


A BC NOTE 

Students learn in a number of ways and in a variety of settings. They learn 
through lectures, in informal study groups, or alone at their desks or in 
front of a computer terminal. Wherever the location, students learn most 
efficiently by solving problems, with frequent feedback from an instruc- 
tor, following a worked-out problem as a model. Worked-out problems 
have a number of positive aspects. They can capture the essence of a 
key concept -often better than paragraphs of explanation. They provide 
methods for acquiring new knowledge and for evaluating its use. They 
provide a taste of real-life issues and demonstrate techniques for solving 
real problems. Most important, they encourage h i v e  participation in 
learning. 

We created the BookWare Companion Series because we saw an un- 
fulfilled need for computer-baaed learning tools that address the compu- 
tational aspects of problem solving across the curriculum. The BC series 
concept was also shaped by other forces: a general agreement among in- 
structors that students learn best when they are actively involved in their 
own learning, and the realization that textbooks have not kept up with or 
matched student learning needs. Educators and publishers are just begin- 
ning to understand that the amount of material crammed into most text- 
books cannot be absorbed, let alone the knowledge to be mastered in four 
years of undergraduate study. Rather than attempting to teach students 
all the latest knowledge, colleges and universities are now striving to teach 
them to reason: to understand the relationships and connections between 
new information and existing knowledge; and to cultivate problem-solving 
skills, intuition, and critical thinking. The BookWare Companion Series 
was developed in response to this changing mission. 

Specifically, the BookWare Companion Series was designed for educa- 
tors who wish to integrate their curriculum with computer-based learning 
tools, and for students who find their current textbooks overwhelming. 
The former will find in the BookWare Companion Series the means by 
which to use powerful software tools to support their course activities, 
without having to customize the applications themselves. The latter will 
find relevant problems and examples quickly and easily and have instant 
electronic access to them. 



We hope that the BC series will become a clearinghouse for the ex- 
change of reliable teaching ideas and a baseline series for incorporating 
learning advances from emerging technologies. For example, we intend to 
reuse the kernel of each BC volume and add electronic scripts from other 
software programs as desired by customers. We are pursuing the addition 
of AI/Expert System technology to provide an intelligent tutoring capa- 
bility for future iterations of BC volumes. We also anticipate a paperless 
environment in which BC content can flow freely over high-speed net- 
works to support remote learning activities. In order for these and other 
goals to be realized, educators, students, software developers, network ad- 
ministrators, and publishers will need to communicate freely and actively 
with each other. We encourage you to participate in these exciting de- 
velopments and become involved in the BC Series today. If you have an 
idea for improving the effectiveness of the BC concept, an example prob- 
lem, a demonstration using software or multimedia, or an opportunity to 
explore, contact us. 

Thank you one and all for your continuing support. 
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PREFACE 

Rom the beginning of the last decade we have witnessed a revolution 
in computer technology and an explosion in user-friendly applications. 
This revolution is still continuing today with low-cost personal computer 
systems that rival the performance of expensive workstations. This tech- 
nological prowess should be brought to bear on the educational process 
and, in particular, on effective teaching that can result in enhanced learn- 
ing. This companion book on digital signal processing (DSP) makes a 
small contribution toward that goal. 

The teaching methods in signal processing have changed over the 
years from the simple Yecture-only” format to a more integrated “lecture- 
laboratory” environment in which practical hands-on issues are taught 
using DSP hardware. However, for effective teaching of DSP the lecture 
component must also make extensive use of computer-based explanations, 
examples, and exercises. For the last several years, the MATLAB software 
developed by The Mathworks, Inc. has established itself as the de fact0 
standard for numerical computation in the signal-processing community 
and as a platform of choice for algorithm development. There are sev- 
eral reasons for this development, but one most important reason is that 
MATLAB is available on practically all computing platforms. For several 
years the expensive Professional Version of MATLAB was the only version 
available on the market. The advent of an inexpensive Student Edition 
has now made it possible to use it in classrooms. Recently, several text- 
books in DSP have appeared which generally provide exercises that can 
be done using MATLAB. However, for students (and for practicing engi- 
neers interested in DSP) there are no “how-to” references for effective 
use of MATLAB in DSP. In this book we have made an attempt at inte- 
grating MATLAB with traditional topics in DSP so that it can be used 
to explore difficult topics and solve problems to gain insight. Many prob- 
lems or design algorithms in DSP require considerable computation. It is 
for these that MATLAB provides a convenient tool so that many scenar- 
ios can be tried with ease. Such an approach can enhance the learning 
process. 

ix 



SCOPE OF THE BOOK 
I 
I 

This book is primarily intended for use as a supplement in junior- or 
senior-level undergraduate courses on DSP. We assume that the student 
(or user) is familiar with the fundamentals of MATLAB. Those topics are 
not covered since several tutorial books and manuals on MATLAB are 
available. Similarly, this book is not written as a textbook in DSP because 
of the availability of excellent textbooks. What we have tried to do is to 
provide enough depth to the material augmented by MATLAB functions 
and examples so that the presentation is consistent, logical, and enjoyable. 
Therefore this book can also be used as a self-study guide by anyone 
interested in DSP. 

When this project got under way, version 3.5 of the Student Edition of 
MATLAB was available. Since the beginning of 1995 a more advanced GUI 
(graphical user interface) version 4.0 of the Student Edition is available. 
This book is compatible with the newer version. 

ORGANIZATION OF THE BOOK 
I 

The first eight chapters of this book discuss traditional material covered 
in an introductory course on DSP. The last two chapters are presented 
as applications in DSP with emphasis on MATLAB-based projects. The 
following is a list of chapters and a brief description of their contents: 

Chapter 1, Introduction: This chapter introduces readers to the disci- 
pline of signal processing and discusses the advantages of DSP over analog 
signal processing. A brief introduction to MATLAB is also provided. 

Chapter 2, Discrete-time Signals and Systems: This chapter provides 
a brief review of discrete-time signals and systems in the time domain. 
Appropriate use of MATLAB functions is demonstrated. 

Chapter 3, The Discrete-time Fourier Analysis This chapter dis- 
cusses discretetime signal and system representation in the frequency 
domain. Sampling and reconstruction of analog signals are also presented. 

Chapter 4,  The z-Ipmnsfonn. This chapter provides signal and sys- 
tem description in the complex frequency domain. MATLAB techniques are 
introduced to analyze z-transforms and to compute inverse z-transforms. 
Solutions of difference equations using the z-transform and MATLAB are 
provided. 

Chapter 5, The Discrete Fourier hnsform: This chapter is devoted 
to the computation of the Fourier transform and to its efficient imple 
mentation. The discrete Fourier series is used to introduce the discrete 
Fourier transform, and several of its properties are demonstrated using 
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MATLAB. Topics such as fast convolution and fast Fourier transform are 
thoroughly discussed. 

Chapter 6, Digital Filter Structures: This chapter discusses several 
structures for the implementation of digital filters. Several useful MATLAB 
functions are developed for the determination and implementation of these 
structures. Lattice and ladder filters are also introduced and discussed. 

Chapter 7, FIR Filter Design: This chapter and the next introduce 
the important topic of digital filter design. Three important design tech- 
niques for FIR filters - namely, window design, frequency sampling de- 
sign, and the equiripple filter design-are discussed. Several design ex- 
amples are provided using MATLAB. 

Chapter 8, IIR Falter Design: Included in this chapter are techniques 
in IIR filter design. It begins with analog filter design and introduces such 
topics as filter transformations and filter-band transformation. Once again 
several design examples using MATLAB are provided. 

Chapter 9, Applications in Adaptive Filtering: This chapter is the 
first of two chapters on projects using MATLAB. Included is an intro- 
duction to the theory and implementation of adaptive FIR filters with 
projects in system identification, interference suppression, narrowband 
frequency enhancement, and adaptive equalization. 

Chapter 10, Applications in Communications: This chapter focuses 
on several projects dealing with waveform representation and coding, and 
with digital communications. Included is a description of pulse-code mod- 
ulation (PCM), differential PCM (DPCM) and adaptive DPCM (AD- 
PCM), delta modulation (DM) and adaptive DM (ADM), linear predic- 
tive coding (LPC), generation and detection of dual-tone multifrequency 
(DTMF) signals, and a description of signal detection applications in bi- 
nary communications and spread-spectrum communications. 

SOFTWARE 
I 
I 

The book is an outgrowth of our teaching of a MATLAB-based undergrad- 
uate DSP course over several years. Many MATLAB functions discussed in 
this book were developed in this course. These functions are available on 
the accompanying diskette as a pwskdsp toolbox. Create a separate di- 
rectory for this toolbox and reference it in the matlabpath environment. 
The book also contains numerous MATLAB scripts in many examples. 
These scripts are also made available on the disk and are kept in individ- 
ual directories created for each chapter. In addition, many figures were 
produced as MATLAB plots, and their scripts are available in the figures 
directory. Students should study these scripts to gain insight into the 
MATLAB procedures. We will appreciate any comments, corrections, or 
compact coding of these programs and scripts. Solutions to problems and 
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the associated script files will be made available to instructors in the near 
future. 

Further information about MATLAB and related publications may 
be obtained from 

The Mathworks, Inc. 
24 Prime Park Way 
Natick, MA 01760-1500 
Phone: (508) 647-7000 Fax: (508) 647-7001 
Email: infoOmathworks.com 
WWW: http://www.mathworks.com 
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INTRODUCTION 

Over the past several decades the field of digital signal processing (DSP) 
has grown to be important both theoretically and technologically. A major 
reason for its success in industry is due to the development and use of low- 
cost software and hardware. New technologies and applications in various 
fields are now poised to take advantage of DSP algorithms. This will lead 
to a greater demand for electrical engineers with background in DSP. 
Therefore it is necessary to make DSP an integral part of any electrical 
engineering curriculum. 

Not long ago an introductory course on DSP was given mainly at 
the graduate level. It was supplemented by computer exercises on filter 
design, spectrum estimation, and related topics using mainframe (or mini) 
computers. However, considerable advances in personal computers and 
software over the past decade made it possible to introduce a DSP course 
to undergraduates. Since DSP applications are primarily algorithms that 
are implemented either on a DSP processor [ll] or in software, a fair 
amount of programming is required. Using interactive software, such as 
MATLAB, it is now possible to place more emphasis on learning new and 
difficult concepts than on programming algorithms. Interesting practical 
examples can be discussed, and useful problems can be explored. 

With this philosophy in mind, we have developed this book as a com- 
panion book (to traditional textbooks like [16, 191) in which MATLAB is 
an integral part in the discussion of topics and concepts. We have chosen 
MATLAB as the programming tool primarily because of its wide avail- 
ability on computing platforms in many universities across the country. 
hthermore, a student edition of MATLAB has been available for several 
years, placing it among the least expensive software for educational pur- 
poses. We have treated MATLAB as a computational and programming 
toolbox containing several tools (sort of a super calculator with several 
keys) that can be used to exp!ore and solve problems and, thereby, en- 
hance the learning process. 

This book is written at an introductory level in order to introduce 
undergraduate students to an exciting and practical field of DSP. We 
emphasize that this is not a textbook in the traditional sense but a 
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companion book in which more attention is given to problem solving and 
hands-on experience with MATLAB. Similarly, it is not a tutorial book 
in MATLAB. We assume that the student is familiar with MATLAB and is 
currently taking a course in DSP. The book provides basic analytical tools 
needed to process real-world signals (a.k.a. analog signals) using digital 
techniques. We deal mostly with discretetime signals and systems, which 
are analyzed in both the time and the frequency domains. The analysis 
and design of processing structures called filters and spectrum analyzers 
is one of the most important aspects of DSP and is treated in great detail 
in this book. Many advanced topics in DSP (which are generally covered 
in a graduate course) are not treated in this book, but it is hoped that 
the experience gained in this book will allow students to tackle advanced 
topics with greater ease and understanding. 

In this chapter we provide a brief overview of both DSP and MATLAB. 

OVERVIEW OF DIGITAL SIGNAL PROCESSING 
I 
I 

In this modern world we are surrounded by all kinds of signals in vari- 
ous forms. Some of the signals are natural, but most of the signals are 
manmade. Some signals are necessary (speech), some are pleasant (mu- 
sic), while many are unwanted or unnecessary in a given situation. In an 
engineering context, signals are carriers of information, both useful and 
unwanted. Therefore extracting or enhancing the useful information from 
a mix of conflicting information is a simplest form of signal processing. 
More generally, signal processing is an operation designed for extracting, 
enhancing, storing, and transmitting useful information. The distinction 
between useful and unwanted information is often subjective as well as 
objective. Hence signal processing tends to be application dependent. 

HOW ARE 
SIGNALS 
PROCESSED? 

The signals that we encounter in practice are mostly analog signals. These 
signals, which vary continuously in time and amplitude, me processed 
using electrical networks containing active and passive circuit elements. 
This approach is known as analog signal processing (ASP)-for example, 
radio and television receivers. 

Analog signal: q, ( t )  -----)I Analog signal processor I 4 ya(t) :Analog signal 

They can also be processed using digital hardware containing adders, 
multipliers, and logic elements or using special-purpose microprocessors. 
However, one needs to convert analog signals into a form suitable for 
digital hardware. This form of the signal is called a digital signal. It takes 
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one of the finite number of values at specific instances in time, and hence 
it can be represented by binary numbers, or bits. The processing of digital 
signals is called DSP; in block diagram form it is represented by 

Eguivalent Analog S i  Processor I. 
I Discrete System I 
I I 

where the various block elements are discussed below. 

PrF: This is a prefilter or an antialiasing filter, which conditions the 
analog signal to prevent aliasing. 
ADC: This is called an analog-to-digital converter, which produces a 
stream of binary numbers from analog signals. 
Digital signal processor: This is the heart of DSP and can represent a 
general-purpose computer or a special-purpose processor, or digital hard- 
ware, and so on. 
DAC: This is the inverse operation to the ADC, called a digital-to-analog 
converter, which produces a staircase waveform from a sequence of binary 
numbers, a first step towards producing an analog signal. 
PoF: This is a postfilter to smooth out staircase waveform into the de- 
sired analog signal 

It appears from the above two approaches to signal processing, analog 
and digital, that the DSP approach is the more complicated, containing 
more components than the “simpler looking” ASP. Therefore one might 
ask a question: Why process signals digitally? The answer lies in many 
advantages offered by DSP. 

ADVANTAGES 
OF DSP OVER 
ASP 

A major drawback of ASP is its limited scope for performing complicated 
signal processing applications. This translates into nonflexibility in pro- 
cessing and complexity in system designs. All of these generally lead to 
expensive products. On the other hand, using a DSP approach, it is pos- 
sible to convert an inexpensive personal computer into a powerful signal 
processor. Some important advantages of DSP are these: 

1. Systems using the DSP approach can be developed using software 
running on a general-purpose csmputer. Therefore DSP is relatively con- 
venient to develop and test, and the software is portable. 

2. DSP operations are based solely on additions and multiplications, 
leading to extremely stable processing capability-for example, stability 
independent of temperature. 
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3. DSP operations can easily be modified in real time, often by simple 

4. DSP has lower cost due to VLSI technology, which reduces costs 
programming changes, or by reloading of registers. 

of memories, gates, microprocessors, and so forth. 

The principal disadvantage of DSP is the speed of operations, espe- 
cially at very high frequencies. Primarily due to the above advantages, 
DSP is now becoming a first choice in many technologies and applica- 
tions, such as consumer electronics, communications, wireless telephones, 
and medical imaging. 

TWO 
IMPORTANT 
CATEGORIES 
OF DSP Digital signal 

Most DSP operations can be categorized as being either signal analysis 
tasks or signal filtering tasks as shown below. 

r - - - - - -  

I Analysis I 
L _ _ - _ _ _ 1  

Measurements Digital signal 

Signal ancrlysia This task deals with the measurement of signal prop 
erties. It is generally a frequency-domain operation. Some of its applica- 
tions are 

0 spectrum (frequency and/or phase) analysis 
0 speech recognition 
0 speaker verification 
0 target detection 

Signal fi ltering This task is characterized by the “signal in-signal out” 
situation. The systems that perform this task are generally called filters. 
It is usually (but not always) a timedomain operation. Some of the a p  
plications are 

0 removal of unwanted background noise 
0 removal of interference 
0 separation of frequency bands 
0 shaping of the signal spectrum 
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In some applications, such as voice synthesis, a signal is first analyzed 
to study its characteristics, which are then used in digital filtering to 
generate a synthetic voice. 

In the first half of this book we will deal with the signal-analysis 
aspect of DSP. In Chapter 2 we will begin with basic descriptions of 
discretetime signals and systems. These signals and systems are analyzed 
in the frequency domain in Chapter 3. A generalization of the frequency- 
domain description, called the t-transform, is introduced in Chapter 4. 
The practical algorithms for computing the Fourier transform are dis- 
cussed in Chapter 5 in the form of the discrete Fourier transform and the 
fast Fourier transform. 

The second half of this book is devoted to the signal-filtering aspect of 
DSP. In Chapter 6 we describe various implementations and structures of 
digital filters. In Chapter 7 we provide design techniques and algorithms 
for designing one type of digital filter called finitsduration impulse re- 
sponse (or FIR) filters, while in Chapter 8 we provide a similar treatment 
for another type of filter called infiniteduration impulse response (or IIR) 
filters. In both chapters we discuss only the simpler but practically use- 
ful techniques of filter design. More advanced techniques are not covered. 
Finally, the last two chapters provide some practical applications in the 
form of projects that can be done using material learned in the first eight 
chapters. In Chapter 9 concepts in adaptive filtering are introduced, and 
simple projects in system identification, interference suppression, adap 
tive line enhancement, and so forth are discussed. In Chapter 10 a brief 
introduction to digital communications is presented with projects in such 
topics as PCM, DPCM, and LPC being outlined. 

In all these chapters the central theme is the generous use and ad- 
equate demonstration of MATLAB tools. Most of the existing MATLAB 
functions for DSP are described in detail, and their correct use is demon- 
strated in many examples. Furthermore, many new MATLAB functions are 
developed to provide insights into the working of many algorithms. We 
believe that this “hand-holding” approach will enable students to dispel 
fears about DSP and will provide an enriching learning experience. 

A FEW WORDS ABOUT MATLAB@ 
I 

MATLAB is an interactive, matrix-based system for scientific and engi- 
neering numeric computation and visualization. Its strength lies in the 
fact that complex numerical problems can be solved easily and in a frac- 
tion of the time required with a programming language such as Fortran 
or C. It is also powerful in the sense that by using its relatively simple 
programming capability, MATLAB can be easily extended to create new 
commands and functions. 
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MATLAB is available on a number of computing environments: 
Sun/HP/VAXstation workstations, 80x86 PCs, Apple Macintosh, VAX, 
and several parallel machines. The basic MATLAB program is further 
enhanced by the availability of numerous toolboxes (a collection of spe- 
cialized functions in a specific topic) over the years. The information in 
this book generally applies to all these environments. The development 
of this book was begun under the professional version 3.5 running un- 
der DOS. A relatively inexpensive Student Edition containing limited 
toolboxes and functions was also available from Prentice Hall publishers. 
Therefore we decided to make MATLAB routines and other material in 
this book compatible with the Student Edition. However, at present the 
current major version of MATLAB is version 4.2 under graphical user 
interface (GUI). Also a new Student Edition in GUI is available since 
February 1995, containing enhanced and new toolboxes. This book is 
certainly compatible with this edition, and every attempt is made to 
identify the new functions that are available and that can be used. A new 
toolbox available in the Student Edition is the Symbolic toolbox, which is 
based on Maple engine. Since digital signal processing primarily requires 
numerical computations, the Symbolic toolbox is neither discussed nor 
used in this book. 

The scope and power of MATLAB go far beyond the few words given 
in this section. It is senseless to provide a concise information or tuto- 
rial on MATLAB when excellent books and guides are available on this 
topic. Students should consult the MATLAB User's Guide [Z] and Fkfer- 
ence Guide [l]. Similarly, students should attempt the tutorial given in 
[3]. The information given in all these references, along with the online 
facility, usually is sufficient for students to use this book. 
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c DISCRETE-TIME 
SIGNALS AND 
SYSTEMS 

We begin with the concepts of signals and systems in discrete time. A 
number of important types of signals and their operations are introduced. 
Linear and shift-invariant systems are discussed mostly because they are 
easier to analyze and implement. The convolution and the dif€erence equa- 
tion representations are given special attention because of their impor- 
tance in digital signal processing and in MATLAB. The emphasis in this 
chapter is on the representations and implementation of signals and sys  
tems using MATLAB. 

DISCRETE-TIME SIGNALS 
I 

Signals are broadly classified into analog and discrete signals. An analog 
signal will be denoted by x , ( t ) ,  in which the variable t can represent any 
physical quantity, but we will assume that it represents time in seconds. A 
discrete signal will be denoted by x (n), in which the variable TI is integer- 
valued and represents discrete instances in time. Therefore it is also called 
a discretetime signal, which is a number sequence and will be denoted by 
one of the following notations: 

.(n) = {.(n)} = {...,.(-1),x(0),.(1);..} 
T 

where the uparrow indicates the sample at n = 0. 
In MATLAB we can represent a finite-durntion sequence by a TOW 

vector of appropriate values. However, such a vector does not have any 
information about sample position n. Therefore a correct representation 
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of z(n) would require two vectors, one each for z and n. For example, a 
sequence z(n) = {2,1, -l,O, 1,4,3,7} can be represented in MATLAB by 

T 

>> n-C-3,-2,-1,0,1.2,3,43 ; x=C2,1,-1,0,i,4,3,71; 

Generally, we will use the x-vector representation alone when the sample 
position information is not required or when such information is trivial 
(e.g. when the sequence begins at n = 0). An arbitrary infinite-duration 
sequence cannot be represented in MATLAB due to  the finite memory 
limitations. 

TYPES OF 
SEQUENCES 

We use several elementary sequences in digital signal processing for anal- 
p i s  purposes. Their definitions and MATLAB representations are given 
below. 

1. Unit sample sequence: 

. . . ,o,o, 1,0,0, ... 1, n=O-  
0, n # O -  

6(n) = 

In MATLAB the function zeros(1,N) generates a row vector of N zeros, 
which can be used to implement 6(n) over a finite interval. However, the 
logical relation n==O is an elegant way of implementing 6(n). For example, 
to implement 

1, n=no { 0, n #no 
S(n - no) = 

over the nl 5 
tion. 

5 n2 interval, we will use the following MATLAB func- 

" 
1. 
n = Cni:nZl; x = [(n-no) == 01; 

2. Unit step sequence: 

In MATLAB the function ones(1 ,N) generates a row vector of N ones. It 
can be used to generate u(n) over a finite interval. Once again an elegant 
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approach is to use the logical relation n>=O. To implement 

over the n1 5 no 5 n2 interval, we will use the following MATLAB func- 
tion. 

3. Real-valued ezponential sequence: 

~ ( n )  = a", Vn;  a E R 

In MATLAB an array operator " . ̂" is required to implement a real ex- 
ponential sequence. For example, to generate z(n) = (0.9)", 0 < n < 10, 
we will need the following MATLAB script: 

4. Complez-valued exponential sequence: 

~ e(a+jwo)n vn 
where D is called an attenuation and wo is the frequency in radians. A 
MATLAB function exp is used to generate exponential sequences. For ex- 
ample, to generate ~ ( n )  = exp [(2 + j 3 )  n] , 0 < n < 10, we will need 
the following MATLAB script: 

>> n = [O:lO]; L = exp((2+3j)*n); 

5 .  Sinusoidal sequence: 

~ ( n )  = cos(won + e), Vn 

where 0 is the phase in radians. A MATLAB function cos (or sin) is 
used to generate sinusoidal sequences. For example, to generate z(n) = 
3cos(O.lxn+a/3)+2sin(0.5an), 0 5 n 5 10, we will need the following 
MATLAB script: 

Discrete-time Signals 9 



6. Random sequences: Many practical sequences cannot be described 
by mathematical expressions like those‘above. These sequences are called 
random (or stochastic) sequences and are characterized by parameters of 
the associated probability density functions or their statistical moments. 
In MATLAB two types of (pseude) random sequences are available. The 
raud(1.N) generates a length N random sequence whose elements are 
uniformly distributed between [0,1]. The randn(1,N) generates a length 
N Gaussian random sequence with mean 0 and variance 1. Other random 
sequences can be generated using transformations of the above functions. 

7. Periodic sequence: A sequence x(n) is periodic if x(n) = x(n+ N), 
Vn.  The smallest integer N that satisfies the above relation is called the 
fundamental period. We will use Z(n) t o  denote a periodic sequence. To 
generate P periods of i(n) from one period {x(n), 0 5 n 5 N - l}, we 
can copy x (n) P times: 

>> xti lde = C X , ~ . .  . . ,XI ; 

But an elegant approach is to use MATLAB’S powerful indexing capabili- 
ties. First we generate a matrix containing P rows of x (n) values. Then 
we can concatenate P rows into a long row vector using the construct 
( : ). However, this construct works only on columns. Hence we will have 
to use the matrix transposition operator ’ to provide the same effect on 
rows. 

>> xti lde = x’ * ones(1.P); 
>> xti lde = xt i lde( : ) ;  
>> xti lde = xti lde’;  

Note that the last two lines can be combined into one for compact coding. 
This is shown in Example 2.1. 

% P columns of x; x is a row vector 
% long column vector 
Y. long row vector 

OPERATIONS 
ON equivalents. 
SEQUENCES 

Here we briefly describe basic sequence operations and their MATLAB 

1. Signal addition: This is a sampleby-sample addition given by 

{x1(n)) + b2(.)) = {xl(n) + .2(.)) 
It is implemented in MATLAB by the arithmetic operator “+”. However, 
the lengths of x1 (n) and 22 (n) must be the same. If sequences are of 
unequal lengths, or if the sample positions are different for equal-length 
sequences, then we cannot directly use the operator +. We have to first 
augment x1 (n) and 22 (n) so that they have the same position vector n 
(and hence the same length). This requires careful attention to MATLAB’S 
indexing operations. In particular, logical operation of intersection ‘W’, 
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relational operations like “<=” and “==”, and the find function are re- 
quired to make 2 1  (n) and 2 2  (n) of equal length. The foIlowing function, 
called the sigadd function, demonstrates these operations. 

function [y.d = sigadd(xl,nl,x2,n2) 
% implements y(n) = xi(n)+x2(n) 

% [y,nl - sigadd(xi,nl,x2,n2) 
X 
% xi = first sequence over nl 
% x2 - second sequence over n2 (n2 can be different from nl) 
% 
n = min(min(n1) ,min(n2)) :max(max(nl) , m a x ( n 2 ) )  ; X duration of y(n) 
yl - zeros(l,length(n)); y2 = yl; 
yl(find((n>=min(nl))&(n<cmar(nl))-l))lxl; 
~2(find((n>=min(n2))&(n<=max(n2))==1))=~2; 
y = yl+y2; 

y = sum sequence over n, vhich includes nl and n2 

% initialization 
xi with duration of y 

X x2 with duration of y 
% sequence addition 

Its use is illustrated in Example 2.2. 

(or “dot” mukipljcatjon) given by 
2. Signal multiplication: This is a sample-by-sample multiplication 

{21(4). { . 2 ( 4 )  = {n(n)Q(R.)) 

It is implemented in MATLAB by the array operator ‘‘.*”. Once again 
the similar restrictions apply for the .* operator as for the + operator. 
Therefore we have developed the sigmult function, which is similar to 
the sigadd function. 

function [y,nl = sigmdt(xi,nl,x2,n2) 
X implements y(n) - xl(n)*x2(n) 
y __________________-__________ 
% [y,nl = si~ult(xl,nl,x2.n2) 
% 
% xi = first sequence over nl 
X x2 = second sequence over n2 (n2 can be different from nl) 
% 
n = min(min(n1) ,min(n2)) :max(max(nl) , m a x ( n 2 ) ) ;  % duration of y(n) 
yl = zeros(l,length(n)); y2 - yl; 
yl(find((n>=min(nl))&(n<=m~(nl))==l))-xl; 
y2(fiad((n>=min(n2))&(n<=m~(n2))==1))-~2; 
y = yi .* y2; X sequence multiplication 

y = product sequence over n, vhich includes nl and n2 

% 
1 xi with duration Of y 
% x2 with duration of y 

Its use is also given in Example 2.2. 
3. Scaling: In this operation each sample is multiplied by a scalar a. 

a {.(.)I = {a441 
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An arithmetic operator "*" is used to implement the scaling operation in 
MATLAB. 

4. Shifting: In this operation each sample of z(n) is shifted by an 
amount k to obtain a shifted sequence y(n). 

Y(4 = (4. - k)) 
If we let m = n - k, then n = m + k and the above operation is given by 

Y (m + k) = {. (m)} 

Hence this operation has no effect on the vector x, but the vector n 
is changed by adding k to each element. This is shown in the function 
sigshif t. 

function [y,nl = sigshift(x,m,nO) 
% implements y(n) = r(n-nO) 

% [y.nl = sigshift(x,m,nO) 
% 
n = m+nO; y = x; 

_____________________---- 

Its use is given in Example 2.2. 

n = 0 to obtain a folded sequence y(n). 
5. Folding: In this operation each sample of z(n) is flipped around 

Y(4 = (4-4) 
In MATLAB this operation is implemented by f l ip lr  (x) function for sam- 
ple values and by -fl iplr(n) function for sample positions as shown in 
the sigf old function. 

function Cy,nl = sigfold(x,n) 
% implements y(n) = r(-n) 
7 _______________________ 
% [y,nl = sigfold(r,n) 
% 
y = flipldx); n = -fliplr(n); 

6. Sample summation: This operation differs from signal addition o p  
eration. It adds all sample values of ~ ( n )  between nl and n2. 

n=nl 

It is implemented by the sua(x(nl:n2)) function. 
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7. Sample products: This operation also differs from signal multipli- 
cation operation. It multiplies all sample values of z(n) between nl and 
712. 

It is implemented by the prod(x(nl:n2)) function. 
8. Signal energy: The energy of a sequence z(n) is given by 

m 

where superscript denotes the operation of complex conjugation’. The 
energy of a finite-duration sequence z(n) can be computed in MATLAB 
using 

>> Ex = sum(x .* conj(x)); % one approach 
>> Ex = sum(abs(x) .^ 2); % another approach 

9. Szgnal power: The average power of a periodic sequence with fun- 
damental period N is given by 

0 EXAMPLE 2.1 Generate and plot each of the following sequences over the indicated interval. 

a. z(n) = 26(n + 2) - 6(n - 4), -5 5 n _< 5. 
b. z(n) = n [u(n) - u(n - lo)] + 10e-0.3(n-10) [u(n - 10) - u(n - 20)] , 

0 < n < 20. 

random sequence with zero mean and unit variance. 
c. z(n) = cm(O.O4?m) + 0.2w(n), 0 5 n 5 50, where w(n) is a Gaussian 

d. Z(n) = { ..., 5,4,3,2,1,5,4,3,2,1,5,4,3,2,1, ... }; -105 n <  9. 
T 

Solution a. z(n) = 26(n + 2) - 6(n - 4), -5 5 n < 5. 

>> n = [-5:51; 
>> x = 2*impseq(-2,-5,5) - impseq(4,-5,5); 
>> stem(n,r); title(’8equence in  Problem 2. la’) 
>> xlabel(’n’); ylabel(’x(n)’); 

The plot of the sequence is shown in Figure 2 . h .  

‘The symbol * denotes many operations in digital signal processing. Its font (roman 
or computer) and its position (normal or superscript) will distinguish each operation. 
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b. z(n) = n [u(n) - u(n - lo)] + 10e-O.S(n-’O) [u(n - 10) - u(n - ZO)], 
0 5 n 5 20. 

The plot of the sequence is shown in Figure 2.lb. 
c z(n) = cos(O.O4?m) + O.Zw(n), 0 <_ n 5 50. 

The plot of the sequence is shown in Figure 2.1~. 

Sequence in Example 2.la 

3- 

-2 -l -5 u 0 
5 

n 
Sesuence in Example 2 . 1 ~  

) . . . . I  
0 10 20 30 40 

n 

FIGURE 2.1 Sequences in Ezample 2.1 

Sequence in Example2.lb 

1 

0 5 10 15 20 
n 

Sequence In Example 2.1d 

& ig -10 0 - 

0 5  
n 
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d. E(n) = { ..., 5,4,3,2,1,5,4,3,2,1,5,4,3,2,1,  ... }; -10 5 n 5 9. 
T 

Note that over the given interval, the sequence f (n) has four periods. 

>> n = [-10:91; x = 15,4,3,2,11; 
>> xtilde = x’ * ones(l,4); 
>> xtilde = (xtilde(:))’; 
>> subplot (2,2,4) ; stem(n,xtilde) ; title( ’Sequence in Problem 2. Id’) 
>> xlabel(’n’); ylabel(’xtilde(n)’); 

The plot of the sequence is shown in Figure 2.ld. €3 

0 EXAMPLE 2.2 Let 2 (n) = {l, 2,3,4,5,6,7,6,5,4,3,2,1}. Determine and plot the following 
f 

Solution 

sequences. 

a. z1 (n) = 2z(n - 5)  - 32 (n f 4 )  
b. 2 2  (n) = 2 ( 3  - n) + 2 (n) I (n - 2) 

The sequence x (n) is nonzero over -2 5 n I 10. Hence 

>> n = -2:lO; x = [1:7,6:-1:ll; 

will generate z (n). 

The first part is obtained by shifting z (n) by 5 and the second part by shift- 
ing z (n) by -4. This shifting and the addition can he easily done using the 
sigshift and the sigadd functions. 

>> [xll,nll] = sigshift(r,n,5); [x12,n121 = sigshift(x,n,-4); 
>> [xl,nl] = sigadd(2*xli,nli,-3*x!Z,n12); 
>> subplot(2,1,1); stem(n1,xl); title(’Sequence in Example 2.2a’) 
>> xlabel(’n’); ylabel(’xl(n) ‘1; 

The plot of z1 (n) is shown in Figure 2.2a. 
b. 52 (n) = z (3  - n) f ~ ( n ) s ( n  - 2). 

The first term can be written as I (- (n  - 3 ) ) .  Hence it is obtained by first fold- 
ing 2 (n) and then shifting the result by 3. The second part is a multiplication 
of z (n) and z (n - 2), both of which have the same length but different support 
(or sample positions). These operations can be easily done using the sigf old 
and the sigmult functions. 

>> [x21,n21] = sigfold(x,n); [x21,n21] = sigshift(x21,n21,3); 
>> [x22,n22] = sigshift(x.n.2); [x22.n22] = sigmult(x,n,x22,n22); 
>> [x2,n21 = sigadd(x21,n21,~22,n22); 
>> subplot(2,1,2); stem(n2,x2); title(’Sequence in Example 2.2b’) 

a. z 1  (n) = 2471 - 5 )  - 31: (n + 4). 

>> L?abd”n’>; yZabZ“x23ln) ’>; 

The plot of 2 2  (n) is shown in Figure 2.2b. El 
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Sequence in Example 2.2s 

10 

5 
- 0  

-5 

-1 0 
-15 

-20 

- 

0 15 
n 

0 12 
n 

FIGURE 2.2 Sequences in Ezample 2.2 

This example shows that the four sig* functions developed in this 
section provide a convenient approach for sequence manipulations. 

0 EXAMPLE 2.3 Generate the complex-valued signal 

z.n) = e(-O.l+JO.S)n , -10<n<10 

and plot its magnitude, phase, the real part, and the imaginary part in four 
separate subplots. 

solution MATLAB Script 
>> n = [-10:1:101; alpha = -0.1+0.3j; 
>> x - exp(alpha*n); 
>> subplot (2 , Z ,  1) ; stem(n,real(x) ; t i t l e (  'real par t  '1 ; xlabel( 'n' ) 
>> subplot (2,2,2) ; stem(n, imagcx)) ; title('imaginary part' ) ;xlabel( 'n' ) 
>> subplot (2,2,3) ; stem(n, abs (I)) ; t i t l e  ('magnitude part ' ) ;xlabel( 'n') 
>> subplot (2,2,4) ; stemcn, (i80/pi) *angle (x) ; t i t l e  ( 'phase part' 1 ;xlabel( 'n' 

~ 

The plot of the sequence is shown in Figure 2.3. 0 
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real part 

1 

0 

-1 

-2 

-30 -5 0 5 10 
-3- -10 -5 .o 5 10 

n 

5 0 5 1 0  
n 

FIGURE 2.3 Complez-valued sequence plots in Ezample 2.3 

SOME USEFUL 
RESULTS 

There are several important results in discretetime signal theory. We will 
discuss some that are useful in digital signal processing. 

Unit sample synthesis Any arbitrary sequence z(n) can be synthe 
sized as a weighted sum of delayed and scaled unit sample sequences, such 
a3 

m 

z(n) = ~ ( k ) 6 ( n -  B )  (2.1) 
k=-m 

We will use this result in the next section. 

E v e n  and odd synthesis 
(symmetric) if 

A real-valued sequence ze(n) is called even 

z e  (-n) = z e  (n) 

Similarly, a real-valued sequence z,(n) is called odd (antisymmetric) if 

z,(-n) = -z,(n) 
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Then any arbitrary real-valued sequence z(n) can be decomposed into its 
even and odd components 

4.) = z,(n) + zo(4 (2.2) 

where the even and odd parts are given by 

1 1 
2 2 z,(n) = - [~(n) +.(-.)I and z,(n) = - [.(TI) - z(-n)] (2.3) 

respectively. We will use this decomposition in studying properties of the 
Fourier transform. Therefore it is a good exercise to develop a simple 
MATLAB function to decompose a given sequence into its even and odd 
components. Using MATLAB operations discussed so far, we can obtain 
the following evenodd function. 

function Cxe, xo, ml = evenodd(x,n) 
% Real signal decomposition into even and odd parts x ................................................. 
% he, 10, ml = evenodd(x,n) 
x 
if any(imag(x) -= 0) 

end 
m - -fliplr(n) ; 
mi = min(Cm,nl); m2 = mar([m,nl); m = ml:m2; 
nm = n(l)-m(l); nl = l:length(n); 
XI = zeros(l,length(m)); 
xl(nl+nm) = x; x = XI; 
xe = 0.5*(X + fliplr(xt)); 
10 = 0.5*(x - fliplr(x)); 

The sequence and its support are supplied in x and n arrays, respectively. 
It first checks if the given sequence is real and determines the support 
of the even and odd components in m array. It then implements (2.3) 
with special attention to the MATLAB indexing operation. The resulting 
components are stored in xe and xo arrays. 

errorc’x is not a real sequence’) 

0 EXAMPLE 2.4 Let s(n) = u(n) - u(n - 10). Decompose c(n) into even and odd components. 

Solution The sequence z(n), which is nonzero over 0 5 n 5 9, is called a rectangular 
puke. We will use MATLAB to determine and plot its even and odd parts. 

>> n = C0:101; x = stepseq(0,0,l0)-stepseq(lO,O,lO); 
>> [xe,xo,ml = evenodd(x,n); 
>> figure(1); clf 
>> subplot(2,2,1); stem(n,x); title(’Rectaugu1ar pulse’) 
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The plots shown in Figure 2.4 clearly demonstrate the decomposition. 0 

A similar decomposition for complex-valued sequences is explored in 
Problem 2.5. 

The geometric series A one-sided exponential sequence of the form 
{a”, n 2 0}, where a is an arbitrary constant, is called a geometric 
series. In digital signal processing, the convergence and expression for the 
sum of this series are used in many applications. The series converges for 
la1 < 1, while the sum of its components converges to 

Reclangular pulse Even Part 

0.4 

0.2 

-5 0 5 
n 

Odd Part 

I 
-10 -5 0 5 10 

n 

FIGURE 2.4 Even-odd decomposition in Ezample 2.4 
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We will also need an expression for the sum of any finite number of terms 
of the series given by 

n=O 

These two results will be used throughout this book. 

Correlations of sequences Correlation is an operation used in many 
applications in digital signal processing. It is a measure of the degree to 
which two sequences are similar. Given two real-valued sequences x(n) and 
y(n) of finite energy, the crosscornlation of x(n) and y(n) is a sequence 
rzg(!) defined as 

m 

n=--m 

The indeq ! is called the shift or lag parameter. The special case of (2.6) 
when y(n) = z(n) is called autocorrelation and is defined by 

n=-m 

It provides a measure of self-similarity between different alignments of the 
sequence. MATLAB functions to compute auto- and crosscorrelations are 
discussed later in the chapter. 

DISCRETE SYSTEMS 
I 

Mathematically, a discretetime system (or discrete system for short) is 
described as an operator TI.] that takes a sequence z(n) (called excitation) 
and transforms it into another sequence y(n) (called response). That is, 

In DSP we will say that the system processes an input signal into an output 
signal. Discrete systems are broadly classified into linear and nonlinear 
systems. We will deal mostly with linear systems. 

LINEAR 
SYSTEMS 

A discrete system T[.] is a linear operator L[.] if and only if L[.] satisfies 
the principle of superposition, namely, 
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L[al.l(n) + azzz(n)l = alL[.l(n)l+ azL[~2(n)l,V~l,az,~l(n),~z(n) 

(2.8) 

Using (2.1) and (2.8), the output y (n) of a linear system to an arbitrary 
input z (n) is given by 

1 -  n=-m 

y ( n ) = L ( z ( n ) l = L [  c z ( k ) 6 ( n - k )  = c z ( k ) L [ b ( n - k ) ]  
00 

n=-m 

The response L [6 (n - k) ]  can be interpreted as the response of a linear 
system at time n due to a unit sample (a well-known sequence) at time k. 
It is called an impulse response and is denoted by h(n ,k ) .  The output 
then is given by the superposition summation 

m 

Y (4 = c . ( k )h (n ,k )  (2.9) 
n=-m 

The computation of (2.9) requires the time-varying impulse response 
h (n, k ) ,  which in practice is not very convenient. Therefore timeinvariant 
systems are widely used in DSP. 

Linear time-invariant (LTI) system A linear system in which an 
input-output pair, z(n) and y(n), is invariant to a shift n in time is called 
a linear timeinvariant system. For an LTI system the L[.] and the shifting 
operators are reversible as shown below. 

z(n) -a - y(n) d p z q  - y(n - k) 
I €I ~ ( n )  d Shift by k - ~ ( n  - k) * L [.] y(n - k) 

We will denote an LTI system by the operator LTI [.I. Let z(n) and y(n) 
be the input-output pair of an LTI system. Then the time-varying function 
h (n, k) becomes a time-invariant function h (n - k), and the output from 
(2.9) is given by 

m 

y(n) = LTI [.(.)I = c z(k)h(n - k) (2.10) 
k=-m 

The impulse response of an LTI system is given by h(n). The mathemat- 
ical operation in (2.10) is called a linear convolution sum and is denoted 
bY 

y(n) 5 .(n) * h(n) (2.11) 
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Hence an LTI system is completely characterized in the time domain by 
the impulse response h(n) as shown below. 

z(n) --* h(n) ---t y(n) = z(n) * h(n) U 
We will explore several properties of the convolution in Problem 2.12. 

Stability This is a very important concept in linear system theory. The 
primary reason for considering stability is to avoid building harmful sys- 
tems or to avoid burnout or saturation in the system operation. A system 
is said to be bounded-anput bounded-output (BZBO) stable if every bounded 
input produces a bounded output. 

I+)I < co =+ Iy(n)l < co,vz,Y 

An LTI system is BIBO stable if and only if its impulse response is abso- 
lutely summable. 

m 
BIBO Stability @ lh(n)I < 00 (2.12) 

-m 

Cawdi ty  This important concept is necessary to make sure that sys- 
tems can be built. A system is said to be causal if the output at index no 
depends only on the input up to and including the index no; that is, the 
output does not depend on the future values of the input. An LTI system 
is causal if and only if the impulse response 

h(n) =o, n < O  (2.13) 

Such a sequence is termed a causal sequence. In signal processing, unless 
otherwise stated, we will always assume that the system is causal. 

CONVOLUTION 
I 
I 

We introduced the convolution operation (2.11) to describe the response 
of an LTI system. In DSP it is an important operation and has many other 
uses that we will see throughout this book. Convolution can be evaluated 
in many different ways. If the sequences are mathematical functions (of 
finite or infinite duration), then we can analytically evaluate (2.11) for all 
n to obtain a functional form of y(n). 
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EXAMPLE 2.5 Let the rectangular pulse z (n)  = u(n) - u(n - 10) of Example 2.4 be an input 
to rn LTI system with impulse response 

h(n) = (0.9)n u(n) 

Determine the output v(n).  

solution 

CASE i 

The input z (n)  and the impulse response h(n) are shown in Figure 2.5. Fkom 
(2.11) 

9 9 

y(n) = c ( 1 )  (0.9)("-k) u(n - k) = (0.9)" (0.9)-' u(n - k )  (2.14) 
&=O k=O 

The s u m  in 2.14 is almost a geometric series sum except that the term u(n - k) 
takes different values depending on n and k. There are three different conditions 
under which u(n - k) can be evaluated. 

n < 0 Then u(n - k )  = 0, 0 5 k 2 9. Hence from (2.14) 

In this case the nonzero values of z(n) and h(n) do not overlop. 

1st  

n 
impulse Response 

1.5 

n 

FIGURE 2.5 The input sequence and the impulse response in Ezample 2.5 
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CASE ii 0 5 n < 9: Then u(n - k) = 1, 0 5 k 5 n. Hence from (2.14) 
n n 

y(n)= (0.9)" (0.9)-' = (0.9)"c [(O.9)-'] 
k=O k=O 

(2.16) 

1 - (0.9)++') 
1 - (0.9)-' = (0.9)" = 10 [I - (0.9)"+'] , 0 6 n < 9 

In this case the impulse response h(n) partially overlaps the input x(n). 
n 2 9: Then u(n - k) = 1, 0 5 k 5 9 and from (2.14) C A S E  iii 

9 

y(n)= (0.9)" 1 (0.9)--& (2.17) 
k=O 

- 10(0.9)n-9 [l - (0.9)"], n 2 9 
1 - (0.9)-'0 
1 - (0.9)-' - 

= (0.9)" 

In this last case h(n) completely overlaps i ( n ) .  

The complete response is given by (2.15), (2.16), and (2.17). It is shown in 
Figure 2.6 which depicts the distortion of the input pulse. I3 

The above example can also be done using a method called graphical 
convolution, in which (2.11) is given a graphical interpretation. In this 
method h(n - k) is interpreted as a folded-and-shified version of h(k).  
The output y(n) L obtained as a sample sum under the  overlap of z(k) 
and h(n - k). We use an example to illustrate this. 

0 EXAMPLE 2.6 Given the following two sequences 

~ ( n ) =  3,11,7,0,-1,4,2 , - 3 5 n 5 3 ;  h(n)= I T  1 
Sdution 

determine the convolution g(n) = x(n) * h(n). 

In Figure 2.7 we show four plots. The topleft plot shows x(k) and h(k) ,  the 
original sequences. The togright plot shows s(k) and h(-k), the folded version 

t 2 0 

-5 
i l r r I I I I l , l , , l  , , , , , . . I . .  

5 20 25 30 35 40 45 
n 

FIGURE 2.6 The output sequenm an Example 2.5 
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k 

FIGURE 2.7 

of h(k). The bottom-left plot shows z(k) and h(-1- k), the folded-and-shifted- 
by--1 version of h(k). Then 

x z ( k ) h ( - l - k ) = 3 ~  ( - 5 ) + 1 1 ~ 0 + 7 ~ 3 + O x 2 = 6 = y ( - l )  

The bottom-right plot shows ~ ( k )  and h(2 - k), the folded-and-shifted-by-2 
version of h(k), which gives 

x z ( k ) h ( 2 - k )  = 11 x 1 + 7 x  2+0x (-5)+(-1) xO+4x3+2X 2 = 41 = y(2) 

Thus we have obtained two values of y(n). Similar graphical calculations can 
be done for other remaining values of y(n). Note that the beginning point (first 
nonzero sample) of y(n) is given by n = -3 + (-1) = -4, while the end point 
(the last nonzero sample) is given by n = 3 + 4 = 7. The complete output is 
given by 

Gmphical convolution in Ezample 2.6 

k 

k 

{ t 1 y(n) = 6,31,47,6, -51, -5,41,18, -22, -3,8,2 

Students are strongly encouraged to verify the above result. Note that the result- 
ing sequence y (n)  has a longer length than both the z (n) and h (n) sequences. 

0 

MATLAB 
IMPLEMEN- 
TATION 

If arbitrary sequences are of infinite duration, then MATLAB cannot be 
used directly to  compute the convolution. MATLAB does provide a built-in 
function called conv that  computes the convolution between two finite 
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duration sequences. The conv function assumes that the two sequences 
begin at n = 0 and is invoked by 

>> y = conv(x,h); 

For example, to  do the convolution in Example 2.5, we could use 

>> x = c3, 11, 7, 0, -1, 4 ,  21; 
>> h = C2, 3,  0, -5,  2 ,  11; 
>> y = c0nvCx.h) 
Y =  
6 31 47 6 -51 -5 41 18 -22 -3 8 2 

to obtain the correct v(n) values. However, the conv function neither pro- 
vides nor accepts any timing information if the sequences have arbitrary 
support. What is needed is a beginning point and an end point of y(n).  
Given finite duration z (n)  and h(n), it is easy to  determine these points. 
Let 

{z (n) ;  nzb s n I nze} and {h(n); nhb I n L we} 
be two finite-duration sequences. Then referring to  Example 2.6 we ob- 
serve that the beginning and end points of y(n)  are 

nub = nzb + nhb and 

respectively. A simple extension of the conv function, called convm, which 
performs the convolution of arbitrary support sequences can now be de- 
signed. 

function Cy,nyl = conv-m(x,nx,h,nh) 
X Modified convolution routine for signal processing 
X .................................................. 
% Cy,nyl = conv-m(x,nx,h,nh) 
X Cy,ny] = convolution result 
% Cx,nxl = first signal 
% Ch,nh] = second signal 
% 
nyb = nx(l)+nh(l); nye = nx(length(x)) + nh(length(h)); 
ny - hyb:nyel; 
y = conv(x,h); 

nue = nze -k nhe 

0 EXAMPLE 2.7 Perform the convolution in Example 2.6 using the conva function. 

Solution MATLAB Script 
>> I[ = C3. 11, 7, 0 ,  -1. 4,  23; IU[ = 1-3:33; 
>> h - C2, 3,  0 ,  -5, 2, 11; ny - [-1:41; 

~~~~ 
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SEQUENCE 

LATIONS 
REVISITED 

CORRE- 

>> Cy,nyl = conv-m(x,nr,h,nh) 
J'  

nY = 
6 31 47 6 -51 -5 41 18 -22 -3 8 2 

- 4 - 3 - 2 - 1  0 1 2  3 4 5 6 7  

Hence 

I7 

y(n) = { 6,31,47,6, -51, -5,41,18, -22, -3,8,2 
7 

as in Example 2.6. 

An alternate method in MATLAB can be used to perform the convo- 
lution. This method uses a matrix-vector multiplication approach, which 
we will explore in Problem 2.13. 

If we compare the convolution operation (2.11) with that of the crosscor- 
relation of two sequences defined in (2.6), we observe a close resemblance. 
The crawamlation r&) can be put in the form 

rllz(4 = Y ( 4  * 44 

rzz(!) = z(t )  * 2(4) 
with the autocorrelation rzz(t) in the form 

Therefore these correlations can be computed using the conv function if 
sequences are of finite duration. 

0 EXAMPLE 2.8 In this example we will demonstrate one application of the crosscorrelation 
sequence. Let 

1 [ t  
~ ( n )  = 3,11,7,0,-1,4,2 

be a prototype sequence, and let y(n) be its noise-corrupted-and-shifted version 

v(n) = z(n - 2) + w(n) 

where w(n) is Gaussian sequence with mean 0 and variance 1. Compute the 
crosscorrelation between y(n) and z(n). 

solution Fkorn the construction of y(n) it follows that y(n) is "similar" to z(n - 2) and 
hence their crosscorrelation would show the strongest similarity at l =  2. To test 
this out using MATLAB, let us compute the crosscorrelation using two different 
noise sequences. 
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X noise sequence 1 
>> x = [3, 11, 7, 0, -1, 4, 21; nx=[-3:31; X given signal x(n) 
>> [y,nyl = sigshift(x,nx,2); X obtain x(n-2) 
>> w = randn(l,length(y)); nu = ny; X generate u(n) 
>> [y,nyl = sigadd(y,ny,u,nw); X obtain y(n) = x(n-2) + v(n) 
>> [x,nxI = sigfold(x,nx); X obtain x(-n) 
>> [rxy,nrxyl = conv-m(y,ny,x,nx); X crosscorrelation 
>> subplot(l,l,l), subplot(2,1,l);stem(nrxy.rxy) 
>> axis([-5,10,-50,2501);xlabel(’lag variable 1’) 
>> ylabel(’rxy’);title(’Crosscorrelation: noise sequence 1’) 
X 
X noise sequence 2 
>> x = [3, 11, 7, 0. -1, 4, 21; nx=[-3:31; X given signal x(n) 
>> [y,nyl = sigshift(x,nx,2); X obtain x(n-2) 
>> w = randn(l,length(y)); nw = ny; X generate w(n) 
>> [y,nyl = sigadd(p,ny,w,nw); X obtain y(n) = x(n-2) + w(n) 
>> [x,nxl = sigfold(x,nx); X obtain x(-n) 
>> [rxy,nrxyl = conv-m(y,ny,x.nx); X crosscorrelation 
>> subplot (2,1,2) ;stem(nrxy,rry) 
>> axis([-5,10,-50,2501);xlabel(’lag variable 1’) 
>> ylabel(’rxy’);title(’Crosscorrelation: noise sequence 2’) 

From Figure 2.8 we observe that the crosscorrelation indeed peaks at e = 2, 
which implies that y (n) is similar to I (n) shifted by 2. This approach can be 

Cnwscwrelaticm: noise sequence 1 
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used in applications like radar signal processing in identifying and localizing 
targets. 0 

It should be noted that the signal-processing toolbox in MATLAB also 
provides a function called xcorr for sequence correlation computations. 
In its simplest form 

>> xcorr(x,y) 

computes the crosscorrelation between vectors x and y, while 

>> xcorr(x) 

computes the autocorrelation of vector x. This function is not available in 
the Student Edition of MATLAB. It generates results that are identical to 
the one obtained from the proper use of the convm function. However, the 
xcorr function cannot provide the timing (or lag) information (as done by 
the convm function), which then must be obtained by some other means. 
Therefore we will emphasize the use of the convm function. 

DIFFERENCE EQUATIONS 
I 

An LTI discrete system can also be described by a linear constant coeffi- 
cient difference equation of the form 

If UN # 0, then the difference equation is of order N. This equation 
describes a recursive approach for computing the current output, given 
the input values and previously computed output values. In prxtice this 
equation is computed forward in time, from n = -ca to n = co. Therefore 
another form of this equation is 

A solution to this equation can be obtained in the form 

Y ( 4  = Y H ( 4  + YPb) 
The homogeneow part of the solution, y ~ ( n ) ,  is given by 
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where %k, k = 1,. . . , N are N roots (also called naturalfrequencies) of the 
characteristic equation 

This characteristic equation is important in determining the stability of 
systems. If the roots Zk satisfy the condition 

lzkl<l, k=l, ..., N (2.20) 

then a causal system described by (2.19) is stable. The particular part 
of the solution, yp(n), is determined from the right-hand side of (2.18). 
In Chapter 4 we will discuss the analytical approach of solving difference 
equations using the z-transform. 

MATLAB 
IMPLEMEN- 
TATION 

A routine called filter is available to solve difference equations numeri- 
cally, given the input and the difference equation coefficients. In its sim- 
plest form this routine is invoked by 

J = fi1tercb.a.x) 

where 

b = [bO, bi.  ..., bM1; a = CaO, ai, . .., aN1; 

are the coefficient arrays from the equation given in (2.18), and x is the 
input sequence array. The output y has the same length as input x. One 
must ensure that the coefficient a0 not be zero. We illustrate the use of 
this routine in the following example. 

0 EXAMPLE 2.9 Given the following difference equation 

y(n) - y(n - 1) + 0.9y(n - 2) = z(n); vn 
a. Calculate and plot the impulse response h(n) at n = -20,. . . ,100. 
b. Calculate and plot the unit step response s(n) at n = -20,. . . ,100. 
c. Is the system specified by h(n) stable? 

sdution Fkom the given difference equation the coefficient arrays are 

b = 111; a=[i, -1, 0.91; 
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The plot of the impulse response is shown in Figure 2.9. 

>> x - stepseq(0,-20,120); 
>> s = f i l t e r (b ,a .x) ;  
>> subplot(2,1,2) ; stem(n,s) 
>> t i t l e ( ’S tep  Response’); xlabel(’n’); ylabel(’s(n)’) 

b. MATLAE Script 

The plot of the unit step response is shown in Figure 2.9. 
c. To determine the stability of the system, we have to determine h(n) for 

all n. Although we have not described a method to solve the difference equation, 
we can use the plot of the impulse response to observe that h(n) is practically 
zero for n > 120. Hence the sum C Ih(n)l can be determined from MATLAB 
using 

- 
r 

-20 0 20 40 80 loo 120 

1. - - c 
D 

0. 

I I 
I 

-o& 20 40 60 80 loo 120 
n 

Impulse response and step response plots in Ezample 2.9 FIGURE 2.9 
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>> sum(abs(h)) 
an6 = 14.8785 

which implies that the system is stable. An alternate approach is to we the 
stability condition (2.20) using MATLAB'S roots function. 

>>z = roots(a); 
>>magz = abs(z) 
m a p  = 0.9487 

0.9487 

Since the magnitudes of both roots are less than one, the system is stable. 0 

In the previous section we noted that if one or both sequences in 
the convolution are of infinite length, then the conv function cannot be 
used. If one of the sequences is of infinite length, then i t  is possible to  use 
MATLAB for numerical evaluation of the convolution. This is done using 
the filter function as we will see in the following example. 

Let us consider the convolution given in Example 2.5. The input sequence iS of 
finite duration 

0 EXAMPLE 2.10 

.(n) = u(n) - u(n - 10) 

h(n) = (0.9)" u(n) 

while the impulse response is of infinite duration 

Determine y(n) = ~ ( n )  * h(n). 

S d U h  If the LTI system, given by the impulse response h(n), can be described by a 
difference equation, then y(n) can be obtained from the filter function. From 
the h(n) expression 

(0.9) h(n - I) = (0.9) (0.9)"-' u(n - 1) = (0.9)"u(n - I) 
or 

h(n) - (0.9) h(n - 1) = (0.9)" u(n) - (0.9)" u(n - 1) 
= (0.9)" [~(n) - ~ ( n  - l)] = (0.9)" 6(n) 

= 6(n) 

The last step follows from the fact that b(n) is nonzero only at n = 0. By 
definition h(n) is the output of an LTI system when the input is 6(n). Hence 
substituting z(n) for 6(n) and y(n) for h(n), the difference equation is 

y(n) - O.Sy(n - 1) = z(n) 

Now MATLAB'S filter function can be used to compute the convolution indi- 
rectly. 
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-5 0 5 10 15 20 25 30 35 40 45 
n 

FIGURE 2.10 Output sequence in Example 2.10 

>> b = C11; a = [1,-0.91; 
>> n - -5:50; I. = stepseq(0,-5,50) - stepseq(l0,-5,50); 
>> y = filter(b,a,x); 
>> subplot(1,l.l) ; 
>> subplot(2,1,2); stem(n,y) ; title(’0utput sequence’) 
>> xlabel (’n’ ; ylabel (’y(n) ’1 ; axis ( t-5,50, -0.5,81) 

The plot of the output is shown in Figure 2.10, which is exactly the same as 
that in Figure 2.6. 0 

In Example 2.10 the impulse response was a one-sided exponential se- 
quence for which we could determine a difference equation representation. 
This means that not all infinite-length impulse responses can be converted 
into difference equations. The above analysis, however, can be extended to 
a linear combination of one-sided exponential sequences, which results in 
higher-order difference equations. We will discuss this topic of conversion 
from one representation to another one in Chapter 4. 

ZERO-INPUT 
AND 
ZERO-STATE 
RESPONSES is then given by 

In digital signal processing the difference equation is generally solved for- 
ward in time from n = 0. Therefore initial conditions on z(n) and y(n) 
are necessary to determine the output for n 2 0. The difference equation 

M N 
y(n) = C bmz(n - rn) - C a b y ( n  - k); n 2 o (2.21) 

m=O h = l  

subject to the initial conditions: 

{y(n); - N  5 n 5 -1) and {z(n); -M 5 n 5 -1) 

A solution to (2.21) can be obtained in the form 

~ ( n )  = Vzr(n) + yzs(n) 
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DIGITAL 
FILTERS 

where yzr(n) is called the zero-input solution, which is a solution due 
to the initial conditions alone (assuming they exist), while the zero-state 
solution, yzs(n), is a solution due to input z(n) alone (or assuming that 
the initial conditions are zero). In MATLAB another form of the function 
filter can be used to solve for the difference equation, given its initial 
conditions. We will illustrate the use of this form in Chapter 4. 

Filter is a generic name that means a h e a r  time-invariant system de- 
signed for a specific job of frequency selection or frequency discrimination. 
Hence discrete-time LTI systems are also called digital filters. There are 
two types of digital filters. 

FIR filter If the unit impulse response of an LTI system is of finite 
duration, then the system is called a finite-dumtion impulse response (or 
FIR) filter. Hence for an FIR filter h(n) = 0 for n < nl and for n > 712. 

The following part of the difference equation (2.18) describes a cawalFIR 
filter: 

(2.22) 

Fbrthermore, h(0) = 4, h(1) = 61, . . . , h(M)  = 6 ~ ,  while all other h(n)'s 
are 0. FIR filters are also called nontecursive or moving average (MA) 
filters. In MATLAB FIR filters are represented either as impulse response 
values (h(n)}  or as difference equation coefficients (6,) and (a0 = 1). 
Therefore to implement FIR filters, we can use either the conv(x,h) 
function (and its modifications that we discussed) or the filter(b,l ,x) 
function. There is a difference in the outputs of these two implementations 
that should be noted. The output sequence from the conv(x,h) function 
has a longer length than both the z(n) and h(n) sequences. On the other 
hand, the output sequence from the filter(b,i.x) function has exactly 
the same length as the input z(n) sequence. In practice (and especially 
for processing signals) the use of the filter function is encouraged. 

IIR filter If the impulse response of an LTI system is of infinite dura- 
tion, then the system is called an infinite-dumtion impulse response (or 
IIR) filter. The following part of the difference equation (2.18): 

N 

(2.23) 

describes a recursive filter in which the output y(n) is recursively com- 
puted from its previously computed values and is called an autoregressive 
(AR) filter. The impulse response of such filter is of infinite duration and 
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hence it represents an IIR filter. The general equation (2.18) also describes 
an IIR filter. It has two parts: an AR part and an MA part. Such an IIR 
filter is called an autoregressive moving avemge, or an ARMA, filter. In 
MATLAB IIR filters are described by the difference equation coe5cients 
{b,} and {ah} and are implemented by the f i l t e r ( b , a , x )  function. 

PROBLEMS 

P2.1 Generate and plot the samples (use the stem function) of the following sequences using 
MATLAB. 
a. 21 (n) = 

b. z*(n) = n2 [u(n + 5) - u(n - 6)] + 106(n) + 20(0.5)= [u(n - 4) - u(n - lo)]. 

d. q(n) = 10cos(0.00081rnz) + w(n), 
uniformly distributed between [-1,1]. How do you characterize this sequence? 
e. fs(n) = {. . . ,1,2,3,2,1,2,3,2,1,. ..}PERIODIC. Plot 5 periods. 

Let ~ ( n )  = (1, -2,4,6, -5,8,10}. Generate and plot the samples (use the stem function) of 

the following sequences. 
a. 21 (n) = 3471 + 2) + ~ ( n  - 4) - 24n) 
b. 22 (n) = 5 4 5  + n) + 4 4 n  + 4) + 3471) 
c. 2 3  (n) = 2(n + 4)z(n - 1) + 2(2 - n)z(n) 
d. 2 4  (n) = 2e0.5"2 (n) + cos (0.llrn) 3: (n + 2), -10 5 n 5 10 

e. 2 5  (n) = xi=, 

10 (m+ 1)[6(n- 2m) - 6(n - 2 m -  l)], 0 5 n 5 25. 

c. 53 (n) = (0.9)n cos (0.2nn + 7r/3), 0 5 n 5 20. 
0 5 n 5 100, where w(n) is a random sequence 

T 

P2.2 
T 

(n - k) 
P2.3 The complex exponential sequence eJWOn or the sinusoidal sequence cos (won) are periodic if 

the normalized frequency j o  2 
are integers. 
a. Prove the above result. 
b. Generate and plot cos(0.3lrn), -20 5 n 5 20. Is this sequence periodic? If it is, what is 
its fundamental period? From the examination of the plot what interpretation can you give 
to the integers K and N above? 
c. Generate and plot cos(0.3n), -20 5 n 5 20. Is this sequence periodic? What do you 
conclude from the plot? If necessary examine the value of the sequence in MATLAB to 
arrive at  your answer. 
Decompose the sequences given in Problem 2.2 into their even and odd components. Plot 
these components using the stem function. 
A complex-valued sequence ze(n) is called conjugate-symmetric if 

K 
21r N 

is a rational number; that is, fo = -, where K and N 

P2.4 

P2.5 

z,(n) = Z:(-n)  
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Similarly, a complex-valued sequence z.(n) is called conjugate-antisymmetric if 

Zo(n) = -s;(-n) 

Then any arbitrary complex-valued sequence ~ ( n )  can be decomposed into 

z(n) = re(n) + z,(n) 
where ze(n) and z,(n) are given by 

z.(n) = [ ~ ( n )  -I- ~ ' ( - n ) ]  and ~ ( n )  = !j [~(n) - ~ ' ( - n ) ]  (2.24) 

respectively. 
a. Modify the evenodd function discussed in the text so that it accepts an arbitrary 
sequence and decomposes it into its symmetric and antisymmetric components by 
implementing (2.24). 
b. Decompose the following sequence: 

+) = o I I 10 
into its conjugatesymmetric and conjugate-antisymmetric components. Plot their real and 
imaginary parts to verify the decomposition. (Use the subplot function.) 
The operation of signal dilation (or decimation or down-sampling) is defined by P2.6 

= z(nW 

in which the sequence z(n) is down-sampled by an integer factor M. For example, if 

z (n) = {. . . , -2,4,3, -6,5, -1,8,. . .} 
t 

then the down-sampled sequences by a factor 2 are given by 

y(n) = { ..., -2,3,5,8 ,... } 

a. Develop a MATLAB function &sample that has the form 

t 

function J = &sample(s,M) 

to implement the above operation. Use the indexing mechanism of MATLAB with careful 
attention to the origin of the time axis n = 0. 
b. Generate z(n) = sin(0.125ma), 
generate y(n). Plot both ~ ( n )  and y(n) using subplot and comment on the results. 
c. Repeat the above using z(n) = sin(0.5m), 
effect of down-sampling on signals. 
Determine the autocorrelation sequence rvr(t) and the crosscorrelation sequence rrv(l) for 
the following sequences. 

-50 5 n p 50. Decimate z(n) by a factor of 4 to 

-50 5 n p 50. Qualitatively discuss the 

P2.7 

~ ( n )  = (0.9)", 0 5 n 5 20; y(n) = (0.8)-", -20 5 n 5 0 

What is your observation? 
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P2.8 

P2.9 

In a certain concert hall, echoes of the original audio signal z(n) are generated due to  the 
reflections at  the walls and ceiling. The audio signal experienced by the listener y(n) is a 
combination of z(n) and its echoes. Let 

y(n) = z(n) + az(n - k) 
where k is the amount of delay in samples and a is its relative strength. We want to 
estimate the delay using the correlation analysis. 
a. Determine analytically the autocorrelation ryv(l) in terms of the autocorrelation rzr(t). 
b. Let z(n) = cos(0.Zxn) +0.5cos(0.6xn), a = 0.1, and k = 50. Generate 200 samples of 
y(n) and determine its autocorrelation. Can you obtain a and k by observing rvv(t)? 
Three systems are given below. 

TI [z(n)] = 2=("); Tz [+)I = 3 4 4  + 4; T3 [z(n)] = z(n) + 2z(n - 1) - z(n - 2) 
a. Use (2.8) to determine analytically whether the above systems are linear. 
b. Let q(n) be a uniformly distributed random sequence between [0,1] over 0 6 n 5 100, 
and let zz(n) be a Gaussian random sequence with mean 0 and variance 10 over 
0 5 n 2 100. Using these sequences, test the linearity of the above systems. Choose any 
values for constants al and a2 in (2.8). You should use several realizations of the above 
sequences to arrive at your answers. 

P2.10 Three systems are given below. 
n n+lO 

Ti [~(n)] = 4k); Tz [~(n)] = 4k); T3 [=(.)I = z(-n) 
0 n-10 

a. Use (2.9) to determine analytically whether the above systems are time-invariant. 
b. Let z(n) be a Gaussian random sequence with mean 0 and variance 10 over 0 5 n 5 100. 
Using this sequence, test the time invariance of the above systems. Choose any values for 
sample shift k in (2.9). You should use several realizations of the above sequence to arrive 
at your answers. 

P2.11 For the systems given in Problems 2.9 and 2.10 determine analytically their stability and 
causality. 

P2.12 The linear convolution defined in (2.11) has several properties: 

zi(n) *z,(n) =m(n) *zz(n) 

[zi(n) * zz(n)] * 23(n) = SI(~) * [52(n) * dn)] 
z~(n) * [zz(n) + z3(n)] = z~(n) * 22(n) + zi(n) * ~ ( n )  

: Commutation 

: Association 

: Distribution 

: Identity 

(2.25) 

z(n) * s(n - no) = z(n - no) 
a. Analytically prove these properties. 
b. Using the following three sequences, verify the above properties. 

z1(n) = n [u(n + 10) - u(n - ZO)] 
n(n) = cos (O.l*n) [u(n) - u(n - 30)j 

23(n) = (1.2)" [u(n + 5) - u(n - lo)] 
Use the conv_pI function. 
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P2.13 When the sequences x(n)  and h(n)  are of finite duration N, and N h ,  respectively, then 
their linear convolution (2.10) can also be implemented using mat*-vector multiplimtim 
If elements of y(n) and z(n) are arranged in column vectors x and y respectively, then from 
(2.10) we obtain 

y = H X  

where linear shifts in h (n - k) for n = 0,. . . , Nh - 1 are arranged as rows in the matrix H. 
This matrix has an interesting structure and is called a Toeplitz matrix. To investigate this 
matrix, consider the sequences 

z(n)={: ,2 ,3 ,4}  and h(n)={?,2,1}  

a. Determine the linear convolution y (n) = h (n) * I (n). 

b. Express I (n) as a 4 x 1 column vector x and y (n) as a 6 x 1 column vector y. Now 
determine the 6 x 4 matrix H so that y = Ex. 
c. Characterize the matrix €I. From this characterization can you give a definition of a 
Toeplitz matrix? How does this definition compare with that of time invariance? 

d. What can you say about the first column and the first row of H? 
P2.14 MATLAB provides a function called toepl i tz  to  generate a Toeplitz matrix, given the first 

row and the first column. 
a. Using this function and your answer to Problem 2.13 part d, develop an alternate 
MATLAB function to implement linear convolution. The format of the function should be 

function [y , HI -conv-tp(h ,x) 
% Linear Convolution using Toeplitz Matrix 
X ........................................ 
X [y,Hl = conv-tp(h,x) 
X y = output sequence i n  column vector form 
1 H 0 Toeplitz matrix corresponding t o  sequence h so tha t  y = Hr 
% h = Impulse response sequence i n  column vector form 
X x = input sequence i n  column vector form 

b. Verify your function on the sequences given in Problem 2.13. 
P2.15 Let ~ ( n )  = (0.8)” u(n). 

a. Determine z(n) * z(n) analytically. 

b. Using the f i l ter  function, determine the first 50 samples of z(n) * ~ ( n ) .  Compare your 
results with those of part a. 

P2.16 A particular linear and timeinvariant system is described by the difference equation 

~ ( n )  - 0.5y(n - 1) + 0.25y(n - 2) = ~ ( n )  + 21(n - 1) + ~ ( n  - 3) 

a. Determine the stability of the system. 
b. Determine and plot the impulse response of the system over 0 5 n 5 100. Determine the 
stability from this impulse response. 
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c. If the input to this system is z(n) = [5 + 3cos(0.2rm) + 4sin(0.6?m)] u(n), determine the 
response y(n) over 0 5 n 5 200. 

P2.17 A -"simple" digital difemtaator is given by 

y(n) = z(n) - z(n - 1) 

which computes a backward first-order difference of the input sequence. Implement this 
differentiator on the following sequences and plot the results. Comment on the 
appropriateness of this simple differentiator. 
a. z(n) = 5 [u(n) - u(n - 20)]: a rectangular pulse 
b. z(n) = n [u(n) - u(n - lo)] + (20 - n) [u(n - 10) - u(n - 20)]: a triangular pulse. 

[u(n) - u(n - loo)]: a sinusoidd pulse. 
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i THE DISCRETE- TIME 
FOURIER ANALYSIS 

We have seen how a linear and time-invariant system can be represented 
using its response to the unit sample sequence. This response, called the 
unit impulse response k(n), allows us to compute the system response to 
any arbitrary input z(n) using the linear convolution as shown below. 

z(n) + --+ y(n) = k(n) * z(n) 

This convolution representation is based on the fact that any signal can 
be represented by a linear combination of scaled and delayed unit sam- 
ples. Similarly, we can also represent any arbitrary discrete signal as a 
linear combination of basis signals introduced in Chapter 2. Each b e  
sis signal set provides a new signal representation. Each representation 
has some advantages and some disadvantages depending upon the type 
of system under considerstion. However, when the system is linear and 
timeinvariant, only one representation stands out as the most useful. It 
is based on the complex exponential signal set {ej""} and is called the 
Discrete-time Fourier lhnsform. 

T H E  DISCRETE-TIME FOURIER TRANSFORM (DTFT) 
I 
m 

If z (n) is absolutely summable, that is, cym Is(.)[ < 00, then its 
discrete-time Fourier transform is given by 



The inverse discretetime Fourier transform (IDTFT) of X(&") is given 
bY 

2(.) = A F-1 [X(&")] = - 2* 'i X(e'w)e'"vu (3.2) 
-77 

The operator 3 [.I transforms a discrete signal z(n) into a complex-valued 
continuous function X(eJ") of real variable w, called a digital frequency, 
which is measured in radians. 

0 

solution 

EXAMPLE 3.1 Determine the discrete-time Fourier transform of z(n) = (0.5)"u(n). 

The sequence z(n) is absolutely summable; therefore its discrete-time Fourier 
transform exists. 

m 00 

X(e jW)  = zz(n)e-j"" = (0.5)" e-jwn 
-m 0 

0 EXAMPLE 3.2 Determine the discrete-time Fourier transform of the following finite-duration 
sequence: 

= {1,2,3,4,5) 
f 

--QI 

Since X(e'") is a complex-valued function, we will have to plot its mag- 
nitude and its angle (or the real and the imaginary part) with respect to w 
separately to visually describe X(dw). Now w is a real variable between -cu 
and 00, which would mean that we can plot only a part of the X(dw) func- 
tion using MATLAB. Using two important properties of the discretetime Fourier 
transform, we can reduce this domain to the [O,m] interval for real-valued se- 
quences. We will discuss other useful properties of x($-) in the next section. 

0 

TWO We will state the following two properties without proof. 

1. Periodicity: The discretetime Fourier transform X(ej") is periodic IMPORTANT 
PRoPERT'ES in w with period 27r. 

~~ 
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Implication: We need only one period of X(ej") (i.e., w E[O, 2 ~ 1 ,  or [-T, T], 

etc.) for analysis and not the whole domain -00 < w < 00. 

2. Symmetry: For real-valued z(n), X ( 9 " )  is conjugate symmetric. 

X(e-j") = X*(eJ") 

or 

Re[X(e-j")] = Re[X($")] (even symmetry) 

Im[X(e-j")] = - Im[X(eJw)] (odd symmetry) 

IX(e-jW)I = Ix(.j")l (even symmetry) 

LX(e-jw) = -LX(eJ") (odd symmetry) 

Implication: To plot X(eJ"), we now need to consider only a half period 
of X(ej"). Generally, in practice this period is chosen to be w E lo,.]. 

MATLAB 
IMPLEMEN- 
TATION 

If z(n) is of infinite duration, then MATLAB cannot be used directly to 
compute X(ej") from z(n). However, we can use it to evaluate the ex- 
pression X(e3") over [0, .] frequencies and then plot its magnitude and 
angle (or real and imaginary parts). 

0 EXAMPLE 3.3 Evaluate X ( 2 " )  in Example 3.1 at 501 equispaced points between [0,7r] and 
plot its magnitude, angle, real, and imaginary parts. 

solution MATLAB Script 
>> w = [0:1:5001*pi/500; 
>> x = exp(j*w) ./ (exp(j*w) - 0.5*ones(1,501)); 
>> magX = abs(X); angX = angle(X); 
>> realx = real(X); imagX = imag(X); 
>> subplot(2.2,l); plot(w/pi,magX); grid 
>> xlabel('frequency in pi units') ; title('Magnitude Part'); ylabel('Ma@tude') 
>> subplot(2,2,3); plot(w/pi,angX); grid 
>> xlabel('frequency in pi units'); title('Ang1e Part'); ylabel('Radians') 
>> subplot(2,2,2); plot(w/pi,realX); grid 
>> xlabel('frequency in pi units') ; title('Rea1 Part') ; ylabel('Real') 
>> subplot(2,2,4); plot(w/pi,imagX); grid 
>> xlabel('frequency in pi units'); title('1maginary Part'); ylabel('1maginary') 

X [ O ,  pi1 axis divided into 501 points. 

The resulting plots are shown in Figure 3.1. Note that we divided thew array by 
pi before plotting so that the frequency axes are in the units of 7r and therefore 

0 easier to read. This practice is strongly recommended. 
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If x(n) is of finite duration, then MATLAB can be used to compute 
X(ej") numerically at any frequency w. The approach is to implement 
(3.1) directly. If, in addition, we evaluate X(@) at equispaced frequen- 
cies between [O, A], then (3.1) can be implemented as a matrix-vector md- 
tiplacation operation. To understand this, let us mume that the sequence 
x(n) has N samples between nl 5 IZ 5 n N  (i.e., not necessarily between 
[0, N - 4) and that we want to evaluate X(&") at 

k = 0, l,.. . ,M A T  
wk = -k M '  

which are (M + 1) equispaced frequencies between [O, A]. Then (3.1) can 
be written as 

When {z (nl)} and { X ( G U k ) }  are arranged as cohmn vectors x and X, 
respectively, we have 

x=wx (3.3) 
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where W is an (A4 + 1) x N matrix given by 

0 EXAMPLE3.4 

Solution 

In addition, if we arrange {k} and {ne} BS row vectors k and n respectively, 
then 

W = exp -j-kTn [ ( L  11 
In MATLAB we represent sequences and indicw as row vectors; therefore 
taking the transpose of (3.3), we obtain 

X -x exp -j-nTk 
T-“ ( L 11 (3.4) 

Note that nTk is an N x (M + 1) matrix. Now (3.4) can be implemented 
in MATLAB as follows. 

Numerically compute the discretetime Fourier transform of the sequence z(n) 
given in Example 3.2 at 501 equispaced frequencies between [0, x]. 

MATLAB Script 
>> n = -1:3; x = 1:5; 
>> k = 0:500; Y = (pi/500)*k; 
>> x = x * (exp(-j*pi/500)) .^ (n’*k); 
>> magX = abs(X); angX = augle(X); 
>> redx = red(X); imagx - imago(); 
>> subplot(2,2,1); plot(k/SOO,magX);grid 
>> rlabel(’frequency in pi units’); title(’Magnitude Part’) 
>> subplot(2,2,3); plot(k/500,angl(/pi) ;grid 
>> xlabel(’frequency in pi Wits’); title(’Ang1e Part’) 
>> subplot(2,2,2); plot(k/500,realX) ;grid 
>> xlabel(’frequency in pi units’); title(’Rea1 Part’) 
>> subplot(2,2,4); plot(k/500,imagX) ;grid 
>> xlabel(’frequency in pi units’); title(’1maginary Part’) 

The frequency-domain plots are shown in Figure 3.2. Note that the angle plot 
is depicted as a discontinuous function between -x  and x. This is because the 

0 angle function in MATLAB computes the principal angle. 

The procedure of the above example can be compiled into a MATLAB 
function, say a dtft function, for ease .of implementation. This is explored 
in Problem 3.1. This numerical computation is based on definition (3.1). 
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It is not the most elegant way of numerically computing the discrete-time 
Fourier transform of a finite-duration sequence. Furthermore, it creates an 
N x (M + 1) matrix in (3.4) that may exceed the size limit in the Student 
Edition of MATLAB for large M and N .  In Chapter 5 we will discuss in 
detail the topic of a computable transform called the discrete Fourier 
transform (DFT) and its efficient computation called the fast Fourier 
transform (FFT). Also there is an alternate approach based on the z- 
transform using the MATLAB function f reqz for finite-duration sequences, 
which we will discuss in Chapter 4. In this chapter we will continue to use 
the approaches discussed so far for calculation as well as for investigation 
purposes. 

In the next two examples we investigate the periodicity and symmetry 
properties using complex-valued and real-valued sequences. 

0 EXAMPLE 3.5 Let z(n) = (0.9 exp ( j ~ / 3 ) ) ~  , 
its periodicity. 

0 5 n 5 10. Determine X(eJ') and investigate 

Solution Since z(n) is complex-valued, it satisfies only the periodicity property. Therefore 
it is uniquely defined over one period of 27r. However, we will evaluate and plot it 
at 401 frequencies over two periods between [-an, 2 4  l o  observe its periodicity. 
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From the plots in Figure 3.3 we observe that X ( e i W )  is periodic in w but is not 
conjugatesymmetric. 0 

0 U(AMPLE 3.6 Let z(n) = 2“, -10 n 5 10. Investigate the conjugatesymmetry property 
of its discretetime Fourier transform. 

solution Once again we will compute and plot X(ej“)  over two periods to study its 
symmetry property. 

lrequency in units of pi 

46 Chapter 3 THE DISCRETE-TIME FOURIER ANALYSIS 



Magnitude Part 

- x 

fmipncyrnunibdpi 

Angle Pan 
1 

0.5 3 
5 0  
V 
f? 

-0.5 

-1 
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 

frequency in units of pi 

FIGURE 3.4 Plots m Ezample 3 6 

subplot(l,i,l) 
rl = -5:s; x = (-0.9).%; 
k - -200:200; v = (pi/lOO)*k; 
X = x * (exp(-j*pi/lOO)) .- (a’*k); 
magX = abs(X); angX =augle(X); 
subplot(2,l.t) ; plot(v/pi,magX);grid 
axis( C-2,2,0,151) 
xlabel(’frequency in units of pi’); ylabel(’lX1’) 
title(’Magnitude Part’) 
subplot (2.1.2) ; plot (v/pi ,angX)/pi;grid 
axis( 1-2,2,-1,11) 
xlabel(’frequency in units of pi’) ; ylabel(’radians/pi’) 
title(’Ang1e Part’) 

From the plots in Figure 3.4 we observe that X(t?) is not only periodic in (J 

but is also conjugate-symmetric. Therefore for real sequences we will plot their 
0 Fourier transform magnitude and angle responses from 0 to T.  

THE PROPERTIES OF THE DTFT 
I 
I 

In the previous section we discussed two important properties that we 
needed for plotting purposes. We now discuss the remaining useful proper- 
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ties, which are given below without proof. Let X(.'") be the discretetime 
Fourier transform of ~(n). 

1. Lmearity: The discretetime Fourier transform is a linear transfor- 
mation; that is, 

F[(Iz1(n) + /3m(n)l = a3[z1(41+ 87 Izz(n)l (3.5) 

for every (I, p, z1 (n), and xz (n). 

shifting. 
2. Time shifting: A shift in the time domain corresponds to the phase 

F [z(n - k)] = X(ejw)e--jwk (3.6) 

3. Fkequency shifting: Multiplication by a complex exponential cor- 
responds to a shift in the frequency domain. 

4. Coqjugation: Conjugation in the time domain corresponds to the 
folding and conjugation in the frequency domain. 

~ [ z * ( n ) ]  = X*(e-jw) (3.8) 

5. Folding Folding in the time domain corresponds to the folding in 
the frequency domain. 

F [ x ( - ~ ) ]  = X(e- jw)  (3.9) 

6. Symmetries in real sequences: We have already studied the conju- 
gate symmetry of real sequences. These real sequences can be decomposed 
into their even and odd parts as we discussed in Chapter 2. 

z(n) = z e ( 4  + XO(4 
Then 

F[z,(n)] = Re [ ~ ( e j " ) ]  
F[zO(n)] = j I m  [ ~ ( e j " ) ]  

(3.10) 

Implication: If the sequence z(n) is real and even, then X(e jw)  is also 
real and even. Hence only one plot over [0, n] is necessary for its complete 
representation. 

A similar property for complex-valued sequences is explored in Prob- 
lem 3.7. 

7. Convolution: This is one of the most useful properties that makes 
system analysis convenient in the frequency domain. 

F [ x ~ ( T I )  * 4n)] = 7 [zi(.)] T [ ~ ( n ) ]  = X l ( g w ) X z ( d w )  (3.11) 
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8. Multiplication: This is a dual of the convolution property. 

(3.12) 

The convolution-like operation above is called a periodic convolution and 
hence denoted by @ . It is discussed (in its discrete form) in Chapter 5. 

9. Energy: The energy of the sequence x(n) can be written as 

(3.13) 

dw (for real sequences using even symmetry) 
0 

This is also known as Parseval's Theorem. From (3.13) the energy density 
spectrum of x(n) is defined as 

(3.14) 

Then the energy of z(n) in the [ w ~ , w z ]  band is given by 

W2 

J @,(w)dw, 0 I w1 < W2 I 
W 1  

In the next several examples we will verify some of these properties 
using finite-duration sequences. We will follow our numerical procedure 
to compute discretetime Fourier transforms in each case. Although this 
does not analytically prove the validity of each property, it provides us 
with an experimental tool in practice. 

In this example we will verify the linearity property (3.5) using real-valued finite- 
duration sequences. Let a(n) and zz(n) be two random sequences uniformly 
distributed between [0,1] over 0 5 n 5 10. Then we can use our numerical 
discretetime Fourier transform procedure as follows. 

0 EXAMPLE 3.7 

>> x1 - rand(1,ll); x2 = rand(1,ll); n = 0:lO; 
>> alpha = 2; beta = 3; 
>> k = 0:500;  Y = (pi/500)*k; 
>> XI = XI * (exp(-j*pi/500)).̂ (n'*k); 
>> X2 = x2 * (exp(-j*pi/500))."(n1*k); 
>> x = alpha*xl + beta*x2; 

% DTFT of XI 
% DTFT of x2 
% Linear combination of XI It 12 
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>> X = x * (ezp(-j*pi/SOO)).-(n’*k); 
>> X verification 
>> X-check = &pha*Xl + beta*X2; 
>> error = max(abs(X-X-check)) 
error - 

X DTFT of x 

X Linear Combination of Xi B X2 
X Difference 

7.10%-015 

Since the maximum absolute error between the two Fourier transform arrays 
is  less than iO-”, the two arrays are identical within the limited numerical 
precision of MATLAB. 0 

0 EXAMPLE 3.8 Let z(n) be a random sequence uniformly distributed between [O, 1) over 0 5 
n 5 10 and let y(n) = z(n - 2). Then we can verify the sample shift property 
(3.6) 85 follows. 

>> I = raud(l.11); n - 0:lO; 
>> k = 0:500; Y = (pi/5OO)*k; 
>> X = E * (ezp(-j*pi/500)).-(n’*k); 
>> X signal shifted by two samples 
>> y - E; m = n+2; 
>> Y = y * (exp(-j*pi/5OO)).̂ (m’*k); 
>> X verification 
>> Y-check - (exp(-j*2). ‘v) .rX; 
>> error = max(abs(Y-Y-check)) 
error - 

X DTFT of x 

% DTFT of y 

X multiplication by exp(-j2u) 
X Difference 

5.7737e-016 R 

0 EXAMPLE 3.9 To verify the frequency shift property (3.7), we will use the graphicd appro&. 
Let 

z(n) = cm(an/2), 0 5 n 5 100 and ~ ( n )  = 2*”’*~(n) 
Then using MATLAB, 

>> n I O:IOO; x - cos(piW2); 
>> k - -1OO:lOO; v = (pi/lOO)*k; 
>> X = x * (erp(-j*pi/lOO)).̂ (n’*k); 
X 
>> y = ezp(j*pi*n/d).*x; 
>> Y = y * (exp(-j*pi/lOO)).̂ (n’*k): 
X Graphical verification 
>> subplot(l,l,l) 
>> subplot (2,2,1) ; plot (w/pi, abs (X)) ; grid; axis( I-l, l,O,6Ol) 
7> xlabel(’frequencg in pi wits’); ylabel(’lX1’) 
>> title(’Hagnitude of X’) 
>> subplot (2,2,2) ; plot (w/pi ,angls<X)/pi); grid; aris(C-Z, 1 ,  -1, $1) 
>> xlabel(’frequency in pi units’); ylabel(’radiauds/pi’) 
>> title(’hgle o f  X’) 
>> subplot (2,2,3) ; plot (v/pi, abs (Y)) ; grid; axis( [-1,1,0,601) 

X frequency between -pi and *pi 
X DT€T of x 

1 si@ multiplied by erp(j*pi*n/41 
X DTFT of y 
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>> rlabel(’frequency in pi units’); ylabel(’IYI’) 
>> title(’Magnitude of Y’) 
>> subplot (2,2,4) ; plot (v/pi,augle(Y)/pi) ; grid; axis( [-I I 1 ,-is 11) 
>> xlabel(’frequency in pi units’); ylabel(’radians/pi’) 
>> title(’Angle of Y’) 

and from plots in Figure 3.5 we observe that X(e3”) is indeed shifted by 7r/4 
0 in both magnitude and angle. 

0 EXAMPLE 3.10 To verifj the conjugation property (3.8), let z(n) be a complex-valued random 
sequence over -5 5 n 5 10 with real and imaginary parts uniformly distributed 
between [0,1]. The MATLAB verification is as follows. 

>> n - -5:lO; x = rand(l.length(n)) + j*rand(l,length(n)); 
>> k = -1OO:lOO; v - (pi/lOO)*k; 
>> X - I * (erp(-j~i/lOO)).-(n’*k); 
X conjugation property 
>> y = conj(x); 
>> Y = y * (exp(-jrpi/iOo)).̂ (n’*k); 
X verification 
>> Y-check = conj(fliplr(X)); 

X frequency between -pi and +pi 
% DTFT of x 

X signal conjugation 
X DTFT of Y 

X conj (X(-v)) 

Magnihrde of X 
60 1 
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>> error = max(abs(Y-Y-check)) 
error = 

% Difference 

0 0 

0 EXAMPLE 3.11 To verify the folding property (3.9), let s(n) be a random sequence over -5 5 
n 5 10 uniformly distributed between [O, I]. The MATLAB verification is as 
follows. 

>> n = -5:lO; x = rand(l,length(n)); 
>> k = -1OO:lOO; v = (pi/lOO)*k; 
>> x = x * (exp(-j*pi/lOO)).̂ (n’*k); 
x folding property 
>> y = fliplr(x); m = -fliplr(n); 
>> Y = y * (exp(-j*pi/lOO)).^(m’*k); 
1 verification 
>> Y-check = fliplr(X) ; 
>> error = max(abs(Y-Y-check)) 
error = 

0 

% frequency betveen -pi and +pi 
X DTFT of x 

% signal folding 
XDTFTofy 

x X(-v) 
Y. Difference 

0 

0 EXAMPLE 3.12 In this problem we verify the symmetry property (3.10) of real signals. k t  

s(n) = Sin(?m/Z), -5 5 n 5 10 

Then using the evenodd function developed in Chapter 2, we can compute 
the even and odd parts of s(n) and then evaluate their discretetime Fourier 
transforms. We will provide the numerical as well as graphical verification. 

>> n = - 5 : l O ;  x - sin(pi*n/2); 
>> k = -1OO:lOO; v = (pi/lOO)*k; 
>> X = x * (exp(-j*pi/lOO)).̂ (n’*k); 
Y. signal decomposition 
>> [xe,xo,mJ = evenodd(x,n); % even and odd parts 
>> XE = xe * (elrp(-j*pi/lOO)).̂ (m’*k); 
>> XO = xo * (exp(-jtpi/lOO)).^(m’*k); 
% verification 
>> XR = real(X); 
>> errorl - max(abs(XE-XR)) 
errorl = 

>> XI = imag(X); 
>> error2 = max(abs(XO-j*XI)) 
error2 = 

x graphical verification 
>> subplot (1,1,1) 
>> subplot (2,2,1) ; plot (v/pi ,XR) ; grid; axis( c-1,1,-2,21) 
>> xlabel(’frequency in pi units’); ylabel(’Re(X)’); 
>> title(’Rea1 part of X’) 

% frequency betveen -pi and +pi 
X DTFT of x 

% DTFT of xe 
% DTFT of xo 

% real part of X 
% Difference 

1.8974~-019 
X imag part of X 
% Difference 

1.8033~-019 

52 Chapter 3 THE DISCRETE-TIME FOURIER ANALYSIS 



Realpartofx 

Transfomr of even part 

tresuencyInpiunitJ 

Plots in Example 3.12 FIGURE 3.6 

Imaginary part Of x 

-1 -0.5 0 0.5 1 
frequency in pi unb 

-10’ I 
-1 -0.5 0 0.5 1 

frequency in pi units 

>> subplot (2,2,2) ; plot (w/pi,XI) ; grid; axis([-1.1 ,-lo, 103) 
>> xlabel(’frequency in pi units’); ylabel(’Im(X)’); 
>> title(’1maginary part of X’) 
>> subplot(2,2,3); plot(w/pi,real(XE)); grid; axis([-1,1,-2,21) 
>> xlabel(’frequency in pi units’); ylabel(’XE’1; 
>> title(’Trausform of even part’) 
>> subplot (2.2.4) ; plot (w/pi, imag(X0)) ; grid; axis( [-1,1,-10,101) 
>> xlabel(’frequency in pi units’); ylabel(’X0’); 
>> title(’Trau8fox-m of odd part’) 

From the plots in Figure 3.6 we observe that the real part of X(e jw)  (or the 
imaginary part of X(e’”)) is equal to the discretetime Fourier transform of 
zJn)  (or ~ ( n ) ) .  0 

THE FREQUENCY DOMAIN REPRESENTATION OF LTI SYSTEMS 
I 
I 

We earlier stated that the Fourier transform representation is the most 
useful signal representation for LTI systems. It is due to the following 
result. 
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RESPONSE TO 
A COMPLEX response h(n). 
EXPONENTIAL 
@'won 

Let z(n) = eJwon be the input to  an LTI system represented by the impulse 

eJwon -+ h(n) --+ h(n) * gWon 0 
Then 

m 

(3.15) 

rn DEFINITION 1 m e n c y  Response 
The discrete-time Fourier transform of an impulse response is called 

the Frequency h p o n s e  (or Transfer Function) of an LTZ system and is 
denoted by 

00 

H ( P ~ )  5 C h(n)e-jwn (3.16) 
-00 

Then from (3.15) we can represent the system by 

-+ y(n) = ~ ( 2 " )  x $won (3.17) 

Hence the output seqoence is the input exponential sequence modified by 
the response of the system at frequency wo. This justifies the definition 
of If(&") as a frequency response because it is what the complex expo- 
nential is multiplied by to obtain the output y(n). This powerful result 
can be extended to a linear combination of complex exponentials using 
the linearity of LTI systems. 

In general, the frequency response H ( d w )  is a complex function of w. The 
magnitude IH(dw)(  of H(eJW) is called the magnitude (or gain) response 
function, and the angle LH(ejw) is called the phase response function as 
we shall see below. 

RESPONSE TO 
SINUSOIDAL 
SEQUENCES 

Let z(n) = Acos(w0n + 6'0) be an input to an LTI system h(n). Then 
from (3.17) we can show that the response y(n) is another sinusoid of the 
same frequency wo, with amplitude gained by IH(d"0)l and phase sh@ed 

~ 
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by LH(ei"o), that is, 

y(n) = A ~ ~ ( e i w o ) ~  cos (won + e, + LH(PO)) (3.18) 

This response is called the steady-state response denoted by ysd(n). It can 
be extended to a linear combination of sinusoidal sequences. 

RESPONSE TO 
ARBITRARY 
SEQUENCES 

Finally, (3.17) can be generalized to arbitrary absolutely surnmable se- 
quences. Let X(ej") = F[z(n)] and Y(d") = F[y(n)]; then using the 
convolution property (3.11), we have 

Y ( P )  = H ( e q  X(e3") (3.19) 

Therefore an LTI system can be represented in the frequency domain by 

X(.'") - p+q - Y(.i") = If(&") X(eJY) 

The output y(n) is then computed from Y(.'") using the inverse discrete- 
time Fourier transform (3.2). This requires an integral operation, which is 
not a convenient operation in MATLAB. As we shall see in Chapter 4, there 
is an alternate approach to the computation of output to arbitrary inputs 
using the r-transform and partial fraction expansion. In this chapter we 
will concentrate on computing the steady-state response. 

0 EXAMPLE 3.13 Determine the frequency response H ( 2 " )  of a system characterized hy h(n) = 
(0.9)"u(n). Plot the magnitude and the phase responses. 

solution Using (3.16), 
m m 

Hence 

and 

The Frequency Domain Representation of LTI Systems 55 



To plot these responses, we can either implement the IH(g”)( and L H ( g W )  
functions or the frequency response H(gY) and then compute its magnitude 
and phase. The latter approach is more useful from a practical viewpoint (as 
shown in (3.18)). 

>> Y = [0:1:5001*pi/500; 
>> H = exp(j*u) ./ (exp(j*u) - 0.9*ones(l,501)); 
>> magH = abs(H); angH = angle(H); 
>> subplot(2,1,l); plot(w/pi,magH); gr id;  
>> xlabel(’frequency i n  p i  uni ts’) ;  ylabel(’1HI’); 
>> title(’Uagnitude Response’) ; 
>> subplot (2,1,2) ; plot(v/pi, angll/pi) ; grid 
>> xlabel(’frequency i n  p i  uni ts’) ;  ylabel(’Phase i n  p i  Radians’); 
>> title(’Phase Response’); 

[ O ,  pi1 axis  divided into 501 points. 

The plots are shown in Figure 3.7. 0 

Let an input to the system in Example 3.13 be O.lu(n). Determine the steady- 
state response yss(n). 

Since the input is not absolutely summable, the discretetime Fourier transform 
is not particularly useful in computing the complete response. However, it can 
be used to compute the steady-state response. In the steady state (i.e., n cm) 

0 EXAMPLE 3.14 

w o n  

- 
I 

Magnilude Response 

0 0 1 0.2 0.3 0.4 0.5 0.6 0 7  08 0.9 1 
hequency in pi units 

FIGURE 3.7 Fkquency response plots an Ezample 3.13 
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the input is a constant sequence (or a sinusoid with wo = 00 = 0). Then the 
output is 

y.,(n) = 0.1 x H(20) = 0.1 x 10 = I 

where the gain of the system at w = 0 (also called the DC gain) is H(e'O) = 10, 
0 which is obtained from Figure 3.7. 

FREQUENCY 
RESPONSE 
FUNCTION 
FROM 
DIFFERENCE 
EQUATIONS 

When an LTI system is represented by the difference equation 

N M 
(3.20) 

then to evaluate its frequency response from (3.16), we would need the im- 
pulse response h(n). However, using (3.17), we can easily obtain H ( e j w ) .  

We know that when r(n) = ejwn, then y(n) must be H(ejw)eJwn. Substi- 
tuting in (3.20), we have 

~ ( n )  + C Q Y ( ~  - e)  = C bmz(n - m) 
e=i m=O 

N M 
H(&w)efwn + C a e j q & w ) e f w ( n - ' )  = C bm &+-m) 

L=l m=O 

or 

(3.21) 

after canceling the common factor ejwn term and rearranging. This equa- 
tion can easily be implemented in MATLAB, given the difference equation 
parameters. 

An LTI system is specified by the difference equation 0 EXAMPLE 3.15 

y(n) = 0.8y(n - 1) + z(n) 

a. Determine If(&"). 
b. Calculate and plot the steady-state response y.,(n) to 

z(n) = cos(0.05?m)u(n) 

sdut*On Rewrite the difference equation as y(n) - 0.8y(n - 1) = ~ ( n ) .  

a. Using (3.21), we obtain 

(3.22) 
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b. In the steady state the input is z(n) = cos(O.O5?m) with fiequency 
wg = 0 . 0 5 ~  and 00 = 0”. The response of the system is 

Therefore 

gae(n) = 4.0928~0~(0.05i~ - 0.5377) = 4.0928 cos [0.05s(n - 3.42)] 

This means that at the output the sinusoid is scaled by 4.0928 and shifted by 
3.42 samples. This can be verified using MATLAB. 

>> subplot(l.l.1) 
>> b - 1; a = 11,-0.81; 
>> n=[O:iW];x = cos(O.O5*pi*n); 
>> J = filter(b,a,x); 
>> subplot(Z,i,l); stem(n.x); 
>> xlabel(’n’1; ylabel(’x(n) I ) ;  titleohput sequence’) 
>> subplot(Z,i,Z); stem(n,y); 
>> xlabel( ’n’ ) ; ylabel(’y(n) ’ ) ; title ( Output sequence’ ) 

Ftom the plots in Figure 3.8 we note that the amplitude of U...(n) is approxi- 
mately 4. To determine the shift in the output sinusoid, we can compare zero 

0 10 20 30 40 50 60 7p 80 90 100 
n 

output sequence 

-_I 

0 10 20 30 40 50 60 70 80 90 100 
n 

FIGURE 3.8 Plots in Ezample 3.15 
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crossings of the input and the output. This is shown in Figure 3.8, from which 
0 the shift is approximately 3.5 samples. 

In Example 3.15 the system was characterized by a first-order differ- 
ence equation. It is fairly straightforward to implement (3.22) in MATLAB 
as we did in Example 3.13. In practice the difference equations are of large 
order and hence we need a compact procedure to implement the general 
expression (3.21). This can be done using a simple matrix-vector multi- 
plication. If we evaluate I€(@") at Ic = 0,1,. . . , K equispaced frequencies 
over [O,T], then 

M 

(3.23) 

If we let {b,,,}, {at} (with = l), { m  = 0,. . . , M}, { e  = 0,. . . , N } ,  and 
{we} be arrays (or row vectors), then the numerator and the denominator 
of (3.23) become 

respectively. Now the array H(ej"*) in (3.23) can be computed using a . / 
operation. This procedure can be implemented in a MATLAB function to 
determine the frequency response function, given {b,} and {at} arrays. 
We will explore this in Example 3.16 and in Problem 3.15. 

0 EXAMPLE 3.16 A 3rd-order lowpass filter is described by the difference equation 

~(n) = 0.0181~(n) + 0.0543~(n- 1) + 0.05432(n - 2) + 0.0181~(n - 3) 
+ 1.76y(n - 1) - 1.1829y(n - 2) + 0.2781y(n - 3) 

Plot the magnitude and the phase response of this filter and verify that it is a 
lowpass filter. 

wutia, We will implement the above procedure in MATLAB and then plot the filter 
responses. 

>> b = C0.0181, 0.0543, 0.0543, O.Of8ll; X f i l t e r  coefficient array b 
>> a = [l.OOOO, -1.7600, 1.1829, -0.27811; 1 f i l t e r  coefficient array a 
>> m - O:length(b)-l; 1 = O:length(a)-1; 
>> K = 500; k = 0:l:K; 
>> u = pi*k/K; 
>> num = b * exp(-j*m'*v); 

1 index arrays m and 1 
1 index array k f o r  frequencies 
% [O,  pi] axis divided into 501 points. 
1 Numerator calculations 
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FIGURE 3.9 Plots for Ezomple 3.16 

>> den = a * exp(-j*l’*w); 
>> H = num ./ den; 
>> ma@ = abs(H); a u g H  = augle(H); 
>> subplot ( l , l ,  1) ; 
>> subplot (2,1,1) ; plot (w/pi,magH) ; grid; axis( LO. 1.0.11) 
>> xlabel(’frequency in pi units’) ; ylabelc’ /HI’); 
>> title(’I4agnitude Response’) ; 
>> subplot (2,1,2) ; plot (=/pi, angH/pi) ; grid 
>> xlabel(’frequency in pi units’); ylabel(’Phase in pi Radians’); 
>> title(’Phase Response’) ; 

X Denominat or calculations 
X Frequency response 
X m a g  and phase responses 

&om the plots in Figure 3.9 we see that the filter is indeed a lowpsss filter. 0 

SAMPLING AND RECONSTRUCTION OF ANALOG SIGNALS 

In many applications-for example, in digital communications-real- 
world analog signals are converted into discrete signals using sampling 
and quantization operations (collectively called analog-tedigital con- 
version or ADC). These discrete signals are processed by digital signal 
processors, and the processed signals are converted into analog signals 
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SAMPLING 

using a reconstruction operation (called digitd-to-analog conversion or 
DAC). Using Fourier analysis, we can describe the sampling operation 
from the frequency-domain viewpoint, analyze its effects, and then ad- 
dress the reconstruction operation. We will also assume that the number 
of quantization levels is sufficiently large that the effect of quantization 
on discrete signals is negligible. 

Let za(t) be an analog (absolutely integrable) signal. Its continuow-time 
Fourier transform (CTFT) is given by 

m 

Xa(jR) i 2  J z,(t)e-j"fdt 
-m 

(3.24) 

where R is an analog frequency in radians/sec. The inverse continuow- 
time Fourier transform is given by 

m 

za(t) = - xa(jR)eJn*m 
27r ' I  . 

(3.25) 
-m 

We now sample z,(t) at sampling interual T, seconds apart to obtain the 
discretetime signal z(n). 

A 
~ ( n )  = %a( nTa) 

Let X(eJ") be the discrete-time Fourier transform of ~(n). Then it can be 
shown (191 that X(d") i s  a countable sum of amplitudescaled, frequency- 
scaled, and translated versions of the Fourier transform Xa(jR). 

(3.26) 

The above relation is known as the aZiasirzg formula. The analog and 
digital frequencies are related through T' 

w = RT, (3.27) 

while the sampling frequency F, is given by 

F. = 2, SLUII/S~C (3.28) 

The graphical illustration of (3.26) is shown in Figure 3.10, from which 
we observe that, in general, the discrete signal is an aliased version of the 
corresponding analog signal because higher frequencies are aliased into 

Ta 
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Sample s. 
x(n1 
t 

eq. (3.27) I 

i I 

tO 
-2n -n 0 u 2.a 

FIGURE 3.10 Sampling opemtion in the time and frequency domains 

lower frequencies if there is an overlap. However, it is possible to recover 
the Fourier transform X,( jn)  from X(eJw)  (or equivalently, the analog 
signal za(t) from its samples z (n ) )  if the infinite ''replicas" of Xa(jf2) do 
not overlap with each other to form X(e jw) .  This is true for band-limited 
analog signals. 

m MFlNlTlON 2 Band-limited Signal 
A signal is band-limited if there exists a finite radian frequency Ro 

such that Xa( jR)  is zerw for (01 > Ro. The frequency Fo,R0/27r is called 
the signal bandwidth an Hz. 
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Fteferring to Figure 3.10, if n > RoT.,--or equivalently, F,/2 > Fo- 
then 

(3.29) 7 r w n  < - < -  ' T, T, - T, 
x ( e j w )  = ;,x 1 (jg). -- 

which leads to the sampling theorem for band limited signals. 

rn THEOREM 3 sampling Principle 
A band-limited signal x,(t)  with bandwidth Fo can be reconstructed 

from its sample values s ( n )  = x,(nT,) if the sampling frrquency F, = 
l/Ts as greater than twice the bandwidth FO of xa( t ) .  

F, > 2Fo 

Otherwise aliasing would result an x(n) .  The sampling rate of 2Fo for an 
analog band-limited signal is called the Nyquist mte. 

It should be noted that after s,(t) is sampled, the highest analog 
frequency that x(n)  represents is F,/2 Hz (or w = 7r). This agrees with 
the implication stated in Property 2 of the discretetime Fourier transform 
in the first section of this chapter. 

MATLAB 
IMPLEMEN- 
TATION 

In a strict sense it is not possible to analyze analog signals using MATLAB 
unless we use the Symbolic toolbox. However, if we sample xa( t )  on a fine 
grid that has a sufficiently small time increment to yield a smooth plot 
and a large enough maximum time to show all the modes, then we can 
appraximate its analysis. Let At  be the grid interval such that At  << T,. 
Then 

h xG(m) = za (mAt )  (3.30) 

can be used as an array to simulate an analog signal. The sampling interval 
T, should not be confused with the grid interval At, which is used strictly 
to represent an analog signal in MATLAB. Similarly, the Fourier transform 
relation (3.24) should also be approximated in light of (3.30) as follows 

x,bn) % XG(m)e-JnmAtAt = At  xZG(m)e - jnmAt  (3.31) 

Now if s a ( t )  (and hence Z G ( ~ ) )  is of finite duration, then (3.31) is similar 
to the discretetime Fourier transform relation (3.3) and hence can be 
implemented in MATLAB in a similar fashion to analyze the sampling 
phenomenon. 

m m 
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0 

Solution From (3.24) 

EXAMPLE 3.17 Let z,(t) = e-lOOO1tl. Determine and plot its Fourier transform. 

0 m 

(3.32) 

which is a real-valued function since z.(t) is a real and even signal. To evaluate 
X,(jR) numerically, we have to first approximate za(t) by a finite-duration 
grid sequence zc(m). Using the approximation e-’ x 0, we note that z,(t) 
can be approximated by a finite-duration signal over -0.005 5 t 5 0.005 (or 
equivalently, over [-5,5] msec). Similarly from (3.32), X,(jQ) % 0 for R 1 
2n (ZOOO). Hence chming 

1 
At = 5 x << - = 25 x 2 (2000) 

we can obtain z ~ ( m )  and then implement (3.31) in MATLAB. 

% Analog Signal 
>> Dt = 0.00005; t = -0.005:M:0.005; xa = exp(-lOOO*abs(t)); 
X Continuous-time Fourier Transf o m  
>>ha = 2*pi*2000; K = 500; k = 0:l:K; W = k*hax/K; 
>>Xa = xa * exp(-j*t’*W) * M ;  Xa = real(Xa); 
>>W = [-fliplr(W), W(2:501)1; Y. Omega from -Wmax to Wmax 
>>Xa = [fliplr(Xa), Xa(2:501)1; 1: Xa over -hax to Wmax interval 
>>subplot (1,1, I) 
>>subplot (2,1, 1) ;plot(t*lOOO,xa) ; 
>>xlabel(’t in msec.’); ylabel(’xa(t)’) 
>>title(’)malog Signal’) 
>>subplot(2,1.2) ;plot(W/(2*pi*i000) ,Xa*1000); 
>>xlabel (’Frequency in KHz’); ylabel (’Xa( jW)*lOOOJ) 
>>title(’Continuous-time Fourier Transform’) 

Figure 3.11 shows the plots of zo(t) and X.(jQ). Note that to reduce the number 
of computations, we computed X,(jR) over [O, 4000rj radians/sec (or equiva- 
lently, over [0,2] KHz) and then duplicated it over [-400Chr,O] for plotting 

0 purposes. The displayed plot of X.(jR) agrees with (3.32). 

0 EXAMPLE 3.18 To study the effect of sampling on the frequency-domain quantities, we will 
sample z.(t) in Example 3.17 at two different sampling frequencies. 

a. Sample z,(t) at F. = 5000 sam/sec to obtain zl(n). Determine and plot 
Xl(ejW). 

b. .Sample z.(t) at Fa = 1000 sam/sec to obtain zz(n). Determine and plot 
X Z ( e - 1 W ) .  
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Analog Signal 

sdut i i  
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tin m. 
Continuous-time Fourier Transform 
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FIGURE 3.11 Plots in Example 3.17 

a. Since the bandwidth of za(t) is 2KHz, the Nyquist rate is 4000 sm/sec,  
which is less than the given F,. Therefore aliasing will be (almost) nonexistent. 

X Analog Signal 
>> Dt = 0.00005; t - -0.005:Dt:0.005; xa - exp(-lOOO*abs(t.)); 
X Discrete-time Signal 
>> Ts = 0.0002; n = -25:1:25; x = erp(-lOOO*abs(n*Ts)); 
Discrete-time Fourier transform 

>> K = 500; k = 0:l:K; v = pi*k/K; 
>> X = x * exp(-j*n’*v); X = real(X); 
>> v - C-fliplr(w), v(Z:K+l)l; 
>> X = Ifliplr(X). X(2:K+1)1; 
>> subplot(l,1,1) 
>> subplot(2,l,l);plot(t*1000,xa) ; 
>> xlabel(’t in msec.’); ylabel(’xl(n)’) 
>> title(’Diacrete Signal’); hold on 
>> stem(n*Ts*lOOO,x); gtext(’Ts-0.2 msec’); hold off 
>> subplot(2,1,2);plot(v/pi,X); 
>> xlabel(’Frequency in pi units’); ylabel(’Xl(w)’) 
>> title(’Discrete-time Fourier Transform’) 

In the top plot in Figure 3.12 we have superimposed the discrete signal %(n) 
over x.(t) to emphasize the sampling. The plot of XZ(~”) shows that it is a 
scaled version (scaled by F. I 5000) of X,( jQ) .  Clearly there is no aliasing. 
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FIGURE 3.12 Plots in Ezample 3.18a 

b. Here F. = loo0 < 4000. Hence there will be a considerable amount of 
aliasing. This is evident from Figure 3.13, in which the shape of X(ejW) is dit- 
ferent from that of X,( jn)  and can be seen to be a result of adding overlapping 
replicas of X,(jn). 0 

RECONSTRUC- 
TI ON 

From the sampling theorem and the above examplea it is clear that if we 
sample band-limited z,(t) above its Nyquist rate, then we can reconstruct 
z,(t) from its samples z(n). This reconstruction can be thought of as a 
t m s t e p  process: 

0 First the samples are converted into a weighted impulse train. 

m 

z(n)a(t-nT,) = .. *+~(-1)6(n+T,)+~(0)6(t)f~(l)6(n-T,)+. . . 
n=-w 

0 Then the impulse train is filtered through an ideal analog lowpass 
filter band-limited to the [-F,/2, Fb/2] band. 
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FIGURE 3.19 Plots in Ezample 3.18b 

This twc+step procedure can be described mathematically using an inter- 
polating formula [19] 

where sinc(z) = is an interpolating function. The physical inter- 
pretation of the above reconstruction (3.33) is given in Figure 3.14, from 
which we observe that this ideal interpolation is not practically feasible 
because the entiie system is noncausal and hence not realizable. 

Pructical D/d converters In practice we need a different approach 
than (3.33). The two-step procedure is still feasible, but now we replace 
the ideal lowpass filter by a practical analog lowpass filter. Another in- 
terpretation of (3.33) is that it is an infinite-order interpolation. We want 
finite-order (and in fact low-order) interpolations. There are several a p  
proaches to do this. 
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FIGURE 3.14 Rmnshrction of band-limited signal from its samples 

0 Zero-order-hold (ZOH) interpolation: In this interpolation a given 
sample value is held for the sample interval until the next sample is r e  
ceived. 

i.&) = s(n), nT, I n  < (n -I- 1)T. 

which can be obtained by filtering the impulse train through an interpo- 
lating filter of the form 
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which is a rectangular pulse. The resulting signal is a piecewiseconstant 
(staircase) waveform which requires an appropriately designed analog 
post-filter for accurate waveform reconstruction. 

0 First-order-hold (FOH) interpolation: In this case the adjacent 
samples are joined by straight lines. This can be obtained by filtering 
the impulse train through 

0, otherwise 

Once again an appropriately designed analog postfilter is required for 
accurate reconstruction. These interpolations can be extended to  higher 
orders. One particularly useful interpolation employed by MATLAB is the 
following. 

0 Cubic spline interpolation: This approach uses spline interpolants 
for a smoother, but not necessarily more accurate, estimate of the analog 
signals between samples. Hence this interpolation does not require an 
analog postfilter. The smoother reconstruction is obtained by using a set 
of piecewise continuous third-order polynomials called cubic splines, given 
by 151 

2, ( t )  = 0 0  (n) + 01 (4 (t - nT,) + 0 2  (n) ( t  - nTJ2 

+ 0 3  (n) (t - ~LT,)~, nT, I n < (n + 1)T. (3.34) 

where (ai (n) , 0 I i 5 3) are the polynomial coefficients, which are de- 
termined by using least-squares analysis on the sample values. (Strictly 
speaking, this is not a causal operation but is a convenient one in MAT- 
LAB.) 

MATLAB 
IMPLEMEN- 
TATION 

For interpolation between samples MATLAB provides several approaches. 
The function sinc(x), which generates the (s inm) /KX function, can 
be used to  implement (3.33), given a finite number of samples. If 
{z (n) , n1 5 n 5 n2) is given, and if we want to interpolate z, ( t )  on 
a very fine grid with the grid interval At, then from (3.33) 

nz 
z, (mat)  = ~ ( n )  sinc [F,(mAt - nT,)] , tl I mat I t z  (3.35) 

n=n, 
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which can be implemented as a matrix-vector multiplication operation as 
shown below. 

>> n = ni:n2; t = t1:tZ; Fs = UTs; nTs = n*Ts; 
>> xa = x * sinc(Fs*(ones(lsngth(n) ,l)*t-nTs'*ones(l,length(t)))); 

X Ts is the sampling interval 

Note that it is not possible to obtain an exact analog z,(t) in light of the 
fact that we have assumed a finite number of samples. We now demon- 
strate the use of the sinc function in the following two examples and also 
study the aliasing problem in the time domain. 

0 EXAMPLE 3.19 Fkom the samples zl(n) in Example 3.18a, reconstruct z.(t) and comment on 
the results. 

Sdution Note that z,(n) was obtained by sampling z.(t) at Z = l/Fa = 0.0002 8ec. We 
will use the grid spacing of O.ooOo5 sec over -0.005 5 t 5 0.005, which gives 
z(n) over -25 5 n 5 25. 

Y. Discrete-time Signal xl(n) 
>> Ts - 0.0002; n = -25:1:25; nTs = n*Ts; 
>> I - exp(-lOOO*abs(nTs)); 
X Analog Signal reconstruction 
>> Dt = 0.00005; t = -0.005:Dt:0.005; 
>> xa = I * sinc(Fs*(ones(lengh(n) ,i)*t-nTs'*ones(l,length(t)))); 
% check 
>> error = max(abs(xa - exp(-iOOO*abs(t)))) 
error = 

0.0363 

The maximum error between the reconstructed and the actual analog signal is 
0.0363, which is due to the fact that s,(t) is not strictly band-limited (and also 
we have a finite number of samples). Elom Figure 3.15 we note that visually 
the reconstruction is excellent. 0 

ReconsfNcted S i a l  from xl(n) using Sine fundion 

t in msec. 

FIGURE 3.15 Reconstructed signal in Ezample 3.19 
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0 EXAMPLE 3.20 From the samples m(n) in Example 3.18b reconstruct z,(t) and comment on 
the results. 

In this case ~ ( n )  was obtained by sampling x.(t) at 2’. = 1/F. = 0.001 sec. We 
will again use the grid spacing of O.ooOo5 sec over -0.005 5 t 5 0.005, which 
gives z(n) over -5 5 n 5 5 .  

X Discrete-time Signal x2(n) 
>> Ts = 0.001; n = -5:1:5; nTs = n*Ts; 
>> I = erp(-lOOO*abs(nTs)); 
X Analog Signal reconstruction 
>> Dt - 0.00005; t = -0.006:Dt:0.005; 
>> xa = x * sinc(Fs*(ones(length(n) ,i)*t-nTs’*ones(i,length(t)))); 
7. check 
>> error = max(abs(xa - exp(-lOOO+abs(t)))) 
error = 

Sdutim 

0.1852 

The maximum error between the reconstructed and the actual analog signal is 
0.1852, which is significant and cannot be attributed to the nonband-limitedness 
of z,(t) alone. From Figure 3.16 observe that the reconstructed signal differs 
from the actual one in many places over the interpolated regions. This is the 

0 

The second MATLAB approach for signal reconstruction is a plotting 
approach. The stairs function plots a staircase (ZOH) rendition of the 
analog signal, given its samples, while the plot function depicts a linear 
(FOH) interpolation between samples. 

Plot the reconstructed signal from the samples xi  (n) in Example 3.18 using 
the ZOH and the FOH interpolations. Comment on the plots. 

Note that in this reconstruction we do not compute x,, (t) but merely plot it 
using its samples. 

visual demonstration of aliasing in the time domain. 

0 EXAMPLE 3.21 

Sdution 

R e o o N e d  Signal horn e (n )  using sinc fun& 

-0.5 
- 5 - 4 4 - 2 - 1  0 1 2  3 4 5 

1 in msec. 

FIGURE 3.16 Reconstrvcted signal in Example 3.20 
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X Discrete-time Signal xl(n) : Ts = 0.0002 
>> Ts - 0.0002; n = -25:1:25; nTs - n*Ts; 
>> x - exp(-lOOO*abs(nTs)); 
x Plots 
>> subplot(2.1,l); stairs(nTs*1000.x); 
>> xlabel(’t in msec.’); ylabel(’xa(t)’) 
>> title(’Reconstructed Signal from xl(n) using zero-order-hold’) ; hold on 
>> stem(n*Ts*lOOO,x); hold off 
x 
x Discrete-time Signal x2(n) : Ts = 0.001 
>> Ts = 0.001; n = -5:1:5; nTs = n*Ts; 
>> x - exp(-1000*abs(nTs)); 
x Plots 
>> subplot (2,1.2) ; stairs(nTs*1000,x) ; 
>> xlabl(’t in msec.’); ylabel(’xa(t)’) 
>> title(’R8constructed Signal from d ( n )  using zero-order-hold’); hold on 
>> stem(n+Ts*1000,x); hold off 

The plots are shown in Figure 3.17, born which we observe that the ZOH r e  
construction is a crude one and that the further processing of analog signal is 
neexmy. The FOH reconstruction appears to be a good one, but a careful 
observation near t = 0 reveals that the peak of the signal is not correctly repre 

R e c o n m e d  Signal fmm xl(n) using zem-oder-hOld 

- 5 - 4 4 - 2 - 1 0  1 2  3 4 5 
linmsec 

tin msec. 

FIGURE 3.17 Signal rt%on3truction in Ezample 3.21 
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0 EXAMPLE 3.22 

solution 

duced. In general, if the sampling frequency is much higher than the Nyquist 
rate, then the FOH interpolation provides an acceptable reconstruction. 0 

The third approach of reconstruction in MATLAB involves the use of 
cubic spline functions. The sp l ine  function implements interpolation be- 
tween sample points. It is invoked by xa = spl ine(nTs,x, t ) ,  in which x 
and nTs are arrays containing samples ~ ( n )  at nT, instances, respectively, 
and t array contains a fine grid at which za(t) values are desired. Note 
once again that it is not possible to obtain an =act analog ~ ( t ) .  

From the samples zl(n) and z2 (n) in Example 3.18, reconstruct r.(t) using 
the spline function. Comment on the results. 

This example is similar to Examples 3.19 and 3.20. Hence sampling parameters 
are the same as before. 

X a) Discrete-time Signal xlh): T s  = 0.0002 
>> Ts - 0.0002; n = -25:1:25; nTs - n*Ts; 
>> I = exp(-1000*abs(nTs)); 
X M o g  Signal reconstruction 
>> at = 0.00005; t = -0.005:Dt:0.005; 
>> xa = spline(nTs,x,t); 
X check 
>> error = max(abs(xa - exp(-1000*abs(t)))) 
error = 0.0317 

The maximum error between the reconstructed and the actual analog signal 
is 0.0317, which is due to the nonideal interpolation and the fact that z.(t) 
is nonband-limited. Comparing this error with that from the sinc (or ideal) 
interpolation, we note that this error is lower. The ideal interpolation gener- 
ally suffers more from time-limitedness (or from a finite number of samples). 
Ftom the top plot in Figure 3.18 we observe that visually the reconstruction is 
excellent. 

X Discrete-time Signal x2(n): Ts = 0.001 
>> Ts = 0,001; n = -5:1:5; nTs = n+Ts; 
>> x = exp(-1000*abs(nTs)) ; 
X Analog Signal reconstruction 
>> D t  - 0.00005; t = -0.005:Dt:0.005; 
>> xa - spline(nTs,x,t); 
% check 
>> error - max(abs(xa - exp(-1000*abs(t)))) 
error = 0.1679 

The maximum error in this case is 0.1679, which is significant and cannot be 
attributed to the nonideal interpolation or nonband-limitednars of z,(t). From 
the bottom plot in Figure 3.18 observe that the reconstructed signal again differs 

0 from the actual one in many places over the interpolated repions. 
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Reconstructed Signal from xl(n) using cubic spline function 

tinmsec. 

FIGURE 3.18 Reconstructed signal in Ezample 3.22 

From these examples i t  is clear that for practical purposes the spline 
interpolation provides the best results. 

PROBLEMS 
I 
I 

P3.1 Write a MATLAB function to compute the DTFT of a fmite-duration sequence. The format 
of the function should be 

function [XI = dtft(x,n,w) 
% Computes Discrete-time Fourier Transform 
X [XI = dtft(x.n,w) 
% 
X X = DTFT values computed at w frequencies 
% x = finite duration sequence over n 
% n = sample position vector 
X Y frequency location vector 

Use this function to compute the DTFT in the following problems (wherever required). 
For each of the following sequences, determine the DTFT X (.'"). Plot the magnitude and 
angle of x (2"). 

P3.2 
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PS.3 

PS.4 

PS.5 

P3.6 

P3.7 

PS.8 

a. z (n) = 2 (0.8)" [u (n) - u (n - 20)) 
b. z (n) = n (0.9)" [u (n) - u (50)] 
c. z (n) = {4,3,2,1,2,3,4}. Comment on the angle plot. 

d. z (n) = {4,3,2,1,1,2,3,4}. Comment on the angle plot. 

e. z (n) = {4,3,2,1,0, -1, -2, -3, -4}. Comment on the angle plot. 

f. z (n) = {4,3,2,1, -1, -2, -3, -4}. Comment on the angle plot. 

Determine analytically the DTFT of each of the following sequences. Plot the magnitude 
and angle of X (2") using MATLAB. 
a z (n) = 3 (0.9)3 u (n) 
b. z (n) = 2 (0.8)n+2 u(n - 2) 
c. z (n )  =t~(O.5)~u(n)  
d. z (n) = (n + 2) ( - O . ~ ) " - ' U  (n - 2) 
e. z (n) = 5 (-0.9)" co8 (o.lm) u (n) 
A symmetric rectangular pulse is given by 

t 

T 

t 

t 

- N < n < N  
RN (n) = { 1, 

0, otherwise 

Determine the DTFT for N = 5, 15, 25, 100. Scale the DTFT so that X (2') = 1. Plot the 
normalized DTFT over [-*,?TI. Study these plots and comment on their behavior as a 
function of N. 
Repeat Problem 3.4 for a symmetric triangular pulse that is given by 

Repeat Problem 3.4 for a symmetric raised cosine pulse that is given by 

+ 0.5 cos (?)I RN (n) 

A complex-valued sequence z (n) can be decomposed into a conjugate symmetric part 
ze (n) and a conjugatsantisymmetric part zo (n) as discussed in Chapter 2. Show that 

3[ze (n)] = XR (2") and 3 [zo (n)] = j X r  (2") 
where XR (2") and XI (2") are the real and imaginary parts of the DTFT X (g"), 
respectively. Verify this property on 

z (n) = 2°.1*n [u (n) - u (n - 20)] 

using the MATLAB functions developed in Chapter 2. 
A complex-valued DTFT X (ej") can also be decomposed into its conjugate-symmetric 
part X. (2") and conjugate-antispmetric part X,, (2"); that is, 

x (2") = X, (e'") + X, (ej") 
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where 

X .  (2") = f [ X  (2") + X' (e-j")] and XO (2") = f [ X  (2") - X' (e-'")] 

Show that 

F-' [ X ,  (d")] = ZR (n) and 3-' [Xo (e'")] = z r  (n) 

where ZR (n) and xr (n) are the real and imaginary parts of z (n). Verify this property on 

z (n) = ei0.lnn [u (n) - I (n - no)] 

using the MATLAB functions developed in Chapter 2. 
Using the frequency-shifting property, show that the DTFT of a sinusoidal pulse P3.9 

2 (n) = (C0Sw.n) E N  (n) 

is given by 

1 1 sin { (w - wo) N/2} 1 sin { (w + W O )  N / 2 }  
2 [ sin { (w - wq) /2) ] + 5 [ sin {(w + wo) /2} X ( 2 " )  = - 

where RN (n) is the rectangular pulse given in Problem 3.4. 
Compute and plot X (-9") for w, = n-/2 and N = 5, 15, 25, 100. Use the plotting interval 
[-n-, n-1. Comment on your results. 

P3.10 Let z (n) = '2i0 (n) be a triangular pulse given in Problem 3.5. Using properties of the 
DTFT, determine and plot the DTFT of the following sequences. 
a. z (n) = ZO (-n) 
b. z (n) = '2io (n) - 50 (n - 10) 
c. 2 (n) = To (n) * z o  (-n) 

e. 
d. z (n) = Ti0 (n) Pn 

(n) = 'ZO (n) . ZO (n) 
P3.11 For each of the linear timGinvariant systems described by the impulse response, determine 

the frequency response function H (2") and plot the magnitude response IH (2")l and 
the phase response LH (eJ").  

a. h (n) = (0.9)I"l 
b. h (n) = sinc (0.2n) [u (n + 20) - u (n - ZO)] , where sinc0 = 1. 
c. h (n) = sinc (0.2n) [u (n) - ti (n - 40)) 
d. h (n) = [(0.5)" + (0.4)"] u(n) 
e. h (n) = (0.5)1"1 cos (O.l?m) 

P3.12 Let z (n) = 3cos (0.5rn + 60") + 2sin (0.3rn) be the input to each of the systems described 
in Problem 3.11. In each case determine the output y (n). 

P3.13 An ideal lowpass filter is described in the frequency domain by 

where wc is called the cutoff frequency and a is called the phase delay. 
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a. Determine the ideal impulse response h d  (n) using the IDTFT relation (3.2). 
b. Determine and plot the truncated impulse response 

for N = 41, a = 20, and we = 0.51~. 
c. Determine and plot the frequency response function H (2") and compare it with the 
ideal lowpass filter response H d  (ej"). Comment on your observations. 

PJ.14 An ideal highpass filter is described in the frequency domain by 

where we is called the cutoff frequency and a is called the phase delay. 
a. Determine the ideal impulse response hd (n) using the IDTFT relation (3.2). 
b. Determine and plot the truncated impulse response 

, O I n I N - I  { :y (n) otherwise 
h(n) = 

for N = 31, a = 15, and we = 0.51~. 
c. Determine and plot the frequency response function H (2") and compare it with the 
ideal highpass filter response H d  (ej"). Comment on your observations. 

P3.15 For a linear time-invariant system described by the diEerence equation 

m=O k 1  

the frequency response function is given by 

Write a MATLAB function freqresp to implement the above relation. The format of this 
function should be 

function [HI = freqresp(b,a,w) 
X Frequency response function from difference equation 
X CHI = freqresp(b.a,w) 
X H = frequency response array evaluated at w frequencies 
X b = numerator coefficient array 
X a - denominator coefficient array (a(1)-1) 
X w = frequency location a r r ay  

P3.16 Determine H (eJW) and plot its magnitude and phase for each of the following system. 

a. I (n) = EL=, (n - m) 
b. y (n) = 3: (n) + 22 (n - 1) + I  (n - 2) - 0.5y(n - 1) - 0.25y(n - 2) 
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C. ~ ( n )  = 2s(n) + 2 (TI - 1) - 0 . 2 5 ~  (n  - 1) + 0 . 2 5 ~  (TI - 2) 
d. y(n) = ~ ( n )  + ~ ( n  - 2) - 0.81y(n - 2) 

e. y (4 = (n) - c:=, (0.5)' Y (n - 4 
P3.17 A linear time-invariant system is described by the difference equation 

(0.81)' y (n - 2) 
3 3 

y (n) = z (n - 2m) - 
m=0 k 1  

Determine the steady-state response of the system to the following inputs: 
a. z(n)=5+10(-1)"  
b. z (n) = 1 + cos (0.5xn + n/2) 
c. z (n) = 2 sin ( 7 4 4 )  + 3 cos (3744) 

d. z (n) = c:=, (k + 1) cos (7rh/4) 
e. z (n) = cos (ma) 
In each case generate z (n), 0 5 n 5 200 and process it through the filter function to 
obtain y (n). Compare your y (n) with the steady-state responses in each case. 

P3.18 An analog signal z4 (t) = sin (loOo?rt) is sampled using the following sampling intervals. In 
each case plot the spectrum of the resulting discret*time signal. 
a. 2'. = 0.1 ms 
b. 2'. = 1 ms 

c. T, = 0.01 8ec 
PJ.19 W e  have the following analog filter, which is realized using a discrete filter. 

The sampling rate in the AID and D/A is 100 sam/sec, and the impulse response is 
h (n) = (0.5)" u (n). 

a. What is the digital kequency in z (n) if za (t)  = 3 COB (2ht)? 
b. Find the steady-state output ye (t) if za ( t )  = 3cos (2Chrt). 
c. Find the steady-state output y,, (t) if x, (t) = 3u(t). 
d. Find two other analog signals zD (t), with different analog frequencies, that will give the 
same steady-state output ya (t) when I, (t) =  COB (2Chrt) is applied. 
e. To prevent aliasing, a prefilter would be required to process I. (t) before it p~ to the 
A/D converter. What type of filter should be used, and what should be the largest cutoff 
frequency that would work for the given configuration? 

P3.20 Consider an analog signal xa ( t )  = sin (2ht)  , 0 5 t 5 1. It is sampled at T. = 0.01, 0.05, 
and 0.1 sec intervals to obtain z (n). 

a. For each T, plot z (n). 

b. Reconstruct the analog signal ya (t) from the samples z (n) using the sinc interpolation 
(use At = 0.001) and determine the frequency in yo (t) from your plot. (Ignore the end 
effects.) 
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c. Reconstruct the analog signal ga (t) from the samples z (n) using the cubic spline 
interpolation and determine the frequency in g. (t) from your plot. (Ignore the end effects.) 
d. Comment on your results. 

P3.21 Consider the analog signal I,, (t) = sin ( 2 h t  + n/4) , 0 5 t 5 1. It is sampled at T, = 0.05 
sec inter& to obtain s(n). 

a. Plot za ( t )  and superimpose z (n) on it using the plot(n.x, ' 0 ' )  function. 
b. Reconstruct the analog signal go (t) &om the samples I (n) using the sinc interpolation 
(use At = 0.001) and superimpose z (n) on it. 
c. Reconstruct the analog signal ga (t) from the samples z (n) using the cubic spline 
interpolation and superimpose I (n) on it. 
d. You should observe that the resultant reconstruction in each case has the correct 
frequency but a different amplitude. Explain this observation. Comment on the role of 
phase of s. (1) on sampling and reconstruction of signals. 
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a THE z- TRANSFORM 

In Chapter 3 we studied the discretetime Fourier transform approach for 
representing discrete signals using complex exponential sequences. This 
representation clearly has advantages for LTI systems because it describes 
systems in the frequency domain using the frequency response function 
H(.i"). The computation of the sinusoidal steady-state response is greatly 
facilitated by the use of El(&"). Furthermore, response to any arbitrary 
absolutely summable sequence z(n) can easily be computed in the fre 
quency domain by multiplying the transform X(ej") and the frequency 
response El(&"). However, there are two shortcomings to the Fourier 
transform approach. First, there are many useful signals in prac t ice  
such as u(n) and nu(n)-for which the discretetime Fourier transform 
does not exist. Second, the transient response of a system due to ini- 
tial conditions or due to changing inputs cannot be computed using the 
discretetime Fourier transform approach. 

Therefore we now consider an extension of the discrete-time Fourier 
transform to address the above two problems. This extension is called the 
z-transform. Its bilateral (or two-sided) version provides another domain 
in which a larger class of sequences and systems can be analyzed, while its 
unilateral (or one-sided) version can be used to obtain system responses 
with initial conditions or changing inputs. 

THE BILATERAL Z-TRANSFORM 
I 
I 

The z-transform of a sequence z(n) is given by 

m 
X ( z )  5 2 [z(n)] = c 2 ( n ) Z - "  ( 4 4  

n=-m 

where z is a complex variable. The set of z values for which X ( z )  exists 
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is called the region of convergence (ROC) and is given by 

&- < ( z (  < Rz+ ( 4 4  

for some positive numbers Rz- and &+. 
The inverse z-transform of a complex function X ( z )  is given by 

where C is a counterclockwise contour encircling the origin and lying in 
the ROC. 

Comments: 

1. The complex variable z is called the wmplez fquency given by 
z = IzI ej", where 1zI is the attenuation and w is the real frequency. 

2. Since the ROC (4.2) is defined in terms of the magnitude lzl, the 
shape of the ROC is an open ring as shown in Figure 4.1. Note that &- 
may be equal to zero and/or &+ could possibly be 00. 

3. If Rz+ < R=-, then the ROC is a null space and the z-transform 
does not exist. 

4. The function Jzl = 1 (or z = ej") is a circle of unit radius in the 
z-plane and is called the unit circle. If the ROC contains the unit circle, 
then we can evaluate X ( z )  on the unit circle. 

m 

~ ( z ) l , , , , ~  = ~ ( e i " )  = C z(n)e-jw = ~ [ z ( n ) l  

Therefore the discretetime Fourier transform X(ej") may be viewed as 
a special case of the z-transform X ( z ) .  

n=-m 

0 EXAMPLE 4.1 k t  zl(n) = anu(n), 
sequence). Then 

0 < la1 < 00. (This sequence is called a positive-time 

FIGURE 4.1 A g e n e d  w o n  of convergence 
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FIGURE 4.2 The ROC in Ezample 4 . 1  

Note: XI(Z) in this example is a rational function; that is, 

A B(2) 2 X,(z) = - = __ 
A(z)  z - a  

where B(z)  = z is the numemtorpolynomiol and A(z) = z-a is the denominator 
polynomaaL The roots of B(z) are called the terns of X ( z ) ,  while the roots of 
A(z) are called the poles of X ( z ) .  In this example XI(Z) has a zero at  the origin 
z = 0 and a pole at z = a. Hence 51 ( n )  can also be represented by a pole-sen, 
diagmm in the z-plane in which zeros are denoted by 'a' and poles by ' x '  as 
shown in Figure 4.2. 0 

0 EXAMPLE 4.2 k t  zz(n) = -b"u(-n- l), 0 < Ibl < 00. (This sequence is called a negative-tame 
sequence.) Then 

-1 
&(z) = - c b"z-" = - 2 (2)" 

--m -m 

m m 
= - c (i)" = 1 - (t)" 

1 

The ROC, and the pole-zero plot for this zz(n) are shown in Figure 4.3. 

FIGURE 4.3 The ROC an Ezample 4.2 
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Note: If b = a in this example, then Xz(z) = XI(Z) except for their respective 
ROCs; that is, ROC1 # ROCz. This implies that the ROC is a distinguishing 
feature that guarantees the uniqueness of the r-transform. Hence it plays a very 

0 important role in system analysis. 

0 EXAMPLE 4.3 Let Z3(n) = zl(n) + m(n) = anu(n) - b"u(-n - 1) (This sequence is called a 
two-sided sequence.) Then using the above two examples, 

n = O  -m 

=L+t. Rock: ROC1 n ROCz 
t - a  z - b '  

If Ibl < Jal, the Roc3 is a null space and &(2) does not exist. If la1 < lbl, 
then the Roc3 is la1 < 121 < Ibl and X ~ ( Z )  exists in this region as shown in 
Figure 4.4. 0 

PROPERTIES 
OF THE ROC 

From the observation of the ROCs in the above three examples, we state 
the following properties. 

1. The ROC is always bounded by a circle since the convergence 
condition is on the magnitude 121. 

2. The sequence zl(n) = a"u(n) in Example 4.1 is a special case of 
a right-sided sequence, defined as a sequence z(n) that is zero for some 
n < no. From Example 4.1 the ROC for right-sided sequences is always 
outside of a circle of radius &-. If no 2 0, then the right-sided sequence 
is also called a causal sequence. 

3. The sequence ~ ( n )  = -b"u(-n - 1) in Example 4.2 is a special 
case of a left-sided sequence, defined 89 a sequence z(n) that is zero for 
some n > no. If 5 0, the resulting sequence is called an anticausal 
sequence. From Example 4.2 the ROC for left-sided sequences is always 
inside of a circle of radius a+. 

FIGURE 4.4 The ROC in Ezample 4.3 
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4. The sequence ~ ( n )  in Example 4.3 is a two-sided sequence. The 
ROC for two-sided sequences is always an open ring &- < 1.1 < &+ 
if it exists. 

5. The sequences that are zero for n < nl and n > n2 are called 
finite-duration sequences. The ROC for such sequences is the entire z- 
plane. If nl < 0, then z = oo is not in the ROC. If n2 > 0, then z = 0 is 
not in the ROC. 

6. The ROC cannot include a pole since X ( z )  converges uniformly 
in there. 

7. There is at least one pole on the boundary of a ROC of a rational 
X ( 4 .  

8. The ROC is one contiguous region; that is, the ROC does not come 
in pieces. 

In digital signal processing, signals are assumed to be causal since 
almost every digital data is acquired in real time. Therefore the only 
ROC of interest to us is the one given in 2 above. 

IMPORTANT PROPERTIES OF THE Z-TRANSFORM 
I 
I 

The properties of the z-transform are generalizations of the properties 
of the discrete-time Fourier transform that we studied in Chapter 3. We 
state the following important properties of the z-transform without proof. 

1. Linearity: 

2[a121(n) +az~z(n)] = aiXi(z) + azXz(2); ROC: ROC,, nROC,, 

(4.4) 

2. Sample shifting: 

2 [X (n - no)] = z-""X(Z); ROC: ROC, (4.5) 

3. Frequency shifting: 

2 [a"~(n)]  = X (2) ; ROC: ROC, scaled by la1 (4.6) 

4. Folding: 

2 12 (-n)] = X (l/z) ; ROC: Inverted ROC, (4.7) 

5.  Complex conjugation: 

2 /z'(n)] = X*(z*);  ROC: ROC, (4.8) 
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6. Differentiation in the %-do& 

0 U(AMPlE4.4 

S d U t i O n  

0 U(AMPlE4.5 

2[nx(n)] = -2- dX(t). ROC: ROC, 
dz ’ 

This property is also called ‘‘multiplication by a ramp” property. 
7. Multiplication: 

Xi (v) Xz (z/v) v-‘dv; 

ROC: ROC,, n Inverted ROC,, 

(4.9) 

(4.10) 

where C is a closed contour that encloses the origin and lies in the common 
ROC. 

8. Convolution: 

2 [ ~ 1 ( n )  * ~z(n)] = Xi(z)Xz(~);  ROC ROC,, n ROC,, (4.11) 

This last property transforms the timedomain convolution operation 
into a multiplication between two functions. It is a significant property 
in many ways. First, if X~(Z) and X ~ ( Z )  are two polynomials, then their 
product can be implemented using the conv function in MATLAB. 

From the definition of the z-transform we observe that 

zl(n) = {2,3,4} and zz(n) = {3,4,5,6} 

Then the convolution of the above two sequences will give the coefficients of the 
required polynomial product. 

>> xl = [2,3,41; 12 = [3,4,5,61; 
>> x3 - conv(x1,xZ) 

I t 

x3 = 6 IT 34 43 38 24 

Hence 

& ( z )  = 6 + 17z-‘+ 3 4 ~ - ~  + 4 3 ~ - ~  + 3&-’ + 2 4 ~ - ~  

Using the convat function developed in Chapter 2, we can also multiply 
0 two z-domain polynomials corresponding to n o n c a d  sequences. 

LetXl(z)=z+2+3z-’ andXz(z) =2zZ+4z+3+5z-’.DetermineX3(z) = 
XI(Z)X2(Z). 
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solution Note that 

zl(n) = {1,2,3} and ~ ( n )  = {2,4,3,5} 
T t 

Using MATLAB, 

>> xi - [1,2,31; nl - [-1:13; 
>> x2 E C2,4,3,51; n2 = [-2:11; 
>> Ix3.1133 = conv-m(xl,ni,x2.n2) 
x3 = 

n3 = 
2 8 11 23 19 15 

-3 -2 -1 0 1 2 

we have 

In passing we note that to divide one polynomial by another one, we 
would require an inverse operation called deconuolution [19, Chapter 61. 
In MATLAB [p,rl = deconv(b.a) computes the result of dividing b by 
a in a polynomial part p and a remainder r. For example, if we divide the 
polynomial X&) in Example 4.4 by X , ( z ) ,  

>> 13 = 16,17,34,43,38,241; X l  = C2,3,41; 
>> [x2,rl = deconv(x3,xl) 
I2 = 

3 4 5 6  
r =  

0 0 0 0 0 0  

then we obtain the coefficients of the polynomial X ~ ( Z )  as expected. To 
obtain the sample index, we will have to modify the deconv function 
as we did in the conv_m function. This is explored in Problem 4.8. This 
operation is useful in obtaining a pmper rational part from an improper 
rational function. 

The second important use of the convolution property is in system 
output computations as we shall see in a later section. This interpreta- 
tion is particularly useful for verifyii the z-transform expression X ( z )  
using MATLAB. Note that since MATLAB is a numerical processor (unless 
the Symbolic toolbox is used), it cannot be used for direct z-transform 
calculations. We will now elaborate on this. Let z(n) be a sequence with 
a rational transform 
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SOME 
COMMON 

PA1 RS 
Z-TRANSFORM 

0 EXAMPLE4.6 

where B(z)  and A(z) are polynomials in z-l. If we use the coefficients of 
B(z) and A(z) as the b and a arrays in the filter routine and excite this 
filter by the impulse sequence 6(n), then from (4.11) and using 2 [S (n)] = 
1, the output of the filter will be ~ ( n ) .  (This is a numerical approach of 
computing the inverse z-transform; we will discuss the analytical approach 
in the next section.) We can compare this output with the given ~ ( n )  to 
verify that X ( z )  is indeed the transform of ~ ( n ) .  This is illustrated in 
Example 4.6. 

Using the definition of z-transform and its properties, one can determine 
z-transforms of common sequences. A list of some of these sequences is 
given in Table 4.1. 

Using z-transform properties and the z-transform table, determine the z- 
transform of 

s(n) = (n - 2)(0.5)'"-2) cos -(n - 2)] u(n - 2) [; 

TABLE 4.1 Some wmmon z-tmnsfomi pairs 

~~ 

6(n) 

4.1 

-u(-n - 1) 

a"u(n) 

-b"u(-n - 1) 

[an sinwon] u(n) 

[a" co6 won] u(n) 

na"u(n) 

-nb"u(-n - 1) 

az-1 
(1 - az-1)2 
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S d U t i O n  Applying the samplcshift property, 

x(z) = 2[z(n)] = z-'2 

with no change in the ROC. Applying the multiplication by a ramp property, 

d 2  [(0.5)*cos (gn) ~(n)] 
dz 

with no change in the ROC. Now the z-transform of (0.5)" cos ($n) u(n) from 
Table 4.1 is 

1 - (0.5 cos 3 )  z-' 
2 (0.5) cos - u(n) = . JzJ > 0.5 [ n 1 1 - 2 ( 0 . 5 ~ 0 ~ ~ ) ~ - ~ + 0 . 2 5 z - ~ '  

Hence 

1 - 0.25~-' X ( 2 )  = -2-1- It/ > 0.5 

JzJ > 0.5 

- 0 . 2 5 ~ - ~  + 0 . 5 ~ - ~  - 0 . 0 6 2 5 ~ - ~  
1 - 2-l + 0.75r2  - 0.25r3  + 0 . 0 6 2 5 ~ - ~  

= -z-l 

- 0 . 2 5 ~ - ~  - 0 . 5 ~ - ~  + 0 . 0 6 2 5 ~ - ~  - 
1 - z-'+ 0 . 7 5 . ~ - ~  - 0.252-3 + 0.0625~-~  ' 

MATLAB verification: To check that the above X ( z )  is indeed the correct ex- 
pression, let us compute the first 8 samples of the sequence s(n) corresponding 
to X ( z )  as discussed before. 

>> b - ~0 ,0 ,0 ,0 .25 , -0 .S ,O .O2S~;  a - ~l,-l,0.75,-0.25,0.06251; 
>> Cdelta,n] =impseq(O ,O ,7) 
delta = 

n =  

>> f = filter(b,a,delta) % check sequence 

1 0 0 0 0 0 0 0  

0 1 2 3 4 5 6 7  

I -  
Columns 1 through 4 

0 0 0 0.26000000000000 

-0.25000000000000 -0.37500000000000 -0.12500000000000 0.078125oooO0000 
COlunulS 5 through 8 

>> x = [(n-2) .*(1/2) .-(n-2) .*cos(pi*(n-2)/3)] .*stepseq(2,0,7) X original sequence 
I =  
Columns 1 through 4 

0 0 0 0.25000000000000 
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Columns 5 through 8 
-0.25000000000000 -0.37500000000000 -0.12500000000000 0.07812500000000 

This approach can be used to verify the z-transform computations. 0 

INVERSION OF THE Z-TRANSFORM 

From definition (4.3) the inverse z-transform computation requires an 
evaluation of a complex contour integral that, in general, is a complicated 
procedure. The most practical approach is to use the partial fraction ex- 
pansion method. It makes use of the a-transform Table 4.1 (or similar 
tables available in many textbooks.) The z-transform, however, must be 
a rational function. This requirement is generally satisfied in digital signal 
processing. 

Centml Idea: When X(z) is a rational function of t-', it can be ex- 
pressed as a sum of simple (first-order) factors using the partial fraction 
expansion. The individual sequences corresponding to these factors can 
then be written down using the t-transform table. 

The inverse z-transform procedure can be summarized as follows: 

Method: Given 

0 express it as 

Proper rational part - polynomial part If  M > N  

where the fist term on the right-hand side is the proper rational part 
and the second term is the polynomial (finitelength) part. This can be 
obtained by performing polynomial division if M 2 N using the deconv 
function. 

0 perform a partial fraction expansion on the proper rational part of 
X ( z )  to obtain 
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where p k  is the kth pole of x(z) and R k  is the residue at p k .  It is assumed 
that the poles are distinct for which the residues are given by 

For repeated poles the expansion (4.13) has a more general form. If a pole 
p k  has multiplicity T ,  then its expansion is given by 

(4.14) 

where the residues Rk,(  are computed using a more general formula, which 
is available in [19]. 

0 write z(n) as 

M I N  

finally, use the relation from Table 4.1 

2-1 [I] = { PiU(n) (Zkl 5 4- 
z - P k  - p : U ( - n - 1 )  IZkI 2 &+ 

to complete ~(n). 

0 EXAMPLE 4.7 Find the inverse z-transform of z(z) = 

sduti Write 

32' - 4~ + 1' 

(4.15) 

1 -1 - 3 2  X ( 2 )  = 
3(z2 - $ z +  4) - 1 - ;,-1+ 1,-2 

or 

NOW, X ( z )  has two poles: 21 = 1 and zs = 4; and since the ROC is not specified, 
there are three possible ROCs as shown in Figure 4.5. 
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FIGURE 4.5 The ROCs in Emmple 4.7 

a. ROCI: 1 < 111 < 00. Here both poles are on the interior side of the 
ROC1; that is, JzlJ 5 R,- = 1 and lzzl 5 1. Hence from (4.15) 

1 1 1 "  
2 2 3  z l (n )  = -u(n) - - (-) u(n) 

which is a right-sided sequence. 

ROC2; that is, JtlJ 2 &+ = f and 1 . ~ ~ 1  2 5. Hence from (4.15) 
b. ROCz: 0 < JtJ < f .  Here both poles are on the exterior side of the 

zz(n) = t {-u(-n - 1)) - 4 {- (f)"u(-n - I)} 
= f  (5>".(-n-l)--u(-n-l, 1 

2 

which is a left-sided sequence. 
c. ROCs: f < 1.1 < 1. Here pole ZI is on the exterior side of the Roc3- 

that is, Izl( 2 R,+ = 1-while pole zz is on the interior side-that is, (22J 5 f .  
Hence from (4.15) 

1 1 1 "  
23(n) = --u(-n 2 - 1)  - - 2 3  (-) u(n) 

which is a tw-sided sequence. 0 

MATLAB 
IMPLEMEN- 
TATION 

A MATLAB function residue2 is available to compute the residue part 
and the direct (or polynomial) terms of a rational function in 2-l. Let 

4 + biz-' + . . . + b M K M  B (2) 
uo + u~z-'  +. . . + aNzPN = A (2) 

X ( 2 )  = 

be a rational function in which the numerator and the denominator poly- 
nomials are in meending powers of z-'. Then [R,p,C]=residuez(b,a) 
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finds the residues, poles, and direct terms of X ( z )  in which two poly- 
nomials B ( z )  and A ( z )  are given in two vectors b and a, respectively. 
The returned column vector R contains the residues, column vector p 
contains the pole locations, and row vector C contains the direct terms. 
If p(k)=. . .=p(k+r-1) is a pole of multiplicity r, then the expansion in- 
cludes the term of the form 

which is different from (4.14). 
Similarly, [b ,a] =residuez(R,p ,C), with three input arguments and 

two output arguments, converts the partial fraction expansion back to 
polynomials with coefficients in row vectors b and a. 

To check our residue functions, let us consider the rational function 0 UAMPLE 4.8 

X ( 2 )  = * 
3Z2 - 42 + 1 

given in Example 4.7. 

First rearrange X ( z )  so that it is a function in ascending powers of z-'. 

0 + 2-1 X ( 2 )  = 2-1 - 
3 - 42-I + r2 - 3 - 42-1 + 2-2 

Now using MATLAB, 

>> b - C0.11; a - [3,-4,1]; 
>> [R,p,Cl = residuez(b,a) 
R =  

0.5000 
-0.5000 

1.0000 
0.3333 

P' 

c =  
[I 

we obtain 

as before. Similarly, to convert back to the rational function form, 

>> Cb,al = residuez(R,p,C) 
b =  

0.0000 
0.3333 
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a =  
1.0000 
-1.3333 
0.3333 

so that 

as before, 0 

0 EXAMPLE 4.9 Compute the inverse %-transform of 

I t 1  > 0.9 1 X ( 2 )  = 
(1 - 0.9z-1)Z (1 + 0.9%-1)' 

solution We can evaluate the denominator polynomial as well as the residues using MAT- 
LAB. 

>> b - I; a = ply(~0.9,0.9,-0.91) 
a =  

>> [R .p, Cl =residuez(b, a) 
R;. 

1.0000 -0.9000 -0.8100 0.7290 

0.2500 
0.5000 
0.2500 

0.9000 
0.9000 
-0.9000 

P' 

c -  
c1 

Note that the denominator polynomial is computed using MATLAB'S polynomial 
function p l y ,  which computes the polynomial coefficients, given its roots. We 
could have used the conv function, but the use of the poly function is more 
convenient for this purpose. From the residue calculations and using the order 
of residues given in (4.16), we have 

0.25 0.25 X(%) = ~ + 
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Hence from Table 4.1 and using the z-transform property of time-shift, 

5 ~ ( n )  = 0.25 (0.9)" ~ ( n )  + 9 (n + 1) (0.9)"+' ~ ( n  + 1) + 0.25 (-0.9)"~(n) 

which upon simplification becomes 

z(n) = 0.75 (0.9)" u(n) + 0.5n (0.9)" u(n) + 0.25 (-0.9)" u(n) 

MATLAB verification: 

>> Idelta,nl = impseq(0,0,7); 
>> I = filter(b,a,delta) % check sequence 
x -  
Column$ 1 through 4 
1.00000000000000 0.90000000000000 1.62000000000000 1.45800000000000 

1.96830000000000 1.77147000000000 2.12576400000000 1.9131876oooO000 
>> I[ = (0.75)*(0.9).3 + (0.5)*n.*(0.9).31 + (0.25)*(-0.9).'n X answer sequence 

Column$ 5 through 8 

1 -  
Columns 1 through 4 
1.00000000000000 0.900OOO00000000 1.62000000000000 1.45800000000000 

1.96630000000000 1.77147000000000 2.12576400000000 1.91318760000000 0 
Columns 5 through 8 

0 EXAMPLE 4.10 Determine the inverse z-transform of 

so that the resulting sequence is causal and contains no complex numbers. 

Solution We will have to find the poles of X ( z )  in the polar form to determine the ROC 
of the causal sequence. 

>> b = [1,0.4*sqrt(2)] ; a=[1.-0.8*sqrt(Z) ,0.641; 
>> [R,p,C] = residuez(b,a) 
R -  

0.5000 - 1.000Oi 
0.5000 + 1.0000i 

0.5657 + 0.5657i 
0.5657 - 0.5657i 

P' 

C -  

>> Hp=abs(p') % pole magnitudes 
[I 

UP = 
0.8000 0.8000 

>> Ap=augle(p')/pi % pole angles in pi units 
*P = 

-0.2500 0.2500 
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From the above calculations 
0.5 -j 

Iz( > 0.8 
0.5 i- j X ( 2 )  = 

1- 10.81e-J~z-1 i- 1 - (0.81&fz-1' 

and from Table 4.1 we have 

Z(n) = (0.5 + j )  10.81" e-Jt"u(n) + (0.5 - j )  l0.8lne'f"u(n) 

= 10.81" [0.5{e-Jf" + g f " }  + j { e - J ~ " + d f " } ]  u(n) 

= (0.81" [cm (y ) + 2sin (y )] u(n) 
MATLAB verification: 

>> [delta, nl = impseq(0,0,6); 
>> 'I = filter(b,a,delta) X check sequence 
x -  
Columns I through 4 
1.00000000000000 1.69705627484771 1.28000000000000 0.36203867196751 

Columns 5 through 8 
-0.4096000000oooO -0.69511425017762 -0.52428800000000 -0.14829104003789 

>> x = ((0.8) .-n) .*(cos(pi*n/4)+2*sin(pi*n/4)) 
x =  
Columns 1 through 4 

COlUmnS 5 through 6 
l.oooO00OOOOOOOO 1.69705627484771 1.28000000000000 0.36203867196751 

-0.40960000000000 -0.69511425017762 -0.52428800000000 -0.14829104003789 
0 

SYSTEM REPRESENTATION IN THE Z-DOMAIN 
I 
I 

Similar to the frequency response function H(ei"), we can define the 
z-domain function, H ( z ) ,  called the system function. However, unlike 
H(ej"), H ( z )  exists for systems that may not be BIB0 stable. 

DEFlNlTlON 1 The System h n c t i o n  
The system junction H ( z )  is given by 

-m 

Using the convolution property (4.11) of the z-transform, the output 
transform Y ( z )  is given by 

Y ( z )  = H ( z )  X ( Z )  : ROC, = ROCh n ROC, (4.18) 
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provided ROC, overlaps with Roc),. Therefore a linear and time 
invariant system can be represented in the z-domain by 

X ( z )  --t H ( z )  - Y(2) = H(z) X ( z )  0 
SYSTEM 
FUNCTION 
FROM THE 
DIFFERENCE 
EQUATION 
REPRESEN- 
TATION 

When LTI systems are described by a difference equation 

N M 

y(n) + C aty(n - k) = C bez(n - 
k = l  e=o 

(4.19) 

the system function H ( z )  can easily be computed. Taking the z-transform 
of both sides, and using properties of the z-transform, 

k=l  e=o 

or 

After factorization, we obtain 

(4.20) 

(4.21) 

k=l 

where Ze’S are the system zeros and Pk’s are the system poles. Thus H ( z )  
(and hence an LTI system) can also be represented in the z-domain using 
a pole-zero plot. This fact is useful in designing simple filters by proper 
placement of poles and zeros. 

To determine zeros and poles of a rational H(z), we can use the 
MATLAB function roots on both the numerator and the denominator 
polynomials. (Its inverse function poly determines polynomial coefficients 
from its roots as we discussed in the previous section.) It is also possible 
to use MATLAB to plot these roots for a visual display of a pole-zero plot. 
The function zplane (b, a) plots poles and zeros, given the numerator mw 
vector b and the denominator mw vector a. As before, the symbol “o” 
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represents a zero and the symbol "x" represents a pole. The plot includes 
the unit circle for reference. Similarly, zplane(z,p) plots the zeros in 
column vector z and the poles in column vector p. Note very carefully the 
form of the input arguments for the proper use of this function. 

TRANSFER 
FUNCTION 
REPRESEN- 
TATION 

If the ROC of H ( z )  includes a unit circle ( z  = ej"), then we. can evaluate 
H ( z )  on the unit circle, resulting in a frequency response function or 
transfer function H(ej"). Then from (4.21) 

M 
n(ej" - zi) 

n ( e j w  - p k )  

H(g.U) I 4 g ( N - M ) U  1 (4.22) N 

1 

The factor (dw - 21) can be interpreted as a vector in the complex z-plane 
from a zero zr to the unit circle at z = ej", while the factor (ej" - p k )  

can be interpreted as a vector from a pole p k  to the unit circle at z = d". 
This is shown in Figure 4.6. Hence the magnitude response function 

(4.23) 

can be interpreted as a product of the lengths of vectors from zeros to the 
unit circle divided by the lengths of vectors from poles to the unit circle 
and scaled by (41. Similarly, the phase response function 

~ ~ ( e i ~ ) = [ ~ o r ~ ]  + [ ( N - M ) ~ ]  + C L ( ~ ~ - Z ~ )  - C ~ ( g ~ - p k )  
M N 

- - 1  
Constant linear 

1 

nonlinear 
I 

(4.24) 

Re(d 

circle 

FIGURE 4.6 Pole and zero vectors 
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can be interpreted as a sum of a constant factor, a linear-phase factor, 
and a nonlinear-phase factor (angles from the "zero vectors" minus the 
sum of angles from the ''pole vectors"). 

MATLAB 
IMPLEMEN- 
TATION 

In Chapter 3 we plotted magnitude and phase responses in MATLAB by 
directly implementing their functional forms. MATLAB also provides a 
function called f reqz for this computation, which use8 the interpretation 
given above. In its simplest form this function is invoked by 

CH,wl = freqz(b,a,N) 

which returns the N-point frequency vector u and the N-point complex fre- 
quency response vector H of the system, given its numerator and denomi- 
nator coefficients in vectors b and a. The frequency response is evaluated 
at N points equally spaced around the upper half of the unit circle. Note 
that the b and a vectors are the same vectors we use in the filter func- 
tion or derived from the difference equation representation (4.19). The 
second form 

CH,vl - freqz(b,a,N,'whole') 
uses N points around the whole unit circle for computation. In yet another 
form 

H = freqz(b,a,w) 

it returns the frequency response at frequencies designated in vector u, 
normally between 0 and 7c. 

0 EXAMPLE 4.11 Given a causal system 

y(n) = O.%(n - 1) + z(n) 
a. Find H ( z )  and sketch its pole-zero plot. 
b. Plot /H(e'")l and LH(e'"). 
c. Determine the impulse response h(n). 

The difference equation can be put in the form 

y(n) - 0.9y(n - 1) = z(n) 

a. Fkom (4.21) 

1 
1 - 0,gz-1 I 

H ( z )  = -' 1.4 ' 0.9 

since the system is causal. There is one pole at 0.9 and one zero at the origin. 
We will use MATLAB to illustrate the use of the zplane function. 
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>> b - 11, 03; a = Cf, -0.91; 
>> zplaue(b,a) 

Note that we specified b=[l,O] instead of b=l because the zplane function 
assumes that scalars are zerw or poles. The resulting pole-zero plot is shown in 
Figure 4.7. 

b. Using (4.23) and (4.24), we can determine the magnitude and phase 
of H ( 2 ” ) .  Once again we will use MATLAB to  illustrate the use of the freqz 
function. Using its first form, we will take 100 points along the upper half of 
the unit circle. 

>> [H,vl = freqz(b.a.100); 
>> magH = abs(8); phaH = angle(H); 
>> subplot(2,i,l);plot(w/pi,mag8);grid 
>> xlabel(’frequency in pi units’); ylabel(’Magnitude’); 
>> title(*bgnitude Response’) 
>> subplot(2,1,2);plot(v/pi,ph~/pi) ;grid 
>> xlabel(’frequency in pi units’); ylabel(’Phase in pi units’); 
>> title(’Phase Response’) 

The response plots are shown in Figure 4.8. If you study these plots carefully, 
you will observe that the plots are computed between 0 5 w 5 0.9% and fall 
short at w = ?r. This is due to the fact that in MATLAB the lower half of the 

Pole-Zero Plot 

0.8 

0.4 

0 
0 

. -  
0.9 

-1 -0.5 0 0.5 1 
RBal part 

FIGURE 4.7 Pole-zero plot of Ezample 4.11a 
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MagmtucbResponse 

3 lo 

1 5  c 1 5 5  ' 0  0 1 0.2 0 3  frequency 0 4  0 5  In p unlts 0.6 0.7 0.8 0.9 1 

fi 
f -0.3 

-0.4 
0 0.1 0 2  0.3 0 4  0.5 0.6 0 7 0.8 0 9  1 

frequency in pi units 

FIGURE 4.8 Frequency response plots tn Ezample 4.11 

unit circle begins at w = K. To overcome this problem, we will use the second 
form of the freqz function as follows. 

Now the lOlst element of the array H will correspond to w = ?r. A similar result 
can be obtained using the third form of the freqz function. 

In the future we will use any one of these forms, depending on our convenience. 
Also note that in the plots we divided the Y and phaH arrays by pi so that 
the plot axes are in the units of ?r and easier to read. This practice is strongly 
recommended. 

c. From the z-transform Table 4.1 
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0 EXAMPLE 4.12 Given that 

% + I  
*(') = 22 - 0.92 + 0.81 

is a causal system, find 

a. its transfer function representation, 
b. its difference equation representation, and 
c. its impulse response representation. 

The poles of the system function are at z = O.9L rt r / 3 .  Hence the ROC of the 
above causal system is 1.1 > 0.9. Therefore the unit circle is in the ROC, and 
the discret&ime Fourier transform H(e'") exists. 

a. Substituting z = 8" in H(z),  

b. Using H ( z )  = Y ( z ) / X ( z ) ,  

z-l + 2-2 

Crcgs multiplying, 

Now taking the inverse. z-transform, 

~(n) - 0.9y(n - 1) + 0.81y(n - 2) = ~ ( n  - 1) + z(n - 2) 

or 

y(n) = 0.9y(n - 1) - 0.81y(n - 2) + z(n - 1) + s(n - 2) 

c. Using MATLAB, 

>> b = [0,1,1]; a = [1,-0.9,0.811; 
>> [R,p,C] = residuez(b,a) 
R =  
-0.6173 + 0.9979i 
-0.6173 - 0.99793. 
0.4500 - 0.77941. 
0.4500 + 0.77941 

P' 

C =  
1.2346 

>> np = abs(p') 
MP = 

0.9000 0.9000 
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>> Ap = angle(p')/pi 
*P = 

-0.3333 0.3333 

we have 

Hence from Table 4.1 

h(n) = 1.23466(n) + [(-0.6173 +j0.9979) 10.9)" e-jrnl3 

+ (-0.6173 - j0.9979) (0.91"e-'"n'3]u(n) 

= 1.23466(n) + 10.91" [-1.2346cos(an/3) + 1.9958sin (7rn/3)] u(n) 

= 10.9(" [-1.2346~0s ( 7 4 3 )  + 1.9958sin (rn/3)] u(n - 1) 

The last step results from the fact that h(0) = 0. 0 

RELATIONSHIPS In this and the previous two chapters we developed several system repre 
BETWEEN sentstions. Figure 4.9 depicts the relationships between these representa- 
SYSTEM tions in a graphical form. 

TATIONS 

STABILITY 
AND 
CAUSALITY 

REPRESEN- 

For LTI systems the BIB0 stability is equivalent to Crm Jh(k)l < M. 
From the existence of the discrete-time Fourier transform this stability 
implies that H(ejw)  exists, which further implies that the unit circle 1.1 = 
1 must be in the ROC of H(z) .  This rasult is called the z-domain stability 

Express H(z) in z-' 

FIGURE 4.9 System representations an pictorial fown 

102 Chapter 4 THE z-TRANSFORM 



theorem; therefore the dashed paths in Figure 4.9 exist only if the system 
is stable. 

THEOREM 2 z-Domain LTI Stability 
An LTI system is stable i f  and only i f  the unit circfe is in the ROC 

of H G ) .  

For LTI causality we require that h(n) = 0, for n < 0 (i.e., a right- 
sided sequence). This implies that the ROC of H ( z )  must be outside of 
some circle of radius Rh-. This is not a sufficient condition since any 
right-sided sequence has a similar ROC. However, when the system is 
stable, then its causality is easy to check. 

THEOREM 3 z-Domain Causal LTI Stability 

has all its poles inside the unit circle. 
A causal LTI system is stable i f  and only if the system function H ( z )  

EXAMPLE 4.13 A causal LTI system is described by the following difference equation: 

y(n) = 0.81y(n - 2) + x(n) - s(n - 2) 

Determine 

a. the system function H(z),  
b. the unit impulse response h(n), 
c. the unit step response v(n), that is, the response to the unit step u(n), 

d. the frequency response function H ( d ” ) ,  and plot its magnitude and 
and 

phase over 0 5 w 5 ?r. 

Since the system is causal, the ROC will be outside of a circle with radius equal 
to the largest pole magnitude. 

a. %king the r-transform of both sides of the difference equation and then 
solving for Y(z)/X(r) or using (4.20), we obtain 

1 - z-2 
121 > 0.9 - H ( 2 )  = - 

1 - 0.81.~-~ (1 + 0.9%-’) (1 - 0.92-’)’ 
b. Using MATLAB for the partial fraction expansion, 

>> b = [1,0,-11; a - Cl.0,-0.811; 
>>[R,p,Cl = residuez(b,a); 
R =  

-0.1173 
-0.1173 

-0.9000 
P ’  
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0.9000 

1.2346 
C =  

we have 
1 1 H ( z )  = 1.2346 - 0 . 1 1 ’ 1 3 7  - 0.1173- I f I  > 0.9 

1 + 0.92- 1 - 0.92-1’ 

or from Table 4.1 

h(n) = 1.23466(n) -0.1173{1+ (-1)“}(0.9)”tl(n) 

1 
1 - 2- c. &om Table 4.1 2 ( u ( n ) ]  = 7, JzI > 1. Hence 

(1 + 2-1 )  (1 - 2-1) 

(1 + 0.92-1) (1 - 0.92-1) 
V(z )  = H(z)LI(z) = 

1 + 2-1 

(1 + 0.92-1) (1 - 0.92-1) ’ - - 121 > 0.9 

or 

121 > 0.9 1 
1 - 0.92-1 V(Z)  = 1.0556- - 0.0556- 1 + 0.92-1 ’ 

Finally, 

~ ( n )  = [1.0556 (0.9)” - 0.0556 (-0.9)”] ~ ( n )  

Note that in the calculation of V ( z )  there is a pole-zero cancellation at z = I. 
This has two implications. First, the ROC of V ( z )  is still {\%I > 0.9) and 
not (1.1 > 0.9 fl Iz( > 1 = I%( > l}. Second, the step response u(n) contains no 
steady-state term u(n). 

d. Substituting z = gW in H ( z ) ,  

1 - e-ih 

1 - 0.81e-Jk H(2“‘)  = 

We will use MATLAB to compute and plot responses. 

>> v = [0:1:5001*pi/500; 
>> H - freqz(b,a,v); 
>> magH - abs (H) ; phaH = augle (HI ; 
>> subplot (2,1,1) ; plot (v/pi ,ma@) ; grid 
>> xlabel(’frequeacy i n  p i  units’); 
>> t i t l e ( ”ap i tude  ReSpOn8e’) 
>> subplot(2,1,2); plot(v/pi,phaH/pi); grid 
>> xlabel(’frequ8acy in  pi  units’); ylabel(’Phase i n  p i  units’) 
>> title(’Phase Response’) 

ylabel(’Maepitud8’) 

The frequency response plots are shown in Figure 4.10. 0 
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SOLUTIONS OF THE DIFFERENCE EQUATIONS 

In Chapter 2 we mentioned two forms for the solution of linear constant 
coefficient difference equations. One form involved finding the particu- 
lar and the homogeneous solutions, while the other form involved finding 
the zero-input (initial condition) and the zero-state responses. Using z- 
transforms, we now provide a method for obtaining these forms. In ad- 
dition, we will also discuss the transient and the steady-state responses. 
In digital signal processing difference equations generally evolve in the 
positive n direction. Therefore our time frame for these solutions will be 
n 2 0. For this purpose we define a version of the bilateral z-transform 
called the one-sided 2-tmnsfonn. 

W DEFINITION4 The One-sided x 3)rmsfofin 
The one-sided z-transform of a sequence x(n)  is given by 

2+ [2(n)] 6 2 [x(n)u(n)] b x+ [%I = C z ( n ) P  W 

(4.25) 
n=O 
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Then the sample shifting property is given by 

z+ [s(n - k)] = 2 [s(n - k)u(n)] 
m m 

Or 

Z+ (~(71- k)] = 4-1)~'-~++2(-2)~~-~+...+z(-k)+z-~X+(z) (4.26) 

This result can now be used to solve difference equations with nonzero 
initial conditions or with changing inputs. We want to solve the difference 
equation 

N M 
l + C a k y ( n - k ) =  X b m Z ( 7 1 - m ) ,  n 2 0  

k=1 m=O 

subject to these initial conditions: 

{y(i),i = -1,. . . ,-N} and { ~ ( i ) , i  = -1,. . . , -M}. 
We now demonstrate this solution using an example. 

3 1 y(n) - y ( n  - 1) + p(n - 2) = ~ ( n ) ,  n 2 0 

where 

subject to y(-1) = 4 and y(-2) = 10. 

Solution Taking the onesided z-transform of both sides of the difference equation, we 
obtain 

3 1 1 Y+(%)-5 [y(-1) + o-'Y+(z)]+z [Y(-2) + z-lY(-I) +z-2Y+(z)] = i=p 

Substituting the initial conditions and rearranging, 
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or 

Finally, 

2 - + i 2 - 2  

(1 - 42-1)  (I - 2-1) (1 - $2-1) 
Y+(.) = 

Using the partial fraction expansion, we obtain 

After inverse transformation the solution is 

(4.29) 

Fornrs of the Solutions 
of the Uerence equation. It can be exprgsed in several forms. 

The above solution is the complete response 

0 Homogeneous and particular parts: 

homogeneous part particular part 

The homogeneous part is due to the system poles and the particular part 
is due to the input poles. 

rn Dansient and steady-state responses: 

. ( . , = [ ~ ( ~ ) " + ( ~ ) " ] . ( . ,  + ,w 2 . Y , w 
steady-state response transient reaponse 

The transient response is due to poles that are inside the unit circle, while 
the steady-state response is due to poles that are on the unit circle. Note 
that when the poles are outside the unit circle, the response is termed an 
unbounded response. 

In equation (4.27) Y+(z) has two parts. The first part can be interpreted 
0 Zero-input (or initial condition) and zero-state responses: 

as 

Y Z S ( Z )  = H ( z ) X ( z )  
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while the second part as 

Yzr(z) = H ( z ) X r c ( z )  

where X r c ( z )  can be thought of as an equivalent initial-condition input 
that generates the same output Yzr as generated by the initial conditions. 
In this example zrc(n) is 

zrc(n) = (1, -2) 

Now taking the inverse z-transform of each part of (4.27), we write the 
complete response as 

t 

y(n) =[; ( ;)n - 2 (f)n + ;] u(n) + [3 (i) - 21 4.) 
\ \ , 

zerc-state response zeroinput response 

From this example it is clear that each part of the complete solution is, in 
general, a different function and emphasizes a different aspect of system 
analysis. 

MATLAB 
IMPLEMEN- 
TATION 

In Chapter 2 we used the f i l t e r  function to solve the difference equation, 
given its coefficients and an input. This function can also be used to find 
the complete response when initial conditions are given. In this form the 
f i l t e r  function is invoked by 

J = filter(b.a,x,xic) 

where xic is an equivalent initial-condition input array. To find the com- 
plete response in Example 4.14, we will use 

>> n = [0:7l; x = (1/4)."n; xic - C1. -21; 
>> fomat long 
>> y l  = filter(b,a,x,xic) 
Yl = 
Columns 1 through 4 
2.00000000000000 1.25000000000000 0.93750000000000 0.79687500000000 

0.73046875000000 0.69824218750000 0.68237304687500 0.67449951171875 
Columns 5 through 8 

>> yZ = (1/3)*(1/4).'n+(l/2).-n+(2/3)*ones(1,8) X Matlab Check 
Y2 = 
Columns 1 through 4 
2.00000000000000 1.25000000000000 0.93750000000000 0.79687500000000 

0.73046875000000 0.69824218750000 0.68237304687500 0.67449951171875 
Columns 5 through 8 
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which agrees with the response given in (4.29). In Example 4.14 we com- 
puted .rc(n) analytically. However, in practice, and especially for large 
order difference equations, it is tedious to  determine xrc(n) analytically. 
MATLAB provides a function called f i l t i c ,  which is available only in the 
Signal Processing toolbox (version 2.0b or later). It is invoked by 

xic = filtic(b,a,Y,X) 

in which b and a are the filter coefficient arrays and Y and X are the initial- 
condition arrays from the initial conditions on y(n) and ~ ( n ) ,  respectively, 
in the form 

y = [Y(-l), Y ( 4 ,  '. , Id-" 
x = [.(-l), 2(-2), . . . , .(-M)j 

If z(n) = 0, 
In Example 4.i4 we could have used 

.> Y - [4, 101; 

n 5 -1 then X need not be specified in the f i l t i c  function. 

>> xic = filtic(b,a.Y) 
Y =  

1 -2 

t o  determine %rc(n). 

0 EXAMPLE 4.15 Solve the difference equation 

Solution 

1 
3 y(n) = - [~(n) + ~ ( n  - 1) + ~ ( n  - 2)J + 0.95y(n - 1) - 0.9025y(n - 2), n 2 0 

where ~ ( n )  = cos(?m/3)u(n) and 

y(-1) = -2, y(-2) = -3; z(- l )  = 1, z(-2) = 1 

First determine the solution analytically and then by using MATLAB. 

Taking a one-sided z-transform of the difference equation 
1 

+ 0.95 [y(-l) + t- 'Y+(z)] - 0.9025 [y(-2) + ~-'g(-l)  + z-'Y+(z)] 

Y + ( Z )  = [ X + ( Z )  +.(-1) + z-'x+(z) + 4 - 2 )  + 2-%(-1) + z -*X+(z) ]  

and substituting the initial conditions, we obtain 

1.4742 + 2 . 1 3 8 3 ~ ~ '  t + $1 + iz-' 
x+(z) + 1 - 0.952-' + 0 . 9 0 2 5 ~ - ~  

Y + ( Z )  = 
1 - 0.952-' + 0.9025~-' 

1 - 0.52-' Clearly, zrc(n) = [1.4742,2.1383]. Now substituting X + ( z )  = 
1 - 2-1 + 2-2 

and simplifying, we will obtain Y + ( z )  as a rational function. This simplification 
and further partial fraction expansion can be done using MATLAB as shown 
below. 
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>> b = [1,1,11/3; a = C1,-0.95,0.90251; 
>> Y - C-2,-33; X = 11.11; 
>> ric=f ilticcb, a,Y ,X) 
xic = 

>> bxplus = C1,-0.51; axplus - Cl,-l,lI; % X(z) transform coeff. 
>> ayplus = conv(a,axplus) X Denominator of Yplus(z) 
ayplus - 
>> byplus = conv(b,bIplus)+conv(xic,arplus) 
byplus = 

>> [R,p,C] = residuez(byplus,ayplus) 
R =  

P' 

C -  

>> np - abs(p), Ap - angle(p)/pi % Polar form 

1.0000 1.OOOO 0.9500 0.9500 

-0.3333 0.3333 0.3333 -0.3333 

1.4742 2.1383 

1.0000 -1.9500 2.8525 -1.8525 0.9025 
X Numerator of Yplus(z) 

1.8075 0.8308 -0.4975 1.9717 

0.0584 + 3.9468i 0.0584 - 3.94683. 0.8453 + 2.0311i 0.8453 - 2.0311i 
0.5000 - 0.8660i 0.5000 + 0.8660i 0.4750 + 0.8227i 0.4750 - 0.82273. 

[I 

n p -  

4 = 

Hence 
1.8076 + 0.8308z-' - 0.49752-' + 1.9717~-~  Y+(Z) = 

1 - 1.952-' + 2.85252-' - 1.8525Y' + 0.9025~-~ 
- 0.0584 + j3.9468 0.0584 - j3.9468 

1 - e - j r / 3 z - ~  + 1 - ej*/3z-1 
- 

0.8453 +j2.0311 0.8453 - j2.0311 
+ 1 - 0.95ej"/3z-I + 1 - 0.95e-jff/sz-l 

Now from Table 4.1 

y(n) = (0.0584 + j3.9468) e-Jnn/3 + (0.0584 - j3.9468) einn/' 
+ (0.8453 + j2.031) (0.95)" d'T"'3 + (0.8453 - j2.031) (0.95)" e-jnn/' 

= 0.1169coe (7rn/3) + 7.8937sin(xn/3) 

+ (0.95)" [1.6906cos(?m/3) - 4.0623sin(xn/3)], n 2 0 

The first two terms of y(n) correspond to  the steady-state response, as well as 
to the particular response, while the last two terms are the transient response 
(and homogeneous response) terms. 

To solve this example using MATLAB, we will need the filtic function, 
which we have already used to determine the Z J C ( ~ )  sequence. The solution 
will be a numerical one. Let us determine the first 8 samples of y(n). 
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P4.1 

~ 4 . a  

P4.3 

>> n = [0:71; x = cos(pi*n/3) ; 
>> 9 = f i l t e r (b ,a , r ,x ic )  
Y '  

Columns 1 through 4 
1.80750000000000 4.35545833333333 2.83975000000000 -1.56637197916667 

Columns 5 through 8 
-4.71759442187500 -3.40139732291667 1.35963484230469 5.02808085078841 

X Hatlab Verification 
>> A=real(P*R(l)); B=imag(2*R(l)); C=real(2*R(3)); D=imag(P*R(4)); 
>> y~A*cos(pi*n/J)+B*sin(pi*n/3)+( (0.95) .%). *(C*cos(pi*n/3)+D*sin(pi*n/3)) 
Y '  

Columns 1 through 4 

Columns 5 through 8 
1.80750000000048 4.35545833333359 2.83974999999978 -1.56637197916714 

-4.71759442187528 -3.40139732291648 1.35963484230515 5.02808085078871 
0 

PROBLEMS 
I 
I 

Determine the z-transform of the following sequences using definition (4.1). Indicate the 
region of convergence for each sequence and verify the z-transform expression using 
MATLAB. 
a. z(n) = {3,2,1, -2, -3) 

b. z(n) = (0.8)" u (n - 2) 

d. z(n) = 2-In1 + (;)'"I 
e. z(n) = (n + 1) (3)" u (n) 
Determine the z-transform of the following sequences using the z-transform table and the 
z-transform properties. Express X ( z )  as a rational function in z-'. Verify your results 
using MATLAB. Indicate the region of convergence in each case and provide a polezero plot. 
a z (n) = 26(n - 2) + 3u(n - 3) 
b. z (n) = (5)" u (n - 2) + (0.9)"-3 u (n) 

c. z (n)  = n s i n ( ~ ) u ( n ) + ( 0 . 9 ) " u ( n - 2 )  

d. z (n)= ( ; ) * c 0 ~ ( $ - 4 5 ~ ) u ( n - l )  

e. z(n) = (n- 3) (f)"-'co~{; (n- ~ ) } u ( n )  

The z-transform of z (n) is X ( z )  = (1 + 2z-'), 
following sequences, and indicate their regions of convergence. 
a. 1 1  (n) = z(3 - n) +z(n- 3) 
b. 5 2  (n) = (1 + n + n z )  ~ ( n )  

T 

c. z ( n ) = ( 4 ) " u ( l - n )  

JzJ # 0. Find the z-transforms of the 

c. 1 3  (n) = (;)" 1 (n - 2) 
d. 211 (n) = z(n + 2) *Z (n - 2) 
e. 1 5  (n) = cos ( 4 2 )  z* (n) 
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P4.4 Repeat Problem 4.3 if 

P4.5 The inverse z-transform of X (2 )  is z (n) = (i)" u (n). Using the z-transform properties, 
determine the sequences in each of the following cases. 

a. X ~ ( Z )  = F X  ( 2 )  

b. Xz(z )  = Z X  (z - ' )  

C. &(z) = 2 x  (32) + 3 x  ( z / 3 )  
d. X4(z)  = X ( z ) X  (2 - ' )  

e. x s ( z )  = z z q  

If sequences z1 (n), zz (n), and z3 (n) are related by z3 (n) = z1 (n) * zz (n), then P4.6 

a. Prove the above result by substituting the definition of convolution in the left-hand side. 
b. Prove the above result using the convolution property. 
c. Verify the above result using MATLAB by choosing any two sequences 11 (n) and zz (n). 
Determine the results of the following polynomial operations using MATLAB. 
a. xl(z) = (1 - 22-' + 3z-' - 4 ~ - ~ )  (4 + 3z-l - 2z-' + %-3) 

b. Xz ( z )  = (zZ - 22 + 3 + 22-' + z-') (z3 - z - ~ )  

P4.7 

c. x 3 ( Z )  = (i+z-1+z-z)3 

d. &(z) = X I  ( z ) X z  (2) + X3 (2) 
e .  X s ( z )  = (2-' - 3z-3 + 2z-5 + 5z-' - z-') (z + 3zz + 22' + 4z4) 

The deconv function is useful in dividing two c a d  sequences. Write a MATLAB function 
deconva to divide two noncausal sequences (similar to the conv function). The format of 
this function should be 

P4.8 

function [p , np, r ,nrI = deconv-m(b ,nb , a . 4  
% Uodified deconvolution routine for noncausal sequences 
X function [p,np,r,nr] - deconv-m(b.nb,a,na) 
X 
X p = polynomial part of support npl <- n <- np2 
X np = Cnpl, np21 
X r = remainder part of support nrl <- n <- nr2 
X nr = C n r l ,  nr21 
X b = numerator polynomial of support nbl <= n <= nb2 
% nb = hbl, nb21 
X a - denominator polynomial of support nal <- n <- na2 
X na - Cnal, na21 
X 
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Check your function on the following operation: 

2' + 2 + 1 + 2-1 + z-? + z - ~  2z-2) + 3Z-' + 3 ~ - ~  
2 + 2 +  2-1 

= (2 - 1 + 22-' - 
2 + 2  + 2-1 

P4.9 Determine the following inverse z-transforms using the partial fraction expansion method. 
a. X 1 ( z )  = (1 - z-' - 42-' + 4 ~ - ~ )  / (1 - yz-' + gz-' - ) . The sequence is 
right-sided. 
b. XZ ( 2 )  = (1 - 2-l - 42-' + 4 . ~ - ~ )  / (1 - yz-' + yz-' - f ~ - ~ ) .  The sequence is 
absolutely summable. 
c. X3 ( 2 )  = ( z3  - 3.2' + 42 + 1) / (z3 - 42' + z - 0.16). The sequence is left-sided. 

d. X4 ( 2 )  = t /  (z3 + 22' + 1.252 + 0.25), 121 > 1. 

e. XS (2 )  = z/ (2' - 0.25)', Iz( < 0.5. 
P4.10 Suppose X (2 )  is given as follows: 

a. Determine z (n) in a form that contains no complex numbers. 
b. Using MATLAB, find the first 20 samples of z (n) and compare them with your answer in 
the above part. 

P4.11 For the linear and time-invariant systems described by the impulse responses below, 
determine (i) the system function representation, (ii) the difference equation representation, 
(iii) the pole-zero plot, and (iv) the output y (n) if the input is z (n) = ( f ) "  u (n). 

a. h ( n ) = 2 ( f ) " u ( n )  

b. h ( n ) = n ( $ ) " u ( n ) + ( - a ) " u ( n )  
c. h (n) = 3 (0.9)" cos ( 4 4  + r / 3 )  u (n + 1) 
d. h(n) = n [ti (n) - u(n - lo)] 
e. h (n) = [2 - sin (rn)] u (n) 

P4.12 For the linear and time-invariant systems described by the system functions below, 
determine (i) the impulse response representation, (ii) the difference equation 
representation, (iii) the pole-zero plot, and (iv) the output y(n) if the input is 

a. H ( z )  = ( z  + 1) / ( z  - 0.5), causal system. 
b. H ( 2 )  = (1 + z-l + 2-') / (1 + 0.52-' - 0.25z-') , stable system. 

c. H ( 2 )  = (2' - 1) / ( z  - 3)?, ant icaud system. 

z (n )  =3cos(rn/3)21(n). 

, stable system. +- d, H ( z )  - 1-o.5z-' 
z - 0.25 1 + 22-1 

e. H ( 2 )  = (1 + 2-l + z-')', stable system. 
P4.13 For the linear, causal, and time-invariant systems described by the dserence equations 

below, determine (i) the impulse response representation, (ii) the system function 
representation, (iii) the pole-zero plot, and (iv) the output y (n) if the input is 
z (n) = 2 (0.9)" u (n). 
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a. y(n)  = [z(n) + 2z(n - 1) + z (n - 3)]/4 
b. y (n) = I (n) + 0 . 5 ~  (n - 1) - 0 . 5 ~  (n - 1) + 0 . 2 5 ~  (n - 2) 
C. y (n) = 2s  (n) + 0.9~ (n - 1) 
d. 9 (n) = -0.452 (n) - 0.42 (n - 1) + (n - 2) + 0 . 4 ~  (n - 1) + 0 . 4 5 ~  (n - 2) 

e. y (n) = ck=, (0.8)'" 5 (n - m) - c:=, (0.9)' Y (n - e) 
P4.14 The out,put sequence y (n) in Problem 4.13 is the total response. For each of the systems 

given in that problem, separate y (n) into (i) the homogeneous part, (ii) the particular part, 
(iii) the transient response, and (iv) the steady-state response. 

P4.15 A stable system has the following pole-zero locations: 

1 1  1 .1 
Z1 = j ,  z2 = -j, p1 = -- +i- 2' P 2 = - 5 - 3 2  

It is also known that the frequency response function H (2") evaluated at w = 0 is equal to  
0.8; that is, 

H (e'") = 0.8 

a. Determine the system function H (2) and indicate its region of convergence 
b. Determine the difference equation representation. 

c. Determine the steady-state response yss (n) if the input is z (n) = - sin ( T )  u (n). 

d. Determine the transient response ytr (n) if the input is z (n) = -!- sin ( y) Y (n). 

P4.16 A digital filter is described by the difference equation 

1 . 7rn 
Jz 

Jz 

y(n) = z(n) +z(n - 1) + 0.9y(n - 1) - 0.81y(n - 2) 

a. Using the freqz function, plot the magnitude and phase of the frequency response of the 
above filter. Note the magnitude and phase at w = ?r /3 and at w = ?r. 

b. Generate 200 samples of the signal z (n) = sin (7rn/3) + 5 cos (m) and process through 
the filter. Compare the steady-state portion of the output to z (n). How are the amplitudes 
and phases of two sinusoids affected by the filter? 

P4.17 Solve the following difference equation for y (n) using the one-sided z-transform approach. 

y(n)  = 0.5y(n- 1) +0.25y(n - 2) + z ( n ) ,  n 2 0; y(-I) = 1, y(-2) = 2 

z (n) = (0.8)" u (n) 

Generate the first 20 samples of y (n) using MATLAB and compare them with your answer. 
P4.18 Solve the difference equation for y (n) , n 2 0 

1/ (n) - 0 . 4 ~  (n - 1) - 0 . 4 5 ~  (n - 2) = 0 . 4 5 ~ ( n )  + 0.42. (n - 1) - z (n - 2) 

driven by the input z (n) = 2 + (4)" u (n) and subject to  

y (-1) = 0, y (-2) = 3; z(-1) == z(-2) = 2 

Decompose the solution y (n) into (i) transient response, (ii) steady-state response, (iii) zero 
input response, and (iv) zerestate response. 
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P4.19 A causal, linear, and timeinvariant system is given by the following difference equation: 

y(n) = y(n- 1) +y(n - 2) +z(n- 1) 

a. Find the system function H ( r )  for this system. 
b. Plot the poles and zerm of H ( z )  and indicate the region of convergence (ROC). 
c. Find the unit sample response h(n) of this system. 
d. Is this system stable? If the answer is yes, justify it. If the answer is no, find a stable 
unit sample response that satisfies the difference equation. 

P4.40 Determine the zero-state response of the system 

y(n) = $y(n  - 1) + % ( T I )  +31(n - 1) ,  n 2 0;  y(-1) = 2 

to the input 

I (n) = ,ixn''u (n) 

What is the steady-state response of the system? 
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t THE DISCRETE 
FOURIER 
TRANSFORM 

In Chapters 3 and 4 we studied transform-domain representations 
of discrete signals. The discretetime Fourier transform provided the 
frequency-domain (w) representation for absolutely summable sequences. 
The r-transform provided a generalized frequency-domain ( z )  represen- 
tation for arbitrary sequences. These transforms have two features in 
common. First, the transforms are defined for infinite-length sequences. 
Second, and the most important, they are functions of continuous vari- 
ables (w or z ) .  From the numerical computation viewpoint (or from 
MATLAB’S viewpoint), these two features are troublesome because one 
has to evaluate infinite sums at uncountably infinite frequencies. To use 
MATLAB, we have to truncate sequences and then evaluate the expressions 
at finitely many points. This is what we did in many examples in the two 
previous chapters. The evaluations were obviously approximations to the 
exact calculations. In other words, the discretetime Fourier transform 
and the z-transform are not numerically computable transforms. 

Therefore we turn our attention to a numerically computable trans- 
form. It is obtained by sampling the discretetime Fourier transform in the 
frequency domain (or the z-transform on the unit circle). We develop this 
transform by first analyzing periodic sequences. From Fourier analysis we 
know that a periodic function (or sequence) can always be represented by 
a linear combination of harmonically related complex exponentials (which 
is a form of sampling). This gives us the Discrete Fourier Series (or DFS) 
representation. Since the sampling is in the frequency domain, we study 
the effects of sampling in the time domain and the issue of reconstruction 
in the z-domain. We then extend the DFS to finite-duration sequences, 
which leads to a new transform, called the Discrete Fourier %nsform 
(or DFT). The DFT avoids the two problems mentioned above and is 
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a numerically computable transform that is suitable for computer imple- 
mentation. We study its properties and its use in system analysis in detail. 
The numerical computation of the DFT for long sequences is prohibitively 
time consuming. Therefore several algorithms have been developed to effi- 
ciently compute the DFT. These are collectively called fast Fourier trans 
form (or FFT) algorithms. We will study two such algorithms in detail. 

THE DISCRETE FOURIER SERIES 
I 
I 

In Chapter 2 we defined the periodic sequence by Z(n), satisfying the 
condition 

%(n) = Z(n + kN) ,  Vn, k (5.1) 

where N is the fundamental period of the sequence. From Fourier analysis 
we know that the periodic functions can be synthesized as a linear com- 
bination of complex exponentials whose frequencies are multiples (or har- 
monics) of the fundamental frequency (which in our case is 27r/N). From 
the frequencydomain periodicity of the discrete-time Fourier transform, 
we conclude that there are a b i t e  number of harmonics; the frequencies 
are { $k, k = 0,1,. . . , N - 1). Therefore a periodic sequence %(n) can 
be expressed as 

(5.2) 
k=O 

where { X ( k ) ,  
efficients, which are given by 

k = 0, fl,. . . ,} are called the discrete Fourier series c e  

N-1 

X ( k )  = c %(n)e-j@nk, k = O , f l ,  . . . , (5.3) 
n=O 

Note that X ( k )  is itself a (complex-valued) periodic sequence with fun- 
damental period equal to N, that is, 

*(k + N) = X ( k )  (5.4) 

The pair of equations (5.3) and (5.2) taken together is called the discrete 
Fourier series representation of periodic sequences. Using W ~ J  f e-j@ to 

The Discrete Fourier Series I17 



denote the complex exponential term, we express (5.3) and (5.2) BS 

N-1 
X ( k )  DFS [?(n)] = c ?(n)WSk : Analysis or a 

n=o DFS equation 
1 N-1 - 

?(n) 2 IDFS [ X ( k ) ]  = c X(k)Wink 
k=O DFS equation 

: Synthesis or an inverse 

(5.5) 

0 EXAMPLE 5.1 Find DFS representation of the periodic sequence given below: 

E(n) = {.. . ,O, 1,2,3,0,1,2,3,0,1,2,3,. . .} 
T 

solution The fundamental period of the above sequence is N = 4. Hence W4 = e - J q  = 
-j. Now 

3 

%(k) = CZ(n)W,"', k = O , f l , f 2 , .  . . 
n=O 

Hence 

similarly, 

MATLAB 
IMPLEMEN- 
TATION 

A careful look at (5.5) reveals that the DFS is a numerically computable 
represent.tion. It can be implemented in many ways. To compute each 
sample X ( k ) ,  we can implement the summation BS a f o r . .  .end loop. 
To compute all DFS coefficients would require another f o r .  . .end loop. 
This will result in a nested two for. . .end loop implementation. This 
is clearly inefficient in MATLAB. An efficient implementation in MATLAB 
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would be to use a matrix-vector multiplication for each of the relations 
in (5.5). We have used this approach earlier in implementing a numerical 
approximation to the discretetime Fourier transform. Let i and X denote 
column vectors corresponding to the primary periods of sequences z(n) 
and X ( k ) ,  respectively. Then (5.5) is given by 

-1 1 ... 1 -  

1 w,: .‘. w L N - 1 )  a 
wN = [ wi? O < h , n s N - l ]  =k 

I f  t 
1 wLN-1’  ... w L N - ” =  

where the matrix W N  is given by 

(5.7) 

function CXkl = dfs(xn,N) 
X Computes Discrete Fourier Series Coefficients 
y ............................................. 
X CXkl = dfs(xn,N) 
X xh = DFS coeff. array over 0 <= k <= N-1 
X m = One period of periodic signal over 0 <= n <= N-1 
X N = Fundamental period of xn 
X 
n = [O:l:N-11; 
k = [O:l:N-11; X row vecor for k 
UN - exp(-j*Z*pi/N); 
nk = n’*k; 
UNnh = VN .^ nk; 
Xk = m * wink: 

X row vector for n 

X Un factor 
X creates a N by N matrix of nk values 
% DFS matrix 
X row vector for DFS coefficients 

The DFS in Example 5.1 can be computed using MATLAB as 

>> xu = [0,1,2,31; N = 4; 
>> Xk = dfs(xn,N) 
X k =  

6.0000 -2.0000 + 2.OOOOi -2.0000 - 0.OOoOi -2.0000 - 2.0000i 
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The following idfs function implements the synthesis equation. 

function Cxd - idfs(Xk,N) 
X Computes Inverse Discrete Fourier Series 
% ........................................ 
X Cnl = idfs(X)r.N) 
% xn = One period of periodic signal over 0 <= n <= N-1 
X Xk = DFS coeff. array over 0 <* k <= N-1 
% N - Fundamental period of Xk 
X 
n = CO:l:N-lI; X row vector for n 
k = CO:l:N-l]; 
WN = exp(-j*Z*pi/N); 
nt - n’*k; 
Wnlr = WN .^ (-&I; % IDFS matrix 
rn - (M * UNnt)/N; 

Caution: The above functions are efficient approaches of implementing 
(5.5) in MATLAB. They are not computationally efficient, especially for 
large N .  We will deal with this problem later in this chapter. 

X row vecor for k 
X Un factor 
% creates a N by N matrix of nk values 

% row vector for IDFS values 

0 EXAMPLE 5.2 A periodic “square wave” sequence is given by 

mN 5 n 5 mN + L- 1 
’ m = O , f l , f 2 ,  ... {i: mN + L 5 n 5 (m + 1 )  N - 1 ’ 

Z(n) = 

where N is the fundamental period and L / N  is the duty cycle. 

a. Determine an expressiFn for IX(k)l  in terms of L and N .  
b. Plot the magnitude IX(k)l for L = 5, N = 20; L = 5, N = 40; L = 5, 

c. Comment on the results. 
N =60; and L = 7, N =60. 

SOlUtion A plot of this sequence for L = 5 and N = 20 is shown in Figure 5.1. 

Three perk& of xtilde(n) 

-10 0 10 30 
n 

FIGURE 5.1 Periodic square wave sequence 
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a. By applying the analysis equation (5.3), 

k = 0,  f N ,  f 2 N , .  . . f L,  

The last step follows from the sum of the geometric terms formula (2.5) in 
Chapter 2. The last expression can be simplified to 

1 - e- j2nLk/N e- j*Lk/N * r L k / N  - , - j = L k / N  
=- 1 - C-j2*k/N e - j w k / N  e j n k / N  - e - j n k / N  

or the magnitude of z ( k )  is given by 

f L, k = O , z t N , f 2 N , .  . . 

b. MATLAB script for L = 5 and N = 20 is given below. 

>> L = 5; N = 20; k = [-N/2:N/21; 
>> xn = [ones(l,L), zeros(l,N-L)I; X Sq wave x ( d  
>> Xk = dfs(m,N); 
>> mag= = abs([Xk(N/2+l:N) Xk(l:N/2+1)1); % DFS magnitude 
>> subplot(2,2,1) ; stem(k,magXk) ; axis( [-N/2,N/2,-0.6,5.51) 
>> xlabel('k'); ylabel('Xtilde(k)') 
>> title('DFS of SQ. wave: L-5, N=20') 

The plots for the above and all other cases are shown in Figure 5.2. Note that 
since R ( k )  is periodic, the plots are shown from - N / 2  to  N / 2 .  

c.  Several interesting observations can be made from plots in Figure 5.2. 
The envelopes of the DFS coefficients of square waves look like "sine" functions. 
The ampIitude at k = 0 is equal to L ,  while the zeros of the functions are at 
multiples of NIL,  which is the reciprocal of the duty cycle. We will study t h e e  

X Sq wave parameters 

X DFS 

functions later in this chapter. n 

RELATION Let x(n) be a b i t e d u r a t i o n  sequence of duration N such that 
TO THE Z- 

TRANSFORM x(n) = {NOT, O < n l N - l  
elsewhere 

(5.8) 
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DFS of SQ. wave: LS, N=20 
I 

DFS of SQ. wave: L=5. N=40 

I 

-10 -5 0 5 10 
k 

DFS of SQ. wave: L S .  N=60 

I 
-20 -10 0 10 20 

k 

DFS of SQ. wave: L=7, NaO 

-20 0 20 
k 

-20 0 20 
k 

FIGURE 5.2 The DFS plots of a periodic square wave for various L and N .  

Then we can find its z-transform: 
N-1 

X ( z )  = c x(71)t-n (5.9) 
n=O 

Now we construct a periodic sequence Z(n) by periodically repeating x(n) 
with period N, that is, 

Z(n), 0 5 n 5 N - 1 
0, elsewhere 

x(n) = 

The DFS of Z(n) is given by 

(5.10) 

(5.11) 

Comparing it with (5.9), we have 

X(N = X ( 4 l z = e j 9 k  (5.12) 

which means that the DFS X ( k )  represents N evenly spaced samples of 
the z-transform X ( z )  around the unit circle. 
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RELATION TO 
THE DTFT 

Since ~ ( n )  in (5.8) is of finite duration of length N, i t  is also absolutely 
summable. Hence its DTFT exists and is given by 

Comparing (5.13) with (5.11), we have 

(5.14) 

then the DFS X ( k )  = X ( d w * )  = X(eJkwl), which means that the DFS is 
obtained by evenly sampling the DTFT at w1 = % intervals. From (5.12) 
and (5.14) we observe that the DFS representation gives us a sampling 
mechanism in the frequency domain which, in principle, is similar to  sam- 
pling in the time domain. The interval w1 = 5 is the sampling interval 
in the frequency domain. It is also called the frequency resolution because 
it tells us how close are the frequency samples (or measurements). 

0 EXAMPLE 5.3 Let z(n)  = {0,1,2,3}, 
t 

a. Compute its discretetime Fourier transform X(e'"). 
b. Sample X ( g w )  at kwl = ?k, k = 0,1,2,3 and show that it is equal 

to x ( k )  in Example 5.1. 

Sdution The sequence z(n) is not periodic but is of finite duration. 

a. The discretetime Fourier transform is given by 
m 

x(ej-1 = C z(n)e-jwn = ,-jw + 2 e - j 2 -  + 3,-j3w 
n=-m 

The Discrete Fourier Series 123 



SAMPLING AND RECONSTRUCTION IN T H E  Z-DOMAIN 
I 
I 

Let z(n) be an arbitrary absolutely summable sequence, which may be of 
infinite duration. Its 2-transform is given by 

X ( z )  = 2 z(m)t-m 
m=-m 

and we mume that the ROC of X (2) includes the unit circle. We sample 
X ( z )  on the unit circle at equispaced points separated in angle by wi = 
2r /N  and call it a DFS sequence, 

X ( k )  22 x(z) l l , , ,~L,  k = O , i l ,  *2, .  . . (5.15) 

= 2 z(m)e-3+Pm= 2 z(m)w$m 
m=-m m=-m 

which is periodic with period N. Finally, we compute the IDFS of z ( k ) ,  

Z(n) = IDFS [ X ( k ) ]  

which is also periodic with period N. Clearly, there must be a relationship 
between the arbitrary z(n) and the periodic Z(n). This is an important 
issue. In order to compute the inverse DTFT or the inverse z-transform 
numerically, we must deal with a finite number of samples of X ( z )  around 
the unit circle. Therefore we must know the effect of such sampling on 
the timedomain sequence. This relationship is easy to obtain. 

k=O 
(from (5.2)) 

N-1 
= WNkn (from (5.15)) z(m)W$’” { k=O m=-m 

or 

1, n - m = r N  
0, elsewhere 

= 5 z ( m ) s ( n - m - r N )  
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or 
00 

Z(n) = z ( n - r N )  =...+z(n+N)+z(n)+z(n-N)+.. .  (5.16) 
r=-m 

which means that when we sample X(z) on the unit circle, we obtain a 
periodic sequence in the time domain. This sequence is a linear combina- 
tion of the original z ( n )  and its infinite replicas, each shifted by multiples 
of fN. This is illustrated in Example 5.5. From (5.16) we observe that if 
z (n )  = 0 for n < 0 and n 2 N ,  then there will be no overlap or aliasing in 
the time domain. Hence we should be able to recognize and recover z(n) 
from Z ( n ) ,  that is, 

z ( n )  = Z(n) for 0 5 n 5 ( N  - 1 )  

or 

1,  O S n 5 N - l  
0 ,  else 

z(.) = Z(la)'RN(.) = z(n) 

where 7?,~(n) is called a rectangular window of length N .  Therefore we 
have the following theorem. 

rnEoitEu 1 Ihquency Sampling 
If z ( n )  is time-limited (i.e., of finite dumtion) to [0, N - 11, then N 

samples of X(z) on the unit circle determine X(z)  for all t. 

EXAMPLE 5.4 Let m(n)  = {6,5,4,3,2,1}. Its DTFT Xl(2")  is sampled at 
1 

Sdution 

2nk 
W k = T 7  k = O , f l , f 2 ,  f3,. . . 

to obtain a DFS-sequence Xz(k) .  Determine the sequence Zz(n), which is the 
inverse DFS of X z ( k ) .  

Without computing the DTFT, the DFS, or the inverse DFS, we can evaluate 
Zz(n) by using the aliasing formula (5.16). 

Thus z(4) is aliased into z(O), and 4 5 )  is aliased into z(1). Hence 

&(n) = {... ,8 ,6 ,4 ,3 ,8 ,6 ,4 ,3 ,8,6,4,3, .  ..} 0 
t 
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0 BAMPLE 5.5 Let z(n) = (0.7)”u(n). Sample its z-transform on the unit circle with N = 5, 
10, 20, 50 and study its effect on the time domain. 

Sdution From Table 4.1 the z-transform of z(n) is 

1 
1 - 0.72-’ X ( z )  = ___ = z IzJ > 0.7 

z - 0.7’ 
We can now use MATLAB to  implement the sampling operation 

z ( k )  = X ( Z ) l Z , j 2 x k / N  I k = 0, f1, f2,. . . 
and the inverse DFS computation to determine the corresponding time-domain 
sequence. The MATLAB script for N = 5 is shown below. 

>> N - 5; k = 0:l:N-1; 
>> wk = 2*pi*k/N; zk = exp(j*wk); 
>> Xk = (zk)./(zk-0.7); 
>> m = real(idfs(Xk,N)) ; 
>> xtilde = m’* ones(l,8); xtilde = (xtilde(:))’; % Periodic sequence 
>> subplot (2.2.1) ; stem(0:39,xtilde) ;axis( C0,40.-0.1,1.5]) 
>> xlabelc’n’); ylabel(’xtilde(n)’); title(”-5’) 

% sample index 
% samples of z 
% DFs as samples of X(Z) 
% IDFS 

The plots in Figure 5.3 clearly demonstrate the aliasing in the time domain, 
especially for N = 5 and N = 10. For large values of N the tail end of z(n) 

n 

N=40 

T-----l 

n 

FIGURE 5.3 Plots in Ezample 5.5 

0 10 20 30 40 
n 
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is sufficiently small to result in any appreciable amount of aliasing in practice. 
Such information is USeN in effectively truncating an infiniteduration sequence 

0 prior to taking its transform. 

RECON- 
STRUCTION 
FORMULA given by 

Let t(n) be time-limited to 10, N - 1). Then from Theorem-1 we should 
be able to recover the z-transform X ( z )  using its samples X ( k ) .  This is 

x(z) = 2 [.(.)I = z [ z ( n ) x N ( n ) ]  

= Z[IDFS{ x ( k )  } R N ( ~ ) ]  
v 

samples of X ( z )  

The above approach results in the z-domain reconstruction formula. 
N-1  N - 1  

X ( 2 )  = c 5(n)t--" = c i(n)z-n 
0 0 

Since wikN = 1, we have 

(5.17) 

THE DTFT 

LATION 
FORMULA 

INTERPO- 
The reconstruction formula (5.17) can be specialized for the discretetime 
Fourier transform by evaluating it on the unit circle z = e j w .  Then 
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Consider 

Let 

A sin(&) _ .  N - 1  
@(w) = 2e 3w(-r) : an interpolating polynomial (5.18) N sin(%) 

Then 
N-1 

X(e iW)  = X(k)@ w - - 
k=O ( 2;k) (5.19) 

This is the DTFT interpolation formula to reconstruct X(ey)  from its 
samples X (k). Since @(O) = 1, we have that X(eJ*nk/N) = X(k), which 
means that the interpolation is exact at sampling points. Recall the time 
domain interpolation formula (3.33) for analog signals: 

z,(t) = C z(n) sinc [F,(t - n ~ ~ ) ]  

The DTFT interpolating formula (5.19) looks similar. 
However, there are some dfierences. First, the timedomain formula 

(5.20) reconstructs an arbitrary nonperiodic analog signal, while the 
frequency-domain formula (5.19) gives us a periodic waveform. Second, 
in (5.19) we use a interpolation function instead of our more 
familiar % (sinc) function. Therefore the @(w) function is sometimes 
called a digital sinc function, which itself is periodic. This is the function 
we observed in Example 5.2. 

m 

(5.20) 
n=-m 

MATLAB 
IMPLEMEN- 
TATION 

The interpolation formula (5.19) suffers the same fate as that of (5.20) 
while trying to implement it in practice. One has to generate several 
interpolating polynomials (5.18) and perform their linear combinations 
to obtainJhe discretetime Fourier transform X(dw)  from its computed 
samples X ( k ) .  Furthermore, in MATLAB we have to evaluate (5.19) on 
a finer grid over 0 5 w 5 27r. This is clearly an inefficient approach. 
Another approach is to use the cubic spline interpolation function as an 
efficient approximation to (5.19). This is what we did to implement (5.20) 
in Chapter 3. However, there is an alternate and efficient approach based 
on the DFT, which we will study in the next section. 
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THE DISCRETE FOURIER TRANSFORM 

The discrete Fourier series provided us a mechanism for numerically com- 
puting the discretetime Fourier transform. It also alerted us to a poten- 
tial problem of aliasing in the time domain. Mathematics dictates that 
the sampling of the discretetime Fourier transform result in a periodic 
sequence 2(n). But most of the signals in practice are not periodic. They 
are likely to be of finite duration. How can we develop a numerically com- 
putable Fourier representation for such signals? Theoretically, we can take 
care of this problem by defining a periodic signal whose primary shape is 
that of the finiteduration signal and then using the DFS on this periodic 
signal. Practically, we define a new transform called the Discrete Fourier 
rrcmSfom (DFT), which is the primary period of the DFS. This DFT 
is the ultimate numerically computable Fourier transform for arbitrary 
finiteduration sequences. 

First we define a finite-duration sequence z(n) that has N samples 
over 0 5 n 5 N - 1 as an N-point sequence. Let 2(n) be a periodic signal 
of period N, created using the N-point sequence z(n); that is, from (5.19) 

00 

Z(n) = z(n - TN) 
r=--00 

This is a somewhat cumbersome representation. Using the modulo-N o p  
eration on the argument we can simplify it to 

2(n) = z(n mod N) (5.21) 

A simple way to interpret this operation is the following: if the argument 
n is between 0 and N - 1, then leave it as it is; otherwise add or sub- 
tract multiples of N from n until the result is between 0 and N - 1. Note 
carefully that (5.21) is valid only if the length of z(n) is N or less. Further- 
more, we use the following convenient notation to denote the modulo-N 
operation. 

(5.22) 
a x ( ( n ) ) ~  = z(n mod N) 

Then the compact relationships between x(n) and Z(n) are 

s(n) = z((n)),v (Periodic extension) 

z(n) = %(n) 'R~(n)  (Window operation) 
(5.23) 

The rem(n,N) function in MATLAB determines the remainder after di- 
viding n by N. This function can be used to implement our modulo-N 
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operation when n 2 0. When n < 0, we need to modify the result to 
obtain correct values. This is shown below in the m=mod(n,N) function. 

function m = mod(n,N) 
1 Computes m = (n mod N) index 
1 ________________-___-_------ 
1 m = mod(n,N) 
m = rem(n,N); 
m = m+N; 
m = rem(m,N); 

In this function n can be any integer array, and the array m contains the 
corresponding modulo-N values. 

From the frequency sampling theorem we conclude that N equispxed 
samples of the discrete-time Fourier transform X(eJ") of the N-point se- 
quence z(n) can uniquely reconstruct X(eJw) .  These N samples around 
t_he unit circle are called the discrete Fourier transform coefficients. Let 
X ( k )  = DFSZ(n), which is a periodic (and hence of infinite duration) se- 
quence. Its primary interval then is the discrete Fourier transform, which 
is of finite duration. These notions are made clear in the following defi- 
nitions. The Discrete Fourier TYansform of an N-point sequence is given 
bY 

= X ( k ) ' R N ( k )  X ( k ) ,  O 5 k l N - l  
0, elsewhere 

X ( k )  e DFT [ ~ ( n ) ]  = 

or 

N-1 
X ( k )  = z(n)Gk, 0 5 k 5 N - 1 (5.24) 

n=O 

Note that the DFT X ( k )  is also an N-point sequence, that is, it is 
not defined outside of 0 I k 5 N - 1. From (5.23) X ( k )  =- X ( ( ~ ) ) N ;  
that is, outside the 0 5 k < N - 1 interval only the DFS X ( k )  is de- 
fiFed, which of course is the periodic extension of X ( k ) .  Finally, XJk) = 
x ( k ) ' R ~ ( k )  means that the DFT X ( k )  is the primary interval of X ( k ) .  

The inverse discrete Fourier transform of an N-point DFT X ( k )  is 
given by 

~ ( n )  5 IDFT [ X ( k ) ]  = ?(n)'R~(n) 

or 

(5.25) 1 -  - 

k=O 
~ ( n )  = X(k)Wikn, 0 5 n 5 N - 1 
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Once again ~ ( n )  is not defined outside 0 5 n 5 N - 1. The extension of 
x (n) outside this range is 5(n). 

MATLAB 
IMPLEMEN- 
TATION 

It is clear from the discussions at the top of this section that the DFS is 
practically equivalent to the DFT when 0 5 n 5 N - 1. Therefore the 
implementation of the DFT can be done in a similar fashion. If ~ ( n )  and 
X ( k )  are arranged as column vectors x and X, respectively, then from 
(5.24) and (5.25) we have 

(5.26) 

where W N  is the matrix defined in (5.7) and will now be called a DFT 
matriz. Hence the earlier d f s  and idfs MATLAB functions can be renamed 
as the d f t  and i d f t  functions to implement the discrete Fourier transform 
computations. 

function [Xk] = dft(xn.N) 
X Computes Discrete Fourier Transform 
7 ................................... 
X [Xkl = dft(xn,N) 
X Xk = DFT coeff . array over 0 <= k <= N-1 
X xn = N-point finite-duration sequence 
% N = Length of DFT 
X 
n = [O:l:N-ll; X row vector for n 
k = CO:f:N-lI; X row vecor for k 
UN = exp(-j*l*pi/N); 
nk = n’tk; 
UNnk = w .- nk; X DFT matrix 
xk = p1 * wnk; 

function Cml = idft(Xk,N) 
X Computes Inverse Discrete Transform 
7 ................................... 
X [rnl = idft(Xk,N) 
X xn = N-point sequence over 0 <= n <= N-1 
X Xk = DFT coeff . m a y  over 0 <= k <= N-1 
% N = length of DFT 
X 
n = CO:l:N-lI; X row vector for n 
k = CO:I:N-ll; % row vecor for k 
UN = exp(-j*2*pi/N); 
nk = nJ*k; 
VNnk - VN . ^  (-&I; X IDFT matrix 
M = (xk * UNnk)/N; 

X Wn factor 
% creates a N by N matrix of nk values 

% row vector for D R  coefficients 

X Wn factor 
X creates a N by N matrix of nk values 

X row vector for IDm values 
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0 EXAMPLE 5.6 Let z(n) be a 4point sequence: 

1, 0 5 ~ 1 1 3  
0, othenvise 

x(n) = 

a. Compute the discretet ie  Fourier transform X ( g W )  and plot its mag- 

b. Compute the 4point DFT of z(n). 

a. The discretetime Fourier transform is given by 

nitude and phase. 

3 
~ ( 2 " )  = Cx( , , ) , -Jwn = 1 + ,-jw + ,+Zw + e-J3w 

0 

Hence 

and 

The plots are shown in Figure 5.4. 
b. Let us denote the 4point DFT by X4 ( k ) .  Then 

3 

X4(k)  = C z ( t a ) W t k ;  
n=O 

k = 0,1,2,3; WC = e-J2r'4 - - - j  

These calculations are similar to those in Example 5.1. We can also we MATLAB 
to compute this DFT. 

>> x = [1,1,1,11; N - 4; 
>> X - dft(x,N); 
>> magX = abs(X), phaX = angle(X)*lEO/pi 
magX - 

4.0000 0.0000 O.OOO0 O.Oo00 
phaX = 

0 -134.9810 -90.0000 -44.9979 

Hence 

X4(k) = {4,0,0,0) 

Note that when the magnitude sample is zero, the corresponding angle is not 
zero. This is due to a particular algorithm used by MATLAB to compute the 

1 
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Magnitude d the DTFT 
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FIGURE 5.4 The DTFT plots m Ezample 5.6 

angle part. Generally these angles should be ignored. The plot of DFT values 
is shown in Figure 5.5. The plot of X(erW) is also shown as a dashed line for 
comparison. From the plot in Figure 5.5 we observe that Xa correctly gives 4 
samples of X(e'"), but it has only one nonzero sample. Is this surprising? By 
looking at the bpoint z(n), which contains all l's, one must conclude that its 
periodic extension is 

Z(n) = 1, Vn 

which is a constant (or a DC) signal. This is what is predicted by the DFT 
Xd(k), which has a nonzero sample at k = 0 (or w = 0) and has no values at 
other frequencies. 0 

0 EXAMPLE 5.7 How can we obtain other samples of the DTFT X(d')? 

W i  It is clear that we should sample at dense (or finer) frequencies; that is, we 
should increase N. Suppose we take twice the number of points, or N = 8 
instead of 4. This we can achieve by treating z(n) as an &point sequence by 
appending 4 zeros. 

44 = {L1,1,1,0,0,0,01 
r 
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Magnitude of the OFT: N=4 
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FIGURE 5.5 The DFT plots of Eznmple 5.6 

This is a very important operation called a zem-padding opemtaon. This oper- 
ation is necessary in practice to obtain a deme spectrum of signals as we shall 
see. Let XS (k) be an &point DFT, then 

7 

Xa (k) = Cz(n)W,"'; k = 0, 1, . . . ,7; WE = e-JaI4 
n=O 

In this case the frequency resolution is w1 = 2r/8 = r/4.  

>> x - [l,l,l,l, zeros(1,4)1; N - 8; 
>> X - dft(x,N); 
>> magX - abs(X), phaX = angle(X)*l80/pi 
magx = 

4.0000 2.6131 0.0000 1.0824 0.0000 1.0824 O.OOO0 2.6131 
phaX = 

0 -67.5000 -134.9810 -22.5000 -90.0000 22.5000 -44.9979 67.5000 

Hence 

0, 2 . 6 1 3 1 ~ ? ~ ~ . ~ ' }  
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Magnitude 01 the OFT: N=8 
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FIGURE 5.6 The DFT plots of Ezomple 5.7: N = 8 

which is shown in Figure 5.6. Continuing further, if we treat z(n) as a lf3-point 
sequence by padding 12 zeros, such that 

44 = ~ ~ , ~ , ~ , ~ , ~ , 0 , ~ , ~ , 0 , ~ , ~ , 0 , 0 , ~ , 0 , 0 ~  
T 

then the frequency resolution is w1 = 2r/16 = r / 8  and w16 = e-Jn''. Therefore 
we get a more dense spectrum with spectral samples separated by r / 8 .  The 

0 sketch of XI6 (k) is shown in Figure 5.7. 

Comments: Based on the last two examples there are several comments 
that we can make. 

1. Zero-padding is an operation in which more zeros are appended to  
the original sequence. The resulting longer DFT provides closely spaced 
samples of the discretetime Fourier transform of the original sequence. 
In MATLAB zerepadding is implemented using the zeros function. 

2. In Example 5.6 all we needed to accurately plot the discretetime 
Fourier transform X(ej") of z(n) was X4 (k), the Cpoint DFT. This is 
because z(n) had only 4 nonzero samples, so we could have used the inter- 
polation formula (5.19) on X4 (k) to  obtain X(eJ"). However, in practice, 
it is easier to  obtain Xs (k) and XI6 (k), and so on, to  fill in the values 
of X(ej") rather than using the interpolation formula. This approach can 
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MasMude of the DFT: N=16 
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FIGURE 5.7 The DFT plots of Emmple 5.7: N = 16 

be made even more efficient using fast Fourier transform algorithms to 
compute the DFT. 

3. The zero-padding gives us a high-density spectrum and provides 
a better displayed version for plotting. But it does not give us a hzgh- 
molution spectrum because no new information is added to the sign&, 
only additional zeros are added in the data. 

4. To get a high-resolution spectrum, one has to obtain more data 
&om the experiment or observations (see Example 5.8 below). There are 
also other advanced methods that use additional side information or non- 
linear techniques. 

0 EXAMPLE 5.8 To illustrate the difference between the high-density spectrum and the high 
resolution spectrum, consider the sequence 

z(n) = cos (0.48~71) + cos (0.52~71) 

We want to determine its spectrum based on the finite number of samples. 

a. Determine and plot the discretetime Fourier transform of z(n), 

b. Determine and plot the discretetime Fourier transform of z(n), 

0 5 

0 5 
n 5 10. 

PI 5 loo. 
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solution We could determine analytically the discretetime Fourier transform in each 
case, but MATLAB is a good vehicle to study these problems. 

a. We can first determine the 10-point DFT of z(n) to obtain an estimate 
of its discretetime Fourier transform. 

>> n - [0:1:991; x - cos(0.48*pi*a)+cos(0.52*pi*n); 
>> nl = [0:1:9] ;yl = x(1:I:lO); 
>> subplot(2,l.l) ;stem(nl,yl); title(’signal x(n), 0 <- n <= g’);xlabel(’a’) 
>> Yl .i dft(yl.10); magY1 - abs(Yl(1:l:B)); 
>> kl = 0:1:5 ;wl - 2+pi/lO*kl; 
>> subplot (2,1,2) ;plot (wl/pi ,magYl) ;title( ’Samples of DTFT Magnitude’) ; 
>> xlabel(’frequency in pi units‘) 

The plots in Figure 5.8 show there aren’t enough samples to draw any conclu- 
sions. Therefore we will pad 90 zeros to obtain a dense spectrum. 

>> n2 = [0:1:99]; y2 - [x(i:l:IO) ze:os(i,90)3; 
>> subplot(2,i,i) ;stsm(&,y2) ;title(’signal x(n), 0 <= n <- 9 + 90 zeros1); 
>> rlabel(’n’) 
>> Y2 =dftty2.100); magY2 = abs(Y2(1:1:51)); 
>> k2 - 0:1:50; tR = 2*pi/loO*k2; 
>> subplot(2,1,2); plot(w3/pi,magY3); title(’DTFT Magnitude’); 
>> xlabel(’frequency in pi units’) 

P 

1 -  

0 ” 

-1 - 

-2 - 
0 1 2  3 4 5 6 7 8 9 10 

n 
SamplesdDmMagnlhlde 

10 I 

I I 
0 1 2  3 4 5 6 7 8 9 10 

n 
SamplesdDmMagnlhlde 

10 I 

FIGURE 5.0 Signal and its spectrum an Ezample 5.8a: N = 10 
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signal x(n). 0 c= n c= 9 + 90 zeros 

1 

0 

I I 
0 10 20 30 40 50 60 70 80 9 0 1 0 0  

n 
DTFT Magnitude 

frequency in pi units 

FIGURE 5.9 Signal and its spectrum in Ezample 5.8a: N = 100 

Now the plot in Figure 5.9 shows that the sequence has a dominant frequency 
at w = 0 . 5 ~ .  This fact is not supported by the original sequence, which has two 
frequencies. The zero-padding provided a smoother version of the spectrum in 
Figure 5.8. 

h. To get better spectral information, we will take the first 100 samples of 
z(n) and determine its discrete-time Fourier transform. 

>> subplot (2,1,1) ; stem(n,x) ; 
>> title(’signal x(n), 0 <= n <= 99’); rlabel(’n’) 
>> X = dft(x.100); magX = abs(X(l:l:51)); 
>> k = 0:l:SO; w = Z*pi/lOO*k; 
>> subplot(2,1,2); plot(w/pi,magX); title(’DTFT Magnitude’); 
>> xlabel(’frequency in pi units’) 

Now the discrete-time Fourier transform plot in Figure 5.10 clearly shows two 
frequencies, which are very close to  each other. This is the high-resolution spec- 
trum of ~ ( n ) .  Note that padding more zeros to the 100-point sequence will result 
in a smoother rendition of the spectrum in Figure 5.10 but will not reveal any 

0 new information. Students are encouraged to verify this. 
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signal x(n), 0 <= n <= 99 

0 10 20 30 40 50 60 70 80 9 0 1 W  
n 

DTFT Magnitude 

FIGURE 5.10 Signal and its spectrum in Ezample 5.86: N = 100 

PROPERTIES OF THE DISCRETE FOURIER TRANSFORM 
I 
I 

The DFT properties are derived from those of the DFS because mathe- 
matically DFS is the valid representation. We discuss several useful prop 
erties, which are given without proof. These properties also apply to the 
DFS with necessary changes. Let X ( k )  be an N-point DFT of the se- 
quence z(n). Unless otherwise stated, the N-point DFTs will be used in 
these properties. 

1. Linearity: The DFT is a linear transform 

D F T [ u z ~ ( ~ )  f b~z(n)] = uDFT[zI (~) ]  + bDFT[zz(n)] (5.27) 

Note: If z1(n) and ~ z ( n )  have different durations-that is, they are 
Nl-point and Nz-point sequences, respectively-then choose N3 = 
max(N1, N z )  and proceed by taking &-point DFTs. 

2. Circular folding: If an N-point sequence is folded, then the result 
z(-n) would not be an N-point sequence, and it would not be possible 
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to  compute its DFT. Therefore we use the modulo-N operation on the 
argument (-n) and define folding by 

This is called a circular folding. To visualii it, imagine that the s e  
quence z(n) is wrapped around a circle in the counterclockwise direc- 
tion so that indices n = 0 and n = N overlap. Then z((-n))N can 
be viewed as a clockwise wrapping of z (n)  around the circle; hence the 
name circular folding. In MATLAB the circular folding can be achieved by 
x=x(mod(-n,N)+I). Note that the arguments in MATLAB begin with 1.  
Then its DFT is given by 

0 EXAMPLE 5.9 Let z(n) = 10 (0.8)“ , 0 5 n 5 10. 

a Determine and plot ~ ( ( - n ) ) ~ ~ .  
b. Verify the circular folding property, 

a MATLAB Script 
>> n = 0:lOO; x - 10*(0.8) .^ n; 
>> y = x(mod(-n,i1)+1); 
>> subplot(2,i.l); stem(n.1); title(’0riginal sequence’) 
>> xlabel(’n’); ylabel(’x(n)’); 
>> subplot(2.1.2); ste.m(n,y); title(’Circular1y folded sequence’) 
>> xlabel(’n’); ylabel(’x(-n mod 10)’); 

The plots in Figure 5.12 verify the property. 0 
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FIGURE 5.12 Circular folding property an Example 5.9b 
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3. Conjugation: Similar to the above property we have to introduce 
the circular folding in the frequency domain. 

DFT [~*(n)] = X' ( ( - k ) ) N  (5.30) 

4. Symmetry properties for real sequences: Let z(n) be a real-valued 
N-point sequence. Then z(n) = z*(n). Using the above property, 

X ( k )  = x* ( ( - k ) ) N  (5.31) 

This symmetry is called a circular conjugate symmetry. It further implies 
that 

Re [ X ( k ) ]  = Re [ X  ((-k)),,,] j Circular-even sequence 

Im [ X ( k ) ]  = - Im [X ((N - k ) ) N ]  ===+ Circular-odd sequence 

+ Circular-even sequence 

+ Circular-odd sequence 
i x ( k ) I  = l x ( ( - k ) ) N l  
LX(k)  = -LX 

(5.32) 

Comments: 1. Observe the magnitudes and angles of the various DFTs 
in Examples 5.6 and 5.7. They do satisfy the above circular symmetries. 
These symmetries are different than the usual even and odd symmetries. 
To visualize this, imagine that the DFT samples are arranged around a 
circle so that the indices k = 0 and k = N overlap; then the samples 
will be symmetric with respect to k = 0, which justifies the name circular 
symmetry. 

2. The corresponding symmetry for the DFS coefficients is called the 
periodic conjugate symmetry. 

3. Since these DFTs have symmetry, one needs to compute X ( k )  only 
for 

N 
2 '  

k = 0 , 1 ,  ...,--. Neven 

or for 

N - 1  
2 

k = 0,1,. . . , - ; N odd 

This results in about 50% savings in computation as well as in storage. 
4. Fkom (5.30) 

x(0) = x ' ( ( - O ) ) N  = x * ( o )  

which means that the DFT coefficient at  k = 0 must be a real number. 
But k = 0 means that the frequency wk = kwl = 0, which is the DC 
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frequency. Hence the DC coefficient for a real-valued z(n) must be a real 
number. In addition, if N is even, then N/2 is also an integer. Then from 
(5.32) 

X ( f )  = x * ( ( - ; ) ) N = x * ( ; )  

which means that even the k = N/2 component is also real-valued. This 
component is called the Nyquist component since k = N/2 means that 
the frequency W N I ~  = (N/2)(2?r/N) = ?T, which is the digital Nyquist 
frequency. 

The real-valued signals can ako be decomposed into their even and odd 
components, ze(n) and Z, ( n ) ,  respectively, as discussed in Chapter 2. 
However, these components are not N-point sequences and therefore we 
cannot take their N-point DFTs. Hence we define a new set of components 
using the circular folding discussed above. These are called circular-even 
and circular-odd components defined by 

(5.33) 

Then 

Implication: If z(n) is real and circular-even, then its DFT is also red 
and circular-even. Hence only the first 0 5 n 5 N/2 coefficients are 
necessary for complete representation. 

Using (5.33), it is easy to develop a function to decompose an N-point 
sequence into its circular-even and circular-odd components. The follow- 
ing circevod function uses the mod function given earlier to implement 
the nMOD N operation. 

function Cxec, roc1 = circevod(x) 
1 signal decomposition into circular-even and circular-odd parts 
7 .............................................................. 
X [xec, xoc] = circevod(x) 
A 
if any(imag(x) -= 0) 

error('r is not a real sequence') 
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0 EXAMPLE 5.10 Let z(n) = 10 (0.8)“, 0 5 n 6 10 as in Example 5.9. 

10- 

6 -  

F 6 -  

I 4 -  

- 
2-  

0 -  

a. Decompose and plot the z,,(n) and zo.(n) components of z(n). 
b. Verify the property in (5.34). 

0 

0 

p r 1 1 :  

Solution a. MATLAB Script 
>> n - 0:lO; x = 10*(0.8) .^ n; 
>> [xec,xoc] = circevod(x1; 
>> subplot(2,1,1); stem(n,xec); title(’Circular-even component’) 
>> xlabel(’n’ ) ; ylabel(’xec(n) ’1 ; axis ( [-0.5,10.5, -i,111) 
>> subplot (Z,l, 2) ; stem(n, xoc) ; title (’ Circular-odd component ’ 
>> xlabel(’n’1; ylabel(’xoc(n) ’) ; axis( [-0.5,10.5,-4,41) 

The plots in Figure 5.13 show the circularly symmetric components of z(n). 

- 4 8  
0 1 2  3 4 5 6 7 8 9 10 

n 

FIGURE 5.13 
ample 5.1 Oa 

&cular-ewen and circular-odd components ofthe sequence in Ez- 
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From the plots in Figure 5.14 we observe that the DFT of s.,(n) is the same as 
the real part of X ( k )  and that the DFT of z,(n) is the same 85 the imaginary 
part of X(k) .  0 

A similar property for complex-valued sequences is explored in Exer- 
cise 5.10. 

5. Circular shift of a sequence: If an N-point sequence is shifted in 
either direction, then the result is no longer between 0 5 n 5 N - 1. 
Therefore we first convert z(n) into its periodic extension Z(n), and then 
shift it by m samples to obtain 

Z(n - m) = z ((n - m))N (5.35) 

I n w W W n ) l )  :Li 
20 

10 

0 

0 5 10 0 5 10 
-20 

50- 

40. 

30 
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10 

0 
1 I 
0 5 10 5 10 

Plots of DFT symmetry properties in Example 5.10b 

k k 

FIGURE 5.14 

Properties of the Discrete Fourier Transform 145 



0 

This is called a periodic shijl of i ( n ) .  The periodic shift is then converted 
into an N-point sequence. The resulting sequence 

Z(n - m)RN(n) = z( (n  - m))N 7 z N ( n )  (5.36) 

is called the circular shij? of z(n). Once again to visualize this, imagine 
that the sequence z(n) is wrapped around a circle. Now rotate the circle 
by k samples and unwrap the sequence from 0 5 n 5 N - 1. Its DFT is 
given by 

DFT [Z ((n - m))N R,(n)] = WkmX(k) (5.37) 

EXAMPLE 5.11 Let z(n) = 10 (0.8)*, 

the left. 

the right, where z(n) is assumed to be a 15-point sequence. 

0 5 n 5 10 be an 11-point sequence. 

a. Sketch I ((n + 4))11 Rll(n), that is, a circular shift by 4 samples toward 

b. Sketch z ((n - 3))15 &(n), that is, a circular shift by 3 samples toward 

We will use a stepby-step graphical approach to illustrate the circular shifting 
operation. This approach shows the periodic extension f(n) = z ( (n) )N of z(n), 
followed by a linear shift in i(n) to obtain f (n - m) = I ((n - m))N, and finally 
truncating f (n - m) to obtain the circular shift. 

a. Figure 5.15 shows four sequences. The topleft shows z(n), the bottom- 
left shows i (n) ,  the topright shows 5 (n + 4), and finally the bottom-right 
shows s((n+4)),, Rll(n). Note carefully that as samples move out of the 
[O,  N - I] window in one direction, they reappear from the opposite direction. 
This is the meaning of the circular shift, and it is different from the linear shift. 

b. In this case the sequence z(n) is treated as a 15-point sequence by 
padding 4 zeros. Now the circular shift will be different than when N = 11. 
This is shown in Figure 5.16. In fact the circular shift z ((n - 3))15 looks like a 

0 

To implement a circular shift, we do not have to  go through the 
periodic shift as shown in Example 5.11. It can be implemented directly 
in two ways. In the first approach, the moduleN operation can be used 
on the argument (n - m) in the time domain. This is shown below in the 
c i r s h f t t  function. 

linear shift z(n - 3). 

function y = cirshftt(x,m,N) 
X Circular shift  of m samples u r t  size N in sequence I: (time domain) 
7 ................................................................... 
X [yl - cirshftt(x,m,N) 
X y = output sequence containing the circular shift  
X I = input sequence of length <= N 
X m = sample shift  
% N = size of circular buffer 
Y. Method: y(n) = x((n-m) mod N) 
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% Check for length of I 
if length(x) > N 

end 
x = Cx zeros(l.N-length(x))l; 
n = [O:l:N-lI; 
n = nod(n-m,N); 
y = x(n+l); 

error(” must be >= the length of 1’) 

In the second approach, the property 5.37 can be used in the frequency 
domain. This is explored in Exercise 5.12. 

0 EXAMPLE 5.12 Given an 11-point sequence z(n) = 10 (0.8)“, 0 2 n 5 10, determine and plot 
z ((n - 6))w 

Solution MATLAB Script 
>> n = 0:lO; I - 10*(0.8) .- n; 
>> J = cirshftt(x,6,15): 
>> n P 0:14; I = [x, zeros(i,4)]; 
>> subplot(2,1,1); stem(n,x); title(’0riginal sequence’) 
>> xlabel(’n’) ; jlabel(’x(n)‘); 
>> subplot(2.1,2); stem(n,y); 
>> title(’Circular1y shifted sequence. N-15’) 
>> xlabal(’n’); ylabel(’x((n-6) mod 15)’); 

The results are shown in Figure 5.17. 0 

6. Circular shift in the Bequency domain: This property is a dual of 
the above property given by 

DFT [Wi‘“~(n)] = X ((k - e ) ) ,  R,(k) (5.38) 

7. Cicular convolution: A linear convolution between two N-point 
sequences will result in a longer sequence. Once again we have to restrict 
our interval to 0 5 n 5 N - 1. Therefore instead of linear shift, we 
should consider the circular shift. A convolution operation that contains 
a circular shift is called the circular convolution and is given by 

N-1 

%i(n) @ zz(n) = zi(m)z2 ((n - m ) ) N ,  0 5 n 5 N - 1 (5.39) 
m=O 

Note that the circular convolution is also an N-point sequence. It has a 
structure similar to that of a linear convolution. The differences are in 
the summation limits and in the N-point circular shift. Hence it depends 
on N and is also called an N-point Circular convolution. Therefore the 
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10- 0 

8 -  0 - 6-  - 0 
4 -  

2 -  

0 -  

0 

Tp P T t ?  s c  3 ; :  

use of the notation @ is appropriate. The DFT property for the circular 
convolution is 

10- 9 

Ei 8 -  0 

6-  

- 4 -  

'j; 2- 

0 
0 - t 

An alternate interpretation of this property is that when we multiply two 
N-point DFTs in the frequency domain, we get the circular convolution 
(and not the usual linear convolution) in the time domain. 

Let zI(n) = {1,2,2) and m(n) = {1,2,3,4). Compute the 4-point circular 
convolution zl(n) @ zz(n). 

Note that zl(n) is a %point sequence, hence we will have to pad one zero to 
make it a Cpoint sequence before we perform the circular convolution. We will 
solve this problem in the time domain 85 well as in the frequency domain. In 
the time domain we will use the mechanism of circular convolution, while in the 
frequency domain we will use the DFTs. 

0 U(AMPLE5.13 

sdution 

0 Tame-domain approach: The Cpoint circular convolution is given by 
3 

zl(n) @ z2(4 = C 51 (m) 1 2  ((n - m)), 
ln-4 
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Thus we have to  create a circularly folded and shifted sequence z2 ((n - n ~ ) ) ~ ,  
tnultiply it sample-by-sample with z ~ ( m ) ,  add the samples to  obtain the circular 
convolution value for that n, and then repeat the procedure for 0 5 n 5 3. 
Consider 

zi(m) = (1, 2, 2, 0) and 12(m) = (1, 2, 3, 4) 

for n = 0 

m=O 

3 

= (1, 8, 6, 0) = 15 
m=O 

for n = 1 

= (2, 2, 8, 0) = 12 
m=O 

for n = 2 

= 2 (3, 4, 2, 0) = 9 
m=O 

for n = 3 

m=O m=O 

3 

= c { 4 ,  6, 4, 0) = 14 
m=O 

Hence 

z1(n) @ zz(n) = (15, 12, 9, 14) 

0 Ihquency-domain appnmch: In this approach we first compute bpoint 
DFTs of z,(n) and zZ(n), multiply them sampkby-sample, and then take the 
inverse DFT of the result to  obtain the circular convolution. 
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DFT of ZI (n) 

Zl(n)={1,2,2,0}=+-Xl(k)=(5, -l-j2, 1, -1+j2) 

z~(n) = (1,2,3,4) & Xz(k) = (10, -2+ j2, -2, -2-j2} 

Now 

Xl(k) . XS(k) 2 (50, 6 +j2, -2, 6 - j2) 

Finally after IDFT, 

zl(n) @ zz(n) = (15, 12, 9, 14) 

which is the same as before. 0 

Similar to the circular shift implementation, we can implement the circular 
convolution in a number of different ways. The simplest approach would be 
to implement (5.39) literally by using the c i r shf t t  function and requir- 
ing two nested for. . .end loops. Obviously, this is not efficient. Another 
approach is to generate a sequence x ((n - TIZ) )~  for each n in [O, N - 11 
as rows of a matrix and then implement (5.39) as a matrix-vector multi- 
plication similar to our d f t  function. This would require one for. . .end 
loop. The following circonvt fundion incorporates these steps. 

function y - circonvt(xl,x2,N) 
Y, N-point circular convolution between xi and 12: (time-domain) 
Y, ............................................................. 
% [yl = circonvt(xl,x2.N) 
Y, 
% x1 - input sequence of length Nl <- N 
X 12 = input sequence of length N2 <- N 

N = size of circular buffer 
Y, Method: y(n) - sum (xl(m)*x2((n-m) mod N)) 
% Check for length of x1 
if length(x1) > N 

end 
% Check for length of x2 
if length(x2) > N 

end 
xl=[xl zeros(l,N-length(xl))] ; 
x2= [12 zeros (1 .N-length(x2))] ; 
m L [O:i:N-l]; 
x2 = x2(mod(-m,N)+t); 
H - zeros(N,N); 

y - output sequence containing the circular convolution 

error(” must be >- the length of xi’) 

error(’N must be >= the length of 12’) 
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for n = 1:l:N 
H(n,:) - cirshftt(x2,n-l,N); 
end 
y = xl*E'; 

The third approach would be to implement the frequency-domain opera- 
tion (5.40) using the dft function. This is explored in Exercise 5.15. 

0 EXAMPLE 5.14 Let us use MATLAB to perform the circular convolution in Example 5.13. 

solution The sequences are zl(n) = (1,2,2} and z2(n) = {1,2,3,4}. 

>> xi = [1,2,21; x2 = C1,2,3,41; 
>> y = circonvt(x1, x2, 4) 
Y' 

15 12 9 14 

Hence 

zl(n) @ zz(n) = (15, 12, 9, 14) 

as before. 0 

0 EXAMPLE 5.15 In this example we will study the effect of N on the circular convolution. Obvi- 
ously, N 2 4; otherwise there will be a time-domain aliasing for zz(n). We will 
use. the same two sequences from Example 5.13. 

a. Compute zl(n) 5 ~ ( n ) .  
b. Compute zl(n) 8 6 z2(n). 
c. Comment on the results. 

The sequences are zl(n) = {1,2,2} and n(n) = {l, 2,3,4}. Even though the 
sequences are the same BS in Example 5.14, we should expect different results 
for different values of N. This is not the case with the linear convolution, which 
is unique, given two sequences. 

a. %point circular convolution: 

>> XI = [1,2,21; x2 = C1,2,3,41; 
>> y = circonvt(x1, x2, 5) 
Y' 

9 4 9 14 14 

Hence 
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b. 6point circular convolution: 

>> xi - [1,2,21; 12 = C1,2,3.41; 
>> y = circonvt(x1, x2, 6 )  

Y =  
1 4  9 1 4 1 4  8 

Hence 

%i(n) @ zz(n) = (1, 4, 9, 14, 14, 8 )  

c. A careful observation of 4, 5-, and 6point circular convolutions from 
this and the previous example indicates some unique features. Clearly, an N- 
point circular convolution is an N-point sequence. However, some samples in 
these convolutions have the same values, while other values can be obtained 
as a sum of samples in other convolutions. For example, the first sample in 
the 5-point convolution is a sum of the first and the last sample of the 6point 
convolution. The linear convolution between zl(n) and zz(n) is given by 

~i(n) * ~ z ( n )  = {l, 4, 9, 14, 14, 8) 

which is equivalent to the &point circular convolution. These and other issues 
are explored in the next section. tl 

8. Mdtiplication: This is the dual of the circular convolution p rop  
erty. It is given by 

(5.41) 

in which the circular convolution is performed in the frequency domain. 
The MATLAB functions developed for circular convolution can also be 
used here since X1 (k) and X z  (k) are also N-point sequences. 

9. Parsed’s relation: This relation computes the energy in the fre- 
quency domain. 

(5.42) 

The quantity is called the energy spectrum of finiteduration se- 

quences. Similarly, for periodic sequences, the quantity 
the power spectrum. 
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LINEAR CONVOLUTION USING THE DFT 
I 

One of the most important operations in linear systems is the linear conve 
lution. In fact FIR filters are generally implemented in practice using this 
linear convolution. On the other hand, the DFT is a practical approach 
for implementing linear system operations in the frequency domain. As we 
shall see later, it is also an efficient operation in t e r n  of computations. 
However, there is one problem. The DFT operations result in a circular 
convolution (something that we do not desire), not in a linear convolution 
that we want. Now we shall see how to use the DFT to perform a linear 
convolution (or equivalently, how to make a circular convolution identical 
to the linear convolution). We alluded to  this problem in Example 5.15. 

Let q(n)  be an N1-point sequence and let ~ ( n )  be an Nz-point 
sequence. Define the linear convolution of i l ( n )  and ~ ( n )  by 53(n), that 
is, 

z3(n) = z1(n) * .z(n) (5.43) 

k=-m 0 

Then z3(n) is a (N1 + Nz - 1)-point sequence. If we choose N = 
max(N1,Nz) and compute an N-point circular convolution q ( n )  @ 
zz(n), then we get an N-point sequence, which obviously is different 
from q(n). This observation also gives us a clue. Why not choose 
N = N1 + Nz - 1 and perform an (N1 + Nz - 1)-point circular con- 
volution? Then at least both of these convolutions will have an equal 
number of samples. 

Therefore let N = N I  + NZ - 1 and let us treat q ( n )  and ~ ( n )  as 
N-point sequences. Define the A'-point circular convolution by z4(n). 

5 4 ( 4  = 2 1 ( 4  0 4.) (5.44) 

1 N-1 

zl(k)zZ((n - k))N R N ( n )  

r 1 

r=-w m=O I zs(n-rN) 
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using (5.43) 

This analysis shows that, in general, the circular convolution is an aliased 
version of the linear convolution. We observed this fact in Example 5.15. 
Now since ~ ( n )  is an N = (N1+ Nz - 1)-point sequence, we have 

~ 4 ( n )  = 23(n); 0 5 n 5 ( N  - 1) 

which means that there is no aliasing in the time domain. 

Conclusion: If we make both q ( n )  and ~ ( n )  N = N1+ Nz - 1 point 
sequences by padding an appropriate number of zeros, then the circular 
convolution is identical to the linear convolution. 

0 EXAMPLE 5.16 Let zl(n) and m(n)  be the two Cpoint sequences given below. 

z,(n) = (1, 2, 2, 11 ,  zz(n) = (1, -1, -1, 1) 

a. Determine their linear convolution zs(n). 
b. Compute the circular convolution a ( n )  so that it is equal to 53(n). 

solution We will use MATLAB to do this problem. 

a. MATLAB Suipt 
>> xi = [1,2,2,11; x2=[1,-1,-1,11; 
>> x3 = conv(xl.x2) 
x3 = 1 1 -1 -2 -1 1 1 

ERROR 
ANALYSIS 

Hence the linear convolution 53(n) is a ?'-point sequence given by 

z3(4 = {1,1, -1, -2, -1,1,1} 

b. We will have to use N 2 7. Choosing N = 7, we have 

>> x4 = circonvt(xl,x2,7) 
x4 = 1 1 -1 -2 -1 1 1 

Hence 

x4 = {1,1, -1, -2, -1,1,1} = 4 7 4  0 

In order to use the DFT for linear convolution, we must choose N properly. 
However, in practice it may not be possible to do SO, especially when 
N is very large and there is a limit on memory. Then an error will be 
introduced when N is chosen less than the required value to perform the 
circular convolution. We want to compute this error, which is useful in 
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practice. Obviously, N 2 max(N1, N2). Therefore let 

max(N1,Nz) I N < (NI + N2 - 1) 

Then from our previous analysis (5.44) 

24(n) = 23(n -TN) RN(n) Y r=-m I 
Let an error e(n) be given by 

A 
e(n) = 474 - z3(n) 

r 1 

Since N 2 max(Nl,Nz), only two terms corresponding to T = fl remain 
in the above summation. Hence 

e(n) = [xo(n - N )  + 23(n + N ) ]  R N ( ~ )  

Generally, x1 (n) and ~ ( n )  are c a d  sequences. Then 23(n) is also causal, 
which means that 

z3(n- N )  = 0; 0 I n 5 N -  1 

Therefore 

e(n)=zS(n+N) ,  O l n S N - 1  (5.45) 

This is a simple yet important relation. It implies that when max(N1, N2) 
5 N < (N1 + N2 - l), the error sample at n is the same as the linear 
convolution N samples away. Now the linear convolution will be zero 
after ( N l +  Nz - 1) samples. This means that the first few samples of the 
circular convolution are in error, while the remaining ones are the correct 
linear convolution values. 

0 EXAMPLE 5.17 Consider the sequences zi(n) and zz(n) from the previous example. Evaluate 
circular convolutions for N = 6,  5, and 4. Verify the error relations in each case. 

sdution Clearly, the linear convolution z,(n) is still the same. 

z3(n) = {1,1, -1, -2, -1,l, 1) 

When N = 6, we obtain a &point sequence. 

z,(n) =z,(n) @ zz(n) = {2,1,-1,-2,-l,l} 
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Therefore 

e(n) = {2,1,-1,-2,-1,1} - {1,1,-1,-2,-1,1}, 0 5 n< 5 

= ~ 1 , 0 , 0 , 0 , 0 , 0 ~  

= 23(n + 6 )  

as expected. When N = 5, we obtain a 5-point sequence, 

z4(n) = z1(n) @ za(n) = {2,2, -1, -2, -1) 

and 

e(n) = {2,2, -1, -2, -1) - {1,1, -1, -2, -I}, 0 5 n < 4 

= { L l , O , O , O }  

= 13(n + 5) 
Finally, when N = 4, we obtain a 4-point sequence, 

Z4(n) = sl(n) @ ZZ(n)  = {o, 2,0, -2) 

and 

e(n) = {0,2,0,-2} - {1,1,-1,-2}, 0 <n 5 3 
= { - l , l , l , O }  

= 2 3 ( n  + 4) 

The last case of N = 4 also provides the useful observation given below. 0 

Observation: When N = max(N1, Nz) is chosen for circular convolution, 
then the first (M - 1) samples are in error (i.e., different from the linear 
convolution), where M = min(N1, Nz) .  This result is useful in implement- 
ing long convolutions in the form of block processipg. 

BLOCK CON- 
VOLUTIONS 

When we want to filter an input sequence that is being received con- 
tinuously, such as a speech signd from a microphone, then for practical 
purposes we can think of this sequence as an infinitelength sequence. If 
we want to implement this filtering operation as an FIR filter in which 
the linear convolution is computed using the DFT, then we experience 
some practical problems. We will have to compute a large DFT, which is 
generally impractical. Furthermore, output samples are not available un- 
til all input samples are processed. This introduces an unacceptably large 
amount of delay. Therefore we have to segment the infinitelength input 
sequence into smaller sections (or blocks), process each section using the 
DFT, and finally assemble the output sequence from the outputs of each 
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section. This procedure is called a block convolutron (or block processing) 
operation. 

Let us assume that the sequence z(n) is sectioned into N-point se- 
quences and that the impulse response of the filter is an M-point sequence, 
where M < N. Then from the above observation we note that the N-point 
circdar convolution between the input block and the impulse response will 
yield a block output sequence in which the first (M - 1) samples are not 
the correct output values. If we simply partition ~ ( n )  into nonoverlapping 
sections, then the resulting output sequence will have intervals of incor- 
rect samples. To correct this problem, we can partition z(n) into sections, 
each overlapping with the previous one by exactly (M - 1) samples, save 
the last (N - M + 1) output samples, and finally concatenate these out- 
puts into a sequence. To correct for the 6rst (M - 1) samples in the first 
output block, we set the first (A4 - 1) samples in the first input block to 
zero. This procedure is called an overlap-save method of block convolu- 
tions. Clearly, when N >> M, this method is more efficient. We illustrate 
it using a simple example. 

0 EXAMPLE 5.18 kt z(n) = (n + 1) , 
save method using N = 6 to compute y(n) = z(n) * h(n). 

0 5 n 5 9 and h(n) = {1,0, -1). Implement the overlap 
t 

sduticn Since M = 3, we will have to overlap each section with the previous one by two 
samples. Now z(n) is a lCLpoint sequence, and we will need (M - 1) = 2 zeros 
in the beginning. Since N = 6, we will need 3 sections. Let the sections be 

a(n) = {0,0,1,2,3,4} 

zz(n) = {3,4,5,6,7,8} 

~3(n) = {7,8,9,10,0,0) 

Note that we have to pad za(n) by two zeros since z(n) runs out of values at 
n = 9. Now we will compute the &point circular convolution of each section 
with h(n). 

yl = a ( n )  @ h(n) = I-3, -4,1,2,2,2} 

yz = z2(n) @ h(n) = {-4, -4,2,2,2,2} 

y3=z3(n) @h(n) = {7,8,2,2,-9,-10) 

Noting that the first two samples are to be discarded, we assemble the output 
?An) 

y(n)={1,2,2,2,2,2,2,2,2,2, -9 , -10} 
T 
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The linear convolution is given by 

s(n) * h(n) = {1,2,2,2,2,2,2,2,2,2, -9, -10) 
f 

which agrees with the overlapsave method. 0 

MATLAB 
IMPLEMEN- 
TATION 

Using the above example as a guide, we can develop a MATLAB function to 
implement the overlapsave method for a very long input sequence z(n). 
The key step in this function is to obtain a proper indexing for the seg- 
mentation. Given z(n) for n 2 0, we have to set the first (M - 1) samples 
to zero to begin the block processing. Let this augmented sequence be 

b 
?(n)={O 0 ... O,z(n)}, n 1 0  u 

(M-1) zerm 

and let L = N - M + 1, then the kth block zk(n), 
given by 

0 5 n 5 N - 1, is 

~ r ~ ( n )  =?(m); ICL m 5 k L t  N - 1, k 2 0, 0 5 TI 5 N -  1 

The total number of blocks is given by 

where N, is the length of z(n) and 1.1 is the truncation operation. Now 
each block can be circularly convolved with h(n) using the circonvt 
function developed earlier to obtain 

Finally, discarding the first (M - 1) samples from each yk(n) and con- 
catenating the remaining samples, we obtain the linear convolution y(n). 
This procedure is incorporated in the following ovrlpsav function. 

function Cyl - ovrlpsav(x,h.N) 
X Overlap-Save method of block convolution 
y ---------------------------------------- 
X Cyl - ovrlpsav(x,h,N) 
X J = output sequence 
X x = input sequence 
X h = impulse response 
% N = block length 
X 
Lenx = length(x1; M - length(h1; 
MI = N-1; L - N-Ml; 
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h = [h zeros(l,N-M)l; 
% 
x - [zeros(l,Ml), x, zeros(l,N-l)l; % preappend (M-1) zeros 
K = floor((Lenx+Hl-l)/(L)); 
Y = zeros(K+l,N); 
Y. convolution with succesive blocks 
for k=O:K 
xk = r(k*L+l:k*L+N); 
Y (k+l, : ) = circonvt (xk,h.N) ; 
end 
Y = Y(:,H:N)’; 
y = (YC:))’; 

% W of blocks 

% discard the first (H-1) samples 
% assemble output 

It should be noted that the ovrlpsav function as developed here is not 
the most efficient approach. We will come back to  this issue when we 
discuss the fast Fourier transform. 

0 EXAMPLE 5.19 To verify the operation of the ovrlpsav function, let us consider the sequences 
given in Example 5.18. 

Solution MATLAB Script 
>> n = 0:9; x = n+l; h - [l,O,-l]; N = 6; 
>> y - ovrlpsav(x.h,N) 
Y ’  

1 2  2 2 2 2 2 2 2 2 - 9 - 1 0  

This is the correct linear convolution as expected. 0 

There is an alternate method called an owerlap-add method of block 
convolutions. In this method the input sequence z(n) is partitioned into 
nonoverlapping blocks and convolved with the impulse response. The re- 
sulting output blocks are overlapped with the subsequent sections and 
added to form the overall output. This is explored in Exercise 5.20. 

T H E  FAST FOURIER TRANSFORM 
I 
I 

The DFT (5.24) introduced earlier is the only transform that is discrete in 
both the time and the frequency domains, and is defined for finite-duration 
sequences. Although it is a computable transform, the straightforward 
implementation of (5.24) is very inefficient, especially when the sequence 
length N is large. In 1965 Cooley and Tukey 141 showed a procedure to  
substantially reduce the amount of computations involved in the DFT. 
This led to  the explosion of applications of the DFT, including in the 
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digital signal processing area. Furthermore, it also led to the development 
of other efficient algorithms. All these efficient algorithms are collectively 
known as fast Fourier transform (FFT) algorithms. 

Consider an N-point sequence z(n). Its N-point DFT is given by 
(5.24) and reproduced here 

N - 1  

X ( k )  = z(n)WEk, 0 5 k 5 N - 1 (5.46) 
n=O 

where WN = e-j2*IN. To obtain one sample of X ( k ) ,  we need N complex 
multiplications and (N-1) complex additions. Hence to obtain a complete 
set of DFT coefficients, we need N2 complex multiplications and N(N - 
1) N N a  complex additions. Also one has to store N 2  complex coefficients 
{WEk} (or generate internally at an extra cost). Clearly, the number of 
DFT computations for an N-point sequence depends quadratically on N, 
which will be denoted by the notation 

For large N,  o (N2) is unacceptable in practice. Generally, the processing 
time for one addition is much less than that for one multiplication. Hence 
from now on we will concentrate on the number of complex multiplica- 
tions, which itself requires 4 real multiplications and 2 real additions. 

Goal of an Eficient Computation In an efficiently designed algo- 
rithm the number of computations should be constant per data sample, 
and therefore the total number of computations should be linear with 
respect to N. 

The quadratic dependence on N can be reduced by realizing that most 
of the computations (which are done again and again) can be eliminated 
using the periodicity property 

and the symmetry property 

of the factor {WEk}. 
One algorithm that considers only the periodicity of WEk is the 

Goertzel algorithm. This algorithm still requires CN = o(Nz) multiplica- 
tions, but it has certain advantages. This algorithm is described in Chap 
ter 10. We first begin with an example to illustrate the advantages of the 
symmetry and periodicity properties in reducing the number of compu- 
tations. We then describe and analyze two specific FFT algorithms that 
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require CN = o(N1ogN) operations. They are the decimation-in-time 
(DIT-FFT) and decimation-in-frequency (DIF-FFT) algorithms. 

0 U(AMPLE5.20 Let us discuss the compu@tions of a 4-point DFT and develop an efficient 
algorithm for its computation. 

3 

X ( k )  = Ez(n)W,"', 0 5 k 5 3; W4 = e-'2z'4 = - j  
n=O 

sdutii The above computations can be done in the matrix form 

which requires 16 complex multiplications. 

Efficient Apprwch: Using periodicity, 

and substituting in the above matrix form, we get 

Using symmetry, we obtain 

X ( 0 )  = ~(0) + s(1) + ~ ( 2 )  + ~ ( 3 )  = [z(O) + 4 2 ) ]  + [ ~ ( 1 )  + ~ ( 3 ) ]  -- 
91 92 

X ( l )  = ~(0) - j ~ ( l )  - 42) +j2(3) = Iz(O) - 4 2 ) )  -j[.(l) - ~ ( 3 ) ]  -- 
hi  hi  -- X ( 2 )  = z(0) - z(1) + 4 2 )  - 4 3 )  = [2(0) + 4211 -Iz(l) + 4311 
91 92 
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Step 1 
91 = z(0) + 4 2 )  
gz = z(1) 4- Z(3) 
hl = z(0) - z(2) 
hz = z(1) - 4 3 )  

Then each element of the resultant matrix is multiplied by {wq}, where p is 
the row index and q is the column index; that is, the following dot-product is 
p e r f O l X l e d .  

Step 2 
X ( 0 )  = 91 + gz 
x(1) = hi - jhz 
X(2) = g1 - gz 

(5.47) 

X ( 3 )  = hl + jhz  

FIGURE 5.18 Signdflowgmph in Ezample 5.20 
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Finally, two more smaller %point DFTs are taken of mw vectors. 

Although this interpretation seems to have more multiplications than the effi- 
cient algorithm, it does suggest a systematic approach of computing a larger 
DFT based on smaller DFTs. 0 

DIVIDE-AND- 
COMBINE 
APPROACH 

To reduce the DFT computation’s quadratic dependence on N, one must 
choose a composite number N = LM since 

L2 + M2 << N2 for large N 

Now divide the sequence into M smaller sequences of length L, take M 
smaller Lpoint DFTs, and then combine these into a larger DFT using 
L smaller M-point DFTs. This is the essence of the divide-and-combine 
approach. Let N = LM, then the indices n and k in (5.46) can be written 
as 

and write sequences z(n) and X ( k )  as arrays z(e, m) and X(p ,  q), respec- 
tively. Then (5.46) can be written as 

M-1 L-1 

X ( P ,  q) = C C z(t, m)WhMe+m)’+LQ) (5.49) 
m=O L=O 

M-point DFT 
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Hence (5.49) can be implemented as a threestep procedure: 

1. First, we compute the L-point DFT array 

L-1 

e=o 
F(p,m)=xz(! ,m)Wp; O _ < p I L - l  

for each of the columns m = 0,. . . , M - 1. 
2. Second, we modify FCp, m) to obtain another may. 

(5.50) 

(5.51) 

The factor Wgm is called a twiddle factor. 
3. Finally, we compute the M-point DFTs 

M-1 
X @ , q )  = G(p,m)Wzq 0 5 q 5 M - 1 (5.52) 

m=O 

for each of the rows p = 0,. . . , L - 1. 

The total number of complex multiplications for this approach can now 
be given by 

cN = M L ~  + N +  L M ~  < o(N~) (5.53) 

This procedure can be further repeated if M or L are composite num- 
bers. Clearly, the most efficient algorithm is obtained when N is a highly 
composite number, that is, N = R”. Such algorithms are called mdiz-R 
FFT algorithms. When N = R T q  ..., then such decompositions are 
called mized-mdix FFT algorithms. The one most popular and easily pro- 
grammable algorithm is the radix-2 FFT algorithm. 

RADIX-2 FFT 
ALGORITHM 

Let N = 2”; then we choose M = 2 and L = N/2 and divide x(n) into 
two Nla-point sequences according to (5.48) as 

The sequence gl(n) contains even-ordered samples of z(n), while gz(n) 
contains odd-ordered samples of z(n). Let Gl(k) and Gz(k) be Nla-point 
DFTs of g1(n) and gZ(n), respectively. Then (5.49) reduces to 

~ ( k )  = ~ ~ ( k )  + w $ G ~ ( ~ ) ,  o 5 k I N - 1 (5.54) 
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This is called a merging formula, which combines two N/%-point DFTs 
into one N-point DFT. The total number of complex multiplications re- 
duces to 

This procedure can be repeated again and again. At each stage the se- 
quences are decimated and the smaller DFTs combined. This decimation 
ends after Y stages when we have N one-point sequences, which are also 
one-point DFTs. The resulting procedure is called the decimation-in-time 
FFT (DIT-FFT) algorithm, for which the total number of complex mul- 
tiplications is 

CN = NY = NlogZN 

Clearly, if N is large, then CN is approximately linear in N, which was 
the goal of our efficient algorithm. Using additional symmetries, CN can 
be reduced to 8 log, N. The signal flowgraph for this algorithm is shown 
in Figure 5.19 for N = 8. 

FIGURE 5.19 Decimation-in-tame FFT structure for N = 8 
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In an alternate approach we choose L = 2, M = N/2 and follow 
the steps in (5.49). Note that the initial DFTs are %-point DFTs, which 
contain no complex multiplications. From (5.50) 

F(0,m) =s(O,m)+x(l,m)k@ 

F(1,m) =x(O,m)+z(l,m)Wz' 

= z(n) + z(n + N/2), 0 5 n 5 N/2 

= x(n) - x(n + N/2), 0 5 n 5 N/2 

and from (5.51) 

G(0, m) = F(0, m)Wi 
= x(n) + x(n + N/2), 0 5 n 5 N/2 

(5.55) 
G(1,m) = F(l,m)W," 

= I.(.) - ~ ( n  + N/2)] WE, 0 5 n 5 N/2 

Let G(0,m) = &(n) and G(1,m) = &(n) for 0 5 n 5 N/2 - 1 (since 
they can be considered as time-domain sequences); then from (5.52) we 
have 

(5.56) 

This implies that the DFT values X(k) are computed in a decimated 
fashion. Therefore this approach is called a decimation-in-freqzlency FFT 
(DIF-FFT) algorithm. Its signal flowgraph is a transposed structure of 
the DIT-FFT structure, and its computational complexity is also equal 
to f logz N. 

MATLAB 
IMPLEMEN- 
TATION 

MATLAB provides a function called f f t to compute the DFT of a vector x. 
It is invoked by X = fft(x,N), which computes the N-point DFT. If the 
length of I(. is less than N, then x is padded with zeros. If the argument N 
is omitted, then the length of the DFT is the length of x. If x is a matrix, 
then f ft (x,N) computes the N-point DFT of each column of x. 

This f f t function is written in machine language and not using MAT- 
LAB commands (i.e., it is not available as a .m file). Therefore it executes 
very fast. It is written as a mixed-radix algorithm. If N is a power of 
two, then a high-speed radii-2 FFT algorithm is employed. If N is not 
a power of two, then N is decomposed into prime factors and a slower 
mixed-radix FFT algorithm is used. Finally, if N is a prime number, then 
the fft function is reduced to the raw DFT algorithm. 
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The inverse DFT is computed using the ifft function, which has the 
same characteristics as f f t. 

0 EXAMPLE 5.21 In this example we will study the execution time of the fft function for 1 5 
N 5 2048. This win reveal the dividP-and-combine strategy for various values 
of N .  

solution To determine the execution time, MATLAB provides two functions. The clock 
function provides the instantaneous clock reading, while the etime(t1, t2) func- 
tion computes the elapsed time between two time marks t 1 and t2. To determine 
the execution time, we will generate random vectors from length 1 through 2048, 
compute their FFTs, and save the computation time in an array. Finally, we 
will plot this execution time versus N .  

MATLAB Script 
>> Nmax = 2048; 
>> f f t-time=zeros(l ,Nmar) ; 
>> for n=i:l:Nmax 
>> x-rand(i,n); 
>> 
>> end 
>> n=[i:l:Nmaxl; 
>> plot(n,fft-time,’.’) 
>> xlabel(’N’);ylabel(’Time in Sec.’) 
>> title(’FFT execution times’) 

t-clock; fft (x) ;fft_time(n)=etime(clock, t) ; 

The plot of the execution times is shown in Figure 5.20. This plot is very in- 
formative. The points in the plot do not show one clear function but appear 
to group themselves into various trends. The uppermost group depicts a o(N*) 
dependence on N ,  which means that these values must be prime numbers b e  
tween 1 and 2048 for which the FFT algorithm defaults to the DFT algorithm. 
Similarly, therearegroups corresponding to theo(N2/2), o ( N 2 / 3 ) ,  o ( N 2 / 4 ) ,  
and so on, dependencies for which the number N has fewer decompositions. 
The last group shows the (almost linear) o ( N  log N )  dependence, which is for 
N = 2”,0 5 v 5 11. For these values of N ,  the radii-2 FFT algorithm is used. 
For all other values, a mixed-radix FFT algorithm is employed. This shows that 
the divideand-combine strategy is very effective when N is highly composite. 
For example, the execution time is 0.16 second for N = 2048, 2.48 seconds for 

0 N = 2047, and 46.96 seconds for N = 2039. 

The MATLAB functions developed previously in this chapter should 
now be modified by substituting the fft function in place of the dft 
function. From the above example care must be taken to use a highly 
composite N. A good practice is to choose N = 2” unless a specific 
situation demands otherwise. 
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FIGURE 5.20 FFT ezecution times for 1 <= h' <= 2048 

FAST CONVO- 
LUTIONS 

The conv function in MATLAB is implemented using the filter function 
(which is written in C) and is very efficient for smaller values of N (< 50). 
For larger values of N it is possible to speed up the convolution using the 
FFT algorithm. This approach uses the circular convolution to implement 
the linear convolution, and the FFT to implement the circular convolu- 
tion. The resulting algorithm is called a fast convolution algorithm. In 
addition, if we choose N = 2" and implement the radix-2 FFT, then the 
algorithm is called a high-speed convolution. Let x1 (n) be a N1-point se- 
quence and 52 (n) be a Nz-point sequence; then for high-speed convolution 
N is chosen to be 

(5.57) 

where r.1 is the smallest integer greater than x (also called a ceiling 
function). The linear convolution x1 (n) * xz (n) can now be implemented 
by two N-point FFTs, one N-point IFFT, and one N-point dot-product. 

x1 (n) * x~ (n) = IFFT [FFT [q (n)] . FFT [zz (n) ] ]  (5.58) 

For large values of N,  (5.58) is faster than the timedomain convolution 
as we see in the following example. 
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0 EXAMPLE 5.22 To demonstrate the effectiveness of the high-speed convolution, let us compare 
the execution times of two approaches. Let 51 (n) be an Lpoint uniformly 
distributed random number between [O, 11, and let zz (n) be an Lpoint Gaussian 
random sequence with mean 0 and variance 1. We will determine the average 
execution times for 1 5 L 5 150, in which the average is computed over the 100 
realizations of random sequences. 

Sdution MATLAB Script 
conv-time = zeros(l,i50); fft-time = zeros(l.150); 
x 
for L = 1:150 

tC = 0; tf=O; 

for I=1:100 
N = 2*L-i; nu = ceil(logiO~NI~/logi0~2~~; N = 2-nu; 

h = randn(1.L); 
x = raud(1.L); 
to = clock; yi = conv(h,x); tl==etime(clock,tO); 
tC = tc+ti; 
tO = clock; y2 = ifft(fft(h,N) .*fft(x,N)); tl=etime(clock,tO); 
tf = tf+tZ; 

end 

conv-time (L) ;;tc/100 ; 
f f t-time(L)=tf /loo; 

x 

end 
x 
n = 1:150; subplot(l,l,l); 
plot(n(25: 160) ,conv-time(25: 150) ,n(25: 150) ,fft_time(25: 150)) 

Figure 5.21 shows the linear convolution and the high-speed convolution times 
for 25 5 L 5 150. It should be noted that these times are afTected by the 
computing platform used to execute the MATLAB script. The plot in Figure 
5.21 was obtained on a 33-MHz 486 computer. It shows that for low dues of 
L the linear convolution is faster. The crossover point appears to be L = 50, 
beyond which the linear convolution time increases exponentially, while the 
high-speed convolution time incresses fairly linearly. Note that since N = 2”, 

0 the high-speed convolution time is constant over a range on L. 

HIGH-SPEED 
BLOCK CON- 
VOLUTIONS 

Earlier we discussed a block convolution algorithm called the overlapand- 
save method (and its companion the overlapand-add method), which is 
used to convolve a very large sequence with a relatively smaller sequence. 
The MATLAB function ovrlpsav developed in that section uses the DFT 
to implement the linear convolution. We can now replace the DFT by 
the radix-2 FFT algorithm to obtain a high-speed overlapand-save algo- 
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rithm. To further reduce the computations, the FFT of the shorter (fixed) 
sequence can be computed only once. The following hsolpsav function 
shows this algorithm. 

function [yl - hsolpsav(x,h,N) 
X High-speed Overlap-Save method of block convolutions using FFT x .............................................................. 
X [yl = hsolpsav(x,h,N) 
X y = output sequence 
1 x = input sequence 
X h = impulse response 
x N = block length (must be a power of two) 
x 
N = 2~(ceil(loglO(N)/loglO(2)) ; 
Lenr = length(x); M = length(h1; 
M1 = M-1; L = N-Mi; 
h = fft(h,N); 
x 
x = [zeros(l,Ml), I, zeros(l,N-l)l; 
K = floor((Le~+Ml-l)/(L)); 1 Y of blocks 
Y = zeros(K+l,N); 
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for b0:K 
xk - fft(x(k*L+l:k*L+N)); 
Y(k+l, : ) = realcif ft (rk. *h) 1 ; 
end 
Y = Y(:,M:N)’; JT = (Y(:))’; 

A similar modification can be done to the overlapand-add algorithm. 

PROBLEMS 
I 
I 

P5.1 Determine the DFS coefficients of the following periodic sequences using the DFS definition, 
and verify by using MATLA8. 

a. Zl(n) = {2 ,0 ,2 ,0 } ,  N = 4 
b. 52 (n) = (0, 0, 1, 0, 0},  N = 5 

d. 54(n) = { j , j ,  - j ,  - j } ,  N = 4 
e. &(n)={I , j , j , l } ,  N = 4  
Determine the periodic sequences, given the following periodic DFS d c i e n t s .  First w e  
the IDFS definition and then verify using MATLAB. 
a. Z I  ( k )  = (5 ,  -2j ,  3 , 2 j ) ,  N = 4 

C. Z s ( n ) = ( 3 , - 3 , 3 , - 3 ) ,  N = 4  

P5.2 

b. X 2  ( k )  = (4, -5,3,  -5},  N = 4 
C.  X a ( k ) = { 1 , 2 , 3 , 4 , 5 } ,  N = 5  
d. * 4 ( k ) = ( 0 , 0 , 2 , 0 } ,  N = 4  
e. Zt ( k )  = { O , j ,  -2j ,  -j}, N = 4 

Let &(n) be periodic with hndamental period N = 50, where one period is given by P5.9 

, O s n 1 2 5  
z,(n) = {neT 2 6 1 n 1 4 9  

and let &(n) be periodic with fundamental period N = 100, where one period is given by 

These two periodic sequences differ in their periodicity but otherwise have equal nonzero 

a. Find the DFS X I  ( k )  of i l (n )  and plot samples (using the stem function) of its 
magnitude and angle versus k.  
b. Find the DFS & (k) of &(n) and plot samples of its magnitude and angle versus k.  
c. What is the difference between the above two DFS plots? 

samples. 
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P5.4 Consider the periodic sequence il(n) given in Problem 5.3. Let &(n) be periodic with 
period 100, obtained by concatenating two periods of Zl(n), that is, 

53(n) = h l ( 4  f l ( ~ ) l P E R I O D I C  

Clearly, Zs(n) is different from &(n) of Problem 3 even though both of them are periodic 
with period 100. 
a. Find the DFS x3 (k) of &(n) and plot samples of its magnitude and angle versus k. 
b. What effect does the periodicity doubling have on the DFS? 

c. Generalize the above result to M-fold periodicity. In particular, show that if 

EA.f(n) = Z1(n), . . . ,i1(n) [-I PERIODIC 

then 

2~ (Mk) = M x i  ( k )  , k = 0,1,. . . , N - 1 

X M  (k) = 0, k # 0, M,. . . ,MN 

P5.5 Let X(e'") be the DTFT of a 10-point sequence: 

I (n) = {2,5,3, -4, -2,6,0, -3, -3,2) 

a. Let 

%point 
yi (n) =IDFS [X(e'o),X(d'2"'3),X(e'4"'3)] 

Determine yl (n) using the frequency sampling theorem. Verib your answer using MATLAB. 
b. Let 

ZC-point 
yp (n) = IDFS [X(e'o),X(&2r"/o), X(d4"I3) ,  . . . , X(dZ*('9)'20)] 

Determine y2 (n) using the frequency sampling theorem. Verify your answer using MATLAB. 
A 12-point sequence is I (n) defined BS P5.6 

z (n) = {I, 2,3,4,5,6,6,5,4,3,2,1) 

a. Determine the DFT X (k) of z (n). Plot (using the stem function) its magnitude and 
phase. 
b. Plot the magnitude and phase of the DTFT X(e'") of I (n) using MATLAB. 
c. Verify that the above DFT is the sampled version of X(e'"). It might he helpful to 
combine the above two plots in one graph using the hold function. 

d. Is it possible to reconstruct the DTFT X ( g W )  from the DFT X (k)? If posible, give the 
necessary interpolation formula for reconstruction. If not possible, state why this 
reconstruction cannot be done. 
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P5.7 Plot the DTFT magnitudes of the following sequences using the DFT as a computation 
tool. Make an educated guess about the length N so that your plots are meaningful. 

a. 51 (n) = 2 cos (0.27rn) [u (n) - u (n - lo)] 
b. x 2  (n) = sin(0.45rn) sin (0.55sn) , 0 5 n 5 50 

c. 23 (n) = 3 (2)", -10 5 n 5 10 

d. 14 (n) = (-0.5)", -10 5 R 5 10 
e. 15 (n) = 5 (0.9ej"'')" u (n) 

Let If(@"') be the frequency response of a real, causal discretetime LTI system. 

a. If 
P5.8 

5 

R e { H  (2w)} = x ( 0 . 5 ) k ~ ( k w )  
k=O 

determine the impulse response h (n) analytically. Verify your answer using IDFT as a 
computation tool. Choose the length N judiciously. 

b. If 

5 -1 

Im { H  (2'")) = 2Psin (Pw) and I-': H ( 2 " ) d u  = 0 
(-0 

determine the impulse response h (n) analytically. Verify your answer using IDFT as a 
computation tool. Again choose the length N judiciously. 

Let X (k) denote the N-point DFT of an N-point sequence x (n). The DFT X (k) itself is 
an N-point sequence. 

a. I f  the DFT of X (k) is computed to obtain another N-point sequence zi (n), show that 

P5.9 

+I (TI) = NX ((TI))~, 0 5 TI 5 N - 1 

b. Using the above property, design a MATLAB function to  implement an N-point circular 
folding operation z2 (n) = XI  TI))^. The format should be 

x2 = circfold(x1,N) 
X Circular folding using DFT 
X x2 = circfold(x1,N) 
X r2 = circular ly  folded output sequence 
X xl = input sequence of length <= N 
X N = circular  buffer length 

c. Determine the circular folding of the following sequence: 

zi (n) = {1,2,3,4,5,6,6,5,4,3,2,1)  

~~ ~ 
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P5.10 Complex-valued N-point sequences are decomposed into N-point even and odd sequences 
using the following relations: 

Then 

D F T b k  (n)] = Re Ix(k)] = Re [x ( ( - k ) ) ~ ]  

DFT [zoc (n)] = j Im Ix(k)] = j Im [x ( ( - k ) ) N ]  

a. Prove the above property analytically. 
b. Modify the circevod function developed in the chapter so that it can be used for 
complex-valued sequences. 
c. Verify the above symmetry property and your MATLAB function on the following 
sequence. 

z(n)= (0.9d"/3)"[u(n) -u(n-20)] 

P5.11 The first five values of the &point DFT of a real-valued sequence z (n) are given by 

{0.25,0.125 - j0.3,0,0.125 - j0.06,0.5} 

Determine the DFT of each of the following sequences using properties. 
a. z1 (n) = z ((2 -a)), 

b. 22 (n) = z ( (n + 5)lLO 
c. 23 (n) = z2 (n) 

d. 1 4  (n) = z (n) @ x ((-n)I8 
e. z5 (n) = z (n) 24' 

P5.12 If X ( k )  is the DFT of an N-point complex-valued sequence 

z (n) = ZR (n) + j z r  (n) 

where z~ (n) and z r  (Q) are the real and imaginary parts of x (n),  then 

XR ( k )  2 DFT [ZR (n)] = Xec (k) 

j X r  ( k )  2 DFT 12.1 (n)) = X,, (k) 

where X,, (k) and X,, (k) are the circular-even and circular-odd components of X (k) as 
defined in Problem 5.10. 

a. Prove the above property analytically. 
b. This property can be used to  compute the DFTs of two real-valued N-point sequences 
using one N-point DFT operation. Specifically, let z1 (n)  and zz (n) be two N-point 
sequences. Then we can form a complex-valued sequence 

z (n) = 2 1  (n) + jzz (n) 
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and use the above property. Develop a MATLAB function to implement this approach with 
the following format. 

function CXl,X2] = real2dft(xl,x2,N) 
x D F T s  of tvo rea l  sequences 
X [ X i  .X21 = real2dft(xl,x2,N) 
X X i  = n-point DFT of 11 
x X2 = n-point DFT of x2 
1 xl = sequence of length <= N 
% 12 = sequence of length <- N 
X N = length of DFT 

c. Compute the DFTs of the following two sequences: 

x (n) = co8 ( 0 . 2 5 4 ,  z (n) = sin ( 0 . 7 5 4  ; 0 5 n 5 63 

P5.13 Using the frequency-domain approach, develop a MATLAB function to detennine a circular 
shift t ( (n - TII))~, given an N1-point sequence z(n), where Nl 5 N. Your function should 
have the following format. 

function y = cirshftf (x,m,N) 
x 
Yduuction y-cirshftf (x,m,N) 
x 
X x ................................................................... 
x 
x x : input sequence of length <= N 
x m : sample sh i f t  
x N : size of circular buffer 

Circular sh i f t  of m samples vrt size N in sequence I: (freq domain) 

y : output sequence containing the circular sh i f t  

% Method: y(n) = idft(dft(x(n))*UN-(mlr)) 
x 
X If m is a scalar then y is a sequence (rov vector) 
X If m is a vector then y is a matrix, each rov is a circular sh i f t  
% in x corresponding t o  entries in  vecor n 
x M and x should not be matrices 

Verify your function on the following sequence 

XI (n) = 11 - n, 0 5 n 5 10 

with rn = 10 and N = 15. 

P5.14 Using the analysis and synthesis equations of the DFT, show that 
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This is commonly referred to as a Parsed's relation for the DFT. Verify this relation by 
using MATLAB on the sequence in Problem 5.9. 

P5.15 Using the frequency domain approach, develop a MATLAB function to implement the 
circular convolution operation between two sequences. The format of the sequence should be 

function x3 = circonvf (xl,x2,N) 
X Circular convolution i n  the frequency domain 
X x3 = circonvf(xl,x2,N) 
X x3 = convolution resu l t  of length N 
X xi = sequence of length <= N 
X x2 = sequence of length <= N 
X 

P5.16 The circonvt function developed in this chapter implements the circular convolution as a 
matrix-vector multiplication. The matrix corresponding to the circular shifts 
(2 ((n - V Z ) ) ~  ; 0 5 n 5 N - 1) has an interesting structure. This matrix is called a 
circdant matrix, which is a special case of the Toeplitz matrix introduced in Chapter 2. 
a. Consider the sequences given in Example 5.13. Express 2 1  (n) as a column vector x1 and 
22 ((n - V Z ) ) ~  as a matrix XZ with rows corresponding to n = 0,1,2,3.  Characterize this 
matrix XZ. Can it completely be described by its first row (or column)? 
b. Determine the circular convolution BS Xzxl and verify your calculations. 

P5.17 Develop a MATLAB function to  construct a circulant matrix C, given an N-point sequence 
z(n). Use the c i r shf t f  function developed in Problem 5.13. Your subroutine function 
should have the following format. 

N = length of circular buffer 

function LC] = circulnt(x.N) 
X Circulant Matrix from an N-point sequence 
1 ECI = circulnt(x,N) 
X C = circulant matrix of s ize  NxN 
X x = sequence of length <= N 
X N = s ize  of circulant matrix 

Using this function, modify the circular convolution function circonvt discussed in the 
chapter so that the for .  . . end loop is eliminated. Verify your functions on the sequences in 
Problem 5.16. 

P5.18 Compute the N-point circular convolution for the following sequences. 

a. a ( n ) = { l , l , l , l } ,  z z ( n ) = c 0 ~ ( x n / 4 ) R ~ ( n ) ;  N = 8  
b. ZI (n) = cos (2?m/N)  RN (n) , zz (n) = sin (27rn/N) RN (n) ; N = 32 

C. 2 1  (n) = (0.8)" RN (n) , 22 (n) = (-0.8)" R N  (n) ; 
d. 21 (n) = n7Z.v (n), X z ( n )  = (N- ~ ) R N  (n); 

e. z1 (n) = {l,-l,l ,-l}, zz (n) = {l,O,-l,O}; 
P5.19 For the following sequences compute (i) the N-point circular convolution 23 (n) = 51 (n) 

@ zz (n), (ii) the linear convolution 2 4  (n) = ZI (n) * 2 2  (n), and (iii) the error sequence 
e (n) = 23 (n) - 24 (n). 

N = 20 
N =  10 

N = 4 
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a. 21 (n) = {1,1,1,1} , xz (n) = cos ( 7 4 4 )  7b (n) ; 
b. 21 (n) = cas ( 2 4 N )  'R16 (n) , zz (n) = sin (2?rn/N) 7216 (n) ; 
c. ZI (n) = (0.8)" 'RIO (n), zz (n) = (-0.8)"Rlo (n) ; N = 15 
d. 21 (n) = nR10 (n) , zz (n) = (N - n) 72.10 (n) ; 
e. 21 (n) = { l , - l , l , - 1 } ,  m ( n )  = { l , O , - l , O } ;  
I n  each case verify that e (n) = x4 (n + N).  

P5.20 The overlapadd method of block convolution is an alternative to the overlapsave method. 
Let x (n) be a long sequence of length ML, where M, L > 1. Divide x (n) into M segments 
{z, (n) , rn = 1, .  . . , M}, each of length L. 

N = 8 
N = 32 

N = 10 
N = 5 

M-1 mM 5 n 5 (n+ 1) M -  1 
so that z (n) = c xm (n) 

m=O elsewhere 
x,,, (n) = { :,(n) 7 

Let h (n) be an L-point impulse response; then 

M-1 M-1 

y(n) = z(n) * h(n) = C z, (n) * h(n) = c arm (n); ym (n) A zm (n) * h(n) 
Wb=O m=O 

Clearly, ym (n) is a (2L - 1)-point sequence. In this method we have to save the 
intermediate convolution results and then properly overlap these before adding to form the 
final result y (n). To use DFT for this operation, we have to choose N 2 (2L - 1). 
a Develop a MATLAB function to implement the overlapadd method using the circular 
convolution operation. The format should be 

function Cyl - ovrlpadd(r,h,N) 
% Overlap-Add method of block convolution 
% Cyl = ovrlpadd(x.h,N) 
% 
X y = output sequence 
X x = input sequence 
% h = impulse response 
2 N = block length >- 2*length(h)-l 

b. Incorporate the radii-2 FFT implementation in the above function to obtain a 
high-speed overlapadd block convolution routine. Remember to choose N = 2". 
c. Verify your functions on the following two sequences: 

z(n)=cos(an/500)'Rsooo(n), h(n)={1,-1,1,-1}  

PS.21 Given the sequences 11 (n) and 12 (n) shown below: 

21(n)={2,1,1,2} ,  22(n)={1,-1,-1,1} 

a. Compute the circular convolution x1 (n) @ 2 2  (n) for N = 4, 7, and 8. 
b. Compute the linear convolution 11 (n) * zz (n). 
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c. Using results of calculations, determine the minimum value of N necessary so that linear 
and circular convolutions are the same on the N-point interval. 
d. Without performing the actual convolutions, explain how you could have obtained the 
result of part c. 

P5.22 Let 

Acos(2*t'n/N), 0 _< n 5 N - 1 
= A cos ( 2 ~ t ' n l N )  RN (n) 

elsewhere 
1(n) = 

where t' is an integer. Notice that 1 (n) contains ezoctly t' periods (or cycles) of the m i n e  
waveform in N samples. This is a windowed cosine sequence containing no leakage. 
a. Show that the DFT X (k) is a real sequence given by 

AN AN 
2 2 

b. Show that if t' = 0, then the DFT X (k) is given by 

X ( k )  = -6(k - t') + -6(k - N + t ) ;  0 5 k 5 ( N  - l ) ,  0 < t' < N 

X ( k )  = A N 6 ( k ) ;  0 5 5 5 ( N  - 1) 

c. Explain clearly how the above results should be modified if e < 0 or t' > N .  
d. Verify the results of parta a, b, and c by using the following sequences. Plot the real 
parts of the DFT sequences using the stem function. 
(i) sl (n)  = 3cos(0.047rn)Rm(n) 
(ii) 1 2  (n) = 5Rso (n) 
(iii) 1 3  (n) = (1 + 2cos ( 0 . 5 n )  + cos ( ~ n ) ]  'RIW (n) 
(iv) 2 4  (n) = CQS (25m/16) %4 (n) 
(v) zg(n) = [4cos(O.l~n)-3cos(1.97rn)]R~(n) 

P5.23 Let 1 (n) = A c o s ( w o n ) R ~  (n), where wo is a real number. 
a. Using the properties of the DFT, show that the real and the imaginary parts of X (k) 
are given by 

X (k) = XR (k) + j X r  (k) 

sin [T ( k  - foN)]  
sin [T (k - f o N )  /N ]  

T ( N - 1 )  sin [T ( k  - N + foN)]  
+ ( 4 2 )  COB [ 7 (k + f o N ) ]  sin [T (k  - N + f o N )  /N]  

sin [T (k - N + foN)]  
- (A/2)sin [T(%- l )  ~ ( k + f o N ) ]  sin [T (k  - N + foN)  / N ]  

b. The above result implies that the original frequency wo of the cosine waveform has lenked 
into other frequencies that form the harmonics of the timelimited sequence, and hence it is 
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called the leakage property of cosines. It is a natural result due to the fact that 
band-limited periodic cosines are sampled over noninteger periods. Explain this result using 
the periodic extension Z(n) of 2 (n) and the result in Problem 5.22 part a. 
c. Verify the leakage property using z (n) = co9 ( 5 4 9 9 )  RZOO (n). Plot the real and the 
imaginary parts of X (k) using the stem function. 

P5.24 Let 

Asin(2rrPn/N), 0 5 n 5 N - 1 
elsewhere 

= A sin (2nt'n/N) EN (n) x(n) = 

where e is an integer. Notice that 2 (n) contains ezactly e periods (or cycles) of the sine 
waveform in N samples. This is a windowed sine sequence containing no leakage. 
a Show that the DFT X (k) is a purely imaginary sequence given by 

AN AN 
X ( k )  = - 6 ( k  - P) - -6 (k  - N +P); 0 5 k 5 ( N  - I), 0 < P < N 2 j  2 j  

b. Show that if P = 0, then the DFT X (k) is given by 

X ( k ) = O ;  U < k i ( N - l )  

c. Explain clearly how the above results should be modified if l <  0 or P > N. 
d. Verify the results of parts a, b, and c using the following sequences. Plot the imaginary 
parts of the DFT sequences using the stem function. 
(i) 5 1  (n) = 3sin (0.04rn) Rmo (n) 
(ii) 2 2  (n) = 5sin 1&7~'R50 (n) 

(iii) IS (n) = [2sin (0 .5~n)  +sin (nn)] 72100 (n) 
(iv) 2 4  (n) = sin (25sn/16) %4 (n) 

(v) 2 5  (n) = [4sin(o.lxn) -3sin(1.9?m)]R~(n) 
PS.25 Let z (n) = Asin (won) RN (n), where wo is a real number. 

a. Using the properties of the DFT, show that the real and the imaginary parts of X (k) 
are given by 

sin [T (k - N + foN)] 
sin [r (k - N + foN) /Nl 

T(N- 1) sin [n (k - N + f o N ) ]  
sin [n (k - N + f o N )  / N ]  + (A/2) cos [ 7 (k + f o  N ) ]  
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b. The above result is the leakage property of sines. Explain it using the periodic extension 
5(n) of I (n) and the result in Problem 5.24 part a. 

c. Verify the leakage property using I (n) = sin (57499) 7 b o o  (n). Plot the real and the 
imaginary parts of X (k) using the stem function. 

P5.26 An analog signal x.(t) = 2sin (4d) + ~ C O S  ( 8 d )  is sampled at t = 0.01n for 
n = 0,1,. . . , N - 1 to obtain an N-point sequence I (n). An N-point DFT is used to obtain 
an estimate of the magnitude spectrum of z,,(t). 
a. From the following values of N, &owe the one that will provide the accurate estimate of 
the spectrum of z,(t). Plot the real and imaginary parts of the DFT spectrum (X (k)l. 

b. Fkom the followinn values of N. choose the one that will Drovide the least amount of 
(i) N = 40, (ii) N = 50, (ii) N = 60. 

leakage in the spectrum of s,(t). Plot the real and imaginary parts of the DFT spectrum 
IX @)I. 
(i) N = 90, (ii) N = 95, (ui) N = 99. 

P5.27 Using (5.49), determine and draw the signal flowgraph for the N = 8 point, radix-2 
decimation-in-frequency FFT algorithm. Using this flowgraph, determine the DFT of the 
sequence 

~ ( n )  = ~ ( 7 r n / 2 ) ,  0 5 n 5 7 

P5.28 Using (5.49), determine and draw the signal flowgraph for the N = lbpoint, radii-4 
decimation-in-time FFT algorithm. Using this flowgraph, determine the DFT of the 
sequence 

2 (n) = cos (an/2), 0 5 n 5 15 

P5.29 Let x (n) = cos (sh/99), 0 5 n 5 (N - 1) be an N-point sequence. Choose N = 4" and 
determine the execution times in MATLAB for v = 5,6,. . . ,lo. Verify that these times are 
proportional to 

N log, N 
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t DIGITAL FILTER 
STRUCTURES 

In earlier chapters we studied the theory of discrete systems in both the 
time and frequency domains. We will now use this theory for the process- 
ing of digital signals. To process signals, we have to design and implement 
systems called filters (or spectruni analyzers in some contexts). The filter 
design issue is influenced by such factors as the type of the filter (i.e., IIR 
or FIR) or the form of its implemehtation (structures). Hence before we 
discuss the design issue, we first concern ourselves with how these filters 
can be implemented in practice. This is an important concern because 
different filter structures dictate different design strategies. 

As we discussed earlier, IIR filters are characterized by infinite- 
duration impulse responses. Some of these impulse responses can be 
modeled by rational system functions or, equivalently, by difference equa- 
tions. Such filters are termed as auto-regressive moving average (ARMA) 
or, more generally, as recursive filters. Those IIR filters that cannot be so 
modeled are called nonmursive filters. In DSP, IIR filters generally imply 
recursive ones because these can be implemented efficiently. Therefore 
we will always use the term IIR to imply recursive filtersd Furthermore, 
ARMA filters include moving average filters that are FIR filters. However, 
we will treat FIR filters separately from IIR filters for both design and 
implementation purposes. 

We begin with a description of basic building blocks that are used 
to describe filter structures. In the remaining sections we briefly describe 
IIR, FIR, and lattice filter structures, respectively, and provide MATLAB 
functions to implement these structures. 

182 



BASIC ELEMENTS 
I 

Since our filters are LTI systems, we need the following three elements to 
describe digital filter structures. These elements are shown in Figure 6.1. 

0 Adder: This element has two inputs and one output and is shown 
in Figure 6.l(a). Note that the addition of three or more signals is impla 
mented by successive two-input adders. 

0 Multiplier (gain): This is a single-input, single-output element and 
is shown in Figure 6.l(b). Note that the multiplication by 1 is understood 
and hence not explicitly shown. 

0 Delay element (shifter or memory): This element delays the signal 
passing through it by one sample as shown in Figure 6.l(c). It is imple- 
mented by using a shift register. 

Using these basic elements, we can now describe various structures of 
both IIR and FIR filters. MATLAB is a convenient tool in the development 
of these structures that require operations on polynomials. 

IIR FILTER STRUCTURES 
I 

The system function of an IIR filter is given by 

where b, and a, are the coefficients of the filter. We have assumed without 
loss of generality that = 1. The order of such an IIR filter is called N if 

2-1 
x(n)  ax(n) x(n) - x ( n  - 1) 

(b) Multiplier (c) Delay element 

FIGURE 6.1 T h m  basic elements 
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a~ # 0. The difference equation representation of an IIR filter is expressed 
as 

m=O m=l 

Three different structures can be used to implement an IIR filter: 

0 Direct form: In this form the difference equation (6.2) is imple- 
mented directly as given. There are two parts to this filter, namely the 
moving average part and the recursive part (or equivalently, the numera- 
tor and denominator parts). Therefore this implementation leads to two 
versions: direct form I and direct form I1 structures. 

0 Cascade form In this form the system function H ( z )  in equation 
(6.1) is factored into smaller second-order sections, called biquads. The 
system function is then represented as a grvduct of these biquads. Each 
biquad is implemented in a direct form, and the entire system function is 
implemented as a cascade of biquad sections. 

Parallel form: This is similar to the cascade form, but after factor- 
ization, a partial &action expansion is used to represent H ( z )  as a sum 
of smaller second-order sections. Each section is again implemented in a 
direct form, and the entire system hnction is implemented as a parallel 
network of sections. 

We will briefly discuss these forms in this section. IIR filters are gen- 
erally described using the rational form version (or the direct form struc- 
ture) of the system function. Hence we will provide MATLAB functions for 
converting direct form structures to cascade and parallel form structures. 

DIRECT FORM As the name suggests, the difference equation (6.2) is implemented as 
given using delays, multipliers, and adders. For the purpose of illustration, 
let M = N = 4. Then the difference equation is 

y(n) = ~ T J Z ( ~ )  + blz(n - 1) + b ~ ( n  - 2) + b32(n - 3) + b4z(n - 4) 

- aly(Tl- 1) - azY(n- 2) - a3y(n - 3) - Ql/(n - 4) 

which can be implemented as shown in Figure 6.2. This block diagram is 
called direct f o m  I structure. 

The direct form I structure implements each part of the rational func- 
tion H ( z )  separately with a cascade connection between them. The nu- 
merator part is a tapped delay line followed by the denominator part, 
which is a feedback tapped delay line. Thus there are two separate de- 
lay lines in this structure, and hence it requires eight delay elements. We 
can reduce this delay element count or eliminate one delay line by inter- 
changing the order in which the two parts are connected in the cascade. 
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MATLAB 

TATION 
IMPLEMEN- 

CASCADE 
FORM 

FIGURE 6.2 Direct form I structure 

Now the two delay lines are close to each other, connected by a unity 
gain branch. Therefore one delay line can be removed, and this reduction 
leads to a canonical structure called direct form ZI structure, shown in 
Figure 6.3. It should be noted that both direct forms are equivalent &om 
the input-output point of view. Internally, however, they have different 
signals. 

In MATLAB the direct form structure is described by two row vectors; 
b containing the {b,} coefficients and a containing the {a,} coefficients. 
The structure is implemented by the filter function, which is discussed 
in Chapter 2. 

In this form the system function H ( z )  is written as a product of second- 
order sections with real coefficients. This is done by factoring the numer- 
ator and denominator polynomials into their respective roots and then 
combining either a complex conjugate root pair or any two red roots into 
second-order polynomials. In the remainder of this chapter we assume 



yk(n) =xk+lln) Yk+l(") 

FIGURE 6.4 Biquad section structure 

4 7  - 4 1  
- 4 , 1  2-1 

~ 

that N is an even integer. Then 

B2,l 
2-1 " 

K 
- 1 + Bk,iZ-l + B ~ , z Z - ~  
- n 1 + A*,lz- l+ Ak,2z-2  

k=l 

where K is equal to $, and & , I ,  &,2, Ak,l, and Ak,2 are real numbers 
representing the coefficients of second-order sections. The second-order 
section 

with 

yl(z) bOX(z); YK+l(Z) = y ( z )  

is called the kth biquad section. The input to the kth biquad section is 
the output from the (k - 1)th biquad section, while the output from the 
kth biquad is the input to the (k + 1)th biquad. Now each biquad section 
H k ( Z )  can be implemented in direct form I1 as shown in Figure 6.4. The 
entire filter is then implemented az a cascade of biquads. 

As an example, consider N = 4. Figure 6.5 shows a cascade form 
structure for this fourth-order IIR filter. 
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MATLAB 
IMPLEMEN- 
TATION dir2cas given below. 

Given the coefficients (6,) and {a,} of the direct form filter, we have to 
obtain the coefficients b ~ ,  {Elk,;} ,  and {Ak,,}. This is done by the function 

function [bO,B.Al = dirZcas(b,a); 
Y. DIRECT-form to CASCADE-form conversion (cplxpair version) x ......................................................... 
X [W,B,A] = dirZcas(b,a) 
X bO = gain coefficient 
% B i: K by 3 matrix of real coefficients containing bk's 
% A = K by 3 matrix of real coefficients containing ak's 
% b = numerator polynomial coefficients of DIRECT form 
% a = denominator polynomial coefficients of DIRECT form 

X compute gain coefficient W 
b0 = b(1); b = b/bO; 
a0 = a(1); a = a/aO; 
M) = W/aO; 
x 
I4 = length(b); N = lengthb); 
i f N > U  
b - [b zeros(1,N-M)I; 
elseif U > N 
a = la zeros(l,I4-N)]; N = I4; 
else 
Nn = 0; 
end 
x 
K = floor(N/2); B - zeros(K,3); A = zeros(K.3); 
if K*2 - N; 
b = tb 01; 
a = ta 03; 
end 
% 
broots = cplxpair(roots(b1) ; 
aroots = cplxpair(roots(a)); 
for i=I:Z:2*K 
Brow = broots(i:l:i+l,:); 
Brow = real (poly(Brow) ; 
B(fix((i+l)/2),:) = Brow; 
h o w  = aroots(i:l:i+l,:); 
h o w  = real(poly(how)); 
A(fix((i+l)/2),:) = k o w ;  
end 

The above function converts the b and a vectors into K x 3 B and A 
matrices. It begins by computing 4, which is equal to (assuming 
a0 # 1). It then makes the vectors b and a of equal length by zero- 
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padding the shorter vector. This ensures that each biquad has a nonzero 
numerator and denominator. Next it computes the roots of the B ( z )  and 
A(z )  polynomials. Using the cplxpair function, these roots are ordered in 
complex conjugate pairs. Now every pair is converted back into a second- 
order numerator or denominator polynomial using the poly function. 

The cascade form is implemented using a casf iltr function, which 
is described below. It employs the f i l t e r  function in a loop using the 
coefficients of each biquad stored in B and A matrices. The input is scaled 
by bO, and the output of each filter operation is used as an input to the 
next filter operation. The output of the final filter operation is the overall 
output. 

function y = casfiltr(bO.B,A,x); 
% CASCADE form realization of IIR and FIR filters 

% y = casfiltr(bO,B,A,x); 
% y = output sequence 
1 bO = gain coefficient of CASCADE form 
% 
% 
% x = input sequence 
% 
CK,L] = size(B); 
N = length(x1; 
w = zeros(K+l,N) ; 

for i = 1:l:K 

end 
y = bO*w(K+l,:); 

B = K by 3 matrix of real coefficients containing bk’s 
A = K by 3 matrix of real coefficients containing ak’s 

d l ,  :I = r; 

w(i+l,:) = filter(B(i,:) ,A(i, :) ,v(i, :)) ; 

The following MATLAB function, cas2dir, converts a cascade form 
to a direct form. This is a simple operation that involves multiplication of 
several second-order polynomials. For this purpose the MATLAB function 
conv is used in a loop over K factors. 

function [b,a] = cas2dir(bO,B,A); 
% CASCADE-to-DIRECT form conversion 
y ................................. 
% [b,al = casZdir(bO,B,A) 
% b = numerator polynomial coefficients of DIRECT form 
1 a = denominator polynomial coefficients 04 DIRECT form 
% bO = gain coefficient 
% B = K by 3 matrix of real coefficients containing bk’s 
% A = K by 3 matrix of real coefficients containing ak’s 
% 
EK,Ll = size(B); 
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b = Ell; 
a - [XI; 
for i=l:l:K 
b=conv(b ,B(i, : 1) ; 
a=conv(a,A (i, : 1) : 
end 
b = b*bO; 

0 EXAMPLE 6.1 A filter is described by the following difference equation: 

16y(n) + 12y(n - 1) + 2y(n - 2) - 4y(n - 3) - ~ ( n  - 4) 

= z(n) - 3Z(n - 1) + l h ( n  - 2) - 27~(n - 3) + 1&(n - 4) 

Determine its cascade form structure. 

solution MATLAB Script 
>> b=[l -3 11 -27 181; 
>> a-[16 12 2 -4 -11; 
>> [bO ,B, A] =dir2cas (b,a) 
b0 = 0.0625 
B =  

1.0000 -0.0000 9.0000 
1.0000 -3.0000 2.0000 

A =  
1.0000 1.0000 0.5000 
1.0000 -0.2500 -0.1250 

The resulting structure is shown in Figure 6.6. To check that our cascade struc- 
ture is correct, let us compute the first 8 samples of the impulse response using 
both forms. 

>> delta = impseq(0,0.7); 
delta - 
>> format long 
>> hcas=casfiltr(M),B.A,delta) 

1 0 0 0 0 0 0 0  

0.625 . t r y M  

r 

-0.5 f2-’ 9 f 0.125 fz-’ 2 
Y - 

FIGURE 6.6 Cascnde structure in Ezample 6.1. 
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hcas * 
Columns 1 through 4 
0.06250000000000 -0.23437500000000 0.85546875000000 

2.67651367187500 -1.52264404296875 0.28984069824219 
Columns 5 through 8 

> > hdir-f ilt er (b , a, delt a) 
hdir = 

Columns 1 through 4 
0.06250000000000 - 0 . 2 3 4 3 7 5 0 ~ 0 0 0  0.85546875000000 

2.67651367187500 -1.52264404296875 0.28984069824219 
Columns 5 through 8 

-2.28417968750000 

0.49931716918945 

-2.28417968750000 

0.49931716918945 
CI 

PARALLEL 
FORM 

In this form the system function H(z) is written as a sum of second order 
sections using partial fraction expansion (PFE). 

only ii M > N  

where K is equal to g, and &,o, &,Ir & , I r  and A k . 2  are red numbers 
representing the coefficients of second-order sections. The second-order 
section 

with 

is the kth proper rational biquad section. The filter input is available to 
all biquad sections as well as to the polynomial section if M 2 N (which 
is an FIR part). The output from these sections is summed to form the 
filter output. Now each biquad section H k ( z )  can be implemented in direct 
form 11. Due to the summation of subsections, a parallel structure can be 
built to realize H(z ) .  As an example, consider M = N = 4. Figure 6.7 
shows a parallel form structure for this fourth-order IIR filter. 
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i U 

FIGURE 6.7 PamlLeI form structure for N = 4 

MATLAB 
IMPLEMEN- 
TATION 

The function dir2par given below converts the direct form coefficients 
{b , }  and {a,} into parallel form coefficients {Bk,,} and {Ak , i } .  

function CC,B,AI = dir2par(b,a); 
X DIKKT-form to PAIULLEL-form conversion x ____________________------_----------- 
% CC,B,Al = dir2par(b,a) 
X C = Polynomial part when length(b) >= lengthca) 
X B = K by 2 matrix of real coefficients containing bk's 
% A = K by 3 matrix of real coefficients containing ak's 
% b = numerator polynomial coefficients of DIRECT form 
X a = denominator polynomial coefficients of DIRECT form 
x 
M - length(b); N = length(a1; 

[rl,pl,Cl = residuez(b,a); 
p = cplrpair(pi,10000000*eps); 
I - cplxcomp(p1 .p) ; 
r = rl(1); 

K = floor(lY/2); B = zeros0(,2); A = zeros(K,3); 
if K*2 == N; %N even, order of A(z) odd, one factor is first order 
for i=l:2:N-2 
Brov = r(i:l:i+l,:); 
Arow = p(i:l:i+l,:); 
[Brov,Arowl = residuez(Brov,Arov, [I) ; 
B(fix((i+l)/S), :) = realkow); 
A(fix((i+l)/2) ,:) = real(Arow); 
end 
[Brow,Arow] = residuez(r(N-1) ,p(N-l), [I); 
B(K,:) = [real(Brow) 01; A(K,:) = [real(Arow) 01; 
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else 

Brow = r(i:l:i+l,:); 
Arow = p(i:l:i+l,:); 
[Brow.Arow] = residuez(Brow,Arow, [I); 
B(fix((i+l)/2),:) = real(Brow); 
A(fix((i+l)/2), :) = real(Arow1; 
end 
end 

for i=1:2:N-l 

The dir2cas function first computes the t-domain partial fraction expan- 
sion using the residuez function. We need to arrange pole-and-residue 
pairs into complex conjugate pole-and-residue pairs followed by real pole- 
and-residue pairs. To do this, the cplxpair function from MATLAB can 
be used; this sorts a complex array into complex conjugate pairs. How- 
ever, two consecutive calls to this function, one each for pole and residue 
arrays, will not guarantee that poles and residues will correspond to each 
other. Therefore a new cplxcomp function is developed, which compares 
two shufRed complex arrays and returns the index of one array, which can 
be used to rearrange another array. 

function I = cplxcomp(pl,p2) 
% I = cplxcomp(pl,p2) 
X Compares two complex pairs which contain the same scalar elements 
% but (possibly) at differrent indices. This routine should be 
1 used after CPLXPAIR routine for rearranging pole vector and its 
% corresponding residue vector. 
% p2 = cplxpair(p1) 
% 
I=[] ; 
for j=1: 1 :length(p2) 

if (abs(pl(i)-p2(j)) < 0.0001) 
for i=l: l:length(pl) 

I=[I,il; 
end 

end 
end 
I=I’ ; 

After collecting these pole-and-residue pairs, the dir2cas function com- 
putes the numerator and denominator of the biquads by employing the 
residuez function in the reverse fashion. 

These parallel form coefficients are then used in the function 
parf iltr, which implements the parallel form. The parf iltr function 
uses the filter function in a loop using the coefficients of each biquad 
stored in the B and A matrices. The input is first filtered through the FIR 
part C and stored in the first row of a Y matrix. Then the outputs of all 
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biquad filters are computed for the same input and stored as subsequent 
rows in the v matrix. Finally, all the columns of the v matrix are summed 
to yield the output. 

function y = parfiltr(C,B,A,x); 
X PARALUL form realization of IIR filters 
y ........................................ 
X [yl - parfiltr(C,B,A,x); 
X y = output sequence 
X C = polynomial (FIR) part when M >= N 
X 
1 
% x = input sequence 

B = K by 2 matrix of real coefficients containing bk's 
A = K by 3 matrix of real coefficients containing ak's 

I. 
[K,L] = size(B); 
N = length(x); 
Y - zeros(K+l,N); 
~(1,:) = filter(C.1.x); 
for i = 1:l:K 

end 
v(i+l, : ) = f ilter(B(i, : 1 ,Mi, :) ,I) ; 

y = sum(v); 

To obtain a direct form from a parallel form, the function par2dir can 
be used. It computes poles and residues of each proper biquad and com- 
bines these into system poles and residues. Another call of the residuez 
function in reverse order computes the numerator and denominator poly- 
nomials. 

function Cb,a] = parZdir(C,B.A); 
% PARALLEL-to-DIRECT form conversion 

./. [b,al = parZdir(C,B,A) 
X 
X 
X 
X 
% 
X 
[K,L] = size(A); R = [I;  P = [I; 

for i=l:l:K 
[r,p,k]=residuez(B(i, :) ,A(i, : I ) ;  
R = [R;rl; P - [P;pl; 
end 
[b,d = residuez(R,P,C); 
b = b(:)'; a = a(:)'; 

b =numerator polynomial coefficients of DIRECT form 
a = denominator polynomial coefficients of DIRECT form 
C = Polynomial part of PARALLEL form 
B = K by 2 matrix of real coefficients containing bk's 
A = K by 3 matrix of real coefficients containing ak's 
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0 EXAMPLE 6.2 Consider the filter given in Example 6.1. 

SdUtion 

16y(n) + 12y(n - 1) + 2y(n - 2)  - 4y(n - 3) - y(n - 4) 
= s(n) - 32(n - 1) + Ilz(n - 2) - 27z(n - 3) + 18s(n - 4) 

Now determine its parallel form. 

MATLAB Script 
>> b=[l -3 11 -27 181; 
>> a=c16 12 2 -4 -11; 
>> [C.B, A] dir2par(b,  a) 
C =  

B =  
-18 

10.0500 -3.9500 
28.1125 -13.3625 

A =  
1.OOOO 1.0000 0.5000 
1 .  OOOO -0.2500 -0.1250 

The resulting structure is shown in Figure 6.8. To check our parallel structure, 
let us compute the first 8 samples of the impulse response using both forms. 

>> format long; delta = impseq(0.0,7); 
>> hpar-parf iltr (C.B. A, delta) 
hpar - 

Columrls 1 through 4 
0.M25000oooO000 -0.23437500000000 0.8554687500oooO -2.28417968760000 

28.1125 

FIGURE 6.8 Padlel f o m  structure an Esarnpie 6.2. 
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Columns 5 through 8 
2.67651367187500 -1.52264404296875 0.28984069824219 0.49931716918945 

>> hdir = filter(b,a,dalta) 
hdir = 
Columns 1 through 4 
0.06250000000000 -0.23437500000000 0.85546875000000 -2.28417968750000 

Colllmns 6 through 8 
2.67651367187500 -1.52264404296875 0.28984069824219 0.49931716918945 

0 

0 EXAMPLE 6.3 What would be the overall direct, cascade, or parallel form if a structure contains 
a combination of these forms? Consider the block diagram shown in Figure 6.9. 

This structure contains a cascade of two parallel sections. The first parallel 
section contains two biquads, while the second one contains three biquads. We 
will have to convert each parallel section into a direct form using the par2dir 
function, giving us a cascade of two direct forms. The overall direct form can be 
computed by convolving the corresponding numerator and denominator poly- 
nomials. The overall c d e  and parallel forms can now be derived from the 
direct form. 

sdution 

>> CO-0; 81-12 4;3 11; Al-11 10.9; 10.4 -0.41; 
>> B2=[0.5 0.7;1.5 2.5;O.E 11; A2=[1 -1 0.8;l 0.5 0.5;1 0 -0.51; 
>> Cb1 ,all-par2dir(CO.B1 ,A11 
bl = 

5.0000 8.8000 4.5000 -0.7000 

0.5 

FIGURE 6.9 Block diagnam in Emmple 6.3 
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a1 = 

>> [b2,a2]-par2dir(CO,B2,A2) 
b2 - 
a 2 -  

>> b=conv(bl,b2) x Overall direct form numerator 
b =  

1.OOOO 1.4000 0.9000 -0.0400 -0.3600 

2.8000 2.5500 -1.5600 2.0950 0.5700 -0.7750 

1.0000 -0.5000 0.3000 0.1500 0.0000 0.0500 

Columns 1 through 7 
14.0000 37.3900 27.2400 6.2620 12.4810 11.6605 
Columns 8 through 9 
-3.8865 0.5425 

>> a=conv(al,a2) X Overall direct form denominator 
a =  
Columns 1 through 7 
1.0000 0.9000 0.5000 0.0800 0.1400 0.3530 

Columns 8 through 11 
-0.2890 -0.1820 -0.0100 0.0720 

>> [bO,Bc,Ac]=dir2cas(b,a) 1 Overall cascade form 
bO = 

Bc - 14.0000 

1.0000 1.8836 1.1328 
1.0000 -0.6915 0.6719 
1.0000 2.0776 0.8666 
1.0000 0 0 
1.0000 -0.5990 0.0588 

1.0000 1.oooo 0.9000 
1.0000 0.5000 0.5000 
1.0000 -1 .OOOO 0.8000 
1.0000 1.5704 0.6105 
1.0000 -1.1704 0.3276 

Ac - 

>> [CO,Bp,Ap]=dirZpar(b,a) x Overall parallel form 
co = [I 
BP 
-20.4201 -1.6000 
24.1602 5.1448 
2.4570 3.3774 
-0.8101 -0.2382 
8.6129 -4.0439 

1.0000 1.0000 0.9000 
1,0000 0.5000 0.5000 
1.0000 -1.0000 0.8000 
1.0000 1.5704 0.6105 
1.oooO -1.1704 0.3276 

AP = 

-0.2000 

-5.7215 

-0.2440 
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This example shows that by using the MATLAB functions developed in this 
0 section, we can probe and construct a wide variety of structum. 

FIR FILTER STRUCTURES 
I 
I 

A finiteduration impulse response filter has a system function of the form 

M-1 

H ( z )  = & + LIZ-' -+ . . . -+ b ~ - l z ' - ~  = bnt-" (6.5) 
n=O 

Hence the impulse response h(n) is 

and the difference equation representation is 

y(n) = 4 ~ ( n )  + b l ~ ( n  - 1) + . . . + L M - ~ z ( ~  - M + 1) (6.7) 

which is a linear convolution of finite support. 
The order of the filter is M - 1, while the length of the filter (which 

is equal to the number of coe5cients) is M .  The FIR filter structures are 
always stable, and they ate relatively simple compared to IIR structures. 
Furthermore, FIR filters can be designed to have a linear-phase response, 
which is desirable in some applications. 

We will consider the following four structures: 

0 Direct form: In this form the difference equation (6.7) is imple- 
mented directly as given. 

0 Cascade form: In this form the system function H ( z )  in (6.5) is  fac- 
tored into second-order factors, which are then implemented in a cascade 
connection. 

0 Linear-phase f o m  When an FIR filter has a linear phase response, 
its impulse response exhibits certain symmetry conditions. In this form 
we exploit these symmetry relations to reduce multiplications by about 
half. 

0 Frequency sampling form: This structure is based on the DFT of 
the impulse response h(n) and leads to a parallel structure. It is also suit- 
able for a design technique based on the sampling of fiequency response 
H (e  3") . 

We will briefly describe the above four forms along with some exam- 
ples. The MATLAB function d i r lcas  developed in the previous section is 
also applicable for the cascade form. 
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DIRECT FORM 

MATLAB 

TATION 
IMPLEMEN- 

CASCADE 
FORM 

FIGURE 6.10 Direct form FIR structure 

The difference equation (6.7) is implemented as a tapped delay line since 
there are no feedback paths. Let M = 5 (i.e., a fourth-order FIR filter); 
then 

y(n) = boz(n) + bl+ - 1) + 4 z ( n  - 2) + 4 z ( n  - 3) + b4s(n - 4 )  

The direct form structure is given in Figure 6.10. Note that since the 
denominator is equal to unity, there is only one direct form structure. 

In MATLAB the direct form FIR structure is described by the row vector 
b containing the {b,} coefficients. The structure is implemented by the 
filter function, in which the vector a is set to the scalar value 1 as 
discussed in Chapter 2. 

This form is similar to that of the IIR form. The system function H ( t )  
is converted into products of second-order sections with real coefficients. 
These sections are implemented in direct form and the entire filter as a 
d e  of second-order sections. Elom (6.5) 

H ( t )  = b o + b l ~ - ' + . . . + b ~ - l ~ - ~ + '  (6.8) 

K 
= bo n (1 + B k , l Z - l +  B k , 2 Y 2 )  

k=l 

where K is equal to [%I, and &,I and B k , 2  are real numbers representing 
the coefficients of second-order sections. For M = 7 the cascade form is 
shown in Figure 6.11. 

FIGURE 6.11 Cascade form FIR structure 
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MATLAB 

TATION 
IMPLEMEN- 

LINEAR-PHASE 
FORM 

Although it is possible to develop a new MATLAB function for the FIR 
cascade form, we will use our dir2cas function by setting the denominator 
vector a equal to 1. Similarly, cas2dir can be used to obtain the direct 
form from the cascade form. 

For frequency-selective filters (e.g., lowpass filters) it is generally desirable 
to have a phase response that is a linear function of frequency; that is, we 
want 

LH(e3") = /3 - aw, -7r < w .I 7r (6.9) 

where p = 0 or &s/2 and a is a constant. For a causal FIR filter with 
impulse response over [O, M - 11 interval, the linear-phase condition (6.9) 
imposes the following symmetry conditions on the impulse response h(n): 

(6.10) h(n) = h(M - 1 - n); p=  0, 0 5 n 5 M -  1 

h(n) = -h(M - 1 - 71); p =  &7r/2, 0 5 n 5 M - 1 (6.11) 

An impulse response that satisfies (6.10) is called a symmetric impulse 
response, while that in (6.11) is called an antisymmetric impulse response. 
These symmetry conditions can now be exploited in a structure called the 
linear-phase form. 

Consider the difference equation given in (6.7) with a symmetric im- 
pulse response in (6.10). We have 

~ ( n )  = boz(n) + blz(n - 1) + .. . + blz(n - M +  2) + 4 4 n -  M +  1) 

= bo[z(n) +z(n - M + l)] + b,[z(n - 1) +z(n- M +  2)] +. . . 
The block diagram implementation of the above difference equation is 
shown in Figure 6.12 for both odd and even M. 

FIGURE 6.12 Linear phase form FIR structures (symmetric impulse .esponse) 
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Clearly, this structure requires 50% fewer multiplications than the di- 
rect form. A similar structure can be derived for an antisymmetric impulse 
response. 

MATLAB 
IMPLEMEN- 
TATION 

The linear-phase structure is essentially a direct form drawn differently to 
save on multiplications. Hence in a MATLAB implementation the linear- 
phase structure is equivalent to the direct form. 

0 EXAMPLE 6.4 An FIR filter is given by the system function 

H ( t )  = 1 + 1 6 1 ~ - ~  + .z-~ 
16 

Determine and draw the direct, linear-phase, and cascade form StNCtures. 

a. D m t  f o m  The difference equation is given by 

y(n) = z(n) + 16.0625z(n - 4) + z(n - 8) 

and the direct form structure is shown in Figure 6.13(a). 
b. Liiearphase f o m  The difference equation can be written in the form 

y(n) = [.(TI) + i (n  - 8)] + 16.0625z(n - 4) 
and the resulting structure is shown in Figure 6.13(b). 

c. Cascade f o m  

16.0625 
y(nl 

z -4 r4 

16.0625 
: ay(n)  

(a) Direct form (b) Linear-phase form 

(c) Cascade form 

FIGURE 6.13 FIR filter structures an Example 6.4 
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0 EXAMPLE6.5 

sdution 

b o - 1  
B =  

1.0000 2.8284 
1 . 0000 0.7071 
1.0000 -0.7071 
1.0000 -2.8284 

1 0 0  
1 0 0  
1 0 0  
1 0 0  

A =  

4.0000 
0.2500 
0.2500 
4.0000 

The h e  form structure is shown in Figure 6.13(c). 17 

For the filter in Example 6.4 what would be the structure if we desire a cascade 
form containing linear-phase components with real coefficients? 

We are interested in cascade sections that have symmetry and real coefficients. 
From the properties of linear-phase FIR filters (see Chapter 7), if such a filter 
has an arbitrary m o  at z = rL0, then there must be three other zeros at 
(l/r)LO, rL -0, and (l/r)L -0 to have real filter coefficients. We can now make 
use of this property. First we will determine the zero locations of the given 
eighth-order polynomial. Then we will group four zeros that satisfy the above 
property to obtain one (fourth-order) linear-phase section. There are two such 
sections, which we will connect in cascade. 

>> b~C1,0,0,0,16+1/l6,0.0,0,~~; 
>> broots=roots(b) 
broots = 
-1.4142 + 1.4142i 
-1.4142 - 1.4142i 
1.4142 + 1.4142i 
1.4142 - 1.4142i 
-0,3536 + 0.35361. 
-0.3536 - 0.35361 
0.3536 + 0.3536i 
0.3536 - 0.35363. 

>> Bl-real(poly([broots(l) ,broots(l), broots(5), broots(6)l)) 
Bl = 

>> BZ=real(poly( Ibroots(3) ,broots(4) ,broots(7) ,broots(E)I)) 
B2 = 

1.0000 3.5355 6.2500 3.5355 1.0000 

1,0000 -3.5355 6.2500 -3.5355 1.0000 

The structure is shown in Figure 6.14. 0 
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11 ' '  3.5355 "6.25 ,f "-3.5355 "6.25 
4 : 2 c , : >  0 : : : = +v(n) 

FIGURE 6.14 Cascade of FIR linear-phase dements 

FREQUENCY 
SAMPLING 
FORM 

In this form we use the fact that the system function H ( 2 )  of an FIR 
filter can be reconstructed from its samples on the unit circle. From our 
discussions on the DFT in Chapter 5 we recall that these samples are in 
fact the M-point DFT values { H ( k )  , 0 5 k 5 M - 1) of the 114-point 
impulse response h (n). Therefore we have 

Using this procedure, we obtain [see (5.17) on page 1271 

This shows that the DFT H ( k ) ,  rather than the impulse response h (n) 
(or the difference equation), is used in this structure. It is also interesting 
to note that the FIR filter described by (6.12) has a recursive form similar 
to an IIR filter because (6.12) contains both poles and zeros. The resulting 
filter is an FIR filter since the poles at WGk are canceled by the roots of 

1 - 2-M = 0 

The system function in (6.12) leads to a parallel structure as shown in 
Figure 6.15 for M = 4. 

One problem with the structure in Figure 6.15 is that it requires a 
complex arithmetic implementation. Since an FIR filter is almost always a 
real-valued filter, it is possible to obtain an alternate realization in which 
only real arithmetic is used. This realization is derived using the symmetry 
properties of the DFT and the W i k  factor. Then (6.12) can be expressed 
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H ( O )  

Z-1 r 

H(1) 
0 

2-1 

H ( 2 )  

Z-1 

H ( 3 )  
1 

2-1 

FIGURE 6.15 E?n?quency sampling structure for M = 4 

as (see Problem 6.10) 

where L = 9 for M odd, L = 
. . . , L} are second-order sections given by 

-1 for M even, and {Hk ( z )  , k = 1, 

C 0 6 [ L H ( k ) ] - z - l c o s [ L H ( l i ) - ~ ]  
Hk ( z )  = 1 - 2z-1 cm (&$) + z-2 

(6.14) 

Note that the DFT samples H (0) and H (M/2) are real-valued and that 
the third term on the right-hand side of (6.13) is absent if M is odd. Using 
(6.13) and (6.14), we show a frequency sampling structure in Figure 6.16 
for M = 4 containing real coefficients. 

c :  . 
Z-1 

FIGURE 6.16 FI-equency sampling structure for M = 4 with real weficients 
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MATLAB 
IMPLEMEN- 
TATION 

Given the impulse response h(n)  or the DF’T H ( k ) ,  we have to deter- 
mine the coefficients in (6.13) and (6.14). The following MATLAB function, 
dir2f s, converts a direct form (h  (n) values) to the frequency sampling 
form by directly implementing (6.13) and (6.14). 

function [C,B,Al = dir2fs(h) 
% Direct form to Frequency Sampling form conversion x ................................................. 
X [C,B,AI = dir2fs(h) 
1 C - Row vector containing gains for parallel sections 
% B - Matrix containing numerator coefficients arranged in rows 
% A = Matrix containing denominator coefficients arranged in rows 
% h = impulse response vector of an FIR filter 
% 
M = length(h1; 
H - fft(h,M); 
magH = abs(H) ; phaH = angle(H) ’ ; 
% check even or odd !4 
if (M == 2*floor(M/2)) 

L = M/2-1; % M is even 
A1 = [1,-1,0;1,1,01; 
Cl = [real(H(l)),real(H(L+2))3; 

L = (M-1)/2; % M is odd 
else 

A 1  = [i,-l.OI; 
C1 = Creal(H(1))I; 

end 
k [l:Ll’; 
% initialize B and A arrays 
B - zeros(L,2); A = ones(L,3); 
% compute denominator coefficients 
A(l:L,2) = -2*cos(Z*pi*k/M); A = [A;All; 
X compute numerator coefficients 
B(1 :L, 1) = cos(phaH(2:L+l)) ; 
B (1 : L, 2) = -cos (phaH(2:L+l) - (2*pi*k/M)) ; 
% compute gain coefficients 
C = [Z*magH(2:L+i) ,ClI’ ; 

In the above function the impulse response values are supplied through the 
h array. After conversion, the C array contains the gain values for each 
parallel section. The gain values for the second-order parallel sections 
are given first, followed by H (0) and H ( M / 2 )  (if M is even). The B 
matrix contains the numerator coefficients, which are arranged in length- 
2 row vectors for each second-order section. The A matrix contains the 
denominator coefficients, which are arrangd in length-3 row vectors for 
the second-order sections corresponding to those in B, followed by the 
coefficients for the first-order sections. 
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A practical problem with the structure in Figure 6.16 is that it has 
poles on the unit circle, which makes this filter critically unstable. If the 
filter is not excited by one of the pole frequencies, then the output is 
bounded. We can avoid this problem by sampling H ( z )  on a circle IzI = 7, 

where the radius r is very close to one but is less than one (e.g., r = 0.99), 
which results in 

(6.15) 

Now approximating H (reJZnklM) = H ( e j 2 r k / M )  for r = 1, we can obtain 
a stable structure similar to the one in Figure 6.16 containing real values. 
This is explored in Problem 6.11. 

0 EXAMPLE 6.6 Let h (n) = ${ 1,2,3,2,1). Determine and draw the frequency Sampling form. 
t 

Sdution MATLAB Script 
>> h = [1,2,3,2,11/9; 
>> [C.B,Al = dir2fsch) 
C -  

0.5818 
0.0849 
1.0000 

B -  
-0.8090 0.8090 
0.3090 -0.3090 

1.0000 -0.6180 1.0000 
1.0000 1,6180 1.0000 
1.0000 -1.0000 0 

A =  

Since M = 5 is odd, there is only one first-order section. Hence 

-0.809 + 0.8092-’ 
0’5818 1 - 0.6182-1 + 2-2 

0.309 - 0.309z-’ 
+ 0.0848 1 + 1.6182.-1 + 2-2 + 

1 - 2-5 

5 H ( z ) =  - 

The frequency sampling form is shown in Figure 6.17. 0 
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-0.809 0.5818 

0.618 0.809 
I 

0 

t 4 -1 t 2 - l  
& > 

0.2 0.309 0.0848 
xfn) : * y(n )  I - .  . . .  - I ’. 

2-1 
-1.618 -0.309 

J 

V - 

FIGURE 6.17 m e n c y  sampling structure in Ezample 6.6 

EXAMPLE 6.7 The frequency samples of a 32-point linear-phase FIR filter are given by 

1, k = 0 , 1 , 2  
( H ( k ) (  = 0.5, k = 3  { 0, k = 4 , 5  ,..., 15 

Determine its frequency sampling form, and compare its computational com- 
plexity with the linear-phase form. 

Sokrtiotl In this example since the samples of the DFT H ( k )  are given, we could use 
(6.13) and (6.14) directly to determine the structure. However, we will use the 
dir2f s function for which we will have to determine the impulse response h (n). 
Using the symmetry property and the linear-phase constraint, we assemble the 
DFT H ( k )  as 

H ( k )  = ( H ( k ) ( e ’ L H ( k ) ,  k=O, l ,  ..., 31 

( H ( k ) (  = ( H ( 3 2  - k ) l ,  

L H ( k )  = ----k = -LH(32-k), 

k = 1,2, .  . . ,31; H ( 0 )  = 1 

31 2a 
2 32 

k = O , l ,  ..., 31 

Now the IDFT of H (k) will result in the desired impulse response. 

>> M = 32; alpha = (M-1)/2; 
>> magm = [~,~,i,0.5,zsras(i,25),0.5,1,11; 
>> kl = 0:15; k2 = 16:H-1; 
>> angm = [-alpha*(2*pi) /M*kl, alpha* (2*pi)/M*(M-k2)1; 
>> H = magHk.*exp(j*angHk); 
>> h = real(ifft(H,M)); 
>> [C,B,A] = dir2fs(h) 
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C -  
2.0000 
2.0000 
1.oOoo 
0.0000 
0.0000 
0.0000 
0.0000 

0 
0.oOOO 
0.0000 
0.0000 
0.0000 
0.0000 
0.0000 
0 * 0000 
1.0000 

0 
B =  

-0 .W52 0.9952 
0.9808 -0.9808 
-0,9569 0.9569 
-0.8944 0.3162 
0.9794 -0.7121 
0.8265 0.2038 
-0.6754 0.8551 
1.0000 0.0000 
0.6866 -0.5792 
0.5191 0.9883 
-0.4430 0.4993 
-0.8944 -0.3162 
-0.2766 0.3039 
0.9343 0.9996 
-0.9077 -0.8084 

A =  
1.0000 -1.9616 
1.0000 -1.8478 
1.0000 -1.6629 
1.OOOO -1.4142 
1.0000 -1.1111 
1.0000 -0.7654 
1 ,0000 -0.3902 
1.0000 0.0000 
1.0000 0.3902 
1.OOOO 0.7654 
1.0000 1.1111 
1.0000 1.4142 
1.0000 I. 6629 

1.0000 
1.0000 
1.0000 
1.0000 
1.oooO 
1.0000 
1.0000 
1.0000 
1.0000 
1,0000 
1 . 0000 
1.0000 
1.0000 
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1.0000 1.8478 1.0000 
1.0000 1.9616 1.0000 
1.0000 -1.0000 0 
1.0000 1.0000 0 

Note that only four gain coefficients are nonzero. Hence the frequency sampling 
form is 

+ l  -0.9952 + 0.9952~-' 0.9808 - 0.9808Z-' 
1 - 1.9616z-l+ t-' -k 1 - 1.84782-1 + z-* 

-n I I S ~  + n.mwz-l 1 
H (2) = - 32 

1 
~ , - -  ---- - 

L 1 - 1.66292-' + z-' -k - 1 - 2-1 

To determine the computational complexity, note that since H (0) = 1, the limb 
order section requires no multiplication, while the three second-order sections 
require three multiplications each for a total of nine multiplications per output 
sample. The total number of additions is 13. To implement the linear-phase 
structure would require 16 multiplications and 31 additions per output sample. 
Therefore the frequency sampling structure of this FIR filter is more efficient 
than the linear-phase structure. 0 

LATTICE FILTER STRUCTURES 
I 
I 

The lattice filter is extensively used in digital speech processing and in 
the implementation of adaptive filters. It is a preferred form of realization 
over other FIR or IIR filter structures because in speech analysis and in 
speech synthesis the small number of coefficients allows a large number of 
formants to  be modeled in real time. The all-zero lattice is the FIR filter 
representation of the lattice filter, while the lattice ladder is the IIR filter 
representation. 

ALL-ZERO 
LATTICE 
FILTERS 

An FIR filter of length M (or order M - 1) has a lattice structure with 
M - 1 stages as shown in Figure 6.18. Each stage of the filter has an input 
and output that are related by the order-recursive equations [19]: 

fm(n) = fm-l(n) + Kmgm-l(n - l) ,  m = 1,2, .  . . , M - 1 

g,(n)=Kmfm-i(n)+gm-l(n-l), m = l , 2  ,... , M - 1  
(6.16) 

where the parameters K,, rn = 1,2, .  . . , M - 1, called the mfiectzon 
mfic ients ,  are the lattice filter coefficients. If the initial values of fm(n) 
and g,(m) are both the scaled value (scaled by KO) of the filter input 
z(n), then the output of the (M - 1) stage lattice filter corresponds to 
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FIGURE 6.18 All-zero lattice flter 

the output of an (M - 1 )  order FIR filter; that is, 

f o b )  = 90(4 = K O 4 4  
y(n) = fM-l(4 

If the FIR filter is given by the direct form 

M - 1  

H ( z )  = bm.z-m=bo 1 +  - Z  
m=O ( -m) 

and if we denote the polynomial A ~ - i ( z )  by 

(6.17) 

(6.18) 

(6.19) 

bm 
4 

aM-l(m) = -, m = 1 , .  . . , M  - 1 

then the lattice filter coefficients {K,} can be obtained by the following 
recursive algorithm 1191: 

KO = 4 
KM-1 = ( Y M - 1  (M - 1) 

Km = am(m), m = M - 2 , .  . . , 1  

Note that the above algorithm will fail if lKml = 1 for any m = 1 , .  , . , 
M - 1. Clearly, this condition is satisfied by linear-phase FIR filters since 

Therefore linear-phase FIR filters cannot be implemented using lattice 
structures. 
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MATLAB 

TATION 
IMPLEMEN- 

Given the coefficients {b,} of the direct form, we can obtain the lattice 
filter coefficients {K,} using (6.20). This is done by the MATLAB func- 
tion dir2latc given below. Note that the equation to compute Jm(f) 
implies that the polynomial Jm(z) is a f l i p l r  operation on the A,(z) 
polynomial. 

function [K] = dir2latcCb) 
X FIR Direct form to All-Zero Lattice form Conversion 
X ................................................... 
X [XI = dir2latc(b) 
X K - Lattice filter coefficients (reflection coefficients) 
X b - FIR direct form coefficients (impulse response) 
X 
M = length(b); 
K = zeros(1.M); 
bl - b(1); 
if bl - 0 
error(’b(1) is equal to zero’) 
end 
K(1) - bl; A - b/bl; 
for rn=M:-1:2 
K(m) = A(m); 
J = fliplr(A1; 
A = (A-K(m)*J) / (l-K(m) *K(rn)) ; 
A = A(1:rn-I); 
end 

The lattice filter is implemented using (6.16) and (6.17), which is done by 
a latcf ilt function, which is given below. 

function Cyl = latcfilt(K,x) 
X LATTICE form realization of FIR filters 
X ....................................... 
X y = latcfilt(K,x) 
X y = output sequence 
X K = LA’ITICE filter (reflection) coefficient array 
X x = input sequence 
X 
Nx - length(x)-l; 
x = K(l)*x; 
M = length(K)-l; K - K(2:M+l); 
fg - Cx; CO x(l:Nx)l1; 
for rn * 1:M 

fg = Cl,K(rn);K(m),ll*fg; 
fg(2,:) = [O fg(2,l:Nx)l; 

end 
y = fg(1.:); 
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0 

The equations (6.20) can also be used to determine the direct form 
coefficients {b,} from the lattice filter coefficients {K,} using a recursive 
procedure [19]: 

Ao(2) = J ~ ( z )  = 1 

A,(z)=Am-l(z)+Kmz-lJ,-~(z), m = l , 2  ,..., M - 1  
Jm(z) = z-,A, (z-') , m = 1,2, .  . ., M - 1 

bm = KOCXM-I (m), m = 0, 1, . . . , A4 - 1 

(6.21) 

The MATLAB function latcldir given below implements (6.21). Note 
that the product K,z-'J,-l ( z )  is obtained by convolving the two cor- 
responding arrays, while the polynomial Jm(z) is obtained by using a 
fliplr operation on the Am(z) polynomial. 

function [bl = latc2dir(K) 
X All-Zero Lattice form to FIR Direct form Conversion 
y ................................................... 
X Cbl = latc2dir(lo 
X b = FIR direct form coefficients (impulse response) 
X K = Lattice filter coefficients (reflection coefficients) 
% 
M = length(K); 
J = 1; A = 1; 
for m=2:1:U 
A = EA,O~+conv~lO,K~m~l,J~; 
J = fliplrtn); 
end 
b==A*K(l) ; 

Solution 

EXAMPLE 6.8 An FIR filter is given by the difference equation 

Determine its lattice form. 

MATLAB Script 
>> b=C2, 13/12, 5/4, 2/31; 
>> K=dirllatc(b) 
K -  

2.0000 0.2500 0.5000 0.3333 

Hence 
jyo=2,  K1=- ,  1 K2=-, 1 K 3 = -  1 

4 2 3 
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2 
x(n1-1 

(b) 

FIGURE 6.19 FIR filter structures in Example 6.8: (a) Direct fonn (b) Lattice 
f o m  

The direct form and the lattice form structures are shown in Figure 6.19. To 
check that our lattice structure is correct, let us compute the impulse response 
of the filter using both forms. 

>> Cx,n3 = impseq(0,0,31; 
>> format long 
>> hdirect=filter(b,l,delta) 
hdirect = 

>> hlattice-latcfilt (K,delta) 
hlattice = 

2.00000000000000 1.08333333333333 1.25000000000000 0.66666666666667 

2.00000000000000 1.08333333333333 1.25000000000000 0.66666666666667 
0 

ALL-POLE 
LATTICE 
FILTERS 

A lattice structure for an IIR filter is restricted to an all-pole system 
function. It can be developed from an FIR lattice structure. Let an all- 
pole system function be given by 

(6.22) 
1 

m=l 

which from (6.19) is equal to H ( z )  = &. Clearly, it is an inverse 
system to the FIR lattice of Figure 6.18 (except for factor 4). This IIR 
filter of order N has a lattice structure with N stages as shown in Figure 
6.20. Each stage of the filter has an input and output that are related by 
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the order-recursive equations [19]: 

fN(n) = .(.) 
fm-l(n) = fm(n) - K,g,-l(n - l ) ,  m = N ,  N - 1,. . . ,1 

m = N ,  N - 1,. . . , l  
(6.23) 

gm(n) = Kmfm-l(n) + grn-l(n - l), 

= f o ( 4  = g o ( 4  

where the parameters K,, m = 1 ,2 , .  . . , M - 1, are the reflection coef- 
ficients of the all-pole lattice and are obtained from (6.20) except for KO, 
which is equal to 1. 

MATLAB 
IMPLEMEN- 
TATION 

Since the IIR lattice coefficients are derived from the same (6.20) proce- 
dure used for an FIR lattice filter, we can use the dirl latc  function in 
MATLAB. Care must be taken to ignore the KO coefficient in the K array. 
Similarly, the latcldir function can be used to convert the lattice {Km} 
coefficients into the direct form {aN(m)} provided that KO = 1 is used as 
the first element of the K array. The implementation of an IIR lattice is 
given by (6.23), and we will discuss it in the next section. 

0 EXAMPLE 6.9 Consider an all-pole IIR filter given by 
1 

1 + &&-' + Pz-2 + lz-3 
H ( z )  = 

Determine its lattice structure. 

Sdution MATLAB Script - 
>> a=[l, 13/24. 5/8. 1/31 ; 
>> K=dirZlatc(b) 
K =  

1.0000 0.2500 0.5000 0.3333 

Hence 
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(b) 

FIGURE 6.21 IIR filter structures in Example 6.9: (a) Direct form (b) Lattice 
f o m  

The direct form and the lattice form structures of this IIR filter are shown in 
Figure 6.21. 0 

LATTICE- 
LADDER 
FILTERS 

A general IIR filter containing both poles and zeros can be realized as 
a lattice-type structure by using an all-pole lattice as the basic building 
block. Consider an IIR filter with system function 

where, without loss of generality, we assume that N 2 M. A lattice 
type structure can be constructed by first realizing an all-pole lattice 
with coefficients K,,,, 1 5 m 5 N for the denominator of (6.24), and 
then adding a ladder part by taking the output as a weighted linear 
combination of {g,(n)} as shown in Figure 6.22 for M = N. The result 

I- 

FIGURE 6.22 Lattice-ladder structure for realizing a pole-zem IIR flter. 
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is a pole-zero IIR filter that has the lattice-ladder structure. Its output is 
given by 

(6.25) 

where {Cm} are called the ladder coeficients that determine the zeros of 
the system function H ( z ) .  It can be shown [19] that {Cm) are given by 

M 

(6.26) 

where Jm(z) is the polynomial in (6.20). Rom (6.26) one can obtain a 
recursive relation 

Bm(z) = Bm-i(z) + CmJm(z); m = 0,2,. . . , M 
or equivalently, 

M 
Cm = bm+ C,ai(i-m); m = M ,  M -  1 ,..., 0 (6.27) 

i=m+l 

from the definitions of B,(z) and Am(z). 

MATLAB 
IMPLEMEN- 
TATION 

To obtain a latticsladder structure for a general rational IIR filter, we 
can first obtain the lattice coefficients {Km} from AN(z)  using the recur- 
sion (6.20). Then we can solve (6.27) recursively for the ladder coefficients 
{Cm} to realize the numerator BM(z) .  This is done in the MATLAB func- 
tion dirlladr given below. It can also be used to determine the all-pole 
lattice parameters when the array b is set to b;- C11. 

function CK,Cl = dir2ladr(b,a) 
% IIR Direct form to pole-zero LatticdLadder form Conversion x ........................................................... 
X [K,C] = dir2ladr(b,a) 
X K = Lattice coefficients (reflection coefficients), CKI,. . . ,KN] 
X C - Ladder Coefficients, CCO,. . . ,CN] 
x b = Numerator polynomial coefficients (deg <* Num deg) 
X a - Denominator polynomial coefficients 
x 
a1 = a(1); a = a/al; b = b/al; 
M = length(b1; N .L length(a) ; 
i f M > N  

end 
error(’ *** length of b must be <= length of a ***’) 
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Note: To use this function, N 2 M. If Ad > N ,  then the numerator 
A N ( z )  should be divided into the denominator B M ( z )  using the deconv 
function to obtain a proper rational part and a polynomial part. The 
proper rational part can be implemented using a latticeladder structure, 
while the polynomial part is implemented using a direct structure. 

To convert a latticeladder form into a direct form, we first use the 
recursive procedure in (6.21) on {K,,,} coefficients to determine { a ~ ( k ) }  
and then solve (6.27) recursively to obtain { b ~ ( k ) } .  This is done in the 
MATLAB function ladr2dir given below. 

function Cb.4 = ladrZdir(K,C) 
% Lattice/Ladder form to IIR Direct form Conversion 

'L Cb.4 - ladr2dirCK.C) 
1 b = numerator polynomial coefficients 
X a = denominator polymonial coefficients 
X K = Lattice coefficients (reflection coefficients) 
7, C - Ladder coefficients 
% 
N = length(K); M = length(C); 
C = [C, zeros(l,N-M+l)] ; 
J = 1; a = 1; A = zeros(N,N); 
for m=l:l:N 

y. ................................................. 

a = Ca,OI+conv(CO,K(m)l,J); 
A(m,l:m) = -a(2:m+l); 
J = fliplr(a); 

end 
b(N+l) = C(N+1); 
for m = N:-1:l 

A(m,l:m) = A(m,l:m)*C(m+l); 
b(m) = C(m) - sum(diag(A(m:N,l:N-m+l))); 

end 

The latticeladder filter is implemented using (6.23) and (6.25). This 
is done in the MATLAB function ladrf ilt, which is given below. It should 
be noted that due to the recursive nature of this implementation along 
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with the feedback loops, this MATLAB function is neither an elegant nor 
an efficient method of implementation. It is not possible to exploit MAT- 
LAB'S inherent parallel processing capabilities in implementing this lattice- 
ladder structure. 

function Cyl = ladrfilt(K.C,x) 
X LATTICE/LADDER form realization of IIR filters 
1 .............................................. 
% [yl = ladrfilt(K,C,x) 
X y = output sequence 
X K = LATTICE (reflection) coefficient array 
X C = LADDER coefficient array 
'1. x = input sequence 
x 
Nx = length(x); J = zeros(1,Nx); 
N = length(C); f = reros(N,Nx); g = zeros(N,Nx+l); 
f(N,:) = I; 
for n = 2:1:Nx+l 

for m = N:-1:2 
f (m-1.n-1) = f (m,n-1) - K(m-l)*g(m-l,n-l); 
g(m,n) = x(m-l)*f (m-1,n-1) + g(m-1,n-1); 

end 
g(1.n) = f(1,n-1); 

end 
J = C*g(:,2:Nx+l); 

0 EXAMPLE 6.10 Convert the following polezero IIR filter into a latticeladder structure. 

I + 2z- l+  2 ~ - ~  + z - ~  
H ( z )  = 1 + &-I + +-2 + 5 . 4  

solution MATLAB Script 
>> b = [1,2,2,11 a = [l, 13/24, 5/8, 1/31; 
>> [K,C] = dir2ladrccb) 
K =  

C -  
0.2500 0.5000 0.3333 

-0.2695 0.8281 1.4583 1.0000 

Hence 

1 1 
4 3 '  

K1 = -, Kz = --, K3 = 1. 

and 

CO = -0.2695, 4 = 0.8281, Cz = 1.4583, C3 = 1 
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2;' 2:' _ . - _ I . - .  
1.0 " 1.4583 " 0.8281 "-0.2695 

. - _  - - . * y ( n )  

(b) 

FIGURE 6.23 
ladder form 

IIR filter structures in Ezample 6.10: (a) Dinct fonn (b) Lattice- 

The resulting direct form and the lattice-ladder form structures are shown in 
Figure 6.23. To check that our lattice-ladder structure is correct, let us compute 
the first 8 samples of its impulse response using both forms. 

>> Ir,nl=impseq(O,O, 7) 
>> format long 
>> hdirect 6 f i l ter(b ,a ,x)  
hdirect - 
column8 1 through 4 
1.0000000000oooO 1.45833333333333 0.58506944444444 -0.56170428240741 

Columns 5 through 8 
-0.547523027584B8 0.45261700163162 0.28426911049255 -0.25435706167494 

>> hladder - ladrfilt(K,C,x) 
hladder = 
Columns 1 through 4 
1.0oooO000000000 1.45833333333333 0.58506944444444 -0.56170428240741 

-0.54752302758488 0.45261700163162 0.28426911049255 -0.25435705167494 
0 

Columns 5 through 8 
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PROBLEMS 
I 
I 

P6.l A causal linear time-invariant system is described by 

Determine and draw the block diagram of the following structures. Compute the response 
of the system to 

z(n) = u(n), 0 2 n 5 100 

in each case using the corresponding structures. 
a. Direct form I 
b. Direct form I1 
c. Cascade form containing second-order direct form I1 sections 
d. Parallel form containing second-order direct form I1 sections 
e. Latticeladder form 
An IIR filter is described by the following system hnction: P6.2 

= 1+02-'+2-2 ) ( 2 - % - l  ) ( 1 + 2 % 4 + % 4  
(1 - 0.8z-1+ 0 . 6 4 ~ - ~  1 - 0.752-' 1 + 0.81~4 

Determine and draw the following S t ~ c t ~ r e ~ .  

a. Direct form I 
b. Direct form I1 
c. Cascade form containing second-order direct form I1 sections 
d. Parallel form containing second-order direct form I1 sections 
e. Lattice-ladder form 
An IIR filter is described by the following system function: PS.3 

H ( z )  = 

Determine and draw the following structtue: 
a. Direct form I 
b. Direct form I1 
c. Cascade form containing second-order direct form I1 sections 
d. Parallel form containing second-order direct form I1 sections 
e. Latticdadder form 
Figure 6.24 describes a causal linear timeinvariant system. Determine and draw the 
following structures: 

P6.4 
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FIGURE 6.24 Structure for Pmblem 6.4 

a. Direct form I 
b. Direct form11 

c. Cascade form containing second-order direct form I1 sections 

d. Parallel form containing second-order direct form I1 sections 

A linear time-invariant system with system function P6.5 

0.5 (1 + z - ' ) ~  
(1 - $2-1 + 1,-2 - 132-3 - 1 2 - 4  - $2-5 + - 5 7 8 )  

H ( z )  = 
16 

is to be implemented using a flowgraph of the form shown in Figure 6.25. 

a. Fill in all the coefficients in the diagram. 

b. Is your solution unique? Explain. 

A linear timeinvariant system with system function P6.6 

5 + 11.2~~' + 5.442-' - 0.384~-~ - 2.3552~-~ - 1.22882-' 
1 + 0.82-l - 0.512~-~ - 0.4096~-~  

H ( z )  = 

is to be implemented using a flowgraph of the form shown in Figure 6.26. Fill in all the 
coefficients in the diagram. 

Consider the linear time-invariant system given in Problem 6.5. P6.7 

FIGURE 6.25 Structure for Pmblem 6.5 
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FIGURE 6.26 Strueture for Pwblem 6.6 

It is to be implemented using a flowgraph of the form shown in Figure 6.27. 
a. Fill in all the mfficients in the diagram. 
b. Is your solution unique? Explain. 
An FIR filter is described by the difference equation P6.8 

Determine and draw the block diagrams of the following structures. 
a Direct form 
b. Linear-phase form 

- L -  5- 

FIGURE 6.27 Structure for Problem 6.7 
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c. C d e  form 
d. Frequency sampling form 
A linear timeinvariant system is given by the system function P6.9 

10 

H ( z )  = (2z)-" 
k=O 

Determine and draw the block diagrams of the following structures. 
a. Direct form 
b. Cascade form 
c. Lattice form 
d. Frequency sampling form 

P6.10 Using the conjugate symmetry property of the DFT 

k = O  
H ( k )  = { :'yh - k ) ,  k = 1,. . ., M - 1 

and the  conjugate symmetry property of the WGk factor, show that (6.12) can be put in 
the form (6.13) and (6.14) for real FIR filters. 

P6.11 To avoid poles on the unit circle in the frequency sampling structure, one samples H (2) at 
z" = rf,-'2*k/M, 
a. Using 

k = 0 , .  . . , M - 1, where r FS l(but < 1) as discussed in this chapter. 

H (rgz*s'M) = H ( k )  

show that the frequency sampling structure is given by 

where 

w [ L H ( k ) ]  - r ~ - ~ c o s  [ L H ( k )  - G] 
Hk (2) = , k = 1 ,  ..., L 

1 - 2rz-1 c0.9 (9) + 2-2  

and M is even. 
b. Modify the MATLAB function dir2f s (which was developed in this chapter) to 
implement the above frequency sampling form. The format of this function should be 

[C,B .A,rM] = dirlfs(h,r) 
% Direct form to Frequency Sampling form conversion 
x ................................................. 
X CC.B,Al = dirlfs(h) 
X C = Row vector containing gains for parallel sections 
X B = Matrix containing numerator coefficients arranged in rows 
% A = Matrix containing denominator coefficients arranged in rows 
Y. r H  = r-M factor needed in the feedforward loop 
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1: h = impulse response vector of an FIR filter 
X r = radius of the circle over which samples are taken (rcl) 
1: 

c. Determine the frequency sampling structure for the impulse response given in Example 
6.6 using the above function. 

P6.12 Determine the impulse response of an FIR filter with lattice parameters 

KO = 2, K1 = 0.6, K2 = 0.3, K3 = 0.5, K4 = 0.9 

Draw the direct form and lattice form structures of the above filter. 
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FIR FILTER DESIGN 

We now turn our attention to the inverse problem of designing systems 
from the given specifications. It is an important as well as a difficult prob- 
lem. In digital signal processing there are two important types of systems. 
The first type of systems perform signal filtering in the time domain and 
hence are called dzgital filters. The second type of systems provide signal 
representation in the frequency domain and are called spectrum analyzers. 
In Chapter 5 we described signal representations using the DFT. In this 
and the next chapter we will study several basic design algorithms for 
both FIR and IIR filters. These designs are mostly of the frequency selec- 
tive type; that is, we will design primarily multiband lowpass, highpass, 
bandpass, and bandstop filters. In FIR filter design we will also consider 
systems like differentiators or Hilbert transformers, which, although not 
frequency-selective filters, nevertheless follow the design techniques be- 
ing considered. More sophisticated filter designs are based on arbitrary 
frequency-domain specifications and require tools that are beyond the 
scope of this book. 

We first begin with some preliminary issues related to design philos 
ophy and design specifications. These issues are applicable to both FIR 
and IIR filter designs. We will then study FIR filter design algorithms in 
the rest of this chapter. In Chapter 8 we will provide a similar treatment 
for IIR filters. 

PRELIMINARIES 
I 
I 

The design of a digital filter is carried out in three steps: 
0 SpeciRcations: Before we can design a filter, we must have some 

specifications. These specifications are determined by the applications. 
Approximations: Once the specifications are defined, we use various 

concepts and mathematics that we studied so far to come up with a filter 
description that approximates the given set of specifications. This step i s  
the topic of filter design. 
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0 Implementation: The product of the above step is a filter descrig 
tion in the form of either a difference equation, or a system function H ( z ) ,  
or an impulse response h(n). Rom this description we implement the fil- 
ter in hardware or through software on a computer as we discussed in 
Chapter 6.  

In this and the next chapter we will discuss in detail only the second step, 
which is the conversion of specifications into a filter description. 

In many applications like speech or audio signal processing, digital 
filters are used to implement frequency-selective operations. Therefore, 
specifications are required in the frequency-domain in terms of the de- 
sired magnitude and phase response of the filter. Generally a linear phase 
response in the passband is desirable. In the case of FIR filters, it is pos- 
sible to have exact linear phase as we have seen in Chapter 6. In the case 
of IIR filters a linear phase in the passband is not achievable. Hence we 
will consider magnitude-only specifications. 

The magnitude specifications are given in one of two ways. The first 
approach is called absolute specifications, which provide a set of require- 
ments on the magnitude response function IH(ej")l. These specifications 
are generally used for FIR filters. IIR filters are specified in a somewhat 
different way, which we will discuss in Chapter 8. The second approach is 
called relative specifications, which provide requirements in decibels (dB), 
given by 

This approach is the most popular one in practice and is used for both 
FIR and IIR filters. To illustrate these specifications, we will consider a 
lowpass filter design as an example. 

ABSOLUTE 
SPECIFICA- in which 
TIONS 

A typical absolute specification of a lowpass filter is shown in Figure 7.la, 

0 band [0, wp] is called the psband,  and 61 is the tolerance (or ripple) 

0 band [wS,n] is called the stopband, and 62 is the corresponding 

0 band [wp,ws] is called the transition band, and there are no restric- 

that we are willing to accept in the ideal passband response, 

tolerance (or ripple), and 

tions on the magnitude response in this band. 

RELATIVE (DB) 
SPECIFICA- in which 
TlONS 

A typical absolute specification of a lowpass filter is shown in Figure 7.lb, 

0 Rp is the passband ripple in dB, and 
0 A, is the stopband attenuation in dB. 

Preliminaries 225 



I 

I 
I 
I 
I i Transition Stopband 

band 4 ripple 

0 0 

RP I I 

I 

I 

FIGURE 7.1 FIR filter specificutions: (a) Absolute (a) Relative 

The parameters given in the above two specifications are obviously 
related. Since IH(ej")l, in absolute specifications is equal to  (I + 61), 
we have 

and 

0 EXAMPLE 7.1 In a certain filter's specifications the passband ripple is 0.25 dB, and the stop 
band attenuation is 50 dB. Determine 61 and 62. 

sdution Using (7.1), we obtain 

1 - 61 
1 +61 

Rp = 0.25 = -2Ol0gl0 - + 61 = 0.0144 

Using (7.2), we obtain 

62 
+ o.0144 * 62 = 0.0032 0 62 

1+61 
Aa = 50 zz -20 log10 - = -20 loglo ~ 

0 EXAMPLE 7.2 Given the passband tolerance 61 = 0.01 and the stopband tolerance 62 = 0.001, 
determine the -band ripple Rp and the stopband attenuatlon As. 
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solution From (7.1) the passband ripple is 
1 - 61 
If61 

Rp = -2010g1, - = 0.1737 dB 

and from (7.2) the stopband attenuation is 
62 

1+61 
A. = -2010g10 - = 60 dB 

The above specifications were given for a lowpass filter. Similar spec- 
ifications can also be given for other types of frequency-selective filters, 
such as highpass or bandpass. However, the most important design param- 
eters are frequency-band tolernnces (or ripples) and band-edge frequencies. 
Whether the given band is a passband or a stopband is a relatively minor 
issue. Therefore in describing design techniques, we will concentrate on a 
lowpass filter. In the next chapter we will discuss how to transform a low- 
pass filter into other types of frequency-selective filters. Hence it makes 
more sense to develop techniques for a lowpass filter so that we can com- 
pare these techniques. However, we will also provide examples of other 
types of filters. In light of this discussion our design goal is the following. 

Problem Statement Design a lowpass filter (i.e., obtain its system 
function H ( z )  or its difference equation) that has a passband [O,w,] with 
tolerance 61 (or Rp in dB) and a stopband [w.,, n] with tolerance 62 (or 
A, in dB). 

In this chapter we turn our attention to the design and approximation 
of FIR digital filters. These filters have several design and implementa- 
tional advantages: 

0 The phsse response can be exactly linear. 
0 They are relatively easy to design since there are no stability prob- 

0 They are efficient to implement. 
0 The DFT can be used in their implementation. 

As we discussed in Chapter 6, we are generally interested in linear- 
phase frequency-selective FIR filters. Advantages of a linear-phase re 
sponse are: 

0 design problem contains only real arithmetic and not complex arith- 
metic; 

0 linear-phase filters provide no delay distortion and only a 6x4 
amount of delay; 

0 for the filter of length M (or order M - 1) the number of opera- 
tions are of the order of M / 2  as we discussed in the linear-phase filter 
implementation. 

We first begin with a discussion of the properties of the linear-phase 
FIR filters, which are required in design algorithms. Then we will discuss 

lems. 
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three design techniques, namely the window design, the frequency sam- 
pling design, and the optimal equiripple design techniques for linear-phase 
FIR filters. 

PROPERTIES OF LINEAR-PHASE FIR FILTERS 
I 

In this section we discuss shapes of impulse and frequency responses and 
locations of system function zeros of linear-phase FIR filters. Let h(n), 
0 5 n 5 M - 1 be the impulse response of length (or duration) M. Then 
the system function is 

M-1 M-1 

H ( z )  = h(n)z-" = z - ( ~ - ' )  h ( n ) ~ ~ - ' - ~  
n=O n=O 

which has (M - 1) poles at the origin z = 0 (trivial poles) and (M - 1) 
zeros located anywhere in the z-plane. The frequency response function 
is 

n=O 

Now we will discuss specific requirements on the forms of h(n) and H(&") 
as well as requirements on the specific locations of (M - 1) zeros that the 
linear-phase constraint imposes. 

IMPULSE 
RESPONSE 
h(n) 

We impose a linear-phase constraint 

fH(dW) = -aw, -T < w <_ -?F 

where a is a constant phase delay. Then we know from Chapter 6 that 
h(n) must be symmetric, that is, 

(7.3) 
M - 1  

2 
h(n)  = h ( M -  1 - a ) ,  0 _< n 5 ( M  - 1) with a = - 

Hence h(n) is symmetric about a, which is the index of symmetry. There 
are two possible types of symmetry: 

0 M odd: In this case a = (M - 1)/2 is an integer. The impulse 
response is as shown below. 
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0 M even: In this case a = ( M  - 1)/2 is not an integer. The impulse 
response is as shown below. 

- 
C 
E 

0 -  

Q Q  
Q 0 

P d q  
We also have a second type of “linear-phase” FIR filter if we require 

that the phase response LH(ejW) satisfy the condition 

LH(e+) = p - aw 

which is a straight line but not through the origin. In this case a is not a 
constant phase delay, but 

d f  H(ejw)  
dw 

___ = -ff 

is constant, which is the group delay. Therefore a is called a constant 
group delay. In this case, 8s a group, frequencies are delayed at a constant 
rate. But some frequencies may get delayed more and others delayed less. 
For this type of linear phase one can show that 

M - 1  A 

2 , p = f- (7.4) h (n) = -h(M - 1 - n), 0 5 71 5 (A4 - 1); a = - 2 
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This means that the impulse response h(n) is antisymmetric. The index 
of symmetry is still a = (M - 1)/2. Once again we have two possible 
types, one for M odd and one for M even. 

0 M odd: In this case a = (M - 1)/2 is an integer and the impulse 
response is as shown below. 

1 

go - P i; P ?  
b 

Note that the sample h(0) at a = (M - 1)/2 must necessarily be equal 
to zero, i.e., h((M - 1)/2) = 0. 

0 M even: In this case a = (M - 1)/2 is not an integer and the 
impulse response is as shown below. 

- 
fO 

0 

- ? P P  
d 

0 I 
FREQUENCY 
RESPONSE 
H(ejw) 

When the cases of symmetry and antisymmetry are combined with odd 
and even M, we obtain four types of linear-phase FIR filters. Requency 
response functions for each of these types have some peculiar expressions 
and shapes. To study these responses, we write H ( P )  as 
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where Hp(w) is an amplitude response function and not a magnitude re- 
sponse function. The amplitude response is a real function, but unlike 
the magnitude response, which is always positive, the amplitude response 
may be both positive and negative. The phase response associated with 
the magnitude response is a discontinuow function, while that associated 
with the amplitude response is a continuous linear function. To illustrate 
the difference between these two types of responses, consider the following 
example. 

0 EXAMPLE 7.3 Let the impulse response be h(n) = {1,1,1}. Determine and draw fresuency 
T responses. 

SOlUtion The frequency response function is 

From this the magnitude and the phase responses are 

since c a w  can be both p i t i v e  and negative. In this case the phase response 
is piecewise linear. On the other hand, the amplitude and the corresponding 
phase responses are 

H,(w) = 1 + S C O S W ,  
- 7 r < W < K  

LH (2") = -w, 

In this case the phase response is truly linear. These responses are shown in Fig- 
ure 7.2. From this example the difference between the magnitude and the am- 
plitude (or between the piecewise linear and the linear-phase) responses should 
be clear. 0 

!&pe-1 linear-phase FIR filter: Symmetrical impulse response, 
M odd In this case p = 0, a = (M - 1)/2 is an integer, and h(n) = 
h ( M -  1 -n), 0 5 n 5 M -  1. Then we can show (see Problem 7.1) that 
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Amplitude Response 

0 M 1 
hequencyinpiunits 

Linear Phase Response 

frequency in pi units 

FIGURE 7.2 hquency responses in Ezample 7.3 

where sequence ~ ( n )  is obtained from h(n) as 

M-1 
= h (7). : the middle sample 

(7.7) 
M - 1  M - 3  

a(.) = 2h (1 - .), 1 5 n 5 - 2 

Comparing (7.5) with (7.6), we have 

Qpe-2 linear-phase FIR filter: Symmetrical impulse response, 
M even In this case again p = 0 ,  h(n) = h(M-1-n), 0 5 n 5 M-1, 
but a = (M - 1)/2 is not an integer. Then we can show (see Problem 7.2) 
that 

232 Chapter 7 H FIR FILTER DESIGN 



where 

b(n) = 2h (; n = 1,2 ,... , - M 
2 

Hence 

(7.10) 

(7.11) 

Note: At w = x we get 

regardless of b(n) or h(n). Hence we cannot use this type (i.e., symmetric 
h(n), M even) for highpass or bandstop filters. 

m-3 linear-phase FIR filter: Antisylzmetric impulse re- 
sponse, M odd In this case p = n /2 ,  a = ( M  - 1)/2 is an integer, 
h(n) = -h(M - 1 - n), 0 5 n 5 M - 1, and h((M - 1)/2) = 0. Then 
we can show (see Problem 7.3) that 

where 

M - 1  M - 1  
= 2h (T - .) , n = 1,2, .  .. , - 2 (7.13) 

and 

(7.14) 
n=l 

Note: At w = 0 and w = 'IT we have H,(w) = 0, regardless of c(n) or 
h(n). Furthermore, ej*I2 = j ,  which means that jH,(w) is purely imagi- 
nary. Hence this type of filter is not suitable for designing a lowpass filter 
or a highpass filter. However, this behavior is suitable for approximat- 
ing ideal digital Hilbert transformers and differentiators. An ideal Hilbert 
transformer [19] is an all-pass filter that imparts a 90" phase shift on the 
input signal. It is frequently used in communication systems for modula- 
tion purposes. Differentiators are used in many analog and digital systems 
to take the derivative of a signal. 
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m-4 linear-phase FIR filter: Antisynmetric impulse re- 
sponse, M even This case is similar to Type-2. We have (see Problem 
7.4) 

where 

M 
2 d(n) = 2h (Z - .) , n = 1 , 2 , . .  . , - 

and 

(7.16) 

(7.17) 

Note: At w = 0, H,(O) = 0 and eJT/' = j. Hence this type is also 
suitable for designing digital Hilbert transformers and differentiators. 

MATLAB 
IMPLEMEN- 
TATION 

The MATLAB routine freqz computes the frequency response but we. can- 
not determine the amplitude response from it because there is no function 
in MATLAB comparable to the abs function that can find amplitude. How- 
ever, it easy to write simple routines to compute amplitude responses for 
each of the four types. We provide four functions to do this. 

1. Hr-typel: 

function ~Hr,w,a,Ll = Hr-TypelCh); 
X Computes Amplitude response Hr(w) of a Type-1 LP FIR filter 

X CHr,w,a,Ll = Hr-Typel(h) 
X Hr = Amplitude Response 
X w = 500 frequencies between [ O  pi] over which Hr is computed 
% a = Type-1 LP filter coefficients 
X L = Order of Hr 
X h = Type-1 LP filter impulse response 
% 
I4 = length(h); 
L = (M-1)/2; 
a = [h(L+l) 2*h(L:-l:l)l; 1 lx(L+l) row vector 
n = C0:l:Ll; X (L+l)xl column vector 
w = [O : 1 : 5003 ' *pi/500 ; 
Hr = cos(w*n)*a'; 
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2. Hr-type2: 

function [Hr,w,b,L] = Hr-TypeZ(h); 
X Computes Amplitude response of a Type-2 LP FIR filter 
y ________________________________________-----_------- 
X [€k,w,b,Ll - Hr-TypeZ(h) 
X Hr = Amplitude Response 
X w = frequencies between LO pi] over which Hr is computed 
X b = Type-2 LP filter coefficients 
X L = Order of Hr 
X h = Type-2 LP impulse response 
X 
M p length(h1; 

b = Z*[h(L:-1:1)1; 
n = C1:l:Ll; n = 11-0.5; 
w = [0:1:5001 '*pi/500; 

L O. w z ;  

Hr = cos(wm)*b'; 

3. Hr-type3: 

function CHr,w,c,Ll = Hr_Type3(h); 
X Computes Amplitude response Hr(w) of a Type-3 LF' FIR filter 
7 ________________________________________----_-------------- 
X CHr.w,c,Ll = Hr-Typ3Ch) 
X Hr = Amplitude Response 
X w = frequencies between [O pi1 ovsr which Hr is computed 
X c = Type-3 LP filter coefficients 
X L = Order of Hr 
X h = Type-3 LP inpulse response 
X 
M = lengthCh); 
L = (M-l)/2; 
c = [Z*h(L+l:-1:1)1; 
n = C0:i:Ll; 
w = [0:1:5001 '*pi/500; 

Hr = sin(w*n)*c'; 

4. Hr-type4: 

function [Hr,w,d,Ll = Hr_Type4(h); 
Y. Computes Amplitude response of a Type-4 LP FIR filter 
X ..................................................... 
X [Hr,w,d,Ll = Hr-Type4Ch) 
X Hr = Amplitude Response 
X w - frequencies between [O  pi] over which Hr is computed 
X d = Type-4 LP filter coefficients 
X L = Order of d 
1 h = Type-4 LP impulse response 
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ZERO 
LOCATIONS 

% 
M - lengthch); 
L = M/2; 
d = 2*lh(L:-l:l)]; 
n = [l: l:Ll; n = n-0.5; 
w = [0:1:5001’*pi/500; 
Hr = sin(w*n)*d’; 

These four functions can be combined into one function. This function 
can be written to determine the type of the linear-phase filter and to im- 
plement the appropriate amplitude response expression. This is explored 
in Problem 7.5. The use of these functions is dmribed in Examples 7.4 
through 7.7. 

Recall that for an FIR filter there me (M - 1) (trivial) poles at the origin 
and (M - 1 )  zeros located somewhere in the z-plane. For linear-phase 
FIR filters, these zeros possess certain symmetries that are due to the 
symmetry constraints on h(n). It can be shown (see I191 and Problem 
7.6) that if H ( z )  has a zero at 

Z = 21 = T€?’ 

then for linear phase there must be a zero at 

1 = - = A e - j O  

zi T 

For a real-valued filter we also know that if z1 is complex, then there must 
be a conjugate zero at z;l = re-j’, which implies that there must be a 
zero at I/%: = ( l / ~ )  eje. Thus a general zew constellation is a quadruplet 

as shown in Figure 7.3. Clearly, if r = 1, then I/T = 1, and hence the 
zeros are on the unit circle and occur in pairs 

e3’ and e-je 

If B = 0 or 0 = R, then the zeros are on the real line and occur in pairs 

1 
T and - 

Finally, if r = 1 and B = 0 or 0 = K, the zeros are either at z = 1 or 
z = -1. These symmetries can be used to implement cascade forms with 
linear-phase sections. 
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In the following examples we illustrate the above described properties 
of linear-phase FIR filters. 

Let h(n) = {-4,1, -1, -2,5,6,5, -2, -1,1, -4}. Determine the amplitude re- 

sponse H ,  (w) and the locations of the zeros of H (a ) .  

D EXAMPLE 7.4 
T 

Since M = 11, which is odd, and since h(n) is symmetric about a = (11-1)/2 = 
5, this is a Type1 linear-phase FIR filter. From (7.7) we have 

a(0) = h(a) = h(5) = 6, 

a(3) = 2h(5-3)  = -2, 

a(1) = 2h(5 - 1) = 10, 

a(4) = 2h(5-4)  = 2, 

a(2) = 2h(5 - 2) = -4 

a(5) =2h(5-5)  = -8 

Fkom (7.8), we obtain 

&(w) = a(0) + a ( l ) c o s w + a ( 2 ) ~ S 2 w + a ( 3 ) ~ S ~ + a ( 4 ) c o s 4 w + 4 ( 5 ) C O S 5 w  

= ~ + ~ O ~ O S ~ - ~ C O S ~ ~ - ~ C O S ~ ~ + ~ C O S ~ ~ - ~ C O S ~ ~  

MATLAB Script 
>> h = [-4,1,-1,-2,5,6,5,-2,-1,1,-41; 
>> H = lengthch); n = 0:H-1; 
>> CHr,w,a,Ll = Hr-Typel(h); 
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0 

The plots and the zero locations are shown in Figure 7.4. From these plots we 
observe that there are no restrictions on H, ( w )  either at w = 0 or at w = R .  

0 There is one zeroquadruplet constellation and three zero pairs. 

EXAMPLE 7.5 Let h(n) = {-4,1, -1, -2,5,6,6,5, -2, -1 , l ,  -4}. Determine the amplitude 

response H, (w)  and the locations of the zeros of H (2). 
f 

Impulse Response T w l  Ampl- Response s’!pi ? j 7 - q  
-5 

0.5 1 
n frequency in pi units 

0 5 10 -‘“0 

a(n) coefficients PokZem pbt 

z - w e  ’1 
.- 
.- 

-5 

0 5 10 -1 0 1 
n real axis 

FIGURE 7.4 Plots in Example 7.4 
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solution This is a Type2  linear-phase FIR filter since A4 = 12 and since h(n) is sym- 
metric with respect to a = (12 - 1) /Z  = 5.5. From (7.10) we have 

b(1) = 2h (9 - 1) = 12, 

b(4) = 2h (2 - 4) = -2, b(5) = 2h ( 2  - 5) = 2, 

Hence from (7.11) we obtain 

b(2) = 2h ( 2  - 2) = 10, b(3) = 2h (+ - 3) = -4 

b(6) = 2h ($ - 6) = -8 

+ 2cos ($) - 8cos (F) 
MATLAB Script 
>> h = [-4,1,-1,-2,5,6,6,5,-2,-1,1,-41; 
>> M = length(h1; n = 0:M-I; 
>> [Hr,u,a,Ll = Hr-TypeZ(h); 
>> b,L 
b = 12 10 -4 -2 2 -8 
L - 6  
>> b a x  = max(b)+l; bmin = min(b)-1; 
>> s~bpiot(2.2,i); stem(n,h); axis([-1 2*L+i b i n  b-1) 
>> xlabel(’n’) ; ylabel(’h(n1’); title(’1mpulse Response’) 
>> subplot(2,2,3); stem(l:L,b); axis([-1 2*L+l b i n  bmaxl) 
>> flabel( In’) ; glabel( ’b(n) ’ 1 ; title ( ’b(n) coefficients ’ ) 
>> subplot(2.2.2); plot(w/pi.Hr);grid 
>> rlabel(’frequency in pi units’) ; plabel(’Hr’) 
>> title(’Type-1 hplitude Response’) 
>> subplot(2,2,4); pzplotz(h,l) 

The plots and the zero locations are shown in Figure 7.5. From these plots we 
o h w e  that H ,  (w) is zero at w = r. There is one zero-quadruplet constellation, 

0 three zero pairs, and one zero at w = r as expected. 

0 EXAMPLE 7.6 Let h(n) = { -41 ,  -1, -2,5,0, -5,2,1, -1,4}. Determine the amplitude re- 

sponse. H ,  ( w )  and the locations of the zeros of H (2). 
t 

Solution Since M = 11, which is odd, and since h(n) is antisymmetric about a = 
(11 - 1)/2 = 5, this is a Type-3 linear-phase FIR filter. From (7.13) we have 

~ ( 0 )  = h(a)  = h(5) = 0, 

~ ( 3 )  = 2h(5 - 3) = -2, 

c(1) = 2h(5 - 1) = 10, 

~(4) = Zh(5 -4) = 2, 

~ ( 2 )  = Zh(2 - 2) = -4 

~ ( 5 )  = Zh(5 - 5) = -8 
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Worn (7.14) we obtain 

H,(w) = c(a) +c(~)s inw+c(2)s in2w+c(3)s in~+c(4)s in8w+c(5)mn~ 

= 0 + lOsinw - 4si112w - 2 s i n h  + 2sin8w - 8sinSu 

MATLAB Script 
>> h = ~-4,1.-1,-2.S.O,-S,2,1,-1,47; 
>> H = lengthch); n = 0:H-1; 
>> [Hr,u,c,Ll - Hr-Type3Ch); 
>> c,L 
a = 0 10 -4 -2 2 -8 
t = 5  
>> cmax - m a x ( c ) + i ;  cmin = min(c)-1; 
>> subplot(2,2,i); stem(n,h); axis([-1 2*L+i cmin Qnax1) 
>> rlabel(’n’); ylabel(’h(n)’); title(’Impulse Response’) 
>> subplot(2,2,3); stem(O:L,c); axis([-1 2*L+1 anin aaX1) 
>> xlabel( ’n’ ) ; ylabel(‘c(n) $1 ; title (’c(n) coeff icients’ ) 
>> subplot(2,2,2) ; plot(u/pi,Hr) ;grid 
>> xlabel(’frequency in pi units’); ylabel(’Llr’) 
>> titIe(Type-i hplitude Response’) 
>> subplot(2.2.4) ; pzplotz(h.1) 
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The plots and the zero locations are shown in Figure 7.6. Rom these plots we 
observe that H,  (w) = 0 at w = 0 and at w = T. There is one zer-quadruplet 
constellation, two zero pairs, and zeros at w = 0 and w = ?r BQ expected. 0 

Let h(n) = {-4,1, -1, -2,5,6, -6, -5,2,1, -1,4}. Determine the amplitude 

response H, (w) and the locations of the zeros of H (z) .  

This is a Type-4 linear-phase FIR filter since A4 = 12 and since h (n) is anti- 
symmetric with respect to a = (12 - 1) /2 = 5.5. born (7.16) we have 

d( l )=Zh($-1)=12,  d(2)=2h(q-2)=10,  d(3)=2h($-3)=-4 

44 )  = 2h (+2?. - 4) = -2, d(5) = 2h (y - 5) = 2, d(6) = 2h ($ - 6) = -8 

0 EXAMPLE 7.7 
t 

Solution 

Hence from (7.17) we obtain 

H,(w)=d(l)sin[w(l-;)] + d ( 2 ) s i n [ u ( 2 - ; ) ]  +d(3)sin[w(3-;)] 

=lasin(;) +losin(%) -4sin(?) -2sin(%) 

+ 2 sin (T) - 8sin( y )  

n 

FIGURE 7.6 Plots in Example 7.6 

real axis 

Prop& of Linear-phase FIR Filters 241 



The plots and the zero loeations are shown in Figure 7.7. Fmm these plots we 
observe that H,  (w)  is zero at w = 0. There is one zerc-quadruplet constellation, 

0 three zero pairs, and one zero at w = 0 ax expected. 

I .  I 
0 5 10 

n 
an) cceffkients 

A gl:ri 0 

-5 

0 5 10 
n 

FIGURE 7.7 Plots an Ezample 7.7 
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P d e - r n r n  

I . lo 
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WINDOW DESIGN TECHNIQUES 
I 
1 

The basic idea behind the window design is to choose a proper ideal 
frequency-selective filter (which always has a noncausal, idnite-duration 
impulse response) and then truncate (or window) its impulse response 
to obtain a linear-phase and causal FIR filter. Therefore the emphasis 
in this method is on selecting an appropriate windowing function and 
an appropriate ideal filter. We will denote an ideal frequency-selective 
6lter by &(dw), which has a unity magnitude gain and linear-phase 
characteristics over its passband, and zero response over its stopband. An 
ideal LPF of bandwidth wc < n is given by 

(7.18) 

where w, is also called the cut08 frequency, and Q is called the sample 
delay (note that from the DTFT properties, e-jw implies shift in the 
positive n direction or delay). The impulse response of this filter is of 
infinite duration and is given by 

77 

1 
hd(n) = F-' [Hd(&")] = / ffd('?)dw"dw (7.19) 

--* 

= L 7 1. e-jawejwn& 

- sin [w,(n - a)] 

2n 
-us 

- 
*(n - a) 

Note that hd(n) is symmetric with respect to a, a fact useful for linear- 
phase FIR filters. 

To obtain an FIR filter from hd(n), one has to truncate hd(n) on both 
sides. To obtain a causal and linear-phase FIR filter h(n) of length M ,  we 
must have 

(7.20) 
hd(n), 0 5 7l  5 &f - 1 M - 1  

and a=- 0, elsewhere 2 h(n) = 

This operation is called "windowing." In general, h(n) can be thought of 
as being formed by the product of hd(n) and a window function w(n) as 
follows: 

h(n) = hd(n)w(n) (7.21) 
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where 

some symmetric function with respect to 
a over 0 5 n 5 M - 1 w(n) = { 0, otherwise 

Depending on how we define w(n) above, we obtain daerent window 
designs. For example, in (7.20) above 

1, O < n < M - 1  
0, othenvise = RM (4 w(n) = 

which is the rectangular window defined earlier. 
In the frequency domain the causal FIR filter response H(e3") is given 

by the periodic convolution of Hd(ej") and the window response W(2");  
that is, 

(7.22) 

This is shown pictorially in Figure 7.8 for a typical window response, from 
which we have the following observations: 

1. Since the window w(n)  has a finite length equal to M ,  its response 
has a p k y  main lobe whose width is proportional to 1/M, and has side 
lobes of smaller heights. 

0 
-n -oc 0 

w Max side-lobe 
height 

Minimum 
stopband 

attenuation 

FIGURE 7.8 Wandowing operation in the frequency domain 
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2. The periodic convolution (7.22) produces a smeared version of the 
ideal response Hd(GW). 

3. The main lobe produces a transition band in H(eJw) whose width 
is responsible for the transition width. This width is then proportional to 
1/M. The wider the main lobe, the wider will be the transition width. 

4. The side lobes produce ripples that have similar shapes in both 
the passband and stopband. 

Basic Window Design Idea For the given filter specifications choose 
the filter length M and a window function w(n)  for the narrowest main 
lobe width and the smallest side lobe attenuation possible. 

Rom observation 4 above we note that the passbandfolerance 61 and 
the stopband tolerance &, cannot be specified independently. We generally 
take care of &, alone, which results in S, = 61. We now briefly describe 
various well-known window functions. We will use the rectangular window 
as an example to study their performances in the frequency domain. 

RECTANGULAR 
WINDOW 

This is the simplest window function but provides the worst performance 
from the viewpoint of stopband attenuation. It was defined earlier by 

1, O l n l M - I  
0, otherwise 

w(n) = (7.23) 

Its frequency response function is 

which is the amplitude response. From (7.22) the actual amplitude re- 
sponse H, (w )  is given by 

1 T s i n ( q )  dX, M >> 1 (7.24) 
2a sin(%) 

W,(X)dX=- ~ 

--* -* 

This implies that the running integral of the window amplitude response 
(or accumulated amplitude response) is necessary in the accurate anal- 
ysis of the transition bandwidth and the stopband attenuation. Figure 
7.9 shows the rectangular window function w (n), its amplitude response 
W (w) ,  the amplitude response in dB, and the accumulated amplitude 
response (7.24) in dB. From the observation of plots in Figure 7.9 we can 
make several observations. 
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45 
I 

z 

FIGURE 7.9 Rectangular window: M = 45 

0 

3 
3 21 
0 

1. The amplitude response W, (w) has the first zero at w = w1, where 

Hence the width of the main lobe is 2wl = 4 x / M .  Therefore the approzi- 
mate transition bandwidth is 4 n l M .  

2. The magnitude of the first side lobe (which is also the peak side 
lobe magnitude) is approximately at w = 3 r / M  and is given by 

Comparing this with the main lobe amplitude, which is q u a l  to M, the 
peak side lobe magnitude is 

2 - = 21.22% z 13 dB 
3 r  

of the main lobe amplitude. 
3. The accumulated amplitude response has the fist side lobe mag- 

nitude at 21 dB. This results in the minimum stopband attenuation of 21 
dB irrespective of the window length M .  
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4. Using the minimum stopband attenuation, the transition band- 
width can be accurately computed. It is shown in the accumulated 
amplitude response plot in Figure 7.9. This computed a a c t  tmnseteon 
bandwidth is 

1 . 8 ~  
w. -up = - M 

which is about half the approximate bandwidth of 4alM. 
Clearly, this is a simple window operation in the time domain and 

an easy function to analyze in the frequency domain. However, there are 
two main problems. First, the minimum stopband attenuation of 21 dB is 
insufficient in practical applications. Second, the rectangular windowing 
being a direct truncation of the infinite length h d  (n), it suffers from the 
Gibbs phenomenon. If we increase M, the width of each side Iobe will 
decrease, but the area under each lobe will remain constant. Therefore the 
relative amplitudes of side lobes will remain constant, and the minimum 
stopband attenuation will remain at 21 dB. This implies that all ripples 
will bunch up near the band edges. It is shown in Figure 7.10. 

Since the rectangular window is impractical in many applications, we 
consider other window functions, many of which bear the names of the 
people who fist proposed them. Although these window functions can 

~~ 

~~ 3 go -1 heguencyinpiunits 0 1 

< 
P 
I 
= -1 0 1 
- go 

frequency In pi 
M = S l  

P 
I 

FIGURE 7.10 Gabbs phenomenon 

M = 2 1  

E" 
4 

1 0  !m 5 -1 frequency 0 In pi units 1 

I1K E go -1 frequency 0 in pi units 

M = 101 

B 
i 
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also be analyzed similar to the rectangular window, we present only their 
results. 

BARTLETT 
WINDOW 

Since the Gibbs phenomenon results from the fact that the rectangular 
window has a sudden transition from 0 to 1 (or 1 to 0), Bartlett suggested 
a more gradual transition in the f o e  of a triangular window, which is 
given by 

otherwise 

This window and its frequency-domain responses are shown in Figure 
7.11. 

Triangular Window : M 4 5  Amplitude Response in dB 
I 

1 

- - 
3 

0 

0 22 45 
n frequency In pi units 

Amprtude Response szri 
0 

-1 0 1 
frequency in pi units 

1 
60 
-1 

frequency in pi unlts 

FIGURE 7.11 Bartlett (triangdar) window: M = 45 
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Hanning Window : M-+ 

I I 
0 22 45 

n 
AmplitudeResponse 

-1 0 1 
frequencyinpiunits 

Hanning window: M = 45 FIGURE 7.12 

frequency in pi units 

HANNING 
WINDOW 

This is a raised cosine window function given by 

w(n) = {ll;[l-cm(*)], O l n l M - 1  (7.26) 

otherwise 

This window and its frequency-domain responses are shown in Figure 
7.12. 

HAMMING 
WINDOW 

This window is similar to the Hanning window except that it has a small 
amount of discontinuity and is given by, 

0.54-0.46cos(*), O < n < M - l  (7.27) 
otherwise 

w(n)  = 

This window and its frequency-domain responses are shown in Figure 
7.13. 
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Hamming Window : M=45 Amplitude Response in dB 

0 
1 

* - 
5 6 n 

43 

0 
60 

-22 0 22 -1 0 1 
n 

Amplitude Response 
r 1 

frequency in pi units 
Accumulated Amplitude Response 

! 
frequency in pi units 

FIGURE 7.13 Hamming window: M = 45 

BLACKMAN 
WINDOW 

This window is also similar to the previous two but contains a second 
harmonic term and is given by 

otherwise 

(7.28) 

w(n) = 

This window and its frequency-domain responses are shown in Figure 
7.14. 

In Table 7.1 we provide a summary of window function characteristics 
in terms of their transition widths (as a function of M) and their minimum 
stopband attenuations in dB. Both the approximate as well as the exact 
transition bandwidths are given. Note that the transition widths and the 
stopband attenuations increase as we go down the table. The Hamming 
window appears t o  be the best choice for many applications. 

KAISER 
WINDOW 

This is one of the most useful and optimum windows. It is optimum in 
the sense of providing a large main lobe width for the given stopband 
attenuation, which implies the sharpest transition width. The window 
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-1 0 1 
frequency in pi units 

Accumulated Amplitude Response 

FIGURE 1.14 Blackman window: M = 45 

TABLE 7.1 Summary of commonly used window hnction characteristics 

Window hwitaon Width Aw Min. Stopband 
Name Appcimate Exact Values Attenuation 

21 dB 1.8n - 477 
M M 

6.ln 8s 
M M 

6.2n 8s 
M M 
!?! 6.677 
M M 

Iln 127r 
M M 

- Rectangular 

25 dB - - Bartlett 

Hanning 

Hamming 

Blackman 

44 dB - - 
- 53 dB 

74 dB - - 
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function is due to J. F. Kaiser and is given by 

where I0 [.] is the modified zero-order Bessel function, and p is a parame 
ter that depends on M and that can be chosen to yield various transition 
widths and near-optimum stopband attenuation. This window can pro- 
vide different transition widths for the same M, which is something other 
windows lack. For example, 

0 if P = 5.658, then the transition width is equal to 7.8?r/M, and the 
minimum stopband attenuation is equal to 60 dB. This is shown in Figure 
7.15. 

= 4.538, then the transition width is equal to 5.8?r/M, and the 
minimum stopband attenuation is equal to 50 dB. 
Hence the performance of this window is comparable to that of the Hm- 
ming window. In additioa, the Kaiser window provides flexible transi- 
tion bandwidths. Due to the complexity involved in the Beme1 functions, 
the design equations for this window are not easy to derive. Fortunately, 

0 if 

Kaiser Window : M 4 5  

a 

-1 0 1 

-1 1 
frequency in pi units 

FIGURE 7.15 Kaiser window: M = 45, = 5.658 
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Kaiser has developed empirical design equations, which we provide below 
without proof. 

DESIGN 
EQUATIONS 

Given w,, w., Rp,  and A, 

Norm. transition width = A f 5 
2r 

A, - 7.95 Filter order M N ~ 

14.36A f + 

(7.30) 

0.1102 (A, - 8.7), As 1 50 
0.5842 (A, - 21p4 

+ 0.07886 (A,  - 21), 21 < A, < 50 

Parameter f i  = 

MATLAB 
IMPLEMEN- 
TATION 

MATLAB provides several routines to implement window functions dis- 
cussed in this section. A brief description of these routines is given below. 

0 w=boxcar(M) returns the M-point rectangular window function in 
array v. 

0 v=triang(M) returns the M-point Bartlett (triangular) window 
function in array w. 

0 w=hanning(M) returns the Kpoint Hanning window function in ar- 
ray v. 

0 w=hamming(M) returns the Mpoint Hamming window function in 
array v. 

0 v=plackman(M) returns the M-point Blackman window function in 
array v. 

0 rkaiser(M.beta) returns the beta-valued Kpoint rectangular 
window function in array v. 

Using these routines, we can use MATLAB to design FIR filters based 
on the window technique, which also requires an ideal lowpass impulse 
response hd(n). Therefore it is convenient to have a simple routine that 
creates hd(n) as shown below. 

function hd - ideal_lp(vc,M); 
% Ided LouPass filter computation 

% Chdl = ideal_lp(vc,M) 
X kd = ideal impulse response betveen 0 to M-1 
% vc = cutoff frequency in radians 
% M - length of the ideal filter 
% 

................................ 
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alpha ( M - l ) / Z ;  
n = [O:l:(M-l)I; 
m = n - alpha + eps; 
hd = sin(wc*m) ./ (piw); 

% add smallest number to avoid divide by zero 

In the Signal Processing toolbox MATLAB provides a routine called f irl, 
which designs FIR filters using windows. However, this routine is not 
available in the Student Edition. To display the frequencydomain plots 
of digital filters, MATLAB provides the freqz routine, which we used in 
earlier chapters. Using this routine, we have developed a modified version, 
called freqzsl, which returns the magnitude response in absolute as well 
as in relative dB scale, the phase response, and the group delay response. 
We will need the group delay response in the next chapter. 

function [db.mag,pha,grd,ul = freqz-m(b.a); 
X Modified version of freqz subroutine 
X .................................... 
% [db,mag,pha.grd.wl = freqz_m(b,a); 
x db - Relative magnitude in dB computed over 0 to pi radians 
X mag - absolute magnitude computed over 0 to pi radians 
X pha = Phase response in radians over 0 to pi radians 
X grd = Craup delay over 0 to pi radians 
1 v = SO$ frequency samples between 0 to pi radians 
X b = numerator polynomial of A h )  (for FIR: &h) 
% a = denominator polynomial of H(z) (for FIR: a=[11) 

[H,w] * f req2cb.a. 1000. ’whole’ 1 ; 
x 

H = (H(1:1:5011)’; w - (u(1:1:501))’; 
mag = abs(H) ; 

pha - angle (A) ; 
grd - grpdelay(b,a,w); 
db - 20*loglO((mag+eps)/max(mag)); 

DESIGN 
EXAMPLES niques and MATLAB routines. 

We now provide several examples of FIR filter design using window tech- 

0 EXAMPLE 7.8 Design a digital FIR lowpass filter with the following specifications: 

w, = 0.2?r, 

w, = 0.3?r, 

I?,, = 0.25 dB 

A, = 50 dB 

Choose an appropriate window function from Table 7.1. Determine the impulse 
response and provide a plot of the frequency response of the designed filter. 

SdUt iOn Both the Hamming and Blackman windows can provide attenuation of more 
than 50 dB. Let us choose the Hamming window, which provides the smaller 
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transition band and hence has the smaller order. Although we do not use the 
passband ripple value of Rp = 0.25 dB in the design, we will have to check 
the actual ripple from the design and verify that it is indeed within the given 
tolerance. The design steps are given in the following MATLAB script. 

>> vp = 0.29i; ws = 0.3*pi; 
>> tr-width = ws - vp; 
>> M = ceil(6.6*pi/tr,width) + 1 
M = 67 
>> n=[O:l:H-l]; 
>> wc - (ws+vp)/2, X Ideal LPF cutoff frequency 
>> hd = ideal_lp(wc,M); 
>> w-ham = (hamming(M)) ’ ; 
>> h = hd .* w-ham; 
>> Cdb,mag,pha,grd,wl - freqzdh, 111); 
>> delta-w - Z*pi/lOOO; 
>> Rp = -(min(db(i:l:vp/delta-u+l))); 
Rp = 0.0394 
>> As = -ro~(mar(db(ws/delta~w+l:1:501~)~ % Min Stopband attenuation 
As = 52 

>> subplot (1.1,i) 
>> subplot (2.2.1) ; s t a b ,  hd) ; title( ’Ideal Impulse Response’ 
>> axis([O M-1 -0.1 0.33); xlabel(’n’); ylabel(’hd(n)’) 
>> subplot (2.2.2) ; s t a b ,  w-ham) ;title ( ’Hamming Window’ 
>> axis([O M-1 0 1.11); xlabel(’n’); ylabel(’w(n)’) 
>> subplot (2,2,3); stem(n,h) ;title( ’Actual Impulse Response’) 
>> axis([O M-1 -0.1 0.31); xlabel(’n’); ylabel(’h(n)’) 
>> subplot(2,2,4); plot(u/pi.db);title(’Magnitude Response in d8’);grid 
>> axis( [0 1 -100 iOl); xlabel(’frequency in pi units’); ylabel(’Decibe1s’) 

Note that the filter length is M = 67, the actual stopband attenuation is 52 
dB, and the actual passband ripple is 0.0394 dB. Clearly, the passband ripple is 
satisfied by this design. This practice of verifying the pessband ripple is strongly 
recommended. The time and the frequency-domain plots are shown in Figure 
7.16. 0 

X Actual Passband Ripple 

% plots 

0 EXAMPLE 7.9 For the design specifications given in Example 7.8, choose the Kaiser window 
and design the necessary lowpam filter. 

Sdution The design steps are given in the following MATLAB script. 

>> up = 0.2*pi; ws = 0.3*pi; As = 50; 
>> tr-width = ws - vp; 
>> M = ceil((As-7.95)/(14.36*tr_width/(2*pi))+l) + f 
M = 61 
>> n=[o:1:!+11; 
>> beta = 0.1102*(As-8.7) 
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FIGURE 7.16 Lowpass filter plots for Ezample 7.8 

beta - 4.5513 
>> hd = ideal-lp(vc,H); 
>> u-kai = (kaiser(M,beta))’; 
>> h = hd .* w-kai; 
>> [db,mag,pha.grd,v] = freqz-dh, [l]); 
>> delta-w = 2*pi/1000; 
>> As = -round(max(db(ws/delta~w+l:1:501))) % Min Stopbaud Attenuation 
As - 52 
% Plots 
>> subplot (1,1,1) 
>> subplot(2,2,1); stem(n.hd); title(’1deal Impulse Response’) 
>> axis([O M-1 -0.1 0.31); xlabel(’n’); ylabel(’hd(n)’) 
>> subplot(2,2,2) ; stem(n,w-kai) ;title(’Kaiser Window’) 
>> axis([O M-1 0 1.11); xlabel(’n’); ylabel(’w(n)’) 
>> subplot(2,2,3); stem(n,h) ;title(’Actual Impulse Response’) 
>> axis([O M-1 -0.1 0.31); xlabel(’n’1; ylabel(’h(n)’) 
>> subplot (2,2,4) ;plot (v/pi,db) ;title( ’Magnitude Response in dB’) ;grid 
>> axis([O 1 -100 101); xlabel(’frequency in pi units’); ylabel(’Decibe1s’) 

Note that the Kaiser window parameters are A4 = 61 and 0 = 4.5513 and that 
the actual stopband attenuation is 52 dB. The time- and the frequency-domain 

0 

>> uc - (ws+wp)/2; 

plots are shown in Figure 7.17. 
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FIGURE 7.17 LOWFUSS filter plots for Example 7.9 

0 EXAMPLE 7.10 Let us design the following digital bandpass filter 

lower stopband edge: wls = 0 . 2 ~ ,  A, = 60 dB 
lower paasband edge: wlp = 0.3%, & = 1 dB 
upper passband edge: wzp = 0 . 6 5 ~  & = 1 dB 
upper stopband edge: wza = 0 . 8 ~  A, = 60 dB 

These quantities are shown in Figure 7.18. 

0 0.35 0.35 0.65 0.8 
0 
1 

I I I 

FIGURE 7.18 Bandpass flter spezijications an Example 7.10 
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A A 
There are two transition bands, namely, Awl = wlp -wa and A m  = w2. -ap. 
These two bandwidths must be the same in the window design; that is, there is 
no independent control over Awl and Am. Hence Awl = AWZ = Aw. For this 
design we can use either the Kaiser window or the Blackman window. Let us 
use the Blackman Window. We will also need the ideal bandpass filter impulse 
response hd (n). Note that this impulse response can be obtained from two ideal 
lowpass magnitude responses, provided they have the same phase response. 
This is shown in Figure 7.19. Therefore the MATLAB routine ideal-lp(vc,M) 
is sufficient to determine the impulse response of an ideal bandpass filter. The 
design steps are given in the following MATLAB script. 

>> vsi = 0.2*pi; vpl = 0.35*pi; 
>> vp2 = 0.65*pi; vs2 = 0.8*pi; 
>> As = 60; 
>> tr-vidth = min((vpl-ws1). (vs2-vp2)) ; 
>> M = ceil(il*pi/tr-width) + 1 
M = 75 
>> n=[o:l:M-iI; 

>> hd = ideal-lp(wc2,M) - ideaLlp(wc1,M); 
>> v-bla = (blackman(M))’; 
>> h = hd .* v-bla; 
>> [db,mag,pha,grd,v] = freqz-m(h, c11); 
>> delta-v = 2*pi/1000; 
>> Rp = -min(db(rpi/delta-w+l: i:vp2/delta-v)) % Actua; Passband Ripple 
Rp - 0.0030 
>> As = -round(mar(db(vs2/delta~v+l:1:501))) % Min Stopband Attenuation 
As = 75 
‘%Plots 
>> subplot(2,2,1); stem(n,hd); title(‘1deal Impulse Response’) 
>> axis([O M-1 -0.4 0.51); rlabel(’n’); ylabel(’hd(n)’) 
>> subplot (2.2.2) ; stem(n,v-bla) ;title( ’Blackman Window’) 
>> axis(l0 M-1 0 1.11); xlabel(’n’); ylabel(’v(n)’) 

>> wcl = (vsi+vpi)/2; vc2 - (vp2+vs2)/2; 

0 %Z h . > L I L  a 0 %I %2 

0 %1 

FIGURE 7.19 Ideal bandpass filter frum two lowpass filters 
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>> subplot (2,2,3) ; stem(n, h) ;title( ’Actual Impulse Response’ ) 
>> axis([O M-1 -0.4 0.51); xlabel(’n’); ylabel(’h(n)’) 
>> subplot [2,2,4);plot(v/pi ,db) ;axis( 10 1 -150 101 ; 
>> title(Wagnitude Response in &’);grid; 
>> xlabel(’frequency in pi units’); ylabel(’Decibe1s’) 

Note that the Blackman window length is M = 61 and that the actual stopband 
attenuation is 75 dB. The time and the frequencydomain plots are shown in 
Figure 7.20. 0 

0 EXAMPLE 7.11 The frequency response of an idea! bandstop filter is given by 

1, 0 5 IWI < A/3 
He (2”) = 0,  r / 3  5 I w l S  2 ~ / 3  { 1, 2 ~ / 3  < IwI 5 A 

Using a Kaiser window, design a bandstop filter of length 45 with stopband 
attenuation of 60 dB. 

Note that in these design speofieations, the transition bandwidth is not given. 
It will be determined by the length M = 45 and the parameter p of the Kaiser 

n 
Magnitude Response in dB 

- 
i5 

0 2 0 4 0 6 0  0 0.2 0.35 0.65 0.8 1 
n frequency in pi units 

FIGURE 7.20 Bandpass flteter plots in Example 7.10 
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window. From the design equations (7.30) we can determine f l  from A.; that is, 

f l =  0.1102 X (A. - 8.7) 

The ideal bandstop impulse response can also be determined from the ideal 
lowpass impulse response using a method similar to Figure 7.19. We can now 
implement the Kaiser window design and check for the minimum stopband 
attenuation. This is shown in the following MATLAB script. 

>> M = 45; As = 60; n=lO:l:M-11; 
>> beta = 0.1102*(As-8.7) 
beta = 5.6533 
>> w-kai = (kaiser(M,bta)) ’ ; 
>> wcl - pi/3; wc2 = 2*pi/3; 
>> hd = ideal-lp(wc1.M) + ideal-lp(pi.M) - ideal-lp(wc2.M); 
>> h = hd .* w-kai; 
>> Cdb,mag,pha,grd,wl = freqzAh, u1); 
>> subplot(l,l,l) ; 
>> subplot(2.2,i); stem(n,hd); title(’1deal Impulse Response’) 
>> axis([-1 M -0.2 0.83); rlabel(’n’); ylabel(’hd(n)’) 
>> subplot(2,2,2); stem(n,v_hai);title(’Kaiser Window’) 
>> axis([-1 N 0 1.11); xlabel(’n’); ylabel(’u(n)’) 
>> subplot(2,2,3); stem(n,h) ;title(’Actual Impulse Response’) 
>> axis([-I M -0.2 0.81); xlabel(’n’); ylabel(’h(n)’) 
>> subplot(2,2,4);plot(w/pi,db); axis([O 1 -80 101); 
>> title(’Magnitude Response in dB’);grid; 
>> xlabel(’frequr3ncy in pi units’); ylabel(’Decibe1s’) 

The p parameter is equal to 5.6533, and from the magnitude plot in Figure 
7.21 we observe that the minimum stopband attenuation is smaller than 60 
dB. Clearly, we have to increase p to increase the attenuation to 60 dB. The 
required d u e  was found to be p = 5.9533. 

Magnitude Response in dB 
1 I 

0 113 2/3 
frequemy in pi units 

1 

FIGURE 7.21 
5.6533 

Bandstop filter magnitude response an Example 7.11 for p = 
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>> M = 45; As - 60; n=[O:l:M-ll; 
>> beta = 0.1102*(As-8.7)+0.3 
beta - 5.9533 
>> u-kai = (kaiser(M.beta))’; 
>> uci - pi/3; uc2 = 2*pi/3; 
>> hd - ideal-lp(ucl,M) + ideal-lp(pi,M) - ideal-lp(uc2,M); 
>> h - hd .* v-kai; 
>> [db,mag,pha,grd,u] = freqz-mch. [I]); 
>> subplot(l,l,l); 
>> subpiot(2,2,i); stem(n,hd); title(’1dea Impulse hsp0-e’) 
>> vis(r-1 H -0.2 0.81); xlabel(’n’); ylabel(’hd(n)’) 
>> subplot (2,2,2) ; stem(n, v-kai) ;title (’Kaiser Window’ 
>> axis([-i M 0 1.11); xlabel(’n’); ylabel(’u(n)’) 
>> subplot(2,2,3); stem(n,h) ;title(’Actual Impulse Response’) 
>> axis([-1 n -0.2 0 .83 ) ;  xlabel(’n’); ylabel(’h(n)’) 
>> subplot(2,2,4);plot(u/pi,db); axis(C0 1 -80 101); 
>> title(’Hagnitude Response in dB’) ;grid; 
>> xlabel(’frequency in pi units’); ylabel(’Decibe1s’) 

The time- and the frequency-domain plots are shown in Figure 7.22, in which 
0 the designed filter satisfies the neceasBIy requirements. 
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FIGURE 7.22 Bandstop filter plots in Emmple 7.11: p = 5.9533 
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0 EXAMPLE 7.12 The frequency response of an ideal digital differentiator is given by 

(7.31) 

Using a Hamming window of length 21, design a digital FIR differentiator. Plot 
the time- and the frequency-domain responses. 

solution The ideal impulse response of a digital differentiator with linear phase is given 
bY 

n = a  

The above impulse response can be implemented in MATLAB along with the 
Hamming window to design the required differentiator. Note that if M is an 
even number, then a = (M - 1) /2 is not an integer and hs (n) will be zero 
for all n. Hence M must be an odd number, and this will be a Type-3 linear- 
phase FIR filter. However, the filter will not be a full-band differentiator since 
H, (T) = 0 for Type-3 filters. 

>> H = 21; alpha = (M-1)/2; 
>> n = 0:H-1; 
>> hd - (cos(pi*(n-alpha))) ./(n-alpha); hd(alpha+i)d; 

>> h = hd .* w-ham; 
>> [HI .v,P,Ll = &-Type3(h); 
x plot8 
>> subplot (i,i ,I) ; 
>> subplot(2.2,i); stem(n,hd); title(’1deal Impulse Response’) 
>> axis([-1 M -1.2 1.23); rlabel(’n’); ylabel(’hd(n)’) 
>> subplot (2,2,2) ; s t a b ,  w-had ; t i t l e  (’Hamming Window’ 1 
>> axis([-l H 0 1.23); rlabel(’n‘); ylabel(’wb)’) 
>> rrutrplot (2.2.3) ; 8temcn.h) ; t i t l e (  ’ Actual Impulse Response’) 
>> axis([-1 H -1.2 1.211; xlabel(’n’); ylabel(’h(n)’) 
>> subplot (2,2,4) ;plot(u/pi,Hr/pi) ; t i t le(’hp1itude Response ’1 ;grid; 
>> xlabel(’frequency in  p i  - i ts’);  ylabel(’s1op in p i  units’); axis(r.0 1 0 11); 

>> U-ham - ~hanmIing(H))  ’ ; 

The plots are shown in Figure 7.23. 0 
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FIGURE 7.23 FIR differentiator deaign in Ezample 7.12 

0 

wution 

EXAMPLE 7.13 Design a length-25 digital Hilbert transformer using a Harming window. 

The ideal frequency response of a linear-phase Hilbert transformer is given by 

(7.32) 

After inverse transformation the ideal impulse rgponse is given by { ?sin2 R (; - / 2  a) 
t n # a  

n = a  
hd(n) = A n - a  

which can be easily implemented in MATLAB. Note that since M = 25, the 
designed filter is of Type-3. 

>> M = 25; alpha = (M-1)/2; 
>> n - 0:M-1; 
>> hd = (2/pi)*((sin((pi/2)*(n-alpha)) .-2) ./(n-alpha)); hd(alpha+l)=O; 
>> v-han = (hanning(H))’; 
>> h = hd .* v-ha;  
>> CHr,v,P,Ll = Hr_Tppe3(h); 

>> subplot (1.1.1) ; 
x plots 
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FIGURE 7.24 FIR Hilbert tmnsfomer design in Ezample 7.13 

>> subplot(2,2,1); stem(n.hd); title(’1deal Impulse Response’) 
>> axis([-1 M -1.2 1.23); xlabel(’n’); ylabel(’hd(n)’) 
>> subplot(2,2,2); stem(n,v-han) ;title(’Hanning Window’) 
>> axis([-1 M 0 1.21); xlabel(’n’); ylabel(’v(n)’) 
>> subplot(2.2.3); stam(n,h);title(’Actual Impulse Response’) 
>> axis([-1 M -1.2 1.23); xlabel(’n’); ylabel(’h(n)’) 
>> v - v’; HI - Hr’; 
>> w - [-fliplr(w), v(2:601)1; HI - [-fliplr(b), Hr(2:501)1; 
>> subplot(2,2.4) ;plot(v/pi,Hr); title(’Amp1itude Response’) ;grid; 
>> xlabel(’frequency in pi units’); ylabel(’Hr’); axis([-i 1 -1.1 1.11); 

The plots are shown in Figure 7.24. Observe that the amplitude response is 
0 plotted over -K 5 w 5 K. 

FREQUENCY SAMPLING DESIGN TECHNIQUES 
I 
I 

In this design approach we use the fact that the system function H (2) 
can be obtained from the samples H ( k )  of the frequency response H(ej”) .  
Furthermore, this design technique fits nicely with the frequency sampling 
structure that we discussed in Chapter 6. Let h(n) be the impulse response 
of an M-point FIR filter, H ( k )  be its M-point DFT, and H ( z )  be its 
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system function. Then from (6.12) we have 

and 

with 

For a linear-phase FIR filter we have 

h ( ~ )  = f h ( M  - 1 - n), n = O , l , .  . . , M - 1 

where the positive sign is for the Type-1 and Type2 linear-phase filters, 
while the negative sign is for the Type-3 and Type-4 linear-phase filters. 
Then H ( k )  is given by 

where 

k = O  

H, (qp) , k = 1, .  . . , M - 1 
(7.36) 

and 

-(?)(?), k = O ,  ..., 
> (Type-1 tk 2) LH (k) = 

(7.37) 
or 

(q-(?) (?), k = 0 ,  ..., 

M - 1  2n 
LH (k) = - (*:) + (7) ( M  - k )  , I 

I k =  IT] + ~ , . . . , M - I  (7.38) 
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Finally, we have 

h(n) = IDFT [H(k ) ]  (7.39) 

Note that several textbooks (e.g., [19, 20, 161) provide explicit formu- 
las to compute h(n), given H(k) .  We will use MATLAB'S i f f t  routine to 
compute h(n) from (7.39). 

Basic Idea Given the ideal lowpass filter Hd(ej"), choose the filter 
length M and then sample Hd(ejw) at M equispaced frequencies between 
0 and 2n. The actual response H(ej") is the interpolation of the samples 
H ( k )  given by (7.34). This is shown in Figure 7.25. The impulse response 
is given by (7.39). Similar steps apply to other frequency-selective filters. 
Furthermore, this idea can also be extended for approximating arbitrary 
frequency-domain specifications. 

From Figure 7.25 we observe the following: 

1. The approximation error-that is, the difference between the ideal 
and the actual response-is zero at the sampled frequencies. 

2. The approximation error at all other frequencies depends on the 
shape of the ideal response; that is, the sharper the ideal response, the 
larger the approximation error. 

3. The error is larger near the band edges and smaller within the 
band. 

There are two design approaches. In the first approach we use the 
basic idea literally and provide no constraints on the approximation error; 
that is, we accept whatever error we get from the design. This approach is 
called a naive design method. In the second approach we try to minimize 
error in the stopband by varying values of the transition band samples. 
It results in a much better design called an optimum design method. 

Hd(ejw) H(ejw) 
ideal Response and Frequency Samples and 
Frequency Samples Approximated Response 

0 
0 1 2  3 4 5 6 7 8 9 1 0 "  kw 0 1 2 3 4-5 6 7 8 9 1 0 " * k w  

FIGURE 7.25 Pictorial description of frrquency sampling technique 

~ 
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NAIVE DESIGN 
METHOD 

In this method we set H ( k )  = Hd(e jZnk /M) ,  

(7.35) through (7.39) to obtain the impulse response h(n). 
k = 0,. . . , M - 1 and use 

0 EXAMPLE 7.14 Consider the lowpass filter specifications from Example 7.8. 

w, = 0.27r, 

w. = 0.3?r, 

Rp = 0.25 dB 

A. = 50 dB 

Design an FIR filter using the frequency sampling approach. 

S d U t i  Let us choose M = 20 60 that we have a frequency sample at up, that is, at 
k = 2: 

2n 
20 

w, = 0.277 = -2 

and the next sample at w,, that is, at k = 3: 

2* 
20 

US = 0.3~ = -3 

Thus we have 3 samples in the passband [O 5 w 5 up] and 7 samples in the 
stopband [w. 5 w 5 r]. From (7.36) we have 

H , ( k )  = [1,1,1,0,.. . , O , l , l ]  
U 
15 zero8 

Since A4 = 20, a = 
from (7.37) we have 

= 9.5 and since this is a Type2 linear-phase filter, 

= -0.95nk, 0 5 k 5 9 

10 5 k 5 19 +0.95n (20 - k )  , 

Now from (7.35) we assemble H ( k )  and from (7.39) determine the impulse 
response h (n). The MATLAB script follows: 

>> M = 20; alpha = (M-1)/2; 1 - 0:M-1; v l  = (2*pi/M)*l; 
>> Hrs - [l,i,l,zeros(l,15),1,1~; %Ideal Amp Res sampled 
>> Hdr = [ l , l , O , O ] ;  w d l  = [0,0.25,0.26,11; %Ideal Amp Re8 for  plott ing 
>> kl = O:floor((M-1)/2); k2 = floor((M-l)/2)+l:M-l; 
>> angH = [-alpha*(2*pi)/M*kl, alpha*(2*pi)/M*(M-k2)1; 
>> H = Hrs.*exp(j*angH); 
>> h - real(ifft(H,H)); 
>> [db,mag,pha,grd,v] - freqz-m(h,l); 
>> [Hr,w,a,Ll = Hr_Type2(h); 
>> subplot (1,1,1) 
>> subplot (2,2,1) ;plot (vl(1: l l ) / p i  ,Hrs (1 : 11) , ’ 0 ’  ,vdl ,Hdr) ; 
>> axis( LO, 1 ,-0. 1,l. 13) ; t i t l e  (’Frequency Samples: M=20’) 
>> xlabel(’frequency in  p i  units’);  ylabel(’Hr(k)’) 
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>> subplot (2.2.2) ; stem(1 ,h) ; axis ( c-1 ,H, -0. I ,O. 31 ) 
>> title(’Impu1se Response’); xlabel(’n’) ; ylabel(’h(n)’); 
>> subplot(2.2.3); plot(vv/pi,Hr,vl(l:ll)/pi,Hrs(l:il) ,’o’); 
>> aris([O,l.-O.2,1.21); titlec’hplitude Response’) 
>> xlabel(’frequency in pi units’); yle,bel(’Hr(w)’) 
>> subplot (2,2,4) ;plot(w/pi ,db) ; axis( [0,1,-60.101) ; grid 
>> title(’Kagnitude Response’); xlabei(’fpquency in pi units’); ylabel(’Decibe1s’) ; 

The time and the frequency-domain plots are shown in Figure 7.26. Observe 
that the minimum stopband attenuation is about 16 dB, which is clearly unac- 
ceptable. If we increase M, then there will be samples in the transition hand, 
for which we 40 not precisely know the frequency response. Therefore the naive 

0 design method is seldom used in practice. 

OPTIMUM 
DESIGN 
METHOD 

To obtain more attenuation, we will have to increase M and make the 
transition band samples free samples-that is, we vary their values to 
obtain the largest attenuation for the given M and the transition width. 
This problem is known as an optimization problem, and it is solved using 
linear programming techniques. We demonstrate the &ect of transition 
band sample variation on the design using the following example. 

Freauency Samdes: M=20 

0 0.20.3 1 
frequency in pi units 

0.2 

I 5 0.1 

0 

-0.1‘ . I 
0 5 10 15 20 

Magllitltee Respollse 
n 

0 0.20.3 1 
frequency in pi wits 

FIGURE 7.26 Naive frequency sampling design method 
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0 EXAMPLE 7.15 Using the optimum design method, design a better lowpass filter of Example 
7.14. 

solution Let us choose M = 40 so that we have one sample in the transition band 
0.2~ < w < 0.3~. Since W I  = 27r/40, the transition band samples are at k = 5 
and at k = 40 - 5 = 35. Let us denote the value of these samples by TI ,  
0 < TI < 1; then the sampled amplitude response is 

A 

H,(k) = [l,l,l,l,l,Ti,O ,..., O,T1,1,1,1,1] * 
as WIOB 

Since a = = 19.5, the samples of the phase response are 

{ -19.5gk = -0.975?rk, 0 5 k 5 19 
LH (k) = 

+0.975~ (40 - k) , 20 5 k 2 39 

Now we can vary TI to get the best minimum stopband attenuation. This will 
result in the widening of the transition width. We first see what happens when 
TI = 0.5. 

From the plots of this design in, Figure 7.27 we observe that the minimum 
stopband attenuation is now 30 dB, which is better than the naive design at- 
tenuation but is still not at the acceptable level of 50 dB. The best value for TI 
'was obtained hy varyibg it manually (although more efficient linear program- 
ming techniques are available, these were not used in this case), and the near 
optimum solution was found at TI = 0.39. 

From the plots in Figure 7.28 we observe that the optimum stopband attenu- 
ation is 43 dB. It is obvious that to further increase the attenuation, we will 

0 have to vary more than one sample in the transition band. 
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Frequency Samples: M-40,T1=0.5 Impulse Response 
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FIGURE 7.27 Optimum frequency design method: TI = 0.5 

lmpulsa Response Frequency Samples: M=40,T1=0.39 
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FIGURE 7.28 Optimum frequency design method: TI = 0.39 
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Clearly, this method is superior in that by varying one sample we 
can get a much better design. In practice the transition bandwidth is 
generally small, containing either one or two samples. Hence we need to  
optimize at  most two samples to  obtain the largest minimum stopband 
attenuation. This is also equivalent to minimizing the maximum side lobe 
magnitudes in the absolute sense. Hence this optimization problem is also 
called a minimax problem. This problem is solved by Rabiner et al. [20], 
and the solution is available in the form of tables of transition values. 
A selected number of tables are also available in 119, Appendix B]. This 
problem can also be solved in MATLAB, but it would require the use of 
the Optimization toolbox. We will consider a more general version of this 
problem in the next section. We now illustrate the use of these tables in 
the following examples. 

Let us revisit our lowpass filter design in Example 7.14. We will solve it using two 
sampla in the transition band so that we can get a better stopband attenuation. 

Let us choose M = 60 so that there are two samples in the transition band. Let 
the values of these transition band samples be TI and Tz. Then H ,  (w)  is given 

0 EXAMPLE 7.16 

Solution 

by 
H (w) = 1,. . . ,1,  Ti,Tz,O,. . . , O  ,Tz,Ti, 1,. . . ,1] L -  - 

7 ones a zeros 6 ones 

&om tables in [19, Appendix B] TI = 0.5925 and Tz = 0.1099. Using these 
values, we use MATLAB to compute h (n). 

>> M = 60; alpha = (M-1)/2; 1 = 0:M-1; wl = (2*pi/M)*l; 
>> Hrs = [ones (1,7), 0.5925,O. 1099, zeros (1,43) ,O f  1099 ,O. 5925,ones (1,6) 1 ; 
>> Hdr = [l,l,O,Ol; wdl = [0,0.2,0.3,11; 
>> kl = O:floor((H-1)/2); k2 = floor((M-1)/2)+1:H-l; 
>> angH = [-alpha*(2*pi)/M*kl, alpha*(2*pi)/M*(M-k2)3 ; 
>> H = Hrs.*erp(j*angH); 
>> h = real(ifft(H,M)); 
>> [db,mag,pha,grd,wl = freqz-m(h,l); 
>> CHr,w,a,Ll = Hr-Typelch); 

The time- and the frequency-domain plots are shown in Figure 7.29. The min- 
0 imum stopband attenuation is now at 63 dB, which is acceptable. 

0 EXAMPLE 7.17 Design the bandpm filter of Example 7.10 using the frequency sampling tech- 
nique. The design specifications are these: 

lower stopband edge: wls  = 0.2n, A, = 60 dB 

lower passband edge: wlp = 0.35n, Rp = 1 dB 

upper passband edge: wzP = 0.65~ Rp = 1 dB 

upper stopband edge: wzS = 0.8n Aa = 60 dB 
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solution 

Lowpass: M=W,T1=0.59. T2=0.109 Impulse Response 

0 2  

3 0.1 
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4.1 
0 020.3 1 0 20 40 60 

frequency ?a pi u n b  n 
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m 

f 
863 

0 0.20.3 1 0 0.20.3 1 
fmqequency in pi units freguencyhpiunb 

FIGURE 7.29 m s  filter desrgn plots in Ezample 7.16 

Let us choose M = 40 so that we have two samples in the transition band. 
Let the frequency samples in the lower transition band be TI and Tz. Then the 
samples of the amplitude response are 

Hv (w)  = ,Ti, Tz, 1,. . . , 1 , Tz, Ti, 0,. . . ,O, Ti, Tz, 1,. . . ,1 ,  Tz, Ti, 0,. . . , O ]  + * * + 
5 7 9 7 4 

The optimum d u e s  of Ti and T' for M = 40 and seven samples in the passband 
119, Appendix B] are 

TI = 0.109021, T' = 0.59417456 

The MATLAB script is 

>> M .I 40; alpha = (M-1)/2; 1 - 0:M-1; wl - (2*pi/M)*l; 
>> T1 = 0.109021; T2 0.59417456; 
>> &S = [zeros(l,5) ,T1 ,TZ,ones(l,7) ,T2,T1 ,zeros(l.9) ,Ti ,T2,ones(l,7) ,T2,T1 ,zeroe(l,4)]; 
>> H d r  = [ O , O , l , l , O , O ] ;  w d l  = C0,0.2,0.35,0.65,0.6,1l; 
>> kl = O:floor((M-l)/P); k2 = floor((M-1)/2)+l:H-l; 
>> angH = [-alpha*(2*pi)/M*ki, alpha*(2*pi)/H*(H-k2)1; 
>> H = Hrs.*exp(j*angH); 

212 Chapter 7 FIR FILTER DESIGN 



>> h = real(ifft(H.M)); 
>> Cdb,mag,pha.grd.wl = freqz-m(h,l); 
>> CHr,vv,a.Ll = €Ir-TypeS(h); 

The plots in Figure 7.30 show an acceptable bandpass filter design. 0 

0 EXAMPLE 7.18 Design the following highpass filter: 
Stopband edge: ws = 0 . 6 ~  A. = 50 dB 

Psssband edge: up = 0 . 8 ~  Rp = 1 dB 

Recall that for a highpass filter M must be odd (or Type1 filter). Hence we 
will choose M = 33 to get two samples in the transition band. With this choice 
of M it is not possible to have frequency samples at w, and up. The samples of 
the amplitude response are 

H, ( k )  = U , T i , T 2 , 1 , .  . . ,1 ,Tz,Ti,O,. . .,O] 

Sdution 

v w 
11 8 10 

while the phase response samples are 

LH ( k )  = [ - r z k = - $ k ,  O I k 1 1 6  

+-T (33 - k) , 17 1 k 5 32 

Bandpass: M=40,T1=0.5941. T2=0.108 

0 0 2  0.35 0.65 0.8 1 
hequency In pl units 
AmpHhldeResponse 

0 0.2 0.35 0.65 0.6 1 
frequency in pi units 

0.2 - f o  

-0.2 

4.4- 
0 1 0 2 0 3 0 4 0  

n 

FIGURE 7.u) Bandpass filter design plots in Ezomple 7.17 
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The optimum values of transition samples are TI = 0.1095 and Tz = 0.598. 
Using these values, the MATLAB design is 

The time- and the frequency-domain plots of the design are shown in F i e  
7.31. 0 

0 EXAMPLE 7.19 Design a 33-point digital differentiator based on the ideal differentiator of (7.31) 
given in Example 7.12. 

frequency in pi units 
ArnpURasponse 

0 .6 .8 1 
frequency in pi units 

4.4- 
0 1 0 2 0 3 0  

n 
Magnitk.de Response 

0 .6 .8 
frequency in pi units 

FIGURE 7.31 Highpass filter design plots in Ezample 7.18 
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SOlUtiOn From (7.31) the samples of the (imaginarj-valued) amplitude response are given 
bY 

M - 1  
k = O,.. . , 1 7 1  

j H ,  (k) = 
k =  LvJ + l , . . . , M - I  

and for linear phase the phase samples are 

M - 1 2 a  M - 1  M - 1  { -Zzk = -- ak ,  k = 0, ..., 1 7 1  
L H (k) = 

+-a(M - k ) ,  k =  + l , . . . , M - l  M 

Therefore 

H (12) = jH, (k) dLH(k) ,  0 5 k 5 M - 1 and h (n) = IDFT [H (k)] 

The t ie  and the frequency-domain plots are shown in Figure 7.32. We observe 
that the differentiator is not a full-band differentiator. 0 

0 EXAMPLE 7.20 Design a 51-point digital Hilbert transformer based on the ideal Hilbert trans- 
former of (7.32). 

solution horn (7.32) the samples of the (imaginary-valued) amplitude response are given 
bY p, k = 1 ,  ...,LTj M - l  

jH, (k) = { 0, k = 0 

Since this is a Type3 linear-phase filter, the amplitude response will be zero 
at w = a. Hence to reduce the ripples, we should choose the two samples (in 
transition bands) near w = 7~ optimally between 0 and j .  Using our previous 
experience, we could select this value as 0.39j. The samples of the phase response 
are selected similar to those in Example 7.19. 
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Dfterentiator, frequency samplhr(l desigr\ : M = 33 
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FIGURE 1.32 Differentiator design plots in Ezample 7.19 

>> n = 51; alpha = (n-1)/2; hr - 2*pi/M; 
>> i = o:n-1; wi = hr*i; 
>> k1 = o:floor((n-i)/~); k2 = fioor((n-1)/2)+1:n-i; 
>> Hrs = [ O ,  -j*ones (1, (H-3)/2) ,-0.39j ,O. 39j, j*ones (lI(M-3) /2) 1 ; 
>> aagIi = [-alpha*Dw*kl , alpha*Dw* (M-k2)] ; 
>> H - Hrs.*exp(j*augH); 
>> h = real(ifft(H,H)); 
>> CHr,w,a.Pl=Hr-Type3(h); 

The plots in Figure 7.33 show the effect of the transition band samples. 0 

The type of frequency sampling filter that we considered is called a 
Type-A filter, in which the sampled frequencies are 

2 r  
M 

There is a second set of uniformly spaced samples given by 

~ k = - k ,  O s k l M - 1  

2r (k + f) 
wk = , O l k S M - 1  

This is called a Type-B filter, for which a frequency sampling structure is 
also available. The expressions for the magnitude response H(ej") and the 
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H i l h l  Transformer, frequency sampling design : M = 51 

0 0.2 0.4 0.6 0.8 
frequency in pi unL 

lmoulse res~onse 
1 ,  

0.5 P 

n 

FIGURE 7.33 Digital Hilbert transformer design plots an Ezample 7.20 

impulse response h(n) are somewhat more complicated and are available 
in [19]. Their design can also be done in MATLAB using the approach 
discussed in this &ion. 

OPTIMAL EQUlRlPPLE DESIGN TECHklQUE 
I 
I 

The last two techniques-namely, the window design and the frequency 
sampling design-were easy to understand and implement. However, they 
have some disadvantages. First, we cannot specify the band frequencies 
wp and wd precisely in the design; that is, we have to accept whatever 
values we obtain after the design. Second, we cannot specify both 61 and 
62 ripple factors simultaneously. Either we have 61 = 62 in the window 
design method, or we can optimize only 62 in the frequency sampling 
method. Finally, the approximation error-that is, the difference between 
the ideal response and the actual responseis not uniformly distributed 
over the band intervals. It is higher near the band edges and smaller in 
the regions away from band edges. By distributing the error uniformly, 
we can obtain a lower-order filter satisfying the same specifications. For- 
tunately, a technique exists that can eliminate the above three problems. 
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This technique is somewhat difficult to understand and requires a com- 
puter for its implementation. 

For linear-phase FIR filters it is possible to derive a set of conditions 
for which it can be proved that the design Solution is optimal in the sense 
of minirnizzng the mazirnum approximation e m r  (sometimes called the 
manimwor the Chebysheu error). Filters that have this property me called 
qpliripple filters because the approximation error is uniformly distributed 
in both the passband and the stopband. This results in lower-order filters. 

In the following we first formulate a minimax optimal FIR design 
problem and discuss the total number of maxima and minima (dm- 
tively called eztrema) that one can obtain in the amplitude response of 
a linear-phase FIR filter. Using this, we then discum a general equiripple 
FIR filter design algorithm, which uses polynomial interpolation for its 
solution. This algorithm is known as the ParbMcCleifan algorithm, and 
it incorporates the Remez exchange routine for polynomial solution. This 
algorithm is available as a subroutine on many computing platforms. In 
this section we will use MATLAB to design equiripple FIR filters. 

DEVELOPMENT Earlier in this chapter we showed that the frequency response of the four 
OF THE cases of linear-phase FIR filters can be written in the form 
MINIM AX 
PROBLEM H(@) = & P e - j V W H , ( w )  

where the d u e s  for p and the expressions for H,(w) are given in Table 
7.2. 

TABLE 7.2 Amplitude response and @-values for lineor-phase FIR filters 

Linear-phase FIR Filter Qpe P HC(ei”) 

(M--l)/2 

0 
Typel: A4 odd, symmetric h(n) 0 C a(n)coswn 

MI2 
Type-2: M even, symmetric h(n) 0 C b(n)cos [w(n - 1/2)] 

1 

(M-1)/2 
c(n)sinwn ?r Type-3: M odd, antisymmetric h(n) - 

2 1 

?r MI2 - Type-4: M even, antisymmetric h(n) d(n) sin [w(n - 1/2)] 
2 1  
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TABLE 7.3 Q(w), L, and P(w) for linear-phase FIR filters 

1 

L -  
W - -  1 Cb(n)coswn 

Type-3 sin w CE(n)coswn 

2 

M - 3  = 

cos- 
2 me-2 

0 

0 

W -- I kci(n)ooswn 
2 

sin - 
2 Type-4 

0 

Using simple trigonometric identities, each expression for HJw)  above 
can be written as a product of a fixed fundion of w (call this Q(w)) and a 
function that is a sum of cosines (call this P(w)). For details see [19] and 
Problems 7.1-7.4. Thus 

where P(w) is of the form 

(7.41) 

and &(w), L, P(w) for the four cases are given in Table 7.3. 
The purpose of this analysis is to have a common form for H,(w) 

across all four cases. It makes the problem formulation much easier. To 
formulate our problem as a Chebyshev approximation problem, we have 
to define the desired amplitude response &(w) and a weighting function 
W(w), both defined over passbands and stopbands. The weighting func- 
tion is necessary so that we can have an independent control over 61 and 
62. The weighted error is defined as 

These concepts are made clear in the following set of figures. It shows a 
typical equiripple filter response along with its ideal response. 
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1.11 

1 .( 

0.9 

Ideal Response 7 
The error [Hd, (w) - H, (w)] response is shown below. 

Now if we choose 

- in the passband 

1, in the stopband 
(7.43) 
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Then the weighted error E(w) response is 

Weighted Error Functbn 

weight = 0.5 *hi= 1 0  

0 0.3 0.5 1 
fmquency in pi unb 

Thus the maximum error in both the passband and stopband is 62. There- 
fore, if we succeed in minimizing the maximum weighted error to &, we 
automatically also satisfy the specification in the passband to 61. Substi- 
tuting Hr(w) from (7.40) into (7.42), we obtain 

E (w) = W (w) I&r (w)  - Q (w) P (w)I 

If we define 

then we obtain 

E(w) = @ ( W )  [fidr(W) - P ( W ) ] ,  w E s 

Thus we have a common form of E(w)  for dl four cam. 

(7.44) 

Problem Statement 
be defined as: 

The Chebyshev approximation problem can now 

Determine the set of coefficients a(n) or 6(n) or E(n) or d(n) [or equiva- 
lently a(.) or b(n) or c(n) or d(n)] to minimize the maximum absolute 
value of E (w) over the passband and stopband, i.e., 
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Now we have succeeded in specifying the exact wp, w., 61, and 62. In 
addition the error can now be distributed uniformly in both the passband 
and stopband. 

CONSTRAINT 
ON THE 
NUMBER OF 
EXTREMA 

Before we give the solution to  the above problem, we will first discuss 
the issue: how many local maxima and minima exist in the error function 
E(w) for a given M-point filter? This information is used by the Parks- 
McClellan algorithm to obtain the polynomial interpolation. The answer 
is in the expression P(w). From (7.41) P (w) is a trigonometric function 
in w. Using trigonometric identities of the form 

cos (2w) = 2 cos2 (w) - 1 

cos (3w) = 4 C O S ~  (w) - 3 cos (w) 

. _ .  

P (w) can be converted to  a trigonometric polynomial in cm (w), which 
we can write (7.41) as 

L 
P (w) = c P(n) COS” w 

n=O 

0 EXAMPLE721 Let h(n) = &[1,2,3,4,3,2,1] . Then M = 7 and h(n) is symmetric, which 
means that we have a Type-1 linear-phase filter. Hence L = ( M  - 1)/2 = 3. 
Now from (7.7) 

a(.) = a(n) = 2h(3 - n), 

or a(n) = &[4,6,4,2]. Hence 

1 5 n 5 2; and a(0) = a(0) = h(3) 

3 

P (w) = c a ( n )  co8 wn = (4 + 6 cas w + 4 cos 2w + 2co83w) 
0 

= & (4 + 6 cosw + 4(2cos2 w - 1) + 2(4cos3w - 3 mu)} 

8 8  
15 15 or ~ ( n )  = [o, 0, -, -1. 

From (7.46) we note that P(w)  is an Lth-order polynomial in cos(w). Since . .  .~ . .  . .  
cos(w) is a monotone function in the open interval 0 < w < ?r, then it follows 
that the Lth-order polynomial P(w)  in cos(w) should behave like an ordinary 
Lth-order polynomial P(s)  in s. Therefore P(w) has at most (i.e., no more 
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than) (t - 1) local extrema in the open interval 0 < w < A. For example, 

l+cos2w 
2 

COs*(W) = - 
has only one minimum at w = n/2 .  However, it has three extrema in the closed 
interval 0 5 w 5 A (i.e., a maximum at w = 0, a minimum at w = ~ / 2 ,  and 
a maximum a%= R). Now if we include the end points w = 0 and w = R, 
then P ( w )  has at most (L + 1) local extrema in the closed interval 0 5 w 5 r. 
Finally, we would like the filter specifications to be met exactly at band edges 
w, and w.. Then the specifications can be met at no more than (L + 3) extremal 
frequencies in the 0 5 w 5 R interval. 

Concluswn The error fiction E(w) has at most (L + 3) extrema in S. 

0 EXAMPLE 7.22 Let us plot the amplitude response of the filter given in Example 7.21 and count 
the total number of extrema in the corresponding error function. 

Sdution The impulse response is 

1 
15 

h(n)=-[1,2,3,4,3,2,1), M = 7  or L = 3  

and a(n) = &[4,6 ,4 ,2 ]  and p(n)  = [O,O, 6, &] from Example 7.21. Hence 

a a P(w) = - coszw + - m 3 w  
15 15 

which is shown in Figure 7.34. Clearly, P ( w )  has (L - 1) = 2 extrema in the 
open interval 0 < w < ?r. Also shown in Figure 7.34 is the error function, which 

0 has ( L  + 3) = 6 extrema. 

Let us now turn our attention to the problem statement and equa- 
tion (7.45). It is a well-known problem in approximation theory, and the 
solution is given by the following important theorem. 

H THEOREM1 Alternation Thc?oft?m 
Let S be any closed subset of the closed interval [0, r]. In  order that 

P ( w )  be the unique minimax approximation to Hdr(W) on S ,  it is necessary 
and suficient that the error function E ( w )  ezhibit at least ( L  + 2) “alter- 
nations” or extremal frequencies in s; that is, there must exist ( L  + 2) 
frequencies wi in S such that 

E (w,) = -E (wi-1) = 2~ max IE (w)l (7.47) 
S 

A 
= *c5, v w o  < w1 < . . . < WL+l  E s 

Combining this theorem with OUT earlier conclusion, we infer that 
the optimal equiripple filter has either (L + 2) or (L + 3) alternations 
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FIGURE 7.34 Amplitude response and ehe envrfinction in Example 7.22 

in its error function over S. Most of the equiripple filters have (L + 2) 
alternations. However, for some combinations of w, and w., we can get 
filters with ( L t 3 )  alternations. These filters have one extra ripple in their 
response and hence are called Eztm-ripple filters. 

PARKS- 
McCLELLAN 
ALGORITHM 

The alternation theorem ensures that the solution to our minimax a p  
proximation problem exists and is unique, but it does not tell us how 
to obtain this solution. We know neither the order M (or equivalently, 
L), nor the extremal frequencies w,, nor the parameters {a(n)}, nor the 
maximum error 6. Parks and McClellan [17] provided an iterative solution 
using the Remez exchange algorithm. It assumes that the filter length M 
(or L)  and the ratio 62/61 are known. If we choose the weighting function 
as in (7.43), and if we choose the order M correctly, then 6 = 62 when 
the solution is obtained. Clearly, 6 and M are related; the larger the M ,  
the smaller the 6. In the filter specifications 61, 62, wp, and w, are given. 
Therefore A4 has to be assumed. Fortunately, a simple formula, due to 
Kaiser, exists for approximating M. It is given by 
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The ParksMcClellan algorithm begins by guessing ( L  + 2 )  extremal fre- 
quencies {w,} and estimating the maximum error 6 at these frequencies. 
It then fits an Lth-order polynomial (7.46) through points given in (7.47). 
Local maximum errors are determined over a finer grid, and the extremal 
frequencies {w,} are adjusted at these new extremal values. A new Lth- 
order polynomial is fit through these new frequencies, and the procedure 
is repeated. This iteration continues until the optimum set {w,} and the 
gIobaI maximum error 6 are found. The iterative procedure is guaranteed 
to converge, yielding the polynomial P(w).  Fkom (7.46) coefficients a(.) 
are determined. Finally, the coefficients a(n) as well as the impulse re- 
s p o b h ( n )  are computed. This algorithm is available in MATLAB as the 
remez function, which is described below. 

Since we approximated M ,  the maximum error 6 may not be equal to 
62. If this is the case, then we have to increase M (if 6 > 62) or decrease 
M (if 6 < &) and use the remez algorithm again to determine a new 
6. We repeat this procedure until 6 5 62. The optimal equiripple FIR 
filter, which satisfies all the three requirements discussed earlier is now 
determined. 

MATLAB 
IMPLEMEN- 
TATION 

The ParbMcClellan algorithm is available in MATLAB as a function 
called remez, the most general syntax of which is 

[hl = remez(N,f ,m,veights,ftype) 

There are several versions of this syntax:’ 

0 [h] - remez(N,f ,m) designs an Nth-order (note that the length 
of the filter is M = N + 1) FIR.digita1 filter whose frequency response 
is specified by the arrays f and m. The filter coefficients (or the impulse 
response) are returned in array h of length M .  The array f contains band- 
edge frequencies in units of R, that is, 0.0 < f < 1.0. These frequencies 
must be in increasing order, starting with 0.0 and ending with 1.0. The 
array m contains the desired magnitude response at frequencies specified 
in f. The lengths off and m arrays must be same and must be an even 
number. The weighting function used in each band is equal to unity, which 
means that the tolerances (4’s) in every band are the same. 

0 [h] = remez(N,f +,weights) is similar to the above case except 
that the array weights specifies the weighting function in each band. 

0 [hl = remez (N , f .m , f type) is similar to the first case except when 
ftype is the string ‘diff erentiator’ or ‘hilbert’, it designs digital dif- 

‘It should be noted that the remez function underwent a small change from the old 
Student Edition to the new Student Edition of MATLAB (or from the Signal Processing 
Toolbox version 2.0b to version 3.0). The description given here applies to the new 
version. 

Optimal Equiripple Design Technique 285 



ferentiators or digital Hilbert transformers, respectively. For the digital 
Hilbert transformer the lowest frequency in the f array should not be 
0, and the highest frequency should not be 1. For the digital differentia- 
tor, the m vector does not specify the desired slope in each band but the 
desired magnitude. 

0 [h] = remez(N,f ,m,weights,ftype) is similar to the above case 
except that the array weights specifies the weighting function in each 
band. 

As explained during the description of the Parks-McClellan algorithm, 
we have to first guess the order of the filter using (7.48) to use the routine 
remez. After we obtain the filter coefficients in array h, we have to check 
the minimum stopband attenuation and compare it with the given A, 
and then increase (or decrease) the filter order. We have to repeat this 
procedure until we obtain the desired A,. We illustrate this procedure in 
the following several MATLAB examples. 

Let us design the lowpass filter described in Example 7.8 using the Parks 
McClellan algorithm. The design parameters are 

0 D(AMPLE7.23 

W, = 0 . 2 ~  , 
W. = 0.3n, 

Rp = 0.25 dB 

A, = 50 dB 
We provide a MATLAB script to design this filter 

>> up = 0.2*pi; vs = 0.3*pi; Rp = 0.25; As = 50;  
>> vsi = vs/delthv+i; 
>> delta1 = (10^(Rp/20)-1)/(1O^(Rp/20~+1); 
>> delta2 = (l+deltal)*(lO-(-As/ZO)); 
>> delta = max(deltal,delta2) ; delta?. = min(deltai,delta2) ; 
>> weights = [delta2/deltal 11; 
>> deltaf = (vs-vp)/(2*pi); 
>> M = ceil( (-20*log10(sqrt(deltal*delta2) )-13) / (14. 6*deltaf)+l) 
M = 43 
>> f = LO vp/pi vs/pi 13; 
>> m = C1 1 0  01; 
>> h = remez(M-1,f ,m,veights); 
>> [db,mag,pha,grd,w] - freqz-m(h, c11); 
>> delta-v = 2*pi/lOOO; 
>> Asd = -max(db(wsi:1:501)) 
Asd = 47.8562 

>> h = remez(H-l,f,m,veights); 
>> [db,mag,pha,grd,vl = freqz-mch, 111) ; 
>> Asd = -max(db(wsi:1:501)) 
Asd = 48.2158 
>> M = M+l; 
>> h = remez(M-l,f,m,veights); 
>> [db,mag,pha,grd,ul = freqz-m(h, [ll); 

>> M = M+l; 
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Note that we stopped the above iterative procedure when the computed s t o p  
band attenuation exceeded the given stopband attenuation As,  and the optimal 
value of M was found to be 47. This d u e  is considerably lower than the window 
design techniques (M = 61 for a Kaiser window) or the frequency sampling tech- 
nique (M = 60). In Figure 7.35 we show the time- and the frequency-domain 
plots of the designed filter along with the error function in both the passband 
and the stopband to illustrate the equiripple behavior. 

Actual impulse Response 
0 . 3 7 1  

-0.1 0 - 46 

n 
0 0.20.3 1 

frequency in pi units 
Amplitude Response Error Response 

0.0144 - 

0.0032 

I 

0 0.20.3 1 
frequency in PI units frequency in pl unlts 

Plots for equrnpple lowpass FIR firter in Ezample 7.23 FIGURE 7.35 
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0 EXAMPLE 7.24 Let us design the bandpass filter described in Example 7.10 using the Parks- 
McCleIlan algorithm. The design parameters are: 

W l a  = 0.2T 
; & = l d B  

wlP = 0.35~ 

mp = 0.65~ 

as = 0.8T 
; A ,  =60db 

Sdution The following MATLAB script shows how to design this filter. 

>> 
>> vsli = floor(vsl/delta-v)+i; 
>> Rp = 1.0; As = 60; 
>> delta1 (lO^(Rp/20)-1)/(10^(Rp/20)+1); 
>> delta2 = (l+deltal)*(lO-(-A~/20)); 
>> delta = max(delta1 ,delta;?); deltat = min(deltal.delta2) ; 
>> veights = Cl delta2/deltal 11; 
>> delta-f =min((vs2-vp2)/(2*pi), (vpl-vsl)/(2*pi)) ; 
>> M = ceil((-20*log10(sqrt(deltal*delta2))-13)/(14.6*delta-f)+l) 
M = 28 
>> f = [O vsl/pi upi/pi vp2/pi vs2/pi 11; 
>> m 5 [O 0 1 1 0  01; 
>> h = rcuaez(n-l,f,n,veights); 
>> [db.mag,pha,grd,v] = freqz-m(h, [l]); 
>> delta-v=2*pi/1000; 
>> Asd = -max(db(l:l:vsli)) 
Asd = 56.5923 
>> H = M+1; 
>> h = remez(M-1,f ,m,veights) ; 
>> [db,mag,pha,grd,vl = freqz-m(h. Ell) ; 
>> Asd = -max(db(l:l:vsl/delta_v)) 
Asd = 61.2818 
>> M = M + l ;  
>> h = remez(M-l,f ,m,veights); 
>> [db,mag,pha,grd,v] = freqz-m(h, Ell) ; 
>> Asd = -max(db(l:l:vsl/delta_v)) 
Asd = 60.3820 
>> M = M+1; 
>> h = remez(M-l,f,m,veights); 
>> [db,mag,pha,grd.vl = freqz-m(h, 111); 
>> Asd = -m~(db(l:l:vsl/deltar)) 

vsl = 0.2*pi; vpl = 0.35*pi; vp2 = 0.65*pi; vs2 = 0.8*pi; 

Asd = 61.3111 
>> M 
M = 31 

The optimal value of M was found to be 31. The t ime  and the frequency-domain 
0 plots of the designed filter are shown in Figure 7.36. 

- 
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0 EXAMPLE 7.25 Design a highpass filter that has the following specifications: 
W* = 0.6*, 
up = 0.75r, 

A s  = 50 dB 

Rp = 0.5 dB 

sdution Since this is a highpass filter, we must ensure that the length M is an odd 
number. This is shown in the following MATLAB script. 

>> us = 0.6*pi; wp = 0.75*pi; Rp - 0 .6 ;  AS = 60; 
>> delta1 = (10^(RP/x))-l)/(lO^~Rp/20)+1); 
>> delta2 - (l+deltal)*(lO~(-As/20)); 
>> deltaH = mar(deltal.delta2) ; delta = min(deltal.delta2) ; 
>> weights = [l delta2/deltail; 
>> deltaf = (vp-W8)/(2*pi); 
>> M = ceil( (-2O*loglO(sqrt(deltal*delta2) )-13)/(14.6*de~t~)+l) ; 
X M must be odd 
>> M = 2*floor(U/2)+1 
U - 27 
>> f - CO wslpi wp/pi 11; 
>> m = [O  0 1 11; 
>> h - remez(H-l,i,m,weighta); 
>> [db,mag,pha,grd,ul = freqz-mh, [I1 1; 
>> delta-v = 2*pi/lOOO; wsi=ws/delta-U; wpi = qdde1ta-w; 
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>> Asd = -max(db(l:l:vsi)) 
Asd = 49.5918 
>> BI M+2; % l4 must be odd 
>> h = remez(M-l,f.m,veights); 
>> [db,mag,pha,grd,wl = freqz-m(h, [l]); 
>> A s d  = -max(db(l:l:wsi)) 
Asd - 50.2263 
>> n 
n -  29 

Note a h  that we increased the value of M to maintain its odd value. The 
optimum M was found to be 37. The time- and the frequency-domain plots of 

0 the designed filter are shown in Figure 7.37. 

0 EXAMPLE 7.26 In this example we will design a “staircase” filter, which has three bands with 
different ideal responses and different tolerances in each band. The design spec- 
ifications are 

Band-1: 0 5 w 5 0.3rr, Ideal gain = 1, Tolerance 61 = 0.01 

Band-2: 0.4% 5 w 5 0.7n, Ideal gain = 0.5, Tolerance & = 0.005 

Band-3: 0.8~ 5 w 5 T, Ideal gain = 0, Tolerance 63 = 0.001 

Adual h u i s e  Reswnse hhgnitude Response in dB 

4.4- 
0 28 

n 
Amplitude Response j(l I [ 
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0 0.6 075 
frequency in pi units 

0 0.6 0.75 I 
frequency in pi UMS 

E m  Response O.masr 

- 0 . 0 2 8 8 ~  
0 0.6 ( 

frequency in pi UI 

FIGURE 7.37 Plokr for equiripple highpass FIR f l ter  in Ezample 7.25 
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solution The following MATLAB script describes the design procedure. 

> vl=O; vZ=0.3tpi; delta1=0.01; 
> v3=0.4*pi; w44.7*pi; delta2=0.005; 
> v54.8tpi; v6Cpi; delta34.001; 
> veights- [delta3/deltal delta3/delta2 11 ; 
> delta_fsnin((v3-~Z)/(Z*pi), (v5-w3)/(2*pi)) ; 
> n=ceil( (-2O*loglO(sqrt (deltal*delta2)) -13) / (14.6*delta-f )+l) 
n * 43 
> f=[o vWpi v3/pi v4/pi v5/pi 11; 
> m=[l 10.5 0.5 0 01; 
> hPremez(U-l,f ,m,veights) ; 
> [db,mag,pha,grd.vl=freqz-m(h, 111); 
> deltav=2*pi/680; 
> Asd=-max(db(v5/delta~w+lO: 1:341)) 
Asd = 56.2181 

The optimum value of M was found at M = 49. 

> n = 49; 
> hlremez(H-l,f .m,vsights); 
> [db.mag ,pha,grd,vl =f reqz-mch, [l]) ; 
> Asd=-maz(db(v5/delta~v+lO: 1 : 341)) 
Asd = 60.6073 

The time- and the frequency-domain plots of the designed filter are shown in 
Figure 7.38. 0 

0 EXAMPLE 7.27 In this example we will design a digital differentiator with different slopes in 
each band. The specifications are 

Band-1: 0 5 w 5 0.27r, Slope = 1 sam/cycle 

Band-2: 0.4s 5 w 5 0.67r, Slope = 2 sam/cycle 

Band-3: 0 . 8 ~  5 w 5 T ,  Slope = 3 sam/cycle 

solution We need desired magnitude response values in each band. These can be ob- 
tained by multiplying band-edge frequencies in cycles/sam by the slope values 
in sam/cycle 

Band-1: Slope = 1 sam/cycle =+ 0.0 5 JHJ 5 0.1 

Band-2: Slope = 2 sam/cycle =+ 0.4 5 JHJ 5 0.6 

Band-3: 0.4 _< f 0.5, Slope = 3 sam/cycle =+ 1.2 5 JH] 5 1.5 

0 5 f 5 0.1, 
0.2 5 f 5 0.3, 

Let the weights be equal in all bands. The MATLAB script is: 
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>> f = [O 0.2 0.4 0.6 0.8 17; 
>> m - [0,0.1,0.4,0.6,1.2,1.5]; X magnitude values 
>> h - remer(25,f ,m, ’differentiator’); 
>> Cdb,mag.pha,grd,vl - freqz-dh. 111); 
>> figure(1); subplot(1,l.l) 
>> subplot (2, I, 1) ; stem( [O:  251 ,h) ; title(’ Impulse Response’ ; 
>> xlabel(’n1) ; ylabel (’hh) ’ ) ; axis ( [0,25, -0.6.0 $63 
>> set(gca,’XTicMode’,’manual’.’XTick’, C0.251) 
>> set (gca, ’YTickMode’, ’manual’, ’Rick’, [-0.6:0.2:0.61) ; 
>> subplot(2,i ,2) ; plot(u/(2*pi) ,mag) ; title( ’Magnitude Response’) 
>> rlabel(’lormalized frequency f’);  ylabel(’IHI ’1 
>> set(gca, ’XTickMode’, ’manual’, ’XTick’,f/2) 
>> set (gca, ’YTicMode’ , ’manual’ ,  ’nick’, [O,O. 1.0.4,0.6,1.2,1.5]) ; grid 

0 

X in =/pi unis 

The frequency-domain response is shown in Figure 7.39. 

0 

sdution 

EXAMPLE 7.28 Finally, we design a Hilbert transformer over the band 0 . 0 5 ~  5 w 5 0.95~. 

Since this is a wideband Hilbert transformer, we will choose an odd length for 
o w  filter (i.e., a Type3 filter). Let us chow A4 = 51. 

>> f - [0.05,0.95l; m - I1 11; 
>> h = remez(60,f,m,’hilbert’); 
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FIGURE 7.39 Plots of the dzffeerentiator in Ezample 7.27 

The plots of this Hilbert transformer are shown in Figure 7.40. 0 
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PROBLEMS 
I 
I 

PT.l The Type1 linear-phase FIR filter is characterized by 

h(n)  = h ( M -  I - n ) ,  0 5 n 5 M - 1, M odd 

Show that its amplitude response H,  (w) is given by 
L M - 1  L = - 

2 Hr (LJ) = ~ a ( n ) c o 8 w n ,  
n=0 

where coefficients {a (n)} are obtained from h (n).  
T h e  Type2 linear-phase FIR filter is characterized by P7.2 

h(n) = h(M- 1 - n ) ,  0 5 n 5 M - 1, M even 

a. Show that its amplitude response H, (w) is given by 

where coefficients {a (n)} are obtained from h (n). 
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b. Show that the above H ,  (w) can be further expressed as 

where 6 (n) is derived from 6 (n). 
The T y p e 3  linear-phase FIR filter is characterid by P7.3 

h ( n ) = - h ( M - 1 - n ) ,  O l n S M - 1 ,  Modd 

a. Show that its amplitude response H ,  (w)  is given by 

(M--1 ) /2  

~ , ( w ) =  C c(n)sinwn 
n=l 

where coefficients {c (n)} are obtained from h (n). 
b. Show that the above H, (w) can be further expressed as 

t 
H , ( w ) = s i u w ~ E ( n ) o o s w n ,  L =  - M - 3  

2 
n=O 

where E(n) is derived from c(n) .  
The Type-4 linear-phase FIR filter is characterized by P7.4 

h(n) = -h(M - 1 -n), 0 5 n 5 M - 1, M even 

a. Show that its amplitude response H, ( w )  is given by 

where coefficients {d (n) }  are obtained from h (n) . 
b. Show that the above H,  (w) can be further expressed as 

where a(,) is derived from d (n). 
Write a MATLAB function to compute the amplitude response H ,  (w) ,  given a linear-phase 
impulse response h (n). The format of this function should be 

function [Hr,v,P,Ll = Ampl-Res(h); 
% 
x function [Hr,v,P,L] = Ampl-Res(h) 
Y. Computes Amplitude response Hr(v) and its polynomial P of order L, 
Y. given a linear-phase FIR f i l t e r  impulse response h.  
X The type of f i l t e r  is determined automatically by the subroutine. 

P7.5 
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X 
X Hr = Anplitude Response 
X v = frequencies betveen [O pi] over which Br is computed 
X P = Polynomial coefficients 
X L = Order of P 
X h = Linear Phase f i l t e r  impulse response 

The subroutine should first determine the type of the linear-phase FIR filter and then use 
the appropriate Hr-Type# function discussed in the chapter. It should also check if the given 
h (n) is of a linear-phase type. Check your subroutine on sequences given in Examples 7.4 
through 7.7. 
If H ( z )  has zeros at P7.6 

show that H ( z )  represents a liiear-phase FIR filter. 
Design a bandstop filter using the Hanning window design technique. The specifications are P7.7 

lower stopband edge: 0.4~ 

upper stopband edge: 0.6~ 
A.=40dB 

lower passband edge: 0.3~ 

upper passband edge: 0.7~ 
& = 0.5 dB 

Plot the impulse response and the magnitude response (i dB) of the design& filter. 
Design a bandpass filter using the Hamming window design technique. The specifications are P7.8 

lower stopband edge: 0.31~ 

upper stopband edge: 0 . h  

lower passband edge: 0 . 4 ~  

upper passband edge: 0.51~ 

A. = 50 dB 

Rp = 0.5 dB 

Plot the impulse response and the magnitude response (in dB) of the designed filter. 
Design a highpass filter using the Kaiser window design technique. The specifications are P7.9 

stopband edge: 0.4n, As = 60 dB 

passband edge: 0.6x, Rp = 0.5 dB 

Plot the impulse response and the magnitude response (in dB) of the designed filter. 
P7.10 W e  wish to use the Kaiser window method to design a linear-phase FIR digital filter that 

meets the following specifications: 

0 5 ( H  (g") I 5 0.01, 0 5 w 5 0.251~ 
0.95 5 IH (2") I 5 1.05, 0.351~ 5 w 5 0.65~ 

0 5 ( H  (g") 1 5 0.01, 0.751~ I w 5 A 

Determine the minimum-length impulse response h (n) of such a filter. Provide a plot 
containing subplots of the amplitude response and the magnitude response in dB. 
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P7.11 Following the procedure used in this chapter, develop the following MATLAB functions to 
design FIR filters via the Kaiser window technique. These functions should check for the 
valid band-edge frequencies and restrict the filter length to 255. 
a. Lowpass filter: The format should be 

function Ch,W = kai-lpf (vp,vs,As); 
X b,M] - kai-lpf (vp,vs,As) ; 
X Lov-Pass FIR filter design using Kaiser uindov 
X 
X h - Impulse response of length M of the designed filter 
X H - Length of h vhich is an odd number 
X vp - Pass-band edge in radians (0  < vp < vs < pi) 
X vs - Stop-band edge in radians (0 < vp < vs < pi) 
X As = Stop-band attenuation in dB (As > 0 )  

b. Highpass filter: The format should be 

function b,M] - kai-hpf(vs,wp,As); 
X [h,N = kai,hpf(vs,vp,As); 
X HighPass FIR filter design using Kaiser vindov 
X 
X h - Impulse response of length M of the designed filter 
X M = Length of h vhich is an odd number 
X us - Stop-band edge in radians (0  C vp < us C pi) 
X up - Pass-band edge in radians ( 0  C vp < v8 < pi) 
X An - Stop-band attenuation in dB (As > 0 )  

c. Bandpass filter: The format should be 

function b,Ml - Xai-bpf (usl,vpi,vp2,vs2,As); 
X Ch,W - kai~bpf(vsl,vpi,~2,vs2,As); 
X Band-Pass FIR filter design using Kaiser vindov 
X 
X h - Impulse response of length M of the designed filter 
% PI - Length of h vhich is an odd number 
X vsl - Lover stop-band edge in radians 
X up1 - Lover pass-band edge in radians 
X vp2 = Upper pass-band edge in radians 
X vs2 - Upper stop-band edge in radians 
% 0 < vsi < vpi < vp2 < vs2< pi 
X As = Stop-band attenuation in dE (As > 0 )  

d. Bandstop filter: The format should be 

function b,Ml = kai_bsf(vpl,vsi,vs2,vp2,As); 
X [h,M] = kai-bsf(vpl,vsl,vs2,vp2,As); 
X Band-Pass FIR filter design using Kaiser vindov 
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X h = Impulse response of length M of the designed f i l t e r  
X M = Length of h which is an odd number 
X up1 = Lower stop-band edge i n  radians 
X us1 = Lover pass-band edge i n  radians 
X us2 = Upper pass-band edge i n  radians 
X up2 = Upper stop-band edge i n  radians 
X 
X A s  = Stop-band attenuation i n  dB (As > 0) 

You can now develop similar functions for other windows discussed in this chapter. 
P7.12 Design the staircase filter of Example 7.26 using the Blackman window approach. The 

specifications are 

0 < vpl < us1 < us2 < vp2 < p i  

Band-1: 0 5 w 5 0.3n, Ideal gain = 1, 61 = 0.01 

Band-2: 0 . 4 ~  5 w < 0.7%, Ideal gain = 0.5, 62 = 0.005 

Band-3 0.8% 5 w 5 H, Ideal gain = 0, 63 = 0.001 

Compare the filter length of this design with that of Example 7.26. Provide a plot of the 
magnitude response in dB. 

P7.15 Consider an ideal lowpass filter with the cutoff frequency we = 0.3%. We want to 
approximate this filter using a frequency sampling design in which we choose 40 samples. 
a. Choose the sample at wc equal to 0.5 and use the naive design method to  compute h (n). 
Determine the minimum stopband attenuation. 
b. Now vary the sample at we and determine the optimum value to  obtain the largest 
minimum stopband attenuation. 
c. Plot the magnitude responses in dB of the above two designs in one plot and comment 
on the  results. 

P7.14 Design the bandstop filter of Problem 7.7 using the frequency sampling method. Choose the 
order of the filter appropriately so that there is one sample in the transition band. Use 
optimum value for this sample. 

P7.15 Design the bandpass filter of Problem 7.8 using the frequency sampling method. Choose the 
order of the filter appropriately so that there are two samples in the transition band. Use 
optimum values for these samples. 

P7.16 Design the highpass filter of Problem 7.9 using the frequency sampling method. Choose the 
order of the filter appropriately so that there are two samples in the transition band. Use 
optimum values. 

P7.17 W e  want to  design a narrow bandpass filter to pass the center frequency at wo = 0.5%. The 
bandwidth should be no more than 0.1%. 
a. Use the frequency sampling technique and choase M so that there is one sample in the 
transition band. Use the optimum value for transition band samples and draw the frequency 
sampling structure. 
b. Use the Kaiser window technique so that the stopband attenuation is the same as that of 
t h e  above frequency sampling design. Determine the impulse response h (n) and draw the 
linear-phase structure. 
c. Compare the above two filter designs in terms of their implementation and their filtering 
effectiveness. 
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P7.18 The frequency response of an ideal bandpass filter is given by 

0, 0 I I4 5 */3 
H d  (2”) = 1, r / 3  5 I w ~  5 2*/3 { 0, 2 ~ / 3  5 [wl 5 1~ 

a. Determine the coefficients of a 25-tap filter based on the Parks-McClellan algorithm with 
stopband attenuation of 50 dB. The designed filter should have the smallest possible 
transition width. 
b. Plot the amplitude response of the filter using the function developed in Problem 7.5. 

P7.19 Consider the bandstop filter given in Problem 7.7. 
a. Design a linear-phase bandstop FIR filter using the ParbMcClellan algorithm. Note 
that the length of the filter must be odd. Provide a plot of the impulse response and the 
magnitude response in dB of the designed filter. 
b. Plot the amplitude response of the designed filter and count the total number of extrema 
in the stopband and passbands. Verify this number with the theer’etical estimate of the 
total number of extrema. 
c. Compare the order of this filter with those of the filters in Problems 7.7 and 7.14. 
d. Verify the operation of the designed filter on the fdlowjng signal. 

z(n) = 5 - 5cos ( y )  ; 0 I n  5 300 

P7.20 Using the Parks-McClellan algorithm, design a 25-tap FIR differentiator with slope equal to 
1 sample/cycle. 
a. Choose the frequency band of interest between 0 . 1 ~  and 0.91~. Plot the impulse response 
and the amplitude response. 
b. Generate 100 samples of the sinusoid 

z(n) = 3sin(0.25xn), n = 0,. . . ,100 
and process through the above FIR differentiator. Compare the result with the theoretical 
“derivative” of z (n). Note: Don’t forget to take the 12-sample delay of the FIR filter into 
account. 

P7.21 Design a lowest-order equiripple linear-phase FIR filter to satisfy the specifications given in 
Figure 7.41. Provide a plot of the amplitude response and a plot of the impulse response. 

P7.22 A digital signal z (n) contains a sinusoid of frequency 7r/2 and a Gaussian noise w (n) of 
zero mean and unit variance; that is, 

nn 
2 2 (n) = 2cos - + w (n) 

We want to filter out the noise component using a 50th-order causal and linear-phase FIR 
filter. 
a. Using the Parks-McClellan algorithm, design a narrow bandpass filter with passband 
width of no more than 0.021~ and stopband attenuation of at least 30 dB. Note that no 
other parameters are given, and you have to choose the remaining parameters for the remez 
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Frequency w in ?r units 

FIGURE 7.41 Filter specification for Problem 7.21 

Band-3 

0.8 1.0 

function to satisfy the requirements. Provide a plot of the log-magnitude response in dB of 
the designed filter. 
b. Generate 200 samples of the sequence. z (n) and process through the above filter to 
obtain the output y (n). Provide subplots of 5 (n) and 
and  comment on your results. 

P7.23 Design an equiripple digital Hilbert transformer for the following specifications: 

(n) for 100 5 n 5 200 on one plot 

passband: 0 . 1 ~  5 (wJ 5 0 . k  ripple 61 = 0.01 

stopband: 0 . 5 ~  5 IwI 5 T ripple 6, = 0.01 

Plot the amplitude response over -T 5 w 5 T. 
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IIR FILTER DESIGN 

IIR filters have infiniteduration impulse responses, hence they can be 
matched to  analog filters, all of which generally have infinitely long im- 
pulse responses. Therefore the basic technique of IIR filter design trans- 
forms well-known analog filters into digital filters using wmplez-valued 
mappings. The advantage of this technique lies in the fact that both 
analog filter design (AFD) tables and the mappings are available exten- 
sively in the literature. This basic technique is called the A/D (analog- 
to-digital) filter transformation. However, the AFD tables are available 
only for lowpass filters. We also want to design other frequency-selective 
filters (highpass, bandpass, bandstop, etc.). To do this, we need to apply 
frequency-band transformations to lowpass filters. These transformations 
are also complex-valued mappings, and they are also available in the lit- 
erature. There are two approaches to this basic technique of IIR filter 
design: 

Approach 1: 

I I 

Approach 2: 

I 

The first approach is used in MATLAB to design IIR filters. A straight- 
forward use of these MATLAB functions does not provide any insight into 
the design methodology. Therefore we will study the second approach b e  
cause it involves the frequency-band transformation in the digital domain. 
Hence in this IIR filter design technique we will follow the following steps: 



0 Design analog lowpass filters. 
0 Study and apply filter transformations to obtain digital lowpass 

0 Study and apply frequency-band transformations to obtain other 
filters. 

digital filters from digital lowpass filters. 

The main problem with these approaches is that we have no control 
over the phase characteristics of the IIR filter. Hence IIR filter designs 
will be treated as magnitude-only designs. More sophisticated techniques, 
which can simultaneously approximate both the magnitude and the phase 
responses, require advanced optimization tools and hence will not be cov- 
ered in this book. 

We begin with a discussion on the analog filter specifications and the 
properties of the magnitud*squared response used in specifying analog 
filters. This will lead us into the characteristics of three widely used ana- 
log filters, namely, Butterworth, Chebyshev, and Elliptic filters. We will 
then study transformations to convert these prototype analog filters into 
different frequency-selective digital filters. Finally, we will conclude this 
chapter with a discussion on the merits and comparisons of FIR and IIR 
digital filters. 

SOME PRELIMINARIES 

We discuss two preliminary issues in this section. First, we consider the 
magnitudesquared response specifications, which are more typical of ana- 
log (and hence of IIR) filters. These specifications are given on the relative 
linear scale. Second, we study the properties of the magnitude-squared re- 
sponse. 

RELATIVE 
LINEAR 
SCALE 

Let H a ( j n )  be the frequency response of an analog filter. Then the lowpass 
filter specifications on the magnitudesquared response are given by 

where E is a passband ripple parameter, Sl, is the passband cutoff fre- 
quency in radjsec, A is a stopband attenuation parameter, and R, is the 
stopband cutoff in radjsec. These specifications are shown in Figure 8.1, 
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from which we observe that [Ha(jR)I2 must satisfy 

IH0WP)l2 = 

( H , ( ~ Q ) I ~  = - A2 

at R = R, 

at R = Q ,  
1 

The parameters E and A are related to parameters Rp and As ,  re- 
spectively, of the dB scale. These relations are given by 

Rp = -1Olog,o - 1 aE=JM 
1 + € 2  

and 

(8.3) 

(8.4) 1 4/20 A, = -1Olog1, - 3 A = 10 
A2 

The ripples, 61 and 62, of the absolute scale are related to E and A by 

and 
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PROPERTIES 
OF IH,(jn)(' 

Analog filter specifications (8.1), which are given in terms of the magni- 
tudesquared response, contain no phase information. Now to evaluate the 
s-domain system function Ha (s), consider 

a ( j f l )  = f&(s)18=jn 

Then we have 

or 

Therefore the poles and zeros of the magnitudesquared function are dis- 
tributed in a mirror-image symmetry with respect to the jfl axis. Also for 
real filters, poles and zeros occur in complex conjugate pairs (or mirror- 
image symmetry with respect to the real axis). A typical polezero pat- 
tern of Ha(s)H4(-s) is shown in Figure 8.2. From this pattern we can 
construct Ha(s) ,  which is the system function of our analog filter. We 
want Ha(s)  to represent a cawal and stable filter. Then all poles of &(s) 
must lie within the left half-plane. Thus we assign a31 left-half poles of 
H,(s)H,(-s) to Ha(s) .  However, zeros of Ha(s) can lie anywhere in the 
s-plane. Therefore they are not uniquely determined unless they all are 
on the js2 axis. We will choose the zeros of Ha(s)Ha(-s) lying inside or 
on the j n  axis as the zeros of Ha(s).  The resulting filter is then called a 
minimum-phase filter. 

FIGURE 8.2 mica1 pole-zero pattern of H,(s)H.(-s) 
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CHARACTERISTICS OF PROTOTYPE ANALOG FILTERS 
I 
I 

IIR filter design techniques rely on existing analog filters to obtain digital 
filters. We designate these analog filters BS prototype filters. Three pro- 
totypes are widely used in practice. In this section we briefly summarize 
the characteristics of the lowpass versions of these prototypes: Butter- 
worth lowpass, Chebyshev lowpass (Type I and 11), and Elliptic lowpass. 
Although we will use MATLAB functions to design these filters, it is neces- 
sary to learn the characteristics of these filters so that we can use proper 
parameters in MATLAB functions to obtain correct results. 

BUTTER- 
WORTH 
LOWPASS 
FILTERS 

This filter is characterized by the property that its magnitude response is 
flat in both passband and stopband. The magnitude-squared response of 
an Nth-order lowpass filter is given by 

where N is the order of the filter and R, is the cutoff frequency in rad/sec. 
The plot of the magnitude-squared response is shown below. 

from this plot we can observe the following properties: 

0 at 0 = 0, I H ~ ( ~ o ) / ~  = I for a~ N. 
0 at R = R,, (H4(jRc)IZ = 

0 IH4(jR)12 is a monotonically decreasing function of 0. 
0 IH4(jn)lZ approaches an ideal lowpass filter as N + 00. 

0 IH,,(jR)(’ is rnmirnally flat at R = 0 since derivatives of all orders 

for all N, which implies a 3 dB attenu- 
ation at 0,. 

exist and are equal to zero. 
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To determine the system function H,(s), we put (8.6) in the form of (8.5) 
to obtain 

(8.7) 

The roots of the denominator polynomial (or poles of H,(s)H.(-s)) from 
(8.7) are given by 

p k  = (-1)s ($2) = flc$*c2k+N+1),  k = 0,1, .  . . ,2N - 1 (8.8) 

An interpretation of (8.8) is that 
0 there are 2N poles of Ha(s)Ha(-s), which are equally distributed 

on a circle of radius R, with angular spacing of z / N  radians, 
0 for N odd the poles are given by p k  = RedknJN, k = 0,1,. . . , 

0 for N even the poles are given by P k  = fl,$(*+%), k = 

0 the poles are symmetrically located with respect to the jfl axis, 
and 

0 a pole never falls on the imaginary auiS, and falls on the real axis 
only if N is odd. 
As an example, poles of third- and fourth-order Butterworth filters are 
shown in Figure 8.3. 

A stable and causal filter H,(s) can now be specified by selecting 
poles in the left half-plane, and H,(s) m be written in the form 

2N - 1, 

0 , l )  ...) 2N-1, 

' k = O  

\ I 
\ I 

N = 3  N = 4  

FIGURE 8.3 Pole plots for Butternorth fllters 
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0 EXAMPLE 8.1 Given that IH&n)la = - determine the analog filter system function 
1+64W' 

Ha(S) .  

Sdution From the given magnitudesquared response, 

Comparing this with expression (8.6), we obtain N = 3 and 0, = 0.5. The poles 
of Ha(s)H,(-s) are as shown in Figure 8.4. 

N = 3  

FIGURE 8.4 Pole plot for Ezample 8.1 

H&n) = 

- - 1/8 
(S + 0.25 - j0.433)(5 + 0.5)(s + 0.25 + j0.433) 

0 
- 0.125 - 

(s + 0.5)(sz + 0.5s + 0.25) 

MATLAB 
IMPLEMEN- 
TATION 

MATLAB provides a function d e d  [z,p.k]=buttap(N) to design a nor- 
malized (i.e., 0, = 1) Butterworth analog prototype filter of order N, 
which returns zeros in z array, poles in p may, and the gain value k. 
However, we need an unnormaliied Butterworth filter with arbitrary 0,. 
From Example 8.1 we observe that there are no zeros and that the poles 
of the unnormalized filter are on a circle with radius R, instead of on a 
unit circle. This means that we have to scale the m a y  p of the normal- 
ized filter by R, and the gain k by 0:. In the following function, called 
U-buttap(N,Omegac), we design the unnormalized Butterworth analog 
prototype filter. 
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function [b,d - u-buttap(N.hegac); 
X Unnonnalized Butterworth Analog Loupass Filter Prototype 
y ........................................................ 
% [b,a] - u-buttap(N.hegac); 
% b = numerator polynomial coefficients of Hab) 
% a = denominator polynomial coefficients of Ha(s) 
X N = Order of the Butterworth Filter 
X hegac = Cutoff frequency in radians/sec 
X 
[z,p,k] = buttap(N1; 

p = p*hegac; 
k = k*hegac-N; 
B = real(poly(z)); 
b0 = k; 
b - k*B; 
a = real(poly(p1); 

The above function provides a direct form (or numerator-denominator) 
structure. Often we also need a cascade form structure. In Chapter 6 we 
have already studied how to convert a direct form into a cascade form. 
The following sdir2cas function describes the procedure that is suitable 
for analog filters. 

function [C,B.A] = sdirZcas(b,a) ; 
% DIRECT-form to CASCADE-form conversion in s-plane 
X ................................................. 
X [C,B,A] - sdir2cas(b,a) 
X C = gain coefficient 
X B = K by 3 matrix of real coefficients containing bk’s 
X A = K by 3 matrix of real coefficients containing ak’s 
X b - numerator polynomial coefficients of DIRECT form 
% a - denominator polynomial coefficients of D1RFJ.X form 

Na = length(a)-l; Nb - length(b)-1; 
X compute gain coefficient C 
bO = b(1); b = b/bO; 
a0 = a(0; a - a/aO; 
1: 
% Denominator second-order sections: 
p= cplxpair(roots(a)); It = floor(Nd2); 
if K*2 == Na 

C = W/aO; 

% Computation when Na is even 
A = zeros(K,3); 
for n=1:2:Na 

Arov = p(n:l:n+l,:); 

A(fix((n+l)/2) ,:I = real(Arov1; 
brow = poly(Ar0w); 

end 
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elseif Na -= 1 % Computation when Na = 1 
A = [O real(poly(p))l; 

1 
else X Computation when Na is odd and > 1 

A = zeros(K+l.d); 
for n=1:2:2tK 

Arow = p(n:l:n+l,:); 

A(f ix((n+l)/Z), :) = real(Arow) ; 
h o w  = poly(Ar0w) ; 

end 
A(K+l, :) = [O real(poly(p(Na)))l; 

end 

% Numerator second-order sections: 
z = cplrpair(roots(b)); K = floor(Nb/2); 
i f N b - 0  Y. Computation when Nb = 0 

B = CO 0 poly(z)l; 

elseif KtZ == Nb % Computation when Nb is even 
B = zeros(K,3); 
for n-1 : 2 : Nb 

Brow = z(n:l:n+l,:); 
Brow - poly(Brow) ; 
B(fix((n+l)/2),:) = real(Brow1; 

end 

elseif Nb == 1 X Computation when Nb = 1 
B = CO real(poly(z))l; 

else X Computation when Nb is odd and > 1 
B = zeros(K+1.3); 
for n=l:2:2*X 

Brow = z(n: i:n+l, :) ; 
Brow - poly (Brow) ; 
B(f ix((n+l)/2), :) - real(Brow) ; 

end 
B(K+l, :) - [O real(poly(z(Nb)))l; 

end 

0 EXAMPLE 8.2 Design a third-order Butterworth analog prototype filter with R, = 0.5 given 
in Example 8.1. 

sdution MATLAB Script 
>> N = 3; OmegaC = 0.5; 
>> [b,a] = &buttap(N,OmegaC) ; 
>> [c,B,A] = sdir2cas(b,a) 
C = 0.1250 
B = O  0 1 
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A - 1.0000 0.5000 0.2500 
0 1.0000 0.5000 

The cascade form coefficients agree with those in Example 8.1. 0 

DESIGN 
EQUATIONS 

The analog lowpass filter is specified by the parameters Rp, Rp, R,, and 
A,. Therefore the essence of the design in the case of Butterworth filter 
is to obtain the order N and the cutoff frequency R,, given these specifi- 
cations. We want 

0 at R = R,, -lOlogl, I H ~ ( ~ R ) ~ '  = or 

and 
0 at R = R,, -lOloglo IHa(jR)lZ = A, or 

Solving these two equations for N and R,, we have 

log,, [(lORJ'O - 1) / (10AJ'O - l)] 
2 h l O  W P l Q S )  

N =  

In general, the above N will not be an integer. Since we want N to be an 
integer, we must choose 

where the operation 1x1 means "choose the smallest integer larger than 
$'-for example, r4.51 = 5. Since the actual N chosen is larger than 
required, specifications can be either met or exceeded either at Rp or at 
R,. To satisfy the specifications exactly at R,, 

RP (8.11) 
" = 2.4- 
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or, to satisfy the specifications exactly at R,, 

R s  

OC = 2N 4- (8.12) 

0 EXAMPLE 8.3 Design a lowpass Butterworth filter to  satisfy 

Passband cutoff: R, = 0 . 2 ~  ; 

Stopband cutoff: R, = 0 . 3 ~  ; 

Passband ripple: E1p = 7dB 

Stopband ripple: A. = 16dB 

solution From (8.10) 

To satisfy the specifications exactly at np, from (8.11) we obtain 

To satisfy specifications exactly at R., from (8.12) we obtain 

0.3~ 
= 0.5122 " = 6,/- 

Now we can choose any R, between the above two numbers. Let us choose 
0, = 0.5. We have to design a Butterworth filter with N = 3 and R, = 0.5, 
which we did in Example 8.1. Hence 

0.125 
(s + 0.5) (sz + 0.5s + 0.25) 

H&R) = 

MATLAB 
IMPLEMEN- 
TATION 

The above design procedure can be implemented in MATLAB as a simple 
function. Using the U-buttap function, we provide the afd-butt function 
to design an analog Butterworth lowpass filter, given its specifications. 
This function uses (8.11). 

function [b,a] = afd_butt(Wp,Ws.Rp.As); 
X Analog Loupass Fi l te r  Design: Butterworth 
y _________________________________________ 
X [b,al = afd_butt(Wp,Ws,Rp,As); 
% b = Numerator coefficients of Ha(d 
X a = Denominator Coefficients of n a b )  
X Wp = Passband edge frequency i n  rad/sec; Wp > 0 
X Ws = Stopbaud edge frequency i n  rad/sec; Ws > Up > 0 
X Rp = Passband ripple i n  +dB; (Rp > 0) 
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X As = Stopband attenuation in +dB; (As > 0) 
X 
if Up <= 0 

end 
if Us <= Up 

end 
if (Rp <= 0) I (As < 0) 

end 

N = mil( (loglo( (lO-(Rp/lO)-l) /(lO-(As/lO) -1) )) / (2*loglO(Up/Ws) 1) ; 
fprintf (’\n*** Butterworth Filter Order = X2.0f \n’ ,N) 
OPnegaC = Up/( (10- (Rp/lO) -1)-(1/(2*N)) ; 
Cb, a1 =u-buttap(N,OmegaC) ; 

error(’Passband edge must be larger than 0’) 

error(’Stopband edge must be larger than Passband edge’) 

error(’PB ripple and/or SB attenuation ust be larger than 0’) 

To display the frequency-domain plots of analog filters, we provide a 
function called f reqssl, which is a modified version of a function f reqs 
provided by MATLAB. This function computes the magnitude response 
in absolute as well as in relative dB scale and the phase response. This 
function is similar to the f reqzn  function discussed earlier. One main 
difference between them is that in the f reqs_m function the responses are 
computed up to a maximum frequency amax. 
function [db,mag,pha,wl = freqs-m(b,a,vmax); 
% Computation of s-domain frequency response: Modified version 
y _____________________-----------------_-------_----__------- 
X Cdb,mag,pha,wl = freqs-m(b,a,vmax); 
X db = Relative magnitude in db over [O to maxl 
X mag = Absolute magnitude over LO to umax] 
X pha = Phase response in radians over CO to maxl 
X w = array of 500 frequency samples between CO to maxi 
% b = Nuaterator polynomial coefficents of Ha(d 
X a = Denominator polynomial coefficents of Ha(d 
X umax = Maximum frequency in rad/sec over which response is desired 

w = [0:1:6001*wmax/500; 
H = freqs(b,a,w); 
mag = abs (H) ; 
db = 20*1oglO((mag+eps)/m~(mag)) ; 
pha = angle (HI ; 

The impulse response ha ( t )  of the analog filter is computed using MAT- 
LAB’S impulse function. 

Design the analog Butterworth lowpass filter specified in Example 8.3 using 
MATLAB. 

0 U(AMPLE 8.4 
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sdution MATLAB Script 
>> Wp = 0.2+pi; Ws = 0.3+pi; Rp = 7 ;  As = 16; 
>> Ripple = 10 " (-Rp/20); Attn = 10 - (-As/2O); 
>> % Analog filter design: 
>> [b,d - afd-butt(Wp,Ws,Rp,As); 
*** Butterworth Filter Order = 3 
>> % Calculation of second-order sections: 
>> [C,B,A] = sdir2cas(b,a) 
c = 0.1238 
B - 0  0 1 
A = 1.0000 0.4985 0.2485 

0 1.0000 0.4985 
>> % Calculation of Frequency Response: 
>> [db.mag,pha,v] = freqs-m(b,a,0.5*pi) ; 
>> % Calculation of Impulse response: 
>> Cha,x,tl = impulse(b,a); 

The system function is given by 

0.1238 
(') = (s2 + 0.4985s + 0.2485) (s + 0.4985) 

This H9 (s) is slightly different from the one in Example 8.3 because in that 
example we used R, = 0.5, while in the &&butt function Rc is chosen to satisfy 

0 the specifications at flp. The filter plots are shown in Figure 8.5. 

CHEBYSHEV 
LOWPASS 
FILTERS 

There are two types of Chebyshev filters. The Chebyshev-I filters have 
equiripple msponse in the passband, while the Chebyshev-I1 filters have 
equiripple response in the stopband. Butterworth filters have monotonic 
response in bath bands. Recall our discussions regarding equiripple FIR 
filters. We noted that by choosing a filter that has an equiripple rather 
than a monotonic behavior, we can obtain a lower-order filter. Therefore 
Chebyshev filters provide lower order than Butterworth filters for the 
same specifications. 

The magnitude-squared response of a Chebyshev-I filter is 

(8.13) 

where N is the order of the filter, E is the passband ripple factor, which is 
related to Rp, and TN (x) is the Nth-order Chebyshev polynomial given 
bY 

cos (Ncos-'(z)) , 0 5 x 5 1 R 
cosh (cosh-'(x)) , 1 < x < 00 0, 

where 3: = - 
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FIGURE 0.5 Butterworth analog filter in Ezample 8.4 

The equiripple response of the Chebyshev filters is due to this polynomial 
TN(z). Its key properties are (a) for 0 < z < 1, TN(z) oscillates between 
-1 and 1, and (b)  for 1 < x < 00, TN(z) increases monotonically to cu. 

There are two possible shapes of IHo(jfl)l2, one for N odd and one for 
N even as shown below. Note that x = n/fl, is the normalized frequency. 
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From the above two response plots we observe the following properties: 

0 At x = 0 (or R = 0); IH,(jO)12 = 1 for N odd. 

I H J ~ O ) ~ ~  = 2 for N even. 

IH,(jl))' = 

1 + €2 

1+€2  

1 (or 0 5 R 5 R,), IHa(jz)lz oscillates between 1 and 

0 At x = 1 (or R = 0,); 

0 For 0 5 x 

for all N. 

1 
1 + €2. 
- 

0 For x > 1 (or R > Rc), IHa(js)lz decreases monotonically to 0. 

1 
At x = R,, IH,(js)l' = ,p. 

To determine a causal and stable H,(s), we must 6nd the poles of 
H,(s)Ho(-s) and select the left half-plane poles for H,(s). The poles of 
H,(s)H,(-s) are obtained by finding the roots of 

The solution of this equation is tedious if not difficult to obtain. It can be 
shown that if Pk = O k  + j&,  k = 0,. . . , N - 1 are the (left half-plane) 
roots of the above polynomial, then 

where 

a = ' @ -  N&), b = 2 t & +  1 Nfi),  and a=!+- 
2 

(8.15) 

These roots fall on 
Now the system function is given by 

ellipse with major axis bR, and minor axis an,. 

(8.16) 
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where K is a normalizing factor chosen to make 

[ 1, N odd 
(8.17) 

MATLAB 
IMPLEMEN- 
TATION 

MATLAB provides a function called Cz,p,k~=c~eblap(N,Rp) to desjgn 
a normalized Chebyshev-I analog prototype filter of order N and pass- 
band ripple Rp and that returns zeros in z array, poles in p array, and 
the gain value k. We need an unnormalized Chebyshev-I filter with arbi- 
trary R,. This is achieved by d i g  the array p of the normalized filter 
by R,. Similar to the Butterworth prototype, this filter has no zeros. 
The new gain k is determined using (8.17), which is achieved by scaling 
the old k by the ratio of the unnordized to the normalized denom- 
inator polynomials evaluated at s = 0. In the following function, called 
U-chblap(N,Rp ,Omegac), we design an unnormdized Chebyshev-I analog 
prototype filter that returns Ha (s) in the direct form. 

function [b,d = u_chblap(N,Rp,~egac); 
% Unnormalized Chebyshev-1 Analog Lowpass Filter Prototype x ________________________________________-__---__--_--__- 
% [b,al = u_chblap(N,Rp,hegac); 
x 
% 
X 
X 
% Dmegac a Cutoff frequency in radiandsec 
x 
[z.p,kl - cheblap(N,Rp); 

a = real (poly (p) 1 ; 

p = p*hnegac; 
a = real(poly(p1); 

k * k+aNu/aNn; 
M) = k; 
B = real(poly(z)); 
b = k*B; 

b = nunerator polynomial coefficients 
a = denominator polynomial coefficients 
N = Order of the Elliptic Filter 
Rp = Passband Ripple in dB; Rp > 0 

aNn = a(N+l); 

aNu = a(N+l); 

DESIGN 
EQUATIONS 

Given Rp, R,, I?,,, and As,  three parameters are required to determine a 
Chebyshev-I filter: E ,  R,, and N. Elom equations (8.3) and (8.4) we obtain 

= d m  and A = 10Aa’20 
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From the properties discussed above we have 

R, R,=R, and R -- - R, 

The order N is given by 

g = 4-2 

N =  [ 
Now using (8.15), (8.14), and (8.16), we can determine H,(s). 

0 EXAMPLE 8.5 Design a lowpass Chebyshev-I filter to satisfy 

Passband cutoff: R, = 0.2~ ; 

Stopband cutoff: R. = 0.3~ ; 

Passband ripple: Rp = 1dB 

Stopband ripple: A, = 16dB 

First compute the necessary parameters. 

6 = JlOO.'(') - 1 = 0.5088 A = 10'6/20 = 6.3096 

- 0.3" = 1.5 
0.2T Re = 0, = 0.2T 7 -  

g = Jm = 12.2429 N = 4 

NOW we can determine &(s). 

(8.18) 

(8.19) 

(8.20) 

b = 0 . 5 ( % +  Na) =LO644 

There are four poles for Ha(8): 

* (m,) sin + T = -0.0877 fj0.6179 
[2 81 

p1,2 = (an,) cos - + - f (bRc) sin 1; ?I 
Hence 

0.03829(= 0.89125 x A103 x .3895) 
(sa + 0.1754s + 0.3895) (s2 + 0.4234s + 0.1103) - H,(s) = - 

n (. - pk) 
k=D 
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Note that the numerator is such that 

0 1 H,(jO) = = 0.89125 

MATLAB 
IMPLEMEN- 
TATION 

Using the U-chblap function, we provide a function called afd-chbl to 
design an analog Chebyshev-I1 lowpm filter, given its specifications. This 
is shown below and uses the procedure described in Example 8.5. 

function [b.d - afd-chbl(Wp,Ws.Rp.As); 
X Analog Loupass Filter Design: Chebyshev-I 
r, ......................................... 
% [b.d = afd-chbi(Wp,Ws,Rp,As); 
X b - Nunerator coefficients of Ha(s) 
X a - Denominator coefficients of Ea(s) 
X Wp - Passband edge frequency in rad/sec; Wp > 0 
X Ws = Stopband edge frequency in rad/sec; Us > Wp > 0 
X Rp = Passband ripple in +dB; (Rp > 0) 
X As = Stopband attenuation in +dB; (As > 0) 
x 
if wp C- 0 

end 
if Ws C= Wp 

end 
if (Rp <= 0) I (As < 0) 

end 

ep - sqrt(lO-(Rp/iO)-i); 
A - iO^(As/20); 
GmegaC = Wp; 
begall = W W p ;  
g = sqrt(A*A-l)/ep; 
N = ceil(logio(g+sqrt (g*g-i))/logiO(begaR+sqrt (OmegaRtbegaR-1) )) ; 
fprintf (’\n*** Chebyshev-l Filter Order = X2.0f b’ ,W) 
[b,d =u-chbiap(N ,Rp,OmegaC) ; 

error(’Passband edge must be larger than 0’) 

error(’Stopband edge PNst be larger than Passband edge’) 

error(’PB ripple and/or SB attenuation u8t be larger than 0’) 

0 EXAMPLE 8.6 Design the analog Chebyshev-I lowpass filter given in Example 8.5 using MAT- 
LAB. 

sdution MATLAB Script 
>> Wp = 0,2*pi; Ws - 0.3*pi; Rp = 1; As = 16; 
>> Ripple 10 - (-Rp/20); Attn - 10 (-As/20); 
>> % Analog filter design: 
>> “b,d = afd-chbi(Up.Us.Rp,As); 
*** Chebyshev-1 Filter Order = 4 

~~ ~~ 
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>> X Calculation of second-order sections: 
>> [C,B,A] - sdirZcas(b,a) 
C = 0.0383 
B = O  0 I 
A = 1.0000 0.4233 0.1103 

1.0000 0.1753 0.3895 
>> X Calculation of Frequency Response: 
>> [db,mag,pha.wl = freqs-m(b,a,0.5*pi); 
>> X Calculation of Impulse response: 
>> Cha,x,tl - impulse(b,a); 
The specifications are satisfied by a 4th-order Chebyshev-I filter whose system 
function is 

0.0383 Ha = (sz + 4233s + 0.1103) (s2 + 0.1753s + 0.3895) 

The filter plots are shown in Figure 8.6. D 

A Chebyshev-I1 filter is related to the Chebyshev-I filter through a 
simple transformation. It has a monotone passband and an equiripple 
stopband, which implies that this filter has both poles and zeros in the 8- 

plane. Therefore the group delay characteristics are better (and the phase 
response more linear) in the passband than the Chebyshev-I prototype. If 

Magnitude Response 

0.8913 

x lr’\I 
0.1585 

0 2  0.3 0.5 
Analog trequenn, in pi unHs 

OO 

phase Response 

Magnitude in dB r d  3 16 

0.2 0.3 0.5 
30 
0 

Analog freguency in pi units 

1 ;I 1 
= 0.05 

-0.5 

0 0.2 0.3 0.5 0 1 0 2 0 3 0 4 0  -1 

Analog frequency in pi unlts time in 8BconQ 

FIGURE 8.6 Chebyshev-I analog filter in Example 8.6 
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we replace the term e2T;(Ci/Q,) in (8.13) by its reciprocal and also the 
argument G = n/O, by its reciprocal, we obtain the magnitudesquared 
response of Chebyshev-I1 as 

(8.21) 

One approach to designing a Chebyshev-I1 filter is to design the corre- 
sponding Chebyshev-I first and then apply the above transformations. 
We will not discuss the details of this filter but will use a function from 
MATLAB to design a Chebyshev-I1 filter. 

MATLAB 
IMPLEM EN- 
TATION 

M.4TLAB provides a function called [z , p ,k] =cheb2ap (N , As) to design a 
normalized Chebyshev-I1 analog prototype filter of order N and passband 
ripple As and that returns zeros in z array, poles in p array, and the gain 
value k. We need an unnormaliied Chebyshev-I filter with arbitrary a,. 
This is achieved by scaling the array p of the normalized filter by Q,. Since 
this filter has zeros, we also have to scale the array z by Q,. The new gain 
k is determined using (8.17), which is achieved by scaling the old k by the 
ratio of the unnormalized to the normalized rational functions evaluated 
at s = 0. In the following function, c d e d  U_chb2ap(N,As,Omegac), we 
design an unnormalized Chebyshev-11 analog prototype filter that returns 
Ha (s)  in the direct form. 

function [b,al = u_chbZap(N,As.Omegac); 
% Unuormalized Chebyshev-2 Analog Lowpass Filter Prototype x ........................................................ 
X b,aI - u-chb2ap(N,As,hegac); 
% 
'I, 
% 
% 
X Omegac - Cutoff frequency in radians/sec 
% 
[z,p,k] = cheb2ap(N,As); 

a = real (poly(p) 1 ; 

p = p*Omegac; 
a = real(poly(p)); 

b - real(poly(z)); 
H = length(b1; 

z = z*Omegac; 
b = real(poly(z)); 

b = numerator polynomial coefficients 
a = denominator polynomial coefficients 
N = Order of the Elliptic Filter 
As = Stopbaud Ripple in dE; As > 0 

aNn = a(N+I); 

aNu - a(N+I); 
bNn = b(M); 

bNu = b(M); 
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k - k*(aNu*bNn)/(aNn*bNu); 
b0 = k; 
b = k*b; 

The design equations for the Chebyshev-I1 prototype are similar to  
those of the Chebyshev-I except that 0, = Q, since the ripples are in the 
stopband. Therefore we can develop a MATLAB function similar to  the 
afd-chbl function for the Chebyshev-I1 prototype. 

function b,al = afd,chb2(Wp,Ws,Rp,As); 
% Analog Lowpass Filter Design: Chebyshev-2 
7 ......................................... 
X [b,d = afd_chb2(Wp,Ws,Rp,As); 
X 
% 
% Wp = Passband edge frequency in rad/sec; Up > 0 
% Ws = Stopband edge frequency in rad/sec; Ws > Wp > 0 
% Rp = Passband ripple in +a; (Rp > 0 )  
% As = Stopband attenuation in +dB; (As > 0 )  
% 
if Wp <- 0 

end 
if Ws <= Wp 

end 
if (Rp <- 0 )  I (As < 0 )  

end 

ep = sqrt(l0-(Rp/lO)-l); 
A = lO-(As/20); 
GmegaC = Wp; 
GmegaR = Ws/Wp; 
g = sqrt(A*A-l)/ep; 
N = ceil(loglO(g+sqrt(g*g-l))/loglO(OmegaR+sqrt(GmegaR*GmegaR-l)) ) ; 
fprintf (’\n*** Chebyshev-2 Filter Order = %2.0f \n’,N) 
Ib,al ~-chb2ap(N,As,Ws) ; 

b = Numerator coefficients of Ha(s) 
a = Denominator coefficients of flab) 

error(’Passband edge must be larger than 0 ’ )  

error(’Stopband edge must be larger than Passband edge’) 

error(’PB ripple and/or SB attenuation ust be larger than 0 ’ )  

0 EXAMPLE 8.7 Design a Chebyshev-I1 analog lowpass filter to satisfy the specifications given 
in Example 8.5: 

Passband cutoff Rp = 0 . 2 ~  ; 

Stopband cutoff R, = 0.3~ ; 

Passband ripple: Rp = 1dB 

Stopband ripple: A. = 16dB 

S d u t h  Maria6 Script 
>> Up = 0.2*pi; Ws = 0.3*pi; Rp = 1; As = 16; 
>> Ripple = 10 ” (-Rp/20); Attn = 10 - (-As/20); 
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>> X Analog filter design: 
>> Cb,d = afd-chb2(Wp,Ws,Rp,As); 
*** Chebyshev-2 Filter Order = 4 
>> X Calculation of second-order sections: 
>> [C,E,A] = sdir2cas(b.a) 
C = 0.1585 
B - 1.0000 0 6.0654 

1.0000 0 1.0407 
A .i 1.OOOO 1.9521 1.4747 

1.0000 0.3719 0.6784 
>> X Calculation of Frequency Response: 
>> Cdb.mag,pha.wl = freqs_m(b,a,0.6*pi); 
>> X Calculation of Impulse response: 
>> [ha,x,tl - inpulse(b,a); 
The specifications are satisfied by a 4th-order Chebyshev-I1 filter whose system 
hnct.ion is 

0.1585 (sz + 6.0654) (s' + 1.0407) 
Ha = (sz + 1.9521s + 1.4747) (9 + 0.3719s + 0.6784) 

The filter plots are shown in Figure 8.7. 0 
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ELLIPTIC 
LOWPASS 
FILTERS 

These filters exhibit equiripple behavior in the passband as well as in 
the stopband. They are similar in magnitude response characteristics to 
the FIR equiripple filters. Therefore elliptic filters are optimum filters 
in that they achieve the minimum order N for the given specifications 
(or alternately, achieve the sharpest transition band for the given order 
N). These filters, for obvious reasons, are very di5cdt to analyze and, 
therefore, to design. It is not possible to design them using simple tools, 
and often programs or tables are needed to design them. 

The magnitude-squared response of elliptic filters is given by 

(8.22) 

where N is the order, e is the passband ripple (which is related to h), 
and UN (.) is the Nth order Jacobian elliptic function. The analysis of 
this function, even on a superficial level, is beyond the scope of this book. 
Note the similarity between the above response (8.22) and that of the 
Chebyshev filters given by (8.13). Typical responses for odd and even N 
are shown below. 

1 
1 

1 + <z 
- 

1 - 
A) 

0 

COMPUTATION 
OF FILTER 
ORDER N is given by 

Even though the analysis of (8.22) is difficult, the order calculation for- 
mula is very compact and is available in many textbooks (16, 19, 20). It 

(8.23) 

where 
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and 

is the complete elliptic integral of the first kind. MATLAB provides the 
function ellipke to numerically compute the above integral, which we 
will use to compute N and to design elliptic filters. 

MATLAB 
IMPLEMEN- 
TATION 

MATLAB provides a function called [z,p,kl=ellipap(N,Rp,As) to de- 
sign a normalized elliptic analog prototype filter of order N, passband 
ripple Rp, and stopband attenuation As, and that returns zeros in z array, 
poles in p array, and the gain value k. We need an unnormalized elliptic 
filter with arbitrary R,. This is achieved by scaling the arrays p and z of 
the normalized filter by R, and the gain k by the ratio of the unnormalized 
to the normalized rational functions evaluated at s = 0. In the following 
function, called U-elipap (N , Rp ,As, Omegac) , we design an unnormaliized 
elliptic analog prototype filter that returns Ha (s) in the direct form. 

function Cb,al = u_elipap(N,Rp,As,Omegac) ; 
X Unnormalized Elliptic Analog Loupass Filter Prototype 
y ..................................................... 
X Cb,d = u-elipap(N,Rp,As,Omegac); 
X 
.V 

X 
X 
X 
X Gmegac - Cutoff frequency in radians/sec 
X 
[z,p.kl = ellipap(N,Rp.As); 

b = numerator polynomial coefficients 
a = denominator polynomial coefficients 
N - Order of the Elliptic Filter 
Rp - Passband Ripple in dB; Rp > 0 
As = Stopband Attenuation in dB; As > 0 

a = real(poly(p)) ; 

p = p*Omegac; 
a = real(poly(p)); 

b = real(poly(z)); 
M = length(b1; 

z = z*Omegac; 
b = real(poly(z1) ; 

k = k* (aNu*bNn) / (aNn*bNu) ; 

b = k*b; 

aNn = a(N+l); 

aNu = a(N+l); 

bNn - b(M); 
bNu - b(M); 
bO = k; 
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Using the U-elipap function, we provide a function called afd-elip 
to design an analog elliptic lowpass filter, given its specifications. This 
is shown below and uses the filter order computation formula given in 
(8.23). 

function [b , a] = afd-elip (Wp, Ws .Rp, As) ; 
7, Analog Loupass Filter Design: Elliptic 
7 ...................................... 
1 [b,a] = afd-elip(Wp.Ws,Rp.As); 
X 
% 
X Wp = Passband edge frequency in rad/sec; Up > 0 
% Us = Stopband edge frequency in rad/sec; Us > Wp > 0 
% Rp = Passbaud ripple in +dB; (Rp > 0) 
% As = Stopband attenuation in +dB; (As > 0) 

b = Numerator coefficients of Ha(s) 
a = Denominator coefficients of Ha(s) 

% 
if wp <= 0 

errorc’passband edge must be larger than 0’) 
end 
if Ws <= Wp 

end 
if (Rp <= 0) I (As < 0) 

end 

error(’Stopband edge must be larger than Passband edge’) 

error(’PB ripple and/or SB attenuation ust be larger than 0’) 

ep = sqrt(lO-(Rp/lO)-l) ; 
A = 10-(As/20); 
OmegaC = Wp; 
k = Wp/Ws; 
kl = ep/sqrt(A*A-1); 
capk = ellipke([k.̂ 2 l-k.*2]); 
capkl = ellipke(l(k1 .-2) l-(kl .“2)1); % Version 4.0 code 
N = ceil (capk(1) *capkl(2)/(capk(2)*capkl(l) ) ) ; 
fprintf(’\n*** Elliptic Filter Order = %2.0f \n’,N) 
[b,alY-elipap(N,Rp,As ; 

Version 4.0 code 

0 U(AMPLE 8.8 Design an analog elliptic lowpass filter to satisfy the following Specifications of 
Example 8.5: 

Rp = 0.27~, 

R, = 0.3~, 

Rp = 1dB 

A. = 16db 

Solution MATLA6 Script 
>> Up = 0.2*pi; Ws = 0.3*pi; Rp = 1; As = 16; 
>> Ripple = 10 - (-Rp/20); Attn = 10 - (-As/2O); 
>> X Analog filter design: 
>> [b,a] = afd-elip(Wp,Ws,Rp,As); 
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*** Elliptic Filter Order = 3 
>> X Calculation of second-order sections: 
>> [C,B,A] = sdirZcas(b,a) 
C = 0.2740 
B = 1.OOOO 0 0.6641 
A = 1.0000 0.1696 0.4102 

0 1.0000 0.4435 
>> Y. Calculation of Frequency Response: 
>> [db,mag,pha,w] = freqsAb,a,O.S*pi); 
>> X Calculation of Impulse response: 
>> [ha,x,t] = impulse(b,a); 

The specilkations are satisfied by a 3rd-order elliptic filter whose system func- 
tion is 

0.274 (8” + 0.6641) 
= (s2 + 0.16968 + 0.4102) (s + 0.4435) 

The filter plots are shown in Figure 8.8. 
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Analog frequency m pi unlts 
Phase Reswnse Impulse Response 

0 10 20 30 40 
time in seconds 

FIGURE 8.8 Elliptic analog lowpass filter in Ezample 8.8 
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PHASE 
RESPONSES 
OF PROTO- 
TYPE FILTERS 

Elliptic filters provide optimal performance in the magnitude-squared re- 
sponse but have highly nonlinear phase response in the passband (which is 
undesirable in many applications). Even though we decided not to worry 
about phase response in our designs, phase is still an important issue in the 
overall system. At the other end of the performance scale are the Butter- 
worth filters, which have maximally flat magnitude response and require a 
higher-order N (more poles) to achieve the same stopband specification. 
However, they exhibit a fairly linear phase response in their passband. 
The Chebyshev filters have phase characteristics that lie somewhere in 
between. Therefore in practical applications we do consider Butterworth 
as well as Chebyshev filters, in addition to elliptic filters. The choice de- 
pends on both the filter order (which influences processing speed and 
implementation complexity) and the phase characteristics (which control 
the distortion). 

ANALOG-TO-DIGITAL FILTER TRANSFORMATIONS 
I 

After discussing different approaches to the design of analog filters, we are 
now ready to transform them into digital filters. These transformations 
are complex-valued mappings that are extensively studied in the litera- 
ture. These transformations are derived by preserving different aspects 
of analog and digital filters. If we want to preserve the shape of the im- 
pulse response from analog to digital filter, then we obtain a technique 
called impulse invariance transformation. If we want to convert a dif- 
ferential equation representation into a corresponding difference equation 
representation, then we obtain a finite diflerence approximation technique. 
Numerous other techniques are also possible. One technique, cdled step 
invariance, preserves the shape of the step response; this is explored in 
Problem 9. The most popular technique used in practice is called a Bi- 
linear transformation, which preserves the system function representation 
from analog to digital domain. In this section we will study in detail im- 
pulse invariance and bilinear transformations, both of which can be easily 
implemented in MATLAB. 

IMPULSE 
INVARIANCE 
TRANSFOR- 
MATION 

In this design method we want the digital filter impulse response to look 
“similar” to that of a frequency-selective analog filter. Hence we sample 
h,(t) at some sampling interval T to obtain h(n); that is, 

h(n) = h,(nT) 

The parameter T is chosen so that the shape of h,(t) is “captured” by 
the samples. Since this is a sampling operation, the analog and digital 
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frequencies are related by 

u = RT or e'" = dnT 

Since z = eJw on the unit circle and s = j Q  on the imaginary axis, we 
have the following transformation from the s-plane to the z-plane: 

2 5 esT (8.24) 

The system functions H ( z )  and Ha(s) are related through the frequency- 
domain aliasing formula (3.27): 

H ( z )  = 1 5 Ha (s - j$ lc )  
k=-a ,  T 

The complex plane transformation under the mapping (8.24) is shown in 
Figure 8.9, from which we have the following observations: 

1. Using u = Re(s), we note that 

u < 0 maps into IzI < 1 (inside of the UC) 
u = 0 maps onto 1.1 = 1 (on the UC) 

u > 0 maps into IzI > 1 (outside of the UC) 

2. All semi-infinite strips (shown above) of width 2 n / T  map into 
IzI < 1. Thus this mapping is not unique but a many-to-one mapping. 

3. Since the entire left half of the s-plane maps into the unit circle, a 
causal and stable analog filter maps into a causal and stable digital filter. 

4. If H,(jR) = H,( jw/T)  = 0 for IRI 2 n/T, then 

s-plane I z-plane 

FIGURE 8.9 Complesplane mapping in ampuke invariance tmnsformation 
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and there will be no aliasing. However, no analog filter of finite order can 
be exactly band-limited. Therefore some aliasing error will occur in this 
design procedure, and hence the sampling interval T plays a minor role 
in this design method. 

DESIGN 
PROCEDURE 

Given the digital lowpass filter specifications wp, w,, Rp, and A,, we want 
to determine H (z) by first designing an equivalent analog filter and then 
mapping it into the desired digital filter. The steps required for this pro- 
cedure are 

1. Choose T and determine the analog frequencies 

2. Design an analog filter Ha (s) using the specifications fip, a,, Rp, 
and A,. This can be done using any one of the three (Butterwotth, Cheby- 
shev, or elliptic) prototypes of the previous section. 

3. Using partial fraction expansion, expand Ha (s) into 

4. Now transform analog poles (pk} into digital poles { ePkT} to ob 
tain the digital filter: 

(8.25) 

0 EXAMPLE B.9 lkansform 

into a digital filter H ( 2 )  using the impulse invariance technique in which T = 
0.1. 

solution We first expand Ha (8) using partial fraction expansion: 

The poles are at pi = -3 and pz = -2. Then from (8.25) and using T = 0.1, 
we obtain 
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It is easy to develop a MATLAB function to implement the impulse invari- 
ance mapping. Given a rational function description of Ha (s), we can use the 
residue function to obtain its pole-zero description. Then each analog pole is 
mapped into a digital pole using (8.24). Finally, the residue2 function can be 
used to convert H ( 2 )  into rational function form. This procedure is given in 
the function imp-invr. 

function Cb,d = imp-invr(c.d,T) 
X Impulse Invariance Transformation from Analog to Digital Filter 
X ............................................................... 
X Cb,aI = imp-invr(c,d,T) 
X b = Numerator polynomial in ~ ~ ( - 1 )  of the digital filter 
X a = Denominator polynomial in ~ ~ ( - 1 )  of the digital filter 
X c = Numerator polynomial in 8 of the analog filter 
X d = Denominator polynomial in s of the analog filter 
% T = Sampling (transformation) parameter 
X 
CR,p,kl = residue(c,d); 
p = eq(p*T); 
Ib.4 = residuez(R,p,k); 
b = realcb’); a = real(a’); 

A similar function called impinvar is available in the new Student Edition of 
MATLAB. 0 

0 EXAMPLE 8.10 We demonstrate the use of the imp-invr function on the system function from 
Example 8.9. 

solution MATLAB Script 
>> c = C1,ll; d = C1.5,61; T = 0.1; 
>> [b,al = imp-invr(c,d,T) 
b = 1.0000 -0.8966 
a = 1.oooO -1.5595 0.6065 

The digital filter is 

( z )  = 1 - 0.8966z-’ 
1 - 1.55952-’ + 0.6065~-~ 

BS expected. In Figure 8.10 we show the impulse responses and the magnitude 
responses (plotted up to the sampling frequency 1/T) of the analog and the 
resulting digital filter. Clearly, the aliasing in the frequency domain is evident. 

0 

In the next several examples we illustrate the impulse invariance de- 
sign procedure on all three prototypes. 
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FIGURE 8.10 Irnpdse and frequency Pesponse plots in Ezample 8.10 

0 EXAMPLE 8.11 Design a lowpas digital filter using a Butterworth prototype to satisfy 

w, = 0.2n, 

W. = 0.3s, 
Rp = 1 dB 

A. = 15 dB 

solution The design procedure is described in the following MATLAB script 

>> X Digital Filter Specifications: 
>> wp = O.l*pi; 
>> ws = 0.3*pi; 
>> Rp - 1; 
>> As - 15; 

>> X Analog Prototype Specifications: Inverse mapping for frequencies 
>> T = 1; 
>> Onegap = wp / T; 
>> Omega - ws / T; 

>> X Analog Butterworth Prototype Filter Calculation: 
>> [cs,ds] - afd_butt(OmegaP,(lmegaS,Rp,As) ; 
*** Butterworth Filter Order = 6 

X digital Passband freq in Hz 
X digital Stopband freq in Hz 
X Passband ripple in dB 
X Stopband attenuation in dB 

X Set Ti1 
Y. Prototype Passband freq 
X Prototype Stopband freq 
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>> X Impulse Invariance transformation: 
>> Ib.aJ = imp-invr(c8,ds.T); 
>> CC,B,Al = dir2parCb.a) 
c = [I 
B = 1.8557 -0.6304 

-2.1428 1.1454 
0.2871 -0.4466 

A = 1.0000 -0.9973 0.2570 
1.OOOO -1.0691 0.3699 
1.0000 -1.2972 0.6949 

The desired filter is a Gth-order Butterworth filter whose system function H (2 )  

is given in the parallel form 

1.8587 - 0.6304t-' -2.1428 + 1.1454t-' 
(') = 1 - 0.9973%-' + 0.257~-~ + 1 - 1.06912-' + 0.3699~-~ 

0.2871 - 0.4463t-' 
1 - 1.29722-' +- 0.6449~-~ 

The fresuency response plots are given in Figure 8.11 
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B - 5:r n 

-1 
0 0.20.3 1 

frequency in pi units 
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l o r  , . 
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FIGURE 8.11 Digital Butterworth lowpass f l ter  wing impulse invariance design 
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0 EXAMPLE 8.12 Design a lowpass digital filter using a Chebyshev-I prototype to satisfy 

w, = 0 . 2 ~ ,  

ws = 0 . 3 ~ ,  

Rp = 1 dB 

A, = 15 dB 

solution The design procedure is described in the following MATLAB script: 

>> % Digital Filter Specifications: 
>> up = O.P*pi; % digital Passband freq in Hz 
>> us = 0.3*pi; % digital Stopband freq in Hz 
>> Rp = 1 ;  Y. Passbaud ripple in dB 
>> As = 15; % Stopband attenuation in dB 

>> Y. halog Prototype Specifications: Inverse mapping for frequencies 
>> T = 1; 
>> OmegaP = vp / T; 
>> OmegaS = us / T; 

>> Y. Analog Chebyshev-1 Prototype Filter Calculation: 
>> [cs,ds] = ~d_cabl(OmegaP.OmegaS,Rp,As); 
*** Chebyshev-1 Filter Order = 

>> % Impulse Invariance transformation: 
>> [b,a] = Fmp-invr(cs,ds,T); 
>> [C,B,Al = dir2par(b,a) 
c =  El 

X Set T-i 
% Prototype Passband freq 
Y. Prototype Stopbaud freq 

4 

B a-0.0833 -0.0246 
0.0833 0.0239 

A = 1.oooO -1.4934 0.8392 
1.0000 -1.6658 0.6549 

The desired filter is a 4th-order Chebyshev-I filter whose system function H (2) 
is 

-0.0833 - 0.02462-' -0.0833 + 0.0239r-' 
1 - 1.49342-I + 0.8392r2 -k 1 - 1.56582-I + 0.6549r2 H (2) = 

The kequency response plots are given in Figure 8.12. 0 

0 EXAMPLE 8.13 Design a lowpass digital filter using a Chebyshev-I1 prototype to satisfy 

w, = 0.27r, 

w. = 0 . 3 ~ ,  

Itp = 1 dB 

A. = 15 dB 

solution Recall that the Chebyshev-I1 filter is equiripple in the stopband. It means that 
this analog filter has a response that does not go to zero at high frequencies in 
the stopband. Therefore after impulse inmiance transformation, the aliasing 
effect will be significant; this can degrade the passband response. The MATLAB 
script is shown: 

Analog-to-Digital Filter Transformations 333 



Magnihuia Response 

0.8913 

x 1 
0.1778 

' 0  0.20.3 1 
t r e q W h p i U *  

MagrltudehdB 

FIGURE 8.12 Digital Chebyshev-I lowpas filter using impulse invariance desrgn 

>> X Digital Filter Specifications: 
>> up = O.Z*pi; X digital Passband freq in Hz 
>> ws = 0.3Spi; X digital Stopband freq in Hz 
>> Rp = 1; X Passband ripple in dB 
>> As = 15; X Stopband attenuation in dB 

>> X Analog Prototype Specifications: Inverse mapping for frequencies 
>> T - 1; 
>> hegap = wp / T; 
>> hegaS = ws / T; 

>> X Analog Chebyshev-1 Prototype Filter Calculation: 
>> [cs,ds] - afd_chbZ(hegaP,hegaS.Rp,As); 
*** Chebyshev-2 Filter Order = 4 

>> X Impulse Invariance transformation: 
>> Cb,d = imp-invr(cs,ds,T); 
>> [C,B,AI - dir2par(b,a); 

X Set T=i 
X Prototype Passband freq 
X Prototype Stopband freq 

From the frequency response plots in Figure 8.13 we clearly observe the pass 
band as well as stopband degradation. Hence the impulse invariance design 

0 technique has failed to produce a desired digital filter. 
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FIGURE 8.13 Digital Chebyshev-II lowpass filter using impulse anvariance de- 
S i p  

0 EXAMPLE 8.14 Design a lowpass digital filter using an elliptic prototype to satisfy 

up = 0.2?r, 

us = 0.3x, 

Rp = 1 dB 

A, = 15 dB 

Sdution The elliptic filter is equiripple in both bands. Hence this situation is similar to 
that of the Chebyshev-I1 filter, and we should not expect a good digital filter. 
The MATLAB script is shown: 

>> X Digital Filter Specifications: 
>> up = 0.2*pi; X digital Passband freq in Hz 
>> us = 0.3+pi; X digital Stopband freq in Hz 
>> Rp = 1; % Passbaud ripple in dB 
>> As = 15; X Stopband attenuation in dB 

>> X Analog Prototype Specifications: Inverse mapping for frequencies 
>> T = I; 
>> OmegaP = wp 1 T; 
>> Omegas = ws / T; 

>> % Analog Elliptic Prototype Filter Calculation: 
>> [cs,ds] = afd_elip(OmegaP,OmegaS,Rp,As) ; 
*** Elliptic Filter Order = 

X Set T=1 
X Prototype Passbaud freq 
% Prototype Stopband freq 

3 
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FIGURE 8.14 Digital elliptic lowplss filter using im&e anvariccnCe design 

>> X Impulse Invariance transformation: 
>> Cb,d = imp-invr(cs,ds,T); 
>> [C,B,A] - dir2par(b,a); 

Fkom the frequency response plots in Figure 8.14 we clearly observe that once 
0 again the impulse invariance design technique has failed. 

The advantages of the impulse invariance mapping are that it is a 
stable design and that the kequencies R and w are linearly related. But 
the disadvantage is that we should expect some aliasing of the analog 
frequency response, and in some cases this aliasing is intolerable. Come 
quently, this design method is useful only when the analog filter is essen- 
tially band-limited to a lowpas or bandpaw filter in which there are no 
oscillations in the stopband. 

MATION 

BILINEAR 
TRANSFOR- function given by 

This mapping is the best transformation method; it involves a well-known 

(8.26) 
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where T is a parameter. Another name for this transformation is the linear 
fmctional transformation because when cleared of fractions, we obtain 

T T  
-sz+ -s - z + 1 = 0 
2 2  

which is linear in each variable if the other is fixed, or bilinear in s and z. 
The complex plane mapping under (8.26) is shown in Figure 8.15, from 
which we have the following observations: 

1. Using s = D + j f l  in (8.26), we obtain 

z =  ( l+-++j- aT flT)/(l-!?T-j!E) 
2 2  2 

Hence 

< 1  

= 1  

> 1  

(8.27) 

2. The entire left half-plane maps into the inside of the unit circle. 

3. The imaginary axis maps onto the unit circle in a oneto-one fash- 
Hence this is a stable transformation. 

ion. Hence there is no aliasing in the frequency domain. 

s-plane I .+plane 

FIGURE 8.15 Complez-plane mapping in bilinear tmnsforrnataon 
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Substituting u = 0 in (8.27), we obtain 

since the magnitude is I. Solving for w as a function of R, we obtain 

2 
T or a =  -tan (i) (8.28) w = 2 tan-' (F) 

This shows that R is nonlinearly related to (or warped into) w but that 
there is no aliasing. Hence in (8.28) we will say that w is prewarped into 

0 EXAMPLE 8.15 ?tansform H,(s) = ___ ' + into a digital filter using the bilinear transfor- 
s2 + 59+  6 

mation. Choose T = 1. 

Using (8.26), we obtain 

1 - 2-1 

- 1 + % - I  
2- + 1  

- 

1 + 2-1 
Simplifying, 

0 3 + 22-' - z-' - 0.15 + 0.lz-l - 0.05~-~ H ( z )  = - 
20 + 42-1 1 + 0.21-1 

MATLAB provides a function called bilinear to implement this m a p  
ping. Its invocation is similar to the imp-invr function, but it also takes 
several forms for different input-output quantities. The Student Edition 
manual should be consulted for more details. Its use is shown in the fol- 
lowing example. 

0 EXAMPLE 8.16 ?tansform the system function Ha (s) in Example 8.15 using the bilinear 
function. 

Solution MATLAB Script 
>> c = [1,1]; d = [1,5,61; T = I; Fs = 1/T; 
>> [b.d = bilinear(c,d,Fs) 
b = 0.1600 0.1000 -0.0500 
a = 1.0000 0.2000 0.0000 

~ 
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The filter is 

0.15 + 0.12-' - 0.052-* H ( t )  = 1 + 0.2%-1 

as before. 0 

DESIGN 
PROCEDURE 

Given digital filter specifications up, us, Rp,  and A,, we want to determine 
H(z) .  The design steps in this procedure are the following: 

1. Choose a value for T. This is arbitrary, and we may set T = 1. 
2. Prewarp the cutoff frequencies up and w,; that is, calculate R, and 

R, using (8.28): 

R - - tan(?) ,  2 n.=Ttan($)  2 
P-T 

3. Design an analog filter Ha(s) to meet the specifications a,,, R,, 
R p ,  and A.. We have already described how to do this in the previous 
section. 

4. Finally, set 

H ( z )  = Ha (--) 2 1 - z-1 
T 1 f a - l  

and simplify to obtain H ( z )  as a rational function in z-l 

on our analog prototype filters. 
In the next several examples we demonstrate this design procedure 

0 EXAMPLE 8.17 Design the digital Butterworth filter of Example 8.11.. The specifications are 

wp = 0.2n, 

w. = 0.3n, 

Rp = 1 dB 

A. = 15 dB 

sdution MATLAB Script 
>> X Digital Filter Specifications: 
>> vp = 0.22pi; 
>> vs = O.B*pi; 
>> Rp = 1; 
>> As = 15; 
>> X Analog Prototype Specifications: Inverse mapping for frequencies 
>> T = 1; Fs = 1/T; 
>> OmegaP * (2/T)*tan(vp/l); 
>> CimegaS = (2/T)*tan(vs/2); 
>> 1: Analog Buttervorth Prototype Filter Calculation: 
>> [cs,ds] = afd_butt(OmegaP,DmegaS.Rp,As); 
*** Butterworth Filter Order = 

Y. digital Passband freq in Hz 
X digital Stopband freq in Hz 
7, Passband ripple in dB 
X Stopband attenuation in dB 

X Set T-1 
X Prewarp Prototype Passband freq 
X Prevarp Prototype Stopband freq 

6 
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>> Bilinear transformation: 
>> [b,a] = bil inear(cs ,ds ,Fs) ;  
>> [C,B,A] - dir2cas(b,a) 
C = 5.7969e-004 
B = 1.0000 2.0183 1.0186 

1.0000 1.9814 0.9817 
1.0000 2.0004 1.0000 

A - 1.0000 -0.9459 0.2342 
1.0000 -1.0541 0.3753 
1.0000 -1.3143 0.7149 

The desired filter is once again a Gth-order filter and has 6 zeros. Since the 
6th-order zero of H, ( 5 )  at '8 = -m is mapped to z = -1, these zeros should be 
at z = -1. Due to the finite precision of MATLAB these zeros are not exactly a t  
z = -1. Hence the system function should be 

0.00057969 (1 + z - ' ) ~  
H ( z )  = 

(1 - 0.94592-' + 0.2342~-') (1 - 1.0541~-' + 0.37532-2) (1 - 1.31432-' + 0.7149~-') 
The frequency response plots are given in Figure 8.16. Comparing these plots 
with those in Figure 8.11, we observe that these two designs are very similar. 

0 
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FIGURE 8.16 Digital Butterworth lowpas3 filter wing bilinear tmnsfomation 
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0 EXAMPLE 8.18 Design the digital Chebyshev-I filter of Example 8.12. The specifications are 

up = 0 . 2 ~ ,  

w. = 0.3x, 

E1p = 1 dB 

A, = 15 dB 

SdUtion MATLA6 Script 
>> X Digital Filter Specifications: 
>> up = O.Z*pi; X digital Passband freq in Hz 
>> vs = 0.39i; X digital Stopband freq in Hz 
>> Rp = 1; X Passband ripple in dB 
>> As = 15; X Stopband attenuation in dB 
>> X Analog Prototype Specifications: Inverse mapping for frequencies 
>> T 1; Fs = in; X Set T-1 
>> OmegaP = (2/T)*tan(vp/2); 
>> Omegas - (2/T)*tan(ws/2); 
>> X Analog Chebyshev-1 Prototype Filter Calculation: 
>> [cs,ds] = afd_chbl(I)megaP,OmegaS,Rp,As); 
*** Chebyshev-1 Filter Order = 
>> X Bilinear transformation: 
>> b,al - bilinear(cs,ds,Fs); 
>> [C.B,A] = dirZcas(b,a) 
C = 0.0018 
B = 1.0000 2.0000 1.0000 

1.0000 2.0000 1.0000 
A = 1.0000 -1.4996 0.8482 

1.0000 -1.5548 0.6493 

X Prewarp Prototype Passband freq 
X Prewarp Prototype Stopband freq 

4 

The desired filter is a Ith-order filter and has 4 zeros at z = -1. The system 
function is 

0.0018 (1 + 2-')*  

= (1 - 1.49962-1 + 0.&182~-~)  (1 - 1.55482-1 + 0.6493r2) 

The frequency response plots are given in Figure 8.17 which are similar to those 
in Figure 8.12. 0 

0 EXAMPLE 8.19 Design the digital Chebyshev-I filter of Example 8.13. The specifications are 

w, = 0.2r, 

ws = 0 . 3 ~ ,  

Rp = 1 dB 

A. = 15 dB 

solution MATLA6 SCn'pt 
>> X Digital Filter Specifications: 
>> wp - O.P*pi; 
>> ws = 0.3*pi; 
>> Rp = 1; 
>> As = 15; 

X digital Passband freq in Hz 
X digital Stopband freq in Hz 
X Passband ripple in dB 
'L Stopband attenuation in dB 
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FIGURE 8.17 Digital Chebyshev-I lowpass flter using bilinear tnansf-taon 

>> X Analog Prototype Specifications: Inverse mapping for frequencies 
>> T = 1; Fs - l/T; 
>> OmegaP = (2/T)*tan(vp/2); 
>> LhegaS = (2/T)*tan(ws/2); 
>> % Analog Chebyshev-2 Prototype Filter Calculation: 
>> [cs,ds] = afd_chb2((begaP,(hegeS,Rp,As) ; 
+** Chebyshev-2 Filter Order - 4 
>> 1 Bilinear transformation: 
>> b,d - bilinear(cs,ds,Fs); 
>> CC,B,Al = dirZcas(b,a) 
C = 0.1797 
B = 1.oooO 0.5574 1.oooO 

1.0000 -1.0671 1.0000 
A 1.0000 -0.4183 0.1503 

1.0000 -1.1325 0.7183 

% Set T=1 
% Rewarp Prototype Passbaud freq 
X Rewarp Prototype Stopbaad freq 

The desired filter is again a 4th-order filter with system function 

0.1797 (1 + 0.55742-' + z-') (1 - 1.0671~-' + 2-') 
H (2) = (1 - 0.41832-' + 0.1503~-') (1 - 1.13252-' + 0.71832-') 
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FIGURE 8.18 mtal Ckbysheu-II lowpass filter using bilinear transformation 

The frequency response plots are given in Figure 8.18. Note that the bilinear 
0 transformation has properly designed the Chebyshev-I1 digital filter. 

0 EXAMPLE 8.20 Design the digital elliptic filter of Example 8.14. The specifications are 

up = 0.27r, 

W. = 0.3?r, 

Icp = 1 dB 

A. = 15 dB 

Sdution MATLAB Script 
>> X Digital Filter Specifications: 
>> vp = 0.2*pi; 
>> us = 0.39i; 
>> Rp - 1; 
>> As - 15; 
>> % Andog Prototype Specifications: Inverse mapping for frequencies 
>> T = 1; Fs = i/T; 
>> OaegaF' = (2/T)*tan(wp/2); 
>> Orasgas = (Z/T)*tan(vs/l); 
>> % Analog Elliptic Prototype Filter Calculation: 
>> Ccs,ds] = afd_elip(OaegaP,OaegaS.Rp.As); 
*** Elliptic Filter Order = 
>> X Bilinear transformation: 

% digital Passband freq in Hz 
X digital Stopband freq in Hz 
X Passband ripple in dB 
X Stopband attenuation in dB 

% Set T-1 
X Prevarp Prototype Passbaud freq 
X Prewat-p Prototype Stopband freq 

3 

Analog-to-Digital Filter Transformations 343 



>> b,a] = bilinear(cs,ds,Fs); 
>> [C,B,A] = dirlcas(b,a) 
C = 0.1214 
B = 1.0000 -1.4211 1.0000 

1.0000 1.0000 0 
A = 1.0000 -1.4926 0.8612 

1.0000 -0.6183 0 

The desired filter is a 3rd-order filter with system function 

0.1214 (1 - 1.4211z-' + 2-') (1 + z-') 
H (2) = (1 - 1.49282-' + 0.86122-') (1 - 0.6183~~') 

The frequency response plots are given in Figure 8.19. Note that the bilinear 
0 transformation has again properly designed the elliptic digital filter. 

The advantages of this mapping are that (a) it is a stable design, 
(b) there is no aliasing, and (c) there is no restriction on the type of filter 
that can be transformed. Therefore this method is used exclusively in 
computer programs including MATLAB as we shall see next. 

Magnitude Response Phase Response 

o.'nOb ' 0  0.20.3 

frequency In pi units 
Magtitude in dB ilFisl '0 1 

0 0.20.3 
frequeocy in pl u n b  

Group Delay iu!J $ 5  0 1 

0 0.20.3 
frequency in pi units 

FIGURE 8.19 Digital elliptic lowpass filter using bilinear transformation 
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LOWPASS FILTER DESIGN USING MATLAB 

In this section we will demonstrate the use of MATLAB'S filter design 
routines to design digital lowpass filters. These functions use the bilinear 
transformation because of its desirable advantages as discussed in the 
previous section. These functions are as follows: 

1. Cb, a] =butter (N,wn) 
This function designs an Nth-order lowpass digital Butterworth filter 

and returns the filter coefficients in length N+ 1 vectors b and a. The filter 
order is given by (&lo), and the cutoff frequency M is determined by the 
prewarping formula (8.29). However, in MATLAB all digital frequencies are 
given in units of.. Hence wn is computed by using the following relation: 

w, = 2 tan-' (T) 0 2  
n 

The use of this function is given in Example 8.21. 
2. Cb, al =chebyl (N,Rp.wn) 
This function designs an Nth-order lowpass digital Chebyshev-I filter 

with Rp decibels of ripple in the passband. It returns the filter coefficients 
in length N + 1 vectors b and a. The filter order is given by (8.20), and 
the cutoff frequency wn is the digital passband frequency in units of n; 
that is, 

w, = wp/n 

The use of this function is given in Example 8.22. 
3. Cb,al=chebyP(N,As,wn) 
This function designs an Nth-order lowpass digital Chebyshev-I1 filter 

with the stopband attenuation As decibels. It returns the filter coefficients 
in length N + 1 vectors b and a. The filter order is given by (8.20), and 
the cutoff frequency vn is the digital stopband frequency in units of n; 
that is, 

w, = w, /. 

The use of this function is given in Example 8.23. 
4. Cb, a] =ellip(N,Rp, As ,wn) 
This function designs an Nth-order lowpass digital elliptic filter with 

the passband ripple of Rp decibets and a stopband attenuation of As deci- 
bels. It returns the filter coefficients in length N + 1 vectors b and a. The 
filter order is given by (8.23), and the cutoff frequency wn is the digital 
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passband frequency in units of T ;  that is, 

w, = wp jn 

The use of this function is given in Example 8.24. 

All these above functions can also be used to design other frequency- 
selective filters, such as highpass and bandpass. We will discuss their 
additional capabilities in Section 8.5. 

There is also another set of filter functions, namely the buttord, 
cheblord, chebzord, and ellipord functions, which can provide filter 
order N and filter cutoff frequency w,, given the specifications. These 
functions are available in the Signal Processing toolbox but not in the 
Student Edition, and hence in the examples to follow we will determine 
these parameters using the formulas given earlier. We will discuss the 
filter-order functions in the next section. 

In the following examples we will redesign the same lowpass filters 
of previous examples and compare their results. The specifications of the 
lowpass digital filter are 

wp = 0 .2~ ,  

w, = 0 . 3 ~ ,  

Rp = 1 dB 

A, = 15 dB 

0 EXAMPLE 8.21 Digital Butterworth lowpass filter design: 

>> % Digital Filter Specifications: 
>> up = 0.2*pi; 
>> us = 0.3*pi; 
>> Rp = 1; 
>> As = 15; 

>> X Analog Prototype Specifications: 
>> T - 1; 
2, CmegaP - (2/T)*tan(up/2); 
>> begaS = (2/T)*tan(us/2); 

>> X Analog Prototype Order Calculation: 
>> N =ceil((logiO( (10"(Rp/iO)-i)/(iO^(As/iO)-i)))/(2*logiO((hnegaP/(hneg~))) ; 
>> fprintf('\n*** Butteruorth Filter Order = X2.0f \n',N) 
** Butteruorth Filter Order = 6 
>> CmegaC = ~egaP/((lÔ (Rp/iO)-i)'(1/(2*N))); 7dnalog BY prototype cutoff 
>> YIL = P*atan((hegaC*T)/2); 

>> X Digital Butteruorth Filter Design: 
>> un = un/pi; 
>> Cb,al=butter(N,un) ; 
>> [bo,B,Al = dirZcas(b,a) 

%digital Passband freq in Hz 
%digital Stopband freq in Hz 
%Passband ripple in dB 
%Stopband attenuation in dB 

Bet T=i 
Wreuarp Prototype Passbaud freq 
meuarp Prototype Stopband freq 

YDigital BY cutoff freq 

YDigital Butter cutoff in pi units 
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C - 5.7969~004 
B = 1.oooO 2.0297 1.0300 

1.0000 1.9997 I . O M H )  
1.0000 1.9706 0.9709 

A - 1.OOOO -0.9459 0.2342 
1.0000 -1.0541 0.3753 
1.0000 -1.3143 0.7149 

The system function is 

0.00057969 (1 + z - ' ) ~  
H (2) = (1 - 0.9459%-' + 0.2342~-~) (1 - 1.0541%-' + 0.3753~-~) (1 - 1.31432-' + O.7149~-~) 

which is the same as in Example 8.17. The frequency-domain plots were shown 
in Figure 8.16. 0 

0 EXAMPLE 8.22 Digital Chehyshev-I lowpass filter design: 

>> % Digital F i l t e r  Specifications: 
>> wp = 0.2*pi; 
>> ws = 0 . 3 q i ;  
>> Rp = I; 
>> As = 15; 

>> X Analog Prototype Specifications: 
>> T = I; 
>> OmegaP = (2/T)*tan(wp/2); 
>> (haegaS = (2/T)*tan(ws/2); 

>> % Analog Prototype Order Calculation: 
>> ep = sqrt(lO-(Rp/lO)-l); 
>> A = IO-(As/ZO); 
>> OmegaC = OmegaP; 
>> Omega (haegaS/OmegaP; %Analog Prototype Transition Ratio 
>> g = sqrt(A*A-l)/ep; 
>> N I ceil(logiO(g+sqrt(g*g-l))/loglO(OmegaR+sqrt(~egaR*OmegaR-i))) ; 
>> fprintf  ( '\nee* Chebyshev-I F i l te r  Order = W.Of \n'.N) 
*** Chebyshev-I F i l te r  Order - 
>> % Digital Chebyshev-I F i l t e r  Design: 
>> M = wp/pi; 
>> ~b,al=chebyl(N,Rp.wn) ; 
>> [bo,B,A] = dirlcas(b,a) 
bo = 0.0018 
B = 1.0000 2.0000 1.0000 

1.0000 2.0000 1.0000 
A = 1.0000 -1.4996 0.8482 
I. 0000 -1.5548 0.6493 

Xdigital Passbaud freq i n  Hz 
Xdigital Stopbaud freq i n  Hz 
%Passband ripple in  dB 
%Stopband attenuation in dE 

%Set T=I 
XPrewarp Prototype Passband freq 
Wewarp Prototype Stopband f req  

%Passband Ripple Factor 
%Stopbaud Attenuation Factor 
%Analog Prototype Cutoff freq 

%Analog Prototype Intermediate cal .  

4 

%Digital Passband f req  in p i  units 
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The system function is 

o.ooi8 (1 +2-1)4 
H (2) = (1 - 1.49962-' + 0.8482~-') (1 - 1.5548-' + 0.6493t-') 

which is the same as in Example 8.18. The frequency-domain plots were shown 
in Figure 8.17. 0 

0 EXAMPLE 8.23 Digital Chebyshev-I1 lowpass filter design: 

>> % Digital F i l t e r  Specifications: 
>> up = 0.2*pi; 
>> us - 0.3*pi; 
>> Rp = I; 
>> As = 15; 

>> X Analog Prototype Specifications: 
>> T = I; 
>> OmegaP = (2/T)*tan(vp/2); 
>> OmegaS = (2/T)*tan(ws/2); 

>> % Analog Prototype Order Calculation: 
>> ep - sqrt(lO^(Rp/lO)-l); 
>> A - lO-(As/20); 
>> OmegaC = OmegaP; 
>> Omega - OmegaWGmegaP; 
>> g - sqrt(A*A-l)/ep; 
>> N = ceil(loglO(g+sqrt (g*~l))/logiO(OmegaR+sqrt (hegaR*hegaR-l) 1) ; 
>> fprintf('\n*** Chebyshev-2 F i l t e r  Order = X2.0f \n',N) 
*** Chebysbev-2 F i l t e r  Order = 

>> Digital Chebyshev-I1 F i l t e r  Design: 
>> VII = us/pi; 
>> [b , d =cheby2 (N , A s  .un) ; 
>> [bO,B,Al - dir2cas(b,a) 
bO - 0.1797 
6 - 1.0000 0.6574 1.0000 

1.0000 -1.0671 1.oooO 
A = 1.0000 -0.4183 0.1503 

1.0000 -1.1325 0.7183 

%digi ta l  Passbaud f req  in Hz 
%digi ta l  Stopband f req  in Az 
%Passband r ipple  i n  dB 
'/Stopband attenuation i n  dB 

%Set T = l  
'/fiewarp Prototype Passband f req  
7,F'reuarp Prototype Stopband f req  

'/,Passband Ripple Factor 
%Stopband Attenuation Factor 
%Analog Prototype Cutoff f r e q  
7&nalog Prototype Transition Ratio 
Yhalog Prototype Intermediate cal .  

4 

'%Digital Stopband f req  i n  p i  un i t s  

The system function is 

0.1797 (1 + 0.55742-' + 2-') (1 - 1.06712-' + 2-') 
H (2) = (1 - 0.41831-' + 0.15032-') (1 - 1.13252-' + 0.7183~-') 

which is the same as in Example 8.19. The frequency-domain plots were shown 
in Figure 8.18. 01 
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0 EXAMPLE 8.24 Digital elliptic lowpass filter design: 

>> X Digital Filter Specifications: 
>> up = o.z*pi; 
>> vs = 0.3*pi; 
>> Rp = 1; 
>> As = 15; 

>> X Analog Prototype Specifications: 
>> T = 1; 
>> OmegaF' = (Z/T)*tau(vp/2); 
>> Omegas - (Z/T)*tan(vs/2); 
>> X Analog Elliptic Filter order calculations: 
>> ep = sqrt(lO-(Rp/iO)-l); 
>> A = 10'(As/20) ; 
>> OmegaC = Omega; 
>> k - OmegaF'/OmegaS; 
>> kl = ep/sqrt(A*A-l); 
>> capk = ellipke(ck.'Z l-k.-21); 
>> capkl = ellipke(C(k1 .-2) l-(kl .-2)1); 
>> N = ceil(capk(l)*capkl(2)/(capk(2)*capkl(l))); 
>> fprintf ('\ntt* Elliptic Filter Order = X2.01 \n' ,N) 
*** Elliptic Filter Order = 

Xdigital Passband freq in Hz 
Xdigital Stopbaud freq in Hz 
7.Passband ripple in dB 
XStopband attenuation in dB 

YSet T-1 
Y.Prevarp Prototype Passband freq 
Yfievarp Prototype Stopband freq 

%Passband Ripple Factor 
7Stopband Attenuation Factor 
',!Analog Prototype Cutoff freq 
Y.alog Prototype Transition Ratio; 
',!Analog Prototype Intermediate cal. 

3 

>> X Digital Elliptic Filter Design: 
>> M = -/pi; 
>> b,a] =ellip(N,Rp, As ,vn) ; 
>> b0.8,Al = dirZcas(b,a) 
b0 = 0.1214 
B = 1.0000 -1.4211 1.0000 

1.0000 1.0000 0 
A = 1.0000 -1.4928 0.8612 

1.OOOO -0.6183 0 

Digital Paasband freq In pi units 

The system function is 

0.1214 (1 - 1.4211z-' + z-') (1 + z- ' )  
H ( z )  = 

(1 - 1.49282-' + 0.8612~-') (1 - 0.61832-') 

which is the Same as in Example 8.20. The frequency-domain plots were shown 
in Figure 8.19. 0 

COMPARISON 
OF THREE 
FILTERS 

In our examples we designed the same digital filter using four different 
prototype analog filters. Let us compare their performance. The spec$- 
cations were wp = 0.2x, Rp = 1 dB, w, = 0.3a, and A, = 15 dB. This 
comparison in terms of order N and the minimum stopband attenuations 
is shown in Table 8.1. 
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TABLE 8.1 Compahon of three filters 

Pmtotype Onier N Stopband Att. 

Butterworth 6 15 
Chebyshev-I 4 25 
Elliptic 3 27 

Clearly, the elliptic prototype gives the best design. However, if we 
compare their phase responses, then the elliptic design has the most non- 
linear phase response in the passband. 

FREQUENCY-BAND TRANSFORMATIONS 
I 
I 

In the preceding two sections we designed digital lowpass filters from 
their corresponding analog filters. Certainly, we would l i e  to design other 
types of frequency-selective filters, such as highpass, bandpass, and band- 
stop. This is accomplished by transforming the frequency axis (or band) 
of a lowpass filter so that it behaves as another frequency-selective fil- 
ter. These transformations on the complex variable z are very similar 
to bilinear transformations, and the design equations are algebraic. The 
procedure to design a general frequency-selective filter is to first design 
a dzgital prototype (of fixed bandwidth, say unit bandwidth) lowpass fil- 
ter and then to apply these algebraic transformations. In this section 
we will describe the basic philosophy behind these mappings and illus- 
trate their mechanism through examples. MATLAB provides functions that 
incorporate frequency-band transformation in the s-plane. We will first 
demonstrate the use of the z-plane mapping and then illustrate the use of 
MATLAB functions. Typical specifications for mast commonly used types 
of frequency-selective digital filters are shown in Figure 8.20. 

Let H ~ p ( 2 )  be the given prototype lowpass digital filter, and let H ( z )  
be the desired frequency-selective digital filter. Note that we are using 
two different frequency variables, 2 and z, with HLP and H, respectively. 
Define a mapping of the form 

such that 

To do this, we simply replace 2-' everywhere in HLP by the function 
G(2-l). Given that H~p(2) is a stable and c a d  filter, we also want 
H(z )  to be stable and causal. This imposes the following requirements: 
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FIGURE 8.20 Specifications offrequency-selective filters 

1. G(.)  must be a rational function in z-l so that H ( z )  is imple- 
mentable. 

2. The unit circle of the Z-plane must map onto the unit circle of the 
tplane. 

3. For stable filters, the inside of the unit circle of the 2-plane must 
also map onto the inside of the unit circle of the tplane. 

Let w' and w be the frequency variables of Z and z, respectively-that 
is, Z = eJw'and z = d" on their respective unit circles. Then requirement 
2 above implies that 

\Z-'I = IG(z-')( = (G(e-j")( = 1 

and 
e-jw' = G 3w LG(e-") I ( - .  )IS 

or 
-w' = LG(e-Jw) 
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The general form of the function G( . )  that satisfies the above requirements 
is a rational function of the all-pass type given by 

where l ak l  < 1 for stability and to satisfy requirement 3. 
Now by choosing an appropriate order n and the coefficients { a k } ,  we 

can obtain a variety of mappings. The most widely used transformations 
are given in Table 8.2. We will now illustrate the use of this table for 
designing a highpass digital filter. 

TABLE 8.2 
has cutoff frequency w:) 

h q u e n c y  tmnsfownation fOT digital filters (prototype l0lupass filter 

me of 
hnsfonnation hnsjormation Pammeters 

Highpass 

Bandpass 

Bandstop 

2-l --a z--1 d - 
1 - a%-1 we = cutoff frequency of new filter 

w, = cutoff frequency of new filter 

= - cos [(U: + U c )  /21 
cos [(w: - wc)  /21 

we = lower cutoff frequency 
w,, = upper cutoff frequency 
C Y ~  = -2PK/(K + 1) 
QZ = (K - 1)/(K + 1) 

wt = lower cutoff frequency 
wu = upper cutoff frequency 
a1 = -2P/(K + 1) 
QZ = (K - 1)/(K + 1) 
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0 WAMPLE 8.25 In Example 8.22 we designed a Chebyshev-I lowpass filter with specifications 
= 0.21~, 

w: = 0.3x, 

Rp = 1 dB 

A. = 15 dB 

and determined its system function 
0.001836(1+ 

H L p ( z )  = (1 - 1.49962-1 + 0.84822-2)(1- 1,55482-1 + 0.64932-2) 

Solution 

Design a highpass filter with the above tolerances but with passband beginning 
at up = 0.61~. 

We want to transform the given lowpass filter into a highpass filter such that 
the cutoff frequency u; = 0 . 2 ~  is mapped onto the cutoff frequency up = 0 . 6 ~ .  
From Table 8.2 

Hence 

0.02426(1- z - ~ ) ~  
(1 + 0.5661r' + 0.7657r2)(1 + 1.0416r' + 0.4019z-a) 

- - 

which is the desired filter. The frequency response plots of the lowpass filter 
0 

From the above example it is obvious that to obtain the rational 
function of a new digital filter from the prototype lowpass digital filter, 
we should be able to implement rational function substitutions from Ta- 
ble 8.2. This appears to be a difficult task, but since these are algebraic 
functions, we can use the conv function repetitively for this purpose. The 
following mapping function illustrates this approach. 

function [bz,azI = pPapping(bZ,aZ,Nz,Dz) 
% Frequency band Transformation from 2-domain to z-domain 
7 ....................................................... 
X [bz,azl = Pnapping(bZ,aZ,Nz,Dz) 
% performs: 
x b(z) b(Z)I 

I N(z) x 
x a(z) a(Z)I@Z = ---- 
x D(z) 

and the new highpass filter are shown in Figure 8.21. 

-_--I ---- 

bz = zeros(l,bzord+l); 
for k = 0:bzord 
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FIGURE 8.21 Magnitude response plots for Ezample 8.25 

p h  - c11; 
for 1 = 0:k-1 

end 
pld = Cll; 
for 1 - 0:bzord-k-1 
end 
bz = bz+bZ(k+l)*conv(pln,pld) ; 

pln = conv(pln,Nz); 

pld = conv(pld,Dz); 

end 

az = zeros(1,azordtl); 
for k = 0:azord 

pln = 113; 
for 1 = 0:k-1 

end 
pld = 111; 
for 1 = 0:azord-k-1 

end 

pln - conv(pln.Nz); 
pld = conv(pld,Dz); 
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az = az+aZ(k+l)*conv(pln,pld); 
end 

azl - az(1); az az/azl ;  bz = bz/azl; 

0 EXAMPLE 8.26 Use the mapping function to perform the lowpass-to-highpass transformation 
in Example 8.25. 

SOiUtion First we will design the lowpass digital filter in MATLAB using the bilinear 
transformation procedure and then use the zmapping function. 

>> X Digital Lowpass Filter Specifications: 
>> vplp = 0.2*pi; 
>> wslp = 0.3-i; 
>> Rp = 1; X Passbaud ripple in dB 
>> As = 15; % Stopband attenuation in dB 

>> '4 Analog Prototype Specifications: Inverse mapping for frequencies 
>> T 1; Fs - 1/T; X Set T-1 
>> WlegaP - (S/T)*tan(vplp/Z); 
>> 0negaS = ('2/T)*tan(wslp/2) ; 

>> 
>> [cs,dsl = afd_chbl(OmegaP,OmegaS,Rp,As); 
** Chebyshev-1 Filter Order = 

>> X Bilinear transformation: 
>> hlp,alpl - bilinear(cs,ds,Fs) ; 
>> X Digital Highpass Filter Cutoff frequency: 
>> vphp - 0.6*pi; 
>> X LP-to-HP frequency-band transformation: 
>> alpha = -(cos((wplp+wphp)/2)) /(cos((vplp-uphp)/2)) 
alpha = -0.3820 

>> Nz p -[alpha,lI; Dz = [l,alphal; 

X digital Passbaud freq in Az 
X digital stopband freq in Bz 

X Prewarp Prototype Passband freq 
X Prewarp Prototype Stopband freq 

Analog Chebyshev Prototype Filter Calculation: 

4 

% Passbaud edge frequency 

>> [bhp,ahpl = zmappinp(blp,alp.Nz,Dz) ; 
>> [C.B,Al = dir2cas(bhp,ahp) 
C - 0.0243 
B - 1.0000 -2.0000 l.oo00 

1.0000 -2.0000 1.oOoo 
A = 1.0000 1.0416 0.4019 

1.0000 0.5561 0.764r 
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The system function of the highpass filter is 

DESIGN 
PROCEDUR 

o.om(1- z - ' ) ~  
(1 + 0.56612-' + 0.7647r2)(1 + 1.04162-' + 0.4019~-~) H (2) = 

which is essentially identical to that in Example 8.25. 0 

In Example 8.26 a lowpass prototype digital filter was available to trans- 
form into a highpass filter so that a particular band-edge frequency was 
properly mapped. In practice we have to first design a prototype lowpass 
digital filter whose specifications should be obtained from Specifications 
of other frequency-selective filters as given in Figure 8.20. We will now 
show that the lowpass prototype filter specifications can be obtained from 
the transformation formulas given in Table 8.2. 

Let us use the highpass filter of Example 8.25 as an example. The 
passband-edge frequencies were transformed using the parameter Q = 
-0.38197 in (8.30). What is the stopband-edge frequency of the highpass 
filter, say w,, corresponding to the stopband edge w: = 0 . 3 ~  of the p r e  
totype lowpass filter? This can be answered by (8.30). Since a is fixed for 
the transformation, we set the equation 

E 

This is a transcendental equation whose solution can be obtained itera- 
tively from an initial guess. It can be done using MATLAB, and the solution 
is 

w, = 0.4586~ 

Now in practice we will know the desired highpass frequencies w, and 
up, and we are required to find the prototype lowpass cutoff frequencies 
w: and w;. We can choose the passband frequency w; with a reasonable 
value, say w; = O.~A, and determine a from wp wing the formula from 
Table 8.2. Now w: can be determined (for our highpass filter example) 
from Q and 

2-1 + a z=-- 
1 + az-1 

where Z = ej": and z = or 

(8.31) 

Continuing our highpass filter example, let wp = 0 . 6 ~  and w, = 0.4586~ be 
the band-edge frequencies. Let us choose w; = 0 . 2 ~ .  Then a = -0.38197 
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from (8.30), and from (8.31) 

as expected. Now we can design a digital lowpass filter and transform 
it into a highpass filter using the mapping function to complete our 
design procedure. For designing a highpass Chebyshev-I digital filter, the 
above procedure can be incorporated into a MATLAB function called the 
cheblhpf function shown below. 

function Cb,al - cheblhpf (vp,us,Rp,As) 
X IIR Highpass filter design using Chebyshev-1 prototype 
X function Cb.4 = cheblhpf(vp.us,Rp.As) 
X b = Numerator polynomial of the highpass filter 
X a = Denominator polynomial of the highpass filter 
X 
X 
X 
X 
X 
X Determine the digital lovpass cutoff frequecies: 
vplp - 0.29i; 
alpha = -(cos( (vplp+vp)/2) )/(cos( (uplp-vp)/2) 1 ; 
uslp = angle (- (exp(- j *ws)+alpha)/(l+alpha*erp(-j*ws))) ; 
X 
X Compute Analog lovpass Prototype Specifications: 
T = 1; Fs = i/T; 
OmegaP = (2/T)*tan(vplp/2) ; 
CmegaS = (2/T)*tan(uslp/2) ; 

X Design Analog Chebyshev Prototype Lorpass Filter: 
[cs,ds] - afd_chbl(~egaP,DmeghS,Rp,As); 
X Perform Bilinear transformation to obtain digital lowpass 
Cblp.alp1 = bilinear(cs,ds,Fs); 

X Transform digital lovpass into highpass filter 
Nz = -[alpha, 11 ; Dz = [l ,alpha] ; 
Cb,al = mapping(blp,alp.Nz.Dz) ; 

We will demonstrate this procedure in the following example. 

vp = Passbaud frequency in radians 
us = Stopbaud frequency in radians 
Rp = Passband ripple in dB 
As = Stopband attenuation in dB 

0 EXAMPLE 8.27 Design a highpass digital filter to satis& 

wP = 0.6~, 

W. = 0.4586u, 

& = 1 dB 

A. = 15 dB 

Use the Chebyshev-I prototype. 
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sdvtion MATLAB Script 
>> % Digital Highpass Filter Specifications: 
>> vp = 0.6*pi; 
>> w 8  = 0.4586*pi; 
>> Rp = 1; 
>> As = 15; 

>> [ b , d  = cheblhpf(vp,ws,Rp,As); 
>> CC,B,Al = dir2cas(b,a) 
C = 0.0243 
B - 1.0000 -2.0000 1.0000 

1.0000 -2.0000 1.0000 
A = 1.0000 1.0416 0.4019 

1.0000 0.5561 0.7647 

% digital Passband freq in Hz 
% digital Stopband freq in Hz 
‘/, Passband ripple i n  dB 
% Stopband attenuation in dB 

The system function is 

0.0243(1- 2 - l ) l  

(1 + 0,56612-’ + 0.7647~-~)(1+ 1.04162-’ + 0.4019~-~) H (2)  = 

which is identical to that in Example 8.26. 0 

The above highpass filter design procedure csn be easily extended to 
other frequency-selective filters using the transformation functions in Ta- 
ble 8.2. These design procedures are explored in Problems 8.18 through 
8.22. We now describe MATLAB’S filter design functions for designing ar- 
bitrary frequency-selective filters. 

MATLAB 
IMPLEMEN- 
TATION 

In the preceding section we discussed four MATLAB functions to design 
digital lowpass filters. These same functions can also be used to design 
highpass, bandpass, and bandstop filters. The frequency-band transforma- 
tions in these functions are done in the s-plane, that is, they use Approach- 
1 discussed on page 301. For the purpose of illustration we will use the 
function butter. It can be used with the following variations in its input 
arguments. 

0 [b,a] BUTTER(N,un. ’high’) designs an Nth-order highpass fil- 
ter with digital 3-dB cutoff frequency m in units of A. 

0 [b.d = BUTTF.R(N,wn,)designs anorder 2N bandpass filter if unis 
a two-element vector, wn= [HI w21, with 3-dB passband ul < w < u2 in 
units of A. 

0 [b,aJ - BUTTER(N,wn,’stop’) is an order 2N bandstop filter if 
wn- [ul u27with 3-dB stopband ul < u < u2 in units of n. 

To design any frequency-selective Butterworth filter, we need to know 
the order N and the 3-dB cutoff frequency vector wn. In this chapter we 
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described how to determine these parameters for lowpass filters. However, 
these calculations are more complicated for bandpass and bandstop filters. 
In their Signal Processing toolbox, MATLAB provides a function called 
buttord to compute these parameters. Given the specifications, up, w., 
4, and A,, this function determines the necessary parameters. Its syntax 
is 

CN,vnl = buttord(wp,ws ,Rp,As) 

The parameters vp and ws have some restrictions, depending on the type 
of filter: 

0 for lowpass filters vp < ws, 
0 for highpass filters vp > us, 
0 for bandpass filters vp and ws are two-element vectors, vp=[vpl, 

0 for bandstop filters vpl < vsl < vs2 < vp2. 

Now using the buttord function in conjunction with the butter func- 
tion, we can design any Butterworth IIR filter. Similar discussions apply 
for chebyl, cheby2, and e l l i p  functions with appropriate modifications. 
We illustrate the use of these functions through the following examples. 

vp21 and ws=[ws~,vs2], such that us1 < wpl < vp2 < ws2, and 

0 EXAMPLE 8.28 In this example we will design a Chebyshev-I highpass filter whose specifications 
were given in Example 8.27. 

wution MATLAB Script 
>> X Digital Filter Specifications: 
>> vs = 0.4586*pi; 
>> vp = 0.6*pi; 
>> Rp - I; 
>> As - 15; 
>> % Calculations of Chebyshev-I Filter Parameters: 
>> [N,wiJ = cheblord(wp/pi,vs/pi,Rp,As); 

>> %Digital Chebyshev-I Highpass Filter Design: 
>> Cb,al = chebyl(N,Rp,vn,’high’); 

>> X Cascade Form Realization: 
>> [bO,B,A] = dir2cas(b,a) 
bO - 0.0243 
B 0 1.0000 -1.9991 0.9991 

1.0000 -2.0009 1.OOO9 
A = 1.0000 1.0416 0.4019 

1.0000 0.5561 0.7647 

X Type: Chebyshev-I highpass 
% Dig. stopband edge frequency 
X Dig. passband edge frequency 
X Passband ripple in dB 
X Stopband attenuation in dB 
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The w a d e  form system function 

0.0243(1- 
(1 + 0.5661~~ + 0.7647r2)(1 i- 1.0416r1 + 0.4019~-~) H ( t )  = 

is identical to the filter designed in Example 8.27, which demonstrates that 
the two approaches described on page 301 are identical. The frequency-domain 

0 plots are shown in Figure 8.22. 

0 EXAMPLE 8.29 In this example we will design an elliptic bandpass filter whose specifications 
are given in the following MATLAB script: 

>> X Digital Filter Specifications: 
>> ws - [O.B*pi 0.75*piI; 
>> up = [O.Q*pi 0.6*pil; 
>> Rp - 1; 
>> As = 40; 

>> X Calculations of Elliptic Filter Parameters: 
>> “,an3 - ellipord(vp/pi,vs/pi.Rp,As); 
>> X Digital Elliptic Bandpass Filter Design: 
>> 1b.d = ellip(N,Rp,As,vn); 

X Type: Elliptic Bandpass 
X Dig. stopband edge frequency 
X Dig. passband edge frequency 
X Passband ripple in dB 
X Stopband attenuation in dB 

Maanitude Reswnse 

0.8913 

o . i m  lm 0.46 0.6 1 

Digital frequency in pl unlts 
OO 

Magnitude in d6 ::r\ 
0.46 0.6 1 

frequency in pi units 
3oo 

Phase Reswnse 

$ 0.5 
- - ; ”. 
t 
9-0.5 

-1 
1 0 0.46 0.6 

frequency in pi unb 
GUID MY 

a 4  
8 2  l/!!!4 0 0 0.46 0.6 1 

frequency in pi units 

FIGURE 8.22 Digital Chebyshev-I highpass filter in Example 8.28 
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>> Y. Cascade Form Realization: 
>> Cbo,B,Al = dir2cas(b,a) 
W = 0.0197 
B - 1.oooO 1.5066 1.0000 

1.oooO 0.9268 1.0000 
1.OOOO -0.9268 1.0000 
1.OOOO -1.5066 1.0000 

A - 1.OOOO 0.5963 0.9399 
1.0000 0.2774 0.7929 
1.0000 -0.2774 0.7929 
1.OOOO -0,5963 0.9399 

Note that the designed filter is a 10th-order filter. The frequency-domain plots 
0 

Finally, we will design a Chebyshev-I1 bandstop filter whose specifications are 
given in the following MATLAB script. 

are shown in Figure 8.23. 

0 EXAMPLE 8.30 

>> X Digital Filter Specifications: X Type: Chebyshev-I1 Bandstop 
>> us = 10.4*pi 0.7qiJ; X Dig. stopband edge frequency 
>> up = E0.2s*pi 0.8*piI; X Dig. passband edge frequency 
>> Rp = 1; X Passband ripple in dB 
>> As = 40; X Stopband attenuation in dB 

0.8913 

'0 'E frequency 0.30.4 in 0.6 pi units 0.75 1 

Magnitude in dB 

40 

0 0.30.4 0.6 0.75 1 
hesuencyhpiunils 

. .  

Grwp Delay 

t" TlIl 10 0 0 0.30.4 0.6 0.75 1 

freqwccy in pi units 

FIGURE 8.23 Digital elliptic bandpass filter an Ezampk 8.29 
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>> X Calculations of Chebyshev-I1 Filter Parameters: 
>> C N , d  = cheb2ord(vp/pi,us/pi,Rp,As); 

>> X Digital Chebyshev-I1 Bandstop Filter Design: 
>> Cb,d = cheby2(N,As,us/pi,'stop'); 

>> X Cascade Form Realization: 
>> Zba,B,Al - dir2cas(b,a) 
b0 = 0.1558 
B - 1.0000 1.1456 1.0000 

1.ooOO 0.8879 1.0000 
1.0000 0.3511 1.0000 
1.0000 -0.2434 1.0000 
1.0000 -0.5768 1.0000 

A = 1.0000 1.3041 0.8031 
1.0000 0.8901 0.4614 
1.oooO 0.2132 0.2145 
1.0000 -0.4713 0.3916 
1.0000 -0.8936 0.7602 

This is also a 10th-order filter. The frequency domain plots are shown in Figure 
8.24. 0 

0.8913 

' 0  'a Digilal 0.25 frequency 0.4 in 0.70.8 pi units 1 

Maenihrde in d6 

-40 Om 0 0.25 0.4 0.70.8 1 

D@al freqwncy in pi units 

FIGURE 0.24 Digital Chebyshev-11 bandstop filter in Example 8.90 

362 Chapter 8 IIR FILTER D!%N 



COMPARISON OF FIR VS. I IR FILTERS 

So far we have seen many techniques for designing both FIR and IIR 
filters. In practice one wonders about which filter (FIR or IIR) should be 
chosen for a given application and which method should be used to design 
it. Because these design techniques involve different methodologies, it is 
difficult to compare them. However, some meaningful comparisons can be 
attempted if we focus on the minimax optimal (or equiripple) filters. In the 
case of FIR filters these optimal filters are the equiripple filters designed 
via the ParbMcClellan algorithm (or Fkmez Exchange Algorithm), while 
in the case of IIR filters these are the elliptic filters. 

One basis of comparison is the number of multiplications required to 
compute one output sample in the standard realization of these filters. For 
FIR filters the standard realization is the linear-phase direct form, while 
for elliptic filters cascade forms are widely used. Let M be the length of a 
linear phase FIR filter (assume M odd). Then we need 

- N _  M + l  - for large^ 
2 

multiplications per output sample. Let N (assume N even) be the order 
of an elliptic filter with the cascade form realization. Then there are N / 2  
second-order sections, each requiring 3 multiplications (in the most effi- 
cient implementation). There are an additional three multiplications in 
the overall structure for a total of 

N 3N 3- + 3 N - 
2 2 

(for large N )  

multiplications per output sample. 
Now if we assume that each filter meets exactly the same specifi- 

cations: (e.g., w,, w,, 61 (or passband ripple Rp) ,  and 62 (or stopband 
attenuation As) for a lowpass filter), then these two filters are equivalent 
if 

M + l  3 N + 3  M 1 -- - - ==+ - = 3 +  - N 3 for large N 
2 2 N N 

This means that if the ratio M / N  = 3, then two filters are roughly effi- 
cient. However, an equiripple FIR filter is more efficient if M / N  < 3, or 
an elliptic IIR filter is more efficient if M / N  > 3. 

It has been shown experimentally that 

0 for wp 2 0.3, M / N  2 3  for all 61, 62, N 
0 for N 2 10, M / N  2 3 for all 61, 6 2 ,  N 
0 for large N ,  M / N  N in 100’s 

Comparison of FIR vs. IIR Filters 363 



This shows that for most applications IIR elliptic filters are dqirable from 
the computational point of view. The most favorable conditions for FIR 
filters are 

0 large values of 61, 
0 small values of 62, and 

large transition width. 

firtherrnore, if we take into account the phase equalizers (which are 
all-pass filters) connected in cascade with elliptic filters that are needed for 
linear-phase characteristics, then FIR equiripple filter designs look good 
because of their exact linear-phase characteristics. 

PROBLEMS 
I 
.I 

P8.1 

P8.2 

P8.3 

P8.4 

P8.5 

Design an analog Butterworth lowpass filter that has a I-dB or better ripple at 30 rad/sec 
and at least 30 dB of attenuation at 40 rad/sec. Determine the system function in a cascade 
form. Plot the magnitude response, the log-magnitude respopse in dB, the phase response, 
and the impulse response of the filter. 
Design a lowpass analog elliptic filter with the following characteristics: 

an acceptable passband ripple of 1 dB, 
passband cutoff frequency of 10 rad/sec, and 

0 stopband attenuation of 40 dB or greater beyond 15 rad/sec. 

Determine the system function in a rational function form. Plot the magnitude response, the 
log-magnitude response in dB, the phase response, and the impulse response of the filter. 
A signal ia (t) contains two frequencies, 100 He and 130 Hz. We want to suppress the 
130-H~ component to 50-dB attenuation while passing the 100-Hz component with less than 
2dB attenuation. Design a minimum-order Chebyshev-I analog filter to perform this 
filtering operation. Plot the log-magnitude response and verify the design. 
Design an analog Chebyshev-I1 lowpass filter that has a 0.5 dB or better ripple at 250 Hz 
and at least 45 dB of attenuation at 300 Hz. Plot the magnitude response, the 
log-magnitude response in dB, the phase response, and the impulse response of the filter. 
Write a MATLAB function to design analog lowpass filters. The format of this function 
should be 

function [b, al =afd(type ,Fp, Fa ,Rp,As) 
i! 
i! function Cb ,a1 =afd(type .Fp ,Fs ,Rp,As) 
% Designs analog loupass f i l t e r s  
% type = 'butter' o r  'chebyl' or 'cheby2' or ' e l l ip '  
% Fp = passband cutoff in  Hz 
Y. Fs = stopband cutoff i n  Hz 
i! Rp - passband ripple in dB 
% A s  = stopband attenuation i n  dB 
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Use the aid-butt, afd-chbl, afd-chb2, and afd-elip functions developed in this chapter. 
Check your function on specifications given in Problems 8.1 through 8.4. 
Design a lowpass digital filter to be used in a structure P8.6 

to satisfy the following requirements: 

a sampling rate of 8000 sam/sec, 
0 passband edge of 1500 Hz with ripple of 3dB, 
a stopband edge of 2000 Hz with attenuation of 40 dB, 
0 equiripple passband but monotone stopband, and 
0 imp& invariance method. 

a. Choose T = 1 in the impulse invariance method and determine the system function H ( z )  
in parallel form. Plot the log-magnitude response in dB and the impulse response h (n). 
b. Choase T = 1/8000 in the impulse invariance method and determine the system function 
ha ( 8 )  in parallel form. Plot the log-magnitude response in dB and the impulse response 
h(n).  Compare this design with the above one and comment on the effect of T on the 
impulse invariance design. 
Design a Butterworth digital lowpass filter to satisfy these specifications: P8.7 

passband edge: 0.4?r, R, = 0.5 dB 

stopband edge: 0.6?r, As = 50 dB 

Use the impulse invariance method with T = 2. Determine the system function in the 
rational form and plot the log-magnitude response in dB. Plot the impulse response h (n) 
and the impulse response ha (t) of the analog prototype and compare their shapes. 
Write a MATLAB function to design digital lowpass filters based on the impulse invariance 
transformation. The format of this function should be 

function [b, a] =dlpfd-ii(type .vp, ws ,Rp, As, T) 
% 
% function [b , a1 =dlpf d-ii  (type ,vp,vs ,Rp , As ,T) 
X 
% type = 'butter '  or 'chebyl' 
X 
% 
% 
% 
% T = sampling interval 

Use the afd function developed in Problem 8.5. Check your function on specifications given 
in Problems 8.6 and 8.7. 
In this problem we will develop a technique called the step rnwariance transformation. In 
this technique the step response of an analog prototype filter is preserved in the resulting 
digital filter; that is, if 5. (t) is the step response of the prototype and if [ (n) is the step 
response of the digital filter, then 

P8.8 

Designs d i g i t a l  lovpass f i l t e r s  using impulse invariance 

vp = passband cutoff i n  Hz 
vs = stopband cutoff i n  Hz 
Rp = passband ripple i n  dB 
As = stopband attenuation i n  dB 

P8.9 

< (n) = &, (1 = nT) , T : sampling interval 
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Note that the frequency-domain quantities are related by 

A Ba (s) = L [& (t)] = Ha (s) /s 

and 

Hence the step invariance transformation steps are as follows: Given Ha (s), 

Divide Ha (s) by s to obtain Za (s). 
Find residues {Rk} and poles { p s }  of 2, (5 ) .  
Transform analog poles ( p k }  into digital poles {epkT}, where T is arbitrary. 
Determine Z(z) from residues { R k }  and poles {epkT}. 
Determine H ( 2 )  by multiplying S (2) by (1 - 2-l). 

Use the above procedure to develop a MATLAEI function to implement the step invariance 
transformation. The format of this function should be 

function Cb,d =stp-invr(c ,d, T) 

% Step Invariance Transformation from Analog to Digital Filter 
X Cb,d =stp-invr(c,d,T) 
X b = Numerator polynomial in ~ ~ ( - 1 )  of the digital filter 
Y. a = Denominator polynomial in z-(-l) of the digital filter 
1: c = Numerator polynomial in s of the analog filter 
X d = Denominator polynomial in s of the analog filter 
‘x T - Sampling (transformation) parameter 

P8.10 Design the lowpass Butterworth digital filter of Problem 8.7 using the step invariance 
method. Plot the log-magnitude response in dB and compare it with that in Problem 8.7. 
Plot the step response [ (n) and the impulse response &, (t) of the analog prototype and 
compare their shapes. 
Consider the design of the lowpass Butterworth filter of Problem 8.7. 
a. Use the bilinear transformation technique outlined in this chapter and the bilinear 
function. Plot the log-magnitude response in dB. Compare the impulse responses of the 
analog prototype and the digital filter. 
b. Use the butter function and compare this design with the above one. 

P8.12 Following the procedure used in this chapter, develop the following MATLAB functions to 
design FIR filters via the Kaiser window technique. These functions should check for the 
valid band-edge frequencies and restrict the filter length to 255. 
a. Lowpass filter: The format should be 

function Ch.MI = kai-lpf (vp,ws,As); 
% [h,M] - kai-lpf(vp,ws.As); 
% Low-Pass FIR filter design using Kaiser window 

P8.11 

I 

% h = Impulse response of length M of the designed filter 
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1: M - Length of h which is an odd number 
X up - Pass-band edge i n  radians (0  < up < vs < pi) 
X ws - Stop-band edge in radians (0  < up < vs < pi) 
X A s  - Stop-band attenuation i n  dB (As > 0 )  

b. Highpass filter: The format should be 

function [h,Ml = kai-hpf (ws.up,As) ; 
% Ch,M - kai-hpf(ws,vp,As); 
X HighF’ass FIR f i l t e r  design using Kaiser window 
X 
% h = Impulse response of length M of the designed f i l t e r  
% M - Length of h which is an odd number 
% w8 = Stop-band edge in radians (0 < vp < vs < pi) 
% up = Pass-band edge in radians (0  < up < vs < pi) 
Y. A s  = Stop-band attenuation i n  dB (As > 0 )  

c. Bandpass filter: The format should be 

function h,Ml = kai-bpf (wsi,vpt,up2,ws2,As); 
X [h,Ml - kai-bpf (wsi,wpl,up2,ws2.As); 
Y. Band-Pass FIR f i l t e r  design using Kaiser window 
x 

h = Impulse response of length M of the designed f i l t e r  
% I4 = Lengtb of h which is an odd number 
X wsi = Lower stop-band edge i n  radians 
X up1 = Lower pass-band edge i n  radians 
Y. up2 = Upper pass-baad edge i n  radians 
X us2 = Upper stop-band edge i n  radians 
X 0 < wsi < up1 < up2 < vs2< p i  
X A s  = Stop-band attenuation in  dB (As > 0 )  

d. Bandstop filter: The format should be 

function [h,Ml kai-bsf (vpl,wsl,vs2,vp2,As) ; 
X b,MJ - kai-bsf (upl, wsl, ws2,vp2,As); 
X Band-Pass FIR f i l t e r  design using Kaiser window 
X 
X h = Impulse response of length M of the designed f i l t e r  
X M Length of h which is an odd number 
X up1 = Lower stop-band edge i n  radians 
% wsi = Lover pass-band edge i n  radians 
X us2 = Upper pass-band edge i n  radians 
1: up2 = Upper stop-band edge in radians 
X 0 < up1 < us1 < us2 < vp2 < p i  
X As = Stop-band attenuation i n  dB ( A s  > 0 )  

You can now develop similar functions for other windows discussed in this chapter. 
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P8.13 Design the analog Chebyshev-I filter of Problem 8.6 using the bilinear tramformation 
method. Compare the two designs. 

P8.14 Design a digital lowpass filter using elliptic prototype to satisfy these requirements: 

passbandedge: 0.4rr, R,,=ldB 

stopband edge: 0.5x, As = 60 dB 

Use the bilinear as well as the e l l i p  function and compare your designs. 
P8.15 Design a digital lowpas filter to satisfy these specifications: 

pasband edge: 0.3n, & =0.5 dl3 

stopband edge: 0.4r, As = 50 dB 

a. Use the butter f u d i n  and determine the order N and the actual minimum stopband 
attenuation in dB. 
b. Use the chebyl function and determine the order N and the actual minimum stopband 
attenuation in dB. 
c. Use the cheby2 function and determine the order N and the actual minimum stopband 
attenuation in dB. 
d. Use the e l l i p  function and determiie the order N and the actual minimum stopband 
attenuation in dB. 
e. Compare the orders, the d u a l  minimum stopband attenuatoos, and the group delays in 
each of the above designs. 

P8.16 Write a MATLAB function to determine the lowpsss prototype digital filter frequencies from 
a highpass digital filter's specifications using the procedure outlined in this chapter. The 
format of this function should be 

function CwpLP. wsLP,alphd = hp21pfre(wphp.~shp) 
Y. Band-edge frequency conversion from highpass t o  lowpass d ig i t a l  f i l t e r  
X CipLP,vsLP.dl = hp2lpfre(~php,wshp) 
% wpLP = passband egde fo r  the  l O V p a S 8  prototgpe 
X vsLP = stopband egde fo r  the lowpass prototype 
% alpha = lowpass t o  highpass transformation parameter 
X wphp = passband egde fo r  the highpfus 
X wshp - passband egde fo r  the highpass 

Using this function, develop a MATLAB function to design a highpass digital filter using the 
bilinear transformation. The format of this function should be 

function b,d = dhpfd,bl(t~,up.v8,Rp.~s) 
Y. IIR Highpass f i l t e r  design using bilinear transformation 
X Ib,d = dhpfd_bl(tJrp~,wp,ws,Rp,As) 

X 
% 
X 
X 

type = 'butter' or  'chebyl' o r  'chevy2' or ' e l l ip '  
b = Numerator polynomial of the  highpass f i l t e r  
a - Denominator polynomial of the highpass f i l t e r  
up = Passband frequency in radians 
ws = Stopband frequency in radiaus (vp < vs) 
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X 
X 

Verify your function using the specifications in Example 8.27. 
PS.17 Design a highpass filter to satisfy these specifications: 

Rp = Passband ripple in dB 
As - Stopband attenuation in dE 

stopband edge: 0.4n, A, = 60 dI3 

passband edge: O.&, Rp = 0.5 dB 

a. Use the dhpfd-bl function of Problem 8.16 and the elliptic prototype to design this filter. 
Plot the log-magnitude response in dB of the designed filter. 
b. Use the ellip function for design and plot the log-magnitude response in dB. Compare 
these two designs. 

P8.18 Write a MATLAB function to deternine the lonpsss prototype digital filter frequendes from 
an arbitrary lowpass digital filter's specifications using the functions given in 'Jkbk 8.2 and 
the procedure outlined for highpas filters. The format of this function should be 

function lupW, WSLP , alpha3 = lp2lpf re (uplp .uslp) 
X Band-edge frequency conversion from lowpags to lowpass digital filter 
% CapLp.wsLP.al - Ip2lpfre(uplp,wslp) 
X vpLP = passband egde for the loupass prototype 
Y. VSLP = stopband egde for the lowpass prototype 
Y. alpha = lowpass to highpass transformation parameter 
X wplp = passband egde for the lowpass 
X wsp = passband egde for the loupass 

Using this function, develop a MATLAB fonction to design a bandp86s filter from 8 

prototype lowpass digital filter using the bilinear transformation. The format of this 
function should be 

function Cb.d - dbpftLbl(type,wp,ws ,Rp,As) 
% IIR bandpass filter design using.bilinear transformation 
X D,d = dbpfd_bl(type.up.ws.Rp,As) 
Y. type = 'butter' or 'chebyl' or 'chevy2' or 'ellip' 
Y, b = Numerator polynomial of the bandpass filter 
X a = Denominator polynomial of the bandpaas filter 
X up Passband frequency vector [wp-lover, rrp-apper] in radians 
X us = Stopband frequency vector [wp-lower, up-upperI in radians 
Y, Rp = Passband ripple in dB 
X As = Stopbaud attenuation in dB 

Verify your function using the designs in Problem 8.15. 
P8.19 Design a bandpass digital filter using the Cheby2 function. The specifications are 

lower stopband edge: 0.3~ 
upper stopband edge: 0 . 6 ~  

AS=50dB 

lower passband edge: 0 . 4 ~  
upper passband edge: 0 . k  

Rp = 0.5 dB 

Plot the impulse response and the log-magnitude response in dB of the designed filter. 
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P8.20 Write a MATLAB function to determine the lowpas prototype digital filter frequencies from 
a bandpass digital filter's specifications using the functions given in Table 8.2 and the 
procedure outlined for highpass filters. The format of this function should be 

f m c t  ion [VPLp, VSU, alphal = bp2lpf re (wpbp , usblp) 
X Band-edge frequency conversion from bandpass to lovpass digital filter 
X CvpLP,usLP,al = bp2lpfre(vpbp,vsbp) 
X 
X 
X alpha - lovpass to highpass transformation parameter 
X 
% 

Using this function, develop a MATLAB function to design a bandpass filter from a 
prototype lowpass digital filter using the bilinear transformation. The format of this 
function should be 

upLP = passband egde for the lovpass prototype 
usLP = stopband egde for the lovpass prototype 

vpbp = passband egde frequency vector [up-lower, up-upper] for the bandpass 
vsbp = passband egde frequency vector [us-lover, us-upper] for the bandpass 

function D,al = dbpfd-bl(typ,up.vs,Rp.As) 
% IIR bandpass filter design using bilinear transformation 
% b,d - dbpfd-bl(type,up,vs,Rp,As) 
X type = 'butter' or 'chebyl' or 'chevy2' or 'ellip' 
X b = Numerator polynomial of the bandpass filter 
X a = Denominator polynomial of the bandpass filter 
X 
X 
X 
X 

vp = Passband frequency vector [vp-lower, vp-upper] in radians 
us = Stopband frequency vector [vp-lover, up-upper] in radians 
Rp = Passband ripple in dB 
As = Stopbaud attenuation in dB 

Verify your function using the design in Problem 8.19. 
P8.21 We wish to use the Chebyshev-I prototype to design a bandpass IIR digital filter that meets 

the following specifications: 

0.95 I IH (2")l I 1.05, 0 5 (wI 5 0 . 2 5 ~  

0 I IH (2")l _< 0.01, 0 . 3 5 ~  I 1w( 5 0 . 6 5 ~  

0.95 5 IH (P') 1 5 1.05, 0 .75~  I b) 5 T 

Use the chebyl function and determine the system function H (2)  of such a filter. Provide a 
plot containing subplots of the log-magnitude response in dB and the impulse response. 

P8.22 Write a MATLAB function to determine the lowpass prototype digital filter frequencies from 
a bandstop digital filter's specifications using the functions given in Table 8.2 and the 
procedure outlined for highpass filters. The format of this function should be 

function [wpLP,vsLP,alpha] = bs2lpfre(vpbp,wsblp) 
X Band-edge frequency conversion from bandstop to lovpass digital filter 
% [vpLP,vsLP,al = bs2lpfre(vpbp,vsbp) 
% vptp = passband egde for the lowpaas prototype 
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X VSLP = stopband egde for the lovpass prototype 
X alpha = lovpass to highpass transformation parameter 
'1. vpbp - passband egde frequency vector [vp-lover, vp-upper] for the bandstop 
X vsbp = passband egde frequency vector [vs-lover, us-upper] for the bandstop 

Using this function, develop a MATLAB function to design a bandstop filter from a 
prototype lowpass digital filter using the bilinear transformation. The format of thjs 
function should be 

function Cb,a] = dbsf d-bl (type,vp,vs .Rp , As) 
% IIR bandstop filter design using bilinear transformation 
X [b,a] = dbsfd-bl(type,vp,vs,Rp,As) 
X type = 'butter' or 'chebyl' or 'chevyZ' or 'ellip' 
X b - Numerator polynomial of the bandstop filter 
X a = Denominator polynomial of the bandstop filter 
X vp = Passband frequency vector Ivp-lover, vp-upper] i n  radians 
X vs = Stopband frequency vector [vp-lover, vp-upper] i n  radians 
X Rp = Passband ripple in dEi 
X As = Stopband attenuation in dB 

Verify your function using the design in Problem 8.21. 
P8.23 An analog signal 

x,, (t) = 5 sin (2oo?rt) + 2 cos (3OChrt) 

is to be processed by a 

xn ( t )  4 C-9/DI- JH(t!l --m 4 Ya ( t )  

system in which the sampling frequency is loo0 sam/sec. 
a. Design a minimum-order IIR digital filter that will pass the 150-Hz component with 
attenuation of less than 1 dB and suppress the l W H z  component to a t  least 40 dB. The 
filter should have a monotone passband and an equiripple stopband. Determine the system 
function in rational function form and plot the log-magnitude response. 
b. Generate 300 samples (sampled at lo00 sam/sec) of the above signal z. (t) and process 
through the designed filter to obtain the output sequence. Interpolate this sequence (using 
any one of the interpolating techniques discussed in Chapter 3) to obtain y, (t). Plot the 
input and the output signals and comment on your results. 

P8.24 Using the bilinear transformation method, design a tenth-order elliptic bandstop filter to  
remove the digital frequency w = 0 . 4 4 ~  with bandwidth of 0.08~. Choose a reasonable value 
for the stopband attenuation. Plot the magnitude response. Generate 201 samples of the 
sequence 

z (n) = sin [0.44m] , n = 0,. . . ,200 

and process thorough the bandstop filter. Comment on your results. 
P8.25 Design a digital highpass filter H ( z )  t o  be used in a 

x . ( t )  -+ n n u  A/D -+ H ( z )  -+ D/A -t y,(t) 

structure to  satisfy the following requirements 
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- sampling rate of 10 Khz, - pasband edge of 2 Khz with ripple of 3dB, - monotone passband and stopband, and - impulse invariance transformation method. 

a. Plot magnitude response of the overall analog filter over the [O, 5Kh] interval. 
b. Plot the magnitude response of the digital lowpass prototype. 
c. Plot the magnitude response of the analog lowpass prototype. 
d. What limitations must be placed on the input signals 80 that the above structure truly 
acts like a highpass filter to them? 

stopband edge of 1.5 Khz with attenustion of 40 dB, 
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APPLICATIONS IN 

FILTERING 
ADAPTIVE 

In Chapters 7 and 8 we described methods for designing FIR and IIR digi- 
tal filters to satisfy some desired specifications. Our goal was to determine 
the coefficients of the digital filter that met the desired specifications. 

In contrast to the filter design techniques considered in those two 
chapters, there are many dietal signal processing applications in which 
the filter coefficients cannot be specified a priori. For example, let us con- 
sider a high-speed modem that is designed to transmit data over telephone 
channels. Such a modem employs a filter called a channel equalizer to com- 
pensate for the channel distortion. The modem must effectively transmit 
data through communication channels that have different frequency r b  
sponse characteristics and hence result in different distortion effects. The 
only way in which this is possible is if the channel equalizer has adjustable 
coeficients that can be optimized to minimize some measure of the dis- 
tortion, on the basis of measurements performed on the characteristics of 
the channel. Such a filter with adjustable parameters is called an adaptive 
filter, in this case an adaptive equalizer. 

Numerous applications of adaptive filters have been described in the 
literature. Some of the more noteworthy applications include (1) adaptive 
antenna systems, in which adaptive filters are used for beam steering and 
for providing nulls in the beam pattern to remove undesired interference 
[23]; (2) digital communication receivers, in which adaptive filters are 
used to provide equalization of intersymbol interference and for channel 
identification 1181; (3) adaptive noise canceling techniques, in which an 



adaptive filter is used to estimate and eliminate a noise component in 
some desired signal [22, 10, 141; and (4) system modeling, in which an 
adaptive filter is used as a model to estimate the characteristics of an 
unknown system. These are just a few of the best known examples on the 
use of adaptive filters. 

Although both IIR and FIR filters have been considered for adap  
tive filtering, the FIR filter is by far the most practical and widely used. 
The reason for this preference is quite simple. The FIR filter has only 
adjustable zeros, and hence it is free of stability problems associated with 
adaptive IIR filters that have adjustable poles as well as zeros. We should 
not conclude, however, that adaptive FIR filters are always stable. On the 
contrary, the stability of the filter depends critically on the algorithm for 
adjusting its coefficients. 

Of the various FIR filter structures that we may use, the direct form 
and the lattice form are the ones often used in adaptive filtering appli- 
cations. The direct form FIR filter structure with adjustable coefficients 
h(O), h(l), . . . , h(N - 1) is illustrated in Figure 9.1. On the other hand, 
the adjustable parameters in an FIR lattice StNCtWe are the reflection 
coefficients K,  shown in Figure 6.18. 

An important consideration in the use of an adaptive filter is the 
criterion for optimizing the adjustable filter parameters. The criterion 
must not only provide a meaningful measure of filter performance, but it 
must also result in a practically realizable algorithm. 

One criterion that provides a good measure of performance in adap 
tive filtering applications is the least-squares criterion, and its counterpart 
in a statistical formulation of the problem, namely, the mean-squareerror 
(MSE) criterion. The least squares (and MSE) criterion results in a qua- 
dratic performance index as a function of the filter coefficients, and hence 
it possesses a single minimum. The resulting algorithms for adjusting the 
coeEcients of the filter are relatively easy to implement. 

Input 

output r 
Coefficient adiustment 

FIGURE 9.1 Dimt fom adaptive FIR filter 
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In this chapter we describe a basic algorithm, d l e d  the least-mean- 
square (LMS) algorithm, to adaptively adjust the coefficients of an FIR 
filter. The adaptive filter structure that will be implemented is the di- 
rect form FIR filter structure with adjustable coefficients h(O), h(l), . . . , 
h(N - I), as illustrated in Figure 9.1. After we describe the LMS algo- 
rithm, we apply it to several practical systems in which adaptive filters 
are employed. 

LMS ALGORITHM FOR COEFFICIENT ADJUSTMENT 

Suppose we have an FIR filter with adjustable coefficients {h(k),O 5 k 5 
N - I}. Let {z(n)} denote the input sequence to the filter, and let the 
corresponding output be {y(n)}, where 

N-1 

y ( n ) =  C h ( k ) z ( n - k ) ,  n=O, ..., M (9.1) 
k=O 

Suppose that we also have a desired sequence {d(n)}  with which we can 
compare the FIR filter output. Then we can form the error sequence 
{e(n)} by taking the difference between d(n) and y(n). That is, 

e(n)  = d(n) - y(n), n = 0 , .  . . , M (9.2) 

The coefficients of the FIR filter will be selected to minimize the sum of 
squared errors. Thus we have 

where, by definition, 

n=O 

M 

rz2 (k) = C z ( n ) z ( n  + k), 0 5 k 5 N - 1 (9.5) 
n=O 
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We call {r&(k)} the crosscorrelation between the desired output sequence 
{ d ( n ) }  and the input sequence {~(n)}, and {rzz(k)}  is the autocorrelation 
sequence of {~(n)}.  

The sum of squared errors E is a quadratic function of the FIR filter 
coefficients. Consequently, the minimization of E with respect to the filter 
coefficients { h ( k ) }  results in a set of linear equations. By differentiating 
E with respect to each of the filter coefficients, we obtain 

and, hence 

N - 1  C h ( k ) r z z ( k -  m) = r&(m),  o s m 5 N - 1 (9.7) 

This is the set of linear equations that yield the optimum filter coefficients. 
To solve the set of linear equations directly, we must first compute 

the autocorrelation sequence {rzz (k) }  of the input signal and the cross- 
correlation sequence {r&(k)} between the desired sequence {d(n)} and 
the input sequence (z (n)}. 

The LMS algorithm provides an alternative computational method for 
determining the optimum filter coefficients { h ( k ) }  without explicitly com- 
puting the correlation sequences {rzz (k) }  and ( r&(k)} .  The algorithm is 
basically a recursive gradient (steepest-descent) method that iinds the 
minimum of E and thus yields the set of optimum filter coefficients. 

We begin with any arbitrary choice for the initial values of {h(k)}, 
say {ho(k)}. For example, we may begin with h ( k )  = 0, 0 5 k 5 N -1. 
Then after each new input sample {z (n)} enters the adaptive FIR filter, 
we compute the corresponding output, say {y (n)}, form the error signal 
e(n) = d(n) - y(n), and update the filter coefficients according to the 
equation 

hn ( k )  = hn-l ( k )  + A .e(n)  . ~ ( n  - k), 

k=O 

0 < k _< N - 1, n = O , l , .  . . 

where A is called the step size parameter, z(n- k) is the sample of the in- 
put signal located at the kth tap of the filter at time n, and e (n) z (n - k) 
is an approximation (estimate) of the negative of the gradient for the kth 
filter coefficient. This is the LMS recursive algorithm for adjusting the fil- 
ter coefficients adaptively so as to minimize the sum of squared errors E. 

The step size parameter A controls the rate of convergence of the 
algorithm to the optimum solution. A large value of A leads to large 
step size adjustments and thus to rapid convergence, while a small value 
of A results in slower convergence. However, if A is made too large the 
algorithm becomes unstable. To ensure stability, A must be chosen 118) 
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to be in the range 

1 
10NP, 

O < A < -  (9.9) 

where N is the length of the adaptive FIR filter and P, is the power in 
the input signal, which can be approximated by 

(9.10) 

The mathematical justification of equations (9.9) a d  (9.10) and the 
proof that the LMS algorithm leads to the solution for the optimum filter 
coefficients is given in more advanced treatments of adaptive filters. The 
interested reader may refer to the books by Haykin [9] and Pro& [HI. 

MATLAB 
IMPLEMEN- 
TATION 

The LMS algorithm (9.8) can easily be implemented in MATLAB. Given 
the input sequence {z (n)}, the desired sequence { d  (n)}, step size A, and 
the desired length of the adaptive FIR filter N, we can use (9.1), (9.2), and 
(9.8) to determine the adaptive filter coefficients { h  (n) , 0 5 n 5 N - 1) 
recursively. This is shown in the following function called Ims. 

function Ch,yl = lms(x,d.delta,N) 
X Lpls Algorithm for Coefficient Adjustment 

X Ch,yl = h ( x , d , d e l t a , N )  
X 
X 
X 
X 
X delta = step s ize  

h = estimated FIR f i l t e r  
y = output array y(n) 
r = input array x(n) 
d = desired array d(n), length m u s t  be same as x 

N = length of the FIR f i l t e r  

= length(x); y = zeros(1.M); 
h - zeros(1,N); 
for n = N:M 

xi = x(n:-1:n-N+l); 
y = h * xi'; 
e = d(n) - y; 
h - h + delta*e*zl; 

end 

In addition, the Ims function provides the output {y (n) }  of the adaptive 
filter. 

Below, we apply the LMS algorithm to several practical applications 
involving adaptive filtering. 
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SYSTEM IDENTIFICATION OR SYSTEM MODELING 
I 

Noise 
signal 

generator 

To formulate the problem, let us refer to Figure 9.2. We have an unknown 
linear system that we wish to identify. The unknown system may be an 
all-zero (FIR) system or a polezero (IIR) system. The unknown system 
will be approximated (modeled) by an FIR filter of length N .  Both the 
unknown system and the FIR model are connected in parallel and are 
excited by the same ifiput sequence {z (n)}. If (y (n)} denotes the output 
of the model and { d ( n ) }  denotes the output of the unknown system, the 
error sequence is {e(n)  = d(n) - ~(n)}. If we minimii the sum of squared 
errors, we obtain the same set of linear equations as in (9.7). Therefore the 
LMS algorithm given by (9.8) may be used to adapt the coefficients of the 
FIX model so that its output approximates the output of the unknown 
system. 

x(n)  

PROJECT 9.1: 
SYSTEM 

CATION 
IDENTIFI- 

There are three basic modules that are needed to perform this project. 

1. A noise signal generator that generates a sequence of random num- 
bers with zero mean value. For example, we may generate a sequence of 
uniformly distributed random numbers over the i n t e d  [-a,u]. Such a 
sequence of uniformly distributed numbers has an average value of zero 
and a variance of a2/3. This signal sequence, call it {~(n)}, will be used 
as the input to the unknown system and the adaptive FIR model. In this 
case the input signal {z(n)} has power P, = a2/3. In MATLAB this can 
be implemented using the rand function. 

2. An unknown system module that may be selected is an IIR filter 
and implemented by its difference equation. For example, we may select 
an IIR filter specified by the second-order difference equation 

d ( n )  =ald(n- l)+a2d(n--2)+z(n)+blz(n- 1)+h3:(n22)  (9.11) 

FIGURE 9.2 Block diagmm of system identification or system modeling problem 
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where the parameters {al,az} determine the positions of the poles and 
{b l ,  b} determine the positions of the zeros of the filter. These parame- 
ters are input variables to the program. This can be implemented by the 
f i l t er  function. 

3. An adaptive FIR filter module where the FIR filter has N tap co- 
efficients that are adjusted by means of the LMS algorithm. The length N 
of the filter is an input variable to the program. This can be implemented 
using the Ims function given in the previous section. 

The three modules are contigured as shown in Figure 9.2. From this 
project we can determine how closely the imp& response of the FIR 
model approximates the impulse response of the unknown system after 
the LMS algorithm has converged. 

To monitor the convergence rate of the LMS algorithm, we may com- 
pute a short-term average of the squared error e2 (n) and plot it. That is, 
we may compute 

(9.12) 

where m = n / K  = 1 , 2 , .  . . . The averaging interval K may be selected 
to be (approximately) K = 10N. The effect of the choice of the step 
size parameter A on the convergence rate of the LMS algorithm may be 
observed by monitoring the ASE(m). 

Besides the main part of the program, you should also include, as an 
aside, the computation of the impulse response of the unknown system, 
which can be obtained by exciting the system with a unit sample sequence 
6 (n). This actual impulse response can be compared with that of the FIR 
model after convergence of the LMS algorithm. The two impulse responses 
can be plotted for the purpose of comparison. 

SUPPRESSION OF NARROWBAND INTERFERENCE 
IN A WIDEBAND SIGNAL 

I 
I 

Let us mume that we have a signal sequence {z(n)}  that comjsts of 
a desired wideband signal sequence, say { ~ ( n ) } ,  corrupted by an ad- 
ditive narrowband interference sequence {s (n)}. The two sequences are 
uncorrelated. This problem arises in digital communications and in signal 
detection, where the desired signal sequence {w (n)} is a spread-spectrum 
signal, while the narrowband interference represents a signal from another 
user of the frequency band or some intentional interference from a jammer 
who is trying to disrupt the communication or detection system. 
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From a filtering point of view, our objective is to design a filter that 
suppresses the narrowband interference. In effect, such a filter should place 
a notch in the frequency band occupied by the interference. In practice, 
however, the frequency band of the interference might be unknown. More- 
over, the frequency band of the interference may vary slowly in time. 

The narrowband characteristics of the interference allow us to esti- 
mate s (n) from past samples of the sequence x(n) = s(n) + w(n) and to 
subtract the estimate from x(n). Since the bandwidth of {s (n)} is nar- 
row compared to the bandwidth of {w (n)}, the samples of {s (n)} are 
highly correlated. On the other hand, the wideband sequence {w (n)} has 
a relatively narrow correlation. 

The general configuration of the interference suppression system is 
shown in Figure 9.3. The signal z (n) is delayed by D samples, where the 
delay D is chosen s&ciently large so that the wideband signal compe 
nents w(n) and w(n - D) ,  which are contained in s(n) and z(n - D ) ,  
respectively, are uncorrelated. The output of the adaptive FIR filter is 
the estimate 

N-1 

i(n) = c h(k)z(n - k - D)  (9.13) 

The error signal that is used in optimizing the FIR, filter coefficients is 
e(n) = s(n) - .^(TI). The minimization of the sum of squared errors again 
leads to a set of linear equations for determining the optimum coefficients. 
Due to the delay D, the LMS algorithm for adjusting the coefficients 
recursively becomes 

k 0  

k = 0,1,. . . ,N - 1 
n = l , 2 ,  ... h,(k) = h,,-l(k) + Ae(n)z(n - k - D) , (9.14) 

FIGURE 9.3 
ference 

Adaptive filter for estimating and suppressing a narrowband inter- 
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PROJECT 9.2: 
SUPPRESSION 
OF 
SlNUSOlDAL 
INTERFERENCE 

There are three basic modules required to perform this project. 

1. A noise signal generator module that generates a wideband se 
quence {w (n)} of random numbers with zero mean value. In particular, 
we may generate a sequence of uniformly distributed random numbers 
using the rand function 8s previously described in the project on system 
identification. The signal power is denoted as P,. 

2. A sinusoidal signaI generator module that generates a sine wave se 
quence s(n) = A sinwon, where 0 < wo < T and A is the signal amplitude. 
The power of the sinusoidal sequence is denoted as P,. 

3. An adaptive FIR filter module using the Ims function, where the 
FIR filter has N tap coefficients that are adjusted by the LMS algorithm. 
The length N of the filter is an input variable to the program. 

The three modules are configured as shown in Figure 9.4. In this 
project the delay D = 1 is sufficient, since the sequence {u‘ (n)} is a white 
noise (spectrally flat or uncorrelated) sequence. The objective is to adapt 
the FIR filter coefficients and then to investigate the characteristics of the 
adaptive filter. 

It is interesting to select the interference signal to be much stronger 
than the desired signal w(n), for example, Pa = IOP,. Note that the 
power P, required in selecting the step size parameter in the LMS alga- 
rithm is P, = Pa + P,. The frequency response characteristic H (.’“) of 
the adaptive FIR filter with coefficients {h(k)} should exhibit a resonant 
peak at the frequency of the interference. The frequency response of the 
interference suppression filter is Ha (2”) = 1 - H (e j”) ,  which should 
then exhibit a notch at the frequency of the interference. 

It is interesting to plot the sequences {w (n)}, {s (n)}, and { ~ ( n ) } .  It 
is also interesting to plot the frequency responses H (d”) and H, (ej”) 
after the LMS algorithm has converged. The short-time average squared 
error ASE(rn), defined by (9.12), may be used to monitor the conver- 
gence characteristics of the LMS algorithm. The effect of the length of 
the adaptive filter on the quality of the estimate should be investigated. 

Sine wave s(n)  
generator 

Delay 
D =  1 

FIGURE 9.4 
sion 

Conjigurntion of modules for ezperiment on interference suppres- 
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The project may be generalized by adding a second sinusoid of a differ- 
ent frequency. Then H should exhibit two resonant peaks, provided 
the frequencies are sufficiently separated. Investigate the effect of the filter 
length N on the resolution of two closely spaced sinusoids. 

ADAPTIVE LINE ENHANCEMENT 
I 
I 

In the preceding section we described a method for suppressing a strong 
narrowband interference from a wideband signal. An adaptive line en- 
hancer (ALE) has the same configuration as the interference suppression 
filter in Figure 9.3, except that the objective is different. 

In the adaptive line enhancer, {s(n)}  is the desired signal and { ~ ( n ) }  
represents a wideband noise component that masks { ~ ( n ) } .  The desired 
signal {s(n)} may be a spectral line (a pure sinusoid) or a relatively 
narrowband signal. Usually, the power in the wideband signal is greater 
than that in the narrowband signal-that is, P, > P,. It is apparent that 
the ALE is a self-tuning filter that has a peak in its frequency response 
at the frequency of the input sinusoid or in the frequency band occupied 
by the narrowband signal. By having a narrow bandwidth FIR filter, the 
noise outside the frequency band of the signal is suppressed, and thus 
the spectral line is enhanced in amplitude relative to the noise power in 
{ W ( 4 } .  

PROJECT 9.3: This project requires the same software modules as those used in the 
ADAPTIVE project on interference suppression. Hence the description given in the 
LINE preceding section applies directly. One change is that in the ALE, the 
ENHANCEMENT condition is that P, > P,. Secondly, the output signal from the ALE is 

{s(n)}. Repeat the project described in the previous section under these 
conditions. 

ADAPTIVE CHANNEL EQUALIZATION 
I 

The speed of data transmission over telephone channels is usually limited 
by channel distortion that causes intersymbol interference (ISI). At data 
rates below 2400 bits the IS1 is relatively small and is usually not a prob- 
lem in the operation of a modem. However, at data rates above 2400 bits, 
an adaptive equalizer is employed in the modem to compensate for the 
channel distortion and thus to allow for highly reliable high-speed data 
transmission. In telephone channels, filters are used throughout the sys- 
tem to separate signals in different frequency bands. These filters cause 
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PROJECT 9.4 
ADAPTIVE 
CHANNEL 
EQUALIZATION 

amplitude and phase distortion. The adaptive equalizer is basically an 
adaptive FIR filter with coefficients that are adjusted by means of the 
LMS algorithm to correct for the channel distortion. 

A block diagram showing the basic elements of a modem transmit- 
ting data over a channel is given in Figure 9.5. Initially, the equalizer 
coefficients are adjusted by transmitting a short training sequence, usu- 
ally less than one second in duration. After the short training period, 
the transmitter begins to transmit the data sequence {a(.)}. To track 
the possible slow time variations in the channel, the equalizer coefficients 
must continue to be adjusted in an adaptive manner while receiving data. 
This is usually accomplished, as illustrated in Figure 9.5, by treating the 
decisions at the output of the decision device as correct, and using the 
decisions in place of the reference {d(n)}  to generate the error signal. This 
approach works quite well when decision errors occur infrequently, such 
as less than one error in 100 data symbols. The occasional decision errors 
cause only a small misadjustment in the equalizer coefficients. 

The objective of this project is to investigate the performance of an adap  
tive equaliier for data transmission over a channel that causes intersym- 
bol interference. The basic configuration of the system to be simulated 
is shown in Figure 9.6. As we observe, five basic modules are required. 
Note that we have avoided carrier modulation and demodulation, which 
is required in a telephone channel modem. This is done to simplify the 
simulation program. However, all processing involves complex arithmetic 
operations. 

The five modules are as follows: 

1. The data generator module is used to generate a sequence of 
complex-valued information symbols {a(n)}. In particular, employ four 
equally probable symbols s + j s ,  s - j s ,  -s + js, and -s - j s ,  where s is 
a scale factor that may be set to s = 1, or it can be an input parameter. 

Noise 

Adaptive 

FIGURE 9.5 Application of adaptive filtering to adaptive channel equalization 
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____-__ 1 Delay 

FIGURE 9.6 
h e r  

Eqeriment f o r  investigating the perfomance of an adaptive egud- 

2. The channel filter module is an FIR fdter with coefficients {c(n), 
0 5 n 5 K - 1) that simulates the channel distortion. For distortionless 
transmission, set c(0) = 1 and e(n) = 0 for 1 5 n 5 K - 1. The length K 
of the filter is an input parameter. 

3. The noise generator module is wed to  generate additive noise that 
is usually present in any digital communication system. If we are modeling 
noise that is generated by electronic devices, the noise distribution should 
be Gaussian with zero mean. Use the randu function. 

4. The adaptive equalizer module is an FIR filter with tap coefficients 
{h(k) ,  0 < k < N - l}, which are adjusted by the LMS algorithm. How- 
ever, due to  the use of complex arithmetic, the recursive equation in the 
LMS algorithm is slightly modified to 

h,(k) = h,- l (k)  + Ae(n)z*(n - k) (9.15) 

where the asterisk denotes the complex conjugate. 
5.  The decision device module takes the estimate &(n) and quantizes 

it to one of the four possible signal points on the basis of the following 
decision rule: 

Re[&(n)]>O and Im[&(n)]>O --+ l + j  

Re[&(n))>O and Im[C(n)]<O -+ 1 - j  

Re[&(n)]<O and Im[B(n)]>O + -1+j 

Re[b(n)]<O and Im\zl(n)]<O --+ -1-j 
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The effectiveness of the equalizer in suppressing the IS1 introduced by 
the channel filter may be seen by plotting the following relevant sequences 
in a two-dimensional (real-imaginary) display. The data generator out- 
put {a(n) )  should consist of four points with values fl *j. The effect 
of channel distortion and additive noise may be viewed by displaying 
the sequence {~(n)} at the input to the equalizer. The effectiveness of 
the adaptive equalizer may be assessed by plotting its output {h(n)} af- 
ter convergence of its coefficients. The short-time average squared error 
ASE(n) may also be used to monitor the convergence characteristics of 
the LMS algorithm. Note that a delay must be introduced into the output 
of the data generator to compensate for the delays that the signal encoun- 
ters due to the channel filter and the adaptive equalizer. For example, this 
delay may be set to the largest integer closest to (N + K ) / 2 .  Finally, an 
error counter may be used to count the number of symbol errors in the 
received data sequence, and the ratio for the number of errors to the total 
number of symbols (error rate) may be displayed. The error rate may be 
varied by changing the level of the IS1 and the level of the additive noise. 

It is suggested that simulations be performed for the following three 
channel conditions: 

a. No ISI: c(0) = 1, ~ ( n )  = 0, 1 5 n 5 K - 1 
b. Mild IS1 c(0) = 1, c(1) = 0.2, c(2) = -0.2, c(n) = 0, 3 5 n _< 

c. StrongISI: c(0) = 1, c(1) = 0.5, c(2) = 0.5, c(n) = 0 , 3  5 n 5 K-1 

The measured error rate may be plotted as a function of the signal- 
tc-noise ratio (SNR) at the input to the equalizer, where SNR is defined 
as PJP,, where P, is the signal power, given as P, = s2, and P, is the 
noise power of the sequence at the output of the noise generator. 

K - 1  

SUMMARY 

In this chapter we introduced the reader to the theory and implemen- 
tation of odaptjve FIR filters with applications to system identification, 
interference suppression, narrowband frequency enhancement, and adap 
tive equalization. Projects were formulated involving these applications 
of adaptive filtering; these can be implemented using MATLAB. 
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APPLICATIONS IN 
COMMUNICATIONS 

Today MATLAB finds widespread use in the simulation o f a  variety of 
communication systems. In this chapter we shall focus on several applica- 
tions dealing with waveform representation and coding, especially speech 
coding, and with digital communications. In particular, we shall describe 
several methods for digitizing analog waveforms, with sp'ecific application 
to speech coding and transmission. These methods are p b c o d e  modula 
tion (PCM), differential PCM and adaptive differential PCM (ADPCM), 
delta modulation (DM) and adaptive delta modulation (ADM), and lin- 
ear predictive coding (LPC). A project is formulated involving each of 
these waveform encoding methods for simulation using MATLAB. 

The last three topics treated in this chapter deal with signal-detection 
applications that are usually encountered in the implementation of a r& 
ceiver in a digital communication system, For each of these topics we 
describe a project that involves the implementations via Simulation of the 
detection scheme in MATLAB. 

PULSE-CODE MODULATION 
I 
I 

Pulsecode modulation is a method for quantizing an analog signal for 
the purpose of transmitting or storing the signal in digital form. PCM is 
widely used for speech transmission in telephone communications and for 
telemetry systems that employ radio transmission. We shall concentrate 
our attention on the application of PCM to speech signal processing. 

Speech signals transmitted over telephone channels are usually limited 
in bandwidth to the frequency range below 4kHz. Hence the Nyquist rate 
for sampling such a signal is less than 8kHz. In PCM the analog speech 
signal is sampled at the nominal rate of 8kHz (samples per second), and 
each sample is quantized to one of 2' levels, and represented digitally by 
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a sequence of b bits. Thus the bit rate required to transmit the digitized 
speech signal is 8000 b bits per second. 

The quantization process may be modeled mathematically as 

Z(n) = s(n) + q(n) (10.1) 

where B(n) represents the quantized value of ~(n), and q(n) represents the 
quantization error, which we treat as an additive noise. Assuming that a 
uniform quantizer is used and the number of levels is s&ciently large, 
the quantization noise is well characterized statistically by the uniform 
probability density function, 

where the step size of the quantizer is A = 2-b. The mean square value 
of the quantization error is 

A2 2-2b 
E (q2) = - = - 

12 12 
(10.3) 

Measured in decibels, the mean square value of the noise is 

1Olog (g) = 1Olog (g) = -6b - 10.8 dE? (10.4) 

We observe that the quantization noise decreases by 6 dB/bit used 
in the quantizer. High-quality speech requires a minimum of 12 bits per 
sample and hence a bit rate of 96,000 bits per second (bps). 

Speech signals have the characteristic that small signal amplitudes 
occur more frequently than large signal amplitudes. However, a uniform 
quantizer provides the same spacing between successive levels through- 
out the entire dynamic range of the signal. A better approach is to use 
a nonuniform quantizer, which provides more closely spaced levels at the 
low signal amplitudes and more widely spaced levels at the large signal 
amplitudes. For a nonuniform quantizer with b bits, the resulting quan- 
tization error has a mean square value that is smaller than that given 
by (10.4). A nonuniform quantizer characteristic is usually obtained by 
passing the signal through a nonlinear device that compresses the signal 
amplitude, followed by a uniform quantizer. For example, a logarithmic 
compressor employed in U.S. and Canadian telecommunications systems, 
called a p-law compressor, has an input-output magnitude characteristic 
of the form 
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where s is the normalized input, y is the normalized output, sgn (.) is the 
sign function, and p is a parameter that is selected to give the desired 
compression characteristic. 

In the encoding of speech waveforms the value of p = 255 has been 
adopted as a standard in the U.S. and Canada. This value results in about 
a 24dB reductioa in the quantization noise power relative to uniform 
quantization. Consequently, an &bit quantizer used in conjunction with 
a p = 255 logarithmic compressor produces the same quality speech as a 
12-bit uniform quantizer with no compression. Thus the compressed PCM 
speech signal has a bit rate of 64,000 bps. 

The logarithmic compressor standard used in European telecommu- 
nication systems is called A-law and is defined as 

(10.6) 

where A is chosen as 87.56. Although (10.5) and (10.6) are different nonlin- 
ear functions, the two compression characteristics are very similar. Figure 
10.1 illustrates these two compression functions. Note their strong simi- 
larity. 

In the reconstruction of the signal &om the quantized dues, the 
decoder employs an inverse logarithmic relation to expand the signal am- 

I I I I I 
0 0.2 0.4 0.6 0.8 1.0 

I4 

FIGURE 10.1 Comparison of p-law and A-law nonlinearities 
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plitude. For example, in p-law the inverse relation is given by 

Generate (s(n))  Ar (yy(n)} Av {y,(n)) 
random * 
signals 

L 

(10.7) 

# Is,(n)) Plot original and 
* reconstructed 

signal 

The combined compressor-expander pair is termed a compander. 

PROJECT 10.1: 
PCM 

The purpose of this project is to gain an understanding of PCM compres 
sion (linear-to-logarithmic) and PCM expansion (logarithmic-tdinear). 
Write the following three MATLAB functions for this project: 

1. a p-law compressor function to implement (10.5) that accepts a 
zero-mean normalized (Is1 _< 1) signal and produces a compressed zero- 
mean signal with ,u as a free parameter that can be specified, 

2. a quantizer function that accepts a zero-mean input and produces 
an integer output after bbit quantization that can be specified, and 

3. a p-law expander to implement (10.7) that accepts an integer input 
and produces a zero-mean output for a specified p parameter. 

For simulation purposes generate a large number of samples (l0,OOO 
or more) of the following sequences: (a) a sawtooth sequence, (b) an expo- 
nential pulse train sequence, (c) a sinusoidal sequence, and (d) a random 
sequence with small variance. Care must be taken to generate nonperiodic 
sequences by choosing their normalized frequencies as irrational numbers 
(i.e., sample values should not repeat). For example, a sinusoidal sequence 
can be generated using 

s (n) = 0.5 sin (n/33) , 0 5 n 5 10,OOO 

n o m  our discussions in Chapter 2 this sequence is nonperiodic, yet it has 
a periodic envelope. Other sequences can also be generated in a similar 
fashion. Process these signals through the above plaw compressor, quan- 
tizer, and expander functions as shown in Figure 10.2, and compute the 
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signal-tequantization noise ratio (SQNR) in dB as 

For different &bit quantizers, systematically determine the value of p 
that maxhizes the SQNR. Also plot tlie input and output waveforms 
and comment on the results. 

DIFFERENTIAL PCM ( 
I 

In PCM each sample of the waveform is encoded independently of all the 
other samples. However, most signals, including speech, sampled at the 
Nyquist rate or faster exhibit significant correlation between successive 
samples. In other words, the average change in amplitude between suc- 
cessive samples is relatively small. Consequently, an encoding scheme that 
exploits the redundancy in the samples will result in a lower bit rate for 
the speech signal. 

A relatively simple solution is to encode the differences between suc- 
cessive samples rather than the samples themselves. Since differences be- 
tween samples are expected to be smaller than the actual sampled ampli- 
tudes, fewer bits are required to represent the differences. A refinement 
of this general approach js to predict the current sample based on the 
previous p samples. To be specific, let s (n) denote the current sample of 
speech and let 1 (n) denote the predicted value of ~(n), defined as 

(10.8) 

Thus 5 (n) is a weighted linear combination of the past p samples, and 
the a(i) are the predictor (filter) coefficients. The a(i) are selected to 
minimize some function of the error between s (n) and 5 (n). 

A mathematically and practically convenient error function is the sum 
of squared errors. With this as the performance index for the predictor, 
we select the a (i) to minimize 

(10.9) 
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where rSs (m) is the autocorrelation function of the sampled signal se- 
quence s (n), defined as 

N 
r,, (m) = cs (i) s (i + m) (10.10) 

i=l 

Minimization of EP with respect to the predictor coefficients {ui(n)} r e  
sults in the set of linear equations, called the normal equations, 

P 

Z a ( i ) r s s  ( i  - j) = T S ,  , j = 1,2,. . . ,p (10.11) 
i=l 

or in the matrix form, 

Ra = r ==+ a = R-'r 

where R is the autocorrelation matrix, a is the coefficient vector, and r 
is the autocorrelation vector. Thus the values of the predictor coefficients 
are established. 

Having described the method for determining the predictor coeffi- 
cients, let us now consider the block diagram of a practical DPCM system, 
shown in Figure 10.3. In this configuration the predictor is implemented 
with the feedback loop around the quantizer. The input to the predictor 
is denoted as B (n), which represents the signal sample s (n) modified by 
the quantization process, and the output of the predictor is 

(10.12) 

D 

2 = c a ( 2 )  s (n - i) 
i=l 

(10.13) 

The difference 

e(n) = s ( n )  -$ (n)  (10.14) 

'") - +Channel 

(a) DPCM Encoder 

To D/A 
converter 

(ai) 

(b) DPCM Decoder 

FIGURE 10.3 Block diagmm of a DPCM tmnscoder: (a) Encoder, (a) Decoder 

~~ 
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is the input to the quantizer, and d (n) denotes the output. Each value of 
the quantized prediction error B (n) is encoded into a sequence of binary 
digits and transmitted over the channel to th5receiver. The quantized 
error 8 (n) is also added to the predicted value 3 (n) to yield 3 (n). 

At the receiver the same predictor that was used at the transmitting 
end is synthesized, and its output S (n) is added to B (n) to yield 3 (n). The 
signal S (n) is the desired excitation for the predictor and also the desired 
output sequence from which the reconstructed signal S ( t )  is obtained by 
filtering, as shown in Figure 10.3b. 

The use of feedback around the quantizer, ax described above, ensures 
that the error in 3 (n) is simply the quantization error q (n) = B (n) -e (n) 
and that there is no amumulation of previous quantization errors in the 
implementation of the decoder. That is, 

A 

q(n) = d(n) - e ( n )  = d(n) - s (n )  + s(n) = S(n) - s (n) (10.15) 

Hence S (n) = s (n) + q (n). This means that the quantized sample S (n) 
differs from the input s (n) by the quantization error q (n) independent 
of the predictor used. Therefore the quantization errors do not accumu- 
late. 

In the DPCM system illustrated in Figure 10.3, the estimate or pre- 
dicted value 3 (n) of the signal sample s (n) is obtained by taking a linear 
combination of past values S (n - k) , k = 1,2 , .  . . , p ,  as indicated by 
(10.13). An improvement in the quality of the estimate is obtained by 
including linearly filtered past values of the quantized error. Specifically, 
the estimate of s (n) may be expressed as 

P m 
A 

B (n) = a (i) 3 (n - i )  + b (i) E (n - i) (10.16) 
i=l i=l 

where b (i) are the coefficients of the filter for the quantized error sequence 
d(n).  The block diagram of the encoder at the transmitter and the decoder 
at the receiver are shown in Figure 10.4. The two sets of coefficients a (i) 
and b ( i )  are selected to minimize some function of the error e(n) = 
S (n) - s (n), such as the sum of squared errors. 

By using a logarithmic compressor and a Cbit quantizer for the error 
sequence e (n), DPCM results in high-quality speech at a rate of 32,000 
bps, which is a factor of two lower than logarithmic PCM. 

PROJECT 10.2 
DPCM 

The objective of this project is to gain understanding of the DPCM encod- 
ing and decoding operations. For simulation purposes, generate correlated 
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FIGURE 10.4 DPCM modified ba, the lanearty jiftered e m r  sequence 

random sequences using a pole-zero signal model of the form 

s (n) = a(1) s (n - 1) f box (n) + blz (n - 1) (10.17) 

where x ( n )  is a zero-mean unit variance Gaussian sequence. This can 
be done using the filter function. The sequences developed in Project 
10.1 can also be used for simulation. Develop the following three MATLAB 
modules for this project: 

1. a model predictor function to implement (lO.lZ), given the input 
signal s (n); 

2. a DPCM encoder function to implement the block diagram of Fig- 
ure 10.3a, which accepts a zerc-mean input sequence and produces a quan- 
tized bbit integer error sequence, where b is a free parameter; and 

3. a DPCM decoder function of Figure 10.3b, which reconstructs the 
signal from the quantized error sequence. 

Experiment with several porder prediction models for a given signal 
and determine the optimum order. Compare this DPCM implementation 
with the PCM system of Project 10.1 and comment on the results. Ex- 
tend this implementation to include an mth-order moving average filter 
as indicated in (10.16). 
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ADAPTIVE PCM fADPCM1 AND DPCM 

In general, the power in a speech signal varies slowly with time. PCM 
and DPCM encoders, however, are designed on the basis that the speech 
signal power is constant, and hence the quantizer is fixed. The efficiency 
and performance of these encoders can be improved by having them adapt 
to the slowly time-variant power level of the speech signal. 

In both PCM and DPCM the quantization error q (n) resulting from a 
uniform quantizer operating on a slowly varying power level input signal 
will have a time-variant variance (quantization noise power). One im- 
provement that reduces the dynamic range of the quantization noise is 
the use of an adaptive quantizer. 

Adaptive quantizers can be classified as feedforward or feedback. A 
feedforward adaptive quantizer adjusts its step size for each signal sample, 
based on a measurement of the input speech signal variance (power). For 
example, the estimated variance, based as a sliding window estimator, is 

- ntl 

k = n + l - M  
(10.18) 

Then the step size for the quantizer is 

A (n + 1) = A (n) Bn+l (10.19) 

In this caSe it is necessary to transmit A (n + 1) to the decoder in order 
for it to reconstruct the signal. 

A feedback adaptive quantizer employs the output of the quantizer 
in the adjustment of the step size. In particular, we may set the step size 
as 

A (n + 1) = a (n) A (n) (10.20) 

where the scale factor a (n) depends on the previous quantizer output. 
For example, if the previous quantizer output is small, we may select 
a (n) < 1 in order to provide for finer quantization. On the other hand, 
if the quantizer output is large, then the step size should be increased 
to reduce the possibility of signal clipping. Such an algorithm has been 
successfully used in the encoding of speech signals. Figure 10.5 illustrates 
such a (bbit) quantizer in which the step size is adjusted recursively 
according to the relation 

A (n + 1) = A (n) . M (n) 
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FIGURE 10.5 Ezample of a quantizer m'th an adaptive step size (/lo]) 

where A4 (71) is a multiplication factor whose value depends on the quan- 
tizer level for the sample s (n), and A (n)  is the step size of the quantizer 
for processing s(n). Values of the multiplication factors optimized for 
speech encoding have been given by 1131. These values are displayed in 
Table 10.1 for 2-, 3-, and Cbit quantization for PCM and DPCM. 

In DPCM the predictor can also be made adaptive. Thus in ADPCM 
the coefficients of the predictor are changed periodically to reflect the 
changing signal statistics of the speech. The linear equations given by 
(10.11) still apply, but the short-term autocorrelation function of s (n), 
ras (m) changes with time. 

TABLE 10.1 Multiplacataon factors for adaptive step size adjustment ([lo]) 

PCM DPCM 
2 3 4 2 3 4 

0.60 0.85 0.80 
2.20 1.00 0.80 

1 .00  0.80 
1.50 0.80 

0.80 
0.80 
0.80 
0.80 

0.80 0.90 0.90 
1.60 0.90 0.90 

1.25 0.90 
1.70 0.90 

1.20 
1.60 
2.00 
2.40 
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FIGURE 10.6 ADPCM block diagram 

Figure 10.6 illustrates, in block diagram form, a 32, OOO bps ADPCM en- 
coder and decoder that has been adopted as an international (CCITT) 
standard for speech transmission over telephone channels. The ADPCM 
encoder is designed to accept &bit PCM compressed signal samples at 
64,000 bps, and by means of adaptive prediction and adaptive Cbit quan- 
tization to reduce the bit rate over the channel to 32,000 bps. The AD- 
PCM decoder accepts the 32,000 bps data stream and reconstructs the 
signal in the form of an 8-bit compressed PCM at 64,000 bps. Thus we 
have a configuration shown in Figure 10.7, where the ADPCM encoder/ 

1 
Channel n 

FIGURE 10.7 ADPCM interface to PCM system 
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decoder is embedded into a PCM system. Although the ADPCM encoder/ 
decoder could be used directly on the speech signal, the interface to the 
PCM system is necessary in practice in order to maintain compatibility 
with existing PCM systems that are widely used in the telephone net- 
work. 

The ADPCM encoder accepts the &bit PCM compressed signal and 
expands it to a 14bit-per-sample linear representation for processing. The 
predicted value is subtracted from this 14bit linear value to produce a 
difference signal sample that is fed to the quantizer. Adaptive quantiza- 
tion is performed on the difference signal to produce a Cbit output for 
transmission over the channel. 

Both the encoder and decoder update their internal variables, based 
only on the ADPCM values that are generated. Consequently, an ADPCM 
decoder including an inverse adaptive quantizer is embedded in the en- 
coder so that all internal variables are updated, based on the same data. 
This ensures that the encoder and decoder operate in synchronism without 
the need to transmit any information on the values of internal variables. 

The adaptive predictor computes a weighted average of the last six 
dequantized difference values and the last two predicted values. Hence 
this predictor is basically a two-pole (p = 2)  and six-zero (m = 6) filter 
governed by the difference equation given by (10.16). The filter coefficients 
are updated adaptively for every new input sample. 

At the receiving decoder and at the decoder that is embedded in 
the encoder, the Cbit transmitted ADPCM value is used to update the 
inverse adaptive quantizer, whose output is a dequantized version of the 
difference signal. This dequantized value is added to the value generated 
by the adaptive predictor to produce the reconstructed speech sample. 
This signal is the output of the decoder, which is converted to compressed 
PCM format at the receiver. 

PROJECT 10.3: 
ADPCM 

The objective of this project is to gain familiarity with, and understanding 
of, ADPCM and its interface with a PCM encoder/decoder (transcoder). 
As described above, the ADPCM transcoder is inserted between the PCM 
compressor and the PCM expander as shown in Figure 10.7. Use the 
already developed MATLAB PCM and DPCM modules for this project. 

The input to the PCM-ADPCM transcoder system can be supplied 
from internally generated waveform data files, just as in the caw of the 
PCM project. The output of the transcoder can be plotted. Compar- 
isons should be made between the output signal from the PCM-ADPCM 
transcoder with the signal from the PCM transcoder (PCM project lO.l), 
and with the original input signal. 
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DELTA MODULATION (DM\ 

Delta modulation may be viewed as a simplified form of DPCM in which 
a two-level (1-bit) quantizer is used in conjunction with a fixed first-order 
predictor. The block diagram of a DM encoder-decoder is shown in Figure 
10.8. We note that - 

a(n) = i ( n -  1) =:(?I - 1) + a(n - 1) (10.21) 

Since 

it follows that 

s(n) = s(n - 1) +q(n - 1) (10.22) 

Thus the estimated (predicted) value of s (n) is really the previous sam- 
ple s (n - 1) modified by the quantization noise q (n - 1). We also note 
that the difference equation in (10.21) represents an integrator with an 
input E(n). Hence an equivalent realization of the onestep predictor is 
an accumulator with an input equal to the quantii error signal .Z (n). In 
general, the quantized error signal is scaled by some value, say Al, which 
is called the step size. This equivalent realization is illustrated in Figure 
10.9. In effect, the encoder shown in Figure 10.9 approximates a wave- 
form s (t) by a linear staircase function. In order for the approximation 
to be relatively good, the waveform s (t) must change slowly relative to 

E W  I I 

Decoder 

FIGURE 10.8 Block diagmm of a delta modulation system 

398 Chapter 10 APPLICATIONS IN COMMUNICATIONS 



ADAPTIVE 
DELTA 
MODULATION 
(ADMI 

Accumulator 

t 

output 

To 

I *channel 

'(') Accumulator "--c7.--0 

the sampling rate. This requirement implies that the sampling rate must 
be several (a factor of at least 5) times the Nyquist rate. A Iowpass fiIter 
is usually incorporated into the decoder to smooth out discontinuities in 
the reconstructed signal. 

At any given sampling rate, the performance of the DM encoder is limited 
by two types of distortion as shown in Figure 10.10. One is called slope 
overload distortion. It is due to the use of a step size A, that is too small 
to follow portions of the waveform that have a steep slope. The second 
type of distortion, called granular noise, results from using a step size 
that is too large in parts of the waveform having a small slope. The need 
to minimize both of these two types of distortion results in conflicting 
requirements in the selection of the step size Ai. 

An alternative solution is to employ a variable size that adapts itself 
to the short-term characteristics of the source signal. That is, the step size 
is increased when the waveform has a steep slope and decreased when the 
waveform has a relatively small slope. 

FIGURE 10.10 ~"WO types 

ct Small A and slopeoverload noise 

of distortion in the DM encoder 
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A variety of methods can be used to set adaptively the step size in 
every iteration. The quantized error sequence 8 (n) provides a good indica- 
tion of the slope characteristics of the waveform being encoded. When the 
quantized error 5 (n) is changing signs between successive iterations, this 
is an indication that the slope of the waveform in the locality is relatively 
small. On the other hand, when the waveform has a steep slope, successive 
values of the error 8 (n) are expected to have identical signs. From these 
observations it is possible to devise algorithms that decrease or increase 
the step size, depending on successive values of 5 (n). A relatively simple 
rule devised by [12] is to vary adaptively the step size according to the 
relation 

A (n) = A (n - 1) Kz(")i("-l) , n= I,Z, ... (10.23) 

where K 2 1 is a constant that is selected to minimize the total distortion. 
A block diagram of a DM encoder-decoder that incorporates this adaptive 
algorithm is illustrated in Figure 10.11. 

Encodw 

Lowpass + Output fiker 
Decoder 

FIGURE 10.11 An example of a delta modulation system with adaptive step size 
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PROJECT 10.4: 
DM AND ADM 

Several other variations of adaptive DM encoding have been invw 
tigated and described in the technical literature. A particularly effectiw 
and popular technique first propmed by [S] is called continuously variable 
slope delta modulation (CVSD). In CVSD the adaptive step size parame 
ter may be expressed as 

A (n) = CXA (71 - 1) + kl (10.24) 

if d (n), Z(n - l),  and Z(n - 2) have the same sign; otherwise 

A(n) = a A ( n  - 1) +kz (10.25) 

The parameters a, kl, and kz are selected such that 0 < a < 1 and 
kl > kz > 0. For more discussion on this and other variations of adaptive 
DM, the interested reader is referred to the papers by 1131 and (61 and to 
the extensive references contained in these papers. 

The purpose of this project is to gain an understanding of delta modula- 
tion and adaptive delta modulation for coding of waveforms. This project 
involves writing MATLAB functions for the DM encoder and decoder as 
shown in Figure 10.9, and for the ADM encoder and decoder shown in 
Figure 10.11. The lowpass Filter at the decoder can be implemented as a 
linear-phase FIR filter. For example, a Hanning filter that has the impulse 
response 

may be used, where the length N may be selected in the range 5 5 N 15. 
The input to the DM and ADM systems can be supplied from the 

waveforms generated in Project 10.1 except that the sampling rate should 
be higher by a factor of 5 to 10. The output of the decoder can be plotted. 
Comparisons should be made between the output signal from the DM and 
ADM decoders and the original input signal. 

LINEAR PREDICTIVE CODING (LPC) OF SPEECH 
m 

The linear predictive coding (LPC) method €or speech analysis and syn- 
thesis is based on modeling the vocal tract 85 a linear all-pole (IIR) filter 
having the system function 

6=1 
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FIGURE 10.12 Bloek diagram model for the genemtaon of a speech signal 
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where p is the number of poles, G is the filter gain, and {a, (k)} are the 
parameters that determine the poles. There are two mutually exclusive 
excitation functions to model voiced and unvoiced speech sounds. On a 
short-time basis, voiced speech is periodic with a fundamental frequency 
Fo, or a pitch period l/Fo, which depends on the speaker. Thus voiced 
speech is generated by exciting the all-pole filter model by a periodic 
impulse train with a period equal to the desired pitch period. Unvoiced 
speech sounds are generated by exciting the all-pole filter model by the 
output of a random-noise generator. This model is shown in Figure 10.12. 

Given a short-time segment of a speech signal, usually about 20 ms or 
160 samples at an 8 W z  sampling rate, the speech encoder at the trans- 
mitter must determine the proper excitation function, the pitch period for 
voiced speech, the gain parameter G, and the coefficients a, (k). A block 
diagram that illustrates the speech encoding system is given in Figure 
10.13. The parameters of the model are determined adaptively from the 
data and encoded into a binary sequence and transmitted to the receiver. 

-zx7 t 

unvoiced model t Encoder --t output 
voiced or Pitch frequency 

Excitation and excitation t 

Signal 
generator 

Decoder 
Filter 

parameters 

Lowpass 

Input 

(b) Decoder 

FIGURE 10.13 Encoder and decoder for LPC 
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At the receiver the speech signal is synthesized from the model and the 
excitation signal. 

The parameters of the all-pole filter model are easily determined from 
the speech samples by means of linear prediction. To be specific, the 
output of the FIR linear prediction filter is 

B ( n ) = - & ( k ) s ( n - k )  (10.28) 

and the corresponding error between the observed sample s (n) and the 
predicted value B (n) is 

k=1 

P 
e ( n )  = s(n)  + Cup (k) s (n - k) (10.29) 

k=l 

By minimiziig the sum of squared errors, that is, 

N N 
E = c e2 (n) = c [s (n> + k a p  (k) s (n - k) 1' (10.30) 

fL=O n=O k=l 

we can determine the pole parameters (ap (k)} of the model. The result 
of differentiating E with respect to each of the parameters and equating 
the result to zero, is a set of p linear equations 

2 ap (k) ras (m - k) = -ran (m) , m = 1,2,. . . , p  

where T,, (m) is the autocorrelation of the sequence s (n) defined as 

(10.31) 
k=l 

N 
r8,(m) = C s ( n ) s ( n + m )  (10.32) 

n=O 

The linear equations (10.31) can be e x p r d  in matrix form as 

Raga = -rss (10.33) 

where R,, is a p x p autocorrelation matrix, r., is a p x I autocorrelation 
vector, and a is a p x 1 vector of model parameters. Hence 

a = -R-lr 8 ,  86 (10.34) 

These equations can also be solved recursively and most efficiently, with- 
out resorting to matrix inversion, by using the Levinson-Durbin algorithm 
1191. However, in MATLAB it is convenient to use the matrix inversion. The 
all-pole filter parameters {aP (k)} can be converted to the all-pole lattice 
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parameters {Ki}  (called the reflection coefficients) using the MATLAB 
function dir2latc  developed in Chapter 6. 

The gain parameter of the filter can be obtained by noting that its 
input-output equation is 

P 
s (n) = - C a, (k) s (n - k) + GX (n) (10.35) 

k=l 

where z (n) is the input sequence. Clearly, 

P 

Gx (n) = s (n) + c a p  (k) s (n - k) = e (n) 
k=1 

Then 

(10.36) 
n=O n=O 

If the input excitation is normalized to unit energy by design, then 

N-1 P 
GZ = e2 (4 = (0) + c a, (k) rsa (k) (10.37) 

Thus G2 is set equal to the residual energy resulting from the least-squares 
optimization. 

Once the LPC coefficients are computed, we can determine whether 
the input speech frame is voiced, and if so, what the pitch is. This is 
accomplished by computing the sequence 

n=0 k=l 

P 
r e  (a) = c Ta (k) rss (n - k) (10.38) 

k=l 

where ra (k) is defined as 

P 
ra (k) = C a p  (i) ap (i + k) (10.39) 

which is the autocorrelation sequence of the prediction coefficients. 
The pitch is detected by finding the peak of the normalized sequence 
T ,  (n) /re (0) in the time interval that correspunds to 3 to 15 ms in the 
20-ms sampling frame. If the value of this peak is at least 0.25, the frame 
of sp,eech is considered voiced with a pitch period equd to the value of 
n = Np, where re (Np) /T ,  (0) is a maximum. If the peak value is less than 
0.25, the frame of speech is considered unvoiced and the pitch is zero. 

i=l 

404 Chapter 10 R APPLICATIONS IN COMMUNICATIONS 



The values of the LPC coefficients, the pitch period, and the type of 
excitation are transmitted to the receiver, where the decoder synthesizes 
the speech signal by passing the proper excitation through the all-pole 
filter model of the vocal tract. Typically, the pitch period requires 6 bits, 
and the gain parameter may be represented by 5 bits after its dynamic 
range is compressed logarithmically. If the prediction coefficients were to 
be coded, they would require between 8 to 10 bits per coefficient for accu- 
rate representation. The reason for such high accuracy is that relatively 
small changes in the prediction coefficients result in a large change in 
the pole positions of the filter model. The accuracy requirements are less- 
ened by transmitting the reflection coefficients {Ki} ,  which have a smaller 
dynamic range-that is, IKil < 1. These are adequately represented by 
6 bits per coefficient. Thus for a 10th-order predictor the total number 
of bits assigned to the model parameters per frame is 72. If the model 
parameters are changed every 20 milliseconds, the resulting bit rate is 
3,600 bps. Since the reflection coefficients are usually transmitted to the 
receiver, the synthesis filter at the receiver is implemented as an all-pole 
lattice filter, described in Chapter 6. 

PROJECT 10.5: 
LPC 

The objective of this project is to analyze a speech signal through an 
LPC coder and then to synthesize it through the corresponding PLC 
decoder. Use several .wav sound aes (sampled at 8000 sam/sec rate), 
which are available in MATLAB for this purpose. Divide speech signals 
into short-time segments (with lengths between 120 and 150 samples) and 
process each segment to determine the proper excitation function (voiced 
or unvoiced), the pitch period for voiced speech, the coefficients {ap (k)} 
(p lo), and the gain G. The decoder that performs the synthesis is an 
all-pole lattice filter whose parameters are the reflection coeficients that 
can be determined from {ap  (k)}. The output of this project is a synthetic 
speech signal that can be compared with the original speech signal. The 
distortion effects due to LPC analysis/synthesis may be assessed qualita- 
tively. 

DUAL-TONE MULTIFREQUENCY (DTMF) SIGNALS 
I 
I 

DTMF is the generic name for push-button telephone signaling that is 
equivalent to the Touch Tone system in use within the Bell System. DTMF 
also finds widespread use in electronic mail systems and telephone banking 
systems in which the user can select options from a menu by sending 
DTMF signals from a telephone. 

In a DTMF signaling system a combination of a high-frequency tone 
and a low-frequency tone represent a specific digit or the characters * 
and #. The eight frequencies are arranged as shown in Figure 10.14, to 
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COll Col2 Col3  C o l 4  
1209Hz 1336Hz 1477Hz 1633Hz 

DTMF digit = row tone + column tone 

FIGURE 10.14 DTMF digits 

accommodate a total of 16 characters, 12 of which are assigned as shown, 
while the other four are reserved for future use. 

DTMF signals are easily generated in software and detected by means 
of digital filters, also implemented in software, that are tuned to the eight 
frequency tones. Usually, DTMF signals are interfaced to the analog world 
via a wdec (coder/decoder) chip or by linear A/D and D/A converters. 
Codec chips contain all the necessary A/D and D/A, sampling, and fil- 
tering circuitry for a bi-directional analog/digital interface. 

The DTMF tones may be generated either mathematically or from a 
look-up table. In a hardware implementation (e.g., in a digital signal pro- 
cessor), digital samples of two sine waves are generated mathematically, 
scaled, and added together. The sum is logarithmically compressed and 
sent to the codec for conversion to an analog signal. At an 8 lcHz sam- 
pling rate the hardware must output a sample every 125 ms. In this case 
a sine look-up table is not used because the values of the sine wave can be 
computed quickly without using the large amount of data memory that 
a table look-up would require. For simulation and investigation purposps 
the look-up table might be a good approach in MATLAB. 

At the receiving end the logarithmically compressed, &bit digital data 
words from the codec are received, logarithmically expanded to their 16- 
bit linear format, and then the tones are detected to decide on the trans- 
mitted digit. The detection algorithm can be a DFT implementation us- 
ing the FFT algorithm or a filter bank implementation. For the relatively 
small number of tones to be detected, the filter bank implementation is 
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more efficient. Below, we describe the use of the Goertzel algorithm to 
implement the eight tuned filters. 

Recall from the discussion in Chapter 5 that the DFT of an N-point 
data sequence {z (n)} is 

N - 1  
X ( k ) =  X x ( n ) W E k ,  k = 0 , 1 ,  ..., N - 1  (10.40) 

If the FFT algorithm is used to perform the computation of the DFT, 
the number of computations (complex multiplications and additions) is 
N logz N. In this case we obtain all N values of the DFT at once. However, 
if we desire to compute only M points of the DFT, where M < log, N,  
then a direct computation of the DFT is more efficient. The Goertzel 
algorithm, which is described below, is basically a linear filtering approach 
to  the computation of the DFT, and provides an alternative to direct 
computation. 

n=O 

THE 
GOERTZEL 
ALGORITHM 

The Goertzel algorithm exploits the periodicity of the phase factors ( W i }  
and allows us to express the computation of the DFT as a linear filtering 
operation. Since I+',$N = 1, we can multiply the DFT by this factor. 
Thus 

N-1 
X (k) = WGkNX (k) = x (m) Wik(N-m)  (10.41) 

m=O 

We note that (10.41) is in the form of a convolution. Indeed, if we define 
the sequence Y k  (n) BS 

N- 1 

Y k  (n) = x (m) I+'ik(n-m) (10.42) 
m=O 

then it is clear that y k  (n) is the convolution of the finite-duration input 
sequence x (n) of length N with a filter that has an impulse response 

h k  (n) = W p u  (n) (10.43) 

The output of this filter at n = N yields the value of the DFT at the 
frequency W k  = 2*k/N. That is, 

x (k) = Y k  (n)ln=N 

as can be verified by comparing (10.41) with (10.42). 

(10.44) 
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The filter with impulse response hk (n) has the system function 

(10.45) 

This filter has a pole on the unit circle at the frequency wk = 2sk/N. 
Thus the entire DFT can be computed by passing the block of input data 
into a parallel bank of N singlepole filters (resonators), where each filter 
has a pole at the corresponding frequency of the DFT. 

Instead of performing the computation of the DFT as in (10.42), via 
convolution, we can use the difference equation corresponding to the filter 
given by (10.45) to compute Y k  (n) recursively. Thus we have 

Yk (n) = w i k u k  (n - 1) f (n) 7 Yk (-1) = 0 (10.46) 

The desired output is X ( k )  = y k  (N). To perform this computation, we 
can compute once and store the phase factor W;'. 

The complex multiplications and additions inherent in (10.46) can 
be avoided by combining the pairs of resonators possessing complex con- 
jugate poles. This leads to two-pole filters with system functions of the 
form 

1 - w p  
1 - 2 cos (2aklN) 2-1 + 2-2 

Hk (2) = (10.47) 

The realization of the system illustrated in Figure 10.15 is described by 
the difference equations 

FIGURE 10.15 Realamtion of two-pole resonator fur computing the DFT 

= X ( k )  
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with initial conditions vg (-1) = vk (-2) = 0. This is the Goertzel algo- 
rithm. 

The recursive relation in (10.48) is iterated for n = 0,1, . . . , N ,  but the 
equation in (10.49) is computed only once, at time n = N .  Each iteration 
requires one real multiplication and two additions. Consequently, for a real 
input sequence z (n), this algorithm requires N + 1 real multiplications to 
yield not only X ( k )  but also, due to symmetry, the value of X ( N  - k ) .  

We can now implement the DTMF decoder by use of the Goertzel 
algorithm. Since there are eight possible tones to be detected, we require 
eight filters of the type given by (10.471, with each filter tuned to one of the 
eight frequencies. In the DTMF detector, there is no need to compute the 
complex value X (k); only the magnitude IX(k)l or the magnitudesquared 
value IX(k)12 will suffice. Consequently, the final step in the computation 
of the DFT value involving the numerator term (feedforward part of the 
filter computation) can be simplified. In particular, we have 

(10.50) 

= v: ( N )  + v: ( N  - 1) - 2cm- vg (N)vg (N - 1) ( 2;k) 

Thus complex-valued arithmetic operations are completely eliminated in 
the DTMF detector. 

PROJECT 10.6: 
DTMF 
SIGNALING 

The objective of this project is to gain an understanding of the DTMF 
tone generation software and the DTMF decoding algorithm (the Goertzel 
algorithm). Design the following MATLAB modules: 

1. a tone generation function that accepts an array containing dial- 
ing digits and produces a signal containing appropriate tones (from Figure 
10.14) of one-half-second duration for each digit at 8 kHz sampling fre 

2. a dial-tone generator generating samples of (350+440) Hz fre- 
quency at 8 kHz sampling interval for a specified amount of duration, 
and 

3. a decoding function to implement (10.50) that accepts a DTMF 
signal and produces an array containing dialing digits. 

wency, 

Generate several dialing lit  arrays containing a mix of digits and dial 
tones. Experiment with the tone generation and detection modules and 
comment on your observations. Use MATLAB'S sound generation capabil- 
ities to listen to the tones and to observe the frequency components of 
the generated tones. 
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BINARY DIGITAL COMMUNICATIONS 
I 

PROJECT 10.7: 
BINARY DATA 
COMMUNI- 
CATIONS 
SYSTEM 

Digitized speech signals that have been encoded via PCM, ADPCM, DM, 
and LPC are usually transmitted to the decoder by means of digital modu- 
lation. A binary digital communications system employs two signal wave- 
forms, say sl ( t )  = s( t )  and s z ( t )  = -s ( t ) ,  to transmit the binary sequence 
representing the speech signal. The signal waveform s( t ) ,  which is nonzero 
over the interval 0 5 t 5 T, is transmitted to the receiver if the data bit 
is a 1, and the signal waveform - s ( t ) ,  0 < t 5 T is transmitted if the data 
bit is a 0. The time interval T is called the signal interval, and the bit 
rate over the channel is R = 1/T bits per second. A typical signal wave- 
form s ( t )  is a rectangular pulsethat  is, s ( t )  = A, 0 < t < T-which has 
energy A ~ T .  

In practice the signal waveforms transmitted over the channel are 
corrupted by additive noise and other types of channel distortions that 
ultimately limit the performance of the communications system. As a 
measure of performance we normally use the average probability of error, 
which is often called the bit error rate. 

The purpose of this project is to investigate the performance of a binary 
data communications system on an additive noise channel by means of 
simulation. The basic configuration of the system to be simulated is shown 
in Figure 10.16. Five MATLAB functions are required. 

1. A binary data generator module that generates a sequence of in- 
dependent binary digits with equal probability. 

2. A modulator module that maps a binary digit 1 into a sequence 
of M consecutive +l’s, and maps a binary digit 0 into a sequence of 
M consecutive -1’s. Thus the M consecutive +l’s represent a sampled 
version of the rectangular pulse. 

3. A noise generator that generates a sequence of uniformly dis- 
tributed numbers over the interval ( -a ,  a).  Each noise sample is added to 
a corresponding signal sample. 

FIGURE 10.16 Model of binary data communications system 
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4. A demodulator module that sums the M successive outputs of 
the noise corrupted sequence +l’s or -1’s received from the channel. We 
assume that the demodulator is time synchronized so that it knows the 
beginning and end of each waveform. 

5. A detector and error-counting module. The detector compares the 
output of the modulator with zero and decides in favor of 1 if the output 
is greater than zero and in favor of 0 if the output is less than zero. If the 
output of the detector does not agree with the transmitted bit from the 
transmitter, an error is counted by the counter. The error rate depends 
on the ratio (called signal-to-noise ratio) of the size of M to the additive 
noise power, which is P, = a2/3. 

The measured error rate can be plotted for different signal-to-noise 
ratios, either by changing M and keeping P, fixed or vice versa. 

SPREAD-SPECTRUM COMMUNICATIONS 
I 
I 

Spread-spectrum signals are often used in the transmission of digital data 
over communication channels that are corrupted by interference due to 
intentional jamming or from other users of the channel (e.g., cellular tele- 
phones and other wireless applications). In applications other than com- 
munications, spread-spectrum signals are used to obtain accurate range 
(time delay) and range rate (velocity) measurements in radar and navi- 
gation. For the sake of brevity we shall limit our discussion to the use of 
spread spectrum for digital communications. Such signals have the char- 
acteristic that their bandwidth is much greater than the information rate 
in bits per second. 

In combatting intentional interference (jamming), it is important to 
the communicators that the jammer who is trying to disrupt their com- 
munication does not have prior knowledge of the signal characteristics. To 
accomplish this, the transmitter introduces an element of unpredictability 
or randomness (pseudo-randomness) in each of the possible transmitted 
signal waveforms, which is known to the intended receiver, but not to the 
jammer. As a consequence, the jammer must transmit an interfering s’g- 

signal. 
Interference from other users arises in multiple-access communica- 

tions systems in which a number of users share a common communications 
channel. At any given time a subset of these users may transmit informa- 
tion simultaneously over a common channel to corresponding receivers. 
The transmitted signals in this common channel may be distinguished 
from one another by superimposing a different pseudo-random pattern, 
called a multiple-access code, in each transmitted signal. Thus a particular 

nal without knowledge of the pseudo-random characteristics of the desi i ed 
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PROJECT 10.8: 
BINARY 

SPECTRUM 

CATIONS 

SPREAD- 

COMMUNI- 

receiver can recover the transmitted data intended for it by knowing the 
pseudo-random pattern, that is, the key used by the corresponding trans- 
mitter. This type of communication technique, which allows multiple users 
to simultaneously use a common channel for data transmission, is called 
code division multiple access (CDMA). 

The block diagram shown in Figure 10.17 illustrates the basic e1- 
ements of a spread-spectrum digital communications system. It differs 
from a conventional digital communications system by the inclusion of 
two identical pseudo-random pattern generators, one that interfaces with 
the modulator at the transmitting end, and the second that interfaces with 
the demodulator at the receiving end. The generators generate a pseudo- 
random or pseudo-noise (PN) binary-valued sequence (jzl’s), which is 
impressed on the transmitted signal at the modulator and removed from 
the received signal at the demodulator. 

Synchronization of the PN sequence generated at the demodulator 
with the PN sequence contained in the incoming received signal is re- 
quired in order to demodulate the received signal. Initially, prior to the 
transmission of data, synchronization is achieved by transmitting a short 
fixed PN sequence to the receiver for purposes of establishing synchre  
nization. After time synchronization of the PN generators is established, 
the transmission of data commences. 

The objective of this project is to demonstrate the effectiveness of a PN 
spread-spectrum signal in suppressing sinusoidal interference. Let us con- 
sider the binary communication system described in Project 10.7, and let 
us multiply the output of the modulator by a binary (51) PN sequence. 
The same binary PN sequence is used to multiply the input to the demod- 
ulator and thus to remove the effect of the PN sequence in the desired 
signal. The channel corrupts the transmitted signal by the addition of a 
wideband noise sequence { ~ ( n ) }  and a sinusoidal interference sequence 
of the form i (n)  = Asinwon, where 0 < WO < T. We may w u m e  that 
A 1 M, where M is the number of samples per bit from the modulator. 
The basic binary spread spectrum-system is shown in Figure 10.18. As can 

output 
data Modulator Demodulator Input 

data 

t t 
sequence 
generator 

sequence 
generator 

FIGURE 10.17 Basic spread spectrum digital communications system 
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Binary data 
generator 

generator 

Modulator 
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FIGURE 10.18 Block diagram of binary PN spread-spectrum system for simula- 
tion ezperiment 

be observed, this is just the binary digital communication system shown 
in Figure 10.16, to which we have added the sinusoidal interference and 
the PN sequence generators. The P N  sequence may be generated by using 
a random-number generator to generate a sequence of equally probable 
fl's. 

Execute the simulated system with and without the use of the P N  
sequence, and measure the error rate under the condition that A 2 M for 
different values of M, such as M = 50,100,500,1000. Explain the effect 
of the P N  sequence on the sinusoidal interference signsl. Thus explajn 
why the PN spread-spectrum system outperforms the conventional binary 
communication system in the presence of the sinusoidal jarnming signal. 

SUMMARY 

In this chapter we focused on applications to waveform representation and 
coding. In particular, we described several methods for digitizing an ana- 
log waveform, including PCM, DPCM, ADPCM, DM, ADM, and LPC. 
These methods have been widely used for speech coding and transmission. 
Projects involving these waveform encoding methods were formulated for 
implementation via simulation in MATLAB. 

We also described signal-detection and communication systems where 
MATLAB may be used to perform the signal processing tasks. Projects 
were also devised for these applications. 
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Characteristics of prototype 

analog filters, 305 
cheblap, 316 
cheblhpf, 357 
cheblord, 346 
cheblap, 320 
cheb2ord, 346 
chebyl, 345 
cheby2, 345 

Chebyshev error 
(see Minimax approximation 

error) 
Chebyshev filter, 302 

analog lowpass, 313 
design equations, 316 
typd ,  313 
type-11, 313, 319 

circevod, 143, 175 
circonvf, 177 
circonvt, 151 
Circulant matrix, 177 
Circular-even component, 143 
Circular-odd component, 143 
Circular conjugate symmetry, 142 
Circular convolution, 148 
circular shift, 146 
circulnt,  177 
cirshf t f ,  176 
clrshf t t ,  146 
clock, 168 
Column vector, 43 
Compandor, 389 
Comparison of FIR vs. IIR filters, 

Complex frequency, 81 
Conjugabantkymmetric, 36, 75 
Conjugate-symmetric, 35, 42, 75 
Constraints on the number of 

conv, 25 

363 

extrema, 282 

in polynomial multiplication, 
85 

convA, 26 

85 
cow-tp, 38 
Convergence (ROC), region of, 81 
Convolution, 22 

block, 157 
circular, 148 
fast, 169 
high-speed block, 170 
linear, 21 
linear, properties of, 37 
overlapadd, 160 
overlapsave, 158 
sum, 21 

in polynomial multiplication, 

Cooley and W e y ,  160, 415 
Correlation, 20, 27 

cross, 20, 27, 376 
(see also Autocorrelation) 

cplxcomp, 192 
cplxpair, 188 
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Cr-orrelation, 20, 27, 376 
Cubic spline interpolation, 69 
Cubic splines, 69 
Cutoff frequency, 243 

passband, 302 

dbpf d b l ,  370 
dbpf dbl, 371 
DC gain, 57 
Decimation, 36 
Decimation-in-frequency 

Decimation-in-time 

decomv, 86, 112 

deconva, 112 
Deconvolution, 86 
Delay element, 183 
Delta modulation (DM), 398 

adaptive, 399 
project in, 401 

(see Fast Fourier transform) 

(see Fast Fourier transform) 

in polynomial division, 89 

Denominator polynonial, 82 
Design 

analog filter (AFD), 301 
analog lowpass filters, 302 
FrR filter, 224 
frequency sampling, 264 
IIR filter, 301 
optimal equiripple, 277 
problem statement, 227 
window technique, 243 

dfs, 119 
dft, 131 
dhpf b b l ,  368 
Difference equation, 29 

FIR, 34 
IIR, 34 
solutions of, 105 
system representation from, 96 

project in, 392 

(e Digital differentiator) 

ideal, 262 

FIR, 34 
IIR, 34 
structures, 182 

Digital frequency, 41 
Digital prototype filter, 350 
Digital signal processing (DSP), 1 

Digital signal prowssor, 3 
Digital sinc function, 128 
Digital to analog converter 

Differential PCM (DPCM), 390 

Differentiator 

Digital differentiator, 39, 274, 291 

Digital filters, 34 

overview of, 2 

(DAC), 3,61 

practical, 67 
Dilation, signal, 36 
dir2cas, 187 
dir l fs ,  204 

dir2ladr, 215 
dir2latc, 210 
dir2par, 191 
Direct form, FIR filter structures, 

197, 198 
Direct form, IIR filter structure, 

184 

modified, 222 

form I, 184 
form 11, 185 

Direct form adaptive FIR filter, 
374 

Discrete-time 
Fourier transform (DTFT), 40 
inverse Fourier transform 

signals, 7 
systems, 20 

(IDTFT), 41 

Discrete-time Fourier transform 

Discrete-time Fourier transform 
interpolation formula, 127 

properties, 47 
conjugation, 48 
convolution, 48 
energy, 49 
folding, 48 
frequency-shifting, 48 
linearity, 48 
multiplication, 49 
periodicity, 41 
symmetry, 42 
time-shifting, 48 

definition, 117 
matrix, 119 
relation to the DTFT, 123 
relation to the z-transform, 121 

Discrete Fourier series (DFS), 116 

Discrete Fourier transform 
(DFT), 116, 129 

definition, 130 
matrix, 131 

Discrete Fourier transform (DFT) 
properties, 139 

circular convolution, 148 
circular folding, 139-140 
circular shift in the 

frequency-domain, 148 
circular shift in the 

time-domain, 145 
conjugation, 142 
frequency leakage, 179, 180 
linearity, 139 
multiplication, 153 
Parsed’s relation, 153 
symmetry, 142 

Discrete systems, 20 
dlpfhbl ,  369 
d l p f h i i ,  365 
Dot-product, 163 
Down-sampling, 36 
d t f t ,  44, 74 
Dual tone multi-frequency 

(DTMF), 405 
project in, 409 

Durbin, J., 403 

Efficient computation, goal of, 
161 

el l ip ,  345 
ellipap, 324 
ellipord, 346 
Elliptic filter, 302 

analog lowpass, 323 
computation of filter order, 

Energy density spectrum, 49 
Equalizer, adaptive channel, 382 

Esuiripple design technique, 

problem statement, 281 

323 

project in, 383 

277 

Equiripple filters, 278 
Error analysis, 155 
etime, 168 
Even and odd synthesis, 17 
evenodd, 18 
Excitation, 20 
Exponential sequence 

complex-valued, 9 
real-valued, 9 

Extra-ripple filters, 284 

Fast convolution, 169 
Fast Fourier transform (FFT), 

160 
mixed radii, 165 
radix-2 

decimation-in-frequency 
(DIF), 167 

radix-2 decimation-in-time 
(DIT), 165, 166 

radii-R, 165 
f f t ,  167 
Filter, 2, 182 

analog, prototype, 305 
approximations, 224 
autoregressive, 34 
Butterworth analog lowpass, 

Chebyshev analog lowpass, 

digital, 34 

305 

313 
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digital prototype, 350 
Elliptic analog lowpass, 323 
equiripple, 278 
extra-ripple, 284 
FIR, 34 
ideal handpass, 258 
ideal highpass, 77 
ideal lowpaw, 76 
IIR, 34 
implementation, 225 
linear phase. FIR, 231-234 
minimum-phase, 304 
moving average, 34 
nonrecursive, 34 
recursive, 34 
specifications, 224 
staircase, 290 

f i l t e r ,  30 
with initial conditions, 108 

Filter transformations, analog to 

bilinear transformation, 327 
finite difference approximation, 

impulse invariance, 327 
step invariance, 327, 365 

digital, 327 

327 

f i l t iC,  109 
Finite-duration impulse response 

(FIR) filters, 5, 34 
adaptive, 374 
cascade form, 197, 198 
design, 224 
difference equation, 34 
direct form, 197, 198 
frequency sampling design 

technique, 264 
frequency sampling form, 197, 

202 
linear-phase form, 197, 199 
structures, 197 

Finite-duration sequence, 7 
Finite difference approximation 

technique, 327 
First-order hold (FOH) 

interpolation, 69 
formants, 208 
Fourier transform 

discrete, 130 
discrete-time, 40 
fast, 160 
inverse discrete-time, 41 

freqresp, 77 
f reqsn,  312 
fiequency 

complex, 81 
cutoff, 243 
digital, 41 
natural, 30 
resolution, 123 

response, 54 
response, linear-phase, 230 
sampling theorem, 125 

Frequency-hand transformations, 
350 

design procedure for lowpass to 
highpass, 356 

Frequency-domain representation 
of LTI systems, 53 

Frequency response function from 
difference equations, 57 

Frequency sampling design 
technique, 264 

basic idea, 266 
naive design method, 267 
optimum design method, 268 

Frequency sampling form, 197, 
202 

f reqz, 45 
f reqzn, 254 
Fundamental period, 10 

Geometric series, 19 
George, D. A., 415 
Gibbs phenomenon, 247 
Giordano, A. A. 
(see Hsu, F. M.) 

Goal of an efficient computation, 
161 

Goertzel algorithm, 161, 407 
Gold, B. 

Greefkea, J. A., 415 
Griffiths, L. J. 

(see Widrow, B.) 
Group delay, constant, 229 

(see Rabjner, L. R.) 

hamming, 253 
Hamming window, 249 
hanning, 253 
Hanning window, 249 
Haykin, S., 415 
High-speed block convolution, 

High-speed convolution 

Hilbert transformer, 263, 275, 
292 

Homogeneous solution, 29, 105, 
107 

hpzlpfre, 368 
Hr-Typel, 234 
Hr-TypeZ, 235 
Hr-Type3, 235 
Hr-Type4, 235 
hsolpsav, 171 
Hsu, F. M., 415 

170 

(see Fast convolution) 

Ideal 
bandpass filter, 258 
digital differentiator, 262 
highpasa filter, 77 
lowpass filter, 76 

i dea l lp ,  253 
Identification, system, 378 
idfa, 120 
idf t ,  131 
i f f t ,  168 
implnvr, 330 
*seq, 8 
impulse, 312 
Impulse invariance 

transformation, 327 
design procedure, 329 

Impulse response, 21 
antisymmetric, XKI 
symmetric, 199 
time-varying, 21 

Unite-duration impulse 

cascade form, 184, 185 
design, 301 
difference equation, 34 
direct form, 184 
parallel form, 184, 190 

hjtid-condition input, 108 
Interpolation 

response (IIR) filters, 5 , s  

StNCtUreS, 183 

cubic spline, 69 
firstorder hold (M)H), 69 
formula (DTET), 127 
formula (time-domain), 67 
mrworder hold (ZOH), 68 

Intersymbol interference, 383 
Inverse 

discrete-time Fourier transform 
(IDTFT). 41 

D6T (IDfi) ,  130 
FFT (IFF?'), 168 
z-transform, 81, 89 

Jayant, N. S., 415 

kai-bpf, 297 
kai-bsf, 297 
kaihpf, 297 
k a i l p f ,  297 
kaiser, 253 
Kaiser window, 250 

Ketchum, J. W., 415 
design equations, 253 

Ladder coefficients, 215 
ladrzdir, 216 
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ladrf ilt, 216 
IatcZdir, 211 
la tcf  ilt, 210 
Latticeladder filter, 214 

Lattice filter structures, 208 
structure, 215 

FIR, 208 
r r g  212,214 

Levinson, N., 403, 415 
Levinson-Durbin recursion, 403 
Linear-phase FIR filters 

advantages, 227 
frequency response, 230 
properties, 228 
TYPe-1, 231 
TYPe-2,232 
The-3, 233 
Type4,234 
zero constellation, 236 
zero locations, 236 

Linear-phase form, 197, 199 
Linear convolution, 21 

properties of, 37 
using the DFT, 154 

Linear fractional transformation 
(see Bilinear transformation) 

Linear predictive c o d i i  (LPC) of 
“p”h, 401 

pro]& in, 405 
Linear systems, 20 
Linear time-invariant (LTI) 

system, 21 

representation, 53 
frequency-domain 

LMS algorithm, 375 
Lowpass filter design 

analog prototype (see 
Anrrlog-tedigital flter 
transformations) 

digital, using Matlab, 345 
Lowpass filters 

(see Filters) 
lpl lpfre ,  369 

M-fold periodicity, 173 
Magnitude-only specifications, 

225 
Magnitude (or gain) response, 

54 
Manley, P. 

Manolakis, D. G. 

Matlab 

(see Widrow, B.) 

(see Proakis, J. G.) 

a few words about, 5 
lowpass filter design, 345 
reference guide, 6, 415 
signal processing toolbox, 29 

student edition, 6 
symbolic toolbox, 6 
user’s guide, 6, 415 

circulant, 177 
Toeplitz, 37 

Matrix 

matrix-vector multiplication, 38, 

Merging formula, 166 
Minimax approximation error, 

Minimax problem, development 

Minimum-phase filter, 304 
Minimum stopband attenuation, 

246 
Mirror-image symmetry, 304 
nod, 130 
Modeling, system, 378 
Modem, 373, 382 
Moving average (MA) filters, 

34 
p-law, 387 
Multiplier, 183 

43 

278 

of, 278 

N-point sequence, 129 
Narrowband interference, 

suppression of, 379 
project in, 381 

Natural frequency, 30 
Nonrecursive filters, 34 
Number sequence, 7 
Numerator polynomial, 82 
Nyquist component, 143 
Nyquist rate, 63,386 

Operations on sequences, 10 
folding, 12 
sample products, 13 
sample summation, 12 
scaling, 11 
shifting, 12 
signal addition, 10 
signd energy, 13 
signal multiplication, 11 
signal power, 13 

Optimum filter, 376 
Overlapadd method of 

convolution, 160 
Overlapsave method of 

convolution, 158 

Overview of digital signal 

ovrlpadd, 178 
ovrlpsav, 159 

high-speed, 170 

processing, 2 

parldir, 193 
Parallel fonn, IIR filter structure, 

184. 190 
par f i l t r ,  192 
Parks-McClellan, 415 

Particular solution, 30, 105, 107 
Passband cutoff frequency, 302 
Passband ripple parameter, 302 
Passband tolerance, 225 
Peak side lobe magnitude, 246 
Period, fundamental, 10 
Periodic conjugate symmetry, 

Periodic sequences, 10, 117 
Periodic shift, 146 
Periodicity, M-fold, 173 
Phase delay, constant, 228 
Phase response, 54 

Pitch detection, 404405 
plot, 71 
Poles in system function, 96 

Polynomial 

algorithm, 284 

142 

of analog prototype filters, 327 

p l y ,  93 

denominator, 82 
numerator,82 . 

Practical D/A converters, 67 
Proakjs, J. G., 416 

(see also Ketchum, J. W.) 
Projects 

adaptive channel equalization, 
383 

adaptive line enhancement, 
382 

ADPCM, 397 
binary data communications, 

410 
binary spread spectrum 

communications, 412 
DM and ADM, 401 
DTMF, 409 
LPC, 405 
PCM, 389 
suppression of sinusoidal 

system identification, 378 
Properties of 

DFT, 139 
DTFT, 41, 47 
linear convolution, 37 
linear-phase FIR filters, 228 
magnitude squared response, 

304 
ROC, 83 
z-transform, 84 

interference, 381 

Pulse code modulation (PCM), 
386 

A-law nonlinearity, 388 
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&-law nonlinearity, 387-388 
project in, 389 

Rabiner, L. R., 416 
Radix-2 decimation-in-frequency 

FFT. 167 ~~ 

W i - 2  decimation-in-time FFT, 

rand, 10 
randn, 10 
Random sequence, 10 
realzdft, 176 
Reconstruction formula in the 

Reconstruction of analog signals, 

Reaangular window, 125, 244, 

Recursive filters, 34 

Reflection coefficients, 208 
Region of convergence (ROC), 81 

Relationships between system 
representations, 102 

Relative linear scale, 302 
Relative specifications, 225 
rem, 129 
remez, 285 
residuez, 91 

165, 166 

z-domain, 127 

66 

245 

(see also IIR filters) 

properties of, 83 

Response, 20 
amplitude, 231 
to arbitrary sequences, 55 
to complex exponential, 54 
frequency, 54 
impulse, 21 
magnitude (or gain), 54 
P k ,  54 
to sinusoidal sequences, 54 
steady-state, 55 
unbounded, 107 
zerc-input, 33 
zerc-state, 33 

Ripple parameter, passband, 302 
roots, 32, 96 
Row vector, 7 

Sampling, 61 
interval, 61, 123 
theorem, 63 

Sampling and reconstruction of 

Sampling and reconstruction in 

SdirZcas, 308 
Second-order sections, 184, 185, 

190 

analog signals, 60 

the z-domain, 124 

Sequences 
causal, 22 
exponential, 9 
finite-duration, 7 
folded-and-shifted, 24 
infinite-duration, 8 
N-point, 129 
negativetime, 82 
number, 7 
operations on, 10 
periodic, 10, 117 
positive-time, 81 
random, 10 
sinusoidal, 9 
two-sided, 83 
types of, 8 
unit sample, 8 
unit step, 8 

circular, 146 
periodic, 146 

Shifts 

sigadd, 11 
sigfold, 12 
sigmult, 11 
Signal 

analysis, 4 
band-limited, 62 
dilation, 36 
filtering, 4 
pmcessing, 2 

Signals 
analog, 2, 7 
digital, 2 
discrete-time, 7 
energy, 13 
power, 13 

sigshif t ,  12 
sinc[z), 67 
Sinusoidal sequence, 9 
Solutions 

difference equation, 105 
homogeneous, 29, 105,107 
particular, 30, 105,107 
steady-state, 105, 107 
transient, 105, 107 
zero-input, 34, 105, 107 
zero-state, 34, 105, 107 

Specifications 
absolute, 225 
filter, 224 
magnitude-only, 225 
relative, 225 
relative lmear, 302 

Spectral transformations 
(see Frequency-band 

transformations) 
Spectrum 

analyzers, 2, 182 
energy density, 49, 153 

high-density, 136 
highresolution, 136 
power, 1% 

apline, 73 
Spread spectrum 

communications, 411 
project in binary, 412 

bounded-input bounded-output 

in z-domain, 102 
Staircase filter, 290 
stairs, 71 
Steady-state response, 55, 105 
Step invariance, 327,365 

Stopband attenuation parameter, 
302 

Stopband tolerance, 225 
Storey, J. R 

(see George, D. A,) 
etp-invr, 366 
Structures, digital filter, 182 

&pole lattice filter, 212 
ell-zero lattice filter, 208 
basic elements, 183 
FIR filter, 197 
IIR filter, 183 
lattice-ladder, 214 

Stability, 22 

(BIBO), 22 

stepseq, 9 

Summable, abeolutely, 22 
Superposition summation, 21 
Suppmsion of narrowband 

interference, 379 
Synthesis 

even and odd, 17 
unit sample, 17 

System function, 95 
System identification, 378 

project in, 378 
System modeling 

(see System identification) 
System representation 

from difference equations, 

relationships between, 102 
transfer function, 97 
in the a-domain, 95 

discrete 20 
linear, 20 
LTI. 21 

96 

system 

Table 
amplitude response and 

comparison of analog filters, 

&values for linear-phsse FIR 
filters, 278 

350 
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frequency transformations for 
digital filters, 352 

Q ( w ) .  L and P(w)  for 
linear-phase FIR filters, 279 

window function 
characteristics, 251 

z-transform, 87 

modems, 373,382 

alternation, 284 
frequency sampling, 125 
sampling, 63 
z-domain stability, 103 

Telecommunications, 373, 383 

Theorem 

Time-varying impulse respnse, 

Toeplitz matrix, 37 
Tolerance 

passband, 225 
stopband, 225 
transition band, 225 

Tone detection, 406 
Touch Tone, 4 0 W  
Transfer function representation, 

'Itansformations 

21 

97 

bilinear, 327, 336 
filter, 327 
frequency-band, 350 
linear fractional, 337 
spectral, 350 

Tkansient response, 105, 107 
'Itansition band tolerance, 225 
'Ikansition bandwidth 

approximate, 246, 251 
exact, 247, 251 

triaug, 253 

'Itiangular window 

Twiddle factor, 165 
Two important categories of 

(see Bartlett window) 

DSP. 4 

U-buttap, 307 
Ushblap, 316 
U-chb?ap, 320 
U-elipap, 324 
Unbounded response, 107 
Unit circle, 81 
Unit sample sequence, 8 
Unit sample synthesis, 17 
Unit step sequence, 8 

vectors 
column, 43 
row, 7 

Voice synthesis, 5 

Widrow, B., 416 
Window design techniques, 243 

bgsic idea, 245 
Window function characteristics, 

Windowing, 243 
Windows 

251 

Bartlett (triangular), 248 
Blackman, 250 
Hamming, 249 
Hanning, 249 
Kaiser, 250 
rectangular, 125, 244, 245 

xcorr. 29 

z-domain 
causal LTI stability theorem, 
103 

LTI stability theorem, 103 
sampling and reconstruction in, 

stability and causality, 102 
system representation, 95 

z-domain system function, 95 
z-transform 

124 

the bilateral, 80 
complex conjugation, 84 
convolution, 85 
differentiation in the z-domain, 

folding, 84 
frequency shifting, 84 
inverse, 81, 89 
linearity, 84 
multiplication, 85 
one-sided, 105 
rwnstruction formula, 127 
sample shifting, 84 
table, 87 
z-transform properties, 84 

85 

Zero-input response, 33, 105, 107 
Zero-order hold (ZOH) 

Zero-padding, 135 
Zero-state response, 33, 105, 107 
zeros, 135 
Zeros in system function, 96 
mapping, 353 

interpolation, 68 

zplane, 96 
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