time a user selects the menu
item.

Note that there is no formal mechanism for indicating that an
unchecked menu item will become checked when selected.

Note This property is ignored for top level and parent menus.

Children
vector of handles

Handles of submenus. A vector containing the handles of all
children of the uimenu object. The children objects of uimenus are
other uimenus, which function as submenus. You can use this
property to reorder the menus.

CreateFcn
string or function handle

Callback routine executed during object creation. The specified
function executes when MATLAB creates a uimenu object.
MATLAB sets all property values for the uimenu before executing
the CreateFcn callback so these values are available to the
callback. Within the function, use gcbo to get the handle of the
uimenu being created.

Setting this property on an existing uimenu object has no effect.

You can define a default CreateFcn callback for all new uimenus.
This default applies unless you override it by specifying a different
CreateFcn callback when you call uimenu. For example, the code

2-3516

Uimenu Properties

set(0,'DefaultUimenuCreateFcn','set(gcbo,...
''Visible'',''on'')')

creates a default CreateFcn callback that runs whenever you
create a new menu. It sets the default Visible property of a
uimenu object.

To override this default and create a menu whose Visible
property is set to a different value, call uimenu with code similar to

hpt = uimenu(...,'CreateFcn','set(gcbo,...
''Visible'',''off'')')

Note To override a default CreateFcn callback you must provide
a new callback and not just provide different values for the
specified properties. This is because the CreateFcn callback runs
after the property values are set, and can override property values
you have set explicitly in the uimenu call. In the example above, if
instead of redefining the CreateFcn property for this uimenu, you
had explicitly set Visible to off, the default CreateFcn callback
would have set Visible back to the default, i.e., on.

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

DeleteFcn
string or function handle

Delete uimenu callback routine. A callback routine that executes
when you delete the uimenu object (e.g., when you issue a delete
command or cause the figure containing the uimenu to reset).
MATLAB executes the routine before destroying the object’s
properties so these values are available to the callback routine.

2-3517

Uimenu Properties

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
is more simply queried using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

Enable
{on} | off

Enable or disable the uimenu. This property controls whether a
menu item can be selected. When not enabled (set to off), the
menu Label appears dimmed, indicating the user cannot select it.

ForegroundColor
ColorSpec X-Windows only

Color of menu label string. This property determines color of
the text defined for the Label property. Specify a color using a
three-element RGB vector or one of the MATLAB predefined
names. The default text color is black. See ColorSpec for more
information on specifying color.

HandleVisibility
{on} | callback | off

Control access to object’s handle. This property determines when
an object’s handle is visible in its parent’s list of children. When
a handle is not visible in its parent’s list of children, it is not
returned by functions that obtain handles by searching the object
hierarchy or querying handle properties. This includes get,
findobj, gca, gcf, gco, newplot, cla, clf, and close. Neither is
the handle visible in the parent figure’s CurrentObject property.
Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

• Handles are always visible when HandleVisibility is on.

2-3518

Uimenu Properties

• Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

• Setting HandleVisibility to off makes handles invisible
at all times. This may be necessary when a callback routine
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string), and so temporarily
hides its own handles during the execution of that function.

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties.

Interruptible
{on} | off

Callback routine interruption mode. If a callback is executing and
the user triggers an event (such as a mouse click) on an object for
which a callback is defined, that callback attempts to interrupt
the first callback. MATLAB processes the callbacks according to
these factors:

• The Interruptible property of the object whose callback is
executing

• Whether the executing callback contains drawnow, figure,
getframe, pause, or waitfor statements

• The BusyAction property of the object whose callback is
waiting to execute

If the Interruptible property of the object whose callback is
executing is on (the default), the callback can be interrupted.
Whenever the callback calls one of the drawnow, figure,

2-3519

Uimenu Properties

getframe, pause, or waitfor functions, the function processes
any events in the event queue, including the waiting callback,
before performing its defined task.

If the Interruptible property of the object whose callback is
executing is off, the callback cannot be interrupted (except by
certain callbacks; see the note below). The BusyAction property
of the object whose callback is waiting to execute determines what
happens to the callback.

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback, it
interrupts an executing callback regardless of the value of that
object’s Interruptible property. The interrupting callback starts
execution at the next drawnow, figure, getframe, pause, or
waitfor statement. A figure’s WindowButtonDownFcn callback
routine, or an object’s ButtonDownFcn or Callback routine are
processed according to the rules described above.

Label
string

Menu label. A string specifying the text label on the menu item.
You can specify a mnemonic for the label using the '&' character.
Except as noted below, the character that follows the '&' in the
string appears underlined and selects the menu item when you
type Alt+ followed by that character while the menu is visible.
The '&' character is not displayed. To display the '&' character
in a label, use two '&' characters in the string:

’O&pen selection’ yields Open selection

’Save && Go’ yields Save & Go

'Save&&Go' yields Save & Go

2-3520

Uimenu Properties

'Save& Go' yields Save& Go (the space is not a mnemonic)

There are three reserved words: default, remove, factory (case
sensitive). If you want to use one of these reserved words in
the Label property, you must precede it with a backslash ('\')
character. For example:

'\remove' yields remove

'\default' yields default

'\factory' yields factory

Parent
handle

Uimenu’s parent. The handle of the uimenu’s parent object. The
parent of a uimenu object is the figure on whose menu bar it
displays, or the uimenu of which it is a submenu. You can move
a uimenu object to another figure by setting this property to the
handle of the new parent.

Position
scalar

Relative menu position. The value of Position indicates
placement on the menu bar or within a menu. Top-level menus
are placed from left to right on the menu bar according to
the value of their Position property, with 1 representing the
left-most position. The individual items within a given menu are
placed from top to bottom according to the value of their Position
property, with 1 representing the top-most position.

Separator
on | {off}

Separator line mode. Setting this property to on draws a dividing
line above the menu item.

2-3521

Uimenu Properties

Tag
string

User-specified object label. The Tag property provides a means
to identify graphics objects with a user-specified label. This
is particularly useful when constructing interactive graphics
programs that would otherwise need to define object handles as
global variables or pass them as arguments between callback
routines. You can define Tag as any string.

Type
string (read only)

Class of graphics object. For uimenu objects, Type is always the
string 'uimenu'.

UserData
matrix

User-specified data. Any matrix you want to associate with the
uimenu object. MATLAB does not use this data, but you can
access it using the set and get commands.

Visible
{on} | off

Uimenu visibility. By default, all uimenus are visible. When set
to off, the uimenu is not visible, but still exists and you can query
and set its properties.

2-3522

uint8, uint16, uint32, uint64

Purpose Convert to unsigned integer

Syntax I = uint8(X)
I = uint16(X)
I = uint32(X)
I = uint64(X)

Description I = uint*(X) converts the elements of array X into unsigned integers.
X can be any numeric object (such as a double). The results of a uint*
operation are shown in the next table.

Operation Output Range Output Type

Bytes
per
Element

Output
Class

uint8 0 to 255 Unsigned 8-bit
integer

1 uint8

uint16 0 to 65,535 Unsigned 16-bit
integer

2 uint16

uint32 0 to 4,294,967,295 Unsigned 32-bit
integer

4 uint32

uint64 0 to 18,446,744,073,709,551,615 Unsigned 64-bit
integer

8 uint64

double and single values are rounded to the nearest uint* value on
conversion. A value of X that is above or below the range for an integer
class is mapped to one of the endpoints of the range. For example,

uint16(70000)
ans =

65535

If X is already an unsigned integer of the same class, then uint* has
no effect.

2-3523

uint8, uint16, uint32, uint64

You can define or overload your own methods for uint* (as you can for
any object) by placing the appropriately named method in an @uint*
directory within a directory on your path. Type help datatypes for the
names of the methods you can overload.

Remarks Most operations that manipulate arrays without changing their
elements are defined for integer values. Examples are reshape, size,
the logical and relational operators, subscripted assignment, and
subscripted reference.

Some arithmetic operations are defined for integer arrays on interaction
with other integer arrays of the same class (e.g., where both operands
are uint16). Examples of these operations are +, -, .*, ./, .\ and .^.
If at least one operand is scalar, then *, /, \, and ^ are also defined.
Integer arrays may also interact with scalar double variables, including
constants, and the result of the operation is an integer array of the same
class. Integer arrays saturate on overflow in arithmetic.

A particularly efficient way to initialize a large array is by specifying
the data type (i.e., class name) for the array in the zeros, ones, or eye
function. For example, to create a 100-by-100 uint64 array initialized
to zero, type

I = zeros(100, 100, 'uint64');

An easy way to find the range for any MATLAB integer type is to use
the intmin and intmax functions as shown here for uint32:

intmin('uint32') intmax('uint32')
ans = ans =

0 4294967295

See Also double, single, int8, int16, int32, int64, intmax, intmin

2-3524

uiopen

Purpose Open file selection dialog box with appropriate file filters

Syntax uiopen
uiopen('MATLAB')
uiopen('LOAD')
uiopen('FIGURE')
uiopen('SIMULINK')
uiopen('EDITOR')

Description uiopen displays a modal file selection dialog from which a user can
select a file to open. The dialog is the same as the one displayed when
you select Open from the File menu in the MATLAB desktop.

Selecting a file in the dialog and clicking Open does the following:

• Gets the file using uigetfile

• Opens the file in the base workspace using the open command

Note A modal dialog box prevents the user from interacting with
other windows before responding. For more information, see
WindowStyle in the MATLAB Figure Properties.

Note uiopen cannot be compiled. If you want to create a file selection
dialog that can be compiled, use uigetfile.

uiopen or uiopen('MATLAB') displays the dialog with the file filter set
to all MATLAB files.

uiopen('LOAD') displays the dialog with the file filter set to MAT-files
(*.mat).

uiopen('FIGURE') displays the dialog with the file filter set to figure
files (*.fig).

2-3525

uiopen

uiopen('SIMULINK') displays the dialog with the file filter set to model
files (*.mdl).

uiopen('EDITOR') displays the dialog with the file filter set to all
MATLAB files except for MAT-files and FIG-files. All files are opened in
the MATLAB Editor.

Examples Typing uiopen('figure') sets the Files of type field to Figures
(*.fig):

See Also uigetfile, uiputfile, uisave

2-3526

uipanel

Purpose Create panel container object

Syntax h = uipanel('PropertyName1',value1,'PropertyName2',value2,
...)

h = uipanel(parent,'PropertyName1',value1,'PropertyName2',
value2,...)

Description A uipanel groups components. It can contain user interface controls
with which the user interacts directly. It can also contain axes, other
uipanels, and uibuttongroups. It cannot contain ActiveX controls.

h =
uipanel('PropertyName1',value1,'PropertyName2',value2,...)
creates a uipanel container object in a figure, uipanel, or
uibuttongroup. Use the Parent property to specify the parent figure,
uipanel, or uibuttongroup. If you do not specify a parent, uipanel adds
the panel to the current figure. If no figure exists, one is created. See
the Uipanel Properties reference page for more information.

h =
uipanel(parent,'PropertyName1',value1,'PropertyName2',value2,...)
creates a uipanel in the object specified by the handle, parent. If
you also specify a different value for the Parent property, the
value of the Parent property takes precedence. parent must be
a figure, uipanel, or uibuttongroup.

A uipanel object can have axes, uicontrol, uipanel, and
uibuttongroup objects as children. For the children of a uipanel, the
Position property is interpreted relative to the uipanel. If you move
the panel, the children automatically move with it and maintain their
positions relative to the panel.

After creating a uipanel object, you can set and query its property
values using set and get.

Examples This example creates a uipanel in a figure, then creates a subpanel in
the first panel. Finally, it adds a pushbutton to the subpanel. Both

2-3527

uipanel

panels use the default Units property value, normalized. Note that
default Units for the uicontrol pushbutton is pixels.

h = figure;
hp = uipanel('Title','Main Panel','FontSize',12,...

'BackgroundColor','white',...
'Position',[.25 .1 .67 .67]);

hsp = uipanel('Parent',hp,'Title','Subpanel','FontSize',12,...
'Position',[.4 .1 .5 .5]);

hbsp = uicontrol('Parent',hsp,'String','Push here',...
'Position',[18 18 72 36]);

See Also hgtransform, uibuttongroup, uicontrol

2-3528

Uipanel Properties

Purpose Describe panel properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Inspector is an interactive tool that enables you to
see and change object property values. The Property inspector is
available from GUIDE, or use the inspect function at the command
line.

• The set and get functions enable you to set and query the values of
properties.

You can set default uipanel properties by typing:

set(h,'DefaultUipanelPropertyName',PropertyValue...)

Where h can be the root handle (0), a figure handle, or a uipanel handle.
PropertyName is the name of the uipanel property and PropertyValue
is the value you specify as the default for that property.

Note Default properties you set for uipanels also apply to
uibuttongroups.

For more information about changing the default value of a property see
“Setting Default Property Values”. For an example, see the CreateFcn
property.

Uipanel
Properties

This section lists all properties useful to uipanel objects along with
valid values and a descriptions of their use. Curly braces { } enclose
default values.

Property Name Description

BackgroundColor Color of the uipanel background

BorderType Type of border around the uipanel area.

2-3529

Uipanel Properties

Property Name Description

BorderWidth Width of the panel border.

BusyAction Interruption of other callback routines

ButtonDownFcn Button-press callback routine

Children All children of the uipanel

Clipping Clipping of child axes, uipanels, and
uibuttongroups to the uipanel. Does not
affect child uicontrols.

CreateFcn Callback routine executed during object
creation

DeleteFcn Callback routine executed during object
deletion

FontAngle Title font angle

FontName Title font name

FontSize Title font size

FontUnits Title font units

FontWeight Title font weight

ForegroundColor Title font color and/or color of 2-D border line

HandleVisibility Handle accessibility from commandline and
GUIs

HighlightColor 3-D frame highlight color

Interruptible Callback routine interruption mode

Parent Uipanel object’s parent

Position Panel position relative to parent figure or
uipanel

ResizeFcn User-specified resize routine

Selected Whether object is selected

2-3530

Uipanel Properties

Property Name Description

SelectionHighlight Object highlighted when selected

ShadowColor 3-D frame shadow color

Tag User-specified object identifier

Title Title string

TitlePosition Location of title string in relation to the panel

Type Object class

UIContextMenu Associates uicontextmenu with the uipanel

Units Units used to interpret the position vector

UserData User-specified data

Visible Uipanel visibility.

Note Controls the Visible property of child
axes, uibuttongroups. and uipanels. Does not
affect child uicontrols.

BackgroundColor
ColorSpec

Color of the uipanel background. A three-element RGB vector or
one of the MATLAB predefined names, specifying the background
color. See the ColorSpec reference page for more information
on specifying color.

BorderType
none | {etchedin} | etchedout | beveledin | beveledout
| line

Border of the uipanel area. Used to define the panel area
graphically. Etched and beveled borders provide a 3-D look. Use

2-3531

Uipanel Properties

the HighlightColor and ShadowColor properties to specify the
border color of etched and beveled borders. A line border is 2-D.
Use the ForegroundColor property to specify its color.

BorderWidth
integer

Width of the panel border. The width of the panel borders in
pixels. The default border width is 1 pixel. 3-D borders wider than
3 may not appear correctly at the corners.

BusyAction
cancel | {queue}

Callback routine interruption. If a callback is executing and the
user triggers an event (such as a mouse click) on an object for
which a callback is defined, the callback associated with the new
event uses the value of BusyAction to decide whether or not to
attempt to interrupt the executing callback.

• If the value is cancel, the event is discarded and the second
callback does not execute.

• If the value is queue, and the Interruptible property of the
first callback is on, the second callback is added to the event
queue and executes in its turn after the first callback finishes
execution.

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback,
it interrupts an executing callback regardless of the value of
that object’s Interruptible property. See the Interruptible
property for information about controlling a callback’s
interruptibility.

ButtonDownFcn
string or function handle

2-3532

Uipanel Properties

Button-press callback routine. A callback routine that executes
when you press a mouse button while the pointer is in a 5-pixel
wide border around the uipanel. This is useful for implementing
actions to interactively modify control object properties, such
as size and position, when they are clicked on (using the
selectmoveresize function, for example).

If you define this routine as a string, the string can be a valid
MATLAB expression or the name of an M-file. The expression
executes in the MATLAB workspace.

Children
vector of handles

Children of the uipanel. A vector containing the handles of all
children of the uipanel. A uipanel object’s children are axes,
uipanels, uibuttongroups, and uicontrols. You can use this
property to reorder the children.

Clipping
{on} | off

Clipping mode. By default, MATLAB clips a uipanel’s child
axes, uipanels, and uibuttongroups to the uipanel rectangle. If
you set Clipping to off, the axis, uipanel, or uibuttongroup is
displayed outside the panel rectangle. This property does not
affect child uicontrols which, by default, can display outside the
panel rectangle.

CreateFcn
string or function handle

Callback routine executed during object creation. The specified
function executes when MATLAB creates a uipanel object.
MATLAB sets all property values for the uipanel before executing
the CreateFcn callback so these values are available to the
callback. Within the function, use gcbo to get the handle of the
uipanel being created.

2-3533

Uipanel Properties

Setting this property on an existing uipanel object has no effect.

You can define a default CreateFcn callback for all new uipanels.
This default applies unless you override it by specifying a different
CreateFcn callback when you call uipanel. For example, the code

set(0,'DefaultUipanelCreateFcn','set(gcbo,...
''FontName'',''arial'',''FontSize'',12)')

creates a default CreateFcn callback that runs whenever you
create a new panel. It sets the default font name and font size
of the uipanel title.

Note Uibuttongroup takes its default property values from
uipanel. Defining a default property for all uipanels defines the
same default property for all uibuttongroups.

To override this default and create a panel whose FontName and
FontSize properties are set to different values, call uipanel with
code similar to

hpt = uipanel(...,'CreateFcn','set(gcbo,...
''FontName'',''times'',''FontSize'',14)')

Note To override a default CreateFcn callback you must provide a
new callback and not just provide different values for the specified
properties. This is because the CreateFcn callback runs after the
property values are set, and can override property values you
have set explicitly in the uipushtool call. In the example above, if
instead of redefining the CreateFcn property for this uipanel, you
had explicitly set Fontsize to 14, the default CreateFcn callback
would have set FontSize back to the system dependent default.

2-3534

Uipanel Properties

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

DeleteFcn
string or function handle

Callback routine executed during object deletion. A callback
routine that executes when you delete the uipanel object (e.g.,
when you issue a delete command or clear the figure containing
the uipanel). MATLAB executes the routine before destroying the
object’s properties so these values are available to the callback
routine. The handle of the object whose DeleteFcn is being
executed is accessible only through the root CallbackObject
property, which you can query using gcbo.

FontAngle
{normal} | italic | oblique

Character slant used in the Title. MATLAB uses this property
to select a font from those available on your particular system.
Setting this property to italic or oblique selects a slanted
version of the font, when it is available on your system.

FontName
string

Font family used in the Title. The name of the font in which
to display the Title. To display and print properly, this must
be a font that your system supports. The default font is system
dependent. To eliminate the need to hard code the name of a
fixed-width font, which may not display text properly on systems
that do not use ASCII character encoding (such as in Japan),
set FontName to the string FixedWidth (this string value is case
insensitive).

set(uicontrol_handle,'FontName','FixedWidth')

This then uses the value of the root FixedWidthFontName
property which can be set to the appropriate value for a locale

2-3535

Uipanel Properties

from startup.m in the end user’s environment. Setting the root
FixedWidthFontName property causes an immediate update of
the display to use the new font

FontSize
integer

Title font size. A number specifying the size of the font in which to
display the Title, in units determined by the FontUnits property.
The default size is system dependent.

FontUnits
inches | centimeters | normalized | {points} |pixels

Title font size units. Normalized units interpret FontSize as a
fraction of the height of the uipanel. When you resize the uipanel,
MATLAB modifies the screen FontSize accordingly. pixels,
inches, centimeters, and points are absolute units (1 point =
1/72 inch).

FontWeight
light | {normal} | demi | bold

Weight of characters in the title. MATLAB uses this property
to select a font from those available on your particular system.
Setting this property to bold causes MATLAB to use a bold version
of the font, when it is available on your system.

ForegroundColor
ColorSpec

Color used for title font and 2-D border line. A three-element
RGB vector or one of the MATLAB predefined names, specifying
the font or line color. See the ColorSpec reference page for more
information on specifying color.

HandleVisibility
{on} | callback | off

2-3536

Uipanel Properties

Control access to object’s handle. This property determines when
an object’s handle is visible in its parent’s list of children. When
a handle is not visible in its parent’s list of children, it is not
returned by functions that obtain handles by searching the object
hierarchy or querying handle properties. This includes get,
findobj, gca, gcf, gco, newplot, cla, clf, and close. Neither is
the handle visible in the parent figure’s CurrentObject property.
Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

• Handles are always visible when HandleVisibility is on.

• Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

• Setting HandleVisibility to off makes handles invisible
at all times. This may be necessary when a callback routine
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string), and so temporarily
hides its own handles during the execution of that function.

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties.

HighlightColor
ColorSpec

3-D frame highlight color. A three-element RGB vector or one
of the MATLAB predefined names, specifying the highlight
color. See the ColorSpec reference page for more information
on specifying color.

2-3537

Uipanel Properties

Interruptible
{on} | off

Callback routine interruption mode. If a callback is executing and
the user triggers an event (such as a mouse click) on an object for
which a callback is defined, that callback attempts to interrupt
the first callback. MATLAB processes the callbacks according to
these factors:

• The Interruptible property of the object whose callback is
executing

• Whether the executing callback contains drawnow, figure,
getframe, pause, or waitfor statements

• The BusyAction property of the object whose callback is
waiting to execute

If the Interruptible property of the object whose callback is
executing is on (the default), the callback can be interrupted.
Whenever the callback calls one of the drawnow, figure,
getframe, pause, or waitfor functions, the function processes
any events in the event queue, including the waiting callback,
before performing its defined task.

If the Interruptible property of the object whose callback is
executing is off, the callback cannot be interrupted (except by
certain callbacks; see the note below). The BusyAction property
of the object whose callback is waiting to execute determines what
happens to the callback.

2-3538

Uipanel Properties

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback, it
interrupts an executing callback regardless of the value of that
object’s Interruptible property. The interrupting callback starts
execution at the next drawnow, figure, getframe, pause, or
waitfor statement. A figure’s WindowButtonDownFcn callback
routine, or an object’s ButtonDownFcn or Callback routine are
processed according to the rules described above.

Parent
handle

Uipanel parent. The handle of the uipanel’s parent figure, uipanel,
or uibuttongroup. You can move a uipanel object to another figure,
uipanel, or uibuttongroup by setting this property to the handle
of the new parent.

Position
position rectangle

Size and location of uipanel relative to parent. The rectangle
defined by this property specifies the size and location of the
panel within the parent figure window, uipanel, or uibuttongroup.
Specify Position as

[left bottom width height]

left and bottom are the distance from the lower-left corner of
the parent object to the lower-left corner of the uipanel object.
width and height are the dimensions of the uipanel rectangle,
including the title. All measurements are in units specified by
the Units property.

ResizeFcn
string or function handle

2-3539

Uipanel Properties

Resize callback routine. MATLAB executes this callback routine
whenever a user resizes the uipanel and the figure Resize
property is set to on, or in GUIDE, the Resize behavior option
is set to Other. You can query the uipanel Position property
to determine its new size and position. During execution of
the callback routine, the handle to the figure being resized is
accessible only through the root CallbackObject property, which
you can query using gcbo.

You can use ResizeFcn to maintain a GUI layout that is not
directly supported by the MATLAB Position/Units paradigm.

For example, consider a GUI layout that maintains an object
at a constant height in pixels and attached to the top of the
figure, but always matches the width of the figure. The following
ResizeFcn accomplishes this; it keeps the uicontrol whose Tag is
'StatusBar' 20 pixels high, as wide as the figure, and attached to
the top of the figure. Note the use of the Tag property to retrieve
the uicontrol handle, and the gcbo function to retrieve the figure
handle. Also note the defensive programming regarding figure
Units, which the callback requires to be in pixels in order to work
correctly, but which the callback also restores to their previous
value afterwards.

u = findobj('Tag','StatusBar');
fig = gcbo;
old_units = get(fig,'Units');
set(fig,'Units','pixels');
figpos = get(fig,'Position');
upos = [0, figpos(4) - 20, figpos(3), 20];
set(u,'Position',upos);
set(fig,'Units',old_units);

You can change the figure Position from within the ResizeFcn
callback; however, the ResizeFcn is not called again as a result.

2-3540

Uipanel Properties

Note that the print command can cause the ResizeFcn to be
called if the PaperPositionMode property is set to manual and
you have defined a resize function. If you do not want your resize
function called by print, set the PaperPositionMode to auto.

See “Function Handle Callbacks” for information on how to use
function handles to define the callback function.

See Resize Behavior for information on creating resize functions
using GUIDE.

Selected
on | off (read only)

Is object selected? This property indicates whether the panel is
selected. When this property is on, MATLAB displays selection
handles if the SelectionHighlight property is also on. You
can, for example, define the ButtonDownFcn to set this property,
allowing users to select the object with the mouse.

SelectionHighlight
{on} | off

Object highlighted when selected. When the Selected property
is on, MATLAB indicates the selected state by drawing four edge
handles and four corner handles. When SelectionHighlight is
off, MATLAB does not draw the handles.

ShadowColor
ColorSpec

3-D frame shadow color. A three-element RGB vector or one of the
MATLAB predefined names, specifying the shadow color. See the
ColorSpec reference page for more information on specifying color.

Tag
string

2-3541

Uipanel Properties

User-specified object identifier. The Tag property provides a means
to identify graphics objects with a user-specified label. You can
define Tag as any string.

With the findobj function, you can locate an object with a given
Tag property value. This saves you from defining object handles
as global variables. For example, this function call returns the
handles of all children (of the specified figures) that have the Tag
value 'FormatTb'.

h = findobj(figurehandles,'Tag','FormatTb')

Title
string

Title string. The text displayed in the panel title. You can position
the title using the TitlePosition property.

If the string value is specified as a cell array of strings or padded
string matrix, only the first string of a cell array or of a padded
string matrix is displayed; the rest are ignored. Vertical slash (’|’)
characters are not interpreted as line breaks and instead show up
in the text displayed in the uipanel title.

Setting a property value to default, remove, or factory produces
the effect described in “Defining Default Values”. To set Title to
one of these words, you must precede the word with the backslash
character. For example,

hp = uipanel(...,'Title','\Default');

TitlePosition
{lefttop} | centertop | righttop | leftbottom |
centerbottom | rightbottom

Location of the title. This property determines the location of the
title string, in relation to the uipanel.

2-3542

Uipanel Properties

Type
string (read-only)

Object class. This property identifies the kind of graphics object.
For uipanel objects, Type is always the string 'uipanel'.

UIContextMenu
handle

Associate a context menu with a uipanel. Assign this property
the handle of a Uicontextmenu object. MATLAB displays the
context menu whenever you right-click the uipanel. Use the
uicontextmenu function to create the context menu.

Units
inches | centimeters | {normalized} | points | pixels
| characters

Units of measurement. MATLAB uses these units to interpret
the Position property. For the panel itself, units are measured
from the lower-left corner of the figure window. For children of the
panel, they are measured from the lower-left corner of the panel.

• Normalized units map the lower-left corner of the panel or
figure window to (0,0) and the upper-right corner to (1.0,1.0).

• pixels, inches, centimeters, and points are absolute units
(1 point = 1/72 inch).

• Character units are characters using the default system font;
the width of one character is the width of the letter x, the
height of one character is the distance between the baselines of
two lines of text.

If you change the value of Units, it is good practice to return it
to its default value after completing your computation so as not
to affect other functions that assume Units is set to the default
value.

2-3543

Uipanel Properties

UserData
matrix

User-specified data. Any data you want to associate with the
uipanel object. MATLAB does not use this data, but you can
access it using set and get.

Visible
{on} | off

Uipanel visibility. By default, a uipanel object is visible. When
set to off, the uipanel is not visible, but still exists and you can
query and set its properties.

Note The value of a uipanel’s Visible property also controls the
Visible property of child axes, uipanels, and uibuttongroups.
This property does not affect the Visible property of child
uicontrols.

2-3544

uipushtool

Purpose Create push button on toolbar

Syntax hpt = uipushtool('PropertyName1',value1,'PropertyName2',
value2,...)

hpt = uipushtool(ht,...)

Description hpt =
uipushtool('PropertyName1',value1,'PropertyName2',value2,...)
creates a push button on the uitoolbar at the top of the current figure
window, and returns a handle to it. uipushtool assigns the
specified property values, and assigns default values to the
remaining properties. You can change the property values at a
later time using the set function.

Type get(hpt) to see a list of uipushtool object properties and their
current values. Type set(hpt) to see a list of uipushtool object
properties that you can set and their legal property values. See the
Uipushtool Properties reference page for more information.

hpt = uipushtool(ht,...) creates a button with ht as a parent. ht
must be a uitoolbar handle.

Remarks uipushtool accepts property name/property value pairs, as well as
structures and cell arrays of properties as input arguments.

Uipushtools appear in figures whose Window Style is normal or
docked. They do not appear in figures whose WindowStyle is modal. If
the WindowStyleof a figure containing a uitoolbar and its uipushtool
children is changed to modal, the uipushtools still exist and are
contained in the Children list of the uitoolbar, but are not displayed
until the figure WindowStyle is changed to normal or docked.

Examples This example creates a uitoolbar object and places a uipushtool object
on it.

h = figure('ToolBar','none')
ht = uitoolbar(h)
a = [.20:.05:0.95];

2-3545

uipushtool

b(:,:,1) = repmat(a,16,1)';
b(:,:,2) = repmat(a,16,1);
b(:,:,3) = repmat(flipdim(a,2),16,1);
hpt = uipushtool(ht,'CData',b,'TooltipString','Hello')

See Also get, set, uicontrol, uitoggletool, uitoolbar

2-3546

Uipushtool Properties

Purpose Describe push tool properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Inspector is an interactive tool that enables you to
see and change object property values. The Property inspector is
available from GUIDE, or use the inspect function at the command
line.

• The set and get functions enable you to set and query the values of
properties.

You can set default Uipushtool properties by typing:

set(h,'DefaultUipushtoolPropertyName',PropertyValue...)

Where h can be the root handle (0), a figure handle, a uitoolbar handle,
or a uipushtool handle. PropertyName is the name of the Uipushtool
property and PropertyValue is the value you specify as the default
for that property.

For more information about changing the default value of a property see
Setting Default Property Values.

Uipushtool
Properties

This section lists all properties useful to uipushtool objects along with
valid values and a descriptions of their use. Curly braces { } enclose
default values.

Property Purpose

BeingDeleted This object is being deleted.

BusyAction Callback routine interruption.

CData Truecolor image displayed on the control.

ClickedCallback Control action.

CreateFcn Callback routine executed during object creation.

DeleteFcn Delete uipushtool callback routine.

2-3547

Uipushtool Properties

Property Purpose

Enable Enable or disable the uipushtool.

HandleVisibilityControl access to object’s handle.

HitTest Whether selectable by mouse click

Interruptible Callback routine interruption mode.

Parent Handle of uipushtool’s parent.

Separator Separator line mode

Tag User-specified object label.

TooltipString Content of object’s tooltip.

Type Object class.

UIContextMenu Uicontextmenu object associated with the
uipushtool

UserData User specified data.

Visible Uipushtool visibility.

BeingDeleted
on | {off} (read only)

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property). It remains set to on while the delete
function executes, after which the object no longer exists.

For example, some functions may not need to perform actions
on objects that are being deleted, and therefore, can check the
object’s BeingDeleted property before acting.

BusyAction
cancel | {queue}

2-3548

Uipushtool Properties

Callback routine interruption. If a callback is executing and the
user triggers an event (such as a mouse click) on an object for
which a callback is defined, the callback associated with the new
event uses the value of BusyAction to decide whether or not to
attempt to interrupt the executing callback.

• If the value is cancel, the event is discarded and the second
callback does not execute.

• If the value is queue, and the Interruptible property of the
first callback is on, the second callback is added to the event
queue and executes in its turn after the first callback finishes
execution.

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback,
it interrupts an executing callback regardless of the value of
that object’s Interruptible property. See the Interruptible
property for information about controlling a callback’s
interruptibility.

CData
3-dimensional array

Truecolor image displayed on control. An n-by-m-by-3 array of
RGB values that defines a truecolor image displayed on either
a push button or toggle button. Each value must be between
0.0 and 1.0. If your CData array is larger than 16 in the first or
second dimension, it may be clipped or cause other undesirable
effects. If the array is clipped, only the center 16-by-16 part of
the array is used.

ClickedCallback
string or function handle

2-3549

Uipushtool Properties

Control action. A routine that executes when the uipushtool’s
Enable property is set to on, and you press a mouse button while
the pointer is on the push tool itself or in a 5-pixel wide border
around it.

CreateFcn
string or function handle

Callback routine executed during object creation. The specified
function executes when MATLAB creates a uipushtool object.
MATLAB sets all property values for the uipushtool before
executing the CreateFcn callback so these values are available
to the callback. Within the function, use gcbo to get the handle
of the push tool being created.

Setting this property on an existing uipushtool object has no effect.

You can define a default CreateFcn callback for all new
uipushtools. This default applies unless you override it by
specifying a different CreateFcn callback when you call
uipushtool. For example, the code

imga(:,:,1) = rand(20);
imga(:,:,2) = rand(20);
imga(:,:,3) = rand(20);
set(0,'DefaultUipushtoolCreateFcn','set(gcbo,''Cdata'',imga)')

creates a default CreateFcn callback that runs whenever you
create a new push tool. It sets the default image imga on the
push tool.

To override this default and create a push tool whose Cdata
property is set to a different image, call uipushtool with code
similar to

a = [.05:.05:0.95];
imgb(:,:,1) = repmat(a,19,1)';
imgb(:,:,2) = repmat(a,19,1);

2-3550

Uipushtool Properties

imgb(:,:,3) = repmat(flipdim(a,2),19,1);
hpt = uipushtool(...,'CreateFcn','set(gcbo,''CData'',imgb)',..

Note To override a default CreateFcn callback you must provide a
new callback and not just provide different values for the specified
properties. This is because the CreateFcn callback runs after the
property values are set, and can override property values you
have set explicitly in the uipushtool call. In the example above,
if instead of redefining the CreateFcn property for this push
tool, you had explicitly set CData to imgb, the default CreateFcn
callback would have set CData back to imga.

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

DeleteFcn
string or function handle

Callback routine executed during object deletion. A callback
routine that executes when you delete the uipushtool object (e.g.,
when you call the delete function or cause the figure containing
the uipushtool to reset). MATLAB executes the routine before
destroying the object’s properties so these values are available
to the callback routine.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

See “Function Handle Callbacks” for information on how to use
function handles to define a callback function.

Enable
{on} | off

2-3551

Uipushtool Properties

Enable or disable the uipushtool. This property controls how
uipushtools respond to mouse button clicks, including which
callback routines execute.

• on – The uipushtool is operational (the default).

• off – The uipushtool is not operational and its image (set by
the Cdata property) is grayed out.

When you left-click on a uipushtool whose Enable property is on,
MATLAB performs these actions in this order:

1 Sets the figure’s SelectionType property.

2 Executes the push tool’s ClickedCallback routine.

3 Does not set the figure’s CurrentPoint property and does not
execute the figure’s WindowButtonDownFcn callback.

When you left-click on a uipushtool whose Enable property is off,
or when you right-click a uipushtool whose Enable property has
any value, MATLAB performs these actions in this order:

4 Sets the figure’s SelectionType property.

5 Sets the figure’s CurrentPoint property.

6 Executes the figure’s WindowButtonDownFcn callback.

7 Does not execute the push tool’s ClickedCallback routine.

HandleVisibility
{on} | callback | off

Control access to object’s handle. This property determines when
an object’s handle is visible in its parent’s list of children. When
a handle is not visible in its parent’s list of children, it is not
returned by functions that obtain handles by searching the object
hierarchy or querying handle properties. This includes get,
findobj, gca, gcf, gco, newplot, cla, clf, and close. Neither is
the handle visible in the parent figure’s CurrentObject property.
Handles that are hidden are still valid. If you know an object’s

2-3552

Uipushtool Properties

handle, you can set and get its properties, and pass it to any
function that operates on handles.

• Handles are always visible when HandleVisibility is on.

• Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

• Setting HandleVisibility to off makes handles invisible
at all times. This may be necessary when a callback routine
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string), and so temporarily
hides its own handles during the execution of that function.

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties.

HitTest
{on} | off

Selectable by mouse click. This property has no effect on
uipushtool objects.

Interruptible
{on} | off

Callback routine interruption mode. If a callback is executing and
the user triggers an event (such as a mouse click) on an object for
which a callback is defined, that callback attempts to interrupt
the first callback. MATLAB processes the callbacks according to
these factors:

• The Interruptible property of the object whose callback is
executing

2-3553

Uipushtool Properties

• Whether the executing callback contains drawnow, figure,
getframe, pause, or waitfor statements

• The BusyAction property of the object whose callback is
waiting to execute

If the Interruptible property of the object whose callback is
executing is on (the default), the callback can be interrupted.
Whenever the callback calls one of the drawnow, figure,
getframe, pause, or waitfor functions, the function processes
any events in the event queue, including the waiting callback,
before performing its defined task.

If the Interruptible property of the object whose callback is
executing is off, the callback cannot be interrupted (except by
certain callbacks; see the note below). The BusyAction property
of the object whose callback is waiting to execute determines what
happens to the callback.

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback, it
interrupts an executing callback regardless of the value of that
object’s Interruptible property. The interrupting callback starts
execution at the next drawnow, figure, getframe, pause, or
waitfor statement. A figure’s WindowButtonDownFcn callback
routine, or an object’s ButtonDownFcn or Callback routine are
processed according to the rules described above.

Parent
handle

Uipushtool parent. The handle of the uipushtool’s parent toolbar.
You can move a uipushtool object to another toolbar by setting
this property to the handle of the new parent.

2-3554

Uipushtool Properties

Separator
on | {off}

Separator line mode. Setting this property to on draws a dividing
line to the left of the uipushtool.

Tag
string

User-specified object identifier. The Tag property provides a means
to identify graphics objects with a user-specified label. You can
define Tag as any string.

With the findobj function, you can locate an object with a given
Tag property value. This saves you from defining object handles
as global variables. For example, this function call returns the
handles of all children (of the specified toolbars) that have the
Tag value 'Copy'.

h = findobj(uitoolbarhandles,'Tag','Copy')

TooltipString
string

Content of tooltip for object. The TooltipString property specifies
the text of the tooltip associated with the uipushtool. When the
user moves the mouse pointer over the control and leaves it there,
the tooltip is displayed.

Type
string (read-only)

Object class. This property identifies the kind of graphics object.
For uipushtool objects, Type is always the string 'uipushtool'.

UIContextMenu
handle

2-3555

Uipushtool Properties

Associate a context menu with uicontrol. This property has no
effect on uipushtool objects.

UserData
array

User specified data. You can specify UserData as any array you
want to associate with the uipushtool object. The object does
not use this data, but you can access it using the set and get
functions.

Visible
{on} | off

Uipushtool visibility. By default, all uipushtools are visible. When
set to off, the uipushtool is not visible, but still exists and you
can query and set its properties.

2-3556

uiputfile

Purpose Open standard dialog box for saving files

Syntax uiputfile
[FileName,PathName,FilterIndex] = uiputfile(FilterSpec)
[FileName,PathName,FilterIndex] = uiputfile(FilterSpec,

DialogTitle)
[FileName,PathName,FilterIndex] = uiputfile(FilterSpec,

DialogTitle,DefaultName)

Description uiputfile displays a modal dialog box used to select or specify a file
for saving. The dialog box lists the files and directories in the current
directory. If the selected or specified filename is valid, it is returned
in ans.

If an existing filename is selected or specified, the following warning
dialog box is displayed.

The user can select Yes to replace the existing file or No to return to
the dialog to select another filename. If the user selects Yes, uiputfile
returns the name of the file. If the user selects No, uiputfile returns 0.

Note A modal dialog box prevents the user from interacting with other
windows before responding. To block MATLAB program execution as
well, use theuiwait function. For more information about modal dialog
boxes, see WindowStyle in the MATLAB Figure Properties.

2-3557

uiputfile

[FileName,PathName,FilterIndex] = uiputfile(FilterSpec)
displays only those files with extensions that match FilterSpec.
FilterSpec can be a string or a cell array of strings, and can include
the * wildcard. For example, '*.m' lists all the MATLAB M-files. A
FilterSpec string can also be a filename. In this case the filename
becomes the default filename and the file’s extension is used as the
default filter. If FilterSpec is a string, uiputfile appends 'All
Files' to the list of file types.

If FilterSpec is a cell array, the first column contains a list of file
extensions. The optional second column contains a corresponding list of
descriptions. These descriptions replace standard descriptions in the
Files of type field. A description cannot be an empty string. “Example
3” on page 2-3562 and “Example 4” on page 2-3563 illustrate use of a
cell array as FilterSpec.

If FilterSpec is not specified, uiputfile uses the default list of file
types (i.e., all MATLAB files).

After the user clicks Save and if the filename is valid,uiputfile returns
the name of the selected file in FileName and its path in PathName. If
the user clicks the Cancel button, closes the dialog window, or if the
filename is not valid, FileName and PathName are set to 0.

FilterIndex is the index of the filter selected in the dialog box.
Indexing starts at 1. If the user clicks the Cancel button, closes the
dialog window, or if the file does not exist, FilterIndex is set to 0.

If no output arguments are specified, the filename is returned in ans.

[FileName,PathName,FilterIndex] =
uiputfile(FilterSpec,DialogTitle) displays a dialog box that
has the title DialogTitle. To use the default file types and specify a
dialog title, enter

uiputfile('',DialogTitle)

[FileName,PathName,FilterIndex] =
uiputfile(FilterSpec,DialogTitle,DefaultName) displays a dialog
box in which the filename specified by DefaultName appears in the

2-3558

uiputfile

File name field. DefaultName can also be a path or a path/filename. In
this case, uigetfile opens the dialog box in the directory specified by
the path. See “Example 6” on page 2-3565. If the path does not include
a filename, it must end with a slash (/) or backslash (\) separator. For
example, 'C:\Work\'. Note that uiputfile recognizes both './' and
'../' as valid values. If the specified path does not exist, uiputfile
opens the dialog box in the current directory.

Remarks For Windows platforms, the dialog box is the Windows dialog box native
to your platform. Because of this, it may differ from those shown in
the examples below.

For UNIX platforms, the dialog box is similar to the one shown in the
following figure.

For Mac platforms, the dialog box is similar to the one shown in the
following figure.

2-3559

uiputfile

Examples Example 1

The following statement displays a dialog box titled 'Save file
name' with the Filename field set to animinit.m and the filter set to
M-files (*.m). Because FilterSpec is a string, the filter also includes
All Files (*.*)

[file,path] = uiputfile('animinit.m','Save file name');

2-3560

uiputfile

Example 2

The following statement displays a dialog box titled 'Save Workspace
As' with the filter specifier set to MAT-files.

[file,path] = uiputfile('*.mat','Save Workspace As');

2-3561

uiputfile

Example 3

To display several file types in the Save as type list box, separate each
file extension with a semicolon, as in the following code. Note that
uiputfile displays a default description for each known file type, such
as "Simulink Models" for .mdl files.

[filename, pathname] = uiputfile(...
{'*.m';'*.mdl';'*.mat';'*.*'},...
'Save as');

2-3562

uiputfile

Example 4

If you want to create a list of file types and give them descriptions that
are different from the defaults, use a cell array, as in the following
code. This example also associates multiple file types with the 'MATLAB
Files' description.

[filename, pathname, filterindex] = uiputfile(...
{'*.m;*.fig;*.mat;*.mdl','MATLAB Files (*.m,*.fig,*.mat,*.mdl)';
'*.m', 'M-files (*.m)';...
'*.fig','Figures (*.fig)';...
'*.mat','MAT-files (*.mat)';...
'*.mdl','Models (*.mdl)';...
'*.*', 'All Files (*.*)'},...
'Save as');

2-3563

uiputfile

The first column of the cell array contains the file extensions, while the
second contains the descriptions you want to provide for the file types.
Note that the first entry of column one contains several extensions,
separated by semicolons, all of which are associated with the description
'MATLAB Files (*.m,*.fig,*.mat,*.mdl)'. The code produces the
dialog box shown in the following figure.

Example 5

The following code checks for the existence of the file and displays a
message about the result of the open operation.

[filename, pathname] = uiputfile('*.m','Pick an M-file');
if isequal(filename,0) | isequal(pathname,0)

disp('User selected Cancel')
else

2-3564

uiputfile

disp(['User selected',fullfile(pathname,filename)])
end

Example 6

uiputfile({'*.jpg;*.tif;*.png;*.gif','All Image Files';...
'*.*','All Files' },'Save Image',...
'C:\Work\newfile.jpg')

See Also uigetdir, uigetfile

2-3565

uiresume, uiwait

Purpose Control program execution

Syntax uiwait
uiwait(h)
uiwait(h,timeout)
uiresume(h)

Description The uiwait and uiresume functions block and resume MATLAB
program execution.

uiwait blocks execution until uiresume is called or the current figure
is deleted. This syntax is the same as uiwait(gcf).

uiwait(h) blocks execution until uiresume is called or the figure h is
deleted.

uiwait(h,timeout) blocks execution until uiresume is called, the
figure h is deleted, or timeout seconds elapse.

uiresume(h) resumes the M-file execution that uiwait suspended.

Remarks When creating a dialog, you should have a uicontrol component with a
callback that calls uiresume or a callback that destroys the dialog box.
These are the only methods that resume program execution after the
uiwait function blocks execution.

uiwait is a convenient way to use the waitfor command. You typically
use it in conjunction with a dialog box. It provides a way to block the
execution of the M-file that created the dialog, until the user responds
to the dialog box. When used in conjunction with a modal dialog,
uiwait/uiresume can block the execution of the M-file and restrict user
interaction to the dialog only.

Example This example creates a GUI with a Continue push button. The
example calls uiwait to block MATLAB execution until uiresume is
called. This happens when the user clicks the Continue push button
because the push button’s Callback callback, which responds to the
click, calls uiresume.

2-3566

uiresume, uiwait

f = figure;
h = uicontrol('Position',[20 20 200 40],'String','Continue',...

'Callback','uiresume(gcbf)');
disp('This will print immediately');
uiwait(gcf);
disp('This will print after you click Continue');
close(f);

gcbf is the handle of the figure that contains the object whose callback
is executing.

“Using a Modal Dialog to Confirm an Operation” is a more complex
example for a GUIDE GUI. See “Icon Editor” for an example for a
programmatically created GUI.

See Also uicontrol, uimenu, waitfor, figure, dialog

2-3567

uisave

Purpose Open standard dialog box for saving workspace variables

Syntax uisave
uisave(variables)
uisave(variables,filename)

Description uisave displays the Save Workspace Variables dialog box for saving
workspace variables to a MAT-file, as shown in the figure below. By
default, the dialog box opens in your current directory.

Note The uisave dialog box is modal. A modal dialog box prevents the
user from interacting with other windows before responding. For more
information, see WindowStyle in the MATLAB Figure Properties.

If you type a name in the File name field, such as my_vars, and click
Save, the dialog saves all workspace variables in the file my_vars.mat.
The default filename is matlab.mat.

uisave(variables) saves only the variables listed in variables. For a
single variable, variables can be a string. For more than one variable,
variables must be a cell array of strings.

2-3568

uisave

uisave(variables,filename) uses the specified filename as the
default File name in the Save Workspace Variables dialog box.

Note uisave cannot be compiled. If you want to create a dialog that
can be compiled, use uiputfile.

Example This example creates workspace variables h and g, and then displays
the Save Workspace Variables dialog box in the current directory with
the default File name set to var1.

h = 365;
g = 52;
uisave({'h','g'},'var1');

Clicking Save stores the workspace variables h and g in the file
var1.mat in the displayed directory.

2-3569

uisave

See Also uigetfile, uiputfile, uiopen

2-3570

uisetcolor

Purpose Open standard dialog box for setting object’s ColorSpec

Syntax c = uisetcolor
c = uisetcolor([r g b])
c = uisetcolor(h)
c = uisetcolor(...,'dialogTitle')

Description c = uisetcolor displays a modal color selection dialog appropriate to
the platform, and returns the color selected by the user. The dialog
box is initialized to white.

c = uisetcolor([r g b]) displays a dialog box initialized to the
specified color, and returns the color selected by the user. r, g, and b
must be values between 0 and 1.

c = uisetcolor(h) displays a dialog box initialized to the color of the
object specified by handle h, returns the color selected by the user, and
applies it to the object. h must be the handle to an object containing a
color property.

c = uisetcolor(...,'dialogTitle') displays a dialog box with the
specified title.

If the user presses Cancel from the dialog box, or if any error occurs,
the output value is set to the input RGB triple, if provided; otherwise, it
is set to 0.

Note A modal dialog box prevents the user from interacting with other
windows before responding. For more information, see WindowStyle in
the MATLAB Figure Properties.

See Also ColorSpec

2-3571

uisetfont

Purpose Open standard dialog box for setting object’s font characteristics

Syntax uisetfont
uisetfont(h)
uisetfont(S)
uisetfont(...,'DialogTitle')
S = uisetfont(...)

Description uisetfont enables you to change font properties (FontName, FontUnits,
FontSize, FontWeight, and FontAngle) for a text, axes, or uicontrol
object. The function returns a structure consisting of font properties
and values. You can specify an alternate title for the dialog box.

uisetfont displays a modal dialog box and returns the selected font
properties.

Note A modal dialog box prevents the user from interacting with other
windows before responding. For more information, see WindowStyle in
the MATLAB Figure Properties.

uisetfont(h) displays a modal dialog box, initializing the font
property values with the values of those properties for the object whose
handle is h. Selected font property values are applied to the current
object. If a second argument is supplied, it specifies a name for the
dialog box.

uisetfont(S) displays a modal dialog box, initializing the font
property values with the values defined for the specified structure (S). S
must define legal values for one or more of these properties: FontName,
FontUnits, FontSize, FontWeight, and FontAngle and the field names
must match the property names exactly. If other properties are defined,
they are ignored. If a second argument is supplied, it specifies a name
for the dialog box.

2-3572

uisetfont

uisetfont(...,'DialogTitle') displays a modal dialog box with the
title DialogTitle and returns the values of the font properties selected
in the dialog box.

S = uisetfont(...) returns the properties FontName, FontUnits,
FontSize, FontWeight, and FontAngle as fields in a structure. If the
user presses Cancel from the dialog box or if an error occurs, the output
value is set to 0.

Example These statements create a text object, then display a dialog box (labeled
Update Font) that enables you to change the font characteristics:

h = text(.5,.5,'Figure Annotation');
uisetfont(h,'Update Font')

These statements create two push buttons, then set the font properties
of one based on the values set for the other:

% Create push button with string ABC
c1 = uicontrol('Style', 'pushbutton', ...

'Position', [10 10 100 20], 'String', 'ABC');
% Create push button with string XYZ
c2 = uicontrol('Style', 'pushbutton', ...

'Position', [10 50 100 20], 'String', 'XYZ');
% Display set font dialog box for c1, make selections,
& and save to d
d = uisetfont(c1);
% Apply those settings to c2
set(c2, d)

See Also axes, text, uicontrol

2-3573

uisetpref

Purpose Manage preferences used in uigetpref

Syntax uisetpref('clearall')

Description uisetpref('clearall') resets the value of all preferences registered
through uigetpref to 'ask'. This causes the dialog box to display
when you call uigetpref.

Note Use setpref to set the value of a particular preference to 'ask'.

See Also setpref, uigetpref

2-3574

uistack

Purpose Reorder visual stacking order of objects

Syntax uistack(h)
uistack(h,stackopt)
uistack(h,stackopt,step)

Description uistack(h) raises the visual stacking order of the objects specified by
the handles in h by one level (step of 1). All handles in h must have
the same parent.

uistack(h,stackopt) moves the objects specified by h in the stacking
order, where stackopt is one of the following:

• 'up' – moves h up one position in the stacking order

• 'down' – moves h down one position in the stacking order

• 'top' – moves h to the top of the current stack

• 'bottom' – moves h to the bottom of the current stack

uistack(h,stackopt,step) moves the objects specified by h up or down
the number of levels specified by step.

Note In a GUI, axes objects are always at a lower level than uicontrol
objects. You cannot stack an axes object on top of a uicontrol object.

See “Setting Tab Order” in the MATLAB documentation for information
about changing the tab order.

Example The following code moves the child that is third in the stacking order of
the figure handle hObject down two positions.

v = allchild(hObject)
uistack(v(3),'down',2)

2-3575

uitoggletool

Purpose Create toggle button on toolbar

Syntax htt = uitoggletool('PropertyName1',value1,'PropertyName2',
value2,...)

htt = uitoggletool(ht,...)

Description htt =
uitoggletool('PropertyName1',value1,'PropertyName2',value2,...)
creates a toggle button on the uitoolbar at the top of the current figure
window, and returns a handle to it. uitoggletool assigns the
specified property values, and assigns default values to the
remaining properties. You can change the property values at a
later time using the set function.

Type get(htt) to see a list of uitoggletool object properties and their
current values. Type set(htt) to see a list of uitoggletool object
properties you can set and legal property values. See the Uitoggletool
Properties reference page for more information.

htt = uitoggletool(ht,...) creates a button with ht as a parent.
ht must be a uitoolbar handle.

Remarks uitoggletool accepts property name/property value pairs, as well as
structures and cell arrays of properties as input arguments.

Toggle tools appear in figures whose Window Style is normal or docked.
They do not appear in figures whose WindowStyle is modal. If the
WindowStyle property of a figure containing a tool bar and its toggle
tool children is changed to modal, the toggle tools still exist and are
contained in the Children list of the tool bar, but are not displayed until
the WindowStyle is changed to normal or docked.

Examples This example creates a uitoolbar object and places a uitoggletool
object on it.

h = figure('ToolBar','none');
ht = uitoolbar(h);
a = rand(16,16,3);

2-3576

uitoggletool

htt = uitoggletool(ht,'CData',a,'TooltipString','Hello');

See Also get, set, uicontrol, uipushtool, uitoolbar

2-3577

Uitoggletool Properties

Purpose Describe toggle tool properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Inspector is an interactive tool that enables you to
see and change object property values. The Property inspector is
available from GUIDE, or use the inspect function at the command
line.

• The set and get functions enable you to set and query the values of
properties.

You can set default Uitoggletool properties by typing:

set(h,'DefaultUitoggletoolPropertyName',PropertyValue...)

Where h can be the root handle (0), a figure handle, a uitoolbar handle,
or a uitoggletool handle. PropertyName is the name of the Uitoggletool
property and PropertyValue is the value you specify as the default
for that property.

For more information about changing the default value of a property see
“Setting Default Property Values”.

Properties This section lists all properties useful to uitoggletool objects along
with valid values and a descriptions of their use. Curly braces { } enclose
default values.

Property Purpose

BeingDeleted This object is being deleted.

BusyAction Callback routine interruption.

CData Truecolor image displayed on the toggle
tool.

ClickedCallback Control action independent of the toggle
tool position.

2-3578

Uitoggletool Properties

Property Purpose

CreateFcn Callback routine executed during object
creation.

DeleteFcn Callback routine executed during object
deletion.

Enable Enable or disable the uitoggletool.

HandleVisibility Control access to object’s handle.

HitTest Whether selectable by mouse click

Interruptible Callback routine interruption mode.

OffCallback Control action when toggle tool is set to
the off position.

OnCallback Control action when toggle tool is set to
the on position.

Parent Handle of uitoggletool’s parent toolbar.

Separator Separator line mode.

State Uitoggletool state.

Tag User-specified object label.

TooltipString Content of object’s tooltip.

Type Object class.

UIContextMenu Uicontextmenu object associated with the
uitoggletool

UserData User specified data.

Visible Uitoggletool visibility.

BeingDeleted
on | {off} (read only)

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in

2-3579

Uitoggletool Properties

the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property) It remains set to on while the delete
function executes, after which the object no longer exists.

For example, some functions may not need to perform actions
on objects that are being deleted, and therefore, can check the
object’s BeingDeleted property before acting.

BusyAction
cancel | {queue}

Callback routine interruption. If a callback is executing and the
user triggers an event (such as a mouse click) on an object for
which a callback is defined, the callback associated with the new
event uses the value of BusyAction to decide whether or not to
attempt to interrupt the executing callback.

• If the value is cancel, the event is discarded and the second
callback does not execute.

• If the value is queue, and the Interruptible property of the
first callback is on, the second callback is added to the event
queue and executes in its turn after the first callback finishes
execution.

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback,
it interrupts an executing callback regardless of the value of
that object’s Interruptible property. See theInterruptible
property for information about controlling a callback’s
interruptibility.

CData
3-dimensional array

2-3580

Uitoggletool Properties

Truecolor image displayed on control. An n-by-m-by-3 array of
RGB values that defines a truecolor image displayed on either
a push button or toggle button. Each value must be between
0.0 and 1.0. If your CData array is larger than 16 in the first or
second dimension, it may be clipped or cause other undesirable
effects. If the array is clipped, only the center 16-by-16 part of
the array is used.

ClickedCallback
string or function handle

Control action independent of the toggle tool position. A routine
that executes after either the OnCallback routine or OffCallback
routine runs to completion. The uitoggletool’s Enable property
must be set to on.

CreateFcn
string or function handle

Callback routine executed during object creation. The specified
function executes when MATLAB creates a uitoggletool object.
MATLAB sets all property values for the uitoggletool before
executing the CreateFcn callback so these values are available to
the callback. Within the function, use gcbo to get the handle of
the toggle tool being created.

Setting this property on an existing uitoggletool object has no
effect.

You can define a default CreateFcn callback for all new
uitoggletools. This default applies unless you override it
by specifying a different CreateFcn callback when you call
uitoggletool. For example, the statement,

set(0,'DefaultUitoggletoolCreateFcn',...
'set(gcbo,''Enable'',''off'')'

2-3581

Uitoggletool Properties

creates a default CreateFcn callback that runs whenever you
create a new toggle tool. It sets the toggle tool Enable property
to off.

To override this default and create a toggle tool whose Enable
property is set to on, you could call uitoggletool with code
similar to

htt = uitoggletool(...,'CreateFcn',...
'set(gcbo,''Enable'',''on'')',...)

Note To override a default CreateFcn callback you must provide
a new callback and not just provide different values for the
specified properties. This is because the CreateFcn callback
runs after the property values are set, and can override property
values you have set explicitly in the uitoggletool call. In the
example above, if instead of redefining the CreateFcn property for
this toggle tool, you had explicitly set Enable to on, the default
CreateFcn callback would have set CData back to off.

See Function Handle Callbacks for information on how to use
function handles to define a callback function.

DeleteFcn
string or function handle

Callback routine executed during object deletion. A callback
routine that executes when you delete the uitoggletool object (e.g.,
when you call the delete function or cause the figure containing
the uitoggletool to reset). MATLAB executes the routine before
destroying the object’s properties so these values are available
to the callback routine.

The handle of the object whose DeleteFcn is being executed is
accessible only through the root CallbackObject property, which
you can query using gcbo.

2-3582

Uitoggletool Properties

See Function Handle Callbacks for information on how to use
function handles to define a callback function.

Enable
{on} | off

Enable or disable the uitoggletool. This property controls how
uitoggletools respond to mouse button clicks, including which
callback routines execute.

• on – The uitoggletool is operational (the default).

• off – The uitoggletool is not operational and its image (set by
the Cdata property) is grayed out.

When you left-click on a uitoggletool whose Enable property is on,
MATLAB performs these actions in this order:

1 Sets the figure’s SelectionType property.

2 Executes the toggle tool’s ClickedCallback routine.

3 Does not set the figure’s CurrentPoint property and does not
execute the figure’s WindowButtonDownFcn callback.

When you left-click on a uitoggletool whose Enable property is
off, or when you right-click a uitoggletool whose Enable property
has any value, MATLAB performs these actions in this order:

4 Sets the figure’s SelectionType property.

5 Sets the figure’s CurrentPoint property.

6 Executes the figure’s WindowButtonDownFcn callback.

7 Does not execute the toggle tool’s OnCallback, OffCallback,
or ClickedCallback routines.

HandleVisibility
{on} | callback | off

2-3583

Uitoggletool Properties

Control access to object’s handle. This property determines when
an object’s handle is visible in its parent’s list of children. When
a handle is not visible in its parent’s list of children, it is not
returned by functions that obtain handles by searching the object
hierarchy or querying handle properties. This includes get,
findobj, gca, gcf, gco, newplot, cla, clf, and close. Neither is
the handle visible in the parent figure’s CurrentObject property.
Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

• Handles are always visible when HandleVisibility is on.

• Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

• Setting HandleVisibility to off makes handles invisible
at all times. This may be necessary when a callback routine
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string), and so temporarily
hides its own handles during the execution of that function.

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties.

HitTest
{on} | off

Selectable by mouse click. This property has no effect on
uitoggletool objects.

Interruptible
{on} | off

2-3584

Uitoggletool Properties

Callback routine interruption mode. If a callback is executing and
the user triggers an event (such as a mouse click) on an object for
which a callback is defined, that callback attempts to interrupt
the first callback. MATLAB processes the callbacks according to
these factors:

• The Interruptible property of the object whose callback is
executing

• Whether the executing callback contains drawnow, figure,
getframe, pause, or waitfor statements

• The BusyAction property of the object whose callback is waiting
to execute

If the Interruptible property of the object whose callback is
executing is on (the default), the callback can be interrupted.
Whenever the callback calls one of the drawnow, figure,
getframe, pause, or waitfor functions, the function processes
any events in the event queue, including the waiting callback,
before performing its defined task.

If the Interruptible property of the object whose callback is
executing is off, the callback cannot be interrupted (except by
certain callbacks; see the note below).

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback, it
interrupts an executing callback regardless of the value of that
object’s Interruptible property. The interrupting callback starts
execution at the next drawnow, figure, getframe, pause, or
waitfor statement.

OffCallback
string or function handle

2-3585

Uitoggletool Properties

Control action. A routine that executes if the uitoggletool’s Enable
property is set to on, and either

• The toggle tool State is set to off.

• The toggle tool is set to the off position by pressing a mouse
button while the pointer is on the toggle tool itself or in a
5-pixel wide border around it.

The ClickedCallback routine, if there is one, runs after the
OffCallback routine runs to completion.

OnCallback
string or function handle

Control action. A routine that executes if the uitoggletool’s Enable
property is set to on, and either

• The toggle tool State is set to on.

• The toggle tool is set to the on position by pressing a mouse
button while the pointer is on the toggle tool itself or in a
5-pixel wide border around it.

The ClickedCallback routine, if there is one, runs after the
OffCallback routine runs to completion.

Parent
handle

Uitoggletool parent. The handle of the uitoggletool’s parent
toolbar. You can move a uitoggletool object to another toolbar by
setting this property to the handle of the new parent.

Separator
on | {off}

Separator line mode. Setting this property to on draws a dividing
line to left of the uitoggletool.

2-3586

Uitoggletool Properties

State
on | {off}

Uitoggletool state. When the state is on, the toggle tool appears in
the down, or pressed, position. When the state is off, it appears
in the up position. Changing the state causes the appropriate
OnCallback or OffCallback routine to run.

Tag
string

User-specified object identifier. The Tag property provides a means
to identify graphics objects with a user-specified label. You can
define Tag as any string.

With the findobj function, you can locate an object with a given
Tag property value. This saves you from defining object handles
as global variables. For example, this function call returns the
handles of all children (of the specified toolbars) that have the
Tag value 'Bold'.

h = findobj(uitoolbarhandles, 'Tag', 'Bold')

TooltipString
string

Content of tooltip for object. The TooltipString property specifies
the text of the tooltip associated with the uitoggletool. When the
user moves the mouse pointer over the control and leaves it there,
the tooltip is displayed.

Type
string (read-only)

Object class. This property identifies the kind of graphics
object. For uitoggletool objects, Type is always the string
'uitoggletool'.

2-3587

Uitoggletool Properties

UIContextMenu
handle

Associate a context menu with uicontrol. This property has no
effect on uitoggletool objects.

UserData
array

User specified data. You can specify UserData as any array you
want to associate with the uitoggletool object. The object does
not use this data, but you can access it using the set and get
functions.

Visible
{on} | off

Uitoggletool visibility. By default, all uitoggletools are visible.
When set to off, the uitoggletool is not visible, but still exists and
you can query and set its properties.

2-3588

uitoolbar

Purpose Create toolbar on figure

Syntax ht =
uitoolbar('PropertyName1',value1,'PropertyName2',value2,

...)
ht = uitoolbar(h,...)

Description ht =
uitoolbar('PropertyName1',value1,'PropertyName2',value2,...)
creates an empty toolbar at the top of the current figure window, and
returns a handle to it. uitoolbar assigns the specified property values,
and assigns default values to the remaining properties. You can change
the property values at a later time using the set function.

Type get(ht) to see a list of uitoolbar object properties and their
current values. Type set(ht) to see a list of uitoolbar object properties
that you can set and legal property values. See the Uitoolbar Properties
reference page for more information.

ht = uitoolbar(h,...) creates a toolbar with h as a parent. h must
be a figure handle.

Remarks uitoolbar accepts property name/property value pairs, as well as
structures and cell arrays of properties as input arguments.

Uitoolbars appear in figures whose Window Style is normal or docked.
They do not appear in figures whose WindowStyle is modal. If the
WindowStyle property of a figure containing a uitoolbar is changed to
modal, the uitoolbar still exists and is contained in the Children list
of the figure, but is not displayed until the WindowStyle is changed
to normal or docked.

Example This example creates a figure with no toolbar, then adds a toolbar to it.

h = figure('ToolBar','none')
ht = uitoolbar(h)

2-3589

uitoolbar

For more information on using the menus and toolbar in a MATLAB
figure window, see the online MATLAB Graphics documentation.

See Also set, get, uicontrol, uipushtool, uitoggletool

2-3590

Uitoolbar Properties

Purpose Describe toolbar properties

Modifying
Properties

You can set and query graphics object properties in two ways:

• The Property Inspector is an interactive tool that enables you to
see and change object property values. The Property inspector is
available from GUIDE, or use the inspect function at the command
line.

• The set and get functions enable you to set and query the values of
properties.

You can set default Uitoolbar properties by typing:

set(h,'DefaultUitoolbarPropertyName',PropertyValue...)

Where h can be the root handle (0), a figure handle, or a uitoolbar
handle. PropertyName is the name of the Uitoolbar property and
PropertyValue is the value you specify as the default for that property.

For more information about changing the default value of a property see
Setting Default Property Values.

Uitoolbar
Properties

This section lists all properties useful to uitoolbar objects along with
valid values and a descriptions of their use. Curly braces { } enclose
default values.

Property Purpose

BeingDeleted This object is being deleted.

BusyAction Callback routine interruption.

Children Handles of uitoolbar’s children.

CreateFcn Callback routine executed during object
creation.

DeleteFcn Callback routine executed during object
deletion.

2-3591

Uitoolbar Properties

Property Purpose

HandleVisibility Control access to object’s handle.

HitTest Whether selectable by mouse click

Interruptible Callback routine interruption mode.

Parent Handle of uitoolbar’s parent.

Tag User-specified object identifier.

Type Object class.

UIContextMenu Uicontextmenu object associated with the
uitoolbar

UserData User specified data.

Visible Uitoolbar visibility.

BeingDeleted
on | {off} (read-only)

This object is being deleted. The BeingDeleted property provides
a mechanism that you can use to determine if objects are in
the process of being deleted. MATLAB sets the BeingDeleted
property to on when the object’s delete function callback is called
(see the DeleteFcn property) It remains set to on while the delete
function executes, after which the object no longer exists.

For example, some functions may not need to perform actions
on objects that are being deleted, and therefore, can check the
object’s BeingDeleted property before acting.

BusyAction
cancel | {queue}

Callback routine interruption. If a callback is executing and the
user triggers an event (such as a mouse click) on an object for
which a callback is defined, the callback associated with the new

2-3592

Uitoolbar Properties

event uses the value of BusyAction to decide whether or not to
attempt to interrupt the executing callback.

• If the value is cancel, the event is discarded and the second
callback does not execute.

• If the value is queue, and the Interruptible property of the
first callback is on, the second callback is added to the event
queue and executes in its turn after the first callback finishes
execution.

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback,
it interrupts an executing callback regardless of the value of
that object’s Interruptible property. See the Interruptible
property for information about controlling a callback’s
interruptibility.

Children
vector of handles

Handles of tools on the toolbar. A vector containing the handles
of all children of the uitoolbar object, in the order in which they
appear on the toolbar. The children objects of uitoolbars are
uipushtools and uitoggletools. You can use this property to reorder
the children.

CreateFcn
string or function handle

Callback routine executed during object creation. The specified
function executes when MATLAB creates a uitoolbar object.
MATLAB sets all property values for the uitoolbar before
executing the CreateFcn callback so these values are available to
the callback. Within the function, use gcbo to get the handle of
the toolbar being created.

2-3593

Uitoolbar Properties

Setting this property on an existing uitoolbar object has no effect.

You can define a default CreateFcn callback for all new uitoolbars.
This default applies unless you override it by specifying a different
CreateFcn callback when you call uitoolbar. For example, the
statement,

set(0,'DefaultUitoolbarCreateFcn',...
'set(gcbo,''Visibility'',''off'')')

creates a default CreateFcn callback that runs whenever you
create a new toolbar. It sets the toolbar visibility to off.

To override this default and create a toolbar whose Visibility
property is set to on, you could call uitoolbar with a call similar
to

ht = uitoolbar(...,'CreateFcn',...
'set(gcbo,''Visibility'',''on'')',...)

Note To override a default CreateFcn callback you must provide a
new callback and not just provide different values for the specified
properties. This is because the CreateFcn callback runs after the
property values are set, and can override property values you
have set explicitly in the uitoolbar call. In the example above,
if instead of redefining the CreateFcn property for this toolbar,
you had explicitly set Visibility to on, the default CreateFcn
callback would have set Visibility back to off.

See Function Handle Callbacks for information on how to use
function handles to define a callback function.

DeleteFcn
string or function handle

2-3594

Uitoolbar Properties

Callback routine executed during object deletion. A callback
function that executes when the uitoolbar object is deleted (e.g.,
when you call the delete function or cause the figure containing
the uitoolbar to reset). MATLAB executes the routine before
destroying the object’s properties so these values are available
to the callback routine.

Within the function, use gcbo to get the handle of the toolbar
being deleted.

HandleVisibility
{on} | callback | off

Control access to object’s handle. This property determines when
an object’s handle is visible in its parent’s list of children. When
a handle is not visible in its parent’s list of children, it is not
returned by functions that obtain handles by searching the object
hierarchy or querying handle properties. This includes get,
findobj, gca, gcf, gco, newplot, cla, clf, and close. Neither is
the handle visible in the parent figure’s CurrentObject property.
Handles that are hidden are still valid. If you know an object’s
handle, you can set and get its properties, and pass it to any
function that operates on handles.

• Handles are always visible when HandleVisibility is on.

• Setting HandleVisibility to callback causes handles to be
visible from within callback routines or functions invoked by
callback routines, but not from within functions invoked from
the command line. This provides a means to protect GUIs from
command-line users, while allowing callback routines to have
complete access to object handles.

• Setting HandleVisibility to off makes handles invisible
at all times. This may be necessary when a callback routine
invokes a function that might potentially damage the GUI
(such as evaluating a user-typed string), and so temporarily
hides its own handles during the execution of that function.

2-3595

Uitoolbar Properties

You can set the root ShowHiddenHandles property to on to
make all handles visible, regardless of their HandleVisibility
settings. This does not affect the values of the HandleVisibility
properties.

HitTest
{on} | off

Selectable by mouse click. This property has no effect on uitoolbar
objects.

Interruptible
{on} | off

Callback routine interruption mode. If a callback is executing and
the user triggers an event (such as a mouse click) on an object for
which a callback is defined, that callback attempts to interrupt
the first callback. MATLAB processes the callbacks according to
these factors:

• The Interruptible property of the object whose callback is
executing

• Whether the executing callback contains drawnow, figure,
getframe, pause, or waitfor statements

• The BusyAction property of the object whose callback is waiting
to execute

If the Interruptible property of the object whose callback is
executing is on (the default), the callback can be interrupted.
Whenever the callback calls one of the drawnow, figure,
getframe, pause, or waitfor functions, the function processes
any events in the event queue, including the waiting callback,
before performing its defined task.

If the Interruptible property of the object whose callback is
executing is off, the callback cannot be interrupted (except by
certain callbacks; see the note below). The BusyAction property

2-3596

Uitoolbar Properties

of the object whose callback is waiting to execute determines what
happens to the callback.

Note If the interrupting callback is a DeleteFcn or CreateFcn
callback or a figure’s CloseRequest or ResizeFcn callback, it
interrupts an executing callback regardless of the value of that
object’s Interruptible property. The interrupting callback starts
execution at the next drawnow, figure, getframe, pause, or
waitfor statement. A figure’s WindowButtonDownFcn callback
routine, or an object’s ButtonDownFcn or Callback routine are
processed according to the rules described above.

Parent
handle

Uitoolbar parent. The handle of the uitoolbar’s parent figure.
You can move a uitoolbar object to another figure by setting this
property to the handle of the new parent.

Tag
string

User-specified object identifier. The Tag property provides a means
to identify graphics objects with a user-specified label. You can
define Tag as any string.

With the findobj function, you can locate an object with a given
Tag property value. This saves you from defining object handles
as global variables. For example, this function call returns the
handles of all children (of the specified figures) that have the Tag
value 'FormatTb'.

h = findobj(figurehandles,'Tag','FormatTb')

Type
string (read-only)

2-3597

Uitoolbar Properties

Object class. This property identifies the kind of graphics object.
For uitoolbar objects, Type is always the string 'uitoolbar'.

UIContextMenu
handle

Associate a context menu with uicontrol. This property has no
effect on uitoolbar objects.

UserData
array

User specified data. You can specify UserData as any array you
want to associate with the uitoolbar object. The object does not use
this data, but you can access it using the set and get functions.

Visible
{on} | off

Uitoolbar visibility. By default, all uitoolbars are visible. When
set to off, the uitoolbar is not visible, but still exists and you can
query and set its properties.

2-3598

undocheckout

Purpose Undo previous checkout from source control system (UNIX)

GUI
Alternatives

As an alternative to the undocheckout function, select Source
Control > Undo Checkout in the File menu of the Editor/Debugger,
Simulink, or Stateflow, or in the context menu of the Current Directory
browser. For more information, see “Undoing the Checkout on UNIX”.

Syntax undocheckout('filename')
undocheckout({'filename1','filename2', ...,'filenamen'})

Description undocheckout('filename') makes the file filename available for
checkout, where filename does not reflect any of the changes you made
after you last checked it out. Use the full pathname for filename and
include the file extension.

undocheckout({'filename1','filename2', ...,'filenamen'})
makes filename1 through filenamen available for checkout, where the
files do not reflect any of the changes you made after you last checked
them out. Use the full pathnames for filenames and include the file
extensions.

Examples Typing

undocheckout({'/myserver/mymfiles/clock.m', ...
'/myserver/mymfiles/calendar.m'})

undoes the checkouts of /myserver/mymfiles/clock.m and
/myserver/mymfiles/calendar.m from the source control system.

See Also checkin, checkout

For Windows platforms, use verctrl.

2-3599

unicode2native

Purpose Convert Unicode characters to numeric bytes

Syntax bytes = unicode2native(unicodestr)
bytes = unicode2native(unicodestr, encoding)

Description bytes = unicode2native(unicodestr) takes a char vector of
Unicode characters, unicodestr, converts it to MATLAB’s default
character encoding scheme, and returns the bytes as a uint8 vector,
bytes. Output vector bytes has the same general array shape as the
unicodestr input. You can save the output of unicode2native to a file
using the fwrite function.

bytes = unicode2native(unicodestr, encoding) converts the
Unicode characters to the character encoding scheme specified by the
string encoding. encoding must be the empty string ('') or a name or
alias for an encoding scheme. Some examples are 'UTF-8', 'latin1',
'US-ASCII', and 'Shift_JIS'. For common names and aliases, see the
Web site http://www.iana.org/assignments/character-sets. If encoding
is unspecified or is the empty string (''), MATLAB’s default encoding
scheme is used.

Examples This example begins with two strings containing Unicode characters.
It assumes that string str1 contains text in a Western European
language and string str2 contains Japanese text. The example writes
both strings into the same file, using the ISO-8859-1 character encoding
scheme for the first string and the Shift-JIS encoding scheme for the
second string. The example uses unicode2native to convert the two
strings to the appropriate encoding schemes.

fid = fopen('mixed.txt', 'w');
bytes1 = unicode2native(str1, 'ISO-8859-1');
fwrite(fid, bytes1, 'uint8');
bytes2 = unicode2native(str2, 'Shift_JIS');
fwrite(fid, bytes2, 'uint8');
fclose(fid);

See Also native2unicode

2-3600

http://www.iana.org/assignments/character-sets

union

Purpose Find set union of two vectors

Syntax c = union(A, B)
c = union(A, B, 'rows')
[c, ia, ib] = union(...)

Description c = union(A, B) returns the combined values from A and B but with
no repetitions. In set theoretic terms, c = A ∪ B. Inputs A and B can be
numeric or character vectors or cell arrays of strings. The resulting
vector is sorted in ascending order.

c = union(A, B, 'rows') when A and B are matrices with the same
number of columns returns the combined rows from A and B with no
repetitions.

[c, ia, ib] = union(...) also returns index vectors ia and ib
such that c = a(ia) ∪ b(ib), or for row combinations, c = a(ia,:)
∪ b(ib,:). If a value appears in both a and b, union indexes its
occurrence in b. If a value appears more than once in b or in a (but not
in b), union indexes the last occurrence of the value.

Remarks Because NaN is considered to be not equal to itself, every occurrence of
NaN in A or B is also included in the result c.

Examples a = [-1 0 2 4 6];
b = [-1 0 1 3];
[c, ia, ib] = union(a, b);
c =

-1 0 1 2 3 4 6

ia =

3 4 5

ib =

2-3601

union

1 2 3 4

See Also intersect, setdiff, setxor, unique, ismember, issorted

2-3602

unique

Purpose Find unique elements of vector

Syntax b = unique(A)
b = unique(A, 'rows')
[b, m, n] = unique(...)
[b, m, n] = unique(..., occurrence)

Description b = unique(A) returns the same values as in A but with no repetitions.
A can be a numeric or character array or a cell array of strings. If A
is a vector or an array, b is a vector of unique values from A. If A is
a cell array of strings, b is a cell vector of unique strings from A. The
resulting vector b is sorted in ascending order and its elements are of
the same class as A.

b = unique(A, 'rows') returns the unique rows of A.

[b, m, n] = unique(...) also returns index vectors m and n such
that b = A(m) and A = b(n). Each element of m is the greatest
subscript such that b = A(m). For row combinations, b = A(m,:) and
A = b(n,:).

[b, m, n] = unique(..., occurrence), where occurrence can be

• 'first', which returns the vector m to index the first occurrence of
each unique value in A, or

• 'last', which returns the vector m to index the last occurrence.

If you do not specify occurrence, it defaults to 'last'.

You can specify 'rows' in the same command as 'first' or 'last'.
The order of appearance in the argument list is not important.

Examples A = [1 1 5 6 2 3 3
9 8 6 2 4] A = 1 1 5 6 2 3 3 9 8 6 2 4

Get a sorted vector of unique elements of A. Also get indices of the first
elements in A that make up vector b, and the first elements in b that
make up vector A:

2-3603

unique

[b1,
m1, n1] = unique(A, 'first') b1 = 1 2 3 4 5 6 8 9 m1 =
1 5 6 12 3 4 9 8 n1 = 1 1 5 6 2 3 3 8
6 2 4

Verify that b1 = A(m1) and A = b1(n1):

all(b1 == A(m1)) && all(A
== b1(n1)) ans = 1

Get a sorted vector of unique elements of A. Also get indices of the last
elements in A that make up vector b, and the last elements in b that
make up vector A:

[b2, m2, n2] =
unique(A, 'last') b2 = 1 2 3 4 5 6 8 9 m2 = 2 11
12 3 10 9 8 n2 = 1 1 5 6 2 3 3 8 7 6 2

Verify that b2 = A(m2) and A = b2(n2):

all(b2
== A(m2)) && all(A == b2(n2)) ans = 1

Because NaNs are not equal to each other, unique treats them as unique
elements.

unique([1 1 NaN NaN]) ans = 1 NaN NaN

See Also intersect, ismember, issorted, setdiff, setxor, union

2-3604

unix

Purpose Execute UNIX command and return result

Syntax unix command
status = unix('command')
[status, result] = unix('command')
[status,result] = unix('command','-echo')

Description unix command calls upon the UNIX operating system to execute the
given command.

status = unix('command') returns completion status to the status
variable.

[status, result] = unix('command') returns the standard output
to the result variable, in addition to completion status.

[status,result] = unix('command','-echo') displays the results in
the Command Window as it executes, and assigns the results to w.

Note MATLAB uses a shell program to execute the given command.
It determines which shell program to use by checking environment
variables on your system. MATLAB first checks the MATLAB_SHELL
variable, and if either empty or not defined, then checks SHELL. If SHELL
is also empty or not defined, MATLAB uses /bin/sh.

Examples List all users that are currently logged in.

[s,w] = unix('who');

MATLAB returns 0 (success) in s and a string containing the list of
users in w.

In this example

[s,w] = unix('why')
s =

1

2-3605

unix

w =
why: Command not found.

MATLAB returns a nonzero value in s to indicate failure, and returns
an error message in w because why is not a UNIX command.

See Also dos, ! (exclamation point), perl, system

“Running External Programs” in the MATLAB Desktop Tools and
Development Environment documentation

2-3606

unloadlibrary

Purpose Unload external library from memory

Syntax unloadlibrary('libname')
unloadlibrary libname

Description unloadlibrary('libname') unloads the functions defined in shared
library shrlib from memory. If you need to use these functions again,
you must first load them back into memory using loadlibrary.

unloadlibrary libname is the command format for this function.

If you used an alias when initially loading the library, then you must
use that alias for the libname argument.

Examples Load the MATLAB sample shared library, shrlibsample. Call one of its
functions, and then unload the library:

addpath([matlabroot '\extern\examples\shrlib'])
loadlibrary shrlibsample shrlibsample.h

s.p1 = 476; s.p2 = -299; s.p3 = 1000;
calllib('shrlibsample', 'addStructFields', s)
ans =

1177

unloadlibrary shrlibsample

See Also loadlibrary, libisloaded, libfunctions, libfunctionsview,
libpointer, libstruct, calllib

2-3607

unmkpp

Purpose Piecewise polynomial details

Syntax [breaks,coefs,l,k,d] = unmkpp(pp)

Description [breaks,coefs,l,k,d] = unmkpp(pp) extracts, from the piecewise
polynomial pp, its breaks breaks, coefficients coefs, number of pieces
l, order k, and dimension d of its target. Create pp using spline or the
spline utility mkpp.

Examples This example creates a description of the quadratic polynomial

as a piecewise polynomial pp, then extracts the details of that
description.

pp = mkpp([-8 -4],[-1/4 1 0]);
[breaks,coefs,l,k,d] = unmkpp(pp)

breaks =
-8 -4

coefs =
-0.2500 1.0000 0

l =
1

k =
3

d =
1

See Also mkpp, ppval, spline

2-3608

unregisterallevents

Purpose Unregister all events for control

Syntax h.unregisterallevents
unregisterallevents(h)

Description h.unregisterallevents unregisters all events that have previously
been registered with control, h. After calling unregisterallevents,
the control will no longer respond to any events until you register them
again using the registerevent function.

unregisterallevents(h) is an alternate syntax for the same
operation.

Examples mwsamp Control Example

Create an mwsamp control, registering three events and their respective
handler routines. Use the eventlisteners function to see the event
handler used by each event:

f = figure ('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', ...

[0 0 200 200], f, ...
{'Click' 'myclick'; 'DblClick' 'my2click'; ...
'MouseDown' 'mymoused'});

h.eventlisteners
ans =

'click' 'myclick'
'dblclick' 'my2click'
'mousedown' 'mymoused'

Unregister all of these events at once with unregisterallevents. Now,
calling eventlisteners returns an empty cell array, indicating that
there are no longer any events registered with the control:

h.unregisterallevents;
h.eventlisteners
ans =

2-3609

unregisterallevents

{}

To unregister specific events, use the unregisterevent function. First,
create the control and register three events:

f = figure ('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', [0 0 200 200], f,...

{'Click' 'myclick'; 'DblClick' 'my2click'; ...
'MouseDown' 'mymoused'});

Next, unregister two of the three events. The mousedown event remains
registered:

h.unregisterevent({'click' 'myclick'; ...
'dblclick' 'my2click'});

h.eventlisteners
ans =

'mousedown' 'mymoused'

Excel Example

Create an Excel Workbook object and register some events.

excel = actxserver('Excel.Application');
wbs = excel.Workbooks;
wb = wbs.Add;
wb.registerevent({'Activate' 'EvtActivateHndlr'; ...

'Deactivate' 'EvtDeactivateHndlr'})
wb.eventlisteners

MATLAB shows the events registered to their corresponding event
handlers.

ans =

'Activate' 'EvtActivateHndlr'
'Deactivate' 'EvtDeactivateHndlr'

2-3610

unregisterallevents

Use unregisterallevents to clear the events.

wb.unregisterallevents
wb.eventlisteners

MATLAB displays an empty cell array, showing that no events are
registered.

ans =

{}

See Also events, eventlisteners, registerevent, unregisterevent, isevent

2-3611

unregisterevent

Purpose Unregister event handler with control’s event

Syntax h.unregisterevent(event_handler)
unregisterevent(h, event_handler)

Description h.unregisterevent(event_handler) unregisters certain event
handler routines with their corresponding events. Once you unregister
an event, the control no longer responds to any further occurrences
of the event.

unregisterevent(h, event_handler) is an alternate syntax for the
same operation.

You can unregister events at any time after a control has been created.
The event_handler argument, which is a cell array, specifies both
events and event handlers. For example,

h.unregisterevent({'event_name',@event_handler});

See "Writing Event Handlers" in the External Interfaces documentation.

You must specify events in the event_handler argument using the
names of the events. Strings used in the event_handler argument
are not case sensitive. Unlike actxcontrol and registerevent,
unregisterevent does not accept numeric event identifiers.

Examples Control Example

Create an mwsamp control and register all events with the same handler
routine, sampev. Use eventlisteners to see the event handler used by
each event. In this case, each event, when fired, calls sampev.m:

f = figure ('position', [100 200 200 200]);
h = actxcontrol('mwsamp.mwsampctrl.2', ...

[0 0 200 200], f, ...
'sampev');

h.eventlisteners
ans =

2-3612

unregisterevent

'click' 'sampev'
'dblclick' 'sampev'
'mousedown' 'sampev'

Unregister just the dblclick event. Now, when you list the registered
events using eventlisteners, dblclick is no longer registered and the
control does not respond when you double-click the mouse over it:

h.unregisterevent({'dblclick' 'sampev'});
h.eventlisteners
ans =

'click' 'sampev'
'mousedown' 'sampev'

This time, register the click and dblclick events with a different
event handler for myclick and my2click, respectively:

h.unregisterallevents;
h.registerevent({'click' 'myclick'; ...

'dblclick' 'my2click'});
h.eventlisteners
ans =

'click' 'myclick'
'dblclick' 'my2click'

You can unregister these same events by specifying event names and
their handler routines in a cell array. eventlisteners now returns
an empty cell array, meaning no events are registered for the mwsamp
control:

h.unregisterevent({'click' 'myclick'; ...
'dblclick' 'my2click'});

h.eventlisteners
ans =

{}

2-3613

unregisterevent

In this last example, you could have used unregisterallevents
instead:

h.unregisterallevents;

Excel Example

Create an Excel Workbook object

excel = actxserver('Excel.Application');
wbs = excel.Workbooks;
wb = wbs.Add;

Register two events with the your event handler routines,
EvtActivateHndlr and EvtDeactivateHndlr.

wb.registerevent({'Activate' 'EvtActivateHndlr'; ...
'Deactivate' 'EvtDeactivateHndlr'})

wb.eventlisteners

MATLAB shows the events with the corresponding event handlers.

ans =

'Activate' 'EvtActivateHndlr'
'Deactivate' 'EvtDeactivateHndlr'

Next, unregister the Deactivate event handler.

wb.unregisterevent({'Deactivate' 'EvtDeactivateHndlr'})
wb.eventlisteners

MATLAB shows the remaining registered event (Activate) with its
corresponding event handler.

ans =

'Activate' 'EvtActivateHndlr'

2-3614

unregisterevent

See Also events, eventlisteners, registerevent, unregisterallevents,
isevent

2-3615

untar

Purpose Extract contents of tar file

Syntax untar(tarfilename)
untar(tarfilename,outputdir)
untar(url, ...)
filenames = untar(...)

Description untar(tarfilename) extracts the archived contents of tarfilename
into the current directory and sets the files’ attributes. It overwrites
any existing files with the same names as those in the archive if the
existing files’ attributes and ownerships permit it. For example, files
from rerunning untar on the same tar filename do not overwrite any
of those files that have a read-only attribute; instead, untar issues a
warning for such files. On Windows platforms, the hidden, system,
and archive attributes are not set.

tarfilename is a string specifying the name of the tar file. tarfilename
is gunzipped to a temporary directory and deleted if its extension
ends in .tgz or .gz. If an extension is omitted, untar searches for
tarfilename appended with .tgz, .tar.gz, or .tar until a file exists.
tarfilename can include the directory name; otherwise, the file must
be in the current directory or in a directory on the MATLAB path.

untar(tarfilename,outputdir) uncompresses the archive
tarfilename into the directory outputdir. outputdir is created if it
does not exist.

untar(url, ...) extracts the tar archive from an Internet URL. The
URL must include the protocol type (e.g., 'http://' or 'ftp://'). The
URL is downloaded to a temporary directory and deleted.

filenames = untar(...) extracts the tar archive and returns the
relative pathnames of the extracted files into the string cell array
filenames.

Examples Copy all .m files in the current directory to the directory backup:

tar('mymfiles.tar.gz','*.m');
untar('mymfiles','backup');

2-3616

untar

Run untar to list Cleve Moler’s "Numerical Computing with MATLAB"
examples to the output directory ncm:

url ='http://www.mathworks.com/moler/ncm.tar.gz';
ncmFiles = untar(url,'ncm')

See Also gzip, gunzip, tar, unzip, zip

2-3617

unwrap

Purpose Correct phase angles to produce smoother phase plots

Syntax Q = unwrap(P)
Q = unwrap(P,tol)
Q = unwrap(P,[],dim)
Q = unwrap(P,tol,dim)

Description Q = unwrap(P) corrects the radian phase angles in a vector P by adding
multiples of when absolute jumps between consecutive elements of
P are greater than or equal to the default jump tolerance of radians. If
P is a matrix, unwrap operates columnwise. If P is a multidimensional
array, unwrap operates on the first nonsingleton dimension.

Q = unwrap(P,tol) uses a jump tolerance tol instead of the default
value, .

Q = unwrap(P,[],dim) unwraps along dim using the default tolerance.

Q = unwrap(P,tol,dim) uses a jump tolerance of tol.

Note A jump tolerance less than has the same effect as a tolerance of
. For a tolerance less than , if a jump is greater than the tolerance but

less than , adding would result in a jump larger than the existing
one, so unwrap chooses the current point. If you want to eliminate jumps
that are less than , try using a finer grid in the domain.

Examples Example 1

The following phase data comes from the frequency response of a
third-order transfer function. The phase curve jumps 3.5873 radians
between w = 3.0 and w = 3.5, from -1.8621 to 1.7252.

w = [0:.2:3,3.5:1:10];
p = [0

-1.5728
-1.5747
-1.5772

2-3618

unwrap

-1.5790
-1.5816
-1.5852
-1.5877
-1.5922
-1.5976
-1.6044
-1.6129
-1.6269
-1.6512
-1.6998
-1.8621
1.7252
1.6124
1.5930
1.5916
1.5708
1.5708
1.5708];

semilogx(w,p,'b*-'), hold

2-3619

unwrap

Using unwrap to correct the phase angle, the resulting jump is 2.6959,
which is less than the default jump tolerance . This figure plots the
new curve over the original curve.

semilogx(w,unwrap(p),'r*-')

2-3620

unwrap

Note If you have the “Control System Toolbox”, you can create the data
for this example with the following code.

h = freqresp(tf(1,[1 .1 10 0]));
p = angle(h(:));

Example 2

Array P features smoothly increasing phase angles except for
discontinuities at elements (3,1) and (1,2).

P = [0 7.0686 1.5708 2.3562
0.1963 0.9817 1.7671 2.5525
6.6759 1.1781 1.9635 2.7489
0.5890 1.3744 2.1598 2.9452]

2-3621

unwrap

The function Q = unwrap(P) eliminates these discontinuities.

Q =
0 7.0686 1.5708 2.3562

0.1963 7.2649 1.7671 2.5525
0.3927 7.4613 1.9635 2.7489
0.5890 7.6576 2.1598 2.9452

See Also abs, angle

2-3622

unzip

Purpose Extract contents of zip file

Syntax unzip(zipfilename)
unzip(zipfilename,outputdir)
unzip(url, ...)
filenames = unzip(...)
unzip

Description unzip(zipfilename) extracts the archived contents of zipfilename
into the current directory and sets the files’ attributes. It overwrites
any existing files with the same names as those in the archive if the
existing files’ attributes and ownerships permit it. For example, files
from rerunning unzip on the same zip filename do not overwrite any
of those files that have a read-only attribute; instead, unzip issues a
warning for such files.

zipfilename is a string specifying the name of the zip file. The .zip
extension is appended to zipfilename if omitted. zipfilename can include
the directory name; otherwise, the file must be in the current directory
or in a directory on the MATLAB path.

unzip(zipfilename,outputdir) extracts the contents of zipfilename
into the directory outputdir.

unzip(url, ...) extracts the zipped contents from an Internet URL.
The URL must include the protocol type (e.g., http://). The URL is
downloaded to the temp directory and deleted.

filenames = unzip(...) extracts the zip archive and returns the
relative pathnames of the extracted files into the string cell array
filenames.

unzip does not support password-protected or encrypted zip archives.

Examples Example 1

Copy the demos HTML files to the directory archive:

% Zip the demos html files to demos.zip
zip('demos.zip','*.html',fullfile(matlabroot,'demos'))

2-3623

unzip

% Unzip demos.zip to the 'directory' archive
unzip('demos','archive')

Example 2

Run unzip to list Cleve Moler’s "Numerical Computing with MATLAB"
examples to the output directory ncm.

url ='http://www.mathworks.com/moler/ncm.zip';
ncmFiles = unzip(url,'ncm')

See Also fileattrib, gzip, gunzip, tar, untar, zip

2-3624

upper

Purpose Convert string to uppercase

Syntax t = upper('str')
B = upper(A)

Description t = upper('str') converts any lowercase characters in the string
str to the corresponding uppercase characters and leaves all other
characters unchanged.

B = upper(A) when A is a cell array of strings, returns a cell array the
same size as A containing the result of applying upper to each string
within A.

Examples upper('attention!') is ATTENTION!.

Remarks Character sets supported:

• PC: Windows Latin-1

• Other: ISO Latin-1 (ISO 8859-1)

See Also lower

2-3625

urlread

Purpose Read content at URL

Syntax s = urlread('url')
s = urlread('url','method','params')
[s,status] = urlread(...)

Description s = urlread('url') reads the content at a URL into the string s. If
the server returns binary data, s will be unreadable.

s = urlread('url','method','params') reads the content at a
URL into the string s, passing information to the server as part of the
request where method can be get or post, and params is a cell array of
parameter name/parameter value pairs.

[s,status] = urlread(...) catches any errors and returns the
error code.

Note If you need to specify a proxy server to connect to the Internet,
select File -> Preferences -> Web and enter your proxy server address
and port. Use this feature if you have a firewall.

Examples Download Content from Web Page

Use urlread to download the contents of the Authors list at the
MATLAB Central File Exchange:

urlstring = sprintf('%s%s', ...
'http://www.mathworks.com/matlabcentral/', ...
'fileexchange/loadAuthorIndex.do');

s = urlread(urlstring);

Download Content from File on FTP Server

page = 'ftp://ftp.mathworks.com/pub/doc/';
s=urlread(page);

2-3626

urlread

s

MATLAB displays

s =

-rw-r--r-- 1 ftpuser ftpusers 448 Nov 15 2004 README

drwxr-xr-x 2 ftpuser ftpusers 512 Jul 26 13:52 papers

Download Content from Local File

s = urlread('file:///c:/winnt/matlab.ini')

See Also urlwrite

tcpip if the Instrument Control Toolbox is installed

2-3627

urlwrite

Purpose Save contents of URL to file

Syntax urlwrite('url','filename')
f = urlwrite('url','filename')
f = urlwrite('url','method','params')
[f,status] = urlwrite(...)

Description urlwrite('url','filename') reads the contents of the specified
URL, saving the contents to filename. If you do not specify the path for
filename, the file is saved in the MATLAB current directory.

f = urlwrite('url','filename') reads the contents of the specified
URL, saving the contents to filename and assigning filename to f.

f = urlwrite('url','method','params') saves the contents of the
specified URL to filename, passing information to the server as part
of the request where method can be get or post, and params is a cell
array of parameter name/parameter value pairs.

[f,status] = urlwrite(...) catches any errors and returns the
error code.

Note If you need to specify a proxy server to connect to the Internet,
select File -> Preferences -> Web and enter your proxy server address
and port. Use this feature if you have a firewall.

Examples Download the files submitted to the MATLAB Central File Exchange,
saving the results to samples.html in the MATLAB current directory.

urlstring = sprintf('%s%s', ...

'http://www.mathworks.com/matlabcentral/', ...

'fileexchange/Category.jsp?type=category&id=1');

urlwrite(urlstring, 'samples.html');

View the file in the Help browser.

2-3628

urlwrite

open('samples.html')

See Also urlread

2-3629

usejava

Purpose Determine whether Java feature is supported in MATLAB

Syntax usejava(feature)

Description usejava(feature) returns 1 if the specified feature is supported and
0 otherwise. Possible feature arguments are shown in the following
table.

Feature Description

'awt' Abstract Window Toolkit components1 are available

'desktop' The MATLAB interactive desktop is running

'jvm' The Java Virtual Machine is running

'swing' Swing components2 are available

1. Java’s GUI components in the Abstract Window Toolkit

2. Java’s lightweight GUI components in the Java Foundation Classes

Examples The following conditional code ensures that the AWT’s GUI components
are available before the M-file attempts to display a Java Frame.

if usejava('awt')
myFrame = java.awt.Frame;

else
disp('Unable to open a Java Frame');

end

The next example is part of an M-file that includes Java code. It fails
gracefully when run in a MATLAB session that does not have access to
a JVM.

if ~usejava('jvm')
error([mfilename ' requires Java to run.']);

end

2-3630

usejava

See Also javachk

2-3631

validateattributes

Purpose Check validity of array

Syntax validateattributes(A, classes, attributes)
validateattributes(A, classes, attributes, position)
validateattributes(A, classes, attributes, funname)
validateattributes(A, classes, attributes, funname, varname)
validateattributes(A, classes, attributes, funname, varname,

position)

Description validateattributes(A, classes, attributes) validates that array
A belongs to at least one of the classes specified by the classes input
and also has at least one of the attributes specified by the attributes
input. If the validation succeeds, the command completes without
displaying any output and without throwing an error. If the validation
does not succeed, MATLAB issues a formatted error message.

The classes input is a cell array of one or more strings, each string
containing the name of a MATLAB class (i.e., one of the 15 MATLAB
data types), the name of a MATLAB class, or the keyword numeric. (See
the Class Values on page 2-3633 table, below.

The attributes input is a cell array of one or more strings, each string
describing an array attribute. (See the Attribute Values on page 2-3634
table, below).

validateattributes(A, classes, attributes, position)
validates array A as described above and, if the validation fails, displays
an error message that includes the position of the failing variable in the
function argument list. The position input must be a positive integer.

validateattributes(A, classes, attributes, funname) validates
array A as described above and, if the validation fails, displays an
error message that includes the name of the function performing the
validation (funname). The funname input must be a string enclosed
in single quotation marks.

validateattributes(A, classes, attributes, funname,
varname) validates array A as described above and, if the validation
fails, displays an error message that includes the name of the function

2-3632

validateattributes

performing the validation (funname), and the name of the variable being
validated (varname). The funname and varname inputs must be strings
enclosed in single quotation marks.

validateattributes(A, classes, attributes, funname,
varname, position) validates array A as described above and, if the
validation fails, displays an error message that includes the name of the
function performing the validation (funname), the name of the variable
being validated (varname), and the position of this variable in the
function argument list (position). The funname and varname inputs
must be strings enclosed in single quotation marks. The position input
must be a positive integer.

Class Values

classes Argument Contents of Array A

’numeric’ Any numeric value

’single’ Single-precision number

’double’ Double-precision number

’int8’ Signed 8-bit integer

’int16’ Signed 16-bit integer

’int32’ Signed 32-bit integer

’int64’ Signed 64-bit integer

’uint8’ Unsigned 8-bit integer

’uint16’ Unsigned 16-bit integer

’uint32’ Unsigned 32-bit integer

’uint64’ Unsigned 64-bit integer

’logical’ Logical true or false

’char’ Character or string

’struct’ MATLAB structure

2-3633

validateattributes

Class Values (Continued)

classes Argument Contents of Array A

’cell’ Cell array

’function_handle’ Scalar function handle

class name Object of any MATLAB class

Attribute Values

attributes
Argument

Description of array A

’2d’ Array having dimensions M-by-N (includes scalars,
vectors, 2-D matrices, and empty arrays)

’column’ Array having dimensions N-by-1

’even’ Numeric or logical array in which all elements are
even (includes zero)

’finite’ Numeric array in which all elements are finite

’integer’ Numeric array in which all elements are
integer-valued

’nonempty’ Array having no dimension equal to zero

’nonnan’ Numeric array in which there are no elements equal
to NaN (Not a Number)

’nonnegative’ Numeric array in which all elements are zero or
greater than zero

’nonsparse’ Array that is not sparse

’nonzero’ Numeric or logical array in which all elements are
less than or greater than zero

’odd’ Numeric or logical array in which all elements are
odd integers

2-3634

validateattributes

Attribute Values (Continued)

attributes
Argument

Description of array A

’positive’ Numeric or logical array in which all elements are
greater than zero

’real’ Numeric array in which all elements are real

’row’ Array having dimensions 1-by-N

’scalar’ Array having dimensions 1-by-1

’vector’ Array having dimensions N-by-1 or 1-by-N (includes
scalar arrays)

Numeric properties, such as positive and nonnan, do not apply to
strings. If you attempt to validate numeric properties on a string,
validateattributes generates an error.

Examples Example 1

This function, which resides in M-file empl_profile, compares the
values passed in each argument with the specified classes and attributes
and throws an error if they are not correct:

function empl_profile(empl_id, empl_info, healthplan, ...
vacation)

validateattributes(empl_id, {'numeric'}, {'integer', ...
'nonempty'});

validateattributes(empl_info, {'struct'}, {'vector'});
validateattributes(healthplan, {'cell', 'char'}, {'vector'});
validateattributes(vacation, {'numeric'}, {'nonnegative', ...

'scalar'});

Call the function, passing the expected argument types, and the
example completes without error:

empl_id = 51723;

2-3635

validateattributes

empl_info.name = 'John Miller';
empl_info.address = '128 Forsythe St.';
empl_info.town = 'Duluth'; empl_info.state='MN';

empl_profile(empl_id, empl_info, 'HCP Medical Plus', 14.3)

If you accidentally pass the argument values out of their correct
sequence, MATLAB throws an error in response to the first argument
that is not a match:

empl_profile(empl_id, empl_info, 14.3, 'HCP Medical Plus')

??? Error using ==> empl_profile1 at 4
Expected input to be one of these types:

cell, char

Instead its type was double.

Example 2

Modify the empl_profile M-file shown in the last example, adding
arguments to validateattributes to display the function name,
variable name, and position of the argument:

function empl_profile(empl_id, empl_info, healthplan, ...
vacation)

validateattributes(empl_id, {'numeric'}, {'integer', ...
'nonempty'}, mfilename, 'Employee Identification', 1);

validateattributes(empl_info, {'struct'}, {'vector'}, ...
mfilename, 'Employee Info', 2);

validateattributes(healthplan, {'cell', 'char'}, ...
{'vector'}, mfilename, 'Health Plan', 3);

validateattributes(vacation, {'numeric'}, {'nonnegative', ...
'scalar'}, mfilename, 'Vacation Accrued', 4);

2-3636

validateattributes

Call empl_profile with the argument values out of their correct
sequence, MATLAB throws an error that includes the name of the
function validating the attributes, the name of the variable that was in
error, and it position in the input argument list:

??? Error using ==> empl_profile
Expected input number 3, Health Plan, to be one of these types:

cell, char

Instead its type was double.

Error in ==> empl_profile at 6
validateattributes(healthplan,{'cell', 'char'}, {'vector'}, ...

Example 3

Modify the empl_profile M-file so that it checks the function inputs
using the MATLAB inputParser. Use validateattributes as the
validating function for the inputParser methods:

function empl_profile(empl_id, varargin)
p = inputParser;

% Validate the input arguments.
addRequired(p, 'empl_id', @(x)validateattributes(x, ...

{'numeric'}, {'integer'}));
addOptional(p, 'empl_info', '', @(x)validateattributes(...

x, {'struct'}, {'nonempty'}));
addParamValue(p, 'health', 'HCP Medical Plus', ...

@(x)validateattributes(x, {'cell', 'char'}, {'vector'}));
addParamValue(p, 'vacation', [], @(x)validateattributes(x, ...

{'numeric'}, {'nonnegative', 'scalar'}));
parse(p, empl_id, varargin{:});
p.Results

Call empl_profile using appropriate input arguments:

2-3637

validateattributes

empl_info.name = 'John Miller';
empl_info.address = '128 Forsythe St.';
empl_info.town = 'Duluth'; empl_info.state='MN';

empl_profile(51723, empl_info, 'vacation', 14.3)

ans =
empl_id: 51723

empl_info: [1x1 struct]
health: 'HCP Medical Plus'

vacation: 14.3000

Call empl_profile using a character string where a structure is
expected:

empl_profile(51723, empl_info.name, 'vacation', 14.3)

??? Error using ==> empl_profile at 12
Argument 'empl_info' failed validation with error:
Expected input to be one of these types:

struct

Instead its type was char.

See Also validatestring, is*, isa, inputparser

2-3638

validatestring

Purpose Check validity of text string

Syntax validstr = validatestring(str,strarray)
validstr = validatestring(str, strarray, position)
validstr = validatestring(str, strarray, funname)
validstr = validatestring(str, strarray, funname, varname)
validstr = validatestring(str, strarray, funname, varname,

position)

Description validstr = validatestring(str,strarray) checks the validity
of text string str. If str matches one or more of the text strings in
the cell array strarray, then MATLAB returns the matching string
in validstr. If str does not match any of the strings in strarray,
MATLAB issues a formatted error message. MATLAB compares the
strings without respect to letter case.

This table shows how validatestring determines what value to
return, If multiple matches are found, validatestring returns the
shortest matching string:

Type of Match Example — Match ’ball’ with . . . Return Value

Exact match ball, barn, bell ball

Partial match (leading
characters)

balloon, barn balloon

Multiple partial matches
where each string is a subset
of another

ball, ballo, balloo, balloon ball

Multiple partial matches
where strings are unique

balloon, ballet Error

No match barn, bell Error

validstr = validatestring(str, strarray, position) checks the
validity of text string str as described above and, if the validation
fails, displays an error message that includes the position of the failing

2-3639

validatestring

variable in the function argument list. The position input must be a
positive integer.

validstr = validatestring(str, strarray, funname) checks the
validity of text string str as described above and, if the validation
fails, displays an error message that includes the name of the function
performing the validation (funname). The funname input must be a
string enclosed in single quotation marks.

validstr = validatestring(str, strarray, funname, varname)
checks the validity of text string str as described above and, if the
validation fails, displays an error message that includes the name of
the function performing the validation (funname), and the name of the
variable being validated (varname). The funname and varname inputs
must be strings enclosed in single quotation marks.

validstr = validatestring(str, strarray, funname, varname,
position) checks the validity of text string str as described above
and, if the validation fails, displays an error message that includes the
name of the function performing the validation (funname), the name
of the variable being validated (varname), and the position of this
variable in the function argument list (position). The funname and
varname inputs must be strings enclosed in single quotation marks. The
position input must be a positive integer.

Examples Example 1

Use validatestring to find the word won in the cell array of strings:

validatestring('won', {'wind', 'won', 'when'})
ans =

won

Replace the word won with wonder in the string array. Because the
leading characters of the input string and wonder are the same,
validatestring finds a partial match between the two words and
returns the full word wonder:

validatestring('won', {'wind', 'wonder', 'when'})

2-3640

validatestring

ans =
wonder

If there is more than one partial match, and each string in the array is
a subset or superset of the others, validatestring returns the shortest
matching string:

validatestring('wond', {'won', 'wonder', 'wonderful'})
ans =

wonder

However, if each string in the array is not subset or superset of each
other, MATLAB throws an error because there is no exact match and it
is not clear which of the two partial matches should be returned:

validatestring('wond', {'won', 'wonder', 'wondrous'})
??? Error using ==> validatestring at 89
Function VALIDATESTRING expected its input argument to match one of

won, wonder, wondrous

The input, 'wond', matched more than one valid string.

Example 2

This function returns the flight numbers for routes between two
cities: a point of origin and point of destination. The function uses
validatestring to see if the origin and destination are among those
covered by the airline. If not, then an error message is displayed:

function get_flight_numbers(origin, destination)
% Only part of the airline's flight data is shown here.

flights.chi2rio = [503, 196, 331, 373, 1475];
flights.chi2par = [718, 9276, 172, 903, 7724 992, 1158];
flights.chi2hon = [9193, 880, 471, 391];

routes = {'Athens', 'Paris', 'Chicago', 'Sydney', ...
'Cancun', 'London', 'Rio de Janeiro', 'Honolulu', ...
'Rome', 'New York City'};

2-3641

validatestring

orig = ''; dest = '';

% See if the cities entered are covered by this airline.
try

orig = validatestring(origin, routes);
dest = validatestring(destination, routes);

catch
% If not covered, then display error message.
if isempty(orig)

fprintf(...
'We have no flights with origin: %s.\n', ...
origin)

elseif isempty(dest)
fprintf(...

'We have no flights with destination: %s.\n', ...
destination)

end
return
end

% If covered, display the flights from 'orig' to 'dest'.
fprintf(...

'Flights available from %s to %s are:\n', orig, dest)
reply = eval(...

['flights.' lower(orig(1:3)) '2' lower(dest(1:3))])';
fprintf(' Flight %d\n', reply)

Enter a point of origin that is not covered by this airline:

get_flight_numbers('San Diego', 'Rio de Janeiro')
ans =
We have no flights with origin: San Diego.

Enter a destination that is misspelled:

get_flight_numbers('Chicago', 'Reo de Janeiro')
ans =

2-3642

validatestring

We have no flights with destination: Reo de Janeiro.

Enter a route that is covered:

get_flight_numbers('Chicago', 'Rio de Janeiro')
ans =
Flights available from Chicago to Rio de Janeiro are:

Flight 503
Flight 196
Flight 331
Flight 373
Flight 1475

Example 3

Rewrite the try-catch block of Example 2, above by adding funname,
varname, and position arguments to the call to validatestring and
replacing the return statement with rethrow:

% See if the cities entered are covered by this airline.
try

orig = validatestring(...
origin, routes, mfilename, 'Flight Origin', 1);

dest = validatestring(...
destination, routes, mfilename, ...

'Flight Destination', 2);
catch e

% If not covered, then display error message.
if isempty(orig)

fprintf(...
'We have no flights with origin: %s.\n', ...
origin)

elseif isempty(dest)
fprintf(...

'We have no flights with destination: %s.\n', ...
destination)

end
rethrow(e);

2-3643

validatestring

end

In response to the rethrow command, MATLAB displays an error
message that includes the function name get_flight_numbers, the
failing variable name Flight Destination’, and its position in the
argument list, 2:

get_flight_numbers('Chicago', 'Reo de Janeiro')
We have no flights with destination: Reo de Janeiro.

??? Error using ==> validatestring at 89
Function GET_FLIGHT_NUMBERS expected its input argument

number 2, Flight Destination, to match one of these strings:

Athens, Paris, Chicago, Sydney, Cancun, London, Rio de
Janeiro, Honolulu, Rome

The input, 'Reo de Janeiro', did not match any of the valid strings.

Error in ==> get_flight_numbers at 17
dest = validatestring(destination, routes, mfilename,
'destination', 2);

See Also validateattributes, is*, isa, inputparser

2-3644

vander

Purpose Vandermonde matrix

Syntax A = vander(v)

Description A = vander(v) returns the Vandermonde matrix whose columns are
powers of the vector v, that is, A(i,j) = v(i)^(n-j), where n =
length(v).

Examples vander(1:.5:3)

ans =

1.0000 1.0000 1.0000 1.0000 1.0000
5.0625 3.3750 2.2500 1.5000 1.0000

16.0000 8.0000 4.0000 2.0000 1.0000
39.0625 15.6250 6.2500 2.5000 1.0000
81.0000 27.0000 9.0000 3.0000 1.0000

See Also gallery

2-3645

var

Purpose Variance

Syntax V = var(X)
V = var(X,1)
V = var(X,w)
V = var(X,w,dim)

Description V = var(X) returns the variance of X for vectors. For matrices,
var(X)is a row vector containing the variance of each column of X.
For N-dimensional arrays, var operates along the first nonsingleton
dimension of X. The result V is an unbiased estimator of the variance
of the population from which X is drawn, as long as X consists of
independent, identically distributed samples.

var normalizes V by N-1 if N>1, where N is the sample size. This is an
unbiased estimator of the variance of the population from which X is
drawn, as long as X consists of independent, identically distributed
samples. For N=1, V is normalized by N.

V = var(X,1) normalizes by N and produces the second moment of the
sample about its mean.var(X,0) is equivalent to var(X).

V = var(X,w) computes the variance using the weight vector w. The
length of w must equal the length of the dimension over which var
operates, and its elements must be nonnegative. The elements of w
must be positive. var normalizes w to sum of 1.

V = var(X,w,dim) takes the variance along the dimension dim of X.
Pass in 0 for w to use the default normalization by N-1, or 1 to use N.

The variance is the square of the standard deviation (STD).

See Also corrcoef, cov, mean, median, std

2-3646

var (timeseries)

Purpose Variance of timeseries data

Syntax ts_var = var(ts)
ts_var = var(ts,'PropertyName1',PropertyValue1,...)

Description ts_var = var(ts) returns the variance of ts.data. When ts.Data is
a vector, ts_var is the variance of ts.Data values. When ts.Data is a
matrix, ts_var is a row vector containing the variance of each column of
ts.Data (when IsTimeFirst is true and the first dimension of ts is
aligned with time). For the N-dimensional ts.Data array, var always
operates along the first nonsingleton dimension of ts.Data.

ts_var = var(ts,'PropertyName1',PropertyValue1,...)
specifies the following optional input arguments:

• 'MissingData' property has two possible values, 'remove' (default)
or 'interpolate', indicating how to treat missing data during the
calculation.

• 'Quality' values are specified by an integer vector, indicating which
quality codes represent missing samples (for vector data) or missing
observations (for data arrays with two or more dimensions).

• 'Weighting' property has two possible
values, 'none' (default) or 'time'.
When you specify 'time', larger time values
correspond to larger weights.

Examples The following example shows how to calculate the variance values of a
multi-variate timeseries object.

1 Load a 24-by-3 data array.

load count.dat

2 Create a timeseries object with 24 time values.

count_ts = timeseries(count,[1:24],'Name','CountPerSecond')

2-3647

var (timeseries)

3 Calculate the variance of each data column for this timeseries
object.

var(count_ts)
ans =

1.0e+003 *

0.6437 1.7144 4.6278

The variance is calculated independently for each data column in the
timeseries object.

See Also iqr (timeseries), mean (timeseries), median (timeseries), std
(timeseries), timeseries

2-3648

varargin

Purpose Variable length input argument list

Syntax function y = bar(varargin)

Description function y = bar(varargin) accepts a variable number of arguments
into function bar.m.

The varargin statement is used only inside a function M-file to contain
optional input arguments passed to the function. The varargin
argument must be declared as the last input argument to a function,
collecting all the inputs from that point onwards. In the declaration,
varargin must be lowercase.

Examples Example 1

Write an M-file function that displays the expected and optional
arguments you pass to it

function vartest(argA, argB, varargin)

optargin = size(varargin,2);
stdargin = nargin - optargin;

fprintf('Number of inputs = %d\n', nargin)

fprintf(' Inputs from individual arguments(%d):\n', stdargin)
if stdargin >= 1

fprintf(' %d\n', argA)
end
if stdargin == 2

fprintf(' %d\n', argB)
end

fprintf(' Inputs packaged in varargin(%d):\n', optargin)
for k= 1 : size(varargin,2)

fprintf(' %d\n', varargin{k})
end

2-3649

varargin

Call this function and observe that MATLAB extracts those arguments
that are not individually-specified from the varargin cell array:

vartest(10,20,30,40,50,60,70)
Number of inputs = 7

Inputs from individual arguments(2):
10
20

Inputs packaged in varargin(5):
30
40
50
60
70

Example 2

The function

function myplot(x,varargin)
plot(x,varargin{:})

collects all the inputs starting with the second input into the variable
varargin. myplot uses the comma-separated list syntax varargin{:}
to pass the optional parameters to plot. The call

myplot(sin(0:.1:1),'color',[.5 .7 .3],'linestyle',':')

results in varargin being a 1-by-4 cell array containing the values
'color', [.5 .7 .3], 'linestyle', and ':'.

See Also varargout, nargin, nargout, nargchk, nargoutchk, inputname

2-3650

varargout

Purpose Variable length output argument list

Syntax function varargout = foo(n)

Description function varargout = foo(n) returns a variable number of
arguments from function foo.m.

The varargout statement is used only inside a function M-file to
contain the optional output arguments returned by the function. The
varargout argument must be declared as the last output argument to
a function, collecting all the outputs from that point onwards. In the
declaration, varargout must be lowercase.

Examples The function

function [s,varargout] = mysize(x)
nout = max(nargout,1)-1;
s = size(x);
for k=1:nout, varargout(k) = {s(k)}; end

returns the size vector and, optionally, individual sizes. So

[s,rows,cols] = mysize(rand(4,5));

returns s = [4 5], rows = 4, cols = 5.

See Also varargin, nargin, nargout, nargchk, nargoutchk, inputname

2-3651

vectorize

Purpose Vectorize expression

Syntax vectorize(s)
vectorize(fun)

Description vectorize(s) where s is a string expression, inserts a . before any ^, *
or / in s. The result is a character string.

vectorize(fun) when fun is an inline function object, vectorizes
the formula for fun. The result is the vectorized version of the inline
function.

See Also inline, cd, dbtype, delete, dir, partialpath, path, what, who

2-3652

ver

Purpose Version information for MathWorks products

Graphical
Interface

As an alternative to the ver function, select About from the Help menu
in any product that has a Help menu.

Syntax ver
ver product
v = ver('product')

Description ver displays a header containing the current version number, license
number, operating system, and Java VM version for MATLAB, followed
by the version numbers for Simulink, if installed, and all other
MathWorks products installed.

ver product displays the MATLAB header information followed by the
current version number for product. The name product corresponds
to the directory name that holds the Contents.m file for that product.
For example, Contents.m for the Control System Toolbox resides in the
control directory. You therefore use ver control to obtain the version
of this toolbox.

v = ver('product') returns the version information to structure
array, v, having fields Name, Version, Release, and Date.

Remarks To use ver with your own product, the first two lines of the Contents.m
file for the product must be of the form

% Toolbox Description
% Version xxx dd-mmm-yyyy

Do not include any spaces in the date and use a two-character day; that
is, use 02-Sep-2002 instead of 2-Sep-2002.

Examples Return version information for the Control System Toolbox by typing

ver control

MATLAB returns

2-3653

ver

MATLAB Version 7.3.0.22078 (R2006b)

MATLAB License Number: unknown

Operating System: Microsoft Windows XP Version 5.1 (Build 2600: Service Pack 2)

Java VM Version: Java 1.5.0_07 with Sun Microsystems Inc. Java HotSpot(TM) Client VM mixed

Control System Toolbox Version 7.1 (R2006b)

Return version information for the Control System Toolbox in a
structure array, v.

v = ver('control')
v =

Name: 'Control System Toolbox'
Version: '7.1'
Release: '(R2006b)'

Date: '19-Sep-2006'

Display version information on MathWorks ’Real-Time’ products:

v = ver;
for k=1:length(v)

if strfind(v(k).Name, 'Real-Time')
disp(sprintf('%s, Version %s', ...

v(k).Name, v(k).Version))
end

end

Real-Time Windows Target, Version 2.6.2
Real-Time Workshop, Version 6.5
Real-Time Workshop Embedded Coder, Version 4.5

See Also help, hostid, license, version, whatsnew

Help > Check for Updates in the MATLAB desktop.

2-3654

verctrl

Purpose Source control actions (Windows)

GUI
Alternatives

As an alternative to the verctrl function, use Source Control in the
File menu of the Editor/Debugger, Simulink, or Stateflow, or in the
context menu of the Current Directory browser.

Syntax verctrl('action',{'filename1','filename2',....},0)
result=verctrl('action',{'filename1','filename2',....},0)
verctrl('action','filename',0)
result=verctrl('isdiff','filename',0)
list = verctrl('all_systems')

Description verctrl('action',{'filename1','filename2',....},0) performs the
source control operation specified by 'action' for a single file or
multiple files. Enter one file as a string; specify multiple files using a
cell array of strings. Use the full paths for each filename and include
the extensions. Specify 0 as the last argument. Complete the resulting
dialog box to execute the operation; for details about the dialog boxes,
see the topic “Source Control Interface on Windows” in the MATLAB
Desktop Tools and Development Environment documentation. Available
values for 'action' are as follows:

action
Argument Purpose

'add' Adds files to the source control system. Files can
be open in the Editor/Debugger or closed when
added.

'checkin' Checks files into the source control system,
storing the changes and creating a new version.

'checkout' Retrieves files for editing.

'get' Retrieves files for viewing and compiling, but not
editing. When you open the files, they are labeled
as read-only.

'history' Displays the history of files.

2-3655

verctrl

action
Argument Purpose

'remove' Removes files from the source control system. It
does not delete the files from disk, but only from
the source control system.

'runscc' Starts the source control system. The filename
can be an empty string.

'uncheckout' Cancels a previous checkout operation and
restores the contents of the selected files to the
precheckout version. All changes made to the
files since the checkout are lost.

result=verctrl('action',{'filename1','filename2',....},0)
performs the source control operation specified by 'action' on a single
file or multiple files. The action can be any one of: 'add', 'checkin',
'checkout', 'get', 'history', or 'undocheckout'. result is a logical
1 (true) when you complete the operation by clicking OK in the resulting
dialog box, and is a logical 0 (false) when you abort the operation by
clicking Cancel in the resulting dialog box.

verctrl('action','filename',0) performs the source control
operation specified by 'action' for a single file. Use the full pathname
for 'filename'. Specify 0 as the last argument. Complete any resulting
dialog boxes to execute the operation. Available values for 'action'
are as follows:

action Argument Purpose

'showdiff' Displays the differences between a file and
the latest checked in version of the file in the
source control system.

'properties' Displays the properties of a file.

2-3656

verctrl

result=verctrl('isdiff','filename',0) compares filename with
the latest checked in version of the file in the source control system.
result is a logical 1 (true) when the files are different, and is a logical 0
(false) when the files are identical. Use the full path for 'filename'.
Specify 0 as the last argument.

list = verctrl('all_systems') displays in the Command Window a
list of all source control systems installed on your computer.

Examples Check In a File

Check in D:\file1.ext to the source control system.

result = verctrl('checkin','D:\file1.ext', 0)

This opens the Check in file(s) dialog box. Click OK to complete the
check in. MATLAB displays result = 1, indicating the checkin was
successful.

Add Files to the Source Control System

Add D:\file1.ext and D:\file2.ext to the source control system.

verctrl('add',{'D:\file1.ext','D:\file2.ext'}, 0)

This opens the Add to source control dialog box. Click OK to
complete the operation.

Display the Properties of a File

Display the properties of D:\file1.ext.

verctrl('properties','D:\file1.ext', 0)

This opens the source control properties dialog box for your source
control system. The function is complete when you close the properties
dialog box.

2-3657

verctrl

Show Differences for a File

To show the differences between the version of file1.ext that you just
edited and saved, with the last version in source control, run

verctrl('showdiff','D:\file1.ext',0)

MATLAB displays differences dialog boxes and results specific to
your source control system. After checking in the file, if you run this
statement again, MATLAB displays

??? The file is identical to latest version under source control.

List All Installed Source Control Systems

To view all of the source control systems installed on your computer, type

list = verctrl ('all_systems')

MATLAB displays all the source control systems currently installed
on your computer. For example:

list =
'Microsoft Visual SourceSafe'
'ComponentSoftware RCS'

See Also checkin, checkout, undocheckout, cmopts

“Source Control Interface on Windows” in MATLAB Desktop Tools and
Development Environment documentation

2-3658

verLessThan

Purpose Compare toolbox version to specified version string

Syntax verLessThan(toolbox, version)

Description verLessThan(toolbox, version) returns logical 1 (true) if the version
of the toolbox specified by the string toolbox is older than the version
specified by the string version, and logical 0 (false) otherwise. Use
this function when you want to write code that can run across multiple
versions of MATLAB.

The toolbox argument is a string enclosed within single quotation
marks that contains the name of a MATLAB toolbox directory. The
version argument is a string enclosed within single quotation marks
that contains the version to compare against. This argument must be
in the form major[.minor[.revision]], such as 7, 7.1, or 7.0.1. If
toolbox does not exist, MATLAB generates an error.

To specify toolbox, find the directory that holds the Contents.m file
for the desired toolbox and use that directory name. To see a list of all
toolbox directory names, enter the following command at the MATLAB
prompt:

dir([matlabroot '/toolbox'])

Remarks The verLessThan function is available with MATLAB Version 7.4.
If you are running a version of MATLAB earlier than 7.4, you can
download the verLessThan M-file from the following MathWorks
Technical Support solution. You must be running MATLAB Version 6.0
or higher to use this M-file:

http://www.mathworks.com/support/solutions/data/1-38LI61.html?solution

Examples These examples illustrate the proper usage of the verLessThan function.

Example 1 – Checking For the Minimum Required Version

if verLessThan('simulink', '4.0')
error('Simulink 4.0 or higher is required.');

end

2-3659

http://www.mathworks.com/support/solutions/data/1-38LI61.html?solution=1-38LI61

verLessThan

Example 2 – Choosing Which Code to Run

if verLessThan('matlab', '7.0.1')
% -- Put code to run under MATLAB 7.0.0 and earlier here --
else
% -- Put code to run under MATLAB 7.0.1 and later here --
end

Example 3 – Looking Up the Directory Name

Find the name of the Data Acquisition Toolbox directory:

dir([matlabroot '/toolbox/d*'])

daq database des distcomp dotnetbuilder
dastudio datafeed dials dml dspblks

Use the toolbox directory name, daq, to compare the Data Acquisition
version that MATLAB is currently running against version number 3:

verLessThan('daq', '3')
ans =

1

See Also ver, version, license, ispc, isunix, ismac, dir

2-3660

version

Purpose Version number for MATLAB

Graphical
Interface

As an alternative to the version function, select About from the Help
menu in the MATLAB desktop.

Syntax version
v = version
[v d] = version
version option
v = version('option')

Description version displays the MATLAB version number.

v = version returns the MATLAB version number in v.

[v d] = version also returns a string d containing the date of the
version.

version option displays the following additional information about
the version.

Option Description

-date Release date

-description Release description. Mostly used for Service Pack
releases.

-java Java VM (JVM) version used by MATLAB

-release Release number

v = version('option') returns additional information about the
version. Valid string values for option are listed in the table above. You
can only specify one output when using this syntax.

Remarks On Windows and UNIX platforms, MATLAB includes a JVM and
uses that version. If you use the MATLAB Java interface and the
Java classes you want to use require a different JVM than the version
provided with MATLAB, it is possible to run MATLAB with a different

2-3661

version

JVM. For details, see Solution 1-1812J on the MathWorks Support Web
site.

On the Macintosh platform, MATLAB does not include a JVM, but uses
whatever JVM is currently running on the machine.

Examples [v,d] = version
v =

7.3.0.22078 (R2006b)

d =
September 19, 2006

Run the following command in MATLAB R14 Service Pack 3:

['Release R' version('-release') ', ' ...
version('-description')]

ans =
Release R14, Service Pack 3

See Also ver, whatsnew

Help > Check for Updates in the MATLAB desktop.

2-3662

http://www.mathworks.com/support/solutions/data/1-1812J.html

vertcat

Purpose Concatenate arrays vertically

Syntax C = vertcat(A1, A2, ...)

Description C = vertcat(A1, A2, ...) vertically concatenates matrices A1,
A2, and so on. All matrices in the argument list must have the same
number of columns.

vertcat concatenates N-dimensional arrays along the first dimension.
The remaining dimensions must match.

MATLAB calls C = vertcat(A1, A2, ...) for the syntax C = [A1;
A2; ...] when any of A1, A2, etc. is an object.

Examples Create a 5-by-3 matrix, A, and a 3-by-3 matrix, B. Then vertically
concatenate A and B.

A = magic(5); % Create 5-by-3 matrix, A
A(:, 4:5) = []

A =

17 24 1
23 5 7
4 6 13

10 12 19
11 18 25

B = magic(3)*100 % Create 3-by-3 matrix, B

B =

800 100 600
300 500 700
400 900 200

2-3663

vertcat

C = vertcat(A,B) % Vertically concatenate A and B

C =

17 24 1
23 5 7
4 6 13

10 12 19
11 18 25

800 100 600
300 500 700
400 900 200

See Also horzcat, cat

2-3664

vertcat (timeseries)

Purpose Vertical concatenation of timeseries objects

Syntax ts = vertcat(ts1,ts2,...)

Description ts = vertcat(ts1,ts2,...) performs

ts = [ts1;ts2;...]

This operation appends timeseries objects. The time vectors must not
overlap. The last time in ts1 must be earlier than the first time in ts2.
The data sample size of the timeseries objects must agree.

See Also timeseries

2-3665

vertcat (tscollection)

Purpose Vertical concatenation for tscollection objects

Syntax tsc = vertcat(tsc1,tsc2,...)

Description tsc = vertcat(tsc1,tsc2,...) performs

tsc = [tsc1;tsc2;...]

This operation appends tscollection objects. The time vectors must
not overlap. The last time in tsc1 must be earlier than the first time
in tsc2. All tscollection objects to be concatenated must have the
same timeseries members.

See Also horzcat (tscollection), tscollection

2-3666

view

Purpose Viewpoint specification

Syntax view(az,el)
view([x,y,z])
view(2)
view(3)
view(ax,...)
view(T)
[az,el] = view
T = view

Description The position of the viewer (the viewpoint) determines the orientation of
the axes. You specify the viewpoint in terms of azimuth and elevation,
or by a point in three-dimensional space.

view(az,el) and view([az,el]) set the viewing angle for a
three-dimensional plot. The azimuth, az, is the horizontal rotation
about the z-axis as measured in degrees from the negative y-axis.
Positive values indicate counterclockwise rotation of the viewpoint. el
is the vertical elevation of the viewpoint in degrees. Positive values
of elevation correspond to moving above the object; negative values
correspond to moving below the object.

view([x,y,z]) sets the viewpoint to the Cartesian coordinates x, y,
and z. The magnitude of (x,y,z) is ignored.

view(2) sets the default two-dimensional view, az = 0, el = 90.

view(3) sets the default three-dimensional view, az = 37.5, el =
30.

view(ax,...) uses axes ax instead of the current axes.

view(T) sets the view according to the transformation matrix T, which
is a 4-by-4 matrix such as a perspective transformation generated by
viewmtx.

[az,el] = view returns the current azimuth and elevation.

T = view returns the current 4-by-4 transformation matrix.

2-3667

view

Remarks Azimuth is a polar angle in the x-y plane, with positive angles indicating
counterclockwise rotation of the viewpoint. Elevation is the angle above
(positive angle) or below (negative angle) the x-y plane.

This diagram illustrates the coordinate system. The arrows indicate
positive directions.

Examples View the object from directly overhead.

az = 0;
el = 90;
view(az, el);

Set the view along the y-axis, with the x-axis extending horizontally and
the z-axis extending vertically in the figure.

view([0 0]);

Rotate the view about the z-axis by 180º.

2-3668

view

az = 180;
el = 90;
view(az, el);

See Also viewmtx, hgtransform, rotate3d

“Controlling the Camera Viewpoint” on page 1-99 for related functions

Axes graphics object properties CameraPosition, CameraTarget,
CameraViewAngle, Projection

Defining the View for more information on viewing concepts and
techniques

Transforming Objects for information on moving and scaling objects in
groups

2-3669

viewmtx

Purpose View transformation matrices

Syntax viewmtx
T = viewmtx(az,el)
T = viewmtx(az,el,phi)
T = viewmtx(az,el,phi,xc)

Description viewmtx computes a 4-by-4 orthographic or perspective transformation
matrix that projects four-dimensional homogeneous vectors onto a
two-dimensional view surface (e.g., your computer screen).

T = viewmtx(az,el) returns an orthographic transformation matrix
corresponding to azimuth az and elevation el. az is the azimuth (i.e.,
horizontal rotation) of the viewpoint in degrees. el is the elevation of the
viewpoint in degrees. This returns the same matrix as the commands

view(az,el)
T = view

but does not change the current view.

T = viewmtx(az,el,phi) returns a perspective transformation matrix.
phi is the perspective viewing angle in degrees. phi is the subtended
view angle of the normalized plot cube (in degrees) and controls the
amount of perspective distortion.

Phi Description

0 degrees Orthographic projection

10 degrees Similar to telephoto lens

25 degrees Similar to normal lens

60 degrees Similar to wide-angle lens

You can use the matrix returned to set the view transformation with
view(T). The 4-by-4 perspective transformation matrix transforms
four-dimensional homogeneous vectors into unnormalized vectors of the

2-3670

viewmtx

form (x,y,z,w), where w is not equal to 1. The x- and y-components of
the normalized vector (x/w, y/w, z/w, 1) are the desired two-dimensional
components (see example below).

T = viewmtx(az,el,phi,xc) returns the perspective transformation
matrix using xc as the target point within the normalized plot cube (i.e.,
the camera is looking at the point xc). xc is the target point that is the
center of the view. You specify the point as a three-element vector, xc =
[xc,yc,zc], in the interval [0,1]. The default value is xc = [0,0,0].

Remarks A four-dimensional homogenous vector is formed by appending a 1 to
the corresponding three-dimensional vector. For example, [x,y,z,1]
is the four-dimensional vector corresponding to the three-dimensional
point [x,y,z].

Examples Determine the projected two-dimensional vector corresponding to the
three-dimensional point (0.5,0.0,-3.0) using the default view direction.
Note that the point is a column vector.

A = viewmtx(-37.5,30);
x4d = [.5 0 -3 1]';
x2d = A*x4d;
x2d = x2d(1:2)
x2d =

0.3967
-2.4459

Vectors that trace the edges of a unit cube are

x = [0 1 1 0 0 0 1 1 0 0 1 1 1 1 0 0];
y = [0 0 1 1 0 0 0 1 1 0 0 0 1 1 1 1];
z = [0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0];

Transform the points in these vectors to the screen, then plot the object.

A = viewmtx(-37.5,30);
[m,n] = size(x);
x4d = [x(:),y(:),z(:),ones(m*n,1)]';

2-3671

viewmtx

x2d = A*x4d;
x2 = zeros(m,n); y2 = zeros(m,n);
x2(:) = x2d(1,:);
y2(:) = x2d(2,:);
plot(x2,y2)

Use a perspective transformation with a 25 degree viewing angle:

A = viewmtx(-37.5,30,25);
x4d = [.5 0 -3 1]';
x2d = A*x4d;
x2d = x2d(1:2)/x2d(4) % Normalize
x2d =

2-3672

viewmtx

0.1777
-1.8858

Transform the cube vectors to the screen and plot the object:

A = viewmtx(-37.5,30,25);
[m,n] = size(x);
x4d = [x(:),y(:),z(:),ones(m*n,1)]';
x2d = A*x4d;
x2 = zeros(m,n); y2 = zeros(m,n);
x2(:) = x2d(1,:)./x2d(4,:);
y2(:) = x2d(2,:)./x2d(4,:);
plot(x2,y2)

2-3673

viewmtx

See Also view, hgtransform

“Controlling the Camera Viewpoint” on page 1-99 for related functions

Defining the View for more information on viewing concepts and
techniques

2-3674

volumebounds

Purpose Coordinate and color limits for volume data

Syntax lims = volumebounds(X,Y,Z,V)
lims = volumebounds(X,Y,Z,U,V,W)
lims = volumebounds(V), lims = volumebounds(U,V,W)

Description lims = volumebounds(X,Y,Z,V) returns the x, y, z, and color limits of
the current axes for scalar data. lims is returned as a vector:

[xmin xmax ymin ymax zmin zmax cmin cmax]

You can pass this vector to the axis command.

lims = volumebounds(X,Y,Z,U,V,W) returns the x, y, and z limits of
the current axes for vector data. lims is returned as a vector:

[xmin xmax ymin ymax zmin zmax]

lims = volumebounds(V), lims = volumebounds(U,V,W) assumes
X, Y, and Z are determined by the expression

[X Y Z] = meshgrid(1:n,1:m,1:p)

where [m n p] = size(V).

Examples This example uses volumebounds to set the axis and color limits for an
isosurface generated by the flow function.

[x y z v] = flow;
p = patch(isosurface(x,y,z,v,-3));
isonormals(x,y,z,v,p)
daspect([1 1 1])
isocolors(x,y,z,flipdim(v,2),p)
shading interp
axis(volumebounds(x,y,z,v))
view(3)
camlight
lighting phong

2-3675

volumebounds

See Also isosurface, streamslice

“Volume Visualization” on page 1-102 for related functions

2-3676

voronoi

Purpose Voronoi diagram

Syntax voronoi(x,y)
voronoi(x,y,TRI)
voronoi(X,Y,options)
voronoi(AX,...)
voronoi(...,'LineSpec')
h = voronoi(...)
[vx,vy] = voronoi(...)

Definition Consider a set of coplanar points . For each point in the set , you
can draw a boundary enclosing all the intermediate points lying closer
to than to other points in the set . Such a boundary is called a
Voronoi polygon, and the set of all Voronoi polygons for a given point
set is called a Voronoi diagram.

Description voronoi(x,y) plots the bounded cells of the Voronoi diagram for the
points x,y. Lines-to-infinity are approximated with an arbitrarily
distant endpoint.

voronoi(x,y,TRI) uses the triangulation TRI instead of computing
it via delaunay.

voronoi(X,Y,options) specifies a cell array of strings to be used as
options in Qhull via delaunay.

If options is [], the default delaunay options are used. If options is
{''}, no options are used, not even the default.

voronoi(AX,...) plots into AX instead of gca.

voronoi(...,'LineSpec') plots the diagram with color and line style
specified.

h = voronoi(...) returns, in h, handles to the line objects created.

[vx,vy] = voronoi(...) returns the finite vertices of the Voronoi
edges in vx and vy so that plot(vx,vy,'-',x,y,'.') creates the
Voronoi diagram. The lines-to-infinity are the last columns of vx and

2-3677

voronoi

vy. To ensure the lines-to-infinity do not affect the settings of the axis
limits, use the commands:

h = plot(VX,VY,'-',X,Y,'.');
set(h(1:end-1),'xliminclude','off','yliminclude','off')

Note For the topology of the Voronoi diagram, i.e., the vertices for each
Voronoi cell, use voronoin.

[v,c] = voronoin([x(:) y(:)])

Visualization Use one of these methods to plot a Voronoi diagram:

• If you provide no output argument, voronoi plots the diagram. See
Example 1.

• To gain more control over color, line style, and other figure properties,
use the syntax [vx,vy] = voronoi(...). This syntax returns the
vertices of the finite Voronoi edges, which you can then plot with the
plot function. See Example 2.

• To fill the cells with color, use voronoin with n = 2 to get the indices
of each cell, and then use patch and other plot functions to generate
the figure. Note that patch does not fill unbounded cells with color.
See Example 3.

Examples Example 1

This code uses the voronoi function to plot the Voronoi diagram for 10
randomly generated points.

rand('state',5);
x = rand(1,10); y = rand(1,10);
voronoi(x,y)

2-3678

voronoi

Example 2

This code uses the vertices of the finite Voronoi edges to plot the Voronoi
diagram for the same 10 points.

rand('state',5);
x = rand(1,10); y = rand(1,10);
[vx, vy] = voronoi(x,y);
plot(x,y,'r+',vx,vy,'b-'); axis equal

Note that you can add this code to get the figure shown in Example 1.

xlim([min(x) max(x)])

2-3679

voronoi

ylim([min(y) max(y)])

Example 3

This code uses voronoin and patch to fill the bounded cells of the same
Voronoi diagram with color.

rand('state',5);
x=rand(10,2);
[v,c]=voronoin(x);
for i = 1:length(c)
if all(c{i}~=1) % If at least one of the indices is 1,

% then it is an open region and we can't
% patch that.

2-3680

voronoi

patch(v(c{i},1),v(c{i},2),i); % use color i.
end
end
axis equal

Algorithm If you supply no triangulation TRI, the voronoi function performs a
Delaunay triangulation of the data that uses Qhull [1]. For information
about Qhull, see http://www.qhull.org/. For copyright information,
see http://www.qhull.org/COPYING.txt.

See Also convhull, delaunay, LineSpec, plot, voronoin

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, “The Quickhull
Algorithm for Convex Hulls,” ACM Transactions on Mathematical
Software, Vol. 22, No. 4, Dec. 1996, p. 469-483. Available in PDF

2-3681

http://www.qhull.org/
http://www.qhull.org/COPYING.txt

voronoi

format at http://www.acm.org/pubs/citations/journals/toms/
1996-22-4/p469-barber/.

2-3682

http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/

voronoin

Purpose N-D Voronoi diagram

Syntax [V,C] = voronoin(X)
[V,C] = voronoin(X,options)

Description [V,C] = voronoin(X) returns Voronoi vertices V and the Voronoi cells
C of the Voronoi diagram of X. V is a numv-by-n array of the numv Voronoi
vertices in n-dimensional space, each row corresponds to a Voronoi
vertex. C is a vector cell array where each element contains the indices
into V of the vertices of the corresponding Voronoi cell. X is an m-by-n
array, representing m n-dimensional points, where n > 1 and m >= n+1.

The first row of V is a point at infinity. If any index in a cell of the cell
array is 1, then the corresponding Voronoi cell contains the first point in
V, a point at infinity. This means the Voronoi cell is unbounded.

voronoin uses Qhull.

[V,C] = voronoin(X,options) specifies a cell array of strings options
to be used in Qhull. The default options are

• {'Qbb'} for 2- and 3-dimensional input

• {'Qbb','Qx'} for 4 and higher-dimensional input

If options is [], the default options are used. If code is {''}, no options
are used, not even the default. For more information on Qhull and its
options, see http://www.qhull.org.

Visualization You can plot individual bounded cells of an n-dimensional Voronoi
diagram. To do this, use convhulln to compute the vertices of the
facets that make up the Voronoi cell. Then use patch and other plot
functions to generate the figure. For an example, see “Tessellation and
Interpolation of Scattered Data in Higher Dimensions” in the MATLAB
Mathematics documentation.

Examples Example 1

Let

2-3683

http://www.qhull.org

voronoin

x = [0.5 0
0 0.5

-0.5 -0.5
-0.2 -0.1
-0.1 0.1
0.1 -0.1
0.1 0.1]

then

[V,C] = voronoin(x)

V =
Inf Inf
0.3833 0.3833
0.7000 -1.6500
0.2875 0.0000

-0.0000 0.2875
-0.0000 -0.0000
-0.0500 -0.5250
-0.0500 -0.0500
-1.7500 0.7500
-1.4500 0.6500

C =

[1x4 double]
[1x5 double]
[1x4 double]
[1x4 double]
[1x4 double]
[1x5 double]
[1x4 double]

Use a for loop to see the contents of the cell array C.

for i=1:length(C), disp(C{i}), end

4 2 1 3

2-3684

voronoin

10 5 2 1 9
9 1 3 7

10 8 7 9
10 5 6 8
8 6 4 3 7
6 4 2 5

In particular, the fifth Voronoi cell consists of 4 points: V(10,:), V(5,:),
V(6,:), V(8,:).

Example 2

The following example illustrates the options input to voronoin. The
commands

X = [-1 -1; 1 -1; 1 1; -1 1];
[V,C] = voronoin(X)

return an error message.

? qhull input error: can not scale last coordinate. Input is
cocircular

or cospherical. Use option 'Qz' to add a point at infinity.

The error message indicates that you should add the option 'Qz'. The
following command passes the option 'Qz', along with the default
'Qbb', to voronoin.

[V,C] = voronoin(X,{'Qbb','Qz'})
V =

Inf Inf
0 0

C =

[1x2 double]
[1x2 double]

2-3685

voronoin

[1x2 double]
[1x2 double]

Algorithm voronoin is based on Qhull [1]. For information about Qhull,
see http://www.qhull.org/. For copyright information, see
http://www.qhull.org/COPYING.txt.

See Also convhull, convhulln, delaunay, delaunayn, voronoi

Reference [1] Barber, C. B., D.P. Dobkin, and H.T. Huhdanpaa, “The Quickhull
Algorithm for Convex Hulls,” ACM Transactions on Mathematical
Software, Vol. 22, No. 4, Dec. 1996, p. 469-483. Available in PDF
format at http://www.acm.org/pubs/citations/journals/toms/
1996-22-4/p469-barber/.

2-3686

http://www.qhull.org/
http://www.qhull.org/COPYING.txt
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/
http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/

wait

Purpose Wait until timer stops running

Syntax wait(obj)

Description wait(obj) blocks the MATLAB command line and waits until the
timer, represented by the timer object obj, stops running. When a timer
stops running, the value of the timer object’s Running property changes
from 'on' to 'off'.

If obj is an array of timer objects, wait blocks the MATLAB command
line until all the timers have stopped running.

If the timer is not running, wait returns immediately.

See Also timer, start, stop

2-3687

waitbar

Purpose Open waitbar

Syntax h = waitbar(x,'message')
waitbar(x,'message','CreateCancelBtn','button_callback')
waitbar(...,property_name,property_value,...)
waitbar(x)
waitbar(x,h)
waitbar(x,h,'updated message')

Description A waitbar shows what percentage of a calculation is complete, as the
calculation proceeds.

h = waitbar(x,'message') displays a waitbar of fractional length x.
The waitbar figure is modal. Its handle is returned in h. The argumentx
must be between 0 and 1.

Note A modal figure prevents the user from interacting with other
windows before responding. For more information, see WindowStyle in
the MATLAB Figure Properties.

waitbar(x,'message','CreateCancelBtn','button_callback')
specifying CreateCancelBtn adds a cancel button to the figure that
executes the MATLAB commands specified in button_callback when
the user clicks the cancel button or the close figure button. waitbar sets
both the cancel button callback and the figure CloseRequestFcn to the
string specified in button_callback.

waitbar(...,property_name,property_value,...) optional
arguments property_name and property_value enable you to set
figure properties for the waitbar.

waitbar(x) subsequent calls to waitbar(x) extend the length of the
bar to the new position x.

waitbar(x,h) extends the length of the bar in the waitbar h to the
new position x.

2-3688

waitbar

waitbar(x,h,'updated message') updates the message text in the
waitbar figure, in addition to setting the fractional length to x.

Example waitbar is typically used inside a for loop that performs a lengthy
computation. For example,

h = waitbar(0,'Please wait...');
for i=1:100, % computation here %
waitbar(i/100)
end
close(h)

See Also “Predefined Dialog Boxes” on page 1-104 for related functions

2-3689

waitfor

Purpose Wait for condition before resuming execution

Syntax waitfor(h)
waitfor(h,'PropertyName')
waitfor(h,'PropertyName',PropertyValue)

Description The waitfor function blocks the caller’s execution stream so that
command-line expressions, callbacks, and statements in the blocked
M-file do not execute until a specified condition is satisfied.

waitfor(h) returns when the graphics object identified by h is deleted
or when a Ctrl+C is typed in the Command Window. If h does not exist,
waitfor returns immediately without processing any events.

waitfor(h,'PropertyName'), in addition to the conditions in the
previous syntax, returns when the value of 'PropertyName' for the
graphics object h changes. If 'PropertyName' is not a valid property for
the object, waitfor returns immediately without processing any events.

waitfor(h,'PropertyName',PropertyValue), in addition to the
conditions in the previous syntax, waitfor returns when the value of
'PropertyName' for the graphics object h changes to PropertyValue.
waitfor returns immediately without processing any events if
'PropertyName' is set to PropertyValue.

Remarks While waitfor blocks an execution stream, other execution streams in
the form of callbacks may execute as a result of various events (e.g.,
pressing a mouse button).

waitfor can block nested execution streams. For example, a callback
invoked during a waitfor statement can itself invoke waitfor.

See Also uiresume, uiwait

“Developing User Interfaces” on page 1-105 for related functions

2-3690

waitforbuttonpress

Purpose Wait for key press or mouse-button click

Syntax k = waitforbuttonpress

Description k = waitforbuttonpress blocks the caller’s execution stream until
the function detects that the user has clicked a mouse button or pressed
a key while the figure window is active. The function returns

• 0 if it detects a mouse button click

• 1 if it detects a key press

Additional information about the event that causes execution to resume
is available through the figure’s CurrentCharacter, SelectionType,
and CurrentPoint properties.

If a WindowButtonDownFcn is defined for the figure, its callback is
executed before waitforbuttonpress returns a value.

Example These statements display text in the Command Window when the user
either clicks a mouse button or types a key in the figure window:

w = waitforbuttonpress;
if w == 0

disp('Button click')
else

disp('Key press')
end

See Also dragrect, ginput, rbbox, waitfor

“Developing User Interfaces” on page 1-105 for related functions

2-3691

warndlg

Purpose Open warning dialog box

Syntax h = warndlg
h = warndlg(warningstring)
h = warndlg(warningstring,dlgname)
h = warndlg(warningstring,dlgname,createmode)

Description h = warndlg displays a dialog box named Warning Dialog containing
the string This is the default warning string. The warndlg
function returns the handle of the dialog box in h. The warning dialog
box disappears after the user clicks OK.

h = warndlg(warningstring) displays a dialog box with the title
Warning Dialog containing the string specified by warningstring.
The warningstring argument can be any valid string format – cell
arrays are preferred.

To use multiple lines in your warning, define warningstring using
either of the following:

• sprintf with newline characters separating the lines

warndlg(sprintf('Message line 1 \n Message line 2'))

• Cell arrays of strings

warndlg({'Message line 1';'Message line 2'})

h = warndlg(warningstring,dlgname) displays a dialog box with
title dlgname.

h = warndlg(warningstring,dlgname,createmode) specifies whether
the warning dialog box is modal or nonmodal. Optionally, it can also
specify an interpreter for warningstring and dlgname. The createmode
argument can be a string or a structure.

If createmode is a string, it must be one of the values shown in the
following table.

2-3692

warndlg

createmode Value Description

modal Replaces the warning dialog box having the
specified Title, that was last created or
clicked on, with a modal warning dialog box
as specified. All other warning dialog boxes
with the same title are deleted. The dialog
box which is replaced can be either modal
or nonmodal.

non-modal (default) Creates a new nonmodal warning dialog
box with the specified parameters. Existing
warning dialog boxes with the same title
are not deleted.

replace Replaces the warning dialog box having the
specified Title, that was last created or
clicked on, with a nonmodal warning dialog
boxbox as specified. All other warning
dialog boxes with the same title are deleted.
The dialog box which is replaced can be
either modal or nonmodal.

Note A modal dialog box prevents the user from interacting with other
windows before responding. To block MATLAB program execution as
well, use theuiwait function. For more information about modal dialog
boxes, see WindowStyle in theFigure Properties.

If CreateMode is a structure, it can have fields WindowStyle and
Interpreter. WindowStyle must be one of the options shown in the
table above. Interpreter is one of the strings 'tex' or 'none'. The
default value for Interpreter is 'none'.

Examples The statement

warndlg('Pressing OK will clear memory','!! Warning !!')

2-3693

warndlg

displays this dialog box:

See Also dialog, errordlg, helpdlg, inputdlg, listdlg, msgbox, questdlg

figure, uiwait, uiresume, warning

“Predefined Dialog Boxes” on page 1-104 for related functions

2-3694

warning

Purpose Warning message

Syntax warning('message')
warning('message', a1, a2,...)
warning('message_id', 'message')
warning('message_id', 'message', a1, a2, ..., an)
s = warning(state, 'message_id')
s = warning(state, mode)

Description warning('message') displays the text 'message' like the disp
function, except that with warning, message display can be suppressed.

warning('message', a1, a2,...) displays a message string that
contains formatting conversion characters, such as those used with the
MATLAB sprintf function. Each conversion character in message is
converted to one of the values a1, a2, ... in the argument list.

Note MATLAB converts special characters (like \n and %d) in the
warning message string only when you specify more than one input
argument with warning. See Example 4 below.

warning('message_id', 'message') attaches a unique identifier, or
message_id, to the warning message. The identifier enables you to
single out certain warnings during the execution of your program,
controlling what happens when the warnings are encountered. See and
“Warning Control” in the MATLAB Programming documentation for
more information on the message_id argument and how to use it.

warning('message_id', 'message', a1, a2, ..., an) includes
formatting conversion characters in message, and the character
translations in arguments a1, a2, ..., an.

s = warning(state, 'message_id') is a warning control statement
that enables you to indicate how you want MATLAB to act on certain
warnings. The state argument can be 'on', 'off', or 'query'. The
message_id argument can be a message identifier string, 'all',

2-3695

warning

or 'last'. See “Warning Control Statements” in the MATLAB
Programming documentation for more information.

Output s is a structure array that indicates the previous state of the
selected warnings. The structure has the fields identifier and state.
See “Output from Control Statements” in the MATLAB Programming
documentation for more.

s = warning(state, mode) is a warning control statement that
enables you to display an M-stack trace or display more information
with each warning. The state argument can be 'on', 'off', or
'query'. The mode argument can be 'backtrace' or 'verbose'.
See “Backtrace and Verbose Modes” in the MATLAB Programming
documentation for more information.

Examples Example 1

Generate a warning that displays a simple string:

if ~ischar(p1)
warning('Input must be a string')

end

Example 2

Generate a warning string that is defined at run-time. The first
argument defines a message identifier for this warning:

warning('MATLAB:paramAmbiguous', ...
'Ambiguous parameter name, "%s".', param)

Example 3

Using a message identifier, enable just the actionNotTaken warning
from Simulink by first turning off all warnings and then setting just
that warning to on:

warning off all
warning on Simulink:actionNotTaken

2-3696

warning

Use query to determine the current state of all warnings. It
reports that you have set all warnings to off with the exception of
Simulink:actionNotTaken:

warning query all

The default warning state is 'off'. Warnings not set to the default are

State Warning Identifier

on Simulink:actionNotTaken

Example 4

MATLAB converts special characters (like \n and %d) in the warning
message string only when you specify more than one input argument
with warning. In the single argument case shown below, \n is taken to
mean backslash-n. It is not converted to a newline character:

warning('In this case, the newline \n is not converted.')
Warning: In this case, the newline \n is not converted.

But, when more than one argument is specified, MATLAB does convert
special characters. This is true regardless of whether the additional
argument supplies conversion values or is a message identifier:

warning('WarnTests:convertTest', ...
'In this case, the newline \n is converted.')

Warning: In this case, the newline
is converted.

Example 5

Turn on one particular warning, saving the previous state of this
one warning in s. Remember that this nonquery syntax performs an
implicit query prior to setting the new state:

s = warning('on', 'Control:parameterNotSymmetric');

After doing some work that includes making changes to the state of
some warnings, restore the original state of all warnings:

2-3697

warning

warning(s)

See Also lastwarn, warndlg, error, lasterror, errordlg, dbstop, disp,
sprintf

2-3698

waterfall

Purpose Waterfall plot

GUI
Alternatives

To graph selected variables, use the Plot Selector in the Workspace
Browser, or use the Figure Palette Plot Catalog. Manipulate graphs
in plot edit mode with the Property Editor. For details, see Plotting
Tools — Interactive Plotting in the MATLAB Graphics documentation
and Creating Graphics from the Workspace Browser in the MATLAB
Desktop Tools documentation.

Syntax waterfall(Z)
waterfall(X,Y,Z)
waterfall(...,C)
waterfall(axes_handles,...)
h = waterfall(...)

Description The waterfall function draws a mesh similar to the meshz function,
but it does not generate lines from the columns of the matrices. This
produces a “waterfall” effect.

waterfall(Z) creates a waterfall plot using x = 1:size(Z,1) and
y = 1:size(Z,1). Z determines the color, so color is proportional to
surface height.

waterfall(X,Y,Z) creates a waterfall plot using the values specified
in X, Y, and Z. Z also determines the color, so color is proportional to the
surface height. If X and Y are vectors, X corresponds to the columns of
Z, and Y corresponds to the rows, where length(x) = n, length(y) =
m, and [m,n] = size(Z). X and Y are vectors or matrices that define
the x- and y-coordinates of the plot. Z is a matrix that defines the
z-coordinates of the plot (i.e., height above a plane). If C is omitted,
color is proportional to Z.

waterfall(...,C) uses scaled color values to obtain colors from the
current colormap. Color scaling is determined by the range of C, which

2-3699

waterfall

must be the same size as Z. MATLAB performs a linear transformation
on C to obtain colors from the current colormap.

waterfall(axes_handles,...) plots into the axes with handle
axes_handle instead of the current axes (gca).

h = waterfall(...) returns the handle of the patch graphics object
used to draw the plot.

Remarks For column-oriented data analysis, use waterfall(Z') or
waterfall(X',Y',Z').

Examples Produce a waterfall plot of the peaks function.

[X,Y,Z] = peaks(30);
waterfall(X,Y,Z)

2-3700

waterfall

Algorithm The range of X, Y, and Z, or the current setting of the axes Llim, YLim,
and ZLim properties, determines the range of the axes (also set by
axis). The range of C, or the current setting of the axes CLim property,
determines the color scaling (also set by caxis).

The CData property for the patch graphics objects specifies the color at
every point along the edge of the patch, which determines the color
of the lines.

The waterfall plot looks like a mesh surface; however, it is a patch
graphics object. To create a surface plot similar to waterfall, use the
meshz function and set the MeshStyle property of the surface to 'Row'.

2-3701

waterfall

For a discussion of parametric surfaces and related color properties,
see surf.

See Also axes, axis, caxis, meshz, ribbon, surf

Properties for patch graphics objects

2-3702

wavfinfo

Purpose Information about Microsoft WAVE (.wav) sound file

Syntax [m d] = wavfinfo(filename)

Description [m d] = wavfinfo(filename) returns information about the contents
of the WAVE sound file specified by the string filename. Enclose the
filename input in single quotes.

m is the string 'Sound (WAV) file', if filename is a WAVE file.
Otherwise, it contains an empty string ('').

d is a string that reports the number of samples in the file and the
number of channels of audio data. If filename is not a WAVE file, it
contains the string 'Not a WAVE file'.

See Also wavread

2-3703

wavplay

Purpose Play recorded sound on PC-based audio output device

Syntax wavplay(y,Fs)
wavplay(...,'mode')

Description wavplay(y,Fs) plays the audio signal stored in the vector y on a
PC-based audio output device. You specify the audio signal sampling
rate with the integer Fs in samples per second. The default value for
Fs is 11025 Hz (samples per second). wavplay supports only 1- or
2-channel (mono or stereo) audio signals.

wavplay(...,'mode') specifies how wavplay interacts with the
command line, according to the string 'mode'. The string 'mode' can be

• 'async': You have immediate access to the command line as soon as
the sound begins to play on the audio output device (a nonblocking
device call).

• 'sync' (default value): You don’t have access to the command line
until the sound has finished playing (a blocking device call).

The audio signal y can be one of four data types. The number of bits
used to quantize and play back each sample depends on the data type.

Data Types for wavplay

Data Type Quantization

Double-precision (default value) 16 bits/sample

Single-precision 16 bits/sample

16-bit signed integer 16 bits/sample

8-bit unsigned integer 8 bits/sample

Remarks You can play your signal in stereo if y is a two-column matrix.

2-3704

wavplay

Examples The MAT-files gong.mat and chirp.mat both contain an audio signal
y and a sampling frequency Fs. Load and play the gong and the chirp
audio signals. Change the names of these signals in between load
commands and play them sequentially using the 'sync' option for
wavplay.

load chirp;
y1 = y; Fs1 = Fs;
load gong;
wavplay(y1,Fs1,'sync') % The chirp signal finishes before the
wavplay(y,Fs) % gong signal begins playing.

See Also wavrecord

2-3705

wavread

Purpose Read Microsoft WAVE (.wav) sound file

Graphical
Interface

As an alternative to wavread, use the Import Wizard. To activate the
Import Wizard, select Import Data from the File menu.

Syntax y = wavread(filename)
[y, Fs, nbits] = wavread(filename)
[...] = wavread(filename, N)
[...] = wavread(filename,[N1 N2])
y = wavread(filename, fmt)
siz = wavread(filename,'size')
[y, fs, nbits, opts] = wavread(...)

Description y = wavread(filename) loads a WAVE file specified by filename,
returning the sampled data in y. The filename input is a string
enclosed in single quotes. The .wav extension is appended if no
extension is given.

[y, Fs, nbits] = wavread(filename) returns the sample rate (Fs)
in Hertz and the number of bits per sample (nbits) used to encode
the data in the file.

[...] = wavread(filename, N) returns only the first N samples
from each channel in the file.

[...] = wavread(filename,[N1 N2]) returns only samples N1
through N2 from each channel in the file.

y = wavread(filename, fmt) specifies the data type format of y
used to represent samples read from the file. fmt can be either of the
following values.

2-3706

wavread

Value Description

'double' y contains double-precision normalized samples. This
is the default value, if fmt is omitted.

'native' y contains samples in the native data type found in
the file. Interpretation of fmt is case-insensitive, and
partial matching is supported.

siz = wavread(filename,'size') returns the size of the audio data
contained in filename in place of the actual audio data, returning the
vector siz = [samples channels].

[y, fs, nbits, opts] = wavread(...) returns a structure opts
of additional information contained in the WAV file. The content of
this structure differs from file to file. Typical structure fields include
opts.fmt (audio format information) and opts.info (text which may
describe title, author, etc.).

Output Scaling

The range of values in y depends on the data format fmt specified. Some
examples of output scaling based on typical bit-widths found in a WAV
file are given below for both 'double' and 'native' formats.

Native Formats

Number of
Bits

MATLAB Data Type Data Range

8 uint8 (unsigned integer) 0 <= y <= 255

16 int16 (signed integer) -32768 <= y <= +32767

2-3707

wavread

Native Formats (Continued)

Number of
Bits

MATLAB Data Type Data Range

24 int32 (signed integer) -2^23 <= y <= 2^23-1

32 single (floating point) -1.0 <= y < +1.0

Double Formats

Number of Bits MATLAB Data Type Data Range

N<32 double -1.0 <= y < +1.0

N=32 double -1.0 <= y <= +1.0
Note: Values in y
might exceed -1.0 or
+1.0 for the case of
N=32 bit data samples
stored in the WAV
file.

wavread supports multi-channel data, with up to 32 bits per sample.

wavread supports Pulse-code Modulation (PCM) data format only.

See Also auread, auwrite, wavwrite

2-3708

wavrecord

Purpose Record sound using PC-based audio input device

Syntax y = wavrecord(n,Fs)
y = wavrecord(...,ch)
y = wavrecord(...,'dtype')

Description y = wavrecord(n,Fs) records n samples of an audio signal, sampled
at a rate of Fs Hz (samples per second). The default value for Fs is
11025 Hz.

y = wavrecord(...,ch) uses ch number of input channels from the
audio device. ch can be either 1 or 2, for mono or stereo, respectively.
The default value for ch is 1.

y = wavrecord(...,'dtype') uses the data type specified by the
string 'dtype' to record the sound. The string 'dtype' can be one
of the following:

• 'double' (default value), 16 bits/sample

• 'single', 16 bits/sample

• 'int16', 16 bits/sample

• 'uint8', 8 bits/sample

Remarks Standard sampling rates for PC-based audio hardware are 8000,
11025, 2250, and 44100 samples per second. Stereo signals are
returned as two-column matrices. The first column of a stereo audio
matrix corresponds to the left input channel, while the second column
corresponds to the right input channel.

Examples Record 5 seconds of 16-bit audio sampled at 11025 Hz. Play back the
recorded sound using wavplay. Speak into your audio device (or produce
your audio signal) while the wavrecord command runs.

Fs = 11025;
y = wavrecord(5*Fs,Fs,'int16');
wavplay(y,Fs);

2-3709

wavrecord

See Also wavplay

2-3710

wavwrite

Purpose Write Microsoft WAVE (.wav) sound file

Syntax wavwrite(y,filename)
wavwrite(y,Fs,filename)
wavwrite(y,Fs,N,filename)

Description wavwrite writes data to 8-, 16-, 24-, and 32-bit .wav files.

wavwrite(y,filename) writes the data stored in the variable y to a
WAVE file called filename. The filename input is a string enclosed in
single quotes. The data has a sample rate of 8000 Hz and is assumed
to be 16-bit. Each column of the data represents a separate channel.
Therefore, stereo data should be specified as a matrix with two columns.
Amplitude values outside the range [-1,+1] are clipped prior to writing.

wavwrite(y,Fs,filename) writes the data stored in the variable y to a
WAVE file called filename. The data has a sample rate of Fs Hz and
is assumed to be 16-bit. Amplitude values outside the range [-1,+1]
are clipped prior to writing.

wavwrite(y,Fs,N,filename) writes the data stored in the variable y
to a WAVE file called filename. The data has a sample rate of Fs Hz
and is N-bit, where N is 8, 16, 24, or 32. For N < 32, amplitude values
outside the range [-1,+1] are clipped.

Note 8-, 16-, and 24-bit files are type 1 integer pulse code modulation
(PCM). 32-bit files are written as type 3 normalized floating point.

See Also auwrite, wavread

2-3711

web

Purpose Open Web site or file in Web browser or Help browser

Syntax web
web url
web url -new
web url -notoolbar
web url -noaddressbox
web url -helpbrowser
web url -browser
web(...)
stat = web('url', '-browser')
[stat, h1] = web
[stat, h1, url] = web

Description web opens an empty MATLAB “Web Browser”. The MATLAB Web
browser includes an address field where you can enter a URL, for
example, to a Web site or file, a toolbar with common browser buttons,
and a MATLAB desktop menu.

web url displays the specified URL, url, in the MATLAB Web browser.
If any MATLAB Web browsers are already open, it displays the page in
the browser that last had focus. Files up to 1.5MB in size display in the
MATLAB Web browser, while larger files instead display in the default
Web browser for your system. If url is located in the directory returned
when you run docroot (an unsupported utility), the URL displays in
the MATLAB Help browser instead of the MATLAB Web browser.

web url -new displays the specified URL, url, in a new MATLAB Web
browser.

web url -notoolbar displays the specified URL, url, in a MATLAB
Web browser that does not include the toolbar and address field. If any
MATLAB Web browsers are already open, also use the -new option;
otherwise url displays in the browser that last had focus, regardless
of its toolbar status.

web url -noaddressbox displays the specified URL, url, in a MATLAB
Web browser that does not include the address field. If any MATLAB
Web browsers are already open, also use the -new option; otherwise url

2-3712

web

displays in the browser that last had focus, regardless of its address
field status.

web url -helpbrowser displays the specified URL, url, in the MATLAB
Help browser.

web url -browser displays the default Web browser for your system
and loads the file or Web site specified by the URL url in it. Generally,
url specifies a local file or a Web site on the Internet. The URL can be
in any form that the browser supports. On Windows and Macintosh, the
default Web browser is determined by the operating system. On UNIX,
the Web browser used is specified via docopt in the doccmd string.

web(...) is the functional form of web.

stat = web('url', '-browser') runs web and returns the status of
web to the variable stat.

Value of stat Description

0 Browser was found and launched.

1 Browser was not found.

2 Browser was found but could not be launched.

[stat, h1] = web returns the status of web to the variable stat, and
returns a handle to the Java class, h1, for the last active browser.

[stat, h1, url] = web returns the status of web to the variable stat,
returns a handle to the Java class h1, for the last active browser, and
returns its current URL to url.

Examples Run

web http://www.mathtools.net

and MATLAB displays

2-3713

web

web http://www.mathworks.com loads the MathWorks Web site home
page into the MATLAB Web browser.

web file:///disk/dir1/dir2/foo.html opens the file foo.html in
the MATLAB Web browser.

web(['file:///' which('foo.html')])opens foo.html if the file is
on the MATLAB path or in the current directory.

web('text://<html><h1>Hello World</h1></html>') displays the
HTML-formatted text Hello World.

web ('http://www.mathworks.com', '-new', '-notoolbar') loads
the MathWorks Web site home page into a new MATLAB Web browser
that does not include a toolbar or address field.

web file:///disk/dir1/foo.html -helpbrowser opens the file
foo.html in the MATLAB Help browser.

2-3714

web

web file:///disk/dir1/foo.html -browser opens the file foo.html
in the system Web browser.

web mailto:email_address uses your system browser’s default e-mail
application to send a message to email_address.

web http://www.mathtools.net -browser opens a browser to
mathtools.net. Then [stat,h1,url]=web returns

stat =

0

h1 =

com.mathworks.mde.webbrowser.WebBrowser[,0,0,591x140,

layout=java.awt.BorderLayout,alignmentX=null,alignmentY=null,

border=,flags=9,maximumSize=,minimumSize=,preferredSize=]

url =

http://www.mathtools.net/

Run methods(h1) to view allowable methods for the class. As an
example, you can use the method setCurrentLocation to change the
URL displayed in h1, as in

setCurrentLocation(h1,'http://www.mathworks.com')

See Also doc, docopt, helpbrowser, matlabcolon

“Web Browser” in the MATLAB Desktop Tools and Development
Environment documentation

2-3715

weekday

Purpose Day of week

Syntax [N, S] = weekday(D)
[N, S] = weekday(D, form)
[N, S] = weekday(D, locale)
[N, S] = weekday(D, form, locale)

Description [N, S] = weekday(D) returns the day of the week in numeric (N) and
string (S) form for a given serial date number or date string D. Input
argument D can represent more than one date in an array of serial date
numbers or a cell array of date strings.

[N, S] = weekday(D, form) returns the day of the week in numeric
(N) and string (S) form, where the content of S depends on the form
argument. If form is ’long’, then S contains the full name of the weekday
(e.g., Tuesday). If form is ’short’, then S contains an abbreviated name
(e.g., Tues) from this table.

The days of the week are assigned these numbers and abbreviations.

N S (short) S (long)

1 Sun Sunday

2 Mon Monday

3 Tue Tuesday

4 Wed Wednesday

5 Thu Thursday

6 Fri Friday

7 Sat Saturday

[N, S] = weekday(D, locale) returns the day of the week in numeric
(N) and string (S) form, where the format of the output depends on the
locale argument. If locale is ’local’, then weekday uses local format
for its output. If locale is ’en_US’, then weekday uses US English.

2-3716

weekday

[N, S] = weekday(D, form, locale) returns the day of the week
using the formats described above for form and locale.

Examples Either

[n, s] = weekday(728647)

or

[n, s] = weekday('19-Dec-1994')

returns n = 2 and s = Mon.

See Also datenum, datevec, eomday

2-3717

what

Purpose List MATLAB files in current directory

Graphical
Interface

As an alternative to the what function, use the “Current Directory
Browser”. To open it, select Current Directory from the Desktop
menu in the MATLAB desktop.

Syntax what
what dirname
what class
s = what('dirname')

Description what lists the M, MAT, MEX, MDL, and P-files and the class directories
that reside in the current working directory.

what dirname lists the files in directory dirname on the MATLAB
search path. It is not necessary to enter the full pathname of the
directory. The last component, or last two components, is sufficient.

what class lists the files in method directory, @class. For example, what
cfit lists the MATLAB files in toolbox/curvefit/curvefit/@cfit.

s = what('dirname') returns the results in a structure array with
these fields.

Field Description

path Path to directory

m Cell array of M-file names

mat Cell array of MAT-file names

mex Cell array of MEX-file names

mdl Cell array of MDL-file names

p Cell array of P-file names

classes Cell array of class names

2-3718

what

Examples List the files in toolbox/matlab/audiovideo:

what audiovideo

M-files in directory matlabroot\toolbox\matlab\audiovideo

Contents aviinfo render_uimgraudiotoolbar

audiodevinfo aviread sound

audioplayerreg lin2mu soundsc

audiorecorderreg mmcompinfo wavfinfo

audiouniquename mmfileinfo wavplay

aufinfo movie2avi wavread

auread mu2lin wavrecord

auwrite prefspanel wavwrite

avifinfo render_fullaudiotoolbar

MAT-files in directory matlabroot\toolbox\matlab\audiovideo

chirp handel splat

gong laughter train

MEX-files in directory matlabroot\toolbox\matlab\audiovideo

winaudioplayer winaudiorecorder

Classes in directory matlabroot\toolbox\matlab\audiovideo

audioplayer audiorecorder avifile mmreader

Obtain a structure array containing the MATLAB filenames in
toolbox/matlab/general:

s = what('general')
s =

path: 'matlabroot:\toolbox\matlab\general'
m: {87x1 cell}

mat: {0x1 cell}

2-3719

what

mex: {2x1 cell}
mdl: {0x1 cell}

p: {'callgraphviz.p'}
classes: {0x1 cell}

See Also dir, exist, lookfor, mfilename, path, which, who

2-3720

whatsnew

Purpose Release Notes for MathWorks products

Syntax whatsnew

Description whatsnew displays the Release Notes in the Help browser, presenting
information about new features, problems from previous releases that
have been fixed in the current release, and compatibility issues, all
organized by product.

See Also help, version

2-3721

which

Purpose Locate functions and files

Graphical
Interface

As an alternative to the which function, use the “Current Directory
Browser”.

Syntax which fun
which classname/fun
which private/fun
which classname/private/fun
which fun1 in fun2
which fun(a,b,c,...)
which file.ext
which fun -all
s = which('fun',...)

Description which fun displays the full pathname for the argument fun. If fun is a

• MATLAB function or Simulink model in an M, P, or MDL file on
the MATLAB path, then which displays the full pathname for the
corresponding file

• Workspace variable, then which displays a message identifying fun
as a variable

• Method in a loaded Java class, then which displays the package,
class, and method name for that method

If fun is an overloaded function or method, then which fun returns only
the pathname of the first function or method found.

which classname/fun displays the full pathname for the M-file
defining the fun method in MATLAB class, classname. For example,
which serial/fopen displays the path for fopen.m in the MATLAB
class directory, @serial.

which private/fun limits the search to private functions. For example,
which private/orthog displays the path for orthog.m in the /private
subdirectory of toolbox/matlab/elmat.

2-3722

which

which classname/private/fun limits the search to private methods
defined by the MATLAB class, classname. For example, which
dfilt/private/todtf displays the path for todtf.m in the private
directory of the dfilt class.

which fun1 in fun2 displays the pathname to function fun1 in the
context of the M-file fun2. You can use this form to determine whether
a subfunction is being called instead of a function on the path. For
example, which get in editpath tells you which get function is called
by editpath.m.

During debugging of fun2, using which fun1 gives the same result.

which fun(a,b,c,...) displays the path to the specified function
with the given input arguments. For example, which feval(g),
when g=inline('sin(x)'), indicates that inline/feval.m would be
invoked. which toLowerCase(s), when s=java.lang.String('my
Java string'), indicates that the toLowerCase method in class
java.lang.String would be invoked.

which file.ext displays the full pathname of the specified file if that
file is in the current working directory or on the MATLAB path. To
display the path for a file that has no file extension, type “which file.”
(the period following the filename is required). Use exist to check for
the existence of files anywhere else.

which fun -all d isplays the paths to all items on the MATLAB path
with the name fun. You may use the -all qualifier with any of the
above formats of the which function.

s = which('fun',...) returns the results of which in the string s.
For workspace variables, s is the string ’variable’. You may specify an
output variable in any of the above formats of the which function.

If -all is used with this form, the output s is always a cell array of
strings, even if only one string is returned.

Examples The statement below indicates that pinv is in the matfun directory
of MATLAB.

2-3723

which

which pinv
matlabroot\toolbox\matlab\matfun\pinv.m

To find the fopen function used on MATLAB serial class objects

which serial/fopen

matlabroot\toolbox\matlab\iofun\@serial\fopen.m % serial method

To find the setTitle method used on objects of the Java Frame class,
the class must first be loaded into MATLAB. The class is loaded when
you create an instance of the class:

frameObj = java.awt.Frame;

which setTitle
java.awt.Frame.setTitle % Frame method

When you specify an output variable, which returns a cell array of
strings to the variable. You must use the function form of which,
enclosing all arguments in parentheses and single quotes:

s = which('private/stradd','-all');
whos s

Name Size Bytes Class
s 3x1 562 cell array

Grand total is 146 elements using 562 bytes

See Also dir, doc, exist, lookfor, mfilename, path, type, what, who

2-3724

while

Purpose Repeatedly execute statements while condition is true

Syntax while expression, statements, end

Description while expression, statements, end repeatedly executes one or
more MATLAB statements in a loop, continuing until expression
no longer holds true or until MATLAB encounters a break, or return
instruction. thus forcing an immediately exit of the loop. If MATLAB
encounters a continue statement in the loop code, it immediately exits
the current pass at the location of the continue statement, skipping any
remaining code in that pass, and begins another pass at the start of the
loop statements with the value of the loop counter incremented by 1.

expression is a MATLAB expression that evaluates to a result of
logical 1 (true) or logical 0 (false). expression can be scalar or an
array. It must contain all real elements, and the statement all(A(:))
must be equal to logical 1 for the expression to be true.

expression usually consists of variables or smaller expressions joined
by relational operators (e.g., count < limit) or logical functions
(e.g., isreal(A)). Simple expressions can be combined by logical
operators (&&, ||, ~) into compound expressions such as the following.
MATLAB evaluates compound expressions from left to right, adhering
to “Operator Precedence” rules.

(count < limit) && ((height - offset) >= 0)

statements is one or more MATLAB statements to be executed only
while the expression is true or nonzero.

The scope of a while statement is always terminated with a matching
end.

See “Program Control Statements”in the MATLAB Programming
documentation for more information on controlling the flow of your
program code.

2-3725

while

Remarks Nonscalar Expressions

If the evaluated expression yields a nonscalar value, then every
element of this value must be true or nonzero for the entire expression
to be considered true. For example, the statement while (A < B) is
true only if each element of matrix A is less than its corresponding
element in matrix B. See “Example 2 – Nonscalar Expression” on page
2-3727, below.

Partial Evaluation of the Expression Argument

Within the context of an if or while expression, MATLAB does not
necessarily evaluate all parts of a logical expression. In some cases it is
possible, and often advantageous, to determine whether an expression
is true or false through only partial evaluation.

For example, if A equals zero in statement 1 below, then the expression
evaluates to false, regardless of the value of B. In this case, there is no
need to evaluate B and MATLAB does not do so. In statement 2, if A is
nonzero, then the expression is true, regardless of B. Again, MATLAB
does not evaluate the latter part of the expression.

1) while (A && B) 2) while (A || B)

You can use this property to your advantage to cause MATLAB to
evaluate a part of an expression only if a preceding part evaluates to
the desired state. Here are some examples.

while (b ~= 0) && (a/b > 18.5)
if exist('myfun.m') && (myfun(x) >= y)
if iscell(A) && all(cellfun('isreal', A))

Empty Arrays

In most cases, using while on an empty array returns false. There are
some conditions however under which while evaluates as true on an
empty array. Two examples of this are

A = [];
while all(A), do_something, end
while 1|A, do_something, end

2-3726

while

Short-Circuiting Behavior

When used in the context of a while or if expression, and only in this
context, the element-wise | and & operators use short-circuiting in
evaluating their expressions. That is, A|B and A&B ignore the second
operand, B, if the first operand, A, is sufficient to determine the result.

See “Short-Circuiting in Elementwise Operators” for more information
on this.

Examples Example 1 – Simple while Statement

The variable eps is a tolerance used to determine such things as near
singularity and rank. Its initial value is the machine epsilon, the
distance from 1.0 to the next largest floating-point number on your
machine. Its calculation demonstrates while loops.

eps = 1;
while (1+eps) > 1

eps = eps/2;
end
eps = eps*2

This example is for the purposes of illustrating while loops only and
should not be executed in your MATLAB session. Doing so will disable
the eps function from working in that session.

Example 2 – Nonscalar Expression

Given matrices A and B,

A = B =
1 0 1 1
2 3 3 4

Expression Evaluates As Because

A < B false A(1,1) is not less than B(1,1).

2-3727

while

Expression Evaluates As Because

A < (B + 1) true Every element of A is less than
that same element of B with 1
added.

A & B false A(1,2) is false, and B is ignored
due to short-circuiting.

B < 5 true Every element of B is less than
5.

See Also end, for, break, continue, return, all, any, if, switch

2-3728

whitebg

Purpose Change axes background color

Syntax whitebg
whitebg(fig)
whitebg(ColorSpec)
whitebg(fig, ColorSpec)
whitebg(fig, ColorSpec)
whitebg(fig)

Description whitebg complements the colors in the current figure.

whitebg(fig) complements colors in all figures specified in the vector
fig.

whitebg(ColorSpec) and whitebg(fig, ColorSpec) change the
color of the axes, which are children of the figure, to the color
specified by ColorSpec. Without a figure specification, whitebg or
whitebg(ColorSpec) affects the current figure and the root’s default
properties so subsequent plots and new figures use the new colors.

whitebg(fig, ColorSpec) sets the default axes background color of
the figures in the vector fig to the color specified by ColorSpec. Other
axes properties and the figure background color can change as well so
that graphs maintain adequate contrast. ColorSpec can be a 1-by-3
RGB color or a color string such as 'white' or 'w'.

whitebg(fig) complements the colors of the objects in the specified
figures. This syntax is typically used to toggle between black and white
axes background colors, and is where whitebg gets its name. Include
the root window handle (0) in fig to affect the default properties for
new windows or for clf reset.

Remarks whitebg works best in cases where all the axes in the figure have the
same background color.

whitebg changes the colors of the figure’s children, with the exception
of shaded surfaces. This ensures that all objects are visible against the
new background color. whitebg sets the default properties on the root
such that all subsequent figures use the new background color.

2-3729

whitebg

Examples Set the background color to blue-gray.

whitebg([0 .5 .6])

Set the background color to blue.

whitebg('blue')

See Also ColorSpec, colordef

The figure graphics object property InvertHardCopy

“Color Operations” on page 1-98 for related functions

2-3730

who, whos

Purpose List variables in workspace

Graphical
Interface

As an alternative to whos, use the Workspace browser. Or use the
Current Directory browser to view the contents of MAT-files without
loading them.

Syntax who
whos
who(variable_list)
whos(variable_list)
who(variable_list, qualifiers)
whos(variable_list, qualifiers)
s = who(variable_list, qualifiers)
s = whos(variable_list, qualifiers)
who variable_list qualifiers
whos variable_list qualifiers

Each of these syntaxes apply to both who and whos:

Description who lists in alphabetical order all variables in the currently active
workspace.

whos lists in alphabetical order all variables in the currently active
workspace along with their sizes and types. It also reports the totals
for sizes.

Note If who or whos is executed within a nested function, MATLAB lists
the variables in the workspace of that function and in the workspaces of
all functions containing that function. See the Remarks section, below.

who(variable_list) and whos(variable_list) list only those
variables specified in variable_list, where variable_list is a
comma-delimited list of quoted strings: 'var1', 'var2', ...,
'varN'. You can use the wildcard character * to display variables that

2-3731

who, whos

match a pattern. For example, who('A*') finds all variables in the
current workspace that start with A.

who(variable_list, qualifiers) and whos(variable_list,
qualifiers) list those variables in variable_list that meet all
qualifications specified in qualifiers. You can specify any or all of the
following qualifiers, and in any order.

Qualifier
Syntax Description Example

'global' List variables in the
global workspace.

whos('global')

'-file',
filename

List variables in the
specified MAT-file.
Use the full path for
filename.

whos('-file',
'mydata')

'-regexp',
exprlist

List variables that
match any of the
regular expressions in
exprlist.

whos('-regexp',
'[AB].', '\w\d')

s = who(variable_list, qualifiers) returns cell array s containing
the names of the variables specified in variable_list that meet the
conditions specified in qualifiers.

s = whos(variable_list, qualifiers) returns structure s
containing the following fields for the variables specified in
variable_list that meet the conditions specified in qualifiers:

Field Name Description

name Name of the variable

size Dimensions of the variable array

bytes Number of bytes allocated for the variable array

class Class of the variable. Set to the string
'(unassigned)' if the variable has no value.

2-3732

who, whos

Field Name Description

global True if the variable is global; otherwise false

sparse True if the variable is sparse; otherwise false

complex True if the variable is complex; otherwise false

nesting Structure having the following fields:

• function — Name of the nested or outer function
that defines the variable

• level — Nesting level of that function

persistent True if the variable is persistent; otherwise false

who variable_list qualifiers and whos variable_list
qualifiers are the unquoted forms of the syntax. Both variable_list
and qualifiers are space-delimited lists of unquoted strings.

Remarks Nested Functions. When you use who or whos inside of a nested
function, MATLAB returns or displays all variables in the workspace
of that function, and in the workspaces of all functions in which that
function is nested. This applies whether you include calls to who or
whos in your M-file code or if you call who or whos from the MATLAB
debugger.

If your code assigns the output of whos to a variable, MATLAB returns
the information in a structure array containing the fields described
above. If you do not assign the output to a variable, MATLAB displays
the information at the Command Window, grouped according to
workspace.

If your code assigns the output of who to a variable, MATLAB returns
the variable names in a cell array of strings. If you do not assign the
output, MATLAB displays the variable names at the Command Window,
but not grouped according to workspace.

2-3733

who, whos

Compressed Data. Information returned by the command whos
-file is independent of whether the data in that file is compressed or
not. The byte counts returned by this command represent the number
of bytes data occupies in the MATLAB workspace, and not in the file
the data was saved to. See the function reference for save for more
information on data compression.

MATLAB Objects. whos -file filename does not return the sizes of
any MATLAB objects that are stored in file filename.

Examples Example 1

Show variable names starting with the letter a:

who a*

Show variables stored in MAT-file mydata.mat:

who -file mydata

Example 2

Return information on variables stored in file mydata.mat in structure
array s:

s = whos('-file', 'mydata1')
s =
6x1 struct array with fields:

name
size
bytes
class
global
sparse
complex
nesting
persistent

2-3734

who, whos

Display the name, size, and class of each of the variables returned by
whos:

for k=1:length(s)

disp([' ' s(k).name ' ' mat2str(s(k).size) ' ' s(k).class])

end

A [1 1] double

spArray [5 5] double

strArray [2 5] cell

x [3 2 2] double

y [4 5] cell

Example 3

Show variables that start with java and end with Array. Also show
their dimensions and class name:

whos -file mydata2 -regexp \<java.*Array\>

Name Size Bytes Class

javaChrArray 3x1 java.lang.String[][][]

javaDblArray 4x1 java.lang.Double[][]

javaIntArray 14x1 java.lang.Integer[][]

Example 4

The function shown here uses variables with persistent, global, sparse,
and complex attributes:

function show_attributes
persistent p;
global g;
o = 1; g = 2;
s = sparse(eye(5));
c = [4+5i 9-3i 7+6i];
whos

When the function is run, whos displays these attributes:

show_attributes

2-3735

who, whos

Name Size Bytes Class Attributes

c 1x3 48 double complex
g 1x1 8 double global
p 1x1 8 double persistent
s 5x5 84 double sparse

Example 5

Function whos_demo contains two nested functions. One of these
functions calls whos; the other calls who:

function whos_demo
date_time = datestr(now);

[str pos] = textscan(date_time, '%s%s%s', ...
1, 'delimiter', '- :');

get_date(str);

str = textscan(date_time(pos+1:end), '%s%s%s', ...
1, 'delimiter', '- :');

get_time(str);

function get_date(d)
day = d{1}; mon = d{2}; year = d{3};
whos

end
function get_time(t)

hour = t{1}; min = t{2}; sec = t{3};
who

end
end

When nested function get_date calls whos, MATLAB displays
information on the variables in all workspaces that are in scope at the
time. This includes nested function get_date and also the function
in which it is nested, whos_demo. The information is grouped by
workspace:

2-3736

who, whos

whos_demo
Name Size Bytes Class

---- get_date ---
d 1x3 378 cell
day 1x1 64 cell
mon 1x1 66 cell
year 1x1 68 cell

---- whos_demo --
ans 0x0 0 (unassigned)
date_time 1x20 40 char
pos 1x1 8 double
str 1x3 378 cell

When nested function get_time calls who, MATLAB displays names
of the variables in the workspaces that are in scope at the time. This
includes nested function get_time and also the function in which it
is nested, whos_demo. The information is not grouped by workspace
in this case:

Your variables are:

hour min sec t ans date_time
pos str

See Also assignin, clear, computer, dir, evalin, exist, inmem, load, save,
what, workspace

2-3737

wilkinson

Purpose Wilkinson’s eigenvalue test matrix

Syntax W = wilkinson(n)

Description W = wilkinson(n) returns one of J. H. Wilkinson’s eigenvalue test
matrices. It is a symmetric, tridiagonal matrix with pairs of nearly,
but not exactly, equal eigenvalues.

Examples wilkinson(7)

ans =

3 1 0 0 0 0 0
1 2 1 0 0 0 0
0 1 1 1 0 0 0
0 0 1 0 1 0 0
0 0 0 1 1 1 0
0 0 0 0 1 2 1
0 0 0 0 0 1 3

The most frequently used case is wilkinson(21). Its two largest
eigenvalues are both about 10.746; they agree to 14, but not to 15,
decimal places.

See Also eig, gallery, pascal

2-3738

winopen

Purpose Open file in appropriate application (Windows)

Syntax winopen(filename)

Description winopen(filename) opens filename in the appropriate Microsoft
Windows application. The filename input is a string enclosed in single
quotes. The winopen function uses the appropriate Windows shell
command, and performs the same action as if you double-click the file
in the Windows Explorer. If filename is not in the current directory,
specify the absolute path for filename.

Examples Open the file thesis.doc, located in the current directory, in Microsoft
Word:

winopen('thesis.doc')

Open myresults.html in your system’s default Web browser:

winopen('D:/myfiles/myresults.html')

See Also dos, open, web

2-3739

winqueryreg

Purpose Item from Microsoft Windows registry

Syntax valnames = winqueryreg('name', 'rootkey', 'subkey')
value = winqueryreg('rootkey', 'subkey', 'valname')
value = winqueryreg('rootkey', 'subkey')

Description valnames = winqueryreg('name', 'rootkey', 'subkey') returns
all value names in rootkey\subkey in a cell array of strings. The first
argument is the literal quoted string, 'name'.

value = winqueryreg('rootkey', 'subkey', 'valname') returns
the value for value name valname in rootkey\subkey.

If the value retrieved from the registry is a string, winqueryreg returns
a string. If the value is a 32-bit integer, winqueryreg returns the value
as an integer of MATLAB type int32.

value = winqueryreg('rootkey', 'subkey') returns a value in
rootkey\subkey that has no value name property.

Note The literal name argument and the rootkey argument are
case-sensitive. The subkey and valname arguments are not.

Remarks This function works only for the following registry value types:

• strings (REG_SZ)

• expanded strings (REG_EXPAND_SZ)

• 32-bit integer (REG_DWORD)

Examples Example 1

Get the value of CLSID for the MATLAB sample COM control
mwsampctrl.2:

winqueryreg 'HKEY_CLASSES_ROOT' 'mwsamp.mwsampctrl.2\clsid'

2-3740

winqueryreg

ans =
{5771A80A-2294-4CAC-A75B-157DCDDD3653}

Example 2

Get a list in variable mousechar for registry subkey Mouse,
which is under subkey Control Panel, which is under root key
HKEY_CURRENT_USER.

mousechar = winqueryreg('name', 'HKEY_CURRENT_USER', ...
'control panel\mouse');

For each name in the mousechar list, get its value from the registry and
then display the name and its value:

for k=1:length(mousechar)

setting = winqueryreg('HKEY_CURRENT_USER', ...

'control panel\mouse', mousechar{k});

str = sprintf('%s = %s', mousechar{k}, num2str(setting));

disp(str)

end

ActiveWindowTracking = 0

DoubleClickHeight = 4

DoubleClickSpeed = 830

DoubleClickWidth = 4

MouseSpeed = 1

MouseThreshold1 = 6

MouseThreshold2 = 10

SnapToDefaultButton = 0

SwapMouseButtons = 0

2-3741

wk1finfo

Purpose Determine whether file contains 1-2-3 WK1 worksheet

Syntax [extens, typ] = wk1finfo(filename)

Description [extens, typ] = wk1finfo(filename) returns the string ’WK1’ in
extens, and ’ 1-2-3 Spreadsheet’ in typ if the file filename contains
a readable worksheet. The filename input is a string enclosed in single
quotes.

Examples This example returns information on spreadsheet file matA.wk1:

[extens, typ] = wk1finfo('matA.wk1')

extens =
WK1

typ =
123 Spreadsheet

See Also wk1read, wk1write, csvread, csvwrite

2-3742

wk1read

Purpose Read Lotus 1-2-3 WK1 spreadsheet file into matrix

Syntax M = wk1read(filename)
M = wk1read(filename,r,c)
M = wk1read(filename,r,c,range)

Description M = wk1read(filename) reads a Lotus1-2-3 WK1 spreadsheet file into
the matrix M. The filename input is a string enclosed in single quotes.

M = wk1read(filename,r,c) starts reading at the row-column cell
offset specified by (r,c). r and c are zero based so that r=0, c=0
specifies the first value in the file.

M = wk1read(filename,r,c,range) reads the range of values specified
by the parameter range, where range can be

• A four-element vector specifying the cell range in the format

[upper_left_row upper_left_col lower_right_row lower_right_col]

• A cell range specified as a string, for example, 'A1...C5'

• A named range specified as a string, for example, 'Sales'

Examples Create a 8-by-8 matrix A and export it to Lotus spreadsheet matA.wk1:

A = [1:8; 11:18; 21:28; 31:38; 41:48; 51:58; 61:68; 71:78]
A =

2-3743

wk1read

1 2 3 4 5 6 7 8
11 12 13 14 15 16 17 18
21 22 23 24 25 26 27 28
31 32 33 34 35 36 37 38
41 42 43 44 45 46 47 48
51 52 53 54 55 56 57 58
61 62 63 64 65 66 67 68
71 72 73 74 75 76 77 78

wk1write('matA.wk1', A);

To read in a limited block of the spreadsheet data, specify the upper left
row and column of the block using zero-based indexing:

M = wk1read('matA.wk1', 3, 2)
M =

33 34 35 36 37 38
43 44 45 46 47 48
53 54 55 56 57 58
63 64 65 66 67 68
73 74 75 76 77 78

To select a more restricted block of data, you can specify both the upper
left and lower right corners of the block you want imported. Read in a
range of values from row 4, column 3 (defining the upper left corner)
to row 6, column 6 (defining the lower right corner). Note that, unlike
the second and third arguments, the range argument [4 3 6 6] is
one-based:

M = wk1read('matA.wk1', 3, 2, [4 3 6 6])
M =

33 34 35 36
43 44 45 46
53 54 55 56

See Also wk1write

2-3744

wk1write

Purpose Write matrix to Lotus 1-2-3 WK1 spreadsheet file

Syntax wk1write(filename,M)
wk1write(filename,M,r,c)

Description wk1write(filename,M) writes the matrix M into a Lotus1-2-3 WK1
spreadsheet file named filename. The filename input is a string
enclosed in single quotes.

wk1write(filename,M,r,c) writes the matrix starting at the
spreadsheet location (r,c). r and c are zero based so that r=0, c=0
specifies the first cell in the spreadsheet.

Examples Write a 4-by-5 matrix A to spreadsheet file matA.wk1. Place the matrix
with its upper left corner at row 2, column 3 using zero-based indexing:

A = [1:5; 11:15; 21:25; 31:35]
A =

1 2 3 4 5
11 12 13 14 15
21 22 23 24 25
31 32 33 34 35

wk1write('matA.wk1', A, 2, 3)

M = wk1read('matA.wk1')
M =

2-3745

wk1write

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 1 2 3 4 5
0 0 0 11 12 13 14 15
0 0 0 21 22 23 24 25
0 0 0 31 32 33 34 35

See Also wk1read, dlmwrite, dlmread, csvwrite, csvread

2-3746

workspace

Purpose Open Workspace browser to manage workspace

GUI
Alternatives

As an alternative to the workspace function, select
Desktop > Workspace in the MATLAB desktop.

Syntax workspace

Description workspace displays the Workspace browser, a graphical user interface
that allows you to view and manage the contents of the MATLAB
workspace. It provides a graphical representation of the whos display,
and allows you to perform the equivalent of the clear, load, open, and
save functions.

The Workspace browser also displays and automatically updates
statistical calculations for each variable that you can choose to show
or hide.

You can edit the value directly in the Workspace browser for
small numeric and character arrays. To see and edit a graphical
representation of larger variables and for other types, double-click the
variable in the Workspace browser. The variable displays in the Array
Editor, where you can view the full contents and edit it.

2-3747

workspace

See Also who

2-3748

xlabel, ylabel, zlabel

Purpose Label x-, y-, and z-axis

GUI
Alternative

To control the presence and appearance of axis labels on a graph, use

the Property Editor, one of the plotting tools . For details, see The
Property Editor in the MATLAB Graphics documentation.

Syntax xlabel('string')
xlabel(fname)
xlabel(...,'PropertyName',PropertyValue,...)
xlabel(axes_handle,...)
h = xlabel(...)

ylabel(...)
ylabel(axes_handle,...)
h = ylabel(...)

zlabel(...)
zlabel(axes_handle,...)
h = zlabel(...)

Description Each axes graphics object can have one label for the x-, y-, and z-axis.
The label appears beneath its respective axis in a two-dimensional plot
and to the side or beneath the axis in a three-dimensional plot.

xlabel('string') labels the x-axis of the current axes.

xlabel(fname) evaluates the function fname, which must return a
string, then displays the string beside the x-axis.

xlabel(...,'PropertyName',PropertyValue,...) specifies
property name and property value pairs for the text graphics object
created by xlabel.

2-3749

xlabel, ylabel, zlabel

xlabel(axes_handle,...), ylabel(axes_handle,...), and
zlabel(axes_handle,...) plot into the axes with handle axes_handle
instead of the current axes (gca).

h = xlabel(...), h = ylabel(...), and h = zlabel(...) return the handle to
the text object used as the label.

ylabel(...) and zlabel(...) label the y-axis and z-axis, respectively,
of the current axes.

Remarks Reissuing an xlabel, ylabel, or zlabel command causes the new label
to replace the old label.

For three-dimensional graphics, MATLAB puts the label in the front
or side, so that it is never hidden by the plot.

Examples Create a multiline label for the x-axis using a multiline cell array:

xlabel({'first line';'second line'})

Create a bold label for the y-axis that contains a single quote:

ylabel('George''s Popularity','fontsize',12,'fontweight','b')

See Also strings, text, title

“Annotating Plots” on page 1-87 for related functions

“Adding Axis Labels to Graphs” for more information about labeling axes

2-3750

xlim, ylim, zlim

Purpose Set or query axis limits

GUI
Alternative

To control the upper and lower axis limits on a graph, use the Property

Editor, one of the plotting tools . For details, see The Property
Editor in the MATLAB Graphics documentation.

Syntax xlim
xlim([xmin xmax])
xlim('mode')
xlim('auto')
xlim('manual')
xlim(axes_handle,...)

Note that the syntax for each of these three functions is the same; only
the xlim function is used for simplicity. Each operates on the respective
x-, y-, or z-axis.

Description xlim with no arguments returns the respective limits of the current
axes.

xlim([xmin xmax]) sets the axis limits in the current axes to the
specified values.

xlim('mode') returns the current value of the axis limits mode, which
can be either auto (the default) or manual.

xlim('auto') sets the axis limit mode to auto.

xlim('manual') sets the respective axis limit mode to manual.

xlim(axes_handle,...) performs the set or query on the axes
identified by the first argument, axes_handle. When you do not specify
an axes handle, these functions operate on the current axes.

Remarks xlim, ylim, and zlim set or query values of the axes object XLim, YLim,
ZLim, and XLimMode, YLimMode, ZLimMode properties.

When the axis limit modes are auto (the default), MATLAB uses limits
that span the range of the data being displayed and are round numbers.

2-3751

xlim, ylim, zlim

Setting a value for any of the limits also sets the corresponding mode
to manual. Note that high-level plotting functions like plot and surf
reset both the modes and the limits. If you set the limits on an existing
graph and want to maintain these limits while adding more graphs, use
the hold command.

Examples This example illustrates how to set the x- and y-axis limits to match the
actual range of the data, rather than the rounded values of [-2 3] for
the x-axis and [-2 4] for the y-axis originally selected by MATLAB.

[x,y] = meshgrid([-1.75:.2:3.25]);
z = x.*exp(-x.^2-y.^2);
surf(x,y,z)
xlim([-1.75 3.25])
ylim([-1.75 3.25])

2-3752

xlim, ylim, zlim

See Also axis

The axes properties XLim, YLim, ZLim

“Setting the Aspect Ratio and Axis Limits” on page 1-100 for related
functions

Understanding Axes Aspect Ratio for more information on how axis
limits affect the axes

2-3753

xlsfinfo

Purpose Determine whether file contains Microsoft Excel (.xls) spreadsheet

Syntax typ = xlsfinfo(filename)
[typ, desc] = xlsfinfo(filename)
[typ, desc, fmt] = xlsfinfo(filename)
xlsfinfo filename

Description typ = xlsfinfo(filename) returns the string 'Microsoft Excel
Spreadsheet' if the file specified by filename is an XLS file that can
be read by the MATLAB xlsread function. Otherwise, typ is the empty
string, (''). The filename input is a string enclosed in single quotes.

[typ, desc] = xlsfinfo(filename) returns in desc a cell array
of strings containing the names of each spreadsheet in the file. If
a spreadsheet is unreadable, the cell in desc that represents that
spreadsheet contains an error message.

[typ, desc, fmt] = xlsfinfo(filename) returns in the fmt output
a string containing the actual format of the file as obtained from the
Excel COM server. On UNIX systems, or on Windows when the COM
server is not available, fmt is returned as an empty string, ('').

Note In the case where an Excel COM server cannot be started,
functionality is limited in that some Excel files might not be readable.

xlsfinfo filename is the command format for xlsfinfo. It returns
only the first output, typ, assigning it to the MATLAB default variable
ans.

Examples Get information about an .xls file:

[typ, desc, fmt] = xlsfinfo('myaccount.xls')

typ =
Microsoft Excel Spreadsheet

2-3754

xlsfinfo

desc =
'Sheet1' 'Income' 'Expenses'

fmt =
xlWorkbookNormal

Export the .xls file to comma-separated value (CSV) format. Use
xlsfinfo to see the format of the exported file:

[typ, desc, fmt] = xlsfinfo('myaccount.csv');
fmt

fmt =
xlCSV

Export the .xls file to HTML format. xlsfinfo returns the following
format string:

[typ, desc, fmt] = xlsfinfo('myaccount.html');
fmt

fmt =
xlHtml

Export the .xls file to XML format. xlsfinfo returns the following
format string:

[typ, desc, fmt] = xlsfinfo('myaccount.xml');
fmt

fmt =
xlXMLSpreadsheet

See Also xlsread, xlswrite

2-3755

xlsread

Purpose Read Microsoft Excel spreadsheet file (.xls)

Syntax num = xlsread(filename)
num = xlsread(filename, -1)
num = xlsread(filename, sheet)
num = xlsread(filename, 'range')
num = xlsread(filename, sheet, 'range')
num = xlsread(filename, sheet, 'range', 'basic')
num = xlsread(filename, ..., functionhandle)
[num, txt]= xlsread(filename, ...)
[num, txt, raw] = xlsread(filename, ...)
[num, txt, raw, X] = xlsread(filename, ..., functionhandle)
xlsread filename sheet range basic

Description num = xlsread(filename) returns numeric data in double array
num from the first sheet in the Microsoft Excel spreadsheet file named
filename. The filename argument is a string enclosed in single quotes.

xlsread ignores any outer rows or columns of the spreadsheet that
contain no numeric data. If there are single or multiple nonnumeric
rows at the top or bottom, or single or multiple nonnumeric columns to
the left or right, xlsread does not include these rows or columns in the
output. For example, one or more header lines appearing at the top of
a spreadsheet are ignored by xlsread. Any inner rows or columns in
which some or all cells contain nonnumeric data are not ignored. The
nonnumeric cells are instead assigned a value of NaN.

The full functionality of xlsread depends on the ability to start Excel
as a COM server from MATLAB. If your system does not have this
capability, the xlsread syntax that passes the 'basic' keyword is
recommended. As long as the COM server is available, you can use
xlsread on Excel files having formats other than XLS (for example,
HTML).

2-3756

xlsread

Note xlsread on UNIX is being grandfathered. If the Excel COM
server is not available, xlsread reads only strictly XLS files. It cannot
read Excel files saved in HTML or other formats.

num = xlsread(filename, -1) opens the file filename in an Excel
window, enabling you to interactively select the worksheet to be read
and the range of data on that worksheet to import. To import an entire
worksheet, first select the sheet in the Excel window and then click the
OK button in the Data Selection Dialog box. To import a certain range
of data from the sheet, select the worksheet in the Excel window, drag
and drop the mouse over the desired range, and then click OK. (See
“COM Server Requirements” on page 2-3760 below.)

num = xlsread(filename, sheet) reads the specified worksheet,
where sheet is either a positive, double scalar value or a quoted string
containing the sheet name. To determine the names of the sheets in
a spreadsheet file, use xlsfinfo.

num = xlsread(filename, 'range') reads data from a specific
rectangular region of the default worksheet (Sheet1). Specify range
using the syntax 'C1:C2', where C1 and C2 are two opposing corners
that define the region to be read. For example, 'D2:H4' represents the
3-by-5 rectangular region between the two corners D2 and H4 on the
worksheet. The range input is not case sensitive and uses Excel A1
notation. (See help in Excel for more information on this notation.)
(Also, see “COM Server Requirements” on page 2-3760 below.)

num = xlsread(filename, sheet, 'range') reads data from a
specific rectangular region (range) of the worksheet specified by sheet.
See the previous two syntax formats for further explanation of the
sheet and range inputs. (See “COM Server Requirements” on page
2-3760 below.)

num = xlsread(filename, sheet, 'range', 'basic') imports data
from the spreadsheet in basic import mode. This is the mode used on
UNIX platforms as well as on Windows when Excel is not available as a
COM server. In this mode, xlsread does not use Excel as a COM server,

2-3757

xlsread

and this limits import ability. Without Excel as a COM server, range is
ignored and, consequently, the whole active range of a sheet is imported.
(You can set range to the empty string ('')). Also, in basic mode, sheet
is case-sensitive and must be a quoted string.

num = xlsread(filename, ..., functionhandle) calls the function
associated with functionhandle just prior to obtaining spreadsheet
values. This enables you to operate on the spreadsheet data (for
example, convert it to a numeric type) before reading it in. (See “COM
Server Requirements” on page 2-3760 below.)

You can write your own custom function and pass a handle to this
function to xlsread. When xlsread executes, it reads from the
spreadsheet, executes your function on the data read from the
spreadsheet, and returns the final results to you. When xlsread calls
your function, it passes a range interface from Excel to provide access to
the data read from the spreadsheet. Your function must include this
interface both as an input and output argument. Example 5 below
shows how you might use this syntax.

[num, txt]= xlsread(filename, ...) returns numeric data in array
num and text data in cell array txt. All cells in txt that correspond to
numeric data contain the empty string.

If txt includes data that was previously written to the file using
xlswrite, and the range specified for that xlswrite operation caused
undefined data ('#N/A') to be written to the worksheet, then cells
containing that undefined data are represented in the txt output as
'ActiveX VT_ERROR: '.

[num, txt, raw] = xlsread(filename, ...) returns numeric and
text data in num and txt, and unprocessed cell content in cell array
raw, which contains both numeric and text data. (See “COM Server
Requirements” on page 2-3760 below.)

[num, txt, raw, X] = xlsread(filename, ..., functionhandle)
calls the function associated with functionhandle just prior to reading
from the spreadsheet file. This syntax returns one additional output
X from the function mapped to by functionhandle. Example 6 below

2-3758

xlsread

shows how you might use this syntax. (See “COM Server Requirements”
on page 2-3760 below.)

xlsread filename sheet range basic is the command format for
xlsread, showing its usage with all input arguments specified. When
using this format, you must specify sheet as a string, (for example,
Income or Sheet4) and not a numeric index. If the sheet name contains
space characters, then quotation marks are required around the string,
(for example, 'Income 2002').

Remarks Handling Excel Date Values

MATLAB imports date fields from Excel files in the format in which
they were stored in the Excel file. If stored in string or date format,
xlsread returns the date as a string. If stored in a numeric format,
xlsread returns a numeric date.

Both Excel and MATLAB represent numeric dates as a number of
serial days elapsed from a specific reference date. However, Excel uses
January 1, 1900 as the reference date while MATLAB uses January 0,
0000. Due to this difference in the way Excel and MATLAB compute
numeric date values, any numeric date imported from Excel into
MATLAB must first be converted before being used in the MATLAB
application.

You can do this conversion after the xlsread completes, as shown below:

excelDates = xlsread(filename)
matlabDates = datenum('30-Dec-1899') + excelDates
datestr(matlabDates,2)

You can also do this as part of the xlsread operation by writing a
conversion routine that acts directly on the Excel COM Range object,
and then passing a function handle for your routine as an input to
xlsread. The description above for the following syntax, along with
Examples 5 and 6, explain how to do this:

[num, txt, raw, X] = xlsread(filename, ..., functionhandle)

2-3759

xlsread

COM Server Requirements

The following six syntax formats are supported only on computer
systems capable of starting Excel as a COM server from MATLAB. They
are not supported in basic mode.

num = xlsread(filename, -1)

num = xlsread(filename, 'range')

num = xlsread(filename, sheet, 'range')

[num, txt, raw] = xlsread(filename, ...)

num = xlsread(filename, ..., functionhandle)

[num, txt, raw, opt] = xlsread(filename, ..., functionhandle)

Examples Example 1— Reading Numeric Data

The Microsoft Excel spreadsheet file testdata1.xls contains this data:

1 6
2 7
3 8
4 9
5 10

To read this data into MATLAB, use this command:

A = xlsread('testdata1.xls')
A =

1 6
2 7
3 8
4 9
5 10

Example 2 — Handling Text Data

The Microsoft Excel spreadsheet file testdata2.xls contains a mix
of numeric and text data:

1 6
2 7

2-3760

xlsread

3 8
4 9
5 text

xlsread puts a NaN in place of the text data in the result:

A = xlsread('testdata2.xls')
A =

1 6
2 7
3 8
4 9
5 NaN

Example 3 — Selecting a Range of Data

To import only rows 4 and 5 from worksheet 1, specify the range as
'A4:B5':

A = xlsread('testdata2.xls', 1, 'A4:B5')

A =
4 9
5 NaN

Example 4 — Handling Files with Row or Column Headers

A Microsoft Excel spreadsheet labeled Temperatures in file
tempdata.xls contains two columns of numeric data with text headers
for each column:

Time Temp
12 98
13 99
14 97

If you want to import only the numeric data, use xlsread with a single
return argument. Specify the filename and sheet name as inputs.

xlsread ignores any leading row or column of text in the numeric result.

2-3761

xlsread

ndata = xlsread('tempdata.xls', 'Temperatures')

ndata =
12 98
13 99
14 97

To import both the numeric data and the text data, specify two return
values for xlsread:

[ndata, headertext] = xlsread('tempdata.xls', 'Temperatures')

ndata =

12 98

13 99

14 97

headertext =

'Time' 'Temp'

Example 5 — Passing a Function Handle

This example calls xlsread twice, the first time as a simple read from
a file, and the second time requesting that xlsread execute some
user-defined modifications on the data prior to returning the results of
the read. These modifications are performed by a user-written function,
setMinMax, that you pass as a function handle in the call to xlsread.
When xlsread executes, it reads from the spreadsheet, executes the
function on the data read from the spreadsheet, and returns the final
results to you.

Note The function passed to xlsread operates on the copy of the data
read from the spreadsheet. It does not modify data in the spreadsheet
itself.

2-3762

xlsread

Read a 10-by-3 numeric array from Excel spreadsheet testsheet.xls.
with a simple xlsread statement that does not pass a function handle.
Note that the values returned range from -587 to +4,149:

arr = xlsread('testsheet.xls')
arr =

1.0e+003 *
1.0020 4.1490 0.2300
1.0750 0.1220 -0.4550

-0.0301 3.0560 0.2471
0.4070 0.1420 -0.2472
2.1160 -0.0557 -0.5870
0.4040 2.9280 0.0265
0.1723 3.4440 0.1112
4.1180 0.1820 2.8630
0.9000 0.0573 1.9750
0.0163 0.2000 -0.0223

In preparation for the second part of this example, write a function
setMinMax that restricts the values returned from the read to be in the
range of 0 to 2000. You will need to pass this function in the call to
xlsread which will then execute the function on the data it has read
before returning it to you.

When xlsread calls your function, it passes a range interface from
Excel to provide access to the data read from the spreadsheet. This is
shown as DataRange in this example. Your function must include this
interface both as an input and output argument. The output argument
allows your function to pass modified data back to xlsread:

function [DataRange] = setMinMax(DataRange)
maxval = 2000; minval = 0;

for k = 1:DataRange.Count
v = DataRange.Value{k};
if v > maxval || v < minval

if v > maxval
DataRange.Value{k} = maxval;

2-3763

xlsread

else
DataRange.Value{k} = minval;

end
end

end

Now call xlsread, passing a function handle for the setMinMax function
as the final argument. Note the changes from the values returned from
the last call to xlsread:

arr = xlsread('testsheet.xls', '', '', '', @setMinMax)
arr =

1.0e+003 *
1.0020 2.0000 0.2300
1.0750 0.1220 0

0 2.0000 0.2471
0.4070 0.1420 0
2.0000 0 0
0.4040 2.0000 0.0265
0.1723 2.0000 0.1112
2.0000 0.1820 2.0000
0.9000 0.0573 1.9750
0.0163 0.2000 0

Example 6 — Passing a Function Handle with Additional
Output

This example adds onto the previous one by returning an additional
output from the call to setMinMax. Modify the function so that it
not only limits the range of values returned, but also reports which
elements of the spreadsheet matrix have been altered. Return this
information in a new output argument, indices:

function [DataRange, indices] = setMinMax(DataRange)
maxval = 2000; minval = 0;
indices = [];

for k = 1:DataRange.Count
v = DataRange.Value{k};

2-3764

xlsread

if v > maxval || v < minval
if v > maxval

DataRange.Value{k} = maxval;
else

DataRange.Value{k} = minval;
end

indices = [indices k];
end

end

When you call xlsread this time, account for the three initial outputs,
and add a fourth called idx to accept the indices returned from
setMinMax. Call xlsread again, and you will see just where the
returned matrix has been modified:

[arr txt raw idx] = xlsread('testsheet.xls', ...
'', '', '', @setMinMax);

idx
idx =

3 5 8 11 13 15 16 17 22 24 25 28 30
arr
arr =

1.0e+003 *
1.0020 2.0000 0.2300
1.0750 0.1220 0

0 2.0000 0.2471
0.4070 0.1420 0
2.0000 0 0
0.4040 2.0000 0.0265
0.1723 2.0000 0.1112
2.0000 0.1820 2.0000
0.9000 0.0573 1.9750
0.0163 0.2000 0

See Also xlswrite, xlsfinfo, wk1read, textread, function_handle

2-3765

xlswrite

Purpose Write Microsoft Excel spreadsheet file (.xls)

Syntax xlswrite(filename, M)
xlswrite(filename, M, sheet)
xlswrite(filename, M, 'range')
xlswrite(filename, M, sheet, 'range')
status = xlswrite(filename, ...)
[status, message] = xlswrite(filename, ...)
xlswrite filename M sheet range

Description xlswrite(filename, M) writes matrix M to the Excel file filename.
The filename input is a string enclosed in single quotes. The input
matrix M is an m-by-n numeric, character, or cell array, where m < 65536
and n < 256. The matrix data is written to the first worksheet in the
file, starting at cell A1.

xlswrite(filename, M, sheet) writes matrix M to the specified
worksheet sheet in the file filename. The sheet argument can be
either a positive, double scalar value representing the worksheet index,
or a quoted string containing the sheet name.

If sheet does not exist, a new sheet is added at the end of the worksheet
collection. If sheet is an index larger than the number of worksheets,
empty sheets are appended until the number of worksheets in the
workbook equals sheet. In either case, MATLAB generates a warning
indicating that it has added a new worksheet.

xlswrite(filename, M, 'range') writes matrix M to a rectangular
region specified by range in the first worksheet of the file filename.
Specify range using one of the following quoted string formats:

• A cell designation, such as 'D2', to indicate the upper left corner of
the region to receive the matrix data.

• Two cell designations separated by a colon, such as 'D2:H4', to
indicate two opposing corners of the region to receive the matrix data.
The range 'D2:H4' represents the 3-by-5 rectangular region between
the two corners D2 and H4 on the worksheet.

2-3766

xlswrite

The range input is not case sensitive and uses Excel A1 notation. (See
help in Excel for more information on this notation.)

The size defined by range should fit the size of M or contain only the
first cell, (e.g., 'A2'). If range is larger than the size of M, Excel fills
the remainder of the region with #N/A. If range is smaller than the
size of M, only the submatrix that fits into range is written to the file
specified by filename.

xlswrite(filename, M, sheet, 'range') writes matrix M to a
rectangular region specified by range in worksheet sheet of the file
filename. See the previous two syntax formats for further explanation
of the sheet and range inputs.

status = xlswrite(filename, ...) returns the completion status
of the write operation in status. If the write completed successfully,
status is equal to logical 1 (true). Otherwise, status is logical 0
(false). Unless you specify an output for xlswrite, no status is
displayed in the Command Window.

[status, message] = xlswrite(filename, ...) returns any
warning or error message generated by the write operation in the
MATLAB structure message. The message structure has two fields:

• message — String containing the text of the warning or error message

• identifier — String containing the message identifier for the
warning or error

xlswrite filename M sheet range is the command format for
xlswrite, showing its usage with all input arguments specified. When
using this format, you must specify sheet as a string (for example,
Income or Sheet4). If the sheet name contains space characters, then
quotation marks are required around the string (for example, 'Income
2002').

2-3767

xlswrite

Note The above functionality depends upon having Microsoft Excel
as a COM server. In absence of Excel, matrix M is written as a text
file in Comma-Separated Value (CSV) format. In this mode, the sheet
and range arguments are ignored.

Examples Example 1 — Writing Numeric Data to the Default Worksheet

Write a 7-element vector to Microsoft Excel file testdata.xls. By
default, the data is written to cells A1 through G1 in the first worksheet
in the file:

xlswrite('testdata', [12.7 5.02 -98 63.9 0 -.2 56])

Example 2 — Writing Mixed Data to a Specific Worksheet

This example writes the following mixed text and numeric data to the
file tempdata.xls:

d = {'Time', 'Temp'; 12 98; 13 99; 14 97};

Call xlswrite, specifying the worksheet labeled Temperatures, and the
region within the worksheet to write the data to. The 4-by-2 matrix will
be written to the rectangular region that starts at cell E1 in its upper
left corner:

s = xlswrite('tempdata.xls', d, 'Temperatures', 'E1')
s =

1

The output status s shows that the write operation succeeded. The data
appears as shown here in the output file:

Time Temp
12 98
13 99
14 97

2-3768

xlswrite

Example 3 — Appending a New Worksheet to the File

Now write the same data to a worksheet that doesn’t yet exist in
tempdata.xls. In this case, MATLAB appends a new sheet to the
workbook, calling it by the name you supplied in the sheets input
argument, 'NewTemp'. MATLAB displays a warning indicating that it
has added a new worksheet to the file:

xlswrite('tempdata.xls', d, 'NewTemp', 'E1')
Warning: Added specified worksheet.

If you don’t want to see these warnings, you can turn them off using the
command indicated in the message above:

warning off MATLAB:xlswrite:AddSheet

Now try the command again, this time creating another new worksheet,
NewTemp2. Although the message is not displayed this time, you can still
retrieve it and its identifier from the second output argument, m:

[stat msg] = xlswrite('tempdata.xls', d, 'NewTemp2', 'E1');

msg
msg =

message: 'Added specified worksheet.'
identifier: 'MATLAB:xlswrite:AddSheet'

See Also xlsread, xlsfinfo, wk1read, textread

2-3769

xmlread

Purpose Parse XML document and return Document Object Model node

Syntax DOMnode = xmlread(filename)

Description DOMnode = xmlread(filename) reads a URL or filename and returns
a Document Object Model node representing the parsed document. The
filename input is a string enclosed in single quotes. The node can be
manipulated by using standard DOM functions.

A properly parsed document displays to the screen as

xDoc = xmlread(...)
xDoc =

[#document: null]

Remarks Find out more about the Document Object Model at the World Wide
Web Consortium (W3C) Web site, http://www.w3.org/DOM/. For
specific information on using Java DOM objects, visit the Sun Web site,
http://www.java.sun.com/xml/docs/api.

Examples Example 1

All XML files have a single root element. Some XML files declare
a preferred schema file as an attribute of this element. Use the
getAttribute method of the DOM node to get the name of the preferred
schema file:

xDoc = xmlread(fullfile(matlabroot, ...

'toolbox/matlab/general/info.xml'));

xRoot = xDoc.getDocumentElement;

schemaURL = ...

char(xRoot.getAttribute('xsi:noNamespaceSchemaLocation'))

schemaURL =

http://www.mathworks.com/namespace/info/v1/info.xsd

2-3770

http://www.w3.org/DOM/
http://www.java.sun.com/xml/docs/api

xmlread

Example 2

Each info.xml file on the MATLAB path contains several listitem
elements with a label and callback element. This script finds the
callback that corresponds to the label 'Plot Tools':

infoLabel = 'Plot Tools';

infoCbk = '';

itemFound = false;

xDoc = xmlread(fullfile(matlabroot, ...

'toolbox/matlab/general/info.xml'));

% Find a deep list of all listitem elements.

allListItems = xDoc.getElementsByTagName('listitem');

% Note that the item list index is zero-based.

for k = 0:allListItems.getLength-1

thisListItem = allListItems.item(k);

childNode = thisListItem.getFirstChild;

while ~isempty(childNode)

%Filter out text, comments, and processing instructions.

if childNode.getNodeType == childNode.ELEMENT_NODE

% Assume that each element has a single

% org.w3c.dom.Text child.

childText = char(childNode.getFirstChild.getData);

switch char(childNode.getTagName)

case 'label';

itemFound = strcmp(childText, infoLabel);

case 'callback' ;

infoCbk = childText;

end

end % End IF

childNode = childNode.getNextSibling;

end % End WHILE

2-3771

xmlread

if itemFound

break;

else

infoCbk = '';

end

end % End FOR

disp(sprintf('Item "%s" has a callback of "%s".', ...

infoLabel, infoCbk))

Example 3

This function parses an XML file using methods of the DOM node
returned by xmlread, and stores the data it reads in the Name,
Attributes, Data, and Children fields of a MATLAB structure:

function theStruct = parseXML(filename)
% PARSEXML Convert XML file to a MATLAB structure.
try

tree = xmlread(filename);
catch

error('Failed to read XML file %s.',filename);
end

% Recurse over child nodes. This could run into problems
% with very deeply nested trees.
try

theStruct = parseChildNodes(tree);
catch

error('Unable to parse XML file %s.');
end

% ----- Subfunction PARSECHILDNODES -----
function children = parseChildNodes(theNode)
% Recurse over node children.
children = [];
if theNode.hasChildNodes

2-3772

xmlread

childNodes = theNode.getChildNodes;
numChildNodes = childNodes.getLength;
allocCell = cell(1, numChildNodes);

children = struct(...
'Name', allocCell, 'Attributes', allocCell, ...
'Data', allocCell, 'Children', allocCell);

for count = 1:numChildNodes
theChild = childNodes.item(count-1);
children(count) = makeStructFromNode(theChild);

end
end

% ----- Subfunction MAKESTRUCTFROMNODE -----
function nodeStruct = makeStructFromNode(theNode)
% Create structure of node info.

nodeStruct = struct(...
'Name', char(theNode.getNodeName), ...
'Attributes', parseAttributes(theNode), ...
'Data', '', ...
'Children', parseChildNodes(theNode));

if any(strcmp(methods(theNode), 'getData'))
nodeStruct.Data = char(theNode.getData);

else
nodeStruct.Data = '';

end

% ----- Subfunction PARSEATTRIBUTES -----
function attributes = parseAttributes(theNode)
% Create attributes structure.

attributes = [];
if theNode.hasAttributes

theAttributes = theNode.getAttributes;

2-3773

xmlread

numAttributes = theAttributes.getLength;
allocCell = cell(1, numAttributes);
attributes = struct('Name', allocCell, 'Value', ...

allocCell);

for count = 1:numAttributes
attrib = theAttributes.item(count-1);
attributes(count).Name = char(attrib.getName);
attributes(count).Value = char(attrib.getValue);

end
end

See Also xmlwrite, xslt

2-3774

xmlwrite

Purpose Serialize XML Document Object Model node

Syntax xmlwrite(filename, DOMnode)
str = xmlwrite(DOMnode)

Description xmlwrite(filename, DOMnode) serializes the Document Object Model
node DOMnode to the file specified by filename. The filename input is a
string enclosed in single quotes.

str = xmlwrite(DOMnode) serializes the Document Object Model node
DOMnode and returns the node tree as a string, s.

Remarks Find out more about the Document Object Model at the World Wide
Web Consortium (W3C) Web site, http://www.w3.org/DOM/. For
specific information on using Java DOM objects, visit the Sun Web site,
http://www.java.sun.com/xml/docs/api.

Example % Create a sample XML document.

docNode = com.mathworks.xml.XMLUtils.createDocument...

('root_element')

docRootNode = docNode.getDocumentElement;

for i=1:20

thisElement = docNode.createElement('child_node');

thisElement.appendChild...

(docNode.createTextNode(sprintf('%i',i)));

docRootNode.appendChild(thisElement);

end

docNode.appendChild(docNode.createComment('this is a comment'));

% Save the sample XML document.

xmlFileName = [tempname,'.xml'];

xmlwrite(xmlFileName,docNode);

edit(xmlFileName);

See Also xmlread, xslt

2-3775

http://www.w3.org/DOM/
http://www.java.sun.com/xml/docs/api

xor

Purpose Logical exclusive-OR

Syntax C = xor(A, B)

Description C = xor(A, B) performs an exclusive OR operation on the
corresponding elements of arrays A and B. The resulting element
C(i,j,...) is logical true (1) if A(i,j,...) or B(i,j,...), but not
both, is nonzero.

A B C

Zero Zero 0

Zero Nonzero 1

Nonzero Zero 1

Nonzero Nonzero 0

Examples Given A = [0 0 pi eps] and B = [0 -2.4 0 1], then

C = xor(A,B)
C =

0 1 1 0

To see where either A or B has a nonzero element and the other matrix
does not,

spy(xor(A,B))

See Also all, any, find, Elementwise Logical Operators, Short-Circuit Logical
Operators

2-3776

xslt

Purpose Transform XML document using XSLT engine

Syntax result = xslt(source, style, dest)
[result,style] = xslt(...)
xslt(...,'-web')

Description result = xslt(source, style, dest) transforms an XML document
using a stylesheet and returns the resulting document’s URL. The
function uses these inputs, the first of which is required:

• source is the filename or URL of the source XML file. source can
also specify a DOM node.

• style is the filename or URL of an XSL stylesheet.

• dest is the filename or URL of the desired output document. If
dest is absent or empty, the function uses a temporary filename. If
dest is '-tostring', the function returns the output document as
a MATLAB string.

[result,style] = xslt(...) returns a processed stylesheet
appropriate for passing to subsequent XSLT calls as style. This
prevents costly repeated processing of the stylesheet.

xslt(...,'-web') displays the resulting document in the Help
Browser.

Remarks Find out more about XSL stylesheets and how to write
them at the World Wide Web Consortium (W3C) web site,
http://www.w3.org/Style/XSL/.

Example This example converts the file info.xml using the stylesheet info.xsl,
writing the output to the file info.html. It launches the resulting
HTML file in the Help Browser. MATLAB has several info.xml files
that are used by the Start menu.

xslt info.xml info.xsl info.html -web

2-3777

http://www.w3.org/Style/XSL/

xslt

See Also xmlread, xmlwrite

2-3778

zeros

Purpose Create array of all zeros

Syntax B = zeros(n)
B = zeros(m,n)
B = zeros([m n])
B = zeros(m,n,p,...)
B = zeros([m n p ...])
B = zeros(size(A))
zeros(m, n,...,classname)
zeros([m,n,...],classname)

Description B = zeros(n) returns an n-by-n matrix of zeros. An error message
appears if n is not a scalar.

B = zeros(m,n) or B = zeros([m n]) returns an m-by-n matrix of
zeros.

B = zeros(m,n,p,...) or B = zeros([m n p ...]) returns an
m-by-n-by-p-by-... array of zeros.

Note The size inputs m, n, p, ... should be nonnegative integers.
Negative integers are treated as 0.

B = zeros(size(A)) returns an array the same size as A consisting
of all zeros.

zeros(m, n,...,classname) or zeros([m,n,...],classname) is an
m-by-n-by-... array of zeros of data type classname. classname is a
string specifying the data type of the output. classname can have the
following values: 'double', 'single', 'int8', 'uint8', 'int16',
'uint16', 'int32', 'uint32', 'int64', or 'uint64'.

Example x = zeros(2,3,'int8');

Remarks The MATLAB language does not have a dimension statement; MATLAB
automatically allocates storage for matrices. Nevertheless, for large

2-3779

zeros

matrices, MATLAB programs may execute faster if the zeros function
is used to set aside storage for a matrix whose elements are to be
generated one at a time, or a row or column at a time. For example

x = zeros(1,n);
for i = 1:n, x(i) = i; end

See Also eye, ones, rand, randn, complex

2-3780

zip

Purpose Compress files into zip file

Syntax zip(zipfile,files)
zip(zipfile,files,rootdir)
entrynames = zip(...)

Description zip(zipfile,files) creates a zip file with the name zipfile from
the list of files and directories specified in files. Relative paths are
stored in the zip file, but absolute paths are not. Directories recursively
include all of their content.

zipfile is a string specifying the name of the zip file. The .zip
extension is appended to zipfile if omitted.

files is a string or cell array of strings containing the list of files
or directories included in zipfile. Individual files that are on the
MATLAB path can be specified as partial pathnames. Otherwise an
individual file can be specified relative to the current directory or with
an absolute path. Directories must be specified relative to the current
directory or with absolute paths. On UNIX systems, directories can
also start with ~/ or ~username/, which expands to the current user’s
home directory or the specified user’s home directory, respectively. The
wildcard character * can be used when specifying files or directories,
except when relying on the MATLAB path to resolve a filename or
partial pathname.

zip(zipfile,files,rootdir) allows the path for files to be specified
relative to rootdir rather than the current directory.

entrynames = zip(...) returns a string cell array of the relative
path entry names contained in zipfile.

Examples Zip a File

Create a zip file of the file guide.viewlet, which is in the demos
directory of MATLAB. It saves the zip file in d:/mymfiles/viewlet.zip.

file = fullfile(matlabroot,'demos','guide.viewlet');
zip('d:/mymfiles/viewlet.zip',file)

2-3781

zip

Run zip for the files guide.viewlet and import.viewlet and save
the zip file in viewlets.zip. The source files and zipped file are in
the current directory.

zip('viewlets.zip',{'guide.viewlet','import.viewlet'})

Zip Selected Files

Run zip for all .m and .mat files in the current directory to the file
backup.zip:

zip('backup',{'*.m','*.mat'});

Zip a Directory

Run zip for the directory D:/mymfiles and its contents to the zip file
mymfiles in the directory one level up from the current directory.

zip('../mymfiles','D:/mymfiles')

Run zip for the files thesis.doc and defense.ppt, which are located
in d:/PhD, to the zip file thesis.zip in the current directory.

zip('thesis.zip',{'thesis.doc','defense.ppt'},'d:/PhD')

See Also gzip, gunzip, tar, untar, unzip

2-3782

zoom

Purpose Turn zooming on or off or magnify by factor

GUI
Alternatives

Use the Zoom tools on the figure toolbar to zoom in or zoom out
on a plot, or select Zoom In or Zoom Out from the figure’s Tools
menu. For details, see “Enlarging the View” in the MATLAB Graphics
documentation.

Syntax zoom on
zoom off
zoom out
zoom reset
zoom
zoom xon
zoom yon
zoom(factor)
zoom(fig, option)
h = zoom(figure_handle)

Description zoom on turns on interactive zooming. When interactive zooming is
enabled in a figure, pressing a mouse button while your cursor is within
an axes zooms into the point or out from the point beneath the mouse.
Zooming changes the axes limits. When using zoom mode, you

• Zoom in by positioning the mouse cursor where you want the center
of the plot to be and either

- Press the mouse button or

- Rotate the mouse scroll wheel away from you (upward).

• Zoom out by positioning the mouse cursor where you want the center
of the plot to be and either

- Simultaneously press Shift and the mouse button, or

- Rotate the mouse scroll wheel toward you (downward).

Each mouse click or scroll wheel click zooms in or out by a factor of 2.

2-3783

zoom

Clicking and dragging over an axes when zooming in is enabled draws a
rubberband box. When you release the mouse button, the axes zoom in
to the region enclosed by the rubberband box.

Double-clicking over an axes returns the axes to its initial zoom setting
in both zoom-in and zoom-out modes.

zoom off turns interactive zooming off.

zoom out returns the plot to its initial zoom setting.

zoom reset remembers the current zoom setting as the initial zoom
setting. Later calls to zoom out, or double-clicks when interactive zoom
mode is enabled, will return to this zoom level.

zoom toggles the interactive zoom status between off and on (restoring
the most recently used zoom tool).

zoom xon and zoom yon set zoom on for the x- and y-axis, respectively.

zoom(factor) zooms in or out by the specified zoom factor, without
affecting the interactive zoom mode. Values greater than 1 zoom in by
that amount, while numbers greater than 0 and less than 1 zoom out
by 1/factor.

zoom(fig, option) Any of the preceding options can be specified on a
figure other than the current figure using this syntax.

h = zoom(figure_handle) returns a zoom mode object for the figure
figure_handle for you to customize the mode’s behavior.

Using Zoom Mode Objects

Access the following properties of zoom mode objects via get and modify
some of them using set:

Enable 'on'|'off'

Specifies whether this figure mode is currently enabled on the figure.

FigureHandle <handle>

The associated figure handle. This read-only property cannot be set.

Motion 'horizontal'|'vertical'|'both'

2-3784

zoom

The type of zooming enabled for the figure.

Direction 'in'|'out'

The direction of the zoom operation.

RightClickAction 'InverseZoom'|'PostContextMenu'

The behavior of a right-click action. A value of 'InverseZoom' causes
a right-click to zoom out. A value of 'PostContextMenu' displays a
context menu. This setting persists between MATLAB sessions.

ButtonDownFilter <function_handle>

The application can inhibit the zoom operation under circumstances
the programmer defines, depending on what the callback returns. The
input function handle should reference a function with two implicit
arguments (similar to handle callbacks), as follows:

function [res] = myfunction(obj,event_obj)
% OBJ handle to the object that has been clicked on.
% EVENT_OBJ handle to event object (empty in this release).
% RES a logical flag to determine whether the zoom
% operation should take place or the 'ButtonDownFcn'
% property of the object should take precedence.

ActionPreCallback <function_handle>

Set this callback to listen to when a zoom operation starts. The input
function handle should reference a function with two implicit arguments
(similar to handle callbacks), as follows:

function myfunction(obj,event_obj)
% obj handle to the figure that has been clicked on.
% event_obj handle to event object.

The event object has the following read-only property:

Axes The handle of the axes that is
being zoomed

2-3785

zoom

ActionPostCallback <function_handle>

Set this callback to listen to when a zoom operation finishes. The
input function handle should reference a function with two implicit
arguments (similar to handle callbacks), as follows:

function myfunction(obj,event_obj)
% obj handle to the figure that has been clicked on.
% event_obj handle to event object. The object has the same
% properties as the event_obj of the
% 'ActionPreCallback' callback.

UIContextMenu <handle>

Specifies a custom context menu to be displayed during a right-click
action. This property is ignored if the 'RightClickZoomOut' property
has been set to 'on'.

flags = isAllowAxesZoom(h,axes)

Calling the function isAllowAxesZoom on the zoom object, h, with a
vector of axes handles, axes, as input returns a logical array of the
same dimension as the axes handle vector, which indicates whether a
zoom operation is permitted on the axes objects.

setAllowAxesZoom(h,axes,flag)

Calling the function setAllowAxesZoom on the zoom object, h, with a
vector of axes handles, axes, and a logical scalar, flag, either allows or
disallows a zoom operation on the axes objects.

info = getAxesZoomMotion(h,axes)

Calling the function getAxesZoomMotion on the zoom object, H, with a
vector of axes handles, AXES, as input returns a character cell array of
the same dimension as the axes handle vector, which indicates the type
of zoom operation for each axes. Possible values for the type of operation
are 'horizontal', 'vertical', or 'both'.

setAxesZoomMotion(h,axes,style)

2-3786

zoom

Calling the function setAxesZoomMotion on the zoom object, h, with a
vector of axes handles, axes, and a character array, style, ses the style
of zooming on each axes.

Examples Example 1 — Entering Zoom Mode

Plot a graph and turn on Zoom mode:

plot(1:10);
zoom on
% zoom in on the plot

Example 2 — Constrained Zoom

Create zoom mode object and constrain to x-axis zooming:

plot(1:10);
h = zoom;

set(h,'Motion','horizontal','Enable','on');
% zoom in on the plot in the horizontal direction.

Example 3 — Constrained Zoom in Subplots

Create four axes as subplots and set zoom style differently for each by
setting a different property for each axes handle:

ax1 = subplot(2,2,1);
plot(1:10);
h = zoom;
ax2 = subplot(2,2,2);
plot(rand(3));
setAllowAxesZoom(h,ax2,false);
ax3 = subplot(2,2,3);
plot(peaks);
setAxesZoomMotion(h,ax3,'horizontal');
ax4 = subplot(2,2,4);
contour(peaks);
setAxesZoomMotion(h,ax4,'vertical');

2-3787

zoom

% Zoom in on the plots.

Example 4 — Coding a ButtonDown Callback

Create a buttonDown callback for zoom mode objects to trigger. Copy the
following code to a new M-file, execute it, and observe zooming behavior:

function demo
% Allow a line to have its own 'ButtonDownFcn' callback.
hLine = plot(rand(1,10));
set(hLine,'ButtonDownFcn','disp(''This executes'')');
set(hLine,'Tag','DoNotIgnore');
h = zoom;
set(h,'ButtonDownFilter',@mycallback);
set(h,'Enable','on');
% mouse click on the line
%
function [flag] = mycallback(obj,event_obj)
% If the tag of the object is 'DoNotIgnore', then return true.
objTag = get(obj,'Tag');
if strcmpi(objTag,'DoNotIgnore')

flag = true;
else

flag = false;
end

Example 5 — Coding Pre- and Post-Callback Behavior

Create callbacks for pre- and post-buttonDown events for zoom mode
objects to trigger. Copy the following code to a new M-file, execute it,
and observe zoom behavior:

function demo
% Listen to zoom events
plot(1:10);
h = zoom;
set(h,'ActionPreCallback',@myprecallback);

2-3788

zoom

set(h,'ActionPostCallback',@mypostcallback);
set(h,'Enable','on');
%
function myprecallback(obj,evd)
disp('A zoom is about to occur.');
%
function mypostcallback(obj,evd)
newLim = get(evd.Axes,'XLim');
msgbox(sprintf('The new X-Limits are [%.2f %.2f].',newLim));

Example 6 — Creating a Context Menu for Zoom Mode

Coding a context menu that lets the user to switch to Pan mode by
right-clicking:

figure;plot(magic(10))
hCMZ = uicontextmenu;
hZMenu = uimenu('Parent',hCMZ,'Label','Switch to pan','Callback','p
hZoom = zoom(gcf);
set(hZoom,'UIContextMenu',hCMZ);
zoom('on')

You cannot add items to the built-in zoom context menu, but you can
replace it with your own.

Remarks zoom changes the axes limits by a factor of 2 (in or out) each time you
press the mouse button while the cursor is within an axes. You can
also click and drag the mouse to define a zoom area, or double-click
to return to the initial zoom level.

You can create a zoom mode object once and use it to customize the
behavior of different axes, as Example 3 illustrates. You can also change
its callback functions on the fly.

When you assign different zoom behaviors to different subplot axes
via a mode object and then link them using the linkaxes function,
the behavior of the axes you manipulate with the mouse carries over

2-3789

zoom

to the linked axes, regardless of the behavior you previously set for
the other axes.

See Also linkaxes, pan, rotate3d

“Object Manipulation” on page 1-100 for related functions

2-3790

Index

Index& 2-49 2-52
’ 2-37
* 2-37
+ 2-37
- 2-37
/ 2-37
: 2-59
< 2-47
> 2-47
@ 2-1330
\ 2-37
^ 2-37
| 2-49 2-52
~ 2-49 2-52
&& 2-52
== 2-47
]) 2-58
|| 2-52
~= 2-47
1-norm 2-2273 2-2684
2-norm (estimate of) 2-2275

A
abs 2-62
absolute accuracy

BVP 2-435
DDE 2-830
ODE 2-2320

absolute value 2-62
Accelerator

Uimenu property 2-3513
accumarray 2-63
accuracy

of linear equation solution 2-624
of matrix inversion 2-624

acos 2-69
acosd 2-71
acosh 2-72
acot 2-74

acotd 2-76
acoth 2-77
acsc 2-79
acscd 2-81
acsch 2-82
activelegend 1-87 2-2498
actxcontrol 2-84
actxcontrollist 2-91
actxcontrolselect 2-92
actxserver 2-96
Adams-Bashforth-Moulton ODE solver 2-2308
addCause, MException method 2-100
addevent 2-104
addframe

AVI files 2-106
addition (arithmetic operator) 2-37
addOptional

inputParser object 2-108
addParamValue

inputParser object 2-111
addpath 2-114
addpref function 2-116
addproperty 2-117
addRequired

inputParser object 2-119
addressing selected array elements 2-59
addsample 2-121
addsampletocollection 2-123
addtodate 2-125
addts 2-126
adjacency graph 2-938
airy 2-128
Airy functions

relationship to modified Bessel
functions 2-128

align function 2-130
aligning scattered data

multi-dimensional 2-2260
two-dimensional 2-1465

ALim, Axes property 2-273

Index-1

Index

all 2-134
allchild function 2-136
allocation of storage (automatic) 2-3779
AlphaData

image property 2-1633
surface property 2-3201
surfaceplot property 2-3224

AlphaDataMapping
image property 2-1634
patch property 2-2403
surface property 2-3201
surfaceplot property 2-3224

AmbientLightColor, Axes property 2-274
AmbientStrength

Patch property 2-2404
Surface property 2-3202
surfaceplot property 2-3225

amd 2-142 2-1895
analytical partial derivatives (BVP) 2-436
analyzer

code 2-2189
and 2-147
and (M-file function equivalent for &) 2-50
AND, logical

bit-wise 2-392
angle 2-149
annotating graphs

deleting annotations 2-152
in plot edit mode 2-2499

Annotation
areaseries property 2-203
contourgroup property 2-650
errorbarseries property 2-1004
hggroup property 2-1547 2-1569
image property 2-1634
line property 2-332 2-1955
lineseries property 2-1970
Patch property 2-2404
quivergroup property 2-2643
rectangle property 2-2703

scattergroup property 2-2851
stairseries property 2-3022
stemseries property 2-3056
Surface property 2-3202
surfaceplot property 2-3225
text property 2-3308

annotationfunction 2-150
ans 2-193
anti-diagonal 2-1492
any 2-194
arccosecant 2-79
arccosine 2-69
arccotangent 2-74
arcsecant 2-226
arcsine 2-231
arctangent 2-240

four-quadrant 2-242
arguments, M-file

checking number of inputs 2-2251
checking number of outputs 2-2255
number of input 2-2253
number of output 2-2253
passing variable numbers of 2-3651

arithmetic operations, matrix and array
distinguished 2-37

arithmetic operators
reference 2-37

array
addressing selected elements of 2-59
displaying 2-917
left division (arithmetic operator) 2-39
maximum elements of 2-2112
mean elements of 2-2118
median elements of 2-2121
minimum elements of 2-2161
multiplication (arithmetic operator) 2-38
of all ones 2-2339
of all zeros 2-3779
of random numbers 2-2667 2-2672
power (arithmetic operator) 2-39

Index-2

Index

product of elements 2-2568
removing first n singleton dimensions

of 2-2918
removing singleton dimensions of 2-3009
reshaping 2-2769
right division (arithmetic operator) 2-38
shift circularly 2-545
shifting dimensions of 2-2918
size of 2-2932
sorting elements of 2-2946
structure 2-1417 2-2791 2-2905
sum of elements 2-3181
swapping dimensions of 2-1774 2-2473
transpose (arithmetic operator) 2-39

arrayfun 2-219
arrays

detecting empty 2-1787
editing 2-3747
maximum size of 2-622
opening 2-2340

arrays, structure
field names of 2-1128

arrowhead matrix 2-609
ASCII

delimited files
writing 2-933

ASCII data
converting sparse matrix after loading

from 2-2959
reading 2-929
reading from disk 2-2010
saving to disk 2-2827

ascii function 2-225
asec 2-226
asecd 2-228
asech 2-229
asin 2-231
asind 2-233
asinh 2-234
aspect ratio of axes 2-748 2-2437

assert 2-236
assignin 2-238
atan 2-240
atan2 2-242
atand 2-244
atanh 2-245
.au files

reading 2-258
writing 2-259

audio
saving in AVI format 2-260
signal conversion 2-1948 2-2234

audioplayer 1-82 2-247
audiorecorder 1-82 2-252
aufinfo 2-257
auread 2-258
AutoScale

quivergroup property 2-2644
AutoScaleFactor

quivergroup property 2-2644
autoselection of OpenGL 2-1165
auwrite 2-259
average of array elements 2-2118
average,running 2-1207
avi 2-260
avifile 2-260
aviinfo 2-264
aviread 2-266
axes 2-267

editing 2-2499
setting and querying data aspect ratio 2-748
setting and querying limits 2-3751
setting and querying plot box aspect

ratio 2-2437
Axes

creating 2-267
defining default properties 2-272
fixed-width font 2-290
property descriptions 2-273

axis 2-311

Index-3

Index

axis crossing. See zero of a function
azimuth (spherical coordinates) 2-2975
azimuth of viewpoint 2-3668

B
BackFaceLighting

Surface property 2-3203
surfaceplot property 2-3227

BackFaceLightingpatch property 2-2406
BackgroundColor

annotation textbox property 2-183
Text property 2-3309

BackGroundColor
Uicontrol property 2-3467

badly conditioned 2-2684
balance 2-317
BarLayout

barseries property 2-333
BarWidth

barseries property 2-333
base to decimal conversion 2-350
base two operations

conversion from decimal to binary 2-849
logarithm 2-2029
next power of two 2-2269

base2dec 2-350
BaseLine

barseries property 2-333
stem property 2-3057

BaseValue
areaseries property 2-204
barseries property 2-334
stem property 2-3057

beep 2-351
BeingDeleted

areaseries property 2-204
barseries property 2-334
contour property 2-651
errorbar property 2-1005

group property 2-1133 2-1635 2-3310
hggroup property 2-1548
hgtransform property 2-1570
light property 2-1938
line property 2-1956
lineseries property 2-1971
quivergroup property 2-2644
rectangle property 2-2704
scatter property 2-2852
stairseries property 2-3023
stem property 2-3057
surface property 2-3204
surfaceplot property 2-3227
transform property 2-2406
Uipushtool property 2-3548
Uitoggletool property 2-3579
Uitoolbar property 2-3592

Bessel functions
first kind 2-359
modified, first kind 2-356
modified, second kind 2-362
second kind 2-365

Bessel functions, modified
relationship to Airy functions 2-128

Bessel’s equation
(defined) 2-359
modified (defined) 2-356

besseli 2-356
besselj 2-359
besselk 2-362
bessely 2-365
beta 2-369
beta function

(defined) 2-369
incomplete (defined) 2-371
natural logarithm 2-373

betainc 2-371
betaln 2-373
bicg 2-374
bicgstab 2-383

Index-4

Index

BiConjugate Gradients method 2-374
BiConjugate Gradients Stabilized method 2-383
big endian formats 2-1257
bin2dec 2-389
binary

data
writing to file 2-1342

files
reading 2-1292

mode for opened files 2-1256
binary data

reading from disk 2-2010
saving to disk 2-2827

binary function 2-390
binary to decimal conversion 2-389
bisection search 2-1352
bit depth

querying 2-1653
bit-wise operations

AND 2-392
get 2-395
OR 2-398
set bit 2-399
shift 2-400
XOR 2-402

bitand 2-392
bitcmp 2-393
bitget 2-395
bitmaps

writing 2-1676
bitmax 2-396
bitor 2-398
bitset 2-399
bitshift 2-400
bitxor 2-402
blanks 2-403

removing trailing 2-845
blkdiag 2-404
BMP files

writing 2-1676

bold font
TeX characters 2-3332

boundary value problems 2-442
box 2-405
Box, Axes property 2-275
braces, curly (special characters) 2-55
brackets (special characters) 2-55
break 2-406
breakpoints

listing 2-790
removing 2-778
resuming execution from 2-781
setting in M-files 2-794

brighten 2-407
browser

for help 2-1532
bsxfun 2-411
bubble plot (scatter function) 2-2846
Buckminster Fuller 2-3280
builtin 1-70 2-410
BusyAction

areaseries property 2-204
Axes property 2-275
barseries property 2-334
contour property 2-651
errorbar property 2-1006
Figure property 2-1134
hggroup property 2-1549
hgtransform property 2-1571
Image property 2-1636
Light property 2-1938
line property 2-1957
Line property 2-1971
patch property 2-2406
quivergroup property 2-2645
rectangle property 2-2705
Root property 2-2795
scatter property 2-2853
stairseries property 2-3024
stem property 2-3058

Index-5

Index

Surface property 2-3204
surfaceplot property 2-3227
Text property 2-3311
Uicontextmenu property 2-3452
Uicontrol property 2-3467
Uimenu property 2-3514
Uipushtool property 2-3548
Uitoggletool property 2-3580
Uitoolbar property 2-3592

ButtonDownFcn
area series property 2-205
Axes property 2-276
barseries property 2-335
contour property 2-652
errorbar property 2-1006
Figure property 2-1134
hggroup property 2-1549
hgtransform property 2-1571
Image property 2-1636
Light property 2-1939
Line property 2-1957
lineseries property 2-1972
patch property 2-2407
quivergroup property 2-2645
rectangle property 2-2705
Root property 2-2795
scatter property 2-2853
stairseries property 2-3024
stem property 2-3058
Surface property 2-3205
surfaceplot property 2-3228
Text property 2-3311
Uicontrol property 2-3468

BVP solver properties
analytical partial derivatives 2-436
error tolerance 2-434
Jacobian matrix 2-436
mesh 2-439
singular BVPs 2-439
solution statistics 2-440

vectorization 2-435
bvp4c 2-413
bvp5c 2-424
bvpget 2-429
bvpinit 2-430
bvpset 2-433
bvpxtend 2-442

C
caching

MATLAB directory 2-2430
calendar 2-443
call history 2-2575
CallBack

Uicontextmenu property 2-3453
Uicontrol property 2-3469
Uimenu property 2-3515

CallbackObject, Root property 2-2795
calllib 2-444
callSoapService 2-446
camdolly 2-447
camera

dollying position 2-447
moving camera and target postions 2-447
placing a light at 2-451
positioning to view objects 2-453
rotating around camera target 1-99 2-455

2-457
rotating around viewing axis 2-461
setting and querying position 2-458
setting and querying projection type 2-460
setting and querying target 2-462
setting and querying up vector 2-464
setting and querying view angle 2-466

CameraPosition, Axes property 2-277
CameraPositionMode, Axes property 2-278
CameraTarget, Axes property 2-278
CameraTargetMode, Axes property 2-278
CameraUpVector, Axes property 2-278

Index-6

Index

CameraUpVectorMode, Axes property 2-279
CameraViewAngle, Axes property 2-279
CameraViewAngleMode, Axes property 2-279
camlight 2-451
camlookat 2-453
camorbit 2-455
campan 2-457
campos 2-458
camproj 2-460
camroll 2-461
camtarget 2-462
camup 2-464
camva 2-466
camzoom 2-468
CaptureMatrix, Root property 2-2795
CaptureRect, Root property 2-2796
cart2pol 2-469
cart2sph 2-470
Cartesian coordinates 2-469 to 2-470 2-2509

2-2975
case 2-471

in switch statement (defined) 2-3266
lower to upper 2-3625
upper to lower 2-2041

cast 2-473
cat 2-474
catch 2-476
caxis 2-479
Cayley-Hamilton theorem 2-2529
cd 2-484
cd (ftp) function 2-486
CData

Image property 2-1637
scatter property 2-2854
Surface property 2-3206
surfaceplot property 2-3229
Uicontrol property 2-3470
Uipushtool property 2-3549
Uitoggletool property 2-3580

CDataMapping

Image property 2-1639
patch property 2-2409
Surface property 2-3207
surfaceplot property 2-3229

CDataMode
surfaceplot property 2-3230

CDatapatch property 2-2407
CDataSource

scatter property 2-2854
surfaceplot property 2-3230

cdf2rdf 2-487
cdfepoch 2-489
cdfinfo 2-490
cdfread 2-494
cdfwrite 2-498
ceil 2-501
cell 2-502
cell array

conversion to from numeric array 2-2282
creating 2-502
structure of, displaying 2-515

cell2mat 2-504
cell2struct 2-506
celldisp 2-508
cellfun 2-509
cellplot 2-515
cgs 2-518
char 1-51 1-59 1-63 2-523
characters

conversion, in format specification
string 2-1279 2-2998

escape, in format specification string 2-1280
2-2998

check boxes 2-3460
Checked, Uimenu property 2-3515
checkerboard pattern (example) 2-2760
checkin 2-524

examples 2-525
options 2-524

checkout 2-527

Index-7

Index

examples 2-528
options 2-527

child functions 2-2570
Children

areaseries property 2-206
Axes property 2-281
barseries property 2-336
contour property 2-652
errorbar property 2-1007
Figure property 2-1135
hggroup property 2-1549
hgtransform property 2-1572
Image property 2-1639
Light property 2-1939
Line property 2-1958
lineseries property 2-1972
patch property 2-2410
quivergroup property 2-2646
rectangle property 2-2706
Root property 2-2796
scatter property 2-2855
stairseries property 2-3025
stem property 2-3059
Surface property 2-3207
surfaceplot property 2-3231
Text property 2-3313
Uicontextmenu property 2-3453
Uicontrol property 2-3470
Uimenu property 2-3516
Uitoolbar property 2-3593

chol 2-530
Cholesky factorization 2-530

(as algorithm for solving linear
equations) 2-2185

lower triangular factor 2-2394
minimum degree ordering and

(sparse) 2-3279
preordering for 2-609

cholinc 2-534
cholupdate 2-542

circle
rectangle function 2-2698

circshift 2-545
cla 2-546
clabel 2-547
class 2-553
class, object. See object classes
classes

field names 2-1128
loaded 2-1701

clc 2-555 2-562
clear 2-556

serial port I/O 2-561
clearing

Command Window 2-555
items from workspace 2-556
Java import list 2-558

clf 2-562
ClickedCallback

Uipushtool property 2-3549
Uitoggletool property 2-3581

CLim, Axes property 2-281
CLimMode, Axes property 2-282
clipboard 2-563
Clipping

areaseries property 2-206
Axes property 2-282
barseries property 2-336
contour property 2-653
errrobar property 2-1007
Figure property 2-1136
hggroup property 2-1550
hgtransform property 2-1572
Image property 2-1640
Light property 2-1939
Line property 2-1958
lineseries property 2-1973
quivergroup property 2-2646
rectangle property 2-2706
Root property 2-2796

Index-8

Index

scatter property 2-2855
stairseries property 2-3025
stem property 2-3059
Surface property 2-3207
surfaceplot property 2-3231
Text property 2-3313
Uicontrol property 2-3470

Clippingpatch property 2-2410
clock 2-564
close 2-565

AVI files 2-567
close (ftp) function 2-568
CloseRequestFcn, Figure property 2-1136
closest point search 2-954
closest triangle search 2-3415
closing

files 2-1091
MATLAB 2-2633

cmapeditor 2-589
cmopts 2-570
code

analyzer 2-2189
colamd 2-572
colmmd 2-576
colon operator 2-59
Color

annotation arrow property 2-154
annotation doublearrow property 2-158
annotation line property 2-166
annotation textbox property 2-183
Axes property 2-282
errorbar property 2-1007
Figure property 2-1138
Light property 2-1939
Line property 2-1959
lineseries property 2-1973
quivergroup property 2-2647
stairseries property 2-3025
stem property 2-3060
Text property 2-3313

textarrow property 2-172
color of fonts, see also FontColor property 2-3332
colorbar 2-578
colormap 2-584

editor 2-589
Colormap, Figure property 2-1138
colormaps

converting from RGB to HSV 1-98 2-2781
plotting RGB components 1-98 2-2782

ColorOrder, Axes property 2-282
ColorSpec 2-607
colperm 2-609
COM

object methods
actxcontrol 2-84
actxcontrollist 2-91
actxcontrolselect 2-92
actxserver 2-96
addproperty 2-117
delete 2-875
deleteproperty 2-881
eventlisteners 2-1034
events 2-1036
get 1-111 2-1397
inspect 2-1717
invoke 2-1771
iscom 2-1785
isevent 2-1796
isinterface 2-1808
ismethod 2-1817
isprop 2-1839
load 2-2015
move 2-2215
propedit 2-2578
registerevent 2-2749
release 2-2754
save 2-2835
set 1-113 2-2891
unregisterallevents 2-3609
unregisterevent 2-3612

Index-9

Index

server methods
Execute 2-1038
Feval 2-1100

combinations of n elements 2-2259
combs 2-2259
comet 2-611
comet3 2-613
comma (special characters) 2-57
command syntax 2-1528 2-3285
Command Window

clearing 2-555
cursor position 1-4 2-1592
get width 2-616

commandhistory 2-615
commands

help for 2-1527 2-1537
system 1-4 1-11 2-3288
UNIX 2-3605

commandwindow 2-616
comments

block of 2-57
common elements. See set operations,

intersection
compan 2-617
companion matrix 2-617
compass 2-618
complementary error function

(defined) 2-996
scaled (defined) 2-996

complete elliptic integral
(defined) 2-979
modulus of 2-977 2-979

complex 2-620 2-1625
exponential (defined) 2-1046
logarithm 2-2026 to 2-2027
numbers 2-1601
numbers, sorting 2-2946 2-2950
phase angle 2-149
sine 2-2926
unitary matrix 2-2603

See also imaginary
complex conjugate 2-634

sorting pairs of 2-711
complex data

creating 2-620
complex numbers, magnitude 2-62
complex Schur form 2-2869
compression

lossy 2-1680
computer 2-622
computer MATLAB is running on 2-622
concatenation

of arrays 2-474
cond 2-624
condeig 2-625
condest 2-626
condition number of matrix 2-624 2-2684

improving 2-317
coneplot 2-628
conj 2-634
conjugate, complex 2-634

sorting pairs of 2-711
connecting to FTP server 2-1322
contents.m file 2-1528
context menu 2-3449
continuation (..., special characters) 2-57
continue 2-635
continued fraction expansion 2-2678
contour

and mesh plot 2-1066
filled plot 2-1058
functions 2-1054
of mathematical expression 2-1055
with surface plot 2-1084

contour3 2-642
contourc 2-645
contourf 2-647
ContourMatrix

contour property 2-653
contours

Index-10

Index

in slice planes 2-671
contourslice 2-671
contrast 2-675
conv 2-676
conv2 2-678
conversion

base to decimal 2-350
binary to decimal 2-389
Cartesian to cylindrical 2-469
Cartesian to polar 2-469
complex diagonal to real block diagonal 2-487
cylindrical to Cartesian 2-2509
decimal number to base 2-842 2-848
decimal to binary 2-849
decimal to hexadecimal 2-850
full to sparse 2-2956
hexadecimal to decimal 2-1541
integer to string 2-1731
lowercase to uppercase 2-3625
matrix to string 2-2081
numeric array to cell array 2-2282
numeric array to logical array 2-2030
numeric array to string 2-2284
partial fraction expansion to

pole-residue 2-2771
polar to Cartesian 2-2509
pole-residue to partial fraction

expansion 2-2771
real to complex Schur form 2-2824
spherical to Cartesian 2-2975
string matrix to cell array 2-517
string to numeric array 2-3082
uppercase to lowercase 2-2041
vector to character string 2-523

conversion characters in format specification
string 2-1279 2-2998

convex hulls
multidimensional vizualization 2-687
two-dimensional visualization 2-684

convhull 2-684

convhulln 2-687
convn 2-690
convolution 2-676

inverse. See deconvolution
two-dimensional 2-678

coordinate system and viewpoint 2-3668
coordinates

Cartesian 2-469 to 2-470 2-2509 2-2975
cylindrical 2-469 to 2-470 2-2509
polar 2-469 to 2-470 2-2509
spherical 2-2975

coordinates. 2-469
See also conversion

copyfile 2-691
copyobj 2-694
corrcoef 2-696
cos 2-699
cosd 2-701
cosecant

hyperbolic 2-722
inverse 2-79
inverse hyperbolic 2-82

cosh 2-702
cosine 2-699

hyperbolic 2-702
inverse 2-69
inverse hyperbolic 2-72

cot 2-704
cotangent 2-704

hyperbolic 2-707
inverse 2-74
inverse hyperbolic 2-77

cotd 2-706
coth 2-707
cov 2-709
cplxpair 2-711
cputime 2-712
createClassFromWsdl 2-713
createcopy

inputParser object 2-715

Index-11

Index

CreateFcn
areaseries property 2-206
Axes property 2-283
barseries property 2-336
contour property 2-654
errorbar property 2-1008
Figure property 2-1139
group property 2-1572
hggroup property 2-1550
Image property 2-1640
Light property 2-1940
Line property 2-1959
lineseries property 2-1973
patch property 2-2410
quivergroup property 2-2647
rectangle property 2-2707
Root property 2-2796
scatter property 2-2855
stairseries property 2-3026
stemseries property 2-3060
Surface property 2-3208
surfaceplot property 2-3231
Text property 2-3313
Uicontextmenu property 2-3453
Uicontrol property 2-3471
Uimenu property 2-3516
Uipushtool property 2-3550
Uitoggletool property 2-3581
Uitoolbar property 2-3593

createSoapMessage 2-717
creating your own MATLAB functions 2-1328
cross 2-718
cross product 2-718
csc 2-719
cscd 2-721
csch 2-722
csvread 2-724
csvwrite 2-727
ctranspose (M-file function equivalent for

\q) 2-43

ctranspose (timeseries) 2-729
cubic interpolation 2-1747 2-1750 2-1753 2-2447

piecewise Hermite 2-1737
cubic spline interpolation

one-dimensional 2-1737 2-1747 2-1750
2-1753

cumprod 2-731
cumsum 2-733
cumtrapz 2-734
cumulative

product 2-731
sum 2-733

curl 2-736
curly braces (special characters) 2-55
current directory 2-2596

changing 2-484
CurrentAxes 2-1140
CurrentAxes, Figure property 2-1140
CurrentCharacter, Figure property 2-1140
CurrentFigure, Root property 2-2796
CurrentMenu, Figure property (obsolete) 2-1141
CurrentObject, Figure property 2-1141
CurrentPoint

Axes property 2-284
Figure property 2-1142

cursor images
reading 2-1665

cursor position 1-4 2-1592
Curvature, rectangle property 2-2708
curve fitting (polynomial) 2-2521
customverctrl 2-739
Cuthill-McKee ordering, reverse 2-3269 2-3280
cylinder 2-740
cylindrical coordinates 2-469 to 2-470 2-2509

D
daqread 2-743
daspect 2-748
data

Index-12

Index

ASCII
reading from disk 2-2010

ASCII, saving to disk 2-2827
binary

writing to file 2-1342
binary, saving to disk 2-2827
computing 2-D stream lines 1-102 2-3090
computing 3-D stream lines 1-102 2-3092
formatted

reading from files 2-1308
writing to file 2-1278

formatting 2-1278 2-2996
isosurface from volume data 2-1831
reading binary from disk 2-2010
reading from files 2-3338
reducing number of elements in 1-102 2-2723
smoothing 3-D 1-102 2-2944
writing to strings 2-2996

data aspect ratio of axes 2-748
data types

complex 2-620
data, aligning scattered

multi-dimensional 2-2260
two-dimensional 2-1465

data, ASCII
converting sparse matrix after loading

from 2-2959
DataAspectRatio, Axes property 2-286
DataAspectRatioMode, Axes property 2-289
datatipinfo 2-756
date 2-757
date and time functions 2-990
date string

format of 2-762
date vector 2-775
datenum 2-758
datestr 2-762
datevec 2-774
dbclear 2-778
dbcont 2-781

dbdown 2-782
dblquad 2-783
dbmex 2-785
dbquit 2-786
dbstack 2-788
dbstatus 2-790
dbstep 2-792
dbstop 2-794
dbtype 2-804
dbup 2-805
DDE solver properties

error tolerance 2-829
event location 2-835
solver output 2-831
step size 2-833

dde23 2-806
ddeget 2-816
ddephas2 output function 2-832
ddephas3 output function 2-832
ddeplot output function 2-832
ddeprint output function 2-832
ddesd 2-823
ddeset 2-828
deal 2-842
deblank 2-845
debugging

changing workspace context 2-782
changing workspace to calling M-file 2-805
displaying function call stack 2-788
M-files 2-1880 2-2570
MEX-files on UNIX 2-785
removing breakpoints 2-778
resuming execution from breakpoint 2-792
setting breakpoints in 2-794
stepping through lines 2-792

dec2base 2-842 2-848
dec2bin 2-849
dec2hex 2-850
decic function 2-851
decimal number to base conversion 2-842 2-848

Index-13

Index

decimal point (.)
(special characters) 2-56
to distinguish matrix and array

operations 2-37
decomposition

Dulmage-Mendelsohn 2-937
"economy-size" 2-2603 2-3257
orthogonal-triangular (QR) 2-2603
Schur 2-2869
singular value 2-2677 2-3257

deconv 2-853
deconvolution 2-853
definite integral 2-2615
del operator 2-854
del2 2-854
delaunay 2-857
Delaunay tessellation

3-dimensional vizualization 2-864
multidimensional vizualization 2-868

Delaunay triangulation
vizualization 2-857

delaunay3 2-864
delaunayn 2-868
delete 2-873 2-875

serial port I/O 2-878
timer object 2-880

delete (ftp) function 2-877
DeleteFcn

areaseries property 2-207
Axes property 2-289
barseries property 2-337
contour property 2-654
errorbar property 2-1008
Figure property 2-1143
hggroup property 2-1551
hgtransform property 2-1573
Image property 2-1640
Light property 2-1941
lineseries property 2-1974
quivergroup property 2-2647

Root property 2-2797
scatter property 2-2856
stairseries property 2-3026
stem property 2-3061
Surface property 2-3208
surfaceplot property 2-3232
Text property 2-3314 2-3317
Uicontextmenu property 2-3454 2-3472
Uimenu property 2-3517
Uipushtool property 2-3551
Uitoggletool property 2-3582
Uitoolbar property 2-3594

DeleteFcn, line property 2-1960
DeleteFcn, rectangle property 2-2708
DeleteFcnpatch property 2-2411
deleteproperty 2-881
deleting

files 2-873
items from workspace 2-556

delevent 2-883
delimiters in ASCII files 2-929 2-933
delsample 2-884
delsamplefromcollection 2-885
demo 2-886
demos

in Command Window 2-957
density

of sparse matrix 2-2270
depdir 2-892
dependence, linear 2-3173
dependent functions 2-2570
depfun 2-893
derivative

approximate 2-908
polynomial 2-2518

det 2-897
detecting

alphabetic characters 2-1812
empty arrays 2-1787
global variables 2-1802

Index-14

Index

logical arrays 2-1813
members of a set 2-1815
objects of a given class 2-1779
positive, negative, and zero array

elements 2-2925
sparse matrix 2-1848

determinant of a matrix 2-897
detrend 2-898
detrend (timeseries) 2-900
deval 2-901
diag 2-903
diagonal 2-903

anti- 2-1492
k-th (illustration) 2-3398
main 2-903
sparse 2-2961

dialog 2-905
dialog box

error 2-1022
help 2-1535
input 2-1706
list 2-2005
message 2-2228
print 1-92 1-104 2-2559
question 1-104 2-2631
warning 2-3692

diary 2-906
Diary, Root property 2-2797
DiaryFile, Root property 2-2797
diff 2-908
differences

between adjacent array elements 2-908
between sets 2-2903

differential equation solvers
defining an ODE problem 2-2311

ODE boundary value problems 2-413 2-424
adjusting parameters 2-433
extracting properties 2-429
extracting properties of 2-1026 to 2-1027

2-3395 to 2-3396
forming initial guess 2-430

ODE initial value problems 2-2297
adjusting parameters of 2-2318
extracting properties of 2-2317

parabolic-elliptic PDE problems 2-2455
diffuse 2-910
DiffuseStrength

Surface property 2-3209
surfaceplot property 2-3232

DiffuseStrengthpatch property 2-2411
digamma function 2-2580
dimension statement (lack of in

MATLAB) 2-3779
dimensions

size of 2-2932
Diophantine equations 2-1382
dir 2-911
dir (ftp) function 2-914
direct term of a partial fraction expansion 2-2771
directories 2-484

adding to search path 2-114
checking existence of 2-1041
copying 2-691
creating 2-2172
listing contents of 2-911
listing MATLAB files in 2-3718
listing, on UNIX 2-2042
MATLAB

caching 2-2430
removing 2-2787
removing from search path 2-2792
See also directory, search path

directory 2-911
changing on FTP server 2-486
listing for FTP server 2-914

Index-15

Index

making on FTP server 2-2175
MATLAB location 2-2092
root 2-2092
temporary system 2-3296
See also directories

directory, changing 2-484
directory, current 2-2596
disconnect 2-568
discontinuities, eliminating (in arrays of phase

angles) 2-3621
discontinuities, plotting functions with 2-1082
discontinuous problems 2-1254
disp 2-917

memmapfile object 2-919
serial port I/O 2-922
timer object 2-923

disp, MException method 2-920
display 2-925
display format 2-1265
displaying output in Command Window 2-2213
DisplayName

areaseries property 2-207
barseries property 2-337
contourgroup property 2-655
errorbarseries property 2-1008
hggroup property 2-1551
hgtransform property 2-1573
image property 2-1641
Line property 2-1961
lineseries property 2-1974
Patch property 2-2411
quivergroup property 2-2648
rectangle property 2-2709
scattergroup property 2-2856
stairseries property 2-3027
stemseries property 2-3061
surface property 2-3209
surfaceplot property 2-3233
text property 2-3315

distribution

Gaussian 2-996
division

array, left (arithmetic operator) 2-39
array, right (arithmetic operator) 2-38
by zero 2-1694
matrix, left (arithmetic operator) 2-38
matrix, right (arithmetic operator) 2-38
of polynomials 2-853

divisor
greatest common 2-1382

dll libraries
MATLAB functions

calllib 2-444
libfunctions 2-1921
libfunctionsview 2-1923
libisloaded 2-1925
libpointer 2-1927
libstruct 2-1929
loadlibrary 2-2018
unloadlibrary 2-3607

dlmread 2-929
dlmwrite 2-933
dmperm 2-937
Dockable, Figure property 2-1144
docsearch 2-943
documentation

displaying online 2-1532
dolly camera 2-447
dos 2-945

UNC pathname error 2-946
dot 2-947
dot product 2-718 2-947
dot-parentheses (special characters 2-57
double 1-58 2-948
double click, detecting 2-1167
double integral

numerical evaluation 2-783
DoubleBuffer, Figure property 2-1144
downloading files from FTP server 2-2160
dragrect 2-949

Index-16

Index

drawing shapes
circles and rectangles 2-2698

DrawMode, Axes property 2-289
drawnow 2-951
dsearch 2-953
dsearchn 2-954
Dulmage-Mendelsohn decomposition 2-937
dynamic fields 2-57

E
echo 2-955
Echo, Root property 2-2797
echodemo 2-957
edge finding, Sobel technique 2-680
EdgeAlpha

patch property 2-2412
surface property 2-3210
surfaceplot property 2-3233

EdgeColor
annotation ellipse property 2-163
annotation rectangle property 2-169
annotation textbox property 2-183
areaseries property 2-208
barseries property 2-338
patch property 2-2413
Surface property 2-3211
surfaceplot property 2-3234
Text property 2-3316

EdgeColor, rectangle property 2-2710
EdgeLighting

patch property 2-2413
Surface property 2-3211
surfaceplot property 2-3235

editable text 2-3460
editing

M-files 2-959
eig 2-961
eigensystem

transforming 2-487

eigenvalue
accuracy of 2-961
complex 2-487
matrix logarithm and 2-2035
modern approach to computation of 2-2514
of companion matrix 2-617
problem 2-962 2-2519
problem, generalized 2-962 2-2519
problem, polynomial 2-2519
repeated 2-963
Wilkinson test matrix and 2-3738

eigenvalues
effect of roundoff error 2-317
improving accuracy 2-317

eigenvector
left 2-962
matrix, generalized 2-2664
right 2-962

eigs 2-967
elevation (spherical coordinates) 2-2975
elevation of viewpoint 2-3668
ellipj 2-977
ellipke 2-979
ellipsoid 1-90 2-981
elliptic functions, Jacobian

(defined) 2-977
elliptic integral

complete (defined) 2-979
modulus of 2-977 2-979

else 2-983
elseif 2-984
Enable

Uicontrol property 2-3472
Uimenu property 2-3518
Uipushtool property 2-3551
Uitogglehtool property 2-3583

end 2-988
end caps for isosurfaces 2-1821
end of line, indicating 2-57
end-of-file indicator 2-1096

Index-17

Index

eomday 2-990
eps 2-991
eq 2-993
eq, MException method 2-995
equal arrays

detecting 2-1790 2-1794
equal sign (special characters) 2-56
equations, linear

accuracy of solution 2-624
EraseMode

areaseries property 2-208
barseries property 2-338
contour property 2-655
errorbar property 2-1009
hggroup property 2-1552
hgtransform property 2-1574
Image property 2-1642
Line property 2-1962
lineseries property 2-1975
quivergroup property 2-2649
rectangle property 2-2710
scatter property 2-2857
stairseries property 2-3028
stem property 2-3062
Surface property 2-3212
surfaceplot property 2-3235
Text property 2-3317

EraseModepatch property 2-2414
error 2-998

roundoff. See roundoff error
error function

complementary 2-996
(defined) 2-996
scaled complementary 2-996

error message
displaying 2-998
Index into matrix is negative or zero 2-2031
retrieving last generated 2-1885 2-1892

error messages
Out of memory 2-2374

error tolerance
BVP problems 2-434
DDE problems 2-829
ODE problems 2-2319

errorbars 2-1001
errordlg 2-1022
ErrorMessage, Root property 2-2797
errors

in file input/output 2-1097
MException class 2-995

addCause 2-100
constructor 2-2131
disp 2-920
eq 2-995
getReport 2-1431
isequal 2-1793
last 2-1883
ne 2-2265
rethrow 2-2778
throw 2-3365
throwAsCaller 2-3368

ErrorType, Root property 2-2798
escape characters in format specification

string 2-1280 2-2998
etime 2-1025
etree 2-1026
etreeplot 2-1027
eval 2-1028
evalc 2-1031
evalin 2-1032
event location (DDE) 2-835
event location (ODE) 2-2326
eventlisteners 2-1034
events 2-1036
examples

calculating isosurface normals 2-1828
contouring mathematical expressions 2-1055
isosurface end caps 2-1821
isosurfaces 2-1832
mesh plot of mathematical function 2-1064

Index-18

Index

mesh/contour plot 2-1068
plotting filled contours 2-1059
plotting function of two variables 2-1072
plotting parametric curves 2-1075
polar plot of function 2-1078
reducing number of patch faces 2-2720
reducing volume data 2-2723
subsampling volume data 2-3178
surface plot of mathematical function 2-1082
surface/contour plot 2-1086

Excel spreadsheets
loading 2-3756

exclamation point (special characters) 2-58
Execute 2-1038
executing statements repeatedly 2-1262 2-3725
execution

improving speed of by setting aside
storage 2-3779

pausing M-file 2-2436
resuming from breakpoint 2-781
time for M-files 2-2570

exifread 2-1040
exist 2-1041
exit 2-1045
exp 2-1046
expint 2-1047
expm 2-1048
expm1 2-1050
exponential 2-1046

complex (defined) 2-1046
integral 2-1047
matrix 2-1048

exponentiation
array (arithmetic operator) 2-39
matrix (arithmetic operator) 2-39

export2wsdlg 2-1051
extension, filename

.m 2-1328

.mat 2-2827
Extent

Text property 2-3318
Uicontrol property 2-3473

eye 2-1053
ezcontour 2-1054
ezcontourf 2-1058
ezmesh 2-1062
ezmeshc 2-1066
ezplot 2-1070
ezplot3 2-1074
ezpolar 2-1077
ezsurf 2-1080
ezsurfc 2-1084

F
F-norm 2-2273
FaceAlpha

annotation textbox property 2-184
FaceAlphapatch property 2-2415
FaceAlphasurface property 2-3213
FaceAlphasurfaceplot property 2-3236
FaceColor

annotation ellipse property 2-163
annotation rectangle property 2-169
areaseries property 2-210
barseries property 2-340
Surface property 2-3214
surfaceplot property 2-3237

FaceColor, rectangle property 2-2711
FaceColorpatch property 2-2416
FaceLighting

Surface property 2-3214
surfaceplot property 2-3238

FaceLightingpatch property 2-2416
faces, reducing number in patches 1-102 2-2719
Faces,patch property 2-2417
FaceVertexAlphaData, patch property 2-2418
FaceVertexCData,patch property 2-2418
factor 2-1088
factorial 2-1089

Index-19

Index

factorization 2-2603
LU 2-2058
QZ 2-2520 2-2664
See also decomposition

factorization, Cholesky 2-530
(as algorithm for solving linear

equations) 2-2185
minimum degree ordering and

(sparse) 2-3279
preordering for 2-609

factors, prime 2-1088
false 2-1090
fclose 2-1091

serial port I/O 2-1092
feather 2-1094
feof 2-1096
ferror 2-1097
feval 2-1098
Feval 2-1100
fft 2-1105
FFT. See Fourier transform
fft2 2-1110
fftn 2-1111
fftshift 2-1113
fftw 2-1115
FFTW 2-1108
fgetl 2-1120

serial port I/O 2-1121
fgets 2-1124

serial port I/O 2-1125
field names of a structure, obtaining 2-1128
fieldnames 2-1128
fields, noncontiguous, inserting data into 2-1342
fields, of structures

dynamic 2-57
fig files

annotating for printing 2-1289
figure 2-1130
Figure

creating 2-1130

defining default properties 2-1132
properties 2-1133
redrawing 1-96 2-2726

figure windows, displaying 2-1220
figurepalette 1-87 2-1184
figures

annotating 2-2499
opening 2-2340
saving 2-2838

Figures
updating from M-file 2-951

file
extension, getting 2-1196
modification date 2-911
position indicator

finding 2-1321
setting 2-1319
setting to start of file 2-1307

file formats
getting list of supported formats 2-1655
reading 2-743 2-1663
writing 2-1675

file size
querying 2-1653

fileattrib 2-1186
filebrowser 2-1192
filehandle 2-1198
filemarker 2-1195
filename

building from parts 2-1325
parts 2-1196
temporary 2-3297

filename extension
.m 2-1328
.mat 2-2827

fileparts 2-1196
files 2-1091

ASCII delimited
reading 2-929
writing 2-933

Index-20

Index

beginning of, rewinding to 2-1307 2-1660
checking existence of 2-1041
closing 2-1091
contents, listing 2-3423
copying 2-691
deleting 2-873
deleting on FTP server 2-877
end of, testing for 2-1096
errors in input or output 2-1097
Excel spreadsheets

loading 2-3756
fig 2-2838
figure, saving 2-2838
finding position within 2-1321
getting next line 2-1120
getting next line (with line

terminator) 2-1124
listing

in directory 2-3718
names in a directory 2-911

listing contents of 2-3423
locating 2-3722
mdl 2-2838
mode when opened 2-1256
model, saving 2-2838
opening 2-1257 2-2340

in Web browser 1-5 1-8 2-3712
opening in Windows applications 2-3739
path, getting 2-1196
pathname for 2-3722
reading

binary 2-1292
data from 2-3338
formatted 2-1308

reading data from 2-743
reading image data from 2-1663
rewinding to beginning of 2-1307 2-1660
setting position within 2-1319
size, determining 2-913

sound
reading 2-258 2-3706
writing 2-259 to 2-260 2-3711

startup 2-2090
version, getting 2-1196
.wav

reading 2-3706
writing 2-3711

WK1
loading 2-3743
writing to 2-3745

writing binary data to 2-1342
writing formatted data to 2-1278
writing image data to 2-1675
See also file

filesep 2-1199
fill 2-1200
Fill

contour property 2-657
fill3 2-1203
filter 2-1206

digital 2-1206
finite impulse response (FIR) 2-1206
infinite impulse response (IIR) 2-1206
two-dimensional 2-678

filter (timeseries) 2-1209
filter2 2-1212
find 2-1214
findall function 2-1219
findfigs 2-1220
finding 2-1214

sign of array elements 2-2925
zero of a function 2-1348
See also detecting

findobj 2-1221
findstr 2-1224
finish 2-1225
finish.m 2-2633
FIR filter 2-1206

Index-21

Index

FitBoxToText, annotation textbox
property 2-184

FitHeightToText
annotation textbox property 2-184

fitsinfo 2-1226
fitsread 2-1235
fix 2-1237
fixed-width font

axes 2-290
text 2-3319
uicontrols 2-3474

FixedColors, Figure property 2-1145
FixedWidthFontName, Root property 2-2798
flints 2-2234
flipdim 2-1238
fliplr 2-1239
flipud 2-1240
floating-point

integer, maximum 2-396
floating-point arithmetic, IEEE

smallest postive number 2-2693
floor 2-1242
flops 2-1243
flow control

break 2-406
case 2-471
end 2-988
error 2-999
for 2-1262
keyboard 2-1880
otherwise 2-2373
return 2-2780
switch 2-3266
while 2-3725

fminbnd 2-1245
fminsearch 2-1250
font

fixed-width, axes 2-290
fixed-width, text 2-3319
fixed-width, uicontrols 2-3474

FontAngle
annotation textbox property 2-186
Axes property 2-290
Text property 2-173 2-3319
Uicontrol property 2-3474

FontName
annotation textbox property 2-186
Axes property 2-290
Text property 2-3319
textarrow property 2-173
Uicontrol property 2-3474

fonts
bold 2-173 2-187 2-3320
italic 2-173 2-186 2-3319
specifying size 2-3320
TeX characters

bold 2-3332
italics 2-3332
specifying family 2-3332
specifying size 2-3332

units 2-173 2-187 2-3320
FontSize

annotation textbox property 2-187
Axes property 2-291
Text property 2-3320
textarrow property 2-173
Uicontrol property 2-3475

FontUnits
Axes property 2-291
Text property 2-3320
Uicontrol property 2-3475

FontWeight
annotation textbox property 2-187
Axes property 2-292
Text property 2-3320
textarrow property 2-173
Uicontrol property 2-3475

fopen 2-1255
serial port I/O 2-1260

for 2-1262

Index-22

Index

ForegroundColor
Uicontrol property 2-3476
Uimenu property 2-3518

format 2-1265
precision when writing 2-1292
reading files 2-1309
specification string, matching file data

to 2-3013
Format 2-2798
formats

big endian 2-1257
little endian 2-1257

FormatSpacing, Root property 2-2799
formatted data

reading from file 2-1308
writing to file 2-1278

formatting data 2-2996
Fourier transform

algorithm, optimal performance of 2-1108
2-1611 2-1613 2-2269

as method of interpolation 2-1752
convolution theorem and 2-676
discrete, n-dimensional 2-1111
discrete, one-dimensional 2-1105
discrete, two-dimensional 2-1110
fast 2-1105
inverse, n-dimensional 2-1615
inverse, one-dimensional 2-1611
inverse, two-dimensional 2-1613
shifting the zero-frequency component

of 2-1114
fplot 2-1273 2-1288
fprintf 2-1278

displaying hyperlinks with 2-1283
serial port I/O 2-1285

fraction, continued 2-2678
fragmented memory 2-2374
frame2im 2-1288
frames 2-3460
frames for printing 2-1289

fread 2-1292
serial port I/O 2-1302

freqspace 2-1306
frequency response

desired response matrix
frequency spacing 2-1306

frequency vector 2-2038
frewind 2-1307
fscanf 2-1308

serial port I/O 2-1315
fseek 2-1319
ftell 2-1321
FTP

connecting to server 2-1322
ftp function 2-1322
full 2-1324
fullfile 2-1325
func2str 2-1326
function 2-1328
function handle 2-1330
function handles

overview of 2-1330
function syntax 2-1528 2-3285
functions 2-1333

call history 2-2575
call stack for 2-788
checking existence of 2-1041
clearing from workspace 2-556
finding using keywords 2-2039
help for 2-1527 2-1537
in memory 2-1701
locating 2-3722
pathname for 2-3722
that work down the first non-singleton

dimension 2-2918
funm 2-1337
fwrite 2-1342

serial port I/O 2-1344
fzero 2-1348

Index-23

Index

G
gallery 2-1354
gamma function

(defined) 2-1377
incomplete 2-1377
logarithm of 2-1377
logarithmic derivative 2-2580

Gauss-Kronrod quadrature 2-2624
Gaussian distribution function 2-996
Gaussian elimination

(as algorithm for solving linear
equations) 2-1767 2-2186

Gauss Jordan elimination with partial
pivoting 2-2822

LU factorization 2-2058
gca 2-1379
gcbf function 2-1380
gcbo function 2-1381
gcd 2-1382
gcf 2-1384
gco 2-1385
ge 2-1386
generalized eigenvalue problem 2-962 2-2519
generating a sequence of matrix names (M1

through M12) 2-1029
genpath 2-1388
genvarname 2-1390
geodesic dome 2-3280
get 1-111 2-1394 2-1397

memmapfile object 2-1399
serial port I/O 2-1402
timer object 2-1404

get (timeseries) 2-1406
get (tscollection) 2-1407
getabstime (timeseries) 2-1408
getabstime (tscollection) 2-1410
getappdata function 2-1412
getdatasamplesize 2-1415
getenv 2-1416
getfield 2-1417

getframe 2-1419
image resolution and 2-1420

getinterpmethod 2-1425
getpixelposition 2-1426
getpref function 2-1428
getqualitydesc 2-1430
getReport, MException method 2-1431
getsampleusingtime (timeseries) 2-1432
getsampleusingtime (tscollection) 2-1433
gettimeseriesnames 2-1434
gettsafteratevent 2-1435
gettsafterevent 2-1436
gettsatevent 2-1437
gettsbeforeatevent 2-1438
gettsbeforeevent 2-1439
gettsbetweenevents 2-1440
GIF files

writing 2-1676
ginput function 2-1445
global 2-1447
global variable

defining 2-1447
global variables, clearing from workspace 2-556
gmres 2-1449
golden section search 2-1248
Goup

defining default properties 2-1567
gplot 2-1455
grabcode function 2-1457
gradient 2-1459
gradient, numerical 2-1459
graph

adjacency 2-938
graphics objects

Axes 2-267
Figure 2-1130
getting properties 2-1394
Image 2-1626
Light 2-1936
Line 2-1949

Index-24

Index

Patch 2-2395
resetting properties 1-100 2-2768
Root 1-94 2-2794
setting properties 1-94 1-96 2-2887
Surface 1-94 1-97 2-3196
Text 1-94 2-3303
uicontextmenu 2-3449
Uicontrol 2-3459
Uimenu 1-107 2-3510

graphics objects, deleting 2-873
graphs

editing 2-2499
graymon 2-1462
greatest common divisor 2-1382
Greek letters and mathematical symbols 2-177

2-189 2-3330
grid 2-1463

aligning data to a 2-1465
grid arrays

for volumetric plots 2-2145
multi-dimensional 2-2260

griddata 2-1465
griddata3 2-1469
griddatan 2-1472
GridLineStyle, Axes property 2-292
group

hggroup function 2-1544
gsvd 2-1475
gt 2-1481
gtext 2-1483
guidata function 2-1484
guihandles function 2-1487
GUIs, printing 2-2553
gunzip 2-1488 2-1490

H
H1 line 2-1529 to 2-1530
hadamard 2-1491
Hadamard matrix 2-1491

subspaces of 2-3173
handle graphics

hgtransform 2-1563
handle graphicshggroup 2-1544
HandleVisibility

areaseries property 2-210
Axes property 2-292
barseries property 2-340
contour property 2-657
errorbar property 2-1010
Figure property 2-1145
hggroup property 2-1553
hgtransform property 2-1576
Image property 2-1643
Light property 2-1941
Line property 2-1963
lineseries property 2-1976
patch property 2-2420
quivergroup property 2-2650
rectangle property 2-2711
Root property 2-2799
stairseries property 2-3029
stem property 2-3063
Surface property 2-3215
surfaceplot property 2-3238
Text property 2-3321
Uicontextmenu property 2-3455
Uicontrol property 2-3476
Uimenu property 2-3518
Uipushtool property 2-3552
Uitoggletool property 2-3583
Uitoolbar property 2-3595

hankel 2-1492
Hankel matrix 2-1492
HDF

appending to when saving
(WriteMode) 2-1680

compression 2-1679
setting JPEG quality when writing 2-1680

HDF files

Index-25

Index

writing images 2-1676
HDF4

summary of capabilities 2-1493
HDF5

high-level access 2-1495
summary of capabilities 2-1495

HDF5 class
low-level access 2-1495

hdf5info 2-1498
hdf5read 2-1500
hdf5write 2-1502
hdfinfo 2-1506
hdfread 2-1514
hdftool 2-1526
Head1Length

annotation doublearrow property 2-158
Head1Style

annotation doublearrow property 2-159
Head1Width

annotation doublearrow property 2-160
Head2Length

annotation doublearrow property 2-158
Head2Style

annotation doublearrow property 2-159
Head2Width

annotation doublearrow property 2-160
HeadLength

annotation arrow property 2-154
textarrow property 2-174

HeadStyle
annotation arrow property 2-154
textarrow property 2-174

HeadWidth
annotation arrow property 2-155
textarrow property 2-175

Height
annotation ellipse property 2-164

help 2-1527
contents file 2-1528
creating for M-files 2-1529

keyword search in functions 2-2039
online 2-1527

Help browser 2-1532
accessing from doc 2-940

Help Window 2-1537
helpbrowser 2-1532
helpdesk 2-1534
helpdlg 2-1535
helpwin 2-1537
Hermite transformations, elementary 2-1382
hess 2-1538
Hessenberg form of a matrix 2-1538
hex2dec 2-1541
hex2num 2-1542
hidden 2-1581
Hierarchical Data Format (HDF) files

writing images 2-1676
hilb 2-1582
Hilbert matrix 2-1582

inverse 2-1770
hist 2-1583
histc 2-1587
HitTest

areaseries property 2-212
Axes property 2-293
barseries property 2-342
contour property 2-659
errorbar property 2-1012
Figure property 2-1147
hggroup property 2-1555
hgtransform property 2-1577
Image property 2-1645
Light property 2-1943
Line property 2-1963
lineseries property 2-1978
Patch property 2-2421
quivergroup property 2-2652
rectangle property 2-2712
Root property 2-2799
scatter property 2-2860

Index-26

Index

stairseries property 2-3031
stem property 2-3065
Surface property 2-3216
surfaceplot property 2-3240
Text property 2-3322
Uicontrol property 2-3477
Uipushtool property 2-3553
Uitoggletool property 2-3584
Uitoolbarl property 2-3596

HitTestArea
areaseries property 2-212
barseries property 2-342
contour property 2-659
errorbar property 2-1012
quivergroup property 2-2652
scatter property 2-2860
stairseries property 2-3031
stem property 2-3065

hold 2-1590
home 2-1592
HorizontalAlignment

Text property 2-3323
textarrow property 2-175
textbox property 2-187
Uicontrol property 2-3477

horzcat 2-1593
horzcat (M-file function equivalent for [,]) 2-58
horzcat (tscollection) 2-1595
hostid 2-1596
Householder reflections (as algorithm for solving

linear equations) 2-2187
hsv2rgb 2-1597
HTML

in Command Window 2-2085
save M-file as 2-2583

HTML browser
in MATLAB 2-1532

HTML files
opening 1-5 1-8 2-3712

hyperbolic

cosecant 2-722
cosecant, inverse 2-82
cosine 2-702
cosine, inverse 2-72
cotangent 2-707
cotangent, inverse 2-77
secant 2-2876
secant, inverse 2-229
sine 2-2930
sine, inverse 2-234
tangent 2-3293
tangent, inverse 2-245

hyperlink
displaying in Command Window 2-917

hyperlinks
in Command Window 2-2085

hyperplanes, angle between 2-3173
hypot 2-1598

I
i 2-1601
icon images

reading 2-1665
idealfilter (timeseries) 2-1602
identity matrix 2-1053

sparse 2-2972
idivide 2-1605
IEEE floating-point arithmetic

smallest positive number 2-2693
if 2-1607
ifft 2-1611
ifft2 2-1613
ifftn 2-1615
ifftshift 2-1617
IIR filter 2-1206
ilu 2-1618
im2java 2-1623
imag 2-1625
image 2-1626

Index-27

Index

Image
creating 2-1626
properties 2-1633

image types
querying 2-1653

images
file formats 2-1663 2-1675
reading data from files 2-1663
returning information about 2-1652
writing to files 2-1675

Images
converting MATLAB image to Java

Image 2-1623
imagesc 2-1649
imaginary 2-1625

part of complex number 2-1625
unit (sqrt(\xd0 1)) 2-1601 2-1860
See also complex

imfinfo
returning file information 2-1652

imformats 2-1655
import 2-1658
importdata 2-1660
importing

Java class and package names 2-1658
imread 2-1663
imwrite 2-1675
incomplete beta function

(defined) 2-371
incomplete gamma function

(defined) 2-1377
ind2sub 2-1690
Index into matrix is negative or zero (error

message) 2-2031
indexing

logical 2-2030
indicator of file position 2-1307
indices, array

of sorted elements 2-2947
Inf 2-1694

inferiorto 2-1696
infinity 2-1694

norm 2-2273
info 2-1697
information

returning file information 2-1652
inheritance, of objects 2-554
inline 2-1698
inmem 2-1701
inpolygon 2-1703
input 2-1705

checking number of M-file arguments 2-2251
name of array passed as 2-1710
number of M-file arguments 2-2253
prompting users for 2-1705 2-2138

inputdlg 2-1706
inputname 2-1710
inputParser 2-1711
inspect 2-1717
installation, root directory of 2-2092
instrcallback 2-1724
instrfind 2-1726
instrfindall 2-1728

example of 2-1729
int2str 2-1731
integer

floating-point, maximum 2-396
IntegerHandle

Figure property 2-1147
integration

polynomial 2-2525
quadrature 2-2615 2-2619

interfaces 2-1734
interp1 2-1736
interp1q 2-1744
interp2 2-1746
interp3 2-1750
interpft 2-1752
interpn 2-1753
interpolated shading and printing 2-2554

Index-28

Index

interpolation
cubic method 2-1465 2-1736 2-1746 2-1750

2-1753
cubic spline method 2-1736 2-1746 2-1750

2-1753
FFT method 2-1752
linear method 2-1736 2-1746 2-1750 2-1753
multidimensional 2-1753
nearest neighbor method 2-1465 2-1736

2-1746 2-1750 2-1753
one-dimensional 2-1736
three-dimensional 2-1750
trilinear method 2-1465
two-dimensional 2-1746

Interpreter
Text property 2-3323
textarrow property 2-175
textbox property 2-188

interpstreamspeed 2-1756
Interruptible

areaseries property 2-212
Axes property 2-294
barseries property 2-342
contour property 2-659
errorbar property 2-1013
Figure property 2-1147
hggroup property 2-1555
hgtransform property 2-1577
Image property 2-1645
Light property 2-1943
Line property 2-1964
lineseries property 2-1978
patch property 2-2421
quivergroup property 2-2652
rectangle property 2-2713
Root property 2-2799
scatter property 2-2861
stairseries property 2-3031
stem property 2-3065
Surface property 2-3216 2-3240

Text property 2-3325
Uicontextmenu property 2-3456
Uicontrol property 2-3477
Uimenu property 2-3519
Uipushtool property 2-3553
Uitoggletool property 2-3584
Uitoolbar property 2-3596

intersect 2-1760
intmax 2-1761
intmin 2-1762
intwarning 2-1763
inv 2-1767
inverse

cosecant 2-79
cosine 2-69
cotangent 2-74
Fourier transform 2-1611 2-1613 2-1615
Hilbert matrix 2-1770
hyperbolic cosecant 2-82
hyperbolic cosine 2-72
hyperbolic cotangent 2-77
hyperbolic secant 2-229
hyperbolic sine 2-234
hyperbolic tangent 2-245
of a matrix 2-1767
secant 2-226
sine 2-231
tangent 2-240
tangent, four-quadrant 2-242

inversion, matrix
accuracy of 2-624

InvertHardCopy, Figure property 2-1148
invhilb 2-1770
invoke 2-1771
involutary matrix 2-2394
ipermute 2-1774
iqr (timeseries) 2-1775
is* 2-1777
isa 2-1779
isappdata function 2-1781

Index-29

Index

iscell 2-1782
iscellstr 2-1783
ischar 2-1784
iscom 2-1785
isdir 2-1786
isempty 2-1787
isempty (timeseries) 2-1788
isempty (tscollection) 2-1789
isequal 2-1790
isequal, MException method 2-1793
isequalwithequalnans 2-1794
isevent 2-1796
isfield 2-1798
isfinite 2-1800
isfloat 2-1801
isglobal 2-1802
ishandle 2-1804
isinf 2-1806
isinteger 2-1807
isinterface 2-1808
isjava 2-1809
iskeyword 2-1810
isletter 2-1812
islogical 2-1813
ismac 2-1814
ismember 2-1815
ismethod 2-1817
isnan 2-1818
isnumeric 2-1819
isobject 2-1820
isocap 2-1821
isonormals 2-1828
isosurface 2-1831

calculate data from volume 2-1831
end caps 2-1821
vertex normals 2-1828

ispc 2-1836
ispref function 2-1837
isprime 2-1838
isprop 2-1839

isreal 2-1840
isscalar 2-1843
issorted 2-1844
isspace 2-1847 2-1850
issparse 2-1848
isstr 2-1849
isstruct 2-1853
isstudent 2-1854
isunix 2-1855
isvalid 2-1856

timer object 2-1857
isvarname 2-1858
isvector 2-1859
italics font

TeX characters 2-3332

J
j 2-1860
Jacobi rotations 2-2994
Jacobian elliptic functions

(defined) 2-977
Jacobian matrix (BVP) 2-436
Jacobian matrix (ODE) 2-2328

generating sparse numerically 2-2329
2-2331

specifying 2-2328 2-2331
vectorizing ODE function 2-2329 to 2-2331

Java
class names 2-558 2-1658
objects 2-1809

Java Image class
creating instance of 2-1623

Java import list
adding to 2-1658
clearing 2-558

Java version used by MATLAB 2-3661
java_method 2-1865 2-1872
java_object 2-1874
javaaddath 2-1861

Index-30

Index

javachk 2-1866
javaclasspath 2-1868
javarmpath 2-1876
joining arrays. See concatenation
Joint Photographic Experts Group (JPEG)

writing 2-1676
JPEG

setting Bitdepth 2-1680
specifying mode 2-1680

JPEG comment
setting when writing a JPEG image 2-1680

JPEG files
parameters that can be set when

writing 2-1680
writing 2-1676

JPEG quality
setting when writing a JPEG image 2-1680

2-1685
setting when writing an HDF image 2-1680

jvm
version used by MATLAB 2-3661

K
K>> prompt

keyboard function 2-1880
keyboard 2-1880
keyboard mode 2-1880

terminating 2-2780
KeyPressFcn

Uicontrol property 2-3479
KeyPressFcn, Figure property 2-1149
KeyReleaseFcn, Figure property 2-1150
keyword search in functions 2-2039
keywords

iskeyword function 2-1810
kron 2-1881
Kronecker tensor product 2-1881

L
Label, Uimenu property 2-3520
labeling

axes 2-3749
matrix columns 2-917
plots (with numeric values) 2-2284

LabelSpacing
contour property 2-660

Laplacian 2-854
largest array elements 2-2112
last, MException method 2-1883
lasterr 2-1885
lasterror 2-1888
lastwarn 2-1892
LaTeX, see TeX 2-177 2-189 2-3330
Layer, Axes property 2-294
Layout Editor

starting 2-1486
lcm 2-1894
LData

errorbar property 2-1013
LDataSource

errorbar property 2-1013
ldivide (M-file function equivalent for .\) 2-42
le 2-1902
least common multiple 2-1894
least squares

polynomial curve fitting 2-2521
problem, overdetermined 2-2482

legend 2-1904
properties 2-1910
setting text properties 2-1910

legendre 2-1913
Legendre functions

(defined) 2-1913
Schmidt semi-normalized 2-1913

length 2-1917
serial port I/O 2-1918

length (timeseries) 2-1919
length (tscollection) 2-1920

Index-31

Index

LevelList
contour property 2-660

LevelListMode
contour property 2-660

LevelStep
contour property 2-661

LevelStepMode
contour property 2-661

libfunctions 2-1921
libfunctionsview 2-1923
libisloaded 2-1925
libpointer 2-1927
libstruct 2-1929
license 2-1932
light 2-1936
Light

creating 2-1936
defining default properties 2-1630 2-1937
positioning in camera coordinates 2-451
properties 2-1938

Light object
positioning in spherical coordinates 2-1946

lightangle 2-1946
lighting 2-1947
limits of axes, setting and querying 2-3751
line 2-1949

editing 2-2499
Line

creating 2-1949
defining default properties 2-1954
properties 2-1955 2-1970

line numbers in M-files 2-804
linear audio signal 2-1948 2-2234
linear dependence (of data) 2-3173
linear equation systems

accuracy of solution 2-624
solving overdetermined 2-2605 to 2-2606

linear equation systems, methods for solving
Cholesky factorization 2-2185
Gaussian elimination 2-2186

Householder reflections 2-2187
matrix inversion (inaccuracy of) 2-1767

linear interpolation 2-1736 2-1746 2-1750 2-1753
linear regression 2-2521
linearly spaced vectors, creating 2-2004
LineColor

contour property 2-661
lines

computing 2-D stream 1-102 2-3090
computing 3-D stream 1-102 2-3092
drawing stream lines 1-102 2-3094

LineSpec 1-86 2-1987
LineStyle

annotation arrow property 2-155
annotation doublearrow property 2-160
annotation ellipse property 2-164
annotation line property 2-166
annotation rectangle property 2-170
annotation textbox property 2-188
areaseries property 2-213
barseries property 2-343
contour property 2-662
errorbar property 2-1014
Line property 2-1965
lineseries property 2-1979
patch property 2-2422
quivergroup property 2-2653
rectangle property 2-2713
stairseries property 2-3032
stem property 2-3066
surface object 2-3217
surfaceplot object 2-3240
text object 2-3325
textarrow property 2-176

LineStyleOrder
Axes property 2-294

LineWidth
annotation arrow property 2-156
annotation doublearrow property 2-161
annotation ellipse property 2-164

Index-32

Index

annotation line property 2-167
annotation rectangle property 2-170
annotation textbox property 2-188
areaseries property 2-214
Axes property 2-296
barseries property 2-344
contour property 2-662
errorbar property 2-1014
Line property 2-1965
lineseries property 2-1979
Patch property 2-2422
quivergroup property 2-2653
rectangle property 2-2713
scatter property 2-2861
stairseries property 2-3032
stem property 2-3067
Surface property 2-3217
surfaceplot property 2-3241
text object 2-3326
textarrow property 2-176

linkaxes 2-1993
linkprop 2-1997
links

in Command Window 2-2085
linsolve 2-2001
linspace 2-2004
lint tool for checking problems 2-2189
list boxes 2-3461

defining items 2-3484
ListboxTop, Uicontrol property 2-3479
listdlg 2-2005
listfonts 2-2008
little endian formats 2-1257
load 2-2010 2-2015

serial port I/O 2-2016
loadlibrary 2-2018
loadobj 2-2024
Lobatto IIIa ODE solver 2-422 2-427
local variables 2-1328 2-1447
locking M-files 2-2200

log 2-2026
saving session to file 2-906

log10 [log010] 2-2027
log1p 2-2028
log2 2-2029
logarithm

base ten 2-2027
base two 2-2029
complex 2-2026 to 2-2027
natural 2-2026
of beta function (natural) 2-373
of gamma function (natural) 2-1378
of real numbers 2-2691
plotting 2-2032

logarithmic derivative
gamma function 2-2580

logarithmically spaced vectors, creating 2-2038
logical 2-2030
logical array

converting numeric array to 2-2030
detecting 2-1813

logical indexing 2-2030
logical operations

AND, bit-wise 2-392
OR, bit-wise 2-398
XOR 2-3776
XOR, bit-wise 2-402

logical operators 2-49 2-52
logical OR

bit-wise 2-398
logical tests 2-1779

all 2-134
any 2-194
See also detecting

logical XOR 2-3776
bit-wise 2-402

loglog 2-2032
logm 2-2035
logspace 2-2038
lookfor 2-2039

Index-33

Index

lossy compression
writing JPEG files with 2-1680

Lotus WK1 files
loading 2-3743
writing 2-3745

lower 2-2041
lower triangular matrix 2-3398
lowercase to uppercase 2-3625
ls 2-2042
lscov 2-2043
lsqnonneg 2-2048
lsqr 2-2051
lt 2-2056
lu 2-2058
LU factorization 2-2058

storage requirements of (sparse) 2-2288
luinc 2-2066

M
M-file

debugging 2-1880
displaying during execution 2-955
function 2-1328
function file, echoing 2-955
naming conventions 2-1328
pausing execution of 2-2436
programming 2-1328
script 2-1328
script file, echoing 2-955

M-files
checking existence of 2-1041
checking for problems 2-2189
clearing from workspace 2-556
creating

in MATLAB directory 2-2430
cyclomatic complexity of 2-2189
debugging with profile 2-2570
deleting 2-873
editing 2-959

line numbers, listing 2-804
lint tool 2-2189
listing names of in a directory 2-3718
locking (preventing clearing) 2-2200
McCabe complexity of 2-2189
opening 2-2340
optimizing 2-2570
problems, checking for 2-2189
save to HTML 2-2583
setting breakpoints 2-794
unlocking (allowing clearing) 2-2246

M-Lint
function 2-2189
function for entire directory 2-2196
HTML report 2-2196

machine epsilon 2-3727
magic 2-2073
magic squares 2-2073
Margin

annotation textbox property 2-189
text object 2-3328

Marker
Line property 2-1965
lineseries property 2-1979
marker property 2-1015
Patch property 2-2422
quivergroup property 2-2653
scatter property 2-2862
stairseries property 2-3032
stem property 2-3067
Surface property 2-3217
surfaceplot property 2-3241

MarkerEdgeColor
errorbar property 2-1015
Line property 2-1966
lineseries property 2-1980
Patch property 2-2423
quivergroup property 2-2654
scatter property 2-2862
stairseries property 2-3033

Index-34

Index

stem property 2-3068
Surface property 2-3218
surfaceplot property 2-3242

MarkerFaceColor
errorbar property 2-1016
Line property 2-1966
lineseries property 2-1980
Patch property 2-2424
quivergroup property 2-2654
scatter property 2-2863
stairseries property 2-3033
stem property 2-3068
Surface property 2-3218
surfaceplot property 2-3242

MarkerSize
errorbar property 2-1016
Line property 2-1967
lineseries property 2-1981
Patch property 2-2424
quivergroup property 2-2655
stairseries property 2-3034
stem property 2-3068
Surface property 2-3219
surfaceplot property 2-3243

mass matrix (ODE) 2-2332
initial slope 2-2333 to 2-2334
singular 2-2333
sparsity pattern 2-2333
specifying 2-2333
state dependence 2-2333

MAT-file 2-2827
converting sparse matrix after loading

from 2-2959
MAT-files 2-2010

listing for directory 2-3718
mat2cell 2-2078
mat2str 2-2081
material 2-2083
MATLAB

directory location 2-2092

installation directory 2-2092
quitting 2-2633
startup 2-2090
version number, comparing 2-3659
version number, displaying 2-3653

matlab : function 2-2085
matlab (UNIX command) 2-2094
matlab (Windows command) 2-2107
matlab function for UNIX 2-2094
matlab function for Windows 2-2107
MATLAB startup file 2-3042
matlab.mat 2-2010 2-2827
matlabcolon function 2-2085
matlabrc 2-2090
matlabroot 2-2092
$matlabroot 2-2092
matrices

preallocation 2-3779
matrix 2-37

addressing selected rows and columns
of 2-59

arrowhead 2-609
companion 2-617
complex unitary 2-2603
condition number of 2-624 2-2684
condition number, improving 2-317
converting to formatted data file 2-1278
converting to from string 2-3012
converting to vector 2-59
decomposition 2-2603
defective (defined) 2-963
detecting sparse 2-1848
determinant of 2-897
diagonal of 2-903
Dulmage-Mendelsohn decomposition 2-937
evaluating functions of 2-1337
exponential 2-1048
flipping left-right 2-1239
flipping up-down 2-1240
Hadamard 2-1491 2-3173

Index-35

Index

Hankel 2-1492
Hermitian Toeplitz 2-3388
Hessenberg form of 2-1538
Hilbert 2-1582
identity 2-1053
inverse 2-1767
inverse Hilbert 2-1770
inversion, accuracy of 2-624
involutary 2-2394
left division (arithmetic operator) 2-38
lower triangular 2-3398
magic squares 2-2073 2-3181
maximum size of 2-622
modal 2-961
multiplication (defined) 2-38
orthonormal 2-2603
Pascal 2-2394 2-2528
permutation 2-2058 2-2603
poorly conditioned 2-1582
power (arithmetic operator) 2-39
pseudoinverse 2-2482
reading files into 2-929
reduced row echelon form of 2-2822
replicating 2-2760
right division (arithmetic operator) 2-38
rotating 90\xfb 2-2811
Schur form of 2-2824 2-2869
singularity, test for 2-897
sorting rows of 2-2950
sparse. See sparse matrix
specialized 2-1354
square root of 2-3006
subspaces of 2-3173
test 2-1354
Toeplitz 2-3388
trace of 2-903 2-3390
transpose (arithmetic operator) 2-39
transposing 2-56
unimodular 2-1382
unitary 2-3257

upper triangular 2-3405
Vandermonde 2-2523
Wilkinson 2-2965 2-3738
writing as binary data 2-1342
writing formatted data to 2-1308
writing to ASCII delimited file 2-933
writing to spreadsheet 2-3745
See also array

Matrix
hgtransform property 2-1578

matrix functions
evaluating 2-1337

matrix names, (M1 through M12) generating a
sequence of 2-1029

matrix power. See matrix, exponential
max 2-2112
max (timeseries) 2-2113
Max, Uicontrol property 2-3480
MaxHeadSize

quivergroup property 2-2655
maximum matching 2-937
MDL-files

checking existence of 2-1041
mean 2-2118
mean (timeseries) 2-2119
median 2-2121
median (timeseries) 2-2122
median value of array elements 2-2121
memmapfile 2-2124
memory 2-2130

clearing 2-556
minimizing use of 2-2374
variables in 2-3731

menu (of user input choices) 2-2138
menu function 2-2138
MenuBar, Figure property 2-1153
mesh plot

tetrahedron 2-3298
mesh size (BVP) 2-439
meshc 1-97 2-2140

Index-36

Index

meshgrid 2-2145
MeshStyle, Surface property 2-3219
MeshStyle, surfaceplot property 2-3243
meshz 1-97 2-2140
message

error See error message 2-3695
warning See warning message 2-3695

methods 2-2147
inheritance of 2-554
locating 2-3722

methodsview 2-2149
mex 2-2151
mex build script

switches 2-2152
-ada <sfcn.ads> 2-2153
-<arch> 2-2152
-argcheck 2-2153
-c 2-2153
-compatibleArrayDims 2-2153
-cxx 2-2153
-D<name> 2-2153
-D<name>=<value> 2-2154
-f <optionsfile> 2-2154
-fortran 2-2154
-g 2-2154
-h[elp] 2-2154
-I<pathname> 2-2154
-inline 2-2154
-L<directory> 2-2155
-l<name> 2-2154
-largeArrayDims 2-2155
-n 2-2155
<name>=<value> 2-2156
-O 2-2155
-outdir <dirname> 2-2155
-output <resultname> 2-2155
@<rsp_file> 2-2152
-setup 2-2155
-U<name> 2-2156
-v 2-2156

MEX-files
clearing from workspace 2-556
debugging on UNIX 2-785
listing for directory 2-3718

MException
constructor 2-995 2-2131
methods

addCause 2-100
disp 2-920
eq 2-995
getReport 2-1431
isequal 2-1793
last 2-1883
ne 2-2265
rethrow 2-2778
throw 2-3365
throwAsCaller 2-3368

mexext 2-2158
mfilename 2-2159
mget function 2-2160
Microsoft Excel files

loading 2-3756
min 2-2161
min (timeseries) 2-2162
Min, Uicontrol property 2-3480
MinColormap, Figure property 2-1153
minimum degree ordering 2-3279
MinorGridLineStyle, Axes property 2-296
minres 2-2166
minus (M-file function equivalent for -) 2-42
mislocked 2-2171
mkdir 2-2172
mkdir (ftp) 2-2175
mkpp 2-2176
mldivide (M-file function equivalent for \) 2-42
mlint 2-2189
mlintrpt 2-2196

suppressing messages 2-2199
mlock 2-2200
mmfileinfo 2-2201

Index-37

Index

mmreader 2-2204
mod 2-2208
modal matrix 2-961
mode 2-2210
mode objects

pan, using 2-2379
rotate3d, using 2-2815
zoom, using 2-3784

models
opening 2-2340
saving 2-2838

modification date
of a file 2-911

modified Bessel functions
relationship to Airy functions 2-128

modulo arithmetic 2-2208
MonitorPosition

Root property 2-2799
Moore-Penrose pseudoinverse 2-2482
more 2-2213 2-2234
move 2-2215
movefile 2-2217
movegui function 2-2220
movie 2-2222
movie2avi 2-2225
movies

exporting in AVI format 2-260
mpower (M-file function equivalent for ^) 2-43
mput function 2-2227
mrdivide (M-file function equivalent for /) 2-42
msgbox 2-2228
mtimes 2-2230
mtimes (M-file function equivalent for *) 2-42
mu-law encoded audio signals 2-1948 2-2234
multibandread 2-2235
multibandwrite 2-2240
multidimensional arrays 2-1917

concatenating 2-474
interpolation of 2-1753
longest dimension of 2-1917

number of dimensions of 2-2262
rearranging dimensions of 2-1774 2-2473
removing singleton dimensions of 2-3009
reshaping 2-2769
size of 2-2932
sorting elements of 2-2946
See also array

multiple
least common 2-1894

multiplication
array (arithmetic operator) 2-38
matrix (defined) 2-38
of polynomials 2-676

multistep ODE solver 2-2308
munlock 2-2246

N
Name, Figure property 2-1154
namelengthmax 2-2248
naming conventions

M-file 2-1328
NaN 2-2249
NaN (Not-a-Number) 2-2249

returned by rem 2-2756
nargchk 2-2251
nargoutchk 2-2255
native2unicode 2-2257
ndgrid 2-2260
ndims 2-2262
ne 2-2263
ne, MException method 2-2265
nearest neighbor interpolation 2-1465 2-1736

2-1746 2-1750 2-1753
newplot 2-2266
NextPlot

Axes property 2-296
Figure property 2-1154

nextpow2 2-2269
nnz 2-2270

Index-38

Index

no derivative method 2-1254
noncontiguous fields, inserting data into 2-1342
nonzero entries

specifying maximum number of in sparse
matrix 2-2956

nonzero entries (in sparse matrix)
allocated storage for 2-2288
number of 2-2270
replacing with ones 2-2986
vector of 2-2272

nonzeros 2-2272
norm 2-2273

1-norm 2-2273 2-2684
2-norm (estimate of) 2-2275
F-norm 2-2273
infinity 2-2273
matrix 2-2273
pseudoinverse and 2-2482 2-2484
vector 2-2273

normal vectors, computing for volumes 2-1828
NormalMode

Patch property 2-2424
Surface property 2-3219
surfaceplot property 2-3243

normest 2-2275
not 2-2276
not (M-file function equivalent for ~) 2-50
notebook 2-2277
now 2-2278
nthroot 2-2279
null 2-2280
null space 2-2280
num2cell 2-2282
num2hex 2-2283
num2str 2-2284
number

of array dimensions 2-2262
numbers

imaginary 2-1625
NaN 2-2249

plus infinity 2-1694
prime 2-2539
random 2-2667 2-2672
real 2-2690
smallest positive 2-2693

NumberTitle, Figure property 2-1155
numel 2-2286
numeric format 2-1265
numeric precision

format reading binary data 2-1292
numerical differentiation formula ODE

solvers 2-2309
numerical evaluation

double integral 2-783
triple integral 2-3400

nzmax 2-2288

O
object

determining class of 2-1779
inheritance 2-554

object classes, list of predefined 2-553 2-1779
objects

Java 2-1809
ODE file template 2-2312
ODE solver properties

error tolerance 2-2319
event location 2-2326
Jacobian matrix 2-2328
mass matrix 2-2332
ode15s 2-2334
solver output 2-2321
step size 2-2325

ODE solvers
backward differentiation formulas 2-2334
numerical differentiation formulas 2-2334
obtaining solutions at specific times 2-2296
variable order solver 2-2334

ode15i function 2-2289

Index-39

Index

odefile 2-2311
odeget 2-2317
odephas2 output function 2-2323
odephas3 output function 2-2323
odeplot output function 2-2323
odeprint output function 2-2323
odeset 2-2318
odextend 2-2336
off-screen figures, displaying 2-1220
OffCallback

Uitoggletool property 2-3585
%#ok 2-2191
OnCallback

Uitoggletool property 2-3586
one-step ODE solver 2-2308
ones 2-2339
online documentation, displaying 2-1532
online help 2-1527
open 2-2340
openfig 2-2344
OpenGL 2-1161

autoselection criteria 2-1165
opening

files in Windows applications 2-3739
opening files 2-1257
openvar 2-2351
operating system

MATLAB is running on 2-622
operating system command 1-4 1-11 2-3288
operating system command, issuing 2-58
operators

arithmetic 2-37
logical 2-49 2-52
overloading arithmetic 2-43
overloading relational 2-47
relational 2-47 2-2030
symbols 2-1527

optimget 2-2353
optimization parameters structure 2-2353 to

2-2354

optimizing M-file execution 2-2570
optimset 2-2354
or 2-2358
or (M-file function equivalent for |) 2-50
ordeig 2-2360
orderfields 2-2363
ordering

minimum degree 2-3279
reverse Cuthill-McKee 2-3269 2-3280

ordqz 2-2366
ordschur 2-2368
orient 2-2370
orth 2-2372
orthogonal-triangular decomposition 2-2603
orthographic projection, setting and

querying 2-460
orthonormal matrix 2-2603
otherwise 2-2373
Out of memory (error message) 2-2374
OuterPosition

Axes property 2-296
output

checking number of M-file arguments 2-2255
controlling display format 2-1265
in Command Window 2-2213
number of M-file arguments 2-2253

output points (ODE)
increasing number of 2-2321

output properties (DDE) 2-831
output properties (ODE) 2-2321

increasing number of output points 2-2321
overdetermined equation systems,

solving 2-2605 to 2-2606
overflow 2-1694
overloading

arithmetic operators 2-43
relational operators 2-47
special characters 2-58

Index-40

Index

P
P-files

checking existence of 2-1041
pack 2-2374
padecoef 2-2376
pagesetupdlg 2-2377
paging

of screen 2-1529
paging in the Command Window 2-2213
pan mode objects 2-2379
PaperOrientation, Figure property 2-1155
PaperPosition, Figure property 2-1155
PaperPositionMode, Figure property 2-1156
PaperSize, Figure property 2-1156
PaperType, Figure property 2-1156
PaperUnits, Figure property 2-1158
parametric curve, plotting 2-1074
Parent

areaseries property 2-214
Axes property 2-298
barseries property 2-344
contour property 2-662
errorbar property 2-1016
Figure property 2-1158
hggroup property 2-1556
hgtransform property 2-1578
Image property 2-1645
Light property 2-1943
Line property 2-1967
lineseries property 2-1981
Patch property 2-2424
quivergroup property 2-2655
rectangle property 2-2713
Root property 2-2800
scatter property 2-2863
stairseries property 2-3034
stem property 2-3068
Surface property 2-3220
surfaceplot property 2-3244
Text property 2-3329

Uicontextmenu property 2-3457
Uicontrol property 2-3481
Uimenu property 2-3521
Uipushtool property 2-3554
Uitoggletool property 2-3586
Uitoolbar property 2-3597

parentheses (special characters) 2-56
parse

inputParser object 2-2388
parseSoapResponse 2-2391
partial fraction expansion 2-2771
partialpath 2-2392
pascal 2-2394
Pascal matrix 2-2394 2-2528
patch 2-2395
Patch

converting a surface to 1-103 2-3194
creating 2-2395
defining default properties 2-2401
properties 2-2403
reducing number of faces 1-102 2-2719
reducing size of face 1-102 2-2921

path 2-2429
adding directories to 2-114
building from parts 2-1325
current 2-2429
removing directories from 2-2792
viewing 2-2434

path2rc 2-2431
pathdef 2-2432
pathname

partial 2-2392
toolbox directory 1-8 2-3389

pathnames
of functions or files 2-3722
relative 2-2392

pathsep 2-2433
pathtool 2-2434
pause 2-2436
pauses, removing 2-778

Index-41

Index

pausing M-file execution 2-2436
pbaspect 2-2437
PBM

parameters that can be set when
writing 2-1680

PBM files
writing 2-1676

pcg 2-2443
pchip 2-2447
pcode 2-2450
pcolor 2-2451
PCX files

writing 2-1677
PDE. See Partial Differential Equations
pdepe 2-2455
pdeval 2-2467
percent sign (special characters) 2-57
percent-brace (special characters) 2-57
perfect matching 2-937
period (.), to distinguish matrix and array

operations 2-37
period (special characters) 2-56
perl 2-2470
perl function 2-2470
Perl scripts in MATLAB 1-4 1-11 2-2470
perms 2-2472
permutation

matrix 2-2058 2-2603
of array dimensions 2-2473
random 2-2676

permutations of n elements 2-2472
permute 2-2473
persistent 2-2474
persistent variable 2-2474
perspective projection, setting and

querying 2-460
PGM

parameters that can be set when
writing 2-1680

PGM files

writing 2-1677
phase angle, complex 2-149
phase, complex

correcting angles 2-3618
pi 2-2477
pie 2-2478
pie3 2-2480
pinv 2-2482
planerot 2-2485
platform MATLAB is running on 2-622
playshow function 2-2486
plot 2-2487

editing 2-2499
plot (timeseries) 2-2494
plot box aspect ratio of axes 2-2437
plot editing mode

overview 2-2500
Plot Editor

interface 2-2500 2-2577
plot, volumetric

generating grid arrays for 2-2145
slice plot 1-91 1-102 2-2938

PlotBoxAspectRatio, Axes property 2-298
PlotBoxAspectRatioMode, Axes property 2-299
plotedit 2-2499
plotting

2-D plot 2-2487
3-D plot 1-86 2-2495
contours (a 2-1054
contours (ez function) 2-1054
ez-function mesh plot 2-1062
feather plots 2-1094
filled contours 2-1058
function plots 2-1273
functions with discontinuities 2-1082
histogram plots 2-1583
in polar coordinates 2-1077
isosurfaces 2-1831
loglog plot 2-2032
mathematical function 2-1070

Index-42

Index

mesh contour plot 2-1066
mesh plot 1-97 2-2140
parametric curve 2-1074
plot with two y-axes 2-2506
ribbon plot 1-91 2-2784
rose plot 1-90 2-2807
scatter plot 2-2502
scatter plot, 3-D 1-91 2-2848
semilogarithmic plot 1-87 2-2879
stem plot, 3-D 1-89 2-3053
surface plot 1-97 2-3188
surfaces 1-90 2-1080
velocity vectors 2-628
volumetric slice plot 1-91 1-102 2-2938
. See visualizing

plus (M-file function equivalent for +) 2-42
PNG

writing options for 2-1682
alpha 2-1682
background color 2-1682
chromaticities 2-1683
gamma 2-1683
interlace type 2-1683
resolution 2-1684
significant bits 2-1683
transparency 2-1684

PNG files
writing 2-1677

PNM files
writing 2-1677

Pointer, Figure property 2-1158
PointerLocation, Root property 2-2800
PointerShapeCData, Figure property 2-1159
PointerShapeHotSpot, Figure property 2-1159
PointerWindow, Root property 2-2801
pol2cart 2-2509
polar 2-2511
polar coordinates 2-2509

computing the angle 2-149
converting from Cartesian 2-469

converting to cylindrical or Cartesian 2-2509
plotting in 2-1077

poles of transfer function 2-2771
poly 2-2513
polyarea 2-2516
polyder 2-2518
polyeig 2-2519
polyfit 2-2521
polygamma function 2-2580
polygon

area of 2-2516
creating with patch 2-2395
detecting points inside 2-1703

polyint 2-2525
polynomial

analytic integration 2-2525
characteristic 2-2513 to 2-2514 2-2805
coefficients (transfer function) 2-2771
curve fitting with 2-2521
derivative of 2-2518
division 2-853
eigenvalue problem 2-2519
evaluation 2-2526
evaluation (matrix sense) 2-2528
make piecewise 2-2176
multiplication 2-676

polyval 2-2526
polyvalm 2-2528
poorly conditioned

matrix 2-1582
poorly conditioned eigenvalues 2-317
pop-up menus 2-3461

defining choices 2-3484
Portable Anymap files

writing 2-1677
Portable Bitmap (PBM) files

writing 2-1676
Portable Graymap files

writing 2-1677
Portable Network Graphics files

Index-43

Index

writing 2-1677
Portable pixmap format

writing 2-1677
Position

annotation ellipse property 2-164
annotation line property 2-167
annotation rectangle property 2-171
arrow property 2-156
Axes property 2-299
doubletarrow property 2-161
Figure property 2-1159
Light property 2-1943
Text property 2-3329
textarrow property 2-177
textbox property 2-189
Uicontextmenu property 2-3457
Uicontrol property 2-3481
Uimenu property 2-3521

position indicator in file 2-1321
position of camera

dollying 2-447
position of camera, setting and querying 2-458
Position, rectangle property 2-2714
PostScript

default printer 2-2546
levels 1 and 2 2-2546
printing interpolated shading 2-2554

pow2 2-2530
power 2-2531

matrix. See matrix exponential
of real numbers 2-2694
of two, next 2-2269

power (M-file function equivalent for .^) 2-43
PPM

parameters that can be set when
writing 2-1680

PPM files
writing 2-1677

ppval 2-2532
pragma

%#ok 2-2191
preallocation

matrix 2-3779
precision 2-1265

reading binary data writing 2-1292
prefdir 2-2534
preferences 2-2538

opening the dialog box 2-2538
prime factors 2-1088

dependence of Fourier transform on 2-1108
2-1110 to 2-1111

prime numbers 2-2539
primes 2-2539
print frames 2-1289
printdlg 1-92 1-104 2-2559
printdlg function 2-2559
printer

default for linux and unix 2-2546
printer drivers

GhostScript drivers 2-2542
interploated shading 2-2554
MATLAB printer drivers 2-2542

printframe 2-1289
PrintFrame Editor 2-1289
printing

borders 2-1289
fig files with frames 2-1289
GUIs 2-2553
interpolated shading 2-2554
on MS-Windows 2-2553
with a variable filename 2-2556
with nodisplay 2-2549
with noFigureWindows 2-2549
with non-normal EraseMode 2-1963 2-2415

2-2711 2-3213 2-3318
with print frames 2-1291

printing figures
preview 1-93 1-104 2-2560

printing tips 2-2552
printing, suppressing 2-57

Index-44

Index

printpreview 1-93 1-104 2-2560
prod 2-2568
product

cumulative 2-731
Kronecker tensor 2-1881
of array elements 2-2568
of vectors (cross) 2-718
scalar (dot) 2-718

profile 2-2570
profsave 2-2576
projection type, setting and querying 2-460
ProjectionType, Axes property 2-300
prompting users for input 2-1705 2-2138
propedit 2-2577 to 2-2578
proppanel 1-87 2-2579
pseudoinverse 2-2482
psi 2-2580
publish function 2-2582
push buttons 2-3461
PutFullMatrix 2-2589
pwd 2-2596

Q
qmr 2-2597
qr 2-2603
QR decomposition 2-2603

deleting column from 2-2608
qrdelete 2-2608
qrinsert 2-2610
qrupdate 2-2612
quad 2-2615
quadgk 2-2619
quadl 2-2625
quadrature 2-2615 2-2619
quadv 2-2628
questdlg 1-104 2-2631
questdlg function 2-2631
quit 2-2633
quitting MATLAB 2-2633

quiver 2-2636
quiver3 2-2640
quotation mark

inserting in a string 2-1283
qz 2-2664
QZ factorization 2-2520 2-2664

R
radio buttons 2-3461
rand 2-2667
randn 2-2672
random

numbers 2-2667 2-2672
permutation 2-2676
sparse matrix 2-2992 to 2-2993
symmetric sparse matrix 2-2994

randperm 2-2676
range space 2-2372
rank 2-2677
rank of a matrix 2-2677
RAS files

parameters that can be set when
writing 2-1685

writing 2-1677
RAS image format

specifying color order 2-1685
writing alpha data 2-1685

Raster image files
writing 2-1677

rational fraction approximation 2-2678
rbbox 1-101 2-2682 2-2726
rcond 2-2684
rdivide (M-file function equivalent for ./) 2-42
read 2-2685
readasync 2-2687
reading

binary files 2-1292
data from files 2-3338
formatted data from file 2-1308

Index-45

Index

formatted data from strings 2-3012
readme files, displaying 1-5 2-1786 2-3721
real 2-2690
real numbers 2-2690
reallog 2-2691
realmax 2-2692
realmin 2-2693
realpow 2-2694
realsqrt 2-2695
rearranging arrays

converting to vector 2-59
removing first n singleton dimensions 2-2918
removing singleton dimensions 2-3009
reshaping 2-2769
shifting dimensions 2-2918
swapping dimensions 2-1774 2-2473

rearranging matrices
converting to vector 2-59
flipping left-right 2-1239
flipping up-down 2-1240
rotating 90\xfb 2-2811
transposing 2-56

record 2-2696
rectangle

properties 2-2703
rectangle function 2-2698

rectint 2-2716
RecursionLimit

Root property 2-2801
recycle 2-2717
reduced row echelon form 2-2822
reducepatch 2-2719
reducevolume 2-2723
reference page

accessing from doc 2-940
refresh 2-2726
regexprep 2-2742
regexptranslate 2-2746
registerevent 2-2749
regression

linear 2-2521
regularly spaced vectors, creating 2-59 2-2004
rehash 2-2752
relational operators 2-47 2-2030
relative accuracy

BVP 2-435
DDE 2-830
norm of DDE solution 2-830
norm of ODE solution 2-2320
ODE 2-2320

release 2-2754
rem 2-2756
removets 2-2757
rename function 2-2759
renderer

OpenGL 2-1161
painters 2-1160
zbuffer 2-1160

Renderer, Figure property 2-1160
RendererMode, Figure property 2-1164
repeatedly executing statements 2-1262 2-3725
replicating a matrix 2-2760
repmat 2-2760
resample (timeseries) 2-2762
resample (tscollection) 2-2765
reset 2-2768
reshape 2-2769
residue 2-2771
residues of transfer function 2-2771
Resize, Figure property 2-1165
ResizeFcn, Figure property 2-1166
restoredefaultpath 2-2775
rethrow 2-2776
rethrow, MException method 2-2778
return 2-2780
reverse Cuthill-McKee ordering 2-3269 2-3280
rewinding files to beginning of 2-1307 2-1660
RGB, converting to HSV 1-98 2-2781
rgb2hsv 2-2781
rgbplot 2-2782

Index-46

Index

ribbon 2-2784
right-click and context menus 2-3449
rmappdata function 2-2786
rmdir 2-2787
rmdir (ftp) function 2-2790
rmfield 2-2791
rmpath 2-2792
rmpref function 2-2793
RMS. See root-mean-square
rolling camera 2-461
root 1-94 2-2794
root directory 2-2092
root directory for MATLAB 2-2092
Root graphics object 1-94 2-2794
root object 2-2794
root, see rootobject 1-94 2-2794
root-mean-square

of vector 2-2273
roots 2-2805
roots of a polynomial 2-2513 to 2-2514 2-2805
rose 2-2807
Rosenbrock

banana function 2-1252
ODE solver 2-2309

rosser 2-2810
rot90 2-2811
rotate 2-2812
rotate3d 2-2815
rotate3d mode objects 2-2815
rotating camera 2-455
rotating camera target 1-99 2-457
Rotation, Text property 2-3329
rotations

Jacobi 2-2994
round 2-2821

to nearest integer 2-2821
towards infinity 2-501
towards minus infinity 2-1242
towards zero 2-1237

roundoff error

characteristic polynomial and 2-2514
convolution theorem and 2-676
effect on eigenvalues 2-317
evaluating matrix functions 2-1339
in inverse Hilbert matrix 2-1770
partial fraction expansion and 2-2772
polynomial roots and 2-2805
sparse matrix conversion and 2-2960

rref 2-2822
rrefmovie 2-2822
rsf2csf 2-2824
rubberband box 1-101 2-2682
run 2-2826
Runge-Kutta ODE solvers 2-2308
running average 2-1207

S
save 2-2827 2-2835

serial port I/O 2-2836
saveas 2-2838
saveobj 2-2842
savepath 2-2844
saving

ASCII data 2-2827
session to a file 2-906
workspace variables 2-2827

scalar product (of vectors) 2-718
scaled complementary error function

(defined) 2-996
scatter 2-2845
scatter3 2-2848
scattered data, aligning

multi-dimensional 2-2260
two-dimensional 2-1465

scattergroup
properties 2-2851

Schmidt semi-normalized Legendre
functions 2-1913

schur 2-2869

Index-47

Index

Schur decomposition 2-2869
Schur form of matrix 2-2824 2-2869
screen, paging 2-1529
ScreenDepth, Root property 2-2801
ScreenPixelsPerInch, Root property 2-2802
ScreenSize, Root property 2-2802
script 2-2872
scrolling screen 2-1529
search path 2-2792

adding directories to 2-114
MATLAB’s 2-2429
modifying 2-2434
viewing 2-2434

search, string 2-1224
sec 2-2873
secant 2-2873

hyperbolic 2-2876
inverse 2-226
inverse hyperbolic 2-229

secd 2-2875
sech 2-2876
Selected

areaseries property 2-214
Axes property 2-300
barseries property 2-344
contour property 2-663
errorbar property 2-1016
Figure property 2-1167
hggroup property 2-1556
hgtransform property 2-1578
Image property 2-1646
Light property 2-1944
Line property 2-1967
lineseries property 2-1981
Patch property 2-2425
quivergroup property 2-2655
rectangle property 2-2714
Root property 2-2803
scatter property 2-2863
stairseries property 2-3034

stem property 2-3069
Surface property 2-3220
surfaceplot property 2-3244
Text property 2-3330
Uicontrol property 2-3482

selecting areas 1-101 2-2682
SelectionHighlight

areaseries property 2-214
Axes property 2-300
barseries property 2-344
contour property 2-663
errorbar property 2-1017
Figure property 2-1167
hggroup property 2-1556
hgtransform property 2-1578
Image property 2-1646
Light property 2-1944
Line property 2-1967
lineseries property 2-1981
Patch property 2-2425
quivergroup property 2-2656
rectangle property 2-2714
scatter property 2-2863
stairseries property 2-3034
stem property 2-3069
Surface property 2-3220
surfaceplot property 2-3244
Text property 2-3330
Uicontrol property 2-3483

SelectionType, Figure property 2-1167
selectmoveresize 2-2878
semicolon (special characters) 2-57
sendmail 2-2882
Separator

Uipushtool property 2-3555
Uitoggletool property 2-3586

Separator, Uimenu property 2-3521
sequence of matrix names (M1 through M12)

generating 2-1029
serial 2-2884

Index-48

Index

serialbreak 2-2886
server (FTP)

connecting to 2-1322
server variable 2-1100
session

saving 2-906
set 1-113 2-2887 2-2891

serial port I/O 2-2892
timer object 2-2895

set (timeseries) 2-2898
set (tscollection) 2-2899
set operations

difference 2-2903
exclusive or 2-2915
intersection 2-1760
membership 2-1815
union 2-3601
unique 2-3603

setabstime (timeseries) 2-2900
setabstime (tscollection) 2-2901
setappdata 2-2902
setdiff 2-2903
setenv 2-2904
setfield 2-2905
setinterpmethod 2-2907
setpixelposition 2-2909
setpref function 2-2912
setstr 2-2913
settimeseriesnames 2-2914
setxor 2-2915
shading 2-2916
shading colors in surface plots 1-98 2-2916
shared libraries

MATLAB functions
calllib 2-444
libfunctions 2-1921
libfunctionsview 2-1923
libisloaded 2-1925
libpointer 2-1927
libstruct 2-1929
loadlibrary 2-2018
unloadlibrary 2-3607

shell script 1-4 1-11 2-3288 2-3605
shiftdim 2-2918
shifting array

circular 2-545
ShowArrowHead

quivergroup property 2-2656
ShowBaseLine

barseries property 2-344
ShowHiddenHandles, Root property 2-2803
showplottool 2-2919
ShowText

contour property 2-663
shrinkfaces 2-2921
shutdown 2-2633
sign 2-2925
signum function 2-2925
simplex search 2-1254
Simpson’s rule, adaptive recursive 2-2617
Simulink

printing diagram with frames 2-1289
version number, comparing 2-3659
version number, displaying 2-3653

sin 2-2926
sind 2-2928
sine 2-2926

hyperbolic 2-2930
inverse 2-231
inverse hyperbolic 2-234

single 2-2929
single quote (special characters) 2-56
singular value

Index-49

Index

decomposition 2-2677 2-3257
largest 2-2273
rank and 2-2677

sinh 2-2930
size

array dimesions 2-2932
serial port I/O 2-2935

size (timeseries) 2-2936
size (tscollection) 2-2937
size of array dimensions 2-2932
size of fonts, see also FontSize property 2-3332
size vector 2-2769
SizeData

scatter property 2-2864
skipping bytes (during file I/O) 2-1342
slice 2-2938
slice planes, contouring 2-671
sliders 2-3462
SliderStep, Uicontrol property 2-3483
smallest array elements 2-2161
smooth3 2-2944
smoothing 3-D data 1-102 2-2944
soccer ball (example) 2-3280
solution statistics (BVP) 2-440
sort 2-2946
sorting

array elements 2-2946
complex conjugate pairs 2-711
matrix rows 2-2950

sortrows 2-2950
sound 2-2953 to 2-2954

converting vector into 2-2953 to 2-2954
files

reading 2-258 2-3706
writing 2-259 2-3711

playing 1-83 2-3704
recording 1-83 2-3709
resampling 1-83 2-3704
sampling 1-83 2-3709

source control on UNIX platforms

checking out files
function 2-527

source control system
viewing current system 2-570

source control systems
checking in files 2-524
undo checkout 1-10 2-3599

spalloc 2-2955
sparse 2-2956
sparse matrix

allocating space for 2-2955
applying function only to nonzero elements

of 2-2973
density of 2-2270
detecting 2-1848
diagonal 2-2961
finding indices of nonzero elements of 2-1214
identity 2-2972
minimum degree ordering of 2-576
number of nonzero elements in 2-2270
permuting columns of 2-609
random 2-2992 to 2-2993
random symmetric 2-2994
replacing nonzero elements of with

ones 2-2986
results of mixed operations on 2-2957
solving least squares linear system 2-2604
specifying maximum number of nonzero

elements 2-2956
vector of nonzero elements 2-2272
visualizing sparsity pattern of 2-3003

sparse storage
criterion for using 2-1324

spaugment 2-2958
spconvert 2-2959
spdiags 2-2961
special characters

descriptions 2-1527
overloading 2-58

specular 2-2971

Index-50

Index

SpecularColorReflectance
Patch property 2-2425
Surface property 2-3220
surfaceplot property 2-3244

SpecularExponent
Patch property 2-2426
Surface property 2-3221
surfaceplot property 2-3245

SpecularStrength
Patch property 2-2426
Surface property 2-3221
surfaceplot property 2-3245

speye 2-2972
spfun 2-2973
sph2cart 2-2975
sphere 2-2976
sphereical coordinates

defining a Light position in 2-1946
spherical coordinates 2-2975
spinmap 2-2978
spline 2-2979
spline interpolation (cubic)

one-dimensional 2-1737 2-1747 2-1750
2-1753

Spline Toolbox 2-1742
spones 2-2986
spparms 2-2987
sprand 2-2992
sprandn 2-2993
sprandsym 2-2994
sprank 2-2995
spreadsheets

loading WK1 files 2-3743
loading XLS files 2-3756
reading into a matrix 2-929
writing from matrix 2-3745
writing matrices into 2-933

sprintf 2-2996
sqrt 2-3005
sqrtm 2-3006

square root
of a matrix 2-3006
of array elements 2-3005
of real numbers 2-2695

squeeze 2-3009
sscanf 2-3012
stack, displaying 2-788
standard deviation 2-3043
start

timer object 2-3039
startat

timer object 2-3040
startup 2-3042
startup file 2-3042
startup files 2-2090
State

Uitoggletool property 2-3587
Stateflow

printing diagram with frames 2-1289
static text 2-3462
std 2-3043
std (timeseries) 2-3045
stem 2-3047
stem3 2-3053
step size (DDE)

initial step size 2-834
upper bound 2-835

step size (ODE) 2-833 2-2325
initial step size 2-2325
upper bound 2-2325

stop
timer object 2-3075

stopasync 2-3076
stopwatch timer 2-3370
storage

allocated for nonzero entries (sparse) 2-2288
sparse 2-2956

storage allocation 2-3779
str2cell 2-517
str2double 2-3078

Index-51

Index

str2func 2-3079
str2mat 2-3081
str2num 2-3082
strcat 2-3084
stream lines

computing 2-D 1-102 2-3090
computing 3-D 1-102 2-3092
drawing 1-102 2-3094

stream2 2-3090
stream3 2-3092
stretch-to-fill 2-268
strfind 2-3122
string

comparing one to another 2-3086 2-3128
converting from vector to 2-523
converting matrix into 2-2081 2-2284
converting to lowercase 2-2041
converting to numeric array 2-3082
converting to uppercase 2-3625
dictionary sort of 2-2950
finding first token in 2-3140
searching and replacing 2-3139
searching for 2-1224

String
Text property 2-3330
textarrow property 2-177
textbox property 2-189
Uicontrol property 2-3484

string matrix to cell array conversion 2-517
strings 2-3124

converting to matrix (formatted) 2-3012
inserting a quotation mark in 2-1283
writing data to 2-2996

strjust 1-52 1-64 2-3126
strmatch 2-3127
strread 2-3131
strrep 1-52 1-64 2-3139
strtok 2-3140
strtrim 2-3143
struct 2-3144

struct2cell 2-3149
structfun 2-3150
structure array

getting contents of field of 2-1417
remove field from 2-2791
setting contents of a field of 2-2905

structure arrays
field names of 2-1128

structures
dynamic fields 2-57

strvcat 2-3153
Style

Light property 2-1944
Uicontrol property 2-3486

sub2ind 2-3155
subfunction 2-1328
subplot 2-3157
subplots

assymetrical 2-3162
suppressing ticks in 2-3165

subsasgn 1-55 2-3170
subscripts

in axis title 2-3386
in text strings 2-3334

subsindex 2-3172
subspace 1-20 2-3173
subsref 1-55 2-3174
subsref (M-file function equivalent for

A(i,j,k...)) 2-58
substruct 2-3176
subtraction (arithmetic operator) 2-37
subvolume 2-3178
sum 2-3181

cumulative 2-733
of array elements 2-3181

sum (timeseries) 2-3184
superiorto 2-3186
superscripts

in axis title 2-3386
in text strings 2-3334

Index-52

Index

support 2-3187
surf2patch 2-3194
surface 2-3196
Surface

and contour plotter 2-1084
converting to a patch 1-103 2-3194
creating 1-94 1-97 2-3196
defining default properties 2-2702 2-3200
plotting mathematical functions 2-1080
properties 2-3201 2-3224

surface normals, computing for volumes 2-1828
surfl 2-3251
surfnorm 2-3255
svd 2-3257
svds 2-3260
swapbytes 2-3264
switch 2-3266
symamd 2-3268
symbfact 2-3272
symbols

operators 2-1527
symbols in text 2-177 2-189 2-3330
symmlq 2-3274
symmmd 2-3279
symrcm 2-3280
synchronize 2-3283
syntax 2-1528
syntax, command 2-3285
syntax, function 2-3285
syntaxes

of M-file functions, defining 2-1328
system 2-3288

UNC pathname error 2-3288
system directory, temporary 2-3296

T
table lookup. See interpolation
Tag

areaseries property 2-214

Axes property 2-300
barseries property 2-345
contour property 2-663
errorbar property 2-1017
Figure property 2-1168
hggroup property 2-1556
hgtransform property 2-1579
Image property 2-1646
Light property 2-1944
Line property 2-1968
lineseries property 2-1982
Patch property 2-2426
quivergroup property 2-2656
rectangle property 2-2714
Root property 2-2803
scatter property 2-2864
stairseries property 2-3035
stem property 2-3069
Surface property 2-3221
surfaceplot property 2-3245
Text property 2-3335
Uicontextmenu property 2-3457
Uicontrol property 2-3486
Uimenu property 2-3522
Uipushtool property 2-3555
Uitoggletool property 2-3587
Uitoolbar property 2-3597

Tagged Image File Format (TIFF)
writing 2-1678

tan 2-3290
tand 2-3292
tangent 2-3290

four-quadrant, inverse 2-242
hyperbolic 2-3293
inverse 2-240
inverse hyperbolic 2-245

tanh 2-3293
tar 2-3295
target, of camera 2-462
tcpip 2-3627

Index-53

Index

tempdir 2-3296
tempname 2-3297
temporary

files 2-3297
system directory 2-3296

tensor, Kronecker product 2-1881
terminating MATLAB 2-2633
test matrices 2-1354
test, logical. See logical tests and detecting
tetrahedron

mesh plot 2-3298
tetramesh 2-3298
TeX commands in text 2-177 2-189 2-3330
text 2-3303

editing 2-2499
subscripts 2-3334
superscripts 2-3334

Text
creating 1-94 2-3303
defining default properties 2-3307
fixed-width font 2-3319
properties 2-3308

text mode for opened files 2-1256
TextBackgroundColor

textarrow property 2-179
TextColor

textarrow property 2-179
TextEdgeColor

textarrow property 2-179
TextLineWidth

textarrow property 2-180
TextList

contour property 2-664
TextListMode

contour property 2-665
TextMargin

textarrow property 2-180
textread 1-78 2-3338
TextRotation, textarrow property 2-180
textscan 1-78 2-3344

TextStep
contour property 2-665

TextStepMode
contour property 2-665

textwrap 2-3364
throw, MException method 2-3365
throwAsCaller, MException method 2-3368
TickDir, Axes property 2-301
TickDirMode, Axes property 2-301
TickLength, Axes property 2-301
TIFF

compression 2-1685
encoding 2-1681
ImageDescription field 2-1685
maxvalue 2-1681
parameters that can be set when

writing 2-1685
resolution 2-1686
writemode 2-1686
writing 2-1678

TIFF image format
specifying compression 2-1685

tiling (copies of a matrix) 2-2760
time

CPU 2-712
elapsed (stopwatch timer) 2-3370
required to execute commands 2-1025

time and date functions 2-990
timer

properties 2-3371
timer object 2-3371

timerfind
timer object 2-3378

timerfindall
timer object 2-3380

times (M-file function equivalent for .*) 2-42
timeseries 2-3382
timestamp 2-911
title 2-3385

with superscript 2-3386

Index-54

Index

Title, Axes property 2-302
todatenum 2-3387
toeplitz 2-3388
Toeplitz matrix 2-3388
toggle buttons 2-3462
token 2-3140

See also string
Toolbar

Figure property 2-1169
Toolbox

Spline 2-1742
toolbox directory, pathname 1-8 2-3389
toolboxdir 2-3389
TooltipString

Uicontrol property 2-3486
Uipushtool property 2-3555
Uitoggletool property 2-3587

trace 2-3390
trace of a matrix 2-903 2-3390
trailing blanks

removing 2-845
transform

hgtransform function 2-1563
transform, Fourier

discrete, n-dimensional 2-1111
discrete, one-dimensional 2-1105
discrete, two-dimensional 2-1110
inverse, n-dimensional 2-1615
inverse, one-dimensional 2-1611
inverse, two-dimensional 2-1613
shifting the zero-frequency component

of 2-1114
transformation

See also conversion 2-487
transformations

elementary Hermite 2-1382
transmitting file to FTP server 1-85 2-2227
transpose

array (arithmetic operator) 2-39
matrix (arithmetic operator) 2-39

transpose (M-file function equivalent for
.\q) 2-43

transpose (timeseries) 2-3391
trapz 2-3393
treelayout 2-3395
treeplot 2-3396
triangulation

2-D plot 2-3402
tricubic interpolation 2-1465
tril 2-3398
trilinear interpolation 2-1465
trimesh 2-3399
triple integral

numerical evaluation 2-3400
triplequad 2-3400
triplot 2-3402
trisurf 2-3404
triu 2-3405
true 2-3406
truth tables (for logical operations) 2-49
try 2-3407
tscollection 2-3410
tsdata.event 2-3413
tsearch 2-3414
tsearchn 2-3415
tsprops 2-3416
tstool 2-3422
type 2-3423
Type

areaseries property 2-215
Axes property 2-303
barseries property 2-345
contour property 2-665
errorbar property 2-1017
Figure property 2-1169
hggroup property 2-1557
hgtransform property 2-1579
Image property 2-1647
Light property 2-1944
Line property 2-1968

Index-55

Index

lineseries property 2-1982
Patch property 2-2427
quivergroup property 2-2657
rectangle property 2-2715
Root property 2-2803
scatter property 2-2864
stairseries property 2-3035
stem property 2-3070
Surface property 2-3221
surfaceplot property 2-3246
Text property 2-3335
Uicontextmenu property 2-3458
Uicontrol property 2-3486
Uimenu property 2-3522
Uipushtool property 2-3555
Uitoggletool property 2-3587
Uitoolbar property 2-3597

typecast 2-3424

U
UData

errorbar property 2-1018
quivergroup property 2-2658

UDataSource
errorbar property 2-1018
quivergroup property 2-2658

Uibuttongroup
defining default properties 2-3432

uibuttongroup function 2-3428
Uibuttongroup Properties 2-3432
uicontextmenu 2-3449
UiContextMenu

Uicontrol property 2-3487
Uipushtool property 2-3555
Uitoggletool property 2-3588
Uitoolbar property 2-3598

UIContextMenu
areaseries property 2-215
Axes property 2-303

barseries property 2-345
contour property 2-666
errorbar property 2-1018
Figure property 2-1170
hggroup property 2-1557
hgtransform property 2-1579
Image property 2-1647
Light property 2-1945
Line property 2-1968
lineseries property 2-1982
Patch property 2-2427
quivergroup property 2-2657
rectangle property 2-2715
scatter property 2-2865
stairseries property 2-3036
stem property 2-3070
Surface property 2-3221
surfaceplot property 2-3246
Text property 2-3336

Uicontextmenu Properties 2-3451
uicontrol 2-3459
Uicontrol

defining default properties 2-3465
fixed-width font 2-3474
types of 2-3459

Uicontrol Properties 2-3465
uicontrols

printing 2-2553
uigetdir 2-3490
uigetfile 2-3495
uigetpref function 2-3505
uiimport 2-3509
uimenu 2-3510
Uimenu

creating 1-107 2-3510
defining default properties 2-3512
Properties 2-3512

Uimenu Properties 2-3512
uint16 2-3523
uint32 2-3523

Index-56

Index

uint64 2-3523
uint8 2-1732 2-3523
uiopen 2-3525
Uipanel

defining default properties 2-3529
uipanel function 2-3527
Uipanel Properties 2-3529
uipushtool 2-3545
Uipushtool

defining default properties 2-3547
Uipushtool Properties 2-3547
uiputfile 2-3557
uiresume 2-3566
uisave 2-3568
uisetcolor function 2-3571
uisetfont 2-3572
uisetpref function 2-3574
uistack 2-3575
uitoggletool 2-3576
Uitoggletool

defining default properties 2-3578
Uitoggletool Properties 2-3578
uitoolbar 2-3589
Uitoolbar

defining default properties 2-3591
Uitoolbar Properties 2-3591
uiwait 2-3566
uminus (M-file function equivalent for unary

\xd0) 2-42
UNC pathname error and dos 2-946
UNC pathname error and system 2-3288
unconstrained minimization 2-1250
undefined numerical results 2-2249
undocheckout 2-3599
unicode2native 2-3600
unimodular matrix 2-1382
union 2-3601
unique 2-3603
unitary matrix (complex) 2-2603
Units

annotation ellipse property 2-165
annotation rectangle property 2-171
arrow property 2-156
Axes property 2-303
doublearrow property 2-161
Figure property 2-1170
line property 2-167
Root property 2-2804
Text property 2-3335
textarrow property 2-180
textbox property 2-191
Uicontrol property 2-3487

unix 2-3605
UNIX

Web browser 2-942
unloadlibrary 2-3607
unlocking M-files 2-2246
unmkpp 2-3608
unregisterallevents 2-3609
unregisterevent 2-3612
untar 2-3616
unwrap 2-3618
unzip 2-3623
up vector, of camera 2-464
updating figure during M-file execution 2-951
uplus (M-file function equivalent for unary

+) 2-42
upper 2-3625
upper triangular matrix 2-3405
uppercase to lowercase 2-2041
url

opening in Web browser 1-5 1-8 2-3712
urlread 2-3626
urlwrite 2-3628
usejava 2-3630
UserData

areaseries property 2-216
Axes property 2-304
barseries property 2-346
contour property 2-666

Index-57

Index

errorbar property 2-1019
Figure property 2-1171
hggroup property 2-1557
hgtransform property 2-1580
Image property 2-1647
Light property 2-1945
Line property 2-1968
lineseries property 2-1983
Patch property 2-2427
quivergroup property 2-2657
rectangle property 2-2715
Root property 2-2804
scatter property 2-2865
stairseries property 2-3036
stem property 2-3070
Surface property 2-3222
surfaceplot property 2-3246
Text property 2-3336
Uicontextmenu property 2-3458
Uicontrol property 2-3487
Uimenu property 2-3522
Uipushtool property 2-3556
Uitoggletool property 2-3588
Uitoolbar property 2-3598

V
validateattributes 2-3632
validatestring 2-3639
Value, Uicontrol property 2-3488
vander 2-3645
Vandermonde matrix 2-2523
var 2-3646
var (timeseries) 2-3647
varargin 2-3649
varargout 2-3651
variable numbers of M-file arguments 2-3651
variable-order solver (ODE) 2-2334
variables

checking existence of 2-1041

clearing from workspace 2-556
global 2-1447
graphical representation of 2-3747
in workspace 2-3747
listing 2-3731
local 2-1328 2-1447
name of passed 2-1710
opening 2-2340 2-2351
persistent 2-2474
saving 2-2827
sizes of 2-3731

VData
quivergroup property 2-2658

VDataSource
quivergroup property 2-2659

vector
dot product 2-947
frequency 2-2038
length of 2-1917
product (cross) 2-718

vector field, plotting 2-628
vectorize 2-3652
vectorizing ODE function (BVP) 2-436
vectors, creating

logarithmically spaced 2-2038
regularly spaced 2-59 2-2004

velocity vectors, plotting 2-628
ver 2-3653
verctrl function (Windows) 2-3655
verLessThan 2-3659
version 2-3661
version numbers

comparing 2-3659
displaying 2-3653

vertcat 2-3663
vertcat (M-file function equivalent for [2-58
vertcat (timeseries) 2-3665
vertcat (tscollection) 2-3666
VertexNormals

Patch property 2-2427

Index-58

Index

Surface property 2-3222
surfaceplot property 2-3246

VerticalAlignment, Text property 2-3336
VerticalAlignment, textarrow property 2-181
VerticalAlignment, textbox property 2-192
Vertices, Patch property 2-2427
video

saving in AVI format 2-260
view 2-3667

azimuth of viewpoint 2-3668
coordinate system defining 2-3668
elevation of viewpoint 2-3668

view angle, of camera 2-466
View, Axes property (obsolete) 2-304
viewing

a group of object 2-453
a specific object in a scene 2-453

viewmtx 2-3670
Visible

areaseries property 2-216
Axes property 2-304
barseries property 2-346
contour property 2-666
errorbar property 2-1019
Figure property 2-1171
hggroup property 2-1558
hgtransform property 2-1580
Image property 2-1647
Light property 2-1945
Line property 2-1968
lineseries property 2-1983
Patch property 2-2427
quivergroup property 2-2657
rectangle property 2-2715
Root property 2-2804
scatter property 2-2865
stairseries property 2-3036
stem property 2-3070
Surface property 2-3222
surfaceplot property 2-3247

Text property 2-3337
Uicontextmenu property 2-3458
Uicontrol property 2-3488
Uimenu property 2-3522
Uipushtool property 2-3556
Uitoggletool property 2-3588
Uitoolbar property 2-3598

visualizing
cell array structure 2-515
sparse matrices 2-3003

volumes
calculating isosurface data 2-1831
computing 2-D stream lines 1-102 2-3090
computing 3-D stream lines 1-102 2-3092
computing isosurface normals 2-1828
contouring slice planes 2-671
drawing stream lines 1-102 2-3094
end caps 2-1821
reducing face size in isosurfaces 1-102

2-2921
reducing number of elements in 1-102 2-2723

voronoi 2-3677
Voronoi diagrams

multidimensional vizualization 2-3683
two-dimensional vizualization 2-3677

voronoin 2-3683

W
wait

timer object 2-3687
waitbar 2-3688
waitfor 2-3690
waitforbuttonpress 2-3691
warndlg 2-3692
warning 2-3695
warning message (enabling, suppressing, and

displaying) 2-3695
waterfall 2-3699
.wav files

Index-59

Index

reading 2-3706
writing 2-3711

waverecord 2-3709
wavfinfo 2-3703
wavplay 1-83 2-3704
wavread 2-3703 2-3706
wavrecord 1-83 2-3709
wavwrite 2-3711
WData

quivergroup property 2-2659
WDataSource

quivergroup property 2-2660
web 2-3712
Web browser

displaying help in 2-1532
pointing to file or url 1-5 1-8 2-3712
specifying for UNIX 2-942

weekday 2-3716
well conditioned 2-2684
what 2-3718
whatsnew 2-3721
which 2-3722
while 2-3725
white space characters, ASCII 2-1847 2-3140
whitebg 2-3729
who, whos

who 2-3731
wilkinson 2-3738
Wilkinson matrix 2-2965 2-3738
WindowButtonDownFcn, Figure property 2-1171
WindowButtonMotionFcn, Figure

property 2-1172
WindowButtonUpFcn, Figure property 2-1173
Windows Paintbrush files

writing 2-1677
WindowScrollWheelFcn, Figure property 2-1173
WindowStyle, Figure property 2-1176
winopen 2-3739
winqueryreg 2-3740
WK1 files

loading 2-3743
writing from matrix 2-3745

wk1finfo 2-3742
wk1read 2-3743
wk1write 2-3745
workspace 2-3747

changing context while debugging 2-782
2-805

clearing items from 2-556
consolidating memory 2-2374
predefining variables 2-3042
saving 2-2827
variables in 2-3731
viewing contents of 2-3747

workspace variables
reading from disk 2-2010

writing
binary data to file 2-1342
formatted data to file 2-1278

WVisual, Figure property 2-1178
WVisualMode, Figure property 2-1180

X
X

annotation arrow property 2-157 2-161
annotation line property 2-168
textarrow property 2-182

X Windows Dump files
writing 2-1678

x-axis limits, setting and querying 2-3751
XAxisLocation, Axes property 2-304
XColor, Axes property 2-305
XData

areaseries property 2-216
barseries property 2-346
contour property 2-666
errorbar property 2-1019
Image property 2-1647
Line property 2-1969

Index-60

Index

lineseries property 2-1983
Patch property 2-2428
quivergroup property 2-2660
scatter property 2-2865
stairseries property 2-3036
stem property 2-3071
Surface property 2-3222
surfaceplot property 2-3247

XDataMode
areaseries property 2-216
barseries property 2-346
contour property 2-667
errorbar property 2-1019
lineseries property 2-1983
quivergroup property 2-2661
stairseries property 2-3037
stem property 2-3071
surfaceplot property 2-3247

XDataSource
areaseries property 2-217
barseries property 2-347
contour property 2-667
errorbar property 2-1020
lineseries property 2-1984
quivergroup property 2-2661
scatter property 2-2866
stairseries property 2-3037
stem property 2-3071
surfaceplot property 2-3247

XDir, Axes property 2-305
XDisplay, Figure property 2-1180
XGrid, Axes property 2-306
xlabel 1-88 2-3749
XLabel, Axes property 2-306
xlim 2-3751
XLim, Axes property 2-307
XLimMode, Axes property 2-307
XLS files

loading 2-3756
xlsfinfo 2-3754

xlsread 2-3756
xlswrite 2-3766
XMinorGrid, Axes property 2-308
xmlread 2-3770
xmlwrite 2-3775
xor 2-3776
XOR, printing 2-209 2-339 2-656 2-1010 2-1575

2-1643 2-1963 2-1976 2-2415 2-2650 2-2711
2-2858 2-3029 2-3063 2-3213 2-3236 2-3318

XScale, Axes property 2-308
xslt 2-3777
XTick, Axes property 2-308
XTickLabel, Axes property 2-309
XTickLabelMode, Axes property 2-310
XTickMode, Axes property 2-310
XVisual, Figure property 2-1181
XVisualMode, Figure property 2-1183
XWD files

writing 2-1678
xyz coordinates . See Cartesian coordinates

Y
Y

annotation arrow property 2-157 2-162 2-168
textarrow property 2-182

y-axis limits, setting and querying 2-3751
YAxisLocation, Axes property 2-305
YColor, Axes property 2-305
YData

areaseries property 2-217
barseries property 2-347
contour property 2-668
errorbar property 2-1020
Image property 2-1648
Line property 2-1969
lineseries property 2-1984
Patch property 2-2428
quivergroup property 2-2662
scatter property 2-2866

Index-61

Index

stairseries property 2-3038
stem property 2-3072
Surface property 2-3222
surfaceplot property 2-3248

YDataMode
contour property 2-668
quivergroup property 2-2662
surfaceplot property 2-3248

YDataSource
areaseries property 2-218
barseries property 2-348
contour property 2-668
errorbar property 2-1021
lineseries property 2-1985
quivergroup property 2-2662
scatter property 2-2867
stairseries property 2-3038
stem property 2-3072
surfaceplot property 2-3248

YDir, Axes property 2-305
YGrid, Axes property 2-306
ylabel 1-88 2-3749
YLabel, Axes property 2-306
ylim 2-3751
YLim, Axes property 2-307
YLimMode, Axes property 2-307
YMinorGrid, Axes property 2-308
YScale, Axes property 2-308
YTick, Axes property 2-308
YTickLabel, Axes property 2-309
YTickLabelMode, Axes property 2-310
YTickMode, Axes property 2-310

Z
z-axis limits, setting and querying 2-3751

ZColor, Axes property 2-305
ZData

contour property 2-669
Line property 2-1969
lineseries property 2-1985
Patch property 2-2428
quivergroup property 2-2663
scatter property 2-2867
stemseries property 2-3073
Surface property 2-3223
surfaceplot property 2-3249

ZDataSource
contour property 2-669
lineseries property 2-1985 2-3073
scatter property 2-2867
surfaceplot property 2-3249

ZDir, Axes property 2-305
zero of a function, finding 2-1348
zeros 2-3779
ZGrid, Axes property 2-306
zip 2-3781
zlabel 1-88 2-3749
zlim 2-3751
ZLim, Axes property 2-307
ZLimMode, Axes property 2-307
ZMinorGrid, Axes property 2-308
zoom 2-3783
zoom mode objects 2-3784
ZScale, Axes property 2-308
ZTick, Axes property 2-308
ZTickLabel, Axes property 2-309
ZTickLabelMode, Axes property 2-310
ZTickMode, Axes property 2-310

Index-62

	refbook
	toc
	Functions — By Category
	Desktop Tools and Development Environment
	Startup and Shutdown
	Command Window and History
	Help for Using MATLAB
	Workspace, Search Path, and File Operations
	Workspace
	Search Path
	File Operations

	Programming Tools
	Edit and Debug M-Files
	Improve Performance and Tune M-Files
	Source Control
	Publishing

	System
	Operating System Interface
	MATLAB Version and License

	Mathematics
	Arrays and Matrices
	Basic Information
	Operators
	Elementary Matrices and Arrays
	Array Operations
	Array Manipulation
	Specialized Matrices

	Linear Algebra
	Matrix Analysis
	Linear Equations
	Eigenvalues and Singular Values
	Matrix Logarithms and Exponentials
	Factorization

	Elementary Math
	Trigonometric
	Exponential
	Complex
	Rounding and Remainder
	Discrete Math (e.g., Prime Factors)

	Polynomials
	Interpolation and Computational Geometry
	Interpolation
	Delaunay Triangulation and Tessellation
	Convex Hull
	Voronoi Diagrams
	Domain Generation

	Cartesian Coordinate System Conversion
	Nonlinear Numerical Methods
	Ordinary Differential Equations (IVP)
	Delay Differential Equations
	Boundary Value Problems
	Partial Differential Equations
	Optimization
	Numerical Integration (Quadrature)

	Specialized Math
	Sparse Matrices
	Elementary Sparse Matrices
	Full to Sparse Conversion
	Working with Sparse Matrices
	Reordering Algorithms
	Linear Algebra
	Linear Equations (Iterative Methods)
	Tree Operations

	Math Constants

	Data Analysis
	Basic Operations
	Descriptive Statistics
	Filtering and Convolution
	Interpolation and Regression
	Fourier Transforms
	Derivatives and Integrals
	Time Series Objects
	General Purpose
	Data Manipulation
	Event Data
	Descriptive Statistics

	Time Series Collections
	General Purpose
	Data Manipulation

	Programming and Data Types
	Data Types
	Numeric Types
	Characters and Strings
	Structures
	Cell Arrays
	Function Handles
	MATLAB Classes and Objects
	Java Classes and Objects
	Data Type Identification

	Data Type Conversion
	Numeric
	String to Numeric
	Numeric to String
	Other Conversions

	Operators and Special Characters
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Special Characters

	String Functions
	Description of Strings in MATLAB
	String Creation
	String Identification
	String Manipulation
	String Parsing
	String Evaluation
	String Comparison

	Bit-wise Functions
	Logical Functions
	Relational Functions
	Set Functions
	Date and Time Functions
	Programming in MATLAB
	M-File Functions and Scripts
	Evaluation of Expressions and Functions
	Timer Functions
	Variables and Functions in Memory
	Control Flow
	Error Handling
	MEX Programming

	File I/O
	File Name Construction
	Opening, Loading, Saving Files
	Memory Mapping
	Low-Level File I/O
	Text Files
	XML Documents
	Spreadsheets
	Microsoft Excel Functions
	Lotus 1-2-3 Functions

	Scientific Data
	Common Data Format (CDF)
	Flexible Image Transport System
	Hierarchical Data Format (HDF)
	Band-Interleaved Data

	Audio and Audio/Video
	General
	SPARCstation-Specific Sound Functions
	Microsoft WAVE Sound Functions
	Audio/Video Interleaved (AVI) Functions

	Images
	Internet Exchange
	URL, Zip, Tar, E-Mail
	FTP Functions

	Graphics
	Basic Plots and Graphs
	Plotting Tools
	Annotating Plots
	Specialized Plotting
	Area, Bar, and Pie Plots
	Contour Plots
	Direction and Velocity Plots
	Discrete Data Plots
	Function Plots
	Histograms
	Polygons and Surfaces
	Scatter/Bubble Plots
	Animation

	Bit-Mapped Images
	Printing
	Handle Graphics
	Finding and Identifying Graphics Objects
	Object Creation Functions
	Plot Objects
	Figure Windows
	Axes Operations
	Operating on Object Properties

	3-D Visualization
	Surface and Mesh Plots
	Creating Surfaces and Meshes
	Domain Generation
	Color Operations
	Colormaps

	View Control
	Controlling the Camera Viewpoint
	Setting the Aspect Ratio and Axis Limits
	Object Manipulation
	Selecting Region of Interest

	Lighting
	Transparency
	Volume Visualization

	Creating Graphical User Interfaces
	Predefined Dialog Boxes
	Deploying User Interfaces
	Developing User Interfaces
	User Interface Objects
	Finding Objects from Callbacks
	GUI Utility Functions
	Controlling Program Execution

	External Interfaces
	Dynamic Link Libraries
	Java
	Component Object Model and ActiveX
	Web Services
	Serial Port Devices

	Functions — Alphabetical List
	Index

	tables
	BVP Error Tolerance Properties
	Vectorization Properties
	BVP Analytical Partial Derivative Properties
	Singular BVP Property
	BVP Mesh Size Property
	BVP Solution Statistic Property
	32–bit Platforms
	64–bit Platforms
	Data Size Before and After Transposing
	Standard MATLAB Date Format Definitions
	Free-Form Date Format Specifiers
	DDE Error Control Properties
	DDE Solver Output Properties
	DDE Step Size Properties
	DDE Events Property
	DDE Discontinuity Properties

	refbook2
	toc
	Functions — By Category
	Desktop Tools and Development Environment
	Startup and Shutdown
	Command Window and History
	Help for Using MATLAB
	Workspace, Search Path, and File Operations
	Workspace
	Search Path
	File Operations

	Programming Tools
	Edit and Debug M-Files
	Improve Performance and Tune M-Files
	Source Control
	Publishing

	System
	Operating System Interface
	MATLAB Version and License

	Mathematics
	Arrays and Matrices
	Basic Information
	Operators
	Elementary Matrices and Arrays
	Array Operations
	Array Manipulation
	Specialized Matrices

	Linear Algebra
	Matrix Analysis
	Linear Equations
	Eigenvalues and Singular Values
	Matrix Logarithms and Exponentials
	Factorization

	Elementary Math
	Trigonometric
	Exponential
	Complex
	Rounding and Remainder
	Discrete Math (e.g., Prime Factors)

	Polynomials
	Interpolation and Computational Geometry
	Interpolation
	Delaunay Triangulation and Tessellation
	Convex Hull
	Voronoi Diagrams
	Domain Generation

	Cartesian Coordinate System Conversion
	Nonlinear Numerical Methods
	Ordinary Differential Equations (IVP)
	Delay Differential Equations
	Boundary Value Problems
	Partial Differential Equations
	Optimization
	Numerical Integration (Quadrature)

	Specialized Math
	Sparse Matrices
	Elementary Sparse Matrices
	Full to Sparse Conversion
	Working with Sparse Matrices
	Reordering Algorithms
	Linear Algebra
	Linear Equations (Iterative Methods)
	Tree Operations

	Math Constants

	Data Analysis
	Basic Operations
	Descriptive Statistics
	Filtering and Convolution
	Interpolation and Regression
	Fourier Transforms
	Derivatives and Integrals
	Time Series Objects
	General Purpose
	Data Manipulation
	Event Data
	Descriptive Statistics

	Time Series Collections
	General Purpose
	Data Manipulation

	Programming and Data Types
	Data Types
	Numeric Types
	Characters and Strings
	Structures
	Cell Arrays
	Function Handles
	MATLAB Classes and Objects
	Java Classes and Objects
	Data Type Identification

	Data Type Conversion
	Numeric
	String to Numeric
	Numeric to String
	Other Conversions

	Operators and Special Characters
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Special Characters

	String Functions
	Description of Strings in MATLAB
	String Creation
	String Identification
	String Manipulation
	String Parsing
	String Evaluation
	String Comparison

	Bit-wise Functions
	Logical Functions
	Relational Functions
	Set Functions
	Date and Time Functions
	Programming in MATLAB
	M-File Functions and Scripts
	Evaluation of Expressions and Functions
	Timer Functions
	Variables and Functions in Memory
	Control Flow
	Error Handling
	MEX Programming

	File I/O
	File Name Construction
	Opening, Loading, Saving Files
	Memory Mapping
	Low-Level File I/O
	Text Files
	XML Documents
	Spreadsheets
	Microsoft Excel Functions
	Lotus 1-2-3 Functions

	Scientific Data
	Common Data Format (CDF)
	Flexible Image Transport System
	Hierarchical Data Format (HDF)
	Band-Interleaved Data

	Audio and Audio/Video
	General
	SPARCstation-Specific Sound Functions
	Microsoft WAVE Sound Functions
	Audio/Video Interleaved (AVI) Functions

	Images
	Internet Exchange
	URL, Zip, Tar, E-Mail
	FTP Functions

	Graphics
	Basic Plots and Graphs
	Plotting Tools
	Annotating Plots
	Specialized Plotting
	Area, Bar, and Pie Plots
	Contour Plots
	Direction and Velocity Plots
	Discrete Data Plots
	Function Plots
	Histograms
	Polygons and Surfaces
	Scatter/Bubble Plots
	Animation

	Bit-Mapped Images
	Printing
	Handle Graphics
	Finding and Identifying Graphics Objects
	Object Creation Functions
	Plot Objects
	Figure Windows
	Axes Operations
	Operating on Object Properties

	3-D Visualization
	Surface and Mesh Plots
	Creating Surfaces and Meshes
	Domain Generation
	Color Operations
	Colormaps

	View Control
	Controlling the Camera Viewpoint
	Setting the Aspect Ratio and Axis Limits
	Object Manipulation
	Selecting Region of Interest

	Lighting
	Transparency
	Volume Visualization

	Creating Graphical User Interfaces
	Predefined Dialog Boxes
	Deploying User Interfaces
	Developing User Interfaces
	User Interface Objects
	Finding Objects from Callbacks
	GUI Utility Functions
	Controlling Program Execution

	External Interfaces
	Dynamic Link Libraries
	Java
	Component Object Model and ActiveX
	Web Services
	Serial Port Devices

	Functions — Alphabetical List
	Index

	tables
	Data Arrays or Extensions
	Permission Specifiers
	Binary and Text Modes
	Full Precision Support
	Limited Precision Support: (double or equivalent)
	Fields of the Attribute Structure
	Fields of the Raster8 and Raster24 Structures
	Fields of the SDS Structure
	Fields of the Vdata Structure
	Fields of the Vgroup Structure
	Fields of the Grid Structure
	Fields of the Point Structure
	Fields of the Swath Structure
	Values for helpOption
	Values for archOption
	Values for dispOption
	Values for modeOption
	Values for mgrOption
	Values for helpOption
	Values for mgrOption
	MEX Script Switches
	ODE Events Property
	Jacobian Properties for All Implicit Solvers Except ode15i
	Jacobian Properties for ode15i
	Mass Matrix and DAE Properties (Solvers Other Than ode15i)
	ode15s and ode15i-Specific Properties

	refbook3
	toc
	Functions — By Category
	Desktop Tools and Development Environment
	Startup and Shutdown
	Command Window and History
	Help for Using MATLAB
	Workspace, Search Path, and File Operations
	Workspace
	Search Path
	File Operations

	Programming Tools
	Edit and Debug M-Files
	Improve Performance and Tune M-Files
	Source Control
	Publishing

	System
	Operating System Interface
	MATLAB Version and License

	Mathematics
	Arrays and Matrices
	Basic Information
	Operators
	Elementary Matrices and Arrays
	Array Operations
	Array Manipulation
	Specialized Matrices

	Linear Algebra
	Matrix Analysis
	Linear Equations
	Eigenvalues and Singular Values
	Matrix Logarithms and Exponentials
	Factorization

	Elementary Math
	Trigonometric
	Exponential
	Complex
	Rounding and Remainder
	Discrete Math (e.g., Prime Factors)

	Polynomials
	Interpolation and Computational Geometry
	Interpolation
	Delaunay Triangulation and Tessellation
	Convex Hull
	Voronoi Diagrams
	Domain Generation

	Cartesian Coordinate System Conversion
	Nonlinear Numerical Methods
	Ordinary Differential Equations (IVP)
	Delay Differential Equations
	Boundary Value Problems
	Partial Differential Equations
	Optimization
	Numerical Integration (Quadrature)

	Specialized Math
	Sparse Matrices
	Elementary Sparse Matrices
	Full to Sparse Conversion
	Working with Sparse Matrices
	Reordering Algorithms
	Linear Algebra
	Linear Equations (Iterative Methods)
	Tree Operations

	Math Constants

	Data Analysis
	Basic Operations
	Descriptive Statistics
	Filtering and Convolution
	Interpolation and Regression
	Fourier Transforms
	Derivatives and Integrals
	Time Series Objects
	General Purpose
	Data Manipulation
	Event Data
	Descriptive Statistics

	Time Series Collections
	General Purpose
	Data Manipulation

	Programming and Data Types
	Data Types
	Numeric Types
	Characters and Strings
	Structures
	Cell Arrays
	Function Handles
	MATLAB Classes and Objects
	Java Classes and Objects
	Data Type Identification

	Data Type Conversion
	Numeric
	String to Numeric
	Numeric to String
	Other Conversions

	Operators and Special Characters
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Special Characters

	String Functions
	Description of Strings in MATLAB
	String Creation
	String Identification
	String Manipulation
	String Parsing
	String Evaluation
	String Comparison

	Bit-wise Functions
	Logical Functions
	Relational Functions
	Set Functions
	Date and Time Functions
	Programming in MATLAB
	M-File Functions and Scripts
	Evaluation of Expressions and Functions
	Timer Functions
	Variables and Functions in Memory
	Control Flow
	Error Handling
	MEX Programming

	File I/O
	File Name Construction
	Opening, Loading, Saving Files
	Memory Mapping
	Low-Level File I/O
	Text Files
	XML Documents
	Spreadsheets
	Microsoft Excel Functions
	Lotus 1-2-3 Functions

	Scientific Data
	Common Data Format (CDF)
	Flexible Image Transport System
	Hierarchical Data Format (HDF)
	Band-Interleaved Data

	Audio and Audio/Video
	General
	SPARCstation-Specific Sound Functions
	Microsoft WAVE Sound Functions
	Audio/Video Interleaved (AVI) Functions

	Images
	Internet Exchange
	URL, Zip, Tar, E-Mail
	FTP Functions

	Graphics
	Basic Plots and Graphs
	Plotting Tools
	Annotating Plots
	Specialized Plotting
	Area, Bar, and Pie Plots
	Contour Plots
	Direction and Velocity Plots
	Discrete Data Plots
	Function Plots
	Histograms
	Polygons and Surfaces
	Scatter/Bubble Plots
	Animation

	Bit-Mapped Images
	Printing
	Handle Graphics
	Finding and Identifying Graphics Objects
	Object Creation Functions
	Plot Objects
	Figure Windows
	Axes Operations
	Operating on Object Properties

	3-D Visualization
	Surface and Mesh Plots
	Creating Surfaces and Meshes
	Domain Generation
	Color Operations
	Colormaps

	View Control
	Controlling the Camera Viewpoint
	Setting the Aspect Ratio and Axis Limits
	Object Manipulation
	Selecting Region of Interest

	Lighting
	Transparency
	Volume Visualization

	Creating Graphical User Interfaces
	Predefined Dialog Boxes
	Deploying User Interfaces
	Developing User Interfaces
	User Interface Objects
	Finding Objects from Callbacks
	GUI Utility Functions
	Controlling Program Execution

	External Interfaces
	Dynamic Link Libraries
	Java
	Component Object Model and ActiveX
	Web Services
	Serial Port Devices

	Functions — Alphabetical List
	Contents
	Contents
	Contents
	Integrand with a singularity at an integration end point
	Oscillatory integrand on a semi-infinite interval
	Contour integration around a pole
	Consider the 2-by-1-by-3 array Y = rand(2,1,3) . This array has
	Consider the 1-by-1-by-5 array mat=repmat(1,[1,1,5]) . This arra

	Index

	tables
	Interpretation of the CData Property
	Interpretation of the FaceVertexCData Property
	Options for publish
	Return Values for Regular Expressions
	Negative Zero Printed with %e, %E, %f, %g, or %G
	Exponents Printed with %e, %E, %g, or %G
	Formats for strread
	Parameters and Values for strread
	Option Structure Fields and Descriptions
	Data Size Before and After Transposing
	Time Series Object Properties
	Class Values
	Attribute Values
	Data Types for wavplay
	Native Formats
	Double Formats

