Digital Signal Processing
Using MATLAB® V.4

| "

Bookware
4 s
Series™

Vinay K. Ingle John G. Proakis

Oala disk enclioasd
Filew siac evailwb e

A BC NOTE

Students learn in a number of ways and in a variety of settings. They learn
through lectures, in informal study groups, or alone at their desks or in
front of a computer terminal. Wherever the location, students learn most
efficiently by solving problems, with frequent feedback from an instruc-
tor, following a worked-out problem as a model. Worked-out problems
have a number of positive aspects. They can capture the essence of a
key concept — often better than paragraphs of explanation. They provide
methods for acquiring new knowledge and for evaluating its use. They
provide a taste of real-life issues and demonstrate techniques for solving
real problems. Most important, they encourage active participation in
learning.

We created the BookWare Companion Series because we saw an un-
fulfilled need for computer-based learning tools that address the compu- .
tational aspects of problem solving across the curriculum. The BC series
concept was also shaped by other forces: a general agreement among in-
structors that students learn best when they are actively involved in their
own learning, and the realization that textbooks have not kept up with or
matched student learning needs. Educators and publishers are just begin-
ning to understand that the amount of material crammed into most text-
books cannot be absorbed, let alone the knowledge to be mastered in four
years of undergraduate study. Rather than attempting to teach students
all the latest knowledge, colleges and universities are now striving to teach
them to reason: to understand the relationships and connections between
new information and existing knowledge; and to cultivate problem-solving
skills, intuition, and critical thinking. The BookWare Companion Series
was developed in response to this changing mission.

Specifically, the BookWare Companion Series was designed for educa-
tors who wish to integrate their curriculum with computer-based learning
tools, and for students who find their current textbooks overwhelming.
The former will find in the BookWare Companion Series the means by
which to use powerful software tools to support their course activities,
without having to customize the applications themselves. The latter will
find relevant problems and examples quickly and easily and have instant
electronic access to them.

‘We hope that the BC series will become a clearinghouse for the ex-
change of reliable teaching ideas and a baseline series for incorporating
learning advances from emerging technologies. For example, we intend to
reuse the kernel of each BC volume and add electronic scripts from other
software programs as desired by customers. We are pursuing the addition
of AI/Expert System technology to provide an intelligent tutoring capa-
bility for future iterations of BC volumes. We also anticipate a paperless
environment in which BC content can flow freely over high-speed net-
works to support remote learning activities. In order for these and other
goals to be realized, educators, students, software developers, network ad-
ministrators, and publishers will need to communicate freely and actively
with each other. We encourage you to participate in these exciting de-
velopments and become involved in the BC Series today. If you have an
idea for improving the effectiveness of the BC concept, an example prob-
lem, a demonstration using software or multimedia, or an opportunity to
explore, contact us.

Thank you one and all for your continuing support.

The PWS Electrical Engineering Team:

Bill_ Barter@PWS.Com Acquisitions Editor
Angie Mlinko@PWS.Com Assistant Editor
Nathan Wilbur@PWS.Com Marketing Manager
Pam_Rockwell@PWS.Com Production Editor
Monica.Block@PWS.Com Editorial Assistant

A BC NOTE

The PWS
BookWare Companion Series™

DIGITAL SIGNAL PROCESSING
USING MATLAB V.4®

Vinay K. Ingle
John G. Proakis

Northeastern University

PWS Publishing Company

I@P An International Thomson Publishing Company

Boston e Albany o Bonn e Cincinnati e Detroit ¢ London e Madrid ¢ Melbourne Mexico City
New York e Paris e San Francisco e Singapore ® Tokyo @ Toronto e Washington

PWS PUBLISHING COMPANY
20 Park Plaza, Boston, MA 02116-4324

Copyright © 1997 by PWS Publishing Company, a division of Interpational Thomson Publishing Inc.

Al rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transcribed
in any form or by any means — electronic, mechanical, photocopying, recording, or otherwise — without the
prior written permission of PWS Publishing Company.

MATLAB and PC MATLAB are registered trademarks of The Mathworks, Inc. The MathWorks, Inc. is the
developer of MATLAB, the high-performance computational software introduced in this book. For further
information on MATLAB and other MathWorks products —including SIMULINK™™ and MATLAR Appli-
cation Toolboxes for math and analysis, control system design, system identification, and other disciplines —
comntact The MathWorks at 24 Prime Park Way, Natick, MA 01760 (phone: 508-653-1415; fax: 508-653-2997;
email: info@mathworks.com). You can also sign up to receive the MathWorks quarterly newsletter and register
for the user group.

M acintosh is a trademark of Apple Computer, Inc.

MS-DOS is a trademark of Microsoft Corporation.

Bookware Companion Series is a trademark of PWS Publishing Company.

op™

International Thomson Publishing
The ITP logo is a registered trademark under license.

For more information, contact: -

PWS Publishing Company International Thomson Editores
20 Park Plaza Campos FEliseos 385, Piso 7
Boston, MA 02116 Col. Polanco

International Thomson Publishing Europe 11560 Mexico D.F., Mexico

Berkshire House 168-173 International Thomson Publishing GmbH
High Holborn Konigswinterer Strasse 418

L.ondon WC1V 7AA 53227 Bonn, Germany

England International Thomson Publishing Asia
Thomas Nelson Australia 221 Henderson Road

102 Dodds Street #05-10 Henderson Building

South Melbourne, 3205 Singapore 0315

L rali
Victoria, Australia International Thomson Publishing Japan

Nelson Canada Hirakawacho Kyowa Building, 31
1120 Birchmount Road ’ 2-2-1 Hirakawacho

Scarborough, Ontario Chiyoda-ku, Tokyo 102

Canada M1K 5G4 Japan

About the Cover: The BookWare Companion Series cover illustration was created on a Macintosh Quadra
700, using Aldus FreeHand and Quark XPress. The surface plot on the cover, provided courtesy of The
MathWorks, Inc., Natick, MA, was created with MATLAB® and was inserted on the cover mockup with
an HP ScanJet IIP Scanner, It represents a surface created by assigning the values of different functions to
specific matrix elements.

Editor: Bill Barter Marketing Manager: Nathan Wilbur
Assistant Editor: Angie Mlinko Production: Pamela Rockwell
Manufacturing Coordinator: Wendy Kilborn Cover Printer: Henry N. Sawyer, Inc.

Cover Designer: Stuart Paterson, Image House, Inc. Text Printer and Binder: Quebecor/Martinsburg
Editorial Assistant: Monica Block

Printed and bound in the United States of America.
9798 99—109876543 ISBN: 0-534-93805-1

B CONTENTS

PREFACE ix

1 INTRODUCTION 1
i

Overview of Digital Signal Processing 2
A Few Words about MATLAB® 5§

2 DISCRETE-TIME SIGNALS AND SYSTEMS 7
-

Discrete-time Signals 7
Discrete Systems 20
Convolution 22
Difference Equations 29
Problems 35

3 THE DISCRETE-TIME FOURIER ANALYSIS 40
.

The Discrete-time Fourier Transform (DTFT) 40
The Properties of the DTFT 47

MATLAB is a registered trademark of The MathWorks, Inc.

The Frequency Domain Representation of LTI Systems
Sampling and Reconstruction of Analog Signals 60
Problems 74

4 THE »-TRANSFORM 80
-

The Bilaterat z-Transform 80
Important Properties of the z-Transform 84

Inversion of the z-Transform 89

System Representation in the z-Domain 95
Solutions of the Difference Equations 105
Problems 111

§ THE DISCRETE FOURIER TRANSFORM 116
._

The Discrete Fourier Series 117

Sampling and Reconstruction in the z-Domain 124
The Discrete Fourier Transform 129

Properties of the Discrete Fourier Transform 139
Linear Convolution using the DFT 154

The Fast Fourier Transform 160

Problems 172

6 DIGITAL FILTER STRUCTURES 182
-

Basic Elements 183
IIR Filter Structures 183
FIR Filter Structures 197

53

5

CONTENTS

Lattice Filter Structures 208
Problems 219

7 FIR FILTER DESIGN 224
-

Preliminaries 224

Properties of Linear-phase FIR Filters 228
Window Design Techniques 243

Frequency Sampling Design Techniques 264
Optimal Equiripple Design Technique 277
Problems 294

8 IR FILTER DESIGN 301
——-

Some Preliminaries 302

Characteristics of Prototype Analog Filters 305
Analog-to-Digital Filter Transformations 327
Lowpass Filter Design Using MATLAB 345
Frequency-band Transformations 350
Comparison of FIR vs. IR Filters 363
Problems 364

9 APPLICATIONS IN ADAPTIVE FILTERING 373
-

LMS Algorithm for Coefficient Adjustment 375
System ldentification or System Modeling 378

Suppression of Narrowband Interference in a
Wideband Signal 379

Adaptive Line Enhancement 382

CONTENTS

vil

Adaptive Channel Equalization 382
Summary 385

10 APPLICATIONS IN COMMUNICATIONS 386
—u

Pulse-code Modulation 386

Differential PCM (DPCM) 390

Adaptive PCM and DPCM (ADPCM) 394
Delta Modulation (DM) 398

Linear Predictive Coding (LPC) of Speech 401
Dual-tone Multifrequency (DTMF) Signals 405
Binary Digital Communications 410

Spread-Spectrum Communications 411
Summary 413

BIBLIOGRAPHY 414

INDEX 415

viii CONTENTS

PREFACE

From the beginning of the last decade we have witnessed a revolution
in computer technology and an explosion in user-friendly applications.
This revolution is still continuing today with low-cost personal computer
systems that rival the performance of expensive workstations. This tech-
nological prowess should be brought to bear on the educational process
and, in particular, on effective teaching that can result in enhanced learn-
ing. This companion book on digital signal processing (DSP) makes a
small contribution toward that goal.

The teaching methods in signal processing have changed over the
years from the simple “lecture-only” format to a more integrated “lecture-
laboratory” environment in which practical hands-on issues are taught
using DSP hardware. However, for effective teaching of DSP the lecture
component must also make extensive use of computer-based explanations,
examples, and exercises. For the last several years, the MATLAB software
developed by The MathWorks, Inc. has established itself as the de facto
standard for numerical computation in the signal-processing community
and as a platform of choice for algorithm development. There are sev-
eral reasons for this development, but one most important reason is that
MATLAB is available on practically all computing platforms. For several
years the expensive Professional Version of MATLAB was the only version
available on the market. The advent of an inexpensive Student Edition
has now made it possible to use it in classrooms. Recently, several text-
books in DSP have appeared which generally provide exercises that can
be done using MATLAB. However, for students (and for practicing engi-
neers interested in DSP) there are no “how-to” references for effective
use of MATLAB in DSP. In this book we have made an attempt at inte-
grating MATLAB with traditional topics in DSP so that it can be used
to explore difficult topics and solve problems to gain insight. Many prob-
lems or design algorithms in DSP require considerable computation. It is
for these that MATLAB provides a convenient tool so that many scenar-
ios can be tried with ease. Such an approach can enhance the learning
process.

SCOPE OF THE BOOK

This book is primarily intended for use as a supplement in junior- or
senior-level undergraduate courses on DSP. We assume that the student
(or user) is familiar with the fundamentals of MATLAB. Those topics are
not covered since several tutorial books and manuals on MATLAB are
available. Similarly, this book is not written as a textbook in DSP because
of the availability of excellent textbooks. What we have tried to do is to
provide enough depth to the material augmented by MATLAB functions
and examples so that the presentation is consistent, logical, and enjoyable.
Therefore this book can also be used as a self-study guide by anyone
interested in DSP.

When this project got under way, version 3.5 of the Student Edition of
MATLAB was available. Since the beginning of 1995 a more advanced GUI
(graphical user interface) version 4.0 of the Student Edition is available.
This book is compatible with the newer version.

ORGANIZATION OF THE BOOK
+

The first eight chapters of this book discuss traditional material covered
in an introductory course on DSP. The last two chapters are presented
as applications in DSP with emphasis on MATLAB-based projects. The
following is a list of chapters and a brief description of their contents:

Chapter 1, Introduction: This chapter introduces readers to the disci-
pline of signal processing and discusses the advantages of DSP over analog
signal processing. A brief introduction to MATLAB is also provided.

Chapter 2, Discrete-time Signals and Systems: This chapter provides
a brief review of discrete-time signals and systems in the time domain.
Appropriate use of MATLAB functions is demonstrated.

- Chapter 3, The Discrete-time Fourier Analysis: This chapter dis-
cusses discrete-time signal and system representation in the frequency
domain. Sampling and reconstruction of analog signals are also presented.

Chapter 4, The z-Transform: This chapter provides signal and sys-
tem description in the complex frequency domain. MATLAB techniques are
introduced to analyze z-transforms and to compute inverse z-transforms.
Solutions of difference equations using the z-transform and MATLAB are
provided.

Chapter 5, The Discrete Fourier Transform: This chapter is devoted
to the computation of the Fourier transform and to its efficient imple-
mentation. The discrete Fourier series is used to introduce the discrete
Fourier transform, and several of its properties are demonstrated using

X PREFACE

SOFTWARE

MATLAB. Topics such as fast convolution and fast Fourier transform are
thoroughly discussed.

Chapter 6, Digital Filter Structures: This chapter discusses several
structures for the implementation of digital filters. Several useful MATLAB
functions are developed for the determination and implementation of these
structures. Lattice and ladder filters are also introduced and discussed.

Chapter 7, FIR Filter Design: This chapter and the next introduce
the important topic of digital filter design. Three important design tech-
niques for FIR filters — namely, window design, frequency sampling de-
sign, and the equiripple filter design — are discussed. Several design ex-
amples are provided using MATLAB.

Chapter 8, IIR Filter Design: Included in this chapter are techniques
in IIR filter design. It begins with analog filter design and introduces such
topics as filter transformations and filter-band transformation. Once again
several design examples using MATLAB are provided.

Chapter 9, Applications in Adaptive Filtering: This chapter is the
first of two chapters on projects using MATLAB. Included is an intro-
duction to the theory and implementation of adaptive FIR filters with
projects in system identification, interference suppression, narrowband
frequency enhancement, and adaptive equalization.

Chapter 10, Applications in Communications: This chapter focuses
on several projects dealing with waveform representation and coding, and
with digital communications. Included is a description of pulse-code mod-
ulation (PCM), differential PCM (DPCM) and adaptive DPCM (AD-
PCM), delta modulation {DM) and adaptive DM (ADM), linear predic-
tive coding (LPC), generation and detection of dual-tone multifrequency
(DTMF) signals, and a description of signal detection applications in bi-
nary communications and spread-spectrum communications.

—

The book is an outgrowth of our teaching of a MATLAB-based undergrad-
uate DSP course over several years. Many MATLAB functions discussed in
this book were developed in this course. These functions are available on
the accompanying diskette as a pwsk.dsp toolbox. Create a separate di-
rectory for this toolbox and reference it in the matlabpath environment.
The book also contains numerous MATLAB scripts in many examples.
These scripts are also made available on the disk and are kept in individ-
ual directories created for each chapter. In addition, many figures were
produced as MATLAB plots, and their scripts are available in the figures
directory. Students should study these scripts to gain insight into the
MATLAB procedures. We will appreciate any comments, corrections, or
compact coding of these programs and scripts. Solutions to problems and

Software

xi

the associated script files will be made available to instructors in the near
future.

Further information about MATLAB and related publications may
be obtained from

The MathWorks, Inc.

24 Prime Park Way

Natick, MA 01760-1500

Phone: (508) 647-7000 Fax: (508) 647-7001
E-mail: info@mathworks.com

WWW: http://www.mathworks.com

ACKNOWLEDGMENTS

‘We are indebted to our numerous students in our ECE-1456 course at
Northeastern University who provided us a forum to test teaching ideas
using MATLAB and who endured our constant emphasis on MATLAB.
Some efficient MATLAB functions are due to these students. We are also
indebted to our reviewers, whose constructive criticism resulted in a better
presentation of the material: Abeer A. H. Alwan, University of California,
Los Angeles; Steven Chin, Catholic University; and Joel Trussel, North
Carolina State University.

‘We would like to thank Tom Robbins, former editor at PWS Pub-
lishing Company, for his initiative in creating the BookWare Companion
Series and for his enthusiastic support of MATLAB in classroom teaching,
especially in DSP. Thanks are also due to present editor Bill Barter for his
support throughout the project. Finally, we would like to thank the staff
at PWS Publishing Company for the final preparation of the manuscript.

Vinay K. Ingle
John G. Proakis
Boston, Massachusetts

i

PREFACE

INTRODUCTION

Over the past several decades the field of digital signal processing (DSP)
has grown to be important both theoretically and technologically. A major
reason for its success in industry is due to the development and use of low-
cost software and hardware. New technologies and applications in various
fields are now poised to take advantage of DSP algorithms. This will lead
to a greater demand for electrical engineers with background in DSP.
Therefore it is necessary to make DSP an integral part of any electrical
engineering curriculum.

Not long ago an introductory course on DSP was given mainly at
the graduate level. It was supplemented by computer exercises on filter
design, spectrum estimation, and related topics using mainframe (or mini)
computers. However, considerable advances in personal computers and
software over the past decade made it possible to introduce a DSP course
to undergraduates. Since DSP applications are primarily algorithms that
are implemented either on a DSP processor [11] or in software, a fair
amount of programming is required. Using interactive software, such as
MATLAB, it is now possible to place more emphasis on learning new and
difficult concepts than on programming algorithms. Interesting practical
examples can be discussed, and useful problems can be explored.

With this philosophy in mind, we have developed this book as a com-
panion book (to traditional textbooks like [16, 19]) in which MATLAB is
an integral part in the discussion of topics and concepts. We have chosen
MATLAB as the programming tool primarily because of its wide avail-
ability on computing platforms in many universities across the country.
Furthermore, a student edition of MATLAB has been available for several
years, placing it among the least expensive software for educational pur-
poses. We have treated MATLAB as a computational and programming
toolbox containing several tools (sort of a super calculator with several
keys) that can be used to explore and solve problems and, thereby, en-
hance the learning process.

This book is written at an introductory level in order to introduce
undergraduate students to an exciting and practical field of DSP. We
emphasize that this is not a textbook in the traditional sense but a

companion book in which more attention is given to problem solving and
hands-on experience with MATLAB. Similarly, it is not a tutorial book
in MATLAB. We assume that the student is familiar with MATLAB and is
currently taking a course in DSP. The book provides basic analytical tools
needed to process real-world signals (a.k.a. analog signals) using digital
techniques. We deal mostly with discrete-time signals and systems, which
are analyzed in both the time and the frequency domains. The analysis
and design of processing structures called filters and spectrum analyzers
is one of the most important aspects of DSP and is treated in great detail
in this book. Many advanced topics in DSP (which are generally covered
in a graduate course) are not treated in this book, but it is hoped that
the experience gained in this book will allow students to tackle advanced
topics with greater ease and understanding.

In this chapter we provide a brief overview of both DSP and MATLAB.

OVERVIEW OF DIGITAL SIGNAL PROCESSING
-

HOW ARE
SIGNALS
PROCESSED?

In this modern world we are surrounded by all kinds of signals in vari-
ous forms. Some of the signals are natural, but most of the signals are
manmade. Some signals are necessary (speech), some are pleasant (mu-
sic), while many are unwanted or unnecessary in a given situation. In an
engineering context, signals are carriers of information, both useful and
unwanted. Therefore extracting or enhancing the useful information from
a mix of conflicting information is a simplest form of signal processing.
More generally, signal processing is an operation designed for extracting,
enhancing, storing, and transmitting useful information. The distinction
between useful and unwanted information is often subjective as well as
objective. Hence signal processing tends to be application dependent.

The signals that we encounter in practice are mostly analog signals. These
signals, which vary continuously in time and amplitude, are processed
using electrical networks containing active and passive circuit elements.
This approach is known as analog signal processing (ASP)—for example,
radio and television receivers.

Analog signal: z,(t) ——>LAnalog signal processor |~ y,(t) :Analog signal

They can also be processed using digital hardware containing adders,
multipliers, and logic elements or using special-purpose microprocessors.
However, one needs to convert analog signals into a form suitable for
digital hardware. This form of the signal is called a digital signal. It takes

Chapter 1 ® INTRODUCTION

Analog —

ADVANTAGES
OF DSP OVER
ASP

one of the finite number of values at specific instances in time, and hence
it can be represented by binary numbers, or bits. The processing of digital
signals is called DSP; in block diagram form it is represented by

Equivalent Analog Signal Processor

~

. [FeF] — [(ADe) 8 [557) 5 [BAG) — [FoF] | Analog
e

Discrete System

where the various block elements are discussed below.

PrF: This is a prefilter or an antialiasing filter, which conditions the
analog signal to prevent aliasing.

ADC: This is called an analog-to-digital converter, which produces a
stream of binary numbers from analog signals.

Digital signal processor: This is the heart of DSP and can represent a
general-purpose computer or a special-purpose processor, or digital hard-
ware, and so on.

DAC: This is the inverse operation to the ADC, called a digital-to-analog
converter, which produces a staircase waveform from a sequence of binary
numbers, a first step towards producing an analog signal.

PoF: This is a postfilter to smooth out staircase waveform into the de-
sired analog signal.

" It appears from the above two approaches to signal processing, analog
and digital, that the DSP approach is the more complicated, containing
more components than the “simpler looking” ASP. Therefore one might
ask a question: Why process signals digitally? The answer lies in many
advantages offered by DSP.

A major drawback of ASP is its limited scope for performing complicated
signal processing applications. This translates into nonflexibility in pro-
cessing and complexity in system designs. All of these generally lead to
expensive products. On the other hand, using a DSP approach, it is pos-
sible to convert an inexpensive personal computer into a powerful signal
processor. Some important advantages of DSP are these:

1. Systems using the DSP approach can be developed using software
running on a general-purpose computer. Therefore DSP is relatively con-
venient to develop and test, and the software is portable.

2. DSP operations are based solely on additions and multiplications,
leading to extremely stable processing capability—for example, stability
independent of temperature.

Qverview of Digital Signal Processing 3

3. DSP operations can easily be modified in real time, often by simple
programming changes, or by reloading of registers.

4, DSP has lower cost due to VLSI technology, which reduces costs
of memories, gates, microprocessors, and so forth.

The principal disadvantage of DSP is the speed of operations, espe-
cially at very high frequencies. Primarily due to the above advantages,
DSP is now becoming a first choice in many technologies and applica-
tions, such as consumer electronics, communications, wireless telephones,
and medical imaging.

TWO Most DSP operations can be categorized as being either signal analysis
IMPORTANT tasks or signal filtering tasks as shown below.
CATEGORIES
OF DSP Digital signal
Analysis : Digital filter
Measurements Digital signal
Signal analysis This task deals with the measurement of signal prop-
erties. It is generally a frequency-domain operation. Some of its applica-
tions are
e spectrum (frequency and/or phase) analysis
o speech recognition
e speaker verification
e target detection
Signal filtering This task is characterized by the “signal in-signal out”
situation. The systems that perform this task are generally called filters.
It is usually (but not always) a time-domain operation. Some of the ap-
plications are
e removal of unwanted background noise
o removal of interference
& separation of frequency bands
o shaping of the signal spectrum
4 Chapter 1 ® INTRODUCTION

In some applications, such as voice synthesis, a signal is first analyzed
to study its characteristics, which are then used in digital filtering to
generate a synthetic voice.

In the first half of this book we will deal with the signal-analysis
aspect of DSP. In Chapter 2 we will begin with basic descriptions of
discrete-time signals and systems. These signals and systems are analyzed
in the frequency domain in Chapter 3. A generalization of the frequency-
domain description, called the z-transform, is introduced in Chapter 4.
The practical algorithms for computing the Fourier transform are dis-
cussed in Chapter 5 in the form of the discrete Fourier transform and the
fast Fourier transform.

The second half of this book is devoted to the signal-filtering aspect of
DSP. In Chapter 6 we describe various implementations and structures of
digital filters. In Chapter 7 we provide design techniques and algorithms
for designing one type of digital filter called finite-duration impulse re-
sponse (or FIR) filters, while in Chapter 8 we provide a similar treatment
for another type of filter called infinite-duration impulse response {or IIR)
filters. In both chapters we discuss only the simpler but practically use-
ful techniques of filter design. More advanced techniques are not covered.
Finally, the last two chapters provide some practical applications in the
form of projects that can be done using material learned in the first eight
chapters. In Chapter 9 concepts in adaptive filtering are introduced, and
simple projects in system identification, interference suppression, adap-
tive line enhancement, and so forth are discussed. In Chapter 10 a brief
introduction to digital communications is presented with projects in such
topics as PCM, DPCM, and LPC being outlined.

In all these chapters the central theme is the generous use and ad-
equate demonstration of MATLAB tools. Most of the existing MaTLAB
functions for DSP are described in detail, and their correct use is demon-
strated in many examples. Furthermore, many new MATLAB functions are
developed to provide insights into the working of many algorithms. We
believe that this “hand-holding” approach will enable students to dispel
fears about DSP and will provide an enriching learning experience.

A FEW WORDS ABOUT.MATLAB®

MATLAB is an interactive, matrix-based system for scientific and engi-
neering numeric computation and visualization. Its strength lies in the
fact that complex numerical problems can be solved easily and in a frac-
tion of the time required with a programming language such as Fortran
or C. It is also powerful in the sense that by using its relatively simple
programming capability, MATLAB can be easily extended to create new
commands and functions.

A Few Words about MATLAB 5

MATLAB is available on a number of computing environments:
Sun/HP/VAXstation workstations, 80x86 PCs, Apple Macintosh, VAX,
and several parallel machines. The basic MATLAB program is further
enhanced by the availability of numerous toolboxes (a collection of spe-
cialized functions in a specific topic) over the years. The information in
this book generally applies to all these environments. The development
of this book was begun under the professional version 3.5 running un-
der DOS. A relatively inexpensive Student Edition containing limited
toolboxes and functions was also available from Prentice Hall publishers.
Therefore we decided to make MATLAB routines and other material in
this book compatible with the Student Edition. However, at present the
current major version of MATLAB is version 4.2 under graphical user
interface (GUI). Also a new Student Edition in GUI is available since
February 1995, containing enhanced and new toolboxes. This book is
certainly compatible with this edition, and every attempt is made to
identify the new functions that are available and that can be used. A new
toolbox available in the Student Edition is the Symbolic toolbox, which is
based on Maple engine. Since digital signal processing primarily requires
numerical computations, the Symbolic toolbox is neither discussed nor
used in this book.

The scope and power of MATLAB go far beyond the few words given
in this section. It is senseless to provide a concise information or tuto-
rial on MATLAB when excellent books and guides are available on this
topic. Students should consult the MATLAB User’s Guide {2] and Refer-
ence Guide [1]. Similarly, students should attempt the tutorial given in
[3]. The information given in all these references, along with the online
facility, usually is sufficient for students to use this book.

Chapter 1 ® INTRODUCTION

DISCRETE-TIME
SIGNALS AND
SYSTEMS

We begin with the concepts of signals and systems in discrete time. A
number of important types of signals and their operations are introduced.
Linear and shift-invariant systems are discussed mostly because they are
easier to analyze and implement. The convolution and the difference equa-
tion representations are given special attention because of their impor-
tance in digital signal processing and in MATLAB. The emphasis in this
chapter is on the representations and implementation of signals and sys-
tems using MATLAB.

DISCRETE-TIME SIGNALS
-

Signals are broadly classified into analog and discrete signals. An analog
signal will be denoted by z.(t), in which the variable ¢ can represent any
physical quantity, but we will assume that it represents time in seconds. A
discrete signal will be denoted by z (n), in which the variable n is integer-
valued and represents discrete instances in time. Therefore it is also called
a discrete-time signal, which is a number sequence and will be denoted by
one of the following notations:

:z:(n) = {a:(n)} = { o ,x(—l),x(TO),l(l), o }

where the up-arrow indicates the sample at n = 0.

In MATLAB we can represent a finite-duration sequence by a row
vector of appropriate values. However, such a vector does not have any
information about sample position n. Therefore a correct representation

TYPES OF
SEQUENCES

of z(n) would require two vectors, one each for z and n. For example, a
sequence z(n) = {2,1,~1,0,1,4,3,7} can be represented in MATLAB by
T

>> p=[-3,-2,-1,0,1,2,3,4]; x=[2,1,~1,0,1,4,3,7];

Generally, we will use the x-vector representation alone when the sample
position information is not required or when such information is trivial
(e.g. when the sequence begins at n = 0). An arbitrary infinite-duration
sequence cannot be represented in MATLAB due to the finite memory
limitations.

We use several elementary sequences in digital signal processing for anal-
ysis purposes. Their definitions and MATLAB representations are given
below.

1. Unit sample sequence:

1, n=0_
6("‘): {0y n#o = {"'10101%»0707"'}

In MATLAB the function zeros(1,N) generates a row vector of N zeros,
which can be used to implement §(n) over a finite interval. However, the
logical relation n==0 is an elegant way of implementing §(n). For exatuple,
to implement

1, n=n
6(n—no)={0’ n¢nz

over the ny < ng < ny interval, we will use the following MATLAB func-
tion.

function [x,n] = impseq(n0,ni,n2)
% Generates x(n) = delta(n-n0); nl <= n <= n2

% [x,n] = impseq(n0,n1,n2)
n = [0n1:n2]; x = [(n-n0) == 0];

2. Unit step sequence:

1, n>0 _ .
u(n)_{oy n<0_{"'»0?07]T-11115 }

In MATLAB the function ones(1,N) generates a row vector of N ones. It
can be used to generate u{n) over a finite interval. Once again an elegant .

Chapter 2 @ DISCRETE-TIME SIGNALS AND SYSTEMS

approach is to use the logical relation n>=0. To implement

1, n>
“("“”")z{o n<:g

over the n; < ng < ny interval, we will use the following MATLAB func-
tion.

function [x,n] = stepseq(n0,n1,n2)
% Generates x(n) = u(n-n0); nl <= n <= n2

% [x,n] = stepseq(n0,ni,n2)
n = [n1:n2]; x = [(a-n0) >= 0];

3. Real-valued exponential sequence:

z(n) = a",V¥n; a € R

In MATLAB an array operator “.~” is required to implement a real ex-
ponential sequence. For example, to generate z(n) = (0.9)", 0 <n <10,
we will need the following MATLAB script:
>>n = [0:10); x = (0.9)."n;

4. Complez-valued exponential sequence:

z(n) = el7Hiwon vy

where o is called an attenuation and wy is the frequency in radians. A
MATLAB function exp is used to generate exponential sequences. For ex-
ample, to generate z(n) = exp[(2+j3)n], 0 < n < 10, we will need
the following MATLAB script:
> n = [0:10]; x = exp((2+3j)*n);

5. Sinusoidal sequence:

z(n) = cos(won +), Vn

where 0 is the phase in radians. A MATLAB function cos (or sin) is
used to generate sinusoidal sequences. For example, to generate z(n) =
3cos(0.1rn+7/3)+2sin(0.57n), 0 < n < 10, we will need the following

MATLAB script:

>> n = [0:10]; x = 3*cos(0.1*pi*n+pi/3) + 2#sin(0.5*%pi*n);

Discrete-time Signals

OPERATIONS
ON
SEQUENCES

6. Random sequences: Many practical sequences cannot be described
by mathematical expressions like those' above. These sequences are called
random (or stochastic) sequences and are characterized by parameters of
the associated probability density functions or their statistical moments.
In MATLAB two types of (pseudo-) random sequences are available. The
rand(1,N) generates a length N random sequence whose elements are
uniformly distributed between [0, 1]. The randn(1,N) generates a length
N Gaussian random sequence with mean 0 and variance 1. Other random
sequences can be generated using transformations of the above functions.

7. Periodic sequence: A sequence z(n) is periodic if z(n) = z(n+ N),
¥n. The smallest integer N that satisfies the above relation is called the
Jundamental period. We will use Z(n) to denote a periodic sequence. To
generate P periods of Z(n) from one period {z(n), 0<n <N —1}, we
can copy z (n) P times:

>> xtilde = [x,x,...,x];

But an elegant approach is to use MATLAB’s powerful indexing capabili-
ties. First we generate a matrix containing P rows of z (n) values. Then
we can concatenate P rows into a long row vector using the construct
(:). However, this construct works only on columns. Hence we will have
to use the matrix transposition operator * to provide the same effect on
FOWS.

>> xtilde = x’ * ones(1,P); % P columns of x; x is a row vector
>> xtilde = xtilde(:); % long column vector
>> xtilde = xtilde’; % long row vector

Note that the last two lines can be combined into one for compact coding.
This is shown in Example 2.1.

Here we briefly describe basic sequence operations and their MATLAB
equivalents.

1. Signal addition: This is a sample-by-sample addition given by
{z1(n)} + {z2(n)} = {z1(n) + z2(n)}

It is implemented in MATLAB by the arithmetic operator “+”. However,
the lengths of z; (n) and z2 (n) must be the same. If sequences are of
unequal lengths, or if the sample positions are different for equal-length
sequences, then we cannot directly use the operator +. We have to first
augment x; (n) and 3 (n) so that they have the same position vector n
(and hence the same length). This requires careful attention to MATLAB's
indexing operations. In particular, logical operation of intersection “&”,

10

Chapter 2 ® DISCRETE-TIME SIGNALS AND SYSTEMS

relational operations like “<=" and “==", and the find function are re-
quired to make z; (n) and z2 (n) of equal length. The following function,
called the sigadd function, demonstrates these operations.

function [y,n] = sigadd(x1,n1,x2,n2)
% implements y(n) = xi(n)+x2(n)

% [y,n) = sigadd(xl,n1,x2,n2)

% y = sum sequence over n, which includes nl and n2

% x1 = first sequence over nl

% x2 = second Sequence over n2 (n2 can be different from ni)

n = min(min(ni) ,min(n2)) :max(max(nl1),max(n2)); % duration of y(m)

yl = zeros(1,length(n)); y2 = yi; % initialization
y1(find((n>=min(ni1))&(n<=max(ni))==1})=x1; % x1 with duration of y
y2(£find ((n>=nin(n2))&(n<-max(n2))==1))=x2; % x2 wvith duration of y
y = yi+y2; % sequence addition

Its use is illustrated in Example 2.2.
2. Signal multiplication: This is a sample-by-sample multiplication
{or “dot” multiplication) given by

{z1(n)} - {z2(n)} = {z1(n)z2(n)}

It is implemented in MATLAB by the array operator “.*”. Once again
the similar restrictions apply for the .* operator as for the + operator.
Therefore we have developed the sigmult function, which is similar to
the sigadd function. '

function [y,n] = sigmult(xi,nt,x2,n2)
% implements y(n) = x1(n)*x2(n)

% {y,n] = sigmult(xi,ni,x2,n2)

%4 y = product sequence over m, which includes ni and n2

% x1 = first sequence over ni

% x2 = second sequence over n2 (n2 can be different from ni)

n = min(nin(nl) ,min(n2)) :max(max(nl),max(n2)); % duration of y(n)

y1 = zeros(1,length(n)); y2 = yi; %

y1(find((n>=min(n1))&(n<=max(n1))==1))=x1; % x1 with duration of y
y2(find((n>=min(n2))&(n<=max(n2))==1))=x2; % x2 with duration of y
y =yl .xy2; % sequence multiplication

Its use is also given in Example 2.2,
3. Scaling: In this operation each sample is multiplied by a scalar o.

a{z(n)} = {ox(n)}

Discrete-time Signals 1

An arithmetic operator “+”

MATLAB.
4. Shifting: In this operation each sample of z{n) is shifted by an
amount k to obtain a shifted sequence y(n).

y(n) = {z(n - k)}
If we let m = n — k, then n = m + k and the above operation is given by

y(m+k) = {z(m)}

is used to implement the scaling operation in

Hence this operation has no effect on the vector x, but the vector n
is changed by adding k to each element. This is shown in the function
sigshift.

function [y,n] = sigshift(x,m,n0)
% implements y(n) = x(n-n0)

%
% [y,n) = sigshift(x,m,n0)
%

n = mnl; y = x;

Its use is given in Example 2.2,
5. Folding: In this operation each sample of z(n) is flipped around
n = 0 to obtain a folded sequence y(n).

y(n) = {=(-n)}

In MATLAB this operation is implemented by £1iplr (x)function for sam-
ple values and by -£1iplr(n) function for sample positions as shown in
the sigfold function.

function (y,n] = sigfold(x,n)
% implements y(n) = x(-n)

% {y,n] = sigfold(x,n)
y = fliplr(x); n = ~fliplr(n);

6. Sample summation: This operation differs from signal addition op-
eration. It adds all sample values of z(n) between n; and n;.

nz

Z z(n) =x(n) + -+ z(ng)

n=n;

It is implemented by the sum(x{(n1:n2)) function.

12

Chapter 2 ® DISCRETE-TIME SIGNALS AND SYSTEMS

0 EXAMPLE 2.1

Solution

7. Sample products: This operation also differs from signal multipli-
cation operation. It multiplies all sample values of x(n) between n, and
Nn2.

ﬁz(n) =z(ny) X - -+ X z(ng)

It is implemented by the prod(x(n1:n2)) function.
8. Signal energy: The energy of a sequence z(n) is given by

& = Zx(n)z*(n) = Z lx(n)lz

where superscript ® denotes the operation of complex conjugation®. The
energy of a finite-duration sequence z(n) can be computed in MATLAB
using

>> Ex = sum(x .* conj(x)); % one approach
>> Ex = sum(abs(x) .~ 2); % another approach

9. Signal power: The average power of a periodic sequence with fun-
damental period N is given by

N

-1
> ()
0

Generate and plot each of the following sequences over the indicated interval.

a. z(n)=26(n+2)~-6(n—4), -5<n<85.
b. z(n) = n[u(n) — u(n — 10)] + 10e~23=19 [y(n ~ 10) ~ u(n — 20)],
0<n<20.
¢. z(n) = cos(0.04wn) + 0.2w(n), 0 < n < 50, where w(n) is a Gaussian
random sequence with zero mean and unit variance.
d. #(n) ={..5,4,3,2,1,5,4,3,2,1,54,3,2,1,..}; ~10<n<9.
T

1
Py =

=|

a z(n) =26(n+2)-8n—-4), -5<n<s.

> a = [-5:5];

>> x = 2*impseq(-2,-5,5) - impseq(4,-5,5);

>> gtem{n,x); title(’Sequence in Problem 2.1a’)
>> xlabel(’n’); ylabel(’x(n)’);

The plot of the sequence is shown in Figure 2.1a.

1The symbol * denotes many operations in digital signal processing. Its font (roman
or computer) and its position (normal or superscript) will distinguish each operation.

Discrete-time Signals

13

b. z(n) = nu(n) — u(n — 10)] + 10e~%3~19 [y(n _ 10) - u(n — 20)],
0<n<20.

>> n = [0:20];

>> x1 = n.*(stepseq(0,0,20)-stepseq(10,0,20));

>> x2 = 10%exp(-0.3+(n-10)).*(stepseq(10,0,20)~stepseq(20,0,20));
>> x = x14x2;

>> subplot(2,2,3); stem(n,x); title(’Sequence in Problem 2.1v’)
>> xlabel(’n’); ylabel(’x(n)’);

The plot of the sequence is shown in Figure 2.1b.
¢ z(n) = cos(0.04mn) +0.2w(n), 0<n <50,

>>n = [0:50];

>> x = cos(0.04*pi*n)+0.2+randn(size(n));

>> subplot(2,2,2); stem(n,x); title(’Sequence in Problem 2.1c’)
>> xlabel(’n’); ylabel(’x(n)?’);

The plot of the sequence is shown in Figure 2.1c.

Sequence in Example 2.1a Sequence in Example 2.1b
3 10
2 8
=1 - 6
(3 £
= PN x4
: T
o o] 1990
[5 10 15 20
n

Sequence in Example 2.1d

S

xtitde(n}

N

OTTTT

FIGURE 2.1 Sequences in Ezample 2.1

14

Chapter 2 @ DISCRETE-TIME SIGNALS AND SYSTEMS

5] EXAMPLE 2.2

Solution

d. #(n) ={...5,4,3,2,1,5,4,3,2,1,5,4,3,2,1,..}; —10<n < 9.

1
Note that over the given interval, the sequence Z (n) has four periods.

>>n = [-10:9]; x = [5,4,3,2,1];

>> xtilde = x’ * ones(1,4);

>> xtilde = (xtilde(:))’;

>> subplot(2,2,4); stem(n,xtilde); title(’Sequence in Problem 2.1d’)
>> xlabel(’n’); ylabel(’xtilde(n)’);

The plot of the sequence is shown in Figure 2.1d. a

Let z(n) = {1,2,3,4,5,6,7,6,5,4,3,2,1}. Determine and plot the following
T
sequences.

a. z; (n) = 2z(n - 5) — 3z (n+4)
b. z2(n)=zB~n)+z(n)z(n-2)

The sequence z (n} is nonzero over —2 < n < 10. Hence
> n = -2:10; x = [1:7,6:-1:1];

will generate z (n).

a. 11 (n) = 2z(n - 5) — 3z (n+ 4).
The first part is obtained by shifting = (n) by 5 and the second part by shift-
ing = (n) by —4. This shifting and the addition can be easily done using the
sigshift and the sigadd functions.

>> [x11,n11] = sigshift(x,n,5); [x12,n12] = sigshift(x,n,-4);

>> [x1,n1] = sigadd(2#x11,n11,-3#x12,n12);

>> subplot(2,1,1); stem(ni,x1); title(’Sequence in Example 2.2a’)
>> xlabel(’n’); ylabel(’x1(n)’);

The plot of 1 (n) is shown in Figure 2.2a.

b. z2(n)j=z(38-n)+z(n)z(n—-2).
The first term can be written as x (— (n — 3)). Hence it is obtained by first fold-
ing = (n) and then shifting the result by 3. The second part is a multiplication
of z (n) and z (n — 2), both of which have the same length but different support
(or sample positions). These operations can be easily done using the sigfold
and the sigmult functions.

>> [x21,n21) = sigfold(x,n); [x21,n21} = sigshift(x21,n21,3);

>> [x22,n22] = sigshift(x,n,2); [x22,n22] = sigmult(x,n,x22,n22);
>> [x2,n2] = sigadd(x21,n21,%22,n22);

>> subplot(2,1,2); stem(n2,x2); title(’Sequence in Example 2.2b’)
>> xdabel(’n’); ylabel ('x2(n)’);

The plot of z2 (n) is shown in Figure 2.2b.

Discrete-time Signals

15

a EXAMPLE 2.3

Solution

Sequsnce in Example 2.2a

Lo T

TH NTTMf

x1{n)

R |

n
Sequence in Example 2.2b

Qt?UTTT T? o

7 0 . 12

FIGURE 2.2 Sequences in Example 2.2

This example shows that the four sig* functions developed in this
section provide a convenient approach for sequence manipulations.

Generate the complex-valued signal

z(n) =00 _10<n<ip

and plot its magnitude, phase, the real part, and the imaginary part in four
separate subplots.

MATLAB Script

n = [-10:1:10];

alpha = -0.1+0.3j;

x = exp(alpha*n};

subplot(2,2,1);
subplot(2,2,2);
subplot(2,2,3);
subplot(2,2,4);

stem(n,real(x));title(’real part’);xlabel(’n’)
stem(n,imag(x));title(’imaginary part’);xlabel(’n’)
stem(n,abs(x)) ;title(’magnitude part’);xlabel(’n’)
stem(n, (180/pi)*angle(x));title(’phase part’);xlabel(’n’)

The plot of the sequence is shown in Figure 2.3. [m]

16

Chapter 2 B DISCRETE-TIME SIGNALS AND SYSTEMS

SOME USEFUL
RESULTS

real part

; lngTTTTTT?Q°°E3$ 0

imaginary part

?TTTTTT??

L

'
-

2
-3 -
-10 5 0 5 10 -%0 5 0 5 10
n n
magnitude part phase part
3 200,

N

-
o 8
lo
o
o
—,
N
| o
F———o

-

e

-10 -5 0 0o 20-010 -5
n

FIGURE 2.3 Complez-valued sequence plots in Ezample 2.3

There are several important results in discrete-time signal theory. We will
discuss some that are useful in digital signal processing.

Unit sample synthesis Any arbitrary sequence z(n) can be synthe-
sized as a weighted sum of delayed and scaled unit sample sequences, such
as

oo

> z(k)s(n— k)

=—00

(2.1)

z(n) =

‘We will use this result in the next section.

Even and odd synthesis A real-valued sequence z.(r) is called even
(symmetric) if

Ze(—n) = Te(n)
Similarly, a real-valued sequence z,(n) is called odd (antisymmetric) if

xo(_n) = —zo(n)

Discrete-time Signals

17

m] EXAMPLE 2.4

Sohstion

Then any arbitrary real-valued sequence x(n) can be decomposed into its
even and odd components

z(n) = ze(n) + zo(n) (22)

where the even and odd parts are given by
ze(n) = % [x(n) + z(-n)] and z,(n) = % [z(n) — z(—n)] (2.3)

respectively. We will use this decomposition in studying properties of the
Fourier transform. Therefore it is a good exercise to develop a simple
MATLAB function to decompose a given sequence into its even and odd
components. Using MATLAB operations discussed so far, we can obtain
the following evenodd function.

function [xe, xo0, m] = evenodd(x,n)
% Real signal decomposition into even and odd parts
y
%
% [xe, x0, m] = evenodd(x,n)
%
if any(imag(x) ~= 0)
error{’x is not a real sequence’)

end

m = -fliplr(n);

nl = min([m,n)); m2 = max({m,n]); m = mi:m2;
mm = n(1)-m(1); ni = 1:length(n);

x1 = zeros(1,length(m));

xi(ni+mm) = x; x = xi;

xe = 0.5+¢(x + fliplr(x));

x0 = 0.5%(x - fliplr(x));

The sequence and its support are supplied in x and n arrays, respectively.
It first checks if the given sequence is real and determines the support
of the even and odd components in m array. It then implements (2.3)
with special attention to the MATLAB indexing operation. The resulting
components are stored in xe and xo arrays.

Let z(n) = u(n) — u(n — 10). Decompose z(n) into even and odd components.

The sequence z(n), which is nonzero over 0 < n < 9, is called a rectangular
pulse. We will use MATLAR to determine and plot its even and odd parts.

>> n = [0:10}; x = stepseq(0,0,10)-stepseq(10,0,10);

>> [xe,xo0,m] = evenodd(x,n);

>> figure(1); cif

>> subplot(2,2,1); stem(n,x); title(’Rectangular pulse’)

18

Chapter 2 ® DISCRETE-TIME SIGNALS AND SYSTEMS

>> xlabel(’n’); ylabel(’x(n)’); axis([-10,10,0,1.2])

>> subplot(2,2,2); stem(m,xe); title(’Even Part’)

>> xlabel(’n’); ylabel(’xe(n)’); axis([-10,10,0,1.2])

>> subplot(2,2,4); stem(m,xo0); title(’0dd Part?’)

>> xlabel(’n’); ylabel(’xe(n)’); axis(([-10,10,-0.6,0.6])

v

The plots shown in Figure 2.4 clearly demonstrate the decomposition. [m]

A similar decomposition for complex-valued sequences is explored in
Problem 2.5.

The geometric series A one-sided exponential sequence of the form
{a™, n >0}, where o is an arbitrary constant, is called a geometric
series. In digital signal processing, the convergence and expression for the
sum of this series are used in many applications. The series converges for
|a} < 1, while the sum of its components converges to

= 1
Za" — ——, for Ja| <1 (2.4)
l-a
n=0
Rectangular pulse Even Part

]
1 1
0.8 0.8

£ I

Zos 06
0.4 0.4
0.2 0.2

%o 5 o s 4 . J% s 0o 5 10

n n
Odd Part

04
0.2
¥
-0.2
0.4

-10 5 0 5 10

n
FIGURE 2.4 Ewven-odd decomposition in Ezample 2.4
Discrete-time Signals 19

We will also need an expression for the sum of any finite number of terms
of the series given by

l-«
"= 2.
E a T Yo (2.5)
These two results will be used throughout this book.

Correlations of sequences Correlation is an operation used in many
applications in digital signal processing. It is a measure of the degree to
which two sequences are similar. Given two real-valued sequences z(n} and
y(n) of finite energy, the crosscorrelation of z(n) and y(n) is a sequence
rzy(£) defined as

oo

rzy{f) = Z z(n)y(n - £) (2.6)

n=-00

The index £ is called the shift or lag parameter. The special case of (2.6)
when y(n) = x(n) is called autocorrelation and is defined by

oo

rez@) = Y z(n)a(n—£) @7

n=--oo

It provides a measure of self-similarity between different alignments of the
sequence. MATLAB functions to compute auto- and crosscorrelations are
discussed later in the chapter.

DISCRETE SYSTEMS

LINEAR
SYSTEMS

Mathematically, a discrete-time system (or discrete system for short) is
described as an operator T{] that takes a sequence z(n) (called ezcitation)
and transforms it into another sequence y(n) (called response). That is,

y(n) = Tlz(n)]

In DSP we will say that the system processes an input signal into an output
signal. Discrete systems are broadly classified into linear and nonlinear
systems. We will deal mostly with linear systems.

A discrete system T[] is a linear operator L[] if and only if L[] satisfies
the principle of superposition, namely,

Chapter 2 B DISCRETE-TIME SIGNALS AND SYSTEMS

L[a1$1 (n) + (121‘2(71)] = alL[il'l (’n)] + azL[l‘z(n)], Vay,az,71(n), z:2("7')
(2.8)

Using (2.1) and (2.8), the output y (n) of a linear system to an arbitrary
input z (n) is given by '

y(n)=L[z(n)1=L[i x(k)a(n—k>]= Y s LK)

n=—co n=--00

The response L {6 (n — k)] can be interpreted as the response of a linear
system at time n due to a unit sample (a well-known sequence) at time k.
It is called an impulse response and is denoted by h(n,k). The output
then is given by the superposition summation

o0

y()= > c(k)h(nk) (29)

n=-—0C

The computation of (2.9) requires the time-varying impulse response
h (n, k), which in practice is not very convenient. Therefore time-invariant
systems are widely used in DSP.

Linear time-invariant (LTI) system A linear system in which an
input-output pair, z(n) and y(n), is invariant to a shift n in time is called
a linear time-invariant system. For an LTI system the L{-] and the shifting
operators are reversible as shown below.

=(n) — [L[]] — y(r) — Shift by k| — y(n — k)
() — [Shift by k] — a(n~ &) —[L 1] — vln = #)

We will denote an LTI system by the operator LTI [-]. Let z(n) and y(n)
be the input-output pair of an LTI system. Then the time-varying function
h (n, k) becomes a time-invariant function k (n — k), and the output from
(2.9) is given by

oo

y(n) = LTI [z(n)] = Y z(k)h(n—k) (2.10)

k=—oc0

The impulse response of an LTI system is given by h(n). The mathemat-
ical operation in (2.10) is called a linear convolution sum and is denoted
by

y(n) & z(n) * h(n) @11)

Discrete Systems

21

Hence an LTI system is completely characterized in the time domain by
the impulse response h(n) as shown below.

2(n) — [(n)] — y(n) = z(n) * h(n)

We will explore several properties of the convolution in Problem 2.12.

Stability This is a very important concept in linear system theory. The
primary reason for considering stability is to avoid building harmful sys-
tems or to avoid burnout or saturation in the system operation. A system
is said to be bounded-input bounded-output (BIBO) stable if every bounded
input produces a bounded output.

[z(n)] < 00 = ly(n)] < o0, Yz,y

An LTI system is BIBO stable if and only if its impulse response is abso-
lutely summable.

BIBO Stability <= Y _ |h(n)] < oo (2.12)

—00

Causality This important concept is necessary to make sure that sys-
tems can be built. A system is said to be causal if the output at index ng
depends only on the input up to and including the index no; that is, the
output does not depend on the future values of the input. An LTI system
is causal if and only if the impulse response

h(n)=0, n<0 (2.13)

Such a sequence is termed a causal sequence. In signal processing, unless
otherwise stated, we will always assume that the system is causal.

CONVOLUTION

‘We introduced the convolution operation (2.11) to describe the response
of an LTI system. In DSP it is an important operation and has many other
uses that we will see throughout this book. Convolution can be evaluated
in many different ways. If the sequences are mathematical functions (of
finite or infinite duration), then we can analytically evaluate (2.11) for all
7 to obtain a functional form of y(n).

2

Chapter 2 ® DISCRETE-TIME SIGNALS AND SYSTEMS

O EXAMPLE 25

Let the rectangular pulse z(n) = u(n) — u(n — 10) of Example 2.4 be an input
to an LTI system with impulse response

h(n) = (0.9)" u(n)

Determine the output y(n}.

Solution The input z(n) and the impulse response h{n) are shown in Figure 2.5. From
(2.11)
9 9
yn) =) (109" M un—k)=09)") 09 Fun-k (214)
k=0 k=0
The sum in 2.14 is almost a geometric series sum except that the term u(n — k)
takes different values depending on n and k. There are three different conditions
under which u(n — k) can be evaluated.
CASEi n <O0: Thenu(n—k)=0, 0<k<9. Hence from (2.14)
y(n) =0 (2.15)
In this case the nonzero values of x(n) and h(n) do not overlap.
Input Sequence
18} : 8
g :
0.5 b
S600000
- 0 5 10 15 20 25 30 35 40 45
n
Impulse Response
1.5r .
gt -
TTTTmTTT????Nwm
-5 0 5 10 15 20 25 30 35 40 45
n
FIGURE 2.5 The input sequence and the impulse response in Example 2.5
Convolution 23

CASE il

CASE i

] EXAMPLE 2.6

0<n<9 Thenu(n—k)=1, 0<k< n Hence from (2.14)

y(m)= (09" 3 (09)* = (0.9)" 3" [(09)]* (2.16)
k=0 k=0
n 1— (0'9)—(n+1)

= (0.9) =10[1-09""], 0<n<9

1-(0.9)7"

In this case the impulse response h(n) partially overlaps the input z(n).
n > 9: Then u(n — k) =1, 0 < k < 9 and from (2.14)

9
ym)= (09" (0.9)™* (@.17)
1_- 0.9)7%°
1-(0.9)!

In this last case h(n) completely overlaps x(n).

=(0.9)" =10(0.9™°[1- (09"}, nx9

The complete response is given by (2.15), (2.16), and (2.17). It is shown in
Figure 2.6 which depicts the distortion of the input pulse. [m]

The above example can also be done using a method called graphical
convolution, in which (2.11) is given a graphical interpretation. In this
method h(n — k) is interpreted as a folded-and-shifted version of h(k).
The output y(n) is obtained as a sample sum under the overlap of z(k)
and h(n— k). We use an example to illustrate this.

Given the following two sequences

I(n)=[3,11,7,0,—1,4,2], ~3<n<3; h(n)=[2,3,0,—5,2,1}, -1<n<4
T T

determine the convolution y(n) = z(n) * h(n).

Solution In Figure 2.7 we show four plots. The top-left plot shows z(k) and A(k), the
original sequences. The top-right plot shows z(k) and h(—k), the folded version
Output Sequence
sk
4t
1] I
0 i} H“”“””Illlln.n. s
-5 0 5 10 15 20 25 30 35 40 45
n
FIGURE 2.6 The output sequence in Ezample 2.5
24 Chapter 2 ® DISCRETE-TIME SIGNALS AND SYSTEMS

MATLAB
IMPLEMEN-
TATION

(k) and h{k) x{(K) and h(-k)
10 solid: x dashed: w[solid: x dashed:
5 5
° °
LT lse Lol oeTs
& T n=08
" ° 5 o
5 [} 5 5 0 5
Kk k
x(k) and h(-1k) x{(K) and h{2-k)
10 sofid: x dashed: 10 solid: x dashed:
5 ; 5
tibe ¢ P
P : s
o A==y 0 & n=
5 6 -5 o
5 0 5 5 0 5
k k

FIGURE 2.7 Graphical ¢ lution in E: le 2.6

/4

of h(k). The bottom-left plot shows z(k) and h(—1 — k), the folded-and-shifted-
by-—1 version of h(k). Then

> a(k)h(-1 k) =3 x (~5) + 11 x 0+ 7 x 3+0x 2 =6 = y(-1)
&
The bottom-right plot shows z(k) and h(2 — k), the folded-and-shifted-by-2
version of h(k), which gives

> z(k)a(2—k) = 11X 1+7x2+0X (=5)+(=1) X 0+4x3+2x 2 = 41 = y(2)
k

Thus we have obtained two values of y(n}. Similar graphical calculations can
be done for other remaining values of y(n). Note that the beginning point (first
nonzero sample) of y{(n) is given by n = —3 + (—1) = —4, while the end point
(the last nonzero sample) is given by n = 3 + 4 = 7. The complete output is
given by

y(n) = {6, 31,47,6,-51,-5,41, 18, -22, -3,8, 2}
1

Students are strongly encouraged to verify the above result. Note that the result-
ing sequence y (n) has a longer length than both the z (n} and h (n) sequences.
a

If arbitrary sequences are of infinite duration, then MATLAB cannot be
used directly to compute the convolution. MATLAB does provide a built-in
function called conv that computes the convolution between two finite-

Convolution

25

=] EXAMPLE 2.7

duration sequences. The conv function assumes that the two sequences
begin at n = 0 and is invoked by

>> y = conv(x,h);
For example, to do the convolution in Example 2.5, we could use

>>x = (3, 11, 7, 0, -1, 4, 2];
>>h = {2, 3, 0, -5, 2, 1);
>> y = conv(x,h)
y =
6 33T 47 6 -51 -5 41 18 -2 -3 8 2

to obtain the correct y(n) values. However, the conv function neither pro-
vides nor accepts any timing information if the sequences have arbitrary
support. What is needed is a beginning point and an end point of y(n).
Given finite duration z(n) and h(n), it is easy to determine these points.
Let

{z(n); nzp <n<nz} and {A(n); npp <n < npet

be two finite-duration sequences. Then referring to Example 2.6 we ob-
serve that the beginning and end points of y(n) are

Nyb = Ngp + Nrb and Nye = Nge + Nhe

respectively. A simple extension of the conv function, called conv_m, which
performs the convolution of arbitrary support sequences can now be de-
signed.

function [y,ny] = conv_m(x,nx,h,nh)
% Modified convolution routine for signal processing

% (y,ny] = conv_m(x,nx,h,nh)
% {y.,ny]l = convolution result
% [x,nx] = first signal

% [h,nh] = second signal

nyb = nx(1)+nh(1); nye = nx(length(x)) + nh(length(h));
ny = {nyb:nye];

y = conv(x,h);

Perform the convolution in Example 2.6 using the conv_m function.

Solution MaTLAB Script
>» x = (3, 11, 7, 0, -1, 4, 2]; nx = [-3:3];
>» h = (2, 3, 0, -5, 2, 1]; ny = [-1:4];
26 Chapter 2 @ DISCRETE-TIME SIGNALS AND SYSTEMS

SEQUENCE
CORRE-
LATIONS
REVISITED

O EXAMPLE 2.8

Solution

>> [y,nyl = conv_m(x,nx,h,nh)
y -

6 31 47 6 -51 -5 41 18 -22 -3 8 2
ny =

-4 -3 -2 -1 0 1 2 3 4 5 6 7

Hence
y(n) = {6, 31,47,6,—51,—5,41,18, -22, -3, 8, 2}
T
as in Example 2.6. [m]

An alternate method in MATLAB can be used to perform the convo-
lution. This method uses a matrix-vector multiplication approach, which
we will explore in Problem 2.13.

If we compare the convolution operation (2.11) with that of the crosscor-
relation of two sequences defined in (2.6), we observe a close resemblance.
The crosscorrelation ryz{¢) can be put in the form

12 (€) = y(€) * z(—£)
with the autocorrelation r..(¢) in the form
Tzz(8) = 2(8) x (1)

Therefore these correlations can be computed using the conv function if
sequences are of finite duration.

In this example we will demonstrate one application of the crosscorrelation
sequence. Let

z(n) = [3, 11,7,0,-1,4, 2]
T

be a prototype sequence, and let y(r) be its noise-corrupied-and-shifted version
y(n) = z{n — 2) + w(n)

where w(n) is Gaussian sequence with mean 0 and variance 1. Compute the
crosscorrelation between y(n) and z(n).

From the construction of y(n) it follows that y(n) is “similar” to z(n — 2) and
hence their crosscorrelation would show the strongest similarity at £ = 2. To test
this out using MATLAB, let us compute the crosscorrelation using two different
noise sequences.

Convolution

27

% noise sequence 1
>>x = {3, 11, 7, 0, -1, 4, 2}; nx={-3:3]1; /% given signal x(n)

>> [y,ny} = sigshift(x,nx,2); % obtain x(n-2)

>> w = randn(1,length(y)); nvw = ny; % generate w(n)

>> [y,nyl = sigadd(y,ny,w,nw); % obtain y(n) = x(n-2) + w(n)
>» [x,nx] = sigfold(x,nx); % obtain x(-n)

>> [rxy,nrxy] = conv_m(y,ny,x,nx); % crosscorrelation

>> subplot(1,1,1), subplot(2,1,1);stem(nrxy,rxy)

>> axis([-5,10,-60,250]1) ;x1abel(’lag variable 1°)

>> ylabel(’rxy’);title(’Crosscorrelation: noise sequence 1°)
4

% noise sequence 2

>> x = [3, 11, 7, 0, -1, 4, 2]; nx=[-3:3]; % given signal x(n)

>> [y,ny] = sigshift(x,nx,2); % obtain x(n-2)

> w = randn(1,length(y)); nv = ny; % generate w(m)

>> [y,ny] = sigadd(y,ny,v,nw); % obtain y(n) = x(n-2) + w(n)
> [x,nx] = sigfold(x,nx); % obtain x(-n)

>> [rxy,nrxy] = conv_m(y,ny,x,nx}; % crosscorrelation

>> subplot(2,1,2);stem(nrxy,rxy)
>> axis([-5,10,-50,250]);xlabel(’lag variable 1’)
>> ylabel(’rxy’);title(’Crosscorrelation: noise sequence 2’)

From Figure 2.8 we observe that the crosscorrelation indeed peaks at £ = 2,
which implies that y (n) is similar to z (n) shifted by 2. This approach can be

Crosscorrelation: noise sequence 1
250 T T T T T

200 Maximum p

150 1
100 b

T 1. R

5

50 s L L ' L

-4 -2 0 2 4 6 8
\ag variable |

Crosscorrelation: noise sequence 2

T T T T T

200 Maximum 1
150} E
‘1001 R
T T [1]
? ? e ? ? T
50 ; A \ " s
-4 2 0 2 4 6 8
lag variable |

FIGURE 2.8 Crosscorrelation sequence with two different noise realizations

Chapter 2 ® DISCRETE-TIME SIGNALS AND SYSTEMS

used in applications like radar signal processing in identifying and localizing
targets. O

It should be noted that the signal-processing toolbox in MATLAB also
provides a function called xcorr for sequence correlation computations.
In its simplest form

>> xcorr(x,y)
computes the crosscorrelation between vectors x and y, while
>> xcorr(x)

computes the autocorrelation of vector x. This function is not available in
the Student Edition of MATLAB. It generates results that are identical to
the one obtained from the proper use of the conv_m function. However, the
xcorr function cannot provide the timing (or lag) information (as done by
the conv_m function), which then must be obtained by some other means.
Therefore we will emphasize the use of the conv.m function.

DIFFERENCE EQUATIONS
: =

An LTI discrete system can also be described by a linear constant coeffi-
cient difference equation of the form

N M
Zaky(n —-k) = Z bpz(n—m), Vn (2.18)
k=0

m=0

If ay # 0, then the difference equation is of order N. This equation
describes a recursive approach for computing the current output, given
the input values and previously computed output values. In practice this
equation is computed forward in time, from n = —00 to n = 0. Therefore
another form of this equation is

M N
y(m) = 3 buz(n—m) — 3 axy(n— k) 219)
m=0 k=1
A solution to this equation can be obtained in the form
y(n) = yu(n) +yp(n)
The homogeneous part of the solution, yg(n), is given by

N
yu(n) =) azp

k=1

Difference Equations 29

MaATLAB
IMPLEMEN-
TATION

a EXAMPLE 2.9

Solution

where 2,k = 1,..., N are N roots (also called natural frequencies) of the
characteristic equation

This characteristic equation is important in determining the stability of
systems. If the roots zj satisfy the condition

|kl < 1, k=1,...,N (2.20)
then a causal system described by (2.19) is stable. The particular part
of the solution, yp(n), is determined from the right-hand side of (2.18).

In Chapter 4 we will discuss the analytical approach of solving difference
equations using the z-transform.

A routine called filter is available to solve difference equations numeri-
cally, given the input and the difference equation coefficients. In its sim-
plest form this routine is invoked by

y = filter(b,a,x)

where

b= [b0, b1, ..., bM]; a = [a0, a1, ..., aN];

are the coefficient arrays from the equation given in (2.18), and x is the
input sequence array. The output y has the same length as input x. One

must ensure that the coefficient a0 not be zero. We illustrate the use of
this routine in the following example.

Given the following difference equation
y(n) —y(n —1) +0.9y(n - 2) = z(n); Vn
a. Calculate and plot the impulse response h(n) at n = —20,...,100.

b. Calculate and plot the unit step response s(n) at n = —20,...,100.
c. Is the system specified by h(n) stable?

From the given difference equation the coefficient arrays are

b= [1]; a=[1, -1, 0.9];

Chapter 2 ® DISCRETE-TIME SIGNALS AND SYSTEMS

a. MATLAB Script
> b ={1); a = [1, -1, 0.9);
>> x = impseq(0,-20,120); n = [-20:120];
>> h = filter(b,a,x);
>> subplot(2,1,1); stem(n,h);
>> title(’Impulse Response’); xlabel(’n’); ylabel(’h(n)’)

The plot of the impulse response is shown in Figure 2.9.
b. MATLAB Script

>> x = stepseq(0,-20,120);

>> s = filter(b,a,x);

>> subplot(2,1,2); stem(n,s)

>> title(’Step Response’); xlabel(’n’); ylabel(’s(n)’)

The plot of the unit step response is shown in Figure 2.9.

¢. To determine the stability of the system, we have to determine h(n) for
all n. Although we have not described a method to solve the difference equation,
we can use the plot of the impulse response to observe that h(n) is practically
zero for n > 120. Hence the sum Y |h(n)) can be determined from MATLAB
using

h(r)

s(n)

FIGURE 2.9 Impulse response and step response plots in Ezample 2.9

Difference Equations 31

O EXAMPLE 210

>> sum(abs(h))
ans = 14.8785

which implies that the system is stable. An alternate approach is to use the
stability condition (2.20) using MATLAB’s roots function.

>>z = roots{a);
>>magz = abs(z)
magz = 0.9487

0.9487

Since the magnitudes of both roots are less than one, the system is stable. O

In the previous section we noted that if one or both sequences in
the convolution are of infinite length, then the conv function cannot be
used. If one of the sequences is of infinite length, then it is possible to use
MATLAB for numerical evaluation of the convolution. This is done using
the filter function as we will see in the following example.

Let us consider the convolution given in Example 2.5. The input sequence is of
finite duration

z(n) = u{n) — u{n — 10)
while the impulse response is of infinite duration
h(n) = (0.9)" u(n)

Determine y(n) = z(n) * h(n).

Solution If the LTI system, given by the impulse response h(n), can be described by a
difference equation, then y(n) can be obtained from the filter function. From
the h(n) expression

(0.9) h(n— 1) = (0.9)(0.9)" " u(n — 1) = (0.9)" u(n — 1)
or
h(n) — (0.9} A(n — 1) = (0.9)" u(n) ~ (0.9)" u(n — 1)

= (0.9)" [u(n) — u(n - 1)] = (0.9)" 6(n)

=6(n)
The last step follows from the fact that §(n) is nonzero only at n = 0. By
definition h(n) is the output of an LTI system when the input is §(n). Hence
substituting z(n) for 6(n) and y(n) for h(n), the difference equation is

y(n) - 09y(n — 1) = z(n)

Now MATLAB’s filter function can be used to compute the convolution indi-
rectly.

32 Chapter 2 m DISCRETE-TIME SIGNALS AND SYSTEMS

ZERO-INPUT
AND
ZERQ-STATE
RESPONSES

i
-5 0 s 10 15 20 25 30 35 40 45

FIGURE 2.10 Oulput sequence in Ezample 2.10

>> b= [1]; a = [1,-0.9];

>> n = -5:50; x = stepseq(0,-5,50) - stepseq(10,-5,50);
>> y = filter(b,a,x);

>> subplot(1,1,1);

>> subplot(2,1,2); stem(n,y); title(’Output sequence’)
>> xlabel(’n’); ylabel(’y(n)’); axis({-5,50,-0.5,8])

The plot of the output is shown in Figure 2.10, which is exactly the same as
that in Figure 2.6. u}

In Example 2.10 the impulse response was a one-sided exponential se-
quence for which we could determine a difference equation representation.
This means that not all infinite-length impulse responses can be converted
into difference equations. The above analysis, however, can be extended to
a linear combination of one-sided exponential sequences, which results in
higher-order difference equations. We will discuss this topic of conversion
from one representation to another one in Chapter 4.

In digital signal processing the difference equation is generally solved for-
ward in time from n = 0. Therefore initial conditions on z(n) and y(n)
are necessary to determine the output for n > 0. The difference equation
is then given by

M N
y(n) = Z bmz(n —m) — Zaky(n -kxn>0 (2.21)
k=1

m=0
subject to the initial conditions:
{y(n); -N<n<-1} and {z(n); ~-M <n< -1}
A solution to (2.21) can be obtained in the form

y(n) = yz1(n) + yzs(n)

Difference Equations

33

DIGITAL
FILTERS

where yz;(n) is called the zero-input solution, which is a solution due
to the initial conditions alone (assuming they exist), while the zero-state
solution, yzs(n), is a solution due to input z(n) alone (or assuming that
the initial conditions are zero). In MATLAB another form of the function
filter can be used to solve for the difference equation, given its initial
conditions. We will illustrate the use of this form in Chapter 4.

Filter is a generic name that means a linear time-invariant system de-
signed for a specific job of frequency selection or frequency discrimination.
Hence discrete-time LTI systems are also called digital filters. There are
two types of digital filters.

FIR filter If the unit impulse response of an LTI system is of finite
duration, then the system is called a finite-duration impulse response (or
FIR) filter. Hence for an FIR filter h(n) = 0 for n < n; and for n > ny.
The following part of the difference equation (2.18) describes a causal FIR
filter:

M
y(n)= Y bnz(n~m) (222)

m=0

Furthermore, A(0) = bg, k(1) = by, ..., h{(M) = by, while all other h(n)’s
are 0. FIR filters are also called nonrecursive or moving average (MA)
filters. In MATLAB FIR filters are represented either as impulse response
values {h(n)} or as difference equation coefficients {bn,} and {ao = 1}.
Therefore to implement FIR filters, we can use either the conv(x,h)
function (and its modifications that we discussed) or the filter(b,1,x)
function. There is a difference in the outputs of these two implementations
that should be noted. The output sequence from the conv(x,h) function
has a longer length than both the z(n) and h(n) sequences. On the other
hand, the output sequence from the filter(b,1,x) function has exactly
the same length as the input z(n) sequence. In practice (and especially
for processing signals) the use of the filter function is encouraged.

IIR filter 1If the impulse response of an LTI system is of infinite dura-
tion, then the system is called an infinite-duration impulse response (or
IIR) filter. The following part of the difference equation (2.18):

N

z agy(n — k) = z(n) (2.23)

k=0

describes a recursive filter in which the output y(n) is recursively com-
puted from its previously computed values and is called an autoregressive
(AR) filter. The impulse response of such filter is of infinite duration and

Chapter 2 ® DISCRETE-TIME SIGNALS AND SYSTEMS

hence it represents an IIR filter. The general equation (2.18) also describes
an IIR filter. It has two parts: an AR part and an MA part. Such an ITR
filter is called an autoregressive moving average, or an ARMA, filter. In
MaTLAB IIR filters are described by the difference equation coefficients
{b,} and {a;} and are implemented by the filter(b,a,x) function.

PROBLEMS

P2.2

P24

P25

Generate and plot the samples (use the stem function) of the following sequences using
MATLAB.

a2 ()= (m+1)f(n~2m)-6(n-2m—-1)], 0<n<285

b. z2(n) = n? [u(n +5) — u(n — 6)] + 106(n) + 20(0.5)" [u(n — 4) — u(n — 10)}.

¢. z3(n) =(0.9)" cos (0.27n+7/3), 0<n<20.

d. z4(n) = 10c0s(0.00087n?) + w(n), 0 < n < 100, where w(n) is a random sequence
uniformly distributed between {~1,1]. How do you characterize this sequence?

e Zs(n)=1{...,1,2,3,2,1,2,3,2,1,...}pErionic. Plot 5 periods.
T

Let z(n) = {1,-2,4,6,—5,8,10}. Generate and plot the samples (use the stem function) of
the following sequences. !

a. z1 (n) = 3z(n + 2) + z(n — 4) — 2z(n)

b. x2 (n) = 5z(5 + n) + 4z(n + 4) + 3z(n)

c. z3 (n) = z(n + 4)z(n — 1) + 2(2 — n)xz(n)

d. z4(n) = 2%z (n) + cos (0.1mn) x (n +2), —10<n < 10

e z5(n) =Y o_ nz(n—k)

The complex exponential sequence e’*°™ or the sinusoidal sequence cos (won) are periodic if
the normalized frequency fo = % is a rational number; that is, fo = N where K and N
are integers.

a. Prove the above result.

b. Generate and plot cos(0.37n), —20 < n < 20. Is this sequence periodic? If it is, what is
its fundamental period? From the examination of the plot what interpretation can you give
to the integers K and N above?

c. Generate and plot cos(0.3n), —20 < n < 20. Is this sequence periodic? What do you
conclude from the plot? If necessary examine the values of the sequence in MATLAB to
arrive at your answer.

Decompose the sequences given in Problem 2.2 into their even and odd components. Plot
these components using the stem function.

A complex-valued sequence z.(n) is called conjugate-symmetric if

ze(n) = z2(-n)

Probiems 35

P2.7

Similarly, a complex-valued sequence x,(n) is called conjugate-antisymmetric if
Zo(n) = —a3(-n)
Then any arbitrary complex-valued sequence x(n) can be decomposed into
z(n) = ze(n) + zo(n)
where z.{n) and z.(n)} are given by
ze(n) =L[z(n) +2"(-n)] and zo(n) = }[z(n) - 2" (-n)] (2.24)

respectively.

a. Modify the evenodd function discussed in the text so that it accepts an arbitrary
sequence and decomposes it into its symmetric and antisymmetric components by
implementing (2.24).

b. Decompose the following sequence:
z(n) = 10e~O-4") 0<n<10

into its conjugate-symmetric and conjugate-antisymmetric components. Plot their real and
imaginary parts to verify the decomposition. (Use the subplot function.)

The operation of signal dilation (or decimation or down-sampling) is defined by
y(n) = z(nM)
in which the sequence z(n) is down-sampled by an integer factor M. For example, if

z(n)={...,-2,4,3,-6,5,-1,8,...}
T

then the down-sampled sequences by a factor 2 are given by

y(n) = {...,—2,?,5,8,...}
a. Develop 2 MATLAB function dnsample that has the form
function y = dnsmpie(x,l()

to implement the above operation. Use the indexing mechanism of MATLAB with careful
attention to the origin of the time axis n = 0.

b. Generate z{n) =sin(0.12567n), —50 < n < 50. Decimate x(n) by a factor of 4 to
generate y(n). Plot both z(n) and y(n) using subplot and comment on the results.

c. Repeat the above using z(n) = sin(0.57n), —50 < n < 50. Qualitatively discuss the
effect of down-sampling on signals.

Determine the autocorrelation sequence ry:(£) and the crosscorrelation sequence r,(f) for
the following sequences.

z(n) =(09)", 0<n<20 y(n)=(08)"", -20<n<0

What is your observation?

Chapter 2 ® DISCRETE-TIME SIGNALS AND SYSTEMS

P2.8

P29

P2.19

P2.11

P2.12

In a certain concert hall, echoes of the original audio signal z(n) are generated due to the
reflections at the walls and ceiling. The audio signal experienced by the listener y(n) is a
combination of z(n) and its echoes. Let
y(n) = z(n) + oz(n — k)

where k is the amount of delay in samples and a is its relative strength. We want to
estimate the delay using the correlation analysis.
a. Determine analytically the autocorrelation ry;(€) in terms of the autocorrelation 7.z (£).
b. Let z(n) = cos(0.2mn) + 0.5c08(0.6mn), @ = 0.1, and k = 50. Generate 200 samples of
y(n) and determine its autocorrelation. Can you obtain o and k by observing ry,(£)?
Three systems are given below.

Ty [z(n)} = 22, T; [z(n)] = 3z(n) + 4; Ty {z(n)] = z(n) +22(n — 1) — z(n — 2)
a. Use (2.8) to determine analytically whether the above systems are linear.
b. Let z1(n) be a uniformly distributed random sequence between [0, 1} over 0 < n < 100,
and let x2(n) be a Gaussian random sequence with mean @ and variance 10 over
0 < n < 100. Using these sequences, test the linearity of the above systems. Choose any

values for constants a; and a» in (2.8). You should use several realizations of the above
sequences to arrive at your answers.

Three systems are given below.
n n+10
Tife(m)] =) sk} Tl =) ak); Tsfan)]=a(-n)
0 n—10

a. Use (2.9) to determine analytically whether the above systems are time-invariant.

b. Let z(n) be a Gaussian random sequence with mean 0 and variance 10 over 0 < n < 100.
Using this sequence, test the time invariance of the above systems. Choose any values for
sample shift k in (2.9). You should use several realizations of the above sequence to arrive
at your answers.

For the systems given in Problems 2.9 and 2.10 determine analytically their stability and
causality.

The linear convolution defined in (2.11) has several properties:
z1{n) * 22(n) = 21(n) * z2(n) : Commutation
[z1(n) * z2(n)] * T3(n) = z1(n) * [z2(n) * z3(n)] : Association

(2.25)

z1(n) * [z2(n) + z3(n)] = z1(n) x z2(n) + z1(n) xz3(n) : Distribution
z(n) *6(n — no) = z{n ~ng) - : Identity
a. Analytically prove these properties.
b. Using the following three sequences, verify the above properties.

21(n) = 1 [u(n + 10) - u(n ~ 20)]
z2(n) = cos (0.17wn) [u{n) — u(n — 30)}
z3(n) = (1.2)" [u(n+5) — u(n — 10))

Use the conv_m function.

Problems 37

P2.13

When the sequences z (n) and h (n) are of finite duration N, and Nj, respectively, then
their linear convolution (2.18) can also be implemented using matriz-vector multiplication.
If elements of y(n) and z(n) are arranged in column vectors x and y respectively, then from
(2.10) we obtain

y=Hx

where linear shifts in h(n — k) for n =0,. ..,Ni—1are arranged as rows in the matrix H.
This matrix has an interesting structure and is called a Toeplitz matrix. To investigate this
matrix, consider the sequences

z(n)={1,2,3,4} and h(n)={3,2’1}
T 1

a. Determine the linear convolution y (n) = h (n) * z (n).

b. Express x(n) as a 4 x 1 column vector x and y (n) as a 6 X 1 column vector y. Now
determine the 6 x 4 matrix H so that y = Hx.

c. Characterize the matrix H. From this characterization can you give a definition of a
Toeplitz matrix? How does this definition compare with that of time invariance?

d. What can you say about the first column and the first row of H?

P2.14 MATLAB provides a function called toeplitz to generate a Toeplitz matrix, given the first
row and the first column.
a. Using this function and your answer to Problem 2.13 part d, develop an aliernate
MATLAB function to implement linear convolution. The format of the function should be
function [y,H)=conv_tp(h,x)
% Linear Convolution using Toeplitz Matrix
%
% [y,H] = conv_tp(h,x)
% y = output sequence in column vector form
% H = Toeplitz matrix corresponding to sequence h so that y = Hx
% h = Impulse response sequence in column vector form
% x = input sequence in column vector form
b. Verify your function on the sequences given in Problem 2.13.
P2.15 Let z(n) = (0.8)" u(n).
a. Determine z(n) * z(n) analytically.
b. Using the filter function, determine the first 50 samples of z(n) * z(n). Compare your
results with those of part a.
P2.16 A particular linear and time-invariant system is described by the difference equation
y(n) — 0.5y(n — 1) + 0.25y(n — 2) = z(n) + 2z(n - 1) + z(n — 3)
a. Determine the stability of the system.
b. Determine and plot the impulse response of the system over 0 < n < 100. Determine the
stability from this impulse response.
38 Chapter 2 B DISCRETE-TIME SIGNALS AND SYSTEMS

c. If the input to this system is z(n) = [5 + 3 cos(0.27n) + 4sin(0.67n)] u(n), determine the
response y(n) over 0 < n < 200.

P2.17 A “simple” digital differentiator is given by
y(n) =z(n) —z(n-1)

which computes a backward first-order difference of the input sequence. Implement this
differentiator on the following sequences and plot the results. Comment on the
appropriateness of this simple differentiator.

a. z(n) = 5[u(n) — u(n — 20)}: a rectangular pulse
b. z(n) = nu(n) — u(n — 10)] + (20 — n) fu(n — 10) — u{n — 20)]: a triangular pulse
c. z(n) =sin (%) [u(n) - u(n — 100)): a sinusoidal pulse

Problems 39

THE DISCRETE-TIME
FOURIER ANALYSIS

We have seen how a linear and time-invariant system can be represented
using its response to the unit sample sequence. This response, called the
unit impulse response k(n), allows us to compute the system response to
any arbitrary input z(n) using the linear convolution as shown below.

a(n) — [B(n)] — y(n) = h(n) *2(n)

This convolution representation is based on the fact that any signal can
be represented by a linear combination of scaled and delayed unit sam-
ples. Similarly, we can also represent any arbitrary discrete signal as a
linear combination of basis signals introduced in Chapter 2. Each ba-
sis signal set provides a new signal representation. Each representation
has some advantages and some disadvantages depending upon the type
of system under consideration. However, when the system is linear and
time-invariant, only one representation stands out as the most useful. It
is based on the complex exponential signal set {e/“"} and is called the
Discrete-time Fourier Transform.

THE DISCRETE-TIME F]OURIER TRANSFORM (DTFT)

If z(n) is absolutely summable, that is, 3> |z(n})| < oo, then its
discrete-time Fourier transform is given by

o0

X)L Flem) = Y zln)e" (3.1)

n=—0og

[m] EXAMPLE 3.1

Solution

a EXAMPLE 3.2

TWO
IMPORTANT
PROPERTIES

The inverse discrete-time Fourier transform (IDTFT) of X (e/*) is given
by

2(n) & 71 [x(e)) =§1; / X(e)erdy (3.2)

The operator F [] transforms a discrete signal z(n) into a complex-valued
continuous function X(e’*) of real variable w, called a digital frequency,
which is measured in radians.

Determine the discrete-time Fourier transform of z(n) = (0.5)" u(n).

The sequence z{n) is absolutely summable; therefore its discrete-time Fourier
transform exists.

X(e™) = Zz(n)e_j"’" =

{0.5)" g~

—juym 1 _ e
(08e™) = e~ o5 U

i

o[Ms <[V]s

Determine the discrete-time Fourier transform of the following finite-duration
sequence:

z(n) = {1,2,3,4,5}
1

Using definition (3.1),

(- -3
X&) = Zz(n)e"""" =Y 4+ 24+ 37 4 4o 4 5

—00

Since X(e) is a complex-valued function, we will have to plot its mag-
nitude and its angle {or the real and the imaginary part) with respect to w
separately to visually describe X (e/*). Now w is a real variable between —oo
and oo, which would mean that we can plot only a part of the X (e) func-
tion using MATLAB. Using two important properties of the discrete-time Fourier
transform, we can reduce this domain to the [0, #] interval for real-valued se-
quences. We will discuss other useful properties of X(e’) in the next section.

[w]

We will state the following two properties without proof.

1. Periodicity: The discrete-time Fourier transform X (e} is periodic
in w with period 27.

X(e.w) - X(ej[u+21r])

The Discrete-time Fourier Transform (DTFT) .4

MaTLAB
IMP LEMEN-
TATION

8]

EXAMPLE 3.3

Implication: We need only one period of X (/) (i..,w €[0, 2n}, or [-m,],
etc.) for analysis and not the whole domain —oo < w < o0.
2. Symmetry: For real-valued z(n), X(e’*) is conjugate symmetric.

X(e7) = X* ()
or
Re[X ()] = Re[X(e?)] (even symmetry)
Im[X(e~%*)] = —Im[X(e?*)] (odd symmetry)
|X(e7)] =]X(e™)] (even symmetry)
(X(e7TW) = —LX(eM¥) (odd symmetry)

Implication: To plot X (e’), we now need to consider only a half period
of X (ef“). Generally, in practice this period is chosen to be w € [0, 7].

If z(n) is of infinite duration, then MATLAB cannot be used directly to
compute X (/) from z(n). However, we can use it to evaluate the ex-
pression X (e/“) over [0, 7] frequencies and then plot its magnitude and
angle (or real and imaginary parts).

Evaluate X(e’) in Example 3.1 at 501 equispaced points between {0, 7] and
plot its magnitude, angle, real, and imaginary parts.

MATLAB Script

w = [0:1:5001%pi/500; Y% [0, pil axis divided into 501 points.

X = exp(j*w) ./ (exp(j*w) - 0.5%ones(1,501));

magX = abs(X); angX = angle(X);

realX = real(X); imagX = imag(X);

subplot(2,2,1); plot(w/pi,magX); grid

xlabel(’frequency in pi units’); title(’Magnitude Part’); ylabel(’Magnitude’)
subplot(2,2,3); plot(w/pi,angX); grid

xlabel(’frequency in pi units’); title(’Angle Part’); ylabel(’Radians’)
subplot(2,2,2); plot(w/pi,realX); grid

xlabel(’frequency in pi units’); title(’Real Part’); ylabel(’Real’)
subplot(2,2,4); plot(w/pi,imagX); grid

xlabel(’frequency in pi units’); title(’Imaginary Part’); ylabel(’Imaginary’)

The resulting plots are shown in Figure 3.1. Note that we divided the w array by
pi before plotting so that the frequency axes are in the units of 7 and therefore
easier to read. This practice is strongly recommended. [m]

2

Chapter 3 ® THE DISCRETE-TIME FOURIER ANALYSIS

Magnitude Part Real Part

2 2
T
& F2
8
b NG ;
05 :
0.5
0 05 1 o o8 f
frequency in pi units frequency in pi units
Angle Part Imaginary Part
[} ~— 0
-0.2
0.2}
§ g
3 £-04
T 04 E
0.6
06 - 08]
o 05 1 o 05 f
frequency in pi units frequency in pi units

FIGURE 3.1 Plots in Ezample 8.3

If z(n}) is of finite duration, then MATLAB can be used to compute
X(e’*) numerically at any frequency w. The approach is to implement
(3.1) directly. If, in addition, we evaluate X (e/“) at equispaced frequen-
cies between [0, 7], then (3.1) can be implemented as a matriz-vector mul-
tiplication operation. To understand this, let us assume that the sequence
z(n) has N samples between ny < n < ny (i.e., not necessarily between
[0, N —1}) and that we want to evaluate X(e*) at

m

7k F=0L..M

AN
W =

which are (M + 1) equispaced frequencies between [0, 7]. Then (3.1) can
be written as

N .
X(ejwk) =Ze—j("’/M)k"tx(n[), k:o,l,...,M
=1

When {z (n;)} and {X(e’“*)} are arranged as column vectors x and X,
respectively, we have

X =Wx (3.3)

The Discrete-time Fourier Transform (DTFT) 43

O EXAMPLE 3.4

Solution

where W is an (M + 1) x N matrix given by
Wé {e‘j("/M)k"‘; n <n<ny, k=0,1,...,M}

In addition, if we arrange {k} and {n,} as row vectors k and n respectively,
then

W= o (557

In MATLAB we represent sequences and indices as row vectors; therefore
taking the transpose of (3.3), we obtain

X7 =xT [exp (—j%nTk)] (3.4)

Note that n7k is an N x (M + 1) matrix. Now (3.4} can be implemented
in MATLAB as follows.

>> k = [0:M]; n = [n1:n2];
>> X = x * (exp(-j*pi/M)) .~ (n’#k);

Numerically compute the discrete-time Fourier transform of the sequence z(n)
given in Example 3.2 at 501 equispaced frequencies between [0,].

MarTLAB Script
>>n=-1:3; x = 1:5;

>> k = 0:500; w = (pi/500)*k;

>> X = x * (exp(-j*pi/500)) .~ (n’*k);

>> magX = abs(X); angX = angle(X);

>> realX = real(X); imagX = imag(X);

>> subplot(2,2,1); plot(k/500,magX);grid

>> xlabel(’frequency in pi units’); title(’Magnitude Part’)
>> subplot(2,2,3); plot(k/500,angX/pi);grid

>> xlabel(’frequency in pi units’); title(’Angle Part’)

>> subplot(2,2,2); plot(k/600,realX);grid

>> xlabel(’frequency in pi units’); title(’Real Part’)

>> subplot(2,2,4); plot(k/500,imagX);grid

>> xlabel(’frequency in pi units’); title(’Imaginary Part’)

The frequency-domain plots are shown in Figure 3.2. Note that the angle plot
is depicted as a discontinuous function between —7 and . This is because the
angle function in MATLAB computes the principal angle. [m}

The procedure of the above example can be compiled into a MATLAB
function, say a dtft function, for ease of implementation. This is explored
in Problem 3.1. This numerical computation is based on definition (3.1).

Chapter 3 @ THE DISCRETE-TIME FOURIER ANALYSIS

[w} EXAMPLE 3.5

Solution

Magnitude Part Real Part

15 15
10
.§ 10} _
o
= @ 5
@ [+4
=25
0
0 -5
0 0.5 1 0 05 1
frequency in pi units frequency in pi units
Angle Part Imaginary Part
4

Radians
imaginary

0.5 1 0 0.5 1
frequency in pi units frequency in pi units

FIGURE 3.2 Plots in Ezample 3.4

It is not the most elegant way of numerically computing the discrete-time
Fourier transform of a finite-duration sequence. Furthermore, it creates an
N x (M + 1) matrix in (3.4) that may exceed the size limit in the Student
Edition of MATLAB for large M and N. In Chapter 5 we will discuss in
detail the topic of a computable transform called the discrete Fourier
transform (DFT) and its efficient computation called the fast Fourier
transform (FFT). Also there is an alternate approach based on the z-
transform using the MATLAB function freqz for finite-duration sequences,
which we will discuss in Chapter 4. In this chapter we will continue to use
the approaches discussed so far for calculation as well as for investigation
purposes.

In the next two examples we investigate the periodicity and symmetry
properties using complex-valued and real-valued sequences.

Let z(n) = (0.9exp (j/3))", 0 < n < 10. Determine X (e?) and investigate
its periodicity.

Since z(n) is complex-valued, it satisfies only the periodicity property. Therefore
it is uniquely defined over one period of 2. However, we will evaluate and plot it
at 401 frequencies over two periods between [—2x, 27} to observe its periodicity.

The Discrete-time Fourier Transform (DTFT) 45

[m] EXAMPLE 3.6

>> n & 0:10; x = (0.9%exp(j*pi/3)). n;

> k = ~200:200; w = (pi/100)*k;

> X = x % (exp(-j*pi/100)) .~ {(n’*k);

>> magX = abs(X); angX ~angle(X);

>> subplot(2,1,1); plot(w/pi,nagX);grid

>> xlabel(’frequency in units of pi’); ylabel(’|X|’)

>> title(’Magnitude Part’)

>> pubplot(2,1,2); plot(w/pi,angX/pi);grid

>> xlabel(’frequency in units of pi’); ylabel(’radians/pi’)
>> title(’Angle Part’)

From the plots in Figure 3.3 we observe that X (¢/*) is periodic in w but is not
conjugate-symmetric. a

Let z(n) = 2", ~10 < n < 10. Investigate the conjugate-symmetry property
of its discrete-time Fourier transform.

Solution Once again we will compute and plot X (e™) over two periods to study its
symretry property.
Magnitude Part
8 T T T — T — —
=
0 I TR b it 1 i i L
2 -1.5 -1 .5 [} 0.5 1 1.5 2
frequency in units of pi
Angle Part
a
@
[=4
Kl
b1
3
1 t L i s 1 i i
-2 -15 -1 05 1] 0.5 1 1.5 z
frequency in units of pi
FIGURE 3.3 Plots in Example 9.5
16 Chapter 3 ® THE DISCRETE-TIME FOURIER ANALYSIS

Magnitude Part
15 T T

(-’2 -15 -1

radians/pi
(=]
i

0.5

4 . ; P i
-2 -1.5 -1 0.5 0 0.5 1 1.5 2
frequency in units of pi

FIGURE 3.4 Plots in Example 3.6

subplot(1,1,1)

n =-5:5; x = (-0.9)."n;

k = -200:1200; w = (pi/100)*k;

X = x * (exp(-j*pi/100)) .~ (n’*k);

magX = abs(X); angX =angle(X);

subplot(2,1,1); plot(w/pi,magk);grid
axis([-2,2,0,15])

xlabel(’frequency in units of pi’); ylabel(’[X|?*)
title(’Magnitude Part’)

subplot(2,1,2); plot(w/pi,angX)/pi;grid
axis{[-2,2,-1,1])

xlabel(’frequency in units of pi’); ylabel(’radiams/pi’)
title(’Angle Part’)

From the plots in Figure 3.4 we observe that X (e’) is not only periodic in «
but is also conjugate-symmetric. Therefore for real sequences we will plot their
Fourier transform magnitude and angle responses from 0 to «. I}

THE PROPERTIES OF THE DTFT
: =

In the previous section we discussed two important properties that we
needed for plotting purposes. We now discuss the remaining useful proper-

The Properties of the DTFT 47

ties, which are given below without proof. Let X (/) be the discrete-time
Fourier transform of z(n).

1. Linearity: The discrete-time Fourier transform is a linear transfor-
mation; that is,

Flazi(n) + Br2(n)] = oF [z1(n)] + BF [z2(n)] (3.5)
for every a, 8, z1 (n), and z3 (n).
2. Time shifting: A shift in the time domain corresponds to the phase
shifting.
F [z(n — k)] = X(e7)e~ % (3.6)
3. Frequency shifting: Multiplication by a complex exponential cor-
responds to a shift in the frequency domain.
F [z(n)e?on] = X (ej(“’""“)) (a.7)

4. Conjugation: Conjugation in the time domain corresponds to the
folding and conjugation in the frequency domain.

Fz*(n)] = X*(e™) (38)

5. Folding: Folding in the time domain corresponds to the folding in
the frequency domain.

Fle(-n)] = X(e75) (39)

6. Symmetries in real sequences: We have already studied the conju-
gate symmetry of real sequences. These real sequences can be decomposed
into their even and odd parts as we discussed in Chapter 2.

z(n) = Ze(n) + To(n)
Then
F [ze(n)] = Re [X(e/)]

. . (3.10)
Flzo(n)} = jIm [X(e/))

Implication: If the sequence z(n) is real and even, then X(e) is also
real and even. Hence only one plot over [0, 7] is necessary for its complete
representation.

A similar property for complex-valued sequences is explored in Prob-
lem 3.7.

7. Convolution: This is one of the most useful properties that makes
system analysis convenient in the frequency domain.

F [21(n) # 22(n)} = F 11 (n)] F [e2(n)] = Xa(e™) Xa(e™) (3.11)

Chapter 3 B THE DISCRETE-TIME FOURIER ANALYSIS

u] EXAMPLE 3.7

8. Multiplication: This is a dual of the convolution property.

Floa(n) - aa(n)] = Flas ()] @ Flaa)] £ 5 [Xa(e) Xale~)at
: (3.12)

The convolution-like operation above is called a periodic convolution and
hence denoted by @ . It is discussed (in its discrete form) in Chapter 5.
9. Energy: The energy of the sequence z(n) can be written as

00 n

& =Y e = 5= [1X(e)} o (3.13)

-0 -

T |x (e"“’)|2 .
= ——}—~—dw (for real sequences using even symmetry)
0

This is also known as Parseval’s Theorem. From (3.13) the energy density
spectrum of z(n) is defined as

o (2
mwéE%ﬂ- (3.13)

Then the energy of z(n) in the [w;,w,] band is given by
w2
/Qz(w)dw, 0<wyy<wy <7

wi

In the next several examples we will verify some of these properties
using finite-duration sequences. We will follow our numerical procedure
to compute discrete-time Fourier transforms in each case. Although this
does not analytically prove the validity of each property, it provides us
with an experimental tool in practice.

In this example we will verify the linearity property (3.5) using real-valued finite-
duration sequences. Let z1(n) and z2{n) be two random sequences uniformly
distributed between [0,1] over 0 < n < 10. Then we can use our numerical
discrete-time Fourier transform procedure as follows.

x1 = rand(1,11); x2 = rand(1,11); n = 0:10;

alpha = 2; beta = 3;

k = 0:500; v = (pi/500)*k;

X1 = x1 * (exp(-j*pi/500)).~(n’#k); ¥% DTFT of x1

X2 = x2 * (exp(-j*pi/500)). (n’*k); % DTFT of x2

x = alpha*xl + betaxx2; % Linear combination of x1 & x2

The Properties of the DTFT 49

>> X = x * (exp(~j*pif/600)).~(n'*k); Y% DTFT of x
>> % verification

»> X_check = alpha*X1 + betaxX2; % Linear Combination of X1 & X2
>> error = max(abs(X-X_check)} % Difference
error =

7.1054e-015

Since the maximum absolute error between the two Fourier transform arrays
is less than 1G~*%, the two arrays are identical within the limited numerical
precision of MATLAB. u}

3 EXAMPLE38 Let z(n) be a random sequence uniformly distributed between [0,1] over 0 <

n < 10 and let y(n) = x(n — 2). Then we can verify the sample shift property
(3.6) as follows.

> x = rand(1,11); n = 0:10;

>> k = 0:500; w = (pi/500)*k;

>> X = x * {exp(-j*pi/500)). (n’#k); % DIFT of x
>> % signal shifted by two samples

> y = X; M= p+2;

> Ye=y* (exp(-jtpi/fsoo)).‘(m‘*k); % DTFT of y
>> % verification

>> Y.check = (exp(-j*2).w).*X; % multiplication by exp{-j2w)
>> error = max(abs(Y-Y_check)) % Difference
error =

5.7737e-016 o

8] EXAMPLE 39 To verify the frequency shift property (3.7), we will use the graphical approach.

>>
>>
>>
A

>>
>>

Let
z(n) =cos(wn/2), 0<n<100 and y(n)= ™ 4z(n)

Then using MATLAB,

n = 0:100; x = cos(pim/2);
k = -100:100; ¥ = (pi/100)*k; Y% frequemcy between -pi and +pi
X = x # (exp(-j*pi/100))."(n’>¥k); % DTFT of x

y = exp(j*pi*n/4).*x; % signal multiplied by exp(j*pisn/4)
Y = y * (exp(-j*pi/100)). (n'*k); % DIFT of y

% Graphical verification

>
>>
>>
b 2d
>>
>>
>>
>

subplot(1,1,1)

subplot(2,2,1); plot(w/pi,abs(X)); grid; axis({-1,1,0,60])
xlabel(’frequency in pi units’); ylabel(’|Xi”)
title(’Magnitude of X’)

subplot(2,2,2); plot(w/pi,anglelX)/pi);: grid; axis{l~1,1,-1,1D)
xlabel (’frequency in pi units’); ylabel(’radiands/pi’)
title(’Angle of X’)

subplot(2,2,3); plot(w/pi,abs(¥)); grid; axis({-1,1,0,60])

Chapter 3 ® THE DISCRETE-TIME FOURIER ANALYSIS

>> rlabel(’frequency in pi units’); ylabel(’IY|?)

>> title(’Magnitude of Y*)

>> subplot(2,2,4); plot(w/pi,angle(Y)/pi); grid; axis({-1,1,-1,1])
>> xlabel(’frequency in pi units’); ylabel(’radians/pi’)

>> title(’Angle of Y’')

and from plots in Figure 3.5 we observe that X (e’*) is indeed shifted by x/4

in both magnitude and angle.

0

O EXAMPLE3.10 To verify the conjugation property (3.8), let z(n) be a complex-valued random
sequence over —5 < n < 10 with real and imaginary parts uniformly distributed
between [0, 1]. The MATLAB verification is as follows.

>> n = -5:10; x = rand(1,length(n)) + j*rand(1,length(n));
% frequency between -pi and +pi

>> k = -100:100; w = (pi/100)*k;

> X = x * (exp(-j*pi/100)). (n’*k);
% conjugation property

> y = conj(x);

> Y =y » (exp(-j*pi/100)). (n’*k);
% verification

>> Y_check = conj(fliplr(X));

Magnitude of X

i 05 0 05 1
frequency in pi units

Magnitude of Y

‘-)1 0.5 0 05 1
frequency in pi units

FIGURE 3.5 Plots in Ezample 3.9

% DIFT of x

% signal conjugation
% DTFT of y

% conj(X{~-w))

radiands/pi

-1 05 0 05 1
frequency in pi units

Angle of Y

radians/pi

-1 05 0 05 1
frequency in pi units

The Properties of the DTFT

51

>> error = max(abs(Y-Y_check))
error =

A

Difference

0 u]
O EXAMPLE3.11 To verify the folding property (3.9), let z(n) be a random sequence over —5 <
n < 10 uniformly distributed between [0,1]. The MATLAB verification is as
follows.
>> n = -5:10; x = rand(1,length(n));
> k = -100:100; w = (pi/100)*k; % frequency between -pi and +pi
>> X = x % (exp(-j*pi/100)).~(n’*k); % DTFT of x
% folding property
> y = fliplr(x); m = -fliplr(n); % signal folding
>> Y = y * (exp(~j*pi/100))." (m’*k); % DTFT of y
% verification
>> Y_check = £1iplr(X); % X(-w)
>> error = max(abs(Y-Y_check)) % Difference
error =
0 a
0O EXAMPLE3.12 In this problem we verify the symmetry property (3.10) of real signals. Let
z(n) =sin(7n/2), -5<n<10
Then using the evenodd function developed in Chapter 2, we can compute
the even and odd parts of z(n) and then evaluate their discrete-time Fourier
transforms. We will provide the numerical as well as graphical verification.
>>n = -5:10; x = sin(pi/2);
>> k = ~100:100; w = (pi/100)*k; % frequency between -pi and +pi
>> X = x * (exp(-j*pi/100}) . (n’*k); % DTFT of x
4% signal decomposition
>> [xe,x0,m) = evenodd(x,n); % even and odd parts
>> XE = xe * (exp(-j*pi/100)).~(m’*k); % DTFT of xe
>> X0 = xo * (exp(-j*pi/100)).~(m’*k); % DTFT of xo
% verification
>> XR = real(X); % real part of X
>> errorl = max(abs(XE-XR)) % Difference
errorl =
1.8974e-019
>> XI = imag(X); % imag part of X
>> error2 = max(abs(X0-j*XI)) % Difference
error2 =
1.8033e-019
% graphical verification
>> subplot(1,1,1)
>> subplot(2,2,1); plot(w/pi,XR); grid; axis((-1,1,-2,2])
>> xlabel(’frequency in pi units’); ylabel(’Re(X)’);
>> title(’Real part of X’)
52 Chapter 3 ® THE DISCRETE-TIME FOURIER ANALYSIS

Real part of X

Re(X)
=]

0.5 0 0.5 1
frequency in pi units
Transform of even part

-1

-2
=1

>

v

-05 [} 0.5 1
frequency in pi units

FIGURE 3.6 Plots in Ezample 3.12

Imaginary part of X

1 -05 0 0.5
frequency in pi units
Transform of odd part

-1 —05 0 05
frequency In pi units

subplot(2,2,2); plot(w/pi,XI); grid; axis({-1,1,-10,10])

>> xlabel(’frequency in pi units’); ylabel('Im(X)’);
>> title(’Imaginary part of X’)

>
>

v Vv

>> title(’Transform of even part’)

>

v

subplot(2,2,3); plot(w/pi,real(XE)); grid; axis([-1,1,-2,2])
xlabel(’frequency in pi units’); ylabel(’XE’);

subplot (2,2,4); plot(w/pi,imag(X0)); grid; axis([-1,1,-10,10])

>> xlabel(’frequency in pi units’); ylabel(’X0Q’);
>> title(’Transform of odd part’)

From the plots in Figure 3.6 we observe that the real part of X (') (or the
imaginary part of X(e’“)) is equal to the discrete-time Fourier transform of

ze(n) (or zo(n)).

THE FREQUENCY DOMAIN REPRESENTATION OF LTI SYSTEMS
—=

We earlier stated that the Fourier transform representation is the most
useful signal representation for LTI systems. It is due to the following

result.

The Frequency Domain Representation of LTI Systems

RESPONSE TO
A COMPLEX
EXPONENTIAL

eju)gm

[] DEFINITION 1

RESPONSE TO
SINUSOIDAL
SEQUENCES

Let z(n) = e’“°™ be the input to an LTI system represented by the impulse

response h(n).
efwon — h{n) x efwon

Then

y(n) = h(n) x " = ih(k)e’%("‘k)

—00

= [i h(k)e—fka] don (315)

o0

= [F IR ms,] "

W-:WO]
Frequency Response

The discrete-time Fourier transform of an impulse response is called
the Frequency Response (or Transfer Function) of an LTI system and is
denoted by

H(e™) 2 i h(n)e~34" (3.16)

Then from (3.15) we can represent the system by

z(n) = e — — y(n) = H(e**) x eom (3.17)

Hence the output sequence is the input exponential sequence modified by
the response of the system at frequency wp. This justifies the definition
of H(e’) as a frequency response because it is what the complex expo-
nential is multiplied by to obtain the output y(n). This powerful result
can be extended to a linear combination of complex exponentials using
the linearity of LTI systems.

Y Apein — — 3 AH(e3r) efonn
k k

In general, the frequency response H (/) is a complex function of w. The
magnitude |H(e’*)| of H(e?*) is called the magnitude (or gain) response
function, and the angle ZH (e?*) is called the phase response function as
we shall see below.

" Let z(n) = Acos(won + 6p) be an input to an LTI system h(n). Then

from (3.17) we can show that the response y(n) is another sinusoid of the
same frequency wp, with amplitude gained by ,H (ej“"’)l and phase shifted

Chapter 3 W THE DISCRETE-TIME FOURIER ANALYSIS

by £H(e?*0), that is,
y(n) = A|H(e")| cos (won + 6o + LH(e?*°)) (3-18)

This response is called the steady-state response denoted by y,,(n). It can
be extended to a linear combination of sinusoidal sequences.

ZA;; cos(wkn + Ox) — — ZA" [H(e™*)| cos (wkn + Ok + LH(e7*))
% x

RESPONSE TO Finally, (3.17) can be generalized to arbitrary absolutely summable se-
ARBITRARY quences. Let X(e7) = Flz(n)] and Y(e?) = Fly(n)]; then using the
SEQUENCES convolution property (3.11), we have

Y (&™) = H(e?) X(e/¥) (3.19)

Therefore an LTI system can be represented in the frequency domain by
X(e*y — | H(e) | — Y (&%) = H(e™) X ()

The output y(n) is then computed from ¥ (e?*') using the inverse discrete-
time Fourier transform (3.2). This requires an integral operation, which is
not a convenient operation in MATLAB. As we shall see in Chapter 4, there
is an alternate approach to the computation of output to arbitrary inputs
using the z-transform and partial fraction expansion. In this chapter we
will concentrate on computing the steady-state response.

O EXAMPLE3.13 Determine the frequency response H(e') of a system characterized by h(n) =
(0.9)"u(n). Plot the magnitude and the phase responses.

Solution Using (3.16),
H(E*) =Y hn)e™" = Y (0.9)"e "
—o0 0
_ —Jwyn __
=D (097" = 1— 0.9¢-7%
0
Hence

ol 1 N 1
,H(é)l - \/(1 —0.9cosw)? + (0.9sinw)? ~ /T.81 — 1.Bcosw
and

ZH(CJ-W):—arctan[0.9sinw]

1-0.9cosw

The Fr

quency Domain Rep ation of LT} Systems 55

O EXAMPLE 3.14

To plot these responses, we can either implement the IH (e’“)l and ZH(e?*)
functions or the frequency response H(e’*) and then compute its magnitude
and phase. The latter approach is more useful from a practical viewpoint (as
shown in (3.18)).

>> w = [0:1:500}%pi/600; ¥% [0, pil axis divided into 501 points.
>> H = exp(j*w) ./ (exp(j*w) - 0.9%ones(1,501));

>> magH = abs(H); angH = angle(H);

>> subplot(2,1,1); plot(w/pi,magh); grid;

>> xlabel(’frequency in pi units’); ylabel(’|H|’);

>> title(’Magnitude Response’);

>> subplot(2,1,2); plot(w/pi,angh/pi); grid

>> xlabel(’frequency in pi units’); ylabel(’Phase in pi Radians’);
>> title(’Phase Respomse’);

The plots are shown in Figure 3.7. =]

Let an input to the system in Example 3.13 be 0.1u(n). Determine the steady-
state response yss(n).

Solution Since the input is not absolutely summable, the discrete-time Fourier transform
is not particularly useful in computing the complete response. However, it can
be used to compute the steady-state response. In the steady state (i.e., n — o0)

Magnitude Response
10 T T T ¥ T T T T T
8 T EE TR RN -
T S KR S]
z
4]
ol N 1
o i i ; i : ; N 0 ;
[} 0.1 0.2 03 04 05 06 0.7 08 09 1
frequency in pi units
Phase Response
0 - T T T - - T T S
g N
.g _0.1 o
8
[\
BOF N J
£
2 oal
.03 4
T
04 ; R ; s ; F
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
frequency in pi units
FIGURE 3.7 Frequency response plots in Example 3.13
56 Chapter 3 H THE DISCRETE-TIME FOURIER ANALYSIS

FREQUENCY
RESPONSE
FUNCTION
FROM
DIFFERENCE
EQUATIONS

O EXAMPLE 115

Solution

the input is a constant sequence (or a sinusoid with we = 6o = 0). Then the
output is

Yas(n) =01 x H(&®) =0.1x10=1

where the gain of the system at w = 0 (also called the DC gain) is H(e’®) = 10
which is obtained from Figure 3.7.

When an LTI system is represented by the difference equation

N M
y(n)+ Y ayln— 0= bnz(n—m) (3.20)
=1

m=0

then to evaluate its frequency response from (3.16), we would need the im-
pulse response h(n). However, using (3.17), we can easily obtain H(e#).
We know that when z(n) = e?“", then y(n) must be H(e’*)e’™. Substi-
tuting in (3.20), we have

N M
H(E)e " + Y arH(e)e ") = Y by e

£=1 m=0

or

M

H(ew)= 2= (3.21)

1+ Zaz e—jwt
£=1

after canceling the common factor e/“™ term and rearranging. This equa-
tion can easily be implemented in MATLAB, given the difference equation
parameters.

An LTI system is specified by the diffgrence equation
y(n) = 0.8y(n — 1) + z(n)

a. Determine H(e*).
b. Calculate and plot the steady-state response yss(n) to

z(n) = cos(0.057n)u(n)

Rewrite the difference equation as y(n) — 0.8y(n — 1) = z(n).
a. Using (3.21), we obtain

1

H(e™) = 1587

(3.22)

The Frequency Domain Representation of LT} Systems 57

b. In the steady state the input is z(n} = cos(0.057n) with frequency
wp = 0.057 and 0y = 0°. The response of the system is

H(%%57) = 1

= T ggaone = 40928707

Therefore
yse(n) = 4.0928 cos(0.057mn — 0.5377) = 4.0928 cos [0.057 (n — 3.42)]

This means that at the output the sinusoid is scaled by 4.0928 and shifted by
3.42 samples. This can be verified using MATLAB.

>> subplot(1,1,1)

>b=1; a=[1,-0.8];

>> n=[0:100]);x = cos(0.05«pisn);

> y = filter(b,a,x);

>> subplot(2,1,1); stem(n,x);

>> xlabel(’n’); ylabel(’x(n)’); title(’Input sequence’)
>> subplot(2,1,2); stem(n,y);

>> xlabel(’n’); ylabel(’y(mn)’); title(’QOutput sequence’)

From the plots in Figure 3.8 we note that the amplitude of y,,(n) is approxi-
mately 4. To determine the shift in the output sinusoid, we can compare zero

input sequence

1 - — — —_—

|
ﬁ---a—-fﬁh ;

-

ﬁ%

ok
IR
7

y(n)
@

_5) L 1 L L ol >
o 10 2 30 4 S0 6 70 8 % 100
n

FIGURE 3.8 Plots in Ezample 3.15

58

Chapter 3 ® THE DISCRETE-TIME FOURIER ANALYSIS

O EXAMPLE 3.16

crossings of the input and the output. This is shown in Figure 3.8, from which
the shift is approximately 3.5 samples. [n]

In Example 3.15 the system was characterized by a first-order differ-
ence equation. It is fairly straightforward to implement (3.22) in MATLAB
as we did in Example 3.13. In practice the difference equations are of large
order and hence we need a compact procedure to implement the general
expression (3.21). This can be done using a simple matrix-vector multi-
plication. If we evaluate H(e’*) at k = 0,1,..., K equispaced frequencies
over [0, 7}, then

M
E by, e~3wrm

H*)=-m=0__ ___ f=0,1,..,K (3.23)

~)
1+ Z ay e~dwit
£=1

If we let {by}, {ae} (Withap =1), {m=0,...,M}, {{=0,...,N}, and
{wg} be arrays (or row vectors), then the numerator and the denominator
of (3.23) become

bexp(—jmTw); aexp (—j!Tg)

respectively. Now the array H(e’“*) in (3.23) can be computed using a ./
operation. This procedure can be implemented in a MATLAB function to
determine the frequency response function, given {b,,} and {a,} arrays.
We will explore this in Example 3.16 and in Problem 3.15.

A 3rd-order lowpass filter is described by the difference equation
y(n) = 0.0181z(n) + 0.0543z(n — 1) + 0.0543z(n - 2) + 0.0181z(n — 3)
+ 1.76y(n — 1) — 1.1829y(n — 2) + 0.2781y(n — 3)

Plot the magnitude and the phase response of this filter and verify that it is a
lowpass filter.

Solution We will implement the above procedure in MATLAB and then plot the filter
responses.
>> b = [0.0181, 0.0543, 0,0543, 0.0181]; % filter coefficient array b
> a = [1.0000, -1.7600, 1.1829, -0.2781]; % filter coefficient array a
>> m = 0:length(b)-1; 1 = O:length(a)-1; % index arrays m and 1
>> K = 500; k = 0:1:K; % index array k for frequencies
>> w = pi*k/K; %4 [0, pi] axis divided into 501 points.
>> num = b * exp(-jm’*vw); % Numerator calculations

The Frequency Domain Representation of LTI Systems 59

>>
>>
>>
>>
>
>>
>>
>>
>>
>>

v

Magnitude Response

0.8[

0.6}

1HI

) S

02kt

i
[4] 0.1 0.2 03 0.4 0.5 06 07 08 09 1
frequency in pi units .
Phase Response

Phase in pi Radians
[=]

4 ; ; ; ; ; ; ; ; i
0 0.1 0.2 03 04 0.5 0.6 07 08 0.9 1
frequency in pi units

FIGURE 3.9 Plots for Ezample 3.16

den = a * exp(-j*l’*w); % Denominator calculations
H = num ./ den; % Frequency response

magH = abs(H); angH = angle(H); % mag and phase responses
subplot(1,1,1);

subplot(2,1,1); plot(w/pi,magh); grid; axis([0,1,0,1])
xlabel(’frequency in pi units’); ylabel(’{HI’);
title(’Magnitude Response’);

subplot(2,1,2); plot(w/pi,angi/pi); grid

xlabel(’frequency in pi umits’); ylabel(’Phase in pi Radians’);
title(’Phase Response’);

From the plots in Figure 3.9 we see that the filter is indeed a lowpass filter. O

SAMPLING AND RECONSTRUCTION OF ANALOG SIGNALS

In many applications—for example, in digital communications—real-
world analog signals are converted into discrete signals using sampling
and quantization operations (collectively called analog-to-digital con-
version or ADC). These discrete signals are processed by digital signal
processors, and the processed signals are converted into analog signals

Chapter 3 B THE DISCRETE-TIME FOURIER ANALYSIS

SAMPLING

using a reconstruction operation (called digital-to-analog conversion or
DAC). Using Fourier analysis, we can describe the sampling operation
from the frequency-domain viewpoint, analyze its effects, and then ad-
dress the reconstruction operation. We will also assume that the number
of quantization levels is sufficiently large that the effect of quantization
on discrete signals is negligible.

Let x,(t) be an analog (absolutely integrable) signal. Its continuous-time
Fourier transform (CTFT) is given by

X.(0) 2 / calt)e % dt (3.29)

-0

where 2 is an analog frequency in radians/sec. The inverse continuous-
time Fourier transform is given by

zalt) = 5= / Xa(j0)d0 (3.25)

-0
We now sample z,(t) at sampling interval T, seconds apart to obtain the
discrete-time signal z(n).
N
z(n) = za(nT,)

Let X (e) be the discrete-time Fourier transform of z(n). Then it can be
shown [19] that X (/%) is a countable sum of amplitude-scaled, frequency-
scaled, and translated versions of the Fourier transform X,(j(2).

iw 1 & fw 2w
X(e") = ,1—15 [=§_:°°X“ [.7 (F, - Ee)] (3.26)
The above relation is known as the aliasing formula. The analog and
digital frequencies are related through T

w =0T, (3.27)

while the sampling frequency F; is given by

F, = ~—1—, sam/sec (3.28)
T,
The graphical illustration of (3.26) is shown in Figure 3.10, from which
we observe that, in general, the discrete signal is an aliased version of the
corresponding analog signal because higher frequencies are aliased into

Sampling and Reconstruction of Analog Signals 61

Xx,{(#) X (i)

o

Q

T

Sample eq. {3.27)

x{n) A/ T,__
1
/ DTFT
q
! V\ Te<aiQ
I \]_“] 04T, Q/T,
NP D 2N y

x(*n) Xleie)
I/ \
! \\ Te> 7l
! \ (P
S N I VT ! | ©
—2‘\ —1[’—) V{] /_‘E 2w -w 0 7 2w
" ~

FIGURE 3.18 Sempling operation in the time and frequency domains

lower frequencies if there is an overlap. However, it is possible to recover
the Fourier transform X,(jf?) from X (e“) (or equivalently, the analog
signal z,(t) from its samples z(n)) if the infinite “replicas” of X,(jf2) do
not overlap with each other to form X (e#*). This is true for band-limited
analog signals,

] DEFINITION 2 Band-limited Signal
A signal is band-limited if there exists a finite radian frequency (o
such that X,(jQ) is zero for [2| > Qo. The frequency Fo=Co /27 is called
the signal bandwidth in Hz.

62 Chapter 3 ® THE DISCRETE-TIME FOURIER ANALYSIS

|] THEOREM 3

MATLAB
IMPLEMEN-
TATION

Referring to Figure 3.10, if # > QoTy—or equivalently, F,/2 > Fo—
then

; 1 w T w b3
X Jwy — . —— et -
(@) =7X (JT,> A A (3:29)

which leads to the sampling theorem for band limited signals.

Sampling Principle

A band-limited signal z,(t) with bandwidth Fy can be reconstructed
from its sample values z(n) = xo(nT,) if the sampling frequency F, =
1/T, is greater than twice the bandwidth Fy of x,(t).

F, > 2F0

Otherwise aliasing would result in z(n). The sampling rate of 2F, for an
analog band-limited signal is called the Nyguist rate.

It should be noted that after z,(t) is sampled, the highest analog
frequency that z(n) represents is F,/2 Hz (or w =). This agrees with
the implication stated in Property 2 of the discrete-time Fourier transform
in the first section of this chapter.

In a strict sense it is not possible to analyze analog signals using MATLAB
unless we use the Symbolic toolbox. However, if we sample z,(t) on a fine
grid that has a sufficiently small time increment to yield a smooth plot
and a large enough maximum time to show all the modes, then we can
approximate its analysis. Let At be the grid interval such that At < T,.
Then

zg(m) & zo(mAt) (3.30)

can be used as an array to simulate an analog signal. The sampling interval
T, should not be confused with the grid interval At, which is used strictly
to represent an analog signal in MATLAB. Similarly, the Fourier transform
relation (3.24) should also be approximated in light of (3.30) as follows

Xo(Q) = Y za(m)e I AL = ALY " zg(m)e ™A (331)

Now if z,(t) (and hence z(m)) is of finite duration, then (3.31) is similar
to the discrete-time Fourier transform relation (3.3) and hence can be
implemented in MATLAB in a similar fashion to analyze the sampling
phenomenon.

Sampling and Reconstruction of Analog Signals 63

O EXAMPLE 3.17

Let 24(t) = e~*%%1l Determine and plot its Fourier transform.

Solution From (3.24)
oo] o0
Xa(i9) = / za(t)e M dt = / !0~ Mg 1 / e 1000t Mgy
-0 —00 0o
- _0-0002__2 (3.32)
1+ (15%)
which is a real-valued function since z,(t) is a real and even signal. To evaluate
Xa(j?) numerically, we have to first approximate z,(t) by a finite-duration
grid sequence z¢(m). Using the approximation e = 0, we note that z.(t)
can be approximated by a finite-duration signal over —0.005 < ¢ < 0.005 (or
equivalently, over [—5,5] msec). Similarly from (3.32), Xa(iQ) ~ 0 for Q >
2 (2000). Hence choosing
1
At=5x10"° « = =25 x 107°
5x 10 «2(2000) x 10
we can obtain zg(m) and then implement (3.31) in MATLAB.
% Analog Signal
>> Dt = 0.00005; t = -0.005:Dt:0.005; xa = exp(-1000+abs(t));
% Continuous-time Fourier Tramsform
>>Wmax = 2*pi*2000; K = 500; k = 0:1:K; W = k+Wmax/K;
>>Xa = xa * exp(-j*t’*W) * Dt; Xa = real(Xa);
>W = [-fliplr(W), W(2:501)]; % Omega from -Wmax to Wmax
>>Xa = [fliplr(Xa), Xa(2:501)]; % Xa over -Wmax to Wmax interval
>>subplot(1,1,1)
>>subplot(2,1,1) ;plot (t#1000,xa);
>>xlabel(’t in msec.’); ylabsl(’xa(t)’)
>>title(® Analog Signal®)
>>subplot(2,1,2) ;plot (W/ (2#pi*1000) ,Xa*1000);
>>xlabel(’Frequency in XKHz’); ylabel(’Xa(jW)*1000’)
>>title(’Continuous—time Fourier Transform’)
Figure 3.11 shows the plots of z.(t) and X.(j(2). Note that to reduce the number
of computations, we computed X, (j§2) over [0,40007] radians/sec (or equiva-
lently, over {0,2] KHz) and then duplicated it over {—4000r,0] for plotting
purposes. The displayed plot of X, (j{2) agrees with (3.32). a
O EXAMPLE318 To study the effect of sampling on the frequency-domain quantities, we will
sample z,(t) in Example 3.17 at two different sampling frequencies.
a. Sample z,(t) at F, = 5000 sam/sec to obtain z1(n). Determine and plot
Xi(e?).
b. Sample z4(t) at F, = 1000 sam/sec to obtain z2(n). Determine and plot
X2(e7v).
64 Chapter 3 ® THE DISCRETE-TIME FOURIER ANALYSIS

Solution

Analog Signal

1 —r T T T T T]

0.8

.06

xaf

0.4

0.2

» O

tin msec.
Continvous-time Foutier Transform

Xa(jW)*1000
> b n

ol
in
T

L — FE—

2 15 -4 0.5 0 0.5 1 15 2
Frequency in KMz

' O

FIGURE 3.11 Plots in Ezample 3.17

a. Since the bandwidth of z. () is 2KHz, the Nyquist rate is 4000 sam/sec,
which is less than the given F,. Therefore aliasing will be (almost) nonexistent.

% Analog Signal

>> Dt = 0.00005; t = ~0.005:Dt:0.005; xa = exp(-1000%abs(t));
% Discrete-time Signal

>> Tg = 0.0002; n = -25:1:25; x = exp(-1000*abs(n*Ts));
% Discrete-time Fourier transform

>> K = 500; kX = 0:1:X; w = pi*k/K;

>> X = x * exp(-j*n’»w); X = real(X);

>> w = [-fliplr(w), w(2:K+1)]1;

>> X = [fliplr(X), X(2:K+1)];

>> subplot(i,1,1)

>> subplot(2,1,1);plot(t*1000,xa);

>> xlabel(’t in msec.’); ylabel(’xi(n)?)

>> title(’Diacrete Signal’); hold on

>> gtem(n*Ts*1000,x); gtext(’Ts=0.2 msec’); hold off
>> subplot(2,1,2);plot(w/pi,X);

>> xlabel (’Frequency in pi units’); ylabel(’Xi(w)’)

>> title(’Discrete-time Fourier Transform’)

In the top plot in Figure 3.12 we have superimposed the discrete signal z1(n)
over Z.(t) to emphasize the sampling. The plot of X2(e’*) shows that it is a
scaled version (scaled by F, = 5000) of X,(j§2). Clearly there is no aliasing.

Sampling and Reconstruction of Analog Signals 65

RECONSTRUC-
TION

Discrete Signal

1 T T T T aE ¥ — T

s 4 3 2 A4 o 1 2 3 4 5
R tin msec.

Discrete-time Fourier Transform

10, ™ T T T — T o g

X1(w)

i

L)
-1 08 06 04 02 1] 0.2 0.4 0.6 0.8
Frequency in pi units

-

FIGURE 3.12 Plots in Example 3.18a

b, Here F, = 1000 < 4000. Hence there will be a considerable amount of
aliasing. This is evident from Figure 3.13, in which the shape of X (') is dif-
ferent from that of X,(j§2} and can be seen to be a result of adding overlapping
replicas of Xa(j0). O

From the sampling theorem and the above examples it is clear that if we
sample band-limited z,(t) above its Nyquist rate, then we can reconstruct
z4(t) from its samples z(n). This reconstruction can be thought of as a
two-step process:

o First the samples are converted into a weighted impulse train.

00

Z z(n)§(t—nTy) = -- -+ z(~1)6(n+T,) +z(0)6(t) +x(1)6(n—T,)+- - -

n=—0o0

o Then the impulse train is filtered through an ideal analog lowpass
filter band-limited to the [-F,/2, F, /2] band.

Impulse train Ideal lowpass

z(n) — conversion | filter

— Z4(t)

66

Chapter 3 M THE DISCRETE-TIME FOURIER ANALYSIS

Discrete Signal

1 — T T T T 7 —r T
0.8} Ts=1 msec]
S 0.6 4
E 041 J
o2 :
% 4 38 2 A 0 1 2 3 4 5
tin msec.
Discrete-time Fourier Transform

1 — 1 ! L

1 L L
-1 0.8 -0.6 0.4 0.2 0 0.2 0.4 0.6 08 1
Frequency in pi units

0 L

FIGURE 3.13 Plots in Example 3.18b

This two-step procedure can be described mathematically using an inter-
polating formula [19]

T (t) = i z(n) sinc [Fy(t — nTe)] (3.33)

n=—o00

sinxx
T

_where sinc(z) = is an interpolating function. The physical inter-
pretation of the above reconstruction (3.33) is given in Figure 3.14, from
which we observe that this ideal interpolation is not practically feasible
because the entire system is noncausal and hence not realizable.

Practical D/A converters In practice we need a different approach
than (3.33). The two-step procedure is still feasible, but now we replace
the ideal lowpass filter by a practical analog lowpass filter. Another in-
terpretation of (3.33) is that it is an infinite-order interpolation. We want
finite-order (and in fact low-order) interpolations. There are several ap-
proaches to do this.

Sampling and Reconstruction of Analog Signals 67

x{0) sinc{Ft]

t

x{(1) sinclF,(t - Tl

Ts
X,(t)
x{(2) sinclF(t ~ 2T)
t
27,
[
0 T, 27, 37T,
+ x(3) sinclF,(t - 3T,
Sample at
t=nT, t
37,
+
x(n} :
x(=1) x(O) = X,(t) = 2 x{n) sinclF,(t — nT,)
[x(2) x(3)
| 1 1 t
-1 1 -7, 0 T, 2T, 3T,
Sampling Reconstruction

FIGURE 3.14 Reconstruction of band-limited signal from its samples

o Zero-order-hold (ZOH) interpolation: In this interpolation a given
sample value is held for the sample interval until the next sample is re-
ceived.

() =2z(n), nT,<n<®m+1)T,

which can be obtained by filtering the impulse train through an interpo-
lating filter of the form

1, 0<t< T,
ho(t) =
olt) {O, otherwise

Chapter 3 ® THE DISCRETE-TIME FOURIER ANALYSIS

MATLAB
IMPLEMEN-
TATION

which is a rectangular pulse. The resulting signal is a piecewise-constant
(staircase) waveform which requires an appropriately designed analog
post-filter for accurate waveform reconstruction.

z(n) — — &a(t) — — 2a(t)

o First-order-hold (FOH) interpolation: In this case the adjacent
samples are joined by straight lines. This can be obtained by filtering
the impulse train through

t
14—, 0<t<L
m)=q1-L1 1,<i<om
T
0, otherwise

Once again an appropriately designed analog postfilter is required for
accurate reconstruction. These interpolations can be extended to higher
orders. One particularly useful interpolation employed by MATLAB is the
following.

e Cubic spline interpolation: This approach uses spline interpolants
for a smoother, but not necessarily more accurate, estimate of the analog
signals between samples. Hence this interpolation does not require an
analog postfilter. The smoother reconstruction is obtained by using a set
of piecewise continuous third-order polynomials called cubic splines, given
by (5]

za (t) = ao (n) + a1 (n) (t — nTy) + a2 (n) (t — nTy)*
+asm)(t—nT,)?, aT,<n<(n+1)T, (3.34)

where {a; (n),0 < i < 3} are the polynomial coefficients, which are de-
termined by using least-squares analysis on the sample values. (Strictly
speaking, this is not a causal operation but is a convenient one in MAT-
LAB.)

For interpolation between samples MATLAB provides several approaches.
The function sinc(x), which generates the (sinwz) /mz function, can
be used to implement (3.33), given a finite number of samples. If
{z(n), n1 <n < np} is given, and if we want to interpolate z, () on
a very fine grid with the grid interval At, then from (3.33)

nz
T4 (MAL) = Z z(n)sinc [Fs(mAt — nTy)], ¢ <mAt<t, (3.35)

n=ny

Sampling and Reconstruction of Analog Signals 69

which can be implemented as a matrix-vector multiplication operation as
shown below.

>>n =ni:n2; t = t1:t2; Fs = 1/Ts; nTs = n*Ts; % Ts is the sampling interval
>> xa = x * ginc(Fs*(ones(length(n),1)*t-nTs’*ones(1,length(t))));

0O EXAMPLE 3.19

Note that it is not possible to obtain an ezact analog z,(t) in light of the
fact that we have assumed a finite number of samples. We now demon-
strate the use of the sinc function in the following two examples and also
study the aliasing problem in the time domain.

From the samples z;(n) in Example 3.18a, reconstruct z,(t) and comment on
the results.

Solution Note that z1{n) was obtained by sampling z,(¢} at T, = 1/F, = 0.0002 sec. We
will use the grid spacing of 0.00005 sec over —0.005 < t < 0.005, which gives
z(n) over —25 < n < 25.

% Discrete-time Signal xi(n)
>> Ts = 0.0002; n = ~25:1:25; nTs = nxTs;
>> x = exp(-1000*abs (nTs));
% Analog Signal recomstruction
> Dt = 0.00005; t = -0.005:Dt:0.005;
>> xa = x * sinc(Fs*(ones(length(n),1)*t-nTs’*ones(1,length(t))));
% check
>> error = max(abs(xa - exp(-1000*abs(t))))
error =
0.0363
The maximum error between the reconstructed and the actual analog signal is
0.0363, which is due to the fact that z.(t) is not strictly band-limited (and also
we have a finite number of samples). From Figure 3.15 we note that visually
the reconstruction is excellent. w}
Reconstructed Signat from x1{n) using sinc function
1 —— T T T T —— T
0.8f 4
_oel]
Roal j
0.2 F 4
e
-5 -4 B8 -2 0 1 2 3 4 5
t in msec.
FIGURE 3.15 Reconstructed signal in Example 3.19
70 Chapter 3 ® THE DISCRETE-TIME FOURIER ANALYSIS

O EXAMPLE 3.20

Solution

0 EXAMPLE 3.21

Solution

From the samples z2(n) in Example 3.18b reconstruct z.(t) and comment on
the results.

In this case £2(n) was obtained by sampling za4(t) at T, = 1/F, = 0.001 sec. We
will again use the grid spacing of 0.00005 sec over ~0.005 < t < 0.005, which
gives z(n) over -5 < n < 5.

% Discrete-time Signal x2(n)
>> Ts = 0.001; n = -5:1:5; nTs = nx*Ts;
>> x = exp(-1000+abs(2Ts));
% Analog Signal reconstruction
>> Dt = 0.00005; t = -0.008:Dt:0.005;
>> xa = x * sinc(Fs*(ones(length(n),1)*t-nTs’*ones(1,length(t))));
% check
>> error = max(abs{xa - sxp(-1000*abs(t))))
error =
0.1852

The maximum error between the reconstructed and the actual analog signal is
0.1852, which is significant and cannot be attributed to the nonband-limitedness
of z4(t) alone. From Figure 3.16 observe that the reconstructed signal differs
from the actual one in many places over the interpolated regions. This is the
visual demonstration of aliasing in the time domain. 0

The second MATLAB approach for signal reconstruction is a plotting
approach. The stairs function plots a staircase (ZOH) rendition of the
analog signal, given its samples, while the plot function depicts a linear
(FOH) interpolation between samples.

Plot the reconstructed signal from the samples z; (n) in Example 3.18 using
the ZOH and the FOH interpolations. Comment on the plots.

Note that in this reconstruction we do not compute z, (¢} but merely plot it
using its samples.

Reconstructed Signal from x2(n) using sinc function

1 T — T T T T T “
051]
g
x
__0'5 1 1 — 1 A 1 i 1 1
-5 -4 -3 -2 -1 0 1 2 3 4 5
1in msec.

FIGURE 3.16 Reconstructed signal in Example 3.20

Sampling and Reconstruction of Analog Signals 71

% Discrete-time Signal x1(n) : Ts = 0.0002

> T = 0.0002; n = -25:1:26; nTs = n*Ts;

>> x = exp(~1000*abs(nTs)) ;

% Plots

>> subplot(2,1,1); stairs(nTs*1000,x);

>> xlabel(’t in msec.’); ylabel(’xa(t)’)

>> title(’Reconstructed Signal from x1(n) using zero-order-hold’); hold on
>> stem(n*Ts*1000,x); hold off

%

% Discrete-time Signal x2(n) : Ts = 0.001

>> Ts = 0.001; n = -5:1:5; nTs = n*Ts;

> x = exp(-1000+abs(nTs));

% Plots

>> subplot(2,1,2); stairs(nTs*1000,x);

>> xlabel(’t in mgec.’); ylabel(’xa(t)’)

>> title(’Reconstructed Signal from x2(n) using zero-order-hold’); hold on
>> stem(n*Ts*1000,x); hold off

The plots are shown in Figure 3.17, from which we observe that the ZOH re-
construction is a crude one and that the further processing of analog signal is
necessary. The FOH reconstruction appears to be a good one, but a careful
observation near t = 0 reveals that the peak of the signal is not correctly repro-

Reconstructed Signal from x1(n) using zero-order-

1 T T T T T —T

0.8

0.61

xa(t)

0.4f

tin msec.
Reconstructed Signal from x1(n) using first—order—hoid

1 — T T T T T — T

0.8}]

06} -

xa(t)

0.4 L p

0.2 4

%5 4 -3 -2 - o 1 2 3 4 5
tin msec.

FIGURE 3.17 Signal reconstruction in Example 3.21

7

Chapter 3 ® THE DISCRETE-TIME FOURIER ANALYSIS

O EXAMPLE 3.22

duced. In general, if the sampling frequency is much higher than the Nyquist
rate, then the FOH interpolation provides an acceptable reconstruction. [m]

The third approach of reconstruction in MATLAB involves the use of
cubic spline functions. The spline function implements interpolation be-
tween sample points. It is invoked by xa = spline(nTs,x,t), in which x
and nTs are arrays containing samples z(n) at nT instances, respectively,
and t array contains a fine grid at which z,(t) values are desired. Note
once again that it is not possible to obtain an ezact analog z4(t).

From the samples z1(n) and 2 (n) in Example 3.18, reconstruct z.(t) using
the spline function. Comment on the results.

This example is similar to Examples 3.19 and 3.20. Hence sampling parameters
are the same as before.

% a) Discrete-time Signal xi(n): Ts = 0.0002
> Ts = 0.0002; n = -25:1:25; nTs = n*Ts;

>> x = exp(-1000+abs(nTs));

% Analog Signal reconstruction

> Dt = 0.00005; t = -0.006:Dt:0.005;

>> xa = spline(nTs,x,t);

% check

>> error = max(abs(xa ~ exp(-1000*abs(t))))
error = 0.0317

The maximum error between the reconstructed and the actual analog signal
is 0.0317, which is due to the nonideal interpolation and the fact that z,(t)
is nonband-limited. Comparing this error with that from the sinc (or ideal)
interpolation, we note that this error is lower. The ideal interpolation gener-
ally suffers more from time-limitedness (or from a finite number of samples).
From the top plot in Figure 3.18 we observe that visually the reconstruction is
excellent.

% Discrete-time Signal x2(n): Ts = 0.001
> Ts = 0.001; n = -5:1:5; nTs = n*Ts;

>> x = exp(-1000*abs(nTs));

% Analog Signal reconstruction

>> Dt = 0.00005; t = -0.005:Dt:0.005;

>> xa = spline(nTs,x,t);

% check

>> error = max(abs(xa - exp(-1000*abs(t))}))
error = 0.1679

The maximum error in this case is 0.1679, which is significant and cannot be
attributed to the nonideal interpolation or nonband-limitedness of z4(t). From
the bottom plot in Figure 3.18 observe that the reconstructed signal again differs
from the actual one in many places over the interpolated regions. o

Sampling and Reconstruction of Analog Signals 73

PROBLEMS

Reconstructed Signal from x1{n) using cubic spline function
1 L T T T . T T T T

08} p

0.6r 4

xa(t)

0.4

o2}]

&4

-4 -3 -2 -1 0 1 2 3 4 5
tin msec.
Reconstructed Signal from x2(n) using cubic spline function

1 T — T T

o8t :

0.6 | J

xa(t)

041 1

0.2r 1

5 4 8 =2 4 o 1 2 3 4 5
t in msec.

FIGURE 3.18 Reconstructed signal in Example 3.22

From these examples it is clear that for practical purposes the spline
interpolation provides the best results.

P3.1

—-

Write a MATLAB function to compute the DTFT of a finite-duration sequence. The format
of the function should be

function [X]) = dtft(x,n,w)
% Computes Discrete-time Fourier Transform
% [X] = dtft(x,n,w)

%

% X = DTFT values computed at w frequencies
% x = finite duration sequence over n

% n = sample position vector

% w = frequency location vector

P3.2

Use this function to compute the DTFT in the following problems (wherever required).
For each of the following sequences, determine the DTFT X (ei”). Plot the magnitude and
angle of X (e”")

74

Chapter 3 ® THE DISCRETE-TIME FOURIER ANALYSIS

P3.3

P34

P3.5

P3.6

P3.7

P38

a. z(n) =2(0.8)" [u(n) — u(n — 20))
b. z(n) =n(0.9)" [u(n) —u(50)]
c. z(n) ={4,3,2,1,2,3,4}. Comment on the angle plot.
t
d. z(n) = {4,3,2,1,1,2,3,4}. Comment on the angle plot.
T
e. z(n)={4,3,2,1,0,-1,-2,—3,—-4}. Comment on the angle plot.
1
f. z(n)={4,3,2,1,-1,-2,-3,—4}. Comment on the angle plot.
1
Determine analytically the DTFT of each of the following sequences. Plot the magnitude
and angle of X (/) using MATLAB.
a z(n)=3(09)>u(n)
b. z(n) =2(0.8)" u(n - 2)
c. z(n)=n(0.5"u(n)
d. z(n)=(n+2)(-0.7)" u(n-2)
e. z(n)=5(—0.9)" cos (0.17n) u(n)
A symmetric rectangular pulse is given by
1, -N<n<N
0, otherwise

RN (n) = {

Determine the DTFT for N =5, 15, 25, 100. Scale the DTFT so that X (/) = 1. Plot the
normalized DTFT over [—, n]. Study these plots and comment on their behavior as a
function of N.

Repeat Problem 3.4 for a symmetric triangular pulse that is given by
Tn(n) = [1 - lNll] Rw(n)
Repeat Problem 3.4 for a symmetric raised cosine pulse that is given by

m

Cx (n) = [0.5 +05c08 (-)] R (n)

A complex-valued sequence z (n) can be decomposed into a conjugate symmetric part
z. (n) and a conjugate-antisymmetric part ., (n) as discussed in Chapter 2. Show that

Flze(n)) = Xr (ej“") and Flz.(n)] =jXr (e’”)

where Xg (ej“) and Xy (e’“’) are the real and imaginary parts of the DTFT X (ej“),
respectively. Verify this property on

z(n) = 1™ [u(n) — u(n ~ 20)]
using the MATLAB functions developed in Chapter 2.

A complex-valued DTFT X (ej“’) can also be decomposed into its conjugate-symmetric
part X. (e"") and conjugate-antisymmetric part X, (ej“); that is,

X () = Xe (%) + Xo ()

Problems 75

P3.9

P3.10

P3.11

P3.12

P3.13

where
X () =)+ X ()] md X () =[x () - X ()]
Show that
FHX ()] =2r(n) and F7[Xo(e™)] =21 (n)
where zg (n} and x; (n) are the real and imaginary parts of x (n). Verify this property on
z(n) = €41 [y (n) — u (n — 20)]

using the MATLAB functions developed in Chapter 2.
Using the frequency-shifting property, show that the DTFT of a sinusoidal pulse

z (n) = (coswon) Ry (n)

is given by

sin {{w — wq) /2} 2 | Tsin {(w + wo) /2}

2
where R (n) is the rectangular pulse given in Problem 3.4.
Compute and plot X (e"") for w, = 7/2 and N =5, 15, 25, 100. Use the plotting interval
[—=,). Comment on your results.

X () =% sin {(w — wo) N/2}] 1 [sin{(w+wo)N/2}

Let z (n) = T10 (n) be a triangular pulse given in Problem 3.5. Using properties of the
DTFT, determine and plot the DTFT of the following sequences.

a. z(n) =T (-n)
b. z(n) = 710 (n) ~ T1o (n — 10)
c. {n) = Tio (n) * Tio (—n)
d. z(n) = Tio (n) &™
e. z(n) =T (n) - Tro (n)
For each of the linear timé-invariant systems described by the impulse response, determine
the frequency response function H (ej‘”) and plot the magnitude response lH (ei”)l and
the phase response ¢H (&').
. h(n) = (0.9)"
. h(n) =sinc (0.2n) [u (n + 20) — u{n — 20)], where sinc0 = 1.
h(n) = sinc(0.2n) [u (n) — u (n — 40)]
- h(n) =[(0.5)" + (0.4)") u(n)
e. h{n) = (0.5)" cos (0.17n)
Let z (n) = 3cos (0.57n + 60°) + 2sin (0.371) be the input to each of the systems described
in Problem 3.11. In each case determine the output y (n).

w

a0 o

An ideal lowpass filter is described in the frequency domain by

1-e7i jwl <we

Ha () = {0’

where w, is called the cutoff frequency and « is called the phase delay.

we < |w| <7

7%

Chapter 3 & THE DISCRETE-TIME FOURIER ANALYSIS

P3.14

P3.15

P3.16

8. Determine the ideal impulse response hq (n) using the IDTFT relation (3.2).
b. Determine and plot the truncated impulse response
hg(n), 0<n<N-1
h (n) - d ()) ==
0, otherwise
for N = 41, a = 20, and w, = 0.57.
c. Determine and plot the frequency response function H (ej“’) and compare it with the
ideal lowpass filter response Hq4 (e’""). Comment on your observations.
An ideal highpass filter is described in the frequency domain by
: 1-e79 w<|w<n
Hg{e') = ’ -
+(=) {0, ol < we
where w, is called the cutoff frequency and « is called the phase delay.
a. Determine the ideal impulse response hg (n) using the IDTFT relation (3.2).
b. Determine and plot the truncated impulse response

hg(n), 0<n<N-1
h(n)= -
0, otherwise
for N = 31, a = 15, and w. = 0.57.
c. Determine and plot the frequency response function H (e"") and compare it with the
ideal highpass filter response Hy (ej“’). Comment on your observations.
For a linear time-invariant system described by the difference equation

M N
y(n) = mez(n-—m)—Zaw(n—Z)

m=0 =1

the frequency response function is given by

M .
b () = Ezgbne ™"
1+ 3,0, are™

Write a MATLAB function freqresp to implement the above relation. The format of this
function should be

function [H] = freqresp(b,a,w)

% Frequency response function from difference equation

% [H] = freqresp(b,a,vw)

% H = frequency response array evaluated at w frequencies
% b = numerator coefficient array

% a = denomihator coefficient array (a(1)=1)

% w = frequency location array

Determine H (ej “’) and piot its magnitude and phase for each of the following systems.

a. y(n) = qu=oz(n—m)
b.y(n)=z(n)+2x(n-1)+z(n-2)—05y(n—1)—0.25y(n —2)

Problems

n

c. y(n)=2z(n)+z(n—~1)-025y(n—1)+0.25y (n — 2)
d.yn)=z(n)+z(n—2)-08ly(n-2)
e ym=2(m) -, 05 yn-0

P3.17 A linear time-invariant system is described by the difference equation

3 3

y(n)= Ez(n -2m) - Z(D.Bl)‘y(n—%)

m=0 =1

Determine the steady-state response of the system to the following inputs:
a z{n)=5+10(-1)"
b. z(n) =1+ cos(0.57n + x/2)
c. z(n) = 2sin(wn/4) + 3cos (3rn/4)
d. z{n) =3}, (k + 1) cos (wkn/4)
e. z(n) = cos(mwn)
In each case generate = (n), 0 < n < 200 and process it through the filter function to
obtain y (n). Compare your y (n) with the steady-state responses in each case.

P3.18 An analog signal z,, () = sin (1000t) is sampled using the following sampling intervals. In
each case plot the spectrum of the resulting discrete-time signal.

8. T, =01ms
b. T, =1ms
c. T, = 0.01 sec

P3.19 We have the following analog filter, which is realized using a discrete filter.

za (t) —[A/D

] 2 (57K 0

The sampling rate in the A/D and D/A is 100 sam/sec, and the impulse response is
h(n) = (0.5)" u(n).
a. What is the digital frequency in z (n} if z. (t) = 3 cos (20mt)?
b. Find the steady-state output ya (t) if za () = 3cos (20xt).
¢. Find the steady-state output ya (£) if za (£) = 3u(2).
d. Find two other analog signals z, (t), with different analog frequencies, that will give the
same steady-state output y, (f) when z, () = 3 cos (20wt) is applied.
e. To prevent aliasing, a prefilter would be required to process zq (t) before it passes to the
A/D converter. What type of filter should be used, and what should be the largest cutoff
frequency that would work for the given configuration?

P3.20 Consider an analog signal z, (t} = sin (20wt), 0 < ¢ < 1. It is sampled at T, = 0.01, 0.05,
and 0.1 sec intervals to obtain x (n).

a. For each T, plot z (n).

b. Reconstruct the analog signal y, () from the samples z (n) using the sinc interpolation
(use At = 0.001) and determine the frequency in y, (t) from your plot. (Ignore the end
effects.)

18 Chapter 3 B THE DISCRETE-TIME FOURIER ANALYSIS

P3.21

¢. Reconstruct the analog signal y, (t) from the samples x (n) using the cubic spline
interpolation and determine the frequency in ya (t) from your plot. (Ignore the end effects.)
d. Comment on your results.

Consider the analog signal z, (t) = sin (20nt +7/4), 0 < t < 1. It is sampled at T, = 0.05
sec intervals to obtain z (n).

a. Plot z. (t) and superimpose z (n) on it using the plot(n,x,’0’) function.

b. Reconstruct the analog signal y. (t) from the samples x (r) using the sinc interpolation
(use At = 0.001) and superimpose (n) on it.

¢. Reconstruct the analog signal ya (£) from the samples = (n) using the cubic spline
interpolation and superimpose z (n) on it.

d. You should observe that the resultant reconstruction in each case has the correct
frequency but a different amplitude. Explain this observation. Comment on the role of
phase of z, (t) on sampling and reconstruction of signals.

Problems 9

THE Z-TRANSFORM

In Chapter 3 we studied the discrete-time Fourier transform approach for
representing discrete signals using complex exponential sequences. This
representation clearly has advantages for LTI systems because it describes
systems in the frequency domain using the frequency response function
H(e"™). The computation of the sinusoidal steady-state response is greatly
facilitated by the use of H(e/*). Furthermore, response to any arbitrary
absolutely summable sequence z(n) can easily be computed in the fre-
quency domain by multiplying the transform X(e’*) and the frequency
response H(e’“). However, there are two shortcomings to the Fourjer
transform approach. First, there are many useful signals in practice—
such as u(n) and nu(n)—for which the discrete-time Fourier transform
does not exist. Second, the transient response of a system due to ini-
tial conditions or due to changing inputs cannot be computed using the
discrete-time Fourier transform approach.

Therefore we now consider an extension of the discrete-time Fourier
transform to address the above two problems. This extension is called the
z-transform. Its bilateral (or two-sided) version provides another domain
in which a larger class of sequences and systems can be analyzed, while its
unilateral (or one-sided) version can be used to obtain system responses
with initial conditions or changing inputs.

THE BILATERAL z-TRA:SFORM

The z-transform of a sequence z(n) is given by
A o0
X(2) 2 Z[z(m)= Y z(n)z™" (4.1)

n=-—00

where z is a complex variable., The set of z values for which X(2) exists

80

a

EXAMPLE 4.1

is called the region of convergence (ROC) and is given by
Ry <|2f < Rzt 4.2

for some positive numbers R;_ and R,,..
The inverse z-transform of a complex function X(z) is given by

(n) & 21 [X(2)] = % }i X(2)2" s (43)

where C is a counterclockwise contour encircling the origin and lying in
the ROC.

Comments:

1. The complex variable z is called the complezx frequency given by
z = |z| e, where |2| is the attenuation and w is the real frequency.

2. Since the ROC (4.2) is defined in terms of the magnitude |z{, the
shape of the ROC is an open ring as shown in Figure 4.1. Note that R;_
may be equal to zero and/or R4 could possibly be oo.

3. If R,y < R,_, then the ROC is a null space and the z-transform
does not exist.

4. The function 2| = 1 (or z = €/*) is a circle of unit radius in the
z-plane and is called the unit circle. If the ROC contains the unit circle,
then we can evaluate X(z) on the unit circle.

[=+]

X(2)lsmere = X(*) = 3 z(n)e™ = Fla(n)}

n=—0co

Therefore the discrete-time Fourier transform X(e’“) may be viewed as
a special case of the z-transform X(z).

Let z3(n) = a™u(n), 0 < |a] < oo. (This sequence is called a positive-time
sequence). Then

R(z)

FIGURE 4.1 A general region of convergence

The Bilateral 2-Transform 81

FIGURE 4.2 The ROC in Ezample 4.1

e oo
X = e =30 (3) = o 5 <1
o]

z
= > |a} = ROCq: <
T lE>lal 1 lal <lz) < o0,
Ry Rey
Note: X;(z) in this example is a rational function; that is,

2 B(z) z
Az) z—a

Xi(z

where B(z) = z is the numerator polynomial and A(z) = z—a is the denominator
polynomial. The roots of B(z) are called the zeros of X(z), while the roots of
A(z) are called the poles of X(z). In this example X1(z) has a zero at the origin
2z =0 and a pole at z = a. Hence z,(n) can also be represented by a pole-zero
diagram in the z-plane in which zeros are denoted by ‘o’ and poles by ‘x’ as
shown in Figure 4.2. a

o EXAMPLE 42 Let z2(n) = —b"u{—n—1),0 < |b| < co. (This sequence is called a negative-time
sequence.) Then

X == Lpe = 5 (2)"

—
™

=l_m=z——-§’ ROCs: 0 < fz| < {b]
Rz Rz

The ROC: and the pole-zero plot for this z2(n) are shown in Figure 4.3.
Im{z}

Re{z}

FIGURE 4.3 The ROC in Ezample 4.2

[¥3 Chapter 4 m THE 2-TRANSFORM

u] EXAMPLE 4.3

PROPERTIES
OF THE ROC

Note: If b = a in this example, then X2(z) = X1(2) except for their respective
ROCs; that is, ROC; # ROC;. This implies that the ROC is a distinguishing
feature that guarantees the uniqueness of the z-transform. Hence it plays a very
important role in system analysis. ju]

Let z3(n) = 21(n) + z2(n) = a™u(n) — b"u(—n — 1) (This sequence is called a
two-sided sequence.) Then using the above two examples,

oo

X3(z) = Za"z_" - ib"z—"
-0

n=0

:{ Z_ ROC: |z|>|a1}+{-z—f—b,aocu |z|<|b|}

z—a’
z z

EARTL

ROC3: ROCL N ROC:

If |b] < la}, the ROC3 is a null space and X3(z) does not exist. If |a] < {3,
then the ROC; is |a] < }z| < |b] and X3(z) exists in this region as shown in
Figure 4.4. 0

From the observation of the ROCs in the above three examples, we state
the following properties.

1. The ROC is always bounded by a circle since the convergence
condition is on the magnitude |z].

2. The sequence z1(n) = a™u(n) in Example 4.1 is a special case of
a right-sided sequence, defined as a sequence z(n) that is zero for some
n < ng. From Example 4.1 the ROC for right-sided sequences is always
outside of a circle of radius R,_. If ng > 0, then the right-sided sequence
is also called a causal sequence.

3. The sequence z2(n) = —b"u(—n — 1) in Example 4.2 is a special
case of a left-sided sequence, defined as a sequence z(n) that is zero for
some n > ng. If ng < 0, the resulting sequence is called an anticausal
sequence. From Example 4.2 the ROC for left-sided sequences is always
inside of a circle of radius R, .

Im{z}

6 Y-

Re{z}

A

FIGURE 4.4 The ROC in Ezample 4.3

The Bilateral 2-Transform 83

4. The sequence z3(n) in Example 4.3 is a two-sided sequence. The
ROC for two-sided sequences is always an open ring R, < |2| < Ry
if it exists.

5. The sequences that are zero for n < n; and n > ny are called
finite-duration sequences. The ROC for such sequences is the entire 2z-
plane. If n; < 0, then z = o is not in the ROC. If n, > 0, then z =0 is
not in the ROC.

6. The ROC cannot include a pole since X (z) converges uniformly
in there. .

7. There is at least one pole on the boundary of a ROC of a rational
X(2).

8. The ROC is one contiguous region; that is, the ROC does not come
in pieces.

In digital signal processing, signals are assumed to be causal since
almost every digital data is acquired in real time. Therefore the only
ROC of interest to us is the one given in 2 above.

IMPORTANT PROPERTIES OF THE :-TRANSFORM
—i

The properties of the z-transform are generalizations of the properties
of the discrete-time Fourier transform that we studied in Chapter 3. We
state the following important properties of the 2-transform without proof.

1. Linearity:

Z[ayzi(n) + agx2(n)] = a1 X1(2) + a2 X2(z); ROC: ROC,;, NROC,,

(4.4)
2. Sample shifting:
Zjz(n-no)l = 2z7™X(z); ROC: ROC, (5)
3. Frequency shifting:
Zf"z(n)) = X (2); ROC:ROC, scaled by la| (46)
4. Folding:
Z[z(~n)) = X (1/2); ROC: Inverted ROC, (%))
5. Complex conjugation:
Z[s*(n)] = X*(z*); ROC: ROC; (48)

84 Chapter 4 ® THE 2-TRANSFORM

] EXAMPLE 4.4
Solution
a EXAMPLE 4.5

6. Differentiation in the 2-domain:

d—}iii)- ROC: ROC, (49)

Znz(n)] =~z 7

This property is also called “multiplication by a ramp” property.
7. Multiplication:
Z [z (n)zs ()] = —— }{ X1 () Xz (2/v) v~ 2w, (4.10)
2r3 Jo
ROC: ROC,, NInverted ROC;,

where C is a closed contour that encloses the origin and lies in the common
ROC.
8. Counvolution:

Ziz1(n) * 22(n)] = X1(2)X2(z); ROC: ROC,, N ROC,, (4.11)

This last property transforms the time-domain convolution operation
into a multiplication between two functions. It is a significant property
in many ways. First, if X;(z) and X3(2) are two polynomials, then their
product can be implemented using the conv function in MATLAB.

Let X1(z) = 2+ 327" + 4272 and Xz(2) = 3+ 427" + 5272+ 627>, Determine
Xs(z) = X3(2)X2(2).

From the definition of the z-transform we observe that
z1(n) = {2,3,4} and z2(n) = {3,4,5,6}
T t

Then the convolution of the above two sequences will give the coefficients of the
required polynomial product.

>> x1 = [2,3,4]); x2 = [3,4,5,6];
>> x3 = conv{xl,x2)
3 = 6 17 3¢ 43 38 24

Hence
Xs(2) =6+ 17271 + 34272 + 43273 + 3827 + 2427°

Using the conv.m function developed in Chapter 2, we can also multiply
two z-domain polynomials corresponding to noncausal sequences. u]

Let Xi(z) = z+2+327" and Xa(2) = 222 +42+ 3+ 52z~ 1. Determine X3(z) =
X1(2) X2(z).

Important Properties of the z-Transform 85

Solution

Note that

1(n)={1,2,3} and =za(n)={2,4,3,5}
1 1
Using MATLAB,

>> x1 = [1,2,3); n1 = [-1:1];
> x2 = [2,4,3,5]; n2 = [-2:1];
>> (x3,n3] = conv_m(x1l,n1,x2,n2)
x3 = ’
2 8 17 23 19 15
n3 =
-3 -2 -1 0 1 2

we have

Xa(z) = 22° + 822 + 172 + 23+ 1927 + 15272 D

In passing we note that to divide one polynomial by another one, we
would require an inverse operation called deconvolution [19, Chapter 6].
In MATLAB [p,r] = deconv(b,a) computes the result of dividing b by
a in a polynomial part p and a remainder r. For example, if we divide the
polynomial X3(z) in Example 4.4 by X;(2),

> x3 = [6,17,34,43,38,241; x1 = (2,3,4];
>> [x2,r] = deconv(x3,x1)
x2 =
3 4 5 6
re=
0 0 0 0 0 0

then we obtain the coefficients of the polynomial X2(z2) as expected. To
obtain the sample index, we will have to modify the deconv function
as we did in the conv_m function. This is explored in Problem 4.8. This
operation is useful in obtaining a proper rational part from an improper
rational function.

The second important use of the convolution property is in system
output computations as we shall see in a later section. This interpreta-
tion is particularly useful for verifying the z2-transform expression X(z)
using MATLAB. Note that since MATLAB is a numerical processor (unless
the Symbolic toolbox is used), it cannot be used for direct z-transform
calculations. We will now elaborate on this. Let z(n) be a sequence with
a rational transform

B(z)

X(2)= A)

Chapter 4 m THE 2-TRANSFORM

where B(z) and A(z) are polynomials in z~1. If we use the coefficients of
B{z) and A(z) as the b and a arrays in the filter routine and excite this
filter by the impulse sequence (1), then from (4.11) and using Z [6 (n)] =
1, the output of the filter will be z(n). (This is a numerical approach of
computing the inverse z-transform; we will discuss the analytical approach
in the next section.) We can compare this output with the given z(n) to
verify that X(z) is indeed the transform of z(n). This is illustrated in

Example 4.6.
SOME Using the definition of z-transform and its properties, one can determine
COMMON z-transforms of common sequences. A list of some of these sequences is
2z-TRANSFORM given in Table 4.1.

PAIRS

I} EXAMPLE 46 Using 2-transform properties and the z-transform table, determine the =2-
transform of

(n) = (n ~ 2)(0.5)" cos [g—(n - 2)] u(n —2)

TABLE 4.1 Some common z-transform pairs

Sequence Transform ROC
6(n) 1 vz
u(m) —— PE

~u(-n~1) T <1
au(n) s Izt > fal
—tru(-n-1) = el < o

(asinwg)z™!

[a” sin won} u(n) T=Gacoswo)z T ¥ a2 2 {z| > lal
[a™ cos won] uln) = (;;(5:::;::}1):-;;2;—2 |z] > al

na"u(n) (T_a—z;-‘_l—)g 2] > |af
—nb u(—n — 1) a—_bi;_T); fz) < {b]

Important Properties of the z-Transform 87

Solution Applying the sample-shift property,

X(2) = Zlz(n)] = 222 [n(O.S)" cos (”—;) u(n)]

with no change in the ROC. Applying the multiplication by a ramp property,

X(2) = 2 { _,42[(09)" s (5n) u(m)] }

dz

with no change in the ROC. Now the z2-transform of (0.5)™ cos (%n) u(n) from

Table 4.1 is
1-(05cos)zt
Z [(0.5)"(:05 (m) u(n)] = (cos 3) 1> 08
. 3 1-2(05c05 %) 2 +0.2652
1-0.252"1
=TS0 vozme A>03
Hence
d 1-0.2572
-1 &) 1—020z 7 |
X(z) = -2 dz {1 05T 1 0.255-2 } , el > 0.5
-0.252"% +0.527° — 0.06252™*
= - ~1 .
‘ {1 — 271 40.752~2 - 0.252~3 $0.0625z-4) lzl > 0.5
3 R4 .
0.252 0.5z~ + 0.06252 05

T 1271107522 — 02523 + 0.0625z-4"

MATLAB verification: To check that the above X(z) is indeed the correct ex-
pression, let us compute the first 8 samples of the sequence z(n) corresponding
to X(z) as discussed before.

> b = (0,0,0,0.25,-6.5,0.0625}; a = [1,-1,0.75,-0.25,0.0625);
>> [delta,n)=impseq(0,0,7)
delta =
i 0 0 [0 0 0 0
n =
0 i 2 3 4 5 6 7
>> x = filter(b,a,delta) ¥ check sequence
x =
Columns 1 through 4
0 0 0 0.25000000000000
Columns 5 through 8
=0.25000000000000 -0.37500000000000 ~0.126500000000000 0.07812500000000
>> x = [(n-2).%(1/2) .~ (n~2) .*cos(pi*(n-2)/3)] .#stepseq(2,0,7) % original sequence
x =
Columns 1 through 4
0 0 0 0.25000000000000

Chapter 4 W THE 2-TRANSFORM

Columns § through 8
-0.25000000000000 ~0.37500000000000 -0.12500000000000 0.07812500000000

This approach can be used to verify the z-transform computations.]

INVERSION OF THE z-TRANSFORM
—

From definition (4.3) the inverse z-transform computation requires an
evaluation of a complex contour integral that, in general, is a complicated
procedure. The most practical approach is to use the partial fraction ex-
pansion method. It makes use of the z-transform Table 4.1 (or similar
tables available in many textbooks.) The z-transform, however, must be
a rational function. This requirement is generally satisfied in digital signal
processing.

Central Idea: When X(z) is a rational function of z~1, it can be ex-
pressed as a sum of simple (first-order) factors using the partial fraction
expansion. The individual sequences corresponding to these factors can
then be written down using the z-transform table.

The inverse z-transform procedure can be summarized as follows:

Method: Given

_ bo+biz7 o bpyyzM
T 1+az 4 fayz N

X(2) R._ <l2] < Roy (4.12)

® express it as

X(z)=Eo+l§1z-1+--~+EN_1z-(N-1) . MENC S+
1+ayz7t4+---+ayz~¥ = k

Proper rational part

e e’
polynomial part if M>N

where the first term on the right-hand side is the proper rational part
and the second term is the polynomial (finite-length) part. This can be
obtained by performing polynomial division if M > N using the deconv
function.
e perform a partial fraction expansion on the proper rational part of
X(z) to obtain
N R, M-N
X(z)=) —————— ~k 4.1
(2) k; TE——— ;) Crz (4.13)

M>N

Inversion of the z-Transform 89

a EXAMPLE 4.7

where py. is the kth pole of X(z) and Ry, is the residue at pj. It is assumed
that the poles are distinct for which the residues are given by

_ bo +biz 1+ 4+ by_1z~W-D

R
* 1+a12714--- +anz=¥

(1-pez™)

2=pk

For repeated poles the expansion (4.13) has a more general form. If a pole
px has multiplicity r, then its expansion is given by

r Rk,tz"(l‘l) By Rk’zz"l - Rk,rz—(r—l)
= A-pe) 1-mz ™t (1-pat)? (A~ pez)
(4.14)

where the residues Ry ¢ are computed using a more general formula, which
is available in [19].
e write z{n) as

N 1 M-N
— -1y - —
z(n)_kz::lez [1-p,,z—1] + ’go Cib(n — k)

M>N
o finally, use the relation from Table 4.1
11 < _
z-1 [2] _ ”Pk“(") foel < Ry (.15)
Z =Pk —ppu(-n—1) |e| > Ret
to complete z(n).

Find the inverse z-transform of z(z) = z

322 42417
Solution Write
1-1t
z 3z
X(z) = = 3
@ 32-3z+3) 1-fz1+ 12
_ 3 5 ___3
(1-z1)(1-3271) 1-zt 1-4p1
or
1 1 1 1
X(z) = 2 (1 —z“) T3 (l - %z‘“‘)
Now, X(z) has two poles: z1 = 1 and z; = %; and since the ROC is not specified,
there are three possible ROCs as shown in Figure 4.5.
] Chapter 4 W THE 2-TRANSFORM

Im{z} Im{z}

Re{z}

ROC,

FIGURE 4.5 The ROCs in Ezample 4.7

a. ROCy: 1 < |z| < oo. Here both poles are on the interior side of the
ROC;; that is, |z;) < R»— =1 and |zz| < 1. Hence from (4.15)

zi(n) = -;—u(n) - % (%)"u(n)

which is a right-sided sequence.
b. ROCz2: 0 < |2 < } Here both poles are on the exterior side of the
ROC,; that is, 21| > R¢+ = 1 and |z2| > }. Hence from (4.15)

za(n) = } {=u(-n— D} = 3 {~ (§)"u(-n-1)}

1 I\ 1
=3 (5) u(-n-1)— Eu(—n -1)
which is a left-slded sequence.

¢. ROC3: < |2} < 1. Here pole 2 is on the exterior side of the ROC:;——
that is, |21| > Ra4 = 1—while pole 2; is on the interior side—that is, |25} < 3
Hence from (4.15)

z3(n) = —%u(—n -~1)- % (%)"u(n)

which is a two-sided sequence. [m]
MATLAB A MATLAB function residuez is available to compute the residue part
IMPLEMEN- and the direct (or polynomial) terms of a rational function in z'. Let

TATION
bo+bzl+--+bye™ B(z)

ap+arz-l+---4anz N T A(z)

—zl Prz— ZC},Z

M>N

X(z) =

be a rational function in which the numerator and the denominator poly-
nomials are in ascending powers of z2~1. Then [R,p,C]l=residuez(b,a)

Inversion of the z-Transform 91

o EXAMPLE 4.8

finds the residues, poles, and direct terms of X (z) in which two poly-
nomials B (z) and A(z) are given in two vectors b and a, respectively.
The returned column vector R contains the residues, column vector p
contains the pole locations, and row vector C contains the direct terms.

If p(k)=...=p(k+r-1) is a pole of multiplicity r, then the expansion in-
cludes the term of the form
R -
& Ri1a . Riyr—1 (4.16)

+ ot
T—pez™' ' (1 - pre1)? (L —prz)

which is different from (4.14).

Similarly, [b,al=residuez(R,p,C), with three input arguments and
two output arguments, converts the partial fraction expansion back to
polynomials with coefficients in row vectors b and a.

To check our residue functions, let us consider the rational function
z
X(@) = 322 —4z+1

given in Example 4.7.

Sodution First rearrange X (z) so that it is a function in ascending powers of z7*.
-1 -1
z 0+2
X(z) = =
QA sy ey Ry e e

Now using MATLAB,
>> b = [0,1]; a = [3,-4,1];
>> [R,p,C] = residuez(b,a)
R =

0.5000

-0.5000

p=

1.0000

0.3333
c =

0
we obtain
1 1
-2 _ 2
X(Z)'—l_z—l 1_%2_]

as before. Similarly, to convert back to the rational function form,
>> [b,a] = residuez(R,p,()
b =

0.0000

0.3333

92 Chapter 4 B THE 2-TRANSFORM

O EXAMPLE 4.9

1.0000
-1.3333
0.3333
so that
X(2) = 0+ %z'l _ 2! - z
Tl—2zt 42 T 3-42 4272 32-dr+1
as before. O

Compute the inverse z-transform of

1
(1-0.92-1)2 (1 +0.92-1)’

X(z) = 2| > 0.9

We can evaluate the denominator polynomial as well as the residues using MAT-
LAB.

> b =1; a = poly([0.9,0.9,-0.9))
a=
1.0000 -0.9000 -0.8100 0.7290

>> [R,p,Cl=residuez(b,a)
R =

0.2500

0.5000

0.2500
p =

0.9000

0.9000

-0.9000
c = ;

0

Note that the denominator polynomial is computed using MATLAB’s polynomial
function poly, which computes the polynomial coefficients, given its roots. We
could have used the conv function, but the use of the poly function is more
convenient for this purpose. From the residue calculations and using the order
of residues given in (4.16), we have

0.25 0.5 0.25
X@) =15+ 10817 T 15087 2} > 0.9
025 05 (0927%) 0.25

109271 Ez(l 09z 1409871 IZI >0.9

Inversion of the z-Transform 93

Hence from Table 4.1 and using the z-transform property of time-shift,
z(n) = 0.25(0.9)" u(n) + g (n+1)(0.9)™ u(n + 1) + 0.25(—0.9)" u(n)
which upon simplification becomes
z(n) = 0.75 (0.9)" u(n) + 0.5n (0.9)" u(n) + 0.25 (~0.9)" u(n)

MATLAB verification:

>> [delta,n]) = impseq(0,0,7);
> x = filter(b,a,delta) % check sequence
X =
Columns 1 through 4
1.00000000000000 0.90000000000000 1.62000000000000 1.45800000000000
Columns 5 through 8
1.96830000000000 1.77147000000000 2.12576400000000 1.91318760000000
>> x = (Q.75)%(0.9)."n + (0.5)*n.%(0.9)."n + (0.25)*(~0.9)."n ¥ answer sequence
x=
Columns 1 through 4
1.00000000000000 0.90000000000000 1.62000000000000° 1.45800000000000
Columns 5 through 8
1.96830000000000 1.77147000000000 2.12576400000000 1.91318760000000 [1

1 EXAMPLE 410 Determine the inverse z-transform of

140.44/2271
X(z) =
@ 1-0.8v2z-1 +0.642-2

so that the resulting sequence is causal and contains no complex numbers.

Solution We will have to find the poles of X (z) in the polar form to determine the ROC
of the causal sequence.

>> b = [1,0.4#sqrt(2)]; a=[1,-0.8*sqrt(2),0.64];
>> [R,p,C] = residuez(b,a)
R =
0.5000 1.0000i
0.5000 + 1.0000i
0.5657 + 0.56571
0.5657 - 0.5657i
C=

0
>> Mp=abs(p’) 4 pole magnitudes
Mp =
0.8000 0.8000
>> Ap=angle(p’)/pi % pole angles in pi umits
Ap =
-0.2500 0.2500

9% Chapter 4 @ THE 2-TRANSFORM

From the above calculations

05+7 0.5~
X(z)= = : y
@ 1-]0.8e %21 1-[0.8|ef%z1

and from Table 4.1 we have)
z(n) = (0.5 + 5) 10.8]" T T u(n) + (0.5 — 5)10.8]" &' I"u(n)
=08" [0.5{e " + T} + {7 4+ T} u(n)
= (08 [cos (%‘) +2sin (%‘)] u(n)

MaATLAB verification:

jz{ > 08

>> [delta, n] = impseq(0,0,6);
>> x = filter(b,a,delta) % check sequence
x =
Columns 1 through 4
1.00000000000000 1.69705627484771 1.28000000000000 0.36203867196751
Columns 5 through 8
-0.40960000000000 -0.69511425017762 -0.52428800000000 -0.14829104003789
>> x = ((0.8)."n).*(cos(pi*n/4)+2*sin(pi*=n/4))
x =
Columns 1 through 4
1.00000000000000 1.69705627484771 1.28000000000000 0.36203867196751
Columns 5 through 8
-0.40960000000000 -0.69511425017762 -0.52428800000000 -0.14829104003789

a

SYSTEM REPRESENTATION N THE -DOMAIN

Similar to the frequency response function H(e’“), we can define the
2-domain function, H(z), called the system function. However, unlike
H(e’), H(z) exists for systems that may not be BIBO stable.

H DEFINITION1 The System Function
The system function H(2) is given by

HE 2 Zhm) =S hme™ Ba <ld<Buy (A1)

Using the convolution property (4.11) of the z-transform, the output
transform Y'(z) is given by

Y(z) = H(z) X(2) : ROC, = ROC, NROC, (4.18)

System Representation in the z-Domain 95

SYSTEM
FUNCTION
FROM THE
DIFFERENCE
EQUATION
REPRESEN-
TATION

provided ROC, overlaps with ROC,. Therefore a linear and time-
invariant system can be represented in the 2-domain by

X(z) — — ¥(2) = H(z) X(2)

When LTI systems are described by a difference equation

N M
y(n)+ Y ary(n—k) =3 bez(n-9) (4.19)
k=1 £=0

the system function H(z) can easily be computed. Taking the z-transform
of both sides, and using properties of the z-transform,

N M
Y(2)+ Y ez (2) = b X(2)
£=0

k=1

or

M b —¢
sYE) __ &Y B

N =
1+ a2~k A@2)
k=1

(4.20)

boz~M (zM+---+%‘:~)

2NN+ +an)

Afier factorization, we obtain

N
T1(z—z)

H(z)=by N M EL (8.21)

T1(z—m)

k=1

where z,'s are the system zeros and py’s are the system poles. Thus H(z)
(and hence an LTI system) can also be represented in the z-domain using
a pole-zero plot. This fact is useful in designing simple filters by proper
placement of poles and zeros.

To determine zeros and poles of a rational H(z), we can use the
MATLAB function roots on both the numerator and the denominator
polynomials. (Its inverse function poly determines polynomial coefficients
from its roots as we discussed in the previous section.) It is also possible
to use MATLAB to plot these roots for a visual display of a pole-zero plot.
The function zplane(b,a) plots poles and zeros, given the numerator row
vector b and the denominator row vector a. As before, the symbol “o”

Chapter 4 ® THE 2.TRANSFORM

TRANSFER

FUNCTION

REPRESEN-
TATION

represents a zero and the symbol “x” represents a pole. The plot includes
the unit circle for reference. Similarly, zplane(z,p) plots the zeros in
column vector z and the poles in column vector p. Note very carefully the
form of the input arguments for the proper use of this function.

If the ROC of H(z) includes a unit circle (2 = /), then we can evaluate
H(z) on the unit circle, resulting in a frequency response function or
transfer function H(e’*). Then from (4.21)

Tl - =)
H{e®) = by I (VM) ~__._-—A’, (4.22)
I;[(ej“’ = Pk)

The factor (€7 — z¢) can be interpreted as a vector in the complex z-plane
from a zero z to the unit circle at z = ¢, while the factor (e’ — py)
can be interpreted as a vector from a pole py to the unit circle at z = e/,
This is shown in Figure 4.6. Hence the magnitude response function

‘ejw _zll...lejw ._ZMI

’gjw —pl, . ..,ejw —-pN,

|H(e™)| = [bo] (4.23)
can be interpreted as a product of the lengths of vectors from zeros to the
unit circle divided by the lengths of vectors from poles to the unit circle
and scaled by |bo|. Similarly, the phase response function

M N

LH(e™) =0 or 7] + (N~ M)w] +) L(™ —z) =D L(e" ~pi)
[N s A T 1

constant linear N o -’
nonlinear

(4.24)

Im{z}

FIGURE 4.6 Pole and zero vectors

System Representation in the z-Domain 97

MATLAB
IMPLEMEN-
TATION

0O EXAMPLE 4.11

can be interpreted as a sum of a constant factor, a linear-phase factor,
and a nonlinear-phase factor (angles from the “zero vectors” minus the
sum of angles from the “pole vectors”).

In Chapter 3 we plotted magnitude and phase responses in MATLAB by
directly implementing their functional forms. MATLAB also provides a
function called freqz for this computation, which uses the interpretation
given above. In its simplest form this function is invoked by

[H,v] = freqz(b,a,N)

which returns the N-point frequency vector w and the N-point complex fre-
quency response vector H of the system, given its numerator and denomi-
nator coefficients in vectors b and a. The frequency response is evaluated
at N points equally spaced around the upper half of the unit circle. Note
that the b and a vectors are the same vectors we use in the filter func-
tion or derived from the difference equation representation (4.19). The
second form

[H,w] = freqz(b,a,N, ’whole’)

uses N points around the whole unit circle for computation. In yet another
form

H = freqz(b,a,w)

it returns the frequency response at frequencies designated in vector w,
normally between 0 and .

Given a causal system

y(n) = 0.9y(n — 1) + z(n)

a. Find H(z) and sketch its pole-zero plot.
b. Plot |H(e?)| and ZH(e*).
c. Determine the impulse response h(n).

Solution The difference equation can be put in the form
y(n) — 0.9y(n — 1) = z(n)
a. From (4.21)
1
H(Z) = m—j, |Z| >0.9

since the system is causal. There is one pole at 0.9 and one zero at the origin.

We will use MATLAB to illustrate the use of the zplane function.
9 Chapter 4 @ THE 2-TRANSFORM

>> b =1, 0); a = [1, -0.9);
>> zplane(b,a)

Note that we specified b=[1,0) instead of b=1 because the zplane function
assumes that scalars are zeros or poles. The resulting pole-zero plot is shown in
Figure 4.7.

b. Using (4.23) and (4.24), we can determine the magnitude and phase
of H(e™). Once again we will use MATLAB to illustrate the use of the freqz
function. Using its first form, we will take 100 points along the upper half of
the unit circle.

>> [H,w] = freqz(b,a,100);

>> magH = abs(H); phaH = angle(H);

>> subplot(2,1,1);plot(w/pi,magh) ;grid

>> xlabel(’frequency in pi units’); ylabel(’Magnitude’);

>> title(’Magnitude Response’)

>> subplot(2,1,2);plot(w/pi,phal/pi);grid

>> xlabel(’frequency in pi units’); ylabel(’Phase in pi units’);
>> title(’Phase Response’)

The response plots are shown in Figure 4.8. If you study these plots carefully,
you will observe that the plots are computed between 0 < w < 0.997 and fall
short at w = . This is due to the fact that in MATLAB the lower half of the

Pole-Zero Plot

—— T T T T

0.8F i : . k

Imaginary part
e © o
o M » &
— T T
& 9
o
o
) L

o
]

o8t ‘. L ;

L L i ! L

-1 0.5 05 1

0
Real part

FIGURE 4.7 Pole-zero plot of Example 4.11a

System Representation in the 2-Domain 99

1 I 1 T
0 0.1 0.2 03 0.4 05 0.6 07 08 0.9 1
frequency in pi units

Phase in pi units
s &
N -h

S
W

. ; s : i
] 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 09 1
frequency in pi units

2
’,.4
L

FIGURE 4.8 Fregquency response plots in Example {.11

unit circle begins at w = . To overcome this problem, we will use the second
form of the freqz function as follows.

>> [H,w] = freqz(b,a,200, ’whole’);
>> magH = abs(H(1:101)); phaH = angle(H(1:101));

Now the 101st element of the array H will correspond to w = . A similar result
can be obtained using the third form of the freqz function.

>> w = [0:1:100]%pi/100;
> H = freqz(b,a,w);
>> magH = abs(H); phaH = angle(H);

In the future we will use any one of these forms, depending on our convenience.
Also note that in the plots we divided the w and phaHl arrays by pi so that
the plot axes are in the units of 7 and easier to read. This practice is strongly
recommended.

c. From the z-transform Table 4.1

L > 0.9] = (0.9)"u(n) o

h(n) =27 [1 — 0.9~

100

Chapter 4 @ THE 2-TRANSFORM

O EXAMPLE 412

Solution

Given that

z+1

H@) = s5e,vos

is a causal system, find

a. its transfer function representation,
b. its difference equation representation, and
¢. its impulse response representation.

The poles of the system function are at z = 0.9£ + r/3. Hence the ROC of the
above causal system is [z] > 0.9. Therefore the unit circle is in the ROC, and
the discrete-time Fourier transform H(e’*') exists.

a. Substituting z = &’ in H(z},

oy _ v +1 _ & +1
H(e") = €20 = 0.9¢/ +0.81 (e — 0.9ed7/3)(etw - 0.9¢~37/3)

b, Using H(z) =Y (2)/X(2),

Y(z) _ z+1 272\ 24272
X(z) 22-09z+081 \z2/ 1-09z"1+081z2

Cross multiplying,

Y(z) -~ 0.9z71Y(2) + 0.81z72Y (2) = 27 X (2) + 272X (2)
Now taking the inverse z-transform,

y(n) —0.9y(n — 1} +08ly(n — 2) =z(n—- 1)+ z(n - 2)
or

y(n) = 09y(n—1) - 081y(n — 2) + z(n — 1} + z(n — 2)

¢. Using MATLAB,

>>b = (0,1,11; a = {1,-0.9,0.81];
>> {R,p,C] = residuez(b,a)
R =
-0.6173 + 0.9979i
-0.6173 - 0.9979i
0.4500 - 0.7794i
0.4500 + 0.7794i
C=
1.2346
>> Mp = abs(p’)
Mp =
0.9000 0.9000

System Representation in the 2-Domain 101

>> Ap = angle(p’)/pi
Ap =
~0.3333 0.3333

we have

—0.6173 + j0.9979 = —0.6173 — j0.9979
T=[08]e-i7/3z=1 T T—[0.9]ein/oz—1 "’

H(z) = 1.2346 + lz] > 0.9

Hence from Table 4.1
h{n) = 1.23466(n) + [(—0.6173 + j0.9979) |0.9)" e~/
+(~0.6173 — 70.9979) [0.9{" &7™/*} u(n)
= 1.23466(n) + 10.9]" [—1.2346 cos (7n/3) + 1.9958 sin (7n/3)] u(n}
=10.9|" {—1.2346 cos (wn/3) + 1.9958 sin (1n/3)] u(n — 1)
The last step results from the fact that h(0) = 0. [m]

RELATIONSHIPS In this and the previous two chapters we developed several system repre-

BETWEEN sentations. Figure 4.9 depicts the relationships between these representa-
SYSTEM tions in a graphical form.
REPRESEN-
TATIONS
STABILITY For LTI systems the BIBO stability is equivalent to 3> |h(k)| < cc.
AND From the existence of the discrete-time Fourier transform this stability
CAUSALITY implies that H(e’~) exists, which further implies that the unit circle |z| =
1 must be in the ROC of H(z}. This result is called the z-domain stability
Express H(z) in 2 Take inverse
cross multiply and 2-transform
take inverse
Take Take
z-transform g
solve for Y/X z-transform
—
Substitute - y;
z=¢e" // Take inverse /
/ OTFT V4
{ 7
Take DTFT ~~ Take Fourier
solve for Y/X o transform
FIGURE 4.9 System representations in pictorial form
102 Chapter 4 8 THE 2-TRANSFORM

|] THEOREM 2

u THEOREM 3

O EXAMPLE 4.13

Solution

theorem; therefore the dashed paths in Figure 4.9 exist only if the system
is stable.

z-Domain LTI Stability
An LTI system is stable if and only if the unit circle is in the ROC
of H(z}.

For LTI causality we require that h{n) = 0, for n < 0 (i.e., a right-
sided sequence). This implies that the ROC of H(z) must be outside of
some circle of radius R,_. This is not a sufficient condition since any
right-sided sequence has a similar ROC. However, when the system is
stable, then its causality is easy to check.

z-Domain Causal LTI Stability
A causal LTI system is stable if and only if the system function H(z)
has all its poles inside the unit circle.

A causal LTI system is described by the following difference equation:
y(n) = 0.81y(n — 2) + z(n) — z(n - 2)
Determine

a. the system function H{(z},

b. the unit impulse response h(n),

c. the unit step response v(n), that is, the response to the unit step u(n),
and’

d. the frequency response function H(€’“), and plot its magnitude and
phase over 0 < w < 7.

Since the system is causal, the ROC will be outside of a circle with radius equal
to the largest pole magnitude.

a. Taking the z-transform of both sides of the difference equation and then
solving for Y'(2)/X(z) or using (4.20), we obtain
1-272 _ 1-272

1-0812~2 (14+0.9271)(1 —092z-1)’

H(z)= izl > 0.9

b. Using MATLAB for the partial fraction expansion,

> b= [1,0,~1]; a = [1,0,-0.81];
>>[R,p,C] = residuez(b,a);
R =
-0.1173
-0.1173
p=-
-0.9000

System Representation in the 2-Domain 103

0.9000
C=
1.2346

we have

H(z) =1.2346 - 0.1173 —0.1173 T

1
W’ |Z| >09

140921
or from Table 4.1
h(n) = 1.23466(n) — 0.1173 {1 + (—1)"} (0.9)" u(n)

¢. From Table 4.1 Z [u(n)] = ——1—, z| > 1. Hence
1—2-1

1427 (1-21
V() = HEU() = [(1 S—JQZ—I)) ((1 —0.93")}[1 —lz—l] Jel> 080z >1

. 14271
T (1409271 (1 ~0.92-1)

jz] > 0.9
or

1 0ss6— -, |z >09

Vie) = 10556 g g5 40951

Finally,
v(n) = [L.0556 (0.9)" — 0.0556 (~0.9)"] u(n)

Note that in the calculation of V'(2) there is a pole-zero cancellation at z = 1.
This has two implications. First, the ROC of V(z) is still {|z] > 0.9} and
not {|z| >0.9N|z| > 1 = |2| > 1}. Second, the step response v(n) contains no
steady-state term u(n).

d. Substituting z = ¢/ in H(2),
o 1~ e=i2%
HE) = 10510

We will use MATLAB to compute and plot responses.

>> w = {0:1:500]*pi/500;

>> H = freqz(b,a,w);

>> magh = abs(H); phal = angle(H);

>> subplot(2,1,1); plot(w/pi,magH); grid

>> xlabel(’frequency in pi units’); ylabel(’Magmitude’)

>> title(’Magnitude Response’)

>> gubplot(2,1,2); plot(w/pi,phaH/pi); grid

>> xlabel(’frequency in pi units’); ylabel(’Phase in pi units’)
>> title(’Phase Response’}

The frequency response plots are shown in Figure 4.10. a

104

Chapter 4 W THE z-TRANSFORM

] 0.1 02 03 04 05 06
trequency in pi units

Magnitude Response
1.5 — T — T T T T M
g P . eern SRS e
& ? ?
o ; i ; i P
[+] 0.1 0.2 03 0.4 0.5 0.6 0.7
frequency in pi units
Phase Response
05 T ; ﬁ T Y —T 1— T .]
. :: : ;
5 :
a :
P R A
g :
_05 1 41 o — A il A i j; i

FIGURE 4.10 Frequency response plots for Example 4.13

SOLUTIONS OF THE Dﬁ’ERENCE EQUATIONS

DEFINITION 4

In Chapter 2 we mentioned two forms for the solution of linear constant
coefficient difference equations. One form involved finding the particu-
lar and the homogeneous solutions, while the other form involved finding
the zero-input (initial condition) and the zero-state responses. Using z-
transforms, we now provide a method for obtaining these forms. In ad-
dition, we will also discuss the transient and the steady-state responses.
In digital signal processing difference equations generally evelve in the
positive n direction. Therefore our time frame for these solutions will be
n > 0. For this purpose we define a version of the bilateral z-transform

called the one-sided 2-transform.

The One-sided z Transform

The one-sided z-transform of a sequence z(n) is given by

Z+[z(n)] £ Z(z(n)u(n)] £ X+ (o] = iz(n)z'"

(4.25)

n=0

Solutions of the Difference Equations

105

a EXAMPLE 4.14

Then the sample shifting property is given by
Zt[z(n - k)] = Z[z(n - k)u(n)]

oo o3

=Y -k = Y o(m)z ("R
n=0 m=~k
-1 o
= Z #(m)z~ "R 4 [Z z(m)z""} P
m=-k m=0

or
E* [z(n - k)] = 2(~1)2F (=24 F 4 ta(—k)+ 275 X (2) (4.26)
This result can now be used to solve difference equations with nonzero

initial conditions or with changing inputs. We want to solve the difference
equation

N M
1 +Zaky(n —-k)= Z bpz(n—m),n >0

k=) m=0

subject to these initial conditions:
{y@@)i=-1,...,—N} and {z(i),i=-1,...,—M}.
We now demonstrate this solution using an example.
Solve
3 1
y() - 3y~)+ 3u(n~2) =a(a), n 2 0
where
I n
z(n) = (Z) u(n)

subject to y(—1) = 4 and y(~-2) = 10.

Solution Taking the one-sided z-transform of both sides of the difference equation, we
obtain
Y+ (-2 [y(-1) + Y @]+ 2 [0(-2) + 27 H(=1) + 27V ()] = —
2 2 1- ;‘iz"
Substituting the initial conditions and rearranging,
3 1 1 _
+ 3l sy L !
Y (z)[] 3% F3% } 1—%:—14—(1 2277)
106 Chapter 4 ® THE z-TRANSFORM

or

L
1-327 1-2271

YHz) = .
&=z S+ 322 1o S21 4422 (4.21)
Finally,
29,14 1,2
y+(z) — 4 2
G F - (-5
Using the partial fraction expansion, we obtain
+ 1 3 3
Y*(z)= = + T + =1 (4.28)
After inverse transformation the solution is
IN" 2 1/1I\"
v =[(3) +3+3(3) Jum o (4.29)

Forms of the Solutions The above solution is the complete response
of the difference equation. It can be expressed in several forms.

e Homogeneous and particular parts:

1\" 2 I /1\"
v =|(3) +3]uem +5(3) v
| AL e
homogeneous part particular part

The homogeneous part is due to the system poles and the particular part
is due to the input poles.
® Transient and steady-state responses:

1/1\" [1\" 2
<[t (3) +(3) Jsm + Zuew
3\4 2 3

- e
transient response steady-state response

The transient response is due to poles that are inside the unit circle, while
the steady-state response is due to poles that are on the unit circle. Note
that when the poles are outside the unit circle, the response is termed an
unbounded response.

e Zero-input (or initial condition) and zero-state responses:
In equation (4.27) Y1 () has two parts. The first part can be interpreted
as

Yzs(z) = H(2)X(2)

Solutions of the Difference Equations 107

while the second part as
Yz;(z) = H(Z)X]C(z)

where Xj¢o(2) can be thought of as an equivalent initial-condition input
that generates the same output Yz as generated by the initial conditions.
In this example z;c(n) is

zre(n) = {%, -2}

Now taking the inverse z-transform of each part of (4.27), we write the
complete response as

y(n) {% (—i—)n -2 (é)n+ g] u(n;) + [3 (%)n - 2}&1)

zero-state response zero-input response

From this example it is clear that each part of the complete solution is, in
general, a different function and emphasizes a different aspect of system
analysis.

MATLAB In Chapter 2 we used the filter function to solve the difference equation,
IMPLEMEN- given its coefficients and an input. This function can also be used to find
TATION the complete response when initial conditions are given. In this form the

filter function is invoked by
y = filter(b,a,x,xic)

where xic is an equivalent initial-condition input array. To find the com-
plete response in Example 4.14, we will use

> n=[0:7]; x = (1/4).™n; xic = {1, -2];
>> format long
>> y1 = filter(b,a,x,xic)
yi=
Columns 1 through 4
2.00000000000000 1.25000000000000 0.93750000000000 0.79687500000000
Columns 5 through 8
0.73046875000000 0.69824218750000 0.68237304687500 0.67449951171875
>> y2 = (1/3)*(1/4) ."n+(1/2) . "n+(2/3)*ones(1,8) % Matlab Check
y2 = :
Columns 1 through 4
2.00000000000000 1.25000000000000 0.93760000000000 0.79687500000000
Columns 5 through 8
0.73046875000000 0.69824218750000 0.68237304687500 0.67449951171875

108

Chapter 4 B THE 2-TRANSFORM

0O EXAMPLE 4.15

Solution

which agrees with the response given in (4.29). In Example 4.14 we com-
puted z;c(n) analytically. However, in practice, and especially for large-
order difference equations, it is tedious to determine z;c(n) analytically.
MATLAB provides a function called £iltic, which is available only in the
Signal Processing toolbox (version 2.0b or later). It is invoked by

xic = filtic(b,a,¥,X)

in which b and a are the filter coefficient arrays and Y and X are the initial-
condition arrays from the initial conditions on y(n) and z(n), respectively,
in the form

Y= [y(—l)v y(‘z)v ERR] y("N)]
X=[z(-1), z(-2),..., z(—~M)]

Ifz{(n) =0, n < -1 then X need not be specified in the filtic function.
In Example 4.14 we could have used

> Y = [4, 10];
> xic = filtic(b,a,¥)
Y =
1 -2
to determine z;c(n).

Solve the difference equation
y(n) = % [2(n) + 2(n — 1) + =(n — 2)] + 0.95y(n — 1) — 0.9025y(n —2), n >0
where z(n) = cos(nn/3)u(n) and
y(-1)=-2, y(-2)=-3; =z(-1)=1, 2(-2) =1
First determine the solution analytically and then by using MATLAB.
Taking a one-sided z-transform of the difference equation
YH(z) = % [X+(z) +o(~1) + 27 X (2) + 2(-2) + 27 2 (-1) + z_zX"'(z)]
+0.95 [y(—1) + 271 Y ¥ (2)] —0.9025 [y(~2) + 27 y(—1) + 272 Y ¥ (2)]

and substituting the initial conditions, we obtain

101,-1 1,2 »
YHe) = 387 F3T ey 14742421383
1-0.952-1 + 0.90252—2 1—0.95z~1 + 0.90252~2
1-0527!

Clearly, zrc(n) = [1.4742,2.1383]. Now substituting X*(z) = i prp
and simplifying, we will obtain Y*(z) as a rational function. This simplification
and further partial fraction expansion can be done using MATLAB as shown

below,

Solutions of the Difference Equations 109

> b =[1,1,11/3; a = [1,~0.95,0.9025];
> Y= [-2,-3]; X = (1,1];
>> xic=filtic(b,a,Y,X)
xic =
1.4742 2.1383
>> bxplus = [1,-0.5]; axplus = [1,-1,1]; % X(2) transform coeff.
>> ayplus = conv{a,axplus) % Denominator of Yplus(z)
ayplus =
1.0000 -1.9500 2.8525 -1.8525 0.9025
>> byplus = conv(b,bxplus)+conv(xic,axplus) % Numerator of Yplus(z)
byplus =
1.8075 0.8308 -0.4978 1.9717
>> [R,p,C] = residuez(byplus,ayplus)
R =
0.0584 + 3.9468i 0.0584 - 3.9468i 0.8453 + 2.0311i 0.8453 - 2.0311i

0.5000 - 0.8660i 0.5000 + 0.8660i 0.4750 + 0.8227i 0.4750 - 0.8227i

Cc=
0]
>> Mp = abs(p), Ap = angle(p)/pi % Polar form
Mp =
1.0000 1.0000 0.9500 0.9500
Ap =

-0.3333 0.3333 0.3333 -~0.3333

Hence
1.8076 + 0.8308z" — 0.497527% + 1.97172°
1—1.95z~1 +2.852522 — 1.85252~3 + 0.9025z—4
_0.0584 + 73.9468 0.0584 — ;j3.9468
T 1—emim/igml 1~ eix/3z-1
0.8453 + j2.0311 | 0.8453 — j2.0311
1-0.95e37/32=1 * 1 - 0.95¢—9%/32~1
Now from Table 4.1

Yt(z) =

y(n) = (0.0584 + j3.9468) e 7"*/3 1 (0.0584 — 53.9468) &™"/>
+ (0.8453 + j2.031) (0.95)" €™/ + (0.8453 ~ 72.031) (0.95)" ¢~9™/3
= 0.1169 cos (7n/3) + 7.8937 sin (wn/3)
+ (0.95)™ [1.6906 cos {(7n/3) — 4.0623sin (7n/3)], = >0

The first two terms of y(n) correspond to the steady-state response, as well as
to the particular response, while the last two terms are the transient response
(and homogeneous response) terms.

To solve this example using MATLAB, we will need the £iltic function,
which we have already used to determine the x;c(n) sequence. The solution
will be a numerical one. Let us determine the first 8 samples of y(n).

110

Chapter 4 ® THE 2-TRANSFORM

>>n = [0:7]; x = cos(pi*n/3);
>> y = filter(b,a,x,xic)
y =
Columns 1 through 4
1.80750000000000 4.35545833333333 2.83975000000000 -1.56637197916667
Columns 5 through 8
-4.71759442187500 -3.40139732291667 1.35963484230469 5.02808085078841
% Matlab Verification
>> A=real(2+R(1)); B=imag(2#R(1)); C=real(2+R(3)); D=imag(2+R(4));
>> y=A*cos(pi*n/3)+B*sin{pi*n/3)+((0.95) . n).*(Cxcos(pi*n/3)+D*sin(pi*n/3))
Columns 1 through 4
1.80750000000048 4.35545833333359 2.83974999999978 -1.56637197916714
Columns 5 through 8
-4.71759442187528 -3.40139732291648 1.35963484230515 5.02808085078871
O

PROBLEMS

P4.1

P4.2

P43

.-

Determine the z-transform of the following sequences using definition (4.1). Indicate the
region of convergence for each sequence and verify the z-transform expression using
MATLAB.

a. z(n) = {3,2,1,-2,-3}
T

b. z(n) = (0.8)" u(n —2)

c. z(n) = (%)"u (1-n)

& ol = 2+ (3)"

e. z(n) =(n+1)(3)"u(n)

Determine the z-transform of the following sequences using the z-transform table and the

z-transform properties. Express X (z) as a rational function in z~!. Verify your results
using MATLAB. Indicate the region of convergence in each case and provide a pole-zero plot.

a. z(n)=26(n—2)+3u(n-3)

b. z{n) = (})"u(n—-2) + (0.9 *u(n)

c. z(n) =nsin ("—3'1) u(n)+(0.9)"u(n—2)

d z(n)= (%)"cos (14'-'- - 45°) u(n—1)

e z(m)=(n-3)(3)""cos {(n-1)}u(n)

The »-transform of (n) is X (z) = (1+227"), |z] # 0. Find the z-transforms of the
following sequences, and indicate their regions of convergence.

azi(n)=z@B-n)+z(n-3)
b. z2{n) = (1+n+n?) z(n)
z3(n) = (%)"x(n-—Z)

c.
d z4(n)=z(n+2)xx(n—-2)
e. zs (n) = cos (mn/2)z” (n)

Problems 111

P44

P45

P46

P4.7

P48

Repeat Problem 4.3 if

14271

X(@)=—at2 .
@ =

1
|z|>’2'

The inverse z-transform of X (z) is z (n) = (%)" u(n). Using the z-transform properties,
determine the sequences in each of the following cases.

a. X1(2) = ':1X(z)

b. Xa(z) = 2X (z‘l)

c. X3(z) =2X (32) + 3X (2/3)

d Xu(z)=X(2) X (=)

e. Xs5(2) = zzi%—’l

If sequences z1 (n), z2 (n), and 3 (n) are related by z3 (n) = z1 (n) * z2 (n), then

i za(n) = (i 1 (n)) (i z2 (n))

n=-o00 n=-—00 n=—0o
a. Prove the above result by substituting the definition of convolution in the left-hand side.

b. Prove the above result using the convolution property.

c. Verify the above result using MATLAB by choosing any two sequences 1 (n) and z2 (n).

Determine the results of the following polynomial operations using MATLAB.
a Xi(2)={1-2"" 43277 —427%) (443271 - 227 +273)

b Xa(z) = (2 =22 4+3+2:7 +27%) (# ~27%)

o Xa(z)=(1+z7"+ z'z)a

d. Xa(z) = X1 (2) X2 (2) + X5 (2)

e Xs(z) = (271 = 3273 +227° + 5277 ~ 27°) (2 + 82% + 22° + 42%)

The deconv function is useful in dividing two causal sequences. Write a MATLAB function
deconv.m to divide two noncausal sequences (similar to the conv function). The format of
this function should be

function [p,np,r,nr] = deconv_m(b,nb,a,na)
% Modified deconvolution routine for noncausal sequences
% function {p,np,r,nr] = deconv_m(b,ndb,a,na)

% P = polynomial part of support npl <= n <= np2

% np = [np1, np2]

% r = remainder part of support mri <= n <= pr2

% nr = [nr1, nr2)

% b = numerator polynomial of support nbl <= n <= nb2
% nb = [nbl, nb2]

% a = denominator polynomial of support nal <= n <= na2
% na = [nai, na2]

112

Chapter 4 ® THE 2-TRANSFORM

Check your function on the following operation:

327243278
z+2+271

24z 4+14z 2724278
z+2+271

=(z-1+27"1 -2 +

P4.8 Determine the following inverse 2-transforms using the partial fraction expansion method.
a Xi(2)=(1-2"" 4272 +427%) /(1 - L2 + 33272 — 1273). The sequence is
right-sided.

b Xo(2)=(1—2"'—4272+427%) /(1 - L2 + L2272 — }127%). The sequence is
absolutely summable.

c. X3(2)= (z3 -3z + 42+ 1) / (z3 —42% 42— 0.16). The sequence is left-sided.

d. Xa(2) = 2/ {2° + 22 + 1.252 + 0.25), |2| > 1.

e Xs(z)=2z/ (z2 - 0.25)2, |z} < 0.5.
P4.10 Suppose X (z) is given as follows:

2+ 3271
X(2)= I

T 1yoaz2 11>09

a. Determine z (n) in a form that contains no complex numbers.

b. Using MATLAB, find the first 20 samples of z (n) and compare them with your answer in
the above part.

P4.11 For the linear and time-invariant systems described by the impulse responses below,
determine (i) the system function representation, (ji) the difference equation representation,
(iii) the pole-zero plot, and (iv) the output y (n) if the input is z (n) = (%)" u(n).

a. h(n) =2 (%)"u(n)

b. h(n)=n(})"u(m)+ (-1)"un)

c. h(n) =3(0.9)" cos(nn/4+n/3)u(n+1)
d. A(n) =nlu(n) —u(n—10)]

e. h(n) =[2 —sin(mn)]u(n)

P4.12 For the linear and time-invariant systems described by the system functions below,
determine (i) the impulse response representation, (ii) the difference equation
representation, (iii} the pole-zero plot, and (iv) the output y (n) if the input is
z (n) = 3cos (wn/3) u(n).

a. H(z) = (2 + 1)/ (z — 0.5), causal system.
b. H(z)= (1+27" +27%) /(140527 = 0.25277), stable system.
c Hiz)=(2-1)/(z- 3)%, anticausal system.
z_ 1= 0.5z71
z2—025 1+2z1°
e. H(z) = (1 +27t z'z)z, stable system.

P4.13 For the linear, causal, and time-invariant systems described by the difference equations
below, determine (i} the impulse response representation, (ii) the system function
representation, (iii)} the pole-zero plot, and (iv) the output y (n) if the input is
z(n) =2(0.9)"u(n).

d. H(z)= stable system.

Problems) 113

P4.14

P4.15

P4.16

P4.17

P4.18

-y(m)=[z(n)+2x(n~1) +z(n-3)] /4

. y(n) =z(n)+0.5z(n —1) - 0.5y (n — 1) + 0.25y (n — 2)

. y(n)=2x(n)+09y(n-1)

. y(n)=—-045z(n) —04z(n—1)+z(n—-2)+04y(n—1)+0.45y (n — 2)

-y () = Tono 08"z (n—m) ~ T, (0.9)'y(n -)

"The output sequence y (1) in Problem 4.13 is the total response. For each of the systems
given in that problem, separate y (n) into (i) the homogeneous part, (ii) the particular part,
(iii) the transient response, and (iv) the steady-state response.

o AN gy

A stable system has the following pole-zero locations:
p—_— 20 = —7% —_l+'.1_ ——~l_'_]1
z=] 2=-3 pn= 5 g P2 = 3 I3

It is also known that the frequency response function H (e"") evaluated at w = 0 is equal to
0.8; that is,

H(°) =08
a. Determine the system function H (z) and indicate its region of convergence.

b. Determine the difference equation representation.

c. Determine the steady-state response ys, (n) if the input is z (n) = 2 sin (1213) u(n).

V2
d. Determine the transient response ... (n} if the input is z (n) = % sin (%ﬁ) u(n).
A digital filter is described by the difference equation

yn)=z(n)+z(n-1)+09y(n~-1)—-08ly(n—2)

a. Using the freqz function, plot the magnitude and phase of the frequency response of the
above filter. Note the magnitude and phase at w = 7/3 and at w = 7.

b. Generate 200 samples of the signal z (n) = sin (7n/3) + 5 cos (wn) and process through
the filter. Compare the steady-state portion of the output to z (n). How are the amplitudes
and phases of two sinusoids affected by the filter?

Solve the following difference equation for y (n) using the one-sided z-transform approach.
y(n)=08y(n—1)+025y(n-2)+z(n), n20; y(-1)=1,y(-2)=2
z(n) = (0.8)" u(n)

Generate the first 20 samples of y (n) using MATLAB and compare them with your answer.
Solve the difference equation for y(n), n>0

y(n) — 0.4y (n— 1) — 045y (n — 2) = 0.45z (n) + 0.4z (n — 1) ~z(n — 2)
driven by the input x (n) =2 + (%)" u (n) and subject to
y(~1)=0,y(-2)=3; (1) == 2(-2) = 2

Decompose the solution y (n) into (i) transient response, (ii) steady-state response, (iii) zero
input response, and (iv) zero-state response.

114

Chapter 4 ® THE 2-TRANSFORM

P4.19 A causal, linear, and time-invariant system is given by the following difference equation:

y(n)=yln-1)+yn~2)+z(n-1)

a. Find the system function H(z) for this system.
b. Plot the poles and zeros of H(z) and indicate the region of convergence (ROC).
c. Find the unit sample response h(n) of this system.

d. Is this system stable? If the answer is yes, justify it. If the answer is no, find a stable
unit sample response that satisfies the difference equation.

P4.20 Determine the zero-state response of the system
yn)=ly(r-)+z(n)+3z(n~1), n>0 y(-1)=2
to the input
z(n) =™ u(n)

What is the steady-state response of the system?

Problems

115

THE DISCRETE
FOURIER
TRANSFORM

In Chapters 3 and 4 we studied transform-domain representations
of discrete signals. The discrete-time Fourier transform provided the
frequency-domain (w) representation for absolutely summable sequences.
The z-transform provided a generalized frequency-domain (z) represen-
tation for arbitrary sequences. These transforms have two features in
common. First, the transforms are defined for infinite-length sequences.
Second, and the most important, they are functions of continuous vari-
ables (w or z). From the numerical computation viewpoint (or from
MATLAB’s viewpoint), these two features are troublesome because one
has to evaluate infinite sums at uncountably infinite frequencies. To use
MATLAB, we have to truncate sequences and then evaluate the expressions
at finitely many points. This is what we did in many examples in the two
previous chapters. The evaluations were obviously approximations to the
exact calculations. In other words, the discrete-time Fourier transform
and the z2-transform are not numerically computable transforms.
Therefore we turn our attention to a numerically computable trans-
form. It is obtained by sampling the discrete-time Fourier transform in the
frequency domain (or the z-transform on the unit circle). We develop this
transform by first analyzing periodic sequences. From Fourier analysis we
know that a periodic function (or sequence) can always be represented by
a linear combination of harmonically related complex exponentials (which
is a form of sampling). This gives us the Discrete Fourier Series (or DFS)
representation. Since the sampling is in the frequency domain, we study
the effects of sampling in the time domain and the issue of reconstruction
in the z-domain. We then extend the DFS to finite-duration sequences,
which leads to a new transform, called the Discrete Fourier Transform
{or DFT). The DFT avoids the two problems mentioned above and is

116

a numerically computable transform that is suitable for computer imple-
mentation. We study its properties and its use in system analysis in detail.
The numerical computation of the DFT for long sequences is prohibitively
time consuming. Therefore several algorithms have been developed to effi-
ciently compute the DFT. These are collectively called fast Fourier trans-
form (or FFT) algorithms. We will study two such algorithms in detail.

THE DISCRETE FOUREQ SERIES

In Chapter 2 we defined the periodic sequence by Z(n), satisfying the
condition

#{n)=%(n+kN), VYnk (5.1

where N is the fundamental period of the sequence. From Fourier analysis
we know that the periodic functions can be synthesized as a linear com-
bination of complex exponentials whose frequencies are multiples (or har-
monics) of the fundamental frequency (which in our case is 27 /N). From
the frequency-domain periodicity of the discrete-time Fourier transform,
we conclude that there are a finite number of harmonics; the frequencies
are {%”k, k=0,1,...,N — 1}. Therefore a periodic sequence (n) can
be expressed as

N-1
3(n) = Ilv T X@E®, n=0,21,..., 52)
k=0

where {X(k), k=0,%1,...,} are called the discrete Fourier series co-
efficients, which are given by

N-1
X(k) =3 #(n)e i ¥m*, k=0,41,..., (5.3)

n=0

Note that X (k) is itself a (complex-valued) periodic sequence with fun-
damental period equal to N, that is,

X(k+N)=X(k) (5.4)

The pair of equations (5.3) and (5.2) taken together is called the discrete
Fourier series representation of periodic sequences. Using Wy 2% to

The Discrete Fourier Series 17

denote the complex exponential term, we express (5.3) and (5.2) as

~ N-1

X(k)EDFS[E(n)] = Y #m)Wpk : Analysis or a
n=0 DFS equation
1 —~1

N-1 _
Y X (k)W,\',"’c : Synthesis or an inverse

N o
2 = IDFS [X(k)] TN k=0 DFS equation

(5.5)

m] EXAMPLE 51 Find DFS representation of the periodic sequence given below:

#n)=1{...,0,1,2,3,0,1,2,3,0,1,2,3,...}
T

Solution The fundamental period of the above sequence is N = 4. Hence Wy = e~/ *

—j. Now

3
X(k) = zm)We*, k=0,41,%2,...

n=0
Hence

3 3

X0 =Y #nwim= S 3(n) = 2(0) + 2(1) +3(2) + 2(3) = 6

1} 0

Similarly,
3 3
X() =Y #@WE =Y #n)(-i)" = (-2+2j)
Q 0

3 3
X@) = zmW =) Fn)(~5)"" =2
[\ [

3 3
@ =) #mwi® =} #n)(-5)" = (-2=2) o
0

o

MATLAB A careful look at (5.5) reveals that the DFS is a numerically computable
IMPLEMEN- representation. It can be implemented in many ways. To compute each
TATION sample X (k), we can implement the summation as a for...end loop.
To compute all DFS coefficients would require another for...end loop.
This will result in a nested two for...end loop implementation. This
is clearly inefficient in MATLAB. An efficient implementation in MATLAB

118 Chapter 5 ® THE DISCRETE FOURIER TRANSFORM

would be to use a matrix-vector multiplication for each of the relations
in (5.5). We have used this approach earlier in implementing a numerical
approximation to the discrete-time Fourier transform. Let X and X denote
column vectors corresponding to the primary periods of sequences z{(n)
and X (k), respectively. Then (5.5) is given by

P
i

Wyk
D (56)
X = ﬁWNX
where the matrix Wy is given by
n—
11 e 1
N-1
AT 1 Wy Wiy
Wy = [WN osk,ugN—l] =’f (5.7
N-1 N-1)2
1wy o wlY

The matrix Wy is a square matrix and is called a DFS matriz. The
following MATLAB function dfs implements the above procedure.

function [Xx] = dfs(xn,N)
% Computes Discrete Fourier Series Coefficients

%

% (xx] = afs(xn,N)

% Xk = DFS coeff. array over 0 <= k <= N-1

% xn = One period of periodic signal over O <= p <= N-1
% N = Fundamental period of xn

n = [0:1:N-1]; % row vector for n

k = [0:1:N-1]; % row vecor for k

WN = exp(~j*2+pi/N); % Wn factor

nk = n’sk; % creates a N by N matrix of nk values
WNnk = WN .” nk; % DFS matrix

Xk = xn * WNnk; % row vector for DFS coefficients

The DFS in Example 5.1 can be computed using MATLAB as

> xn = [0,1,2,3]; N = 4;
>> Xk = dfs(xn,N)
Xk =
6.0000 -2.0000 + 2.0000i -2.0000 - 0.0000i -2.0000 - 2.0000i

The Discrete Fourier Series 119

The following idfs function implements the synthesis equation.

function [xn] = idfs(Xk,N)
% Computes Inverse Discrete Fourier Series

%

% [xn] = idfs(Xk,N)

% xn = Opne period of periodic signal over 0 <= n <= N-1

% Xk = DFS coeff. array over 0 <= k <= N-1

% N = Fundamental period of Xk

%

n = [0:1:N-1]; % row vector for n

k = [0:1:N-1); % row vecor for k

WN = exp(-j*2xpi/N); % Wn factor

nk = n’#k; J creates a N by N matrix of nk values
WNpk = WN .~ (-nk); % IDFS matrix

xm = (Xk * WNnk)/N; % row vector for IDFS values

Caution: The above functions are efficient approaches of implementing
(5.5) in MATLAB. They are not computationally efficient, especially for
large N. We will deal with this problem later in this chapter.

n] EXAMPLE 52 A periodic “square wave” sequence is given by

1, mN<n<mN+L-1
:i'(n):{ - m=0,4+1,4£2,...

0, mN+L<n<(m+)N-1’
where N is the fundamental period and L/N is the duty cycle.

a. Determine an expression for |X (k)| in terms of L and N.

b. Plot the magnitude |X(k)| for L=5 N=20; L=5 N=40; L =5,
N =60;and L =7, N =60.

c. Comment on the results.

Solution A plot of this sequence for L = 5 and N = 20 is shown in Figure 5.1.
Three perlods of xtitde(n)
15— — - — T v
2
£ 0.5H 1
[
% -10 0 10 20 30
n

FIGURE 5.1 Periodic square wave sequefice

120 Chapter 5 ® THE DISCRETE FOURIER TRANSFORM

a. By applying the analysis equation (5.3),

N-1 L-1 L-1

X(k)= Z;,(n)e—i%nk - Ze—ﬂﬁnk = Z (e'j%g")n
n=0 n=0 =0
L, k=0,£N,+£2N,...

= Q| _ gm92eLE/N .
T otherwise
The last step follows from the sum of the geometric terms formula (2.5) in
Chapter 2. The last expression can be simplified to

—j2rLk/N o=jwLk/N oinLk/N _ ,—jxLk/N

1—e _ e
1 — e—72%k/N ~ e~jnk/N gink/N _ g—jnk/N

= eI(L=1)k/N sin (wkL/N)

sin (wk/N)
or the magnitude of X (k) is given by
L, k=0,+N,£2N,...
|X(®)| =< |sin (xkL/N) .
W , otherwise

b. MATLAB script for L = 5 and NV = 20 is given below.

> L =5; N=20; k = [-N/2:N/2]); % Sq wave parameters
>> xn = [ones(1,L), zeros(1,N-L)]; % Sq wave x(n)
>> Xk = dfs(xn,N); % DFS

>> magXk = abs([Xk(N/2+1:N) Xk(1:N/2+1)]); % DFS magnitude
>> subplot(2,2,1); stem(k,magXk); axis{[-N/2,N/2,-0.5,5.5])
>> xlabel(’k’); ylabel(’Xtilde(k)’)

>> title(’DFS of SQ. wave: L=5, N=20’)

The plots for the above and all other cases are shown in Figure 5.2. Note that
since X (k) is periodic, the plots are shown from —N/2 to N/2.

¢. Several interesting observations can be made from plots in Figure 5.2.
The envelopes of the DFS coefficients of square waves look like “sinc” functions.
The amplitude at k£ = 0 is equal to L, while the zeros of the functions are at
multiples of N/L, which is the reciprocal of the duty cycle. We will study these

functions later in this chapter. [m}
RELATION Let z(n) be a finite-duration sequence of duration N such that
TO THE 2-
TRANSFORM Nonzero, 0 <n<N-1
0, elsewhere

The Discrete Fourier Series 121

DFS of SQ. wave: L=5, N=20 DFS of SQ. wave: L=5, N=40

5 5
4 4
23 X
s s
g2 g2
sty il
[} [/}
-10 -5 0 5 10 -20 -10 0 10 20
k k
DFS of SQ. wave: L=5, N=60 DFS of SQ. wave: L=7, N=60
5
4
3 £
s 3
%2 E
L

FIGURE 5.2 The DFS plots of a periodic square wave for various L and N.

Then we can find its z-transform:

N-1

X(@) =) sn)z" (5.9)

n=0

Now we construct a periodic sequence Z(n) by periodically repeating z(n)
with period N, that is,

#(n), 0<n<N-—1
= .10
z(m) { 0, elsewhere (510)
The DFS of #(n) is given by
} N-1 , N-1 -
k)= #(m)e ¥ = 5" a(n) [ew”k] (5.11)
n=0 n=0
Comparing it with (5.9), we have
X(R) = X@I s (512

which means that the DFS X (k) represents N evenly spaced samples of
the z-transform X{(z) around the unit circle.

122

Chapter 5 W THE DISCRETE FOURIER TRANSFORM

RELATION 7O
THE DTFT

a EXAMPLE 5.3

Solution

Since z(n) in (5.8) is of finite duration of length N, it is also absolutely
summable. Hence its DTFT exists and is given by

N-1 N-~-1
X(4) =Y g(n)e I = 3 F(n)e " (5.13)
n=0 n=0

Comparing (5.13) with (5.11), we have

X(k) = X()], o5, (5.14)
Let
2 2
wy ES —]% and W £ F‘”k = kun

then the DFS X (k) = X(e“*) = X (¢7¥*1), which means that the DFS is
obtained by evenly sampling the DTFT at w; = %’ intervals. From (5.12)
and (5.14) we observe that the DFS representation gives us a sampling
mechanism in the frequency domain which, in principle, is similar to sam-

pling in the time domain. The interval wy = %" is the sampling interval

in the frequency domain. It is also called the frequency resolution because
it tells us how close are the frequency samples (or measurements).

Let z(n) = {0,1,2,3}.
1

a, Compute its discrete-time Fourier transform X (e’*).

b. Sample X(e) at kun = &k, k=0,1,2,3 and show that it is equal
to X (k) in Example 5.1.
The sequence z(n) is not periodic but is of finite duration.

a. The discrete-time Fourier transform is given by

o0
X() = Z z(n)e " = eI 4 27 4 307

oo
b. Sampling at kw1 = 2k, k=10,1,2,3, we obtain
X(@)=1+2+3=6=X(0)
X(e72/4) = eI/ | 9e 7344 4 3730/ = 2 4 95 = X(1)
X(&H47/4) = e79/4 4 0¢84 4 3671/ = 2 = X(2)
X(eFO7/4) = 78014 4 91214 | 367910/ = g _ 95 = X(3)

as expected. [m]

The Discrete Fourier Series 123

SAMPLING AND RECONSTRUCTION IN THE 2-DOMAIN
L

Let z(n) be an arbitrary absolutely summable sequence, which may be of
infinite duration. Its z-transform is given by

o0

X(2)= E z(m)z™™

m=—00

and we assume that the ROC of X (z) includes the unit circle. We sample
X(z) on the unit circle at equispaced points separated in angle by w; =
27 /N and call it a DFS sequence,

R EX@|_ g, k=0,21,%2... (5.15)
= Z z(m)e~i Fhm — Z z(m)WE

which is periodic with period N. Finally, we compute the IDFS of X(k),
i(n) = IDFS[X (k)]

which is also periodic with period N. Clearly, there must be a relationship
between the arbitrary =(n) and the periodic Z(n). This is an important
issue. In order to compute the inverse DTFT or the inverse z-transform
numerically, we must deal with a finite number of samples of X (z) around
the unit circle. Therefore we must know the effect of such sampling on
the time-domain sequence. This relationship is easy to obtain.

F(n) = —ﬁz X (R)Wg (from (5.2))

k
LN =
=N { > x(m)W}me}Wﬁk" (from (5.15))

k=0 Lm=-o0
or
o0 oo
Z(n) = E z{m) —ZW_"(""") Z z(m) Z §(n—m—rN)
m=—00 m=—0C T==00
_J1, n—-m=rN
710, elsewhere

o0

= Z i z(m)b(n —m —rN)

=00 M=—00

124 Chapter 5 8 THE DISCRETE FOURIER TRANSFORM

- THEQREM 1

=] EXAMPLE 5.4

Solution

or

i(n) = i z(n—rN)=-.-+z(n+N)+z(n)+z(n—-N)+--- (5.16)

r=-—00

which means that when we sample X(2) on the unit circle, we obtain a
periodic sequence in the time domain. This sequence is a linear combina-~
tion of the original z(n) and its infinite replicas, each shifted by multiples
of £N. This is illustrated in Example 5.5. From (5.16) we observe that if
z{n) =0forn < 0 and n > N, then there will be no overlap or aliasing in
the time domain. Hence we should be able to recognize and recover z(n)
from Z(n), that is,

z(n) = En)for0<n < (N -1)
or

1, 0<n<N-1

z(n) = Z(n)Rn(n) = £(n) { 0. else

where Ry (n) is called a rectangular window of length N. Therefore we
have the following theorem.

Frequency Sampling
If x(n) is time-limited (i.e., of finite duration) to [0, N — 1], then N
samples of X(z) on the unit circle determine X(z) for all z.

Let z1(n) = {6,5,4,3,2,1}. Its DTFT X;(e’*) is sampled at
T

Wi = -%Tk, k=0,41,+2,+3,...

to obtain a DFS sequence X2(k). Determine the sequence Z2(n), which is the
inverse DFS of Xa(k).

Without computing the DTFT, the DFS, or the inverse DFS, we can evaluate
Za(n) by using the aliasing formula (5.16).

oo

Fa(n) = Z z1(n —4r)

r=—o00
Thus z(4) is aliased into z(0), and x(5) is aliased into z(1). Hence

g2(n) ={...,8,6,4,3,8,6,4,3,8,6,4,3,...} o
1

Sampling and Reconstruction in the 2-Domain 125

=} EXAMPLE 5.5

Solution

Let z(n) = (0.7)" u(n). Sample its z-transform on the unit circle with N = 5,

10, 20, 50 and study its effect on the time domain.

From Table 4.1 the z-transform of z(n) is

1
X&) = y-p7

_z
T z2-0T7

|z} > 0.7

We can now use MATLAB to implement the sampling operation

X(k) = X(2)|,opomesn s k=0,£1,£2,...

and the inverse DFS computation to determine the corresponding time-domain
sequence. The MATLAB script for N = 5 is shown below.

N=5; k= 0:1:8-1;
wk = 2#pixk/N; zk = exp(j*wk);
Xk = (zk)./(zk~0.7);

xm = real(idfs(Xx,N));
xtilde = xn’# ones(1,8); xtilde = (xtilde(:))’; % Periodic sequence

subplot(2,2,1); stem(0:39,xtilde);axis([0,40,~0.1,1.5))
xlabel(’n’); ylabel(’xtilde(n)’); title(’N=5’)

% sample index

% samples of z

% DFS as samples of X(2)
% IDFS

The plots in Figure 5.3 clearly demonstrate the aliasing in the time domain,
especially for N = 5 and N = 10. For large values of N the tail end of z(n)

N=5 N=10
15 1.5
1 1
£ €
3 ®
2 2
%05 %05
0 0
0 10 20 30 40 0
n
1.5
= 1
£ c
2 2
%o, o5
0
40 0 10 20 30 40

FIGURE 5.3 Plots in Ezample 5.5

126

Chapter 5 ® THE DISCRETE FOURIER TRANSFORM

is sufficiently small to result in any appreciable amount of aliasing in practice.
Such information is useful in effectively truncating an infinite-duration sequence
prior to taking its transform. [m]

RECON- Let z(n) be time-limited to [0, N — 1. Then from Theorem 1 we should
STRUCTION be able to recover the z-transform X(z) using its samples X (k). This is
FORMULA given by

X(2) = Z [z(n)] = Z (Fn) Ry (n)]
=Z[IDFS{ X() }Rn(n)]
S~
samples of X{(z)

The above approach results in the z-domain reconstruction formula.

N-1 N-1
X(z)= Z z(n)z ™" = Z F(n)z™"
0 0
N-1

1 p= —kn P
= '1\7 X (k) {Z }
=0 0
1 1 N-1
=Tv X(k) {; (Wi*2) }

Since Wy*" = 1, we have

X(2)= 5.17
O=" 5 % 7o (517)
THE DTFT The reconstruction formula (5.17) can be specialized for the discrete-time
INTERPO- Fourier transform by evaluating it on the unit circle z = €. Then
LATION Nl o
FORMULA iy _ 1—e ¥ X(k)
‘X(eJ) - N Z—: 1 — ei2nk/N g~jw
N1 _ g—JwN
=2 X(k)N{l 1 ;nk/N =5}
pard —e e

Sampling and Reconstruction in the 2-Domain 127

MATLAB
IMPLEMEN-
TATION

Consider
1 - e~dwN 1— e Hw=3EN
N {1 — es2rk/N =i} - N {1 _ e_j(w_m)}

_ e~ ¥ (w—25F) { sin [(w — %)%] }
ESH]

e~33—%#) | Nsin[(w -
Let
a sin(%%) Ny i85 . . .
d(w) = Nen () : an interpolating polynomial (5.18)
Then
2rk
Wy —
X&) = 2 X(k)<I>(5) (5.19)

k=0

This is the DTFT interpolation formula to reconstruct X(e?*) from its
samples X (k). Since ®(0) = 1, we have that X(e#2™*/N) = X(k), which
means that the interpolation is exact at sampling points. Recall the time-
domain interpolation formula (3.33) for analog signals:

o

To(t)= Y, z(n)sinc|F,(t —nT,)] (5.20)

n=-00

The DTFT interpolating formula (5.19) looks similar.

However, there are some differences. First, the time-domain formula
(5.20) reconstructs an arbitrary nonperiodic analog signal, while the
frequency-domain formula (5.19) gives us a periodic waveform. Second,
in (5.19) we use a %N;‘% interpolation function instead of our more
familiar 5'2’ (sinc) function. Therefore the ®(w) function is sometimes
called a digital sinc function, which itself is periodic. This is the function
we observed in Example 5.2.

The interpolation formula (5.19) suffers the same fate as that of (5.20)
while trying to implement it in practice. One has to generate several
interpolating polynomials (5.18) and perform their linear combinations
to obtain the discrete-time Fourier transform X(e/*) from its computed
samples X (k). Furthermore, in MATLAB we have to evaluate (5.19) on
a finer grid over 0 < w < 2n. This is clearly an inefficient approach.
Another approach is to use the cubic spline interpolation function as an
efficient approximation to (5.19). This is what we did to implement (5.20)
in Chapter 3. However, there is an alternate and efficient approach based
on the DFT, which we will study in the next section.

128

Chapter 5 @ THE DISCRETE FOURIER TRANSFORM

THE DISCRETE FOURIER TRANSFORM
&

The discrete Fourier series provided us a mechanism for numerically com-
puting the discrete-time Fourier transform. It also alerted us to a poten-
tial problem of aliasing in the time domain. Mathematics dictates that
the sampling of the discrete-time Fourier transform result in a periodic
sequence Z(n). But most of the signals in practice are not periodic. They
are likely to be of finite duration. How can we develop a numerically com-
putable Fourier representation for such signals? Theoretically, we can take
care of this problem by defining a periodic signal whose primary shape is
that of the finite-duration signal and then using the DFS on this periodic
signal. Practically, we define a new transform called the Discrete Fourier
Transform (DFT), which is the primary period of the DFS. This DFT
is the ultimate numerically computable Fourier transform for arbitrary
finite-duration sequences.

First we define a finite-duration sequence z(n) that has N samples
over 0 £ n < N —1 as an N-point sequence. Let Z(n) be a periodic signal
of period N, created using the N-point sequence z(n); that is, from (5.19)

o0

Z(n) = Z z(n—7N)

r=—oo

This is a somewhat cumbersome representation. Using the modulo-N op-
eration on the argument we can simplify it to

Z(n) = z(nmod N) (5.21)

A simple way to interpret this operation is the following: if the argument
n is between 0 and N — 1, then leave it as it is; otherwise add or sub-
tract multiples of N from n until the result is between 0 and N — 1. Note
carefully that (5.21) is valid only if the length of z(n) is N or less. Further-
more, we use the following convenient notation to denote the modulo-N
operation.

=((n))n £ z(nmod N) (5.22)
Then the compact relationships between z(r) and Z(r) are

i(n)= :f((n)) N (Pe.riodic extensi.on) (523)
z(n) = Z(n)Ry(n) (Window operation)

The rem{n,N) function in MATLAB determines the remainder after di-
viding n by N. This function can be used to implement our modulo-N

The Discrete Fourier Transform 129

operation when n > 0. When n < 0, we need to modify the result to
obtain correct values. This is shown below in the m=mod(n,N) function.

function m = mod(n,N)

% Computes m = (n mod N) index
%
% m = mod(n,N)
m = rem(n,N);
m = m+N;

m = rem(m,N);

In this function n can be any integer array, and the array m contains the
corresponding modulo-N values.

From the frequency sampling theorem we conclude that N equispaced
samples of the discrete-time Fourier transform X (/) of the N-point se-
quence z(n) can uniquely reconstruct X (7). These N samples around
the unit circle are called the discrete Fourier transform coefficients. Let
X (k) = DFS &(n), which is a periodic (and hence of infinite duration) se-
quence. Its primary interval then is the discrete Fourier transform, which
is of finite duration. These notions are made clear in the following defi-
nitions. The Discrete Fourier Transform of an N-point sequence is given
by

X(8) & DFT [o(m)] = {;Y (B 0k <N g maih
or
N-1
X(k) =) z(n)WFt, 0<k<N-1 (5.24)
n=0

Note that the DFT X(k) is also an N-point sequence, that is, it is
not defined outside of 0 < k < N — 1. From (5.23) X(k) = X((k) N}
that is, outside the 0 < k < N — 1 interval only the DFS X (k) is de-
fined, which of course is the periodic extension of X (k). Finally, X(k) =
X (k)R (k) means that the DFT X (k) is the primary interval of X (k).

The inverse discrete Fourier transform of an N-point DFT X (k) is
given by

z(n) £ IDFT [X (k)] = Z(n)Rn(n)

or

N-1
1 ~kn
=ﬁk§:X(k)WN’°, 0<n<N-1 {5.25)
=0

130

Chapter 5 W THE DISCRETE FOURIER TRANSFORM

Once again z(n) is not defined outside 0 < n < N — 1. The extension of
x (n) outside this range is &(n).

MATLAB It is clear from the discussions at the top of this section that the DFS is
IMPLEMEN- practically equivalent to the DFT when 0 < n < N ~ 1. Therefore the
TATION implementation of the DFT can be done in a similar fashion. If z(n) and

X (k) are arranged as column vectors x and X, respectively, then from
(5.24) and (5.25) we have

X= WNX
1 (5.26)
X= ‘N— *NX

where Wy is the matrix defined in (5.7) and will now be called a DFT
matriz. Hence the earlier df s and idfs MATLAB functions can be renamed
as the dft and idft functions to implement the discrete Fourier transform
computations.

function [Xk] = dft(xn,N)

% Computes Discrete Fourier Transform
% = -
% [Xk} = afv(xn,N)

% Xk = DFT coeff. array over 0 <= k <= N-1
% xn = N-point finite-duration sequence

% N = Length of DFT

h

n = [0:1:N~1]; % row vector for n

k = [0:1:N-1]; % row vecor for k

WN = exp(-j*2*pi/N); % Wn factor

nk = n’+k; % creates a N by N matrix of nk values
WNpk = WN .° nk; % DFT matrix

Xk = xn * WNnk; % row vector for DFT coefficients

function [xn] = idft(Xk,N)
% Computes Inverse Discrete Transform

% [xn] = idft(Xk,N)

% xn = N-point sequence over 0 <= n <= N~i
% Xk = DFT coeff. array over 0 <= k <= N~1
% N = length of DFT

n = [0:1:N-1]; % row vector for n

k = [0:1:N-1]; % row vecor for k

WN = exp(-j*2#pi/N); % Wn factor

nk = n'*k; % creates a N by N matrix of nk values
WNnk =~ WN .~ (-nk); % IDFT matrix

xn = (Xk * WNnk)/N; % row vector for IDFT values

The Discrete Fourier Transform 131

O EXAMPLES6 Let x(n) be a 4-point sequence:

1, 0<n<3
z(n) = :
0, otherwise

a. Compute the discrete-time Fourier transform X (e’) and plot its mag-
nitude and phase. .
b. Compute the 4-point DFT of z(n).

Solution a. The discrete-time Fourier transform is given by

3
X(e;w) = Zz(n)e—jwn =1+ E—jw + e—j2w + e—j3w
o

_l—e % sin(2w) _jaup
T 1~ew T sin(w/2)

Hence
jwy| — sm(%)
X = [T
and
3w sin(2w)
T ey 0
(X(€) = .
-—+m, when M <0
2 ! sin{w/2)

The plots are shown in Figure 5.4.
b. Let us denote the 4-point DFT by X4 (k). Then

3
Xo(k) = Za:(n)WI"‘; k=0,1,2,3; W= %/ = _j
n=0
These calculations are similar to those in Example 5.1. We can also use MATLAB
to compute this DFT.

>>x = {1,1,1,1); N = 4;
> X = dft(x,N);
>> magX = abs(X), phaX = angle(X)*180/pi

magX =
4.0000 0.0000 0.0000 0.0000

phaX =
0 -134.9810 -90.0000 -44,9979

Hence

Xa(k) = {4,0,0,0}
i

Note that when the magnitude sample is zero, the corresponding angle is not
zero. This is due to a particular algorithm used by MATLAB to compute the

132 Chapter 5 ® THE DISCRETE FOURIER TRANSFORM

Magnitude of the DTFT

4 T T T B T T T

abo N i
RO VO O S F0V0% PRSPPSO SRR S A i

1r 4

o ;

: : P : : : :
[0.2 0.4 06 08 1 1.2 14 18 18 2
frequency in pi units

Angle of the DTFT

200 T T T T T T T T T

0 0.2 0.4 06 0.8 1 1.2
fraquency in pi units

FIGURE 54 The DTFT plots in Ezample 5.6

angle part. Generally these angles should be ignored. The plot of DFT values
is shown in Figure 5.5. The plot of X(e/“) is also shown as a dashed line for
comparison. From the plot in Figure 5.5 we observe that X4 correctly gives 4
samples of X(e’*), but it has only one nonzero sample. Is this surprising? By
looking at the 4-point z(n), which contains all 1’s, one must conclude that its
periodic extension is

#n)=1, ¥n

which is a constant (or a DC) signal. This is what is predicted by the DFT
Xa(k), which has a nonzero sample at k = 0 (or w = 0) and has no values at
other frequencies. [n}

O EXAMPLES7 How can we obtain other samples of the DTFT X(e/*)?

Solution It is clear that we should sample at dense (or finer) frequencies; that is, we
should increase N. Suppose we take twice the number of points, or N = 8
instead of 4. This we can achieve by treating x(n) as an 8-point sequence by
appending 4 zeros.

z(n) = {%,1,1,1,0,0,0,0}
T

The Discrete Fourier Transform 133

Magnitude of the DFT: N=4

v — v T T T _— —
4. R
S e
;T N .]
= A ’
=, A 14]
ZZ . K
1t N Lo T T~ LT~ L, E
o A4 ~or” Sy
Sl 2 N S S " . L
0 05 1 15 2 25 3 35 4
3
Angle of the DFT: N=4
200~———— T T T T — v
LIRS
100} N e i
o (BN 1 ~ .
8 0 (IS ! S~ ! S~
T S
-100F NS .*
200+ PR 2 " L . .) .
00 0 0.5 1 15 2 25 3 35 4
k

FIGURE 5.5 The DFT plots of Ezample 5.6

This is a very important operation called a zero-padding operation. This oper-
ation is necessary in practice to obtain a dense spectrum of signals as we shall
see. Let X3 (k) be an 8-point DFT, then

7
Xs (k) = Zz(n)Wé"‘; k=0,1,...,7; We=e3"/4

n=0

In this case the frequency resolution is wy = 27/8 = x/4.

> x = [1,1,1,1, zeros(1,4)]; N = 8;
>> X = dft(x,N);
>> magX = abs(X), phaX = angle(X)#180/pi
magX =
4.0000 2.6131 0.0000 1.0824 0.0000 1.0824 0.0000 2.6131
phaX =
0 -67.5000 -134.9810 -22.5000 =-90.0000 22.5000 -44.9979 67.5000

Hence

Xa (k) = {4, 2.6181e™957%" 0, 1.0824e™722%° 0, 1.08246"3*%°
T

0, 2.6131e75°}

134 Chapter 5 ® THE DISCRETE FOURIER TRANSFORM

Magnitude of the DFT: N=8

4o - .
- L.
3 N g 4
= \ /]
%2 AN ¢
1 N PR RN - - 4
T T 1
o -
e . ; , L . N .
0 1 2 3 4 5 6 7 8
k
Angle of the DFT: N=8
200~ —T— T T T T —— T T
L [N
g1oo . RN {
.o [I ~.
% 0 Lo 5 i P 1«, T >
8 \\\1 ~ o l S
~100 S.l) 1
200 . ") L
o 1 2 3 4 5 6 7 8
k

FIGURE 5.6 The DFT plots of Example 5.7: N =8

which is shown in Figure 5.6. Continuing further, if we treat z{n) as a 16-point
sequence by padding 12 zeros, such that

I(") = {1! ly 1,1,0,0,0,0,0,0,0, 0,0, 0,0, 0}
T

then the frequency resolution is w; = 27/16 = x/8 and W)s = e7™/%_ Therefore
we get a more dense spectrum with spectral samples separated by 7/8. The
sketch of X6 (k) is shown in Figure 5.7. [}

Comments: Based on the last two examples there are several comments
that we can make.

1. Zero-padding is an operation in which more zeros are appended to
the original sequence. The resulting longer DFT provides closely spaced
samples of the discrete-time Fourier transform of the original sequence.
In MATLAB zero-padding is implemented using the zeros function.

2. In Example 5.6 all we needed to accurately plot the discrete-time
Fourier transform X(e’) of z(n) was X, (k), the 4-point DFT. This is
because z(n) had only 4 nonzero samples, so we could have used the inter-
polation formula (5.19) on X, (k) to obtain X (e?). However, in practice,
it is easier to obtain X3 (k) and X;6(k), and so on, to fill in the values
of X(e’*) rather than using the interpolation formula. This approach can

The Discrete Fourier Transform 135

Magnitude of the DFT: N=16

— T — —T — T— T y

N W b
’
N
1

IX(k)

Pl e e T T

2 4 6 8 10 12 14 16
Kk

Angle of the DFT: N=16

200 T g T - —— — T T

T e T

i
g T (l “E N
-~ i
100} b N S]
2005 2 4] E 10 12 14 16

FIGURE 5.7 The DFT plots of Example 5.7: N = 16

be made even more efficient using fast Fourier transform algorithms to
compute the DFT.

3. The zero-padding gives us a high-density spectrum and provides
a better displayed version for plotting. But it does not give us a high-
resolution spectrum because no new information is added to the signal;
only additional zeros are added in the data.

4. To get a high-resolution spectrum, one has to obtain more dats
from the experiment or observations (see Example 5.8 below). There are
also other advanced methods that use additional side information or non-
linear techniques.

0 EXAMPLE 58 To illustrate the difference between the high-density spectrum and tbe high-
resolution spectrum, consider the sequence
z{n) = cos{0.487n) + cos (0.527n)
We want to determine its spectrum based on the finite number of samples.
a. Determine and plot the discrete-time Fourier transform of z(n), 0 <
n <10.
b. Determine and plot the discrete-time Fourier transform of z(n), 0 <
n < 100.
136 Chapter 5 ® THE bISCRETE FOURIER TRANSFORM

>>
>>
>>
>>
>?
>>

>>
>>
>>
>
>>
>
>>

We could determine analytically the discrete-time Fourier transform in each
case, but MATLAB is a good vehicle to study these problems.

a. We can first determine the 10-point DFT of z(n) to obtain an estimate
of its discrete-time Fourier transform.

n = [0:1:99]; x = cos(0.48+pi*n)+cos (0. 52%pi*n);

nl = [0:3:9) ;y1 = x(1:1:10);

subplot(2,1,1) ;stem(ni,yl); title(’signal x(un}, O <= n <= 9’);xlabel(’n’)
Y1 = dft(yl,10); mag¥i = abs(¥1(1:1:6));

ki = 0:1:5 ;wi = 2%pi/10%k1;

subplot(2,1,2);plot(wi/pi,nag¥l) ;title(’Samples of DTFT Magnitude’);
xlabel(’frequency in pi wnits')

The plots in Figure 5.8 show there aren’t enough samples to draw any conclu-
sions. Therefore we will pad 90 zeros to obtain a dense spectrum.

n2 = [0:1:99); y2 = [x(1:1:10) zexros(1,90)];

subplot(2,1,1) ;stem{(n2,y2) ;title(’signal x(n), 0 <= p <= 9 + 90 zeros');
xlabel(’n’) .

Y2 =dft(y2,100); mag¥2 = abs(¥2(1:1:51));

k2 = 0:1:50; w2 = 2#pi/100+k2;

subplot(2,1,2); plot(w3/pi,mag¥3); title(’DIFT Magnitude’);

xlabel (’frequency in pi units’)

signal x(n}, 0 <=n <=9

T —T — T T T T T

- J

T
L

-2

[+] 1 2 3 4 5 6 7 8 4 10
n

Samples of DTFT Magnitude

T T T L T

10 T T T

!
L

2¢ T
o . S - 1

© 01 02 03 04 05 06 07 08 09
trequency in pi units

-

FIGURE 5.8 Signal and its spectrum in Ezample 5.8a: N = 10

The Discrete Fourier Transform 137

signal x(n), 0 <= n <=9 + 90 zeros

Qr"j'rllllﬁ

o s 1) "
0 01 0.2 03 04 05 0.6 0.7 0.8 0.9 1
fraquency in pi units

FIGURE 5.9 Signal and its spectrum in Ezample 5.8a: N = 100

Now the plot in Figure 5.9 shows that the sequence has a dominant frequency
at w = 0.57. This fact is not supported by the original sequence, which has two
frequencies. The zero-padding provided a smoother version of the spectrum in
Figure 5.8.

b. To get better spectral information, we will take the first 100 samples of
z{n) and determine its discrete-time Fourier transform.

>> subplot(2,1,1); stem(n,x);

>> title(’signal x{(n), 0 <= n <= 99’); xlabel(’n’)

>> X = dft(x,100); magX = abs(X(1:1:51));

>> k = 0:1:50; w = 2+pi/100%k;

>> gubplot(2,1,2); plot(w/pi,magX); title(’DIFT Magnitude’);
>> xlabel(’frequency in pi units’)

Now the discrete-time Fourier transform plot in Figure 5.10 clearly shows two
frequencies, which are very close to each other. This is the high-resolution spec-
trum of z(n). Note that padding more zeros to the 100-point sequence will result
in a smoother rendition of the spectrum in Figure 5.10 but will not reveal any
new information. Students are encouraged to verify this. a

138

Chapter 5 ® THE DISCRETE FOURIER TRANSFORM

signal x{n), 0 <=n <=99

T ™ T T . — T I S y

%

”UTT}V&@%?THHthsﬁ‘r TH
S

L ‘ PR s L L) 4
0 10 20 30 40 50 60 70 80 20 100
n

v L g
3
o—F
o——74

DTFT Magnitude
60 T T T T g T —r T T
4or 1
20} |
0 " s . . " \ - ;

0 0.1 0.2 03 0.4 0.5 0.6 07 08 0.9 1
frequency in pi units

FIGURE 5.10 Signal and its spectrum in Ezample 5.8b: N = 100

PROPERTIES OF THE DISCRETE FOURIER TRANSFORM
- :

The DFT properties are derived from those of the DFS because mathe-
matically DFS is the valid representation. We discuss several useful prop-
erties, which are given without proof. These properties also apply to the
DFS with necessary changes. Let X (k) be an N-point DFT of the se-
quence z(n). Unless otherwise stated, the N-point DFTs will be used in
these properties.

1. Linearity: The DFT is a linear transform
DFT |az;(n) + bz2(n)} = a DFT [z; (n)] + bDFT [z2(n)) (5.27)

Note: If x1(n) and z2(n) have different durations—that is, they are
Ni-point and Nz-point sequences, respectively—then choose N3 =
max (N, Np) and proceed by taking N3-point DFTs.

2. Circular folding: If an N-point sequence is folded, then the result
z{~n) would not be an N-point sequence, and it would not be possible

Properties of the Discrete Fourier Transform 139

a EXAMPLE 5.9

to compute its DFT. Therefore we use the modulo-N operation on the
argument (—n) and define folding by

2(0), '1’ =: (5.28)

2 (- = {x(N—n)

This is called a circular folding. To visualize it, imagine that the se-
quence z(n) is wrapped around a circle in the counterclockwise direc-
tion so that indices n = 0 and n = N overlap. Then z((—n})n~ can
be viewed as a clockwise wrapping of z(n) around the circle; hence the
name circular folding. In MATLAB the circular folding can be achieved by
x=x(mod(-n,N)+1). Note that the arguments in MATLAB begin with 1.
Then its DFT is given by

X(0), k=
1

Let z(n) = 10(0.8)*, 0<n<10.

a. Determine and plot z ((—n)),,.
b. Verify the circular folding property.

a. MATLAB Script
>> n = 0:100; x = 10%(0.8) .” n;
>> y = x(mod(-n,11)+1);
>> subplot(2,1,1); stem(n,x); tltle(’Onglnal sequence’)
>> xlabel(’n’); ylabel(’x(n)’);
>> subplot(2,1,2); stem(n,y); title(’Circularly folded sequence’)
>> xlabel(’n’); ylabel(’x(-n med 10)?’);

The plots in Figure 5.11 show the effect of circular folding.
b. MATLAB Script

>> X = dft(x,11); Y = dft(y,11);

>> subplot(2,2,1); stem(n,real(X));

>> title(’Real{DFT{x(n)]}’); xlabel(’k’);

>> subplot(2,2,2); stem(n,imag(X));

>> title(’Imag{DFT[x(n)]1}’); xlabel(’k’);

>> subplot(2,2,3); stem(n,real(Y));

>> title(’Real{DFT[x((-n))11]}’); xlabel(’k’);

>> subplot(2,2,4); stem(n,imag(Y));

>> title(’Imag{DFT[x((-n))111}’); xlabel(’k’);

The plots in Figure 5.12 verify the property. a

140

Chapter 5 ™ THE DISCRETE FOURIER TRANSFORM

wof —r T T —_ T T —
8t]
— 6F 4
£
Ed 4t
r 1
of T [Tt 9]
0 1 2 3 4 5 6 7 8 9 10
n
Circularty folded sequence

10
= 8
é sf 1
s 4 1
Ty 11 '
o L_® 11)
o 1 2z 85 4 5 & 7 8 8 10
n
FIGURE 5.11 Circular folding in Ezample 5.9a
Real{DFT[x(n)]} Imag{DFT{x(n)]}
50 20
‘9 10 ‘
30
0 o0 f
20 i l 13
10 -10
0 T_f ?7¢%29%¢%% T
[5 10 2055 5 10
K K
" Real{DFTIx((-n)11} Imag{OFTIx((-n))11]}
“ 10 T
30
0 [te.
20) & l 1
10) -10
Tlteeeseee]
0 5 10) 5 10
K K

FIGURE 5.12 Circular folding property in Ezample 5.9b

Properties of the Discrete Fourier

Transform

141

3. Conjugation: Similar to the above property we have to introduce
the circular folding in the frequency domain.

DFT [z*(n)] = X* ((—~k))n (5.30)

4. Symmetry properties for real sequences: Let z(n) be a real-valued
N-point sequence. Then z(n) = z*(n). Using the above property,

X(k) = X* ((-K)) (5.31)

This symmetry is called a circular conjugate symmetry. It further implies
that

Re[X (k)] = Re (X ((—K))n] == Circular-even sequence

Im [X (k)] = —Im [X ((N — k)) 5] => Circular-odd sequence

(X&) =X (k) nl == Clrcular-even sequence

LX(k)=~LX (k)N == Circular-odd sequence
(5.32)

Comments: 1. Observe the magnitudes and angles of the various DFTs
in Examples 5.6 and 5.7. They do satisfy the above circular symmetries.
These symmetries are different than the usual even and odd symmetries.
To visualize this, imagine that the DFT samples are arranged around a
circle so that the indices k = 0 and k¥ = N overlap; then the samples
will be symmetric with respect to k = 0, which justifies the name circular
symimetry.

2. The corresponding symmetry for the DFS coefficients is called the
periodic conjugate symmetry.

3. Since these DFTs have symmetry, one needs to compute X (k) only
for

k=0,1,...,%£; N even
or for
k=0,1,...,——: N odd

This results in about 50% savings in computation as well as in storage.
4. From (5.30)

X(0) = X*((-0))n = X*(0)

which means that the DFT coefficient at k = 0 must be a real number.
But & = 0 means that the frequency wy = kw; = 0, which is the DC

142

Chapter 5 ® THE DISCRETE FOURIER TRANSFORM

frequency. Hence the DC coefficient for a real-valued z(n) must be a real
number. In addition, if N is even, then N/2 is also an integer. Then from

(),)

which means that even the k = N/2 component is also real-valued. This
component is called the Nygquist component since k = N/2 means that
the frequency wy/a = (N/2)(2r/N) = =, which is the digital Nyquist
frequency.

The real-valued signals can also be decomposed into their even and odd
components, z.(n) and z,(n), respectively, as discussed in Chapter 2.
However, these components are not N-point sequences and therefore we
cannot take their N-point DFTs. Hence we define a new set of components
using the circular folding discussed above. These are called circular-even
and circular-odd components defined by

z(0), n=0

A

A _ 0, n=20
xoc(n) = §[I(n)—x((_n))N] - {%[I(n)—I(N~n)], 1 SnSN—l
(5.33)
Then
DFT [z, (n)] = Re[X (k)] = Re [X ((—k))y] (5:34)

DFT [2,c (n)] = Im [X (K)] = Im [X ((~K))y]

Implication: If z(n) is real and circular-even, then its DFT is also real
and circular-even. Hence only the first 0 < n < N/2 coefficients are
necessary for complete representation.

Using (5.33), it is easy to develop a function to decompose an N-point
sequence into its circular-even and circular-odd components. The follow-
ing circevod function uses the mod function given earlier to implement
the nMOD N operation.

function [xec, xocl = circevod(x)
% signal decomposition into circular-even and circular-odd parts
%
% [xec, xoc] = circevod(x)
%
if any(imag(x) ~= 0)

error(’x is not a real sequence’)

Properties of the Discrete Fourier Transform 143

end

N = length(x); n = 0:(N-1);
xec = 0.5%(x + x(mod(-n,N)+1));
xoc = 0.5%(x - x(mod(-n,N)+1));

O EXAMPLES5.10 Let z(n) =10(0.8)", 0<n <10 as in Example 5.9.

a. Decompose and plot the z.c(n) and z.c(n) components of z(n).
b. Verify the property in (5.34).

Solution a. MATLAB Script
>> n = 0:10; x = 10%(0.8) .~ n;
>> [xec,xoc] = circeved(x);
>> subplot(2,1,1); stem(n,xec); title(’Circular-even component’)
>> xlabel(’n’); ylabel(’xec{n)’); axis([-0.5,10.5,~1,11])
>> subplot(2,1,2); stem(n,xoc); title(’Circular-odd component’)
>> xlabel(’n’); ylabel(’xoc(n)’); axis([-0.5,10.5,-4,4])

The plots in Figure 5.13 show the circularly symmetric components of z(n).

.
J

101

xec(n)

P r oo
e
——op
F—o
L—o
——o
——o
——o
f———o
P

n . s L L) 2 n L x L
0 1 2 4 5 6 7 8 9 10
n

4 T T

Sof ILL¢®]

FIGURE 5.13 Circular-even and circular-odd components of the sequence in Ez-
ample 5.10a

14 Chapter 5 ® THE DISCRETE FOURIER TRANSFORM

>>
>>
>>
>>
>>
>>
>>
>

v

b. MaTLAB Script

X = dft(x,11);

Xec = dft(xec,11); Xoc = dft(xoc,11);
subplot (2,2,1); stem(n,real(X));

axis([~0.5,10.5,-5,50])

title(’Real{DFT(x(n)1}’); xlabel(’k’);

subplot (2,2,2); stem(n,imag(X));

axis({-0.5,10.5,-20,201)

title(’ Imag{DFT{x(n)]}’); xlabel(’k’);

subplot(2,2,3); stem(n,real(Xec)); axis([-0.5,10.5,-5,50])
title (’DFT[xec(n)]’); xlabel(’k’);

subplot(2,2,4); stem(n,imag(Xoc)); axis({~0.5,10.5,-20,201)
title(’DFT[xoc(n)]’); xlabel(’k’);

From the plots in Figure 5.14 we observe that the DFT of z..(n) is the same as
the real part of X (k) and that the DFT of z,.(n) is the same as the imaginary
part of X (k).

FIGURE 5.14

[m]

A similar property for complex-valued sequences is explored in Exer-
cise 5.10.
5. Circular shift of a sequence: If an N-point sequence is shifted in
either direction, then the result is no longer between 0 < n < N — 1.
Therefore we first convert z(n) into its periodic extension Z(n), and then
shift it by m samples to obtain

Fn—m)y=z((n—m))y

Real{DFT{x(n)}}
50
40
30
20
10
Tlssseaesee]

0 5 10
k

DFT[xectn)]

8 8 8 8

f]TT??j??jij

10
k

imag{DFTIx(n)}}
10 T
a0 ¥ T
0 l—g o
10
205 5 10
Kk
DFT[xoc{n)]
10
0
-10
i 5 10
X

Plots of DFT symmetry properties in Example 5.10b

(5.35)

Properties of the Discrete Fourier Transform

145

O EXAMPLE 5.11

Solution

This is called a periodic shift of Z(n). The periodic shift is then converted
into an N-point sequence. The resulting sequence

E(n~m)Ry(n) = z((n —m))y Ru(n) (5.36)

is called the circular shift of z{n). Once again to visualize this, imagine
that the sequence z(n) is wrapped around a circle. Now rotate the circle
by k samples and unwrap the sequence from 0 < n < N — 1. Its DFT is
given by

DFT [z ((n — m)) y Rn(n)] = W™ X (k) (537)

Let z(n) = 10(0.8)", 0 < n <10 be an 11-point sequence.

a. Sketch z ((n + 4));, Rui(n), that is, a circular shift by 4 samples toward
the left.

b. Sketch z ((n — 3)),5 Ris(n), that is, a circular shift by 3 samples toward
the right, where z(n) is assumed to be a 15-point sequence.

We will use a step-by-step graphical approach to illustrate the circular shifting
operation. This approach shows the periodic extension #(n) = z ((n)) 5 of z(n),
followed by a linear shift in £(n) to obtain £ (n — m) = z ((n — m)) 5, and finally
truncating £ (n — m) to obtain the circular shift.

a. Figure 5.15 shows four sequences. The top-left shows z(n), the bottom-
left shows Z(n), the top-right shows Z(n +4), and finally the bottom-right
shows z((n +4));; Ri1(n). Note carefully that as samples move out of the
{0, N — 1] window in one direction, they reappear from the opposite direction.
This is the meaning of the circular shift, and it is different from the linear shift.

b. In this case the sequence z(n) is treated as a 15-point sequence by
padding 4 zeros. Now the circular shift will be different than when N = 11.
This is shown in Figure 5.16. In fact the circular shift z ((n — 3)),; looks like a
linear shift z(n — 3). a

To implement a circular shift, we do not have to go through the
periodic shift as shown in Example 5.11. It can be implemented directly
in two ways. In the first approach, the modulo-N operation can be used
on the argument (n —m) in the time domain. This is shown below in the
cirshftt function.

function y = cirshftt(x,m,N)

% Circular shift of m samples wrt size N in sequence x: (time domain)
%
% [yl = cirshftt(x,m,N)

% y = output sequence containing the circular shift
% x = input sequence of length <= N

% m = sample shift

% N = size of circular buffer

% Method: y(n) = x({n-m) mod N)

146

Chapter 5 @ THE DISCRETE FOURIER TRANSFORM

Original x(n)

hﬁﬁﬁm

Periodic shift

Periodic extention

i

Circular shift

ﬁﬁmjﬁ{[%

-5 0 5

2_5 ITTTTZ?“U) .

IGURE 5.15 Graphical interpretation of circular shift, N = 11

Original x(n)

Periodic shift

hﬁﬁdﬁﬁ?

ﬁﬁﬁﬁ?

0 20

Periodic extention

i

[
4
i
0

Jﬁﬁm},

h

., “ITTTT? :

FIGURE 5.16 Graphical interpretation of circular shift, N = 15

ier Transform

147

O EXAMPLE 5.12

% Check for length of x
if length(x) > N
error(’N must be >= the length of x’)
end
x = [x zeros(1,N-length(x))];
n = [0:1:N-1];
n = mod(n-m,N);
y = x(n+1);

In the second approach, the property 5.37 can be used in the frequency
domain. This is explored in Exercise 5.12.

Given an 11-point sequence z(n) = 10(0.8)", € < n < 10, determine and plot
z((n = 6))y5-

Solution MATLAB Script
>>n =0:10; x = 10%(0.8) .” n;
>> y = cirshftt(x,6,15);
>>n = 0:14; x = [x, zeros(1,4)];
>> subplot(2,1,1); stem(n,x); title(’Original sequence’)
>> xlabel(’n’); ylabel(’x(n)?);
>> subplot(2,1,2); stem(n,y);
>> title(’Circularly shifted sequence, N=15°)
>> xlabel(’n’); ylabel{’x((n-6) mod 15)’);
The results are shown in Figure 5.17. a
6. Circular shift in the frequency domain: This property is a dual of
the above property given by
DFT [W;‘"z(n)] = X ((k—£))y Rn(k) (5.38)
7. Circular convolution: A linear convolution between two N-point
sequences will result in a longer sequence. Once again we have to restrict
our interval to 0 < n < N — 1. Therefore instead of linear shift, we
should consider the circular shift. A convolution operation that contains
a circular shift is called the circular convolution and is given by
N-1
o) @ wa) = 3 nm)za ((n-m))y, 0<n<N-1 (539)
m=0
Note that the circular convolution is also an N-point sequence. It has a
structure similar to that of a linear convolution. The differences are in
the summation limits and in the N-point circular shift. Hence it depends
on N and is also called an N-point circular convolution. Therefore the
148 Chapter 5 ® THE DISCRETE FOURIER TRANSFORM

O EXAMPLES.13

Original sequence

E

x(n)

O N O
T

| TLTTT?iuA'

] s 10 15
n

Circulary shifted sequence, N=15

10F 1

B8
B 6} .]
13
g 4 |
¥ ot .
Tt . | IT 119
0 5 0 15

n

FIGURE 5.17 Circularly shifted sequence in Example 5.12

use of the notation @ is appropriate. The DFT property for the circular
convolution is

DFT [zl(n) ® xz(n)] = X(k) - X2(k) (5.40)

An alternate interpretation of this property is that when we multiply two
N-point DFTs in the frequency domain, we get the circular convolution
(and not the usual linear convolution) in the time domain.

Let z1(n) = {1,2,2} and z2(n) = {1,2,3,4}. Compute the 4-point circular
convolution x1(n) z2(n).

Note that z;(n) is a 3-point sequence, hence we will have to pad one zero to
make it a 4-point sequence before we perform the circular convolution. We will
solve this problem in the time domain as well as in the frequency domain. In
the time domain we will use the mechanism of circular convolution, while in the
frequency domain we will use the DFTs.

@ Time-domain approach: The 4-point circular convolution is given by

3
21(n) @ z2() = ¥ 21 () 22 (n — m)),

m=0

Properties of the Discrete Fourier Transform 149

Thus we have to create a circularly folded and shifted sequence z2 ((n — m)) ,
multiply it sample-by-sample with z; (m), add the samples to obtain the circular
convolution value for that n, and then repeat the procedure for 0 < n < 3.
Consider

zi(m)={1, 2, 2, 0} and z2(m) = {1, 2, 3, 4}

forn=10

3 3
Y m(m) -z (0-m)s =D [{1, 2,2, 0}-{1, 4, 3, 2)]

m=0 m=0
3
=Y {1,86,0}=15
m=0

forn=1

3 3
S oamm) -z (1-m)y =D [{1,2 2 0}-{2 1,4, 3}

m=0 mz=0
3
= Z{z, 2, 8, 0} =12
m=0

forn=2

3
omm) -z (@-my= Y {1, 22013 21, 4)]

m=0 m=0
3
=Z{3, 4,2,0}=9
m=0

forn=3

S mlm) z (G-m)y =Y {1,220 {4,3,2,1)]

m=0 m=0
3
=Y {4,640 =14
m=0

Hence

z1(n) (@) z2(n) = (15, 12, 9, 14}

* Frequency-domain approach: In this approach we first compute 4-point
DFTs of z1(n) and z2(n), multiply them sample-by-sample, and then take the
inverse DF'T of the result to obtain the circular convolution.

150

Chapter 5 B THE DISCRETE FOURIER TRANSFORM

DFT of z1(n)
zi(n) = {1,2,2,0} = Xa(k) = {5, —1-j2, 1, -1+32}
DFT of z3(n)
z2(n) = {1,2,3,4} = Xa(k) = {10, -2+ j2, -2, -2 - j2}
Now
X1(k) - X2(k) = {50, 6 +j2, —2, 6 — j2}
Finally after IDFT,
z1(n) (@) z2(n) = {15, 12, 9, 14}
which is the same as before. o
Similar to the circular shift implementation, we can implement the circular
convolution in a number of different ways. The simplest approach would be
to implement (5.39) literally by using the cirshftt function and requir-
ing two nested for...end loops. Obviously, this is not efficient. Another
approach is to generate a sequence z ((n —m)),, for each n in [0, N — 1]
as rows of a matrix and then implement (5.39) as a matrix-vector multi-

plication similar to our dft function. This would require one for...end
loop. The following circonvt function incorporates these steps.

function y = circonvt(x1,x2,N)
% N-point circular convolution between x1 and x2: (time-domain)

% [yl = circonvt(x1,x2,N)
% y = output sequence containing the circular convolution
% x1 = input sequence of length N1 <= N
% x2 = input sequence of length N2 <= N
% N = size of circular buffer
% Method: y(n) = sum (x1(m)*x2((n-m) mod N))
% Check for length of xi
if length(xi) > N
error(’N must be >= the length of x1’)
end
% Check for length of x2
if length(x2) > N
error (N must be >= the length of x2’)
end
x1=[x1 zeros(1,N-length(x1))];
x2=[x2 zeros(1,N-length(x2))];
m = [0:1:N-1];
x2 = x2(mod(-m,N)+1);
H = zeros(N,N);

Properties of the Discrete Fourier Transform 151

O EXAMPLE 5.14

Solution

[m] EXAMPLE 5.15

for n = 1:1:N

H(n,:) = cirshftt(x2,n-1,N);
end

y = xisH’;

The third approach would be to implement the frequency-domain opera-
tion (5.40) using the dft function. This is explored in Exercise 5.15.

Let us use MATLAB to perform the circulat convolution in Example 5.13.
The sequences are z1(n) = {1,2,2} and za(n) = {1,2,3,4}.

> x1 = [1,2,2); x2 = [1,2,3,4];
>> y = circonvt(xi, x2, 4)

y =
15 12 9 14
Hence
z1(n) (@) z2(n) = {15, 12, 9, 14}
as before. a

In this example we will study the effect of N on the circular convolution. Obvi-
ously, N > 4; otherwise there will be a time-domain aliasing for z2(n). We will
use the same two sequences from Example 5.13.

a. Compute z;(n) e z2(n).
b. Compute z;(n) e za2(n).
¢. Comment on the results.

Solution The sequences are 11(n) = {1,2,2} and z2(n) = {1,2,3,4}. Even though the
sequences are the same as in Example 5.14, we should expect different results
for different values of N. This is not the case with the linear convolution, which
is unique, given two sequences. .

a. 5-point circular convolution:
> xi = [1,2,2); x2 = [1,2,3,4]);
>> y = circonvt(xl, x2, 5)
y =

9 4 9 14 14
Hence
21(n) (5) za(n) = {9, 4, 9, 14, 14}
152 Chapter 5 ® THE DISCRETE FOURIER TRANSFORM

b. 6-point circular convolution:

> x1 = [1,2,2); x2 = [1,2,3,4];
>> y = circonvt(xl, x2, 6)
y =
1 4 9 14 14 8

z1(n) (6) z2(n) = {1, 4, 9, 14, 14, 8}

¢. A careful observation of 4-, 5-, and 6-point circular convolutions from
this and the previous example indicates some unique features. Clearly, an N-
point circular convolution is an N-point sequence. However, some samples in
these convolutions have the same values, while other values can be obtained
as a sum of samples in other convolutions. For example, the first sample in
the 5-point convolution is a sum of the first and the last sample of the 6-point
convolution. The linear convolution between zy(n) and z2(n) is given by

z1{n) * z2(n) = {1, 4, 9, 14, 14, 8}

which is equivalent to the 6-point circular convolution. These and other issues
are explored in the next section. [m]

8. Multiplication: This is the dual of the circular convolution prop-
erty. It is given by

DFT [z1(n) - z2(n)] = %Xl k) @ Xa(k) (5.41)

in which the circular convolution is performed in the frequency domain.
The MATLAB functions developed for circular convolution can also be
used here since X; (k) and X, (k) are also N-point sequences.

9. Parseval’s relation: This relation computes the energy in the fre-
quency domain.

N-1 .] N1 \
2 —
Ez= Y lz(n)* = N > 1X(k) (5.42)
n=0 k=0
The quantity P—(%ll: is called the energy spectrum of finite-duration se-

quences. Similarly, for periodic sequences, the quantity l s l is called
the power spectrum.

Properties of the Discrete Fourier Transform 153

LINEAR CONVOLUTION USING THE DFT
—

One of the most important operations in linear systems is the linear convo-
lution. In fact FIR filters are generally implemented in practice using this
linear convolution. On the other hand, the DFT is a practical approach
for implementing linear system operations in the frequency domain. As we
shall see later, it is also an efficient operation in terms of computations.
However, there is one problem. The DFT operations result in a circular
convolution (something that we do not desire), not in a linear convolution
that we want. Now we shall see how to use the DFT to perform a linear
convolution (or equivalently, how to make a circular convolution identical
to the linear convolution). We alluded to this problem in Example 5.15.

Let x;(n) be an N;-point sequence and let z3(n) be an N;-point
sequence. Define the linear convolution of z,(n) and z2(n) by z3(n), that
is,

z3(n) = z1(n) * z2(n) (5.43)
o0 N;-1
= 3 nEem-k) =) nk)nm k)
k=—-00 0

Then z3(n) is a (N; + N2 — 1)-point sequence. If we choose N =
max(N;, Np) and compute an N-point circular convolution z(n) @
Za(n), then we get an N-point sequence, which obviously is different
from z3(n). This observation also gives us a clue. Why not choose
N = N; + N; — 1 and perform an (N3 + N3 — 1)-point circular con-
volution? Then at least both of these convolutions will have an equal
number of samples.

Therefore let N = N; + N> — 1 and let us treat z;(n) and z3(n) as
N-point sequences. Define the N-point circular convolution by z4(n).

z1(n) ® z2(n (5.44)
[Yz (k)za((n - k))N] Ru(n)
m=0

H

N-1
Z:cl k) Z zz(n—~k—rN)] Rn(n)
m 0

r=—00

o Ni~1

33 mi(k)za(n—k—rN) | Ru(n)

r=~po m=0

i

zz(n—rN)

154

Chapter 5 ® THE DISCRETE FOURIER TRANSFORM

O EXAMPLE 5.16

Solution

ERROR
ANALYSIS

= [i z3(n — rN)] Rn(n) using (5.43)

=—00

This analysis shows that, in general, the circular convolution is an aliased
version of the linear convolution. We observed this fact in Example 5.15.
Now since z3(n) is an N = (N; + Nz — 1)-point sequence, we have

z4(n) =z3(n); 0<n<(N-1)
which means that there is no aliasing in the time domain.

Conclusion: If we make both z1(n) and z5(n) N = Ny + Np — 1 point
sequences by padding an appropriate number of zeros, then the circular
convolution is identical to the linear convolution.

Let z1(n) and z2(n) be the two 4-point sequences given below.
nin)={1, 2,2, 1}, =z(n)={1, -1, -1, 1}

a. Determine their linear convolution z3(n).
b. Compute the circular convolution z4(n) so that it is equal to z3(n).

We will use MATLAB to do this problem.

a. MATLAB Script
>> x1 = [1,2,2,1]; x2=[1,-1,-1,1};
>> x3 = conv(xl,x2)
x3 = 1 1 -1 -2 -1 i i

Hence the linear convolution z3(n) is a 7-point sequence given by
z3(n) = {1,1,~1,-2,-1,1,1}

b. We will have to use N > 7. Choosing N = 7, we have

>> x4 = circonvt(x1,x2,7)
x4 = 1 1 -1 -2 -1 1 1

Hence

T4 ={1,1,—-1,-2,-1,1,1} = z3(n)]

In order to use the DFT for linear convolution, we must choose N properly.
However, in practice it may not be possible to do so, especially when
N is very large and there is a limit on memory. Then an error will be
introduced when N is chosen less than the required value to perform the
circular convolution. We want to compute this error, which is useful in

Linear Convolution using the DFT 155

0 EXAMPLE 5.17

practice. Obviously, N > max(Ny, N2). Therefore let
max(Ny,N3) SN < (N3 + Nz~ 1)

Then from our previous analysis (5.44)

oo

z4(n) = [Z z3(n — rN)] Rn(n)

r==00

Let an error e(n) be given by
e(n) £ z4(n) — z3(n)
= Zx;;(n ~rN)| Rn(n)
r#0

Since N > max(Nj, N2), only two terms corresponding to r = x1 remain
in the above summation. Hence

e(n) = [za(n — N) + za(n + N)] Rav(n)

Generally, z1(n) and z2(n) are causal sequences. Then z3(n) is also causal,
which means that

23(n—-N)=0; 0<n<N-1
Therefore
e(n)=z3(n+N), 0<n<N-1 (5.45)

This is a simple yet important relation. It implies that when max(N;, Np)
< N < (N; + Nz — 1), the error sample at n is the same as the linear
convolution N samples away. Now the linear convolution will be zero
after (N, + N — 1) samples. This means that the first few samples of the
circular convolution are in error, while the remaining ones are the correct
linear convolution values.

Consider the sequences z1(n) and z2{n) from the previous example. Evaluate
circular convolutions for N = 6, 5, and 4. Verify the error relations in each case.

Solution Clearly, the linear convolution z3(n) is still the same.
z3(n) = {1,1,-1,-2,-1,1,1}
When N = 6, we obtain a 6-point sequence.
za(n) = 22(n) (6) ma(n) = {2,1,-1,-2,~1,1}
156 Chapter 5 ® THE DISCRETE FOURIER TRANSFORM

Administrator

BLOCK CON-
VOLUTIONS

Therefore
e(n) = {2,1,-1,-2,-1,1} - {1,1,-1,-2,~1,1}, 0<n<5
= {1,0,0,0,0,0}
=z3(n+6)

as expected. When N = 5, we obtain a 5-point sequence,

z4(n) = z1(n) (B) za(n) = {2,2,~1,-2, -1}
and
e(n) = {2,2,-1,-2,-1} — {1,1,-1,-2,-1}, 0<n<4
={1,1,0,0,0}
= z3(n +5)

Finally, when N = 4, we obtain a 4-point sequence,

za(n) = 2:1(n) (@) z2(n) = {0,2,0, -2}
and
e(n) = {0,2,0,-2} — {1,1,-1,-2}, 0<n<3
={-1,1,1,0}
= z3(n+4)

The last case of N = 4 also provides the useful observation given below. [m]

Observation: When N = max(Ny, N3) is chosen for circular convolution,
then the first (M — 1) samples are in error (i.e., different from the linear
convolution), where A = min{Ny, N2). This result is useful in implement-
ing long convolutions in the form of block processing.

When we want to filter an input sequence that is being received con-
tinuously, such as a speech signal from a microphone, then for practical
purposes we can think of this sequence as an infinite-length sequence. If
we want to implement this filtering operation as an FIR filter in which
the linear convolution is computed using the DFT, then we experience
some practical problems. We will have to compute a large DFT, which is
generally impractical. Furthermore, output samples are not available un-
til all input samples are processed. This introduces an unacceptably large
amount of delay. Therefore we have to segment the infinite-length input
sequence into smaller sections (or blocks), process each section using the
DFT, and finally assemble the output sequence from the outputs of each

Linear Convolution using the DFT » 157

Administrator

0O EXAMPLES.18

section. This procedure is called a block convolution (or block processing)
operation.

Let us assume that the sequence z(n) is sectioned into N-point se-
quences and that the impulse response of the filter is an M-point sequence,
where M < N. Then from the above observation we note that the N-point
circular convolution between the input block and the impulse response will
yield a block output sequence in which the first (M — 1) samples are not
the correct output values. If we simply partition z(n) into nonoverlapping
sections, then the resuiting output sequence will have intervals of incor-
rect samples. To correct this problem, we can partition z(n) into sections,
each overlapping with the previous one by exactly (M — 1) samples, save
the last (N — M + 1) output samples, and finally concatenate these out-
puts into a sequence. To correct for the first (M — 1) samples in the first
output block, we set the first (M - 1) samples in the first input block to
zero. This procedure is called an overlap-save method of block convolu-.
tions. Clearly, when N > M, this method is more efficient. We illustrate
it using a simple example. ’

Letz(n)=(n+1), 0<n<9andh(n)={1,0,—1}. Implement the overlap-
T

save method using N = 6 to compute y(n) = z(n) * h(n).

Since M = 3, we will have to overlap each section with the previous one by two

samples. Now z(n) is a 10-point sequence, and we will need (M — 1) = 2 zeros
in the beginning. Since N = 6, we will need 3 sections. Let the sections be

xl(n) = {0, 07 17 27 3)4}
z2(n) = {3,4,5,6,7,8}
z3(n) = {7,8,9,10,0,0}
Note that we have to pad z3(n) by two zeros since z(n) runs out of values at

n = 9. Now we will compute the 6-point circular convolution of each section
with h(n).

w1 =1(n) (6) h(n) = {-3,-4,1,2,2,2}
y2 = z3(n) (6) h(n) = {~4,-4,2,2,2,2}
ws = 23(n) () h(n) = {7,8,2,2, 9, ~10}

Noting that the first two samples are to be discarded, we assemble the output
y(n) as

y(n) ={1,2,2,2,2,2,2,2,2,2,~9,-10}
1

158

Chapter 5 B THE DISCRETE FOURIER TRANSFORM

MATLAB
IMPLEMEN-
TATION

The linear convolution is given by

z(n) + h(n) = {1,2,2,2,2,2,2,2,2,2, -9, -10}
T

which agrees with the overlap-save method.]

Using the above example as a guide, we can develop a MATLAB function to
implement the overlap-save method for a very long input sequence z(n).
The key step in this function is to obtain a proper indexing for the seg-
mentation. Given z(n) for n > 0, we have to set the first (M — 1) samples
to zero to begin the block processing. Let this augmented sequence be

P
i(n) ={0,0,...,0, , n>0
#(n} ={ z(n)}, n
(M—1) zeros

and let L = N — M + 1, then the kth block zx(n), 0<n<N-1,is
given by

gx(n) =2(m); kL<m<kL+N-1,%k>20,0<n<N-1

The total number of blocks is given by

K:[————N’+£4_2J+1

where N; is the length of z(n) and |-| is the truncation operation. Now
each block can be circularly convolved with h(n) using the circonvt
function developed earlier to obtain

yi(n) = zx(n) Q) h(n)

Finally, discarding the first (M ~ 1) samples from each y(n) and con-
catenating the remaining samples, we obtain the linear convolution y(n).
This procedure is incorporated in the following ovrlpsav function.

function [y] = ovrlpsav(x,h,N)

%

%

Overlap-Save method of block convolution

{y]l = ovrlpsav(x,h,N)
y = output sequence
x = input sequence

h = impulse response
N = block length

Lenx = length(x); M = length(h);
Mi = M-1; L = N-M1;

Linear Convolution using the DFT 159

0 EXAMPLE5.19

Solution

-4
L}

[h zeros(1,N-M)];

x = [zeros(1,M1), x, zeros(1,N-1)1; Y% preappend (M-1) zeros
K = floor((Lenx+M1-1)/(L)); % # of blocks

Y = zeros(K+1,N);

% convolution with succesive blocks

for k=0:K

xk = x(k*L+1:k*L+N);

Y(k+1,:) = circonvt(xk,h,N);

end
Y= Y(:,M:N)?; . % discard the first (M-1) samples
y = (Y()); % assemble output

It should be noted that the ovrlpsav function as developed here is not
the most efficient approach. We will come back to this issue when we
discuss the fast Fourier transform.

To verify the operation of the ovrlpsav function, let us consider the sequences
given in Example 5.18.

MATLAB Script

>>n=0:9; x = n+t1; h = [1,0,-1]; N = 6;

>>
y =

y = ovrlpsav(x,h,N)

1 2 2 2 2 2 2 2 2 2 -9 -10

This is the correct linear convolution as expected. [m]

There is an alternate method called an overlap-add method of block
convolutions. In this method the input sequence z(n) is partitioned into
nonoverlapping blocks and convolved with the impulse response. The re-
sulting output blocks are overlapped with the subsequent sections and
added to form the overall output. This is explored in Exercise 5.20.

THE FAST FOURIER TR.ANSFORM

The DFT (5.24) introduced earlier is the only transform that is discrete in
both the time and the frequency domains, and is defined for finite-duration
sequences. Although it is a computable transform, the straightforward
implementation of (5.24) is very inefficient, especially when the sequence
length N is large. In 1965 Cooley and Tukey {4] showed a procedure to
substantially reduce the amount of computations involved in the DFT.
This led to the explosion of applications of the DFT, including in the

160

Chapter 5 ® THE DISCRETE FOURIER TRANSFORM

digital signal processing area. Furthermore, it also led to the development
of other efficient algorithms. All these efficient algorithms are collectively
known as fast Fourier transform (FFT) algorithms.

Consider an N-point sequence z(n}. Its N-point DFT is given by
(5.24) and reproduced here

N-1
X(k)y=Y_ s(mWgF, 0<k<N-1 (5.46)

n=0

where Wy = e~2"/N_To obtain one sample of X (k), we need N complex
multiplications and (N —1) complex additions. Hence to obtain a complete
set of DFT coefficients, we need N2 complex multiplications and N(N —
1) ~ N? complex additions. Also one has to store N? complex coefficients
{WH*} (or generate internally at an extra cost). Clearly, the number of
DFT computations for an N-point sequence depends quadratically on N,
which will be denoted by the notation

CN =0(N2)

For large N, o (N?) is unacceptable in practice. Generally, the processing
time for one addition is much less than that for one multiplication. Hence
from now on we will concentrate on the number of complex multiplica-
tions, which itself requires 4 real multiplications and 2 real additions.

Goal of an Efficient Computation In an efficiently designed algo-
rithm the number of computations should be constant per data sample,
and therefore the total number of computations should be linear with
respect to V.

The quadratic dependence on N can be reduced by realizing that most
of the computations (which are done again and again) can be eliminated
using the periodicity property

Whn = W}l\cr(n+N) - W](Jc+N)n
and the symmetry property

kntN/2
Wyt = e

of the factor {WR*}.

One algorithm that considers only the periodicity of WEF is the
Goertzel algorithm. This algorithm still requires Cy = o(N?) multiplica-
tions, but it has certain advantages. This algorithm is described in Chap-
ter 10. We first begin with an example to illustrate the advantages of the
symmetry and periodicity properties in reducing the number of compu-
tations. We then describe and analyze two specific FFT algorithms that

The Fast Fourier Transform 161

require Cy = o{Nlog N) operations. They are the decimation-in-time
(DIT-FFT) and decimation-in-frequency (DIF-FFT) algorithms.

O EXAMPLES20 Let us discuss the computations of a 4-point DFT and develop an efficient
algorithm for its computation.

3
X(R) =Y a(mW;*, 0<k<3 Wi=e/i=—j

n=0

Solution The above computations can be done in the matrix form

X7 (W) W) WP We [=(0)
x| iwd owi wi wil |2
x@)|~ |w? wi wi wil| |z
3 we wi wi wil =(3)

which requires 16 complex multiplications.

Efficient Approach: Using periodicity,
W2=Wi=1 ; Wl=W]=—j
Wi=Wi=-1 ; Wi=j

and substituting in the above matrix form, we get

XO1 1 1 17 rz(0)
x o= -1 =
x@21 |1 -1 1 -1l =@
@l b i -1 il e

Using symmetry, we obtain

X(0) = z(0) +=(1) + z(2) + =(3) = [z(0) + =(2)] +[z(1) + z(3)]

X(1) = 2(0) - j=(1) - =(2) + j=(3) = [2(0) — 2(2)] ~ilz(1) ~ =(3))
hy ha
X(2)= 2(0) - 2(1) +2(2) - 2(3) = [2(0) +=(2)] —[=(1) +=(3)]
|
9 92
X(3) = 2(0) + jz(1) ~ £(2) - j=(3) = [2(0) — =(2)] +jlz(1) - =(3)]
hy ha

162 Chapter § ® THE DISCRETE FOURIER TRANSFORM

Hence an efficient algorithm is

Step 1 Step 2
g1 =z(0) +z(2) X0)= g1 +go
g2 = z(1) + z(3) X(1) = h1 — jha (5.47)

b1 = z(0) — =(2) X2 = g~g
hy = z(1) — z(3) X(3) = h1 +jha
which requires only 2 complex multiplications, which is a considerably smaller

number, even for this simple example. A signal flowgraph structure for this
algorithm is given in Figure 5.18.

An Interpretation: This efficient algorithm (5.47) can be interpreted differ-
ently. First, a 4-point sequence x(n) is divided into two 2-point sequences, which
are arranged into column vectors as given below.

z(0) [x(l)] _[=0 =(1)
(=(2) 23)]] =) z(@3)

Second, a smaller 2-point DFT of each column is taken.
W =(0) =z(1)] _[1 1] [=(0) =(1)
2 L(z) 1(3)] = [1 —1] [x(Z) 2(3)}
_[z@+=2(2) z(1)+2@)] _ o o
T =0)~2(2) (1) -=2@3)] (M ke

Then each element of the resultant matrix is multiplied by {W}7}, where p is
the row index and q is the column index; that is, the following dot-product is

performed:
1 1] [& 92]_[91 g2
1 -j h1 ks hy —jhy
X{0) O > — X(0)
g
X(2) 0——> — —
—1 h1

»—0 X{(3)

FIGURE 5.18 Signal flowgreph in Ezample 5.20

The Fast Fourier Transform 163

Finally, two more smaller 2-point DFTs are taken of row vectors.

o g’]wg— o e|ft 1 ,[gxﬂn n-g
hy —jha hi —jha| [1 =1] ~ |hi—jhe hi+jha
_[X() X2
e x@

Although this interpretation seems to have more multiplications than the effi-
cient algorithm, it does suggest a systematic approach of computing a larger
DFT based on smaller DFTs. m]

DiVIDE-AND- To reduce the DFT computation’s quadratic dependence on N, one must
COMBINE choose a composite number N = LM since
APPROACH
L? + M? < N? for large N
Now divide the sequence into M smaller sequences of length L, take M
smaller L-point DFTs, and then combine these into a larger DFT using
L smaller M-point DFTs. This is the essence of the divide-and-combine
approach. Let N = LM, then the indices » and k in (5.46) can be written
as
n=ME+m, O0<E<L-1, 0<m<M-1
(5.48)
k=p+Lg, 0<p<L-1, 0<gsM-1
and write sequences z(n) and X (k) as arrays z(¢,m) and X(p, q), respec-
tively. Then (5.46) can be written as
M-1L-1
X(p,q) = Z Z (¢, m)WI(\,Ml+m)(P+Lq) (5.49)
m=0 £=0
M-1 L1
- o []
m=0 £=0
M-1 L1
=Y {wR? [E x(é,m)Wff} Wit
m=0 =0
L-point DFT
M-point DFT
164

Chapter 5 ®m THE DISCRETE FOURIER TRANSFORM

Administrator

RADIX-2 FFT
ALGORITHM

Hence (5.49) can be implemented as a three-step procedure:

1. First, we compute the L-point DFT array

L-1
Flp,m)= > z(l,m)W/; 0<p<L-1 (5.50)
£=0

for each of the columns m=0,...,M — 1.
2. Second, we modify F(p, m) to obtain another array.

0<p<L-1

= P”‘F R
G(p,m) = WF"F(p,m), 0<m< M1 (5.51)
The factor WY is called a twiddle factor.
3. Finally, we compute the M-point DFTs
M-1
X(p.g)= > Glp,mW;? 0<g<M-1 (5.52)

m=0
for each of the rows p=0,...,L — 1.

The total number of complex multiplications for this approach can now
be given by

Cn = ML*+ N + LM? < o(N?) (5.53)

This procedure can be further repeated if M or L are composite num-
bers. Clearly, the most efficient algorithm is obtained when N is a highly
composite number, that is, N = R”. Such algorithms are called radiz-R
FFT algorithms. When N = R[*R3?--., then such decompositions are
called mized-radiz FFT algorithms. The one most popular and easily pro-
grammable algorithm is the radix-2 FFT algorithm.

Let N = 2¥; then we choose M = 2 and L = N/2 and divide z(n) into
two N/2-point sequences according to (5.48) as

91(n) = =(2n)

g2(n) = z(2n + 1)’ 0

-1

I

N
<
"=

The sequence gy(n) contains even-ordered samples of z(n), while go(n)
contains odd-ordered samples of z(n). Let Gy (k) and Ga(k) be N/2-point
DFTs of g1(n) and ga(n), respectively. Then (5.49) reduces to

X(k) = Gi(k) + WEG2(k), 0<k<N-1 {5.54)

The Fast Fourier Transform - 165

Administrator

This is called a merging formula, which combines two N/2-point DFTs
into one N-point DF'T. The total number of complex multiplications re-
duces to

2
CN=NT+N=0(N2/2)

This procedure can be repeated again and again. At each stage the se-
quences are decimated and the smaller DFTs combined. This decimation
ends after v stages when we have N one-point sequences, which are also
one-point DFTs. The resulting procedure is called the decimation-in-time
FFT (DIT-FFT) algorithm, for which the total number of complex mul-
tiplications is

Cy=Nv=Nlog, N

Clearly, if N is large, then Cy is approximately linear in N, which was
the goal of our efficient algorithm. Using additional symmetries, Cnx can
be reduced to % logy N. The signal flowgraph for this algorithm is shown
in Figure 5.19 for N = 8.

x(0)

x(4)

x{(2)

x{6}

x{(1)

x{5)

x(3)

w, wy w,

FIGURE 5.19 Decimation-in-time FFT structure for N =8

166 Chapter 5 @ THE DISCRETE FOURIER TRANSFORM

MATLAB
IMPLEMEN-
TATION

In an alternate approach we choose L = 2, M = N/2 and follow
the steps in (5.49). Note that the initial DFTs are 2-point DFTs, which
contain no complex multiplications. From (5.50)

F(0,m) = 2(0,m) + x(1, m)Wy
=z(n)+z(n+ N/2),0<n < N/2
F(1,m) = z(0,m) + z(1, m)W;
=z(n) —z(n+ N/2), 0<n < N/2
and from (5.51)

G(0,m) = F(0,m)W§

=z(n) +z(n+ N/2),0<n < N/2
G(l,m) =F(1,m)Wg

= [z(n) ~ z(n + N/2)]WE, 0<n < N/2

(5.55)

Let G(0,m) = dy(n) and G(1,m) = da(n) for 0 < n < N/2 — 1 (since
they can be considered as time-domain sequences); then from (5.52) we
have

X(0,9) = X(29) =Di(q)

(5.56)
X(1,q) = X(2g+1) = D2(q)
This implies that the DFT values X (k) are computed in a decimated
fashion. Therefore this approach is called a decimation-in-frequency FFT
(DIF-FFT) algorithm. Its signal flowgraph is a transposed structure of
the DIT-FFT structure, and its computational complexity is also equal
to % logy N.

MATLAB provides a function called ££t to compute the DFT of a vector x.
It is invoked by X = fft(x,N), which computes the N-point DFT. If the
length of x is less than N, then x is padded with zeros. If the argument N
is omitted, then the length of the DFT is the length of x. If x is a matrix,
then ££t(x,N) computes the N-point DFT of each column of x.

This £ft function is written in machine language and not using MAT-
LAB commands (i.e., it is not available as a .m file). Therefore it executes
very fast. It is written as a mixed-radix algorithm. If N is a power of
two, then a high-speed radix-2 FFT algorithm is employed. If N is not
a power of two, then N is decomposed into prime factors and a slower
mixed-radix FFT algorithm is used. Finally, if N is a prime number, then
the £ft function is reduced to the raw DFT algorithm.

The Fast Fourier Transform 167

O EXAMPLE 5.21

Solution

The inverse DFT is computed using the ifft function, which has the
same characteristics as fft.

In this example we will study the execution time of the £ft function for 1 <
N < 2048. This will reveal the divide-and-combine strategy for various values
of N.

To determine the execution time, MATLAB provides two functions. The clock
function provides the instantaneous clock reading, while the etime(t1,t2) func-
tion computes the elapsed time between two time marks t1 and t2. To determine
the execution time, we will generate random vectors from length 1 through 2048,
compute their FFTs, and save the computation time in an array. Finally, we
will plot this execution time versus N.

MATLAB Script
>> Nmax = 2048;

>> fft_time=zeros(1,Nmax);

>> for n=1:1:Nmax

>> x=rand(1,n);

> t=clock;fft (x);fft_time(n)=etime(clock,t);
>> end

>> n=[1:1:Nmax] ;

>> plot(n,fft_time,’.’)

>> xlabel(’N’);ylabel(’Time in Sec.’)

>> title(’FFT execution times’)

The plot of the execution times is shown in Figure 5.20. This plot is very in-
formative. The points in the plot do not show one clear function but appear
to group themselves into various trends. The uppermost group depicts a o(N?)
dependence on N, which means that these values must be prime numbers be-
tween 1 and 2048 for which the FFT algorithm defaults to the DFT algorithm.
Similarly, there are groups corresponding to the o (N?/2), o (N?/3), o (N? /4),
and so on, dependencies for which the number N has fewer decompositions.
The last group shows the (almost linear) o (N log N) dependence, which is for
N =2Y,0 < v < 11. For these values of N, the radix-2 FFT algorithm is used.
For all other values, a mixed-radix FFT algorithm is employed. This shows that
the divide-and-combine strategy is very effective when N is highly composite.
For example, the execution time is 0.16 second for N = 2048, 2.48 seconds for
N = 2047, and 46.96 seconds for N = 2039. [m]

The MATLAB functions developed previously in this chapter should
now be modified by substituting the £ft function in place of the dft
function. From the above example care must be taken to use a highly
composite N. A good practice is to choose N = 2¥ unless a specific
situation demands otherwise.

168

Chapter 5 W THE DISCRETE FOURIER TRANSFORM

FAST CONVO-
LUTIONS

FFT execution times

50 —r —— T T
45 , oN
.2
40 ” 1
*
35[- ’/-' p
- ’
e y 4
Sozsr ~ | g
3 “ » O(N*N/2)
F ool . ,«' _{

FIGURE 5.20 FFT ezecution times for 1 <= N <= 2048

The conv function in MATLAB is implemented using the filter function
(which is written in C) and is very efficient for smaller values of N (< 50).
For larger values of A it is possible to speed up the convolution using the
FFT algorithm. This approach uses the circular convolution to implement
the linear convolution, and the FFT to implement the circular convolu-
tion. The resulting algorithm is called a fast convolution algorithm. In
addition, if we choose N = 2” and implement the radix-2 FFT, then the
algorithm is called a high-speed convolution. Let z; (n) be a Ny-point se-
quence and z2 (n) be a Np-point sequence; then for high-speed convolution
N is chosen to be

N = 2logs(N1+Na~1)] (557)

where [z] is the smallest integer greater than z (also called a ceiling
function). The linear convolution z, (n) * £z (n) can now be implemented
by two N-point FFTs, one N-point IFFT, and one N-point dot-product.

21 (n) » 72 (n) = IFFT [FFT [z1 (n)] - FFT (22 (n)]) (5.58)

For large values of N, (5.58) is faster than the time-domain convolution
as we see in the following example.

The Fast Fourier Transform 169

O EXAMPLE 5.22

To demonstrate the effectiveness of the high-speed convolution, let us compare
the execution times of two approaches. Let zi (n) be an L-point uniformly
distributed random number between [0, 1], and let z2 (n) be an L-point Gaussian
random sequence with mean 0 and variance 1. We will determine the average
execution times for 1 < I < 150, in which the average is computed over the 100
realizations of random sequences.

Solution MaTLAB Script
conv_time = zeros(1,150); fft_time = zeros(1,150);
%
for L = 1:150
te = 0; t£=0;
N = 25L-1; nu = ceil(log10(NI)/10og10(2)); N = 27nu;
for I=1:100
h = randn(1,L);
x = rand(1,L);
t0 = clock; yi = conv(h,x); ti=etime(clock,t0);
tc = tcttl;
t0 = clock; y2 = ifft(fit(h,N).*fft(x,N)); t2=etime(clock,t0);
tf = tf+t2;
end
%
conv_time(L)=tc/100;
fft_time(L)=t£/100;
end
%
n = 1:1650; subplot(l,1,1);
plot(n(25:160) ,conv_time(25:150) ,n(25:150) ,fft_time(25:160))
Figure 5.21 shows the linear convolution and the high-speed convolution times
for 25 < L < 150. It should be noted that these times are affected by the
computing platform used to execute the MATLAB script. The plot in Figure
5.21 was obtained on a 33-MHz 486 computer. It shows that for low values of
L the linear convolution is faster. The crossover point appears to be L = 50,
beyond which the linear convolution time increases exponentially, while the
high-speed convolution time increases fairly linearly. Note that since N = 2,
the high-speed convolution time is constant over a range on L. [m]
HIGH-SPEED Earlier we discussed a block convolution algorithm called the overlap-and-
BLOCK CON- save method (and its companion the overlap-and-add method), which is
VOLUTIONS used to convolve a very large sequence with a relatively smaller sequence.
The MATLAB function ovrlpsav developed in that section uses the DFT
to implement the linear convolution. We can now replace the DFT by
the radix-2 FFT algorithm to obtain a high-speed overlap-and-save algo-
170 Chapter 5 W THE DISCRETE FOURIER TRANSFORM

Comparison of convolution imes
0.35 T T

0.3} convolution 4

0251 p

o
N
T
o

i
§ o.15L 1
0.1F E
high-speed convolution
0.05 F 4
0 L 4
0 50 100 150
sequence length N

FIGURE 5.21 Comparison of linear and high-speed convolution times

rithm. To further reduce the computations, the FFT of the shorter (fixed)
sequence can be computed only once. The following hsolpsav function
shows this algorithm.

function [y] = hsolpsav(x,h,N)

% High-speed Overlap-Save method of block convolutions using FFT
%
% [yl = hsolpsav(x,h,N)

% y = output sequence

% x = input sequence

% h = impulse response

% N = block length (must be a power of two)
%

N = 2~(ceil(logl0(N)/logi0(2));

Lenx = length(x); M = length(h);

M1 = M~1; L = N-M1;

h = £fft(h,N);

%

[zeros(1,M1), x, zeros(i,N~1)];
floor((Lenx+Mi-1)/(L)); % # of blocks
zeros(K+1,N);

< WM
[}

The Fast Fourier Transform 171

for k=0:K

xk = £t (x(k*L+1:k*xL+N));
Y(k+1,:) = real{ifft(xk.+h)});
end

Yo=Y, NN y = (Y(0))

A similar modification can be done to the overlap-and-add algorithm.

PROBLEMS

P5.1

—=

Determine the DFS coefficients of the following periodic sequences using the DFS definition,
and verify by using MATLAB. ‘

. #1(n) ={2,0,2,0}, N=4
. #2(n) = {0,0,1,0,0}, N=5
. Ea(n) = {3,-3,3,-3}, N=4
. Ea(n)={4,4,—4,—3} N =4
e Es(n)={1,5,5,1}, N =4

a0 TP

P5.2 Determine the periodic sequences, given the following periodic DFS coefficients. First use
the IDFS definition and then verify using MATLAB.
a Xi(k)={5,-24,3,2j}, N=4
b. X3 (k)={4,-5,3,-5}, N=4
e Xa(k)=1{1,2,3,4,5}, N=5
d. X(k)=1{0,0,2,0}, N=4
€.)-(5 (k) = {Orj! -2j, —j}w N=¢
P5.3 Let & (n) be periodic with fundamental period N = 50, where one period is given by
. ne~ 03" 0<n<25
BM=1 0 b<n<do
and let £2(n) be periodic with fundamental period N = 100, where one period is given by
o ne~%3¥m 0<n<25
M=o w<n<o
These two periodic sequences differ in their periodicity but otherwise have equal nonzero
samples.
a. Find the DFS X, (k) of #;(n) and plot samples (using the stem function) of its
magnitude and angle versus k.
b. Find the DFS X; (k) of ;(n) and plot samples of its magnitude and angle versus k.
c. What is the difference between the above two DFS plots?
172 Chapter 5 B THE DISCRETE FOURIER TRANSFORM

P5.4

P55

P5.6

Consider the periodic sequence #:(n) given in Problem 5.3. Let Z3(n) be periodic with
period 100, obtained by toncatenating two periods of Z1(n), that is,
Z3(n) = {Z1(n), £2(n)}perIODIC

Clearly, £3(n) is different from Z2(n) of Problem 3 even though both of them are periodic
with period 100.

a. Find the DFS X3 (k) of £3(n) and plot samples of its magnitude and angle versus k.
b. What effect does the periodicity doubling have on the DFS?

c. Generalize the above result to M-fold periodicity. In particular, show that if

Em(n) = |Z1(n),...,Z1(n)
M times PERIODIC
then
Xu(Mky=MX,(k), £=0,1,...,N—1
X (k) =0, k#£0,M,...,MN

Let X(e’*) be the DTFT of a 10-point sequence:

z(n) = {2,5,3,—-4,-2,6,0,-3,-3,2}

n (n) =3flg%l‘x§ [X(ejo),X(ejz"/:’)'X(ej41r/3)]

Determine y; (n) using the frequency sampling theorem. Verify your answer using MATLAB.
b. Let

20-point B N , N .
ya(n) = IDFS [X(%), X(e7/2), X (713, ..., X (/2709/))

Determine y» (n) using the frequency sampling theorem. Verify your answer using MATLAB.
A 12-point sequence is = (n) defined as

z(n) ={1,2,3,4,5,6,6,5,4,3,2,1}

a. Determine the DFT X (k) of = (n). Plot (using the stem function) its magnitude and
phase.

b. Plot the magnitude and phase of the DTFT X(e’) of z (n) using MATLAB.

c. Verify that the above DFT is the sampled version of X (/). It might be helpful to
combine the above two plots in one graph using the hold function.

d. Isit possii)le to reconstruct the DTFT X (e’“) from the DFT X (k)? If possible, give the
necessary interpolation formula for reconstruction. If not possible, state why this
reconstruction cannot be done.

Problems 173

P5.7

P5.8

P5.9

Plot the DTFT magnitudes of the following sequences using the DFT as a computation
tool. Make an educated guess about the length N so that your plots are meaningful.

a. z1 {n) = 2cos(0.27n) {u (n) — u(n — 10)]
b. z2 (n) = sin(0.457n)sin (0.557n), 0<n <50

c.za(n)=3(2)", -10<n<10
d. z4(n) =(-0.5)", -10<n<10
e. z5(n)=5 (O.er”“)" u(n)

Let H(e’*) be the frequency response of a real, causal discrete-time LTI system.
a. If

Re{H (™)} =" (05)" cos (kw)

k=0

determine the impulse response h (n) analytically. Verify your answer using IDFT as a
computation tool. Choose the length N judiciously.

b. If

5 T
Im {H (ej“’)} = z 2¢sin (bw) and H(")dw =10
=0 -

determine the impulse response k (n) analytically. Verify your answer using IDFT as a
computation tool. Again choose the length N judiciously.

Let X (k) denote the N-point DFT of an N-point sequence z (n). The DFT X (k) itself is
an N-point sequence.

a. X¥f the DFT of X (k) is computed to obtain another N-point sequence =1 (n), show that
z1{n) =Nz((n))y, 0<n<N-1

b. Using the above property, design a MATLAB function to implement an N-point circular
folding operation z2 (n) = #; ((—n)) 5. The format should be

x2 = circfold(x1,N)

% Circular folding using DFT

% x2 = circfold(x1;N)

% x2 = circularly folded output sequence
% =x1 = input sequence of length <= N

% N = circular buffer lemgth

¢. Determine the circular folding of the following sequence:

z1(n) = {1,2,3,4,5,6,6,5,4,3,2,1}

174

Chapter 5 m THE DISCRETE FOURIER TRANSFORM

P5.10

P5.11

P5.12

Complex-valued N-point sequences are decomposed into N-point even and odd sequences
using the following relations:

a

[#(n) + 2" ((—m)y]

Zee (1)

1
2
al
T2

Zoc (n) 2 £ [2(n) — 2" (~n))n]

Then
DFT [zec (n)) = Re[X (k)] = Re [X ((=K))y]
DFT [z, (n)] = j Im [X (k)] = jIm [X ((~k))]

a. Prove the above property analytically.

b. Modify the circevod function developed in the chapter so that it can be used for
complex-valued sequences.

¢. Verify the above symmetry property and your MATLAB function on the following
sequence.

z(n)= (D.er"/s)" fu(n) — u(n — 20)]

The first five values of the 8-point DFT of a real-valued sequence x (n) are given by
{0.25,0.125 — j0.3,0,0.125 — j0.06,0.5}

Determine the DFT of each of the following sequences using properties.

8. o1 (n) = 2 ((2 - n))g

b. zz (n) =z {((n+5)),

c. 23 (n) = 2> (n)

- zam) =z (m) ® 2 (—n),

e. zs(n) = (n) ™/

If X (k) is the DFT of an N-point complex-valued sequence

j=9

z(n) =zr (n) + jz1 (n)
where zg (n) and zr (n) are the real and imaginary parts of = (n), then
Xr (k) £ DFT [z (n)] = Xec (k)
X1 (k) £ DFT [z; (n)] = Xoc (K)

where X.. (k) and Xo. (k) are the circular-even and circular-odd components of X (k) as
defined in Problem 5.10.
a. Prove the above property analytically.

b. This property can be used to compute the DFTs of two real-valued N-point sequences
using one N-point DFT operation. Specifically, let z: (n) and z2 (n) be two N-point
sequences. Then we can form a complex-valued sequence

z(n) = z1 (n) + jz2 (n)

Problems 175

P5.13

and use the above property. Develop a MATLAB function to implement this approach with
the following format.

function [X1,X2] = real2dft(xi,x2,N)
% DFTs of two real sequences

% [X1,X2) = real2dft(x1,x2,N)

X1 = n-point DFT of x1

X2 = n-point DFT of x2

x1 = sequence of length <= N

x2 = sequence of length <= N

N = length of DFT

%
%
%
%
%

. Compute the DFTs of the following two sequences:

z (n) = cos(0.25n), = (n) =sin(0.757n); 0<n <63

Using the frequency-domain approach, develop a MATLAB function to determine a circular
shift = ((n — m)), given an N;-point sequence z(n), where N1 < N. Your function should
have the following format.

function y = cirshftf(x,m,N)

%

%function y=cirshftf(x,m,N)

A
A
%
%

Circular shift of m samples wrt size N in sequence x: (freq domain)

ZH K<

Method

: output sequence containing the circular shift
: input sequence of length <= N

: sample shift

: size of circular buffer

: y(n) = idft(dft(x(n))*WN"(mk))

% If m is a scalar then y is a sequence (row vector)

% If m is a vector then y is a matrix, each row is a circular shift
% in x corresponding to entries in vecor m

% M and x should not be matrices

Verify your function on the following sequence

z1(n)=11~-n, 0<n<10

with m = 10 and N = 15.
P5.14 Using the analysis and synthesis equations of the DFT, show that

N-1 1 N-1
YlemP=5> IX®F
n=0 k=0

176

Chapter 5 ® THE DISCRETE FOURIER TRANSFORM

P5.15

P5.16

P5.17

P5.18

P5.19

This is commonly referred to as a Parseval’s relation for the DFT. Verify this relation by
using MATLAB on the sequence in Problem 5.9.

Using the frequency domain approach, develop a MATLAB function to implement the
circular convolution operation between two sequences. The format of the sequence should be

function x3 = circonvf(x1,x2,N)

% Circular convolution in the frequency domain
% x3 = circonvf(x1,x2,N)

% x3 = convolution result of length N

% x1 = sequence of length <= N

% x2 = sequence of length <= N

% N = length of circular buffer

The circonvt function developed in this chapter implements the circular convolution as a
matrix-vector multiplication. The matrix corresponding to the circular shifts

{:c (n-m))y; 0<n<N- 1} has an interesting structure. This matrix is called a
circulant matrix, which is a special case of the Toeplitz matrix introduced in Chapter 2.
a. Consider the sequences given in Example 5.13. Express ; (n) as a column vector x; and
zz2((n — m)), as a matrix X, with rows corresponding to n = 0, 1,2, 3. Characterize this
matrix Xz. Can it completely be described by its first row (or column)?

b. Determine the circular convolution as Xzx; and verify your calculations.

Develop a MATLAB function to construct a circulant matrix C, given an N-point sequence
z (n). Use the cirshftf function developed in Problem 5.13. Your subroutine function
should have the following format.

function [C] = circulnt(x,N)

% Circulant Matrix from an N-point sequence
% [€] = circulnt(x,N)

% C = circulant matrix of size NxN

% x = sequence of length <= N

% N = size of circulant matrix

Using this function, modify the circular convolution function circonvt discussed in the
chapter so that the for...end loop is eliminated. Verify your functions on the sequences in
Problem 5.16.

Compute the N-point circular convolution for the following sequences.

a. z1{n)={1,1,1,1}, z2(n) =cos(mn/4) Ry (n); N=8

b. z1(n) = cos(2rn/N) RN (n), 22 (n) =sin (2rn/N)Rny (n); N =32

c. zy(n) = (0.8)" Ry (n), 2 (n) = (—0.8)"Rn(n); N=20

d ni(ny=nRn(n), 2(n)=(N-n)Rn(n); N=10

e. z1(n) ={1,-1,1,-1}, z2(n) = {1,0,-1,0}; N =4

For the following sequences compute (i) the N-point circular convolution =3 (n) = 1 (n)

@ z2 (n), (ii) the linear convolution x4 (n) = z) (n) * x2 (n), and (iii) the error sequence
e(n) = z3(n) — x4 (n).

Problems 177

P5.20

a. z1(n)={1,1,1,1}, 22 (n) =cos(mn/4)Re (n); N =8

b. z;(n) = cos (27n/N)Ri6 (n), =2 (n) =sin(2an/N)Ris(n); N =32
¢. z1(n) =(0.8)"Ria(r), z2(n) =(-08)"Riw{n); N=15

d. z;(n) =nRiwo(n), z2(n) = (N —n)Riwo(n); N=10

e. z1(n)={1,-1,1,-1}, z2(n) = {1,0,-1,0}; N=35

In each case verify that e (n) = x4 (n + N).

The overlap-add method of block convolution is an alternative to the overlap-save method.
Let z (n) be a long sequence of length ML, where M, L >> 1. Divide z (n) into M segments
{xm(n), m=1,..., M}, each of length L.

z(n), mM<n<(m+1L)M-1 Ml
= that = m
Zm (n) { 0 clsewhere sothat z(n) ';) Zm ()

Leet h(r) be an L-point impulse response; then

M-1 M-1
y(m) =z +h(n) =Y TmMm*+h()= Y Ym(n); m(n) S zm(n)+h(n)

m=0 m=0

Clearly, ym (n) is a (2L — 1)-point sequence. In this method we have to save the
intermediate convolution results and then properly overlap these before adding to form the
final result y (n). To use DFT for this operation, we have to choose N > (2L —1).

a. Develop a MATLAB function to implement the overlap-add method using the circular
convolution operation. The format should be

function [y] = ovrlpadd(x,h,N)

% Overlap-Add method of block comvolution
% [yl = ovrlpadd(x,h,N)

%

X y = output sequence

% x = input sequence

% h = impulse response

% N = block length >= 2#length(h)-1

b. Incorporate the radix-2 FFT implementation in the above function to obtain a
high-speed overlap-add block convolution routine. Remember to choose N = 2.

<. Verify your functions on the following two sequences:

z(n) = cos (mn/500) Raooo (n), h(n)={1,~-1,1,-1}

P5.21 Given the sequences z; (n) and x2 (n) shown below:
I (n)={211)172}7 T2 (n)':{ly"l)_l: 1}
a. Compute the circular convolution z; (n) @ z2(n) for N =4, 7, and 8.
b. Compute the linear convolution z; (n) * z2 (n).
178 Chapter 5 ®m THE DISCRETE FOURIER TRANSFORM

c. Using results of calculations, determine the minimum value of N necessary so that linear
and circular convolutions are the same on the N-point interval.

d. Without performing the actual convolutions, explain how you could have obtained the
result of part c.

P5.22 Let

z(n) = {Aws(m"m) 0sn<N=1_ 4 os(antn/N) Ry (n)

0, elsewhere
where £ is an integer. Notice that = (n) contains ezactly £ periods (or cycles) of the cosine

waveform in N samples. This is a windowed cosine sequence containing no leakage.
a. Show that the DFT X (k) is a real sequence given by

X(k)=%6(k—e)+i21!6(k-zv+e); 0<k<(N—1),0<t<N
b. Show that if £ = 0, then the DFT X (k) is given by
X (k)= AN6(k); 0<k<(N-—1)

¢. Explain clearly how the above results should be modified if £ < Q or £ > N.

d. Verify the results of parts a, b, and ¢ by using the following sequences. Plot the real
parts of the DFT sequences using the stem function.

(i) 1 (n) = 3cos (0.047n) Raoo (n)
(ii) z2 (n) = 5Rs0 (n)
(iii) z3 (n) = (1 + 2cos (0.57n) + cos (7n)] Rico (n)
(iv) z4(n) = cos (257n/16) Rea (n)
(v) 25 (n) = [4cos (0.17rn) — 3cos (1.97n)] R (n)
P5.23 Let 2 (n) = Acos(won) Ry (n), where wp is a real number.
a. Using the properties of the DFT, show that the real and the imaginary parts of X (k)
are given by
X (k) = Xgr (k) + 3 X1 (k)

sin [rr (k — foN)]
sin[r (k — foN) /N]
sinf{x (k — N 4 foN))
sin{r (k— N + foN) /N]
sin[7 (k ~ foN)]
sinfr (k— foN) /N]
sin{r (k — N + foN))
sin [r (k- N + foN) /N]

Xr (k) = (A/2)cos [”(N V- fo)}

7D et foN)]

+(A/2)cos [

x,(k)=—<A/2)sin[T k- g,)]

— (A/2)sin ["(—"I’vﬁ (k+ fuN)]

b. The above result implies that the original frequency wo of the cosine waveform has leaked
into other frequencies that form the harmonics of the time-limited sequence, and hence it is

Problems 179

P5.24

P5.25

called the leakage property of cosines. It is a natural result due to the fact that
band-limited periodic cosines are sampled over noninteger periods. Explain this result using
the periodic extension Z(n) of z (n) and the result in Problem 5.22 part a.

c. Verify the leakage property using z (n) = cos (571n/99) Raco (n). Plot the real and the
imaginary parts of X (k) using the stem function.

Let

2(n) = {Asm(w"/m’ 0SnSN=1_) cin(@ntn/N) Ry (v)

0, elsewhere
where ¢ is an integer. Notice that z (n) contains ezactly € periods (or cycles) of the sine
waveform in N samples. This is a windowed sine sequence containing no leakage.

a. Show that the DFT X (k) is a purely imaginary sequence given by

X0 =5rok-0- 5T sk-N+0; 0sk<(V-p,0<t<N

b. Show that if £ = 0, then the DFT X (k) is given by
X(k)=06, 0<k<(N-1)

c. Explain clearly how the above results should be modified if £ < QO or £ > N.

d. Verify the results of parts a, b, and ¢ using the following sequences. Plot the imaginary
parts of the DFT sequences using the stem function.

(i) z1(n) = 3sin (0.047n) Raoo (n)
(ii) z2 (n) = 5sin10mnRs0 (n)
(iii} z3 (n) = [2sin (0.57n) + sin (wn)] Rioo (n)
(iv) z4(n) =sin (257n/16) Rea (n)
(v) zs(n) =[4sin (0.17rn) — 3sin (1.97n)] Ry (n)
Let z(n) = Asin(won) Rn (n), where wyp is a real number.
a. Using the properties of the DFT, show that the real and the imaginary parts of X (k)
are given by
X (k) = Xg (k) + X1 (k)
m(N-1) sin [r (k — foN))
N sin {7 (k — folN) /N

sin [r (k — N + foN))
sinfr (k — N + foN) /N}

sin[7 (k —~ foN)]
sin{r (k— foN) /N]

sinfr (k ~ N + foN)]
sinfr (k — N + foN) /N}

Xr (k) = (A/2)sin [(k— foN)]

~ (A/2)sin ["—“—"NLH (k+ foN)]

X2 = = (wyoon [2 G-)|

2D e o)

+ (A/2) cos [

180

Chapter 5 @ THE DISCRETE FOURIER TRANSFORM

P5.26

P5.27

P5.28

P5.29

b. The above result is the leakage property of sines. Explain it using the periodic extension
Z(n) of z (n) and the result in Problem 5.24 part a.
c. Verify the leakage property using z (n) = sin (57n/99) Rao0 (n). Plot the real and the
imaginary parts of X (k) using the stem function.
An analog signal z,(t) = 2sin (47t) 4 5 cos (8t) is sampled at ¢t = 0.01n for
n=0,1,...,N —1 to obtain an N-point sequence z (n). An N-point DFT is used to obtain
an estimate of the magnitude spectrum of z,(t).
a. From the following values of N, choose the one that will provide the accurate estimate of
the spectrum of z4(t). Plot the real and imaginary parts of the DFT spectrum | X (k)|.

(i) N =40, (ii) N = 50, (iti) N = 60.
b. From the following values of N, choose the one that will provide the least amount of
leakage in the spectrum of z.(t). Plot the real and imaginary parts of the DFT spectrum
X (k).

@HN=9, (@N=95 (i) N=099.
Using (5.49), determine and draw the signal flowgraph for the N = 8 point, radix-2
decimation-in-frequency FFT algorithm. Using this flowgraph, determine the DFT of the
sequence

z(n) =cos(mn/2), 0<n<7

Using (5.49), determine and draw the signal flowgraph for the N = 16-point, radix-4
decimation-in-time FFT algorithm. Using this flowgraph, determine the DFT of the
sequence

z(n)=cos(an/2), 0<n<15

Let z (n) = cos(nn/99), 0<n < (N — 1) be an N-point sequence. Choose N = 4" and

.determine the execution times in MATLAB for v = §,6,...,10. Verify that these times are

proportional to
Nlog, N

Problems 181

DIGITAL FILTER
STRUCTURES

In earlier chapters we studied the theory of discrete systems in both the
time and frequency domains. We will now use this theory for the process-
ing of digital signals. To process signals, we have to design and implement
systems called filters (or spectrumi analyzers in some contexts). The filter
design issue is influenced by such factors as the type of the filter (i.e., IIR
or FIR) or the form of its implementation (structures). Hence before we
discuss the design issue, we first concern ourselves with how these filters
can be implemented in practice. This is an important concern because
different filter structures dictate different design strategies.

As we discussed earlier, ITR filters are characterized by infinite-
duration impulse responses. Some of these impulse responses can be
modeled by rational system functions or, equivalently, by difference equa-
tions. Such filters are termed as auto-regressive moving average (ARMA)
or, more generally, as recursive filters. Those IIR filters that cannot be so
modeled are called nonrecursive filters. In DSP, IR filters generally imply
recursive ones because these can be implemented efficiently. Therefore
we will always use the term IIR to imply recursive filters. Furthermore,
ARMA filters include moving average filters that are FIR filters. However,
we will treat FIR filters separately from IIR filters for both design and
implementation purposes.

We begin with a description of basic building blocks that are used
to describe filter structures. In the remaining sections we briefly describe
IIR, FIR, and lattice filter structures, respectively, and provide MATLAB
functions to implement these structures.

182

BASIC ELEMENTS

Since our filters are LTI systems, we need the following three elements to
describe digital filter structures. These elements are shown in Figure 6.1.

e Adder: This element has two inputs and one output and is shown
in Figure 6.1(a). Note that the addition of three or more signals is imple-
mented by successive two-input adders.

e Multiplier (gain): This is a single-input, single-output element and
is shown in Figure 6.1(b). Note that the multiplication by 1 is understood
and hence not explicitly shown.

o Delay element (shifter or memory): This element delays the signal
passing through it by one sample as shown in Figure 6.1(c). It is imple-
mented by using a shift register.

Using these basic elements, we can now describe various structures of
both IIR and FIR filters. MATLAB is a convenient tool in the development
of these structures that require operations on polynomials.

1IR FILTER STRUCTURES
—

The system function of an IIR filter is given by

B(z) _ Eob,,z by +biz"t -+ bpz™™
H(z) = Az X T T¥az - tanz ¥ 0T 1(61)
3 anzm ! N
n=0

where by, and a,, are the coefficients of the filter. We have assumed without
loss of generality that ag = 1. The order of such an IIR filter is called IV if

xy{n) 7 > ®x,(n) + x(n)
x(n) {a) Adder

a !
x{n) @———eep—m® ax(n) x{n) ¢———p——o x(n - 1}
(b) Mulitiplier {c) Delay element

FIGURE 6.1 Three basic elements

1IR Filter Structures

183

DIRECT FORM

an # 0. The difference equation representation of an IIR filter is expressed
as

M N
y(n) = bnz(n-m)— > amy(n —m) (6.2)

m=0

" Three different structures can be used to implement an IIR filter:

® Direct form: In this form the difference equation (6.2) is imple-
mented directly as given. There are two parts to this filter, namely the
moving average part and the recursive part (or equivalently, the numera-
tor and denominator parts). Therefore this implementation leads to two
versions: direct form I and direct form II structures.

o Cascade form: In this form the system function H(z) in equation
(6.1) is factored into smaller second-order sections, called biguads. The
system function is then represented as a product of these biquads. Each
biquad is implemented in a direct form, and the entire system function is
implemented as a cascade of biquad sections.

¢ Parallel form: This is similar to the cascade form, but after factor-
ization, a partial fraction expansion is used to represent H(z) as a surn
of smaller second-order sections. Each section is again implemented in a
direct form, and the entire system function is implemented as a parallel
network of sections.

We will briefly discuss these forms in this section. IIR filters are gen-
erally described using the rational form version (or the direct form struc-
ture) of the system function. Hence we will provide MATLAB functions for
converting direct form structures to cascade and parallel form structures.

As the name suggests, the difference equation (6.2) is implemented as
given using delays, multipliers, and adders. For the purpose of illustration,
let M = N = 4. Then the difference equation is

y(n) = boz(n) + biz(n — 1} + byz(n — 2) + baz(n — 3) + byz(n — 4)
—a1y(n — 1) — agy(n — 2) ~ asy(n — 3) — agy(n — 4)

which can be implemented as shown in Figure 6.2. This block diagram is
called direct form I structure.

The direct form I structure implements each part of the rational func-
tion H(z) separately with a cascade connection between them. The nu-
merator part is a tapped delay line followed by the denominator part,
which is a feedback tapped delay line. Thus there are two separate de-
lay lines in this structure, and hence it requires eight delay elements. We
can reduce this delay element count or eliminate one delay line by inter-
changing the order in which the two parts are connected in the cascade.

184

Chapter 6 ® DIGITAL FILTER STRUCTURES

MATLAB
IMPLEMEN-
TATION

CASCADE
FORM

x{n} > > »—e y(n)
-1 by s —a 2!
o ——
) z": 1 —8, 27"
Vz": 3] -—a, Y&!

FIGURE 6.2 Direct form I structure

Now the two delay lines are close to each other, connected by a unity
gain branch. Therefore one delay line can be removed, and this reduction
leads to a canonical structure called direct form II structure, shown in
Figure 6.3. It should be noted that both direct forms are equivalent from
the input-output point of view. Internally, however, they have different
signals.

In MATLAB the direct form structure is described by two row vectors;
b containing the {b,} coefficients and a containing the {a,} coefficients.
The structure is implemented by the filter function, which is discussed
in Chapter 2.

In this form the system function H(z) is written as a product of second-
order sections with real coefficients. This is done by factoring the numer-
ator and denominator polynomials into their respective roots and then
combining either a complex conjugate root pair or any two real roots into
second-order polynomials. In the remainder of this chapter we assume

xtn) &— >— > —e y(n)
-a z7! by A
4 —a, z7! by
SEETHE L ;3
i -8 z7! ba 3

FIGURE 6.3 Direct form II structure

IIR Filter Structures

185

Yilm = X 4 1(n) > - > > 7
-1
} _ﬂ‘" Yz Bk,l 3

-1
1\ _ﬁ('z }Z Bk,z \

—t P

FIGURE 6.4 Biguad section structure

that N is an even integer. Then

N Sk L 63)

—1+a1z‘1+~-~+aNz"N :

_ 01+ Prl g hN
l1+a1z7V 4+ - +anz-VN

K
14 By127 + Byoz™2
=b°H k.1 k2
k=1

L1+ Ak’lz—l +Ak,2z‘2

H(z)

where K is equal to %, and Bg, Bi 2, Ak, and Ag 2 are real numbers
representing the coefficients of second-order sections. The second-order
section

_ Y}H.l(z) _ 1+ Bkllz“l + Bk,gz_'2 .

= =1,...,K
Yk(z) 1+ Ak’lz'l + Ak,gz—z, !

with
Yi(z) = boX(2); Yxsi(z) =Y(2)

is called the kth biquad section. The input to the kth biquad section is

the output from the (k — 1)th biquad section, while the output from the
kth biquad is the input to the (k+ 1)th biquad. Now each biquad section
Hy.(2) can be implemented in direct form II as shown in Figure 6.4. The
entire filter is then implemented as a cascade of biquads.

As an example, consider N = 4. Figure 6.5 shows a cascade form
structure for this fourth-order IIR filter.

by
X{N) @i — > — - 3>—ae yin)
—A & By } ~Az, 1 By
—A2 2! B2 1 ~Az 2 By 1
FIGURE 6.5 Cascade form structure for N =4
186 Chapter 6 ®m DIGITAL FILTER STRUCTURES

MATLAB
IMPLEMEN-
TATION

Given the coefficients {b,,} and {a,} of the direct form filter, we have to
obtain the coefficients bp, { Bx,;}, and {Ag;}. This is done by the function
dir2cas given below.

function [b0,B,A] = dir2cas(b,a);

% DIRECT-form to CASCADE-form conversion (cplxpair verslon)
%
% (b0,B,A] = dir2cas(b,a)

% b0 = gain coefficient

% B =K by 3 matrix of real coefficients containing bk’s
K by 3 matrix of real coefficients containing ak’s
numerator polynomial coefficients of DIRECT form
denominator polynomial coefficients of DIRECT form

A
4 b
a

% compute gain coefficient b0
b0 = b(1); b = b/bO;

a0 = a(1); a = a/a0;

b0 = b0/a0;

3

M = length(b); N = length(a);
ifN>M

b = [b zeros(1,N-M)];

elseif M > N

a = [a zeros(1,M-N)]; N = M;
else

NM = 0;

end

%

K = floor(N/2); B = zeros(K,3); A = zeros(K,3);
if K*2 == N;

b= [bo0];

a= la0];

end

%

broots = cplxpair(roots(b));
aroots = cplxpair(roots(a));
for i=1:2:2#K

Brow = broots(i:1:i+1,:);
Brow = real (poly(Brow));
B(fix((i+1)/2),:) = Brow;
Arow = aroots(i:1:i+l,:);
Arow = real(poly(Arow));
A(fix((i+1)/2),:) = Arow;
end

The above function converts the b and a vectors into K x 3 B and A
matrices. It begins by computing by, which is equal to bg/ay (assuming
ap # 1). Tt then makes the vectors b and a of equal length by zero-

IR Filter Structures

187

padding the shorter vector. This ensures that each biquad has a nonzero
numerator and denominator. Next it computes the roots of the B(z) and
A(z) polynomials. Using the cplxpair function, these roots are ordered in
complex conjugate pairs. Now every pair is converted back into a second-
order numerator or denominator polynomial using the poly function.

The cascade form is implemented using a casfiltr function, which
is described below. It employs the filter function in a loop using the
coefficients of each biquad stored in B and A matrices. The input is scaled
by b0, and the output of each filter operation is used as an input to the
next filter operation. The output of the final filter operation is the overall
output.

function y = casfiltr(b0,B,A,x);
% CASCADE form realization of IIR and FIR filters
4
% y = casfiltr(b0,B,A,x);
% ¥y = output sequence
% b0 = gain coefficient of CASCADE form
% B =K by 3 matrix of real coefficients containing bk’s
% A =K by 3 matrix of real coefficients containing ak’s
% x = input sequence
LI
[K,L] = size(B);
N = length(x);
w = zeros(K+1,N);
w(i,:) = x;
for i = 1:1:K
w(i+l,:) = filter(B(i,:),A(4,:),w(i,:));

end
y = bOosu(K+1,:);

The following MATLAB function, cas2dir, converts a cascade form
to a direct form. This is a simple operation that involves multiplication of
several second-order polynomials. For this purpose the MATLAB function
conv is used in a loop over K factors.

function {b,a] = cas2dir(v0,B,A);
% CASCADE-to-DIRECT form conversion

% [b,a] = cas2dir(bv0,B,4)

% b = numerator polynomial coefficients of DIRECT form
Y a = denominator polynomial coefficients of DIRECT form
% b0 = gain coefficient

% B =K by 3 matrix of real coefficients comtaining bk’s
% A =X by 3 matrix of real coefficients containing ak’s
h

IK,L] = size(B);

188

Chapter 6 B DIGITAL FILTER STRUCTURES

[m} EXAMPLE 6.1

b = [1];

a = [1];

for i=1:1:K
b=conv(b,B(4,:));
a=conv(a,A(i,:));
end

b = b*b0;

A filter is described by the following difference equation:

16y(n) + 12y(n ~ 1) + 2y(n — 2) — 4y(n — 3) —y(n — 4)
= z(n) — 3z(n — 1) + 11z(n — 2) — 27z(n ~ 3) + 18z(n

Determine its cascade form structure.

MATLAB Script

__4)

>> b=[1 -3 11 -27 18};
>> a=[16 12 2 -4 -1];
>> [b0,B,A}=dir2cas(b,a)
b0 = 0.0625
B =
1.0000 -0.0000 9.0000
1.0000 -3.0000 2.0000
A=
1.0000 1.0000 0.5000
1.0000 -~0.2500 -0.1250

The resulting structure is shown in Figure 6.6. To check that our cascade struc-
ture is correct, let us compute the first 8 samples of the impulse response using

both forms.

>> delta = impseq(0,0,7);

delta =
1

0 0 0 0o 0 o] 0

>> format long
>> heas=casfiltr(b0,B,A,delta)

0.625
x{n) @=—Ir— > > > »——ae y{n)
-1 -1
1 -1 2 0 0.25 127" 3

_ -1

-05 ' g i 0.125 LA 3

FIGURE 6.6 Cascade structure in Ezample 6.1.

IR Filter Structures 189

hcas =
Columns 1 through 4
0.06250000000000 -0.23437500000000 0.85546876000000 -2.28417968750000
Columns 5 through 8
2.67651367187500 -1.52264404296875 (0.28984069824219 0.499317169189456
>> hdir=filter(b,a,delta)
hdir =
Columns 1 through 4
0.06250000000000 -0.23437500000000 0.85546875000000 -2.28417968750000
Columns 5 through 8
2.67651367187500 -1.52264404296875 0.28984069824219 0.49931716918945

a]
PARALLEL In this form the system function H(z) is written as a sum of second order
FORM sections using partial fraction expansion (PFE).
-1 4 ... -M
H(z) = B(z) _bo+biz7t +-- +byz (64)

T Alr) l4az 4 tanzWN

R R e N LA ,

[N —
only if M>N
K - M-N
Bio+ By 1271 —k
=) Tr ATt Agst X O
ko1 k12 k,22 0
N e’
only if M>N

where K is equal to »’2!, and By, Bk,1, Ak,1, and Ay 2 are real numbers
representing the coefficients of second-order sections. The second-order
section

_Yu(2) . Bro+Brazt
Hk(z) - Yk(z) T 14 Ak'lz‘l + Ak,gz‘”

=1,....K

with
Yi(2) = He(2)X(2), Y(2) =) Yi(z), M<N

is the kth proper rational biquad section. The filter input is available to
all biquad sections as well as to the polynomial section if M > N (which
is an FIR part). The output from these sections is summed to form the
filter output. Now each biquad section Hy(z) can be implemented in direct
form II. Due to the summation of subsections, a parallel structure can be
built to realize H(z). As an example, consider M = N = 4. Figure 6.7
shows a parallel form structure for this fourth-order IIR filter.

190 Chapter 6 B DIGITAL FILTER STRUCTURES

A - 4
~A;, % 1
x{n) 0——>——{ - H—O y(n)
4
Bro 1

A2 z

-

FIGURE 6.7 Parallel form structure for N = 4

MATLAB The function dir2par given below converts the direct form coeflicients
IMPLEMEN- {b.} and {a,} into parallel form coefficients {Bx;} and {Ax:}.
TATION

function [C,B,Al = dir2Zpar(b,a);
% DIRECT-form to PARALLEL-form conversion

% [C,B,A] = dir2par(b,a)

% C = Polynomial part when length(b) >= length(a)

= K by 2 matrix of real coefficients containing bk’s
= K by 3 matrix of real coefficients containing ak's
= numerator polynomial coefficients of DIRECT form
= denominator polynomial coefficients of DIRECT form

=
p O

M = length(b); N = length(a);

{r1,p1,C] = residuez(b,a);

P = cplxpair(p1,10000000+eps) ;
I = cplxcomp(pl,p);

r = ri(l);

K = floor{(N/2); B = zeros(K,2); A = zeros(K,3);
if K#2 == N; YN even, order of A(z) odd, one factor is first order
for i=1:2:N-2

Brow = r(i:1:i+1,:);

Arow = p(i:1:i+1,:);

[Brow,Arow] = residuez(Brow,Arowv,{]);
B(£ix((i+1)/2),:) = real(Brow);

A(£ix((i+1)/2),:) = real(Arow);

end

[Brow,Arow] = residuez(r(N-1),p(N-1),(]);

B(K,:) = [real(Brow) 03; A(K,:) = [real(Arow) 0];

IIR Filter Structures 191

else
for i=1:2:N-1
Brow = r(i:1:i+1,:);
Arow = p(i:l1:i+1,:);
[Brow,Arow] = residuez(Brow,Arow,[]);

B(fix((i+1)/2),:) = real(Brow);
A(fix((i+1)/2),:) = real(Arow);
end
end

The dir2cas function first computes the z-domain partial fraction expan-
sion using the residuez function. We need to arrange pole-and-residue
pairs into complex conjugate pole-and-residue pairs followed by real pole-
and-residue pairs. To do this, the cplxpair function from MATLAB can
be used; this sorts a complex array into complex conjugate pairs. How-
ever, two consecutive calls to this function, one each for pole and residue
arrays, will not guarantee that poles and residues will correspond to each
other. Therefore a new cplxcomp function is developed, which compares
two shuffled complex arrays and returns the index of one array, which can
be used to rearrange another array.

function I = cplxcomp(pl,p2)
% I = cplxcomp(pl,p2)
% Compares two complex pairs which contain the same scalar elements
% but (possibly) at differrent indices. This routine should be
% used after CPLXPAIR routine for rearranging pole vector and its
% corresponding residue vector.
% P2 = cplxpair(pl)
%
1=01;
for j=1:1:length(p2)
for i=1:1:length(pil)
if (abs(p1(i)-p2(j)} < 0.0001)
I=[1,il;
end
end
end
1=1’;

After collecting these pole-and-residue pairs, the dir2cas function com-
putes the numerator and denominator of the biquads by employing the
residuez function in the reverse fashion.

These parallel form coefficients are then used in the function
parfiltr, which implements the parallel form. The parfiltr function
uses the filter function in a loop using the coefficients of each biquad
stored in the B and A matrices. The input is first filtered through the FIR
part C and stored in the first row of a w matrix. Then the outputs of all

192

Chapter 6 ™ DIGITAL FILTER STRUCTURES

biquad filters are computed for the same input and stored as subsequent
rows in the w matrix. Finally, all the columns of the w matrix are summed
to yield the output.

function y = parfiltr(C,B,A,x);

% PARALLEL form realization of IIR filters
%
% [yl = parfiltr(C,B,A,x);

% y = output sequence

% C = polynomial (FIR) part when M >= N

% B =K by 2 matrix of real coefficients containing bk’s
% A =K by 3 matrix of real coefficients containing ak’s
% x = input sequence

[K,L] = size(B);
N = length(x);
w = zeros(K+1,N);
w(l,:) = filtex(C,1,x);
for i = 1:1:K
w(i+l,:) = filter(B(i,:),A(i,:),x);
end
y = sum(w);

To obtain a direct form from a parallel form, the function par2dir can
be used. It computes poles and residues of each proper biquad and com-
bines these into system poles and residues. Another call of the residuez
function in reverse order computes the numerator and denominator poly-
nomials.

function {b,a) = par2dir(C,B,A);

% PARALLEL-to-DIRECT form conversion
h
% [b,al = par2dir(C,B,A)

% b = numerator polynomial coefficients of DIRECT form
= denominator polynomial coefficients of DIRECT form
= Polynomial part of PARALLEL form

K by 2 matrix of real coefficients containing bk’s
= K by 3 matrix of real coefficients containing ak’s

s
=W o
L}

%
[K,L] = size(A); R=[1; P = [];

for i=1:1:K
[r,p,k)=residuez(B(i,:),A(i,:));
R = [R;r]; P = [P;p);

end

{b,a] = residuez(R,P,C);

b =b(:)’; a=a(:)’;

IIR Filter Structures

193

a EXAMPLE 6.2 Consider the filter given in Example 6.1.
16y(n) + 12y(n — 1) + 2y(n — 2) — 4y(n — 3) —y(n — 4)
= z(n) — 3z(n — 1) + 11z(n - 2) — 27z(n — 3) + 18z(n — 4)

Now determine its parallel form.

Solution MaTLAB Script
>> b=[1 -3 11 -27 18];
>> a=[16 12 2 -4 -1];
>> {C,B,A)=dir2par(b,a)
C=
-18
B =
10.0500 -3.9500
28.1125 -13.3625
A=
1.0000 1.0000 0.5000
1.0000 -0.2500 -0.1250

The resulting structure is shown in Figure 6.8. To check our parallel structure,
let us compute the first 8 samples of the impulse response using both forms.

>> format long; delta = impseq(0,0,7);
>> hpar=parfiltr(C,B,A,delta)
hpar =
Columns 1 through 4
0.06250000000000 -0.23437500000000 0.85546875000000 -2.28417968750000

~18
! ~10.06 1
-1
{ b 1 7 -395
4 —0.05 71_1
x(n) o——»—J - ——>»——=e y{n)
1 28.1125

-1
[02 G -13.3625 1

yz1

0125

FIGURE 6.8 Parallel form structure in Ezample 6.2.

194 Chapter 6 ® DIGITAL FILTER STRUCTURES

Columns 5 through 8

2.67651367187500 -1.52264404296876 0.28984069824219 0.49931716918945
> hdir = filter(b,a,delta) '
hdir =

Columns 1 through 4

0.06250000000000 ~0.23437500000000 0.85546876000000 -2,28417968750000

Columns 5 through 8

2.67651367187500 ~1.52264404296875 0.28984069824219 0.49931716918945

a

3] EXAMPLE 6.3 What would be the overall direct, cascade, or parallel form if a structure contains
a combination of these forms? Consider the block diagram shown in Figure 6.9.

Solution This structure contains a cascade of two parallel sections. The first parallel
section contains two biquads, while the second one contains three biquads. We
will have to convert each parallel section into a direct form using the par2dir
function, giving us a cascade of two direct forms. The overall direct form can be
computed by convolving the corresponding numerator and denominator poly-
nomials. The overall cascade and parallel forms can now be derived from the
direct form.

>> C0=0; Bi=[2 4;3 1]; A1={1 1 0.9; 1 0.4 -0.4];
>> B2=[0.5 0.7;1.5 2.5;0.8 1]; A2=(1 -1 0.8;1 0.5 0.5;1 0 -0.5];
>> [bi,a1]=par2dir(C0,B1,A1)
b1 =
5.0000 8.8000 4.5000 -0.7000

05
> > _17 >
V4
T or 4
-1
2 h —04-8 b4
-1
4+ 1 YT s % 15
- > b 4 > > >
) P
4 08 Y + 1 -05 T° 25 {
x{n) o> < > - o ~->—ey(n)
-1
i 3 A b 05 Y?
> —> > >) b — L
-1
Zz
L _ga Y, 3 0.8
-1 1
1 02 17 £ o Y 1 %
05 z!

FIGURE 6.9 Block diagram in Ezample 6.3

R Filter Structures 195

al =
1.0000 1.4000 0.9000 -0.0400 -0.3600
>> [b2,a2]=par2dir(C0,B2,A2)
b2 =
2.8000 2.5500 -1.5600 2.0950 0.5700 -0.7750
a2 =
1.0000 -0.5000 0.3000 0.1500 0.0000 0.0500
>> b=conv(bl,b2) % Overall direct form numerator
b=
Columns 1 through 7
14.0000 37.3900 27.2400 6.2620 12.4810 11.6605
Columns 8 through 9
-3.8865 0.5425
>> a=conv{al,a2) % Overall direct form denominator
a =
Colummns 1 through 7
1.0000 0.9000 0.5000 0.0800 0.1400 0.3530
Columns 8 through 11
-0.2880 -0.1820 -0.0100 0.0720)
>> [b0,Bc,Ac)=dir2cas(b,a) % Overall cascade form
b0 =
14.0000
Bc =

-

.0000 1.8836 1.1328

1.0000 -0.6915 0.6719
1.00C0 2.0776 0.8666
1.0000 0 0
1.0000 -0.5990 0.0588
Ac =
1.0000 1.0000 0.9000
1.0000 0.5000 0.5000
1.0000 -1.0000 0.8000
1.0000 1.5704 0.6105

1.0000 -1.1704 0.3276
>> [CO,Bp,Ap]=dir2par(b,a) ¥ Overall parallel form
co=[
Bp =
-20.4201 -1.6000
24.1602 5.1448
2.4570 3.3774
~0.8101 ~0.2382
8.6129 ~4.0438

Ap =
1.0000 1.0000 0.9000
1.0000 0.5000 0.5000
1.0000 -1.0000 0.8000
1.0000 1.5704 0.6105
1.0000 -1.1704 0.3276

-0.2000

-5.7215

-0.2440

196

Chapter 6 B DIGITAL FILTER STRUCTURES

This example shows that by using the MATLAB functions developed in this
section, we can probe and construct a wide variety of structures. =]

FIR FILTER STRUCTURES

A finite-duration impulse response filter has a system function of the form

M-1
H(z) =bp+ b1zt -+ bM_lzl’M = Z bz " (6.5)

n=0
Hence the impulse response h(n) is

bnv 0 S S M-1
h(n) = { o clse " (6.6)

and the difference equation representation is
y(n) =boz(n) + hz(n — 1)+ -+ by1z(n — M +1) (6.7)

which is a linear convolution of finite support.

The order of the filter is M — 1, while the length of the filter (which
is equal to the number of coefficients) is M. The FIR filter structures are
always stable, and they are relatively simple compared to TIR structures.
Furthermore, FIR filters can be designed to have a linear-phase response,
which is desirable in some applications.

We will consider the following four structures:

o Direct form: In this form the difference equation (6.7) is imple-
mented directly as given.

o Cascade form: In this form the system function H{2) in (6.5) is fac-
tored into second-order factors, which are then implemented in a cascade
connection.

o Linear-phase form: When an FIR filter has a linear phase response,
its impulse response exhibits certain symmetry conditions. In this form
we exploit these symmetry relations to reduce multiplications by about
half.

¢ Frequency sampling form: This structure is based on the DFT of
the impulse response h(n) and leads to a parallel structure. It is also suit-
able for a design technique based on the sampling of frequency response
H (ej“’).

We will briefly describe the above four forms along with some exam-
ples. The MATLAB function dir2cas developed in the previous section is
also applicable for the cascade form.

FIR Filter Structures

107

DIRECT FORM

MATLAB
IMPLEMEN-
TATION

CASCADE
FORM

x{n) &= >—

> -1 -1
b, z J z Jb:, z b

-

Y

> yln)

FIGURE 6.10 Direct form FIR structure

The difference equation (6.7) is implemented as a tapped delay line since
there are no feedback paths. Let M = 5 (i.e., a fourth-order FIR filter);
then

y(n) = boz(n) + biz(n — 1) + baz(n = 2) + baz(n — 3) + baz(n — 4)

The direct form structure is given in Figure 6.10. Note that since the
denominator is equal to unity, there is only one direct form structure.

In MATLAB the direct form FIR structure is described by the row vector
b containing the {b,} coefficients. The structure is implemented by the
filter function, in which the vector a is set to the scalar value 1 as
discussed in Chapter 2.

This form is similar to that of the IIR form. The system function H(z)
is converted into products of second-order sections with real coefficients.
These sections are implemented in direct form and the entire filter as a
cascade of second-order sections. From (6.5)

H(z) = b0+b12~1 4o+ bpoy2” + (63)
bl ~1 bM—l ..M+1>
= 14— [R .
bo (z z

K

= bo H (1 + Bk,ll—l + Bkyzz_z)
k=1

where K is equal to [%J, and By ; and By 3 are real numbers representing
the coefficients of second-order sections. For M = 7 the cascade form is
shown in Figure 6.11.

x{n) e > >— —- > > »—e y(n)

-1 -1 -1
[z By, 3 z 52,1 3 Jz 53’1 3

- - -1
g, A z 8y, 3 2 By, 3

S

FIGURE 6.11 Cascade form FIR structure

198

Chapter 6 8 DIGITAL FILTER STRUCTURES

MATLAB
IMPLEMEN-
TATION

LINEAR-PHASE
FORM

Although it is possible to develop a new MATLAB function for the FIR
cascade form, we will use our dir2cas function by setting the denominator
vector a equal to 1. Similarly, cas2dir can be used to obtain the direct
form from the cascade form.

For frequency-selective filters (e.g., lowpass filters) it is generally desirable
to have a phase response that is a linear function of frequency; that is, we
want

LH(e?¥) = B — aw,

~T<w<T (6.9)

where 5 = 0 or £7/2 and « is a constant. For a causal FIR filter with

impulse response over [0, M — 1] interval, the linear-phase condition (6.9)

imposes the following symmetry conditions on the impulse response h(n):
h(n) =h{M —1-n);
h{n) = —h(M — 1 — n);

=0,0<n<M-1
ﬁ=:|:7l’/2,0§n§M—1

(6.10)
(6.11)

An impulse response that satisfies (6.10) is called a symmetric impulse
response, while that in (6.11) is called an antisymmetric impulse response.
These symmetry conditions can now be exploited in a structure called the
linear-phase form.

Consider the difference equation given in (6.7) with a symmetric im-
pulse response in (6.10). We have

y(n) =boz(n) + hiz(n — 1) +--- + bix(n - M + 2) + bpz(n — M + 1)
=bofe(n) +z(n—- M + 1)+ bhifz(n— 1) +z(n - M +2)]+---

The block diagram implementation of the above difference equation is
shown in Figure 6.12 for both odd and even M.

x{n)

b, . yin)

M=7 M=6

FIGURE 6.12 Linear phase form FIR structures (symmetric impulse response)

FIR Filter Structures

199

MATLAB
IMPLEMEN-
TATION

w} EXAMPLE 6.4

Clearly, this structure requires 50% fewer multiplications than the di-
rect form. A similar structure can be derived for an antisymmetric impulse
response.

The linear-phase structure is essentially a direct form drawn differently to
save on multiplications. Hence in a MATLAB implementation the linear-
phase structure is equivalent to the direct form.

An FIR filter is given by the system function
- 1,448
H(z)=1+167:2"" +2
Determine and draw the direct, linear-phase, and cascade form structures.

a. Direct form: The difference equation is given by
y(n) = z(n) + 16.0625z(n — 4) + z(n ~ 8)

and the direct form structure is shown in Figure 6.13(a).
b. Linear-phase form: The difference equation can be written in the form

y(n) = [z(n) + z(n — 8)] + 16.0625z(n — 4)

and the resulting structure is shown in Figure 6.13(b).
c. Cascade form:

>> b={1,0,0,0,16+1/16,0,0,0,1];
>> [b0,B,A] = dir2cas(b,1)

x{n}
274 724
x(n) > > -
Y 16.0625 y
— - y(n) y(n)
(a} Direct form {b) Linear-phase form
x{n} o—>- > > > > — — >—e y(n)
'Y 28284 A 7Y oz0m 4 Y -o70m § #7'Y -2s284
'Y 40 A7 o0z 4 7Y o 7Y a0 4
{c) Cascade form
FIGURE 6.13 FIR filter structures in Ezample 6.4
200 Chapter 6 B DIGITAL FILTER STRUCTURES

[s] EXAMPLE 6.5

bo =1

.0000
.0000
.0000
.0000

e e

e

The cascade form structure is shown in Figure 6.13(c).

For the filter in Example 6.4 what would be the structure if we desire a cascade
form containing linear-phase components with real coefficients?

We are interested in cascade sections that have symmetry and real coefficients.
From the properties of linear-phase FIR filters (see Chapter 7), if such a filter
has an arbitrary zero at z = r/68, then there must be three other zeros at
(1/r)£8,rL—8, and (1/r)£ —0 to have real filter coefficients. We can now make
use of this property. First we will determine the zero locations of the given
eighth-order polynomial. Then we will group four zeros that satisfy the above
property to obtain one (fourth-order) linear-phase section. There are two such
sections, which we will connect in cascade.

©cC o0 O0Oo

2.8284
0.7071
~-0.7071
-2.8284

[= 3 - =]

4.0000
0.2500
0.2500
4.0000

>> b=[1,0,0,0,16+1/16,0,0,0,1];
>> broots=roots(b)

broots =
-1.4142
-1.4142
1.4142
1.4142
-0.3536
~0.3536
0.3536
0.3536

>> Bi=real(poly({broots(1),broots(2),broots(5),broots{6)1))

Bl =
1.0000

>> B2=real(poly([broots(3) ,broots(4),broots(7),broots(8)]))

B2 =
1.0000

The structure is shown in Figure 6.14.

+
+

+

+

1.4142i
1.4142i
1.4142i
1.4142i
0.3536i
0.3536i
0.35361
0.3536i

3.56355

-3.5355

6.2500

6.2500

FIR Filter Structures

FREQUENCY
SAMPLING
FORM

FIGURE 6.14 Cascade of FIR linear-phase elements

In this form we use the fact that the system function H (z) of an FIR
filter can be reconstructed from its samples on the unit circle. From our
discussions on the DFT in Chapter 5 we recall that these samples are in
fact the M-point DFT values {H (k), 0 <k <M —1} of the M-point
impulse response h (n). Therefore we have

H(z) = Z[h(n)]
= Z[IDFT{H (k)}]

Using this procedure, we obtain [see (5.17) on page 127)

—Z_M M-1
H(z) = <1 o))3 1~H(k) (6.12)

k=0 Wiz

This shows that the DFT H (k), rather than the impulse response A (n)
(or the difference equation), is used in this structure. It is also interesting
to note that the FIR filter described by (6.12) has a recursive form similar
to an IR filter because (6.12) contains both poles and zeros. The resulting
filter is an FIR filter since the poles at W;,k are canceled by the roots of

1-27¥=9

The system function in (6.12) leads to a parallel structure as shown in
Figure 6.15 for M = 4.

One problem with the structure in Figure 6.15 is that it requires a
complex arithmetic implementation. Since an FIR filter is almost always a
real-valued filter, it is possible to obtain an alternate realization in which
only real arithmetic is used. This realization is derived using the symmetry
properties of the DFT and the W;,k factor. Then (6.12) can be expressed

202

Chapter 6 ® DIGITAL FILTER STRUCTURES

-1
! w z ¥
H(J)
14 - y
x{n)] WA’ —>—ae y(n)
(7 { o H(2)
74 > »
1 w2 i s
H(3)
-1
w2 z

FIGURE 6.15 Frequency sampling structure for M =4

as (see Problem 6.10)

H (0) H(M /2)
H(z)= {I§2)H (W He (2)+7— 25 + T i, (6.13)
where L = #=1 for M odd, L = % —1 for M even, and {H (2), k=1,
., L} are second-order sections given by
H (k)] - k) — 2k
Hy(z) = cos (L H (k)] — 2~ cos [/ H (k) — 22F] (6.14)

1-2z-1cos (45k) 4 2-2

Note that the DFT samples H (0) and H (M/2) are real-valued and that
the third term on the right-hand side of (6.13) is absent if M is odd. Using
(6.13) and (6.14), we show a frequency sampling structure in Figure 6.16
for M = 4 containing real coefficients.

cos[ZH(NT 2|H(1]

-1
1 2cosizara) Y i

~cos[ZH(1) ~ 2a/4]

1/4 H{O)
x(n) o—>—g—> > —_ »—e y(n)

FIGURE 6.16 Frequency sampling structure for M = 4 with real coefficients

FIR Filter Structures

203

MATLAB
IMPLEMEN-
TATION

Given the impulse response h(n) or the DFT H (k), we have to deter-
mine the coefficients in (6.13) and (6.14). The following MATLAB function,
dir2fs, converts a direct form (h(n) values) to the frequency sampling
form by directly implementing (6.13) and (6.14).

function [C,B,A) = dir2fa(h)
% Direct form to Frequency Sampling form conversion
%
% [C,B,A] = dir2fs(h)
% C = Row vector containing gains for parallel sections
% B = Matrix containing numerator coefficients arranged in rows
% A = Matrix containing denominator coefficients arranged in rows
% h = impulse response vector of an FIR filter
%
M = length(h);
H = £££(h,M);
magH = abs(H); phal = angle(H)’;
% check even or odd M
if (M == 2*floor(M/2))
L = M/2-1; 4 M is even
Al = [1,-1,0;1,1,0];
€1 = [real(H(1)),real(H(L+2))];
else
L
AL
ci

L]

(M-1)/2; % M is odd
{1,-1,03;
[real (H(1))];

end

k= [1:L]’;

% initialize B and A arrays

B = zeros(L,2); A = ones(L,3);

% compute denominator coefficients
A(1:L,2) = ~2#cos(2*pixk/M); A = [4;A1];
% compute numerator coefficients
B(1:L,1) = cos(phal(2:L+1));

B(1:L,2) = ~cos(phaH(2:L+1)~(2*pi*k/M));
% compute gain coefficients

C = [2*magH(2:L+1),01]’;

In the above function the impulse response values are supplied through the
h array. After conversion, the C array contains the gain values for each
parallel section. The gain values for the second-order parallel sections
are given first, followed by H (0) and H (M/2) (if M is even). The B
matrix contains the numerator coefficients, which are arranged in length-
2 row vectors for each second-order section. The A matrix contains the
denominator coefficients, which are arranged in length-3 row vectors for
the second-order sections corresponding to those in B, followed by the
coefficients for the first-order sections.

204

Chapter 6 ® DIGITAL FILTER STRUCTURES

a EXAMPLE 6.6

Solution

A practical problem with the structure in Figure 6.16 is that it has
poles on the unit circle, which makes this filter critically unstable. If the
filter is not excited by one of the pole frequencies, then the output is
bounded. We can avoid this problem by sampling H (z) on a circle |z} = r,
where the radius r is very close to one but is less than one (e.g., r = 0.99),
which results in

H(z):1

MM ME“ H (k)

. = jenk/M
o e B H (rei2m/M)

k=0
(6.15)
Now approximating H (re??™*/M) ~ H (e7"*/M) for r = 1, we can obtain

a stable structure similar to the one in Figure 6.16 containing real values.
This is explored in Problem 6.11.

Let h(n) = %{1, 2,8,2,1}. Determine and draw the frequency sampling form.
1

MATLAB Script
>> h = [1,2,3,2,1]1/9;
>> {C,B,A] = dir2fs(h)

C =
0.5818
0.0849
1.0000
B =
-0.8090 0.8090
0.3096 -0.3090
A=

1.0000 -0.6180 1.0000
1.0000 1.6180 1.0000
1.0000 -1,0000 0

Since M =5 is odd, there is only one first-order section. Hence

1-27° o —0.809 + 0.809z*
H(z) = 5 0.5818 1-0.6182-1 + 22
0.309 — 0.309z~* 1
+0.0848 141618271 4+2-2 " 1~2-1
The frequency sampling form is shown in Figure 6.17. O
FIR Filter Structures 205

] EXAMPLE 6.7

Solution

—0.809 0.5818

0.309 0.0848

0.2
x(n) o> > > —> > y{n)
u (|
-1.618 -0300 1}

z—1
\1*

FIGURE 6.17 Freguency sampling structure in Ezample 6.6

y -

The frequency samples of a 32-point linear-phase FIR filter are given by
1, k=012
|H (k) =405 k=3
0, k=4,5,...,15

Determine its frequency sampling form, and compare its computational com-
plexity with the linear-phase form.

In this example since the samples of the DFT H (k) are given, we could use
(6.13) and (6.14) directly to determine the structure. However, we will use the
dir2fs function for which we will have to determine the impulse response h (n).
Using the symmetry property and the linear-phase constraint, we assemble the
DFT H (k) as
H(k) = |H &) R, k=0,1,...,31
|H (k)| =|H(32—k){, k=12,...,3,; H{0)=1
LH(k)= —ﬂgzk= -tH(32-k), k=0,1,...,31
2 32
Now the IDFT of H (k) will result in the desired impulse response.
>> M = 32; alpha = (M-1)/2;
>> magHk = [1,1,1,0.5,zeros(1,25),0.5,1,1];
> k1 = 0:15; k2 = 16:M-1;
>> anghk = [-alpha*(2*pi)/M*kl, alpha*(2+pi)/M*(M-k2)1;
>> H = maghk.*exp(j*anghk) ;
>> h = real (ifft(H,M));
>> [C,B,A] = dir2fs(h)
206 Chapter 6 ® DIGITAL FILTER STRUCTURES

OO OO R NN

- OO0OO0OOOoOO

Rl A R s R e Rl e e e R

.0000

0000

.0000
.0000
.0000
.0000

.0000
.0000
.0000
.0000
.0000

.0000

0000

.9962
.9808
.9569
.8944
L9794
.8265
.6754
.0000
.6866
.5191
.4430
.8944
.2766
.9343
.9077

.0000
.0000
.0000
.0000
.0000
.0000

0000

.0000
.0000

0000

.0000
.0000
. 0000

.9952
.9808
.9569
.3162

7121

.2038
.8551
. 0000
.5792
.9883
.4993
.3162
.3039
.9996
.8084

.9616
.8478
.6628
.4142
L1111
. 7654
.3902
.0000
.3902

7654

L1111
4142
.6629

o R

.0000
.0000
.0000
. 0000

.0000
.0000
.0000
.0000
. 0000
.0000
.0000
.0000

FIR Filter Structures

207

1.0000 1.8478 1.0000
1.0000 1.9616 1.0000
1.0000 -1.0000 0
1.0000 1.0000 0

Note that only four gain coefficients are nonzero. Hence the frequency sampling
form is

—0.9952 + 0.99522* 0.9808 — 0.98082"
1—27% 1—1.96162"1 4 2-2 1—1.8478z-1 + 2-2
32 ~0.9569 + 0.9569z! 1
1-1.66292-t +2-2 " 1—z1

+
H(z)=

To determine the computational complexity, note that since H (0) = 1, the first-
order section requires no multiplication, while the three second-order sections
require three multiplications each for a total of nine multiplications per output
sample. The total number of additions is 13. To implement the linear-phase
structure would require 16 multiplications and 31 additions per output sample.
Therefore the frequency sampling structure of this FIR filter is more efficient
than the linear-phase structure. o

LATTICE FILTER STRUCTURES
—-

ALL-ZERO
LATTICE
FILTERS

The lattice filter is extensively used in digital speech processing and in
the implementation of adaptive filters. It is a preferred form of realization
over other FIR or IIR filter structures because in speech analysis and in
speech synthesis the small number of coefficients allows a large number of
formants to be modeled in real time. The all-zero lattice is the FIR filter
representation of the lattice filter, while the lattice ladder is the IIR filter
representation.

An FIR filter of length M (or order M — 1) has a lattice structure with
M —1 stages as shown in Figure 6.18. Each stage of the filter has an input
and output that are related by the order-recursive equations {19]:

Fn() = fro1(n) + Kmgm-1(n~1), m=12,...,.M~1

(6.16)

gm(n) = K fm—1(n) + gm-1{n~1), m=1,2,...,.M~1
where the parameters Ky, m = 1,2,...,M — 1, called the reflection
coefficients, are the lattice filter coefficients. If the initial values of fi(n)
and gm(m) are both the scaled value (scaled by Kg) of the filter input
z(n), then the output of the (M — 1} stage lattice filter corresponds to

208

Chapter 6 B DIGITAL FILTER STRUCTURES

foln) _ N fi{m fo{n}y - q(n) faulm

{n
x{n) Ky K; Ky 7 !
—r—

Ko 1 Ky

goln) - g-.fn) i

K
2 2-1

gz(n). .g;wq(n) gulm
FIGURE 6.18 All-zero lattice filter
the output of an (M — 1) order FIR filter; that is,

fo(r) = go(n) = Koz(n)

y(n) = fu-1{n)
If the FIR filter is given by the direct form

M-1 M1,
H(z)= Y bmz ™ =b (1 +y ﬁz"") (6.18)

m=0 m=}

(6.17)

and if we denote the polynomial Aps_i(2) by

M-1
Apm—a(2) = (1 + Z aM_l(m)z_"‘) ; (6.19)

m=1

amoa(m) =" m=1,.. M1

bo

then the lattice filter coefficients {K,,} can be obtained by the following
recursive algorithm [19]:

Ky =10
Ky1=am_1 (M -1) .
— —-1y. — A
Jm(z)—z m(A;n(z;()J, () m=M 1,...,1 (620)
Anp(z) - z
Apq(z) =" " m=M-1,...,1
1() I—K.,zn
K, = ap(m), m=M-2,...,1

Note that the above algorithm will fail if |K,,| = 1 for any m = 1,...,
M — 1. Clearly, this condition is satisfied by linear-phase FIR filters since

bar—~
bo = lbar—1| = |Knp—1| = lap—1(M = 1)| = ' 5;0 L | =1

Therefore linear-phase FIR filters cannot be implemented using lattice
structures.

Lattice Filter Structures

209

MATLAB Given the coefficients {b,} of the direct form, we can obtain the lattice

IMPLEMEN- filter coefficients {K,,} using (6.20). This is done by the MATLAB func-

TATION tion dir2latc given below. Note that the equation to compute Jn(2)
implies that the polynomial Ji,(2) is a £1iplr operation on the An(2)
polynomial.

function [K] = dir2latc(b)

% FIR Direct form to All-Zero Lattice form Conversion
%
% (K] = dir2latc(b)

% X = Lattice filter coefficients (reflection coefficients)
% b = FIR direct form coefficients (impulse response)

%

M = length(b);

K = zeros(1,M);

bl = b(1);

if bl == 0

error(’b(1) is equal to zero’)

end

K(1) = bl; A = b/bl;

for m=M:-1:2

K(m) = A(m);

J = fliplr(A);

A = (A-X(m)*J)/(1-K(m)*K(m));

A= AQl:im-1);

end

The lattice filter is implemented using (6.16) and (6.17), which is done by
a latcfilt function, which is given below.

function [y] = latcfilt(K,x)
% LATTICE form realization of FIR filters
%
% y = latcfile(K,x)
% ¥ = output sequence
% K = LATTICE filter (reflection) coefficient array
% =x = input sequence
%
Nx = length(x)-1;
x = K(1)*x;
M = length(K)-1; K = K(2:M+1);
fg = [x; [0 x(1:8x)1];
for m = 1:M
fg = [1,K(m);K(m),1]1*Lg;
£g(2,:) = [0 £g(2,1:¥0)];
end
y = £g(1,:);

210 Chapter 6 ® DIGITAL FILTER STRUCTURES

w} EXAMPLE 6.8

Solution

The equations (6.20) can also be used to determine the direct form
coefficients {b,,} from the lattice filter coefficients {K,,} using a recursive
procedure [19]:

Ao(2) = Jo(z) =1

An(2) = Apc1 (@) + Kz W1 (2), m=12,..., M -

Im(2) =27 Ap (271), "m=12,...,M-1
bm = Koapr—1(m), m=0,1,.... M -1

(6.21)

The MATLAB function latc2dir given below implements (6.21). Note
that the product K,,z~1J,,_; (2) is obtained by convolving the two cor-
responding arrays, while the polynomial J,,(z) is obtained by using a
f1iplr operation on the A,,(z) polynomial.

function [b] = late2dir(K)

% All-Zero Lattice form to FIR Direct form Comversion
%
% [b] = latc2dir(K)

% b = FIR direct form coefficients (impulse response)

% K = Lattice filter coefficients (reflection coefficients)
%

M = length(K);

J=1; A=1;

for m=2:1:M

A = [4,0]+conv([0,K(m)],));

J = £1iplr(A);

end

b=A*K(1);

An FIR filter is given by the difference equation
2
y(n) = 2z(n) + %x(n -+ gz(n ~2)+3z(n-3)

Determine its lattice form.

MaTLAB Script
>> b=[2, 13/12, 5/4, 2/3};
>> K=dir2latc(b)

K=

2.0000 0.2500 0.5000 0.3333

Hence

1 1 1
Ko—z, KI—Z, Kz-—a,Ka~§

Lattice Filter Structures

211

ALL-POLE

LATTICE
FILTERS

x{n) e—>

2 13/12 5/4 2/3
>— >— ——e y(n}
(a)
—>—e y(n}
1/4 1/2 13
x(n)’-—;—‘-
2 1/4 2 12 4 1/3
(b)

FIGURE 6.19 FIR filter structures in Ezample 6.8: (a) Direct form (b) Lattice
form

The direct form and the lattice form structures are shown in Figure 6.19. To
check that our lattice structure is correct, let us compute the impulse response
of the filter using both forms.

>> (x,n] = impseq(0,0,3];
>> format long
>> hdirect=filter(b,1,delta)
hdirect =
2.00000000000000 1.08333333333333
>> hlattice=latcfilt (K,delta)
hlattice
2.00000000000000

1.25000000000000 0.66666666666667

1.08333333333333 1.25000000000000 0.66666666666667

[m}

A lattice structure for an IIR filter is restricted to an all-pole system
function. It can be developed from an FIR lattice structure. Let an all-
pole system function be given by

1

H(z) = (6.22)

N

1+ Z an(m)z—™

m=1

which from (6.19) is equal to H(z) = TNIT;' Clearly, it is an inverse
system to the FIR lattice of Figure 6.18 (except for factor b). This IIR
filter of order N has a lattice structure with N stages as shown in Figure
6.20. Each stage of the filter has an input and output that are related by

212

Chapter 6 ® DIGITAL FILTER STRUCTURES

MATLAB
IMPLEMEN-
TATION

o EXAMPLE 6.9

Solution

x(n) = fN(n);‘ fn- 1(nL Kin) fi(n) foln}

Ky -K

K K
21) 2 yln)
gnin) gn-1(m gyln) ogidm T goln

FIGURE 6.20 All-pole lattice filter

the order-recursive equations [19]:
fn(n) =z(n)
fm—l(n)=fm(n)-ngm—1(n*1)w m=N,N-—1,...,1
gm(n) = Kmfm-1(n) + gm-1(n—1), m=N,N-1,...,1
y(n) = fo(n) = go(n)

(6.23)

where the parameters K,,, m=1,2,...,M — 1, are the reflection coef-
ficients of the all-pole lattice and are obtained from (6.20) except for Ko,
which is equal to 1.

Since the IIR lattice coefficients are derived from the same (6.20) proce-
dure used for an FIR lattice filter, we can use the dir2latc function in
MATLAB. Care must be taken to ignore the Ky coefficient in the K array.
Similarly, the 1atc2dir function can be used to convert the lattice {Km}
coefficients into the direct form {ay(m)} provided that K =1 is used as
the first element of the K array. The implementation of an IIR lattice is
given by (6.23), and we will discuss it in the next section.

Consider an all-pole 1IR filter given by
1

H(z) =
2) 1+ 8214 8224 123

Determine its lattice structure.

MATLAB Script
>> a=[1, 13/24, 5/8, 1/3);
>> K=dir2latc(b)
K=
1.0000 0.2500 0.5000 0.3333

Hence

W=

Lattice Filter Structures

213

LATTICE-
LADDER
FILTERS

Y-13 Y-5/8 —13/24

x{n} >— »— — >— —>—a y(n)

e y(n)}

FIGURE 6.21 IIR filter structures in Ezample 6.9: (a) Direct form (b} Lattice
form

The direct form and the lattice form structures of this IIR filter are shown in
Figure 6.21. a

A general IIR filter containing both poles and zeros can be realized as
a lattice-type structure by using an all-pole lattice as the basic building
block. Consider an IIR filter with system function

M
2 bar(k)z*
H(Z) - k:ONM = ﬁM(z) (624)
1+ Y an(k)z—* ~()
k=1

where, without loss of generality, we assume that N > M. A lattice-
type structure can be constructed by first realizing an all-pole lattice
with coefficients K,,, 1 < m < N for the denominator of (6.24), and
then adding a ladder part by taking the output as a weighted linear
combination of {g,,(n)} as shown in Figure 6.22 for M = N. The result

xtn) = fyln) fy_q(n} faln) f1(n) foln
Ky -K; -K,

Ky K, K,

2 21 21
gyin) f———>—= .o tf——— €m—me—9 g 1)
gn-1(n) gin) J
Cn Cn-1 [C2 G

. e - I

Cof

N yi{n)

FIGURE 6.22 Lattice-ladder structure for realizing a pole-zero IIR filter.

214

Chapter 6 8 DIGITAL FILTER STRUCTURES

MATLAB
IMPLEMEN-
TATION

is a pole-zero IIR filter that has the lattice-ladder structure. Its output is
given by

M
y(m) = Y Cmgm(n) (6.25)

m=0

where {C,,} are called the ladder coefficients that determine the zeros of
the system function H(z). It can be shown [19] that {C,,,} are given by

M
Bu(2) = Y CrnJm(2) (6.26)

m=0

where J,,(2) is the polynomial in (6.20). From (6.26) one can obtain a
recursive relation

Bp(2) = B—1(2) + Cndm(2); m=0,2,...,.M

or equivalently,

M
Cm=bn+ Y Ciai(i—-m); m=M, M~1,..,0 6.2

t=m+1

from the definitions of By, (2) and A,,(z).

To obtain a lattice-ladder structure for a general rational IIR filter, we
can first obtain the lattice coefficients {K),} from An(2) using the recur-
sion (6.20). Then we can solve (6.27) recursively for the ladder coefficients
{Cm} to realize the numerator By (z). This is done in the MATLAB func-
tion dir2ladr given below. It can also be used to determine the all-pole
lattice parameters when the array b is set to b=[1].

function [K,C] = dir2ladr(b,a)
% IIR Direct form to pole-zero Lattice/Ladder form Conversion
%
% [K,C) = dir2ladr(b,a)
% X = Lattice coefficients (reflectiom coefficients), [K1,...,KN]
% C = Ladder Coefficients, [CO,...,CN]
% b = Numerator polynomial coefficients (deg <= Num deg)
% a = Denominator polynomial coefficients
%
al = a(1); a = a/al; b = b/al;
M = length(b); N = length(a);
if M>N
error{’ *** length of b must be <= length of a *»*')

end

Lattice Filter Structures

215

b = [b, zeros(1,N-M)]; K = zeros(i,N-1);
A = zeros(N-1,N-1); C = b;
for m = N-1:-1:1
A(m,1:m) = -a(2:m+1)*C(m+1);
K(m) = a(m+1);
J = fliplr(a);
a = (a-K(m)*J)/(1-K(m)*K(m));
a=a(l:m); :
C(m) = b(m) + sum(diag(A(m:N-1,1:N-m)));
end

Note: To use this function, N > M. If M > N, then the numerator
Ap(z) should be divided into the denominator Bas(2) using the deconv
function to obtain a proper rational part and a polynomial part. The
proper rational part can be implemented using a lattice-ladder structure,
while the polynomial part is implemented using a direct structure.

To convert a lattice-ladder form into a direct form, we first use the
recursive procedure in (6.21) on {K,,} coefficients to determine {an(k)}
and then solve (6.27) recursively to obtain {bas(k)}. This is done in the
MATLAB function ladr2dir given below.

function [b,a] = ladr2dir(X,C)
% Lattice/Ladder form to IIR Direct form Conversion

% [b,a] = ladr2dir(X,C)

% b = pumerator polynomial coefficients

% a = denominator polymonial coefficients

% K = Lattice coefficients (reflection coefficients)
% C = Ladder coefficients

N = length(K); M = length(C);
¢ = [C, zeros(1,N-M+1)];
J=1; a=1; A = zeros(N,N);
for m=1:1:N
a = [a,0]+conv([0,K(m)],);
A(m,1:m) = ~a(2:m+1);
J = fliplr(a);
end
b(N+1) = C(N+1);
for m = N:-1:1
A(m,1:m) = A(m,1:m)*C(m+1);
b(m) = C(m) - sum(diag(A{m:N,1:N-m+1)));
end

The lattice-ladder filter is implemented using (6.23) and (6.25). This
is done in the MATLAB function ladrfilt, which is given below. It should
be noted that due to the recursive nature of this implementation along

216

Chapter 6 & DIGITAL FILTER STRUCTURES

0O EXAMPLE6.10

with the feedback loops, this MATLAB function is neither an elegant nor
an efficient method of implementation. It is not possible to exploit MAT-
LAB’s inherent parallel processing capabilities in implementing this lattice-
ladder structure.

function [y] = ladrfilt(K,C,x)
% LATTICE/LADDER form realization of IIR filters
%
% [yl = ladrfilt(X,C,x)
% y = output sequence
% K = LATTICE (reflection) coefficient array
% C = LADDER coefficient array
% x = input sequence
%
Nx = length(x); y = zeros(1,Nx);
N = length(C); f = zeros(N,Nx); g = zeros(N,Nx+1);
£(N,:) = x;
for n = 2:1:Nx+1
for m = N:-1:2
f(m-1,n-1) = f(m,n-1) - K(n-1)*g(n-1,n-1);
g(m,n) = K(m-1)*f(m-1,n-1) + g(m-1,n-1);

end

g(1,n) = £(1,n-1);
end
y = Cxg(:,2:Nx+1);

Convert the following pole-zero IIR filter into a lattice-ladder structure.

14227 422724273

H(z) =
@ = I By i1 18

MATLAB Script
>>b = [1,2,2,1) a = [1, 13/24, 5/8, 1/3);
>> [K,C] = dir2ladrc(b)
K =

0.2500 0.5000 0.3333
C =

-0.2695 0.8281 1.4583 1.0000

Hence

and

Cp = —0.2695, Cy = 0.8281, C2 =1.4583, C3 =1

Lattice Filter Structures

227

x{n) e P — —>—e y(n)
T CA
|
| S, *z R |
~1
) ~v3 2 1 4
(a)
x{m
-3 ~1/2 -1/4
13 - 12 - 14 -
Y 1.0 1.4583 Y 0.8281 —0.2695
— o > e y(n)
(b

FIGURE 6.23 I[R filter structures in Example 6.10: (a) Direct form (b) Lattice-
ladder form

The resulting direct form and the lattice-ladder form structures are shown in
Figure 6.23. To check that our lattice-ladder structure is correct, let us compute
the first 8 samples of its impulse response using both forms.

>> [x,n}=impseq(0,0,7)
>> format long
>> hdirect = filter(b,a,x)
hdirect =
Columns 1 through 4
1.00000000000000 1.45833333333333 0.58506944444444 -0.56170428240741
Columns 5 through 8
—0.647523027568488 0.45261700163162 0.28426911049255 -0.26435705167494
>> hladder = ladrfilt(X,C,x)
hladder =
Columns 1 through 4
1.00000000000000 1.45833333333333 0.58506944444444 -0.56170428240741
Columns 5 through 8 .
—0.54752302758488 0.45261700163162 0.284269110492556 -0.25435705167494
m]

218 Chapter 6 ® DIGITAL FILTER STRUCTURES

PROBLEMS

-3

P6.1

P6.2

P6.3

P64

A causal linear time-invariant system is described by

5

=3 (5) =0+ 3 (2) un-0
=1

k=0
Determine and draw the block diagrams of the following structures. Compute the response
of the system to
z(n) = u(n), 0<n<100
in each case using the corresponding structures.
a. Direct form I
b. Direct form I1
c. Cascade form containing second-order direct form II sections
d. Parallel form containing second-order direct form II sections
e. Lattice-ladder form
An IR filter is described by the following system function:

He2 1402714272 2-z71 1422714272
T Y\1-0.82"1+0.6422 1—0.7521 1+0.8122

Determine and draw the following structures.

a. Direct form I
. Direct form II

b

c. Cascade form containing second-order direct form II sections
d. Parallel form containing second-order direct form Il sections
e

. Lattice-ladder form
An IIR filter is described by the following system function:

_ _ -1 -1
H() = (14.75 — 12.92) + (24.5+26.82z)

_1,-1, 3,2 _e—14 1,2
1-g2z71+ 52 1-z"1+3z

Determine and draw the following structires:

a. Direct form I

b. Direct form IT

¢. Cascade form containing second-order direct form 11 sections
d. Parallel form containing second-order direct form II sections
e. Lattice-ladder form

Figure 6.24 describes a causal linear time-invariant system. Determine and draw the
following structures:

Problems 219

x(n) o—p——a—> > — >

> e y(n)

FIGURE 6.24 Structure for Problem 6.4

a. Direct form I
b. Direct form II
c. Cascade form containing second-order direct form II sections

d. Paralle] form containing second-order direct form I sections

P6.5 A linear time-invariant system with system function
—1\6
Hez) 05(1+271)
Z)=
N S e
is to be implemented using a flowgraph of the form shown in Figure 6.25.
a. Fill in all the coefficients in the diagram.
b. Is your solution unique? Explain.
P6.6 A linear time-invariant system with system function
H(z) = 5+11.227" 4 5.4427% — 0384273 - 2.35522 7% — 1.22882~5
- 14 0.8271 — 0.5122-3 ~ 0.40962~4
is to be implemented using a flowgraph of the form shown in Figure 6.26. Fill in all the
coefficients in the diagram.
P6.7 Consider the linear time-invariant system given in Problem 6.5.
5 0.5(1+271)°
z2)=
(1 B e L e R L aar —llsz'ﬁ)
—1 —3 E—
x(n) ¢—>— > > > —> yin}
{ 21 | 7!) 21 J { 7! Jx
1 L JjC_3 . | I
(RS A PRI SO G IR £ -)
FIGURE 6.25 Structure for Problem 6.5
220 Chapter 6 ® DIGITAL FILTER STRUCTURES

x{n}

——oyin)

FIGURE 6.26 Structure for Problem 6.6

It is to be implemented using a flowgraph of the form shown in Figure 6.27.

a. Fill in all the coefficients in the diagram.

b. Is your solution unique? Explain.
P6.8 An FIR filter is described by the difference equation

Determine and draw the block diagrams of the following structures.

a. Direct form
b. Linear-phase form

10

s =3 (1) etn -

k=0

C—J 3 —
x(n) e~ > > —> ylm
z~ z~
— § — h—) —}
21 e
—{—t) {—]
R |
) (i
—
FIGURE 6.27 Structure for Problem 6.7
Problems 21

c. Cascade form
d. Frequency sampling form
P6.9 A linear time-invariant system is given by the system function

10
HE)=) (2™

k=0
Determine and draw the block diagrams of the following structures.
a. Direct form
b. Cascade form
c. Lattice form
d. Frequency sampling form
P6.10 Using the conjugate symmetry property of the DFT

H(0), k=0
H(k)z{H‘(.)M—k), k=1,..,M-1

and the conjugate symmetry property of the W,,* factor, show that (6.12) can be put in
the form (6.13) and (6.14) for real FIR filters.

P6.11 To avoid poles on the unit circle in the frequency sampling structure, one samples H (z) at
2 = re’z""‘/M, k=0,...,M — 1, where r =~ 1(but < 1) as discussed in this chapter.
a. Using

H (re®™/™) ~ H (k)
show that the frequency sampling structure is given by
1-(rz H(0 H(M/2
H(z)= _Q_ {sz(k)m @+ fz)_l + T+er/—-1)}

where

cos [LH (k)] -z} cos [£H (k) - 2

H =1
k(@ 1—2rz-1cos (%) +2-2

Jk=1,...,L

and MM is even.

b. Modify the MATLAB function dir2fs (which was developed in this chapter) to
implement the above frequency sampling form. The format of this function should be

(C,B,A,xM] = dir2fs(h,r)

% Dixect form to Frequency Sampling form conversion
%
% [C,B,A] = dir2fs(h)

% C = Row vector containing gains for parallel sections

% B = Matrix containing numerator coefficients arranged in rows
% A = Matrix containing denominator coefficients arranged in rovs
% ™™ = r°M factor needed in the feedforward loop

222 Chapter 6 ® DIGITAL FILTER STRUCTURES

% h = impulse response vector of an FIR filter
% 1 = radius of the circle over which samples are taken (r<1)

c. Determine the frequency sampling structure for the impulse response given in Example
6.6 using the above function.

P6.12 Determine the impulse response of an FIR filter with lattice parameters
Ko=2, Ky =06, K2 =0.3, K3 =05, K¢ =0.9

Draw the direct form and lattice form structures of the above filter.

Problems 223

FIR FILTER DESIGN

We now turn our attention to the inverse problem of designing systems
from the given specifications. It is an important as well as a difficult prob-
lem. In digital signal processing there are two important types of systems.
The first type of systems perform signal filtering in the time domain and
hence are called digital filters. The second type of systems provide signal
representation in the frequency domain and are called spectrum analyzers.
In Chapter 5 we described signal representations using the DFT. In this
and the next chapter we will study several basic design algorithms for
both FIR and IIR filters. These designs are mostly of the frequency selec-
tive type; that is, we will design primarily multiband lowpass, highpass,
bandpass, and bandstop filters. In FIR filter design we will also consider
systems like differentiators or Hilbert transformers, which, although not
frequency-selective filters, nevertheless follow the design techniques be-
ing considered. More sophisticated filter designs are based on arbitrary
frequency-domain specifications and require tools that are beyond the
scope of this book.

We first begin with some preliminary issues related to design philos-
ophy and design specifications. These issues are applicable to both FIR,
and IIR filter designs. We will then study FIR filter design algorithms in
the rest of this chapter. In Chapter 8 we will provide a similar treatment
for IIR filters.

PRELIMINARIES

The design of a digital filter is carried out in three steps:

o Specifications: Before we can design a filter, we must have some
specifications. These specifications are determined by the applications.

® Approximations: Once the specifications are defined, we use various
concepts and mathematics that we studied so far to come up with a filter
description that approximates the given set of specifications, This step is
the topic of filter design.

24

ABSOLUTE
SPECIFICA-
TIONS

RELATIVE (DB)
SPECIFICA-
TIONS

o Implementation: The product of the above step is a filter descrip-
tion in the form of either a difference equation, or a system function H(z),
or an impulse response A(n). From this description we implement the fil-
ter in hardware or through software on a computer as we discussed in
Chapter 6.

In this and the next chapter we will discuss in detail only the second step,
which is the conversion of specifications into a filter description.

In many applications like speech or audio signal processing, digital
filters are used to implement frequency-selective operations. Therefore,
specifications are required in the frequency-domain in terms of the de-
sired magnitude and phase response of the filter. Generally a linear phase
response in the passband is desirable. In the case of FIR filters, it is pos-
sible to have exact linear phase as we have seen in Chapter 6. In the case
of IIR filters a linear phase in the passband is not achievable. Hence we
will consider magnitude-only specifications.

The magnitude specifications are given in one of two ways. The first
approach is called absolute specifications, which provide a set of require-
ments on the magnitude response function ‘H (ej“’)l. These specifications
are generally used for FIR filters. IIR filters are specified in a somewhat
different way, which we will discuss in Chapter 8. The second approach is
called relative specifications, which provide requirements in decibels (dB),
given by

]H(ei“)] >0

dB scale = —20log;, HE 2
max

This approach is the most popular one in practice and is used for both
FIR and IIR filters. To illustrate these specifications, we will consider a
lowpass filter design as an example.

A typical absolute specification of a lowpass filter is shown in Figure 7.1a,
in which

e band [0, w,] is called the passband, and &, is the tolerance (or ripple)
that we are willing to accept in the ideal passband response,

e band [w,, 7] is called the stopband, and §; is the corresponding
tolerance (or ripple), and

e band [wp,w;] is called the transition band, and there are no restric-
tions on the magnitude response in this band.

A typical absolute specification of a lowpass filter is shown in Figure 7.1b,
in which

® R, is the passband ripple in dB, and
e A, is the stopband attenuation in dB.

Preliminaries

225

145

Passband
ripple

1- 5

T
2
= Stopband
ripple
(a) —-f——> @
Wy T
{
T «
1
I
1
Lo |
[t
o i
o [l
3 1
o i
]

FIGURE 7.1 FIR filter specifications: (a) Absolute (b) Relative

The parameters given in the above two specifications are obviously
related. Since ‘H (ef“’)lxmx in absolute specifications is equal to (1 + 8;),
we have

1-4
= —201o >0(~0 71
Ry 810 755, (=~0) (11
and
b2
A, =-20 logm —— >0 (>> 1) (7.2)
+6
[n] EXAMPLE 7.1 In a certain filter’s specifications the passband ripple is 0.25 dB, and the stop-
band attenuation is 50 dB. Determine §, and 6;.
Solution Using (7.1}, we obtain
R, =0.25 = —201o, 16, 5 00144
R B1o 7 +86 1=
Using (7.2), we obtain
A, =50 =—20log & = —20log __f:_ = 82 = 0.0032 m]
0146 07 +0.0144
m] EXAMPLE 7.2 Given the passband tolerance §; = 0.01 and the stopband tolerance §; = 0.001,
determine the passband ripple R, and the stopband attenuation A,.
226 Chapter 7 ®m FIR FILTER DESIGN

From (7.1) the passband ripple is
1-6
Rp =-20 logw l—m =0.1737 dB

and from (7.2} the stopband attenuation is

b2
1+6

A, = —20log,, =60 dB w}

The above specifications were given for a lowpass filter. Similar spec-
ifications can also be given for other types of frequency-selective filters,
such as highpass or bandpass. However, the most important design param-
eters are freqguency-band tolerances (or ripples) and band-edge frequencies.
Whether the given band is a passband or a stopband is a relatively minor
issue. Therefore in describing design techniques, we will concentrate on a
lowpass filter. In the next chapter we will discuss how to transform a low-
pass filter into other types of frequency-selective filters. Hence it makes
more sense to develop techniques for a lowpass filter so that we can com-
pare these techniques. However, we will also provide examples of other
types of filters. In light of this discussion our design goal is the following.

Problem Statement Design a lowpass filter (i.e., obtain its system
function H(z) or its difference equation) that has a passband [0, w,] with
tolerance 8, (or R, in dB) and a stopband {w,, 7] with tolerance 6 (or
A, in dB).

In this chapter we turn our attention to the design and approximation
of FIR digital filters. These filters have several design and implementa-
tional advantages:

e The phase response can be exactly linear.

o They are relatively easy to design since there are no stability prob-
lems.

o They are efficient to implement.

o The DFT can be used in their implementation.

As we discussed in Chapter 6, we are generally interested in linear-
phase frequency-selective FIR filters. Advantages of a linear-phase re-
sponse are:

e design problem contains only real arithmetic and not complex arith-
metic;

o linear-phase filters provide no delay distortion and only a fixed
amount of delay;

o for the filter of length M (or order M — 1) the number of opera-
tions are of the order of M/2 as we discussed in the linear-phase filter
implementation.

We first begin with a discussion of the properties of the linear-phase
FIR filters, which are required in design algorithms. Then we will discuss

Preliminaries

27

three design techniques, namely the window design, the frequency sam-
pling design, and the optimal equiripple design techniques for linear-phase
FIR filters.

PROPERTIES OF LINEAR-PHASE FIR FILTERS
—i

IMPULSE

In this section we discuss shapes of impulse and frequency responses and
locations of system function zeros of linear-phase FIR filters. Let kh(n),
0 <n < M — 1 be the impulse response of length (or duration) M. Then
the system function is

M-1 M-1
R ST ST

n=0 n=0

which has (M — 1) poles at the origin z = 0 (trivial poles) and (M — 1)
zeros located anywhere in the z-plane. The frequency response function
is

A1
H() =Y h(n)e ™", —r<w<m

n=0

Now we will discuss specific requirements on the forms of h(n) and H(e/*)
as well as requirements on the specific locations of (M — 1) zeros that the
linear-phase constraint imposes.

We impose a linear-phase constraint
RESPONSE '
h{n) (H(EY) = ~aw, -w<wgT
where a is a constant phase delay. Then we know from Chapter 6 that
h{n) must be symmetric, that is,
. M-1
h(n)=h{(M—-1-n), 0<n<(M—-1)witha= (13)
Hence h(n) is symmetric about «, which is the index of symmetry. There
are two possible types of symmetry:
® M odd: In this case @ = (M — 1)/2 is an integer. The impulse
response is as shown below.
228 Chapter 7 B FIR FILTER DESIGN

Symmetric iImpulse Response: M odd

1.

(M-1)/2 M-1
n

hin)
l o

o}

® M even: In this case a = (M ~1)/2 is not an integer. The impulse
response is as shown below.

Symmetric impulse Response: M even

T - —

Ll

orrl 1& L

F
[} M2+ M2 M-1
n

hin)

We also have a second type of “linear-phase” FIR filter if we require
that the phase response /H(e*) satisfy the condition

(H(F¥) = —ow

which is a straight line but not through the origin. In this case « is not a
constant phase delay, but

d/H(e) o

— =
is constant, which is the group delay. Therefore « is called a constant
group delay. In this case, as a group, frequencies are delayed at a constant

rate. But some frequencies may get delayed more and others delayed less.
For this type of linear phase one can show that

h(n) = —h(M —1—n), OSns(M—l);a=M§l,ﬁ=i§ 74

Properties of Linear-phase FIR Filters 229

This means that the impulse response h(n) is antisymmetric. The index
of symmetry is still & = (M — 1)/2. Once again we have two possible
types, one for M odd and one for M even.

e M odd: In this case o = (M —1)/2 is an integer and the impulse
response is as shown below,

Antisymmetric Impulse Response: M odd

e T T

0_::? TT?T

h(n)

;
0 (M-1y2 M-1
n

Note that the sample h{a) at o = (M — 1)/2 must necessarily be equal
to zero, Le., h{((M —1)/2) =0.

® M even: In this case ¢ = (M ~ 1)/2 is not an integer and the
impulse response is as shown below.

Antisymmetric impulse Response: M even

n(n)

[~}
l—o
—o
O
—o

FREQUENCY When the cases of symmetry and antisymmetry are combined with odd

RESPONSE and even M, we obtain four types of linear-phase FIR filters. Frequency

H(ev) response functions for each of these types have some peculiar expressions
and shapes. To study these responses, we write H{e’*) as

H() = B (@)= p=sxl o= 221

pe=—— (9

230 Chapter 7 ® FIR FILTER DESIGN

w] EXAMPLE 7.3

where H,(w) is an amplitude response function and not a magnitude re-
sponse function. The amplitude response is a real function, but unlike
the magnitude response, which is always positive, the amplitude response
may be both positive and negative. The phase response associated with
the magnitude response is a discontinuous function, while that associated
with the amplitude response is a continuous linear function. To illustrate
the difference between these two types of responses, consider the following
example.

Let the impulse response be h(n) = {1,1,1}. Determine and draw frequency
T

responses.

The frequency response function is
2
H(E) =) h(n)e" =1+ 167 + e = { + 1+ e} e
0

= {1+ 2cosw}e
From this the magnitude and the phase responses are

|H(ej”)| =|14+2cosw|, O<w<m

. —w, 0<w<2n/3
(H() =
() {w—w, 2rf3<w<

since cosw can be both positive and negative. In this case the phase response
is piecewise linear. On the other hand, the amplitude and the corresponding
phase responses are

Hy(w)=1+ 2cosw,

. -T<wsT

(H (e"") = —w,
In this case the phase response is truly linear. These responses are shown in Fig-
ure 7.2. From this example the difference between the magnitude and the am-
plitude (or between the piecewise linear and the linear-phase) responses should
be clear. [m]

Type-1 linear-phase FIR filter: Symmetrical impulse response,
M odd 1In this case 8 =0, a = (M — 1)/2 is an integer, and h(n) =
A(M—-1-n), 0<n<M-1. Then we can show (see Problem 7.1) that

(M-1}/2
H(e™) = Z a{n) coswn | e~ M-1)/2 (7.6)

n=0

Properties of Linear-phase FIR Filters 231

Magnitude Response Amplitude Response

k-
N 0
0 213 1 [+] 2/3 1
frequency in pi units frequency in pl units
Piecewise Linear Phase Response Linear Phase Response
2 2
5 23 5
£ 0 s o0
2 2
g o
& 8
—213} —2/3}-
0 2/3 1 [+ 3 1
frequency in pi units frequency in pi units

FIGURE 7.2 Frequency responses in Ezample 7.3

where sequence a(n) is obtained from k(n) as
a0)=h (_M_2—_1) : the middle sample

a(n) = 2h (Mgl—n), 1§nSM2—3

Comparing (7.5) with (7.6), we have

(M-1)/2

H (w)= Z a(n) coswn

n=0

(&)

(7.8)

Type-2 linear-phase FIR filter: Symmetrical impulse response,
M even Inthiscaseagain8=0,h(n)=h(M-1-n), 0<n < M-1,
but & = (M —1)/2 is not an integer. Then we can show (see Problem 7.2)

that

M2

H{) = [Z b{n) cos {w (n - %) }] e—jw(M-1)/2

n=1

(79)

32

Chapter 7 8 FIR FILTER DESIGN

where
(7.10)

Hence

M/2

Hy(w)= :L:’l b(n) cos {w (n - %) } (7.11)

Note: At w =7 we get

M/2

H.(r) =Y b(n)cos {7: (n ~ %)} =0

n=1

regardless of b(n) or h(n). Hence we cannot use this type (i.e., symmetric
h{n), M even) for highpass or bandstop filters.

Type-8 linear-phase FIR filter: Antisymmetric impulse re-
sponse, M odd In this case § = /2, o = (M — 1)/2 is an integer,
h{in) = -h(M ~1—n), 0<n<M-1,and h((M —1)/2) = 0. Then
we can show (see Problem 7.3) that

(M-1)/2
H(e) = [Y e sinwn} eIl F (474)e] (1.12)
n=1

where

c(n)=2h(M2’1~n), n=1,2,...,A—42;1 (7.13)
and
(M-1)/2
Hy(w)= Y cn)sinwn (7.14)
n=1

Note: At w = 0 and w = 7w we have H,(w) = 0, regardless of c(n) or
h{n). Furthermore, ¢/*/2 = j, which means that jH,(w) is purely imagi-
nary. Hence this type of filter is not suitable for designing a lowpass filter
or a highpass filter. However, this behavior is suitable for approximat-
ing ideal digital Hilbert transformers and differentiators. An ideal Hilbert
transformer [19] is an all-pass filter that imparts a 90° phase shift on the
input signal. It is frequently used in communication systems for modula-
tion purposes. Differentiators are used in many analog and digital systems
to take the derivative of a signal.

Properties of Linear-phase FIR Filters 233

Type-4 linear-phase FIR filter: Antisymmetric impulse re-
sponse, M even This case is similar to Type-2. We have (see Problem
7.4)

M/2

H(#*) = |3 dn)sin {w (n - %)} SlE-wM-D/2 (115
n=1

where

M

M
= h —_——— = ey T
d(n) 2 (2 n)y n=1,2,)

(7.16)
and

M/2

Hy(w) = ; d(n)sin {w (- %)} @.17)

Note: At w = 0, H.(0) = 0 and &/*/2 = j. Hence this type is also
suitable for designing digital Hilbert transformers and differentiators.

MATLAB The MATLAB routine freqz computes the frequency response but we can-
IMPLEMEN- not determine the amplitude response from it because there is no function
TATION in MATLAB comparable to the abs function that can find amplitude. How-

ever, it easy to write simple routines to compute amplitude responses for

each of the four types. We provide four functions to do this.

1. Hr_typel:

function [Hr,w,a,L) = Hr_Typel(h);

% Computes Amplitude response Hr(w) of a Type~1 LP FIR filter

%

% [Hr,w,a,L] = Hr_Typei(h)

% Hr = Amplitude Response

% w = 500 frequencies between [0 pi] over which Hr is computed

% a = Type-1 LP filter coefficients

% L = Order of Hr

% h = Type-1 LP filter impulse response

y

4

M = length(h);

L = (M-1)/2;

a = [h(L+1) 2#h(L:-1:1)]1; % 1x(L+1) row vector

n = [0:1:L]; % (L+1)x1 column vector

w = [0:1:500] ’*pi/500;

Hr = cos(w*n)*a’;
234 Chapter 7 @ FIR FILTER DESIGN

2. Hr.type2:

function [Hr,w,b,L] = Hr_Type2(h);
o

% Computes Amplitude response of a Type-2 LP FIR filter
A

% [Hr,w,b,L] = Hr_Type2(h)

% Hr = Amplitude Response

% w = frequencies between [0 pi] over which Hr is computed

% b = Type-2 LP filter coefficients
% L = Order of Hr
% h = Type-2 LP impulse response

»

M = length(h);

L= M/2;

b = 2+¢[h(L:-1:1)];

n = (1:1:L]; n = n-0.5;
W=
Hr =

[0:1:500) > *pi/500;
cos{wsn)*b’;

3. Hr_type3:

function [Hr,w,c,L) = Hr_Type3(h);
% Computes Amplitude response Hr(w) of a Type-3 LP FIR filter

% [Hr,w,c,L] = Hr_Type3(h)

% Hr = Amplitude Response

% w = frequencies between [0 pi] over which Hr is computed
¢ = Type-3 LP filter coefficients

% L = Order of Hr
h = Type-3 LP impulse response

length(h);
M-1)/2;
(2#h(L+1:-1:1)];
f0:1:L];

[0:1:500] **pi/500;
sin(wtn)*c’;

Eﬂl’ol“:
L I

4. Hr_type4:

function [Hr,w,d,L] = Hr_Typed(h);

% Computes Amplitude response of a Type-4 LP FIR filter
4
% [H#r,w,d,L] = Hr_Type4(h)

% Hr = Amplitude Response

% w = frequencies between [0 pi] over which Hr is computed
% d = Type-4 LP filter coefficients

% L = Order of d

% h = Type-4 LP impulse response

Properties of Linear-phase FIR Filters

235

ZERO
LOCATIONS

length(h);

M/2;

2*[h(L:-1:1)]);
[1:1:L]; n = n-0.5;
{0:1:500] **pi/500;
sin(wsn)*d’;

Etun.r*::
nWonouw W

These four functions can be combined into one function. This function
can be written to determine the type of the linear-phase filter and to im-
plement the appropriate amplitude response expression. This is explored
in Problem 7.5. The use of these functions is described in Examples 7.4
through 7.7.

Recall that for an FIR filter there are (M —1) (trivial) poles at the origin
and (M — 1) zeros located somewhere in the z-plane. For linear-phase
FIR filters, these zeros possess certain symmetries that are due to the
symmetry constraints on h(n). It can be shown (see [19] and Problem
7.6) that if H(z) has a zero at i

z=2 = re’®
then for linear phase there must be a zero at

1 1
z=—=-¢
2] T

—56

For a real-valued filter we also know that if 2; is complex, then there must
be a conjugate zero at z} = re~%% which implies that there must be a
zero at 1/z] = (1/r) e7%. Thus a general zero constellation is a quadruplet

. 1 . . 1 _.
re®, - re® and ;e‘f"
T

as shown in Figure 7.3. Clearly, if r = 1, then 1/r = 1, and hence the
zeros are on the unit circle and occur in pairs

ei® and e~70
If 6 = 0 or @ = 7, then the zeros are on the real line and occur in pairs
i
r and -
r
Finally, if r = 1 and § = 0 or 8 = =, the zeros are either at z = 1 or

z = —1. These symmetries can be used to implement cascade forms with
linear-phase sections.

236

Chapter 7 ® FIR FILTER DESIGN

O

EXAMPLE 7.4

Pole—Zero Plot

— v — 2-plane
15} |
[¢)
1/conj(z1}
i {
21
0.5} ° E
]
3
2
g 1}
2
E
05} ° 4
conj(z1)
—1t E
izt
[}
-15}
-1.5 -1 -0.5 ¢} 0.5 1 15
real axis

FIGURE7.3 A general zero constellation

In the following examples we illustrate the above described properties
of linear-phase FIR filters.

Let h(n) = {—4,1,-1,-2,5,6,5, -2, —1,1, —4}. Determine the amplitude re-
i

sponse H, (w) and the locations of the zeros of H (z).

Since M = 11, which is odd, and since h(n) is symmetric about a = (11-1)/2 =
5, this is a Type-1 linear-phase FIR filter. From (7.7) we have

a(0) = h{e) = h(5) =6,
a(3)=2h(5—3) =2,

a(1) = 2h(5 — 1) = 10,
a(4) =2h(5—4) =2,

a(2)=2h(5-2)= -4

a(5)=2h(5-5)=-8

From (7.8), we obtain

H,(w) = a(0) + a(1) cos w + a(2) cos 2w + a(3) cos 3w + a(4) cos 4w + a(5) cos 5w
=6+ 10cosw — 4cos 2w — 2 cos 3w + 2 cosdw — 8cos bw

MaTLAB Script

>> h = [~4,1,-1,~2,5,6,5,-2,-1,1,-4];

>> M = length(h); n = 0:M-1;
>> [Hr,v,a,L] = Hr_Typei(h);

Properties of Linear-phase FIR Filters 237

> a,L

a=6 10 -4 -2 2 -8

L=5

>> amax = max(a)+1; amin = min{a)-1;

>> subplot(2,2,1); stem(n,h); axis([-1 2sL+1 amin amax])
>> xlabel(’n’); ylabel(’h(n)’); title(’Impulse Response’)
>> subplot(2,2,3); stem(0:L,a); axis([-1 2*L+1 amin amax])
>> xlabel{’n’); ylabel(’a(n)?’); title(’a(n) coefficients’)
>> subplot(2,2,2); plot(w/pi,Hr);grid

>> xlabel (*frequency in pi units’); ylabel(’Hr’)

>> title(’Type-1 Amplitude Response’)

>> gubplot(2,2,4); pzplotz(h,1)

The plots and the zero locations are shown in Figure 7.4. From these plois we
observe that there are no restrictions on H, (w) either at w = O or at w = 7.
There is one zero-quadruplet constellation and three zero pairs. a

0 EXAMPLE 75 Let h(n) = {—4,1,-1,-2,5,6,6,5,~2,—1,1,—4}. Determine the amplitude
1
response H,. (w) and the locations of the zeros of H (2).
impulse Response Type-1 Amplitude Response
10 o
5 j T T
g) 9
|
_.5
0 5 10 2% 0.5 1
n frequency in pi units
a(n) coeflicients Pole-Zero Piot
10 W z-plane
(o]
@ ! o)
5 23
3
= &
fo g0
[~]
E J
s - o
[+ 5 10 ~1 o 1
n real axis
FIGURE 7.4 Plots in Example 7.4
238 Chapter 7 ® FIR FILTER DESIGN

Solution

u] EXAMPLE 7.6

Solution

This is a Type-2 linear-phase FIR filter since M = 12 and since h(n) is sym-
metric with respect to o = (12 — 1) /2 = 5.5. From (7.10) we have

b1y =2 (8 -1)=12, b2)=2h(%-2)=10, b3)=2h(Z-3)=—4
ba)=2h (R -4)=-2, b(5)=2n(2-5)=2, b6)=2r(2-6)=-8
Hence from (7.11) we obtain
Ho{w) = b(1) cos [w (1 — §)] +5(2) cos [w (2 - 3)] +b(3) cos [w (3 - })]
+b(4) cos [w (4 — 1)] +b(5) cos [w (5~ %)] + b(6) cos [w (6~]

sen(3) 200 (3) -t (%) - 20m(%)
+ 2008 (%) ~ 8cos (1—123)

MATLAB Script
>>h = [-4,1,-1,-2,5,6,6,5,-2,-1,1,-4];

>> M = length(h); n = 0:M-1;

>> [Hr,v,a,L] = Hr_Type2(h);

>> b,L

b =12 10 -4 -2 2 -8

L=6

>> bmax = max(b)+i; bmin = min(b)-1;

>> subplot(2,2,1}; stem(n,h); axis([-1 2+L+1 bmin bmax])
>> xlabel(’n’); ylabel(’h(n)’); title(’Impulse Response’)
>> subplot(2,2,3); stem(1:L,b); axis([-1 2*L+1 bmin bmax])
>> xlabel(’n’); ylabel(’b(n)’); title(’b(n) coefficients’)
>> subplot(2,2,2); plot(w/pi,Hr);grid

>> xlabel(’frequency in pi units’); ylabel(’Hr’)

>> title(’Type~1 Amplitude Response’)

>> subplot(2,2,4); pzplotz(h,1)

The plots and the zero locations are shown in Figure 7.5. From these plots we

observe that H, (w) is zero at w = . There is one zero-quadruplet constellation,

three zero pairs, and one zero at w = 7 as expected. =]

Let h(n) = {—4,1,-1,-2,5,0,—5,2,1,~1,4}. Determine the amplitude re-

1

sponse H, (w) and the locations of the zeros of H (2).

Since M = 11, which is odd, and since A(n) is antisymmetric about & =

(11 —- 1)/2 = 5, this is a Type-3 linear-phase FIR filter. From (7.13) we have
c(0) =h{a)=h(5)=0, c(1)=2h(5~1)=10, c(2)=2h(2-2)=-4
c(B)=2r(5-3)=-2, c(4)=2h(5-4)=2, c(5)=2h(5-5)=~8

Properties of Linear-phase FIR Fitters 239

Impulse Response

10
5
g
T4l 2
[Té, 60 l
-5
[} 5 10
n
b(n) coefficients
10
[} 1 oo
5 S {r
K= P
% g 0 01—
6 -]
g o
-5 “1[°
0 § 10 -1 0 1
n real axis

FIGURE 7.5 Plots in Ezample 7.5

From (7.14) we obtain

Hy(w) = ¢(0) + ¢(1) sinw + ¢(2) sin 2w + ¢(3) sin 8w + ¢(4) sin 4w + ¢(5) sin 5w
=0+ 10sinw ~ 4sin 2w — 2sin 3w + 2 sin 4w — 8sin Sw

MaTLAB Script
>» b = [-4,1,-1,-2,5,0,~5,2,1,~1,4];

>> M = length(h); n = 0:M-1;

>> [Hr,w,c,L] = Hr_Type3(h);

> ¢, L

a=0 10 -4 -2 2 -8

L=5

>> cmax = max{c)+1; cmin = min{c)-1;

>> subplot(2,2,1); stem(n,h); axis({-1 2*L+1 cmin cmax])
>> xlabel(’n’); ylabel(’h(n)’); title(’Impulse Response’)
>> subplot(2,2,3); stem(0:L,c); axis({~1 2%L+1 cmin cmax])
>> xlabel(’n’); ylabel(’c(n)’); title(’c(n) coefficients’)
>> subplot(2,2,2); plot(w/pi,Hr);grid

>> xlabel(’frequency in pi units’); ylabel(’Hr’)

>> title(’Type-1 Amplitude Response’)

>> subplot(2,2,4); pzplotz(h,1)

Chapter 7 8 FIR FILTER DESIGN

] EXAMPLE 7.7

Solution

The plots and the zero locations are shown in Figure 7.6. From these plots we
observe that H, (w) =0 at w = 0 and at w = 7. There is one zero-quadruplet
constellation, two zero pairs, and zeros at w = 0 and w = 7 as expected. a

Let h(n) = {-4,1,-1,-2,5,6,-6,-5,2,1,—1,4}. Determine the amplitude
response H,. (w)T and the locations of the zeros of H (z).

This is a Type-4 linear-phase FIR filter since M = 12 and since h(n) is anti-
symmetric with respect to a = (12— 1) /2 = 5.5. From (7.16) we have

d(1)=2n (R -1) =12, d@2)=2n(¥-2)=10, dB)=2r (¥ -3)=—4
d(4) =2h (% -4)=~2, d(5)=2n (2 -5)=2, d(6)=2hr(—6)=-8
Hence from (7.17) we obtain

H,(w) = dsinfw (1 - 1)] +d@sinfw (2~)] + a@)sinfu (3-)]

+d@sinfo (1~)] +d@sinfu (5 - 3)] + d@)sinfw (- 3)]
= 12sin(%) + lOSin(E) — 4sin(%) - 26in(%)

2 2 2 2
. 9w e
+2 sm(7) - 85m(—2—)
impulse Response Type—3 Amplitude Response
10 30
5
g
= 0
-5
0 5 10 0 05 1
n frequency in pi units
o(n) coefficients Pole-Zsro Plot
10 z—plane
o
1
5 2
Ty
g go
E P
-5 -1 5

[=]

5 10 -1 0 1
n

FIGURE 7.6 Plots in Example 7.6

Properties of Linear-phase FIR Filters 241

MaTLAB Script
>>h = (~4,1,-1,-2,5,6,-6,-5,2,1,-1,4];
>> M = length(h); n = 0:M-1;
>> (Hr,v,d,L] = Hr_Typed(h);

>> b,L
d =12 10 -4 -2 2 -8
L=6

>> dmax = max(d)+1; dmin = min(d)-1;

>> subplot(2,2,1); stem(n,h); axis([-1 2#L+1 dmin dmax])
>> xlabel(’n’); ylabel(’h(mn)’); title(’Impulse Response’)
>> subplot(2,2,3); stem(1:L,d); axis([-1 2#L+1 dmin dmax])
>> xlabel(’n’); ylabel(’d(n)’); title(’d(n) coefficients’)
>> subplot(2,2,2); plot(w/pi,Hr);grid

>> xlabel(’frequency in pi units’); ylabel(’Hr’)

>> title(’Type~1 Amplitude Response’)

>> subplot(2,2,4); pzplotz(h,1)

The plots and the zero locations are shown in Figure 7.7. From these plots we
observe that H. (w) is zero at w = 0. There is one zero-quadruplet constellation,
three zero pairs, and one zero at w = 0 as expected. [w]

impuise Response ” Type—4 Amplitude Response

hin)

(=] o
——0
|—o
o
re
9

Hr

_5
[} 5 10 19 05 1
n frequency In pi units
d{n) coefficients Pole-Zero Plot
r z-plane
10 o
1
2 (e}
: SR
z 2
3 0 — g0 K\ VJ
B
g o
£
~5 L IS

0 5 10 -1 0
n real axis

FIGURE 7.7 Plots in Ezample 7.7

1

242 Chapter 7 8 FIR FILTER DESIGN

WINDOW DESIGN TEC:NIQUES

The basic idea hehind the window design is to choose a proper ideal
frequency-selective filter (which always has a noncausal, infinite-duration
impulse response) and then truncate (or window) its impulse response
to obtain a linear-phase and causal FIR filter. Therefore the emphasis
in this method is on selecting an appropriate windowing function and
an appropriate ideal filter. We will denote an ideal frequency-selective
filter by Hi(e’), which has a unity magnitude gain and linear-phase
characteristics over its passband, and zero response over its stopband- An
ideal LPF of bandwidth w. < 7 is given by

1-e o |l <w,

7.18
0, we<jwl <7 (7.18)

Hy(e?) = {
where w, is also called the cutoff frequency, and « is called the sample
delay (note that from the DTFT properties, e~/ implies shift in the
positive n direction or delay). The impulse response of this filter is of
infinite duration and is given by

ha(n) = F [Ha(e)] = 517; / Ho@)edw (1.19)

B
27
Zwe
_ sinfw.(n —)]
T wn-a)

Note that hg(n) is symmetric with respect to «, a fact useful for linear-
phase FIR filters.

To obtain an FIR filter from A4(n), one has to truncate hq(n) on both
sides. To obtain a causal and linear-phase FIR filter h(n) of length M, we
must have

<n< - —-
h(n)={hd(n)’ OsnsM-1 and o=221

0, elsewhere 2 (720)

This operation is called “windowing.” In general, h(n) can be thought of
as being formed by the product of K4(n) and a window function w(n) as
follows:

h{n) = ha(n)w(n) (7.21)

Window Design Techniques 243

where

some symmetric function with respect to
w(n) = aover0<n<M~—~1

0, otherwise

Depending on how we define w(n) above, we obtain different window
designs. For example, in (7.20) above

(n) = 1, OSnSM—I_R)
win) = 0, otherwise M

which is the rectangular window defined earlier.

In the frequency domain the causal FIR filter response H{e/*) is given
by the periodic convolution of Hy(e?) and the window response W(e?*);
that is,

H(e?) = Hy(e™) @ W(e) = % / w (ejA) H, (ej(w—A)) d\

(71.22)
This is shown pictorially in Figure 7.8 for a typical window response, from
which we have the following observations:

1. Since the window w(n) has a finite length equal to M, its response
has a peaky main lobe whose width is proportional to 1/M, and has side

lobes of smaller heights.
Hd(eiﬁ‘)
jo
I Lw Hie™) Transition
—ar —we 0 @, L4 . bandwidth
s \
Max side-lobe Circular -7 —w, 0 @ ar @
height convolution - ¢
Minimum
) stopband
- T 0 “Mainiobe " attenuation

width

FIGURE 7.8 Windowing operation in the frequency domain

244 Chapter 7 ® FIR FILTER DESIGN

RECTANGULAR
WINDOW

2. The periodic convolution (7.22) produces a smeared version of the
ideal response Hy(e?).

3. The main lobe produces a transition band in H(e’*) whose width
is responsible for the transition width. This width is then proportional to
1/M. The wider the main lobe, the wider will be the transition width.

4. The side lobes produce ripples that have similar shapes in both
the passband and stopband.

Basic Window Design Idea For the given filter specifications choose
the filter length M and a window function w(n) for the narrowest main
lobe width and the smallest side lobe attenuation possible.

From observation 4 above we note that the passbandd:olerance 6; and
the stopband tolerance §; cannot be specified mdependently ‘We generally
take care of &, alone, which results in §; = §;. We now briefly describe
various well-known window functions. We will use the rectangular window
as an example to study their performances in the frequency domain.

This is the simplest window function but provides the worst performance
from the viewpoint of stopband attenuation. It was defined earlier by

1, 0<n<M-1
= -7 7.2
w(n) {0, otherwise (7.23)

Its frequency response function is

W(e) = [sin (%)} eI HE o W (w) = sin ()

sin (%) sin (%)

which is the amplitude response. From (7.22) the actual amplitude re-
sponse H, (w) is given by

e “ gin (—M—)

Wt
1 1

-7

d\, M>1 (1.24)

This implies that the running integral of the window amplitude response
(or accumulated amplitude response) is necessary in the accurate anal-
ysis of the transition bandwidth and the stopband attenuation. Figure
7.9 shows the rectangular window function w (n}, its amplitude response
W (w), the amplitude response in dB, and the accumulated amplitude
response (7.24) in dB. From the observation of plots in Figure 7.9 we can
make several observations.

Window Design Techniques 245

Rectanguiar Window : M=45 Ampiitude Response in d8

~

—-

w(n)

frequency in pi units frequency in pi units
FIGURE 7.9 Rectangular window: M = 45

1. The amplitude response W, () has the first zero at w = w;, where

wM o wy = I
7 S 7
Hence the width of the main lobe is 2w, = 4w /M. Therefore the approzi-
mate transition bandwidth is 47 /M.
2. The magnitude of the first side lobe (which is also the peak side
lobe magnitude) is approximately at w = 37/M and is given by
sin (%)

3
W, =— — L
‘ i (w M) sin (3T)
Comparing this with the main lobe amplitude, which is equal to M, the

peak side lobe magnitude is

2 9% =13dB
3r

:?AJ— for M > 1
3r

of the main lobe amplitude.

3. The accumulated amplitude response has the first side lobe mag-
nitude at 21 dB. This results in the minimum stopband attenuation of 21
dB irrespective of the window length M.

246

Chapter 7 ® FIR FILTER DESIGN

4. Using the minimum stopband attenuation, the transition band-
width can be accurately computed. It is shown in the accumulated
amplitude response plot in Figure 7.9. This computed ezact transition
bandwidth is

W —Wp = ——r

M
which is about half the approximate bandwidth of 47 /M.

Clearly, this is a simple window operation in the time domain and
an easy function to analyze in the frequency domain. However, there are
two main problems. First, the minimum stopband attenuation of 21 dB is
insufficient in practical applications. Second, the rectangular windowing
being a direct truncation of the infinite length hg (n), it suffers from the
Gibbs phenomenon. If we increase M, the width of each side lobe will
decrease, but the area under each lobe will remain constant. Therefore the
relative amplitudes of side lobes will remain constant, and the minimum
stopband attenuation will remain at 21 dB. This implies that all ripples
will bunch up near the band edges. It is shown in Figure 7.10.

Since the rectangular window is impractical in many applications, we
consider other window functions, many of which bear the names of the
people who first proposed them. Although these window functions can

M=7 M= 21
2 g
%1 . g1l
.4 &
o
[=%
£ H
3 » -
%0 s o
£ ° 1 =1 [1
frequency in pi units frequency in pi units
M=51 M =101
2
c
21 1 "
& &
3 8
£ £
£ £
‘8 T
%o 0 w
B, 0 1 EL 0 1
frequency In pi units frequency in pi units

FIGURE 7.10 Gibbs phenomenon

Window Design Techniques 247

BARTLETT
WINDOW

also be analyzed similar to the rectangular window, we present only their
results.

Since the Gibbs phenomenon results from the fact that the rectangular
window has a sudden transition from 0 to 1 (or 1 to 0), Bartlett suggested
a more gradual transition in the form of a triangular window, which is
given by

w(n) = 2n M-1 (7.25)

This window and its frequency-domain responses are shown in Figure
7.11.

Triangular Window : M=45 Ampiitude Response in dB

w(n)

: ~ e o N\Mnn

0
n frequency in pi units
Amplitude Response Accumutated Amplitude Response

T WaneGayam

1

frequency in pi units frequency in pi units
FIGURE 7.11 Bartlett (triangular) window: M = 45

248

Chapter T ® FIR FILTER DESIGN

HANNING
WINDOW

HAMMING
WINDOW

Hanning Window : M=45 Amplitude Response in dB

1 ..""M."".. ol
n". -
€ b 2
; m'ﬂn §)
0 l
1] 22 45 6-‘-)1 0 1
n frequency in pi units
Amplitude Response Accumulated Amplitude Response
: | Width=(6.2)"piM
K]
s H
g &
44 .
0 s :
60 .
-1 o 1 -1 1
frequency in pi units frequency in pi units

FIGURE 7.12 Hanning window: M = 45

This is a raised cosine window function given by

o) = {0.5 [1~cos(#m)], o<n<M-1 %)

0, otherwise

This window and its frequency-domain responses are shown in Figure
7.12.

This window is similar to the Hanning window except that it has a small
amount of discontinuity and is given by

— 271 -
wim) = | 054046005 (#5), osn<M-1 1.27)
otherwise

)

This window and its frequency-domain responses are shown in Figure
7.13.

Window Design Techniques

249

BLACKMAN
WINDOW

KAISER
WINDOW

Hamming Window : M=45 Amplitude Response in dB

Decibels

frequency in pi units
Amplitude Response Accumulated Amplitude Response
: - Width=(6.6)pVM

frequency in pi units frequency in pi units
FIGURE 7.13 Hamming window: M = 45

This window is also similar to the previous two but contains a second
harmonic term and is given by

) = 0.42 - 05cos(2m,)+008ms(1), 0<n<M-1
0, otherwise

(7.28)

This window and its frequency-domain responses are shown in Figure
7.14.

In Table 7.1 we provide a summary of window function characteristics
in terms of their transition widths (as a function of M) and their minimum
stopband attenuations in dB. Both the approximate as well as the exact
transition bandwidths are given. Note that the transition widths and the
stopband attenuations increase as we go down the table. The Hamming
window appears to be the best choice for many applications.

This is one of the most useful and optimum windows. It is optimum in
the sense of providing a large main lobe width for the given stopband
attenuation, which implies the sharpest transition width. The window

250

Chapter 7 ® FIR FILTER DESIGN

Blackman Window : M=45 Amplitude Response in dB

1 i)
? H. “0
ol ,.»*.'i'illlll
-22 o 2 -1 [+ 1
n trequency in pi units
Amplitude Response Accumuiated Amplitude Response
: ° » Width={1 1104
w
s 2
g 4
74
0 :
V] 2 45 -1 1
frequency in pi units frequency In pi units
FIGURE 7.14 Blackman window: M = 45
TABLE 7.1 S y of ly used window function characteristics
Window Transition Width Aw Min, Stopband
Name Approzimate Ezact Values Attenuation
i 18w
Recta.ngular }\—l —M— 21 dB
8 6.17m :

t: — —_— dB
Bartlett o N 25
Hanning %{"— %%;— 44 dB
Hamming %} 6—;[1[53 dB

12x 117
— —_— 74 dB
Blackman i o

Window Design Techniques 251

function is due to J. F. Kaiser and is given by

m \?
Iy|B 1—(1—M_1)

= < -

w(n) L , 0<n<M-1 (7.29)
where Ig -] is the modified zero-order Bessel function, and 3 is a parame-
ter that depends on M and that can be chosen to yield various transition
widths and near-optimum stopband attenuation. This window can pro-
vide different transition widths for the same M, which is something other
windows lack. For example,

o if 3 = 5.658, then the transition width is equal to 7.87/M, and the
minimum stopband attenuation is equal to 60 dB. This is shown in Figure
7.15.

e if 3 = 4.538, then the transition width is equal to 5.87/M, and the
minimum stopband attenuation is equal to 50 dB.

Hence the performance of this window is comparable to that of the Ham-
ming window. In addition, the Kaiser window provides flexible transi-
tion bandwidths. Due to the complexity involved in the Besse] functions,
the design equations for this window are not easy to derive. Fortunately,

Kaiser Window : M=45 Amplitude Response in dB
1 0 ;
£
=
\;, '§42
[
0
~22 0 22 -1 [
n frequency In pi units
Amplitude Response Accumulated Amplitude Response
: ol-- . Width=(7.8)"pi
@
g i
60t -
c Asdl
[} 22 45 -1 1
frequency in pi units frequency in pi units

FIGURE 7.15 Kaiser window: M =45, 8 = 5.658

252

Chapter 7 ® FIR FILTER DESIGN

DESIGN
EQUATIONS

MATLAB
IMPLEMEN-
TATION

Kaiser has developed empirical design equations, which we provide below
without proof.

Given wy, wy, Ry, and A,

Norm. transition width = Af 2 ‘-‘»’—2‘1—“’2
. Ag —7.95
Filter order M ~ T436A7 +1 (7.30)
0.1102 (A, — 8.7), A, >50

Parameter 8 = { 5 040 (A, —21)°4
+0.07886 (A, —21), 21 < A, <50

MATLAB provides several routines to implement window functions dis-
cussed in this section. A brief description of these routines is given below.

e w=boxcar(M) returns the M-point rectangular window function in
array w.

e w=triang(M) returns the M-point Bartlett (triangular) window
function in array w.

e w=hanning(M) returns the M-point Hanning window function in ar-
ray w.

e w=hamming(M) returns the M-point Hamming window function in
array w.

e w=blackman(M) returns the M-point Blackman window function in
array w.

o w=kaiser(M,beta) returns the beta-valued M-point rectangular
window function in array w.

Using these routines, we can use MATLAB to design FIR filters based
on the window technique, which also requires an ideal lowpass impulse
response hg{n). Therefore it is convenient to have a simple routine that
creates hq(n) as shown below. ‘

function hd = ideal lp(wc,M);
% Ideal LowPass filter computation

% {kd] = ideal_ lp(wc,M)

% hd = ideal impulse response between 0 to M-1
% wc = cutoff frequency in radians

% M = length of the ideal filter

Window Design Techniques 253

alpha = (M-1)/2;

n = [0:1:(¥-1)];

m = n -~ alpha + eps; % add smallest number to avoid divide by zero
hd = sin(vewm) ./ (pism);

DESIGN
EXAMPLES

[w] EXAMPLE 7.8

Solution

In the Signal Processing toolbox MATLAB provides a routine called fir1,
which designs FIR filters using windows. However, this routine is not
available in the Student Edition. To display the frequency-domain plots
of digital filters, MATLAB provides the freqz routine, which we used in
earlier chapters. Using this routine, we have developed a modified version,
called freqz.m, which returns the magnitude response in absolute as well
as in relative dB scale, the phase response, and the group delay response.
We will need the group delay response in the next chapter.

function [db,mag,pha,grd,w] = freqz_m(b,a);
% Modified version of freqz subroutine

%
% [db,mag,pha,grd,w] = freqz m(b,a);

% db = Relative magnitude in dB computed over O to pi radians

% mag = absolute magnitude gomputed over O to pi radians
% pha = Phase response in radians over 0 to pi radians
% grd = Group delay over O to pi radiams

% w = B0} frequency samples between 0 to pi radians

% b = pumerator polynomial of H(z) (for FIR: b=h)

% 2 = denominator polynomial of H(z) (for FIR: a=[11)

%
(H,w] = freqz(b,a,1000, 'whole’);
H= (H(1:1:801))°; w = (w(1:1:501))7;
mag = abs(H);
db = 20%1og10((mag+eps) /max(mag));
pha = angle(H);
grd = grpdelay(b,a,w);

We now provide several examples of FIR filter design using window tech-
niques and MATLAB routines.
Design a digital FIR lowpass filter with the following specifications:
wp =021, R,=025dB
w, = 0.37, A, =50dB
Choose an appropriate window function from Table 7.1. Determine the impulse

response and provide a plot of the frequency response of the designed filter.

Both the Hamming and Blackman windows can provide attenuation of more
than 50 dB. Let us choose the Hamming window, which provides the smaller

254

Chapter 7 ® FIR FILTER DESIGN

transition band and hence has the smaller order. Although we do not use the
passband ripple value of R, = 0.25 dB in the design, we will have to check
the actual ripple from the design and verify that it is indeed within the given
tolerance. The design steps are given in the following MATLAB script.

>> wp = 0.2%pi; ws = 0.3#pi;
>> tr_width = ws - wp;
>> M = ceil(6.6+pi/tr width) + 1

M = 67

> n=[0:1:M-1];

>> we = (vws+wp)/2, % Ideal LPF cutoff frequency

>> hd = ideal_lp(wc,M);

>> w_ham = (hamming(M))’;

>> h = hd .* w_ham;

>> [db,mag,pha,grd,w] = freqz_m(h, [1]);

>> delta_w = 2%pi/1000;

>> Rp = -(min(db(1:1:vp/delta_w+1))); % Actual Passband Ripple

Rp = 0.0394

>> As = -round(max(db(ws/delta_w+1:1:501))) % Min Stopband attenuation

As = 52
% plots

>> subplot(1,1,1)

>> subplot(2,2,1); stem{(n,hd); title(’Ideal Impulse Response’)

>> axis([0 M-1 -0.1 0.3])); xlabel(’n’); ylabel(’hd(n)’)

>> subplot(2,2,2); stem(n,w_ham);title(’Hamming Window’)

>> axis([0 M-1 0 1.1]); xlabel(’n’); ylabel(’w(n)?)

>> subplot(2,2,3); stem(n,h);title(’Actual Impulse Response’)

>> axis({0 M-1 -0.1 0.3]); xlabel(’n’); ylabel(’h(n)’)

>> subplot{2,2,4); plot(w/pi,db);title(’Magnitude Response in dB’);grid

>> axis([0 1 -100 10]); xlabel(’frequency in pi units’); ylabel{’Decibels’)

W] EXAMPLE 7.9

Solution

Note that the filter length is M = 67, the actual stopband attenuation is 52
dB, and the actual passband ripple is 0.0394 dB. Clearly, the passband ripple is
satisfied by this design. This practice of verifying the passband ripple is strongly
recommended. The time- and the frequency-domain plots are shown in Figure
7.16. [m]

For the design specifications given in Example 7.8, choose the Kaiser window
and design the necessary lowpass filter.

The design steps are given in the following MATLAB script.

> wp = 0.2%pi; ws = 0.3*%pi; As = 50;
>> tr_width = ws - wp;
>> M = ceil((As-7.95)/(14.36%tr_width/(2+pi))+1) + 1

M =61

>> n=[0:1:M-13;
>> beta = 0.1102+(As-8.7)

Window Design Techniques 255

Ideal Impulse Response Hamming Window

hd(n)

Magnitude Response in dB

hn)

FIGURE 7.16 Lowpass filter plots for Ezample 7.8

beta = 4.5513

>> we = (ws+wp)/2;

>> bhd = ideal_lp{wc,M);

>> w_kai = (kaiser(M,beta))’;

>> h = hd .* w kai;

>> ({db,mag,pha,grd,w] = freqz_m(, [1]);

>> delta_w = 2%pi/1000;

>> A8 = -round(max(db(ws/delta_v+1:1:501))) % Min Stopband Attenuation
As = 52

% Plots

>> subplot(1,1,1)

>> subplot(2,2,1); stem(n,hd); title(’Ideal Impulse Response’)

>> axis([0 M-1 -0.1 0.3)); xlabel(’n’); ylabel(’hd(n)’)

>> subplot(2,2,2); stem(n,w_kai);title(’Kaiser Window’)

>> axis([0 M-1 0 1.1]); xlabel(’n’); ylabel(’w(n)’)

>> subplot(2,2,3); stem(n,h);title(’Actual Impulse Response’)

>> axis([0 M-1 -0.1 0.3]); xlabel(’n’); ylabel(*h(n)’)

>> subplot(2,2,4);plot(w/pi,db);title(’Magnitude Response in dB’);grid
>> axis([0 1 -100 10]); xlabel(’frequency in pi units’); ylabel(’Decibels’)

Note that the Kaiser window parameters are M = 61 and 8 = 4.5513 and that
the actual stopband attenuation is 52 dB. The time- and the frequency-domain
plots are shown in Figure 7.17. 0

256 Chapter 7 @ FIR FILTER DESIGN

Kaiser Window

&
o

o)
Gl
n

hdi{n)

04
0.2
1 il i
-0 [+ 20 40 60 00 20 40 60
n n
Magnitude Response in dB
L]
£ 2
£ 8 50"
a
0 0.203 1

frequency in pi units
FIGURE 7.17 Lowpass filter plots for Ezample 7.9

O EXAMPLET.10 Let us design the following digital bandpass filter.

lower stopband edge: wy, =027, A, =60dB
lower passband edge: wi, =0.357r, R,=1dB
upper passband edge: w2 =065r R,=1dB
upper stopband edge: w2, = 0.8% A, =60 dB

These quantities are shown in Figure 7.18.

0 035 035 065 0.8

e

Decibels

FIGURE 7.18 Bandpass filter specifications in Example 7.10

Window Design Techniques 257

Solution There are two transition bands, namely, Aw; 2 wip —wy, and Aws £ Wy — Wap.
These two bandwidths must be the same in the window design; that is, there is
no independent control over Aw; and Aws. Hence Aw; = Aw; = Aw. For this
design we can use either the Kaiser window or the Blackman window. Let us
use the Blackman Window. We will also need the ideal bandpass filter impulse
response hg (n). Note that this impulse response can be obtained from two ideal
lowpass magnitude responses, provided they have the same phase response.
This is shown in Figure 7.19. Therefore the MATLAB routine ideal-1lp(wc,M)
is sufficient to determine the impulse response of an ideal bandpass filter. The
design steps are given in the following MATLAB script.

>> wsl = 0.2#pi; wpl = 0.35%pi;
>> wp2 = 0.65*pi; ws2 = 0.8%pi;
>> As = 60;
>> tr_width = min{(wpi-wsi), (ws2-wp2));
>> M = ceil(11%pi/tr_width) + 1
M=75
>> p={0:1:M-1);
>> wel = (wsl+wpl)/2; we2 = (wp2+ws2)/2;
>> hd = ideal_lp(wc2,M) - ideal_ lp{wci,M);
>> w_bla = (blackman(M))’;
>> h = hd .* w bla;
>> [db,mag,pha,grd,w) = freqz m(h,[1]);
>> delta_w = 2*pi/1000;
>> Rp = -min(db(wpl/delta_w+1:1:wp2/delta_w)) % Actua; Passband Ripple
Rp = 0.0030
>> As = ~round (max(db(ws2/delta_w+1:1:501))) % Min Stopband Attenuation
As =75
%Plots
>> subplot(2,2,1); stem(n,hd); title(’Ideal Impulse Response’)
>> axis([0 M-1 -0.4 0.5]); xlabel(’n’); ylabel(’hd(n)’)
>> subplot(2,2,2); stem(n,w_bla);title(’Blackman Window’)
>> axis([0 M-1 0 1.1]); xlabel(’n’); ylabel(’w(n)?’)
m
0 Wy +
T
Y @eq @e2
m
0 wey
FIGURE 7.19 Ideal bandpass filter from two lowpass filters
258 Chapter 7 ® FIR FILTER DESIGN

>>
>>
>>
>
>>

O EXAMPLET7.11

subplot(2,2,3); stem(n,h);title(’Actual Impulse Response’)
axis([0 M-1 -0.4 0.5)); xlabel(’n’); ylabel(’h(n)’)
subplot(2,2,4) ;plot(w/pi,db);axis([0 1 -150 10));
title(’Magnitude Response in dB’);grid;

xlabel{’frequency in pi units’); ylabel(’Decibels’)

Note that the Blackman window length is Af = 61 and that the actual stopband
attenuation is 75 dB. The time- and the frequency-domain plots are shown in
Figure 7.20. [w]

The frequency response of an ideal bandstop filter is given by

1, 0< wl<n/3
H. (¢“)=¢ 0, n/3<|w|<2n/3
1, 2r/3<jw| <

Using a Kaiser window, design a bandstop filter of length 45 with stopband
attenuation of 60 dB.

Note that in these design specifications, the transition bandwidth is not given.
1t will be determined by the length M = 45 and the parameter 3 of the Kaiser

0 02035 0.65 0.8 1
frequency in pi units

FIGURE 7.20 Bandpass filter plots in Ezample 7.10

Window Design Techniques 259

window. From the design equations (7.30) we can determine § from A,; that is,
B =0.1102 x (4, —8.7)

The ideal bandstop impulse response can also be determined from the ideal
lowpass impulse response using a method similar to Figure 7.19. We can now
implement the Kaiser window design and check for the minimum stopband
attenuation. This is shown in the following MATLAB script.

>> M = 45; As = 60; n=[0:1:M~-1];

>> beta = 0.1102%(As-8.7)

beta = 5.6533

> w_kai = (kaiser(M,beta))’;

>> wcl = pi/3; we2 = 2#pi/3;

>> hd = ideal_lp(wci,M) + ideal lp(pi,M) - ideal_lp(wc2,M);
>> h = hd .* w_kai;

>> [db,mag,pha,grd,w] = freqz_m(h,[1});

>> subplot(i,1,1);

>> subplot(2,2,1); stem(n,hd); title(’Ideal Impulse Response’)
>> axis([-1 M -0.2 0.8]); xlabel(’n’); ylabel(’hd(n)’)

>> subplot(2,2,2); stem(n,w_kai);title(’Kaiser Window’)

>> axis([-1 M 0 1.1]); xlabel(’n’); ylabel(’w(n)’)

>> subplot(2,2,3); stem(n,b);title(’Actual Impulse Response’)
>> axis([~1 M -0.2 0.8]); xlabel(’n’); ylabel(’h(m)’)

>> subplot(2,2,4);plot(w/pi,db); axis([0 1 -80 10]);

>> title(’Magnitude Response in dB’);grid;

>> xlabel(’frequency in pi units’); ylabel(’Decibels’)

The B parameter is equal to 5.6533, and from the magnitude plot in Figure
7.21 we observe that the minimum stopband attenuation is smaller than 60
dB. Clearly, we have to increase § to increase the attenuation to 60 dB. The
required value was found to be § = 5.9533.

Magnitude Response in dB

Decibels

0 13 2/3 1
frequency in pi units

FIGURE 7.21 Bandstop filter magnitude response in Ezample 7.11 for B =
5.6533

260

Chapter 7 B FIR FILTER DESIGN

Administrator

> M = 45; As = 60; n=[0:1:M-1];

>> beta = 0.1102%(As-8.7)+0.3

beta = 5.9533

> w_kai = (kaiser(M,beta))’;

>> wel = pi/3; wc2 = 2%pi/3;

»>> hd = ideal_lp(wcl,M) + ideal lp(pi,M) - ideal lp(wc2,M);
> h = hd .* w kai;

>> [db,mag,pha,grd,w] = freqz_m(h,[1]);

>> subplot(l,1,1);

>> subplot(2,2,1); stem(n,hd); title(’Ideal Impulse Response’)
>> gxig({-1 M -0.2 0.8]); xlabel{’n’); ylabel(’hd(n)’)

>> subplot(2,2,2); stem(n,v_kai);title(’Kaiser Window’)

>> axis{[~1 M 0 1.1]); xlabel(’n’); ylabel(’w(n)’)

>> subplot(2,2,3); stem(nm,h);title(’Actual Impulse Response’)
>> axis([~1 M -0.2 0.8]); xlabel(’n’); ylabel(’h(an)’)

>> gubplot(2,2,4);plot{u/pi,ddb); axis([0 1 -80 10]);

>> title(’Magnitude Response in dB’);grid;

>> xlabel(’frequency in pi units’); ylabel(’Decibels’)

The time- and the frequency-domain plots are shown in Figure 7.22, in which
the designed filter satisfies the necessary requirements. w}

ideal Impuise Response Kaiser Window

R
5
)

h
In
g

Q o)

0.8 o
o6
04
ol
[} 10 20 30 40
n
Actual Impuise Response Magnitude Response in dB
08 r
]
0.6
04 2 :
z 2 :
= 02 T T &
0 .v_l L et 60
-02 :
1] 10 20 30 40 0 13 2/3 1
n frequency in pi units

FIGURE 7.22 Bandstop filter plots in Example 7.11: § = 5.9533

Window Design Techniques 261

Administrator

1 EXAMPLE 7.12 The frequency response of an ideal digital differentiator is given by

>>
>>
>>
>>
>
>>

iy _ jw, 0<wsT
Hd(e])~{—jw, —T<w<O (7.31)

Using a Hamming window of length 21, design a digital FIR differentiator. Plot
the time- and the frequency-domain responses.

The ideal impulse response of a digital differentiator with linear phase is given
by

ha(r) =7 [Ha (&)] = i [B () e

0 ~
_ _1_) —jaw _jwn _1_ - —jaw jun
—2‘"/(jw)e el dw+2ﬂ_/(_1u1)e " dw
—_ o

cos7 (n—a)
=¢ (r—qa)

.

, n#Fa

0, n=o

The above impulse response can be implemented in MATLAB along with the
Hamming window to design the required differentiator. Note that if M is an
even number, then o = (M — 1) /2 is not an integer and hg(n) will be zero
for all n. Hence M must be an odd number, and this will be a Type-3 linear-
phase FIR filter. However, the filter will not be a full-band differentiator since
H, (=) = 0 for Type-3 filters.

M = 21; alpha = (M-1)/2;

n = 0:M-1;

hd =~ (cos(pi*(n-alpha)))./(n~alpha); hd(alpha+1)=0;
v_.han = (hamming(M))’;

h = hd .* w_ham;

(Er.v,P,L] = Hr_Type3(h);

% plots

>>
>>
>>
>>
>>
>>
>>
>>
>

subplot(1,1,1);

subplot(2,2,1); stem(n,hd); title(’Ideal Impulse Response’)

axis([-1 M -1.2 1.2]); xlabel(’n’); ylabel(’hd{n)’)

subplot(2,2,2); stem(n,w_bam);title(’Hamming Window’)

axis({-1 M 0 1.2]); xlabel(’n’); ylabel(’w{n)’)

subplot(2,2,3); stem(n,h);title(’Actual Impulse Response’)

axis([-1 M -1.2 1.23); xlabel(’n’); ylabel(’h(n)’)

subplot(2,2,4) ;plot(w/pi,Hr/pi); title(’Amplitude Response’);grid;
xlabel(’frequency in pi units’); ylabel(’slope in pi units’); axis({0 1 0 1]);

The plots are shown in Figure 7.23. a

262

Chapter 7 B FIR FILTER DESIGN

0O EXAMPLE 7.13

Solution

Ideal Impulse Response Hamming Window

1
1
0.5 0.8
g €
] 4] ;0.6
-05 04 T T
-t Lol fe
0 5 10 15 20] 5 10 15 20
n n
Actual Impulse Response
1
1
0.8}
0.5 %
- =08
£° 2o4
204
Y £
0.21
-1 :
0
0 5 10 15 20 0 02 04 06 08 1

n frequency in pf units
FIGURE 7.23 FIR differentiator design in Example 7.12

Design a length-25 digital Hilbert transformer using a Hanning window.

The ideal frequency response of a linear-phase Hilbert transformer is given by

Ha () = {

After inverse transformation the ideal impulse response is given by

~jeT I o<w<

) 7.32
+je7 7, —m<w<0 (7.32)

2sin’n(n—a)/2
ha(ny=¢ 7 n-o

0, n=aq

n#ao

which can be easily implemented in MATLAB. Note that since M = 25, the
designed filter is of Type-3.

>> M = 25; alpha = (M-1)/2;

>>
>>
>>
>>
>>

n = 0:M-1;

hd = (2/pi)*((sin((pi/2)*(n-alpha)).~2)./(n-alpha)); hd(alpha+1)=0;
w_han = (hanning(M))’;

h = hd .* w_han;

[(Hx,w,P,L] = Hr_Type3(h);

% plots
>> subplot(1,1,1);

Window Design Techniques 263

>
>>
>
>>
>>
>
>
>>
>>
>>

v

v

Ideal impulse Response Hanning Window

1
1
05 T 08
€ D0 <
g 0joreus iw Q $086
05 04 ﬂ I
0.2 T
- o il T fea
0 5 10 15 20 4] 5 10 15 20
n n
Actual impuise Response Amplitude Response
05 T
c G, A
T o oporele! 5ol .
-0.5]
-1) /.
0 5 10 15 20 -1 [} 1
n frequency in pi units

FIGURE 7.24 FIR Hilbert transformer design in Ezample 7.18

subplot(2,2,1); stem(n,hd); title(’Ideal Impulse Response’)

axis([-1 M -1.2 1.2]); xlabel(’n’); ylabel(’hd(n)’)

subplot(2,2,2); stem(n,w_han);title(’Hanning Window’)

axis([-1 ¥ 0 1.2]); xlabel(’n’); ylabel(’w(n)’)

subplot(2,2,3); stem(n,h);title(’Actual Impulse Response’)

axis([-1 M -1.2 1.2]); xlabel(’n’); ylabel(’h(n)?*)

w=w; Hr = Hr’;

w ~ [-fliplr(w), w(2:601)]; Hr = [~fliplr(Hr), Hr(2:501)1;
subplot(2,2,4);plot (w/pi,Hr); title(’Amplitude Response’);grid;
xlabel(’frequency in pi units’); ylabel(’Hr’); axis([-1 1 -1.1 1.1]);

The plots are shown in Figure 7.24. Observe that the amplitude response is
plotted over — 7 < w < 7. u]

FREQUENCY SAMPLIN&DESIGN TECHNIQUES

In this design approach we use the fact that the system function H (z)
can be obtained from the samples H (k) of the frequency response H(e?*).
Furthermore, this design technique fits nicely with the frequency sampling
structure that we discussed in Chapter 6. Let h(n) be the impulse response
of an M-point FIR filter, H(k) be its M-point DFT, and H(z) be its

264

Chapter 7 W FIR FILTER DESIGN

Administrator

system function. Then from (6.12) we have

M-1 oy M—1
= R H(k)
H(z)= ,;, h(n) ™" = —- ge 1= 2-1gi2rk/M (1.33)
and
jw 1- e-jwM M-1 H(k)
H(e") = —5; 2 T suer kM (1.34)
with

H (k) = H (/M) = {5«8\4 I zz

For a linear-phase FIR filter we have
h(n)=xh(M -1—-n), n=0,1,...,M-1

where the positive sign is for the Type-1 and Type-2 linear-phase filters,
while the negative sign is for the Type-3 and Type-4 linear-phase filters.
Then H (k) is given by

H(k)=H, (%’%‘) SLHE) ' (1.35)
where
GO M
and
() (5) Eoon
H= +(—A%_'~1)-2-A§(M—k), k=[£{—1J+1,...,M—1 (et &8
(1.37)
or
(#)-(47) (57), w057
LH (k) = —(ﬂ:g)+(¥—2_—l)2ﬁ"(M—k), , (Type-3 & 4)
k=[£2_—1-J+1,...,M—-1 (1.38)

Freq y Sampling Design Techniq 265

Administrator

Finally, we have
h(n) = IDFT [H(k)] (7.39)

Note that several textbooks (e.g., [19, 20, 16]) provide explicit formu-
las to compute h(n), given H(k). We will use MATLAB's ifft routine to
compute h(n) from (7.39).

Basic Idea Given the ideal lowpass filter Hy(e?), choose the filter
length M and then sample Hy(e/*) at M equispaced frequencies between
0 and 27. The actual response H () is the interpolation of the samples
H(k) given by (7.34). This is shown in Figure 7.25. The impulse response
is given by (7.39). Similar steps apply to other frequency-selective filters.
Furthermore, this idea can also be extended for approximating arbitrary
frequency-domain specifications.
From Figure 7.25 we observe the following:

1. The approximation error—that is, the difference between the ideal
and the actual response—is zero at the sampled frequencies.

2. The approximation error at all other frequencies depends on the
shape of the ideal response; that is, the sharper the ideal response, the
larger the approximation error.

3. The error is larger near the band edges and smaller within the
band.

There are two design approaches. In the first approach we use the
basic idea literally and provide no constraints on the approximation error;
that is, we accept whatever error we get from the design. This approach is
called a naive design method. In the second approach we try to minimize
error in the stopband by varying values of the transition band samples.
It results in a much better design called an optimum design method.

Hylei) Hiel)
Ideal Response and Frequency Samples and
1 Frequency Samples 1 Approximated Response
(3
] [}
] 1
I 1
]]
1 [}
oLl gy v ol 11 1 [N R B I
012 3465678 9107 * 01234756 7 8 9107 °
FIGURE 7.25 Pictorial description of frequency sampling technique
266

Chapter 7 ®m FIR FILTER DESIGN

NAIVE DESIGN In this method we set H(k) = Hy(e/?™*/M), k=0,...,M —1 and use
METHOD (7.35) through (7.39) to obtain the impulse response h{n).

[m]

EXAMPLE 7.14 Consider the lowpass filter specifications from Example 7.8.

wp =027, R, =0.25dB
ws, =031, A,=50dB

Design an FIR filter using the frequency sampling approach.

Solution Let us choose M = 20 so that we have a frequency sample at wp, that is, at

>>
>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

k=2

wp =027 = ;—32

and the next sample at w,, that is, at k = 3:
27
=3
20

Thus we have 3 samples in the passband [0 < w < wp] and 7 samples in the
stopband {w, < w < x]. From (7.36) we have

Ws = 037 =

H, (k) =[1,1,1,0,...,0,1,1]
N’

15 zeros

Since M = 20, o = 251 = 9.5 and since this is a Type-2 linear-phase filter,
from (7.37) we have

—9.5%-1(: =~0.957k, 0<k<9
LH (k)= 20
+0.957 (20 — k) , 10<k<19

Now from (7.35) we assemble H (k) and from (7.39) determine the impuise
response h (n). The MATLAB script follows:

M = 20; alpha = (M-1)/2; 1 = 0:M-1; wl = (2xpi/M)*1;
Hrs = [1,1,1,zeros(1,15),1,1); %Ideal Amp Res sampled
Hdr = [1,1,0,0]; wdl = [0,0.25,0.25,1); %Ideal Amp Res for plotting
k1 = 0:floor((M-1)/2); k2 = floor((M-1)/2)+1:M-1;

angH = [-alpha*(2+pi)/M#kl, alpha*(2+pi)/M*(M-k2)]1;

H = Hrs.xexp(j*angH);

h = real (ifft(H,M));

{db,mag,pha,grd,w] = freqz_m(h,1);

[Hr,ww,a,L] = Hr_Type2(h);

subplot(1,1,1)

subplot(2,2,1) ;plot(wl(1:11)/pi,Hrs(1:11), 0’ ,wdl,Hdr);
axis([0,1,-0.1,1.1])); title(’Frequency Samples: M=20’)
xlabel(’frequency in pi units’); ylabel(’Hr(k)’)

=
¥

iq 267

y Sampling Design Tect

q

>> subplot(2,2,2); stem(l,h); axis((-1,M,-0.1,0.3])

>> title(’Impulse Response’); xlabel(’n’); ylabel(’h(n)’);

>> subplot(2,2,3); plot(ww/pi,Hr,wl(1:11)/pi,Hrs(1:11),%07);

>> axis([0,1,-0.2,1.2]); title(’Amplitude Response’)

>> xlabel (’ frequency in pi units’); ylabel(’Hr(w)’)

>> subplot(2,2,4);plot(w/pi,db); axis([0,1,-60,10]); grid

>> title(’Magnitude Response’); xlabel(’frequency in pi units’); ylabel(’Decibels’);

OPTIMUM
DESIGN
METHOD

The time- and the frequency-domain plots are shown in Figure 7.26. Observe
that the minimum stopband attenuation is about 16 dB, which is clearly unac-
ceptable. If we increase M, then there will be samples in the transition band,
for which we do not precisely know the frequency response. Therefore the naive
design method is seldom used in practice. m]

To obtain more attenuation, we will have to increase M and make the
transition band samples free samples—that is, we yvary their values to
obtain the largest attenuation for the given M and the transition width.
This problem is known as an optimization problem, and it is solved using
linear programming techniques. We demonstrate the effect of transition
band sample variation on the design using the following example.

Frequency Samples: M=20 lmpulse Response

02

Hr(k)
hin}

01

—a

OL :{\rw—v—() -
~0.1
0 0203 1 0 5 10 15 20
trequency in pi units n
Amplitude Response Magnitude Response

0 0203 1 o 0203] R
frequency in pi units frequency in pi units

FIGURE 7.26 Naive frequency sampling design method

268

Chapter 7 ® FIR FILTER DESIGN

O EXAMPLE 7.15

Using the optimum design method, design a better lowpass filter of Example
7.14.

Let us choose M = 40 so that we have one sample in the transition band

027 < w < 0.37. Since w; = 27 /40, the transition band samples are at k = 5
and at k = 40 - 5 = 35. Let us denote the value of these samples by T,
0 < T1 < 1; then the sampled amplitude response is

H, (k) =1,1,1,1,1,73,0,...,0,T1,1,1,1,1]
S —t

29 zeros
Since o = 4971 = 19.5, the samples of the phase response are
—19.5E = -0.9757k, 0<k<19
LH(F) = 0

+0.9757 (40 — k), 20<k<39

Now we can vary T to get the best minimum stopband attenuation. This will
result in the widening of the transition width. We first see what happens when
Ty =0.5.

% Ti = 0.5

>> ¥ = 40; alpha = (M-1)/2;

>> Hrs = [ones(1,5),0.5,zeros(1,29),0.5,0nes(1,4)];
>> k1 = O:floor((M-1)/2); k2 = floor((M-1)/2)+1:M-1;
>> angH = [-alpha#*(2#+pi)/M+k1, alphas(2#pi)/M*(M-k2)];
>> B = Hrs.*exp(j*angH);

>> h = real (ifft(H,M));

From the plots of this design in Figure 7.27 we observe that the minimum
stopband attenuation is now 30 dB, which is better than the naive design at-
tenuation but is still not at the acceptable level of 50 dB. The best value for T}
‘was obtained by varying it manually (although more efficient linear program-
ming techniques are available, these were not used in this case), and the near
optimum solution was found at Ty = 0.39.

% TL = 0.39

>> M = 40; alpha = (M-1)/2;

>> Hrs = {ones(1,5),0.39,zeros(1,29),0.39,0ones(1,4)];
>> ki = 0:floor((M-1)/2); k2 = floor({M-1)/2)+1:M-1;
>> angH = [-alpha#(2%pi)/M+kl, alpha*(2+pi)/M*(M-k2)];
>> H = Hrs.*exp(j*angH);

>> h = real (ifft(H,M));

From the plots in Figure 7.28 we observe that the optimum stopband attenu-
ation is 43 dB. It is obvious that to further increase the attenuation, we will
have to vary more than one sample in the transition band. m}

Frequency Sampling Design Techniq 269

Frequency Samples: M=40,T1=0.5 Impulse Response

=
= 0.5 F
[
0 0203 1
frequency in pi units
Amplitude Response Magnitude Response

0 0203 1 0 0203 1
frequency in pi units frequency in pi units

FIGURE 7.27 Optimum frequency design method: Ty = 0.5

Frequency Samples: M=40,T1=0.39

=
b4
Toag
0 - lLoeon &
0 0.20.3 1
frequency in pi units
Amplitude Response
1 " PN 0 ,,,,,,,
2
3 g4
Lo 8
0
0 0203 1 o 0203 1
frequency in pi units frequency in pi units

FIGURE 7.28 Optimum freguency design method: Ty = 0.39

270 Chapter 7 ® FIR FILTER DESIGN

Clearly, this method is superior in that by varying one sample we
can get a much better design. In practice the transition bandwidth is
generally small, containing either one or two samples. Hence we need to
optimize at most two samples to obtain the largest minimum stopband
attenuation. This is also equivalent to minimizing the maximum side lobe
magnitudes in the absolute sense. Hence this optimization problem is also
called a minimaz problem. This problem is solved by Rabiner et al. [20],
and the solution is available in the form of tables of transition values.
A selected number of tables are also available in {19, Appendix Bj. This
problem can also be solved in MATLAB, but it would require the use of
the Optimization toolbox. We will consider a more general version of this
problem in the next section. We now illustrate the use of these tables in
the following examples.

O EXAMPLE 7.16 Let us revisit our lowpass filter design in Example 7.14. We will solve it using two
samples in the transition band so that we can get a better stopband attenuation.

Solution Let us choose M = 60 so that there are two samples in the transition band. Let
the values of these transition band samples be T and T2. Then H, (w) is given
by

He) =L Lot 0Tl b

7 ones 43 zeros 6 ones

From tables in {19, Appendix B] 73 = 0.5925 and T> = 0.1099. Using these
values, we use MATLAB to compute h (n).

>> M = 60; alpha = (M-1)/2; 1 = 0:M-1; wl = (2%pi/M)*1;

>> Hrs = [ones(1,7),0.5925,0.1099, zeros(1,43),0.1099,0.5925,0nes(1,6)];
>> Hdar = [1,1,0,0}; wdl = [0,0.2;0.3,1];

>> ki = 0:floor{((M-1)/2); k2 = floor((M-1)/2)+1:M-1;

>> angH = [-alphax(2#pi)/Mxk1, alphax(2*pi)/Mx(M-k2)];

>> H = Hrs.*exp{j*angH);

>> h = real (ifft(H,M));

>> [db,mag,pha,grd,w] = freqz_m(h,1);

>> [Hr,ww,a,L] = Hr_Type2(h);

The time- and the frequency-domain plots are shown in Figure 7.29. The min-
imum stopband attenuation is now at 63 dB, which is acceptable. [m]

00 EXAMPLE 717 Design the bandpass filter of Example 7.10 using the frequency sampling tech-
nique. The design specifications are these:
lower stopband edge: wys =027, A, =60dB
lower passband edge: wy, = 0.357r, R, =1dB
upper passband edge: wqp = 0.651 Rp=1dB
upper stopband edge: wss = 0.87 A, = 60 dB

Lowpass: M=60,T1=0.59, T2=0.109

[} 0203 1
frequency in pi units
Amplitude Response

0 0203 1 0 0203 1
frequency in pi units frequency in pl units

FIGURE 7.29 Lowpass filter design plots in Example 7.16

Solution Let us choose M = 40 so that we have two samples in the transition band.
Let the frequency samples in the lower transition band be 71 and 72. Then the
samples of the amplitude response are

H, (w) = ‘0,...,0,T1,T2,1,...,1,T2,T1,0,...,0,T1,T2,l,...,1,T2,T1,0,...,0]

5 7 9 7 4

The optimum values of T} and T, for M = 40 and seven samples in the passband
{19, Appendix B) are

T = 0.109021, T; = 0.59417456

The MATLAB script is

>> M = 40; alpha = (M-1)/2; 1 = 0:M-1; wl = (2%pi/M)*1;

>> T1 = 0.109021; T2 = 0.59417456;

>> Hrs = (zeros(1,5),T1,T2,ones(1,7),T2,T1,zeros(1,9),T1,T2,0nes(1,7),T2,T1,zaros(1,4)];
>> Hdr = [0,0,1,1,0,0]; wdl = [0,0.2,0.35,0.65,0.8,1];

>> k1 = O:floor((M-1)/2); k2 = £floor((M-1)/2)+1:M-1;

>> angH = [-alpha*(2#pi)/M+k1, alpha*(2+pi)/M«(M-k2)];

>> H = Hxs.*exp(j*angH);

272 Chapter 7 ® FIR FILTER DESIGN

>> h = real (ifft(H,M));

>> [db,mag,pha,grd,w] = freqz_m(h,1);
>> [Hr,ww,a,L] = Hr_Type2(h);

The plots in Figure 7.30 show an acceptable bandpass filter design.

0O EXAMPLE 7.18

Solution

Design the following highpass filter:

Stopband edge:
Passband edge:

the a.mplitude response are
H, (k) = 0,...,0,71,Ts},...,1,T,T1,0,...,0
() L\,—/ Nt s’ ? \q,—/]

while the phase response samples are

Bandpass: M=40,T1=0.5941, T2=0.109

< 0591
=4
x :
0.100} - Ot o\
a D . 3
"] 0.2 0.35 0.65 08 1
frequency in pt units

11

33-12n

P Bl Yo

2 33

CHE =4 o

+55m(33-F),

Amplitude Response

0.2 035
frequency in pi units

0.65 0.8 1

wp =0.87

8

32
33

0.4

02

h(n)

-0.2

04
0

w,=06r A,=50dB

R,=14dB

Recall that for a highpass filter A must be odd (or Type-1 filter). Hence we
will choose M = 33 to get two samples in the transition band. With this choice
of M it is not possible to have frequency samples at w, and w,. The samples of

10

wk, 0<k<16

0loxeen

02 035 065 0.8
frequency in pi units

FIGURE 7.30 Bandpass filter design plots in Example 7.17

Frequency Sampling Design Techniq

The optimum values of transition samples are Ty = 0.1095 and T = 0.598.
Using these values, the MATLAB design is

»> M = 33; alpha = (M-1)/2; 1 = 0:M-1; wl = (2%pi/M)*1;
»> Ti = 0.10985; T2 = 0.598;

»> Hrs = [zeros(1,11),T1,T2,0nes(1,8),T2,T1,zeros(1,10)];
»> Har = [0,0,1,1); wdl = [0,0.6,0.8,1);

>> ki = 0:floor((M-1)/2); k2 = floor((M-1)/2)+1:M-1;

»> angH = [-alpha#*(2+pi)/M¥k1, alphas(2#pi)/M*(M-k2)];
»> H = Hrs.*exp(j*angH);

»> h = real Gfft(H,M));

»> [db,mag,pha,grd,w] = freqz_m(h,1);

»> [Hr,ww,a,L] = Hr_Typel(h);

The time- and the frequency-domain plots of the design are shown in Figure
7.31. a

01 EXAMPLE 719 Design a 33-point digital differentiator based on the ideal differentiator of (7.31)
given in Example 7.12.

Highpass: M=33,71=0.1095,T2=0.598 Impulse Response
T - 0.4
1 ¥
0.2
= 0.59} =
S 2 °
0.2
0409 e e o
o 2
; - 04
[\] 6 8 1 0 10 20 30
frequency in pi units n
Amplitude Response Magnitude Response
®
z 0.59 3
0A109 NIRRT
] 8 1 [1] 8 1

6 R 6 K
frequency in pi units frequency in pi units

FIGURE 7.31 Highpass filter design plots in Ezample 7.18

274 Chapter 7 ® FIR FILTER DESIGN

0O EXAMPLET.20

Solution

From (7.31) the samples of the (imaginary-valued) amplitude response are given

by
+j2ﬁ7rk, k=0,...,lM;lJ
JH- (k) = 27 M-1
—iaF (M~ k), k=|_ > J+1,...,M—l

and for linear phase the phase samples are

M1, M-1. k=0,,__,[£'f_—_1_l
LH)= 2 M M 2

M-1 M-1

+ 2t (M - k), k—l S J+1,‘..,M-—l
Therefore

H(k) =jH. (k) 4#® 0<k<M-1 and h(n)=IDFT{H (k)]

>> M = 33; alpha = (M-1)/2; Dw = 2%pi/N;

>> 1 = 0:M-1; wl = Dusl;

>> k1 = 0:floor((M-1)/2); k2 = floor((M-1)/2)+1:M~1;
>> Hrs = [j*Dw*ki,-j*Dw*(M-k2)];

>> angH = [-alpha*Dw+ki, alpha*Dw+(M-k2)];

>> H = Hrs.*exp(j*angH);

>> b = real(ifft(H,M));

>> [Hr,ww,a,P]=Hr_Type3(h);

The time- and the frequency-domain plots are shown in Figure 7.32. We observe
that the differentiator is not a full-band differentiator. u}

Design a 51-point digital Hilbert transformer based on the ideal Hilbert trans-
former of (7.32).

From (7.32) the samples of the (imaginary-valued) amplitude response are given

by
— M-1
~Js k= ,"'1!- 2 J
jH.(k)={0, k=0
+4, k=l£2'-—1J+l,...,M—l

Since this is 8 Type-3 linear-phase filter, the amplitude response will be zero
at w = w. Hence to reduce the ripples, we should choose the two samples (in
transition bands) near w = 7 optimally between 0 and j. Using our previous
experience, we could select this value as 0.39;. The samples of the phase response
are selected similar to those in Example 7.19.

Frequency Sampling Design Techniq 275

Hr in pi units

0.1 0.2 03 04 05 0.6 07 0.8 09 1
frequency in pi units
Impuise response
JET T —
05F T b
eo_oeewi?T ? 900 0 00
4 63 b h] & l ‘[76 & 63 ¢
-05- 1
b .]
0 . 16 32

n

FIGURE 7.32 Differentiator design plots in Ezxample 7.19

>> M = 51; alpha = (M~1)/2; Dw = 2#pi/M;

>> 1 = 0:M-1; wl = Duxl;

>> k1 = 0:floor((M-1)/2); k2 = floor((M-1)/2)+1:M-1;

>> Hrs = [0,-j*ones(1,(M-3)/2),-0.39j,0.39j,j*ones (1, (4-3)/2)];
>> angH = [-alpha*Dwskl, alphasDwx(M-k2)];

>> H = Hrs.*exp(j*angH);

> h = real (ifft(H,M));

>> [Hr,ww,a,P]~Hr_Type3(h);

The plots in Figure 7.33 show the effect of the transition band samples. [}

The type of frequency sampling filter that we considered is called a
Type-A filter, in which-the sampled frequencies are

27
=—k O0LZk<M-
Wi 7 <k< 1
There is a second set of uniformly spaced samples given by
2 (k+ 1
wk=-erM+—22» 0<k<M-1

This is called a Type-B filter, for which a frequency sampling structure is
also available. The expressions for the magnitude response H(e’*') and the

216

Chapter 7 ® FIR FILTER DESIGN

Hilbert Transformer, frequency sampling design : M =51

—— T T T
2
c
g
4
]
%
0.39
2
od I L L L
0 0.2 0.4 0.6 0.8 1
frequency in pi units
Impulse response
1 v ~r
ost T]
g 6 ?ng QRO AR
Z wOTETE]
0.5+ E
-1 — 1
0 25 50
n

FIGURE 7.33 Digital Hilbert transformer design plots in Ezample 7.20

impulse response h(n) are somewhat more complicated and are available
in [19]. Their design can also be done in MATLAB using the approach
discussed in this section.

OPTIMAL EQUIRIPPLE{DESIGN TECHNIQUE

The last two techniques—namely, the window design and the frequency
sampling design—were easy to understand and implement. However, they
have some disadvantages. First, we cannot specify the band frequencies
wp and w, precisely in the design; that is, we have to accept whatever
values we obtain after the design. Second, we cannot specify both 6; and
6, ripple factors simultaneously. Either we have §; = &3 in the window
design method, or we can optimize only 6 in the frequency sampling
method. Finally, the approximation error—that is, the difference between
the ideal response and the actual response—is not uniformly distributed
over the band intervals. It is higher near the band edges and smaller in
the regions away from band edges. By distributing the error uniformly,
we can obtain a lower-order filter satisfying the same specifications. For-
tunately, a technique exists that can eliminate the above three problems.

Optimal Equiripple Design Technique 2

This technique is somewhat difficult to understand and requires a com-
puter for its implementation.

For linear-phase FIR filters it is possible to derive a set of conditions
for which it can be proved that the design solution is optimal in the sense
of minimizing the marimum epprorimation error (sometimes called the
minimaz or the Chebyshev error). Filters that have this property are called
equiripple filters because the approximation error is uniformly distributed
in both the passband and the stopband. This results in lower-order filters.

In the following we first formulate a minimax optimal FIR design
problem and discuss the total number of maxima and minima {collec-
tively called extrema) that one can obtain in the amplitude response of
a linear-phase FIR filter. Using this, we then discuss a general equiripple
FIR filter design algorithm, which uses polynomial interpolation for its
solution. This algorithm is known as the Parks-McClellan algorithm, and
it incorporates the Remez exchange routine for polynomial solution. This
algorithm is available as a subroutine on many computing platforms. In
this section we will use MATLAB to design equiripple FIR filters.

DEVELOPMENT Earlier in this chapter we showed that the frequency response of the four
OF THE cases of linear-phase FIR filters can be written in the form
MINIMAX
PROBLEM H(e) = e~ 3" H,(w)
where the values for 3 and the expressions for H,(w) are given in Table
7.2
TABLE 7.2 Amplitude resp and B-values for linear-phase FIR filters
Linear-phase FIR Filter Type B H. ()
(M=1)/2
Type-1: M odd, symmetric h(n) 0 Y. a(n)coswn
)
M/2
Type-2: M even, symmetric h{n) 0 3> b(n)cos[w(n —1/2)]
T
- (M-1)/2
Type-3: M odd, antisymmetric k(r) 3 ¢(n) sinwn
1
x M/2
Type-4: M even, antisymmetric h(n) = 3> d(n)sin fw(n — 1/2)]
1
278 Chapter 7 B FIR FILTER DESIGN

TABLE 7.3 Q(w), L, and P(w) for linear-phase FIR filters

LP FIR Filter Type Qw) L P(w)
- 3
Type-1 1 M2 1 Y a(n)coswn
°
w M L;
Type-2 cos 5 5 - 1 3 b(n) coswn
°
_ L
Type-3 sinw M_z__S Y. &(n) coswn
°
L
Type-4 sin g % -1 Y- d(n)coswn
o

Using simple trigonometric identities, each expression for H,.{w) above
can be written as a product of a fixed function of w (call this Q(w)) and a
function that is a sum of cosines (call this P(w}). For details see [19] and
Problems 7.1-7.4. Thus

H,(w) = Q(w)P(w) (7.40)

where P(w) is of the form

L
P(w)=Y_ a(n)coswn (7.41)

n=>0

and Q(w), L, P(w) for the four cases are given in Table 7.3.

The purpose of this analysis is to have a common form for H,(w)
across all four cases. It makes the problem formulation much easier. To
formulate our problem as a Chebyshev approximation problem, we have
to define the desired amplitude response Hg-(w) and a weighting function
W(w), both defined over passbands and stopbands. The weighting func-
tion is necessary so that we can have an independent control over 6; and
82. The weighted error is defined as

E(w) £ W(w) [Har(w) - Ho(w)], w€SE[0,wp|Uwsn] (7.42)

These concepts are made clear in the following set of figures. It shows a
typical equiripple filter response along with its ideal response.

Optimal Equiripple Design Technique 279

Amplitude Response of an Equiripple Filter
T

110 _]
1.0 1
0.90 _
0.05[
0.0
-0.05t
) 03 05 1
frequency in pi units
The error [Hy, (w) — Hy (w)] response is shown below.
Eror Function
0 03 05 1
frequency in pi units
Now if we choose
—2, in the passband
Ww) =<6 (7.43)

1, in the stopband

280

Chapter 7 B FIR FILTER DESIGN

Then the weighted error E(w) response is

Weighted Error Function

T L

weight = 0.5 : weight=1.0

"]

0 03

05
frequency in pi units

Thus the maximum error in both the passband and stopband is 62. There-
fore, if we succeed in minimizing the maximum weighted error to &2, we
automatically also satisfy the specification in the passband to §;. Substi-
tuting H, (w) from (7.40) into (7.42), we obtain
E(w)=W () [Ha (@) - Q(w) P ()]
Hd, (w)

~w@ew [- pw). wes

If we define

W) 2WwQw) ad Ha (w)é%}fj‘;—)

then we obtain
E(w) = W(w) [f{d,(w) - P(w)], wes (7.44)

Thus we have a common form of E(w) for all four cases.

Problem Statement The Chebyshev approximation problem can now
be defined as:

Determine the set of coefficients a(r) or b(n) or &(n) or d(n) [or equiva-
lently a(n) or b(n) or ¢(n) or d(n)] to minimize the maximum absolute
value of F (w) over the passband and stopband, i.e.,

i [B 74

Optima! Equiripple Design Technique 281

Now we have succeeded in specifying the exact wp, w,, 61, and 2. In
addition the error can now be distributed uniformly in both the passband
and stopband.

CONSTRAINT Before we give the solution to the above problem, we will first discuss

ON THE the issue: how many local maxima and minima exist in the error function
NUMBER OF E(w) for a given M-point filter? This information is used by the Parks-
EXTREMA McClellan algorithm to obtain the polynomial interpolation. The answer

is in the expression P(w). From (7.41) P {w) is a trigonometric function
in w. Using trigonometric identities of the form
cos (2w) = 2cos? (w) — 1

cos (3w) = 4cos® (w) — 3cos (w)

P(w) can be converted to a trigonometric polynomial in cos(w), which
we can write (7.41) as

L
Pw)= Z B(n)cos™ w (7.46)

n=0

O EXAMPLET21 Let h(n) = (1,2,3,4,3,2,1] . Then M = 7 and h(n) is symmetric, which
means that we have a Type-1 lincar-phase filter. Hence L = (M - 1)/2 = 3.
Now from (7.7)

an)=a(n)=2h8-n), 1<n<2% and a0) =a(0) = h(3)
or a(n) = %[4,6,4, 2]. Hence

3
P(w)= a(n)coswn = & (4+ 6cosw + 4cos 2w + 2cos Jw)
0

=% {4+6cosw+ 4(2cos’w — 1) + 2(4 cos’ w — 3cosw) }

3
=0+0+ & cos’w+ ,—%cosan:Zﬂ(n)cos“u
0

or B(n) = [0, 0, %, %] .

From (7.46) we note that P(w) is an Lth-order polynomial in cos(w). Since
cos(w) is & monotone function in the open interval 0 < w < , then it follows
that the Lth-order polynomial P(w) in cos(w) should behave like an ordinary
Lth-order polynomial P(z) in z. Therefore P(w) has at most (i.e., no more

282 Chapter 7 B FIR FILTER DESIGN

O EXAMPLE 7.22

Solution

THEOREM 1

than) (L — 1) local extrema in the open interval 0 < w < . For example,

1 4 cos 2w

cos?(w) = 3

has only one minimum at w = x /2. However, it has three extrema in the closed
interval 0 € w < 7 (i.e., a maximum at w = 0, a minimum at w = x/2, and
a maximum at~w = 7). Now if we include the end points w = 0 and w = =,
then P (w) has at most (L + 1) local extrema in the closed interval 0 < w < .
Finally, we would like the filter specifications to be met exactly at band edges
wp and w,. Then the specifications can be met at no more than (L + 3) extremal
frequencies in the 0 < w < 7 interval.

Conclusion The error furiction E(w) has at most (L + 3) extrema in S.

Let us plot the amplitude response of the filter given in Example 7.21 and count
the total number of extrema in the corresponding error function.

The impulse response is

7 or L=3

M) = £11,2,8,43,21), M

and a(n) = %[4,6,4,2] and B(n) = [0, 0, &, 1—55] from Example 7.21. Hence

_ 8 2 8 3
P(w) = oS wtpoostw
which is shown in Figure 7.34. Clearly, P (w) has (L — 1) = 2 exirema in the
open interval 0 < w < 7. Also shown in Figure 7.34 is the error function, which

has (L + 3) = 6 extrema.]

Let us now turn our attention to the problem statement and equa-
tion (7.45). It is a well-known problem in approzrimation theory, and the
solution is given by the following important theorem.

Alternation Theorem

Let 8 be any closed subset of the closed interval [0,). In order that
P(w) be the unique minimaz approzimation to Hyr(w) on S, it is necessary
and sufficient that the error function E(w) ezhibit at least (L +2) “alter-
nations” or extremal frequencies in S; that is, there must exist (L + 2)
frequencies w; in 8 such that

E(w;)=-E(wi1) = imsg.x|E (w)] (7.47)
é:i:&,vcuo <wy < - <wpe1 €S

Combining this theorem with our earlier conclusion, we infer that
the optimal equiripple filter has either (L + 2) or (L + 3) alternations

Optimal Equiripple Design Technique 283

PARKS-
McCLELLAN
ALGORITHM

1.07
1.0
0.93

Amplitude Response

Error Function
L+3=6

extrema
0.07 /Z 77
0 N7 2= G

T

L—-1=2
extremaj

w/ir

FIGURE 7.34 Amplitude response and the error function in Example 7.22

in its error function over §. Most of the equiripple filters have (L +2)
alternations. However, for some combinations of w, and w,, we can get
filters with (L +3) alternations. These filters have one extra ripple in their
response and hence are called Eztra-ripple filters.

The alternation theorem ensures that the solution to our minimax ap-
proximation problem exists and is unique, but it does not tell us how
to obtain this solution. We know neither the order M (or equivalently,
L), nor the extremal frequencies w;, nor the parameters {a(n}}, nor the
maximum error §. Parks and McClellan [17] provided an iterative solution
using the Remez exchange algorithm. It assumes that the filter length M
(or L) and the ratio 65/6; are known. If we choose the weighting function
as in (7.43), and if we choose the order M correctly, then § = 6, when
the solution is obtained. Clearly, § and M are related; the larger the M,
the smaller the §. In the filter specifications 61, 63, wp, and w, are given.
Therefore M has to be assumed. Fortunately, a simple formula, due to
Kaiser, exists for approximating M. It is given by

W= —201og;4 0182 — 13
- 14.6Af

s — Wp

+1; Af= ‘i’T (7.48)

284

Chapter 7 B FIR FILTER DESIGN

MatiaB
IMPLEMEN-
TATION

The Parks-McClellan algorithm begins by guessing (L + 2) extremal fre-
quencies {w;} and estimating the maximum error § at these frequencies.
It then fits an Lth-order polynomial (7.46) through points given in (7.47).
Local maximum errors are determined over a finer grid, and the extremal
frequencies {w;} are adjusted at these new extremal values. A new Lth-
order polynomial is fit through these new frequencies, and the procedure
is repeated. This iteration continues until the optimum set {w;} and the
global maximum error & are found. The iterative procedure is guaranteed
to converge, yielding the polynomial P(w). From (7.46) coefficients B(n)
are determined. Finally, the coefficients a(n) as well as the impulse re-
sponse-h(n) are computed. This algorithm is available in MATLAB as the
remez function, which is described below.

Since we approximated M, the maximum error § may not be equal to
&8,. If this is the case, then we have to increase M (if § > &2) or decrease
M (if § < 6;) and use the remez algorithm again to determine a new
6. We repeat this procedure until 6 < é2. The optimal equiripple FIR
filter, which satisfies all the three requirements discussed earlier is now
determined.

The Parks-McClellan algorithm is available in MATLAB as a function
called remez, the most general syntax of which is

[h] = remez(N,f,m,weights,ftype)

There are several versions of this syntax:!

e [h] = remez(N,f,m) designs an Nih-order (note that the length
of the filter is M = N + 1) FIR digital filter whose frequency response
is specified by the arrays £ and m. The filter coefficients (or the impulse
response) are returned in array h of length M. The array £ contains band-
edge frequencies in units of m, that is, 0.0 < £ < 1.0. These frequencies
must be in increasing order, starting with 0.0 and ending with 1.0. The
array m contains the desired magnitude response at frequencies specified
in f. The lengths of £ and m arrays must be same and must be an even
number. The weighting function used in each band is equal to unity, which
means that the tolerances (§;’s) in every band are the same.

e [h] = remez(N,f,m,weights) is similar to the above case except
that the array weights specifies the weighting function in each band.

e [h] = remez(N,f,m,ftype) is similar to the first case except when
ftype is the string ‘differentiator’ or ‘hilbert’, it designs digital dif-

11t should be noted that the remez function underwent a small change from the old
Student Edition to the new Student Edition of MATLAB (or from the Signal Processing
Toolbox version 2.0b to version 3.0). The description given here applies to the new
version.

Optimai Equiripple Design Technique 285

O EXAMPLE 7.23

ferentiators or digital Hilbert transformers, respectively. For the digital
Hilbert transformer the lowest frequency in the £ array should not be
0, and the highest frequency should not be 1. For the digital differentia-
tor, the m vector does not specify the desired slope in each band but the
desired magnitude.

¢ [b] = remez(N,f,m,weights,ftype) is similar to the above case
except that the array weights specifies the weighting function in each
band.

As explained during the description of the Parks-McClellan algorithm,
we have to first guess the order of the filter using (7.48) to use the routine
remez. After we obtain the filter coefficients in array h, we have to check
the minimum stopband attenuation and compare it with the given A4,
and then increase (or decrease) the filter order. We have to repeat this
procedure until we obtain the desired A,. We illustrate this procedure in
the following several MATLAB examples.

Let us design the lowpass filter described in Example 7.8 using the Parks-
McClellan algorithm. The design parameters are

wp =027, R,=0.25dB
ws =037, As;=50dB
We provide a MATLAB script to design this filter.

>> wp = 0.2%pi; ws = 0.3#pi; Rp = 0.25; As = 50;
>> wsi = ws/delta_w+i;

>> deltal = (10~ (Rp/20)-1)/(10"(Rp/20)+1);

>> delta2 = (1+deltal)=(10"(-As/20));

>> deltaH = max(deltal,delta2); deltal, = min(deltal,delta2);
>> weights = [delta2/deltal 1];

>> deltaf = (ws-wp)/(2+*pi);

>> M = ceil((-20*1og10(sqrt(deltal*delta2))-13)/(14.6*deltaf)+1)
M =43

>> £ = [0 wp/pi ws/pi 1];

>m=[1100];

>> h = remez(M-1,f,m,weights);

>> [db,mag,pha,grd,w] = freqz_m(h, [11);

>> delta_w = 2#pi/1000;

>> Asd = -max(db(wsi:1:501))

Asd = 47.8562

>> M = M+1;

>> h = remez(M-1,f,m,weights);

>> [db,mag,pha,grd,w] = freqz_m(h, (1]);

>> Asd = -max(db(wsi:1:501))

Asd = 48.2155

>> M = M+1;

>> h = remez(M-1,f,m,weights);

>> [db,mag,pha,grd,w] = freqz_m(h, [1]);

286

Chapter 7 ® FIR FILTER DESIGN

>> Asd = -max(db(wsi:1:501))

Asd = 48.8632

>> M = M+i;

>> h = remez(M-1,f,m,veights);

>> {db,mag,pha,grd,w] = freqz_m(h, [1]);
>> Asd = -max(db(wai:1:501))

Asd = 49.8342

>> M = M4,

>> h = remez(M-1,f,m,veights);

>> (db,mag,pha,grd,w] = freqz_m(k, [1]);
>> Asd = -max(db(wsi:1:501))

Asd = 51.0896

> M

M= 47

Note that we stopped the above iterative procedure when the computed stop-
band attenuation exceeded the given stopband attenuation As, and the optimal
value of M was found to be 47. This value is considerably lower than the window
design techniques (M = 61 for a Kaiser window) or the frequency sampling tech-
nique (M = 60). In Figure 7.35 we show the time- and the frequency-domain
plots of the designed filter along with the error function in both the passband
and the stopband to illustrate the equiripple behavior.

Actual impulse Response Magnitude Response in dB

h(n)

Decibels
3

0 0203 B

n frequency in pi units
Amplitude Response Ermor Response
" 0.0144 v
5 5 00032 ;
¥ £ oo
—0.0032 :
N N Y 1 44 .
0 0.20.3 1 -00 0 0.20.3 1
frequency in pi units frequency in pi units

FIGURE 7.35 Plots for equiripple lowpass FIR filter in Ezample 7.28

Optimal Equiripple Design Technique 287

O EXAMPLE7.24 Let us design the bandpass filter described in Example 7.10 using the Parks-
McClellan algorithm. The design parameters are:

wy, =027
; Rp=1dB
wip = 0.357
wap = 0.657
; As; =60db
wys = 0.87
Solution The following MATLAB script shows how to design this filter.
>> wsl = 0.2%pi; wpl = 0.35#pi; wp2 = 0.65%pi; ws2 = 0.8+*pi;
>» wsli = floor(wsi/delta_w)+1;
>> Rp = 1.0; As = 60;

>> deltat = (10~ (Rp/20)~1)/(10"(Rp/20)+1);
>> delta2 = (1+deltal)*(10~(-As/20));

>> deltaH = max(deltal,delta2); deltal = min(deltal,delta2);
>> weights = [1 delta2/deltal 1];

>> delta_f =min((ws2-wp2)/(2%pi), (wpl-ws1)/{(2%pi));
>> M = ceil((-20*1ogl0(sqrt(deltai+delta2))-13)/(14.6*delta_£)+1)
N =28

>> £ = [0 ws1/pi wpi/pi wp2/pi ws2/pi 1];
>m=1[001100];

>> h = remez(M~1,f,m,weights);

>> [db,mag,pha,grd,w] = freqz_m(h,{1]);
>> delta_w=2%pi/1000;

>> Asd = -max(db(1:1:ws1i))

Asd = 56.5923

3> M= M+l

>> h = remez(M~1,f,m,weights);

>> [db,mag,pha,grd,v] = fregz.m(h,([1]);
>> Asd = -max(db(1:1:wsl/delta_w))

Asd = 61.2818

>> M = M+1;

>> h = remez(M~1,f,m,weights);

>> [db,mag,pha,grd,v] = freqz_m(h,[1]);
>> Asd = ~max(db(1:1:ws1/delta_w))

Asd = 60.3820

>> M = M+1;

>> h = remez(M-1,f,m,weights);

>> [db,mag,pha,grd,w] = freqz_m(h, [1]);
>> Asd = -max(db(1:1:wsi/delta_w))

Asd = 61,3111

> M

M=31

The optimal value of M was found to be 31. The time- and the frequency-domain
plots of the designed filter are shown in Figure 7.36. a

288 Chapter 7 ® FIR FILTER DESIGN

Actual impulse Response Magnitude Responss in dB

0.4}
02
g _T? 7 ?,3.,6
-0.2
'O“o Jo 0 02 0.55 o.és 08 “
n frequency in pl units

«10 Weighted Ermor

0 [e - g : i B

- . -1.0578'
o 0.2 0.35 0.65 0.8 1)] 02 035 065 0.8 1
frequency in pi units traquency in pt units

FIGURE 7.36 Plots for eguiripple bandpass FIR filter in Ezample 7.24

O EXAMPLE7.25 Design a highpass filter that has the following specifications:
we =0.6x, As=50dB
wp = 0.757, R,=05dB

Solution Since this is a highpass filter, we must ensure that the length M is an odd
number. This is shown in the following MATLAB script.

>> ws = 0.6%pi; Wp = 0.75%pi; Rp = 0.5; As = 50;

>> deltal = (10~(Rp/20)-1}/(10~(Rp/20)+1};

>> delta2 = (1+deltal)*(10~(-As/20));

»> deltaH = max(deltal,delta?); deltal = min(deltai,delta2);
>> weights = {1 delta2/deltai];

>> deltaf = (wp-ws)/(2%pi);

>> M = ceil((-20%1ogl0(sqrt(deltalxdelta2))~13)/(14.6+deltaf)+1);
% M must be odd

»> M = 2%floor{M/2)+1

M= 27

>> £ = [0 wa/pi wp/pi 11;

>>m= [0011);

>> h = remez(M-1,f,m,weights);

>> [db,mag,pha,grd,w] = freqz_m(h,[1]1);

>> delta_w = 2#pi/1000; wei=ws/delta.¥; wpi = wp/delta_v;

Optimal Equiripple Design Technique 289

>> Asd = -max(db(1:1:wsi))

Asd = 49.5918

>> M = M+2; % M must be odd

>> h = remez(M-1,f,m,weights);

>> [db,mag,pha,grd,w} = fregz_m(h, [1]1);
>> Asd = -max(db(1:1:wsi))

Asd = 50.2253

>> M

M= 29

Note also that we increased the value of M to maintain its odd value. The
optimum M was found to be 37. The time- and the frequency-domain plots of

the designed filter are shown in Figure 7.37. O
O EXAMPLE?7.26 In this example we will design a “staircase” filter, which has three bands with
different ideal responses and different tolerances in each band. The design spec-
ifications are
Band-1: 0<w<03r, Idealgain=1, Tolerance §; = 0.01
Band-2: 0.4n <w <0.7m, Ideal gain = 0.5, Tolerance &; = 0.005
Band-3: 08r <w<m, Ideal gain = 0, Tolerance 83 = 0.001
Actual impulse Response Magnitude Response in dB
04 " T
ol
0.2
-]
g o 2
&0,
0.2
04 28 o 06075 1
n frequency in pi units
Amplitude Response Error Response
— 0.0288 —
z e \WAVAVAVAY
13 i —O.gggg :
0 e -0.0288 :
0 0.6 075 1 02885 0.6 0.75 1
frequency in pi units frequency in pi units
FIGURE 7.37 Plots for equiripple highpass FIR fiiter in Ezample 7.25
290 Chapter 7 ® FIR FILTER DESIGN

Solution

O EXAMPLE7.27

The following MATLAB script describes the design procedure.

wi=0; w2=0.3*pi; deltal=0.01;

w3=0,4%pi; w4=0.7*pi; delta2=0.005;
w5=0.8+pi; wb=pi; delta3=0.001;
veights=[delta3/deltal delta3/delta2 1];
delta_f=min((w3-w2)/(2#%pi), (w5-w3)/(2*pi));
M=ceil((-20%1og10(sqrt(deltai*delta2))-13)/(14.6%delta_f)+1)
= 43

£=[0 w2/pi w3/pi w4/pi w5/pi 1];

m={1 1 0.5 0.5 0 0];
h=remez(M-1,f,m,veights);
f{db,mag,pha,grd,vl=freqz_m(h, [1]);
delta_w=2+pi/680;
Asd=-max(db(w5/delta_w+10:1:341))

Asd = 56.2181

VVYVYVYVYRVVVYYVVY

The optimum value of M was found at M = 49.

> M = 49;

> haremez(M-1,f,m,weights);

> [ab,mag,pha,grd,wl=freqz_m(h, [1]);
> Asd=-max(db(wS/delta_w+10:1:341))
Asd = 60.6073

The time- and the frequency-domain plots of the designed filter are shown in
Figure 7.38.]

In this example we will design a digital differentiator with different slopes in
each band. The specifications are

Band-1: 0 <w< 02w Slope =1 sam/cycie
Band-2: 0.47 < w < 0.6w, Slope =2 sam/cycle
Band-3: 08r<w<m, Slope = 3 sam/cycle

We need desired magnitude response values in each band. These can be ob-

tained by multiplying band-edge frequencies in cycles/sam by the slope values
in sam/cycle

Band-1: 0% f<0.1, Slope=1sam/cycle=0.0<|H|<01
Band-2: 0.2 < £<0.3, Slope=2sam/cycle=0.4<|H| <06
Band-3: 0.4 < f<0.5, Slope=3sam/cycle=>1.2<]H|<15

Let the weights be equal in all bands. The MATLAB script is:

Optimal Equiripple Design Technique 291

>>
>>
>»>
>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

O EXAMPLE?7.28

—

Actual Impuise Response Magnitude Response in dB
0.6 T

05 e
04
03
02
0.1

h(n)

Decibels

-0.1
J

0 0.30.4 0708 1] 0.304 0708 %
frequency in pi units frequency in pi units-

FIGURE 7.38 Plots for equiripple staircase FIR filter in Example 7.26

£f=1{00.20.40.60.81]; % in w/pi unis
n = {0,0.1,0.4,0.6,1.2,1.8}; % magnitude values
h = remez(25,f,m,’differentiator’);

{db,mag,pha,grd,vl = fregz_m(h, [11);

figure(1l); subplot(,1,1)

subplot(2,1,1); stem({0:26],h); title(’Impulse Response’);
xlabel(’n*); ylabel(’h(n)’); axis([0,25,-0.6,0.6])

set(gca, *XTickMode’, ’manual’,’XTick’, [0,25])

set(gca, 'YTickMode’, 'manual’,’YTick’, [-0.6:0.2:0.6]);
subplot(2,1,2); plot(w/(2%pi),mag); title(’Magnitude Response’)
xlabel(’Normalized frequency £’); ylabel(’|H]’)

set(gca, 'XTickMode’, ‘manual’, ’XTick’,£/2)

set(gca, ’YTickMode’, *manual’,*YTick’, [0,0.1,0.4,0.6,1.2,1.5)); grid

The frequency-domain response is shown in Figure 7.39. s}

Finally, we design a Hilber} transformer over the band 0.057 < w £ 0.957.

Solution Since this is a wideband Hilbert transformer, we will choose an odd length for
our filter (i.e., a Type-3 filter). Let us choose M = 51.
>> f = [0.05,0.95]; m = 1 1];
> h = remez(50,f,m,’hilbert’);

2% Chapter 7 W FIR FILTER DESIGN

impuise Response

h(n)

0 0.1 0.2 03 04 0.5
Nomnalized frequency f

FIGURE 7.39 Plots of the differentiator in Ezample 7.27

>> [db,mag,pha,grd,w] = freqz m(h, [11);

>> figure(1); subplot(i,1,1)

>> subplot(2,1,1); stem([0:50],h); title(’Impulse Response’);
>> xlabel(’n’); ylabel(’h(n)’); axis({0,50,-0.8,0.8])

>> set(gca, ’XTickMode’, 'manual’, ’XTick’, [0,50])

»> set(gca, ’YTickMode’, manual’, *YTick’, [-0.8:0.2:0.8]);

>> subplot(2,1,2); plot{vw/pi,mag); title(’Magnitude Response’)
>> xlabel(*frequency in pi unjts’); ylabel(’iH|’)

»> set(gca,’XTickMode’, manual’, ’'XTick’, [0,£,1])

>> set(gca,’YTickMode’, "manual’, *¥Tick’, [0, 1]} ;grid

The plots of this Hilbert transformer are shown in Figure 7.40. (&)

Optimal Equiripple Design Technique 293

Impulse Response
08
06} J
0.4L J
02} K
£ L&Lm B D050
z v AoAduacguid] 0"5"6 L 000V 0D .
-02} 4
04t q
06+ b
—0‘80 50
n
Magnitude Response
1+ b
T
ol— H
0 0.05 095 1
frequency in pi units

FIGURE 7.40 Plots of the Hilbert transformer in Ezample 7.28

PROBLEMS

——

P7.1 The Type-1 linear-phase FIR filter is characterized by
h(n)=h(M—1-n), 0<n<M-1, Modd

Show that its amplitude response H, (w) is given by
= M-1
Hr(w)=2a(n)coswn, L=—5—

n=0
where coefficients {a (n)} are obtained from h (n).
P7.2 The Type-2 linear-phase FiR filter is characterized by
h(n)=h(M—-1-n),0<n<M—1, Meven
a. Show that its amplitude response H, (w) is given by
M/2

o= 3 b (n-)}

n=1

where coefficients {a (n)} are obtained from A (n).

204 Chapter 7 @ FIR FILTER DESIGN

P73

P74

P7.5

b. Show that the above H, (w) can be further expressed as

L
w . M
H,(w)= cos 5 Z_:ob(n)coswn, L= 5 1
where & (n) is derived from b (n).
The Type-3 linear-phase FIR filter is characterized by

hin)=~h(M—-1-n), 0<n<M-1, Modd
a. Show that its amplitude response H, (w) is given by

(M-1)/2
H, (w) = Z c(n)sinwn
n=1
where coefficients {c (n)} are obtained from A (n).
b. Show that the above H, (w) can be further expressed as
- M-3
H, () =sinw Y _&(n)coswn, L= —

n=0
where é(n) is derived from ¢ (n).
The Type-4 linear-phase FIR filter is characterized by
hiny=-h(M—-1-n), 0<n<M-1, Meven

a. Show that its amplitude response Hy (w) is given by

M/2

H, (w) = Zd(n)sin{w ('n— %)}
n=1
where coefficients {d (n)} are obtained from h(n).
b. Show that the above H,. (w) can be further expressed as

L
. W = M
Hr(w)—sm2 E d(n)coswn, L—7-1

n=0

where d (n) is derived from d (n).

Write a MATLAB function to compute the amplitude response H,. (w), given a linear-phase
impulse response h (n). The format of this function should be

function [Hr,w,P,L] = Ampl_Res(h);

%

% function [Hr,w,P,L] = Ampl_Res(h)

% Computes Amplitude response Hr(w) and its polynomial P of order L,
% given a linear-phase FIR filter impulse response h.

% The type of filter is determined automatically by the subroutinme.

Problems 205

%

% Hx = Amplitude Response

% w = frequencies between [0 pil over which Hr is computed
% P = Polynomial coefficients

% L = Order of P

% b = Linear Phase filter impulse response

The subroutine should first determine the type of the linear-phase FIR filter and then use
the appropriate Hr_Type# function discussed in the chapter. It should also check if the given
h(n) is of a linear-phase type. Check your subroutine on sequences given in Examples 7.4
through 7.7.

P16 If H(z) has zeros at
7= rejo, 22 = le""’, zZ3 = re‘jo, 24 = le'jo
r r
show that H (z) represents a linear-phase FIR filter.
P7.7 Design a bandstop filter using the Hanning window design technique. The specifications are
lower stopband edge: 0.47
A, =40dB
upper stopband edge: 0.67
lower passband edge: 0.37
R, =0.5dB
upper passband edge: 0.77
Plot the impulse response and the magnitude response (in dB) of the designed filter.
P7.8 Design a bandpass filter using the Hamming window design technique. The specifications are
lower stopband edge: 0.37
As =50 dB
upper stopband edge: 0.67
lower passband edge: 0.4n
R, =05 dB
upper passband edge: 0.57
Plot the impulse response and the magnitude response (in dB) of the designed filter.
P7.9 Design a highpass filter using the Kaiser window design technique. The specifications are
stopband edge: 0.4m, A,=60dB
passband edge: 0.6m, R,=0.5dB
Plot the impulse response and the magnitude response (in dB) of the designed filter.
P7.10 We wish to use the Kaiser window method to design a linear-phase FIR digital filter that
meets the following specifications:
o< |H (¢)] <001, 0<w <0.257
0.95 < |H (¢™)| <105, 0.357 <w < 0.657
0<|H ()| <001, 0.1 <w<w
Determine the minimum-length impulse response k& (r) of such a filter. Provide a plot
containing subplots of the amplitude response and the magnitude response in dB.
296 Chapter 7 ® FIR FILTER DESIGN

P7.11 Following the procedure used in this chapter, develop the following MATLAB functions o
design FIR filters via the Kaiser window technigue. These functions should check for the
valid band-edge frequencies and restrict the filter length to 255.

a. Lowpass filter: The format should be

function [b,M] = kai lpf(wp,ws,As);

% [h,M] = kai_lpf(wp,ws,As);

% Low-Pass FIR filter design using Kaiser window

%

% h = Impulse response of length M of the designed filter
% M = Length of h which is an odd number

% wp = Pass-band edge in radians (0 < wp < ws < pi)

% ws = Stop-band edge in radians (0 < wp < ws < pi)

% As = Stop-band attenuation in dB (As > 0)

- b. Highpass filter: The format should be

function [(h,M] = kai_hpf(ws,wp,As);
% [n,M] = kai_hpf(ws,wp,As);
% HighPass FIR filter design using Kaiser window

Impulse response of length M of the designed filter
Length of h which is an odd number

Stop-band edge in radians (0 < wp < ws < pi)
Pass-band edge in radians (0 < wp < ws < pi)
Stop-band attenuation in dB (As > 0)

E i i
]

I
ntona

c. Bandpass filter: The format should be

function [h,M] = Xai_bpf(wsl,vpl,wp2,vs2,4s);

% [h,M] = kai_bpf(wsl,vpl,wp2,ws2,As);

% Band-Pass FIR filter design using Kaiser window
%

% h = Impulse response of length M of the designed filter
% M = Length of h whickh is an odd pumber

% wsl = Lower stop-band edge in radians

% wpl = Lower pass-band edge in radians

% wp2 = Upper pass-band edge in radians

% ws2 = Upper stop-band edge in radians

% 0 < wsl < wpl < wp2 < ws2< pi

% As = Stop-band attenuation in dB (As > 0)

d. Bandstop filter: The format should be

function (h,M] = kai_bsf(wpl,wsi,ws2,wp2,4s);

% [h,M} = kai_bsf(wpl,wsl,ws2,vp2,4s);

% Band-Pass FIR filter design using Kaiser window
)

Problems 297

P7.12

P7.13

P7.14
P7.15
P7.16

P7.17

% h = Impulse response of length M of the designed filter
% M = Length of h which is an odd number

% wpl = Lower stop-band edge in radians

% ws1 = Lower pass-band edge in radians

% ws2 = Upper pass-band edge in radians

% wp2 = Upper stop-band edge in radians

% 0 < wpl < wsl < ws2 < wp2 < pi

% As = Stop-band attenuation in dB (As > 0)

You can now develop similar functions for other windows discussed in this chapter.

Design the staircase filter of Example 7.26 using the Blackman window approach. The
specifications are

Band-1: 0 <w <037, Ideal gain=1, 6, = 0.01
Band-2: 047 <w < 0.77, Ideal gain =0.5, &2 = 0.005
Band-3: 087 <w<m, Ideal gain = 0, 63 = 0.001

Compare the filter length of this design with that of Example 7.26. Provide a plot of the
magnitude response in dB.

Consider an ideal lowpass filter with the cutoff frequency w. = 0.37. We want to
approximate this filter using a frequency sampling design in which we choose 40 samples.

a. Choose the sample at w. equal to 0.5 and use the naive design method to compute A (n).
Determine the minimum stopband attenuation.

b. Now vary the sample at w, and determine the optimum value to obtain the largest
minimum stopband attenuation.

¢. Plot the magnitude responses in dB of the above two designs in one plot and comment
on the results.

Design the bandstop filter of Problem 7.7 using the frequency sampling method. Choose the
order of the filter appropriately so that there is one sample in the transition band. Use
optimum value for this sample.

Design the bandpass filter of Problem 7.8 using the frequency sampling method. Choose the
order of the filter appropriately so that there are two samples in the transition band. Use
optimum values for these samples.

Design the highpass filter of Problem 7.9 using the frequency sampling method. Choose the
order of the filter appropriately so that there are two samples in the transition band. Use
optimum values.

We want to design a narrow bandpass filter to pass the center frequency at wp = 0.57. The
bandwidth should be no more than 0.17.

a. Use the frequency sampling technique and choose M so that there is one sample in the
transition band. Use the optimum value for transition band samples and draw the frequency
sarnpling structure.

b. Use the Kaiser window technique so that the stopband attenuation is the same as that of
the above frequency sampling design. Determine the impulse response h (n) and draw the
linear-phase structure.

c. Compare the above two filter designs in terms of their implementation and their filtering
effectiveness.

298

Chapter 7 8 FIR FILTER DESIGN

P7.18

P7.19

P7.20

P1.21

P7.22

The frequency response of an ideal bandpass filter is given by

0, 0L |w| < /3
Hy(¢*)={ 1, m/3<|w|<2n/3
0, 2r/3<|w[<

a. Determine the coefficients of a 25-tap filter based on the Parks-McClellan algorithm with
stopband attenuation of 50 dB. The designed filter should have the smallest possible
transition width.

b. Plot the amplitude response of the filter using the function developed in Problem 7.5.
Consider the bandstop filter given in Problem 7.7.

a. Design a linear-phase bandstop FIR filter using the Parks-McClellan algorithm. Note
that the length of the filter must be odd. Provide a plot of the impulse response and the
magnitude response in dB of the designed filter.

b. Plot the amplitude response of the designed filter and count the total number of extrema
in the stopband and passbands. Verify this number with the theoretical estimate of the
total number of extrema.

¢. Compare the order of this filter with those of the filters in Problems 7.7 and 7.14.

d. Verify the operation of the designed filter on the following signal:

N

z(n)=5~500s(2

) ; 0<n<300

Using the Parks-McClellan algorithm, design a 25-tap FIR differentiator with slope equal to
1 sample/cycle.

a. Choose the frequency band of interest between 0.17 and 0.97. Plot the impulse response
and the amplitude response.

b. Generate 100 samples of the sinusoid
z(n) = 3sin(0.257n), n=240,...,100

and process through the above FIR differentiator. Compare the result with the theoretical
“derivative” of x (n). Note: Don’t forget to take the 12-sample delay of the FIR filter into
account,

Design a lowest-order equiripple linear-phase FIR filter to satisfy the specifications given in
Figure 7.41. Provide a plot of the amplitude response and a plot of the impulse response.

A digital signal z (n) contains a sinusoid of frequency w/2 and a Gaussian noise w (n) of
zero mean and unit variance; that is,

n

z (n) = 2cos 3

+w(n)
We want to filter out the noise component using a 50th-order causal and linear-phase FIR
filter.

a. Using the Parks-McClellan algorithm, design a narrow bandpass filter with passband
width of no more than 0.02% and stopband attenuation of at least 30 dB. Note that no
other parameters are given, and you have to choose the remaining parameters for the remez

Problems 299

0.90 !
2 1
c]
8 !
@ 1
] }
- i
-] 1
3 045 !
S 0.35 f
E 1
< 1
i

0.05 _}____ Band-3

0.00 L

! 07 08 1.0

Frequency w in 7 units

FIGURE 7.41 Filter specification for Problem 7.21

fumction to satisfy the requirements. Provide a plot of the log-magnitude response in dB of
the designed filter.

b. Generate 200 samples of the sequence z (1) and process through the above filter to
obtain the output y (r). Provide subplots of z (n) and y (n} for 100 < n < 200 on one plot
and comment on your results.

P7.23 Design an equiripple digital Hilbert transformer for the following specifications:
passband: 0.17 < |w} < 0.57 ripple 6, = 0.01
stopband: 057 < |w| <7 ripple §; = 0.01

Plot the amplitude response over ~7 < w < 7.

300 Chapter 7 ™ FIR FILTER DESIGN

IIR FILTER DESIGN

IIR filters have infinite-duration impulse responses, hence they can be
matched to analog filters, all of which generally have infinitely long iro-
pulse responses. Therefore the basic technique of IIR filter design trans-
forms well-known analog filters into digital filters using complez-valued
mappings. The advantage of this technique lies in the fact that both
analog filter design (AFD) tables and the mappings are available exten-
sively in the literature. This basic {echnique is called the A/D (analog-
to-digital) filter transformation. However, the AFD tables are available
only for lowpass filters. We also want to design other frequency-selective
filters (highpass, bandpass, bandstop, etc.). To do this, we need to apply
frequency-band transformations to lowpass filters. These transformations
are also complex-valued mappings, and they are also available in the lit-
erature. There are two approaches to this basic technique of IIR filter
design:

Approach 1:
! Apply freq. band Apply filter .

Design analog —| transformation {— | transformation |— Desired IR

lowpass filter 5 s ¢z filter
Approach 2:

Design analo, Apply filter Apply freq. band Desired IIR

® | —-| transformation |—| transformation
lowpass filter s — 2 7 2 filter

The first approach is used in MATLAB to design IIR filters. A straight-
forward use of these MATLAB functions does not provide any insight inte
the design methodology. Therefore we will study the second approach be-
cause it involves the frequency-band transformation in the digital domain.
Hence in this IIR filter design technique we will follow the folowing steps:

301

e Design analog lowpass filters.

e Study and apply filter transformations to obtain digital lowpass
filters.

e Study and apply frequency-band transformations to obtain other
digital filters from digital lowpass filters.

The main problem with these approaches is that we have no control
over the phase characteristics of the IIR filter. Hence IIR filter designs
will be treated as magnitude-only designs. More sophisticated techniques,
which can simultaneously approximate both the magnitude and the phase
responses, require advanced optimization tools and hence will not be cov-
ered in this book.

We begin with a discussion on the analog filter specifications and the
properties of the magnitude-squared response used in specifying analog
filters. This will lead us into the characteristics of three widely used ana-
log filters, namely, Butterworth, Chebyshev, and Elliptic filters. We will
then study transformations to convert these prototype analog filters into
different frequency-selective digital filters. Finally, we will conclude this
chapter with a discussion on the merits and comparisons of FIR and IIR
digital filters.

SOME PRELIMINARIES

We discuss two preliminary issues in this section. First, we consider the
magnitude-squared response specifications, which are more typical of ana-
log (and hence of ITR) filters. These specifications are given on the relative
linear scale. Second, we study the properties of the magnitude-squared re-
sponse.

RELATIVE Let H,(jS2) be the frequency response of an analog filter. Then the lowpass
LINEAR filter specifications on the magnitude-squared response are given by
SCALE
1 .
Tra SHGOP< L, 09
1+¢€
1 (8.1)
0< |H, (i) < 5, % <19
where € is a passband ripple parameter, Q, is the passband cutoff fre-
quency in rad/sec, A is a stopband attenuation parameter, and , is the
stopband cutoff in rad/sec. These specifications are shown in Figure 8.1,
302 Chapter 8 ® |IR FILTER DESIGN

LAV

1

1+¢

0 — L Q
0 Q 0

P]

FIGURE 8.1 Analog lowpass filter specifications

from which we observe that [H,(7€2)|” must satisfy

H () = oy at0 =0,
1 “Ie (82)
HGOE = - aa=9
The parameters ¢ and A are related to parameters R, and Ag, re-
spectively, of the dB scale. These relations are given by

R, = —-10log, i i62 = e=/10Rs/10 _ 1 (8.3)
and
A, = ~101ogyq zli — A= 10%/® (8.4)

The ripples, §; and &y, of the absolute scale are related to € and A by

1—61~ 1 _2\/5_;
1+6, 1+€2=>€—1"6]
and
&9 _ 1 _1+51
36, A A5

Some Preliminaries

303

PROPERTIES
OF [H,(jSY)[?

Analog filter specifications (8.1), which are given in terms of the magni-
tude-squared response, contain no phase information. Now to evaluate the
s-domain system function H, (s), consider

H, (5 = Ha(s)(

8==j2
Then we have

H (GO = Ho GO H; (1) = Ha(GQ)Ha(—59) = Ha(8)Ha(~8)l,—50

or
Ho(s)Ha(—8) = ;Ha(jn)f}n:,/j (85)

Therefore the poles and zeros of the magnitude-squared function are dis-
tributed in a mirror-image symmetry with respect to the j< axis. Also for
real filters, poles and zeros occur in complex conjugate pairs (or mirror-
image symmetry with respect to the real axis). A typical pole-zero pat-
tern of H,(s)H,(—s) is shown in Figure 8.2. From this pattern we can
construct Hy(s), which is the system function of our analog filter. We
want H,(s) to represent a causal and stgble filter. Then all poles of H,(s)
must lie within the left half-plane. Thus we assign all left-half poles of
H,(s)H,(—s) to H,(s). However, zeros of H,(s) can lie anywhere in the
s-plane. Therefore they are not uniquely determined unless they all are
on the j) axis. We will choose the zeros of H,(s)H,(—s) lying inside or
on the j{ axis as the zeros of Ha(s). The resulting filter is then called a
minimum-phase filter.

i

FIGURE 8.2 Typical pole-zero pattern of H,(s)Ha.(—3)

304

Chapter 8 ® [IR FILTER DESIGN

CHARACTERISTICS OF .PEOTOTYPE ANALOG FILTERS

IIR filter design techniques rely on existing analog filters to obtain digital
filters. We designate these analog filters as prototype filters. Three pro-
totypes are widely used in practice. In this section we briefly summarize
the characteristics of the lowpass versions of these prototypes: Butter-
worth lowpass, Chebyshev lowpass (Type I and I}, and Elliptic lowpass.
Although we will use MATLAB functions to design these filters, it is neces-
sary to learn the characteristics of these filters so that we can use proper
parameters in MATLAB functions to obtain correct results.

BUTTER- This filter is characterized by the property that its magnitude response is
WORTH flat in both passband and stopband. The magnitude-squared response of
LOWPASS an Nth-order lowpass filter is given by
FILTERS 1

|Ha (G = (8.6)

L
14 (I)

where N is the order of the filter and 2, is the cutoff frequency in rad/sec.
The plot of the magnitude-squared response is shown below.

1H, ()
4

10} <o) 100

0.5
N=2

f
!
0 o,

From this plot we can observe the following properties:

® at =0, |H,(j0)f =1 for all N.

@ at @ =, |H,(j)|* = 1 for all N, which implies a 3 dB attenu-
ation at €.

e |H,(59) is a monotonically decreasing function of Q.

o |H,(7Q)f° approaches an ideal lowpass filter as N — co.

o |H,(j)|? is mazimally flat at Q = 0 since derivatives of all orders
exist and are equal to zero.

Characteristics of Prototype Analog Filters 305

To determine the system function H,(s), we put (8.6) in the form of (8.5)
to obtain

1 N ¢10) i
(s)2N $2N+(]'QC)ZN
+{-=
F1L8

Ho(s)Ha(—3) = |Ha (GO a=sls

(8.7)

The roots of the denominator polynomial (or poles of H,(s)H,(~s)) from
(8.7) are given by

pe = (1) (jQ) = QI FE+NID - k01 2N-1 (8.8)

An interpretation of (8.8) is that

® there are 2N poles of Hy(s)H,(—s), which are equally distributed
on a circle of radius Q. with angular spacing of 7 /N radians,

¢ for N odd the poles are given by p = Qe /N k=0,1,...,
2N -1,

o for N even the poles are given by py = Qe/(F+H¥) =
0,1,...,2N -1,

o the poles are symmetrically located with respect to the jQ axis,
and

e a pole never falls on the imaginary axis, and falls on the real axis
only if N is odd.
As an example, poles of third- and fourth-order Butterworth filters are
shown in Figure 8.3.

A stable and causal filter H,(s) can now be specified by selecting
poles in the left half-plane, and H,(s) can be written in the form

QN
H, =t 8.9
a(s) T G- (8.9)
LHP poles
i
I N
¥ O k=10
: L.
' 0 !
X
. ,/)§=2~-1
ol .x
N=3 N=4

FIGURE 8.3 Pole plots for Butterworth filters

Chapter 8 ® iR FILTER DESIGN

w] EXAMPLE 81 Given that |H,(j)® = determine the analog filter system function

1
1+ 6408’

H,(s).
Solution From the given magnitude-squared response,
o2 1 1
|H“(.79)| = 1+ 6406 = 0 2(3)
1+ (53)

Comparing this with expression (8.6), we obtain N = 3 and Q2. = 0.5. The poles
of Ha(s)Ha(—s) are as shown in Figure 8.4.

FIGURE 8.4 Pole plot for Fxample 8.1

Hence
oy ol
Ha(if?) = (5~ s2)(s — 53){(s — 54)

_ 1/8

~ (s+0.25 — j0.433)(s + 0.5)(s + 0.25 + j0.433)

3 0.125 o

~ (5 +0.5)(s2 + 0.5s + 0.25)
MaATLAB MATLAB provides a function called [z,p,k)=buttap(N) to design a nor-
IMPLEMEN- malized (ie., Q. = 1) Butterworth analog prototype filter of order N,
TATION which returns zeros in z array, poles in p array, and the gain value k.

However, we need an unnormalized Butterworth filter with arbitrary Q..
From Example 8.1 we observe that there are no zeros and that the poles
of the unnormalized filter are on a circle with radius), instead of on a
unit circle, This means that we have to scale the array p of the normal-
ized filter by €. and the gain k by Q¥. In the following function, called
Ubuttap(N,Omegac), we design the unnormalized Butterworth analog
prototype filter.

Characteristics of Prototype Analog Filters 307

function [b,a] = u_buttap(N,Omegac);

% Unnormalized Butterworth Analog Lowpass Filter Prototype
%
% [b,a] = u_buttap(N,Omegac);

% b = numerator polynomial coefficients of Ha(s)
) a = denominator polynomial coefficients of Ha(s)
% N = Order of the Butterworth Filter

% Omegac = Cutoff frequency in radians/sec
A
[z,p,k] = buttap(N);

p = p*Umegac;

k = k*Omegac”N;

B = real(poly(z)J;
b0 = k;

b = k*B;

a = real(poly(p));

The above function provides a direct form (or numerator-denominator)
structure. Often we also need a cascade form structure. In Chapter 6 we
have already studied how to convert a direct form into a cascade form.
The following sdir2cas function describes the procedure that is suitable
for analog filters.

function [C,B,A) = sdir2cas(b,a);

% DIRECT-form to CASCADE-form conversion in s-plane
%
% [C,B,A] = sdir2cas(b,a)

C = gain coefficient

B = K by 3 matrix of real coefficients containing bk’s
A = K by 3 matrix of real coefficients containing ak’s
b = numerator polynomial coefficients of DIRECT form
a = denominator polynomial coefficients of DIRECT form

%
%
%

%
%
Na = length(a)-1; Nb = length(b)-1;

% compute gain coefficient C
b0 = b(1); b = b/b0;
a0 = a(1); a = a/a0;
C = b0/a0;
%
% Denominator second-order sections:
p= cplxpair(roots(a)); K = floor(Na/2);
if K*2 == Na % Computation when Na is even
A = zeros(X,3);
for n=1:2:Na
Arow = p(n:1l:n+1,:);
Arow = poly(Arow);
A(£fix((n+1)/2),:) = real(Arow);
end

Chapter 8 W IR FILTER DESIGN

elseif Na == 1 % Computation when Na = 1
A = [0 real(poly(p))];

else % Computation vhen Na is odd and > 1
A = zeros(K+1,3);
for n=1:2:2%K
Arow = p(n:i:n+l,:);
Arow = poly(Arow);
A(fix{((n+1)/2),:) = real(Arow);
end .
A(K+1,:) = [0 real(poly(p(Na)))];
end

% Numerator second-oxder sections:

z = cplxpair(roots(b)); K = floor(Nb/2);

if Nb == 0 % Computation when Nb = 0
B = [0 O poly(z)];

elseif K#2 == Nb % Computation when Nb is even
B = zeros(K,3);
for n=1:2:Nb
Brow = z(n:1:n+1,:);
Brow = poly(Brow);
B(fix((n+1)/2),:) = real(Brow);
end

elseif Nb == 1 . % Computation when Nb = 1
B = [0 real(poly(z))];

else % Computation when Nb is odd and > 1
B = zeros(K+1,3);
for n=1:2:2+K
Brow = z(n:1:n+1,:);
Brow = poly(Brow);
B(fix((n+1)/2),:) = real(Brow);
end
B(K+1,:) = [0 real(poly(z(Nb)))];
end

O EXAMPLE82 Design a third-order Butterworth analog prototype filter with {2c = 0.5 given
in Example 8.1.

Solution MaATLAB Script
>> N = 3; OmegaC = 0.5;
>> [b,a] = u_buttap(N,OmegaC);
>> [C,B,A} = sdir2cas(b,a)
C = 0.1250
B=9¢ 4] 1

Characteristics of Prototype Analog Filters 300

A = 1.0000 0.5000 0.2500
0 1.0000 0.5000

The cascade form coefficients agree with those in Example 8.1. [m]

DESIGN The analog lowpass filter is specified by the parameters , R, €,, and
EQUATIONS A,. Therefore the essence of the design in the case of Butterworth filter
is to obtain the order N and the cutoff frequency €., given these specifi-
cations. We want
o at Q=0Q,, —10log;o |Ha(jQ)I* = Ry or
1
-10 logm — 3~ | = Rp
14 (2
Q.
and
o at @ =0, ~10log; |[H.(F)* = 4, or
: 1
—lﬂlogw i~ | = As
1y (2
Qe
Solving these two equations for N and Q., we have
N = 9810 [(107#/10 — 1) / (104+/10 — 1}]
2log;g (2p/Q)
In general, the above N will not be an integer. Since we want N to be an
integer, we must choose
! 10R»/10 — 1) / (104+/10 — 1
N = 0€10 [() / ()] (810)
2log10 (Q2p/€%)
where the operation {z] means “choose the smallest integer larger than
z"—for example, {4.5] = 5. Since the actual N chosen is larger than
required, specifications can be either met or exceeded either at €2, or at
2,. To satisfy the specifications exactly at §2,,
0
Q= ——Lt (8.11)
2N (mR,/lo - 1)
310 Chapter 8 ® |IR FILTER DESIGN

ad EXAMPLE 8.3

Solution

MATLAB
IMPLEMEN-
TATION

or, to satisfy the specifications exactly at £25,
A

QY=
2N /(10A./10 — 1)

Design a lowpass Butterworth filter to satisfy

(8.12)

Passband cutoff: Q, =0.2n; Passband ripple: R, = 7dB
Stopband cutoff: (2, = 0.37; Stopband ripple: As = 16dB

From (8.10)

lOg [(100-7 _ 1) /(101.6 _ 1)]
N = l’ 10 2log;q (0.2 /0.37) =[2.79]=3

To satisfy the specifications exactly at Q,, from (8.11) we obtain

Qe = 0.2m = 0.4985

—s\/(m

To satisfy specifications exactly at §2,, from (8.12) we obtain

Qo= —-23" __ _gs5122

MDY

Now we can choose any). between the above two numbers. Let us choose
Q. = 0.5. We have to design a Butterworth filter with N = 3 and Q. = 0.5,
which we did in Example 8.1. Hence

0.125

Ha() = (5+0.5) (s2 + 0.55 + 0.25) =

The above design procedure can be implemented in MATLAB as a simple
function. Using the U_buttap function, we provide the afd butt function
to design an analog Butterworth lowpass filter, given its specifications.
This function uses (8.11).

function [b,a] = afd_butt(Wp,Ws,Rp,As);

A

%
%

Analog Lowpass Filter Design: Butterworth

[b,a]l = afd_butt(Wp,¥Ws,Rp,As);
b = Numerator coefficients of Ha(s)

a = Denominator coefficients of Ha(s)

Wp = Passband edge frequency in rad/sec; Wp > 0

Ws = Stopband edge frequency in rad/sec; Ws > Wp > 0
Rp = Passband ripple in +dB; (Rp > 0)

Characteristics of Prototype Analog Filters 311

% As = Sto]

pband attenuation in +dB; (As > 0)

)
ifWp <=0
error(’Passband edge must be larger than 0’)
end
if Ws <= Wp
error(’Stopband edge must be larger than Passband edge’)
end
if (Rp <= 0) | (As < 0)
error (’PB ripple and/or SB attenuation ust be larger than 0°)
end
N = ceil((1og10((10~(Rp/10)-1) /(10" (As/10)-1)))/ (2%1og10(Wp/Ws)));
fprintf (?\n#** Buttervorth Filter Oxder = %2.0f \n’,N)
OmegaC = Wp/((10~ (Rp/10)-1)~(1/(2+N)));

[b,al=u_buttap(N,OmegaC) ;

To display the frequency-domain plots of analog filters, we provide a

function
provided

called freqs_m, which is a modified version of a function freqs
by MaTLAB. This function computes the magnitude response

in absolute as well as in relative dB scale and the phase response. This

function

is similar to the freqz.m function discussed earlier. One main

difference between them is that in the freqs.m function the responses are
computed up to a maximum frequency Oy ax.

function

[db,mag,pha,w] = freqs_m(b,a,vmax);

% Computation of s-domain frequency response: Modified version

p

% [db,mag,pha,w] = freqs_m(b,a,wmax);

% db=
% mag =
% pha =

Relative magnitude in db over [0 to wmax]
Absolute magnitude over [0 to wmax)
Phase response in radians over [0 to wmax]

% w = array of 500 frequency samples between [0 to wmax]

% b = Numerator polymomial coefficeants of Ha(s)

% a = Denominator polynomial coefficents of Ha(s)

% wmax = Maximum frequency in rad/sec over which response is desired
%

w = [0:1:500]*wmax/500;

H = freqs(b,a,w);

mag = abs(H);

db = 20%logl0((mag+eps)/max(mag));
pha = angle(H);

The impulse response h, (t) of the analog filter is computed using MAT-
LAB’s impulse function.

n] EXAMPLE 8.4 Design the analog Butterworth lowpass filter specified in Example 8.3 using

MATLAB.

312

Chapter 8 ® IR FILTER DESIGN

Solution

CHEBYSHEV
LOWPASS
FILTERS

MATLAB Script
>> Wp = 0.2*%pi; Ws = 0.3*pi; Rp = 7; As = 16;
>> Ripple = 10 ~ (-Rp/20); Attn = 10 = (-As/20);
>> % Analog filter design:
>> {b,a] = afd_butt(Wp,Ws,Rp,As);
**x* Butterworth Filter Order = 3
>> % Calculation of second-order sections:
> [¢,B,A] = sdir2cas(b,a)
C = 0.1238
B=0 0 1
A = 1,0000 0.4985 0.2485
0 1.0000 0.4985
>> % Calculation of Frequency Response:
>> [db,mag,pha,w] = freqs_m(b,a,0.5%pi);
>> % Calculation of Impulse response:
>> [ha,x,t] = impulse(b,a);

The system function is given by

0.1238
(5% + 0.4985s + 0.2485) (5 + 0.4985)

Ha (8) =

This H, (s) is slightly different from the one in Example 8.3 because in that
example we used §2. = 0.5, while in the afd_butt function {2, is chosen to satisfy
the specifications at . The filter plots are shown in Figure 8.5. a

There are two types of Chebyshev filters. The Chebyshev-I filters have
equiripple response in the passband, while the Chebyshev-II filters have
equiripple response in the stopband. Butterworth filters have monotonic
response in both bands. Recall our discussions regarding equiripple FIR
filters. We noted that by choosing & filter that has an equiripple rather
than a monotonic behavior, we can obtain a lower-order filter. Therefore
Chebyshev filters provide lower order than Butterworth filters for the
same specifications. ’
The magnitude-squared response of a Chebyshev-1 filter is

1

Q
ey (o)

where N is the order of the filter, € is the passband ripple factor, which is
related to Rp, and Ty (z) is the Nth-order Chebyshev polynomial given
by

|Ha () = (8.13)

where £ =

Plo

(@) cos (Neos™!(z)), 0<z<1
)=
N cosh (cosh™!(z)), 1<z <00

Characteristics of Prototype Analog Filters 313

Magnitude Response Magnitude in dB

—
0
@ 7
2
B
S16
; sl :
0 02 03 0.5 [62 03 05
Analog frequency in pi units Analog frequency in pi units
Phase Response impufse Response
1 . - 02
05} Lk RSN 0.15
W :
S £ o
s ~ 8
3 ° 2
0.05
~0.5}1
: : 0
- N
0 02 03 0.5 V] 10 20 30
Analog frequency in pi units time in seconds

FIGURE 8.5 Butterworth analog filter in Ezample 8.4

The equiripple response of the Chebyshev filters is due to this polynomial
Tn(x). Its key properties are (a) for 0 < x < 1, Ty(x) oscillates between
—1 and 1, and {b) for 1 < = < oo, Tn(x) increases monotonically to co.
There are two possible shapes of [H,(j52)|*, one for N odd and one for
N even as shown below. Note that = /). is the normalized frequency.

{Hati [H, (i

314 Chapter 8 ® (IR FILTER DESIGN

From the above two response plots we observe the following properties:

o At z =0 (or Q = 0); IH,,(jO)l2 =1 for N odd.
1

H(O)f =)

{Ha(50)| Ta for N even

. 1
e Atz =1(or Q=0Q); |H. GV = T foralN.
e For0<z<1(or0<N<Q), [Ha(jz)? oscillates between 1 and
1
1+€*

e For z > 1 (or 2> Q.), |Ha(jz)|* decreases monotonically to 0.
o Atz =Q,, |Ho(j2)° =

To determine a causal and stable H,(s), we must find the poles of
H,(8)H,(—s) and select the left half-plane poles for Ha(s). The poles of
H,(8)H,(—s) are obtained by finding the roots of

272
1+€eTy (Qc)

The solution of this equation is tedious if not difficult to obtain. It can be
shown that if px = o + jQ%, k=0,...,N —1 are the (left half-plane)
roots of the above polynomial, then

(2k+)7
= (afd) v
o COS[Q 2N] =0,...,N—-1 (8.14)
Q. = (bQ)sin [(2k2—;’1)7r]
where
a=%(’{/c_r— m), b=—;—(’\"/5+’{/i7¢;), and a=%+w1+6—12-
(8.15)

These roots fall on an ellipse with major axis), and minor axis afl.
Now the system funiction is given by

K

Hn(s) = Ik](s)

(8.16)

Characteristics of Prototype Analog Filters k)11

where K is a normalizing factor chosen to make

1, N odd
H,(j0) = 1 N even (8.17)
Vite?
MATLAB MATLAB provides a function called [z,p,k]=cheblap(N,Rp) to design
IMPLEMEN- a normalized Chebyshev-1 analog prototype filter of order N and pass-
TATION band ripple Rp and that returns zeros in z array, poles in p array, and
the gain value k. We need an unnormalized Chebyshev-I filter with arbi-
trary €2.. This is achieved by scaling the array p of the normalized filter
by Q.. Similar to the Butterworth prototype, this filter has no zeros.
The new gain k is determined using (8.17), which is achieved by scaling
the old k by the ratio of the unnormalized to the normalized denom-
inator polynomials evaluated at s = 0. In the following function, called
U_chbiap(N,Rp,Omegac), we design an unnormalized Chebyshev-I analog
prototype filter that returns H, (s) in the direct form.
function [b,a] = u_chbiap(N,Rp,Omegac);
% Unnormalized Chebyshev~1 Analog Lowpass Filter Prototype
h
% [b,al = u_chblap(N,Rp,Omegac);
% b = numerator polynomial coefficients
% a = denominator polynomial coefficients
% N = Order of the Elliptic Filter
% Rp = Passband Ripple in dB; Rp > 0
% Dmegac = Cutoff frequency in radians/sec
%
[z,p,k] = cheblap(N,Rp);
a = real(poly(p));
aNn = a(N+1);
p = p*Omegac;
a = real(poly(p));
aNu = a(N+1);
k = k+aNu/aNn;
b0 = k; .
B = real(poly(z));
b = k#B;
DESIGN Given Q,, Q,, R,, and Ag, three parameters are required to determine a
EQUATIONS Chebyshev-I filter: ¢, (1, and N. From equations (8.3} and (8.4) we obtain
€=+v10% —1 and A=10%/%
316 Chapter 8 @ {IR FILTER DESIGN

m] EXAMPLE 8.5

Solution

From the properties discussed above we have
2,
Q.= and Q= — (8.18)
Qp

The order N is given by

g=+/(A2-1) /e (8.19)
log, Vgi-1
o | e {g+ 7 } (8.20)
logo [n,+ VI 1]

Now using (8.15), (8.14), and (8.16), we can determine H,(s).

Design a lowpass Chebyshev-I filter to satisfy

Passband cutoff: , =0.2n; Passband ripple: R, = 1dB
Stopband cutoff: 2, = 0.3 ; Stopband ripple: A; = 16dB

First compute the necessary parameters.

e =+/100T0 —1 = 0.5088 A =10'%?° = 6.3096
0.37
Qc=ﬂp =0.27 Qr=~6'2—1r=1.5
g=+1/(A7-1)/& =122429 N=4

Now we can determine Ha(s).

a=t4y/1+ 5 =d1702

€ €

a=0.5("a— ",/1/a) =0.3646
b=0.5(%+ X 1/a)=1.0644

There are four poles for Ha(s):

pos = (afe) cos [g + ’g’] + (BQ2.) sin [g + g] = —0.0877 % j0.6179

pr2 = (afle) cos [% + %] + (b) sin [g + ‘%"] = —0.2117 j0.2559
Hence
Hae)= %~ 0.03829(= 0.89125 x 1103 x .3895)
C elsi= g = {52 + 0.1754s + 0.3895) (s + 0.4234s + 0.1103)

J1(s —ps)
k=0

Characteristics of Prototype Analog Filters 317

MATLAB
IMPLEMEN-
TATION

(m] EXAMPLE 8.6

Note that the numerator is such that

H,(j0) = =0.89125 O

1
Vi+e?

Using the U_chblap function, we provide a function called afd.chbi to
design an analog Chebyshev-II lowpass filter, given its specifications. This
is shown below and uses the procedure described in Example 8.5.

function [b,a] = afd_chbi(Wp,Ws,Rp,As);
% Analog Lowpass Filter Design: Chebyshev-1
3
Y% [b,a) = afd_chbl(Wp,Ws,Rp,As);
% b = Numerator coefficients of Ha(s)
% a = Denominator coefficients of Ha(s)
% Wp = Passband edge frequency in rad/sec; Wp > O
% Ws = Stopband edge frequency in rad/sec; Ws > Wp > 0
% Rp = Passband ripple in +dB; (Rp > 0)
% As = Stopband attenuation in +dB; (As > 0)
*
if Wp<=0
error(’Passband edge must be larger than 0’)

end
if Ws <= Wp
error(’Stopband edge must be larger than Passband edge’)
end
if (Rp <= 0) | (s < 0} :
error (’PB ripple and/or SB attenuation ust be larger than 0’)
end

ep = sqrt(10~(Rp/10)-1);

A = 10~ (As/20);

OmegaC = Wp;

OmegaR = Ws/Wp;

g = sqrt(AsA-1)/ep; .

N = ceil(logl0(g+sqrt(g*g-1))/logl0(OmegaR+sqrt (OmegaR«OmegaR-1)));
fprintf (*\n*#* Chebyshev-i Filter Order = %2.0f \n’,K)
{b,al=u_chbiap(N,Rp,COmegal);

Design the analog Chebyshev-1 lowpass filter given in Example 8.5 using Mat-
LAB.

Solution MATLAB Script
>> Wp = 0.2+pi; Ws = 0.3#pi; Rp = 1; As = 16;
>> Ripple = 10 ~ (-Rp/20); Attn = 10 ~ (-As/20};
>> % Analog filter design:
>> [b,a] = afd_chbi(Wp,Ws,Rp,As);
4 Chebyshev-1 Filter Order = 4
318 Chapter 8 & IR FILTER DESIGN

>> % Calculation of second-order sections:
>> [C,B,A] = sdir2cas(b,a)
C = 0.0383
B=20 0 1
A = 1.0000 0.4233 0.1103

1.0000 0.1763 0.3895
>> % Calculation of Frequency Response:
>> [db,mag,pha,w] = freqs_m(b,a,0.5%pi);
>> % Calculation of Impulse response:
> (ha,x,t] = impulse(b,a);

The specifications are satisfied by a 4th-order Chebyshev-1 filter whose system
function is

Ha (2) = 0.0383

(52 + 4233s + 0.1103) (s2 + 0.1753s + 0.3895)
The filter plots are shown in Figure 8.6. a

A Chebyshev-1I filter is related to the Chebyshev-I filter through a
simple transformation. It has a monotone passband and an equiripple
stopband, which implies that this filter has both poles and zeros in the s-
plane. Therefore the group delay characteristics are better (and the phase
response more linear) in the passband than the Chebyshev-1 prototype. If

Magnitude Response Magnitude in dB
T A
4
0'1535
o P L—
0 02 03 0.5 0 02 03 0.5
Analog frequency in pi units Analog frequency in pi units
Phase Response Impulse Response
1 ;
: : 0.2
0.5}- 0.15
2 ' & 01
3 0 e e 4
ki £ 005
08 o /\v/\
TN INERY
0 02 03 0.5 o 10 20 30 40
Analog frequency in pi units timie in seconds

FIGURE 8.6 Chebyshev-I analog filter in Ezample 8.6

Characteristics of Prototype Analog Filters 319

we replace the term €2T5(Q2/€),) in (8.13) by its reciprocal and also the
argument z = Q/Q, by its reciprocal, we obtain the magnitude-squared
response of Chebyshev-II as

1

19}] G A—
|Ha(Jﬂ)l 14 [52T§,(Qc/9)]_l

(8.21)

One approach to designing a Chebyshev-II filter is to design the corre-
sponding Chebyshev-I first and then apply the above transformations.
‘We will not discuss the details of this filter but will use a function from
MATLAB to design a Chebyshev-1I filter.

MATLAB MATLAB provides a function called [z,p,k]=cheb2ap(N,As) to design a
IMPLEM EN- normalized Chebyshev-1I analog prototype filter of order N and passband
TATION ripple As and that returns zeros in z array, poles in p array, and the gain
value k. We need an unnormalized Chebyshev-I filter with arbitrary Q..
This is achieved by scaling the array p of the normalized filter by Q.. Since
this filter has zeros, we also have to scale the array z by ;. The new gain
k is determined using (8.17), which is achieved by scaling the old k by the
ratio of the unnormalized to the normalized rational functions evaluated
at s = 0. In the following function, called U_chb2ap(N,As,Omegac), we
design an unnormalized Chebyshev-1II analog prototype filter that returns
H, (s) in the direct form.
function [b,a] = u_chb2ap(N,As,Omegac);
% Unnormalized Chebyshev-2 Analog Lowpass Filter Prototype
%
% [b,a) = u_chb2ap(N,As,Omegac);
% b = numerator polynomial coefficients
% a = denominator polynomial coefficients
% N = Order of the Elliptic Filter
% As = Stopband Ripple in dB; As > 0
% Omegac = Cutoff frequency in radians/sec
%
{z,p,k] = cheb2ap(N,4s);
a = real(poly(p));
aNn = a(N+1);
p = p*Omegac;
a = real(poly(p));
aNu = a(N+1);
b = real(poly(z));
M = length(b);
bn = b(M);
z = z*x(megac;
b = real(poly(z));
bNu = b(M);
320 Chapter 8 & |IR FILTER DESIGN

a EXAMPLE 8.7

Solution

k = k*(aNuxbNn)/(aNn*biu) ;
b0 = k;
b = kab;

The design equations for the Chebyshev-1I prototype are similar to
those of the Chebyshev-I except that Q. = €, since the ripples are in the
stopband. Therefore we can develop a MATLAB function similar to the
afd_chbi function for the Chebyshev-II prototype.

function [b,a) = afd_chb2(Wp,Ws,Rp,As);
% Analog Lowpass Filter Design: Chebyshev-2

% [b,a] = afd_chb2(Wp,Ws,Rp,4s);

% b = Numerator coefficients of Ha(s)

% a = Denominator coefficients of Ha(s)

% Wp = Passband edge freq y in rad/sec; Wp > 0

% Ws = Stopband edge frequency in rad/sec; Ws > Wp > 0
% Rp = Passband ripple in +dB; (Rp > 0)

% As = Stopband attenuation in +dB; (As > 0)

if Wp <= 0
error(’Passband edge must be larger than 0’)
end
if Ws <= Wp
error(’Stopband edge must be larger than Passband edge’)
end
if (Rp <= 0) | (As < 0)
error(’PB ripple and/or SB attenuation ust be larger than 0’)
end

ep = sqrt(10~(Rp/10)-1);

A = 10" (As/20);

OmegaC = Wp;

OmegaR = Ws/Wp;

g = sqrt(A*A-1)/ep;

N = ceil(log1O(g+sqrt(g*g-1))/logi0(OmegaR+sqrt (OmegaR*OmegaR-1)));
fprintf(’\nx** Chebyshev-2 Filter Order = %2.0f \n’,N)
[b,a)=u_chb2ap(N,As,Ws);

Design a Chebyshev-II analog lowpass filter to satisfy the specifications given
in Example 8.5:

Passband cutoff: , = 0.2r; Passband ripple: R, = 1dB
Stopband cutoff: , = 0.3r; Stopband ripple: A, = 16dB

MaTLAB Script
>> Wp = 0.2%pi; Ws = 0.3%pi; Rp = 1; As = 16;
>> Ripple = 10 = (-Rp/20); Attn = 10 ~ (~As/20);

Characteristics of Prototype Analog Filters 321

>> % Analog filter design:

>> [b,a] = afd_chb2(Wp,Ws,Rp,As);

Chebyshev-2 Filter Order = 4

>> J, Calculation of second-order sections:
> [C,B,A] = sdir2cas(b,a)

C = 0.1585
B = 1.0000 0 6.0654
1.0000 0 1.0407

A = 1.0000 1.9621 1.4747

1.0000 0.3719 0.6784
>> % Calculation of Frequency Response:
>> [db,mag,pha,w] = fregs_m(b,a,0.5%pi);
>> % Calculation of Impulse response:
>> [ha,x,t] = impulse(b,a);

The specifications are satisfied by a 4th-order Chebyshev-II filter whose system

function is
o N 0.1585 (5 + 6.0654) (5% + 1.0407)
a () = (7 ¥ 195215 + 1.4747) (2 + 0.37105 T 0.6784)
The filter plots are shown in Figure 8.7. o

Magnitude Response Magnitude in dB
0893 I Q """
(]
z 2
316 :
L :
00 02 03 05 300 02 03 0.5
Analog frequency in pi units Analog frequency in pi units
Phase Response impuise Response
1 :
: : 6z
05t FEEREES e 0.1
] N .
c N B — 0
S gl b 4
b S E <01 v
-0.5 . . -0.2
~0.3
-1 "
0 02 03 0.5 0 10 20 30
Analog frequency in pi units time in seconds

FIGURE 8.7 Chebyshev-II analog filter in Example 8.7

322 Chapter 8 & IR FILTER DESIGN

ELLIPTIC
LOWPASS
FILTERS

{HatioN]

COMPUTATION
OF FILTER
ORDER N

These filters exhibit equiripple behavior in the passband as well as in
the stopband. They are similar in magnitude response characteristics to
the FIR equiripple filters. Therefore elliptic filters are optimum filters
in that they achieve the minimum order N for the given specifications
(or alternately, achieve the sharpest transition band for the given order.
N). These filters, for obvious reasons, are very difficult to analyze and,
therefore, to design. It is not possible to design them using simple tools,
and often programs or tables are needed to design them.
The magnitude-squared response of elliptic filters is given by

1

1+ e2U% (-:%)

where N is the order, ¢ is the passband ripple (which is related to R,),
and Uy () is the Nth order Jacobian elliptic function. The analysis of
this function, even on a superficial level, is beyond the scope of this book.
Note the similarity between the above response (8.22) and that of the
Chebyshev filters given by (8.13). Typical responses for odd and even N
are shown below.

|H. (G = (8.22)

LAY

Even though the analysis of (8.22) is difficult, the order calculation for-
mula is very compact and is available in many textbooks [16, 19, 20]. It
is given by

K(k)K (\/1 = k%’)

= —— 8.23
K(kl)K(s/l——k§) (8.23)
where
Q, €
F=q, M=

Characteristics of Prototype Analog Filters 323

and

w/2 do
K =/ ¥
(=) o 1-22sin?@

is the complete elliptic integral of the first kind. MATLAB provides the
function ellipke to numerically compute the above integral, which we
will use to compute N and to design elliptic filters.

MaATLAB MATLAB provides a function called [z,p,kl=ellipap(N,Rp,As) to de-
IMPLEMEN- sign a normalized elliptic analog prototype filter of order N, passband
TATION ripple Rp, and stopband attenuation As, and that returns zeros in z array,
poles in p array, and the gain value k. We need an unnormalized elliptic
filter with arbitrary (.. This is achieved by scaling the arrays p and z of
the normalized filter by €2, and the gain k by the ratio of the unnormalized
to the normalized rational functions evaluated at s = 0. In the following
function, called U_elipap(N,Rp,As,Omegac), we design an unnormalized
elliptic analog prototype filter that returns H, (s) in the direct form.
function [b,a)] = u_elipap(N,Rp,As,Omegac);
% Unnormalized Elliptic Analog Lowpass Filter Prototype
%
% [b,a] = u_elipap(N,Rp,As,Omegac);
% b = numerator polynomial coefficients
w7 a = denominator polynomial coefficients
% N = Order of the Elliptic Filter
% Rp = Passband Ripple in dB; Rp > 0
% As = Stopband Attenuation in dB; As > 0
% Omegac = Cutoff frequency in radians/sec
%
[z,p,k] = ellipap(N,Rp,As);
a = real(poly(p));
alin = a(N+1);
P = p*Omegac;
a = real(poly(p));
aNu = a(N+1);
b = real(poly(z));
M = length(b);
bn = b(M);
z = z+*Omegac;
b = real(poly(z));
bNu = b{M);
k = k#*(aNu#bNn) / (aNn*bNu) ;
b0 = k;
b = k#b;
324 Chapter 8 ® |IR FILTER DESIGN

=] EXAMPLE 8.8

Solution

Using the U_elipap function, we provide a function called afd_elip
to design an analog elliptic lowpass filter, given its specifications. This
is shown below and uses the filter order computation formula given in
(8.23).

function [b,a) = afd_elip(Wp,Ws,Rp,As);
% Analog Lowpass Filter Design: Elliptic

% [b,a] = afd_elip(Wp,Ws,Rp,4s);
% b = Numerator coefficients of Ha(s)

% a = Denominator coefficients of Ha(s)
% Wp = Passband edge frequency in rad/sec; Wp > 0
% Ws = Stopband edge frequency in rad/sec; Ws > Wp > 0
% Rp = Passband ripple in +dB; (Rp > 0)
% As = Stopband attepuvation in +dB; (As > O)
%
if Wp <= 0
error(’Passband edge must be larger than 0’)
end
if Ws <= Wp
error (’Stopband edge must be larger than Passband edge’)
end

if Rp<=0) | (s < 0)
error (’PB ripple and/or SB attenuation ust be larger than 0°)
end

ep = sqrt(10°(Rp/10)-1);

A = 10" (As/20);

OmegaC = Wp;

k = Wp/Ws;

k1 = ep/sqrt{A*A-1);

capk = ellipke([k."2 1-k."21); % Version 4.0 code

capkl = ellipke([(ki ."2) 1-(k1 ."2)]); % Version 4.0 code
N = ceil(capk(i)*capk1(2)/(capk(2)*capk1(1)));

fprintf (’\n**s Elliptic Filter Order = %2.0f \n’,N)
[b,al=u_elipap(N,Rp,As,OmegaC);

Design an analog elliptic lowpass filter to satisfy the following specifications of
Example 8.5:

Q, =027, R,=1dB
Q, =037, A,=16db

MaTLAB Script
>> Wp = 0.2*pi; Ws = 0.3*pi; Rp = 1; As = 16;
>> Ripple = 10 ~ (-Rp/20); Attn = 10 ~ (-As/20);
>> Y% Analog filter design:

>> [b,a] = afd_elip(Wp,Ws,Rp,As);

Characteristics of Prototype Analog Filters) 328

#x% Elliptic Filter Order = 3
>> % Calculation of second-order sections:
>> [C,B,A] = sdir2cas(b,a)
C = 0.2740
B = 1.0000 0 0.6641
A = 1.0000 0.1696 0.4102
0 1.0000 0.4435
>> % Calculation of Frequency Response:
>> {db,mag,pha,w] = freqs m(b,a,0.5%pi);
>> % Calculation of Impulse response:
>> [ha,x,t] = impulse(b,a);

The specifications are satisfied by a 3rd-order elliptic filter whose system func-
tion is

Ho(s) = 0.274 (5> +0.6641)
s (8) = 7 570.16965 + 0.4102) (s + 0.4435)
The filter plots are shown in Figure 8.8. 0
Magnitude Response
1 N N
0'8913 R T
z
0.1585
00 02 03 0.5 300 02 03 0.5
Analog frequency in pi units Analog frequency in pi units
Phase Response Impulse Response
1 H H j
05 0.2
2 =
osbo N\ . /\\/
o 02 03 05 06 10 20 30 40
Analog frequency in pi units time in seconds

FIGURE 8.8 Elliptic analog lowpass filter in Example 8.8

326

Chapter 3 ® IR FILTER DESIGN

PHASE
RESPONSES
OF PROTO-
TYPE FILTERS

Elliptic filters provide optimal performance in the magnitude-squared re-
sponse but have highly nonlinear phase response in the passband (which is
undesirable in many applications). Even though we decided not to worry
about phase response in our designs, phase is still an important issue in the
overall system. At the other end of the performance scale are the Butter-
worth filters, which have maximally flat magnitude response and require a
higher-order N (more poles) to achieve the same stopband specification.
However, they exhibit a fairly linear phase response in their passband.
The Chebyshev filters have phase characteristics that lie somewhere in
between. Therefore in practical applications we do consider Butterworth
as well as Chebyshev filters, in addition to elliptic filters. The choice de-
pends on both the filter order (which influences processing speed and
implementation complexity) and the phase characteristics (which control
the distortion).

ANALOG-TO-DIGITAL FILTER TRANSFORMATIONS

IMPULSE
INVARIANCE
TRANSFOR-
MATION

After discussing different approaches to the design of analog filters, we are
now ready to transform them into digital filters. These transformations
are complex-valued mappings that are extensively studied in the litera-
ture. These transformations are derived by preserving different aspects
of analog and digital filters. If we want to preserve the shape of the im-
pulse response from analog to digital filter, then we obtain a technique
called impulse invariance transformation. If we want to convert a dif-
ferential equation representation into a corresponding difference equation
representation, then we obtain a finite difference approrimation technique.
Numerous other techniques are also possible. One technique, called step
invariance, preserves the shape of the step response; this is explored in
Problem 9. The most popular technique used in practice is called a Bi-
linear transformation, which preserves the system function representation
from analog to digital domain. In this section we will study in detail im-
pulse invariance and bilinear transformations, both of which can be easily
implemented in MATLAB.

In this design method we want the digital filter impulse response to look
“similar” to that of a frequency-selective analog filter. Hence we sample
ha(t) at some sampling interval T to obtain h(n); that is,

h(n) = ho(nT)

The parameter T is chosen so that the shape of h,(t) is “captured” by
the samples. Since this is a sampling operation, the analog and digital

Analog-to-Digital Filter Transformations 327

frequencies are related by
w =0T or & = &7

Since z = ¢’ on the unit circle and s = j§2 on the imaginary axis, we
have the following transformation from the s-plane to the z-plane:

r=eT (8.24)

The system functions H(z) and H,(s) are related through the frequency-
domain aliasing formula (3.27):

H(z)=% i H, (s—j%rk)

k=—o0

The complex plane transformation under the mapping (8.24) is shown in
Figure 8.9, from which we have the following observations:

1. Using ¢ = Re(s), we note that

0 <0 maps into |z] < 1 (inside of the UC)
o =0 mapsonto |2| =1 (on the UC)
o >0 maps into |z| > 1 (outside of the UC)
2. All semi-infinite strips (shown above) of width 27/T map into
|z] < 1. Thus this mapping is not unique but a many-to-one mapping.
3. Since the entire left half of the s-plane maps into the unit circle, a

causal and stable analog filter maps into a causal and stable digital filter.
4. If H,(5Q) = H,(jw/T) = 0 for | > n/T, then

H(e®) = LH(G/T), ol <

jQ

Im{z}

Unit circle

o Many-to-one
transformation
o5T=z

-3#/T

s-plane z-plane

FIGURE 8.9 Complez-plane mapping in impulse invariance transformation

328

Chapter 8 ® 1IR FILTER DESIGN

DESIGN
PROCEDURE

(=] EXAMPLE 8.9

and there will be no aliasing. However, no analog filter of finite order can
be exactly band-limited. Therefore some aliasing error will occur in this
design procedure, and hence the sampling interval T plays a minor role
in this design method.

Given the digital lowpass filter specifications wp, ws, Rp, and A,, we want
to determine H (2) by first designing an equivalent analog filter and then
mapping it into the desired digital filter. The steps required for this pro-
cedure are

1. Choose T and determine the analog frequencies

=% —Ys
Q,= T, and Q= T
2. Design an analog filter H, (s) using the specifications Qp, ,, Ry,
and A,. This can be done using any one of the three (Butterworth, Cheby-
shev, or elliptic) prototypes of the previous section.
3. Using partial fraction expansion, expand H, (s) into

N
H, (8) = Z B

pesci g 4

4. Now transform analog poles {px} into digital poles {e”"T} to ob-
tain the digital filter:

N

Ry
k=1
Transform
_ s+l
Ha.(s) = s2+55+6

into a digital filter H (z) using the impulse invariance technique in which T =
0.1.

We first expand H, (s) using partial fraction expansion:
s+1 2 1

The poles are at p; = —3 and p2 = —2. Then from (8.25) and using T = 0.1,
we obtain

2 1 1-08966z"!
e3Tz-1 1—¢-2Tz-1 1 —1.55952"1 + 0.6065z~2

H(z):l_

Analog-to-Digital Filter Transformations 329

0O EXAMPLE 8.10

It is easy to develop a MATLAB function to implement the impulse invari-
ance mapping. Given a rational function description of H, (3), we can use the
residue function to obtain its pole-zero description. Then each analog pole is
mapped into a digital pole using (8.24). Finally, the residuez function can be
used to convert H (z) into rational function form. This procedure is given in
the function imp_invr,

function [b,a] = imp_invr(c,d,T)
% Impulse Invariance Transformation from Analog to Digital Filter
A

% [b,al] = imp_invr(c,d,T)

% b = Numerator polynomial in z"(-1) of the digital filter
% a = Denominator polynomial in z~(-1) of the digital filter
% ¢ = Numerator polynomial in s of the analog filter

% d = Denominator polynomial in s of the analog filter

% T = Sampling (transformation) parameter

%

[R,p,k] = residue(c,d);

p = exp(psD);

{b,a] = residuez(R,p,k);

b = real(b’); a = real(a’);

A similar function called impinvar is available in the new Student Edition of
MATLAB.)

‘We demonstrate the use of the imp_invr function on the system function from
Example 8.9.

Solution MaTLAB Script
> ¢ =[1,1]; 4 = [1,5,6); T = 0.1;
>> [b,a] = imp_invr(c,d,T)
b= 1.0000 -0.8966
a= 1.0000 -1.5595 0.6065
The digital filter is
1-—0.8966271
H®) = 115505, 7 1 0.6065:2
as expected. In Figure 8.10 we show the impulse responses and the magnitude
responses (plotted up to the sampling frequency 1/T) of the analog and the
resulting digital filter. Clearly, the aliasing in the frequency domain is evident.
0o
In the next several examples we illustrate the impulse invariance de-
sign procedure on all three prototypes.
330 Chapter 8 ® |IR FILTER DESIGN

Impulse Responses

0.8+ }
30.6-
30.4- 4
<
0.2 E
0 B 555550 ; =
0 05 1 15 2 25 3
time in sec
s Magnitude Responses

0 ' " " P R PR —
[¢] 4 5] 7 8 9 10
frequency in Hz

FIGURE 8.10 Impulse and frequency response plots in Ezample 8.10

O EXAMPLE8.11 Design a lowpass digital filter using a Butterworth prototype to satisfy

wp =027, R,=1dB
ws =037, A,=15dB

Solution The design procedure is described in the following MATLAB script:

>> % Digital Filter Specifications:

>> wp = 0.2*pi; % digital Passband freq in Hz
>> ws = 0.3#%pi; % digital Stopband freq in Hz
> Rp = 1; . % Passband ripple in dB

>> As = 15; % Stopband attenuation in dB

>> ¥ Analog Prototype Specifications: Inverse mapping for frequencies

> T = 1; % Set T=1
>> OmegaP = wp / T; % Prototype Passband freq
>> OmegaS = ws / T; % Prototype Stopband freq

>> % Analog Butterworth Prototype Filter Calculation:
>> [cs,ds] = afd_butt(OmegaP,OmegaS,Rp,As);
*#+ Buttervorth Filter Order = 6

Analog-to-Digital Filter Transformations 33

>> % Impulse Invariance transformation:
>> [b,a) = imp_invr(cs,ds,T);
> (C,B,A] = dir2par(b,a)
c= 0
B = 1.8557 -0.6304
-2.1428 1.1454
0.2871 -0.4466
A =1.0000 -0.9973 0.2570
1.0000 ~-1.0691 0.3699
1.0000 -1.2972 0.6949

The desired filter is a 6th-order Butterworth filter whose system function H (z)
is given in the parallel form

H(j)= 1.8587 — 0.63047~" —2.1428 + 1145427}
#) = 170097321 1025722 © 1—1.06012-1 + 0.36992~2
0.2871 — 0.44632™*
11297221 4 0.64492~2
The frequency response plots are given in Figure 8.11. a

Magnitude Response Phase Response
1 —
1 . S N N
0.8913
- 2
z So
-3
0.1778}-
0 N _1 L N N
[} 0203 1 0 0203 1
frequency in pi units frequency in pi units
Magnitude in dB Group Delay
- — 10 -
8
§ et A i
a
E
& 4}
ol .
0 0.20.3 1 0 0.20.3 1
frequency in pi units trequency in pi units

FIGURE 8.11 Digital Butterworth lowpass filter using impulse invariance design

Chapter 8 ® IR FILTER DESIGN

D EXAMPLE 8.12 Design a lowpass digital filter using a Chebyshev-I prototype to satisfy
wp =027, R,=1dB
ws =03%, A,=15dB

Solution The design procedure is described in the following MATLAB script:

>> % Digital Filter Specifications:

>> wp = 0.2%pi; % digital Passband freq in Hz
>> ws = 0.3%pi; % digital Stopband freq in Hz
>> Rp = 1; % Passband ripple in dB

>> As = 15; . Stopband attenuation in dB

>> % Analog Prototype Specifications: Inverse mapping for frequencies

»T=1; % Set T=1
>> OmegaP = wp / T; % Prototype Passband freq
>> OmegaS = ws / T; %4 Prototype Stopband freq

>> % Analog Chebyshev-1 Prototype Filter Calculation:
>> [cs,ds] = afd_chbl(OmegaP,OmegaS,Rp,As);
***% Chebyshev-1 Filter Order = 4

>> % Impulse Invariance transformation:
>> [b,a] = imp_invr(cs,ds,T);
>> {C,B,A] = dir2par(b,a)
c= {J
B =-0.0833 -0.0246
0.0833 0.0239
A =1.0000 -1.4934 0.8392
1.0000 -1,5658 0.6549

The desired filter is a 4th-order Chebyshev-1 filter whose system function H (z)

is
H(z)= —0.0833 — 0.02462" : —0.0833 + 0.0239z""
T 1-1.49342-1 +0.8392z~2 1 — 1.56582~1 + 0.6549z~2
The frequency response plots are given in Figure 8.12. (u]

3 EXAMPLES8.13 Design a lowpass digital filter using a Chebyshev-1I prototype to satisfy
wp =0.2nr, R,=1dB
w, =037, A,=15dB

Solution Recall that the Chebyshev-1I filter is equiripple in the stopband. It means that
this analog filter has a response that does not go to zero at high frequencies in
the stopband. Therefore after impulse invariance transformation, the aliasing
effect will be significant; this can degrade the passband response. The MATLAB
script is shown:

Analog-to-Digital Filter Transformations 313

Magnitude Response Phase Response
— 1 —
= 2
; g of -
k-3
= - -
1 [+] 0203 1
frequency in pi units
Group Delay
15

0 0.203 1 0 0203 1
frequency in pi units frequency in pi units

FIGURE 8.12 Digital Chebyshev-1 lowpass filter using impulse invariance design

>> % Digital Filter Specifications:

>> wp = 0.2%pi; % digital Passband freq in Hz
>> ws = 0.3%pi; % digital Stopband freq in Hz
>>Rp = 1; % Passband ripple in dB

> As = 15; % Stopband attenuation in dB

>> % Analog Prototype Specifications: Inverse mapping for frequencies

>» T =1; % Set T=1
>> OmegaP = wp / T; % Prototype Passband freq
>> OmegaS = ws / T; % Prototype Stopband freq

>> % Analog Chebyshev-1 Prototype Filter Calculation:
>> [cs,ds) = afd_chb2(OmegaP,OmegaS,Rp,As);
*x% Chebyshev-2 Filter Order = 4

>> % Impulse Invariance transformation:
>> [b,a] = imp_invr{cs,ds,T);
>> [C,B,A] = dir2par(b,a);

From the frequency response plots in Figure 8.13 we clearly observe the pass-
band as well as stopband degradation. Hence the impulse invariance design
technique has failed to produce a desired digital filter. a

334 Chapter 8 ® IR FILTER DESIGN

O EXAMPLE 8.14

Solution

Magnitude Response Phase Response

1
2

I S0
o

% o203 1 o Toz03 1
frequency in pi units frequency in pi units
Magnitude in dB Group Delay
T 15

0 0203 1 V] 0.20.3 1
frequency in pi units frequency in pi units

FIGURE 8.13 Digital Chebyshev-II lowpass filter using impulse invariance de-
sign
Design a lowpass digital filter using an elliptic prototype to satisfy
wp =027, R,=1dB
we =037, A,=15dB
The elliptic filter is equiripple in both bands. Hence this situation is similar to

that of the Chebyshev-1I filter, and we should not expect a good digital filter.
The MATLAB script is shown:

>> % Digital Filter Specifications:

>> wp = 0.2%pi; % digital Passband freq in Hz
>> ws = 0.3*pi; % digital Stopband freq in Hz
> Rp = 1; % Passband ripple in dB

>> As = 15; % Stopband attenuation in dB

>> % Analog Prototype Specifications: Inverse mapping for frequencies

»> T=1; % Set T=1
>> OmegaP = wp / T; % Prototype Passband freq
>> OmegaS = ws / T; % Prototype Stopband freq

>> % Analog Elliptic Prototype Filter Calculation:
>> [cs,ds] = afd_elip(OmegaP,OmegaS,Rp,As);
Elliptic Filter Order = 3

Analog-to-Digital Filter Transformations 335

0 M L N
0 0.20.3 1 0 0203

frequency in pi units frequency in pi units

Magnitude in dB

0 0203 1 00 0.20.3
frequency in pi units frequency in pi units

FIGURE 8.14 Digital elliptic lowpass filter using impulse invariance design

>> % Impulse Invariance transformation:
>> (b,a] = imp_invr(cs,ds,T);
>> [C,B,A] = dir2par(b,a);

From the frequency response plots in Figure 8.14 we clearly observe that once
again the impulse invariance design technique has failed. o

The advantages of the impulse invariance mapping are that it is a
stable design and that the frequencies {2 and w are linearly related. But
the disadvantage is that we should expect some aliasing of the analog
frequency response, and in some cases this aliasing is intolerable. Conse-
quently, this design method is useful only when the analog filter is essen-
tially band-limited to a lowpass or bandpass filter in which there are ne
oscillations in the stopband.

BILINEAR This mapping is the best transformation method; it involves a well-known
TRANSFOR- function given by
MATION 91 1 L4 sT)2
-2z + s
=TT = T T €2
336 Chapter 8 m IR FILTER DESIGN

where T is a parameter. Another name for this transformation is the linear
fractional transformation because when cleared of fractions, we obtain

%sz+§s—z+1=0

which is linear in each variable if the other is fixed, or bilinear in s and z.

The complex plane mapping under (8.26) is shown in Figure 8.15, from
which we have the following observations:

1. Using s = ¢ + jf in (8.26), we obtain

(1+35T-+Jnf)/(1—3§—1%11) (8.27)

Hence

+°T+]

a<0=~||— ==l <1
- i

QT

1+JQT

0T

1—_1-'2—
1+"T+J

nT

- 2 —i%

=0 = |2|=

>0 = |zl = >1

2. The entire left half-plane maps into the inside of the unit circle.
Hence this is a stable transformation.

3. The imaginary axis maps onto the unit circle in a one-to-one fash-
ion. Hence there is no aliasing in the frequency domain.

jQ Im{z}

o One-to-one
transformation

1+ (sT72)

1-(sTI2y

s-plane z-plane

FIGURE 8.15 Complex-plane mapping in bilinear transformation

Analog-to-Digital Filter Transformations 37

O EXAMPLE 8.15

Solution

O EXAMPLE 8.16

Substituting o = 0 in (8.27), we obtain

145498
=t 2

_~—.=eiw
1—]%7—:

since the magnitude is 1. Solving for w as a function of {2, we obtain

w=2tan™? (922) or Q= %tan (;) (8.28)

This shows that is nonlinearly related to (or warped into) w but that

there is no aliasing. Hence in (8.28) we will say that w is prewarped into
.

s+1
Transform Hu(S) = m

mation. Choose T = 1.

into a digital filter using the bilinear transfor-

Using (8.26), we obtain

2 1—z71 1-271
H(z) = He (T Tyt) = He (2i+—)
T=1
1—271
- 21 42z +1
1-271\? 1-271
(21+Z_1) +5(21+z“ +6
Simplifying,
-1 -2 -1 _ —2
H(z) = 3+22 2% 015+0.12 0.05z o

20+42-1 1402271

MATLAB provides a function called bilinear to implement this map-
ping. Its invocation is similar to the imp_invr function, but it also takes
several forms for different input-output quantities. The Student Edition
manual should be consulted for more details. Its use is shown in the fol-
lowing example.

Transform the system function H,(s) in Example 8.15 using the bilinear
function.

Solution MATLAB Script
> ¢=(1,1); d = [1,5,6]; T=1; Fs = 1/T;
>> [b,a] = bilinear(c,d,Fs)
b = 0.1500 0.1000 -0.0500
a = 1.0000 0.2000 0.0000
338

Chapter 8 ® IR FILTER DESIGN

DESIGN

PROCEDURE

0 EXAMPLE8.17

Solution

The filter is

0.154+0.127! —~0.052~2
H(z)= 141021

as before. a

Given digital filter specifications wp, w,, Ry, and A,, we want to determine
H(z). The design steps in this procedure are the following:

1. Choose a value for 7. This is arbitrary, and we may set I" = 1.
2. Prewarp the cutoff frequencies w, and w,; that is, calculate €2, and
Q, using (8.28):

Q,= %m (‘—"f) , Q= %tan (3’2—’) (8.29)

3. Design an analog filter H;(s) to meet the specifications €1y, £,
Ry, and A,. We have already described how to do this in the previous
section.

4. Finally, set

H(z):H.,(Zl_z_l)

T1+2z1

and simplify to obtain H(z) as a rational function in 27 1.
In the next several examples we demonstrate this design procedure
on our analog prototype filters.
Design the digital Butterworth filter of Example 8.11. The specifications are
wp =027, R,=1dB
ws =037, A,=15dB

MaTLAB Script
>> % Digital Filter Specificatioms:
>> wp = 0.2%pi; % digital Passband freq in Hz
>> ws = 0.3%pi; % digital Stopband freq in Hz
>> Rp = 1; % Passband ripple in dB
>> As = 15; % Stopband attenuation in dB
>> % Analog Prototype Specifications: Inverse mapping for frequencies
>> T=1; Fs = 1/T; % Set T=1
>> OmegaP = (2/T)*tan(wp/2); % Prewarp Prototype Passband freq
>> OmegaS = (2/T)*tan(ws/2); % Prevarp Prototype Stopband freq

>>) Analog Butterworth Prototype Filter Calculation:
>> [cs,ds] = afd_butt(OmegaP,OmegaS,Rp,As);
#** Butterworth Filter Order = 6

Analog-to-Digital Filter Transformations 339

>> % Bilinear transformation:
>> [b,a] = bilinear(cs,ds,Fs);
>> [C,B,A] = dir2cas(b,a)

C = 5.7969e-004

B = 1.0000 2.0183 1.0186
1.0000 1.9814 0.9817
1.0000 2.0004 1.0000

A =1.0000 -0.9459 0.2342
1.0000 -1.0541 0.3763
1.0000 -1.3143 0.7149

The desired filter is once again a 6th-order filter and has 6 zeros. Since the
6th-order zero of H, (s) at s = —oo is mapped to z = —1, these zeros should be
at z = —1. Due to the finite precision of MATLAB these zeros are not exactly at
2z = —1. Hence the system function should be

0.00057969 (1 + 27)°

H(z)=(

1-0.9459z-1 + 0.23422~7) (1 — 1.0541z ! + 0.37532~2) (1 — 1.3143z~1 + 0.71492-2)

The frequency response plots are given in Figure 8.16. Comparing these plots
with those in Figure 8.11, we observe that these two designs are very similar.

Magnitude Response
1 :
0.8913f
z
01778
0 N
0 0203
frequency in pi units

Magnitude in dB

0.203
fraquency in pi units

a
Phase Response

1
2
S o
a

- A
0 0.20.3 1
frequency in pi units
Group Delay

Samples

0
[

0.20.3 1
trequency in pi units

FIGURE 8.16 Digital Butterworth lowpass filter using bilinear transformation

340

Chapter 8 ® [IR FILTER DESIGN

00 EXAMPLE 8.18 Design the digital Chebyshev-I filter of Example 8.12. The specifications are

wp = 0.2m,

wy = 0.3m,

Solution MATLAB Script

R,=1dB
A, =15dB

>> % Digital Filter Specificatioms:
>> wp = 0.2%pi;

>> ws = 0.3*pi;

>> Rp = 1;

>> As = 15;

% digital Passband freq in Hz
% digital Stopband freq in Hz
% Passband ripple in dB

% Stopband attenuation in dB

>> % Analog Prototype Specifications: Inverse mapping for frequencies

> T =1; Fs = 1/T;
>> OmegaP = (2/T)*tan(wp/2);
>> OmegaS = (2/T)#*tan(ws/2);

% Set T=1
% Prewarp Prototype Passband freq
% Prewarp Prototype Stopband freq

>> % Analog Chebyshev-1 Prototype Filter Calculatiom:
>> [cs,ds] = afd_chbl(OmegaP,OmegaS,Rp,As);

**%x Chebyshev-1 Filter Order = 4

>> % Bilinear transformation:

> [b,a] = bilinear(cs,ds,Fs);

>> [C,B,A} = dir2cas(b,a)

C = 0.0018

B = 1.0000 2.0000 1.0000
1.0000 2.0000 1.0000

A = 1.0000 -1.4996 0.8482
1.0000 -1.5548 0.6493

The desired filter is a 4th-order filter and has 4 zeros at z = —1. The system

function is

H(2)=

0.0018 (1 +27%)*

(1 — 14996z + 0.84827-2) (1 — 1.55482-1 + 0.6493z~2)

The frequency response plots are given in Figure 8.17 which are similar to those

in Figure 8.12. m}
O EXAMPLE8.19 Design the digital Chebyshev-I filter of Example 8.13. The specifications are
wp =027, R,=1dB
ws =0.37, A,=15dB
Solution MATLAB Script
>> % Digital Filter Specificationms:
> wp = 0.2%pi; % digital Passband freq in Hz
>> wg = 0.3%pi; % digital Stopband freq in Hz
>>Rp = 1; % Passband ripple in dB
>> As = 15; % Stopband attenuation in dB
Analog-to-Digital Filter Transformations 341

Phase Response

1
1
0.8913
2
S So
s
04778
% 1 o o203 _ 1
frequency in pi units
Group Delay
15 .

0 0203 1 0 0203 1
frequency in pi units frequency in pi units

FIGURE 8.17 Digital Chebyshev-I lowpass filter using bilinear transformation

>> % Analog Prototype Specifications: Inverse mapping for frequencies

> T=1; Fg = 1/T; % Set T=1
>> OmegaP = (2/T)*tan(wp/2); % Prewarp Prototype Passband freq
>> OmegaS = (2/T)¥tan(ws/2); % Prewarp Prototype Stopband freq

>> % Analog Chebyshev-2 Prototype Filter Calculation:
>> [cs,ds] = afd_chb2(OmegaP,OmegaS,Rp,As);
#x* Chebyshev-2 Filter Order = 4
>> % Bilinear transformation:
>> [b,a] = bilinear(cs,ds,Fs);
>> [C,B,A] = dir2cas(b,a)
C = 0.1797
B = 1.0000 0.5574 1.0000
1.0000 -1.0671 1.0000
A =1.0000 -0.4183 0.1503
1.0000 -1.1325 0.7183

The desired filter is again a 4th-order filter with system function

0.1797 (1 4 0.55742" +277) (1 - 1.06712~" + 272)
1-0.4183z~1 +0.15032-%) (1 — 1.13252~1 + 0.7183z2)

H(z)r_(

Chapter 8 ® IR FILTER DESIGN

Magnitude Response

1
0.8913
I
0.1778
0 :
0 0203 1
frequency in pi units
Magnitude in dB
o St
101
I3 @«
215 1+
3 E
£ oS\
N :, 0 M N
0 0203 0 0.20.3 1
frequency in pi units frequency in pi units

FIGURE 8.18 Digital Chebyshev-II lowpass filter using bilinear fransformation

The frequency response plots are given in Figure 8.18. Note that the bilinear
transformation has properly designed the Chebyshev-1I digital filter. [w}
O EXAMPLE820 Design the digital elliptic filter of Example 8.14. The specifications are
wp =0.2n, Rp=1dB
w, =0.3w, As;=15dB

Solution MATLAB Script
>> % Digital Filter Specifications:
>> wp = 0.2#pi; % digital Passband freq in Hz
>> ws = 0.3#pi; % digital Stopband freq in Hz
> Rp = 1; % Passband ripple in dB
>> A8 = 15; % Stopband attenuation in dB
>> % Analog Prototype Specifications: Inverse mapping for frequencies
>> T=1; Fs = 1/T; % Set T=1
>> OmegaP = (2/T)*tan(wp/2); % Prewarp Prototype Passband freq
>> OmegaS = (2/T)*tan(ws/2); % Prewarp Prototype Stopband freq

>> % Analog Elliptic Prototype Filter Calculation:
>> [cs8,ds] = afd_elip(OmegaP,(megaS,Rp,As);

#** Elliptic Filter Order = 3

>> % Bilinear transformation:

Analog-to-Digital Filter Transformations 343

> [b

,a)] = bilinear{(cs,ds,Fs);

>> [C,B,A) = dir2cas(b,a)

C=0
B=1

L1214

.0000 -1.4211 1.0000
.0000 1.0000 0
.0000 -1.4928 0.8612
.0000 -0.6183 0

The desired filter is a 3rd-order filter with system function

01214 (1-1.4211z7" +272) (14 277)

H(2) = 7 =72938:-1 + 0.86125-7) (1 - 0.61832-1)

The frequency response plots are given in Figure 8.19. Note that the bilinear
transformation has again properly designed the elliptic digital filter. a

The advantages of this mapping are that (a) it is a stable design,
{b) there is no aliasing, and (c) there is no restriction on the type of filter
that can be transformed. Therefore this method is used exclusively in
computer programs including MATLAB as we shall see next.

Magnitude Response Phase Response
1
1
0.8913;--
= 2
s 5o
a
0.1778 :
0 -1 L
0 0.203 1 0 0.20.3 1
frequency in pi units frequency In pi units
Magnitude in dB Group Delay
T 15 :
N 0 N A
0 0.20.3 1 0 0203 1
frequency in pi units frequency in pi units

FIGURE 8.19 Digital elliptic lowpass filter using bilinear transformation

Chapter 8 & |IR FILTER DESIGN

LOWPASS FILTER DESIGN USING MATLAB
-

In this section we will demonstrate the use of MATLAB’s filter design
routines to design digital lowpass filters. These functions use the bilinear
transformation because of its desirable advantages as discussed in the
previous section. These functions are as follows:

1. [b,al=butter(N,wn)

This function designs an Nth-order lowpass digital Butterworth filter
and returns the filter coefficients in length N +1 vectors b and a. The filter
order is given by (8.10), and the cutoff frequency wn is determined by the
prewarping formula (8.29). However, in MATLAB all digital frequencies are
given in units of #. Hence wn is computed by using the following relation:

Wy = 2 tan™? (—QCT)
g 2

The use of this function is given in Example 8.21.

2. [b,al=cheby1(N,Rp,wn)

This function designs an Nth-order lowpass digital Chebyshev-I filter
with Rp decibels of ripple in the passband. It returns the filter coefficients
in length N + 1 vectors b and a. The filter order is given by (8.20), and
the cutoff frequency wn is the digital passband frequency in units of ;
that is,

Wy = Wy/T

The use of this function is given in Example 8.22.

3. [b,al=cheby2(N,As,wn)

This function designs an Nth-order lowpass digital Chebyshev-II filter
with the stopband attenuation As decibels. It returns the filter coefficients
in length N + 1 vectors b and a. The filter order is given by (8.20), and
the cutoff frequency wn is the digital stopband frequency in units of ;
that is,

W, = W [T

The use of this function is given in Example 8.23.

4. [b,al=ellip(N,Rp,As,wn)

This function designs an Nth-order lowpass digital elliptic filter with
the passband ripple of Rp decibels and a stopband attenuation of As deci-
bels. It returns the filter coefficients in length N + 1 vectors b and a. The
filter order is given by (8.23), and the cutoff frequency wn is the digital

Lowpass Filter Design Using MATLAB 345

0O EXAMPLE 8.21

>>
>>
>>
>>
>>

>>
>>
>>
>>

>>
>>
>>
xk
>>
>>

>>
>>
>>
>>

passband frequency in units of «; that is,
Wn = wWp/T
The use of this function is given in Example 8.24.

All these above functions can also be used to design other frequency-
selective filters, such as highpass and bandpass. We will discuss their
additional capabilities in Section 8.5.

There is also another set of filter functions, namely the buttord,
chebiord, cheb2ord, and ellipord functions, which can provide filter
order N and filter cutoff frequency wy, given the specifications. These
functions are available in the Signal Processing toolbox but not in the
Student Edition, and hence in the examples to follow we will determine
these parameters using the formulas given earlier. We will discuss the
filter-order functions in the next section.

In the following examples we will redesign the same lowpass filters
of previous examples and compare their results. The specifications of the
lowpass digital filter are

wp=02m, R,=1dB
ws =031, A, =15dB

Digital Butterworth lowpass filter design:

% Digital Filter Specifications:

wp = 0.2%pi; %digital Passband freq in Hz

ws = 0.3*pi; %digital Stopband freq in Hz

Rp = 1; APassband ripple in dB

As = 15; %Stopband attenuation in dB

% Analog Prototype Specifications:

T=1; %Set T=1

OmegaP = (2/T)*tan(wp/2); YPrewarp Prototype Passband freq
OmegaS = (2/T)*tan(ws/2); YPrewarp Prototype Stopband freq

% Analog Prototype Order Calculation:
N =ceil{(1og10((10~ (Rp/10)-1)/(10"(As/10)-1)))/(2%1og10(OmegaP/OmegaS)));’
fprintf(’\n**+ Butterworth Filter Order = %2.0f \n’,N)

Butterworth Filter Order = 6
OmegaC = OmegaP/((10~(Rp/10)-1)~(1/(2*N))); YAnalog BW prototype cutoff
wvn = 2*atan((OmegaCsT)/2); YDigital BW cutoff freq

% Digital Butterworth Filter Design:
wn = wn/pi; %Digital Butter cutoff in pi units
[b,al=buttexr (N,wn);

[»0,B,

Al = dir2cas(b,a)

Chapter 8 ® [IR FILTER DESIGN

C = 5.7969e-004

B = 1.0000 2.0297 1.0300
1.0000 1.9997 1.0000
1.0000 1.9706 0.9709

A = 1.0000 -0.9459 0.2342
1.0000 -1.0541 0.3753
1.0000 -1.3143 0.7149

The system function is

0.00057969 (1 + z*)°
(1~ 0.9459z-1 + 0.2342z-2) (1 — L0541z +0.37532~2) (1 ~ 1314321 + 0.7149z7)

H(z)=

which is the same as in Example 8.17. The frequency-domain plots were shown
in Figure 8.16. [&]

0O EXAMPLE 822 Digital Chebyshev-1 lowpass filter design:

>> % Digital Filter Specifications:

>> wp = 0.2%pi; %digital Passband freq in Hz
>> ws = 0.3%pi; #digital Stopband freq in Hz
> Rp = 1; %Passband ripple in dB

>> As = 15; %Stopband attenuation in dB

>> % Analog Prototype Specifications:

> T =1; %Set T=1

>> OmegaP = (2/T)*tan(wp/2); %Prevarp Prototype Passband freq
>> OmegaS = (2/T)*tan(ws/2); %Prewarp Prototype Stopband freq
>> % Analog Prototype Order Calculation: :

>> ep = sqrt(10~(Rp/10)-1); %Passband Ripple Factor

>> A = 10"(As/20); %Stopband Attenuation Factor

>> OmegaC = OmegaP; %Analog Prototype Cutoff freq

>> OmegaR = OmegaS/OmegaP; %Analog Prototype Tramsition Ratio
>> g = sqrt{A+A-1)/ep; %Analog Prototype Intermediate cal.

>> N = ceil(1log10(g+sqrt(g*g-1))/logi0(OmegaR+sqrt (OmegaR+OmegaR-1))) ;
>> fprintf (’\n#** Chebyshev~1 Filter Order = %2.0f \n’,N)
*xx Chebyshev-1 Filter Order = 4

>> % Digital Chebyshev-I Filter Design:
>> wn = wp/pi; #Digital Passband freq in pi units
>> [b,a)=chebyl(N,Rp,wn);
>> [b0,B,A] = dir2cas(b,a)
b0 = 0.0018
B = 1.0000 2.0000 1.0000
1.0000 2.0000 1.0000
A= 1.,0000 -1.,4996 0.8482
1.0000 -1.5548 0.6493

Lowpass Filter Design Using MATLAB 347

0O EXAMPLE8.23

>
>>
>>
>>
>>

>
>
>>
>>

>>
>>
>>
>>
>>
>>
>>
>>

*x% Chebyshev-2 Filter Order =

The system function is

0.00i8 (1+27)*

H(z)= a

149962 1 0.84822-2) (1 — 1.554871 + 0.6493z-%)

which is the same as in Example 8.18. The frequency-domain plots were shown

in Figure 8.17.

% Digital Filter Specifications:
wp = 0.2%pi;

ws = 0.3*pi;

Rp = 1;

As = 15;

% Analog Prototype Specifications:
T=1;

OmegaP = (2/T)*tan(wp/2);

OmegaS = (2/T)*tan(ws/2);

% Analog Prototype Order Calculation:
ep = sqrt(10~(Rp/10)-1);

A = 10~(A8/20);

OmegaC = OmegaP;

OmegaR = (megaS/OmegaP;

g = sqrt(A*A-1)/ep;

a

Digital Chebyshev-II lowpass filter design:

%digital Passband freq in Hz
%digital Stopband freq in Hz
%Passband ripple in dB

%Stopband attenuation in dB

%Set T=1
%Prevarp Prototype Passband freq
%Prevarp Prototype Stopband freq

Y%Passband Ripple Factor

%Stopband Attenuation Factor
%Analog Prototype Cutoff freq
%Analog Prototype Transition Ratio
%Analog Prototype Intermediate cal.

N = ceil(logl0{(g+sqrt{g*g-1))/log10(OmegaR+sqrt (OmegaR*OmegaR-1)});
fprintf (’\n#** Chebyshev-2 Filter Order = %2.0f \n’,N)

4

>> % Digital Chebyshev-II Filter Design:
>> wn = ws/pi;
>> [b,al=cheby2(N,As,wvn);.
>> [b0,B,A] = dir2cas(b,a)
b0 = 0.1797
B = 1.0000 0.5574 1.0000
1.0000 ~1.0671 1.0000
A = 1.0000 -0.4183 0.1503
1.0000 -1.1325 0.7183

The system function is

%4Digital Stopband freq in pi umits

0.1797 (14 0.5574z7 + 27%) (1 - 1.067127" + 27%)

H(z)= @

—0.4183z~1 + 0.15032-2) (1 — 1.13252~1 + 0.7183z~2)

which is the same as in Example 8.19. The frequency-domain plots were shown

in Figure 8.18.

a

Chapter 8 B IR FILTER DESIGN

O EXAMPLE 824 Digital elliptic lowpass filter design:

>> % Digital Filter Specifications:

>> wp = 0.2%pi; %digital Passband freq in Hz
>> ws = 0.3%pi; %digital Stopband freq in Hz
>> Rp = 1; YPassband ripple in dB

>> As = 15; %Stopband attenuation in dB

>> % Analog Prototype Specifications:

> T =1; %Set T=1 .

>> (megaP = (2/T)*tan(wp/2); YPrewarp Prototype Passband freq
>> OmegaS = (2/T)*tan(ws/2); YPrewarp Prototype Stopband freq
>> % Analog Elliptic Filter order calculations:

>> ep = sqrt(10~(Rp/10)-1); %Passband Ripple Factor

>> A = 10~ (As8/20); %Stopband Attenuation Factor

>> OmegaC = OmegaP; %Analog Prototype Cutoff freq

>> k = DmegaP/OmegaS; %Analog Prototype Transition Ratio;
>> k1 = ep/sqrt(A*A-1); %Analog Prototype Intermediate cal.

>> capk = ellipke([k."2 1-k."2]);

>> capkl = ellipke([(k1 ."2) 1~(ki ."2)]);

>> N = ceil(capk(1)*capki(2)/(capk(2)*capk1(1)));

>> tprintf (’\n##* Elliptic Filter Order = %2.0f \n’,N)
**+% Elliptic Filter Order = 3

>> % Digital Elliptic Filter Design:

>> wn = wp/pi; #Digital Passband freq in pi units
>> [b,al=ellip(N,Rp,As,wn);

>> {b0,B,A] = dir2cas(b,a)

b0 = 0.1214

B =1.0000 -1.4211 1.0000
1.0000 1.0000 0

A=1.0000 -1.4928 0.8612
1.0000 -0.6183 0

The system function is

0.1214 (1~ 1421027 + 27 (1+27")
(1~ 1.4928z~7 + 0.86122~2) (1 — 0.6183z~Y)

H(2)=

which is the same as in Example 8.20. The frequency-domain plots were shown
in Figure 8.19. =]

COMPARISON In our examples we designed the same digital filter using four different

OF THREE prototype analog filters. Let us compare their performance. The specifi-

FILTERS cations were wp = 0.27, R, = 1 dB, w, = 0.37, and 4, = 15 dB. This
comparison in terms of order N and the minimum stopband attenuations
is shown in Table 8.1.

Lowpass Filter Design Using MATLAB 349

TABLE 8.1 Comparison of three filters

Prototype Order N Stopband Att.
Butterworth 6 15
Chebyshev-1 4 25
Elliptic 3 27

Clearly, the elliptic prototype gives the best design. However, if we
compare their phase responses, then the elliptic design has the most non-
linear phase response in the passband.

FREQUENCY-BAND TRANSFORMATIONS
—8

In the preceding two sections we designed digital lowpass filters from
their corresponding analog filters. Certainly, we would like to design other
types of frequency-selective filters, such as highpass, bandpass, and band-
stop. This is accomplished by transforming the frequency axis (or band)
of a lowpass filter so that it behaves as another frequency-selective fil-
ter. These transformations on the complex variable z are very similar
to bilinear transformations, and the design equations are algebraic. The
procedure to design a general frequency-selective filter is to first design
a digital prototype (of fixed bandwidth, say unit bandwidth) lowpass fil-
ter and then to apply these algebraic transformations. In this section
we will describe the basic philosophy behind these mappings and illus-
trate their mechanism through examples. MATLAB provides functions that
incorporate frequency-band transforination in the s-plane. We will first
demonstrate the use of the z-plane mapping and then illustrate the use of
MATLAB functions. Typical specifications for most commonly used types
of frequency-selective digital filtefs are shown in Figure 8.20.

Let Hpp(Z) be the given prototype lowpass digital filter, and let H(z)
be the desired frequency-selective digital filter. Note that we are using
two different frequency variables, Z and z, with Hyp and H, respectively.
Define a mapping of the form

Z7t =Gz
such that
H(z) = HLp(2)| g-1ogp-ny

To do this, we simply replace Z~! everywhere in Hpp by the function
G(z™1). Given that Hpp(Z) is a stable and causal filter, we also want
H(2) to be stable and causal. This imposes the following requirements:

350 Chapter 8 ® IR FILTER DESIGN

{H(e/| [Hes)

1 1+ |]
1 1
Vite Vite]
Lowpass Highpass
1] Ll H
A A
1| [N 11 1 e
0 wp @y T [} ws wp ”
[H(e=)]
1+] 1]
.)
Visa — Vize R
Bandpass Bandstop
1 r AT i —
A
L 11 [(I [L vw
0 ws, wp, Wy, @s, - 0 wp, s, s, @p, L4

FIGURE B.20 Specifications of frequency-selective filters

1. G(-) must be a rational function in 27! so that H(z) is imple-
mentable.

2. The unit circle of the Z-plane must map onto the unit circle of the
z-plane.

3. For stable filters, the inside of the unit circle of the Z-plane must
also map onto the inside of the unit circle of the z-plane.

Let o' fuld w be the frequency variables of Z and z, respectively—that
is, Z = ¢/ and z = ¢’ on their respective unit circles. Then requirement
2 above implies that

1271 = |67 = |6(e)| =1
and
e—dv — lG(e—jw)‘ejLG(e—j”)
or

—w' = LG(e7¥)

Frequency-band Transformations 351

The general form of the function G(-) that satisfies the above requirements
is a rational function of the all-pass type given by

_ —ak
z1l= :I:”
1—-opz1

where |og| < 1 for stability and to satisfy requirement 3.

Now by choosing an appropriate order n and the coefficients {a}, we
can obtain a variety of mappings. The most widely used transformations
are given in Table 8.2. We will now illustrate the use of this table for
designing a highpass digital filter.

TABLE 8.2 Frequency transformation for digital filters (prototype lowpass filter
has cutoff frequency w))

Type of
Transformation Transformation Parameters
7 l-a
Lowpass 71— " w, = cutoff frequency of new filter
= Sinf(we —we) /2]
= sin [(wh + we) /2]
2 lta
Highpass 27— B g we = cutoff frequency of new filter
__cos[(wl+we) /2]
cos [(we — we) /2]
iz o
Bandpass 7l — P et wr we = lower cutoff frequency
wy = upper cutoff frequency
o =-28K/(K +1)
a2 =(K -1)/(K+1)
5o conllon + w0 /2
cos [{wu — we) /2]
L wa—wy wl
K = cot 3 tan 5
—2_ -1
Bandstop ! z uz _+as wy = lower cutoff frequency

02272 —ayz71 41
wy = upper cutoff frequency

o =—26/(K +1)

@ = (K - 1)/(K +1)
__cos [(wy +wy) /2]
= cos [(wy — wg) /2]

w
t._c_
a7

K =tan 2

352

Chapter 8 B)R FILTER DESIGN

O EXAMPLE 8.25

In Example 822 we designed a Chebyshev-I lowpass filter with specifications
wp, =027, R,=1dB
w, =037, A,=15dB

and determined its system function

0.001836(1 + Z~1)*
(1 —1.4996Z-7 + 0.8482Z~2)(1 ~ 1.55482~1 + 0.64932 %)

Design a highpass filter with the above tolerances but with passband beginning
at wy = 0.67.

Hpp(Z) =

We want to transform the given lowpass filter into a highpass filter such that
the cutoff frequency w;, = 0.27 is mapped onto the cutoff frequency wp = 0.67.
From Table 8.2
__cos{(0-2m +0.6m)/2] _
=~ oonl(0.27 —05m)/2] = 0.38197 (8.30)

Hence

Hpp(z) = H(Z)lz__ z—1-0.38197
T 1 03819721
_ 0.02426(1 —- z~1)*
- (1 +0.5661z—! + 0.7657z~2)(1 + 1.04162~1 + 0.401922)

which is the desired filter. The frequency response plots of the lowpass filter
and the new highpass filter are shown in Figure 8.21. o

From the above example it is obvious that to obtain the rational
function of a new digital filter from the prototype lowpass digital filter,
we should be able to implement rational function substitutions from Ta-
ble 8.2. This appears to be a difficult task, but since these are algebraic
functions, we can use the conv function repetitively for this purpose. The
following zmapping function illustrates this approach.

function [bz,az] = zmapping(bZ,aZ,Nz,Dz)

% Frequency band Transformation from Z-domain to z-domain
%
% [bz,az] = zmapping(bZ,aZ,Nz,Dz)

% performs:

% b(z) b2

% - x| N(z)

% a(z) a(@lez = -——

% D(z)

%

bzord = (length(bZ)-1)*(length(Nz)-1);
azord = (length(aZ)-1)*(length(Dz)-1);

bz = zeros(1,bzord+l);
for k = 0:bzord

Frequency-band Transformations 353

Lowpass Filter Magnitude Response Lowpass Filter Magnitude in dB

Qf"_- <o
0.8913("- Vi]
K
|
ob—-o 30
[} 0.2 1 0 0.2
frequency in pi units frequency in pi units
Highpass Fitter Magnitude Response Highpass Filter Magnitude in d8
1 ; S =
0.8913F - e . \/\l 3
2
%
00 0.6 1 0 0.6
frequency in pi units frequency in pi units

FIGURE 8.21 Magnitude response plots for Example 8.25

pln

end

= (1];
for 1 = 0:k-1
pln = conv(pln,Nz);
end
pld = (1];
for 1 = 0:bzord-k-1
pld = conv(pld,Dz);
end
bz = bz+bZ(k+1)*conv(pln,pld);

az = zeros(1,azord+i);

for

k = 0:azord
pln = [1];
for 1 = 0:k-1
pln = conv(pln,Nz};
end
pld = [1];
for 1 = O:azord-k-1
pld = conv(pld,Dz);
end

354

Chapter 8 m IR FILTER DESIGN

az = az+aZ(k+1)*conv(pln,pld);
end

azl = az(1); az = az/azl; bz = bz/azl;

[0 EXAMPLES8.26 Use the zmapping function to perform the lowpass-to-highpass transformation

Solution

>
>
>>
>
>>

>
>>
>>
>>

>>
>
%

>>
>

>>
>>

>>
>>

in Example 8.25.

First we will design the lowpass digital filter in MATLAB using the bilinear
transformation procedure and then use the zmapping function.

% Digital Lowpass Filter Specifications:
wplp = 0.2%pi; % digital Passband freq in Hz
wslp = 0.3%pi; % digital Stopband freq ip Hz

Rp = 1; % Passband ripple in dB

As = 15; % Stopband attenuation in dB
% Analog Prototype Specifications: Inverse mapping for frequencies
T=1; Fs = 1/T; % Set T=1
DmegaP = (2/T)*tan(wplp/2); % Prewarp Prototype Passband freq
OmegaS = (2/T)*tan(wslp/2); % Prewarp Prototype Stopband freq
% Analog Chebyshev Prototype Filter Calculation:

[cs,ds] = afd_chbi(OmegaP,OmegaS,Rp,As);
Chebyshev-1 Filter Order = 4

% Bilinear transformationm:
{blp,alp] = bilinear(cs,ds,Fs);

% Digital Highpass Filter Cutoff frequency:
vphp = 0.6%pi; % Passband edge freguency

% LP-to-HP frequency-band transformationm:
alpha = -(cos{(wplp+wphp)/2))/ (cos((wplp-wphp)/ 2))

alpha = -0.3820

>>
>>
>>

Nz = -[alpha,1]; Dz = {1,alphal;
[bhp,ahp] = zmapping(blp,alp,Nz,Dz);
[C,B,A) = dir2cas(bhp,ahp)

C = 0.0243
B = {.0000 -2.0000 1.0000

1.0000 -2.0000 1.0000

A = 1.0000 1.0416 0.4019

1.0000 0.5661 0.7647

Frequency-band Transformations T35

DESIGN
PROCEDURE

The system function of the highpass filter is

H()= 0.0243(1 — 2~ 1)¢
T (140.56612-1 + 0.7647272) (1 + 1.0416z -1 + 0.40192-2)
which is essentially identical to that in Example 8.25. o

In Example 8.26 a lowpass prototype digital filter was available to trans-
form into a highpass filter so that a particular band-edge frequency was
properly mapped. In practice we have to first design a prototype lowpass
digital filter whose specifications should be obtained from specifications
of other frequency-selective filters as given in Figure 8.20. We will now
show that the lowpass prototype filter specifications can be obtained from
the transformation formulas given in Table 8.2.

Let us use the highpass filter of Example 8.25 as an example. The
passband-edge frequencies were transformed using the parameter a =
—0.38197 in (8.30). What is the stopband-edge frequency of the highpass
filter, say w;, corresponding to the stopband edge v = 0.37 of the pro-
totype lowpass filter? This can be answered by (8.30). Since « is fixed for
the transformation, we set the equation

cos[(0.37 +w,)/2]
= ——m = —0.38197

This is a transcendental equation whose solution can be obtained itera-
tively from an initial guess. It can be done using MATLAB, and the solution
is

w, = 0.45867

Now in practice we will know the desired highpass frequencies w, and
wp, and we are required to find the prototype lowpass cutoff frequencies
w) and w;,. We can choose the passband frequency w, with a reasonable
value, say w,, = 0.27, and determine @ from w, using the formula from
Table 8.2. Now w) can be determined (for our highpass filter example)

from o and

go_i e
1+ @z
where Z = ei¥s and z = i, or
e+ a
W= (_1 + ae—iw.) (8.31)

Continuing our highpass filter example, let w, = 0.6m and w, = 0.45867 be
the band-edge frequencies. Let us choose w}, = 0.27. Then a = —0.38197

356

Chapter 8 m IR FILTER DESIGN

O EXAMPLE8.27

from (8.30), and from (8.31)

. e—70-45867 _ () 38197 _
Wy =L <_ T— 0381075037) = 037

as expected. Now we can design a digital lowpass filter and transform
it into a highpass filter using the zmapping function to complete our
design procedure. For designing a highpass Chebyshev-I digital filter, the
above procedure can be incorporated into a MATLAB function called the

cheblhpi function shown below.

function [b,a] = chebihpf(wp,ws,Rp,As)

% IIR Highpass filter design using Chebyshev-1 prototype
% function [b,al = chebihpf(wp,ws,Rp,As)

% b = Numerator polynomial of the highpass filter

% a = Denominator polynomial of the highpass filter

% wp = Passband frequency in radians

% ws = Stopband frequency in radians

% Rp = Passband ripple in dB

% As = Stopband attenuation in 4B

%

% Determine the digital lowpass cutoff frequecies:
wplp = 0.2#pi;

alpha = ~(coe((wplp+wp}/2))/(cos((vplp-wp)/2));

wslp = angle(-(exp(-j*ws)+alpha)/(1+alpha*exp(-j*ws}});
%
% Compute Analog lowpass Prototype Specifications:
T=1; Fs = 1/T;

OmegaP = (2/T)*tan(wplp/2);

OmegaS = (2/T)*tan(wslp/2);

% Design Analog Chebyshev Prototype Lowpass Filter:
[cs,ds] = afd_chbil(OmegaP,OmegaS,Rp,As);

% Perform Bilinear transformation to obtain digital lowpass

(blp,alp] = bilinear(cs,ds,Fs);

% Transform digital lowpass into highpass filter
Nz = -[alpha,1]; Dz = [1,alpha];
[b,a] = zmapping(blp,alp,Nz,Dz);

We will demonstrate this procedure in the following example.
Design a highpass digital filter to satisfy

wp = 0.6, R,=1dB

ws = 0.45867, A, =15dB
Use the Chebyshev-I prototype.

Frequency-band Transformations

357

MATLAB
IMPLEMEN-
TATION

MaTLAB Script
>> % Digital Highpass Filter Specificationms:

>> wp = 0.64pi; % digital Passband freq in Hz
>> wg = 0.4586%pi; % digital Stopband freq in Hz
>» Rp = 1; % Passband ripple in dB

>> As = 15; % Stopband attenuation in dB

> [b,a] = chebihpf(wp,vs,Rp,As);

>> [C,B,A] = dir2cas(b,a)

C = 0.0243

B = 1.0000 -2.0000 1.0000
1.0000 -2.0000 1.0000

A = 1.0000 1.0416 0.4019

1.0000 0.5561 0.7647

The system function is

0.0243(1 — z71)*
(1+0.5661z-1 + 0.76472—2)(1 + 1.0416z~7 + 0.40192~2)

which is identical to that in Example 8.26. 0

H(Z):

The above highpass filter design procedure can be easily extended to
other frequency-selective filters using the transformation functions in Ta-
ble 8.2. These design procedures are explored in Problems 8.18 through
8.22. We now describe MATLAB's filter design functions for designing ar-
bitrary frequency-selective filters.

In the preceding section we discussed four MATLAB functions to design
digital lowpass filters. These same functions can also be used to design
highpass, bandpass, and bandstop filters. The frequency-band transforma-
tions in these functions are done in the s-plane, that is, they use Approach-
1 discussed on page 301. For the purpose of illustration we will use the
function butter. It can be used with the following variations in its input
arguments.

¢ [b,a) = BUTTER(N,wn, *high’) designs an Nth-order highpass fil-
ter with digital 3-dB cutoff frequency wn in units of .

s [b,al = BUTTER(N,wn,)designs an order 2N bandpass filter if wn is
a two-element vector, wn=[w1 w2], with 3-dB passband w1 < w < w2 in
units of 7.

e [b,a] = BUTTER(N,wn,’stop’) is an order 2N bandstop filter if
wn=[wl w2]with 3-dB stopband wl < w < w2 in units of .

To design any frequency-selective Butterworth filter, we need to know
the order N and the 3-dB cutoff frequency vector wn. In this chapter we

358

Chapter 8 B (IR FILTER DESIGN

00 EXAMPLE 8.28

described how to determine these parameters for lowpass filters. However,
these calculations are more complicated for bandpass and bandstop filters.
In their Signal Processing toolbox, MATLAB provides a function called
buttord to compute these parameters. Given the specifications, wp, ws,
R,, and A,, this function determines the necessary parameters. Its syntax
is

[N,vm] = buttord(wp,ws,Rp,As)

The parameters wp and ws have some restrictions, depending on the type
of filter:

o for lowpass filters wp < ws,

o for highpass filters wp > ws,

o for bandpass filters wp and ws are two-element vectors, wp=[wp1,
wp2] and ws=[ws1,ws2], such that ws1 < wpl < wp2 < ws2, and

o for bandstop filters wpl < wsl < ws2 < wp2.

Now using the buttord function in conjunction with the butter func-
tion, we can design any Butterworth IIR filter. Similar discussions apply
for cheby!, cheby2, and e1lip functions with appropriate modifications.
We illustrate the use of these functions through the following examples.

In this example we will design a Chebyshev-1 highpass filter whose specifications
were given in Example 8.27.

Solution MATLAB Script
>> % Digital Filter Specificatioms: % Type: Chebyshev-I highpass
>> ws = 0.4586%pi; % Dig. stopband edge frequency
>> wp = 0.6%pi; % Dig. passband edge frequency
> Rp = 1; % Passband ripple in dB
>> As = 15; % Stopband attenuation in dB

>> J% Calculations of Chebyshev~I Filter Parameters:
>> [N,wn] = cheblord(wp/pi,ws/pi,Rp,As);

>> % Digital Chebyshev-1 Highpass Filter Design:
>> [b,a) = chebyi(N,Rp,wn,’high’);

>> % Cascade Form Realization:
>> [b0,B,A}] = dir2cas(b,a)

b0 = 0.0243

B =1.0000 -1.9991 0.9991

1.0000 -2.0009 1.0009

A = 1.0000 1.0416 0.4019

1.0000 0.5561 0.7647

Frequency-band Transformations 359

The cascade form system function

0.0243(1 — z71)*
(1 + 056612~ + 0.76472~2)(1 + 1.04162-1 + 0.40182~2)

H(z)=

is identical to the filter designed in Example 8.27, which demonstrates that
the two approaches described on page 301 are identical. The frequency-domain
plots are shown in Figure 8.22. o

1 EXAMPLE 8.29 In this example we will design an elliptic bandpass filter whose specifications
are given in the following MATLAB script:

>> % Digital Filter Specifications: % Type: Elliptic Bandpass

>> ws = [0.3%pi 0.75%pi); % Dig. stopband edge frequency
>> wp = [0.4+pi 0.6#pi]; % Dig. passband edge frequency
> Rp = 1; % Passband ripple in dB

>> As = 40; % Stopband attenuation in dB

>> % Calculations of Elliptic Filter Parameters:
>> [N,wn] = ellipord(wp/pi,ws/pi,Rp,As);

>> % Digital Elliptic Bandpass Filter Design:
>> {b,a] = ellip(N,Rp,As,wm);

Phase Response
y 1 r
0.8013} e ESUDT
% 05 oAb
3
a
€ o
5-05
04778
o . _1 N N
0 0.46 0.6 1 0 046 06 1
Digital frequency in pi units frequency in pi units
Magnitude in dB Group Delay
= 10 .
w Bb
. £l
E g 6
15 d
3 -
$ 2
N N 0
3G() 0.46 0.6 1 [¢] 0.46 0.6 1
frequency in pi units frequency in pi units

FIGURE 8.22 Digital Chebyshev-I highpass filter in Example 8.28

360 Chapter 8 & HR FILTER DESIGN

>> Y Cascade Form Realization:
>> [b0,B,A] = dir2cas(b,a)
b0 = 0.6187

B=1
1

L ST SN

O EXAMPLE 8.30

.0000 1.5066 1.0000
.0000 0.9268 1.0000
.0000 -0.9268 1.0000
.0000 -1.5066 1.0000
.0000 0.5963 0.9399
.0000 0.2774 0.7929
L0000 -0.2774 0.7929
-0000 -0.5963 0.9399

Note that the designed filter is a 10th-order filter. The frequency-domain plots
are shown in Figure 8.23. [m}

Finally, we will design a Chebyshev-II bandstop filter whose specifications are
given in the following MATLAB script.

>> % Digital Filter Specifications: % Type: Chebyshev-II Bandstop
>> ws = [0.4#pi 0.7¥pil; % Dig. stopband edge frequency
>> wp = [0.25#pi 0.8%pil; % Dig. passband edge frequency
>> Rp = 1; % Passband ripple in dB
>> As = 40; % Stopband attenuation in dB
Magnitude Response Phase Response
1 r T 1 T
0.8013}
£ 05
5
ks
£
i
0 N N N
0 0304 06 075 1
frequency in pi units
Magnitude in dB
0 N
40
N N N " G - N
0 0304 06 075 1 0 0304 06 075 1

frequency in pi units frequency in pi units
FIGURE 8.23 Digital elliptic bandpass filter in Example 8.29

Frequency-band Transformations 361

>> % Calculations of Chebyshev-II Filter Parameters:
>> [N,un] = cheb2ord(wp/pi,ws/pi,Rp,As);

>> % Digital Chebyshev~II Bandstop Filter Design:
>> [b,a] = cheby2(N,As,ws/pi, stop’);

>> % Cascade Form Realization:
>> [b0,B,A] = dir2cas(b,a)
b0 = 0.1558
B = 1.0000
1.0000
1.0000
1.0000 -0.2434 1.0000
1.0000 -0.5768 1.0000
A = 1,0000 1.3041 0.8031
1
i
1
1

.1456 1.0000
.8879 1.0000
.3511 1.0000

O O =

.0000 0.8901 0.4614
.0000 0.2132 0.21485
.0000 -0.4713 0.3916
L0000 -0.8936 0.7602

This is also a 10th-order filter. The frequency domain plots are shown in Figure

8.24. |
Magnitude Response Phase Response
1 o — - 1 T
0.8913 ; o 1

.g 0.5
[=4
3
G
€ [+] CEERETERISIE PO B | IUUR N | DO OORDRRS
@«
@
&-05

0 Y I 4 : 4

0 025 04 0.70.8 1 0 025 04 0708 1
Digital frequency in pi units Digital frequency in pi units
Magnitude in dB Group Delay
0 " - 15 :
- A\
0 _—
0 025 0.4 0708 1 0 025 04 0.70.8 1

Digitat frequency In pi units Digital frequency in pi units
FIGURE 8.24 Digital Chebyshev-II bandstop filter in Example 8.30

Chapter 8 W IR FILTER DESIGN

COMPARISON OF FIRﬁ. HR FILTERS

So far we have seen many techniques for designing both FIR and IIR
filters. In practice one wonders about which filter (FIR or IIR) should be
chosen for a given application and which method should be used to design
it. Because these design techniques involve different methodologies, it is
difficult to compare them. However, some meaningful comparisons can be
attempted if we focus on the minimax optimal (or equiripple) filters. In the
case of FIR filters these optimal filters are the equiripple filters designed
via the Parks-McClellan algorithm (or Remez Exchange Algorithm), while
in the case of IIR filters these are the elliptic filters.

One basis of comparison is the number of multiplications required to
compute one output sample in the standard realization of these filters. For
FIR filters the standard realization is the linear-phase direct form, while
for elliptic filters cascade forms are widely used. Let M be the length of a
linear phase FIR filter (assume M odd). Then we need

M+1 M
— 1
2 3 for large M

multiplications per output sample. Let N (assume N even) be the order
of an elliptic filter with the cascade form realization. Then there are N/2
second-order sections, each requiring 3 multiplications (in the most effi-
cient implementation). There are an additional three multiplications in
the overall structure for a total of

N

3~ +3 3N (for large N)

2 2
multiplications per output sample.

Now if we assume that each filter meets exactly the same specifi-
cations: (e.g., wy, ws, 6; (or passband ripple Rp), and 62 (or stopband
attenuation A;) for a lowpass filter), then these two filters are equivalent
if

M+1 3N+3 M 1

—5— =3 =>ﬁ_3+—ﬁ_3 for large N
This means that if the ratio M/N = 3, then two filters are roughly effi-
cient. However, an equiripple FIR filter is more efficient if M/N < 3, or

an elliptic IIR filter is more efficient if M/N > 3.
It has been shown experimentally that

o for w, > 0.3, M/N >3 forall &, 6, N
e for N > 10, M/N > 3 for all §;, 62, N
o for large N, M/N = in 100’s

Comparison of FIR vs. lIR Filters 363

This shows that for most applications IIR elliptic filters are desirable from
the computational point of view. The most favorable conditions for FIR
filters are

o large values of é;,
o small values of 8;, and
o large transition width.

Furthermore, if we take into account the phase equalizers (which are
all-pass filters) connected in cascade with elliptic filters that are needed for
linear-phase characteristics, then FIR equiripple filter designs look good
because of their exact linear-phase characteristics.

PROBLEMS

ps.1

P8.2

P33

P84

P8.5

+

Design an analog Butterworth lowpass filter that has a 1-dB or better ripple at 30 rad/sec
and at least 30 dB of attenuation at 40 rad/sec. Determine the system function in a cascade
form. Plot the magnitude response, the log-magnitude response in dB, the phase response,
and the impulse response of the filter.

Design a fowpass analog elliptic filter with the following characteristics:

® an acceptable passband ripple of 1 dB,
® passband cutoff frequency of 10 rad/sec, and
& stopband attenuation of 40 dB or greater beyond 15 rad/sec.

Determine the system function in a rational function form. Plot the magnitude response, the
log-magnitude response in dB, the phase response, and the impulse response of the filter.

A signal z, (t) contains two frequencies, 100 Hz and 130 Hz. We want to suppress the
130-Hz component to 50-dB attenuation while passing the 100-Hz component with less than
2-dB attenuation. Design a minimum-order Chebyshev-I analog filter to perform this
filtering operation. Plot the log-magnitude response and verify the design.

Design an analog Chebyshev-11 lowpass filter that has a 0.5 dB or better ripple at 250 Hz
and at least 45 dB of attenuation at 300 Hz. Plot the magnitude response, the
log-magnitude response in dB, the phase response, and the impulse response of the filter.
Write a MATLAB function to design analog lowpass filters. The format of this function
should be

function [b,a)] =afd(type,Fp,Fs,Rp,As)
%
% function [b,a] =atd(type,Fp,Fs,Rp,As)

% Designs analog lowpass filters

% type = ’butter’ or ’chebyl’ or ’cheby2’ or ’ellip’
% Fp = passband cutoff in Hz

% Fs = stopband cutoff in Hz

% Rp = passband ripple in dB

% As = stopband attenuation in dB

Chapter 8 m IR FILTER DESIGN

P8.6

P8.7

P8.8

P89

Use the afd_butt, afd chbl, afd.chb2, and afd_elip functions developed in this chapter.
Check your function on specifications given in Problems 8.1 through 8.4.

Design a lowpass digital filter to be used in a structure

Za (t) — A/DI-> H(z)|—|D/A}]— ya(t)

to satisfy the following requirements:

e sampling rate of 8000 sam/sec,

e passband edge of 1500 Hz with ripple of 3dB,

o stopband edge of 2000 Hz with attenuation of 40 dB,
® equiripple passband but monotone stopband, and

e impulse invariance method.

a. Choose T' = 1 in the impulse invariance method and determine the system function H (z)
in parallel form. Plot the log-magnitude response in dB and the impulse response & (n).
b. Choose T = 1/8000 in the impulse invariance method and determine the system function
hq (8) in parallel form. Plot the log-magnitude response in dB and the impulse response
h (n). Compare this design with the above one and comment on the effect of T' on the
impulse invariance design.
Design a Butterworth digital lowpass filter to satisfy these specifications:

passband edge: 0.4w, R, =05dB

stopband edge: 0.6x, As=50dB

Use the impulse invariance method with T' = 2. Determine the system function in the
rational form and plot the log-magnitude response in dB. Plot the impulse response A (n)
and the impulse response h, (t) of the analog prototype and compare their shapes.

Write a MATLAB function to design digital lowpass filters based on the impulse invariance
transformation. The format of this function should be

function [b,al =dlpfd_ii(type,wp,vws,Rp,4s,T)

% function [b,a) =dlpfd_ii(type,wp,ws,Rp,As,T)

% Designs digital lowpass filters using impulse invariance
% type = ’butter’ or ’chebyi’

% wp = passband cutoff in Hz

% ws = stopband cutoff in Hz

L

% Rp = passband ripple in dB
% As = stopband attenuation in dB
% T = sampling interval

Use the afd function developed in Problem 8.5. Check your function on specifications given
in Problems 8.6 and 8.7.

In this problem we will develop a technique called the step invariance transformation. In
this technique the step response of an analog prototype filter is preserved in the resulting
digital filter; that is, if £, (t) is the step response of the prototype and if £ (n) is the step
response of the digital filter, then

E(n)=Ca(t=nT), T:samplinginterval

Problems 365

Note that the frequency-domain quantities are related by

Za(s) £ Ll ()] = Ha(s) /s

E(z)33[£(n)]=H(Z)T_IT—1

Hence the step invariance transformation steps are as follows: Given H, (s),

@ Divide Ha (3) by s to obtain Za (s).

@ Find residues {R:} and poles {pi} of E, (s).

@ Transform analog poles {p;} into digital poles {e""T}, where T is arbitrary.

@ Determine = (z) from residues {Rx} and poles {e™”}.

® Determine H (z) by multiplying = (z) by (1-z7%).

Use the above procedure to develop a MATLAB function to implement the step invariance
transformation. The format of this function should be

function [b,al =stp_invr(c,d,T)
% Step Invariance Transformation from Analog to Digital Filter

% [b,a) =stp_invr(c,d,T)
% b = Numerator polynomial in z“(-1) of the digital filter

% a = Denominator polynomial in z~(-1) of the digital filter
% ¢ = Numerator polynomial in s of the analog filter

% d = Denominator polynomial in s of the analog filter

% T = Sampling (transformation) parameter

P8.10 Design the lowpass Butterworth digital filter of Problem 8.7 using the step invariance
method. Plot the log-magnitude response in dB and compare it with that in Problem 8.7.
Plot the step response £ (n) and the impulse response £, (t) of the analog prototype and
compare their shapes.

P8.11 Consider the design of the lowpass Butterworth filter of Problem 8.7.

a. Use the bilinear transformation technique outlined in this chapter and the bilinear
function. Plot the log-magnitude response in dB. Compare the impulse responses of the
analog prototype and the digital filter.
b. Use the butter function and compare this design with the above one.

P8,12 Following the procedure used in this chapter, develop the following MATLAB functions to
design FIR filters via the Kaiser window technique. These functions should check for the
valid band-edge frequencies and restrict the filter length to 255.
a. Lowpass filter: The format should be

function [h,M] = kai_lpf(wp,ws,As);

% [h,M] = kai_lpf(wp,ws,As);

% Low~Pass FIR filter design using Kaiser window

L

%

% h = Impulse response of length M of the designed filter

366 Chapter 8 ® IR FILTER DESIGN

% M = Length of h which is an odd number

% wp = Pass-band edge in radians (0 < wp < ws < pi)
% ws = Stop-band edge in radians (0 < wp < ws < pi)
% As = Stop-band attenuation in dB (As > 0)

b. Highpass filter: The format should be

function [h,M] = kai_hpf(ws,wp,As);
% [b,M] = kai_hpf(ws,wp,As);
% HighPass FIR filter design using Kaiser window

h = Impulse response of length M of the designed filter
M = Length of h which is an odd number

ws = Stop-band edge in radians (0 < wp < ws < pi)

% wp = Pass-band edge in radians (0 < wp < ws < pi)

% As = Stop-band attenuation in dB (s > 0)

c. Bandpass filter: The format should be

function [h,M] = kai_bpf(wsl,upl,wp2,ws2,As);

% (h,M] = xai_bpf(ws1,wpl,wp2,ws2,As);

% Band-Pass FIR filter design using Kaiser window
%

% h = Impulse response of length M of the designed filter
%4 M = Length of b which is an odd number

% wsl = Lower stop-band edge in radiamns

% wpl = Lover pass-band edge in radians

% wp2 = Upper pass-band edge in radians

% ws2 = Upper stop-band edge in radians

% 0 < wsl < wpl < wp2 < ws2< pi

% As = Stop-band attenuation in dB (4s > 0)

d. Bandstop filter: The format should be

function [h,M) = kai_bsf(wpl,wsl,ws2,wp2,As);

% [h,M] = kai_bsf(wpl,wsl,ws2,wp2,48);

% Band-Pass FIR filter design using Kaiser window
%
% h = Impulse response of length M of the designed filter
% M = Length of k which is an odd number

% wpl = Lower stop-band edge in radians

% wsl = Lower pass-band edge in radians

% ws2 = Upper pass-band edge in radians

% wp2 = Upper stop-band edge in radians

% 0 < wpl < wsl < ws2 < wp2 < pi

% As = Stop-band attenuation in dB (As > 0)

You can now develop similar functions for other windows discussed in this chapter.

Problems 367

P8.13 Design the analog Chebyshev-I filter of Problem 8.6 using the bilinear transformation
method. Compare the two designs.

P8.14 Design a digital lowpass filter using elliptic prototype to satisfy these requirements:
passband edge: 0.4r, R, =1dB
stopband edge: 0.57, As=60dB

Use the bilinear as well as the ellip function and compare your designs.
P8.15 Design a digital lowpass filter to satisfy these specifications:

passband edge: 0.3x, R,=0.5dB
stopband edge: 0.4w, As=50dB

a. Use the butter function and determine the order N and the actual minimum stopband
attenuation in dB.
b. Use the cheby1 function and determine the order N and the actual minimum stopband
attenuation in dB.

c. Use the cheby2 function and determine the order N and the actual minimum stopband
attenuation in dB.

d. Use the ellip function and determine the order N and the actual minimum stopband
attenuation in dB.

e. Compare the orders, the actual minimum stopband attenuations, and the group delays in
each of the above designs.

P8.16 Write a MATLAB function to determine the lowpass prototype digital filter frequencies from
a highpass digital filter’s specifications using the procedure outlined in this chapter. The
format of this function should be

function [wpLP,wsLP,alpha] = hp2lpfre(wphp,wshp)

% Band-edge frequency conversion from highpass to lowpass digital filter
% [wpLP,wsLP,a] = hp2lpfre(wphp,wshp)

% wpLP = passband egde for the lowpass prototype

% wsLP = stopband egde for the lowpass prototype

% alpha = lowpass to highpass transformation parameter

% wphp = passband egde for the highpass

% wshp = passband egde for the highpass

Using this function, develop 2 MATLAB function to design a highpass digital filter using the
bilinear transformation. The format of this function should be

function [b,a] = dhpfd_bl(type,wp,ws,Rp,As)

% IIR Highpass filter design using bilinear transformation
% [b,a] = dhpfd_bl(type,wp,vws,Rp,As)

% type = ’butter’ or ’chebyl’ or ’chevy2’ or ’ellip’

% b = Numerator polynomial of the highpass filter

% a = Denominator polymomial of the highpass filter

% wp = Passband frequency in radians

% ws = Stopband frequency in radians (wp < ws)

368 Chapter 8 ® 1IR FILTER DESIGN

P8.17

P8.18

P8.19

% Rp = Passband ripple in dB
% As = Stopband attenuation in dB

Verify your function using the specifications in Example 8.27.
Design a highpass filter to satisfy these specifications:

stopband edge: 0.4wx, A, =60dB
passband edge: 0.6x, R, =0.5dB

a. Use the dhpfd bl function of Problem 8.16 and the elliptic prototype to design this filter.
Plot the log-magnitude response in dB of the designed filter.

b. Use the ellip function for design and plot the log-magnitude response in dB. Compare

these two designs.

Write a MATLAB function to determine the lowpass prototype digital filter frequencies from
an arbitrary lowpass digital filter's specifications using the functions given in Table 8.2 and
the procedure outlined for highpass filters. The format of this function should be

function [wpLP,wsLP,alpha] = 1p2lpfre(wplp,wslp)

% Band-edge frequency conversion from lowpass to lowpass digital filter
% {wpLP,wsLP,a] =~ lp2lpfre(wplp,vslp)

% wpLP = passband egde for the lowpass prototype

% wsLP = stopband egde for the lowpass prototype

% alpha = lowpass to highpass transformation parameter

% wplp = passband egde for the lowpass

% wslp = passband egde for the lowpass

Using this function, develop a MATLAB function to design a bandpass filter from a
prototype lowpass digital filter using the bilinear transformation. The format of this
function should be

function [b,a] = dbpfd_bl(type,wp,us,Rp,As)

% IIR bandpass filter design using bilinear transformation

% [b,a]l = dbpfd_bl(type,wp,ws,Rp,As)

% type = ’butter’ or ’chebyl’ or ’chevy2’ or ‘ellip’

3 b = Numerator polynomial of the bandpass filter

% a = Denominator polynomial of the bandpass filter

% wp = Passband frequency vector {wp.lower, wp_upper] in radians
% ws = Stopband frequency vector [wp_lower, wp_upper] in radians
% Rp = Passband ripple in dB

% As = Stopband attenuation in dB

Verify your function using the designs in Problem 8.15.
Design a bandpass digital filter using the Cheby2 function. The specifications are
lower stopband edge: 0.3w

upper stopband edge: 0.67
lower passband edge: 0.4r7

A, =50dB

=0.5dB
upper passband edge: 0.57 R

Plot the impulse response and the log-magnitude response in dB of the designed filter.

Problems 369

P8.20

P8.21

P8.22

Write a8 MATLAB function to determine the lowpass prototype digital filter frequencies from
a bandpass digital filter’s specifications using the functions given in Table 8.2 and the
procedure outlined for highpass filters. The format of this function should be

function [wpLP,wsLP,alpha] = bp2lpfre(wpbp,wsblp)

% Band-edge frequency conversion from bandpass to lowpass digital filter

% [wpLP,wslP,a] = bp2lpfre{wpbp,wsbp)

% wpLP = passband egde for the lowpass prototype

% wsLP = stopband egde for the lowpass prototype

% alpha = lowpass to highpass transformation parameter

% vpbp = passband egde frequency vector [wp_lower, wp_upper] for the bandpass
% wvsbp = passband egde frequency vector [ws_lower, ws_upper] for the bandpass

Using this function, develop a MATLAB function to design a bandpass filter from a
prototype lowpass digital filter using the bilinear transformation. The format of this
function should be

function [b,a] = dbpfd_bl(type,wp,vs,Rp,As)

% IIR bandpass filter design using bilinear transformation
% (b,a]l = dbpfd_bl(type,wp,ws,Rp,As)

% type = ’butter’ or ’chebyl’ or ’chevy2’ or ’ellip’

b = Numerator polynomial of the bandpass filter

a = Denominator polynomial of the bandpass filter

vp = Passband frequency vector [wp_lower, wp_upper] in radians
ws = Stopband frequency vector [wp_lower, wp_upper] in radians
Rp = Passband ripple in dB
As = Stopband attenuation in dB

TS 3T 3 pE 2L

Verify your function using the design in Problem 8.19.

‘We wish to use the Chebyshev-I prototype to design a bandpass IIR digital filter that meets
the following specifications:

0.95 < |H (¢/)| < 1.05, 0<|w <0257
0< |H ()] 001, 0357 < |w| < 0.65
0.95 < |H (™) <105, 0757 < |w|<

Use the chebyi function and determine the system function H (z) of such a filter. Provide a
plot containing subplots of the log-magnitude response in dB and the impulse response.

‘Write a MATLAB function to determine the lowpass prototype digital filter frequencies from
a bandstop digital filter’s specifications using the functions given in Table 8.2 and the
procedure outlined for highpass filters. The format of this function should be

function [wpLP,wsLP,alpha] = bs2lpfre(wpbp,wsblp)

% Band-edge frequency conversion from bandstop to lowpass digital filter
% [wpLP,usLP,a] = bs2lpfre(wpbp,wsbp)

% vpLP = passband egde for the lowpass prototype

370

Chapter 8 ® IR FILTER DESIGN

P8.23

P8.24

P8.25

% wsLP = stopband egde for the lowpass prototype

% alpha = lowpass to highpass transformation parameter

% wpbp = passband egde frequency vector [wp_lower, wp_upper] for the bandstop
% wsbp = passband egde frequency vector [ws_lower, ws_upper] for the bandstop

Using this function, develop a MATLAB function to design a bandstop filter from a
prototype lowpass digital filter using the bilinear transformation. The format of this
function should be

function [b,a)] = dbsfd_bl(type,wp,vs,Rp,As)

% IIR bandstop filter design using bilinear transformation
% [b,a] = dbsfd_bl(type,wp,vs,Rp,As)

% type = ’butter’ or ’'chebyl’ or ’chevy2’ or ’ellip’

% b = Numerator polynomial of the bandstop filter

% a = Denominator polynomial of the bandstop filter

% wp = Passband frequency vector [wp_lower, wp_upper] in radians
% ws = Stopband frequency vector [wp_lower, wp_upper] in radians
% Rp = Passband ripple in dB

% As = Stopband attenuation in dB

Verify your function using the design in Problem 8.21.
An analog signal

x4 (t) = 5sin (200mt) + 2 cos (300nt)
is to be processed by a

a:.,(t)-—;r~_+—+——»y.,(t)

system in which the sampling frequency is 1000 sam/sec.

a. Design a minimum-order IIR digital filter that will pass the 150-Hz component with
attenuation of less than 1 dB and suppress the 100-Hz component to at least 40 dB. The
filter should have a monotone passband and an equiripple stopband. Determine the system
function in rational function form and plot the log-magnitude response.

b. Generate 300 samples (sampled at 1000 sam/sec) of the above signal z, (t) and process
through the designed filter to obtain the output sequence. Interpolate this sequence (using
any one of the interpolating techniques discussed in Chapter 3) to obtain y, (t). Plot the
input and the output signals and comment on your results.

Using the bilinear transformation method, design a tenth-order elliptic bandstop filter to
remove the digital frequency w = 0.44n with bandwidth of 0.087. Choose a reasonable value
for the stopband attenuation. Plot the magnitude response. Generate 201 samples of the
sequence

z(n) =sin{0.44mn}, n=0,...,200
and process thorough the bandstop filter. Comment on your results.
Design a digital highpass filter H(z) to be used in a

20 (t) —[A/D]—[H @) —[D/A] — v ®

structure to satisfy the following requirements

Problems 31

» sampling rate of 10 Khz,

» stopband edge of 1.5 Khz with attenuation of 40 dB,
& passband edge of 2 Khz with ripple of 3dB,

® monotone passhand and stopband, and

® impulse invariance transformation method.

a. Plot magnitude respouse of the overall analog filter over the [0, 5Khz} interval.
b. Plot the magnitude response of the digital lowpass prototype.
c. Plot the magnitude response of the analog lowpass prototype.

d. What limitations must be placed on the input signals so that the above structure truly
acts like a highpass filter to them?

in

Chapter 8 ® {IR FILTER DESIGN

APPLICATIONS IN
ADAPTIVE
FILTERING

In Chapters 7 and 8 we described methods for designing FIR and IIR digi-
tal filters to satisfy some desired specifications. Our goal was to determine
the coefficients of the digital filter that met the desired specifications.

In contrast to the filter design techniques considered in those two
chapters, there are many digital signal processing applications in which
the filter coefficients cannot be specified a priori. For example, let us con-
sider a high-speed modem that is designed to transmit data over telephone
channels. Such a modem employs a filter called a channel equalizer to com-
pensate for the channel distortion. The modem must effectively transmit
data through communication channels that have different frequency re-
sponse characteristics and hence result in different distortion effects. The
only way in which this is possible is if the channel equalizer has adjustable
coefficients that can be optimized to minimize some measure of the dis-
tortion, on the basis of measurements performed on the characteristics of
the channel. Such a filter with adjustable parameters is called an adaptive
filter, in this case an adaptive equalizer.

Numerous applications of adaptive filters have been described in the
literature. Some of the more noteworthy applications include (1) adaptive
antenna systems, in which adaptive filters are used for beam steering and
for providing nulls in the beam pattern to remove undesired interference
[23}; (2) digital communication receivers, in which adaptive filters are
nsed to provide equalization of intersymbol interference and for channel
identification [18]; (3) adaptive noise canceling techniques, in which an

373

Input

adaptive filter is used to estimate and eliminate a noise component in
some desired signal [22, 10, 14]; and (4} system modeling, in which an
adaptive filter is used as a model to estimate the characteristics of an
unknown system. These are just a few of the best known examples on the
use of adaptive filters.

Although both IIR and FIR filters have been considered for adap-
tive filtering, the FIR filter is by far the most practical and widely used.
The reason for this preference is quite simple. The FIR filter has only
adjustable zeros, and hence it is free of stability problems associated with
adaptive IIR filters that have adjustable poles as well as zeros. We should
not conclude, however, that adaptive FIR filters are always stable. On the
contrary, the stability of the filter depends critically on the algorithm for
adjusting its coefficients.

Of the various FIR filter structures that we may use, the direct form
and the lattice form are the ones often used in adaptive filtering appli-
cations. The direct form FIR filter structure with adjustable coeficients
h(0),h(1),..., (N —1) is illustrated in Figure 9.1. On the other hand,
the adjustable parameters in an FIR lattice structure are the reflection
coeficients K, shown in Figure 6.18.

An important consideration in the use of an adaptive filter is the
criterion for optimizing the adjustable filter parameters. The criterion
must not only provide a meaningful measure of filter performance, but it
must also result in a practically realizable algorithm.

One criterion that provides a good measure of performance in adap-
tive filtering applications is the least-squares criterion, and its counterpart
in a statistical formulation of the problem, namely, the mean-square-error
(MSE) criterion. The least squares (and MSE) criterion results in a qua-
dratic performance index as a function of the filter coefficients, and hence
it possesses a single minimum. The resulting algorithms for adjusting the
coeflicients of the filter are relatively easy to implement.

27! ’ z—‘l ’ 21

A(0) ;
X

a1} h(2} h{3) hl4)

> Output

ﬂ Coefficient adjustment <

FIGURE 9.1 Direct form adaptive FIR filter

3714

Chapter @ B APPLICATIONS IN ADAPTIVE FILTERING

In this chapter we describe a basic algorithm, called the least-mean-
square (LMS) algorithm, to adaptively adjust the coefficients of an FIR
filter. The adaptive filter structure that will be implemented is the di-
rect form FIR filter structure with adjustable coefficients h(0), h(1),...,
h(N — 1), as illustrated in Figure 9.1. After we describe the LMS algo-
rithm, we apply it to several practical systems in which adaptive filters

are employed.

LMS ALGORITHM FORlCOEFFlCIENT ADJUSTMENT

Suppose we have an FIR filter with adjustable coefficients {h(k),0 < k <
N — 1}. Let {z(n)} denote the input sequence to the filter, and let the
corresponding output be {y(n)}, where

N-1
y(n)=Zh(k)x(n-—k), n=0,...,.M (9.1)
£=0

Suppose that we also have a desired sequence {d(n)} with which we can
compare the FIR filter output. Then we can form the error sequence
{e(n)} by taking the difference between d(n) and y(n). That is,

e(n)=d(n)~y(n), n=0,...,.M (9.2)

The coefficients of the FIR filter will be selected to minimize the sum of
squared errors. Thus we have

M M N-1
£=ze2(n)=z[d(n)—z:h(k)z(n—k) (9.3)
n=0 n=0 k=0
N-1N-1
= Zdz (n) -2 Z h(k)rd,(k)+ DD IICLIGEMNCEY)
n=0 k=0 £=0

where, by definition,

M

ez (k) =Y d(n)z(n~k), 0<k<N-1 (9.9)
n=0
M

res (k) = Y z(n)z(n+k), 0SkSN-1 (9.5)
n=0

LMS Algorithm for Coefficient Adjustment) 375

We call {r4,(k)} the crosscorrelation between the desired output sequence
{d(n)} and the input sequence {z(n)}, and {ry-(k)} is the autocorrelation
sequence of {z(n)}.

The sum of squared errors £ is a quadratic function of the FIR filter
coefficients. Consequently, the minimization of £ with respect to the filter
coefficients {h(k)} results in a set of linear equations. By differentiating
£ with respect to each of the filter coefficients, we obtain

o

m=0’ OSTTLSN—*]. (96)

and, hence

N-1
S h(B)rez(k-m)=re(m), 0SMSN-1 (9.7)
k=0

This is the set of linear equations that yield the optimum filter coefficients.

To solve the set of linear equations directly, we must first compute
the autocorrelation sequence {rz(k)} of the input signal and the cross-
correlation sequence {ryz(k)} between the desired sequence {d(r)} and
the input sequence {z {n)}.

The LMS algorithm provides an alternative computational method for
determining the optimum filter coefficients {h(k)} without explicitly com-
puting the correlation sequences {r;(k)} and {rs;(k)}. The algorithm is
basically a recursive gradient (steepest-descent) method that finds the
minimum of £ and thus yields the set of optimum filter coefficients.

We begin with any arbitrary choice for the initial values of {h(k)},
say {ho(k)}. For example, we may begin with ho(k) =0, 0<k< N-1
Then after each new input sample {z (n)} enters the adaptive FIR filter,
we compute the corresponding output, say {y (n)}, form the error signal
e(n) = d(n) — y(n), and update the filter coefficients according to the
equation

hn(ky =hna(R)+A-e(n)-z(n—k), 0<k<N-1, n=0,1,...
(9.8)

where A is called the step size parameter, z(n— k) is the sample of the in-
put signal located at the kth tap of the filter at time n, and e (n) z (n — k)
is an approximation (estimate) of the negative of the gradient for the kth
filter coefficient. This is the LMS recursive algorithm for adjusting the fil-
ter coefficients adaptively so as to minimize the sum of squared errors £.

The step size parameter A controls the rate of convergence of the
algorithm to the optimum solution. A large value of A leads to large
step size adjustments and thus to rapid convergence, while a small value
of A results in slower convergence. However, if A is made too large the
algorithm becomes unstable. To ensure stability, A must be chosen [18]

376

Chapter 9 @ APPLICATIONS IN ADAPTIVE FILTERING

MATLAB
IMPLEMEN-
TATION

to be in the range

O<A<10NP (9.9)
where N is the length of the adaptive FIR filter and P, is the power in
the input signal, which can be approximated by

The mathematical justification of equations (9.9) and (9.10) and the
proof that the LMS algorithm leads to the solution for the optimum filter
coefficients is given in more advanced treatments of adaptive filters. The
interested reader may refer to the books by Haykin [9] and Proakis {18}.

The LMS algorithm (9.8) can easily be implemented in MATLAB. Given
the input sequence {z (n)}, the desired sequence {d (n)}, step size A, and
the desired length of the adaptive FIR filter N, we can use (9.1}, (9.2), and
(9.8) to determine the adaptive filter coefficients {A(n), 0 <n < N -1}
recursively. This is shown in the following function called 1ms.

function [h,y] = lms(x,d,delta,N)
% LMS Algorithm for Coefficient Adjustment

% [h,y] = lms(x,d,delta,N)

% h = estimated FIR filter

% y = output array y(n)

A x = input array x(n)

% d = desired array d(n), length must be same as x
% delta = step size

H N = length of the FIR filter

M = length(x); y = zeros(1,M);
h = zeros(1i,N);
for n = N:M
xi = x(n:~1:n-N+1);
y=h*x1’;
e=d(n) - y;
h = h + delta*e*xi;
end

In addition, the 1ms function provides the output {y (n)} of the adaptive
filter.

Below, we apply the LMS algorithm to several practical applications
involving adaptive filtering.

LMS Algorithm for Coefficient Adjustment kif

SYSTEM IDENTIFICATION OR SYSTEM MODELING
——

PROJECT 9.1:
SYSTEM
IDENTIFI-
CATION

To formulate the problem, let us refer to Figure 9.2. We have an unknown
linear system that we wish to identify. The unknown system may be an
all-zero (FIR) system or a pole-zero (IIR) system. The unknown system
will be approximated (modeled) by an FIR filter of length N. Both the
unknown system and the FIR model are connected in parallel and are
excited by the same input sequence {z (n)}. If {y (n)} denotes the output
of the model and {d(n)} denotes the output of the unknown system, the
error sequence is {e(n) = d(n) — y(n)}. If we minimize the sum of squared
errors, we obtain the same set of linear equations as in (9.7). Therefore the
LMS algorithm given by (9.8) may be used to adapt the coefficients of the
FIR model so that its output approximates the output of the unknown
system.

There are three basic modules that are needed to perform this project.

1. A noise signal generator that generates a sequence of random num-
bers with zero mean value. For example, we may generate a sequence of
uniformly distributed randorm numbers over the interval {—a,a]. Such a
sequence of uniformly distributed numbers has an average value of zero
and a variance of a®/3. This signal sequence, call it {z(n)}, will be used
as the input to the unknown system and the adaptive FIR model. In this
case the input signal {z(n)} has power P, = a2/3. In MATLAB this can
be implemented using the rand function.

2. An unknown system module that may be selected is an IIR filter
and implemented by its difference equation. For example, we may select
an IR filter specified by the second-order difference equation

d{n)=ad(n—1)+ad(n~2)+z(n)+biz(n—1)+byz (n—2) (9.11)

Unknown | _ d(n}
systam
Noise x{n) Y
signal
generator . =
Adaptive yini
FIR filter
Error signal for
t LMS algorithm

e(n)

FIGURE 9.2 Block diagram of system identification or syst deling probl

378

Chapter 9 B APPLICATIONS IN ADAPTIVE FILTERING

where the parameters {e;, a2} determine the positions of the poles and
{b1, b2} determine the positions of the zeros of the filter. These parame-
ters are input variables to the program. This can be implemented by the
filter function.

3. An adaptive FIR filter module where the FIR filter bas ¥ tap co-
efficients that are adjusted by means of the LMS algorithm. The length N
of the filter is an input variable to the program. This can be implemented
using the lms function given in the previous section.

The three modules are configured as shown in Figure 9.2. From this
project we can determine how closely the impulse response of the FIR
model approximates the impulse response of the unknown system after
the LMS algorithm has converged.

To monitor the convergence rate of the LMS algorithm, we may com-
pute a short-term average of the squared error e? (n) and plot it. That is,
we may compute

n+K
ASE(m):% i e (k) (9.12)
k=n+1

where m = n/K = 1,2,.... The averaging interval K may be selected
to be (approximately) K = 10N. The effect of the choice of the step
size parameter A on the convergence rate of the LMS algorithm may be
observed by monitoring the ASE (m).

Besides the main part of the program, you should also include, as an
aside, the computation of the impulse response of the unknown system,
which can be obtained by exciting the system with a unit sample sequence
& (n). This actual impulse response can be compared with that of the FIR
model after convergence of the LMS algorithm. The two impulse responses
can be plotted for the purpose of comparison.

SUPPRESSION OF NARROWBAND INTERFERENCE
IN A WIDEBAND SIGNAL
-

Let us assume that we have a signal sequence {z(n)} that consists of
a desired wideband signal sequence, say {w(n)}, corrupted by an ad-
ditive narrowband interference sequence {s (n)}. The two sequences are
uncorrelated. This problem arises in digital communications and in signal
detection, where the desired signal sequence {w (n)} is a spread-spectrum
signal, while the narrowband interference represents a signal from another
user of the frequency band or some intentional interference from a jammer
who is trying to disrupt the communication or detection system.

Suppression of Narrowband Interference in a Wideband Signal 37

From a filtering point of view, our objective is to design a filter that
suppresses the narrowband interference. In effect, such a filter should place
a notch in the frequency band occupied by the interference. In practice,
however, the frequency band of the interference might be unknown. More-
over, the frequency band of the interference may vary slowly in time.

The narrowband characteristics of the interference allow us to esti-
mate s(n) from past samples of the sequence z{n) = s(n) + w(n) and to
subtract the estimate from z(n). Since the bandwidth of {s(n)} is nar-
row compared to the bandwidth of {w(n)}, the samples of {s(n)} are
highly correlated. On the other hand, the wideband sequence {w (n)} has
a relatively narrow correlation.

The general configuration of the interference suppression system is
shown in Figure 9.3. The signal z (n) is delayed by D samples, where the
delay D is chosen sufficiently large so that the wideband signal compo-
pents w(n) and w(n — D), which are contained in z(n) and z(n — D),
respectively, are uncorrelated. The output of the adaptive FIR filter is
the estimate

N-1

8(n) =Y h(k)z(n -k - D) (9.13)

=0

The error signal that is used in optimizing the FIR filter coefficients is
e(n) = z(n) — §(n). The minimization of the sum of squared errors again
leads to a set of linear equations for determining the optimum coefficients.
Due to the delay D, the LMS algorithm for adjusting the coefficients
recursively becomes

k=0,1,...,N-1

hn(k) = hp-1(k) + Ae{n)z(n — k — D), ne=12 (9.14)
=1,2,...
[~ Overall interference Suppression Filter |
|
+ {, Desired
w signal

Decorrelation t Error signal
|

|
(
}
D FIR filter :
|
delay :

a{n) = x{n) - &(n}

i
|
x{n) = s{n) + win) T‘ .

: -
I Delay Adaptive (n)

{

|

|

!

I

FIGURE 9.3 Adaptive filter for estimating and suppressing a narrowband inter-
ference

Chapter 9 ® APPLICATIONS IN ADAPTIVE FILTERING

PROJECT 9.2:
SUPPRESSION
OF

SINUSOIDAL
INTERFERENCE

There are three basic modules required to perform this project.

1. A noise signal generator module that generates a wideband se-
quence {w (n)} of random numbers with zero mean value. In particular,
we may generate a sequence of uniformly distributed random numbers
using the rand function as previously described in the project on system
identification. The signal power is denoted as F,.

2. A sinusoidal signal generator module that generates a sine wave se-
quence s(n) = Asinwon, where 0 < wp < 7 and A is the signal amplitude.
The power of the sinusoidal sequence is denoted as P,.

3. An adaptive FIR filter module using the ims function, where the
FIR filter has N tap coefficients that are adjusted by the LMS algorithm.
The length N of the filter is an input variable to the program.

The three modules are configured as shown in Figure 9.4. In this
project the delay D = 1 is sufficient, since the sequence {w (n)} is a white
noise (spectrally flat or uncorrelated) sequence. The objective is to adapt
the FIR filter coefficients and then to investigate the characteristics of the
adaptive filter.

It is interesting to select the interference signal to be much stronger
than the desired signal w(n), for example, P, = 10F,,. Note that the
power P, required in selecting the step size parameter in the LMS algo-
rithm is P, = P, + P,,. The frequency response characteristic H () of
the adaptive FIR filter with coefficients {h(k)} should exhibit a resonant
peak at the frequency of the interference. The frequency response of the
interference suppression filter is H, (¢’*) = 1 — H (e#), which should
then exhibit a notch at the frequency of the interference.

It is interesting to plot the sequences {w (n)}, {s(n)}, and {z(n)}. It
is also interesting to plot the frequency responses H (¢7“) and H, (¢/*)
after the LMS algorithm has converged. The short-time average squared
error ASE (m), defined by (9.12), may be used to monitor the conver-
gence characteristics of the LMS algorithm. The effect of the length of
the adaptive filter on the quality of the estimate should be investigated.

Sinewave | _s{n)
generator
x{n) +
+ + Output
Noise | winl Detay Adaptive | $tn)
generator D=1 FIR filter

FIGURE 9.4 Configuration of modules for ezperiment on interference suppres-
sion

Suppression of Narrowband Interference in a Wideband Signal 381

The project may be generalized by adding a second sinusoid of a differ-
ent frequency. Then H (ej“’) should exhibit two resonant peaks, provided
the frequencies are sufficiently separated. Investigate the effect of the filter
length N on the resolution of two closely spaced sinusoids.

ADAPTIVE LINE ENHANCEMENT
-

PROJECT 9.3
ADAPTIVE

LINE
ENHANCEMENT

In the preceding section we described a method for suppressing a strong
narrowband interference from a wideband signal. An adaptive line en-
hancer (ALE) has the same configuration as the interference suppression
fitter in Figure 9.3, except that the objective is different.

In the adaptive line enhancer, {s(n)} is the desired signal and {w(n)}
represents a wideband noise component that masks {s(n)}. The desired
signal {s(n)} may be a spectral line (a pure sinusoid) or a relatively
narrowband signal. Usually, the power in the wideband signal is greater
than that in the narrowband signal—that is, P,, > P;. It is apparent that
the ALE is a self-tuning filter that has a peak in its frequency response
at the frequency of the input sinusoid or in the frequency band occupied
by the narrowband signal. By having a narrow bandwidth FIR filter, the
noise outside the frequency band of the signal is suppressed, and thus
the spectral line is enhanced in amplitude relative to the noise power in

{w(n)}.

This project requires the same software modules as those used in the
project on interference suppression. Hence the description given in the
preceding section applies directly. One change is that in the ALE, the
condition is that P,, > Ps. Secondly, the output signal from the ALE is
{s(n)}. Repeat the project described in the previous section under these
conditions.

ADAPTIVE CHANNEL EQUALIZATION
-

The speed of data transmission over telephone channels is usually limited
by channe] distortion that causes intersymbol interference (ISI). At data
rates below 2400 bits the ISI is relatively small and is usually not a prob-
lem in the operation of a modem. However, at data rates above 2400 bits,
an adaptive equalizer is employed in the modem to compensate for the
channel distortion and thus to allow for highly reliable high-speed data
transmission. In telephone channels, filters are used throughout the sys-
tem to separate signals in different frequency bands. These filters cause

382

Chapter 9 8 APPLICATIONS IN ADAPTIVE FILTERING

PROJECT 9.4:
ADAPTIVE
CHANNEL
EQUALIZATION

amplitude and phase distortion. The adaptive equalizer is basically an
adaptive FIR filter with coefficients that are adjusted by means of the
LMS algorithm to correct for the channel distortion.

A block diagram showing the basic elements of a modem transmit-
ting data over a channel is given in Figure 9.5. Initially, the equalizer
coefficients are adjusted by transmitting a short training sequence, usu-
ally less than one second in duration. After the short training period,
the transmitter begins to transmit the data sequence {a(n)}. To track
the possible slow time variations in the channel, the equalizer coefficients
must continue to be adjusted in an adaptive manner while receiving data.
This is usually accomplished, as illustrated in Figure 9.5, by treating the
decisions at the output of the decision device as correct, and using the
decisions in place of the reference {d(n)} to generate the error signal. This
approach works quite well when decision errors occur infrequently, such
as less than one error in 100 data symbols. The occasional decision errors
cause only a small misadjustment in the equalizer coefficients.

The objective of this project is to investigate the performance of an adap-
tive equalizer for data transmission over a channel that causes intersym-
bol interference. The basic configuration of the system to be simulated
is shown in Figure 9.6. As we observe, five basic modules are required.
Note that we have avoided carrier modulation and demodulation, which
is required in a telephone channel modem. This is done to simplify the
simulation program. However, all processing involves complex arithmetic
operations.
The five modules are as follows:

1. The data generator module is used to generate a sequence of
complex-valued information symbols {a(n)}. In particular, employ four
equally probable symbols s + js, s - js, —s + js, and —s — js, where s is
a scale factor that may be set to s =1, or it can be an input parameter.

a(n) Transmitter Receiver 5
Data ———| Channel
sequence {filter) ? {fiter) | sampler

Noise

Decision aln) Adaptive
device equalizer

1

a(n)

Reference
signal

Adaptive
Error signal algorithm

FIGURE 9.5 Application of adaptive fillering to adaptive channel equalization

Adaptive Channel Equalization] 383

——————— > Plot fe---—--—-—

{x(nl}

Data
generator

Channel Adaptive { M | pecision

" > Qutput
filter equalizer device l FE

1
o~ !
Noise ¥

generator e(n) Error
counter

Error signal

Delay 4r-r-r-r-—-"--"")

FIGURE 9.6 FErperiment for investigating the performance of an adaptive equal-
izer

2. The channel filter module is an FIR filter with coefficients {c(n),
0 < n < K —1} that simulates the channel distortion. For distortionless
transmission, set ¢(0) = 1 and ¢(n) =0 for 1 < n < K — 1. The length K
of the filter is an input parameter.

3. The noise generator module is used to generate additive noise that
is usually present in any digital communication system. If we are modeling
noise that is generated by electronic devices, the noise distribution should
be Gaussian with zero mean. Use the randu function.

4. The adaptive equalizer module is an FIR filter with tap coefﬁcwnts
{h{k), 0 < k < N -1}, which are adjusted by the LMS algorithm. How-
ever, due to the use of complex arithmetic, the recursive equation in the
LMS algorithm is slightly modified to

ha(k) = hn_1(k) + A e(n)z*(n ~ k) (9.15)

where the asterisk denotes the complex conjugate.

5. The decision device module takes the estimate d(n) and quantizes
it to one of the four possible signal points on the basis of the following
decision rule:

Refa(n)) >0 and Im{a(n)j>0 — 1+4j
Refa(n)) >0 and Imla(n)j<0 — 1~j
Refa(n)] <0 and Imfa(n)] >0 — -—1+4j
Refa(n)] <0 and Imfa(n))<0 — -1-~j;

384

Chapter 3 W APPLICATIONS IN ADAPTIVE FILTERING

SUMMARY

The effectiveness of the equalizer in suppressing the ISI introduced by
the channel filter may be seen by plotting the following relevant sequences
in a two-dimensional (real-imaginary) display. The data generator out-
put {a(n)} should consist of four points with values +1 3 5. The effect
of channel distortion and additive noise may be viewed by displaying
the sequence {x(n)} at the input to the equalizer. The effectiveness of
the adaptive equalizer may be assessed by plotting its output {d(n)} af-
ter convergence of its coefficients. The short-time average squared error
ASE(n) may also be used to monitor the convergence characteristics of
the LMS algorithm. Note that a delay must be introduced into the output
of the data generator to compensate for the delays that the signal encoun-
ters due to the channel filter and the adaptive equalizer. For example, this
delay may be set to the largest integer closest to (N + K)/2. Finally, an
error counter may be used to count the number of symbol errors in the
received data sequence, and the ratio for the number of errors to the total
number of symbols (error rate) may be displayed. The error rate may be
varied by changing the level of the ISI and the level of the additive noise.

It is suggested that simulations be performed for the following three
channel conditions:

a. NoISI: ¢(0)=1,¢(n)=0,1<n<K-1

b. Mild IS ¢(0) = 1, ¢(1) = 0.2, &(2) = 0.2, ¢(n) = 0,3 < n <
K-1

c. StrongISL: ¢(0) =1,¢(1) = 0.5,¢(2) =0.5,¢(n) =0,3<n< K-1

The measured error rate may be plotted as a function of the signal-
to-noise ratio (SNR) at the input to the equalizer, where SNR is defined
as P,/P,, where P; is the signal power, given as P, = s2, and P, is the
noise power of the sequence at the output of the noise generator.

+
In this chapter we introduced the reader to the theory and implemen-
tation of adaptive FIR filters with applications to system identification,
interference suppression, narrowband frequency enhancement, and adap-

tive equalization. Projects were formulated involving these applications
of adaptive filtering; these can be implemented using MATLAB.

Summary

385

APPLICATIONS IN
COMMUNICATIONS

Today MATLAB finds widespread use in the simulation of a variety of
communication systems. In this chapter we shall focus on several applica-
tions dealing with waveform representation and coding, especially speech
coding, and with digital communications. In particular, we shall describe
several methods for digitizing analog waveforms, with specific application
to speech coding and transmission. These methods are pulse-code modula-
tion (PCM), differential PCM and adaptive differential PCM (ADPCM),
delta modulation (DM) and adaptive delta modulation (ADM), and lin-
ear predictive coding (LPC). A project is formulated involving each of
these waveform encoding methods for simulation using MATLAB.

The last three topics treated in this chapter deal with signal-detection
applications that are usually encountered in the implementation of a re-
ceiver in a digital communication system. For each of these topics we
describe a project that involves the implementations via simulation of the
detection scheme in MATLAB.

PULSE-CODE MODULATION
i

Pulse-code modulation is a method for quantizing an analog signal for
the purpose of transmitting or storing the signal in digital form. PCM is
widely used for speech transmission in telephone communications and for
telemetry systems that employ radio transmission. We shall concentrate
our attention on the application of PCM to speech signal processing.
Speech signals transmitted over telephone channels are usually limited
in bandwidth to the frequency range below 4kHz. Hence the Nyquist rate
for sampling such a signal is less than 8kHz. In PCM the analog speech
signal is sampled at the nominal rate of 8kHz (samples per second), and
each sample is quantized to one of 2° levels, and represented digitally by

386

a sequence of b bits. Thus the bit rate required to transmit the digitized
speech signal is 8000 b bits per second.
The quantization process may be modeled mathematically as

" §(n}) = s(n) +g(n) (10.1)

where 3(n) represents the quantized value of s(n), and ¢(n) represents the
quantization error, which we treat as an additive noise. Assuming that a
uniform quantizer is used and the number of levels is sufficiently large,
the quantization noise is well characterized statistically by the uniform
probability density function,

1
o =5 - (10.2)
where the step size of the quantizer is A = 272, The mean square value
of the quantization error is

A2 2—2b
E(¢’) = =1 (10.3)

Measured in decibels, the mean square value of the noise is

A2 2—2b
10log (—-13) = 10log (—12—) = —6b—10.8dB (10.4)

We observe that the quantization noise decreases by 6 dB/bit used
in the quantizer. High-quality speech requires a minimum of 12 bits per
sample and hence a bit rate of 96,000 bits per second (bps).

Speech signals have the characteristic that small signal amplitudes
occur more frequently than large signal amplitudes. However, a uniform
quantizer provides the same spacing between successive levels through-
out the entire dynamic range of the signal. A better approach is to use
a nonuniform quantizer, which provides more closely spaced levels at the
low signal amplitudes and more widely spaced levels at the large signal
amplitudes. For a nonuniform quantizer with b bits, the resulting quan-
tization error has a mean square value that is smaller than that given
by (10.4). A nonuniform quantizer characteristic is usually obtained by
passing the signal through a nonlinear device that compresses the signal
amplitude, followed by a uniform quantizer. For example, a logarithmic
compressor employed in U.S. and Canadian telecommunications systems,
called a u-law compressor, has an input-output magnitude characteristic
of the form

_In(1+pls)

Y= g o) kst (105)

Pulse-code Modulation

387

where s is the normalized input, y is the normalized output, sgn (-) is the
sign function, and u is a parameter that is selected to give the desired
compression characteristic.

In the encoding of speech waveforms the value of p = 255 has been
adopted as a standard in the U.S. and Canada. This value results in about
a 24-dB reduction in the quantization noise power relative to uniform
quantization. Consequently, an 8-bit quantizer used in conjunction with
a p = 255 logarithmic compressor produces the same quality speech as a
12-bit uniform quantizer with no compression. Thus the compressed PCM
speech signal has a bit rate of 64,000 bps.

The logarithmic compressor standard used in European telecommu-
nication systems is called A-law and is defined as

PERALD sn(s), §<pl<t
y= Al) (10.6)
msgn(s), 0<|s|< %

where A is chosen as 87.56. Although (10.5) and (10.6) are different nonlin-
ear functions, the two compression characteristics are very similar. Figure
10.1 illustrates these two compression functions. Note their strong simi-
larity.

In the reconstruction of the signal from the quantized values, the
decoder employs an inverse logarithmic relation to expand the signal am-

FIGURE 10.1 Comparison of p-law and A-law nonlinearities

388

Chapter 10 W APPLICATIONS IN COMMUNICATIONS

PROJECT 10.1:

PCM

plitude. For example, in p-law the inverse relation is given by

|
ls| = Q_Jf_ﬂ)i‘:l; W <1, (sf<1 (10.7)

The combined compressor-expander pair is termed a compander.

The purpose of this project is to gain an understanding of PCM compres-
sion (linear-to-logarithmic) and PCM expansion (logarithmic-to-linear).
Write the following three MATLAR functions for this project:

1. a p-law compressor function to implement (10.5) that accepts a
zero-mean normalized (|s] < 1) signal and produces a compressed zero-
mean signal with u as a free parameter that can be specified,

2. a quantizer function that accepts a zero-mean input and produces
an integer output after b-bit quantization that can be specified, and

3. a p-law expander to implement (10.7) that accepts an integer input
and produces a zero-mean output for a specified x parameter.

For simulation purposes generate a large number of samples (10,000
or more) of the following sequences: (a) a sawtooth sequence, (b} an expo-
nential pulse train sequence, (c) a sinusoidal sequence, and (d) a random
sequence with small variance. Care must be taken to generate nonperiodic
sequences by choosing their normalized frequencies as irrational numbers
(i.e., sample values should not repeat). For example, a sinusoidal sequence
can be generated using

s(n) = 0.5sin (n/33), 0<n <10,000

From our discussions in Chapter 2 this sequence is nonperiodic, yet it has
a periodic envelope. Other sequences can also be generated in a similar
fashion. Process these signals through the above u-law compressor, quan-
tizer, and expander functions as shown in Figure 10.2, and compute the

[

Generate
random
signals

{s(n}}

1(5(")*

r fy(n}} {yqinh} {sqin)} }Plotoriginal and
> reconstructed
J signal

p-law Quantizer p-law
compressor b-bits expander

FIGURE 10.2 PCM project

Pulse-code Modulation

389

signal-to-quantization noise ratio (SQNR) in dB as

N
Y s (n)

SQNR = 10logy, | n=l

> (s(n) ~ s (n))?

n=1

For different b-bit quantizers, systematically determine the value of u
that maximizes the SQNR. Also plot the input and output waveforms
and comment on the results.

DIF FERENTIAL PCM (DPCM)
+

In PCM each sample of the waveform is encoded independently of all the
other samples. However, most signals, including speech, sampled at the
Nyquist rate or faster exhibit significant correlation between successive
samples. In other words, the average change in amplitude between suc-
cessive samples is relatively small. Consequently, an encoding scheme that
exploits the redundancy in the samples will result in a lower bit rate for
the speech signal.

A relatively simple solution is to encode the differences between suc-
cessive samples rather than the samples themselves. Since differences be-
tween samples are expected to be smaller than the actual sampled ampli-
tudes, fewer bits are required to represent the differences. A refinement
of this general approach is to predict the current sample based on the
previous p samples. To be specific, let s (n) denote the current sample of
speech and let §(n) denote the predicted value of s(n), defined as

i(n)= 2”: a(i)s(n—1) (10.8)

=1

Thus §(n) is a weighted linear combination of the past p samples, and
the a (i) are the predictor (filter) coefficients. The a (i) are selected to
minimize some function of the error between s (n) and 3(n).

A mathematically and practically convenient error function is the sum
of squared errors. With this as the performance index for the predictor,
we select the a (i) to minimize

A N N P 2
EEX M=) |sn)-) a(i)s(n—i) (10.9)
i=1

n=1 n=1

390

Chapter 10 & APPLICATIONS IN COMMUNICATIONS

P P P
=7 (0)=2)a@)ra () + 3 Y a()a () e (i~ 1)

i=1 =1 j=1

where 7,5 (m) is the autocorrelation function of the sampled signal se-
quence s (n), defined as

N
res (m) =Y s(i)s(i+m) (10.10)
=1
Minimization of £, with respect to the predictor coefficients {a;(n)} re-
sults in the set of linear equations, called the normal equations,

> a(@res(i—3)=res (), i=12,...,p (10.11)

i=1

or in the matrix form,
Ra=r==a=R7Ir (10.12)

where R is the autocorrelation matrix, a is the coefficient vector, and r
is the autocorrelation vector. Thus the values of the predictor coefficients
are established.

Having described the method for determining the predictor coeffi-
cients, let us now consider the block diagram of a practical DPCM system,
shown in Figure 10.3. In this configuration the predictor is implemented
with the feedback loop around the quantizer. The input to the predictor
is denoted as 3 (n), which represents the signal sample s (n) modified by
the quantization process, and the output of the predictor is

P
F=) a()3(n—i) (10.13)
i=1
The difference
e(n) = s(n) -3 (n) (10.14)
. S = B 4 &
Channel oin) 5(n) = stn) e(nLr
To D/A
converter
{a;} 1a}
{a) DPCM Encoder {b) DPCM Decoder

FIGURE 10.3 Block diagram of a DPCM transcoder: (a) Encoder, (b) Decoder

Differential PCM (DPCM) 301

PROJECT 10.2:

DPCM

is the input to the quantizer, and é (n) denotes the output. Each value of
the quantized prediction error € (n) is encoded into a sequence of binary
digits and transmitted over the channel to the receiver. The quantized
error & (n) is also added to the predicted value 3 (n) to yield 3 (n).

At the receiver the same predictor that was used at the transmitting
end is synthesized, and its output § (n) is added to & (n) to yield 3(n). The
signal 3 (n) is the desired excitation for the predictor and also the desired
output sequence from which the reconstructed sxgna.l 3(t) is obtained by
filtering, as shown in Figure 10.3b.

The use of feedback around the quantizer, as described above, ensures
that the error in 3 (n) is simply the quantization error g (n) = é (n) —e (n)
and that there is no accumulation of previous quantization errors in the
implementation of the decoder. That is,

gln)=ém)—e(n)=é(n)~s(n)+5(n)=5(n)~s(n) (10.15)

Hence §(n) = s(n) + ¢(n). This means that the quantized sample 3 (n)
differs from the input s(n) by the quantization error q(n} independent
of the predictor used. Therefore the quantization errors do not accumu-
late.

In the DPCM system illustrated in Figure 10.3, the estimate or pre-
dicted value 3 (n) of the signal sample s (n) is obtained by taking a linear
combination of past values §(n— &), &k = 1,2,...,p, as indicated by
(10.13). An improvement in the quality of the estimate is obtained by
including linearly filtered past values of the quantized error. Specifically,
the estimate of s (n) may be expressed as

3(n) = Z a@®F(n—1i)+ Zb (8)&(n—1i) (10.16)

i=1

where b (i) are the coefficients of the filter for the quantized error sequence
& (n). The block diagram of the encoder at the transmitter and the decoder
at the receiver are shown in Figure 10.4. The two sets of coefficients a (1)
and b(i) are selected to minimize some function of the error e{(n) =
3(n) — s (n), such as the sum of squared errors.

By using a logarithmic compressor and a 4-bit quantizer for the error
sequence e (n), DPCM results in high-quality speech at a rate of 32,000
bps, which is a factor of two lower than logarithmic PCM.

The objective of this project is to gain understanding of the DPCM encod-
ing and decoding operations. For simulation purposes, generate correlated

392

Chapter 10 ® APPLICATIONS IN COMMUNICATIONS

sin) e(n) i 6n) —— 10
> + channel

sta) Linear
filter
b}
¥ Linear z 4
T + filter §(n) n
{a;}
{a) Encoder
é(nl T §n ToD/A
converter
Linear stn) Linear
fiter | + filter
b)) Ead {8
(b) Decoder

FIGURE 10.4 DPCM modified by the linearly filtered error sequence

random sequences using a pole-zero signal model of the form
s(ny=a(l)s(n—~1)+boz(n) +hyz(n—1) (10.17)

where z (n) is a zero-mesn unit variance Gaussian sequence. This can
be done using the £ilter function. The sequences developed in Project
10.1 can also be used for simulation. Develop the following three MATLAB
modules for this project:

1. a model predictor function to implement (10.12), given the input
signal s (n});

2. a DPCM encoder function to implement the block diagram of Fig-
ure 10.3a, which accepts a zero-mean input sequence and produces a quan-
tized b-bit integer error sequence, where b is a free parameter; and

3. a DPCM decoder function of Figure 10.3b, which reconstructs the
signal from the quantized error sequence.

Experiment with several p-order prediction models for a given signal
and determine the optimum order. Compare this DPCM implementation
with the PCM system of Project 10.1 and comment on the results. Ex-
tend this implementation to include an mth-order moving average filter
as indicated in (10.16).

Differential PCM (DPCM) 393

ADAPTIVE PCM (ADPC#) AND DPCM

In general, the power in a speech signal varies slowly with time. PCM
and DPCM encoders, however, are designed on the basis that the speech
signal power is constant, and hence the quantizer is fixed. The efficiency
and performance of these encoders can be improved by having them adapt
to the slowly time-variant power level of the speech signal.

In both PCM and DPCM the quantization error g (n) resulting from a
uniform quantizer operating on a slowly varying power level input signal
will have a time-vatiant variance (quantization noise power). One im-
provement that reduces the dynamic range of the quantization noise is
the use of an adaptive quantizer.

Adaptive quantizers can be classified as feedforward or feedback. A
feedforward adaptive quantizer adjusts its step size for each signal sample,
based on a measurement of the input speech signal variance (power). For
example, the estimated variance, based as a sliding window estimator, is

1 n+1
=37 2. k) (10.18)
k=n+1-M

Then the step size for the quantizer is
An+1)=A(n)ént1 (10.19)

In this case it is necessary to transmit A (n + 1) to the decoder in order
for it to reconstruct the signal.

A feedback adaptive quantizer employs the output of the quantizer
in the adjustment of the step size. In particular, we may set the step size
as

An+1)=a(r)A®R) (10.20)

where the scale factor o (n) depends on the previous quantizer output.
For example, if the previous quantizer output is small, we may select
a(n) < 1in order to provide for finer quantization. On the other hand,
if the quantizer output is large, then the step size should be increased
to reduce the possibility of signal clipping. Such an algorithm has been
successfully used in the encoding of speech signals. Figure 10.5 illustrates
such a (3-bit) quantizer in which the step size is adjusted recursively
according to the relation

A(n+1)=A(n) M{n)

394

Chapter 10 @ APPLICATIONS IN COMMUNICATIONS

Output

1 111 ~Previous output
7A/21
M(4) ~Multiplier
110
SA/Z|
M(3)
101
34A/21-
M(2)
Al2 100
1 M,) | Input
-3A -24 A 0NV A 2A 3A
M| —A2
010
M2} 3872
001
—5A/2
M(3) / Ane1= Aye Min)
000 %
M(4) —7A2

FIGURE 10.5 Ezample of a quantizer with an adaptive step size ([10])

where M (n) is a multiplication factor whose value depends on the quan-
tizer level for the sample s (n), and A (n) is the step size of the quantizer
for processing s(n). Values of the multiplication factors optimized for
speech encoding have been given by {13]. These values are displayed in
Table 10.1 for 2-, 3-, and 4-bit quantization for PCM and DPCM.

In DPCM the predictor can also be made adaptive. Thus in ADPCM
the coefficients of the predictor are changed periodically to reflect the
changing signal statistics of the speech. The linear equations given by
(10.11) still apply, but the short-term autocorrelation function of s (n),
Tss () changes with time.

TABLE 10.1 Multiplication factors for adaptive step size adjustment ([10])

PCM DPCM
2 3 4 2 s 4
M(1) 0.60 0.85 0.80 0.80 0.90 0.90
M(2) 2.20 1.00 0.80 1.60 0.90 0.90
M(3) 1.00 0.80 1.25 0.90
M(4) 1.50 0.80 1.70 0.90
M(5) 0.80 1.20
M(6) 0.80 1.60
M(7) 0.80 2.00
M(8) 0.80 2.40
Adaptive PCM (ADPCM) and DPCM 395

. Input Difference
64 kbit/s Convert to signal signal

> . ,() R Adaptive 32 kbit/s
.’:ﬂft u?(f:(;\;m + + quantizer output

Signal estimate

+
Reconstructed signal o + Inverse
Encoder Adaptive | adaptive
predictor quantizer

" Quantized difference signal

J Quantized J L
0 difference Reconstructed Svnehronous 64 Kbit/s
. nverse ignal ~. signal ynchronou: i
32 kb'tt/s—-m adaptive son (&) LN Cog\g\rﬂt —>] coding PCM
npu quantizer ++ to adjustment output
Signal estimate
Decoder Adaptive |
predictor
FIGURE 10.6 ADPCM block diagram
ADPCM . Figure 10.6 illustrates, in block diagram form, a 32,000 bps ADPCM en-
STANDARD coder and decoder that has been adopted as an international (CCITT)

standard for speech transmission over telephone channels. The ADPCM
encoder is designed to accept 8-bit PCM compressed signal samples at
64,000 bps, and by means of adaptive prediction and adaptive 4-bit quan-
tization to reduce the bit rate over the channel to 32,000 bps. The AD-
PCM decoder accepts the 32,000 bps data stream and reconstructs the
signal in the form of an 8-bit compressed PCM at 64,000 bps. Thus we
have a configuration shown in Figure 10.7, where the ADPCM encoder/

Speech PCM 8-bit/sample | Abpcm 4-bit/sample
signal encoder PCM encoder

Channel

Speech pcM | 8-bit/sample | appcm | 4-bit/sample
signal decoder PCM decoder ADPCM

FIGURE 10.7 ADPCM interface to PCM system

396 Chapter 10 ® APPLICATIONS IN COMMUNICATIONS

PROJECT 10.3:
ADPCM

decoder is embedded into a PCM system. Although the ADPCM encoder/
decoder could be used directly on the speech signal, the interface to the
PCM system is necessary in practice in order to maintain compatibility
with existing PCM systems that are widely used in the telephone net-
work.

The ADPCM encoder accepts the 8-bit PCM compressed signal and
expands it to a 14-bit-per-sample linear representation for processing. The
predicted value is subtracted from this 14-bit linear value to produce a
difference signal sample that is fed to the quantizer. Adaptive quantiza-
tion is performed on the difference signal to produce a 4-bit output for
transmission over the channel.

Both the encoder and decoder update their internal variables, based
only on the ADPCM values that are generated. Consequently, an ADPCM
decoder including an inverse adaptive quantizer is embedded in the en-
coder so that all internal variables are updated, based on the same data.
This ensures that the encoder and decoder operate in synchronism without
the need to transmit any information on the values of internal variables.

The adaptive predictor computes a weighted average of the last six
dequantized difference values and the last two predicted values. Hence
this predictor is basically a two-pole (p = 2) and six-zero (m = 6) filter
governed by the difference equation given by (10.16). The filter coefficients
are updated adaptively for every new input sample.

At the receiving decoder and at the decoder that is embedded in
the encoder, the 4-bit transmitted ADPCM value is used to update the
inverse adaptive quantizer, whose output is a dequantized version of the
difference signal. This dequantized value is added to the value generated
by the adaptive predictor to produce the reconstructed speech sample.
This signal is the output of the decoder, which is converted to compressed
PCM format at the receiver.

The objective of this project is to gain familiarity with, and understanding
of, ADPCM and its interface with a PCM encoder/decoder (transcoder).
As described above, the ADPCM transcoder is inserted between the PCM
compressor and the PCM expander as shown in Figure 10.7. Use the
already developed MATLAB PCM and DPCM modules for this project.

The input to the PCM-ADPCM transcoder system can be supplied
from internally generated waveform data files, just as in the case of the
PCM project. The output of the transcoder can be plotted. Compar-
isons should be made betweéen the output signal from the PCM-ADPCM
transcoder with the signal from the PCM transcoder (PCM project 10.1),
and with the original input signal.

Adaptive PCM (ADPCM) and DPCM 397

DELTA MODULATION gM)

Delta modulation may be viewed as a simplified form of DPCM in which
a two-level (1-bit} quantizer is used in conjunction with a fixed first-order
predictor. The block diagram of a DM encoder-decoder is shown in Figure
10.8. We note that

i) =5(r-1)=3Fn-1)+é(n-1) (10.21)
Since
g(n) =&(n) - e(n) = &(n) - [s (m) =5 (n)]
it follows that
i) =s(n-1)+q(n—1) (10.22)

Thus the estimated (predicted) value of s (n) is really the previous sam-
ple s(n ~ 1) modified by the quantization noise g(n — 1). We also note
that the difference equation in (10.21) represents an integrator with an
input €(n). Hence an equivalent realization of the one-step predictor is
an accumulator with an input equal 1o the quantized error signal & (n). In
general, the quantized error signal is scaled by some value, say Ay, which
is called the step size. This equivalent realization is illustrated in Figure
10.9. In effect, the encoder shown in Figure 10.9 approximates a wave-
form s(t) by a linear staircase function. In order for the approximation
to be relatively good, the waveform s (t) must change slowly relative to

stn) eln) . é(n) = 1 To
——:—G-?——_—’ Quantizer channel

§(n =50 = 1) | unit delay | ____$in)
z-1
Encoder
a(n) n $(n) Lowpass
filter —> Output
27 1
Decoder

FIGURE 10.8 Block diagram of a delta modulation system

398

Chapter 10 W APPLICATIONS IN COMMUNICATIONS

ADAPTIVE
DELTA
MODULATION
(ADM)

sin T\ elm Quantizer 8ln) = +1 To
U j: channel

8t

| Accumulator |
Encoder 4,
M——><>?———>At:cumu\ator —>- Lof\;\;t;;arss ——> Output
Ay Decoder

FIGURE 10.9 An equivalent realization of a delta modulation system

the sampling rate. This requirement implies that the sampling rate must
be several (a factor of at least 5) times the Nyquist rate. A lowpass filter
is usually incorporated into the decoder to smooth out discontinuities in
the reconstructed signal.

At any given sampling rate, the performance of the DM encoder is limited
by two types of distortion as shown in Figure 10.10. One is called slope-
overload distortion. It is due to the use of a step size A; that is too small
to follow portions of the waveform that have a steep slope. The second
type of distortion, called granular noise, results from using a step size
that is too large in parts of the waveform having a small slope. The need
to minimize both of these two types of distortion results in conﬁlctmg
requirements in the selection of the step size A;.

An alternative solution is to employ a variable size that adapts itself
to the short-term characteristics of the source signal. That is, the step size
is increased when the waveform has a steep slope and decreased when the
waveform has a relatively small slope.

L

targe A and granular noise Small A and slope-overload noise

FIGURE 10.10 Two types of distortion in the DM encoder

Deita Modulation (DM)

399

A variety of methods can be used to set adaptively the step size in
every iteration. The quantized error sequence € (n) provides a good indica-
tion of the slope characteristics of the waveform being encoded. When the
quantized error € (n) is changing signs between successive iterations, this
is an indication that the slope of the waveform in the locality is relatively
small. On the other hand, when the waveform has a steep slope, successive
values of the error &(n) are expected to have identical signs. From these
observations it is possible to devise algorithms that decrease or increase
the step size, depending on successive values of & (n). A relatively simple
rule devised by [12] is to vary adaptively the step size according to the
relation

An)=Am-1)KEDE-D n—13... (10.23)

where K > 1 is a constant that is selected to minimize the total distortion.
A block diagram of a DM encoder-decoder that incorporates this adaptive
algorithm is illustrated in Figure 10.11.

s{n) - aln) Quantizer én) = +1 To
* transmitter
&n—1)
21
K# d
Aln—1)
z-3
Encoder
I 8(n—1)
et »{ X B KB

/;J‘-&
h
B
3
X

-1
z Aln— 1)

! Accumulator Lowpass Output
filter
Decoder

FIGURE 10.11 An ezample of a delta modulation system with adaptive step size

400

Chapter 10 B APPLICATIONS IN COMMUNICATIONS

Administrator

Administrator
invm

Administrator
invm
effectiw

Administrator
invm
effectiw

PROJECT 10.4:

DM AND ADM

Several other variations of adaptive DM encoding have been invig-
tigated and described in the technical literature. A particularly effective
and popular technique first proposed by [8] is called continuously variable
slope delta modulation (CVSD). In CVSD the adaptive step size parame-
ter may be expressed as

An)=al(n~1)+k (10.24)
if €(n), €(n — 1), and é(n — 2) have the same sign; otherwise
An)=aA(n—1)+k; (10.25)

The parameters a, k;, and ky are selected such that 0 < o < 1 and
k3 > ko > 0. For more discussion on this and other variations of adaptive
DM, the interested reader is referred to the papers by (13] and [6] and to
the extensive references contained in these papers.

The purpose of this project is to gain an understanding of delta modula-
tion and adaptive delta modulation for coding of waveforms. This project
involves writing MATLAB functions for the DM encoder and decoder as
shown in Figure 10.9, and for the ADM encoder and decoder shown in
Figure 10.11. The lowpass filter at the decoder can be implemented as a
linear-phase FIR filter. For example, a Hanning filter that has the impulse
response

h(n)=—§[1—cos(137r_nl)], O<n<N-1 (10.26)
may be used, where the length N may be selected in the range 5 < N < 15.

The input to the DM and ADM systems can be supplied from the
waveforms generated in Project 10.1 except that the sampling rate should
be higher by a factor of 5 to 10. The output of the decoder can be plotted.
Comparisons should be made between the output signal from the DM and
ADM decoders and the original input signal.

LINEAR PREDICTIVE %DING (LPC) OF SPEECH

The linear predictive coding (LPC) method for speech analysis and syn-
thesis is based on modeling the vocal tract as a linear all-pole (IIR) filter
having the system function

G
—_— (10.27)

1+ ap (k) 27*

=1

H(z)=

Linear Predictive Coding {LPC) of Speech 401

Administrator

Administrator
invm

Administrator
invm
effectiw

Administrator
invm
effectiw

White
noise
generator Voiced and
unvoiced switch All-pole Speech
filter signal
Periodic l
impulse |
generator

FIGURE 10.12 Block diagram model for the generation of a speech signal

where p is the number of poles, G is the filter gain, and {a, (k)} are the
parameters that determine the poles. There are two mutually exclusive
excitation functions to model voiced and unvoiced speech sounds. On a
short-time basis, voiced speech is periodic with a fundamental frequency
Fp, or a pitch period 1/Fp, which depends on the speaker. Thus voiced
speech is generated by exciting the all-pole filter model by a periodic
impulse train with a period equal to the desired pitch period. Unvoiced
speech sounds are generated by exciting the all-pole filter model by the
output of a random-noise generator. This model is shown in Figure 10.12.

Given a short-time segment of a speech signal, usually about 20 ms or
160 samples at an 8 kHz sampling rate, the speech encoder at the trans-
mitter must determine the proper excitation function, the pitch period for
voiced speech, the gain parameter G, and the coefficients a, (k). A block
diagram that illustrates the speech encoding system is given in Figure
10.13. The parameters of the model are determined adaptively from the
data and encoded into a binary sequence and transmitted to the receiver.

{a,(k)}
Determine
Sampled " .
speech — > vc_nc%d ord ‘ Pitch frequency Encoder |—-> Output
signal unvaiced moce Excitation
and n
{a) Encoder
Excitation Signal
parameters generator I
Input —> Decoder
Filter
H(z)
parameters
- Output Lowpass | I
{b) Decoder speech signal filter

FIGURE 10.13 Encoder and decoder for LPC

402

Chapter 10 ® APPLICATIONS IN COMMUNICATIONS

At the receiver the speech signal is synthesized from the model and the
excitation signal.

The parameters of the all-pole filter model are easily determined from
the speech samples by means of linear prediction. To be specnﬁc, the
output of the FIR linear prediction filter is

§(n)=- i ap (k) s(n—k) (10.28)

k=1

and the corresponding error between the observed sample s(n) and the
predicted value 3(n) is

L4
e(m)=s(m)+Y ay(k)s(n-k) (10.29)

k=1

By minimizing the sum of squared errors, that is,

N N 14 2
E=Yem)=3 s(n)+2ap(k)s(n—k)} (10.30)

n=0 n=0 k=1

we can determine the pole parameters {a, (k)} of the model. The result
of differentiating £ with respect to each of the parameters and equating
the result to zero, is a set of p linear equations

iap(k)r-sa (m—k)=-~r,(m), m=1,2,...,p (10.31)
k=1

where r,, (m) is the autocorrelation of the sequence s (n) defined as

N

Tes (M) = Z s(n)s(n+m) (10.32)

n=0
The linear equations (10.31) can be expressed in matrix form as
Ryea = —T,, (10.33)

where R, is a p X p autocorrelation matrix, r,, is a p X 1 autocorrelation
vector, and a is a p x 1 vector of model parameters. Hence

a=-R'r, (10.34)

These equations can also be solved recursively and most efficiently, with-
out resorting to matrix inversion, by using the Levinson-Durbin algorithm
{19). However, in MATLAB it is convenient to use the matrix inversion. The
all-pole filter parameters {a, (k)} can be converted to the all-pole lattice

Linear Predictive Coding (LPC) of Speech 403

parameters {K;} (called the reflection coefficients) using the MATLAB
function dir2latc developed in Chapter 6.

The gain parameter of the filter can be obtained by noting that its
input-output equation is

P
s(n)=—_a,(k)s(n—k)+Gz(n) (10.35)
k=1
where z (n) is the input sequence. Clearly,

Gz(n)=s(n)+ > ap(k)s(n—k) =e(n)

k=1
Then
N-1 N-1
G*Y)=) (10.36)
n=0 n=0

If the input excitation is normalized to unit energy by design, then

N-1
=Y n)=r,0)+ \:j ap (k) Tss (k) (10.37)
n=0 k=1

Thus G? is set equal to the residual energy resulting from the least-squares
optimization.

Once the LPC coefficients are computed, we can determine whether
the input speech frame is voiced, and if so, what the pitch is. This is
accomplished by computing the sequence

e =Y ra () (1=) (1038)

k=1

where 7 (k) is defined as

P
ra(k) =Y ap(i) a, (i +£) (10.39)
i=1

which is the autocorrelation sequence of the prediction coefficients.
The pitch is detected by finding the peak of the normalized sequence
7¢ (1) /re(0) in the time interval that corresponds to 3 to 15 ms in the
20-ms sampling frame. If the value of this peak is at least 0.25, the frame
of speech is considered voiced with a pitch period equal to the value of
n = Np, where re (Np) /1. (0) is & maximum. If the peak value is less than
0.25, the frame of speech is considered unvoiced and the pitch is zero.

Chapter 10 ® APPLICATIONS IN COMMUNICATIONS

PROJECT 10.5:
LPC

The values of the LPC coefficients, the pitch period, and the type of
excitation are transmitted to the receiver, where the decoder synthesizes
the speech signal by passing the proper excitation through the all-pole
filter model of the vocal tract. Typically, the pitch period requires 6 bits,
and the gain parameter may be represented by 5 bits after its dynamic
range is compressed logarithmically. If the prediction coefficients were to
be coded, they would require between 8 to 10 bits per coefficient for accu-
rate representation. The reason for such high accuracy is that relatively
small changes in the prediction coefficients result in a large change in
the pole positions of the filter model. The accuracy requirements are less-
ened by transmitting the reflection coefficients {K;}, which have a smaller
dynamic range—that is, {K;| < 1. These are adequately represented by
6 bits per coefficient. Thus for a 10th-order predictor the total number
of bits assigned to the model parameters per frame is 72. If the model
parameters are changed every 20 milliseconds, the resulting bit rate is
3,600 bps. Since the reflection coefficients are usually transmitted to the
receiver, the synthesis filter at the receiver is implemented as an all-pole
lattice filter, described in Chapter 6.

The objective of this project is to analyze a speech signal through an
LPC coder and then to synthesize it through the corresponding PLC
decoder. Use several .wav sound files {sampled at 8000 sam/sec rate),
which are available in MATLAB for this purpose. Divide speech signals
into short-time segments (with lengths between 120 and 150 samples) and
process each segment to determine the proper excitation function (voiced
or unvoiced), the pitch period for voiced speech, the coefficients {a, (k)}
(p < 10), and the gain G. The decoder that performs the synthesis is an
all-pole lattice filter whose parameters are the reflection coefficients that
can be determined from {a, (k)}. The output of this project is a synthetic
speech signal that can be compared with the original speech signal. The
distortion effects due to LPC analysis/synthesis may be assessed qualita-
tively.

DUAL-TONE MULTIFREQUENCY (DTMF) SIGNALS
L

DTMF is the generic name for push-button telephone signaling that is
equivalent to the Touch Tone system in use within the Bell System. DTMF
also finds widespread use in electronic mail systems and telephone banking
systems in which the user can select options from a menu by sending
DTMF signals from a telephone,

In a DTMF signaling system a combination of a high-frequency tone
and a low-frequency tone represent a specific digit or the characters *
and #. The eight frequencies are arranged as shown in Figure 10.14, to

Dual-tone Multifrequency (DTMF) Signals 405

Col1 Col2 Col3 Col 4
1209Hz 1336 Hz 1477Hz 1633 Hz

Row 1 697 Hz

Row 2 770 Hz

Row 3 852 Hz

Row 4 941 Hz

DTMF digit = row tone + column tone

FIGURE 10.14 DTMF digits

accommodate a total of 16 characters, 12 of which are assigned as shown,
while the other four are reserved for future use.

DTMEF signals are easily generated in software and detected by means
of digital filters, also implemented in software, that are tuned to the eight
frequency tones. Usually, DTMF signals are interfaced to the analog world
via a codec (coder/decoder) chip or by linear A/D and D/A converters.
Codec chips contain all the necessary A/D and D/A, sampling, and fil-
tering circuitry for a bi-directional analog/digital interface.

The DTMF tones may be generated either mathematically or from a
look-up table. In a hardware implementation (e.g., in a digital signal pro-
cessor), digital samples of two sine waves are generated mathematically,
scaled, and added together. The sum is logarithmically compressed and
sent to the codec for conversion to an analog signal. At an 8 kHz sam-
pling rate the hardware must output a sample every 125 ms. In this case
a sine look-up table is not used because the values of the sine wave can be
computed quickly without using the large amount of data memory that
a table look-up would require. For simulation and investigation purposes
the look-up table might be a good approach in MATLAB.

At the receiving end the logarithmically compressed, 8-bit digital data
words from the codec are received, logarithmically expanded to their 16-
bit linear format, and then the tones are detected to decide on the trans-
mitted digit. The detection algorithm can be a DFT implementation us-
ing the FFT algorithm or a filter bank implementation. For the relatively
small number of tones to be detected, the filter bank implementation is

Chapter 10 W APPLICATIONS IN COMMUNICATIONS

THE
GOERTZEL
ALGORITHM

more efficient. Below, we describe the use of the Goertzel algorithm to
implement the eight tuned filters,

Recall from the discussion in Chapter 5 that the DFT of an N-point
data sequence {z (n)} is

N-1
X&)=Y s(mWF, k=01,...,N-1 (10.40)

n=0

If the FFT algorithm is used to perform the computation of the DFT,
the number of computations (complex multiplications and additions) is
N log, N. In this case we obtain all N values of the DF'T at once. However,
if we desire to compute only M points of the DFT, where M < log, N,
then a direct computation of the DFT is more efficient. The Goertzel
algorithm, which is described below, is basically a linear filtering approach
to the computation of the DFT, and provides an alternative to direct
computation.

The Goertzel algorithm exploits the periodicity of the phase factors { Wx }
and allows us to express the computation of the DFT as a linear filtering
operation. Since W,T,kN = 1, we can multiply the DFT by this factor.
Thus

N-1
X(k)=WFNX (k)= 3 a(m)wgt® ™™ (10.41)

m=0

‘We note that (10.41) is in the form of a convolution. Indeed, if we define
the sequence yx (n) as

N-1
w(m) =Y z(m) Wy ™ (10.82)

m=0

then it is clear that y, (n) is the convolution of the finite-duration input
sequence z (n) of length N with a filter that has an impulse response

ki (r) = W*™u (n) (10.43)

‘The output of this filter at n = N yields the value of the DFT at the
frequency wy = 2nk/N. That is,

X (k) = ye (M)ln=n (10.44)

as can be verified by comparing (10.41) with (10.42).

Dual-tone Multifrequency (DTMF) Signals 407

The filter with impulse response ki (n) has the system function

1

B =

(10.45)

This filter has a pole on the unit circle at the frequency wy = 2mk/N.
Thus the entire DFT can be computed by passing the block of input data
into a parallel bank of N single-pole filters (resonators), where each filter
has a pole at the corresponding frequency of the DFT.

Instead of performing the computation of the DFT as in (10.42), via
convolution, we can use the difference equation corresponding to the filter
given by (10.45) to compute yx (n) recursively. Thus we have

() =Wifu(n-1)+z(n), w(-1)=0 (10.46)

The desired output is X (k) = y; (V). To perform this computation, we
can compute once and store the phase factor Wi

The complex multiplications and additions inherent in (10.46) can
be avoided by combining the pairs of resonators possessing complex con-
jugate poles. This leads to two-pole filters with system functions of the
form

1-Wk2!

Hi() = 1—2cos(2nk/N) 21 + z—2

(10.47)

The realization of the system illustrated in Figure 10.15 is described by
the difference equations

ok (n) = 2cos 2]’(,—’“1;,: (-1 -wu(n-2) +z(n) (10.48)

i (n) = v (n) — WEue (n — 1) {10.49)

x(n) _’G\ﬁ T) v tN) = X(k)
A

2 cos(27k/N)

-k
—< >

FIGURE 10.15 Realization of two-pole resonator for computing the DFT

Chapter 10 @ APPLICATIONS IN COMMUNICATIONS

PROJECT 10.6:
DTMF
SIGNALING

with initial conditions vg (—1) = vg (—2) = 0. This is the Goertzel algo-
rithm.

The recursive relation in (10.48) is iterated forn = 0,1, ..., N, but the
equation in (10.49) is computed only once, at time n = N. Each iteration
requires one real multiplication and two additions. Consequently, for a real
input sequence x (n}, this algorithm requires N + 1 real multiplications to
yield not only X (k) but also, due to symmetry, the value of X (N — k).

We can now implement the DTMF decoder by use of the Goertzel
algorithm. Since there are eight possible tones to be detected, we require
eight filters of the type given by (10.47), with each filter tuned to one of the
eight frequencies. In the DTMF detector, there is no need to compute the
complex value X (k); only the magnitude | X (k)] or the magnitude-squared
value | X (lc:)l2 will suffice. Consequently, the final step in the computation
of the DFT value involving the numerator term (feedforward part of the
filter computation) can be simplified. In particular, we have

X (6) = fys (M) = [oi (V) = Whow (¥ - 1)) (10.50)

= (N)+v}(N-1)~- (2C0827er) v (N) v (N ~ 1)

Thus complex-valued arithmetic operations are completely eliminated in
the DTMF detector.

The objective of this project is to gain an understanding of the DTMF
tone generation software and the DTMF decoding algorithm (the Goertzel
algorithm). Design the following MATLAB modules:

1. a tone generation function that accepts an array containing dial-
ing digits and produces a signal containing appropriate tones (from Figure
10.14) of one-half-second duration for each digit at 8 kHz sampling fre-
quency,

2. a dial-tone generator generating samples of (350 +440) Hz fre-
quency at 8 kHz sampling interval for a specified amount of duration,
and

3. a decoding function to implement (10.50) that accepts a DTMF
signal and produces an array containing dialing digits.

Generate several dialing list arrays containing a mix of digits and dial
tones. Experiment with the tone generation and detection modules and
comment on your observations. Use MATLAR’s sound generation capabil-
ities to listen to the tones and to observe the frequency components of
the generated tones.

Dual-tone Multifrequency (DTMF) Signals 409

BINARY DIGITAL COMMUNICATIONS
—i

PROJECT 10.7:
BINARY DATA
COMMUNI-
CATIONS
SYSTEM

Digitized speech signals that have been encoded via PCM, ADPCM, DM,
and LPC are usually transmitted to the decoder by means of digital modu-
lation. A binary digital communications system employs two signal wave-
forms, say s;(t) = s(t) and sa(t) = —s(t), to transmit the binary sequence
representing the speech signal. The signal waveform s(t), which is nonzero
over the interval 0 < t < T, is transmitted to the receiver if the data bit
isa 1, and the signal waveform —s(t), 0 <t < T is transmitted if the data
bit is a 0. The time interval 7' is called the signal interval, and the bit
rate over the channel is R = 1/T bits per second. A typical signal wave-
form s(t) is a rectangular pulse—that is, s(t) = A, 0 < t < T—which has
energy A%T.

In practice the signal waveforms transmitted over the channel are
corrupted by additive noise and other types of channel distortions that
ultimately limit the performance of the communications system. As a
measure of performance we normally use the average probability of error,
which is often called the bit error rate.

The purpose of this project is to investigate the performance of a binary
data communications system on an additive noise channel by means of
simulation. The basic configuration of the system to be simulated is shown
in Figure 10.16. Five MATLAB functions are required.

1. A binary data generator module that generates a sequence of in-
dependent binary digits with equal probability.

2. A modulator module that maps a binary digit 1 into a sequence
of M consecutive +1’s, and maps a binary digit 0 into a sequence of
M consecutive —1’s. Thus the M consecutive +1’s represent a sampled
version of the rectangular pulse.

3. A noise generator that generates a sequence of uniformly dis-
tributed numbers over the interval (—a, a). Each noise sample is added to
a corresponding signal sample.

Binary data | Detector and
generator —>1 Modulator Demodulator L—> error counter

win)

Noise
generator

FIGURE 10.16 Model of binary data communications system

410

Chapter 10 w APPLICATIONS IN COMMUNICATIONS

4. A demodulator module that sums the M successive outputs of
the noise corrupted sequence +1’s or —1’s received from the channel. We
assume that the demodulator is time synchronized so that it knows the
beginning and end of each waveform.

5. A detector and error-counting module. The detector compares the
output of the modulator with zero and decides in favor of 1 if the output
is greater than zero and in favor of 0 if the output is less than zero. If the
output of the detector does not agree with the transmitted bit from the
transmitter, an error is counted by the counter. The error rate depends
on the ratio (called signal-to-noise ratio) of the size of M to the additive
noise power, which is P, = a?/3.

The measured error rate can be plotted for different signal-to-noise
ratios, either by changing M and keeping P, fixed or vice versa.

SPREAD-SPECTRUM COMMUNICATIONS
—=

Spread-spectrum signals are often used in the transmission of digital data
over cormmunication channels that are corrupted by interference due to
intentional jamming or from other users of the channel (e.g., cellular tele-
phones and other wireless applications). In applications other than com-
munications, spread-spectrum signals are used to obtain accurate range
(time delay) and range rate (velocity) measurements in radar and navi-
gation. For the sake of brevity we shall limit our discussion to the use of
spread spectrum for digital communications. Such signals have the char-
acteristic that their bandwidth is much greater than the information rate
in bits per second.

In combatting intentional interference (jamming), it is important to
the communicators that the jammer who is trying to disrupt their com-
munication does not have prior knowledge of the signal characteristics. To
accomplish this, the transmitter introduces an element of unpredictability
or randomness (pseudo-randomness) in each of the possible transmitted
signal waveforms, which is known to the intended receiver, but not to the
jammer. As a consequence, the jammer must transmit an interfering sig-
nal without knowledge of the pseudo-random characteristics of the desired
signal.

Interference from other users arises in multiple-access communica-
tions systems in which a number of users share a common communications
channel. At any given time a subset of these users may transmit informa-
tion simultaneously over a common channel to corresponding receivers.
The transmitted signals in this common channel may be distinguished
from one another by superimposing a different pseudo-random pattern,
called a mulliple-access code, in each transmitted signal. Thus a particular

Spread-Spectrum Communications 411

PROJECT 10.8:

BINARY
SPREAD-
SPECTRUM
COMMUNI-
CATIONS

receiver can recover the transmitted data intended for it by knowing the
pseudo-random pattern, that is, the key used by the corresponding trans-
mitter. This type of communication technique, which allows multiple users
to simultaneously use a common channel for data transmission, is called
code division multiple access (CDMA).

The block diagram shown in Figure 10.17 illustrates the basic el-
ements of a spread-spectrum digital communications system. It differs
from a conventional digital communications system by the inclusion of
two identical pseudo-random pattern generators, one that interfaces with
the modulator at the transmitting end, and the second that interfaces with
the demodulator at the receiving end. The generators generate a pseudo-
random or pseudo-noise (PN) binary-valued sequence (+1’s), which is
impressed on the transmitted signal at the modulator and removed from
the received signal at the demodulator.

Synchronization of the PN sequence generated at the demodulator
with the PN sequence contained in the incoming received signal is re-
quired in order to demodulate the received signal. Initially, prior to the
transmission of data, synchronization is achieved by transmitting a short
fixed PN sequence to the receiver for purposes of establishing synchro-
nization. After time synchronization of the PN generators is established,
the transmission of data commences.

The objective of this project is to demonstrate the effectiveness of a PN
spread-spectrum signal in suppressing sinusoidal interference. Let us con-
sider the binary communication system described in Project 10.7, and let
us multiply the output of the modulator by a binary (+1) PN sequence.
The same binary PN sequence is used to multiply the input to the demod-
ulator and thus to remove the effect of the PN sequence in the desired
signal. The channel corrupts the transmitted signal by the addition of a
wideband noise sequence {w(n)} and a sinusoidal interference sequence
of the form i(n) = Asinwyn, where 0 < wg < 7. We may assume that
A > M, where M is the number of samples per bit from the modulator.
The basic binary spread spectrum-system is shown in Figure 10.18. As can

Input

data » Modulator Channel Demodulator L—>°Utput

T T ata

Pseudo-noise Pseudo-noise
sequence sequence
generator generator

FIGURE 10.17 Basic spread spectrum digital communications system

412

Chapter 10 m APPLICATIONS IN COMMUNICATIONS

Binary data

! i
] Sine i
| generator)
|)
| |

generator

———e-——>1 Modulator

R

generator generator

|
|

PN sequence : Noise
|

L Channel

Qutput ~—

Detector and
error counter

Demodulator x

SUMMARY

pin)

PN sequence
generator

FIGURE 10.18 Block diagram of binary PN spread-spectrum system for simula-
tion experiment

be observed, this is just the binary digital communication system shown
in Figure 10.16, to which we have added the sinusoidal interference and
the PN sequence generators, The PN sequence may be generated by using
a random-number generator to generate a sequence of equally probable
+1's,

Execute the simulated system with and without the use of the PN
sequence, and measure the error rate under the condition that 4 > M for
different values of M, such as M = 50, 100, 500, 1000. Explain the effect
of the PN sequence on the sinusoidal interference signal. Thus explain
why the PN spread-spectrum system outperforms the conventional binary
communication system in the presence of the sinusoidal jamming signal.

—=

In this chapter we focused on applications to waveform representation and
coding. In particular, we described several methods for digitizing an ana-
log waveform, including PCM, DPCM, ADPCM, DM, ADM, and LPC.
These methods have been widely used for speech coding and transmission.
Projects involving these waveform encoding methods were formulated for
implementation via simulation in MATLAB.

We also described signal-detection and communication systems where
MATLAB may be used to perform the signal processing tasks. Projects
were also devised for these applications.

Summary

413

BIBLIOGRAPHY

[

2

B

4

5]
(6}

Y|

L

[
(10]

11]

(12]

MATLAB Reference Guide: High-Perfor-
mance Numeric computation and Visual-
ization Software. The MathWorks, Inc.,
South Natick, MA, 1984-1994.

MATLAB User’s Guide: High Performance
Numeric Computation and Visualization
Software. The MathWorks, Inc., South Nat-~
ick, MA, 1984-1994.

The MathWorks, Inc.: The Student Edi-
tion of MATLAB. Prentice Hall, Engle-
wood Cliffs, NJ, version 4 edition, 1995.
J. W. Cooley and J. W. Tukey. An algo-
rithm for the machine computation of com-
plex Fourier series. Mathematical Compu-
tations, 19:297-301, April 1965.

C. de Boor. A Practical Guide to Splines.
Springer-Verlag, 1978.

J. L. Flanagan et al. Speech coding. IEEE
Transactions on Communications, COM-
27:710-736, April 1979.

D. A. George, R. R. Bowen, and J. R.
Storey. An adaptive decision feedback
equalizer. IEEE Transactions on Commu-
nications Technology, pages 281-293, June
1971.

J. A. Greefkes. A digitally companded
delta modulation modem for speech trans-
mission. In Proceedings of IEEE Inter-
national Conference on Communications,
pages 7.33-7.48, June 1970.

S. Haykin. Adaptive Filter Theory. Prentice
Hall, Englewood Cliffs, NJ, 1986.

F. M. Hsu and A. A. Giordano. Digital
whitening techniques for improving spread
spectrum communications performance in
the presence of narrowband jamming and
interference. IEEE Transactions on Com-
maunications, COM-26:209-216, February
1978.

V. K. Ingle and J. G. Proakis. Digital Signal
Processing using the ADSP-2101. Prentice
Hall, Englewood Cliffs, NJ, 1991.

N. 8. Jayant. Adaptive delta modulation
with one-bit memory. Bell System Techni-
cal Journal, pages 321-342, March 1970.

(13]

(14]

(15]

[16]

(17

18]

19]

[20]

[21]

(22]

(23]

N. S. Jayant. Digital coding of speech wave-
forms: Pcm, dpem and dm quantizers. Pro-
ceedings of the IEEE, 62:611-632, May
1974.

J. W. Ketchum and J. G. Proakis. Adap-
tive algorithms for estimation and sup-
pression of narrowband interference in pn
spread-spectrurn systems. IEEE Transac-
tions on Communications, COM-30:913—
922, May 1982.

N. Levinson. The wiener rms (root-mean-
square) error criterion in- filter design
and prediction. Journal of Mathematical
Physics, 25:261-278, 1947.

A. V. Oppenheim and R. W. Schafer.
Discrete-Time Signal Processing. Prentice
Hall, Englewood Cliffs, New Jersey, 1989.

T. W. Parks and J. H. McClellan. A pro-
gram for the design of linear-phase fi-
nite impulse response digital filters. JEEE
Transactions on Audio and Electroacous-
tics, AU-20:195-199, August 1972.

J. G. Proakis. Digital Communications.
McGraw-Hill, New York, NY, third edition,
1995.

J. G. Proakis and D. G. Manolakis. Digital
Signal Processing: Principles, Algorithms
and Applications. Macmillan, New York,
NY, third edition, 1996.

L. R. Rabiner and B. Gold. Theory and
Applications in Digital Signal Processing.
Prentice Hall, Englewood Cliffs, NJ, 1975.
L. R. Rabiner, R. W. Schafer, and C. A.
McGonegal. An approach to the approx-
imation problem for nonrecursive digi-
tal filters. IEEE Transactions on Audio
and Electroacoustics, AU-18:83-106, June
1970.

B. Widrow et al. Adaptive noise cancelling:
Principles and applications. Proceedings
of the IEEE, 63:1692-1716, December
1975.

B. Widrow, P. Manley, and L. J. Griffiths.
Adaptive antenna systems. Proceedings of
the IEEE, 55:2143-2159, December 1967.

414

INDEX

A-law, 388
Absolute specifications, 225
Absolutely summable, 22
Accumulated amplitude response,
245
Adaptive channel equalizer, 382
project in, 383
Adaptive delta modulation
(ADM), 399
project in, 401
Adaptive differential PCM
(ADPCM), 394
project in, 397
standard, 396
Adaptive FIR filter, direct form,
374 .
Adaptive line enhancement, 382
project in, 382
Adder, 183
Advantages of DSP over ASP, 3
afd, 364
afd_ butt, 311
afd_chbi, 318
afd_chb2, 321
afd_elip, 325
Aliasing formula, 61
All-pole lattice filter, 212
All-zero lattice filter, 208
Alternation theorem, 284
Azp} Res, 295
Amplitude response, 231
accumulated, 245
Analog filter design (AFD), 301
Analog lowpass filter design
(see Analog to digital filter
transformations)
Analog prototype filters, 305
characteristics, 305
Analog signal processing (ASP), 2
Analog signals, 2, 7
reconstruction, 66
sampling, 61
Analog to digital conversion
(ADQ), 3, 60
Analog to digital filter
transformation, 327
Attenuation parameter,
stopband, 302
Autocorrelation, 20, 27
in communications, 376, 391
in LPC speech analysis,
synthesis, 403
Autoregressive (AR) filter, 34
Autoregressive moving average
(ARMA) filter, 35

Band-limited signal, 62
Bartlett (triangular), 248
Basic elements of filter structures,
183
adder, 183
delay element (shifter), 183
multiplier, 183
Bessel function, modified
zero-order, 252
bilinear, 338
Bilinear transformation, 327,
336
design procedure, 339
Binary digital communication,
410

project in, 410
Binary spread spectrum
communication, 411
project in, 412
Biquad section, 186, 180
blackman, 253
Blackman window, 250
Block convolutions, 157-158
Bowen, R. R.
(see George, D. A}
boxcar, 253
bp2lpfre, 370
bs2ipfre, 370
buttapp, 307
butter, 345, 358
Butterworth filter, 302
design equations, 310
analog lowpass, 305
buttord, 346, 359

cas2dir, 188

Cascade form, FIR filter
structure, 197, 198

Cascade form, IIR filter
structure, 184, 185

casfiltr, 188

Causal sequence, 22

Causality, 22

in z-domain, 102

ceiling, 169

Characteristics of prototype
analog filters, 305

chebiap, 316

cheblhpt, 357

cheblord, 346

cheb2ap, 320

cheb2ord, 346

chebyl, 345

cheby2, 345

Chebyshev error
(see Minimax approximation
error)
Chebyshev filter, 302
analog lowpass, 313
design equations, 316
type-1, 313
type-11, 313, 319
circevod, 143, 175
circonvf, 177
circonvt, 151
Circulant matrix, 177
Circular-even component, 143
Circular-odd component, 143
Circular conjugate symmetry, 142
Circular convolution, 148
circular shift, 146
circulnt, 177
cirshftf, 176
cirshftt, 146
clock, 168
Column vector, 43
Compandor, 389
Comparison of FIR vs. IIR filters,
363
Complex frequency, 81
Conjugate-antisymmetric, 36, 75
Conjugate-symmetric, 35, 42, 75
Constraints on the number of
extrema, 282
conv, 25
in polynomial multiplication,
85
conv_m, 26
in polynomial multiplication,
85

conv_tp, 38
Convergence (ROC), region of, 81
Convolution, 22
block, 157
circular, 148
fast, 169
high-speed block, 170
linear, 21
linear, properties of, 37
overlap-add, 160
overlap-save, 158
sum, 21
Cooley and Tukey, 160, 415
Correlation, 20, 27
cross-, 20, 27, 376
(see also Autocorrelation)
cplxcomp, 192
cplxpair, 188

415

Cross-correlation, 20, 27, 376

Cubic spline interpolation, 69

Cubic splines, 69

Cutoff frequency, 243
passband, 302

dbpfd bl, 370
dbpfd.bl, 371
DC gain, 57
Decimation, 36
Decimation-in-frequency
(see Fast Fourier transform)
Decimation-in-time
(see Fast Fourier transform)
deconv, 86, 112
in polynomial division, 89
deconv.m, 112
Deconvolution, 86
Delay element, 183
Delta modulation (DM), 398
adaptive, 399
project in, 401
Denominator polynonial, 82
Design
analog filter (AFD), 301
analog lowpass filters, 302
FIR filter, 224
frequency sampling, 264
IIR filter, 301
optimal equiripple, 277
problem statement, 227
window technique, 243
dfs, 118
dft, 131
dhpf d b1, 368
Difference equation, 29
FIR, 34
IIR, 34
solutions of, 105
system representation from, 96
Differential PCM (DPCM), 390
project in, 392
Differentiator
(see Digital differentiator)
Digital differentiator, 39, 274, 291
ideal, 262
Digital filters, 34
FIR, 34
IR, 34
structures, 182
Digital frequency, 41
Digital prototype filter, 350
Digital signal processing (DSP}, 1
overview of, 2
Digital signal processor, 3
Digital sinc function, 128
Digital to analog converter
(DAC), 3, 61

practical, 67
Dilation, signal, 36
dir2cas, 187
dira2fs, 204
modified, 222
dir2ladr, 215
dir2latc, 210
dir2par, 191
Direct form, FIR filter structures,
197, 198
Direct form, IIR filter structure,
184
form I, 184
form II, 185
Direct form adaptive FIR filter,
374
Discrete-time
Fourier transform (DTFT), 40
inverse Fourier transform
(IDTFT), 41
signals, 7
systems, 20
Discrete-time Fourier transform
interpolation formula, 127
Discrete-time Fourier transform
properties, 47
conjugation, 48
convolution, 48
energy, 49
folding, 48
frequency-shifting, 48
linearity, 48
multiplication, 49
periodicity, 41
symmetry, 42
time-shifting, 48
Discrete Fourier series (DFS), 116
definition, 117
matrix, 119
relation to the DTFT, 123
relation to the z-transform, 121
Discrete Fourier transform
(DFT), 116, 129
definition, 130
matrix, 131
Discrete Fourier transform (DFT)
properties, 139
circular convolution, 148
circular folding, 139-140
circular shift in the
frequency-domain, 148
circular shift in the
time-domain, 145
conjugation, 142
frequency leakage, 179, 180
linearity, 139
multiplication, 153
Parseval's relation, 153
symmetry, 142

Discrete systems, 20

dipfd bl, 369

dlpfd_ii, 365

Dot-product, 163

Down-sampling, 36

dtft, 44, 74

Dual tone multi-frequency

(DTMF), 405

project in, 409

Durbin, J., 403

Efficient computation, goal of,

ellip, 345

ellipap, 324

ellipord, 346

Elliptic filter, 302
analog lowpass, 323
computation of filter order,

323

Energy density spectrum, 49

Equalizer, adaptive channel, 382
project in, 383

Equiripple design technique,

277

problem statement, 281

Equiripple filters, 278

Error analysis, 155

etime, 168

Even and odd synthesis, 17

evenodd, 18

Excitation, 20

Exponential sequence
complex-valued, 9
real-valued, 9

Extra-ripple filters, 284

Fast convolution, 169
Fast Fourier transform (FFT),
160
mixed radix, 165
radix-2
decimation-in-frequency
(DIF), 167
radix-2 decimation-in-time
(DIT), 165, 166
radix-R, 165
£1t, 167
Filter, 2, 182
analog, prototype, 305
approximations, 224
autoregressive, 34
Butterworth analog lowpass,
305
Chebyshev analog lowpass,
313
digital, 34

416

INDEX

digital prototype, 350
Elliptic analog lowpass, 323
equiripple, 278
extra-ripple, 284
FIR, 34
ideal bandpass, 258
ideal highpass, 77
ideal lowpass, 76
IIR, 34
implementation, 225
linear phase FIR, 231-234
minimum-phase, 304
moving average, 34
nonrecursive, 34
recursive, 34
specifications, 224
staircase, 290
filter, 30
with initial conditions, 108
Filter transformations, analog to
digital, 327
bilinear transformation, 327
finite difference approximation,
327
impulse invariance, 327
step invariance, 327, 365
tiltic, 109
Finite-duration impulse response
(FIR) filters, 5, 34
adaptive, 374
cascade form, 197, 198
design, 224
difference equation, 34
direct form, 197, 198
frequency sampling design
technique, 264
frequency sampling form, 197,
202

linear-phase form, 197, 199

structures, 197
Finite-duration sequence, 7
Finite difference approximation

technique, 327
First-order hold (FOH)
interpolation, 69

formants, 208
Fourier transform

discrete, 130

discrete-time, 40

fast, 160

inverse discrete-time, 41
freqresp, 77
freqs.m, 312
Frequency

complex, 81

cutoff, 243

digital, 41

natural, 30

resolution, 123

response, 54
response, linear-phase, 230
sampling theorem, 125
Frequency-band transformations,
350
design procedure for lowpass to
highpass, 356
Frequency-domain representation
of LTI systems, 53
Frequency response function from
difference equations, 57
Frequency sampling design
technique, 264
basic idea, 266
naive design method, 267
optimum design method, 268
Frequency sampling form, 197,
202
freqz, 45
freqz.m, 254
Fundamental period, 10

Geometric series, 19
George, D. A., 415
Gibbs phenomenon, 247
Giordano, A. A.

(see Hsu, F. M.)

Goal of an efficient computation,
161

Goertzel algorithm, 161, 407

Gold, B.

(see Rabiner, L. R.)
Greefkes, J. A., 415
Griffiths, L. J.

(see Widrow, B.)

Group delay, constant, 229

hamming, 253

Hamming window, 249

hanning, 253

Hanning window, 249

Haykin, S., 415

High-speed block convolution,
170

High-speed convolution

(see Fast convolution)

Hilbert transformer, 263, 275,
292

Homogeneous solution, 29, 105,
107

hp2lpfre, 368

Hr_Typel, 234

Hr_Type2, 235

Hr.Type3, 235

Hr_Type4, 235

hsolpsav, 171

Hsu, F. M., 415

Ideal
bandpass filter, 268
digital differentiator, 262
highpass filter, 77
lowpass filter, 76
ideal.lp, 253 :
Identification, system, 378
idfs, 120
idft, 131
ifft, 168
imp_invr, 330
impseq, 8
impulse, 312
Impuise invariance
transformation, 327
design procedure, 329
Impulse response, 21
antisymmetric, 200
symmetric, 199
time-varying, 21
Infinite-duration impulse
response (IIR) filters, 5, 34
cascade form, 184, 185
design, 301
difference equation, 34
direct form, 184
parallel form, 184, 190
structures, 183
Initia)-condition input, 108
Interpolation
cubic spline, 69
first-order hold (FOH), 69
formula (DTFT), 127
formula (time-domain), 67
zero-order hold (ZOH), 68
Intersymbol interference, 383
Inverse
discrete-time Fourier transform
(IDTFT), 41
DFT (IDFT), 130
FFT (IFFT), 168
z-transform, 81, 8%

Jayant, N. S., 415

kai bpf, 297

kai_bsf, 297

kai_hpf, 297

kai 1pf, 297

kaiser, 253

Kaiser window, 250

design equations, 253

Ketchum, J. W, 415

Ladder coefficients, 215
ladr2dir, 216

INDEX

417

ladrf ilt, 216
latc2dir, 211
latcf ilt, 210
Lattice-ladder filter, 214
structure, 215
Lattice filter structures, 208
FIR, 208
fiR, 212, 214
Levinson, N., 403, 415
Levinson-Durbin recursion, 403
Linear-phase FIR filters
adwvantages, 227
frequency response, 230
properties, 228
Type-1, 231
Type-2, 232
Type-3, 233
Type-4, 234
zero constellation, 236
zero locations, 236
Linear-phase form, 197, 199
Linear convolution, 21
properties of, 37
using the DFT, 154
Linear fractional transformation
(see Bilinear transformation)
Linear predictive coding (LPC) of
speech, 401
project in, 405
Linear systems, 20
Linear time-invariant (LTI)
system, 21
frequency-domain
Tepresentation, 53
LMS algorithm, 375
Lowpass filter design
analog prototype (see
Analog-to-digital filter
transformations)
digital, using Matlab, 345
Lowpass filters
(see Filters)
1p2lpfre, 369

M-fold periodicity, 173

Magnitude-only specifications,
225

Magnitude (or gain) response,
54

Manley, P.
(see Widrow, B.)
Manolakis, D. G.
(see Proakis, J. G.)
Matlab
a few words about, 5
lowpass filter design, 345
reference guide, 6, 415
signal processing toolbox, 29

student edition, 6
symbolic toolbox, 6
user’s guide, 6, 415
Matrix
circulant, 177
Toeplitz, 37
matrix-vector multiplication, 38,
43
Merging formula, 166
Minimax approximation error,
278
Minimax problem, development
of, 278
Minimum-phase filter, 304
Minimum stopband attenuation,
246
Mirror-image symmetry, 304
mod, 130
Modeling, system, 378
Modem, 373, 382
Moving average (MA) filters,
34

p-law, 387
Multiplier, 183

N-point sequence, 129
Narrowband interference,
suppression of, 379
project in, 381
Natural frequency, 30
Nonrecursive filters, 34
Number sequence, 7
Numerator polynomial, 82
Nyquist component, 143
Nyquist rate, 63, 386

Operations on sequences, 10
folding, 12
sample products, 13
sample summation, 12
scaling, 11
shifting, 12
signal addition, 10
signal energy, 13
signal multiplication, 11
signal power, 13
Optimum filter, 376
Overlap-add method of
convolution, 160
Overlap-save method of
convolution, 158
high-speed, 170
Overview of digital signal
processing, 2
ovrlpadd, 178
ovrlpsav, 159

par2dir, 193
Parallel form, IIR filter structure,
184, 190
parfiltr, 192
Parks-McClellan, 415
algorithm, 284
Particular solution, 30, 105, 107
Passband cutoff frequency, 302
Passband ripple parameter, 302
Passband tolerance, 225
Peak side lobe magnitude, 246
Period, fundamental, 10
Periodic conjugate symmetry,
142
Periodic sequences, 10, 117
Periodic shift, 146
Periodicity, M-fold, 173
Phase delay, constant, 228
Phase response, 54
of analog prototype filters, 327
Pitch detection, 404405
plot, 71
Poles in system function, 96
poly, 93
Polynomial
denominator, 82
numerator, 82
Practical D/A converters, 67
Proakis, J. G., 416
(see also Ketchum, J. W.)

Projects

adaptive channel equalization,
383

adaptive line enhancement,
382

ADPCM, 397

binary data communications,
4i0

binary spread spectrum
communijcations, 412

DM and ADM, 401

DTMF, 409

LPC, 405

PCM, 389

suppression of sinusoidal
interference, 381

system identification, 378

Properties of

DFT, 139

DTFT, 41, 47

linear convolution, 37

linear-phase FIR filters, 228

magnitude squared response,
304

ROC, 83

2-transform, 84

Pulse code modulation (PCM),

386

A-law nonlinearity, 388

418

INDEX

u-law nonlinearity, 387-388
project in, 389

Rabiner, L. R., 416
Radix-2 decimation-in-frequency
FFT, 167
Radix-2 decimation-in-time FFT,
165, 166
rand, 10
randn, 10
Random sequence, 10
real2dft, 176
Reconstruction formula in the
z-domain, 127
Reconstruction of analog signals,
66
Rectangular window, 125, 244,
245
Recursive filters, 34
(see also IIR filters)
Reflection coefficients, 208
Region of convergence (ROC), 81
properties of, 83
Relationships between system
representations, 102
Relative linear scale, 302
Relative specifications, 225
rem, 129
remez, 285
residuez, 91
Response, 20
amplitude, 231
to arbitrary sequences, 55
to complex exponential, 54
frequency, 54
impulse, 21
magnitude (or gain), 54
phase, 54
to sinusoidal sequences, 54
steady-state, 55
unbounded, 107
zero-input, 33
zero-state, 33
Ripple parameter, passband, 302
roots, 32, 96
Row vector, 7

Sampling, 61
interval, 61, 123
theorem, 63
Sampling and reconstruction of
analog signals, 60
Sampling and reconstruction in
the z-domain, 124
edir2cas, 308
Second-order sections, 184, 185,
190

Sequences
causal, 22
exponential, 9
finite-duration, 7
folded-and-shifted, 24
infinite-duration, 8
N-point, 129
negative-time, 82
number, 7
operations on, 10
periodic, 10, 117
positive-time, 81
random, 10
sinusoidal, 9
two-sided, 83
types of, 8
unit sample, 8
unit step, 8
Shifts
circular, 146
periodic, 146
sigadd, 11
sigfold, 12
sigmult, 11
Signal
analysis, 4
band-limited, 62
dilation, 36
filtering, 4
processing, 2
Signals
analog, 2, 7
digital, 2
discrete-time, 7
energy, 13
power, 13
sigshift, 12
sinc(z), 67
Sinusoidal sequence, 9
Solutions
difference equation, 105
homogeneous, 29, 105, 107
particular, 30, 105, 107
steady-state, 105, 107
transient, 105, 107
zero-input, 34, 105, 107
zero-state, 34, 105, 107
Specifications
absolute, 225
filter, 224
magnitude-only, 225
relative, 225
relative linear, 302
Spectral transformations
(see Frequency-band
transformations)
Spectrum
analyzers, 2, 182
energy density, 49, 153

high-density, 136
high-resolution, 136
power, 153
apline, 73
Spread spectrum
communications, 411
project in binary, 412
Stability, 22
bounded-input bounded-output
(BIBO), 22
in z-domain, 102
Staircase filter, 200
stairs, 71
Steady-state response, 55, 105
Step invariance, 327, 365
stepseq, 9
Stopband attenuation parameter,
302

Stopband tolerance, 225
Storey, J. R.
(see George, D. A.)
stp_invr, 366
Structures, digital filter, 182
all-pole lattice filter, 212
all-zero lattice filter, 208
basic elements, 183
FIR filter, 197
IIR filter, 183
lattice-ladder, 214
Summable, absolutely, 22
Superposition summation, 21
Suppression of narrowband
interference, 379
Synthesis
even and odd, 17
unit sample, 17
System function, 95
System identification, 378
project in, 378
System modeling
(see System identification)
System representation
from difference equations,
96
relationships between, 102
transfer function, 97
in the z-domain, 95
Systems
discrete 20
linear, 20
LTI, 21

Table
amplitude response and
B-values for linear-phase FIR
filters, 278
comparison of analog filters,
350

INDEX

419

frequency transformations for
digital filters, 352
Q(w), L and P(w) for
linear-phase FIR, filters, 279
window function
characteristics, 251
z-transform, 87
Telecommunications, 373, 383
modems, 373, 382
Theorem
alternation, 284
frequency sampling, 125
sampling, 63
z-domain stability, 103
Time-varying impulse response,
21
Toeplitz matrix, 37
Tolerance
passband, 225
stopband, 225
transition band, 225
Tone detection, 406
Touch Tone, 405406
Transfer function representation,
97
Transformations
bilinear, 327, 336
filter, 327
frequency-band, 350
linear fractional, 337

Triangular window
(see Bartlett window)
Twiddle factor, 165
Two important categories of
DSP, 4

U_buttap, 307

U.chbiap, 316

U_chb2ap, 320

VU_elipap, 324
Unbounded response, 107
Unit circle, 81

Unit sample sequence, 8
Unit sample synthesis, 17
Unit step sequence, 8

Vectors
column, 43
row, 7

Voice synthesis, 5

Widrow, B., 416
Window design techniques, 243
basic idea, 245
Window function characteristics,
251
Windowing, 243

xcorr, 29

z-domain
causal LTI stability theorem,
103
LTI stability theorem, 103
sampling and reconstruction ia,
124
stability and causality, 102
system representation, 95
z-domain system function, 95
z-transform
the bilateral, 80
complex conjugation, 84
convolution, 85
differentiation in the z-domain,

85

folding, 84

frequency shifting, 84

inverse, 81, 89

linearity, 84

multiplication, 85

one-sided, 105

reconstruction formula, 127

sample shifting, 84

table, 87

z-transform properties, 84
Zero-input response, 33, 105, 107
Zero-order hold (ZOH)

spectral, 350 Windows interpolation, 68
Transient response, 105, 107 Bartlett (triangular), 248 Zero-padding, 135
Transition band tolerance, 225 Blackman, 250 Zero-state response, 33, 105, 107
Transition bandwidth Hamming, 249 zeros, 135
approximate, 246, 251 Hanning, 249 Zeros in system function, 96
exact, 247, 261 Kaiser, 250 Zmapping, 353
triang, 253 rectangular, 125, 244, 245 zplane, 96
420 INDEX

	Digital Signal Processing using MatLab 4
	BC Series Note
	Copyright
	Contents
	Preface
	Ch1 Introduction
	Ch2 Discrete-Time Signals & Systems
	Ch3 Discrete-Time Fourier Analysis
	Ch4 z-Transform
	Ch5 Discrete Fourier Transform
	Ch6 Digital Filter Structures
	Ch7 FIR Filter Design
	Ch8 IIR Filter Design
	Ch9 Applications in Adaptive Filtering
	Ch10 Applications in Communications
	Bibliography
	Index

