

LINEAR PROGRAMMING

WITH MATLAB

MP07_Ferris_FMA.qxp 10/4/2007 2:22 PM Page 1

This series is published jointly by the Mathematical Programming Society and the Society
for Industrial and Applied Mathematics. It includes research monographs, books on
applications, textbooks at all levels, and tutorials. Besides being of high scientific quality,
books in the series must advance the understanding and practice of optimization. They
must also be written clearly and at an appropriate level.

Editor-in-Chief

Philippe Toint, University of Namur (FUNDP)

Editorial Board

Oktay Gunluk, IBM T.J. Watson Research Center
Matthias Heinkenschloss, Rice University
C.T. Kelley, North Carolina State University
Adrian S. Lewis, Cornell University
Pablo Parrilo, Massachusetts Institute of Technology
Daniel Ralph, University of Cambridge
Mike Todd, Cornell University
Laurence Wolsey, Université Catholique de Louvain
Yinyu Ye, Stanford University

Series Volumes

Ferris, Michael C., Mangasarian, Olvi L., and Wright, Stephen J., Linear Programming with
MATLAB

Attouch, Hedy, Buttazzo, Giuseppe, and Michaille, Gérard, Variational Analysis in Sobolev
and BV Spaces: Applications to PDEs and Optimization

Wallace, Stein W. and Ziemba, William T., editors, Applications of Stochastic Programming

Grötschel, Martin, editor, The Sharpest Cut: The Impact of Manfred Padberg and His Work

Renegar, James, A Mathematical View of Interior-Point Methods in Convex Optimization

Ben-Tal, Aharon and Nemirovski, Arkadi, Lectures on Modern Convex Optimization:
Analysis, Algorithms, and Engineering Applications

Conn, Andrew R., Gould, Nicholas I. M., and Toint, Phillippe L., Trust-Region Methods

MPS-SIAM Series on Optimization

MP07_Ferris_FMA.qxp 10/4/2007 2:22 PM Page 2

LINEAR PROGRAMMING

WITH MATLAB

Michael C. Ferris

Olvi L. Mangasarian

Stephen J. Wright
University of Wisconsin–Madison

Madison, Wisconsin

Society for Industrial and Applied Mathematics
Philadelphia

Mathematical Programming Society
Philadelphia

MP07_Ferris_FMA.qxp 10/4/2007 2:22 PM Page 3

Copyright © 2007 by the Society for Industrial and Applied Mathematics and the
Mathematical Programming Society

10 9 8 7 6 5 4 3 2 1

All rights reserved. Printed in the United States of America. No part of this book may be
reproduced, stored, or transmitted in any manner without the written permission of the
publisher. For information, write to the Society for Industrial and Applied Mathematics,
3600 Market Street, 6th floor, Philadelphia, PA 19104-2688 USA.

Trademarked names may be used in this book without the inclusion of a trademark symbol.
These names are used in an editorial context only; no infringement of trademark is intended.

Maple is a registered trademark of Waterloo Maple, Inc.

MATLAB is a registered trademark of The MathWorks, Inc. For MATLAB product information,
please contact The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098 USA,
508-647-7000, Fax: 508-647-7101, info@mathworks.com, www.mathworks.com.

Library of Congress Cataloging-in-Publication Data

Ferris, Michael C.
Linear programming with MATLAB / Michael C. Ferris, Olvi L. Mangasarian, Stephen J. Wright.

p. cm. — (MPS-SIAM series on optimization ; 7)
Includes bibliographical references and index.
ISBN 978-0-898716-43-6 (alk. paper)

1. Linear programming—Data processing. 2. MATLAB. 3. Mathematical optimization. 4. Algebras,
Linear. I. Mangasarian, Olvi L., 1934- II. Wright, Stephen J., 1960- III. Title.

QA402.5.F425 2007
519.7’2—dc22

2007061748

is a registered trademark. is a registered trademark.

MP07_Ferris_FMA.qxp 10/4/2007 2:22 PM Page 4

To Jane, Claire, and Jill

�

MP07_Ferris_FMA.qxp 10/4/2007 2:22 PM Page 5

MP07_Ferris_FMA.qxp 10/4/2007 2:22 PM Page 6

Contents

Preface xi

1 Introduction 1
1.1 An Example: The Professor’s Dairy 2

1.1.1 The Setup . 2
1.1.2 Formulating the Problem and a Graphical Solution 2
1.1.3 Changing the Problem 4
1.1.4 Discussion . 6

1.2 Formulations . 7
1.3 Applications . 8

1.3.1 The Diet Problem . 8
1.3.2 Linear Surface Fitting 9
1.3.3 Load Balancing Problem 10
1.3.4 Resource Allocation . 10
1.3.5 Classification . 11
1.3.6 Minimum-Cost Network Flow 12

1.4 Algorithms and Complexity . 14
1.4.1 The Simplex Method . 14
1.4.2 Interior-Point Methods 15

2 Linear Algebra: A Constructive Approach 17
2.1 Jordan Exchange . 17
2.2 Linear Independence . 23
2.3 Matrix Inversion . 27
2.4 Exact Solution of m Equations in n Unknowns 32
2.5 Solving Linear Equations Efficiently 39
2.6 LU Decomposition . 41

3 The Simplex Method 45
3.1 A Simple Example . 46
3.2 Vertices . 51
3.3 The Phase II Procedure . 53
3.4 The Phase I Procedure . 60
3.5 Finite Termination . 65

vii

viii Contents

3.5.1 The Nondegenerate Case 65
3.5.2 Cycling . 66
3.5.3 The General Case . 67

3.6 Linear Programs in Nonstandard Form 72
3.6.1 Transforming Constraints and Variables 72
3.6.2 Scheme I . 76
3.6.3 Scheme II . 80
3.6.4 Summary . 86

4 Duality 89
4.1 Duality and Rank in Linear Systems 89
4.2 Duality in Linear Programming . 94
4.3 Interpretation of Linear Programming Duality 96
4.4 Duality Theory . 97
4.5 KKT Optimality Conditions . 100
4.6 Dual Simplex Method . 102
4.7 General Linear Programs . 107
4.8 Big M Method . 110
4.9 Applications of Duality . 112

5 Solving Large Linear Programs 117
5.1 Foundations . 118

5.1.1 Basic Feasible Solutions and Basis Matrices 118
5.1.2 Geometric Viewpoint 121

5.2 The Revised Simplex Method . 123
5.2.1 Upper and Lower Bounds 129
5.2.2 Generating Basic Feasible Solutions 134
5.2.3 Basis Updates . 139
5.2.4 Advanced Pivot Selection Mechanisms 142

5.3 Network Flow Problems . 143
5.3.1 Minimum-Cost Network Flow 144
5.3.2 Shortest-Path Problem 145
5.3.3 Max-Flow Problem . 146
5.3.4 Transportation Problem 147
5.3.5 Assignment Problem . 149
5.3.6 Network Simplex Method 149

6 Sensitivity and Parametric Linear Programming 151
6.1 Sensitivity Analysis . 151
6.2 Adding New Variables or Constraints 155
6.3 Parametric Optimization of the Objective Function 158
6.4 Parametric Optimization of the Right-Hand Side 164

7 Quadratic Programming and Complementarity Problems 169
7.1 Nonlinear Programs: Optimality Conditions 169
7.2 Quadratic Programming . 172

Contents ix

7.2.1 Basic Existence Result 172
7.2.2 KKT Conditions . 173
7.2.3 Duality . 176

7.3 Linear Complementarity Problems 177
7.4 Lemke’s Method . 178
7.5 Bimatrix Games . 185

7.5.1 Computing Nash Equilibria 186
7.5.2 Zero-Sum Games As Dual Linear Programs 192

8 Interior-Point Methods 195
8.1 Motivation and Outline . 195
8.2 Newton’s Method . 197
8.3 Primal-Dual Methods . 201

8.3.1 An Affine-Scaling Approach 202
8.3.2 Path-Following Methods 204
8.3.3 Solution of the Linear System at Each Interior-Point

Iteration . 208
8.3.4 Practical Primal-Dual Methods 209

8.4 Interior-Point vs. Simplex . 212
8.5 Extension to Quadratic Programming 212

9 Approximation and Classification 217
9.1 Minimax Problems . 217
9.2 Approximation . 218

9.2.1 Chebyshev Approximation 219
9.2.2 L1 Approximation . 221
9.2.3 Approximate Solutions to Systems with Inequality

Constraints . 223
9.2.4 Least-Squares Problems 224

9.3 Huber Estimation . 227
9.4 Classification Problems . 230

A Linear Algebra, Convexity, and Nonlinear Functions 237
A.1 Linear Algebra . 237
A.2 Convex Sets . 239
A.3 Smooth Functions . 242
A.4 Convex Functions . 242
A.5 Quadratic Functions . 244
A.6 Norms and Order Notation . 247
A.7 Taylor’s Theorem . 249

B Summary of Available MATLAB Commands 251
B.1 Basic MATLAB Operations . 251
B.2 MATLAB Functions Defined in This Book 252

x Contents

Bibliography 257

Index 261

Preface

This text has grown over many years from a set of class notes for an undergraduate linear
programming course offered at the University of Wisconsin-Madison. Though targeted to
Computer Science undergraduates, the course has attracted both undergraduates and be-
ginning graduate students from many other departments, including Industrial and Systems
Engineering, Statistics, and Mathematics. The course aims to provide a one-semester ele-
mentary introduction to linear programming formulations, algorithms, computations, and
applications. Only basic knowledge of linear algebra and calculus is required.

One feature of our approach is the use of MATLAB codes to demonstrate the com-
putational aspects of the course, from the elementary manipulations that form the building
blocks of algorithms to full implementations of revised simplex and interior-point methods.
(The latter are clearly not robust or efficient enough to solve larger practical problems,
but they do illustrate the basic principles of the computational methods in question.) The
MATLAB codes (and associated mex files) are distributed on the web site associated with
the book: www.siam.org/books/mp07.

We have included a chapter on quadratic programs and complementarity problems,
which are topics whose importance in a number of application areas appears to be growing
by the day. The final chapter deals with approximation and classification problems, which
are of interest to statisticians and others, showing how these problems can be formulated and
solved as linear or quadratic programs. An earlier chapter deals with the topic of duality,
which is of interest not only because of the insight it provides into the beautiful theory
underlying linear programming but also because of its usefulness in formulating practical
problems. (The dual of a problem may be easier to solve than the primal, or it might provide
a bound on the optimal solution value or other useful information.)

A one-semester undergraduate class should include most of the chapters in the text.
If time is pressing, some of the later chapters could be omitted in part or in their entirety.
However, we believe that all topics covered are interesting and relevant to the intended
student audience, and so we hope that most teachers can find a way to incorporate them into
their curriculum.

We thank the students and colleagues who have given us feedback on the manuscript
during its development, particularly our colleague Bob Meyer. We are also grateful to the
referees of the manuscript who read it thoroughly and provided valuable suggestions for
improvement, most of which we adopted. Finally, we thank our wives and families for their
love and support over many years.

Madison, Wisconsin, USA
Spring 2007

xi

Chapter 1

Introduction

Nothing happens in the universe that does not have a sense of either certain maximum or
minimum. L. Euler, Swiss Mathematician and Physicist, 1707–1783

Optimization is a fundamental tool for understanding nature, science, engineering,
economics, and mathematics. Physical and chemical systems tend to a state that minimizes
some measure of their energy. People try to operate man-made systems (for example, a
chemical plant, a cancer treatment device, an investment portfolio, or a nation’s economy)
to optimize their performance in some sense. Consider the following examples:

1. Given a range of foods to choose from, what is the diet of lowest cost that meets an
individual’s nutritional requirements?

2. What is the most profitable schedule an airline can devise given a particular fleet of
planes, a certain level of staffing, and expected demands on the various routes?

3. Where should a company locate its factories and warehouses so that the costs of
transporting raw materials and finished products are minimized?

4. How should the equipment in an oil refinery be operated, so as to maximize rate of
production while meeting given standards of quality?

5. What is the best treatment plan for a cancer patient, given the characteristics of the
tumor and its proximity to vital organs?

Simple problems of this type can sometimes be solved by common sense, or by using
tools from calculus. Others can be formulated as optimization problems, in which the goal
is to select values that maximize or minimize a given objective function, subject to certain
constraints. In the next section, we show how a practical problem can be formulated as a
particular type of optimization problem known as a linear program.

1

2 Chapter 1. Introduction

1.1 An Example: The Professor’s Dairy
1.1.1 The Setup

University professors sometimes engage in businesses to make a little extra cash. Professor
Snape and his family run a business that produces and sells dairy products from the milk
of the family cows, Daisy, Ermentrude, and Florence. Together, the three cows produce 22
gallons of milk each week, and Snape and his family turn the milk into ice cream and butter
that they then sell at the Farmer’s Market each Saturday morning.

The butter-making process requires 2 gallons of milk to produce one kilogram of
butter, and 3 gallons of milk is required to make one gallon of ice cream. Professor Snape
owns a huge refrigerator that can store practically unlimited amounts of butter, but his freezer
can hold at most 6 gallons of ice cream.

Snape’s family has at most 6 hours per week in total to spend on manufacturing their
delicious products. One hour of work is needed to produce either 4 gallons of ice cream or
one kilogram of butter. Any fraction of one hour is needed to produce the corresponding
fraction of product.

Professor Snape’s products have a great reputation, and he always sells everything
he produces. He sets the prices to ensure a profit of $5 per gallon of ice cream and $4 per
kilogram of butter. He would like to figure out how much ice cream and butter he should
produce to maximize his profit.

1.1.2 Formulating the Problem and a Graphical Solution

The first step in formulating this problem is to identify the two variables, which are the
quantities that we are able to vary. These are the number of gallons of ice cream, which we
denote by x, and the number of kilograms of butter, which we denote by y. Next, we figure
out how the objective function depends on these variables. We denote the objective (which
in this case is the profit) by z, and note that it is simply z = 5x + 4y dollars in this example.

Since we aim to maximize the production, it is generally in our interest to choose x

and y as large as possible. However, the constraints on production mentioned above prevent
us from making these variables too large. We now formulate the various constraints in the
description above algebraically.

• The 6-gallon constraint on freezer capacity causes us to impose the constraint x ≤ 6.

• The total amount of labor required to produce x gallons of ice cream and y kilograms
of butter is .25x + y. Since the family can labor for a total of at most 6 hours during
the week, we have the constraint .25x + y ≤ 6.

• We look at the amount of milk needed by the production process. The total number
of gallons of milk used is 3x + 2y, and since there are 22 gallons of milk available,
we have the constraint 3x + 2y ≤ 22.

• Finally, the problem must include the simple constraints x ≥ 0, y ≥ 0, because it
does not make sense to produce negative amounts of ice cream or butter.

1.1. An Example: The Professor’s Dairy 3

z=10

freezer constraint (x <= 6)labor constraint (.25 x + y <= 6)

solution (4,5)

z=20

z=30

z=40

milk constraint (3x+2y <= 22)

y
(b

ut
te

r)

x (ice cream)

Figure 1.1. The Professor’s dairy: Constraints and objective.

Summarizing, we can express the linear program mathematically as follows:

max
x,y

z = 5x + 4y

subject to x ≤ 6,

.25x + y ≤ 6,

3x + 2y ≤ 22,

x, y ≥ 0.

(1.1)

Figure 1.1 illustrates this problem graphically, plotting the variable x along the hori-
zontal axis and y along the vertical axis. Each constraint is represented by a line, the shaded
side of the line representing the region of the (x, y) plane that fails to satisfy the constraint.
For example, the constraint 3x +2y ≤ 22 is represented by the line 3x +2y = 22 (obtained
by replacing the inequality by an equality), with the “upper” side of the line shaded. In
general, we can determine which side of the line satisfies the constraint and which does not
by picking a point that does not lie on the line and determining whether or not the constraint
is satisfied at this point. If so, then all points on this side of the line are feasible; if not, then
all points on this side of the line are infeasible.

The set of points satisfying all five of the constraints is known as the feasible region.
In this problem the feasible region is the five-sided polygonal region in the middle of the
figure.

The linear programming problem is to the find a point in this feasible region that
maximizes the objective z = 5x + 4y. As a step towards this goal, we plot in Figure 1.1
a dotted line representing the set of points at which z = 20. This line indicates feasible
points such as (x, y) = (0, 5) and (x, y) = (2, 2.5) that yield a profit of $20. Similarly,
we plot the line z = 5x + 4y = 30—the set of points that achieves a profit of $30. Note

4 Chapter 1. Introduction

that this line (and all other lines of constant z) is parallel to the line z = 20. In fact, we can
maximize profit over the feasible region by moving this line as far as possible to the right
while keeping some overlap with the feasible region and keeping it parallel to the z = 20
line. It is not difficult to see that this process will lead us to a profit of z = 40 and that
this line intersects the feasible region at the single point (x, y) = (4, 5). Note that this
point is a “corner point” of the feasible region, corresponding to the point at which two
of the constraints—the limit of milk supply and the limit on labor supply—are satisfied as
equalities.

1.1.3 Changing the Problem

The graphical representation of Figure 1.1 can be used to see how the solution changes when
the data is changed in certain ways. An investigation of this type is known as sensitivity
analysis and will be discussed in Chapter 6. We discuss two possible changes to the example
problem here. A first time reader may skip this section without loss of continuity since it is
meant primarily as an intuitive graphical introduction to duality and sensitivity.

First, we look at what happens if Professor Snape decides to increase the price of
ice cream, while leaving the price of butter (and all the other problem data) the same. We
ask the question, How much can we increase the price of ice cream without changing the
solution (4, 5)? It is intuitively clear that if the profit on ice cream is much greater than on
butter, it would make sense to make as much ice cream as possible subject to meeting the
constraints, that is, 6 gallons. Hence, if the price of ice cream increases by more than a
certain amount, the solution will move away from the point (4, 5).

Suppose for instance that we increase the profit on ice cream to $5.50, so that the
objective function becomes z = 5.5x + 4y. If we plot the contours of this new objective
(see Figure 1.2), we find that they are rotated slightly in the clockwise direction from the
contours in Figure 1.1. It is clear that for a $42 profit, (4, 5) is still the optimum. However,
if the profit on ice cream is increased further, the contours will eventually have exactly the
same slope as the “milk” constraint, at which point every point on the line joining (4, 5) to
(6, 2) will be a solution. What ice cream profit p will make the contours of the objective
z = px + 4y parallel to the line 3x + 2y = 22? By matching the slopes of these two lines,
we find that the operative value is p = 6. If the price of ice cream is slightly higher than 6,
the point (6, 2) will be the unique optimum.

Exercise 1-1-1. Plot a figure like Figures 1.1 and 1.2 for the case in which the objective is
z = 8x + 4y, while the constraints remain the same. Verify from your figure that (6, 2) is
the optimum.

Returning to the original problem, we could ask a slightly different question. Suppose
that Professor Snape’s neighbor, Professor Crouch, has some excess milk and is offering to
sell it to Snape for $1 per gallon. Given that Snape still wants to maximize his profits, and
given that his other constraints are still in place (labor and freezer capacity), should he buy
any milk from Crouch and, if so, how much?

To answer this question, we note first that if Snape purchases c gallons, the milk
constraint becomes 3x + 2y ≤ 22 + c. Graphically, the boundary of this constraint shifts
upward and to the right, as we see in Figure 1.3. Provided c is not too large, the contours of
the objective will not be greatly affected by this change to the problem, and so the solution

1.1. An Example: The Professor’s Dairy 5

solution (4,5)

labor constraint (.25 x + y <= 6) freezer constraint (x <= 6)

milk constraint (3x+2y <= 22)

x (ice cream)

y
(b

ut
te

r)

z=20

z=30

z=40

Figure 1.2. The Professor’s dairy: After increasing the profit on ice cream to
$5.50, the objective contours rotate slightly clockwise, but the optimum is still (4, 5).

freezer constraint (x <= 6)labor constraint (.25 x + y <= 6)

solution (4+.4c,5−.1c)

milk constraint (3x+2y <= 22+c)

y
(b

ut
te

r)

x (ice cream)

Figure 1.3. The Professor’s dairy: If the professor purchases c gallons from his
neighbor, the milk constraint shifts upward and to the right.

6 Chapter 1. Introduction

will still occur at the intersection of the labor constraint with the milk constraint, that is, at
the point (x, y) that satisfies the following two equalities:

.25x + y = 6,

3x + 2y = 22 + c.

The solution is
(x, y) = (4 + .4c, 5 − .1c),

and the objective function value at this point (allowing for the $1 per gallon purchase price
of milk from Crouch) is

z = 5x + 4y − c = 5(4 + .4c) + 4(5 − .1c) − c = 40 + .6c.

It follows that it is definitely to Snape’s advantage to buy some milk from Crouch, as he
earns an extra 60 cents in profit for each gallon purchased.

However, if c is too large, the solution will no longer be at the intersection of the
labor and milk constraints, and there is no further advantage to be gained. This happens
when the milk constraint is shifted so far that it intersects with both the labor limit and the
freezer limit at the point (6, 4.5), which is true when c = 5. As c increases above this value,
the solution stays at (6, 4.5) while the profit actually starts to decline, as Snape is buying
surplus milk unnecessarily without producing any more of either butter or ice cream.

Analysis of this type will be discussed further when we cover the subject of duality
in Chapter 4.

The graphical analysis used in this section is sufficient for understanding problems
with two variables. However, when extra variables are added (for example, if the professor
decides to make cottage cheese and gourmet yogurt as well), it is hard to solve or analyze the
problem using graphical techniques alone. This book describes computational techniques,
motivated by the graphical analysis above, that can be used to solve problems with many
variables and constraints. Solution of this problem using an algebraic approach, namely the
simplex method, is given in Section 3.

1.1.4 Discussion

The example of this section has three important properties.

• Its variables (the amounts of ice cream and butter to produce) are continuous variables.
They can take on any real value, subject to satisfying the bounds and constraints.

• All constraints and bounds involve linear functions of the variables. That is, each
term of the sum is either a constant or else a constant multiple of one of the variables.

• The objective function—profit, in this case—is also a linear function of the variables.

Problems with these three essential properties are known as linear programming prob-
lems or linear programs. Most of our book is devoted to algorithms for solving this class
of problems. Linear programming can be extended in various ways to give broader classes
of optimization problems. For instance, if we allow the objective function to be a quadratic

1.2. Formulations 7

function of the variables (but still require the constraint to be linear and the variables to
be continuous), we obtain quadratic programming problems, which we study in Chapter 7.
If we allow both constraints and objective to be nonlinear functions (but still require con-
tinuous variables), the problem becomes a nonlinear program. If we restrict some of the
variables to take on integer values, the problem becomes an integer program. We give
several references for nonlinear and integer programming in the Notes and References at
the end of this chapter.

Since 1947, when George B. Dantzig proposed his now classic simplex method for
solving linear programs, the utilization of linear programming as a tool for modeling and
computation has grown tremendously. Besides becoming a powerful tool in the area for
which it was originally designed (economic planning), it has found a myriad of applications
in such diverse areas as numerical analysis, approximation theory, pattern recognition, and
machine learning. It has become a key tool in the important disciplines of operations
research and management science.

1.2 Formulations
Throughout this book, we will refer to the following form of the linear program as the
standard form:

min
x1,x2,...,xn

z = p1x1 + · · · + pnxn

subject to A11x1 + · · · + A1nxn ≥ b1,
...

. . .
...

...

Am1x1 + · · · + Amnxn ≥ bm,

x1, x2, . . . , xn ≥ 0.

(1.2)

By grouping the variables x1, x2, . . . , xn into a vector x and constructing the following
matrix and vectors from the problem data,

A =



A11 · · · A1n

...
. . .

...

Am1 · · · Amn


 , b =




b1
...

bm


 , p =




p1
...

pn


 ,

we can restate the standard form compactly as follows:

min
x

z = p′x
subject to Ax ≥ b, x ≥ 0,

where p′ denotes the transpose of the column vector p, which is known as the cost vector.
Every linear program can be put into this standard form. We show in Chapter 3

how problems with equality constraints, free variables, and so on can be reformulated as
standard-form problems. Problem (1.1) of the previous section can be expressed in standard
form by setting x to be the vector made up of the two scalars x and y, while

A = −

 1 0

.25 1
3 2


 , b = −


 6

6
22


 , p = −

[
5
4

]
.

8 Chapter 1. Introduction

To perform this conversion, we changed “≤” inequality constraints into “≥” inequalities by
simply multiplying both sides by −1. We also noted that maximization of a function (which
we do in (1.1)) is equivalent to minimization of the negation of this function, which is why
we have negative entries in p above.

In Chapter 5 we introduce another formulation in which all the general constraints are
assumed to be equality constraints. This is known as the canonical form and is written as
follows:

min z = p′x
subject to Ax = b, x ≥ 0.

As with the standard form, any linear program can be put into this form by appropriate
transformations of the constraints and variables. We could express our example (1.1) in
canonical form by first replacing (x, y) by (x1, x2) in (1.1) and then introducing three slack
variables x3, x4, and x5 to represent the amount by which the right-hand sides exceed the
left-hand sides of the three constraints. We then obtain the following formulation:

min
x

z = −5x1 − 4x2

subject to x1 + x3 = 6,

.25x1 + x2 + x4 = 6,

3x1 + 2x2 + x5 = 22,

x1, x2, x3, x4, x5 ≥ 0.

We can verify that the problem is in canonical form by setting

A =

 1 0 1 0 0

.25 1 0 1 0
3 2 0 0 1


 , b =


 6

6
22


 , p = −




5
4
0
0
0


 , x =




x1

x2

x3

x4

x5


 .

1.3 Applications
In this section, we discuss several other practical problems that can be formulated as linear
programs.

1.3.1 The Diet Problem

In an early application, linear programming was used to determine the daily diet for a person.
From among a large number of possible foods, a diet was determined that achieved all the
nutritional requirements of the individual while minimizing total cost.

To formulate as a linear program, we suppose that the n possible foods are indexed by
j = 1, 2, . . . , n and that the m nutritional categories are indexed by i = 1, 2, . . . , m. We
let xj be the amount of food j to be included in the diet (measured in number of servings),
and denote by pj the cost of one serving of food j . We let bi denote the minimum daily
requirement of nutrient i and Aij be the amount of nutrient i contained in one serving of
food j . By assembling this data into matrices and vectors in the usual way, we find that the

1.3. Applications 9

linear program to determine the optimal diet can be formulated as follows:

min
x

z = p′x
subject to Ax ≥ b, x ≥ 0.

The bounds x ≥ 0 indicate that only nonnegative amounts of each food will be considered,
while the “≥” inequality constraints require the diet to meet or exceed the nutritional re-
quirements in each category i = 1, 2, . . . , m. If we wish to place an upper limit of dj on
the number of servings of food j to be included in the diet (to ensure that the diet does
not become too heavy on any one particular food), we could add the constraints xj ≤ dj ,
j = 1, 2, . . . , n, to the model.

1.3.2 Linear Surface Fitting

Suppose that we have a set of observations (Ai·, bi), i = 1, 2, . . . , m, where each Ai· is a
(row) vector with n real elements, and each bi is a single real number. We would like to find
a vector x ∈ Rn and a constant γ such that

Ai·x + γ ≈ bi for each i = 1, 2, . . . , m.

The elements of the vectorx can be thought of as “weights” that are applied to the components
of Ai· to yield a prediction of each scalar bi . For example, m could be the number of people
in a population under study, and the components of each Ai· could represent the income
of person i, the number of years they completed in school, the value of their house, their
number of dependent children, and so on. Each bi could represent the amount of federal
income tax they pay.

To find the “best” pair (x, γ), we need to measure the misfit between Ai·x + γ and bi

over all the i. One possible technique is to sum the absolute values of all the mismatches,
that is,

m∑
i=1

|Ai·x + γ − bi |.

We can formulate a linear program to find the (x, γ) that minimizes this measure. First,
define the matrix A and the vector b by

A =




A1·
A2·
...

Am·


 , b =




b1

b2
...

bm


 .

Next, write the linear program as follows:

min
x,γ,y

z = e′y

subject to −y ≤ Ax + γ e − b ≤ y.

In this formulation, e = (1, 1, . . . , 1) ∈ Rm, so that the objective is the sum of the elements
of y. The constraints ensure that each yi is no smaller than the absolute value |Ai·x+γ −bi |,

10 Chapter 1. Introduction

while the fact that we are minimizing the sum of yi’s ensures that each yi is chosen no larger
than it really needs to be. Hence, the minimization process chooses each yi to be equal to
|Ai·x + γ − bi |.

When n = 1 (that is, each Ai· has just a single element), this problem has a simple
geometric interpretation. Plotting Ai· on the horizontal axis and bi on the vertical axis,
this formulation finds the line in the two-dimensional (Ai·, bi) space such that the sum of
vertical distances from the line to the data points bi is minimized.

1.3.3 Load Balancing Problem

Consider the task of balancing computational work among n processors, some of which
may already be loaded with other work. We wish to distribute the new work in such a way
that the lightest-loaded processor has as heavy a load as possible. We define the data for the
problem as follows:

pi = current load of processor i = 1, 2, . . . , n (nonnegative),
L = additional total load to be distributed,
xi = fraction of additional load L distributed to processor i, with xi ≥ 0 and∑n

i=1 xi = 1,
γ = minimum of final loads after distribution of workload L.

Assuming that the new work can be distributed among multiple processors without incurring
any overhead, we can formulate the problem as follows:

max
x,γ

γ

subject to γ e ≤ p + xL, e′x = 1, x ≥ 0,

where e = (1, 1, . . . , 1)′ is the vector of 1’s with n components.
Interestingly, this is one of the few linear programs that can be solved in closed form.

When pi ≤ L/n for all i = 1, 2, . . . , n, the optimal γ is (e′p + L)/n, and all processors
have the same workload γ . Otherwise, the processors that had the heaviest loads to begin
with do not receive any new work; the solution is slightly more complicated in this case
but can be determined by sorting the pi’s. Similar solutions are obtained for the continuous
knapsack problem that we mention later.

1.3.4 Resource Allocation

Consider a company that needs to decide how to allocate its resources (for example, raw
materials, labor, or time on rented equipment) in a certain period to produce a variety of
finished products. Suppose the company is able to to produce m types of finished products
(indexed i = 1, 2, . . . , m) and that it uses n resources (indexed by j = 1, 2, . . . , n). Each
unit of finished product i yields ci dollars in revenue, whereas each unit of resource j

costs dj dollars. Suppose too that one unit of product i requires Aij units of resource j

to manufacture and that a maximum of bj units of resource j are available in this period.
The manufacturer aims to maximize their profit (defined as total revenue minus total cost)
subject to using no more resources than are available.

1.3. Applications 11

The variables in this problem are yi , i = 1, 2, . . . , m, which is the number of units of
product i, and xj , j = 1, 2, . . . , n, the number of units of resource j consumed. The linear
programming formulation is as follows:

max
x,y

z = c′y − d ′x

subject to x = A′y, x ≤ b, x, y ≥ 0.

To further explain the constraint x = A′y better, we consider the j th equation of this system,
which is

xj = A1j y1 + A2j y2 + · · · + Amjym.

Each term Aijyi indicates the amount of resource j used to manufacture the desired amount
of product i, and so the summation represents the total amount of resource j required to
make the specified amounts of the products. The bound x ≤ b ensures that we do not exceed
the available resources, and the nonnegativity constraint y ≥ 0 constrains us to produce a
nonnegative amount of each product. (The constraint x ≥ 0 is actually redundant and can
be omitted from the formulation; since all the elements of y and A are nonnegative, all
elements of x = A′y must also be nonnegative.)

1.3.5 Classification

In classification problems, we are given two sets of points in the space of n dimensions Rn.
Our aim is to find a hyperplane in the space Rn that separates these two sets as accurately
as possible. We use this hyperplane to classify any new points that arise; if the new point
lies on one side of the hyperplane, we classify it as an element of the first set, while if it lies
on the other side, we place it in the second set.

Linear programming can be used to find the separating hyperplane, which is defined
by a vector w ∈ Rn and a scalar γ . Ideally, we would like each point t in the first set to
satisfy w′t ≥ γ , while each point t in the second set satisfies w′t ≤ γ . To guard against
a trivial answer (note that the conditions just specified are trivially satisfied by w = 0 and
γ = 0!), we seek to enforce the stronger conditions w′t ≥ γ + 1 for points in the first
set and w′t ≤ γ − 1 for points in the second set. Moreover, because the two sets may
be intermingled, it may not be able to enforce a clean separation. We define the objective
function in the linear program to be the sum of the average violations of the classification
conditions over each set.

We set up the linear program by constructing an m × n matrix M whose ith row
contains the n components of the ith points in the first set. Similarly, we construct a k × n

matrix B from the points in the second set. The violations of the condition w′t ≥ γ + 1
for points in the first set are measured by a vector y, which is defined by the inequalities
y ≥ −(Mw − γ e) + e, y ≥ 0, where e = (1, 1, . . . , 1)′ ∈ Rm. Similarly, violations of the
condition w′t ≤ γ − 1 for points in the second set are measured by the vector z defined
by z ≥ (Bw − γ e) + e, z ≥ 0, where e ∈ Rk . In general, e will be a vector of ones of
appropriate dimension. The average violation on the first set is e′y/m and on the second

12 Chapter 1. Introduction

w’x=γ−1

w’x=γ+1

O
O O

O

O
O

O

O

O

OO

O

O
O

O

O

O
O

O

O

O
O

OO

O

O
O

O

O
x

x x

xx
x

x x

x
x

x
x

x

x
x

x

x

x

x

x

x x

x

x

x

x
x

x

x

x

x x x

x x

x x

x

x
x

x
x

xx

x

x

B

M
O

O

O
O
O

OO

O

O

O

O

O

x

x
x

x
x

x

x

x

x

x

x

x

x

O O

O

w’x=

O

γ

Figure 1.4. Classification using the plane w′x = γ .

set is e′z/k, and so we can write the linear program as follows:

min
w,γ,y,z

1
m

e′y + 1
k
e′z

subject to y ≥ −(Mw − γ e) + e,

z ≥ (Bw − γ e) + e,

(y, z) ≥ 0.

Figure 1.4 shows the separation in a particular example arising in breast cancer diag-
nosis (Mangasarian, Street & Wolberg (1995)). The first set M (indicated by circles in the
diagram) consists of fine needle aspirates (samples) taken from malignant tumors. Their
location in the two-dimensional space is defined by the measures of two properties of each
tumor, for example, the average cell size and the average deviation from “roundness” of the
cells in the sample. The second set B (indicated by crosses) consists of fine needle aspirates
taken from benign tumors. Note that the hyperplane w′x = γ (which in two dimensions is
simply a line) separates most of the benign points from most of the malignant points.

Another interesting application of the linear programming approach to classification
is described by Bosch & Smith (1998), who use a separating plane in three dimensions that
count the frequencies of certain words to determine that 12 disputed Federalist Papers were
probably authored by James Madison rather than Alexander Hamilton.

1.3.6 Minimum-Cost Network Flow

Network problems, which involve the optimization of a flow pattern in a network of nodes
and arcs, are important because of their applicability to many diverse practical problems.

1.3. Applications 13

1

7

2

3

4

5

6

9

8

10

Figure 1.5. Nodes and arcs in a network.

We consider here a particular kind of network problem known as minimum-cost network
flow, where the “flow” consists of the movement of a certain commodity along the arcs of
a network, from the nodes at which the commodity is produced to the nodes where it is
consumed. If the cost of transporting the commodity along an arc is a fixed multiple of the
amount of commodity, then the problem of minimizing the total cost can be formulated as
a linear program.

Networks, such as that depicted in Figure 1.5, consist of nodes N and arcs A, where
the arc (i, j) connects an origin node i to a destination node j . Associated with each node i

is a divergence bi , which represents the amount of product produced or consumed at node i.
When bi > 0, node i is a supply node, while if bi < 0, it is a demand node. Associated with
each arc (i, j) are a lower bound lij and an upper bound uij of the amount of the commodity
that can be moved along that arc. Each variable xij in the problem represents the amount of
commodity moved along the arc (i, j). The cost of moving one unit of flow along arc (i, j)

is cij . We aim to minimize the total cost of moving the commodity from the supply nodes
to the demand nodes.

Using this notation, we can formulate the minimum-cost network flow problem as
follows:

min
x

z =
∑

(i,j)∈A
cij xij

subject to
∑

j :(i,j)∈A
xij −

∑
j :(j,i)∈A

xji = bi for all nodes i ∈ N ,

lij ≤ xij ≤ uij for all arcs (i, j) ∈ A.

The first constraint states that the net flow through each node should match its divergence.
The first summation represents the total flow out of node i, summed over all the arcs that have
node i as their origin. The second summation represents total flow into node i, summed over

14 Chapter 1. Introduction

all the arcs having node i as their destination. The difference between inflow and outflow
is constrained to be the divergence bi .

By relabeling the flow variables as x1, x2, . . . , xn, where n is the total number of
arcs, we can put the problem into a more general programming form. However, the special
notation used above reveals the structure of this application, which can be used in designing
especially efficient versions of the simplex method. Note, in particular, that the coefficient
matrix arising from the flow constraints contains only the numbers 0, 1, and −1. If all
the problem data is integral, it can be shown that the solution x also contains only integer
components.

1.4 Algorithms and Complexity
Though easy to state, linear programs can be quite challenging to solve computationally.
The essential difficulty lies in determining which of the inequality constraints and bounds are
active (that is, satisfied as equalities) at the solution and which are satisfied but inactive. (For
example, the constraint 2x1 +x2 ≤ 8 is active at the point (x1, x2) = (1, 6); it is satisfied but
inactive at the point (2, 2); it is violated at the point (4, 1).) To determine which constraints
are active at the solution would seem to be a combinatorial problem: If there are l inequality
constraints and bounds, and each of them can be either active or inactive, we may have a
total of 2l active/inactive combinations. The situation hardly improves if we make use of
the fact that a solution occurs at one of the vertices of the feasible region, defined as a point
at which at least n of the constraints are active. A problem in Rn with a total of l inequality
constraints and bounds (and no equality constraints) may have as many as(

l

n

)
= l!

(l − n)!n!
vertices. Even for a small problem with n = 10 variables and l = 20 inequality constraints
and bounds, there may be 184, 756 vertices, and possibly 1, 048, 576 active/inactive com-
binations. A “brute force” algorithm that examines all these possibilities will be much too
slow for practical purposes.

1.4.1 The Simplex Method

From a geometrical point of view, the simplex method is easy to understand. It starts
by determining whether the feasible region is empty. If so, it declares the problem to be
infeasible and terminates. Otherwise, it finds a vertex of the feasible region to use as a
starting point. It then moves from this vertex to an adjacent vertex for which the value of
the objective z is lower—in effect, sliding along an edge of the feasible region until it can
proceed no further without violating one of the constraints. This process is repeated; the
algorithm moves from vertex to (adjacent) vertex, decreasing z each time. The algorithm
can terminate in one of two ways. First, it may encounter a vertex whose value of z is less
than or equal to all adjacent vertices. In this case, it declares this vertex to be a solution of
the linear program. Second, it may detect that the problem is unbounded. That is, it may
find a direction leading away from the current vertex that remains feasible (no matter how
long a step is taken along it) such that the objective z decreases to −∞ along this direction.
In this case, it declares the problem to be unbounded.

1.4. Algorithms and Complexity 15

Suppose in our two-variable example of Figure 1.1 that the simplex algorithm starts at
the origin (0, 0). It could find the optimum (4, 5) by moving along one of two paths where,
due to conversion to a minimization problem, z is the negative of that depicted in Figure 1.1.

Path 1 Path 2
(0,0) z = 0
(6,0) z = −30
(6,2) z = −38
(4,5) z = −40

(0,0) z = 0
(0,6) z = −24
(4,5) z = −40

Note that both adjacent vertices of the initial point (0, 0) have lower objective values,
and hence each one is a valid choice for the next iterate. The simplex method uses a pivot
selection rule to select from among these possibilities; different variants of the simplex
method use different pivot rules, as we see in Chapters 3 and 5.

1.4.2 Interior-Point Methods

Although the simplex method performs well on most practical problems, there are patho-
logical examples (Klee & Minty (1972)) in which the number of iterations required is
exponential in the number of variables. On such examples, linear programming seems to
reveal a combinatorial nature. A surprising development occurred in 1979, when a (theoret-
ically) more efficient method was discovered by Khachiyan (1979). For problems in which
the data A, b, c were integer or rational numbers, Khachiyan’s ellipsoid method can solve the
problem in a time that is bounded by a polynomial function of the number of bits L needed
to store the data and the number of variables n. However, the ellipsoid method proved to
be difficult to implement and disappointingly slow in practice. Karmarkar (1984) proposed
a new algorithm with a similar polynomial bound. He made the additional claim that a
computational implementation of his algorithm solved large problems faster than existing
simplex codes. Though this claim was never fully borne out, Karmarkar’s announcement
started a surge of new research into interior-point methods, so named because their iterates
move through the interior of the feasible region toward a solution, rather than traveling
from vertex to vertex around the boundary. Software based on interior-point methods is
often significantly faster than simplex codes on large practical problems. We discuss these
methods further in Chapter 8.

Notes and References
The use of the word “programming” in connection with linear programming is some-
what anachronistic. It refers to the step-by-step mathematical procedure used to solve this
optimization problem, not specifically to its implementation in a computer program. The
term “linear programming” was coined in the 1940s, well before the word “programming”
became strongly associated with computers.

The definition of the term standard form is itself not “standard”; other authors use
a definition different from the one we provide in (1.2). The term canonical form is not
widely used and is also not standard terminology, but we use it here as a convenient way to
distinguish between the two formulations, both of which appear throughout the book.

16 Chapter 1. Introduction

The classic text on the simplex method is by the inventor of this method, George
B. Dantzig (1963). In 1939, the Russian Nobel Laureate Leonid V. Kantorovich had also
proposed a method for solving linear programs; see Kantorovich (1960).

More advanced treatments of linear programming than ours include the books of
Chvátal (1983) and Vanderbei (1997). Wright (1997) focuses on interior-point methods.
Several advanced chapters on linear programming (both simplex and interior-point) also
appear in the text of Nocedal & Wright (2006). The latter text also contains material on
more general optimization problems, especially nonlinear optimization problems with and
without constraints. The text of Wolsey (1998) provides an excellent introduction to integer
programming.

Chapter 2

Linear Algebra:
A Constructive Approach

In Section 1.4 we sketched a geometric interpretation of the simplex method. In this chapter,
we describe the basis of an algebraic interpretation that allows it to be implemented on a
computer. The fundamental building block for the simplex method from linear algebra is the
Jordan exchange. In this chapter, we describe the Jordan exchange and its implementation
in MATLAB. We use it in a constructive derivation of several key results in linear algebra
concerning linear independence and the solution of linear systems of equations. In the
latter part of the chapter, we discuss the LU factorization, another linear algebra tool that
is important in implementations of the simplex method.

In this chapter and the rest of the book, we assume basic familiarity with MATLAB.
There are many books and web sites that will get you started in MATLAB; we recommend
the MATLAB Primer by Sigmon & Davis (2004).

We first describe the Jordan exchange, a fundamental building block of linear algebra
and the simplex algorithm for linear programming.

2.1 Jordan Exchange
Consider the following simple linear equation in the one-dimensional variables x and y:

y = ax.

The form of the equation indicates that x is the independent variable and y is the dependent
variable: Given a value of x, the equation tells us how to determine the corresponding value
of y. Thus we can think of the dependent variable as a function of the independent variable;
that is, y(x) := ax. If we assume that a �= 0, we can reverse the roles of y and x as follows:

x = ãy, where ã = 1

a
.

Note that now we have a function x(y) in which x is determined as a function of y. This
exchange in roles between dependent and independent variables gives a very simple proce-
dure for solving either the equation ax − b = 0 or the inequality ax − b ≥ 0, using the

17

18 Chapter 2. Linear Algebra: A Constructive Approach

following simple equivalences:

ax − b = 0 ⇐⇒ ax = y, y = b ⇐⇒ x = ãy, y = b,

ax − b ≥ 0 ⇐⇒ ax = y, y ≥ b ⇐⇒ x = ãy, y ≥ b.
(2.1)

In particular, the second formula gives an explicit characterization of the values of x that
satisfy the inequality ax − b ≥ 0, in terms of an independent variable y for which y ≥ b.

The Jordan exchange is a generalization of the process above. It deals with the
case in which x ∈ Rn is a vector of independent variables and y ∈ Rm is a vector of
dependent variables, and we wish to exchange one of the independent variables with one
of the dependent variables. The Jordan exchange plays a crucial role in solving systems
of equations, linear inequalities, and linear programs. In addition, it can be used to derive
fundamental results of linear algebra and linear programming.

We now demonstrate a Jordan exchange on the system y = Ax by exchanging the roles
of a component yr of y and a component xs of x. First, we write this system equation-wise as

yi = Ai1x1 + Ai2x2 + · · · + Ainxn, i = 1, 2, . . . , m, (2.2)

where the independent variables are x1, x2, . . . , xn and the dependent variables are
y1, y2, . . . , ym, and the Aij ’s are the coefficients. We can think of the yi’s as (linear)
functions of xj ’s, that is,

yi(x) := Ai1x1 + Ai2x2 + · · · + Ainxn, i = 1, 2, . . . , m, (2.3)

or, more succinctly, y(x) := Ax. This system can also be represented in the following
tableau form:

x1 · · · xs · · · xn

y1 = A11 · · · A1s · · · A1n

...
...

...
...

yr = Ar1 · · · Ars · · · Arn

...
...

...
...

ym = Am1 · · · Ams · · · Amn

Note that the tableau is nothing more than a compact representation of the system of equa-
tions (2.2) or the functions determining the dependent variables from the independent vari-
ables (2.3). All the operations that we perform on the tableau are just simple algebraic
operations on the system of equations, rewritten to conform with the tableau representation.

We now describe the Jordan exchange or pivot operation with regard to the tableau
representation. The dependent variable yr will become independent, while xs changes from
being independent to being dependent. The process is carried out by the following three
steps.

(a) Solve the rth equation

yr = Ar1x1 + · · · + Arsxs + · · · + Arnxn

for xs in terms of x1, x2, . . . , xs−1, yr , xs+1, . . . , xn. Note that this is possible if and
only if Ars �= 0. (Ars is known as the pivot element, or simply the pivot.)

2.1. Jordan Exchange 19

(b) Substitute for xs in all the remaining equations.

(c) Write the new system in a new tableau form as follows:

x1 · · · xs−1 yr xs+1 · · · xn

y1 = B11 · · · B1s · · · B1n

...
...

...
...

yr−1 =
xs = Br1 · · · Brs · · · Brn

yr+1 =
...

...
...

...

ym = Bm1 · · · Bms · · · Bmn

To determine the elements Bij in terms of the elements Aij , let us carry out the algebra
specified by the Jordan exchange. As will be our custom in this book, we will describe
and produce corresponding MATLAB m-files for the important algebraic operations that
we perform. Solution of the rth equation

yr =
n∑

j=1
j �=s

Arj xj + Arsxs

for xs gives

xs = 1

Ars

yr +
n∑

j=1
j �=s

−Arj

Ars

xj = Brsyr +
n∑

j=1
j �=s

Brj xj , (2.4)

where

Brs = 1

Ars

, Brj = −Arj

Ars

∀j �= s. (2.5)

These formulae define the rth row Br· of the transformed tableau. We can express them
in MATLAB by first defining J to represent the columns of the tableau excluding the sth
column, that is,

� J = [1:s-1,s+1:n];

and then writing

� B(r,s) = 1.0/A(r,s); B(r,J) = -A(r,J)/A(r,s);

This “vector index” facility is an important feature of MATLAB which enables terse coding
of expressions such as those given in (2.5).

20 Chapter 2. Linear Algebra: A Constructive Approach

We can now proceed with part (b) of the Jordan exchange. Substituting of the expres-
sion for xs from (2.4) in the ith equation of the tableau (i �= r), we have

yi =
n∑

j=1
j �=s

Aij xj + Ais


 1

Ars

yr +
n∑

j=1
j �=s

−Arj

Ars

xj




=
n∑

j=1
j �=s

Bij xj + Bisyr ,

where

Bis = Ais

Ars

, Bij =
(

Aij − Ais

Ars

Arj

)
= (

Aij − BisArj

) ∀i �= r, j �= s. (2.6)

These formulae define rows Bi·, i = 1, 2, . . . , m, i �= r , of the transformed tableau. We
can also write these equations succinctly in MATLAB notation by defining J as above and
defining I to represent all the rows of the tableau except the rth row, that is,

� I = [1:r-1,r+1:m];

and writing

� B(I,s) = A(I,s)/A(r,s);

� B(I,J) = A(I,J) - B(I,s)*A(r,J);

The complete description of one step of the Jordan exchange with pivot Ars is coded
in jx.m—the function jx in MATLAB.

Note that we have introduced the “function” facility of MATLAB.Any function can be
defined in a file of the same name as the function, but with suffix .m, just as the function jx
is stored in jx.m. It can then be invoked from within MATLAB—either from the command
window or from within other functions—by simply typing the function name together with
its arguments. The following example shows a call to the function jx.

Example 2-1-1. Solve the following system of equations for x1, x2 in terms of y1, y2:

y1 = 2x1 + x2,

y2 = 3x1 + x2.

Working from the MATLAB command window, one first loads the data file containing
the matrix A of Example 2-1-1 and then invokes jx twice to perform the two required
Jordan exchanges:

� load ex2-1-1

� B = jx(A,1,1)

� B = jx(B,2,2)

2.1. Jordan Exchange 21

MATLAB file jx.m: Jordan exchange

function B = jx(A,r,s)
% syntax: B = jx(A,r,s)
% input: matrix A, integers r,s
% perform a Jordan exchange with pivot A(r,s)

[m,n] = size(A); B = zeros(m,n);
I = [1:r-1,r+1:m]; J = [1:s-1,s+1:n];

% update pivot row
B(r,s) = 1.0/A(r,s); B(r,J) = -A(r,J)/A(r,s);

% update pivot column
B(I,s) = A(I,s)/A(r,s);

% update remainder of tableau
B(I,J) = A(I,J)-B(I,s)*A(r,J);
return;

Note that we overwrite B at each step to hold the cumulative effects of the sequence of
exchanges.

We now introduce a MATLAB structure that stores a complete tableau—the row and
column labels corresponding to the dependent and independent variables, along with the
matrix of coefficients that defines the relationship between these quantities. The totbl
command can be used to construct a tableau as follows:

� load ex2-1-1

� T = totbl(A);

x1 x2

y1 = 2 1
y2 = 3 1

The row labels (dependent variables) are assigned the default values y1 and y2 and the
column labels (independent variables) the default values x1 and x2; other forms of the
totbl command, discussed later, will allow the user to define their own labels. The
command tbl can be used to print out the tableau along with its associated labels.

To perform Jordan exchanges on the tableau representation (rather than on just the
matrix), we use the labeled Jordan exchange function ljx in place of jx as follows:

� T = ljx(T,1,1); y1 x2

x1 = 0.5 −0.5
y2 = 1.5 −0.5

22 Chapter 2. Linear Algebra: A Constructive Approach

� T = ljx(T,2,2); y1 y2

x1 = −1 1
x2 = 3 −2

In addition to making the algebraic changes to the matrix, ljx swaps the row and column
labels as required by the exchange and prints the modified tableau using tbl. The trailing
semicolon should not be omitted after the call to ljx since it results in the printing of
additional unnecessary information about the structure T.

The following simple theorem provides a formal justification of the Jordan exchange
formulae (2.5) and (2.6) as well as their extension to multiple pivots in succession. The
result will enable us to use the Jordan exchange to give some constructive derivations of key
results in linear algebra and linear programming.

Theorem 2.1.1. Consider the linear function y defined by y(x) := Ax, where A ∈ Rm×n.
After k pivots (with appropriate reordering of rows and columns) denote the initial and kth
tableaus as follows:

xJ1
xJ2

yI1
= AI1J1

AI1J2

yI2
= AI2J1

AI2J2

yI1
xJ2

xJ1
= BI1J1

BI1J2

yI2
= BI2J1

BI2J2

Here I1, I2 is a partition of {1, 2, . . . , m} and J1, J2 is a partition of {1, 2, . . . , n}, with I1

and J1 containing the same number of elements. Then for all values of x ∈ Rn

xJ1
= BI1J1

yI1
(x) + BI1J2

xJ2
,

yI2
(x) = BI2J1

yI1
(x) + BI2J2

xJ2
.

That is, the original linear functions y satisfy the new linear relationships given by the kth
tableau.

Proof. We show the result for one pivot. The result for k pivots follows by induction.
For a pivot on the (r, s) element, we have I1 = {r}, I2 = {1, . . . , r −1, r +1, . . . , m},

J1 = {s}, and J2 = {1, . . . , s − 1, s + 1, . . . , n}. Then for all x, we have

xJ1
− BI1J1

yI1
(x) − BI1J2

xJ2
= xs − Brsyr(x) −

n∑
j=1
j �=s

Brj xj

= xs − 1

Ars


 n∑

j=1

Arjxj


−

n∑
j=1
j �=s

−Arj

Ars

xj

= 0

2.2. Linear Independence 23

and

yI2
(x) − BI2J1

yI1
(x) − BI2J2

xJ2

=


yi(x) − Bisyr(x) −

n∑
j=1
j �=s

Bij xj


 ,

i = 1, 2, . . . , m,

i �= r

=




n∑
j=1

Aijxj − Ais

Ars

n∑
j=1

Arjxj −
n∑

j=1
j �=s

(
Aij − AisArj

Ars

)
xj


 ,

i = 1, 2, . . . , m,

i �= r

= 0,

verifying the claims.

The following result shows that if two tableaus have identical dependent variables for
all possible values of the independent variables, then the tableau entries are also identical.

Proposition 2.1.2. If the linear function y is defined by y(x) = Ax and also by y(x) = Bx,
then A = B.

Proof. Since (A − B)x = 0 for all x ∈ Rn, we can choose x = I·i , where I·i is the ith
column of the identity matrix. We deduce that the ith columns of A and B are identical.
Since this fact is true for all i = 1, 2, . . . , n, we conclude that A = B.

2.2 Linear Independence
A simple geometric way to solve a system of two equations in two unknowns is to plot the
corresponding lines and determine the point where they intersect. Of course, this technique
fails when the lines are parallel to one another. A key idea in linear algebra is that of
linear dependence, which is a generalization of the idea of parallel lines. Given a matrix
A ∈ Rm×n, we may ask if any of its rows are redundant. In other words, is there a row Ak·
that can be expressed as a linear combination of the other rows? That is,

Ak· =
m∑

i=1
i �=k

λiAi·. (2.7)

If so, then the rows of A are said to be linearly dependent.
As a concrete illustration, consider the matrix

A =

1 2 4

3 4 8
5 6 12


 .

24 Chapter 2. Linear Algebra: A Constructive Approach

The third row of this matrix is redundant, because it can be expressed as a linear combination
of the first two rows as follows:

A3· = 2A2· − A1·.

If we rearrange this equation, we see that[−1 2 −1
]
A = 0,

that is, for z′ = [−1 2 −1
]
, z′A = 0 with z �= 0.

We define linear dependence of the rows of a matrix A formally as follows:

z′A = 0 for some nonzero z ∈ Rm.

(We see that (2.7) can be expressed in this form by taking zi = λi , i �= k, zk = −1.) The
negation of linear dependence is linear independence of the rows of A, which is defined by
the implication

z′A = 0 �⇒ z = 0.

The idea of linear independence extends also to functions, including the linear func-
tions y defined by y(x) := Ax that we have been considering above. The functions yi(x),
i = 1, 2, . . . , m, defined by y(x) := Ax are said to be linearly dependent if

z′y(x) = 0 ∀x ∈ Rn for some nonzero z ∈ Rm

and linearly independent if

z′y(x) = 0 ∀x ∈ Rn �⇒ z = 0. (2.8)

The equivalence of the linear independence definitions for matrices and functions is clear
when we note that

z′Ax = 0 ∀x ∈ Rn for some nonzero z ∈ Rm

⇐⇒ z′A = 0 for some nonzero z ∈ Rm.

Thus the functions y(x) are linearly independent if and only if the rows of the matrix A are
linearly independent.

Proposition 2.2.1. If the m linear functions yi are linearly independent, then any p of them
are also linearly independent, where p ≤ m.

Proof. The proof is obvious from contrapositive statement: yi , i = 1, 2, . . . , p, are linearly
dependent implies yi , i = 1, 2, . . . , m, are linearly dependent.

Proposition 2.2.2. If the linear functions y defined by y(x) = Ax, A ∈ Rm×n, are linearly
independent, then m ≤ n. Furthermore, in the tableau representation, all m dependent yi’s
can be made independent; that is, they can be exchanged with m independent xj ’s.

2.2. Linear Independence 25

Proof. Suppose that the linear functions y(x) = Ax are linearly independent. Exchange
y’s and x’s in the tableau until no further pivots are possible, at which point we are blocked
by a tableau of the following form (after a possible rearrangement of rows and columns):

yI1
xJ2

xJ1
= BI1J1

BI1J2

yI2
= BI2J1

0

If I2 �= ∅, we have by Theorem 2.1.1 that

yI2
(x) = BI2J1

yI1
(x) ∀x ∈ Rn,

which we can rewrite as follows:

[−BI2J1
I
] [yI1

(x)

yI2
(x)

]
= 0.

By taking z to be any row of the matrix
[−BI2J1

I
]
, note that z is nonzero and that

z′y(x) = 0. According to definition (2.8), the existence of z implies that the functions
y(x) = Ax are linearly dependent. Hence, we must have I2 = ∅, and therefore m ≤ n and
all the yi’s have been pivoted to the top of the tableau, as required.

Example 2-2-1. For illustration, consider the matrix defined earlier:

A =

1 2 4

3 4 8
5 6 12


 .

Then

� load ex2-2-1

� T = totbl(A);

x1 x2 x3

y1 = 1 2 4
y2 = 3 4 8
y3 = 5 6 12

� T = ljx(T,1,1); y1 x2 x3

x1 = 1 −2 −4
y2 = 3 −2 −4
y3 = 5 −4 −8

� T = ljx(T,2,2); y1 y2 x3

x1 = −2 1 0
x2 = 1.5 −0.5 −2
y3 = −1 2 0

26 Chapter 2. Linear Algebra: A Constructive Approach

Note that we cannot pivot any more y’s to the top and that y3 = −y1 + 2y2. This final
relationship indicates the linear dependence relationship amongst the rows of A, namely
that A3· = −A1· + 2A2·.

The above result can be strengthened to the following fundamental theorem, which
can be taken as an alternative and constructive definition of linear independence.

Theorem 2.2.3 (Steinitz). For a given matrix A ∈ Rm×n, the linear functions y, defined by
y(x) := Ax, are linearly independent if and only if for the corresponding tableau all the
yi’s can be exchanged with some m independent xj ’s.

Proof. The “only if” part follows from Proposition 2.2.2, and so we need to prove just
the “if” part. If all the yi’s can be exchanged to the top of the tableau, then we have (by
rearranging rows and columns if necessary) that

xJ1
xJ2

y = A·J1
A·J2

−→
y xJ2

xJ1
= B·J1

B·J2

Suppose now that there is some z such that z′A = 0. We therefore have that z′Ax = 0 for
all x ∈ Rn. In the right-hand tableau above, we may set the independent variables y = z,
xJ2

= 0, whereupon xJ1
= B·J1

z. For this particular choice of x and y, we have y = Ax

from Theorem 2.1.1, and so it follows that

0 = z′Ax = z′y = z′z,

implying that z = 0. We have shown that the only z for which z′A = 0 is the zero vector
z = 0, verifying that the rows of A and hence the functions y are linearly independent.

A consequence of this result is that given a matrix A, the number of linearly indepen-
dent rows in A is the maximum number of components of y that can be exchanged to the
top of the tableau for the functions y(x) := Ax.

When not all the rows of A are linearly independent, we reach a tableau in which one
or more of the yi’s are expressed in terms of other components of y. These relationships
show the linear dependencies between the functions y(x) and, therefore, between the rows
of the matrix A.

Example 2-2-2. Let the matrix A be defined by

A =

 −1 0 3

2 −2 4
0 −2 10


 .

By using ljx.m, find out how many linearly independent rows A has. If there are linear
dependencies, write them out explicitly.

After entering the matrix A into MATLAB, we construct a tableau and perform two
Jordan exchanges to make y1 and y2 independent variables:

� T=totbl(A); x1 x2 x3

y1 = −1 0 3
y2 = 2 −2 4
y3 = 0 −2 10

2.3. Matrix Inversion 27

� T=ljx(T,2,1);

� T=ljx(T,1,2);

y2 y1 x3

x2 = −0.5 −1 5
x1 = 0 −1 3
y3 = 1 2 0

We cannot exchange y3 with x3 because there is a zero in the pivot position. We
conclude that this matrix has two linearly independent rows. By reading across the final
row of the tableau, we see that the components of y are related as follows:

y3 = y2 + 2y1.

In this example, we could have done the Jordan exchanges in some other way; for
example, T=ljx(T,1,1) followed by T=ljx(T,3,3). However, the relationship that
we derive between the components of y will be equivalent.

Exercise 2-2-3. Let

A =

 1 2 3 4

3 1 3 0
1 3 −3 −8


 .

Using ljx.m, find out how many linearly independent rows A has. By working with A′,
find out how many linearly independent columns it has. If there are linear dependencies,
write them out explicitly.

2.3 Matrix Inversion
An n × n matrix is nonsingular if the rows of A are linearly independent; otherwise the
matrix is singular.

Theorem 2.3.1. The system y = Ax with A ∈ Rn×n can be inverted to x = By if and only
if A is nonsingular. In this case, the matrix B is unique and is called the inverse of A and
is denoted by A−1. It satisfies AA−1 = A−1A = I .

Proof. Apply Steinitz’s theorem (Theorem 2.2.3) to A to get B such that x = By. B is
unique by Proposition 2.1.2. Finally, y = Ax = ABy for all y shows that I − AB = 0,
and x = By = BAx for all x shows that I − BA = 0.

Example 2-3-1. Invert the matrix

A =

2 −1 −1

0 2 −1
0 −1 1




using MATLAB and the ljx function.

� load ex2-3-1

� T = totbl(A);

x1 x2 x3

y1 = 2 −1 −1
y2 = 0 2 −1
y3 = 0 −1 1

28 Chapter 2. Linear Algebra: A Constructive Approach

� T = ljx(T,1,1); y1 x2 x3

x1 = 0.5 0.5 0.5
y2 = 0 2 −1
y3 = 0 −1 1

� T = ljx(T,2,2); y1 y2 x3

x1 = 0.5 0.25 0.75
x2 = 0 0.5 0.5
y3 = 0 −0.5 0.5

� T = ljx(T,3,3); y1 y2 y3

x1 = 0.5 1 1.5
x2 = 0 1 1
x3 = 0 1 2

Note that the inverse of A is now found in this tableau, that is,

� invA = T.val A−1 =

0.5 1 1.5

0 1 1
0 1 2




The command T.val extracts the matrix from the tableau T (that is, it strips off the labels).
We can check that the computed matrix is indeed A−1 by evaluating AA−1 − I using

the following code:

� A*invA-eye(3)

(where eye(3) is MATLAB notation for a 3 × 3 identity matrix). This code should result
in a 3×3 matrix whose elements are zero or very small numbers (which may not be exactly
zero because of numerical roundoff error).

As an alternative method for solving this problem, we show that it is possible not to
pivot along the diagonal. For the matrix B of Theorem 2.3.1 to be A−1, the subscript indices
of x and y must be both arranged in ascending order. If this is not the case, reordering of
rows and/or columns is necessary.

� load ex2-3-1

� T = totbl(A);

� T = ljx(T,1,3);

x1 x2 y1

x3 = 2 −1 −1
y2 = −2 3 1
y3 = 2 −2 −1

2.3. Matrix Inversion 29

� T = ljx(T,3,1); y3 x2 y1

x3 = 1 1 0
y2 = −1 1 0
x1 = 0.5 1 0.5

� T = ljx(T,2,2); y3 y2 y1

x3 = 2 1 0
x2 = 1 1 0
x1 = 1.5 1 0.5

Notice that the numbers in this final tableau are identical to those obtained after the previous
sequence of pivots but that the rows and columns have been reordered according to the
labels. To restore the correct ordering of the rows and columns and recover the inverse A−1,
we use the command

� Atemp = T.val;

to extract the matrix from the tableau and then use standard MATLAB commands to reorder
the rows and columns of the 3 × 3 matrix Atemp to obtain A−1. In this case, we note from
the row labels that rows 1, 2, and 3 of Tmust appear as rows 3, 2, and 1 of A−1, respectively;
while from the column labels we see that columns 1, 2, and 3 of T must appear as rows
3, 2, and 1 of A−1, respectively. We can define permutation vectors I and J to effect the
reordering and then define A−1 as follows:

� I=[3 2 1]; J=[3 2 1];

� invA(I,J)=Atemp;

Alternatively, we can avoid generating Atemp and instead use

� invA(I,J)=T.val;

Note that the permutations correspond to the row and column label orderings after the final
Jordan exchange. That is, the vector I shows the final ordering of the row labels (x3, x2,
x1), and the vector J shows the final ordering of the column labels (y3, y2, y1). This scheme
for choosing the reordering vectors will work in general, provided we put the reordering on
the left-hand side of the assignment of T.val to invA, as above.

Of course, for the example above, one can avoid the final reordering step by pivoting
down the diagonal in order. However, there may be problems for which such a pivot sequence
is not possible. A simple example is given by the matrix

A =
[

0 1
1 1

]
,

for which the (1, 1) element cannot be used as the first pivot. Another example follows.

30 Chapter 2. Linear Algebra: A Constructive Approach

Example 2-3-2. Calculate A−1 using ljx, where

A =

0 1 3

4 3 2
1 6 6


 .

� load ex2-3-2

� T = totbl(A);

x1 x2 x3

y1 = 0 1 3
y2 = 4 3 2
y3 = 1 6 6

� T = ljx(T,3,1); y3 x2 x3

y1 = 0 1 3
y2 = 4 −21 −22
x1 = 1 −6 −6

� T = ljx(T,1,2); y3 y1 x3

x2 = 0 1 −3
y2 = 4 −21 41
x1 = 1 −6 12

� T = ljx(T,2,3); y3 y1 y2

x2 = 0.2927 −0.5366 −0.0732
x3 = −0.0976 0.5122 0.0244
x1 = −0.1707 0.1463 0.2927

We now extract the numerical values from the tableau, define the permutation vectors, and
perform the reordering as follows:

� I=[2 3 1]; J=[3 1 2];

� invA(I,J) = T.val;

A−1 =

 0.1463 0.2927 −0.1707

−0.5366 −0.0732 0.2927
0.5122 0.0244 −0.0976




Exercise 2-3-3. Calculate A−1 using ljx.m, where

A =

1 2 3

2 4 2
1 1 1


 .

2.3. Matrix Inversion 31

Exercise 2-3-4. Use ljx.m to find the inverses of the following matrices in MATLAB:

A =

1 0 1

2 1 1
3 0 0


 , B =


1 0 1

2 1 1
1 1 0


 , C =


2 0 1

1 2 0.5
0 1 1


 .

If a matrix is singular, show the linear dependence between the rows of the matrix. (Use
T.val and perform any reordering needed on the resulting MATLAB matrix to obtain the
final result.)

At this point, we note that the pivot rules described in Section 2.1 in terms of matrix
elements have simple matrix block analogues. That is, instead of pivoting on Ars , we could
instead pivot on the submatrix ARS , where R ⊆ {1, 2, . . . , m} and S ⊆ {1, 2, . . . , n} are two
index sets with the same number of elements. The only real difference is that the inverse
of ARS is used in place of 1/Ars . MATLAB code for the block Jordan exchange is given
in bjx.m. The code incorporates changes to the labels, and so it is an extension of ljx
rather than of jx. In addition, the code updates the matrix A instead of creating the new
matrix B, and so it needs to perform the operations in a slightly different order from the
analogous operations in ljx.

Two successive Jordan exchanges can be effected as one block pivot of order two.
Thus by induction, any sequence of Jordan exchanges can be effected by a single block
pivot. What are the algebraic consequences of this observation? Consider a system that
leads to the following tableau:

A B

C D

(2.9)

where A is square and invertible. Applying a block pivot to the matrix A, the transformed
tableau is

A−1 −A−1B

CA−1 D − CA−1B

(2.10)

The matrix D − CA−1B is called the Schur complement of A in
[

A B
C D

]
. The algebraic

formula for the block pivot operation will prove to be very useful in what follows. For
example, if A−1 exists, then the original matrix (2.9) is invertible if and only if the Schur
complement D − CA−1B is invertible.

Exercise 2-3-5. The following tableau expresses how the dependent variables yI1
and yI2

can be expressed in terms of the independent variables xJ1
and xJ2

:

xJ1
xJ2

yI1
= A B

yI2
= C D

By performing some simple manipulations, derive the following formulae:

xJ1
= A−1yI1

− A−1BxJ2
and yI2

= CA−1yI1
+ (D − CA−1B)xJ2

,

thus justifying the block Jordan exchange formula (2.10).

32 Chapter 2. Linear Algebra: A Constructive Approach

MATLAB file bjx.m: Labeled block Jordan exchange

function A = bjx(A,R,S)
% syntax: B = bjx(A,R,S)
% input: tableau A, integer vectors R,S
% perform a block Jordan exchange with pivot A(R,S)

R = R(:); S = S(:);
[m,n] = size(A.val);

% setdiff(1:m,R) := {1,...,m}\R
I = setdiff(1:m,R); J = setdiff(1:n,S);

% note that values are updated in place
% update pivot column
A.val(R,S) = inv(A.val(R,S));
A.val(I,S) = A.val(I,S)*A.val(R,S);

% update remainder of tableau
A.val(I,J) = A.val(I,J)-A.val(I,S)*A.val(R,J);

% update pivot row
A.val(R,J) = -A.val(R,S)*A.val(R,J);

% now update the labels
swap = A.bas(R);
A.bas(R) = A.nonbas(S);
A.nonbas(S) = swap;

if isfield(A,’dualbas’)
swap = A.dualbas(S);
A.dualbas(S) = A.dualnonbas(R);
A.dualnonbas(S) = swap;

end

tbl(A);

return;

2.4 Exact Solution of m Equations in n Unknowns
At this stage, we have considered only square systems where the number of variables is
the same as the number of equations. In optimization applications, it is more likely that
the systems under consideration have different numbers of variables than equations. Such

2.4. Exact Solution of m Equations in n Unknowns 33

systems pose additional concerns. For example, the system

x1 + x2 = 1

having one equation and two variables has infinitely many solutions, whereas the system

x1 = 1, x1 = 2

clearly has no solution.
Suppose we wish to solve Ax = b (or determine that no solution exists), where

A ∈ Rm×n and b ∈ Rm, with m and n not necessarily equal. The Jordan exchange gives a
simple method for solving this problem under no assumption whatsoever on A.

1. Write the system in the following tableau form:

x 1
y = A −b

Our aim is to seek x and y related by this tableau such that y = 0.

2. Pivot as many of the yi’s to the top of the tableau, say yI1
, until no more can be

pivoted, in which case we are blocked by a tableau as follows (with row and column
reordering):

yI1
xJ2

1
xJ1

= BI1J1
BI1J2

dI1

yI2
= BI2J1

0 dI2

We now ask the question: Is it possible to find x and y related by this tableau such
that y = 0?

3. The system is solvable if and only if dI2
= 0, since we require yI1

= 0 and yI2
= 0.

When dI2
= 0, we obtain by writing out the relationships in the tableau explicitly that

yI1
= 0,

yI2
= BI2J1

yI1
= 0,

xJ2
is arbitrary,

xJ1
= BI1J2

xJ2
+ dI1

.

Note that m could be less than or greater than n.

Example 2-4-1. Solve the following system:

x1 − x2 + x3 = 2,

−x1 + 2x2 + x3 = 3,

x1 − x2 − x3 = −2.

Remember that our technique is to pivot as many of the yi’s to the top of the tableau
as possible and then check that the resulting tableau is still valid. In particular, the elements
in the last column corresponding to the yi’s that we cannot pivot to the top—the subvector
dI2

in the notation above—should be zero.

34 Chapter 2. Linear Algebra: A Constructive Approach

Rewrite the problem as follows:

y1 = x1 − x2 + x3 − 2,

y2 = −x1 + 2x2 + x3 − 3,

y3 = x1 − x2 − x3 + 2,

and carry out the following pivot operations on its tableau representation:

� load ex2-4-1

� T = totbl(A,b);

x1 x2 x3 1
y1 = 1 −1 1 −2
y2 = −1 2 1 −3
y3 = 1 −1 −1 2

This gives rise to the following sequence of tableaus:

� T = ljx(T,1,1); y1 x2 x3 1
x1 = 1 1 −1 2
y2 = −1 1 2 −5
y3 = 1 0 −2 4

� T = ljx(T,2,2); y1 y2 x3 1
x1 = 2 1 −3 7
x2 = 1 1 −2 5
y3 = 1 0 −2 4

� T = ljx(T,3,3); y1 y2 y3 1
x1 = 0.5 1 1.5 1
x2 = 0 1 1 1
x3 = 0.5 0 −0.5 2

The final solution can be read off the tableau by setting y1 = y2 = y3 = 0. We get x1 = 1,
x2 = 1, and x3 = 2. Note that if the calculations are being carried out by hand, the columns
of the tableau that are labeled with a yi can be suppressed since their values are never needed.
This can result in a significant saving in computation time, particularly if you are performing
the steps by hand.

� load ex2-4-1

� T = ljx(T,1,1);

� T = delcol(T,’y1’);

x2 x3 1
x1 = 1 −1 2
y2 = 1 2 −5
y3 = 0 −2 4

2.4. Exact Solution of m Equations in n Unknowns 35

� T = ljx(T,2,1);

� T = delcol(T,’y2’);

x3 1
x1 = −3 7
x2 = −2 5
y3 = −2 4

� T = ljx(T,3,1);

� T = delcol(T,’y3’);

1
x1 = 1
x2 = 1
x3 = 2

Of course, by deleting the yi columns, we lose access to the linear dependence relationships
between these variables.

Exercise 2-4-2. Test yourself on the following example:

x1 + x2 + x3 = 1,

x1 − x2 − x3 = 1,

x1 − x2 + x3 = 3,

which has solution x = (1, −1, 1) using

� load ex2-4-2

� T = totbl(A,b);

� ...

Exercise 2-4-3. Solve the following systems of equations:

1.
2u + 3v + 3w = 2,

5v + 7w = 2,

6u + 9v + 8w = 5.

2.
u + 4v + 2w = −2,

−2u − 8v + 3w = 32,

v + w = 1.

Example 2-4-4. Solve the following system of 3 equations in 4 unknowns:

x1 − x2 + x4 = 1,

x1 + x3 = 1,

x1 + x2 + 2x3 − x4 = 0.

The data file ex2-4-4.mat can be loaded into MATLAB enabling the following sequence
of tableaus to be constructed:

36 Chapter 2. Linear Algebra: A Constructive Approach

� load ex2-4-4

� T = totbl(A,b);

x1 x2 x3 x4 1
y1 = 1 −1 0 1 −1
y2 = 1 0 1 0 −1
y3 = 1 1 2 −1 0

� T =ljx(T,2,1); y2 x2 x3 x4 1
y1 = 1 −1 −1 1 0
x1 = 1 0 −1 0 1
y3 = 1 1 1 −1 1

� T =ljx(T,3,2); y2 y3 x3 x4 1
y1 = 2 −1 0 0 1
x1 = 1 0 −1 0 1
x2 = −1 1 −1 1 −1

At this point we are blocked—we cannot pivot y1 to the top of the tableau because the
pivot elements corresponding to x3 and x4 are both zero. (It makes no sense to exchange
y1 with either y2 or y3 since such a move would not increase the number of yi’s at the top
of the tableau.) Since the element in the final column of the row labeled y1 is nonzero, the
system has no solution because, whenever y2 = 0 and y3 = 0, it follows that y1 = 1. We
are unable to set y1 = y2 = y3 = 0 in the final tableau. In fact, we have

y1(x) = 2y2(x) − y3(x) + 1.

Note that the tableau also shows that the rows of the coefficient matrix A of the original
linear system are related by A1· = 2A2· − A3· and thus are linearly dependent.

Example 2-4-5. We now consider a modification of Example 2-4-4 in which the right-hand
side of the first equation is changed. Our system is now as follows:

x1 − x2 + x4 = 2,

x1 + x3 = 1,

x1 + x2 + 2x3 − x4 = 0.

The data file ex2-4-5.mat can be loaded into MATLAB enabling the following sequence
of tableaus to be constructed:

� load ex2-4-5

� T = totbl(A,b);

x1 x2 x3 x4 1
y1 = 1 −1 0 1 −2
y2 = 1 0 1 0 −1
y3 = 1 1 2 −1 0

2.4. Exact Solution of m Equations in n Unknowns 37

� T =ljx(T,2,1); y2 x2 x3 x4 1
y1 = 1 −1 −1 1 −1
x1 = 1 0 −1 0 1
y3 = 1 1 1 −1 1

� T =ljx(T,3,2); y2 y3 x3 x4 1
y1 = 2 −1 0 0 0
x1 = 1 0 −1 0 1
x2 = −1 1 −1 1 −1

This system has infinitely many solutions because the final column of the tableau
contains a zero in the location corresponding to the yi column label and some of the xj ’s are
still independent variables, and therefore their values can be chosen arbitrarily. Following
the procedure above, we characterize the solution set by allowing x3 and x4 to be arbitrary
and defining

x1 = −x3 + 1,

x2 = −x3 + x4 − 1.

Another way to express this result is to introduce arbitrary variables λ1 and λ2 (representing
the arbitrary values x3 and x4, respectively) and writing the solution as


x1

x2

x3

x4


 =




1
−1
0
0


+




−1
−1
1
0


 λ1 +




0
1
0
1


 λ2.

Exercise 2-4-6. Using the MATLAB functionljx, solve the following systems of equations
by carrying out all pivot operations. If a system has no solution, give a reason. If a system
has infinitely many solutions, describe the solution set as in Example 2-4-5. If the rows of
the matrix are linearly dependent, write down the actual linear dependence relations.

1. Ax = a, where

A =

 2 −1 1 1

−1 2 −1 −2
4 1 1 −1


 , a =


1

1
5


 .

2. Bx = b, where

B =

1 −1 1 2

1 1 0 −1
1 −3 2 5


 , b =


2

1
1


 .

3. Cx = c, where

C =




1 −1 1
2 1 1

−1 −1 2
1 1 −1


 , c =




3
2
2

−1


 .

38 Chapter 2. Linear Algebra: A Constructive Approach

Exercise 2-4-7. Find all solutions of Ax = b, where

A =

 1 2 3 4

1 0 1 0
1 −1 0 −1


 , b =


 1

2
3


 .

Describe all solutions to the following set of equations and inequalities: Ax = b, x3 ≥ 0.

We end this section by deriving a fundamental theorem of linear algebra by means of
the Jordan exchange. In what follows we shall refer to the initial tableau as the y = Ax

tableau and (if it is possible) the x = By tableau as a tableau where all the y’s have been
pivoted to the top of the tableau.

Theorem 2.4.1. Let A ∈ Rn×n. The following are equivalent:

(a) A is nonsingular.

(b) Ax = 0 �⇒ x = 0, that is, ker A := {x | Ax = 0} = {0}.
(c) Ax = b has a unique solution for each b ∈ Rn.

(d) Ax = b has a unique solution for some b ∈ Rn.

Proof.

(a) �⇒ (c) By Theorem 2.3.1, A−1 exists and A−1b solves Ax = b for each b. Furthermore,
if x1 and x2 both solve Ax = b, then A(x1−x2) = 0. This implies that x1−x2 = A−10 = 0,
and so solution is unique.

(c) �⇒ (b) If we take b = 0, then (c) implies that Ax = 0 has a unique solution. Clearly,
x = 0 is that unique solution.

(b) �⇒ (d) (d) is a special case of (b).

(d) �⇒ (a) We actually prove the contrapositive ∼(a) �⇒ ∼(d). Suppose that A is sin-
gular. Then, by definition, its rows are linearly dependent, and so by the Steinitz theorem
(Theorem 2.2.3), it will not be possible to pivot all the yi’s to the top of the tableau. By
carrying out Jordan exchanges until we are blocked, we obtain a tableau of the form

yI1
xJ2

1
xJ1

= BI1J1
BI1J2

dI1

yI2
= BI2J1

0 dI2

(after a possible rearrangement). Since A is square, some xj ’s will remain as column labels
in this final tableau; that is, J2 is not empty. If dI2

= 0, this final tableau indicates infinitely
many solutions, since xJ2

is arbitrary. Alternatively, if dI2
�= 0, there are no solutions. In no

case is it possible to have a unique solution, and so (d) cannot hold.

Exercise 2-4-8. Find matrices A, not necessarily square, for which the number of solutions
to Ax = b has the following properties. Explain your answers.

1. one solution, regardless of b;

2.5. Solving Linear Equations Efficiently 39

2. zero or infinitely many solutions, depending on b;

3. zero or one solution, depending on b;

4. infinitely many solutions, independent of b.

Note that using a block pivot on an n × n system of equations as above is equivalent
to the following tableau manipulation:

x 1
y = A −b

y 1
x = A−1 A−1b

2.5 Solving Linear Equations Efficiently
We turn our attention now to the computational cost of solving systems of equations of
the form Ax = b, where A is a square n × n, nonsingular matrix. We measure the cost
by counting the floating-point operations (flops), +, −, ∗, and / (addition, subtraction,
multiplication, and division), required to obtain the solution x. We consider the Jordan-
exchange-based approach of Sections 2.3 and 2.4, along with a more efficient approach
based on the LU factorization.

The flops needed to perform one Jordan exchange are shown in the following table.

Element Transform Flops
Pivot B(r, s) = 1/A(r, s) 1
Pivot row B(r, J) = −A(r, J)/A(r, s) n − 1
Pivot column B(I, s) = A(I, s)/A(r, s) m − 1
Other elements B(I, J) = A(I, J) − B(I, s) ∗ A(r, J) 2(m − 1)(n − 1)

Thus there are 2mn − m − n + 1 flops per Jordan exchange.
It requires n Jordan exchanges to invert an n × n matrix, each costing 2n2 − 2n + 1

flops, giving a total of 2n3 − 2n2 + n flops. For large n, we can approximate this count by
2n3. Having obtained A−1, we can multiply it by b to obtain x = A−1b. This matrix-vector
multiplication requires an additional 2n2 flops, but for large n, this cost is small relative to
the cost of calculating A−1.

We now describe an alternative and faster method for solving square systems of equa-
tions called Gaussian elimination. This technique avoids calculating the inverse A−1 ex-
plicitly, and it will be used in Chapter 5 as a tool for implementing the simplex method
efficiently. Gaussian elimination requires only about 1/3 as many flops to solve Ax = b,
as does the method above, based on Jordan exchanges.

Gaussian elimination can be described in terms of the LU factorization of the matrix
A. This factorization computes a unit lower triangular matrix L, an upper triangular matrix
U , and a permutation matrix P such that

PA = LU. (2.11)

40 Chapter 2. Linear Algebra: A Constructive Approach

By unit lower triangular, we mean that Lij = 0 for j > i, and Lii = 1 for all i; that is, L

has the following form:

L =




1
∗ 1
∗ ∗ 1
...

...
...

. . .

∗ ∗ ∗ · · · 1


 .

The upper triangular matrix U has Uij = 0 for i > j , that is,

U =




∗ ∗ · · · ∗
∗ · · · ∗

. . .
...

∗


 ,

while the permutation matrix P is simply a rearrangement of the rows of the identity which
captures the reordering of the rows of the system Ax = b that takes place during the
factorization process.

Details of computing the LU factorization are discussed in the next section. We
describe here the recovery of the solution x once the factors L and U and the permutation
matrix P are known. We note that

Pb = PAx = LUx = Lw, where w := Ux.

We first calculate w by solving Lw = Pb, using a process known as forward substitution,
because it sweeps in a forward direction through the components of the solution w. The
following MATLAB code obtains the solution:

� w = P*b; w(1) = w(1)/L(1,1);
for i=2:n
J=1:i-1;
w(i) = (w(i) - L(i,J)*w(J))/L(i,i);
end

Having obtained w, we can now solve for x in Ux = w by applying the back substitution
procedure, so called because it sweeps through the components of x in reverse order.

� x = w; x(n) = x(n)/U(n,n);
for i=n-1:-1:1
J=i+1:n;
x(i) = (x(i) - U(i,J)*x(J))/U(i,i);
end

(Forward and back substitution are known collectively as triangular substitution.) It is not
difficult to see that the flop count for each triangular substitution is approximately n2. This
fact will be used in the next section to compute the flop count for solutions of equations
using LU decomposition.

2.6. LU Decomposition 41

Exercise 2-5-1. 1. Prove that the product of two lower triangular matrices is lower trian-
gular and that the inverse of a nonsingular lower triangular matrix is lower triangular.
(Hint: see Appendix A.1.)

2. Prove that the product AB of two square matrices is nonsingular if and only if both
A and B are nonsingular. (Hint: use Theorem 2.3.1.)

MATLAB has built-in utilities that perform forward and backward substitution in a
very efficient manner. The MATLAB code to solve a system Ax = b can be carried out by
the following 3 lines:

� [L,U,P] = lu(A);

� w = L\(P*b);
� x = U\w;
If the permutation matrix is omitted from the lu command, then MATLAB stores P −1L as
the output L, removing the need to explicitly form the matrix P . Thus

� [L,U] = lu(A);

� w = L\b;
� x = U\w;
generates exactly the same solution, and the second command performs forward substitution
implicitly handling the permutation. In fact, MATLAB provides a shorthand even for these
three operations, namely

� x = A\b;
However, in Chapter 5, we see that explicit calculation and updates of L and U improve
the efficiency of the revised simplex method, and so we do not discuss this simplified form
further.

For practical efficiency, we will always use the LU decomposition when solving a
system of linear equations. Moreover, modern linear algebra implementations exploit the
sparsity of A when forming L and U and are typically much more time and space efficient
than explicit inversion. However, for exposition and proofs we prefer to use the Jordan
exchange since it is very closely related to the proof techniques and the basic notions of
linear algebra and linear programming that we exploit.

2.6 LU Decomposition
This section shows how the LU decomposition is carried out formally and can be omitted
without any loss of continuity of the subject matter.

Let A ∈ Rn×n, and suppose A = LU for some matrices L and U . Then from
Appendix A we know that

A = LU =
n∑

i=1

L·iUi·; (2.12)

42 Chapter 2. Linear Algebra: A Constructive Approach

that is, A is the sum of the outer products of the columns of L with the rows of U . Since
we require L to be unit lower triangular and U to be upper triangular,

Lji = 0, Uij = 0, if j < i,

and Lii = 1. If we compare the first rows of both sides of (2.12), then since the elements
of the sum for i > 1 play no role, it follows that

U1· = A1·

Comparing the first columns of (2.12) gives (assuming U11 �= 0)

L·1 = A·1/U11.

Now rearrange (2.12) to get

A − L·1U1· =
n∑

i=2

L·iUi·

The first row and column of both sides of this equation are zero. Comparing the second
rows and columns gives

U2· = A2· − L21U1·

and

L·2 = A·2 − L·1U12

U22
.

Thus we have now calculated the first two columns of L and the first two rows of U . In the
general case, the ith row of U and the ith column of L can be calculated using

Ui· = Ai· −
i−1∑
j=1

LijUj ·

and

L·i = A·i −∑i−1
j=1 L·jUji

Uii

,

under the assumption that the pivot element Uii �= 0.
The only way that the above process can break down is if the pivot element Uii = 0.

In this case, either partial pivoting or complete pivoting is required to complete the process.
In fact, these techniques are required for numerical stability even when the elements Uii are
small, as the following example demonstrates.

Example 2-6-1. Consider

A(ε) =
[−ε 1

1 1

]
,

where ε is a small positive number. Using the scheme outlined above, with exact arithmetic
we get

L·1 =
[

1
−ε−1

]
, U1· = [−ε 1

]

2.6. LU Decomposition 43

and

L·2 = 1

1 + ε−1

([
1
1

]
−
[

1
−ε−1

])
=
[

0
1

]
,

U2· = [
1 1

]− (−ε−1)
[−ε 1

] = [
0 1 + ε−1

]
.

Thus

L =
[

1 0
−ε−1 1

]
, U =

[−ε 1
0 1 + ε−1

]
,

whose entries become increasingly large (and small), leading to numerical difficulties as
ε → 0. In fact, as ε → 0 the matrix U becomes increasingly close to being singular, and
on a finite-precision computer U becomes singular and the backward substitution process
breaks down. At this stage it is becoming hard to use L as well!

For example, suppose that ε = 0.001 and the machine can store only 3 significant
digits. Then for

b =
[

1
2

]
,

the forward and backward substitution process gives[
1 0

−1000 1

] [
w1

w2

]
=
[

1
2

]
�⇒

[
w1

w2

]
=
[

1
1000

]
,

resulting in [−0.001 1
0 1000

] [
x1

x2

]
=
[

1
1000

]
�⇒

[
x1

x2

]
=
[

0
1

]
,

where all values are rounded to 3 significant figures. However, it is easy to see that the
solution of the problem (rounded to 3 significant figures) is x1 = 1, x2 = 1.

We conclude from the example that we should choose a large pivot element (Uii)
whenever possible, which was not the case in the very first pivot above. Two strategies are
common: partial pivoting chooses the pivot element as the largest in a particular column
under consideration; complete pivoting chooses the largest possible pivot element.

In complete pivoting the rows and columns are reordered so that the pivot element
is the largest element in magnitude remaining to be processed, that is, in the submatrix of
A with row and column index at least i. If the pivot element is zero, then the remaining
submatrix must be identically zero, and hence the factorization process is trivially completed
by setting the remaining columns of L as columns of the identity and the remaining rows
of U to zero.

Thus in the example, the rows of A(ε) are interchanged, resulting in

P(ε) =
[

0 1
1 0

]
, L(ε) =

[
1 0
ε 1

]
, U(ε) =

[
1 1
0 1 − ε

]

when ε < 1. Note that all these matrices are invertible when ε → 0.

Exercise 2-6-2. Show how the permutation helps the example, even when the machine can
store only 3 significant digits.

44 Chapter 2. Linear Algebra: A Constructive Approach

In partial pivoting only the rows are reordered so that the pivot element is always
the largest element in magnitude remaining on or below the diagonal in the pivot column.
Thus, the only way the pivot element can be zero is if all the elements on or below the
diagonal are zero, in which case the pivot column is a linear combination of the columns
already processed. This is impossible if A is nonsingular. In our example, this is the same
as complete pivoting.

The above discussion has therefore proved the following result.

Theorem 2.6.1. Let A be any matrix in Rn×n. There exist permutation matrices P and Q,
a lower triangular matrix L, and an upper triangular matrix U such that

PAQ = LU.

If A is nonsingular, then Q may be taken as I and

PA = LU.

The flop count on iteration i can be calculated as follows:

Calculation Flops
Column of L 2(i − 1)(n − i) + (n − i)

Row of U 2(i − 1)(n − i + 1) + (n − i + 1)

Thus the total number of flops is

n∑
i=1

4i(n − i) + O(n2) = 2n3

3
+ O(n2).

Notice that calculating the factors requires fewer flops than inversion by Jordan
exchange. In fact, inversion by Jordan exchange requires 2n3 flops, that is, about three
times as many flops. Solving linear systems requires essentially the same number of flops
as calculating the factors; the amount of extra work required to solve a linear system using
the factors within the forward and backward substitution routines is just n2 +O(n). Clearly,
this does not impinge on the total flop count. In the unlikely event that the actual inverse
is needed, this can be recovered by solving n linear systems, one for each column of the
inverse, resulting in a total flop count of O(n3).

Exercise 2-6-3. Consider the matrix

A(ε) =
[
ε 1
1 2

]
.

(a) Determine L(ε) and U(ε) without permuting the rows or columns of A(ε). Are L(0)

and U(0) invertible?

(b) Use complete pivoting to factor A(ε). Write down P(ε), Q(ε), L(ε), and U(ε)

explicitly.

Chapter 3

The Simplex Method

All linear programs can be reduced to the following standard form:

min
x

z = p′x
subject to Ax ≥ b, x ≥ 0,

(3.1)

where p ∈ Rn, b ∈ Rm, and A ∈ Rm×n. To create the initial tableau for the simplex method,
we rewrite the problem in the following canonical form:

min
xB,xN

z = p′xN + 0′xB

subject to xB = AxN − b, xB, xN ≥ 0,
(3.2)

where the index sets N and B are defined initially as N = {1, 2, . . . , n} and B = {n +
1, . . . , n + m}. The variables xn+1, . . . , xn+m are introduced to represent the slack in the
inequalities Ax ≥ b (the difference between left- and right-hand sides of these inequalities)
and are called slack variables. We shall represent this canonical linear program by the
following tableau:

x1 · · · xn 1
xn+1 = A11 · · · A1n −b1

...
...

. . .
...

...

xn+m = Am1 · · · Amn −bm

z = p1 · · · pn 0

(3.3)

In this tableau, the slack variables xn+1, . . . , xn+m (the variables that make up xB) are the
dependent variables, while the original problem variables x1, . . . , xn (the variables that make
up xN) are independent variables. It is customary in the linear programming literature to call
the dependent variables basic and the independent variables nonbasic, and we will adopt
this terminology for the remainder of the book. A more succinct form of the initial tableau
is known as the condensed tableau, which is written as follows:

xN 1
xB = A −b

z = p′ 0

(3.4)

45

46 Chapter 3. The Simplex Method

We “read” a tableau by setting the nonbasic variables xN to zero, thus assigning the
basic variables xB and the objective variable z the values in the last column of the tableau.
The tableau above represents the point xN = 0 and xB = −b (that is, xn+i = −bi for
i = 1, 2, . . . , m), with an objective of z = 0. The tableau is said to be feasible if the values
assigned to the basic variables by this procedure are nonnegative. In the above, the tableau
will be feasible if b ≤ 0.

At each iteration of the simplex method, we exchange one element between B and N,
performing the corresponding Jordan exchange on the tableau representation, much as we
did in Chapter 2 in solving systems of linear equations. We ensure that the tableau remains
feasible at every iteration, and we try to choose the exchanged elements so that the objective
function z decreases at every iteration. We continue in this fashion until either

1. a solution is found, or

2. we discover that the objective function is unbounded below on the feasible region, or

3. we determine that the feasible region is empty.

The simplex method can be examined from two viewpoints, which must be understood
separately and jointly in order to fully comprehend the method:

1. an algebraic viewpoint represented by tableaus;

2. a geometric viewpoint obtained by plotting the constraints and the contours of the
objective function in the space of original variables Rn.

Later, we show that the points represented by each feasible tableau correspond to vertices
of the feasible region.

3.1 A Simple Example
We now illustrate how the simplex method moves from a feasible tableau to an optimal
tableau, one pivot at a time, by means of the following two-dimensional example.

Example 3-1-1.
min
x1,x2

3x1 − 6x2

subject to x1 + 2x2 ≥ −1,

2x1 + x2 ≥ 0,

x1 − x2 ≥ −1,

x1 − 4x2 ≥ −13,

−4x1 + x2 ≥ −23,

x1, x2 ≥ 0.

The first step is to add slack variables to convert the constraints into a set of general
equalities combined with nonnegativity requirements on all the variables. The slacks are
defined as follows:

x3 = x1 + 2x2 + 1,

x4 = 2x1 + x2,

x5 = x1 − x2 + 1,

x6 = x1 − 4x2 + 13,

x7 = −4x1 + x2 + 23.

3.1. A Simple Example 47

(When we use MATLAB to form the initial tableau, it adds the slacks automatically; there is
no need to define them explicitly as above.) We formulate the initial tableau by assembling
the data for the problem (that is, the matrix A and the vectors p and b) as indicated in the
condensed tableau (3.4). The MATLAB command totbl performs this task:

� load ex3-1-1

� T = totbl(A,b,p);

x1 x2 1
x3 = 1 2 1
x4 = 2 1 0
x5 = 1 −1 1
x6 = 1 −4 13
x7 = −4 1 23
z = 3 −6 0

The labels associated with the original and slack variables are stored in the MATLAB struc-
ture T. The point represented by the tableau above can be deduced by setting the nonbasic
variables x1 and x2 both to zero. The resulting point is feasible, since the corresponding val-
ues of the basic variables, which initially are the same as the slack variables x3, x4, . . . , x7,
are all nonnegative. The value of the objective in this tableau, z = 0, is obtained from the
bottom right element.

We now seek a pivot—a Jordan exchange of a basic variable with a nonbasic variable—
that yields a decrease in the objective z. The first issue is to choose the nonbasic variable
which is to become basic, that is, to choose a pivot column in the tableau. In allowing
a nonbasic variable to become basic, we are allowing its value to possibly increase from
0 to some positive value. What effect will this increase have on z and on the dependent
(basic) variables? In the given example, let us try increasing x1 from 0. We assign x1 the
(nonnegative) value λ while holding the other nonbasic variable x2 at zero; that is,

x1 = λ, x2 = 0.

The tableau tells us how the objective z depends on x1 and x2, and so for the values given
above we have

z = 3(λ) − 6(0) = 3λ > 0 for λ > 0.

This expression tells us that z increases as λ increases—the opposite of what we want. Let
us try instead choosing x2 as the variable to increase, and set

x1 = 0, x2 = λ > 0. (3.5)

For this choice, we have

z = 3(0) − 6λ = −6λ < 0 for λ > 0,

thus decreasing z, as we wished. The general rule is to choose the pivot column to have
a negative value in the last row, as this indicates that z will decrease as the variable cor-
responding to that column increases away from 0. We use the term pricing to indicate
selection of the pivot column. We call the label of the pivot column the entering variable,
as this variable is the one that “enters” the basis at this step of the simplex method.

48 Chapter 3. The Simplex Method

To determine which of the basic variables is to change places with the entering variable,
we examine the effect of increasing the entering variable on each of the basic variables.
Given (3.5), we have the following relationships:

x3 = 2λ + 1,

x4 = λ,

x5 = −λ + 1,

x6 = −4λ + 13,

x7 = λ + 23.

Since z = −6λ, we clearly would like to make λ as large as possible to obtain the largest
possible decrease in z. On the other hand, we cannot allow λ to become too large, as this
would force some of the basic variables to become negative. By enforcing the nonnegativity
restrictions on the variables above, we obtain the following restrictions on the value of λ:

x3 = 2λ + 1 ≥ 0 �⇒ λ ≥ −1/2,

x4 = λ ≥ 0 �⇒ λ ≥ 0,

x5 = −λ + 1 ≥ 0 �⇒ λ ≤ 1,

x6 = −4λ + 13 ≥ 0 �⇒ λ ≤ 13/4,

x7 = λ + 23 ≥ 0 �⇒ λ ≥ −23.

We see that the largest nonnegative value that λ can take without violating any of these
constraints is λ = 1. Moreover, we observe that the blocking variable—the one that will
become negative if we increase λ above its limit of 1—is x5. We choose the row for which
x5 is the label as the pivot row and refer to x5 as the leaving variable—the one that changes
from being basic to being nonbasic. The pivot row selection process just outlined is called
the ratio test.

By setting λ = 1, we have that x1 and x5 are zero, while the other variables remain
nonnegative. We obtain the tableau corresponding to this point by performing the Jordan
exchange of the row labeled x5 (row 3) with the column labeled x2 (column 2). The new
tableau is as follows:

� T = ljx(T,3,2); x1 x5 1
x3 = 3 −2 3
x4 = 3 −1 1
x2 = 1 −1 1
x6 = −3 4 9
x7 = −3 −1 24
z = −3 6 −6

Note that z has decreased from 0 to −6.
Before proceeding with this example, let us review the procedure above for a single

step of the simplex method, indicating the general rules for selecting pivot columns and
rows. Given the tableau

xN 1
xB = H h

z = c′ α

(3.6)

3.1. A Simple Example 49

where B represents the current set of basic variables and N represents the current set of
nonbasic variables, a pivot step of the simplex method is a Jordan exchange between a basic
and nonbasic variable according to the following pivot selection rules:

1. Pricing (selection of pivot column s): The pivot column is a column s with a negative
element in the bottom row. These elements are called reduced costs.

2. Ratio Test (selection of pivot row r): The pivot row is a row r such that

−hr/Hrs = min
i

{−hi/His | His < 0} .

Note that there is considerable flexibility in selection of the pivot column, as it is often the
case that many of the reduced costs are negative. One simple rule is to choose the column
with the most negative reduced cost. This gives the biggest decrease in z per unit increase in
the entering variable. However, since we cannot tell how much we can increase the entering
variable until we perform the ratio test, it is not generally true that this choice leads to the
best decrease in z on this step, among all possible pivot columns.

Returning to the example, we see that column 1, the one labeled x1, is the only possible
choice for pivot column. The ratio test indicates that row 4, labeled by x6, should be the
pivot row. We thus obtain

� T = ljx(T,4,1); x6 x5 1
x3 = −1 2 12
x4 = −1 3 10
x2 = −0.33 0.33 4
x1 = −0.33 1.33 3
x7 = 1 −5 15
z = 1 2 −15

In this tableau, all reduced costs are positive, and so the pivot column selection procedure
does not identify an appropriate column. This is as it should be, because this tableau is
optimal! For any other feasible point than the one indicated by this tableau, we would have
x6 ≥ 0 and x5 ≥ 0, giving an objective z = x6 + 2x5 − 15 ≥ −15. Hence, we cannot
improve z over its current value of −15 by allowing either x5 or x6 to enter the basis, and so
the tableau is optimal. The values of the basic variables can be read from the last column
of the optimal tableau. We are particularly interested in the values of the two variables x1

and x2 from the original standard formulation of the problem; they are x1 = 3 and x2 = 4.
In general, we have an optimal tableau when both the last column and the bottom row are
nonnegative. (Note: when talking about the last row or last column, we do not include in
our considerations the bottom right element of the tableau, the one indicating the current
value of the objective. Its sign is irrelevant to the optimization process.)

Figure 3.1 illustrates Example 3-1-1.
The point labeled “Vertex 1” corresponds to the initial tableau, while “Vertex 2” is

represented by the second tableau and “Vertex 3” is represented by the final tableau.

Exercise 3-1-2. Consider the problem

min z = p′x
subject to Ax ≥ b, x ≥ 0,

50 Chapter 3. The Simplex Method

x =0

3

x =01

5x =0

x =02

x =04

x =07

7

6

5

4

3

2

1

0

−1

−2

1 2 3 4 5 6 7 8
Vertex 1

Vertex 2

Vertex 3

z = 0

z= −6

z= −15
Vertex 4

Vertex 5

6

x =0

Figure 3.1. Simplex method applied to Example 3 − 1 − 1.

where

A =




0 −1
−1 −1
−1 2
1 −1


 , b =




−5
−9
0

−3


 , p =

[−1
−2

]
.

(i) Draw the feasible region in R2.

(ii) Draw the contours of z = −12, z = −14, z = −16 and determine the solution
graphically.

(iii) Solve the problem in MATLAB using Example 3-1-1 as a template. In addition, trace
the path in contrasting color that the simplex method takes on your figure.

3.2. Vertices 51

3.2 Vertices
The concept of a vertex of the feasible region plays an important role in the geometric
interpretation of the simplex method. Given the feasible set for (3.1) defined by

S := {
x ∈ Rn | Ax ≥ b, x ≥ 0

}
, (3.7)

a point x ∈ S is a vertex of S if it is not possible to define a line segment lying entirely in
S that contains x in its interior. Each vertex can be represented as the intersection of the n

hyperplanes defined by xi = 0, for all i ∈ N, where N is the set of nonbasic variables for
some feasible tableau. This representation is apparent from Figure 3.1, where for instance
Vertex 2 is at the intersection of the lines defined by x1 = 0 and x5 = 0, where x1 and x5

are the two nonbasic variables in the tableau corresponding to this vertex.

Definition 3.2.1. For the feasible region S of (3.1) defined by (3.7), let xn+i := Ai·x − bi ,
i = 1, 2, . . . , m. A vertex of S is any point in (x1, x2, . . . , xn)

′ ∈ S that satisfies

xN = 0,

where N is any subset of {1, 2, . . . , n + m} containing n elements such that the linear
functions defined by xj , j ∈ N, are linearly independent.

It is important for the n functions in this definition to be linearly independent. If not,
then the equation xN = 0 has either zero solutions or infinitely many solutions.

Theorem 3.2.2. Suppose that x̄ is a vertex of S with corresponding index set N. Then if we
define

A := [A − I], B := {1, 2, . . . , n + m}\N,

then x̄ satisfies the relationships

A·BxB + A·NxN = b, xB ≥ 0, xN = 0, (3.8)

where A·B is invertible. Moreover, x̄ can be represented by a tableau of the form

xN 1
xB = H h

z = c′ α

(3.9)

with h ≥ 0.

Proof. By the definition of a vertex it follows that

A·Bx̄B + A·Nx̄N = b, x̄B ≥ 0, x̄N = 0. (3.10)

It remains to prove that A·B is invertible. Suppose there exists a vector z such that z′A·B = 0.
It follows from (3.10) that z′b = 0. By definition, the functions xN satisfy

A·BxB + A·NxN = b, (3.11)

52 Chapter 3. The Simplex Method

and so z′A·NxN = 0. Since xN are linearly independent, it follows that z′A·N = 0 and hence
that z′A = 0. Since A has the (negative) identity matrix in its columns, this implies that
z = 0, and thus A·B is invertible.

Finally, premultiplying (3.11) by A−1·B and rearranging, we see that

xB = −A−1
·B A·NxN + A−1

·B b, (3.12)

which can be written in tableau form (3.9) with H = −A−1·B A·N and h = A−1·B b. The last
row of the tableau can be generated by substituting for xB from (3.12) in the expression
z = p′

BxB + p′
NxN, obtaining c′ = p′

N − p′
BA−1·B A·N and α = p′

BA−1·B b. Note that h ≥ 0 since
x̄ satisfies (3.12) and hence h = x̄B.

The proof shows that corresponding to each vertex of S there is an invertible square
matrix, which we denote by A·B above. This matrix is frequently called the basis matrix. It
plays an important role in the revised simplex method of Chapter 5.

We illustrate this theorem by considering one of the vertices for the problem in Exam-
ple 3-1-1. Here we have n = 2 and m = 5. The point x = (0, 1)′ is a vertex of the feasible
region, occurring at the intersection of the lines defined by x1 = 0 and x5 = 0. The sets N
and B corresponding to this vertex are therefore N = {1, 5} and B = {2, 3, 4, 6, 7}. Thus

A·B =




2 −1 0 0 0
1 0 −1 0 0

−1 0 0 0 0
−4 0 0 −1 0
1 0 0 0 −1


 , A·N =




1 0
2 0
1 −1
1 0

−4 0




and simple (MATLAB) calculations show that

H = −A−1
·B A·N =




1 −1
3 −2
3 −1

−3 4
−3 −1


 , h = A−1

·B b =




1
3
1
9

24


 , (3.13)

c′ = p′
N − p′

BA−1
·B A·N = [−3 6

]
, α= p′

BA−1
·B b = −6,

which can be checked against the second tableau given in Example 3-1-1.
To complete our discussion of vertices, we note two more facts.

• The set N in Definition 3.2.1 that corresponds to a particular vertex may not be uniquely
defined; that is, the same vertex may be specified by more than one set N. Looking
at Figure 3.1 again, we see that Vertex 3 is defined by the unique set N = {5, 6} and
Vertex 5 is defined uniquely by N = {2, 7}. However, Vertex 1 can be specified by
three possible choices of N: N = {1, 2}, N = {1, 4}, or N = {2, 4}. A vertex that can
be specified by more than one set N is sometimes called a degenerate vertex.

• Given any set N ⊂ {1, 2, . . . , n+m} of n indices such that xN is linearly independent,
the point defined by xN = 0 is not necessarily a vertex. This is because the point
may lie outside the feasible region S. In Figure 3.1, for instance, the point defined
by N = {3, 5} is not a vertex, since the lines x3 = 0 and x5 = 0 intersect outside the
feasible region.

3.3. The Phase II Procedure 53

Exercise 3-2-1. Consider the feasible set defined by the following constraints:

x1 + 2x2 ≥ 2,

−2x1 − x2 ≥ −4,

x1, x2 ≥ 0.

1. Plot the feasible region, indicating the vertices on your plot. Indicate all possible
choices for the N associated with each vertex.

2. For the vertex x = (0, 4)′, write down the sets N and B defined in Theorem 3.2.2, and
calculate the quantities H and h in the tableau (3.9) from the formulae (3.13). (Do
not use a Jordan exchange.)

3.3 The Phase II Procedure
The simplex method is generally split into two phases. Phase I finds a starting point that
satisfies the constraints. That is, it finds a tableau of the general form (3.6) such that the
last column h is nonnegative. Phase II starts with a feasible tableau and applies the pivots
needed to move to an optimal tableau, thus solving the linear program.

In the following high-level description of the simplex method, B(r) denotes the la-
bel on x corresponding to the rth row of the tableau, and N(s) denotes the label on x

corresponding to the sth column of the tableau.

Algorithm 3.1 (Simplex Method).

1. Construct an initial tableau. If the problem is in standard form (3.1), this process
amounts to simply adding slack variables.

2. If the tableau is not feasible, apply a Phase I procedure to generate a feasible tableau,
if one exists (see Section 3.4). For now we shall assume the origin xN = 0 is feasible.

3. Use the pricing rule to determine the pivot column s. If none exists, stop; (a): tableau
is optimal.

4. Use the ratio test to determine the pivot row r . If none exists, stop; (b): tableau is
unbounded.

5. Exchange xB(r) and xN(s) using a Jordan exchange on Hrs .

6. Go to Step 3.

Phase II comprises Steps 3 through 6 of the method above—that part of the algorithm
that occurs after an initial feasible tableau has been identified.

The method terminates in one of two ways. Stop (a) indicates optimality. This
occurs when the last row is nonnegative. In this case, there is no benefit to be obtained by
letting any of the nonbasic variables xN increase away from zero. We can verify this claim
mathematically by writing out the last row of the tableau, which indicates that the objective
function is

z = c′xN + α.

54 Chapter 3. The Simplex Method

When c ≥ 0 and xN ≥ 0, we have z ≥ α. Therefore, the point corresponding to the tableau
(3.6)—xB = h and xN = 0—is optimal, with objective function value α.

The second way that the method above terminates, Stop (b), occurs when a column
with a negative cost cs has been identified, but the ratio test fails to identify a pivot row. This
situation can occur only when all the entries in the pivot column H·s are nonnegative. In
this case, by allowing xN(s) to grow larger, without limit, we will be decreasing the objective
function to −∞ without violating feasibility. In other words, by setting xN(s) = λ for any
positive value λ, we have for the basic variables xB that

xB(λ) = H·sλ + h ≥ h ≥ 0,

so that the full set of variables x(λ) ∈ Rm+n is defined by the formula

xj (λ) =




λ if j = N(s),

Hisλ + hi if j = B(i),

0 if j ∈ N \ {N(s)},
which is feasible for all λ ≥ 0. The objective function for x(λ) is

z = c′xN(λ) + α = csλ + α,

which tends to −∞ as λ → ∞. Thus the set of points x(λ) for λ ≥ 0 identifies a ray of
feasible points along which the objective function approaches −∞. Another way to write
this ray is to separate x(λ) into a constant vector u and another vector that depends on λ as
follows:

x(λ) = u + λv,

where the elements of u and v are defined as follows:

uj =
{

0 if j ∈ N,

hi if j = B(i),
vj =




1 if j = N(s),

His if j = B(i),

0 if j ∈ N \ {N(s)}.
Example 3-3-1. Show that the following linear program is unbounded below, and find
vectors u and v such that u + λv is feasible for all λ ≥ 0. Find a feasible point of this form
with objective value −98.

min z = −2x1 − 3x2 + x3

subject to x1 + x2 + x3 ≥ −3,

−x1 + x2 − x3 ≥ −4,

x1 − x2 − 2x3 ≥ −1,

x1, x2, x3 ≥ 0.

� load ex3-3-1

� T = totbl(A,b,p);

x1 x2 x3 1
x4 = 1 1 1 3
x5 = −1 1 −1 4
x6 = 1 −1 −2 1
z = −2 −3 1 0

3.3. The Phase II Procedure 55

Since this tableau is feasible, we can start immediately on Phase II (Step 3 of the algorithm
above). Selecting column 2 as the pivot column, we find that the ratio test chooses row 3 as
the pivot row.

� T = ljx(T,3,2); x1 x6 x3 1
x4 = 2 −1 −1 4
x5 = 0 −1 −3 5
x2 = 1 −1 −2 1
z = −5 3 7 −3

The next pivot column selected must be column 1, but we find that the ratio test fails to
select a pivot row, since all the elements in column 1 (except, of course, in the last row) are
nonnegative. The tableau is unbounded, and the method therefore terminates at Step 4. By
setting x1 = λ ≥ 0, we have from the tableau that the dependent variables satisfy

x4(λ) = 2λ + 4, x5(λ) = 5, x2(λ) = λ + 1,

whereas the nonbasic variables x6 and x3 are both 0. For the original three variables of the
problem x1, x2, x3, we have

x(λ) =

 λ

λ + 1
0


 =


 0

1
0


+ λ


 1

1
0


 ,

so that by setting u = (0, 1, 0)′ and v = (1, 1, 0)′ we obtain the direction of unboundedness
in the specified form. From the final tableau, we also have z = −5λ − 3, so that the value
z = −98 is obtained by setting λ = 19. The corresponding value of x is then

x = u + 19v =

 19

20
0


 .

Exercise 3-3-2. Solve the following linear program. If it is unbounded below, find vectors
u and v such that u + λv is feasible for all λ ≥ 0. Find a feasible point of this form with
objective value −415.

min z = x1 − 2x2 − 4x3 + 4x4

subject to x2 − 2x3 − x4 ≥ −4,

2x1 − x2 − x3 + 4x4 ≥ −5,

−x1 + x2 − 2x4 ≥ −3,

x1, x2, x3, x4 ≥ 0.

Linear programs may have more than one solution. In fact, given any collection of
solutions x1, x2, . . . , xK , any other point in the convex hull of these solutions, defined by{

x | x =
K∑

i=1

αix
i,

K∑
i=1

αi = 1, αi ≥ 0, i = 1, 2, . . . , K

}
, (3.14)

56 Chapter 3. The Simplex Method

is also a solution. To prove this claim, we need to verify that any such x is feasible with
respect to the constraints Ax ≥ b, x ≥ 0 in (3.1) and also that x achieves the same objective
value as each of the solutions xi , i = 1, 2, . . . , K . First, note that

Ax =
K∑

i=1

αiAxi ≥
(

K∑
i=1

αi

)
b = b,

and so the inequality constraint is satisfied. Since x is a nonnegative combination of the
nonnegative vectors x, it is also nonnegative, and so the constraint x ≥ 0 is also satisfied.
Finally, since each xi is a solution, we have that p′xi = z for some scalar zopt and all
i = 1, 2, . . . , K . Hence,

p′x =
K∑

i=1

αip
′xi =

(
K∑

i=1

αi

)
zopt = zopt.

Since x is feasible for (3.1) and attains the optimal objective value zopt, we conclude that x

is a solution, as claimed.
Phase II can be extended to identify multiple solutions by performing additional pivots

on columns with zero reduced costs after an optimal tableau has been identified. We illustrate
the technique with the following simple example.

Example 3-3-3.

min
x1,x2,x3

−x1 − x2 − x3

subject to x1 − x2 + x3 ≥ −2,

−x1 + x2 + x3 ≥ −3,

x1 + x2 − x3 ≥ −1,

−x1 − x2 − x3 ≥ −4,

x1, x2, x3 ≥ 0.

� load ex3-3-3

� T = totbl(A,b,p);

x1 x2 x3 1
x4 = 1 −1 1 2
x5 = −1 1 1 3
x6 = 1 1 −1 1
x7 = −1 −1 −1 4
z = −1 −1 −1 0

Since the problem is in standard form, the initial tableau can be created using totbl. The
right-hand column is nonnegative, and so the resulting tableau is feasible, and no Phase I
procedure is needed.

� T = ljx(T,3,3); x1 x2 x6 1
x4 = 2 0 −1 3
x5 = 0 2 −1 4
x3 = 1 1 −1 1
x7 = −2 −2 1 3
z = −2 −2 1 −1

3.3. The Phase II Procedure 57

� T = ljx(T,4,1); x7 x2 x6 1
x4 = −1 −2 0 6
x5 = 0 2 −1 4
x3 = −0.5 0 −0.5 2.5
x1 = −0.5 −1 0.5 1.5
z = 1 0 0 −4

At this point we have found a solution to the problem, namely,

x =

 1.5

0
2.5


 .

However, it is interesting to note that this is not the only possible solution. If we had chosen
a different sequence of pivots, we would have obtained a different solution (with, of course,
the same objective value z = −4), as we now show.

� load ex3-3-3

� T = totbl(A,b,p);

� T = ljx(T,2,1);

x5 x2 x3 1
x4 = −1 0 2 5
x1 = −1 1 1 3
x6 = −1 2 0 4
x7 = 1 −2 −2 1
z = 1 −2 −2 −3

� T = ljx(T,4,3); x5 x2 x7 1
x4 = 0 −2 −1 6
x1 = −0.5 0 −0.5 3.5
x6 = −1 2 0 4
x3 = 0.5 −1 −0.5 0.5
z = 0 0 1 −4

giving the solution

x =

 3.5

0
0.5


 .

We can find additional solutions by performing pivots on the columns for which there
is a zero in the last row. If we were to take the last tableau above and choose the first column
as a pivot column, the ratio test would select row 3 as the pivot row, and the resulting pivot
would yield the tableau for the solution that we found first. If, on the other hand, we were
to choose the second column as the pivot column, the ratio test would select row 4 as the
pivot row as follows:

58 Chapter 3. The Simplex Method

Figure 3.2. Feasible set in R3, showing an optimal face that contains 6 vertices .

� T = ljx(T,4,2); x5 x3 x7 1
x4 = −1 2 0 5
x1 = −0.5 0 −0.5 3.5
x6 = 0 −2 −1 5
x2 = 0.5 −1 −0.5 0.5
z = 0 0 1 −4

yielding the solution x = (3.5, 0.5, 0)′. Continuing this process, if we were to choose the
second column as the pivot column again, we would return to the previous tableau and hence
recover the previous solution. If, on the other hand, we were to select the first column, then
the ratio test would select row 1 as the pivot row, and we would obtain

� T = ljx(T,1,1); x4 x3 x7 1
x5 = −1 2 0 5
x1 = 0.5 −1 −0.5 1
x6 = 0 −2 −1 5
x2 = −0.5 0 −0.5 3
z = 0 0 1 −4

yielding another solution x = (1, 3, 0)′. Proceeding in this fashion, taking care not to double
back to a previous solution by choosing the same pivot column twice, we can identify two
more distinct solutions: x = (0, 3, 1)′ and x = (3.5, 0, 0.5)′. These six solutions represent
the vertices of an optimal face, defined by the convex hull (3.14), like the one illustrated in
Figure 3.2. Every point in the optimal face can be associated with a particular choice of
coefficients αi in the formula (3.14).

Note that an algebraic description of the solution set can be derived from any optimal
tableau. A solution is a feasible point whose objective value is equal to the optimal value.
The equations represented in the tableau, along with xi ≥ 0, determine feasibility, while the
last row determines the objective value. For example, in the optimal tableau given above,

3.3. The Phase II Procedure 59

the last row represents the equation

z = x7 − 4.

Since x7 ≥ 0, it follows that in any solution, we have x7 = 0. The feasibility constraints
then amount to x3 = λ ≥ 0, x4 = µ ≥ 0, and

0 ≤ x5 = −µ + 2λ + 5,

0 ≤ x1 = 0.5µ − λ + 1,

0 ≤ x6 = − 2λ + 5,

0 ≤ x2 = −0.5µ + 3.

Thus the solution set in this example is{
x = (0.5µ − λ + 1, 3 − 0.5µ, λ)′ ≥ 0 | λ, µ ≥ 0, 2λ + 5 ≥ µ, 2λ ≤ 5

}
.

Note that the solutions generated by each of the six optimal tableaus are all in this set (for
particular choice of λ and µ). For concreteness, note that the first optimal tableau found
generates the solution given by λ = 2.5, µ = 6.

Exercise 3-3-4. Solve the following problem using MATLAB:

min z = p′x
subject to Ax ≥ b, x ≥ 0,

where

A = −

1 3 0 1

2 1 0 0
0 1 4 1


 , b = −


4

3
3


 , p = −




2
4
1
1


 .

Exercise 3-3-5. 1. Use the simplex procedure to solve

min z = x − y

subject to −x + y ≥ −2,

−x − y ≥ −6,

x, y ≥ 0.

2. Draw a graphical representation of the problem in x, y space and indicate the path of
the simplex steps.

3. Repeat the problem above but using the new objective function z = −x + y. This
problem has multiple solutions, and so find all the vertex solutions and write down
an expression for the full set of solutions.

4. Solve the following problem, and graph the path followed by the simplex method:

min z = −x − y

subject to 2x − y ≥ −1,

−x + y ≥ −1,

x, y ≥ 0.

60 Chapter 3. The Simplex Method

Exercise 3-3-6. Solve the following linear program. Is the feasible region unbounded? Is
the solution set unbounded? If so, find vectors u and v such that u + λv is optimal for all
λ ≥ 0.

min z = 3x1 − 3x2 − 2x3 + 5x4

subject to x1 − x2 − x3 − 0.5x4 ≥ −2,

2.5x1 + 2.25x2 − 0.5x3 + 4.25x4 ≥ −4,

−x1 + x2 − 2x4 ≥ −3,

x1, x2, x3, x4 ≥ 0.

Exercise 3-3-7. Consider the linear program in three variables given by

min z = p′x
subject to x1 ≥ 0, x2 ≥ 0, x3 ≥ 1.

1. Is the feasible region unbounded?

2. When p = [1 1 1]′, does the problem have a solution? Is the solution unique?

3. When p = [1 0 1]′, does the problem have a solution? Is the solution unique? If not,
determine the solution set, and indicate whether the solution set is an unbounded set
or not.

4. When p = [−1 0 1]′, does the problem have a solution? Is the solution unique?

In all three cases, indicate what properties the final tableau generated by an application of
the simplex method to the problem would have. Can you construct an example of a linear
program that has multiple solutions but such that the solution set is a bounded set?

3.4 The Phase I Procedure
In all the problems we have examined to date, the linear program has been stated in standard
form, and the tableau constructed from the problem data has been feasible. This situation
occurs when x = 0 is feasible with respect to the constraints, that is, when the right-hand
side of all the inequality constraints is nonpositive. In general, however, this need not be
the case, and we are often faced with the task of identifying a feasible initial point (that is,
a feasible tableau), so that we can go ahead and apply the Phase II procedure described in
Section 3.3. The process of identifying an initial feasible tableau is called Phase I.

Phase I entails the solution of a linear program that is different from, though closely
related to, the problem we actually wish to solve. It is easy to identify an initial feasible
tableau for the modified problem, and its eventual solution tells us whether the original
problem has a feasible tableau or not. If the original problem has a feasible tableau, it can
be easily constructed from the tableau resulting from Phase I.

The Phase I problem contains one additional variable x0, a set of constraints that is the
same as the original problem except for the addition of x0 to some of them, and an objective

3.4. The Phase I Procedure 61

function of x0 itself. It can be stated as follows:

min
x0,x

z0 = x0

subject to xn+i = Ai·x − bi + x0 if bi > 0,
xn+i = Ai·x − bi if bi ≤ 0,
x0, x ≥ 0.

(3.15)

The variable x0 is an artificial variable. Note that the objective of (3.15) is bounded below
by 0, since x0 is constrained to be nonnegative. We note a number of important facts about
this problem:

• We can obtain a feasible point for (3.15) by setting x0 = max
(
max1≤i≤m bi, 0

)
and

xN = 0 for N = {1, . . . , n}. The dependent variables xB, where B = {n + 1, n +
2, . . . , n + m}, then take the following initial values:

bi > 0 �⇒ xn+i = Ai·x − bi + x0 = −bi + max
1≤j≤m, bj >0

bj ≥ −bi + bi = 0,

bi ≤ 0 �⇒ xn+i = Ai·x − bi = −bi ≥ 0,

so that xB ≥ 0, and these components are also feasible.

• If there exists a point x̄ that is feasible for the original problem, then the point (x0, x) =
(0, x̄) is feasible for the Phase I problem. (It is easy to check this fact by verifying
that xn+i ≥ 0 for i = 1, 2, . . . , m.)

• Conversely, if (0, x) is a solution of the Phase I problem, then x is feasible for the
original problem. We see this by examining the constraint set for the Phase I problem
and noting that

bi > 0 �⇒ 0 ≤ xn+i = Ai·x − bi + x0 = Ai·x − bi,

bi ≤ 0 �⇒ 0 ≤ xn+i = Ai·x − bi,

so that Ax ≥ b.

• If (x0, x) is a solution of the Phase I problem and x0 is strictly positive, then the original
problem must be infeasible. This fact follows immediately from the observations
above: If the original problem were feasible, it would be possible to find a feasible
point for the Phase I problem with objective zero.

We can set up this starting point by forming the initial tableau for (3.15) in the usual
way and performing a “special pivot.” We select the x0 column as the pivot column and
choose the pivot row to be a row with the most negative entry in the last column of the
tableau.

After the special pivot, the tableau contains only nonnegative entries in its last col-
umn, and the simplex method can proceed, using the usual rules for pivot column and row
selection. Since the objective of (3.15) is bounded below (by zero), it can terminate only at
an optimal tableau. Two possibilities then arise.

• The optimal objective z0 is strictly positive. In this case, we conclude that the original
problem (3.1) is infeasible, and so we terminate without going to Phase II.

62 Chapter 3. The Simplex Method

• The optimal objective z0 is zero. In this case, x0 must also be zero, and the remaining
components of x are a feasible initial point for the original problem. We can construct
a feasible table for the initial problem from the optimal tableau for the Phase I problem
as follows. First, if x0 is still a dependent variable in the tableau (that is, one of the
row labels), perform a Jordan exchange to make it an independent variable. (Since
x0 = 0, this pivot will be a degenerate pivot, and the values of the other variables will
not change.) Next, delete the column labeled by x0 and the row labeled by z0 from
the tableau. The tableau that remains is feasible for the original problem (3.1), and
we can proceed with Phase II, as described in Section 3.3.

We summarize Phase I and then proceed with an example of the MATLAB imple-
mentation.

Algorithm 3.2 (Phase I).

1. If b ≤ 0, then xB = −b, xN = 0 is a feasible point corresponding to the initial tableau
and no Phase I is required. Skip to Phase II.

2. If b �≤ 0, introduce the artificial variable x0 (and objective function z0 = x0) and set
up the Phase I problem (3.15) and the corresponding tableau.

3. Perform the “special pivot” of the x0 column with a row corresponding to the most
negative entry of the last column to obtain a feasible tableau for Phase I.

4. Apply standard simplex pivot rules until an optimal tableau for the Phase I problem
is attained. If the optimal value (for z0) is positive, stop: The original problem has
no feasible point. Otherwise, perform an extra pivot (if needed) to move x0 to the top
of the tableau.

5. Strike out the column corresponding to x0 and the row corresponding to z0 and proceed
to Phase II.

The following example shows how to perform the two-phase simplex method.

Example 3-4-1.
min 4x1 + 5x2

subject to x1 + x2 ≥ −1,

x1 + 2x2 ≥ 1,

4x1 + 2x2 ≥ 8,

−x1 − x2 ≥ −3,

−x1 + x2 ≥ 1,

x1, x2 ≥ 0.

We start by loading the data into a tableau and then adding a column for the artificial
variable x0 and the Phase I objective z0. We use the MATLAB routines addrow and
addcol. The last argument of each of these routines specifies the position that we wish
the new row/column to occupy within the augmented tableau.

3.4. The Phase I Procedure 63

� load ex3-4-1

� T = totbl(A,b,p);

� neg = [0 1 1 0 1 0]’;

� T = addcol(T,neg,’x0’,3);

� T = addrow(T,[0 0 1 0],’z0’,7);

x1 x2 x0 1
x3 = 1 1 0 1
x4 = 1 2 1 −1
x5 = 4 2 1 −8
x6 = −1 −1 0 3
x7 = −1 1 1 −1
z = 4 5 0 0
z0 = 0 0 1 0

We now perform the “special” pivot, using the MATLAB max command to identify the
largest element in the vector b (which corresponds to the most negative element in the final
column of the tableau). This command also returns the position r occupied by this largest
element. The variable s denotes the column position occupied by the x0 column.

� [maxviol,r] = max(b);

� s = length(p)+1;

� T = ljx(T,r,s);

x1 x2 x5 1
x3 = 1 1 0 1
x4 = −3 0 1 7
x0 = −4 −2 1 8
x6 = −1 −1 0 3
x7 = −5 −1 1 7
z = 4 5 0 0
z0 = −4 −2 1 8

We now proceed with the simplex method, using the usual rules for selecting pivot columns
and rows. Note that we use the last row in the tableau—the z0 row—to select the pivot
columns, since it is z0 (not z) that defines the objective for Phase I. However, we modify
the entries in row z along with the rest of the tableau.

� T = ljx(T,4,2); x1 x6 x5 1
x3 = 0 −1 0 4
x4 = −3 0 1 7
x0 = −2 2 1 2
x2 = −1 −1 0 3
x7 = −4 1 1 4
z = −1 −5 0 15
z0 = −2 2 1 2

� T = ljx(T,3,1); x0 x6 x5 1
x3 = 0 −1 0 4
x4 = 1.5 −3 −0.5 4
x1 = −0.5 1 0.5 1
x2 = 0.5 −2 −0.5 2
x7 = 2 −3 −1 0
z = 0.5 −6 −0.5 14
z0 = 1 0 0 0

64 Chapter 3. The Simplex Method

At this point, we have solved Phase I and x0 appears again at the top of the tableau. We now
delete the x0 column and the z0 row to obtain the following feasible tableau for Phase II:

� T = delrow(T,’z0’);

� T = delcol(T,’x0’);

x6 x5 1
x3 = −1 0 4
x4 = −3 −0.5 4
x1 = 1 0.5 1
x2 = −2 −0.5 2
x7 = −3 −1 0
z = −6 −0.5 14

Although feasible, this tableau is not optimal for Phase II. Simplex rules lead us to perform
the following degenerate pivot:

� T = ljx(T,5,1); x7 x5 1
x3 = 1/3 1/3 4
x4 = 1 0.5 4
x1 = −1/3 1/6 1
x2 = 2/3 1/6 2
x6 = −1/3 −1/3 0
z = 2 1.5 14

We have now identified a solution to the original problem: x1 = 1, x2 = 2, z = 14.

The Phase I technique is interesting not just as a way to identify a starting point for
Phase II but also in its own right as a technique to find a feasible point for a system of
inequalities. The approach is the same; the only difference is that the tableau does not have
a row for the objective function of the original problem (since there is no objective function).

Exercise 3-4-2. 1. Demonstrate that

min z = −3x1 + x2

subject to −x1 − x2 ≥ −2,

2x1 + 2x2 ≥ 10,

x1, x2 ≥ 0

is infeasible.

2. Demonstrate that

min z = −x1 + x2

subject to 2x1 − x2 ≥ 1,

x1 + 2x2 ≥ 2,

x1, x2 ≥ 0

is unbounded.

3.5. Finite Termination 65

Exercise 3-4-3. Solve the following linear programs using MATLAB. Give an optimal
vector and its objective value if solvable; give a direction of unboundedness if unbounded;
or verify that the problem is infeasible. Each problem has the form

min z = p′x
subject to Ax ≥ b, x ≥ 0,

where the data A, b, and p are given below.

1.

A =




−1 −3 0 −1
−2 −1 0 0
0 −1 −4 −1
1 1 2 0

−1 1 4 0


 , b =




−4
−3
−3
1
1


 , p =




−2
−4
−1
−1


 .

2.

A =

−1 0 −1

−1 1 0
0 −1 1


 , b =


 2

−1
3


 , p =


−1

−3
0


 .

Exercise 3-4-4. Using the simplex method, find all solutions of

min z = 2x1 + 3x2 + 6x3 + 4x4

subject to x1 + 2x2 + 3x3 + x4 ≥ 5,

x1 + x2 + 2x3 + 3x4 ≥ 3,

x1, x2, x3, x4 ≥ 0.

3.5 Finite Termination
3.5.1 The Nondegenerate Case

We now ask the question, Is the method described in the previous section guaranteed to
terminate (either at a solution or by finding a direction of unboundedness), or can we cycle
forever between Steps 3 and 6? In this section, we show that termination is guaranteed
under certain rather restrictive assumptions. (We relax these assumptions and prove a more
general result in Section 3.5.3.)

To set up our result, we define the concept of a degenerate tableau.

Definition 3.5.1. A feasible tableau is degenerate if the last column contains any zero
elements. If the elements in the last column are all strictly positive, the tableau is nonde-
generate. A linear program is said to be nondegenerate if all feasible tableaus for that linear
program are nondegenerate.

Geometrically, a tableau is nondegenerate if the vertex it defines is at the intersection
of exactly n hyperplanes of the form xj = 0; namely, those hyperplanes defined by j ∈ N.
Vertices that lie at the intersection of more than n hyperplanes correspond to degenerate

66 Chapter 3. The Simplex Method

tableaus. (See the examples at the end of Section 3.2, illustrated in Figure 3.1.) Conse-
quently, a linear program is nondegenerate if each of the vertices of the feasible region for
that linear program is defined uniquely by a set N.

We encounter degenerate tableaus during the simplex method when there is a tie in
the ratio test for selection of the pivot row. After the pivot is performed, zeros appear in the
last column of the row(s) that tied but were not selected as pivots.

The finite termination of the simplex method under these assumptions is now shown.

Theorem 3.5.2. If a linear program is feasible and nondegenerate, then starting at any
feasible tableau, the objective function strictly decreases at each pivot step. After a finite
number of pivots the method terminates with an optimal point or else identifies a direction
of unboundedness.

Proof. At every iteration, we must have a nonoptimal, optimal, or unbounded tableau. In
the latter two cases, termination occurs. In the first case, the following transformation occurs
when we pivot on an element Hrs , for which hr > 0 (nondegeneracy) and cs < 0 (by pivot
selection), and Hrs < 0 (by the ratio test):

xN 1
xB = H h

z = c′ α

−→ xÑ 1
xB̃ = H̃ h̃

z = c̃′ α̃

Here

α̃ = α − cshr

Hrs

< α,

where the strict inequality follows from the properties of cs , hr , and Hrs . Hence, we can
never return to the tableau with objective α, since this would require us to increase the
objective at a later iteration, something the simplex method does not allow. Since we can
only visit each possible tableau at most once, and since there are only a finite number of
possible tableaus, the method must eventually terminate at either an optimal or an unbounded
tableau.

In fact, a bound on the number of possible tableaus is obtained by determining the num-
ber of ways to choose the nonbasic set N (with n indices) from the index set {1, 2, . . . , m+n}
which, by elementary combinatorics, is

(
m + n

n

)
= (m + n)!

m!n! .

3.5.2 Cycling

We start by giving a classic example due to Beale (1955), which shows that for a degenerate
linear program, reasonable rules for selecting pivots can fail to produce finite termination.
In this example, the simplex method repeats the same sequence of six pivots indefinitely,
making no progress toward a solution.

3.5. Finite Termination 67

Example 3-5-1 (Beale). Consider the initial tableau

� load beale

� T = totbl(A,b,p);

x1 x2 x3 x4 1
x5 = −0.5 5.5 2.5 −9 0
x6 = −0.5 1.5 0.5 −1 0
x7 = −1 0 0 0 1
z = −10 57 9 24 0

Let us use the following pivot rules:

1. The pivot column is the one with the most negative entry in the bottom row.

2. If two or more rows tie for being a pivot row in the ratio test, choose the one with the
smallest subscript.

Note that the example has zeros in the final column, and so it does not satisfy the nonde-
generacy assumption of Section 3.5. Carrying out the simplex method, following the pivot
rules above, we obtain the following tableau after six pivots:

� T = ljx(T,1,1);

� T = ljx(T,2,2);

� T = ljx(T,1,3);

� T = ljx(T,2,4);

� T = ljx(T,1,1);

� T = ljx(T,2,2);

x3 x4 x1 x2 1
x5 = 2.5 −9 −0.5 5.5 0
x6 = 0.5 −1 −0.5 1.5 0
x7 = 0 0 −1 0 1
z = 9 24 −10 57 0

Notice that apart from a column reordering, this tableau is identical to the initial tableau.
If we continue to apply the pivot rules above, we will continue to cycle through the same
six pivots. The positions of the columns may change at the end of every cycle, but the
objective function will never change and we will make no progress toward a solution. This
phenomenon is known as cycling. Cycling can occur only for degenerate problems; a
nondegenerate pivot cannot be part of a cycle since it yields a decrease in the objective
function.

3.5.3 The General Case

We now revisit the issue of finite termination of the simplex method. The main result shows
that a particular variant of the simplex method, when started from a feasible tableau, is guar-
anteed to produce either a solution or a direction of unboundedness within a finite number
of iterations—without any nondegeneracy assumption such as the one used in Section 3.5.
Finite termination of the two-phase simplex method—that is, determination of infeasibility,
optimality, or unboundedness within a finite number of simplex pivots—follows as a simple
consequence. Finite termination depends crucially on the rule used to select pivot columns
(in the event of more than one negative entry in the last row) and on the rule for selecting the

68 Chapter 3. The Simplex Method

pivot row (in the event of a tie in the ratio test). As shown above, even apparently reasonable
rules can fail to produce finite termination.

We now modify the pivot selection rule of the simplex method to overcome this
problem. This rule was introduced by Bland (1977) and is commonly called Bland’s rule
or the smallest-subscript rule.

1. Pricing (pivot column selection): The pivot column is the smallest N(s) of nonbasic
variable indices such that column s has a negative element in the bottom row (reduced
cost).

2. Ratio Test (pivot row selection): The pivot row is the smallest B(r) of basic variable
indices such that row r satisfies

−hr/Hrs = min
i

{−hi/His | His < 0} .

In other words, among all possible pivot columns (those with negative reduced costs), we
choose the one whose label has the smallest subscript. Among all possible pivot rows (those
that tie for the minimum in the ratio test), we again choose the one whose label has the
smallest subscript.

Example 3-5-2. We apply the smallest-subscript rule to Beale’s problem.

� load beale

� T = totbl(A,b,p);

x1 x2 x3 x4 1
x5 = −0.5 5.5 2.5 −9 0
x6 = −0.5 1.5 0.5 −1 0
x7 = −1 0 0 0 1
z = −10 57 9 24 0

The pivot column must be the column labeled x1, since it is the only one with a negative
reduced cost. In the ratio tests, the rows labeled x5 and x6 tie for minimum ratio; the
smallest-subscript rule chooses x5. By continuing in this manner, we generate the following
sequence of five pivots, ending with the tableau shown below.

� T = ljx(T,1,1);

� T = ljx(T,2,2);

� T = ljx(T,1,3);

� T = ljx(T,2,4);

� T = ljx(T,1,1);

x3 x6 x1 x2 1
x5 = −2 9 4 −8 0
x4 = 0.5 −1 −0.5 1.5 0
x7 = 0 0 −1 0 1
z = 21 −24 −22 93 0

At this point, the smallest-subscript rule chooses the column labeled x1 as the pivot column,
whereas the “most negative” rule described earlier would have chosen x6. By continuing
with the next pivots, we obtain the following tableau:

� T = ljx(T,2,3);

� T = ljx(T,3,1);

x7 x6 x4 x2 1
x5 = −2 5 −4 −2 2
x1 = −1 0 0 0 1
x3 = −1 2 2 −3 1
z = 1 18 42 30 −1

3.5. Finite Termination 69

Finally, we have arrived at an optimal tableau. The optimal value is −1, achieved when
x = (1, 0, 1, 0, 2, 0, 0).

The following theorem establishes finiteness of the simplex method using the smallest-
subscript rule, without any nondegeneracy assumption. The proof closely follows the one
given by Chvátal (1983).

Theorem 3.5.3. If a linear program is feasible, then starting at any feasible tableau, and
using the smallest-subscript anticycling rule, the simplex method terminates after a finite
number of pivots at an optimal or unbounded tableau.

Proof. Since there are at most
(
m+n

m

)
ways of choosing m basic variables from n + m

variables, some choice of basic variables (and the tableau that corresponds to these variables)
must repeat if the simplex method cycles. We will show, by contradiction, that the method
cannot cycle when the smallest-subscript anticycling rule is used.

Suppose for contradiction that some tableau is repeated. Then there is a sequence of
degenerate pivots that leads from some tableau T0 back to itself. We denote this sequence
of tableaus as follows:

T0, T1, . . . , Tk = T0.

If any one of these pivots were nondegenerate, the objective function would decrease and
the cycle would be broken. Hence, all pivots in the above sequence must be degenerate.

A variable will be called fickle if it is nonbasic in some of the tableaus T0, T1, . . . , Tk =
T0 and basic in others. Every fickle variable must become basic at least once in the cycle
and become nonbasic at least once in the cycle since the set of basic and nonbasic variables
is the same at the beginning and end of the cycle. Furthermore, the value of a fickle variable
is always zero, since every pivot is degenerate.

Among all fickle variables, let xl have the largest subscript. Then among T1, . . . , Tk

there is some T where xl is the basic variable chosen to become nonbasic. Let xs be the
(fickle) nonbasic variable that is chosen to become basic at this pivot. Our logic will show
that there is another fickle variable xr , r < l, that is eligible to become nonbasic at this pivot
step as well, contradicting our choice of xl as the variable to become nonbasic. The tableau
T looks like this so far when we order according to subscripts:

T : xs 1
=

xr = Hrs

=
xl = Hls < 0 0

=
z = ≥ 0 cs < 0 α

(3.16)

For the purposes of this proof, we abuse notation and assume that the entries of the tableau
h, c, and H are indexed not by 1, 2, . . . , m and 1, 2, . . . , n but by the corresponding basic
and nonbasic labels B and N. Note therefore that cs < 0 since s is chosen to enter at this
pivot step. Since xl is fickle, it must also be chosen to become basic at some other tableau
T̃ in the sequence T1, T2, . . . , Tk . Since the objective value is the same for all tableaus, the
bottom row of T̃ represents the equation

z = c̃′
Ñ
xÑ + α, (3.17)

70 Chapter 3. The Simplex Method

where Ñ (and B̃) correspond to the nonbasic (and basic) variables in T̃ . By defining c̃B̃ = 0,
we obtain

z = c̃′
B̃
xB̃ + c̃′

Ñ
xÑ + α = c̃′x + α.

For any λ ∈ R, the tableau T (3.16) above defines the following relationships between
the variables:

xi =




λ if i = s,

Hjsλ + hj if i = B(j),

0 if i ∈ N \ {s},
(3.18)

z = csλ + α.

By Theorem 2.1.1, the value z = csλ + α must be the same as the value of z obtained by
substituting (3.18) into (3.17). Hence,

csλ + α = c̃ÑxÑ + α = c̃sλ +
∑
i∈B

c̃i (Hisλ + hi) + α,

which implies that (
cs − c̃s −

∑
i∈B

c̃iHis

)
λ =

∑
i∈B

c̃ihi .

Since this relationship holds for any λ ∈ R, we must have

cs − c̃s −
∑
i∈B

c̃iHis = 0. (3.19)

Since xs becomes basic in T , we have from (3.16) that cs < 0. Also, xs does not become
basic in T̃ (xl does), and so because s < l, we must have c̃s ≥ 0. Thus from (3.19), we have∑

i∈B

c̃iHis < 0,

and so there must be some r ∈ B such that

c̃rHrs < 0. (3.20)

This is the r we require for our contradiction. Note the following properties of xr :

1. xr is fickle: From (3.20), c̃r �= 0, and so c̃B̃ = 0 implies that r ∈ Ñ. On the other
hand, r ∈ B, and so xr is fickle. Since l is the largest fickle index, we must have
r ≤ l.

2. r < l: Since xl becomes nonbasic in T , Hls < 0; see (3.16). Also c̃l < 0 because xl

becomes basic in T̃ . It follows from (3.20) that r �= l.

3. Hrs < 0: Since (as established above) r ∈ Ñ, and since r < l, we must have that
c̃r ≥ 0 (otherwise r , not l, would be chosen to become basic at T̃). It now follows
from (3.20) that Hrs < 0.

3.5. Finite Termination 71

By combining all this information, we conclude that T has the following structure:

xs 1
=

xr = Hrs < 0 0
=

xl = Hls < 0 0
=

z = ≥ 0 cs < 0 α

According to this tableau, xr is chosen to become nonbasic, and r < l contradicts our
hypothesis that xl is chosen to become nonbasic in T .

We can now use Theorem 3.5.3 to show that the two-phase simplex method identifies
a solution, or else indicates infeasibility or unboundedness, after a finite number of pivots.

Theorem 3.5.4. For a linear program (3.1), the two-phase simplex method with the smallest-
subscript anticycling rule terminates after a finite number of pivots with a conclusion that
the problem is infeasible, or at an optimal or unbounded tableau.

Proof. Consider first Phase I. After the initial pivot, we have a feasible tableau for Phase I,
and since the Phase I problem is bounded below, it must have an optimal solution. The-
orem 3.5.3 indicates that this solution is found after a finite number of pivots. If x0 > 0
at optimality, then the original problem is infeasible. If x0 = 0, then we can construct a
feasible tableau for Phase II. By applying Theorem 3.5.3 again, we find that an optimal or
unbounded tableau is reached for Phase II after a finite number of pivots.

Exercise 3-5-3. Consider the following tableau:

x2 x3 1
x1 = 1 −2 2
x5 = 2 −1 1
x4 = 2 −1 2
z = 1 µ − 3 −1

Note that the variables x1, x2, . . . , x5 are all nonnegative. Indicate for each of the three
cases µ < 3, µ > 3, µ = 3 whether the tableau is

• infeasible;

• feasible but not optimal (do not do any pivoting);

• optimal with a unique solution (write it down);

• optimal with a nonunique solution (write down at least two solutions).

Exercise 3-5-4. Read the following statements carefully to see whether it is true or false.
Explain your answers briefly in each case.

72 Chapter 3. The Simplex Method

1. If a linear program has more than one optimal solution, it must have an infinite number
of optimal solutions.

2. The Phase I problem in the two-phase simplex method can be unbounded.

3. In solving a linear program by the simplex method, starting with a feasible tableau, a
different feasible point is generated after every pivot step.

Although anticycling rules are needed to guarantee finite termination of the simplex
method, it has been observed that cycling is a rare phenomenon in practice (Kotiah &
Steinberg (1977), Kotiah & Steinberg (1978)). In practice, anticycling rules are not applied
at every pivot, since they tend to increase the number of pivots required (Gass (1985), p. 183).
Practical codes often “turn on” the anticycling rules if the simplex method stalls at the same
vertex for a large number of pivots.

3.6 Linear Programs in Nonstandard Form
We know from Theorem 3.5.4 that the two-phase simplex method can solve any linear
program that is posed in standard form. In this section, we show that any linear program,
including problems with equality constraints and free variables, can be rewritten in standard
form. Hence the simplex method can be applied to any linear program whatsoever, and the
results of Theorem 3.5.4 apply.

We discuss two approaches. In the first, known as Scheme I , we use explicit trans-
formations and substitutions to express a nonstandard linear program in standard form.
We can then apply the two-phase simplex method. Once the solution is obtained, we can
recover the solution of the original problem by substituting into the transformations we
made. The second approach, Scheme II , takes a more direct route. Here we handle some of
the nonstandard aspects of the formulation by performing some preliminary pivots on the
tableau, prior to starting the simplex method.

We describe these two techniques in turn, after outlining some of the transformations
needed to change the form of the constraints.

3.6.1 Transforming Constraints and Variables

We first note that any maximization problem can be converted into an equivalent minimiza-
tion problem by taking the negative of the objective. Specifically, given any function f and
constraint set S, any vector x̄ that solves the problem maxx∈S f (x) is also a solution of the
problem minx∈S(−f (x)), and vice versa. To solve the first (maximization) problem, we find
the solution of the second (minimization) problem and then negate the optimal objective
value.

Second, we can convert any less-than inequalities into greater-than inequalities by
simply multiplying both sides of the inequality by −1. For instance, the constraint x1−2x3 ≤
4 is equivalent to −x1 + 2x3 ≥ −4.

3.6. Linear Programs in Nonstandard Form 73

As an example, we revisit the Professor’s diary problem, introduced in Section 1.1.
The following problem was solved using a graphical method:

max
x,y

z = 5x + 4y

subject to x ≤ 6,

.25x + y ≤ 6,

3x + 2y ≤ 22,

x, y ≥ 0.

To process this problem using Phase II of the simplex method, we need to convert the
maximization into a minimization and reverse all the inequalities. The first step enters the
modified data and then forms the initial tableau.

� p = [5; 4]; b = [6; 6; 22];

� A = [1 0; 0.25 1; 3 2];

� T = totbl(-A,-b,-p);

� T = relabel(T,’x1’,’x’,’x2’,’y’);

x y 1
x3 = −1 0 6
x4 = −0.25 −1 6
x5 = −3 −2 22
z = −5 −4 0

The relabel command simply replaces labels in the obvious manner. Since this tableau is
feasible, we simply apply Phase II of the simplex method, resulting in the following two
pivots:

� T = ljx(T,2,2);

� T = ljx(T,3,1);

x5 x4 1
x3 = 0.4 −0.8 2
y = 0.1 −1.2 5
x = −0.4 0.8 4
z = 1.6 0.8 −40

Note that the final solution has x = 4 and y = 5 and that the final objective value is 40
(where we convert the value −40 since the original problem is a maximization).

These techniques are further demonstrated in the following more general example.

Example 3-6-1.

max z = x1 + x2 − x3

subject to x1 + x2 + x3 ≤ 4,

2x1 − x2 ≥ 2,

−x1 − x2 + x3 ≤ 10,

x1 + 2x2 − x3 ≥ 1,

x1, x2, x3 ≥ 0.

� load ex3-6-1

� A(1,:) = -A(1,:); b(1) = -b(1);

� A(3,:) = -A(3,:); b(3) = -b(3);

� T = totbl(A,b,-p);

x1 x2 x3 1
x4 = −1 −1 −1 4
x5 = 2 −1 0 −2
x6 = 1 1 −1 10
x7 = 1 2 −1 −1
z = −1 −1 1 0

74 Chapter 3. The Simplex Method

Since this tableau is in standard form, we can apply the two-phase simplex method to solve
it. The details are left to the reader.

Exercise 3-6-2. Use the two-phase simplex procedure to solve

max z = 2x1 + 3x2

subject to −4x1 + 3x2 ≤ 12,

2x1 + x2 ≤ 6,

x1 + x2 ≥ 3,

5x1 + x2 ≥ 4,

x1, x2 ≥ 0.

Using the technique above to transform less-than constraints, we can convert any set
of general constraints (equalities, less-than inequalities, greater-than inequalities) into a set
of equalities and greater-than inequalities. We now consider how to eliminate all bounds on
the variables except nonnegativity bounds.

Suppose first that a variable xi has both a lower and an upper bound; that is,

l̄i ≤ xi ≤ ūi . (3.21)

(In Section 5.2.1 of Chapter 5, we describe a variant of the simplex method that handles
constraints of this type directly. However, it is instructive to see how such constraints can
also be handled using our current version of simplex.)

Substitution Method. There are two methods to remove these general bound constraints.
The first method uses substitution.

When xi has only a lower bound xi ≥ l̄i (when l̄i �= 0), we can apply the following
shifting procedure: Define a new variable wi to be xi − l̄i , replace xi by wi + l̄i in the formu-
lation, and declare wi to be a nonnegative variable (this latter restriction being equivalent
to xi ≥ l̄i). After solving the problem, we recover the optimal xi by setting xi = wi + l̄i .

Similarly, when xi has only an upper bound xi ≤ ūi , we can make the substitution
wi = ūi − xi (that is, make the substitution xi = ūi − wi throughout) and declare wi to
be a nonnegative variable. After solving the problem, we recover the optimal xi by setting
xi = ūi − wi .

For the more general case with two bounds, if we happen to have l̄i = 0, we can
simply add −xi ≥ −ūi to the set of general constraints and declare xi to be a nonnegative
variable in the formulation. If li �= 0, we make the substitution wi = xi − l̄i as above, and
the constraints on wi are then

0 ≤ wi ≤ ūi − l̄i .

We can add the upper bound wi ≤ ūi − l̄i to the list of general constraints, make the
substitution xi = wi + l̄i to replace xi in the other constraints and in the objective, and
declare wi to be a nonnegative variable. After solving the problem, we recover the optimal
xi by setting xi = wi + l̄i .

3.6. Linear Programs in Nonstandard Form 75

Example 3-6-3. Given the linear program

min 3x1 + 2x2 − x3

subject to x1 + x2 = 5,

−1 ≤ x1 ≤ 6,

x2 ≥ 3,

0 ≤ x3 ≤ 5,

we use the substitutions w1 = x1 + 1, w2 = x2 − 3 to generate the following problem:

min 3w1 + 2w2 − x3 + 3
subject to −w1 ≥ −7,

− x3 ≥ −5,

w1 + w2 = 3,

w1, w2, x3 ≥ 0.

Free Variable Method. An alternative technique for dealing with (3.21) that avoids any
substitution is to add the following two inequality constraints to the general constraint set:

xi ≥ l̄i , −xi ≥ −ūi ,

and declare xi to be a free variable (that is, do not apply a nonnegativity constraint explicitly).
When we have a simple lower bound constraint, we can add xi ≥ l̄i to the list of

general constraints and declare xi to be a free variable in the formulation. Similarly, for
simple upper bound constraints, we can add −xi ≥ −ūi to the list of general constraints
and declare xi to be free.

Using either of the simple reductions described above, we can obtain a formulation
in which all the general constraints are either equalities or greater-than inequalities and
in which all the variables are either nonnegative variables or are free. We can therefore
transform any linear programming problem to the following “general” form:

min
x,y

p′x + q ′y

subject to Bx + Cy ≥ d,

Ex + Fy = g,

x ≥ 0, y free.

(3.22)

For expository purposes, we have gathered all the remaining nonnegative variables into a
vector x, and all the free variables into a vector y, and rearranged the variables so that the
nonnegative variables are listed before the free variables. Similarly, the equality constraints
are listed after all the inequalities.

Example 3-6-4. For the linear program data of Example 3-6-3, we reformulate using the free
variable method as a problem with only equalities, greater-than inequalities, nonnegative

76 Chapter 3. The Simplex Method

variables, and free variables as shown:

min −x3 + 3x1 + 2x2

subject to x1 ≥ −1,

−x1 ≥ −6,

x2 ≥ 3,

−x3 ≥ −5,

x1 + x2 = 5,

x3 ≥ 0, x1, x2 free.

Note that the transformed problem has five “general” constraints. The formulation using
substitution given previously, while slightly more complicated to carry out, results in a
problem with the same number of variables but only three general constraints.

3.6.2 Scheme I

We can reformulate (3.22) in standard form by (i) replacing the free variables with a differ-
ence between their positive and negative parts, that is,

y free ⇐⇒ y = y+ − y−, y+, y− ≥ 0;
and (ii) replacing the equations by two inequalities as shown:

Ex + Fy = g ⇐⇒ Ex + Fy ≥ g,

Ex + Fy ≤ g.

By making both these substitutions in (3.22), we obtain the following:

min
x,y+,y−

p′x + q ′y+ − q ′y−

subject to Bx + Cy+ − Cy− ≥ d,

Ex + Fy+ − Fy− ≥ g,

−Ex − Fy+ + Fy− ≥ −g,

x, y+, y− ≥ 0.

By collecting the variables x, y+, and y− into a vector t and defining H , h, and c by

H =

 B C −C

E F −F

−E −F F


 , h =


 d

g

−g


 , c =


 p

q

−q


 , (3.23)

we see that the above problem can then be rewritten in standard form as

min
t

c′t
subject to Ht ≥ h,

t ≥ 0.

(3.24)

In Scheme I, we perform this reduction to standard form explicitly and solve the
problem (3.24) explicitly using the two-phase simplex method. In a “postprocessing” phase,
we recover the optimal values for the original variables by “undoing” the transformations
that we applied to obtain the variables t .

3.6. Linear Programs in Nonstandard Form 77

Example 3-6-5.

min 2x1 − x2 + x3

subject to x1 − x2 + 4x3 ≥ −1,

x1 − x2 − x3 ≥ 2,

x1 + 3x2 + 2x3 = 3,

x1, x2 ≥ 0.

Note that x3 is a free variable, and the third constraint is an equality. We identify this
problem with the formulation (3.22) by defining the data as follows:

B =
[

1 −1
1 −1

]
, C =

[
4

−1

]
, E = [

1 3
]
, F = [

2
]
, d =

[−1
2

]
,

g = [
3
]
, p =

[
2

−1

]
, q = [

1
]
, x =

[
x1

x2

]
, y = [

x3
]
.

The following MATLAB code defines this data, assembles the Scheme I problem as defined
in (3.24), (3.23), and defines the initial tableau:

� B = [1 -1; 1 -1]; C = [4; -1];

� E = [1 3]; F = 2;

� d = [-1; 2]; g = 3;

� p = [2; -1]; q = 1;

� H = [B C -C; E F -F; -E -F F];

� h = [d; g; -g];

� c = [p; q; -q];

� T = totbl(H,h,c,0,’t’);

t1 t2 t3 t4 1
t5 = 1 −1 4 −4 1
t6 = 1 −1 −1 1 −2
t7 = 1 3 2 −2 −3
t8 = −1 −3 −2 2 3
z = 2 −1 1 −1 0

Note that we have used a five-argument form of totbl. The fourth argument represents
the initial value to be placed in the lower right cell of the tableau (representing the constant
term in the objective function, if one exists), while the fifth argument defines the text part of
the labels to be used for rows and columns (if we required something other than the default
x).

We now proceed with Phase I of the two-phase simplex method.

� T = addcol(T,[0 1 1 0 0]’,
’x0’,5);

� w = [0 0 0 0 1 0];

� T = addrow(T,w,’z0’,6);

t1 t2 t3 t4 x0 1
t5 = 1 −1 4 −4 0 1
t6 = 1 −1 −1 1 1 −2
t7 = 1 3 2 −2 1 −3
t8 = −1 −3 −2 2 0 3
z = 2 −1 1 −1 0 0
z0 = 0 0 0 0 1 0

The next step is the special pivot that generates a feasible tableau for Phase I.

78 Chapter 3. The Simplex Method

� T = ljx(T,3,5); t1 t2 t3 t4 t7 1
t5 = 1 −1 4 −4 0 1
t6 = 0 −4 −3 3 1 1
x0 = −1 −3 −2 2 1 3
t8 = −1 −3 −2 2 0 3
z = 2 −1 1 −1 0 0
z0 = −1 −3 −2 2 1 3

A further pivot leads to an optimal Phase I tableau.

� T = ljx(T,3,1); x0 t2 t3 t4 t7 1
t5 = −1 −4 2 −2 1 4
t6 = 0 −4 −3 3 1 1
t1 = −1 −3 −2 2 1 3
t8 = 1 0 0 0 −1 0
z = −2 −7 −3 3 2 6
z0 = 1 0 0 0 0 0

Striking out the x0 column and the z0 row, we note that the resulting tableau is feasible but
not optimal. Two more pivots lead to an optimal tableau.

� T = delcol(T,’x0’);

� T = delrow(T,’z0’);

� T = ljx(T,2,1);

� T = ljx(T,1,3);

t6 t3 t5 t7 1
t4 = 0.2 1 −0.2 0 0.6
t2 = −0.1 0 −0.15 0.25 0.7
t1 = 0.7 0 0.05 0.25 2.1
t8 = 0 0 0 −1 0
z = 1.3 0 0.45 0.25 2.9

We now need to convert the optimal values for t back into optimal values for x. Note that
x1 = t1 = 2.1, x2 = t2 = 0.7, x3 = t3 − t4 = −0.6 (since we replaced x3 by the difference
of its positive part t3 and its negative part t4 in the formulation). The optimal objective value
is z = 2.9.

We have shown in Section 3.6.1 that any linear program can be reformulated in the
general form (3.22), while in this section we have shown that (3.22) can be reformulated in
standard form and then solved with the simplex method of this chapter. We combine these
two observations with Theorem 3.5.4 to obtain the following result.

Theorem 3.6.1. Given any linear program, suppose we apply Scheme I together with the
two-phase simplex method using the smallest-subscript anticycling rule. Then, after a finite
number of pivots, the algorithm either terminates with a conclusion that the problem is
infeasible or else arrives at an optimal or unbounded tableau.

3.6. Linear Programs in Nonstandard Form 79

Exercise 3-6-6. Convert the following problem into standard form using Scheme I and
solve using the simplex method:

min x + 2y + 3z

subject to x − y + 3z ≤ 3,

4x + y ≥ 1,

z ≥ 0.

Exercise 3-6-7. Convert the following problem to standard form and solve using the two-
phase simplex method:

max −2x1 − x2 − x3 − 2x4

subject to x1 − x2 + x3 − x4 = −1,

−x1 − x2 − x3 − x4 = −3,

−x1 + x2 − x3 + x4 ≤ 1,

x1 + x2 − x3 − x4 ≤ −1,

−x1 − x2 + x3 + x4 ≤ 1,

−x1 + x2 + x3 − x4 ≤ −2,

x1, x4 ≥ 0.

(Note that the variables x2, x3 are free.)

In Example 3-6-5, we added only one equation and one variable to the problem during
conversion to standard form. When there are multiple free variables and multiple equations,
we end up increasing the size of the problem significantly, as seen in Exercise 3-6-7. By
using a variant on the Scheme I technique, we can generate a standard-form problem by
just adding one extra variable and one extra constraint. The role of the extra variable is to
absorb the maximum negativity of the free variables y. We replace y by a set of nonnegative
variables ŷ and the extra variable η as follows:

y free ⇐⇒ y = ŷ − eη, ŷ ≥ 0, η ≥ 0.

For the equality constraints, we make the following substitution:

Ex + Fy = g ⇐⇒ Ex + Fy ≥ g,

e′(Ex + Fy − g) ≤ 0.

Here e = (1, 1, . . . , 1)′ is a vector of ones of appropriate dimension. By making these
two substitutions into the general form (3.22), we obtain the following standard-form linear
program:

min
x,ŷ,η

p′x + q ′(ŷ − eη)

subject to Bx + C(ŷ − eη) ≥ d,

Ex + F(ŷ − eη) ≥ g,

−e′Ex − e′F(ŷ − eη) ≥ −e′g,

x, ŷ, η ≥ 0.

Exercise 3-6-8. Use the above approach to solve the problem given in Exercise 3-6-7.

80 Chapter 3. The Simplex Method

Exercise 3-6-9. Solve the following problem:

max 2y1 − y3

subject to 5y1 − 2y2 + y3 − y4 = 36,

y1 + y3 ≥ 4,

y1 + 3y2 + y3 ≥ 1,

y1 ≤ 8, y2 ≥ 0, y3 ≤ 0, y4 ≥ 0.

Does the problem have a unique optimal solution? Justify.

Exercise 3-6-10. Use the simplex method to solve the following problem:

max 2x1 + 5x2 − x3

subject to 5x1 + x3 ≥ 1,

−2x1 + x3 ≤ 22,

−4x1 + x2 − x3 ≤ −6,

x1 ≤ 0, x2 ≥ 3, x3 ≥ 0.

3.6.3 Scheme II

We now describe an alternative approach to solving the general formulation (3.22) that
avoids transformation to standard form and avoids adding extra variables and equations to
the formulation. This approach, known as Scheme II, handles the rows and columns of the
tableau that correspond to free variables and to equality constraints in a special way, as we
now describe.

Equality constraints could be handled by introducing artificial variables that represent
the violation of these constraints and requiring these variables to be zero at the solution.
Accordingly, we aim to manipulate the tableau prior to applying the simplex method to
pivot all the artificial variables associated with equality constraints to the top of the tableau.
Once they are at the top of the tableau, we are able to assign them the value 0. Since we
want to ensure that these variables are fixed at zero and remain nonbasic for the rest of the
computation, we can simply delete their columns from the tableau.

We deal with all the free variables, which are on top of the initial tableau, by performing
some initial pivots to move them to the side of the tableau. Once they are row labels, we
do not wish to consider them as possible row pivots during the subsequent application of
the simplex method. In fact, we do not care if these variables take on negative values
at subsequent iterations. The best practical strategy for dealing with these rows in the
MATLAB implementation is to move them to the bottom of the tableau and ignore them
during subsequent selection of row and column pivots. Once the simplex method has
terminated, we can read off the values of these variables by referring to the entries in the
final column of the tableau.

Example 3-6-11. We now apply Scheme II to Example 3-6-5.

� load ex3-6-5

� T = totbl(A,b,p);

x1 x2 x3 1
x4 = 1 −1 4 1
x5 = 1 −1 −1 −2
x6 = 1 3 2 −3
z = 2 −1 1 0

3.6. Linear Programs in Nonstandard Form 81

We now remove the artificial variable x6 that corresponds to the equality constraint by using
a Jordan exchange to move it to the top of the tableau and then delete its column. The
equality constraint represented by x6 will be satisfied for all subsequent tableaus.

� T = ljx(T,3,1);

� T = delcol(T,’x6’);

x2 x3 1
x4 = −4 2 4
x5 = −4 −3 1
x1 = −3 −2 3
z = −7 −3 6

We now move the free variable x3 to the side of the tableau by means of the following pivot:

� T = ljx(T,2,2); x2 x5 1
x4 = −6.67 −0.67 4.67
x3 = −1.33 −0.33 0.33
x1 = −0.33 0.67 2.33
z = −3 1 5

Note that since x3 is free, the second row of the tableau can be viewed as a defining rela-
tionship for x3. The Jordan exchange has used this relationship to substitute x3 out of all
the remaining equations in the tableau. Since we need not consider the row labeled by x3

further as a possible pivot row, we use the command permrows to move it out of the way,
to the bottom of the tableau. We can then ignore it for the remainder of the calculations.

� T = permrows(T,[1 3 4 2]); x2 x5 1
x4 = −6.67 −0.67 4.67
x1 = −0.33 0.67 2.33
z = −3 1 5
x3 = −1.33 −0.33 0.33

(Note that permrows reorders the rows as described in its second argument.) At this stage,
all the variables left in the tableau x2, x5, x4, and x1 are nonnegative in the formulation, and
so we can proceed with the two-phase simplex method. In this particular example, since
the tableau is already feasible, we can dispense with Phase I and move directly to Phase II.

� T = ljx(T,1,1); x4 x5 1
x2 = −0.15 −0.1 0.7
x1 = 0.05 0.7 2.1
z = 0.45 1.3 2.9
x3 = 0.2 −0.2 −0.6

The final tableau is optimal, with x1 = 2.1, x2 = 0.7, and the free variable x3 having the
value −0.6. The optimal objective value is z = 2.9, as we calculated earlier in Example 3-
6-5.

The pivots that are performed to bring the artificial variables associated with equality
constraints to the top of the tableau and the free variables to the side are best thought of as a

82 Chapter 3. The Simplex Method

“preprocessing” step; they are not part of the simplex method proper. We have a great deal
of latitude in selecting these pivots; any legal pivots can be used. In fact, we can solve the
above problem using the following alternative approach:

� load ex3-6-5

� T = totbl(A,b,p);

� T = ljx(T,3,3);

� T = delcol(T,’x6’);

� T = permrows(T,[1 2 4 3]);

x1 x2 1
x4 = −1 −7 7
x5 = 1.5 0.5 −3.5
z = 1.5 −2.5 1.5
x3 = −0.5 −1.5 1.5

We have used a single pivot to both move the artificial variable to the top of the tableau and
move the free variable to the side. Unlike the previous choice of pivots, however, we need
to start the simplex method with a Phase I. By adding the Phase I variable x0 and objective
z0 in the usual way, we obtain

� T = addcol(T,[0 1 0 0]’,’x0’,3);

� T = addrow(T,[0 0 1 0],’z0’,5);

x1 x2 x0 1
x4 = −1 −7 0 7
x5 = 1.5 0.5 1 −3.5
z = 1.5 −2.5 0 1.5
x3 = −0.5 −1.5 0 1.5
z0 = 0 0 1 0

The Phase I procedure then proceeds in the usual way.

� T = ljx(T,2,3);

� T = ljx(T,2,1);

� T = delrow(T,’z0’);

� T = delcol(T,’x0’);

x2 x5 1
x4 = −6.67 −0.67 4.67
x1 = −0.33 0.67 2.33
z = −3 1 5
x3 = −1.33 −0.33 0.33

Note that the last MATLAB operations above just remove the row and the column corre-
sponding to the Phase I variables. A single Phase II pivot ljx(T,1,1) leads to the same
optimal tableau as given earlier.

Exercise 3-6-12. Carry out Scheme II on the problem given in Exercise 3-6-7. Check that
you obtain the same solutions as before.

Scheme II can run into difficulties when zero pivots make it impossible to pivot the
free variables to the side of the tableau and the equality constraints to the top. We now
discuss how to handle these cases and what they indicate about the problem.

The equality constraints present the easier case. If we are unable to pivot the artificial
variable xn+i for an equality constraint to the top of the tableau, then the whole row of the
tableau must contain zeros, except possibly for the entry in the last column, which gives
the value of xn+i for this tableau. (This situation can happen when the equality constraint
is linearly dependent on other constraints in the system.) We have two cases:

3.6. Linear Programs in Nonstandard Form 83

(a) If the right-hand side is zero, the equality xn+i = 0 is consistent, and we can delete
this row from the tableau and continue.

(b) If the right-hand side is nonzero, the equality xn+i = 0 is inconsistent with the other
constraints, and so the problem is infeasible.

The case in which a free variable cannot be pivoted to the side of the tableau is a
little more complicated. Scheme II runs into trouble when all possible pivots in column j

(corresponding to the free variable xN(j)) are zero. (We exclude from consideration here the
reduced cost cj for xN(j) and also the rows corresponding to other free variables which have
already been pivoted to the side of the tableau.) By examining the reduced cost cj , we can
recognize two cases immediately.

(a) If cj = 0, we can leave the column in place and proceed with further Scheme II steps
and with the simplex method. By examining the Jordan exchange formulae (2.5) and
(2.6) closely, we see that the eligible pivots in this column (and the reduced cost)
remain at zero at all subsequent steps. If an optimal tableau is eventually found, we
can obtain a solution by setting xN(j) to an arbitrary value and calculating the values
of the free variables which were successfully pivoted to the side by reading off the
tableau in the usual manner. (If we are interested in finding just one solution of the
linear program, we can simply set xN(j) = 0 and read the values of the remaining free
variables from the last column of the tableau.)

(b) If the reduced cost cj is nonzero and the tableau is feasible, then we can drive the
objective to −∞ by either increasing xN(j) to ∞ (if cj < 0) or decreasing it to −∞ (if
cj > 0), while maintaining feasibility of the other variables. In this case the problem
is unbounded.

One important case remains unresolved: the case in which cj �= 0 but the tableau
is not feasible. In this case, we need to perform more work before determining whether
the problem is unbounded or infeasible. By examining the Jordan exchange formula (2.6)
closely, we can exclude the possibility that the problem has an optimal solution in this case.
Any subsequent pivots applied to the tableau will not change the values in column j ; the
possible pivots will remain at zero and cj will not change. If the further pivots lead to a
feasible tableau (for instance via subsequent Scheme II pivots, or by the use of Phase I), then
we are in the situation of case (b) above, and we can declare the problem to be unbounded.
If, however, we determine that no feasible tableau can be obtained (for instance if Phase I
terminates with a positive objective), then we declare the problem to be infeasible.

We now discuss some simple examples that illustrate these cases.

Example 3-6-13. Consider first the following problem:

min
x1,x2

2x1 − x2

subject to x1 − 2x2 ≥ −2,

x1 = 4,

2x1 = 6,

x1 ≥ 0,

for which the tableau is as follows:

84 Chapter 3. The Simplex Method

� load ex3-6-13-1

� T = totbl(A,b,p);

x1 x2 1
x3 = 1 −2 2
x4 = 1 0 −4
x5 = 2 0 −6
z = 2 −1 0

By pivoting x4 to the top and eliminating the corresponding column, we obtain the following
tableau:

� T = ljx(T,2,1);

� T = delcol(T,’x4’);

x2 1
x3 = −2 6
x1 = 0 4
x5 = 0 2
z = −1 8

We cannot pivot x5, the artificial variable corresponding to the other equality constraint, to
the top of the tableau, because there is a zero in the only eligible pivot position. Since the
last column contains a nonzero in this row, we conclude that the problem is infeasible. If
the third constraint in the original problem had been 2x1 = 8, then the last column would
have contained a zero in this position, and we would have been able to delete the row
corresponding to x5 and then proceed with the algorithm.

In the next examples we have a nonnegative variable x1 ≥ 0, a free variable x2, a
slack variable x3 associated with an inequality, and an artificial variable x4 associated with
an equality:

min
x1,x2

2x1 − x2

subject to x1 ≥ −6,

−x1 = −4,

x1 ≥ 0.

This problem corresponds to the following tableau:

� load ex3-6-13-2

� T = totbl(A,b,p);

x1 x2 1
x3 = 1 0 6
x4 = −1 0 4
z = 2 −1 0

We would like to perform pivots to move x4 to the top of the tableau and x2 to the side of
the tableau. Note that we cannot pivot x2 to the side, as all elements in its column (except
the reduced cost) are zero. Since the reduced cost is nonzero, we cannot simply delete the
column and proceed. Nor can we yet determine that the problem is unbounded, since the
tableau is not yet feasible. (It yields the value x4 = 4, which is not feasible since we require

3.6. Linear Programs in Nonstandard Form 85

this artificial variable to be zero.) Hence we proceed with pivoting, choosing the (2, 1)

element as the pivot element to move the x4 element to the top, and obtain the following:

� T = ljx(T,2,1); x4 x2 1
x3 = −1 0 10
x1 = −1 0 4
z = −2 −1 8

This tableau is now feasible: x4 is zero, and x1 and x3 are both positive, as required. At this
point, we can conclude that the problem is unbounded. (It is easy to see that if we let x2 go
to +∞, x1 and x3 remain feasible while z goes to −∞.)

Suppose that we change the right-hand side in the first constraint to 6, that is,

min
x1,x2

2x1 − x2

subject to x1 ≥ 6,

−x1 = −4,

x1 ≥ 0.

� b(1)=6;

� T = totbl(A,b,p);

x1 x2 1
x3 = 1 0 −6
x4 = −1 0 4
z = 2 −1 0

Again, we note that we cannot pivot x2 to the side, and so we perform the pivot on the (2, 1)

element as before and delete the column corresponding to x4 to obtain the following:

� T=ljx(T,2,1);

� T = delcol(T,’x4’);

x2 1
x3 = 0 −2
x1 = 0 4
z = −1 8

The resulting tableau is still not feasible, and so we still cannot determine whether the
problem is infeasible or unbounded. We now proceed with the usual Phase I as follows:

� T = addcol(T,[1 0 0]’,’x0’,2);

� T = addrow(T,[0 1 0],’z0’,4);

� T = ljx(T,1,2);

x2 x3 1
x0 = 0 1 2
x1 = 0 0 4
z = −1 0 8
z0 = 0 1 2

We see now that the problem is infeasible, since Phase I has terminated with a nonzero
objective value.

86 Chapter 3. The Simplex Method

Exercise 3-6-14. Consider the linear program

min −x1 + x2 − x3 − 4x4

subject to x1 − x2 + 2x3 − x4 = −4,

−x1 + x2 − x3 − x4 = 4,

x1 + x2 − x3 − x4 ≥ 2,

−x1 − x2 + x3 − 2x4 ≥ −4,

x1 + x2 + 2x3 + x4 ≥ −3,

x1, x2 ≥ 0, x3, x4 free.

1. Use Scheme I to reformulate and solve the above problem as a standard form linear
program with 6 variables and 7 constraints.

2. Use Scheme II to solve the original problem in MATLAB. (Follow the procedure of
Example 3-6-11.) Be sure to recover the solution of the original problem.

Exercise 3-6-15. Convert the following problem into standard form (using Scheme II) and
solve:

max x1 + 4x2 + x3

subject to 2x1 + 2x2 + x3 = 4,

x1 − x3 = 1,

x2 ≥ 0, x3 ≥ 0.

3.6.4 Summary

The complete process for solving a general linear program involves the following steps:

1. Convert maximization problems into minimization problems.

2. Transform less-than inequalities into greater-than inequalities.

3. Use substitution to convert generally bounded variables into nonnegative or free vari-
ables.

4. Apply Scheme I or Scheme II to remove free variables and equations from the for-
mulation.

5. If the tableau is infeasible, apply the Phase I method to generate a feasible tableau.
If Phase I terminates with a positive objective function value, stop and declare the
problem infeasible.

6. Apply Phase II pivots to determine unboundedness or an optimal tableau.

7. Recover the values of the original variables if substitution was applied.

8. If the problem was originally a maximization, negate the objective value in the final
tableau to give the optimal value of the original problem.

3.6. Linear Programs in Nonstandard Form 87

Exercise 3-6-16. Solve the following problem:

min z = −3x1 + x2 + 3x3 − x4

subject to x1 + 2x2 − x3 + x4 = 0,

2x1 − 2x2 + 3x3 + 3x4 = 9,

x1 − x2 + 2x3 − x4 = 6,

x1, x2, x3, x4 ≥ 0.

Exercise 3-6-17. Solve the following problem in MATLAB:

min c′x
subject to Ax = b, x ≥ 0,

where

A =




1 2 0 1
1 2 1 1
1 3 −1 2
1 1 1 0


 , b =




6
7
7
5


 , c =




2
6
1
1


 .

Chapter 4

Duality

Duality is a fundamental concept in linear algebra and mathematical programming that
arises from examining a problem from two different viewpoints. To be specific, a system of
linear relations defined in terms of a matrix A ∈ Rm×n can be interpreted either in terms of
the column space of A or in terms of its row space. These alternative, dual interpretations
lead us to some fundamental results, such as equality of row and column ranks of a matrix
and equality of the optimal values of a primal-dual pair of linear programs. In the first
part of this chapter, we derive these two results via a constructive approach utilizing the
Jordan exchange. After discussing the Karush–Kuhn–Tucker (KKT) optimality conditions
for linear programming, we derive the dual simplex method by applying the simplex method
of the previous chapter to the dual formulation of the standard-form linear program. Finally,
we show how to construct the dual of a linear program stated in general form and derive
some fundamental results about linear programming by making use of duality relationships.

4.1 Duality and Rank in Linear Systems
Given any linear system y = Ax, we define the dual system as follows: v = −A′u. For
the purposes of this chapter, we refer to the tableau for y = Ax as the primal tableau and
to the tableau for v = −A′u as the dual tableau. Note that by repeating the transformation
that we used to get from the primal system y = Ax to its dual v = −A′u (that is, replacing
the matrix by its transpose and negating it), we recover the original system. Hence, each of
these systems is the dual of the other. We refer to the two corresponding tableaus as a pair
of dual tableaus and represent them as follows:

x

y = A

v =
−u A

(4.1)

Note that since A ∈ Rm×n, the primal tableau independent variables x are in Rn, while the
independent variables u of the dual tableau are in Rm.

The simple relationship described above lies at the heart of the concept of duality,
which is powerful both in constructing practical solution techniques for linear programming
and in proving fundamental results about linear algebra and linear programming problems.

89

90 Chapter 4. Duality

The immediate significance of the relationship between the two tableaus above is that a
Jordan exchange on the primal system y = Ax is equivalent to a corresponding exchange
on the dual system v = −A′u, as we now show.

Theorem 4.1.1 (Dual Transformation). A Jordan exchange with pivot element Ars has
two equivalent interpretations:

1. (Primal): Solve yr = ∑n
j=1 Arjxj for xs and substitute for xs in the remaining

yi = ∑n
j=1 Aijxj , i �= r .

2. (Dual): Solve vs = −∑m
i=1 Aisui for ur and substitute for ur in the remaining

vj = −∑m
i=1 Aijui , j �= s.

Proof. The first statement follows immediately from our derivation of the Jordan exchange
in Chapter 2. For the second part, we write out the equation v = −A′u componentwise as
follows:

vj = −
m∑

i=1

Aijui, j �= s,

vs = −
∑
i �=r

Aisui − Arsur .

By rearranging the last equation above and substituting into the other equations, we have

ur = −

 1

Ars

vs +
∑
i �=r

Ais

Ars

ui




vj = −Arjur −
∑
i �=r

Aijui, j �= s

= −

−Arj

Ars

vs +
∑
i �=r

(
Aij − ArjAis

Ars

)
ui


 , j �= s.

These are exactly the equations we would obtain by writing out the tableau for v = −A′u,
with labels for the rows vj and columns ui , and performing the Jordan exchange with pivot
element Ars as described in Chapter 2.

Example 4-1-1. Here is a simple example of the dual interpretation of Jordan exchanges.
The primal system

y1 = x1 − x2 + 2x3 − x4,

y2 = −x1 − x2 − x3 + x4,

y3 = x1 + x2 − x3 − x4

corresponds to the following dual system:

v1 = −u1 + u2 − u3,

v2 = u1 + u2 − u3,

v3 = −2u1 + u2 + u3,

v4 = u1 − u2 + u3.

4.1. Duality and Rank in Linear Systems 91

The tableau representation (complete with dual labels) can be easily constructed, using the
following MATLAB code:

� load ex4-1-1

� T = totbl(A);

� T = dualbl(T);

v1 = v2 = v3 = v4 =
x1 x2 x3 x4

−u1 y1 = 1 −1 2 −1
−u2 y2 = −1 −1 −1 1
−u3 y3 = 1 1 −1 −1

Note that u1 = u2 = u3 = 1 implies that v1 = −1, v2 = 1, v3 = 0, and v4 = 1. A Jordan
exchange on the (2, 3) element gives

� T = ljx(T,2,3); v1 = v2 = u2 = v4 =
x1 x2 y2 x4

−u1 y1 = −1 −3 −2 1
−v3 x3 = −1 −1 −1 1
−u3 y3 = 2 2 1 −2

Setting the dual independent variables u1 = 1, v3 = 0, and u3 = 1 gives v1 = −1,
v2 = 1, u2 = 1, and v4 = 1. The values of these variables remain the same after the Jordan
exchange, suggesting that the relationship between the variables has not changed as a result
of the exchange. To verify this observation, we can read off the following linear relations
from the dual labels on the tableau above: v1 = u1 + v3 − 2u3, v2 = 3u1 + v3 − 2u3,
u2 = 2u1 + v3 − u3, and v4 = −u1 − v3 + 2u3. By verifying that these relations are
consistent with the original dual relation v = −A′u, we can see that Theorem 4.1.1 holds
for this particular Jordan exchange.

In fact, all the results established for the tableau for the primal system y = Ax have
precise analogues in the dual setting. We will use these dual results in the remainder of the
chapter without further proof.

We turn now to a discussion of the rank of a matrix A.

Definition 4.1.2. The rank of a matrix A ∈ Rm×n is the maximum number of linearly
independent rows that are present in A.

Rank is a fundamental concept in linear algebra that plays an important role in linear
programming. A simple constructive method that uses Jordan exchanges to determine
the rank of a matrix is given in the following theorem. We show in particular that the rank
determined from this method does not depend on the choice of pivot sequence in the method.

Theorem 4.1.3. Given A ∈ Rm×n, form the tableau y := Ax. Using Jordan exchanges,
pivot as many of the y’s to the top of the tableau as possible. The rank of A is equal to the
number of y’s pivoted to the top.

Proof. We show directly that the maximum number of yi’s that can be pivoted to the top is
independent of our choice of yi’s and of the order in which they are selected for pivoting.
Suppose for contradiction that this claim is false. That is, there is one subset yI of the yi’s

92 Chapter 4. Duality

that can be pivoted to the top of the tableau before no further such pivots are possible, and
another subset yK with the same property, except that |K| > |I |. For any j /∈ I , we can
examine the tableau that remains after the components of yI have been pivoted and write
yj = zjyI for some row vector zj . (Note in particular that yj cannot depend on any of the
x components that remain at the top of the tableau, because if it did, we would be able to
pivot yj to the top of the tableau as well.) Therefore, for every x, we can use relations from
the original tableau to write

Aj ·x = yj = zjyI = zjAI ·x.

Since this relation holds for every x, we can write Aj · = zjAI · for j /∈ I . For the remaining
indices i ∈ I , we can also write Ai· = ziAI · by setting zi to be the unit vector with a 1 in
the position corresponding to row i and zeros elsewhere.

We now consider the indices l ∈ K . Since Al· = zlAI · for some vector zl and all
l ∈ K , we have by assembling the zl into a matrix Z that

AK· = ZAI ·,

where Z has dimension |K| × |I |. Since |K| > |I |, it follows from Proposition 2.2.2 that
the rows of Z are linearly dependent. Therefore,

v′Z = 0 for some v �= 0,

and so
v′AK· = v′ZAI · = 0 · AI · = 0 for some v �= 0.

It follows that the rows of AK· are linearly dependent. However, by applying the Steinitz
theorem (Theorem 2.2.3) to AK·, we know that since all the components of yK can be
pivoted to the top of this tableau, the rows of AK· are linearly independent. Hence, we have
a contradiction. We conclude that the set yK with the given properties cannot exist and that
our specific choice of pivots does not affect the maximum number of yi’s that can be pivoted
to the top of the tableau y := Ax.

The conclusion of the theorem now follows immediately from the Steinitz theorem
(Theorem 2.2.3).

The dual interpretation given in Theorem 4.1.1 can be combined with Theorem 4.1.3
to prove the classical result that the maximum number of linearly independent rows of A

precisely equals the maximum number of linearly independent columns of A, as we now
show. Note that this result is not particularly intuitive. For example, given a set of 91
numbers, arranged as a 7 × 13 matrix, it does not seem obvious that the “row rank” and
“column rank” should be the same.

Theorem 4.1.4. Let A ∈ Rm×n; then rank(A)—the number of linearly independent rows
of A—is equal to the number of linearly independent columns of A.

Proof. We prove the result by construction. First, set up the primal tableau y := Ax and
then use Theorem 4.1.1 to add the dual variable labels. Now exchange as many yi’s to the

4.1. Duality and Rank in Linear Systems 93

top as possible. After possibly reordering rows and columns, the tableau will now have the
following form:

uI1
= vJ2

=
yI1

xJ2−vJ1
xJ1

= BI1J1
BI1J2−uI2

yI2
= BI2J1

0

By applying Theorem 4.1.3 to this tableau, we find that the maximum number of linearly
independent rows is equal to |I1|. However, because of the correspondence between Jordan
exchanges on the primal and dual tableaus, we also can apply Theorem 4.1.3 to the dual
tableau v := −A′u to find that the maximum number of linearly independent rows of −A′
(and therefore the maximum number of linearly independent columns of A) is equal to |J1|.
Since BI1J1

is a square matrix, we must have that |I1| = |J1|.

Example 4-1-2. Determine the rank of

A =

1 0 2

0 −1 1
1 1 1


 .

We construct a tableau from this matrix as follows:

� load ex4-1-2

� T = totbl(A);

� T = dualbl(T);

v1 = v2 = v3 =
x1 x2 x3

−u1 y1 = 1 0 2
−u2 y2 = 0 −1 1
−u3 y3 = 1 1 1

After two pivots, we are blocked; no more yi’s can be pivoted to the top.

� T = ljx(T,1,1); u1 = v2 = v3 =
y1 x2 x3

−v1 x1 = 1 0 −2
−u2 y2 = 0 −1 1
−u3 y3 = 1 1 −1

� T = ljx(T,2,2); u1 = u2 = v3 =
y1 y2 x3

−v1 x1 = 1 0 −2
−v2 x2 = 0 −1 1
−u3 y3 = 1 −1 0

We have that v3 = 2v1 − v2, y3 = y1 − y2 (that is, A·3 = 2A·1 − A·2, A3· = A1· − A2·), and
rank(A) = 2.

94 Chapter 4. Duality

Of course, in MATLAB, we could use the built-in function rank. Indeed, this
function may give a more accurate result than the Jordan-exchange technique used above,
since numerical rounding is treated better within the built-in MATLAB function.

Exercise 4-1-3. Suppose the matrix A ∈ Rm×n has linearly independent rows and that for
some p < m, the first p columns A·1, A·2, . . . , A·p are linearly independent. Show that
m − p of the remaining n − p columns of A can be added to these first p columns to form
a set of m linearly independent vectors. (Hint: use the dual interpretation as in the proof of
Theorem 4.1.4.)

4.2 Duality in Linear Programming
Associated with the standard linear program

min
x

z = p′x
subject to Ax ≥ b, x ≥ 0,

(4.2)

is the dual linear program

max
u

w = b′u
subject to A′u ≤ p, u ≥ 0.

(4.3)

We refer to these two problems as a primal-dual pair of linear programs. The two problems
are intimately related in a number of ways but chiefly by the following key duality result:
The primal problem has a solution if and only if the dual problem has a solution, in which
case the optimal objective values of the two problems are equal. In addition, both problems
can be represented simultaneously by a single tableau as follows:

um+1 = · · · um+n = w =
x1 · · · xn 1

−u1 xn+1 = A11 · · · A1n −b1
...

...
. . .

...
...

−um xn+m = Am1 · · · Amn −bm

1 z = p1 · · · pn 0

As shown in Theorem 4.1.1, each Jordan exchange performed on this tableau can be viewed
from both the primal and the dual perspective. In consequence, the simplex method, which
consists of a sequence of Jordan exchanges, can be construed as solving not only the primal
problem (4.2) but also its dual counterpart (4.3). The following example shows that if we
apply the simplex method to solve the primal problem, the solution for the dual problem
can be read from the optimal tableau.

Example 4-2-1. Consider the primal problem

min
x1,x2

z = −2x1

subject to −x1 − x2 ≥ −1,

−2x1 − x2 ≥ −2,

x1, x2 ≥ 0,

4.2. Duality in Linear Programming 95

for which the corresponding dual problem is

max
u1,u2

w = −u1 − 2u2

subject to −u1 − 2u2 ≤ −2,

−u1 − u2 ≤ 0,

u1, u2 ≥ 0.

We construct the tableau for this primal-dual pair as follows:

� load ex4-2-1

� T = totbl(A,b,p);

� T = dualbl(T);

u3 = u4 = w =
x1 x2 1

−u1 x3 = −1 −1 1
−u2 x4 = −2 −1 2

1 z = −2 0 0

Note that we have used labels u3 and u4 for the dual tableau in place of v in (4.1). This
labeling is analogous to the use of x3 and x4 in place of y in the primal tableau in (4.1), the
purpose of which is to make the tableau amenable to the simplex method.

If we perform a Jordan exchange using the (1,1) element as pivot, we obtain the
following:

� T = ljx(T,1,1); u1 = u4 = w =
x3 x2 1

−u3 x1 = −1 −1 1
−u2 x4 = 2 1 0

1 z = 2 2 −2

This tableau is now primal optimal, with solution x1 = 1, x2 = 0 and objective value
z = −2. By setting u2 = u3 = 0, we have from the tableau that u1 = 2 and u4 = 2. It
is clear that this is a feasible point for the dual problem and also that it is a solution point.
(It achieves the objective value −2, and for any other dual feasible point, we have from the
objective and the first constraint that w = −u1 − 2u2 ≤ −2.) Hence, we conclude that the
tableau is dual optimal, with solution u1 = 2, u2 = 0, and w = −2. In solving the primal
problem, we have also found a solution to the dual problem.

Exercise 4-2-2. Solve the following linear program using the simplex method:

min z = 2x1 + 9x2 + 3x3

subject to −x1 − 6x2 ≥ −3,

x1 + 4x2 + x3 ≥ 1,

−2x1 − 14x2 ≥ −5,

x1, x2, x3 ≥ 0.

Formulate the dual of this problem and read off an optimal solution of the dual problem
from the final tableau.

We now show how a primal linear program and its dual are intimately related by a
number of theoretical and computational results.

96 Chapter 4. Duality

Table 4.1. Data for the “snack” problem.

Chocolate Sugar Cream cheese Cost
Brownie 3 2 2 50
Cheesecake 0 4 5 80
Requirements 6 10 8

4.3 Interpretation of Linear Programming Duality
We present a small example illustrating the relationship between primal and dual linear pro-
grams that shows that these two programs arise from two different perspectives of the same
problem. The example is a simple instance of the diet problem described in Section 1.3.1
and is a modification of the example in Winston & Venkataramanan (2003, Section 6.6).

A student is deciding what to purchase from a bakery for a tasty afternoon snack.
There are two choices of food: brownies, which cost 50 cents each, and mini-cheesecakes,
which cost 80 cents. The bakery is service-oriented and is happy to let the student purchase
a fraction of an item if she wishes. The bakery requires three ounces of chocolate to
make each brownie (no chocolate is needed in the cheesecakes). Two ounces of sugar
are needed for each brownie and four ounces of sugar for each cheesecake. Finally, two
ounces of cream cheese are needed for each brownie and five ounces for each cheesecake.
Being health-conscious, the student has decided that she needs at least six total ounces of
chocolate in her snack, along with ten ounces of sugar and eight ounces of cream cheese.
She wishes to optimize her purchase by finding the least expensive combination of brownies
and cheesecakes that meet these requirements. The data is summarized in Table 4.1.

The student’s problem can be formulated as the classic diet problem as follows:

min
x1,x2

50x1 + 80x2

subject to 3x1 ≥ 6,

2x1 + 4x2 ≥ 10,

2x1 + 5x2 ≥ 8,

x1, x2 ≥ 0,

(4.4)

where x1 and x2 represent the number of brownies and cheesecakes purchased, respectively.
By applying the simplex method of the previous chapter, we find that the unique solution is
x = (2, 3/2)′, with optimal cost of $2.20.

We now adopt the perspective of the wholesaler who supplies the baker with the
chocolate, sugar, and cream cheese needed to make the goodies. The baker informs the
supplier that he intends to purchase at least six ounces of chocolate, ten ounces of sugar, and
eight ounces of cream cheese to meet the student’s minimum nutritional requirements. He
also shows the supplier the other data in Table 4.1. The supplier now solves the following
optimization problem: How can I set the prices per ounce of chocolate, sugar, and cream
cheese (u1, u2, u3) so that the baker will buy from me, and so that I will maximize my
revenue? The baker will buy only if the total cost of raw materials for brownies is below 50
cents; otherwise he runs the risk of making a loss if the student opts to buy brownies. This

4.4. Duality Theory 97

restriction imposes the following constraint on the prices:

3u1 + 2u2 + 2u3 ≤ 50.

Similarly, he requires the cost of the raw materials for each cheesecake to be below 80 cents,
leading to a second constraint:

4u2 + 5u3 ≤ 80.

Clearly, all the prices must be nonnegative. Moreover, the revenue from the guaranteed
sales is 6u1 + 10u2 + 8u3. In summary, the problem that the supplier solves to maximize
his guaranteed revenue from the student’s snack is as follows:

max
u1,u2,u3

6u1 + 10u2 + 8u3

subject to 3u1 + 2u2 + 2u3 ≤ 50,

4u2 + 5u3 ≤ 80,

u1, u2, u3 ≥ 0.

(4.5)

The solution of this problem is u = (10/3, 20, 0)′, with an optimal revenue of $2.20.
It may seem strange that the supplier charges nothing for the cream cheese (u3 = 0),

especially since, once he has announced his prices, the baker actually takes delivery of 11.5
ounces of it, rather than the required minimum of 8 ounces. A close examination of the
problem (4.5) shows, however, that his decision is a reasonable one. If he had decided to
charge a positive amount for the cream cheese (that is, u3 > 0), he would have had to charge
less for the sugar (u2) and possibly also for the chocolate (u1) in order to meet the pricing
constraints, and his total revenue would have been lower. It is better to supply the cream
cheese for free and charge as much as possible for the sugar!

Note that the student’s problem is precisely in the form of the primal, and the supplier’s
problem has the dual form. Furthermore, the dual variables have the interpretation of prices
on the ingredients. For this reason, in the economics literature, the dual variables are
typically called “shadow prices.”

We will return to this example in the next two sections, as we develop the key results
concerning the relationship between primal and dual linear programs.

4.4 Duality Theory
We begin with an elementary theorem that bounds the objectives of the primal-dual pair of
linear programs.

Theorem 4.4.1 (Weak Duality Theorem). If x is primal feasible and u is dual feasible,
then the dual objective function evaluated at u is less than or equal to the primal objective
function evaluated at x, that is,

Ax ≥ b, x ≥ 0
A′u ≤ p, u ≥ 0

〉
�⇒ b′u ≤ p′x.

Proof. Note first that for any two vectors s and t of the same size, for which s ≥ 0 and
t ≥ 0, we have s ′t ≥ 0. By applying this observation to the feasibility relationships above,
we have

p′x = x ′p ≥ x ′A′u = u′Ax ≥ u′b = b′u,

98 Chapter 4. Duality

where the first inequality follows from p − A′u ≥ 0 and x ≥ 0, and the second inequality
follows from Ax − b ≥ 0, u ≥ 0.

Relating this result to the example of Section 4.3, it is easy to see that (5, 0)′ is feasible
for the student’s problem (the primal), while (0, 0, 10)′ is feasible for the supplier’s problem
(the dual). For these values, the objective value of the primal at the given feasible point is
250, which is greater than the objective value of the dual at the given point 80. Note that
80 provides a lower bound on the optimal value of the primal problem, and 250 provides an
upper bound on the optimal value of the dual problem.

Exercise 4-4-1. If the following linear program is solvable, find a lower bound on the optimal
value of its objective function, without using the simplex method. If it is unsolvable, explain
why.

min −47x1 + 13x2 + 22x3

subject to −4x1 + x2 − 17x3 ≥ 2,

−x1 + x2 + 39x3 ≥ 1,

x1, x2, x3 ≥ 0.

Exercise 4-4-2. Consider the (primal) problem

min x1 − 2x2

subject to x1 − x2 ≥ 1,

x1 + 2x2 ≥ −3,

x1, x2 ≥ 0.

1. Solve the primal problem or produce an unbounded ray.

2. Write down the dual problem.

3. What can you say about the dual problem? Be sure to quote any results you use to
justify your comments.

We now discuss one of the most fundamental theorems of linear programming.

Theorem 4.4.2 (Strong Duality or Trichotomy Theorem). Exactly one of the following
three alternatives holds:

(i) Both primal and dual problems are feasible and consequently both have optimal
solutions with equal extrema.

(ii) Exactly one of the problems is infeasible and consequently the other problem has an
unbounded objective function in the direction of optimization on its feasible region.

(iii) Both primal and dual problems are infeasible.

Proof. (i) If both problems are feasible, then both objectives are bounded by weak
duality, Theorem 4.4.1. Specifically, if ū is any dual feasible point, we have from
Theorem 4.4.1 that p′x ≥ b′ū for all primal feasible x; a bound on the dual objective

4.4. Duality Theory 99

b′u can be obtained similarly. Hence the simplex method with the smallest-subscript
rule applied to the tableau

um+1 = · · · um+n = w =
x1 · · · xn 1

−u1 xn+1 = A11 · · · A1n −b1
...

...
. . .

...
...

−um xn+m = Am1 · · · Amn −bm

1 z = p1 · · · pn 0

cannot cycle and must terminate at a primal optimal tableau as follows:

uB̂ = w =
xN 1

−uN̂ xB = H h

1 z = c′ α

(4.6)

It follows from this tableau that xB = h ≥ 0, xN = 0 is an optimal solution and c′ ≥ 0,
z = α. Moreover, we have from Theorem 4.1.1 that uB̂ = c, uN̂ = 0 is dual feasible
and also that the dual objective w equals α at this point. Since the primal and dual
objectives have the same value, we conclude from weak duality (Theorem 4.4.1) that
both objective achieve their bounds and hence are optimal.

(ii) Consider the case in which exactly one of the problems is infeasible. Suppose that the
other problem has a bounded objective. Then the simplex method with the smallest-
subscript rule will terminate at a primal-dual optimal tableau (as in (i)), contradicting
infeasibility. Hence, the feasible problem cannot have a bounded objective.

(iii) We can illustrate this case by setting A = 0, b = 1, and p = −1.

For the snack problem example of Section 4.3, we have already seen that both prob-
lems are feasible, and therefore the strong duality theorem dictates that their optimal values
should be equal—so it was no coincidence that both the student’s problem and the supplier’s
problem had an optimal value of $2.20. It is interesting to note that if both the student and
the supplier make their optimal choices, the baker is “squeezed” and makes no profit at all.

Exercise 4-4-3. Let z∗ be the optimal value of

max c′x
subject to Ax ≤ b, x ≥ 0,

and let y∗ be any optimal solution of the corresponding dual problem. Prove that

c′x ≤ z∗ + t ′y∗

for every feasible point x of

max c′x
subject to Ax ≤ b + t, x ≥ 0.

100 Chapter 4. Duality

4.5 KKT Optimality Conditions
In this section we derive necessary and sufficient optimality conditions for linear program-
ming—a set of algebraic relationships that are satisfied by primal and dual variables if
and only if these variables are solutions of a primal-dual pair of linear programs. These
conditions are commonly called the KKT conditions, after their originators (Karush (1939),
Kuhn & Tucker (1951)). We state them as follows:

x̄ is a solution to the primal problem and ū is a solution to the dual if and only
if x̄ and ū satisfy the following relationships:

Ax̄ ≥ b, x̄ ≥ 0, A′ū ≤ p, ū ≥ 0, (4.7)

and
ūi(Ai·x̄ − bi) = 0, x̄j (−A′

·j ū + pj) = 0 ∀i, j. (4.8)

This claim follows from the equivalence of (b) and (d) in the following theorem.

Theorem 4.5.1 (KKT Conditions). The following conditions are equivalent:

(a) x̄ solves the primal problem

min
x

z = p′x
subject to Ax − b ≥ 0, x ≥ 0.

(b) x̄ is primal feasible, some ū is dual feasible, and p′x̄ = b′ū; that is, the primal
objective value at some primal feasible point is equal to the dual objective value at
some dual feasible point. Furthermore, x̄ is primal optimal and ū is dual optimal.

(c) x̄ is primal feasible, some ū is dual feasible, and p′x̄ ≤ b′ū; that is, the primal
objective value is less than or equal to the dual objective value.

(d) There exist x̄ and ū satisfying Ax̄ ≥ b, x̄ ≥ 0, A′ū ≤ p, ū ≥ 0, and

ūi(Ai·x̄ − bi) = 0, x̄j (−A′
·j ū + pj) = 0 ∀i, j.

(e) There exist x̄ and ū satisfying Ax̄ ≥ b, x̄ ≥ 0, A′ū ≤ p, ū ≥ 0, and

ū′(Ax̄ − b) + x̄ ′(−A′ū + p) = 0.

Proof.

(a) �⇒ (b) This implication follows from strong duality, Theorem 4.4.2.

(b) �⇒ (c) This implication is trivial.

(c) �⇒ (e) We have the following relationships:

0 ≤ ū′(Ax̄ − b) + x̄ ′(−A′ū + p) = −ū′b + x̄ ′p ≤ 0.

The first inequality follows from the feasibility conditions and the second inequality from
(c). Since the left and right sides of the above inequality are equal, we must have equality
throughout, proving (e).

4.5. KKT Optimality Conditions 101

(e) �⇒ (d) This implication is trivial since each component of each sum in (e) is nonneg-
ative.

(d) �⇒ (a) Let x be any primal feasible point, and let x̄ and ū be as in (d). Since x̄ is
primal feasible, all we need to show is that p′x ≥ p′x̄. Since ū is dual feasible, it follows
from the weak duality theorem (Theorem 4.4.1) that p′x ≥ b′ū. From (d), it follows that
x̄ ′p = x̄ ′A′ū and x̄ ′A′ū = b′ū, so that p′x̄ = x̄ ′p = b′ū. Hence p′x ≥ p′x̄, as required.

We can write the KKT conditions (4.7) and (4.8) equivalently and more succinctly as

0 ≤ Ax̄ − b ⊥ ū ≥ 0, (4.9a)

0 ≤ p − A′ū ⊥ x̄ ≥ 0, (4.9b)

where the orthogonality notation ⊥, defined in (A.1), stands here for ū′(Ax̄ − b) = 0 and
x̄ ′(p − A′ū) = 0, respectively.

The conditions (4.8) are frequently referred to as the complementary slackness or
complementarity conditions. They imply the following complementarity relationships:

xj = 0 or pj = (A′
·ju), j = 1, 2, . . . , n, (4.10)

and

ui = 0 or (Ai·x) = bi, i = 1, 2, . . . , m. (4.11)

In other words, each primal variable or its corresponding dual slack variable is zero, and
each dual variable or its corresponding primal slack variable is zero. When exactly one of
the equalities in each pair of conditions in (4.10) and (4.11) holds, we say that the solutions
x and u satisfy strict complementary slackness or strict complementarity.

Referring back to the example of Section 4.3, we see that at the solution of the primal,
the third constraint in (4.4) has a positive slack variable (that is, 2x1 +5x2 −8 > 0), and so it
follows that the optimal dual variable on that constraint (namely u3) must be 0. Furthermore,
since x1 > 0 at the optimal solution of the primal, the complementarity conditions guarantee
that the first constraint of the dual problem (4.5) must be satisfied as an equality at the dual
solution. We leave the reader to confirm this fact.

These complementarity relationships are satisfied for every primal solution and any
dual solution, not just for a particular pair of primal-dual optimal solutions. We shall discuss
complementarity in more detail in Chapter 7.

Example 4-5-1. Use the complementary slackness theorem to check whether u =
(7, 0, 2.5, 0, 3, 0, 0.5)′ is an optimal solution of

max w = u1 + 2u2 + u3 − 3u4 + u5 + u6 − u7

subject to u1 + u2 − u4 + 2u6 − 2u7 ≤ 6,

u2 − u4 + u5 − 2u6 + 2u7 ≤ 4,

u2 + u3 + u6 − u7 ≤ 2,

u2 − u4 − u6 + u7 ≤ 1,

u1, u2, u3, u4, u5, u6, u7 ≥ 0.

102 Chapter 4. Duality

Note that this problem is in the standard form of a dual linear program (4.3), with

A =




1 0 0 0
1 1 1 1
0 0 1 0

−1 −1 0 −1
0 1 0 0
2 −2 1 −1

−2 2 −1 1




, b =




1
2
1

−3
1
1

−1




, p =




6
4
2
1


 .

We attempt to determine an x that together with this u satisfies the KKT conditions (4.7) and
(4.8). First, it is easy to verify that A′u ≤ p and u ≥ 0. Next, we use the complementary
slackness conditions to determine the components i for which Ai·x̄ = bi must be satisfied
by x. Since u1 > 0, u3 > 0, u5 > 0, and u7 > 0, we have

A1·x = b1, A3·x = b3, A5·x = b5, and A7·x = b7.

Taken together, these constraints imply that x = (1, 1, 1, 0)′.
The final step is to check that Ax ≥ b and x ≥ 0 are satisfied and that xj (−A′u+p)j =

0 for all j = 1, 2, . . . , n. Since these conditions hold, we have that (4.7) and (4.8) are both
satisfied with x replacing x̄ and u replacing ū. Hence, by the KKT conditions, x solves the
primal problem and u solves the dual.

Exercise 4-5-2. Without using any simplex pivots, show that x = (0, 1.8, 0.1)′ solves the
following linear program:

min −12x1 + 10x2 + 2x3

subject to −4x1 + x2 − 8x3 ≥ 1,

−x1 + x2 + 12x3 ≥ 3,

x1, x2, x3 ≥ 0.

4.6 Dual Simplex Method
By making use of the duality results just established we can solve any linear program
by applying the simplex method to its dual. Rather than formulating the dual explicitly,
however, we can use an implicit approach that involves applying Jordan exchanges to the
original primal tableau—an approach known as the dual simplex method. This approach
has a significant advantage when the origin u = 0 ∈ Rm is feasible in the dual problem
(that is, p ≥ 0), while the origin x = 0 ∈ Rn is not primal feasible (that is, b �≤ 0). In this
situation, we can apply the dual simplex method, rather than applying Phase I to compute
a feasible initial point for the primal problem. This situation arises frequently in practice,
for instance, in the approximation problems of Chapter 9.

Consider the following primal-dual pair:

min
x

z = p′x
subject to Ax − b ≥ 0, x ≥ 0,

4.6. Dual Simplex Method 103

and
max

u
w = b′u

subject to −A′u + p ≥ 0, u ≥ 0.

We add primal slack variables xn+1, . . . , xn+m and dual slack variables um+1, . . . , um+n to
obtain the following tableau:

um+1 = · · · um+s = · · · um+n = w =
x1 · · · xs · · · xn 1

−u1 xn+1 = A11 · · · A1s · · · A1n −b1
...

...
...

...
...

...
...

−ur xn+r = Ar1 · · · Ars · · · Arn −br

...
...

...
...

...
...

...

−um xn+m = Am1 · · · Ams · · · Amn −bm

1 z = p1 · · · ps · · · pn 0

This tableau is a special case of the general tableau

uB̂ = w =
xN 1

−uN̂ xB = H h

1 z = c′ α

where the sets B and N form a partition of {1, 2, . . . , n + m} (containing m and n indices,
respectively), while the sets B̂ and N̂ form a partition of {1, 2, . . . , m + n} (containing n

and m indices, respectively). The initial tableau above has B = {n + 1, . . . , n + m} and
B̂ = {m + 1, . . . , m + n}.

Let us describe the dual simplex method by assuming that c ≥ 0 in the general
tableau above. We can then define a dual feasible point by setting uB̂ = c, uN̂ = 0.
We attempt to find a dual optimal point by performing Jordan exchanges to make the last
column nonnegative, while maintaining dual feasibility (nonnegativity of the last row). (This
approach is analogous to Phase II of the primal simplex method, in which we start with a
nonnegative last column and perform Jordan exchanges to obtain a nonnegative last row.)
For this new approach, the pivot selection rules are as follows:

1. (Pivot Row Selection): The pivot row is any row r with hr < 0. If none exist, the
current tableau is dual optimal.

2. (Pivot Column Selection): The pivot column is any column s such that

cs/Hrs = min
j

{
cj /Hrj | Hrj > 0

}
.

If Hrj ≤ 0 for all j , the dual objective is unbounded above.

The justification for the column selection rule is that if we let uN̂(r) = λ ≥ 0, uN̂(i) = 0,
i �= r , then we have that

uB̂(j) = −Hrjλ + cj

104 Chapter 4. Duality

for j = 1, 2, . . . , n. For uB̂(j) ≥ 0 we need λ ≤ cj /Hrj for each Hrj > 0, j = 1, 2, . . . , n,
and thus the minimum ratio determines the dual basic variable uB̂(s) which blocks increase
of uN̂(r). For the case in which Hrj ≤ 0 for all j , we have that uB̂(j) = −Hrjλ + cj ≥ 0, for
every λ ≥ 0 and w = −hrλ + α → ∞ as λ → ∞, verifying unboundedness.

The smallest-subscript rule can be used to avoid cycling in the dual simplex method,
just as in the original (primal) simplex method (see Section 3.5). If there are multiple rows
r with hr < 0 in Step 1, we choose the one with the smallest subscript on the dual label for
that row. If there are multiple columns that achieve the minimum ratio in Step 2, we again
choose the one with the smallest subscript on the dual label.

Example 4-6-1. Consider the problem

min x1 + x2

subject to 3x1 + x2 ≥ 2,

3x1 + 4x2 ≥ 5,

4x1 + 2x2 ≥ 8,

x1, x2 ≥ 0,

with dual feasible initial tableau constructed using the following code:

� load ex4-6-1

� T = totbl(A,b,p);

� T = dualbl(T);

u4 = u5 = w =
x1 x2 1

−u1 x3 = 3 1 −2
−u2 x4 = 3 4 −5
−u3 x5 = 4 2 −8

1 z = 1 1 0

The pivot row selection rule would allow any of the three rows to be chosen, since
all have negative elements in the last column. If we were applying the smallest-subscript
rule, we would choose row 1, but let us choose row 3 here. By applying the pivot column
selection rule, we obtain column 1 as the pivot column. The resulting Jordan exchange leads
to the following tableau:

� T = ljx(T,3,1); u3 = u5 = w =
x5 x2 1

−u1 x3 = 0.75 −0.5 4
−u2 x4 = 0.75 2.5 1
−u4 x1 = 0.25 −0.5 2

1 z = 0.25 0.5 2

Since the last column of this tableau is nonnegative (and since nonnegativity of the last
row has been maintained), the tableau is optimal. Thus in one step of the dual simplex
method, we have obtained a primal optimal solution x1 = 2, x2 = 0, z = 2 and a dual
optimal solution u1 = 0, u2 = 0, u3 = 0.25, w = 2. Note that if the primal simplex were
employed, we would have had to apply a Phase I procedure first, and the computational
effort would have been greater.

4.6. Dual Simplex Method 105

Exercise 4-6-2. Solve the following problem in MATLAB by both the dual simplex method
and the two-phase (primal) simplex method. Use the addrow and addcol routines to set
up the appropriate Phase I problem.

min x2 + x3

subject to x1 + x2 − 2x3 ≥ 1,

−x1 + x2 ≥ 2,

− x2 ≥ −6,

x1, x2, x3 ≥ 0.

The steps of the dual simplex method are identical to those that would be taken if
we were to apply the primal simplex method to the dual problem, using consistent pivoting
rules. This fact is illustrated by the following simple example.

Example 4-6-3. Consider the problem

min x1 + 2x2

subject to −x1 + x2 ≥ 1,

x1 + x2 ≥ 3,

x1, x2 ≥ 0.

The dual simplex method obtains an optimal tableau in two steps:

� load ex4-6-3

� T = totbl(A,b,p);

� T = dualbl(T);

u3 = u4 = w =
x1 x2 1

−u1 x3 = −1 1 −1
−u2 x4 = 1 1 −3

1 z = 1 2 0

� T = ljx(T,2,1); u2 = u4 = w =
x4 x2 1

−u1 x3 = −1 2 −4
−u3 x1 = 1 −1 3

1 z = 1 1 3

� T = ljx(T,1,2); u2 = u1 = w =
x4 x3 1

−u4 x2 = 0.5 0.5 2
−u3 x1 = 0.5 −0.5 1

1 z = 1.5 0.5 5

The corresponding dual problem is

max u1 + 3u2

subject to −u1 + u2 ≤ 1,

u1 + u2 ≤ 2,

u1, u2 ≥ 0.

106 Chapter 4. Duality

When reformulated into standard primal form, the steps of the primal simplex method give
the following tableaus applied to the dual problem. Note that the optional arguments to
totbl are used to set the objective value α to 0 and change the primal labels from “x” and
“z” to “u” and “w,” respectively.

� load ex4-6-3

� T = totbl(-A’,-p,-b,0,’u’,’-w’);

� T = dualbl(T);

x3 = x4 = z =
u1 u2 1

−x1 u3 = 1 −1 1
−x2 u4 = −1 −1 2

1 −w = −1 −3 0

� T = ljx(T,1,2); x3 = x1 = z =
u1 u3 1

−x4 u2 = 1 −1 1
−x2 u4 = −2 1 1

1 −w = −4 3 −3

� T = ljx(T,2,1); x2 = x1 = z =
u4 u3 1

−x4 u2 = −0.5 −0.5 1.5
−x3 u1 = −0.5 0.5 0.5

1 −w = 2 1 −5

After appropriate changes of signs and a transposition operation, these three tableaus are
identical to the three tableaus obtained in the dual simplex method. This example illustrates
the claim that the primal simplex method applied to the dual problem is identical to the dual
simplex method applied to the primal problem.

Exercise 4-6-4. 1. Form the dual of the following problem and solve the dual using the
(primal) simplex method, using the most negative reduced cost to choose the variable
to leave the basis.

min 3x1 + 4x2 + 5x3

subject to x1 + 2x2 + 3x3 ≥ 5,

2x1 + 2x2 + x3 ≥ 6,

x1, x2, x3 ≥ 0.

2. Apply the dual simplex method to the problem given above. Use the most negative
element of the last column to indicate the pivot row. Verify that the tableaus obtained
in this approach are identical to those in part 1, after transposition and sign changes.

4.7. General Linear Programs 107

4.7 General Linear Programs
The duality results derived above were relevant to primal problems in standard form. The
primal-dual simplex tableau was used to obtain various duality results. We now consider
linear programs in “general” form, in which both inequality and equality constraints and
both nonnegative and free variables are present. We show how the duals of such problems
can be generated via conversion to standard form.

The “general” form of the linear programming problem is as follows:

min
x,y

p′x + q ′y

subject to Bx + Cy ≥ d,

Ex + Fy = g,

Hx + Jy ≤ k,

x ≥ 0.

(4.12)

Note the presence of equality constraints and free variables. The dual of this problem can
be constructed by means of a three-step process:

• put into standard form;

• construct the dual for the resulting standard form problem;

• simplify the resulting dual problem.

By applying the first step of this procedure to the problem above, replacing the free variable
y by the difference y+ − y− with y+, y− both nonnegative, we obtain

min
x,y+,y−

[
p′ q ′ −q ′]


 x

y+
y−




subject to




B C −C

E F −F

−E −F F

−H −J J




 x

y+
y−


 ≥




d

g

−g

−k


 ,


 x

y+
y−


 ≥ 0.

Proceeding with the second step, the dual of this problem is as follows:

max
u,s,t

[
d ′ g′ −g′ −k′]




u

r

s

t




subject to


 B ′ E′ −E′ −H ′

C ′ F ′ −F ′ −J ′
−C ′ −F ′ F ′ J ′






u

r

s

t


 ≤


 p

q

−q


 ,




u

r

s

t


 ≥ 0.

108 Chapter 4. Duality

For the third step, we define the free variable v = r −s and the nonpositive variable w = −t

and simplify as follows:

max d ′u + g′v + k′w
subject to B ′u + E′v + H ′w ≤ p,

C ′u + F ′v + J ′w = q,

u ≥ 0, w ≤ 0.

(4.13)

We could have added nonpositive variables to (4.12) as well, but to simplify the exposition
we leave this as an exercise to the reader. We summarize this construction with the following
correspondence between elements of the primal and dual linear programs in a primal-dual
pair:

Min problem Max problem
Nonnegative variable ≥ Inequality constraint ≤
Nonpositive variable ≤ Inequality constraint ≥
Free variable Equality constraint =
Inequality constraint ≥ Nonnegative variable ≥
Inequality constraint ≤ Nonpositive variable ≤
Equality constraint = Free variable

We can apply Theorems 4.4.1, 4.4.2, and 4.5.1 to a general primal-dual pair of linear
programs. In particular, for Theorem 4.5.1, we have that the KKT conditions for the general
primal-dual pair are as follows: (x̄, ȳ) is a solution to the primal problem (4.12) and (ū, v̄, w̄)

is a solution to the dual (4.13) if these vectors satisfy the following relationships:

Bx̄ + Cȳ ≥ d, Ex̄ + F ȳ = g, H x̄ + J ȳ ≤ k, x̄ ≥ 0,

B ′ū + E′v̄ + H ′w̄ ≤ p, C ′ū + F ′v̄ + J ′w̄ = q, ū ≥ 0, w̄ ≤ 0,
(4.14)

and
x̄i (B

′ū + E′v̄ + H ′w̄ − p)i = 0 ∀i,

ūj (Bx̄ + Cȳ − d)j = 0 ∀j,

ūl(H x̄ + J ȳ − k)l = 0 ∀l.

(4.15)

Alternatively, using more succinct notation like that of (4.9), we can restate these conditions
equivalently as follows:

0 ≤ p − B ′ū − E′v̄ − H ′w̄ ⊥ x̄ ≥ 0, (4.16a)

q − C ′ū − F ′v̄ − J ′w̄ = 0, (4.16b)

0 ≤ Bx̄ + Cȳ − d ⊥ ū ≥ 0, (4.16c)

Ex̄ + F ȳ = g, (4.16d)

0 ≥ Hx̄ + J ȳ − k ⊥ w̄ ≤ 0. (4.16e)

Exercise 4-7-1. Consider the standard-form (primal) problem

min p′x
subject to Ax ≥ b, x ≥ 0,

4.7. General Linear Programs 109

whose dual problem is
max b′u
subject to A′u ≤ p, u ≥ 0.

1. Reformulate the dual problem to put it in standard form.

2. Construct the dual problem of the problem from part 1.

3. How is this “dual of the dual” related to the primal problem?

Note that the conclusion of the above exercise allows us to start from either side of the
table above when constructing the dual of a given problem. Thus, if we have a minimization
problem, we read from left to right, whereas for a maximization problem, we read from
right to left.

Example 4-7-2. The canonical-form linear program has the form

min
x

p′x
subject to Ax = b, x ≥ 0.

Using the construction above, the dual problem has a free variable u associated with the
equality constraint Ax = b and a dual inequality constraint ≤ associated with the nonneg-
ative variable x. Hence the dual problem is

max
x

b′u
subject to A′u ≤ p.

Example 4-7-3. We wish to find the dual of the following linear program:

min p′x
subject to Ax ≤ b, Cx = d, 0 ≤ x ≤ f.

First, we put this problem into general form by some simple transformations:

min p′x

subject to

[−A

−I

]
x ≥

[
b

−f

]
, Cx = d, x ≥ 0.

We can now substitute into the formula for the dual of general form to obtain

max −b′u − f ′w + d ′v
subject to −A′u − w + C ′v ≤ p, u ≥ 0, w ≥ 0.

Exercise 4-7-4. Write down the dual of

minx c′x
subject to Ax = b, l ≤ x ≤ f,

where l and f are fixed lower and upper bounds on the variables x. Simplify the dual so
that it has the fewest possible number of variables and constraints.

110 Chapter 4. Duality

Exercise 4-7-5. Consider the following problem:

min b′r − b′s
subject to A′r − A′s − t = c,

r, s, t ≥ 0.

1. Construct the dual of this problem and simplify it.

2. Simplify the problem first and then construct the dual.

Exercise 4-7-6. Consider the linear program

max x1 − 2x2 − 4x3 − 2x4

subject to x1 + 2x2 − x3 + x4 ≥ 0,

4x1 + 3x2 + 4x3 − 2x4 ≤ 3,

−x1 − x2 + 2x3 + x4 = 1,

x2, x3, x4 ≥ 0.

1. Solve the problem, explicitly justifying why you carry out the particular pivots.

2. Write down the dual of this problem.

3. Without using any further pivots, write down a solution of the dual problem. Be sure
to quote any results you use and prove that this point is indeed a solution.

Exercise 4-7-7. Consider the primal linear programming problem

max c′x
subject to Ax = b, x ≥ 0.

Suppose this problem and its dual are feasible, and let λ denote a known optimal solution
to the dual.

1. If the kth row of the matrix A and the kth element of the right-hand side b are multiplied
by µ �= 0, determine an optimal solution w to the dual of this modified problem.

2. Suppose that, in the original primal, we add µ times the kth equation to the rth
equation. What is a solution w to the corresponding dual problem?

3. Suppose, in the original primal, we add µ times the kth row of A to the cost vector c.
What is a solution to the corresponding dual problem?

4.8 Big M Method
In Chapters 3 and 5, we discuss the use of Phase I to obtain a feasible point for the original
linear program, from which we can apply the Phase II simplex method. We demonstrate
here an alternative technique that avoids Phase I, by constructing a new linear program from
which the solution of the original linear program can easily be extracted, and for which it is
easy to find an initial point. This approach is known as the “big M” method. Note: In this
section, we use the notation M to denote a large scalar. This should not be confused with the

4.8. Big M Method 111

notation of Chapter 7, in which M denotes the coefficient matrix in a linear complementarity
problem.

Consider the linear program in standard form and its dual:

min
x

z = p′x
subject to Ax ≥ b, x ≥ 0,

(4.17)

max
u

w = b′u
subject to A′u ≤ p, u ≥ 0.

(4.18)

Given positive constant M , we now add an extra variable ξ to the problem and modify the
dual accordingly as follows:

min
x

p′x + Mξ

subject to Ax + emξ ≥ b, x, ξ ≥ 0,
(4.19)

max
u

w = b′u
subject to A′u ≤ p, e′

mu ≤ M, u ≥ 0,
(4.20)

where em is the vector of length m whose entries are all 1. In the following result, we show
that for large enough M , the solution of (4.19) yields a solution of the original problem in
(4.17).

Theorem 4.8.1. If x̄ solves (4.17), then there exists M̄ ≥ 0 such that (x̄, 0) solves (4.19) for
some or all M ≥ M̄ . Conversely, if (x̄, 0) solves (4.19) for some M , then x̄ solves (4.17).

Proof. We start with the first statement of the theorem. If x̄ solves the primal problem in
(4.17), then the strong duality theorem posits the existence of a solution ū to the dual problem
(4.18). Let M̄ = ‖ū‖1. For all M ≥ M̄ , ū will be feasible for (4.20). Since (x̄, ū) satisfies
the KKT conditions for (4.17), (4.18), it is easy to see that (x, ξ, u) = (x̄, 0, ū) satisfies the
KKT conditions for (4.19), (4.20). Hence, by sufficiency of the KKT conditions, (x̄, 0) is
optimal for (4.19), for M ≥ M̄ , as claimed.

For the second statement of the theorem, let (x̄, 0) solve (4.19) some M . By strong
duality, there is a solution ū(M) to the corresponding dual problem (4.20) such that p′x̄ +
M0 = b′ū(M). Note that x̄ and ū are feasible for the primal and dual problems in (4.17)
and (4.18), respectively, and so by weak duality, we have b′ū(M) ≤ p′x̄. By putting these
two relations together, we have

b′ū(M) ≤ p′x̄ = p′x̄ + M0 = b′ū(M),

which implies that b′ū(M) ≤ p′x̄ and hence that x̄ and ū are in fact optimal for (4.17) and
(4.18).

The proof shows just how large M needs to be for the big M method to work: M must
exceed ‖u‖1, where u is a solution of the dual problem (4.18). Unfortunately, this value
is not known a priori. Hence, the big M method is usually implemented by choosing an
increasing sequence of values for M , stopping when we find an M for which the solution
of (4.19) has ξ = 0. The general scheme is as follows.

112 Chapter 4. Duality

Algorithm 4.1 (Big M Method).

1. Make an initial guess of M .

2. Solve (4.19).

3. If ξ = 0, STOP: x is a solution of (4.17).

4. Otherwise, increase M and go to 2.

Note that this scheme will fail when the original primal problem in (4.17) is infeasible.
In this case, for all M large enough, the solution of (4.19) will have ξ = minx ‖b−Ax‖∞ >

0. The solution of (4.19) will be such that x and ξ violate the constraint Ax ≥ b as little as
possible in the ∞-norm sense. The following theorem formalizes this claim.

Theorem 4.8.2. If there exists an x̄ such that (x̄, ‖(−Ax̄ + b)+‖∞) solves (4.19) for all
M ≥ M̄ , then x̄ solves

min
x

{
p′x | Ax + emξ̄ ≥ b, x ≥ 0

}
,

where ξ̄ = minx‖(−Ax + b)+‖∞. In particular, if {x | Ax ≥ b, x ≥ 0} �= ∅, then ξ̄ = 0
and x̄ solves (4.17).

Proof. See Mangasarian (1999b, Theorem 2.1).

Exercise 4-8-1. Show that if the objective function of the primal big M method correspond-
ing to a given feasible LP is unbounded below, then the objective function of the original
primal LP itself is unbounded below on its feasible region.

4.9 Applications of Duality
We now present some fundamental results that are simple consequences of strong duality,
Theorem 4.4.2. We begin with the Farkas lemma, which is key in deriving the optimality
conditions of linear and nonlinear programming. The Farkas lemma can also be used to
derive the strong duality result, Theorem 4.4.2, itself.

Theorem 4.9.1 (Farkas Lemma). Let A ∈ Rm×n and b ∈ Rm. Then exactly one of the
following two systems has a solution:

(I) Ax = b, x ≥ 0.

(II) A′u ≥ 0, b′u < 0.

Proof. Consider the linear program

max 0′x
subject to Ax = b, x ≥ 0,

and its dual
min b′u
subject to A′u ≥ 0.

4.9. Applications of Duality 113

If (I) holds, then the primal is feasible, and its optimal objective is obviously zero. By
applying the weak duality result (Theorem 4.4.1), we have that any dual feasible vector u

(that is, one which satisfies A′u ≥ 0) must have b′u ≥ 0. Hence, the inequalities A′u ≥ 0,
b′u < 0 cannot simultaneously hold, and so (II) is not satisfied. If, on the other hand, (I)
does not hold, then the primal is infeasible. The dual is, however, always feasible, since
u = 0 satisfies A′u ≥ 0 trivially. By applying strong duality, Theorem 4.4.2, we deduce
that the dual objective is unbounded below, and hence A′u ≥ 0, b′u < 0 has a solution.

This result is an example of a theorem of the alternative. Many other examples can be
proved by a similar technique, for example the Gordan theorem, which states that exactly
one of the following two systems has a solution:

(I) Ax > 0.

(II) A′y = 0, 0 �= y ≥ 0.

Exercise 4-9-1. Prove the Gordan theorem of the alternative.

Exercise 4-9-2. Use the Farkas lemma to prove that the set {Ax | x ≥ 0} is closed.

The following result is an example of a separation lemma. In layman’s terms it states
that if the two given sets do not intersect, then a hyperplane wT x = γ has all the points from
one set on one side and all the points from the other set on the other side. (One possible
value for γ is 1

2 (mini (A
′w)i + maxj (B

′w)j).)

Exercise 4-9-3. Let A·j , j = 1, . . . , n, be n points in Rm, and B·j , j = 1, . . . , k, be
k points in Rm. Show that the set conv

{
A·j | j = 1, . . . , n

}
does not intersect the set

conv
{
B·j | j = 1, . . . , k

}
if and only if there exists a w ∈ Rm such that

min
i

(A′w)i > max
j

(B ′w)j .

Note that the convex hull of a finite set of points is defined as the set of all convex combi-
nations of those points, that is,

conv
{
A·j | j = 1, . . . , n

} :=



n∑
j=1

A·jλj |
n∑

j=1

λj = 1, λ ≥ 0


 .

A second example of the usefulness of duality theory for linear programming is the
following classical result from linear algebra.

Theorem 4.9.2. Let A ∈ Rm×n. Any c ∈ Rn can be uniquely decomposed as

c = u + w, Au = 0, w = A′v. (4.21)

Thus,
Rn = ker A ⊕ im A′,

where
ker A := {u | Au = 0} , im A′ := {

w | w = A′v
}
.

114 Chapter 4. Duality

Proof. Consider the dual linear programs

max
u,v

0′u + 0′v

subject to u + A′v = c,

Au = 0,

min
x,y

c′x

subject to x + A′y = 0,

Ax = 0.

Note that

0 = x + A′y, Ax = 0

�⇒ AA′y = 0

�⇒ y ′AA′y = 0 (4.22)

�⇒ A′y = 0

�⇒ x = −A′y = 0.

It follows from (4.22) that x = 0 for all dual feasible points and the dual minimum is zero.
Hence, by strong duality (Theorem 4.4.2), the primal problem is also solvable for any c,
and (4.21) holds. If c has two decompositions (u1, w1) and (u2, w2), then

0 = (u1 − u2) + A′(v1 − v2), A(u1 − u2) = 0.

By using (4.22), we conclude that u1 = u2 and w1 = A′v1 = A′v2 = w2, thereby verifying
uniqueness of the decomposition (4.21).

Our final result concerns the existence of solutions to dual linear programs that satisfy
strict complementarity.

Theorem 4.9.3 (Existence of Strictly Complementary Solutions). Suppose that the pri-
mal problem (4.2) has an optimal solution. Then there exist vectors x̂ and û such that

(i) x̂ is an optimal solution of (4.2),

(ii) û is an optimal solution of (4.3), and

(iii) û + (Ax̂ − b) > 0, x̂ + (−A′û + p) > 0.

Proof. Since (4.2) has an optimal solution (say x̄), we have from Theorem 4.4.2 that the
dual problem (4.3) also has an optimal solution (say ū). Consider now the linear program

max
x,u,ε

ε

subject to −Ax ≤ −b, x ≥ 0,

A′u ≤ p, u ≥ 0,

p′x = b′u,

εe ≤ u + (Ax − b),

εe ≤ x + (−A′u + p),

ε ≤ 1.

By the KKT conditions (4.7) and (4.8), the point (x, u, ε) = (x̄, ū, 0) is feasible for this
problem. Since the problem is bounded (its optimal objective value can be no larger than 1),

4.9. Applications of Duality 115

Theorem 4.4.2 implies there exists an optimal solution to both this problem and its dual,
which is

min
r,s,t,v,ξ,ψ

−b′(r + v) + p′(s + t) + ψ

subject to −A′(r + v) + pξ − t ≥ 0,

A(s + t) − bξ − v ≥ 0,

e′(t + v) + ψ = 1,

r, s, t, v, ψ ≥ 0.

Suppose the optimal objective value of these dual problems is zero, and let (r, s, t, v, ξ, ψ)

be an optimal solution of the dual. Then, by premultiplying the first dual constraint by
(t + s)′ and the second dual constraint by (r + v)′ and adding, we see that

(bξ + v)′(r + v) + (t − pξ)′(t + s) ≤ 0. (4.23)

Since the objective of the primal is zero at the optimum, we have ε = 0, and so the last
constraint in the primal is inactive. Hence, by complementarity, the corresponding dual
variable ψ is zero, and so we have by the fact that the objective of the dual is also zero that

0 = −b′(r + v) + p′(s + t) + ψ = −b′(r + v) + p′(s + t).

Hence, from (4.23), we have

v′(r + v) + t ′(t + s) ≤ 0.

Since all the variables appearing in the last inequality are nonnegative, we can rearrange
this expression to obtain

v′v + t ′t ≤ −v′r − t ′s ≤ 0,

and so we must have v = 0 and t = 0. These values, along with ψ = 0 as already noted,
contradict the dual constraint e′(t +v)+ψ = 1. We conclude that the primal linear program
above has a solution with ε > 0, proving the result.

Note that by Theorem 4.5.1 and (4.8), we have that ui(Ax−b)i = 0, xj (−A′u+p)j =
0, for all i = 1, 2, . . . , m and j = 1, 2, . . . , n, for every solution x of the primal problem
and u of the dual problem. Theorem 4.9.3 shows further that for some solution x̂ of the
primal problem and û of the dual problem, we have

ûi = 0 and (Ax̂ − b)i > 0, or ûi > 0 and (Ax̂ − b)i = 0, ∀i = 1, 2, . . . , m,

and

x̂j = 0 and (−A′û+p)j > 0, or x̂j > 0 and (−A′û+p)j = 0, ∀j = 1, 2, . . . , n.

The notion of strict complementarity will be useful for the interior-point methods of Chap-
ter 8.

Exercise 4-9-4. Prove that Ax ≤ b, 0 ≤ x ≤ e, has no solution if and only if there exists
u ≥ 0 such that for all x satisfying 0 ≤ x ≤ e, the single inequality u′Ax ≤ u′b has no
solution.

Chapter 5

Solving Large Linear
Programs

To make the simplex approach of Chapter 3 suitable for solving large linear programming
problems, we need to pay careful attention to several important issues. Chief among these
are pricing (the choice of variable to enter the basis) and efficient implementation of the
linear algebra at each simplex step. In this chapter, we describe the revised simplex method,
a powerful and economical approach that forms the basis of practical implementations of the
simplex method that are suitable for solving large linear programs. We also discuss network
flow problems, a special class of linear programs that comprise a large fraction of practical
linear programming problems. We mention in particular how the simplex approach can be
adapted to take advantage of the special structure of these problems.

In Chapter 3, we considered linear programming problems in the standard form

min z = p̄′x
subject to Ax ≥ b, x ≥ 0,

(5.1)

where x, p̄ ∈ Rn, b ∈ Rm, and A ∈ Rm×n. We showed that if we define slack variables
xn+1, xn+2, . . . , xn+m by

xn+i := Ai·x − bi,

then it follows that

A




x1
...

xn


− I




xn+1
...

xn+m


 = b.

Letting x ∈ Rl include the original variables and the slack variables, we define synonymous
extensions of the cost vector p̄ and coefficient matrix A as follows:

p :=
[
p̄

0

]
, A := [A − I]. (5.2)

It follows that the standard form above can be rewritten as the following canonical form:

min z = p′x
subject to Ax = b, x ≥ 0,

(5.3)

117

118 Chapter 5. Solving Large Linear Programs

where x, p ∈ Rl for l = m + n, b ∈ Rm, and A ∈ Rm×l . In this chapter, we work with the
canonical form. For generality, we do not assume that A and p were necessarily derived
from the standard form in the manner described above but simply that the rows of A are
linearly independent.

5.1 Foundations
In this section, we introduce the notions of a basis matrix and a basic feasible solution
for the constraint set of the linear program (5.3). We relate these ideas to the geometric
interpretation of linear programming discussed in Chapter 3. These ideas will be combined
in the next section with our knowledge of the simplex method to derive the revised simplex
method.

5.1.1 Basic Feasible Solutions and Basis Matrices

We make extensive use of the concept of linear independence of sets of (row and column)
vectors in this discussion; see Chapter 2 for definitions of linear dependence and indepen-
dence. By convention, we say that an empty set of vectors is linearly independent.

Definition 5.1.1. Let A ∈ Rm×l , b ∈ Rm, and consider the constraints Ax = b, x ≥ 0. A
basic solution is a vector x̄ ∈ Rl that satisfies Ax̄ = b, where for some J ⊂ {1, 2, . . . , l},
A·J has linearly independent columns and x̄j = 0 for j �∈ J.

We say that x̄ is a basic feasible solution if x̄ is a basic solution and in addition it
satisfies the nonnegativity condition x̄ ≥ 0.

Example 5-1-1. Given the matrix and vector

A =
[−1 2 2

0 1 0

]
, b =

[
3
0

]
,

we seek basic solutions of the system Ax = b. Since l = 3, there are 23 = 8 possible
choices for the index subset J. We consider each of these subsets in turn and see whether
they lead to a vector x̄ that satisfies Definition 5.1.1.

For the choice J = ∅, we must have x̄j = 0 for all j = 1, 2, 3, so that Ax = b cannot
be satisfied.

For J = {1}, it is easy to see that x̄ = (−3, 0, 0)′ satisfies Ax = b and also x̄j = 0 for
j /∈ J. Moreover, the column submatrix A·J is the single vector (−1, 0)′, which has linearly
independent columns. Hence x̄ = (−3, 0, 0)′ is a basic solution with J = {1}. Similarly,
the choice J = {3} leads to the basic solution x̄ = (0, 0, 1.5)′. For J = {2}, it is not possible
to find an x̄ with x̄1 = x̄3 = 0 that satisfies Ax̄ = b.

For J = {1, 2}, we find that x̄ = (−3, 0, 0) has Ax = b and also x̄j = 0 for j /∈ J.
Moreover, the column submatrix corresponding to this choice of J is[−1 2

0 1

]
,

whose columns are linearly independent. For similar reasons, the set J = {2, 3} leads to
the basic solution x̄ = (0, 0, 1.5)′. However, the set J = {1, 3} does not lead to a basic

5.1. Foundations 119

solution, as the column submatrix for this set has linearly dependent columns. For the same
reason, the set J = {1, 2, 3} also does not lead to a basic solution.

Finally, we note that x̄ = (0, 0, 1.5)′ is the only basic feasible solution of this system,
since the other basic solution (−3, 0, 0) has a negative component.

The following fundamental result shows that a basic feasible solution exists whenever
a feasible point exists.

Theorem 5.1.2. Let b ∈ Rm and A ∈ Rm×l be given. If Ax = b, x ≥ 0, has a solution,
then it has a basic feasible solution x̄ ∈ Rl . That is, there is a set J ⊆ {1, . . . , l} such that∑

j∈J

A·j x̄j = b, x̄J ≥ 0,

and A·J has linearly independent columns.

Proof. We prove this result using a constructive approach via the simplex method. Since
the system Ax = b, x ≥ 0, has a solution, the linear program

min e′(Ax − b)

subject to Ax ≥ b, x ≥ 0

must have optimal objective value 0. We can solve this linear program by setting up an
initial tableau as follows:

xJ1
xJ2

1
yI1

= AI1J1
AI1J2

−bI1

yI2
= AI2J1

AI2J2
−bI2

z = e′A −e′b

where we use y’s to indicate the slack variables we have added. Note that y = Ax − b. In
this tableau, we have partitioned the x and y components according to where they appear
in the final tableau, which we obtain by solving with the two-phase simplex method and
which has the following form:

yI1
xJ2

1
xJ1

= BI1J1
BI1J2

hI1

yI2
= BI2J1

BI2J2
0

z = c′ 0

The zeros in the last column follow from e′(Ax − b) = e′y = 0 and y ≥ 0, which together
imply that y = 0 at the optimum. Note that the final tableau can be obtained by simply
performing a block pivot on (I1, J1) in the initial tableau, so that BI1J1

= A−1
I1J1

(see (2.9) and
(2.10)). It follows that A−1

I1J1
is nonsingular, which implies that A·J1

has linearly independent
columns. By substituting the optimal values of x and y into the original tableau, we obtain

0 =
[
yI1

yI2

]
=
[
AI1J1

AI2J1

]
hI1

+
[
AI1J2

AI2J2

]
0 − b.

We complete the proof by setting x̄ = [
hI1
0

]
and J = J1.

120 Chapter 5. Solving Large Linear Programs

Note that if b = 0, the theorem holds with J = ∅.

Exercise 5-1-2. Consider the following linear programming problem with a single equality
constraint and nonnegative variables:

max c′x
subject to a′x = 1, x ≥ 0,

where ci > 0 and ai > 0 for all i = 1, 2, . . . , l. Characterize all the basic feasible solutions
for this problem and develop a method for obtaining a solution of this problem directly.

In Theorem 3.2.2, we showed that vertices of the feasible region could be represented
by tableaus of the following form:

xN 1
xB = H h

z = c′ α

(5.4)

Furthermore, for a given tableau/vertex that was generated from the canonical form problem,
we showed that the system

A·BxB + A·NxN = b, xB ≥ 0, xN = 0, (5.5)

had a solution, with B ⊆ {1, 2, . . . , l} having exactly m elements and A·B being invertible. In
fact, we can see the correspondence between (5.4) and (5.5) by simply settingH = −A−1·B A·N
and h = A−1·B b. Motivated by these observations, we define a basis matrix formally as
follows.

Definition 5.1.3. Given A ∈ Rm×l , consider the column submatrix A·B for some subset
B ⊆ {1, 2, . . . , l} containing m elements. If A·B is invertible, it is called a basis matrix.

Since A·B contains a subset of the columns of A, it follows from Theorem 4.1.4 that
if a basis matrix exists, then the rows of A are linearly independent.

We now show that every basic feasible solution can be associated with a basis matrix
whenever A has linearly independent rows.

Proposition 5.1.4. Let A ∈ Rm×l and b ∈ Rm, where A has linearly independent rows.
Suppose x̄ is a basic feasible solution to Ax = b, x ≥ 0, with x̄j = 0 for j /∈ J, where
A·J has linearly independent columns. Then the set J can be extended to a set B with m

elements such that A·B is a basis matrix.

Proof. This result can be proved by a simple application of Exercise 4-1-3.

The following definition applies to the case of a basic feasible solution in which fewer
than m components are nonzero.

Definition 5.1.5. A basic feasible solution x̄ is a degenerate basic feasible solution if there is
some j ∈ J for which x̄j = 0, where J is some index set for which x̄ satisfies Definition 5.1.1.

Degenerate basic feasible solutions correspond to the degenerate tableaus we defined
in Definition 3.5.1 and to degenerate vertices like those illustrated in Figure 3.1.

Note that B may not be uniquely determined by Proposition 5.1.4. That is, there may
be more than one way to extend the set J to a set B such that A·B is nonsingular.

5.1. Foundations 121

Example 5-1-3.

A =
[

1 3 3 4
0 4 0 5

]
, b =

[
1
0

]
.

The system Ax = b, x ≥ 0 has a basic feasible solution corresponding to J = {1}, namely

A·J =
[

1
0

]
, x̄ = (1, 0, 0, 0)′.

We can extend J to B in two ways to produce a basis matrix, namely B = {1, 2} and
B = {1, 4}. In both cases, A·B is invertible and x̄ is the same as given above. (Note
that B = {1, 3} does not correspond to a basis matrix since A·B has linearly dependent
columns.) In fact, x̄ is a degenerate basic feasible solution, since for the choices J = {1, 2}
and J = {1, 4}, both of which satisfy Definition 5.1.1, we have x̄j = 0 for some j ∈ J.

Exercise 5-1-4. Show, by means of an example, that a degenerate basic feasible solution
may be optimal without the last row of the tableau having all its entries nonnegative.

Exercise 5-1-5. Consider the following problem:

min z = 3x1 + 5x2

subject to 3x1 + x2 ≤ 6,

x1 + x2 ≤ 4,

x1 + 2x2 ≤ 6,

x1, x2 ≥ 0.

(i) Sketch the set S of feasible points.

(ii) Find the vertices of S and the corresponding tableaus.

(iii) The problem can be converted to canonical form by introducing a slack variable into
each inequality. For each tableau in (ii), write down the corresponding basis matrix
from the canonical form.

(iv) For the given objective function find the optimal solution(s).

5.1.2 Geometric Viewpoint

We turn now to a geometric interpretation of the basis matrix A·B and its usefulness in finding
directions of movement from the corresponding basic feasible solution to other adjacent
basic feasible solutions. As in our description of the simplex method, such directions are
obtained by allowing one of the components in the nonbasic set N to increase away from
zero (while holding the other nonbasic variables fixed at zero) and determining the effect of
this change on the basic components. Geometrically, these directions point along an edge
of the feasible region that links one vertex to an adjacent vertex.

We illustrate by considering the feasible region defined by Ax = b, x ≥ 0, with

A =
[

1 3 0 4
0 4 2 5

]
, b =

[
12
20

]
. (5.6)

122 Chapter 5. Solving Large Linear Programs

Consider in particular the basic feasible solution x = (12, 0, 10, 0)′. For this x we have
B = {1, 3} and N = {2, 4}, with

A·B =
[

1 0
0 2

]
, A·N =

[
3 4
4 5

]
.

By partitioning x into its B and N components, we describe the dependence of xB on xN by
rearranging (5.5), and using nonsingularity of A·B, as follows:

xB = −A−1
·B A·NxN + A−1

·B b. (5.7)

In the present case, this expression becomes[
x1

x3

]
=
[−3 −4
−2 −2.5

] [
x2

x4

]
+
[

12
10

]
.

Consider the effect of allowing x2 to increase away from zero, while maintaining
x4 = 0. From (5.7), we obtain [

x1

x3

]
=
[−3
−2

]
x2 +

[
12
10

]
.

In particular, setting x2 = λ, where λ is some nonnegative scalar, results in a move to the
following point

(12 − 3λ, λ, 10 − 2λ, 0)′,

which we can write as x + λd1, where

x = (12, 0, 10, 0)′, d1 = (−3, 1 − 2, 0)′.

By taking λ = 4 (the maximum value of λ for which the nonnegativity condition x+λd1 ≥ 0
is satisfied), we arrive at the adjacent basic feasible solution (0, 4, 2, 0)′.

Similarly, if we allow x4 to increase away from 0, while maintaining x2 = 0, we step
to the point (12 − 4λ, 0, 10 − 2.5λ, 1)′ for some λ ≥ 0. We express this point as x + λd2,
where x is as before and d2 = (−4, 0, −2.5, 1)′.

We can assemble the possible directions of movement toward adjacent basic feasible
solutions into a matrix D. For our example, we have

D = [
d1 d2

] =




−3 −4
1 0

−2 −2.5
0 1


 .

Recalling the notation N(k) for the kth element of N and B(i) for the ith element of B, we
find that D is defined in the general case as follows:

Dj · :=
{

Ik· if j = N(k),

−(A−1·B A·N)i· if j = B(i).
(5.8)

5.2. The Revised Simplex Method 123

Exercise 5-1-6.

(i) For the second column d2 of the matrix D above, find the positive value of λ such
that x + λd2 is a basic feasible solution.

(ii) From the basic feasible solution (0, 4, 2, 0) construct a new matrix D (in the same
manner as indicated above) that corresponds to the two edge moves that are possible.
Is there a direction that leads to a basic feasible solution that is different from all those
previously found?

(iii) Why do the index sets B = {1, 2}, B = {1, 4}, and B = {2, 4} not correspond to basic
feasible solutions?

Each of the directions defined by columns of D in (5.8) defines a possible direction
of search for the simplex method. Our implementation of the simplex method described in
Chapter 3 essentially computes all possible edge moves away from the current point x. In
the revised simplex method, we aim to avoid calculating those edge directions along which
we are not interested in moving. Rather, we pick one direction that we know a priori will
yield descent in the objective and compute this direction efficiently.

5.2 The Revised Simplex Method
The revised simplex method is a succinct and efficiently implementable algebraic represen-
tation of the simplex method described in Chapter 3. Only a small part of the condensed
tableau is actually calculated, namely, the tableau entries corresponding to the last column,
the bottom row, the pivot column, and the labels. These entries are all we need to com-
pletely determine a pivot step, and the resulting economy of computation has proved the
key to practical software implementations of the simplex method.

Instead of representing the whole tableau explicitly, we manipulate the basic and
nonbasic variable sets B and N, which form a partition of {1, 2, . . . , l}. Each step of the
revised simplex method ensures that B always has the property that A·B is a valid basis
matrix. In addition, the corresponding simplex iterate x must be a basic feasible solution
for Ax = b, x ≥ 0, for which xN = 0, where xN is the subvector of x made up of the
components in N. Together, these conditions can be stated concisely as follows:

xB = A−1
·B b ≥ 0. (5.9)

In principle, the complete tableau can always be constructed from knowledge of B
and N, and so by storing B and N we are in essence storing an implicit representation of the
tableau. We show this by writing the constraint in (5.3) as follows:

A·BxB + A·NxN = b ⇐⇒ xB = A−1
·B (b − A·NxN).

The canonical form is then equivalent to

min z = p′
BxB + p′

NxN

subject to xB = A−1·B (b − A·NxN),

xB, xN ≥ 0.

124 Chapter 5. Solving Large Linear Programs

Substituting for xB in the objective, we obtain

min z = p′
BA−1·B b + (p′

N − p′
BA−1·B A·N)xN

subject to xB = A−1·B (b − A·NxN),

xB, xN ≥ 0.

This problem can now be written in tableau form as follows:

xN 1
xB = −A−1·B A·N A−1·B b

z = p′
N − p′

BA−1·B A·N p′
BA−1·B b

If we compare this tableau to the general tableau (5.4) that we used in Chapter 3, we see
that

H = −A−1
·B A·N, h = A−1

·B b, c′ = p′
N − p′

BA−1
·B A·N, α = p′

BA−1
·B b.

As mentioned above, we do not construct this complete tableau but only the part of it
that is needed to decide on a direction that moves toward a new basic feasible solution and
yields a decrease in the objective. Specifically, we need to know only the last column, the
bottom row, and the pivot column of the tableau. We can obtain these vectors by carrying
out the following calculations.

Algorithm 5.1 (Revised Simplex Method).

1. Calculate h = A−1·B b.

2. Calculate u′ := p′
BA−1·B and c′ := p′

N − u′A·N, the vector of reduced costs.

3. If c ≥ 0, stop; the current solution is optimal. Otherwise, choose a pivot column s

such that cs < 0.

4. Calculate the pivot column d = A−1·B A·N(s). Evaluate the minimum ratio

hr

dr

= min {hi/di | di > 0}

to determine the pivot row r . If d ≤ 0, then stop; the problem is unbounded. (Note
the change of sign here. The vector d represents the negative of the pivot column that
is found in the tableau.)

5. Update B and N by swapping B(r) (the rth component of the basic variable set) with
N(s) (the sth component of the nonbasic variable set).

To carry out each iteration of the simplex method, we need to apply the inverse A−1·B
on three occasions, namely in Steps 1, 2, and 4. Instead of computing the inverse explicitly,
we observe that the resulting vectors h, u and d can be calculated alternatively from solving
3 systems of equations involving A·B, namely the following:

A·Bh = b (Step 1: Compute last column h),

A′·Bu = pB (Step 2: Compute basic dual variable u),

A·Bd = A·N(s) (Step 4: Compute pivot column d).

5.2. The Revised Simplex Method 125

The notation A·B, A·N(s), b, and pB all refer to the data in the original problem (5.3). We use
a single LU factorization of A·B to solve all three systems. (See Section 2.6 for details on this
factorization procedure.) Following the outline given in Section 2.5 and using MATLAB
notation, we solve the three systems as follows:

LU = A·B (Compute the factorization),

LUh = b ⇐⇒ h = U\(L\b),

U ′L′u = pB ⇐⇒ u = L′\(U ′\pB),

LUd = A·N(s) ⇐⇒ d = U\(L\A·N(s)).

In general, it is not obvious how to make an initial choice of basis B to satisfy the
condition (5.9). We discuss this issue below in Section 5.2.2. For the special case in which
the problem (5.3) was derived from a standard-form problem (5.1) with b < 0 via the
transformations (5.2), we can make the initial choice B = {n+1, n+2, . . . , n+m}, so that
A·B = −I and xB = A−1·B b = −b ≥ 0. This was exactly the situation encountered at the
start of Chapter 3, where the simplex method did not require Phase I to identify a starting
point.

We now illustrate the revised simplex method on a simple example, assuming for now
that a valid initial choice of B is known.

Example 5-2-1. Consider the following problem, for which it is known a priori that B =
[3 4 6] corresponds to a basic feasible solution:

min z = p′x
subject to Ax = b, x ≥ 0,

where

A =

 1 6 0 1 0 0

−1 −4 −1 0 1 0
2 14 0 0 0 1


 , b =


 3

−1
5


 , p =




2
9
3
0
0
0




.

The first steps in MATLAB are as follows:

� load ex5-2-1

� [m,l] = size(A);

� B = [3 4 6];

� N = setdiff(1:l,B);

� [L,U] = lu(A(:,B));

� x_B = U\(L\b)

xB =

1

3
5




The vector xB then contains the last column of the tableau. Since these are nonnegative,
Phase I is unnecessary. We now proceed to calculate the values in the bottom row of the

126 Chapter 5. Solving Large Linear Programs

tableau. Since A·B = LU and A′·Bu = pB, it follows that u = (L′)−1(U ′)−1pB. Hence,
we can reuse the L and U factors of A·B calculated above (leading to important savings in
practice) and proceed in MATLAB as follows:

� u = L’\(U’\p(B));
� c = p(N)-A(:,N)’*u

c =

−1

−3
3




Since c′ makes up the bottom row of the tableau (except for the bottom-right element) and
since it has negative entries, the current tableau is not optimal. Therefore, we select an
index to enter the basis, corresponding to one of the negative entries in c, and calculate the
column in the tableau that corresponds to this variable xN(s).

� s = 2;

� d = U\(L\A(:,N(s)))
d =


 4

6
14




We now carry out the ratio test with the values of d and xB calculated above and find that
r = 1 is the index that leaves the basis. We swap r and s between the sets B and N and
continue with the next iteration of the revised simplex method.

� r=1; swap = B(r);

� B(r) = N(s); N(s) = swap;

� [L,U] = lu(A(:,B));

� x_B = U\(L\b)
� u = L’\(U’\p(B));
� c = p(N)-A(:,N)’*u

c =

−0.25

0.75
2.25




Now c has the value shown above. It indicates that we have not yet achieved optimality, as
there is still a negative component. We identify the component s = 1 to enter the basis and
a component r = 1 to leave, and we continue with the next simplex iteration.

� s = 1; d = U\(L\A(:,N(s)))
� r = 1; swap = B(r);

� B(r) = N(s); N(s) = swap;

� [L,U] = lu(A(:,B));

� x_B = U\(L\b)
� u = L’\(U’\p(B));
� c = p(N)-A(:,N)’*u

c =

1

1
2




5.2. The Revised Simplex Method 127

Since we now have c ≥ 0, the current tableau is optimal. The corresponding solution is
x = (1, 0, 0, 2, 0, 3)′, with z = p′x = p′

BxB = 2.

Exercise 5-2-2. In MATLAB, solve the following linear program using the revised simplex
method as shown above. You will need to convert the data of this problem to canonical
form and choose an initial B that corresponds to the slack variables that you add during this
conversion.

max −x1 + 2x2 + x3

subject to x1 + x2 + x3 ≤ 3,

−x1 + x2 − x3 ≤ 1,

2x1 + x2 − x3 ≤ 1,

−x1 + x2 ≤ 4,

x1, x2, x3 ≥ 0.

You should work through each step of the method explicitly, calculating each of the inter-
mediate vectors, as in the example above.

In fact, it is computationally more efficient to update the LU factorization at each step
of the revised simplex method instead of recomputing the factorization anew. Details on
such procedures can be found in Section 5.2.3; in the absence of these methods the overall
complexity of the revised simplex method will be larger than that of an implementation
using Jordan exchanges.

Numerical rounding error causes many problems for implementations of the simplex
method due to the special nature of the number zero and the need to determine positivity
or negativity of components in crucial steps of the procedure. Typical commercial codes
contain at least three types of “zero tolerances,” small positive numbers below which a
floating-point number is deemed indistinguishable from zero for purposes of the algorithm.
The first tolerance zer_tol is used in comparisons of numbers against zero. In testing
the bottom row of the tableau for negativity, we use the MATLAB code

if isempty(find(c < -zer_tol))

rather than the simple test

if isempty(find(c < 0))

This allows some of the values of c to be slightly negative. Chvátal (1983) suggests a value
of 10−5 as a typical value for this tolerance.

The second tolerance is a pivot tolerance piv_tol that is used to safeguard against
very small pivot elements and hence avoid the problems shown in Example 2-6-1. Pivots are
deemed acceptable only if the potential pivot element is greater than piv_tol in absolute
value. A typical value for this tolerance is 10−8.

The third zero tolerance is a slack tolerance slack_tol that is a measure of how
much error we will allow in the slack variables, that is, the difference between ABxB and b.
The use of this tolerance will be outlined further in the sections on advanced pivot selection
mechanisms and basis updates. A typical value for slack_tol is 10−6.

A simple version of the resulting revised simplex method that uses these tolerances
and LU decomposition for solving the systems of linear equations is given in rsm.m. We
illustrate the use of this routine on the example given above.

128 Chapter 5. Solving Large Linear Programs

MATLAB file rsm.m: Revised simplex

function [x_B,B,u] = rsm(A,b,p,B)
% syntax: [x_B,B,u] = rsm(A,b,p,B)
% A revised simplex routine for min p’x st Ax=b, x>=0.
% on input A is mxl, b is mx1, p is lx1
% B is 1xm index vector denoting the basic columns.
% on output u is the dual solution

[m,l] = size(A);
zer_tol = 1.0e-5; piv_tol = 1.0e-8;
N = setdiff(1:l,B);

while (1)
[L,U] = lu(A(:,B));
x_B = U\(L\b);
if any(x_B < -zer_tol)

error(’current point is infeasible’); end;

u = L’\(U’\p(B));
c = p(N)’-u’*A(:,N);

if isempty(find(c < -zer_tol))
return; end;

[min_red_cost,s] = min(c);

d = U\(L\A(:,N(s)));
blocking = find(d >= piv_tol);
if isempty(blocking)

error(’problem is unbounded’); end;

[min_ratio,index_r] = min(x_B(blocking)./d(blocking));
r = blocking(index_r);

swap = B(r); B(r) = N(s); N(s) = swap;
end;

5.2. The Revised Simplex Method 129

� load ex5-2-1

� B = [3 4 6];

� [x_B,B] = rsm(A,b,p,B)

xB =

1

2
3


 , B = [

1 4 6
]

Note that x1 = 1, x4 = 2, x6 = 3, and the other components are zero.

� z = p(B)’*x_B z = 2

Exercise 5-2-3. In MATLAB, solve the following linear program using the revised simplex
method:

max z = 2x1 + 4x2 + x3 + x4

subject to x1 + 3x2 + x4 ≤ 4,

2x1 + x2 ≤ 3,

x2 + 4x3 + x4 ≤ 3,

x1, x2, x3, x4 ≥ 0.

(An initial basic feasible solution and choice of B should again be obvious from the con-
version to canonical form.)

The revised simplex method solves the canonical form linear program. The dual of
the canonical form problem was found in Example 4-7-2. How do you determine the dual
solution when using the revised simplex method? Note that the KKT conditions for the
general formulation (4.14) and (4.15) imply that

x ′
B(p − A′u)B = 0

at the optimal basis B. Thus
pB = A′

·Bu

can be solved for the dual solution vector u. The calculation for the vector c shows that this
solution is in fact dual feasible.

Exercise 5-2-4. What is the dual of the problem given in Example 5-2-1? Use the results
of the exercise to exhibit a dual solution and prove that this solution is optimal.

We now show that the revised simplex procedure can be extended in a straightforward
way to deal with upper and lower bounds on the components of x. This extended procedure
can be used to construct an initial basic feasible solution, as we show subsequently in
Section 5.2.2.

5.2.1 Upper and Lower Bounds

We consider now the linear program

min z = p′x
subject to Ax = b, �̄ ≤ x ≤ ū.

(5.10)

130 Chapter 5. Solving Large Linear Programs

This formulation can be applied directly to many practical situations in which the variables
of the given problem are subject naturally to both lower and upper bounds. We allow
�̄i = −∞ and/or ūi = +∞ so that free variables and one-sided bounds can be recovered
as special cases.

Example 5-2-5. The continuous knapsack problem is a simple example of a problem of
this type. A knapsack that has a given fixed capacity b, say, should be filled with a mixture
of goods that have greatest value. The problem can be written as

max p′x
subject to a′x ≤ b, 0 ≤ x ≤ ū.

Here ai is the (unit) volume of good i, and pi is its (unit) street value, while ūi represents the
total amount of the good that is available. Note that a closely related problem was discussed
in Exercise 5-1-2, and a sorting scheme allows its efficient solution.

A simple way to reformulate this problem so that we can apply the revised simplex
method is to apply a change of variables (x = y + �̄) to move the lower bounds to zero
(assuming all the lower bounds are finite) and to treat the remaining upper bounds as general
constraints. These general constraints can then be converted into equality constraints (for
canonical form) by simply adding slack variables s. Thus the problem becomes

min
y,s

z = p′y + p′�̄

subject to

[
A 0
I I

] [
y

s

]
=
[
b − A�̄

ū − �̄

]
, (y, s) ≥ 0.

The problem with this approach is that the number of variables and the number of constraints
increase fairly dramatically, and hence (as we show later in an example) the work per iteration
of the simplex method increases dramatically.

To handle this formulation directly using the simplex method, we redefine the basis
to be those components of x that may be away from their bounds. Nonbasic variables are
held at one of their bounds and allowed to move away from this bound only when they
are chosen to enter the basis. Conceptually, these definitions represent a straightforward
extension from the canonical formulation, for which �̄ = 0 and ū = +∞. Obviously, the
rules for pivot column and row selection must be altered to fit these new definitions, but the
changes are straightforward. We now describe the modified procedure explicitly.

Algorithm 5.2 (Revised Simplex Method for Bounded Variables).

1. Put the problem into the canonical form with bound constraints (5.10) by adding
appropriate slack variables.

2. Determine an initial basic feasible solution x and the corresponding index sets B
and N.

3. Calculate u′ := p′
BA−1·B and c′ := p′

N − u′A·N.

4. A nonbasic variable N(s) is eligible to enter the basis if

5.2. The Revised Simplex Method 131

(a) xN(s) = �̄N(s) and cs < 0; or

(b) xN(s) = ūN(s) and cs > 0.

Choose a pivot column s corresponding to an eligible nonbasic variable. If none are
eligible, then stop; the current point is optimal.

5. Calculate d = A−1·B A·N(s) and define

xj (λ) :=




xj + λsign(cs)di if j = B(i),

xN(s) − λsign(cs) if j = N(s),

xj otherwise.

Determine the pivot row r by increasing λ until one of the variables xj (λ) hits a
bound. If no variable hits a bound, then stop; the problem is unbounded.

6. Update x = x(λ) and (if necessary) B and N by swapping B(r) and N(s).

7. Go to Step 3.

In practice, we encode N as a signed integer vector, with N(s) > 0 indicating xN(s) =
ūN(s) and N(s) < 0 indicating x−N(s) = �̄−N(s). In Step 4, we declare s to be eligible if cs

and N(s) have the same signs.

Example 5-2-6. Consider the problem

min 3x1 − 4x2 + x3 − 2x4 + 4x5

subject to
x1 + 3x3 + x4 − x5 = 7,

x2 − 4x3 + x4 − x5 = 6,

0 ≤ x1 ≤ 5,

0 ≤ x2 ≤ 5,

0 ≤ x3 ≤ 5,

0 ≤ x4 ≤ 5,

0 ≤ x5 ≤ 2.

To solve this problem in MATLAB, we can start at the point x = (2, 1, 0, 5, 0)′ with
B = [1 2] and N = [−3 4 − 5]. (The first and third components of N are negative
as the corresponding elements of x are at their lower bounds.) We first show that the basis
specified corresponds to the given basic feasible solution:

� load ex5-2-6

� B = [1 2];

� N = [-3 4 -5];

� [m,l] = size(A);

� x = zeros(l,1);

� x(3:5) = [0 5 0]’;

� [L,U] = lu(A(:,B));

� x(B) = U\(L\(b-A(:,abs(N))*x(abs(N))))

x =




2
1
0
5
0




132 Chapter 5. Solving Large Linear Programs

The next step is to compute the reduced cost vector c:

� u = L’\(U’\p(B));
� c = p(abs(N))-A(:,abs(N))’*u

c =

−24

−1
3




We see that neither x4 nor x5 is eligible to enter the basis. The reduced cost corresponding
to x4 is negative, and so the objective function will increase as x4 is decreased away from
its upper bound, while the reduced cost corresponding to x5 is positive, indicating again
that the objective function will increase as x4 is increased away from its lower bound. The
variable x3 is, however, a valid choice for decreasing the objective, and so we set the index
s to indicate our choice of pivot and compute the (negative of the) column from the tableau
that corresponds to x3:

� s = 1;

� d = U\(L\(A(:,abs(N(s)))))
d =

[
3

−4

]

It follows that when we let x3 = λ > 0 that x1 = 2 − 3λ and x2 = 1 + 4λ. Hence x1 is the
blocking variable—it hits its lower bound of 0 when λ = 2/3. We now update the relevant
components of x for this choice of λ.

� lambda = 2/3;

� x(3) = x(3) + lambda;

� x(B) = x(B) - lambda*d

x =




0
3.6667
0.6667

5
0




The values of the basic variables xB (that used to correspond to the last column h of the
tableau) have been computed by updating the previous value of xB using the components of
the pivot column d , rather than by solving a new linear system.

We now update B and N to reflect the pivot that just occurred.

� B(1) = 3; N(1) = -1;

We now have B = [3 2] and N = [−1 4 − 5]. We are now ready to start another
iteration of the method by calculating c once again.

� [L,U] = lu(A(:,B));

� u = L’\(U’\p(B));
� c = p(abs(N))-A(:,abs(N))’*u;

c =

 8

7
−5




Both the second and third elements of N yield acceptable pivots here—the second element
x4 because it is at its upper bound and has a positive reduced cost, and the third element x5

because it is at its lower bound with a negative reduced cost. (A useful way to remember

5.2. The Revised Simplex Method 133

this rule is that if N and c have the same sign, the corresponding variable is eligible to enter
the basis.) For variety, we choose the second element x4 as the pivot and compute the vector
d that captures the dependence of the basic variables on x4:

� s = 2;

� d = U\(L\(A(:,abs(N(s)))))
d =

[
0.3333
2.3333

]

It follows that when we let x4 = 5 − λ then x3 = 2/3 + (1/3)λ and x2 = (11/3) + (7/3)λ.
Thus the blocking variable is x2 (which reaches its upper bound of 5 for λ = 4/7). By
taking this step and updating the relevant components of x, we obtain

� lambda = 4/7;

� x(4) = x(4) - lambda;

� x(B) = x(B) + lambda*d

x =




0
5

0.8571
4.4286

0




Again, we update B and N to reflect the pivot that just occurred:

� B(2) = 4; N(2) = 2;

yielding B = [3 4] and N = [−1 2 − 5]. Proceeding with the next step, we compute
the reduced cost vector c:

� u = L’\(U’\p(B));
� c = p(abs(N))-A(:,abs(N))’*u

c =

 4

−3
2




At this stage, we see that the above x vector is optimal for our problem, since the signs of
the corresponding components of c and N all differ. The variable x2 at its upper bound has
a negative reduced cost, while the variables x1 and x5 at their lower bounds have positive
reduced costs. Hence, we are done.

The MATLAB code that implements the simplex method with upper and lower bounds
can be found in the file rsmbdd.m. An important feature of rsmbdd is that we perform
only two solutions of linear systems involving the matrix A·B and its transpose at each
iteration (as outlined in the example above), rather than the three solutions suggested by our
earlier description. We illustrate the use of rsmbdd on Example 5-2-6.

Example 5-2-7. Again, we use the starting basis B = [1 2] and N = [−3 4 − 5] that
corresponds to the basic feasible solution x = (2, 1, 0, 5, 0)′.

� load ex5-2-6

� B = [1 2]; N = [-3 4 -5];

� [x,B,N] = rsmbdd(A,b,p,lb,ub,B,N);

134 Chapter 5. Solving Large Linear Programs

As we mentioned above, we can solve the same problem by first converting to canonical
form by adding slack variables for each of the five upper-bound constraints. By extending
the starting basis from above to include the slacks that are initially away from their bounds
of 0 and applying the rsm code, we proceed as follows:

� load ex5-2-6

� [m,l] = size(A);

� A = [A zeros(m,l); eye(l) eye(l)];

� b = [b; ub]; p = [p; zeros(l,1)];

� B = [1 2 4 6 7 8 10];

� [x_B,B] = rsm(A,b,p,B);

� x = zeros(2*l,1); x(B) = x_B;

On an earlier version of MATLAB that allows us to count floating-point operations, it
was shown that the solution procedure using rsmbdd used only about one-tenth as many
operations as the version using rsm. Clearly, at least in this instance, it is much more
efficient to treat bounds directly in the algorithm than to introduce slacks and convert them
to general constraints.

Exercise 5-2-8. Use the revised simplex procedure with upper and lower bounds to solve

min 3x1 + x2 + x3 − 2x4 + x5 − x6 − x7 + 4x8

subject to

[
1 0 3 1 −5 −2 4 −6
0 1 −2 −1 4 1 −3 5

]
x =

[
7

−3

]
,

0 ≤ x1 ≤ 8,

x2 ≤ 6,

0 ≤ x3 ≤ 4,

x4 ≤ 15,

x5 ≤ 2,

0 ≤ x6 ≤ 10,

0 ≤ x7 ≤ 10,

0 ≤ x8 ≤ 3.

An initial basic feasible solution is x ′ = (0, 5.6, 0, 15, 1.6, 0, 0, 0). Use these values
to construct appropriate choices for B and N and then invoke rsmbdd to solve the problem.

5.2.2 Generating Basic Feasible Solutions

As we have noted above, the revised simplex technique must be started from an initial
basic feasible solution. We now show how to generate such a solution by solving a Phase I
problem, without the need for converting to standard form.

We suppose first that the problem (5.10) has no free variables; that is, each variable
has either an upper or a lower bound (or both). We construct a Phase I problem by adding
extra artificial variables (in a manner that generalizes the technique of Section 3.4), choosing

5.2. The Revised Simplex Method 135

the original set of variables to belong to the initial nonbasic set N and the artificial variables
to make up the initial basis B. Specifically, we set each xj , j = 1, 2, . . . , l, to one of its
bounds �̄j or ūj (choosing a finite bound, of course) and define N(j) = −j if xj = �̄j and
N(j) = j if xj = ūj . For this x,we then define di , i = 1, 2, . . . , m, as follows:

di =
{

1 if Ai·x − bi ≥ 0,

−1 otherwise.
(5.11)

We now add artificial variables xl+i , i = 1, 2, . . . , m, and construct the following Phase I
problem:

min z0 =
m∑

i=1

xl+i

subject to Ai·




x1
...

xl


 = bi + dixl+i , i = 1, . . . , m,

�̄j ≤ xj , ≤ ūj , j = 1, 2, . . . , l,

0 ≤ xl+i , i = 1, 2, . . . , m.

(5.12)

It is easy to see that by choosing x1, x2, . . . , xl as above and by setting the artificial variables
to

xl+i =

∣∣∣∣∣∣∣Ai·




x1
...

xl


− bi

∣∣∣∣∣∣∣ , i = 1, 2, . . . , m,

we obtain an initial basic feasible solution for (5.12), with basis B = {l+1, l+2, . . . , l+m}.
Note too that the constraint matrix for this problem has full row rank, since the m columns
corresponding to the artificial variables themselves have full rank m.

Starting from this basis, we can now solve the Phase I problem (5.12) and declare
the original problem (5.10) infeasible if Phase I terminates with a positive objective value.
Otherwise, we reset the upper bound on all the artificial variables xl+i , i = 1, 2, . . . , m, to
zero (thereby forcing all these variables to stay at 0 for the remainder of the computation)
and proceed directly to Phase II. The first l components of the solution to the Phase II
problem constitute the solution of the original problem (5.10).

Example 5-2-9. We revisit Example 5-2-6, showing how to set up the Phase I problem.
Since each of the variables has two finite bounds, we can choose to set each variable either
at lower or upper bound. Arbitrarily, we set all to their lower bound except x4 and define the
set N accordingly. We then augment the problem data to account for the artificial variables
and solve the Phase I linear program. In the following discussion, we use v to denote our
guess at the values for the variable x.

� load ex5-2-6

� N = [-1 -2 -3 4 -5];

� v = lb; v(4) = ub(4);

� d = sign(A*v-b);

136 Chapter 5. Solving Large Linear Programs

� A = [A -diag(d)]; w = [zeros(5,1); ones(2,1)];

� lb = [lb; zeros(2,1)]; ub = [ub; inf*ones(2,1)];

� B = [6 7];

� [x,B,N] = rsmbdd(A,b,w,lb,ub,B,N);

� w’*x

Since w′x = 0, B and N correspond to a basic feasible solution. The nonartificial compo-
nents of the Phase I solution, and the set B, are the same as the initial basic feasible solution
used in Example 5-2-6. We now reset the upper bounds on the artificial variables to 0 and
continue with Phase II of the simplex method.

� ub(6:7) = zeros(2,1); p(6:7) = zeros(2,1);

� [x,B,N] = rsmbdd(A,b,p,lb,ub,B,N);

� p’*x

Free Variables. We now consider the case in which free variables are present in the
formulation. Since free variables have no finite bound, we cannot choose the initial x in the
manner described above by setting each component to one of its bounds. Instead, we include
these variables in the initial basic set B. Moreover, we keep them in the basis throughout
the algorithm, exactly as we did in Scheme II of Chapter 3.

Let us denote by F the set of free variables, where F ⊂ {1, 2, . . . , l}, and suppose
that F contains f indices. We then choose a subset I of {1, 2, . . . , m} of the rows of A,
also with f elements, in such a way that the submatrix AIF is nonsingular. (Assume for
the present that this is possible.) For the nonfree variables xj , j ∈ {1, 2, . . . , l}\F , we set
xj to one of its (finite) bounds, as above. Given the values xj for j /∈ F , we obtain initial
values for the free variables xj for j ∈ F by solving the following system of equations:∑

j∈F

AIj xj = bI −
∑
j /∈F

AIj xj .

To set up the Phase I problem, we define di exactly as in (5.11) but only for the indices
i ∈ {1, 2, . . . , m}\I . The Phase I problem is as follows:

min z0 =
∑

i∈{1,2,...,m}\I
xl+i

subject to Ai·




x1
...

xl


 = bi + dixl+i , i ∈ {1, 2, . . . , m}\I,

Ai·




x1
...

xl


 = bi, i ∈ I,

�̄j ≤ xj ≤ ūj , j = 1, 2, . . . , l,

0 ≤ xl+i , i ∈ {1, 2, . . . , m}\I.

5.2. The Revised Simplex Method 137

An initial basic feasible solution to this Phase I problem is obtained by setting x1, x2, . . . , xl

as described above and setting the artificial variables as follows:

xl+i =

∣∣∣∣∣∣∣Ai·




x1
...

xl


− bi

∣∣∣∣∣∣∣ , i ∈ {1, 2, . . . , m}\I.

The initial basis B is the union of the free variable set F with the set of artificial variable
indices l + i for i ∈ {1, 2, . . . , m}\I . (It is easy to check that this B has m elements.)
Because of the nonsingularity of the submatrix AIF , the rows of A·B are guaranteed to be
linearly independent.

Example 5-2-10. Consider the problem

min x1 + x2 + x3

subject to 3x1 + x2 − x4 = −5,

x1 − 2x2 + x3 = 1,

x2 ≥ 0, x3 ≥ 2, x4 ≥ 0.

Since x1 is free in this example, we have F = {1}. We first set v2 = �̄2, v3 = �̄3, and
v4 = �̄4 and choose I = {2}; that is, we use the second equation to determine the value of
v1 = 1 + 2v2 − v3 = −1.

� load ex5-2-10

� v = lb;

� N = [-2 -3 -4];

� v(1) = b(2) - A(2,2:4)*v(2:4)

v =




−1
0
2
0




For the remaining equation, we need to add an artificial variable for the Phase I problem
and construct the basis B accordingly:

� d = sign(A(1,:)*v - b(1));

� A = [A; [-d; 0]];

� lb(5) = 0; ub(5) = inf;

� B = [1 5];

� w = [zeros(4,1); 1];

� [x,B,N] = rsmbdd(A,b,w,lb,ub,B,N)

x =




−1.6667
0

2.6667
0
0




B = [
1 3

]
N = [−2 −5 −4

]

Since w′x = 0 at this point, we can now update the upper bounds on x5 and proceed to
Phase II.

138 Chapter 5. Solving Large Linear Programs

� ub(5) = 0; p(5) = 0;

� [x,B,N] = rsmbdd(A,b,p,lb,ub,B,N)

This results in the same output as above, since the given vector x is in fact optimal for the
problem.

The index set I can be found in a stable fashion by performing an LU factorization
of A·F with pivoting and taking I to be the indices of the rows of A·F that are chosen as the
first f pivot rows by the factorization procedure. In the above example, this would result
in the following steps:

� F = [1]; f = length(f);

� [L,U,P] = lu(A(:,F));

� [k,i] = find(P(1:f,:));

� i

i = [
1
]

Thus, in this case, we would use the first equation instead of the second to determine the
value of v(1).

Finally, we consider the case in which the free variable submatrix A·F has linearly
dependent columns, so that it is not possible to choose a subset of rows I such that AIF is
nonsingular. A modified Phase I procedure is derived in the following exercise.

Exercise 5-2-11. Suppose that the columns of A·F are linearly dependent. Assume that
you can identify an invertible submatrix AIK of A·F with the largest possible number of
columns. Thus the set J := F \K represents the linearly dependent free variables. Now set
vJ = 0 and solve the linear system

∑
j∈K AIj vj = bI −∑

j /∈K AIj vj to determine values
for vj , j ∈ K .

(i) Using (5.11), construct a Phase I problem using the sets I , J , and K that fixes the
variables in J at 0 and otherwise proceeds as before.

(ii) Describe how I and K can be calculated using an LU decomposition of A·F in
MATLAB.

We are now able to use rsmbdd to solve linear programs stated in canonical form,
with upper and lower bounds (5.10). A complete simplex code implementing the two-
phase approach outlined above (including the cases in which free variables are present with
dependent columns of A) is given in simplex.m.

The function simplex can be tested, for example, on Example 3-4-1. We explicitly
convert the general constraints from standard form to canonical form by adding slacks to
the problem. When calling simplex with only three arguments, the code assumes that the
lower bounds are zero and the upper bounds are +∞.

� load ex3-4-1

� p = [p; zeros(5,1)];

� x = simplex([A -eye(5)],b,p)

5.2. The Revised Simplex Method 139

� p’*x

As a second example, we can solve Example 3-6-5, first adding slack variables for
the first two constraints to convert to canonical form. In this example, however, x3 is a free
variable, and so we add explicit lower and upper bounds to the arguments of simplex to
account for this:

� load ex3-6-5

� A = [A [-eye(2); zeros(1,2)]];

� p = [p; zeros(2,1)];

� lb = [0; 0; -inf; 0; 0]; ub = inf*ones(5,1);

� x = simplex(A,b,p,lb,ub);

Exercise 5-2-12. Use the two-phase simplex procedure to solve

min z = 10x1 + 12x2 + 8x3 + 10x4

subject to
4x1 + 5x2 + 4x3 + 5x4 + x5 = 1000,

x1 + x2 + x3 + x4 + x6 = 225,

0 ≤ x1 ≤ 130, 0 ≤ x2 ≤ 110, 0 ≤ x3 ≤ 70,

0 ≤ x4 ≤ 65, 0 ≤ x5, 0 ≤ x6 ≤ 175.

Exercise 5-2-13. What is the radius of the largest ball that can be inscribed in the n-
dimensional simplex {

x ∈ Rn | x ≥ 0, − e′x√
n

+ 1√
n

≥ 0

}
,

where e is a vector of ones?

In the remainder of this chapter we outline some further enhancements that are used
to improve the performance of the revised simplex method in practical codes for large
problems.

5.2.3 Basis Updates

Each step of the simplex method requires the solution of equations involving A·B or A′·B.
As outlined previously, this can be done efficiently using a single LU factorization of the
basis matrix A·B, coupled with forward and backward substitution. Also, at each pivot step
in the simplex method, we remove one column from the basis matrix and replace it with a
new column. However, from the previous iteration, we already know an LU factorization
of the original basis matrix A·B, that is,

PA·B = LU (5.13)

(where P is a permutation matrix, L is unit lower triangular, and U is upper triangular).
Rather than compute a new LU factorization from scratch after the one-column modification,
we can update the current L and U factors at much lower cost. We now specify a factorization

140 Chapter 5. Solving Large Linear Programs

updating scheme that requires work of O(m2)+O(k3) operations, where k is the number of
column changes since the last factorization from scratch was performed. (By contrast, a full
refactorization requires O(m3) operations.) Clearly, when k grows too large, it is better to
refactor from scratch rather than to use this update scheme; practical simplex codes perform
refactorizations periodically.

We first establish notation. Suppose that A·B denotes the basis matrix for which the
factorization (5.13) is known and that k subsequent column updates have produced the new
basis matrix A·K. We can express the relationship as follows:

A·K = A·B + RS ′,

where each column of R ∈ Rm×k is the difference between the entering and the leaving
column of the basis and each column of S ∈ Rm×k is a unit vector representing the location
of the column being updated. For example, if B = (4, 1, 6), with the first update replacing
x1 by x7 and the second update replacing x4 by x3, then K = (3, 7, 6) and R and S are given
by

R = [
A·7 − A·1 A·3 − A·4

]
, S =


0 1

1 0
0 0


 .

In MATLAB, we can store S not as a full matrix but rather as a vector of length k, with
s(i)=j indicating that column i of the matrix S contains the unit vector with 1 in the j th
position and 0 elsewhere; this results in s = [2 1] in the above example.

The following formula, known as the Sherman–Morrison–Woodbury formula, ex-
presses the inverse of A·K in terms of the inverse of A·B:

A−1
·K = (A·B + RS ′)−1 = A−1

·B − A−1
·B R(I + S ′A−1

·B R)−1S ′A−1
·B . (5.14)

(This formula can be verified by direct multiplication; multiply the right-hand side by
A·B + RS ′ and check that the identity I is recovered.)

We now show how to use this formula efficiently to calculate the vector A−1·K b. A
key idea is to store an update matrix, H , whose columns contain information about the kth
column update, that is,

H·k = A−1
·B R·k = U−1L−1PR·k.

This calculation requires a permutation of the kth column of R, together with triangular
solves involving the factors L and U from (5.13), and requires m2 + O(m) operations. The
relationship in (5.14) is thus simplified to

A−1
·K = A−1

·B − H(I + S ′H)−1S ′A−1
·B .

The matrix S ′H can be obtained by selecting the components stored in the vector s from
H , and instead of inverting the matrix (I + S ′H), we compute its LU factors as follows:

� [L1,U1] = lu(eye(k) + H(s(1:k),1:k));

If we then compute d = A−1·B b using the factors from (5.13), at a cost of approximately 2m2

operations, it follows that

A−1
·K b = A−1

·B − H(I + S ′H)−1S ′A−1
·B b = d − HU−1

1 L−1
1 S ′d,

5.2. The Revised Simplex Method 141

with L−1
1 and U−1

1 simply representing forward and backward substitution with these trian-
gular matrices. In MATLAB, this corresponds to the following operation:

� d = U\(L\(P*b));
� d = d - H(:,1:k)*(U1\(L1\d(s(1:k))));
Since the second step requires about 2k2 + 2mk operations, the work is dominated by the
initial solve for d when m � k.

Example 5-2-14. Suppose

A =

 1 3 −3

−4 3 −2
−1 0 1




is given in factored form as

P =

0 0 1

1 0 0
0 1 0


 , L =


 1 0 0

−1 1 0
4 1 1


 , U =


−1 0 1

0 3 −2
0 0 −4


 .

Replace the first column of A with a = (1, 5, −2)′ to form Â and then solve Âx = b for
b = (1, 8, −3)′ using the procedure outlined above. (Do not compute a new factorization.)

� load ex5-2-14

� H = U\(L\(P*(a-A(:,s))));
� d = U\(L\(P*b));
� s = 1;

� d = d-H*(d(s)/(1+H(s,1)));

d =

1.6667

0.1111
0.3333




To check that d is in fact the solution, perform the following step:

� norm([a A(:,2:3)]*d-b)

which should return a value close to 0.

Exercise 5-2-15. Replace the second column of A with a = (1, 1, 1)′ to form Â and then
solve Âx = b, where

A =

7 8 3

4 5 9
1 2 6


 , b =


1

2
3


 .

Use the MATLAB routine lu to compute P , L, and U for A. Do not form or factor Â
explicitly, but use a similar procedure to that of Example 5-2-14.

The steps to calculate c′A−1·K are similar:

c′A−1
·K = (c′ − c′H(I + S ′H)−1S ′)A−1

·B = (c′ − d ′)A−1
·B ,

where d ′ = c′H(I + S ′H)−1S ′. This corresponds to the following MATLAB code:

142 Chapter 5. Solving Large Linear Programs

� d = zeros(m,1); d(s(1:k)) = L1’\(U1’\(H(:,1:k)’*c));
� u = P’*(L’\(U’\(c - d)));

The original factors from (5.13) are used to solve (c′ − d ′)A−1·B , requiring 2m2 operations,
which dominates the computation, assuming that the inner products involving the first k −1
columns of H have been stored at previous iterations.

An implementation of this updating scheme can be found as part of the revised sim-
plex routine rsmupd. This routine has the same calling sequence as rsm and can be
used interchangeably with that routine. The maximum number of updates allowed before
refactorization occurs is given as the variable max_upd, which by default is set to 10.
The Devex scheme (Harris (1973)), described in Section 5.2.4, is also used in rsmupd to
improve numerical accuracy on large problems.

There are other techniques for updating factorizations that achieve similar computa-
tional savings as the method outlined above. Although modern software uses an updating
scheme for the LU factors of the basis matrix, other techniques generate a product form
for the inverse of the basis matrix. A simple scheme that is appropriate in the dense setting
can be found in Fletcher & Matthews (1984). (This approach does not perform as well as
the code outlined above in MATLAB since it does not exploit the sparse matrix primitives
that are incorporated in MATLAB.) Schemes that are better suited to sparse matrices are
described in the following references: Bartels & Golub (1969), Forrest & Tomlin (1972),
Gay (1978), Reid (1982). A full description of these techniques is beyond the scope of this
book; interested readers are referred to Nazareth (1987) or Chvátal (1983, Chapter 24).

5.2.4 Advanced Pivot Selection Mechanisms

In large problems, it is often prohibitively expensive to compute the complete reduced cost
vector c at every iteration. In fact, it is not necessary to do so, since we need to identify
just one negative element of this vector in order to determine a valid pivot column for the
simplex method. In partial pricing schemes, we calculate only a subvector of c (see Step
2 of the Revised Simplex Method) and select the pivot column from one of the negative
elements of this subvector. One variant of partial pricing works with the same “window” of
elements in c for several successive iterations and then moves to the next window for the next
few iterations, cycling through the whole vector in this fashion. Another variant continues
to calculate elements of c until it has found some specified fraction of m elements that
are negative and chooses the most negative among these as the pivot column. Eventually,
near the end of the simplex procedure, this scheme will require all the elements of c to be
calculated.

Another technique for choosing the entering variable that is becoming popular in large
scale codes is the steepest edge. These rules, which have both primal and dual variants,
are described in detail by Forrest & Goldfarb (1992) and Goldfarb & Reid (1977). They
essentially look for the entering variable such that the decrease of the objective per unit
distance moved along the corresponding edge of the feasible polyhedron is as large as
possible. (Contrast this choice with the choice of variable with the most negative reduced
cost, which gives the largest decrease per unit increase of the entering variable.) Steepest-
edge rules require additional computations to be performed for each candidate pivot and
thus are more expensive to implement than simple rules such as finding the most negative

5.3. Network Flow Problems 143

reduced cost. However, on many problems, the total number of simplex pivots needed to
find the solution is decreased considerably, and so the extra cost per iteration is worthwhile.
Steepest-edge rules can be used in conjunction with partial pricing.

Turning now to the ratio test for computation of the steplength and the blocking
variable, a modification known as Devex is often used (Harris (1973)). The obvious imple-
mentation of the ratio test from the routine rsm.m proceeds as follows:

blocking = find(d >= piv_tol);
if isempty(blocking)
error(’problem is unbounded’); end;

[min_ratio,index_r] = min(x_B(blocking)./d(blocking));
r = blocking(index_r);

However, to ascertain whether the basic variables are within their bounds, the test

if any(x_B < -zer_tol)

is used. It seems unreasonable that the constraints are treated as hard constraints in the ratio
test but are allowed to be slightly violated in other tests. Furthermore, when the coefficients
of xB are close to zero, the ratio test may well make a poor choice in determining the variable
to leave the basis, since any numerical rounding error in the degenerate values will dominate
such a test.

A more robust implementation of the ratio test is as follows:

blocking = find(d >= piv_tol);
if isempty(blocking)
error(’problem is unbounded’); end;

elbow = x_B(blocking)+zer_tol;
min_ratio = min(elbow./d(blocking));

eligible = find(x_B(blocking)./d(blocking) <= min_ratio);
[max_piv,index_r] = max(d(blocking(eligible)));
r = blocking(eligible(index_r));
min_ratio = x_B(r)/d(r);

This implementation essentially moves the lower bound from zero to -zer_tol in
order to effectively deal with rounding error. Other techniques based on this idea can be
found in Gill et al. (1989).

Exercise 5-2-16. Modify the routine rsm to incorporate the Devex pivot rule. Test out the
routine on Example 5-2-1.

5.3 Network Flow Problems
In Section 1.3.6 we described a minimum-cost network flow problem, in which we minimize
the cost of moving a commodity along the arcs of a network to meet given demand patterns

144 Chapter 5. Solving Large Linear Programs

2

4

3

6

51

Figure 5.1. Example network.

at the nodes. By taking advantage of the special structure of this linear program, we can
devise specialized, highly efficient versions of the simplex method that can be interpreted
graphically in terms of the node-arc graph of the network. In this section, we discuss this
problem in more detail, along with several other types of problems associated with networks
that are useful in many applications.

A network is defined as a graph consisting of nodes and arcs. The node set N typically
has a labeling scheme associated with it, which for the purposes of this chapter will be
assumed to be {1, 2, . . . , m}. In applications, the nodes may be cities, airports, or stages in
a manufacturing process. Schematically, nodes are normally represented by labeled circles;
see Figure 5.1.

Each arc connects one node (the origin) to another node (the destination). If the origin
is i and the destination is j , we label the arc as (i, j), which is an element of the Cartesian
product set N × N . The orientation of each arc is significant; that is, (1, 2) is not the
same as (2, 1). In applications, the nodes may represent roads, flight paths, or precedence
relationships. An arc may be represented as in Figure 5.1 by a directed arrow joining two
nodes. Undirected arcs can be replaced by two directed arcs between the two nodes in
question, one pointing in each direction. The full set of arcs is denoted by A.

5.3.1 Minimum-Cost Network Flow

Recapping the terminology of Section 1.3.6, the minimum-cost network flow problem as-
sociates three pieces of data with each arc (i, j) ∈ A:

cij is the cost per unit flow of the commodity along the arc (i, j);

lij is the lower bound on the flow along (i, j);

uij is the upper bound on the flow along (i, j), also known as the capacity of arc (i, j).

A divergence bi associated with each node i ∈ N defines how much of the commodity
is produced (bi > 0) or consumed (bi < 0) at node i. If bi > 0, the node is called a supply

5.3. Network Flow Problems 145

node or source; if bi < 0, it is a demand node or sink; if bi = 0, node i is a transshipment
node. Typically, all the data objects cij , lij , uij , and bi are assumed to be integral.

The variables of the problem are the flows xij on each of the arcs (i, j) ∈ A. As in
Section 1.3.6, the resulting minimum-cost network flow problem is

min
x

z =
∑

(i,j)∈A
cij xij

subject to
∑

j :(i,j)∈A
xij −

∑
j :(j,i)∈A

xji = bi for all nodes i ∈ N ,

lij ≤ xij ≤ uij for all arcs (i, j) ∈ A,

which can be written in matrix form as follows:

min c′x
subject to Ix = b, l ≤ x ≤ u.

(5.15)

Here the node-arc incidence matrix I is an |N | × |A| matrix, the rows being indexed by
nodes and the columns being indexed by arcs. Every column of I corresponds to an arc
(i, j) ∈ A and contains two nonzero entries: a +1 in row i and a −1 in row j . For the
example network of Figure 5.1, the matrix I is given by

I =




1 1 1
−1 −1

1 1 −1
−1 1 1 −1

−1 −1 −1
−1 1 1




,

where we have taken the arcs in the order

{(1, 2), (1, 4), (1, 6), (3, 2), (3, 5), (4, 3), (4, 5), (6, 4), (6, 5)}.
For efficient implementations, it is crucial not to store or factor the complete matrix I but
rather to use special schemes that exploit the special structure of this matrix.

Since e′I = 0, we require e′b = 0 for a feasible point to exist. This relationship
ensures that supply (the total amount of commodity produced over all the nodes) equals
demand (the total amount consumed). We will show later how this assumption can be
relaxed, but first we demonstrate that a number of typical operations research problems can
be formulated as minimum-cost flow problems.

5.3.2 Shortest-Path Problem

The problem of finding the shortest path between two given nodes in the network is easily
formulated as a minimum-cost network flow problem by setting the costs on the arcs to be
the distances between the nodes that the arc connects. If knowing the shortest path between
nodes s and t is required, we set the divergences as follows:

bs = 1, bt = −1, bi = 0 ∀i ∈ N \ {s, t}.

146 Chapter 5. Solving Large Linear Programs

4

4

3

6

5

1

2

21
3

2

2
2

2

1

Figure 5.2. Network with edge lengths.

The lower bounds lij on the flows should be set to zero, while the upper bounds uij can be
infinite.

In the example of Figure 5.2, where the distances cij are noted next to each arc, a
shortest path from node s = 1 to node t = 5 is 1, 6, 5, with a cost of 4. Another solution
(with, of course, the same distance) is 1, 4, 5. If the simplex method is applied to this
formulation of the shortest-path problem, and the solution is unique, the solution can be
recognized easily as consisting of those arcs on which the optimal flows are 1.

If we wish to know the shortest path from s to all the other nodes i ∈ N , we define
the network flow problem in the same way except that the divergences are different:

bs = |N | − 1, bi = −1 ∀i ∈ N \ {s}.

Having obtained the solution, we can recognize the shortest path from node s to a given
node i by starting at i and backtracking. We choose the final leg of the path to be one of the
arcs flowing into i for which the optimal flow is nonzero and backtrack to the origin node
for this arc. We repeat the process to find the second-last leg of the path and continue until
we reach the source node s.

5.3.3 Max-Flow Problem

Given a network and two special nodes s and t , the max-flow problem is to determine the
maximum amount of flow that can be sent from s to t . Of course, for the problem to be
meaningful, some of the arcs in the network must have finite capacities uij .

This problem can be formulated as a minimum-cost network flow problem by adding
an arc (t, s) to the network with infinite capacity, zero lower bound, and a cost of −1. The
divergences bi at all the nodes are set to zero; the costs cij and lower bounds lij on all the
original arcs are also set to zero. The added arc ensures that all the flow that is pushed from
s to t (generally along multiple routes) is returned to s again and generates a profit (negative
cost) corresponding to the flow on this arc.

5.3. Network Flow Problems 147

4,inf

2

4

3

6

5

0,1

2,2

2,2 0,2

2,3

2,2

0,4
0,2

0,4

1

Figure 5.3. Max-Flow: Edges labeled by (flow, upper bound).

In the following example we take s = 1 and t = 5. The labels on the arcs correspond
to xij , uij . The maximum flow from node 1 to node 5 is 4: 2 units flow along the path 1, 4,
5 and 2 units along the path 1, 6, 5. The total flow of 4 returns to node 1 along the dummy
arc (5, 1). Note that the incidence matrix I for the network shown in Figure 5.3 is

I =




1 1 1 −1
−1 −1

1 1 −1
−1 1 1 −1

−1 −1 −1 1
−1 1 1




,

where the final column corresponds to the dummy arc that has been added. This reformula-
tion is an example of a circulation problem, which is a general term referring to a problem
in which all divergences are zero.

We can also define max-flow problems with multiple sources, in which we wish to
find the maximum amount of flow originating at any of the given sources that can be sent
to the specified destination. To formulate as a minimum-cost network flow problem, we
add a “super-source” as shown in Figure 5.4 and define arcs from the super-source to the
original sources with infinite capacities and zero costs. We also add the arc from the sink
to the super-source in the manner described above. Max-flow problems with multiple sinks
(or multiple sources and multiple sinks) can be formulated similarly. See Figure 5.4.

5.3.4 Transportation Problem

In the transportation problem, we partition the nodes into two sets (sources and sinks) so
that every arc is directed from one of the sources to one of the destinations. As is usual in
network flow, we seek a flow that minimizes the total cost of moving the commodity along

148 Chapter 5. Solving Large Linear Programs

original sources

super−source

original network

added arc from sink

Figure 5.4. Replacing multiple sources by a super-source.

7

1

2

3

4

5

6

Figure 5.5. Transportation network.

the arcs, so as to satisfy all demands at the sinks while not exceeding the supply at each
source. A typical application is to gasoline transportation, where each source is a refinery
and each sink is a market.

We denote the sources by N1 and the sinks by N2, so that N1 ∪ N2 forms a partition
of N . Each arc (i, j) ∈ A has i ∈ N1 and j ∈ N2. (A graph with this property is termed
a bipartite graph.) A sample problem is shown in Figure 5.5, where N1 = {1, 3, 5, 7} and
N2 = {2, 4, 6}.

Given a supply si of the commodity at node i ∈ N1, the total flow out of node i cannot
exceed this quantity. Similarly, given a demand dj at node j ∈ N2, the total flow into node

5.3. Network Flow Problems 149

j must be at least equal to this amount. Given a cost cij per unit flow along arc (i, j), we
can formulate the problem as follows:

min
xij

∑
(i,j)∈A⊂N1×N2

cij xij

subject to
∑
j∈N2

xij ≤ si ∀i ∈ N1,

∑
i∈N1

xij ≥ dj ∀j ∈ N2,

xij ≥ 0 ∀i ∈ N1 and ∀j ∈ N2.

Exercise 5-3-1. Show that a necessary condition for the existence of a feasible xij , i ∈ N1,
j ∈ N2, is that ∑

j∈N2

dj ≤
∑
i∈N1

si .

If the graph is complete (that is, there are arcs between every i ∈ N1 and every j ∈ N2),
show that this condition is also sufficient.

The problem as formulated above does not conform to the minimum-cost format
(5.15), since the general constraints are inequalities, rather than equalities representing
conservation of flow. However, by applying a conversion procedure that adds “dummy”
nodes to the network, we can obtain a problem in the familiar form (5.15), which can then
be solved by using software designed specifically for problems in this format. (We leave
the details as an exercise.)

5.3.5 Assignment Problem

In the assignment problem we have two sets of nodes N1 and N2 of equal size. Given a
specified cost cij for pairing a node i ∈ N1 with a node j ∈ N2, we wish to pair off each
node in N1 with a partner in N2 (making a one-one correspondence between the two sets) so
as to minimize the total cost of pairing. We can formulate this problem as a minimum-cost
flow problem by defining the divergences as follows:

bi = 1 ∀i ∈ N1, bi = −1 ∀i ∈ N2,

while the lower bounds and capacities are defined as follows:

lij = 0, uij = 1 ∀(i, j) ∈ A ⊂ N1 × N2.

5.3.6 Network Simplex Method

It can be shown that the basis matrix A·B corresponds to a (rooted) tree when A is the
node-arc incidence matrix of a network (Ahuja, Magnanti & Orlin (1993)). Using this
observation, the solution of linear systems involving the basis matrix corresponds to a tree
walk, while the ratio test corresponds to examining the cycle formed in this tree by the

150 Chapter 5. Solving Large Linear Programs

addition of an (incoming) arc. Changing the basis then corresponds to rehanging the tree
from a potentially different root. Implementation of these operations can be done much
more efficiently than the steps we have outlined in other parts of this chapter for canonical
form problems (without network structure). This topic is beyond the scope of the book, but
details can be found in (Ahuja, Magnanti & Orlin (1993)).

A node-arc incidence matrix is an example of a totally unimodular matrix, that is, a
matrix for which the determinant of every square submatrix is equal to 0, 1, or −1. When
A is totally unimodular and b̃, b, d̃, and d are integer vectors, it can be shown that if the set
{x ∈ Rn | b̃ ≤ Ax ≤ b, d̃ ≤ x ≤ d} is not empty, then all its extreme points are integer
vectors (see Nemhauser & Wolsey (1988) for further details). Since the simplex method
moves from one extreme point to another, this result guarantees that the network simplex
method will produce solutions x that are integer vectors.

It is well known that restricting some or all of the variables in a problem to take on
only integer values can make a general linear program a significantly harder problem to
solve (more precisely, while linear programs are known to be polynomially solvable, mixed
integer programs are NP-hard), and so in a certain sense this result about the integrality of
solutions to network linear programs is rather remarkable. Further information on this and
other results can be found in the texts by Ahuja, Magnanti & Orlin (1993), Nemhauser &
Wolsey (1988), and Schrijver (1986).

Chapter 6

Sensitivity and Parametric
Linear Programming

In this chapter, we examine how the solution of a linear program (and its optimal objective
value) are affected when changes are made to the data of the problem. This topic is interesting
for several reasons. First, given that the problem data is often uncertain, modelers may wish
to know how the solution will be affected (slightly, drastically, or not at all) if they assign a
slightly different value to a particular element of the constraint right-hand side or the cost
vector. Second, from a computational point of view, a user of linear programming software
would hope that having computed a solution (and an optimal basis) for one linear program,
they will have a “warm start” in computing the solution of a second problem in which the
data is only slightly different. Rather than restarting the simplex method from scratch for
the modified problem we hope to be able to start with the optimal basis for the original
problem and perhaps perform a few simplex steps to find the optimal basis for the modified
problem.

In Section 6.1, we look at small changes to the constraint right-hand side and the cost
vector and examine their effect on the optimal objective value. This topic is commonly
called sensitivity analysis. We discuss the question of adding variables or constraints to
the problem in Section 6.2. Sections 6.3 and 6.4 discuss parametric programming, which
concerns more extensive changes to the data that are parametrized by a single variable.
Again, we consider only changes to the cost vector (Section 6.3) and to the right-hand side
(Section 6.4). (Changes to the coefficient matrix are considerably more difficult to analyze.)

6.1 Sensitivity Analysis
In this section we refer to the standard form of linear programming, which is

min
x

z = p′x
subject to Ax ≥ b, x ≥ 0

(6.1)

(where A ∈ Rm×n), as well as the canonical form, which is

min z = p′x
subject to Ax = b, x ≥ 0

(6.2)

151

152 Chapter 6. Sensitivity and Parametric Linear Programming

(where A ∈ Rm×l). A standard form problem can be converted into a canonical form
problem by adding slack variables, in which case A = [A − I], but this form of A is not
always available.

From Chapter 5, we recall that a tableau for the canonical form problem is fully
described by specifying the set B of basic variables, provided that the basis matrix A·B is
invertible. With dual labels, the tableau for a given basis B is

uB̂ = w =
xN 1

−uN̂ xB = −A−1·B A·N A−1·B b

1 z = p′
N − p′

BA−1·B A·N p′
BA−1·B b

(6.3)

Recall that the bottom row of the tableau is the vector of reduced costs, which we denote by
c. The tableau (6.3) is optimal for (6.2) if and only if the reduced costs and the final column
are all nonnegative; that is,

c′ := p′
N − p′

BA−1
·B A·N ≥ 0, A−1

·B b ≥ 0.

To be specific, A−1·B b ≥ 0 connotes primal feasibility (dual optimality), while c ≥ 0 connotes
primal optimality (dual feasibility).

Note that a change in b affects only the last column of the tableau, while a change in
p affects only the final row. If the problem data is changed in such a way that the last row
and last column of the tableau both remain nonnegative, then the tableau remains optimal
for the perturbed data. Specifically, if b is changed to b̃, then the tableau remains optimal
if A−1·B b̃ ≥ 0. If p is changed to p̃ and we still have p̃′

N − p̃′
BA−1·B A·N ≥ 0, again the tableau

remains optimal without any change to the basis B.

Example 6-1-1. We work with the following problem (and several variants) throughout this
section:

min x1 + 1.5x2 + 3x3

subject to x1 + x2 + 2x3 ≥ 6,

x1 + 2x2 + x3 ≥ 10,

x1, x2, x3 ≥ 0.

(6.4)

By adding slack variables x4 and x5 we arrive at the canonical-form problem (6.2) with

A =
[

1 1 2 −1 0
1 2 1 0 −1

]
, b =

[
6

10

]
, p =




1
1.5
3
0
0


 .

Consider the basis B = {1, 2}, for which we have

A·B =
[

1 1
1 2

]
, A·N =

[
2 −1 0
1 0 −1

]
, A−1

·B =
[

2 −1
−1 1

]
,

6.1. Sensitivity Analysis 153

and the last column and bottom row of the tableau are, respectively,

A−1
·B b =

[
2 −1

−1 1

] [
6

10

]
=
[

2
4

]
,

p′
N − p′

BA−1
·B A·N = [

3 0 0
]− [

1 1.5
] [2 −1

−1 1

] [
2 −1 0
1 0 −1

]
= [

3 0 0
]− [

1.5 −0.5 −0.5
] = [

1.5 0.5 0.5
]
.

Thus the basis {1, 2} is optimal.

Suppose now we wish to solve a problem that is the same except for a different right-
hand side b̃. Rather than starting the simplex method from scratch to find the solution of
the modified problem, we can first check to see if the basis B is still optimal for the new
right-hand side. Since only the last column of the tableau is affected by the change from b

to b̃, optimality will be maintained if A−1·B b̃ ≥ 0.
As an example, suppose that the right-hand side in (6.4) is replaced by

b̃ =
[

7
9

]
.

We have

A−1
·B b̃ =

[
2 −1

−1 1

] [
7
9

]
=
[

5
2

]
≥ 0,

and so the basis B = {1, 2} remains optimal for b̃. The optimal x and the optimal objective
value have changed; we can read the new values from the modified tableau. More generally,
suppose that the first component on the right-hand side is replaced by 6+ε, where ε is some
scalar. The basic components of the solution become

A−1
·B

[
6 + ε

10

]
=
[

2 + 2ε

4 − ε

]
.

The basis B = {1, 2} remains optimal when this vector is nonnegative, which is true for all
values of ε in the range [−1, 4].

The change in the optimal objective due to a perturbation in the right-hand side b can
also be derived by examining the dual solution of the original problem, as we now show.
Let us denote the optimal primal solution for the right-hand side b by x(b) and the optimal
objective by z(b). The standard-form problem (6.1) has the dual

max b′u
subject to A′u ≤ p, u ≥ 0.

In the optimal tableau, the reduced costs c represent the optimal values of the nonzero
components of u, while the condition A−1·B b ≥ 0 establishes optimality of these variables.
When b is changed to b̃, the reduced costs are not affected. Hence, the same u is feasible
for the modified dual problem

max b̃′u
subject to A′u ≤ p, u ≥ 0,

154 Chapter 6. Sensitivity and Parametric Linear Programming

and it will also be optimal, provided that A−1·B b̃ ≥ 0. By duality theory, we have in this case
that

z(b) = p′x(b) = b′u,

z(b̃) = p′x(b̃) = b̃′u,

so that the change in optimal objective is as follows:

p′x(b̃) − p′x(b) = z(b̃) − z(b) = (b̃ − b)′u =
m∑

i=1

(b̃ − b)iui .

This formula indicates that a change of ε in the ith component of b induces a change of
uiε in the objective, where ε is small enough to ensure that the basis B is optimal for both
original and modified problems. In fact, we can write

∂z(b)

∂bi

= ui

to indicate the sensitivity of z(b) to bi in this case. Because ui is the price to be paid per
unit change in constraint i, the term shadow prices is often used for the dual variables.

We now examine perturbations to the coefficients of the objective function (that is,
the elements of the cost vector). When p is perturbed to p̃, the tableau remains optimal
if the reduced cost vector (the last row of the tableau) remains nonnegative, that is, if
p̃′

N − p̃′
BA−1·B A·N ≥ 0. When just a single element pj is perturbed to pj + δ, we can consider

two cases. First, when j = N(s), the reduced cost corresponding to element j becomes
(pj + δ) − p′

BA−1·B A·j = cs + δ, where j = N(s) (that is, the s element of the reduced cost
vector corresponds to the j element of p). Hence, the basis remains optimal if cs + δ ≥ 0,
since none of the other reduced costs are affected by this perturbation. In the example (6.4),
when p3 is perturbed to p3 + δ, the corresponding reduced cost is 1.5 + δ. Hence, the basis
remains optimal for all δ in the range [−1.5, ∞).

In the second case, when the perturbation element j belongs to the basis B, the analysis
becomes slightly more complicated because all the reduced costs may be affected. Suppose
that j = B(r); that is, the r element of the basis B is the index j . When pj is perturbed to
pj + δ, the bottom row of the tableau becomes

p′
N − (pB(1), . . . , pB(r) + δ, . . . , pB(m))A−1

·B A·N = c′ − δ(A−1
·B)r·A·N,

and the tableau remains optimal if this vector is still nonnegative. To determine whether
this is the case, we need to calculate the rth row of the inverse basis matrix. In the example
(6.4), if p1 = 1 is changed to 1 + δ, the tableau remains optimal if the following condition
is satisfied by δ:

[
1.5 0.5 0.5

]− δ
[
2 −1

] [2 −1 0
1 0 −1

]
= [

1.5 − 3δ 0.5 + 2δ 0.5 − δ
] ≥ 0.

This inequality holds for all δ in the range [−1/4, 1/2].
When the perturbations to the elements of p do not produce a change in optimal basis,

the primal solution x does not change. This is because the nonzero values of the optimal x

6.2. Adding New Variables or Constraints 155

appear in the last column of the tableau, which is not affected by changes in p. It is easy to
see that in this case, the optimal objective depends on p as follows:

∂z(p)

∂pi

= xi.

We can think of the optimal values of xi as shadow prices on the dual constraints.
Similar arguments to those above can be used to ascertain whether changes to the

values of Aij affect the optimal value and solution of the original problem. The issues are
more complicated, however, since all parts of the tableau can be affected (including both
the last column and last row), and we will not discuss them here.

Two other changes to the problem that might affect the optimal value of the linear
program or the optimal solution vector are addition of a new variable and addition of a new
constraint. In the next section, we use an analysis like that above to determine the effect of
such changes to the linear program.

Exercise 6-1-2. Consider the following linear program:

min −x1 − 4x2 − x3

subject to 2x1 + 2x2 + x3 = 4,

x1 − x3 = 1,

x1, x2, x3 ≥ 0.

1. Verify that an optimal basis for this problem is B = {1, 2}, and calculate the quantities
A·B, A−1·B , A·N, pB, pN, and xB for this basis, together with the reduced cost vector
c = p′

N − p′
BA−1·B A·N.

2. Suppose that the right-hand side 1 of the second constraint is replaced by 1 + ε.
Calculate the range of ε for which the basis B remains optimal, and give the solution
x for each value of ε in this range.

3. Suppose that the coefficient of x2 in the objective is replaced by −4 + δ. Find the
range of δ for which the basis B remains optimal.

6.2 Adding New Variables or Constraints
Suppose we have solved a problem with an optimal basis B and we wish to add an extra
nonnegative variable with constraint matrix column f ∈ Rm and objective coefficient π ∈
R; that is, we now have

min p′x + πxl+1

subject to Ax + f xl+1 = b, x, xl+1 ≥ 0.

To check whether adding this column affects the basis, we just calculate the reduced cost
corresponding to this new column. If the entry is nonnegative, that is,

π − p′
BA−1

·B f ≥ 0,

then the basis B for the original problem is still optimal for the augmented problem. Other-
wise, we need to perform further simplex iterations to recover a solution. We can initiate the

156 Chapter 6. Sensitivity and Parametric Linear Programming

revised simplex method by choosing the new index l + 1 to be the index to enter the basis
B. As in Step 4 of Algorithm 5.1, we calculate the pivot column d = A−1·B f and perform
the ratio test to determine which index leaves B. We then update B and N, and start a new
iteration of Algorithm 5.1 (applied to the augmented problem), until a solution is found.

Example 6-2-1. If we add the column

f =
[

4
−1

]
, π = 2

to the problem (6.4), then we have

π − p′
BA−1

·B f = 2 − [
1 1.5

] [2 −1
−1 1

] [
4

−1

]
= 0.5 ≥ 0,

and so the basis remains optimal.

Now consider the case in which a new inequality constraint a′x ≥ β is added to a
canonical-form problem, that is,

min p′x
subject to Ax = b, a′x ≥ β, x ≥ 0.

We define a slack variable xl+1 corresponding to this constraint. Our strategy is to check
whether the basis B̃ := B ∪ {l + 1} is optimal for this modified problem (where B is the
optimal basis for the original problem). Accordingly, we define the augmented basis matrix
as

Ã·B̃ =
[
A·B 0
a′

B −1

]
,

whose inverse is

Ã−1
·B̃ =

[
A−1·B 0

a′
BA−1·B −1

]
.

The tableau for the augmented problem is obtained by adding an extra row (corresponding
to the slack variable for the new constraint) to the original optimal tableau as follows:

xN 1
xB = −A−1·B A·N A−1·B b

xl+1 = −a′
BA−1·B A·N + a′

N a′
BA−1·B b − β

z = p′
N − p′

BA−1·B A·N p′
BA−1·B b

(6.5)

Note that the bottom row is unchanged from the optimal tableau for the original problem,
because

p′
N − p′

B̃
Ã−1

·B̃

[
A·N
a′

N

]
= p′

N − [
p′

B 0
] [A−1·B 0

a′
BA−1·B −1

] [
A·N
a′

N

]
= p′

N − p′
BA−1

·B A·N.

Since these reduced costs are still nonnegative, and since A−1·B b ≥ 0, optimality of the
tableau (6.5) is assured if a′

BA−1·B b −β ≥ 0. If this condition is not satisfied, we can recover
optimality (or determine dual unboundedness/primal infeasibility) by applying some pivots
of the dual simplex method to (6.5). Our first move would be to choose the row corresponding
to xl+1 as the pivot row and then use the ratio test to select the pivot column.

6.2. Adding New Variables or Constraints 157

Example 6-2-2. Suppose we add the constraint

x1 + x2 ≥ 5

to (6.4). We have

a′
BA−1

·B b − β = [
1 1

] [2
4

]
− 5 = 1,

and so the augmented tableau is optimal. (This fact is fairly obvious, since the basic feasible
solution x1 = 2, x2 = 4 of the original problem satisfies the added constraint and hence
remains optimal.) If instead the constraint added was

x1 + x2 ≥ 7,

then

a′
BA−1

·B b − β = [
1 1

] [2
4

]
− 7 = −1,

and so the problem is no longer feasible. We proceed with the dual simplex method by
calculating the remaining elements in this row of the augmented tableau (6.5):

−a′
BA−1

·B A·N + a′
N = − [1 1

] [2 −1
−1 1

] [
2 −1 0
1 0 −1

]
= [−2 1 0

]
.

The dual simplex ratio test (recall that the bottom row c′ = (1.5, 0.5, 0.5)) determines
variable x4 as the entering variable. The resulting pivot gives a new basis of B̃ = {1, 2, 4},
which happens to be optimal.

Suppose that instead of adding an inequality constraint, we wish to add the equation

a′x = β

to the problem. Our strategy here is to augment the tableau as in (6.5) and then immediately
perform a pivot on the added row to make the newly added slack xl+1 nonbasic. (Recall that
this is how we handle equality constraints in Scheme II of Chapter 3.) After this pivot, we
remove the column corresponding to xl+1 from the tableau and proceed with further simplex
pivots to recover optimality. Note that the Scheme II pivot may introduce nonpositive entries
in both the last row and last column of the tableau, so that it might be necessary to apply a
Phase I technique to recover a primal feasible tableau before proceeding.

Example 6-2-3. If we add the constraint

x1 + x2 = 5

to the standard example, then as calculated above, we have

a′
BA−1

·B b − β = [
1 1

] [2
4

]
− 5 = 1.

Since for feasibility of the equation this value must be zero, we perform a pivot to remove
x6 from the basis. As above, the corresponding row of the tableau is calculated as

−a′
BA−1

·B A·N + a′
N = [−2 1 0

]
,

158 Chapter 6. Sensitivity and Parametric Linear Programming

and hence either the first or second nonbasic variable (x3 or x4) can be chosen to enter the
basis. By choosing x3 and performing the Jordan exchange of x3 and x6, we obtain an
optimal tableau after the column corresponding to x6 is deleted, yielding the optimal basis
B = {1, 2, 3}. If we choose x4, we obtain a dual feasible tableau after the pivot and deletion
of the x6 column. One iteration of dual simplex then yields the optimal basis.

Exercise 6-2-4. Solve the canonical-form linear program (6.2) with the following data:

p =




1
−1
0
0


 , A =

[−1 2 1 0
0 1 0 1

]
, b =

[
2
4

]
.

(You may want to try the basis B = {2, 4}.) Use the techniques of this section to perform
the following.

1. Change b to b̃ = (1, 1)′. Is the same basis still optimal? Is the same solution optimal?
Justify.

2. Go back to the original data and add the extra nonnegative variable x5 ≥ 0, with
cost coefficient π = −1 and column f = (3, 1)′, so that the new constraints are
Ax + f x5 = b. What are the optimal solution and optimal value now?

3. Add the constraint x1 + x2 ≥ 0.5 to the original data and determine the solution
and the optimal value. Write down the dual of this extended problem. What is the
corresponding dual solution and its value? (Hint: you may wish to use the KKT
conditions for the general formulation given in (4.14), (4.15).)

We now turn to parametric programming, in which possibly large changes to the data
result in changes to the optimal basis.

6.3 Parametric Optimization of the Objective Function
We first give a simple geometric example of parametric programming, in which the cost
vector is a linear function of a scalar parameter t . Consider

min
x1,x2

z(t) :=
[−1 − t

−1 + t

]′ [
x1

x2

]
= −x1 − x2 + t (−x1 + x2), (−∞ < t < ∞)

subject to −x1 − x2 ≥ −4,

− x2 ≥ −2,

−x1 ≥ −3,

x1, x2 ≥ 0.

Figure 6.1 depicts the feasible region of the parametric linear program together with
optimal value contours of the objective function for various values of the parameter t ∈
(−∞, ∞). For example, when t = −1, we have z(−1) = −2x2, and so the contour
indicated by the dotted line running along the top edge of the feasible region is the contour
along which the optimal objective value z(−1) = −4 is attained. For t ∈ (−∞, 1), the

6.3. Parametric Optimization of the Objective Function 159

1x

x2

vertex 1 optimal for t in (−infty,−1]

z(−
inf

ty)
=min

z(−1)=min.

z(0)=min

z(i
nft

y)=
min

z(1)=
m

in

vertex 2 optimal for t in [−1,0]

vertex 3 optimal for t in [0,1]

vertex 4 optimal for t in [1,infty)

Figure 6.1. Parametric linear program in R2 with parameter t: Optimal value
contours and optimal vertices for t ∈ (−∞, ∞). (Feasible region is shaded.)

vertex at (x1, x2) = (0, 2) is optimal, as the best objective contour touches the feasible
region at only this point (the limiting contour as t → −∞ is illustrated).

In general, we write the parametrized cost vector as p + tq, where p are fixed costs
and q are variable costs. In a financial application, the ith element of p might represent
the expected rate of inflation, so that if the corresponding element qi is nonzero, we can
consider the effects of a range of inflation (and deflation!) rates by allowing t to vary within
a certain range. The cost-parametrized version of standard form is then

z(t) = min
x

(p + tq)′x subject to Ax ≥ b, x ≥ 0. (6.6)

We seek (i) the optimal vertex or vertices, and (ii) the optimal objective value z(t) for each
t in the given range.

To show how the tableau form of the simplex method can be extended to perform
parametric linear programming, we consider again the example given at the start of the
chapter and add the variable cost vector q defined by

q :=

−3

−4
−5


 .

160 Chapter 6. Sensitivity and Parametric Linear Programming

The parametric linear program is then

min x1 + 1.5x2 + 3x3 + t (−3x1 − 4x2 − 5x3)

subject to x1 + x2 + 2x3 ≥ 6,

x1 + 2x2 + x3 ≥ 10,

x1, x2, x3 ≥ 0.

We first construct the standard tableau with the cost vector p and then add an extra row
containing q and labeled by z0.

� load ex6-1-1

� T = totbl(A,b,p);

� T = addrow(T,[q’ 0],’z0’,4);

x1 x2 x3 1
x4 = 1 1 2 −6
x5 = 1 2 1 −10
z = 1 1.5 3 0
z0 = −3 −4 −5 0

In general, we must perform Phase I pivots to determine a feasible basis. However, in this
case, recall from page 152 that B = {1, 2} is a feasible basis, and so we carry out two pivots
needed to establish this basis:

� T = ljx(T,1,1);

� T = ljx(T,2,2);

x4 x5 x3 1
x1 = 2 −1 −3 2
x2 = −1 1 1 4
z = 0.5 0.5 1.5 8
z0 = −2 −1 0 −22

As t → −∞, the reduced cost row of the parametric tableau is z + tz0, which is
dominated by z0. Since all the entries of the z0 row are negative, all the reduced costs in
the parametric tableaus become positive as t approaches −∞, and so this tableau happens
to be optimal for all t sufficiently negative. By examining the parametric objective z + tz0

one component at a time, we find that it is nonnegative whenever

0.5 − 2t ≥ 0, 0.5 − t ≥ 0, 1.5 ≥ 0,

that is, whenever t ≤ 1/4. The corresponding optimal basis is B = {1, 2}, and therefore
xB = [2, 4]′ for all such values of t . By examining the elements at the bottom right of the
tableau, we see that the objective function value is z(t) = 8 − 22t . Note that the solution
vector x is the same for all t ≤ 1/4, while the optimal objective value is a linear function
of t .

As t increases through 1/4, the reduced cost for x4 becomes negative. We handle this
event by doing what we usually do when we identify a negative cost—choose its column as
the pivot column and use the ratio test to select a pivot row. We therefore pivot on the (2, 1)

element as follows:

� T = ljx(T,2,1); x2 x5 x3 1
x1 = −2 1 −1 10
x4 = −1 1 1 4
z = −0.5 1 2 10
z0 = 2 −3 −2 −30

6.3. Parametric Optimization of the Objective Function 161

t

z(t)

2

4

6

8

z(t)=10−30t

10.5

z(t)=8−22t

Figure 6.2. Minimum parametric objective value as a function of t .

In this tableau, we find that the reduced costs are positive, provided that all of the following
three conditions are satisfied:

−0.5 + 2t ≥ 0, 1 − 3t ≥ 0, 2 − 2t ≥ 0.

(As before, we obtain these conditions by examining the components of the reduced cost
vector one at a time.) All three conditions are satisfied, provided that t satisfies 1/4 ≤ t ≤
1/3. The corresponding basis is B = {1, 4}, the solution is xB = [10, 4]′, and the objective
function value is z(t) = 10 − 30t .

As t increases through 1/3, the reduced cost for x5 becomes negative. We therefore
seek to pivot on column 2 of the tableau, but the ratio test reveals no suitable pivot row. We
conclude that the problem is unbounded for t > 1/3.

At this point, we have determined z(t) for all real values of t , and it is possible to plot
the objective function as a function of t . The resulting plot is shown in Figure 6.2. It can
be seen that this function is piecewise linear and concave. In fact, we can easily prove a
theorem to this effect. A fuller description of convex and concave functions can be found
in Appendix A.

Theorem 6.3.1. Let X be a nonempty set in Rn, and let z(t) be defined by

z(t) := inf
x∈X

(p + tq)′x.

Then z : R → R ∪ {−∞} is a concave function.

162 Chapter 6. Sensitivity and Parametric Linear Programming

Proof. Let λ ∈ (0, 1), and let t1, t2 ∈ R. We need to show that z((1 − λ)t1 + λt2) ≥
(1 − λ)z(t1) + λz(t2). If z(t1) = −∞ or z(t2) = −∞, there is nothing to prove, and so
suppose they are both finite. Then

z((1 − λ)t1 + λt2) = inf
x∈X

(p + ((1 − λ)t1 + λt2)q)′x

= inf
x∈X

((1 − λ)p + λp + ((1 − λ)t1 + λt2)q)′x

≥ inf
x∈X

(1 − λ)(p + t1q)′x + inf
x∈X

λ(p + t2q)′x

= (1 − λ)z(t1) + λz(t2).

The inequality above follows from the fact that

inf
x∈X

(f (x) + g(x)) ≥ inf
x∈X

f (x) + inf
x∈X

g(x).

The last equality in the sequence above follows from λ ∈ (0, 1).

A simple application of this result shows that if z(t) switches from finite to −∞ as t

increases through some value, then z will remain at −∞ for all larger values of t . Similarly,
if z becomes −∞ as t is decreased through some value, it will remain at −∞ for all smaller
values of t .

A general approach for solving linear programs with parametric cost functions is
summarized below.

1. Choose some starting value of t . Solve the linear program, using the simplex method,
with the cost vector fixed at p+tq. If the problem is infeasible, then it is infeasible for
all values of t (since the constraints do not depend on t). If the problem is unbounded,
choose a different t and restart. Otherwise, determine the range (tL, tU) on which the
basis is optimal, and determine the solution and the parametrized objective value z(t)

on this range.

2. If tU < ∞, determine which component(s) of the reduced cost vector change their
sign as t increases through tU . Perform the pivots needed to restore optimality or
establish unboundedness. If unbounded, set z(t) = −∞ for all values t > tU and go
to Step 3. Otherwise, determine the new range (tL, tU) on which this basis is optimal,
and determine the solution and the parametrized objective value z(t) on this range.
Repeat this step as necessary until tU = ∞.

3. Return to the lower limit tL identified at the initial value of t .

4. If tL > −∞, determine which components of the reduced cost vector become negative
as t decreases through tL. Perform the pivots needed to restore optimality or establish
unboundedness. If unbounded, set z(t) = −∞ for all t < tL and stop. Otherwise,
determine the new range (tL, tU) on which this basis is optimal, and determine the
solution and the parametrized objective value z(t) on this range. Repeat this step as
necessary until tL = −∞.

Note that if the problem is feasible but unbounded for all t (so that we cannot identify
a t for which a solution exists in Step 1), then we have by Theorem 4.4.2 (case (ii)) that the
dual of (6.6) is infeasible for all t .

6.3. Parametric Optimization of the Objective Function 163

In Step 2, each time we move to a new interval (tL, tU), the new lower bound tL equals
the old upper bound tU . A similar observation can be made about Step 4.

We can now use the procedure above to prove the piecewise linearity of z(t).

Corollary 6.3.2. Let X and z(t) be as defined in Theorem 6.3.1. If X is also polyhedral,
then z is a piecewise-linear concave function.

Proof. We know already from Theorem 6.3.1 that z is concave. When z(t) is finite, we have
from Theorem 3.6.1 that the simplex method will identify a (vertex) solution of the problem.
Since X has only a finite number of vertices, the procedure above can identify only a finite
number of vertex solutions. Furthermore, if a vertex is optimal at t1 and t2, where t1 < t2,
then that vertex is also optimal at any point in the interval (t1, t2) (this follows easily from
the linearity of the objective). Hence the range (−∞, ∞) can be partitioned into a finite
number of subintervals separated by “breakpoints” t1, t2, t3, . . . , tM at which the solution
either switches from −∞ to finite or switches from one vertex to another.

Suppose that xi is a vertex that solves the problem over one of these subintervals
[ti , ti+1]. We then have z(t) = p′xi + tq ′xi for t ∈ [ti , ti+1], and so z(t) is linear on this
interval. If z(t) is finite on the next subinterval in the sequence, then z(t) is continuous across
the breakpoint ti+1, because both xi and xi+1 solve the problem (with the same objective
value) when t = ti+1.

Exercise 6-3-1. Form the appropriate matrices A, p, q, solve the following problem for
0 ≤ t < ∞, and plot the optimal objective value z(t) as a function of t :

min (1 − t)x1 − x2

subject to x1 − 2x2 + 2 ≥ 0,

− x2 + 4 ≥ 0,

x1, x2 ≥ 0.

Exercise 6-3-2. Consider the linear programming problem

min −3x1 + (4 − θ)x2 − x3 + 15x4

subject to x1 + 2x2 + x3 + 2x4 = 2,

−2x1 − x3 + 5x4 = −3,

x1, x2, x3, x4 ≥ 0.

Determine the optimal x and the optimal objective value for each real value of θ . Show
your work. (Suggestion: use the initial value θ = 0 and the initial basis {1, 3}.)
Exercise 6-3-3. Solve the following problem for all t :

min −8x1 + 10x2 + t (x2 − x1)

subject to x1 + 2x2 ≥ 4,

x1, x2 ≥ 0.

Use Phase I to obtain a feasible initial tableau.

164 Chapter 6. Sensitivity and Parametric Linear Programming

6.4 Parametric Optimization of the Right-Hand Side
We consider now the case in which the right-hand side depends linearly on a parameter t ,
so that it has the form b + th for some fixed vectors b and h. We can apply duality to the
results of the previous section to obtain theoretical results. The computational technique
for tracking the solution as t is varied is also related to the technique of the previous section
through duality.

The problem we consider is as follows:

z(t) = min
x

p′x subject to Ax ≥ b + th, x ≥ 0, (6.7)

for each t in some specified range. The dual of this problem is

w(t) = max
u

{
(b + th)′u | A′u ≤ p, u ≥ 0

}
= − min

u

{−(b + th)′u | −A′u ≥ −p, u ≥ 0
}
.

The following result is an immediate corollary of Corollary 6.3.2.

Corollary 6.4.1. The function z : R → R ∪ {∞} defined by

z(t) := inf
{
p′x | Ax ≥ b + th, x ≥ 0

}
is a piecewise-linear convex function.

We can prove this result by taking the dual and invoking the method of the previous
section. The details are left as an exercise.

If the problem (6.7) is unbounded for some value of t , then it is unbounded or infeasible
for all values of t . We see this fact by writing the dual of (6.7), which is

max
u

(b + th)′u subject to A′u ≤ p, u ≥ 0. (6.8)

The dual constraints do not depend on t , so that the problem is dual infeasible for some t if
and only if it is dual infeasible for all t . Since, by strong duality, dual infeasibility means
that the primal is either infeasible or unbounded, our claim is proved.

We now outline a computational technique based on the dual simplex method for
solving problems of the form (6.7). Again we work with a variant of Example 6-1-1, in
which we introduce the variable component h = (1, −2)′ in the right-hand side. The
problem is then as follows:

min x1 + 1.5x2 + 3x3

subject to x1 + x2 + 2x3 ≥ 6 + t,

x1 + 2x2 + x3 ≥ 10 − 2t,

x1, x2, x3 ≥ 0.

Suppose that we want to find the solutions for all t ∈ (−∞, ∞). We set up the tableau as
usual, except that we add an extra column containing −h and labeled with t . (Note that −h

is used in the tableau because h is moved from the right-hand side.)

6.4. Parametric Optimization of the Right-Hand Side 165

� load ex6-1-1

� T = totbl(A,b,p);

� T = addcol(T,[-h; 0],’t’,5);

x1 x2 x3 1 t

x4 = 1 1 2 −6 −1
x5 = 1 2 1 −10 2
z = 1 1.5 3 0 0

We start by considering what happens as t → −∞, applying either the primal or dual
simplex method to obtain a tableau that is optimal for all t sufficiently negative. In this
particular case, since the cost vector is already nonnegative, it makes sense to apply the dual
simplex method. For all sufficiently negative t , the combination of the last two columns
in the tableau will be negative in the second component, and so we choose the second row
of the tableau as the pivot row. The ratio test for dual simplex leads us to take the second
column as the pivot column, and we obtain

� T = ljx(T,2,2); x1 x5 x3 1 t

x4 = 0.5 0.5 1.5 −1 −2
x2 = −0.5 0.5 −0.5 5 −1
z = 0.25 0.75 2.25 7.5 −1.5

It happens that this tableau is optimal for all sufficiently negative t . We can find the precise
range of validity by noting that the basis is B = {4, 2} and the basic part of the solution is

xB =
[−1 − 2t

5 − t

]
.

All components of xB are nonnegative if t ≤ −1/2 and so we conclude that this basis is
optimal for t ∈ (−∞, −1/2]. By inspecting the elements in the bottom right of the tableau,
we see that the optimal objective value is z(t) = 7.5 − 1.5t . Note that, unlike the case of
the parametric cost vector, the solution changes as we move across this interval. However,
as we could see by adding dual labels to the tableau and reading off the values of these
variables, the optimal dual vertex does not change across this interval.

Consider now what happens as t increases through −1/2. The first component of the
final tableau column becomes negative, and so we seek to pivot on the first row. We identify
the (1, 1) element as a pivot element and obtain the following:

� T = ljx(T,1,1); x4 x5 x3 1 t

x1 = 2 −1 −3 2 4
x2 = −1 1 1 4 −3
z = 0.5 0.5 1.5 8 −0.5

This basis B = {1, 2} is optimal if

2 + 4t ≥ 0, 4 − 3t ≥ 0,

that is, when t ∈ [−1/2, 4/3], with objective value z(t) = 8 − 0.5t . As t increases through
4/3, then x2 becomes negative. The resulting dual simplex pivot on element (2, 2) yields
the following:

166 Chapter 6. Sensitivity and Parametric Linear Programming

2

4

6

8

10

12

−1 1 2

z(t)=7.5−1.5t

z(t)=8−0.5t z(t)=6+t

Figure 6.3. Minimum parametric objective value for parametrized right-hand side.

� T = ljx(T,2,2); x4 x2 x3 1 t

x1 = 1 −1 −2 6 1
x5 = 1 1 −1 −4 3
z = 1 0.5 1 6 1

This basis B = {1, 5} is feasible if

6 + t ≥ 0, −4 + 3t ≥ 0,

that is, t ∈ [4/3, ∞), with objective value z(t) = 6 + t .
A plot of the objective function values z(t) is given in Figure 6.3.
A computational procedure similar to that of the previous section can be devised to

find the solution and the optimal objective z(t) across the full range of t values.

1. Choose some starting value of t . Solve the linear program, using the simplex method,
with the right-hand side fixed at b+ th. If the problem is infeasible, choose a different
value of t and restart. If the problem is unbounded, then it is unbounded for all t (see
below). Otherwise, determine the range (tL, tU) on which the basis is optimal, and
determine the solution x(t) and the parametrized objective value z(t) on this range.

2. If tU < ∞, determine which component(s) of the basic part of the solution become
negative as t increases through tU . Perform the dual simplex pivots needed to restore
optimality or establish infeasibility. If infeasible, set z(t) = +∞ for all values t > tU
and go to Step 3. Otherwise, determine the new range (tL, tU) on which this basis is
optimal, and determine the solution and the parametrized objective value z(t) on this
range. Repeat this step as necessary until tU = ∞.

6.4. Parametric Optimization of the Right-Hand Side 167

3. Return to the lower limit tL identified at the initial value of t .

4. If tL > −∞, determine which components of the basic part of the solution become
negative as t decreases through tL. Perform the pivots needed to restore optimality or
establish infeasibility. If infeasible, set z(t) = +∞ for all t < tL and stop. Otherwise,
determine the new range (tL, tU) on which this basis is optimal, and determine the
solution and the parametrized objective value z(t) on this range. Repeat this step as
necessary until tL = −∞.

To justify the statement in Step 1 that if the problem is unbounded for some t , it is
unbounded for all t , we make use again of strong duality. If (6.7) is feasible but unbounded
for some t , then by Theorem 4.4.2(ii) the dual of (6.7) is infeasible for this t . But since
the dual constraints do not depend on t , the dual is infeasible for all t . Hence, by using
Theorem 4.4.2(ii) again, we conclude that (6.7) is unbounded for all t .

In Step 1, it is possible to find a value of t for which the problem (6.7) is feasible by
means of a Phase I problem, rather than trial and error. We introduce the artificial variable
x0 and solve the following problem:

min
x,t,x0

x0 subject to Ax + x0e ≥ b + th, x ≥ 0, x0 ≥ 0, (6.9)

where e = (1, 1, . . . , 1)′. Note that the parameter t is a free variable in this problem. If we
have x0 = 0 at the solution of this problem, we can choose the value of t from its optimum
as the starting value in Step 1 and proceed. If, on the other hand, x0 > 0 at the solution,
then the original problem (6.7) is infeasible for all t .

Exercise 6-4-1. Consider the parametric linear program (6.7) with the following data:

p =
[

4
2

]
, A =

[
1 −2

−2 1

]
, b =

[−2
−1

]
, h =

[−1
1

]
.

Determine z(t) for all t . (Include the ranges of t , if any, on which the problem is
infeasible (z(t) = ∞) or unbounded (z(t) = −∞).)

Exercise 6-4-2. Let z(t) be the solution of

min 2x1 + x2 − 4
subject to x1 + x2 ≥ 6 − 2t,

x1 − x2 ≥ 2 − t,

x1 ≥ 0.

(Note that x2 is a free variable.) Find z(t) for all values of t . What properties does z(t) have
(as a function of t)? Is the solution vector x(t) uniquely determined for each value of t?
Justify your claim.

Exercise 6-4-3. Consider the linear programming problem

max
u

b′u subject to A′u ≤ c, u ≥ 0,

where

A′ =
[

2 1 1
1 4 0

]
, c =

[
3
4

]
, b =


2

1
3


 .

168 Chapter 6. Sensitivity and Parametric Linear Programming

Let

�c =
[−1

4

]
and �b =


 1

−8
4


 .

Let f (θ) be the optimal value of the linear program when b is replaced by b + θ�b, and let
g(θ) be the optimal value of the linear program when c is replaced by c + θ�c. Evaluate
f (θ) and g(θ) as functions of θ . (Hint: the original problem can be thought of as the dual
to a standard-form problem.)

Exercise 6-4-4. Consider the problem

min 3x1 − 2x2

subject to x1 − x2 ≥ 7 + t,

−x1 ≥ −5 + t,

x1, x2 ≥ 0.

1. Set up and solve the problem (6.9) to find a value of t for which this problem is
feasible.

2. Starting from this value of t , find the solutions of this problem for all values of t .

Chapter 7

Quadratic Programming
and Complementarity
Problems

In this chapter, we consider some extensions of linear programming to other mathematical
programming problems. We first look at nonlinear problems, deriving optimality conditions
based solely on calculus arguments and convexity properties. A reader may wish to review
the material in Appendix A before proceeding. We then focus on quadratic programming
(Section 7.2), an optimization problem that encompasses linear programming as a special
case and that is being used in an increasingly wide range of interesting applications, such
as least-squares approximation, classification, portfolio optimization, and optimal control.
We investigate the optimality conditions of quadratic programs in Section 7.2.2 and look
at the basic duality relationships in Section 7.2.3. To solve quadratic programs, one can
apply Lemke’s method, discussed in Section 7.4. Lemke’s method was designed originally
for linear complementarity problems (LCPs) (Section 7.3), which include convex quadratic
programming as a special case. LCPs are studied in detail in the classic text of Cottle,
Pang & Stone (1992); they are one of the most fundamental and elegant constructs of
mathematical programming. They arise not only from optimality conditions for linear and
quadratic programming but also from game theory applications and equilibrium problems
such as those made famous by J. Nash and others.

7.1 Nonlinear Programs: Optimality Conditions
In this section, we consider the following optimization problem:

min f (x) subject to x ∈ S, (7.1)

where S is a convex subset of Rn and f : Rn → R is a smooth, possibly nonlinear function.
We normally term S the feasible region of (7.1). (As shown in Appendix A, the feasible
region of a linear program is in fact a convex set.)

We say that x̄ is a local solution of (7.1) if it is feasible and has a function value no
larger than that of all other x in a small feasible neighborhood. Formally, there is some
δ > 0 such that

f (x) ≥ f (x̄), whenever ‖x − x̄‖ < δ and x ∈ S,

169

170 Chapter 7. Quadratic Programming and Complementarity Problems

where ‖ · ‖ is any norm on Rn (see Section A.6). If f (x̄) ≤ f (x) for all feasible x, we say
that x̄ is a global solution of (7.1).

Example 7-1-1. The problem

min(x1 − 1)2 − x2
2 subject to x1 ∈ R, −1 ≤ x2 ≤ 2,

has two local solutions, namely (1, −1)′ and (1, 2)′. The solution at (1, 2)′ is the global
solution.

We now determine optimality conditions for (7.1). These conditions rely on f being
a continuously differentiable function and use Taylor’s theorem (Section A.7) to provide
a linear approximation to the function f . To prove that the conditions are sufficient for
optimality, a further assumption of convexity of f is required. See Appendix A for further
discussion of convex sets, convex functions, and linear approximations.

Proposition 7.1.1. Let S be a convex set in Rn and f be a continuously differentiable
function.

(a) If x̄ is a local solution of (7.1), then x̄ satisfies

x̄ ∈ S and ∇f (x̄)′(x − x̄) ≥ 0 ∀x ∈ S. (7.2)

(b) If x̄ satisfies (7.2) and f is convex, then x̄ is a global solution of (7.1).

The condition (7.2) is known as a minimum principle.

Proof. For part (a), let δ > 0 be the constant associated with local optimality. Choose
x ∈ S arbitrarily, and define

y(λ) = (1 − λ)x̄ + λx = x̄ + λ(x − x̄)

for λ ∈ [0, 1]. By the convexity of S, y(λ) ∈ S, and so for all sufficiently small λ, we have

‖y(λ) − x̄‖ < δ.

Therefore, by local optimality, we have

f (y(λ)) − f (x̄) ≥ 0

for all sufficiently small λ. By using this inequality together with the definition of y(λ) and
formula (A.10), we obtain

λ∇f (x̄)′(x − x̄) + o(λ) ≥ 0,

where o(λ)/λ → 0 as λ → 0; see Appendix A.6. Dividing both sides by λ > 0 and letting
λ → 0, we obtain

∇f (x̄)′(x − x̄) ≥ 0,

as required.
We turn now to part (b). It follows from the convexity of f and Proposition A.7.2 that

f (x) ≥ f (x̄) + ∇f (x̄)′(x − x̄)

for all x. Since x̄ satisfies (7.2), we deduce that f (x) ≥ f (x̄) for all x ∈ S, which is the
required result.

7.1. Nonlinear Programs: Optimality Conditions 171

Example 7-1-2. For the example given above,

∇f (x) =
[

2(x1 − 1)

−2x2

]
,

and hence the minimum principle states for the local solution at (1, −1)′ that

2(x2 + 1) ≥ 0 ∀x2 ∈ [−1, 2]
and for the global solution at (1, 2) that

−4(x2 − 2) ≥ 0 ∀x2 ∈ [−1, 2].
Note that since f is not convex (its Hessian matrix is indefinite), Proposition 7.1.1(b) does
not apply.

We now consider two special choices of the feasible region S and examine the spe-
cialization of Proposition 7.1.1 to these cases.

Corollary 7.1.2. Suppose the feasible region of the problem is the whole space, that is,
S = Rn and f is continuously differentiable.

(a) If f (x̄) ≤ f (x) for all x ∈ Rn, then ∇f (x̄) = 0.

(b) If f is convex and ∇f (x̄) = 0, then f (x̄) ≤ f (x) for all x ∈ Rn.

Proof. Since x̄ is a global (and hence local) solution of (7.4), we have from Proposi-
tion 7.1.1(a) that ∇f (x̄)′(x − x̄) ≥ 0 for all x ∈ Rn. Setting x = x̄ − ∇f (x̄), we have
∇f (x̄)′(x − x̄) = −‖∇f (x̄)‖2

2 ≥ 0, which can be true only if ∇f (x̄) = 0. Hence we have
proved (a). Part (b) follows immediately from Proposition A.5.1(b).

Corollary 7.1.3. Suppose the feasible region is the nonnegative orthant, that is, S =
{x ∈ Rn | x ≥ 0} and f is continuously differentiable.

(a) If x̄ is a global solution of (7.1) (that is, f (x̄) ≤ f (x) for all x ∈ S), then ∇f (x̄) ≥ 0,
x̄ ≥ 0, and ∇f (x̄)′x̄ = 0.

(b) If f is convex and ∇f (x̄) ≥ 0, x̄ ≥ 0, and ∇f (x̄)′x̄ = 0, then x̄ is a global solution
of (7.1).

Proof. For (a), since x̄ is a global (and hence local) minimizer, we have from Proposi-
tion 7.1.1(a) that

∇f (x̄)′(x − x̄) ≥ 0 ∀x ≥ 0. (7.3)

By setting x = 0, we have ∇f (x̄)′x̄ ≤ 0, while by setting x = 2x̄, we have ∇f (x̄)′x̄ ≥ 0.
Hence, ∇f (x̄)′x̄ = 0, as claimed.

To show that ∇f (x̄) ≥ 0, suppose for contradiction that there exists a component i

such that [∇f (x̄)]i < 0. We define x ≥ 0 as follows:

xj = x̄j (j �= i), xi = x̄i − [∇f (x̄)]i > 0.

172 Chapter 7. Quadratic Programming and Complementarity Problems

By substituting into (7.3), we obtain

0 ≤ ∇f (x̄)′(x − x̄) =
n∑

j=1

[∇f (x̄)]j (xj − x̄j) = −[∇f (x̄)]2
i < 0,

which is a contradiction. Therefore, there is no component i with [∇f (x̄)]i < 0, and so
∇f (x̄) ≥ 0, as claimed.

For (b), the convexity of f and Proposition A.7.2 imply that

f (x) ≥ f (x̄) + ∇f (x̄)′(x − x̄)

for all x ≥ 0. The second term is nonnegative by assumption, so that f (x) ≥ f (x̄) for all
x ≥ 0.

Exercise 7-1-3. Apply Corollaries 7.1.2 and 7.1.3 to f (x) = x3 and f (x) = x4.

7.2 Quadratic Programming
In this section, we specialize the results of the previous section to the following quadratic
programming problem:

min f (x) := 1
2x ′Qx + p′x subject to x ∈ S, (7.4)

where Q is a symmetric n×n matrix and S is a polyhedral subset of Rn, that is, a set defined
by a finite number of equality and inequality constraints. It is a convex quadratic program
when, in addition, Q is a positive semidefinite matrix.

As indicated in Section A.5, any nonsymmetric Q can be replaced by (1/2)(Q + Q′)
without changing f (x), and so our assumption that Q is symmetric can be made without
loss of generality. According to the definitions of Section A.3, the gradient and Hessian of
f are as follows:

∇f (x) = Qx + p, ∇2f (x) = Q.

(Note that these formulae hold only if Q is symmetric!)

Exercise 7-2-1. Find the symmetric matrix Q ∈ R3×3 and the vector p ∈ R3 such that the
following function can be written in the form of (7.4):

f (x1, x2, x3) = x1 − x3 + 3x2
1 − 2x1x2 + x2

2 − 2x2x3 + 4x1x3 + 4x2
3 .

7.2.1 Basic Existence Result

The following result gives conditions that ensure the existence of a global solution to a
quadratic program and generalizes the existence result of linear programming.

Theorem 7.2.1 (Frank–Wolfe Existence Theorem). Let S be a nonempty polyhedral set
and f given by (7.4). Then either (7.4) has a global solution, or else there is a feasible
half line in S along which f approaches −∞ (that is, there are vectors x and d �= 0 such
that x(λ) := x + λd ∈ S for all λ ≥ 0 and f (x(λ)) → −∞ as λ → ∞). Hence, if f is
bounded below on S, it attains its minimum value on S.

7.2. Quadratic Programming 173

Proof. See Frank & Wolfe (1956).

Note that this result does not require Q to be positive semidefinite, nor S to be a bounded
set. Note also that the result does not hold for more general nonlinear functions f , not even
smooth convex functions. A simple counterexample is the problem

min
x≥0

e−x,

which has a strictly convex objective yet does not have a minimizer.
As a particular example of a quadratic program, we now consider the problem of

projection onto a nonempty convex set. Simply stated, this problem takes a closed convex
set S and a vector z and seeks the point x ∈ S that is closest to z in the Euclidean sense.
The obvious formulation is

min ‖x − z‖2 subject to x ∈ S.

Since squaring the objective does not change the answer, we can reformulate this problem
equivalently as the following quadratic program:

min(x − z)′(x − z) subject to x ∈ S. (7.5)

The quadratic objective function has Q = 2I , which is positive definite, and so by Propo-
sition 7.1.1, the minimum principle (7.2) is both necessary and sufficient to characterize
a solution of the problem which exists by invocation of the Frank–Wolfe theorem. The
gradient of the objective function is 2(x − z) so that, from the minimum principle (7.2), we
have that x̄ solves the projection problem if and only if

(x̄ − z)′(y − x̄) ≥ 0 ∀y ∈ S.

The point x̄ is called the projection of x onto S.

7.2.2 KKT Conditions

In this section, we assume a particular representation of the polyhedral set S, that is,

S := {x | Ax ≥ b, x ≥ 0} . (7.6)

(Note that S coincides with the feasible region for the standard-form linear program (1.2).)
In this setting, (7.4) becomes

min f (x) := 1
2x ′Qx + p′x subject to Ax ≥ b, x ≥ 0. (7.7)

The minimum principle of Section 7.1 is essential in establishing the classical KKT
conditions for quadratic programming. These conditions are necessary for any quadratic
program (7.7); that is, any local solution will satisfy them. They are sufficient for convex
quadratic programs—if Q is positive semidefinite and x (along with dual variables u, typi-
cally called Lagrange multiplier vectors in this context) satisfies the KKT conditions, then x

is a global solution of (7.7). The key to the proof is the duality theory of linear programming,
which can be applied to a linearized problem arising from Proposition 7.1.1.

In the following equations, we use the notation “⊥” defined in (A.1) as a convenient
shorthand for stating the complementarity condition; that is, the scalar product of two vectors
of equal dimension is equal to zero.

174 Chapter 7. Quadratic Programming and Complementarity Problems

Theorem 7.2.2 (KKT Conditions for Quadratic Programming). If x̄ is a local solution
for (7.7), then there exists ū ∈ Rm such that

0 ≤ x̄ ⊥ Qx̄ − A′ū + p ≥ 0, (7.8a)

0 ≤ ū ⊥ Ax̄ − b ≥ 0. (7.8b)

Conversely, if a pair (x̄, ū) ∈ Rn × Rm satisfies (7.8), and Q is positive semidefinite, then
x̄ is a global solution for (7.7).

Note that if Q = 0, then the KKT conditions above are precisely the KKT conditions
(4.7), (4.8) for the linear programming problem in standard form.

Proof. Since x̄ is a local solution of (7.7), it follows from Proposition 7.1.1 that x̄ satisfies
the minimum principle (7.2) and hence that x̄ solves the linearized problem

min
x

∇f (x̄)′x subject to x ∈ S. (7.9)

Note that (7.9) is a linear program because S is polyhedral (7.6). In fact, we can write (7.9)
as follows:

min
x

(Qx̄ + p)′x subject to Ax ≥ b, x ≥ 0. (7.10)

Since x̄ ∈ S, we have
Ax̄ ≥ b, x̄ ≥ 0.

By the strong duality theorem of linear programming (Theorem 4.4.2) applied to (7.10),
there is some ū ∈ Rm which is feasible for the dual of (7.10), that is,

A′ū ≤ Qx̄ + p, ū ≥ 0.

Furthermore, the complementarity condition (4.8) for (7.10) also holds, so that

x̄ ′(Qx̄ + p − A′ū) = 0 and ū′(Ax̄ − b) = 0.

By combining all the relations above, we obtain (7.8). Hence, we have established the
necessity of the KKT conditions.

Conversely, suppose that x̄ and ū satisfy (7.8). Then, by Theorem 4.5.1, it follows that
x̄ solves (7.10), and hence ∇f (x̄)′(x − x̄) ≥ 0, for all x ∈ S. Thus, by Proposition 7.1.1(b),
x̄ is a global solution of (7.7).

Exercise 7-2-2. Consider the following linear program:

min 8x1 − x2

subject to x1 − 2x2 ≥ −2,

x1 − x2 ≥ −7,

x1, x2 ≥ 0.

1. Solve this problem.

2. Write down the dual of the given problem and the KKT conditions.

7.2. Quadratic Programming 175

3. Find a dual solution u∗ (by inspection of the KKT conditions).

4. Suppose that the objective function is replaced by the following quadratic:

αx2
1 + βx2

2 + 8x1 − x2,

where α and β are nonnegative parameters. Write down the modified KKT conditions
for the resulting problem.

5. How large can we make α and β before the solution of the quadratic problem becomes
different from the solution of the original linear program?

Exercise 7-2-3. Consider the following linear program, obtained by omitting the quadratic
term from (7.7):

min
x

p′x subject to Ax ≥ b, x ≥ 0. (7.11)

Are the following statements true or false? Prove your claim or give a counterexample.

1. If (7.11) is solvable, then so is the quadratic program (7.7) for any n × n positive
semidefinite matrix Q. (Hint: use the Frank–Wolfe theorem (Theorem 7.2.1)).

2. The linear program (7.11) is solvable whenever the quadratic program (7.7) is solvable
for some n × n positive semidefinite matrix Q.

Finally, we consider a generalized formulation of convex quadratic programming,
containing both equality and inequality constraints and both nonnegative and free variables.
This formulation can be viewed as an extension of the general linear program discussed in
Section 4.7. We consider the following problem:

minx,y
1
2

[
x ′ y ′] [Q R

R′ T

] [
x

y

]
+ [

p′ q ′] [x

y

]
subject to Bx + Cy ≥ d,

Ex + Fy = g,

x ≥ 0,

(7.12)

where the matrix [
Q R

R′ T

]

is symmetric and positive semidefinite. The KKT conditions are as follows:

0 ≤ x̄ ⊥ Qx̄ + Rȳ + p − B ′ū − E′v̄ ≥ 0, (7.13a)

R′x̄ + T ȳ + q − C ′ū − F ′v̄ = 0, (7.13b)

0 ≤ ū ⊥ Bx̄ + Cȳ − d ≥ 0, (7.13c)

Ex̄ + F ȳ = g. (7.13d)

176 Chapter 7. Quadratic Programming and Complementarity Problems

7.2.3 Duality

Nonlinear programming, particularly in the convex case, has a rich duality theory that
extends many of the results that were given in Chapter 4. We outline below a duality
construction technique that we find especially pleasing, within the context of quadratic
programming, and specifically the formulation (7.7). Much of this construction can be
applied in a more general setting, but we leave details of this for further study.

The first step is to construct a Lagrangian, which is a weighted combination of the
objective function and the constraints of the problem. The weights on the constraints are the
dual variables and are more frequently referred to as Lagrange multipliers in this context.
For the problem given as (7.7), the Lagrangian is

L(x, u, v) = 1
2x ′Qx + p′x − u′(Ax − b) − v′x,

where u are the Lagrange multipliers on the constraint Ax ≥ b and v are the Lagrange
multipliers on the constraint x ≥ 0.

The dual problem for (7.7), typically attributed to Wolfe, is defined as follows:

max
x,u,v

L(x, u, v) subject to ∇xL(x, u, v) = 0, u ≥ 0, v ≥ 0. (7.14)

As was the case in linear programming, the weak duality result is easy to prove.

Theorem 7.2.3 (Weak Duality: Quadratic Programming). LetQbe positive semidefinite,
and suppose that x̄ is feasible for the primal problem (7.7) and (x̂, û, v̂) is feasible for the
dual problem (7.14). Then

1
2 x̄ ′Qx̄ + p′x̄ ≥ L(x̂, û, v̂).

Proof. By primal feasibility of x̄ and dual feasibility of (x̂, û) we have

Ax̄ ≥ b, x̄ ≥ 0, Qx̂ − A′û + p − v̂ = 0, û ≥ 0, v̂ ≥ 0.

Consequently, we have

1
2 x̄ ′Qx̄ + p′x̄ − L(x̂, û, v̂)

= 1
2 (x̄ − x̂)′Q(x̄ − x̂) − x̂ ′Qx̂ + x̂ ′Qx̄ + p′x̄ − p′x̂ + û′(Ax̂ − b) + v̂′x̂

= 1
2 (x̄ − x̂)′Q(x̄ − x̂) + x̂ ′Qx̄ + p′x̄ − û′b

≥ x̂ ′Qx̄ + p′x̄ − b′û
≥ x̄ ′A′û − b′û
≥ 0.

The first equality is simply an identity; the second equality follows from the substitution
v̂ = Qx̂ − A′û + p; the first inequality follows from the positive semidefiniteness of Q;
and the second inequality follows from x̄ ≥ 0 and Qx̂ − A′û + p ≥ 0. The final inequality
follows from û ≥ 0 and Ax̄ − b ≥ 0.

The strong duality result follows from Theorem 7.2.2.

7.3. Linear Complementarity Problems 177

Theorem 7.2.4 (Strong Duality: Quadratic Programming). Let Q be positive semidef-
inite. If x̄ is a solution of (7.7), then there is a ū ∈ Rm, v̄ ∈ Rn such that (x̄, ū, v̄) solves
(7.14), and the extrema of the two problems are equal.

Proof. Since x̄ solves (7.7), Theorem 7.2.2 ensures the existence of ū such that (x̄, ū, v̄) is
dual feasible (where v̄ = Qx̄ − A′ū + p), because of conditions (7.8). Hence,

1
2 x̄ ′Qx̄ + p′x̄ ≥ L(x̄, ū, v̄)

= 1
2 x̄ ′Qx̄ + p′x̄ − ū′(Ax̄ − b) − x̄ ′(Qx̄ − A′ū + p)

= 1
2 x̄ ′Qx̄ + p′x̄.

The inequality follows from the weak duality theorem (Theorem 7.2.3); the first equality is
a simple identity; and the second equality follows from the complementarity conditions in
(7.8). We conclude that the dual objective function L(x̄, ū, v̄) evaluated at the dual feasible
point (x̄, ū, v̄) equals its upper bound 1

2 x̄ ′Qx̄ + p′x̄, and therefore (x̄, ū, v̄) must solve the
problem (7.14).

Typically, when formulating a dual problem, the equality constraints are used to
eliminate the variables v from the problem. Thus, (7.14) is equivalent to the following
problem:

max − 1
2x ′Qx + b′u subject to Qx − A′u + p ≥ 0, u ≥ 0.

Note that if Q = 0, the problems (7.7) and the above reduce to the dual linear programs
(4.2) and (4.3).

7.3 Linear Complementarity Problems
The linear complementarity problem (LCP) is not an optimization problem, in that we are
not aiming to minimize an objective function. Rather, we seek a vector that satisfies a
given set of relationships, specifically, linear equality constraints, and nonnegativity and
complementarity conditions.

Just as a linear program in standard form is fully specified by the constraint matrix A,
the right-hand side b, and the cost vector c, the LCP is specified by a matrix M ∈ Rn×n and
a vector q ∈ Rn. We seek a vector z ∈ Rn such that the following conditions are satisfied:

LCP(M, q) : w = Mz + q, z ≥ 0, w ≥ 0, z′w = 0, (7.15)

or equivalently
w = Mz + q, 0 ≤ z ⊥ w ≥ 0.

LCPs arise in many applications; we will see some examples later in this chapter. They are
also closely related to linear and quadratic programming, because the KKT conditions for
these problems actually make up an LCP. From the KKT conditions for quadratic program-
ming (7.8), we have by taking

z =
[
x̄

ū

]
, M =

[
Q −A′
A 0

]
, q =

[
p

−b

]
(7.16)

178 Chapter 7. Quadratic Programming and Complementarity Problems

that these conditions are identical to LCP(M, q) defined in (7.15). Linear programs give
rise to LCPs in the same manner by setting Q = 0. In this case, M is skew symmetric, that
is, M = −M ′.

The relationship outlined above suggests that we can find the primal and dual solutions
to linear and complementarity problems simultaneously by applying an algorithm for solving
LCPs to their KKT conditions. In the next section, we outline such an algorithm.

Exercise 7-3-1. Consider the linear program

min q ′z subject to Mz + q ≥ 0, z ≥ 0,

where M satisfies the skew-symmetric property M = −M ′, and suppose that z∗ solves this
problem. Write down the dual of this problem and give a solution of the dual in terms of z∗.

7.4 Lemke’s Method
The first algorithm proposed to solve LCPs was the famous pivotal algorithm of Lemke
(1965). To describe Lemke’s method for solving LCP(M, q) we introduce some definitions.

Definition 7.4.1. Consider the vector pair (z, w) ∈ Rn × Rn.

(a) (z, w) is feasible for LCP(M, q) if w = Mz + q, z ≥ 0, w ≥ 0.

(b) A component wi is called the complement of zi , and vice versa, for i = 1, 2, . . . , n.

(c) (z, w) is complementary if z ≥ 0, w ≥ 0, and z′w = 0. (Note that a complementary
pair must satisfy ziwi = 0 for i = 1, 2, . . . , n.)

(d) (z, w) is almost complementary if z ≥ 0, w ≥ 0, and ziwi = 0 for i = 1, 2, . . . , n

except for a single index j , 1 ≤ j ≤ n.

For positive semidefinite M , Lemke’s method generates a finite sequence of feasible,
almost-complementary pairs that terminates at a complementary pair or an unbounded ray.
Similarly to the simplex method, an initial pair must first be obtained, usually via a Phase I
scheme. There are a variety of Phase I schemes tailored to LCPs with particular structures.
We describe here the most widely applicable scheme, which requires only one pivot.

Algorithm 7.1 (Phase I: Generate a Feasible Almost-Complementary Tableau).

1. If q ≥ 0, STOP: z = 0 is a solution of LCP(M, q); that is, (z, w) = (0, q) is a
feasible complementary pair.

2. Otherwise, add the artificial variables z0 and w0 that are constrained to satisfy the
following relationships:

w = Mz + ez0 + q, w0 = z0,

where e is the vector of ones in Rn. Create the initial tableau

z z0 1
w = M e q

w0 = 0 1 0

7.4. Lemke’s Method 179

3. Make this tableau feasible by carrying out a Jordan exchange on the z0 column and
the row corresponding to the most negative qi . (This step corresponds to the “special
pivot” in Phase I of the simplex method for linear programming.) Without removing
the artificial variables from the tableau, proceed to Phase II.

Phase II generates a sequence of almost-complementary vector pairs. It performs a
pivot at each iteration, selecting the pivot row by means of a ratio test like that of the simplex
method, whose purpose is to ensure that the components of z and w remain nonnegative
throughout the procedure.

Algorithm 7.2 (Phase II: Generate a Feasible Complementary or Unbounded Tableau).
Start with a feasible almost-complementary pair (z, w) and the corresponding tableau in
Jordan exchange form

wI1
zJ2

1
zJ1

= HI1J1
HI1J2

hI1

wI2
= HI2J1

HI2J2
hI2

Take note of the variable that became nonbasic (i.e., became a column label) at the previous
iteration. (At the first step, this is simply the component of w that was exchanged with z0

during Phase I.)

1. Pivot column selection: Choose the column s corresponding to the complement of
the variable that became nonbasic at the previous pivot.

2. Pivot row selection: Choose the row r such that

−hr/Hrs = min
i

{−hi/His | His < 0} .

If all His ≥ 0, STOP: An unbounded ray has been found.

3. Carry out a Jordan exchange on element Hrs . If (z, w) is complementary, STOP:
(z, w) is a solution. Otherwise, go to Step 1.

Step 1 maintains almost-complementarity by moving a component into the basis as
soon as its complement is moved out. By doing so, we ensure that for all except one
of the components, exactly one of zi and wi is basic while the other is nonbasic. Since
nonbasic variables are assigned the value 0, this fact ensures that wizi = 0 for all except
one component—the almost-complementary property. (When the initial tableau of Phase II
was derived from Phase I, it is the variables w0 and z0 that violate complementarity until
an optimal tableau is found.) The ratio test in Step 2 follows from the same logic as in
the simplex method. We wish to maintain nonnegativity of all the components in the last
column, and so we allow the nonbasic variable in column s to increase away from zero only
until it causes one of the basic variables to become zero. This basic variable is identified by
the ratio test as the one to leave the basis on this iteration.

In practice, it is not necessary to insert the w0 row into the tableau, since w0 remains
in the basis throughout and is always equal to z0. In the examples below, we suppress the
w0 row.

180 Chapter 7. Quadratic Programming and Complementarity Problems

Example 7-4-1. Consider LCP(M, q) with

M =
[

1 0
−1 1

]
, q =

[−2
−1

]
.

� load ex7-4-1

� T = lemketbl(M,q);

z1 z2 1
w1 = 1 0 −2
w2 = −1 1 −1

Since q �≥ 0, we require a Phase I. First, add the z0 column:

� T = addcol(T,[1 1]’,’z0’,3); z1 z2 z0 1
w1 = 1 0 1 −2
w2 = −1 1 1 −1

Then pivot z0 with the row corresponding to the most negative entry in the last column
(row 1):

� T = ljx(T,1,3); z1 z2 w1 1
z0 = −1 0 1 2
w2 = −2 1 1 1

This tableau represents an almost-complementary solution. We can now execute the steps
of Lemke’s method, as outlined in Phase II above. Since w1 became nonbasic at the last
pivot step, we choose its complement z1 to become basic. Hence, the pivot column is s = 1,
and the ratio test identifies the pivot row r = 2.

� T = ljx(T,2,1); w2 z2 w1 1
z0 = 0.5 −0.5 0.5 1.5
z1 = −0.5 0.5 0.5 0.5

Since this is still almost complementary, we carry out another pivot. Since w2 left the basis at
the last pivot, its complement z2 enters at this pivot, that is, s = 2. The ratio test determines
z0 as the leaving variable, and hence we perform a pivot on the element in position (1, 2).

� T = ljx(T,1,2); w2 z0 w1 1
z2 = 1 −2 1 3
z1 = 0 −1 1 2

The resulting (z, w) pair is feasible and complementary, and the solution to the LCP is
z1 = 2, z2 = 3.

We now give two examples on how to set up and solve (or determine unsolvability of)
a convex quadratic program.

7.4. Lemke’s Method 181

Example 7-4-2. Consider the quadratic program

min 1
2x2

1 − x1x2 + 1
2x2

2 + 4x1 − x2 subject to x1 + x2 − 2 ≥ 0, x1, x2 ≥ 0.

This problem has the form (7.7) when we set

Q =
[

1 −1
−1 1

]
, A = [

1 1
]
, p =

[
4

−1

]
, b = [

2
]
.

Following (7.16), we define an LCP from the KKT conditions for this problem by setting

M =

 1 −1 −1

−1 1 −1
1 1 0


 , q =


 4

−1
−2


 ,


z1

z2

z3


 =


x1

x2

u1


 .

We now show how to solve the problem in MATLAB.

� M = [1 -1 -1;-1 1 -1;1 1 0];

� q = [4 -1 -2]’;

� T = lemketbl(M,q);

z1 z2 z3 1
w1 = 1 −1 −1 4
w2 = −1 1 −1 −1
w3 = 1 1 0 −2

� T = addcol(T,[1 1 1]’,’z0’,4); z1 z2 z3 z0 1
w1 = 1 −1 −1 1 4
w2 = −1 1 −1 1 −1
w3 = 1 1 0 1 −2

� T = ljx(T,3,4); z1 z2 z3 w3 1
w1 = 0 −2 −1 1 6
w2 = −2 0 −1 1 1
z0 = −1 −1 0 1 2

� T = ljx(T,2,3); z1 z2 w2 w3 1
w1 = 2 −2 1 0 5
z3 = −2 0 −1 1 1
z0 = −1 −1 0 1 2

� T = ljx(T,3,2); z1 z0 w2 w3 1
w1 = 4 2 1 −2 1
z3 = −2 0 −1 1 1
z2 = −1 −1 0 1 2

182 Chapter 7. Quadratic Programming and Complementarity Problems

This final tableau is complementary, and so we have the following solution of the LCP:
z0 = 0, z1 = 0, z2 = 2, z3 = 1. Since Q is positive semidefinite, it follows from
Theorem 7.2.2 that x1 = z1 = 0, x2 = z2 = 2 is a global solution of the quadratic program,
and the minimum objective value is 1

2 (4) − 2 = 0.

The theory associated with Lemke’s method hinges on whether or not the algorithm
terminates at an unbounded ray. Under certain hypotheses on the matrix M , it is shown that
either ray termination cannot occur or (if it does occur) there is no feasible pair (z, w). Two
fundamental results are given in the following theorem.

Theorem 7.4.2.

(a) If M ∈ Rn×n is positive definite, then Lemke’s algorithm terminates at the unique
solution of LCP(M, q) for any q ∈ Rn.

(b) If M ∈ Rn×n is positive semidefinite, then for each q ∈ Rn, Lemke’s algorithm
terminates at a solution of LCP(M, q) or at an unbounded ray. In the latter case,
the set {z | Mz + q ≥ 0, z ≥ 0} is empty; that is, there is no feasible pair.

Proof. See Cottle & Dantzig (1968).

When the LCP is derived from a quadratic program, the matrix M , defined by

M =
[
Q −A′
A 0

]
,

is positive semidefinite if and only if Q is positive semidefinite, because

[x ′ u′]M
[
x

u

]
= x ′Qx − x ′A′u + u′Ax = x ′Qx.

(Note also that the matrix M above for the quadratic program is never positive definite, except
in the special case in which A is null.) Therefore, it follows from part (b) of the theorem
above that Lemke’s algorithm either solves convex quadratic programs or else determines
that the corresponding linear complementarity problem is infeasible. In the latter case, the
quadratic program either is infeasible or unbounded below on the feasible region. Formally,
we have the following result.

Corollary 7.4.3. If Q is positive semidefinite, then Lemke’s method solves (7.7) or else
determines that (7.7) is infeasible or unbounded below on the feasible region.

Example 7-4-3. Consider the following quadratic program:

min x2
1 + x1x2 + 2x2

2 + x1 − x2

subject to x1 − 2x2 − 2 ≥ 0,

−x1 + x2 + 1 ≥ 0,

x1, x2 ≥ 0.

We can identify this problem with (7.7) when we set

Q =
[

2 1
1 4

]
, A =

[
1 −2

−1 1

]
, p =

[
1

−1

]
, b =

[
2

−1

]
.

7.4. Lemke’s Method 183

Following (7.16), we can write the corresponding LCP(M, q) as follows:

0 ≤




x1

x2

u1

u2


 ⊥




2x1 +x2 −u1 +u2 +1
x1 +4x2 +2u1 −u2 −1
x1 −2x2 −2

−x1 +x2 +1


 ≥ 0.

We now show how to solve the LCP in MATLAB.

� M = [2 1 -1 1;1 4 2 -1;
1 -2 0 0;-1 1 0 0];

� q = [1 -1 -2 1]’;

� T = lemketbl(M,q);

z1 z2 z3 z4 1
w1 = 2 1 −1 1 1
w2 = 1 4 2 −1 −1
w3 = 1 −2 0 0 −2
w4 = −1 1 0 0 1

� T = addcol(T,[1 1 1 1]’,
’z0’,5);

z1 z2 z3 z4 z0 1
w1 = 2 1 −1 1 1 1
w2 = 1 4 2 −1 1 −1
w3 = 1 −2 0 0 1 −2
w4 = −1 1 0 0 1 1

� T = ljx(T,3,5); z1 z2 z3 z4 w3 1
w1 = 1 3 −1 1 1 3
w2 = 0 6 2 −1 1 1
z0 = −1 2 0 0 1 2
w4 = −2 3 0 0 1 3

� T = ljx(T,1,3); z1 z2 w1 z4 w3 1
z3 = 1 3 −1 1 1 3
w2 = 2 12 −2 1 3 7
z0 = −1 2 0 0 1 2
w4 = −2 3 0 0 1 3

� T = ljx(T,4,1); w4 z2 w1 z4 w3 1
z3 = −0.5 4.5 −1 1 1.5 4.5
w2 = −1 15 −2 1 4 10
z0 = 0.5 0.5 0 0 0.5 0.5
z1 = −0.5 1.5 0 0 0.5 1.5

This tableau contains an unbounded ray when z4 → ∞, indicating that the LCP does not
have a solution. This implies that the underlying quadratic program is either infeasible or
unbounded. In fact, we can see that it is infeasible because by adding the two constraints
we obtain −x2 − 1 ≥ 0, which is patently false.

184 Chapter 7. Quadratic Programming and Complementarity Problems

Exercise 7-4-4. Solve the following quadratic program by Lemke’s method:

min x2
1 + x2

2 + x1x2 − x1 − x2

subject to x1 + x2 − 2 ≥ 0,

2x1 − 1 ≥ 0,

x1, x2 ≥ 0.

Exercise 7-4-5. Solve the following quadratic program by Lemke’s method:

min x2
1 + 1

2x2
2 + x1x3 + 1

2x2
3 − x1

subject to x1 + x2 + x3 − 1 ≥ 0,

x1, x2, x3 ≥ 0.

Exercise 7-4-6. By using the minimum principle (7.2), show that if Q is positive definite,
then the solution x of the quadratic program is unique. What about the Lagrange multipliers
u? Relate your conclusions to the theorem and corollary above.

When the quadratic program is nonconvex, recall that the KKT conditions are only
necessary, not sufficient. Hence, Lemke’s method applied to these conditions may identify
a solution of the LCP that may not be a solution of the underlying quadratic program. It
may be a constrained local minimum, a saddle point, or even a maximum.

When convex quadratic programs have equality constraints or free variables, then we
must instead solve the KKT conditions given as (7.13). It is straightforward to adapt the
techniques we used for the simplex method to this setting as we now show.

Example 7-4-7. Consider the following quadratic program:

min x2
1 + x1x2 + 2x2

2 + x1 − x2

subject to x1 − 2x2 − 2 ≥ 0,

−x1 + x2 + 1 ≥ 0,

which is the same as Example 7-4-3, except that the variables are no longer constrained to
be nonnegative. The KKT conditions form the following complementarity problem:

� M = [2 1 -1 1;1 4 2 -1;
1 -2 0 0;-1 1 0 0];

� q = [1 -1 -2 1]’;

� T = lemketbl(M,q);

z1 z2 z3 z4 1
w1 = 2 1 −1 1 1
w2 = 1 4 2 −1 −1
w3 = 1 −2 0 0 −2
w4 = −1 1 0 0 1

In this case the variables z1 = x1 and z2 = x2 are free, and consequently w1 = 0 and
w2 = 0 must hold. We achieve this by pivoting w1 and w2 to the top of the tableau, while
simultaneously moving z1 and z2 into the basis.

� T = ljx(T,1,1);

� T = ljx(T,2,2);

� T = delcol(T,’w1’);

� T = delcol(T,’w2’);

� T = permrows(T,[3 4 1 2]);

z3 z4 1
w3 = 2.286 −1.571 −3.571
w4 = −1.571 1.143 2.143
z1 = 0.857 −0.714 −0.714
z2 = −0.714 0.429 0.429

7.5. Bimatrix Games 185

Ignoring the last two rows, we now apply Lemke’s method to the (standard form) comple-
mentarity problem in w3, w4, z3, and z4, starting with the Phase I procedure:

� T = addcol(T,[1 1 0 0]’,
’z0’,3);

� T = ljx(T,1,3);

z3 z4 w3 1
z0 = −2.286 1.571 1 −3.571
w4 = −3.857 2.714 1 5.714
z1 = 0.857 −0.714 0 −0.714
z2 = −0.714 0.429 0 0.429

Two further complementary pivots generate the complementary solution.

� T = ljx(T,2,1);

� T = ljx(T,1,2);

w4 z0 w3 1
z4 = 16 −27 11 5
z3 = 11 −19 8 5
z1 = −2 3 −1 0
z2 = −1 2 −1 −1

The solution of the quadratic problem is thus x1 = 0, x2 = −1.

7.5 Bimatrix Games
Some real-world problems can be better modeled with two objectives that are partially or
totally opposed to each other. Consider, for example, the following game with two players,
Player 1 and Player 2. The game consists of a large number of plays, and at each play Player
1 picks one of m choices and Player 2 picks one of n choices. These choices are called
pure strategies. If, in a certain play, Player 1 chooses pure strategy i and Player 2 chooses
pure strategy j , then Player 1 loses Ãij dollars and Player 2 loses B̃ij dollars. (A positive
value Ãij > 0 represents a loss to Player 1, while a negative value Ãij < 0 represents a
gain; similarly for Player 2 and B̃ij .) The matrices Ã and B̃ are called loss matrices, and
the game is fully determined by the matrix pair (Ã, B̃).

If Ã+B̃ = 0, the game is known as a zero-sum game. As we show in Section 7.5.2, the
game can then be described by a dual pair of linear programs. Otherwise, when Ã+ B̃ �= 0,
the game is known as a bimatrix game or, more long-windedly, a two-person nonzero-sum
game with a finite number of pure strategies.

Often, in practice, it does not make sense for a player to choose a pure strategy, that
is, to make the same play on every move. If the player does this, or otherwise follows a
predictable pattern of plays, the opponent can strategize accordingly and presumably come
out ahead. It is often better to follow a mixed strategy, in which the player chooses randomly
from among the moves available to him, assigning a certain probability to each play. If Player
1 chooses play i with probability xi (with

∑m
i=1 xi = 1), while Player 2 chooses play j with

probability yj (with
∑n

j=1 yj = 1), the vectors x and y define the mixed strategies for each
player. Summing over all possible combinations of strategies for the two players, we find
that the expected loss of Player 1 is x ′Ãy. Similarly, the expected loss of Player 2 is x ′B̃y.

The pair of mixed strategies (x̄, ȳ) is called a Nash equilibrium pair (after John Nash,
1994 Nobel Laureate in Economics) of strategies if neither player benefits by unilaterally

186 Chapter 7. Quadratic Programming and Complementarity Problems

changing their own strategy while the other player holds their strategy fixed. That is,

x̄ ′Ãȳ ≤ x ′Ãȳ ∀x ≥ 0, e′
mx = 1, (7.17a)

x̄ ′B̃ȳ ≤ x̄ ′B̃y ∀y ≥ 0, e′
ny = 1. (7.17b)

Here em is a vector of length m whose elements are all 1; similarly for en.
If we add an arbitrary scalar α > 0 to every element of Ã and β > 0 to every entry of

B̃, the values of x ′Ãy and x ′B̃y change by α and β, respectively. That is, defining A and B

by
A = Ã + αeme′

n, B = B̃ + βeme′
n,

we have

x ′Ãy = x ′Ay − αx ′eme′
ny = x ′Ay − α, x ′B̃y = x ′By − β.

Therefore, (x̄, ȳ) is an equilibrium pair for (Ã, B̃) if and only if it is an equilibrium pair for
(A, B). Thus, we can choose α and β large enough to ensure that A > 0 and B > 0. It is
convenient for the remainder of the analysis to assume that A and B have this property.

Example 7-5-1. An example of such a game is the prisoners’ dilemma; see, for example,
Murty (1976). Two well-known criminals are caught and during plea bargaining the District
Attorney urges both criminals to confess and plead guilty. As encouragement, she states that
if one confesses and the other does not, then the one who confesses will be acquitted and
the other one will serve 10 years. If both confess, then they will each get 5 years. However,
the criminals realize that the case against them is not strong, and so if they both choose not
to confess, the worst the District Attorney can do is charge them with a minor violation for
which they would each serve 1 year.

The loss matrix for this problem is the number of years the prisoner will spend in
jail. The two pure strategies are “confess” (strategy 1) and “not confess” (strategy 2). The
corresponding loss matrices are

A =
[

5 0
10 1

]
, B =

[
5 10
0 1

]
.

7.5.1 Computing Nash Equilibria

The following lemma shows how to construct equilibrium pairs for bimatrix games by
solving LCP(M, q) for a particular choice of M and q and normalizing its solution.

Lemma 7.5.1. Suppose A, B ∈ Rm×n are positive loss matrices representing a game
(A, B), and suppose that (s, t) ∈ Rm × Rn solves LCP(M, q), where

M :=
[

0 A

B ′ 0

]
, q := −em+n ∈ Rm+n.

Then, defining x̄ = s/(e′
ms) and ȳ = t/(e′

nt), we have that (x̄, ȳ) is an equilibrium pair of
(A, B).

7.5. Bimatrix Games 187

Proof. We write out the LCP conditions explicitly as follows:

0 ≤ At − em ⊥ s ≥ 0,

0 ≤ B ′s − en ⊥ t ≥ 0.

Since At − em ≥ 0, we must have that t �= 0, and similarly s �= 0. Thus x̄ and ȳ are well
defined. It is also clear from their definitions that x̄ ≥ 0, ȳ ≥ 0 and e′

mx̄ = 1, e′
nȳ = 1.

Therefore, x̄ and ȳ are mixed strategies.
By complementarity, we have that

x̄ ′(At − em) = 1

e′
ms

s ′(At − em) = 0,

so that x̄ ′At = x̄ ′em = 1. We use this relation to obtain the following:

Aȳ − (x̄ ′Aȳ)em = 1

e′
nt

(At − (x̄ ′At)em) = 1

e′
nt

(At − em) ≥ 0.

Given any strategy x, we have from x ≥ 0 together with the expression above that

0 ≤ x ′ (Aȳ − em(x̄ ′Aȳ)
) ⇒ x ′Aȳ ≥ (e′

mx)x̄ ′Aȳ = x̄ ′Aȳ.

Hence, the relationship (7.17a) is satisfied. We can prove (7.17b) similarly. We conclude
that (x̄, ȳ) is a Nash equilibrium pair, as claimed.

This result motivates the following procedure (the Lemke–Howson method) for solv-
ing bimatrix games.

1. Increase all the entries in each loss matrix by a constant amount to obtain A and B,
whose entries are all greater than 0.

2. Solve LCP(M, q), where

M =
[

0 A

B ′ 0

]
, q =

[−em

−en

]
,

with the first two pivots especially designed to make the tableau feasible (see below),
followed by Phase II of Lemke’s method.

3. Set x̄ = s/(e′
ms) and ȳ = t/(e′

nt).

Theorem 7.5.2. The Lemke–Howson method always terminates at a solution of the LCP
and hence always finds a Nash equilibrium of the game (A,B).

Proof. See Lemke & Howson (1964).

We now give some examples of bimatrix games.

188 Chapter 7. Quadratic Programming and Complementarity Problems

Example 7-5-2 (The Matching Pennies Game). In this zero-sum (Ã+ B̃ = 0) game, two
players simultaneously show each other a coin, deciding to themselves before they show it
whether to put the heads side up or the tails side. If the coins match (both heads or both
tails), then Player 2 wins both coins; otherwise Player 1 wins them both. The resulting loss
matrices are

Ã =
[

1 −1
−1 1

]
, B̃ =

[−1 1
1 −1

]
.

We now apply Lemke’s method to solve this problem. First, we find the most negative
element in each matrix Ã and B̃ and add a sufficiently large number to ensure that A > 0
and B > 0. In fact, the code below adds 2 to every element of these matrices to obtain

A =
[

3 1
1 3

]
, B =

[
1 3
3 1

]
.

We then set up the tableau.

� load ex7-5-2

� [m,n] = size(A);

� alpha = 1 - min(min(A)); A = A +
alpha*ones(size(A));

� beta = 1 - min(min(B)); B = B +
beta*ones(size(B));

� M = [zeros(m,m) A; B’ zeros(n,n)];

� q = -ones(m+n,1);

� T = lemketbl(M,q);

z1 z2 z3 z4 1
w1 = 0 0 3 1 −1
w2 = 0 0 1 3 −1
w3 = 1 3 0 0 −1
w4 = 3 1 0 0 −1

The Phase I procedure described earlier fails on bimatrix games; after the initial pivot to
bring z0 into the basis, the first pivot of Phase II encounters a column with all nonnegative
elements, and so the ratio test fails. However, there is a specialized Phase I procedure for
complementarity problems arising from bimatrix games, which we now describe. It takes
the form of two pivots performed on the original tableau, with special rules for pivot row
and column selection.

1. Pivot on column 1 and row r corresponding to the smallest positive element in column
1. (This pivot causes the bottom n rows of the tableau to become feasible.)

2. Pivot on the column corresponding to zr (the complement of wr) and on the row with
the smallest positive element in that column. (This pivot causes the top m rows to
become feasible and makes the tableau almost complementary.)

We then proceed with Phase II, the usual Lemke method.
For the problem at hand, the two Phase I pivots are as follows:

� T = ljx(T,3,1); w3 z2 z3 z4 1
w1 = 0 0 3 1 −1
w2 = 0 0 1 3 −1
z1 = 1 −3 0 0 1
w4 = 3 −8 0 0 2

7.5. Bimatrix Games 189

� T = ljx(T,2,3); w3 z2 w2 z4 1
w1 = 0 0 3 −8 2
z3 = 0 0 1 −3 1
z1 = 1 −3 0 0 1
w4 = 3 −8 0 0 2

Proceeding now to Phase II, we choose the first pivot column as the one corresponding
to z2, the complement of w2, since z2 was pivoted out of the basis on the previous step.

� T = ljx(T,4,2);

� T = ljx(T,1,4);

These steps yield the following tableau:

w3 w4 w2 w1 1
z4 = 0 0 0.38 −0.13 0.25
z3 = 0 0 −0.13 0.38 0.25
z1 = −0.13 0.38 0 0 0.25
z2 = 0.38 −0.13 0 0 0.25

At this point, we have a complementary solution: For each component i = 1, 2, 3, 4, exactly
one of the pair (zi, wi) is in the basis and the other is nonbasic. Partitioning z into s and t ,
we have s = (1/4, 1/4)′ and t = (1/4, 1/4)′, from which we obtain x̄ = (1/2, 1/2)′ and
ȳ = (1/2, 1/2)′. This solution indicates that the best strategy for each player is simply to
choose between heads and tails randomly, with an equal probability for each. The expected
loss for Player 1 is x̄ ′Ãȳ = 0, while for Player 2 it is x̄ ′B̃ȳ = 0. That is (not surprisingly)
by following these strategies, both players can expect to break even in the long run.

It is easy to see why nonequilibrium strategies fail on this problem. Suppose, for
instance, that Player 1 decides to choose randomly between heads and tails but assigns a
higher probability to heads. Player 2 can then counter by showing heads all the time (i.e.,
following a pure strategy of “heads”). In the long run, the coins will match on the majority
of plays, and Player 2 will win them both.

We now present a variant on the matching pennies game, discussed (and answered
incorrectly) in a column by Marilyn Vos Savant.1

Example 7-5-3. In this game, the two players again show pennies to each other. If both are
heads, Player 2 receives $3 from Player 1, and if both are tails, Player 2 receives $1 from
Player 1. On the other hand, if the pennies do not match, Player 2 pays $2 to Player 1.

This is a zero-sum game that seems similar, at first glance, to Example 7-5-2. However,
its Nash equilibrium solution turns out to give an edge to Player 1, as we will see. First, we
set up the loss matrices. Row 1 of both Ã and B̃ corresponds to Player 1 choosing heads,
while row 2 is for Player 1 choosing tails. Similarly, columns 1 and 2 represent Player 2
choosing heads and tails, respectively. We then have

Ã =
[

3 −2
−2 1

]
, B̃ =

[−3 2
2 −1

]
.

1Parade, 31 March, 2002; discussed by Francis J. Vasko and Dennis D. Newhart, SIAM News, June 2003, p. 12.

190 Chapter 7. Quadratic Programming and Complementarity Problems

By adding 3 to the elements of Ã and 4 to the elements of B̃, we obtain the following positive
matrices:

A =
[

6 1
1 4

]
, B =

[
1 6
6 3

]
.

We now set up and solve the problem using the same technique as in Example 7-5-2.

� A=[3 -2; -2 1]; B=[-3 2; 2 -1];

� [m,n] = size(A);

� alpha = 1 - min(min(A)); A = A +
alpha*ones(size(A));

� beta = 1 - min(min(B)); B = B +
beta*ones(size(B));

� M = [zeros(m,m) A; B’ zeros(n,n)];

� q = -ones(m+n,1);

� T = lemketbl(M,q);

z1 z2 z3 z4 1
w1 = 0 0 6 1 −1
w2 = 0 0 1 4 −1
w3 = 1 6 0 0 −1
w4 = 6 3 0 0 −1

We now perform the two Phase I pivots (recalling that we need to use the special Phase I
for bimatrix games, described above).

� T = ljx(T,3,1);

� T = ljx(T,2,3);

w3 z2 w2 z4 1
w1 = 0 0 6 −23 5
z3 = 0 0 1 −4 1
z1 = 1 −6 0 0 1
w4 = 6 −33 0 0 5

Two further Lemke pivots (Phase II) are needed to solve the problem.

� T = ljx(T,4,2);

� T = ljx(T,1,4);

yielding the final tableau

w3 w4 w2 w1 1
z4 = 0 0 .2609 −.0435 .2174
z3 = 0 0 −.0435 .1739 .1304
z1 = −.0909 .1818 0 0 .0909
z2 = .1818 −.0303 0 0 .1515

We obtain the solution s = (.0909, .1515)′ and t = (.1304, .2174)′, from which we recover
(after adjusting for rounding errors) x̄ = (3/8, 5/8)′ and ȳ = (3/8, 5/8)′. The expected
loss for Player 1 is x̄ ′Ãȳ = −1/8, while (because this is a zero-sum game) the expected
loss for Player 2 is 1/8. Hence, if both players follow this equilibrium strategy, Player 1
can expect to win an average of 12.5 cents per play from Player 2.

7.5. Bimatrix Games 191

In fact, it can be shown that whatever strategy y is pursued by Player 2, Player 1 will
win an average of 12.5 cents per play if she follows the strategy x̄. To see this, let y be any
mixed strategy of Player 2 (satisfying y ≥ 0 and y1 + y2 = 1). We then have

x̄ ′Ãy = [
3/8 5/8

] [3 −2
−2 1

] [
y1

y2

]
= (−1/8)(y1 + y2) = −1/8.

Example 7-5-4. Following the procedure described above, we solve the prisoners dilemma
problem (Example 7-5-1) as follows:

� load ex7-5-1

� [m,n] = size(A);

� alpha = 1 - min(min(A)); A = A + alpha*ones(size(A));

� beta = 1 - min(min(B)); B = B + beta*ones(size(B));

� M = [zeros(m,m) A; B’ zeros(n,n)];

� q = -ones(m+n,1);

� T = lemketbl(M,q);

The following two pivots make up the special Phase I procedure:

� T = ljx(T,3,1);

� T = ljx(T,1,3);

The resulting tableau is in fact complementary (not just almost complementary), and so
no further pivots are required. The (unique) solution to this LCP(M, q) has s = (1/6, 0)′,
t = (1/6, 0)′, leading to the (unique) equilibrium pair x̄ = (1, 0)′, ȳ = (1, 0)′. This solution
indicates that the equilibrium strategy is for both to confess. Given that the other prisoner
sticks to this strategy, there is no advantage for a prisoner to change to “not confess”—in
fact, he will be worse off.

The nonequilibrium strategies for this simple problem are also interesting. If the
prisoners collude and agree to “not confess,” they will both do better than in the equilibrium
strategy, serving 1 year each. However, this is risky for each prisoner. If one prisoner
double-crosses and changes to “confess,” he will escape a sentence, while his opposite
number will serve 10 years.

Exercise 7-5-5. On a Friday evening, two newlyweds wish to go out together. The wife
wishes to go to a musical concert, while the husband prefers to go to a baseball game. On
a scale of 1 to 4, the loss matrix entry to each person is 4 if they go to separate events, 1 if
they go together to his/her favored event, and 2 if they go together but to his/her less favored
event.

1. Write down the resulting loss matrices for the game. (Let x represent the husband and
y the wife, and let strategy 1 for each party represent “attend baseball game” while
strategy 2 represents “attend concert.”)

192 Chapter 7. Quadratic Programming and Complementarity Problems

2. Using the bimatrix version of Lemke’s algorithm, verify that x̄ = (1, 0)′, ȳ = (1, 0)′
is an equilibrium solution of the bimatrix game.

3. Verify by inspection of the loss matrices that x̃ = (0, 1)′, ỹ = (0, 1)′ is also an
equilibrium pair.

4. Prove that another equilibrium pair is x̂ = (0.6, 0.4)′, ŷ = (0.4, 0.6)′.

7.5.2 Zero-Sum Games As Dual Linear Programs

We now show that in the case of a zero-sum game—that is, when B = −A—the equilibrium
pair can be found via the primal-dual solution of a linear program, rather than the LCP
technique of the previous section. (It does not matter in this section if A or B contains
nonpositive entries, and so we can identify A with Ã and B with B̃.)

Our equilibrium pair is a pair of mixed strategies x̄ and ȳ satisfying the following
properties:

x̄ ≥ 0, e′
mx̄ = 1, and x̄ ′Aȳ ≤ x ′Aȳ ∀x ≥ 0, e′

mx = 1, (7.18a)

ȳ ≥ 0, e′
nȳ = 1, and −x̄ ′Aȳ ≤ −x̄ ′Ay ∀y ≥ 0, e′

ny = 1. (7.18b)

We can therefore view x̄ and ȳ as the solutions of two linear programs:

x̄ = argmin
x

x ′(Aȳ) subject to x ≥ 0, e′
mx = 1; (7.19a)

ȳ = argmax
y

y ′(A′x̄) subject to y ≥ 0, e′
ny = 1. (7.19b)

The KKT conditions for these linear programs are as follows, respectively:

0 ≤ x̄ ⊥ Aȳ − β̄em ≥ 0, e′
mx̄ = 1;

0 ≤ ȳ ⊥ A′x̄ − ᾱen ≤ 0, e′
nȳ = 1.

Taken together, these are the optimality conditions of the following dual pair of linear
programs:

max
x,α

−α

subject to A′x − enα ≤ 0,

−e′
mx = −1,

x ≥ 0,

min
y,β

−β

subject to Ay − emβ ≥ 0,

−e′
ny = −1,

y ≥ 0.

(7.20)

Lemma 7.5.3. The dual pair of linear programs (7.20) is always solvable.

Proof. The result follows from strong duality, since both linear programs are clearly feasible
(α large and positive, β large and negative).

We conclude that the equilibrium point for zero-sum games can be solved by finding the
primal and dual solutions of one of these linear programs.

7.5. Bimatrix Games 193

Example 7-5-6. For the matching pennies problem (Example 7-5-2), we can solve the dual
problem as follows:

� A = [1 -1; -1 1];

� [m,n] = size(A);

� b = [zeros(m,1); -1];

� p = [zeros(n,1); -1];

� T = totbl([A -ones(m,1);
-ones(1,n) 0],b,p);

� T = relabel(T,’x1,’y1,’x2,’y2’,’x3’,’β’);

y1 y2 β 1
x4 = 1 −1 −1 0
x5 = −1 1 −1 0
x6 = −1 −1 0 1
z = 0 0 −1 0

Noting that x6 is an artificial variable associated with an equation, we pivot and delete:

� T = ljx(T,3,1);

� T = delcol(T,’x6’);

y2 β 1
x4 = −2 −1 1
x5 = 2 −1 −1
y1 = −1 0 1
z = 0 −1 0

Applying the following two pivots (luckily) generates an optimal tableau:

� T = ljx(T,1,1);

� T = ljx(T,2,2);

x4 x5 1
y2 = −0.25 0.25 0.5
β = −0.5 −0.5 0
y1 = 0.25 −0.25 0.5
z = 0.5 0.5 0

Thus the optimal solution of the dual is ȳ = (0.5, 0.5), and furthermore the optimal solution
of the primal can be read of this tableau as x̄ = (0.5, 0.5). This confirms the results given
in Example 7-5-2.

Exercise 7-5-7. Two players play the game “rock, paper, scissors.” If Player I calls rock
and Player II calls scissors, then Player I takes $1 from Player II since “rock blunts scissors.”
If Player I calls scissors and Player II calls paper, then Player I again takes $1 from Player II,
since “scissors cut paper.” The same result occurs if Player I calls paper and Player II calls
rock (since “paper covers rock”). If the above strategies are reversed, then Player I pays
Player II $1. If they both call the same object, no money changes hands. Write down the
loss matrices for each player. For zero-sum games, Player I’s strategy can be determined
from the linear programs in (7.20). Show that x = (1/3, 1/3, 1/3) solves this problem with
α = 0, where A is the loss matrix of the rock, paper, scissors game. Is this solution unique?
Exhibit an optimal solution of the dual of this problem. Use these solutions to construct a
Nash equilibrium for the game.

Chapter 8

Interior-Point Methods

Interior-point methods follow a fundamentally different approach from the simplex method.
The simplex approach moves from vertex to vertex, usually improving the objective function
on each step. By contrast, the most successful interior-point approaches focus instead on
the KKT conditions discussed in Section 4.5, searching for primal and dual variables that
satisfy these conditions, and hence solve the primal and dual linear programs concurrently.
Primal and dual variables that are required to be nonnegative at the solution are kept strictly
positive at each interior-point iteration. That is, the iterates stay interior with respect to
these constraints, though some of these variables will approach zero in the limit.

8.1 Motivation and Outline
We give specifics of the interior-point approach by referring to the canonical form of the
linear programming problem (5.3), which we restate here as follows:

min z = p′x
subject to Ax = b, x ≥ 0.

(8.1)

Throughout this chapter, we make no assumptions on A other than that it has linearly inde-
pendent rows. (We do not assume that A has the form (5.2), for instance.) By introducing
Lagrange multipliers y for the constraints Ax = b and applying the theory of Section 4.5,
we can write the KKT conditions for this problem as follows:

Ax = b, x ≥ 0, A′y ≤ p, x ′(p − A′y) = 0. (8.2)

Following Theorem 4.5.1, there exist vectors x ∈ Rn and y ∈ Rm that satisfy (8.2) if and
only if x is a solution of the primal linear program (8.1), while y solves the dual problem,
which is

max
y

b′y

subject to A′y ≤ p.

195

196 Chapter 8. Interior-Point Methods

If we introduce the slack vector s ∈ Rn defined by s = p − A′y, we can rewrite the dual
problem as follows:

max
y,s

b′y

subject to A′y + s = p, s ≥ 0,
(8.3)

while the KKT conditions (8.2) can be recast as follows:

Ax = b, (8.4a)

A′y + s = p, (8.4b)

x ≥ 0, s ≥ 0, x ′s = 0. (8.4c)

The conditions (8.4c) imply that for each i = 1, 2, . . . , n, one of the variables xi or si is
zero, and the other is nonnegative—possibly also zero. We can express (8.4c) alternatively
as follows:

x ≥ 0, s ≥ 0, xisi = 0, i = 1, 2, . . . , n. (8.5)

Summarizing, if we define e = (1, 1, . . . , 1)′ and let the diagonal matrices X and S be
defined from the components of x and s,

X = diag(x1, x2, . . . , xn) =




x1

x2

. . .

xn


 , (8.6a)

S = diag(s1, s2, . . . , sn) =




s1

s2

. . .

sn


 , (8.6b)

then the KKT conditions can be written using X and S as follows:

Ax = b, (8.7a)

A′y + s = p, (8.7b)

XSe = 0, (8.7c)

x ≥ 0, s ≥ 0. (8.7d)

Interior-point methods of the “primal-dual” variety—the type that has been the most
successful in practice—generate iterates (x, y, s) with the following properties:

(i) The inequalities (8.7d) are satisfied strictly at every iteration; that is, xi > 0 and
si > 0 for all i = 1, 2, . . . , n.

(ii) The amount by which the equality conditions (8.7a), (8.7b) are violated decreases at
each iteration.

(iii) The quantity µ defined by

µ = x ′s
n

= 1

n

n∑
i=1

xisi, (8.8)

8.2. Newton’s Method 197

known as the duality measure, decreases at each iteration. Note that from (i), this
quantity is strictly positive, while because of (8.4c), it will approach zero as the iterates
approach a solution.

(iv) The pairwise products xisi , i = 1, 2, . . . , n, are kept roughly in balance. That is,
although all these products approach zero as (x, y, s) approaches a primal-dual solu-
tion of (8.7), no single one of these quantities approaches zero much faster than the
others. (From (8.8), we see that the duality measure µ is the average value of these
pairwise products.)

In later sections, we specify how interior-point methods move from one iterate to the
next. The iteration number appears as a superscript: The starting point is (x0, y0, s0) and
iterates are denoted by (xk, yk, sk), k = 0, 1, 2,

Exercise 8-1-1. Verify that if x is primal feasible for the canonical form and (y, s) is dual
feasible, we have

p′x − b′y = x ′s = nµ,

so that x ′s properly measures the duality gap between the primal and dual objectives.

8.2 Newton’s Method
Newton’s method for well-determined systems of nonlinear equations (in which the number
of equations equals the number of unknowns) plays an important role in the development
of primal-dual interior-point methods. We give some background on Newton’s method in
this section.

Let F(·) be a vector function with N components that depends on N variables
z1, z2, . . . , zN . An example with N = 3 is as follows:

F(z) = F(z1, z2, z3) =

 z2

1 + z2
2 − π2

z3 − cos z1

z3 − sin z2


 . (8.9)

We seek a solution of the system F(z) = 0. The vector z = (1.2926, 2.8634, 0.2747) is (to
four digits of accuracy) a solution of F(z) = 0 for the function in (8.9).

Except for simple functions F , it is difficult to find a solution of F(z) = 0 by direct
observation or simple calculation. An important special case occurs when F is a linear
function of z; that is, F(z) = Az−b for an N ×N matrix A and a vector b ∈ RN . For such
a function, the solution of F(z) = 0 satisfies Az = b. Therefore, if A is nonsingular, we
can find the solution by factoring the matrix A (for example, by using the LU factorization
discussed in Section 2.6) and solving triangular systems involving L and U .

When F is a scalar function of a scalar variable, it makes sense to approximate F

by a simpler function that is close to F in the neighborhood of the latest estimate z of
the solution. If we know the value of F and also its first derivative F ′(z), we can use the
following approximation:

F(z + �z) ≈ F(z) + F ′(z)�z, (8.10)

198 Chapter 8. Interior-Point Methods

F(z)

k
z k+1

F(z)+ F’(z) zk k ∆

z*solution

z

Figure 8.1. Newton’s method for N = 1, showing the linear approximation to F at zk .

where �z represents a step away from the current guess z. This approximation is based on
Taylor’s theorem (stated in most calculus books; see also Section A.7) and is valid when
�z is not too large. The approximation (8.10) is referred to as the first-order or linear
approximation to F about the point z. Newton’s method chooses the step �z to make this
linear approximation equal to zero; that is, it sets

�z = − [F ′(z)
]−1

F(z).

From (8.10), it follows that if we replace z by z + �z, we will have F(z) ≈ 0 at the new
value of z.

Using this scheme, we can generate a sequence of guesses of the solution to F(z) = 0.
We use a superscript to indicate the vectors in this sequence: z0, z1, z2, From each iterate
zk , k = 0, 1, 2, . . . , we obtain the next iterate by performing the following calculations:

�zk = − [F ′(zk)
]−1

F(zk), zk+1 = zk + �zk. (8.11)

An illustration of one step of Newton’s method is shown in Figure 8.1. Note that the graph
of the linear approximation is, geometrically speaking, tangent to the graph of F at zk and
that the next iterate zk+1 is the point at which this tangent crosses the z-axis. Note also
that zk+1 is considerably closer to the solution than is zk in this example. We can continue
this iterative process until the step �zk becomes short (indicating successful termination)
or until problems are encountered (such as many iterations being taken without significant
decrease of F).

For general functions F : RN → RN , Newton’s method can be used when each of
the N components of F is at least a continuously differentiable function of z. (Note in the

8.2. Newton’s Method 199

example (8.9) that each of the three components of F can be differentiated arbitrarily often
with respect to each of the three components of z, and so this function is certainly smooth
enough.) The Jacobian of F , denoted by J (z), is the N ×N matrix of first partial derivatives
of F . The (i, j) element of J (z) is the partial derivative of the ith component of the vector
F with respect to the j th variable; that is,

[J (z)]ij = ∂Fi(z)

∂zj

, i = 1, 2, . . . , N, j = 1, 2, . . . , N. (8.12)

For the function (8.9) above, the Jacobian is

J (z) =

 2z1 2z2 0

sin z1 0 1
0 − cos z2 1


 . (8.13)

When F is smooth, we can use the values of F(z) and J (z) to construct an approxi-
mation to the value of F(z + �z) for �z small. Extending the use of Taylor’s theorem to
multivariate functions, we have the approximation

F(z + �z) ≈ F(z) + J (z)�z. (8.14)

(Compare with (8.10) and see Section A.7 for discussion of Taylor’s theorem.) As for the
scalar case (N = 1), Newton’s method chooses the step �zk from iterate zk to make the
linear approximation in (8.14) equal to zero, that is,

F(zk) + J (zk)�zk = 0.

In practice, we obtain �zk by solving the following N × N system of linear equations to
find the step �zk:

J (zk)�zk = −F(zk). (8.15)

From (8.14), we have that F(zk + �zk) ≈ 0; that is, zk + �zk is an approximate solution
of the true problem F(z) = 0. We then obtain the next iterate zk+1 by setting

zk+1 = zk + �zk. (8.16)

Newton’s method often converges rapidly once it reaches the vicinity of a solution
of F(z) = 0. When F is smooth (Lipschitz continuously differentiable, to be precise)
near the solution z∗, and when J (z∗) is nonsingular, Newton’s method actually converges
quadratically to z∗. By this we mean that the error εk , defined by

εk := ‖zk − z∗‖2,

satisfies
εk+1 ≤ Cε2

k (8.17)

for some constant C > 0. The sequence of function norms ‖F(zk)‖ converges at a similar
rate. In practice, the Newton algorithm can be terminated successfully when ‖�zk‖ becomes
small or unsuccessfully if it appears that convergence is not taking place.

200 Chapter 8. Interior-Point Methods

MATLAB file newton.m: Newton’s method for solving F(z) = 0

function [z] = newton(z0, F, J, eps, itmax)
%
% syntax: z = newton(z0, @myF, @myJ, eps, itmax)
%
% performs Newton’s method from starting point z0, terminating
% when 2-norm of step is shorter than eps or when at itmax
% steps have been taken, whichever comes first. Call as follows:
%
% where z0 is the starting point, myF and myJ are the actual
% names of the function and Jacobian evaluation routines;
% method terminates when length of Newton step drops below eps
% or after at most itmax iterations (whichever comes first).

z=z0; iter = 0;
while iter<itmax

Fval = feval(F,z); Jval = feval(J,z);
fprintf(’ iteration %3d, Fnorm=%9.4e\n’, iter, norm(Fval));
zstep = -Jval\Fval;
z = z + zstep; iter = iter+1;
if norm(zstep) < eps % stop if the step is short

break;
end

end
return;

MATLAB file Ftrig.m: Evaluation of F from (8.9)

function Fval = Ftrig(z)
% evaluates the three-dimensional example at the vector x in
% Rˆ3
Fval = [z(1)ˆ2 + z(2)ˆ2 - piˆ2; z(3) - cos(z(1));
z(3) - sin(z(2))];

MATLAB file Jtrig.m: Evaluation of Jacobian of F from (8.9)

function Jval = Jtrig(z)
% evaluates the 3 x 3 Jacobian of the example function
Jval = [2*z(1) 2*z(2) 0; sin(z(1)) 0 1 ; 0 -cos(z(2)) 1];

8.3. Primal-Dual Methods 201

A simple code implementing Newton’s method is given in newton.m. Note that the
argument list of newton.m includes the names of the MATLAB functions used to evaluate
the function F and Jacobian J at a given point. We show the code for the function (8.9) and
its Jacobian in Ftrig.m and Jtrig.m.

To invoke Newton’s method for solving (8.9), starting from the point z0 = (1, 3, 0)′,
we can use the following code:

� z0=[1; 3; 0]; eps = 1.e-12; itmax = 10;

� z = newton(z0,@Ftrig,@Jtrig,eps,itmax);

The newton function produces the following output:

iteration 0, Fnorm=5.7345e-01
iteration 1, Fnorm=1.2284e-01
iteration 2, Fnorm=9.3889e-04
iteration 3, Fnorm=4.1466e-08
iteration 4, Fnorm=1.1102e-16

and returns with a value of z close to the solution indicated earlier. The sequence of norms
‖F(zk)‖ displayed by newton shows clear evidence of quadratic convergence.

Despite its excellent local convergence properties, Newton’s method can behave errat-
ically when the initial point z0 is far from a solution. One way to improve the performance
of the method is to introduce a line search. Instead of defining the new iterate by (8.16), we
set

zk+1 = zk + αk�zk, (8.18)

where αk is a positive scalar known as the steplength, chosen to make zk+1 a better approx-
imate solution than zk . We can for instance choose αk to be the approximate minimizer of
the function

‖F(zk + αk�zk)‖2

for the given zk and �zk . This choice ensures that

‖F(z0)‖2 > ‖F(z1)‖2 > · · · ≥ ‖F(zk)‖2 > ‖F(zk+1)‖2 > · · ·
and often (but not always) results in the iterates making steady progress toward a solution
of F(z) = 0.

Exercise 8-2-1. Use newton to solve (8.9) starting from the point z0 = (2, 2, 0.5). Tabu-
late the values of ‖F(zk)‖2 for k = 0, 1, 2, 3.

8.3 Primal-Dual Methods
Primal-dual interior-point methods are founded in part on the observation that the equations
(8.7a), (8.7b), (8.7c) form a system in which the number of equations equals the number
of unknowns, and so Newton’s method can be applied. However, the need to handle the
nonnegativity conditions (8.7d) leads to significant (but interesting!) complications.

202 Chapter 8. Interior-Point Methods

We define the function F0(x, y, s) of the primal-dual vector triple (x, y, s) as follows:

F0(x, y, s) :=

 Ax − b

A′y + s − p

XSe


 . (8.19)

Note that the vector triple (x, y, s) contains 2n + m components in all and that the vector
function F0 has 2n+m components. A vector triple (x∗, y∗, s∗) satisfies the KKT conditions
(8.7) if and only if

F0(x
∗, y∗, s∗) = 0, x∗ ≥ 0, s∗ ≥ 0.

The Jacobian J0(x, y, s) of F0 is the following block 3 × 3 matrix:

J0(x, y, s) =

 A 0 0

0 A′ I

S 0 X


 . (8.20)

Starting from a point (x0, y0, s0) with x0 > 0 and s0 > 0, primal-dual methods
generate subsequent iterates by applying Newton’s method to the function F0—or a slightly
modified version of this function—choosing the steplength αk to ensure that the positivity
conditions xk > 0 and sk > 0 are satisfied at all iterates (xk, yk, sk).

We maintain positivity conditions xk > 0 and sk > 0 at all iterates for two reasons.
First, vectors that solve the system F0(x, y, s) = 0 and yet have negative components in
x or s are of no interest in terms of solving the primal and dual problems (8.1) and (8.3).
They are usually far from solutions of these linear programs, and we cannot recover such
solutions easily from them. Second, when the matrix A has linearly independent rows,
the Jacobian J0(x, y, z) is guaranteed to be nonsingular whenever the positivity conditions
x > 0 and s > 0 hold, and so linear systems that have this matrix as the coefficient matrix
are guaranteed to have a solution. We prove this assertion later in discussing implementation
of primal-dual methods.

8.3.1 An Affine-Scaling Approach

The simplest primal-dual approach is to apply Newton’s method directly to the function
F0, using a steplength αk of less than one if this is necessary to maintain positivity of the
components of x and s. Specifically, at the iterate (xk, yk, sk), satisfying xk > 0 and sk > 0,
we obtain a Newton direction by solving the system

J0(x
k, yk, sk)


 �xk

�yk

�sk


 = −F0(x

k, yk, sk). (8.21)

We replace F0 and J0 in the system (8.21) by their definitions (8.19) and (8.20) resulting in
the system 

 A 0 0
0 A′ I

Sk 0 Xk




 �xk

�yk

�sk


 = −


 Axk − b

A′yk + sk − p

XkSke


 .

8.3. Primal-Dual Methods 203

Using the definitions (8.6) of the diagonal matrices Xk and Sk , we can write out the last
block row of this system componentwise as follows:

sk
i �xk

i + xk
i �sk

i = −xk
i s

k
i , i = 1, 2, . . . , n. (8.22)

We then define the new iterate (xk+1, yk+1, sk+1) as follows:

(xk+1, yk+1, sk+1) = (xk, yk, sk) + αk(�xk, �yk, �sk) (8.23)

for some steplength αk . We need to choose αk to maintain positivity of the x and s compo-
nents, that is,

xk
i + αk�xk

i > 0, i = 1, 2, . . . , n,

sk
i + αk�sk

i > 0, i = 1, 2, . . . , n.

It is not hard to see that the largest value of αk that maintains these conditions is given by
the following formula:

αmax = min

(
min

i | �xk
i <0

xk
i

−�xk
i

, min
i | �sk

i <0

sk
i

−�sk
i

)
, (8.24)

which is similar to the ratio test used by the simplex method. We can step back from this
maximum value, and prevent each xi and si from being too close to zero, by defining αk as
follows:

αk = min (1, ηk ∗ αmax) , (8.25)

where ηk is some factor close to, but less than, 1. (A typical value of ηk is .999.) The value
in (8.25) is almost as long as it can possibly be while maintaining positivity and therefore
makes as much progress as it reasonably can make in the Newton direction.

This approach is referred to as primal-dual affine scaling. While it can be shown to
converge to a primal-dual solution, for an appropriate steplength selection strategy (more
complicated than the simple formula (8.25)), it often requires many iterations. Usually,
until the iterates reach the vicinity of a solution, the x and s components of the step—
�xk and �sk—move too sharply toward the boundary of the sets defined by x ≥ 0 and
s ≥ 0. Therefore, the steplength αk needs to be set to a small value to avoid violating these
conditions.

More successful approaches use modifications of the search direction that do not move
so sharply toward the boundary. That is, the �xk and �sk components are reoriented so
as to allow a longer steplength αk to be used. These modifications are defined by applying
Newton’s method not to F0 but to a perturbed version of this system, as we see in the next
section.

Exercise 8-3-1. Show that for steps (�xk, �yk, �sk) generated by the affine-scaling
method, we have that for each i = 1, 2, . . . , n, either �xk

i < 0 or �sk
i < 0 (or both).

(Hint: use (8.22) and the fact that xk > 0 and sk > 0.)

Exercise 8-3-2. Verify that αmax defined by (8.24) has the property that xk + α�xk > 0
and sk + α�sk > 0 for all α ∈ [0, αmax), while for α ≥ αmax we have that at least one
component of (xk + α�xk, sk + α�sk) is nonpositive.

204 Chapter 8. Interior-Point Methods

MATLAB file steplength.m: Finds a steplength that maintains positivity of x and s

function [alpha, alphax, alphas]
= steplength(x, s, Dx, Ds, eta)

%
% syntax: [alpha, alphax, alphas]
% = steplength(x, s, Dx, Ds, eta)
%
% given current iterate (x,s) and steps (Dx,Ds), compute
% steplengths that ensure that x + alphax*Dx>0 and
% s + alphas*Ds>0, and alpha = min(alphax,alphas). eta
% indicates the maximum fraction of step to the boundary
% (typical value: eta=.999)

alphax = -1/min(min(Dx./x),-1);
alphax = min(1, eta * alphax);
alphas = -1/min(min(Ds./s),-1);
alphas = min(1, eta * alphas);
alpha = min(alphax, alphas);

Exercise 8-3-3. Show that the value

αx,max = min

(
min

i | �xi<0

xi

−�xi

, 1

)
(8.26)

also satisfies the definition

αx,max = −
[

min

(
min

i=1,2,...,n

�xi

xi

, −1

)]−1

. (8.27)

(The latter form is sometimes more convenient for computation and is used in the MATLAB
routine steplength.m.)

8.3.2 Path-Following Methods

Path-following methods take a less “greedy” approach to satisfying the complementarity
conditions than do affine-scaling methods. Rather than aiming with every iteration of
Newton’s method to satisfy these conditions XSe = 0 (the third component of the system
F0(x, y, s) = 0), they use Newton iterations to aim at points at which the n pairwise products
xisi , i = 1, 2, . . . , n, are reduced from their present value (though not all the way to zero)
and are more “balanced.” These algorithms are based on the concept of the central path,
which we now introduce.

8.3. Primal-Dual Methods 205

x x().5

x()1

x().2

*

Figure 8.2. Central path projected into space of primal variables, showing x(τ)

for the three values τ = 1, τ = .5, and τ = .2.

We start by defining the vector triple (x(τ), y(τ), s(τ)) to satisfy the following system
of equations for a given positive parameter τ :

Ax = b, (8.28a)

A′y + s = p, (8.28b)

XSe = τe, (8.28c)

x > 0, s > 0. (8.28d)

Note that these conditions represent a perturbation of the KKT conditions (8.7), in which
the pairwise products xisi are all required to take on the same positive value τ rather than
being zero. Provided that there is a vector triple (x, y, s) such that x is feasible for (8.1) with
x > 0 and (y, s) is feasible for (8.3) with s > 0, the system (8.28) has a unique solution
(x(τ), y(τ), s(τ)) for any τ > 0.

We define the central path C to be the set of points satisfying (8.28) for any τ > 0;
that is,

C := {(x(τ), y(τ), s(τ)) | τ > 0}. (8.29)

The projection of C into the space of x variables for a linear program in R2 is shown
in Figure 8.2. Note that as τ ↓ 0, x(τ) approaches the solution x∗. (When the problem
(8.1) does not have a unique solution, the path x(τ) approaches a unique point in the set of
solutions as τ ↓ 0.) In the space of dual variables, (y(τ), s(τ)) also approaches a solution
of (8.3) as τ ↓ 0. Note that for any (x(τ), y(τ), s(τ)) ∈ C, the duality measure µ is equal
to τ , that is,

µ = x(τ)′s(τ)

n
= τ.

206 Chapter 8. Interior-Point Methods

Each step generated by a path-following method is a Newton step toward a point on
the central path C. For a given τ ≥ 0, we define the following modification of the function
F0 by taking the first three conditions in the system (8.28):

Fτ (x, y, s) =

 Ax − b

A′y + s − p

XSe − τe


 . (8.30)

The unique solution of Fτ (x, y, s) = 0 for which x > 0 and s > 0 is (x(τ), y(τ), s(τ)).
Regarding τ as a fixed parameter, we have that the Jacobian of Fτ is

Jτ (x, y, s) =

 A 0 0

0 A′ I

S 0 X


 .

In fact, Jτ (x, y, s) is the same as the Jacobian J0(x, y, s) defined in (8.20) for all τ .
Long-step path-following methods generate each step by applying Newton’s method

to Fτk
(x, y, s) = 0, where τk = σkµk , µk = (xk)′(sk)/n is the duality measure at the

current iterate (xk, yk, sk) and σk is a parameter in the range (0, 1). Note that the solution
(x(τk), y(τk), s(τk)) of Fτk

(x, y, s) = 0 has duality measure τk , which is smaller than the
duality measure µk at iteration k. By setting σk < 1, we are aiming at a point that is
not only on the central path but also more advanced toward the solution than the current
point (xk, yk, sk). As in the affine-scaling approach, we scale the Newton direction by
a steplength αk , chosen to ensure that the next iterate (xk+1, yk+1, sk+1) also satisfies the
positivity conditions xk+1 > 0 and sk+1 > 0.

The parameter σk is known as a centering parameter. When σk is close to 1, the
Newton step for Fτ (x, y, s) tends to produce a point that is more “central” than the current
iterate (in the sense that the n pairwise products xisi , i = 1, 2, . . . , n, all have similar
values), but the new point does not make much progress toward the primal-dual solution.
When σk is close to zero, the Newton step moves more aggressively toward the solution set,
in the manner of the affine-scaling step of Subsection 8.3.1, but typically does not produce
much of a balancing effect on the pairwise products xisi , i = 1, 2, . . . , n.

Path-following methods take just one Newton step for each value of τk . At each
iteration, we reset τk = σkµk for the chosen value of σk , which produces a generally
decreasing sequence of values for τk , k = 0, 1, 2, In a sense, the Newton iterates are
chasing a moving target—the target is moving along the central path toward the primal-dual
solution.

We can now state a simple algorithmic framework for a path-following method, using
the ingredients described above.

Path-Following Algorithm
Choose σmin and σmax such that 0 < σmin < σmax < 1;
Choose initial point (x0, y0, s0) with x0 > 0 and s0 > 0;
for k = 0, 1, 2, . . .

Choose σk ∈ [σmin, σmax];
Solve for (�xk, �yk, �sk):

8.3. Primal-Dual Methods 207


 A 0 0

0 A′ I

Sk 0 Xk




 �xk

�yk

�sk


 = −


 Axk − b

A′yk + sk − p

XkSke − σkµke


 , (8.31)

where µk = (xk)′sk/n, Xk = diag(xk
1 , xk

2 , . . . , xk
n), etc.;

Choose αmax to be the largest positive value of α such that

(xk, sk) + α(�xk, �sk) ≥ 0;
Set αk = min(1, ηkαmax) for some ηk ∈ (0, 1);
Set (xk+1, yk+1, sk+1) = (xk, yk, sk) + αk(�xk, �yk, �sk);

end (for).

Reasonable values for the constants in this algorithm are σmin = 10−2 and σmax = .75.
Note that we have considerable freedom in the choice of centering parameters σk and

steplength scaling parameters ηk at each iteration. We would like to choose these parameters
so as to make good progress in reducing the duality measure to zero on the current step (which
requires σk close to zero) while at the same time maintaining steplengths αk close to 1 (which
is more likely to happen when σk is closer to 1). In general, it is a good idea to use a smaller,
more aggressive value of σk on the current iteration when the steplength αk−1 was close
to 1 on the previous iteration or when the affine-scaling direction computed at the current
iteration allows a steplength close to 1 before violating the positivity conditions x > 0 and
s > 0. We comment further on this point in Section 8.3.4.

It has proven effective in practice to choose ηk closer to 1 as we approach the solution
but in any case to ensure that this parameter does not drop below a threshold quite close to
1, for example, 0.99. Again, see Section 8.3.4 for further discussion of this issue.

Under some additional assumptions and slightly different conditions on the choice of
αk , the algorithm above can be shown to have a polynomial complexity property. Specifically,
given a small tolerance ε, a starting point (x0, y0, s0) that satisfies the conditions (8.4a) and
(8.4b) and is close to the central path in a certain sense, and a strategy for selecting αk that
keeps all iterates within a certain neighborhood of the central path, the method converges
to a point (x, y, s) for which x ′s ≤ ε in O

(
n log

(
(x0)′(s0)/ε

))
iterations.

Exercise 8-3-4. Show that if (xk, yk, sk) is feasible with respect to the conditions (8.4a)
and (8.4b), then the next iterate (xk+1, yk+1, sk+1) also satisfies these conditions. (It follows
that in fact all subsequent iterates satisfy these feasibility conditions.)

Exercise 8-3-5. Show that if (xk, yk, sk) is feasible with respect to (8.4a) and (8.4b), the
following conditions hold:

(�xk)′�sk = 0,

(sk)′�xk + (xk)′�sk = (−1 + σk)(x
k)′sk,

(xk + α�xk)′(sk + α�sk) = (1 − α(1 − σk))(x
k)′sk ∀α > 0.

208 Chapter 8. Interior-Point Methods

8.3.3 Solution of the Linear System at Each Interior-Point Iteration

The major computational operation at each step of any primal-dual interior-point algorithm,
including the Path-Following Algorithm above, is to solve a linear system like (8.31), which
we state here without the superscripts and in a more general form:

 A 0 0
0 A′ I

S 0 X




 �x

�y

�s


 =


 rb

rp

rxs


 . (8.32)

Here S and X are the diagonal matrices with positive diagonal elements defined in (8.6), and
rb, rp, and rxs represent the three components of the right-hand side. In some variants of
the algorithm (see next section), we may need to solve a system of this form more than once
at each iteration, with the same coefficient matrix but different right-hand side components
rb, rp, rxs .

It is crucial to solve this system efficiently since, for practical linear programs, it is
often very large. Moreover, the constraint matrix A (and therefore the overall matrix in
(8.32)) is often quite sparse, so that sophisticated sparse linear algebra software is needed.
Fortunately, MATLAB incorporates some good sparse solvers, and so it is possible to im-
plement a fairly efficient linear programming solver based on interior-point methods purely
in MATLAB—a feat that is not possible for the simplex method.

Although it is possible to apply a sparse solver directly to (8.32), we usually can do
much better by exploiting the structure of this system and performing some preliminary
block eliminations. By writing the third block of equations as

S�x + X�s = rxs,

we can express �s in terms of �x as follows:

�s = −X−1S�x + X−1rxs . (8.33)

By substituting into the second equation A′�y + �s = rp of (8.32) and exchanging the
first and second block rows, we obtain the following equivalent form:[−X−1S A′

A 0

] [
�x

�y

]
=
[

rp − X−1rxs

rb

]
. (8.34)

The matrix in this system is symmetric indefinite, and there are sparse linear solvers that can
exploit this property. However, we can reduce it to an even more compact and convenient
form. Noting that X−1S is again a diagonal matrix with positive diagonal elements, whose
inverse is S−1X, we can use the first equation in (8.34) to eliminate �x as follows:

�x = −S−1X
[
rp − X−1rxs − A′�y

]
. (8.35)

By substituting into the second equation in (8.34), we obtain the following system involving
only �y:

A(S−1X)A′�y = rb + AS−1X
[
rp − X−1rxs

]
. (8.36)

This form is sometimes known as the normal-equations form. The matrix A(S−1X)A′ is
a symmetric positive definite matrix, provided that A has linearly independent rows. Note

8.3. Primal-Dual Methods 209

that this matrix needs to be recalculated at each iteration, as the diagonal matrices X and
S change from one step to the next. Most software uses a sparse Cholesky factorization
procedure to obtain a lower triangular matrix L and a permutation matrix P such that

LL′ = PA(S−1X)A′P ′. (8.37)

We can then perform triangular substitution (forward, then backward) to obtain the solution
�y of (8.36), then recover �x using the formula (8.35), and finally recover �s using the
formula (8.33).

The permutation matrix P can be computed before the first iteration of the algorithm.
It is chosen to ensure that the factor L stays reasonably sparse during the Cholesky factor-
ization. (Techniques for choosing P appropriately have been the subject of a great deal of
study in sparse matrix computations.) Since the nonzero structure of A(S−1X)A′ does not
depend on the contents of S−1X, the permutation P computed at the first iteration can be
used at all subsequent iterations.

The code pathfollow.m contains a simple implementation of an algorithm sim-
ilar to the Path-Following Algorithm above. Use the command help pathfollow in
MATLAB to see details of the calling sequence for this routine. Note that this solver uses the
MATLAB sparse Cholesky routine cholinc. Study the pathfollow.m code closely
to see how the choices of the parameters σk and ηk are made by this implementation and
to understand how the implementation otherwise varies slightly from the Path-Following
Algorithm specified above.

Exercise 8-3-6. Test the routine pathfollow() by solving the problem

min −x1 − 5x2

subject to x1 + x2 + x3 = 5,

x1 + 3x2 + x4 = 7,

x1, x2, x3, x4 ≥ 0.

Note: You need to call the routine pathfollow with a matrix defined in the MATLAB
sparse format. MATLAB uses the command sparse() to create a matrix in sparse
format from a given dense matrix. For the matrix given here, you can define Aden =
[1 1 1 0; 1 3 0 1]; and then set A = sparse(Aden). The data structure A
can then be passed to pathfollow().

The code pathfollowTest.m shows some sample code for calling the routine
pathfollow() with random data. The dimensions m and n are specified, and the sparse
matrix A is chosen at random to have a specified density. The remaining data p and b are
chosen to ensure that the primal and dual problems are feasible. Note that pathfollow()
prints one line of information at each interior-point iteration, showing the value of duality
measure µk and a measure of the infeasibility in the conditions (8.4a) and (8.4b).

8.3.4 Practical Primal-Dual Methods

Practical implementations of interior-point method underwent much refinement between
1988 and the early 1990s. Though they continued to follow the framework presented in the

210 Chapter 8. Interior-Point Methods

MATLAB file pathfollowTest.m: Code to call pathfollow() with random data

% generate a sparse random matrix of given density
m=10; n=100; density=0.2; A = sprandn(m,n,density);

% choose feasible x, y, s at random, with x and s each about
% half-full
xfeas = [rand(n/2,1); zeros(n-(n/2),1)];
sfeas = [zeros(n/2,1); rand(n-(n/2),1)];
xfeas = xfeas(randperm(n)); sfeas = sfeas(randperm(n));
yfeas = (rand(m,1)-0.5)*4;

% choose b and p to make this (x,y,s) feasible
b = A*xfeas; p=A’*yfeas+sfeas;

% call the solver
[x,y,s,f] = pathfollow(A,b,p);

fprintf(1,’ final primal value: %12.6e \n’, p’*x);
fprintf(1,’ final dual value: %12.6e \n’, b’*y);
fprintf(1,’ primal infeas: %12.6e \n’, norm(A*x-b));
fprintf(1,’ dual infeas: %12.6e \n’, norm(A’*y+s-p));

Path-Following Algorithm presented above, they introduced several small but significant
variations to the basic approach and devised effective heuristics for choosing the initial point
(x0, y0, s0) and parameters such as σk and ηk . These heuristics decreased both the failure
rate and the number of interior-point iterations required to find an approximate solution. We
list here the most important modifications and enhancements.

1. An adaptive choice of the centering parameter σk at each iteration. The method first
calculates the pure Newton (affine-scaling) step, obtained by replacing σk by 0 in
(8.31). If it is possible to take a steplength of nearly 1 in this direction before vio-
lating the nonnegativity conditions on x and s, the method concludes that relatively
little centering is needed, and so it sets σk close to zero. If it is possible to go only
a short distance along the affine-scaling direction before violating the nonnegativity
conditions, the method chooses a larger value of σk , placing more emphasis on cen-
tering the iterates (to balance the pairwise products xisi , i = 1, 2, . . . , n) rather than
on making rapid progress toward the solution.

2. Adding a “corrector” component to the search direction. The method obtains its
search direction by solving the following system:
 A 0 0

0 A′ I

Sk 0 Xk




 �xk

�yk

�sk


 = −


 Axk − b

A′yk + sk − p

XkSke − σkµke + �Xk
aff�Sk

affe


 , (8.38)

8.3. Primal-Dual Methods 211

where �Xk
aff and �Sk

aff are diagonal matrices constructed from the x and s components
of the affine-scaling direction computed in Step 1 above. The motivation for this
additional component on the right-hand side comes from higher-order variants of
Newton’s method, in which we replace the usual linear (first-order) model that is the
basis of Newton’s method with an approximate second-order model.

3. A heuristic for choosing the starting point (x0, y0, s0), based on a least-squares fit
to the feasibility conditions Ax = b, A′y + s = c (see Section 9.2.4), with ad-
justments to ensure that x0 and s0 are sufficiently positive. A starting point of the
form (x0, y0, s0) = (βe, 0, βe) (for some large positive value of β) often suffices,
and in fact we use a starting point of this form in pathfollow(). However, the
least-squares heuristic leads to convergence on a wider range of problems.

4. A heuristic to determine ηk . Better efficiency can often be achieved by allowing this
fraction to approach 1 as the iterates approach the solution. In pathfollow(), we
use the simple assignment

ηk = max(.9995, 1 − µk).

Many more complex variants have been tried.

5. The use of different steplengths in the primal variable x and the dual variables (y, s)

speeds the convergence and improves robustness in some cases. We can compute the
maximum primal step from the formula (8.26) (alternatively, (8.27)) and compute the
maximum dual step αs,max similarly. We then set

αk
x = min(1, ηkαx,max), αk

s = min(1, ηkαs,max)

for the parameter ηk ∈ (0, 1) mentioned above, and define the new iterates as follows:

xk+1 = xk + αk
x�xk,

(yk+1, sk+1) = (yk, sk) + αk
s (�yk, �sk).

The pure Newton (affine-scaling) direction calculated in Step 1 is sometimes referred
to as a “predictor” direction, and the whole technique is sometimes called “predictor-
corrector” or “Mehrotra predictor-corrector” (honoring the paper by Mehrotra (1992), in
which many of the techniques above were described). Unlike predictor-corrector techniques
in other areas of computational mathematics, however, we do not actually take a step along
the “predictor” direction but use it only as a basis for choosing the centering parameter σk .
It would perhaps be more accurate to call it a “probing” direction.

The main cost of implementing an algorithm that combines all these heuristics is
from the solution of two linear systems: A system of the form (8.31) with σk replaced by
0 (to obtain the affine-scaling step), and the system (8.38) (to obtain the search direction).
Both linear systems have the same coefficient matrix, and so just a single matrix factoriza-
tion is required. The technique described in the previous subsection can be used for this
operation.

212 Chapter 8. Interior-Point Methods

8.4 Interior-Point vs. Simplex
Are interior-point methods faster than simplex methods? This question has no simple answer.
The practical efficiency of both methods depends strongly on how they are implemented.
The number of iterations required by an interior-point method is typically between 10 and
100—almost always fewer than the number of simplex iterations, which is typically 2 to
3 times the number of primal and dual variables. However, each interior-point iteration is
considerably more expensive, computationally speaking, than a simplex iteration.

After being relatively stable throughout the 1970s and 1980s, simplex codes became
dramatically more efficient after 1990, in part because of the competition they faced from
the new interior-point codes. New pricing strategies (for selecting variables to enter the
basis) played a large role in this improvement, along with improvements in sparse linear
algebra. Improvements in preprocessing (which involves reducing of the size of the linear
program prior to solving it by inspecting the constraints of the primal and dual problems
closely) also played a role in improving both simplex and interior-point codes.

In interior-point methods, the critical operation is the sparse matrix factorization
operation (8.37). Different row/column ordering strategies (that is, different choices of the
permutation matrix P) can lead to dramatically different factorization times. Moreover,
the approach based on (8.36) needs to be modified when A contains dense columns, since
these produce unacceptable “fill-in” in the product A(S−1X)A′. Different implementations
handle this issue in different ways.

As a general rule, interior-point methods are competitive with simplex (sometimes
much faster) on large linear programs. On smaller problems, simplex is usually faster.
Simplex methods also have the advantage that they are more easily warm-started. They can
take advantage of prior knowledge about a solution (for example, a good initial estimate
of the optimal basis) to greatly reduce the number of iterations. Warm-start information
for interior-point methods leads to more modest improvements in run time. Production
software for both simplex and interior-point methods has reached a fairly high degree of
sophistication and can be used with confidence.

8.5 Extension to Quadratic Programming
The algorithms of the previous sections can be extended to convex quadratic programming
problems. The underlying concepts are identical, though certain aspects of the implemen-
tation change. We show in this section how the path-following approach can be extended
to quadratic programs expressed in the form (7.7). (The algorithms could just as easily be
extended to the general form (7.12), but the notation would be more complicated.)

The KKT conditions for (7.7) are given as (7.8); we restate them here:

0 ≤ x ⊥ Qx − A′u + p ≥ 0,

0 ≤ u ⊥ Ax − b ≥ 0.

Here Q is a symmetric positive semidefinite n × n matrix, while A is an m × n matrix. By
introducing slack variables v and s, we can rewrite these conditions as follows:

Qx − A′u − s = −p, (8.39a)

Ax − v = b, (8.39b)

8.5. Extension to Quadratic Programming 213

0 ≤ x ⊥ s ≥ 0, (8.39c)

0 ≤ u ⊥ v ≥ 0. (8.39d)

By defining diagonal matrices X, S, U , V from the components of x, s, u, v, as in (8.6), we
can rewrite the KKT conditions in a form similar to (8.7):

Qx − A′u − s = −p, (8.40a)

Ax − v = b, (8.40b)

XSe = 0, (8.40c)

UV e = 0, (8.40d)

x ≥ 0, s ≥ 0, u ≥ 0, v ≥ 0. (8.40e)

(Note that x and s are vectors in Rn while u and v are vectors in Rm. The vector e =
(1, 1, . . . , 1)′ thus has m elements in (8.40d) and n elements in (8.40c), but we tolerate this
minor abuse of notation.)

As for the linear programming algorithms developed above, we obtain path-following
methods by applying modified Newton methods to the linear system formed by (8.40a),
(8.40b), (8.40c), and (8.40d). As above, we require the primal and dual variables with
nonnegativity constraints to stay strictly positive at all iterations, that is,

(xk, sk, uk, vk) > 0, k = 0, 1, 2,

Following (8.8), we define the duality measure by summing together the violations of the
complementarity conditions:

µ = 1

m + n

(
x ′s + u′v

) = 1

m + n


 n∑

i=1

xisi +
m∑

j=1

ujvj


 .

(We denoteµk to be the value ofµwhen evaluated at the point (x, s, u, v) = (xk, sk, uk, vk).)
Given the elements above, we modify the Path-Following Algorithm of Section 8.3.2

to solve (7.7) (and (7.8)) as follows.

Path-Following Algorithm (Quadratic Programming)
Choose σmin and σmax such that 0 < σmin < σmax < 1;
Choose initial point (x0, s0, u0, v0) > 0;
for k = 0, 1, 2, . . .

Choose σk ∈ [σmin, σmax];
Solve for (�xk, �sk, �uk, �vk):




Q −I −A′ 0
A 0 0 −I

Sk Xk 0 0
0 0 V k Uk






�xk

�sk

�uk

�vk


 = −




Qxk − A′uk − sk + p

Axk − vk − b

XkSke − σkµke

UkV ke − σkµke


 , (8.41)

where µk , Xk , Sk , etc. are defined above;
Choose αmax to be the largest positive value of α such that

214 Chapter 8. Interior-Point Methods

(xk, sk, uk, vk) + α(�xk, �sk, �uk, �vk) ≥ 0;
Set αk = min(1, ηkαmax) for some ηk ∈ (0, 1);
Set (xk+1, sk+1, uk+1, vk+1) = (xk, sk, uk, vk) + αk(�xk, �sk, �uk, �vk);

end (for).

Most of the modifications of Section 8.3.4, which accelerate the convergence of the
path-following approach on practical problems, can also be applied to quadratic programs. In
particular, the adaptive choice of the centering parameter σk , the predictor-corrector scheme,
and the heuristic for determining the steplength scaling parameter ηk can be defined in an
analogous fashion to the linear programming case. Because the Hessian Q causes a tighter
coupling between primal and dual variables than for linear programming, however, most
algorithms for quadratic programming do not take different primal and dual steplengths.

We discuss briefly solution of the linear systems at each path-following iteration,
which have the following form:


Q −I −A′ 0
A 0 0 −I

S X 0 0
0 0 V U






�x

�s

�u

�v


 =




rp

rb

rxs

ruv


 .

By eliminating �u and �v, we obtain the following reduced system in (�x, �s):[
Q + X−1S −A′

A U−1V

] [
�x

�s

]
=
[

rp + X−1rxs

rb + U−1ruv

]
. (8.42)

The coefficient matrix of this system is positive semidefinite but not symmetric. (Prove it!)
If Q is diagonal, or if it has some other simple structure, we can eliminate �x to obtain
a system like the normal-equations form of (8.36). Generally, however, such a reduction
is not possible. We can convert the matrix in (8.42) to symmetric indefinite form (a form
to which some standard linear algebra software can be applied) by simply multiplying the
second block row by −1 to obtain[

Q + X−1S −A′
−A −U−1V

] [
�x

�s

]
=
[

rp + X−1rxs

−rb − U−1ruv

]
.

Further Reading
For more information on interior-point methods for linear programming, see Wright (1997).
Karmarkar (1984) started the modern era of interior-point development. (Karmarkar’s
method is somewhat different from those discussed in this chapter, but it is responsible
for motivating much of the subsequent research in the area.) An important exposé of the
central path is provided by Megiddo (1989).

Some interior-point codes for linear programming are freely available on the Internet.
One widely used such code is PCx (Czyzyk et al. (1999)). A number of high-quality

8.5. Extension to Quadratic Programming 215

commercial implementations are available. The interior-point code OOQP (Gertz & Wright
(2003)), also freely available, solves convex quadratic programming problems. It is coded in
object-oriented form, allowing users to supply linear algebra solver for the linear equations
at each iteration that take advantage of the structure of the particular problem at hand.

Finally, we mention Khachiyan (1979), whose ellipsoid method was the first algorithm
for linear programming with polynomial complexity but is not efficient in practice.

Chapter 9

Approximation and
Classification

In this chapter, we examine the use of linear and quadratic programming techniques to
solve applications in approximation/regression and for classification problems of machine
learning. In approximation problems, our aim is to find a vector x that solves a system of
equalities and/or inequalities “as nearly as possible” in some sense. Various “loss functions”
for measuring the discrepancies in each equality and inequality give rise to different regres-
sion techniques. We also examine classification problems in machine learning, in which
the aim is to find a function that distinguishes between two sets of labeled points in Rn.
Throughout this chapter, we use the concepts discussed in Appendix A, and so a review of
that material may be appropriate.

9.1 Minimax Problems
In this section, we consider the solution of a modification of linear programming in which
the linear objective function is replaced by a convex piecewise-linear function. Such a
function can be represented as the pointwise maximum of a set of linear functions that we
can reduce to a linear programming problem and solve using the techniques of this book.
Recall that we have already seen an example of piecewise-linear convex functions during
our study of parametric linear programming—the optimal objective value is piecewise linear
when considered as a function of linear variations in the right-hand side.

Consider first the function f defined as follows:

f (x) := max
i=1,2,...,m

(ci)′x + di, (9.1)

where ci ∈ Rn and di ∈ R, i = 1, 2, . . . , m. We can prove that this function is convex by
showing that its epigraph (defined in (A.3)) is a convex set. Writing

epi(f) = {(x, µ) | f (x) ≤ µ}
=
{
(x, µ) | max

i=1,2,...,m
(ci)′x + di ≤ µ

}
= {

(x, µ) | (ci)′x + di ≤ µ ∀i = 1, 2, . . . , m
}

=
⋂

i=1,2,...,m

{
(x, µ) | (ci)′x + di ≤ µ

}
,

217

218 Chapter 9. Approximation and Classification

we see from Lemmas A.2.1 and A.2.2 that this set is indeed convex.
For f defined in (9.1), consider the problem

min
x

f (x), Ax ≤ b, x ≥ 0. (9.2)

By introducing an artificial variable µ to play a similar role as in the definition of epi f , we
can reformulate (9.2) as the following linear program:

min
(x,µ)

µ

subject to µ ≥ (ci)′x + di ∀i = 1, 2, . . . , m,

Ax ≤ b,

x ≥ 0.

Note that the constraints themselves do not guarantee that µ equals f (x); they ensure only
that µ is greater than or equal to f (x). However, the fact that we are minimizing ensures
that µ takes on the smallest value consistent with these constraints, and so at the optimum
it is indeed equal to f (x).

Exercise 9-1-1. Reformulate the following problem as a linear program and use MATLAB
to solve it:

min max{x1 + x2 − 1, x1 − x2 + 1}
subject to x1 + 4x2 ≤ 2,

3x1 + x2 ≤ 4,

x1, x2 ≥ 0.

Exercise 9-1-2. Use the simplex method to solve the following problem:

min 7|x| − y + 3z

subject to y − 2z ≤ 4,

−x − y + 3z ≤ −2,

3x − y + 3z ≥ 0,

y ≥ 3, z ≤ 1.

(Note that |x| = max{x, −x}.)
Note that since f is defined as the pointwise maximum of a finite number of linear

functions, this problem is sometimes called the discrete minimax problem. An elegant
saddle-point theory is available for problems involving the supremum of a function with
continuous variables; see, for example, Mangasarian (1969).

9.2 Approximation
In Section 1.3.2, we described the problem of fitting a linear surface to a set of observations.
This problem is a good example of an approximation problem. Such problems seek a vector
x that satisfies a set of (possibly inconsistent) linear equalities and inequalities as closely as
possible. We define “closeness” in terms of norms, which are defined in Appendix A.

Consider first the following set of linear equations:

Ax = b,

9.2. Approximation 219

where A ∈ Rm×n that may or may not be consistent. We replace this problem with the
following:

min
x∈Rn

‖Ax − b‖p, (9.3)

where p is usually 1, 2, or ∞. Because ‖r‖p = 0 for r ∈ Rm if and only if r = 0, any vector
x that solves Ax = b also is a minimizer of ‖Ax − b‖p, and conversely. If no solution to
Ax = b exists, the minimization problem will yield the x that minimizes the norm of the
“error” or “residual” vector r = Ax − b in the �p-norm sense.

We consider three norm choices p = ∞, p = 1, and p = 2 in turn, showing how the
techniques of the earlier chapters can be used to solve the resulting minimization problems.

9.2.1 Chebyshev Approximation

When the �∞-norm is used to measure the residual norm, we obtain the following problem:

min
x∈Rn

‖Ax − b‖∞ = min
x∈Rn

max
1≤i≤m

|Ai·x − bi |. (9.4)

This problem is often referred to as Chebyshev approximation, after the famous Russian
mathematician. Since |Ai·x − bi | = max{Ai·x − bi, −(Ai·x − bi)}, we can formulate this
problem as a linear program by introducing a single variable ε to represent the objective
function as follows:

min
ε,x

ε subject to − eε ≤ Ax − b ≤ eε, (9.5)

where e represents a vector of ones with m elements. The constraints ensure that ε is no
smaller than |Ai·x −bi |, i = 1, 2, . . . , m, while the fact that we are minimizing ensures that
ε is set to the largest of these values (and no larger).

Lemma 9.2.1. The problems (9.4) and (9.5) are equivalent.

Proof. If (ε̄, x̄) solves (9.5), then

ε̄ = |Aj ·x̄ − bj |
for some j ; otherwise the objective function can be improved by decreasing ε̄. Furthermore,

ε̄ ≥ |Ai·x̄ − bi |
for all i �= j by feasibility. Hence ε̄ = ‖Ax̄ − b‖∞. Now suppose that x is any point in Rn.
Then for ε := ‖Ax − b‖∞, (ε, x) is feasible for the linear program (9.5) and

‖Ax − b‖∞ = ε ≥ ε̄ = ‖Ax̄ − b‖∞,

where the inequality follows from the fact that ε̄ is the minimum value of (9.5).
Conversely, if x̄ is the solution of (9.4), let ε̄ = ‖Ax̄ − b‖∞. Then for any feasible

point (ε, x) of (9.5), we have
ε ≥ ‖Ax − b‖∞,

and so
ε̄ = ‖Ax̄ − b‖∞ ≤ ‖Ax − b‖∞ ≤ ε.

Hence, (ε̄, x̄) is a solution of (9.5), as required.

220 Chapter 9. Approximation and Classification

By making use of the equivalence between (9.4) and (9.5), we can prove that (9.4)
always exists.

Proposition 9.2.2. A solution of (9.4) always exists.

Proof. The equivalent linear program is always feasible (ε = ‖b‖∞, x = 0), and its
objective is bounded below by zero. Hence, by strong duality, it has a solution.

Example 9-2-1. Consider the following overdetermined system:

x1 + x2 = 1,

x1 − x2 = 1,

x1 = 0.

(9.6)

We solve the Chebyshev approximation problem for this system by means of the formulation
(9.5). As we show, it is convenient to use the dual simplex method to solve it. Scheme II of
Chapter 3 can be used to handle the components of x, which are free variables in (9.5).

The following MATLAB code constructs the formulation (9.5) from the data for this
problem. We set up (9.6) as follows:

� load ex9-2-1

� [m,n] = size(A);

� p = [zeros(n,1);1];

� augA = [A ones(m,1);-A
ones(m,1)];

� T = totbl(augA,[b;-b],p);

� T = relabel(T,’x3’,’eps’);

x1 x2 ε 1
x4 = 1 1 1 −1
x5 = 1 −1 1 −1
x6 = 1 0 1 0
x7 = −1 −1 1 1
x8 = −1 1 1 1
x9 = −1 0 1 0
z = 0 0 1 0

In this implementation, x1 and x2 are the original variables and we relabel x3 as ε. Following
Scheme II of Section 3.6.3, we pivot x1 and x2 to the side of the tableau and then permute
the rows to place them at the bottom. (Note that we can treat ε as a nonnegative variable,
since the constraints in (9.5) cannot be satisfied if it has a negative value.)

� T = ljx(T,1,1);

� T = ljx(T,2,2);

� T = permrows(T,[3:7 1 2]);

x4 x5 ε 1
x6 = 0.5 0.5 0 1
x7 = −1 0 2 0
x8 = 0 −1 2 0
x9 = −0.5 −0.5 2 −1
z = 0 0 1 0
x1 = 0.5 0.5 1 1
x2 = 0.5 −0.5 0 0

Note that this tableau is dual feasible because the bottom row is nonnegative, and so we can
apply the dual simplex method. (In fact, it is true for all problems (9.5) that we can apply dual
simplex after using Scheme II, because the initial cost vector has only nonnegative entries,
and this row of the tableau is not affected by the Scheme II pivots.) For this particular
problem, a single dual simplex pivot leads to the optimal tableau.

9.2. Approximation 221

� T = ljx(T,4,3); x4 x5 x9 1
x6 = 0.5 0.5 0 1
x7 = −0.5 0.5 1 1
x8 = 0.5 −0.5 1 1
ε = 0.25 0.25 0.5 0.5
z = 0 0 1 0.5
x1 = 0.25 0.25 −0.5 0.5
x2 = 0.5 −0.5 0 0

Reading the solution from this tableau, we see that

x1 = 0.5, x2 = 0, z = ε = 0.5.

In the case in which A has linearly dependent columns, we will not be able to pivot
all the original components of x to the side of the tableau. However, since the reduced
cost for these components remains at zero throughout the Scheme II procedure, the column
corresponding to the unpivoted variable will be entirely zero, and so the variable can be
fixed at zero and removed from the problem.

Exercise 9-2-2. Explain, by referring to the formulae for the Jordan exchange, why the
reduced costs in the tableau are not affected by the Scheme II procedure for pivoting the
original x components to the side of the tableau.

Exercise 9-2-3. Solve the Chebyshev approximation problem associated with the following
overdetermined linear system:

5x1 − x2 = 3,

−x1 + 2x2 = −2,

x1 − 3x2 = 1.

9.2.2 L1 Approximation

We now consider the case in which the �1-norm is used to measure the size of the residual
vector. In this case, (9.3) becomes

min
x∈Rn

‖Ax − b‖1 = min
x∈Rn

m∑
i=1

|Ai·x − bi |. (9.7)

We formulate this problem as a linear program by introducing a vector y ∈ Rm such that
yi = |Ai·x − bi | as follows:

min
(x,y)

e′y subject to − y ≤ Ax − b ≤ y. (9.8)

Lemma 9.2.3. The problems (9.7) and (9.8) are equivalent.

Proof. The proof is similar to that of Lemma 9.2.1.

222 Chapter 9. Approximation and Classification

Proposition 9.2.4. A solution of (9.7) always exists.

Proof. The equivalent linear program is always feasible (set x = 0, yi = |bi |, i =
1, 2, . . . , m), and its objective is bounded below by zero.

Example 9-2-4. We now form the simplex tableau corresponding to (9.8) for Example 9-
2-1:

� load ex9-2-1

� [m,n] = size(A);

� p = [zeros(n,1); ones(m,1)];

� augA = [A eye(m);-A eye(m)];

� T = totbl(augA,[b;-b],p);

� T = relabel(T,’x3’,’y1’);

� T = relabel(T,’x4’,’y2’,
’x5’,’y3’);

x1 x2 y1 y2 y3 1
x6 = 1 1 1 0 0 −1
x7 = 1 −1 0 1 0 −1
x8 = 1 0 0 0 1 0
x9 = −1 −1 1 0 0 1
x10 = −1 1 0 1 0 1
x11 = −1 0 0 0 1 0
z = 0 0 1 1 1 0

As in the previous section, we pivot the free variables x1 and x2 to the side of the tableau
and then move them to the bottom. Once again, these pivots do not affect the objective row,
and thus the resulting tableau is dual feasible:

� T = ljx(T,1,1);

� T = ljx(T,2,2);

� T = permrows(T,
[3:7 1 2]);

x6 x7 y1 y2 y3 1
x8 = 0.5 0.5 −0.5 −0.5 1 1
x9 = −1 0 2 0 0 0
x10 = 0 −1 0 2 0 0
x11 = −0.5 −0.5 0.5 0.5 1 −1
z = 0 0 1 1 1 0
x1 = 0.5 0.5 −0.5 −0.5 0 1
x2 = 0.5 −0.5 −0.5 0.5 0 0

A single dual simplex pivot results in the optimal tableau given below:

� T = ljx(T,4,5); x6 x7 y1 y2 x11 1
x8 = 1 1 −1 −1 1 2
x9 = −1 0 2 0 0 0
x10 = 0 −1 0 2 0 0
y3 = 0.5 0.5 −0.5 −0.5 1 1
z = 0.5 0.5 0.5 0.5 1 1
x1 = 0.5 0.5 −0.5 −0.5 0 1
x2 = 0.5 −0.5 −0.5 0.5 0 0

A solution to the original problem can be obtained from this optimal tableau using the
relations

x1 = 1, x2 = 0, z = y1 + y2 + y3 = 1.

9.2. Approximation 223

The resulting solution is x1 = 1, x2 = 0 with objective value 1. Note also that this solution
is different from the one obtained as the Chebyshev solution in (9.6).

Exercise 9-2-5. Solve the �1-norm approximation problem for the overdetermined system
in Exercise 9-2-3.

9.2.3 Approximate Solutions to Systems with Inequality Constraints

Sometimes the approximation problem also contains “hard” constraints—constraints that the
solution must satisfy exactly, not just in a “near as possible” sense. When such constraints are
present, we simply add them to the linear programming formulation explicitly. Specifically,
the constrained Chebyshev approximation problem

min
x∈Rn

‖Ax − b‖∞ subject to Cx ≥ d

can be formulated as follows:

min
ε,x

ε subject to − eε ≤ Ax − b ≤ eε, Cx ≥ d, (9.9)

while the constrained L1 approximation problem

min
x∈Rn

‖Ax − b‖1 subject to Cx ≥ d

can be formulated as follows:

min
(x,y)

e′y subject to − y ≤ Ax − b ≤ y, Cx ≥ d.

Exercise 9-2-6. Can the procedure outlined above for solving (9.5) (that is, Scheme II
followed by dual simplex) also be applied to (9.9), or does the presence of the additional
constraints Cx ≥ d sometimes make it impossible to apply dual simplex directly after the
Scheme II pivots?

The formulation techniques used for overdetermined systems of equalities in (9.5)
and (9.8) can be generalized to systems of inequalities. Our approach here is essentially
the same as in Phase I of the two-phase simplex method, in which we formulate a linear
program whose solution is zero when a feasible point for the original problem has been
found. The difference here is that we are interested in the solution even if the algebraic
system is infeasible, since our goal is to find the vector that satisfies the system “as closely
as possible” in some sense. Note that in contrast to the formulations outlined earlier in this
section, the constraints Cx ≥ d are now allowed to be violated at the solution.

Consider the following system:

Ax = b, Cx ≥ d. (9.10)

(Note that any less-than inequalities can be converted to greater-than by simply multiplying
both sides by −1.) The generalization of the Chebyshev approximation linear program (9.5)
is as follows:

min
ε,x

ε subject to − eε ≤ Ax − b ≤ eε, Cx + εe ≥ d, ε ≥ 0. (9.11)

224 Chapter 9. Approximation and Classification

As before, ε represents the maximum violation of the constraints; the problem (9.11) seeks
to minimize this violation. (We include the constraint ε ≥ 0 explicitly in the formulation
in case A and b are null, since in this case, nonnegativity of ε is not guaranteed by the
constraints.)

The generalization of the �1-norm approximation problem (9.8) is as follows:

min
(x,y,z)

e′y + e′z subject to − y ≤ Ax − b ≤ y, Cx + z ≥ d, z ≥ 0. (9.12)

(Note the slight abuse of notation; the two e vectors in the objective, which both contain all
1’s, may have different numbers of components.)

Exercise 9-2-7. Consider the following system of inequalities. We wish to find a vector x

that (i) satisfies all these constraints and (ii) comes as close as possible to satisfying the four
general inequalities as equalities, as closely as possible in the �1-norm sense. Formulate
this problem as a linear program and solve using MATLAB.

−4x1 + 3x2 ≤ 12,

2x1 + x2 ≤ 6,

x1 + x2 ≥ 3,

5x1 + x2 ≥ 4,

x1, x2 ≥ 0.

Does your solution change if the second constraint is replaced by

4x1 + 2x2 ≤ 12 ?

9.2.4 Least-Squares Problems

We now consider using the �2-norm in the approximation problem. For the overdetermined
system Ax = b we are led to the following minimization problem:

min
x∈Rn

‖Ax − b‖2.

Since this function is uniformly nonnegative, the minimizer is unchanged if we replace
it by its square: ‖Ax − b‖2

2 = (Ax − b)′(Ax − b). Moreover, the squared function is
quadratic, while the original function ‖Ax − b‖2 is nonsmooth (its derivative fails to exist
when Ai·x = bi for some i). Hence, the problem we actually solve is

min
x∈Rn

f (x) := (Ax − b)′(Ax − b). (9.13)

This is known as a least-squares problem.
Note that f is a convex function; its Hessian A′A is positive semidefinite, because

z′A′Az = ‖Az‖2
2 ≥ 0 for all z. Hence, by Corollary 7.1.2, a vector x̄ is a minimizer of f if

and only if ∇f (x̄) = 0; that is,

∇f (x̄) = 2A′(Ax̄ − b) = 0 ⇔ A′Ax̄ = A′b. (9.14)

We show now that an x̄ satisfying this equation exists.

9.2. Approximation 225

Theorem 9.2.5. The system (9.14) always has a solution (and therefore the minimization
problem (9.13) always has a solution) regardless of whether Ax = b is solvable or not.

Proof. If (9.14) has no solution, then the following linear program is infeasible:

min
x∈Rn

{
0′x | A′Ax = A′b

}
.

The dual problem, namely,

max
u∈Rn

{
b′Au | A′Au = 0

}
,

is obviously feasible (u = 0 is a feasible point), and so by strong duality it is unbounded
above. Therefore, there is some vector u with

A′Au = 0 and b′Au > 0.

For this u, we have

A′Au = 0 �⇒ u′A′Au = 0 �⇒ ‖Au‖2
2 = 0 �⇒ Au = 0 �⇒ b′Au = 0,

which contradicts b′Au > 0. Hence, (9.14) always has a solution.

The system of equations in (9.14) is called the normal equations. Solving (9.13) is
therefore equivalent to solving the square system of linear equations (9.14). Computation-
ally, this task is easier in general than solving a linear program, as is required for the �1-norm
and the �∞-norm. This fact accounts in part for the popularity of the �2-norm objective.

Theorem 9.2.5 can be used to produce a simple proof of Theorem 4.9.2, the funda-
mental theorem of linear algebra, which states that ker A ⊕ im A′ = Rn for any A ∈ Rm×n.
Given any vector c ∈ Rn, we form the least-squares problem

min
v∈Rm

(A′v − c)′(A′v − c).

By Theorem 9.2.5, this problem has a solution v̄ satisfying A(c −A′v̄) = 0. Hence, we can
decompose c as follows:

c = (c − A′v̄) + A′v̄. (9.15)

Since A(c − A′v̄) = 0, the first term in (9.15) is in ker A, while the second is obviously in
im A′, as required.

The following result shows that the solution to (9.14) is unique when rank A = n.

Lemma 9.2.6. Let A ∈ Rm×n. If rank A = n, then (A′A)−1 exists and

x̄ = (A′A)−1A′b

is the unique solution of (9.13).

Proof. Let x be a vector such that A′Ax = 0. Then x ′A′Ax = 0, which means ‖Ax‖2
2 = 0.

It follows that Ax = 0, and so by the full column rank assumption we must have x = 0.
We have shown that A′Ax = 0 �⇒ x = 0, and therefore that A′A is invertible. Hence, x̄

is well defined, and x̄ is the unique solution of (9.14) and therefore of (9.13).

226 Chapter 9. Approximation and Classification

In the alternative case of rank A = k < n, the matrix A′A is singular. We know from
Theorem 9.2.5, however, that (9.14) has a solution, which we can always find by using the
techniques of Chapter 2. The tableau for (9.14) is

x 1
y = A′A −A′b

which after k Jordan exchanges has the following form (possibly after some reordering of
rows and columns):

yI1
xJ2

1
xJ1

= HI1J1
HI1J2

hI1

yI2
= HI2J1

0 0

(Consistency of the system (9.14) dictates that the bottom right partition of the tableau is
zero.) From this tableau, we conclude that solutions of (9.14) have the following general
form:

xJ1
= HI1J2

xJ2
+ hI1

, xJ2
arbitrary.

(When rank A = n, we have J2 = ∅, and so the solution is unique.)

Example 9-2-8. We construct a least-squares solution to the overdetermined system (9.6)
by minimizing ‖Ax − b‖2. To do this, we form the normal equations (9.14) and solve using
Jordan exchange.

� load ex9-2-1

� T = totbl(A’*A,A’*b);

� T = ljx(T,1,1);

� T = ljx(T,2,2);

y1 y2 1
x1 = 0.33 0 0.66
x2 = 0 0.5 0

The resulting least-squares solution is x1 = 2/3, x2 = 0 and is uniquely determined. The
corresponding residual norm ‖Ax − b‖2 has the value

√
2/3 at this solution.

Note that this solution is different from that of the Chebyshev and L1 approximation
problems; each of three measures of “closeness” gives a different answer.

If A is poorly conditioned (that is, the ratio of its largest to its smallest singular value
is large), the solution x̄ obtained by forming and solving the system (9.14) computationally
may contain a large numerical error. An alternative approach is to use a QR factorization
of A, which avoids the squaring of the condition number associated with the use of the
normal equations. In fact, the QR technique is the one used by MATLAB. Given an
overdetermined system Ax = b, we can find the least-squares solution in MATLAB by
simply typing x = A\b. For details of the QR factorization technique, see Golub & Van
Loan (1996, Chapter 5).

Exercise 9-2-9. Use the three approaches (namely tableau for normal equations, (A′A)\(A′b),
and the QR factorization approach) to construct least-squares solutions for

A =

1 −1

1 −1
1 −1


 , b =


1

2
3


 .

9.3. Huber Estimation 227

Exercise 9-2-10. Find an approximate solution using MATLAB to the following overde-
termined system:

x1 − x2 = 0,

2x1 + x2 = 0,

x2 = 2

by minimizing ‖Ax − b‖p for p = 1, 2, ∞. Write down both the approximate solution and
the resulting value of the ‖Ax − b‖p. By hand, plot the solution points in R2 along with
lines representing the three equations.

When hard constraints of the form Cx ≥ d are also present, the formulation (9.13) is
generalized as follows:

min
x∈Rn

(Ax − b)′(Ax − b) subject to Cx ≥ d. (9.16)

This is a quadratic program and can be solved using the techniques for quadratic program-
ming problems given in Chapter 7.

Exercise 9-2-11. Find values for x1 and x2 that make their sum as close to 1 as possible in
the �2 norm, subject to the constraints that

2x1 + 3x2 ≤ 1,

x1, x2 ≥ 0.

9.3 Huber Estimation
We now discuss an approximation scheme due to Huber (1981) in which the function to
be minimized is in effect a hybrid of the L1 function (9.7) and the least-squares function
(9.13). Given the (possibly overdetermined and inconsistent) system Ax = b and a fixed
parameter γ > 0, Huber’s estimation scheme minimizes the following function:

min
x

m∑
i=1

ρ(Ai·x − bi), (9.17)

where the loss function ρ : R → R is defined as follows:

ρ(t) =




1
2 t2, |t | ≤ γ,

γ t − 1
2γ 2, t > γ,

−γ t − 1
2γ 2, t < −γ.

(9.18)

This function is plotted in Figure 9.1. Note that for |t | ≤ γ , ρ(t) is simply the standard
least-squares function (9.13), while for |t | > γ , it behaves like the L1 function; that is,
the graph becomes a straight line but with a slope chosen to maintain continuity of the first
derivative of ρ across the threshold value t = γ .

A primary motivation of the Huber approach is to overcome a disadvantage of the least-
squares approach that “outliers” (that is, residuals Ai·x − bi that are large in magnitude) are
squared in the least-squares objective (9.13) and therefore contribute heavily to the objective

228 Chapter 9. Approximation and Classification

−γ

t

ρ

γ

Figure 9.1. Huber loss function ρ (9.18).

value. Hence, these outliers may have an undue influence over the minimizing value x∗
of (9.13). Since such outliers may arise from errors in gathering the data rather than from
any intrinsic property of the underlying model, however, it may be more appropriate to de-
emphasize these outliers rather than give them a strong influence over the solution. Huber’s
approach penalizes these outliers less heavily (it is easy to show that 1

2 t2 > ρ(t) when
|t | > γ). For smaller residuals (whose magnitude is less than γ) it continues to use the
least-squares objective, thereby retaining the nice statistical properties of this estimator.

Since the objective function in (9.17) is a continuously differentiable convex function,
elementary theory for nonlinear optimization (see Corollary 7.1.2) tells us that its minimizer
occurs where its derivative is zero, that is,

m∑
i=1

A′
i·ρ

′(Ai·x − bi) = 0, (9.19)

where ρ ′(t) denotes the derivative of ρ, which is

ρ ′(t) =



t, |t | ≤ γ,

γ, t > γ,

−γ, t < −γ.

(9.20)

By defining the vector w ∈ Rn by

wi = ρ ′(Ai·x − bi) =



Ai·x − bi, |Ai·x − bi | ≤ γ,

γ, Ai·x − bi > γ,

−γ, Ai·x − bi < −γ,

(9.21)

9.3. Huber Estimation 229

we can express the optimality condition (9.19) succinctly as

A′w = 0. (9.22)

Perhaps surprisingly, we can find the solution of the Huber approximation problem
(9.17) by solving a quadratic program. One such quadratic programming formulation is as
follows:

min 1
2w′w + b′w subject to A′w = 0, w ≥ −γ e, −w ≥ −γ e, (9.23)

where, as before, e = (1, 1, . . . , 1)′ ∈ Rm.
We verify the equivalence of (9.23) and (9.17) by using the KKT conditions to show

that the w that solves (9.23) satisfies the properties (9.21) and (9.22), where x is the Lagrange
multiplier for the constraint A′w = 0 in (9.23). Using λ ∈ Rm and π ∈ Rm to denote the
Lagrange multipliers for the constraints w ≥ −γ e and −w ≤ −γ e, respectively, we can
follow (7.13) to write the KKT conditions for (9.23) as follows:

w − Ax + b − λ + π = 0, (9.24a)

A′w = 0, (9.24b)

0 ≤ w + γ e ⊥ λ ≥ 0, (9.24c)

0 ≤ −w + γ e ⊥ π ≥ 0. (9.24d)

If we substitute from (9.24a) into (9.24c) and (9.24d), we get

0 ≤ Ax − b + λ − π + γ e ⊥ λ ≥ 0,

0 ≤ −Ax + b − λ + π + γ e ⊥ π ≥ 0.

It follows that if Ai·x − bi < −γ , then λi > 0, and hence from (9.24c) it follows that
wi = −γ . Similarly, if Ai·x − bi > γ , then πi > 0 and wi = γ . Otherwise, if −γ ≤
Ai·x − bi ≤ γ , straightforward arguments guarantee that λi = πi = 0 and hence that
wi = Ai·x − bi . In all cases, w satisfies (9.21).

Example 9-3-1. The Huber estimation problem with γ = 0.01 and the data from (9.6) can
be solved using Lemke’s method for (9.24), following the method used in Example 7-4-7.
For this, we need to pivot the w and x variables to the side of the tableau and eliminate the
slack variables on (9.24a) and (9.24b). The resulting solution is x1 = 0.995, x2 = 0, which
is different from the least-squares, Chebyshev, and L1 approximate solutions.

If x̄ is the least-squares solution of Ax = b (that is, x̄ satisfies (9.14)), then provided
that

γ ≥ ‖Ax̄ − b‖∞ ,

x̄ will also be a minimizer of the Huber function (9.17). We can verify this claim by setting

x = x̄, w = Ax̄ − b, λ = 0, π = 0

and noting that these values satisfy the KKT conditions (9.24).

230 Chapter 9. Approximation and Classification

Exercise 9-3-2. Write down the formulation (9.23) for the overdetermined linear system
of Exercise 9-2-10. Find the range of values of γ for which the least-squares solution
(computed in Exercise 9-2-10) coincides with the minimizer of the Huber function.

Exercise 9-3-3. Another quadratic programming formulation of the Huber estimation prob-
lem is given in Mangasarian & Musicant (2000) as

min
x,w,t

1
2w′w + γ e′t subject to − t ≤ Ax − b − w ≤ t.

By forming the KKT conditions of this quadratic program, show (using a similar argument
to that given above) that the solution vector w also satisfies (9.21).

9.4 Classification Problems
Consider now the situation in which we have two sets of points in Rn which are labeled as
P+ and P−. Denoting any one of these points by x, we would like to construct a function
f so that f (x) > 0 if x ∈ P+ and f (x) < 0 if x ∈ P−. The function f is known as a
classifier. Given a new point x, we can use f to classify x as belonging to either P+ (if
f (x) > 0) or P− (if f (x) < 0). We saw an example of such a problem in Section 1.3.5
(see Figure 1.4), where we constructed a linear function f (in a somewhat ad hoc fashion)
to classify fine needle aspirates of tumors as either malignant or benign. We give a brief
description of support vector machines, a modern tool for classification, in this section.

We start by describing the construction of a linear classifier, which has the form
f (x) = w′x − γ , where w ∈ Rn and γ ∈ R. Ideally, the hyperplane defined by f (x) = 0
should completely separate the two sets P+ and P−, so that f (x) > 0 for x ∈ P+ and
f (x) < 0 for x ∈ P−. If such (w, γ) exist, then by redefining (w, γ) as

(w, γ)

minx∈P+∪P−|w′x − γ | ,

we have that
x ∈ P+ ⇒ f (x) = w′x − γ ≥ 1,

x ∈ P− ⇒ f (x) = w′x − γ ≤ −1.
(9.25)

To express these conditions as a system of linear inequalities, we assemble all points x

row-wise into an m × n matrix A, which has m = |P+| + |P−| rows, where |P+| and |P−|
denote the number of points in P+ and P−, respectively. We then define a diagonal matrix
D that labels each row of A as follows:

Dii =
{

1 if the point represented by row i of A belongs to P+;
−1 if the point represented by row i of A belongs to P−.

The conditions (9.25) can thus be written succinctly as follows:

D(Aw − eγ) ≥ e, (9.26)

where e = (1, 1, . . . , 1)′ as usual. Figure 9.2 shows a separating hyperplane w′x = γ for
two point sets, obtained by finding a pair (w, γ) that is feasible for (9.26) as well as the
bounding hyperplanes w′x = γ ± 1.

9.4. Classification Problems 231

−

’ γ

P+

w x=’ γ−1 w x=’ γ+1

o

x

x

x

x

x

x

x

x

x

x
x

o

oo

o

o

o

o

o

oo

o

P

w x=

Figure 9.2. Separable classes, a separating hyperplane w′x = γ , and the bound-
ing hyperplanes w′x = γ ± 1.

If it is possible to separate the two sets of points, then it is desirable to maximize the
distance (margin) between the bounding hyperplanes, which in Figure 9.2 is depicted by
the distance between the two dotted lines. It can be shown (see Mangasarian (1999a)) that
the separation margin measured by any norm ‖ · ‖ is

2

‖w‖′ ,

where ‖w‖′ denotes the dual norm, defined in Appendix A. If we take the norm to be the
Euclidean (�2-) norm, which is self-dual, then maximization of 2/‖w‖′ can be achieved
by minimization of ‖w‖ or ‖w‖2 = w′w. Hence, we can solve the following quadratic
program to find the separating hyperplane with maximum (Euclidean) margin:

min
w,γ

1
2w′w

subject to D(Aw − eγ) ≥ e.
(9.27)

The support vectors are the points x that lie on the bounding hyperplanes and such that
the corresponding Lagrange multipliers of the constraints of (9.27) are positive. These
correspond to the active constraints in (9.27).

In practice, it is usually not possible to find a hyperplane that separates the two sets
because no such hyperplane exists. In such cases, the quadratic program (9.27) is infea-
sible, but we can define other problems that identify separating hyperplanes “as nearly as
practicable” in some sense. As in Section 9.2.3, we can define a vector y whose components
indicate the amount by which the constraints (9.26) are violated as follows:

D(Aw − eγ) + y ≥ e, y ≥ 0. (9.28)

232 Chapter 9. Approximation and Classification

x

’ γ

P+

−P

w x=’ γ−1

w x=’ γ+1

o

x

x

x

x

x

x

x

x

x

x
x

o

oo

o

o

o

o

o

oo

oo

o

o

x

x

x

x

x

o

o

x

w x=

Figure 9.3. Nonseparable classes and the hyperplane w′x = γ obtained from (9.29).

We could measure the total violation by summing the components of y, and add some
multiple of this quantity to the objective of (9.27), to obtain

min
w,γ,y

1
2w′w + νe′y

subject to D(Aw − eγ) + y ≥ e, y ≥ 0,
(9.29)

where ν is some positive parameter. This problem (9.29) is referred to as a (linear) support
vector machine (seeVapnik (1995), Burges (1998), Mangasarian (2000), Schölkopf & Smola
(2002)).

Figure 9.3 shows two linearly inseparable point sets and the hyperplane obtained by
solving a problem of the form (9.29). The bounding hyperplanes are also shown. In this
formulation, the support vectors are the points from each set P− and P+ that lie on the wrong
side of their respective bounding hyperplanes (or are on their respective bounding planes
and their corresponding Lagrange multipliers are positive). Again, these points correspond
to the active constraints from the constraint set D(Aw − eγ) + y ≥ e.

Using u to denote Lagrange multipliers for the constraints D(Aw − eγ) + y ≥ 0 in
(9.29), the KKT conditions (see (7.13)) for this problem can be written as follows:

0 = w − A′Du, (9.30a)

0 = e′Du, (9.30b)

0 ≤ νe − u ⊥ y ≥ 0, (9.30c)

0 ≤ D(Aw − eγ) + y − e ⊥ u ≥ 0. (9.30d)

9.4. Classification Problems 233

It is not difficult to see that these are also the KKT conditions for the following problem,
which is the dual of (9.29):

min
u

1
2u′DAA′Du − e′u

subject to 0 ≤ u ≤ νe, e′Du = 0.
(9.31)

Indeed, it is often more convenient to solve this form of the problem for u and then recover
w by setting w = A′Du (from the first KKT condition (9.30a)) and recovering γ as the
Lagrange multiplier for the constraint e′Du = 0 in (9.31).

We can obtain a linear programming alternative to (9.29) by replacing the quadratic
term 1

2w′w by the �1-norm ‖w‖1 which corresponds to measuring the margin using the �∞-
norm. By introducing a vector s whose elements are the absolute values of the corresponding
elements of w, we obtain the following formulation:

min
w,γ,s,y

e′s + νe′y

subject to D(Aw − eγ) + y ≥ e, s ≥ w ≥ −s, y ≥ 0.
(9.32)

(Since we are minimizing e′s, the components of s will take on their smallest values com-
patible with the constraints, and so we have ‖w‖1 = e′s at the solution of (9.32).) This
�1 formulation of the problem has been shown to set many components of w to zero and
thereby select a small set of features that generate the best linear classification. An alternative
formulation of (9.32) that appears to be more effective computationally is the following:

min
w+,w−,γ,y

e′(w+ + w−) + νe′y

subject to D(Aw − eγ) + y ≥ e,

w = w+ − w−,

w+, w−, y ≥ 0.

(9.33)

Note that w+
i + w−

i ≥ |wi |, and at the solution we have that at least one of w+
i and w−

i is
zero for all i.

We refer to the formulations above as linear support vector machines, as they attempt
to separate the data points with a (linear) hyperplane. A more general approach involves
mapping each data point into a higher-dimensional space via a transformation � and then
finding a separating hyperplane in this higher-dimensional space. When this hyperplane is
mapped back into the original space Rn it describes a nonlinear surface, yielding greater
flexibility and a potentially more powerful means of classification.

Suppose that the transformation � maps Rn to Rn′
. We seek a classifier of the form

f (x) = w′�(x) − γ, (9.34)

where w and �(x) now belong to the (typically larger) space Rn′
, which is sometimes called

the feature space. Note that f is generally a nonlinear function, since � is nonlinear. Using
Ai· to denote row i of the matrix A (which represents a point from one of the sets P+ and
P−), we can reformulate the problem (9.29) in feature space as follows:

min
w,γ,y

1
2w′w + νe′y

subject to Dii(w
′�(A′

i·) − γ) + yi ≥ 1, yi ≥ 0, i = 1, 2, . . . , m.
(9.35)

234 Chapter 9. Approximation and Classification

The number of constraints is the same as in the original formulation, and so the dimension
of the dual problem (9.31) does not change when we reset the problem in feature space. We
have

min
u

1
2u′DKDu − e′u

subject to 0 ≤ u ≤ νe, e′Du = 0,
(9.36)

where K is an m × m matrix whose elements are

Kij = �(A′
i·)

′�(A′
j ·) = k(A′

i·, A
′
j ·),

and the kernel function k(·, ·) is defined by

k(s, t) = �(s)′�(t). (9.37)

Having solved (9.36) for u, we can recover w from the appropriate modification of (9.30a),
that is,

w =
m∑

i=1

Diiui�(A′
i·).

The classifier (9.34) becomes

f (x) = w′�(x) − γ =
m∑

i=1

Diiui�(A′
i·)

′�(x) − γ =
m∑

i=1

Diiuik(A′
i·, x) − γ,

where the kernel function k is defined in (9.37).
Note that to solve the problem (9.36) and to compute the classifier f (x), we never

need to know � explicitly; it is enough to know the kernel function k. In practice, we can
forget about � altogether, which in general is hard to calculate. Instead we devise kernel
functions that produce classifiers with powerful separation properties. Such kernels may
not even have a product form as used in (9.37). The essential property of a kernel function
is that it measures the proximity of its two vector arguments s and t . A widely used kernel
is the Gaussian or radial basis kernel defined by

k(s, t) = exp{−µ‖s − t‖2
2}, (9.38)

where µ is a positive parameter. Other kernels include the linear kernel k(s, t) = s ′t (which
yields the linear support vector machine with which we started the discussion of this section)
and the polynomial kernel

k(s, t) = (s ′t + 1)d,

where d is a positive integer.
To demonstrate the effectiveness of the Gaussian kernel in generating a highly non-

linear classifier, we depict in Figure 9.4 a classifier generated by a nonlinear support vector
machine using a Gaussian kernel for the checkerboard data set (see Ho & Kleinberg (1996),
Lee & Mangasarian (2001)). This data set consists of 1000 black and white points in R2

taken from 16 black and white squares of a checkerboard. Figure 9.4 displays the grid lines
which constitute the nonlinear classifier generated by a Gaussian support vector machine.
Note that these lines closely follow the actual topography of the checkerboard.

9.4. Classification Problems 235

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 9.4. Classifier using a Gaussian kernel to separate 1000 points selected
randomly from a 4 × 4 checkerboard.

How do we determine if the classifier is a good one, and how do we choose appropriate
values for the parameter ν in (9.29), (9.36), etc. and the parameter µ in the Gaussian kernel
(9.38)? Typically, we use a testing set which consists of a subset of the data points that
are removed from the full set of points before solving the support vector machines above.
Once the classifiers are determined from this remaining data (known as the training set),
we compare the predicted class for each data point in the testing set with its actual class and
tabulate the number that are correctly classified. Various values of ν can be tried; we usually
choose the one for which the proportion of correctly classified testing points is maximized.

This process can be generalized further to a process called cross-validation, in which
the entire data is split into a number of pieces (typically 10) and each of these pieces is used
in turn as a testing set while the remaining points are used as the training set. The average
testing set error is a better statistical measure of the likely performance of the classifier on
unseen data (under the assumption it is drawn from the same distribution).

The notion of a testing set is further refined as a tuning set. This is a set of samples
(distinct from the training set) that are left out of the training process. The tuning set is used
in a similar manner to the testing set, except that the values of the parameter ν (for example)
can be chosen based on the tuning set error. Typically, many replications of the training
process are carried out to tune parameters such as ν and the Gaussian kernel parameter µ.

Appendix A

Linear Algebra, Convexity,
and Nonlinear Functions

This appendix gives a brief introduction to convex sets and functions, vector norms, and
quadratic functions. These ideas are used in Chapters 6, 7, and 9 and form part of the basic
underpinning of the subject of optimization. We begin with some linear algebra.

A.1 Linear Algebra
We describe here some of the concepts and terms that are basic to our discussion of the linear
algebra that underlies linear programming. We consider vectors, usually denoted by lower-
case roman letters, to consist of a column of real numbers, whose individual components
are indicated by a subscript. For instance, a vector x ∈ Rn has the form

x =




x1

x2
...

xn


 .

(Less frequently, we make use of row vectors, denoted by x ′, in which the components are
arranged horizontally rather than vertically.) We write x ≥ 0 to indicate that all components
of x are nonnegative and x ≥ y (where both x and y are in Rn) to indicate that xi ≥ yi for
all i = 1, 2, . . . , n.

In various places in the text (see especially Chapters 8 and 7), we use the notion of
complementarity of two vectors. Given u ∈ Rn and v ∈ Rn, the notation ⊥ is defined as
follows:

u ⊥ v ⇔ u′v = 0. (A.1)

In describing optimality conditions, we frequently use notation such as

0 ≤ u ⊥ v ≥ 0,

which indicates that, in addition to satisfying u′v = 0, the vectors u and v have all nonneg-
ative components.

237

238 Appendix A. Linear Algebra, Convexity, and Nonlinear Functions

Matrices are made up of rectangular arrangements of real numbers, whose individual
components are indicated by double subscripts, the first subscript indicating row number
and the second indicating column number. Thus the matrix A ∈ Rm×n is

A =




A11 A12 . . . A1n

A21 A22 . . . A2n

...
...

...

Am1 Am2 . . . Amn


 .

Matrices are usually denoted by uppercase Roman letters. We use A·j to denote the vector
consisting of the j th column of A, while Ai· is the row vector consisting of row i from A.

The transpose of a matrix, indicated by a prime “ ′ ”, is obtained by interchanging row
and column subscripts. The transpose of the m × n matrix above is the following n × m

matrix:

A′ =




A11 A21 . . . Am1

A12 A22 . . . Am2
...

...
...

A1n A2n . . . Amn


 .

We can also take the transpose of a vector by arranging the elements in a row rather than a
column. The transpose of the vector x above is

x ′ = [
x1 x2 . . . xn

]
.

A matrix is said to be sparse if the vast majority of its elements are zero. It is possible
to store sparse matrices efficiently on a computer (by not storing the zero entries but rather
storing only the nonzeros together with an indication of where they lie in the matrix).
Moreover, it is possible to perform multiplications, factorizations, and other linear algebra
operations efficiently with them.

A matrix is diagonal if its only nonzeros appear on its diagonal, that is, the positions
in which the row index equals the column index. Formally, we say that A is diagonal if
Aij = 0 whenever i �= j .

An important matrix is the identity, denoted by I . This is the square matrix of a
given dimension that has the number 1 appearing on its diagonal, and zeros elsewhere. For
example, the 3 × 3 identity is 

 1 0 0
0 1 0
0 0 1


 .

Given a square matrix A, we define the inverse A−1 to be the matrix with the property
that AA−1 = I . When it exists, the inverse is unique. Square matrices for which an inverse
does not exist are said to be singular.

A matrix P is a permutation matrix if it is an identity matrix whose rows have been
reordered. An example of a 3 × 3 permutation matrix is

 1 0 0
0 0 1
0 1 0


 ,

A.2. Convex Sets 239

which is obtained by swapping the second and third rows of the identity matrix described
above.

A matrix L is lower triangular if all entries above its diagonal are zero. Formally, the
matrix L is lower triangular if Lij = 0 whenever j > i; that is, its column index is greater
than its row index. The following is a 4 × 3 lower triangular matrix:


2 0 0
1 −1 0
2 1.5 −2
1 1 3


 .

Matrices and vectors can be added together if they have the same dimensions. Specif-
ically, if x ∈ Rn, y ∈ Rn, then x + y is the vector in Rn whose ith entry is xi + yi . We can
also multiply a vector or matrix by a scalar α by multiplying each individual element by
α. That is, given the matrix A ∈ Rm×n, the matrix αA is the matrix in Rm×n whose (i, j)

element is αAij .
The product AB of two matrices A and B can be formed, provided that the number

of columns of A equals the number of rows of B. If A ∈ Rm×n and B ∈ Rn×q , then the
product AB is in Rm×q and its (i, j) component is given by the formula

(AB)ij =
n∑

k=1

Aik ∗ Bkj , i = 1, 2, . . . , m, j = 1, 2, . . . , q.

Given a matrix A ∈ Rm×n and a vector x ∈ Rn, the product Ax is a vector in Rm

whose ith element is Ai·x.

A.2 Convex Sets
Given any two points x, y ∈ Rn, the line segment joining x and y, written (x, y), is defined
by

(x, y) = {(1 − λ)x + λy | 0 < λ < 1} .

A set C ⊂ Rn is a convex set if the line segment between any two points x, y ∈ C

lies in C, that is,

x, y ∈ C �⇒ (x, y) ⊂ C.

The point z = (1 − λ)x + λy for some 0 ≤ λ ≤ 1 is said to be a convex combination of x

and y. Figure A.1 shows two sets in R2; the left one is convex and the right one is not.
The proof of the following result exhibits a standard technique of showing the con-

vexity of a set.

Lemma A.2.1. Let A ∈ Rm×n, b ∈ Rm. The following sets are convex:

C1 = {x | Ax ≥ b} and C2 = {x | x ≥ 0} .

240 Appendix A. Linear Algebra, Convexity, and Nonlinear Functions

Figure A.1. Example of a convex set and a nonconvex set.

Proof. Let x, y be any two points in C1, and consider z = (1−λ)x+λy for some λ ∈ (0, 1).
Then

Az = A((1 − λ)x + λy) = (1 − λ)Ax + λAy ≥ (1 − λ)b + λb = b.

The inequality in this relationship follows from the facts that Ax ≥ b and Ay ≥ b (since
both x and y are in C1) and also λ ≥ 0 and (1 − λ) ≥ 0. We conclude that z ∈ C1 for any
λ ∈ [0, 1], and so C1 is convex.

C2 is a special case of C1 for which A = I and b = 0, and so its convexity follows
from the first part of the proof.

We can generalize the definition of a convex combination of points beyond just two
endpoints. Formally, a point x ∈ Rn is a convex combination of the points {x1, x2, . . . , xr}
in Rn if for some real numbers λ1, λ2, . . . λr which satisfy

r∑
i=1

λi = 1 and λi ≥ 0, 1 ≤ i ≤ r,

we have

x =
r∑

i=1

λix
i . (A.2)

(A linear combination of the points {x1, x2, . . . , xr} is a vector of the form (A.2) in which
there are no restrictions on the scalars λ1, λ2, . . . λr .)

Exercise A-2-1. Show that a set S in Rn is convex if and only if every convex combination
of a finite number of points of S is in S.

We now demonstrate some ways of generating new convex sets from given convex
sets.

Lemma A.2.2. If C1 and C2 are convex sets, then so is their intersection C1 ∩ C2.

Proof. If C1 ∩ C2 is empty, there is nothing to prove. Otherwise, let x, y ∈ C1 ∩ C2, and
consider z = (1−λ)x +λy for some λ ∈ [0, 1]. Since C1 is convex, it follows from x ∈ C1

and y ∈ C1 that z ∈ C1. By similar reasoning, z ∈ C2. Hence z ∈ C1 ∩ C2, and so we
conclude that C1 ∩ C2 is convex.

A.2. Convex Sets 241

Note that C1 ∪ C2 is not convex in general for convex C1 and C2.

Exercise A-2-2. Give algebraic definitions of two convex sets C1 and C2 in R2 whose union
is not convex. Draw your sets.

It follows from Lemma A.2.2 that the feasible region of a linear program in standard
form, that is,

{x | Ax ≥ b} ∩ {x | x ≥ 0} ,

is convex.
For any set S ⊂ Rn, we define the convex hull conv(S) to be the intersection of all

convex sets that contain S.

Exercise A-2-3. If S is already a convex set, show that conv(S) = S.

Lemma A.2.3. Consider the matrix A ∈ Rm×n and the convex set C ⊂ Rn. Then the set
AC := {Ax | x ∈ C} ⊂ Rm is convex.

Proof. Let x, y ∈ AC, and consider z = (1 − λ)x + λy for some λ ∈ (0, 1). Then x = Ax̂

and y = Aŷ for some x̂, ŷ ∈ C. Furthermore,

z = (1 − λ)x + λy = (1 − λ)Ax̂ + λAŷ = A((1 − λ)x̂ + λŷ).

Since C is convex, it follows that (1 − λ)x̂ + λŷ ∈ C and thus z ∈ AC. Hence AC is
convex, as claimed.

We leave the proof of the following result as an exercise.

Lemma A.2.4. If C1 ⊂ Rm and C2 ⊂ Rn are convex sets, then so is

C1 × C2 :=
{[

x

y

]
; x ∈ C1, y ∈ C2

}
.

Corollary A.2.5. If C1 ⊂ Rn and C2 ⊂ Rn are convex sets, then so are C1 + C2 :=
{x + y | x ∈ C1, y ∈ C2} and γC1 := {γ x | x ∈ C1} for any γ ∈ R.

Proof. The result can be proved directly using the standard technique for convexity proofs.
It also follows immediately from Lemmas A.2.3 and A.2.4 if we note that C1 + C2 =
[I I](C1 × C2) and γC1 = (γ I)C1.

Exercise A-2-4. Show that if the optimal value of the objective function of a linear program-
ming problem is attained at k points, x1, x2, . . . , xk , then it is also attained at any convex
combination x̄ of these k points (convex hull):

x̄ =
k∑

i=1

λix
i, λi ≥ 0,

k∑
i=1

λi = 1.

(Hint: show that x̄ is feasible and that it has the same objective function value as each
x1, x2, . . . , xk .)

242 Appendix A. Linear Algebra, Convexity, and Nonlinear Functions

A.3 Smooth Functions
Suppose we have a function f : D → R defined on a set D ⊂ Rn, and let x be a point in
the interior of D. We define the gradient of f at x to be the vector of first partial derivatives
of f at x, and denote it by ∇f (x). That is, we have

∇f (x) =




∂f (x)

∂x1

∂f (x)

∂x2

...
∂f (x)

∂xn


 .

(Naturally, this definition makes sense only if the derivatives exist. If they do not, then f is
nonsmooth or discontinuous, and more general concepts from analysis are required.) If the
second partial derivatives exist, we can assemble them into an n × n Hessian matrix, which
is denoted by ∇2f (x) and defined as follows:

∇2f (x) =




∂2f (x)

∂x2
1

∂2f (x)

∂x1∂x2
· · · ∂2f (x)

∂x1∂xn

∂2f (x)

∂x2∂x1

∂2f (x)

∂x2
2

· · · ∂2f (x)

∂x2∂xn

...
...

. . .
...

∂2f (x)

∂xn∂x1

∂2f (x)

∂xn∂x2
· · · ∂2f (x)

∂x2
n


 .

A.4 Convex Functions
Consider a function f : D → R as in Section A.3. The domain of f can be extended to the
whole set Rn by defining f (x) = ∞ if x /∈ D. We indicate this extension by writing

f : Rn → R ∪ {∞}.
The original domain D, which satisfies D = {x | f (x) < ∞}, is called the effective domain
of f .

Introduction of ∞ into the range of f raises some issues regarding how ∞ should be
treated arithmetically. The following conventions are used:

λ∞ = ∞ if λ > 0,

λ∞ = −∞ if λ < 0,

0∞ = 0,

−∞ ≤ x ≤ ∞ ∀x ∈ R ∪ {−∞, ∞},
∞ + ∞ = ∞,

∞ + (−∞) not defined.

The epigraph of f is defined by

epi f := {(x, µ) | f (x) ≤ µ} ⊂ Rn+1. (A.3)

A.4. Convex Functions 243

epi (f)

Convex function f on R1

 in R
2

Figure A.2. A convex function and its epigraph.

We say that f is a convex function if its epigraph is a convex set in Rn+1. Figure A.2
illustrates the epigraph of a convex function.

The following theorem gives a useful characterization of convexity.

Theorem A.4.1. The function f is convex if and only if

f ((1 − λ)x + λy) ≤ (1 − λ)f (x) + λf (y) (A.4)

for all λ ∈ (0, 1) and all x, y ∈ Rn. In other words, linear interpolation never underesti-
mates f .

Proof. Let x, y ∈ Rn, and let λ ∈ (0, 1). If f (x) = ∞ or if f (y) = ∞, there is nothing
to prove, since the right-hand side of (A.4) is ∞. Otherwise, by the convexity definition
for f , we have that (x, f (x)), (y, f (y)) ∈ epi f , and so it follows from the convexity of
epi f that ((1 − λ)x + λy, (1 − λ)f (x) + λf (y)) ∈ epi f and hence f ((1 − λ)x + λy) ≤
(1 − λ)f (x) + λf (y).

Conversely, let (x, µ), (y, γ) ∈ epi f and λ ∈ (0, 1). Then

f ((1 − λ)x + λy) ≤ (1 − λ)f (x) + λf (y) ≤ (1 − λ)µ + λγ,

so that ((1 − λ)x + λy, (1 − λ)µ + λγ) ∈ epi f . We conclude that epi f is convex, as
claimed.

The linear function f (x) = p′x is therefore a convex function, with domain D = Rn.
If f is convex, then D must be convex by Lemma A.2.3, since

D = [I 0] epi f.

The same idea can be used to prove the following result.

244 Appendix A. Linear Algebra, Convexity, and Nonlinear Functions

Corollary A.4.2. If f is a convex function, then each level set

L(α) := {
x ∈ Rn | f (x) ≤ α

}
, α ∈ R,

is a convex set but not conversely.

Proof. We can define L(α) as the following projected intersection:

L(α) = P · epi f
⋂

{(x, µ) | µ ≤ α} ,

where P is the n × (m + 1) projection matrix [I 0]. By applying Lemmas A.2.2 and A.2.3,
we obtain that L(α) is convex.

If f (x) = x3, x ∈ R, then L(α) is a convex set for every α, but f is not a convex
function.

Define (f + g)(x) = f (x) + g(x) and (γf)(x) = γf (x) for all x. The following
result is established using Theorem A.4.1.

Corollary A.4.3. If f and g are convex functions on Rn, then so are f + g and γf for
γ ≥ 0.

Proof.

(f + g)((1 − λ)x + λy) = f ((1 − λ)x + λy) + g((1 − λ)x + λy)

≤ (1 − λ)f (x) + λf (y) + (1 − λ)g(x) + λg(y)

= (1 − λ)(f + g)(x) + λ(f + g)(y).

A similar proof holds for γf .

A function f is a concave function if −f is a convex function.

A.5 Quadratic Functions
Consider the quadratic function f (x) := 1

2x ′Qx. We may assume that Q is symmetric,
since we can replace it by its symmetric part (Q + Q′)/2 without changing the value of f ,
as the following relations show:

x ′Qx = 1/2x ′Qx + 1/2(x ′Qx)′ = x ′
(

Q + Q′

2

)
x.

Given that Q symmetric, the gradient and Hessian of f can be written as

∇f (x) = Qx, ∇2f (x) = Q,

respectively.
The following proposition gives a characterization of convex quadratic functions.

Proposition A.5.1. Let f (x) := 1
2x ′Qx, where Q is a symmetric n × n matrix. The

following are equivalent:

A.5. Quadratic Functions 245

(a) f is convex.

(b) The linearization of f at any point x never overestimates f , that is,

f (y) ≥ f (x) + ∇f (x)′(y − x) ∀y. (A.5)

(c) The function f has nonnegative curvature, that is,

y ′∇2f (x)y = y ′Qy ≥ 0 ∀x, y ∈ Rn.

Proof. The fact that (b) is equivalent to (c) follows from the following identity (easily
established for quadratic functions):

f (u) = f (v) + ∇f (v)′(u − v) + 1

2
(u − v)′∇2f (v)(u − v). (A.6)

Theorem A.4.1 states that (A.4) holds for all λ ∈ (0, 1) and x, y ∈ Rn. By rearranging this
inequality and using (A.6) with u = (1 − λ)x + λy and v = x, we have

f (y) − f (x) ≥ f ((1 − λ)x + λy) − f (x)

λ
= ∇f (x)′(y − x) + λ

2
(y − x)′Q(y − x).

Thus (a) implies (b) by taking λ → 0.
For the reverse implication (b) implies (a), note that for λ ∈ (0, 1), we have by

redefining x and y appropriately in (A.5) that

f (x) − f ((1 − λ)x + λy) ≥ λ∇f ((1 − λ)x + λy)(x − y)

and
f (y) − f ((1 − λ)x + λy) ≥ −(1 − λ)∇f ((1 − λ)x + λy)(x − y).

Multiplying the first inequality by (1 − λ), the second by λ, and adding gives

f ((1 − λ)x + λy) ≤ (1 − λ)f (x) + λf (y),

which indicates that f is convex, as required.

Part (b) of Proposition A.5.1, which says that a tangent plane to the quadratic function
f never overestimates f anywhere, is in fact true for any differentiable convex function.
Part (c) has a more general analogue for twice differentiable convex functions.

A matrix Q satisfying y ′Qy ≥ 0 for all y ∈ Rn is called positive semidefinite. It is
positive definite if

x ′Qx > 0 ∀x �= 0.

Proposition A.5.1 shows that the quadratic function f is convex if and only if its Hessian
matrix Q is positive semidefinite. A matrix that is not positive semidefinite or whose negative
is not semidefinite is called indefinite.

The following result shows that Proposition A.5.1 continues to hold when a linear
term p′x + α is added to the purely quadratic term 1

2x ′Qx.

246 Appendix A. Linear Algebra, Convexity, and Nonlinear Functions

Corollary A.5.2. Let Q be a symmetric n × n matrix and f (x) = 1
2x ′Qx + p′x + α. Then

∇f (x) = Qx + p, ∇2f (x) = Q, and statements (a), (b), and (c) of Proposition A.5.1 are
equivalent.

Proof. f is convex if and only if 1
2x ′Qx is convex by Corollary A.4.3. The other two

properties of Proposition A.5.1 hold if and only if they hold for f .

It follows from the above discussion that f (x) := 1
2x ′Qx + p′x + α is a convex function

if and only if Q is positive semidefinite.
The definitions of positive semidefinite and positive definite matrices do not require

symmetry of the matrix Q. However, a matrix is positive (semi)definite if and only if its
symmetric part is positive (semi)definite. It is clear that if Q is positive definite, then it is
invertible and positive semidefinite. The converse is not true, however, as can be seen by
the example

Q =
[

1 −1
1 0

]
.

Note that Q is positive semidefinite if and only if the eigenvalues of Q + Q′ are nonneg-
ative (see Strang (1993) for a definition of matrix eigenvalues). The MATLAB command
eig(Q+Q’)will return the eigenvalues. In the simple case above, these eigenvalues would
be 2 and 0, and hence Q is positive semidefinite. (Note that the eigenvalues of Q are gen-
erally not the same as those of (1/2)(Q + Q′) unless Q is symmetric.)

Another technique to check for convexity of a quadratic function is to use the notion
of “completing the square.” We now show how this process works.

Example A-5-1. Consider x2
1 + 3x1x2 + x2

2 . Does this function have a nonnegative value
for all choices of x1 and x2? Rewriting as

x2
1 + 3x1x2 + x2

2 =
(

x1 + 3

2
x2

)2

− 5

4
x2

2 ,

we see that the function is negative whenever we choose x1 and x2 in such a way that x2 �= 0
and (x1 + (3/2)x2) = 0 (for example, x2 = 1 and x1 = −3/2). We can write this function
in the form f (x) = (1/2)x ′Qx by choosing Q to be the following symmetric matrix:

Q =
[

2 3
3 2

]
.

The eigenvalues of Q are −1 and 5, confirming that Q is not positive semidefinite. Hence,
this function does not satisfy the property in PropositionA.5.1(c) and is therefore not convex.

A second example is the following:

x2
1 + x1x2 + x2

2 =
(

x1 + 1

2
x2

)2

+ 3

4
x2

2 .

By completing the square, we have expressed this function as the sum of two nonnegative
entities. Since it can also be written as (1/2)x ′Qx by setting

Q =
[

2 1
1 2

]
,

A.6. Norms and Order Notation 247

it follows that Q is positive semidefinite (in fact positive definite), and hence the function
f is convex. (An alternative way to see this is to evaluate the eigenvalues of Q which are 1
and 3.)

The final result of this section is a simple corollary of Proposition A.5.1. It holds not
just for quadratics but also for general differentiable convex functions.

Corollary A.5.3. Suppose f (x) = 1
2x ′Qx + p′x + α, where Q ∈ Rn×n is a symmetric

matrix. Then f is convex if and only if for all x, y ∈ Rn, we have

(∇f (x) − ∇f (y))(x − y) ≥ 0, (A.7)

that is,
(x − y)′Q(x − y) ≥ 0,

for all x, y ∈ Rn.

Proof. If f is convex, then (x −y)′Q(x −y) ≥ 0 for all x, y ∈ Rn by Proposition A.5.1(c).
Hence, we have

0 ≤ (x − y)′Q(x − y) = (Qx − Qy)′(x − y)

= [(Qx + p) − (Qy + p)]′(x − y) = (∇f (x) − ∇f (y))′(x − y),

and so (A.7) holds. The converse is immediate by taking y = 0 in (A.7) and
Proposition A.5.1(c).

If F : Rn → Rn satisfies (F (x) − F(y))′(x − y) ≥ 0, then F is called a monotone
map. The above result states that the gradient of a convex (quadratic) function is a monotone
map.

Further generalizations of all the results of this section can be found in the following
texts on convex analysis and nonlinear programming: Rockafellar (1970), Mangasarian
(1969), Nocedal & Wright (2006).

A.6 Norms and Order Notation
We introduce the concept of a “norm” of a vector. A norm is a special type of convex
function that measures the length of a vector x.

The norm of a vector y ∈ Rm, denoted by ‖y‖, is any function from Rm into R with
the following properties:

1. ‖y‖ ≥ 0, and ‖y‖ = 0 if and only if y = 0;

2. ‖αy‖ = |α|‖y‖ for α ∈ R;

3. ‖y + z‖ ≤ ‖y‖ + ‖z‖ for all y and z (triangle inequality).

The classical norms in Rm are differentiated by a subscript p in the range [1, ∞]:
‖y‖p := (|y1|p + · · · + |ym|p) 1

p , 1 ≤ p < ∞,

‖y‖∞ := max
1≤i≤m

|yi |.

248 Appendix A. Linear Algebra, Convexity, and Nonlinear Functions

The most widely used values are p = 1, 2, and ∞. For p = 1 and p = 2 the definition
above specializes to the following:

‖y‖1 =
m∑

i=1

|yi |,

‖y‖2 =
√√√√ m∑

i=1

|yi |2 = √
y ′y.

For example, if y = (1, 2, −3)′, we have

‖y‖1 = 6, ‖y‖2 = √
14, ‖y‖∞ = 3.

The triangle inequality for ‖y‖p is known as the Minkowski inequality, and its proof can be
found, for example, in Rudin (1974).

Note that all norms (in Rm) are equivalent in the sense that

αpq‖y‖q ≤ ‖y‖p ≤ βpq‖y‖q,

where αpq and βpq are positive numbers.
In particular, for y ∈ Rm, we have

‖y‖∞ ≤ ‖y‖2 ≤ ‖y‖1 ≤ √
m‖y‖2 ≤ m‖y‖∞.

Theorem A.6.1. The norm function f (y) := ‖y‖ is a convex function on Rn.

Proof. Using the triangle inequality, we have that for 0 ≤ λ ≤ 1

f ((1 − λ)x + λy) = ‖(1 − λ)x + λy‖
≤ ‖(1 − λ)x‖ + ‖λy‖
= (1 − λ)‖x‖ + λ‖y‖ = (1 − λ)f (x) + λf (y).

Hence, by Theorem A.4.1, f is convex.

Since each norm is a convex function, the unit ball defined by {x | ‖x‖ ≤ 1} defines a
convex set, because of Corollary A.4.2.

For a given norm ‖·‖ the dual norm ‖·‖′ is defined by

‖x‖′ := sup
y:‖y‖≤1

y ′x.

The Euclidean norm ‖·‖2 is self-dual, while ‖·‖′∞ = ‖·‖1 and ‖·‖′
1 = ‖·‖∞.

In analyzing nonlinear problems, we frequently need to work with rough estimates of
certain quantities, rather than precise measures. Order notation is particularly useful in this
context. We define a certain usage of this notation here.

Suppose that we have two quantities η and ν such that η is a function of ν—we write
η(ν) to emphasize the dependence. (η and ν can be scalars, vectors, or matrices.) We write

η = O(‖ν‖)

A.7. Taylor’s Theorem 249

if η(ν) → 0 whenever ν → 0. (Verbally, we say that “η is of the order of ν” or “η is of the
order of the norm of ν.”) This property indicates that η goes to zero at least as fast as ν.

We write
η = o(‖ν‖)

if the ratio ‖η(ν)‖/‖ν‖ → 0 whenever ν → 0. (Verbally, and somewhat colloquially, we
say that “η is little-o of ν.”) This is a stronger property, indicating that η is approaching
zero at a faster rate than ν.

A.7 Taylor’s Theorem
Taylor’s theorem is an important result from calculus that is used to form simplified ap-
proximations to nonlinear functions in the vicinity of a point at which information about
the function and its derivatives is known. We state here a variant that applies to functions
that map RN to RN of the type discussed in Chapter 8.

Theorem A.7.1. Suppose that F : RN → RN is continuously differentiable in some convex
open set D and that z and z + p are vectors in D. Then

F(z + p) = F(z) +
∫ 1

0
J (z + tp)p dt,

where J is the N × N Jacobian matrix whose (i, j) element is ∂Fi/∂zj .

It follows immediately from this result that

F(z + p) = F(z) + J (z)p +
∫ 1

0
[J (z + tp) − J (z)]p dt. (A.8)

Because J is a continuous function, we can use the order notation introduced in Section A.6
to write

[J (z + tp) − J (z)]p = o(‖p‖).
Hence, we can estimate the integral term in (A.8) as follows:∣∣∣∣

∫ 1

0
[J (z + tp) − J (z)]p dt

∣∣∣∣ ≤
∫ 1

0
‖[J (z + tp) − J (z)]p‖ dt = o(‖p‖). (A.9)

When J is not close to being singular, the term J (z)p in (A.8) dominates the final o(‖p‖)
term, when p is small, and so we can write

F(z + p) ≈ F(z) + J (z)p.

This observation, which we note also in (8.14), is used to design the interior-point methods
of Chapter 8.

Another useful corollary of Theorem A.7.1 occurs when we apply it to a function of
the form

F(λ) := f (u + λv),

250 Appendix A. Linear Algebra, Convexity, and Nonlinear Functions

where f : Rn → R is a continuously differentiable function of n variables, u ∈ Rn and
v ∈ Rn are two given vectors, and λ is a scalar variable. Thus F : R → R is a continuously
differentiable scalar function, and so we can apply Theorem A.7.1 with N = 1 to find an
estimate of F(λ) for λ near 0. From the chain rule of multidimensional calculus, we have

F ′(0) = ∇f (u)′v,

and so by applying Theorem A.7.1 with z = 0, p = λ and using the estimate (A.9), we have

F(λ) = F(0) + λF ′(0) + o(|λ|) ⇔ f (u + λv) = f (u) + λ∇f (u)′v + o(|λ|). (A.10)

(Note that ‖λ‖ = |λ| because λ is a scalar.)
We can use (A.10) to generalize a result proved earlier for convex quadratic functions—

Proposition A.5.1(b)—to nonlinear convex functions.

Proposition A.7.2. Let f : Rn → R be a continuously differentiable convex function. Then
the linearization of f at any point x never overestimates f , that is,

f (y) ≥ f (x) + ∇f (x)′(y − x) ∀y. (A.11)

Proof. Suppose for contradiction that there are vectors x and y for which the claim does
not hold, that is,

f (y) < f (x) + ∇f (x)′(y − x) − ε, (A.12)

where ε is a positive constant. By the convexity of f , we have from (A.4) that for 0 < λ < 1

f ((1 − λ)x + λy) ≤ (1 − λ)f (x) + λf (y)

⇔ f (x + λ(y − x)) ≤ f (x) + λ(f (y) − f (x)).

By rearranging this expression, we have that

f (y) ≥ f (x) + f (x + λ(y − x)) − f (x)

λ
.

We now apply (A.10) to the numerator of the last term, with u = x and v = (y − x), to
obtain

f (y) ≥ f (x) + λ∇f (x)′(y − x) + o(|λ|)
λ

= f (x) + ∇f (x)′(y − x) + o(|λ|)/λ.

By combining this inequality with (A.12), we obtain

0 < ε ≤ o(|λ|)/λ,

and taking limits as λ → 0, we have by the definition of o(·) that o(|λ|)/λ → 0 and therefore
ε = 0, a contradiction.

Appendix B

Summary of Available
MATLAB Commands

B.1 Basic MATLAB Operations
In our MATLAB codes, vectors are usually denoted by lowercase letters. For example, if
the following commands are given in MATLAB

� x = [1; 7; 4];

� y = [2 1];

then x is interpreted as a three-dimensional column vector and y as a two-dimensional row
vector. The ith element of x is denoted by xi . The MATLAB statement

� i=3; x(i)

prints out x3, which in this case has the value 4.
The set of all n-dimensional real vectors is denoted by Rn. For example, R or R1 is the

real line and R2 is the real two-dimensional space. Rn+ represents the nonnegative orthant in
Rn, that is, the set of all the n-dimensional real vectors that satisfy xi ≥ 0, i = 1, 2, . . . , n,
also written as x ≥ 0.

Matrices in MATLAB are usually denoted as uppercase letters. The following are
examples of matrices specified in MATLAB of dimensions 2 × 3, 3 × 2, 1 × 1, and 1 × 2,
respectively:

� A = [4 1 2; 1 4 1]

� B = [1 3; 1 0; 5 4]

� C = [4]

� D = [2 1]

Recall that the ith row of the matrix A can be represented in mathematical notation by Ai·.
The MATLAB notation is similar but uses “:” in place of “·”. Thus the following MATLAB
statements print out A2·, A·1, and A21, respectively:

� i=2; A(i,:)

251

252 Appendix B. Summary of Available MATLAB Commands

� j=1; A(:,j)

� A(i,j)

As for the mathematical notation introduced in Section A.1, the MATLAB notation for
transpose of a matrix A is the prime “ ′ ”; that is,

� A′

Addition of matrices and vectors whose dimensions are the same, and multiplication
of matrices and vectors by scalars, are represented in MATLAB in the obvious way:

� x = [1 2 3]; y = [2 -3 4]; x+y

� alpha = 7; alpha*x

Matrix-matrix multiplication in MATLAB is also denoted by a “∗”; for example,

� A*B

MATLAB will generate an error message if A and B do not conform, that is, if the number
of columns of A does not equal the number of rows in B. When A has a single row and
B has a single column the result of the MATLAB operation A ∗ B is a scalar; we call this
result the scalar product of the two arguments.

B.2 MATLAB Functions Defined in This Book
We list below the output of the standard help command of MATLAB, applied to some of
the MATLAB functions defined in this book. Note the inclusion of the semicolon at the end
of some of the commands to avoid undesirably verbose output.

>> help addcol

syntax: H = addcol(H,x,lbl,s);
add column x with label lbl as column s to the tableau H

>> help addrow

syntax: H = addrow(H,x,lbl,r);
add row x with label lbl as row r of the tableau H

>> help bjx

syntax: B = bjx(A,R,S)
input: tableau A, integer vectors R,S
perform a block Jordan exchange with pivot A(R,S)

>> help delcol

syntax: H = delcol(H,s);

B.2. MATLAB Functions Defined in This Book 253

delete col numbered s (or labeled s) of the tableau H

>> help delrow

syntax: H = delrow(H,r);
delete row numbered r (or labeled r) of the tableau H

>> help dualbl

syntax: H = dualbl(H);
adds dual row and column labels in last two rows and
columns

>> help jx

syntax: B = jx(A,r,s)
input: matrix A, integers r,s
perform a Jordan exchange with pivot A(r,s)

>> help lemketbl

syntax: H = lemketbl(M,q);
generate labeled Lemke tableau H from square matrix M and
vector q

>> help ljx

syntax: B = ljx(A,r,s);
input: labeled tableau A, integers r,s
perform a labeled Jordan exchange with pivot A(r,s)

>> help newton

syntax: z = newton(z0, @myF, @myJ, eps, itmax)

performs Newton’s method from starting point z0, terminating
when 2-norm of step is shorter than eps or when at itmax steps
have been taken, whichever comes first. Call as follows:

where z0 is the starting point, myF and myJ are the actual
names of the function and Jacobian evaluation routines;
method terminates when length of Newton step drops below eps
or after at most itmax iterations (whichever comes first).

>> help pathfollow

254 Appendix B. Summary of Available MATLAB Commands

syntax: [x,y,s,f] = pdip(A,b,p)

path-following primal-dual interior-point method for
problem

PRIMAL: min p’x s.t. Ax=b, x>=0,
DUAL: max b’y s.t. A’y+s=p, s>=0.

input: A is an m x n SPARSE constraint matrix
b is an m x 1 right-hand side vector
p is an n x 1 cost vector

output: x is the n x 1 solution of the primal problem
y is the m x 1 dual solution
s is the n x 1 vector of "dual slacks"
f is the optimal objective value

internal parameters:
itmax is the maximum number of iterations allowed
tol is the convergence tolerance
bigMfac is the factor used to define the starting
point
maxDiag is the element for the Xˆ{-1}S matrix
etaMin is the minimum value of the steplength scale
parameter eta

>> help permrows

syntax: H= permrows(H,p);
permute rows of H according to the permutation in p

>> help relabel

syntax: H = relabel(H,x,old1,new1,old2,new2,...);
update label old to be label new

>> help rsm

syntax: [x_B,B] = rsm(A,b,p,B)
A revised simplex routine for min p’x s.t. Ax=b, x>=0.
on input A is m x n, b is m x 1, p is n x 1
B is 1xm index vector denoting the basic columns.

>> help rsmbdd

B.2. MATLAB Functions Defined in This Book 255

syntax: [x,B,N] = rsmbdd(A,b,p,lb,ub,B,N)
A revised simplex routine for min p’x s.t. Ax=b, lb<=x<=ub.
B is 1 x m index vector denoting the basic columns.
N is 1 x (l-m) index vector denoting the nonbasic columns
and bounds (+/-1).

>> help rsmupd

syntax: [x_B,B] = rsmupd(A,b,p,B)
A revised simplex routine for min p’x s.t. Ax=b, x>=0.
on input A is m x n, b is m x 1, p is n x 1
B is 1 x m index vector denoting the basic columns.

>> help simplex

syntax: x = simplex(A,b,p)
A two-phase simplex routine for min p’x s.t. Ax>=b, x>=0.
on input A is m x n, b is m x 1, p is n x 1

>> help steplength

syntax: [alpha, alphax, alphas] =
steplength(x, s, Dx, Ds, eta)

given current iterate (x,s) and steps (Dx,Ds), compute
steplengths that ensure that x + alphax*Dx>0 and
s + alphas*Ds>0, and alpha = min(alphax,alphas). eta
indicates the maximum fraction of step to the boundary
(typical value: eta=.999)

>> help tbl

syntax: tbl(H)
print out the tableau given in H

>> help totbl

syntax: H = totbl(A,b,p);
make the matrices A,b,p into tableau H

Bibliography

Ahuja, R. K., Magnanti, T. L. & Orlin, J. B. (1993), Network Flows: Theory, Algorithms,
and Applications, Prentice–Hall, Englewood Cliffs, New Jersey.

Bartels, R. H. & Golub, G. H. (1969), ‘The simplex method of linear programming using
LU decomposition’, Communications of the Association for Computing Machinery
12, 266–268.

Beale, E. M. L. (1955), ‘Cycling in the dual simplex algorithm’, Naval Research Logistics
Quarterly 2, 269–275.

Bland, R. G. (1977), ‘New finite pivoting rules for the simplex method’, Mathematics of
Operations Research 2, 103–107.

Bosch, R. A. & Smith, J. A. (1998), ‘Separating hyperplanes and the authorship of the
disputed federalist papers’, American Mathematical Monthly 105, 601–608.

Burges, C. J. C. (1998), ‘A tutorial on support vector machines for pattern recognition’,
Data Mining and Knowledge Discovery 2, 121–167.

Chvátal, V. (1983), Linear Programming, W. H. Freeman and Company, New York.

Cottle, R. W. & Dantzig, G. B. (1968), ‘Complementary pivot theory of mathematical
programming’, Linear Algebra and Its Applications 1, 103–125.

Cottle, R. W., Pang, J. S. & Stone, R. E. (1992), The Linear Complementarity Problem,
Academic Press, Boston.

Czyzyk, J., Mehrotra, S., Wagner, M. & Wright, S. J. (1999), ‘PCx: An interior-point code
for linear programming’, Optimization Methods and Software 11/12, 397–430.

Dantzig, G. B. (1963), Linear Programming and Extensions, Princeton University Press,
Princeton, New Jersey.

Fletcher, R. & Matthews, S. P. J. (1984), ‘Stable modifications of explicit LU factors for
simplex updates’, Mathematical Programming 30, 267–284.

Forrest, J. J. & Goldfarb, D. (1992), ‘Steepest-edge simplex algorithms for linear program-
ming’, Mathematical Programming 57, 341–374.

257

258 Bibliography

Forrest, J. J. H. & Tomlin, J. A. (1972), ‘Updating triangular factors of the basis to maintain
sparsity in the product form simplex method’, Mathematical Programming 2, 263–278.

Frank, M. & Wolfe, P. (1956), ‘An algorithm for quadratic programming’, Naval Research
Logistics Quarterly 3, 95–110.

Gass, S. (1985), Linear Programming Methods and Applications, fifth ed., Boyd and Fraser,
Danvers, Massachusetts.

Gay, D. M. (1978), On combining the schemes of Reid and Saunders for sparse LP bases, in
I. S. Duff & G.W. Stewart, eds., ‘Sparse Matrix Proceedings 1978’, SIAM, Philadelphia,
pp. 313–334.

Gertz, E. M. & Wright, S. J. (2003), ‘Object-oriented software for quadratic programming’,
ACM Transactions on Mathematical Software 29, 58–81.

Gill, P. E., Murray, W., Saunders, M. A. & Wright, M. H. (1989), ‘A practical anti-cycling
procedure for linearly constrained optimization’, Mathematical Programming 45, 437–
474.

Goldfarb, D. & Reid, J. K. (1977), ‘A practical steepest-edge simplex algorithm’, Mathe-
matical Programming 12, 361–371.

Golub, G. H. & Van Loan, C. F. (1996), Matrix Computations, third ed., The Johns Hopkins
University Press, Baltimore.

Harris, P. M. J. (1973), ‘Pivot selection methods of the Devex LP code’, Mathematical
Programming 5, 1–28.

Ho, T. K. & Kleinberg, E. M. (1996), Building projectable classifiers of arbitrary complexity,
in ‘Proceedings of the 13th International Conference on Pattern Recognition’, Vienna,
Austria, pp. 880–885, http://cm.bell-labs.com/who/tkh/pubs.html. Checker dataset at
ftp://ftp.cs.wisc.edu/math-prog/cpo-dataset/machine-learn/checker.

Huber, P. J. (1981), Robust Statistics, John Wiley & Sons, New York.

Kantorovich, L. V. (1960), ‘Mathematical methods in the organization and planning of
production’, Management Science 6, 366–422. English translation, Russian version
1939.

Karmarkar, N. (1984), ‘A new polynomial time algorithm for linear programming’, Com-
binatorica 4, 373–395.

Karush, W. (1939), Minima of functions of several variables with inequalities as side con-
ditions, Master’s thesis, Department of Mathematics, University of Chicago.

Khachiyan, L. G. (1979), ‘A polynomial algorithm for linear programming’, Soviet Mathe-
matics Doklady 20, 191–194.

Klee, V. & Minty, G. J. (1972), How good is the simplex algorithm?, in ‘Inequalities, III’,
Academic Press, New York, pp. 159–175.

Bibliography 259

Kotiah, T. C. T. & Steinberg, D. I. (1977), ‘Occurrences of cycling and other phenomena
arising in a class of linear programming models’, Communications of the ACM 20, 107–
112.

Kotiah, T. C. T. & Steinberg, D. I. (1978), ‘On the possibility of cycling with the simplex
method’, Operations Research 26, 374–376.

Kuhn, H. W. & Tucker, A. W. (1951), Nonlinear programming, in J. Neyman, ed., ‘Proceed-
ings of the Second Berkeley Symposium on Mathematical Statistics and Probability’,
University of California Press, Berkeley and Los Angeles, California, pp. 481–492.

Lee, Y.-J. & Mangasarian, O. L. (2001), RSVM: Reduced support vector machines, in
‘Proceedings of the First SIAM International Conference on Data Mining’, Chicago,
2001, CD-ROM, ftp://ftp.cs.wisc.edu/pub/dmi/tech-reports/00-07.pdf.

Lemke, C. E. (1965), ‘Bimatrix equilibrium points and mathematical programming’, Man-
agement Science 11, 681–689.

Lemke, C. E. & Howson, J. T. (1964), ‘Equilibrium points of bimatrix games’, SIAM Journal
on Applied Mathematics 12, 413–423.

Mangasarian, O. L. (1969), Nonlinear Programming, McGraw–Hill, New York. (Corrected
reprint: SIAM Classics in Applied Mathematics 10, SIAM, Philadelphia, 1994).

Mangasarian, O. L. (1999a), ‘Arbitrary-norm separating plane’, Operations Research Let-
ters 24, 15–23.

Mangasarian, O. L. (1999b), Regularized linear programs with equilibrium constraints,
in M. Fukushima & L. Qi, eds., ‘Reformulation: Nonsmooth, Piecewise Smooth,
Semismooth and Smoothing Methods’, Kluwer Academic Publishers, Dordrecht, The
Netherlands, pp. 259–268.

Mangasarian, O. L. (2000), Generalized support vector machines, in A. Smola, P. Bartlett,
B. Schölkopf & D. Schuurmans, eds., ‘Advances in Large Margin Classifiers’, MIT
Press, Cambridge, Massachusetts, pp. 135–146.

Mangasarian, O. L. & Musicant, D. R. (2000), ‘Robust linear and support vector regression’,
IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 950–955.

Mangasarian, O. L., Street, W. N. & Wolberg, W. H. (1995), ‘Breast cancer diagnosis and
prognosis via linear programming’, Operations Research 43, 570–577.

Megiddo, N. (1989), Pathways to the optimal set in linear programming, in N. Megiddo,
ed., ‘Progress in Mathematical Programming: Interior-Point and Related Methods’,
Springer-Verlag, New York, Chapter 8, pp. 131–158.

Mehrotra, S. (1992), ‘On the implementation of a primal-dual interior point method’, SIAM
Journal on Optimization 2, 575–601.

Murty, K. G. (1976), Linear and Combinatorial Programming, John Wiley & Sons, New
York.

260 Bibliography

Nazareth, J. L. (1987), Computer Solution of Linear Programs, Oxford University Press,
Oxford, UK.

Nemhauser, G. L. & Wolsey, L. A. (1988), Integer and Combinatorial Optimization, John
Wiley & Sons, New York.

Nocedal, J. & Wright, S. J. (2006), Numerical Optimization, second ed., Springer-Verlag,
New York.

Reid, J. K. (1982), ‘A sparsity-exploiting variant of the Bartels-Golub decomposition for
linear programming bases’, Mathematical Programming 24, 55–69.

Rockafellar, R. T. (1970), Convex Analysis, Princeton University Press, Princeton, New
Jersey.

Rudin, W. (1974), Real and Complex Analysis, second ed., McGraw–Hill, Tokyo, Japan.

Schölkopf, B. & Smola, A. (2002), Learning with Kernels, MIT Press, Cambridge,
Massachusetts.

Schrijver, A. (1986), Theory of Linear and Integer Programming, John Wiley & Sons, New
York.

Sigmon, K. & Davis, T. A. (2004), MATLAB Primer, seventh ed., Chapman and Hall/CRC,
Boca Raton, Florida.

Strang, G. (1993), Introduction to Linear Algebra, Wellesley–Cambridge Press, Wellesley,
Massachusetts.

Vanderbei, R. J. (1997), Linear Programming: Foundations and Extensions, Kluwer Aca-
demic Publishers, Boston.

Vapnik, V. N. (1995), The Nature of Statistical Learning Theory, Springer-Verlag, NewYork.

Winston, W. L. & Venkataramanan, M. (2003), Introduction to Mathematical Programming,
Vol. 4, Brooks/Cole–Thomson Learning, Pacific Grove, California.

Wolsey, L. A. (1998), Integer Programming, Series in Discrete Mathematics and Optimiza-
tion, John Wiley & Sons, New York.

Wright, S. J. (1997), Primal-Dual Interior-Point Methods, SIAM, Philadelphia.

Index

affine-scaling method, 202–204, 206, 210
poor performance of, 203
steplength choice, 203

approximation problems, 218–227
�1-norm, 221–224
�2-norm. See least-squares problems
�∞-norm. See Chebyshev approximation
for linear equalities, 218–223
with hard constraints, 223–224, 227

arc, 12–14, 144

back substitution. See triangular substitution
basic feasible solution, 118

as iterates of revised simplex method,
123

association with basis matrix, 120–121
association with vertex, 121–123
degenerate, 120
existence, 119–120
initial, 129, 134–139

basic solution, 118
basis, 117, 126, 152

for problems with bound constraints,
130

initial, 125, 134–137
optimal, 129, 152–156

basis matrix, 52, 118, 120, 123, 139, 140,
154

for network linear program, 149
LU factorization of, 139–142

big M method, 110–112
behavior on infeasible problems, 112
motivation, 110–111
proof of effectiveness, 111
specification, 111–112

bimatrix game, 185
Bland’s rule. See smallest-subscript rule

blocking variable, 48
breakpoint, 163

canonical form, 8, 16, 45, 117, 120, 123,
129, 130, 134, 138, 139, 150,
151, 156, 195, 197

dual of, 109
for problems with bound constraints,

130
centering parameter, 206, 214
central path, 205
Chebyshev approximation, 219–221, 223
Cholesky factorization, 209, 212
classification, 11–12, 230–235

labeled points, 230
testing set, 235
training set, 235
tuning set, 235

classifier, 230
linear, 230
nonlinear, 233, 234

complementarity, 101–102, 178, 237
almost-, 178, 179
existence of strictly complementary

primal-dual solution, 114–115
strict, 101

complementary slackness.
See complementarity

concave function, 161, 244
constraints, 1

active, 14
bounds, 74–75
equality, 72–87
inactive, 14
inequality, 72–87

convex combination, 239, 241
convex function, 170, 242–244, 248

261

262 Index

linear underestimation, 170, 250
strict, 173

convex hull, 56, 113, 241
convex set, 170, 173, 239–241
cost vector, 7, 151, 154

parametrized, 159
cross-validation, 235
cycling, 66–72, 104

Dantzig, George B., 7, 16
degenerate linear program, 66, 67
diet problem, 8, 96
divergence, 144
domain, 242
dual linear program

of canonical form, 196
of standard form, 94, 102
tableau representation, 94

dual linear system, 89
dual pair of linear programs. See primal-

dual pair of linear programs
dual simplex method, 89, 102–106, 164,

220–223
motivation for, 102
relationship to simplex method applied

to the dual, 105–106
specification of, 103–104

duality, 89–115
for quadratic programs, 176–177
practical example, 96–98
strong, 98–99

applications of, 112–115, 167
for quadratic programming, 176–177

weak, 97–98, 101, 111, 176
duality gap, 197
duality measure, 197, 205, 213

ellipsoid method, 15
entering variable, 47
epigraph, 217, 242–243
equilibrium pair. See Nash equilibrium
expected loss, 185

Farkas lemma, 112–113
feasible point, 3

dual, 98, 103

feasible region, 3, 46, 51, 53, 169, 171,
182

feasible set. See feasible region
feature space, 233
fickle variable, 69
finite termination of simplex method,

65–72
floating-point number, 127
floating-point operations, 39
forward substitution. See triangular

substitution
Frank–Wolfe theorem, 172–173
fundamental theorem of algebra, 113, 225

Gaussian elimination, 39
general form of linear program, 75

dual of, 107–109
global solution, 170, 171, 173, 182
Gordan theorem, 113
gradient, 172, 242, 244, 247
graphical solution of linear programs, 2–6

Hessian, 171, 172, 214, 224, 242, 244,
245

Huber estimation
formulation as quadratic program,

229–230
motivation and definition, 227–228
optimality conditions, 228–229

infeasible linear program, 14, 62, 98, 225
infeasible point, 3
integer programming, 7, 16
interior-point methods

basic properties of primal-dual
methods, 196–197

comparison with simplex method, 212
introduction, 15, 195–197
path-following. See path-following

methods
relationship to Newton’s method, 202

Jacobian, 199, 202, 249
Jordan exchange, 17–23, 26, 27, 46–48,

53, 83, 179, 221. See also pivot
block, 31

Index 263

blocking of, 25, 33, 36, 38
interpretation on dual tableaus, 89–91

Karmarkar, Narendra, 15, 214
Karush–Kuhn–Tucker (KKT) conditions,

100–101, 129, 192, 195
as constrained nonlinear equations,

201–202
for canonical form, 195, 196
for linear programs in general form,

108
for quadratic programs, 173–175, 181,

184–185, 212, 229, 233
statement of, 100–101

kernel, 234
Gaussian, 234–235
linear, 234
polynomial, 234

KKT (Karush–Kuhn–Tucker) conditions.
See Karush–Kuhn–Tucker
conditions

knapsack problem, 130

Lagrange multipliers, 173, 176, 195, 229,
232

Lagrangian, 176
LCP. See linear complementarity

problem (LCP)
least-squares problems, 211, 224–229

normal equations, 225
leaving variable, 48, 156
Lemke’s method, 178–185

application to quadratic programs,
182–185

outline of, 178
Phase I, 178–179, 188
Phase II, 179, 188
termination of, 182

Lemke–Howson method, 187
level set, 243
linear combination, 240
linear complementarity problem (LCP),

169, 177–178
definition, 177
infeasible, 182

relationship to quadratic programming,
174, 177, 180, 182

linear dependence, 23, 24, 138, 221
of functions, 24

linear equations, 32–39
inconsistent, 218, 227
overdetermined, 220, 221, 223, 224,

226, 227, 230
solution using Gaussian elimination,

39–41
solution using Jordan exchanges,

32–39
flop count, 39, 44

with infinitely many solutions, 37
linear independence, 17, 23–27, 51, 52,

118, 119
of functions, 24
of rows/columns in a matrix, 92

local solution, 169, 170, 173, 184
LU decomposition. See LU factorization
LU factorization, 17, 39–44, 127, 138, 197

complete pivoting, 43
flop count, 44
partial pivoting, 42–44
updating, 139–142

matching pennies game, 188–191, 193
matrix

addition, 239
basis. See basis matrix
diagonal, 196, 208, 238
eigenvalues, 246
identity, 238
indefinite, 208, 214, 245
inverse, 27–31, 238
invertible, 51, 152, 225
loss, 185–188, 191
lower triangular, 39, 209, 239

unit, 40
multiplication, 239
nonsingular, 27
permutation, 39–41, 139, 209, 238
poorly conditioned, 226
positive definite, 245, 246
positive semidefinite, 172, 174, 176,

224, 245, 246

264 Index

representation in MATLAB, 251–252
singular, 27, 31
skew-symmetric, 178
sparse, 208, 209, 238
symmetric, 172, 244
totally unimodular, 150
transpose, 238
upper triangular, 39

Mehrotra predictor-corrector method.
See path-following methods

minimax problems, 217–218
discrete, 218

minimum principle, 170, 173, 184
mixed strategy, 185
mixed-integer linear programming, 150
monotone, 247

Nash equilibrium, 186, 192
computation of, 186–187

Nash, John, 169, 186
network linear program, 143–150

assignment problem, 149
circulation problem, 147
general properties, 143–144
max-flow, 146–147
minimum-cost, 12–14, 144–146, 149
node-arc incidence matrix, 145
shortest-path, 145–146
transportation problem, 147–149

network simplex method, 149–150
Newton’s method, 197–201

for scalar nonlinear equations, 197–198
for systems of nonlinear equations,

197–201
quadratic convergence of, 199
with line search, 201

node, 12, 144
demand, 13, 145
sink, 145
supply, 13

nondegenerate linear program, 65, 66
nonlinear programming, 169–172
nonnegative orthant, 171, 251
norm, 218, 247–248

�1, 221, 247
�2, 231, 247

�p, 219, 247
�∞, 219, 247
dual, 231, 248
equivalence of, 248

objective function, 1, 154, 241
contours, 4, 46, 159

optimal face, 58. See also solution set
order notation

O(·), 248
o(·), 248–250

parametric programming, 151, 158–168
path-following methods

MATLAB implementation of, 209
choice of centering parameter, 207,

210
choice of starting point, 211
choice of steplength, 207, 211
corrector direction, 210, 211
for quadratic programming, 212–214
linear algebra issues, 208–209, 211,

214
normal-equations form, 208

long-step, 206–207
specification of algorithm, 206–207

motivation, 204–205
practical enhancements, 209–211
relationship to Newton’s method,

205–206
permutation, 29
Phase I of simplex method, 60–65, 179,

223
after addition of constraints, 157
description of, 60–65
dual simplex as possible alternative,

102, 104
for canonical form, 134–138
for problems with parametrized con-

straints, 167
for solution of linear inequalities, 64
purpose of, 53

Phase II of simplex method, 53–60, 62,
71, 103, 135–137

piecewise-linear function, 161, 163, 217

Index 265

pivot, 18, 20, 46, 47. See also Jordan exchange
block, 31
degenerate, 62, 64, 69
nondegenerate, 67
submatrix, 31

pivot selection, 15. See also pricing
Devex, 142, 143
for dual simplex, 103
for Lemke’s algorithm, 179
steepest-edge, 142

polynomial complexity, 207
predictor-corrector method.

See path-following methods
preprocessing, 212
pricing, 47, 49, 53, 68, 117

partial, 142
primal-dual methods. See interior-point

methods
primal-dual pair of linear programs, 89

definition, 94
for general linear programs, 108
interior-point methods and, 195
optimality conditions for, 100
weak duality for, 97
zero-sum games and, 192

prisoners’ dilemma, 186, 191
projection, 173, 205, 244
pure strategies, 185

QR factorization, 226
quadratic function, 244–247

convex, 244–247
quadratic programming, 7, 172–177,

212–215, 227, 231
convex, 172, 173, 175, 212
general form, 175
infeasible, 182, 183
nonconvex, 182, 184
unbounded, 182, 183

rank, 91, 225
determination via Jordan exchanges,

91–92
full, 225

ratio test, 48, 126, 203
after addition of constraints, 157

definition, 49
for dual simplex method, 103, 104,

157, 165
in Lemke’s method, 179, 180, 188
robust implementation of, 143
ties in, 66, 68

reduced costs, 49, 68, 124, 132, 142, 152,
153, 160

regression problems. See approximation
problems

residual vector, 219, 221, 227
outliers, 227

resource allocation, 10–11
revised simplex method, 52, 117, 123–143,

156
choice of initial basis, 125
for problems with bound constraints,

129, 134
fundamental idea, 123–124
initial basic feasible solution, 134–139
linear algebra in, 124–126
pivot selection, 142–143
roundoff error issues, 127–129
specification, 124

roundoff error, 28, 127, 143

saddle point, 184
scalar product, 252
Scheme II for linear programs in nonstan-

dard form, 72, 80–86, 157, 220,
221, 223

Schur complement, 31
sensitivity analysis, 4, 151
separating hyperplane, 11, 230, 231, 233
separation lemma, 113
shadow prices, 97, 154, 155. See also

Lagrange multipliers
Sherman–Morrison–Woodbury formula,

140
shifting, 74
simplex method, 6, 7, 45–87

introduction, 14–15
network, 149–150

slack variables, 8, 45, 117, 152, 196
definition, 45
dual, 101, 103

266 Index

smallest-subscript rule, 67–72, 78, 104
solution set, 58–60
source, 145
standard form, 7, 16, 45, 117, 151
standard form, transformation to, 72–76

free variable method, 75
Scheme I, 72, 76–80
Scheme II, 80–86
substitution method, 74

Steinitz theorem, 26–27, 38, 92
support vector machines

linear, 230–233
linear programming (�1) formulation,

233
nonlinear, 233–234
nonseparable, 231–233
separable, 230–231

support vectors, 231, 232

tableau, 18–20
augmented, 62
condensed, 45, 47, 123
degenerate, 65, 66, 120
dual, 89
feasible, 46, 187
initial, 47, 119
labels, 21
MATLAB representation, 21–22
nondegenerate, 65
optimal, 49, 53, 58, 71, 152–154,

156
primal, 89
unbounded, 54

Taylor’s theorem, 170, 198, 199, 249

theorem of the alternative, 113
tolerance

pivot, 127
slack, 127

triangular substitution, 40, 139, 141, 209

unbounded linear program, 14, 46, 54–56,
66, 98

unbounded ray, 54, 182, 183
uncertainty in formulation, 151

variables, 2
artificial, 61, 62, 135, 167, 179, 218

for equality constraints, 80–82, 193
basic, 45, 152
blocking, 133
dependent, 18, 21, 23
dual, 89. See also Lagrange

multipliers
free, 75, 80, 107, 134, 136–139, 167,

184, 222
independent, 18, 21, 23, 26
nonbasic, 45, 51, 130
nonnegative, 107
slack. See slack variables

vector
norm. See norm
notation, 237
representation in MATLAB, 251

vertex, 14–15, 46, 51–53, 120, 163
adjacent, 15
degenerate, 52

zero-sum game, 185, 192–193

	Linear Programming with MATLAB
	MPS-SIAM Series on Optimization
	ISBN 978-0-898716-43-6
	Contents
	Preface
	Chapter 1 Introduction
	Chapter 2 Linear Algebra: A Constructive Approach
	Chapter 3 The Simplex Method
	Chapter 4 Duality
	Chapter 5 Solving Large Linear Programs
	Chapter 6 Sensitivity and Parametric Linear Programming
	Chapter 7 Quadratic Programming and Complementarity Problems
	Chapter 8 Interior-Point Methods
	Chapter 9 Approximation and Classification
	Appendix A Linear Algebra, Convexity, and Nonlinear Functions
	Appendix B Summary of Available MATLAB Commands
	Bibliography
	Index

