
58:110 Computer-Aided Engineering Spring 2005

Introduction to MATLABIntroduction to MATLAB

Department of Mechanical and industrial engineering

January 2005

Topics

Introduction
Running MATLAB and MATLAB Environment
Getting help
Variables
Vectors, Matrices, and linear Algebra
Mathematical Functions and Applications
Plotting
Programming
M-files
User Defined Functions

Introduction

• What is MATLAB

MATLAB, which stands for MATrix LABoratory, is a powerful program
that combines computation and visualization capability for science and
engineering simulations.

• MATLAB provides the user:
Manage variables

Import and export data

Perform calculations

Generate Plots

…………..

Running
MATLAB

To run MATLAB:
Login any ICAEN PC with
WIN XP

Start -> All Programs

-> Engineering Software

-> MATLAB 7.0

Main Working Windows

After the “>>” symbol, you
can type the commands

Display
Windows

Graphic (Figure) Window
Displays plots and graphs
Created response to graphics
commands

M-file editor/debugger window
Create and edits scripts of commands
called M-files

Getting Help

To get help:
MATLAB main menu

-> Help

-> MATLAB Help

Getting Help

Type one of the following commands in the command
window:

help – lists all the help topic
help topic – provides help for the specified topic
help command – provides help for the specified command
helpwin – opens a separate help window for navigation
Lookfor keyword – search all M-files for keyword

Online resource

Variables
Variable names:

Must start with a letter.
May contain only letters, digits, and the underscore “_”.
MATLAB is case sensitive, for example one & ONE are different
variables.
MATLAB only recognizes the first 31 characters in a variable name.

Assignment statement:
Variable = number;
Variable = expression;

Example: >> t = 1234;
>> t = 1234
t =

1234

Variables
Special variables:

ans: default variable name for the result.
pi: π = 3.1415926 ……
eps: ε= 2.2204e-016, smallest value by which two numbers can differ
inf: ∞, infinity
NAN or nan: not-a-number

Commands involving variables:
who: lists the names of the defined variables
whos: lists the names and sizes of defined variables
clear: clears all variables
clear name: clears the variable name
clc: clears the command window
clf: clears the current figure and the graph window

Vectors
A row vector in MATLAB can be created by an explicit list, starting with a
left bracket, entering the values separated by spaces (or commas) and closing
the vector with a right bracket.
A column vector can be created the same way, and the rows are separated by
semicolons.
Example:

>> x = [0 0.25*pi 0.5*pi 0.75*pi pi]
x = x is a row vector.

0 0.7854 1.5708 2.3562 3.1416
y=[0; 0.25*pi; 0.5*pi; 0.75*pi; pi]
y = y is a column vector.

0
0.7854
1.5708
2.3562
3.1416

Vectors

Vector Addressing- A vector element is addressed in MATLAB with
an integer index enclosed in parentheses.
Example:

>> x(3)
ans =

1.5708 <- 3rd element of vector X
The colon notation may be used to address a block of elements

(start:increment:end)
Example:

>> x(1:2:5)
ans =

0 1.5708 3.1416

Vectors

Some useful commands:

x = start:end Create row vector x starting with start, counting by 1 ,
ending at end

x = start:increment:end Create row vector x starting with start, counting by
increment, ending at or before end

x = linspace(start,end,number) Create linearly spaced row vector x starting with start,
ending at end, having number elements

x = logspace(start,end,number) Create logarithmically spaced row vector x starting
with start, ending with end, having number elements

length(x) Returns the length of vector x

y = x’ Transpose of vector x

dot(x,y),cross(x,y) Returns the scalar dot and vector cross product of the
vector x and y

Array Operations

Scalar-Array Mathematics
For addition, subtraction, multiplication, and division of an array by a
scalar, simply apply the operation to all elements of the array

Example:
>> f = [1 2; 3 4]
f =

1 2
3 4

>> g = pi * f / 3 + 0.8
g =

1.8472 2.8944
3.9416 4.9888

Array Operations
Element-by-Element Array-Array Mathematics

Example:
>> x = [1 2 3];
>> y = [4 5 6];
>> z = x .* y
z =

4 10 18

operation Algebraic Form MATLAB

Addition a + b a + b

Subtraction a – b a – b

Multiplication a ä b a .* b

Division a π b a ./ b

Exponentiation ab a .^ b

Matrices
A matrix array is two-dimensional, having both mulitple rows and
multiple columns.

It begins with [, and end with]
Spaces or commas are used to separate elements in a row
Semicolon or enter is used to separate rows

Example:
>> f = [1 2 3; 4 5 6]
f =

1 2 3
4 5 6

>> h = [2 4 6
1 3 5]

h =
2 4 6
1 3 5

Matrices
Matrix Addressing:

Matrix name(row,column)
Colon maybe used in place of a row or column reference to
select the entire row or column.

Example:
>> f(2,3)
ans =

6

>> h(:,1)
ans =

2
1

Matrices

Some useful commands:

zeros(n) Returns a n X n matrix of zeros

zeros(m,n) Returns a m X n matrix of zeros

ones(n) Returns a n X n matrix of ones

ones(m,n) Returns a m X n matrix of ones

size(A) For a m X n matrix A, returns the row vector [m,n]
containing the number of rows and columns in matrix

length(A) Returns the larger of the number of rows or columns in A

Matrices

More commands:
Transpose B=A’

Identity Matrix
eye(n) -> returns an n X n identity matrix
eye(m,n) -> returns an m X n matrix with ones on the
main diagonal and zeros elsewhere

Addition and Subtraction C =A +B C =A - B

Scalar Multiplication B = α A, where α is a scalar

Matrix Multiplication C = A * B

Matrix Inverse B = inv(A), A must be a square matrix in this case

Matrix powers B = A * A , A must be a square matrix

Determinant det(A), A must be a square matrix

Linear Equations

Example: a system of 3 linear equations with 3 unknowns (x1, x2, x3)
3 x1 + 2x2 - x3 = 10
- x1 + 3x2 + 2x3 = 5
x1 - 2x2 - x3 = -1

Let:
1

2

3

3 2 1 10
1 3 2 5

1 1 1 1

x
x
x

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥= − = =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − −⎣ ⎦ ⎣ ⎦ ⎣ ⎦

A x b

Then, the system can be described as:

Ax = b

Linear Equations
Solution by Matrix Inverse:

Ax = b

A-1 Ax = A-1 b

Ax = b

MATLAB:
>> A = [3 2 -1; -1 3 2; 1 -1 -1];

>> b = [10;5;-1];

>> x = inv(A)*b

x =

-2.0000

5.0000

-6.0000

Solution by Matrix Division:
Ax = b
Can be solved by left division bπA

MATLAB:

>> A = [3 2 -1; -1 3 2; 1 -1 -1];
>> b = [10;5;-1];
>> x =A \ b
x =

-2.0000
5.0000
-6.0000

Polynomials

The polynomials are represented by their coefficients in MATLAB
Consider the following polynomial:

For s is scalar: use scalar operations
A = s ^ 3 + 3 * s ^ 2 + 3 * s + 1;

For s is a vector or a matrix: use array or element by element operation
A = s .^ 3 + 3 * s .^ 2 + 3 .* s + 1;

Function polyval(a,s): evaluate a polynomial with coefficients in
vector a for the values in s

3 2() 3 3 1A s s s s= + + +

Polynomials

MATLAB:

>> s = linspace(-5,5,100);
>> coeff = [1 3 3 1];
>> A = polyval(coeff,s);
>> plot(s,A)
>> xlabel('s')
>> ylabel('A(s)')

3 2() 3 3 1A s s s s= + + +

Polynomials
Operation MATLAB

Command
Description

Addition c = a + b Sum of polynomial A and B, the coefficient vectors must have the
same length.

Scalar Multiple b = 3 * a Multiply the polynomial A by 3.

Polynomial
Multiplication

c = conv(a, b) Returns the coefficient vector for the resulting from the product of
polynomial A and B.

Polynomial
Division

[q,r] = deconv(a,b) Returns the long division of A and B. q is the quotient polynomial
coefficient, and r is the remainder polynomial coefficient.

Derivatives polyder(a)
polyder(a,b)

[n,d] = polyder(b,a)

Returns the coefficients of the derivative of the polynomial A.
Returns the coefficients of the derivative of the product of A and B.
Returns the derivative of ratio B/A, represented as N/D.

Find Roots roots(a) Returns the roots of the polynomial A in column vector form.

Find Polynomials Poly(r) Returns the coefficient vector of the polynomial having roots r

Plotting

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-0.5

0

0.5

1

1.5

For more information on 2-D
plotting, type help graph2d
Plotting a point:

>>plot (variablename, ‘symbol’)
Example: Complex variable
>>z = 1 + 0.5j;
>>plot(z,‘*')
Commands for axes:

Command Description

axis([xmin xmax ymin ymax]) Define minimum and maximum values of the axes

axis square Produce a square plot

axis equal Equal scaling factors for both axes

axis normal Turn off axis square, equal

axis (auto) Return the axis to defaults

Plotting
Plotting curves:

plot(x,y) – generate a linear plot of the values of x (horizontal axis) and y (vertical axis)
semilogx(x,y) - generate a plot of the values of x (logarithmic scale) and y (linear scale)
semilogy(x,y) -
loglog(x,y) - generate a plot of the values of x and y (both logarithmic scale)

Multiple curves
plot(x,y,w,z) – multiple curves can be plotted on the same graph: y vs. x and z vs. w
legend(‘string1’,’string2’, …) – used to distinguish between plots on the same graph

Multiple figures
figure(n) – use in creation of multiple plot windows before the command plot()
close – closes the figure n window
close all – closes all the plot windows

Subplots:
subplot(m,n,p) – m by n grid of windows, with p specifying the current plot as the pth
window

Plotting
Example: (polynomial function)

Plot the polynomial using linear/linear, log/linear, linear/log, log/log scale

>>% generate te polynomial:
>>x=linspace(0,10,100);
>>y=2*x.^2+7*x+9;
>>% plotting the polynomial:
>>figure(1);
>>subplot(2,2,1),plot(x,y);
>>title('polynomial, linear/linear scale');
>>ylabel('y'),grid;
>>subplot(2,2,2),semilogx(x,y);
>>title('polynomial, log/linear scale');
>>ylabel('y'),grid;
>>subplot(2,2,3),semilogy(x,y);
>>title('polynomial, linear/log scale');
>>ylabel('y'),grid;
>>subplot(2,2,4),loglog(x,y);
>>title('polynomial, log/log scale');
>>ylabel('y'),grid;

972 2 ++= xxy

Plotting

0 5 10
0

100

200

300
polynomial, linear/linear scale

y

10-1 100 101
0

100

200

300
polynomial, log/linear scale

y

0 5 10
100

101

102

103
polynomial, linear/log scale

y

10-1 100 101
100

101

102

103
polynomial, log/log scale

y

Plotting

Adding new curves to the exsiting graph
Use the hold command to add lines/points to an existing plot

hold on – retain existing axes, add new curves to current axes.
hold off – release the current figure windows for new plots

Grids and labels:
Command Description

grid on Add dashed grids lines at the tick marks

grid off Removes grid lines (default)

Grid Toggles grid status (off to on or on to off)

title(‘text’) Labels top of plot with text

xlabel(‘text’) Labels horizontal (x) axis with text

ylabel(‘text’) Labels vertical (y) axis with text

text(x,y,’text’) Adds text to location (x,y) on the current axes,
where (x,y) is in units from the current plot

Programming

Flow control and loops
Simple if statement:

if logical expression
commands

end

Example: (Nested)
if d < 50

count=count +1;
disp(d);
if b>d

b=0;
end

end

Example: (else and elseif clauses)

if temperature >100
disp(‘Too hot – equipment malfunctioning.’);

elseif temperature >90
disp(‘Normal operating range.’);

elseif temperature > 75
disp(‘Below desired operating range.’);

else
disp(‘Too cold – Turn off equipment.’);

end

Programming

The switch statement:

switch expression
case test expression 1

commands
case test expression 2

commands
otherwise

commands
end

Example:

switch interval
case 1

xinc = interval/10;
case 0

xinc = 0.1;
otherwise

disp(‘wrong value’);
end

Programming
Loops
for loop
for variable = expression

commands
end
while loop
while expression

commands
end

Example (for loop):
for t = 1: 5000

y(t) = sin (2*pi*t/10);
End

Example (while loop):
while EPS>1

EPS=EPS/2;
end

The break statement

break – is used to terminate the execution of the loop.

M-Files
Before, we have executed the commands in the command window. The
more general way is to create a M-file.

The M-file is a text file that consists a group of MATLAB
commands.
MATLAB can open and execute the commands exactly as
if they were entered at the MATLAB command window.
To run the M-files, just type the file name in the command
window. (make sure the current working directory is set
correctly)

User-Defined Function
Add the following command in the beginning of your m-file:
function [output variables] = function_name (input variables);

Note: the function_name should be the same as your file name to avoid
confusion.

Calling your function:
A user-defined function is called by the name of the m-file, not the
name given in the function definition.
Type in the m-file name like other pre-defined commands.

Comments:
The first few lines should be comments, as they will be displayed if
help is requested for the function name. the first comment line is
reference by the lookfor command.

User-Defined Function
Example (circle1.m)

function y = circle1(center,radius,nop,style)
% circle1 draws a circle with center defined as a vector 'center'
% radius as a scalar 'radius'. 'nop' is the number of points on the circle
% 'style' is the style of the point.
% Example to use: circle1([1 3],4,500, ':');
[m,n] = size(center);
if (~((m == 1) | (n == 1)) | (m == 1 & n == 1))

error('Input must be a vector')
end
close all
x0=center(1);
y0=center(2);
t0=2*pi/nop;
axis equal
axis([x0-radius-1 x0+radius+1 y0-radius-1 y0+radius+1])
hold on
for i=1:nop+1

pos1=radius*cos(t0*(i-1))+x0;
pos2=radius*sin(t0*(i-1))+y0;
plot(pos1,pos2,style);

end

User-Defined Function
In command window:

>> help circle1

circle1 draws a circle with center defined as a vector 'center'
radius as a scalar 'radius'. 'nop' is the number of points on the circle
'style' is the style of the point
Example to use: circle1([1 3],4,500,':');

Example: plot a circle with center (3,1), radius 5 using
500 points and style '--':

>> circle1([3 1],5,500,'--');

Result in the Figure window

