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Preface

One of the goals of our first book, Computational Statistics Handbook with
MATLAB® [2002], was to show some of the key concepts and methods of
computational statistics and how they can be implemented in MATLAB.1 A
core component of computational statistics is the discipline known as
exploratory data analysis or EDA. Thus, we see this book as a complement to
the first one with similar goals: to make exploratory data analysis techniques
available to a wide range of users.

Exploratory data analysis is an area of statistics and data analysis, where
the idea is to first explore the data set, often using methods from descriptive
statistics, scientific visualization, data tours, dimensionality reduction, and
others. This exploration is done without any (hopefully!) pre-conceived
notions or hypotheses. Indeed, the idea is to use the results of the exploration
to guide and to develop the subsequent hypothesis tests, models, etc. It is
closely related to the field of data mining, and many of the EDA tools
discussed in this book are part of the toolkit for knowledge discovery and
data mining. 

This book is intended for a wide audience that includes scientists,
statisticians, data miners, engineers, computer scientists, biostatisticians,
social scientists, and any other discipline that must deal with the analysis of
raw data. We also hope this book can be useful in a classroom setting at the
senior undergraduate or graduate level. Exercises are included with each
chapter, making it suitable as a textbook or supplemental text for a course in
exploratory data analysis, data mining, computational statistics, machine
learning, and others. Readers are encouraged to look over the exercises,
because new concepts are sometimes introduced in them. Exercises are
computational and exploratory in nature, so there is often no unique answer!

As for the background required for this book, we assume that the reader
has an understanding of basic linear algebra. For example, one should have
a familiarity with the notation of linear algebra, array multiplication, a matrix
inverse, determinants, an array transpose, etc. We also assume that the reader
has had introductory probability and statistics courses. Here one should
know about random variables, probability distributions and density
functions, basic descriptive measures, regression, etc. 

In a spirit similar to the first book, this text is not focused on the theoretical
aspects of the methods. Rather, the main focus of this book is on the use of the

1 MATLAB® and Handle Graphics® are registered trademarks of The MathWorks, Inc.
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xiv Exploratory Data Analysis with MATLAB

EDA methods. Implementation of the methods is secondary, but where
feasible, we show students and practitioners the implementation through
algorithms, procedures, and MATLAB code. Many of the methods are
complicated, and the details of the MATLAB implementation are not
important. In these instances, we show how to use the functions and
techniques. The interested reader (or programmer) can consult the M-files for
more information. Thus, readers who prefer to use some other programming
language should be able to implement the algorithms on their own.

While we do not delve into the theory, we would like to emphasize that the
methods described in the book have a theoretical basis. Therefore, at the end
of each chapter, we provide additional references and resources, so those
readers who would like to know more about the underlying theory will
know where to find the information. 

MATLAB code in the form of an Exploratory Data Analysis Toolbox is
provided with the text. This includes the functions, GUIs, and data sets that
are described in the book. This is available for download at 

http://lib.stat.cmu.edu

and

http://www.infinityassociates.com

Please review the readme file for installation instructions and information on
any changes. M-files that contain the MATLAB commands for the exercises
are also available for download. 

We also make the disclaimer that our MATLAB code is not necessarily the
most efficient way to accomplish the task. In many cases, we sacrificed
efficiency for clarity. Please refer to the example M-files for alternative
MATLAB code, courtesy of Tom Lane of The MathWorks, Inc.

We describe the EDA Toolbox in greater detail in Appendix B. We also
provide website information for other tools that are available for download
(at no cost). Some of these toolboxes and functions are used in the book and
others are provided for informational purposes. Where possible and
appropriate, we include some of this free MATLAB code with the EDA
Toolbox to make it easier for the reader to follow along with the examples and
exercises.

We assume that the reader has the Statistics Toolbox (Version 4 or higher)
from The MathWorks, Inc. Where appropriate, we specify whether the
function we are using is in the main MATLAB software package, Statistics
Toolbox, or the EDA Toolbox. The development of the EDA Toolbox was
mostly accomplished with MATLAB Version 6.5 (Statistics Toolbox, Version
4), so the code should work if this is what you have. However, a new release
of MATLAB and the Statistics Toolbox was introduced in the middle of
writing this book, so we also incorporate information about new
functionality provided in these versions.
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3

Chapter 1
Introduction to Exploratory Data Analysis

We shall not cease from exploration
And the end of all our exploring
Will be to arrive where we started
And know the place for the first time.

T. S. Eliot, “Little Gidding” (the last of his Four Quartets)

The purpose of this chapter is to provide some introductory and background
information. First, we cover the philosophy of exploratory data analysis and
discuss how this fits in with other data analysis techniques and objectives.
This is followed by an overview of the text, which includes the software that
will be used and the background necessary to understand the methods. We
then present several data sets that will be employed throughout the book to
illustrate the concepts and ideas. Finally, we conclude the chapter with some
information on data transforms, which will be important in some of the
methods presented in the text. 

1.1 What is Exploratory Data Analysis

John W. Tukey [1977] was one of the first statisticians to provide a detailed
description of exploratory data analysis (EDA). He defined it as “detective
work - numerical detective work - or counting detective work - or graphical
detective work.” [Tukey, 1977, page 1] It is mostly a philosophy of data
analysis where the researcher examines the data without any pre-conceived
ideas in order to discover what the data can tell him about the phenomena
being studied. Tukey contrasts this with confirmatory data analysis (CDA),
an area of data analysis that is mostly concerned with statistical hypothesis
testing, confidence intervals, estimation, etc. Tukey [1977] states that
“Confirmatory data analysis is judicial or quasi-judicial in character.” CDA
methods typically involve the process of making inferences about or
estimates of some population characteristic and then trying to evaluate the
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4 Exploratory Data Analysis with MATLAB

precision associated with the results. EDA and CDA should not be used
separately from each other,  but rather they should be used in a
complementary way. The analyst explores the data looking for patterns and
structure that leads to hypotheses and models.

Tukey’s book on EDA was written at a time when computers were not
widely available and the data sets tended to be somewhat small, especially
by today’s standards. So, Tukey developed methods that could be
accomplished using pencil and paper, such as the familiar box-and-whisker
plots (also known as boxplots) and the stem-and-leaf. He also included
discussions of data transformation, smoothing, slicing, and others. Since this
book is written at a time when computers are widely available, we go beyond
what Tukey used in EDA and present computationally intensive methods for
pattern discovery and statistical visualization. However, our philosophy of
EDA is the same - that those engaged in it are data detectives.

Tukey [1980], expanding on his ideas of how exploratory and confirmatory
data analysis fit together, presents a typical straight-line methodology for
CDA; its steps follow:

1. State the question(s) to be investigated.
2. Design an experiment to address the questions.

3. Collect data according to the designed experiment.
4. Perform a statistical analysis of the data.

5. Produce an answer.

This procedure is the heart of the usual confirmatory process. To incorporate
EDA, Tukey revises the first two steps as follows:

1. Start with some idea.
2. Iterate between asking a question and creating a design.

Forming the question involves issues such as: What can or should be asked?
What designs are possible? How likely is it that a design will give a useful
answer? The ideas and methods of EDA play a role in this process. In
conclusion, Tukey states that EDA is an attitude, a flexibility, and some graph
paper.

A small, easily read book on EDA written from a social science perspective
is the one by Hartwig and Dearing [1979]. They describe the CDA mode as
one that answers questions such as “Do the data confirm hypothesis XYZ?”
Whereas, EDA tends to ask “What can the data tell me about relationship
XYZ?” Hartwig and Dearing specify two principles for EDA: skepticism and
openness. This might involve visualization of the data to look for anomalies
or patterns, the use of resistant statistics to summarize the data, openness to
the transformation of the data to gain better insights, and the generation of
models.
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Introduction to Exploratory Data Analysis 5

Some of the ideas of EDA and their importance to teaching statistics were
discussed by Chatfield [1985]. He called the topic initial data analysis or
IDA. While Chatfield agrees with the EDA emphasis on starting with the
noninferential approach in data analysis, he also stresses the need for looking
at how the data were collected, what are the objectives of the analysis, and the
use of EDA/IDA as part of an integrated approach to statistical inference. 

Hoaglin [1982] provides a summary of EDA in the Encyclopedia of Statistical
Sciences. He describes EDA as the “flexible searching for clues and evidence”
and confirmatory data analysis as “evaluating the available evidence.” In his
summary, he states that EDA encompasses four themes: resistance, residuals,
re-expression and display. 

Resistant data analysis pertains to those methods where an arbitrary
change in a data point or small subset of the data yields a small change in the
result. A related idea is robustness, which has to do with how sensitive an
analysis is to departures from the assumptions of an underlying probabilistic
model. 

Residuals are what we have left over after a summary or fitted model has
been subtracted out. We can write this as

residual = data – fit.

The idea of examining residuals is common practice today. Residuals should
be looked at carefully for lack of fit, heteroscedasticity (nonconstant
variance), nonadditivity, and other interesting characteristics of the data. 

Re-expression has to do with the transformation of the data to some other
scale that might make the variance constant, might yield symmetric
residuals, could linearize the data or add some other effect. The goal of re-
expression for EDA is to facilitate the search for structure, patterns, or other
information.

Finally, we have the importance of displays or visualization techniques for
EDA. As we described previously, the displays used most often by early
practitioners of EDA included the stem-and-leaf plots and boxplots. The use
of scientific and statistical visualization is fundamental to EDA, because
often the only way to discover patterns, structure or to generate hypotheses
is by visual transformations of the data. 

Given the increased capabilities of computing and data storage, where
massive amounts of data are collected and stored simply because we can do
so and not because of some designed experiment, questions are often
generated after the data have been collected [Hand, Mannila and Smyth,
2001; Wegman, 1988]. Perhaps there is an evolution of the concept of EDA in
the making and the need for a new philosophy of data analysis.
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6 Exploratory Data Analysis with MATLAB

1.2 Overview of the Text

This book is divided into two main sections: pattern discovery and graphical
EDA. We first cover linear and nonlinear dimensionality reduction because
sometimes structure is discovered or can only be discovered with fewer
dimensions or features. We include some classical techniques such as
principal component analysis, factor analysis, and multidimensional scaling,
as well as some of the more recent computationally intensive methods like
self-organizing maps, locally linear embedding, isometric feature mapping,
and generative topographic maps. 

Searching the data for insights and information is fundamental to EDA. So,
we describe several methods that ‘tour’ the data looking for interesting
structure (holes, outliers, clusters, etc.). These are variants of the grand tour
and projection pursuit that try to look at the data set in many 2-D or 3-D
views in the hope of discovering something interesting and informative. 

Clustering or unsupervised learning is a standard tool in EDA and data
mining. These methods look for groups or clusters, and some of the issues
that must be addressed involve determining the number of clusters and the
validity or strength of the clusters. Here we cover some of the classical
methods such as hierarchical clustering and k-means. We also devote an
entire chapter to a newer technique called model-based clustering that
includes a way to determine the number of clusters and to assess the
resulting clusters. 

Evaluating the relationship between variables is an important subject in
data analysis. We do not cover the standard regression methodology; it is
assumed that the reader already understands that subject. Instead, we
include a chapter on scatterplot smoothing techniques such as loess. 

The second section of the book discusses many of the standard techniques
of visualization for EDA. The reader will note, however, that graphical
techniques, by necessity, are used throughout the book to illustrate ideas and
concepts. 

In this section, we provide some classic, as well as some novel ways of
visualizing the results of the cluster process, such as dendrograms, treemaps,
rectangle plots, and ReClus. These visualization techniques can be used to
assess the output from the various clustering algorithms that were covered in
the first section of the book. Distribution shapes can tell us important things
about the underlying phenomena that produced the data. We will look at
ways to determine the shape of the distribution by using boxplots, bagplots,
q-q plots, histograms, and others. 

Finally, we present ways to visualize multivariate data. These include
parallel coordinate plots, scatterplot matrices, glyph plots, coplots, dot
charts, and Andrews’ curves. The ability to interact with the plot to uncover
structure or patterns is important, and we present some of the standard
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Introduction to Exploratory Data Analysis 7

methods such as linking and brushing. We also connect both sections by
revisiting the idea of the grand tour and show how that can be implemented
with Andrews’ curves and parallel coordinate plots.

We realize that other topics can be considered part of EDA, such as
descriptive statistics, outlier detection, robust data analysis, probability
density estimation, and residual analysis. However, these topics are beyond
the scope of this book. Descriptive statistics are covered in introductory
statistics texts, and since we assume that readers are familiar with this subject
matter, there is no need to provide explanations here. Similarly, we do not
emphasize residual analysis as a stand-alone subject, mostly because this is
widely discussed in other books on regression and multivariate analysis.

We do cover some density estimation, such as model-based clustering
(Chapter 6) and histograms (Chapter 9). The reader is referred to Scott [1992]
for an excellent treatment of the theory and methods of multivariate density
estimation in general or Silverman [1986] for kernel density estimation. For
more information on MATLAB implementations of density estimation the
reader can refer to Martinez and Martinez [2002]. Finally, we will likely
encounter outlier detection as we go along in the text, but this topic, along
with robust statistics, will not be covered as a stand-alone subject. There are
several books on outlier detection and robust statistics. These include
Hoaglin, Mosteller and Tukey [1983], Huber [1981], and Rousseeuw and
Leroy [1987]. A rather dated paper on the topic is Hogg [1974].

We use MATLAB® throughout the book to illustrate the ideas and to show
how they can be implemented in software. Much of the code used in the
examples and to create the figures is freely available, either as part of the
downloadable toolbox included with the book or on other internet sites. This
information will be discussed in more detail in Appendix B. For MATLAB
product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7101
E-mail: info@mathworks.com
Web: www.mathworks.com

It is important for the reader to understand what versions of the software or
what toolboxes are used with this text. The book was written using MATLAB
Versions 6.5 and 7. We made some use of the MATLAB Statistics Toolbox,
Versions 4 and 5. We will refer to the Curve Fitting Toolbox in Chapter 7,
where we discuss smoothing. However, this particular toolbox is not needed
to use the examples in the book.

To get the most out of this book, readers should have a basic understanding
of matrix algebra. For example, one should be familiar with determinants, a
matrix transpose, the trace of a matrix, etc. We recommend Strang [1988,
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8 Exploratory Data Analysis with MATLAB

1993] for those who need to refresh their memories on the topic. We do not
use any calculus in this book, but a solid understanding of algebra is always
useful in any situation. We expect readers to have knowledge of the basic
concepts in probability and statistics, such as random samples, probability
distributions, hypothesis testing, and regression. 

1.3 A Few Words About Notation

In this section, we explain our notation and font conventions. MATLAB code
will be in Courier New bold font such as this: function. To make the book
more readable, we will indent MATLAB code when we have several lines of
code, and this can always be typed in as you see it in the book. 

For the most part, we follow the convention that a vector is arranged as a
column, so it has dimensions 1 Our data sets will always be arranged in
a matrix of dimension , which is denoted as X. Here n represents the
number of observations we have in our sample, and p is the number of
variables or dimensions. Thus, each row corresponds to a p-dimensional
observation or data point. The ij-th element of X will be represented by xij. For
the most part, the subscript i refers to a row in a matrix or an observation, and
a subscript j references a column in a matrix or a variable. What is meant by
this will be clear from the text.

In many cases, we might need to center our observations before we analyze
them. To make the notation somewhat simpler later on, we will use the
matrix Xc to represent our centered data matrix, where each row is now
centered at the origin. We calculate this matrix by first finding the mean of
each column of X and then subtracting it from each row. The following code
will calculate this in MATLAB:

% Find the mean of each column.
[n,p] = size(X);
xbar = mean(X);
% Create a matrix where each row is the mean
% and subtract from X to center at origin.
Xc = X - repmat(xbar,n,1);

1 The notation m x n is read “m by n,” and it means that we have m rows and n columns in an
array. It will be clear from the context whether this indicates matrix dimensions or
multiplication.

p 1.×
n p×
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1.4 Data Sets Used in the Book

In this section, we describe the main data sets that will be used throughout
the text. Other data sets will be used in the exercises and in some of the
examples. This section can be set aside and read as needed without any loss
of continuity. Please see Appendix C for detailed information on all data sets
included with the text.

1.4.1 Unstructured Text Documents

The ability to analyze free-form text documents (e.g., Internet documents,
intelligence reports, news stories, etc.) is an important application in
computational statistics. We must first encode the documents in some
numeric form in order to apply computational methods. The usual way this
is accomplished is via a term-document matrix, where each row of the matrix
corresponds to a word in the lexicon, and each column represents a
document. The elements of the term-document matrix contain the number of
times the i-th word appears in j-th document [Manning and Schütze, 2000;
Charniak, 1996]. One of the drawbacks to this type of encoding is that the
order of the words is lost, resulting in a loss of information [Hand, Mannila
and Smyth, 2001].

We now present a new method for encoding unstructured text documents
where the order of the words is accounted for. The resulting structure is
called the bigram proximity matrix (BPM). 

Bigram Proximity Matrices

The bigram proximity matrix (BPM) is a nonsymmetric matrix that captures
the number of times word pairs occur in a section of text [Martinez and
Wegman, 2002a; 2002b]. The BPM is a square matrix whose column and row
headings are the alphabetically ordered entries of the lexicon. Each element
of the BPM is the number of times word i appears immediately before word
j in the unit of text. The size of the BPM is determined by the size of the
lexicon created by alphabetically listing the unique occurrences of the words
in the corpus. In order to assess the usefulness of the BPM encoding we had
to determine whether or not the representation preserves enough of the
semantic content to make them separable from BPMs of other thematically
unrelated collections of documents.

We must make some comments about the lexicon and the pre-processing of
the documents before proceeding with more information on the BPM and the
data provided with this book. All punctuation within a sentence, such as
commas, semi-colons, colons, etc., were removed. All end-of-sentence
punctuation, other than a period, such as question marks and exclamation
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10 Exploratory Data Analysis with MATLAB

points were converted to a period. The period is used in the lexicon as a word,
and it is placed at the beginning of the alphabetized lexicon. 

Other pre-processing issues involve the removal of noise words and
stemming. Many natural language processing applications use a shorter
version of the lexicon by excluding words often used in the language
[Kimbrell, 1988; Salton, Buckley and Smith, 1990; Frakes and Baeza-Yates,
1992; Berry and Browne, 1999]. These words, usually called stop words, are
said to have low informational  content and thus, in the name of
computational efficiency, are deleted. Not all agree with this approach
[Witten, Moffat and Bell, 1994].

Taking the denoising idea one step further, one could also stem the words
in the denoised text. The idea is to reduce words to their stem or root to
increase the frequency of key words and thus enhance the discriminatory
capability of the features. Stemming is routinely applied in the area of
information retrieval (IR). In this application of text processing, stemming is
used to enhance the performance of the IR system, as well as to reduce the
total number of unique words and save on computational resources. The
stemmer we used to pre-process the text documents is the Porter stemmer
[Baeza-Yates and Ribero-Neto, 1999; Porter, 1980]. The Porter stemmer is
simple; however, its performance is comparable with older established
stemmers. 

We are now ready to give an example of the BPM. The BPM for the sentence
or text stream, 

“The wise young man sought his father in the crowd.” 

is shown in Table 1.1. We see that the matrix element located in the third row
(his) and the fifth column (father) has a value of one. This means that the pair
of words his father occurs once in this unit of text. It should be noted that in
most cases, depending on the size of the lexicon and the size of the text
stream, the BPM will be very sparse.

TABLE 1.1

Example of a BPM
. crowd his in father man sought the wise young

.
crowd 1
his 1
in 1
father 1
man 1
sought 1
the 1 1
wise 1
young 1
Note that the zeros are left out for ease of reading.
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By preserving the word ordering of the discourse stream, the BPM captures
a substantial amount of information about meaning. Also, by obtaining the
individual counts of word co-occurrences, the BPM captures the ‘intensity’
of the discourse’s theme. Both features make the BPM a suitable tool for
capturing meaning and performing computations to identify semantic
similarities among units of discourse (e.g., paragraphs, documents). Note
that a BPM is created for each text unit.

One of the data sets included in this book, which was obtained from text
documents, came from the Topic Detection and Tracking (TDT) Pilot Corpus
(Linguistic Data Consortium, Philadelphia, PA): 

comp.soft-sys.matlab/Projects/TDT-Pilot/. 

The TDT corpus is comprised of close to 16,000 stories collected from July 1,
1994 to June 30, 1995 from the Reuters newswire service and CNN broadcast
news transcripts. A set of 25 events are discussed in the complete TDT Pilot
Corpus. These 25 topics were determined first, and then the stories were
classified as either belonging to the topic, not belonging, or somewhat
belonging (Yes, No, or Brief, respectively). 

In order to meet the computational requirements of available computing
resources, a subset of the TDT corpus was used. A total of 503 stories were
chosen that includes 16 of the 25 events. See Table 1.2 for a list of topics. The
503 stories chosen contain only the Yes or No classifications. This choice stems
from the need to demonstrate that the BPM captures enough meaning to
make a correct or incorrect topic classification choice. 

TABLE 1.2

List of 16 Topics

Topic Number Topic Description
Number of 

Documents Used
4 Cessna on the White House 14

5 Clinic Murders (Salvi) 41

6 Comet into Jupiter 44

8 Death of N. Korean Leader 35

9 DNA in OJ Trial 29

11 Hall’s Copter in N. Korea 74

12 Humble, TX Flooding 16

13 Justice-to-be Breyer 8

15 Kobe, Japan Quake 49

16 Lost in Iraq 30

17 NYC Subway Bombing 24

18 Oklahoma City Bombing 76

21 Serbians Down F-16 16

22 Serbs Violate Bihac 19

24 US Air 427 Crash 16

25 WTC Bombing Trial 12
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12 Exploratory Data Analysis with MATLAB

There were 7,146 words in the lexicon after denoising and stemming, so
each BPM has 7,1462 elements. This is very high dimensional data (7,1462

dimensions). We can apply several EDA methods that require the interpoint
distance matrix only and not the original data (i.e., BPMs). Thus, we only
include the interpoint distance matrices for different measures of semantic
distance: IRad, Ochiai, simple matching, and L1. It should be noted that the
match and Ochiai measures started out as similarities (large values mean the
observations are similar), and were converted to distances for use in the text.
See Appendix A for more information on these distances and Martinez [2002]
for other choices, not included here. Table 1.3 gives a summary of the BPM
data we will be using in subsequent chapters.

One of the issues we might want to explore with these data is
dimensionality reduction so further processing can be accomplished, such as
clustering or supervised learning. We would also be interested in visualizing
the data in some manner to determine whether or not the observations
exhibit some interesting structure. Finally, we might use these data with a
clustering algorithm to see how many groups are found in the data, to find
latent topics or sub-groups or to see if documents are clustered such that
those in one group have the same meaning.

1.4.2 Gene Expression Data

The Human Genome Project completed a map (in draft form) of the human
genetic blueprint in 2001 (http://www.nature.com/genomics/human),
but much work remains to be done in understanding the functions of the
genes and the role of proteins in a living system. The area of study called
functional genomics addresses this problem, and one of its main tools is DNA
microarray technology [Sebastiani, et al., 2003]. This technology allows data
to be collected on multiple experiments and provides a view of the genetic
activity (for thousands of genes) for an organism.

We now provide a brief introduction to the terminology used in this area.
The reader is referred to Sebastiani, et al. [2003] or Griffiths, et al. [2000] for
more detail on the unique statistical challenges and the underlying biological
and technical foundation of genetic analysis. As most of us are aware from

TABLE 1.3

Summary of the BPM Data

Distance Name of File

IRad iradbpm

Ochiai ochiaibpm

Match matchbpm

L1 Norm L1bpm
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introductory biology, organisms are made up of cells, and the nucleus of each
cell contains DNA (deoxyribonucleic acid). DNA instructs the cells to
produce proteins and how much protein to produce. Proteins participate in
most of the functions living things perform. Segments of DNA are called
genes. The genome is the complete DNA for an organism, and it contains the
genetic code needed to create a unique life. The process of gene activation is
called gene expression, and the expression level provides a value indicating
the number of intermediary molecules (messenger ribonucleic acid and
transfer ribonucleic acid) created in this process.

Microarray technology can simultaneously measure the relative gene
expression level of thousands of genes in tissue or cell samples. There are two
main types of microarray technology: cDNA microarrays and synthetic
oligonucleotide microarrays. In both of these methods, a target (extracted
from tissue or cell) is hybridized to a probe (genes of known identity or small
sequences of DNA). The target is tagged with fluorescent dye before being
hybridized to the probe, and a digital image is formed of the chemical
reaction. The intensity of the signal then has to be converted to a quantitative
value from the image. As one might expect, this involves various image
processing techniques, and it could be a major source of error.

A data set containing gene expression levels has information on genes
(rows of the matrix) from several experiments (columns of the matrix).
Typically, the columns correspond to patients, tumors, time steps, etc. We
note that with the analysis of gene expression data, either the rows (genes) or
columns (experiments/samples) could correspond to the dimensionality (or
sample size), depending on the goal of the analysis. Some of the questions
that might be addressed through this technology include: 

• What genes are expressed (or not expressed) in a tumor cell versus
a normal cell?

• Can we predict the best treatment for a cancer?

• Are there genes that characterize a specific tumor?
• Are we able to cluster cells based on their gene expression level?

• Can we discover sub-classes of cancer or tumors?

For more background information on gene expression data, we refer the
reader to Schena, et al. [1995], Chee, et al. [1996], and Lander [1999]. Many
gene expression data sets are freely available on the internet, and there are
also many articles on the statistical analysis of this type of data. We refer the
interested reader to a recent issue of Statistical Science (Volume 18, Number 1,
February 2003) for a special section on microarray analysis. One can also go
to  t he  P roc e ed i n g s  o f  t h e  N at i o n a l  A c ad e my  o f  S c i en c e  w e b s i t e
(http://www.pnas.org) for articles, many of which have the data
available for download. We include three gene expression data sets with this
book, and we describe them below.
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14 Exploratory Data Analysis with MATLAB

Yeast Data Set

This data set was originally described in Cho, et al. [1998], and it showed the
gene expression levels of around 6000 genes over two cell cycles and five
phases. The two cell cycles provide 17 time points (columns of the matrix).
The subset of the data we provide was obtained by Yeung and Ruzzo [2001]
and is available at 

http://www.cs.washington.edu/homes/kayee/model. 

A full description of the process they used to get the subset can also be found
there. First, they extracted all genes that were found to peak in only one of the
five phases; those that peaked in multiple phases were not used. Then they
removed any rows with negative entries, yielding a total of 384 genes. 

The data set is called yeast.mat, and it contains two variables: data and
classlabs. The data matrix has 384 rows and 17 columns. The variable
classlabs is a vector containing 384 class labels for the genes indicating
whether the gene peaks in phase 1 through phase 5.

Leukemia Data Set

The leukemia data set was first discussed in Golub, et al., [1999], where the
authors measured the gene expressions of human acute leukemia. Their
study included prediction of the type of leukemia using supervised learning
and the discovery of new classes of leukemia via unsupervised learning. The
motivation for this work was to improve cancer treatment by distinguishing
between sub-classes of cancer or tumors. The author’s website

http://www.genome.wi.mit.edu/MPR

has more information about their methods and procedure, and the full data
set is available there.

They first classified the leukemias into two groups: (1) those that arise from
lymphoid precursors or (2) from myeloid precursors. The first one is called
acute lymphoblastic leukemia (ALL), and the second is called acute myeloid
leukemia (AML). The distinction between these two classes of leukemia is
well known, but a single test to sufficiently establish a diagnosis does not
exist [Golub, et al., 1999]. As one might imagine, a proper diagnosis is critical
to successful treatment and to avoid unnecessary toxicities. The authors
turned to microarray technology and statistical pattern recognition to
address this problem.

Their initial data set had 38 bone marrow samples taken at the time of
diagnosis; 27 came from patients with ALL, and 11 patients had AML. They
used oligonucleotide microarrays containing probes for 6,817 human genes
to obtain the gene expression information. Their first goal was to construct a
classifier using the gene expression values that would predict the type of
leukemia. So, one could consider this as building a classifier where the
observations have 6,817 dimensions, and the sample size is 38. They had to
reduce the dimensionality, so they chose the 50 genes that have the highest
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correlation with the class of leukemia. They used an independent test set of
leukemia samples to evaluate the classifier. This set of data consists of 34
samples, where 24 of them came from bone marrow and 10 came from
peripheral blood samples. It also included samples from children and from
different laboratories using different protocols.

They also looked at class discovery or unsupervised learning, where they
wanted to see  if the patients could be clustered into two groups
corresponding to the types of leukemia. They used the method called self-
organizing maps (Chapter 3), employing the full set of 6,817 genes. Another
aspect of class discovery is to look for subgroups within known classes. For
example, the patients with ALL can be further subdivided into patients with
B-cell or T-cell lineage. 

We decided to include only the 50 genes, rather than the full set. The
leukemia.mat file has four variables. The variable leukemia has 50 genes
(rows) and 72 patients (columns). The first 38 columns correspond to the
initial training set of patients, and the rest of the columns contain data for the
independent testing set. The variables btcell and cancertype are cell
arrays of strings containing the label for B-cell, T-cell, or NA and ALL or
AML, respectively. Finally, the variable geneinfo is a cell array where the
first column provides the gene description, and the second column contains
the gene number.

Example 1.1
We show a plot of the 50 genes in Figure 1.1, but only the first 38 samples (i.e.,
columns) are shown. This is similar to Figure 3B in Golub, et al., [1999]. We
standardized each gene, so the mean across each row is 0 and the standard
deviation is 1. The first 27 columns of the picture correspond to ALL
leukemia, and the last 11 columns pertain to the AML leukemia. We can see
by the color that the first 25 genes tend to be more highly expressed in ALL,
while the last 25 genes are highly expressed in AML. The MATLAB code to
construct this plot is given below.

% First standardize the data such that each row 
% has mean 0 and standard deviation 1.
load leukemia
x = leukemia(:,1:38);
[n,p] = size(x);
y = zeros(n,p);
for i = 1:n
    sig = std(x(i,:));
    mu = mean(x(i,:));
    y(i,:)= (x(i,:)-mu)/sig;
end
% Now do the image of the data.
pcolor(y)
colormap(gray(256))
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colorbar
title('Gene Expression for Leukemia')
xlabel('ALL (1-27) or AML (28-38)')
ylabel('Gene')

The results shown in Figure 1.1 indicate that we might be able to distinguish between
AML and ALL leukemia using these data.
❑ 

Lung Data Set

Traditionally, the classification of lung cancer is based on clinicopathological
features. An understanding of the molecular basis and a possible molecular
classification of lung carcinomas could yield better therapies targeted to the
type of cancer, superior prediction of patient treatment, and the identification
of new targets for chemotherapy. We provide two data sets that were
originally downloaded from http://www.genome.mit.edu/MPR/lung
and described in Bhattacharjee, et al. [2001]. The authors applied hierarchical
and probabilistic clustering to find subclasses of lung adenocarcinoma, and
they showed the diagnostic potential of analyzing gene expression data by

FIGURE 1.1

This shows the gene expression for the leukemia data set. Each row corresponds to a gene,
and each column corresponds to a cancer sample. The rows have been standardized such
that the mean is 0 and the standard deviation is 1. We can see that the ALL leukemia is
highly expressed in the first set of 25 genes, and the AML leukemia is highly expressed in
the second set of 25 genes. 
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demonstrating the ability to separate primary lung adenocarcinomas from
metastases of extra-pulmonary origin. 

A preliminary classification of lung carcinomas comprises two groups:
small-cell lung carcinomas (SCLC) or nonsmall-cell lung carcinomas
(NSCLC). The NSCLC category can be further subdivided into 3 groups:
adenocarcinomas (AD), squamous cell carcinomas (SQ), and large-cell
carcinomas (COID). The most common type is adenocarcinomas. The data
were obtained from 203 specimens, where 186 were cancerous and 17 were
normal lung. The cancer samples contained 139 lung adenocarcinomas, 21
squamous cell lung carcinomas, 20 pulmonary carcinoids, and 6 small-cell
lung carcinomas. This is called Dataset A in Bhattacharjee, et al. [2001]; the
full data set included 12,600 genes. The authors reduced this to 3,312 by
selecting the most variable genes, using a standard deviation threshold of 50
expression units. We provide these data in lungA.mat. This file includes two
variables: lungA and labA. The variable lungA is a 3312 x 203 matrix, and
labA is a vector containing the 203 class labels. 

The authors also looked at adenocarcinomas separately trying to discover
subclasses. To this end, they separated the 139 adenocarcinomas and the 17
normal samples and called it Dataset B. They also took fewer gene transcript
sequences for this data set by selecting only 675 genes according to other
statistical pre-processing steps. These data are provided in lungB.mat,
which contains two variables: lungB (675 x 156) and labB (156 class labels).
We summarize these data sets in Table 1.4.

For those who need to analyze gene expression data, we recommend the
Bioinformatics Toolbox from The MathWorks. The toolbox provides an
integrated environment for solving problems in genomics and proteomics,
genetic engineering, and biological research. Some capabilities include the
ability to calculate the statistical characteristics of the data, to manipulate
sequences, to construct models of biological sequences using Hidden
Markov Models, and to visualize microarray data.

TABLE 1.4

Description of Lung Cancer Data Set
Cancer Type Label Number of Data Points

Dataset A (lungA.mat): 3,312 rows, 203 columns

Nonsmall cell lung carcinomas
Adenocarcinomas AD 139
Pulmonary carcinoids COID 20
Squamous cell SQ 21

Normal NL 17
Small-cell lung carcinomas SCLC 6

Dataset B (lungB.mat): 675 rows, 156 columns

Adenocarcinomas AD 139
Normal NL 17
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1.4.3 Oronsay Data Set

This data set consists of particle size measurements originally presented in
Timmins [1981] and analyzed by Olbricht [1982], Fieller, Gilbertson &
Olbricht [1984], and Fieller, Flenley and Olbricht [1992]. An extensive
analysis from a graphical EDA point of view was conducted by Wilhelm,
Wegman and Symanzik [1999]. The measurement and analysis of particle
sizes is often used in archaeology, fuel technology (droplets of propellant),
medicine (blood cells), and geology (grains of sand). The usual objective is to
determine the distribution of particle sizes because this characterizes the
environment where the measurements were taken or the process of interest.

The Oronsay particle size data were gathered for a geological application,
where the goal was to discover different characteristics between dune sands
and beach sands. This characterization would be used to determine whether
or not midden sands were dune or beach. The middens were near places
where prehistoric man lived, and geologists are interested in whether these
middens were beach or dune because that would be an indication of how the
coastline has shifted.

There are 226 samples of sand, with 77 belonging to an unknown type of
sand (from the middens) and 149 samples of known type (beach or dune).
The known samples were taken from Cnoc Coig (CC - 119 observations, 90
beach and 29 dune) and Caisteal nan Gillean (CG - 30 observations, 20 beach
and 10 dune). See Wilhelm, Wegman and Symanzik [1999] for a map showing
these sites on Oronsay island. This reference also shows a more detailed
classification of the sands based on transects and levels of sand. 

Each observation is obtained in the following manner. Approximately 60g
or 70g of sand is put through a stack of 11 sieves of sizes 0.063mm, 0.09mm,
0.125mm, 0.18mm, 0.25mm, 0.355mm, 0.5mm, 0.71mm, 1.0mm, 1.4mm, and
2.0mm. The sand that remains on each of the sieves is weighed, along with
the sand that went through completely. This yields 12 weight measurements,
and each corresponds to a class of particle size. Note that there are two
extreme classes: particle sizes less than 0.063mm (what went through the
smallest sieve) and particle sizes larger than 2.0mm (what is in the largest
sieve).

Flenley and Olbricht [1993] consider the classes as outlined above, and they
apply various multivariate and exploratory data analysis techniques such as
principal component analysis and projection pursuit. The oronsay data set
was downloaded from:

http://www.galaxy.gmu.edu/papers/oronsay.html

More information on the original data set can be found at this website. We
chose to label observations first with respect to midden, beach or dune (in
variable beachdune):

• Class 0: midden (77 observations)
• Class 1: beach (110 observations)
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• Class 2: dune (39 observations)

We then classify observations according to the sampling site (in variable
midden), as follows

• Class 0: midden (77 observations)
• Class 1: Cnoc Coig - CC (119 observations)

• Class 2: Caisteal nan Gillean - CG (30 observations)

The data set is in the oronsay.mat file. The data are in a 226 x 12 matrix
called oronsay, and the data are in raw format; i.e., untransformed and
unstandardized. Also included is a cell array of strings called labcol that
contains the names (i.e., sieve sizes) of the columns.

1.4.4 Software Inspection

The data described in this section were collected in response to efforts for
process improvement in software testing. Many systems today rely on
complex software that might consist of several modules programmed by
different programmers, so ensuring that the software works correctly and as
expected is important. 

One way to test the software is by inspection, where software engineers
inspect the code in a formal way. First they look for inconsistencies, logical
errors, etc., and then they all meet with the programmer to discuss what they
perceive as defects. The programmer is familiar with the code and can help
determine whether or not it is a defect in the software.

The data are saved in a file called software. The variables are normalized
by the size of the inspection (the number of pages or SLOC – single lines of
code). The file software.mat contains the preparation time in minutes
(prepage, prepsloc), the total work hours in minutes for the meeting
(mtgsloc), and the number of defects found (defpage, defsloc). Software
engineers and managers would be interested in understanding the
relationship between the inspection time and the number of defects found.
One of the goals might be to find an optimal time for inspection, where one
gets the most payoff (number of defects found) for the amount of time spent
reviewing the code. We show an example of these data in Figure 1.2. The
defect types include compatibility, design, human-factors, standards, and
others. 
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1.5 Transforming Data

In many real-world applications, the data analyst will have to deal with raw
data that are not in the most convenient form. The data might need to be re-
expressed to produce effective visualization or an easier, more informative
analysis. Some of the types of problems that can arise include data that
exhibit nonlinearity or asymmetry, contain outliers, change spread with
different levels, etc. We can transform the data by applying a single
mathematical function to all of the observations. 

In  the f i rs t  sub-sect ion b elow,  we d iscu ss  the general  power
transformations that can be used to change the shape of the data distribution.
This arises in situations when we are concerned with formal inference
methods where the shape of the distribution is important (e.g., statistical
hypothesis testing or confidence intervals). In EDA, we might want to change
the shape to facilitate visualization, smoothing, and other analyses. Next we
cover linear transformations of the data that leave the shape alone. These are
typically changes in scale and origin and can be important in dimensionality
reduction, clustering, and visualization.

FIGURE 1.2

This is a scatterplot of the software inspection data. The relationship between the variables
is difficult to see.
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1.5.1 Power Transformations

A transformation of a set of data points x1, x2, ..., xn is a function T that
substitutes each observation xi with a new value T(xi) [Emerson and Stoto,
1983]. Transformations should have the following desirable properties:

1. The order of the data is preserved by the transformation. Because
of this, statistics based on order, such as medians are preserved;
i.e., medians are transformed to medians.

2. They are continuous functions guaranteeing that points that are
close together in raw form are also close together using their trans-
formed values, relative to the scale used.

3. They are smooth functions that have derivatives of all orders, and
they are specified by elementary functions.

Some common transformations include taking roots (square root, cube
root, etc.), finding reciprocals, calculating logarithms, and raising variables to
positive integral powers. These transformations provide adequate flexibility
for most situations in data analysis.

Example 1.2
This example uses the software inspection data shown in Figure 1.2. We see
that the data are skewed, and the relationship between the variables is
difficult to understand. We apply a log transform to both variables using the
following MATLAB code, and show the results in Figure 1.3.

load software
% First transform the data.
X = log(prepsloc);
Y = log(defsloc);
% Plot the transformed data.
plot(X,Y,'.')
xlabel('Log PrepTime/SLOC')
ylabel('Log Defects/SLOC')

We now have a better idea of the relationship between these two variables,
which will be examined further in Chapter 7. 
❑

Some transformations of the data may lead to insights or discovery of
structures that we might not otherwise see. However, as with any analysis,
we should be careful about creating something that is not really there, but is
just an artifact of the processing. Thus, in any application of EDA, the analyst
should go back to the subject area and consult domain experts to verify and
help interpret the results. 
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1.5.2 Standardization

If the variables are measurements along a different scale or if the standard
deviations for the variables are different from one another, then one variable
might dominate the distance (or some other similar calculation) used in the
analysis. We will make extensive use of interpoint distances throughout the
text in applications such as clustering, multidimensional scaling, and
nonlinear dimensionality reduction. We discuss several 1-D standardization
methods below. However, we note that in some multivariate contexts, the 1-
D transformations may be applied to each variable (i.e., on the column of X)
separately.

Transformation Using the Standard Deviation

The first standardization we discuss is called the sample z-score, and it
should be familiar to most readers who have taken an introductory statistics
class. The transformed variates are found using

, (1.1)

FIGURE 1.3

Each variate was transformed using the logarithm. The relationship between preparation
time per SLOC and number of defects found per SLOC is now easier to see. 
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where x is the original observed data value,  is the sample mean, and s is
the sample standard deviation. In this standardization, the new variate z will
have a mean of zero and a variance of one.

When the z-score transformation is used in a clustering context, it is
important that it be applied in a global manner across all observations. If
standardization is done within clusters, then false and misleading clustering
solutions can result [Milligan and Cooper, 1988].

If we do not center the data at zero by removing the sample mean, then we
have the following

. (1.2)

This transformed variable will have a variance of one and a transformed
mean equal to . The standardizations in Equations 1.1 and 1.2 are linear
functions of each other, so Euclidean distances (see Appendix A) calculated
on data that have been transformed using the two formulas result in identical
dissimilarity values. 

For robust versions of Equations 1.1 and 1.2, we can substitute the median
and the interquartile range for the sample mean and sample standard
deviation respectively. This will be explored in the exercises.

Transformation Using the Range

Instead of dividing by the standard deviation, as above, we can use the range
of the variable as the divisor. This yields the following two forms of
standardization

, (1.3)

and

. (1.4)

The standardization in Equation 1.4 is bounded by zero and one, with at
least one observed value at each of the end points. The transformed variate
given by Equation 1.3 is a linear function of the one determined by Equation
1.4, so data standardized using these transformations will result in identical
Euclidean distances.

x

z x
s
---=

x s⁄

z x
max x( ) min x( )–
------------------------------------------=

z x min x( )–
max x( ) min x( )–
------------------------------------------=
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1.5.3 Sphering the Data

This type of standardization called sphering pertains to multivariate data,
and it serves a similar purpose as the 1-D standardization methods given
above. The transformed variables will have a p-dimensional mean of 0 and a
covariance matrix given by the identity matrix. 

We start off with the p-dimensional sample mean given by

.

We then find the sample covariance matrix given by the following

,

where we see that the covariance matrix can be written as the sum of n
matrices. Each of these rank one matrices is the outer product of the centered
observations [Duda and Hart, 1973].

We sphere the data using the following transformation

,

where the columns of  are the eigenvectors obtained from S,  is a
diagonal matrix of corresponding eigenvalues, and  is the i-th observation. 

Example 1.3
We now provide the MATLAB code to obtain sphered data. First, we
generate 2-D multivariate normal random variables that have the following
parameters:

,

and 

,
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where Σ is the covariance matrix. A scatterplot of these data is shown in
Figure 1.4 (top). 

% First generate some 2-D multivariate normal
% random variables, with mean MU and 
% covariance SIGMA. This uses a Statistics
% Toolbox function.
n = 100;
mu = [-2, 2];
sigma = [1,.5;.5,1];
X = mvnrnd(mu,sigma,n);
plot(X(:,1),X(:,2),'.')

We now apply the steps to sphere the data, and show the transformed data in
Figure 1.4 (bottom). 

% Now sphere the data.
xbar = mean(X);
% Get the eigenvectors and eigenvalues of the 
% covariance matrix.
[V,D] = eig(cov(X));
% Center the data.
Xc = X - ones(n,1)*xbar;
% Sphere the data.
Z = ((D)^(-1/2)*V'*Xc')';
plot(Z(:,1),Z(:,2),'.')

By comparing these two plots, we see that the transformed data are sphered
and are now centered at the origin.
❑ 

1.6 Further Reading

There are several books that will provide the reader with more information
and other perspectives on EDA. Most of these books do not offer software
and algorithms, but they are excellent resources for the student or
practitioner of exploratory data analysis. 

As we stated in the beginning of this chapter, the seminal book on EDA is
Tukey [1977], but the text does not include the more up-to-date view based
on current computational resources and methodology. Similarly, the short
book on EDA by Hartwig and Dearing [1979] is an excellent introduction to
the topic and a quick read, but it is somewhat dated. For the graphical
approach, the reader is referred to du Toit, Steyn and Stumpf [1986], where
the authors use SAS to illustrate the ideas. They include other EDA methods
such as multidimensional scaling and cluster analysis. Hoaglin, Mosteller
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FIGURE 1.4

The top figure shows a scatterplot of the 2-D multivariate normal random variables. Note
that these are not centered at the origin, and the cloud is not spherical. The sphered data
are shown in the bottom panel. We see that they are now centered at the origin with a
spherical spread. This is similar to the z-score standardization in 1-D.
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and Tukey [1983] edited an excellent book on robust and exploratory data
analysis. It includes several chapters on transforming data, and we
recommend the one by Emerson and Stoto [1983]. The chapter includes a
discussion of power transformations, as well as plots to assist the data
analyst in choosing an appropriate one. 

For a more contemporary resource that explains data mining approaches,
of which EDA is a part, Hand, Mannila and Smyth [2001] is highly
recommended. It does not include computer code, but it is very readable. The
authors cover the major parts of data mining: EDA, descriptive modeling,
classification and regression, discovering patterns and rules, and retrieval by
content. Finally, the reader could also investigate the book by Hastie,
Tibshirani and Friedman [2001]. These authors cover a wide variety of topics
of interest to exploratory data analysts, such as clustering, nonparametric
probability density estimation, multidimensional scaling, and projection
pursuit.

As was stated previously, EDA is sometimes defined as an attitude of
flexibility and discovery in the data analysis process. There is an excellent
article by Good [1982] outlining the philosophy of EDA, where he states that
“EDA is more an art, or even a bag of tricks, than a science.” While we do not
think there is anything “tricky” about the EDA techniques, it is somewhat of
an art in that the analyst must try various methods in the discovery process,
keeping an open mind and being prepared for surprises! Finally, other
summaries of EDA were written by Diaconis [1985] and Weihs [1993]. Weihs
describes EDA mostly from a graphical viewpoint and includes descriptions
of dimensionality reduction, grand tours, prediction models, and variable
selection. Diaconis discusses the difference between exploratory methods
and the techniques of classical mathematical statistics. In his discussion of
EDA, he considers Monte Carlo techniques such as the bootstrap [Efron and
Tibshirani, 1993].

Exercises

1.1 What is exploratory data analysis? What is confirmatory data
analysis? How do these analyses fit together?

1.2 Repeat Example 1.1 using the remaining columns (39 – 72) of the
leukemia data set. Does this follow the same pattern as the others?

1.3 Repeat Example 1.1 using the lungB gene expression data set. Is there
a pattern?

1.4 Generate some 1-D normally distributed random variables with µ = 5
and σ = 2 using normrnd or randn (must transform the results to
have the required mean and standard deviation if you use this
function). Apply the various standardization procedures described in
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this chapter and verify the comments regarding the location and
spread of the transformed variables. 

1.5 Write MATLAB functions that implement the standardizations
mentioned in this chapter.

1.6 Using the mvnrnd function (see Example 1.3), generate some
nonstandard bivariate normal random variables. Sphere the data and
verify that the resulting sphered data have mean 0 and identity
covariance matrix using the MATLAB functions mean and cov.

1.7 We will discuss the quartiles and the interquartile range in Chapter 9,
but for now look at the MATLAB help files on the iqr and median
functions. We can use these robust measures of location and spread to
transform our variables. Using Equations 1.1 and 1.2, substitute the
median for the sample mean  and the interquartile range for the
sample standard deviation s. Write a MATLAB function that does this
and try it out on the same data you generated in problem 1.4. 

1.8 Generate n = 2 normally distributed random variables. Find the
Euclidean distance between the points after they have been
transformed first using Equation 1.1 and then Equation 1.2. Are the
distances the same? Hint: Use the pdist function from the Statistics
Toolbox.

1.9 Repeat problem 1.8 using the standardizations given by Equations 1.3
and 1.4.

1.10 Generate n = 100 uniform 1-D random variables using the rand
function. Construct a histogram using the hist function. Now
transform the data by taking the logarithm (use the log function).
Construct a histogram of these transformed values. Did the shape of
the distribution change? Comment on the results.

1.11 Try the following transformations on the software data:

Construct a scatterplot and compare with the results in Example 1.2.

x

T x( ) 1 x+( )log=

T x( ) x( )log=
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Chapter 2
Dimensionality Reduction - Linear Methods

In this chapter we describe several linear methods of dimensionality
reduction. We first discuss some classical methods such as principal
component analysis (PCA), singular value decomposition (SVD), and factor
analysis. Finally, we include a brief discussion of methods for determining
the intrinsic dimensionality of a data set.

2.1 Introduction

Dimensionality reduction is the process of finding a suitable lower-
dimensional space in which to represent the original data. Our hope is that
the alternative representation of the data will help us: 

• Explore high-dimensional data with the goal of discovering
structure or patterns that lead to the formation of statistical
hypotheses. 

• Visualize the data using scatterplots when dimensionality is
reduced to 2-D or 3-D.

• Analyze the data using statistical methods, such as clustering,
smoothing, probability density estimation, or classification.

One possible method for dimensionality reduction would be to just select
subsets of the variables for processing and analyze them in groups. However,
in some cases, that would mean throwing out a lot of useful information. An
alternative would be to create new variables that are functions (e.g., linear
combinations) of the original variables. The methods we describe in this book
are of the second type, where we seek a mapping from the higher-
dimensional space to a lower-dimensional one, while keeping information on
all of the available variables. This mapping can be linear or nonlinear. 

Since the methods in this chapter transform the data using projections, we
take a moment to describe this concept before going on to explain PCA and
SVD. A projection will be in the form of a matrix that takes the data from the
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original space to a lower-dimensional one. We illustrate this concept in
Example 2.1.

Example 2.1
In this example, we show how projection works when our data set consists of
the two bivariate points

,

and we are projecting onto a line that is θ radians from the horizontal or x-
axis. For this example, the projection matrix is given by

.

The following MATLAB code is used to enter this information.

% Enter the data as rows of our matrix X.
X = [4 3; -4 5];
% Get theta.
theta = pi/3;
% Now obtain the projection matrix.
c2 = cos(theta)^2;
cs = cos(theta)*sin(theta);
s2 = sin(theta)^2;
P = [c2 cs; cs s2];

The coordinates of the projected observations are a weighted sum of the
original variables, where the columns of P provide the weights. We project a
single observation as follows

.

Expanding this out shows the new y coordinates as a weighted sum of the x
variables:

.

x1
4

3
= x2

4–

5
=

P = θcos( )2 θ θsincos

θ θsincos θsin( )2

yi PTxi= i 1  … n, ,=

yi1 P11xi1 P21xi2+=

yi2 P12xi1 P22xi2+=
i 1  … n, ,=
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We have to use some linear algebra to project the data matrix X because the
observations are rows. Taking the transpose of both sides of our projection
equation above, we have

Thus, we can project the data using this MATLAB code: 

% Now project the data onto the theta-line.
% Since the data are arranged as rows in the
% matrix X, we have to use the following to
% project the data.
Xp = X*P;
plot(Xp(:,1),Xp(:,2),'o') % Plot the data.

This projects the data onto a 1-D subspace that is at an angle θ with the
original coordinate axes. As an example of a projection onto the horizontal
coordinate axis, we can use these commands:

% We can project onto the 1-D space given by the 
% horizontal axis using the projection:
Px = [1;0];
Xpx = X*Px;

These data now have only one coordinate value representing the number of
units along the x-axis. The projections are shown in Figure 2.1, where the o’s
represent the projection of the data onto the θ line and the stars represent the
projections onto the x-axis.
❑

2.2 Principal Component Analysis - PCA

The main purpose of principal component analysis (PCA) is to reduce the
dimensionality from p to d, where d < p, while at the same time accounting for
as much of the variation in the original data set as possible. With PCA, we
transform the data to a new set of coordinates or variables that are a linear
combination of the original variables. In addition, the observations in the
new principal component space are uncorrelated. The hope is that we can
gain information and understanding of the data by looking at the
observations in the new space.

y i
T PTxi( )T

=

xi
TP  . =
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2.2.1 PCA Using the Sample Covariance Matrix

We start with our centered data matrix Xc that has dimension n x p. Recall
that this matrix contains observations that are centered about the mean; i.e.,
the sample mean has been subtracted from each row. We then form the
sample covariance matrix S as

,

where the superscript T denotes the matrix transpose. The jk-th element of S
is given by

,

with

.

FIGURE 2.1
This figure shows the orthogonal projection of the data points to both the θ line (o’s) and the
x-axis (stars).
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The next step is to calculate the eigenvectors and eigenvalues of the matrix
S. The eigenvalues are found by solving the following equation for each lj ,

, (2.1)

where I is a p x  p identity matrix and |•| denotes the determinant.
Equation 2.1 produces a polynomial equation of degree p. The eigenvectors
are obtained by solving the following set of equations for aj

,

subject to the condition that the set of eigenvectors is orthonormal. This
means that the magnitude of each eigenvector is one, and they are orthogonal
to each other:

for  and .
A major result in matrix algebra shows that any square, symmetric,

nonsingular matrix can be transformed to a diagonal matrix using

,

where the columns of A contain the eigenvectors of S, and L is a diagonal
matrix with the eigenvalues along the diagonal. By convention, the
eigenvalues are ordered in descending order , with the same
order imposed on the corresponding eigenvectors.

We use the eigenvectors of S to obtain new variables called principal
components (PCs). The j-th PC is given by 

, (2.2)

and the elements of a provide the weights or coefficients of the old variables
in the new PC coordinate space. It can be shown that the PCA procedure
defines a principal axis rotation of the original variables about their means
[Jackson, 1991; Strang, 1988], and the elements of the eigenvector a are the
direction cosines that relate the two coordinate systems. Equation 2.2 shows
that the PCs are linear combinations of the original variables. 

Scaling the eigenvectors to have unit length produces PCs that are
uncorrelated and whose variances are equal to the corresponding eigenvalue.
Other scalings are possible [Jackson, 1991], such as

j 1,  … , p=
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S ljI–( )aj 0= j 1,  … , p=
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,

and

.

The three eigenvectors aj , vj , and wj differ only by a scale factor. The aj are
typically needed for hypothesis testing and other diagnostic methods. Since
they are scaled to unity, their components will always be between . The
vectors vj are useful at times, because they and their PCs have the same units
as the original variables. Using wj in the transformation yields PCs that are
uncorrelated with unit variance. 

We transform the observations to the PC coordinate system via the
following

. (2.3)

The matrix Z contains the principal component scores. Note that these PC
scores have zero mean (because we are using the data centered about the
mean) and are uncorrelated. We could also transform the original
observations in X by a similar transformation, but the PC scores in this case
will have mean . We can invert this transformation to get an expression
relating the original variables as a function of the PCs, which is given by

.

To summarize: the transformed variables are the PCs and the individual
transformed data values are the PC scores. 

The dimensionality of the principal component scores in Equation 2.3 is
still p, so no dimensionality reduction has taken place. We know that the sum
of the variances of the original variables is equal to the sum of the
eigenvalues. The idea of dimensionality reduction with PCA is that one could
include in the analysis only those PCs that have the highest eigenvalues, thus
accounting for the highest amount of variation with fewer dimensions or PC
variables. We can reduce the dimensionality to d with the following

, (2.4)

where Ad contains the first d eigenvectors or columns of A. We see that Zd is
an nxd matrix (each observation now has only d elements), and Ad is a pxd
matrix.

vj lj a j=

w j
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-------=
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2.2.2 PCA Using the Sample Correlation Matrix

We can scale the data first to have standard units, as described in Chapter 1.
This means we have the j-th element of x* given by

,

where sjj is the variance of xj (i.e., the jj-th element of the sample covariance
matrix S). The standardized data x* are then treated as observations in the
PCA process.

The covariance of this standardized data set is the same as the correlation
matrix. The ij-th element of the sample correlation matrix R is given by 

,

where sij is the ij-th element of S and sii is the i-th diagonal element of S. The
rest of the results from PCA hold for the x*. For example, we can transform
the standardized data using Equation 2.3 or reduce the dimensionality using
Equation 2.4, where now the matrices A and Ad contain the eigenvectors of
the correlation matrix.

The correlation matrix should be used for PCA when the variances along
the original dimensions are very different; i.e., if some variables have
variances that are very much greater than the others. In this case, the first few
PCs will be dominated by those same variables and will not be very
informative. This is often the case when the variables are of different types or
units. Another benefit of using the correlation matrix rather than the
covariance matrix arises when one wants to compare the results of PCA
among different analyses. 

PCA based on covariance matrices does have certain advantages, too.
Methods for statistical inference based on the sample PCs from covariance
matrices are easier and are available in the literature. The PCs obtained from
the correlation and covariance matrices do not provide equivalent
information. Additionally, the eigenvectors and eigenvalues from one
process do not have simple relationships or correspondence with those from
the other one [Jolliffe, 1986]. Since this text is primarily concerned with
exploratory data analysis, not inferential methods, we do not discuss this
further. In any event, in the spirit of EDA, the analyst should take advantage
of both methods to describe and to explore the data.

xj
* xj xj–( )

sjj

-------------------;= j 1  … p, ,=

rij
sij
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2.2.3 How Many Dimensions Should We Keep?

One of the key questions at this point is how many PCs to keep. We offer the
following possible ways to address this question; more details and options
(such as hypothesis tests for equality of eigenvalues, cross-validation, and
correlation procedures) can be found in Jackson [1991]. All of the following
techniques will be explored in Example 2.2.

Cumulative Percentage of Variance Explained

This is a popular method of determining the number of PCs to use in PCA
dimensionality reduction and seems to be implemented in many computer
packages. The idea is to select those d PCs that contribute a cumulative
percentage of total variation in the data, which is calculated using

.

If the correlation matrix is used for PCA, then this is simplified to

.

Choosing a value for td can be problematic, but typical values range between
70% and 95%. We note that Jackson [1991] does not recommend using this
method.

Scree Plot

A graphical way of determining the number of PCs to retain is called the scree
plot. The original name and idea is from Cattell [1966], and it is a plot of lk

(the eigenvalue) versus k (the index of the eigenvalue). In some cases, we
might plot the log of the eigenvalues when the first eigenvalues are very
large. This type of plot is called a log-eigenvalue or LEV plot. To use the scree
plot, one looks for the ‘elbow’ in the curve or the place where the curve levels
off and becomes almost flat. Another way to look at this is by the slopes of
the lines connecting the points. When the slopes start to level off and become
less steep, that is the number of PCs one should keep.

The Broken Stick

In this method, we choose the number of PCs based on the size of the
eigenvalue or the proportion of the variance explained by the individual PC.

td 100 li

i 1=

d

∑ lj
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p
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If we take a line segment and randomly divide it into p segments, then the
expected length of the k-th longest segment is

.

If the proportion of the variance explained by the k-th PC is greater than gk,
then that PC is kept. We can say that these PCs account for more variance
than would be expected by chance alone.

Size of Variance

One rule that can be used for correlation-based PCA is due to Kaiser [1960],
but is more commonly used in factor analysis. Using this rule, we would
retain PCs whose variances are greater than 1 ( ). Some suggest that this
is too high [Jolliffe, 1972], so a better rule would be to keep PCs whose
variances are greater than 0.7 ( ). We can use something similar for
covariance-based PCA, where we use the average of the eigenvalues rather
than 1. In this case, we would keep PCs if 

 or  .

Example 2.2
We show how to perform PCA using the yeast cell cycle data set. Recall
from Chapter 1 that these contain 384 genes corresponding to five phases,
measured at 17 time points. We first load the data and center each row.

load yeast
[n,p] = size(data);
% Center the data.
datac = data - repmat(sum(data)/n,n,1); 
% Find the covariance matrix.
covm = cov(datac);

We are going to use the covariance matrix in PCA since the variables have
common units. The reader is asked to explore the correlation matrix approach
in the exercises. The eig function is used to calculate the eigenvalues and
eigenvectors. MATLAB returns the eigenvalues in a diagonal matrix, and
they are in ascending order, so they must be flipped to get the scree plot.

[eigvec,eigval] = eig(covm);
eigval = diag(eigval);  % Extract the diagonal elements
% Order in descending order
eigval = flipud(eigval);
eigvec = eigvec(:,p:-1:1);

gk
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p
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% Do a scree plot.
figure, plot(1:length(eigval),eigval,'ko-')
title('Scree Plot')
xlabel('Eigenvalue Index - k')
ylabel('Eigenvalue')

We see from the scree plot in Figure 2.2 that keeping four PCs seems
reasonable. Next we calculate the cumulative percentage of variance
explained. 

% Now for the percentage of variance explained.
pervar = 100*cumsum(eigval)/sum(eigval);

The first several values are:

73.5923   85.0875   91.9656   94.3217   95.5616 

Depending on the cutoff value, we would keep four to five PCs (if we are
using the higher end of the range of td ). Now we show how to do the broken
stick test.

% First get the expected sizes of the eigenvalues.
g = zeros(1,p);
for k = 1:p
    for i = k:p 

FIGURE 2.2

This is the scree plot for the yeast data. The elbow in the curve seems to occur at k = 4.
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    g(k) = g(k) + 1/i;
end
end
g = g/p;

The next step is to find the proportion of the variance explained.

propvar = eigval/sum(eigval);

Looking only at the first several values, we get the following for gk and the
proportion of variance explained by each PC:

g(1:4) =       0.2023    0.1435    0.1141    0.0945
propvar(1:4) = 0.7359    0.1150    0.0688    0.0236

Thus, we see that only the first PC would be retained using this method.
Finally, we look at the size of the variance.

% Now for the size of the variance.
avgeig = mean(eigval);
% Find the length of ind:
ind = find(eigval > avgeig);
length(ind)

According to this test, the first three PCs would be retained. So, we see that
different values of d are obtained using the various procedures. Because of
visualization issues,  we will use the first three PCs to reduce the
dimensionality of the data, as follows.

% So, using 3, we will reduce the dimensionality.
P = eigvec(:,1:3);
Xp = datac*P;
figure,plot3(Xp(:,1),Xp(:,2),Xp(:,3),'k*')
xlabel('PC 1'),ylabel('PC 2'),zlabel('PC 3')
grid on, axis tight

These results are shown in Figure 2.3.
❑ 

We illustrated the use of the eig function that comes in the main MATLAB
package. It contains another useful function called eigs that can be used to
find the PCs and eigenvalues of sparse matrices. For those who have the
Statistics Toolbox, there is a function called princomp. It returns the PCs, the
PC scores and other useful information for making inferences regarding the
eigenvalues. It centers the observations at the means, but does not rescale
(Statistics Toolbox, Version 5). For PCA using the covariance matrix, the
pcacov function is provided.

Before moving on to the next topic, we recall that the PCA described in this
book is based on the sample covariance or sample correlation matrix. The
procedure is similar if the population version of these matrices is used. Many
interesting and useful properties are known about principal components and
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the associated data transformations, but are beyond the scope and purpose
of this book. We provide references in the last section.

2.3 Singular Value Decomposition - SVD

Singular value decomposition (SVD) is an important method from matrix
algebra and is related to PCA. In fact, it provides a way to find the PCs
without explicitly calculating the covariance matrix [Gentle, 2002]. It also
enjoys widespread use in the analysis of gene expression data [Alter, Brown
and Botstein, 2000; Wall, Dyck and Brettin, 2001; Wall, Rechtsteiner and
Rocha, 2003] and in information retrieval applications [Deerwester, et al.,
1990; Berry, Dumais and O’Brien, 1995; Berry, Drmac and Jessup, 1999], so it
is an important technique its own right. 

As before, we start with our data matrix X, where in some cases, we will
center the data about their mean to get Xc. We use the noncentered form in
the explanation that follows, but the technique is valid for an arbitrary
matrix; i.e., the matrix does not have to be square. The SVD of X is given by

, (2.5)

FIGURE 2.3

This shows the results of projecting the yeast data onto the first three PCs.
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where U is an nxn matrix, D is a diagonal matrix with n rows and p columns,
and V has dimensions pxp. The columns of U and V are orthonormal. D is a
matrix containing the singular values along its diagonal, which are the
square roots of the eigenvalues of , and zeros everywhere else.

The columns of U are called the left singular vectors and are calculated as
the eigenvectors of  (this is an nxn matrix). Similarly, the columns of V
are called the right singular vectors, and these are the eigenvectors of 
(this is a pxp matrix). An additional point of interest is that the singular
values are the square roots of the eigenvalues of  and .

Let the rank of the matrix X be given by r, where

. 

Then the first r columns of V form an orthonormal basis for the column space
of X, and the first r columns of U form a basis for the row space of X [Strang,
1993]. As with PCA, we order the singular values largest to smallest and
impose the same order on the columns of U  and V. A lower rank
approximation to the original matrix X is obtained via

, (2.6)

where Uk is an nxk matrix containing the first k columns of U, Vk is the pxk
matrix whose columns are the first k columns of V, and Dk is a kxk diagonal
matrix whose diagonal elements are the k largest singular values of X. It can
be shown that the approximation given in Equation 2.6 is the best one in a
least squares sense. 

To illustrate the SVD approach, we look at an example from information
retrieval called latent semantic indexing or LSI [Deerwester, et al., 1990].
Many applications of information retrieval (IR) rely on lexical matching,
where words are matched between a user’s query and those words assigned
to documents in a corpus or database. However, the words people use to
describe documents can be diverse and imprecise, so the results of the queries
are often less than perfect. LSI uses SVD to derive vectors that are more
robust at representing the meaning of words and documents. 

Example 2.3
This illustrative example of SVD applied to information retrieval (IR) is taken
from Berry, Drmac and Jessup [1999]. The documents in the corpus comprise
a small set of book titles, and a subset of words have been used in the
analysis, where some have been replaced by their root words (e.g., bake and
baking are both bake). The documents and terms are shown in Table 2.1. We
start with a data matrix, where each row corresponds to a term, and each
column corresponds to a document in the corpus. The elements of the term-
document matrix X denote the number of times the word appears in the

XTX

XXT

XTX

XTX XXT

r   min n p,( )≤

Xk UkDkVk
T=
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document. In this application, we are not going to center the observations,
but we do pre-process the matrix by normalizing each column such that the
magnitude of the column is 1. This is done to ensure that relevance between
the document and the query is not measured by the absolute count of the
terms.1 The following MATLAB code starts the process:

load lsiex
% Loads up variables: X, termdoc, docs and words.
% Convert the matrix to one that has columns 
% with a magnitude of 1.
[n,p] = size(termdoc);
for i = 1:p
    termdoc(:,i) = X(:,i)/norm(X(:,i));
end

Say we want to find books about baking bread, then the vector that represents
this query is given by a column vector with a 1 in the first and fourth
positions:

q1 = [1 0 1 0 0 0]';

If we are seeking books that pertain only to baking, then the query vector is:

q2 = [1 0 0 0 0 0]';

We can find the most relevant documents using the original term-document
matrix by finding the cosine of the angle between the query vectors and the
columns (i.e., the vectors representing documents or books); the higher
cosine values indicate greater similarity between the query and the
document. This would be a straightforward application of lexical matching.
Recall from matrix algebra that the cosine of the angle between two vectors x
and y is given by 

TABLE 2.1

Document Information for Example 2.3

 Number Title

Doc 1 How to Bake Bread Without Recipes
Doc 2 The Classic Art of Viennese Pastry
Doc 3 Numerical Recipes: The Art of Scientific Computing
Doc 4 Breads, Pastries, Pies and Cakes: Quantity Baking Recipes
Doc 5 Pastry: A Book of Best French Recipes

Term 1 bak (e, ing)
Term 2 recipes
Term 3 bread
Term 4 cake
Term 5 pastr (y, ies)
Term 6 pie

1 Other term weights can be found in the literature [Berry and Browne, 1999].
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.

The MATLAB code to find the cosines for the query vectors in our example is:

% Find the cosine of the angle between 
% columns of termdoc and query.
% Note that the magnitude of q1 is not 1.
m1 = norm(q1);
cosq1a = q1'*termdoc/m1;
% Note that the magnitude of q2 is 1.
cosq2a = q2'*termdoc;

The resulting cosine values are: 

cosq1a = 0.8165, 0, 0, 0.5774, 0
cosq2a = 0.5774, 0, 0, 0.4082, 0

If we use a cutoff value of 0.5, then the relevant books for our first query are
the first and the fourth ones, which are those that describe baking bread. On
the other hand, the second query matches with the first book, but misses the
fourth one, which would be relevant. Researchers in the area of IR have
applied several techniques to alleviate this problem, one of which is LSI. One
of the powerful uses of LSI is in matching a user ’s query with existing
documents in the corpus whose representations have been reduced to lower
rank approximations via the SVD. The idea being that some of the
dimensions represented by the full term-document matrix are noise and that
documents will have closer semantic structure after dimensionality
reduction using SVD. So, we now find the singular value decomposition
using the function svd.

% Find the singular value decomposition.
[u,d,v] = svd(termdoc);

We then find the representation of the query vector in the reduced space
given by the first k columns of U in the following manner

,

which is a vector with k elements. We note that in some applications of LSI,
the following is used as the reduced query

.

This is simply a scaling by the singular values, since D is diagonal. The
following code projects the query into the reduced space and also finds the
cosine of the angle between the query vector and the columns. Berry, Drmac

θx,ycos xTy

xTx yTy
--------------------------=

qk Uk
Tq=

qk Dk
1– Uk

Tq=
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and Jessup show that we do not have to form the full reduced matrix Xk.
Instead, we can use the columns of Vk, saving storage space.

% Project the query vectors.
q1t = u(:,1:3)'*q1;
q2t = u(:,1:3)'*q2;
% Now find the cosine of the angle between the query 
% vector and the columns of the reduced rank matrix,
% scaled by D.
for i = 1:5
    sj = d(1:3,1:3)*v(i,1:3)';
    m3 = norm(sj);
    cosq1b(i) = sj'*q1t/(m3*m1);
    cosq2b(i) = sj'*q2t/(m3);
end

From this we have 

cosq1b = 0.7327, -0.0469, 0.0330, 0.7161, -0.0097
cosq2b = 0.5181, -0.0332, 0.0233, 0.5064, -0.0069

Using a cutoff value of 0.5, we now correctly have documents 1 and 4 as being
relevant to our queries on baking bread and baking. 
❑

Note that in the above loop, we are using the magnitudes of the original
query vectors as in Berry, Drmac and Jessup [Equation 6.1, 1999]. This saves
on computations and also improves precision (disregarding irrelevant
information). We could divide by the magnitudes of the reduced query
vectors (q1t and q2t) in the loop to improve recall (retrieving relevant
information) at the expense of precision.

Before going on to the next topic, we point out that the literature describing
SVD applied to LSI and gene expression data defines the matrices of
Equation 2.5 in a different way. The decomposition is the same, but the
difference is in the size of the matrices U and D. Some definitions have the
dimensions of U as nxp and D with dimensions pxp [Golub & Van Loan,
1996]. We follow the definition in Strang [1988, 1993], which is also used in
MATLAB.

2.4 Factor Analysis

There is much confusion in the literature as to the exact definition of the
technique called factor analysis [Jackson, 1981], but we follow the commonly
used definition given in Jolliffe [1986]. In the past, this method has also been
confused with PCA, mostly because PCA is sometimes provided in software
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packages as a special case of factor analysis. Both of these techniques attempt
to reduce the dimensionality of a data set, but they are different from one
another in many ways. We describe these differences at the end of the
discussion of factor analysis.

The idea underlying factor analysis is that the p observed random variables
can be written as linear functions of d < p unobserved latent variables or
common factors fj , as follows:

(2.7)

The λij (i = 1, ... , p and j = 1, ... , d) in the above model are called the factor
loadings, and the error terms ε i are called the specific factors. Note that the
error terms ε i are specific to each of the original variables, while the fj are
common to all of the variables. The sum of the squared factor loadings for the
i-th variable

is called the communality of xi.
We see from the model in Equation 2.7 that the original variables are

written as a linear function of a smaller number of variables or factors, thus
reducing the dimensionality. It is hoped that the factors provide a summary
or clustering of the original variables (not the observations), such that
insights are provided about the underlying structure of the data. While this
model is fairly standard, it can be extended to include more error terms, such
as measurement error. It can also be made nonlinear [Jolliffe, 1986]. 

The matrix form of the factor analysis model is

. (2.8)

Some assumptions are made regarding this model, which are

,

where E[•] denotes the expected value. If the last of these assumptions is
violated, the model can be adjusted to accommodate this, yielding

, (2.9)

where E[x] = µ. We also assume that the error terms ε i are uncorrelated with
each other, and that the common factors are uncorrelated with the specific

x1 λ11 f1  … λ1d fd ε 1+ + +=

…
xp λp1 f1  … λpd fd ε p.+ + +=

λ i1
2  … λ id

2+ +

x Λ f e+=

E e[ ] 0= E f[ ] 0= E x[ ] 0=

x Λ f e+= µ+
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factors fj. Given these assumptions, the sample covariance (or correlation)
matrix is of the form

,

where Ψ is a diagonal matrix representing E[eeT]. The variance of ε i is called
the specificity of xi, so the matrix Ψ is also called the specificity matrix. Factor
analysis obtains a reduction in dimensionality by postulating a model that
relates the original variables xi to the d hypothetical variables or factors. 

The matrix form of the factor analysis model is reminiscent of a regression
problem, but here both Λ  and f are unknown and must be estimated. This
leads to one problem with factor analysis: the estimates are not unique.
Estimation of the parameters in the factor analysis model is usually
accomplished via the matrices Λ  and Ψ. The estimation proceeds in stages,
where an initial estimate is found by placing conditions on Λ . Once this
initial estimate is obtained, other solutions can be found by rotating Λ . The
goal of some rotations is to make the structure of Λ  more interpretable, by
making the λij close to one or zero. Several methods that find rotations such
that a desired criterion is optimized are described in the literature. Some of
the commonly used methods are varimax, equimax, orthomax, quartimax,
promax, and procrustes.

These factor rotation methods can either be orthogonal or oblique. In the
case of orthogonal rotations, the axes are kept at 90 degrees. If this constraint
is relaxed, then we have oblique rotations. The orthogonal rotation methods
include quartimax, varimax, orthomax, and equimax. The promax and
procrustes rotations are oblique.

The goal of the quartimax rotation is to simplify the rows of the factor
matrix by getting a variable with a high loading on one factor and small
loadings on all other factors. The varimax rotation focuses on simplifying the
columns of the factor matrix. From the varimax approach, perfect
simplification is obtained if there are only ones and zeros in a single column.
The output from this method tends to have high loadings close to  and
some near zero in each column. The equimax rotation is a compromise
between these two methods, where both the rows and the columns of the
factor matrix are simplified as much as possible.

Just as we did in PCA, we might want to transform the observations using
the estimated factor analysis model either for plotting purposes or for further
analysis methods, such as clustering or classification. We could think of these
observations as being transformed to the ‘factor space.’ These are called
factor scores, similarly to PCA. However, unlike PCA, there is no single
method for finding the factor scores, and the analyst must keep in mind that
the factor scores are really estimates and depend on the method that is used. 

An in-depth discussion of the many methods for estimating the factor
loadings, the variances Ψ, and the factor scores, as well as the rotations, is
beyond the scope of this book. For more information on the details of the

S Λ TΛ Ψ+=

1±
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methods for estimation and rotation in factor analysis, see Jackson [1991],
Lawley and Maxwell [1971], or Cattell [1978]. Before we go on to an example
of factor analysis, we note that the MATLAB Statistics Toolbox uses the
maximum likelihood method to obtain the factor loadings, and it also
implements some of the various rotation methods mentioned earlier.

Example 2.4
In this example, we examine some data provided with the Statistics Toolbox,
called stockreturns. An alternative analysis of these data is provided in
the Statistics Toolbox User’s Guide. The data set consists of 100 observations,
representing the percent change in stock prices for 10 companies. Thus, the
data set has n = 100 observations and p = 10 variables. It turns out that the first
four companies can be classified as technology, the next three as financial,
and the last three as retail. We can use factor analysis to see if there is any
structure in the data that supports this grouping. We first load up the data set
and perform factor analysis using the function factoran.

load stockreturns 
% Loads up a variable called stocks.
% Perform factor analysis:3 factors,default rotation.
[LamVrot,PsiVrot] = factoran(stocks,3); 

This is the basic syntax for factoran, where the user must specify the
number of factors (3 in this case), and the default is to use the varimax
rotation, which optimizes a criterion based on the variance of the loadings.
See the MATLAB help on factoran for more details on the rotations. Next,
we specify no rotation, and we plot the matrix Lam (the factor loadings) in
Figure 2.4. 

[Lam,Psi] = factoran(stocks,3,'rotate','none'); 

These plots show the pairwise factor loadings, and we can see that the factor
loadings are not close to one of the factor axes, making it more difficult to
interpret the factors. We can try rotating the matrix next using one of the
oblique (nonorthogonal) rotations called promax, and we plot these results
in Figure 2.5.

% Now try the promax rotation.
[LProt,PProt]=factoran(stocks,3,'rotate','promax');

Note that we now have a more interpretable structure with the factor
loadings, and we are able to group the stocks. We might also be interested in
estimating the factor scores. The user is asked to explore this aspect of it in
the exercises.
❑

It can be very confusing trying to decide whether to use PCA or factor
analysis. Since the objective of this book is to describe exploratory data
analysis techniques, we suggest that both methods be used to explore the
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FIGURE 2.4

These show the factor loadings in their unrotated form. We see that the loadings are not 
grouped around the factor axes, although it is interesting to note that we have the three 
financial companies (points 5, 6, & 7) grouped together in the upper plot (factors 1 and 2), 
while the three retail companies (points 8, 9, & 10) are grouped together in the lower plot 
(factors 1 and 3). 
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FIGURE 2.5

These plots show the factor loadings after the promax rotation. We see that the stocks can
be grouped as technology companies {1, 2, 3, 4}, financial {5, 6, 7}, and retail {8, 9, 10}. The
rotation makes the factors somewhat easier to interpret.
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data, because they take different approaches to the problem and can uncover
different facets of the data. We now outline the differences between PCA and
factor analysis; a discussion of which method to use can be found in Velicer
and Jackson [1990].

• Both factor analysis and PCA try to represent the structure of the
data set based on the covariance or correlation matrix. Factor anal-
ysis tries to explain the off-diagonal elements, while PCA explains
the variance or diagonal elements of the matrix.

• Factor analysis is typically performed using the correlation matrix,
and PCA can be used with either the correlation or the covariance
matrix.

• Factor analysis has a model, as given in Equation 2.8 and 2.9, but
PCA does not have an explicit model associated with it (unless one
is interested in inferential methods associated with the eigenvalues
and PCs, in which case, distributional assumptions are made).

• If one changes the number of PCs to keep, then the existing PCs
do not change. If we change the number of factors, then the entire
solution changes; i.e., existing factors must be re-estimated.

• PCA has a unique solution, but factor analysis does not. 
• The PC scores are found in an exact manner, but the factor scores

are estimates.

2.5 Intrinsic Dimensionality

Knowing the  intrinsic dimensionality  (sometimes called effective
dimensionality) of a data set is useful information when exploring a data set.
This is defined as the smallest number of dimensions or variables needed to
model the data without loss [Kirby, 2001]. Fukunaga [1990] provides a similar
definition of intrinsic dimensionality as “the minimum number of
parameters needed to account for the observed properties of the data.”

Several approaches to estimating the intrinsic dimensionality of a data set
have been proposed in the literature. Trunk [1968, 1976] describes a statistical
approach using hypothesis testing regarding the most likely local
dimensionality. Fukunaga and Olsen [1971] present an algorithm where the
data are divided into small subregions, and the eigenvalues of the local
covariance matrix are computed for each region. The intrinsic dimensionality
is then defined based on the size of the eigenvalues. Pettis, et al. [1979]
develop an algorithm for estimating intrinsic dimensionality that is based on
nearest neighbor information and a density estimator. We choose to
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implement the original Pettis algorithm as outlined below; details of the
derivation can be found in the original paper. 

We first set some notation, using 1-D representation for the observations as
in the original paper. However, this method works with the distance between
observations, so it easily extends to the multi-dimensional case. Let rk,x

represent the distance from x to the k-th nearest neighbor of x. The average k-
th nearest neighbor distance is given by

. (2.10)

Pettis, et al. [1979] show that the expected value of the average distance in
Equation 2.10 is

, (2.11)

where 

,

and Cn is independent of k. If we take logarithms of Equation 2.11 and do
some rearranging, then we obtain the following

. (2.12)

We can get an estimate for  by taking the observed value of  based on
the sample, yie lding the following estimator  for the intrinsic
dimensionality d

. (2.13)

This is similar to a regression problem, where the slope is given by .
The term log(Cn) affects the intercept, not the slope, so we can disregard this
in the estimation process. 

The estimation procedure must be iterative since  also appears on the
response side of Equation 2.13. To get started, we set the term  equal
to zero and find the slope using least squares, where the predictor values are
given by log(k), and the responses are , for k = 1,...,K. Once we have
this initial value for , we then find  using Equation 2.13. Using this
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value, we find the slope where the responses are now . The
algorithm continues in this manner until the estimates of intrinsic
dimensionality converge.

We outline the algorithm shortly, but we need to discuss the effect of
outliers first. Pettis, et al. [1979] found that their algorithm works better if
potential outliers are removed before estimating the intrinsic dimensionality.
To define outliers in this context, we first define a measure of the maximum
average distance given by 

 ,

where  represents the i-th K nearest neighbor distance (i.e., the
maximum distance). A measure of the spread is found by

.

The data points xi for which 

(2.14)

are used in the nearest neighbor estimate of intrinsic dimensionality. We are
now ready to describe the algorithm.

Procedure - Intrinsic Dimensionality

1. Set a value for the maximum number of nearest neighbors K.

2. Determine all of the distances .
3. Remove outliers; i.e., keep only those points that satisfy

Equation 2.14.

4. Calculate .
5. Get the initial estimate  by fitting a line to

,

and taking the inverse of the slope.

6. Calculate  using Equation 2.13.
7. Update the estimate of intrinsic dimensionality by fitting a line to
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.

8. Repeat steps 6 and 7 until the estimates converge. 

Example 2.5
The following MATLAB code implements the Pettis algorithm for estimating
intrinsic dimensionality, which is also contained in the EDA Toolbox function
called idpettis. We first generate some data to illustrate the functionality
of the algorithm. The helix is described by the following equations, and
points are randomly chosen along this path:

for . For this data set, the dimensionality is 3, but the intrinsic
dimensionality is 1. We show a picture of the helix in Figure 2.6. We obtain
the data by generating uniform random numbers in the interval . 

% Generate the random numbers
% unifrnd is from the Statistics Toolbox.
n = 500;

FIGURE 2.6

This shows the helix used in Example 2.5. This is a 1-D structure embedded in 3-D.
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theta = unifrnd(0,4*pi,1,n);
% Use in the equations for a helix.
x = cos(theta);y=sin(theta);z = 0.1*(theta);
% Put into a data matrix.
X = [x(:),y(:),z(:)];

We note that the function unifrnd is from the Statistics Toolbox, but users
can also employ the rand function and scale to the correct interval [Martinez
and Martinez, 2002]. In the interest of space and clarity, we show only the
code for the algorithm after the outliers have been removed. Thus, you
cannot run the code given below, as it stands. We refer curious readers to the
MATLAB function idpettis for the implementation of the rest of the
procedure. 

% Get initial value for d. Values n, k, & logrk 
% are defined in the idpettis function. This is
% an extract from that function.
logk = log(k);
[p,s] = polyfit(logk,logrk,1);
dhat = 1/p(1);
dhatold = realmax;
maxiter = 100;
epstol = 0.01;
i = 0;
while abs(dhatold - dhat) >= epstol & i < maxiter
    % Adjust the y values by adding logGRk
    logGRk = (1/dhat)*log(k)+...

gammaln(k)-gammaln(k+1/dhat);
    [p,s] = polyfit(logk,logrk + logGRk,1);
    dhatold = dhat;
    dhat = 1/p(1);
    i = i+1;
end
idhat = dhat;

As an example of using the idpettis function, we offer the following:

% Get the distances using the pdist function.
% This returns the interpoint distances.
ydist = pdist(X);
idhat = idpettis(ydist,n);

where the input variable X is the helix data. The resulting estimate of the
intrinsic dimensionality is 1.14. We see from this result, that in most cases the
estimate will need to be rounded to the nearest integer. Thus, the estimate in
this case is the correct one: 1-D. 
❑
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2.6 Summary and Further Reading

In this chapter, we introduced the concept of dimensionality reduction by
presenting several methods that find a linear mapping from a high-
dimensional space to a lower one. These methods include principal
component analysis, singular value decomposition, and factor analysis. We
also addressed the issue of determining the intrinsic dimensionality of a data
set.

For a general treatment of linear and matrix algebra, we recommend Strang
[1985, 1993] or Golub and van Loan [1996]. Discussions of PCA and factor
analysis can be found in most multivariate analysis books; some examples
are Manly [1994] or Seber [1984]. Readers who would like a more detailed
treatment of these subjects are referred to Jackson [1991] and Jolliffe [1986].
These texts provide extensive discussions (including many extensions and
applications) of PCA, SVD, and factor analysis. There are many recent
applications of PCA and SVD to microarray analysis, some examples include
gene shaving [Hastie, et al., 2001], predicting the clinical status of human
breast cancer [West, et al., 2001], obtaining a global picture of the dynamics of
gene expression [Alter, Brown and Botstein, 2000], and clustering [Yeung and
Ruzzo, 2001].

The Fukunaga-Olsen method of estimating intrinsic dimensionality is
further explored in Verveer and Duin [1995] and Bruske and Sommer [1998].
The Pettis algorithm is also described in Fukunaga [1990] and is expanded in
Verveer and Duin [1995]. Verveer and Duin [1995] revise both the Pettis and
the Fukunaga-Olsen algorithms and provide an evaluation of their
performance. Levina and Bickel [2004] describe a new method for estimating
the intrinsic dimensionality of a data set by applying maximum likelihood to
the distances between close neighbors. They derive the estimator by a
Poisson process approximation. Costa and Hero [2004] propose a geometric
approach based on entropic graph methods. Their method is called the
geodesic minimal spanning tree (GMST), and it yields estimates of the
manifold dimension and the α-entropy of the sample density on the
manifold.

Exercises

2.1 Generate n = 50, p = 3 normally distributed random variables that
have high variance in one dimension. For example, you might use the
following MATLAB code to do this:

x1 = randn(50,1)*100;
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x2 = randn(50,2);
X = [x1,x2];

Try PCA using both correlation and covariance matrices. Is the one
with the covariance matrix very informative? Which one would be
better to use in this case?

2.2 Do a scree plot of the data set used in Example 2.2. Generate
multivariate, uncorrelated normal random variables for the same n
and p. (Hint: use randn(n,p).) Perform PCA for this data set, and
construct its scree plot. It should look approximately like a straight
line. Plot both scree plots together; where they intersect is an estimate
of the number of PCs to keep. How does this compare with previous
results? [Jackson, 1991, p. 46].

2.3 Generate a set of n = 30 trivariate normal random variables using
randn(30,3). 
a. Subtract the mean from the observations and find the covariance

matrix, using cov. Get the eigenvectors and eigenvalues based on
the covariance matrix of the centered observations. Is the total
variance of the original data equal to the sum of the eigenvalues?
Verify that the eigenvectors are orthonormal. Find the PC scores
and their mean. 

b. Impose a mean of [2, 2, 2]T on the original variables. Perform PCA
using the covariance of these noncentered data. Find the PC scores
and their mean. 

c. Center and scale the original variables, so that each one has zero
mean and a standard deviation of one. Find the covariance of these
transformed data. Find the correlation matrix of the original, non-
transformed data. Are these two matrices the same?

d. Verify that the PC scores produce data that are uncorrelated by
finding the correlation matrix of the PC scores.

2.4 Repeat Example 2.2 using the correlation matrix. Compare with the
previous results.

2.5 Generate multivariate normal random variables, centered at the
origin (i.e., centered about 0). Form the matrix XTX, find the
eigenvectors. Form the matrix XXT, find the eigenvectors. Now use the
SVD on X. Compare the columns of U and V with the eigenvectors.
Are they the same? Note that the columns of U and V are unique up
to a sign change. What can you say about the eigenvalues and singular
values?

2.6 Generate a set of multivariate normal random variables, centered at
the origin. Obtain the eigenvalue decomposition of the covariance
matrix. Multiply them to get the original matrix back, and also
perform the multiplication to get the diagonal matrix L. 

2.7 Construct a plot based on the slopes of the lines connecting the points
in the scree plot. Apply to the yeast data. Does this help in the
analysis? Hint: use the diff function.
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2.8 Apply PCA to the following data sets. What value of d would you get
using the various methods for choosing the number of dimensions?
a. Other gene expression data sets.
b. oronsay data.

c. sparrow data.
2.9 Repeat Example 2.3 for the SVD - LSI using k = 2. Comment on the

results and compare to the document retrieval using k = 3.
2.10 Using the term-document matrix in Example 2.3, find the cosine of the

angle between the reduced query vectors and the reduced document
vectors. However, this time use the magnitude of the reduced query
vectors in the loop, not the magnitudes of the original queries. Discuss
how this affects your results in terms of precision and recall.

2.11 Generate a bivariate data set using either rand or randn. Verify that
the singular values are the square roots of the eigenvalues of XTX and
XXT.

2.12 Repeat Example 2.4, using other rotations and methods implemented
in MATLAB for estimating the factor loadings. Do they change the
results?

2.13 Plot factors 2 and 3 in Example 2.4 for no rotation and promax
rotation. Discuss any groupings that might be evident.

2.14 Try Example 2.4 with different values for the number of factors - say
two and four. How do the results change? 

2.15 The MATLAB function factoran includes the option of obtaining
estimates of the factor scores. Using the data in Example 2.4, try the
following code

[lam,psi,T,stats,F]=...
    factoran(stocks,3,'rotate','promax');

The factor scores are contained in the variable F. These can be viewed
using plotmatrix.

2.16 Try factor analysis on some of the gene expression data sets to cluster
the patients or experiments.

2.17 Generate 2-D standard bivariate random variables using randn for
increasing values of n. Use the idpettis function to estimate the
intrinsic dimensionality, repeating for several Monte Carlo trials for
each value of n. The true intrinsic dimensionality of these data is 2.
How does the algorithm perform on these data sets?

2.18 This data set is taken from Fukunaga [1990], where he describes a
Gaussian pulse characterized by three parameters a, m, and . The
waveform is given by

.

σ

x t( ) a  
 t m–( )2

2σ2
---------------------– 

 exp=
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These parameters are generated randomly in the following ranges: 

The signals are generated at 8 time steps in the range , so
each of  the signals is an 8-D random vector.  The intrinsic
dimensionality of these data is 3. Generate random vectors for various
values of n ,  and apply idpettis  to estimate the intrinsic
dimensionality and assess the results.

2.19 Estimate the intrinsic dimensionality of the yeast data. Does this
agree with the results in Example 2.2?

2.20 Estimate the intrinsic dimensionality of the following data sets. Where
possible, compare with the results from PCA.
a. All BPM data sets.

b. oronsay data.
c. sparrow data

d. Other gene expression data.
2.21 The Statistics Toolbox, Version 5, has a new function called

rotatefactors that can be used with either factor analysis or
principal component analysis loadings. Do a help on this function.
Apply it to the factor loadings from the stockreturns data. Apply
it to the PCA results of the yeast data in Example 2.2. 
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Chapter 4
Data Tours

In previous chapters we searched for lower-dimensional representations of
our data that might show interesting structure. However, there are an infinite
number of possibilities, so we might try touring through space, looking at
many of these representations. This chapter includes a description of several
tour methods that can be roughly categorized into the following groups:

1. Grand Tours: If the goal is to look at the data from all possible
viewpoints to get an idea of the overall distribution of the p-
dimensional data, then we might want to look at a random
sequence of lower-dimensional projections. Typically, there is little
user interaction with these methods other than to set the step size
for the sequence and maybe to stop the tour when interesting
structure is found. This was the idea behind the original torus
grand tour of Asimov [1985].

2. Interpolated Tours: In this type of tour, the user chooses a starting
plane and an ending plane. The data are projected onto the first
plane. The tour then proceeds from one plane to the other by
interpolation. At each step of the sequence, the user is presented
with a different view of the data, usually in the form of a scatter
plot [Hurley and Buja, 1990].

3. Guided Tours: These tours can be either partly or completely
guided by the data. An example of this type of tour is the EDA
projection pursuit method. While this is not usually an interactive
or visual tour in the sense of the others, it does look at many
projections of the data searching for interesting structure such as
holes, clusters, etc.

Each of these methods is described in more detail in the following sections.
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4.1 Grand Tour

In the grand tour methods, we want to view the data from ‘all’ possible
perspectives. This is done by projecting the data onto a 2-D subspace and
then viewing it as a scatterplot. We do this repeatedly and rapidly, so the user
ends up seeing an animated sequence (or movie) of scatterplots. We could
also project to spaces with dimensionality greater than 2, but the
visualization would have to be done differently (see Chapter 10 for more on
this subject). Projections to 1-D (a line) are also possible, where we could
show the individual points on the line or as a distribution (e.g., histogram or
other estimate of data density). We describe two grand tour methods in this
section: the torus winding method and the pseudo grand tour.

In general, grand tours should have the following desirable characteristics:

1. The sequence of planes (or projections) should be dense in the space
of all planes, so the tour eventually comes close to any given 2-D
projection.

2. The sequence should become dense rapidly, so we need an efficient
algorithm to compute the sequence, project the data, and present
it to the user.

3. We want our sequence of planes to be uniformly distributed,
because we do not want to spend a lot of time in one area.

4. The sequence of planes should be ‘continuous’ to aid user
understanding and to be visually appealing. However, a trade-off
between continuity and speed of the tour must be made.

5. The user should be able to reconstruct the sequence of planes after
the tour is over. If the user stops the tour at a point where
interesting structure is found, then that projection should be
recovered easily.

To achieve these, the grand tour algorithm requires a continuous, space-
filling path through the set of 2-D subspaces in p-dimensional space. 

To summarize, the grand tour provides an overview or tour of a high-
dimensional space by visualizing a sequence of 2-D scatterplots, in such a
way that the tour is representative of all projections of the data. The tour
continues until the analyst sees some interesting structure, at which time it is
halted. The output of the grand tour method is a movie or animation with
information encoded in the smooth motion of the 2-D scatterplots. A benefit
from looking at a moving sequence of scatterplots is that two additional
dimensions of information are available in the speed vectors of the data
points [Buja & Asimov, 1986]. For example, the further away a point is from
the computer screen, the faster the point rotates.
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4.1.1 Torus Winding Method

The torus winding method was originally proposed by Asimov [1985] and
Buja and Asimov [1986] as a way of implementing the grand tour. We let
{λ1,...,λN} be a set of real numbers that are linearly independent over the
integers. We also define a function a(t) as

, (4.1)

where the coordinates λit are interpreted modulo 2π. It is known that the
mapping in Equation 4.1 defines a space-filling path [Asimov, 1985; Wegman
and Solka, 2002] that winds around a torus.

We let the vector ei represent the canonical basis vector. It contains zeros
everywhere except in the i-th position where it has a one. Next we let Rij(θ)
denote a p x p matrix that rotates the eiej plane through an angle of size θ.
This is given by the identity matrix, but with the following changes: 

rii = rjj = cos(θ); rij = – sin(θ); rji = sin(θ). 

We then define a function f as follows

.(4.2)

Note that we have N arguments (or angles) in the function f, and it is subject
to the restrictions that and . We use a reduced form
of this function with fewer terms [Asimov, 1985] in our procedure outlined
below.

Procedure - Torus Method

1. The number of factors in Equation 4.2 is given by N = 2p – 3.1 We
use only Rij(θij) with i = 1 or i = 2. If i = 1, then . If i = 2,
then  .

2. Choose real numbers {λ1, ... , λN} and a stepsize t such that the
numbers {2π,  λ1t, ... , λNt} are linearly independent. The stepsize t
should be chosen to yield a continuous sequence of planes.

3. The values λ1Kt, ... , λNKt, K = 1, 2, ... are used as the arguments to
the function . K is the iteration number.

4. Form the product QK of all the rotations (Equation 4.2).
5. Rotate the first two basis vectors using

1 We are using the reduced form described in the appendix of Asimov [1985]. The complete form
of this rotation consists of (p2 – p)/2 possible plane rotations, corresponding to the distinct
2–planes formed by the canonical basis vectors.

a t( ) λ1t ,  …  , λNt( )=

f θ1 2, … θp 1 p,–, ,( ) Q R12 θ12( ) R13 θ13( )× … Rp 1 p,– θp 1 p,–( )××= =

0 θ ij 2π≤ ≤ 1 i j p≤<≤

2 j p≤ ≤
3 j p≤ ≤

f •( )
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,

where the columns of E12 contain the first two basis vectors, e1 and
e2.

6. Project the data onto the rotated coordinate system for the K-th step:

.

7. Display the points as a scatterplot.
8. Repeat from step 3 for the next value of K.

We need to choose λi and λj such that the ratio λi/λj is irrational for every i
and j. Additionally, we must choose these such that no λi/λj is a rational
multiple of any other ratio. It is also recommended that the time step t be a
small positive irrational number. Two possible ways to obtain irrational
values are the following [Asimov, 1985]:

1. Let , where  is the i-th prime number. 

2. Let .

We show how to implement the torus grand tour in Example 4.1.

Example 4.1
We use the yeast data in this example of a torus grand tour. First we load
the data and set some constants.

load yeast
[n,p] = size(data);
% Set up vector of frequencies.
N = 2*p - 3;
% Use second option from above.
lam = mod(exp(1:N),1);
% This is a small irrational number:
delt = exp(-5); 
% Get the indices to build the rotations.
% As in step 1 of the torus method.
J = 2:p;
I = ones(1,length(J));
I = [I, 2*ones(1,length(J)-1)];
J = [J, 3:p];
E = eye(p,2);   % Basis vectors
% Just do the tour for some number of iterations.
maxit = 2150;

Next we implement the tour itself. 

AK QKE12=

XK XAK=

λ i Pi= Pi

λ i ei  mod  1=
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% Get an initial plot.
z = zeros(n,2);
ph = plot(z(:,1),z(:,2),'o','erasemode','normal');
axis equal, axis off
% Use some Handle Graphics to remove flicker.
set(gcf,'backingstore','off','renderer',...

'painters','DoubleBuffer','on')
% Start the tour.
for k = 1:maxit
    % Find the rotation matrix.
    Q = eye(p);
    for j = 1:N
        dum = eye(p);

dum([I(j),J(j)],[I(j),J(j)]) = ...
cos(lam(j)*k*delt);

        dum(I(j),J(j)) = -sin(lam(j)*k*delt);
        dum(J(j),I(j)) = sin(lam(j)*k*delt);
        Q = Q*dum;
    end
    % Rotate basis vectors.
    A = Q*E;
    % Project onto the new basis vectors.
    z = data*A;

% Plot the transformed data.
    set(ph,'xdata',z(:,1),'ydata',z(:,2))

% Forces Matlab to plot the data.
    pause(0.02)
end

We provide a function called torustour that implements this code. The
configuration obtained at the end of this tour is shown in Figure 4.1.
❑ 

4.1.2 Pseudo Grand Tour

Asimov [1985] and Buja and Asimov [1986] described other ways of
implementing a grand tour called the at-random method and the random-
walk method. These methods, along with the torus grand tour, have some
limitations. With the torus method we may end up spending too much time
in certain regions, and it can be computationally intensive. Other techniques
are better computationally, but cannot be reversed easily (to recover the
projection) unless the set of random numbers used to generate the tour is
retained. 

We now discuss the pseudo grand tour first described in Wegman and Shen
[1993] and later implemented in MATLAB by Martinez and Martinez [2002].
One of the important aspects of the torus grand tour is that it provides a
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continuous space-filling path through the manifold of planes. The following
method does not employ a space-filling curve; thus it is called a pseudo
grand tour. Another limitation is that the pseudo grand tour does not
generalize to higher dimensional tours like the torus method. In spite of this,
the pseudo grand tour has many benefits, such as speed, ease of calculation,
uniformity of the tour, and ease of recovering the projection. 

For the tour we need unit vectors that comprise the desired projection. Our
first unit vector is denoted as , such that

,

for every t, where t represents the stepsize as before. We need a second unit
vector  that is orthonormal to , so

. 

For the pseudo grand tour,  and  must be continuous functions of t
and should produce ‘all’ possible orientations of a unit vector.

FIGURE 4.1

This shows the end of the torus grand tour using the yeast data. 
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Before we continue in our development, we consider an observation x. If p
is odd, then we augment each data point with a zero, to get an even number
of elements. In this case, 

This will not affect the projection. So, without loss of generality, we present
the method with the understanding that p is even. We take the vector  to
be

, (4.3)

for K = 1, 2, ... and the vector  as

. (4.4)

We choose ω i and ω j in a similar manner to the λ i and λ j in the torus grand
tour. The steps for implementing the 2-D pseudo grand tour are given here,
and the details on how to implement this in MATLAB are given in Example
4.2. 

Procedure- Pseudo Grand Tour

1. Set each ω i to an irrational number. Determine a small positive
irrational number for the stepsize t.

2. Find vectors  and  using Equations 4.3 and 4.4.
3. Project the data onto the plane spanned by these vectors.

4. Display the projected points in a 2-D scatterplot.
5. Repeat from step 2 for the next value of K.

Example 4.2
We will use the oronsay data set for this example that illustrates the pseudo
grand tour. We provide a function called pseudotour that implements the
pseudo grand tour, but details are given below. Since the oronsay data set
has an even number of variables, we do not have to augment the
observations with a zero.

load oronsay
x = oronsay;
maxit = 10000;
[n,p] = size(x);

x x1  … xp 0, , ,[ ]T ,= for p odd.

α t( )

α Kt( ) 2
p
--- ω1Kt ω1Kt  … ωp 2⁄ Kt ωp 2⁄ Ktcos,sin, ,cos,sin[ ]T=

β t( )

βK t( ) 2
p
--- ω1Kt ω1Kt  … ,sin– ωp 2⁄ Kt ωp 2⁄ Ktsin–,cos, ,cos[ ]T=

α Kt( ) β Kt( )

EDA.book  Page 109  Monday, October 18, 2004  8:32 AM



110 Exploratory Data Analysis with MATLAB

% Set up vector of frequencies as in grand tour.
th = mod(exp(1:p),1);
% This is a small irrational number:
delt = exp(-5); 
cof = sqrt(2/p);
% Set up storage space for projection vectors.
a = zeros(p,1); b = zeros(p,1);
z = zeros(n,2);
% Get an initial plot.
ph = plot(z(:,1),z(:,2),'o','erasemode','normal');
axis equal, axis off
set(gcf,'backingstore','off','renderer',...

'painters','DoubleBuffer','on')
for t = 0:delt:(delt*maxit)
% Find the transformation vectors.
for j = 1:p/2

a(2*(j-1)+1) = cof*sin(th(j)*t);
a(2*j) = cof*cos(th(j)*t);
b(2*(j-1)+1) = cof*cos(th(j)*t);
b(2*j) = cof*(-sin(th(j)*t));

end
% Project onto the vectors.
z(:,1) = x*a;
z(:,2) = x*b;
set(ph,'xdata',z(:,1),'ydata',z(:,2))

 drawnow
end

A scatterplot showing an interesting configuration of points is shown in
Figure 4.2. The reader is encouraged to view this tour as it shows some
interesting structure along the way.
❑ 

4.2 Interpolation Tours

We present a version of the interpolation tour described in Young and
Rheingans [1991] and Young, Faldowski and McFarlane [1993]. The
mathematics underlying this type of tour were presented in Hurley and Buja
[1990] and Asimov and Buja [1994]. The idea behind interpolation tours is
that it starts with two subspaces: an initial one and a target subspace. The
tour proceeds by traveling from one to the other via geodesic interpolation
paths between the two spaces. Of course, we also display the projected data

EDA.book  Page 110  Monday, October 18, 2004  8:32 AM



Data Tours 111

in a scatterplot at each step in the path for a movie view, and one can continue
to tour the data by going from one target space to another.

We assume that the data matrix X is column centered; i.e., the centroid of
the data space is at the origin. As with the other tours, we must have a visual
space to present the data to the user. The visual space will be denoted by Vt,
which is an n x 2 matrix of coordinates in 2-D.

One of the difficulties of the interpolation tour is getting the target spaces.
Some suggested spaces include those spanned by subsets of the eigenvectors
in PCA, which is what we choose to implement here. So, assuming that we
have the principal component scores (see chapter 2), the initial visible space
and target space will be n x 2 matrices, whose columns contain different
principal components.

The interpolation path is obtained through the following rotation:

, (4.5)

where Vt is the visible space at the t-th step in the path, Tk indicates the k-th
target in the sequence, and Ut is a diagonal 2 x 2 matrix with values θk

between 0 and π/2. At each value of t, we increment the value of θk for some
small stepsize. Note that the subscript k indicates the k-th plane in the target
sequence, since we can go from one target plane to another.

FIGURE 4.2

This shows the scatterplot of points for an interesting projection of the oronsay data found
during the pseudo grand tour in Example 4.2.

Vt Tk Utcos[ ] Tk 1+ Utsin[ ]+=
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Example 4.3
We use the oronsay data set to illustrate our function that implements the
interpolation tour. The function takes the data matrix as its first argument.
The next two inputs to the function contain column indices to the matrix of
principal components. The first vector designates the starting plane and the
second one corresponds to the target plane. 

load oronsay
% Set up the vector of indices to the columns spanning
% the starting and target planes.
T1 = [3 4];
T2 = [5 6];
intour(oronsay, T1, T2);

We show the scatterplots corresponding to the starting plane and the target
plane in Figure 4.3. This function actually completes a full rotation back to the
starting plane after pausing at the target. Those readers who are interested in
the details of the tour can refer to the M-file intour for more information.
❑ 

4.3 Projection Pursuit

In contrast to the grand tour, the projection pursuit method performs a
directed search based on some index that indicates a type of structure one is
looking for. In this sense, the tour is guided by the data, because it keeps
touring until possible structure is found. Like the grand tour method,
projection pursuit seeks to find projections of the data that are interesting; i.e.,
show departures from normality, such as clusters, linear structures, holes,
outliers, etc. The objective is to find a projection plane that provides a 2-D
view of our data such that the structure (or departure from normality) is
maximized over all possible 2-D projections. 

Friedman and Tukey [1974] describe projection pursuit as a way of
searching for and exploring nonlinear structure in multi-dimensional data by
examining many 2-D projections. The idea is that 2-D orthogonal projections
of the data should reveal structure in the original data. The projection pursuit
technique can also be used to obtain 1-D projections, but we look only at the
2-D case. Extensions to this method are also described in the literature by
Friedman [1987], Posse [1995a, 1995b], Huber [1985], and Jones and Sibson
[1987]. In our presentation of projection pursuit exploratory data analysis, we
follow the method of Posse [1995a, 1995b].

Projection pursuit exploratory data analysis (PPEDA) is accomplished by
visiting many projections in search of something interesting, where
interesting is measured by an index. In most cases, the projection pursuit
index measures the departure from normality. We use two indexes in our
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FIGURE 4.3

This shows the start plane (top) and the target plane (bottom) for an interpolation tour using
the oronsay data set.

Start Axes: 3 4; Target Axes: 5 6

Start Axes: 3 4; Target Axes: 5 6
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implementation. One is the chi-square index developed in Posse [1995a,
1995b], and the other is the moment index of Jones and Sibson [1987]. 

PPEDA consists of two parts: 

1) a projection pursuit index that measures the degree of departure
from normality, and

2) a method for finding the projection that yields the highest value
for the index. 

Posse [1995a, 1995b] uses a random search to locate a plane with an optimal
value of the projection index and combines it with the structure removal of
Friedman [1987] to get a sequence of interesting 2-D projections. Each
projection found in this manner shows a structure that is less important (in
terms of the projection index) than the previous one. Before we describe this
method for PPEDA, we give a summary of the notation that we use to present
the method.

Notation

Z is the matrix of sphered data.

α, β are orthonormal p-dimensional vectors that span the projection
plane.

 is the projection plane spanned by α and β.

 are the sphered observations projected onto the vectors α and β.
 denotes the plane where the index is at a current maximum.

 denotes the chi-square projection index evaluated using
the data projected onto the plane spanned by  and .

 denotes the moment projection index.

c is a scalar that determines the size of the neighborhood around
 that is visited in the search for planes that provide better

values for the projection pursuit index.
v is a vector uniformly distributed on the unit p-dimensional sphere.

half specifies the number of steps without an increase in the projection
index, at which time the value of the neighborhood is halved.

m represents the number of searches or random starts to find the best
plane.

Finding the Structure

How we calculate the projection pursuit indexes  and 
for each candidate plane is discussed at the end of this chapter. So, we first
turn our attention to the second part of PPEDA, where we must optimize the
projection index over all possible projections onto 2-D planes. Posse [1995a]

α β,( )
zi

α zi
β,

α* β*,( )
PIχ2 α β,( )

α β
PIM α β,( )

α* β*,( )

PIχ2 α β,( ) PIM α β,( )
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shows that his random search optimization method performs better than the
steepest-ascent techniques [Friedman and Tukey, 1974] typically used in
optimization problems of this type. 

The Posse algorithm starts by randomly selecting a starting plane, which
becomes the current best plane . The method seeks to improve the
current best solution by considering two candidate solutions within its
neighborhood. These candidate planes are given by 

(4.6)

We start a global search by looking in large neighborhoods of the current
best solution plane . We gradually focus in on a plane that yields a
maximum index value by decreasing the neighborhood after a specified
number of steps with no improvement in the value of the projection pursuit
index. The optimization process is terminated when the neighborhood
becomes small. 

Because this method is a random search, the result could be a locally
optimal solution. So, one typically goes through this procedure several times
for different starting planes, choosing the final configuration as the one
corresponding to the largest value of the projection pursuit index.

A summary of the steps for the exploratory projection pursuit procedure is
given here. The complete search for the best plane involves repeating steps 2
through 9 of the procedure m times, using different random starting planes.
The ‘best’ plane  chosen is the plane where the projected data exhibit
the greatest departure from normality as measured by the projection pursuit
index.

Procedure - PPEDA

1. Sphere the data to obtain Z. See Chapter 1 for details on sphering
data.

2. Generate a random starting plane, . This is the current best
plane, .

3. Evaluate the projection index  or  for the
starting plane.

4. Generate two candidate planes  and  according to
Equation 4.6.

5. Calculate the projection index for these candidate planes.

α* β*,( )
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α* cv1+
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------------------------= b1
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β* a1
Tβ*( )a1–

------------------------------------=
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6. Choose the candidate plane with a higher value of the projection
pursuit index as the current best plane .

7. Repeat steps 4 through 6 while there are improvements in the
projection pursuit index.

8. If the index does not improve for half times, then decrease the value
of c by half. 

9. Repeat steps 4 through 8 until c is some small number. 

Structure Removal

We have no reason to assume that there is only one interesting projection, and
there might be other views that reveal insights about our data. To locate other
views, Friedman [1987] devised a method called structure removal. The
overall procedure is to perform projection pursuit as outlined above, remove
the structure found at that projection, and repeat the projection pursuit
process to find a projection that yields another maximum value of the
projection pursuit index. Proceeding in this manner will provide a sequence
of projections providing informative views of the data. 

Structure removal in two dimensions is an iterative process. The procedure
repeatedly transforms the projected data to standard normal until they stop
becoming more normal as measured by the projection pursuit index. We start
with a p x p matrix , where the first two rows of the matrix are the vectors
of the projection obtained from PPEDA. The rest of the rows of  have ones
on the diagonal and zero elsewhere. For example, if p = 4, then

We use the Gram-Schmidt process [Strang, 1988] to make the rows of 
orthonormal. We denote the orthonormal version as . The next step in the
structure removal process is to transform the Z matrix using the following 

. (4.7)

In Equation 4.7, T is p x n, so each column of the matrix corresponds to a p-
dimensional observation. With this transformation, the first two dimensions
(the first two rows of T) of every transformed observation are the projection
onto the plane given by . 

We now remove the structure that is represented by the first two
dimensions. We let  be a transformation that transforms the first two rows
of T to a standard normal and the rest remain unchanged. This is where we
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actually remove the structure, making the data normal in that projection (the
first two rows). Letting  and  represent the first two rows of T, we define
the transformation as follows

(4.8)

where  is the inverse of the standard normal cumulative distribution
function and  is a function defined below (see Equations 4.9 and 4.10). We
see from Equation 4.8 that we will be changing only the first two rows of T.

We now describe the transformation of Equation 4.8 in more detail,
working only with  and . First, we note that  can be written as

,

and  as

.

Recall that  and  would be coordinates of the j-th observation projected
onto the plane spanned by .

Next, we define a rotation about the origin through the angle  as follows

(4.9)

where  and  represents the j-th element of 
at the t-th i teration of the process.  We now apply the following
transformation to the rotated points,

, (4.10)

where  represents the rank (position in the ordered list) of . 
This transformation replaces each rotated observation by its normal score

in the projection. With this procedure, we are deflating the projection index
by making the data more normal. It is evident in the procedure given below,
that this is an iterative process. Friedman [1987] states that during the first
few iterations, the projection index should decrease rapidly. After

T1 T2

Θ T1( ) Φ 1– F T1( )[ ]=

Θ T2( ) Φ 1– F T2( )[ ]=

Θ Ti( ) T i= ; i 3  … p  ,, ,=

Φ 1–

F

T1 T2 T1

T1 z1
α*

 … zj
α*

 … zn
α*

, , , ,( )=

T2

T2 z1
β*

 … zj
β*

 … zn
β*

, , , ,( )=

zj
α*

zj
β*

α* β*,( )
γ

z̃j
1 t( ) zj

1 t( ) γcos zj
2 t( ) γsin+=

z̃j
2 t( ) zj

2 t( ) γcos zj
1 t( ) γ ,sin–=

γ 0 π 4÷ π 8÷ 3π 8÷, , ,= zj
1 t( ) T1

zj
1 t 1+( ) Φ 1– r z̃j

1 t( )( ) 0.5–
n

------------------------------
 
 
 

= zj
2 t 1+( ) Φ 1– r z̃j

2 t( )( ) 0.5–
n

------------------------------
 
 
 

=

r z̃j
1 t( )( ) z̃j

1 t( )

EDA.book  Page 117  Monday, October 18, 2004  8:32 AM



118 Exploratory Data Analysis with MATLAB

approximate normality is obtained, the index might oscillate with small
changes. Usually, the process takes between 5 to 15 complete iterations to
remove the structure.

Once the structure is removed using this process, we must transform the
data back using 

. (4.11)

From matrix theory [Strang, 1988], we know that all directions orthogonal to
the structure (i.e., all rows of T other than the first two) have not been
changed, whereas the structure has been Gaussianized and then transformed
back.

Procedure - Structure Removal

1. Create the orthonormal matrix U, where the first two rows of U
contain the vectors .

2. Transform the data Z using Equation 4.7 to get T.
3. Using only the first two rows of T, rotate the observations using

Equation 4.9.

4. Normalize each rotated point according to Equation 4.10.
5. For angles of rotation , repeat steps 3

through 4.

6. Evaluate the projection index using  and , after going
through an entire cycle of rotation (Equation 4.9) and normalization
(Equation 4.10).

7. Repeat steps 3 through 6 until the projection pursuit index stops
changing.

8. Transform the data back using Equation 4.11.

Example 4.4
We use the oronsay data to illustrate the projection pursuit procedure,
which is implemented in the ppeda function provided with this text. First we
do some preliminaries, such as loading the data and setting the parameter
values.

load oronsay
X = oronsay;
[n,p] = size(X);
% For m = 5 random starts, find the N = 2  
% best projection planes.
N = 2;
m = 5;

Z ′ UTΘ UZT( )=

α* β*,

γ 0 π 4÷ π 8÷ 3π 8÷, , ,=

zj
1 t 1+( ) zj

2 t 1+( )
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% Set values for other constants.
c = tan(80*pi/180);
half = 30;
% These will store the results for the 
% 2 structures.
astar = zeros(p,N);   
bstar = zeros(p,N);
ppmax = zeros(1,N);

Next we sphere the data to obtain matrix Z.

% Sphere the data.
muhat = mean(X);
[V,D] = eig(cov(X));
Xc = X - ones(n,1)*muhat;
Z = ((D)^(-1/2)*V'*Xc')';

Now we find each of the desired number of structures using the ppeda
function with the index argument set to the Posse chi-square index. 

% Now do the PPEDA: Find a structure, remove it,
% and look for another one.
Zt = Z;
for i = 1:N
    % Find one structure
    [astar(:,i),bstar(:,i),ppmax(i)] = ...
        ppeda(Zt,c,half,m,'chi');
    % Now remove the structure.
    % Function comes with text.
    Zt = csppstrtrem(Zt,astar(:,i),bstar(:,i));
end

The following MATLAB code shows how to project the data to each of these
projection planes and then plot them. The plots are shown in Figure 4.4. The
first projection has an index of 9.97, and the second has an index of 5.54. 

% Now project and see the structure.
proj1 = [astar(:,1), bstar(:,1)];
proj2 = [astar(:,2), bstar(:,2)];
Zp1 = Z*proj1;
Zp2 = Z*proj2;
figure
plot(Zp1(:,1),Zp1(:,2),'k.'),title('Structure 1')
xlabel('\alpha*'),ylabel('\beta*')
figure
plot(Zp2(:,1),Zp2(:,2),'k.'),title('Structure 2')
xlabel('\alpha*'),ylabel('\beta*')

EDA.book  Page 119  Monday, October 18, 2004  8:32 AM



120 Exploratory Data Analysis with MATLAB

We repeat this for loop, but this time use the moment index to the ppeda
function by replacing chi with mom. The first projection from this procedure
has a moment index of 425.71, and the second one yields an index of 424.51.
Scatterplots of the projected data onto these two planes are given in Figure
4.5. We see from these plots that the moment index tends to locate projections
with outliers.
❑  

4.4 Projection Pursuit Indexes

We briefly describe the two projection pursuit indexes (PPIs) that are
implemented in the accompanying MATLAB code. Other projection indexes
for PPEDA are given in the literature (see some of the articles mentioned in
the last section). A summary of these indexes, along with a simulation
analysis of their performance, can be found in Posse [1995b].

4.4.1 Posse Chi-Square Index

Posse [1995a, 1995b] developed an index for projection pursuit that is based
on the chi-square. We present only the empirical version here, but we first
provide some notation.

Notation

 is the standard bivariate normal density.

 is the probability evaluated over the k-th region using the standard
bivariate normal,

.

 is a box in the projection plane.
 is the indicator function for region .

 λ j = πj/36,  is the angle by which the data are rotated
in the plane before being assigned to regions .

 and  are given by

φ2

ck

ck φ2 zd 1 z2d
Bk

∫∫=

Bk

IBk
Bk

j 0  …  8, ,=
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α λ j( ) β λ j( )
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FIGURE 4.4

Here we show the results from applying PPEDA to the oronsay data set. The top configu-
ration has a chi-square index of 9.97, and the second one has a chi-square index of 5.54.
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FIGURE 4.5

Here we see scatterplots from two planes found using the moment projection pursuit index.
This index tends to locate projections with outliers. In the first structure, there is an outlying
point in the upper right corner. In the second one, there is an outlying point in the lower left
corner.
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The plane is first divided into 48 regions or boxes  that are distributed in
rings. See Figure 4.6 for an illustration of how the plane is partitioned. All
regions have the same angular width of 45 degrees and the inner regions
have the same radial width of . This choice for the radial width
provides regions with approximately the same probability for the standard
bivariate normal distribution. The regions in the outer ring have probability
1/48. The regions are constructed in this way to account for the radial
symmetry of the bivariate normal distribution. The projection index is given
by

.

The chi-square projection index is not affected by the presence of outliers.
It is sensitive to distributions that have a hole in the core, and it will also yield
projections that contain clusters. The chi-square projection pursuit index is
fast and easy to compute, making it appropriate for large sample sizes. Posse
[1995a] provides a formula to approximate the percentiles of the chi-square
index so the analyst can assess the significance of the observed value of the
projection index. 

FIGURE 4.6

This shows the layout of the regions  for the chi-square projection index. [Posse, 1995a]
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4.4.2 Moment Index

This index was developed in Jones and Sibson [1987] and is based on
bivariate third and fourth moments. This is very fast to compute, so it is
useful for large data sets. However, a problem with this index is that it tends
to locate structure in the tails of the distribution. It is given by

,

where

PIM α β,( ) 1
12
------ κ30

2 3κ21
2 3κ12

2 κ03
2 1

4
--- κ40

2 4κ31
2 6κ22

2 4κ13
2 κ04

2+ + + +( )+ + + +
 
 
 

=

κ21
n

n 1–( ) n 2–( )
---------------------------------- zi

α( )
2
zi

β

i 1=

n

∑= κ12
n

n 1–( ) n 2–( )
---------------------------------- zi

β( )
2
zi

α

i 1=

n

∑=

κ22
n n 1+( )

n 1–( ) n 2–( ) n 3–( )
---------------------------------------------------- zi

α( )2
zi

β( )2 n 1–( )3

n n 1+( )
---------------------–

i 1=

n

∑
 
 
 
 
 

=

κ30
n

n 1–( ) n 2–( )
---------------------------------- zi

α( )3

i 1=

n

∑= κ03
n

n 1–( ) n 2–( )
---------------------------------- zi

β( )3

i 1=

n

∑=

κ31
n n 1+( )

n 1–( ) n 2–( ) n 3–( )
---------------------------------------------------- zi

α( )
3
zi

β

i 1=

n

∑=

κ13
n n 1+( )

n 1–( ) n 2–( ) n 3–( )
---------------------------------------------------- zi

β( )3
zi

α

i 1=

n

∑=

κ04
n n 1+( )

n 1–( ) n 2–( ) n 3–( )
---------------------------------------------------- zi

β( )4 3 n 1–( )3

n n 1+( )
----------------------–

i 1=

n

∑
 
 
 
 
 

=

κ40
n n 1+( )

n 1–( ) n 2–( ) n 3–( )
---------------------------------------------------- zi

α( )
4 3 n 1–( )3

n n 1+( )
----------------------–

i 1=

n

∑
 
 
 
 
 

=

EDA.book  Page 124  Monday, October 18, 2004  8:32 AM



Data Tours 125

4.5 Summary and Further Reading

In this chapter, we discussed several methods for data tours that can be used
to search for interesting features or structure in high-dimensional data. These
include the torus winding method for the grand tour, the pseudo grand tour,
the interpolation tour, and projection pursuit for EDA. The grand tour
methods are dynamic, but are not typically interactive. The interpolation tour
is interactive in the sense that the user can specify starting and target planes
to guide the tour. Finally, projection pursuit is not a visual tour (although it
could be implemented that way); this tour seeks planes that have maximal
structure as defined by some measure. 

Some excellent papers that describe the underlying mathematical
foundation for tour methods and motion graphics include Wegman and
Solka [2002], Hurley and Buja [1990], Buja and Asimov [1986], and Asimov
and Buja [1994]. A new method for implementing a tour based on a fractal
space-filling curve is described in Wegman and Solka [2002]. The grand tour
combined with projection pursuit is described in Cook, et al. [1995].

Many articles have been written on projection pursuit and its use in EDA
and other applications. Jones and Sibson [1987] describe a steepest-ascent
algorithm that starts from either principal components or random starts.
Friedman [1987] combines steepest-ascent with a stepping search to look for
a region of interest. Crawford [1991] uses genetic algorithms to optimize the
projection index. An approach for projection pursuit in three dimensions is
developed by Nason [1995]. A description of other projection pursuit indexes
can also be found in Cook, Buja and Cabrera [1993]. 

Other uses for projection pursuit have been proposed. These include
projection pursuit probability density estimation [Friedman, Stuetzle and
Schroeder, 1984], projection pursuit regression [Friedman and Stuetzle, 1981],
robust estimation [Li and Chen, 1985], and projection pursuit for pattern
recognition [Flick, et al., 1990]. For a theoretical and comprehensive
description of projection pursuit, the reader is directed to Huber [1985],
where he discusses the important matter of sphering the data before
exploring the data with projection pursuit. This invited paper with
discussion also presents applications of projection pursuit to computer
tomography and to the deconvolution of time series. Another paper that
provides applications of projection pursuit is Jones and Sibson [1987].
Montanari and Lizzani [2001] apply projection pursuit to the variable
selection problem. Bolton and Krzanowski [1999] describe the connection
between projection pursuit and principal component analysis.

EDA.book  Page 125  Monday, October 18, 2004  8:32 AM



126 Exploratory Data Analysis with MATLAB

Exercises

4.1 Run the tour as in Example 4.1 and vary the number of iterations. Do
you see any interesting structure along the way?

4.2 Apply the torus grand tour to the following data sets and comment on
the results.
a. environmental

b. oronsay
c. iris

d. posse data sets
e. skulls

f. spam
g. pollen

h. gene expression data sets.
4.3 Run the pseudo grand tour in Example 4.2. Comment on the struc-

tures that are found.
4.4 Apply the pseudo grand tour to the following data sets and comment

on the results. Compare with the results you got with the grand tour.
a. environmental

b. yeast
c. iris

d. posse data sets
e. skulls

f. spam
g. pollen

h. gene expression data sets
4.5 Apply the interpolation tour to the data sets in problem 4.4.
4.6 Repeat the interpolation tour in Example 4.3 using other target planes

(Hint: 9 and 10 makes an interesting one). Do you see any structure?
4.7 Apply projection pursuit EDA to the data sets in problem 4.4. Search

for several structures and use both projection pursuit indexes. Show
your results in a scatterplot and discuss them.

4.8 Repeat Example 4.4 and look for more than two best projection planes.
Describe your results. Do you find planes using the moment index
where the planes exhibit structure other than outliers?
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Chapter 5
Finding Clusters

We now turn our attention to the problem of finding groups or clusters in our
data, which is an important method in EDA and data mining. We present two
of the basic methods in this chapter: agglomerative clustering and k-means
clustering. Another method for fuzzy clustering based on estimating a finite
mixture probability density function is described in the following chapter.
Most cluster methods allow users to specify a desired number of groups. We
address the problem of assessing the quality of resulting clusters at the end
of the chapter, where we describe several statistics and plots that will aid in
the analysis, as well as in Chapter 8, where we provide some ways to
graphically assess cluster output.

5.1 Introduction

Clustering is the process of organizing a set of data into groups in such a way
that observations within a group are more similar to each other than they are
to observations belonging to a different cluster. It is assumed that the data
represent features that would allow one to distinguish one group from
another. An important starting point in the process is choosing a way to
represent the objects to be clustered. Many methods for grouping or
clustering data can be found in various communities, such as statistics,
machine learning, data mining, and computer science. We note, though, that
no clustering technique is universally appropriate for finding all varieties of
groupings that can be represented by multidimensional data [Jain, Murty
and Flynn, 1999]. So in the spirit of EDA, the user should try different
clustering methods on a given data set to see what patterns emerge.

Clustering is also known as unsupervised learning in the literature. To
understand clustering a little better, we will compare it to discriminant
analysis or supervised learning. In supervised learning, the collection of
observations has a class label associated with it. Thus, we know the true
number of groups in the data, as well as the actual group membership of each
data point. We use the data, along with the class labels, to create a classifier.
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Then when we encounter a new, unlabeled observation, we can use the
classifier to attach a label to it [Duda, Hart and Stork, 2001; Webb, 1999]. 

However, with clustering, we usually do not have class labels for the
observations. Thus, we do not know how many groups are represented by
the data, what the group membership or structure is, or even if there are any
groups in the first place. As we said earlier, most clustering methods will find
some desired number of groups, but what we really want is some meaningful
clusters that represent the true phenomena. So, the analyst must look at the
resulting groups and determine whether or not they aid in understanding the
problem. Of course, nothing prevents us from using clustering methods on
data that have class labels associated with the observations. As we will see in
some of the examples, knowing the true clustering helps us assess the
performance of the methods.

One can group the usual steps of clustering into the following [Jain and
Dubes, 1988]:

1. Pattern representation: This includes much of the preparation and
initial work, such as choosing the number of clusters to look for,
picking what measurements to use (feature selection), determining
how many observations to process, and choosing the scaling or
other transformations of the data (feature extraction). Some of this
might be beyond the control of analysts.

2. Pattern proximity measure: Many clustering methods require a
measure of distance or proximity between observations and maybe
between clusters. As one might suspect, different distances give
rise to different partitions of the data. We discuss various distances
and measures of proximity in Appendix A. 

3. Grouping: This is the process of partitioning the data into clusters.
The grouping can be hard, which means that an observation either
belongs to a group or not. In contrast, it can be fuzzy, where each
data point has a degree of membership in each of the clusters. It
can also be hierarchical, where we have a nested sequence of
partitions.

4. Data abstraction: This is the optional process of obtaining a simple
and compact representation of the partitions. It could be a descrip-
tion of each cluster in words (e.g., one cluster represents lung
cancer, while another one corresponds to breast cancer). It might
be something quantitative such as a representative pattern, e.g., the
centroid of the cluster.

5. Cluster Assessment: This could involve an assessment of the data
to see if it contains any clusters. However, more often, it means an
examination of the output of the algorithm to determine whether
or not the clusters are meaningful.
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In our discussion so far, we’ve assumed that we know what a cluster
actually is. However, several authors have pointed out the difficulty of
formally defining such a term [Everitt, Landau and Leese, 2001; Estivill-
Castro, 2002]. Most clustering methods assume some sort of structure or
model for the clusters (e.g., spherical, elliptical). Thus, they find clusters of
that type, regardless of whether they are really present in the data or not. 

Humans are quite adept at locating clusters in 2-D scatterplots, as we show
in Figure 5.1. Bonner [1964] argued that the meaning of terms like cluster and
group is in the ‘eye of the beholder.’ We caution the reader that it is usually
easy to assign some structure or meaning to the clusters that are found.
However, we should keep in mind that the groups might be a result of the
clustering method and that we could be imposing a pattern rather than
discovering something that is actually there. 

5.2 Hierarchical Methods

One of the most common approaches to clustering is to use a hierarchical
method. This seems to be popular in the areas of data mining and gene
expression analysis [Hand, Mannila and Smyth, 2001; Hastie, Tibshirani and
Friedman, 2001]. In hierarchical clustering, one does not have to know the
number of groups ahead of time; i.e., the data are not divided into a pre-

FIGURE 5.1

Here we show an example of some clusters. Keep in mind that what constitutes a cluster is
based on one’s definition and application.
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determined number of partitions. Rather, the result consists of a hierarchy or
set of nested partitions. As we point out below, there are several types of
hierarchical clustering, and each one can give very different results on a given
data set. Thus, there is not one recommended method, and the analyst should
use several in exploring the data.

The process consists of a sequence of steps, where two groups are either
merged (agglomerative) or divided (divisive) according to some optimality
criterion. In their simplest and most commonly used form, each of these
hierarchical methods have all n observations in their own group (i.e., n total
groups) at one end of the process and one group with all n data points at the
other end. The difference between them is where we start.  With
agglomerative clustering, we have n singleton clusters and end up with all
points belonging to one group. Divisive methods are just the opposite; we
start with everything in one group and keep splitting them until we have n
clusters. 

One of the issues with hierarchical clustering is that once points are
grouped together or split apart, the step cannot be undone. Another issue, of
course, is how many clusters are appropriate. 

We will not cover the divisive methods in this book, because they are less
common and they can be computationally intensive (except in the case of
binary variables, see Everitt, Landau and Leese [2001]). However, Kaufman
and Rousseeuw [1990] point out that an advantage with divisive methods is
that most data sets have a small number of clusters and that structure would
be revealed in the beginning of a divisive method, whereas, with
agglomerative methods, this does not happen until the end of the process.

Agglomerative clustering requires the analyst to make several choices,
such as how to measure the proximity (distance) between data points and
how to define the distance between two clusters. Determining what distance
to use is largely driven by the type of data one has: continuous, categorical or
a mixture of the two, as well as what aspect of the features one wants to
emphasize. Please see Appendix A for a description of various distances,
including those that are implemented in the MATLAB Statistics Toolbox. 

The input required for most agglomerative clustering methods is the nxn
interpoint distance matrix (as was used before in multidimensional scaling);
some also require the full data set. The next step is to specify how we will
determine what clusters to link at each stage of the method. The usual way is
to link the two closest clusters at each stage of the process, where closest is
defined by one of the linkage methods described below. It should be noted
that using different definitions of distance and linkage can give rise to very
different cluster structures. We now describe each of the linkage methods that
are available in the MATLAB Statistics Toolbox. 

We set up some notation before we continue with a description of the
various approaches. Given a cluster r and a cluster s, the number of objects in
each cluster is given by nr and ns. The distance between cluster r and s is
denoted by dc(r,s).
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Single Linkage

Single linkage is perhaps the method used most often in agglomerative
clustering, and it is the default method in the MATLAB linkage function,
which produces the hierarchical clustering. Single linkage is also called
nearest neighbor, because the distance between two clusters is given by the
smallest distance between objects, where each one is taken from one of the
two groups. Thus, we have the following distance between clusters

,

where  is the distance between observation i from group r and
observation j from group s. Recall that this is the interpoint distance (e.g.,
Euclidean, etc.), which is the input to the clustering procedure.

Single linkage clustering suffers from a problem called chaining. This
comes about when clusters are not well separated, and snake-like chains can
form. Observations at opposite ends of the chain can be very dissimilar, but
yet they end up in the same cluster. Another issue with single linkage is that
it does not take the cluster structure into account [Everitt, Landau and Leese,
2001]. 

Complete Linkage 

Complete linkage is also called the furthest neighbor method, since it uses the
largest distance between observations, one in each group, as the distance
between the clusters. The distance between clusters is given by

 .

Complete linkage is not susceptible to chaining, but it does tend to impose
a spherical structure on the clusters. In other words, the resulting clusters
tend to be spherical, and it has difficulty recovering nonspherical groups.
Like single linkage, complete linkage does not account for cluster structure.

Average (Unweighted and Weighted) Linkage

The average linkage method defines the distance between clusters as the
average distance from all observations in one cluster to all points in another
cluster. In other words, it is the average distance between pairs of
observations, where one is from one cluster and one is from the other. Thus,
we have the following distance

.

dc r s,( ) min d xri xsj,( ){ }= i 1  …  nr ; j, , 1  …  ns, ,= =

d xri xsj,( )

dc r s,( ) max d xri xsj,( ){ }= i 1  … nr ; j, , 1  … ns, ,= =

dc r s,( ) 1
nrns

---------- d xri xsj,( )
j 1=

ns

∑
i 1=

nr

∑=
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This method tends to combine clusters that have small variances, and it
also tends to produce clusters with approximately equal variance. It is
relatively robust and does take the cluster structure into account. Like single
and complete linkage, this method takes the interpoint distances as input.

Version 5 of the Statistics Toolbox has another related type of linkage called
weighted average distance or WPGMA. The average linkage mentioned
above is unweighted and is also known as UPGMA.

Centroid Linkage

Another type, called centroid linkage, requires the raw data, as well as the
distances. It measures the distance between clusters as the distance between
their centroids. Their centroids are usually the mean, and these change with
each cluster merge. We can write the distance between clusters, as follows

,

where  is the average of the observations in the r-th cluster, and  is
defined similarly. 

The distance between the centroids is usually taken to be Euclidean. The
MATLAB linkage function for centroid linkage works only when the
interpoint distances are Euclidean, and it does not require the raw data as
input. A somewhat related method called median linkage computes the
distance between clusters using weighted centroids. This is now available in
the Statistics Toolbox, version 5. A problem with both centroid and median
linkage is the possibility of reversals [Morgan and Ray, 1995]. This can
happen when the distance between one pair of cluster centroids is less than
the distance between the centroid of another pair that was merged earlier. In
other words, the fusion values (distances between clusters) are not
monotonically increasing. This makes the results confusing and difficult to
interpret. 

Ward’s Method

Ward [1963] devised a method for agglomerative hierarchical clustering
where the fusion of two clusters is determined by the size of the incremental
sum of squares. It looks at the increase in the total within-group sum of
squares when clusters r and s are joined. The distance between two clusters
using Ward’s method is given by

,

where  is the distance between the r-th and s-th cluster as defined in the
centroid linkage definition. In other words, to get each merge in the
procedure, the within-cluster sum of squares is minimized over all possible

dc r s,( ) d xr  xs,( )=

xr  xs

d r s,( ) nrnsdrs
2 nr ns+( )⁄=

drs
2
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partitions that can be obtained by combining two clusters from the current
partition.

Ward’s method tends to combine clusters that have a small number of
observations. It also has a tendency to locate clusters that are of the same size
and spherical. Due to the sum of squares criterion, it is sensitive to the
presence of outliers in the data set.

Visualizing Hierarchical Clustering Using the Dendrogram 

We discuss the dendrogram in more detail in Chapter 8, where we present
several ways to visualize the output from cluster analysis. We briefly
introduce it here, so we can use the dendrograms to present the results of this
chapter to the reader.

A dendrogram is a tree diagram that shows the nested structure of the
partitions and how the various groups are linked at each stage. The
dendrogram can be shown horizontally or vertically, however we will
concentrate on the vertical version for right now, since it seems more ‘tree-
like.’ There is a numerical value associated with each stage of the method
where the branches (i.e., clusters) join, which usually represents the distance
between the two clusters. The scale for this numerical value is shown on the
vertical axis. 

FIGURE 5.2

This is an example of a dendrogram for the two spherical clusters in Figure 5.1, where
average linkage has been used to generate the hierarchy. Note that we are showing only 20
leaf nodes. See Chapter 8 for more information on what this means.
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We show an example of a dendrogram in Figure 5.2 for a very small data
set. Notice that the tree is made up of inverted U-shaped links, where the top
of the U represents a fusion between two clusters. In most cases, the fusion
levels will be monotonically increasing, yielding an easy to understand
dendrogram.

We already discussed the problem of reversals with the centroid and
median linkage methods. With reversals, these merge points can decrease,
which can make the results confusing. Another problem with some of these
methods is the possibility of nonuniqueness of the hierarchical clustering or
dendrogram. This can happen when there are ties in the distances between
clusters. How these are handled depends on the software, and this
information is often left out of the documentation. Morgan and Ray [1995]
provide a detailed explanation of the inversion and nonuniqueness problems
in hierarchical clustering. This will be explored further in the exercises.

Example 5.1
In this example, we use the yeast data to illustrate the procedure in
MATLAB for obtaining agglomerative hierarchical clustering. The first step
is to load the data and then to get all of the interpoint distances. 

load yeast
% Get the distances. The output from this function 
% is a vector of the n(n-1)/2 interpoint distances.
% The default is Euclidean distance.
Y = pdist(data);

The output from the pdist function is just the upper triangular portion of
the complete n x n interpoint distance matrix. It can be converted to a full
matrix using the function squareform, but this is not necessary for the next
step, which is to get the hierarchy of partitions. See the help on pdist for
more information on the other distances that are available.

% Single linkage (the default) shows chaining.
Z = linkage(Y);
dendrogram(Z);

The default for the linkage function is single linkage. The output is a matrix
Z, where the first two columns indicate what groups were linked and the
third column contains the corresponding distance or fusion level. The
dendrogram for this is shown in Figure 5.3 (top), where we can see the
chaining that can happen with single linkage. Now we show how to do the
same thing using complete linkage.

% Complete linkage does not have the chaining.
Z = linkage(Y,'complete');
dendrogram(Z);
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This dendrogram is given in Figure 5.3 (bottom), and we see no chaining
here. Since the dendrogram shows the entire set of nested partitions, one
could say the dendrogram is the actual clustering. However, it is useful to
know how to get the grouping for any desired number of groups. MATLAB
provides the cluster function for this purpose. One can specify the number
of clusters, as we do below, however there are other options. See the help on
cluster for other uses.

% To get the actual clusters - say based
% on two partitions, use the following
% syntax.
cind = cluster(Z,'maxclust',2);

The output argument cind is an n-dimensional vector of group labels.
❑ 

5.3 Optimization Methods - k-Means

The methods discussed in the previous section were all hierarchical, where
the output consists of a complete set of nested partitions. Another category
of clustering methods consists of techniques that optimize some criterion in
order to partition the observations into a specified or predetermined number of
groups. These partition or optimization methods differ in the nature of the
objective function, as well as the optimization algorithm used to come up
with the final clustering. One of the issues that must be addressed when
employing these methods (as is also the case with the hierarchical methods)
is determining the number of clusters in the data set. We will discuss ways to
tackle this problem in the next section. However, one of the major advantages
of the optimization-based methods is that they require only the data as input
(along with some other parameters), not the interpoint distances, as in
hierarchical methods. Thus, these are usually more suitable when working
with large data sets.

One of the most commonly used optimization-based methods is k-means
clustering, which is the only one we will discuss in this book. The reader is
referred to Everitt, Landau and Leese [2001] or other books mentioned at the
end of the chapter for more information on the other types of partition
methods. The MATLAB Statistics Toolbox has a function that implements the
k-means algorithm.

The goal of k-means clustering is to partition the data into k groups such
that the within-group sum-of-squares is minimized. We start by defining the
within-class scatter matrix given by
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FIGURE 5.3

The first dendrogram shows the results of using Euclidean distance and single linkage on
the yeast data, and we can see what chaining looks like in the partitions. The second
dendrogram is what we obtain using complete linkage.
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,

where Iij is one if xi belongs to group j and zero otherwise, and g is the number
of groups. The criterion that is minimized in k-means is given by the sum of
the diagonal elements of SW, i.e., the trace of the matrix, as follows

.

If we minimize the trace, then we are also minimizing the total within-group
sum of squares about the group means. Everitt, Landau and Leese [2001]
show that minimizing the trace of SW is equivalent to minimizing the sum of
the squared Euclidean distances between individuals and their group mean.
Clustering methods that minimize this criterion tend to produce clusters that
have a hyperellipsoidal shape. This criterion can be affected by the scale of
the variables, so standardization should be done first.

We briefly describe two procedures for obtaining clusters via k-means. The
basic algorithm for k-means clustering is a two step procedure. First, we
assign each observation to its closest group, usually using the Euclidean
distance between the observation and the cluster centroid. The second step of
the procedure is to calculate the new centroids using the assigned
observations. These steps are alternated until there are no changes in cluster
membership or until the centroids do not change. This algorithm is
sometimes referred to as HMEANS [Späth, 1980] or the basic ISODATA
method.

Procedure - k-Means

1. Specify the number of clusters k.
2. Determine initial cluster centroids. These can be randomly chosen

or the user can specify them. 

3. Calculate the distance between each observation and each cluster
centroid.

4. Assign every observation to the closest cluster.

5. Calculate the centroid (i.e., the d-dimensional mean) of every cluster
using the observations that were just grouped there.

6. Repeat steps 3 through 5 until no more changes are made.

The k-means algorithm could lead to empty clusters, so users should be
aware of this possibility. Another issue concerns the optimality of the
partitions. With k-means, we are searching for partitions where the within-
group sum-of-squares is a minimum. It can be shown [Webb, 1999] that in

SW
1
n
--- Iij xi x j–( ) xi x j–( )T

i 1=

n

∑
j 1=

g

∑=

Tr SW( ) SWii∑=
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some cases the final k-means cluster assignment is not optimal, in the sense
that moving a single point from one cluster to another may reduce the sum
of squared errors. The following procedure that we call the enhanced k-
means helps address the second problem.

Procedure - Enhanced k-means

1. Obtain a partition of k groups via k-means as described previously.
2. Take each data point  and calculate the Euclidean distance be-

tween it and every cluster centroid.

3. Here  is in the r-th cluster,  is the number of points in the r-th
cluster, and  is the Euclidean distance between  and the
centroid of cluster r. If there is a group s such that 

,

then move  to cluster s.
4. If there are several clusters that satisfy the above inequality, then

move the  to the group that has the smallest value for

.

5. Repeat steps 2 through 4 until no more changes are made.

We note that there are many algorithms for k-means clustering described in
the literature that improve the efficiency, allow clusters to be created and
deleted during the process, and other improvements. See Webb [1999] and
the other references at the end of the chapter for more information. 

Example 5.2
For this example, we turn to a data set that is familiar to most statisticians: the
iris data. These data consist of three classes of iris: Iris setosa, Iris versicolor, and
Iris virginica. They were originally analyzed by Fisher [1936], because he was
interested in developing a method for discriminating the species of iris based
on their sepal length, sepal width, petal length, and petal width. The kmeans
function in MATLAB requires the data as input, along with the desired
number of groups. MATLAB also allows the user to specify a distance
measure used in the minimization process. In other words, kmeans
computes the centroid clusters differently for the different distance measures.
We will use the default of squared Euclidean distance.

load iris

xi

x i nr

dir
2 x i

nr

nr 1–
--------------dir

2 ns

ns 1+
--------------dis

2>

x i

xi

ns

ns 1+
--------------dis

2
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% First load up the data and put into one data
% matrix.
data = [setosa; versicolor; virginica];
vars = ['Sepal Length';
        'Sepal Width ';
        'Petal Length';
        'Petal Width '];
 kmus = kmeans(data,3);

We illustrate the results in a scatterplot matrix shown in Figure 5.4.1 The first
plot shows the results from k-means, and the second shows the true groups
that are in the data. Different symbols correspond to the different groups, and
we see that k-means produced reasonable clusters that are not too far off from
the truth. We will explore this more in a later example. 
❑ 

The k-means method is dependent on the chosen initial cluster centers.
MATLAB allows the user to specify different starting options, such as
randomly selecting k data points as centers (the default), uniformly
generated p-dimensional vectors over the range of X, or user-defined centers.
As in many optimization problems that rely on a designated starting point, k-
means can get stuck in a locally optimal solution. Thus, k-means should be
performed several times with different starting points. MATLAB provides
this option also as an input argument to the kmeans function. For another
implementation of k-means in MATLAB, see Martinez and Martinez [2002].

5.4 Evaluating the Clusters

In this section, we turn our attention to understanding more about the quality
of our cluster results and to estimating the ‘correct’ number of groups in our
data. We present the following measures that can be used to address both of
these issues. The first is the Rand index that can be used to compare two
different groupings of the same data set. Next, we discuss the cophenetic
correlation coefficient that provides a way to compare a set of nested
partitions from hierarchical clustering with a distance matrix or with another
set of nested partitions. We also cover a method due to Mojena [1977] for
determining the number of groups in hierarchical clustering based on the
fusion levels. We illustrate the silhouette plot and silhouette statistic that can
be used to help decide how many groups are present. Finally, we discuss a
recently developed method called the gap statistic [Tibshirani, Walther and
Hastie, 2001] that seems to be successful at estimating the number of clusters.

1 See the file Example54.m for the MATLAB code used to construct the plots.
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FIGURE 5.4

The first scatterplot matrix shows the results from k-means, while the second one shows the
true groups in the data. We see that for the most part, k-means did a reasonable job finding
the groups. See the associated color figure following page 144.
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An added benefit of the gap statistic approach is that it addresses the issue of
whether or not there are any clusters at all. 

5.4.1 Rand Index

Say we have two partitions of the same data set called G1 and G2, with g1

groups and g2 groups, respectively. This can be represented in a g1 x g2

matching matrix N with elements nij, where nij is the number of observations
in group i of partition G1 that are also in group j of partition G2. Note that the
number of groups in each partition do not have to be equal, and that the
classifications can be obtained through any method. 

The Rand index [Rand, 1971] was developed to help analysts answer four
questions about their cluster results. These are: 

How well does a method retrieve natural clusters? 
How sensitive is a method to perturbation of the data? 

How sensitive is a method to missing data?
Given two methods, do they produce different results when applied

to the same data? 

In this book, we are more interested in the last question. 
The motivation for the Rand index follows three assumptions. First,

clustering is considered to be discrete in that every point is assigned to a
specific cluster. Second, it is important to define clusters with respect to the
observations they do not contain, as well as by the points that they do contain.
Finally, all data points are equally important in determining the cluster
structure.

Since the cluster labels are arbitrary, the Rand index looks at pairs of points
and how they are partitioned in groupings G1 and G2. There are two ways that
data points xi and xj can be grouped similarly (i.e., the groupings agree):

1. xi and xj are put in the same cluster in G1 and G2.

2. xi and xj are in different clusters in G1 and in different clusters in G2.

There are also two ways that xi and xj can be grouped differently:

3. xi and xj are in the same cluster in G1 and different clusters in G2.
4. xi and xj are in different clusters in G1 and the same cluster in G2.

The Rand index calculates the proportion of the total of n choose 2 objects
that agree between the two groupings. It is given by the following
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.

The Rand index is a measure of similarity between the groupings, and it
ranges from zero when the two groupings are not similar to a value of one
when the groupings are exactly the same. 

Fowlkes and Mallows [1983] developed their own index for the case g1 = g2,
which will be presented in the exercises. They point out in that paper that the
Rand index increases as the number of clusters increase, and the possible
range of values is very narrow. Hubert and Arabie [1985] developed an
adjusted Rand index that addresses these issues. This is given by RIA = N/D,
where

,

,

and

 .

The binomial coefficient  is defined as 0 when m = 0 or m = 1. The adjusted
Rand index provides a standardized measure such that its expected value is
zero when the partitions are selected at random and one when the partitions
match completely.

Example 5.3
We return to the iris data of the previous example to illustrate the Rand
index, by comparing the k-means results with the true class labels. First we
get some of the needed information to construct the matching matrix.

% Get some of the preliminary information.
% You can load the data using: load example52
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ukmus = unique(kmus); ulabs = unique(labs);
n1 = length(ukmus); n2 = length(ulabs);
n = length(kmus);

Now we find the matrix N, noting that it is not necessarily square (the
number of partitions do not have to be equal), and it is usually not symmetric.

% Now find the matching matrix N
N = zeros(n1,n2);
I = 0; 
for i = ukmus(:)'
    I = I + 1;
    J = 0;
    for j = ulabs(:)'
        J = J + 1;
        indI = find(kmus == i);
        indJ = find(labs == j);
        N(I,J) = length(intersect(indI,indJ));
    end
end
nc2 = nchoosek(n,2);
nidot = sum(N);
njdot = sum(N');
ntot = sum(sum(N.^2));
num = nc2+ntot-0.5*sum(nidot.^2)-0.5*sum(njdot.^2);
ri = num/nc2;

The resulting Rand index has a value of 0.8797, which indicates good
agreement between the classifications. We provide a function called
randind that implements this code for any two partitions P1 and P2. We
also implement the adjusted Rand index in the function adjrand. It is used
in the following manner.

% Now use the adjusted Rand index function.
ari = adjrand(kmus,labs);

This yields 0.7302, indicating an agreement above what is expected by chance
alone.
❑

5.4.2 Cophenetic Correlation

In some applications, we might be interested in comparing the output from
two hierarchical partitions. We can use the cophenetic correlation coefficient
for this purpose. Perhaps the most common use of this measure is in
comparing hierarchical clustering results with the proximity data (e.g.,
interpoint distances) that were used to obtain the partitions. For example, as
discussed before, the various hierarchical methods impose a certain structure
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on the data, and we might want to know if this is distorting the original
relationships between the points as specified by their proximities.

We start with the cophenetic matrix, H. The ij-th element of H contains the
fusion value where object i and j were first clustered together. We only need
the upper triangular entries of this matrix (i.e., those elements above the
diagonal). Say we want to compare this partition to the interpoint distances.
Then, the cophenetic correlation is given by the product moment correlation
between the values (upper triangular only) in H and their corresponding
entries in the interpoint distance matrix. This has the same properties as the
product moment correlation coefficient. Values close to one indicate a higher
degree of correlation between the fusion levels and the distances. To compare
two hierarchical clusters, one would compare the upper triangular elements
of the cophenetic matrix for each one.

Example 5.4
The cophenetic correlation coefficient is primarily used to assess the results
of a hierarchical clustering method by comparing the fusion level of
observations with their distance. MATLAB provides a function called
cophenet that calculates the desired measure. We return to the yeast data
in Example 5.1 to determine the cophenetic coefficient for single linkage and
complete linkage.

load yeast
% Get the Euclidean distances.
Y = pdist(data);
% Single linkage output.
Zs = linkage(Y);
% Now get the cophenetic coefficient.
scoph = cophenet(Zs,Y);

The cophenetic coefficient is 0.9243, indicating good agreement between the
distances and the hierarchical clustering. Now we apply the same procedure
to the complete linkage.

% Now do the same thing for the complete linkage.
Zc = linkage(Y,'complete');
ccoph = cophenet(Zc,Y);

The coefficient in this case is 0.8592, showing less correlation. The cophenet
function only does the comparison between the clustering and the distances
and not the comparison between two hierarchical structures.
❑

5.5.3 Upper Tail Rule

The upper tail rule was developed by Mojena [1977] as a way of determining
the number of groups in hierarchical clustering. It uses the relative sizes of
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the different fusion levels in the hierarchy. We let the fusion levels α0, α1, α2 ,
..., αn-1 correspond to the stages in the hierarchy with  clusters.
We also denote the average and standard deviation of the j previous fusion
levels by  and sα. To apply this rule, we estimate the number of groups as
the first level at which we have

, (5.1)

where c is a constant. Mojena suggests a value of c between 2.75 and 3.50, but
Milligan and Cooper [1985] offer a value of 1.25 based on their study of
simulated data sets. One could also look at a plot of the values 

(5.2)

against the number of clusters j. A break in the plot is an indication of the
number of clusters. Given the dependence on the value of c in Equation 5.1,
we recommend the graphical approach of Equation 5.2. 

Example 5.5 
We now show how to implement the graphical Mojena procedure in a way
that makes it similar to the ‘elbow’ plots of previous applications. We turn to
the lungB data set for this example, and we use the standardized Euclidean
distance, where each coordinate in the sum of squares is inversely weighted
by its sample variance.

load lungB
% Get the distances and the linkage.
% Use the standardized Euclidean distance.
Y = pdist(lungB','seuclidean');
Z = linkage(Y,'complete');
% Plot dendrogram with fewer leaf nodes.
dendrogram(Z,15);

The dendrogram is shown in Figure 5.5 (top). We are going to flip the Z
matrix to make it easier to work with, and we will find the values in Equation
5.2 for a maximum of 10 clusters. 

nc = 10;
% Flip the Z matrix - makes it easier.
Zf = flipud(Z);
% Now get the vectors of means
% and standard deviations
for i = 1:nc
    abar(i) = mean(Zf(i:end,3));
    astd(i) = std(Zf(i:end,3));

n n 1– … 1, , ,

α

αj 1+ α csα+>

αj 1+ α–( )
sα

------------------------
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FIGURE 5.5

In the top panel, we show the dendrogram (with 15 leaf nodes) for the lungB data set,
where standardized Euclidean distance is used with complete linkage. The second panel is
the plot of the standardized fusion levels. The ‘elbow’ in the curve indicates that three
clusters is reasonable. However, some other ‘elbows’ at 5 and 7 might provide interesting
clusters, too.
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end
% Get the y values for plotting.
yv = (Zf(1:nc,3) - abar(:))./astd(:);
xv = 1:nc;
plot(xv,yv,'-o')

This plot is shown in Figure 5.5 (bottom), where the elbow in the curve seems
to indicate that three clusters could be chosen for this application. We could
also plot the raw fusion values in a similar plot, as follows. 

% We can also plot just the fusion levels
% and look for the elbow.
plot(1:nc,Zf(1:nc,3),'o-')

This plot is given in Figure 5.6, and we see again that three seems to be a
reasonable estimate for the number of clusters. We provide a function called
mojenaplot that will construct the plot, given the output from linkage.
❑ 

5.5.4 Silhouette Plot

Kaufman and Rousseeuw [1990] present the silhouette statistic as a way of
estimating the number of groups in a data set. Given observation i, we denote
the average dissimilarity to all other points in its own cluster as ai. For any

FIGURE 5.6

This is a plot of the raw fusion levels for Example 5.5. Again, we see an elbow at three
clusters.
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other cluster c, we let  represent the average dissimilarity of i to all
objects in cluster c. Finally, we let bi denote the minimum of these average
dissimilarities . The silhouette width for the i-th observation is

. (5.3)

We can find the average silhouette width by averaging swi over all
observations:

.

Observations with a large silhouette width are well clustered, but those
with small values tend to be ones that are scattered between clusters. The
silhouette width swi in Equation 5.3 ranges from –1 to 1. If an observation has
a value close to 1, then the data point is closer to its own cluster than a
neighboring one. If it has a silhouette width close to –1, then it is not very
well-clustered. A silhouette width close to zero indicates that the observation
could just as well belong to its current cluster or one that is near to it.

Kaufman and Rousseeuw use the average silhouette width to estimate the
number of clusters in the data set by using the partition with two or more
clusters that yields the largest average silhouette width. They state that an
average silhouette width greater than 0.5 indicates a reasonable partition of
the data, and a value of less than 0.2 would indicate that the data do not
exhibit cluster structure.

There is also a nice graphical display called a silhouette plot, which is
illustrated in the next example. This type of plot displays the silhouette
values for each cluster, ranking them in decreasing order. This allows the
analyst to rapidly visualize and assess the cluster structure. 

Example 5.6
MATLAB provides a function called silhouette that will construct the
silhouette plot and also returns the silhouette values, if desired. We illustrate
its functionality using the iris data and k-means, where we choose both k =
3 and k = 4. In this example, we will use replicates (i.e., repeating the k-
means procedure 5 times) and the display option that summarizes
information about the replicates.

load iris
data = [setosa; versicolor; virginica];
% Get a k-means clustering using 3 clusters,
% and 5 replicates. We also ask MATLAB to
% display the final results for each replicate.

d i c,( )

d i c,( )

swi
bi ai–( )

max ai bi,( )
----------------------------=

sw 1
n
--- swi

i 1=

n

∑=
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kmus3 = kmeans(data,3,...
    'replicates',5,'display','final');

When we run this code, the following is echoed to the command window.
Since this procedure uses a random selection of starting points, you might see
different results when implementing this code.

5 iterations, total sum of distances = 78.8514
4 iterations, total sum of distances = 78.8514
7 iterations, total sum of distances = 78.8514
6 iterations, total sum of distances = 78.8514
8 iterations, total sum of distances = 142.754

From this, we see that local solutions do exist, but the final result from
MATLAB will be the one corresponding to the lowest value of our objective
function, which is 78.8514. Now we repeat this for four clusters and get the
corresponding silhouette plots.

% Get a k-means clustering using 4 clusters.
kmus4 = kmeans(data,4,...
    'replicates',5,'display','final');
% Get the silhouette plots and the values.
[sil3, h3] = silhouette(data, kmus3);
[sil4, h4] = silhouette(data, kmus4);

The silhouette plots for both k = 3 and k = 4 are shown in Figure 5.7. We see
that we have mostly large silhouette values in the case of three clusters, and
all are positive. On the other hand, four clusters yield some with negative
values and some with small (but positive) silhouette indexes. To get a one-
number summary describing each clustering, we can find the average of the
silhouette values.

mean(sil3)
mean(sil4)

The three cluster solution has an average silhouette value of 0.7357, and the
four cluster solution has an average of 0.6714. This indicates that the
grouping into three clusters using k-means is better than the one with four
groups.
❑ 

5.5.5 Gap Statistic

Tibshirani, et al. [2001] define a technique called the gap statistic method for
estimating the number of clusters in a data set. This methodology applies to
any technique used for grouping the data. The clustering method could be k-
means, hierarchical, etc. This technique compares the within-cluster
dispersion with what one might expect given a reference null distribution
(i.e., no clusters). Fridlyand and Dudoit [2001] note a type of gap test has been
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FIGURE 5.7

Here we have the silhouette plots for k = 3 and k = 4 clusters using the iris data. The top
one indicates large values for cluster 2 and a few large values for clusters 1 and 3. In the
second plot with 4 clusters, we see that there are some negative values in cluster 4, and
clusters 1, 3, and 4 have many low silhouette values. These plots indicate that 3 clusters are
a better fit to the data.
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used by Bock [1985] in cluster analysis to test the null hypothesis of a
homogeneous population versus a heterogeneous one, but they are defined
somewhat differently. 

We start with a set of k clusters C1, ... ,Ck from some clustering method,
where the r-th group has nr observations. We denote the sum of the pairwise
distances for all points in cluster r as

.

We now define Wk as

. (5.4)

Tibshirani, et al. [2001] note that the factor 2 in Equation 5.4 makes this the
same as the pooled within-cluster sum of squares around the cluster means,
if the distance used is squared Euclidean distance.

The gap statistic method compares the standardized graph of the within-
dispersion index log(Wk), k = 1,...,K with its expectation under a reference null
distribution. The null hypothesis of a single cluster is rejected in favor of a
model with k groups if there is strong evidence for this based on the gap
statistic (see Equation 5.5). Their estimate for the number of groups is the
value of k where log(Wk) is the furthest below this reference curve. The
reference curve shows the expected values of log(Wk) and is found using
random sampling.

Tibshirani, et al. [2001] show that there are two possible choices for the
reference distribution. These are the uniform distribution over the range of
observed values for a given variable or a uniform distribution over a box
aligned with the principal components of the data set. The second method is
preferred when one wants to ensure that the shape of the distribution is
accounted for. We first discuss how to generate data from these distributions,
then we go on to the describe the entire gap statistic procedure.

Generating Data from Reference Distributions

1. Gap-Uniform: For each of the i dimensions (or variables), we gen-
erate n one-dimensional variates that are uniformly distributed
over the range of  to , where xi represents the i-th variable
or the i-th column of X.

2. Gap-PC: We assume that the data matrix X has been column-
centered. We then compute the singular value decomposition

Dr dij

i j Cr∈,

∑=

Wk
1

2nr

--------Dr

r 1=

k

∑=

xi
min xi

max
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.

Next we transform X using 

X’ = XV.

We generate a matrix of random variates Z’ as in the gap-uniform
case, using the range of the columns of X’ instead. We transpose
back using

Z = Z’ VT.

The basic gap statistic procedure is to simulate B data sets according to
either of the null distributions and then apply the clustering method to each
of them. We can calculate the same index log(Wk*) for each simulated data set.
The estimated expected value would be their average, and the estimated gap
statistic is given by

.

Tibshirani, et al. [2001] did not offer insights as to what value of B to use, but
Fridlyand and Dudoit [2001] use B = 10 in their work. We use the gap statistic
to decide on the number of clusters as outlined in the following procedure.

Procedure - Gap Statistic Method

1. Cluster the given data set to obtain partitions k = 1, 2, ... , K, using
any desired clustering method.

2. For each partition with k clusters, calculate the observed log(Wk).

3. Generate a random sample of size n using either the gap-uniform
or the gap-PC procedure. Call this sample X*.

4. Cluster the random sample X* using the same clustering method
as in step 1.

5. Find the within-dispersion measures for this sample, call them
.

6. Repeat steps 3 through 5 for a total of B times. This yields a set of
measures , k = 1, ..., K and b = 1, ... , B.

7. Find the average of these values, using

,

X UDVT=

gap k( ) 1
B
--- Wk b,

*( )log
b

∑ Wk( )log–=

Wk b,
*( )log

Wk b,
*( )log

Wk
1
B
--- Wk b,

*( )log
b

∑=
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and their standard deviation

.

8. Calculate the estimated gap statistic

. (5.5)

9. Define 

,

and choose the number of clusters as the smallest k such that

.

Example 5.7
We show how to implement the gap statistic method for a uniform null
reference distribution using the lungB data set. We use agglomerative
clustering (with complete linkage) in this application rather than k-means,
mostly because we can get up to K clusters without performing the clustering
again for a different k. Note also that we standardized the columns of the data
matrix.

load lungB
% Take the transpose, because the
% columns are the observations.
X = lungB';
[n,p] = size(X);
% Standardize the columns.
for i = 1:p
    X(:,i) = X(:,i)/std(X(:,i));
end

We now find the observed log(Wk) for a maximum of K = 10 clusters.

% Test for a maximum of 10 clusters.
K = 10;
Y = pdist(X,'euclidean');
Z = linkage(Y,'complete');
% First get the observed log(W_k).
% We will use the squared Euclidean distance
% for the gap statistic.

sdk
1
B
--- Wk b,

*( )log W–[ ]
2

b

∑=

gap k( ) Wk Wk( )log–=

sk sdk 1 1 B⁄+=

gap k( ) gap k 1+( ) sk 1+–≥
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% Get the one for 1 cluster first.
W(1) = sum(pdist(X).^2)/(2*n);
for k = 2:K
    % Find the index for k.
    inds = cluster(Z,k);
    for r = 1:k
        indr = find(inds==r);
        nr = length(indr);
        % Find squared Euclidean distances.
        ynr = pdist(X(indr,:)).^2;
        D(r) = sum(ynr)/(2*nr);
    end
    W(k) = sum(D);
end

We now repeat the same procedure B times, except that we use the uniform
reference distribution as our data.

% Now find the estimated expected
% values.
B = 10;
% Find the range of columns of X for gap-uniform
minX = min(X);
maxX = max(X);
Wb = zeros(B,K);
% Now do this for the bootstrap.
Xb = zeros(n,p);
for b = 1:B
    % Generate according to the gap-uniform method.
    % Find the min values and max values.
    for j = 1:p
        Xb(:,j) = unifrnd(minX(j),maxX(j),n,1);
    end
    Yb = pdist(Xb,'euclidean');
    Zb = linkage(Yb,'complete');
    % First get the observed log(W_k)
    % We will use the squared Euclidean distance.
    % Get the one for 1 cluster first.
    Wb(b,1) = sum(pdist(Xb).^2)/(2*n);
    for k = 2:K
        % Find the index for k.
        inds = cluster(Zb,k);
        for r = 1:k
            indr = find(inds==r);
            nr = length(indr);
            % Find squared Euclidean distances.
            ynr = pdist(Xb(indr,:)).^2;
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            D(r) = sum(ynr)/(2*nr);
        end
        Wb(b,k) = sum(D);
    end
end

The matrix Wb contains our log(Wk*) values, one set for each row. The
following code gets the gap statistics, as well as the observed and expected
log(Wk).

% Find the mean and standard deviation
Wobs = log(W);
muWb = mean(log(Wb));
sdk = (B-1)*std(log(Wb))/B;
gap = muWb - Wobs;
% Find the weighted version.
sk = sdk*sqrt(1 + 1/B);
gapsk = gap - sk;
% Find the lowest one that is larger:
ineq = gap(1:9) - gapsk(2:10);
ind = find(ineq > 0);
khat = ind(1);

The estimated number of clusters is two, which corresponds to the correct
number of cancer types. This can be compared to the results of Example 5.5,
where the Mojena graphical rule indicated three clusters. In any event, the
results of the gap statistic method seem to indicate that there is evidence to
reject the hypothesis that there is only one group. We plot the gap curve in
Figure 5.8, where we can see the strong maximum at k = 2.
❑ 

The gap statistic method relies on B random samples from the reference
null distribution to estimate the expected value of log(Wk), each of which is
clustered using the same procedure that was used to get the observed ones.
The data analyst should keep in mind that this can be computationally
intensive if the sample size is large and a clustering method such as
agglomerative clustering is used.

5.5 Summary and Further Reading

Clustering is a technique that has been used in many diverse areas, such as
biology, psychiatry, archaeology, geology, marketing, and others [Everitt,
Landau and Leese, 2001]. Because of this, clustering has come to be called
different things, such as unsupervised learning [Duda and Hart, 1973; Jain,
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FIGURE 5.8

The upper panel shows the estimated expected and observed values of the log(Wk). The
lower plot is the gap statistic curve, where we see a clear maximum at k = 2 clusters. 
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Murty and Flynn, 1999], numerical taxonomy [Sneath and Sokal, 1973], and
vector quantization [Hastie, Tibshirani and Friedman, 2001].

In this chapter, we presented examples of the two most commonly-used
types of clustering: hierarchical methods and optimization-based methods.
Hierarchical methods yield an entire sequence of nested partitions. On the
other hand, optimization or partition methods, like k-means, group the data
into k nonoverlapping data sets. Hierarchical methods use the n(n-1)/2
interpoint distances as inputs (some also require the data),  while
optimization methods just require the data, making them suitable for large
data sets. 

In the next chapter, we describe another grouping technique called model-
based clustering that is based on estimating finite mixture probability density
functions. Note that some of the methods discussed in Chapter 3, such as self-
organizing maps, generative topographic maps, and multidimensional
scaling, can be considered a type of clustering, where the clusters are
sometimes assessed visually. Since clustering methods (in most cases) will
yield a grouping of the data, it is important to perform some validation or
assessment of the cluster output. To that end, we presented several of these
methods in this chapter.

We feel we should mention that, for the most part, we discussed clustering
methods in this chapter. This can be contrasted with clustering algorithms,
which are the underlying computational steps to achieve each of the
clustering structures. For example, for any given hierarchical or optimization
based method, many different algorithms are available that will achieve the
desired result.

This is not meant to be an exhaustive treatment of the subject and much is
left out, so we offer pointers to some additional resources. An excellent book
to consult is Everitt, Landau and Leese [2001], which has been recently
updated to include some of the latest developments in clustering based on
the classification l ikelihood and neural  networks. It  is relatively
nonmathematical, and it includes many examples for the student or
practitioner. For a good summary and discussion of methods for estimating
the number of clusters, as well as for other clustering information, we
recommend Gordon [1999]. Most books that focus strictly on clustering are
Kaufman and Rousseeuw [1990], Jain and Dubes [1988], Späth [1980],
Hartigan [1975], and Anderberg [1973]. Other books on statistical pattern
recognition usually include coverage of unsupervised learning or clustering.
An excellent book like this is Webb [1999]. It is very readable and the author
includes many applications and step-by-step algorithms. Of course, one of
the seminal books in pattern recognition is Duda and Hart [1973], which has
recently been updated to a new edition [Duda, Hart and Stork, 2001]. For
more of the neural network point of view, one could consult Ripley [1996].

Some survey papers on clustering are available. A recent one that provides
an overview of clustering from the machine learning point of view is Jain,
Murty and Flynn [1999]. The goal in their paper is to provide useful advice
on clustering to a broad community of users. Another summary paper
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written by a Panel on Discriminant Analysis, Classification, and Clustering [1989]
describes methodological and theoretical aspects of these topics. A
presentation of clustering from an EDA point of view is Dubes and Jain
[1980]. An early review paper on grouping is by Cormack [1971], where he
provides a summary of distances, clustering techniques, and their various
limitations. An interesting position paper on clustering algorithms from a
data mining point of view is Estivill-Castro [2002].

For a survey and analysis of procedures for estimating the number of
clusters, see Milligan and Cooper [1985]. One of the successful ones in their
study uses a criterion based on the within-group sum-of-squares objective
function, which was developed by Krzanowski and Lai [1988]. Roeder [1994]
proposes a graphical technique for this purpose. Tibshirani, et al. [2001]
develop a new method called prediction strength for validating clusters and
assessing the number of groups [2001], which is based on cross-validation.
Another well-known index for measuring the appropriateness of data
partitions is by Davies and Bouldin [1979]. Bailey and Dubes [1982] develop
something called cluster validity profiles that quantify the interaction
between a cluster and its environment in terms of its compactness and
isolation, thus providing more information than a single index would. One
should apply several cluster methods, along with the appropriate cluster
assessment and validation methods with each data set, to search for
interesting and informative groups.

Exercises

5.1 Get the Euclidean distances for the iris data. Apply centroid linkage
and construct the dendrogram. Do you get inversions? Do the same
thing with Mahalanobis distance. Do you get similar results? Try
some of the other distances and linkages. Do you still get inversions?

5.2 Apply single linkage hierarchical clustering to the following data sets.
Do you get  chaining?  Explore  some of  th e other types  of
distance/linkage combinations and compare results.
a. geyser

b. singer
c. skulls

d. spam
e. sparrow

f. oronsay
g. gene expression data sets

5.3 Construct the dendrogram for the partitions found in problem 5.2. Is
there evidence of groups or clusters in each of the data sets?
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5.4 The inconsistency coefficient can be used to determine the number of
clusters in hierarchical clustering. This compares the length of a link
in the hierarchy with the average length of neighboring links. If the
merge is consistent with those around it, then it will have a low
inconsistency coefficient. A higher inconsistency coefficient indicates
the merge is inconsistent and thus indicative of clusters. One of the
arguments to the cluster function can be a threshold for the
inconsistency coefficient that corresponds to the cutoff argument.
The cut point of the dendrogram occurs where links are greater than
this value. MATLAB has a separate function called inconsistent
that returns information in a matrix, where the last column contains
the inconsistency coefficients. Generate some bivariate data that
contains two well-separated clusters. Apply a suitable hierarchical
clustering method and construct the dendrogram. Obtain the output
from the inconsistent function and use these values to get a
threshold for the cutoff argument in cluster. Knowing that there
are only two clusters, does the inconsistency coefficient give the
correct result?

5.5 Apply the inconsistent threshold to get partitions for the hierarchical
clustering in problem 5.2. Where possible, construct scatterplots or a
scatterplot matrix (using plotmatrix or gplotmatrix) of the
resulting groups. Use different colors and/or symbols for the groups.
Discuss your results.

5.6 Do a help on the cophenet function. Write your own MATLAB
function that will calculate the cophenetic coefficient comparing two
dendrograms.

5.7 Generate 2-D uniform random variables. Apply the gap statistic
procedure and plot the expected gap statistic and observed value for
each k. Compare the curves. What is the estimated number of clusters? 

5.8 Now generate bivariate normal random variables with two well-
separated clusters. Apply the gap statistic procedure and plot the
expected gap statistic and observed value for each k. What is the
estimated number of clusters? 

5.9 Write a MATLAB function that implements the gap-PC approach.
5.10 Apply the gap statistic procedure to the cluster results from problem

5.2. Is there evidence for more than one group? How many clusters are
present according to the gap statistic? Compare with your results in
problem 5.5.

5.11 Apply the upper tail rule and mojenaplot to the data and groupings
found in problem 5.2. How many clusters are present? 

5.12 In what situation would the Rand index be zero? Use adjrand and
randind functions to verify your answer.

5.13 Using the cluster results from one of the data sets in problem 5.2, use
the adjrand function with the input arguments the same. The value
should be one. Do the same thing using randind.
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5.14 Apply k-means and the agglomerative clustering method of your
choice to the oronsay data set (both classifications), using the correct
number of known groups. Use the silhouette plot and average
silhouette values. Repeat this process varying the value for k. Discuss
your results.

5.15 Using the same data and partitions in problem 5.14, use the Rand
index and adjusted Rand index to compare the estimated partitions
with the true ones. 

5.16 Repeat Example 5.4 using different distances and linkages. Discuss
your results.

5.17 Repeat Example 5.7 using gap-PC method. Are the results different?
5.18 Calinski and Harabasz [1974] defined an index for determining the

number of clusters as follows

,

where  is the within-class scatter matrix for k clusters.  is the
between-class scatter matrix that describes the scatter of the cluster
means about the total mean and is defined as

.

The estimated number of clusters is given by the largest value of chk

for . Note that this is not defined for k = 1, as is the case with the
gap statistic method. Implement this in MATLAB and apply it to the
data used in Example 5.7. How does this compare to previous results?

5.19 Hartigan [1985] also developed an index to estimate the number of
clusters. This is given by

.

The estimated number of clusters is the smallest value of k, where

.

Implement this in MATLAB, apply it to the data used in Example 5.7,
and compare with previous results.

5.20 The Fowlkes-Mallows [1983] index can be calculated using the
matching matrix N (which in this case must be g x g, where g = g1 =
g2) as

chk

tr SBk
( ) k 1–( )⁄

tr SWk
( ) n k–( )⁄

------------------------------------------=

SWk
SBk

SBk

nj

n
---- x j x–( ) xj x–( )T

j 1=

k

∑=

k 2≥

hartk

tr SWk
( )

tr SWk 1+
( )

----------------------- 1– 
  n k– 1–( )=

1 k 10≤ ≤
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,

where

Implement this in a MATLAB function. Use the Fowlkes-Mallows
index with the oronsay data, as in problem 5.14 and compare with
previous results.

Bg Tg PgQg⁄=

Tg nij
2 n–

j 1=

g

∑
i 1=

g

∑=

Pg ni  •
2 n–

i 1=

g

∑=

Qg n• j
2 n–

j 1=

g

∑=
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Chapter 6
Model-Based Clustering

In this chapter, we present a method for clustering that is based on finite
mixture probabil i ty models .  We f irs t provide an overview of  a
comprehensive procedure for model-based clustering, so the reader has a
framework for the methodology. We then describe the constituent techniques
used in model-based clustering, such as finite mixtures, the EM algorithm,
and model-based agglomerative clustering. We then put it all together again
and include more discussion on its use in EDA and clustering. Finally, we
show how to use a GUI tool that generates random samples based on the
finite mixture models presented in the chapter.

6.1 Overview of Model-Based Clustering

Recall from the previous chapter that we presented two main types of
clustering: hierarchical and partition-based (k-means). The hierarchical
method we discussed in detail was agglomerative clustering, where two
groups are merged at each step, such that some criterion is optimized. We
will also use agglomerative clustering in this chapter, where the objective
function is now based on optimizing the classification likelihood function. 

We mentioned several issues with the methods in Chapter 5. One problem
is that the number of clusters must be specified in k-means or chosen later in
agglomerative hierarchical clustering. We already presented several ways to
handle this, and the model-based clustering framework is another approach
that addresses the issue of choosing the number of groups represented by the
data. Another problem we mentioned is that many clustering methods are
heuristic and impose a certain structure on the clusters. In other words, using
Ward’s method tends to produce same size, spherical clusters (as does k-
means clustering). Additionally, some of the techniques are sensitive to
outliers (e.g., Ward’s method), and the statistical properties are generally
unknown.

The model-based clustering methodology is based on probability models,
such as the finite mixture model for probability densities. The idea of using
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probability models for clustering has been around for many years. See Bock
[1996] for a survey of cluster analysis in a probabilistic and inferential
framework. In particular, finite mixture models have been proposed for
cluster analysis by Edwards and Cavalli-Sforza [1965], Day [1969], Wolfe
[1970], Scott and Symons [1971], and Binder [1978]. Later researchers
recognized that this approach can be used to address some of the issues in
cluster analysis that we just discussed [Fraley and Raftery, 2002; Everitt,
Landau and Leese, 2001; McLachlan and Peel, 2000; McLachlan and Basford,
1988; Banfield and Raftery, 1993]. 

The finite mixture approach assumes that the probability density function
can be modeled as the sum of weighted component densities. As we will see
shortly, when we use finite mixtures for cluster analysis, then the clustering
problem becomes one of estimating the parameters of the assumed mixture
model, i.e., probability density estimation. Each component density
corresponds to a cluster and posterior probabilities are used to determine
cluster membership. 

The most commonly used method for estimating the parameters of a finite
mixture probability density is the Expectation-Maximization (EM) algorithm,
which is based on maximum likelihood estimation [Dempster, Laird and
Rubin, 1977]. In order to apply the finite mixture – EM methodology, several
issues must be addressed: 

1. We must specify the number of component densities (or groups).1

2. The EM algorithm is iterative, so we need initial values of the
parameters to get started.

3. We have to assume some form (e.g.,  multivariate normal,  t distri-
bution, etc.) for the component densities.

The model-based clustering framework provides a principled way to tackle
all of these problems. 

Let’s start with the second problem: initializing the EM algorithm. We use
model-based agglomerative clustering for this purpose. Model-based
agglomerative clustering [Murtagh and Raftery, 1984; Banfield and Raftery,
1993] uses the same general ideas of hierarchical agglomerative clustering,
where all observations start out in a single group, and two clusters are
merged at each step. However, in the model-based case, two clusters are
merged such that the classification likelihood is maximized.2 Recall that we
get a complete set of nested partitions with hierarchical clustering. From this,
we can obtain initial estimates of our component parameters based on a
given partition from the hierarchical clustering.

This brings us to issue three: the form of the component densities. Banfield
and Raftery [1993] devise a general framework for multivariate normal

1 This would be similar to specifying the k in k-means clustering. 
2 The classification likelihood is similar to the mixture likelihood, except that each observation is
allowed to belong to only one component density. See Section 6.4 for a discussion.
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mixtures based on constraining the component covariance matrices.
Imposing these constraints governs certain geometric properties of the
clusters, such as orientation, volume, and shape. In model-based clustering,
we assume that the finite mixture is composed of multivariate normal
densities, where constraints on the component covariance matrices yield
different models.

So, why is this called model-based clustering? This really pertains to issues
(1) and (2), together. We can consider the number of groups, combined with
the form of the component densities, as producing different statistical models
for the data. Determining the final model is accomplished by using the
Bayesian Information Criterion (BIC), which is an approximation to Bayes
factors [Schwarz, 1978; Kass and Raftery, 1995]. The model with the optimal
BIC value is chosen as the ‘best’ model. The reader should be aware that we
also use the word model to represent the type of constraints and geometric
properties of the covariance matrices. Hopefully, the meaning of the word
model will be clear from the context. 

The steps of the model-based clustering framework are illustrated in
Figure 6.1. First, we choose our constraints on the component covariance
matrices (i.e., the model), and then we apply agglomerative model-based
clustering. This provides an initial partition of our data for any given number
of groups and any desired model. We use this partition to get initial estimates
of our component density parameters for use in the EM algorithm. Once we
converge to an estimate using the EM, we calculate the BIC. We continue to
do this for various models (i.e., number of groups and forms of the
covariance matrices). The final model that we choose is the one that produces
the highest BIC. We now present more information and detail on the
constituent parts of model-based clustering. 

FIGURE 6.1

This shows the flow of the steps in the model-based clustering procedure.
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6.2 Finite Mixtures

In this section, we provide more in-depth information regarding finite
mixtures, as well as the different forms of the constrained covariance
matrices used in model-based clustering. However, first we investigate an
example of a univariate finite mixture probability density function to facilitate
understanding of the multivariate approach. 

Example 6.1
In this example, we show how to construct a probability density function that
is the weighted sum of two univariate normal densities. First, we set up the
various component parameters. We have equal mixing proportions or
weights. The means are given by –2 and 2, and the corresponding standard
deviations are 0.5 and 1.2. Mathematically, we have

,

where φ denotes a normal probability density function. The following
MATLAB code assigns the component density parameters.

% First the mixing coefficients will be equal.
pie1 = 0.5;
pie2 = 0.5;
% Let the means be -2 and 2.
mu1 = -2;
mu2 = 2;
% The standard deviation of the first term will be 0.5 
% and the second one be 1.2.
sigma1 = 0.5;
sigma2 = 1.2;

Now we need to get a domain over which to evaluate the density, making
sure that we have enough points to encompass the interesting parts of this
density. 

% Now generate a domain over which to evaluate the 
% function.
x = linspace(-6, 6);

We use the Statistics Toolbox function normpdf to evaluate the component
probability density functions. To get the finite mixture density, we need to
weight these according to their mixing proportions and then add them
together. 

% The following is a Statistics Toolbox function.

f x θ k;( ) 0.5 φ x 2 0.5,–;( )× 0.5 φ x 2 1.2,;( )×+=
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y1 = normpdf(x,mu1,sigma1);
y2 = normpdf(x,mu2,sigma2);
% Now weight and add to get the final curve.
y = pie1*y1 + pie2*y2;
% Plot the final function.
plot(x,y)
xlabel('x'), ylabel('Probability Density Function')
title('Univariate Finite Mixture - Two Terms')

The plot is shown in Figure 6.2. The two terms are clearly visible, but this is
not always the case. In the cluster analysis context, we would speculate that
a group is located at –2 and 2.
❑ 

6.2.1 Multivariate Finite Mixtures

The finite mixture approach to probability density estimation (and cluster
analysis) can be used for both univariate and multivariate data. In what
follows, we will concern ourselves with the multivariate case only. 

Finite mixtures encompass a family of probability density functions that
are a weighted sum of component densities. The form of the density is given
by

FIGURE 6.2

This shows the univariate probability density function as described in Example 6.1.
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. (6.1)

The component density is denoted by gk(x; θk) with associated parameters
represented by θk. Note that θk is used to denote any type and number of
parameters. The weights are given by πk, with the constraint that they are
nonnegative and sum to one. These weights are also called the mixing
proportions or mixing coefficients.

Say we want to use the finite mixture in Equation 6.1 as a model for the
distribution that generated our data. Then, to estimate the density, we must
know the number of components c, and we need to have a form for the
function gk. 

The component densities can be any bona fide probability density, but one
of the most commonly used ones is the multivariate normal. This yields the
following equation for a multivariate Gaussian finite mixture

, (6.2)

where φ represents a multivariate normal probability density function given
by

.

Thus, we have the parameters µk, where each one is a p-dimensional vector of
means, and Σk, where each is a p x p covariance matrix. 

Now that we have a form for the component densities, we know what we
have to estimate using our data. We need to estimate the weights πk, the p-
dimensional means for each term, and the covariance matrices. Before we
describe how to do this using the EM algorithm, we first look at the form of
the multivariate normal densities in a little more detail. 

6.2.2 Component Models - Constraining the Covariances

Banfield and Raftery [1993] and Celeux and Govaert [1995] provide the
following eigenvalue decomposition of the k-th covariance matrix

f x  π θ,;( ) πk gk x; θ k( )
k 1=

c

∑=

f x  π µk Σk, ,;( ) πkφ x;µk  Σk,( )
k 1=

c

∑=

φ xi;µk Σk,( )

1
2
--- x i µk–( )TΣk

1– x i µk–( )–
 
 
 

exp

2π( ) p 2⁄ Σk

--------------------------------------------------------------------------=
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. (6.3)

The factors in Equation 6.3 are given by the following:

• The volume of the k-th cluster or component density is governed
by the λk , which is proportional to the volume of the standard
deviation ellipsoid. We note that the volume is different from the
size of a cluster. The size is the number of observations falling into
the cluster, while the volume is the amount of space encompassed
by the cluster.

• Dk is a matrix with columns corresponding to the eigenvectors of
Σk. It determines the orientation of the cluster. 

• Ak is a diagonal matrix. Ak contains the normalized eigenvalues of
Σk along the diagonal. By convention, they are arranged in
decreasing order. This matrix is associated with the shape of the
distribution. 

We now describe the various models in more detail, using the notation and
classification of Celeux and Govaert. The eigenvalue decomposition given in
Equation 6.3 produces a total of 14 models, by keeping factors λk, Ak, and Dk

constant across terms and/or restricting the form of the covariance matrices
(e.g., restrict it to a diagonal matrix). There are three main families of models:
the spherical family, the diagonal family, and the general family.

Celeux and Govaert provide covariance matrix update equations based on
these models for use in the EM algorithm. Some of these have a closed form,
and others must be solved in an iterative manner. We concern ourselves only
with the nine models that have a closed form update for the covariance
matrix. Thus, what we present in this text is a subset of the available models.
These are summarized in Table 6.1.

Spherical Family

The models in this family are characterized by diagonal matrices, where each
diagonal element of the covariance matrix Σk has the same value. Thus, the
distribution is spherical; i.e., each variable of the component density has the
same variance. We have two closed-form cases in this family, each
corresponding to a fixed spherical shape. 

The first has equal volume across all components, so the covariance is of
the form

,

where I is the p x p identity matrix. The other model allows the volumes to
vary. In this case, Equation 6.3 becomes

Σk λ kDkAkDk
T=

Σk λDADT λI= =
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TABLE 6.1 

Description of Multivariate Normal Mixture Models - Closed Form Solution 
to Covariance Matrix Update Equation in EM Algorithma

Model 
# Covariance Distribution Description

1
Family: Spherical
Volume: Fixed
Shape: Fixed
Orientation: NA

•Diagonal covariance matrices
•Diagonal elements are equal
•Covariance matrices are equal
•I is a p x p identity matrix

2
Family: Spherical
Volume: Variable
Shape: Fixed
Orientation: NA

•Diagonal covariance matrices
•Diagonal elements are equal
•Covariance matrices may vary
•I is a p x p identity matrix

3
Family: Diagonal
Volume: Fixed
Shape: Fixed
Orientation: Axes

•Diagonal covariance matrices
•Diagonal elements may be unequal
•Covariance matrices are equal
•B is a diagonal matrix 

4
Family: Diagonal
Volume: Fixed
Shape: Variable
Orientation: Axes

•Diagonal covariance matrices
•Diagonal elements may be unequal
•Covariance matrices may vary 

among components
•B is a diagonal matrix 

5
Family: Diagonal
Volume: Variable
Shape: Variable
Orientation: Axes

•Diagonal covariance matrices
•Diagonal elements may be unequal
•Covariance matrices may vary 

among components
•B is a diagonal matrix 

6
Family: General
Volume: Fixed
Shape: Fixed
Orientation: Fixed

•Covariance matrices can have 
nonzero off-diagonal elements

•Covariance matrices are equal

7
Family: General
Volume: Fixed
Shape: Fixed
Orientation: Variable

•Covariance matrices can have 
nonzero off-diagonal elements

•Covariance matrices may vary 
among components

8
Family: General
Volume: Fixed
Shape: Variable
Orientation: Variable

•Covariance matrices can have 
nonzero off-diagonal elements

•Covariance matrices may vary 
among components

9
Family: General
Volume: Variable
Shape: Variable
Orientation: Variable

•Covariance matrices can have 
nonzero off-diagonal elements

•Covariance matrices may vary 
among components

a. This is a subset of the available models.

Σk λ I=

Σk λ kI=

Σk λB=

Σk λBk=

Σk λ kBk=

Σk λDADT=

Σk λDkADk
T=

Σk λDkAkDk
T=

Σk λkDkAkDk
T=
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.

Celeux and Govaert note that these models are invariant under any isometric
transformation. 

Example 6.2
We will generate a data set according to model 2 in Table 6.1. Here we have
the spherical model, where the covariance matrices are allowed to vary
among the component densities. The data set has n = 250 data points in 3-D,
and we choose to have c = 2 component densities. The parameters for the
multivariate normal components are given by

We use the genmix GUI to generate the sample. See the last section of this
chapter for information on how to use this tool. Once we generate the data,
we can display it in a scatterplot matrix, as in Figure 6.3. Note that the second
component centered at [–2, –2, –2]T has fewer points, but seems to have a
larger volume.
❑ 

Diagonal Family

The models in this family are also diagonal, but now the elements along the
diagonal of the covariance matrix are allowed to be different. The covariances
are of the form

,

where

, 

and |B| = 1. The matrix B determines the shape of the cluster.
The cluster shapes arising in this family of models are elliptical, because the

variance in each of the dimensions is allowed to be different. Celeux and
Govaert mention that the models in the diagonal family are invariant under
any scaling of the variables. However, invariance does not hold for these
models under all linear transformations.

Σk λkDADT λkI= =

µ1 2 2 2, ,[ ]T=

Σ1 I=

π1 0.7=

λ1 1=

µ2 2– 2– 2–, ,[ ]T=

Σ2 2I=

π2 0.3=

λ2 2=

Σ λB λDADT= =

B diag b1 … bp, ,( )=
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We include three of the models in this family. The first is where each
component covariance matrix is equal, with the same volume and shape:

.

Next we have one where the covariance matrices are allowed to vary in terms
of the shape, but not the volume:

.

Finally, we allow both volume and shape to vary between the components or
clusters:

.

FIGURE 6.3

This shows a scatterplot matrix of the data set randomly generated according to model 2,
which is a member of the spherical family.
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Example 6.3
To illustrate an example from the diagonal family, we again use genmix to
generate random variables according to the following model, with n = 250, p
= 2, and c = 2. The means, weights, and covariance are given by

This is model 4: equal volume, but different shapes. A scatterplot matrix of a
random sample generated according to this distribution is shown in
Figure 6.4.
❑ 

FIGURE 6.4

These data were generated according to a distribution that corresponds to model 4 of the
diagonal family.
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General Family

This family includes the more general cases for each cluster or component
density. The covariances are no longer constrained to be diagonal. In other
words, the off-diagonal terms of the matrices can be nonzero. The models in
the general family are invariant under any linear transformation of the data.

We include four models from this family. As usual, the first one has all
covariances constrained to be equal. This means that the clusters have fixed
shape, volume, and orientation:

.

Next we allow the orientation to change, but keep the volume and shape
fixed:

.

Then we allow both shape and orientation to vary, while keeping the volume
fixed:

.

Finally, we have the unconstrained version, where nothing is fixed, so shape,
volume and orientation are allowed to vary:

.

The unconstrained version is the one typically used in finite mixture models
with multivariate normal components.

Example 6.4
The general family of models requires a full covariance matrix for each
component density. We illustrate this using the following model (n = 250, p =
2, and c = 2):

Σk λDADT=

Σk λDkADk
T=

Σk λDkAkDk
T=

Σk λ kDkAkDk
T=

µ1 2 2,[ ]T= µ2 2– 2–,[ ]T=

A1

3 0

0
1
3
---

= A2

1
2
--- 0

0 2

=
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Note that this is model 8 – fixed volume, variable shape, and orientation. We
have to multiply these together as in Equation 6.3 to get the covariance
matrices for use in the genmix tool. These are given below, rounded to the
fourth decimal place.

.

A scatterplot matrix showing a data set generated from this model is shown
in Figure 6.5.
❑ 

FIGURE 6.5

This shows a data set generated according to model 8 of the general family. These two
components have equal volumes, but different shapes and orientations. 
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Now that we know what models we have for multivariate normal finite
mixtures, we need to look at how we can use our data to get estimates of the
parameters. The EM algorithm is used for this purpose.

6.3 Expectation-Maximization Algorithm

The problem of estimating the parameters in a finite mixture has been
studied for many years. The technique we present here is called the
Expectation-Maximization (EM) method. This is a general method for
optimizing likelihood functions and is useful in situations where data might
be missing or simpler optimization methods fail. The seminal paper on this
method is by Dempster, Laird and Rubin [1977], where they formalize the EM
algorithm and establish its properties. Redner and Walker [1984] apply it to
finite mixture probability density estimation. The EM methodology is now a
standard tool for statisticians and is used in many applications besides finite
mixture estimation. 

We wish to estimate the parameters θ = π1, ... , πc-1, µ1, ... , µc, Σ1, ... , Σc. Using
the maximum likelihood approach, we maximize the log-likelihood given by

. (6.4)

We assume that the components exist in a fixed proportion in the mixture,
given by the πk. Thus, it makes sense to calculate the probability that a
particular point xi belongs to one of the component densities. It is this
component membership (or cluster membership) that is unknown, and why
we need to use something like the EM algorithm to maximize Equation 6.4.
We can write the posterior probability that an observation xi belongs to
component k as

, (6.5)

where 

.

L θ x1 …  ,xn,( ) πkφ xi µk Σk,;( )
k 1=

c

∑ln
i 1=

n

∑=

τ̂ i k xi( )
πk
ˆ φ x i µ̂k Σ̂k,;( )

f̂ xi π̂k µ̂k Σ̂k, ,;( )
--------------------------------------;= k 1  …  c   i;, , 1  …   n, ,= =

f̂ x i π̂k µ̂k Σ̂k, ,;( ) π̂kφ xi µ̂k Σ̂k,;( )
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c

∑=
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For those readers not familiar with the notation, the ‘hat’ or caret above the
parameters denotes an estimate. So, the posterior probability in Equation 6.5
is really an estimate based on estimates of the parameters.

Recall from calculus, that to maximize the function given in Equation 6.4,
we must find the first partial derivatives with respect to the parameters in θ
and then set them equal to zero. These are called the likelihood equations,
and they are not provided here. Instead, we provide the solution [Everitt and
Hand, 1981] to the likelihood equations as follows

(6.6)

(6.7)

. (6.8)

The update for the covariance matrix given in Equation 6.8 is for the
unconstrained case described in the previous section. This is model 9 in
Table 6.1. We do not provide the update equations for the other models in this
text, but they are implemented in the model-based clustering function that
comes with the EDA Toolbox. Please see Celeux and Govaert [1995] for a
complete description of the update equations for all models.

Because the posterior probability (Equation 6.5) is unknown, we need to
solve these equations in an iterative manner. It is a two step process,
consisting of an E-Step and an M-Step, as outlined below. These two steps are
repeated until the estimated values converge. 

E-Step

We calculate the posterior probability that the i-th observation belongs
to the k-th component, given the current values of the parameters.
This is given by Equation 6.5.
M-Step

Update the parameter estimates using the estimated posterior
probability and Equations 6.6 through 6.8 (or use the covariance
update equation for the specified model).

Note that the E-Step allows us to weight the component parameter updates
in the M-Step according to the probability that the observation belongs to that
component density.

π̂k
1
n
--- τ̂ i k

i 1=

n

∑=

µ̂k
1
n
---

τ̂ ikxi

π̂k

-----------
i 1=

n

∑=

Σ̂k
1
n
---

τ̂ ik xi µ̂k–( ) xi µ̂k–( )T

π̂k

--------------------------------------------------
i 1=

n
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Hopefully, it is obvious to the reader now why we need to have a way to
initialize the EM algorithm, in addition to knowing how many terms or
components are in our finite mixture. It is known that the likelihood surface
typically has many modes, and the EM algorithm may even diverge,
depending on the starting point. However, the EM can provide improved
estimates of our parameters if the starting point is a good one [Fraley and
Raftery, 2002]. The discovery that partitions based on model-based
agglomerative clustering provide a good starting point for the EM algorithm
was first discussed in Dasgupta and Raftery [1998].

Procedure - Estimating Finite Mixtures

1. Determine the number of terms or component densities c in the
mixture.

2. Determine an initial guess at the component parameters. These are
the mixing coefficients, means, and covariance matrices for each
multivariate normal density.

3. For each data point xi, calculate the posterior probability using
Equation 6.5 and the current values of the parameters. This is the
E-Step.

4. Update the mixing coefficients, the means, and the covariance
matrices for the individual components using Equations 6.6
through 6.8. This is the M-Step. Note that in the model-based
clustering approach, we use the appropriate covariance update for
the desired model (replacing Equation 6.8).

5. Repeat steps 3 through 4 until the estimates converge.

Typically, step 5 is implemented by continuing the iteration until the changes
in the estimates at each iteration are less than some pre-set tolerance.
Alternatively, one could keep iterating until the likelihood function
converges. Note that with the EM algorithm, we use the entire data set to
simultaneously update the parameter estimates at each step. 

Example 6.5
Since the MATLAB code can be rather complicated for the EM algorithm, we
do not provide the code in this example. Instead, we show how to use a
function called mbcfinmix that returns the weights, means, and covariances
given initial starting values. The general syntax for this is

[pies,mus,vars]=...
    mbcfinmix(X,muin,varin,wtsin,model);

The input argument model is the number from Table 6.1. We will use the data
generated in Example 6.4. We saved the data to the workspace as variable X.
The following commands set up some starting values for the EM algorithm.
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% Need to get initial values of the parameters.
piesin = [0.5, 0.5];
% The musin argument is a matrix of means,
% where each column is a p-D mean.
musin = [ones(2,1), -1*ones(2,1)];
% The varin argument is a 3-D array, where
% each page corresponds to one of the
% covariance matrices.
varin(:,:,1) = 2*eye(2);
varin(:,:,2) = eye(2);

Note that our initial values are sensible, but they do need adjusting. We call
the EM algorithm with the following:

% Now call the function.
[pie,mu,vars]=mbcfinmix(X,musin,varin,piesin,8);

The final estimates (rounded to four decimal places) are shown below.

pie = 0.7188    0.2812
mu =
    2.1528   -1.7680
    2.1680   -2.2400
vars(:,:,1) =
    2.9582    1.1405
    1.1405    0.7920
vars(:,:,2) =
    1.9860   -1.3329
   -1.3329    1.4193

We see that the estimates are reasonable ones. We now show how to construct
a surface based on the estimated finite mixture. The resulting plot is shown
in Figure 6.6.

% Now create a surface for the density.
% Get a domain over which to evaluate the function.
x1 = linspace(-7,7,50);
x2 = linspace(-7,5,50);
[X1,X2] = meshgrid(x1,x2);
% The X1 and X2 are matrices. We need to
% put them as columns into another one.
dom = [X1(:), X2(:)];
% Now get the multivariate normal pdf at
% the domain values - for each component.
% The following function is from the
% Statistics Toolbox.
Y1 = mvnpdf(dom,mu(:,1)',vars(:,:,1));
Y2 = mvnpdf(dom,mu(:,2)',vars(:,:,2));
% Weight them and add to get the final function.
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y = pie(1)*Y1 + pie(2)*Y2;
% Need to reshape the Y vector to get a matrix
% for plotting as a surface plot.
[m,n] = size(X1);
Y = reshape(y,m,n);
surf(X1,X2,Y)
axis([-7 7 -7 5 0 0.12])
xlabel('X_1'),ylabel('X_2')
zlabel('PDF')

We compare this to the scatterplot of the random sample shown in Figure 6.5.
We see that the surface matches the density of the data.
❑ 

FIGURE 6.6

In Example 6.5, we estimated the density using the data from Figure 6.5 and the EM
algorithm. This surface plot represents the estimated function. Compare to the scatterplot
of the data in Figure 6.5.
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6.4 Hierarchical Agglomerative Model-Based Clustering

We now describe another major component of the model-based clustering
process, one that enables us to find initial values of our parameters for any
given number of groups. Agglomerative model-based clustering works in a
similar manner to the hierarchical methods discussed in the previous chapter,
except that we do not have any notion of distance. Instead, we work with the
classification likelihood as our objective function. This is given by

, (6.9)

where γ i is a label indicating a classification for the i-th observation. We have
γ i = k, if xi belongs to the k-th component. In the mixture approach, the
number of observations in each component has a multinomial distribution
with sample size of n, and probability parameters given by πι  , ... , πc. 

Model-based agglomerative clustering is a way to approximately
maximize the classification likelihood. We start with singleton clusters
consisting of one point. The two clusters producing the largest increase in the
classification likelihood are merged at each step. This process continues until
all observations are in one group. Note that the form of the objective function
is adjusted as in Fraley [1998] to handle singleton clusters.

In theory, we could use any of the nine models in Table 6.1, but previous
research indicates that the unconstrained model (number 9) with
agglomerative model-based clustering yields reasonable initial partitions for
th e  EM  alg or ith m an d an y of  th e  models .  Th us ,  o ur  M ATLAB
implementation of agglomerative model-based clustering includes just the
unconstrained model. Fraley [1998] provides efficient algorithms for the four
basic models (1, 2, 6, 9) and shows how the techniques developed for these
can be extended to the other models.

Example 6.6
The function for agglomerative model-based clustering is called agmbclust.
It takes the data matrix X and returns the linkage matrix Z, which is in the
same form as the output from MATLAB’s linkage function. Thus, the
output from agmbclust can be used with other MATLAB functions that
expect this matrix. We will use the familiar iris data set for this example. 

% Load up the data and put into a data matrix.
load iris
X = [setosa; versicolor; virginica];
% Then call the function for agglomerative MBC.

CL θk γ i xi;,( ) fγ i
x i θγ i

;( )
i 1=

n

∏=
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Z = agmbclust(X);

We can show the results in a dendrogram, as in Figure 6.7 (top). Two groups
are obvious, but three groups might also be reasonable. We use the silhouette
function from the previous chapter to assess the partition for three groups.

% We can apply the silhouette procedure for this
% after we find a partition. Use 3 groups.
cind = cluster(Z,3);
[S,H] = silhouette(X,cind);

The silhouette plot is shown in Figure 6.7 (bottom). We see one really good
cluster (number three). The others have small values and even negative ones.
The average silhouette value is 0.7349.
❑ 

6.5 Model-Based Clustering

The model-based clustering framework consists of three major pieces:

1. Initialization of the EM algorithm using partitions from model-
based agglomerative clustering.

2. Maximum likelihood estimation of the parameters via the EM al-
gorithm.

3. Choosing the model and number of clusters according to the BIC
approximation of Bayes factors. 

We have already discussed the first two of these in detail, so we now turn our
attention to Bayes factors and the BIC. 

The Bayesian approach to model selection started with Jeffreys [1935,
1961]. Jeffreys developed a framework for calculating the evidence in favor
of a null hypothesis (or model) using the Bayes factor, which is the posterior
odds of one hypothesis when the prior probabilities of the two hypotheses
are equal [Kass and Raftery, 1995]. 

Let’s start with a simple two model case. We have our data X, which we
assume to have arisen according to either model M1 or M2. Thus, we have
probability densities p(X|M1) or p(X|M2) and prior probabilities p(M1) and
p(M2). From Bayes’ Theorem, we obtain the posterior probability of
hypothesis Mg given data X,

, (6.10)p Mg X( ) p Mg( )p X | Mg( )
p M1( )p X | M1( ) p M2( )p X | M2( )+
-----------------------------------------------------------------------------------------=
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FIGURE 6.7

The top figure is the dendrogram derived from agglomerative model-based clustering of
the iris data. We partition into three groups and then get their silhouette values. The
corresponding silhouette plot is shown in the bottom panel.
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for g = 1, 2. If we take the ratio of the two probabilities in Equation 6.10 for
each of the models, then we get

. (6.11)

The Bayes factor is the first factor in Equation 6.11:

.

If any of the models contain unknown parameters, then the densities
p(X|Mg) are obtained by integrating over the parameters. In this case, the
resulting quantity p(X|Mg) is called the integrated likelihood of model Mg.
This is given by

, (6.12)

for g = 1, ... , G.
The natural thing to do would be to choose the model that is most likely,

given the data. If the prior probabilities are equal, then this simply means that
we choose the model with the highest integrated likelihood p(X|Mg). This
procedure is relevant for model-based clustering, because it can be applied
when there are more than two models, as well as being a Bayesian solution
[Fraley and Raftery, 1998, 2002; Dasgupta and Raftery, 1998]. 

One of the problems with using Equation 6.12 is the need for the prior
probabilities p(θg|Mg). For models that satisfy certain regularity conditions,
the logarithm of the integrated likelihood can be approximated by the
Bayesian Information Criterion (BIC), given by

, (6.13)

where mg is the number of independent parameters that must be estimated
for model Mg. It is well known that finite mixture models fail to satisfy the
regularity conditions to make Equation 6.13 valid. However, previous
applications and studies show the use of the BIC in model-based clustering
produces reasonable results [Fraley and Raftery, 1998; Dasgupta and Raftery,
1998].

Now that we have all of the pieces of model-based clustering, we offer the
following procedure that puts it all together.

p M1 X( )
p M2 X( )
----------------------

p X | M1( )
p X | M2( )
------------------------

p M1( )
p M2( )
---------------×=

B12
p X | M1( )
p X | M2( )
------------------------=

p X | Mg( ) p X | θg Mg,( )p θg Mg( ) θgd∫=

p X | Mg( ) BICg 2 p X | θ̂g Mg,( )log mg n( )log–=≈
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Procedure - Model-Based Clustering

1. Using the unconstrained model, apply the agglomerative model-
based clustering procedure to the data. This provides a partition
of the data for any given number of clusters.

2. Choose a model, M (see Table 6.1).

3. Choose a number of clusters or component densities, c.
4. Find a partition with c groups using the results of the agglomerative

model-based clustering (step 1).

5. Using this partition, find the mixing coefficients, means, and
covariances for each cluster. The covariances are constrained
according to the model chosen in step 2. 

6. Using the chosen c (step 3) and the initial values (step 5), apply the
EM algorithm to obtain the final estimates.

7. Calculate the value of the BIC for this value of c and M:

,

where LM is the log likelihood, given the data, the model M, and the
estimated parameters .

 8. Go to step 3 to choose another value of c.
 9. Go to step 2 to choose another model M.

10. Choose the ‘best’ configuration (number of clusters c and form
for the covariance matrices) that corresponds to the highest BIC.

We see from this procedure that model-based clustering assumes various
models for the covariance matrices and numbers of clusters, performs the
cluster analysis, and then chooses the most likely clustering. So, it is an
exhaustive search over the space of models that are both interesting and
available. If we were interested in looking for 1 to C groups using all nine of
the models, then we would have to perform the procedure Cx9 times. As
one might expect, this can be computationally intensive. 

Example 6.7
We are going to use the iris data for this example, as well. The function
called mbclust invokes the entire model-based clustering procedure:
agglomerative model-based clustering, finite mixture estimation via the EM
algorithm, and evaluating the BIC. The outputs from this function are: (1) a
matrix of BIC values, where each row corresponds to a model, (2) a structure
that has fields representing the parameters (pies, mus, and vars) for the
best model, (3) a structure that contains information about all of the models
(more on this in the next example), (4) the matrix Z representing the

BICg 2LM X θ̂,( ) mg n( )log–=

θ̂
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agglomerative model-based clustering, and (5) a vector of group labels
assigned using the best model. 

load iris
data = [setosa;versicolor;virginica];
% Call the model-based clustering procedure with a
% maximum of 6 clusters.
[bics,bestmodel,allmodel,Z,clabs] = ...
    mbclust(data,6);

We can plot the BIC curves using plotbic, as follows 

% Display the BIC curves.
plotbic(bics)

This is given in Figure 6.8. We see that the best model yielding the highest BIC
value is for two clusters. We know that there are three groups in this data set,
but two of the clusters tend to overlap and are hard to distinguish. Thus, it is
not surprising that two groups were found using model-based clustering. As
stated earlier, the EM algorithm can diverge so the covariance matrix can
become singular. In these cases, the EM algorithm is stopped for that model,
so you might see some incomplete BIC curves. 
❑ 

FIGURE 6.8

This shows the BIC curves for the model-based clustering of the iris data. We see that the
highest BIC corresponds to model 9 and 2 groups.
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The model-based clustering procedure we just outlined takes us as far as
the estimation of a finite mixture probability density. Recall, that in this
framework for cluster analysis, each component of the density provides a
template for a cluster. Once we have the best model (number of clusters and
form of the covariance matrices), we use it to group data based on their
posterior probability. It makes sense to label an observation according to its
highest posterior probability:

.

In other words, we find the posterior probability that the i-th observation
belongs to each of the component densities. We then say that it belongs to the
cluster with the highest posterior probability. One benefit of using this
approach is that we can use the quantity  as a measure of the
uncertainty in the classification [Bensmail, et al. 1997].

Example 6.8
Returning to the results of the previous example, we show how to use some
of the other outputs from mbclust. We know that the iris data has three
groups. First, let’s see how we can extract the model for three groups,
model 9. We can do this using the following syntax to reference it:

allmodel(9).clus(3)

The variable allmodel is a structure with one field called clus . It
(allmodel) has nine records, one for each model. The field clus is another
structure. It has maxclus records and three fields: pies, mus, and vars. To
obtain the group labels according to this model, we use the mixclass
function. This requires the data and the finite mixture parameters for the
model. 

% Extract the parameter information:
pies = allmodel(9).clus(3).pies;
mus = allmodel(9).clus(3).mus;
vars = allmodel(9).clus(3).vars;

Now we can group the observations.

% The mixclass function returns group labels
% as well as a measure of the uncertainty in the
% classification.
[clabs3,unc] = mixclass(data,pies,mus,vars);

We can assess the results, as before, using the silhouette function.

% As before, we can use the silhouette procedure
% to assess the cluster results.
[S, H] = silhouette(data,clabs3);

 j τ̂ ij
* maxk τ̂ i k={ }

1 maxk τ̂ ik–
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title('Iris Data - Model-Based Clustering')

The average silhouette value is 0.6503, and the silhouette plot is shown in
Figure 6.9. The reader is asked in the exercises to explore the results of the two
cluster case with the best model in a similar manner. 
❑ 

6.6 Generating Random Variables from a Mixture Model

In many situations, one might be interested in generating data from one of
the finite mixture models discussed in this chapter. Of course, we could
always do this manually using a multivariate normal random number
generator (e.g., mvnrnd in the MATLAB Statistics Toolbox), but this can be
tedious to use in the case of mixtures. So, we include a useful GUI tool called
genmix that generates data according to a finite mixture. 

The GUI is invoked by typing genmix at the command line. A screen shot
is shown in Figure 6.10. The steps for entering the required information are
listed on the left-side of the GUI window. We outline them below and briefly
describe how they work. 

FIGURE 6.9

This is the silhouette plot showing the results of the model-based clustering, model 9, three
clusters. 
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FIGURE 6.10

This shows the genmix GUI. The steps that must be taken to enter the parameter information
and generate the data are shown on the left side of the window. 

FIGURE 6.11

This shows the pop-up window for entering 2-D means and for the two components or
terms in the finite mixture.
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Step 1: Choose the number of dimensions.

This is a pop-up menu. Simply select the number of dimensions
for the data.

Step 2: Enter the number of observations.

Type the total number of points in the data set. This is the value
for n in Equation 6.4.

Step 3: Choose the number of components.

This is the number of terms or component densities in the mixture.
This is the value for c in Equations 6.2 and 6.4. Note that one can
use this GUI to generate a finite mixture with only one component,
which can be useful in other applications. 

Step 4: Choose the model.

Select the model for generating the data. The model numbers
correspond to those described in Table 6.1. The type of covariance
information you are required to enter depends on the model you
have selected here.

Step 5: Enter the component weights, separated by
commas or blanks.

Enter the corresponding weights (πk) for each term. These must be
separated by commas or spaces, and they must sum to 1.

Step 6: Enter the means for each component-push
button. 

Click on the button Enter means... to bring up a window for
entering the p-dimensional means, as shown in Figure 6.11. There
will be a different number of text boxes in the window, depending
on the number of components selected in Step 3. Note that you
must have the right number of values in each text box. In other
words, if you have dimensionality p = 3 (Step 1), then each mean
requires 3 values. If you need to check on the means that were
used, then you can click on the View Current Means button.
The means will be displayed in the MATLAB command window. 

Step 7: Enter the covariance matrices for each
component - push button.

Click on the button Enter covariance matrices... to activate
a pop-up window. You will get a different window, depending on
the chosen model (Step 4). See Figure 6.12 for examples of the
three types of covariance matrix input windows. As with the
means, you can push the View Current Covariances button to
view the covariance matrices in the MATLAB command window. 

Step 8: Push the button to generate random variables.

After all of the variables have been entered, push the button labeled
Generate RVs... to generate the data set.
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Once the variables have been generated, you have several options. The
data can be saved to the workspace using the button Save to Workspace.
When this is activated, a pop-up window appears, and you can enter a
variable name in the text box. The data can also be saved to a text file for use
in other software applications by clicking on the button Save to File. This
brings up the usual window for saving files. An added feature to verify the
output is the Plot Data button. The generated data are displayed in a
scatterplot matrix (using the plotmatrix function) when this is pushed. 

(a) This shows the pop-up window(s) for the spherical family of models. The only value that
must be entered for each covariance matrix is the volume λ.

(b) This shows the pop-up window(s) for the diagonal family of models. One needs to enter
the volume λ (first text box) and the diagonal elements of the matrix B (second text box). 

(c) When the general family is selected, one of these pop-up windows will appear for each
unique covariance matrix. Each text box corresponds to a row of the covariance matrix.

FIGURE 6.12

Here we have examples of the covariance matrix inputs for the three families of models.
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6.7 Summary and Further Reading

In this chapter, we have described another approach to clustering that is
based on estimating a finite mixture probability density function. Each
component of the density function represents one of the groups, and we can
use the posterior probability that an observation belongs to the component
density to assign group labels. The model-based clustering methodology
consists of three main parts: (1) model-based agglomerative clustering to
obtain initial partitions of the data, (2) the EM algorithm for maximum
likelihood estimation of the finite mixture parameters, and (3) the BIC for
choosing the best model.

Several excellent books are available on finite mixtures. Everitt and Hand
[1981] is a short monograph that includes many applications for researchers.
McLachlan and Basford [1988] is more theoretical, as is Titterington, Smith
and Makov [1985]. McLachlan and Peel [2000] contains a more up-to-date
treatment of the subject. They also discuss the application of mixture models
to large databases, which is of interest to practitioners in EDA and data
mining. Most books on finite mixtures also include information on the EM
algorithm, but they also offer other ways to estimate the density parameters.
McLachlan and Krishnan [1997] is one book that provides a complete account
of the EM, including theory, methodology, and applications. Martinez and
Martinez [2002] includes a description of the univariate and multivariate EM
algorithm for finite mixtures, as well as a way to visualize the estimation
process.

The EM algorithm described in this chapter is sometimes called the iterative
EM. This is because it operates in batch mode; all data must be available for
use in the update equations at each step. This imposes a high computational
burden and storage load when dealing with massive data sets. A recursive
form of the EM algorithm exists and can be used in an on-line manner. See
Martinez and Martinez [2002] for more information on this algorithm and its
use in MATLAB. 

Celeux and Govaert [1995] present the complete set of models and
associated procedures for obtaining the parameters in the EM algorithm
when the covariances are constrained (multivariate normal mixtures). They
also address the restricted case, where mixing coefficients are equal. We
looked only at the unrestricted case, where these are allowed to vary. 

There are many papers on the model-based clustering methodology,
including interesting applications. Some examples include minefield
detection [Dasgupta and Raftery, 1998], detecting faults in textiles [Campbell,
et al., 1997, 1999], classification of gamma rays in astronomy [Mukherjee, et.
al, 1998], and analyzing gene expression data [Yeung, et al., 2001]. One of the
issues with agglomerative model-based clustering is the computational load
with massive data sets. Posse [2001] proposes a starting partition based on
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minimal spanning trees, and Solka and Martinez [2004] describe a method for
initializing the agglomerative model-based clustering using adaptive
mixtures. Further extensions of model-based clustering for large data sets can
be found in Wehrens, et al. [2003] and Fraley, Raftery and Wehrens [2003].
Two review papers on model-based clustering are Fraley and Raftery [1998,
2002].

Other methods for choosing the number of terms in finite mixtures have
been offered. We provide just a few references here. Banfield and Raftery
[1993] use an approximation to the integrated likelihood that is based on the
classification likelihood. This is called the AWE, but the BIC seems to perform
better. An entropy criterion called the NEC (normalized entropy criterion)
has been described by Biernacki and Govaert [1997] and Biernacki, et al.
[1999]. Bensmail, et al. [1997] provide an approach that uses exact Bayesian
inference via Gibbs sampling. Chapter 6 of McLachlan and Peel [2000]
provides a comprehensive treatment of this issue.

Additional software is available for model-based clustering. One such
package is MCLUST, which can be downloaded at

http://www.stat.washington.edu/mclust/

MCLUST is compatible with S-Plus and R.3 Fraley and Raftery [1999, 2002,
2003] provide an overview of the MCLUST software. McLachlan, et al. [1999]
wrote a software package called EMMIX that fits mixtures of normals and t-
distributions. The website for EMMIX is

http://www.maths.uq.edu.au/~gjm/emmix/emmix.html

Exercises

6.1 Apply model-based agglomerative clustering to the oronsay data
set. Use the gap statistic to choose the number of clusters. Evaluate the
partition using the silhouette plot and the Rand index.

6.2 Use the model-based clustering on the oronsay data. Apply the gap
method to find the number of clusters for one of the models. Compare
the gap estimate of the number of clusters to what one gets from the
BIC.

6.3 Repeat the procedure in Example 6.1 for component densities that
have closer means. How does this affect the resulting density
function?

6.4 Construct another univariate finite mixture density, as in Example 6.1,
using a mixture of univariate exponentials.

3 See Appendix B for information on the R language.
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6.5 Cluster size and volume are not directly related. Explain how they are
different. In the finite mixture model, what parameter is related to
cluster size? 

6.6 Write a MATLAB function that will return the normal probability
density function for the univariate case:

.

Use this in place of normpdf and repeat Example 6.1.
6.7 Apply model-based agglomerative clustering to the following data

sets. Display in a dendrogram. If necessary, first reduce the
dimensionality using a procedure from Chapters 2 and 3.
a. skulls

b. sparrow
c. oronsay (both classifications)

d. BPM data sets
e. gene expression data sets

6.8 Generate data according to the remaining six models of Table 6.1 that
are not demonstrated in this text. Display the results using
plotmatrix.

6.9 Return to the iris data in Example 6.6. Try two and four clusters
from the agglomerative model-based clustering. Assess the results
using the silhouette procedure.

6.10 The NEC is given below. Implement this in MATLAB and apply it to
the models in Example 6.7. This means that instead of a matrix of BIC
values, you will have a matrix of NEC values (i.e., one value for each
model and number of clusters). Are the results different with respect
to the number of clusters chosen for each model? For  we
have,

This is a decomposition of the log-likelihood L(K) into a classification
log-likelihood term C(K) and the entropy E(K) of the classification
matrix with terms given by . The NEC is given by

f x µ σ,;( ) 1

σ 2π
------------- x µ–( )2

2σ2
-------------------–

 
 
 

exp=

1 k K≤ ≤

L K( ) C K( ) E K( )+=

C K( ) τ̂ ik π̂kf x i θ̂k;( )[ ]ln
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∑
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.

One chooses the K that corresponds to the minimum value of the NEC. 
6.11 Apply the NEC to the clustering found in problem 6.2. How does the

NEC estimate of the number of clusters compare with the gap
estimate?

6.12 Apply other types of agglomerative clustering (e.g., different
distances and linkage) to the iris data. Assess the results using three
clusters and the silhouette function. Compare with the model-
based agglomerative clustering results in Example 6.6. Also visually
compare your results via the dendrogram.

6.13 Generate random variables according to the different models in
Table 6.1. Use n = 300, p = 2, c = 2. Apply the model-based clustering
procedure. Is the correct model (number of terms and form of
covariance matrix) recovered?

6.14 Repeat Example 6.5 for a larger sample size. Are the parameter
estimates closer to the true ones?

6.15 Repeat Example 6.8 using the best model, but the two cluster case.
Compare and discuss your results.

6.16 Generate bivariate random samples according to the nine models.
Apply model-based clustering and analyze your results.

6.17 Apply the full model-based clustering procedure to the following
data sets. If necessary, first reduce the dimensionality using one of the
procedures from Chapters 2 and 3. Assess your results using methods
from Chapter 5.
a. skulls
b. sparrow

c. oronsay (both classifications)
d. BPM data sets

e. gene expression data sets

NEC K( ) E K( )
L K( ) L 1( )–
------------------------------= K 1>

NEC 1( ) 1=
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Chapter 7
Smoothing Scatterplots

In many applications, we might make distributional and model assumptions
about the underlying process that generated the data, so we can use a
parametric approach in our analysis. The parametric approach offers many
benefits (known sampling distributions, lower computational burden, etc.),
but can be dangerous if the assumed model is incorrect. At the other end of
the data-analytic spectrum, we have the nonparametric approach, where one
does not make any formal assumptions about the underlying structure or
process. When our goal is to summarize the relationship between variables,
then smoothing methods are a bridge between these two approaches.
Smoothing methods make the weak assumption that the relationship
between variables can be represented by a smooth curve or surface. In this
chapter, we cover the loess method for scatterplot smoothing and its various
extensions. Spline smoothing is briefly discussed at the end in conjunction
with the Curve Fitting Toolbox from The MathWorks. 

7.1 Introduction

In most, if not all, scientific experiments and analyses, the researcher must
summarize, interpret and/or visualize the data to gain insights, to search for
patterns, and to make inferences. For example, with some gene expression
data, we might be interested in the distribution of the gene expression values
for a particular patient or experimental condition, as this might indicate what
genes are most active. We could use a probability density estimation
procedure for this purpose. Another situation that often arises is one in which
we have a response y and a predictor x, and we want to understand and
model the relationship between the y and x variables. 

The main goal of smoothing from an EDA point of view is to obtain some
insights into how data are related to one another and to search for patterns.
This idea has been around for many years, especially in the area of smoothing
time series data, where data are measured at equally spaced points in time.
Readers might be familiar with some of these methods, such as moving
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averages, exponential smoothing, and other specialized filtering techniques
using polynomials. 

The loess procedures described in this chapter obtain the smooths by
performing local regression in a moving neighborhood that is analogous to
the moving average in time series analysis. The main loess procedures for 2-
D and multivariate data are presented first, followed by a robust version to
counter the effect of outliers. We then proceed to a discussion of residuals and
diagnostic plots that can be used to assess the results of loess smoothing.
Cleveland and McGill [1984] developed some extensions of the loess
scatterplot smoothing to look for relationships in the bivariate distribution of
x and y called pairs of middle smoothings and polar smoothings, which are
covered next. Smoothing via loess and other techniques is available in the
MATLAB Curve Fitting toolbox, so we finish the chapter with a brief section
that describes the functions provided in this optional toolbox.

7.2 Loess

Loess (also called lowess in earlier works) is a locally weighted regression
procedure for fitting a regression curve (or surface) by smoothing the
dependent variable as a function of the independent variable. The
framework for loess is similar to what is commonly used in regression. We
have n measurements of the dependent variable yi, and associated with each
yi is a corresponding value of the independent variable xi. For now, we
assume that our dimensionality is p = 1; the case of multivariate predictor
variables x is covered next. 

We assume that the data are generated by

,

where the ε i are independent normal random variables with mean zero and
variance σ 2. In the classical regression (or parametric) framework, we would
assume that the function g belongs to a class of parametric functions, such as
polynomials. With loess or local fitting, we assume that g is a smooth function
of the independent variables, and our goal is to estimate this function g. The
estimate is denoted as , a plot of which can be added to our scattterplot for
EDA purposes or it can be used to make predictions of our response variable.
The point denoted by the ordered pair  is called the smoothed point
at a point in our domain x0, and  is the corresponding fitted value.

The curve obtained from a loess model is governed by two parameters: α
and λ. The parameter α is a smoothing parameter that governs the size of the
neighborhood; it represents the proportion of points that are included in the
local fit. We restrict our attention to values of α between zero and one, where

yi g xi( ) ε i+=

ŷ

x0 ŷ0,( )
ŷ0
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high values for α yield smoother curves. Cleveland [1993] addresses the case
where α is greater than one. The second parameter λ determines the degree
of the local regression. Usually, a first or second degree polynomial is used,
so λ = 1 or λ = 2, but higher degree polynomials can be used. Some of the
earlier work in local regression used λ = 0, so a constant function was fit in
each neighborhood [Cleveland and Loader, 1996]. 

The general idea behind loess is the following. To get a value of the curve
 at a given point x0, we first determine a local neighborhood of x0 based on

α  . All points in this neighborhood are weighted according to their distance
from x0, with points closer to x0 receiving larger weight. The estimate  at x0

is obtained by fitting a linear or quadratic polynomial using the weighted
points in the neighborhood. This is repeated for a uniform grid of points x in
the domain to get the desired curve. 

The reason for using a weighting function is that only points close to x0 will
contribute to the regression, since they should be a ‘truer’ indication of the
relationship between the variables in the neighborhood of x0. The weight
function W should have the following properties:

1. W(x) > 0 for |x| < 1
2. W(–x) = W(x)

3. W(x) is a nonincreasing function for 
4. W(x) = 0 for 

The basic idea is, for each point x0 where we want to get a smoothed value ,
we define weights using the weight function W. We center the function W at
x0 and scale it so that W first becomes zero at the k-th nearest neighbor of x0.
As we will see shortly, the value for k is governed by the parameter α .

We use the tri-cube weight function in our implementation of loess. Thus,
the weight wi (x0) at x0 for the i-th data point xi is given by the following

, (7.1)

with 

(7.2)

The denominator ∆k (x0) is defined as the distance from x0 to the k-th nearest
neighbor of x0, where k is the greatest integer less than or equal to αxn. We
denote the neighborhood of x0 as N(x0). The tri-cube weight function is
illustrated in Figure 7.1. 

ŷ0

ŷ0

x 0≥
x 1≥

ŷ0

wi x0( ) W
x0 xi–
∆k x0( )
------------------ 
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In step 6 of the loess procedure outlined below, one can fit either a straight
line to the weighted points (xi , yi), for xi in the neighborhood N(x0), or a
quadratic polynomial can be used (in our implementation). If a line is used as
the local model, then λ = 1. The values of β0 and β1 are found such that the
following is minimized

, (7.3)

for (xi , yi), with xi in N(x0). Letting  and  be the values that minimize
Equation 7.3, the loess fit at x0 is given by

. (7.4)

When λ = 2, then we fit a quadratic polynomial using weighted least-squares,
again using only those points in N(x0). In this case, we find the values for the
βi that minimize

. (7.5)

FIGURE 7.1

This is the tri-cube weight function.
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Similar to the linear case, if , , and  minimize Equation 7.5, then the
loess fit at x0 is

. (7.6)

For more information on weighted least squares see Draper and Smith [1981].
We describe below the steps for obtaining a loess curve, which is illustrated

in Figure 7.2. Using a set of generated data, we show the loess fit for a given
point x0. The top panel shows the linear fit in the neighborhood of x0, and the
bottom panel shows the quadratic fit. The open circle on the respective curves
is the smoothed value at that point. 

Procedure - Loess Curve Construction

1. Let xi denote a set of n values for a predictor variable and let yi

represent the corresponding response.
2. Choose a value for α such that 0 < α < 1. Let , where

k is the greatest integer less than or equal to αxn. 

3. For each x0 where we want to obtain an estimate of the smooth ,
find the k points xi in the data set that are closest to x0. These xi

comprise a neighborhood of x0, and this set is denoted by N(x0).
4. Compute the distance of the xi in N(x0) that is furthest away from

x0 using

.

5. Assign a weight to each point (xi , yi), xi in N(x0), using the tri-cube
weight function (Equations 7.1 and 7.2).

6. Obtain the value  of the curve at the point x0 for the given λ using
a weighted least squares fit of the points xi in the neighborhood
N(x0). (See Equations 7.3 through 7.6.)

7. Repeat steps 3 through 6 for all x0 of interest.

We illustrate the loess procedure for univariate data in Example 7.1 using a
well-known data set discussed in the loess literature [Cleveland and Devlin,
1988; Cleveland and McGill, 1984; Cleveland, 1993]. This data set contains 111
measurements of  four  var iables ,  represent ing  ozone an d other
meteorological data. They were collected during May 1 and September 30,
1973 at various sites in the New York City region. The goal is to describe the
relationship between ozone (PPB) and the meteorological variables (solar
radiation measured in Langleys, temperature in degrees Fahrenheit, and
wind speed in MPH) so one might predict ozone concentrations.

β̂0 β̂1 β̂2

ŷ x0( ) β̂0 β̂1x0 β̂2x0
2+ +=

k α n×=

ŷ0

∆k x0( ) maxxi N0∈ x0 xi–=

ŷ0
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FIGURE 7.2

The top panel shows the local fit at a point x0 = 25, with λ = 1 and α = 0.5. The vertical lines
indicate the limits of the neighborhood. The second panel shows the local fit at x0, where
λ = 2 and α = 0.7. The point  is the open circle on the curves.
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Example 7.1
We illustrate the univariate loess procedure using the ozone concentration as
our response variable (y) and the temperature as our predictor variable (x).
The next few lines of MATLAB code load the data set and display the
scatterplot shown in Figure 7.3. 

load environmental
% This has all four variables. We will
% use the ozone as the response and
% temperature as the predictor.
% First do a scatterplot
plot(Temperature,Ozone,'.')
xlabel('Temperature (Fahrenheit)')
ylabel('Ozone (PPB)')

We see in the scatterplot that the ozone tends to increase when the
temperature increases, but the appropriate type of relationship for these data
is not clear. We show how to use the loess procedure to find the estimate of
the ozone level for a given temperature of 78 degrees Fahrenheit. First, we
find some of the parameters.

n = length(Temperature); % Number of points
% Find the estimate at this point:
x0 = 78; 

FIGURE 7.3

This is the scatterplot for ozone as it depends on temperature. We see that, in general, the
ozone increases as temperature increases. 
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% Set up the other constants:
alpha = 2/3;
lambda = 1;
k = floor(alpha*n);

Next, we find the neighborhood at x0 = 78.

% First step is to get the neighborhood. 
dist = abs(x0 - Temperature);
% Find the closest distances.
[sdist,ind] = sort(dist);
% Get the points in the neighborhood.
Nx = Temperature(ind(1:k));
Ny = Ozone(ind(1:k));
% Maximum distance of neighborhood:
delxo = sdist(k); 

We now (temporarily) delete all of the points outside the neighborhood and
use the remaining points as input to the tri-cube weight function.

% Delete the ones outside the neighborhood.
sdist((k+1):n) = []; 
% These are the arguments to the weight function.
u = sdist/delxo;
% Get the weights for all points in the neighborhood.
w = (1 - u.^3).^3;

The next section of code prepares the matrix for use in the weighted least
squares regression (see Draper and Smith [1981]). In other words, we have
the values for the xi, but we need a matrix where the first column contains
ones, the second contains the xi, and the third contains  (in the case of λ =
2).

% Now using only those points in the neighborhood,
% do a weighted least squares fit of degree lambda.
% We will follow the procedure in 'polyfit'.
x = Nx(:); y = Ny(:); w = w(:);
% Get the weight matrix
W = diag(w);
% Get the right matrix form: 1, x, x^2.
A = vander(x);
A(:,1:length(x)-lambda-1) = [];
V = A'*W*A;
Y = A'*W*y;
[Q,R] = qr(V,0); 
p = R\(Q'*Y); 
% The following is to fit MATLAB's convention
% for polynomials
p = p';

xi
2
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Now that we have the polynomial for the fit, we can use the MATLAB
function polyval to get the value of the loess smooth at 78 degrees.

% This is the polynomial model for the local fit.
% To get the value at that point, use polyval.
yhat0 = polyval(p,x0);

We obtain a value of 33.76 PPB at 78 degrees. The following lines of code
produce a loess smooth over the range of temperatures and superimposes the
curve on the scatterplot. The loess function is included with the EDA
Toolbox.

% Now call the loess function and plot the result.
% Get a domain over which to evaluate the curve.
X0 = linspace(min(Temperature),max(Temperature),50);
yhat = loess(Temperature,Ozone,X0,alpha,lambda);
% Plot the results.
plot(Temperature,Ozone,'.',X0,yhat)
xlabel('Temp (Fahrenheit)'),ylabel('Ozone (PPB)')

The resulting scatterplot with loess smooth is shown in Figure 7.4. It should
be noted that we could use the loess function to get the estimated value of
ozone at 78 degrees only, using

yhat0 = loess(Temperature,Ozone,78,alpha,lambda);

❑ 

Some readers might wonder where the word loess comes from. In geology,
loess is defined as a deposit of fine clay or silt in river valleys. If one takes a
vertical cross-section of the earth in such a place, then a loess would appear
as curved strata running through the cross-section. This is similar to what one
sees in the plot of the loess smooth in a scatterplot.

We now turn our attention to the multivariate case, where our predictor
variables x have p > 1 dimensions. The procedure is essentially the same, but
the weight function is defined in a slightly different way. We require a
distance function in the space of independent variables, which in most cases
is taken to be Euclidean distance. As discussed in Chapter 1, it might make
sense to divide each of the independent variables by an estimate of its scale
before calculating the distance. 

Now that we have the distance, we define the weight function for a p-
dimensional point x0 as

,

where d(•) represents our distance function and  is the distance
between the k-th nearest neighbor to x0 using the same definition of distance.
W is the tri-cube function, as before. Once we have the weights, we construct

wi x0( ) W
d x0 x i,( )

∆k x0( )
---------------------- 

 =

∆k x0( )
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either a multivariate linear or multivariate quadratic fit in the neighborhood
of x0. Linear fits are less of a computational burden, but quadratic fits perform
better in applications where the regression surface has a lot of curvature. The
Visualizing Data Toolbox (may be downloaded for free) described in
Appendix B contains a function for producing loess smooths for bivariate
predictors. We illustrate its use in the next example.

Example 7.2
For this example, we use the galaxy data set that was analyzed in Cleveland
and Devlin [1988]. Buta [1987] measured the velocity of the NGC 7531 spiral
galaxy in the Southern Hemisphere at a set of points in the celestial sphere
that covered approximately 200 arc sec in the north/south direction and
around 135 arc sec in the east/west direction. As usual, we first load the data
and set some parameters.

% First load the data and set some parameters.
load galaxy
% The following is for the contour plot.
contvals = 1420:30:1780;
% These are the parameters needed for loess.
alpha = 0.25;
lambda = 2;

FIGURE 7.4

This shows the scatterplot of ozone and temperature along with the accompanying loess
smooth.
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Next we get some (x , y) points in the domain. We will get the estimated
surface using loess at these points. Then we call the loess2 function, which
was downloaded as part of the Data Visualization Toolbox.

% Now we get the points in the domain.
% The loess surface will be evaluated
% at these points.
XI = -25:2:25;
YI = -45:2:45;
[newx,newy] = meshgrid(XI,YI);
newz = loess2(EastWest,NorthSouth,...
    Velocity,newx,newy,alpha,lambda,1);

To plot this in a contour plot, we use the following. The plot is shown in
Figure 7.5. 

% Now do the contour plot and add labels.
[cs,h] = contour(newx,newy,newz,contvals);
clabel(cs,h)
xlabel('East-West Coordinate (arcsec)')
ylabel('North-South Coordinate (arcsec)')

❑

We now discuss some of the issues for choosing the parameters for loess.
These include the order λ of the polynomial that is estimated at each point of
the smooth, the weight function W, and the smoothing parameter α . We have

FIGURE 7.5

This is the contour plot showing the loess surface for the galaxy data.
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already touched on some of the issues with the degree of the polynomial.
Any degree polynomial λ = 0, 1, 2, ... can be used. λ = 0 provides a constant
fit, but this seems too restrictive and the resulting curves/surfaces could be
too rough. λ = 1 is adequate in most cases and is better computationally, but
λ = 2 should be used in situations where there is a lot of curvature or many
local maxima and minima. 

As for the function W, we return to the four conditions specified previously.
The first condition states that the weights must be positive, because negative
weights do not make sense. The second requirement says that the weight
function must be symmetric and that points to any side of x0 should be
treated the same way. The third property provides greater weight for those
that are closer to x0. The last property is not required, although it makes
things simpler computationally. We save on computations if the weights
outside the neighborhood are zero, because those observations do not have
to be included in the least squares (see the indices on the summations in
Equations 7.3 and 7.5 – they only go up to k, not n). We could use a weight
function that violates condition four, such as the normal probability density
function, but then we would have to include all n observations in the least
squares fit at every point of the smooth.

Perhaps the hardest parameter to come up with is the smoothing
parameter α . If α is small, then the loess smooth tends to be wiggly and to
overfit the data (i.e., the bias is less). On the other hand, if α is large, then the
curve is smoother (i.e., the variance is less). In EDA, where the main purpose
of the smooth is to enhance the scatterplot and to look for patterns, the choice
of α is not so critical. In these situations, Cleveland [1979] suggests that one
choose α in the range 0.2 to 0.8. Different values for α (and λ)  could be used
to obtain various loess curves. Then the scatterplot with superimposed loess
curve and residuals plots (discussed in Section 7.4) can be examined to
determine whether or not the model adequately describes the relationship. 

7.3 Robust Loess

The loess procedure we described in the previous section is not robust,
because it relies on the method of least squares for the local fits. A method is
called robust if it performs well when the associated underlying assumptions
(e.g., normality) are not satisfied [Kotz and Johnson, Vol. 8, 1986]. There are
many ways in which assumptions can be violated. A common one is the
presence of outliers or extreme values in the response data. These are points
in the sample that deviate from the pattern of the other observations. Least
squares regression is vulnerable to outliers, and it takes only one extreme
value to unduly influence the result. The nonrobustness of least squares will
be illustrated and explored in the exercises.
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Cleveland [1993, 1979] and Cleveland and McGill [1984] present a method
for smoothing a scatterplot using a robust version of loess. This technique
uses the bisquare method [Hoaglin, Mosteller and Tukey, 1983; Mosteller and
Tukey, 1977; Huber, 1973; Andrews, 1974] to add robustness to the weighted
least squares step in loess. The idea behind the bisquare is to re-weight points
based on their residuals. If the residual for a given point in the neighborhood
is large (i.e., it has a large deviation from the model), then the weight for that
point should be decreased, since large residuals tend to indicate outlying
observations. Alternatively, if the point has a small residual, then it should be
weighted more heavily.

Before showing how the bisquare method can be incorporated into loess,
we first describe the general bisquare least squares procedure. First a linear
regression is used to fit the data, and the residuals  are calculated from

. (7.7)

The residuals are used to determine the weights from the bisquare function
given by

(7.8)

The robustness weights are obtained from

 , (7.9)

where  is the median of . A weighted least squares regression is
performed using weights adjusted by .

To add bisquare to loess, we first fit the loess smooth, using the same
procedure as before. We then calculate the residuals using Equation 7.7 and
determine the robust weights from Equation 7.9. The loess procedure is
repeated using weighted least squares, but the weights are now .
Note that the points used in the fit are the ones in the neighborhood of , as
before. This is an iterative process and is repeated until the loess curve
converges or stops changing. Cleveland and McGill [1984] suggest that two
or three iterations are sufficient to get a reasonable model.

Procedure - Robust Loess

1. Fit the data using the loess procedure with weights .

2. Calculate the residuals, , for each observation.

ε̂ i

ε̂ i yi ŷi–=

B u( ) 1 u2–( )2
; u 1<

0; otherwise.



=

ri B
ε̂ i

6q̂0.5

-----------
 
 
 

=

q̂0.5 ε̂ i

ri

riwi x0( )
x0

wi

ε̂ i yi ŷi–=

EDA.book  Page 209  Monday, October 18, 2004  8:33 AM
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3. Determine the median of the absolute value of the residuals, .
4. Find the robustness weights from

 ,

using the bisquare function in Equation 7.8.

5. Repeat the loess procedure using weights of .
6. Repeat steps 2 through 5 until the loess curve converges.

In essence, the robust loess iteratively adjusts the weights based on the
residuals. We illustrate the robust loess procedure in the next example, noting
that while our example for robust loess involves only one predictor variable,
we can easily apply it to the multivariate case. 

Example 7.3
We now illustrate the robust loess using an example from Simonoff [1996].
The data represent the size of the annual spawning stock (x values) and the
corresponding production of new fish of catchable size, called recruits (y
values). The observations (in thousands of fish) were taken for the Skeena
River sockeye salmon from 1940 to 1967. We provide a function called
loessr that implements the procedure outlined above, and its use is shown
below.

% Load the data and set the values
% for x and y.
load salmon
x = salmon(:,1);
y = salmon(:,2);
% Obtain a domain over which to get
% the loess curve.
xo = linspace(min(x),max(x));
% Get both the regular loess.
yhat = loess(x,y,xo,0.6,2);
% Get the robust loess curve.
yhatr = loessr(x,y,xo,0.6,2);
% Plot both curves.
plot(xo,yhat,'-',xo,yhatr,':',x,y,'o')
legend({'Loess';'Robust Loess'})
xlabel('Spawners')
ylabel('Recruits')

q̂0.5

ri B
ε̂ i

6q̂0.5

-----------
 
 
 

=

riwi
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The curves are shown in Figure 7.6, where we see a potential outlier in the
upper right area of the plot. The robust loess curve is different in the area
influenced by this observation.
❑ 

7.4 Residuals and Diagnostics

In this section, we address several ways to assess the output from the loess
scatterplot smooth, which can also be used to guide the analyst in choosing
the values for α and λ. Since we are concerned with EDA methods in this text,
we will cover only the graphical methods, such as residual plots, spread
smooths, and upper/lower loess smooths. Cleveland and Devlin [1988]
describe several statistics that are defined analogously with those used in
fitting parametric functions by least squares, so some of the familiar
techniques for making inferences in that setting can also be used in loess.
Among other things, Cleveland and Devlin describe distributions of
residuals, fitted values, and residual sum of squares.

FIGURE 7.6

This shows the regular and robust loess curves for the salmon data. We fit a locally quadratic
polynomial with α = 0.6. Note the potential outlier in the upper right corner. The robust
loess fit downweights the effect of this observation. 
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212 Exploratory Data Analysis with MATLAB

7.4.1 Residual Plots

It is well known in regression analysis that checking the assumptions made
about the residuals is important [Draper and Smith, 1981]. This is equally
important in smoothing using loess, and we can use similar diagnostic plots.
Recall that the true error ε i is assumed to be normally distributed with mean
zero and equal variance, and that the estimated residuals (or errors) are given
by

.

We can construct a normal probability plot to determine whether the
normality assumption is reasonable. We describe normal probability plots in
more detail in Chapter 9 and just mention them here in the context of loess.
The normal probability plot can be used when we have just one predictor or
many predictors. One could also construct a histogram of the residuals to
visually assess the distribution.

To check the assumption of constant variance, we can plot the absolute
value of the residuals against the fitted values or . Here we expect to see a
horizontal band of points with no patterns or trends. 

Finally, to see if there is bias in our estimated curve, we can graph the
residuals against the independent variables, where we would also expect to
see a horizontal band of points. This is called a residual dependence plot
[Cleveland, 1993]. If we have multiple predictors, then we can construct one
of these plots for each variable. As the next example shows, we can enhance
the diagnostic power of these scatterplots by superimposing a loess smooth.

Example 7.4
We turn to the software inspection data that was described in Chapter 1 to
illustrate the various residual plots. Here we are interested in determining
the relationship between the number of defects found as a function of the
time spent inspecting the code or document. We have data that consists of 491
observations, with the x value representing the preparation or inspection
time per page, and the response y is the number of defects found per page.
After loading the data, we transform it because both variables are skewed.
The initial scatterplot of the transformed data is shown in Figure 7.7, where
we see that the relationship between the variables seems to be roughly linear. 

load software
% Transform the data.
X = log(prepage);
Y = log(defpage);
% Get an initial plot.
plot(X,Y,'.')
xlabel('Log [ PrepTime (mins) / Page ]')

ε̂ i yi ŷi–=

ŷi
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ylabel('Log [ Defects / Page ]')

Next we set up the parameters (α = 0.5, λ = 2) for a loess smooth and show
the smoothed scatterplot in Figure 7.8. 

% Set up the parameters.
alpha = 0.5;
lambda = 2;
% Do the loess on this. 
x0 = linspace(min(X),max(X));
y0 = loess(X,Y,x0,alpha,lambda);
% Plot the curve and scatterplot.
plot(X,Y,'.',x0,y0)
xlabel('Log[PrepTime (mins)/Page]')
ylabel('Log[Defects/Page]')

We can assess our results by looking at the residual plots. First we find the
residuals and plot them in Figure 7.9 (top), where we see that they are
roughly symmetric about zero. Then we plot the absolute value of the
residuals against the fitted values (Figure 7.9 (bottom)). A loess smooth of
these observations show that the variance does not seem to be dependent on
the fitted values. 

% Get the residuals. 
% First find the loess values at the observed X values.

FIGURE 7.7

This is the scatterplot of observations showing the number of defects found per page versus
the time spend inspecting each page. We see that the relationship is approximately linear. 
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yhat = loess(X,Y,X,alpha,lambda);
resid = Y - yhat;
% Now plot the residuals.
plot(1:length(resid),resid,'.')
ax = axis;
axis([ax(1), ax(2), -4 4])
xlabel('Index')
ylabel('Residuals')
% Plot the absolute value of the residuals
% against the fitted values. 
r0 = linspace(min(yhat),max(yhat),30);
rhat = loess(yhat,abs(resid),r0,0.5,1);
plot(yhat,abs(resid),'.',r0,rhat)
xlabel('Fitted Values')
ylabel('| Residuals |') 

The following code constructs a residual dependence plot for this loess
smooth. We include a loess smooth for this scatterplot to better understand
the results. This is shown in Figure 7.10; we do not see any indication of bias. 

% Now plot the residuals on the vertical
% and the independent values on the 
% horizontal. This is the residual 
% dependence plot. Include a loess curve.

FIGURE 7.8

After we add the loess curve (α = 0.5, λ = 2), we see that the relationship is not completely
linear.
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FIGURE 7.9

The upper plot shows the residuals based on the loess curve from Figure 7.8, and we see a
nice horizontal band of points. In the lower panel, we have the absolute value of the residuals
versus the fitted values. While not perfect, these indicate that the variance is approximately
constant.
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rhat = loess(X,resid,x0,.5,1)
plot(X,resid,'.',x0,rhat)
xlabel('Log[PrepTime (mins)/Page]')
ylabel('Residuals')

We continue our analysis of these results in the next example.
❑

7.4.2 Spread Smooth

It might be important in certain applications to understand the spread of y
given x. We can try to ascertain this just by looking at the scatterplot of the
variables, but as we have seen, it is sometimes hard to judge these
relationships just from a scatterplot. Cleveland and McGill [1984] describe
spread smoothing as a way of graphically addressing this issue. 

Procedure - Spread Smooths

1. Compute the fitted values , using loess or some other appropriate
estimation procedure.

2. Calculate the residuals using Equation 7.7.
3. Plot  against xi in a scatterplot.

FIGURE 7.10

This shows the residual dependence plot with a superimposed loess curve. We do not see
any indication of bias in the estimated curve.
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4. Smooth the scatterplot using loess and add the curve to the plot.

The smoothed values found in step 4 comprise the spread smoothing. We
illustrate its use in Example 7.5.

Example 7.5
We show the spread smooth using the same data and residuals as in the
previous example. Note that this is similar to the plot we have in Figure 7.9
(bottom), but this time we fit the absolute value of the residuals to the observed
predictor values. The scatterplot with loess curve given in Figure 7.11 shows
that the variance is fairly constant for the observed values of x. 

% The y values in this plot will be
% the absolute value of the residuals.
% Superimpose a loess curve to better
% assess results.
r0 = linspace(min(X),max(X),30);
rhat = loess(X,abs(resid),r0,0.5,1);
plot(X,abs(resid),'.',r0,rhat)
xlabel('Log [ PrepTime (mins) / Page ]')
ylabel('| Residuals |')

❑

FIGURE 7.11

Here we have the spread smooth plot for the residuals found in Example 7.4. We see that
the variance is fairly constant.
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218 Exploratory Data Analysis with MATLAB

7.4.3 Loess Envelopes - Upper and Lower Smooths

The loess smoothing method provides a model of the middle of the
distribution of y given x. This can be extended to give us upper and lower
smooths [Cleveland and McGill, 1984], where the distance between the upper
and lower smooths indicates the spread. This shows similar information to
the spread smooth, but in a way that is more in keeping with the familiar
error bar plots. The procedure for obtaining the upper and lower smooths
follows.

Procedure - Upper and Lower Smooths (Loess)

1. Compute the fitted values  using loess or robust loess.

2. Calculate the residuals .

3. Find the positive residuals  and the corresponding  and 
values. Denote these pairs as .

4. Find the negative residuals  and the corresponding  and 
values. Denote these pairs as .

5. Smooth the  and add the fitted values from that smooth to
. This is the upper smoothing.

6. Smooth the  and add the fitted values from this smooth
to . This is the lower smoothing.

Example 7.6
We do not show all of the MATLAB code to implement the upper and lower
envelopes. Instead, we include a function that will provide them and just
show how to use it in this example. We return to the same software inspection
data used in the previous examples. The following code invokes the
loessenv function and plots the curves.

% Get the envelopes and plot.
[yhat,ylo,xlo,yup,xup] = loessenv(X,Y,x0,0.5,2,1);
plot(X,Y,'.',x0,y0,xlo,ylo,xup,yup)
xlabel('Log [ PrepTime (mins) / Page ]')
ylabel('Log [ Defects / Page ]')

The loess curve with envelopes is given in Figure 7.12. The lower, middle,
and upper smooths indicate that the distribution of y given x is symmetric at
most values of x and that the variance is fairly constant. 
❑ 

ŷi
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7.5 Bivariate Distribution Smooths

We now discuss some smoothings that can be used to graphically explore and
summarize the distribution of two variables. Here we are not only looking to
see how y depends on x, but also how x depends on y. Plotting pairs of loess
smoothings on a scatterplot is one way of understanding this relationship.1

Polar smoothing can also be used to understand the bivariate distribution
between x and y by smoothing the edges of the point cloud.

7.5.1 Pairs of Middle Smoothings

In our previous examples of loess, we were in a situation where y was our
response variable and x was the predictor variable, and we wanted to model
or explore how y depends on the predictor. However, there are many
situations where none of the variables is a factor or a response, and the goal
is simply to understand the bivariate distribution of x and y. 

FIGURE 7.12

The lower, middle, and upper smooths indicate that the variance is constant and that the
distribution of y given x is symmetric.

1 There are other ways to convey and understand a bivariate distribution, such as probability
density estimation. The finite mixture method is one way (Chapter 6), and histograms is another
(Chapter 9).
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220 Exploratory Data Analysis with MATLAB

We can use pairs of loess curves to address this situation. The idea is to
smooth y given x, as before, and also smooth x given y [Cleveland and
McGill, 1984; Tukey, 1977]. Both of these smooths are plotted simultaneously
on the scatterplot. We illustrate this in Example 7.7, where it is applied to the
software data.

Example 7.7
We now look at the bivariate relationships between three variables: number
of defects per SLOC, preparation time per SLOC, and meeting time per SLOC
(single line of code). First we get some of the parameters needed for obtaining
the loess smooths and for constructing the scatterplot matrix. Notice also that
we are transforming the data first using the natural logarithm, because the
data are skewed.

% Get some things needed for plotting.
vars = ['log Prep/SLOC';...

' log Mtg/SLOC';' log Def/SLOC'];
% Transform the data using logs.
X = log(prepsloc);
Y = log(mtgsloc);
Z = log(defsloc);
% Set up the parameters.
alpha = 0.5;
lambda = 2;
n = length(X);

Next we obtain all pairs of smooths; there are six of them. 

% Get the pairs of middle smoothings.
% There should be 6 unique cases of these.
% First get domains.
x0 = linspace(min(X),max(X),50);
y0 = linspace(min(Y),max(Y),50);
z0 = linspace(min(Z),max(Z),50);
% Now get the curves. 
xhatvy = loess(Y,X,y0,alpha,lambda);
yhatvx = loess(X,Y,x0,alpha,lambda);
xhatvz = loess(Z,X,z0,alpha,lambda);
zhatvx = loess(X,Z,x0,alpha,lambda);
yhatvz = loess(Z,Y,z0,alpha,lambda);
zhatvy = loess(Y,Z,y0,alpha,lambda);

Finally, we construct the scatterplot matrix. We use MATLAB’s Handle
Graphics to add the lines to each plot.

% Now do the plotmatrix. 
data = [X(:),Y(:),Z(:)];
% gplotmatrix is in the Statistics Toolbox.
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[H,AX,BigAx] = gplotmatrix(data,[],[],'k','.',...
    0.75,[],'none',vars,vars);
% Use Handle Graphics to construct the lines.
axes(AX(1,2));
line(y0,xhatvy);line(yhatvx,x0,'LineStyle','--');
axes(AX(1,3));
line(z0,xhatvz);line(zhatvx,x0,'LineStyle','--');
axes(AX(2,1));
line(x0,yhatvx);line(xhatvy,y0,'LineStyle','--');
axes(AX(2,3));
line(z0,yhatvz);line(zhatvy,y0,'LineStyle','--');
axes(AX(3,1));
line(x0,zhatvx);line(xhatvz,z0,'LineStyle','--');
axes(AX(3,2));
line(y0,zhatvy);line(yhatvz,z0,'LineStyle','--');

The results are shown in Figure 7.13. Note that we have the smooths of y
given x shown as solid lines, and the smooths of x given y plotted using
dashed lines. In the lower left plot, we see an interesting relationship between
the preparation time and number of defects found, where we see a local
maximum, possibly indicating a higher rate of defects found. 
❑ 

FIGURE 7.13

This shows the scatterplot matrix with superimposed loess curves for the software data,
where we look at inspection information per SLOC. The solid lines indicate the smooths for
y given x, and the dashed lines are the smooths for x given y.

−10 −8 −6 −4 −2

 log Def/SLOC

−4

−2

0

2

lo
g 

P
re

p/
S

LO
C

−6

−4

−2

0

2

 lo
g 

M
tg

/S
LO

C

−4 −2 0 2

−10

−8

−6

−4

−2

log Prep/SLOC

 lo
g 

D
ef

/S
LO

C

−6 −4 −2 0 2

 log Mtg/SLOC

EDA.book  Page 221  Monday, October 18, 2004  8:33 AM
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7.5.2 Polar Smoothing

The goal of polar smoothing is to convey where the central portion of the
bivariate point cloud lies. This summarizes the position, shape, and
orientation of the cloud of points. Another way to achieve this is to find the
convex hull of the points, which is defined as the smallest convex polygon
that completely encompasses the data. However, the convex hull is sensitive
to outliers because it must include them, so it can overstate the area covered
by the data cloud. Polar smoothing by loess does not suffer from this
problem.

We now describe the procedure for polar smoothing. The first three steps
implement one of the many ways to center and scale x and y. The smooth is
done using polar coordinates based on a form of these pseudovariates. At the
end, we transform the results back to the original scale for plotting. 

Procedure - Polar Smoothing

1. Normalize xi and yi using

,

where MAD is the median absolute deviation. 

2. Calculate the following values:

3. Normalize the si and di as follows:

4. Convert the  to polar coordinates .

5. Transform the mi as follows

.

6. Smooth zi as a function of θi. This produces the fitted values . 

7. Find the fitted values for mi by transforming the  using

xi
* xi median x( )–( ) MAD x( )÷=

yi
* yi median y( )–( ) MAD y( )÷=

si yi
* xi

*+=

di yi
* xi

*–=

si
* si MAD s( )÷=

di
* di MAD d( )÷=

si
* di

*,( ) θ i mi,( )

zi mi
2 3⁄=

ẑi

ẑi
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.

8. Convert the coordinates  to Cartesian coordinates .
9. Transform these coordinates back to the original x and y scales by

the following:

10. Plot the  coordinates on the scatterplot by connecting each
point by a straight line and then closing the polygon by connecting
the first point to the n-th point.

More information on the smooth called for in Step 6 is in order. Cleveland
and McGill [1984] suggest the following way to use the regular loess
procedure to get a circular smooth. Recall that θi is an angle for i = 1, ..., n. We
order the θi in ascending order, and we let j = n/2 be rounded up to an integer.
We then give the following points to loess

The actual smoothed values that we need are those in the second row.

Example 7.8
We use the BPM data to illustrate polar smoothing. Results from Martinez
[2002] show that there is some overlap between topics 8 (death of North
Korean leader) and topic 11 (helicopter crash in North Korea). We apply the
polar smoothing to these two topics to explore this issue. We use ISOMAP
nonlinear dimensionality reduction with the IRad dissimilarity matrix to
produce bivariate data. The scatterplot for the data after dimensionality
reduction is shown in Figure 7.14. 

load L1bpm
% Pick the topics we will look at.
t1 = 8;
t2 = 11;
% Reduce the dimensionality using Isomap.

m̂i ẑi
3 2⁄=

θ i m̂i,( ) ŝi
* d̂i

*,( )

ŝi ŝi
* MAD s( )×=

d̂i d̂ i
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ŷi ŝi d̂i+( ) 2÷[ ] MAD y( )× median y( )+=
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2π θ1 z1,+( )  … 2π θ j zj,+( )., ,
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options.dims = 1:10;    % These are for ISOMAP.
options.display = 0;
[Yiso, Riso, Eiso] = isomap(L1bpm, 'k', 7, options);
% Get the data out.
X = Yiso.coords{2}';
% Get the data for each one and plot
ind1 = find(classlab == t1);
ind2 = find(classlab == t2);
plot(X(ind1,1),X(ind1,2),'.',X(ind2,1),X(ind2,2),'o')
title('Scatterplot of Topic 8 and Topic 11')

Now we do the polar smoothing for the first topic.

% First let’s do the polar smoothing just for
% the first topic. Get the x and y values.
x = X(ind1,1);
y = X(ind1,2);
% Step 1.
% Normalize using the median absolute deviation.
% We will use the Matlab 'inline' functionality.
md = inline('median(abs(x - median(x)))');
xstar = (x - median(x))/md(x);
ystar = (y - median(y))/md(y);
% Step 2.

FIGURE 7.14

This is the scatterplot of topics 8 and 11 after we use ISOMAP to reduce the data to 2-D.
We see some overlap between the two topics.
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s = ystar + xstar;
d = ystar - xstar;
% Step 3. Normalize these values.
sstar = s/md(s);
dstar = d/md(d);
% Step 4. Convert to polar coordinates.
[th,m] = cart2pol(sstar,dstar);
% Step 5. Transform radius m.
z = m.^(2/3);
% Step 6. Smooth z given theta.
n = length(x);
J = ceil(n/2);
% Get the temporary data for loess.
tx = -2*pi + th((n-J+1):n);
% So we can get the values back, find this.
ntx = length(tx);  
tx = [tx; th];
tx = [tx; th(1:J)];
ty = z((n-J+1):n);
ty = [ty; z];
ty = [ty; z(1:J)];
tyhat = loess(tx,ty,tx,0.5,1);
% Step 7. Transform the values back.
% Note that we only need the middle values.
tyhat(1:ntx) = [];
mhat = tyhat(1:n).^(3/2);
% Step 8. Convert back to Cartesian.
[shatstar,dhatstar] = pol2cart(th,mhat);
% Step 9. Transform to original scales.
shat = shatstar*md(s);
dhat = dhatstar*md(d);
xhat = ((shat-dhat)/2)*md(x) + median(x);
yhat = ((shat+dhat)/2)*md(y) + median(y);
% Step 10. Plot the smooth.
% We use the convex hull to make it easier
% for plotting.
K = convhull(xhat,yhat);
plot(X(ind1,1),X(ind1,2),'.',X(ind2,1),X(ind2,2),'o')
hold on
plot(xhat(K),yhat(K))

We wrote a function called polarloess that includes these steps. We use it
to find the polar smooth for the second topic and add that smooth to the plot.

% Now use the polarloess function to get the
% other one.
[xhat2,yhat2] = ...
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    polarloess(X(ind2,1),X(ind2,2),0.5,1);
plot(xhat2,yhat2)
hold off

The scatterplot with polar smooths is shown in Figure 7.15, where we get a
better idea of the overlap between the groups.
❑ 

7.6 Curve Fitting Toolbox

We now briefly describe the Curve Fitting Toolbox2 in this section for
completeness. The reader is not required to have this toolbox for MATLAB
functionality described outside this section. The Curve Fitting Toolbox is a
collection of graphical user interfaces (GUIs) and M-file functions that are
written for the MATLAB environment, just like other toolboxes. 

The toolbox has the following major features for curve fitting:

• One can perform data preprocessing, such as sectioning, smooth-
ing, and removing outliers.

FIGURE 7.15

This is the scatterplot of the two topics with the polar smooths superimposed. 

2 This toolbox is available from The MathWorks, Inc.
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• The analyst can fit curves to points using parametric and
nonparametric methods. The parametric approaches include
polynomials, exponential, rationals, sums of Gaussians, and
custom equations. Nonparametric fits include spline smoothing
and other interpolation methods.

• It does standard least squares, weighted least squares, and robust
fitting procedures. 

• Statistics indicating the goodness-of-fit are also available.

The toolbox can only handle fits between y and x; multivariate predictors are
not supported.

We now give a brief description of smoothing splines. The word spline
comes from the engineering community, where draftsmen used long thin
strips of wood called splines. They used these splines to draw a smooth curve
between points; different global curves are produced when the positions of
the points are changed. As we will see, a smoothing spline is a solution to a
constrained optimization problem, where we optimally trade-off fidelity of
the fit to the data with smoothness of the estimate. In particular, smoothing
splines fit piecewise polynomials between the joins, which are called knots.
Determining the optimal knots can also be part of the optimization problem,
but often the knots coincide with the data points for simplicity.

The residual sum of squares is a familiar way to measure fidelity to the
data, but we also need to include a penalty for roughness, so the resulting
curve will be smooth. The Curve Fitting Toolbox uses the usual roughness
penalty approach given by

(7.10)

to find the smoothing spline s. The first term in Equation 7.10 represents the
residual sum of squares, with optional weights wi, and the second term
provides a penalty for roughness. The smoothing parameter is denoted by δ,
and it ranges between zero and one. A value of zero performs a least squares
straight line fit to the data, and δ = 1 produces a cubic spline interpolant. 

The MATLAB toolbox also has a stand-alone function for getting various
smooths called smooth. The general syntax for this function is

x = smooth(x,y,span,method);

where span governs the size of the neighborhood. There are six methods
available, as outlined below:

'moving'   - Moving average (default)
'lowess'   - Lowess (linear fit)
'loess'    - Loess (quadratic fit)

δ wi yi s xi( )–( )2

i

∑ 1 δ–( )
x2

2

d

d s

 
 
 

2

dx∫+
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'sgolay'   - Savitzky-Golay
'rlowess'  - Robust Lowess (linear fit)
'rloess'   - Robust Loess (quadratic fit)

One possible inconvenience with the smooth function (as well as the GUI) is
that it provides values of the smooth only at the observed x values. 

7.7 Summary and Further Reading

Several excellent books on smoothing and nonparametric regression (a
related approach) are available. Perhaps the most comprehensive one on
loess is called Visualizing Data by Cleveland [1993]. This book also includes
extensive information on visualization tools such as contour plots, wire
frames for surfaces, coplots, multiway dot plots, and many others. For
smoothing methods in general, we recommend Simonoff [1996]. It surveys
the use of smoothing methods in statistics. The book has an applied focus,
and it  includes  univariate  and multivariate  density est imation,
nonparametric regression, and categorical data smoothing. A compendium
of contributions in the area of smoothing and regression can be found in
Schimek [2000]. A monograph on nonparametric smoothing in statistics was
written by Green and Silverman [1994]; it emphasizes methods rather than
the theory.

Loader [1999] provides an overview of local regression and likelihood,
including theory, methods, and applications. It is easy to read, and it uses
S-Plus code to illustrate the concepts. Efromovich [1999] provides a
comprehensive account of smoothing and nonparametric regression, and he
includes time series analysis. Companion software in S-Plus for the text is
available over the internet, but he does not include any code in the book itself.
Another smoothing book with S-Plus is Bowman and Azzalini [1997]. For the
kernel smoothing approach, see Wand and Jones [1995].

Generalized additive models is a way to handle multivariate predictors in
a nonparametric fashion. In classical (or parametric) regression, one assumes
a linear or some other parametric form for the predictors. In generalized
additive models, these are replaced by smooth functions that are estimated
by a scatterplot smoother, such as loess. The smooths are found in an iterative
procedure. A monograph by Hastie and Tibshirani [1990] that describes this
approach is available, and it includes several chapters on scatterplot
smoothing, such as loess, splines, and others. There is also a survey paper on
this same topic for those who want a more concise discussion [Hastie and
Tibshirani, 1986].

For an early review of smoothing methods, see Stone [1977]. The paper by
Cleveland [1979] describes the robust form of loess, and includes some
information on the sampling distributions associated with locally weighted
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regression. Next we have Cleveland and McGill [1984], which is a wonderful
paper that includes descriptions of many tools for scatterplot enhancements.
Cleveland, Devlin and Grosse [1988] discusses methods and computational
algorithms for local regression. Titterington [1985] provides an overview of
various smoothing techniques used in statistical practice and provides a
common unifying structure. We also have Cleveland and Devlin [1988] that
shows how loess can be used for exploratory data analysis, diagnostic
checking of parametric models, and multivariate nonparametric regression.
For an excellent summary and history of smoothing methods, see Cleveland
and Loader [1996]. As for other smoothing methods, the reader can refer to
Scott [1992] and Hastie and Loader [1993]. Finally, there is a lot of literature
on spline methods. For a nice survey article that synthesizes much of the
work on splines in statistics, see Wegman and Wright [1983]. 

Exercises

7.1 First consult the help files on the MATLAB functions polyfit and
polyval, if you are unfamiliar with them. Next, for some given
domain of points x, find the y values using polyval and degree 3.
Add some normally distributed random noise (use normrnd with 0
mean and some small σ ) to the y values. Fit the data using polynomi-
als of degrees 1, 2, and 3 and plot these curves along with the data.
Construct and plot a loess curve. Discuss the results.

7.2 Generate some data using polyval and degree 1. Add some small
random noise to the points using randn. Use polyfit to fit a poly-
nomial of degree 1. Add one outlying point at either end of the range
of the x values. Fit these data to a straight line. Plot both of these lines,
along with a scatterplot of the data, and comment on the differences.

7.3 Do a scatterplot of the data generated in problem 7.1. Activate the
Tools menu in the Figure window and click on the Basic Fitting
option. This brings up a GUI that has some options for fitting data.
Explore the capabilities of this GUI.

7.4 Load the abrasion data set. Construct loess curves for abrasion loss
as a function of tensile strength and abrasion loss as a function of
hardness. Comment on the results. Repeat the process of Example 7.7
using this data set and assess the results.

7.5 Repeat the process outlined in Example 7.7 using the environmen-
tal data. Comment on your results.

7.6 Construct a sequence of loess curves for the votfraud data set. Each
curve should have a different value of α = 0.2, 0.5, 0.8. First do this for
λ = 1 and then repeat for λ = 2. Discuss the differences in the curves.
Just by looking at the curves, what α and λ would you choose?

EDA.book  Page 229  Monday, October 18, 2004  8:33 AM



230 Exploratory Data Analysis with MATLAB

7.7 Repeat problem 7.6, but this time use the residual plots to help you
choose the values for α and λ. 

7.8 Repeat problems 7.6 and 7.7 for the calibrat data.
7.9 Verify that the tri-cube weight functions satisfies the four properties of

a weight function.
7.10 Using the data in Example 7.8, plot the convex hulls (use the function

convhull) of each of the topics. Compare these with the polar
smooth.

7.11 Choose some other topics from the BPM and repeat the polar smooths
of Example 7.8.

7.12 Using one of the gene expression data sets, select an experiment
(tumor, patient, etc.), and apply some of the smoothing techniques
from this chapter to see how the genes are related to that experiment.
Choose one of the genes and smooth as a function of the experiments.
Construct the loess upper and lower smooths to assess the variation.
Comment on the results.

7.13 Construct a normal probability plot of the residuals in the software
data analysis. See Chapter 9 for information or the MATLAB Statistics
Toolbox function normplot. Construct a histogram (use the hist
function). Comment on the distributional assumptions for the errors.

7.14 Repeat problem 7.13 for the analyses in problems 7.6 and 7.8.
7.15 Choose two of the dimensions of the oronsay data. Apply polar

smoothing to summarize the point cloud for each class. Do this for
both classifications of the oronsay data. Comment on your results.

7.16 Do a 3-D scatterplot (see scatter3) and a scatterplot matrix (see
plotmatrix) of the galaxy data of Example 7.2. Does the contour
plot in Figure 7.5 match the scatterplots?
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Chapter 8
Visualizing Clusters

In Chapters 5 and 6, we presented various methods for clustering, including
agglomerative clustering, k-means clustering, and model-based clustering. In
the process of doing that, we showed some visualization techniques such as
dendrograms for visualizing hierarchical structures and scatterplots. We now
turn our attention to other methods that can be used for visualizing the
results of clustering. These include a space-filling version of dendrograms
called treemaps, an extension of treemaps called rectangle plots, a new
rectangle-based method for visualizing nonhierarchical clustering called
ReClus, and data images that can be used for viewing clusters, as well as
outlier detection. We begin by providing more information on dendrograms.

8.1 Dendrogram

The dendrogram (also called the tree diagram) is a mathematical, as well as a
visual representation of a hierarchical procedure, which can be divisive or
agglomerative. Thus, we often refer to the results of the hierarchical
clustering as the dendrogram itself. 

We start off by providing some terminology for a dendrogram; the reader
can refer to Figure 8.1 for an illustration. The tree starts at the root, which can
either be at the top for a vertical tree or on the left side for a horizontal tree.
The nodes of the dendrogram represent clusters, and they can be internal or
terminal. The internal nodes contain or represent all observations that are
grouped together based on the type of linkage and distance used. In most
dendrograms, terminal nodes contain a single observation. We will see
shortly that this is not always the case in MATLAB’s implementation of the
dendrogram. Additionally, terminal nodes usually have labels attached to
them. These can be names, letters, numbers, etc. The MATLAB dendrogram
function labels the terminal nodes with numbers.

The stem or edge shows children of internal nodes and the connection with
the clusters below it. The length of the edge represents the distances at which
clusters are joined. The dendrograms for hierarchical clustering are binary
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trees, so they have two edges emanating from each internal node. The
topology of the tree refers to the arrangement of stems and nodes. 

The dendrogram illustrates the process of constructing the hierarchy, and
the internal nodes describe particular partitions, once the dendrogram has
been cut at a given level. Data analysts should be aware that the same data
and clustering procedure can yield 2n-1 dendrograms, each with a different
appearance depending on the order used to display the nodes. Software
packages choose the algorithm for drawing this automatically, and they
usually do not specify how they do this. Some algorithms have been
developed for optimizing the appearance of dendrograms based on various
objective functions [Everitt, Landau and Leese, 2001]. We will see in the last
section where we discuss the data image that this can be an important
consideration.

Example 8.1
We first show how to construct the dendrogram in Figure 8.1 using the
leukemia data set. The default for the dendrogram function is to display a
maximum of 30 nodes. This is to prevent the displayed leaf nodes from being
too cluttered. The user can specify the number to display, as we do below, or
one can display all nodes by using dendrogram(Z,0).

% First load the data.

FIGURE 8.1

We applied agglomerative clustering to the leukemia data using Euclidean distance and
complete linkage. The dendrogram with 15 leaf nodes is shown here. If we cut this dendro-
gram at level 10.5 (on the vertical axis), then we would obtain 5 clusters or groups. 
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load leukemia
[n,p] = size(leukemia);
x = zeros(n,p);
% Standardize each row (gene) to be mean
% zero and standard deviation 1.
for i = 1:n
    sig = std(leukemia(i,:));
    mu = mean(leukemia(i,:));
    x(i,:) = (leukemia(i,:) - mu)/sig;
end
% Do hierarchical clustering.
Y = pdist(x);
Z = linkage(Y,'complete');
% Display with only 15 nodes.
% Output arguments are optional.
[H,T] = dendrogram(Z,15);
title('Leukemia Data')

Note that the leaf nodes in this example of a MATLAB dendrogram do not
necessarily represent one of the original observations; they likely contain
several observations. We can (optionally) request some output variables from
the dendrogram function to help us determine what observations are in the
individual nodes. The output vector T contains the leaf node number for each
object in the data set and can be used to find out what is in node 6 as follows:

ind = find(T==6)
ind =

    26
    28
    29
    30
    46

Thus, we see that terminal node 6 on the dendrogram in Figure 8.1 contains
the original observations 26, 28, 29, 30, and 46.
❑

8.2 Treemaps

Dendrograms are very familiar to data analysts working in hierarchical
clustering applications, and they are easy to understand because they match
our concept of how trees are laid out in a physical sense with branches and
leaves (except that the tree root is in the wrong place!). Johnson and

EDA.book  Page 235  Wednesday, October 27, 2004  9:18 PM



236 Exploratory Data Analysis with MATLAB

Shneiderman [1991] point out that the dendrogram does not efficiently use
the existing display space, since most of the display consists of white space
with very little ink. They proposed a space-filling (i.e., the entire display
space is used) display of hierarchical information called treemaps, where
each node is a rectangle whose area is proportional to some characteristic of
interest [Shneiderman, 1992]. 

The original application and motivation for treemaps was to show the
directory and file structure on hard drives. It was also applied to the
visualization of organizations such as the departmental structure at a
university. Thus, the treemap visualization can be used for an arbitrary
number of splits or branches at internal nodes, including the binary tree
structure that one gets from hierarchical clustering. 

Johnson and Shneiderman [1991] note that hierarchical structures contain
two types of information. First, they contain structural or organizational
information that is associated with the hierarchy. Second, they have content
information associated with each node. Dendrograms can present the
structural information, but do not convey much about the leaf nodes other
than a text label. Treemaps can depict both the structure and content of the
hierarchy. 

The treemap displays hierarchical information and relationships by a series
of nested rectangles. The parent rectangle (or root of the tree) is given by the
entire display area. The treemap is obtained by recursively subdividing this
parent rectangle, where the size of each sub-rectangle is proportional to the
size of the node. The size could be representative of the size in bytes of the file
or the number of employees in an organizational unit. In the case of
clustering, the size would correspond to the number of observations in the
cluster. We continue to subdivide the rectangles horizontally, vertically,
horizontally, etc., until a given leaf configuration (e.g., number of groups in
the case of clustering) is obtained.

We show an example of the treemap in Figure 8.2, along with its associated
tree diagram. Note that the tree diagram is not the dendrogram that we
talked about previously, because it has an arbitrary number of splits at each
node. The root node has four children: a leaf node of size 12, a leaf node of
size 8, an interior node with four children, and an interior node with three
children. These are represented by the first vertical splits of the parent
rectangle. We now split horizontally at the second level. The interior node
with four children is split into four sub-rectangles proportional to their size.
Each one of these is a terminal node, so no further subdivisions are needed.
The next interior node has two children that are leaf nodes and one child that
is an interior node. Note that this interior node is further subdivided into two
leaf nodes of size 6 and 11 using a vertical split. 

When we apply the treemap visualization technique to hierarchical
clustering output, we must specify the number of clusters. Note also that
there is no measure of distance or other objective function associated with the
clusters, as there is with the dendrogram. Another issue with the treemap (as
well as the dendrogram) is the lack of information about the original data,
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because the rectangles are just given labels. We implemented the treemap
technique in MATLAB; its use is illustrated in the next example.

Example 8.2
In this example, we show how to use the treemap provided with the EDA
Toolbox. We return to the hierarchical clustering of the leukemia data
displayed as a dendrogram in Figure 8.1. The function we provide
implements the treemap display for binary hierarchical information only and
requires the output from the MATLAB linkage function. The inputs to the
function treemap include the Z matrix (output from linkage) and the
desired number of clusters. The default display is to show the leaf nodes with
the same labels as in the dendrogram. There is an optional third argument
that causes the treemap to display without any labels. The following syntax
constructs the treemap that corresponds to the dendrogram in Figure 8.1.

% The matrix Z was calculated in 
% Example 8.1.

FIGURE 8.2

At the top of this figure, we show a tree diagram with nodes and links. Each leaf node has
a number that represents the size of the nodes. An alternative labeling might be just the
node number or some text label. The corresponding treemap diagram is shown below. Note
that the divisions from the root node are shown as vertical splits of the parent rectangle,
where the size of each sub-rectangle is proportional to the total size of all children. The next
split is horizontal, and we continue alternating the splits until all leaf nodes are displayed
[Shneiderman, 1992].
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treemap(Z,15);

The treemap is given in Figure 8.3. Notice that we get an idea of the size of
the nodes with the treemap, whereas this is not evident in the dendrogram
(Figure 8.1). However, as noted before, we lose the concept of distance with
treemaps; thus it is perhaps easier to see the number of groups one should
have in a dendrogram.
❑ 

8.3 Rectangle Plots

Recall that in the dendrogram, the user can specify a value along the axis, and
different clusters or partitions are obtained depending on what value is
specified. Of course, we do not visualize this change with the dendrogram;
i.e., the display of the dendrogram is not dependent on the chosen number of
clusters or cutoff distance. However, it is dependent on the number of leaf
nodes chosen (in the MATLAB implementation). If one specifies a different
number of leaf nodes, then the dendrogram must be completely redrawn,
and node labels change. This can significantly change the layout of the
dendrogram, as well as the understanding that is gained from it.

To display the hierarchical information as a treemap, the user must specify
the number of clusters (or one can think of this as number of leaf nodes)

FIGURE 8.3

Here we have the treemap that corresponds to the dendrogram in Figure 8.1.
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rather than the cutoff point for the distance. If the user wants to explore other
cluster configurations by specifying a different number of clusters, then the
display is redrawn, as it is with the dendrogram. As stated previously, there
is no measure of distance associated with the treemap display, and there is a
lack of information about the original data. It would be useful to know what
cases are clustered where. The next cluster visualization method attempts to
address these issues.

Recall from Chapters 5 and 6 that one of the benefits of hierarchical
clustering is that the output can provide a partition of the data for any given
number of clusters or, alternatively, for any given level of dissimilarity. This
property is an advantage in EDA, because we can run the algorithm once on
a large set of data and then explore and visualize the results in a reasonably
fast manner. To address some of the issues with treemaps and to take
advantage of the strengths of hierarchical clustering, Wills [1998] developed
the rectangle visualization method. This method is similar to the treemap,
but displays the points as glyphs and determines the splits in a different way.

To construct a rectangle plot, we split the rectangles along the longest side,
rather than alternating vertical and horizontal splits as in the treemap
method. The alternating splits in treemaps are good at showing the depth of
the tree, but it has a tendency to create long skinny rectangles, if the trees are
unbalanced [Wills, 1998]. The splits in the rectangle plot provide rectangles
that are more square. 

We keep splitting rectangles until we reach a leaf node or until the cutoff
distance is reached. If a rectangle does not have to be split because it reaches
this cutoff point, but there is more than one observation in the rectangle, the
algorithm continues to split rectangles until it reaches a leaf node. However,
it does not draw the rectangles. It uses this leaf-node information to
determine the layout of the points or glyphs, where each point is now in its
own rectangle. The advantage to this method is that other configurations (i.e.,
number of clusters or a given distance) can be shown without redisplaying
the glyphs. Only the rectangle boundaries are redrawn.

We illustrate the rectangle plot for a simulated data set in Figures 8.4 and
8.5. The data set contains randomly generated bivariate data (n = 30)
comprising two clusters, one centered at (–2 , 2)T and the other at (2 , 2)T. In
the top part of Figure 8.4, we have the dendrogram with all 30 nodes
displayed. We see that the node labels are difficult to distinguish. The
corresponding rectangle plot for 30 clusters is shown in the bottom of Figure
8.4, where we see each observation in its own rectangle or cluster.  

We show another dendrogram and rectangle plot in Figure 8.5 using the
same data set and hierarchical clustering information. We plot a dendrogram
requesting 10 leaf nodes and show the results in the top of the figure. The leaf
nodes are now easier to read, but they no longer represent the observation
numbers. The rectangle plot for 10 clusters is given in the lower half of the
figure. When we compare Figures 8.4 and 8.5, we see that the dendrogram
changed a lot, whereas only the bounding boxes change in the rectangle plot.
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FIGURE 8.4

The top portion of this figure shows the dendrogram (Euclidean distance and complete
linkage) for a randomly generated bivariate data set containing two clusters. All n = 30 leaf
nodes are shown, so we see over plotting of the text labels. The rectangle plot that corre-
sponds to this is shown in the bottom half, where we plot each observation number in its
own rectangle or cluster. The original implementation in Wills [1998] plots the observations
as dots or circles. 
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Rectangle Plot of 30 Clusters
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Visualizing Clusters 241

FIGURE 8.5

Using the same information that produced Figure 8.4, we now show the dendrogram when
only 10 leaf nodes are requested. We see that the dendrogram has been completely redrawn
when we compare it with the one in Figure 8.4. The rectangle plot for 10 clusters is given
below the dendrogram. When the rectangle plots in Figures 8.4 and 8.5 are compared, we
see that the positions of the glyphs have not changed; only the bounding boxes for the
rectangles are different. We also see information about the original data via the observation
numbers.
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Rectangle Plot of 10 Clusters, 30 Observations
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242 Exploratory Data Analysis with MATLAB

Example 8.3
We continue with the same leukemia data set for this example. First we
show how to use the rectplot function to get a rectangle plot showing
observation numbers. For comparison with previous results, we plot 15
clusters. 

% Use same leukemia data set and matrix Z 
% from Example 8.1. The second argument is the
% number of clusters. The third argument is a string
% specifying what information the second 
% argument provides.
rectplot(Z,15,'nclus')

The plot is shown in the top of Figure 8.6. Next we show how to use the
optional input argument to use the true class labels as the glyphs. First we
have to convert the class labels to numbers, since the input vector must be
numeric. 

% We now show how to use the optional
% class labels, using the cancer type.
% The argument must be numeric, so we
% convert strings to numbers.
% First set all indices to 0 - this will
% be class ALL.
labs = zeros(length(cancertype),1);
% Now find all of the AML cancers.
% Set them equal to 1.
inds = strmatch('AML',cancertype);
labs(inds) = 1;
% Now do the rectangle plot.
rectplot(Z,15,'nclus',labs)

This plot is shown in the lower half of Figure 8.6. The observations labeled 0
are the ALL cancers, and those plotted with a 1 correspond to the AML cancer
type. 
❑ 

In our MATLAB implementation of this technique, we plot each point with
its observation number or its true class label. This can cause some over
plotting with large data sets. A future implementation will include other plot
symbols, thus saving on display space. The user can also specify the number
of clusters by providing a cutoff dissimilarity based on the dendrogram for
the second input to the function. In this case, the third argument to
rectplot is 'dis'.

Wills’ original motivation for the rectangle plot was to include the notion
of distance in a treemap-like display. He did this by providing a
supplemental line graph showing the number of clusters on the horizontal
axis, and the dissimilarity needed to do the next split on the vertical axis. The
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Visualizing Clusters 243

FIGURE 8.6

A rectangle plot for the leukemia data is shown in the top of this figure. Here we plot the
observation numbers for a specified number of clusters or partitions. The rectangle plot
shown in the bottom of the figure plots the observations using the true cancer labels. Class 0
corresponds to ALL and Class 1 is AML. 
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user can interact with the display by dragging the mouse over the line graph
and seeing the corresponding change in the number of clusters shown in the
rectangle plot. 

The rectangle method is also suitable for linking and brushing applications
(see Chapter 10), where one can highlight an observation in one plot (e.g., a
scatterplot) and see the same observation highlighted in another (e.g., a
rectangle plot). A disadvantage with the rectangle plot is that some of the
nesting structure seen in treemaps might be lost in the rectangle display.
Another problem with the plots discussed so far is their applicability to the
display of hierarchical information only. The plot we show next can be
applied to non-hierarchical clustering procedures. 

8.4 ReClus Plots

The ReClus method was developed by Martinez [2002] as a way to view the
output of nonhierarchical clustering methods, such as k-means, model-based
clustering, etc., that is reminiscent of the treemap and rectangle displays. We
note that ReClus (standing for RectangleClusters) can also be used to convey
the results of any hierarchical clustering method once we have a given
partition. 

As in the previous methods, ReClus uses the entire display area as the
parent rectangle. This is then partitioned into sub-rectangles, where the area
of each one is proportional to the number of observations that belong to that
cluster. The observations are plotted using either the observation number or
the true class label, if known. The glyphs are plotted in a systematic way,
either by order of the observation number or the class label. 

There are some additional options. If the output is from model-based
clustering, then we can obtain the probability that an observation belongs to
the cluster. This additional information is displayed via the font color. For
faster and easier comprehension of the cluster results, we can set a threshold
so that the higher probabilities are shown in bold black type. We provide a
similar capability for other cluster methods, such as k-means, using the
silhouette values. We now outline the procedure for constructing a ReClus
plot.

Procedure - ReClus Plot

1. Set up the parent rectangle. We will subdivide the rectangle along
the longer side of the parent rectangle according to the proportion
of observations that are in each group.

2. Find all of the points in each cluster and the corresponding pro-
portion.
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3. Order the proportions in ascending order.
4. Partition the proportions into two groups. If there is an odd number

of clusters, then put more of the clusters into the ‘left/lower’ group.

5. Based on the total proportion in each group, split the longer side
of the parent rectangle. We now have two children. Note that we
have to re-normalize the proportions based on the current parent
rectangle.

6. Repeat steps 4 through 5 until all rectangles represent only one
cluster.

7. Find the observations in each cluster and plot, either as the case
label or the true class label.

We illustrate the use of ReClus in the next example.

Example 8.4
For this example, we use the L1bpm interpoint distance matrix derived from
the BPMS of the 503 documents discussed in Chapter 1. We first use ISOMAP
to reduce the dimensionality and get our derived observations. We are going
to use only five of the sixteen topics, so we also set up the indices to extract
them. 

load L1bpm
% Get just those topics on 5 through 11
ind = find(classlab == 5);
ind = [ind; find(classlab == 6)];
ind = [ind; find(classlab == 8)];
ind = [ind; find(classlab == 9)];
ind = [ind; find(classlab == 11)];
% Change the class labels for class 11
% for better plotting.
clabs = classlab(ind);
clabs(find(clabs == 11)) = 1;
% First do dimensionality reduction - ISOMAP
[Y, R, E] = isomap(L1bpm,'k',10);
% Choose 3 dimensions, based on residual variance.
XX = Y.coords{3}';
% Only need those observations in classes of interest.
X = XX(ind,:);

Next we do model-based clustering specifying a maximum of 10 clusters.

% Now do model-based clustering.
[bics,bestm,allm,Z,clabsmbc] = mbclust(X,10);

We see that model-based clustering found the correct number of groups
(five), and model seven is the best fit (according to the BIC). Now that we
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have the cluster information, we need to find the probability that an
observation belongs to the cluster or the silhouette values if using some other
clustering procedure. In the case of model-based clustering, we use the
function mixclass to get the probability that an observation does not belong
to the cluster, based on the model.

% Must get the probability that an observation does
% not belong to the cluster.
[clabsB,uncB] = mixclass(X,bestm.pies,...
    bestm.mus,bestm.vars);
% Plot with true class labels.
% The function requires the posterior probability
% that it belongs to the cluster.
reclus(clabsB,clabs,1 - uncB)

Note that mixclass returns the uncertainty in the classification, so we must
subtract this from one in the argument to reclus. The resulting plot is
shown in the top of Figure 8.7. Note that topics 8 and 1 (formerly topic 11) are
both about North Korea, and we see some mistakes in how these topics are
grouped. However, topics 5, 6, and 9 are clustered together nicely, except for
one document from topic 1 that is grouped with topic 5. The color coding of
the posterior probabilities makes it easier to see the level of uncertainty. In
some applications, we might gain more insights regarding the clusters by
looking at a more ‘binary’ application of color. In other words, we want to see
those observations that have a high posterior probability separated from
those with a lower one. An optional argument to reclus specifies a
threshold, where we plot posterior probabilities above this value in bold
black font. This makes it easier to get a quick overall view of the quality of the
clusters. 

% Look at the other option in reclus.
% Plot points with posterior probability above
% 0.9 in bold, black font.
reclus(clabsB,clabs,1 - uncB,.9)

This ReClus plot is given in the bottom of Figure 8.7, where we see that
documents in topics 5, 6, and 9 have posterior probabilities above the
threshold. The one exception is the topic 1 document that was grouped with
topic 5. We see that this document has a lower posterior probability that was
not readily apparent in Figure 8.7 (top). We also see that the documents in the
two groups with topics 1 and 8 mixed together have a large number of
members with posterior probabilities below the threshold. It would be
interesting to explore these two clusters further to see if this grouping is an
indication of sub-topics.
❑ 

The next example shows how to use ReClus with the information from
hierarchical clustering, in addition to some of the other options that are
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FIGURE 8.7

The ReClus plot at the top shows the cluster configuration based on the best model chosen
from model-based clustering. Here we plot the true class label with the color indicating the
probability that the observation belongs to that cluster. The next ReClus plot is for the same
data and model-based clustering output, but this time we request that probabilities above
0.9 be shown in bold black font. See the associated color figure following page 144.
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available with the reclus function. One of the advantages of ReClus is the
ability to rapidly visualize the ‘strength’ of the clustering for the observations
when the true class membership is known. It would be useful to be able to
find out which observations correspond to interesting ones in the ReClus
plot. For instance, in Figure 8.7 (top), we might want to locate those stories
that were in the two mixed-up groups to see if the way they were grouped
makes sense. Or, we might want to find the topic 1 document that was mis-
grouped with topic 5.

Example 8.5
We use the same data from the previous example, but now we only look at
two topics: 8 and 11. These are the two that concern North Korea, and there
was some confusion in the clustering of these topics using model-based
clustering. We will use the ReClus plot to help us assess how hierarchical
clustering works on these two topics. First we extract the observations that
we need and get the labels.

% Continuing with same data used in 
% Example 8.4.
ind = find(classlab == 8);
ind = [ind; find(classlab == 11)];
clabs = classlab(ind);
% Change the class labels for class 11
% for better plotting.
clabs = classlab(ind);
clabs(find(clabs == 11)) = 1;
% Only need those observations in classes of interest.
X = XX(ind,:);

Next we perform hierarchical clustering using Euclidean distance and
complete linkage. We use the cluster function to request two groups, and
then get the silhouette values. Note that this syntax for the silhouette
function suppresses the plot and only returns the silhouette values. 

% Get the hierarchical clustering.
Y = pdist(X);
Z = linkage(Y,'complete');
dendrogram(Z);
cids = cluster(Z,'maxclust',2);
% Now get the silhouette values.
S = silhouette(X,cids);

Our initial ReClus plot uses the observation number as the plotting symbol.
We have to include the true class labels as an argument, so they can be
mapped into the same position in the second ReClus plot. The plots are
shown in Figure 8.8, and the code to construct these plots is given below.

% The following plots the observation
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% numbers, with 'pointers' to the
% true class labels plotted next.
reclus(cids, clabs)
% Now plot same thing, but with true class labels.
reclus(cids,clabs,S)

We see from the plots that this hierarchical clustering does not provide a
‘good’ clustering, as measured by the silhouette values, since we have
several negative values in the right-hand cluster.
❑ 

8.5 Data Image

The data image is a technique for visualizing high-dimensional data as if
they comprised an image. We have seen an example of this already in
Chapter 1, Figure 1.1, where we have the gene expression data displayed as
a gray-scale image. The basic idea is to map the data into an image
framework, using the gray-scale values or colors (if some other color map is
desired) to indicate the magnitude of each variable for each observation.
Thus, the data image for a data set of size n with p variables will be nxp. 

An early version of the data image can be found in Ling [1973], where the
data are plotted as a matrix of characters with different amounts of ink
indicating the gray scale value of the observation. However, Ling first plots
the interpoint dissimilarity (or similarity) matrix in its ‘raw’ form. He then
reorders rows and columns of the dissimilarity matrix using the cluster labels
after some clustering method has been applied. In other words, the original
sequence of observations has been arranged such that the members of every
cluster lie in consecutive rows and columns of the permuted dissimilarity
matrix. Clearly defined dark (or light, depending on the gray scale) squares
along the diagonal indicate compact clusters that are well separated from
neighboring points. If the data do not contain significant clusters, then this is
readily seen in the image.

Wegman [1990] also describes a version of the data image, but he calls it a
color histogram. He suggests coloring pixels using a binned color gradient
and presenting this as an image. Sorting the data based on one variable
enables one to observe positive and negative associations. One could explore
the data in a tour-like manner by performing this sort for each variable.

Minnotte and West [1998] use binning on a fine scale, so they coined the
term ‘data image’ to be more descriptive of the output. Rather than sorting
on only one variable, they suggest finding an ordering such that points that
are close in high-dimensional space are close to one another in the image.
They suggest that this will help the analyst better visualize high-dimensional
structure. We note that this is reminiscent of multidimensional scaling. In
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FIGURE 8.8

In Figure 8.8 (top), we show the ReClus plot for topics 8 and 1 (topic 11) based on hierarchical
clustering. The positions of these symbols corresponds to the glyphs in Figure 8.8 (bottom).
This makes it easy to see what case belongs to observations of interest. The scale in the lower
ReClus plot corresponds to the silhouette values. See the associated color figure following
page 144. 
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particular, they apply this method to understand the cluster structure in
high-dimensional data, which should appear as vertical bands within the
image. 

Minnotte and West propose two methods for ordering the data. One
approach searches for the shortest path through the cloud of high-
dimensional points using traveling salesman type algorithms [Cook, et al.,
1998]. Another option is to use an ordering obtained from hierarchical
clustering, which is what we do in the next example.

Example 8.6
We use the familiar iris data set for this example. We put the three classes
of iris into one matrix and randomly reorder the rows. The data image for this
arrangement is shown in Figure 8.9 (top). We see the four variables as
columns or vertical bands in the image, but we do not see any horizontal
bands indicating groups of observations. 

load iris
% Put into one matrix.
data = [setosa;versicolor;virginica];
% Randomly reorder the data.
data = data(randperm(150),:);
% Construct the data image.
imagesc(-1*data)
colormap(gray(256))

We now cluster the data using agglomerative clustering with complete
linkage. To get our ordering, we plot the dendrogram with n leaf nodes. The
output argument perm from the function dendrogram provides the order of
the observations left to right or bottom to top, depending on the orientation
of the tree. We use this to rearrange the data points.

% Now get the ordering using hierarchical 
% clustering and the dendrogram.
Y = pdist(data);
Z = linkage(Y,'complete');
% Plot both the dendrogram and the data
% image together.
figure
subplot(1,2,1)
[H, T, perm] = dendrogram(Z,0,'orientation','left');
axis off
subplot(1,2,2)
% Need to flip the matrix to show as an image.
imagesc(flipud(-1*data(perm,:)))
colormap(gray(256))
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The data image for the reordered data and the associated dendrogram are
given in Figure 8.9 (bottom). We can now see three horizontal bands that
would indicate the presence of three groups. However, we know that each
class of iris has 50 observations and that some are likely to be incorrectly
clustered together.
❑ 

The data image displayed along with the dendrogram, as we saw in
Example 8.6, is used extensively in the gene expression analysis literature.
However, it is not generally known by that name. We now show how to apply
the data image concept to locate clusters in a data set using Ling’s method. 

Example 8.7 
We use the data (topics 6 and 9) from Example 8.4 to illustrate how the data
image idea can be applied to the interpoint dissimilarity matrix. After
extracting the data, we find the distance matrix using pdist  and
squareform. The image of this is shown in Figure 8.10 (top). We randomly
reordered the data; thus it is difficult to see any cluster structure or clusters.
The code to do this follows.

% Continuing with same data used in Example 8.4.
% Use just Topics 6 and 9.
ind = find(classlab == 6);
ind = [ind; find(classlab == 9)];
n = length(ind);
clabs = classlab(ind);
data = XX(ind,:);
% Randomly reorder the data and view the 
% interpoint distance matrix as an image.
data = data(randperm(n),:);
Y = pdist(data);
Ys = squareform(Y);
imagesc(Ys);
colormap(gray(256))
title('Interpoint Distance Matrix - Random Order')
axis off

We now have to obtain some clusters. We will use hierarchical clustering and
request cluster labels based on a partition into two groups. Then we order the
distances such that observations in the same group are adjacent and replot
the distance matrix as an image. 

% Now apply Ling's method. First need to
% get a partition or clustering.
Z = linkage(Y,'complete');
% Now get the ordering based on the cluster scheme.
T = cluster(Z,'maxclust',2);
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FIGURE 8.9

The data image at the top is for the iris data, where the observations have been randomly
ordered. Clusters or horizontal bands are not obvious. We apply the data image concept by
reordering the data according to the results of hierarchical clustering. The data image of the
rearranged data and the corresponding dendrogram are shown at the bottom. Three hori-
zontal bands or clusters are now readily visible. See the associated color figure following
page 144.
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FIGURE 8.10

The top image shows the interpoint distance matrix for topic 6 and topic 9 when the data
are in random order. The presence of any groups or clusters is difficult to discern. Next we
cluster the data according to our desired method and rearrange the points such that those
observations in the same group are adjacent in the distance matrix. We show this re-ordered
matrix in the bottom half of the figure, and the two groups can be clearly seen.

Interpoint Distance Matrix − Random Order

Interpoint Distance Matrix − Cluster Order
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% Sort these, so points in the same cluster
% are adjacent.
[Ts,inds] = sort(T);
% Sort the distance matrix using this and replot.
figure
imagesc(Ys(inds,inds))
title('Interpoint Distance Matrix - Cluster Order')
colormap(gray(256))
axis off

This image is shown in Figure 8.10 (bottom). We can now clearly see the two
clusters along the diagonal. 
❑ 

8.6 Summary and Further Reading

One of the main purposes of clustering is to organize the data, so graphical
tools to display the results of these methods are important. These displays
should enable the analyst to see whether or not the grouping of the data
illustrates some latent structure. Equally important, if real structure is not
present in the data, then the cluster display should convey this fact. The
cluster visualization techniques presented in this chapter should enable the
analyst to better explore, assess, and understand the results from hierarchical
clustering, model-based clustering, k-means, etc.

Some enhancements to the dendrogram have been proposed. One is a
generalization of dendrograms called espaliers [Hansen, Jaumard and
Simeone, 1996]. In the case of a vertical diagram, espaliers use the length of
the horizontal lines to encode another characteristic of the cluster, such as the
diameter. Other graphical aids for assessing and interpreting the clusters can
be found in Cohen, et al. [1977].

Johnson and Shneiderman [1991] provide examples of other types of
treemaps. One is a nested treemap, where some space is provided around
each sub-rectangle. The nested nature is easier to see, but some display space
is wasted in visualizing the borders. They also show a Venn diagram treemap,
where the groups are shown as nested ovals.

The treemap display is popular in the computer science community as a
tool for visualizing directory structures on disk drives. Several extensions to
the treemap have been developed. These include cushion treemaps [Wijk and
Wetering, 1999] and squarified treemaps [Bruls, Huizing and Wijk, 2000].
Cushion treemaps keep the same basic structure of the space-filling
treemaps, but they add surface height and shading to provide additional
insight into the hierarchical structure. The squarified treemap methodology
attempts to construct squares instead of rectangles (as much as possible) to
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prevent long, skinny rectangles, but this sacrifices the visual understanding
of the nested structure to some extent.

Marchette and Solka [2003] use the data image to find outliers in a data set.
They apply this concept to the interpoint distance matrix by treating the
columns (or alternatively the rows) of the matrix as observations. These
observations are clustered using some hierarchical clustering scheme, and
the rows and columns are permuted accordingly. Outliers show up as a dark
v or cross (depending on the color scale).

Others in the literature have discussed the importance of ordering the data
to facilitate exploration and understanding. A recent discussion of this can be
found in Friendly and Kwan [2003]. They outline a general framework for
ordering information in visual displays, including tables and graphs. They
show how these effect-ordered data displays can be used to discover
patterns, trends, and anomalies in the data.

Exercises

8.1 Do a help on dendrogram and read about the optional input
argument 'colorthreshold'. Repeat Example 8.1 using this
option.

8.2 Compare and contrast the dendrogram, treemap, rectangle plots, and
ReClus cluster visualization techniques. What are the advantages and
disadvantages of each? Comment on the usefulness of these methods
for large data sets.

8.3 Find the ReClus plot (without class labels and with class labels) for the
leukemia  partition with 15 clusters obtained in Example 8.1.
Compare to the previous results using the hierarchical visualization
techniques. 

8.4 Repeat Example 8.3 using the distance input argument to specify the
number of clusters displayed in the rectangle plot.

8.5 For the following data sets, use an appropriate hierarchical clustering
method and visualize using the methods described in the chapter.
Analyze the results.
a. geyser

b. singer
c. skulls

d. sparrow
e. oronsay

f. gene expression data sets
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8.6 Repeat Example 8.7 using all of the data in the matrix XX (reduced
from ISOMAP) from Examples 8.4 and 8.5. Use hierarchical clustering
or k-means and ask for 16 groups. Is there any evidence of clusters?

8.7 Apply the methodology of Example 8.7 to the iris data.
8.8 Repeat Examples 8.4, 8.5 and 8.7 using other BPM data sets and report

on your results.
8.9 Repeat Example 8.4 using the silhouette values for the model-based

clustering classification. 
8.10 Repeat Example 8.5 using other types of hierarchical clustering.

Compare your results.
8.11 For the following data sets, use k-means or model-based clustering.

Use the ReClus method for visualization. Analyze your results.
a. skulls
b. sparrow

c. oronsay (both classifications)
d. BPM data sets

e. gene expression data sets
8.12 Looking at the data image in Figure 8.9, comment on what variables

seem most useful for classifying the species of iris. 
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Chapter 9
Distribution Shapes

In this chapter, we show various methods for visualizing the shapes of
distributions. The ability to visualize the distribution shape in exploratory
data analysis is important for several reasons. First, we can use it to
summarize a data set to better understand general characteristics such as
shape, spread, or location. In turn, this information can be used to suggest
transformations or probabilistic models for the data. Second, we can use
these methods to check model assumptions, such as symmetry, normality,
etc. We present several techniques for visualizing univariate and bivariate
distributions. These include 1-D and 2-D histograms, boxplots, quantile-
based plots, and bagplots. 

9.1 Histograms

A histogram is a way to graphically summarize or describe a data set by
visually conveying its distribution using vertical bars. They are easy to create
and are computationally feasible, so they can be applied to massive data sets.
In this section, we describe several varieties of histograms. These include the
frequency and relative frequency histogram, and what we are calling the
density histogram.

9.1.1 Univariate Histograms

A frequency histogram is obtained by first creating a set of bins or intervals
that cover the range of the data set. It is important that these bins do not
overlap and that they have equal width. We then count the number of
observations that fall into each bin. To visualize this information, we place a
bar at each bin, where the height of the bar corresponds to the frequency.
Relative frequency histograms are obtained by mapping the height of the bin
to the relative frequency of the observations that fall into the bin. 

The basic MATLAB package has a function for calculating and plotting a
univariate frequency histogram called hist. This function is illustrated in
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the example given below, where we show how to construct both types of
histograms. 

Example 9.1
In this example, we look at the two univariate histograms showing relative
frequency and frequency. We can obtain a simple histogram in MATLAB
using these commands:

load galaxy
% The 'hist' function can return the
% bin centers and frequencies.
% Use the default number of bins - 10.
[n, x] = hist(EastWest);
% Plot and use the argument of width = 1
% to get bars that touch.
bar(x,n,1,'w');
title('Frequency Histogram - Galaxy Data')
xlabel('Velocity')
ylabel('Frequency')

Note that calling the hist function with no output arguments will find the
pieces necessary to construct the histogram based on a given number of bins
(default is 10 bins) and will also produce the plot. We chose to use the option
of first extracting the bin locations and bin frequencies so we could get the
relative frequency histogram using the following code:

% Now create a relative frequency histogram.
% Divide each box by the total number of points.
% We use bar to plot.
bar (x,n/140,1,'w')
title('Relative Frequency Histogram - Galaxy Data')
xlabel('Velocity')
ylabel('Relative Frequency')

These plots are shown in Figure 9.1. Notice that the shapes of the histograms
are the same in both types of histograms, but the vertical axes are different.
From the shape of the histograms, it seems reasonable to assume that the data
are normally distributed (for this bin configuration).
� 

One problem with using a frequency or relative frequency histogram is that
they do not represent meaningful probability densities, because the total area
represented by the bars does not equal one. This can be seen by
superimposing a corresponding normal distribution over the relative
frequency histogram as shown in Figure 9.2. However, they are very useful
for gaining a quick picture of the distribution of the data.
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FIGURE 9.1

The top histogram shows the number of observations that fall into each bin, while the bottom
histogram shows the relative frequency. Note that the shape of the histograms is the same,
but the vertical axes represent different quantities.
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A density histogram is a histogram that has been normalized so the area
under the curve (where the curve is represented by the heights of the bars) is
one. A density histogram is given by the following equation

, (9.1)

where Bk denotes the k-th bin, νk represents the number of data points that fall
into the k-th bin, and h represents the width of the bins. 

Since our goal is to estimate a bona fide probability density, we want to have
an estimate  that is nonnegative and satisfies the constraint that

.

It is left as an exercise to the reader to show that Equation 9.1 satisfies this
condition.

The density histogram depends on two parameters: 1) an origin t0 for the
bins and 2) a bin width h. These two parameters define the mesh over which
the histogram is constructed. The bin width h is sometimes referred to as the
smoothing parameter, and it fulfills a similar purpose as that found in the
chapter on smoothing scatterplots. The bin width determines the smoothness
of the histogram. Small values of h produce histograms with a lot of variation

FIGURE 9.2

This shows a relative frequency histogram for some data generated from a standard normal
distribution. Note that the curve is higher than the histogram, indicating that the histogram
is not a valid probability density function.
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in the heights of the bins, while larger bin widths yield smoother histograms.
This phenomenon is illustrated in Figure 9.3, where we show histograms of
the same data, but with different bin widths.

We now look at how we can choose the bin width h, in an attempt to
minimize our estimation error. It can be shown that setting h small to reduce
the bias increases the variance in our estimate. On the other hand, creating a
smoother histogram reduces the variance, at the expense of worsening the
bias. This is the familiar trade-off between variance and bias discussed
previously. We now present some of the common methods for choosing the
bin width, most of which are obtained by trying to minimize the squared
error [Scott, 1992] between the true density and the estimate.

FIGURE 9.3

These are histograms for the galaxy data used in Example 9.1. Notice that for the larger
bin widths, we have only one peak. As the smoothing parameter gets smaller, the histogram
displays more variation and spurious peaks appear in the histogram estimate.
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Histogram Bin Widths

1. Sturges’ Rule

 , (9.2)

where k is the number of bins. The bin width h is obtained by taking
the range of the sample data and dividing it into the requisite
number of bins, k [Sturges, 1926]. 

2. Normal Reference Rule - 1-D Histogram

. (9.3)

Scott [1979, 1992] proposed the sample standard deviation as an
estimate of σ in Equation 9.3 to get the following bin width rule.

3. Scott’s Rule

.

4. Freedman-Diaconis Rule

.

This robust rule developed by Freedman and Diaconis [1981] uses
the interquartile range (IQR) instead of the sample standard devi-
ation.

It turns out that when the data are skewed or heavy-tailed, the bin widths
are too large using the Normal Reference Rule. Scott [1979, 1992] derived the
following correction factor for skewed data:

. (9.4)

If one suspects the data come from a skewed distribution, then the Normal
Reference Rule bin widths should be multiplied by the factor given in
Equation 9.4.

So far, we have discussed histograms from a visualization standpoint only.
We might also need an estimate of the density at a given point x, as we will
see in the next section on boxplots. We can find a value for our density
estimate for a given x, using Equation 9.1. We obtain the value  by taking

k 1 log2+ n=

h* 24σ3 π
n

------------------
 
 
 

1 3⁄

= 3.5 σ n 1 3⁄–××≈

ĥ
*

3.5 s n 1 3⁄–××=

ĥ
*

2 IQR n 1 3⁄–××=

skewness factor 21 3⁄ σ

e5σ2
4⁄ σ2 2+( )1 3⁄

eσ2

1–( )
1 2⁄

----------------------------------------------------------------------=

f̂ x( )
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the number of observations in the data set that fall into the same bin as x and
multiplying by 1/(nh).

Example 9.2
In this example, we provide MATLAB code that calculates the estimated
value  for a given x. We use the same data from the previous example and
Sturges’ Rule for estimating the number of bins.

load galaxy
n = length(EastWest);
% Use Sturges' Rule to get the number of bins.
k = round(1 + log2(n));
% Bin the data.
[nuk,xk] = hist(EastWest,k);
% Get the width of the bins.
h = xk(2) - xk(1);
% Plot as a density histogram.
bar(xk, nuk/(n*h), 1, 'w')
title('Density Histogram - Galaxy Data')
xlabel('Velocity') 

FIGURE 9.4

This shows the density histogram for the galaxy data.
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The histogram produced by this code is shown in Figure 9.4. Note that we
had to adjust the output from hist to ensure that our estimate is a bona fide
density. Let’s get the estimate of our function at a point  

% Now return an estimate at a point xo.
xo = 0;
% Find all of the bin centers less than xo.
ind = find(xk < xo);
% xo should be between these two bin centers:
b1 = xk(ind(end));
b2 = xk(ind(end)+1);
% Put it in the closer bin.
if (xo-b1) < (b2-xo)   % then put it in the 1st bin
   fhat = nuk(ind(end))/(n*h);
else
   fhat = nuk(ind(end)+1)/(n*h);
end

Our result is fhat = 0.0433. Looking at Figure 9.4, we see that this is the
correct estimate.
�

9.1.2 Bivariate Histograms

We can easily extend the univariate density histogram to multivariate data,
but we restrict our attention in this text to the bivariate case. The bivariate
histogram is defined as 

, (9.5)

where νk denotes the number of observations falling into the bivariate bin Bk ,
and hi is the width of the bin along the i-th coordinate axis. Thus, the estimate
of the probability density would be given by the number of observations
falling into that same bin divided by the sample size and the bin widths. 

As before, we must determine what bin widths to use. Scott [1992] provides
the following multivariate Normal Reference Rule.

Normal Reference Rule - Multivariate Histograms

. (9.6)

x0 0.=

f̂ x( )
νk

nh1h2

--------------;= x in Bk
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* 3.5 σ i n

1–
2 p+
------------
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Notice that this reduces to the same univariate Normal Reference Rule
(Equation 9.3) when p = 1. As before, we can use a suitable estimate for σi ,
based on our data.

Example 9.3
We return to the data used in Example 7.8 to illustrate the bivariate
histogram. Recall that we first reduced the BPM data to 2-D using ISOMAP
and the L1 proximity measure. The code to do this is repeated below.

load L1bpm
% Reduce the dimensionality using Isomap.
options.dims = 1:10;    % These are for ISOMAP.
options.display = 0;
[Yiso, Riso, Eiso] = isomap(L1bpm, 'k', 7, options);
% Get the data out.
XX = Yiso.coords{2}';
inds = find(classlab==8 | classlab==11);
x = [XX(inds,:)];
[n,p] = size(x);

We use the normal reference rule to find the density histogram of the data.

% Need bin origins.
bin0 = floor(min(x)); 
% The bin width h, for p = 2:
h = 3.5*std(x)*n^(-0.25); 
% Find the number of bins
nb1 = ceil((max(x(:,1))-bin0(1))/h(1));
nb2 = ceil((max(x(:,2))-bin0(2))/h(2));
% Find the bin edges.
t1 = bin0(1):h(1):(nb1*h(1)+bin0(1));
t2 = bin0(2):h(2):(nb2*h(2)+bin0(2));
[X,Y] = meshgrid(t1,t2);
% Find bin frequencies.
[nr,nc] = size(X);
vu = zeros(nr-1,nc-1);
for i = 1:(nr-1)
   for j = 1:(nc-1)
      xv = [X(i,j) X(i,j+1) X(i+1,j+1) X(i+1,j)];
      yv = [Y(i,j) Y(i,j+1) Y(i+1,j+1) Y(i+1,j)];
      in = inpolygon(x(:,1),x(:,2),xv,yv);
      vu(i,j) = sum(in(:));
   end
end
% Find the proper height of the bins.
Z = vu/(n*h(1)*h(2));
% Plot using bars.
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bar3(Z,1,'w')

The plot for histogram is shown in Figure 9.5. We used some additional
MATLAB code to get axes labels that make sense. Please refer to the M-file
for this example to see the code to do that. The Statistics Toolbox, Version 5,
has a function called hist3 for constructing histograms of bivariate data.
❑ 

9.2 Boxplots

Boxplots (sometimes called box-and-whisker diagrams) have been in use for
many years [Tukey, 1977]. They are an excellent way to visualize summary
statistics such as the median, to study the distribution of the data, and to
supplement multivariate displays with univariate information. Benjamini
[1988] outlines the following characteristics of the boxplot that make them
useful:

1. Statistics describing the data are visualized in a way that readily
conveys information about the location, spread, skewness, and
longtailedness of the sample.

2. The boxplot displays information about the observations in the tails,
such as potential outliers.

FIGURE 9.5

This is the histogram for the data representing topics 8 and 11. The normal reference rule
was used for the bin widths. Please see Figure 7.14 for the corresponding scatterplot. 
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3. Boxplots can be displayed side-by-side to compare the distribution
of several data sets.

4. The boxplot is easy to construct.

5. The boxplot is easily explained to and understood by users of
statistics.

In this section, we first describe the basic boxplot. This is followed by several
enhancements and variations of the boxplot. These include variable-width
boxplots, the histplot, and the box-percentile plot.

9.2.1 The Basic Boxplot

Before we describe the boxplot, we need to define some terms. In essence,
three statistics from a data set are needed to construct all of the pieces of the
boxplot. These are the sample quartiles: q(0.25), q(0.5), q(0.75). The sample
quartiles are based on sample quantiles, which are defined next [Kotz and
Johnson, 1986]. 

Given a data set x1, ... , xn , we order the data from smallest to largest. These
are called the order statistics, and we denote them as

.

The u (0 < u < 1) quantile q(u) of a random sample is a value belonging to the
range of the data such that a fraction u (approximately) of the data are less
than or equal to u. 

The quantile denoted by q(0.25) is also called the lower quartile, where
approximately 25% of the data are less than or equal to this number. The
quantile q(0.5) is the median, and q(0.75) is the upper quartile. We need to
define a form for the u in quantile q(u). For a random sample of size n, we let

. (9.7)

The form for ui given in Equation 9.7 is somewhat arbitrary [Cleveland, 1993]
and is defined for ui , i = 1, ... , n. This definition can be extended for all values
of u, 0 < u < 1 by interpolation or extrapolation, given the values of ui and
q(ui). We will study the quantiles in more detail in the next section.

Definitions of quartiles can vary from one software package to another.
Frigge, Hoaglin and Iglewicz [1989] describe a study on how quartiles are
implemented in some popular statistics programs such as Minitab, S, SAS,
SPSS, and others. They provide eight definitions for quartiles and show how
this can affect the appearance of the boxplots. We will use the one defined in
Tukey [1977] called standard fourths or hinges. 

x 1( )  …  x n( ), ,

ui
i 0.5–

n
---------------=
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Procedure - Finding Quartiles

1. Order the data from smallest to largest.
2. Find the median q(0.5), which is in position (n+1)/2 in the list of

ordered data:

a. If n is odd, then the median is the middle data point.
b. If n is even, then the median is the average of the two middle

points.

3. Find the lower quartile, which is the median of the data that lie at
or below the median:
a. If n is odd, then q(0.25) is the median of the ordered data in

positions 1 through (n+1)/2.

b. If n is even, then q(0.25) is the median of the ordered data in
positions 1 through n/2.

4. Find the upper quartile, which is the median of the data that lie at
or above the median:

a. If n is odd, then q(0.75) is the median of the ordered data in
positions (n+1)/2 through n.

b. If n is even, then q(0.75) is the median of the ordered data in
positions n/2 + 1 through n.

Thus, we see that the lower quartile is the median of the lower half of the data
set, and the upper quartile is the median of the upper half of the sample. We
show how to find these using MATLAB in the next example.

Example 9.4
We will use the geyser data to illustrate the MATLAB code for finding the
quartiles. These data represent the time (in minutes) between eruptions of the
Old Faithful geyser at Yellowstone National Park. 

load geyser
% First sort the data.
geyser = sort(geyser);
% Get the median.
q2 = median(geyser);
% First find out if n is even or odd.
n = length(geyser);
if rem(n,2) == 1
    odd = 1;
else
    odd = 0;
end
if odd
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    q1 = median(geyser(1:(n+1)/2));
    q3 = median(geyser((n+1)/2:end));
else
    q1 = median(geyser(1:n/2));
    q3 = median(geyser(n/2:end));
end

The sample quartiles are: 59, 76, 83. The reader is asked in the exercises to
verify that these make sense by looking at a histogram and other plots. We
provide a function called quartiles that implements this code for general
use.
❑

Recall from introductory statistics that the sample interquartile range (IQR)
is the difference between the first and the third sample quartiles. This gives
the range of the middle 50% of the data. It is found from the following:

.

We need to define two more quantities to determine what observations
qualify as potential outliers. These limits are the lower limit (LL) and the
upper limit (UL). They are calculated from the IQR as follows

(9.8)

Observations outside these limits are potential outliers. In other words,
observations smaller than the LL and larger than the UL are flagged as
interesting points because they are outlying with respect to the bulk of the
data. Adjacent values are the most extreme observations in the data set that
are within the lower and the upper limits. If there are no potential outliers,
then the adjacent values are simply the maximum and the minimum data
points. 

Just as the definition of quartiles varies with different software packages,
so can the definition of outliers. In some cases multipliers other than 1.5 are
used in Equation 9.8, again leading to different boxplots. Hoaglin, Iglewicz
and Tukey [1986] examine this problem and show how it affects the number
of outliers displayed in a boxplot.

The original boxplot, as defined by Tukey, did not include the display of
outliers, as it does today. He called the boxplot with outliers the schematic
plot. It is the default now in most statistics packages (and text books) to
construct the boxplot with outliers as we outline below.

To construct a boxplot, we place horizontal lines at each of the three
quartiles and draw vertical lines at the edges to create a box. We then extend
a line from the first quartile to the smallest adjacent value and do the same
for the third quartile and largest adjacent value. These lines are sometimes

IQR q 0.75( ) q 0.25( )–=

LL q 0.25( ) 1.5 IQR×–=

UL q 0.75( ) 1.5 IQR .×+=
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called the whiskers. Finally, any possible outliers are shown as an asterisk or
some other plotting symbol. An example of a boxplot with labels showing the
various pieces is shown in Figure 9.6. 

Boxplots for different univariate samples can be plotted together for
visually comparing the corresponding distributions, and they can also be
plotted horizontally rather than vertically. 

Example 9.5
We now show how to do a boxplot by hand using the defsloc variable in
the software data because it has some potential outliers. First we load the
data and transform it using the logarithm.

load software
% Take the log of the data.
x = log(sort(defsloc));
n = length(x);

FIGURE 9.6

This is an example of a boxplot with possible outliers.
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The next step is to find the quartiles, the interquartile range, and the upper
and lower limits. 

% First get the quartiles.
q = quartiles(x);
% Find the interquartile range.
iq = q(3) - q(1);
% Find the outer limits.
UL = q(3) + 1.5*iq;
LL = q(1) - 1.5*iq;

We can find observations that are outside these limits using the following
code:

% Find any outliers.
ind = [find(x > UL); find(x < LL)];
outs = x(ind);
% Get the adjacent values. Find the
% points that are NOT outliers.
inds = setdiff(1:n,ind);
% Get their min and max.
adv = [x(inds(1)) x(inds(end))];

Now we have all of the quantities necessary to draw the plot. 

% Now draw the necessary pieces.
% Draw the quartiles.
plot([1 3],[q(1),q(1)])
hold on
plot([1 3],[q(2),q(2)])
plot([1 3],[q(3),q(3)])
% Draw the sides of the box
plot([1 1],[q(1),q(3)])
plot([3 3],[q(1),q(3)])
% Draw the whiskers.
plot([2 2],[q(1),adv(1)],[1.75 2.25],[adv(1) adv(1)]) 
plot([2 2],[q(3),adv(2)],[1.75 2.25],[adv(2) adv(2)])
% Now draw the outliers with symbols.
plot(2*ones(size(outs)), outs,'o')
hold off
axs = axis;
axis([-1 5 axs(3:4)])
set(gca,'XTickLabel',' ')
ylabel('Defects per SLOC (log)')

The boxplot is shown in Figure 9.7, where we see that the distribution is not
exactly symmetric. 
� 
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We provide a function called boxp that will construct boxplots, including
some of the variations discussed below. The MATLAB Statistics Toolbox also
has a boxplot function that the reader is asked to explore in the exercises. 

9.2.2 Variations of the Basic Boxplot

We now describe some enhancements and variations of the basic boxplot
described above. When we want to understand the significance of the
differences between the medians, we can display boxplots with notches
[McGill, Tukey and Larsen, 1978]. The notches in the sides of the boxplots
represent the uncertainty in the locations of central tendency and provide a
rough measure of the significance of the differences between the values. If the
intervals represented by the notches do not overlap, then there is evidence
that the medians are significantly different. The MATLAB Statistics Toolbox
function boxplot will produce boxplots with notches, as explained in the
exercises.

Vandervieren and Huber [2004] present a robust version of the boxplot for
skewed distributions. In this type of distribution, too many observations can
be classified as outliers. Their generalization to the boxplot has a robust
measure of skewness that is used to find the whiskers. They show that their
adjusted boxplot provides a more accurate representation of the data
distribution than the basic boxplot. See Appendix B for information on where
to download functions for this and other robust analysis methods.

FIGURE 9.7

This shows the boxplot for the number of defects per SLOC (log) from the software data
set. 

       
−12

−10

−8

−6

−4

−2

0

D
ef

ec
ts

 p
er

 S
LO

C
 (

lo
g)

EDA.book  Page 274  Monday, October 18, 2004  8:33 AM



Distribution Shapes 275

Another enhancement of the boxplot also comes from McGill, Tukey and
Larsen [1978]. This is called the variable-width boxplot, and it incorporates
a measure of the sample size. Instead of having boxplots with equal widths,
we could make the widths proportional to some function of n. McGill, Tukey
and Larsen recommend using widths proportional to the square root of n and
offer it as the standard. They suggest others, such as making the widths
directly proportional to sample size or using a logit scale. 

Benjamini [1988] uses the width of the boxplot to convey information about
the density of the data rather than the sample size. He offers two types of
boxplots that incorporate this idea: the histplot and the vaseplot. In a
histplot, the lines at the three quartiles are drawn with a width that is
proportional to an estimate of the associated density at these positions. His
implementation uses the density histogram, but any other density estimation
method can also be used. He then extends this idea by drawing the width of
the box at each point proportional to the estimated density at that point. This
is called the vaseplot, because it produces a vase-like shape. One can no
longer use the notches to show the confidence intervals for the medians in
these plots, so Benjamini uses shaded bars instead. All of these extensions
adjust the width of the boxes only; the whiskers stay the same.

The box-percentile plot [Esty and Banfield, 2003] also uses the sides of the
boxplot to convey information about the distribution of the data over the
range of data values. They no longer draw the whiskers or the outliers, so
there is no ambiguity about how to define these characteristics of the boxplot. 

To construct a box-percentile plot, we do the following. From the minimum
value up to the 50th percentile, the width of the ‘box’ is proportional to the
percentile of that height. Above the 50th percentile, the width is proportional
to 100 minus the percentile. The box-percentile plots are wide in the middle,
like boxplots, but narrowing as they get further away from the middle. 

We now describe the procedure in more detail. Let w indicate the maximum
width of the box-percentile plot, which will be the width at the median. We
obtain the order statistics of our observed random sample, x(1), ..., x(n). Then
the sides of the box-percentile plot are obtained as follows:

1. For x(k) less than or equal to the median, we plot the observation at
height x(k) at a distance kw/(n + 1) on either side of a vertical axis
of symmetry. 

2. For x(k) greater than the median, we plot the point at height x(k) at
a distance (n + 1 – k)w/(n + 1) on either side of the axis of symmetry.

We illustrate the box-percentile plot and the histplot in the next example.
Constructing a variable-width boxplot is left as an exercise to the reader.

Example 9.6
We use some simulated data sets similar to those in Esty and Banfield [2003]
to illustrate the histplot and the box-percentile plots. We did not have their
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exact distributional models, but we tried to reproduce them as much as
possible. The first data set is a standard normal distribution. The second one
is uniform in the range , with some outliers close to –3 and 3. The
third random sample is trimodal. These three data sets have similar quartiles
and ranges, as illustrated in the boxplots in Figure 9.8. The code used to
generate the samples follows; we saved the data in a MAT-file for your use.

% Generate some standard normal data.
X(:,1) = randn(400,1);
% Generate some uniform data.
tmp = 2.4*rand(398,1) - 1.2;
% Add some outliers to it.
X(:,2) = [tmp; [-2.9 2.9]'];
tmp1 = randn(300,1)*.5;
tmp2 = randn(50,1)*.4-2;
tmp3 = randn(50,1)*.4+2;
X(:,3) = [tmp1; tmp2; tmp3];
save  example96 X

We show the side-by-side boxplots in Figure 9.8, where we used the
MATLAB Statistics Toolbox boxplot function with long whiskers so no
outliers will be shown. 

% This is from the Statistics Toolbox:
figure,boxplot(X,0,[],1,10) 

We can gain more insights into the distributions by looking at the histplots.
The same function called boxp mentioned earlier includes this capability; its
other functionality will be explored in the exercises. 

% We can get the histplot. This function is 
% included with the text.
boxp(X,'hp')

This plot is shown in Figure 9.9, where differences are now apparent. The
histplot functionality provided with this text uses a kernel probability
density estimate [Scott, 1992; Martinez & Martinez, 2002] for the density at
the quartiles. Now, we show the box-percentile plot, which we have coded in
the function boxprct. This function will construct both constant width
boxes, as well as ones with variable width. See the help on the function for
more information on its capabilities. The plain box-percentile plots are
created with this syntax:

% Let's see what these look like using the
% box-percentile plot.
boxprct(X)

This plot is shown in Figure 9.10. Note that the sides of the plots now give us
more information and insights into the distributions, and that the differences
between them are more apparent. In a box-percentile plot, outliers like we

1.2 1.2,–[ ]
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FIGURE 9.8

This shows the boxplots for the generated data in Example 9.6. The first one is for a standard
normal distribution. The second is uniform with outliers at the extremes of –3 and 3. The
third is from a trimodal distribution. Notice that these distributions do not seem very
different based on these boxplots.

FIGURE 9.9

This is the histplot version of the data in Example 9.6. We now see some of the differences
in the distributions. 
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have in the second distribution will appear as long, skinny lines. To get a
variable width box-percentile plot (the maximum width is proportional to
the square root of n), use the syntax

boxprct(X,'vw')

❑ 

In our opinion, one of the problems with the histplot is its dependence on
the estimated density. This density estimate is highly dependent on the bin
width (or window width in the case of kernel estimation), so the histplots
might be very different as these change. The nice thing about the box-
percentile plot is that we gain a better understanding of the distribution, and
we do not have to arbitrarily set parameters such as the limits to determine
outliers or the bin widths to find the density.

FIGURE 9.10

This is the box-percentile plot of the simulated data in Example 9.6. The plot for the normal
distribution shows a single mode at the median, symmetry about the median, and concave
sides. The uniform distribution has outliers at both ends, which are shown as long, thin
lines. The center part of the plot is a diamond shape, since the percentile plot of a uniform
distribution is linear. Although somewhat hard to see, we have several modes in the last
one, indicated by valleys (with few observations) and peaks on the sides.
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9.3 Quantile Plots

As an alternative to the boxplots, we can use quantile-based plots to visually
compare the distributions of two samples. These are also appropriate when
we want to compare a known theoretical distribution and a sample. In
making the comparisons, we might be interested in knowing how they are
shifted relative to each other or to check model assumptions, such as
normality. 

In this section, we discuss several versions of quantile-based plots. These
include probability plots, quantile-quantile plots (sometimes called q-q
plots), and quantile plots. The probability plot has historically been used to
compare sample quantiles with the quantiles from a known theoretical
distribution, such as normal, exponential, etc. Typically, a q-q plot is used to
determine whether two random samples were generated by the same
distribution. The q-q plot can also be used to compare a random sample with
a theoretical distribution by generating a sample from the theoretical
distribution as the second sample. Finally, we have the quantile plot that
conveys information about the sample quantiles. 

9.3.1 Probability Plots

A probability plot is one where the theoretical quantiles are plotted against
the ordered data, i.e., the sample quantiles. The main purpose is to visually
determine whether or not the data could have been generated from the given
theoretical distribution. If the sample distribution is similar to the theoretical
one, then we would expect the relationship to follow an approximate straight
line. Departures from a linear relationship are an indication that the
distributions are different. 

To get this display, we plot the x(i) on the vertical axis, and on the other axis
we plot

, (9.9)

where  denotes the inverse of the cumulative distribution function for
the hypothesized distribution. If the sample arises from the same distribution
represented by Equation 9.9, then the theoretical quantiles and the sample
quantiles should fall approximately on a straight line. As we discussed
before, the 0.5 in the above argument can be different [Cleveland, 1993]. For
example, we could use . See Kimball [1960] for other options. A
well-known example of a probability plot is the normal probability plot,
where the theoretical quantiles from the normal distribution are used. 
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The MATLAB Statistics Toolbox has two functions for obtaining
probability plots. One is called normplot to assess the assumption that a
data set comes from a normal distribution. There is also a function for
constructing a probability plot that compares a data set to the Weibull
distribution. This is called weibplot. Probability plots for other theoretical
distributions can be obtained using the MATLAB code given below,
substituting the appropriate function to get the theoretical quantiles. 

Version 5 of the Statistics Toolbox has several new functions that can be
used to explore distribution shapes. One is the probplot function. The
default for this function is to construct a normal probability plot with a
reference line. However, this can be changed via an input argument for
'distname' that specifies the desired distribution. There is also a new GUI
tool for fitting distributions. To start the tool, type dfittool at the
command line. This tool allows you to load data from the workspace, fit
distributions to the data, plot the distributions, and manage/evaluate
different fits.

Example 9.7
This example illustrates how you can display a probability plot in MATLAB,
where we return to the galaxy data. From previous plots, these data look
approximately normally distributed, so we will check that assumption using
the probability plot. First, we get the sorted sample, and then we obtain the
corresponding theoretical quantiles for the normal distribution. The resulting
quantile plot is shown in Figure 9.11.

load galaxy
% We will use the EastWest data again.
x = sort(EastWest);
n = length(x);
% Get the probabilities.
prob = ((1:n)-0.5)/n;
% Now get the theoretical quantiles for
% a normal distribution.
qp = norminv(prob,0,1);
% Now plot theoretical quantiles versus 
% the sorted data.
plot(qp,x,'.')
ylabel('Sorted Data')
xlabel('Standard Normal Quantiles')

We see in the plot that there is slight curvature at the ends, indicating some
departure from normality. However, these plots are exploratory only, and the
results are subjective. Data analysts should use statistical inference methods
(e.g., goodness-of-fit tests) to assess the significance of any departure from
the theoretical distribution.
❑ 
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9.3.2 Quantile-quantile Plot

The q-q plot was originally proposed by Wilk and Gnanadesikan [1968] to
visually compare two distributions by graphing the quantiles of one versus
the quantiles of the other. Either or both of these distributions may be
empirical or theoretical. Thus, the probability plot is a special case of the q-q
plot. 

Say we have two data sets consisting of univariate measurements. We
denote the order statistics for the first data set by 

.

Let the order statistics for the second data set be

,

where without loss of generality, . 
In the next example, we show how to construct a q-q plot where the sizes

of the data sets are equal, so m = n. In this case, we simply plot the sample
quantiles of one data set versus the other data set as points. 

FIGURE 9.11

This is a probability plot for the EastWest variable in the galaxy data set. The curvature
indicates that the data are not exactly normally distributed.

−3 −2 −1 0 1 2 3
−30

−20

−10

0

10

20

30
S

or
te

d 
D

at
a

Standard Normal Quantiles

x 1( ) x 2( )  …  x n( ), , ,

y 1( ) y 2( )  …  y m( ), , ,

m n≤

EDA.book  Page 281  Monday, October 18, 2004  8:33 AM



282 Exploratory Data Analysis with MATLAB

Example 9.8
We will generate two sets of normal random variables and construct a q-q
plot. Constructing a q-q plot for random samples from different distributions
and different sample sizes will be covered in the next example. The first
simulated data set is standard normal; the second one has a mean of 1 and a
standard deviation of 0.75.

% Generate the samples - same size.
x = randn(1,300);
% Make the next one a different mean 
% and standard deviation.
y = randn(1,300)*.75 + 1;
% Find the order statistics - sort them.
xs = sort(x);
ys = sort(y);
% Construct the q-q plot - do a scatterplot.
plot(xs, ys, '.')
xlabel('Standard Normal - Sorted Data')
ylabel('Normal - Sorted Data')
title('Q-Q Plot')

The q-q plot is shown in Figure 9.12. The data appear to be from the same
family of distributions, since the relationship between them is approximately
linear.
❑ 

We now look at the case where the sample sizes are not equal and m < n. To
obtain the q-q plot, we graph the y(i),  against the 
quantile of the other data set. The  quantiles of the x data are
usually obtained via interpolation.

Users should be aware that q-q plots provide only a rough idea of how
similar the distribution is between two random samples. If the sample sizes
are small, then a lot of variation is expected, so comparisons might be
suspect. To help aid the visual comparison, some q-q plots include a reference
line. These are lines that are estimated using the first and third quartiles of
each data set and extending the line to cover the range of the data. The
MATLAB Statistics Toolbox provides a function called qqplot that displays
this type of plot. We show below how to add the reference line.

Example 9.9
This example shows how to do a q-q plot when the samples do not have the
same number of points. We use the function provided with this book called
quantileseda1 to get the required sample quantiles from the data set that
has the larger sample size. We then plot these versus the order statistics of the

1 The Statistics Toolbox has similar functions called quantile and prctile to calculate the
sample quantiles and percentiles. 

i 1  … m, ,= i 0.5–( ) m⁄
i 0.5–( ) m⁄
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other sample. Note that we add a reference line based on the first and third
quartiles of each data set, using the function polyfit. We first generate the
data sets, both from different distributions.

% We will generate some samples - one will be
% from the normal distribution, the other will
% be uniform.
n = 100;
m = 75;
x = randn(1,n);
y = rand(1,m);

Next we get the order statistics from the y values and the corresponding
quantiles from the x data set. 

% Sort y; these are the order statistics.
ys = sort(y);
% Now find the associated quantiles using the x.
% Probabilities for quantiles:
p = ((1:m) - 0.5)/m;
% The next function comes with this text.
xs = quantileseda(x,p);

FIGURE 9.12

This is a q-q plot of two generated random samples, each one from a normal distribution.
We see that the relationship between them is approximately linear, as expected. 
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Now we can construct the plot, adding a reference line based on the first and
third quartiles to help assess the linearity of the relationship.

% Construct the plot.
plot(xs,ys,'.')
% Get the reference line. Use the 1st and 3rd 
% quartiles of each set to get a line.
qy = quartiles(y);
qx = quartiles(x);
[pol, s] = polyfit(qx([1,3]),qy([1,3]),1);
% Add the line to the figure.
yhat = polyval(pol,xs);
hold on
plot(xs,yhat,'k')
xlabel('Sample Quantiles - X'),
ylabel('Sorted Y Values')
hold off

We see in Figure 9.13 that the data do not come from the same distribution,
since the relationship is not linear. 
❑ 

A major benefit of the quantile-based plots discussed so far is that they do
not require the two samples (or the sample and theoretical distribution) to
have the same location and scale parameter. If the distributions are the same,
but differ in location or scale, then we would still expect them to produce a
straight line. This will be explored in the exercises. 

9.3.3 Quantile Plot

Cleveland [1993] describes another version of a quantile-based plot. He calls
this the quantile plot, where we have the ui values (Equation 9.7) along the
horizontal axis and the ordered data x(i) along the vertical. These ordered
pairs are plotted as points, joined by straight lines. Of course, this does not
have the same interpretation or provide the same information as the
probability plot or q-q plot described previously. This quantile plot provides
an initial look at the distribution of the data, so we can search for unusual
structure or behavior. We also obtain some information about the sample
quantiles and their relationship to the rest of the data. This type of display is
discussed in the next example.

Example 9.10
We use a data set from Cleveland [1993] that contains the heights (in inches)
of singers in the New York Choral Society. The following MATLAB code
constructs the quantile plot for the Tenor_2 data.

load singer
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n = length(Tenor_2);
% Sort the data for the y-axis.
ys = sort(Tenor_2);
% Get the associated u values.
u = ((1:n)-0.5)/n;
plot(u,ys,'-o')
xlabel('u_i value')
ylabel('Tenor 2 Height (inches)')

We see from the plot shown in Figure 9.14 that the values of the quartiles (and
other quantiles of interest) are easy to see.
❑ 

A word of caution is in order regarding the quantile-based plots discussed
in this section. Some of the names given to them are not standard throughout
statistics books. For example, the quantile plot is also called the q-q plot in
Kotz and Johnson [Vol. 7, p. 233, 1986].

FIGURE 9.13

This shows the q-q plot for Example 9.9. The x values are normally distributed with n =
100. The y values are uniformly distributed with m = 75. The plot shows that these data do
not come from the same distribution.
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9.4 Bagplots

The bagplot is a bivariate box-and-whiskers plot developed by Rousseeuw,
Ruts and Tukey [1999]. This is a generalization of the univariate boxplot
discussed previously. It uses the idea of the location depth of an observation
with respect to a bivariate data set. This extends the idea of ranking or
ordering univariate data to the bivariate case, so we can find quantities
analogous to the univariate quartiles. The bagplot consists of the following
components:

1. A bag that contains the inner 50% of the data, similar to the IQR; 
2. A cross (or other symbol) indicating the depth median (described

shortly); 

3. A fence to determine potential outliers; and
4. A loop that indicates the points that are between the bag and the

fence.

We need to define several concepts to construct the bagplot. First, we have
the notion of the halfspace location depth introduced by Tukey [1975]. The
halfspace location depth of a point θ relative to a bivariate data set is given

FIGURE 9.14

This is the quantile plot for the Tenor_2 data, which is part of the singer data. 
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by the smallest number of data points contained in a closed half-plane where
the boundary line passes through θ. Next, we have the depth region Dk, which
is the set of all θ with halfspace location depth greater than or equal to k.
Donoho and Gasko [1992] define the depth median of the bivariate point
cloud, which in most cases is the center of gravity of the deepest region.
Rousseeuw and Ruts [1996] provide a time-efficient algorithm for finding the
location depth and depth regions, as well as an algorithm for calculating the
depth median [1998]. 

The bag is constructed in the following manner. We let # Dk be the number
of data points in the depth region Dk. First, we find the value k for which 

,

where the notation  denotes the greatest integer less than or equal to x.
Then, the bag is obtained by linearly interpolating between Dk and Dk–1,
relative to the depth median. The fence is constructed by inflating the bag by
some factor relative to the depth median. Any points that are outside the
fence are flagged as potential outliers. Finally, the loop is the outer boundary
of the bagplot; i.e., it is the convex hull of the bag and the nonoutlying points.

Example 9.11
Rousseuw, Ruts and Tukey provide Fortran and MATLAB code to construct
the bagplot; see Appendix B for download information. We compiled the
code and provide the executable file bagmat.exe. This must be executed
using your data before you call the bagplot function from MATLAB. First,
your bivariate data has to be saved in the current directory and in ascii row
by column format. You can invoke bagmat.exe from the MATLAB
command window or from a Microsoft CMD window. We show below how
to use the MATLAB command line option. We use the environmental data
set for this example, where the two variables of interest are temperature and
ozone.

% First we load up some data to be used in the plots.
load environmental
% Now we put the data set together.
data = [Temperature,Ozone];
% Save the data in ascii format.
save data -ascii

Note that we have n = 111 observations in this data set. Now we invoke the
bagmat.exe program from the command line using:

! bagmat

You will see a new blank line at the command window, but no text. Type in
the name of the data file and hit return. You will see another blank line; now

# Dk
n
2
--- # Dk 1–<≤

x
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type in the number of observations and hit return. This is what you see in the
command window after following these steps:

data
111
PLEASE GIVE THE NAME OF THE DATA FILE 
PLEASE GIVE THE NUMBER OF DATA POINTS 

After the program executes, it will write three text files to your current
directory: interpol.dat, datatyp.dat, and tukmed.dat. These three
files are required for the bagplot function. To get the basic bagplot with all
observations plotted, shading for the bag and loop, and no plotting of the
fence, just use 

bagplot

at the command line. This plot is shown in Figure 9.15. 
❑

FIGURE 9.15

This is a bagplot showing two variables in the environmental data set. Note that the
MATLAB version of the bagplot shows the depth median with a large filled circle.
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9.5 Summary and Further Reading

We presented several methods for visualizing the shapes of distributions for
continuous random variables. The easiest and most intuitive methods to use
are the histograms and boxplots. We discussed several variations of these
plots. For histograms, we presented frequency, relative frequency, density,
and 2-D histograms. Enhancements to the boxplot included histplots, box-
percentile plots, variable-width boxplots, and others. We concluded the
chapter with quantile-based plots and a generalization of the univariate
boxplot to 2-D.

There is an extensive literature on probability density estimation, both
univariate and multivariate. The best comprehensive book in this area is Scott
[1992]. He discusses histograms, frequency polygons, kernel density
estimation, and the average shifted histograms. He covers the theoretical
foundation of these methods, how to choose the smoothing parameters (e.g.,
bin widths), and many practical examples. For a MATLAB perspective on
these methods, please see Martinez and Martinez [2002]. The book called
Visualizing Data by William Cleveland [1993] is an excellent resource on many
aspects of data visualization, including the quantile-based plots discussed in
this chapter.

We only covered the quantile-based plots for continuous data. However,
versions of these are also available for discrete data, such as binomial or
Poisson. MATLAB implementations of quantile-based plots for discrete
distributions can be found in Martinez and Martinez [2002]. Another
resource for the visualization of categorical data is Friendly [2000], where
SAS software is used for implementation of the ideas. Finally, we recommend
Hoaglin and Tukey [1985] for a nice summary of various methods for
checking the shape of discrete distributions. 

Exercises

9.1 Repeat Example 9.1 using 5 and 50 bins. Compare these results with
what we had in Figure 9.1.

9.2 Repeat Example 9.1 using the forearm data. 
9.3 Apply the various bin width rules to the forearm and to the galaxy

data. Discuss the results.
9.4 The histogram methods presented in the chapter call the hist func-

tion with the desired number of bins. Do a help on hist or histc to
see how to set the bin centers instead. Use this option to construct his-
tograms with a specified bin width and origin.
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9.5 Using the code from problem 9.4, show how changing the bin starting
point affects histograms of the galaxy data. 

9.6 Using the data in Example 9.2, construct a normal curve, using the
sample mean and standard deviation. Superimpose this over the his-
togram and analyze your results.

9.7 Plot the histogram in Example 9.3 using the surf plot, using this
code:

% Plot as a surface plot.
% Get some axes that make sense.
[XX,YY]=...
meshgrid(linspace(min(x(:,1)),max(x(:,1)),nb1),...
linspace(min(x(:,2)),max(x(:,2)),nb2));
% Z is the height of the bins in Example 9.3.
surf(XX,YY,Z)

9.8 Use a boxplot and a histogram to verify that the quartiles in
Example 9.4 for the geyser data make sense. 

9.9 Generate some standard normal data, with sample sizes n = 30, n = 50,
and n = 100. Use the function boxp to first get a set of plain boxplots
and then use it to get variable width boxplots. The following code
might help:

% Generate some standard normal data with
% different sample sizes. Put into a cell array.
X{1} = randn(30,1);
X{2} = randn(50,1);
X{3} = randn(100,1);
% First construct the plain boxplot.
boxp(X)
% Next we get the boxplot with variable
% widths.
boxp(X,'vw')

9.10 Generate some random data. Investigate the histfit function in the
Statistics Toolbox.

9.11 Show that the area represented by the bars in the density histogram
sums to one.

9.12 Load the data used in Example 9.6 (load example96). Construct his-
tograms (use 12 bins) of the columns of X. Compare with the boxplots
and box-percentiles plots.

9.13 Type help boxplot at the MATLAB command line to learn more
about this Statistics Toolbox Function. Do side-by-side boxplots of the
oronsay data set. The length of the whisker is easily adjusted using
optional input arguments to boxplot. Try various values for this
option.

9.14 Explore the 'notches' option of the boxplot function. Generate
bivariate normal data, where the columns have the same means. Con-
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struct notched boxplots with this matrix. Now generate bivariate nor-
mal data where the columns have very different means. Construct
notched boxplots with this matrix. Discuss your results.

9.15 Apply the boxplot with notches to the oronsay data and discuss
the results.

9.16 Generate two data sets, each from a normal distribution with different
location and scale parameters. Construct a q-q plot (see Example 9.9)
and discuss your results.

9.17 Reconstruct Figure 9.2 using the density histogram. Superimpose the
normal curve over this one. Discuss the difference between this and
Figure 9.2.

9.18 Construct a bagplot using the BPM data from Chapter 7, Example 7.8.
Compare with the polar smoothing.

9.19 A rootogram is a histogram where the heights of the bins correspond
to the square root of the frequency. Write a MATLAB function that will
construct this type of plot. Use it on the galaxy data.

9.20 Repeat Example 9.6 using variable width box-percentile plots.
9.21 Use the MATLAB boxplot function to get side-by-side boxplots of

the following data sets and discuss the results. Construct boxplots
with and without notches. 
a. skulls
b. sparrow

c. pollen
d. BPM data sets (after using ISOMAP)

e. gene expression data sets
f. spam

g. iris
h. software

9.22 Apply some of the other types of boxplots to the data in problem 9.21.
9.23 Generate uniform random variables (use rand) and construct a

normal probability plot (or a q-q plot with the other data set generated
according to a standard normal). Do the same thing with random
variables generated from an exponential distribution (see exprnd in
the Statistics Toolbox). Discuss your results.
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Chapter 10
Multivariate Visualization

In this chapter, we present several methods for visualizing and exploring
multivariate data. We have already seen some of these methods in previous
chapters. For example, we had grand tours and projection pursuit in
Chapter 4, where the dimensionality of the data is first reduced to 2-D and
then visualized in scatterplots. The primary focus of this chapter is to look at
ways to visualize and explore all of the dimensions in our data at once.

The first thing we cover is glyph plots. Then we present information about
scatterplots, both 2-D and 3-D, as well as scatterplot matrices. Next, we talk
about some dynamic graphics, such as linking and brushing. These
techniques enable us to find connections between points in linked graphs,
delete and label points, and highlight subsets of points. We then cover coplots
that convey information about conditional dependency between variables.
This is followed by dot charts that can be used to visualize summary statistics
and other data values. Next, we discuss how to visualize each of our
observations as curves via Andrews’ plots or as broken line segments in
parallel coordinates. We also show how these methods can be combined with
the plot matrix concept and the grand tour.

10.1 Glyph Plots

We first briefly discuss some of the multivariate visualization methods that
will not be covered in detail in this text. Most of these are suitable for small
data sets only, so we do not think that they are in keeping with the trend
towards analyzing massive, high-dimensional data sets, as seen in most
applications of EDA and data mining.

The first method we present is due to Chernoff [1973]. His idea was to
represent each observation (with dimensionality ) by a cartoon face.
Each feature of the face, such as length of nose, mouth curvature, eyebrow
shape, size of eyes, etc., would correspond to a value of the variable. This
technique is useful for understanding the overall regularities and anomalies
in the data, but it has several disadvantages. The main disadvantage is the

p 18≤
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lack of quantitative visualization of the variables; we just get a qualitative
understanding of the values and trends. Another problem is the subjective
assignment of features to the variables. In other words, assigning a different
variable to the eyebrows and other facial features can have a significant effect
on the final shape of the face. We show an example of Chernoff faces for the
cereal data (described in Appendix C) in Figure 10.1. 

Star diagrams [Fienberg 1979] are a similar plot, in that we have one glyph
or star for each observation, so they suffer from the same restrictions as the
faces regarding sample size and dimensionality. Each observed data point in
the sample is plotted as a star, with the value of each measurement shown as
a radial line from a common center point. Thus, each measured value for an
observation is plotted as a spoke that is proportional to the size of the
measured variable with the ends of the spokes connected with line segments
to form a star. We show the star plot for the same cereal data in Figure 10.2.

The Statistics Toolbox (Version 5) has a function called glyphplot that
will construct either Chernoff faces or star diagrams for each observation.
The use of this function will be explored in the exercises.

Other glyphs and similar plots have been described in the literature
[Kleiner and Hartigan, 1981; du Toit, Steyn and Stumpf, 1986], and most of
them suffer from the same drawbacks. These include star-like diagrams,
where the rays emanate from a circle, and the end points are not connected.
We also have profile plots, where each observation is rendered as a bar chart,
with the height of the bar indicating the value of the variable. Another
possibility is to represent each observation by a box, where the height, length,
and width correspond to the variables. 

10.2 Scatterplots

We have already introduced the reader to scatterplots and scatterplot
matrices in previous chapters, but we now examine these methods in more
detail, especially how to construct them in MATLAB. We also present an
enhanced scatterplot based on hexagonal binning that is suitable for massive
data sets.

10.2.1 2-D and 3-D Scatterplots

The scatterplot is a visualization technique that enjoys widespread use in
data analysis and is a powerful way to convey information about the
relationship between two variables. To construct one of these plots in 2-D, we
simply plot the individual (xi , yi) pairs as points or some other symbol. For
3-D scatterplots, we add the third dimension and plot the (xi , yi , zi) triplets
as points.
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FIGURE 10.1

This shows the Chernoff faces for the cereal data, where we have 8 observations and 11
variables. The shape and size of various facial features (head, eyes, brows, mouth, etc.)
correspond to the values of the variables. The variables represent the percent agreement to
statements about the cereal. The statements are: comes back to, tastes nice, popular with all
the family, very easy to digest, nourishing, natural flavor, reasonably priced, a lot of food
value, stays crispy in milk, helps to keep you fit, fun for children to eat.

FIGURE 10.2

This shows the star plots for the same cereal data. There is one ray for each variable. The
length of the ray indicates the value of the attributed.

corn flakes weet abix rice krispies shreaded wheat

sugar puffs special k frosties all bran

Chernoff Faces for Cereal Data

corn flakes weet abix rice krispies shreaded wheat

sugar puffs special k frosties all bran

Star Plot for Cereal Data
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The main MATLAB package has several ways we can construct 2-D and 3-
D scatterplots, as shown in Example 10.1. The Statistics Toolbox also has a
function to create 2-D scatterplots called gscatter that will construct a
scatterplot, where different plotting symbols are used for each group.
However, as we will see in Example 10.1 and the exercises, similar results can
be obtained using the scatter and plot functions.

Example 10.1
In this example, we illustrate the 2-D and 3-D scatterplot functions called
scatter and scatter3. Equivalent scatterplots can also be constructed
using the basic plot and plot3 functions, which will be explored in the
exercises. Since a scatterplot is generally for 2-D or 3-D, we need to extract a
subset of the variables in the oronsay data. So we’ve chosen variables 8, 9,
and 10: 0.18-0.25mm, 0.125-0.18mm, and 0.09-0.125mm. We first use variables
8 and 9 to construct a basic 2-D scatterplot.

% First load up the data and get the 
% variables of interest.
load oronsay
% Use the oronsay data set. Just plot two 
% of the variables. Now for the plot:
scatter(oronsay(:,8),oronsay(:,9))
xlabel(labcol{8})
ylabel(labcol{9})

This plot is shown in Figure 10.3 (top). The basic syntax for the scatter
function is

scatter(X,Y,S,C,M)

where X and Y are the data vectors to be plotted, and the other arguments are
optional. S can be either a scalar or a vector indicating the area (in units of
points-squared) of each marker. M is an alternative marker (default is the
circle), and C is a vector of colors. Next we show how to use the color vector
to plot the observations in different colors, according to their midden group
membership. See color plate Figure 10.3 (top) for the resulting plot. 

% If we want to use different colors for the groups, 
% we can use the following syntax. Note that this 
% is not the only way to do the colors.
ind0 = find(midden==0); % Red
ind1 = find(midden==1); % Green
ind2 = find(midden==2); % Blue
% This creates an RGB - 3 column colormap matrix.
C = zeros(length(midden),3);
C(ind0,1) = 1;
C(ind1,2) = 1;
C(ind2,3) = 1;
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FIGURE 10.3

The top figure shows the 2-D scatterplot for two variables (i.e., columns 8 and 9) of the
oronsay data set. See the corresponding color plate for the color version, with color indi-
cating the midden class membership. The lower plot shows the 3-D scatterplot for columns
8 through 10. This plot also uses the midden class membership. See the associated color
figure following page 144.
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scatter(oronsay(:,8),oronsay(:,9),5,C)
xlabel(labcol{8})
ylabel(labcol{9})
zlabel(labcol{10})

3-D scatterplots can also be very useful, and they are easily created using the
scatter3 function, as shown below.

% Now show scatter3 function. Syntax is the same;
% just add third vector.
scatter3(oronsay(:,8),oronsay(:,9),oronsay(:,10),5,C)
xlabel(labcol{8})
ylabel(labcol{9})
zlabel(labcol{10})

The 3-D scatterplot is shown in Figure 10.3 (bottom) and in the corresponding
color plate. MATLAB has another useful feature in the Figure Window
toolbar buttons. This is the familiar rotate button  that, when selected,
allows the user to click on the 3-D axis and rotate the plot. The user can see
the current elevation and azimuth (in degrees) in the lower left corner of the
figure window while the axes are being rotated.
❑

10.2.2 Scatterplot Matrices

Scatterplot matrices are suitable for multivariate data, when p > 2. They show
all possible 2-D scatterplots, where the axis of each plot is given by one of the
variables. The scatterplots are then arranged in a matrix-like layout for easy
viewing and comprehension. Some implementations of the scatterplot matrix
show the plots in the lower triangular portion of the matrix layout only, since
showing both is somewhat redundant. However, we feel that showing all of
them makes it easier to understand the relationships between the variables.
As we see in Example 10.2, the MATLAB functions for scatterplot matrices
show all plots.

One of the benefits of a scatterplot matrix is that one can look across a row
or column and see the scatterplots of a given variable against all other
variables. We can also view the scatterplot matrix as a way of partially linking
points in different views, especially when observations of interest are shown
with different marker styles (symbols and/or colors).

The main MATLAB package has a function called plotmatrix that will
produce a scatterplot matrix for a data matrix X. The diagonal boxes of the
scatterplot matrix contain histograms showing the distribution of each
variable (i.e., the column of X). Please see the help on this function for its
other uses. The Statistics Toolbox has an enhanced version called
gplotmatrix, where one can provide group labels, so observations
belonging to different groups are shown with different symbols and colors.
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Example 10.2
The plotmatrix function will construct a scatterplot matrix when the first
argument is a matrix. An alternative syntax allows the user to plot the
columns of one matrix against the columns of the other. We use the following
commands to construct a scatterplot matrix of the three variables of the
oronsay data used in the previous example. 

% Use the same 3 variables in previous example.
X = [oronsay(:,8),oronsay(:,9),oronsay(:,10)];
plotmatrix(X,'.');
% Let's make the symbols slightly smaller.
Hdots = findobj('type','line');
set(Hdots,'markersize',1)

We chose these from the scatterplot matrix of the full data set, because they
seemed to show some interesting structure. It is also interesting to note the
histograms of the variables, as they provide information about their
distribution. 
❑ 

10.2.3 Scatterplots with Hexagonal Binning

Carr, et. al [1987] introduced several scatterplot matrix methods for situations
where the size of the data set n is large. In our view, n is large when the

FIGURE 10.4

This is the scatterplot matrix for columns 8 through 10 of the oronsay data. The first row
of the plots shows us column 8 plotted against column 9 and then against column 10. We
have similar plots for the other two rows. 
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scatterplot can have a lot of overplotting, so that individual points are
difficult to see. When there is significant overplotting, then it is often more
informative to convey an idea of the density of the points, rather than the
observations alone. Thus, Carr, et. al suggest displaying bivariate densities
represented by gray scale or symbol area instead of individual observations.

To do this, we first need to estimate the density in our data. We have
already introduced this issue in Chapter 9, where we looked at estimating the
bivariate density using a histogram with bins that are rectangles or squares.
Recall, also, that we used vertical bars to represent the value of the density,
rather than a scatterplot. In this chapter, we are going to use bins that are
hexagons instead of rectangles, and the graphic used to represent data
density will be symbol size, as well as color.

Carr, et. al recommended the hexagon as an alternative to using the square
as a symbol, because the square tends to create bins that appear stretched out
in the vertical or horizontal directions. The procedure we use for hexagonal
binning is outlined below.

Procedure - Hexagonal Binning for Scatterplots

1. Find the length r of the side of the hexagon bins based on a given
number of bins.

2. Obtain a set of hexagonal bins over the range of the data.

3. Bin the data.
4. Scale the hexagons with nonzero bin counts, such that the bin with

maximum frequency has sides with length r and the smallest fre-
quency (nonzero) has length 0.1r.

5. Display a hexagon at the center of each bin, where the sides corre-
spond to the lengths found in step 4. 

We provide a MATLAB function called hexplot and show how it is used in
the next example.

Example 10.3
The basic syntax for hexplot is:

hexplot(X,nbin,flag)

The first two arguments must be provided. X is a matrix with n rows and 2
columns, and nbin is the approximate number of bins for the dimension
with the larger range. We use the oronsay data from the previous examples
to illustrate the function.

X = [oronsay(:,8),oronsay(:,9)];
% Construct a hexagon scatterplot with
% 15 bins along the longer dimension.
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hexplot(X,15);

This plot is shown in Figure 10.5 (top). Since the bins and resulting plot
depend on the number of bins, it is useful to construct other scatterplots with
different nbin values to see if other interesting density structure becomes
apparent. The optional input argument flag  (this can be any value)
produces a scatterplot where the color of the hexagon symbols corresponds
to the probability density at that bin. The probability density is found in a
similar manner to a bivariate histogram with rectangular bins, except that we
now normalize using the area of the hexagonal bin. An example of this is
shown in Figure 10.5 (bottom), and it was produced with the following
MATLAB statements:

hexplot(X,15,1)
colormap(gray)

❑ 

10.3 Dynamic Graphics

We now present some methods for dynamic graphics. These allow us to
interact with our plots to uncover structure, remove outliers, locate groups,
etc. Specifically, we cover labeling observations of interest, deleting points,
finding and displaying subsets of our data, linking and brushing. As with the
tour methods discussed in Chapter 4, it is difficult to convey these ideas via
static graphs on the pages of this book, so the reader is encouraged to try
these methods to understand the techniques. 

10.3.1 Identification of Data

One can identify points in a plot in several ways. First, we can add labels to
certain data points of interest or we can highlight observations by using some
other plotting symbol or color [Becker, Cleveland and Wilks, 1987].

We label points in our plot by adding some text that identifies the
observation. Showing all labels is often not possible because overplotting
occurs, so nothing can be distinguished. Thus, a way to selectively add labels
to our plot is a useful capability. One can look at accomplishing this in two
ways. The user can click on a point (or select several points) on the plot, and
the labels are added. Or, the user can select an observation (or several) from
a list, at which point the observations are labeled. We explore both of these
methods in the next example. 

We might also have the need to interactively delete points because they
could be outliers, and they make it difficult to view other observations. For
example, we might have an extreme value that pushes all of the remaining
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FIGURE 10.5

The top plot is a scatterplot with hexagonal bins. This would be an alternative to the plot
shown in Figure 10.3. The bottom plot is for the same data, but the color of the symbols
encodes the value of the probability density at that bin. The density is obtained in a manner
similar to the bivariate histogram. See the associated color figure following page 144.
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data into one small region of the plot, making it difficult to resolve the bulk
of the observations. 

Instead of labeling individual cases or observations, we might have the
need to highlight the points that belong to some subset of our data. For
example, with the document clustering data, we could view the scatterplot of
each topic separately or highlight the points in one class with different color
and symbol type. These options allow direct comparison on the same scale,
but overlap and overplotting can hinder our understanding. We can also plot
these groups separately in panels, as we do in scatterplot matrices. 

A dynamic method for visualizing subsets of the data that is reminiscent of
data tours is called alternagraphics [Tukey, 1973]. This type of tour cycles
through the subsets of the data (e.g., classes), showing each one separately in
its own scatterplot. The cycle pauses at each plot for some fixed time step, so
it is important that all plots be on a common scale for ease of comparison.
Alternatively, one could show all of the data throughout the cycle, and
highlight each subset at each step using different color and/or symbol. We
leave the implementation of this idea as an exercise to the reader. 

Example 10.4
The MATLAB Statistics Toolbox provides a function for labeling data on a
plot called gname. The user can invoke this function using an input argument
containing strings for the case names. This must be in the form of a string
matrix. An alternative syntax is to call gname without any input argument,
in which case observations are labeled with their case number. Once the
function is called, the figure window becomes active, and a set of crosshairs
appears. The user can click near the observation to be labeled, and the label
will appear. This continues until the return key is pressed. Instead of using
the crosshairs on individual points, one can use a bounding box (click on the
plot, hold the left button down and drag), and enclosed points are identified.
We use the animal data to show how to use gname. This data set contains the
brain weights and body weights of several animal types [Crile and Quiring,
1940]. 

load animal
% Plot BrainWeight against BodyWeight.
scatter(log(BodyWeight),log(BrainWeight))
xlabel('Log Body Weight (log grams)')
ylabel('Log Brain Weight (log grams)')
% Change the axis to provide more room.
axis([0 20 -4 11])
% Need to convert animal names to string matrix.
% Input argument must be string matrix.
cases = char(AnimalName);
gname(cases)
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The scatterplot with two labeled observations is shown in Figure 10.6. We
provide an alternative function to gname that allows one to perform many of
the identification operations discussed previously. The function is called
scattergui, and it requires two input arguments. The first is the nx2
matrix to be plotted; the default symbol is blue dots. The user can right click
somewhere in the axes (but not on a point) to bring up the shortcut menu.
Several options are available, such as selecting subsets of data or cases for
identification and deleting points. See the help on this function for more
information on its use. The MATLAB code given below shows how to call
this function.

% Now let's look at scattergui using the BPM data.
load L1bpm
% Reduce the dimensionality using Isomap.
options.dims = 1:10;    % These are for ISOMAP.

FIGURE 10.6

We constructed a scatterplot of the animal data. We then call the gname function using the
animal names (converted to a string matrix). When gname is invoked, the figure window
becomes active and a crosshair appears. The user clicks near a point and the observation is
labeled. Instead of using a crosshair, one can use a bounding box to label enclosed points.
See Example 10.4 for the MATLAB commands.
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options.display = 0;
[Yiso, Riso, Eiso] = isomap(L1bpm, 'k', 7, options);
% Get the data out.
X = Yiso.coords{2}';
scattergui(X,classlab)
% Right click on the axes, and a list box comes up.
% Select one of the classes to highlight.

When the user clicks on the Select Class menu option, a list box comes up
with the various classes available for highlighting. We chose class 6, and the
result is shown in Figure 10.7, where we see the class 6 data displayed as red
x’s.
❑ 

While we illustrated and implemented these ideas using a 2-D scatterplot,
they carry over easily into other types of graphs, such as parallel coordinates
or Andrews’ curves (Section 10.6).

10.3.2 Linking 

The idea behind linking is to make connections between multiple views of
our data with the goal of providing information about the data as a whole.
An early idea for linking observations was proposed by Diaconis and

FIGURE 10.7

This shows the BPM data reduced to 2-D using ISOMAP and displayed using scattergui.
We selected class 6 for highlighting as red x’s via the shortcut menu (available by right-
clicking inside the axes). See the associated color figure following page 144.
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FIGURE 10.8

We have a default scatterplot matrix for three variables of the oronsay data (columns 7
through 9) in the top figure. We link observation 71 in all panels and display it using the
‘x’ symbol. This is shown in the bottom figure.
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Friedman [1980]. They proposed drawing a line connecting the same
observation in two scatterplots. Another idea is one we’ve seen before: use
different colors and/or symbols for the same observations in all of the
scatterplot panels. Finally, we could manually select points by drawing a
polygon around the desired subset of points and subsequently highlighting
these in all scatterplots. 

We have already seen one way of linking views via the grand tour or a
partial linking of scatterplot graphs in a scatterplot matrix. While we can
apply these ideas to linking observations in all open plots (scatterplots,
histograms, dendrograms, etc.), we restrict our attention to linking
observations in panels of a scatterplot matrix.

Example 10.5 
In this example, we show how to do linking in a brute-force way (i.e., non-
interactive) using the plotmatrix function. We return to the oronsay data,
but we use different variables. This creates an initial scatterplot matrix, as
we’ve seen before.

load oronsay
X = [oronsay(:,7),oronsay(:,8),oronsay(:,9),];
% Get the initial plot.
% We need some of the handles to the subplots.
[H,AX,BigAx,P,PAx] = plotmatrix(X,'o');
Hdots = findobj('type','line');
set(Hdots,'markersize',3)

We called the plotmatrix function with output arguments that contain
some handle information that we can use next to display linked points with
different symbols. The scatterplot matrix is shown in Figure 10.8 (top). The
following code shows how to highlight observation 71 in all scatterplots.

% The matrix AX contains the handles to the axes.
% Loop through these and change observation 71 to a
% different marker.
% Get the point that will be linked.
linkpt = X(71,:);
% Remove it from the other matrix.
X(71,:) = [];
% Now change in all of the plots.
for i = 1:2
    for j = (i+1):3
        % Change that observation to 'x'.
        axes(AX(i,j))
        cla, axis manual
        line('xdata',linkpt(j),'ydata',linkpt(i),...
            'markersize',5,'marker','x')
        line('xdata',X(:,j),'ydata',X(:,i),...
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            'markersize',3,'marker','o',...
            'linestyle','none')
        axes(AX(j,i))
        cla, axis manual
        line('xdata',linkpt(i),'ydata',linkpt(j),...
            'markersize',5,'marker','x')
        line('xdata',X(:,i),'ydata',X(:,j),...
            'markersize',3,'marker','o',...
            'linestyle','none')
    end
end

This plot is given in Figure 10.8 (bottom). This plot would be much easier to
do using the gplotmatrix function in the Statistics Toolbox, but we thought
showing it this way would help motivate the need for interactive graphical
techniques. The next example presents a function that allows one to
interactively highlight points in a scatterplot panel and link them to the rest
of the plots by plotting in a different color.
❑ 

10.3.3 Brushing

Brushing was first described by Becker and Cleveland [1987] in the context of
scatterplots, and it encompassed a set of dynamic graphical methods for
visualizing and understanding multivariate data. One of its main uses is to
interactively link data between scatterplots of the data. A brush consists of a
square or rectangle created in one plot. The brush can be of default size and
shape (rectangle or square), or it can be constructed interactively (e.g.,
creating a bounding box with the mouse). The brush is under the control of
the user; the user can click on the brush and drag it within the plot. 

Several brushing operations are described by Becker and Cleveland. These
include highlight, delete, and label. When the user drags the brush over
observations in the plot, then the operation is carried out on corresponding
points in all scatterplots. The outcome of the delete and label operations is
obvious. In the highlight mode, brushed observations are shown with a
different symbol and/or a different color. 

Three brushing modes when using the highlighting operation are also
available. The first is the transient paint mode. In this case, only those points
that are in the current brush are highlighted. As observations move outside
the scope of the brush, they are no longer highlighted. The lasting mode is
the opposite; once points are brushed, they stay brushed. Finally, we can use
the undo mode to remove the highlighting.
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Example 10.6
We wrote a function called brushscatter that implements the highlighting
operation and the three modes discussed above. The basic syntax is shown
below, where we use the oronsay data as in Example 10.2.

% Use the same oronsay columns as in Example 10.2
load oronsay
X = [oronsay(:,8),oronsay(:,9),oronsay(:,10)];
% Get the labels for these.
clabs = labcol(8:10);
% Call the function - the labels are optional.
brushscatter(X,clabs)

The scatterplot matrix is shown in Figure 10.9, where we see some of the
points have been brushed using the brush in the second panel of row one. The
brush is in the transient mode, so only the points inside the brush are
highlighted in all scatterplots. Note that the axes labels are not used on the
scatterplots to maximize the use of the display space. However, we provide
the range of the variables in the corners of the diagonal boxes. This is how
they were implemented in the early literature. Several options (e.g., three
modes, deleting the brush and resetting the plots to their original form) are
available by right-clicking on one of the diagonal plots – the ones with the
variable names. Brushes can be constructed in any of the scatterplot panels
by creating a bounding box in the usual manner. A default brush is not
implemented in this function. 
❑ 

10.4 Coplots

As we have seen in earlier chapters, we sometimes need to understand how
a response variable depends on one or more predictor variables. We could
explore this by estimating a function that represents the relationship and then
visualizing it using lines, surfaces, or contours. We will not delve into this
option any further in this text. Instead, we present coplots for showing slices
of relationships for given values of another variable. We look only at the three
variable cases (one is conditional). The reader is referred to Cleveland [1993]
for an extension to coplots with two conditional variables.

The idea behind coplots is to arrange subplots of one dependent variable
against the independent variable. These subplots can be scatterplots, with or
without smooths, or some other graphic indicating the relationship between
them. Each subplot displays the relationship for a range of data over a given
interval of the second variable. 

The subplots are called dependence panels, and they are arranged in a
matrix-like layout. The given panel is at the top, and this shows the interval
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FIGURE 10.9

This is the scatterplot matrix with brushing and linking. This mode is transient, where only
points inside the brush are highlighted. Corresponding points are highlighted in all scatterplots.
See the associated color figure following page 144.
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of values for each subplot. The usual arrangement of the coplots is left to
right and bottom to top.1 Note that the intervals of the given variable have
two main properties [Becker and Cleveland, 1991]. First, we want to have
approximately the same number of observations in each interval. Second, we
want the overlap to be the same in successive intervals. We require the
dependence intervals to be large enough so there are enough points for
effects to be seen and relationships to be estimated (via smoothing or some
other procedure). On the other hand, if the length of the interval is too big,
then we might get a false view of the relationship. Cleveland [1993] presents
an equal-count algorithm for selecting the intervals, which is used in the
coplot function illustrated in the next example. 

Example 10.7
We turn to Cleveland [1993] and the Data Visualization Toolbox function2

called coplot. We updated the function to make it compatible with later
versions of MATLAB. These data contain three variables: abrasion loss,
tensile strength, and hardness. Abrasion loss is a response variable, and the
others are predictors, and we would like to understand how abrasion loss
depends on the factors. The following MATLAB code constructs the coplot in
Figure 10.10. Note that the conditioning variable must be in the first column
of the input matrix. 

load abrasion
% Get the data into one matrix.
% We are conditioning on hardness.
X = [hardness(:) tensile(:) abrasion(:)];
labels = {'Hardness'; 'Tensile Strength';...
        'Abrasion Loss'};
% Set up the parameters for the coplot.
% These are the parameters for the intervals.
np = 6;     % Number of given intervals.
overlap = 3/4;  % Amount of interval overlap.
intervalParams = [np overlap];
%  Parameters for loess curve:
alpha = 3/4;
lambda = 1;
robustFlag = 0;
fitParams = [alpha lambda robustFlag];
% Call the function.
coplot(X,labels,intervalParams,fitParams)

The coplot is shown in Figure 10.10. A loess smooth is fit to each of the
subsets of data, based on the conditioning variable. We see by the curves that

1 This is backwards from MATLAB’s usual way of numbering subplots: left to right and top to
bottom.
2 Also see the Data Visualization Toolbox M-file book_4_3.m.
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most of them have a similar general shape – decreasing left to right with a
possible slight increase at the end. However, the loess curve in the top row,
third panel shows a different pattern – a slight increase at first, followed by a
downward trend. The reader is asked to explore abrasion loss against
hardness, with the tensile strength serving as the conditioning variable. We
note that other plots could be used in the panels, such as scatterplots alone,
histograms, line plots, etc., but these are not implemented at this time. 
❑ 

10.5 Dot Charts

A dot chart is a visualization method that is somewhat different than others
presented in this chapter in that it is typically used with smaller data sets that
have labels. Further, it is not used for multivariate data in the sense that we
have been looking at so far. However, we think it is a useful way to
graphically summarize interesting statistics describing our data, and thus, it

FIGURE 10.10

This is a coplot of abrasion loss against tensile strength, with the hardness as the given variable.
The loess curves follow a similar pattern, except for the one in the upper row, third column. 
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is a part of EDA. We first describe the basic dot chart and several variations,
such as using scale breaks, error bars, and adding labels for the sample
cumulative distribution function. This is followed by a multiway dot chart,
where individual dot charts are laid out in panels according to some
categorical variable. 

10.5.1 Basic Dot Chart

A data analyst could use a dot chart as a replacement for bar charts
[Cleveland, 1984]. They are sometimes called dot plots [Cleveland, 1993], but
should not be confused with the other type of dot plot sometimes seen in
introductory statistics books.3 An example of a dot chart is shown in Figure
10.11. The labels are shown along the left vertical axis, and the value of the
datum is given by the placement of a dot (or circle) along the horizontal axis.
Dotted lines connecting the dots with the labels help the viewer connect the
observation with the label. If there are just a few observations, then the lines
can be omitted. 

If the data are ordered, then the dots are a visual summary of the sample
cumulative distribution function. Cleveland [1984] suggests that this be
made explicit by specifying the sample cumulative distribution function on
the right vertical axis of the graph. Thus, we can use the following label at the
i-th order statistic:

.

Another useful addition to the dot chart is to convey a sense of the variation
via error bars. This is something that is easily shown on dot charts, but is
difficult to show on bar charts. As described earlier in dynamic graphics, we
might have an outlying observation(s) that makes the remaining values
difficult to understand. Before, we suggested just deleting the point, but in
some cases, we need to keep all points. So, we can use a break in the scale.
Scale breaks are sometimes highlighted via hash marks along the axis, but
these are not very noticeable and false impressions of the data can result.
Cleveland recommends a full scale break, which is illustrated in the exercises. 

Example 10.8
We provide a function for constructing dot charts. In this example, we show
how to use some of the options in the basic dotchart function. First, we load
the oronsay data and find the means and the standard deviations. We will
plot the means as dots in the dot chart. 

3 This type of dot plot has a horizontal line covering the range of the data. A dot is placed above
each observation, in a vertical stack. This dot plot is reminiscent of a histogram or a bar chart in
its final appearance.

i 0.5–( )
n

--------------------
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load oronsay
% Find the means and standard deviations of 
% each column.
mus = mean(oronsay);
stds = std(oronsay);
% Construct the dotchart using lines to the dots. 
dotchart(mus,labcol)
% Change the axes limits.
axis([-1 25 0 13])

The dot chart is shown in Figure 10.11 (top), where we see the dotted lines
extending only to the solid dot representing the mean for that variable. We
can add error bars using the following code:

% Now try error bar option.
dotchart(mus,labcol,'e',stds)

The resulting dot chart is shown in Figure 10.11 (bottom), where we have the
error bars extending from +/– one standard deviation either side of the
mean. Note that this provides an immediate visual impression of some
summary statistics for the variables.
❑ 

10.5.2 Multiway Dot Chart

With multiway data, we have observations that have more than one
categorical variable, and for which we have at least one quantitative variable
that we would like to explore. The representation of the data can be laid out
into panels, where each panel contains a dot chart and each row of the dot
chart represents a level. To illustrate this visualization technique, we use an
example from Cleveland [1993]. 

A census of farm animals in 26 countries was conducted in 1987 to study
air pollution arising from the feces and urine of livestock [Buijsman, Maas
and Asman, 1987]. These countries include those in Europe and the former
Soviet Union. A log (base 10) transformation was applied to the data to
improve the resolution on the graph. 

The multiway dot chart is shown in Figure 10.12, where each of the panels
corresponds to livestock type. The quantitative variable associated with these
is the number of livestock, for each of the different levels (categorical variable
for country). We could also plot these using the countries for each panel and
animal type for the levels. This will be explored in the exercises. 

Note that the order of the countries (or levels) in Figure 10.12 is not in
alphabetical order. It is sometimes more informative to order the data based
on some summary statistic. In this case, the median of the five counts was
used, and they increase from bottom to top. That is, Albania has the smallest
median and Russia, et al. has the largest median. We can also order the panels
in a similar manner. The median for horses is the smallest over the five
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FIGURE 10.11

A regular dot chart is shown in the top panel. The dots represented the average weight for
each of the sieve sizes. The dot chart at the bottom shows the same information with error
bars added. These bars extend from +/– 1 standard deviation either side of the mean.
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FIGURE 10.12

This is the multiway dot charts for livestock counts for various animals (shown in the panels)
and countries (rows of the dot chart). Note that the dotted lines now indicate the range of the
data rather than connecting values to the label, as before.
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animal types, and the median for poultry is the largest. From these charts, we
can obtain an idea of the differences of these values in the various countries.
For example, Turkey has very few pigs; poultry seems to be the more
numerous type across most of the countries; and the number of cattle seems
to be fairly constant among the levels. On the other hand, there is more
variability in the counts of horses and sheep, with horses being the least
common animal type.

Example 10.9
We provide a funct ion to construct a  multiway dot chart  cal led
multiwayplot. We apply it below to the oronsay data, where we use the
beach/dune/midden classification for the categorical variable. Thus, we will
have three panels showing the average particle weight for each classification
and sieve size.

load oronsay
% Get the means according to each midden class.
% The beachdune variable contains class 
% labels for midden (0), beach (1), and
% dune (2). Get the means for each group.
ind = find(beachdune==0);
middenmus = mean(oronsay(ind,:));
ind = find(beachdune==1);
beachmus = mean(oronsay(ind,:));
ind = find(beachdune==2);
dunemus = mean(oronsay(ind,:));
X = [middenmus(:), beachmus(:), dunemus(:)];
% Get the labels for the groups and axes.
bdlabs = {'Midden'; 'Beach'; 'Dune'};
labx = 'Average Particle Weight';
% Get the location information for the plots.
sublocs{1} = [1,3];
sublocs{2} = [1 2 3];
multiwayplot(X,labcol,labx,bdlabs,sublocs)

The plot given in Figure 10.13 shows that the larger sieve sizes (and the two
smallest) have approximately the same average weight, while the average
weight in the two sieves from 0.125mm to 0.25mm are different among the
classes. Note that the horizontal axes have the same limits for easier
comparison.
❑ 
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10.6 Plotting Points as Curves

In this section, we present two methods for visualizing high-dimensional
data: parallel coordinate plots and Andrews’ curves. These methods are not
without their problems, as we discuss shortly, but they are an efficient way of
visually representing multi-dimensional relationships.

10.6.1 Parallel Coordinate Plots

In the Cartesian coordinate system, the axes are orthogonal, so the most we
can view is three dimensions projected onto a computer screen or paper. If
instead we draw the axes parallel to each other, then we can view many axes
on the same 2-D display. This technique was developed by Wegman [1986] as

FIGURE 10.13

This is the multiway plot described in Example 10.9. Here we have the dot charts for the average
particle weight, given that they come from the beach, dune, or midden.
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a way of viewing and analyzing multi-dimensional data and was introduced
by Inselberg [1985] in the context of computational geometry and computer
vision. 

A parallel coordinate plot for p-dimensional data is constructed by
drawing p lines parallel to each other. We draw p copies of the real line
representing the coordinate axes for x1, x2,..., xp. The lines are the same
distance apart and are perpendicular to the Cartesian y axis. Additionally,
they all have the same positive orientation as the Cartesian x axis, as
illustrated in Figure 10.14. Some versions of parallel coordinates draw the
parallel axes perpendicular to the Cartesian x axis. 

Let’s look at the following 4-D point:

This is shown in Figure 10.14, where we see that the point is a polygonal line
with vertices at (ci , i – 1), i = 1,..., p in Cartesian coordinates on the xi parallel
axis. Thus, a point in Cartesian coordinates is represented in parallel
coordinates as a series of connected line segments. 

We can plot observations in parallel coordinates with colors designating
what class they belong to or use some other line style to indicate group
membership. The parallel coordinate display can also be used to determine
the following: a) class separation in a given coordinate, b) correlation
between pairs of variables (explored in the exercises), and c) clustering or
groups. We could also include a categorical variable indicating the class or
group label as one of the parallel axes. This helps identify groups, when color
is used for each category and n is large.

Example 10.10
We are going to use a subset of the BPM data from Example 10.4 to show how
to use the parallel coordinate function csparallel. We plot topics 6 and 9
in parallel coordinates, using different colors and linestyles. 

load example104
% This loads up the reduced BPM features using ISOMAP.
% Use the 3-D data.
X = Yiso.coords{3}';
% Find the observations for the two topics: 6 and 9.
ind6 = find(classlab == 6);
ind9 = find(classlab == 9);
% Put the data into one matrix.

c

1

3

7

2

=
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320 Exploratory Data Analysis with MATLAB

x = [X(ind6,:);X(ind9,:)];
% Use the csparallel function from the Computational
% Statistics Toolbox.4

% Construct the plot.
csparallel(x)

The parallel coordinates plot is illustrated in Figure 10.15. Several features
should be noted regarding this plot. First, there is evidence of two groups in
dimensions one and three. These two variables should be good features to
use in classification and clustering. Second, the topics seem to overlap in
dimension two, so this is not such a useful feature. Finally, although we did
not use different colors or line styles to make this more apparent, it appears
that observations within a topic have similar line shapes, and they are
different from those in the other topic. Example 10.13 should make this point
clearer. 
❑ 

In parallel coordinate plots, the order of the variables makes a difference.
Adjacent parallel axes provide some insights about the relationship between
consecutive variables. To see other pairwise relationships, we must permute
the order of the parallel axes. Wegman [1990] provides a systematic way of

FIGURE 10.14

This shows the parallel coordinate representation for the 4-D point cT = (1,3,7,2). The reader
should note that the parallel axes in future plots will have the parallel axes ordered from top
to bottom: x1, x2, ..., xp.

4 This is available free. For download information, see Appendix B.

1 2 3 4 5 6 7

0
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finding all permutations such that all adjacencies in the parallel coordinate
display will be visited. These tours will be covered at the end of the chapter.

10.6.2 Andrews’ Curves

Andrews’ curves [Andrews, 1972] were developed as a method for
visualizing multi-dimensional data by mapping each observation onto a
function. This is similar to star plots in that each observation or sample point
is represented by a glyph, except that in this case the glyph is a curve. The
Andrews’ function is defined as

, (10.1)

where the range of t is given by . We see by Equation 10.1 that each
observation is projected onto a set of orthogonal basis functions represented
by sines and cosines, and that each sample point is now represented by a
curve. Because of this definition, the Andrews’ functions produce infinitely
many projections onto the basis vectors over the range of t. We now illustrate
the MATLAB code to obtain Andrews’ curves.

FIGURE 10.15

In this figure we have the parallel coordinates plot for the BPM data in Example 10.10. There
is evidence for two groups in dimensions one and three. We see considerable overlap in
dimension two. 

x3

x2

x1

fx t( ) x1 2⁄ x2 tsin x3 tcos x4 2tsin x5 2tcos …+ + + + +=

π– t π≤ ≤
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Example 10.11
We use a small data set to show how to get Andrews’ curves. The data we
have are the following observations:

Using Equation 10.1, we construct three curves, one corresponding to each
data point. The Andrews’ curves for the data are:

We can plot these three functions in MATLAB using the following
commands. 

% Get the domain.
t = linspace(-pi,pi);
% Evaluate function values for each observation.
f1 = 2/sqrt(2)+6*sin(t)+4*cos(t);
f2 = 5/sqrt(2)+7*sin(t)+3*cos(t);
f3 = 1/sqrt(2)+8*sin(t)+9*cos(t);
plot(t,f1,'-.',t,f2,':',t,f3,'--')
legend('F1','F2','F3')
xlabel('t')

The Andrews’ curves for these data are shown in Figure 10.16.
� 

It has been shown [Andrews, 1972; Embrechts and Herzberg, 1991] that
because of the mathematical properties of the trigonometric functions, the
Andrews’ functions preserve means, distances (up to a constant), and
variances. One consequence of this is that observations that are close together
should produce Andrews’ curves that are also closer together. Thus, one use
of these curves is to look for clustering of the data points.

Embrechts and Herzberg [1991] discuss how other projections could be
constructed and used with Andrews’ curves. One possibility is to set one of
the variables to zero and re-plot the curve. If the resulting plots remain nearly
the same, then that variable has low discriminating power. If the curves are
greatly affected by setting the variable to zero, then it carries a lot of
information. Of course, other types of projections (such as nonlinear

x1 2 6 4, ,( )=

x2 5 7 3, ,( )=

x3 1 8 9, ,( ).=

fx1
t( ) 2 2÷ 6 tsin 4 tcos+ +=

fx2
t( ) 5 2÷ 7 tsin 3 tcos+ +=

fx3
t( ) 1 2÷ 8 tsin 9 t .cos+ +=
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dimensionality reduction, PCA, SVD, etc.) can be constructed and the results
viewed using Andrews’ curves. 

Andrews’ curves are dependent on the order of the variables. Lower
frequency terms exert more influence on the shape of the curves, so re-
ordering the variables and viewing the resulting plot might provide insights
about the data. By lower frequency terms, we mean those that are first in the
sum given in Equation 10.1. Embrechts and Herzberg [1991] also suggest that
the data be rescaled so they are centered at the origin and have covariance
equal to the identity matrix. Andrews’ curves can be extended by using
orthogonal bases other than sines and cosines. For example, Embrechts and
Herzberg illustrate Andrews’ curves using Legendre polynomials and
Chebychev polynomials. 

Example 10.12 
We now construct the Andrews’ curves for the data from Example 10.10
using a function called csandrews. The following code yields the plot in
Figure 10.17. Not surprisingly, we see features similar to what we saw in
parallel coordinates. The curves for each group have similar shapes, although
topic 6 is less coherent. Also, the curves for topic 6 are quite a bit different
than those for topic 9. One of the disadvantages of the Andrews’ curves over
the parallel coordinates is that we do not see information about the separate
variables as we do in parallel coordinates.

load example104

FIGURE 10.16

Andrews’ curves for the three data points in Example 10.11.
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% This loads up the reduced BPM features using ISOMAP.
% Use the 3-D data.
X = Yiso.coords{3}';
% Find the observations for the two topics: 6 and 9.
ind6 = find(classlab == 6);
ind9 = find(classlab == 9);
% This function is from the Comp Statistics Toolbox.
% Construct the plot for topic 6.
csandrews(X(ind6,:),'-','r')
hold on
% Construct the plot for topic 9.
csandrews(X(ind9,:),':','g')

❑ 

The Statistics Toolbox, Version 5, has functions for parallel coordinate plots
and Andrews’ curves. The parallelcoords function constructs horizontal
parallel coordinate plots. Options include grouping (plotting lines using
different colors based on class membership), standardizing (PCA or z-score),

FIGURE 10.17

This is the Andrews’ curves version of Figure 10.15. Similar curve shapes for each topic and
different overall shapes indicate two groups in the data. The solid line is topic 6, and the dashed
line is topic 9.
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and plotting only the median and/or other quantiles. The function to
construct Andrews’ curves is called andrewsplot. It has the same options
found in parallelcoords.

10.6.3 More Plot Matrices

So far, we have discussed the use of Andrews’ functions and parallel
coordinate plots for locating groups and understanding structure in
multivariate data. When we know the true groups or categories in our data
set, then we can use different line styles and color to visually separate them
on the plots. However, we might have a large sample size and/or many
groups, making it difficult to explore the data set. 

We borrow from the scatterplot matrix and panel graphs (e.g., multiway
dot charts, coplots) concepts and apply these to Andrews’ curves and parallel
coordinate plots. We simply plot each group separately in its own subplot,
using either Andrews’ curves or parallel coordinates. Common scales are
used for all plots to allow direct comparison of the groups. 

FIGURE 10.18

This shows the plot matrix of parallel coordinate plots for the BPM data in Example 10.13.
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Example 10.13 
Continuing with the same BPM data, we now add two more topics (17 and
18) and plot each topic separately in its own subplot. 

load example104
% This loads up the reduced BPM features using ISOMAP.
% Use the 3-D data.
X = Yiso.coords{3}';
% Find the observations for the topics.
inds = ismember(classlab,[6 9 17 18]);
% This function comes with the text:
plotmatrixpara(X(inds,:),classlab(inds),[],...
    'BPMs ISOMAP( L_1 )')

See Figure 10.18 for this plot. Using these three features, we have some
confidence that we would be able to discriminate between the three topics: 6,
9, and 17. Each has differently shaped line segments, and the line segments
are similar within each group. However, topic 18 is a different story. The lines
in this topic indicate that we would have some trouble distinguishing topic
17 and 18. Also, the topic 18 lines are not coherent; they seem to have different
shapes within the topic. We can do something similar with Andrews’ curves.
The code for this is given below, and the plot is given in Figure 10.19.
Analysis of this plot is left as an exercise to the reader.

plotmatrixandr(X(inds,:),classlab(inds))

The functions plotmatrixandr and plotmatrixpara are provided with
the EDA Toolbox.
❑ 

10.7 Data Tours Revisited

In Chapter 4, we discussed the basic ideas behind tours and motion graphics,
but we only used 2-D scatterplots for displaying the data. Some of these ideas
are easily extended to higher dimensional representations of the data. In this
section, we discuss how the grand tour can be used with scatterplot matrices
and parallel coordinates, as well as a new type of animated graphical
technique called permutation tours. 

10.7.1 Grand Tour 

Wegman [1991] and Wegman and Solka [2002] describe the grand tour in k
dimensions, where . The basic procedure outlined in Chapter 4 remainsk p≤

EDA.book  Page 326  Wednesday, October 27, 2004  9:11 PM



Multivariate Visualization 327

the same, but we replace the manifold of two-planes with a manifold of k-
planes. Thus, we would use 

to project the data, where the columns of  contain the first k basis
vectors.

The other change we must make is in how we display the data to the user;
2-D scatterplots can no longer be used. Now that we have some ways to
visualize multivariate data, we can combine these with the grand tour. For
example, we could use a 3-D scatterplot if k = 3. For this or higher values of
k, we might use the scatterplot matrix display, parallel coordinates, or
Andrews’ curves. We illustrate this in the next example.

Example 10.14
To go on a grand tour in k dimensions, use the function called kdimtour.
This implements the torus grand tour, as described in Chapter 4, but now the
display can either be parallel coordinates or Andrews’ curves. The user can
specify the maximum number of iterations, the type of display, and the

FIGURE 10.19

Here we have the plot matrix with Andrews’ curves for the data in Example 10.13.
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number of dimensions . We tour the topic 6 data from the previous
examples and show the tour after a few iterations in Figure 10.20 (top). 

% We show the tour at several iterations.
% Parallel coordinates will be used here. 
% Andrews' curves are left as an exercise.
% We see that this shows some grouping of 
% the lines - all seem to follow the same 'structure'.
ind6 = find(classlab==6);
x = X(ind6,:);
% Default tour is parallel coordinates.
% We have 10 iterations and k = 3.
kdimtour(x,10,3)

If the lines stay as a cohesive group for most of the tour, then that is an
indication of true groups in the data, because the grouping is evident under
various rotations/projections. Let’s see what happens if we go further along
in the tour.

% Now at the 90th iteration. 
% We see that the grouping falls apart.
kdimtour(x,90,3)

The lines stay together until the end of this tour (90 iterations), at which time,
they become rather incoherent. This plot is given in Figure 10.20 (bottom).
❑ 

10.7.2 Permutation Tour

One of the criticisms of the parallel coordinate plots and Andrews’ curves is
the dependency on the order of the variables. In the case of parallel
coordinate displays, the position of the axes is important in that the
relationships between pairwise axes are readily visible. In other words, the
relationship between variables on nonadjacent axes is difficult to understand
and compare. With Andrews’ curves, the variables that are placed first carry
more weight in the resulting curve. Thus, it would be useful to have a type of
tour we call a permutation tour, where we look at replotting the points based
on reordering the variables or axes. 

A permutation tour can be one of two types: either a full tour of all possible
permutations or a partial one. In the first case, we have p! permutations or
possible steps in our tour, but this yields many duplicate adjacencies in the
case of parallel coordinates. We describe a much shorter permutation tour
first described in Wegman [1990] and later in Wegman and Solka [2002]. This
could also be used with Andrews’ curves, but a full permutation tour might
be more useful in this case, since knowing what variables (or axes) are
adjacent is not an issue. 

k p≤
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FIGURE 10.20

The top parallel coordinates plot is the 10-th iteration in our grand tour. The bottom plot is
later on in the tour.
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To illustrate this procedure, we first draw a graph, where each vertex
corresponds to an axis. We place edges between the vertices to indicate that
the two axes (vertices) are adjacent. We use the zig-zag pattern shown in
Figure 10.21 (for p = 6) to obtain the smallest set of orderings such that every
possible adjacency is present. 

We can obtain these sequences in the following manner. We start with the
sequence

, (10.2)

where we have p1 = 1. In this use of the mod function, it is understood that
0 mod p = p mod p = p. To get all of the zig-zag patterns, we apply the
following to the sequence given above

, (10.3)

where  is the greatest integer function. To get started, we let . 
For the case of p even, the definitions given in Equations 10.2 and 10.3 yield

an extra sequence, so some redundant adjacencies are obtained. In the case of
p odd, the extra sequence is needed to generate all adjacencies, but again
some redundant adjacencies will occur. To illustrate, we show in Example
10.15 how the sequences in Figure 10.21 are obtained using this formulation. 

FIGURE 10.21

This figure shows the minimal number of permutations needed to obtain all the adjacencies
for p = 6.
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Example 10.15
We start by getting the first sequence given in Equation 10.2. We must alter
the results from the MATLAB function mod to include the correct result for
the case of 0 mod p and p mod p.

p = 6;
N = ceil((p-1)/2);
% Get the first sequence.
P(1) = 1;
for k = 1:(p-1)
    tmp(k) = (P(k) + (-1)^(k+1)*k);
    P(k+1) = mod(tmp(k),p);
end
% To match our definition of 'mod':
P(find(P==0)) = p;

We find the rest of the permutations by applying Equation 10.3 to the
previous sequence.

for j = 1:N;
    P(j+1,:) = mod(P(j,:)+1,p);
    ind = find(P(j+1,:)==0);
    P(j+1,ind) = p;
end

We now apply this idea to parallel coordinates and Andrews’ curves. Use the
function we wrote called permtourparallel for a parallel coordinate
permutation tour, based on Wegman’s minimum permutation scheme. The
syntax is

permtourparallel(X)

Note that this is very different from the grand tour in Example 10.14. Here we
are just swapping adjacent axes; we are not rotating the data as in the grand
tour. The plot freezes at each iteration of the tour; the user must hit any key
to continue. This allows one to examine the plot for structure before moving
on. We also include a function for Andrews’ curves permutation tours. The
user can either do Wegman’s minimal tour or the full permutation tour (i.e.,
all possible permutations). The syntax for this function is

permtourandrews(X)

for a full permutation tour. To run the Wegman minimal permutation tour,
use

permtourandrews(X,flag)

The input argument flag can be anything. As stated before, the full tour
with Andrews’ curves is more informative, because we are not concerned
about adjacencies, as we are with parallel coordinates. 
❑
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10.8 Summary and Further Reading

We start off by recommending some books that describe scientific and
statistical visualization in general. One of the earliest ones in this area is
Semiology of Graphics: Diagrams, Networks, Maps by Jacques Bertin [1983],
originally published in French in 1967. This book discusses rules and
properties of a graphic system and provides many examples. Edward Tufte
wrote several books on visualization and graphics. His first book, The Visual
Display of Quantitative Information [Tufte, 1983], shows how to depict
numbers. The second in the series is called Envisioning Information [Tufte,
1990], and illustrates how to deal with pictures of nouns (e.g., maps, aerial
photographs, weather data). The third book is entitled Visual Explanations
[Tufte, 1997], and it discusses how to illustrate pictures of verbs (e.g.,
dynamic data, information that changes over time). These three books also
provide many examples of good graphics and bad graphics. For more
examples of graphical mistakes, we highly recommend the book by Wainer
[1997]. Wainer discusses this subject in a way that is accessible to the general
reader. We referenced this book several times already, but the reader should
consult Cleveland‘s Visualizing Data [1993] for more information and
examples on univariate and multivariate data. He includes extensive
discussions on visualization tools, the relationship of visualization to
classical statistical methods, and even some of the cognitive aspects of data
visualization and perception. Another excellent resource on graphics for data
analysis is Chambers, et al. [1983]. For books on visualizing categorical data,
see Blasius and Greenacre [1998] and Friendly [2000]. Finally, we mention
Wilkinson’s The Grammar of Graphics [1999] for those who are interested in
applying statistical and scientific visualization in a distributed computing
environment. This book provides a foundation for quantitative graphics and
is based on a Java graphics library.

Many papers have been written on visualization for the purposes of
exploratory data analysis and data mining. One recent one by Wegman [2003]
discusses techniques and strategies for visual data mining on high-
dimensional and large data sets. Wegman and Carr [1993] present many
visualization techniques, such as stereo plots, mesh plots, parallel
coordinates, and more. Other survey articles include Anscombe [1973],
Weihs and Schmidli [1990], Young, et al. [1993], and McLeod and Provost
[2001]. Carr, et al. [1987] include other scatterplot methods besides hexagonal
binning, such as sunflower plots. For an entertaining discussion of various
plotting methods, such as scatterplots, pie charts, line charts, etc., and their
inventors, see Friendly and Wainer [2004]. 

An extensive discussion of brushing scatterplots can be found in the paper
by Becker and Cleveland [1987]. They show several brushing techniques for
linking single points and clusters, conditioning on a single variable (a type of

EDA.book  Page 332  Wednesday, October 27, 2004  9:11 PM



Multivariate Visualization 333

coplot), conditioning on two variables, and subsetting with categorical
variables. Papers that provide nice reviews of these methods and others for
dynamic graphics are Becker and Cleveland [1991], Buja, et al. [1991],
Stuetzle [1987], Swayne, Cook and Buja [1991], and Becker, Cleveland and
Wilks [1987].

For more information on dot charts and scaling, see Cleveland [1984]. He
compares dot charts with bar charts, shows why the dot charts are a useful
graphical method in EDA, and presents grouped dot charts. He also has an
excellent discussion of the importance of a meaningful baseline with dot
charts. If there is a zero on the scale or another baseline value, then the dotted
lines should end at the dot. If this is not the case, then the dotted lines should
continue across the graph. 

Parallel coordinate techniques were expanded upon and described in a
statistical setting by Wegman [1990]. Wegman [1990] also gave a rigorous
explanation of the properties of parallel coordinates as a projective
transformation and illustrated the duality properties between the parallel
coordinate representation and the Cartesian orthogonal coordinate
representation. Extensions to parallel coordinates that address the problem of
over-plotting include saturation and brushing [Wegman and Luo, 1997;
Wegman, 2003] and conveying aggregated information [Fua, et al., 1999]. 

In the previous pages, we mentioned the papers by Andrews [1972] and
Embrechts and Herzberg [1991] that describe Andrews’ curves plots and
their extensions. Additional information on these plots can be found in
Jackson [1991] and Jolliffe [1986]

Exercises

10.1 Write a MATLAB function that will construct a profile plot, where
each observation is a bar chart with the height of  the bar
corresponding to the value of the variable for that data point. The
functions subplot and bar might be useful. Try your function on the
cereal data. Compare to the other glyph plots.

10.2 The MATLAB Statistics Toolbox, Version 5 has a function that will
create glyph plots called glyphplot. Do a help on this function and
recreate Figures 10.1 and 10.2.

10.3 Do a help on gscatter and repeat Example 10.1.
10.4 Repeat Example 10.1 using plot and plot3, where you specify the

plot symbol to get a scatterplot. 
10.5 Construct a scatterplot matrix using all variables of the oronsay data

set. Analyze the results and compare to Figure 10.4. Construct a
grouped scatterplot matrix using just a subset of the most interesting
variables and both classifications. Do you see evidence of groups?
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10.6 Repeat Example 10.3 and vary the number of bins. Compare your
results.

10.7 Write a MATLAB function that will construct a scatterplot matrix
using hexagonal bins.

10.8 Load the hamster data and construct a scatterplot matrix. There is an
unusual observation in the scatterplot of spleen (variable 5) weight
against liver (variable 3) weight. Use linking to find and highlight that
observation in all plots. By looking at the plots, decide whether this is
because the spleen is enlarged or the liver is underdeveloped. [Becker
and Cleveland, 1991]

10.9 Construct a dot chart using the brainweight data. Analyze your
results.

10.10 Implement Tukey’s alternagraphics in MATLAB. This function
should cycle through given subsets of data and display them in a
scatterplot. Use it on the oronsay data.

10.11 Randomly generate a set of 2-D (n = 20) data that have a correlation
coefficient of 1, and generate another set of 2-D data that have a
correlation coefficient of . Construct parallel coordinate plots of
each and discuss your results.

10.12 Generate a set of bivariate data (n = 20), with one group in the first
dimension (first column of X) and two clusters in the second
dimension (i.e., second column of X). Construct a parallel coordinates
plot. Now generate a set of bivariate data that has two groups in both
dimensions and graph them in parallel coordinates. Comment on the
results.

10.13 Use the playfair data and construct a dot chart with the cdf
(cumulative distribution) option. Do a help and try some of the other
options in the dotchart function.

10.14 Using the livestock data, construct a multiway dot chart as in
Figure 10.12. Use the countries for the panels and animal type for the
levels. Analyze the results.

10.15 Repeat Example 10.7 for the abrasion loss data using tensile
strength as the conditioning variable. Discuss your results.

10.16 Construct coplots using the ethanol and software data sets.
Analyze your results.

10.17 Embrechts and Herzberg [1991] present the idea of projections with
the Andrews’ curves, as discussed in Section 10.6.2. Implement this in
MATLAB and apply it to the iris data to find any variables that have
low discriminating power.

10.18 Try the scattergui function with the following data sets. Note that
you will have to either reduce the dimensionality or pick two
dimensions to use.
a. skulls
b. sparrow

c. oronsay (both classifications)

1–
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d. BPM data sets
e. spam

f. gene expression data sets
10.19 Repeat Example 10.5 using gplotmatrix.
10.20 Use the gplotmatrix function with the following data sets.

a. iris

b. oronsay (both classifications)
c. BPM data sets

10.21 Run the permutation tour with Andrews’ curves and parallel
coordinates. Use the data in Example 10.14.

10.22 Find the adjacencies as outlined in Example 10.15 for a permutation
tour with p = 7. Is the last sequence needed to obtain all adjacencies?
Are some of them redundant?

10.23 Analyze the Andrews’ curves shown in Figure 10.19.
10.24 Apply the permtourandrews, kdimtour and permtourparallel

to the following data sets. Reduce the dimensionality first, if needed.
a. environmental
b. oronsay

c. iris
d. posse data sets

e. skulls
f. BPM data sets.

g. pollen
h. gene expression data sets.

10.25 The MATLAB Statistics Toolbox, Version 5 has functions for Andrews’
curves and parallel coordinate plots. Do a help on these for
information on how to use them and the available options. Explore
their capabilities using the oronsay data. The functions are called
parallelcoords and andrewsplot.

10.26 Do a help on the scatter function. Construct a scatterplot of the
data in Example 10.1, using the argument that controls the symbol
size to make the circles smaller. Compare your plot with Figure 10.1
(top) and discuss the issue of overplotting.
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Appendix A
Proximity Measures

We provide some information on proximity measures in this appendix.
Proximity measures are important in clustering, multi-dimensional scaling,
and nonlinear dimensionality reduction methods, such as ISOMAP. The
word proximity indicates how close objects or measurements are in space,
time, or in some other way (e.g., taste, character, etc.). How we define the
nearness of objects is important in our data analysis efforts and results can
depend on what measure is used. There are two types of proximity measures:
similarity and dissimilarity. We now describe several examples of these and
include ways to transform from one to the other.

A.1 Definitions

Similarity measures indicate how alike objects are to each other. A high value
means they are similar, while a small value means they are not. We denote the
similarity between objects (or observations) i and j as sij. Similarities are often
scaled so the maximum similarity is one (e.g., the similarity of an observation
with itself is one, sii = 1). Dissimilarity measures are just the opposite. Small
values mean the observations are close together and thus are alike. We denote
the dissimilarity by δij, and we have δii = 0. In both cases, we have  and

.
Hartigan [1967] and Cormack [1971] provide a taxonomy of twelve

proximity structures; we list just the top four of these below. As we move
down in the taxonomy, constraints on the measures are relaxed. Let the
observations in our data set be denoted by the set O, then the proximity
measure is a real function defined on O x O. The four structures S that we
consider here are

S1 S defined on O x O is Euclidean distance;

S2 S defined on O x O is a metric;
S3 S defined on O x O is symmetric real-valued;

sij 0≥
δij 0≥
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S4 S defined on O x O is real-valued.

The first structure S1 is very strict with the proximity defined as the
familiar Euclidean distance given by

, (A.1)

where xik is the k-th element of the i-th observation.
If we relax this and require our measure to be a metric only, then we have

structure S2. A dissimilarity is a metric if the following holds:

1. δij = 0, if and only if i = j.

2. δij = δji.
3. .

The second requirement given above means the dissimilarity is symmetric,
and the third one is the triangle inequality. Removing the metric requirement
produces S3, and allowing nonsymmetry yields S4. Some of the later
structures in the taxonomy correspond to similarity measures.

We often represent the interpoint proximity between all objects i and j in an
n x n matrix, where the ij-th element is the proximity between the i-th and j-
th observation. If the proximity measure is symmetric, then we only need to
provide the n(n - 1)/2 unique values (i.e., the upper or lower part of the
interpoint proximity matrix. We now give examples of some commonly used
proximity measures.

A.1.1 Dissimilarities

We have already defined Euclidean distance (Equation A.1), which is
probably used most often. One of the problems with the Euclidean distance
is its sensitivity to the scale of the variables. If one of the variables is more
dispersed than the rest, then it will dominate the calculations. Thus, we
recommend transforming or scaling the data as discussed in Chapter 1. 

The Mahalanobis distance (squared) takes the covariance into account and
is given by

,

where Σ is the covariance matrix. Often Σ must be estimated using the data,
so it can be affected by outliers. 

δij xik xjk–( )2

k
∑=

δij δit δtj+≤

δij
2 xi xj–( )TΣ 1– x i x j–( )=
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The Minkowski metric defines a whole family of dissimilarities, and it is
used extensively in nonlinear multidimensional scaling (see Chapter 3). It is
defined by

. (A.2)

When the parameter λ = 1, we have the city block metric (sometimes called
Manhattan distance) given by

.

When λ = 2, then Equation A.2 becomes the Euclidean distance (Equation
A.1).

The MATLAB Statistics Toolbox provides a function called pdist that
calculates the interpoint distances between the n data points. It returns the
values in a vector, but they can be converted into a square matrix using the
function squareform. The basic syntax for the pdist function is

Y = pdist(X, distance)

The distance argument can be one of the following choices: 

'euclidean'   - Euclidean distance 
'seuclidean'  - Standardized Euclidean distance, each

coordinate in the sum of squares is inverse weighted
by the sample variance of that coordinate

'cityblock'   - City Block distance
'mahalanobis' - Mahalanobis distance
'minkowski'   - Minkowski distance with exponent 2
'cosine'      - One minus the cosine of the included

angle between observations (treated as vectors)
'correlation' - One minus the sample correlation

between observations (treated as sequences of
values).

'hamming'     - Hamming distance, percentage of
coordinates that differ

'jaccard'     - One minus the Jaccard coefficient, the
percentage of nonzero coordinates that differ

The cosine, correlation, and jaccard measures specified above are
originally similarity measures, which have been converted to dissimilarities,
two of which are covered below. It should be noted that the minkowski

δij xik xjk– λ

k
∑

 
 
 

1
λ
---

= λ 1≥

δij xik xjk–
k
∑=
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option can be used with an additional argument designating other values of
the exponent.

There is a new distance available with Version 5 of the Statistics Toolbox.
This is the Chebychev distance, which is the maximum coordinate difference
between two vectors. Use the flag 'chebychev'  to get this distance.

A.1.2 Similarity Measures

A common similarity measure that can be used with real-valued vectors is
the cosine similarity measure. This is the cosine of the angle between the two
vectors and is given by

.

The correlation similarity measure between two real-valued vectors is
similar to the one above, and is given by the expression

.

A.1.3 Similarity Measures for Binary Data

The proximity measures defined in the previous sections can be used with
quantitative data that are continuous or discrete, but not binary. We now
describe some measures for binary data. 

When we have binary data, we can calculate the following frequencies: 

This table shows the number of elements where the i-th and j-th observations
both have a 1 (a), both have a 0 (d), etc. We use these quantities to define the
following similarity measures for binary data.

First is the Jaccard coefficient, given by

.

Next we have the Ochiai measure:

i-th Observation

j-th Observation
1 0

1 a b a + b
0 c d c + d

a + c b + d a + b + c + d

sij
xi

Tx j

x i
Txi xj

Tx j

-------------------------------=

sij
xi x–( )T xj x–( )

xi x–( )T x i x–( ) xj x–( )T xj x–( )
--------------------------------------------------------------------------------------=

sij
a

a b c+ +
--------------------=
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.

Finally, we have the simple matching coefficient, that calculates the
proportion of matching elements:

.

A.1.4 Dissimilarities for Probability Density Functions

In some applications, our observations might be in the form of relative
frequencies or probability distributions. For example, this often happens in
the case of measuring semantic similarity between two documents. Or, we
might be interested in calculating a distance between two probability density
functions, where one is estimated and one is the true density function. We
discuss three types of measures here: Kullback-Leibler information, L1 norm,
and information radius. 

Say we have two probability density functions f and g (or any function in
the general case). Kullback-Leibler (KL) information measures how well
function g approximates function f. The KL information is defined as

,

for the continuous case. A summation is used in the discrete case, where f and
g are probability mass functions. The KL information measure is sometimes
called the discrimination information, and it measures the divergence
between two functions. The higher the measure, the greater the difference
between the functions. 

There are two problems with the KL information measure. First, there
could be cases where we get a value of infinity, which can happen often in
natural language understanding applications [Manning and Schütze, 2000].
The other potential problem is that the measure is not necessarily symmetric. 

The second measure we consider is the information radius (IRad) that
overcomes these problems. It is based on the KL information and is given by

.

The IRad measure tries to quantify how much information is lost if we
describe two random variables that are distributed according to f and g with
their average distribution. The information radius ranges from 0 for identical

sij
a

a b+( ) a c+( )
-------------------------------------=

sij
a d+

a b c d+ + +
------------------------------=

KL f g,( ) f x( ) f x( )
g x( )
----------- 

 log xd∫=

IRad f g,( ) KL f f g+
2

-----------, 
  KL g f g+

2
-----------, 

 +=

EDA.book  Page 341  Monday, October 18, 2004  8:33 AM



342 Exploratory Data Analysis with MATLAB

distributions to 2log2 for distributions that are maximally different. Here we
assume that 0log0 = 0. Note that the IRad measure is symmetric and is not
subject to infinite values [Manning and Schütze, 2000].

The third measure of this type that we cover is the L1 norm. It is symmetric
and well-defined for arbitrary probability density functions f and g (or any
function in the general case). We can think of it as a measure of the expected
proportion of events that are going to be different between distributions f and
g. This norm is defined as

.

The L1 norm has a nice property. It is bounded below by zero and bounded
above by two:

,

when f and g are valid probability density functions.

A.2 Transformations

In many instances, we start with a similarity measure and then convert to a
diss imilarity measure for fur ther processing.  There are  several
transformations that one can use, such as

The last one is valid only when the similarity has been scaled such that sii = 1.
For the general case, one can use

.

In some cases, we might want to transform from a dissimilarity to a
similarity. One can use the following to accomplish this:

.

L1 f g,( ) f x( ) g x( )– xd∫=

0 L1 f g,( ) 2≤ ≤

δij 1 sij–=

δij c sij–= for some constant c

δij 2 1 sij–( ) .=

δij sii 2sij sjj+–=

sij 1 δij+( ) 1–=
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A.3 Further Reading

Most books on clustering and multidimensional scaling have extensive
discussions on proximity measures, since the measure used is fundamental
to these methods. We describe a few of these here.

The clustering book by Everitt, Landau and Leese [2001] has a chapter on
this topic that includes measures for data containing both continuous and
categorical variables, weighting variables, standardization, and the choice of
proximity measure. For additional information from a classification point of
view, we recommend Gordon [1999]. 

Cox and Cox [2001] has an excellent discussion of proximity measures as
they pertain to multidimensional scaling. Their book also includes the
complete taxonomy for proximity structures mentioned previously. Finally,
Manning and Schütze [2000] provide an excellent discussion of measures of
similarity that can be used when measuring the semantic distance between
documents, words, etc.

There are also several survey papers on dissimilarity measures. Some
useful ones are Gower [1966] and Gower and Legendre [1986]. They review
properties of dissimilarity coefficients, and they emphasize their metric and
Euclidean nature. For a summary of distance measures that can be used when
one wants to measure the distance between two functions or statistical
models, we recommend Basseville [1989]. The work described in Basseville
takes the signal processing point of view. Jones and Furnas [1987] study
proximity measures using a geometric analysis and apply it to several
measures used in information retrieval applications. Their goal is to
demonstrate the relationship between a measure and its performance. 
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Appendix B
Software Resources for EDA

The purpose of this appendix is to provide information on internet resources
for EDA. Most of these were discussed in the body of the text, but some were
not. Also, most of them are for MATLAB code, but some of them are stand-
alone packages.

B.1 MATLAB Programs

In this section of Appendix B, we provide websites and references to
MATLAB code that can be used for EDA. Some of the code is included with
the EDA Toolbox (see Appendix E). However, we recommend that users
periodically look for the most recent versions.

Bagplots (included with the EDA Toolbox)

The code for the bagplot can be found at 

www.agoras.ua.ac.be/Public99.htm

The authors include software for FORTRAN, S-Plus, and MATLAB. Papers
are also available for download from this same website.

Computational Statistics Toolbox

This toolbox was written for the book Computational Statistics Handbook with
MATLAB. It contains many useful functions, some of which were used in this
book. It is available for download from

www.stat.unipg.it/stat/statlib/

Some of the functions from this toolbox are included with the EDA Toolbox
(see Appendix E).
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Data Visualization Toolbox

The authors of this MATLAB toolbox provide functions that implement the
graphical techniques described in Visualizing Data by William Cleveland.
Software, data sets, documentation, and a tutorial are available from 

www.datatool.com/Dataviz_home.htm

Some of these functions are  included with the EDA Toolbox (see
Appendix E).

Generative Topographic Mapping

The GTM Toolbox is available for download from

www.ncrg.aston.ac.uk/GTM/

This website includes links to documentation, papers on the GTM, and data
sets. This software is available for noncommercial use under the GNU
license. This toolbox is included when you download the EDA Toolbox.

Hessian Eigenmaps

The home page for Hessian eigenmaps or HLLE is

http://basis.stanford.edu/WWW/HLLE/frontdoc.htm

This website also has code that runs the Swiss roll demo. The HLLE code is
included with the EDA Toolbox.

ISOMAP

The main website for ISOMAP is found at

http://isomap.stanford.edu/

This also has links to related papers, data sets, convergence proofs, and
supplemental figures. The ISOMAP functions are in the EDA Toolbox.

Locally Linear Embedding – LLE

The main website for LLE is

www.cs.toronto.edu/~roweis/lle/

From here you can download the MATLAB code, papers, and data sets. The
LLE function is part of the EDA Toolbox.

MATLAB Central

You can find lots of user-contributed code at this website:

www.mathworks.com/matlabcentral/
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Always look here first before you write your own functions. What you need
might be here already.

Microarray Analysis - MatArray Toolbox

The following link takes you to a webpage where you can download a
toolbox that implements techniques for the analysis of microarray data. This
toolbox includes functions for k-means, hierarchical clustering, and others. 

www.ulb.ac.be/medecine/iribhm/microarray/toolbox/

Model-Based Clustering Toolbox

The code from the Model-Based Clustering Toolbox is included with the EDA
Toolbox. However, for those who are interested in more information on MBC,
please see

www.stat.washington.edu/mclust/

This website also contains links for model-based clustering functions that
will work in S-Plus and R. 

Robust Analysis

A toolbox for robust statistical analysis is available for download at

http://www.wis.kuleuven.ac.be/stat/robust/LIBRA.html

The toolbox has functions for univariate location and scale, multivariate
location and covariance, regression, PCA, principal component regression,
partial least squares and robust classification. Graphical tools are also
included for model checking and outlier detection.

Self-Organizing Map

The website for the SOM Toolbox is

www.cis.hut.fi/projects/somtoolbox/links/

This website also contains links to documentation, theory, research, and
related information. The software may be used for noncommercial purposes
and is governed by the terms of the GNU General Public License. Some
functions in the SOM Toolbox are contributed by users and might be
governed by their own copyright. Some of the functions in the SOM Toolbox
are included in the EDA Toolbox.

SiZer

This software allows one to explore data through smoothing. It contains
various functions and GUIs for MATLAB. It helps answer questions about
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what features are really there or what might be just noise. In particular, it
provides information about smooths at various levels of the smoothing
parameter. For code, see:

www.stat.unc.edu/faculty/marron/marron_software.html

For notes on a short course in SiZer and how it can be used in EDA, go to:

www.galaxy.gmu.edu/interface/I02/I2002Proceedings/...
MarronSteve/MarronSiZerShortCourse.pdf

Statistics Toolboxes - No Cost

The following are links to statistics toolboxes:

www.statsci.org/matlab/statbox.html
www.maths.lth.se/matstat/stixbox/

Here is a link to a toolbox on statistical pattern recognition:

cmp.felk.cvut.cz/~xfrancv/stprtool/index.html

Text to Matrix Generator (TMG) Toolbox

The TMG Toolbox creates new term-document matrices from documents. It
also updates existing term-document matrices. It includes various term-
weighting methods, normalization, and stemming. The website to download
this toolbox is

scgroup.hpclab.ceid.upatras.gr/scgroup/Projects/TMG/

B.2 Other Programs for EDA

The following non-MATLAB programs are available for download (at no
charge).

Crystal Vision

CrystalVision, copyright (c) 2000 by Crystal Data Technologies (Qiang Luo,
Edward J. Wegman, and Xiaodong Fu), is a Windows 95/98/NT package for
Wintel computers. A demonstration version of CrystalVision is available at 

ftp://www.galaxy.gmu.edu/pub/software/CrystalVisionDemo.exe

This software includes parallel coordinates, brushing, linking, plot matrices,
and others.
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Finite Mixtures - EMMIX

A FORTRAN program for fitting finite mixtures with normal and t-
distribution components can be downloaded from

http://www.maths.uq.edu.au/~gjm/emmix/emmix.html

GGobi

GGobi is a data visualization system for viewing high-dimensional data, and
it includes brushing, linking, plot matrices, multi-dimensional scaling and
many other capabilities. The home page for GGobi is

www.ggobi.org/

Versions are available for Windows and Linux.

MANET

For Macintosh users, one can use MANET (missings are now equally treated)
found at:

www1.math.uni-augsburg.de/MANET/

MANET provides various graphical tools that are designed for studying
multivariate features. 

Model-Based Clustering

Software for model-based clustering can be downloaded at

http://www.stat.washington.edu/mclust/

Versions are available for S-Plus and R. One can also obtain some of the
papers and technical reports at this website, in addition to joining a mailing
list.

R for Statistical Computing

R is a language and environment for statistical computing. It is distributed as
free software under the GNU license. It operates under Windows, UNIX
systems (such as Linux), and the Macintosh. One of the benefits of the R
language is the availability of many user-contributed packages. Please see
the following website for more information.

www.r-project.org/
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B.3 EDA Toolbox

The Exploratory Data Analysis Toolbox is available for download from two
sites: 

http://lib.stat.cmu.edu

and

http://www.infinityassociates.com

Please review the readme file for installation instructions and information on
any changes.

The functions in the EDA Toolbox are available via a graphical user
interface called eda, as well as the command line. The EDA Toolbox will be
available when this book is published, but the eda GUI will not be available
in the toolbox until February, 2005. 

Most of the functions and capabilities in the toolbox have been discussed
in this text, but several of them have not. Please see Appendix E for a list of
functions that are included in the EDA Toolbox, along with a brief
description of what they do. To view a current list of available functions (i.e.,
including those written after this book was published), type help eda at the
command line. For complete functionality, you must have the Statistics
Toolbox, version 4 or higher. For more information on the use of the EDA
Toolbox, please see the accompanying documentation.
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Appendix C
Description of Data Sets

In this appendix, we describe the various data sets used in the book. All data
sets are downloaded with the accompanying software. We provide the data
sets in MATLAB binary format (MAT-files).

abrasion
These data are the results from an experiment measuring three variables for
30 rubber specimens [Davies, 1957; Cleveland and Devlin, 1988]: tensile
strength, hardness and abrasion loss. The abrasion loss is the amount of
material abraded per unit of energy. Tensile strength measures the force
required to break a specimen (per unit area). Hardness is the rebound height
of an indenter dropped onto the specimen. Abrasion loss is measured in
g/hp-hour; tensile strength is measured in kg/cm2; and the unit for hardness
is Shore. The intent of the experiment was to determine the relationship
between abrasion loss with respect to hardness and tensile strength.

animal
This data set contains the brain weights and body weights of several types of
animals [Crile and Quiring, 1940]. According to biologists, the relationship
between these two variables is interesting, since the ratio of brain weight to
body weight is a measure of intelligence [Becker, Cleveland and Wilks, 1987].
The MAT-file contains variables: AnimalName , BodyWeight,  and
BrainWeight.

BPM data sets
There are several BPM data sets included with the text. We have iradbpm,
ochiaibpm, matchbpm and L1bpm. Each data file contains the interpoint
distance matrix for 503 documents and an array of class labels, as described
in Chapter 1. These data can be reduced using ISOMAP before applying
other analyses.

calibrat
This data set reflects the relationship between radioactivity counts (counts) 
to hormone level for 14 immunoassay calibration values (tsh). The original 

°

EDA.book  Page 351  Monday, October 18, 2004  8:34 AM



352 Exploratory Data Analysis with MATLAB

source of the data is Tiede and Pagano [1979], and we downloaded them from 
the website for Simonoff [1996]: www.stern.nyu.edu/SOR/SmoothMeth.

cereal
These data were obtained from ratings of eight brands of cereal [Chakrapani
and Ehrenberg, 1981; Venables and Ripley, 1994]. The cereal file contains a
matrix where each row corresponds to an observation and each column
represents one of the variables or the percent agreement to statements about
the cereal. The statements are: comes back to, tastes nice, popular with all the
family, very easy to digest, nourishing, natural flavor, reasonably priced, a lot
of food value, stays crispy in milk, helps to keep you fit, fun for children to
eat. It also contains a cell array of strings (labs) for the type of cereal.

environmental
This file contains data comprising 111 measurements of four variables. These
include Ozone (PPB), SolarRadiation  (Langleys), Temperature
(Fahrenheit), and WindSpeed (MPH). These were initially examined in
Bruntz, et al. [1974], where the intent was to study the mechanisms that might
lead to air pollution.

ethanol
A single-cylinder engine was run with either ethanol or indolene. This data
set contains 110 measurements of compression ratio (Compression),
equivalence ratio (Equivalence), and N0x in the exhaust (NOx). The goal
was to understand how N0x depends on the compression and equivalence
ratios [Brinkman, 1981; Cleveland and Devlin, 1988]. 

example96
This is the data used in Example 9.6 to illustrate the box-percentile plots.

example104
This loads the data used in Examples 10.10 and 10.12 to illustrate parallel
coordinate plots. It is a subset of the BPM data that was reduced using
ISOMAP as outlined in Example 10.4.

forearm
These data consist of 140 measurements of the length in inches of the forearm
of adult males [Hand, et al., 1994; Pearson and Lee, 1903]. 

galaxy
The galaxy data set contains measurements of the velocities of the spiral
galaxy NGC 7531. The array EastWest contains the velocities in the east-
west direction, covering around 135 arc sec. The array NorthSouth contains
the velocities in the north-south direction, covering approximately 200 arc
sec. The measurements were taken at the Cerro Tololo Inter-American
Observatory in July and October of 1981 [Buta, 1987].
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geyser
These data represent the waiting times (in minutes) between eruptions of the
Old Faithful geyser at Yellowstone National Park [Hand, et al., 1994; Scott,
1992]. 

hamster
This data set contains measurements of organ weights for hamsters with
congenital heart failure [Becker and Cleveland, 1991]. The organs are heart,
kidney, liver, lung, spleen and testes.

iris
The iris data were collected by Anderson [1935] and were analyzed by
Fisher [1936] (and many statisticians since then!). The data set consists of 150
observations containing four measurements based on the petals and sepals of
three species of iris. The three species are: Iris setosa, Iris virginica, and Iris
versicolor. When the iris data file is loaded, you get three 50 x 4 matrices,
one corresponding to each species.

leukemia
The leukemia data set is described in detail in Chapter 1. It measures the
gene expression levels of patients with acute leukemia.

lsiex
This file contains the term-document matrix used in Example 2.3.

lungA, lungB
The lung data set is another one that measures gene expression levels. Here
the classes correspond to various types of lung cancer.

oronsay
The oronsay data set consists of particle size measurements. It is described
in Chapter 1. The data can be classified according to the sampling site as well
as the type (beach, dune, midden).

playfair
This data set is described in Cleveland [1993] and Tufte [1983], and it is based
on William Playfair ’s (1801) published displays of demographic and
economic data. The playfair data set consists of the 22 observations
representing the populations (thousands) of cities at the end of the 1700s and
the diameters of the circles Playfair used to encode the population
information. This MAT-file also includes a cell array containing the names of
the cities.

pollen
This data set was generated for a data analysis competition at the 1986 Joint
Meetings of the American Statistical Association. It  contains 3848
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observations, each with five fictitious variables: ridge, nub, crack, weight,
and density. The data contain several interesting features and structures. See
Becker, et al. [1986] and Slomka [1986] for information and results on the
analysis of these artificial data.

posse
The posse file contains several data sets generated for simulation studies in
Posse [1995b]. These data sets are called croix (a cross), struct2 (an L-
shape), boite (a donut), groupe (four clusters), curve  (two curved
groups), and spiral (a spiral). Each data set has 400 observations in 8-D.
These data can be used in PPEDA and other data tours.

salmon
The salmon data set was downloaded from the website for the book by
Simonoff [1996]: www.stern.nyu.edu/SOR/SmoothMeth. The MAT-file
contains 28 observations in a 2-D matrix. The first column represents the size
(in thousands of fish) of the annual spawning stock of Sockeye salmon along
the Skeena River from 1940 to 1967. The second column represents the
number of new catchable-size fish or recruits, again in thousands of fish.

scurve
This file contains data randomly generated from an S-curve manifold. See
Example 3.5 for more information.

singer
This file contains several variables representing the height in inches of
singers in the New York Choral Society [Cleveland, 1993; Chambers, et al.,
1983]. There are four voice parts: sopranos, altos, tenors, and basses. The
sopranos and altos are women, and the tenors and basses are men. 

skulls
These data were taken from Cox and Cox [2000]. The data originally came
from a paper by Fawcett [1901], where they detailed measurements and
statistics of skulls belonging to the Naqada race in Upper Egypt. The skulls
file contains an array called skullsdata for forty observations, 18 of which
are female and 22 are male. The variables are greatest length, breadth, height,
auricular height, circumference above the superciliary ridges, sagittal
circumference, cross-circumference, upper face height, nasal breadth, nasal
height, cephalic index, and ratio of height to length. 

software
This file contains data collected on software inspections. The variables are
normalized by the size of the inspection (the number of pages or SLOC –
single lines of code). The file software.mat contains the preparation time
in minutes (prepage, prepsloc), the total work hours in minutes for the
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meeting (mtgsloc), and the number of defects found (defpage, defsloc).
A more detailed description can be found in Chapter 1.

spam
These data were downloaded from the UCI Machine Learning Repository:

http://www.ics.uci.edu/~mlearn/MLRepository/.html

Anyone who uses email understands the problem of spam, which is
unsolicited email, commercial or otherwise. For example, spam can be chain
letters, pornography, advertisements, foreign money-making schemes, etc.
This data set came from Hewlett-Packard Labs and was generated in 1999.
The spam data set consists of 58 variables: 57 continuous and one class label.
If an observation is labeled class 1, then it is considered to be spam. If it is of
class 0, then it is not considered spam. The first 48 attributes represent the
percentage of words in the email that match some specified word
corresponding to spam or not spam. There are an additional six variables that
specify the percentage of characters in the email that match a specified
character. Others refer to attributes relating to uninterrupted sequences of
capital letters. More information on the attributes is available at the above
internet link. One can use these data to build classifiers that will discriminate
between spam and non-spam emails. In this application, a low false positive
rate (classifying an email as spam when it is not) is very important.

sparrow
These data are taken from Manly [1994]. They represent some measurements
taken on sparrows collected after a storm on February 1, 1898. Eight
morphological characteristics and the weight were measured for each bird,
five of which are provided in this data set. These are on female sparrows only.
The variables are total length, alar extent, length of beak and head, length of
humerus, and length of keel of sternum. All lengths are in millimeters. The
first 21 of these birds survived, and the rest died.

swissroll
This data file contains a set of variables randomly generated from the Swiss
roll manifold with a hole in it. It also has the data in the reduced space (from
ISOMAP and HLLE) that was used in Example 3.5.

votfraud
These data represent the Democratic over Republican pluralities of voting
machine and absentee votes for 22 Philadelphia County elections. The
variable machine is the Democratic plurality in machine votes, and the
variable absentee is the Democratic plurality in absentee votes [Simonoff,
1996].
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yeast
The yeast data set is described in Chapter 1. It contains the gene expression
levels over two cell cycles and five phases. 
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Appendix D
Introduction to MATLAB1

D.1 What Is MATLAB?

MATLAB is a technical computing environment developed by The
MathWorks, Inc. for computation and data visualization. It is both an
interactive system and a programming language, whose basic data element
is an array: scalar, vector, matrix, or multi-dimensional array. Besides basic
array operations, it offers programming features similar to those of other
computing languages (e.g., functions, control flow, etc.). 

In this appendix, we provide a brief summary of MATLAB to help the
reader understand the algorithms in the text. We do not claim that this
introduction is complete, and we urge the reader to learn more about
MATLAB from other sources. The documentation that comes with MATLAB
is excellent, and the reader should find the tutorials contained in there to be
helpful. For a comprehensive overview of MATLAB, we also recommend
Hanselman and Littlefield [1998, 2001]. A new book that introduces
numerical computing with MATLAB is by Moler [2004]. This book is
available in print version (see references); an electronic version can be
downloaded from 

http://www.mathworks.com/moler

If the reader needs to understand more about the graphics and GUI
capabilities in MATLAB, Marchand and Holland [2003] is the reference to
use.

MATLAB will execute on Windows, UNIX/Linux, and Macintosh systems.
Here we focus on the Windows version, but most of the information applies
to all systems. The main MATLAB software package contains many
functions for analyzing data. There are also specialty toolboxes that extend
the capabilities of MATLAB. These are available from The MathWorks and

1 Much of this appendix was taken and updated from the corresponding appendix in
Computational Statistics Handbook with MATLAB [2002].
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third party vendors for purchase. Some toolboxes are also on the internet and
may be downloaded at no charge. See Appendix B for a partial list.

We assume that readers know how to start MATLAB for their particular
platform. When MATLAB is started, you will have a command window with
a prompt where you can enter commands. Other windows are available (help
window, history window, etc.), but we do not cover those here.

D.2 Getting Help in MATLAB

One useful and important aspect of MATLAB is the help feature. There are
many ways to get information about a MATLAB function. Not only does the
help provide information about the function, but it also gives references for
other related functions. We discuss below the various ways to get help in
MATLAB.

• Command Line: Typing help and then the function name at the
command line will, in most cases, tell you everything you need to
know about the function. In this text, we do not write about all the
capabilities or uses of a function. The reader is strongly encouraged
to use command line help to find out more. As an example, typing
help plot at the command line provides lots of useful information
about the basic plot function. Note that the command line help
works with the EDA Toolbox (and others) as well. 

• Help Menu: The help files can also be accessed via the usual Help
menu. This opens up a separate help window. Information can be
obtained by clicking on links or searching the index.

D.3 File and Workspace Management

We can enter commands interactively at the command line or save them in an
M-file. So, it is important to know some commands for file management. The
commands shown in Table D.1 can be used to list, view, and delete files. 

Variables created in a session (and not deleted) live in the MATLAB
workspace. You can recall the variable at any time by typing in the variable
name with no punctuation at the end. Note that MATLAB is case sensitive,
so Temp, temp, and TEMP represent different variables.

MATLAB remembers the commands that you enter in the command
history. There is a separate command history window available via the View
menu and certain desktop layouts. One can use this to re-execute old
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TABLE D.1

File Management Commands

Command Usage

dir, ls Shows the files in the present directory.

delete filename Deletes filename.

cd, pwd Show the present directory.

cd dir, chdir Changes the directory. There is a pop-up menu on 
the toolbar that allows the user to change directory.

type filename Lists the contents of filename.

edit filename Brings up filename in the editor.

which filename Displays the path to filename. This can help 
determine whether a file is part of the standard 
MATLAB package.

what Lists the .m files and .mat files that are in the 
current directory.

TABLE D.2

Commands for Workspace Management

Command Usage

who Lists all variables in the workspace.

whos Lists all variables in the workspace along with the 
size in bytes, array dimensions, and object type.

clear Removes all variables from the workspace.

clear x y Removes variables x and y from the workspace.
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commands. One way is to highlight the desired commands (hold the ctrl
key while clicking), right click for a shortcut menu on the highlighted section,
and select Evaluate Selection. While in the command window, the
arrow keys can be used to recall and edit commands. The up-arrow and
down-arrow keys scroll through the commands. The left and right arrows
move through the present command. By using these keys, the user can recall
commands and edit them using common editing keystrokes.

We can view the contents of the current workspace using the Workspace
Browser. This is accessed through the File menu or the toolbar. All
variables in the workspace are listed in the window. The variables can be
viewed and edited in a spreadsheet-like window format by double-clicking
on the variable name.

The commands contained in Table D.2 help manage the workspace. It is
important to be able to get data into MATLAB and to save it. We outline
below some of the ways to get data in and out of MATLAB. These are not the
only options for file I/O. For example, see help on fprintf, fscanf, and
textread for more possibilities.

• Command Line: The save and load commands are the main way
to perform file I/O in MATLAB. We give some examples of how
to use the save command. The load command works similarly.

• File Menu: There are commands in the File menu for saving and
loading the workspace.

• Import Wizard: There is a spreadsheet-like window for inputting
data. To execute the wizard, type uiimport at the command line.

D.4 Punctuation in MATLAB

Table D.3 contains some of the common punctuation characters in MATLAB,
and how they are used.

Command Usage

save filename Saves all variables in 
filename.mat.

save filename var1 var2 Saves only variables var1 
var2 in filename.mat.

save filename var1 -ascii Saves var1 in ASCII 
format in filename.
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D.5 Arithmetic Operators

Arithmetic operators (*, /, +, –, ^) in MATLAB follow the conventions in
linear algebra. If we are multiplying two matrices, A and B, they must be
dimensionally correct. In other words, the number of columns of A must be
equal to the number of rows of B. To multiply two matrices in this manner,
we simply use A*B .  It  is important to remember that the default

TABLE D.3

List of Punctuation

Punctuation Usage

% A percent sign denotes a comment line. Information after
the % is ignored.

, When used to separate commands on a single line, a
comma tells MATLAB to display the results of the
preceding command. When used in concatenation
(between brackets [ ]), a comma or a blank space
concatenates elements along a row. A comma also has
other uses, including separating function arguments and
array subscripts.

; When used after a line of input or between commands
on a single line, a semicolon tells MATLAB not to display
the results of the preceding command. When used in
concatenation (between brackets [ ]), a semicolon begins
a new row.

. . . Three periods denote the continuation of a statement.
Comment statements and variable names cannot be
continued with this punctuation.

! An exclamation tells MATLAB to execute the following
as an operating system command.

: The colon specifies a range of numbers. For example, 1:10
means the numbers 1 through 10. A colon in an array
dimension accesses all elements in that dimension.

. The period before an operator tells MATLAB to perform
the corresponding operation on each element in the array.
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interpretation of an operation is to perform the corresponding array
operation.

MATLAB follows the usual order of operations. The precedence can be
changed by using parentheses, as in other programming languages.

It is often useful to operate on an array element-by-element. For instance,
we might want to square each element of an array. To accomplish this, we add
a period before the operator. As an example, to square each element of array
A, we use A.^2. These operators are summarized in Table D.4.

D.6 Data Constructs in MATLAB

Basic Data Constructs

We do not cover the object-oriented aspects of MATLAB here. Thus, we are
concerned mostly with data that are floating point (type double) or strings
(type char). The elements in the arrays will be of these two data types.

The fundamental data element in MATLAB is an array. Arrays can be:

• The  empty array created using [ ].
• A  scalar array.

• A row vector, which is a  array.
• A column vector, which is an  array.

• A matrix with two dimensions, say  or .
• A multi-dimensional array, say .

Arrays must always be dimensionally conformal and all elements must be
of the same data type. In other words, a  matrix must have 3 elements
(e.g., numbers) on each of its 2 rows. Table D.5 gives examples of how to
access elements of arrays.

TABLE D.4

List of Element-by-Element Operators

Operator Usage

.* Multiply element-by-element.

./ Divide element-by-element.

.^ Raise elements to powers.

0 0×
1 1×

1 n×
n 1×

m n× n n×
m … n××

2 3×
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Building Arrays

In most cases, the statistician or engineer will need to import data into
MATLAB using load or some other method described previously. However,
sometimes we might need to type in simple arrays for testing code or
entering parameters, etc. Here we cover some of the ways to build small
arrays. Note that this can also be used to combine separate arrays into one
large array.

Commas or spaces concatenate elements (which can be arrays) as columns.
Thus, we get a row vector from the following

temp = [1, 4, 5];

or we can concatenate two column vectors a and b into one matrix, as follows

temp = [a b];

The semi-colon tells MATLAB to concatenate elements as rows. So, we would
get a column vector from this command:

temp = [1; 4; 5];

We note that when concatenating arrays, the sizes of each array element must
be conformal. The ideas presented here also apply to cell arrays, discussed
below.

Before we continue with cell arrays, we cover some of the other useful
functions in MATLAB for building arrays. These are summarized here.

Cell Arrays

Cell arrays and structures allow for more flexibility. Cell arrays can have
elements that contain any data type (even other cell arrays), and they can be
of different sizes. The cell array has an overall structure that is similar to the
basic data arrays. For instance, the cells are arranged in dimensions (rows,
columns, etc.). If we have a  cell array, then each of its 2 rows has to have
3 cells. However, the content of the cells can be different sizes and can contain

Function Usage

zeros, ones These build arrays containing all 0’s or 
all 1’s, respectively.

rand, randn These build arrays containing uniform 
(0,1) random variables or standard 
normal random variables, respectively. 

eye This creates an identity matrix.

2 3×
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different types of data. One cell might contain char data, another double,
and some can be empty. Mathematical operations are not defined on cell
arrays.  

In Table D.5, we show some of the common ways to access elements of
arrays, which can be cell arrays or basic arrays. With cell arrays, this accesses
the cell element, but not the contents of the cells. Curly braces, { }, are used
to get to the elements inside the cell. For example, A{1,1} would give us the
contents of the cell (type double or char). Whereas, A(1,1) is the cell itself
and has data type cell. The two notations can be combined to access part of
the contents of a cell. To get the first two elements of the contents of A{1,1},
assuming it contains a vector, we can use

A{1,1} (1:2).

Cell arrays are very useful when using strings in plotting functions such as
text.

Structures

Structures are similar to cell arrays in that they allow one to combine
collections of dissimilar data into a single variable. Individual structure
elements are addressed by names called fields. We use the dot notation to
access the fields. Each element of a structure is called a record.

TABLE D.5

Examples of Accessing Elements of Arrays

Notation Usage

a(i) Denotes the i-th element (cell) of a row or 
column vector array (cell array).

A(:,i) Accesses the i-th column of a matrix or cell 
array. In this case, the colon in the row 
dimension tells MATLAB to access all rows.

A(i,:) Accesses the i-th row of a matrix or cell array. 
The colon tells MATLAB to gather all of the 
columns.

A(1,3,4) This accesses the element in the first row, 
third column on the fourth entry of 
dimension 3 (sometimes called the page).
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For example, suppose we had a structure called data that had fields called
name, dob, test. Then we could obtain the information in the tenth record
using

data(10).name
data(10).dob
data(10).test

Here name and dob are vectors of type char, and test is a numeric. Note
that fields may also be structures with their own fields. We may access the
elements of the fields using the element accessing syntax discussed earlier. 

D.7 Script Files and Functions

MATLAB programs are saved in M-files. These are text files that contain
MATLAB commands, and they are saved with the .m extension. Any text
editor can be used to create them, but the one that comes with MATLAB is
recommended. This editor can be activated using the File menu or the
toolbar.

When script files are executed, the commands are implemented just as if
you typed them in interactively. The commands have access to the workspace
and any variables created by the script file are in the workspace when the
script finishes executing. To execute a script file, simply type the name of the
file at the command line or use the option in the File menu.

Script files and functions both have the same .m extension. However, a
function has a special syntax for the first line. In the general case, this syntax
is

function [out1,...,outM] = func_name(in1,...,inN)

A function does not have to be written with input or output arguments.
Whether you have these or not depends on the application and the purpose
of the function. The function corresponding to the above syntax would be
saved in a file called func_name.m. These functions are used in the same
way any other MATLAB function is used.

It is important to keep in mind that functions in MATLAB are similar to
those in other programming languages. The function has its own workspace.
So, communicating information between the function workspace and the
main workspace is done via input and output variables.

It is always a good idea to put several comment lines at the beginning of
your function. These are returned by the help command.
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D.8 Control Flow

Most computer languages provide features that allow one to control the flow
of execution depending on certain conditions. MATLAB has similar
constructs:

• for loops

• while loops
• if-else statements

• switch statement

These should be used sparingly. In most cases, it is more efficient in MATLAB
to operate on an entire array rather than looping through it. 

for Loop

The basic syntax for a for loop is 

for i = array
commands

end

Each time through the loop, the loop variable i assumes the next value in
array. The colon notation is usually used to generate a sequence of numbers
that i will take on. For example, 

for i = 1:10

The commands between the for and the end statements are executed once
for every value in the array. Several for loops can be nested, where each loop
is closed by end.

while Loop

A while loop executes an indefinite number of times. The general syntax is:

while expression
commands

end

The commands between the while and the end are executed as long as
expression is true. Note that in MATLAB a scalar that is nonzero evaluates
to true. Usually a scalar entry is used in the expression, but an array can
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be used also. In the case of arrays, all elements of the resulting array must be
true for the commands to execute.

if-else Statements

Sometimes, commands must be executed based on a relational test. The if-
else statement is suitable here. The basic syntax is

if expression
commands

elseif expression
commands

else
commands

end

Only one end is required at the end of the sequence of if, elseif and else
statements. Commands are executed only if the corresponding expression
is true. 

switch Statement

The switch statement is useful if one needs a lot of if, elseif statements
to execute the program. This construct is very similar to that in the C
language. The basic syntax is:

switch expression
case value1

commands execute if expression is value1
case value2

commands execute if expression is value2
...
otherwise

commands
end

The expression must be either a scalar or a character string. 

D.9 Simple Plotting

For more information on some of the plotting capabilities of MATLAB, the
reader is referred to the MATLAB documentation Using MATLAB Graphics
and Graphics and GUIs with MATLAB [Marchand and Holland, 2003]. In this
appendix, we briefly describe some of the basic uses of plot for plotting 2-D
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graphics and plot3 for plotting 3-D graphics. The reader is strongly urged
to view the help file for more information and options for these functions.

When the function plot is called, it opens a Figure window (if one is not
already there) scales the axes to fit the data, and plots the points. The default
is to plot the points and connect them using straight lines. For example, 

plot(x,y)

plots the values in vector x on the horizontal axis and the values in vector y
on the vertical axis, connected by straight lines. These vectors must be the
same size or you will get an error. 

Any number of pairs can be used as arguments to plot. For instance, the
following command plots two curves,

plot(x,y1,x,y2)

on the same axes. If only one argument is supplied to plot, then MATLAB
plots the vector versus the index of its values.

The default is a solid line, but MATLAB allows other choices. These are
given in Table D.6.

If several lines are plotted on one set of axes, then MATLAB plots them in
different colors. The predefined colors are listed in Table D.7. 

TABLE D.6

Line Styles for Plots

Notation Line Type

- Solid Line
: Dotted Line
-. Dash-dot Line
-- Dashed Line

TABLE D.7

Line Colors for Plots

Notation Color

b blue
g green
r red
c cyan
m magenta
y yellow
k black
w white
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Plotting symbols (e.g., *, x, o, etc.) can be used for the points. Since the list
of plotting symbols is rather long, we refer the reader to the online help for
plot for more information. To plot a curve where both points and a
connected curve are displayed, use

plot(x, y, x, y, 'b*')

or 

plot(x,y,'b*-')

This command first plots the points in x and y, connecting them with straight
lines. It then plots the points in x and y using the symbol * and the color blue.
See the help on graph2d for more 2-D plots.

The plot3 function works the same as plot, except that it takes three
vectors for plotting:

plot3(x, y, z)

All of the line styles, colors, and plotting symbols apply to plot3. Other
forms of 3-D plotting (e.g., surf and mesh) are available. See the help on
graph3d for more capabilities. Titles and axes labels can be created for all
plots using title, xlabel, ylabel, and zlabel.

Before we finish this discussion on simple plotting techniques in MATLAB,
we present a way to put several axes or plots in one figure window. This is
through the use of the subplot function. This creates an  matrix of
plots (or axes) in the current figure window. We provide an example below,
where we show how to create two plots side-by-side.

% Create the left-most plot.
subplot(1,2,1)
plot(x,y)
% Create the right-most plot
subplot(1,2,2)
plot(x,z)

The first two arguments to subplot tell MATLAB about the layout of the
plots within the figure window. The third argument tells MATLAB which
plot to work with. The plots are numbered from top to bottom and left to
right. The most recent plot that was created or worked on is the one affected
by any subsequent plotting commands. To access a previous plot, simply use
the subplot function again with the proper value for the third argument.
You can think of the subplot function as a pointer that tells MATLAB what
set of axes to work with.

Through the use of MATLAB’s low-level Handle Graphics functions, the
data analyst has complete control over graphical output. We do not present
any of that here, because we make limited use of these capabilities. However,
we urge the reader to look at the online help for propedit. This graphical
user interface allows the user to change many aspects or properties of the
plots without resorting to Handle Graphics.

m n×
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D.10 Where to get MATLAB Information

For MATLAB product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7101
E-mail: info@mathworks.com
Web: www.mathworks.com

There are two useful resources that describe new products, programming
tips, algorithm development, upcoming events, etc. One is the monthly
electronic newsletter called the MATLAB Digest. Another is called MATLAB
News & Notes, published quarterly. You can subscribe to both of these at
www.mathworks.com or send an email request to 

subscribe@mathworks.com

Back issues of these documents are available on-line.
The MathWorks has an educational area that contains many resources for

professors and students. You can find contributed course materials, product
recommendations by curriculum, tutorials on MATLAB, and more at:

www.mathworks.com/products/education/

The MathWorks also provides free live (and archived) webinars that
demonstrate their products. See

www.mathworks.com/webinars

for a schedule and registration information.
There is an active news group to discuss MATLAB. Sign up at

comp.soft-sys.matlab

This is a good place to ask questions and share ideas. Another useful source
for MATLAB users is MATLAB Central. This is on the main website at The
MathWorks:

www.mathworks.com/matlabcentral/

It has an area for sharing MATLAB files, a web interface to the news group,
and other features. It is always a good idea to check here first before writing
your own functions, since what you need might be there already.
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Appendix E
MATLAB Functions

For the convenience of the reader, we provide a list of functions and
commands that were mentioned in the text and others that we think might be
of interest to the exploratory data analyst. Be sure to check the help files on
the Statistics Toolbox and EDA Toolbox for a list of all functions that are
available. 

E.1 MATLAB

abs Absolute value of a vector or matrix.
axes Low-level function to set axes properties.
axis Command or function to change axes.
bar, bar3 Construct a 2-D or 3-D bar graph.
cart2pol Change from Cartesian to polar coordinates.
ceil Round up to the next integer.
char Creates character array.
cla Clears the current axes.
colorbar Puts a color scale on the figure.
colormap Changes the color map for the figure.
contour Constructs a contour plot.
convhull Finds the convex hull.
cos Finds the cosine of the angle (radians).
cov Returns the sample covariance matrix.
cumsum Calculates the cumulative sum of vector elements.
diag Diagonal matrices and diagonals of a matrix.
diff Finds the difference between elements.
drawnow Force MATLAB to update the graphics screen.
eig, eigs Eigenvalues/eigenvectors for full and sparse matrices.
exp Find the exponential of the argument.
eye Provides an identity matrix.
figure Creates a blank figure window.
find Find indices of nonzero elements.
findobj Find objects with certain properties.
flipud Flip matrix in up/down direction.
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floor Round down to the nearest integer.
gammaln Logarithm of the gamma function.
gray A pre-specified gray-scale color map.
help funcname Command line way to get help on a function.
hist Create a histogram.
hold Freeze the current plot, graphics are added.
imagesc Scaled image of the data.
inpolygon True if the point is inside the polygon, zero otherwise.
int2str Convert integer to char.
intersect Elements in the set intersection.
legend Add a legend to the axes.
length Returns the length of a vector.
line Low-level function to create a line or curve.
linspace Provide linearly-spaced points in a given 1-D range.
load Load some data – MAT-file or ASCII.
log Take logarithm of elements.
mean Find the sample mean.
median Find the median.
meshgrid Provide linearly-spaced points (X, Y) in a 2-D domain.
min, max Find the minimum or maximum element in a vector.
mod Returns modulus after division.
norm Calculates the vector or matrix norm.
ones Provides an array with all ones.
pause Pause all activity in MATLAB.
pcolor Pseudo-color plot – elements specify colors.
pinv Pseudo-inverse of a matrix.
plot, plot3 2-D or 3-D plots.
plotmatrix Matrix of scatterplots.
pol2cart Convert polar to Cartesian coordinates.
polyfit Fit data to a polynomial.
polyval Evaluate a polynomial.
rand Generate uniform (0, 1) random variables.
randn Generate standard normal random variables.
repmat Construct a new array with replicated/tiled elements.
reshape Reshape or change the size of a matrix.
round Round towards the nearest integer.
scatter, scatter3 Construct 2-D and 3-D scatterplots.
semilogy Construct a 2-D plot, with a vertical log scale.
set Set properties of graphics objects.
setdiff Find the set difference between vectors.
sin Calculate the sine (radians.)
size Find the size of an array.
sort Sort in ascending order.
sqrt Find the square root.
std Find the sample standard deviation.
strmatch Find matches for a string.
sum Add up the elements in a vector.
surf Construct a surface plot.
svd Singular value decomposition.
tan Find the tangent of an angle (radians).

EDA.book  Page 372  Monday, October 18, 2004  8:34 AM



MATLAB Functions 373

title Put a title on a plot.
vander Vandermonde matrix.
xlabel , ylabel Add labels to the axes in a plot.
zeros Returns an array with all zeros.

E.2 Statistics Toolbox - Versions 4 and 5

Unless otherwise noted, the following functions are included in version 4 of
the Statistics Toolbox.

biplot  (V5) Biplot of variable/factor coefficients and scores.
boxplot Displays boxplots of the columns of a matrix.
cluster Get clusters from hierarchical clustering.
clusterdata Construct clusters from data (whole process).
cmdscale Classical multi-dimensional scaling.
cophenet Calculates the cophenetic coefficient.
dendrogram Constructs the dendrogram.
dfittool (V5) GUI for fitting distributions to data.
exprnd Generate random variables from exponential.
factoran Factor analysis.
gname Interactive labeling of scatterplot.
gplotmatrix Grouped scatterplot matrix.
gscatter Grouped scatter plot.
hist3 (V5) Histogram of bivariate data.
iqr Interquartile range.
kmeans k-means clustering.
linkage Agglomerative hierarchical clustering.
mdscale (V5) Metric and nonmetric multidimensional scaling.
mvnpdf Multivariate normal probability density function.
mvnrnd Generate multivariate normal random variables.
norminv Inverse of the normal cumulative distribution function.
normpdf 1-D normal probability density function.
normplot Normal probability plot.
normrnd Generate 1-D normal random variables.
pcacov PCA using the covariance matrix.
pdist Find interpoint distances.
probplot (V5) Probability plots for specified distributions.
princomp Principal component analysis.
qqplot Empirical q-q plot
quantile (V5) Find the quantiles of a sample.
silhouette Construct silhouette plot and return silhouette values.
squareform Convert output of pdist to matrix.
unifrnd Generate uniform random variables over range (a, b).
weibplot Weibull probability plot.
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E.3 Exploratory Data Analysis Toolbox

adjrand Adjusted Rand index to compare groupings.
agmclust Model-based agglomerative clustering.
bagmat.exe Executable file to get arrays needed for bagplot.
bagplot M-file to construct actual bagplot.
boxp Boxplot - regular.
boxprct Box-percentile plot.
brushscatter Scatterplot brushing and linking.
coplot Coplot from Data Visualization Toolbox.
csandrews Andrews’ curves plot.
csparallel Parallel coordinates plot.
csppstrtrem Remove structure in PPEDA.
dotchart Dot chart plot.
genmix GUI to generate random variables from finite mixture.
gtm_pmd Calculates posterior mode projection (GTM Toolbox).
gtm_pmn Calculates posterior mean projection (GTM Toolbox).
gtm_stp2 Generates components of a GTM (GTM Toolbox).
gtm_trn Train the GTM using EM (GTM Toolbox).
hexplot Hexagonal binning for scatterplot.
hlle Hessian eigenmaps.
idpettis Intrinsic dimensionality estimate.
intour Interpolation tour of the data.
isomap ISOMAP nonlinear dimensionality reduction.
kdimtour k-dimensional grand tour.
lle Locally linear embedding.
loess 1-D loess scatterplot smoothing.
loess2  2-D loess smoothing from Data Visualization Toolbox.
loessenv Loess upper and lower envelopes.
loessr Robust loess scatterplot smoothing.
mbcfinmix Model-based finite mixture estimation - EM.
mbclust Model-based clustering.
mixclass Classification using mixture model.
multiwayplot Multiway dot charts.
nmmds Nonmetric multidimensional scaling.
permtourandrews Permutation tour using Andrews’ curves.
permtourparallel Permutation tour using parallel coordinate plots.
plotbic Plot the BIC values from model-based clustering.
plotmatrixandr Plot matrix of Andrews’ curves.
plotmatrixpara Plot matrix of parallel coordinates.
polarloess Bivariate smoothing using loess.
ppeda Projection pursuit EDA.
pseudotour Pseudo grand tour.
quantileseda Sample quantiles.
quartiles Sample quartiles using Tukey’s fourths.
randind Rand index to compare groupings.
reclus ReClus plot to visualize cluster output.
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rectplot Rectangle plot to visualize hierarchical clustering.
scattergui Scatterplot with interactive labeling.
som_autolabel Automatic labeling (SOM Toolbox).
som_data_struct Create a data structure (SOM Toolbox).
som_make Create, initialize and train SOM (SOM Toolbox).
som_normalize Normalize data (SOM Toolbox).
som_set Set up SOM structures (SOM Toolbox).
som_show Basic SOM visualization (SOM Toolbox).
som_show_add Shows hits, labels and trajectories (SOM Toolbox).
torustour Asimov grand tour
treemap Treemap display for hierarchical clustering.
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FIGURE 3.7 

 

These points represent a random sample from the S-curve manifold. The colors are mapped to
the height of the surface and are an indication of the neighborhood of a point.

 

FIGURE 3.8

 

This is the 2-D embedding recovered using LLE. Note by the color that the neighborhood
structure is preserved.
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FIGURE 3.9 (TOP)

 

This is the 2-D embedding from ISOMAP. Note that the correct structure is not obtained.

 

FIGURE 3.9 (BOTTOM)

 

This scatterplot shows the 2-D embedding from HLLE. Note that it was able to recover the
correct embedding.
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FIGURE 3.10

 

This is a U-matrix visualization of the SOM for the oronsay data. The distance of a map unit
to each of its neighbors is calculated and then visualized using a color scale. We see evidence
of a cluster in the lower left corner and the upper part of the map. 

 

FIGURE 5.4 

 

This is a scatterplot matrix showing the results of applying 

 

k

 

-means clustering (with 

 

k

 

 = 3) to
the iris data.

0.123

1.96

3.8
U−matrix

1

1

1

0

0

0

0

2

2

2

1

1

0

0

0

0

0

2

2

1

1

0

0

0

0

1

1

1

0

0

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

1

0

0

0

1

1

1

1

1

1

1

0

0

Results from K Means

0 1 2
Petal Width

2 4 6
Petal Length

2 3 4
Sepal Width

5 6 7 8
0

1

2

Sepal Length

P
et

al
 W

id
th

2

4

6

P
et

al
 L

en
gt

h

2

3

4

S
ep

al
 W

id
th

5

6

7

8

S
ep

al
 L

en
gt

h

 

C3669_Color Insert.fm  Page 3  Thursday, November 11, 2004  2:15 PM



 

FIGURE 8.7 (TOP)

 

This ReClus plot shows the cluster configuration for the text data based on the best model
chosen from model-based clustering. Here we plot the true class label with the color indicating
the probability that the observation belongs to the cluster.

 

FIGURE 8.7 (BOTTOM)

 

This ReClus plot shows the same cluster configuration as in Figure 8.7 (top), except that we
now show observations with posterior probabilities greater than 0.9 in black bold font.
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FIGURE 8.8 

 

Here is the ReClus plot when we split the text data into two groups using hierarchical clustering.
In this case, the scale corresponds to the silhouette values.

 

FIGURE 8.9 

 

On the right, we have the data image for the iris data. The colors are mapped to the attribute
values. Each row corresponds to an observation, and the columns are the variables. The rows
have been re-ordered based on the leaves of the dendrogram at the left. Three groups are now
visible in the data image.
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FIGURE 10.3 (TOP)

 

This figure shows the 2-D scatterplot for two variables of the oronsay data. The color indicates
the midden class membership.

 

FIGURE 10.3 (BOTTOM)

 

This is the 3-D scatterplot for three variables of the oronsay data. The color indicates the midden
class membership.
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FIGURE 10.5 

 

This shows a scatterplot of the oronsay data based on hexagonal binning. The color of the
symbols represents the value of the probability density at that bin.

 

FIGURE 10.7

 

The red points in this scatterplot were highlighted using the scattergui function.
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FIGURE 10.9

 

This is the scatterplot matrix with brushing and linking. This mode is transient, where only points inside the brush are highlighted. Corresponding
points are highlighted in all scatterplots. 
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